Single Correct Answer Type

1. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satisfies the condition $\vec{c} \cdot(\hat{\imath}+2 \hat{\jmath}-7 \hat{k})=10$. Then vector \vec{c} is equal to
a) $(7,5,1)$
b) $(-7,-5,-1)$
c) $(1,1,-1)$
d) None of these
2. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is
a) 0
b) 1
c) $-\sqrt{3}$
d) $\sqrt{3}$
3. Points $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar and $(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=0$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3 \gamma$ is
a) $1 / 14$
b) 14
c) 6
d) $1 / \sqrt{6}$
4. If $|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))))$ is equal to
a) $48 \hat{b}$
b) $-48 \hat{b}$
c) $48 \hat{a}$
d) $-48 \hat{a}$
5. A parallelogram is constructed on $3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and \vec{a} and \vec{b} are antiparallel. Then the length of the longer diagonal is
a) 40
b) 64
c) 32
d) 48
6. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vector and \vec{p}, \vec{q} and \vec{r} the vector defined by the relations $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{b} \vec{c}]}, \vec{q}=$ $\frac{\vec{c} \times \vec{a}}{[\overrightarrow{a b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\overrightarrow{a b} \vec{c}]}$. Then the value of the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$ is
a) 0
b) 1
c) 2
d) 3
7. If the vectors \vec{a}, \vec{b} and \vec{c} from the sides $B C, C A$ and $A B$, respectively, of triangle $A B C$, then
a) $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
b) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
c) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
d) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$
8. Vector $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the single between \vec{a} and \vec{b} is
a) $\frac{19}{5 \sqrt{43}}$
b) $\frac{19}{3 \sqrt{43}}$
c) $\frac{19}{2 \sqrt{45}}$
d) $\frac{19}{6 \sqrt{43}}$
9. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to
a) $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$
b) $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
c) $|\vec{c}|^{2}(\vec{a} \cdot \vec{b})$
d) None of these
10. If G is the centroid of a triangle $A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$ is equal to
a) \vec{O}
b) $3 \overrightarrow{G A}$
c) $3 \overrightarrow{G B}$
d) $3 \overrightarrow{G C}$
11. Vector \hat{a} in the plane of $\hat{b}=2 \hat{\imath}+\hat{\jmath}$ and $\vec{c}=\hat{\imath}-\hat{\jmath}+\hat{k}$ is such it is equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{\jmath}+2 \hat{k}$. The value of \hat{a} is
a) $\frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$
b) $\frac{\hat{\imath}-\hat{\jmath}+\hat{k}}{\sqrt{3}}$
c) $\frac{2 \hat{\imath}+\hat{\jmath}}{\sqrt{5}}$
d) $\frac{2 \hat{\imath}+\hat{\jmath}}{\sqrt{5}}$
12. $A B C D$ is a quadrilateral. E is the point intersection of the line joining the midpoint of the opposite sides. If O is any point and $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=\overrightarrow{x O E}$, then x is equal to
a) 3
b) 9
c) 7
d) 4
13. Let $P(3,2,6)$ be a point in space and Q be a point on the line $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})+\mu(-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}})$. Then, the value of μ for which the vector $\overrightarrow{\mathbf{P Q}}$ is parallel to the plane $x-4 y+3 z=1$ is
a) $\frac{1}{4}$
b) $-\frac{1}{4}$
c) $\frac{1}{8}$
d) $-\frac{1}{8}$
14. If ' P^{\prime} is any arbitrary point on the circumcircle of the equilateral triangle of side length l units, then $|\overrightarrow{P A}|^{2}+|\overrightarrow{P B}|^{2}+|\overrightarrow{P C}|^{2}$ is always equal to
a) $2 l^{2}$
b) $2 \sqrt{3} l^{2}$
c) l^{2}
d) $3 l^{2}$
15. Let the pairs \vec{a}, \vec{b} and \vec{c}, \vec{d} each determine a plane. Then the planes are parallel if
a) $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0}$
b) $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}$
c) $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
d) $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$
16. In the following figure, $A B, D E$ and $G F$ are parallel to each other and $A D, B G$ and $E F$ are parallel to each other. If $C D: C E=C G: C B=2: 1$, then the value of area $(\triangle A E G)$: area $(\triangle A B D)$ is equal to

a) $7 / 2$
b) 3
c) 4
d) $9 / 2$
17. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar.If \vec{c} is perpendicular to \vec{a}, then \vec{c} is
a) $\frac{1}{\sqrt{2}}(-j+k)$
b) $\frac{1}{\sqrt{3}}(-i-j-k)$
c) $\frac{1}{\sqrt{5}}(i-2 j)$
d) $\frac{1}{\sqrt{3}}(i-j-k)$
18. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vector of a variable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=\overrightarrow{0}$, then the locus of R is
a) A plane containing the origin O and parallel to two non-collinear vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
b) The surface of a sphere described on $P Q$ as its diameter
c) A line passing through points P and Q
d) A set of lines parallel to line $P Q$
19. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is
a) $\vec{a}+\vec{b}+\vec{c}$
b) $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
c) $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
d) $|\vec{a}| \vec{a}-|\vec{a}| \vec{b}+|\vec{c}| \vec{c}$
20. A, B, C and D have position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively, such that $\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$. Then
a) $A B$ and $C D$ bisect each other
b) $B D$ and $A C$ bisect each other
c) $A B$ and $C D$ trisect each other
d) $B D$ and $A C$ trisect each other
21. If a is a real constant and A, B and C are variable angled and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least value of $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$ is
a) 6
b) 10
c) 12
d) 3
22. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to
a) $[\vec{a} \vec{b} \vec{c}] \vec{r}$
b) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
c) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
d) None of these
23. The scalar $\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals
a) 0
b) $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
c) $[\vec{A} \vec{B} \vec{C}]$
d) None of these
24. \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then find the angle between \vec{b} and \vec{c}
a) $\frac{\pi}{3}$
b) $\frac{\pi}{6}$
c) $\frac{3 \pi}{4}$
d) $\frac{5 \pi}{6}$
25. The volume of the parallelepiped whose sides are given by $\overrightarrow{O A}=2 i-2 j, \overrightarrow{O B}=i+j-k$ and $\overrightarrow{O C}=3 i-k$ is
a) $4 / 13$
b) 4
c) $2 / 7$
d) 2
26. If \vec{b} is a vector whose initial point divides the join of $5 \hat{\imath}$ and $5 \hat{\jmath}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, then k lies in the interval
a) $[-6,-1 / 6]$
b) $[-\infty,-6] \cup[-1 / 6, \infty]$
c) $[0,6]$
d) None of these
27. The number of the distinct real values of λ, for which the vectors $-\lambda^{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\lambda^{2} \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda^{2} \hat{\mathbf{k}}$ are coplanar, is
a) Zero
b) One
c) Two
d) Three
28. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to
a) A vector perpendicular to the plane of \vec{a}, \vec{b} and \vec{c}
b) A scalar quantity
c) $\overrightarrow{0}$
d) None of these
29. Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+\hat{b}_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} is $\pi / 6$, then the value of $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}$ is
a) 0
b) 1
c) $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
d) $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
30. The position vectors of the point P and Q with respect to the origin O are $\vec{a}=\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$ and $\vec{b}=3 \hat{\imath}-\hat{\jmath}-$ $2 \hat{k}$, respectively. If M is a point on $P Q$, such that $O M$ is the bisector of $P O Q$, then $\overrightarrow{O M}$ is
a) $2(\hat{\imath}-\hat{\jmath}+\hat{k})$
b) $2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
c) $2(-\hat{\imath}+\hat{\jmath}-\hat{k})$
d) $2(\hat{\imath}+\hat{\jmath}+\hat{k})$
31. Let \hat{a} and \hat{b} be mutually perpendicular unit vectors. Then for any arbitrary \vec{r}
a) $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
b) $\vec{r}=(\vec{r} \cdot \hat{a})-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
c) $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}-(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
d) None of these
32. If $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{c} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{c} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$, where \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then the value of the expression $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})$ is
a) 3
b) 2
c) 1
d) 0
33. If $\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$ bisects the angle between \hat{a} and $-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$, where \hat{a} is a unit vectors, then
a) $\hat{a}=\frac{1}{105}(41 \hat{\imath}+88 \hat{\jmath}-40 \hat{k})$
b) $\hat{a}=\frac{1}{105}(41 \hat{\imath}+88 \hat{\jmath}+40 \hat{k})$
c) $\hat{a}=\frac{1}{105}(-41 \hat{\imath}+88 \hat{\jmath}-40 \hat{k})$
d) $\hat{a}=\frac{1}{105}(41 \hat{\imath}-88 \hat{\jmath}-40 \hat{k})$
34. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is
a) $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
b) $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$
c) $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
d) $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
35. Let $\vec{r}, \vec{a}, \vec{b}$, and \vec{c}, be four non-zero vectors such that $\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$.Then $[a, b, c]$ is equal to
a) $|a||b||c|$
b) $-|a||b||c|$
c) 0
d) None of these
36. If $\vec{a}, \vec{b}, \vec{c}$ are any three non-coplanar vectors, then the equation $[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+$ $1+[\vec{b}-\vec{c} \vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots
a) Real and distinct
b) Real
c) Equal
d) Imaginary
37. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=0$ and $(\vec{b})^{2}=1$, where μ is a scalar. Then $|(\vec{a} \cdot \vec{q}) \vec{p}-(\vec{p} \cdot \vec{q}) \vec{a}|$ is equal to
a) $2|\vec{p} \cdot \vec{q}|$
b) $(1 / 2)|\vec{p} \cdot \vec{q}|$
c) $|\vec{p} \times \vec{q}|$
d) $|\vec{p} \cdot \vec{q}|$
38. If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2 respectively, and $(1-3 \vec{a} \cdot \vec{b})^{2}+\mid 2 \vec{a}+\vec{b}+$ $3 a \times b 2=47$, then the angle between a and b is
a) $\pi / 3$
b) $\pi-\cos ^{-1}(1 / 4)$
c) $\frac{2 \pi}{3}$
d) $\cos ^{-1}(1 / 4)$
39. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if
a) $\vec{a} \cdot \vec{b}=\overrightarrow{0}, \vec{b} \cdot \vec{c}=0$
b) $\vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$
c) $\vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0$
d) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
40. If $\vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}$, where \vec{c} is a non-zero vector, then which of the following is not correct
a) $\vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
b) $\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
c) $\vec{y}=\frac{\vec{a} \times \vec{c}+\vec{b}+(\vec{c} \cdot \vec{b}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
d) None of these
41. $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \hat{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}, \vec{c}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$. A vector coplanar with \vec{b} and \vec{c} whose projection on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is
a) $2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
b) $-2 \hat{\imath}-\hat{\jmath}+5 \hat{k}$
c) $2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$
d) $2 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
42. A point O is the centre of a circle circumscribed about a triangle $A B C$. Then $\overline{O A} \sin 2 A+\overline{O B} \sin 2 B+$ $O C \sin 2 C$ is equal to
a) $(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}) \sin 2 A$
b) $3 \overrightarrow{O G}$, where G is the centroid of triangle $A B C$
c) $\overrightarrow{0}$
d) None of thee
43. Find the value of λ so that the points P, Q, R and S on the sides $O A, O B, O C$ and $A B$, respectively, of a regular tetrahedron $O A B C$ are coplanar. It is given that $\frac{O P}{O A}=\frac{1}{3}, \frac{O Q}{O B}=\frac{1}{2}, \frac{O R}{O C}=\frac{1}{3}$ and $\frac{O S}{A B}=\lambda$
a) $\lambda=\frac{1}{2}$
b) $\lambda=-1$
c) $\lambda=0$
d) For no value of λ
44. Let \vec{a}, \vec{b} and \vec{c} be three units vectors such that $3 \vec{a}+4 \vec{b}+5 \vec{c}=0$. Then which of the following statements is true?
a) \vec{a} is parallel to \vec{b}
b) \vec{a} is perpendicular to \vec{b}
c) \vec{a} is neither parallel nor perpendicular to \vec{b}
d) None of these
45. A non-zero vector \vec{a} is such that its projections along vectors $\frac{\hat{\imath}+\hat{\jmath}}{\sqrt{2}}, \frac{-\hat{\imath}+\hat{\jmath}}{\sqrt{2}}$ and \hat{k} are equal, then unit vectors along \vec{a} is
a) $\frac{\sqrt{2} \hat{\jmath}-\hat{k}}{\sqrt{3}}$
b) $\frac{\hat{\jmath}-\sqrt{2} \hat{k}}{\sqrt{3}}$
c) $\frac{\sqrt{2}}{\sqrt{3}} \hat{\jmath}+\frac{\hat{k}}{\sqrt{3}}$
d) $\frac{\hat{\jmath}-\hat{k}}{\sqrt{2}}$
46. If $\vec{a}=\hat{\imath}+\hat{\jmath}, \vec{b}=\hat{\jmath}+\hat{k}, \vec{c}=\hat{k}+\hat{\imath}$, then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is
a) $\frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{2}$
b) $\frac{\hat{\imath}-\hat{\jmath}+\hat{k}}{2}$
c) $\frac{-\hat{\imath}-\hat{\jmath}+\hat{k}}{2}$
d) $\frac{\hat{\imath}+\hat{\jmath}-\hat{k}}{2}$
47. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$. Which of the following is correct?
a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
c) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are mutually perpendicular
48. For any two vectors \vec{a} and $\vec{b},(\vec{a} \times \hat{\imath}) \cdot(\vec{b} \times \hat{\imath})+(\vec{a} \times \vec{\jmath}) \cdot(\vec{b} \times \hat{\jmath})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})$ is always equal to
a) $\vec{a} \cdot \vec{b}$
b) $2 \vec{a} \cdot \vec{b}$
c) Zero
d) None of these
49. If the vectors \vec{a} and \vec{b} are linearly independent satisfying $(\sqrt{3} \tan \theta+1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=0$, then the most general values of θ are
a) $n \pi-\frac{\pi}{6}, n \in Z$
b) $2 n \pi \pm \frac{11 \pi}{6}, n \in Z$
c) $n \pi \pm \frac{\pi}{6}, n \in Z$
d) $2 n \pi+\frac{11 \pi}{6}, n \in Z$
50. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$, where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then
a) $\vec{r} \perp(\vec{c} \times \vec{a})$
b) $\vec{r} \perp(\vec{a} \times \vec{b})$
c) $\vec{r} \perp(\vec{b} \times \vec{c})$
d) $\vec{r}=\overrightarrow{0}$
51. Let α, β and γ be distinct and real numbers. The points with position vectors $\alpha i+\beta \hat{\jmath}+\gamma \hat{k} \beta \hat{\imath}+\gamma \hat{\jmath}+$ $\alpha \hat{k}$ and $\gamma \hat{\imath}+\alpha \hat{\jmath}+\beta \hat{k}$
a) Are collinear
b) From an equilateral triangle
c) From a scalene triangle
d) Form a right-angled triangle
52. Let $\vec{a}=\vec{\imath}-\vec{k}, \vec{b}=x \vec{\imath}+\vec{\jmath}+(1-x) \vec{k}$ and $\vec{c}=y \vec{\imath}+x \vec{\jmath}+(1+x-y) \vec{k}$. Then \vec{a}, \vec{b} and \vec{c} are non- coplanar for
a) Some values of x
b) Some values of y
c) No values of x and y
d) For all values of x and y
53. \vec{p}, \vec{q} and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=\overrightarrow{0}$, then \vec{x} is given by
a) $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
b) $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
c) $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
d) $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$
54. Let two non-collinear unit vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ from and acute angle. A point P moves so that at any time t the position vector $\overrightarrow{\mathbf{O P}}$ (where O is the origin) is given by $\hat{\mathbf{a}} \cos t+\hat{\mathbf{b}} \sin t$. When P is farthest form origin O, let M be the length of $\overrightarrow{\mathbf{O P}}$ and $\widehat{\mathbf{u}}$ be the unit vector along $\overrightarrow{\mathbf{O P}}$ Then,
a) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$ and $M=(1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
b) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}-\hat{\mathbf{b}}}{|\hat{\mathbf{a}}-\hat{\mathbf{b}}|}$ and $M=(1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
c) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$ and $M=(1+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
d) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}-\hat{\mathbf{b}}}{|\hat{\mathbf{a}}-\hat{\mathbf{b}}|}$ and $M=(1+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
55. If $\vec{a} \cdot \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is
a) $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
b) $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
c) $\frac{(\beta \vec{c}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
d) $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
56. If \vec{a} is a non-zero vector of modulus a and m is a non-zero scalar, then $m \vec{a}$ is a unit vector it
a) $m \pm 1$
b) $a=|m|$
c) $a=1 /|m|$
d) $a=1 / m$
57. Let, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$. A vector coplanar to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ has a projection along $\overrightarrow{\mathbf{c}}$ of magnitude $\frac{1}{\sqrt{3}}$, then the vector is
a) $4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
b) $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
c) $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) None of these
58. Given three non-zero, non-coplanar vectors \vec{a}, \vec{b} and $\vec{c} \cdot \overrightarrow{r_{1}}=p \vec{a}+q \vec{b}+\vec{c}$ and $\overrightarrow{r_{2}}=\vec{a}+p \vec{b}+q \vec{c}$. if the vectors $\overrightarrow{r_{1}}+2 \overrightarrow{r_{2}}$ and $2 \overrightarrow{r_{1}+} \overrightarrow{r_{2}}$ are collinear, then (p, q) is
a) $(0,0)$
b) $(1,-1)$
c) $(-1,1)$
d) $(1,1)$
59. Gives three vectors \vec{a}, \vec{b} and \vec{c}, two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}| \sqrt{2}$. Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
a) 3
b) -3
c) 0
d) Cannot be evaluated
60. A uni-modular tangent vector on the curve $x=t^{2}+2, y=4 t-5, z=2 t^{2}-6 t$ at $t=2$ is
a) $\frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}+\hat{k})$
b) $\frac{1}{3}(\hat{\imath}-\hat{\jmath}-\hat{k})$
c) $\frac{1}{6}(2 \hat{\imath}+\hat{\jmath}+\hat{k})$
d) $\frac{2}{3}(\hat{\imath}+\hat{\jmath}+\hat{k})$
61. In a quadrilateral $A B C D, \overrightarrow{A C}$ is the bisector of $\overrightarrow{A B}$ and $\overrightarrow{A D}$, angle between $\overrightarrow{A B}$ and $\overrightarrow{A D}$ is $2 \pi / 3,15|\overrightarrow{A C}|=$ $3|\overrightarrow{A B}|=5|\overrightarrow{A D}|$. Then the angle between $\overrightarrow{B A}$ and $\overrightarrow{C D}$ is
a) $\cos ^{-1} \frac{\sqrt{14}}{7 \sqrt{2}}$
b) $\cos ^{-1} \frac{\sqrt{21}}{7 \sqrt{3}}$
c) $\cos ^{-1} \frac{2}{\sqrt{7}}$
d) $\cos ^{-1} \frac{2 \sqrt{7}}{14}$
62. Let $A B C D$ be a tetrahedron such that the edge AB, AC and AD are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3,4 sq. units, respectively. Then the area of triangle $B C D$ is
a) $5 \sqrt{2}$
b) 5
c) $\frac{\sqrt{5}}{2}$
d) $\frac{5}{2}$
63. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ equals
a) 0
b) $[\vec{a} \vec{b} \vec{c}]$
c) $2[\vec{a} \vec{b} \vec{c}]$
d) $-[\vec{a} \vec{b} \vec{c}]$
64. If V be the volume of a tetrahedron and V^{\prime} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$;then K is equal to
a) 9
b) 12
c) 27
d) 81
65. Resolved part of vector \vec{a} and along vector \vec{b} is \vec{a}_{1} and that perpendicular to \vec{b} is \vec{a}_{2}, then $\vec{a}_{1} \times \vec{a}_{2}$ is equal to
a) $\frac{(\vec{a} \times \vec{b}) \cdot \vec{b}}{|\vec{b}|^{2}}$
b) $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}$
c) $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
d) $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b} \times \vec{a}|}$
66. Three vectors $\hat{\imath}+\hat{\jmath}, \hat{\jmath}+\hat{k}$ and $\hat{k}+\hat{\imath}$ taken two at a time form three planes. The three unit vector drawn perpendicular to these three planes form a parallelepiped of volume
a) $1 / 3$
b) 4
c) $(3 \sqrt{3}) / 4$
d) $4 \sqrt{3}$
67. Let $A B C$ be a triangle, the position vectors of whose vertices are respectively $\hat{\imath}+2 \hat{\jmath}+4 \hat{k}-2 \hat{\jmath}+2 \hat{\jmath}+$ \hat{k} and $2 \hat{\imath}+4 \hat{\jmath}-3 \hat{k}$. Then $\triangle A B C$ is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
68. If $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta}$ and $\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}, \vec{\alpha}$ and $\vec{\delta}$ are non-collinear, then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals
a) $a \vec{\alpha}$
b) $b \vec{\delta}$
c) 0
d) $(a+b) \vec{\gamma}$
69. $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are the vertices of triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle $A B C$, then $\vec{r} .(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is always equal to
a) Zero
b) $[\vec{a} \vec{b} \vec{c}]$
c) $-[\vec{a} \vec{b} \vec{c}]$
d) None of these
70. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are the unit vectors such that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\frac{1}{2}$, then
a) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are non-coplanar
c) $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are non-parallel
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{d}}$ are parallel and $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are parallel
71. If the two adjacent sides of two rectangles are represented by vectors $\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b}$, respectively, then the angle between the vectors $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+$ \vec{s}) is
a) $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
b) $\cos ^{1}\left(\frac{19}{5 \sqrt{43}}\right)$
c) $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
d) Cannot be evaluated
72. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})=\overrightarrow{0}$, then angle between \vec{a} and \vec{b} is
a) 0
b) $\pi / 2$
c) π
d) indeterminate
73. If \vec{a}, \vec{b} and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda \vec{a} \times \vec{b}$, angle between \vec{a} and \vec{b} is $2 \pi / 3,|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$, then the angle between \vec{a} and \vec{b} is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
74. Let vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d}, respectively. Then the angle between P_{1} and P_{2} is
a) 0
b) $\pi / 4$
c) $\pi / 3$
d) $\pi / 2$
75. \vec{A} is a vector with direction $\cos \alpha, \cos \beta$ and $\cos \gamma$. Assuming the $y-z$ plane as a mirror, the direction cosines of the reflected image of \vec{A} in the $y-z$ plane are
a) $\cos \alpha, \cos \beta, \cos \gamma$
b) $\cos \alpha,-\cos \beta, \cos \gamma$
c) $-\cos \alpha, \cos \beta, \cos \gamma$
d) $-\cos \alpha,-\cos \beta,-\cos \gamma$
76. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non-zero vectors \vec{r}, then the area of the triangle whose vertices are A
$(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is $(\vec{a}, \vec{b}, \vec{c}$ are non-coplanar)
a) $|[\vec{a} \vec{b} \vec{c}]|$
b) $|\vec{r}|$
c) $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
d) None of these
77. Let $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \overrightarrow{r_{3}}, \ldots, \overrightarrow{r_{n}}$ be the position vectors of points $P_{1}, P_{2}, \ldots P_{n}$ reelative to the origin O. If the vector equation $a_{1} \overrightarrow{r_{1}}+a_{2} \overrightarrow{r_{2}}+\ldots+a_{n} \vec{r}_{n}=0$ holds then a similar equation will also hold w.r.t. to any other origin provided
a) $a_{1}+a_{2}+\ldots+a_{n}=n$
b) $a_{1}+a_{2}+\ldots+a_{n}=1$
c) $a_{1}+a_{2}+\ldots+a_{n}=0$
d) $a_{1}=a_{2}=a_{3}=\ldots=a_{n}=0$
78. Let the position vectors of the points P and Q be $4 \hat{\imath}+\hat{\jmath}+\lambda \hat{k}$ and $2 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$, respectively. Vector $\hat{\imath}-\hat{\jmath}+6 \hat{k}$ is perpendicular to the plane containing the orgin and the points P and Q. Then λ equals
a) $-1 / 2$
b) $1 / 2$
c) 1
d) None of these
79. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other. Then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to
a) 1
b) 0
c) -1
d) None of these
80. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
a) $[\vec{a} \vec{b} \vec{c}] \vec{c}$
b) $[\vec{a} \vec{b} \vec{c}] \vec{b}$
c) $\overrightarrow{0}$
d) $[\vec{a} \vec{b} \vec{c}] \vec{a}$
81. In a trapezium, vector $\overrightarrow{B C}=\alpha \overrightarrow{A D}$. We will then find that $\vec{p}=\overrightarrow{A C}+\overrightarrow{B D}$ is collinear with $\overrightarrow{A D}$. If $\vec{p}=$
$\mu \overrightarrow{A D}$, then which of the following is true?
a) $\mu=\alpha+2$
b) $\mu+\alpha=1$
c) $\alpha=\mu+1$
d) $\mu=\alpha+1$
82. The position vectors of points A, B and C are $\hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\imath}+5 \hat{\jmath}-\hat{k}$ and $2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$, respectively. The greatest angle of triangle $A B C$ is
a) 120°
b) 90°
c) $\cos ^{-1}(3 / 4)$
d) None of these
83. Let $\vec{a}=\hat{\imath}-\hat{\jmath}, \vec{b}=\hat{\jmath}-\hat{k}$ and $\vec{c}=\hat{k}-\hat{\imath}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d}=0=[\vec{b} \vec{c} \vec{d}]$, then \vec{d} equals
a) $\pm \frac{\hat{\imath}+\hat{\jmath}-2 \hat{k}}{\sqrt{6}}$
b) $\pm \frac{\hat{\imath}+\hat{\jmath}-\hat{k}}{\sqrt{3}}$
c) $\pm \frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$
d) $\pm \hat{k}$
84. Given three vectors $\vec{b}=6 \hat{\imath}-3 \hat{\jmath}, \vec{b}=2 \hat{\imath}-6 \hat{\jmath}$ and $\vec{c}=-2 \hat{\imath}+21 \hat{\jmath}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$. Then the resolution of the vectors $\vec{\alpha}$ into compounds with respect to \vec{a} and \vec{b} is given by
a) $3 \vec{a}-2 \vec{b}$
b) $3 \vec{b}-2 \vec{a}$
c) $2 \vec{a}-3 \vec{b}$
d) $\vec{a}-2 \vec{b}$
85. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is
a) $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}$
b) $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d}$
c) $\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0$
d) $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d}=0$
86. If the diagonals of one of its faces are $6 \hat{\imath}+6 \hat{k}$ and $4 \hat{\jmath}+2 \hat{k}$ and of the edges not containing the given diagonals is $\vec{c}=4 \hat{\jmath}-8 \hat{k}$ then the volume of a parallelepiped is
a) 60
b) 80
c) 100
d) 120
87. The vertex A of triangle $A B C$ is on the line $\vec{r}=\hat{\imath}+\hat{\jmath}+\lambda \hat{k}$ and the vartices B and C have respective position vectors îand $\hat{\jmath}$. Let Δ be the area of the triangle and $\Delta \in[3 / 2], \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is
a) $[-8,-4] \cup[4,8]$
b) $[-4,4]$
c) $[-2,2]$
d) $[-4,-2] \cup[2,4]$
88. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{\imath}+4 x \hat{\jmath}+\hat{k}$ and $\hat{b}=7 \hat{\imath}-2 \hat{\jmath}+x \hat{k}$ is obuse and the angle between \vec{b} and the z-axis is acute and less than $\pi / 6$, is
a) $a<x<1 / 2$
b) $1 / 2<x<15$
c) $x>1 / 2$ or $x<0$
d) None of these
89. If \vec{a}, \vec{b} and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals
a) 0
b) 1 or -1
c) 1
d) 3
90. ' I ' is the incentre of triangle $A B C$ whose corresponding sides are a, b, c respectively. $a \overrightarrow{I A}+b \overrightarrow{I B}+c \overrightarrow{I C}$ is always equal to
a) $\overrightarrow{0}$
b) $(a+b+c) \overrightarrow{B C}$
c) $(\vec{a}+\vec{b}+\vec{c}) \overrightarrow{A C}$
d) $(a+b+c) \overrightarrow{A B}$
91. Let $\vec{a}=2 i+j-2 k$ and $b=i+j$. If c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to
a) $2 / 3$
b) $3 / 2$
c) 2
d) 3
92. If \hat{a}, \hat{b} and \hat{c} are unit vectors, then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed
a) 4
b) 9
c) 8
d) 6
93. If the vector product of a constant vector $\overrightarrow{O A}$ with a variable vector $\overrightarrow{O B}$ in a fixed plane $O A B$ be a constant vector, then the locus of B is
a) A straight line perpendicular to $\overrightarrow{O A}$
b) A circle with centre O and radius equal to $|\overrightarrow{O A}|$
c) A straight line parallel to $\overrightarrow{O A}$
d) None of these
94. The points with position vectors $60 \hat{\imath}+3 \hat{\jmath}, 40 \hat{\imath}-8 \hat{\jmath}, a \hat{\imath}-52 \hat{\jmath}$ are collinear if
a) $a=-40$
b) $a=40$
c) $a=20$
d) None of these
95. Two adjacent sides of a parallelogram $A B C D$ are given by $\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$ and
$\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angle α is given by
a) $\frac{8}{9}$
b) $\frac{\sqrt{17}}{9}$
c) $\frac{1}{9}$
d) $\frac{4 \sqrt{5}}{9}$
96. \vec{a}, \vec{b} and \vec{c} are three vectors of equal magnitude. The angle between each pair of vectors is $\pi / 3$ such that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$. Then $|\vec{a}|$ is equal to
a) 2
b) -1
c) 1
d) $\sqrt{6} / 3$
97. Value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to
a) $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
b) $(\vec{a} \cdot \vec{c})[\vec{a} \vec{b} \vec{d}]$
c) $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$
d) None of these
98. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are non-zero vectors, then
a) \vec{a}, \vec{b} and \vec{c} can be coplanar
b) \vec{a}, \vec{b} and \vec{c} must be coplanar
c) \vec{a}, \vec{b} and \vec{c} cannot be coplanar
d) None of these
99. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b}<0$ and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then the angle between vectors \vec{a} and \vec{b} is
a) π
b) $7 \pi / 4$
c) $\pi / 4$
d) $3 \pi / 4$
100. The position vectors of the vertices A, B and C of a triangle are three units vectors \hat{a}, \hat{b} and \hat{c}, respectively. A vector \vec{d} is such that $\vec{d} \cdot \hat{a}=\vec{d} \cdot \hat{b}=\vec{d} \cdot \hat{c}$ and $\vec{d}=\lambda(\hat{b}+\hat{c})$ Then triangle $A B C$ is
a) Acute angled
b) Obtuse angled
c) Right angled
d) None of these
101. Let $\vec{a}(x)=(\sin x) \hat{\imath}+(\cos x) \hat{\jmath}$ and $\vec{b}(x)=(\cos 2 x) \hat{\imath}+(\sin 2 x) \hat{\jmath}$ be two variable vectors $(x \in R)$, then $\vec{a}(x)$ and $\vec{b}(x)$ are
a) Collinear for unique value of x
b) Perpendicular for infinite values of x
c) Zero vectors for unique value of x
d) None of these
102. If \vec{a} satisfies $\vec{a} \times(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\hat{\imath}-\hat{k}$, then \vec{a} is equal to
a) $\lambda \hat{\imath}+(2 \lambda-1) \hat{\jmath}+\lambda \hat{k}, \lambda \in R$
b) $\lambda \hat{\imath}+(1-2 \lambda) \hat{\jmath}+\lambda \hat{k}, \lambda \in R$
c) $\lambda \hat{\imath}+(2 \lambda+1) \hat{\jmath}+\lambda \hat{k}, \lambda \in R$
d) $\lambda \hat{\imath}-(1+2 \lambda) \hat{\jmath}+\lambda \hat{k}, \lambda \in R$
103. If $\vec{a}^{\prime}=\hat{\imath}+\hat{\jmath}, \vec{b}^{\prime}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\overrightarrow{c^{\prime}}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is reciprocal vector \vec{a}, etc)
a) 1
b) $3 \sqrt{2} / 2$
c) $1 / \sqrt{6}$
d) $1 / \sqrt{2}$
104. Vectors $\vec{a}=-4 \hat{\imath}+3 \hat{k} ; \vec{b}=14 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ are laid off from one point. Vector \vec{d}, which is being laid off from the same point dividing the angle between vectors \vec{a} and \vec{b} in equal halves and having the magnitude $\sqrt{6}$, is
a) $\hat{\imath}+\hat{\jmath}+2 \hat{k}$
b) $\hat{\imath}-\hat{\jmath}+2 \hat{k}$
c) $\hat{\imath}+\hat{\jmath}-2 \hat{k}$
d) $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
105. Given $\vec{a}=x \hat{\imath}+y \hat{\jmath}+2 \hat{k}, \vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}, \vec{c}=\hat{\imath}+2 \hat{\jmath} ; \vec{a} \perp \vec{b}, \vec{a} \cdot \vec{c}=4$. Then
a) $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}|$
b) $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|$
c) $[\vec{a} \vec{b} \vec{c}]=0$
d) $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|^{2}$
106. \vec{a}, \vec{b} and \vec{c} are unit vectors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$. Angle between \vec{a} and \vec{b} is θ_{1}, between \vec{b} and \vec{c} is θ_{2} and between \vec{a} and \vec{c} varies $[\pi / 6,2 \pi / 3]$. Then the maximum value of $\cos \theta_{1}+3 \cos \theta_{2}$ is
a) 3
b) 4
c) $2 \sqrt{2}$
d) 6
107. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$, then the maximum values of k is
a) $\sqrt{13}$
b) $2 \sqrt{13}$
c) $6 \sqrt{13}$
d) $10 \sqrt{13}$
108. G is the centroid of triangle $A B C$ and A_{1} and B_{1} are the midpoints of sides $A B$ and $A C$, respectively.If Δ_{1} be the area of quadrilateral $G A_{1} A B_{1}$ and Δ be the area of triangle $A B C$, then Δ / Δ_{1} is equal to
a) $\frac{3}{2}$
b) 3
c) $\frac{1}{3}$
d) None of these
109. The value of a so that the volume of parallelopiped formed by $\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+\hat{\mathbf{k}}$ becomes minimum is
a) -3
b) 3
c) $1 / \sqrt{3}$
d) $\sqrt{3}$
110. If \hat{a}, \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle θ, then the maximum value of θ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\frac{2 \pi}{3}$
d) $\frac{5 \pi}{6}$
111. Four non-zero vectors will always be
a) Linearly dependent
b) Linearly independent
c) Either a or b
d) None of these
112. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\pi / 3$, $\operatorname{then}\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \cdot \vec{b}$ is equal to
a) $\frac{-3}{4}$
b) $\frac{1}{4}$
c) $\frac{3}{4}$
d) $\frac{1}{2}$
113. P be a point interior to the acute triangle $A B C$. If $\vec{P} A+\vec{P} B+\vec{P} C$ is a null vector then w.r.t. triangle $A B C$, point P is its
a) Centroid
b) Orthocentre
c) Incentre
d) Circumcentre
114. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a non-zero vector and $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=$ 0 ,then
a) $|\vec{a}|=|\vec{b}|=|\vec{c}|$
b) $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
c) \vec{a}, \vec{b} and \vec{c} are coplanar
d) None of these
115. If $\vec{a}=2 \hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}, \vec{c}=\hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $(1+\alpha) \hat{\imath}+\beta(1+\alpha) \hat{\jmath}+\gamma(1+\alpha)(1+\beta) \hat{k}=\vec{a} \times$ $(\vec{b} \times \vec{c})$, then α, β and γ are
a) $-2,-4-\frac{2}{3}$
b) $2,-4, \frac{2}{3}$
c) $-2,4, \frac{2}{3}$
d) $2,4,-\frac{2}{3}$
116. If $\vec{\alpha} \|(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})$ equals to
a) $|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$
b) $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
c) $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
d) $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
117. Two vectors in space are equal only if they have equal component in
a) A given direction
b) Two given directions
c) Three given directions
d) In any arbitrary direction
118. A vector of magnitude $\sqrt{2}$ coplanar with the vectors $\vec{a}=\hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$, and perpendicular to the vector $\vec{c}=\hat{\imath}+\hat{\jmath}+\hat{k}$, is
a) $-\hat{\jmath}+\hat{k}$
b) $\hat{\imath}-\hat{k}$
c) $\hat{\imath}-\hat{\jmath}$
d) $\hat{\imath}-\hat{\jmath}$
119. If $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=4 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$ and $\vec{c}=\hat{\imath}+\alpha \hat{\jmath}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$, then
a) $a=1, b=-1$
b) $a=1, b= \pm 1$
c) $\alpha=-1, \beta= \pm 1$
d) $\alpha= \pm 1, \beta=1$
120. If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is
a) $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
b) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$
c) $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$
d) $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
121. If $\vec{a} \perp \vec{b}$, then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0$ and $\vec{v} \cdot \vec{b}=1$ and $[\vec{v} \vec{a} \vec{b}]=1$ is
a) $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
b) $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
c) $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
d) None of these
122. Locus of the point P, for which $\overrightarrow{O P}$ represents a vector with direction cosine $\alpha=\frac{1}{2}$ (' O^{\prime} is the origin) is
a) A circle parallel to the $y-z$ plane with centre on the x-axis
b) A cone concentric with the positive x-axis having vertex at the origin and the slant height equal to the magnitude of the vector
c) A ray emanating from the origin and making an angle of 60° with the x-axis
d) A disc parallel to the $y-z$ plane with centre on the x-axis and radius equal to $|\overrightarrow{O P}| \sin 60^{\circ}$
123. Let P, Q, R and S be the points on the plane with position vectors $-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}, 4 \hat{\mathbf{i}}, 3 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ and $-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ respectively. The quadrilateral $P Q R S$ must be
a) Parallelogram, which is neither a rhombus nor a rectangle
b) Square
c) Rectangle, but not a square
d) Rhombus, but not a square
124. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-zero, non-coplanar vectors and
$\overrightarrow{\mathbf{b}}_{1}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}} \quad, \overrightarrow{\mathbf{b}}_{2}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}$
And
$\overrightarrow{\mathbf{c}}_{1}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}+\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$
$\overrightarrow{\mathbf{c}}_{2}+\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}_{1}}{\left|\overrightarrow{\mathbf{b}}_{1}\right|^{2}} \overrightarrow{\mathbf{b}}_{1}$,
$\overrightarrow{\mathbf{c}}_{3}=\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}_{2}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$,
$\overrightarrow{\mathbf{c}}_{4}=\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{b}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$
Then, which of the following is a set of mutually orthogonal vectors?
a) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{1}\right\}$
b) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{2}\right\}$
c) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{c}}_{3}\right\}$
d) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{c}}_{4}\right\}$
125. If \vec{x} and \vec{y} are two non-collinear vectors and $A B C$ is a triangle is a triangle with side length a, b and c satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=\overrightarrow{0}$, then triangle $A B C$ is
a) An acute-angled triangle
b) An obtuse-angled triangle
c) A right-angled triangle
d) An isosceles triangle
126. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, b and c is non-zero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are
a) Parallel
b) Coplanar
c) Mutually perpendicular
d) None of these
127. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to
a) $2|\vec{r}|^{2}$
b) $|\vec{r}|^{2} / 2$
c) $3|\vec{r}|^{2}$
d) $|\vec{r}|^{2}$
128. If \hat{a}, \hat{b} and \hat{c} are three unit vectors, such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\hat{a}, \hat{b}, \hat{b}, \hat{c}$ and \hat{c}, \hat{a}, respectively, then among θ_{1}, θ_{2} and θ_{3}
a) All are acute angles
b) All are right angles
c) At least one is obtuse angle
d) None of these
129. Let $\vec{a} \cdot \vec{b}=0$, where \vec{a} and \vec{b} are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}.If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then
a) $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
b) $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
c) $0 \leq \theta \leq \frac{\pi}{4}$
d) $0 \leq \theta \leq \frac{3 \pi}{4}$
130. \vec{a} and \vec{c} are unit vectors and $|\vec{b}|=4$. The angle between \vec{a} and \vec{c} is $\cos ^{-1} \quad(1 / 4)$ and $\vec{b}-2 \vec{c}=\lambda \vec{a}$. The value of λ is
a) $3,-4$
b) $1 / 4,3 / 4$
c) $-3,4$
d) $-1 / 4,3 / 4$
131. If $\overrightarrow{\mathbf{a}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}), \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=1$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}-\hat{\mathbf{k}}$, then $\overrightarrow{\mathbf{b}}$ is
a) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
b) $2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
c) \hat{i}
d) $2 \hat{\mathbf{i}}$
132. The volume of a tetrahedron formed by the coterminus edges \vec{a}, \vec{b} and \vec{c} is 3 . Then the volume of the parallelepiped formed by the conterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is
a) 6
b) 18
c) 36
d) 9
133. If \vec{a} and \vec{b} are non-zero non-collinear vectors, then $[\vec{a} \vec{b} \hat{\imath}\} \hat{\imath}+[\vec{a} \vec{b}] \hat{j}+[\vec{a} \vec{b} \hat{k}] \hat{k}$ is equal to
a) $\vec{a}+\vec{b}$
b) $\vec{a} \times \vec{b}$
c) $\vec{a}-\vec{b}$
d) $\vec{b} \times \vec{a}$
134. If \vec{a} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a $\triangle A B C$ satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\vec{x} \times \vec{y})=0$, then $\triangle A B C$ is (where $\vec{x} \times \vec{y}$ is perpendicular to the plane of \vec{a} and $\overrightarrow{y)}$
a) An acute- angled triangle
b) An obtuse-angled triangle
c) A right-angled triangle
d) A scalene triangle
135. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are non-zero noncoplanar vectors)
a) $[\vec{a} \vec{b} \vec{c}]^{2}$
b) $[\vec{a} \vec{b} \vec{c}]^{3}$
c) $[\vec{a} \vec{b} \vec{c}]^{4}$
d) $[\vec{a} \vec{b} \vec{c}]$
136. $A B C D$ a parallelogram, and A_{1} and B_{1} are the midpoints of sides $B C$ and $C D$, respectively. If $\overrightarrow{A A_{1}}+\overrightarrow{A B_{1}}=$ $\lambda \overrightarrow{A C}, \lambda$ is equal to
a) $\frac{1}{2}$
b) 1
c) $\frac{3}{2}$
d) 2
137. If in a right- angled triangle $A B C$, the hypotenuse $A B=p$, then $\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ is equal to
a) $2 p^{2}$
b) $\frac{p^{2}}{2}$
c) p^{2}
d) None of these
138. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} non-coplanar with \vec{a} and \vec{b}, vector $\vec{r} \times \vec{a}$ is equal to
a) $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
b) $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
c) $[\vec{r} \vec{a} \vec{b}] \vec{a}+(\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b}$
d) None of these
139. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
a) $3 \pi / 4$
b) $\pi / 4$
c) $\pi / 2$
d) π
140. The edges of a parallelopiped are unit length and are parallel to non-coplanar unit vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ such that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=\frac{1}{2}$ Then, the volume of the parallelopiped is
a) $\frac{1}{\sqrt{2}} \mathrm{cu}$ unit
b) $\frac{1}{2 \sqrt{2}}$ cu unit
c) $\frac{\sqrt{3}}{2}$ cu unit
d) $\frac{1}{\sqrt{3}}$ cu unit
141. Let $\vec{a}=\hat{\imath}+\hat{\jmath} ; \hat{b}=2 \hat{\imath}-\hat{k}$. Then vector \vec{r} satisfying the equations $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is
a) $\hat{\imath}-\hat{\jmath}+\hat{k}$
b) $3 \hat{\imath}-\hat{\jmath}+\hat{k}$
c) $3 \hat{\imath}+\hat{\jmath}-\hat{k}$
d) $\hat{\imath}-\hat{\jmath}-\hat{k}$
142. If $4 \hat{\imath}+7 \hat{\jmath}+8 \hat{k}, 2 \hat{\jmath}+3 \hat{\jmath}+4 \hat{k}$ and $2 \hat{\imath}+5 \hat{\jmath}+7 \hat{k}$ are the position vectors of the vertices A, B and C respectively, of triangle $A B C$, the position vector of the point where the bisector of angle A meets $B C$, is
a) $\frac{2}{3}(-6 \hat{\imath}-8 \hat{\jmath}-6 \hat{k})$
b) $\frac{2}{3}(6 \hat{\imath}+8 \hat{\jmath}+6 \hat{k})$
c) $\frac{1}{3}(6 \hat{\imath}+13 \hat{\jmath}+18 \hat{k})$
d) $\frac{1}{3}(5 \hat{\jmath}+12 \hat{k})$
143. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$. Then the value of $\mid \overrightarrow{A C} \times$ $\overrightarrow{B D} \mid$ is
a) $20 \sqrt{5}$
b) $22 \sqrt{5}$
c) $24 \sqrt{5}$
d) $26 \sqrt{5}$
144. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals
a) 2
b) $\sqrt{7}$
c) $\sqrt{14}$
d) 14
145. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is
a) $1 / 2$
b) 1
c) 2
d) None of these
146. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c})$ is always equal to
a) $|\vec{a}|$
b) $\frac{1}{2}|\vec{a}|$
c) $\frac{1}{3}|\vec{a}|$
d) None of these
147. Let $x^{2}+3 y^{2}=3$ be the equation of an ellipse in the $x-y$ plane. A and B are two points whose position vectors are $-\sqrt{3} \hat{\imath}$ and $-\sqrt{3} \hat{\imath}+2 \hat{k}$. Then the position vector of a point P on the ellipse such that $\angle A P B=\pi / 4$ is
a) $\pm \hat{\jmath}$
b) $\pm(\hat{\imath}+\hat{\jmath})$
c) $\pm \hat{\imath}$
d) None of these
148. Position vector \hat{k} is rotated about origin by angle 135° in such a way that the plane made by it bisects the angle between $\hat{\imath}$ and $\hat{\jmath}$. Then its new position is
a) $\pm \frac{\hat{\imath}}{\sqrt{2}} \pm \frac{\hat{\jmath}}{\sqrt{2}}$
b) $\pm \frac{\hat{\imath}}{2} \pm \frac{\hat{\jmath}}{2}-\frac{\hat{k}}{\sqrt{2}}$
c) $\frac{\hat{\imath}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
d) None of these
149. Vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} ; \vec{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{c}=3 \hat{\imath}+\hat{\jmath}+4 \hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vector are
a) Not coplanar
b) Coplanar but cannot from a triangle
c) Coplanar and from a triangle
d) Coplanar and can from a right-angled triangle
150. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes 1,5 and 3 , respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
a) 0
b) $2 / 3$
c) $3 / 5$
d) $3 / 4$
151. If $\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{d})$ and $4[\vec{a} \vec{b} \vec{c}]=1$, then $x_{1}+x_{2}+x_{3}$ is equal to
a) $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
b) $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
c) $2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
d) $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
152. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is
a) 47
b) -25
c) 0
d) 25
153. Let $\vec{f}(t)=[t] \hat{\imath}+(t-[t]) \hat{\jmath}+[t+1] \hat{k}$,where [.] denotes the greatest integer function. Then the vectors $\vec{f}\left(\frac{5}{4}\right)$ and $\vec{f}(t), 0<t<1$, are
a) Parallel to each other
b) perpendicular to each other
c) Inclined at an angle $\cos ^{-1} \frac{2}{\sqrt{7\left(1-t^{2}\right)}}$
d) Inclined at $\cos ^{-1} \frac{8+t}{9 \sqrt{1+t^{2}}}$
154. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by
a) $\frac{\vec{a}-\vec{b}}{2 \cos (\theta / 2)}$
b) $\frac{\vec{a}+\vec{b}}{2 \cos (\theta / 2)}$
c) $\frac{\vec{a}-\vec{b}}{\cos (\theta / 2)}$
d) None of these
155. In triangle $A B C, \angle A=30^{\circ}, H$ is the orthocentre and D is the midpoint of $B C$. Segment $H D$ is produced to T such that $H D=D T$. The length $A T$ is equal to
a) $2 B C$
b) $3 B C$
c) $\frac{4}{3} B C$
d) None of these
156. If vectors $\overrightarrow{A B}=-3 \hat{\imath}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the medium through A is
a) $\sqrt{14}$
b) $\sqrt{18}$
c) $\sqrt{29}$
d) 5
157. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between \vec{a} and \vec{b} can lie in the interval
a) $(-\pi / 2, \pi / 2)$
b) $(0, \pi)$
c) $(\pi / 2,3 \pi / 2)$
d) $(0,2 \pi)$
158. A vector magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be
a) $6 \hat{\imath}+8 \hat{\jmath}$
b) $-8 \hat{\imath}+3 \hat{\jmath}$
c) $6 \hat{\imath}-8 \hat{\jmath}$
d) $8 \hat{\imath}+6 \hat{\jmath}$
159. The unit vector orthogonal to vector $-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and making equal angles with the x-and y-axis is
a) $\pm \frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-\hat{k})$
b) $\pm \frac{1}{3}(\hat{\imath}+\hat{\jmath}-\hat{k})$
c) $\pm \frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}-\hat{k})$
d) None of these
160. Let us define the length of a vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ as $|a|+|b|+|c|$. This definition coincides with the usual definition of length of a vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ if any only if
a) $a=b=c=0$
b) Any two of a, b and c are zero
c) Any one of a, b and c is zero
d) $a+b+c=0$
161. Let a, b, and c be distinct non-negative numbers. If vectors $a \hat{\imath}+a \hat{\jmath}+c \hat{k}, \hat{\imath}+\hat{k}$ and $c \hat{\imath}+c \hat{\jmath}+b \hat{k}$ are coplanar, then c is
a) The arithmetic mean of a and b
b) The geometric mean of a and b
c) The harmonic mean of a and b
d) Equal to zero

