

10.VECTOR ALGEBRA

Single Correct Answer Type

1.	Vector \vec{c} is perpendicular	r to vectors $\vec{a} = (2, -3, 1)$ a	nd $\vec{b} = (1, -2, 3)$ and satisfi	es the condition
	$\vec{c} \cdot (\hat{\imath} + 2\hat{\jmath} - 7k) = 10. \text{ T}$	hen vector \vec{c} is equal to		
0	a) $(7, 5, 1)$	b) (-7, -5, -1)	c) $(1, 1, -1)$	d) None of these
Ζ.	If \vec{a} , b and \vec{c} are unit copl	anar vectors, then the scala	ar triple product $[2\vec{a} - b2b]$	$-\vec{c}2\vec{c}-\vec{a}$] is
_	a) 0	b) 1	c) $-\sqrt{3}$	d) √3
3.	Points \vec{a} , \vec{b} , \vec{c} and \vec{d} are constants $\sin^2 \alpha + \sin^2 2\beta + \sin^2 3$	oplanar and (sin α) \vec{a} + (2 s γ is	$\ln 2\beta)\vec{b} + (3\sin 3\gamma)\vec{c} - \vec{d} =$	= 0. Then the least value of
	a) 1/14	b) 14	c) 6	d) 1/√6
4.	If $ \vec{a} = 2$ and $ \vec{b} = 3$ and	d $\vec{a} \cdot \vec{b} = 0$, then $\left(\vec{a} \times \left(\vec{a} \times \right) \right)$	$\left(\vec{a} \times \left(\vec{a} \times \vec{b}\right)\right)$ is equal to	
	a) 48 <i>b</i>	b) $-48\hat{b}$	c) 48â	d) -48â
5.	A parallelogram is constr parallel. Then the length	ructed on $3\vec{a} + \vec{b}$ and $\vec{a} - 4\vec{b}$ of the longer diagonal is	\vec{b} , where $ \vec{a} = 6$ and $ \vec{b} = 3$	B, and \vec{a} and \vec{b} are anti-
	a) 40	b) 64	c) 32	d) 48
6.	Let \vec{a} , \vec{b} and \vec{c} be three no	n-coplanar vector and \vec{p} , \vec{q} a	and \vec{r} the vector defined by	the relations $\vec{p} = rac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{q} =$
	$\frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$. Then t	he value of the expression	$\left(\vec{a}+\vec{b}\right)\cdot\vec{p}+\left(\vec{b}+\vec{c}\right)\cdot\vec{q}+(\vec{a}+\vec{c})\cdot\vec{q}$	$(\vec{c} + \vec{a}) \cdot \vec{r}$ is
	a) 0	b) 1	c) 2	d) 3
7.	If the vectors \vec{a} , \vec{b} and \vec{c} f	rom the sides <i>BC</i> , <i>CA</i> and <i>A</i>	<i>B</i> , respectively, of triangle <i>A</i>	ABC, then
	a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$)	b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$	
	c) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$		d) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$	$=\vec{0}$
8.	Vector $3\vec{a} - 5\vec{b}$ and $2\vec{a} +$	\vec{b} are mutually perpendicu	ular. If $\vec{a} + 4\vec{b}$ and $\vec{b} - \vec{a}$ are	also mutually
	perpendicular, then the o	cosine of the single between	n \vec{a} and \vec{b} is	10
	a) $\frac{19}{5\sqrt{42}}$	b) $\frac{19}{2\sqrt{42}}$	c) $\frac{19}{2\sqrt{45}}$	d) $\frac{19}{6\sqrt{42}}$
9.	5745 If \vec{a} is narallal to $\vec{h} \times \vec{c}$ the	$3\sqrt{4}$ n $(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})$ is equal t	2745	0743
	$a) \vec{z} ^2 (\vec{x} \rightarrow \vec{z})$	$(u \times c) = (u \times c) + c = c$	$a \rightarrow 1 \rightarrow 12 (\overrightarrow{1})$	d) None of these
10	a) $ a ^2(b \cdot c)$	$b \int b (a \cdot c)$	$c) c ^2 (a \cdot b)$	
10.	If G is the centroid of a tr	riangle <i>ABC</i> , then $GA + GB$	+ GC is equal to $$	
4.4	a) ()	b) 3 <i>GA</i>	c) 3 <i>GB</i>	d) 3 <i>GC</i>
11.	Vector \hat{a} in the plane of b The value of \hat{a} is	$= 2\hat{\imath} + \hat{\jmath}$ and $\vec{c} = \hat{\imath} - \hat{\jmath} + k$	s such it is equally inclined	to banddwhere $d = \hat{j} + 2k$.
	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\hat{k}}$	h) $\frac{\hat{i} - \hat{j} + \hat{k}}{\hat{k}}$	() $\frac{2\hat{\imath} + \hat{\jmath}}{2\hat{\imath} + \hat{\jmath}}$	d) $\frac{2\hat{\imath} + \hat{\jmath}}{2\hat{\imath} + \hat{\jmath}}$
	a) $\frac{\hat{\iota} + \hat{\jmath} + \hat{k}}{\sqrt{3}}$	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$	c) $\frac{2\hat{\imath} + \hat{\jmath}}{\sqrt{5}}$	d) $\frac{2\hat{\imath} + \hat{\jmath}}{\sqrt{5}}$
12.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ ABCD is a quadrilateral.	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection	c) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ of the line joining the midpo	d) $\frac{2\hat{\imath} + \hat{\jmath}}{\sqrt{5}}$ point of the opposite sides. If
12.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} +	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection $\vec{OB} + \vec{OC} + \vec{OD} = \vec{xOE}$, the	c) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ of the line joining the midpoin <i>x</i> is equal to	d) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ bint of the opposite sides. If
12.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} + a) 3 Let $\mathbb{P}(2 2 C)$ becomes interval.	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection $\vec{OB} + \vec{OC} + \vec{OD} = \vec{xOE}$, the b) 9	c) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ of the line joining the midpen <i>x</i> is equal to c) 7	d) $\frac{2\hat{\imath} + \hat{\jmath}}{\sqrt{5}}$ bint of the opposite sides. If d) 4
12. 13.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} + a) 3 Let <i>P</i> (3,2,6) be a point in	b) $\frac{\hat{t} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection of $\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{xOE}$, the b) 9 a space and <i>Q</i> be a point on the point of \overrightarrow{AB} is provided by the point of \overrightarrow{AB} is point of \overrightarrow{AB} .	c) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ of the line joining the midpen <i>x</i> is equal to c) 7 the line $\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \hat{k}$	d) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ bint of the opposite sides. If d) 4 $\mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then, the
12. 13.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} + a) 3 Let <i>P</i> (3,2,6) be a point invalue of μ for which the value of μ	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection $\vec{OB} + \vec{OC} + \vec{OD} = \vec{xOE}$, the b) 9 a space and <i>Q</i> be a point on \vec{PQ} is parallel to the	c) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ of the line joining the midpern <i>x</i> is equal to c) 7 the line $\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \hat{j}$ plane $x - 4y + 3z = 1$ is	d) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ point of the opposite sides. If d) 4 $\mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then, the
12. 13.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} + a) 3 Let <i>P</i> (3,2,6) be a point invalue of μ for which the value of μ for which the value of μ	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection $\vec{OB} + \vec{OC} + \vec{OD} = \vec{xOE}$, the b) 9 a space and <i>Q</i> be a point on vector \vec{PQ} is parallel to the b) $-\frac{1}{4}$	c) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ of the line joining the midpern <i>x</i> is equal to c) 7 the line $\vec{r} = (\hat{\imath} - \hat{\jmath} + 2\hat{k}) + \hat{j}$ plane $x - 4y + 3z = 1$ is c) $\frac{1}{8}$	d) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ point of the opposite sides. If d) 4 $\mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then, the d) $-\frac{1}{8}$
12. 13. 14.	a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ <i>ABCD</i> is a quadrilateral. <i>O</i> is any point and \overrightarrow{OA} + a) 3 Let <i>P</i> (3,2,6) be a point in value of μ for which the v a) $\frac{1}{4}$ If ' <i>P</i> ' is any arbitrary point	b) $\frac{\hat{\iota} - \hat{j} + \hat{k}}{\sqrt{3}}$ <i>E</i> is the point intersection $\vec{OB} + \vec{OC} + \vec{OD} = \vec{xOE}$, the b) 9 a space and <i>Q</i> be a point on \vec{PQ} is parallel to the b) $-\frac{1}{4}$ nt on the circumcircle of th	c) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ of the line joining the midpoin <i>x</i> is equal to c) 7 the line $\vec{r} = (\hat{\imath} - \hat{\jmath} + 2\hat{k}) +$ plane $x - 4y + 3z = 1$ is c) $\frac{1}{8}$ e equilateral triangle of sid	d) $\frac{2\hat{\imath} + \hat{j}}{\sqrt{5}}$ point of the opposite sides. If d) 4 $\mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then, the d) $-\frac{1}{8}$ e length <i>l</i> units, then

a)
$$2l^2$$
 b) $2\sqrt{3}l^2$ c) l^2 d) $3l^2$

- 15. Let the pairs \vec{a} , \vec{b} and \vec{c} , \vec{d} each determine a plane. Then the planes are parallel if
- a) (a × c) × (b × d) = 0 b) (a × c) · (b × d) = 0 c) (a × b) × (c × d) = 0 d) (a × b) · (c × d) = 0
 16. In the following figure, *AB*, *DE* and *GF* are parallel to each other and *AD*, *BG* and *EF* are parallel to each other. If *CD*: *CE* = *CG*: *CB* = 2: 1, then the value of area (ΔAEG): area (ΔABD) is equal to

- a) 7/2 b) 3 c) 4 d) 9/2 17. Let $\vec{a} = 2i + j + k$, $\vec{b} = i + 2j - k$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a} , then \vec{c} is a) $\frac{1}{\sqrt{2}}(-j+k)$ b) $\frac{1}{\sqrt{3}}(-i-j-k)$ c) $\frac{1}{\sqrt{5}}(i-2j)$ d) $\frac{1}{\sqrt{3}}(i-j-k)$
- 18. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vector of a variable point. If *R* moves such that $(\vec{r} \vec{p}) \times (\vec{r} \vec{q}) = \vec{0}$, then the locus of *R* is
 - a) A plane containing the origin O and parallel to two non-collinear vectors \overrightarrow{OP} and \overrightarrow{OQ}
 - b) The surface of a sphere described on PQ as its diameter
 - c) A line passing through points *P* and *Q*
 - d) A set of lines parallel to line PQ

are coplanar, is

19. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is

a)
$$\vec{a} + \vec{b} + \vec{c}$$
 b) $\frac{\vec{a}}{|\vec{a}|} + \frac{b}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$ c) $\frac{\vec{a}}{|\vec{a}|^2} + \frac{b}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2}$ d) $|\vec{a}|\vec{a} - |\vec{a}|\vec{b} + |\vec{c}|\vec{c}$
20. *A, B, C* and *D* have position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively, such that $\vec{a} - \vec{b} = 2(\vec{d} - \vec{c})$. Then
a) *AB* and *CD* bisect each other b) *BD* and *AC* bisect each other
c) *AB* and *CD* trisect each other d) *BD* and *AC* trisect each other
c) *AB* and *CD* trisect each other d) *BD* and *AC* trisect each other
c) *AB* and *CD* trisect each other d) *BD* and *AC* trisect each other
21. If *a* is a real constant and *A*, *B* and *C* are variable angled and $\sqrt{a^2 - 4} \tan A + a \tan B + \sqrt{a^2 + 4} \tan c = 6a$,
then the least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is
a) 6 b) 10 c) 12 d) 3
22. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then
 $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to
a) $[\vec{a}\vec{b}\vec{c}]\vec{r}$ b) $2[\vec{a}\vec{b}\vec{c}]\vec{r}$ c) $3[\vec{a}\vec{b}\vec{c}]\vec{r}$ d) None of these
23. The scalar $\vec{A} \cdot (\vec{B} + \vec{C}) \approx (A + \vec{B} + \vec{C})$ equals
a) 0 b) $[\vec{A}\vec{B}\vec{C}] + [\vec{B}\vec{C}\vec{A}]$ c) $[\vec{A}\vec{B}\vec{C}]$ d) None of these
24. \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1, |\vec{b}| = 4$ and $\vec{a} \cdot \vec{b} = 2$. If $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$, then find the angle
between \vec{b} and \vec{c}
a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{3\pi}{4}$ d) $\frac{5\pi}{6}$
25. The volume of the parallelepiped whose sides are given by $\overrightarrow{OA} = 2i - 2j, \overrightarrow{OB} = i + j - k$ and $\overrightarrow{OC} = 3i - k$
is
a) $4/13$ b) 4 c) $2/7$ d) 2
26. If \vec{b} is a vector whose initial point divides the join of 5*i* and 5*j* in the ratio *k*: 1 and whose terminal point is
the origin and $|\vec{b}| \le \sqrt{37}$, then *k* lies in the interval
a) $[-6, -1/6]$ b) $[-\infty, -6] \cup [-1/6, \infty]$ c) $[0, 6]$ d) None of these
27. The number of the distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}, \hat{i} - \lambda^2 \hat{j} + \hat{k}$

	a) Zero	b) One	c) Two	d) Three
28.	If $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$, then	$(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{c})]$	\vec{a})]is equal to	
	a) A vector perpendicular	to the plane of \vec{a} , \vec{b} and \vec{c}	b) A scalar quantity	
	c) $\vec{0}$		d) None of these	
29.	Let $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$, \vec{k}	$\vec{b} = b_1\hat{\imath} + \hat{b}_2\hat{\jmath} + b_3\hat{k}$ and $\vec{c} =$	$= c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three n	on-zero vectors such that \vec{c}
	is a unit vector perpendic	ular to both \vec{a} and \vec{b} is $\pi/6$,	then the value of $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$	$\begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix}$ is
	a) 0		b) 1	
	c) $\frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 +$	$b_2^2 + b_3^2$)	d) $\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 +$	$b_2^2 + b_3^2)$
30.	The position vectors of th	e point <i>P</i> and <i>Q</i> with respe	ect to the origin <i>O</i> are $\vec{a} = \hat{\iota}$	$+3\hat{j}-2\hat{k}$ and $\vec{b}=3\hat{\iota}-\hat{j}-\hat{j}$
	$2\hat{k}$, respectively. If <i>M</i> is a p	ooint on <i>PQ</i> , such that <i>OM</i> i	is the bisector of <i>POQ</i> , then	\overrightarrow{OM} is
	a) $2(\hat{\iota} - \hat{j} + \hat{k})$	b) $2\hat{\imath} + \hat{\jmath} - 2\hat{k}$	c) $2(-\hat{\iota} + \hat{j} - \hat{k})$	d) $2(\hat{\imath} + \hat{\jmath} + \hat{k})$
31.	Let \hat{a} and \hat{b} be mutually pe	erpendicular unit vectors. T	Then for any arbitrary $ec{r}$	
	a) $\vec{r} = (\vec{r} \cdot \hat{a})\hat{a} + (\vec{r} \cdot \hat{b})\hat{b}$	$+ (\vec{r} \cdot (\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$	b) $\vec{r} = (\vec{r} \cdot \hat{a}) - (\vec{r} \cdot \hat{b})\hat{b}$ –	$-(\vec{r} \cdot (\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$
	$(\vec{z}, \hat{z}) = (\vec{z}, \hat{z}) \hat{z}$	$\left(\vec{x} \cdot (\hat{x} \vee \hat{t})\right)(\hat{x} \vee \hat{t})$	d) None of these	
	c) $r = (r \cdot a)a - (r \cdot b)b$	$+(r \cdot (a \times b))(a \times b)$	aj none or mese	
32.	If $\vec{p} = \frac{b \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}$ and \vec{a}	$\vec{c} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$, where \vec{a}, \vec{b} and \vec{c} a	are three non-coplanar vec	tors, then the value of the
	expression $(\vec{a} + b + \vec{c}) \cdot ($	$\vec{p} + \vec{q} + \vec{r}$) is		
~~	a) 3	b) 2	c) 1	d) 0
33.	If $\hat{i} - 3\hat{j} + 5k$ bisects the a	angle between \hat{a} and $-\hat{\imath} + \hat{a}$	$2\hat{j} + 2k$, where \hat{a} is a unit v	ectors, then
	a) $\hat{a} = \frac{1}{105} (41\hat{\iota} + 88\hat{j} - 4\hat{\iota})$	$10\hat{k}$)	b) $\hat{a} = \frac{1}{105} (41\hat{\imath} + 88\hat{\jmath} + 6)$	40 <i>ƙ</i>)
	c) $\hat{a} = \frac{1}{105}(-41\hat{\imath} + 88\hat{\jmath} - 3\hat{\imath})$	$-40\hat{k})$	d) $\hat{a} = \frac{1}{105} (41\hat{\imath} - 88\hat{\jmath} - 4\hat{\imath})$	$40\hat{k})$
34.	\vec{a} and \vec{b} are two unit vector	ors that are mutually perpe	endicular. A unit vector tha	t is equally inclined to
	\vec{a} , band $\vec{a} \times \vec{b}$ is		1	
	a) $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a}\times\vec{b})$	b) $\frac{1}{2}(\vec{a} \times \vec{b} + \vec{a} + \vec{b})$	c) $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a}\times\vec{b})$	d) $\frac{1}{3}(\vec{a} + \vec{b} + \vec{a} \times \vec{b})$
35.	Let \vec{r} , \vec{a} , \vec{b} , and \vec{c} , be four no	on-zero vectors such that $ec{r}$	$\cdot \vec{a} = 0, \left \vec{r} \times \vec{b} \right = \left \vec{r} \right \left \vec{b} \right $ and	$d \vec{r} \times \vec{c} = \vec{r} \vec{c} $.Then
	[<i>a</i> , <i>b</i> , <i>c</i>] is equal to			
	a) $ a b c $	b) $- a b c $	c) 0	d) None of these
36.	If \vec{a} , \vec{b} , \vec{c} are any three nor	-coplanar vectors, then the	e equation [$\vec{b} \times \vec{c}\vec{c} \times \vec{a}\vec{a} \times \vec{b}$	$(\vec{b})x^2 + [\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}]x +$
	$1 + \left[\vec{b} - \vec{c}\vec{c} - \vec{a}\vec{a} - \vec{b}\right] = 0$)has roots		
	a) Real and distinct	b) Real	c) Equal	d) Imaginary
37.	Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are for	ar vectors such that $\vec{a} + \vec{b}$	$= \mu \vec{p}, \vec{b} \cdot \vec{q} = 0 \text{ and } (\vec{b})^2 =$	1, where μ is a scalar. Then
	$ (\vec{a} \cdot \vec{q})\vec{p} - (\vec{p} \cdot \vec{q})\vec{a} $ is equ	al to		
	a) $2 \vec{p}\cdot\vec{q} $	b) $(1/2) \vec{p} \cdot \vec{q} $	c) $ \vec{p} \times \vec{q} $	d) $ \vec{p} \cdot \vec{q} $
38.	If \vec{a} and \vec{b} are any two vec	tors of magnitudes 1 and 2	2 respectively, and $(1 - 3\vec{a})$	$(\vec{b})^{2} + 2\vec{a} + \vec{b} +$
	$3a \times b2 = 47$, then the angle	e between <i>a</i> and <i>b</i> is		
			2π	
•	a) π/3	b) $\pi - \cos^{-1}(1/4)$	c) $\frac{2\pi}{3}$	d) $\cos^{-1}(1/4)$
39.	For non-zero vectors \vec{a} , \vec{b}	and \vec{c} , $ (\vec{a} \times b) \cdot \vec{c} = \vec{a} \vec{b} $	$ \vec{c} $ holds if and only if	
	a) $\vec{a} \cdot \vec{b} = \vec{0}, \vec{b} \cdot \vec{c} = 0$		b) $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$	
	c) $\vec{c} \cdot \vec{a} = 0, \vec{a} \cdot \vec{b} = 0$		d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$)
40.	If $\vec{x} + \vec{c} \times \vec{y} = \vec{a}$ and $\vec{y} + \vec{c}$	$\vec{c} \times \vec{x} = \vec{b}$, where \vec{c} is a non-	-zero vector, then which of	the following is not correct

	a) $\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$	b) $\vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c} \cdot \vec{a})}{1 + \vec{c} \cdot \vec{c}}$	
	$\vec{a} \times \vec{c} + \vec{b} + (\vec{c} \cdot \vec{b})\vec{c}$	d) None of these	
	$c_{j} y = \frac{1}{1 + \vec{c} \cdot \vec{c}}$		
41.	$\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}, \hat{b} = \hat{\imath} + 2\hat{\jmath} - \hat{k}, \vec{c} = \hat{\imath} + \hat{\jmath} - 2\hat{k}.$ A vector	or coplanar with $ec{b}$ and $ec{c}$ wh	ose projection on \vec{a} is
	magnitude $\sqrt{\frac{2}{3}}$ is		
	a) $2\hat{\imath} + 3\hat{\jmath} - 3\hat{k}$ b) $-2\hat{\imath} - \hat{\jmath} + 5\hat{k}$	c) $2\hat{i} + 3\hat{j} + 3\hat{k}$	d) $2\hat{\imath} + \hat{\jmath} + 5\hat{k}$
42.	A point <i>O</i> is the centre of a circle circumscribed abo <i>OC</i> sin <i>2C</i> is equal to	but a triangle ABC . Then \overline{OA}	$\overline{1} \sin 2A + \overline{OB} \sin 2B + \overline{OB} \sin 2B$
	a) $(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) \sin 2A$	b) $3\overrightarrow{OG}$, where G is the ce	ntroid of triangle ABC
	c) 0	d) None of thee	
43.	Find the value of λ so that the points <i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i> or	n the sides OA, OB, OC and A	AB, respectively, of a
	regular tetrahedron OABC are coplanar. It is given t	hat $\frac{\partial P}{\partial A} = \frac{1}{3}, \frac{\partial Q}{\partial B} = \frac{1}{2}, \frac{\partial R}{\partial C} = \frac{1}{3}$ a	and $\frac{\partial S}{\partial B} = \lambda$
	a) $\lambda = \frac{1}{2}$ b) $\lambda = -1$	c) $\lambda = 0$	d) For no value of λ
44.	Let \vec{a} , \vec{b} and \vec{c} be three units vectors such that $3\vec{a} + 4$ true?	$4\vec{b} + 5\vec{c} = 0$. Then which of	the following statements is
	a) \vec{a} is parallel to \vec{b}	b) \vec{a} is perpendicular to \vec{b})
	c) \vec{a} is neither parallel nor perpendicular to \vec{b}	d) None of these	
45.	A non-zero vector \vec{a} is such that its projections along	g vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$, $\frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are	equal, then unit vectors
	along \vec{a} is		
	a) $\frac{\sqrt{2}\hat{j} - \hat{k}}{\sqrt{3}}$ b) $\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$	c) $\frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$	d) $\frac{\hat{j} - \hat{k}}{\sqrt{2}}$
46.	If $\vec{a} = \hat{i} + \hat{i}$, $\vec{b} = \hat{i} + \hat{k}$, $\vec{c} = \hat{k} + \hat{i}$, then in the reciproc	al system of vectors \vec{a} . \vec{b} . \vec{c} i	reciprocal \vec{a} of vector \vec{a} is
	$\sum_{i=1}^{n} \hat{i} + \hat{j} + \hat{k} \qquad \qquad \sum_{i=1}^{n} \hat{i} - \hat{j} + \hat{k}$	$-\hat{\iota} - \hat{\iota} + \hat{k}$	$\hat{i} + \hat{j} - \hat{k}$
	$a_{j} = \frac{b_{j}}{2}$	$\frac{c}{2}$	a) <u> </u>
47.	Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. W	hich of the following is cor	rect?
	a) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$	b) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{c}} \times \vec{\mathbf{a}}$	$\neq \vec{0}$
	c) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{c}} = \vec{0}$	d) $\vec{\mathbf{a}} \times \vec{\mathbf{b}}, \vec{\mathbf{b}} \times \vec{\mathbf{c}}, \vec{\mathbf{c}} \times \vec{\mathbf{a}}$ are r	mutually perpendicular
48.	For any two vectors \vec{a} and \vec{b} , $(\vec{a} \times \hat{\imath}) \cdot (\vec{b} \times \hat{\imath}) + (\vec{a} \times \hat{\jmath})$	$(\vec{b} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k})$	\widehat{k}) is always equal to
	a) $\vec{a} \cdot \vec{b}$ b) $2\vec{a} \cdot \vec{b}$	c) Zero	d) None of these
49.	If the vectors \vec{a} and \vec{b} are linearly independent satisf	fying $(\sqrt{3} \tan \theta + 1)\vec{a} + (\sqrt{3})\vec{a}$	$\overline{3} \sec \theta - 2$) $\vec{b} = 0$, then the
	most general values of θ are		
	a) $n\pi - \frac{\pi}{6}, n \in Z$ b) $2n\pi \pm \frac{11\pi}{6}, n \in Z$	c) $n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$	d) $2n\pi + \frac{11\pi}{6}, n \in Z$
50.	If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$, where \vec{a} , \vec{b} and \vec{c} are non-co	oplanar, then	
	a) $\vec{r} \perp (\vec{c} \times \vec{a})$ b) $\vec{r} \perp (\vec{a} \times \vec{b})$	c) $\vec{r} \perp (\vec{b} \times \vec{c})$	d) $\vec{r} = \vec{0}$
51.	Let α , β and γ be distinct and real numbers. The point	nts with position vectors a	$i + \beta \hat{j} + \gamma \hat{k} \beta \hat{i} + \gamma \hat{j} +$
	$\alpha \hat{k}$ and $\gamma \hat{\iota} + \alpha \hat{\jmath} + \beta \hat{k}$		
	a) Are collinear	b) From an equilateral tri	iangle
	c) From a scalene triangle	d) Form a right-angled tr	iangle
52.	Let $\vec{a} = \vec{i} - \vec{k}$, $\vec{b} = x\vec{i} + \vec{j} + (1 - x)\vec{k}$ and $\vec{c} = y\vec{i} + x\vec{j}$	$\vec{k} + (1 + x - y)\vec{k}$. Then \vec{a}, \vec{b} a	and \vec{c} are non- coplanar for
	a) Some values of <i>x</i>	b) Some values of <i>y</i>	
	c) No values of x and y	d) For all values of <i>x</i> and	<i>y</i>
53.	p, q and r are three mutually perpendicular vectors of	of the same magnitude. If ve	ector \vec{x} satisfies the
	equation $\vec{p} \times ((\vec{x} - \vec{q}) \times \vec{p}) + \vec{q} \times ((\vec{x} - \vec{r}) \times \vec{q}) + \vec{r}$	$\times ((\vec{x} - \vec{p}) \times \vec{r}) = 0$, then \vec{x}	is given by

a)
$$\frac{1}{2}(\vec{p} + \vec{q} - 2\vec{r})$$
 b) $\frac{1}{2}(\vec{p} + \vec{q} + \vec{r})$ c) $\frac{1}{3}(\vec{p} + \vec{q} + \vec{r})$ d) $\frac{1}{3}(2\vec{p} + \vec{q} - \vec{r})$
54. Let two non-collinear unit vectors \vec{a} and \vec{b} from and acute angle. A point P moves so that at any time t the position vector \overline{OP} (where O is the origin) is given by $\vec{a} \cos t + \vec{b} \sin t$. When P is farthest form origin O , let M be the length of \overline{OP} and \vec{u} be the unit vector along \overline{OP} Then.
a) $\hat{\mathbf{u}} = \frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{b}||}$ and $M = (1 + 2\vec{a} \cdot \vec{b})^{1/2}$ b) $\hat{\mathbf{u}} = \frac{\vec{a} - \vec{b}}{|\vec{a} - \vec{b}|}$ and $M = (1 + 2\vec{a} \cdot \vec{b})^{1/2}$
c) $\hat{\mathbf{u}} = \frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{a}|}$ and $M = (1 + 2\vec{a} \cdot \vec{b})^{1/2}$ d) $\hat{\mathbf{u}} = \frac{\vec{a} - \vec{b}}{|\vec{a} - \vec{b}|}$ and $M = (1 + 2\vec{a} \cdot \vec{b})^{1/2}$
55. If $\vec{a} \cdot \vec{b} = \beta \text{and } \vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is:
a) $\frac{(\mathcal{B}\vec{a} - \vec{a} \times \vec{c})}{|\vec{a}|^2}$ b) $\frac{(\mathcal{B}\vec{a} + \vec{a} \times \vec{c})}{|\vec{a}|^2}$ c) $\frac{(\mathcal{B}\vec{c} - \vec{d} \times \vec{c})}{|\vec{a}|^2}$ d) $\frac{(\mathcal{B}\vec{a} + \vec{a} \times \vec{c})}{|\vec{a}|^2}$
56. If \vec{a} is a on-zero vector of modulus a and m is a non-zero scalar, then $m\vec{a}$ is a unit vector it
a) $m \pm 1$ b) $a = |m|$ c) $a = 1/|m|$ d) $a = 1/m$
57. Let, $\vec{a} = \vec{i} + 2\vec{j} + k$, $\vec{b} = \vec{i} + \vec{j} - k$. A vector coplanar to \vec{a} and \vec{b} bas a projection along \vec{c} of magnitude $\frac{1}{\sqrt{2}}$, then the vector is
a) $4\vec{i} - \vec{j} + 4\vec{k}$ b) $4\vec{i} + \vec{j} - 4\vec{k}$ c) $2\vec{i} + \vec{j} + \vec{k}$ d) None of these
58. Given three non-zero, non-coplanar vectors \vec{a} , \vec{b} and \vec{c} , $\vec{c} + \vec{c} \cdot \vec{a}$
a) $(0, 0)$ b) $(1, -1)$ c) $(-1, 1)$ d) $(1, 1)$
59. Gives three vectors \vec{a} , \vec{b} and \vec{c} , $\vec{v} = 0$ there varth \vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{c} , $(\vec{b} + \vec{c})$
is collinear with \vec{a} , $(\vec{a} - j - k)$ c) $\frac{1}{\vec{a}}$ ($21 + j + k$ d) $\frac{3}{\vec{a}}$ ($1 + j + \vec{k}$)
61. In a quadritateral *ABCD*, \vec{AC} is the bisector \vec{AB} and AD angle between \vec{AB} and AD is $2\pi/3$, $15|\vec{AC}| = 3|\vec{AE}| = 5|\vec{AD}|$. Then the angle between \vec{AA}

