

311

☑ 1 Mark Questions

- **1.** If $R = \{(a, a^3) : a \text{ is a prime number less than 5}$ be a relation. Find the range of R.
- 2. If $f: \{1, 3, 4\} \xrightarrow{f(1)} \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.
- **3.** Let R is the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : 2 \text{ divides } (a b)\}$. Write the equivalence class [0].
- **4.** If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, then write the range of R
- (5) If $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (3, 6)\}$ is a function from A to B. State whether f is one-one or not.
- **6.** If $f: R \to R$ is defined by f(x) = 3x + 2, then define f[f(x)].
- 7. Write $f \circ g$, if $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = |5x 2|.
- **8.** Write fog, if $f: R \to R$ and $g: R \to R$ are given by $f(x) = 8x^3$ and $g(x) = x^{1/3}$.
- **9.** State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.
- **10.** What is the range of the function $f(x) = \frac{|x-1|}{x-1}, x \neq 1?$
- 11. If $f: R \to R$ is defined by $f(x) = (3 x^3)^{1/3}$, then find $f\circ f(x)$

- 12. If f is an invertible function, defined as $f(x) = \frac{3x-4}{5}$, then write $f^{-1}(x)$.
- 13. If $f: R \to R$ and $g: R \to R$ are given by $f(x) = \sin x$ and $g(x) = 5x^2$, then find $g \circ f(x)$.
- **14.** If $f(x) = 27x^3$ and $g(x) = x^{1/3}$, then find gof(x).
- **15.** If the function $f: R \to R$ defined by f(x) = 3x 4 is invertible, then find f^{-1} .

4 Marks Questions

- **16.** Check whether the relation R defined on the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.
- 17. Let $f: N \to Y$ be a function defined as f(x) = 4x + 3, where, $Y = \{y \in N : y = 4x + 3, \text{ for some } x \in N\}$. Show that f is invertible. Find its inverse.
- **18.** Show that the relation R on IR defined as $R = \{(a, b) : (a \le b)\}$, is reflexive and transitive but not symmetric.
- **19.** Prove that the function, $f: N \to N$ is defined by $f(x) = x^2 + x + 1$ is one-one but not onto. Find inverse of $f: N \to S$, where S is range of f.
- **20.** If $f: W \to W$ is defined as f(x) = x 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
- **21.** If $f,g:R\to R$ are two functions defined as f(x)=|x|+x and $g(x)=|x|-x, \forall x\in R$. Then, find fog and gof.
- 22. If R is a relation defined on the set of natural numbers N as follows: $R = \{(x, y) : x \in N, y \in N \text{ and } 2x + y = 24\},$ then find the domain and range of the relation R. Also, find whether R is an equivalence relation or not.

- **23.** If $A = R \{3\}$ and $B = R \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$, for all $x \in A$. Then, show that f is bijective. Find $f^{-1}(x)$.
- **24.** If $A = \{1, 2, 3, ..., 9\}$ and R is the relation in $A \times A$ defined by (a, b) R(c, d), if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
- **25.** If the function $f: R \to R$ is given by $f(x) = x^2 + 2$ and $g: R \to R$ is given by $g(x) = \frac{x}{x-1}$; $x \ne 1$, then find fog and gof, and hence find fog (2) and gof (-3).
- **26.** If $A = R \{2\}$, $B = R \{1\}$ and $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, then show that f is one-one and onto. Hence, find f^{-1} .
- **27.** Show that the function f in $A = R \left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x + 3}{6x 4}$ is one-one and onto. Hence, find f^{-1} .
- **28.** Consider $f: R^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R^+ is the set of all non-negative real numbers.
- **29.** Show that $f: N \to N$, given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is bijective (both one-one and onto).
- **30.** If $f: R \to R$ is defined as f(x) = 10x + 7. Find the function $g: R \to R$, such that $gof = fog = I_R$.

- **31.** If $f: R \to R$ is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection
- **32.** If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b) : a, b \in Z \text{ and } a b \text{ is divisible by 5}\}$. Prove that R is an equivalence relation.
- 33. Show that the relation S in the set R of real numbers defined as $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$ is neither reflexive nor symmetric nor transitive.
- **34.** Show that the relation S in set $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in A, |a b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1.
- **35.** Show that the relation S defined on set $N \times N$ by $(a, b) S(c, d) \Rightarrow a + d = b + c$ is an equivalence relation.
- **36.** If $f: X \to Y$ is a function. Define a relation R on X given by $R = \{(a, b): f(a) = f(b)\}$. Show that R is an equivalence relation on X.
- **37.** Show that a function $f: R \to R$ given by f(x) = ax + b, $a, b \in R$, $a \ne 0$ is a bijective.

- **38.** Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that $R = \{(a, b) : a, b \in A, |a b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. Also, write the equivalence class [2].
- **39.** Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in R$ is neither one-one nor onto. Also, if $g: R \to R$ is defined as g(x) = 2x 1, find fog(x).
- **40.** Show that the relation R on the set Z of all integers defined by $(x, y) \in R \Leftrightarrow (x y)$ is divisible by 3 is an equivalence relation.

41. Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$

Hence find

- (i) $f^{-1}(10)$
- (ii) $y \text{ if } f^{-1}(y) = \frac{4}{3}$

where R_{+} is the set of all non-negative real numbers.

- **42.** Consider $f: R \left\{-\frac{4}{3}\right\} \to R \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$.
- **43.** Let $f: N \to N$ be a function defined as $f(x) = 9x^2 + 6x 5$. Show that $f: N \to S$, where S is the range of f, is invertible. Find the inverse of f and hence find $f^{-1}(43)$ and $f^{-1}(163)$.
- **44.** If $f, g: R \to R$ be two functions defined as f(x) = |x| + x and $g(x) = |x| x, \forall x \in R$. Then, find fog and gof. Hence find fog (-3), $f \circ g(5)$ and $g \circ f(-2)$
- **45.** If N denotes the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R(c, d), if ad(b+c) = bc(a+d). Show that R is an equivalence relation.
- **46.** Consider $f: R^+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x 9$. Prove that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{54 + 5y} 3}{5}\right)$.

[where, R^+ is the set of all non-negative real numbers.]

47. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where S is the range of f, is invertible. Also, find the inverse of f.

48. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b): |a - b|$ is divisible by $2\}$, is an equivalence relation. Write all the equivalence classes of R.

Objective Questions

(For Complete Chapter)

1 Mark Questions

- **1.** If $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), , \}$
 - (3, 9), (3, 12), (3, 6)} is a relation on the set $A = \{3, 6, 9, 12\}$. Then, the relation is
 - (a) an equivalence relation
 - (b) reflexive and symmetric
 - (c) reflexive and transitive
 - (d) only reflexive
- 2. If R is a relation on the set N, defined by $\{(x, y): 2x - y = 10\}, \text{ then } R \text{ is }$
 - (a) reflexive
 - (b) symmetric
 - (c) transitive
 - (d) None of the above
- **3.** If A and B are two equivalence relations defined on set C, then
 - (a) $A \cap B$ is an equivalence relation
 - (b) $A \cap B$ is not an equivalence relation
 - (c) $A \cup B$ is an equivalence relation
 - (d) $A \cup B$ is not an equivalence relation
- **4.** If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then which of the following relations is a function from A to B?
 - (a) {(1, 2), (2, 3), (3, 4), (2, 2)}
 - (b) {(1, 2), (2, 3), (1, 3)}
 - (c) {(1, 3), (2, 3), (3, 3)}
 - (d) {(1, 1), (2, 3), (3, 4)}
- **5.** If $A = \{1, 3, 5, 7\}$ and

 $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$, then the number of one-one function from A into B is

- (a) 1340
- (b) 1860
- (c) 1430
- (d) 1680
- **6.** The function $f(x) = x^2 + bx + c$, where b and c are real constants, describes
 - (a) one-one mapping
 - (b) onto mapping
 - (c) not one-one but onto mapping
 - (d) neither one-one nor onto mapping

- 7. If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ are two sets and function $f: A \rightarrow B$ is defined by $f(x) = x + 2, \forall x \in A$, then the function fis
 - (a) bijective
- (b) onto
- (c) one-one
- (d) many-one
- **8.** A mapping $f: n \to N$, where N is the set of natural numbers is defined as

$$f(n) = \begin{cases} n^2, & \text{for } n \text{ odd} \\ 2n+1, & \text{for } n \text{ even} \end{cases}$$

for $n \in N$. Then, f is

- (a) surjective but not injective
- (b) injective but not surjective
- (c) bijective
- (d) neither injective nor surjective
- **9.** The domain of the function $f(x) = \sqrt{\cos x}$ is
 - (a) $\left| \frac{3\pi}{2}, 2\pi \right|$ (b) $\left[0, \frac{\pi}{2} \right]$
 - (c) $[-\pi, \pi]$
- (d) $\left[0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right]$
- **10.** The range of the function $f(x) = x^2 + 2x + 2$ is
 - (a) $(1, \infty)$
- (b) (2, ∞)
- (c) $(0, \infty)$
- (d) [1, ∞)
- **11.** Range of the function $f(x) = \frac{x}{1+x^2}$ is
 - (a) $[-\infty, \infty]$
- (a) $(-\infty, \infty)$ (b) [-1, 1] (c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (d) $[-\sqrt{2}, \sqrt{2}]$
- **12.** If $f(x) = \sqrt{x}$ and g(x) = 2x 3, then domain of (fog)(x) is

 - (a) $(-\infty, -3)$ (b) $\left(-\infty, -\frac{3}{2}\right)$
 - (c) $\left[-\frac{3}{2}, 0\right]$ (d) $\left[\frac{3}{2}, \infty\right)$
- **13.** If $f(x) = \frac{x+2}{3x-1}$, then $f\{f(x)\}$ is equal to

- (a) x (c) $\frac{1}{x}$
- (b) -x(d) $-\frac{1}{x}$
- 14. If $f: R \to R$ is defined by $f(x) = x^3$, then f1(8) is equal to
 - (a) {2}
- (b) (2, 2w, 2w)
- (c) $\{2, -2\}$
- (d) {2, 2}