Multiple Correct Answers Type

162. If vectors $\vec{b}=\left(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2}\right.$ and $\vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=$ $(1,3, \sin 2 \alpha)$ makes an obtuse angle with the z-axis, then the value of α is
a) $\alpha=(4 n+1) \pi+\tan ^{-1} 2$
b) $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
c) $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
d) $\alpha=(4 n+2) \pi-\tan ^{-1} 2$
163. If vectors \vec{a} and \vec{b} are non-collinear, then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is
a) A unit vector
b) In the plane of \vec{a} and \vec{b}
c) Equally inclined to \vec{a} and \vec{b}
d) Perpendicular to $\vec{a} \times \vec{b}$
164. The angles of a triangle, two of whose sides are represented by vectors $\sqrt{3}(\hat{a} \times \vec{b})$ and $\hat{b}-(\hat{a} \cdot \vec{b}) \hat{a}$, where \vec{b} is a non-zero vectors and \hat{a} is a unit vector in the direction of \vec{a}, are
a) $\tan ^{-1}(\sqrt{3})$
b) $\tan ^{-1}(1 / \sqrt{3})$
c) $\cot ^{-1}(0)$
d) $\tan ^{-1}(1)$
165. \vec{a} and \vec{b} are two non-collinear unit vectors, and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$. Then $|\vec{v}|$ is
a) $|\vec{u}|$
b) $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
c) $|\vec{u}|+|\vec{u} \cdot \vec{a}|$
d) None of these
166. A, B, C and D are four points such that $\overrightarrow{A B}=m(2 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}), \overrightarrow{B C}=(\hat{\imath}-2 \hat{\jmath})$ and $\overrightarrow{C D}=n(-6 \hat{\imath}+15 \hat{\jmath}-$ $3 \hat{k})$. If $C D$ intersects $A B$ at some point E, then
a) $m \geq 1 / 2$
b) $n \geq 1 / 3$
c) $m=n$
d) $m<n$
167. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
a) $|\vec{u}|$
b) $|\vec{u}|+|\vec{u} \cdot \vec{a}|$
c) $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
d) $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$
168. Let $A B C$ be a triangle, the position vectors of whose are $7 \hat{\jmath}+10 \hat{k},-\hat{\imath}+6 \hat{\jmath}+6 \hat{k}$ and $-4 \hat{\imath}+9 \hat{\jmath}+6 \hat{k}$. Then $\triangle A B C$ is
a) Isosceles
b) Equilateral
c) Right angles
d) None of these
169. \vec{b} and \vec{c} are non-collinear if $\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$. Then
a) $x=1$
b) $x=-1$
c) $y=(4 n+1) \frac{\pi}{2}, n \in I$
d) $y=(2 n+1) \frac{\pi}{2}, n \in I$
170. If non-zero vectors \vec{a} and \vec{b} are equally inclined to coplanar vector \vec{c}, then \vec{c} can be
a) $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} \vec{a}+\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} \vec{b}$
b) $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} \vec{a}+\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|} \vec{b}$
c) $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} \vec{a}+\frac{|\vec{b}|}{|\vec{a}|+2|\vec{b}|} \vec{b}$
d) $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|} \vec{a}+\frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|} \vec{b}$
171. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is
a) One
b) Two
c) Three
d) infinite
172. A vector \vec{a} has the compounds $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sence. If, with respect to a new system, \vec{a} has components $(p+1)$ and I , then p is equal to
a) -1
b) $-1 / 3$
c) 1
d) 2
173. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$. Then
a) $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
b) $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
c) $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
d) $\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
174. In a four dimensional space where unit vectors along the axes are $\hat{l}, \hat{\jmath}, \hat{k}$ and \hat{l}, and $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are four non-zero vectors such that no vector can be expressed as linear combination of others and $(\lambda-1)\left(\vec{a}_{1}-\right.$ $\left.\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}_{4}=\overrightarrow{0}$, then
a) $\lambda=1$
b) $\mu=-2 / 3$
c) $\gamma=2 / 3$
d) $\delta=1 / 3$
175. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
a) $[0, \pi / 6)$
b) $(5 \pi / 6, \pi]$
c) $[\pi / 6, \pi / 2)$
d) $(\pi / 2,5 \pi / 6]$
176. The vectors $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{\imath}}+y \hat{\mathbf{j}}-z \hat{\mathbf{k}}$ are collinear, if
a) $x=1, y=-2, z=-5$
b) $x=1 / 2, y=-4, z=-10$
c) $x=-1 / 2, y=4, z=10$
d) $x=-1, y=2, z=5$
177. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-coplanar vectors such that $\overrightarrow{\mathbf{r}}_{1}=\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{r}}_{2}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{r}}_{3}=\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{r}}=2 \overrightarrow{\mathbf{a}}-$ $3 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}}$ is $\overrightarrow{\mathbf{r}}=\lambda_{1} \overrightarrow{\mathbf{r}}_{1}+\lambda_{2} \overrightarrow{\mathbf{r}}_{2}+\lambda_{3} \overrightarrow{\mathbf{r}}_{3}$, then
a) $\lambda_{1}=7 / 2$
b) $\lambda_{1}+\lambda_{2}=3$
c) $\lambda_{1}+\lambda_{2}+\lambda_{3}=4$
d) $\lambda_{2}+\lambda_{3}=2$
178. If \vec{a} and \vec{b} are two vectors and angle between them is θ, then
a) $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
b) $|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b})$ if $\theta=\pi / 4$
c) $\vec{a} \times \vec{b}=(\vec{a} \cdot \vec{b}) \hat{n}$, (\hat{n} is normal unit vector), if $\theta=\pi / 4$
d) $(\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b})=0$
179. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+$ $\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when
a) $\mu \in R$
b) $\lambda=\frac{1}{2}$
c) $\lambda=0$
d) No value of λ
180. A parallelogram is constructed on vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$ if $|\vec{\alpha}|=|\vec{\beta}|=2$, and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the length of a diagonal of parallogram is
a) $4 \sqrt{5}$
b) $4 \sqrt{3}$
c) $4 \sqrt{7}$
d) None of these
181. Vectors perpendicular to $\hat{\imath}-\hat{\jmath}-\hat{k}$ and in the plane of $\hat{\imath}+\hat{\jmath}+\hat{k}$ and $-\hat{\imath}+\hat{\jmath}+\hat{k}$ are
a) $\hat{\imath}+\hat{k}$
b) $2 \hat{\imath}+\hat{\jmath}+\hat{k}$
c) $3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$
d) $-4 \hat{\imath}-2 \hat{\jmath}-2 \hat{k}$
182. The vectors $x \hat{\imath}+(x+1) \hat{\jmath}+(x+2) \hat{k},(x+3) \hat{\imath}+(x+4) \hat{\jmath}+(x+5) \hat{k}$ and $(x+6) \hat{\imath}+(x+7) \hat{\jmath}+(x+8) \hat{k}$ are coplanar if x is equal to
a) 1
b) -3
c) 4
d) 0
183. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, then
(a) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{a}|=|\vec{a}|,|\vec{b}|=1$
(b) $\vec{a}, \vec{b}, \vec{c}$ are not orthogonal to each other
(c) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{a}| \neq|\vec{c}|$
(d) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal but $|\vec{b}| \neq 1$

Or
If $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, then
a) $|\vec{a}|=1, \vec{b}=\vec{c}$
b) $|\vec{c}|=1,|\vec{a}|=1$
c) $|\vec{b}|=2, \vec{c}=2 \vec{a}$
d) $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$
184. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$.Now $\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$.Then
a) $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{[\vec{a} \vec{b} \vec{c}]}=2$
b) $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{[\vec{a} \vec{b} \vec{c}]}=-2$
c) Minimum value of $x^{2}+y^{2}$ is $\pi^{2} / 4$
d) Minimum value of $x^{2}+y^{2}$ is $5 \pi^{2} / 4$
185. If $A(-4,0,3)$ and $B(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\overrightarrow{O A}$ and $\overrightarrow{O B}$ (O is the origin of reference)?
a) $(2,2,4)$
b) $(2,11,5)$
c) $(-3,-3,-6)$
d) $(1,1,2)$
186. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors and $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c}) \operatorname{and} \vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$

Vectors \vec{V}_{1} and \vec{V}_{2} are equal. Then
a) \vec{a} and \vec{b} are orthogonal
b) \vec{a} and \vec{c} are collinear
c) \vec{b} and \vec{c} are orthogonal
d) $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar
187. Which of the following expression are meaningful?
a) $\vec{u} \cdot(\vec{v} \times \vec{w})$
b) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
c) $(\vec{u} \cdot \vec{v}) \vec{w}$
d) $\vec{u} \times(\vec{v} \cdot \vec{w})$
188. If points $\hat{\imath}+\hat{\jmath}, \hat{\imath}-\hat{\jmath}$ and $p \hat{\imath}+q \hat{\jmath}+r \hat{k}$ are collinear, then
a) $p=1$
b) $r=0$
c) $q \in R$
d) $q \neq 1$
189. \vec{a} and \vec{b} are two given vectors. With these vectors as adjacent sides, a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to \vec{a} is
a) $\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$
b) $\frac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$
c) $\frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a}|^{2}}$
d) $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
190. The sides of a parallelogram are $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$. The unit vector parallel to one of the diagonals is
a) $\frac{1}{7}(3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k})$
b) $\frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}-2 \hat{k})$
c) $\frac{1}{\sqrt{69}}(\hat{\imath}+2 \hat{\jmath}+8 \hat{k})$
d) $\frac{1}{\sqrt{69}}(-\hat{\imath}-2 \hat{\jmath}+8 \hat{k})$
191. Vector $\frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}+\hat{k})$ is
a) a unit vector
b) Makes an angle $\pi / 3$ with vector $(2 \hat{\imath}-4 \hat{\jmath}+3 \hat{k})$
c) Parallel to vector $\left(-\hat{\imath}+\hat{\jmath}-\frac{1}{2} \hat{k}\right)$
d) Perpendicular to vector $3 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
192. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
a) $\vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
b) $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c) $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
d) $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
193. If $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, where $\vec{c} \neq \overrightarrow{0}$, then
a) $|\vec{a}|=|\vec{c}|$
b) $|\vec{a}|=|\vec{b}|$
c) $|\vec{b}|=1$
d) $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
194. Let $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{c}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ be three vectors. A vectors in the plane of \vec{b} and \vec{c}, whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$, is
a) $2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
b) $2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$
c) $-2 \hat{\imath}-\hat{\jmath}+5 \hat{k}$
d) $2 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
195. The scalars l and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
a) $l=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}$
b) $l=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$
c) $m=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^{2}}$
d) $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^{2}}$
196. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=2 \hat{\imath}+\hat{\jmath}$ and $\vec{c}=3 \hat{\jmath}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively Then
a) $\vec{x} \cdot \vec{d}=-1$
b) $\vec{y} \cdot \vec{d}=1$
c) $\vec{z} \cdot \vec{d}=0$
d) $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$
197. \vec{a}, \vec{b} and \vec{c} are three coplanar unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. If three vectors \vec{p}, \vec{q} and \vec{r} are parallel to \vec{a}, \vec{b} and \vec{c}, respectively, and have integral but different magnitudes, then among the following options, $|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to
a) 1
b) 0
c) $\sqrt{3}$
d) 2
198. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, then (\vec{b} and \vec{c} being non-parallel)
a) Angle between \vec{a} and \vec{b} is $\pi / 3$
b) Angle between \vec{a} and \vec{c} is $\pi / 3$
c) Angle between \vec{a} and \vec{b} is $\pi / 2$
d) Angle between \vec{a} and \vec{c} is $\pi / 2$
199. If side $\overrightarrow{A B}$ of an equilateral triangle $A B C$ lying in the $x-y$ plane is $3 \hat{\imath}$, then side $\overrightarrow{C B}$ can be
a) $-\frac{3}{2}(\hat{\imath}-\sqrt{3} \hat{\jmath})$
b) $\frac{3}{2}(\hat{\imath}-\sqrt{3} \hat{\jmath})$
c) $-\frac{3}{2}(\hat{\imath}+\sqrt{3} \hat{\jmath})$
d) $\frac{3}{2}(\hat{\imath}+\sqrt{3} \hat{\jmath})$
200. For three vectors \vec{u}, \vec{v} and \vec{w} which of the following expression is not equal to any of the remaining three?
a) $\vec{u} \cdot(\vec{v} \times \vec{w})$
b) $(\vec{v} \times \vec{w}) \cdot \vec{u}$
c) $\vec{v} \cdot(\vec{u} \times \vec{w})$
d) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
${ }^{201 .}$ Let \vec{a}, \vec{b} and \vec{c} be vectors forming right-hand tried. Let $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. If $x \in R^{+}$, then
a) $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value 2
b) $x^{4}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $\left(3 / 2^{2 / 3}\right)$
c) $[\vec{p} \vec{q} \vec{r}]>0$
d) None of these
202. Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ be three vectors. A vector in the plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ whose projection at $\overrightarrow{\mathbf{a}}$ is of magnitude $\sqrt{(2 / 3)}$, is
a) $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
b) $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
c) $-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
d) $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
203. If vectors \vec{a}, \vec{b} and \vec{c} are non-coplanar and l, m and n are distinct scalars, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$ implies
a) $l+m+n=0$
b) Roots of the equation $l x^{2}+m x+n=0$ are real
c) $l^{2}+m^{2}+n^{2}=0$
d) $l^{3}+m^{3}+n^{3}=3 l m n$
204. If \vec{a} and \vec{b} are non zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$, then
a) $2 \vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
b) $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
c) Least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}$
d) Least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|+2}$ is $\sqrt{2}-1$
205. Let $\vec{\alpha}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}, \vec{\beta}=b \hat{\imath}+c \hat{\jmath}+a \hat{k}$ and $\vec{\gamma}=c \hat{\imath}+a \hat{\jmath}+b \hat{k}$ be three coplanar vectors with $a \neq b$, and $\vec{v}=\hat{\imath}+\hat{\jmath}+\hat{k}$. Then \vec{v} is perpendicular to
a) $\vec{\alpha}$
b) $\vec{\beta}$
c) $\vec{\gamma}$
d) None of these
206. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$, then which of the following may be true?
a) $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are necessarily coplanar
b) \vec{a} lies in the plane of \vec{c} and \vec{d}
c) \vec{b} lies in the plane of \vec{a} and \vec{d}
d) \vec{c} lies in the plane of \vec{a} and \vec{d}
207. If vectors $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}, \vec{B}=\hat{\imath}+\hat{\jmath}+5 \hat{k}$ and \vec{C} form a left-handed system, then \vec{C} is
a) $11 \hat{\imath}-6 \hat{\jmath}-\hat{k}$
b) $-11 \hat{\imath}+6 \hat{\jmath}+\hat{k}$
c) $11 \hat{\imath}-6 \hat{\jmath}+\hat{k}$
d) $-11 \hat{\imath}+6 \hat{\jmath}-\hat{k}$
208. $\vec{a} \cdot \vec{b}$ and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to them. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=$ $\frac{1}{6} \hat{\imath}-\frac{1}{3} \hat{\jmath}+\frac{1}{3} \hat{k}$, and the angle between \vec{a} and \vec{b} is 30°, then \vec{c} is
a) $(\hat{\imath}-2 \hat{\jmath}+2 \hat{k}) / 3$
b) $(-\hat{\imath}+2 \hat{\jmath}-2 \hat{k}) / 3$
c) $(2 \hat{\imath}+2 \hat{\jmath}-\hat{k}) / 3$
d) $(-2 \hat{\imath}-2 \hat{\jmath}+\hat{k}) / 3$
209. A parallelogram is constructed on the vectors $\overrightarrow{\mathbf{a}}=3 \vec{\alpha}-\vec{\beta}, \overrightarrow{\mathbf{b}}=\vec{\alpha}+3 \vec{\beta}$, if $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the length of a diagonal of the parallelogram is
a) $4 \sqrt{5}$
b) $4 \sqrt{3}$
c) $4 \sqrt{7}$
d) None of these
210. $[\vec{a} \times \vec{b} \vec{c} \times \vec{d} \vec{e} \times \vec{f}]$ is equal to
a) $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}]\left[\begin{array}{l}\vec{d} \vec{e} \vec{f}] \\ \hline\end{array}\right.$
b) $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{f} \vec{f}][\vec{e} \vec{c} \vec{d}]$
c) $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{a} \vec{d} \vec{b}][\vec{a} \vec{e} \vec{f}]$
d) $[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$
211. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$, where \vec{a} and \vec{b} are given vectors, are
a) $\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
b) $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
c) $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
d) $\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$
212. $a_{1}, a_{2}, a_{3} \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ for all $x \in R$, then
a) Vector $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ are perpendicular to each other
b) Vector $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=-\hat{\imath}+\hat{\jmath}+2 \hat{k}$ are parallel to each other
c) If vector $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triplet $\left(a_{1}, a_{2}, a_{3}\right)=$ c) $(1,-1,-2)$
d) If $2 a_{1}+3 a_{2}+6 a_{3}=26$,then $\left|a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$
213. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between \vec{a} and \vec{b} is
a) 0
b) $\pi / 2$
c) $\pi / 4$
d) π
214. If the resultant of three forces $\overrightarrow{F_{1}}=p \vec{\imath}+3 \hat{\jmath}-\hat{k}, \overrightarrow{F_{2}}=6 \hat{\imath}-\hat{k}$ and $\overrightarrow{F_{3}}=-5 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ acting on a particle has a magnitude equal to 5 units, then the value of p is
a) -6
b) -4
c) 2
d) 4
215. If in triangle $A B C, \overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
a) $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
b) $\sin A=\cos C$
c) Projection of $A C$ on $B C$ is equal to $B C$
d) Projection of $A B$ on $B C$ is equal to $A B$
216. If the vectors $\hat{\imath}-\hat{\jmath}, \hat{\jmath}+\hat{k}$ and \vec{a} from a triangle, then \vec{a} may be
a) $-\hat{\imath}-\hat{k}$
b) $\hat{\imath}-2 \hat{\jmath}-\hat{k}$
c) $2 \hat{\imath}+\hat{\jmath}+\hat{k}$
d) $\hat{\imath}+\hat{k}$
217. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
a) $2(\vec{a} \times \vec{b})$
b) $6(\vec{b} \times \vec{c})$
c) $3(\vec{c} \times \vec{a})$
d) $\overrightarrow{0}$
218. Unit vectors \vec{a} and \vec{b} are perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. If $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then
a) $a=\beta$
b) $\gamma^{2}=1-2 \alpha^{2}$
c) $\gamma^{2}=-\cos 2 \theta$
d) $\beta^{2}=\frac{1+\cos 2 \theta}{2}$
219. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, then
a) $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
b) $\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$
c) $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
d) $(\vec{c} \times \vec{a}) \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
220. Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\pi / 6$, then
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & b_{2} & c_{3}\end{array}\right|^{2}$ is equal to
a) 0
b) 1
c) $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
d) $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)$
221. The vectors $(x, x+1, x+2),(x+3, x+4, x+5)$ and $(x+6, x+7, x+8)$ are coplanar for
a) All values of x
b) $x<0$
c) $x>0$
d) None of these
222. The vector $\hat{\imath}+x \hat{\jmath}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude. It now becomes $4 \hat{\imath}+(4 x-2) \hat{\jmath}+2 \hat{k}$. The values of x are
a) 1
b) $-2 / 3$
c) 2
d) $3 / 4$
223. If $a=x \hat{\imath}+y \hat{\jmath}+z \hat{k}, b=y \hat{\imath}+z \hat{\jmath}+x \hat{k}$ and $c=z \hat{\imath}+x \hat{\jmath}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
a) Parallel to $(y-z) \hat{\imath}+(z-x) \hat{\jmath}+(x-y) \hat{k}$
b) Orthogonal to $\hat{\imath}+\hat{\jmath}+\hat{k}$
c) Orthogonal to $(y+z) \hat{\imath}+(z+x) \hat{\jmath}+(x+y) \hat{k}$
d) Orthogonal to $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
224. A vector (\vec{d}) is equally inclined to three vectors $\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}, \hat{b}=2 \hat{\imath}+\hat{\jmath}$ and $\vec{c}=3 \hat{\jmath}-2 \hat{k}$. Let $\vec{x}, \vec{y}, \vec{z}$ be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then
a) $\vec{z} \cdot \vec{d}=0$
b) $\vec{x} \cdot \vec{d}=1$
c) $\vec{y} \cdot \vec{d}=32$
d) $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\gamma \vec{z}$
225. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$, then which of the following is (are) true?
a) $\lambda_{1}=\vec{a} \cdot \vec{c}$
b) $\lambda_{2}=|\vec{b} \times \vec{c}|$
c) $\lambda_{3}=|(\vec{a} \times \vec{b}) \times \vec{c}|$
d) $\lambda_{1}+\lambda_{2}+\lambda_{3}=(\vec{a}+\vec{b}+\vec{a} \times \vec{b}) \cdot \vec{c}$
226. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have
a) $(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$
b) $\vec{a} \cdot \vec{b}=0$
c) $\vec{a} \cdot \vec{c}=0$
d) $\vec{b} \cdot \vec{c}=0$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 227 to 226. Each question contains STATEMENT 1(Assertion) and STATEMENT 2 (Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is
correct.
a) Statement $\mathbf{1}$ is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

227 A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotated through an angle α about the origin in the anticlockwise sense
Statement 1: If the vector has component $p+2$ and I with respect to the new system, then $p=-1$
Statement 2: Magnitude of the original vector and the new vector remains the same
228
Statement 1: If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}$ then $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}$ is perpendicular to $\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}$.
Statement 2: If $\overrightarrow{\mathbf{p}}$ is perpendicular to $\overrightarrow{\mathbf{q}}$, then $\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}=0$.
229 Let the vectors $\overrightarrow{\mathbf{P Q}}, \overrightarrow{\mathbf{Q R}}, \overrightarrow{\mathbf{R S}}, \overrightarrow{\mathbf{S T}}, \overrightarrow{\mathbf{T U}}$ and $\overrightarrow{\mathbf{U P}}$ represent the sides of a regular hexagon.
Statement 1: $\quad \overrightarrow{\mathbf{P Q}} \times(\overrightarrow{\mathbf{R S}}+\overrightarrow{\mathbf{S T}}) \neq \overrightarrow{\mathbf{0}}$ Because
Statement 2: II $\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{R S}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{S T}} \neq \overrightarrow{\mathbf{0}}$

Statement 1: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are perpendicular to each other
Statement 2: If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle

Statement 1: For $a=-\frac{1}{\sqrt{3}}$ the volume of the parallelepiped formed by vectors $\hat{\mathbf{i}}+a \hat{\mathbf{j}}, a \hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{\jmath}}+$ $a \hat{\mathbf{k}}$ is maximum
Statement 2: The volume of the parallelepiped having three coterminous edges $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is | $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \mid$.

Statement 1: If \vec{u} and \vec{v} are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them, then $\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$
Statement 2: If $\triangle A B C$ is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angle A is given by $\overrightarrow{A D}=(\overrightarrow{A B}+\overrightarrow{A C}) / 2$

Statement 1: If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=5$
Statement 2: The length of the diagonals of a rectangle is the same

Statement 1: Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that $\vec{a}=2 \hat{\imath}+\hat{k}, \vec{b}=3 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{c}=-\hat{\imath}+7 \hat{\jmath}-5 \hat{k}$. Then $O A B C$ is a tetrahedron

Statement 2: Let $A(\vec{a}), B(\vec{a})$ and $C(\vec{c})$ be three points such that vectors \vec{a}, \vec{b} and \vec{c} are non-coplanar. Then $O A B C$ is a tetrahedron, where O is the origin
235
Consider three vectors \vec{a}, \vec{b} and \vec{c}
Statement 1: $\quad \vec{a} \times \vec{b}=((\hat{\imath} \times \vec{a}) \cdot \vec{b}) \hat{\imath}+((\hat{\jmath} \times \vec{a}) \cdot \vec{b}) \hat{\jmath}+((\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k}$
Statement 2: $\quad \vec{c}=(\hat{\imath} \cdot \vec{c}) \hat{\imath}+(\hat{\jmath} \cdot \vec{c}) \hat{\jmath}+(\hat{k} \cdot \vec{c}) \hat{k}$
236 If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=3 / 2, \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}=2, \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}=3$ and $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=1 / 2$
Statement 1: $\quad \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}$ are non-coplanar.
Statement 2: $\quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}})-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})$.

Statement 1: \quad Distance of point $D(1,0,-1)$ from the plane of points $A(1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$
Statement 2: Volume of tetrahedron formed by the points A, B, C and D is $\frac{\sqrt{229}}{2}$

Statement 1: \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non-coplanar. If $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1$, then $\vec{d}=\vec{a}+\vec{b}+\vec{c}$
Statement 2: $\quad[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \Rightarrow \vec{d}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} 239

Statement 1: If $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}, \vec{B}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{C}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$, then $|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=$ 243
Statement 2: $\quad|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B}))| \cdot \vec{C}\left|=|\vec{A}|^{2}\right|[\vec{A} \vec{B} \vec{C}] \mid$

Statement 1: If three point P, Q and R have position vectors \vec{a}, \vec{b}, and \vec{c}, respectively, and $2 \vec{a}+3 \vec{b}-$ $5 \vec{c}=0$, then the points P, Q and R must be collinear
Statement 2: If for three points A, B and $C ; \overrightarrow{A B}=\lambda \overrightarrow{A C}$, then points A, B and C must be collinear

Statement 1: If $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of any line segment, then $\cos ^{2} \alpha+$ $\cos ^{2} \beta+\cos ^{2} \gamma=1$
Statement 2: If $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of a line segment, $\cos 2 \alpha+\cos 2 \beta+$ $\cos 2 \gamma=-1$

Statement 1: If in a $\triangle A B C, \overrightarrow{\mathbf{B C}}=\frac{\overrightarrow{\mathbf{e}}}{|\overrightarrow{\mathbf{e}}|}-\frac{\overrightarrow{\mathrm{t}}}{|\overrightarrow{\mid \vec{e}}|}$ and $\overrightarrow{\mathbf{A C}}=\frac{2 \overrightarrow{\mathbf{e}}}{|\overrightarrow{\mathbf{e}}|}$;
$|\overrightarrow{\boldsymbol{e}}| \neq|\overrightarrow{\mathbf{f}}|$, then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ is -1 .
Statement 2: If in $\triangle A B C, \angle A B C, \angle C=90^{\circ}$, then $\cos 2 A+\cos 2 B+\cos 2 C=1$

Statement 1: If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar then $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are also coplanar.

Statement 2: $\quad[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]=2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$.

Statement 1: $\vec{a}=3 \vec{\imath}+p \vec{\jmath}+3 \vec{k}$ and $\vec{b}=2 \vec{\imath}+3 \vec{\jmath}+q \vec{k}$ are parallel vectors if $p=9 / 2$ and $q=2$
Statement 2: If $\vec{a}=a_{1} \vec{\imath}+a_{2} \vec{\jmath}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{\imath}+b_{2} \vec{\jmath}+b_{3} \vec{k}$ are parallel $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$

Statement 1: The direction cosines of one of the angular bisectors of two intersecting lines having direction cosines as l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are proportional to $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$
Statement 2: The angle between the two intersecting lines having direction cosines as l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

Statement 1: $\quad|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$ does not implies that $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}$.
Statement 2: If $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}$ then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}|^{2}=|\overrightarrow{\mathbf{b}}|^{2}$.
247 Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non-zero vectors \vec{a}, \vec{b} and \vec{c}
Statement 1: $\quad[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
Statement 2: $\quad[\vec{a} \vec{b} \vec{c}]=0$

Statement 1: If $a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ are three mutually perpendicular unit vectors, then $a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}, a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$ and $a_{3} \hat{\imath}+b_{3} \hat{\jmath}+c_{3} \hat{k}$ may be mutually perpendicular unit vectors
Statement 2: Value of determinant and its transpose are the same

Statement 1: If $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=0, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=0, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}=0$ for some non-zero vector $\overrightarrow{\mathbf{r}}$, then $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar vectors, then $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$.
Statement 2: If $|\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}|=0$, then $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar.

Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points A, B, C and D and $3 \vec{a}-2 \vec{b}+5 \vec{c}-$ $6 \vec{d}=\overrightarrow{0}$. Then points A, B, C and D are coplanar
Statement 2: Three non-zero, linearly dependent coinitial vectors ($\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$) are coplanar then $\overrightarrow{P Q}=\lambda \overrightarrow{P R}+\mu \overrightarrow{P S}$, where λ and μ are scalars

Statement 1: Vector $\vec{c}=-5 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}$ is along the bisector of angle between $\vec{a}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=-8 \hat{\imath}+\hat{\jmath}-4 \hat{k}$
Statement 2: \vec{c} is equally inclined to \vec{a} and \vec{b}

Statement 1: In $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$

Statement 2: If $\overrightarrow{O A}=\overrightarrow{a,} \overrightarrow{O B}=\vec{b}$, then $\overrightarrow{A B}=\vec{a}+\vec{b}$

Statement 1: The identity
$|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}}|^{2}=|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}|^{2}+|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}}|^{2}=2|\overrightarrow{\mathbf{a}}|^{2}$ Holds for $\overrightarrow{\mathbf{a}}$.
Statement 2: $\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}}=a_{3} \hat{\mathbf{j}}-a_{2} \hat{\mathbf{k}}$;
$\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}=a_{1} \hat{\mathbf{k}}-a_{3} \hat{\mathbf{i}}, \overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}}=a_{2} \hat{\mathbf{i}}-a_{2} \hat{\mathbf{j}}$
Which of the following is correct?
254
Statement 1: If $|\overrightarrow{\mathbf{a}}|=2,|\overrightarrow{\mathbf{b}}|=3,|2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=5$, then $|2 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=5$
Statement 2: $\quad|\overrightarrow{\mathbf{p}}-\overrightarrow{\mathbf{q}}|=|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}|$
255
Statement 1: If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are reciprocal vectors, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=1$.
Statement 2: If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are reciprocal, then $\overrightarrow{\mathbf{a}}=\lambda \overrightarrow{\mathbf{b}}, \lambda \in \boldsymbol{R}^{+}$, and $|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|=1$.
256
Statement 1: A component of vector $\vec{b}=4 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ is $\hat{\imath}-\hat{\jmath}$
Statement 2: A component of vector in the direction of $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \mathrm{is} 2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.
257.