 \hat{k} and $2\hat{\imath} + 4\hat{\jmath} - 3\hat{k}$. Then $\triangle ABC$ is

	a) Isosceles	b) Equilateral	c) Right angled	d) None of these
68.	If $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}$ and $\vec{\beta}$ -	$+\vec{\gamma}+\vec{\delta}=b\vec{\alpha},\vec{\alpha}$ and $\vec{\delta}$ are	non-collinear, then $\vec{\alpha} + \vec{\beta}$ +	$-\vec{\gamma} + \vec{\delta}$ equals
	a) <i>aα</i>	b) $b\vec{\delta}$	c) 0	d) $(a+b)\vec{\gamma}$
69.	$A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are the	he vertices of triangle ABC	and $R(\vec{r})$ is any point in the	e plane of triangle <i>ABC</i> , then
	$\vec{r}.(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a})$	is always equal to		
	a) Zero	b) $\left[\vec{a}\vec{b}\vec{c}\right]$	c) $-[\vec{a}\vec{b}\vec{c}]$	d) None of these
70.	If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the uni	t vectors such that $(\vec{\mathbf{a}} \times \vec{\mathbf{b}})$	$(\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1$ and	
	\vec{z} \vec{z} then			
	$\mathbf{a} \cdot \mathbf{c} = \frac{1}{2}$, then			
	a) \vec{a} , \vec{b} , \vec{c} are non-coplana	r	b) \vec{a} , \vec{b} , \vec{d} are non-coplan	ar
	c) $\vec{\mathbf{b}}$, $\vec{\mathbf{d}}$ are non-parallel		d) $\vec{\mathbf{a}}$, $\vec{\mathbf{d}}$ are parallel and $\vec{\mathbf{b}}$,	č are parallel
71.	If the two adjacent sides	of two rectangles are repre	sented by vectors $\vec{p} = 5\vec{a}$ -	$-3\vec{b}; \vec{q} = -\vec{a} - 2\vec{b}$ and
	$\vec{r} = -4\vec{a} - \vec{b}; \vec{s} = -\vec{a} + \vec{b}$, respectively, then the ang	le between the vectors $\vec{x} =$	$\frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$ and $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s})$
	<i>š</i>)is			
	$a) - \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$	b) $\cos^1\left(\frac{19}{5\sqrt{43}}\right)$	c) $\pi \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$	d) Cannot be evaluated
72.	If \vec{a} and \vec{b} are unit vectors	such that $(\vec{a} + \vec{b}) \cdot (2\vec{a} + 3\vec{a})$	$(3\vec{b}) \times (3\vec{a} - 2\vec{b}) = \vec{0}$, then a	angle between $ec{a}$ and $ec{b}$ is
	a) 0	b) π/2	c) π	d) indeterminate
73.	If \vec{a} , \vec{b} and \vec{c} are such that	$t\left[\vec{a}\vec{b}\vec{c} ight]=1, \vec{c}=\lambda\vec{a} imesec{b},$ ang	gle between \vec{a} and \vec{b} is $2\pi/3$	$ \vec{a} = \sqrt{2}, \vec{b} = \sqrt{3}$ and
	$ \vec{c} = \frac{1}{\sqrt{3}}$, then the angle b	etween \vec{a} and \vec{b} is		
	a) $\frac{\pi}{\epsilon}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{2}$
74.	Let vectors \vec{a} \vec{b} \vec{c} and \vec{d} h	He such that $(\vec{a} \times \vec{h}) \times (\vec{c} \times \vec{k})$	$\vec{d} = \vec{0}$ Let <i>P</i> and <i>P</i> be pla	ے nes determined by the pairs
	of vectors \vec{a} , \vec{b} and \vec{c} , \vec{d} , row	spectively. Then the angle l	$a_{f} = 0.1201 r_{1} and r_{2} be plate$	nes determined by the pairs
	a) 0	h) $\pi/4$	c) $\pi/3$	d) $\pi/2$
75.	\vec{A} is a vector with direction	α α α β β and $\cos \nu$. As	suming the $v - z$ plane as	a mirror, the direction
	cosines of the reflected in	nage of \vec{A} in the $v - z$ plane	are	
	a) $\cos \alpha$, $\cos \beta$, $\cos \gamma$	b) $\cos \alpha$, $-\cos \beta$, $\cos \gamma$	c) $-\cos \alpha$, $\cos \beta$, $\cos \gamma$	d) $-\cos \alpha$, $-\cos \beta$, $-\cos \gamma$
76.	If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$ for	some non-zero vectors \vec{r} ,	then the area of the triangl	e whose vertices are A
	$(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is (\vec{a}, \vec{b})	<i>c</i> are non-coplanar)		
	a) $ [\vec{a}\vec{h}\vec{c}] $	b) $ \vec{r} $	c) $ [\vec{a}\vec{h}\vec{c}]\vec{r} $	d) None of these
77.	Let $\overrightarrow{r_1}, \overrightarrow{r_2}, \overrightarrow{r_3}, \dots, \overrightarrow{r_n}$ be the p	position vectors of points P	$P_1, P_2, \dots P_n$ reelative to the o	rigin <i>O</i> . If the vector
	equation $a_1\vec{r_1} + a_2\vec{r_2} + + a_n\vec{r_n} = 0$ holds then a similar equation will also hold w.r.t. to any other origin			
	provided			
	a) $a_1 + a_2 + \ldots + a_n = n$		b) $a_1 + a_2 + \ldots + a_n = 1$	
70	c) $a_1 + a_2 + \dots + a_n = 0$		d) $a_1 = a_2 = a_3 = \dots = a_3$	n = 0
78.	Let the position vectors c	of the points P and Q be $4i$ -	+ $j + \lambda k$ and $2i - j + \lambda k$, re	espectively. Vector
	$i - j + 6\kappa$ is perpendicularly	b) 1/2	c) 1	d) None of these
79.	I at \vec{a} and \vec{b} be unit vectors	that are perpendicular to	each ather. Then	uj None of these
	$\begin{bmatrix} \vec{a} + (\vec{a} \times \vec{b}) \vec{b} + (\vec{a} \times \vec{b}) \vec{c} \end{bmatrix}$	$\vec{k} \times \vec{k}$ will always be equal	to	
	$\begin{bmatrix} u & (u \times b)b & (u \times b)t \\ a \end{bmatrix} 1$	h = 0	c) –1	d) None of these
80.	If \vec{a} , \vec{b} and \vec{c} are non-conla	inar vectors and $\vec{a} \times \vec{c}$ is ne	$\frac{\sqrt{h}}{2}$	then the value of
	$[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal t	······································	$\frac{1}{2}$	
	a) $[\vec{a}\vec{h}\vec{c}]\vec{c}$	b) $\left[\vec{a}\vec{h}\vec{c}\right]\vec{b}$	c) Õ	d) $[\vec{a}\vec{h}\vec{c}]\vec{a}$
81.	In a tranezium vector \overline{R}	$\vec{c} = \alpha \overrightarrow{AD}$ We will then find	that $\vec{n} = \overrightarrow{AC} + \overrightarrow{RD}$ is colling	ear with \overrightarrow{AD} If $\vec{n} =$
			10 1 DD 10 comme	···· ·····

 $\mu \overrightarrow{AD}$, then which of the following is true?

	pille, eller which of elle is	onowing is true.			
	a) $\mu = \alpha + 2$	b) $\mu + \alpha = 1$	c) $\alpha = \mu + 1$	d) $\mu = \alpha + 1$	
82.	The position vectors of p	points A, B and C are $\hat{i} + \hat{j} + \hat{j}$	$+\hat{k},\hat{i}+5\hat{j}-\hat{k}$ and $2\hat{i}+3\hat{j}+2\hat{j}+3\hat{j}+2\hat{j}+3\hat{j}+2\hat{j}+3\hat{j}+2\hat{j}+3\hat{j}+2\hat{j}+3\hat{j}+$	$-5\hat{k}$, respectively. The	
	greatest angle of triangle	e ABC is			
	a) 120°	b) 90°	c) $\cos^{-1}(3/4)$	d) None of these	
83.	Let $\vec{a} = \hat{\iota} - \hat{j}, \vec{b} = \hat{j} - \hat{k}$ a	and $\vec{c} = \hat{k} - \hat{\iota}$. If \vec{d} is a unity	vector such that $\vec{a} \cdot \vec{d} = 0 =$	$\left[\vec{b}\vec{c}\vec{d}\right]$,then \vec{d} equals	
	a) $\pm \frac{\hat{\iota} + \hat{j} - 2\hat{k}}{\sqrt{6}}$	b) $\pm \frac{\hat{\iota} + \hat{j} - \hat{k}}{\sqrt{3}}$	c) $\pm \frac{\hat{\iota} + \hat{j} + \hat{k}}{\sqrt{3}}$	d) $\pm \hat{k}$	
84.	Given three vectors $\vec{b} =$	$6\hat{\imath} - 3\hat{\jmath}, \vec{b} = 2\hat{\imath} - 6\hat{\jmath}$ and $\vec{c} = 2\hat{\imath} - 6\hat{\jmath}$	$= -2\hat{\imath} + 21\hat{\jmath}$ such that $\vec{\alpha} = \hat{\imath}$	$\vec{a} + \vec{b} + \vec{c}$. Then the	
	resolution of the vectors	$\vec{\alpha}$ into compounds with re	espect to \vec{a} and \vec{b} is given by	7	
	a) $3\vec{a} - 2\vec{b}$	b) $3\vec{b} - 2\vec{a}$	c) $2\vec{a} - 3\vec{b}$	d) $\vec{a} - 2\vec{b}$	
85.	The condition for equation	ons $\vec{r} \times \vec{a} = \vec{b}$ and $\vec{r} \times \vec{c} = \vec{a}$	\vec{d} to be consistent is		
	a) $\vec{h} \cdot \vec{c} = \vec{a} \cdot \vec{d}$	b) $\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{d}$	c) $\vec{h} \cdot \vec{c} + \vec{a} \cdot \vec{d} = 0$	d) $\vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{d} = 0$	
86.	If the diagonals of one of	f its faces are $6\hat{i} + 6\hat{k}$ and 4	$\hat{i} + 2\hat{k}$ and of the edges not	containing the given	
	diagonals is $\vec{c} = 4\hat{i} - 8\hat{k}$	then the volume of a naral	lelenined is		
	a) 60	b) 80	c) 100	d) 120	
87.	The vertex <i>A</i> of triangle	<i>ABC</i> is on the line $\vec{r} = \hat{\iota} + \hat{\iota}$	$\hat{t} + \lambda \hat{k}$ and the vartices B and	d C have respective position	
	vectors \hat{i} and \hat{i} . Let Δ be the	e area of the triangle and Δ	$\in [3/2], \sqrt{33}/2]$. Then the	range of values of	
	λ corresponding to A is	0			
	a) $[-8, -4] \cup [4, 8]$	b) [-4,4]	c) [-2,2]	d) [−4, −2] ∪ [2,4]	
88.	The value of <i>x</i> for which	the angle between $\vec{a} = 2x$	$2\hat{i} + 4x\hat{j} + \hat{k}$ and $\hat{b} = 7\hat{i} - 2\hat{j}$	$\hat{j} + x\hat{k}$ is obuse and the angle	
	between \vec{b} and the <i>z</i> -axi	s is acute and less than $\pi/2$	6, is		
	a) <i>a</i> < <i>x</i> < 1/2	b) 1/2 < <i>x</i> < 15	c) $x > 1/2$ or $x < 0$	d) None of these	
89.	If \vec{a} , \vec{b} and \vec{c} are three mu	itually orthogonal unit vec	tors, then the triple product	t $[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}]$	
	equals	, ,		L J	
	a) 0	b) 1 or –1	c) 1	d) 3	
90.	'I' is the incentre of trian	igle ABC whose correspon	ding sides are <i>a</i> , <i>b</i> , <i>c</i> respec	tively. $a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC}$ is	
	always equal to				
	a) <u>0</u>	b) $(a + b + c)\overrightarrow{BC}$	c) $(\vec{a} + \vec{b} + \vec{c}) \overrightarrow{AC}$	d) $(a + b + c)\overrightarrow{AB}$	
91.	Let $\vec{a} = 2i + j - 2k$ and	b = i + j. If <i>c</i> is a vector su	ch that $\vec{a} \cdot \vec{c} = \vec{c} , \vec{c} - \vec{a} =$	$2\sqrt{2}$ and the angle between	
	$\vec{a} \times \vec{b}$ and \vec{c} is 30°, then	$(\vec{a} \times \vec{b}) \times \vec{c}$ is equal to			
	a) 2/3	b) 3/2	c) 2	d) 3	
92.	If \hat{a} , \hat{b} and \hat{c} are unit vect	cors, then $\left \hat{a} - \hat{b}\right ^2 + \left \hat{b} - \hat{c}\right ^2$	$ ^{2} + \hat{c} - \hat{a} ^{2}$ does not excee	ed	
	a) 4	b) 9	c) 8	d) 6	
93.	If the vector product of a	constant vector \overrightarrow{OA} with a	a variable vector \overrightarrow{OB} in a fixe	ed plane <i>OAB</i> be a constant	
	vector, then the locus of <i>B</i> is				
	a) A straight line perpen	dicular to \overrightarrow{OA}	b) A circle with centre 0	and radius equal to $ \overrightarrow{OA} $	
	c) A straight line paralle	$1 \text{ to } \overrightarrow{OA}$	d) None of these		
94.	The points with position	vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}$	$a\hat{i} - 52\hat{j}$ are collinear if		
	a) $a = -40$	b) $a = 40$	c) $a = 20$	d) None of these	
95.	Two adjacent sides of a r	parallelogram <i>ABCD</i> are gi	ven by $\overrightarrow{\mathbf{AB}} = 2\hat{\mathbf{i}} + 10\hat{\mathbf{j}} + 11\hat{\mathbf{j}}$	k and	
	$\overrightarrow{AD} = -\hat{i} + 2\hat{i} + 2\hat{k}$. The	side <i>AD</i> is rotated by an ac	cute angle α in the plane of t	the parallelogram so that AD	
	becomes <i>AD'</i> . If <i>AD'</i> mak	tes a right angle with the si	de <i>AB</i> , then the cosine of th	e angle α is given by	
	a) ⁸	$\sqrt{17}$, ¹	$4\sqrt{5}$	
	a) <u>-</u>	<u>9</u>	9	uj <u> </u>	
96.	\vec{a} , \vec{b} and \vec{c} are three vector	ors of equal magnitude. Th	e angle between each pair o	of vectors is $\pi/3$ such that	

 $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$. Then $|\vec{a}|$ is equal to

	a) 2	b) -1	c) 1	d) √6/3
97.	Value of $[\vec{a} \times \vec{b}\vec{a} \times \vec{c}\vec{d}]$ is a	lways equal to		
	a) $\left(\vec{a} \cdot \vec{d} \right) [\vec{a} \vec{b} \vec{c}]$	b) $(\vec{a} \cdot \vec{c})[\vec{a}\vec{b}\vec{d}]$	c) $(\vec{a} \cdot \vec{b})[\vec{a}\vec{b}\vec{d}]$	d) None of these
98.	If $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$,	where \vec{a}, \vec{b} and \vec{c} are non-ze	ero vectors, then	
	a) \vec{a} , \vec{b} and \vec{c} can be coplar	nar	b) \vec{a} , \vec{b} and \vec{c} must be copla	anar
	c) \vec{a} , \vec{b} and \vec{c} cannot be cop	olanar	d) None of these	
99.	If \vec{a} and \vec{b} are two vectors	, such that $\vec{a} \cdot \vec{b} < 0$ and $ \vec{a} $	$ \vec{b} = \vec{a} \times \vec{b} $, then the ang	gle between vectors \vec{a} and \vec{b}
	is			
	a) π	b) 7π/4	c) π/4	d) 3π/4
100	The position vectors of th	e vertices A, B and C of a tr	iangle are three units vecto	ors \hat{a} , \hat{b} and \hat{c} , respectively.
	A vector \vec{d} is such that $\vec{d} \cdot$	$\hat{a} = \vec{d} \cdot \hat{b} = \vec{d} \cdot \hat{c}$ and $\vec{d} = \lambda$ ($(\hat{b} + \hat{c})$ Then triangle <i>ABC</i> is	5
	a) Acute angled	b) Obtuse angled	c) Right angled	d) None of these
101	$\cdot \operatorname{Let} \vec{a}(x) = (\sin x)\hat{\iota} + (\cos x)\hat{\iota}$	$f(x)$ $f(x) = (\cos 2x)\hat{\imath} + (\cos 2x)\hat{\imath}$	$(\sin 2x)\hat{j}$ be two variable	vectors ($x \in R$),then
	$\vec{a}(x)$ and $\vec{b}(x)$ are			
	a) Collinear for unique va	lue of x	b) Perpendicular for infin	iite values of <i>x</i>
100	c) Zero vectors for unique	e value of x \hat{x}	d) None of these	
102	If a satisfies $a \times (l+2) + (l+2)$	$(\kappa) = \iota - \kappa$, then <i>a</i> is equal		
	a) $\lambda l + (2\lambda - 1)j + \lambda K, \lambda$	E R	D) $\lambda l + (1 - 2\lambda)j + \lambda K, \lambda$	ER
102	C) $\lambda l + (2\lambda + 1)j + \lambda K, \lambda$	$\in R$	a) $\lambda l = (1 + 2\lambda)j + \lambda K, \lambda$	$\in R$
105	f = i + j, b' = i - j + 2	2k and $c' = 2i + j - k$, then	the altitude of the parallele	epiped formed by the
	vectors \vec{a} , b and \vec{c} having	base formed by band \vec{c} is (w	where \vec{a}' is reciprocal vector	$r \vec{a}, etc)$
101		b) 3√2/2	c) 1/√6	d) 1/√2
104	Vectors $\vec{a} = -4\hat{\imath} + 3k; b$	$= 14\hat{\imath} + 2\hat{\jmath} - 5k$ are laid of	f from one point. Vector d ,	which is being laid off from
	the same point dividing the	he angle between vectors \vec{a}	and <i>b</i> in equal halves and	having the magnitude $\sqrt{6}$, is
105	a) $\hat{\imath} + \hat{\jmath} + 2k$	b) $\hat{i} - \hat{j} + 2k$	c) $\hat{i} + \hat{j} - 2k$	d) $2\hat{\imath} - \hat{\jmath} - 2k$
105	Given $\vec{a} = x\hat{\imath} + y\hat{\jmath} + 2k$, b	$= \hat{\imath} - \hat{\jmath} + k, \vec{c} = \hat{\imath} + 2\hat{\jmath}; \vec{a} \perp$	$b, \vec{a} \cdot \vec{c} = 4$.Then	
	a) $\left[\vec{a}\vec{b}\vec{c}\right]^2 = \vec{a} $	b) $\left[\vec{a}\vec{b}\vec{c}\right] = \vec{a} $	c) $\left[\vec{a}\vec{b}\vec{c}\right] = 0$	d) $\left[\vec{a}\vec{b}\vec{c}\right] = \vec{a} ^2$
106	$\cdot \vec{a}, \vec{b}$ and \vec{c} are unit vectors	such that $\left \vec{a} + \vec{b} + 3\vec{c} \right = 4$.	Angle between \vec{a} and \vec{b} is θ_1	, between \vec{b} and \vec{c} is θ_2 and
	between \vec{a} and \vec{c} varies [π	$\pi/6, 2\pi/3$]. Then the maxim	um value of $\cos \theta_1 + 3 \cos \theta_2$	θ_2 is
	a) 3	b) 4	c) 2√2	d) 6
107	\cdot If \vec{a} and \vec{b} are any two vector	ors of magnitudes 2 and 3, 1	respectively, such that 2(ā	$ \vec{a} \times \vec{b} + 3(\vec{a} \cdot \vec{b}) = k,$
	then the maximum values	s of kis		_
	a) √13	b) 2√13	c) 6√13	d) 10√13
108	. <i>G</i> is the centroid of triang	the ABC and A_1 and B_1 are t	he midpoints of sides AB as	nd <i>AC</i> , respectively. If Δ_1 be
	the area of quadrilateral (GA_1AB_1 and Δ be the area of A_1AB_1	If triangle ABC, then Δ/Δ_1 if triangle ABC, then Δ/Δ_1 if	s equal to
	a) $\frac{3}{2}$	DJ S	c) $\frac{1}{3}$	u) None of these
109	. The value of <i>a</i> so that the	volume of parallelopiped f	ormed by $\hat{\mathbf{i}} + a\hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{j}} + a\hat{\mathbf{k}}$	and
	$a\hat{\mathbf{i}} + \hat{\mathbf{k}}$ becomes minimum	n is		
	a) –3	b) 3	c) $1/\sqrt{3}$	d) √3
110	If \hat{a} , \hat{b} and \hat{c} are three unit	t vectors inclined to each ot	ther at an angle θ , then the	maximum value of $ heta$ is
	π	h) $\frac{\pi}{-}$	$\frac{2\pi}{2\pi}$	d) $\frac{5\pi}{2}$
111	~, 3 E	~,2	3	~ 6
111	. Four non-zero vectors wi	II always be	c) Fither 2 or b	d) None of these
117	a) Linearly dependent	tors inclined at an angle =	$(2 \text{ then} \left(\vec{a} \lor (\vec{b} \lor \vec{z} \lor \vec{z}) \right) = \vec{a}$	d none of these
114	• II danu b are two unit vec	to sincined at an angle π_i	$a > (b + a \times b) $	o is equal to

	a) $\frac{-3}{4}$	b) $\frac{1}{4}$	c) $\frac{3}{4}$	d) $\frac{1}{2}$
113	P be a point interior to th	e acute triangle <i>ABC</i> . If $\vec{P}A$	$+ \vec{P}B + \vec{P}C$ is a null vector	then w.r.t. triangle ABC,
	point P is its			
	a) Centroid	b) Orthocentre	c) Incentre	d) Circumcentre
114	If $\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{c}$	\vec{a} is a non-zero vector and	$ (\vec{d}\cdot\vec{c})(\vec{a}\times\vec{b})+(\vec{d}\cdot\vec{a})(\vec{b}) $	$(\vec{a} \times \vec{c}) + (\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a}) =$
	0,then			
	a) $ \vec{a} = \vec{b} = \vec{c} $		b) $ \vec{a} + \vec{b} + \vec{c} = \vec{d} $	
	c) \vec{a}, \vec{b} and \vec{c} are coplanar		d) None of these	
115	If $\vec{a} = 2\hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\imath}$	$2\hat{j} + 2\hat{k}, \vec{c} = \hat{\iota} + \hat{j} + 2\hat{k}$ and	$(1+\alpha)\hat{\imath} + \beta(1+\alpha)\hat{\jmath} + \gamma(1+\alpha)\hat{\imath}$	$(1+\alpha)(1+\beta)\hat{k} = \vec{a} \times \vec{k}$
	$(\vec{b} \times \vec{c})$, then α , β and γ are	2		
	a) $-2 - 4 - \frac{2}{-4}$	b) 2 -4 $\frac{2}{-}$	c) $-24\frac{2}{-}$	d) 2 4 $-\frac{2}{-1}$
110	$(\vec{z}, \vec{z}, \vec{z})$	3	3	3
116	If $\vec{\alpha} \parallel (\beta \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta)$	$(\vec{\alpha} \times \vec{\gamma})$ equals to		
	a) $ \vec{\alpha} ^2 (\vec{\beta} \cdot \vec{\gamma})$	b) $\left \vec{\beta}\right ^2 (\vec{\gamma} \cdot \vec{\alpha})$	c) $ \vec{\gamma} ^2 (\vec{\alpha} \cdot \vec{\beta})$	d) $ \vec{\alpha} \vec{\beta} \vec{\gamma} $
117	Two vectors in space are	equal only if they have equa	al component in	
	a) A given direction		b) Two given directions	
110	c) Three given directions		d) In any arbitrary direct	ion
118	A vector of magnitude $\sqrt{2}$	coplanar with the vectors a	$\vec{a} = \hat{\imath} + \hat{\jmath} + 2k$ and $b = \hat{\imath} + \hat{\jmath}$	$2\hat{j} + k$, and perpendicular
	to the vector $\vec{c} = \hat{i} + \hat{j} + k$	z,is		
110	a) $-j + k$	b) $\hat{i} - k$	c j l - j	d) $i - j$
119.	If $a = i + j + k$, $b = 4i + 3$	$3\hat{j} + 4k$ and $\hat{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$	k are linearly dependent ve	ectors and $ c = \sqrt{3}$, then
120	a) $a = 1, b = -1$	b) $a = 1, b = \pm 1$	c) $\alpha = -1, \beta = \pm 1$	a) $\alpha = \pm 1, \beta = 1$
120	the parallelogram which i	adjacent sides of a parallel s perpendicular to \vec{a} is	logram, then the vector rep	presenting the altitude of
	a) $\vec{b} + \frac{\vec{b} \times \vec{a}}{\vec{b}}$	h) $\frac{\vec{a} \cdot \vec{b}}{2}$	() $\vec{b} - \frac{\vec{b} \cdot \vec{a}}{\vec{a}} \vec{a}$	d) $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{\vec{a}}$
	$ \vec{a} ^2$	$\left \vec{b}\right ^2$	$ \vec{a} ^2$	$ \vec{b} ^2$
121	If $\vec{a} \perp \vec{b}$, then vector \vec{v} in t	terms of \vec{a} and \vec{b} satisfying the	ne equations $\vec{v} \cdot \vec{a} = 0$ and $\vec{v} \cdot \vec{a} = 0$	$\vec{v} \cdot \vec{b} = 1$ and $[\vec{v}\vec{a}\vec{b}] = 1$ is
	\vec{b} $\vec{a} \times \vec{b}$	\vec{b} $\vec{a} \times \vec{b}$	\vec{b} $\vec{a} \times \vec{b}$	d) None of these
	a) $\frac{\left \vec{b}\right ^2}{\left \vec{b}\right ^2} + \frac{\left \vec{a} \times \vec{b}\right ^2}{\left \vec{a} \times \vec{b}\right ^2}$	b) $\frac{1}{\left \vec{b}\right } + \frac{1}{\left \vec{a} \times \vec{b}\right ^2}$	c) $\frac{\vec{b}}{\vec{b}}^2 + \frac{\vec{a} \times \vec{b}}{\vec{a} \times \vec{b}}$	

122. Locus of the point *P*, for which \overrightarrow{OP} represents a vector with direction cosine $\alpha = \frac{1}{2}(O')$ is the origin) is

- a) A circle parallel to the y z plane with centre on the x- axis
- b) A cone concentric with the positive x-axis having vertex at the origin and the slant height equal to the magnitude of the vector
- c) A ray emanating from the origin and making an angle of 60° with the x -axis
- d) A disc parallel to the y z plane with centre on the x-axis and radius equal to $|\overrightarrow{OP}| \sin 60^\circ$
- 123. Let *P*, *Q*, *R* and *S* be the points on the plane with position vectors $-2\hat{i} \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$
 - respectively. The quadrilateral PQRS must be
 - a) Parallelogram, which is neither a rhombus nor a rectangle
 - b) Square
 - c) Rectangle, but not a square
 - d) Rhombus, but not a square
- 124. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero, non-coplanar vectors and

$$\vec{\mathbf{b}}_1 + \vec{\mathbf{b}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}} , \vec{\mathbf{b}}_2 + \vec{\mathbf{b}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}}$$

And

	$\vec{\mathbf{c}}_1 + \vec{\mathbf{b}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{ \vec{\mathbf{a}} ^2} \vec{\mathbf{a}} + \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{b}}}{ \vec{\mathbf{b}} ^2} \vec{\mathbf{b}}_1$			
	$\vec{\mathbf{c}}_2 + \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{ \vec{\mathbf{a}} ^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{c}} \cdot \mathbf{b}_1}{ \vec{\mathbf{b}}_1 ^2} \vec{\mathbf{b}}_1$)		
	$\vec{\mathbf{c}}_3 = \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{ \vec{\mathbf{c}} ^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{b}}_2}{ \vec{\mathbf{c}} ^2} \vec{\mathbf{b}}_1$,		
	$\vec{\mathbf{c}}_4 = \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{ \vec{\mathbf{c}} ^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{ \vec{\mathbf{b}} ^2} \vec{\mathbf{b}}_1$			
	Then, which of the follow	ing is a set of mutually orth	ogonal vectors?	
	a) $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}_1, \vec{\mathbf{c}}_1\}$	b) $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}_1, \vec{\mathbf{c}}_2\}$	c) $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}_2, \vec{\mathbf{c}}_3\}$	d) $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}_2, \vec{\mathbf{c}}_4\}$
125.	If \vec{x} and \vec{y} are two non-col	llinear vectors and ABC is a	triangle is a triangle with s	side length <i>a</i> , <i>b</i> and <i>c</i>
	satisfying $(20a - 15b)\vec{x}$ -	$+(15b-12c)\vec{y}+(12c-2)$	$(0a)(\vec{x} \times \vec{y}) = \vec{0}$, then triang	gle ABC is
	a) An acute-angled triang	le	b) An obtuse-angled trian	gle
	c) A right-angled triangle		d) An isosceles triangle	
126.	If $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + b(\vec{\beta} \vec{\gamma}) + $	$c(\vec{\gamma} \times \vec{\alpha}) = 0$ and at least o	ne of <i>a</i> , <i>b</i> and <i>c</i> is non-zero	, then vectors $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are
	a) Parallel		b) Coplanar	
	c) Mutually perpendicula	r	d) None of these	
127.	If \vec{r} and \vec{s} are non-zero co	nstant vectors and the scala	ar b is chosen such that $ \vec{r} $ +	$-b\vec{s}$ is minimum, then the
	value of $ b\vec{s} ^2 + \vec{r} + b\vec{s} ^2$ i	s equal to		
	a) $2 \vec{r} ^2$	b) <i>r</i> ² /2	c) $3 \vec{r} ^2$	d) $ \vec{r} ^2$
128.	If \hat{a} , \hat{b} and \hat{c} are three unit	vectors, such that $\hat{a} + \hat{b} + \hat{c}$	$\hat{\epsilon}$ is also a unit vector and $ heta_1$, θ_2 and θ_3 are angles
	between the vectors \hat{a} , \hat{b} ;	\hat{b},\hat{c} and \hat{c},\hat{a} , respectively, th	en among $ heta_1$, $ heta_2$ and $ heta_3$	
	a) All are acute angles		b) All are right angles	
	c) At least one is obtuse a	ngle	d) None of these	
129.	Let $\vec{a} \cdot \vec{b} = 0$, where \vec{a} and	$ec{b}$ are unit vectors and the ι	nit vector \vec{c} is inclined at a	n angle θ to both \vec{a} and \vec{b} . If
	$\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a}\times\vec{b}),$	$(m, n, p \in R)$, then		
	a) $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$	b) $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$	c) $0 \le \theta \le \frac{\pi}{4}$	d) $0 \le \theta \le \frac{3\pi}{4}$
130.	\vec{a} and \vec{c} are unit vectors a	nd $ \vec{b} = 4$. The angle betwee	een \vec{a} and \vec{c} is \cos^{-1} (1/4)	and $\vec{b} - 2\vec{c} = \lambda \vec{a}$. The value
	of λ is			
	a) 3, -4	b) 1/4, 3/4	c) -3,4	d) -1/4, 3/4
131.	If $\vec{\mathbf{a}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}), \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =$	1 and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$, then $\vec{\mathbf{b}}$	is	
	a) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$	b) 2 ĵ – 	c) î	d) 2î
132.	The volume of a tetrahed	ron formed by the cotermin	tus edges \vec{a} , \vec{b} and \vec{c} is 3. The	en the volume of the
	parallelepiped formed by	the conterminous edges \vec{a}	$+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is	
	a) 6	b) 18	c) 36	d) 9
133.	If \vec{a} and \vec{b} are non-zero non-	n-collinear vectors, then $\begin{bmatrix} \vec{a} \end{bmatrix}$	$\vec{b}\hat{i}\hat{i}\hat{i} + [\vec{a}\vec{b}\hat{j}\hat{j}]\hat{j} + [\vec{a}\vec{b}\hat{k}\hat{k}\hat{k}]\hat{k}$ is eq	ual to
	a) $\vec{a} + \vec{b}$	b) $\vec{a} \times \vec{b}$	c) $\vec{a} - \vec{b}$	d) $\vec{b} \times \vec{a}$
134.	If \vec{a} and \vec{y} are two non-col	llinear vectors and a, b, and	<i>c</i> represent the sides of a <i>l</i>	ΔABC satisfying
	$(a-b)\vec{x} + (b-c)\vec{y} + (c)\vec{x}$	$(\vec{x} \times \vec{y}) = 0$, then ΔAB	<i>C</i> is (where $\vec{x} \times \vec{y}$ is perper	dicular to the plane of
	a) An acute- angled triangle	JΡ	h) An obtuse-angled trian	σle
	c) A right-angled triangle		d) A scalene triangle	510
135.	$[(\vec{a} \times \vec{h}) \times (\vec{h} \times \vec{c})(\vec{h} \times \vec{c})]$	$\times (\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$	lis equal to (where \vec{a} hand	\vec{c} are non-zero non-
200.	coplanar vectors)	$(u \land u) \land (u \land v)$		
	a) $\left[\vec{a}\vec{b}\vec{c}\right]^{2}$	b) $\left[\vec{a}\vec{b}\vec{c}\right]$	c) $\left[\vec{a}\vec{b}\vec{c}\right]^{T}$	d) $[\vec{a}\vec{b}\vec{c}]$

