

Objective Questions

(For Complete Chapter)

Multiple Choice Questions (MCQs)

- **1.** In insulators (CB is Conduction Band and VB is Valence Band)
 - (a) VB is partially filled with electrons
 - (b) CB is partially filled with electrons
 - (c) CB is empty and VB is filled with electrons
 - (d) CB is filled with electrons and VB is empty
- **2.** Identify the incorrect statement.
 - (a) In conductors, the valence and conduction bands overlap.
 - (b) Substances with energy gap of the order of 10 eV are insulators.
 - (c) The resistivity of semiconductors is lower than metals.
 - (d) The conductivity of metals is high.
- **3.** In the band gap between valence band and conduction band in a material is 5.0 eV, then the material is
 - (a) semiconductor
 - (b) good conductor
 - (c) superconductor
 - (d) insulator
- **4.** In *n*-type semiconductor, electrons are majority charge carriers but it does not show any negative charge. The reason is
 - (a) electrons are stationary
 - (b) electrons neutralise with holes
 - (c) mobility of electrons is extremely small
 - (d) atom is electrically neutral

- **5.** In a *n*-type semiconductor, which of the following statement is true?
 - (a) Electrons are majority carriers and trivalent atoms are dopants.
 - (b) Electrons are minority carriers and pentavalent atoms are dopants.
 - (c) Holes are minority carriers and pentavalent atoms are dopants.
 - (d) Holes are majority carriers and trivalent atom are dopants.
- **6.** If a small amount of antimony is added to germanium crystal
 - (a) the antimony becomes an acceptor atom
 - (b) there will be more free electrons than holes in the semiconductor
 - (c) its resistance is increased
 - (d) it becomes a p-type semiconductor
- **7.** In the circuit shown below, assume the diode to be ideal. When V_i increases from 2 V to 6 V, the change in the current is (in mA)

 V_i 150 Ω +3 V_i

- (a) zero
- (b) 20
- (c) 80/3
- (d) 40
- **8.** In the following figures, which one of the diode is reverse biased?

- **9.** When two semiconductors of *p*-type and *n*-type are brought into contact, they form a *p n* junction which acts like a
 - (a) conductor
- (b) oscillator
- (c) amplifier
- (d) rectifier

Assertion-Reason Questions

Directions (Q. Nos. 10-13) In the following questions, two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below

- (a) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both Assertion and Reason are incorrect.
- **10. Assertion** If the temperature of a semiconductor is increased, then its resistance decreases.

Reason The energy gap between conduction band and valence band is very small.

11. Assertion The number of electrons in a *p*-type silicon semiconductor is less than the number of electrons in a pure silicon semiconductor at room temperature.

Reason It is due to law of mass action.

12. Assertion The resistivity of a semiconductor increases with temperature.

Reason The atoms of a semiconductor vibrate with larger amplitudes of higher temperatures thereby increasing its resistivity.

13. Assertion The applied voltage (in forward bias of a *p-n* junction) mostly drops across the depletion region and the voltage drop across the *p*-side and *n*-side of the junction is negligible.

Reason Resistance of depletion region is large compared to resistance of *n*-side or *p*-side.