Column-I

Column- II
(A) If $|\vec{a}+\vec{b}|=|\vec{a}+2 \vec{b}|$, then angle between \vec{a} and
(p) 90°
\vec{b} is
(B) If $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$, then angle between \vec{a} and
(q) Obtuse
\vec{b} is
(C) If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then angle between \vec{a} and
(r) 0°
\vec{b} is
(D) Angle between $\vec{a} \times \vec{b}$ and a vector
(s) acute
perpendicular to the vector $\vec{c} \times(\vec{a} \times \vec{b})$ is
CODES :

	A	B	C	D
a)	s	r	q	p
b)	q	s	p	r

c) s
p r
q
d) $\quad \mathrm{r} \quad \mathrm{q} \quad \mathrm{s} \quad \mathrm{p}$
258. Refer to the following diagram:

Column-I

Column- II

(A) Collinear vectors
(p) \vec{a}
(B) Coinitial vectors
(q) \vec{b}
(C) Equals vectors
(r) \vec{c}
(D) Unlike vectors (same initial point)
(s) \vec{d}

CODES :

	A	B	C	D
a)	$\mathrm{P}, \mathrm{r}, \mathrm{s}$	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p, r	r, s
b)	q, r	t, s	$\mathrm{t}, \mathrm{r}, \mathrm{s}$	q, p
c)	s, t	r	p	s, t
d)	q, r	t	a, s	t, r

259. \vec{a} and \vec{b} form the consecutive sides of a regular hexagon $A B C D E F$

Column-I

Column- II
(A) If $\overrightarrow{C D}=x \vec{a}+y \vec{b}$, then
(p) $x=-2$
(B) If $\overrightarrow{C E}=x \vec{a}+y \vec{b}$, then
(q) $x=-10$
(C) If $\overrightarrow{A E}=x \vec{a}+y \vec{b}$, then
(r) $y=1$
(D) $\overrightarrow{A D}=-x \vec{b}$, then
(s) $y=2$

CODES :

	A	B	C	D
a)	S, t	r	p	s, t
b)	q, r	p, r	q, s	p
c)	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	$\mathrm{p}, \mathrm{r}, \mathrm{d}$	r, s
d)	q, r	t, s	$\mathrm{t}, \mathrm{r}, \mathrm{s}$	q, p

260. Given two vectors $\vec{a}=-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=-2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
(A) A vectors coplanar with \vec{a} and \vec{b}
(p) $-3 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$
(B) A vector which is perpendicular to both \vec{a} and
(q) $2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
\vec{b}
(C) A vector which is equally inclined to \vec{a} and \vec{b}
(r) $\hat{\imath}+\hat{\jmath}$
(D) A vector which forms a triangle whit \vec{a} and \vec{b}
(s) $\hat{\imath}-\hat{\jmath}+5 \hat{k}$

CODES :

	A	B	C	D
a)	P, r	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p
b)	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p	p, r
c)	p	p, r	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$
d)	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p	p, r	p, q

261. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{d}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$, then observes the following lists

Column-I

Column- II

(A) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
(p) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}$
(B) $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$
(q) 3
(C) $[\vec{a} \vec{b} \overrightarrow{\mathbf{c}}]$
(r) $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}$
(D) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
(s) $2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
(t) $2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
(u) 4

CODES :

	A	B	C	D
a)	c	a	b	f
b)	c	a	f	e
c)	a	c	b	f
d)	a	c	f	d

262. Volume of parallelepiped formed by vectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units
(A) Volume of parallelepiped formed by vectors
(p) 0 sq. units \vec{a}, \vec{b} and \vec{c} is
(B) Volume of tetrahedron formed by vectors
(q) 12 sq. units \vec{a}, \vec{b} and \vec{c} is
(C) Volume of parallelepiped formed by
(r) 6sq. units
vectors $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is
(D) Volume of parallelepiped formed by
(s) 1 sq. units vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$ is

CODES :

A
B
C
D
a) $\begin{array}{llll}\mathrm{r} & \mathrm{s} & \mathrm{q} & \mathrm{p}\end{array}$
b) $\quad \mathrm{s} \quad \mathrm{r} \quad \mathrm{p} \quad \mathrm{q}$
c) $\begin{array}{llll}\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s}\end{array}$
d) $\begin{array}{llll}\mathrm{q} & \mathrm{p} & \mathrm{s} & \mathrm{r}\end{array}$
263. Given two vectors $\vec{a}=-\hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\vec{b}=-\hat{\imath}-2 \hat{\jmath}-\hat{k}$

Column-I

Column- II

(A) Area of triangle formed by \vec{a} and \vec{b}
(p) 3
(B) Area of parallelogram having sides \vec{a} and \vec{b}
(q) $12 \sqrt{3}$
(C) Area of parallelogram having diagonals $2 \vec{a}$ and
(r) $3 \sqrt{3}$
$4 \vec{b}$
(D) Volume of parallelepiped formed by \vec{a}, \vec{b} and $\vec{c}=\hat{\imath}+\hat{\jmath}+\hat{k}$
(s) $\frac{3 \sqrt{3}}{2}$

CODES :

	A	B	C	D
a)	p	q	r	s
b)	q	s	p	r
c)	r	p	s	q
d)	s	r	q	p

264.

(A) If $|\vec{a}|=|\vec{b}|=|\vec{c}|$, angle between each pair of vectors is $\frac{\pi}{3}$ and $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$, then $2|\vec{a}|$ is equal to
(B) If \vec{a} is perpendicular to $\vec{b}+\vec{c}, \vec{b}$ is perpendicular to $\vec{c}+\vec{a}, \vec{c}$ is perpendicular $\vec{a}+\vec{b},|\vec{a}|=2,|\vec{b}|=3$ and $|\vec{c}|=6$, then $|\vec{a}+\vec{b}+\vec{c}|-2$ is equal to
(C) $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}, \vec{b}=-\hat{\imath}+2 \hat{\jmath}-4 \hat{k}, \vec{c}=\hat{\imath}+\hat{\jmath}+$ (r) 4 \hat{k} and $\vec{d}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$, then $\frac{1}{7}(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is equal to
(D) If $|\vec{a}|=|\vec{b}|=|\vec{c}|=2$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=$ (s) 5

2 then $[\vec{a} \vec{b} \vec{c}] \cos 45^{\circ}$ is equal to
CODES:

	A	B	C	D
a)	p	q	r	s
b)	s	r	q	p
c)	q	s	p	r
d)	r	p	s	q

265.

Column-I

Column- II
(A) If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular
(p) -12 vectors where $|\vec{a}|=|\vec{b}|=2,|\vec{c}|=1$, then $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is
(B) If \vec{a} and \vec{b} are two unit vectors inclined at $\pi / 3$, (q) 0 then $16[\vec{a} \vec{b}+\vec{a} \times \vec{b} \vec{b}]$ is
(C) If \vec{b} and \vec{c} are orthogonal unit vectors and (r) 16 $\vec{b} \times \vec{c}=\vec{a}$, then $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ is
(D) If $[\vec{x} \vec{y} \vec{a}]=[\vec{x} \vec{y} \vec{b}]=[\vec{a} \vec{b} \vec{c}]=0$, each vector being a
(s) 1 non-zero vector, then $[\vec{x} \vec{y} \vec{c}]$ is

CODES :

	A	B	C	D
a)	p	q	r	s
b)	r	p	s	q
c)	q	s	p	r
d)	s	r	q	p

266.

(A) The possible value of a if $\vec{r}=(\hat{\imath}+\hat{\jmath})+\lambda(\hat{\imath}+$
(p) -4 $2 \hat{\jmath}-\hat{k})$ and $\vec{r}=(\hat{\imath}+2 \hat{\jmath})+\mu(-\hat{\imath}+\hat{\jmath}+a \hat{k})$ are not consistent, where λ and μ are scalars, is
(B) The angle between vectors $\vec{a}=\lambda \hat{\imath}-3 \hat{\jmath}-\hat{k}$
(q) -2
and $\vec{b}=2 \lambda \hat{\imath}+\lambda \hat{\jmath}-\hat{k}$ is acute, whereas vector \vec{b} makes an obtuse angle with the axes of coordinates. Then λ may be
(C) The possible value of a such that $2 \hat{\imath}-\hat{\jmath}+$
(r) 2 $\hat{k}, \hat{\imath}+2 \hat{\jmath}+(1+a) \hat{k}$ and $3 \hat{\imath}+a \hat{\jmath}+5 \hat{k}$ are coplanar is
(D) If $\vec{A}=2 \hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}, \vec{B}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}, \vec{C}=3 \hat{\imath}+$
(s) 3 \hat{j} and $\vec{A}+\lambda \vec{B}$ is perpendicular to \vec{C}, then $|2 \lambda|$ is CODES:

	A	B	C	D
a)	$\mathrm{P}, \mathrm{q}, \mathrm{r}, \mathrm{s}$	p, q	p, r	r
b)	p, q	p, r	r	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
c)	p, r	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$	p, q	r
d)	r	$\mathrm{p,r}$	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$	p, q

Linked Comprehension Type

This section contain(s) 26 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 267 to - 267

The vertices of a triangle $A B C$ are $A \equiv(2,0,2), B \equiv(-1,1,1)$ and $C \equiv(1,-2,4)$. The points D and E divide the sides $A B$ and $C A$ in the ratio $1: 2$ respectively. Another point F is taken in space such that perpendicular drawn from F on $\triangle A B C$, meets the triangle at the point of intersection of the line segment $C D$ and $B E$, say P. If the distance from the plane of the $\triangle A B C$ is $\sqrt{2}$ unit, then
On the basis of above information, answer the following questions :
267. The position vector of P is
a) $\hat{\mathbf{i}}+\hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}}$
b) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
c) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$

Paragraph for Question Nos. 268 to - 268

Let \boldsymbol{A} be the given point whose position vector relative to an origin O be $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{O N}}=\overrightarrow{\mathbf{n}}$. Let $\overrightarrow{\mathbf{r}}$ be the position vector of any point P which lies on the plane and passing through A and perpendicular to $O N$. Then for any point P on the plane
$\overrightarrow{\mathbf{A P}} \cdot \overrightarrow{\mathbf{n}}=0$
$\Rightarrow(\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{n}}=0 \Rightarrow \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}$
$\Rightarrow \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=P$
Where P is perpendicular distance of the plane from origin.
On the basis of above information, answer the following questions :
268. The equation of the plane through the point $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and parallel to the plane $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{i}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})-7=$ 0 is
a) $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{i}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{\imath}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})=16$
c) $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{\imath}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})=24$
d) $\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{i}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})=32$

Paragraph for Question Nos. 269 to - 269

Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three vectors such that $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=4$ and angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\pi / 3$, angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is $\pi / 3$ and angle between $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}$ is $\pi / 3$.

On the basis of above information, answer the following questions :
269. The volume of the parallelopiped whose adjacent edges are represented by the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$, is
a) $24 \sqrt{2}$
b) $24 \sqrt{3}$
c) $32 \sqrt{2}$
d) $32 \sqrt{3}$

Paragraph for Question Nos. 270 to - 270

$A B C D$ is a parallelogram. L is a point on $B C$ which divides $B C$ in the ratio 1:2 $A L$ intresects $B D$ at $P . M$ is a point on $D C$ which divides $D C$ in the ratio 1:2 And $A M$ intresects $B D$ in Q
270. Point P divides $A L$ in the ratio
a) $1: 2$
b) $1: 3$
c) $3: 1$
d) $2: 1$

Paragraph for Question Nos. 271 to-271

Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel. Also $O A: C B=2: 1$ and $O D: A B=1: 3$

271. The ratio $\frac{O X}{X C}$ is
a) $3 / 4$
b) $1 / 3$
c) $2 / 5$
d) $1 / 2$

Paragraph for Question Nos. 272 to - 272
Consider the regular hexagon $A B C D E F$ with centre at O (origin)
272. $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ is equal to
a) $2 \overrightarrow{A B}$
b) $3 \overrightarrow{A B}$
c) $4 \overrightarrow{A B}$
d) None of these

Paragraph for Question Nos. 273 to-273

Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=\frac{3}{2}, \vec{a} \cdot \vec{v}=$ $7 / 4$ and $|\vec{a}|=2$
273. Vector \vec{u} is
a) $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
b) $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
c) $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
d) $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Vectors \vec{x}, \vec{y} and \vec{z} each of magnitude $\sqrt{2}$, make an angle of 60° with each other.
$\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$
274. Vector \vec{x} is
a) $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+(\vec{a}+\vec{b})]$
b) $\frac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}-\vec{b})]$
c) $\frac{1}{2}[-(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}+\vec{b})]$
d) $\frac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})]$

Paragraph for Question Nos. 275 to - 275

If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$
275. Vectors \vec{x} is
a) $\frac{1}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times(\vec{a} \times \vec{b})]$
b) $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
c) $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]$
d) None of these

Paragraph for Question Nos. 276 to - 276

Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. Then
276. $(\vec{P} \times \vec{B}) \times \vec{B}$ is equal to
a) \vec{P}
b) $-\vec{P}$
c) $2 \vec{B}$
d) \vec{A}

Paragraph for Question Nos. 277 to - 277

Let $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k}, \vec{b}=2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}$ and $\vec{c}=-2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then
277. \vec{a}_{2} is equal to
a) $\frac{943}{49}(2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})$
b) $\frac{943}{49^{2}}(2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})$
c) $\frac{943}{49}(-2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
d) $\frac{943}{49^{2}}(-2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$

Paragraph for Question Nos. 278 to - 278

Consider a triangular pyramid $A B C D$ the position vectors of whose angular point are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$. Let G be the point of intersection of the medians of triangle $B C D$
278. The length of vector $\overrightarrow{A G}$ is
a) $\sqrt{17}$
b) $\sqrt{51} / 3$
c) $3 / \sqrt{6}$
d) $\sqrt{59} / 4$

Paragraph for Question Nos. 279 to - 279

Vertices of a parallelogram taken in order are $A(2,-1,4) ; B(1,0-1) ; C(1,2,3)$ and D
279. The distance between the parallel lines $A B$ and $C D$ is
a) $\sqrt{6}$
b) $3 \sqrt{6 / 5}$
c) $2 \sqrt{2}$
d) 3

Paragraph for Question Nos. 280 to - 280

Let \vec{r} be a position vector of a variable point in Cartesion $O X Y$ plane such that $\vec{r} \cdot(10 \hat{\jmath}-8 \hat{\imath}-\vec{r})=40$ and $p_{1}=\max \left\{|\vec{r}+2 \hat{\imath}-3 \hat{\jmath}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{\imath}-3 \hat{\jmath}|^{2}\right\}$. A tangent line is drawn to the curve $y=8 / x^{2}$ at point A with abscissa 2 . The drawn line cuts the x-axis at a point B
280. p_{2} is equal to
a) 9
b) $2 \sqrt{2}-1$
c) $6 \sqrt{2}+3$
d) $9-4 \sqrt{2}$

Paragraph for Question Nos. 281 to-281

$A B, A C$ and $A D$ are three adjacent edges of a parallelepiped. The diagonal of the parallelepiped passing through A and directed away from it is vector \vec{a}. The vector area of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c}, respectively, i.e., $\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$. The projection of each edge $A B$ and $A C$ on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$
281. Vector $\overrightarrow{A B}$ is
a) $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
b) $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
c) $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{c} \times \vec{a})}{|\vec{a}|^{2}}$
d) None of these

Integer Answer Type

282. Given that $\vec{u}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} ; \vec{v}=2 \hat{\imath}+\hat{\jmath}+4 \hat{k} ; \vec{w}=\hat{\imath}+3 \hat{\jmath}+3 \hat{k}$ and $(\vec{u} \cdot \vec{R}-15) \hat{\imath}+(\vec{v} \cdot \vec{R}-30) \hat{\jmath}+(\vec{w} \cdot \vec{R}-$ 20) $\hat{k}=\overrightarrow{0}$. Then find the greatest integer less than or equal to $|\vec{R}|$
283. Find the least positive integral value of x for the angle between vectors $\vec{a}=x \hat{\imath}-3 \hat{\jmath}-\hat{k}$ and $\vec{b}=2 x \hat{\imath}+x \hat{\jmath}-$ \hat{k} is acute
284. If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\imath}+c_{3} \hat{k}$ and $[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=$ $\lambda\left|\begin{array}{lll}\vec{a} . \hat{\imath} & \vec{a} . \hat{\jmath} & \vec{a} \cdot \hat{k} \\ \vec{b} . \hat{\imath} & \vec{b} . \hat{\jmath} & \vec{b} . \hat{k} \\ \vec{c} . \hat{\imath} & \vec{c} . \hat{\jmath} & \vec{c} . \hat{k}\end{array}\right|$, then find the value of $\frac{\lambda}{4}$
285. Let \vec{u} and \vec{v} are unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$
286. If vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}-\hat{k}, \vec{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{c}=\lambda \hat{\imath}+\hat{\jmath}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$
287. Find the value of λ if the volumes of a tetrahedron whose vertices are with position vectors $\hat{\imath}-6 \hat{\jmath}+$ $10 \hat{k},-\hat{\imath}-3 \hat{\jmath}+7 \hat{k}, 5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$ and $7 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$ is 11 cubic unit
288. Let \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors \vec{a} and \vec{b} is A, then what is the value of $4 A^{2}$?
289. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$ and the between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$
290. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, A and C are non-collinear points. Let p denote the area of quadrilateral $O A C B$, and let q denote the area of parallelogram with $O A$ and $O C$ as adjacent sides. If $p=k q$, then find k
291. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60°. Suppose that $|\vec{u}-\vec{\imath}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{\imath}|$, where $\hat{\imath}$ is the unit vector along x-axis. Then find value of $(\sqrt{2}+1)|\vec{u}|$
292. If the resultant of three forces $\vec{F}_{1}=p \hat{\imath}+3 \hat{\jmath}-\hat{k}, \vec{F}_{2}=-5 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\vec{F}_{3}=6 \hat{\imath}-\hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of p ?
293. Let $A B C$ be a triangle whose centroid is G. Orthocentre is H and circumcentre is the origin ' O '. If D is any point in the plane of the triangle such that no three of O, A, C and D are collinear satisfying the relation If $\vec{A} D+\vec{B} D+\vec{C} H+3 \vec{H} G=\lambda \vec{H} D$, then what is the value of the scalar ' λ^{\prime} ?
294. Let a three-dimensional vector \vec{V} satisfies the condition, $2 \vec{V}+\vec{V} \times(\hat{\imath}+2 \hat{\jmath})=2 \hat{\imath}+\hat{k}$. If $3|\vec{V}|=\sqrt{m}$, then find the value of m
295. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$
296. Find the absolute value of parameter t for which the area of the triangle whose vertices are $A(-1,1,2) ; B(1,2,3)$ and $C(t, 1,1)$ is minimum
297. Let $\vec{a}=\alpha \hat{\imath}+2 \hat{\jmath}-3 \hat{k}, \vec{b}=\hat{\imath}+2 \alpha \hat{\jmath}-2 \hat{k}$ and $\vec{c}=2 \hat{\imath}-\alpha \hat{\jmath}+\hat{k}$. Find the value of 6α, such that $\{(\vec{a} \times \vec{b}) \times$ $b \times c \times c \times a=0$
298. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+\right.$ $b-3 \beta+c y+a-2 \gamma^{2}+b-3 \gamma+c x \times y=0$, where α, β, γ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$
299. Vectors along the adjacent sides of parallelogram are $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{b}=2 \hat{\imath}+4 \hat{\jmath}+\hat{k}$. Find the length of the longer diagonal of the parallelogram
300. Find the work done by the force $F=3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$ acting on a particle such that the particle is displaced from point $A(-3,-4,1)$ to point $B(-1,-1,-2)$

: ANSWER KEY:

1)	a	2)	a	3)	a	4)	a		a,c						
5)	d	6)	d	7)	b	8)	a	17)	a,b,c,d		a,b,c	19)	b,c	20)	
9)	a	10)	a	11)	b	12)	d		b,d						
13)	a	14)	a	15)	c	16)	a	21)	a,b,c,d		a,d	23)	b,d	24)	
17)	a	18)	c	19)	b	20)	d		a,c,d						
21)	c	22)	b	23)	a	24)	d	25)	b,d	26)	a,c	27)	a,b,d	28)	
25)	d	26)	b	27)	c	28)	c		a,b,c						
29)	c	30)	b	31)	a	32)	a	29)	a,d	30)	a,c,d	31)	a,b,c,d	32)	
33)	d	34)	c	35)	c	36)	c		a,c						
37)	d	38)	c	39)	d	40)	b	33)	a,c	34)	a,c	35)	c,d	36)	
41)	b	42)	c	43)	b	44)	d		c,d						
45)	c	46)	d	47)	b	48)	b	37)	b,c	38)	b,d	39)	c	40)	
49)	d	50)	d	51)	b	52)	c		a,c						
53)	b	54)	a	55)	a	56)	c	41)	a,c	42)	a,b,d	43)	a,d	44)	
57)	a	58)	d	59)	b	60)	a		a,b,c						
61)	c	62)	a	63)	d	64)	c	45)	b,c,d	46)	b,d	47)	a,b	48)	
65)	c	66)	d	67)	c	68)	c		b,c						
69)	b	70)	c	71)	b	72)	d	49)	a,b,c	50)	b,c	51)	a,b,c,d	52)	
73)	b	74)	a	75)	c	76)	c		b,d						
77)	c	78)	a	79)	a	80)	c	53)	b,c	54)	a,b,c	55)	a,b,d	56)	
81)	d	82)	b	83)	a	84)	c		a,b,c						
85)	c	86)	d	87)	d	88)	d	57)	a,b,c,d	58)	a,c,d	59)	c	60)	
89)	b	90)	a	91)	b	92)	b		a,c						
93)	c	94)	a	95)	b	96)	c	61)	b,c	62)	a,b,c,d	63)	a,d	64)	
97)	a	98)	c	99)	d	100)	c		a,d						
101)	b	102)	c	103)	d	104)	a	65)	a,c	1)	a	2)	c	3)	c
105)	d	106)	b	107)	c	108)	b		4)	a					
109)	c	110)	c	111)	a	112)	a	5)	d	6)	d	7)	a	8)	a
113)	a	114)	c	115)	a	116)	a	9)	a	10)	c	11)	d	12)	b
117)	c	118)	a	119)	d	120)	c	13)	d	14)	a	15)	b	16)	b
121)	a	122)	b	123)	a	124)	b	17)	c	18)	a	19)	b	20)	b
125)	c	126)	b	127)	d	128)	c	21)	b	22)	a	23)	b	24)	a
129)	b	130)	a	131)	c	132)	c	25)	b	26)	c	27)	a	28)	
133)	b	134)	a	135)	c	136)	c	29)	a	30)	c	1)	b	2)	a
137)	c	138)	a	139)	a	140)	a		3)	b	4)	a			
141)	c	142)	c	143)	b	144)	c	5)	b	6)	a	7)	d	8)	c
145)	b	146)	d	147)	a	148)	b	9)	b	10)	a	1)	b	2)	d
149)	b	150)	d	151)	d	152)	b		3)	c	4)	c			
153)	d	154)	b	155)	a	156)	b	5)	c	6)	c	7)	b	8)	d
157)	c	158)	a	159)	a	160)	b	9)	b	10)	b	11)	b	12)	b
161)	a	1)	b,d	2)	b,c,d	3)		13)	c	14)	d	15)	a	1)	6
	a,b,c	4)	a,b						2)	2	3)	7	4)	1	
5)	a,b	6)	a,c	7)	a,c	8)		5)	9	6)	7	7)	3	8)	1
	a,c							9)	6	10)	1	11)	6	12)	2
9)	b,d	10)	b	11)	b,c	12)		13)	6	14)	5	15)	2	16)	4
	b,d							17)	9	18)	7	19)	9		
13)	a,b,d	14)	a,b	15)	a,b,c,	16)									

: HINTS AND SOLUTIONS :

1 (a)
Let $\vec{c}=\lambda(\vec{a} \times \vec{b})$
Hence $\lambda(\vec{a} \times \vec{b}) \cdot(\hat{\imath}+2 \hat{\jmath}-7 \hat{k})=10$
$\Rightarrow \lambda\left|\begin{array}{ccc}2 & -3 & 1 \\ 1 & -2 & 3 \\ 1 & 2 & -7\end{array}\right|=10$
$\Rightarrow \lambda=-1$
$\Rightarrow \vec{c}=-(\vec{a} \times \vec{b})$
2 (a)
\vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, $2 \vec{a}-\vec{b}, 2 \vec{b}-$
$2 \vec{c}$ and $2 \vec{c}-\vec{a}$ are also coplanar vectors, being linear combination of \vec{a}, \vec{b} and \vec{c}
Thus, $[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]=0$
3 (a)
Points $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar. Therefore
$\sin \alpha+2 \sin 2 \beta+3 \sin 3 \gamma=1$
Now
$\mid \sin \alpha+2 \sin 2 \beta+$
$3 \sin 3 \gamma / \leq 1+4+9 \cdot \sin 2 \alpha+\sin 22 \beta+\sin 23 \gamma$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3 \gamma \geq \frac{1}{14}$
4 (a)
$(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))))$

$$
=(\vec{a} \times(\vec{a} \times((\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b})))
$$

$=(\vec{a} \times(\vec{a} \times(-4 \vec{b})))$
$=-4(\vec{a} \times(\vec{a} \times \vec{b}))$
$=-4((\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b})$
$=-4(-4 \vec{b})=16 \vec{b}=48 \hat{b}$
5 (d)
$(3 \vec{a}+\vec{b}) \cdot(\vec{a}-4 \vec{b})$
$=3|\vec{a}|^{2}-11 \vec{a} \cdot \vec{b}-4|\vec{b}|^{2}$
$=3 \times 36-11 \times 6 \times 8 \cos \pi-4 \times 64>0$

Therefore, the angle between \vec{a} and \vec{b} is acute
The longer diagonal is given by
$\vec{\alpha}=(3 \vec{a}+\vec{b})+(\vec{a}-4 \vec{b})=4 \vec{a}-3 \vec{b}$
Now, $|\vec{\alpha}|^{2}=|4 \vec{a}-3 \vec{b}|^{2}=16|\vec{a}|^{2}+9|\vec{b}|^{2}-24 \vec{a}$. \vec{b}
$=16 \times 36+9 \times 64-24 \times 6 \times 8 \cos \pi$
$=16 \times 144$
$\Rightarrow|4 \vec{a}-3 \vec{b}|=48$
6 (d)
Given that $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar. Therefore,
$[a b, c] \neq 0$
Also $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]^{\prime}}$
$\vec{r}=\frac{a \times b}{[\vec{a} \vec{b} \vec{c}]}$ (i)
Now, $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$
$=(\vec{a}+\vec{b}) \cdot \frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}+(\vec{b}+\vec{c}) \cdot \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}+(\vec{c}+\vec{a})$
$\cdot \frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$
$=\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]} \times \frac{\vec{b} \cdot \vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}+\frac{\vec{c} \cdot \vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$
$[\because \vec{b} \cdot \vec{b} \times \vec{c}=\vec{c} \cdot \vec{c} \times \vec{a}=\vec{a} \cdot \vec{a} \times \vec{b}=0]$
$=\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}+\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}+\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}$
$=1+1+1$
$=3$
(b)

Given $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ (by triangle law). Therefore,
$\vec{a} \times(\vec{a}+\vec{b}+\vec{c})=\vec{a} \times \overrightarrow{0}$
$\vec{a} \times \vec{a}+\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\overrightarrow{0}$
$\vec{a} \times \vec{b}=\vec{c} \times \vec{a}$
Similarly by taking cross product with \vec{b}, we get $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}$
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
8 (a)
$(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+\vec{b})=0$
$\Rightarrow 6|\vec{a}|^{2}-5|\vec{b}|^{2}=7 \vec{a} \cdot \vec{b}$
Also, $(\vec{a}+4 \vec{b}) \cdot(\vec{b}-\vec{a})=0$
$\Rightarrow-|\vec{a}|^{2}+4|\vec{b}|^{2}=3 \vec{a} \cdot \vec{b}$
$\Rightarrow \frac{6}{7}|\vec{a}|^{2}-\frac{5}{7}|\vec{b}|^{2}=-\frac{1}{3}|\vec{a}|^{2}+\frac{4}{3}|\vec{b}|^{2}$
$\Rightarrow 25|\vec{a}|^{2}=43|\vec{b}|^{2}$
$\Rightarrow 3 \vec{a} \cdot \vec{b}=-|\vec{a}|^{2}+4|\vec{b}|^{2}=\frac{57}{25}|\vec{b}|^{2}$
$\Rightarrow 3|\vec{a}||\vec{b}| \cos \theta=\frac{57}{25}|\vec{b}|^{2}$
$\Rightarrow 3 \sqrt{\frac{43}{25}}|\vec{b}|^{2} \cos \theta=\frac{57}{25}|\vec{b}|^{2}$
$\Rightarrow \cos \theta=\frac{19}{5 \sqrt{43}}$
9 (a)
$(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{u}$, where $\vec{u}=\vec{a} \times \vec{c}$
$\Rightarrow \vec{a} \cdot(\vec{b} \times \vec{u})=\vec{a}[\vec{b} \times(\vec{a} \times \vec{c})]$
$=\vec{a} \cdot[(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{c}]$
$=\vec{a} \cdot(\vec{b} \cdot \vec{c}) \vec{a}(\because \vec{a} \cdot \vec{b}=0)$
$=|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$
10 (a)
We have $\overrightarrow{G B}+\overrightarrow{G C}=(1+1) \overrightarrow{G D}=2 \overrightarrow{G D}$, where D is the midpoint of $B C$
$\therefore \overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{G A}+2 \overrightarrow{G D}=\overrightarrow{G A}-\overrightarrow{G A}=0$
($\because G$ divides $A C$ in the ratio $2: 1 \therefore 2 \overrightarrow{G D}=-\overrightarrow{G A}$)
11 (b)
Let $\vec{a}=\lambda \vec{b}+\mu \vec{c}$
\vec{a} is equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{\jmath}+2 \hat{k}$
$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{a b}=\frac{\vec{a} \cdot \vec{d}}{a d}$
$\Rightarrow \frac{(\lambda \vec{b}+\mu \vec{c}) \cdot \vec{b}}{b}=\frac{(\lambda \vec{b}+\mu \vec{c}) \cdot \vec{d}}{d}$
$\Rightarrow \frac{[\lambda(2 \hat{\imath}+\hat{\jmath})+\mu(\hat{\imath}-\hat{\jmath}+\hat{k})] \cdot(2 \hat{\imath}+\hat{\jmath})]}{\sqrt{5}}$
$=\frac{[\lambda(2 \hat{\imath}+\hat{\jmath})+\mu(\hat{\imath}-\hat{\jmath}+\hat{k})] \cdot(\hat{\jmath}+2 \hat{k})}{\sqrt{5}}$
$\Rightarrow \lambda(4+1)+\mu(2-1)=\lambda(1)+\mu(-1+2)$
$\Rightarrow 4 \lambda=0$, i. e.,$\lambda=0$
$\therefore \hat{a}=\frac{\hat{\imath}-\hat{\jmath}+\hat{k}}{\sqrt{3}}$
12 (d)

Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$ and $\overrightarrow{O D}=\vec{d}$, therefore
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=\vec{a}+\vec{b}+\vec{c}+\vec{d}$
P, the midpoint of $A B$, is $\frac{\vec{a}+\vec{b}}{2}$
Q, the midpoint of $\overrightarrow{C D}$, is $\frac{\vec{c}+\vec{d}}{2}$
Therefore, the midpoint of $\overrightarrow{P Q}$ is $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}$
Similarly the midpoint of $R S$ is $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}$, i.e., $\overrightarrow{O E}=\frac{\vec{a}+\vec{b}+\vec{c}+\vec{a}}{4} \Rightarrow x=4$
13 (a)

Given,

$\overrightarrow{\mathbf{O Q}}=(1-3 \mu) \hat{\mathbf{i}}+(\mu-1) \hat{\mathbf{j}}+(5 \mu+2) \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{O P}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ (where O is origin)

Now,
$\overrightarrow{\mathbf{P Q}}=(1-3 \mu-3) \hat{\mathbf{i}}+(\mu-1-2) \hat{\mathbf{j}}$

$$
+(5 \mu+2-6) \hat{\mathbf{k}}
$$

$=(-2-3 \mu) \hat{\mathbf{i}}+(\mu-3) \hat{\mathbf{j}}+(5 \mu-4) \hat{\mathbf{k}}$
$\because \overrightarrow{\mathbf{P Q}}$ is parallel to the plane $x-4 y+3 z=1$
$\therefore-2-3 \mu-4 \mu+12+15 \mu-12=0$
$\Rightarrow 8 \mu=2$
$\Rightarrow \mu=\frac{1}{4}$
(a)

Let P.V. of P, A, B and C be $\vec{p}, \vec{a}, \vec{b}$ and \vec{c},
respectively, and $O(\overrightarrow{0})$ be the circumcentre of equilateral triangle $A B C$. Then
$|\vec{p}|=|\vec{b}|=|\vec{a}|=|\vec{c}|=\frac{1}{\sqrt{3}}$
Now $|\overrightarrow{P A}|^{2}=|\vec{a}-\vec{p}|^{2}=|\vec{a}|^{2}+|\vec{p}|^{2}-2 \vec{p} \cdot \vec{a}$
Similarly, $|\overrightarrow{P B}|^{2}=|\vec{b}|^{2}+|\vec{p}|^{2}-2 \vec{p} \cdot \vec{b}$
and $|\vec{P} C|^{2}=|\vec{c}|^{2}+|\vec{p}|^{2}-2 \vec{p} \cdot \vec{c}$
$\Rightarrow \Sigma|\overrightarrow{P A}|^{2}=6 \cdot \frac{l^{2}}{3}-2 \vec{p} \cdot(\vec{a}+\vec{b}+\vec{c})=2 l^{2}$ as $(\vec{a}+$

$$
\vec{b}+\vec{c} / 3=\overrightarrow{0})
$$

15 (c)
$\vec{a} \times \vec{b}$ is a vector perpendicular to the plane containing \vec{a} and \vec{b}. Similarly, $\vec{c} \times \vec{d}$ is a vector perpendicular to the plane containing \vec{c} and \vec{d}

Thus, the two planes will be parallel if their normals, i.e., $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$, are parallel
$\Rightarrow(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
16 (a)
Let A be the origin. $\overrightarrow{A B}=\vec{a}, \overrightarrow{A D}=\vec{b}$
So, $\overrightarrow{A E}=\vec{b}+\frac{3}{2} \vec{a}, \overrightarrow{A G}=\vec{a}+3 \vec{b}$
So the required ratio $=\frac{\frac{1}{2}\left|(\vec{a}+3 \vec{b}) \times\left(\vec{b}+\frac{3}{2} \vec{a}\right)\right|}{\frac{1}{2}|\vec{a} \times \vec{b}|}$ $=\frac{7}{2}$
17 (a)
As \vec{c} is coplanar with \vec{a} and \vec{b}, we take $\vec{c}=\alpha \vec{a}+\beta \vec{b}$
Where α and β are scalars
As \vec{c} is perpendicular to \vec{a}, using (i), we get,
$0=\alpha \vec{a} \cdot \vec{a}+\beta \vec{b} \cdot \vec{a}$
$\Rightarrow 0=\alpha(6)+\beta(2+2-1)=3(2 \alpha+\beta)$
$\Rightarrow \beta=-2 \alpha$
Thus, $\quad \vec{c}=\alpha(\vec{a}-2 \vec{b})=\alpha(-3 j+3 k)=3 \alpha(-j+$
k)
$\Rightarrow|\vec{c}|^{2}=18 \alpha^{2}$
$\Rightarrow 1=18 \alpha^{2}$
$\Rightarrow \alpha= \pm \frac{1}{3 \sqrt{2}}$
$\therefore \vec{c}= \pm \frac{1}{\sqrt{2}}(-j+k)$
18 (c)
$R(\vec{r})$ moves on $P Q$

19
(b)

Let $\vec{\alpha}=\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
Since \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, if $\vec{\alpha}$ makes angles $\theta, \phi \Psi$ with \vec{a}, \vec{b} and \vec{c} respectively, then
$\vec{\alpha} \cdot \vec{a}=\frac{\vec{a} \cdot \vec{a}}{|\vec{a}|}$
$\Rightarrow|\vec{\alpha}| \cdot|\vec{a}| \cos \theta=|\vec{a}|$
$\Rightarrow \cos \theta=\frac{1}{|\vec{\alpha}|}$
Similarly $\cos \phi=\frac{1}{|\vec{\alpha}|}, \cos \Psi=\frac{1}{|\vec{\alpha}|}$
$\therefore \theta=\phi=\Psi$
20 (d)
$\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$
$\therefore \frac{\vec{a}+2 \vec{c}}{2+1}=\frac{\vec{b}+2 \vec{d}}{2+1}$
$\Rightarrow A C$ and $B D$ trisect each other as L.H.S is the position vector of a point trisecting A an C, anc R.H.S. that of B and D

21 (c)
The given relation can be rewritten as the vector expression
$\left(\sqrt{a^{2}-4} \hat{\imath}+a \hat{\jmath}+\sqrt{a^{2}+4} \hat{k}\right)$ $\cdot(\tan A \hat{\imath}+\tan B \hat{\jmath}+\tan C \hat{k})=6 a$
$\Rightarrow \sqrt{a^{2}-4+a^{2}+a^{2}+4} \sqrt{\tan ^{2} A+\tan ^{2} B+\tan ^{2}}$
$\cdot(\cos \theta)=6 a(\because \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta)$
$\sqrt{3} a \sqrt{\tan ^{2} A+\tan ^{2} B+\tan ^{2} C} \cdot(\cos \theta)=6 a$
$\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$

$$
=12 \sec ^{2} \theta \geq 12\left(\because \sec ^{2} \theta \geq 1\right)
$$

The least value of $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$ is 12
22 (b)
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})$

$$
\begin{aligned}
& =((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{r}-((\vec{a} \times \vec{b}) \cdot \vec{r}) \cdot \vec{c} \\
& =[\vec{a} \vec{b} \vec{c}] \vec{r}-[\vec{a} \vec{b} \vec{r}] \vec{c}
\end{aligned}
$$

Similarly, $(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})=[\vec{b} \vec{c} \vec{a}] \vec{r}-[\vec{b} \vec{c} \vec{r}] \vec{a}$
and, $(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})=[\vec{c} \vec{a} \vec{b}] \vec{r}-[\vec{c} \vec{a} \vec{r}] \vec{b}$
$\Rightarrow(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a})$ $\times(\vec{r} \times \vec{b})$
$=3[\vec{a} \vec{b} \vec{c}] \vec{r}-([\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c})$
$=3[\vec{a} \vec{b} \vec{c}] \vec{r}-[\vec{a} \vec{b} \vec{c}] \vec{r}=2[\vec{a} \vec{b} \vec{c}] \vec{r}$
$\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$
$A \cdot[\vec{B} \times \vec{A}+\vec{B} \times \vec{B}+\vec{B} \times \vec{C}+\vec{C} \times \vec{A}+\vec{C} \times \vec{B}+\vec{C}$ $\times \vec{C}]$
$=\vec{A} \cdot \vec{B} \times \vec{A}+\vec{A} \cdot \vec{B} \times \vec{C}+\vec{A} \cdot \vec{C} \times \vec{A}+\vec{A} \cdot \vec{C} \times \vec{B}$
(using $\vec{a} \times \vec{a}=0$)
$=0+[\vec{A} \vec{B} \vec{C}]-[\vec{A} \vec{C} \vec{B}]$
$=[\vec{A} \vec{B} \vec{C}]-[\vec{A} \vec{B} \vec{C}]$
$=0$
24 (d)
$|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$
$\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$
$\Rightarrow \vec{c}+3 \vec{b}=2 \vec{a} \times \vec{b}$
$\therefore \vec{a} \cdot \vec{b}=2$
$\Rightarrow|\vec{a}| \cdot|\vec{b}| \cos \theta=2$
$\Rightarrow \cos \theta=\frac{2}{|\vec{a}| \cdot|\vec{b}|}=\frac{2}{4}$
$\Rightarrow \cos \theta=\frac{1}{2}$
$\because \theta=\frac{\pi}{3}$
$\Rightarrow|\vec{c}+3 \vec{b}|^{2}=|2 \vec{a} \times \vec{b}|^{2}$
$\Rightarrow|\vec{c}|^{2}+9|\vec{b}|^{2}+2 \vec{c} \cdot 3 \vec{b}=4|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta$
$\Rightarrow|\vec{c}|^{2}+144+6 \vec{b} \cdot \vec{c}=48$
$\Rightarrow|\vec{c}|^{2}+96+6(\vec{b} \cdot \vec{c})=0$
$\therefore \vec{c}=2 \vec{a} \times \vec{b}-3 \vec{b}$
$\Rightarrow \vec{b} \cdot \vec{c}=0-3 \times 16$
$\therefore \vec{b} \cdot \vec{c}=-48$
Putting value of $\vec{b} \cdot \vec{c}$ in Eq. (i)
$|\vec{c}|^{2}+96-6 \times 48=0$
$\Rightarrow|\vec{c}|^{2}=48 \times 4$
$\Rightarrow|\vec{c}|^{2}=192$
Again, putting the value of $|\vec{c}|$ in Eq. (i)
$192+96+6|\vec{b}| \cdot|\vec{c}| \cos \alpha=0$
$\Rightarrow 6 \times 4 \times 8 \sqrt{3} \cos \alpha=-288$
$\Rightarrow \cos \alpha=-\frac{288}{6 \times 4 \times 8 \sqrt{3}}=-\frac{3}{2 \sqrt{3}}$

$$
\Rightarrow \cos \alpha=-\frac{\sqrt{3}}{2}
$$

$\therefore \alpha=\frac{5 \pi}{6}$
25 (d)
Volume of parallelepiped $=[\vec{a} \vec{b} \vec{c}]$
$=\left|\begin{array}{ccc}2 & -2 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1\end{array}\right|=2(-1)+2(-1+3)=2$
26
(b)