136.	ABCD a parallelogram, an $1 + 1 + 2 = 1$	d A_1 and B_1 are the midpoi	ints of sides <i>BC</i> and <i>CD</i> , res	spectively. If $\overrightarrow{AA_1} + \overrightarrow{AB_1} =$
	$\lambda AC, \lambda$ is equal to 1	b) 1	3	d) 2
	a) $\frac{1}{2}$		c) $\frac{1}{2}$	~,
137.	If in a right- angled triang	le <i>ABC</i> , the hypotenuse <i>AB</i>	$= p, \text{then } \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{B}$	$\vec{A} + \vec{C}\vec{A} \cdot \vec{C}\vec{B}$ is equal to
	a) 2 <i>p</i> ²	b) $\frac{p^2}{2}$	c) p^{2}	d) None of these
138.	If \vec{a} and \vec{b} are orthogonal u	unit vectors, then for a vecto	or $ec{r}$ non-coplanar with $ec{a}$ an	d \vec{b} , vector $\vec{r} \times \vec{a}$ is equal to
	a) $\left[\vec{r}\vec{a}\vec{b}\right]\vec{b} - \left(\vec{r}\cdot\vec{b}\right)(\vec{b}\times\vec{a})$		b) $\left[\vec{r}\vec{a}\vec{b}\right](\vec{a}+\vec{b})$	
	c) $\left[\vec{r}\vec{a}\vec{b}\right]\vec{a} + (\vec{r}\cdot\vec{a})\vec{a}\times\vec{b}$		d) None of these	
139.	If \vec{a} , \vec{b} and \vec{c} are non-copla	nar unit vectors such that a	$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{b + \vec{c}}{\sqrt{2}}$, then the	angle between \vec{a} and \vec{b} is
	a) 3π/4	b) π/4	c) π/2	d) π
140.	The edges of a parallelopi	ped are unit length and are	e parallel to non-coplanar u	nit vectors ā , b , c such that
	$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = \frac{1}{2}$	Then, the volume of the par	allelopiped is	
	a) $\frac{1}{\sqrt{2}}$ cu unit	b) $\frac{1}{2\sqrt{2}}$ cu unit	c) $\frac{\sqrt{3}}{2}$ cu unit	d) $\frac{1}{\sqrt{3}}$ cu unit
141.	Let $\vec{a} = \hat{\imath} + \hat{j}; \hat{b} = 2\hat{\imath} - \hat{k}.$	Then vector $ec{r}$ satisfying the	e equations $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ ar	$\mathrm{nd}\vec{r} imes \vec{b} = \vec{a} imes \vec{b}$ is
	a) $\hat{\iota} - \hat{j} + \hat{k}$	b) $3\hat{\imath} - \hat{\jmath} + \hat{k}$	c) $3\hat{\imath} + \hat{\jmath} - \hat{k}$	d) $\hat{\iota} - \hat{j} - \hat{k}$
142.	If $4\hat{i} + 7\hat{j} + 8k$, $2\hat{j} + 3\hat{j} + 4\hat{j}$ respectively, of triangle <i>A</i>	$4k$ and $2\hat{i} + 5\hat{j} + 7k$ are the <i>BC</i> , the position vector of the position vector of the vecto	e position vectors of the ver he point where the bisector	tices <i>A</i> , <i>B</i> and <i>C</i> r of angle <i>A</i> meets <i>BC</i> , is
	a) $\frac{2}{3}(-6\hat{\imath} - 8\hat{\jmath} - 6\hat{k})$	b) $\frac{2}{3}(6\hat{\imath} + 8\hat{\jmath} + 6\hat{k})$	c) $\frac{1}{3}(6\hat{\imath} + 13\hat{\jmath} + 18\hat{k})$	d) $\frac{1}{3}(5\hat{j} + 12\hat{k})$
143.	Two adjacent sides of a pa \overrightarrow{BD} is	arallelogram ABCD are 2î +	$-4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$. Th	the value of $ \overrightarrow{AC} \times$
	a) $20\sqrt{5}$	b) 22√5	c) 24√5	d) 26√5
144.	Let \vec{u} , \vec{v} and \vec{w} be such that along \vec{u} and vectors \vec{v} and	t $ \vec{u} = 1, \vec{v} = 2$ and $ \vec{w} = \vec{w}$ are perpendicular to eac	3. If the projection of \vec{v} aloch other, then $ \vec{u} - \vec{v} + \vec{w} $ 6	ong \vec{u} is equal to that of \vec{w} equals
	a) 2	b) √7	c) $\sqrt{14}$	d) 14
145.	If \vec{a} , \vec{b} , \vec{c} are unit vectors so $ \vec{a} \times \vec{b} - \vec{a} \times \vec{c} $ is	uch that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and	nd the angle between $ec{b}$ and	\vec{c} is $\pi/3$, then the value of
	a) 1/2	b) 1	c) 2	d) None of these
146.	\vec{b} and \vec{c} are unit vectors. T	hen for any arbitrary vecto	$\operatorname{r} \vec{a}, \left(\left(\left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{c}\right)\right) \times \right)$	$(\vec{b} \times \vec{c}) \cdot (\vec{b} - \vec{c})$ is always
	equal to	1	1	
	a) <i>ā</i>	b) $\frac{1}{2} \vec{a} $	c) $\frac{1}{3} \vec{a} $	a) None of these
147.	Let $x^2 + 3y^2 = 3$ be the e vectors are $-\sqrt{3}\hat{i}$ and $-\sqrt{3}$	quation of an ellipse in the $\overline{3\hat{i}} + 2\hat{k}$. Then the position	x - y plane. A and B are tw vector of a point P on the e	vo points whose position llipse such that
	$\angle APB = \pi/4$ is	-	-	-
	a) ± <i>ĵ</i>	b) $\pm (\hat{\imath} + \hat{j})$	c) ±î	d) None of these
148.	Position vectork is rotated angle between <i>î</i> and <i>ĵ</i> . The	d about origin by angle 135 n its new position is	° in such a way that the pla	ne made by it bisects the
	$a) + \frac{\hat{i}}{\hat{j}} + \frac{\hat{j}}{\hat{j}}$	h) $+\frac{\hat{i}}{\hat{j}}+\frac{\hat{j}}{\hat{j}}-\frac{\hat{k}}{\hat{k}}$	$\hat{i} = \hat{k}$	d) None of these
1.40	$\sqrt{2} - \sqrt{2} - \sqrt{2}$	$\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{\sqrt{2}}$	$\sqrt{2}$ $\sqrt{2}$	
149.	Vectors $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$; k	$p = 2\hat{i} - \hat{j} + k$ and $\vec{c} = 3\hat{i} + k$	$\hat{j} + 4k$ are so placed that the second s	he end point of one vector
	a) Not coplanar	next vector. Then the vecto	b) Coplanar but cannot fro	om a triangle

	c) Coplanar and from a tri	angle	d) Coplanar and can from	a right-angled triangle
150.	Let \vec{a} , \vec{b} and \vec{c} be the three	vectors having magnitude	s 1,5 and 3, respectively, su	ich that the angle between
	\vec{a} and \vec{b} is θ and $\vec{a} \times (\vec{a} \times \vec{b})$	\vec{b}) = \vec{c} . Then tan θ is equal	to	
	a) 0	b) 2/3	c) 3/5	d) 3/4
151.	If $\vec{r} = x_1(\vec{a} \times \vec{b}) + x_2(\vec{b} \times \vec{b})$	\vec{a}) + $x_3(\vec{c} \times \vec{d})$ and $4[\vec{a}\vec{b}\vec{c}]$	= 1,then $x_1 + x_2 + x_3$ is equivalent to $x_1 + x_2 + x_3$ is equivalent to $x_1 + x_2 + x_3$.	qual to
	a) $\frac{1}{2}\vec{r}\cdot(\vec{a}+\vec{b}+\vec{c})$	b) $\frac{1}{4}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$	c) $2\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$	d) $4\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$
152.	Let \vec{u} , \vec{v} and \vec{w} be vectors s	uch that $\vec{u} + \vec{v} + \vec{w} = 0$. If	$ \vec{u} = 3, \vec{v} = 4$ and $ \vec{w} = 5$, then $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$ is
150	a) 47	b) –25	c) 0	d) 25
153.	Let $f(t) = [t]\hat{i} + (t - [t])\hat{j}$	$\hat{j} + [t + 1]k$,where [.] deno	tes the greatest integer fun	iction. Then the
	vectors $f\left(\frac{5}{4}\right)$ and $f(t), 0 <$	<i>t</i> < 1, are		
	a) Parallel to each other		b) perpendicular to each	other
	c) Inclined at an angle cos	$-1\frac{2}{\sqrt{7(1-t^2)}}$	d) Inclined at $\cos^{-1}\frac{8+t}{9\sqrt{1+t^2}}$	2
154.	If \vec{a} and \vec{b} are two unit vec	etors and $ heta$ is the angle betw	ween them, then the unit v	ector along the angular
	bisector of \vec{a} and \vec{b} will be	given by		
	$a) \frac{\vec{a} - \vec{b}}{\vec{b}}$	h) $\frac{\vec{a} + \vec{b}}{\vec{b}}$	c) $\frac{\vec{a} - \vec{b}}{\vec{b}}$	d) None of these
	$\frac{d\theta}{2\cos(\theta/2)}$	$\frac{1}{2}\cos(\theta/2)$	$\frac{\cos(\theta/2)}{\cos(\theta/2)}$	
155.	In triangle <i>ABC</i> , $\angle A = 30^{\circ}$, H is the orthocentre and I	D is the midpoint of BC. Seg	gment <i>HD</i> is produced to <i>T</i>
	such that $HD = DT$. The len	igth AT is equal to	Δ.	d) None of these
	a) 2 <i>BC</i>	b) 3 <i>BC</i>	c) $\frac{1}{3}BC$	u) None of these
156.	If vectors $\overrightarrow{AB} = -3\hat{\imath} + 4\hat{k}$	and $\overrightarrow{AC} = 5\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ are	the sides of a $\triangle ABC$, then t	the length of the medium
	through A is			
	a) √ <u>14</u>	b) $\sqrt{18}$	c) √29	d) 5
157.	If $ \vec{a} + \vec{b} < \vec{a} - \vec{b} $, then t	he angle between $ec{a}$ and $ec{b}$.	can lie in the interval	
	a) $(-\pi/2,\pi/2)$	b) (0, π)	c) $(\pi/2, 3\pi/2)$	d) (0, 2π)
158.	A vector magnitude 10 alc	ong the normal to the curve r_{1}	$e 3x^2 + 8xy + 2y^2 - 3 = 0$	at its point $P(1,0)$ can be
150	a) $6l + 8j$ The unit vector orthogona	DJ = 8l + 3j	C) $6l = 8j$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
139.		$\frac{1}{1} = \frac{1}{2} + \frac{2}{3} + \frac{2}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d) None of these
	a) $\pm \frac{1}{3}(2\hat{\imath} + 2\hat{\jmath} - \hat{k})$	b) $\pm \frac{1}{3}(\hat{i} + \hat{j} - \hat{k})$	c) $\pm \frac{1}{3}(2\hat{\imath} - 2\hat{\jmath} - \hat{k})$	a) None of these
160.	Let us define the length of	a vector $a\hat{i} + b\hat{j} + c\hat{k}$ as $ a $	a + b + c . This definitio	n coincides with the usual
	definition of length of a ve	ector $a\hat{i} + b\hat{j} + c\hat{k}$ if any on	ly if	
	a) $a = b = c = 0$		b) Any two of <i>a</i> , <i>b</i> and <i>c</i> a	re zero
4.64	c) Any one of <i>a</i> , <i>b</i> and <i>c</i> is	zero	d) $a + b + c = 0$	
161.	Let <i>a</i> , <i>b</i> , and <i>c</i> be distinct r	ion-negative numbers. If v	ectors $a\hat{i} + a\hat{j} + ck, \hat{i} + ka\hat{j}$	nd $c\ddot{\imath} + c\ddot{\jmath} + bk$ are
	copianar, then c is	a and h	h) The geometric mean of	f a and h
	c) The harmonic mean of	a and b	d) Equal to zero	
	-,			
			4 m	
		Multiple Correct	Answers Type	

162. If vectors $\vec{b} = (\tan \alpha, -1, 2\sqrt{\sin \alpha/2} \text{ and } \vec{c} = \left(\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}}\right)$ are orthogonal and vector $\vec{a} = (1,3, \sin 2\alpha)$ makes an obtuse angle with the *z*-axis, then the value of α is a) $\alpha = (4n+1)\pi + \tan^{-1} 2$ b) $\alpha = (4n+1)\pi - \tan^{-1} 2$ c) $\alpha = (4n+2)\pi + \tan^{-1} 2$ d) $\alpha = (4n+2)\pi - \tan^{-1} 2$ ^{163.} If vectors \vec{a} and \vec{b} are non-collinear, then $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is a) A unit vector b) In the plane of \vec{a} and \vec{b} c) Equally inclined to \vec{a} and \vec{b} d) Perpendicular to $\vec{a} \times \vec{b}$ 164. The angles of a triangle, two of whose sides are represented by vectors $\sqrt{3}(\hat{a} \times \vec{b})$ and $\hat{b} - (\hat{a} \cdot \vec{b})\hat{a}$, where \vec{b} is a non-zero vectors and \hat{a} is a unit vector in the direction of \vec{a} , are a) $\tan^{-1}(\sqrt{3})$ b) $\tan^{-1}(1/\sqrt{3})$ c) $\cot^{-1}(0)$ d) $\tan^{-1}(1)$ 165. \vec{a} and \vec{b} are two non-collinear unit vectors, and $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$. Then $|\vec{v}|$ is d) None of these b) $|\vec{u}| + |\vec{u} \cdot \vec{b}|$ c) $|\vec{u}| + |\vec{u} \cdot \vec{a}|$ a) |u| 166. A, B, C and D are four points such that $\overrightarrow{AB} = m(2\hat{\imath} - 6\hat{\jmath} + 2\hat{k})$, $\overrightarrow{BC} = (\hat{\imath} - 2\hat{\jmath})$ and $\overrightarrow{CD} = n(-6\hat{\imath} + 15\hat{\jmath} - 10\hat{j})$ $3\hat{k}$). If *CD* intersects *AB* at some point *E*, then a) $m \ge 1/2$ b) $n \ge 1/3$ c) m = nd) m < n167. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$, then $|\vec{v}|$ is b) $|\vec{u}| + |\vec{u} \cdot \vec{a}|$ a) |u| c) $|\vec{u}| + |\vec{u} \cdot \vec{b}|$ d) $|\vec{u}| + \vec{u} \cdot (\vec{a} + \vec{b})$ 168. Let *ABC* be a triangle, the position vectors of whose are $7\hat{j} + 10\hat{k}$, $-\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$. Then $\triangle ABC$ is b) Equilateral a) Isosceles c) Right angles d) None of these 169. \vec{b} and \vec{c} are non-collinear if $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b} = (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$ and $(\vec{c} \cdot \vec{c})\vec{a} = \vec{c}$. Then c) $y = (4n+1)\frac{\pi}{2}, n \in I$ d) $y = (2n+1)\frac{\pi}{2}, n \in I$ b) x = -1a) x = 1170. If non-zero vectors \vec{a} and \vec{b} are equally inclined to coplanar vector \vec{c} , then \vec{c} can be a) $\frac{|\vec{a}|}{|\vec{a}| + 2|\vec{b}|} \vec{a} + \frac{|b|}{|\vec{a}| + |\vec{b}|} \vec{b}$ b) $\frac{|b|}{|\vec{a}| + |\vec{b}|} \vec{a} + \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|} \vec{b}$ d) $\frac{|\vec{b}|}{2|\vec{a}| + |\vec{b}|}\vec{a} + \frac{|\vec{a}|}{2|\vec{a}| + |\vec{b}|}\vec{b}$ c) $\frac{|\vec{a}|}{|\vec{a}| + 2|\vec{b}|}\vec{a} + \frac{|\vec{b}|}{|\vec{a}| + 2|\vec{b}|}\vec{b}$ 171. The number of vectors of unit length perpendicular to vectors $\vec{a} = (1,1,0)$ and $\vec{b} = (0,1,1)$ is c) Three a) One b) Two d) infinite 172. A vector \vec{a} has the compounds 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sence. If, with respect to a new system, \vec{a} has components (p + 1) and I, then p is equal to a) -1 b) -1/3d) 2 c) 1 173. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = \sqrt{2}$. Then a) $\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$ b) $\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})$ c) $\vec{r} = \frac{2}{3}(\vec{a} - \vec{a} \times \vec{b})$ d) $\vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b})$ 174. In a four dimensional space where unit vectors along the axes are \hat{i} , \hat{j} , \hat{k} and \hat{l} , and \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 are four non-zero vectors such that no vector can be expressed as linear combination of others and $(\lambda - 1)(\vec{a}_1 - 1)$ \vec{a}_2) + μ (\vec{a}_2 + \vec{a}_3) + γ (\vec{a}_3 + \vec{a}_4 - $2\vec{a}_2$) + \vec{a}_3 + $\delta\vec{a}_4$ = $\vec{0}$, then b) $\mu = -2/3$ c) $\gamma = 2/3$ a) $\lambda = 1$ d) $\delta = 1/3$ 175. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a} - \vec{b}| < 1$ and $0 \le \theta \le \pi$, then θ lies in the interval b) $(5\pi/6, \pi]$ a) $[0, \pi/6)$ c) $[\pi/6, \pi/2)$ d) $(\pi/2, 5\pi/6]$ 176. The vectors $\vec{\mathbf{a}} = x \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = \hat{\mathbf{i}} + y\hat{\mathbf{j}} - z\hat{\mathbf{k}}$ are collinear, if a) x = 1, y = -2, z = -5b) x = 1/2, y = -4, z = -10c) x = -1/2, y = 4, z = 10d) x = -1, y = 2, z = 5177. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{r}_1 = \vec{a} - \vec{b} + \vec{c}$, $\vec{r}_2 = \vec{b} + \vec{c} - \vec{a}$, $\vec{r}_3 = \vec{c} + \vec{a} + \vec{b}$, $\vec{r} = 2\vec{a} - \vec{c} + \vec{a} + \vec{c}$ $3\mathbf{\vec{b}} + 4\mathbf{\vec{c}}$ is $\mathbf{\vec{r}} = \lambda_1\mathbf{\vec{r}}_1 + \lambda_2\mathbf{\vec{r}}_2 + \lambda_3\mathbf{\vec{r}}_3$, then d) $\lambda_2 + \lambda_3 = 2$ c) $\lambda_1 + \lambda_2 + \lambda_3 = 4$ a) $\lambda_1 = 7/2$ b) $\lambda_1 + \lambda_2 = 3$

178. If \vec{a} and \vec{b} are two vectors and angle between them is θ , then

a) $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$ b) $|\vec{a} \times \vec{b}| = (\vec{a} \cdot \vec{b})$ if $\theta = \pi/4$ c) $\vec{a} \times \vec{b} = (\vec{a} \cdot \vec{b})\hat{n}$, (\hat{n} is normal unit vector), if $\theta = \pi/4$ d) $(\vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b}) = 0$ 179. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and λ is a real number, then the vectors $\vec{a} + 2\vec{b} + 3\vec{c}, \lambda\vec{b} + 3\vec{c}, \lambda\vec{b}$ $\mu \vec{c}$ and $(2\lambda - 1)\vec{c}$ are coplanar when b) $\lambda = \frac{1}{2}$ c) $\lambda = 0$ a) $\mu \in R$ d) No value of λ 180. A parallelogram is constructed on vectors $\vec{a} = 3\vec{\alpha} - \vec{\beta}$, $\vec{b} = \vec{\alpha} + 3\vec{\beta}$ if $|\vec{\alpha}| = |\vec{\beta}| = 2$, and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the length of a diagonal of parallogram is b) $4\sqrt{3}$ c) 4√7 d) None of these a) $4\sqrt{5}$ 181. Vectors perpendicular to $\hat{i} - \hat{j} - \hat{k}$ and in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ are a) $\hat{\iota} + \hat{k}$ b) $2\hat{i} + \hat{j} + \hat{k}$ c) $3\hat{i} + 2\hat{j} + \hat{k}$ d) $-4\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$ 182. The vectors $x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k}, (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k}$ and $(x+6)\hat{i} + (x+7)\hat{j} + (x+8)\hat{k}$ are coplanar if *x* is equal to a) 1 b) -3 c) 4 d) 0 183. If $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, then (a) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{a}| = |\vec{a}|, |\vec{b}| = 1$ (b) $\vec{a}, \vec{b}, \vec{c}$ are not orthogonal to each other (c) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{a}| \neq |\vec{c}|$ (d) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal but $|\vec{b}| \neq 1$ 0r If $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$, then b) $|\vec{c}| = 1$, $|\vec{a}| = 1$ c) $|\vec{b}| = 2$, $\vec{c} = 2\vec{a}$ d) $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$ a) $|\vec{a}| = 1, \vec{b} = \vec{c}$ 184. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a} + \vec{b} + \vec{c})$.Now $\vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a})$.Then b) $\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = -2$ a) $\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = 2$ c) Minimum value of $x^2 + y^2$ is $\pi^2/4$ d) Minimum value of $x^2 + y^2$ is $5\pi^2/4$ 185. If A(-4, 0, 3) and B(14, 2, -5), then which one of the following points lie on the bisector of the angle between \overrightarrow{OA} and \overrightarrow{OB} (O is the origin of reference)? a) (2, 2, 4) b) (2, 11, 5) c) (-3, -3, -6)d) (1, 1, 2) 186. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors and $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$ and $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$ Vectors \vec{V}_1 and \vec{V}_2 are equal. Then a) \vec{a} and \vec{b} are orthogonal b) \vec{a} and \vec{c} are collinear c) \vec{b} and \vec{c} are orthogonal d) $\vec{b} = \lambda(\vec{a} \times \vec{c})$ when λ is a scalar 187. Which of the following expression are meaningful? c) $(\vec{u} \cdot \vec{v})\vec{w}$ d) $\vec{u} \times (\vec{v} \cdot \vec{w})$ a) $\vec{u} \cdot (\vec{v} \times \vec{w})$ b) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$ 188. If points $\hat{i} + \hat{j}$, $\hat{i} - \hat{j}$ and $p\hat{i} + q\hat{j} + r\hat{k}$ are collinear, then a) p = 1b) r = 0c) $q \in R$ d) $q \neq 1$ 189. \vec{a} and \vec{b} are two given vectors. With these vectors as adjacent sides, a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to \vec{a} is

a)
$$\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^2} \vec{a} - \vec{b}$$
 b) $\frac{1}{|\vec{a}|^2} \{ |\vec{a}|^2 \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \}$

c)
$$\frac{\vec{a} \times (\vec{a} \times \vec{b})}{|\vec{a}|^2}$$
 d) $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

190. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is

a)
$$\frac{1}{7}(3\hat{\imath} + 6\hat{\jmath} - 2\hat{k})$$
 b) $\frac{1}{7}(3\hat{\imath} - 6\hat{\jmath} - 2\hat{k})$ c) $\frac{1}{\sqrt{69}}(\hat{\imath} + 2\hat{\jmath} + 8\hat{k})$ d) $\frac{1}{\sqrt{69}}(-\hat{\imath} - 2\hat{\jmath} + 8\hat{k})$

191. Vector $\frac{1}{3}(2\hat{\imath} - 2\hat{\jmath} + \hat{k})$ is

- a) a unit vector
- b) Makes an angle $\pi/3$ with vector $(2\hat{\imath} 4\hat{\jmath} + 3\hat{k})$
- c) Parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2}\hat{k}\right)$
- d) Perpendicular to vector $3\hat{i} + 2\hat{j} 2\hat{k}$

192. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a}$ can be

a)
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$
 b) $2\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$ c) $|\vec{a}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$ d) $|\vec{b}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$

193. If $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$, where $\vec{c} \neq \vec{0}$, then a) $|\vec{a}| = |\vec{c}|$ b) $|\vec{a}| = |\vec{b}|$

c)
$$|\vec{b}| = 1$$
 d) $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

194. Let $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ be three vectors. A vectors in the plane of \vec{b} and \vec{c} , whose projection on \vec{a} is of magnitude $\sqrt{2/3}$, is

a)
$$2\hat{\imath} + 3\hat{\jmath} - 3\hat{k}$$
 b) $2\hat{\imath} + 3\hat{\jmath} + 3\hat{k}$ c) $-2\hat{\imath} - \hat{\jmath} + 5\hat{k}$ d) $2\hat{\imath} + \hat{\jmath} + 5\hat{k}$

195. The scalars *l* and *m* such that $l\vec{a} + m\vec{b} = \vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to

a)
$$l = \frac{\left(\vec{c} \times \vec{b}\right) \cdot \left(\vec{a} \times \vec{b}\right)}{\left(\vec{a} \times \vec{b}\right)^2}$$
 b)
$$l = \frac{\left(\vec{c} \times \vec{a}\right) \cdot \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$
 c)
$$m = \frac{\left(\vec{c} \times \vec{b}\right) \cdot \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^2}$$
 d)
$$m = \frac{\left(\vec{c} \times \vec{a}\right) \cdot \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^2}$$

196. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$. Let \vec{x} , \vec{y} and \vec{z} be three vectors in the plane of \vec{a} , \vec{b} ; \vec{b} , \vec{c} ; \vec{c} , \vec{a} , respectively Then

a)
$$\vec{x} \cdot \vec{d} = -1$$

b) $\vec{y} \cdot \vec{d} = 1$
c) $\vec{z} \cdot \vec{d} = 0$
b) $\vec{y} \cdot \vec{d} = 1$
d) $\vec{r} \cdot \vec{d} = 0$, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \delta \vec{z}$

197. \vec{a} , \vec{b} and \vec{c} are three coplanar unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. If three vectors \vec{p} , \vec{q} and \vec{r} are parallel to \vec{a} , \vec{b} and \vec{c} , respectively, and have integral but different magnitudes, then among the following options, $|\vec{p} + \vec{q} + \vec{r}|$ can take a value equal to a) 1 b) 0 c) $\sqrt{3}$ d) 2

198. If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then (\vec{b} and \vec{c} being non-parallel)

- a) Angle between \vec{a} and \vec{b} is $\pi/3$ b) Angle between \vec{a} and \vec{c} is $\pi/3$
- c) Angle between \vec{a} and \vec{b} is $\pi/2$ d) Angle between \vec{a} and \vec{c} is $\pi/2$

199. If side \overrightarrow{AB} of an equilateral triangle *ABC* lying in the x - y plane is $3\hat{i}$, then side \overrightarrow{CB} can be

a)
$$-\frac{3}{2}(\hat{\imath} - \sqrt{3}\hat{\jmath})$$
 b) $\frac{3}{2}(\hat{\imath} - \sqrt{3}\hat{\jmath})$ c) $-\frac{3}{2}(\hat{\imath} + \sqrt{3}\hat{\jmath})$ d) $\frac{3}{2}(\hat{\imath} + \sqrt{3}\hat{\jmath})$

200. For three vectors \vec{u} , \vec{v} and \vec{w} which of the following expression is not equal to any of the remaining three? a) $\vec{u} \cdot (\vec{v} \times \vec{w})$ b) $(\vec{v} \times \vec{w}) \cdot \vec{u}$ c) $\vec{v} \cdot (\vec{u} \times \vec{w})$ d) $(\vec{u} \times \vec{v}) \cdot \vec{w}$

d) None of these

^{201.} Let \vec{a}, \vec{b} and \vec{c} be vectors forming right-hand tried. Let $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$. If $x \in R^+$, then a) $x[\vec{a}\vec{b}\vec{c}] + \frac{[\vec{p}\vec{q}\vec{r}]}{x}$ has least value 2 b) $x^4[\vec{a}\vec{b}\vec{c}]^2 + \frac{[\vec{p}\vec{q}\vec{r}]}{x^2}$ has least value (3/2^{2/3})

c)
$$[\vec{p}\vec{q}\vec{r}] > 0$$

202. Let $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ be three vectors. A vector in the plane of $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ whose projection at $\vec{\mathbf{a}}$ is of magnitude $\sqrt{(2/3)}$, is

	a) 2 î + 3 ĵ - 3 k	b) $2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$	c) $-2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 5\hat{\mathbf{k}}$	d) $2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$
203	\cdot If vectors \vec{a} , \vec{b} and \vec{c} are no	on-coplanar and <i>l, m</i> and <i>n</i>	are distinct scalars, then	
	$[(l\vec{a}+m\vec{b}+n\vec{c})(l\vec{b}+m\vec{c})]$	$(\vec{c} + n\vec{a})(l\vec{c} + m\vec{a} + n\vec{b})] =$	0 implies	
	a) $l + m + n = 0$		b) Roots of the equation <i>l</i>	$x^2 + mx + n = 0$ are real
	c) $l^2 + m^2 + n^2 = 0$. →.	d) $l^3 + m^3 + n^3 = 3lmn$	
204	• If \vec{a} and \vec{b} are non zero ve	ctors such that $ \vec{a} + \vec{b} = \vec{a} $	$\vec{i} - 2\vec{b}$, then	
	a) $2\vec{a}.\vec{b} = \vec{b} ^2$		b) $\vec{a}.\vec{b} = \vec{b} ^2$	
	c) Least value of $\vec{a} \cdot \vec{b} + \frac{1}{ \vec{a} }$	$\frac{1}{\left \vec{b}\right ^2 + 2}$ is $\sqrt{2}$	d) Least value of $\vec{a} \cdot \vec{b} + \frac{1}{ \vec{k} }$	$\frac{1}{ v +2}$ is $\sqrt{2}-1$
205	\cdot Let $\vec{\alpha} = a\hat{\imath} + b\hat{\jmath} + c\hat{k}, \vec{\beta} =$	$b\hat{i} + c\hat{j} + a\hat{k}$ and $\vec{\gamma} = c\hat{i} + c\hat{j}$	$a\hat{j} + b\hat{k}$ be three coplanar	vectors with $a \neq b$, and
	$\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Then \vec{v} is p	erpendicular to		
	a) $\vec{\alpha}$	b) β	c) γ	d) None of these
206	$\cdot \operatorname{If} \left(\vec{a} \times \vec{b} \right) \times \left(\vec{c} \times \vec{d} \right) \cdot \left(\vec{a} \times \vec{c} \right)$	$(\vec{d}) = 0$, then which of the	following may be true?	
	a) $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are necess	arily coplanar	b) \vec{a} lies in the plane of $\vec{c}a$	and \vec{d}
	c) \vec{b} lies in the plane of \vec{a} a	and <i>d</i>	d) <i>c</i> lies in the plane of <i>a</i> a	nd \vec{d}
207	• If vectors $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + 4\hat{\imath}$	$k\hat{k}, \vec{B} = \hat{\iota} + \hat{\jmath} + 5\hat{k}$ and \vec{C} for	rm a left-handed system, th	en \vec{C} is
	a) $11\hat{i} - 6\hat{j} - \hat{k}$	b) $-11\hat{\imath} + 6\hat{\jmath} + \hat{k}$	c) $11\hat{\imath} - 6\hat{\jmath} + \hat{k}$	d) $-11\hat{\imath} + 6\hat{\jmath} - \hat{k}$
208	$\cdot \vec{a} \cdot \vec{b}$ and \vec{c} are unimodula	r and coplanar. A unit vecto	or \vec{d} is perpendicular to the	m. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) =$
	$\frac{1}{6}\hat{\iota} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$, and the ang	gle between \vec{a} and \vec{b} is 30°, t	hen <i>c</i> is	
	a) $(\hat{\iota} - 2\hat{j} + 2\hat{k})/3$	b) $(-\hat{\iota} + 2\hat{j} - 2\hat{k})/3$	c) $(2\hat{\imath} + 2\hat{\jmath} - \hat{k})/3$	d) $(-2\hat{\imath} - 2\hat{\jmath} + \hat{k})/3$
209	· A parallelogram is constr	ructed on the vectors $\vec{\mathbf{a}} = 3$	$\vec{\alpha} - \vec{\beta}, \vec{\mathbf{b}} = \vec{\alpha} + 3\vec{\beta}, \text{ if } \vec{\alpha} =$	$\left \vec{\beta}\right = 2$ and angle between
	$\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{2}$, then the len	gth of a diagonal of the par	allelogram is	
	a) $4\sqrt{5}$	b) 4 √3	c) 4 √7	d) None of these
210	$[\vec{a} \times \vec{b}\vec{c} \times \vec{d}\vec{e} \times \vec{f}]$ is equal	lto		
	a) $\begin{bmatrix} \vec{a} \vec{b} \vec{d} \end{bmatrix} \begin{bmatrix} \vec{c} \vec{e} \vec{f} \end{bmatrix} - \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \begin{bmatrix} \vec{d} \vec{e} \vec{f} \end{bmatrix}$	ē <i>f</i>]	b) $\left[\vec{a}\vec{b}\vec{e}\right]\left[\vec{f}\vec{c}\vec{d}\right] - \left[\vec{a}\vec{b}\vec{f}\right]\left[\vec{e}\vec{a}\right]$	$\vec{c}\vec{d}$
	c) $\begin{bmatrix} \vec{c} \vec{d} \vec{a} \end{bmatrix} \begin{bmatrix} \vec{b} \vec{e} \vec{f} \end{bmatrix} - \begin{bmatrix} \vec{a} \vec{d} \vec{b} \end{bmatrix} \begin{bmatrix} \vec{a} \vec{c} \vec{a} \end{bmatrix}$	ēf]	d) $[\vec{a}\vec{c}\vec{e}][\vec{b}\vec{d}\vec{f}]$	
211	• Vectors \vec{A} and \vec{R} satisfying	$\vec{A} + \vec{F}$	$\vec{k} = \vec{a} \cdot \vec{A} \times \vec{B} = \vec{h}$ and $\vec{A} \cdot \vec{a} =$	1 where \vec{a} and \vec{b} are given
	vectors, are			i, where wanta b are given
	$(\vec{a} \times \vec{b}) - \vec{a}$		$(\vec{b} \times \vec{a}) + \vec{a}(a^2 - d)$	1)
	a) $A = \frac{c}{a^2}$		$B = \frac{c}{a^2}$	<u> </u>
	c) $\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$		d) $\vec{B} = \frac{(\vec{b} \times \vec{a}) - \vec{a}(a^2 - a^2)}{a^2}$	1)
212	$a_1, a_2, a_3 \in R - \{0\}$ and $a_3 \in R$	$a_1 + a_2 \cos 2x + a_3 \sin^2 x =$	• Ofor all $x \in R$, then	
	a) Vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_2\hat{j}$	$a_3\hat{k}$ and $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$ a	re perpendicular to each of	ther
	b) Vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_2\hat{j}$	$-a_3\hat{k}$ and $\vec{b} = -\hat{\iota} + \hat{\jmath} + 2\hat{k}$ a	re parallel to each other	
	c) If vector $\vec{a} = a_1 \hat{\iota} + a_2 \hat{\jmath}$ (1, -1, -2)	$1 + a_3 \hat{k}$ is of length $\sqrt{6}$ units,	then one of the ordered tri	plet $(a_1, a_2, a_3) =$
	d) If $2a_1 + 3a_2 + 6a_3 = 2$	26,then $ a_1\hat{i} + a_2\hat{j} + a_3\hat{k} $ is	$2\sqrt{6}$	
213	• If \vec{a} and \vec{b} are unequal uni	t vectors such that $(\vec{a} - \vec{b})$	$\times \left[\left(\vec{b} + \vec{a} \right) \times \left(2\vec{a} + \vec{b} \right) \right] = 0$	$\vec{a} + \vec{b}$, then angle θ between
	a and b is	h) - /2	a) = /4	d) –
71 /	aj U	$DJ \pi/2$	$CJ \pi/4$	$u_{j}\pi$
214	a magnitude equal to E	provides $F_1 = pl + 3j - k$, $F_2 = pl$	$= 0i - \kappa \text{ and } F_3 = -5i + j + j$	- 2k acting on a particle has
	a magintuue equal to 5 ul a) –6	h) -4	c) 2	d) 4
21	~, ~ 	$\sim J $	-, -	~ , ·

215. If in triangle *ABC*, $\overrightarrow{AB} = \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{AC} = \frac{2\vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq |\vec{v}|$, then

a) $1 + \cos 2A + \cos 2B + \cos 2C = 0$ b) $\sin A = \cos C$ c) Projection of AC on BC is equal to BC d) Projection of AB on BC is equal to AB 216. If the vectors $\hat{i} - \hat{j}$, $\hat{j} + \hat{k}$ and \vec{a} from a triangle, then \vec{a} may be a) $-\hat{\iota} - \hat{k}$ b) $\hat{\iota} - 2\hat{\jmath} - \hat{k}$ c) $2\hat{i} + \hat{j} + \hat{k}$ d) $\hat{i} + \hat{k}$ 217. If $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} =$ a) $2(\vec{a} \times \vec{b})$ b) $6(\vec{b} \times \vec{c})$ c) $3(\vec{c} \times \vec{a})$ d) 🖸 218. Unit vectors \vec{a} and \vec{b} are perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$,then b) $\gamma^2 = 1 - 2\alpha^2$ c) $\gamma^2 = -\cos 2\theta$ d) $\beta^2 = \frac{1 + \cos 2\theta}{2}$ a) $a = \beta$ 219. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, then b) $\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$ a) $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ d) $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ c) $\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ 220. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\pi/6$, then $\begin{vmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & b_{2} & c_{3} \end{vmatrix}^{2}$ is equal to a) 0 b) 1 c) $\frac{1}{4}(a_1^2 + a_2^2 + a_2^2)(b_1^2 + b_2^2 + b_3^2)$ d) $\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)(c_1^2 + c_2^2 + c_3^2)$ 221. The vectors (x, x + 1, x + 2), (x + 3, x + 4, x + 5) and (x + 6, x + 7, x + 8) are coplanar for a) All values of x b) *x* < 0 c) x > 0d) None of these 222. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude. It now becomes $4\hat{\imath} + (4x - 2)\hat{\jmath} + 2\hat{k}$. The values of x are d) 3/4 a) 1 b) -2/3c) 2 223. If $a = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, $b = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$ and $c = z\hat{\imath} + x\hat{\jmath} + y\hat{k}$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is a) Parallel to $(y - z)\hat{\imath} + (z - x)\hat{\jmath} + (x - y)\hat{k}$ b) Orthogonal to $\hat{i} + \hat{j} + \hat{k}$ c) Orthogonal to $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$ d) Orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$ 224. A vector (\vec{d}) is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\hat{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$. Let $\vec{x}, \vec{y}, \vec{z}$ be three vectors in the plane of $\vec{a}, \vec{b}, \vec{c}, \vec{c}, \vec{a}$, respectively. Then a) $\vec{z} \cdot \vec{d} = 0$ b) $\vec{x} \cdot \vec{d} = 1$ c) $\vec{v} \cdot \vec{d} = 32$ d) $\vec{r} \cdot \vec{d} = 0$, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \gamma \vec{z}$ 225. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then which of the following is (are) true? b) $\lambda_2 = |\vec{b} \times \vec{c}|$ a) $\lambda_1 = \vec{a} \cdot \vec{c}$ d) $\lambda_1 + \lambda_2 + \lambda_3 = (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot \vec{c}$ c) $\lambda_3 = |(\vec{a} \times \vec{b}) \times \vec{c}|$ 226. If $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a) $(\vec{a} \cdot \vec{c}) |\vec{b}|^2 = (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{c})$ b) $\vec{a} \cdot \vec{b} = 0$ d) $\vec{b} \cdot \vec{c} = 0$ c) $\vec{a} \cdot \vec{c} = 0$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 227 to 226. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is

correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True
- 227 A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotated through an angle α about the origin in the anticlockwise sense
 - **Statement 1:** If the vector has component p + 2 and I with respect to the new system, then p = -1

Statement 2: Magnitude of the original vector and the new vector remains the same

228

Statement 1: If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ then $\vec{a} - \vec{d}$ is perpendicular to $\vec{b} - \vec{c}$.

Statement 2: If $\vec{\mathbf{p}}$ is perpendicular to $\vec{\mathbf{q}}$, then $\vec{\mathbf{p}} \cdot \vec{\mathbf{q}} = 0$.

²²⁹ Let the vectors \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} and \overrightarrow{UP} represent the sides of a regular hexagon.

Statement 1: $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$ Because

Statement 2: If $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$

230

Statement 1:	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then \vec{a} and \vec{b} are perpendicular to each other
Statement 2:	If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle

231

Statement 1:	For $a = -\frac{1}{\sqrt{3}}$ the volume of the parallelepiped formed by vectors $\hat{\mathbf{i}} + a\hat{\mathbf{j}}$, $a\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{j}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
	$a\hat{\mathbf{k}}$ is maximum

Statement 2: The volume of the parallelepiped having three coterminous edges \vec{a} , \vec{b} and \vec{c} is $|[\vec{a}\vec{b}\vec{c}]|$.

232

Statement 1:	If \vec{u} and \vec{v} are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle
	between them, then $\vec{x} = (\vec{u} + \vec{v})/(2\sin(\alpha/2))$
Statement 2:	If $\triangle ABC$ is an isosceles triangle with $AB = AC = 1$, then the vector representing the
	bisector of angle A is given by $\overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{AC})/2$

233

Statement 1: If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 5$, then $|\vec{a} - \vec{b}| = 5$

Statement 2: The length of the diagonals of a rectangle is the same

234

```
Statement 1: Let A(\vec{a}), B(\vec{b}) and C(\vec{c}) be three points such that \vec{a} = 2\hat{\imath} + \hat{k}, \vec{b} = 3\hat{\imath} - \hat{\jmath} + 3\hat{k} and \vec{c} = -\hat{\imath} + 7\hat{\jmath} - 5\hat{k}. Then OABC is a tetrahedron
```

Statement 2: Let $A(\vec{a})$, $B(\vec{a})$ and $C(\vec{c})$ be three points such that vectors \vec{a} , \vec{b} and \vec{c} are non-coplanar. Then *OABC* is a tetrahedron, where *O* is the origin

235 Consider three vectors \vec{a} , \vec{b} and \vec{c}

Statement 1: $\vec{a} \times \vec{b} = ((\hat{\imath} \times \vec{a}) \cdot \vec{b})\hat{\imath} + ((\hat{\jmath} \times \vec{a}) \cdot \vec{b})\hat{\jmath} + ((\hat{k} \times \vec{a}) \cdot \vec{b})\hat{k}$ Statement 2: $\vec{c} = (\hat{\imath} \cdot \vec{c})\hat{\imath} + (\hat{\jmath} \cdot \vec{c})\hat{\jmath} + (\hat{k} \cdot \vec{c})\hat{k}$

236 If $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = 3/2$, $\vec{\mathbf{b}} \cdot \vec{\mathbf{d}} = 2$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{d}} = 3$ and $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 1/2$

Statement 1: $\vec{a} \times \vec{b}$, \vec{c} , \vec{d} are non-coplanar.

Statement 2:
$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}) - (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}).$$

237

Statement 1: Distance of point D(1, 0, -1) from the plane of points A(1, -2, 0), B(3, 1, 2) and C(-1, 1, -1) is $\frac{8}{\sqrt{229}}$

Statement 2: Volume of tetrahedron formed by the points A, B, C and D is $\frac{\sqrt{229}}{2}$

238

Statement 1:	\vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that
	$\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non-coplanar. If $[\vec{d}\vec{b}\vec{c}] = [\vec{d}\vec{a}\vec{b}] = [\vec{d}\vec{c}\vec{a}] = 1$, then $\vec{d} = \vec{a} + \vec{b} + \vec{c}$
Statement 2:	$[\vec{d}\vec{b}\vec{c}] = [\vec{d}\vec{a}\vec{b}] = [\vec{d}\vec{c}\vec{a}] \Rightarrow \vec{d}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

239

Statement 1:	If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$, $\vec{B} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{C} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$, then $\left \vec{A} \times \left(\vec{A} \times (\vec{A} \times \vec{B})\right) \cdot \vec{C}\right = \hat{\imath}$
	243
Statement 2:	$\left \vec{A} \times \left(\vec{A} \times (\vec{A} \times \vec{B}) \right) \right \cdot \vec{C} = \left \vec{A} \right ^2 \left \left[\vec{A} \vec{B} \vec{C} \right] \right $

240

Statement 1:	If three point <i>P</i> , <i>Q</i> and <i>R</i> have position vectors \vec{a} , \vec{b} , and \vec{c} , respectively, and $2\vec{a} + 3\vec{b}$ –
	$5\vec{c} = 0$, then the points <i>P</i> , <i>Q</i> and <i>R</i> must be collinear
Statement 2:	If for three points A, B and C; $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, then points A, B and C must be collinear

241

Statement 1:	If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the direction cosines of any line segment, then $\cos^2 \alpha$ +
	$\cos^2\beta + \cos^2\gamma = 1$
Statement 2:	If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the direction cosines of a line segment, $\cos 2\alpha + \cos 2\beta + \cos 2\beta$
	$\cos 2\gamma = -1$

242

Statement 1:	If in a $\triangle ABC$, $\overrightarrow{\mathbf{BC}} = \frac{\vec{e}}{ \vec{e} } - \frac{\vec{t}}{ \vec{t} }$ and $\overrightarrow{\mathbf{AC}} = \frac{2\vec{e}}{ \vec{e} }$;
Statement 2:	$ \vec{e} \neq \vec{f} $, then the value of $\cos 2A + \cos 2B + \cos 2C$ is -1 . If in $\triangle ABC$, $\angle ABC$, $\angle C = 90^{\circ}$, then $\cos 2A + \cos 2B + \cos 2C = 1$

243

Statement 1: If \vec{a} , \vec{b} , \vec{c} are coplanar then $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

Statement 2: $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]^2$.

244

```
Statement 1: \vec{a} = 3\vec{i} + p\vec{j} + 3\vec{k} and \vec{b} = 2\vec{i} + 3\vec{j} + q\vec{k} are parallel vectors if p=9/2 and q=2
Statement 2: If \vec{a} = q, \vec{i} + q, \vec{k} and \vec{b} = b, \vec{i} + b, \vec{k} are parallel \frac{a_1}{a_1} = \frac{a_2}{a_2} = \frac{a_3}{a_3}
```

Statement 2: If
$$a = a_1i + a_2j + a_3k$$
 and $b = b_1i + b_2j + b_3k$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

245

Statement 1:	The direction cosines of one of the angular bisectors of two intersecting lines having
	direction cosines as l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are proportional to $l_1 + l_2$, $m_1 + m_2$, $n_1 + n_2$
Statement 2:	The angle between the two intersecting lines having direction cosines as l_1, m_1, n_1 and
	l_2, m_2, n_2 is given by $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

246

Statement 1: $|\vec{a}| = |\vec{b}|$ does not implies that $\vec{a} = \vec{b}$.

Statement 2: If $\vec{a} = \vec{b}$ then $\vec{a} \cdot \vec{b} = |\vec{a}|^2 = |\vec{b}|^2$.

247 Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for given non-zero vectors \vec{a} , \vec{b} and \vec{c}

Statement 1: $\begin{bmatrix} \vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a} \end{bmatrix} = 0$ Statement 2: $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = 0$

248

Statement 1:	If $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are three mutually perpendicular
	unit vectors, then $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ and $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$ may be mutually
	perpendicular unit vectors
Statement 2:	Value of determinant and its transpose are the same

249

Statement 1:	If $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0$, $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = 0$, $\vec{\mathbf{r}} \cdot \vec{\mathbf{c}} = 0$ for some non-zero vector $\vec{\mathbf{r}}$, then $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are coplanar vectors,
	then $\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} = 0$.
Statement 2:	If $ \vec{a} \vec{b} \vec{c} = 0$, then \vec{a} , \vec{b} , \vec{c} are coplanar.

250

Statement 1:	Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> and $3\vec{a} - 2\vec{b} + 5\vec{c} - \vec{c}$
	$6\vec{d} = \vec{0}$. Then points A, B, C and D are coplanar
Statement 2:	Three non-zero, linearly dependent coinitial vectors $(\overrightarrow{PQ}, \overrightarrow{PR} \text{ and } \overrightarrow{PS})$ are coplanar then
	$\overrightarrow{PQ} = \lambda \overrightarrow{PR} + \mu \overrightarrow{PS}$, where λ and μ are scalars

251

Statement 1:	Vector $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angle between $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and
	$\vec{b} = -8\hat{\imath} + \hat{\jmath} - 4\hat{k}$
Statement 2:	\vec{c} is equally inclined to \vec{a} and \vec{b}

252

Statement 1: In $\triangle ABC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

Statement 2: If $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$, then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$

253

```
Statement 1: The identity

|\vec{a} \times \hat{i}|^2 = |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 Holds for \vec{a}.

Statement 2: \vec{a} \times \hat{i} = a_3 \hat{j} - a_2 \hat{k};

\vec{a} \times \hat{j} = a_1 \hat{k} - a_3 \hat{i}, \vec{a} \times \hat{k} = a_2 \hat{i} - a_2 \hat{j}

Which of the following is correct?
```

254

Statement 1: If $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|2\vec{a} - \vec{b}| = 5$, then $|2\vec{a} + \vec{b}| = 5$

Statement 2: $|\vec{p} - \vec{q}| = |\vec{p} + \vec{q}|$

255

Statement 1:	If a and b are	reciprocal	vectors,	then \overline{a}	'∙ Ď	=	1.
--------------	------------------------------	------------	----------	---------------------	------	---	----

Statement 2: If \vec{a} and \vec{b} are reciprocal, then $\vec{a} = \lambda \vec{b}, \lambda \in R^+$, and $|\vec{a}| |\vec{b}| = 1$.

256

Statement 1:	A component of vector $\vec{b} = 4\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ in the direction perpendicular to the direction of
	vector $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k} \operatorname{is} \hat{\imath} - \hat{\jmath}$
Statement 2:	A component of vector in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $2\hat{i} + 2\hat{j} + 2\hat{k}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

257.

		Col				Column- II		
(A)	If $\left \vec{a} + \vec{b} \right = \vec{b}$ is	$\left \vec{a}+2\vec{b}\right $, then ar	(p)	90°			
(B)	If $ \vec{a} + \vec{b} = \vec{a} - 2\vec{b} $, then angle between \vec{a} and \vec{b} is						Obtuse	
(C)	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then angle between \vec{a} and \vec{b} is						0°	
(D)	Angle between $\vec{a} \times \vec{b}$ and a vector perpendicular to the vector $\vec{c} \times (\vec{a} \times \vec{b})$ is					(s)	acute	
COD	ES :							
	Α	В	С	D				
a)	S	r	q	р				
b)	q	S	р	r				

c)	S	р	r	q
d)	r	q	S	р

258. Refer to the following diagram:

Column-I

(A)	Collinear vectors	(p)	ā
(B)	Coinitial vectors	(q)	\vec{b}
(C)	Equals vectors	(r)	Ċ
(D)	Unlike vectors (same initial point)	(s)	\vec{d}

CODES :

	Α	В	С	D
a)	P,r,s	q,r,s	p,r	r,s
b)	q,r	t,s	t,r,s	q,p
c)	s,t	r	р	s,t
d)	q,r	t	a,s	t,r

259. \vec{a} and \vec{b} form the consecutive sides of a regular hexagon ABCDEF

Column-I

Column- II

If $\overrightarrow{CD} = x\overrightarrow{a} + y\overrightarrow{b}$, then	(p)	x = -2
If $\overrightarrow{CE} = x\overrightarrow{a} + y\overrightarrow{b}$, then	(q)	x = -10
If $\overrightarrow{AE} = x\vec{a} + y\vec{b}$, then	(r)	<i>y</i> = 1
$\overrightarrow{AD} = -x\overrightarrow{b}$, then	(s)	<i>y</i> = 2
	If $\overrightarrow{CD} = x\vec{a} + y\vec{b}$, then If $\overrightarrow{CE} = x\vec{a} + y\vec{b}$, then If $\overrightarrow{AE} = x\vec{a} + y\vec{b}$, then $\overrightarrow{AD} = -x\vec{b}$, then	If $\overrightarrow{CD} = x\vec{a} + y\vec{b}$, then(p)If $\overrightarrow{CE} = x\vec{a} + y\vec{b}$, then(q)If $\overrightarrow{AE} = x\vec{a} + y\vec{b}$, then(r) $\overrightarrow{AD} = -x\vec{b}$, then(s)

CODES:

	Α	В	С	D
a)	S,t	r	р	s,t
b)	q,r	p,r	q,s	р
c)	p,r,s	q,r,s	p,r,d	r,s
d)	q,r	t,s	t,r,s	q,p

260. Given two vectors $\vec{a} = -\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and $\vec{b} = -2\hat{\imath} + \hat{\jmath} + 2\hat{k}$

Column- II

Column-I

Column- II

(A)	A vectors coplanar with \vec{a} and \vec{b}					$-3\hat{\imath}+3\hat{\jmath}+4\hat{k}$
(B)	A vector which is perpendicular to both \vec{a} and \vec{b}				l (q)	$2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$
(C)	A vector	which is e	qually inc	clined to \vec{a} and \vec{b}	(r)	$\hat{\iota} + \hat{j}$
(D)	A vector	which for	ms a trian	gle whit \vec{a} and \vec{b}	(s)	$\hat{\iota} - \hat{j} + 5\hat{k}$
COD	ES :					
	Α	В	С	D		
a)	P,r	q	p,q,s	р		
b)	q	p,q,s	р	p,r		
c)	р	p,r	q	p,q,s		
d)	p,q,s	р	p,r	p,q		
261. If a :	$=\hat{i}+\hat{j}+\hat{j}$	$\hat{\mathbf{k}}, \ \hat{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$	$\hat{j} + \hat{k}, \hat{c}$	$=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\hat{\mathbf{d}}$	$\vec{\mathbf{l}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$	$\hat{\mathbf{j}}-\hat{\mathbf{k}}$, then observes the following lists
		Co	olumn-I			Column- II
(A)	ā∙b				(p)	a · d
(B)	$\mathbf{\vec{b}}\cdot\mathbf{\vec{c}}$				(q)	3
(C)	[ā b c]				(r)	$\vec{\mathbf{b}}\cdot\vec{\mathbf{d}}$
(D)	$\vec{b} \times \vec{c}$				(s)	$2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$
					(t)	$2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
					(u)	4
COD	ES :					
	Α	В	С	D		
a)	с	а	b	f		
b)	С	а	f	е		
c)	а	С	b	f		
d)	а	С	f	d		
262. Volu	me of par	allelepipe	d formed	by vectors $\vec{a} \times \vec{b}$,	$\vec{b} \times \vec{c}$ ai	nd $\vec{c} \times \vec{a}$ is 36 sq. units
		Co	olumn-I			Column- II
(A)	Volume <i>å, b</i> and d	of parallel c is	epiped for	rmed by vectors	(p)	0 sq. units

(B) Volume of tetrahedron formed by vectors (q) 12 sq. units \vec{a}, \vec{b} and \vec{c} is

	(C)	Volume of parallelepiped formed by vectors $\vec{a} + \vec{b} \cdot \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is					6sq. units	
	(D)	Volume of parallelepiped formed by					1 sq. units	
	COD	vectorsā ES :	-b, b-c	čand c̃ − ã	is			
		Α	В	C	D			
	a)	r	S	q	р			
	b)	S	r	р	q			
	c)	р	q	r	S			
	d)	q	р	S	r			
263.	Give	n two vect	ors $\vec{a} = -$	$-\hat{\imath} + \hat{\jmath} + 2\hat{k}$	\hat{k} and $\vec{b} = -\hat{\iota} - 2\hat{j} - \hat{\iota}$	$-\hat{k}$		
			Co	olumn-I				Column- II
	(A)	Area of tr	iangle for	rmed by <i>a</i>	and \vec{b}	(p)	3	
	(B)	Area of pa	arallelogr	am having	g sides \vec{a} and \vec{b}	(q)	$12\sqrt{3}$	
	(C)	Area of particular $4\vec{b}$	arallelogr	am having	g diagonals 2 <i>ā</i> and	(r)	$3\sqrt{3}$	
	(D)	Volume o	f parallel	epiped for	med by \vec{a}, \vec{b} and	(s)	$\frac{3\sqrt{3}}{2}$	
	COD	$\vec{c} = \hat{i} + \hat{j}$ ES :	+ <i>k</i>				2	
		Α	В	C	D			
	a)	р	q	r	S			
	b)	q	S	р	r			
	c)	r	р	S	q			
	d)	S	r	q	р			
264.								
			Co	olumn-I				Column- II
	(A)	If $ \vec{a} = \vec{b} = \vec{c} $, angle between each pair of vectors is $\frac{\pi}{3}$ and $ \vec{a} + \vec{b} + \vec{c} = \sqrt{6}$, then $2 \vec{a} $ is					3	
	(B)	equal to If \vec{a} is perpendicular to $\vec{b} + \vec{c}$, \vec{b} is perpendicular to $\vec{c} + \vec{a}$, \vec{c} is perpendicular $\vec{a} + \vec{b}$, $ \vec{a} = 2$, $ \vec{b} = 3$ and $ \vec{c} = 6$, then $ \vec{a} + \vec{b} + \vec{c} = 2$ is equal to					2	
	(C)	$\vec{a} = 2\hat{i} + \hat{k}$ and $\vec{d} =$ equal to	$3\hat{j} - \hat{k}, \vec{b}$ $3\hat{i} + 2\hat{j} -$	$= -\hat{i} + 2\hat{j}$ + \hat{k} , then $\frac{1}{7}$	$(-4\hat{k}, \vec{c} = \hat{\iota} + \hat{j} + (\vec{a} \times \vec{b}). (\vec{c} \times \vec{d})$ is	(r)	4	

(D) If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = (s)$ 5 2 then $[\vec{a}\vec{b}\vec{c}] \cos 45^\circ$ is equal to CODES :

	Α	В	С	D
a)	р	q	r	S
b)	S	r	q	р
c)	q	S	р	r
d)	r	р	S	q

265.

Column-I

(A) If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular (p) -12 vectors where $|\vec{a}| = |\vec{b}| = 2$, $|\vec{c}| = 1$, then $[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}]$ is

- **(B)** If \vec{a} and \vec{b} are two unit vectors inclined at $\pi/3$, (q) 0 then $16[\vec{a}\vec{b} + \vec{a} \times \vec{b}\vec{b}]$ is
- (C) If \vec{b} and \vec{c} are orthogonal unit vectors and (r) 16 $\vec{b} \times \vec{c} = \vec{a}$, then $[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}]$ is
- **(D)** If $[\vec{x}\vec{y}\vec{a}] = [\vec{x}\vec{y}\vec{b}] = [\vec{a}\vec{b}\vec{c}] = 0$, each vector being a (s) 1 non-zero vector, then $[\vec{x}\vec{y}\vec{c}]$ is

CODES :

	Α	В	С	D
a)	р	q	r	S
b)	r	р	S	q
c)	q	S	р	r
d)	S	r	q	р

coplanar is

266.