The point that divides $5 \hat{\imath}$ and $5 \hat{\jmath}$ in the ratio of $k: 1$ is $\frac{(5 \hat{j}) k+(5 \hat{\imath}) 1}{k+1}$
$\therefore \vec{b}=\frac{5 \hat{\imath}+5 k \hat{\jmath}}{k+1}$
Also, $|\vec{b}| \leq \sqrt{37}$

$\Rightarrow \frac{1}{k+1} \sqrt{25+25 k^{2}} \leq \sqrt{37}$
$\Rightarrow 5 \sqrt{1+k^{2}} \leq \sqrt{37}(k+1)$
Square both sides
$25\left(1+k^{2}\right) \leq 37\left(k^{2}+2 k+1\right)$
or $6 k^{2}+37 k+6 \geq 0 \Rightarrow(6 k+1)(k+6) \geq 0$
$k \in(-\infty-6] \cup\left[-\frac{1}{6}, \infty\right)$
Given vectors will be coplanar, if
$\left|\begin{array}{ccc}-\lambda^{2} & 1 & 1 \\ 1 & -\lambda^{2} & 1 \\ 1 & 1 & -\lambda^{2}\end{array}\right|=0$
$\Rightarrow \lambda^{6}-3 \lambda^{2}-2=0$
$\Rightarrow\left(1+\lambda^{2}\right)^{2}\left(\lambda^{2}-2\right)=0 \Rightarrow \lambda= \pm \sqrt{2}$
(c)
$4 \vec{a}+5 \vec{b}+9 \vec{c}=0 \Rightarrow$ vectors \vec{a}, \vec{b} and \vec{c} are
coplanar
$\Rightarrow \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are collinear $\Rightarrow(\vec{b} \times \vec{c}) \times$
$(\vec{c} \times \vec{a})=\overrightarrow{0}$
29 (c)
$(\vec{a} \times \vec{b} \cdot \vec{c})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}|\vec{c}|^{2} \sin ^{2} \theta \cos ^{2} \phi(\theta$ is the angle between \vec{a} and $\vec{b}, \phi=0$)
$=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
(b)

Since $|\overrightarrow{O P}|=|\overrightarrow{O Q}|=\sqrt{14}, \triangle O P Q$ is isosceles
Hence the internal bisector $O M$ is perpendicular to $P Q$ and M is the miodpoint of P and Q
$\therefore \overrightarrow{O M}=\frac{1}{2}(\overrightarrow{O P}+\overrightarrow{O Q})=2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$

31 (a)
Let $\vec{r}=x_{1} \hat{a}+x_{2} \hat{b}+x_{3}(\hat{a} \times \hat{b})$
$\Rightarrow \vec{r} . \hat{a}=x_{1}+x_{2} \hat{a} . \hat{b}+x_{3} \hat{a} .(\hat{a} \times \hat{b})=x_{1}$
Also,$\vec{r} \cdot \hat{b}=x_{1} \hat{a} \cdot \hat{b}+x_{2}+x_{3} \hat{b} \cdot(\hat{a}+\hat{b})=x_{2}$
and $\vec{r} \cdot(\hat{a} \times \hat{b})=x_{1} \hat{a} \cdot(\hat{a} \times \hat{b})+x_{2} \hat{b} \cdot(\hat{a} \times \hat{b})+$
$x_{3}(\hat{a} \times \hat{b}) \cdot(\hat{a} \times \hat{b})=x_{3}$
$\Rightarrow \vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
32 (a)
We have,
$\vec{a} \cdot \vec{p}=\vec{a} \cdot \frac{(\vec{b} \times \vec{c})}{[\vec{a} \vec{b} \vec{c}]}=\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{[\vec{a} \vec{b} \vec{c}]}=\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}=1$
$\vec{a} \cdot \vec{q}=\vec{a} \cdot \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}=\frac{[\vec{a} \vec{c} \vec{a}]}{[\vec{a} \vec{b} \vec{c}]}=0$
Similarly, $\vec{a} \cdot \vec{r}=0, \vec{b} \cdot \vec{p}=0, \vec{b} \cdot \vec{q}=1, \vec{b} \cdot \vec{r}=0, \vec{c}$. $\vec{p}=0, \vec{c} \cdot \vec{q}=0$ and $\vec{c} \cdot \vec{r}=1$

$$
\begin{aligned}
\therefore(\vec{a}+\vec{b}+\vec{c}) \cdot & (\vec{p}+\vec{q}+\vec{r}) \\
& =\vec{a} \cdot \vec{p}+\vec{a} \cdot \vec{q}+\vec{a} \cdot \vec{r}+\vec{b} \cdot \vec{p}+\vec{b} \cdot \vec{q} \\
& +\vec{b} \cdot \vec{r}+\vec{c} \cdot \vec{p}+\vec{c} \cdot \vec{q}+\vec{c} \cdot \vec{r}
\end{aligned}
$$

$=1+1+1=3$
(d)

We must have $\lambda(\hat{\imath}-3 \hat{\jmath}+5 \hat{k})=\hat{a}+\frac{2 \hat{k}+2 \hat{\jmath}-\hat{\imath}}{3}$.
Therefore,
$3 \hat{a}=3 \lambda(\hat{\imath}-3 \hat{\jmath}+5 \hat{k})-(2 \hat{k}+2 \hat{\jmath}-\hat{\imath})$
$=\hat{\imath}(3 \lambda+1)-\hat{\jmath}(2+9 \lambda)+\hat{k}(15 \lambda-2)$
$\Rightarrow 3|\hat{a}|$
$=\sqrt{(3 \lambda+1)^{2}+(2+9 \lambda)^{2}+(15 \lambda-2)^{2}}$
$\Rightarrow 9=(3 \lambda+1)^{2}+(2+9 \lambda)^{2}+(15 \lambda-2)^{2}$
$\Rightarrow 315 \lambda^{2}-18 \lambda=0 \Rightarrow \lambda=0, \frac{2}{35}$
If $\lambda=0, \vec{a}=\hat{\imath}-2 \hat{\jmath}-2 \hat{k}$ (not acceptable)
For $\lambda=\frac{2}{35}, \vec{a}=\frac{41}{105} \hat{\imath}-\frac{88}{105} \hat{\jmath}-\frac{40}{105} \hat{k}$
34 (c)
Let the required vector \vec{r} be such that
$\vec{r}=x_{1} \vec{a}+x_{2} \vec{b}+x_{3} \vec{a} \times \vec{b}$
We must have $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot(\vec{a} \times \vec{b})(\operatorname{as} \vec{r}, \vec{a}, \vec{b}$ and $\vec{a} \times \vec{b}$ are unit vectors and \vec{r} is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$)
Now $\vec{r} \cdot \vec{a}=x_{1}, \vec{r} \cdot \vec{b}=x_{2}, \vec{r} \cdot(\vec{a} \times \vec{b})=x_{3}$
$\Rightarrow \vec{r}=\lambda(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))$
Also,$\vec{r} \cdot \vec{r}=1$
$\Rightarrow \lambda^{2}(\vec{a}+\vec{b}+\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))=1$
$\Rightarrow \lambda^{2}\left(|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{a} \times \vec{b}|^{2}\right)=1$
$\Rightarrow \lambda^{2}=\frac{1}{3}$
$\Rightarrow \lambda= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow \vec{r}= \pm \frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
35 (c)
$\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$
$\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$
$\therefore[\vec{a} \vec{b} \vec{c}]=0$
(c)

The given equation reduces to $[\vec{a} \vec{b} \vec{c}]^{2} x^{2}+$ $2[\vec{a} \vec{b} \vec{c}] x+1=0 \Rightarrow D=0$
$\vec{a}+\vec{b}=\mu \vec{p} \vec{b} \cdot \vec{q}=0,|\vec{b}|^{2}=1$
$\because \vec{a}+\vec{b}=\mu \vec{p}$
$\Rightarrow(\vec{a}+\vec{b}) \times \vec{a}=\mu \vec{p} \times \vec{a}, \vec{b} \times \vec{a}=\mu \vec{p} \times \vec{a}$

$$
\Rightarrow \vec{q} \times(\vec{b} \times \vec{a})=\mu \vec{q} \times(\vec{p} \times \vec{a})
$$

$\Rightarrow(\vec{q} \cdot \vec{a}) \vec{b}-(\vec{q} \cdot \vec{b}) \vec{a}=\mu \vec{q} \times(\vec{p} \times \vec{a}) \Rightarrow(\vec{q} \cdot \vec{a}) \vec{b}$

$$
=\mu \vec{q} \times(\vec{p} \times \vec{a})
$$

$\because \vec{a}+\vec{b}=\mu \vec{p}$
$\Rightarrow \vec{q} \cdot(\vec{a}+\vec{b})=\mu \vec{q} \cdot \vec{p}$
$\Rightarrow \vec{q} \cdot \vec{a}+\vec{q} \cdot \vec{b}=\mu \vec{p} \cdot \vec{q}$
$\Rightarrow \mu=\frac{\vec{q} \cdot \vec{a}}{\vec{p} \cdot \vec{q}}$
$\Rightarrow(\vec{q} \cdot \vec{a}) \vec{b}=\frac{\vec{q} \cdot \vec{a}}{\vec{p} \cdot \vec{q}}[(\vec{q} \cdot \vec{a}) \cdot \vec{p}-(\vec{q} \cdot \vec{p}) \vec{a}]$
$\Rightarrow|(\vec{q} \cdot \vec{a}) \vec{p}-(\vec{q} \cdot \vec{p}) \vec{a}|=|(\vec{p} \cdot \vec{q}) \vec{b}|=|\vec{p} \cdot \vec{q}| \cdot|\vec{b}|$
$\Rightarrow|(\vec{q} \cdot \vec{a}) \vec{p}-(\vec{q} \cdot \vec{p}) \vec{a}|=|\vec{p} \cdot \vec{q}|$
38 (c)
$1+9(\vec{a} \cdot \vec{b})^{2}-6(\vec{a} \cdot \vec{b})+4|\vec{a}|^{2}+|\vec{b}|^{2}$

$$
+9|\vec{a} \times \vec{b}|^{2}=4 \vec{a} \cdot \vec{b}=47
$$

$\Rightarrow 1+4+4+36-4 \cos \theta=47$
$\Rightarrow \cos \theta=-\frac{1}{2}$
\Rightarrow Angle between \vec{a} and \vec{b} is $\frac{2 \pi}{3}$
39 (d)
$|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$
Or $||\vec{a}|| \vec{b}|\sin \theta \hat{n} \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$
Or $|\vec{a}||\vec{b}||\vec{c}||\sin \theta \cos \alpha|=|\vec{a}||\vec{b}||\vec{c}|$
Or $|\sin \theta||\cos \alpha|=1$
$\Rightarrow \theta=\pi / 2$ and $\alpha=0$
$\Rightarrow \vec{a} \perp \vec{b}$ and $\vec{c} \| \hat{n}$
Or perpendicular to both a and b
$\Rightarrow \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
40 (b)
$\vec{x}+\vec{c} \times \vec{y}=\vec{a}$
$\vec{y}+\vec{c} \times \vec{x}=\vec{b}$
Taking cross with \vec{c}
$\vec{c} \times \vec{y}+\vec{c} \times(\vec{c} \times \vec{x})=\vec{c} \times \vec{b}$
$\Rightarrow(\vec{a}-\vec{x})+(\vec{c} \cdot \vec{x}) \vec{c}-(\vec{c} \cdot \vec{c}) \vec{x}=\vec{c} \times \vec{b}$
Also $\vec{x}+\vec{c} \times \vec{y}=\vec{a}$
$\Rightarrow \vec{c} \cdot \vec{x}+\vec{c} \cdot(\vec{c} \times \vec{y})=\vec{c} \cdot \vec{a}$
$\Rightarrow \vec{c} \cdot \vec{x}+0=\vec{c} \cdot \vec{a}$
$\therefore \vec{c} \cdot \vec{x}=\vec{c} \cdot \vec{a}$
$\Rightarrow \vec{a}-\vec{x}+(\vec{c} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{c}) \vec{x}=\vec{c} \times \vec{b}$
$\Rightarrow \vec{x}(1+(\vec{c} \cdot \vec{c}))=\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \cdot \vec{c}$
$\therefore \vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
Similarly on taking cross product of Eq. (i), we
find
$\vec{y}=\frac{\vec{a} \times \vec{c}+\vec{b}+(\vec{c} \cdot \vec{b}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
41 (b)
Let the required vector be \vec{r}. Then $\vec{r}=x_{1} \vec{b}+x_{2} \vec{c}$ and $\vec{r} \cdot \vec{a}=\sqrt{\frac{2}{3}}(|\vec{a}|)=2$
Now, $\vec{r} \cdot \vec{a}=x_{1} \vec{a} \cdot \vec{b}+x_{2} \vec{a} \cdot \vec{c} \Rightarrow 2=x_{1}(2-2-$ $1+x 22-1-2 \Rightarrow x 1+x 2=-2$
$\Rightarrow \vec{r}=x_{1}(\hat{\imath}+2 \hat{\jmath}-\hat{k})+x_{2}(\hat{\imath}+\hat{\jmath}-2 \hat{k})$

$$
\begin{aligned}
& =\hat{\imath}\left(x_{1}+x_{2}\right)+\hat{\jmath}\left(2 x_{1}+x_{2}\right) \\
& -\hat{k}\left(2 x_{2}+x_{1}\right)
\end{aligned}
$$

$=-2 \hat{\imath}+\hat{\jmath}\left(x_{1}-2\right)-\hat{k}\left(-4-x_{1}\right)$, where $x_{1} \in R$
42 (c)
The position vector of the point O with respect to itself is
$\overrightarrow{O A} \sin 2 A+\overrightarrow{O B} \sin 2 B+\overrightarrow{O C} \sin 2 C$
$\sin 2 A+\sin 2 B+\sin 2 C$
$\Rightarrow \frac{\overrightarrow{O A} \sin 2 A+\overrightarrow{O B} \sin 2 B+\overrightarrow{O C} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}=\vec{O}$
$\Rightarrow \overrightarrow{O A} \sin 2 A+\overrightarrow{O B} \sin 2 B+\overrightarrow{O C} \sin 2 C=\overline{0}$
43 (b)
Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$, then $\overrightarrow{A B}=\vec{b}-\vec{a}$
and $\overrightarrow{O P}=\frac{1}{3} \vec{a}, \overrightarrow{O Q}=\frac{1}{2} \vec{b}, \overrightarrow{O R}=\frac{1}{3} \vec{c}$
Since P, Q, R and S are coplanar, then
$\overrightarrow{P S}=\alpha \overrightarrow{P Q}+\beta \overrightarrow{P R}(\overrightarrow{P S}$ can be written as a linear
combination of $\overrightarrow{P Q}$ and $\overrightarrow{P R}$)
$=\alpha(\overrightarrow{O Q}-\overrightarrow{O P})+\beta(\overrightarrow{O R}-\overrightarrow{O P})$
i.e., $\overrightarrow{O S}-\overrightarrow{O P}=-(\alpha+\beta) \frac{\vec{a}}{3}+\frac{\alpha}{2} \vec{b}+\frac{\beta}{3} \vec{c}$
$\Rightarrow \overrightarrow{O S}=(1-\alpha-\beta) \frac{\vec{a}}{3}+\frac{\alpha}{2} \vec{b}+\frac{\beta}{3} \vec{c}$
Given $\overrightarrow{O S}=\lambda \overrightarrow{A B}=\lambda(\vec{b}-\vec{a})$
From (i) and (ii), $\beta=0, \frac{1-\alpha}{3}=-\lambda$ and $\frac{\alpha}{2}=\lambda$
$\Rightarrow 2 \lambda=1+3 \lambda$
$\Rightarrow \lambda=-1$
44 (d)
$3 \vec{a}+4 \vec{b}+5 \vec{c}=0$
$\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar
No other conclusion can be derives from it
45 (c)
Let the projection be x, then $\vec{a}=\frac{x(\hat{\imath}+\hat{\jmath})}{\sqrt{2}}+\frac{x(-\hat{\imath}+\hat{\jmath})}{\sqrt{2}}+$ $x \hat{k}$
$\therefore \vec{a}=\frac{2 x \hat{\jmath}}{\sqrt{2}}+x \hat{k} \Rightarrow \hat{a}=\frac{\sqrt{2}}{\sqrt{3}} \hat{\jmath}+\frac{\hat{k}}{\sqrt{3}}$
(d)
$\vec{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}=\frac{\hat{\imath}+\hat{\jmath}-\hat{k}}{2}$
47 (b)
Given $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
Similarly, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\mathbf{c} \times \overrightarrow{\mathbf{a}}$
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
Alternate: Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit vectors and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$,
so $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ represent an equilateral triangle.
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
48 (b)
$(\vec{a} \times \hat{\imath}) \cdot(\vec{b} \times \hat{\imath})=\left|\begin{array}{ll}\vec{a} \cdot \vec{b} & \vec{a} \cdot \hat{\imath} \\ \vec{b} \cdot \hat{\imath} & \hat{\imath} . \hat{\imath}\end{array}\right|=(\vec{a} \cdot \vec{b})-(\vec{a} \cdot \hat{\imath})(\vec{b} \cdot \hat{\imath})$
Similarly,$(\vec{a} \times \hat{\jmath}) \cdot(\vec{b} \times \hat{\jmath})=(\vec{a} \cdot \vec{b})-(\vec{a} \cdot \hat{\jmath})(\vec{b} \cdot \hat{\jmath})$
and $(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})=\vec{a} \cdot \vec{b}-(\vec{a} \cdot k)(\vec{b} \cdot \hat{k})$
Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$.
Therefore
$(\vec{a} \cdot \hat{\imath})=a_{1}, \vec{a} \cdot \hat{\jmath}=a_{2}, \vec{a} \cdot \hat{k}=a_{3}, \vec{b} \cdot \hat{\imath}=b_{1}, \vec{b} \cdot \hat{\jmath}$ $=b_{2},(\vec{b} \cdot \hat{k})=b_{3}$
$\Rightarrow(\vec{a} \times \hat{\imath}) \cdot(\vec{b} \times \hat{\imath})+(\vec{a} \times \hat{\jmath}) \cdot(\vec{b} \times \hat{\jmath})+(\vec{a} \times \hat{k})$ $\cdot(\vec{b} \times \hat{k})$
$=3 \vec{a} \cdot \vec{b}-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)$
$=3 \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{b}=2 \vec{a} \cdot \vec{b}$
49 (d)
$\sqrt{3} \tan \theta+1=0$ and $\sqrt{3} \sec \theta-2=0$
$\Rightarrow \theta=\frac{11 \pi}{6}$
$\Rightarrow \theta=2 n \pi+\frac{11 \pi}{6}, n \in Z$
50 (d)
Let $\vec{r} \neq \overrightarrow{0}$. Then $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$
$\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar, which is a contradiction
Therefore, $\vec{r}=\overrightarrow{0}$
51 (b)
Let the given position vectors be of points A, B and C, respectively. Then
$|\overrightarrow{A B}|=\sqrt{(\beta-\alpha)^{2}+(\gamma-\beta)^{2}+(\alpha-\gamma)^{2}}$
$|\overrightarrow{B C}|=\sqrt{(\gamma-\beta)^{2}+(\alpha-\gamma)^{2}+(\alpha-\beta)^{2}}$
$|\overrightarrow{C A}|=\sqrt{(\alpha-\gamma)^{2}(\beta-\alpha)^{2}+(\gamma-\beta)^{2}}$
$\because|\overrightarrow{A B}|=|\overrightarrow{B C}|=|\overrightarrow{C A}|$
Hence, $\triangle A B C$ is an equilateral triangle
$\vec{a}=\hat{\imath}-\hat{k}$
$\vec{b}=x \hat{\imath}+\hat{\jmath}+(1-x) \hat{k}$
$\vec{c}=y \vec{\imath}+x \vec{\jmath}+(1+x-y) \vec{k}$
$=\left|\begin{array}{ccc}1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y\end{array}\right|$
$=\left(1+x-y-x+x^{2}\right)-1\left(x^{2}-y\right)$
$=1$
53 (b)
As \vec{p}, \vec{q} and \vec{r} are three mutually perpendicular vectors of same magnitude, so let us consider
$\vec{p}=a \hat{\imath}, \vec{q}=a \hat{\jmath}, \vec{r}=a \hat{k}$
Also let $\vec{x}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$
Given that \vec{x} satisfies the equation
$\vec{p} \times[(\vec{x}-\vec{q}) \times \vec{p}]+\vec{q} \times[(\vec{x}-\vec{r}) \times \vec{q}]+\vec{r} \times$
$[(\vec{x}-\vec{p}) \times \vec{r}]=0 \quad$ (i)
Now $\vec{p} \times[(\vec{x}-\vec{q}) \times \vec{p}]=\vec{p} \times[\vec{x} \times \vec{p}-\vec{q} \times \vec{p}]$
$=\vec{p} \times(\vec{x} \times \vec{p})-\vec{p} \times(\vec{q} \times \vec{p})$
$=(\vec{p} \cdot \vec{p}) \vec{x}-(\vec{p} \cdot \vec{x}) \vec{p}-(\vec{p} \cdot \vec{p}) \vec{q}+(\vec{p} \cdot \vec{q}) \vec{p}$
$=a^{2} \vec{x}-a^{2} x_{1} \hat{\imath}-a^{3} \hat{\jmath}+0$
Similarly,
$\vec{q} \times[(\vec{x}-\vec{r}) \times \vec{q}]=a^{2} \vec{x}-a^{2} y_{1} \hat{\jmath}-a^{3} \hat{k}$
and $\vec{r} \times[(\vec{x}-\vec{p}) \times \vec{r}]=a^{2} \vec{x}-a^{2} z_{1} \hat{k}-a^{3} \hat{\imath}$
Substituting these values in the equation, we get
$3 a^{2} \vec{x}-a^{2}\left(x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}\right)-a^{2}(a \hat{\imath}+a \hat{\jmath}+a \hat{k})$
$=0$
$\Rightarrow 3 a^{2} \vec{x}-a^{2} \vec{x}-a^{2}(\vec{p}+\vec{q}+\vec{r})=\overrightarrow{0}$
$\Rightarrow 2 a^{2} \vec{x}=(\vec{p}+\vec{q}+\vec{r}) a^{2}$
$\Rightarrow \vec{x}=\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
54 (a)
Given, $\overrightarrow{\mathbf{O P}}=\hat{\mathbf{a}} \cos t+\hat{\mathbf{b}} \sin t$
$\Rightarrow|\overrightarrow{\mathbf{O P}}|$
$=\sqrt{\left(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} \cos ^{2} t+\hat{\mathbf{b}} \cdot \hat{\mathbf{b}} \sin ^{2} t+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \sin t \cos t\right.}$
$\Rightarrow|\overrightarrow{\mathbf{O P}}|=\sqrt{1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \sin 2 t}$
$\Rightarrow|\overrightarrow{\mathbf{O P}}|_{\text {maxx }}=\sqrt{1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}}$
$\left[\operatorname{Max}(\sin 2 t)=1 \Rightarrow t=\frac{\pi}{4}\right]$
$\Rightarrow \overrightarrow{\mathbf{O P}}\left(\right.$ at $\left.t=\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}(\hat{\mathbf{a}}+\hat{\mathbf{b}})$
\therefore Unit vector along $\overrightarrow{\mathbf{O P}}$ at $\left(t=\frac{\pi}{4}\right)=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$

55 (a)
$\vec{a} \times \vec{b}=\vec{c}$
$\Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=\vec{a} \times \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{b}) \vec{a}-|\vec{a}|^{2} \vec{b}=\vec{a} \times \vec{c}$
$\Rightarrow \vec{b}=\frac{\beta \vec{a}-\vec{a} \times \vec{c}}{|\vec{a}|^{2}}(\because \vec{a} \cdot \vec{b}=\beta)$
56 (c)
$m \vec{a}$ is a unit vector if and only if
$|m \vec{a}|=1 \Rightarrow|m||\vec{a}|=1 \Rightarrow|m| a=1 \Rightarrow a=\frac{1}{|m|}$
57 (a)
Let $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{b}}$
$\Rightarrow \overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}(1+t)+\hat{\mathbf{j}}(2-t)+\hat{\mathbf{k}}(1+t)$
Since, The projection of $\overrightarrow{\mathbf{r}}$ on $\overrightarrow{\mathbf{c}}$,
$\frac{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{c}}|}=\frac{|1|}{|\sqrt{3}|} \quad$ [given]
$\Rightarrow \frac{1 \cdot(1+t)+1 \cdot(2-t)-1 \cdot(1+t)}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow 2-t= \pm 1$
$\Rightarrow t=1$ or 3
When, $t=1, \overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
When, $t=3, \overrightarrow{\mathbf{r}}=4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
58 (d)

$$
\begin{aligned}
\vec{r}_{1}+2 \vec{r}_{2}=(P \vec{a} & +q \vec{b}+\vec{c})+2(\vec{a}+p \vec{b}+q \vec{c}) \\
& =(p+2) \vec{a}+(q+2 p) \vec{b}+(1 \\
& +2 q) \vec{c}
\end{aligned}
$$

$2 \vec{r}_{1}+\vec{r}_{2}=(2 p+1) \vec{a}+(2 q+p) \vec{b}+(2+q) \vec{c}$
$\frac{p+2}{2 p+1}=\frac{q+2 p}{2 q+p}=\frac{1+2 q}{2+q}$
$=\frac{p+q+2 p+2 q+3}{p+q+2 p+2 q+3}=1$
$\Rightarrow p=1$ and $q=1$
59 (b)
$\vec{a}+\vec{b}=\lambda \vec{c}$ (i)
and $\vec{b}+\vec{c}=\mu \vec{a}$ (ii)
$\therefore(\lambda \vec{c}-\vec{a})+\vec{c}=\mu \vec{a}$ (putting $\vec{b}=\lambda \vec{c}-\vec{a})$
$\Rightarrow(\lambda+1) \vec{c}=(\mu+1) \vec{a}$
$\Rightarrow \lambda=\mu=-1$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-3$
60 (a)
The position vector of any point at t is
$\vec{r}=\left(2+t^{2}\right) \hat{\imath}+(4 t-5) \hat{\jmath}+\left(2 t^{2}-6\right) \hat{k}$
$\Rightarrow \frac{d \vec{r}}{d t}=2 t \hat{\imath}+4 \hat{\jmath}+(4 t-6) \hat{k}$
$\left.\Rightarrow \frac{d \vec{r}}{d t}\right|_{t=2}=4 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$ and $\left.\left|\frac{d \vec{r}}{d t}\right|\right|_{t=2}$

$$
=\sqrt{16+16+4}=4
$$

Hence, the required unit tangent vector at $t=2$ is $\frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}+\hat{k})$
61 (c)

Let $|\overrightarrow{A C}|=\lambda>0$
Then from $15|\overrightarrow{A C}|=3|\overrightarrow{A B}|=5|\overrightarrow{A D}|$
$|\overrightarrow{A B}|=5 \lambda$
Let θ be the angle between $\overrightarrow{B A}$ and $\overrightarrow{C D}$
$\Rightarrow \cos \theta=\frac{\overrightarrow{B A} \cdot \overrightarrow{C D}}{|\overrightarrow{B A}||\overrightarrow{C D}|}=\frac{-\vec{b} \cdot(\vec{d}-\vec{c})}{|\vec{b}||\vec{d}-\vec{c}|}$ (i)
Now $-\vec{b} \cdot(\vec{d}-\vec{c})=\vec{b} \cdot \vec{c}-\vec{b} \cdot \vec{d}$
$=|\vec{b}||\vec{c}| \cos \frac{\pi}{3}-|\vec{b}||\vec{d}| \cos \frac{2 \pi}{3}$
$=(5 \lambda)(\lambda) \frac{1}{2}+(5 \lambda)(3 \lambda) \frac{1}{2}$
$=\frac{5 \lambda^{2}+15 \lambda^{2}}{2}$
$=10 \lambda^{2}$
Denominator of (i) $=|\vec{b}||\vec{d}-\vec{c}|$
Now $|\vec{d}-\vec{c}|^{2}=|\vec{d}|^{2}+|\vec{c}|^{2}-2 \vec{c} \cdot \vec{d}$
$=9 \lambda^{2}+\lambda^{2}-2(\lambda)(3 \lambda)(1 / 2)$
$=10 \lambda^{2}-3 \lambda^{2}$
$=7 \lambda^{2}$
Denominator of $(\mathrm{i})=(5 \lambda)(\sqrt{7} \lambda)=5 \sqrt{7} \lambda^{2}$
$\therefore \cos \theta=\frac{10 \lambda^{2}}{5 \sqrt{7} \lambda^{2}}=\frac{2}{\sqrt{7}}$
62
(a)

Area of $\left.\triangle B C D=\frac{1}{2}|\overrightarrow{B C} \times \overrightarrow{B D}|=\frac{1}{2} \right\rvert\,(b \hat{\imath}-c \hat{\jmath}) \times$ $b i-d k$
$=\frac{1}{2}|b d \hat{\jmath}+b c \hat{k}+d c \hat{\imath}|$

$=\frac{1}{2} \sqrt{b^{2} c^{2}+c^{2} d^{2}+d^{2} b^{2}}$
Now $6=b c ; 8=c d ; 10=b d$
$b^{2} c^{2}+c^{2} d^{2}+d^{2} b^{2}=200$
Substituting the value in (i)
$A=\frac{1}{2} \sqrt{200}=5 \sqrt{2}$
63 (d)
$(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$
$=(\vec{a}+\vec{b}+\vec{c}) \cdot[\vec{a} \times \vec{a} \times \vec{c}+\vec{b} \times \vec{a}+\vec{b} \times \vec{c}]$
$=(\vec{a}+\vec{b}+\vec{c}) \cdot[\vec{a} \times \vec{c}+\vec{b} \times \vec{a}+\vec{b} \times \vec{c}]$
$=\vec{a} \cdot \vec{b} \times \vec{c}+\vec{b} \cdot \vec{a} \times \vec{c}+\vec{c} \cdot \vec{b} \times \vec{a}$
$=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]$
$=-[\vec{a} \vec{b} \vec{c}]$
64 (c)
Consider a tertrahedron with vertices
$O(0,0,0), A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$
Its volume $V=\frac{1}{6}[\vec{a} \vec{b} \vec{c}]$
Now centroides of the faces $O A B, O A C, O B C$ and ABCare
$G_{1}(a / 3, b / 3,0) G_{2}(a / 3,0, c / 3), G_{3}(0, b / 3, c / 3)$
and $G_{4}(a / 3, b / 3, c / 3)$, respectively
$G_{4} G_{1}=\vec{c} / 3, \vec{G}_{4}=\vec{b} / 3, \vec{G}_{4} \vec{G}_{3}=\vec{a} / 3$
Volume of tetrahedron be centroids $V^{\prime}=$
$\frac{1}{6}\left[\frac{\vec{a}}{3} \frac{\vec{b}}{3} \frac{\vec{a}}{3}\right]=\frac{1}{27} V$
$\Rightarrow K=27$
65 (c)
$\vec{a}_{1}=(\vec{a} \cdot \hat{b}) \hat{b}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$
$\Rightarrow \vec{a}_{2}=\vec{a}-\vec{a}_{1}=\vec{a}-\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$
Thus, $\vec{a}_{1} \times \vec{a}_{2}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}} \times\left(\vec{a}-\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right)=\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
66 (d)
$(\hat{\imath}+\hat{\jmath}) \times(\hat{\jmath}+\hat{k})=\hat{\imath}-\hat{\jmath}+\hat{k}$ so that unit vector perpendicular to the plane of $\hat{\imath}+\hat{\jmath}$ and $\hat{\jmath}+\hat{k}$ is
$\frac{1}{\sqrt{3}}(\hat{\imath}-\hat{\jmath}+\hat{k})$

Similarly, the other two unit vectors are
$\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath}-\hat{k})$ and $\frac{1}{\sqrt{3}}(-\hat{\imath}+\hat{\jmath}+\hat{k})$
The required volume $=\frac{3}{\sqrt{3}}\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right|=4 \sqrt{3}$
$67 \quad$ (c)
$\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=4 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}$
$\overrightarrow{A B}=-3 \hat{\imath}-3 \hat{k}, \overrightarrow{A C}=\hat{\imath}+2 \hat{\jmath}-7 \hat{k}$
$B C^{2}=36, A B^{2}=18, A C^{2}=54$
Clearly, $A C^{2}=B C^{2}+A B^{2}$
$\therefore \angle B=90^{\circ}$
68 (c)
Given $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta}$
$\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}$
From (i), $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=(a+1) \vec{\delta}$
From (ii), $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=(b+1) \vec{\alpha}$
From (iii) and (iv),
$(a+1) \vec{\delta}=(b+1) \vec{\alpha}$
Since $\vec{\alpha}$ is not parallel to $\vec{\delta}$
From (v), $a+1=0$ and $b+1=0$
From (iii), $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=0$
69 (b)
A vector perpendicular to the plane of
$A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is
$(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$
Now for any point $R(\vec{r})$ in the plane of A, B and C is

$$
(\vec{r}-\vec{a}) \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=0
$$

$\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$

$$
-\vec{a}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=0
$$

$\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=\overrightarrow{0}+\vec{a} \cdot \vec{b} \times \vec{c}+\overrightarrow{0}$
$\vec{r} \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}]$
70 (c)
Let angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be $\theta_{1} . \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ be θ_{2}
and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$ be θ
Since, $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$
$\Rightarrow \sin \theta_{1} \cdot \sin \theta_{2}$

$$
\begin{aligned}
& \cdot \cos \theta \\
& =1 \quad(\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{d}}|=1)
\end{aligned}
$$

$\Rightarrow \theta_{1}=90^{\circ} \cdot \theta_{2}=90^{\circ}, \theta=0^{\circ}$
$\Rightarrow \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \perp \overrightarrow{\mathbf{d}},(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \|(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
So, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}) \cdot \overrightarrow{\mathbf{c}}$
and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{d}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}) \cdot \overrightarrow{\mathbf{d}}$
$\Rightarrow[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$ and $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{d}}]=0$
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are coplanar vector so option
(A) and (B) are incorrect.

Let $\overrightarrow{\mathbf{b}}|\mid \overrightarrow{\mathbf{d}} \Longrightarrow \overrightarrow{\mathbf{b}}= \pm \overrightarrow{\mathbf{d}}$
$\operatorname{As}(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1 \Longrightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})=$ ± 1
$\Rightarrow[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow[\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}= \pm 1 \quad(\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0)$
Which is a contradiction so option (c) is correct.
Let option (d) is correct

$\Rightarrow \overrightarrow{\mathbf{d}}= \pm \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}= \pm \overrightarrow{\mathbf{b}}$
As $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})= \pm 1$
Which is a contradiction so option (d) is incorrect.
Alternate Option (c) and (d) may be observed from given in figure.