Column-I

Column- II

Column- II

(A) The possible value of a if r = (î + ĵ) + λ(î + (p) -4 2ĵ - k̂) and r = (î + 2ĵ) + μ(-î + ĵ + ak̂) are not consistent, where λ and μ are scalars, is
(B) The angle between vectors a = λî - 3ĵ - k̂ (q) -2 and b = 2λî + λĵ - k̂ is acute, whereas vector b makes an obtuse angle with the axes of coordinates. Then λ may be
(C) The possible value of a such that 2î - ĵ + (r) 2 k̂, î + 2ĵ + (1 + a)k̂ and 3î + aĵ + 5k̂ are

(D) If $\vec{A} = 2\hat{\imath} + \lambda\hat{\jmath} + 3\hat{k}$, $\vec{B} = 2\hat{\imath} + \lambda\hat{\jmath} + \hat{k}$, $\vec{C} = 3\hat{\imath} + (s)$ 3

 \hat{j} and $\vec{A} + \lambda \vec{B}$ is perpendicular to \vec{C} , then $|2\lambda|$ is **CODES**:

	Α	В	С	D
a)	P,q,r,s	p,q	p,r	r
b)	p,q	p,r	r	p,q,r,s
c)	p,r	p,q,r,s	p,q	r
d)	r	p,r	p,q,r,s	p,q

Linked Comprehension Type

This section contain(s) 26 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 267 to -267

The vertices of a triangle *ABC* are $A \equiv (2,0,2)$, $B \equiv (-1,1,1)$ and $C \equiv (1,-2,4)$. The points *D* and *E* divide the sides *AB* and *CA* in the ratio 1 : 2 respectively. Another point *F* is taken in space such that perpendicular drawn from *F* on ΔABC , meets the triangle at the point of intersection of the line segment *CD* and *BE*, say *P*. If the distance from the plane of the ΔABC is $\sqrt{2}$ unit, then *On the basis of above information, answer the following questions* :

267. The position vector of *P* is

a) $\hat{i} + \hat{j} - 3\hat{k}$ b) $\hat{i} - \hat{j} + 3\hat{k}$ c) $2\hat{i} - \hat{j} - 3\hat{k}$ d) $\hat{i} + \hat{j} + 3\hat{k}$

Paragraph for Question Nos. 268 to - 268

Let *A* be the given point whose position vector relative to an origin *O* be \vec{a} and $\overrightarrow{ON} = \vec{n}$. Let \vec{r} be the position vector of any point *P* which lies on the plane and passing through *A* and perpendicular to *ON*. Then for any point *P* on the plane

 $\vec{AP} \cdot \vec{n} = 0$ $\Rightarrow (\vec{r} \cdot \vec{a}) \cdot \vec{n} = 0 \Rightarrow \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$ $\Rightarrow \vec{r} \cdot \vec{n} = P$ Where *P* is perpendicular distance of the plane from origin. *On the basis of above information, answer the following questions* :

268. The equation of the plane through the point $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ and parallel to the plane $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) - 7 = \hat{\mathbf{j}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$

0 is	
a) $\vec{\mathbf{r}} \cdot \left(4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}\right) = 0$	b) $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = 16$
c) $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = 24$	d) $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = 32$

Paragraph for Question Nos. 269 to - 269

Let \vec{a} , \vec{b} , \vec{c} be three vectors such that $|\vec{a}| = |\vec{b}| = |\vec{c}| = 4$ and angle between \vec{a} and \vec{b} is $\pi/3$, angle between \vec{b} and \vec{c} is $\pi/3$ and angle between \vec{c} and \vec{a} is $\pi/3$.

On the basis of above information, answer the following questions :

269. The volume of t	he parallelopiped whose adja	cent edges are represent	ed by the vectors \vec{a} , \vec{b} and \vec{c} , is
a) 24√2	b) 24√3	c) 32√2	d) 32√3

Paragraph for Question Nos. 270 to - 270

ABCD is a parallelogram. *L* is a point on *BC* which divides *BC* in the ratio 1:2 *AL* intresects *BD* at *P*. *M* is a point on *DC* which divides *DC* in the ratio 1:2 And *AM* intresects *BD* in *Q*

270. Point <i>P</i> divides <i>AL</i> in the ratio									
a) 1:2	b) 1:3	c) 3:1	d) 2:1						

Paragraph for Question Nos. 271 to - 271

Let *OABCD* be a pentagon in which the sides *OA* and *CB* are parallel and the sides *OD* and *AB* are parallel. Also OA: CB = 2:1 and OD: AB = 1:3

271. The ratio
$$\frac{ox}{xc}$$
 is
a) 3/4 b) 1/3 c) 2/5 d) 1/2

Paragraph for Question Nos. 272 to - 272

Consider the regular hexagon *ABCDEF* with centre at *O* (origin)

272. $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ is equal to a) $2\overrightarrow{AB}$ b) $3\overrightarrow{AB}$ c) $4\overrightarrow{AB}$ d) None of these

Paragraph for Question Nos. 273 to - 273

Let \vec{u} , \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}$, $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$, $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}$, $\vec{a} \cdot \vec{u} = \frac{3}{2}$, $\vec{a} \cdot \vec{v} = 7/4$ and $|\vec{a}| = 2$

273. Vector \vec{u} is

a)
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$
 b) $\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$ c) $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$ d) $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$

Paragraph for Question Nos. 274 to - 274

Vectors \vec{x} , \vec{y} and \vec{z} each of magnitude $\sqrt{2}$, make an angle of 60° with each other. $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$

274. Vector
$$\vec{x}$$
 is
a) $\frac{1}{2}[(\vec{a} - \vec{b}) \times \vec{c} + (\vec{a} + \vec{b})]$
c) $\frac{1}{2}[-(\vec{a} + \vec{b}) \times \vec{c} + (\vec{a} + \vec{b})]$
b) $\frac{1}{2}[(\vec{a} + \vec{b}) \times \vec{c} + (\vec{a} - \vec{b})]$
d) $\frac{1}{2}[(\vec{a} + \vec{b}) \times \vec{c} - (\vec{a} + \vec{b})]$

Paragraph for Question Nos. 275 to - 275

If $\vec{x} \times \vec{y} = \vec{a}, \vec{y} \times \vec{z} = \vec{b}, \vec{x} \cdot \vec{b} = \gamma, \vec{x} \cdot \vec{y} = 1$ and $\vec{y} \cdot \vec{z} = 1$

275. Vectors
$$\vec{x}$$
 is
a) $\frac{1}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times (\vec{a} \times \vec{b})]$
b) $\frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} - \vec{a} \times (\vec{a} \times \vec{b})]$
c) $\frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})]$
d) None of these

Paragraph for Question Nos. 276 to - 276

Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. Then

276. $(\vec{P} \times \vec{B}) \times \vec{B}$ is equal to a) \vec{P} b) $-\vec{P}$ c) $2\vec{B}$ d) \vec{A}

Paragraph for Question Nos. 277 to - 277

Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then

277. \vec{a}_2 is equal to a) $\frac{943}{49}(2\hat{\imath} - 3\hat{\jmath} - 6\hat{k})$ b) $\frac{943}{49^2}(2\hat{\imath} - 3\hat{\jmath} - 6\hat{k})$ c) $\frac{943}{49}(-2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ d) $\frac{943}{49^2}(-2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$

Paragraph for Question Nos. 278 to - 278

Consider a triangular pyramid *ABCD* the position vectors of whose angular point are A(3,0,1), B(-1,4,1), C(5,2,3) and D(0,-5,4). Let *G* be the point of intersection of the medians of triangle *BCD*

278. The length of ve	ctor \overrightarrow{AG} is		
a) √ <u>17</u>	b) √ <u>51</u> /3	c) 3/√6	d) √59/4

Paragraph for Question Nos. 279 to - 279

Vertices of a parallelogram taken in order are A(2, -1, 4); B(1, 0 - 1); C(1, 2, 3) and D

279. The distance between the parallel lines *AB* and *CD* is
a)
$$\sqrt{6}$$
 b) $3\sqrt{6/5}$ c) $2\sqrt{2}$ d) 3

Paragraph for Question Nos. 280 to - 280

Let \vec{r} be a position vector of a variable point in Cartesion *OXY* plane such that $\vec{r} \cdot (10\hat{j} - 8\hat{i} - \vec{r}) = 40$ and $p_1 = \max\{|\vec{r} + 2\hat{i} - 3\hat{j}|^2\}$, $p_2 = \min\{|\vec{r} + 2\hat{i} - 3\hat{j}|^2\}$. A tangent line is drawn to the curve $y = 8/x^2$ at point A with abscissa 2. The drawn line cuts the *x*-axis at a point B

280. p_2 is equal to a) 9 b) $2\sqrt{2} - 1$ c) $6\sqrt{2} + 3$ d) $9 - 4\sqrt{2}$

Paragraph for Question Nos. 281 to - 281

AB, *AC* and *AD* are three adjacent edges of a parallelepiped. The diagonal of the parallelepiped passing through *A* and directed away from it is vector \vec{a} . The vector area of the faces containing vertices *A*, *B*, *C* and *A*, *B*, *D* are \vec{b} and \vec{c} , respectively, i.e., $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{b}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$. The projection of each edge *AB* and *AC* on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$

281. Vector
$$\overrightarrow{AB}$$
 is
a) $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$
b) $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$
c) $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{c} \times \vec{a})}{|\vec{a}|^2}$
d) None of these

Integer Answer Type

- 282. Given that $\vec{u} = \hat{\imath} 2\hat{\jmath} + 3\hat{k}$; $\vec{v} = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$; $\vec{w} = \hat{\imath} + 3\hat{\jmath} + 3\hat{k}$ and $(\vec{u} \cdot \vec{R} 15)\hat{\imath} + (\vec{v} \cdot \vec{R} 30)\hat{\jmath} + (\vec{w} \cdot \vec{R} 20)\hat{k} = \vec{0}$. Then find the greatest integer less than or equal to $|\vec{R}|$
- 283. Find the least positive integral value of x for the angle between vectors $\vec{a} = x\hat{i} 3\hat{j} \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} \hat{k}$ is acute

284. If $\vec{a} = a_1\hat{\iota} + a_2\hat{\jmath} + a_3\hat{k}; \vec{b} = b_1\hat{\iota} + b_2\hat{\jmath} + b_3\hat{k}, \vec{c} = c_1\hat{\iota} + c_2\hat{\iota} + c_3\hat{k} \text{ and } [3\vec{a} + \vec{b}3\vec{b} + \vec{c}3\vec{c} + \vec{a}] = \lambda \begin{vmatrix} \vec{a}.\hat{\iota} & \vec{a}.\hat{\jmath} & \vec{a}.\hat{k} \\ \vec{b}.\hat{\iota} & \vec{b}.\hat{\jmath} & \vec{b}.\hat{k} \\ \vec{c}.\hat{\iota} & \vec{c}.\hat{\jmath} & \vec{c}.\hat{k} \end{vmatrix}$, then find the value of $\frac{\lambda}{4}$

285. Let \vec{u} and \vec{v} are unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$. Find the value of $[\vec{u}\vec{v}\vec{w}]$

- 286. If vectors $\vec{a} = \hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$ are coplanar, then find the value of $(\lambda 4)$
- 287. Find the value of λ if the volumes of a tetrahedron whose vertices are with position vectors $\hat{i} 6\hat{j} + 10\hat{k}, -\hat{i} 3\hat{j} + 7\hat{k}, 5\hat{i} \hat{j} + \lambda\hat{k}$ and $7\hat{i} 4\hat{j} + 7\hat{k}$ is 11 cubic unit

- 288. Let \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} \vec{c} = 0$. If the area of triangle formed by vectors \vec{a} and \vec{b} is A, then what is the value of $4A^2$?
- 289. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} \vec{a} \times \vec{c}|$
- 290. Let $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = 10\vec{a} + 2\vec{b}$ and $\vec{OC} = \vec{b}$, where *O*, *A* and *C* are non-collinear points. Let *p* denote the area of quadrilateral *OACB*, and let *q* denote the area of parallelogram with *OA* and *OC* as adjacent sides. If p = k q, then find k
- 291. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60°. Suppose that $|\vec{u} \vec{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u} 2\hat{i}|$, where \hat{i} is the unit vector along *x*-axis. Then find value of $(\sqrt{2} + 1)|\vec{u}|$
- 292. If the resultant of three forces $\vec{F}_1 = p\hat{\imath} + 3\hat{\jmath} \hat{k}$, $\vec{F}_2 = -5\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\vec{F}_3 = 6\hat{\imath} \hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of p?
- 293. Let *ABC* be a triangle whose centroid is *G*. Orthocentre is *H* and circumcentre is the origin 'O'. If *D* is any point in the plane of the triangle such that no three of *O*, *A*, *C* and *D* are collinear satisfying the relation If $\vec{AD} + \vec{BD} + \vec{CH} + 3\vec{HG} = \lambda \vec{HD}$, then what is the value of the scalar ' λ '?
- 294. Let a three-dimensional vector \vec{V} satisfies the condition, $2\vec{V} + \vec{V} \times (\hat{\iota} + 2\hat{j}) = 2\hat{\iota} + \hat{k}$. If $3|\vec{V}| = \sqrt{m}$, then find the value of m
- ^{295.} If \vec{a} and \vec{b} are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2} + 2|\vec{a}-\vec{b}|$
- 296. Find the absolute value of parameter t for which the area of the triangle whose vertices are A(-1,1,2); B(1,2,3) and C(t, 1,1) is minimum
- 297. Let $\vec{a} = \alpha \hat{\imath} + 2\hat{\jmath} 3\hat{k}$, $\vec{b} = \hat{\imath} + 2\alpha\hat{\jmath} 2\hat{k}$ and $\vec{c} = 2\hat{\imath} \alpha\hat{\jmath} + \hat{k}$. Find the value of 6α , such that $\{(\vec{a} \times \vec{b}) \times b \times c \times c \times a = 0\}$
- 298. If \vec{x} , \vec{y} are two non-zero and non-collinear vectors satisfying $[(a 2)\alpha^2 + (b 3)\alpha + c]\vec{x} + [(a 2)\beta^2 + b 3\beta + cy + a 2\gamma 2 + b 3\gamma + cx \times y = 0]$, where α, β, γ are three distinct real numbers, then find the value of $(a^2 + b^2 + c^2 4)$
- 299. Vectors along the adjacent sides of parallelogram are $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$. Find the length of the longer diagonal of the parallelogram
- 300. Find the work done by the force $F = 3\hat{\iota} \hat{\jmath} 2\hat{k}$ acting on a particle such that the particle is displaced from point A(-3, -4, 1) to point B(-1, -1, -2)

10.VECTOR ALGEBRA

: ANSWER KEY :															
1)	а	2)	а	3)	а	4)	а		a,c						
5)	d	6)	d	7)	b	8)	a	17)	a,b,c,d	18)	a,b,c	19)	b,c	20)	
9)	а	10)	а	11)	b	12)	d	_	b,d						
13)	а	14)	а	15)	С	16)	a	21)	a,b,c,d	22)	a,d	23)	b,d	24)	
17)	а	18)	С	19)	b	20)	d		a,c,d						
21)	С	22)	b	23)	а	24)	d	25)	b,d	26)	a,c	27)	a,b,d	28)	
25)	d	26)	b	27)	С	28)	С		a,b,c						
29)	С	30)	b	31)	а	32)	a	29)	a,d	30)	a,c,d	31)	a,b,c,d	32)	
33)	d	34)	С	35)	С	36)	С		a,c						
37)	d	38)	С	39)	d	40)	b	33)	a,c	34)	a,c	35)	c,d	36)	
41)	b	42)	С	43)	b	44)	d		c,d						
45)	С	46)	d	47)	b	48)	b	37)	b,c	38)	b,d	39)	С	40)	
49)	d	50)	d	51)	b	52)	С		a,c						
53)	b	54)	a	55)	a	56)	С	41)	a,c	42)	a,b,d	43)	a,d	44)	
57)	а	58)	d	59)	b	60) (1)	a	45)	a,b,c	10		45)		40)	
61) (5)	С	62)	a	63) (7)	a	64) (0)	С	45)	b,c,a	46)	b,a	47)	a,b	48J	
65J	C h	66J 70)	a	67J 71)	C h	68J 72)	C d	40)	D,C	F (1)	ha	F1)	ahad	F 21	
09J 72)	D h	70J 74)	C	/1J 75)	D	72) 76)	a	49J	a,D,C h d	50J	D,C	51)	a,D,C,U	52J	
73) 77)	U C	74J 79)	d D	75J 70)	L D	70J 90)	ι c	52)	b,u b.c	54)	ahc	55)	ahd	56)	
,,) 81)	d d	70) 82)	a h	79) 83)	a o	84)	C C	335	o,c ahc	545	a,0,0	555	a,v,u	30)	
85)	u C	86)	d d	87)	a d	88)	с d	57)	a, b, c	58)	acd	59)	C	60)	
89)	b	90)	a	91)	u b	92)	u h	575	a,b,c,u a.c	50)	ajcju	575	L	00)	
93)	c	94)	a	95)	b	96)	c	61)	b.c	62)	a.b.c.d	63)	a.d	64)	
97)	a	98)	C	99)	d	100)	c	,	a.d	,	,,,	,	,	,	
101)	b	102)	C	103)	d	104)	a	65)	a,c	1)	а	2)	с	3)	С
105)	d	106)	b	107)	С	108)	b	,	4)	a		,		,	
109)	С	110)	С	111)	а	112)	a	5)	d	6)	d	7)	а	8)	a
113)	а	114)	С	115)	а	116)	a	9)	a	10)	С	11)	d	12)	b
117)	С	118)	а	119)	d	120)	С	13)	d	14)	а	15)	b	16)	b
121)	а	122)	b	123)	а	124)	b	17)	С	18)	а	19)	b	20)	b
125)	С	126)	b	127)	d	128)	С	21)	b	22)	а	23)	b	24)	a
129)	b	130)	а	131)	С	132)	С	25)	b	26)	С	27)	а	28)	С
133)	b	134)	а	135)	С	136)	С	29)	а	30)	С	1)	b	2)	a
137)	С	138)	а	139)	а	140)	a		3)	b	4)	а			
141)	С	142)	С	143)	b	144)	С	5)	b	6)	а	7)	d	8)	С
145)	b	146)	d	147)	a	148)	b	9)	b	10)	a	1)	b	2)	d
149)	b	150)	d	151)	d	152)	b	_	3)	C	4)	C			
153)	d	154)	b	155)	а	156)	b	5)	C	6) 1 (1)	C	7)	b	8)	d
157)	C	158)	a	159)	a	160) 2)	b	9)	b	10)	b	11)	b	12)	b
161)	a	1)	b,a a h	2)	b,c,a	3)		13)	C 2)	14) 2	a 2)	15) 7	a A	1)	6
5)	a,D,C	4) 6)	a,d	7)		0)		5)	2) 0	2 6)	3) 7	/ 7)	4) 2	1	1
эј	a,U a.c	υJ	d,C	73	a,C	oj		5) 01	ז 6	0J 10)	/ 1	7J 11)	з 6	ој 12)	1 ว
0)	a,C h d	10)	h	11)	h c	12)		די 121	U 6	10J 14)	1 5	11J 15)	0 2	14J 16)	<u></u> Л
2]	b,u h d	10)	U	11)	U,C	14]		13)	0 9	14J 18)	5 7	13J 19)	2 9	10)	4
13)	o,u ahd	14)	ah	15)	ahcd	16)		1/)	,	10)	1	19]	,		
13)	a,b,u	ттj	aju	13)	սյոյեյս	101		ļ							

: HINTS AND SOLUTIONS :

6

8

1 (a)

Let
$$\vec{c} = \lambda(\vec{a} \times \vec{b})$$

Hence $\lambda(\vec{a} \times \vec{b}) \cdot (\hat{\imath} + 2\hat{\jmath} - 7\hat{k}) = 10$
 $\Rightarrow \lambda \begin{vmatrix} 2 & -3 & 1 \\ 1 & -2 & 3 \\ 1 & 2 & -7 \end{vmatrix} = 10$
 $\Rightarrow \lambda = -1$
 $\Rightarrow \vec{c} = -(\vec{a} \times \vec{b})$

2 (a)

> \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, $2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}$ $2\vec{c}$ and $2\vec{c} - \vec{a}$ are also coplanar vectors, being linear combination of \vec{a} , \vec{b} and \vec{c} Thus, $[2\vec{a} - \vec{b} \ 2\vec{b} - \vec{c} \ 2\vec{c} - \vec{a}] = 0$

3 (a)

Points $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar. Therefore $\sin \alpha + 2 \sin 2\beta + 3 \sin 3\gamma = 1$ Now $|\sin \alpha + 2\sin 2\beta +$ $3\sin 3\gamma \leq 1+4+9\sin 2\alpha +\sin 22\beta +\sin 23\gamma$

$$\Rightarrow \sin^{2} \alpha + \sin^{2} 2\beta + \sin^{2} 3\gamma \ge \frac{1}{14}$$
4 (a)

$$(\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))) = (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{b})))$$

$$= (\vec{a} \times (\vec{a} \times (-4\vec{b})))$$

$$= -4 \left(\vec{a} \times (\vec{a} \times \vec{b}) \right)$$

$$= -4 \left((\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} \right)$$

$$= -4 \left(-4\vec{b} \right) = 16\vec{b} = 48 \hat{b}$$
5 (d)

5

 $(3\vec{a}+\vec{b})\cdot(\vec{a}-4\vec{b})$

$$= 3|\vec{a}|^2 - 11\vec{a}\cdot\vec{b} - 4|\vec{b}|^2$$

$$= 3 \times 36 - 11 \times 6 \times 8 \cos \pi - 4 \times 64 > 0$$

Therefore, the angle between \vec{a} and \vec{b} is acute

The longer diagonal is given by

$$\vec{a} = (3\vec{a} + \vec{b}) + (\vec{a} - 4\vec{b}) = 4\vec{a} - 3\vec{b}$$

Now, $|\vec{a}|^2 = |4\vec{a} - 3\vec{b}|^2 = 16|\vec{a}|^2 + 9|\vec{b}|^2 - 24\vec{a} \cdot \vec{b}$

$$= 16 \times 36 + 9 \times 64 - 24 \times 6 \times 8 \cos \pi$$

$$= 16 \times 144$$

$$\Rightarrow |4\vec{a} - 3\vec{b}| = 48$$
(d)
Given that $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar. Therefore,
 $[a \ b, c] \neq 0$
Also $\vec{p} = \frac{\vec{b} \times \vec{c}}{(\vec{a}\vec{b}\vec{c})}, \vec{q} = \frac{\vec{c} \times \vec{a}}{(\vec{a}\vec{b}\vec{c})}, \vec{r} = \frac{a \times b}{(\vec{a}\vec{b}\vec{c})}$ (i)
Now, $(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$

$$= (\vec{a} + \vec{b}) \cdot \frac{\vec{b} \times \vec{c}}{(\vec{a}\vec{b}\vec{c})} + (\vec{b} + \vec{c}) \cdot \frac{\vec{c} \times \vec{a}}{(\vec{a}\vec{b}\vec{c})} + (\vec{c} + \vec{a})$$

$$\cdot \frac{\vec{a} \times \vec{b}}{(\vec{a}\vec{b}\vec{c})}$$

$$[: \vec{b} \cdot \vec{b} \times \vec{c} = \vec{c} \cdot \vec{c} \times \vec{a} = \vec{a} \cdot \vec{a} \times \vec{b} = 0]$$

$$= \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} + \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} + \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]}$$

$$= 1 + 1 + 1$$

$$= 3$$
(b)
Given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (by triangle law). Therefore,
 $\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times \vec{0}$
 $\vec{a} \times \vec{a} = \vec{a} \times \vec{a}$
Similarly by taking cross product with \vec{b} , we get
 $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$
 $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
(a)
 $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b}) = 0$
 $\Rightarrow 6|\vec{a}|^2 - 5|\vec{b}|^2 = 7\vec{a} \cdot \vec{b}$
Also, $(\vec{a} + 4\vec{b}) \cdot (\vec{b} - \vec{a}) = 0$
 $\Rightarrow -|\vec{a}|^2 + 4|\vec{b}|^2 = 3\vec{a} \cdot \vec{b}$

$$\Rightarrow 25|\vec{a}|^{2} = 43|\vec{b}|^{2}$$

$$\Rightarrow 3\vec{a} \cdot \vec{b} = -|\vec{a}|^{2} + 4|\vec{b}|^{2} = \frac{57}{25}|\vec{b}|^{2}$$

$$\Rightarrow 3|\vec{a}||\vec{b}|\cos\theta = \frac{57}{25}|\vec{b}|^{2}$$

$$\Rightarrow 3\sqrt{\frac{43}{25}}|\vec{b}|^{2}\cos\theta = \frac{57}{25}|\vec{b}|^{2}$$

$$\Rightarrow \cos\theta = \frac{19}{5\sqrt{43}}$$

 $(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{u}, \text{ where } \vec{u} = \vec{a} \times \vec{c}$ $\Rightarrow \vec{a} \cdot (\vec{b} \times \vec{u}) = \vec{a} [\vec{b} \times (\vec{a} \times \vec{c})]$ $= \vec{a} \cdot [(\vec{b} \cdot \vec{c})\vec{a} - (\vec{a} \cdot \vec{b})\vec{c}]$ $= \vec{a} \cdot (\vec{b} \cdot \vec{c})\vec{a} (\because \vec{a} \cdot \vec{b} = 0)$ $= |\vec{a}|^2 (\vec{b} \cdot \vec{c})$

10 **(a)**

We have $\overrightarrow{GB} + \overrightarrow{GC} = (1+1)\overrightarrow{GD} = 2 \ \overrightarrow{GD}$, where *D* is the midpoint of *BC* $\therefore \ \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA} + 2\overrightarrow{GD} = \overrightarrow{GA} - \overrightarrow{GA} = 0$ ($\because G$ divides *AC* in the ratio 2:1 $\therefore 2\overrightarrow{GD} = -\overrightarrow{GA}$)

11 **(b)**

Let $\vec{a} = \lambda \vec{b} + \mu \vec{c}$ \vec{a} is equally inclined to \vec{b} and \vec{d} where $\vec{d} = \hat{j} + 2\hat{k}$ $\Rightarrow \frac{\vec{a} \cdot \vec{b}}{ab} = \frac{\vec{a} \cdot \vec{d}}{ad}$ $\Rightarrow \frac{(\lambda \vec{b} + \mu \vec{c}) \cdot \vec{b}}{b} = \frac{(\lambda \vec{b} + \mu \vec{c}) \cdot \vec{d}}{d}$ $\Rightarrow \frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})] \cdot (2\hat{i} + \hat{j})]}{\sqrt{5}}$ $= \frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})] \cdot (\hat{j} + 2\hat{k})}{\sqrt{5}}$ $\Rightarrow \lambda(4 + 1) + \mu(2 - 1) = \lambda(1) + \mu(-1 + 2)$ $\Rightarrow 4\lambda = 0, \text{ i. e., } \lambda = 0$ $\therefore \hat{a} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$ 12 (d)

Let $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$ and $\overrightarrow{OD} = \vec{d},$ therefore $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{a} + \vec{b} + \vec{c} + \vec{d}$ *P*, the midpoint of *AB*, is $\frac{\vec{a}+\vec{b}}{2}$ Q, the midpoint of \overrightarrow{CD} , is $\frac{\overrightarrow{c+d}}{2}$ Therefore, the midpoint of \overrightarrow{PQ} is $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}$ Similarly the midpoint of *RS* is $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{a}$, i.e., $\overrightarrow{OE} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}}{4} \Rightarrow x = 4$ 13 (a) Given, $\vec{\mathbf{OQ}} = (1 - 3\mu)\hat{\mathbf{i}} + (\mu - 1)\hat{\mathbf{j}} + (5\mu + 2)\hat{\mathbf{k}}$ $\overrightarrow{\mathbf{OP}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ (where *O* is origin) ल $\hat{\mathbf{i}}_{-}4\hat{\mathbf{j}}+3\hat{\mathbf{k}}$ Now, $\overrightarrow{\mathbf{PQ}} = (1 - 3\mu - 3)\hat{\mathbf{i}} + (\mu - 1 - 2)\hat{\mathbf{j}}$ $+(5\mu + 2 - 6)\hat{k}$ $= (-2 - 3\mu)\hat{\mathbf{i}} + (\mu - 3)\hat{\mathbf{j}} + (5\mu - 4)\hat{\mathbf{k}}$ \therefore **PQ** is parallel to the plane x - 4y + 3z = 1 $\therefore -2 - 3\mu - 4\mu + 12 + 15\mu - 12 = 0$ $\Rightarrow 8\mu = 2$ $\Rightarrow \mu = \frac{1}{4}$ 14 (a) Let P.V. of P, A, B and C be \vec{p} , \vec{a} , \vec{b} and \vec{c} , respectively, and $O(\vec{0})$ be the circumcentre of equilateral triangle ABC. Then $|\vec{p}| = |\vec{b}| = |\vec{a}| = |\vec{c}| = \frac{1}{\sqrt{3}}$ Now $|\vec{PA}|^2 = |\vec{a} - \vec{p}|^2 = |\vec{a}|^2 + |\vec{p}|^2 - 2\vec{p} \cdot \vec{a}$ Similarly, $\left| \overrightarrow{PB} \right|^2 = \left| \overrightarrow{b} \right|^2 + \left| \overrightarrow{p} \right|^2 - 2\overrightarrow{p} \cdot \overrightarrow{b}$ and $|\vec{P}C|^2 = |\vec{c}|^2 + |\vec{p}|^2 - 2\vec{p}\cdot\vec{c}$ $\Rightarrow \Sigma \left| \overrightarrow{PA} \right|^2 = 6 \cdot \frac{l^2}{3} - 2\overrightarrow{p} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) = 2l^2 \operatorname{as} \left(\overrightarrow{a} + \overrightarrow{b} \right)$ $\vec{b} + \vec{c}/3 = \vec{0})$

15 **(c)**

 $\vec{a} \times \vec{b}$ is a vector perpendicular to the plane containing \vec{a} and \vec{b} . Similarly, $\vec{c} \times \vec{d}$ is a vector perpendicular to the plane containing \vec{c} and \vec{d}

Thus, the two planes will be parallel if their normals, i.e., $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$, are parallel

 $\Rightarrow \left(\vec{a} \times \vec{b}\right) \times \left(\vec{c} \times \vec{d}\right) = \vec{0}$

16 **(a)**

Let *A* be the origin. $\overrightarrow{AB} = \vec{a}, \overrightarrow{AD} = \vec{b}$ So, $\overrightarrow{AE} = \overrightarrow{b} + \frac{3}{2}\overrightarrow{a}, \overrightarrow{AG} = \overrightarrow{a} + 3\overrightarrow{b}$ So the required ratio = $\frac{\frac{1}{2} \left| (\vec{a} + 3\vec{b}) \times \left(\vec{b} + \frac{3}{2} \vec{a} \right) \right|}{\frac{1}{2} |\vec{a} \times \vec{b}|}$ $=\frac{7}{2}$ 17 (a) As \vec{c} is coplanar with \vec{a} and \vec{b} , we take $\vec{c} = \alpha \, \vec{a} + \beta \, \vec{b}$ Where α and β are scalars As \vec{c} is perpendicular to \vec{a} , using (i), we get, $0 = \alpha \, \vec{a} \cdot \vec{a} + \beta \, \vec{b} \cdot \vec{a}$ $\Rightarrow 0 = \alpha(6) + \beta(2+2-1) = 3(2\alpha + \beta)$ $\Rightarrow \beta = -2\alpha$ Thus, $\vec{c} = \alpha(\vec{a} - 2\vec{b}) = \alpha(-3j + 3k) = 3\alpha(-j + 3k)$ k) $\Rightarrow |\vec{c}|^2 = 18\alpha^2$ $\Rightarrow 1 = 18\alpha^2$

$$\Rightarrow \alpha = \pm \frac{1}{3\sqrt{2}}$$
$$\therefore \vec{c} = \pm \frac{1}{\sqrt{2}}(-j + j)$$

18 **(c)**

 $R(\vec{r})$ moves on PQ

$$\begin{array}{c} R(\vec{r}) \\ \hline P(\vec{p}) & Q(\vec{q}) \end{array}$$

k)

19 **(b)**

Let $\vec{\alpha} = \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$

Since \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors, if $\vec{\alpha}$ makes angles θ , $\phi \Psi$ with \vec{a} , \vec{b} and \vec{c} respectively, then

$$\vec{\alpha} \cdot \vec{a} = \frac{\vec{a} \cdot \vec{a}}{|\vec{a}|}$$

$$\Rightarrow |\vec{\alpha}| \cdot |\vec{a}| \cos \theta = |\vec{a}|$$

$$\Rightarrow \cos \theta = \frac{1}{|\vec{\alpha}|}$$
Similarly $\cos \phi = \frac{1}{|\vec{\alpha}|}, \cos \Psi = \frac{1}{|\vec{\alpha}|}$

$$\therefore \theta = \phi = \Psi$$

20 **(d)**

$$\vec{a} - \vec{b} = 2(\vec{d} - \vec{c})$$

 $\therefore \frac{\vec{a} + 2\vec{c}}{2+1} = \frac{\vec{b} + 2\vec{d}}{2+1}$

 \Rightarrow AC and BD trisect each other as L.H.S is the position vector of a point trisecting A an C, and R.H.S. that of B and D

21 **(c)**

The given relation can be rewritten as the vector expression

$$(\sqrt{a^2 - 4i} + aj + \sqrt{a^2 + 4k})$$

$$\cdot (\tan Ai + \tan Bj + \tan Ck) = 6a$$

$$\Rightarrow \sqrt{a^2 - 4 + a^2 + a^2 + 4\sqrt{\tan^2 A + \tan^2 B + \tan^2}}$$

$$\cdot (\cos \theta) = 6a (\because \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta)$$

$$\sqrt{3}a\sqrt{\tan^2 A + \tan^2 B + \tan^2 C}$$

$$= 12 \sec^2 \theta \ge 12 (\because \sec^2 \theta \ge 1)$$
The least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is 12
22 (b)

$$(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c})$$

$$= ((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{r} - ((\vec{a} \times \vec{b}) \cdot \vec{r}) \cdot \vec{c}$$

$$= [\vec{a}\vec{b}\vec{c}]\vec{r} - [\vec{a}\vec{b}\vec{r}]\vec{c}$$
Similarly, $(\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) = [\vec{b}\vec{c}\vec{a}]\vec{r} - [\vec{b}\vec{c}\vec{r}]\vec{a}$
and, $(\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) = [\vec{c}\vec{a}\vec{b}]\vec{r} - [\vec{c}\vec{a}\vec{r}]\vec{b}$

$$\Rightarrow (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a})$$

$$\times (\vec{r} \times \vec{b})$$

$$= 3[\vec{a}\vec{b}\vec{c}]\vec{r} - [\vec{a}\vec{b}\vec{c}]\vec{r} = 2[\vec{a}\vec{b}\vec{c}]\vec{r}$$
23 (a)
 $\vec{A} \cdot (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$

$$A \cdot [\vec{B} \times \vec{A} + \vec{A} \times \vec{B} \times \vec{C} + \vec{A} \cdot \vec{C} \times \vec{A} + \vec{A} \cdot \vec{C} \times \vec{B}$$
(using $\vec{a} \times \vec{a} = 0$)

$$= 0 + [\vec{A}\vec{B}\vec{C}] - [\vec{A}\vec{C}\vec{B}]$$

 $= \left[\vec{A} \vec{B} \vec{C} \right] - \left[\vec{A} \vec{B} \vec{C} \right]$ = 024 (d) $|\vec{a}| = 1, |\vec{b}| = 4, \vec{a} \cdot \vec{b} = 2$ $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$ $\Rightarrow \vec{c} + 3\vec{b} = 2\vec{a} \times \vec{b}$ $\therefore \vec{a} \cdot \vec{b} = 2$ $\Rightarrow |\vec{a}| \cdot |\vec{b}| \cos \theta = 2$ $\Rightarrow \cos\theta = \frac{2}{|\vec{a}| \cdot |\vec{b}|} = \frac{2}{4}$ $\Rightarrow \cos\theta = \frac{1}{2}$ $\therefore \theta = \frac{\pi}{2}$ $\Rightarrow \left| \vec{c} + 3\vec{b} \right|^2 = \left| 2\vec{a} \times \vec{b} \right|^2$ $\Rightarrow |\vec{c}|^{2} + 9|\vec{b}|^{2} + 2\vec{c} \cdot 3\vec{b} = 4|\vec{a}|^{2}|\vec{b}|^{2}\sin^{2}\theta$ $\Rightarrow |\vec{c}|^2 + 144 + 6\vec{b} \cdot \vec{c} = 48$ $\Rightarrow |\vec{c}|^2 + 96 + 6(\vec{b} \cdot \vec{c}) = 0$ $\therefore \vec{c} = 2\vec{a} \times \vec{b} - 3\vec{b}$ $\Rightarrow \vec{b} \cdot \vec{c} = 0 - 3 \times 16$ $\therefore \vec{b} \cdot \vec{c} = -48$ Putting value of $\vec{b} \cdot \vec{c}$ in Eq. (i) $|\vec{c}|^2 + 96 - 6 \times 48 = 0$ $\Rightarrow |\vec{c}|^2 = 48 \times 4$ $\Rightarrow |\vec{c}|^2 = 192$ Again, putting the value of $|\vec{c}|$ in Eq. (i) $192 + 96 + 6|\vec{b}| \cdot |\vec{c}| \cos \alpha = 0$ $\Rightarrow 6 \times 4 \times 8\sqrt{3} \cos \alpha = -288$ $\Rightarrow \cos \alpha = -\frac{288}{6 \times 4 \times 8\sqrt{3}} = -\frac{3}{2\sqrt{3}}$ $\Rightarrow \cos \alpha = -\frac{\sqrt{3}}{2}$ $\therefore \alpha = \frac{5\pi}{6}$ 25 (d) Volume of parallelepiped = $[\vec{a}\vec{b}\vec{c}]$ $= \begin{vmatrix} 2 & -2 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 2(-1) + 2(-1+3) = 2$ 26 (b) The point that divides $5\hat{i}$ and $5\hat{j}$ in the ratio of k: 1 is $\frac{(5\hat{j})k + (5\hat{i})1}{k+1}$ $\therefore \vec{b} = \frac{5\hat{\iota} + 5k\hat{j}}{k+1}$ Also, $|\vec{b}| \leq \sqrt{37}$

 $\Rightarrow \frac{1}{k+1}\sqrt{25+25k^2} \le \sqrt{37}$ $\Rightarrow 5\sqrt{1+k^2} \le \sqrt{37}(k+1)$ Square both sides $25(1+k^2) \le 37(k^2+2k+1)$ or $6k^2 + 37k + 6 \ge 0 \Rightarrow (6k + 1)(k + 6) \ge 0$ $k \in (-\infty - 6] \cup \left[-\frac{1}{\epsilon}, \infty\right)$ 27 (c) Given vectors will be coplanar, if $\begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0$ $\Rightarrow \lambda^6 - 3\lambda^2 - 2 = 0$ $\Rightarrow (1 + \lambda^2)^2 (\lambda^2 - 2) = 0 \Rightarrow \lambda = \pm \sqrt{2}$ 28 (c) $4\vec{a} + 5\vec{b} + 9\vec{c} = 0 \Rightarrow$ vectors \vec{a}, \vec{b} and \vec{c} are coplanar $\Rightarrow \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are collinear $\Rightarrow (\vec{b} \times \vec{c}) \times \vec{c}$ $(\vec{c} \times \vec{a}) = \vec{0}$ 29 (c) $\left(\vec{a} \times \vec{b} \cdot \vec{c}\right)^2 = \left|\vec{a}\right|^2 \left|\vec{b}\right|^2 \left|\vec{c}\right|^2 \sin^2 \theta \cos^2 \phi \ (\theta \text{ is the})$ angle between \vec{a} and \vec{b} , $\phi = 0$) $=\frac{1}{4}(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)$ 30 **(b)** Since $|\overrightarrow{OP}| = |\overrightarrow{OQ}| = \sqrt{14}$, ΔOPQ is isosceles Hence the internal bisector *OM* is perpendicular to PQ and M is the miodpoint of P and Q $\therefore \overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OP} + \overrightarrow{OQ} \right) = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$ (a) 31 Let $\vec{r} = x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b})$ $\Rightarrow \vec{r}.\,\hat{a} = x_1 + x_2\hat{a}.\,\hat{b} + x_3\hat{a}.\,(\hat{a} \times \hat{b}) = x_1$ Also $\vec{r} \cdot \hat{b} = x_1 \hat{a} \cdot \hat{b} + x_2 + x_3 \hat{b} \cdot (\hat{a} + \hat{b}) = x_2$ and $\vec{r} \cdot (\hat{a} \times \hat{b}) = x_1 \hat{a} \cdot (\hat{a} \times \hat{b}) + x_2 \hat{b} \cdot (\hat{a} \times$ $x_3(\hat{a} \times \hat{b}) \cdot (\hat{a} \times \hat{b}) = x_3$ $\Rightarrow \vec{r} = (\vec{r} \cdot \hat{a})\hat{a} + (\vec{r} \cdot \hat{b})\hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b}))(\hat{a} \times \hat{b})$ 32 (a) We have, $\vec{a} \cdot \vec{p} = \vec{a} \cdot \frac{(\vec{b} \times \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{[\vec{a}\vec{b}\vec{c}]} = \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} = 1$

 $\vec{a} \cdot \vec{q} = \vec{a} \cdot \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]} = \frac{[\vec{a}\vec{c}\vec{a}]}{[\vec{a}\vec{b}\vec{c}]} = 0$ Similarly, $\vec{a} \cdot \vec{r} = 0$, $\vec{b} \cdot \vec{p} = 0$, $\vec{b} \cdot \vec{q} = 1$, $\vec{b} \cdot \vec{r} = 0$, $\vec{c} \cdot \vec{r} = 0$ $\vec{p} = 0, \vec{c} \cdot \vec{q} = 0$ and $\vec{c} \cdot \vec{r} = 1$ $\therefore (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{p} + \vec{q} + \vec{r})$ $= \vec{a} \cdot \vec{p} + \vec{a} \cdot \vec{q} + \vec{a} \cdot \vec{r} + \vec{b} \cdot \vec{p} + \vec{b} \cdot \vec{a}$ $+\vec{b}\cdot\vec{r}+\vec{c}\cdot\vec{p}+\vec{c}\cdot\vec{q}+\vec{c}\cdot\vec{r}$ = 1 + 1 + 1 = 333 (d) We must have $\lambda(\hat{\imath} - 3\hat{\jmath} + 5\hat{k}) = \hat{a} + \frac{2\hat{k}+2\hat{\jmath}-\hat{\imath}}{2}$. Therefore, $3\hat{a} = 3\lambda(\hat{i} - 3\hat{j} + 5\hat{k}) - (2\hat{k} + 2\hat{j} - \hat{i})$ $=\hat{i}(3\lambda + 1) - \hat{j}(2 + 9\lambda) + \hat{k}(15\lambda - 2)$ $\Rightarrow 3|\hat{a}|$ $=\sqrt{(3\lambda+1)^2+(2+9\lambda)^2+(15\lambda-2)^2}$ $\Rightarrow 9 = (3\lambda + 1)^2 + (2 + 9\lambda)^2 + (15\lambda - 2)^2$ $\Rightarrow 315\lambda^2 - 18\lambda = 0 \Rightarrow \lambda = 0, \frac{2}{35}$ If $\lambda = 0$, $\vec{a} = \hat{i} - 2\hat{j} - 2\hat{k}$ (not acceptable) For $\lambda = \frac{2}{25}$, $\vec{a} = \frac{41}{105}\hat{i} - \frac{88}{105}\hat{j} - \frac{40}{105}\hat{k}$ 34 (c) Let the required vector \vec{r} be such that $\vec{r} = x_1\vec{a} + x_2\vec{b} + x_3\vec{a}\times\vec{b}$ We must have $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot (\vec{a} \times \vec{b})$ (as \vec{r} , \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ are unit vectors and \vec{r} is equally inclined to \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$) Now $\vec{r} \cdot \vec{a} = x_1, \vec{r} \cdot \vec{b} = x_2, \vec{r} \cdot (\vec{a} \times \vec{b}) = x_3$ $\Rightarrow \vec{r} = \lambda \left(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}) \right)$ Also, $\vec{r} \cdot \vec{r} = 1$ $\Rightarrow \lambda^2 (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + (\vec{a} \times \vec{b})) = 1$ $\Rightarrow \lambda^2 \left(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \right) = 1$ $\Rightarrow \lambda^2 = \frac{1}{2}$ $\Rightarrow \lambda = \pm \frac{1}{\sqrt{3}}$ $\Rightarrow \vec{r} = \pm \frac{1}{\sqrt{3}} (\vec{a} + \vec{b} + \vec{a} \times \vec{b})$ 35 (c) $\vec{r} \cdot \vec{a} = 0, |\vec{r} \times \vec{b}| = |\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}| = |\vec{r}||\vec{c}|$ $\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$ $\therefore \left[\vec{a} \vec{b} \vec{c} \right] = 0$ 36 (c) The given equation reduces to $\left[\vec{a}\vec{b}\vec{c}\right]^2 x^2 +$ $2[\vec{a}\vec{b}\vec{c}]x + 1 = 0 \Rightarrow D = 0$ 37 (d)

$\vec{a} + \vec{b} = \mu \vec{p} \vec{b} \cdot \vec{q} = 0, |\vec{b}|^2 = 1$ $: \vec{a} + \vec{b} = \mu \vec{p}$ $\Rightarrow (\vec{a} + \vec{b}) \times \vec{a} = \mu \vec{p} \times \vec{a}, \vec{b} \times \vec{a} = \mu \vec{p} \times \vec{a}$ $\Rightarrow \vec{q} \times (\vec{b} \times \vec{a}) = \mu \vec{q} \times (\vec{p} \times \vec{a})$ $\Rightarrow (\vec{q} \cdot \vec{a})\vec{b} - (\vec{q} \cdot \vec{b})\vec{a} = \mu \vec{q} \times (\vec{p} \times \vec{a}) \Rightarrow (\vec{q} \cdot \vec{a})\vec{b}$ $= \mu \vec{q} \times (\vec{p} \times \vec{a})$ $: \vec{a} + \vec{b} = \mu \vec{p}$ $\Rightarrow \vec{q} \cdot (\vec{a} + \vec{b}) = \mu \vec{q} \cdot \vec{p}$ $\Rightarrow \vec{q} \cdot \vec{a} + \vec{q} \cdot \vec{b} = \mu \vec{p} \cdot \vec{q}$ $\Rightarrow \mu = \frac{\vec{q} \cdot \vec{a}}{\vec{n} \cdot \vec{a}}$ $\Rightarrow (\vec{q} \cdot \vec{a})\vec{b} = \frac{\vec{q} \cdot \vec{a}}{\vec{p} \cdot \vec{a}}[(\vec{q} \cdot \vec{a}) \cdot \vec{p} - (\vec{q} \cdot \vec{p})\vec{a}]$ $\Rightarrow |(\vec{q} \cdot \vec{a})\vec{p} - (\vec{q} \cdot \vec{p})\vec{a}| = |(\vec{p} \cdot \vec{q})\vec{b}| = |\vec{p} \cdot \vec{q}| \cdot |\vec{b}|$ $\Rightarrow |(\vec{q} \cdot \vec{a})\vec{p} - (\vec{q} \cdot \vec{p})\vec{a}| = |\vec{p} \cdot \vec{q}|$ 38 (c) $1 + 9(\vec{a} \cdot \vec{b})^2 - 6(\vec{a} \cdot \vec{b}) + 4|\vec{a}|^2 + |\vec{b}|^2$ $+9|\vec{a} \times \vec{b}|^{2} = 4 \vec{a} \cdot \vec{b} = 47$ $\Rightarrow 1 + 4 + 4 + 36 - 4\cos\theta = 47$ $\Rightarrow \cos \theta = -\frac{1}{2}$ \Rightarrow Angle between \vec{a} and \vec{b} is $\frac{2\pi}{2}$ 39 (d) $\left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|$ $\text{Or } ||\vec{a}||\vec{b}|\sin\theta \,\hat{n}\cdot\vec{c}| = |\vec{a}||\vec{b}||\vec{c}|$ Or $|\vec{a}||\vec{b}||\vec{c}||\sin\theta\cos\alpha| = |\vec{a}||\vec{b}||\vec{c}|$ $\operatorname{Or}|\sin\theta||\cos\alpha| = 1$ $\Rightarrow \theta = \pi/2 \text{ and } \alpha = 0$ $\Rightarrow \vec{a} \perp \vec{b}$ and $\vec{c} \parallel \hat{n}$ Or perpendicular to both *a* and *b* $\Rightarrow \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ 40 **(b)** $\vec{x} + \vec{c} \times \vec{y} = \vec{a}$ $\vec{v} + \vec{c} \times \vec{x} = \vec{b}$ Taking cross with \vec{c} $\vec{c} \times \vec{y} + \vec{c} \times (\vec{c} \times \vec{x}) = \vec{c} \times \vec{b}$ $\Rightarrow (\vec{a} - \vec{x}) + (\vec{c} \cdot \vec{x})\vec{c} - (\vec{c} \cdot \vec{c})\vec{x} = \vec{c} \times \vec{b}$ Also $\vec{x} + \vec{c} \times \vec{y} = \vec{a}$ $\Rightarrow \vec{c} \cdot \vec{x} + \vec{c} \cdot (\vec{c} \times \vec{y}) = \vec{c} \cdot \vec{a}$ $\Rightarrow \vec{c} \cdot \vec{x} + 0 = \vec{c} \cdot \vec{a}$ $\therefore \vec{c} \cdot \vec{x} = \vec{c} \cdot \vec{a}$ $\Rightarrow \vec{a} - \vec{x} + (\vec{c} \cdot \vec{a})\vec{c} - (\vec{c} \cdot \vec{c})\vec{x} = \vec{c} \times \vec{b}$ $\Rightarrow \vec{x} (1 + (\vec{c} \cdot \vec{c})) = \vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a}) \cdot \vec{c}$ $\therefore \vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c} \cdot \vec{a})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$ Similarly on taking cross product of Eq. (i), we

find

$$\vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c} \cdot \vec{b})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$$

41 (b)
Let the required vector be \vec{r} . Then $\vec{r} = x_1\vec{b} + x_2\vec{c}$
and $\vec{r} \cdot \vec{a} = \sqrt{\frac{2}{3}}(|\vec{a}|) = 2$
Now, $\vec{r} \cdot \vec{a} = x_1\vec{a} \cdot \vec{b} + x_2\vec{a} \cdot \vec{c} \Rightarrow 2 = x_1(2 - 2 - 1 + x22 - 1 - 2 \Rightarrow x1 + x22 - 2$
 $\Rightarrow \vec{r} = x_1(i + 2j - \hat{k}) + x_2(i + j - 2\hat{k})$
 $= i(x_1 + x_2) + j(2x_1 + x_2)$
 $-\hat{k}(2x_2 + x_1)$
 $= -2\hat{i} + \hat{j}(x_1 - 2) - \hat{k}(-4 - x_1)$, where $x_1 \in R$
42 (c)
The position vector of the point O with respect to
itself is
 $\overline{OA} \sin 2A + \overline{OB} \sin 2B + \overline{OC} \sin 2C$
 $\Rightarrow \overline{OA} \sin 2A + \overline{OB} \sin 2B + \overline{OC} \sin 2C = \vec{0}$
 $\Rightarrow \overline{OA} \sin 2A + \overline{OB} \sin 2B + \overline{OC} \sin 2C = \vec{0}$
43 (b)
Let $\overline{OA} = \vec{a}, \overline{OB} = \vec{b}$ and $\overline{OC} = \vec{c}$, then $\overline{AB} = \vec{b} - \vec{a}$
and $\overline{OP} = \frac{1}{3}\vec{a}, \overline{OQ} = \frac{1}{2}\vec{b}, \overline{OR} = \frac{1}{3}\vec{c}$
Since P, Q, R and S are coplanar, then
 $\overline{PS} = \alpha P \overline{Q} + \beta P \overline{R} (\overline{PS}$ can be written as a linear
combination of \overline{PQ} and \overline{PR})
 $= \alpha(\overline{OQ} - \overline{OP}) + \beta(\overline{OR} - \overline{OP})$
i.e., $\overline{OS} - \overline{OP} = -(\alpha + \beta)\frac{\vec{a}}{3} + \frac{\alpha}{2}\vec{b} + \frac{\beta}{3}\vec{c}$
Given $\overline{OS} = \lambda \overline{AB} = \lambda(\vec{b} - \vec{a})$
From (i) and (ii), $\beta = 0, \frac{1-\alpha}{3} = -\lambda$ and $\frac{\alpha}{2} = \lambda$
 $\Rightarrow 2\lambda = 1 + 3\lambda$
 $\Rightarrow \lambda = -1$
44 (d)
 $3\vec{a} + 4\vec{b} + 5\vec{c} = 0$
 $\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar
No other conclusion can be derives from it
45 (c)
Let the projection be x , then $\vec{a} = \frac{x(i+f)}{\sqrt{2}} + \frac{x(-i+f)}{\sqrt{2}} + \frac{x\hat{k}}{\sqrt{3}}$
 $\therefore \vec{a} = \frac{2x\hat{j}}{\sqrt{2}} + x\hat{k} \Rightarrow \hat{a} = \sqrt{\frac{2}{\sqrt{3}}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$

 $\vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]} = \frac{\hat{\iota} + \hat{\jmath} - \hat{k}}{2}$ 47 **(b)** Given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ $\Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0$ $\Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a}$ Similarly, $\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{c}} \times \vec{\mathbf{a}}$ $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$ Alternate: Since, \vec{a} , \vec{b} , \vec{c} are unit vectors and $\vec{a} + \vec{b} + \vec{a} + \vec{c} = \vec{0}$, so \vec{a} , \vec{b} , \vec{c} represent an equilateral triangle. $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$ 48 (b) $(\vec{a} \times \hat{\imath}).(\vec{b} \times \hat{\imath}) = \begin{vmatrix} \vec{a}.\vec{b} & \vec{a}.\hat{\imath} \\ \vec{b}.\hat{\imath} & \hat{\imath}.\hat{\imath} \end{vmatrix} = (\vec{a}.\vec{b}) - (\vec{a}.\hat{\imath})(\vec{b}.\hat{\imath})$ Similarly, $(\vec{a} \times \hat{j}) \cdot (\vec{b} \times \hat{j}) = (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j})$ and $(\vec{a} \times \hat{k}) \cdot (\vec{b} \times \hat{k}) = \vec{a} \cdot \vec{b} - (\vec{a} \cdot k)(\vec{b} \cdot \hat{k})$ Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$. Therefore $(\vec{a} \cdot \hat{\imath}) = a_1, \vec{a} \cdot \hat{\jmath} = a_2, \vec{a} \cdot \hat{k} = a_3, \vec{b} \cdot \hat{\imath} = b_1, \vec{b} \cdot \hat{\jmath}$ $= b_{2}, (\vec{b} \cdot \hat{k}) = b_{3}$ $\Rightarrow (\vec{a} \times \hat{\imath}) \cdot (\vec{b} \times \hat{\imath}) + (\vec{a} \times \hat{\jmath}) \cdot (\vec{b} \times \hat{\jmath}) + (\vec{a} \times \hat{k})$ $\cdot (\vec{b} \times \hat{k})$ $= 3\vec{a}\cdot\vec{b} - (a_1b_1 + a_2b_2 + a_3b_3)$ $= 3\vec{a}\cdot\vec{b} - \vec{a}\cdot\vec{b} = 2\vec{a}\cdot\vec{b}$ 49 (d) $\sqrt{3} \tan \theta + 1 = 0$ and $\sqrt{3} \sec \theta - 2 = 0$ $\Rightarrow \theta = \frac{11\pi}{6}$ $\Rightarrow \theta = 2n\pi + \frac{11\pi}{6}, n \in \mathbb{Z}$ 50 (d) Let $\vec{r} \neq \vec{0}$. Then $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ $\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar, which is a contradiction Therefore, $\vec{r} = \vec{0}$ 51 **(b)** Let the given position vectors be of points *A*, *B* and C, respectively. Then $|\overrightarrow{AB}| = \sqrt{(\beta - \alpha)^2 + (\gamma - \beta)^2 + (\alpha - \gamma)^2}$ $\left|\overrightarrow{BC}\right| = \sqrt{(\gamma - \beta)^2 + (\alpha - \gamma)^2 + (\alpha - \beta)^2}$ $|\overrightarrow{CA}| = \sqrt{(\alpha - \gamma)^2 (\beta - \alpha)^2 + (\gamma - \beta)^2}$ $\therefore |\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{CA}|$ Hence, $\triangle ABC$ is an equilateral triangle

$$\vec{a} = \hat{\imath} - \hat{k}$$

$$\vec{b} = x\hat{\imath} + \hat{\jmath} + (1 - x)\hat{k}$$

$$\vec{c} = y\vec{\imath} + x\vec{\jmath} + (1 + x - y)\vec{k}$$

$$= \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix}$$

$$= (1 + x - y - x + x^{2}) - 1(x^{2} - y)$$

$$= 1$$

53 **(b)**

As \vec{p}, \vec{q} and \vec{r} are three mutually perpendicular vectors of same magnitude, so let us consider $\vec{p} = a \hat{\imath}, \vec{q} = a\hat{\jmath}, \vec{r} = a\hat{k}$ Also let $\vec{x} = x_1 \hat{\iota} + y_1 \hat{\jmath} + z_1 \hat{k}$ Given that \vec{x} satisfies the equation $\vec{p} \times [(\vec{x} - \vec{q}) \times \vec{p}] + \vec{q} \times [(\vec{x} - \vec{r}) \times \vec{q}] + \vec{r} \times \vec{q}$ $[(\vec{x} - \vec{p}) \times \vec{r}] = 0$ (i) Now $\vec{p} \times [(\vec{x} - \vec{q}) \times \vec{p}] = \vec{p} \times [\vec{x} \times \vec{p} - \vec{q} \times \vec{p}]$ $= \vec{p} \times (\vec{x} \times \vec{p}) - \vec{p} \times (\vec{q} \times \vec{p})$ $= (\vec{p} \cdot \vec{p})\vec{x} - (\vec{p} \cdot \vec{x})\vec{p} - (\vec{p} \cdot \vec{p})\vec{q} + (\vec{p} \cdot \vec{q})\vec{p}$ $=a^{2}\vec{x}-a^{2}x_{1}\hat{\imath}-a^{3}\hat{\jmath}+0$ Similarly, $\vec{q} \times [(\vec{x} - \vec{r}) \times \vec{q}] = a^2 \vec{x} - a^2 y_1 \hat{j} - a^3 \hat{k}$ and $\vec{r} \times [(\vec{x} - \vec{p}) \times \vec{r}] = a^2 \vec{x} - a^2 z_1 \hat{k} - a^3 \hat{\iota}$ Substituting these values in the equation, we get $3a^2\vec{x} - a^2(x_1\hat{\imath} + y_1\hat{\jmath} + z_1\hat{k}) - a^2(a\hat{\imath} + a\hat{\jmath} + a\hat{k})$ $\Rightarrow 3a^2\vec{x} - a^2\vec{x} - a^2(\vec{p} + \vec{q} + \vec{r}) = \vec{0}$ $\Rightarrow 2a^2 \vec{x} = (\vec{p} + \vec{q} + \vec{r})a^2$ $\Rightarrow \vec{x} = \frac{1}{2}(\vec{p} + \vec{q} + \vec{r})$ 54 (a) Given, $\overrightarrow{\mathbf{OP}} = \hat{\mathbf{a}} \cos t + \hat{\mathbf{b}} \sin t$ $\Rightarrow |\overline{\mathbf{0P}}|$ $= \sqrt{(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}\cos^2 t + \hat{\mathbf{b}} \cdot \hat{\mathbf{b}}\sin^2 t + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}\sin t \cos t)}$ $\Rightarrow |\overrightarrow{\mathbf{OP}}| = \sqrt{1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}}} \sin 2t$ $\Rightarrow \left| \overrightarrow{\mathbf{OP}} \right|_{\max} = \sqrt{1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}}}$ $\left[\text{Max}\left(\sin 2t\right) = 1 \Longrightarrow t = \frac{\pi}{4} \right]$ $\Rightarrow \overrightarrow{\mathbf{OP}}\left(\operatorname{at} t = \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(\widehat{\mathbf{a}} + \widehat{\mathbf{b}}\right)$

 $\therefore \text{ Unit vector along } \overrightarrow{\mathbf{OP}} \text{ at } \left(t = \frac{\pi}{4}\right) = \frac{\widehat{\mathbf{a}} + \mathbf{b}}{\left|\widehat{\mathbf{a}} + \widehat{\mathbf{b}}\right|}$