71 (b)
We have
$\vec{p} \cdot \vec{q}=0$
$\Rightarrow(5 \vec{a}-3 \vec{b}) \cdot(-\vec{a}-2 \vec{b})=0$
$\Rightarrow 6|\vec{b}|^{2}-5|\vec{a}|^{2}-7 \vec{a} \cdot \vec{b}=0$
Also $\vec{r} \cdot \vec{s}=0$
$\Rightarrow(-4 \vec{a}-\vec{b})(-\vec{a}+\vec{b})=0$
$\Rightarrow 4|\vec{a}|^{2}-|\vec{b}|^{2}-3 \vec{a} \cdot \vec{b}=0$
Now $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})=\frac{1}{3}(5 \vec{a}-3 \vec{b}-4 \vec{a}-\vec{b}-$ $a+b=-b$
and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})=\frac{1}{5}(-5 \vec{a})=-\vec{a}$
Angle between \vec{x} and \vec{y}, i.e., $\cos \theta=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ (iii)

From (i) and (ii), $|\vec{a}|=\sqrt{\frac{25}{19}} \sqrt{\vec{a} \cdot \vec{b}}$ and
$|\vec{b}|=\sqrt{\frac{43}{19}} \sqrt{\vec{a} \cdot \vec{b}}$. Therefore
$|\vec{a}||\vec{b}|=\frac{\sqrt{25 \times 43}}{19} \cdot \vec{a} \cdot \vec{b}$
$\theta=\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
72 (d)
$\overrightarrow{0}=(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})$
$=(\vec{a}+\vec{b}) \cdot(-4 \vec{a} \times \vec{b}-9 \vec{a} \times \vec{b})$
$=-13(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b})$
Which is true for all values of \vec{a} and \vec{b}
73 (b)
$\vec{c}=\lambda(\vec{a} \times \vec{b})$
$\Rightarrow \vec{c} \cdot \vec{c}=\lambda(\vec{a} \times \vec{b}) \cdot \vec{c}$
$\Rightarrow \frac{1}{3}=\lambda$
Also $|\vec{c}|^{2}=\lambda^{2}|\vec{a} \times \vec{b}|^{2}$
$\Rightarrow \frac{1}{3}=\frac{1}{9}\left(a^{2} b^{2} \sin ^{2} \theta\right)=\frac{1}{9} \times 2 \times 3 \sin ^{2} \theta$
$\Rightarrow \sin ^{2} \theta=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{4}$
74 (a)
Given that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are vectors such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
P_{1} is the plane determined by vectors a and b. Therefore, normal vectors \vec{n}_{1} to P_{1} will be given by $\vec{n}_{1}=\vec{a} \times \vec{b}$
Similarly, P_{2} is the plane determined by vectors \vec{c} and \vec{d}. Therefore, normal vectors \vec{n}_{2} to P_{2} will be given by
$\vec{n}_{2}=\vec{c} \times \vec{d}$
Substituting the values of \vec{n}_{1} and \vec{n}_{2} in (i), we get
$\vec{n}_{1} \times \vec{n}_{2}=\overrightarrow{0}$
Hence, $\vec{n}_{1} \| \vec{n}_{2}$
Hence, the planes will also be parallel to each other
Thus angle between the planes $=0$

76 (c)
Any vector \vec{r} can be represented in terms of three non-coplanar vectors \vec{a}, \vec{b} and \vec{c} as
$\vec{r}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$
Taking dot product with \vec{a}, \vec{b} and \vec{c}, respectively, we have,
$x=\frac{\vec{r} \cdot \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, y=\frac{\vec{r} \cdot \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $z=\frac{\vec{r} \cdot \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$
From (i)
$[\vec{a} \vec{b} \vec{c}] \vec{r}=\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$
\therefore Area of $\triangle A B C$
$=\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$
$=|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
77
(c)

Given $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\ldots+a_{n} \vec{r}_{n}=0$

Now $\vec{a}+\vec{r}_{1}=\vec{r}_{1}$ and so on
Hence $a_{1}\left(\vec{a}+\vec{r}_{1}\right)+a_{2}\left(\vec{a}+\vec{r}_{2}\right)+\ldots+a_{n}\left(\vec{a}+\vec{r}_{n}\right)=$ 0
$a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\ldots+a_{n} \vec{r}_{n}+\vec{a}\left(a_{1}+a_{2}+\ldots+a_{n}\right)=0$ Hence $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\ldots+a_{n} \vec{r}_{n}=0$ if $a_{1}+$ $a_{2}+\ldots+a_{n}=0$
(a)

A vector perpendicular to the plane of O, P and Q is $\overrightarrow{O P} \times \overrightarrow{O Q}$
Now, $\overrightarrow{O P} \times \overrightarrow{O Q}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 1 & \lambda \\ 2 & -1 & \lambda\end{array}\right|=2 \lambda \hat{\imath}-2 \lambda \hat{\jmath}-6 \hat{k}$
Therefore, $\hat{\imath}-\hat{\jmath}+6 \hat{k}$ is parallel to $2 \lambda \hat{\imath}-2 \lambda \hat{\jmath}-6 \hat{k}$ Hence $\frac{1}{2 \lambda}=\frac{-1}{-2 \lambda}=\frac{6}{-6}$
$\lambda=-\frac{1}{2}$
$79 \quad$ (a)
$[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$
$=(\vec{a}+(\vec{a} \times \vec{b})) \cdot((\vec{b}+(\vec{a} \times \vec{b})) \times(\vec{a} \times \vec{b}))$
$=(\vec{a}+(\vec{a} \times \vec{b})) \cdot(\vec{b} \times(\vec{a} \times \vec{b}))$
$=(\vec{a}+(\vec{a} \times \vec{b})) \cdot(\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b})$
$=\vec{a} \cdot \vec{a}=1($ as $\vec{a} \cdot \vec{b}=0, \vec{a} \cdot(\vec{a} \times \vec{b})=0)$
$80 \quad$ (c)
Given that \vec{a}, \vec{b} and \vec{c} are non-coplanar
$\Rightarrow[\vec{a} \vec{b} \vec{c}] \neq 0$
Again $\vec{a} \times(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{c})=0$
$\Rightarrow[(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}] \cdot(\vec{a} \times \vec{c})=0$
$\Rightarrow(\vec{a} \cdot \vec{c})[\vec{b} \vec{a} \vec{c}]=0$
$\Rightarrow(\vec{a} \cdot \vec{c})=0$
$\Rightarrow \vec{a}$ and \vec{c} are perpendicular

$$
\begin{aligned}
\vec{a} \times(\vec{b} \times \vec{c})= & (\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& \Rightarrow[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}=\overrightarrow{0}
\end{aligned}
$$

81 (d)
$\vec{c}-\vec{b}=\alpha \vec{d}$ and $\vec{p}=\overrightarrow{A C}+\overrightarrow{B D}=\mu \overrightarrow{A D}$

Hence $\vec{p}=\vec{c}+\vec{d}-\vec{b}=\mu \vec{d}$ (using $\vec{c}-\vec{b}=\alpha \vec{d})$ or $\alpha+1=\mu$
82
(b)

Since, $\overrightarrow{O A}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\overrightarrow{O B}=\hat{\imath}+5 \hat{\jmath}-\hat{k}$
$\overrightarrow{O C}=2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$
$a=B C=|\overrightarrow{B C}|=|\overrightarrow{O C}-\overrightarrow{O B}|=|\hat{\imath}-2 \hat{\jmath}+6 \hat{k}|$ $=\sqrt{41}$
$b=C A=|\overrightarrow{C A}|=|\overrightarrow{O A}-\overrightarrow{O C}|=|-\hat{\imath}-2 \hat{\jmath}-4 \hat{k}|$

$$
=\sqrt{21}
$$

and $\quad c=A B=|\overrightarrow{A B}|=|\overrightarrow{O B}-\overrightarrow{O A}|=\mid 0 \hat{\imath}+4 \hat{\jmath}-$ $2 k=20$

Since $a>b>c, A$ is the greatest angle. Therefore, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{21+20-41}{2 \cdot \sqrt{21} \cdot \sqrt{20}}=0$
$\therefore \angle A=90^{\circ}$
83 (a)
Let $\vec{d}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
Where $x^{2}+y^{2}+z^{2}=1$
(\vec{d} being a unit vector)
$\therefore \vec{a} \cdot \vec{d}=0$
$\Rightarrow x-y=0$ or $x=y$
$[\vec{b} \vec{c} \vec{d}]=0$
$\Rightarrow\left|\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z\end{array}\right|=0$
Or $x+y+z=0$
Or $2 x+z=0 \quad$ [using (ii)]
Or $z=-2 x \quad$ (iii)
From (i), (ii) and (iii), we have
$x^{2}+x^{2}+4 x^{2}=1$
$x= \pm \frac{1}{\sqrt{6}}$
$\therefore \vec{d}= \pm\left(\frac{1}{\sqrt{6}} \hat{\imath}+\frac{1}{\sqrt{6}} \hat{\jmath}-\frac{2}{\sqrt{6}} \hat{k}\right)$
$= \pm\left(\frac{\hat{\imath}+\hat{\jmath}-2 \hat{k}}{\sqrt{6}}\right)$
84 (c)
$\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}=6 \hat{\imath}+12 \hat{\jmath}$
Let $\vec{\alpha}=x \vec{a}+y \vec{b} \Rightarrow 6 x+2 y=6$
and $-3 x-6 y=12$
$\therefore x=2, y=-3$
$\therefore \vec{\alpha}=2 \vec{a}-3 \vec{b}$
85
(c)
$\vec{r} \times \vec{a}=\vec{b}$
$\Rightarrow \vec{d} \times(\vec{r} \times \vec{a})=\vec{d} \times \vec{b}$
$\Rightarrow(\vec{a} \cdot \vec{d}) \vec{r}-(\vec{d} \cdot \vec{r}) \vec{a}=\vec{d} \times \vec{b}$
$\vec{r} \times \vec{c}=\vec{d}$
$\Rightarrow \vec{b} \times(\vec{r} \times \vec{c})=\vec{b} \times \vec{d}$
$\Rightarrow(\vec{b} \cdot \vec{c}) \vec{r}-(\vec{b} \cdot \vec{r}) \vec{c}=\vec{b} \times \vec{d}$
Adding (i) and (ii) we get
$(\vec{a} \cdot \vec{d}+\vec{b} \cdot \vec{c}) \vec{r}-(\vec{d} \cdot \vec{r}) \vec{a}-(\vec{b} \cdot \vec{r}) \vec{c}=\overrightarrow{0}$
Now $\vec{r} \cdot \vec{d}=0$ and $\vec{b} \cdot \vec{r}=0$ as \vec{d} and \vec{r} as well as \vec{b} and \vec{r} are mutually perpendicular
Hence, $(\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}) \vec{r}=\overrightarrow{0}$
86 (d)
Let $\vec{a}=6 \hat{\imath}+6 \hat{k}, \vec{b}=4 \hat{\jmath}+2 \hat{k}, \vec{c}=4 \hat{\jmath}-8 \hat{k}$
Then $\vec{a} \times \vec{b}=-24 \hat{\imath}-12 \hat{\jmath}+24 \hat{k}$
$=12(-2 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
\therefore Area of the base of the parallelepiped $=\frac{1}{2}|\vec{a} \times \vec{b}|$
$=\frac{1}{2}(12 \times 3)$
$=18$
Height of the parallelepiped=length of projection of \vec{c} on $\vec{a} \times \vec{b}$
$=\frac{|\vec{c} \cdot \vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|}$
$=\frac{|12(-4-16)|}{36}$
$=\frac{20}{3}$
C
\therefore Volume of the parallelepiped $=18 \times \frac{20}{3}=120$
$\Delta=\frac{1}{2}|(\hat{\jmath}+\lambda \hat{k}) \times(\hat{\imath}+\lambda \hat{k})|=\frac{1}{2}|-\hat{k}+\lambda \hat{\imath}+\lambda \hat{\jmath}|$

$$
=\frac{1}{2} \sqrt{2 \lambda^{2}+1}
$$

$\Rightarrow \frac{9}{4} \leq \frac{1}{4}\left(2 \lambda^{2}+1\right) \leq \frac{33}{4}$
$\Rightarrow 4 \leq \lambda^{2} \leq 16$
$\Rightarrow 2 \leq|\lambda| \leq 4$
88 (d)
The angle between \vec{a} and \vec{b} is obtuse. Therefore,
$\vec{a} \cdot \vec{b}<0$
$\Rightarrow 14 x^{2}-8 x+x<0$
$\Rightarrow 7 x(2 x-1)<0$
$\Rightarrow 0<x<1 / 2$ (i)
The angle between \vec{b} and the z-axis is acute and less than $\pi / 6$. Therefore,
$\frac{\vec{b} \cdot \vec{k}}{|\vec{b}||\vec{k}|}>\cos \pi / 6(\because \theta<\pi / 6 \Rightarrow \cos \theta>\cos \pi / 6)$
$\Rightarrow \frac{x}{\sqrt{x^{2}+53}}>\frac{\sqrt{3}}{2}$
$\Rightarrow 4 x^{2}>3 x^{2}+159$
$\Rightarrow x^{2}>159$
$\Rightarrow x>\sqrt{159}$ or $x<-\sqrt{159}$ (ii)
Clearly, (i) and (ii) cannot hold together
89 (b)
Here $[\vec{a} \vec{b} \vec{c}]= \pm 1$
$[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$

$$
=(\vec{a}+\vec{b}+\vec{c}) \times(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c})
$$

$=\vec{c} \times(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c})$
$=(\vec{c} \times \vec{a}+\vec{c} \times \vec{b}) \cdot(\vec{b}+\vec{c})$
$=\vec{c} \times \vec{a} \cdot \vec{b}=[\vec{a} \vec{b} \vec{c}]= \pm 1$
(a)

Let the incentre be at the origin and be $A(\vec{p}), B(\vec{q})$ and $C(\vec{r})$. Then
$\overrightarrow{I A}=\vec{p}, \overrightarrow{I B}=\vec{q}$ and $\overrightarrow{I C}=\vec{r}$
Incentre I is $\frac{a \vec{p}+b \vec{q}+c \vec{r}}{a+b+c}$, where $p=B C, q=A C$ and $r=A B$
Incentre is at the origin. Therefore,
$\frac{a \vec{p}+b \vec{q}+c \vec{r}}{a+b+c}=\overrightarrow{0}$, or $a \vec{p}+b \vec{q}+c \vec{r}=\overrightarrow{0}$
$\Rightarrow a \overrightarrow{I A}+b \overrightarrow{I B}+c \overrightarrow{I C}=\overrightarrow{0}$
91 (b)
$|(\vec{a} \times \vec{b}) \times \vec{c}|=|\vec{a} \times \vec{b}||\vec{c}| \sin 30^{\circ}$
$=\frac{1}{2}|\vec{a} \times \vec{b}||\vec{c}|$
We have, $\vec{a}=2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}$
$\Rightarrow \vec{a} \times \vec{b}=2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{9}=3$
Also given $|\vec{c}-\vec{a}|=2 \sqrt{2}$
$\Rightarrow|\vec{c}-\vec{a}|^{2}=8$
$\Rightarrow|\vec{c}|^{2}+|\vec{a}|^{2}-2 \vec{a} \cdot \vec{c}=8$
Given $|\vec{a}|=3$ and $\vec{a} \cdot \vec{c}=|\vec{c}|$, using these we get
$|\vec{c}|^{2}-2|\vec{c}|+1=0$
$\Rightarrow(|\vec{c}|-1)^{2}=0$
$\Rightarrow|\vec{c}|=1$
Substituting values of $|\vec{a} \times \vec{b}|$ and $|\vec{c}|$ in (i), we get $|(\vec{a} \times \vec{b}) \times \vec{c}|=\frac{1}{2} \times 3 \times 1=\frac{3}{2}$
92 (b)
\hat{a}, \hat{b} and \hat{c} are unit vectors
Now $x=|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$
$=\frac{1}{2}(\hat{a} \cdot \hat{a}+\hat{b} \cdot \hat{b}+\hat{c} \cdot \hat{c})-2 \hat{a} \cdot \hat{b}-2 \hat{c}-2 \hat{c} \cdot \hat{a}$
$\Rightarrow 6-2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a})$
Also, $|\hat{a}+\hat{b}+\hat{c}| \geq 0$
$\Rightarrow \hat{a} \cdot \hat{a}+\hat{b} \cdot \hat{b}+\hat{c} \cdot \hat{c}+2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \geq 0$
$\Rightarrow 3+2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \geq 0$
$\Rightarrow 2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \geq-3$
$\Rightarrow-2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \leq 3$
$\Rightarrow 6-2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \leq 9$
From (i) and (ii), $x \leq 9$
Therefore, x does not exceed 9
93 (c)
$|\vec{a} \times \vec{r}|=|\vec{c}|$

Triangles on the same base and between the same parallel will have the same area
94 (a)
Three points $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are collinear if
$\overrightarrow{A B} \| \overrightarrow{A C}$
$\overrightarrow{A B}=-20 \hat{\imath}-11 \hat{\jmath} ; \overrightarrow{A C}=(a-60) \hat{\imath}-55 \hat{\jmath}$
$\Rightarrow \overrightarrow{A B} \| \overrightarrow{A C} \Rightarrow \frac{a-60}{-20}=\frac{-55}{-11} \Rightarrow a=-40$
95 (b)
$\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$

$\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A D}}=-2+20+22=40$
$|\overrightarrow{\mathbf{A B}}|=\sqrt{4+100+120}=\sqrt{225}=15$
$|\overrightarrow{\mathbf{A D}}|=\sqrt{1+4+4}=\sqrt{9}=3$
$\therefore \cos \theta=\frac{40}{45}=\frac{8}{9}$
$\therefore \theta+\alpha=90^{\circ}$
$\Rightarrow \alpha=90^{\circ}-\theta$
$\Rightarrow \cos \alpha=\sin \theta=\sqrt{1-\frac{64}{81}}=\frac{\sqrt{17}}{9}$
96 (c)
$|\vec{a}+\vec{b}+\vec{c}|^{2}=6$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=6$
$\Rightarrow|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cdot \cos \frac{\pi}{3}$
i. e. $\vec{a} \cdot \vec{b}=\frac{1}{2}|\vec{a}|^{2}$
$\therefore 3|\vec{a}|^{2}+3|\vec{a}|^{2}=6$
$\Rightarrow|\vec{a}|^{2} \Rightarrow|\vec{a}|=1$
97 (a)
$[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$
$=(\vec{a} \times \vec{b}) \cdot((\vec{a} \times \vec{c}) \times \vec{d})$
$=(\vec{a} \times \vec{b}) \cdot((\vec{a} \cdot \vec{d}) \vec{c}-(\vec{c} \cdot \vec{d}) \vec{a})$
$=(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
98 (c)
$(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$
$\Rightarrow[\vec{a} \vec{b} \vec{c}] \vec{b}=\vec{b}$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=1$
$\therefore \vec{a}, \vec{b}$ and \vec{c} cannot be coplanar
99 (d)
$|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}||\cos \theta|=|\vec{a}||\vec{b}||\sin \theta|$ (where θ is the
angle between \vec{a} and \vec{b})
$\Rightarrow|\cos \theta|=|\sin \theta|$
$\Rightarrow \theta=\frac{\pi}{4}$ or $\frac{3 \pi}{4}($ as $0 \leq \theta \leq \pi)$
But $\vec{a} \cdot \vec{b}<0$,therefore $\theta=\frac{3 \pi}{4}$
100 (c)
$\vec{d} \cdot \hat{a}=\vec{d} \cdot \hat{b}=\vec{d} \cdot \hat{c}$
$\Rightarrow \lambda(\hat{a} \cdot \hat{b}+\hat{a} \cdot \hat{c})=\lambda(1+\hat{b} \cdot \hat{c})=\lambda(1+\hat{b} \cdot \hat{c})$

$$
\Rightarrow 1+\hat{b} \cdot \hat{c}=\hat{a} \cdot \hat{b}+\hat{a} \cdot \hat{c}
$$

$\Rightarrow 1-\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}-\hat{a} \cdot \hat{c}=0$
$\Rightarrow 1-\hat{a} \cdot \hat{b}+(\hat{b}-\hat{a}) \cdot \hat{c}=0$
$\Rightarrow \hat{a} \cdot(\hat{a}-\hat{b})+(\hat{b}-\hat{a}) \cdot \hat{c}=0$
$\Rightarrow(\hat{a}-\hat{c}) \cdot(\hat{a}-\hat{b})=0 \Rightarrow \hat{a}-\hat{c}$ is perpendicular
to $(\hat{a}-\hat{b}) \Rightarrow$ The triangle is right angled
101 (b)
If $\vec{a}(x)$ and $\vec{b}(x)$ are \perp, then $\vec{a} \cdot \vec{b}=0$
$\Rightarrow \sin x \cos 2 x+\cos x \sin 2 x=0$
$\sin (3 x)=0=\sin 0$
$3 x=n \pi \Rightarrow x=\frac{n \pi}{3}$
Therefore, the two vectors are \perp for infinite values of ' x '
102 (c)
$\vec{a} \times(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\hat{\imath}-\hat{k}=(\hat{\jmath} \times(\hat{\imath}+2 \hat{\jmath}+\hat{k}))$
$\Rightarrow(\vec{a}-\hat{\jmath}) \times(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\overrightarrow{0}$
$\Rightarrow \vec{a}-\hat{\jmath}=\lambda(\hat{\imath}+2 \hat{\jmath}+\hat{k})$
$\Rightarrow \vec{a}=\lambda \hat{\imath}+(2 \lambda+1) \hat{\jmath}+\lambda \hat{k}, \lambda \in R$
103 (d)
Volume of the parallelepiped formed by $\vec{a}^{\prime}, \overrightarrow{b^{\prime}}$ and \vec{c}^{\prime} is 4
Therefore, the volume of the parallelepiped formed by \vec{a}, \vec{b} and \vec{c} is $\frac{1}{4}$
$\vec{b} \times \vec{c}=[\vec{a} \vec{b} \vec{c}] \vec{a}^{\prime}=\frac{1}{4} \vec{a}^{\prime}$
$|\vec{b} \times \vec{c}|=\frac{\sqrt{2}}{4}=\frac{1}{2 \sqrt{2}}$
Length of altitude $=\frac{1}{4} \times 2 \sqrt{2}=\frac{1}{\sqrt{2}}$
104 (a)
$\hat{a}=\frac{-4 i+3 \hat{k}}{5} ; \hat{b}=\frac{14 \hat{\imath}+2 \hat{\jmath}-5 \grave{k}}{15}$
A vector \vec{V} bisecting the angle between
\vec{a} and \vec{b} is $\vec{V}=\hat{a}+\hat{b}$
$=\frac{-12 \hat{\imath}+9 \hat{k}+14 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}}{15}$
$=\frac{2 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}}{15}$
Required vector $\vec{d}=\sqrt{6} \widehat{V}=\hat{\imath}+\hat{\jmath}+2 \hat{k}$
105 (d)
$\vec{a} \perp \vec{b} \Rightarrow x-y+2=0$
$\vec{a} \cdot \vec{c}=4 \Rightarrow x+2 y=4$
Solving we get $x=0 ; y=2$
$\Rightarrow \vec{a}=2 \hat{\jmath}+2 \hat{k}$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0\end{array}\right|=8=|\vec{a}|^{2}$
106 (b)
$|\vec{a}+\vec{b}+3 \vec{c}|^{2}=16$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+9|\vec{c}|^{2}$

$$
\begin{aligned}
& +2 \cos \theta_{1} \\
& +6 \cos \theta_{2} \\
& +6 \cos \theta_{3}=16, \theta_{3} \in[\pi / 6,2 \pi / 3]
\end{aligned}
$$

$\Rightarrow 2 \cos \theta_{1}+6 \cos \theta_{2}=5-6 \cos \theta_{3}$
$\Rightarrow\left(\cos \theta_{1}+3 \cos \theta_{2}\right)_{\text {max }}=4$
107 (c)
$k=|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|$
$=12 \sin \theta+18 \cos \theta$
\Rightarrow maximum vlue of k is $\sqrt{12^{2}+18^{2}}=6 \sqrt{13}$
108 (b)

Let P.V. of A, B and $C \mathrm{be} \overrightarrow{0}, \vec{b}$ and \vec{c},
respectively.Therefore
$\vec{G}=\frac{\vec{b}+\vec{c}}{3}$
$\vec{A}_{1}=\frac{\vec{b}}{2}, \vec{B}_{1}=\frac{\vec{c}}{2}$
$\Delta_{A B_{1} G}=\frac{1}{2}\left|\overrightarrow{A G} \times \overrightarrow{A B}_{1}\right|=\frac{1}{2}\left|\frac{\vec{b}+\vec{c}}{3} \times\left(\frac{\vec{c}}{2}\right)\right|$
$=\frac{1}{12}|\vec{b} \times \vec{c}|$
$\Delta_{A A_{1} G}=\frac{1}{2}\left|\overrightarrow{A G} \times \overrightarrow{A A}_{1}\right|=\frac{1}{2}\left|\frac{\vec{b}+\vec{c}}{3} \times\left(\frac{\vec{b}}{2}\right)\right|$

$$
=\frac{1}{12}|\vec{b} \times \vec{c}|
$$

$\Rightarrow \Delta_{G A_{1} A B_{1}}=\frac{1}{6}|\vec{b} \times \vec{c}|=\frac{1}{3} \cdot \frac{1}{2}|\vec{b} \times \vec{c}|=\frac{1}{3} \Delta_{A B C}$
$\Rightarrow \frac{\Delta}{\Delta_{1}}=3$
109 (c)
Volume of parallelopiped,
$f(a)=\left|\begin{array}{lll}1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right|=1+a^{3}-a$
Now, $f^{\prime}(a)=3 a^{2}-1$
$\Rightarrow f^{\prime \prime}(a)=6 a$
Put $f^{\prime}(a)=0$
$\Rightarrow a \neq \pm \frac{1}{\sqrt{3}}$
Which shows $f(a)$ is maximum at
$a=\frac{1}{\sqrt{3}}$ and maximum at
$a=-\frac{1}{\sqrt{3}}$
110 (c)
$(\hat{a}+\hat{b}+\hat{c})^{2} \geq 0$
$3+2(\hat{a} \cdot \hat{b}+\vec{b} \cdot \hat{c}+\vec{c} \cdot \vec{a}) \geq 0$
$3+6 \cos \theta \geq 0$
$\cos \theta \geq-\frac{1}{2}$
$\Rightarrow \theta=\frac{2 \pi}{3}$

111 (a)

Four or more than four non-zero vectors are always linearly dependent
112 (a)
$\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \cdot \vec{b}$
$=\{\vec{a} \times \vec{b}+\vec{a} \times(\vec{a} \times \vec{b})\} \cdot \vec{b}$
$=[\vec{a} \vec{b} \vec{b}]+\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\} \cdot \vec{b}$
$=0+(\vec{a} \cdot \vec{b})^{2}-(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})$
$=\cos ^{2} \frac{\pi}{3}-1=-\frac{3}{4}$
113 (a)
$\vec{a}-\vec{p}+\vec{b}-\vec{p}+\vec{c}-\vec{p}=0$
$\Rightarrow \vec{p}=\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
$\Rightarrow P$ is centroid
114 (c)
$\vec{d} \cdot \vec{c}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=[\vec{a} \vec{b} \vec{c}]$
Then $\mid(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+$
$d \cdot b c \times a=0$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|=0$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=0(\because \vec{d}$ is non-zero $)$
$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar
115 (a)
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

$$
=5(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})-6(\hat{\imath}+\hat{\jmath}+2 \hat{k})
$$

$\Rightarrow(1+\alpha) \hat{\imath}+\beta(1+\alpha) \hat{\jmath}+\gamma(1+\alpha)(1+\beta) \hat{k}$

$$
=-\hat{\imath}+4 \hat{\jmath}-2 \hat{k}
$$

$\Rightarrow 1+\alpha=-1, \beta=-4$ and $\gamma(-1)(-3)=-2$
$\Rightarrow \gamma=-\frac{2}{3}$
116 (a)
$\vec{\alpha} \|(\vec{\beta} \times \vec{\gamma}) \Rightarrow \vec{\alpha} \perp \vec{\beta}$ and $\vec{\alpha} \perp \vec{\gamma}$
Now, $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{y})=|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})-$
$(\vec{\alpha} \cdot \vec{\beta})(\vec{\alpha} \cdot \vec{\gamma})=|\vec{\alpha}|^{2} \cdot(\vec{\beta} \cdot \vec{\gamma})$
117 (c)
If $\vec{x}=\vec{y} \Rightarrow \hat{a} \cdot \vec{x}=\hat{a} \cdot \vec{y}$. This equality must hold for any arbitrary \hat{a}

118 (a)

A vector coplanar with \vec{a} and \vec{b} and perpendicular to \vec{c} is $\lambda((\vec{\alpha} \times \vec{b}) \times \vec{c})$
But $\lambda((\vec{a} \times \vec{b}) \times \vec{c})=\lambda[(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}]$
$=\lambda[4 \vec{b}-4 \vec{a}]$
$=4 \lambda[\hat{j}-\hat{k}]$
Now $4|\lambda| \sqrt{2}=\sqrt{2}$ (Given) $\Rightarrow \lambda= \pm \frac{1}{4}$
Hence the required vector is $\hat{\jmath}-\hat{k}$ or $-\hat{\jmath}+\hat{k}$
119 (d)
Given that $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{\jmath}+\vec{k}, \vec{b}=4 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$ and $\vec{c}=\hat{\imath}+\alpha \hat{\jmath}+\beta \hat{k}$ are linearly dependent
$\left|\begin{array}{lll}1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta\end{array}\right|=0$
$\Rightarrow 1-\beta=0$
$\Rightarrow \beta=1$
Also given that $|\vec{c}|=\sqrt{3} \Rightarrow 1+\alpha^{2}+\beta^{2}=3$
Substituting the value of β, we get $\alpha^{2}=1$
$\Rightarrow \alpha= \pm 1$

120 (c)

Let $\overrightarrow{O D}=t \vec{a}$
$\therefore \overrightarrow{D B}=\vec{b}-t \vec{a}$
$\therefore(\vec{b}-t \vec{a}) \cdot \vec{a}=0(\because \overrightarrow{D B} \perp \overrightarrow{O A})$
$\Rightarrow t=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}}$
$\therefore \overrightarrow{D B}=\vec{b}-\frac{(\vec{b} \cdot \vec{a}) \vec{a}}{|\vec{a}|^{2}}$
121 (a)
Let $\vec{v}=x \vec{a}+y \vec{b}+z \vec{a} \times \vec{b}$
Given : $\vec{a} \cdot \vec{b}=0, \vec{v} \cdot \vec{a}=0, \vec{v} \cdot \vec{b}=1,[\vec{v} \vec{a} \vec{b}]=1$
$\Rightarrow \vec{v} \cdot \vec{a}=x \vec{a} \cdot \vec{a}=x|\vec{a}|^{2}(\because \vec{a} \cdot \vec{b}=0, \vec{a} \cdot \vec{a} \times \vec{b}$

$$
=0)
$$

$\Rightarrow x=0$
Again, $\vec{v} \cdot \vec{b}=y|\vec{b}|^{2} \Rightarrow 1=y b^{2}$
$\therefore y=\frac{1}{b^{2}}$
Again $\vec{v} \cdot(\vec{a} \times \vec{b})=z(\vec{a} \times \vec{b})^{2}$
$\Rightarrow 1=z(\vec{a} \times \vec{b})^{2} \Rightarrow z=\frac{1}{|\vec{a} \times \vec{b}|^{2}}$
Hence, $\vec{v}=\frac{1}{|\vec{b}|^{2}} \vec{b}+\frac{1}{|\vec{a} \times \vec{b}|^{2}} \vec{a} \times \vec{b}$
122 (b)

from the diagram, it is obvious that locus is a cone concentric with the positive x-axis having vertex at the origin and the slant height equal to the magnitude of the vector
123 (a)
$\overrightarrow{\mathbf{P Q}}=6 \hat{\mathbf{i}}+\hat{\mathbf{j}}$
$\overrightarrow{\mathbf{Q R}}=-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}$
$\overrightarrow{\mathbf{R S}}=-6 \hat{\mathbf{i}}-\hat{\mathbf{j}}$
$\overrightarrow{\mathbf{S P}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}$
$|\overrightarrow{\mathbf{P Q}}|=\sqrt{37}=|\overrightarrow{\mathbf{R S}}|$
$|\overrightarrow{\mathbf{Q R}}|=\sqrt{10}=|\overrightarrow{\mathbf{S P}}|$
$\overrightarrow{\mathbf{P Q}} \cdot \overrightarrow{\mathbf{Q R}}=-6+3=-3 \neq 0$
$\overrightarrow{\mathbf{P Q}}=$ is not parallel to $\overrightarrow{\mathbf{R S}}$ and their magnitude are equal.
\Rightarrow Quadrilateral $P Q R S$ must be a parallelogram, which is neither a rhombus nor a rectangle.
124 (b)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}_{1}+\overrightarrow{\mathbf{a}} \cdot\left(\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}\right)$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-\frac{|\overrightarrow{\mathbf{a}}|^{2}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}})}{|\overrightarrow{\mathbf{a}}|^{2}}$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}=0$
Similarly, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}_{2}=\overrightarrow{\mathbf{b}}_{1} \cdot \overrightarrow{\mathbf{c}}_{2}=0$
Hence, $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{2}\right\}$ are mutually orthogonal vectors.
125 (c)
Since \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ are linearly independent,
$20 a-15 b=15 b-12 c=12 c-20 a=0$
$\Rightarrow \frac{a}{3}=\frac{b}{4}=\frac{c}{5}$
$\Rightarrow c^{2}=a^{2}+b^{2}$
Hence, $\triangle A B C$ is right angled
126 (b)
Taking dot product of $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+$
$c(\vec{\gamma} \times \vec{\alpha})=0$ with $\vec{\gamma}, \vec{\alpha}$ and $\vec{\beta}$, respectively, we have
$a[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0$
$b[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0$
${ }_{c}[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0$
\because At least one of a, b and $c \neq 0$
$\therefore[\vec{\alpha} \vec{\beta} \vec{\gamma}=0]$
Hence $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are coplanar
127 (d)
For minimum value $|\vec{r}+b \vec{s}|=0$
Let \vec{r} and \vec{s} are anti parallel so $b \vec{s}=-\vec{r}$
So $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}=|-\vec{r}|^{2}+|\vec{r}-\vec{r}|^{2}=|\vec{r}|^{2}$
128 (c)
$|\vec{a}+\vec{b}+\vec{c}|^{2}=1$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$

$$
\begin{aligned}
& +2|\vec{a}||\vec{b}| \cos \theta_{1}+2|\vec{b}||\vec{c}| \cos \theta_{2} \\
& +2|\vec{c}||\vec{a}| \cos \theta_{3}=1
\end{aligned}
$$

$\Rightarrow \cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=-1$
\Rightarrow One of θ_{1}, θ_{2} and θ_{3} should be an obtuse angle

129 (b)
$\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b})$
Taking dot product with \vec{a} and \vec{b}, we have
$m=n=\cos \theta$
$\Rightarrow|\vec{c}|=|\cos \theta \vec{a}+\cos \theta \vec{b}+p(\vec{a} \times \vec{b})|=1$
Squaring both sides, we get
$\cos ^{2} \theta+\cos ^{2} \theta+p^{2}=1$
$\Rightarrow \cos \theta= \pm \frac{\sqrt{1-p^{2}}}{\sqrt{2}}$
Now $-\frac{1}{\sqrt{2}} \leq \cos \theta \leq \frac{1}{\sqrt{2}}$ (for real value of θ)
$\therefore \frac{\pi}{4} \leq \cos \theta \leq \frac{3 \pi}{4}$
130 (a)
$\vec{b}-2 \vec{c}=\lambda \vec{a}$
$\Rightarrow \vec{b}=2 \vec{c}+\lambda \vec{a}$
$\Rightarrow|\vec{b}|^{2}=|2 \vec{c}+\lambda \vec{a}|^{2}$
$\Rightarrow 16=4|\vec{c}|^{2}+\lambda^{2}|\vec{a}|^{2}+4 \lambda \vec{a} \cdot \vec{c}$
$\Rightarrow 16=4+\lambda^{2}+4 \lambda \frac{1}{4}$
$\Rightarrow \lambda^{2}+\lambda-12=0$
$\Rightarrow \lambda=3,-4$
131 (c)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=1+1+1=3$
Using,
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}$
$\therefore(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{j}}-\hat{\mathbf{k}})=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})-3 \overrightarrow{\mathbf{b}}$
$\Rightarrow-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}-3 \overrightarrow{\mathbf{b}}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}$
132 (c)
$3=\frac{1}{6}[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=18$
Volume of the required parallelepiped
$=[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]$
$=2[\vec{a} \vec{b} \vec{c}]=36$
133 (b)
Let $\vec{a} \times \vec{b}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$. Therefore
$[\vec{a} \vec{b} \hat{\imath}]=(\vec{a} \times \vec{b}) \cdot \hat{\imath}=x$
$[\vec{a} \vec{b} \hat{\jmath}]=(\vec{a} \times \vec{b}) \cdot \hat{\jmath}=y$
$[\vec{a} \vec{b} \vec{k}]=(\vec{a} \times \vec{b}) \cdot \hat{k}=z$
Hence, $[\vec{a} \vec{b} \hat{\imath}] \hat{\imath}+[\vec{a} \vec{b} \hat{\jmath}] \hat{\jmath}=[\vec{a} \vec{b} \hat{k}] \hat{k}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}=$
$\vec{a} \times \vec{b}$
134 (a)
As \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ are non-collinear vectors, vectors are linearly independent
$\Rightarrow a-b=0=b-c=c-a$
$\Rightarrow a=b=c$
Therefore, the triangle is equilateral
135 (c)
$[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a}$ $\times \vec{b})$]
$=[[\vec{a} \vec{b} \vec{c}] \vec{b}[\vec{a} \vec{b} \vec{c}] \vec{c}[\vec{a} \vec{b} \vec{c}] \cdot \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{3}[\vec{b} \vec{c} \vec{a}]$

$$
=[\vec{a} \vec{b} \vec{c}]^{4}
$$

136 (c)

Let P.V. of A, B and D be \vec{o}, \vec{b} and \vec{d}, respectively
Then P.V. of $C, \vec{c}=\vec{b}+\vec{d}$
Also P.V. of $A_{1}=\vec{b}+\frac{d}{2}$
And P.V. of $B_{1}=\vec{d}+\frac{\vec{b}}{2}$
$\Rightarrow \overrightarrow{A A}_{1}+\overrightarrow{A B}_{1}=\frac{3}{2}(\vec{b}+\vec{d})=\frac{3}{2} \overrightarrow{A C}$
137 (c)
We have
$\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$

$$
\begin{aligned}
& =(A B)(A C) \cos \theta \\
& +(B C)(B A) \sin \theta+0
\end{aligned}
$$

$=A B(A C \cos \theta+B C \sin \theta)$
$=A B\left(\frac{(A C)^{2}}{A B}+\frac{(B C)^{2}}{A B}\right)$
$=A C^{2}+B C^{2}=A B^{2}=p^{2}$
138 (a)
$\vec{r} \times \vec{a}=\lambda \vec{a}+\mu \vec{b}+\gamma \vec{a} \times \vec{b}$
$\therefore[\vec{r} \vec{a} \vec{a}]=\lambda \vec{a} \cdot \vec{a}+\mu \vec{b} \cdot \vec{a}+\gamma[\vec{a} \vec{b} \vec{a}]$
$0=\lambda|\vec{a}|^{2}+0+0$
$\lambda=0$
Also $[\vec{r} \vec{a} \vec{b}]=\lambda \vec{a} \cdot \vec{b}+\mu \vec{b} \cdot \vec{b}+\gamma[\vec{a} \vec{b} \vec{b}]=\mu$
Also $(\vec{r} \times \vec{a}) \times \vec{b}=\gamma(\vec{a} \times \vec{b}) \times \vec{b}$
$\Rightarrow(\vec{r} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{r}=\gamma\{(\vec{a} \cdot \vec{b}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{a}\}$
$\Rightarrow(\vec{r} \cdot \vec{b}) \vec{a}=-\gamma \vec{a}, \gamma=-(\vec{r} \cdot \vec{b})$
139 (a)
Since $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$
$\therefore(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{1}{\sqrt{2}} \vec{b}+\frac{1}{\sqrt{2}} \vec{c}$
Since b and c are non-coplanar
$\Rightarrow \vec{a} \cdot \vec{c}=\frac{1}{\sqrt{2}}$ and $\vec{a} \cdot \vec{b}=-\frac{1}{\sqrt{2}}$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$
(because \vec{a} and \vec{b} are unit vectors)
Or $\theta=\frac{3 \pi}{4}$
140 (a)
The volume of the parallelepiped with coterminous edges as $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}$ is given by $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]=\hat{\mathbf{a}} \cdot(\hat{\mathbf{b}} \times \hat{\mathbf{c}})$

Now, $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]^{2}=\left|\begin{array}{lll}\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{b}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{c}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{c}}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1\end{array}\right|=\frac{1}{2}$
$[\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=1]$
$\Rightarrow[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]^{2}=\frac{1}{2}$
Thus, the required volume of the parallelopiped $=\frac{1}{\sqrt{2}}$ cu unit
141 (c)
$\vec{r} \times \vec{a}=\vec{b} \times \vec{a} \Rightarrow(\vec{r}-\vec{b}) \times \vec{a}=0$
$\vec{r} \times \vec{b}=\vec{a} \times \vec{b} \Rightarrow(\vec{r}-\vec{a}) \times \vec{b}=0$
If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, then
$\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ x-2 & y & z+1 \\ 1 & 1 & 0\end{array}\right|=0$ and $\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ x-1 & y-1 & z \\ 2 & 0 & -1\end{array}\right|=$
0
$\Rightarrow z+1=0, x-y=2$ and $y-1=0, x-1+$
$2 z=0$
$\Rightarrow x=3, y=1, z=-1$
142 (c)
Suppose the bisector of angle A meets $B C$ at D.
Then $A D$ divides $B C$ in the ratio $A B: A C$

So, P.V. of $D=\frac{|\overrightarrow{A B}|(2 \hat{\imath}+5 \hat{\jmath}+7 \hat{k})+|\overrightarrow{A C}|(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})}{|\overrightarrow{A B}|+|\overrightarrow{A C}|}$
But $\overrightarrow{A B}=-2 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}$ and $\overrightarrow{A C}=-2 \hat{\imath}-2 \hat{\jmath}-\hat{k}$
$\Rightarrow|\overrightarrow{A B}|=6$ and $|\overrightarrow{A C}|=3$
\therefore P.V. of $D=\frac{6(2 \hat{\imath}+5 \hat{\jmath}+7 \hat{k})+3(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})}{6+3}$
$=\frac{1}{3}(6 \hat{\imath}+13 \hat{\jmath}+18 \hat{k})$
143 (b)
$|\overrightarrow{A C} \times \overrightarrow{B D}|=2|\overrightarrow{A B} \times \overrightarrow{A D}|$
$=2\left[\left.\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 4 & -5 \\ 1 & 2 & 3\end{array} \right\rvert\,\right.$
$=|2[\hat{\imath}(12+10)-\hat{\jmath}(6+5)+\hat{k}(4-4)]|$
$=|2[22 \hat{\imath}-11 \hat{\jmath}]|$
$=22 \mid[2 \hat{\imath}-\hat{\jmath}[\mid$
$=22 \times \sqrt{5}$

144 (c)

Given $\vec{v} \cdot \vec{u}=\vec{w} \cdot \vec{u}$
and $\vec{v} \perp \vec{w} \Rightarrow \vec{v} \cdot \vec{w}=0$
Now, $|\vec{u}-\vec{v}+\vec{w}|^{2}$
$=|\vec{u}|^{2}+|\vec{v}|^{2}+|\vec{w}|^{2}-2 \vec{u} \cdot \vec{v}-2 \vec{w} \cdot \vec{v}+2 \vec{u} \cdot \vec{w}$
$=1+4+9$
So $|\vec{u}-\vec{v}+\vec{w}|=\sqrt{14}$
(b)
$|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|^{2}=|\vec{a} \times(\vec{b}-\vec{c})|^{2}$

$$
=|\vec{a}|^{2}|\vec{b}-\vec{c}|^{2}-(\vec{a} \cdot(\vec{b}-\vec{c}))^{2}
$$

$$
=|\vec{b}-\vec{c}|^{2}
$$

$=|b|^{2}+|\vec{c}|^{2}-2|\vec{b}||\vec{c}| \cos \frac{\pi}{3}=1$
146 (d)

$$
\begin{aligned}
& ((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c}) \\
& =(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})+(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{c}) \\
& =((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{b}-((\vec{a} \times \vec{b}) \cdot \vec{b}) \vec{c}+((\vec{a} \times \vec{c}) \cdot \vec{c}) \vec{b} \\
& \quad \quad-((\vec{a} \times \vec{c}) \cdot \vec{b}) \vec{c} \\
& =[\vec{a} \vec{b} \vec{c}](\vec{b}+\vec{c}) \\
& \Rightarrow((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c}) \\
& =[[\vec{a} \vec{b} \vec{c}](\vec{b}+\vec{c}) \cdot(\vec{b}-\vec{c}) \\
& =(\vec{a} \vec{b} \vec{c})\left(|\vec{b}|^{2}-|\vec{c}|^{2}\right)=0
\end{aligned}
$$