55 (a) $\vec{a} \times \vec{b} = \vec{c}$ $\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) = \vec{a} \times \vec{c}$ $\Rightarrow (\vec{a} \cdot \vec{b})\vec{a} - |\vec{a}|^2\vec{b} = \vec{a} \times \vec{c}$ $\Rightarrow \vec{b} = \frac{\beta \vec{a} - \vec{a} \times \vec{c}}{|\vec{a}|^2} \ (\because \vec{a} \cdot \vec{b} = \beta)$ 56 (c) $m\vec{a}$ is a unit vector if and only if $|m\vec{a}| = 1 \Rightarrow |m||\vec{a}| = 1 \Rightarrow |m|a = 1 \Rightarrow a = \frac{1}{|m|}$ 57 (a) Let $\vec{\mathbf{r}} = \vec{\mathbf{a}} + t\vec{\mathbf{b}}$ $\Rightarrow \vec{\mathbf{r}} = \hat{\mathbf{i}}(1+t) + \hat{\mathbf{j}}(2-t) + \hat{\mathbf{k}}(1+t)$ Since, The projection of $\vec{\mathbf{r}}$ on $\vec{\mathbf{c}}$, **r** ∙ **c** |1| $\frac{\vec{\mathbf{r}}\cdot\vec{\mathbf{c}}}{|\vec{\mathbf{c}}|} = \frac{|1|}{|\sqrt{3}|}$ [given] $\Rightarrow \frac{1 \cdot (1+t) + 1 \cdot (2-t) - 1 \cdot (1+t)}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}}$ $\Rightarrow 2 - t = \pm 1$ $\Rightarrow t = 1 \text{ or } 3$ When, t = 1, $\vec{r} = 2\hat{i} + \hat{j} + 2\hat{k}$ When, t = 3, $\vec{r} = 4\hat{i} - \hat{j} + 4\hat{k}$ 58 (d) $\vec{r}_1 + 2\vec{r}_2 = (P\vec{a} + q\vec{b} + \vec{c}) + 2(\vec{a} + p\vec{b} + q\vec{c})$ $= (p+2)\vec{a} + (q+2p)\vec{b} + (1)$ $+ 2a)\vec{c}$ $2\vec{r}_1 + \vec{r}_2 = (2p+1)\vec{a} + (2q+p)\vec{b} + (2+q)\vec{c}$ $\frac{p+2}{2p+1} = \frac{q+2p}{2q+p} = \frac{1+2q}{2+q}$ $=\frac{p+q+2p+2q+3}{p+q+2p+2q+3}=1$ $\Rightarrow p = 1 \text{ and } q = 1$ 59 **(b)** $\vec{a} + \vec{b} = \lambda \vec{c}$ (i) and $\vec{b} + \vec{c} = \mu \vec{a}$ (ii) $\therefore (\lambda \vec{c} - \vec{a}) + \vec{c} = \mu \, \vec{a} (\text{putting} \vec{b} = \lambda \vec{c} - \vec{a})$ $\Rightarrow (\lambda + 1)\vec{c} = (\mu + 1)\vec{a}$ $\Rightarrow \lambda = \mu = -1$ $\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3$ 60 (a) The position vector of any point at *t* is $\vec{r} = (2+t^2)\hat{\iota} + (4t-5)\hat{\jmath} + (2t^2-6)\hat{k}$ $\Rightarrow \frac{d\vec{r}}{dt} = 2t\,\hat{\imath} + 4\hat{\jmath} + (4t - 6)\hat{k}$

$$\Rightarrow \frac{d\vec{r}}{dt}\Big|_{t=2} = 4\hat{\imath} + 4\hat{j} + 2\hat{k} \text{ and } \left|\frac{d\vec{r}}{dt}\right|\Big|_{t=2}$$

$$= \sqrt{16 + 16 + 4} = 4$$
Hence, the required unit tangent vector at $t = 2$ is
$$\frac{1}{3}(2\hat{\imath} + 2\hat{j} + \hat{k})$$
61 (c)
$$D(\vec{d}) = (\vec{c}) = \vec{c} =$$

 $\overset{Z}{\uparrow} D(0, 0, d)$ Α B(b, 0, 0)C(0, c, 0) $=\frac{1}{2}\sqrt{b^2c^2+c^2d^2+d^2b^2}$ Now 6 = bc; 8 = cd; 10 = bd $b^2c^2 + c^2d^2 + d^2b^2 = 200$ Substituting the value in (i) $A = \frac{1}{2}\sqrt{200} = 5\sqrt{2}$ 63 (d) $(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ $= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$ $= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$ $= \vec{a} \cdot \vec{b} \times \vec{c} + \vec{b} \cdot \vec{a} \times \vec{c} + \vec{c} \cdot \vec{b} \times \vec{a}$ $= \left[\vec{a}\vec{b}\vec{c}\right] - \left[\vec{a}\vec{b}\vec{c}\right] - \left[\vec{a}\vec{b}\vec{c}\right]$ $= -[\vec{a}\vec{b}\vec{c}]$ 64 **(c)** Consider a tertrahedron with vertices O((0,0,0), A(a,0,0), B(0,b,0) and C((0,0,c))Its volume $V = \frac{1}{6} [\vec{a} \vec{b} \vec{c}]$ Now centroides of the faces OAB, OAC, OBC and **ABC**are $G_1(a/3, b/3, 0)G_2(a/3, 0, c/3), G_3(0, b/3, c/3)$ and $G_4(a/3, b/3, c/3)$, respectively $G_4G_1 = \vec{c}/3, \overline{G_4G_2} = \vec{b}/3, \overline{G_4G_3} = \vec{a}/3$ Volume of tetrahedron be centroids V' = $\frac{1}{6} \left[\frac{\vec{a}}{3} \frac{\vec{b}}{3} \frac{\vec{c}}{3} \right] = \frac{1}{27} V$ $\Rightarrow K = 27$ 65 (c) $\vec{a}_1 = (\vec{a} \cdot \hat{b})\hat{b} = \frac{(\vec{a} \cdot b)b}{\left|\vec{b}\right|^2}$ $\Rightarrow \vec{a}_2 = \vec{a} - \vec{a}_1 = \vec{a} - \frac{\left(\vec{a} \cdot \vec{b}\right)\vec{b}}{\left|\vec{b}\right|^2}$ Thus, $\vec{a}_1 \times \vec{a}_2 = \frac{(\vec{a} \cdot \vec{b})\vec{b}}{|\vec{b}|^2} \times \left(\vec{a} - \frac{(\vec{a} \cdot \vec{b})\vec{b}}{|\vec{b}|^2}\right) = \frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b}|^2}$ 66 (d) $(\hat{\imath} + \hat{\jmath}) \times (\hat{\jmath} + \hat{k}) = \hat{\imath} - \hat{\jmath} + \hat{k}$ so that unit vector perpendicular to the plane of $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is $\frac{1}{\sqrt{2}}(\hat{\iota}-\hat{j}+\hat{k})$

Similarly, the other two unit vectors are $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$ and $\frac{1}{\sqrt{3}}(-\hat{i}+\hat{j}+\hat{k})$ The required volume $= \frac{3}{\sqrt{3}} \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 4\sqrt{3}$ 67 (c) $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = 4\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ $\overrightarrow{AB} = -3\hat{\imath} - 3\hat{k}, \overrightarrow{AC} = \hat{\imath} + 2\hat{\jmath} - 7\hat{k}$ $BC^2 = 36, AB^2 = 18, AC^2 = 54$ Clearly, $AC^2 = BC^2 + AB^2$ $\therefore \angle B = 90^{\circ}$ (c) 68 Given $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}$ $\vec{\beta} + \vec{\gamma} + \vec{\delta} = b\vec{\alpha}$ From (i), $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = (a+1)\vec{\delta}$ From (ii), $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = (b+1)\vec{\alpha}$ From (iii) and (iv), $(a+1)\vec{\delta} = (b+1)\vec{\alpha}$ Since $\vec{\alpha}$ is not parallel to $\vec{\delta}$ From (v), a + 1 = 0 and b + 1 = 0From (iii), $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = 0$ 69 **(b)** A vector perpendicular to the plane of $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is $(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ Now for any point $R(\vec{r})$ in the plane of A, B and Cis $(\vec{r} - \vec{a}) \cdot \left(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right) = 0$ $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ $-\vec{a}(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a})=0$ $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{0} + \vec{a} \cdot \vec{b} \times \vec{c} + \vec{0}$ $\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = [\vec{a}\vec{b}\vec{c}]$ 70 (c) Let angle between \vec{a} and \vec{b} be θ_1 . \vec{c} and \vec{d} be θ_2 and $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ be θ Since, $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1$ $\Rightarrow \sin \theta_1 \cdot \sin \theta_2$ $\cdot \cos \theta$ $= 1 \quad (: |\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{d}| = 1)$ $\Rightarrow \theta_1 = 90^\circ \cdot \theta_2 = 90^\circ, \theta = 0^\circ$ $\Rightarrow \vec{a} \perp \vec{b}, \vec{c} \perp \vec{d}, (\vec{a} \times \vec{b}) || (\vec{c} \times \vec{d})$ So, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}})$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}})$ $\Rightarrow (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot \vec{\mathbf{c}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}}) \cdot \vec{\mathbf{c}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot \vec{\mathbf{d}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}}) \cdot \vec{\mathbf{d}}$ \Rightarrow [$\vec{a} \ \vec{b} \ \vec{c}$] = 0 and [$\vec{a} \ \vec{b} \ \vec{d}$] = 0 \Rightarrow \vec{a} , \vec{b} , \vec{c} and \vec{a} , \vec{b} , \vec{d} are coplanar vector so option

(A) and (B) are incorrect. Let $\vec{\mathbf{b}} || \vec{\mathbf{d}} \Rightarrow \vec{\mathbf{b}} = \pm \vec{\mathbf{d}}$ As $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1 \Longrightarrow (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{b}}) =$ +1 \Rightarrow [$\vec{a} \times \vec{b} \vec{c} \vec{b}$] = ±1 \Rightarrow [$\vec{c} \, \vec{b} \, \vec{a} \times \vec{b}$] = ±1 $\Rightarrow \vec{\mathbf{c}} \cdot [\vec{\mathbf{b}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})] = \pm 1$ $\Rightarrow \vec{\mathbf{c}} \cdot [\vec{\mathbf{a}} - (\vec{\mathbf{b}} \cdot \vec{\mathbf{a}})\vec{\mathbf{b}}] = \pm 1$ $\Rightarrow \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = \pm 1 \quad (\because \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0)$ Which is a contradiction so option (c) is correct. Let option (d) is correct b \Rightarrow $\vec{\mathbf{d}} = \pm \vec{\mathbf{a}}$ and $\vec{\mathbf{c}} = \pm \vec{\mathbf{b}}$ As $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1$ \Rightarrow $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{a}) = \pm 1$ Which is a contradiction so option (d) is incorrect. Alternate Option (c) and (d) may be observed from given in figure.

71 **(b)**

We have

$$\vec{p} \cdot \vec{q} = 0$$

 $\Rightarrow (5\vec{a} - 3\vec{b}) \cdot (-\vec{a} - 2\vec{b}) = 0$
 $\Rightarrow 6|\vec{b}|^2 - 5|\vec{a}|^2 - 7\vec{a} \cdot \vec{b} = 0$ (i)
Also $\vec{r} \cdot \vec{s} = 0$
 $\Rightarrow (-4\vec{a} - \vec{b})(-\vec{a} + \vec{b}) = 0$
 $\Rightarrow 4|\vec{a}|^2 - |\vec{b}|^2 - 3\vec{a} \cdot \vec{b} = 0$ (ii)
Now $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s}) = \frac{1}{3}(5\vec{a} - 3\vec{b} - 4\vec{a} - \vec{b} - \vec{a} + \vec{b} = -\vec{b})$
and $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s}) = \frac{1}{5}(-5\vec{a}) = -\vec{a}$
Angle between \vec{x} and \vec{y} , i.e., $\cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
(iii)
From (i) and (ii), $|\vec{a}| = \sqrt{\frac{25}{19}}\sqrt{\vec{a} \cdot \vec{b}}$ and
 $|\vec{b}| = \sqrt{\frac{43}{19}}\sqrt{\vec{a} \cdot \vec{b}}$. Therefore
 $|\vec{a}||\vec{b}| = \frac{\sqrt{25 \times 43}}{19} \cdot \vec{a} \cdot \vec{b}$

$$\theta = \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$
72 (d)

(d)

$$\vec{0} = (\vec{a} + \vec{b}) \cdot (2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b})$$

$$= (\vec{a} + \vec{b}) \cdot (-4\vec{a} \times \vec{b} - 9\vec{a} \times \vec{b})$$

$$= -13(\vec{a} + \vec{b}) \cdot (\vec{a} \times \vec{b})$$
Which is true for all values of \vec{a} and \vec{b}

Which is true for all values of \vec{a} and \vec{b}

73 **(b)**

$$\vec{c} = \lambda(\vec{a} \times \vec{b})$$

$$\Rightarrow \vec{c} \cdot \vec{c} = \lambda(\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\Rightarrow \frac{1}{3} = \lambda$$
Also $|\vec{c}|^2 = \lambda^2 |\vec{a} \times \vec{b}|^2$

$$\Rightarrow \frac{1}{3} = \frac{1}{9} (a^2 b^2 \sin^2 \theta) = \frac{1}{9} \times 2 \times 3 \sin^2 \theta$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

74 **(a)**

Given that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are vectors such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ P_1 is the plane determined by vectors a and b.

Therefore, normal vectors \vec{n}_1 to P_1 will be given by $\vec{n}_1 = \vec{a} \times \vec{b}$ Similarly, P_2 is the plane determined by vectors \vec{c} and \vec{d} . Therefore, normal vectors \vec{n}_2 to P_2 will be given by

$$\vec{n}_2 = \vec{c} \times \vec{d}$$

Substituting the values of \vec{n}_1 and \vec{n}_2 in (i), we get $\vec{n}_1 \times \vec{n}_2 = \vec{0}$

Hence,
$$\vec{n}_1 || \vec{n}_2$$

Hence, the planes will also be parallel to each other

Thus angle between the planes = 0

76 **(c)**

Any vector \vec{r} can be represented in terms of three non-coplanar vectors \vec{a} , \vec{b} and \vec{c} as

$$\vec{r} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a})$$

Taking dot product with \vec{a} , \vec{b} and \vec{c} , respectively, we have,

$$x = \frac{\vec{r} \cdot \vec{c}}{[\vec{a}\vec{b}\vec{c}]}, y = \frac{\vec{r} \cdot \vec{a}}{[\vec{a}\vec{b}\vec{c}]} \text{ and } z = \frac{\vec{r} \cdot \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$$

From (i)
$$[\vec{a}\vec{b}\vec{c}]\vec{r} = \frac{1}{2}(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$$

 \therefore Area of $\triangle ABC$
$$= \frac{1}{2}|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$$

$$= |[\vec{a}\vec{b}\vec{c}]\vec{r}|$$

77 (c)

78

79

Given $a_1 \overrightarrow{r_1} + a_2 \overrightarrow{r_2} + \dots + a_n \overrightarrow{r_n} = 0$

Now
$$\vec{a} + \vec{r}_1 = \vec{r}_1$$
 and so on
Hence $a_1(\vec{a} + \vec{r}_1) + a_2(\vec{a} + \vec{r}_2) + \dots + a_n(\vec{a} + \vec{r}_n) = 0$
 $a_1\vec{r}_1 + a_2\vec{r}_2 + \dots + a_n\vec{r}_n + \vec{a}(a_1 + a_2 + \dots + a_n) = 0$
Hence $a_1\vec{r}_1 + a_2\vec{r}_2 + \dots + a_n\vec{r}_n = 0$ if $a_1 + a_2 + \dots + a_n = 0$
(a)
A vector perpendicular to the plane of O, P and Q
is $\overrightarrow{OP} \times \overrightarrow{OQ}$
Now, $\overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} \hat{l} & \hat{j} & \hat{k} \\ 4 & 1 & \lambda \\ 2 & -1 & \lambda \end{vmatrix} = 2\lambda\hat{l} - 2\lambda\hat{j} - 6\hat{k}$
Therefore, $\hat{l} - \hat{j} + 6\hat{k}$ is parallel to $2\lambda\hat{l} - 2\lambda\hat{j} - 6\hat{k}$
Hence $\frac{1}{2\lambda} = \frac{-1}{-2\lambda} = \frac{6}{-6}$
 $\lambda = -\frac{1}{2}$
(a)
 $[\vec{a} + (\vec{a} \times \vec{b})\vec{b} + (\vec{a} \times \vec{b})\vec{a} \times \vec{b}]$
 $= (\vec{a} + (\vec{a} \times \vec{b})) \cdot ((\vec{b} + (\vec{a} \times \vec{b})) \times (\vec{a} \times \vec{b}))$
 $= (\vec{a} + (\vec{a} \times \vec{b})) \cdot (\vec{b} \times (\vec{a} \times \vec{b}))$

$$= \vec{a} \cdot \vec{a} = 1 \ (\text{as } \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot (\vec{a} \times \vec{b}) = 0)$$

80 (c)

Given that \vec{a}, \vec{b} and \vec{c} are non-coplanar

 $\Rightarrow [\vec{a}\vec{b}\vec{c}] \neq 0$ Again $\vec{a} \times (\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{c}) = 0$ $\Rightarrow \left[(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \right] \cdot (\vec{a} \times \vec{c}) = 0$ $\Rightarrow (\vec{a} \cdot \vec{c})[\vec{b}\vec{a}\vec{c}] = 0$ \Rightarrow ($\vec{a} \cdot \vec{c}$) = 0 $\Rightarrow \vec{a}$ and \vec{c} are perpendicular $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ $\Rightarrow \left[\vec{a} \times (\vec{b} \times \vec{c})\right] \times \vec{c} = \vec{0}$ 81 (d) $\vec{c} - \vec{b} = \alpha \vec{d}$ and $\vec{p} = \overrightarrow{AC} + \overrightarrow{BD} = \mu \overrightarrow{AD}$ $C(\vec{c})$ $B(\vec{b})$ (origin) Hence $\vec{p} = \vec{c} + \vec{d} - \vec{b} = \mu \vec{d}$ (using $\vec{c} - \vec{b} = \alpha \vec{d}$) or $\alpha + 1 = \mu$ 82 **(b)** Since, $\overrightarrow{OA} = \hat{\imath} + \hat{\jmath} + \hat{k}$ $\overrightarrow{OB} = \hat{\imath} + 5\hat{\jmath} - \hat{k}$ $\overrightarrow{OC} = 2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ $a = BC = |\overrightarrow{BC}| = |\overrightarrow{OC} - \overrightarrow{OB}| = |\hat{\iota} - 2\hat{\jmath} + 6\hat{k}|$ $=\sqrt{41}$ $b = CA = \left| \overrightarrow{CA} \right| = \left| \overrightarrow{OA} - \overrightarrow{OC} \right| = \left| -\hat{\iota} - 2\hat{\jmath} - 4\hat{k} \right|$ $=\sqrt{21}$ $c = AB = |\overrightarrow{AB}| = |\overrightarrow{OB} - \overrightarrow{OA}| = |0\hat{\imath} + 4\hat{\imath} - \vec{OA}|$ and 2k=20 Since a > b > c, A is the greatest angle. Therefore, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{21 + 20 - 41}{2 \cdot \sqrt{21} \cdot \sqrt{20}} = 0$ $\therefore \angle A = 90^{\circ}$ 83 (a) Let $\vec{d} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ Where $x^2 + y^2 + z^2 = 1$ (i) $(\vec{d} \text{ being a unit vector})$ $\therefore \vec{a} \cdot \vec{d} = 0$ $\Rightarrow x - y = 0 \text{ or } x = y$ (ii) $\left[\vec{b}\vec{c}\vec{d}\right] = 0$ $\Rightarrow \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z \end{vmatrix} = 0$ 0r x + y + z = 0Or 2x + z = 0 [using (ii)] $\text{Or } z = -2x \quad \text{(iii)}$ From (i), (ii) and (iii), we have $x^2 + x^2 + 4x^2 = 1$ $x = \pm \frac{1}{\sqrt{6}}$

 $\therefore \vec{d} = \pm \left(\frac{1}{\sqrt{6}}\hat{\imath} + \frac{1}{\sqrt{6}}\hat{\jmath} - \frac{2}{\sqrt{6}}\hat{k}\right)$ $=\pm\left(\frac{\hat{\iota}+\hat{j}-2\hat{k}}{\sqrt{6}}\right)$ 84 (c) $\vec{\alpha} = \vec{a} + \vec{b} + \vec{c} = 6\hat{\imath} + 12\hat{\imath}$ Let $\vec{\alpha} = x\vec{a} + y\vec{b} \Rightarrow 6x + 2y = 6$ and -3x - 6y = 12 $\therefore x = 2, y = -3$ $\therefore \vec{\alpha} = 2\vec{a} - 3\vec{b}$ 85 (c) $\vec{r} \times \vec{a} = \vec{b}$ $\Rightarrow \vec{d} \times (\vec{r} \times \vec{a}) = \vec{d} \times \vec{b}$ $\Rightarrow (\vec{a} \cdot \vec{d})\vec{r} - (\vec{d} \cdot \vec{r})\vec{a} = \vec{d} \times \vec{b}$ $\vec{r} \times \vec{c} = \vec{d}$ $\Rightarrow \vec{b} \times (\vec{r} \times \vec{c}) = \vec{b} \times \vec{d}$ $\Rightarrow (\vec{b} \cdot \vec{c})\vec{r} - (\vec{b} \cdot \vec{r})\vec{c} = \vec{b} \times \vec{d}$ Adding (i) and (ii) we get $(\vec{a}\cdot\vec{d}+\vec{b}\cdot\vec{c})\vec{r}-(\vec{d}\cdot\vec{r})\vec{a}-(\vec{b}\cdot\vec{r})\vec{c}=\vec{0}$ Now $\vec{r} \cdot \vec{d} = 0$ and $\vec{b} \cdot \vec{r} = 0$ as \vec{d} and \vec{r} as well as \vec{b} and \vec{r} are mutually perpendicular Hence, $(\vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{d})\vec{r} = \vec{0}$ 86 (d) Let $\vec{a} = 6\hat{i} + 6\hat{k}$, $\vec{b} = 4\hat{j} + 2\hat{k}$, $\vec{c} = 4\hat{j} - 8\hat{k}$

Then
$$\vec{a} \times \vec{b} = -24\vec{i} - 12\vec{j} + 24\vec{k}$$

= $12(-2\hat{i} - \hat{j} + 2\hat{k})$
 \therefore Area of the base of the parallelepiped = $\frac{1}{2}|\vec{a} \times \vec{b}|$
= $\frac{1}{2}(12 \times 3)$

$$=\frac{12}{2}$$

87

Height of the parallelepiped=length of projection of \vec{c} on $\vec{a} \times \vec{b}$

$$\Delta = \frac{1}{2} \left| \left(\hat{j} + \lambda \hat{k} \right) \times \left(\hat{i} + \lambda \hat{k} \right) \right| = \frac{1}{2} \left| -\hat{k} + \lambda \hat{i} + \lambda \hat{j} \right|$$
$$= \frac{1}{2} \sqrt{2\lambda^2 + 1}$$
$$\Rightarrow \frac{9}{4} \le \frac{1}{4} (2\lambda^2 + 1) \le \frac{33}{4}$$
$$\Rightarrow 4 \le \lambda^2 \le 16$$
$$\Rightarrow 2 \le |\lambda| \le 4$$

88 **(d)**

The angle between \vec{a} and \vec{b} is obtuse. Therefore,

$$\vec{a} \cdot \vec{b} < 0$$

$$\Rightarrow 14x^2 - 8x + x < 0$$

$$\Rightarrow 7x(2x - 1) < 0$$

$$\Rightarrow 0 < x < 1/2$$
(i)

The angle between \vec{b} and the *z*-axis is acute and less than $\pi/6$. Therefore,

$$\frac{\vec{b} \cdot \vec{k}}{|\vec{b}||\vec{k}|} > \cos \pi/6 \quad (\because \theta < \pi/6 \Rightarrow \cos \theta > \cos \pi/6)$$
$$\Rightarrow \frac{x}{\sqrt{x^2 + 53}} > \frac{\sqrt{3}}{2}$$
$$\Rightarrow 4x^2 > 3x^2 + 159$$
$$\Rightarrow x^2 > 159$$
$$\Rightarrow x > \sqrt{159} \text{ or } x < -\sqrt{159} \text{ (ii)}$$

Clearly, (i) and (ii) cannot hold together

89 **(b)**

Here
$$[\vec{a}\vec{b}\vec{c}] = \pm 1$$

 $[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}]$
 $= (\vec{a} + \vec{b} + \vec{c}) \times (\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c})$
 $= \vec{c} \times (\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c})$
 $= \vec{c} \times \vec{a} + \vec{c} \times \vec{b}) \cdot (\vec{b} + \vec{c})$
 $= \vec{c} \times \vec{a} \cdot \vec{b} = [\vec{a}\vec{b}\vec{c}] = \pm 1$
90 (a)
Let the incentre be at the origin and be $A(\vec{p}), B(\vec{q})$
and $C(\vec{r})$. Then
 $\vec{l}\vec{A} = \vec{p}, \vec{l}\vec{B} = \vec{q}$ and $\vec{l}\vec{C} = \vec{r}$
Incentre I is $\frac{a\vec{p}+b\vec{q}+c\vec{r}}{a+b+c}$, where $p = BC, q = AC$ and
 $r = AB$
Incentre is at the origin. Therefore,
 $\frac{a\vec{p}+b\vec{q}+c\vec{r}}{a+b+c} = \vec{0}, \text{ or } a \vec{p} + b\vec{q} + c\vec{r} = \vec{0}$

 $\Rightarrow a \overrightarrow{IA} + b \overrightarrow{IB} + c \overrightarrow{IC} = \vec{0}$ 91 **(b)** $|(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin 30^{\circ}$ $=\frac{1}{2} \left| \vec{a} \times \vec{b} \right| \left| \vec{c} \right| \quad (i)$ We have, $\vec{a} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{b} = \hat{\imath} + \hat{\jmath}$ $\Rightarrow \vec{a} \times \vec{b} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$ $\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{9} = 3$ Also given $|\vec{c} - \vec{a}| = 2\sqrt{2}$ $\Rightarrow |\vec{c} - \vec{a}|^2 = 8$ $\Rightarrow |\vec{c}|^2 + |\vec{a}|^2 - 2 \vec{a} \cdot \vec{c} = 8$ Given $|\vec{a}| = 3$ and $\vec{a} \cdot \vec{c} = |\vec{c}|$, using these we get $|\vec{c}|^2 - 2|\vec{c}| + 1 = 0$ $\Rightarrow (|\vec{c}| - 1)^2 = 0$ $\Rightarrow |\vec{c}| = 1$ Substituting values of $|\vec{a} \times \vec{b}|$ and $|\vec{c}|$ in (i), we get $\left| \left(\vec{a} \times \vec{b} \right) \times \vec{c} \right| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$ 92 **(b)** \hat{a}, \hat{b} and \hat{c} are unit vectors $| \circ \circ |^2 \cdot | \circ \cdot |$ 12

Now
$$x = |\hat{a} - b|^{-} + |\hat{b} - \hat{c}|^{-} + |\hat{c} - \hat{a}|^{2}$$

$$= \frac{1}{2} (\hat{a} \cdot \hat{a} + \hat{b} \cdot \hat{b} + \hat{c} \cdot \hat{c}) - 2\hat{a} \cdot \hat{b} - 2\hat{c} - 2\hat{c} \cdot \hat{a}$$

$$\Rightarrow 6 - 2 (\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a})$$
Also, $|\hat{a} + \hat{b} + \hat{c}| \ge 0$

$$\Rightarrow \hat{a} \cdot \hat{a} + \hat{b} \cdot \hat{b} + \hat{c} \cdot \hat{c} + 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \ge 0$$

$$\Rightarrow 3 + 2 (\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \ge 0$$

$$\Rightarrow 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \ge -3$$

$$\Rightarrow -2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \le 3$$

$$\Rightarrow 6 - 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}) \le 9$$
From (i) and (ii), $x \le 9$
Therefore, x does not exceed 9

(c)

$$|\vec{a} \times \vec{r}| = |\vec{c}|$$

 $\vec{B(b)}$ $\vec{B(r)}$ $\vec{B(r)}$
 $\vec{A(a)}$

Triangles on the same base and between the same parallel will have the same area

94 **(a)**

93

Three points $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are collinear if $\overrightarrow{AB} \mid \mid \overrightarrow{AC}$ $\overrightarrow{AB} = -20\hat{\imath} - 11\hat{\imath}; \overrightarrow{AC} = (a - 60)\hat{\imath} - 55\hat{\imath}$

$$\Rightarrow \overline{AB} ||\overline{AC} \Rightarrow \frac{a-60}{-20} = \frac{-55}{-11} \Rightarrow a = -40$$
95 (b)

$$\overline{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$$

$$\overline{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$$

$$\overrightarrow{D} \qquad \overrightarrow{C}$$

$$|\overline{AB}| = \sqrt{4} + 100 + 120 = \sqrt{225} = 15$$

$$|\overline{AD}| = \sqrt{1+4+4} = \sqrt{9} = 3$$

$$\therefore \cos \theta = \frac{40}{45} = \frac{8}{9}$$

$$\therefore \theta + \alpha = 90^{\circ}$$

$$\Rightarrow \alpha = 90^{\circ} - \theta$$

$$\Rightarrow \cos \alpha = \sin \theta = \sqrt{1 - \frac{64}{81}} = \frac{\sqrt{17}}{9}$$
96 (c)

$$|\vec{a} + \vec{b} + \vec{c}|^2 = 6$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 6$$

$$\Rightarrow |\vec{a}| = |\vec{b}| = |\vec{c}| \text{and} \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cdot \cos \frac{\pi}{3}$$
i. e. $\vec{a} \cdot \vec{b} = \frac{1}{2} |\vec{a}|^2$

$$\therefore 3|\vec{a}|^2 + 3|\vec{a}|^2 = 6$$

$$\Rightarrow |\vec{a}|^2 \Rightarrow |\vec{a}| = 1$$
97 (a)

$$[\vec{a} \times \vec{b} \times \vec{c}\vec{d}] = (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{c}) \times \vec{d}) = (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{c}) \times \vec{d}) = (\vec{a} \times \vec{b}) \cdot ((\vec{a} \times \vec{c}) = \vec{b} = [\vec{a}\vec{b}\vec{c}]\vec{b} = \vec{b} = [\vec{a}\vec{b}\vec{c}]\vec{b} = \vec{b} = [\vec{a}\vec{b}\vec{c}]\vec{b} = \vec{b} = [\vec{a}\vec{b}\vec{c}] = 1$$

$$\therefore \vec{a}, \vec{b} \text{ and } \vec{c} \text{ cannot be coplanar}$$
99 (d)

$$|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| + \sin \theta|(\text{ where } \theta \text{ is the})$$

angle between \vec{a} and \vec{b}) $\Rightarrow |\cos \theta| = |\sin \theta|$ $\Rightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4} (\text{as } 0 \le \theta \le \pi)$ But $\vec{a} \cdot \vec{b} < 0$, therefore $\theta = \frac{3\pi}{4}$ 100 (c) $\vec{d} \cdot \hat{a} = \vec{d} \cdot \hat{b} = \vec{d} \cdot \hat{c}$ $\Rightarrow \lambda(\hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}) = \lambda(1 + \hat{b} \cdot \hat{c}) = \lambda(1 + \hat{b} \cdot \hat{c})$ $\Rightarrow 1 + \hat{b} \cdot \hat{c} = \hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}$ $\Rightarrow 1 - \hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} - \hat{a} \cdot \hat{c} = 0$ $\Rightarrow 1 - \hat{a} \cdot \hat{b} + (\hat{b} - \hat{a}) \cdot \hat{c} = 0$ $\Rightarrow \hat{a} \cdot (\hat{a} - \hat{b}) + (\hat{b} - \hat{a}) \cdot \hat{c} = 0$ $\Rightarrow (\hat{a} - \hat{c}) \cdot (\hat{a} - \hat{b}) = 0 \Rightarrow \hat{a} - \hat{c}$ is perpendicular to $(\hat{a} - \hat{b}) \Rightarrow$ The triangle is right angled 101 **(b)** If $\vec{a}(x)$ and $\vec{b}(x)$ are \perp , then $\vec{a} \cdot \vec{b} = 0$ $\Rightarrow \sin x \cos 2x + \cos x \sin 2x = 0$ $\sin(3x) = 0 = \sin 0$ $3x = n\pi \Rightarrow x = \frac{n\pi}{3}$ Therefore, the two vectors are \perp for infinite values of 'x' 102 (c) $\vec{a} \times (\hat{\imath} + 2\hat{\jmath} + \hat{k}) = \hat{\imath} - \hat{k} = (\hat{\jmath} \times (\hat{\imath} + 2\hat{\jmath} + \hat{k}))$ $\Rightarrow (\vec{a} - \hat{j}) \times (\hat{\iota} + 2\hat{j} + \hat{k}) = \vec{0}$ $\Rightarrow \vec{a} - \hat{j} = \lambda(\hat{i} + 2\hat{j} + \hat{k})$ $\Rightarrow \vec{a} = \lambda \hat{\imath} + (2\lambda + 1)\hat{\jmath} + \lambda \hat{k}, \lambda \in R$ 103 (d) Volume of the parallelepiped formed by \vec{a}', \vec{b}' and \vec{c} ' is 4 Therefore, the volume of the parallelepiped formed by \vec{a} , \vec{b} and \vec{c} is $\frac{1}{4}$ $\vec{b} \times \vec{c} = \left[\vec{a}\vec{b}\vec{c}\right]\vec{a}' = \frac{1}{4}\vec{a}'$ $|\vec{b} \times \vec{c}| = \frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$ Length of altitude = $\frac{1}{4} \times 2\sqrt{2} = \frac{1}{\sqrt{2}}$ 104 (a) $\hat{a} = \frac{-4i+3\hat{k}}{5}; \hat{b} = \frac{14\hat{\iota}+2\hat{j}-5\hat{k}}{15}$ A vector \vec{V} bisecting the angle between \vec{a} and \vec{b} is $\vec{V} = \hat{a} + \hat{b}$