Point P lies on $x^{2}+3 y^{2}=3$
Now from the diagram, according to the given conditions, $A P=A B$
or $(x+\sqrt{3})^{2}+(y-0)^{2}=4$ or $(x+\sqrt{3})^{2}+y^{2}=$ 4 (ii)
Solving (i) and (ii), we get $x=0$ and $y= \pm 1$
Hence point P has position vector $\pm \hat{\jmath}$
148 (b)
Let \vec{r} be the new position. Then $\vec{r}=\lambda \hat{k}+\mu(\hat{\imath}+\hat{\jmath})$
Also $\vec{r} \cdot \hat{k}=-\frac{1}{\sqrt{2}} \Rightarrow \lambda=-\frac{1}{\sqrt{2}}$
Also, $\lambda^{2}+2 \mu^{2}=1 \Rightarrow 2 \mu^{2}=\frac{1}{2} \Rightarrow \mu= \pm \frac{1}{2}$
$\therefore \vec{r}= \pm \frac{1}{2}(\hat{\imath}+\hat{\jmath})-\frac{\hat{k}}{\sqrt{2}}$
149 (b)
Note that $\vec{a}+\vec{b}=\vec{c}$
150 (d)
$\vec{a} \times(\vec{a} \times \vec{b})=\vec{c} \Rightarrow|\vec{a}||\vec{a} \times \vec{b}|$

$$
=|\vec{c}|(\therefore \vec{a} \perp(\vec{a} \times \vec{b}))
$$

$1(1 \times 5) \sin \theta=3 \Rightarrow \sin \theta=\frac{3}{5} \Rightarrow \tan \theta=\frac{3}{4}$

151 (d)
$\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{c})+x_{3}(\vec{c} \times \vec{a})$
$\Rightarrow \vec{r} \cdot \vec{a}=x_{2}[\vec{a} \vec{b} \vec{c}], \vec{r} \cdot \vec{b}=x_{3}[\vec{b} \vec{c} \vec{a}]$
and $\vec{r} \cdot \vec{c}=x_{1}[\vec{c} \vec{a} \vec{b}]=x_{1}[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow x_{1}+x_{2}+x_{3}=4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
152 (b)
Since $\vec{u}+\vec{v}+\vec{w}=0$, we have
$|\vec{u}+\vec{v}+\vec{w}|^{2}=0$
Or $|\vec{u}|^{2}+|\vec{v}|^{2}+|\vec{w}|^{2}+2(\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u})=$ 0
Or $9+16+25+2(\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u})=0$
Or $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}=-25$
153 (d)
$\vec{f}\left(\frac{5}{4}\right)=\left[\frac{5}{4}\right] \hat{\imath}+\left(\frac{5}{4}-\left[\frac{5}{4}\right]\right) \hat{\jmath}+\left[\frac{5}{4}+1\right] \hat{k}$
$=\hat{\imath}+\left(\frac{5}{4}-1\right) \hat{\jmath}+2 \hat{k}$
$=\hat{\imath}+\frac{1}{4} \hat{\jmath}+2 \hat{k}$
When $0<t<1, \vec{f}(t)=0 \vec{\imath}+\{t-0\} \vec{\jmath}+\vec{k}=t \vec{\jmath}+$ \vec{k}
$\vec{f}\left(\frac{5}{4}\right) \cdot \vec{f}(t)=2+\frac{t}{4}$
So $\cos \theta=\frac{2+\frac{t}{4}}{\left|\vec{\imath}+\frac{1}{4} \vec{\jmath}+2 \vec{k}\right||t \vec{\jmath}+\vec{k}|}$

$$
=\frac{2+\frac{t}{4}}{\sqrt{1+\frac{1}{16}+4} \sqrt{1+t^{2}}}
$$

$=\frac{8+t}{9 \sqrt{1+t^{2}}}$
154 (b)
Vector in the direction of angular bisector of \vec{a} and \vec{b} is $\frac{\vec{a}+\vec{b}}{2}$
Unit vector in this direction is $\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}$

From the figure, position vector of E is $\frac{\vec{a}+\vec{b}}{2}$
Now in triangle $A E B, A E=A B \cos \frac{\theta}{2}$
$\Rightarrow\left|\frac{\vec{a}+\vec{b}}{2}\right|=\cos \frac{\theta}{2}$
Hence unit vector along the bisector is $\frac{\vec{a}+\vec{b}}{2 \cos \frac{\theta}{2}}$
155 (a)
Let the origin of reference be the circumcentre of the triangle
Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$ and $\overrightarrow{O T}=\vec{t}$
Then $|\vec{a}|=|\vec{b}|=|\vec{c}|=R$ (circumeadius)
Again $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O A}+2 \overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A H}=$ $\overrightarrow{O H}$

Therefore, the P.V. of H is $\vec{a}, \vec{b}, \vec{c}$. Since D is the
midpoint of $H T$, we have $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{t}}{2}=\frac{\vec{b}+\vec{c}}{2} \Rightarrow \vec{t}=-\vec{a}$
$\therefore \overrightarrow{A T}=-2 \vec{a} \Rightarrow \overrightarrow{A T}=|-2 \vec{a}|=2|\vec{a}|=2 R$. But $B C=2 R \sin A=R$, therefore $A T=2 B C$
156 (b)

$\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A D}$
$\therefore \overrightarrow{A D}=\frac{1}{2}\{(-3 \hat{\imath}+4 \hat{k})+(5 \hat{\imath}-2 \hat{\jmath}+4 \hat{k})\}$
$=\hat{\imath}-\hat{\jmath}+4 \hat{k}$
Length of $A D=\sqrt{1+1+16}=\sqrt{18}$
157 (c)

$$
|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|
$$

$\Rightarrow \frac{\pi}{2}<\theta<\frac{3 \pi}{2}$
158 (a)
Differentiate the curve
$6 x+8\left(x y_{1}+y\right)+4 y y_{1}=0$
m_{T} at $(1,0)$ is $6+8\left(y_{1}(0)\right)=0$
$y_{1}(0)=-\frac{3}{4}$
$m_{N}=\frac{4}{3}$
Unit vector $= \pm \frac{(3 \hat{l}+4 \hat{\jmath})}{5}$
Again normal vector of magnitude $10= \pm(6 \hat{\imath}+$
8̂)
159 (a)
Let l, m and n be the direction cosines of the required vector

Then, $l=m$ (given). Therefore

Required vector $\vec{r}=l \hat{\imath}+m \hat{\jmath}+n \hat{k}=l \hat{\imath}+l \hat{\jmath}+n \hat{k}$ (i)

Now, $l^{2}+m^{2}+n^{2}=1 \Rightarrow 2 l^{2}+n^{2}=1$

Since, \hat{r} is perpendicular to $-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
$\vec{r}(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k})=0 \Rightarrow-l+2 l+2 n=0 \Rightarrow l+$ $2 n=0$ (ii)

From (i)and (ii), we get: $n=\mp \frac{1}{3}, l= \pm \frac{2}{3}$
Hence, required vector $\vec{r}=\frac{1}{3}(\pm 2 \hat{\imath} \pm 2 \hat{\jmath} \mp \hat{k})=$ $\pm \frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-\hat{k})$

$$
\begin{aligned}
& |a|+|b|+|c|=\sqrt{a^{2}+b^{2}+c^{2}} \\
& \Leftrightarrow 2|a b|+2|b c|+2|c a|=0 \\
& \Leftrightarrow a b=b c=c a=0 \Leftrightarrow \text { any two of } a, b \text { and c are }
\end{aligned}
$$ zero

161 (a)
a, b and c are distinct negative number and vectors $a \hat{\imath}+a \hat{\jmath}+c \hat{k}, \hat{\imath}+\hat{k}$ and $c \hat{\imath}+c \hat{\jmath}+b \hat{k}$ are coplanar
$\left|\begin{array}{lll}a & a & c \\ 1 & 0 & 1 \\ c & c & b\end{array}\right|=0$
$\Rightarrow a c+c^{2}-a b-a c=0$
$\Rightarrow c^{2}=a b$
$\Rightarrow a, c, b$ are in G.P
So c is the G.M. of a and b
162 (b,d)
Since $\vec{a}=(1,3 \sin 2 \alpha)$ makes on obtuse angle with the z-axis, its z-component is negative
$\Rightarrow-1 \leq \sin 2 \alpha<0$
But $\vec{b} \cdot \vec{c}=0(\because$ orthogonal $)$
$\tan ^{2} \alpha-\tan \alpha-6=0$
$\therefore(\tan \alpha-3)(\tan \alpha+2)=0$
$\Rightarrow \tan \alpha=3,-2$
Now, $\tan \alpha=3$. Therefore,
$\sin 2 \alpha=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}=\frac{6}{1+9}=\frac{3}{5}$ (not possible as
$\sin 2 \alpha<0)$
Now, if $\tan \alpha=-2$,
$\Rightarrow \sin 2 \alpha=\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}=\frac{-4}{1+4}=\frac{-4}{5}$
$\Rightarrow \tan 2 \alpha>0$
$\Rightarrow 2 \alpha$ is the third quadrant. Also, $\sqrt{\sin \alpha / 2}$ is meaningful. If $0<\sin \alpha / 2<1$, then $\alpha=$ $(4 n+1) \pi-\tan ^{-1} 2$ and $\alpha=(4 n+2) \pi-\tan ^{-1} 2$
163 (b,c,d)
Obviously, $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is a vector in the plane of \vec{a} and \vec{b} and hence perpendicular to $\vec{a} \times \vec{b}$. It is also equally inclined to \vec{a} and \vec{b} as it is along angle bisector
164 (a,b,c)
Consider $\vec{V}_{1} \cdot \overrightarrow{V_{2}}=0 \Rightarrow A=90^{\circ}$

Using the sine law, $\left|\frac{\vec{b}-(\hat{a} \cdot \vec{b}) \hat{a}}{\sin \theta}\right|=\frac{\sqrt{3}|\hat{a} \times \vec{b}|}{\cos \theta}$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \frac{|\vec{b}-(\hat{a} \cdot \vec{b}) \hat{a}|}{|\hat{a} \times \vec{b}|}$
$=\frac{1}{\sqrt{3}} \frac{|(\hat{a} \times \vec{b}) \times \hat{a}|}{|\hat{a} \times \vec{b}|}$
$=\frac{1}{\sqrt{3}} \frac{|\hat{a} \times \vec{b}||\hat{a}| \sin 90^{\circ}}{|\hat{a} \times \vec{b}|}=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=\frac{\pi}{6}$
165 (a,b)
$\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$
$=\vec{a}(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b}) \vec{b}$
$=\vec{b} \times(\vec{a} \times \vec{b})$
$\Rightarrow|\vec{u}|=|\vec{b} \times(\vec{a} \times \vec{b})|$
$=|\vec{b}||\vec{a} \times \vec{b}| \sin 90^{\circ}$
$=|\vec{b}||\vec{a} \times \vec{b}|$
$=|\vec{v}|$
Also $\vec{u} \cdot \vec{b}=\vec{b} \cdot \vec{b} \times(\vec{a} \times \vec{b})$
$=[\vec{b} \vec{b} \vec{a} \times \vec{b}]$
$=0$
$\Rightarrow|\vec{v}|=|\vec{u}|+|\vec{u} \cdot \vec{b}|$
166 (a,b)
Let $\overrightarrow{E B}=p, \overrightarrow{A B}$ and $\overrightarrow{C E}=q \overrightarrow{C D}$

Then $0<P$ and $q \leq 1$
Since $\overrightarrow{E B}+\overrightarrow{B C}+\overrightarrow{C E}=\overrightarrow{0}$

$$
\begin{aligned}
& p m(2 \hat{\imath}-6 \hat{\jmath}+2 \hat{k})+(\hat{\imath}-2 \hat{\jmath}) \\
& \quad+q n(-6 \hat{\imath}+15 \hat{\jmath}-3 \hat{k})=\overrightarrow{0} \\
& \Rightarrow(2 p m+1-6 q n) \hat{\imath}+(-6 p m-2+15 q n) \hat{\jmath} \\
& \quad+(2 p m-6 q n) \hat{k}=0
\end{aligned}
$$

$\Rightarrow 2 p m-6 q n+1=\overrightarrow{0},-6 p m-2+15 q n$

$$
=\overrightarrow{0}, 2 p m-6 q n=\overrightarrow{0}
$$

Solving these, we get
$p=1 /(2 m)$ and $q=1 /(3 n)$
$\therefore 0<1 /(2 m) \leq 1$ and $0<1 /(3 n) \leq 1$
$\Rightarrow m \geq 1 / 2$ and $n \geq 1 / 3$
167 (a,c)
We have $\vec{v}=\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}=$
$\sin \theta \hat{n}$, where \vec{a} and \vec{b} are unit vectors. Therefore,
$|\vec{v}|=\sin \theta$
Now, $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$
$=\vec{a}-\vec{b} \cos \theta($ where $\vec{a} \cdot \vec{b}=\cos \theta)$
$\therefore|\vec{u}|^{2}=|\vec{a}-\vec{b} \cos \theta|^{2}$
$=1+\cos ^{2} \theta-2 \cos \theta \cdot \cos \theta$
$=1-\cos ^{2} \theta=\sin ^{2} \theta=|v|^{2}$
$\Rightarrow|\vec{u}|=|\vec{v}|$
Also, $\vec{u} \cdot \vec{b}=\vec{a} \cdot \vec{b}-(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{b})$
$=\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{b}$
$=0$
$\therefore|\vec{u} \cdot \vec{b}=0|$
$\therefore|\vec{v}|=|\vec{u}|+|\vec{u} \cdot \vec{b}|$ is also correct
168 (a,c)
We have, $\overrightarrow{A B}=-\hat{\imath}-\hat{\jmath}-4 \hat{k}, \overrightarrow{B C}=-3 \hat{\imath}+3 \hat{\jmath}$ and $\overrightarrow{C A}=4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$. Therefore
$|\overrightarrow{A B}|=|\overrightarrow{B C}|=3 \sqrt{2}$ and $|\overrightarrow{C A}|=6$
Clearly, $|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}=|\overrightarrow{A C}|^{2}$
Hence, the triangle is right-angled isosceles triangle
169 (a,c)

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b} \\
& \quad=(\overrightarrow{4}-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c} \\
& \begin{aligned}
& \Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}+(\vec{a} \cdot \vec{b}) \vec{b} \\
& \quad(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}
\end{aligned}
\end{aligned}
$$

Now, $(\vec{c} \cdot \vec{c}) a=\vec{c}$. Therefore,
$(\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{c})=(\vec{c} \cdot \vec{c}) \Rightarrow \vec{a} \cdot \vec{c}=1$
$\Rightarrow 1+\vec{a} \cdot \vec{b}=4-2 x-\sin y, x^{2}-1=-(\vec{a} \cdot \vec{b})$
$\Rightarrow 1=4-2 x-\sin y+x^{2}-1$
$\Rightarrow \sin y=x^{2}-2 x+2=(x-1)^{2}+1$
But $\sin y \leq 1 \Rightarrow x=1, \sin y=1$
$\Rightarrow y=(4 n+1) \frac{\pi}{2}, n \in I$
170 (b,d)
Since \vec{a} and \vec{b} are equally inclined to \vec{c}, \vec{c} must be of the from $t\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}\right)$
Now $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} \vec{a}+\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|} \vec{b}=\frac{|\vec{a}||\vec{b}|}{|\vec{a}|+|\vec{b}|}\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}\right)$
Also, $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|} \vec{a}+\frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|} \vec{b}=\frac{|\vec{a}||\vec{b}|}{2|\vec{a}|+|\vec{b}|}\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}\right)$
Other two vectors cannot be written in the form $t\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}\right)$
171 (b)
We know that if \hat{n} is perpendicular to \vec{a} as well as \vec{b}, then
$\hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ or $\frac{\vec{b} \times \vec{a}}{|\vec{b} \times \vec{a}|}$
As $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ represent two vectors in opposite directions, we have two possible values of \hat{n}

172 (b,c)
We have, $\vec{a}=2 p \hat{\imath}+\hat{\jmath}$

On rotation, let \vec{b} be the vector with components
$(p+1)$ and 1 so that $\vec{b}=(p+1) \hat{\imath}+\hat{\jmath}$
Now $|\vec{a}|=|\vec{b}| \Rightarrow a^{2}=b^{2}$
$\Rightarrow 4 p^{2}+1=(p+1)^{2}+1$
$\Rightarrow 4 p^{2}=(p+1)^{2}$
$\Rightarrow 2 p= \pm(p+1)$
$\Rightarrow 3 p=-1$ or $p=1$
$\therefore p=-1 / 3$ or $p=1$
173 (b,d)
$\vec{a} \times(\vec{r} \times \vec{a})=\vec{a} \times \vec{b}$
$3 \vec{r}-(\vec{a} \cdot \vec{r}) \vec{a}=\vec{a} \times \vec{b}$
Also $|\vec{r} \times \vec{a}|=|\vec{b}|$
$\Rightarrow \sin ^{2} \theta=\frac{2}{3}$
$\Rightarrow\left(1-\cos ^{2} \theta\right)=\frac{2}{3}$
$\Rightarrow \frac{1}{3}=\cos ^{2} \theta$
$\Rightarrow \vec{a} \cdot \vec{r}= \pm 1$
$\Rightarrow 3 \vec{r} \pm \vec{a}=\vec{a} \times \vec{b}$
$\Rightarrow \vec{r}=\frac{1}{3}(\vec{a} \times \vec{b} \pm \vec{a})$
174 (a,b,d)
$(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)$

$$
+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}_{4}
$$

$$
=\overrightarrow{0}
$$

i.e., $(\lambda-1) \vec{a}_{1}+(1-\lambda+\mu-2 \gamma) \vec{a}_{2}+$
$(\mu+\gamma+1) \vec{a}_{3}+(\gamma+\delta) \vec{a}_{4}=\overrightarrow{0}$
since $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ and \vec{a}_{4} are linearly independent
$\lambda-1=0,1-\lambda+\mu-2 \gamma=0, \mu+\gamma+1$
$=0$ and $\gamma+\delta=0$
i.e., $\lambda=1, \mu=2 \gamma, \mu+\gamma+1=0, \gamma+\delta=0$
i.e., $\lambda=1, \mu=-\frac{2}{3}, \gamma=-\frac{1}{3}, \delta=\frac{1}{3}$

175 (a,b)
We have, $|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos 2 \theta$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=2-2 \cos 2 \theta(\because|\vec{a}|=|\vec{b}|=1)$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=4 \sin ^{2} \theta$
$\Rightarrow|\vec{a}-\vec{b}|=2|\sin \theta|$
Now, $|\vec{a}-\vec{b}|<1$
$\Rightarrow 2|\sin \theta|<1$
$\Rightarrow|\sin \theta|<\frac{1}{2}$
$\Rightarrow \theta \in[0, \pi / 6)$ or $\theta \in(5 \pi / 6, \pi]$
176 (a,b,c,d)
Since, $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are collinear.
$\therefore \overrightarrow{\mathbf{a}}=\lambda \overrightarrow{\mathbf{b}}$
$\Rightarrow(x \hat{\mathbf{\imath}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})=\lambda(\hat{\mathbf{\imath}}+y \hat{\mathbf{j}}-z \hat{\mathbf{k}})$
On comparing
$x=\lambda,-2=\lambda y$ and $5=-\lambda z$
For $\lambda=1$
$x=1, y=-2$ and $z=-5$
Option (a) is correct.
For $\lambda=\frac{1}{2}$,
$x=\frac{1}{2}, y=-4$ and $z=-10$
Option (b) is correct.
For $\lambda=-\frac{1}{2}$,
$x=-\frac{1}{2}, y=4$ and $z=10$
Option (c) is correct.
and for $\lambda=-1$
$x=-1, y=2$ and $z=5$
Option (d) is correct.
177 (\mathbf{a}, \mathbf{c})
$\overrightarrow{\mathbf{r}}=\lambda_{1} \overrightarrow{\mathbf{r}}_{1}+\lambda_{2} \overrightarrow{\mathbf{r}}_{2}+\lambda_{3} \overrightarrow{\mathbf{r}}_{3}$
On putting the values of $\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{1}, \overrightarrow{\mathbf{r}}_{2}$ and $\overrightarrow{\mathbf{r}}_{3}$, in Eq. (i) and then compare. Then, we get
$\lambda_{1}, \lambda_{2}, \lambda_{3}$
178 ($\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$)
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
$\Rightarrow \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow \cos \theta=\frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}||\vec{b}|}$
From (i) and (ii),
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
If $\theta=\pi / 4$, then $\sin \theta=\cos \theta=1 / \sqrt{2}$. Therefore,
$|\vec{a} \times \vec{b}|=\frac{|\vec{a}||\vec{b}|}{\sqrt{2}}$ and $\vec{a} \cdot \vec{b}=\frac{|\vec{a}||\vec{b}|}{\sqrt{2}}$
$|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}=\frac{|\vec{a}||\vec{b}|}{\sqrt{2}} \hat{n}$
$\vec{a} \times \vec{b}=(\vec{a} \cdot \vec{b}) \hat{n}$
179 (a,b,c)
For coplanar vectors, $\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & \lambda & \mu \\ 0 & 0 & 2 \lambda-1\end{array}\right|=0$
$\Rightarrow(2 \lambda-1) \lambda=0 \Rightarrow \lambda=0, \frac{1}{2}$
180 (b,c)
$\overrightarrow{A C}=\vec{a}+\vec{b}$
$\therefore|\overrightarrow{A C}|=|\vec{a}+\vec{b}|$

$\therefore|\overrightarrow{A C}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$
$=|3 \vec{\alpha}-\vec{\beta}|^{2}+|\vec{\alpha}+3 \vec{\beta}|^{2}+2(3 \vec{\alpha}-\vec{\beta}) \cdot(\vec{\alpha}+3 \vec{\beta})$
$=16|\vec{\alpha}|^{2}+4|\vec{\beta}|^{2}+16 \vec{\alpha} \cdot \vec{\beta}$
$=80+16(2)(2)(1 / 2)$
$=112$
$\therefore|\overrightarrow{A C}|=4 \sqrt{7}$
$|\overrightarrow{B D}|=|\vec{a}-\vec{b}|$
$|\overrightarrow{B D}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}$
$=|3 \vec{\alpha}-\vec{\beta}|^{2}+|\vec{\alpha}+3 \vec{\beta}|^{2}-2(3 \vec{\alpha}-\vec{\beta}) \cdot(\vec{\alpha}+3 \vec{\beta})$
$=4|\vec{\alpha}|^{2}+4|\vec{\beta}|^{2}=16 \vec{\alpha} \cdot \vec{\beta}$
$=80-16(2)(2)(1 / 2)$
$=48$
$\therefore|\overrightarrow{B D}|=4 \sqrt{3}$
181 (b,d)
Let $\vec{\alpha}=\hat{\imath}-\hat{\jmath}-\hat{k}, \vec{\beta}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{\gamma}=-\hat{\imath}+\hat{\jmath}+\hat{k}$
Let required vector $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{\jmath}$
$\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar
$\Rightarrow\left|\begin{array}{ccc}x & y & z \\ 1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right|=0 \Rightarrow y=z$
Also, \vec{a} and $\vec{\alpha}$ are perpendicular
$\Rightarrow x-y-z=0$
$\Rightarrow x=z y$
\Rightarrow Options b and d are correct
182 (a,b,c,d)
$x \hat{\imath}+(x+1) \hat{\jmath}+(x+2) \hat{k},(x+3) \hat{\imath}+(x+4) \hat{\jmath}+$
$(x+5) \hat{k}$ and $(x+6) \hat{\imath}+(x+7) \hat{\jmath}+(x+8) \hat{k}$ are
coplanar
We have determinant of their coefficients as
$\left|\begin{array}{ccc}x & x+1 & x+2 \\ x+3 & x+4 & x+5 \\ x+6 & x+7 & x+8\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we have
$\left|\begin{array}{ccc}x & 1 & 2 \\ x+3 & 1 & 2 \\ x+6 & 1 & 2\end{array}\right|=0$
Hence $x \in R$
183 (a,d)
We have,

$$
\left.\begin{array}{c}
\vec{c}=\vec{a} \times \vec{b} \Rightarrow \vec{c} \perp \vec{a} \text { and } \vec{c} \perp \vec{b} \\
\text { nd } \vec{a}=\vec{b} \times \vec{c} \Rightarrow \vec{a} \perp \vec{b} \text { and, } \vec{a} \perp \vec{c}
\end{array}\right\} \Rightarrow \vec{a} \perp \vec{b} \perp \vec{c}
$$

Now, $\vec{a} \times \vec{b}=\vec{c}$
$\Rightarrow(\vec{b} \times \vec{c}) \times \vec{b}=\vec{c} \quad[\because \vec{a}=\vec{b} \times \vec{c}]$
$\Rightarrow(\vec{b} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{b}=\vec{c}$
$\Rightarrow|\vec{b}|^{2} \vec{c}=\vec{c} \quad[\because \vec{b} \perp \vec{c} \therefore \vec{b} \cdot \vec{c}=0]$
$\Rightarrow|\vec{b}|=1$
Also,
$\vec{c}=\vec{a} \times \vec{b}$
$\Rightarrow|\vec{c}|=|\vec{a} \times \vec{b}|$
$\Rightarrow|\vec{c}|=|\vec{a}||\vec{a}| \sin \pi / 2$
$\Rightarrow|\vec{c}|=|\vec{a}| \quad[\because|\vec{b}|=1]$
184 (b,d)
$\vec{d} \cdot \vec{a}=[\vec{a} \vec{b} \vec{c}] \cos y=-\vec{d} \cdot(\vec{b}+\vec{c})$
$\Rightarrow \cos y=-\frac{\vec{d} \cdot(\vec{b}+\vec{c})}{[\vec{a} \cdot \vec{b} \cdot \vec{c}]}$
Similarly, $\sin x=-\frac{\vec{d} \cdot(\vec{a}+\vec{b})}{[\vec{a} \vec{b} \vec{c}]}$ and $\frac{\vec{a} \cdot(\vec{a}+\vec{c})}{[\vec{a} \vec{b} \vec{c}]}=-2$
$\therefore \sin x+\cos y+2=0$
$\Rightarrow \sin x+\cos y=-2$
$\Rightarrow \sin x=-1, \cos y=-1$
Since we want the minimum value of
$x^{2}+y^{2}, x=-\pi / 2, y=\pi$
\therefore The minimum value of $x^{2}+y^{2}$ is $5 \pi^{2} / 4$
185 (a,c,d)
$\overrightarrow{O A}=-4 \hat{\imath}+3 \hat{k} ; \overrightarrow{O B}=14 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$
$\hat{a}=\frac{-4 \hat{\imath}+3 \hat{k}}{5} ; \hat{b}=\frac{14 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}}{15}$
$\vec{r}=\frac{\lambda}{15}[-12 \hat{\imath}+9 \hat{\jmath}+14 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}]$
$\vec{r}=\frac{\lambda}{15}[2 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}]$
$\vec{r}=\frac{2 \lambda}{15}[\hat{\imath}+\hat{\jmath}+2 \hat{k}]$
186 (b,d)
$\vec{V}_{1}=\vec{V}_{2}$
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$
$\Rightarrow(\vec{a} \cdot \vec{b}) \vec{c}=(\vec{b} \cdot \vec{c}) \vec{a}$
\Rightarrow either \vec{c} and \vec{a} are collinear \vec{b} is perpendicular to both \vec{a} and $\vec{c} \Rightarrow \vec{b}=\lambda(\vec{a} \times \vec{c})$
187 (a,c)
Dot product of two vectors gives a scalar quantity
188 (a,b,d)
Points $A(\hat{\imath}+\hat{\jmath}), B(\hat{\imath}-\hat{\jmath})$ and $C(p \hat{\imath}+q \hat{\jmath}+r \hat{k})$ are collinear
Now $\overrightarrow{A B}=-2 \hat{\jmath}$ and $\overrightarrow{B C}=(p-1) \hat{\imath}+(q-1) \hat{\jmath}+$ $r \hat{k}$
Vector $\vec{A} B$ and $\vec{B} C$ must be collinear $\Rightarrow p=1, r=0$ and $q \neq 1$

189 (a,b,c)

We have,
$A M=$ projection of \vec{b} on $\vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
$\therefore \overrightarrow{A M}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \vec{a}$

Now, in $\triangle A D B$
$\overrightarrow{A D}=\overrightarrow{A M}+\overrightarrow{M D} \Rightarrow \overrightarrow{D M}=\overrightarrow{A M}-\overrightarrow{A D}$
$\Rightarrow \overrightarrow{D M}=\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}-\vec{b}$
Also, $\overrightarrow{D M}=\frac{1}{|\vec{a}|^{2}}\left[(\vec{a} \cdot \vec{b}) \vec{a}-|\vec{a}|^{2} \vec{b}\right]$
$\Rightarrow \overrightarrow{M D}=\frac{1}{|\vec{a}|^{2}}\left[|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right]$
Now, $\frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a}|^{2}}=\frac{1}{|\vec{a}|^{2}}[(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}]$

$$
=\overrightarrow{D M}
$$

190 (a,d)
Let $\vec{a}=2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
Then the diagonals of the parallelogram are
$\vec{p}=\vec{a}+\vec{b}$ and $\vec{q}=\vec{b}-\vec{a}$
i.e., $\vec{p}=3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k}, \hat{q}=-\hat{\imath}-2 \hat{\jmath}+8 \vec{k}$

So, unit vectors along the diagonals are
$\frac{1}{7}(3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k})$ and $\frac{1}{\sqrt{69}}(-\hat{\imath}-2 \hat{\jmath}+8 \hat{k})$
191 (a,c,d)
$\vec{a}=\frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}+\hat{k})$
$|\vec{a}|^{2}=\frac{1}{9}(4+4+1)=1 \Rightarrow|\vec{a}|=1$
Let $\vec{b}=2 \hat{\imath}-4 \hat{\jmath}+3 \hat{k}$. Then
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{5}{\sqrt{29}} \Rightarrow \theta \neq \frac{\pi}{3}$
Let $\vec{c}=-\hat{\imath}+\hat{\jmath}-\frac{1}{2} \hat{k}=\frac{-3}{2} \hat{a} \Rightarrow \vec{c} \| \vec{a}$
Let $\vec{d}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$. Then $\vec{a} \cdot \vec{d}=0 \Rightarrow \vec{a} \perp \vec{d}$
192 (a,b,c,d)
Since \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ are non-coplnar
$\vec{r}=x \vec{a}+y \vec{b}+z(\vec{a} \times \vec{b})$
$\therefore \vec{r} \times \vec{b}=\vec{a} \Rightarrow x \vec{a} \times \vec{b}+z\{(\vec{a} \cdot \vec{b}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{a}\}=\vec{a}$
$\Rightarrow-\left(1+z|\vec{b}|^{2} \vec{a}+x \vec{a} \times \vec{b}=0\right)($ since $\vec{a} \cdot \vec{b}=0)$
$\therefore x=0$ and $x=-\frac{1}{|\vec{b}|^{2}}$

Thus, $\vec{r}=y \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$, where y is the parameter 193 (\mathbf{a}, \mathbf{c})
$\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$
Taking cross with \vec{b} in the first equation, we
get $\vec{b} \times(\vec{a} \times \vec{b})=\vec{b} \times \vec{c}=\vec{a}$
$\Rightarrow|\vec{b}|^{2} \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}=\vec{a} \Rightarrow|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=0$
Also $|\vec{a} \times \vec{b}|=|\vec{c}| \Rightarrow|\vec{a}||\vec{b}| \sin \frac{\pi}{2}=|\vec{c}| \Rightarrow|\vec{a}|=|\vec{c}|$
194 (a,c)
We have $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}, \vec{c}=\hat{\imath}+\hat{\jmath}-$ $2 \hat{k}$
Any vector in the plane of \vec{b} and \vec{c} is
$\vec{u}=\mu \vec{b}+\lambda \vec{c}$
$=\mu(\hat{\imath}+2 \hat{\jmath}-\hat{k})+\lambda(\hat{\imath}+\hat{\jmath}-2 \hat{k})$
$=(\mu+\lambda) \hat{\imath}+(2 \mu+\lambda) \hat{\jmath}-(\mu+2 \lambda) \hat{k}$
Given that the magnitude of projection of \vec{u} on \vec{a} is
$\sqrt{2 / 3}$
$\Rightarrow \sqrt{\frac{2}{3}}=\left|\frac{\vec{u} \cdot \vec{a}}{|\vec{a}|}\right|$
$\Rightarrow \sqrt{\frac{2}{3}}=\left|\frac{2(\mu+\lambda)-(2 \mu+\lambda)-(\mu+2 \lambda)}{\sqrt{6}}\right|$
$\Rightarrow|-\lambda-\mu|=2$
$\Rightarrow \lambda+\mu=2$ or $\lambda+\mu=-2$
Therefore, the required vector is either
$2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$ or $-2 \hat{\imath}-\hat{\jmath}+5 \hat{k}$
195 (a,c)
Here $(l \vec{a}+m \vec{b}) \times \vec{b}=\vec{c} \times \vec{b} \Rightarrow l \vec{a} \times \vec{b}=\vec{c} \times \vec{b}$

$$
\begin{aligned}
\Rightarrow l(\vec{a} \times \vec{b})^{2}= & (\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b}) \Rightarrow l \\
& =\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}
\end{aligned}
$$

Similarly, $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^{2}}$
196 (c,d)
Since $[\vec{a} \vec{b} \vec{c}]=0, \vec{a}, \vec{b}$ and \vec{c} are coplanar vectors
Further, since \vec{d} is equally inclined to \vec{a}, \vec{b} and \vec{c}
$\vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=0$
$\vec{d} \cdot \vec{x}=\vec{d} \cdot \vec{y}=\vec{d} \cdot \vec{z}=0$
$\vec{d} \cdot \vec{r}=0$
197 (c,d)
Let \vec{a}, \vec{b} and \vec{c} lie in the $x-y$ plane
Let $\vec{a}=\hat{\imath}, \vec{b}=-\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\imath}$ and $\vec{c}=-\frac{1}{2} \hat{\imath}-\frac{\sqrt{3}}{2} \hat{\jmath}$.
Therefore,
$|\vec{p}+\vec{q}+\vec{r}|=|\lambda \vec{a}+\mu \vec{b}+v \vec{c}|$
$=\left|\lambda \hat{\imath}+\mu\left(-\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\jmath}\right)+v\left(-\frac{1}{2} \hat{\imath}-\frac{\sqrt{3}}{2} \hat{\jmath}\right)\right|$
$=\left|\left(\lambda-\frac{\mu}{2}-\frac{v}{2}\right) \hat{\imath}+\frac{\sqrt{3}}{2}(\mu-v) \hat{\jmath}\right|$
$=\sqrt{\left(\lambda-\frac{\mu}{2}-\frac{v}{2}\right)^{2}+\frac{3}{4}(\mu-v)^{2}}$
$=\sqrt{\lambda^{2}+\mu^{2}+v^{2}-\lambda \mu-\lambda v-\mu v}$
$=\frac{1}{\sqrt{2}} \sqrt{(\lambda-\mu)^{2}+(\mu-V)^{2}+(v-\lambda)^{2}}$
$\geq \frac{1}{\sqrt{2}} \sqrt{1+1+4}=\sqrt{3}$
$\Rightarrow|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to $\sqrt{3}$ and 2
198 (b,c)
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{1}{2} \vec{b}$
$\Rightarrow \vec{a} \cdot \vec{c}=\frac{1}{2}$ and $\vec{a} \cdot \vec{b}=0$
$\Rightarrow 1 \cdot 1 \cos \alpha=\frac{1}{2} \operatorname{and} \vec{a} \perp \vec{b}$
$\Rightarrow \alpha=\frac{\pi}{3}$ and $\vec{a} \perp \vec{b}$
200 (c)
$|\vec{u} \vec{v} \vec{w}|=|\vec{v} \vec{w} \vec{u}|=|\vec{w} \vec{u} \vec{v}|$
But $|\vec{v} \vec{u} \vec{w}|=-|\vec{u} \vec{v} \vec{w}|$
201 (a,c)
We have $[\vec{p} \vec{q} \vec{r}]=\frac{1}{[\vec{a} \vec{b} \vec{c}]}$. Therefore,
$[\vec{p} \vec{q} \vec{r}]>0$
a. $x>0, x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x} \geq 2$ (using A.M. \geq G.M)
b. Similarly, use A.M. \geq G.M.

202 (a,c)
Let $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{b}}+t \overrightarrow{\mathbf{c}}$
Or $\overrightarrow{\mathbf{r}}=(1+t) \hat{\mathbf{i}}+(2+t) \hat{\mathbf{j}}-(1+2 t) \hat{\mathbf{k}}$
\because Projection of $\overrightarrow{\mathbf{r}}$ on $\overrightarrow{\mathbf{a}}$ is $\sqrt{(2 / 3)}$.
$\therefore \frac{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}}{\mid \overrightarrow{\mathbf{a} \mid}}=\sqrt{\frac{2}{3}}$
or $\frac{2(1+t)-(2+t)-(1+2 t)}{\sqrt{6}}= \pm \sqrt{\frac{2}{3}}$
$\therefore-t-1= \pm 2$
$\therefore t=-3,1$
Putting in Eq. (i), we get
$\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}}$
Or $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{\imath}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
203 (a,b,d)
$\left.\begin{array}{rl}\vec{V}_{1} & =l \vec{a}+m \vec{b}+n \vec{c} \\ \vec{V}_{2} & =n \vec{a}+l \vec{b}+m \vec{c} \\ \vec{V}_{3} & =m \vec{a}+n \vec{b}+l \vec{c}\end{array}\right\}$ when \vec{a}, \vec{b} and \vec{c} are
non-coplanar
Therefore,
$\left[\vec{V}_{1} \vec{V}_{2} \vec{V}_{3}\right]=\left|\begin{array}{ccc}l & m & n \\ n & l & m \\ m & n & l\end{array}\right|=0$
$\Rightarrow(l+m+n)\left[(l-m)^{2}+(m-n)^{2}+(n-l)^{2}\right]$
$=0$
$\Rightarrow l+m+n=0$
Obviously, $l x^{2}+m x+n=0$ is satisfied by $x=1$
due $x=1$ due to (i)
$l^{3}+m^{3}+n^{3}=3 l m n$
$\Rightarrow(l+m+n)\left(l^{2}+m^{2}+n^{2}-l m-m n-l n\right)=$
0 , which is true
204 (a,d)
$|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$
$\Rightarrow \vec{a} \cdot \vec{b}=\frac{|\vec{b}|^{2}}{2}$
Also $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$
$=\frac{|\vec{b}|+2}{2}+\frac{1}{|\vec{b}|^{2}+2}-1$
$\geq \sqrt{2}-1$ (using A.M. \geq G.M.)
205 (a,b,c)
It is given that $\vec{\alpha}, \vec{b}$ and $\vec{\gamma}$ are coplanar vectors.
Therefore,
$[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0$
$\Rightarrow\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$
$\Rightarrow 3 a b c-a^{3}-b^{3}-c^{3}=0$
$\Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0$
$\Rightarrow(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
$\Rightarrow a+b+c=0\left[\because a^{2}+b^{2}+c^{2}-a b-b c-c a\right.$ $\neq 0]$
$\Rightarrow \vec{v} \cdot \vec{\alpha}=\vec{v} \cdot \vec{\beta}=\vec{v} \cdot \vec{\gamma}=0$
$\Rightarrow \vec{v}$ is perpendicular to $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$
206 (b,c,d)
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$
$\Rightarrow([\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}) \cdot(\vec{a} \times \vec{d})=0$
$\Rightarrow[\vec{a} \vec{c} \vec{d}][\vec{b} \vec{a} \vec{d}]=0$
\Rightarrow Either \vec{c} or \vec{b} must lie in the plane of \vec{a} and \vec{d}
207 (b,d)
For \vec{A}, \vec{B} and \vec{C} to form a left-handed system
$[\vec{A} \vec{B} \vec{C}]<0$
$\vec{A} \times \vec{B}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 4 \\ 1 & 1 & 5\end{array}\right|=11 \hat{\imath}-6 \hat{\jmath}-\hat{k}$
(i) is satisfied by options (b) and (d)

208 (a,b)
Given, $\frac{1}{6} \hat{\imath}-\frac{1}{3} \hat{\jmath}+\frac{1}{3} \hat{k}=(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$
$=[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}$
$=[\vec{a} \vec{b} \vec{d}] \vec{c}$
$[\because \vec{a}, \vec{b}$ and \vec{c} are coplanar]
$[\vec{a} \vec{b} \vec{d}]=(\vec{a} \times \vec{b}) \cdot \vec{d}$
$=|\vec{a} \times \vec{b}||\vec{d}| \cos \theta(\because \vec{d} \perp \vec{a}, \vec{d} \perp \vec{b}, \therefore \vec{d}| | \vec{a} \times \vec{b})$
$=a b \sin 30^{\circ} \cdot 1 \cdot(\pm 1)(\because \theta=0$ or $\pi)$
$=1 \cdot 1 \cdot \frac{1}{2} \cdot 1(\pm 1)= \pm \frac{1}{2}$
From (i),
$\vec{c}= \pm\left(\frac{1}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{2}{3} \hat{k}\right)= \pm \frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}$
209 (b,c)
Since, $\overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
Then, $|\overrightarrow{\mathbf{A C}}|=|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|$

$$
\begin{aligned}
& |\overrightarrow{\mathbf{A C}}|^{2}=(\overrightarrow{\mathbf{a}})^{2}+(\overrightarrow{\mathbf{b}})^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \\
& =\left\{(3 \vec{\alpha}-\vec{\beta})^{2}+(\vec{\alpha}+3 \vec{\beta})^{2}\right\}+2(3 \vec{\alpha}-\vec{\beta}) \cdot(\vec{\alpha} \\
& \quad+3 \vec{\beta})
\end{aligned}
$$

$=9 \vec{\alpha}^{2}+\vec{\beta}^{2}-6 \vec{\alpha} \cdot \vec{\beta}+\vec{\alpha}^{2}+9 \vec{\beta}^{2}+6 \vec{\alpha} \cdot \vec{\beta}+6 \alpha^{2}$ $-6 \beta^{2}+16 \vec{\alpha} \cdot \vec{\beta}$
$=16 \alpha^{2}+4 \beta^{2}+16 \vec{\alpha} \cdot \vec{\beta}$
$=64+16+16|\vec{\alpha}||\vec{\beta}| \cos \frac{\pi}{3}$
$=64+16+16 \times 2 \times 2 \times \frac{1}{2}$
$=64+16+32=112$
$\therefore A C=4 \sqrt{7}$, similarly $B D=4 \sqrt{3}$
210 (a,b,c)
Let $\vec{A}=\vec{a} \times \vec{b}, \vec{B}=\vec{c} \times \vec{d}$ and $\vec{C}=\vec{e} \times \vec{f}$
We know that $\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C}$.
$(\vec{A} \times \vec{B})$
$=(\vec{a} \times \vec{b}) \cdot[(\vec{c} \times \vec{d}) \times(\vec{e} \times \vec{f})]$
$=(\vec{a} \times \vec{b}) \cdot[\{(\vec{c} \times \vec{d}) \cdot \vec{f}\} \vec{e}-\{(\vec{c} \times \vec{d}) \cdot \vec{e}\} \vec{f}\}$
$=[\vec{c} \vec{d} \vec{f}][\vec{a} \vec{b} \vec{e}]-[\vec{c} \vec{d} \vec{e}][\vec{a} \vec{b} \vec{f}]$
Similarly, other parts can be obtained
211 (b,c)
We have
$\vec{A}+\vec{B}=\vec{a}$
$\Rightarrow \vec{A} \cdot \vec{a}+\vec{B} \cdot \vec{a}=\vec{a} \cdot \vec{a}$
$\Rightarrow 1+\vec{B} \cdot \vec{a}=a^{2}$ (given $\vec{A} \cdot \vec{a}=1$)
$\Rightarrow \vec{B} \cdot \vec{a}=a^{2}-1$ (i)

Also $\vec{A} \times \vec{B}=\vec{b}$
$\Rightarrow \vec{a} \times(\vec{A} \times \vec{B})=\vec{a} \times \vec{b}$
$\Rightarrow(\vec{a} \cdot \vec{B}) \vec{A}-(\vec{a} \cdot \vec{A}) \vec{B}=\vec{a} \times \vec{b}$
$\Rightarrow\left(a^{2}-1\right) \vec{A}-\vec{B}=\vec{a} \times \vec{b}$ (using (i) and
$\vec{a} \cdot \vec{A}=1$) (ii)
and $\vec{A}+\vec{B}=\vec{a}$ (iii)
From (ii) and (iii)
$\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
$\vec{B}=\vec{a}-\left\{\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}\right\}$
Or $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
Thus $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$ and $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
212 (a,b,c,d)
$a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0 \forall x \in R$
$\Rightarrow\left(a_{1}+a_{2}\right)+\sin ^{2} x\left(a_{3}-2 a_{2}\right)=0$
$\Rightarrow a_{1}+a_{2}=0$ and $a_{3}-2 a_{2}=0$
$\frac{a_{1}}{-1}=\frac{a_{2}}{1}=\frac{a_{3}}{2}=\lambda(\neq 0)$
$\Rightarrow a_{1}=-\lambda, a_{2}=\lambda, a_{3}=2 \lambda$
213 (b,d)
$(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{b}+\vec{a}$
$\Rightarrow\{(\vec{a}-\vec{b}) \cdot(2 \vec{a}+\vec{b})\}(\vec{b}+\vec{a})$

$$
\begin{aligned}
& -\{(\vec{a}-\vec{b}) \cdot(\vec{b}+\vec{a})\}(2 \vec{a}+\vec{b}) \\
& =\vec{b}+\vec{a}
\end{aligned}
$$

$\Rightarrow(2-\vec{a} \cdot \vec{b}-1)(\vec{b}+\vec{a})=\vec{b}+\vec{a}$
\Rightarrow either $\vec{b}+\vec{a}=\overrightarrow{0}$ or1 $-\vec{a} \cdot \vec{b}=1$
\Rightarrow either $\vec{b}=-\vec{a}$ or $\vec{a} \cdot \vec{b}=0$
\Rightarrow either $\theta=\pi$ or $\theta=\pi / 2$
214 (b,c)
Let \vec{R} be the resultant
Then $\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=(p+1) \hat{\imath}+4 \hat{\jmath}$
Given, $|\vec{R}|=5$. Therefore,
$(p+1)^{2}+16=25$
$\Rightarrow p+1= \pm 3$
$\therefore p=2,-4$
215 (a,b,c)
$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$
$\overrightarrow{B C}=\frac{2 \vec{u}}{|\vec{u}|}-\frac{\vec{u}}{|\vec{u}|}+\frac{\vec{v}}{|\vec{v}|}=\frac{\vec{u}}{|\vec{u}|}+\frac{\vec{v}}{|\vec{v}|}$
$\overrightarrow{A B} \cdot \overrightarrow{B C}=\left(\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}\right)\left(\frac{\vec{u}}{|\vec{u}|}+\frac{\vec{v}}{|\vec{v}|}\right)$

$$
=(\vec{u}-\vec{v}) \cdot(\vec{u}+\vec{v})=1-1=0
$$

$\Rightarrow \angle B=90^{\circ}$
$\Rightarrow 1+\cos 2 A+\cos 2 B+\cos 2 C=0$

216 (a,b,d)
$\vec{a}=[\pm(\hat{\imath}-\hat{\jmath}) \pm(\hat{\jmath}+\hat{k})]$
$= \pm(\hat{\imath}+\hat{k}), \pm(\hat{\imath}-2 \hat{\jmath}-\hat{k})$
217 (a,b,c)
We know that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=$ $\vec{c} \times \vec{a}$
Given $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0} \Rightarrow 2 \vec{a} \times \vec{b}=6 \vec{b} \times \vec{c}=3 \vec{c} \times$ \vec{a}

Hence $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=2(\vec{a} \times \vec{b})$ or
$6(\vec{b} \times \vec{c})$ or $3(\vec{c} \times \vec{a})$
218 (a,b,c,d)
Since \vec{a}, \vec{b} and \vec{c} are unit vectors inclined at an angle θ
$|\vec{a}|=|\vec{b}|=1$ and $\cos \theta=\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
Now $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$
$\Rightarrow \vec{a} \cdot \vec{c}=\alpha(\vec{a} \cdot \vec{a})+\beta(\vec{a} \cdot \vec{b}+\gamma\{\vec{a} \cdot(\vec{a} \times \vec{b})\}$
$\Rightarrow \cos \theta=\alpha|\vec{a}|^{2}(\because \vec{a} \cdot \vec{b}=0, \vec{a} .(\vec{a} \times \vec{b})=0)$
$\Rightarrow \cos \theta=\alpha$
Similarly, by taking dot product on both sides of
(i) by \vec{b}, we get $\beta=\cos \theta$
$\therefore \alpha=\beta$
Again, $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$
$\Rightarrow|\vec{c}|^{2}=|\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})|^{2}$
$=\alpha^{2}|\vec{a}|^{2}+\beta^{2}|\vec{b}|^{2}+\gamma^{2}|\vec{a} \times \vec{b}|^{2}+2 \alpha \beta(\vec{a} \cdot \vec{b})$

$$
\begin{aligned}
& +2 \alpha \gamma\{\vec{a} \cdot(\vec{a} \times \vec{b})\}+2 \beta \gamma(b \cdot\{\vec{a} \\
& \times \vec{b}\})
\end{aligned}
$$

$\Rightarrow 1=\alpha^{2}+\beta^{2}+\gamma^{2}|\vec{a} \times \vec{b}|^{2}$
$\Rightarrow 1=2 \alpha^{2}+\gamma^{2}\left\{|\vec{a}|^{2}|b|^{2} \sin ^{2} \pi / 2\right\}$
$\Rightarrow 1=2 \alpha^{2}+\gamma^{2} \Rightarrow \alpha^{2}=\frac{1-\gamma^{2}}{2}$
But $\alpha=\beta=\cos \theta$
$1=2 \alpha^{2}+\gamma^{2} \Rightarrow \gamma^{2}=1-2 \cos ^{2} \theta=-\cos 2 \theta$
$\therefore \beta^{2}=\frac{1-\gamma^{2}}{2}=\frac{1+\cos 2 \theta}{2}$
219 (a,c,d)
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
Or $(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{a}$
Or $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{c} \cdot \vec{b}) \vec{a}=\overrightarrow{0}$
Or $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
Or $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
Or $\vec{b} \times(\vec{c} \times \vec{a})=(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
220 (c)
We are given that $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$

Then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}=|\vec{a} \vec{b} \vec{c}|^{2}$
$=(\vec{a} \times \vec{b} \cdot \vec{c})^{2}$
$=\left(|\vec{a} \times \vec{b}| \cdot 1 \cos 0^{\circ}\right)^{2}($ since \vec{c} is \perp to \vec{a} and \vec{b}, \vec{c} is
\perp to $\vec{a} \times \vec{b})$
$=(|\vec{a} \times \vec{b}|)^{2}$
$=\left(|\vec{a}||\vec{b}| \cdot \sin \frac{\pi}{6}\right)^{2}$
$=\left(\frac{1}{2} \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}\right)^{2}$
$=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
221 (a,c)
Since, vectors $(x, x+1, x+2),(x+3, x+4, x+$
5) and $(x+6, x+7, x+8)$ are coplanar.
$\therefore\left|\begin{array}{ccc}x & x+1 & x+2 \\ x+3 & x+4 & x+5 \\ x+6 & x+7 & x+8\end{array}\right|=0$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
$\left|\begin{array}{ccc}x & 1 & 2 \\ x+3 & 1 & 2 \\ x+6 & 1 & 2\end{array}\right|=0$
$0=0 \quad\left(C_{2}=C_{3}\right)$
$\therefore x \in R$
222 (b,c)
Let $\vec{\alpha}=\hat{\imath}+x \hat{\jmath}+3 \hat{k}, \hat{\beta}=4 \hat{\imath}+(4 x-2) \hat{\jmath}+2 \hat{k}$
Given, $2|\vec{\alpha}|=|\vec{\beta}|$
$\Rightarrow 2 \sqrt{10+x^{2}}=\sqrt{20+4(2 x-1)^{2}}$
$\Rightarrow 10+x^{2}=5+\left(4 x^{2}-4 x+1\right)$
$\Rightarrow 3 x^{2}-4 x-4=0$
$\Rightarrow x=2,-\frac{2}{3}$
223 (a,b,c,d)
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$=(y z+y x+z x)\{(y-z) \hat{\imath}+(z-x) \hat{\jmath}+(x-y) \hat{k}\}$
Clearly this vector is parallel to $(y-z) \hat{\imath}+$
$(z-x) \hat{\jmath}+(x-y) \hat{k}$
It is orthogonal to $\hat{\imath}+\hat{\jmath}+\hat{k}$ as $(y-z)(1)+$
$(z-x)(1)+(x-y)(1)=0$
It is orthogonal to $(y+z) \hat{\imath}+(z+x) \hat{\jmath}+(x+y) \hat{k}$ As $(y-z)(y+z)+(z-x)(z+x)+(x-y)(x+$ $y)$
$=y^{2}-z^{2}+z^{2}-x^{2}+x^{2}-y^{2}=0$
Also it is orthogonal to $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
224 (a,d)
$\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\vec{b}=2 \hat{\imath}+\hat{\jmath}$
and $\vec{c}=3 \hat{\jmath}-2 \hat{k}$

Since $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 0 \\ 0 & 3 & -2\end{array}\right|=0$
Therefore, \vec{a}, \vec{b} and \vec{c} are coplanar vectors
Further since \vec{d} is equally inclined to \vec{a}, \vec{b} and \vec{c}, we have
$\therefore \vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=0$
$\therefore \vec{d} \cdot \vec{x}=\vec{d} \cdot \vec{y}=\vec{d} \cdot \vec{z}=0$
$\therefore \vec{d} \cdot \vec{r}=0$

225 (a,d)

Given $\vec{c}=\lambda_{1} \vec{a}+\vec{\lambda}_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$
and $\vec{a} \cdot \vec{b}=0,|\vec{a}|=1,|\vec{b}|=1$
From (i), $\vec{a} \cdot \vec{c}=\lambda_{1}, \vec{c} \cdot \vec{b}=\lambda_{2}$
and $\vec{c} \cdot(\vec{a} \times \vec{b})=|\vec{a} \times \vec{b}|^{2} \lambda_{3}$
$=\left(1.1 \sin 90^{\circ}\right)^{2} \lambda_{3}=\lambda_{3}$
Hence $\lambda_{1}+\lambda_{2}+\lambda_{3}=(\vec{a}+\vec{b}+\vec{a} \times \vec{b}) \cdot \vec{c}$
226 (a,c)
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and
$(\vec{a} \times \vec{b}) \times \vec{c}=-(\vec{c} \cdot \vec{b}) \vec{a}+(\vec{a} \cdot \vec{c}) \vec{b}$
We have been given $(\vec{a} \times(\vec{b} \times \vec{c})) \cdot((\vec{a} \times \vec{b}) \times$
$\vec{c})=0$. Therefore

$$
\begin{aligned}
& \begin{array}{l}
((\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}) \cdot((\vec{a} \cdot \vec{c}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{a})=0 \\
\Rightarrow(\vec{a} \cdot \vec{c})^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{b}) \\
\quad-(\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{c}) \\
\quad+(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a})=0 \\
\Rightarrow(\vec{a} \cdot \vec{c})^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{c})(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) \\
\Rightarrow(\vec{a} \cdot \vec{c}) \quad((\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}))=0 \\
\vec{a} \cdot \vec{c}=0 \operatorname{or}(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})
\end{array}
\end{aligned}
$$

227 (a)

$$
\begin{aligned}
& \sqrt{(p+2)^{2}+1}=\sqrt{p^{2}+1} \\
& \Rightarrow p^{2}+4+4 p+1=p^{2}+1 \\
& \Rightarrow 4 p=-4 \\
& \Rightarrow p=-1
\end{aligned}
$$

Hence a is the correct option
228 (c
We have, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$
and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}$

$$
\begin{align*}
\because(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}) \times(\overrightarrow{\mathbf{b}} & -\overrightarrow{\mathbf{c}}) \tag{ii}\\
& =\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{c}}
\end{align*}
$$

$=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}-\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$
$=0 \quad[$ from Eqs. (i) and (ii)]
$\therefore \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}$ and $\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}$ are parallel.
229 (c)
Since, $\overrightarrow{\mathbf{P Q}}$ is not parallel to, $\overrightarrow{\mathbf{T R}}$.

$\therefore, \overrightarrow{\mathbf{T R}}$ is resultant of, $\overrightarrow{\mathbf{R S}}$ and, $\overrightarrow{\mathbf{S T}}$ vectors.
$\Rightarrow \overrightarrow{\mathbf{P Q}} \times(\overrightarrow{\mathbf{R S}}+\overrightarrow{\mathbf{S T}}) \neq \overrightarrow{\mathbf{0}}$
But for statement II, we have $\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{R S}}=\overrightarrow{\mathbf{0}}$
Which is not possible as $\overrightarrow{\mathbf{P Q}}$ is not parallel to $\overrightarrow{\mathbf{R S}}$
Hence, statement I is true and statement II is false
230 (a)
$\vec{a}+\vec{b}=\vec{a}-\vec{b}$ are the diagonals of a
parallelogram whose sides are \vec{a} and \vec{b}
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
\Rightarrow Diagonals of the parallelogram have the same length
\Rightarrow The parallelogram is a rectangle $\Rightarrow \vec{a} \perp \vec{b}$
231 (d)
$V=\left|\begin{array}{lll}1 & a & 0 \\ a & 1 & 1 \\ 0 & 1 & a\end{array}\right|=a-1-a^{3}$
$\therefore \frac{d V}{d a}=1-3 a^{2}=0 \quad$ (say)
$\therefore a= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow \frac{d^{2} V}{d a^{2}}=-6 a$
$\left(\frac{d^{2} V}{d a^{2}}\right)_{\left(a=\frac{1}{\sqrt{3}}\right)}=-\frac{6}{\sqrt{3}}(-\mathrm{ve})$
$\therefore V$ is maximum at $a=\frac{1}{\sqrt{3}}$.
232

(d)

We know that the unit vector along bisector of unit vector \vec{u} and \vec{v} is $\frac{\vec{u}+\vec{v}}{2 \cos \frac{\theta}{2}}$ where θ is the angle
between vectors \vec{u} and \vec{v}
Hence statement 1 is false, however statement 2 is true

We have adjacent sides of triangle $|\vec{a}|=3,|\vec{b}|=4$
The length of the diagonal is $|\vec{a}+\vec{b}|=5$
Since it satisfies the Pythagoras theorem, $\vec{a} \perp \vec{b}$
Hence the parallelogram is a rectangle
Hence length of the other diagonal is $|\vec{a}-\vec{b}|=5$
234 (a)
Given vectors are non-coplanar. Hence the answer is (A)

235 (a)
Statement 2 is true
Also, $(\hat{\imath} \times \vec{a}) \cdot \vec{b}=\hat{\imath} \cdot(\vec{a} \times \vec{b})$
$\Rightarrow \vec{a} \times \vec{b}=(\hat{\imath} \cdot(\vec{a} \times \vec{b})) \hat{\imath}+(\vec{\jmath} \cdot(\vec{a} \times \vec{b})) \hat{\jmath}$

$$
+(\hat{k} \cdot(\vec{a} \times \vec{b})) \hat{k}
$$

236 (c)
Since, $\quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})-(\overrightarrow{\mathbf{b}}$.
$\overrightarrow{\mathbf{c}})(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}})$
$=\frac{3}{2} \times 2-\frac{1}{2} \times 3$
$=3-\frac{3}{2}=\frac{3}{2}$
237 (d)
$\overrightarrow{A D}=2 \hat{\imath}-\hat{k}, \overrightarrow{B D}=-2 \hat{\imath}-\hat{\jmath}-3 \hat{k}$ and $\overrightarrow{C D}=2 \hat{\imath}-\hat{\jmath}$
Volume of tetrahedron is $\frac{1}{6}[\overrightarrow{A D B D} \overrightarrow{C D}]=$
$\frac{1}{6} \left\lvert\, \begin{array}{ccc}0 & 2 & -1 \\ -2 & -1 & -3 \\ 2 & -1 & 0\end{array}\right. \|=\frac{8}{3}$
Also, the area of the triangle $A B C$ is $\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=$ $\frac{1}{2} \left\lvert\, \begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 2 \\ -2 & 3 & -1\end{array}\right. \|$
$=\frac{1}{2}|-9 \hat{\imath}-2 \hat{\jmath}+12 \hat{k}|$
$=\frac{\sqrt{229}}{2}$
Then $\frac{8}{3}=\frac{1}{3} \times($ distance of D from base $A B C) \times$ (area of triangle $A B C$)

Distance of D from base $A B C=16 / \sqrt{229}$
238 (b)
Let $\vec{d}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3} \vec{c}$
$\Rightarrow[\vec{d} \vec{a} \vec{b}]=\lambda_{3}[\vec{c} \vec{a} \vec{b}] \Rightarrow \lambda_{3}=1$
$[\vec{c} \vec{a} \vec{b}]=1$ (because \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors)

Similarly, $\lambda_{1}=\lambda_{2}=1$
$\Rightarrow \vec{d}=\vec{a}+\vec{b}+\vec{c}$
Hence statement 1 and Statement 2 are correct, but Statement 2 does not explain Statement 1 as it does not give the value of dot products

239 (d)

$\vec{A} \times((\vec{A} \cdot \vec{B}) \vec{A}-(\vec{A} \cdot \vec{A}) \vec{B}) \cdot \vec{C}$

$$
\begin{gathered}
=(\underbrace{\vec{A} \times(\vec{A} \cdot \vec{B}) \vec{A}}_{\text {zero }}-(\vec{A} \cdot \vec{A}) \vec{A} \times \vec{B})) \cdot \vec{C} \\
=-|\vec{A}|^{2}[\vec{A} \vec{B} \vec{C}]
\end{gathered}
$$

Now, $|\vec{A}|^{2}=4+9+36=49$
$[\vec{A} \vec{B} \vec{C}]=\left|\begin{array}{ccc}2 & 3 & 6 \\ 1 & 1 & -2 \\ 1 & 2 & 1\end{array}\right|$
$=2(1+4)-1(3-12)+1(-6$
-6)
$=10+9-12=7$
$\therefore\left|-|\vec{A}|^{2}[\vec{A} \vec{B} \vec{C}]\right|=49 \times 7=343$
240 (a)
$2 \vec{a}+3 \vec{b}-5 \vec{c}=0$
$\Rightarrow 3(\vec{b}-\vec{a})=5(\vec{c}-\vec{a}) \Rightarrow \overrightarrow{A B}=\frac{5}{3} \overrightarrow{A C}$
$\Rightarrow \overrightarrow{A B}$ and $\overrightarrow{A C}$ must be parallel since there is a common point A. The points A, B and C must be collinear

Obviously, statement 1 is true
$\cos 2 \alpha+\cos 2 \beta$

$$
+\cos 2 \gamma
$$

$$
=2 \cos ^{2} \alpha-1
$$

$$
+2 \cos ^{2} \beta-1+2 \cos ^{2} y-1
$$

$=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)-3=2-3=-1$
Hence, Statement 2 is true but does not explain
Statement 1 as it is result derived using the result in the statement

242 (b)
$\because \overrightarrow{\mathbf{B A}}=\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{A C}}$
$=\left(\frac{\overrightarrow{\mathbf{e}}}{|\overrightarrow{\mathbf{e}}|}+\frac{\overrightarrow{\mathbf{f}}}{|\overrightarrow{\mathbf{f}}|}\right)-\left(\frac{2 \overrightarrow{\mathbf{e}}}{|\overrightarrow{\mathbf{e}}|}\right)$
$=-\left(\frac{\overrightarrow{\mathbf{e}}}{|\overrightarrow{\mathbf{e}}|}+\frac{\overrightarrow{\mathbf{f}}}{|\overrightarrow{\mathbf{f}}|}\right)$
Now, $\overrightarrow{\mathbf{B A}} \cdot \overrightarrow{\mathbf{B C}}=-\left(\frac{\overrightarrow{\mathrm{e}}}{|\overrightarrow{\mathbf{e}}|}+\frac{\overrightarrow{\mathrm{f}}}{|\overrightarrow{\mathbf{f}}|}\right)\left(\frac{\overrightarrow{\mathrm{e}}}{|\overrightarrow{\mathrm{e}}|}+\frac{\overrightarrow{\mathrm{f}}}{|\overrightarrow{\mathbf{f}}|}\right)$
$=-\left(\frac{e^{2}}{e^{2}}-\frac{f^{2}}{f^{2}}\right)=-(1-1)=0$
$\Rightarrow \angle B=90^{\circ}$
$\therefore \cos 2 A+\cos 2 C=2 \cos (A+C) \cos (A-C)$
$=2 \cos \left(180^{\circ}-B\right) \cos (A-C)$
$=2 \cos 90^{\circ} \cos (A-C)$
$=0$
$\therefore \cos 2 A+\cos 2 B+\cos 2 C=-1$
Also, if $\angle C=90^{\circ}$
Then, $\cos 2 A+\cos 2 B=2 \cos (A+B) \cos (A-B)$
$=2 \cos \left(180^{\circ}-C\right) \cos (A-B)$
$=2 \cos 90^{\circ} \cos (A-B)$
$=0$
$\therefore \cos 2 A+\cos 2 B+\cos 2 C=-1$

243 (c)
$\because[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]$

$$
=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})\}
$$

$=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})) \overrightarrow{\mathbf{c}}-(\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})) \overrightarrow{\mathbf{b}}\}$
$=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot\{[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}] \overrightarrow{\mathbf{c}}-0\}$
$=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
$\because \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar.
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$ and then $[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]=0$
Hence, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are also coplanar.
244 (a)
$\frac{3}{2}=\frac{p}{3}=\frac{3}{q} \Rightarrow p=\frac{9}{2}$ and $q=2$
Thus, both the statements are true and Statement 2 is the correct explanation for statement for Statement 1
(b)

We know that vector in the direction of angular bisector of unit vectors \vec{a} and \vec{b} is $\frac{\vec{a}+\vec{b}}{2 \cos \frac{\theta}{2}}$

Where $\vec{a}=\overrightarrow{A B}=l_{1} \hat{\imath}+m_{1} \hat{\jmath}+n_{1} \hat{k}$ and $\vec{b}=\overrightarrow{A D}=$ $l_{2} \hat{\imath}+m_{2} \hat{\jmath}+n_{3} \hat{k}$

Thus unit vector along the bisector is
$\frac{l_{1}+l_{2}}{\cos \frac{\theta}{2}} \hat{\imath}+\frac{m_{1}+m_{2}}{\cos \frac{\theta}{2}} \hat{\jmath}+\frac{n_{1}+n_{2}}{\cos \frac{\theta}{2}} \hat{k}$
Hence statement 1 is true
Also, in triangle ABD, by cosine rule
$\cos \theta=\frac{A B^{2}+A D^{2}-B D^{2}}{2 A B \cdot A D}$
$\Rightarrow \cos \theta$
$=\frac{1+1-\left|\left(l_{1}-l_{2}\right) \hat{\imath}+\left(m_{1}-m_{2}\right) \hat{\jmath}+\left(n_{1}-n_{2}\right) \hat{k}\right|^{2}}{2}$
$\Rightarrow \cos \theta$
$=\frac{2-\left[\left(l_{1}-l_{2}\right)^{2}+\left(m_{1}-m_{2}\right)^{2}+\left(n_{1}-n_{2}\right)^{2}\right]}{2}$
$=\frac{2-\left[2-2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)\right]}{2}$
$=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$
Hence, Statement 2 is true but does not explain Statement 1

246 (b)
If $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}$ then, $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}|^{2}$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{b}}|^{2}$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}|^{2}=|\overrightarrow{\mathbf{b}}|^{2}$
But it is true that if $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$ does not implies that $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}$

247 (b)
$\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ only if \vec{a}, \vec{b} and \vec{c} are coplanar
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=0$
Hence, statement 2 is true
Also, $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$ even if $[\vec{a} \vec{b} \vec{c}] \neq 0$
Hence, Statement 2 is not the correct explanation for Statement 1

248 (a)
Let the three given unit vectors be \hat{a}, \hat{b} and \hat{c}.
Since they are mutually perpendicular
$\hat{a} \cdot(\hat{b} \times \hat{c})=1$. Therefore,
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=1$
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=1$
Hence, $a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}, a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$ and $a_{3} \hat{\imath}+b_{3} \hat{\jmath}+c_{3} \hat{k}$ may be mutually perpendicular
(b)
$\left.\begin{array}{rl}\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=0 & \Rightarrow \overrightarrow{\mathbf{r}} \perp \overrightarrow{\mathbf{a}} \\ \text { We have, } \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=0 & \Rightarrow \overrightarrow{\mathbf{r}} \perp \overrightarrow{\mathbf{b}} \\ \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}=0 & \overrightarrow{\mathbf{r}} \perp \overrightarrow{\mathbf{c}}\end{array}\right\}$
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar vectors.
Also, $\because \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=0$
Also, $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=0$
$0+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]+0=0$
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
Hence, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar.
250 (a)
$3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=(2 \vec{a}-2 \vec{b})$
$+(-5 \vec{a}+5 \vec{c})+(6 \vec{a}-6 \vec{d})$
$=-2 \overrightarrow{A B}+2 \overrightarrow{A C}-6 \overrightarrow{A D}=\overrightarrow{0}$
Therefore $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ are linearly dependent. Hence by Statement 2 Statement 1 is true

251 (b)
A vector along the bisector is $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}=\frac{-5 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}}{9}$
Hence $\vec{c}=-5 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}$ is along the bisector. It is obvious that \vec{c} makes an equal angle with \vec{a} and \vec{b}. However, statement 2 does not explain
Statement 1, as a vector equally inclined to given two vectors is not necessarily coplanar

252 (c)
In $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}=-\overrightarrow{C A} \Rightarrow \overrightarrow{A B}+\overrightarrow{B C}+$ $\overrightarrow{C A}=\vec{O}$
$\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}$ is the triangle law of addition
Hence, Statement 1 is true and Statement 2 is false

253 (a)
Given, $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
Now,
$|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}}|^{2}=(\mathbf{a} \times \hat{\mathbf{i}}) \cdot(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})$
$=\left(a_{3} \hat{\mathbf{j}}-a_{2} \hat{\mathbf{k}}\right) \cdot\left(a_{3} \hat{\mathbf{j}}-a_{2} \hat{\mathbf{k}}\right)$
$=a_{3}^{2}+a_{2}^{2}$
Similarly, $|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}|^{2}=a_{1}^{2}+a_{3}^{2}$
and $|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}}|^{2}=a_{1}^{2}+a_{1}^{2}$
$\therefore|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}}|^{2}+|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}|^{2}+|\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}}|^{2}$
$=2\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)=2|\overrightarrow{\mathbf{a}}|^{2}$
Hence, both A and R are true and (R) is correct reason for (A).
$\because|2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=5$
$\Rightarrow|2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=5^{2}$
$\Rightarrow 4 a^{2}+b^{2}-4 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=25$
$\Rightarrow 16+9-4 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=25$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\therefore|2 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{|2 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}}$
$=\sqrt{\left[4 a^{2}+b^{2}+4(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})\right]}$
$=\sqrt{(16+9+0)}=5$
$\therefore|\overrightarrow{\mathbf{p}}-\overrightarrow{\mathbf{q}}|=|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}|$
Which is possible only when $\overrightarrow{\mathbf{p}} \perp \overrightarrow{\mathbf{q}}$.
255 (a)
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are reciprocal then,
$\overrightarrow{\mathbf{a}}=\lambda \overrightarrow{\mathbf{b}}, \lambda \in R^{+}$and $|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|=1$
$\Rightarrow|\overrightarrow{\mathbf{a}}|=|\lambda||\overrightarrow{\mathbf{b}}|$
$\therefore|\lambda|=\frac{|\overrightarrow{\mathbf{a}}|}{|\overrightarrow{\mathbf{b}}|}=\frac{1}{|\overrightarrow{\mathbf{b}}|^{2}}$
$\because \lambda \in R^{+}$
$\therefore \lambda=\frac{1}{|\overrightarrow{\mathbf{b}}|^{2}}$
$\therefore \overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|^{2}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|^{2}} \cdot \overrightarrow{\mathbf{b}}=\frac{|\overrightarrow{\mathbf{b}}|^{2}}{|\overrightarrow{\mathbf{b}}|^{2}}=1$
256 (c)
Component of vector $\vec{b}=4 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ in the
direction of $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ is $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|}$ or $3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$. Then component in the direction perpendicular to the direction of $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ is $\vec{b}-3 \hat{\imath}+3 \hat{\jmath}+$ $3 \hat{k}=\hat{\imath}-\hat{\jmath}$
(b)
a. $|\vec{a}+\vec{b}|=|\vec{a}+2 \vec{b}|$
$a^{2}+b^{2}+2 \vec{a} \cdot \vec{b}=a^{2}+4 b^{2}+4 \vec{a} \cdot \vec{b}$
Or $2 \vec{a} \cdot \vec{b}=-3 b^{2}<0$
Hence, angle between \vec{a} and \vec{b} is obtuse
b. $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$
or $a^{2}+b^{2}+2 \vec{a} \cdot \vec{b}=a^{2}+4 b^{2}-4 \vec{a} \cdot \vec{b}$
or $6 \vec{a} \cdot \vec{b}=3 b^{2}$
Hence, angle between \vec{a} and \vec{b} is acute
c. $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
$\Rightarrow \vec{a} \cdot \vec{b}$
Hence, \vec{a} is perpendicular to \vec{b}
d. $\vec{c} \times(\vec{a} \times \vec{b})$ lies in the plane of vectors \vec{a} and \vec{b}

A vector perpendicular to this plane is parallel to $\vec{a} \times \vec{b}$

Hence, angle is 0°
258 (a)

$\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$
$\therefore \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=\vec{a}+\vec{a}$
$\overrightarrow{A D}=2 \overrightarrow{B C}=2 \vec{b}$
(because $A D$ is parallel to $B C$ and twice its length)
$\overrightarrow{C D}=\overrightarrow{A D}-\overrightarrow{A C}=2 \vec{b}-(\vec{a}+\vec{b})$
$=\vec{b}-\vec{a}$
$\overrightarrow{F A}=-\overrightarrow{C D}=\vec{a}-\vec{b}$
$\overrightarrow{D E}=-\overrightarrow{A B}=-\vec{a}$
$\overrightarrow{E F}=-\overrightarrow{B C}=-\vec{b}$
(v)

$$
\begin{align*}
& \overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{D E}=2 \vec{b}-\vec{a} \tag{vi}\\
& \overrightarrow{C E}=\overrightarrow{C D}+\overrightarrow{D E}=\vec{b}-\vec{a}-\vec{a}=\vec{b}-2 \vec{a} \tag{vii}
\end{align*}
$$

$\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$
$\therefore \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=\vec{a}+\vec{a}$ (i)
$\overrightarrow{A D}=2 \overrightarrow{B C}=2 \vec{b}$
(because $A D$ is parallel to $B C$ and twice its length)
$\overrightarrow{C D}=\overrightarrow{A D}-\overrightarrow{A C}=2 \vec{b}-(\vec{a}+\vec{b})$
$=\vec{b}-\vec{a}$
$\overrightarrow{F A}=-\overrightarrow{C D}=\vec{a}-\vec{b}$
$\overrightarrow{D E}=-\overrightarrow{A B}=-\vec{a}$
$\overrightarrow{E F}=-\overrightarrow{B C}=-\vec{b}$
$\overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{D E}=2 \vec{b}-\vec{a}$
$\overrightarrow{C E}=\overrightarrow{C D}+\overrightarrow{D E}=\vec{b}-\vec{a}-\vec{a}=\vec{b}-2 \vec{a}$
260 (a)
a. Vector $-3 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$ and $\hat{\imath}+\hat{\jmath}$ are coplanar with \vec{a} and \vec{b}
b. $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 2 & 2 \\ -2 & 2 & 2\end{array}\right|$
$=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
c. If \vec{c} is equally inclined to \vec{a} and \vec{b}, then we must have $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$,
which is true for vectors in options p, q, s
d. Vector is forming a triangle with a and b. Then $\vec{c}=\vec{a}+\vec{b}=-3 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}$
261 (b)
(i) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})=1$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})=1$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}$
(ii) $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})=-1$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})=-1$
$\therefore \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}$
(iii) $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right|=0+2+2=4$
(iv) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right|=2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$

262 (a)
$[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=36$
Or $[\vec{a} \vec{b} \vec{c}]=6$
\Rightarrow Volume of tetrahedron formed by vectors
\vec{a}, \vec{b} and \vec{c} is $\left.\frac{1}{6}[\vec{a} \vec{b} \vec{c}]\right]=1$
$[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]=12$
$\vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$ are coplanar
$\Rightarrow[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
263 (d)
a. $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 1 & 2 \\ -1 & -2 & -1\end{array}\right|=3 \hat{\imath}-3 \hat{\jmath}+3 \hat{k}$

Hence, the area of the triangle is $\frac{3 \sqrt{3}}{2}$
b. The area of the parallelogram is $3 \sqrt{3}$
c. The area of a parallelogram whose diagonals are $2 \vec{a}$ and $4 \vec{b}$ is $\frac{1}{2}|2 \vec{a} \times 4 \vec{b}|=12 \sqrt{3}$
d. Volume of the parallelepiped
$=|(\vec{a} \times \vec{b}) \cdot \vec{c}|=\sqrt{9+36+9}=3 \sqrt{6}$
264 (c)
a. $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$
$\Rightarrow \vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=6$
$\therefore|\vec{a}|=1$
b. \vec{a} is perpendicular to $\vec{b}+\vec{c}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0$
b I perpendicular to $a+c$
$\Rightarrow \vec{b} \cdot \vec{c}+\vec{b} \cdot \vec{c}=0$
\vec{c} is perpendicular to $\vec{a}+\vec{b}$
$\Rightarrow \vec{c} \cdot \vec{a}+\vec{a} \cdot \vec{c} \cdot \vec{b}=0$ (iii)
From (i), (ii) and (iii), we get
$\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
$\therefore|\vec{a}+\vec{b}+\vec{c}|=7$
c. $(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d})=21$
d. We know that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$
and $[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$
$=\left|\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right|$
$=32$
$\therefore[\vec{a} \vec{b} \vec{c}]=4 \sqrt{2}$
265 (b)
a. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular, then $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$
$=(|\vec{a}||\vec{b}||\vec{c}|)^{2}=16$
b. Given \vec{a} and \vec{b} are two unit vectors, i.e.,
$|\vec{a}|=|\vec{b}|=1$ and angle between them is $\pi / 3$
$\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} \Rightarrow \sin \frac{\pi}{3}=|\vec{a} \times \vec{b}|$
$\frac{\sqrt{3}}{2}|\vec{a} \times \vec{b}|$
Now $[\vec{a} \vec{b}+\vec{a} \times \vec{b} \vec{b}]=[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{a} \times \vec{b} \vec{b}]$
$=0+[\vec{a} \vec{a} \times \vec{b} \vec{b}]$
$=(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{a})$
$=-(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})$
$=-|\vec{a} \times \vec{b}|^{2}$
$=-\frac{3}{4}$
c. It \vec{b} and \vec{c} are orthogonal $\vec{b} \cdot \vec{c}=0$

Also, it is given that $\vec{b} \times \vec{c}=\vec{a}$. Now
$[\vec{a} \vec{a}+\vec{b} \vec{b}+\vec{c}]+[\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$
$=[\vec{a} \vec{b} \vec{c}]$
$=\vec{a} \cdot(\vec{b} \times \vec{c})$
$=\vec{a} \cdot \vec{a}=|\vec{a}|^{2}=1$ (because \vec{a} is a unit vector)
d. $[\vec{x} \vec{y} \vec{a}]=0$
therefore \vec{x}, \vec{y} and \vec{a} are coplanar (i)
$[\vec{x} \vec{y} \vec{b}]=0$
Therefore, \vec{x}, \vec{y} and \vec{b} are coplanar (ii)
Also, $[\vec{a} \vec{b} \vec{c}]=0$
Therefore, \vec{a}, \vec{b} and \vec{c} are coplanar (iii)
From (i), (ii) and (iii),
\vec{x}, \vec{y} and \vec{c} are coplanar. Therefore,
$[\vec{x} \vec{y} \vec{c}]=0$
266 (a)
a. Given equations are consistent if
$(\hat{\imath}+\hat{\jmath})+\lambda(\hat{\imath}+2 \hat{\jmath}-\hat{k})$
$=(\hat{\imath}+2 \hat{\jmath})+\mu(-\hat{\imath}+\hat{\jmath}+a \hat{k})$
$\Rightarrow 1+\lambda=1-\mu, 1+2 \lambda=2+\mu,-\lambda=a \mu$
$\Rightarrow \lambda=1 / 3$ and $\mu=-1 / 3$
$\Rightarrow a=1$
b. $a=\lambda \hat{\imath}-3 \hat{\jmath}-\hat{k}$
$\vec{b}=2 \lambda \hat{\imath}+\lambda \hat{\jmath}-\hat{k}$
Angle between $\vec{a} \cdot \vec{b}>0$
$\Rightarrow 2 \lambda^{2}-3 \lambda+1>0$
Or $(2 \lambda-1)(\lambda-1)>0$
Or $\lambda \in\left(-\infty, \frac{1}{2}\right) \cup(1, \infty)$
Also \vec{b} makes on obtuse angle with the axes.
Therefore,
$\vec{b} \cdot \hat{\imath}<0 \Rightarrow \lambda<0$
$\vec{b} \cdot \hat{\jmath}<0 \Rightarrow \lambda<0$ (ii)
Combining these two, we get $\lambda=-4,-2$
c. If vectors $2 \hat{\imath}-\hat{\jmath}+\hat{k}, \hat{\imath}+2 \hat{\jmath}+(1+a) \hat{k}$ and $3 \hat{\imath}+a \hat{\jmath}+5 \hat{k}$ are coplanar, then
$\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & 1+a \\ 3 & a & 5\end{array}\right|$
Or $a^{2}+2 a-8=0$
$\operatorname{Or}(a+4)(a-2)=0$
Or $a=-4,2$
d. $\vec{A}=2 \hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}$
$B=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$C=3 \hat{\imath}+\hat{\jmath}+0 . \hat{k}$
$\vec{A}+\lambda \vec{B}=2(1+\lambda) \hat{\imath}+\left(\lambda+\lambda^{2}\right) \hat{\jmath}+(3+\lambda) \hat{k}$
Now $(\vec{A}+\lambda \vec{B}) \perp \vec{C}$. Therefore,
$(\vec{A}+\lambda \vec{B}) \cdot \vec{C}=0$
Or $6(1+\lambda)+\left(\lambda+\lambda^{2}\right)+0=0$
Or $\lambda^{2}+7 \lambda+6=0$
$\operatorname{Or}(\lambda+6)(\lambda+1)=0$
Or $\lambda=-6,=-1$
$\Rightarrow|2 \lambda|=12,2$
(b)

The vector equations of $C D$ and $B E$ are
$\overrightarrow{\mathbf{r}}_{1}=(\hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}})+\frac{\lambda}{3}(7 \hat{\mathbf{\jmath}}-7 \hat{\mathbf{k}}) \quad \ldots(\mathrm{i})$
and $\overrightarrow{\mathbf{r}}_{2}=(-\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})+\frac{\mu}{3}(7 \hat{\mathbf{\imath}}-7 \hat{\mathbf{\jmath}}+7 \hat{\mathbf{k}})$
The intersection point of $\overrightarrow{\mathbf{C D}}$ and $\overrightarrow{\mathbf{B E}}$.

$i e, 1=-1+\frac{7 \mu}{3},-2+\frac{7 \lambda}{3}=1-\frac{7 \mu}{3}$
and $4-\frac{7 \lambda}{3}=1+\frac{7 \mu}{3}$
$\Rightarrow \mu=\frac{6}{7}$ and $\lambda=\frac{3}{7}$
Substituting the value of λ in Eq. (ii), we get
$\overrightarrow{\mathbf{r}}_{1}=\hat{\mathbf{\imath}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
268 (d)
The equation of the plane parallel to the given plane
$\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{i}}-12 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})+\lambda=0$
This plane passes through $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-4 \hat{\mathbf{k}}$.
Therefore, $(2 \hat{\mathbf{i}}-\hat{\mathbf{\jmath}}-4 \hat{\mathbf{k}}) \cdot(4 \hat{\mathbf{i}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})+\lambda=0$
$\Rightarrow 8+12+12+\lambda=0$
$\therefore \lambda=-32$
Hence, required plane is
$\overrightarrow{\mathbf{r}} \cdot(4 \hat{\mathbf{\imath}}-12 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})=32$
$\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]\left[\begin{array}{lll}\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} & \overrightarrow{\mathbf{w}}\end{array}\right]=\left|\begin{array}{lll}\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{u}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{u}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{u}} \\ \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{v}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{v}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{v}} \\ \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{w}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{w}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{w}}\end{array}\right|$
$\therefore\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]^{2}=\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]\left[\begin{array}{lll}\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}\end{array}\right]$
$=\left|\begin{array}{lll}\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}} \\ \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} \\ \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}\end{array}\right|$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=a^{2}=|\overrightarrow{\mathbf{a}}|^{2}=16$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \pi / 3=4 \cdot 4 \cdot \frac{1}{2}=8$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{c}}| \cos \pi / 3=4 \cdot 4 \cdot \frac{1}{2}=8$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}=b^{2}=|\overrightarrow{\mathbf{b}}|^{2}=16$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \pi / 3=4 \cdot 4 \cdot \frac{1}{2}=8$
$\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}=|\overrightarrow{\mathbf{c}}|^{2}=4^{2}=16$
From Eq. (i)
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}=\left|\begin{array}{ccc}16 & 8 & 8 \\ 8 & 16 & 8 \\ 8 & 8 & 16\end{array}\right|$
$=8^{3}\left|\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right|=8^{3} \cdot 4=64 \times 32$
$|[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]|=32 \sqrt{2}$
Volume of the parallelepiped $=|[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]|=32 \sqrt{2}$
270 (c)

$\overrightarrow{B L}=\frac{1}{3} \vec{b}$
$\therefore \overrightarrow{A L}=\vec{a}+\frac{1}{3} \vec{b}$
Let $\overrightarrow{A P}=\lambda \overrightarrow{A L}$ and P divides $D B$ in the ratio
$\mu: 1-\mu$
Then $\overrightarrow{A P}=\lambda \vec{a}+\frac{\lambda}{3} \vec{b}$
Also $\overrightarrow{A P}=\mu \vec{a}+(1-\mu) \vec{b}$
From (i) and (ii), $\lambda \vec{a}+\frac{\lambda}{3} \vec{b}=\mu \vec{a}+(1-\mu) \vec{b}$
$\therefore \lambda=\mu$ and $\frac{\lambda}{3}=1-\mu$
$\therefore \lambda=\frac{3}{4}$
Hence, P divides $A L$ in the ratio 3:1 and P divides $D B$ in the ratio $3: 1$
Similarly \mathcal{Q} divides $D B$ in the ratio 1:3
Thus $D Q=\frac{1}{4} D B$ and $P B=\frac{1}{4} D B$
$\therefore P Q=\frac{1}{2} D B$, i.e. $P Q: D B=1: 2$
271 (c)
Let the position vectors of A, B, C and D and be
$\vec{a}, \vec{b}, \vec{c}$ and \vec{d}, respectively
Then $O A$: $C B=2: 1$
$\Rightarrow \overrightarrow{O A}=2 \overrightarrow{C B}$
$\Rightarrow \vec{a}=2(\vec{b}-\vec{c})$
and $O D: A B=1: 3$
$3 \overrightarrow{O D}=\overrightarrow{A B}$
$\Rightarrow 3 \vec{d}=(\vec{b}-\vec{a})=\vec{b}-2(\vec{b}-\vec{c})($ using (i))
$\Rightarrow 3 \vec{d}=-\vec{b}+2 \vec{c}$
Let $O X: X C=\lambda: 1$ and $A X: X D=\mu: 1$
Now, X divides $O C$ in the ratio λ : 1 . Therefore,
P.V. of $X=\frac{\lambda \vec{c}}{\lambda+1}$

X also divides $A D$ in the ratio $\mu: 1$
P.V. of $X=\frac{\mu \vec{a}+\vec{a}}{\mu+1}$

From (iii) and (iv), we get
$\frac{\lambda \vec{c}}{\lambda+1}=\frac{\mu \vec{d}+\vec{a}}{\mu+1}$
$\Rightarrow\left(\frac{\lambda}{\lambda+1}\right) \vec{c}=\left(\frac{\mu}{\mu+1}\right) \vec{d}+\left(\frac{1}{\mu+1}\right) \vec{a}$
$\Rightarrow\left(\frac{\lambda}{\lambda+1}\right) \vec{c}=\left(\frac{\mu}{\mu+1}\right)\left(\frac{-\vec{b}+2 \vec{c}}{3}\right)$
$+\left(\frac{1}{\mu+1}\right) 2(\vec{b}-\vec{c})($ using (i)and (ii))
$\Rightarrow\left(\frac{\lambda}{\lambda+1}\right) \vec{c}=\left(\frac{6-\mu}{3(\mu+1)}\right) \vec{b}$
$+\left(\frac{2 \mu}{3(\mu+1)}-\frac{2}{\mu+1}\right) \vec{c}$
$\Rightarrow\left(\frac{\lambda}{\lambda+1}\right) \vec{c}=\left(\frac{6-\mu}{3(\mu+1)}\right) \vec{b}$
$+\left(\frac{2 \mu-6}{3(\mu+1)}\right) \vec{c}$
$\Rightarrow\left(\frac{6-\mu}{3(\mu+1)}\right) \vec{b}+\left(\frac{2 \mu-6}{3(\mu+1)}-\frac{\lambda}{\lambda+1}\right)$
$\vec{c}=\overrightarrow{0}$
$\Rightarrow \frac{6-\mu}{3(\mu+1)}=0$ and $\frac{2 \mu-6}{3(\mu+1)}-\frac{\lambda}{\lambda+1}$
$=0($ as \vec{b} and \vec{c} are non - collinear $)$
$\Rightarrow \mu=6, \lambda=\frac{2}{5}$
Hence $O X: X C=2: 5$
272 (c)
Consider the regular hexagon $A B C D E F$ with centre at O (origin)

$\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}=2 \overrightarrow{A O}+2 \overrightarrow{O B}+2 \overrightarrow{O C}$
$=2(\overrightarrow{A O}+\overrightarrow{O B})+2 \overrightarrow{O C}$
$=2 \overrightarrow{A B}+2 \overrightarrow{A B} \quad(\because \overrightarrow{O C}=\overrightarrow{A B})$
$=4 \overrightarrow{A B}$
$\vec{R}=\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}$
$=\overrightarrow{E D}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{C D}(\because \overrightarrow{A B}=\overrightarrow{E D}$ and $\overrightarrow{A F}$ $=\overrightarrow{C D})$
$=(\overrightarrow{A C}+\overrightarrow{C D})+(\overrightarrow{A E}+\overrightarrow{E D})+\overrightarrow{A D}$
$=\overrightarrow{A D}+\overrightarrow{A D}+\overrightarrow{A D}=3 \overrightarrow{A D}=6 \overrightarrow{A O}$
273 (b)
Taking dot product of $\vec{u}+\vec{v}+\vec{w}=\vec{a}$ with \vec{u}, we have
$1+\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}=\vec{a} \cdot \vec{u}=\frac{3}{2} \Rightarrow \vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}=\frac{1}{2}$ (i)

Similarly, taking dot product with \vec{v}, we have
$\vec{u} \cdot \vec{v}+\vec{w} \cdot \vec{v}=\frac{3}{4}$
Also, $\vec{a} \cdot \vec{u}+\vec{a} \cdot \vec{v}+\vec{a} \cdot \vec{w}=\vec{a} \cdot \vec{a}=4$
$\Rightarrow \vec{a} \cdot \vec{w}=4-\left(\frac{3}{2}+\frac{7}{4}\right)=\frac{3}{4}$
Again, taking dot product with \vec{w}, we have
$\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}=\frac{3}{4}-1=-\frac{1}{4}$
Adding (i), (ii) and (iii), we have
$2(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w})=1$
$\Rightarrow \vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}=\frac{1}{2}$
Subtracting (i), (ii) and (iii) from (iv), we have $\vec{v} \cdot \vec{w}=0, \vec{u} \cdot \vec{w}=-\frac{1}{4}$ and $\vec{u} \cdot \vec{v}=\frac{3}{4}$
Now, the equation $\vec{u} \times(\vec{v} \times \vec{w})=\vec{b}$ and
$(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}$ can be written as $(\vec{u} \cdot \vec{w}) \vec{v}-$
$(\vec{u} \cdot \vec{v}) \vec{w}=\vec{b}$ and $(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{v} \cdot \vec{w}) \vec{u}=\vec{c} \Rightarrow$ $-\frac{1}{4} \vec{v}-\frac{3}{4} \vec{w}=\vec{b},-\frac{1}{4} \vec{v}=\vec{c}$, i. e., $\vec{v}=-4 \vec{c}$
$\Rightarrow \vec{c}-\frac{3}{4} \vec{w}=\vec{b} \Rightarrow \vec{w}=\frac{4}{3}(\vec{c}-\vec{b})$ and $\vec{u}=\vec{a}-\vec{v}-$ $\vec{w}=\vec{a}+4 \vec{c}-\frac{4}{3} \vec{c}+\frac{4}{3} \vec{b}=\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
274 (d)
Given that $|\vec{x}|=|\vec{y}|=|\vec{z}|=\sqrt{2}$ and they are inclined at an angle of 60° with each other
$\therefore \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{z}=\vec{z} \cdot \vec{x}=\sqrt{2} \cdot \sqrt{2} \cos 60^{\circ}=1$
$\vec{x} \times(\vec{y} \times \vec{z})=\vec{a} \Rightarrow(\vec{x} \cdot \vec{z}) \vec{y}-(\vec{x} \cdot \vec{y}) \vec{z}=\vec{a} \Rightarrow \vec{y}-$ $\vec{z}=\vec{a}$ (i)
Similarly, $\vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \Rightarrow \vec{z}-\vec{x}=\vec{b}$
$\vec{y}=\vec{a}+\vec{z}, \vec{x}=\vec{z}-\vec{b}($ from (i)and (ii))(iii)
Now, $\vec{x} \times \vec{y}=\vec{c}$
$\Rightarrow(\vec{z}-\vec{b}) \times(\vec{z}+\vec{a})=\vec{c}$
$\Rightarrow \vec{z} \times \vec{a}-\vec{b} \times \vec{z}-\vec{b} \times \vec{a}=\vec{c}$
$\Rightarrow \vec{z} \times(\vec{a}+\vec{b})=\vec{c}+(\vec{b} \times \vec{a})(\mathrm{iv})$
$\Rightarrow(\vec{a}+\vec{b}) \times\{\vec{z} \times(\vec{a}+\vec{b})\}$

$$
=(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}+\vec{b}) \times(\vec{b} \times \vec{a})
$$

$\Rightarrow(\vec{a}+\vec{b})^{2} \vec{z}-\{(\vec{a}+\vec{b}) \cdot \vec{z}\}(\vec{a}+\vec{b})=(\vec{a}+\vec{b}) \times$
$\vec{c}+|\vec{a}|^{2} \vec{b}-|\vec{b}|^{2} \vec{a}+(\vec{a} \cdot \vec{b})(\vec{b}-\vec{a})(\mathrm{v})$
Now, (i) $\Rightarrow|\vec{a}|^{2}=|\vec{y}-\vec{z}|^{2}=2+2-2=2$
Similarly, (ii) $\Rightarrow|\vec{b}|^{2}=2$
Also (i) and (ii) $\Rightarrow \vec{a}+\vec{b}=\vec{y}-\vec{x} \Rightarrow|\vec{a}+\vec{b}|^{2}=2$
(vi)

Also $(\vec{a}+\vec{b}) \cdot \vec{z}=(\vec{y}-\vec{x}) \cdot \vec{z}=\vec{y} \cdot \vec{z}-\vec{x} \cdot \vec{z}=1-$ $1=0$
And $\vec{a} \cdot \vec{b}=(\vec{y}-\vec{z}) \cdot(\vec{z}-\vec{x})$
$=\vec{y} \cdot \vec{z}-\vec{x} \cdot \vec{y}-|\vec{z}|^{2}+\vec{x} \cdot \vec{z}=-1$
Thus from (v), we have $2 \vec{z}=(\vec{a}+\vec{b}) \times \vec{c}+$
$2(\vec{b}-\vec{a})-(\vec{b}-\vec{a})$ or $\vec{z}=(1 / 2)[(\vec{a}+\vec{b}) \times \vec{c}+$ $b-a$
$\therefore \vec{y}=\vec{a}+\vec{z}=(1 / 2)[(\vec{a}+\vec{b}) \times \vec{c}+\vec{b}+\vec{a}]$ and $\vec{x}=\vec{z}-\vec{b}=(1 / 2)[(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})]$
(b)

Given
$\vec{x} \times \vec{y}=\vec{a}(\mathrm{i})$
$\vec{y} \times \vec{z}=\vec{b}$ (ii)
$\vec{x} \cdot \vec{b}=\gamma$ (iii)
$\vec{x} \cdot \vec{y}=1 \quad$ (iv)
$\vec{y} \cdot \vec{z}=1$ (v)
From (ii), $\vec{x} \cdot(\vec{y} \times \vec{z})=\vec{x} \cdot \vec{b}=\gamma \Rightarrow[\vec{x} \vec{y} \vec{z}]=\gamma$
From (i) and (ii) $(\vec{x} \times \vec{y}) \times(\vec{y} \times \vec{z})=\vec{a} \times \vec{b}$
$\therefore[\vec{x} \vec{y} \vec{z}] \vec{y}-[\vec{y} \vec{y} \vec{z}] \vec{x}=\vec{a} \times \vec{b} \Rightarrow \vec{y}=\frac{\vec{a} \times \vec{b}}{\gamma}$
Also from (i), we get $(\vec{x} \times \vec{y}) \times \vec{y}=\vec{a} \times \vec{y}$
$\Rightarrow(\vec{x} \cdot \vec{y}) \vec{y}-(\vec{y} \cdot \vec{y}) \vec{x}=\vec{a} \times \vec{y} \Rightarrow \vec{x}$

$$
\begin{aligned}
& =\left(1 /|\vec{y}|^{2}\right)(\vec{y}-\vec{a} \times \vec{y}) \\
& =\frac{\gamma^{2}}{|\vec{a} \times \vec{b}|^{2}}\left[\frac{\vec{a} \times \vec{b}}{\gamma}-\frac{\vec{a} \times(\vec{a} \times \vec{b})}{\gamma}\right]
\end{aligned}
$$

$\Rightarrow \vec{x} \frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
Also from (ii), $(\vec{y} \times \vec{z}) \times \vec{y}=\vec{b} \times \vec{y} \Rightarrow|\vec{y}|^{2} \vec{z}-$ $(\vec{z} \cdot \vec{y}) \vec{y}=\vec{b} \times \vec{y}$
$\Rightarrow \vec{z}=\frac{1}{|\vec{y}|^{2}}[\vec{y}+\vec{b} \times \vec{y}]$

$$
=\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]
$$

276 (b)
$\vec{P} \times \vec{B}=\vec{A}-\vec{P}$ and $|\vec{A}|=|\vec{B}|=1$ and $\vec{A} \cdot \vec{B}=0$ is given
Now $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$
$(\vec{P} \times \vec{B}) \times \vec{B}=(\vec{A}-\vec{P}) \times \vec{B}$ (taking cross product with \vec{B} on the sides)
$\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=\vec{A} \times \vec{B}-\vec{P} \times \vec{B}$
$\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-\vec{P}=\vec{A} \times \vec{B}-\vec{A}+\vec{P}$
$\Rightarrow 2 \vec{P}=\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B}$
$\Rightarrow \vec{P}=\frac{\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B}}{2}$
Taking dot product with \vec{B} on both sides of (i), we get
$\vec{P} \cdot \vec{B}=\vec{A} \cdot \vec{B}-\vec{P} \cdot \vec{B}$
$\Rightarrow \vec{P} \cdot \vec{B}=0$
$\Rightarrow \vec{P}=\frac{\vec{A}+\vec{B} \times \vec{A}}{2}$
$\operatorname{Now}(\vec{P} \times \vec{B}) \times \vec{B}=(\vec{P} \cdot \vec{B}) \cdot \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=-\vec{P}$ $\vec{P}, \vec{A}, \vec{P} \times \vec{B}(=\vec{A}-\vec{P})$ are dependent
Also $\vec{P} \cdot \vec{B}=0$
And $|\vec{P}|^{2}=\left|\frac{\vec{A}-\vec{A} \times \vec{B}}{2}\right|^{2}$

$$
=\frac{|\vec{A}|^{2}|\vec{A} \times \vec{B}|^{2}}{4}
$$

277 (b)

$$
=\frac{1+1}{4}=\frac{1}{2} \Rightarrow|\vec{P}|=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
& \vec{a}=\left[(2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k}) \cdot \frac{(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})}{7}\right] \frac{2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}}{7} \\
& =\frac{-41}{49}(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}) \\
& \vec{a}=\frac{-41}{49}\left((2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}) \cdot \frac{(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})}{7}\right) \\
& \quad \times \frac{(-2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})}{7} \\
& =\frac{-41}{(49)^{2}}(-4-9+36)(-2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \\
& =\frac{943}{49^{2}}(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})
\end{aligned}
$$

Point G is $\left(\frac{4}{3}, \frac{1}{3}, \frac{8}{3}\right)$. Therefore,
$|\overrightarrow{A G}|^{2}=\left(\frac{5}{3}\right)^{2}+\frac{1}{9}+\left(\frac{5}{3}\right)^{2}=\frac{51}{9}$

Or $|\overrightarrow{A G}|=\frac{\sqrt{51}}{3}$
$\overrightarrow{A B}=-4 \hat{\imath}+4 \hat{\jmath}+0 \hat{k}$
$\overrightarrow{A C}=2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$

$\therefore \overrightarrow{A B} \times \overrightarrow{A C}=-8-8\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right|$
$=8(\hat{\imath}+\hat{\jmath}-2 \hat{k})$
Area of $\triangle A B C=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=4 \sqrt{6}$
$\overrightarrow{A D}=-3 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$
The length of the perpendicular from the vertex D on the opposite face
$=\mid$ Projection of $\overrightarrow{A D}$ on $\overrightarrow{A B} \times \overrightarrow{A C} \mid$
$=\left|\frac{(-3 \hat{\imath}-5 \hat{\jmath}+3 \hat{k})(\hat{\imath}+\hat{\jmath}-2 \hat{k})}{\sqrt{6}}\right|$
$=\left|\frac{-3-5-6}{\sqrt{6}}\right|=\frac{14}{\sqrt{6}}$
279 (c)
Let point D be $\left(a_{1}, a_{2}, a_{3}\right)$
$a_{1}+1=3$ or $a_{1}=2$
$a_{2}+0=1$ or $a_{2}=1$
$a_{3}-1=7$ or $a_{3}=8$
$\therefore D(2,1,8)$

$\vec{d}=\left|\frac{(\overrightarrow{A B}) \times(\overrightarrow{A D})}{|\overrightarrow{A B}|}\right|$
$\overrightarrow{A B}=-\hat{\imath}+\hat{\jmath}-5 \hat{k}$
$\overrightarrow{A D}=0 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}$
$\overrightarrow{A B} \times \overrightarrow{A D}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 1 & -5 \\ 0 & 2 & 4\end{array}\right|$
$=14 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
$=2(7 \hat{\imath}+2 \hat{\jmath}-\hat{k})$
$\Rightarrow d=2 \sqrt{2}$
280 (d)
Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}$
$x^{2}+y^{2}+8 x-10 y+40=0$, which is a circle centre $C(-4,5)$, radius $r=1$
$p_{1}=\max \left\{(x+2)^{2}+(y-3)^{2}\right\}$
$p_{2}=\min \left\{(x+2)^{2}+(y-3)^{2}\right\}$
Let P be $(-2,3)$. Then
$C P=\sqrt{2}, r=1$
$p_{2}=(2 \sqrt{2}-1)^{2}$
$p_{1}=(2 \sqrt{2}+1)^{2}$
$p_{1}+p_{2}=18$
Slope $=A B=\left(\frac{d y}{d x}\right)_{(2,2)}=-2$
Equation of $A B, 2 x+y=6$
$\overrightarrow{O A}=2 \hat{\imath}+2 \hat{\jmath}, \overrightarrow{O B}=3 \hat{\imath}$
$\overrightarrow{A B}=\hat{\imath}-2 \hat{\jmath}$
$\overrightarrow{A B} \cdot \overrightarrow{O B}=(\hat{\imath}-2 \hat{\jmath})(3 \hat{\imath})=3$
281 (a)
$\vec{a}=\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}$
$\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$
$\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$

$\overrightarrow{A B} \cdot \frac{\vec{a}}{|\vec{a}|}=\frac{|\vec{a}|}{3} \Rightarrow \overrightarrow{A B} \cdot \vec{a}=\frac{|\vec{a}|^{2}}{3}$
$\overrightarrow{A C} \cdot \frac{\vec{a}}{|\vec{a}|}=\frac{|\vec{a}|}{3} \Rightarrow \overrightarrow{A C} \cdot \vec{a}=\frac{|\vec{a}|^{2}}{3}$
$\therefore(\overrightarrow{A B} \times \overrightarrow{A C}) \times \vec{a}=\vec{b} \times \vec{a}$
$\therefore \frac{|\vec{a}|^{2}}{3} \overrightarrow{A C}-\frac{|a|^{2}}{3} \overrightarrow{A B}=\vec{b} \times \vec{a}$
$\therefore \overrightarrow{A C}-\overrightarrow{A B}=3 \frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
$|a|^{2}=\overrightarrow{A B} \cdot \vec{a}+\overrightarrow{A C} \cdot \vec{a}+\overrightarrow{A D} \cdot \vec{a}$
$\therefore \frac{|\vec{a}|^{2}}{3}=\overrightarrow{A D} \cdot \vec{a}$
$(\overrightarrow{A D} \times \overrightarrow{A B}) \times \vec{a}=\vec{c} \times \vec{a}$
$\overrightarrow{A B}-\overrightarrow{A D}=3 \frac{\vec{c} \times \vec{a}}{|a|^{2}}$
From (i), (ii) and (iii), we get
$A B=\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
Now from (ii) and(iii), we get $\overrightarrow{A C}$ and $\overrightarrow{A D}$ as
$\overrightarrow{A C}=\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
$\overrightarrow{A D}=\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{c} \times \vec{a})}{|\vec{a}|^{2}}$

Let $\vec{R}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$\vec{u}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} ; \vec{v}=2 \hat{\imath}+\hat{\jmath}+4 \hat{k} ; \vec{w}=\hat{\imath}+3 \hat{\jmath}+3 \hat{k}$ $(\vec{u} \cdot \vec{R}-15) \hat{\imath}+(\vec{v} \cdot \vec{R}-30) \hat{\jmath}+(\vec{w} \cdot \vec{R}-25) \hat{k}=\overrightarrow{0}$ (given)
So $\vec{u} \cdot \vec{R}=15 \Rightarrow x-2 y+3 z=15$ (i)
$\vec{v} \cdot \vec{R}=30 \Rightarrow 2 x+y+4 z=30$
$\vec{w} \cdot \vec{R}=25 \Rightarrow x+3 y+3 z=25$ (iii)
Solving, we get
$x=4$
$y=2$
$z=5$
283 (2)
Let $\vec{a}=x \hat{\imath}-3 \hat{\jmath}-\hat{k}$ and $\vec{b}=2 x \hat{\imath}+x \hat{\jmath}-\hat{k}$ be the adjacent sides of the parallelogram now angle between \vec{a} and \vec{b} is acute

$\Rightarrow|\vec{a}+\vec{b}|>|\vec{a}-\vec{b}|$
$\Rightarrow|3 x \hat{\imath}+(x-3) \hat{\jmath}-2 \hat{k}|^{2}>|-x \hat{\imath}-(x+3) \hat{\jmath}|^{2}$
$\Rightarrow 9 x^{2}+(x-3)^{2}+4>x^{2}+(x+3)^{2}$
$\Rightarrow 8 x^{2}-12 x+4>0$
$\Rightarrow 2 x^{2}-3 x+1>0$
$\Rightarrow(2 x-1)(x-1)>0$
$\Rightarrow x<1 / 2$ or $x>1$
Hence the least positive integral value is 2

284 (7)
$\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
L.H.S. $=\left[\begin{array}{lll}3 \vec{a}+\vec{b} & 3 \vec{b}+\vec{c} & 3 \vec{c}+\vec{a}\end{array}\right]$
$=[3 \vec{a} 3 \vec{b} 3 \vec{c}]+[\vec{b} \vec{c} \vec{a}]$
$=3^{3}[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{b} \vec{c}]$
$=28[\vec{a} \vec{b} \vec{c}]$
285 (1)
Given, $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$
$\Rightarrow(\vec{u} \times \vec{v}+\vec{u}) \times \vec{u}=\vec{v}$
$\Rightarrow(\vec{u} \times \vec{v}) \times \vec{u}=\vec{v}$
$\Rightarrow \vec{v}-(\vec{\mu} \cdot \vec{v})=\vec{v}$
$\Rightarrow(\vec{u} \cdot \vec{v}) \vec{u}=0 \Rightarrow(\vec{u} \vec{v})=0$
Now, $[\vec{u} \vec{v} \vec{w}]=\vec{u} \cdot(\vec{v} \times \vec{w})$
$=\vec{u} \cdot(\vec{v} \times(\vec{u} \times \vec{v}+\vec{u}))$
$=\vec{u} \cdot(\vec{v} \times(\vec{u} \times \vec{v})+\vec{v} \times \vec{u})$
$=\vec{u}\left(\overrightarrow{v^{2}} \vec{u}-(\vec{u} \cdot \vec{v}) \vec{v}+\vec{v} \times \vec{u}\right)=\overrightarrow{v^{2} u^{2}}=1$
286 (9)
Vector $\vec{a}=\hat{\imath}+2 \hat{\jmath}-\hat{k}, \vec{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{c}=\lambda \hat{\imath}+\hat{\jmath}+$ $2 \hat{k}$ are coplanar
$\Rightarrow\left|\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 1 \\ \lambda & 1 & 2\end{array}\right|=0$
$\Rightarrow \lambda-3+2(-5)=0$
$\Rightarrow \lambda=13$

287 (7)
Let the vertices be A, B, C, D and O be the origin
$\therefore \vec{O} A=\hat{\imath}-6 \hat{\jmath}+10 \hat{k}, O B=\hat{\imath}-3 \hat{\jmath}+7 \hat{k}$,
$\vec{O} C=-5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}, O D=7 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$
$\therefore \vec{A} B=\vec{O} B-\vec{O} A=-2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
$\vec{A} C=\vec{O} C-\vec{O} A=4 \hat{\imath}+5 \hat{\jmath}+(\lambda-10) \hat{k}$
$\vec{A} D=\vec{O} D-\vec{O} A=6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
Volume of tetrahedron
$=\frac{1}{6}[\vec{A} B \vec{A} C \vec{A} D]=\frac{1}{6}\left|\begin{array}{ccc}-2 & 3 & -3 \\ 4 & 5 & -10 \\ 6 & 2 & -3\end{array}\right|$
$=\frac{1}{6}\{-2(-15-2 \lambda+20)-3(-12-6 \lambda+60)$ $-3(8-30)\}$
$=\frac{1}{6}(4 \lambda-10-144+18 \lambda+66)$
$=\frac{1}{6}(22 \lambda-88)=11$
Or $2 \lambda-8=6$
Or $\lambda=7$
288
(3)

Given, $\vec{a}+\vec{b}=\vec{c}$
Now vector \vec{c} is along the diagonal of the parallelogram which has adjacent side vector \vec{a} and \vec{b}. Since \vec{c} is also a unit vector, triangle formed by vectors \vec{a} and \vec{b} is an equilateral triangle
Then, area of triangle is $\frac{\sqrt{3}}{4}$

289 (1)
$\vec{a} \cdot \vec{b} \Rightarrow \vec{a} \perp \vec{b}$
$\vec{a} \cdot \vec{c}=0 \Rightarrow \vec{a} \perp \vec{c}$
$\Rightarrow \vec{a} \perp \vec{b}-\vec{c}$
$|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|=|\vec{a} \times(\vec{b}-\vec{c})|$
$=|\vec{a}||\vec{b}-\vec{c}|=|\vec{b}-\vec{c}|$
Now $|\vec{b}-\vec{c}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}-2|\vec{b}||\vec{c}| \cos \frac{\pi}{3}$
$=2-2 x \times \frac{1}{2}=1$
$|\vec{b}-\vec{c}|=1$
290 (6)
Here $\vec{O} A=\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}, \vec{O} C=\vec{b}$
$q=$ Area of parallelogram with $O A$ and $O C$ as adjacent sides
$\therefore q=|\vec{a} \times \vec{b}|$

$p=$ Area of quadrilateral $O A B C$
$=$ Area of $\triangle O A B+$ Area of $\triangle O B C$
$=\frac{1}{2}|\vec{a} \times(10 \vec{a}+2 \vec{b})|+\frac{1}{2}|(10 \vec{a}+2 \vec{b}) \times \vec{b}|$
$=|\vec{a} \times \vec{b}|+5|\vec{a} \times \vec{b}|$
$\therefore p=6|\vec{a} \times \vec{b}|$
Or $p=6 q \quad$ [From Eq. (i)]
$\therefore k=6$
291 (1)
Since angle between \vec{u} and $\hat{\imath}$ is 60°, we have
$\vec{u} \cdot i=|\vec{u}||\hat{\imath}| \cos 60^{\circ}=\frac{|\vec{u}|}{2}$
Given that $|\vec{u}-\hat{\imath}|,|\vec{u}|,|\vec{u}-2 \hat{\imath}|$ are in G.P., so
$|\vec{u}-\hat{\imath}|^{2}=|\vec{u}||\vec{u}-2 \hat{\imath}|$
Squaring both sides,
$\left[|\vec{u}|^{2}+|\hat{\imath}|^{2}-2 \vec{u} \cdot \hat{\imath}\right]^{2}=|\vec{u}|^{2}\left[|\vec{u}|^{2}+4|\hat{\imath}|^{2}-4 \vec{u} \cdot \hat{\imath}\right]$
$\left[|\vec{u}|^{2}+1-\frac{2|\vec{u}|}{2}\right]^{2}=|\vec{u}|^{2}\left[|\vec{u}|^{2}+4-4 \frac{|\vec{u}|}{2}\right]$
Or $|\vec{u}|^{2}+2|\vec{u}|-1=0 \Rightarrow|\vec{u}|=-\frac{2 \pm 2 \sqrt{2}}{2}$
Or $|\vec{u}|=\sqrt{2}-1$

292 (6)
Let \vec{R} be the resultant
Then $\vec{R}=\vec{F}_{1}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}=(p+1) \hat{\imath}+4 \hat{\jmath}$
Given $|\vec{R}|=5$, therefore $R^{2}=25$
$\because(p+1)^{2}+16=25 \Rightarrow p+1= \pm 3$
$\therefore p=2,-4$
293 (2)
L.H.S $=\vec{d}-\vec{a}+\vec{d}-\vec{b}+\vec{h}-\vec{c}+3(\overrightarrow{\mathrm{~g}}-\vec{h})$
$=2 \vec{d}-(\vec{a}+\vec{b}+\vec{c})+3 \frac{(\vec{a}+\vec{b}+\vec{c})}{3}-2 \vec{h}$
$=2 \vec{d}-2 \vec{h}=2(\vec{d}-\vec{h})=2 \vec{H} D$
$\Rightarrow \lambda=2$
294 (6)
$2 \vec{V}+\vec{V} \times(\hat{\imath}+2 \hat{\jmath})=(2 \hat{\imath}+\hat{k}) \quad$ (i)
Or $2 \vec{V} \cdot(\hat{\imath}+2 \hat{\jmath})+0=(2 \hat{\imath}+\hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath})$
Or $2 \vec{V} \cdot(\hat{\imath}+2 \hat{\jmath})=2$
Or $|\vec{V} \cdot(\hat{\imath}+2 \hat{\jmath})|^{2}=1$
Or $|\vec{V}|^{2} \cdot|\hat{\imath}+2 \hat{\jmath}|^{2} \cos ^{2} \theta=1$
(θ is the angle between \vec{V} and $\hat{\imath}+2 \hat{\jmath}$)
Or $|\vec{V}|^{2} 5\left(1-\sin ^{2} \theta\right)=1$
Or $|\vec{V}|^{2} 5 \sin ^{2} \theta=5|\vec{V}|^{2}-1$ (ii)
From Eq. (i), we have
$|2 \vec{V}+\vec{V} \times(\hat{\imath}+2 \hat{\jmath})|^{2}=|2 \hat{\imath}+\hat{k}|^{2}$
Or $4|\vec{V}|^{2}+|\vec{V} \times(\hat{\imath}+2 \hat{\jmath})|^{2}=5$
Or $4|\vec{V}|^{2}+|\vec{V}|^{2} \cdot|\hat{\imath}+2 \hat{\jmath}|^{2} \sin ^{2} \theta=5$
Or $4|\vec{V}|^{2}+5|\vec{V}|^{2} \sin ^{2} \theta=5$
Or $4|\vec{V}|^{2}+5|\vec{V}|^{2}-1=5$
Or $9|\vec{V}|^{2}=6$
Or $3|\vec{V}|=\sqrt{6}$
$=\sqrt{6}=\sqrt{m}$
$\therefore m=6$
295 (5)
Let angle between \vec{a} and \vec{b} be θ
We have $|\vec{a}|=|\vec{b}|=1$
Now $|\vec{a}+\vec{b}|=2 \cos \frac{\theta}{2}$ and $|\vec{a}-\vec{b}|=2 \sin \frac{\theta}{2}$
Consider $F(\theta)=\frac{3}{2}\left(2 \cos \frac{\theta}{2}\right)+2\left(2 \sin \frac{\theta}{2}\right)$
$\therefore F(\theta)=3 \cos \frac{\theta}{2}+4 \sin \frac{\theta}{2}, \theta \in[0, \pi]$
296 (2)
$\overrightarrow{A B}=2 \hat{\imath}+\hat{\jmath}+\hat{k}, \overrightarrow{A C}=(t+1) \hat{\imath}+0 \hat{\jmath}-\hat{k}$
$\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 1 \\ t+1 & 0 & -1\end{array}\right|$
$=-\hat{\imath}+(t+3) \hat{\jmath}-(t+1) \hat{k}$
$=\sqrt{1+(t+3) \hat{\jmath}-(t+1)^{2}}$
$=\sqrt{2 t^{2}+8 t+11}$
Area of $\triangle A B C=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$
$=\frac{1}{2} \sqrt{2 t^{2}+8 t+1}$
Let $f(t)=\Delta^{2}=\frac{1}{4}\left(2 t^{2}+8 t+1\right)$
$f^{\prime}(t)=0 \Rightarrow t=-2$
At $t=-2, f^{\prime \prime}(t)>0$
So Δ is minimum at $t=-2$
297 (4)
$a=a i+2 j-3 k, b=i+2 \alpha j-2 k$,
$c=2 i-\alpha j+k\{(a \times b) \times(b \times c)\} \times(c \times a)=0$
Or $\{[a b c] b-[a b b] c\} \times(c \times a)=0$
Or $[a b c] b \times(c \times a)=0$
Or $[a b c]((a \cdot b) c-(b \cdot c) a)=0$
Or $[a b c]=0 \quad(\because a$ and c are not collinear $)$
$\Rightarrow\left|\begin{array}{ccc}\alpha & 2 & -3 \\ 1 & 2 \alpha & -2 \\ 2 & -\alpha & 1\end{array}\right|$
Or $\alpha(2 \alpha-2 \alpha)-2(1+4)-3(-\alpha-4 \alpha)=0$
Or $10-15 \alpha=0$
$\therefore \alpha=2 / 3$
298
(9)

Since \vec{x} and \vec{y} are non-collinear vectors, therefore \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ are non-coplanar vectors
$\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right]$

$$
\begin{aligned}
& +\left[(a-2) \beta^{2}+(b-3) \beta \beta+c\right] y \\
& +\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right](\vec{x} \\
& \times \vec{y})=0
\end{aligned}
$$

Coefficient of each vector \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ is zero
$(a-2) \alpha^{2}+(b-3) \alpha+c=0$
$(a-2) \beta^{2}+(b-3) \beta+c=0$
$(a-2) \gamma^{2}+(b-3) \beta+c=0$
The above three equations will satisfy if the coefficients of α, β and γ are zero because α, β and γ are three distinct real numbers
$a-2=0$ or $a=2$,
$b-3=0$ or $b=3$ and $c=0$
$\therefore a^{2}+b^{2}+c^{2}=2^{2}+3^{2}+0^{2}=4+9=13$

299 (7)
Vectors along the sides are $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{b}=$ $2 \hat{\imath}+4 \hat{\jmath}+\hat{k}$

Clearly the vector along the longer diagonal is
$\vec{a}+\vec{b}=3 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$
Hence length of the longer diagonal is

$$
|\vec{a}+\vec{b}|=|3 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}|=7
$$

300 (9)
Here $\vec{F}=3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
$\vec{A} B=$ P.V. of $B-\mathrm{P} . \mathrm{V}$ of A
$=(-\hat{\imath}-\hat{\jmath}-2 \hat{k})-(-3 \hat{\imath}-4 \hat{\jmath}+\hat{k})$
$=2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
Let $\vec{s}=\vec{A} B$ be the displacement vector
Now work done $=\vec{F} . \vec{s}$

$$
\begin{aligned}
& =(3 \hat{\imath}-\hat{\jmath}-2 \hat{k}) \cdot(2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}) \\
& =6-3+6=9
\end{aligned}
$$