 $=\frac{-12\hat{\imath}+9\hat{k}+14\hat{\imath}+2\hat{\jmath}-5\hat{k}}{15}$ $=\frac{2\hat{\iota}+2\hat{j}+4\hat{k}}{1\,\varsigma}$ Required vector $\vec{d} = \sqrt{6}\hat{V} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$ 105 (d) $\vec{a} \perp \vec{b} \Rightarrow x - y + 2 = 0$ $\vec{a} \cdot \vec{c} = 4 \Rightarrow x + 2y = 4$ Solving we get x = 0; y = 2 $\Rightarrow \vec{a} = 2\hat{j} + 2\hat{k}$ $\Rightarrow \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 8 = |\vec{a}|^2$ 106 **(b)** $\left|\vec{a} + \vec{b} + 3\vec{c}\right|^2 = 16$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 9|\vec{c}|^2$ $+ 2 \cos \theta_1$ $+ 6 \cos \theta_2$ $+ 6 \cos \theta_3 = 16, \theta_3 \in [\pi/6, 2\pi/3]$ $\Rightarrow 2\cos\theta_1 + 6\cos\theta_2 = 5 - 6\cos\theta_3$ $\Rightarrow (\cos \theta_1 + 3 \cos \theta_2)_{\max} = 4$ 107 (c) $k = |2(\vec{a} \times \vec{b})| + |3(\vec{a} \cdot \vec{b})|$ $= 12 \sin \theta + 18 \cos \theta$ \Rightarrow maximum vlue of k is $\sqrt{12^2 + 18^2} = 6\sqrt{13}$ 108 (b) $A(\vec{0})$ B_1 A $B(\overline{b})$ $C(\overline{c})$ Let P.V. of A, B and C be $\vec{0}$, \vec{b} and \vec{c} , respectively.Therefore

$$\vec{G} = \frac{\vec{b} + \vec{c}}{3}$$

$$\vec{A}_1 = \frac{\vec{b}}{2}, \vec{B}_1 = \frac{\vec{c}}{2}$$

$$\Delta_{AB_1G} = \frac{1}{2} |\vec{AG} \times \vec{AB}_1| = \frac{1}{2} \left| \frac{\vec{b} + \vec{c}}{3} \times \left(\frac{\vec{c}}{2} \right) \right|$$

$$= \frac{1}{12} |\vec{b} \times \vec{c}|$$

$$\Delta_{AA_1G} = \frac{1}{2} |\vec{AG} \times \vec{AA}_1| = \frac{1}{2} \left| \frac{\vec{b} + \vec{c}}{3} \times \left(\frac{\vec{b}}{2} \right) \right|$$

$$= \frac{1}{12} |\vec{b} \times \vec{c}|$$

 $\Rightarrow \Delta_{GA_1AB_1} = \frac{1}{6} \left| \vec{b} \times \vec{c} \right| = \frac{1}{3} \cdot \frac{1}{2} \left| \vec{b} \times \vec{c} \right| = \frac{1}{3} \Delta_{ABC}$ $\Rightarrow \frac{\Delta}{\Delta_1} = 3$ 109 (c) Volume of parallelopiped, $f(a) = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 + a^3 - a$ Now, $f'(a) = 3a^2 - 1$ $\Rightarrow f''(a) = 6a$ $\operatorname{Put} f'(a) = 0$ $\Rightarrow a \neq \pm \frac{1}{\sqrt{3}}$ Which shows f(a) is maximum at $a = \frac{1}{\sqrt{3}}$ and maximum at $a = -\frac{1}{\sqrt{3}}$ 110 (c) $\left(\hat{a} + \hat{b} + \hat{c}\right)^2 \ge 0$ $3 + 2(\hat{a} \cdot \hat{b} + \vec{b} \cdot \hat{c} + \vec{c} \cdot \vec{a}) > 0$ $3 + 6\cos\theta \ge 0$ $\cos\theta \ge -\frac{1}{2}$ $\Rightarrow \theta = \frac{2\pi}{2}$ 111 (a) Four or more than four non-zero vectors are always linearly dependent 112 (a) $\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\} \cdot \vec{b}$ $= \{\vec{a} \times \vec{b} + \vec{a} \times (\vec{a} \times \vec{b})\} \cdot \vec{b}$ $= \left[\vec{a}\vec{b}\vec{b}\right] + \left\{ \left(\vec{a}\cdot\vec{b}\right)\vec{a} - \left(\vec{a}\cdot\vec{a}\right)\vec{b}\right\}\cdot\vec{b}$ $= 0 + \left(\vec{a} \cdot \vec{b}\right)^2 - (\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})$ $=\cos^2\frac{\pi}{3}-1=-\frac{3}{4}$ 113 (a) $\vec{a} - \vec{p} + \vec{b} - \vec{p} + \vec{c} - \vec{p} = 0$ $\Rightarrow \vec{p} = \frac{\vec{a} + \vec{b} + \vec{c}}{2}$ \Rightarrow *P* is centroid 114 (c) $\vec{d} \cdot \vec{c} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = [\vec{a}\vec{b}\vec{c}]$ Then $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c}) +$ d·bc×a=0

$$\Rightarrow \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} | \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} | = 0$$

$$\Rightarrow \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0 (\because \vec{d} \text{ is non-zero})$$

$$\Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$$

115 (a)

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

$$= 5(\hat{i} + 2\hat{j} + 2\hat{k}) - 6(\hat{i} + \hat{j} + 2\hat{k})$$

$$\Rightarrow (1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{j} + \gamma(1 + \alpha)(1 + \beta)\hat{k}$$

$$= -\hat{i} + 4\hat{j} - 2\hat{k}$$

$$\Rightarrow 1 + \alpha = -1, \beta = -4 \text{ and } \gamma(-1)(-3) = -2$$

$$\Rightarrow \gamma = -\frac{2}{3}$$

116 (a)

 $\vec{\alpha} \mid \mid (\vec{\beta} \times \vec{\gamma}) \Rightarrow \vec{\alpha} \perp \vec{\beta} \text{ and } \vec{\alpha} \perp \vec{\gamma}$ Now, $(\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{y}) = |\vec{\alpha}|^2 (\vec{\beta} \cdot \vec{\gamma}) \left(\vec{\alpha}\cdot\vec{\beta}\right)\left(\vec{\alpha}\cdot\vec{\gamma}\right) = |\vec{\alpha}|^2\cdot\left(\vec{\beta}\cdot\vec{\gamma}\right)$

117 (c)

If $\vec{x} = \vec{y} \Rightarrow \hat{a} \cdot \vec{x} = \hat{a} \cdot \vec{y}$. This equality must hold for any arbitrary \hat{a}

118 (a)

A vector coplanar with \vec{a} and \vec{b} and perpendicular to \vec{c} is $\lambda \left(\left(\vec{\alpha} \times \vec{b} \right) \times \vec{c} \right)$ But $\lambda \left(\left(\vec{a} \times \vec{b} \right) \times \vec{c} \right) = \lambda \left[\left(\vec{a} \cdot \vec{c} \right) \vec{b} - \left(\vec{b} \cdot \vec{c} \right) \vec{a} \right]$ $=\lambda[4\vec{b}-4\vec{a}]$ $= 4\lambda[\hat{j} - \hat{k}]$ Now $4|\lambda|\sqrt{2} = \sqrt{2}$ (Given) $\Rightarrow \lambda = \pm \frac{1}{4}$ Hence the required vector is $\hat{j} - \hat{k}$ or $-\hat{j} + \hat{k}$ 119 (d) Given that $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{\jmath} + \hat{k}$, $\vec{b} = 4\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ and

 $\vec{c} = \hat{\iota} + \alpha \hat{\iota} + \beta \hat{k}$ are linearly dependent $\begin{vmatrix} 1 \\ 4 \end{vmatrix}$ 1 1 $3 \ 4 = 0$ 1 α β $\Rightarrow 1 - \beta = 0$ $\Rightarrow \beta = 1$ Also given that $|\vec{c}| = \sqrt{3} \Rightarrow 1 + \alpha^2 + \beta^2 = 3$ Substituting the value of β , we get $\alpha^2 = 1$ $\Rightarrow \alpha = \pm 1$

121 (a)

Let
$$\vec{v} = x\vec{a} + y\vec{b} + z\vec{a} \times \vec{b}$$

Given $:\vec{a} \cdot \vec{b} = 0, \vec{v} \cdot \vec{a} = 0, \vec{v} \cdot \vec{b} = 1, [\vec{v}\vec{a}\vec{b}] = 1$
 $\Rightarrow \vec{v} \cdot \vec{a} = x\vec{a} \cdot \vec{a} = x|\vec{a}|^2 (\because \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{a} \times \vec{b})$
 $= 0)$
 $\Rightarrow x = 0$
Again, $\vec{v} \cdot \vec{b} = y|\vec{b}|^2 \Rightarrow 1 = yb^2$
 $\therefore y = \frac{1}{b^2}$
Again $\vec{v} \cdot (\vec{a} \times \vec{b}) = z(\vec{a} \times \vec{b})^2$
 $\Rightarrow 1 = z(\vec{a} \times \vec{b})^2 \Rightarrow z = \frac{1}{|\vec{a} \times \vec{b}|^2}$
Hence, $\vec{v} = \frac{1}{|\vec{b}|^2}\vec{b} + \frac{1}{|\vec{a} \times \vec{b}|^2}\vec{a} \times \vec{b}$
122 (b)

from the diagram, it is obvious that locus is a cone concentric with the positive *x*-axis having vertex at the origin and the slant height equal to the magnitude of the vector

123 (a) $\overrightarrow{PQ} = 6\hat{i} + \hat{j}l$ $\overrightarrow{\mathbf{QR}} = -\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ $\overrightarrow{\mathbf{RS}} = -6\hat{\mathbf{i}} - \hat{\mathbf{j}}$ $\overrightarrow{SP} = \hat{i} - 3\hat{j}$ $|\overrightarrow{\mathbf{PQ}}| = \sqrt{37} = |\overrightarrow{\mathbf{RS}}|$

 $|\overrightarrow{\mathbf{QR}}| = \sqrt{10} = |\overrightarrow{\mathbf{SP}}|$ $\overrightarrow{\mathbf{PO}} \cdot \overrightarrow{\mathbf{OR}} = -6 + 3 = -3 \neq 0$ \overrightarrow{PQ} = is not parallel to \overrightarrow{RS} and their magnitude are equal. \Rightarrow Quadrilateral *PQRS* must be a parallelogram, which is neither a rhombus nor a rectangle. 124 (b) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}_1 + \vec{\mathbf{a}} \cdot \left(\vec{\mathbf{b}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}}\right)$ $= \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} - \frac{|\vec{\mathbf{a}}|^2 (\vec{\mathbf{b}} \cdot \vec{\mathbf{a}})}{|\vec{\mathbf{a}}|^2}$ $=\vec{a}\cdot\vec{b}-\vec{b}\cdot\vec{a}=0$ Similarly, $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}_2 = \vec{\mathbf{b}}_1 \cdot \vec{\mathbf{c}}_2 = 0$ Hence, $\{\vec{a}, \vec{b}_1, \vec{c}_2\}$ are mutually orthogonal vectors. 125 (c) Since \vec{x} , \vec{y} and $\vec{x} \times \vec{y}$ are linearly independent, 20a - 15b = 15b - 12c = 12c - 20a = 0 $\Rightarrow \frac{a}{3} = \frac{b}{4} = \frac{c}{5}$ $\Rightarrow c^2 = a^2 + b^2$ Hence, $\triangle ABC$ is right angled 126 **(b)** Taking dot product of $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + b(\vec{\beta} \vec{\gamma}) + b(\vec{\beta} \vec{\gamma}) + b(\vec{\beta} \vec{\gamma}) + b(\vec{\beta} \vec{\gamma}) + b(\vec{\beta}$ $c(\vec{\gamma} \times \vec{\alpha}) = 0$ with $\vec{\gamma}, \vec{\alpha}$ and $\vec{\beta}$, respectively, we have $a\left[\vec{\alpha}\vec{\beta}\vec{\gamma}\right] = 0$ $b\left[\vec{\alpha}\vec{\beta}\vec{\gamma}\right] = 0$ $c\left[\vec{\alpha}\vec{\beta}\vec{\gamma}\right] = 0$ \therefore At least one of *a*, *b* and $c \neq 0$ $\therefore [\vec{\alpha}\vec{\beta}\vec{\gamma}=0]$ Hence $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are coplanar 127 (d) For minimum value $|\vec{r} + b\vec{s}| = 0$ Let \vec{r} and \vec{s} are anti parallel so $b\vec{s} = -\vec{r}$ So $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2 = |-\vec{r}|^2 + |\vec{r} - \vec{r}|^2 = |\vec{r}|^2$ 128 (c) $\left|\vec{a} + \vec{b} + \vec{c}\right|^2 = 1$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$ $+2|\vec{a}||\vec{b}|\cos\theta_1+2|\vec{b}||\vec{c}|\cos\theta_2$ $+ 2|\vec{c}||\vec{a}|\cos\theta_3 = 1$ $\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = -1$ \Rightarrow One of θ_1 , θ_2 and θ_3 should be an obtuse angle

129 (b) $\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b})$ Taking dot product with \vec{a} and \vec{b} , we have $m = n = \cos \theta$ $\Rightarrow |\vec{c}| = |\cos\theta \,\vec{a} + \cos\theta \,\vec{b} + p(\vec{a} \times \vec{b})| = 1$ Squaring both sides, we get $\cos^2\theta + \cos^2\theta + p^2 = 1$ $\Rightarrow \cos \theta = \pm \frac{\sqrt{1-p^2}}{\sqrt{2}}$ Now $-\frac{1}{\sqrt{2}} \le \cos \theta \le \frac{1}{\sqrt{2}}$ (for real value of θ) $\therefore \frac{\pi}{4} \le \cos \theta \le \frac{3\pi}{4}$ 130 (a) $\vec{b} - 2\vec{c} = \lambda \vec{a}$ $\Rightarrow \vec{b} = 2\vec{c} + \lambda\vec{a}$ $\Rightarrow \left| \vec{b} \right|^2 = |2\vec{c} + \lambda \vec{a}|^2$ $\Rightarrow 16 = 4|\vec{c}|^2 + \lambda^2|\vec{a}|^2 + 4\lambda\vec{a}\cdot\vec{c}$ $\Rightarrow 16 = 4 + \lambda^2 + 4\lambda \frac{1}{4}$ $\Rightarrow \lambda^2 + \lambda - 12 = 0$ $\Rightarrow \lambda = 3, -4$ 131 (c) $\vec{a} \cdot \vec{a} = 1 + 1 + 1 = 3$ Using. $\vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}$ $\therefore (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (\hat{\mathbf{j}} - \hat{\mathbf{k}}) = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) - 3\vec{\mathbf{b}}$ $\Rightarrow -2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} - 3\vec{\mathbf{b}}$ $\Rightarrow \vec{\mathbf{b}} = \hat{\mathbf{i}}$ 132 (c) $3 = \frac{1}{6} [\vec{a} \vec{b} \vec{c}]$ $\Rightarrow \left[\vec{a} \vec{b} \vec{c} \right] = 18$ Volume of the required parallelepiped $= [\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}]$ $= 2[\vec{a}\vec{b}\vec{c}] = 36$ 133 (b) Let $\vec{a} \times \vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$. Therefore $\left[\vec{a}\vec{b}\hat{\imath}\right] = \left(\vec{a}\times\vec{b}\right)\cdot\hat{\imath} = x$ $[\vec{a}\vec{b}\hat{j}] = (\vec{a} \times \vec{b}) \cdot \hat{j} = y$ $[\vec{a}\vec{b}\vec{k}] = (\vec{a}\times\vec{b})\cdot\hat{k} = z$ Hence, $[\vec{a}\vec{b}\hat{\imath}]\hat{\imath} + [\vec{a}\vec{b}\hat{\jmath}]\hat{\jmath} = [\vec{a}\vec{b}\hat{k}]\hat{k} = x\hat{\imath} + y\hat{\jmath} + z\hat{k} =$

 $\vec{a} \times \vec{b}$ 134 (a) As \vec{x} , \vec{y} and $\vec{x} \times \vec{y}$ are non-collinear vectors, vectors are linearly independent $\Rightarrow a - b = 0 = b - c = c - a$ $\Rightarrow a = b = c$ Therefore, the triangle is equilateral 135 (c) $[(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) (\vec{c} \times \vec{a}) \times (\vec{a}$ $\times \vec{b}$)] $= \left[\left[\vec{a} \vec{b} \vec{c} \right] \vec{b} \left[\vec{a} \vec{b} \vec{c} \right] \vec{c} \left[\vec{a} \vec{b} \vec{c} \right] \cdot \vec{a} \right] = \left[\vec{a} \vec{b} \vec{c} \right]^{3} \left[\vec{b} \vec{c} \vec{a} \right]$ $= \left[\vec{a} \vec{b} \vec{c} \right]^4$ 136 (c) $D^{(d)}$ $_{7}C(\vec{b}+\vec{d})$ ക് Let P. V. of A, B and D be \vec{o}, \vec{b} and \vec{d} , respectively Then P.V. of $C, \vec{c} = \vec{b} + \vec{d}$ Also P.V. of $A_1 = \vec{b} + \frac{d}{2}$ And P.V. of $B_1 = \vec{d} + \frac{b}{2}$ $\Rightarrow \overrightarrow{AA_1} + \overrightarrow{AB_1} = \frac{3}{2} (\overrightarrow{b} + \overrightarrow{d}) = \frac{3}{2} \overrightarrow{AC}$ 137 (c) We have $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ $= (AB)(AC)\cos\theta$ $+ (BC)(BA)\sin\theta + 0$ $= AB(AC\cos\theta + BC\sin\theta)$ $= AB\left(\frac{(AC)^2}{AB} + \frac{(BC)^2}{AB}\right)$ $= AC^2 + BC^2 = AB^2 = p^2$ 138 (a) $\vec{r} \times \vec{a} = \lambda \vec{a} + \mu \vec{b} + \gamma \vec{a} \times \vec{b}$ $\therefore [\vec{r}\vec{a}\vec{a}] = \lambda \vec{a} \cdot \vec{a} + \mu \vec{b} \cdot \vec{a} + \gamma [\vec{a}\vec{b}\vec{a}]$ $0 = \lambda |\vec{a}|^2 + 0 + 0$ $\lambda = 0$ Also $[\vec{r}\vec{a}\vec{b}] = \lambda \vec{a} \cdot \vec{b} + \mu \vec{b} \cdot \vec{b} + \gamma [\vec{a}\vec{b}\vec{b}] = \mu$ Also $(\vec{r} \times \vec{a}) \times \vec{b} = \gamma(\vec{a} \times \vec{b}) \times \vec{b}$ $\Rightarrow (\vec{r} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{r} = \gamma\{(\vec{a} \cdot \vec{b})\vec{b} - (\vec{b} \cdot \vec{b})\vec{a}\}$ $\Rightarrow (\vec{r} \cdot \vec{b})\vec{a} = -\gamma \vec{a}, \gamma = -(\vec{r} \cdot \vec{b})$ 139 (a) Since $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$

 $\therefore (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{1}{\sqrt{2}}\vec{b} + \frac{1}{\sqrt{2}}\vec{c}$ Since *b* and *c* are non-coplanar $\Rightarrow \vec{a} \cdot \vec{c} = \frac{1}{\sqrt{2}} \text{ and } \vec{a} \cdot \vec{b} = -\frac{1}{\sqrt{2}}$ $\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$ (because \vec{a} and \vec{b} are unit vectors) Or $\theta = \frac{3\pi}{4}$ 140 (a) The volume of the parallelepiped with coterminous edges as \hat{a} , \hat{b} , \hat{c} is given by $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}] = \hat{\mathbf{a}} \cdot (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$ ĉ Now, $\begin{bmatrix} \hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}} \end{bmatrix}^2 = \begin{vmatrix} \hat{\mathbf{a}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{b}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{c}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{c}} \end{vmatrix}$ $= \begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{vmatrix} = \frac{1}{2}$ $\left[\because |\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = |\vec{\mathbf{c}}| = 1\right]$ $\Rightarrow \left[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}\right]^2 = \frac{1}{2}$ Thus, the required volume of the parallelopiped $=\frac{1}{\sqrt{2}}$ cu unit 141 (c) $\vec{r} \times \vec{a} = \vec{b} \times \vec{a} \Rightarrow (\vec{r} - \vec{b}) \times \vec{a} = 0$ $\vec{r} \times \vec{b} = \vec{a} \times \vec{b} \Rightarrow (\vec{r} - \vec{a}) \times \vec{b} = 0$ If $\vec{r} = x\hat{\imath} + y\hat{\imath} + z\hat{k}$, then $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 2 & y & z + 1 \\ 1 & 1 & 0 \end{vmatrix} = 0 \text{ and } \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 1 & y - 1 & z \\ 2 & 0 & -1 \end{vmatrix} =$ $\Rightarrow z + 1 = 0, x - y = 2 \text{ and } y - 1 = 0, x - 1 + 1 = 0$ 2z = 0 $\Rightarrow x = 3, y = 1, z = -1$ 142 (c) Suppose the bisector of angle *A* meets *BC* at *D*. Then AD divides BC in the ratio AB: AC

So, P.V. of $D = \frac{|\overrightarrow{AB}|(2\hat{\imath}+5\hat{\jmath}+7\hat{k})+|\overrightarrow{AC}|(2\hat{\imath}+3\hat{\jmath}+4\hat{k})}{|\overrightarrow{AB}|+|\overrightarrow{AC}|}$ But $\overrightarrow{AB} = -2\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$ and $\overrightarrow{AC} = -2\hat{\imath} - 2\hat{\jmath} - \hat{k}$ $\Rightarrow |\overrightarrow{AB}| = 6 \text{ and } |\overrightarrow{AC}| = 3$ $\therefore \text{ P.V. of } D = \frac{6(2\hat{\imath} + 5\hat{j} + 7\hat{k}) + 3(2\hat{\imath} + 3\hat{j} + 4\hat{k})}{6 + 3\hat{j} + 4\hat{k}\hat{j}}$ $=\frac{1}{3}(6\hat{\imath}+13\hat{\jmath}+18\hat{k})$ 143 **(b)** $|\overrightarrow{AC} \times \overrightarrow{BD}| = 2|\overrightarrow{AB} \times \overrightarrow{AD}|$ $= 2 \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -5 \\ 1 & 2 & 2 \end{bmatrix}$ $= |2[\hat{\imath}(12+10) - \hat{\jmath}(6+5) + \hat{k}(4-4)]|$ $= |2[22\hat{i} - 11\hat{j}]|$ $= 22|[2\hat{i} - \hat{j}[]]$ $= 22 \times \sqrt{5}$ 144 (c) Given $\vec{v} \cdot \vec{u} = \vec{w} \cdot \vec{u}$ and $\vec{v} \perp \vec{w} \Rightarrow \vec{v} \cdot \vec{w} = 0$ Now, $|\vec{u} - \vec{v} + \vec{w}|^2$ $= |\vec{u}|^{2} + |\vec{v}|^{2} + |\vec{w}|^{2} - 2\vec{u} \cdot \vec{v} - 2\vec{w} \cdot \vec{v} + 2\vec{u} \cdot \vec{w}$ = 1 + 4 + 9So $|\vec{u} - \vec{v} + \vec{w}| = \sqrt{14}$ 145 (b) $\left|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}\right|^2 = \left|\vec{a} \times (\vec{b} - \vec{c})\right|^2$ $= |\vec{a}|^2 \left| \vec{b} - \vec{c} \right|^2 - \left(\vec{a} \cdot \left(\vec{b} - \vec{c} \right) \right)^2$ $=\left|\vec{b}-\vec{c}\right|^2$ $= |b|^{2} + |\vec{c}|^{2} - 2|\vec{b}||\vec{c}|\cos\frac{\pi}{2} = 1$ 146 (d) $((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c})$ $= (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) + (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{c})$ $= \left(\left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right) \vec{b} - \left(\left(\vec{a} \times \vec{b} \right) \cdot \vec{b} \right) \vec{c} + \left(\left(\vec{a} \times \vec{c} \right) \cdot \vec{c} \right) \vec{b}$ $-((\vec{a}\times\vec{c})\cdot\vec{b})\vec{c}$ $= \left[\vec{a}\vec{b}\vec{c}\right](\vec{b}+\vec{c})$ $\Rightarrow ((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c})) \cdot (\vec{b} - \vec{c})$ $= \left[\vec{a}\vec{b}\vec{c}\right]\left(\vec{b}+\vec{c}\right)\cdot\left(\vec{b}-\vec{c}\right)$ $= \left(\vec{a}\vec{b}\vec{c}\right)\left(\left|\vec{b}\right|^2 - \left|\vec{c}\right|^2\right) = 0$ 147 (a)

▲X \mathbf{V} Z'Point *P* lies on $x^2 + 3y^2 = 3$ (i) Now from the diagram, according to the given conditions, AP = ABor $(x + \sqrt{3})^2 + (y - 0)^2 = 4$ or $(x + \sqrt{3})^2 + y^2 = 1$ 4 (ii) Solving (i) and (ii), we get x = 0 and $y = \pm 1$ Hence point *P* has position vector $\pm \hat{i}$ 148 (b) Let \vec{r} be the new position. Then $\vec{r} = \lambda \hat{k} + \mu(\hat{\iota} + \hat{j})$ Also $\vec{r} \cdot \hat{k} = -\frac{1}{\sqrt{2}} \Rightarrow \lambda = -\frac{1}{\sqrt{2}}$ Also, $\lambda^2 + 2\mu^2 = 1 \Rightarrow 2\mu^2 = \frac{1}{2} \Rightarrow \mu = \pm \frac{1}{2}$ $\therefore \vec{r} = \pm \frac{1}{2}(\hat{\imath} + \hat{\jmath}) - \frac{k}{\sqrt{2}}$ 149 (b) Note that $\vec{a} + \vec{b} = \vec{c}$ 150 (d) $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c} \Rightarrow |\vec{a}| |\vec{a} \times \vec{b}|$ $= |\vec{c}| \left(\therefore \vec{a} \perp \left(\vec{a} \times \vec{b} \right) \right)$ $1(1 \times 5) \sin \theta = 3 \Rightarrow \sin \theta = \frac{3}{5} \Rightarrow \tan \theta = \frac{3}{4}$ 151 (d) $\vec{r} = x_1(\vec{a} \times \vec{b}) + x_2(\vec{b} \times \vec{c}) + x_3(\vec{c} \times \vec{a})$ $\Rightarrow \vec{r} \cdot \vec{a} = x_2 [\vec{a}\vec{b}\vec{c}], \vec{r} \cdot \vec{b} = x_3 [\vec{b}\vec{c}\vec{a}]$ and $\vec{r} \cdot \vec{c} = x_1 [\vec{c}\vec{a}\vec{b}] = x_1 [\vec{a}\vec{b}\vec{c}]$ $\Rightarrow x_1 + x_2 + x_3 = 4\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$ 152 **(b)** Since $\vec{u} + \vec{v} + \vec{w} = 0$, we have $|\vec{u} + \vec{v} + \vec{w}|^2 = 0$ Or $|\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) =$ 0 $0r 9 + 16 + 25 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = 0$ $\text{Or } \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} = -25$ 153 (d) $\vec{f}\left(\frac{5}{4}\right) = \left[\frac{5}{4}\right]\hat{\imath} + \left(\frac{5}{4} - \left[\frac{5}{4}\right]\right)\hat{\jmath} + \left[\frac{5}{4} + 1\right]\hat{k}$ $=\hat{i}+(\frac{5}{4}-1)\hat{j}+2\hat{k}$

$$= \hat{\imath} + \frac{1}{4}\hat{\jmath} + 2\hat{k}$$
When $0 < t < 1$, $\vec{f}(t) = 0$ $\vec{\imath} + \{t - 0\}\vec{\jmath} + \vec{k} = t\vec{\jmath} + \vec{k}$
 $\vec{f}\left(\frac{5}{4}\right) \cdot \vec{f}(t) = 2 + \frac{t}{4}$
So $\cos \theta = \frac{2 + \frac{t}{4}}{\left|\vec{\imath} + \frac{1}{4}\vec{\jmath} + 2\vec{k}\right| |t\vec{\jmath} + \vec{k}|}$
 $= \frac{2 + \frac{t}{4}}{\sqrt{1 + \frac{1}{16} + 4\sqrt{1 + t^2}}}$
 $= \frac{8 + t}{9\sqrt{1 + t^2}}$

154 **(b)**

Vector in the direction of angular bisector of \vec{a} and \vec{b} is $\frac{\vec{a}+\vec{b}}{2}$

From the figure, position vector of *E* is $\frac{\vec{a} + \vec{b}}{2}$ Now in triangle *AEB*, *AE* = *AB* cos $\frac{\theta}{2}$

$$\Rightarrow \left| \frac{\vec{a} + \vec{b}}{2} \right| = \cos \frac{\theta}{2}$$

Hence unit vector along the bisector is $\frac{\vec{a} + \vec{b}}{2\cos\frac{\theta}{a}}$

155 (a)

Let the origin of reference be the circumcentre of the triangle

Let $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$ and $\overrightarrow{OT} = \vec{t}$ Then $|\vec{a}| = |\vec{b}| = |\vec{c}| = R$ (circumeadius) Again $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA} + 2\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AH} = \overrightarrow{OH}$

Therefore, the P.V. of *H* is $\vec{a}, \vec{b}, \vec{c}$. Since *D* is the

midpoint of *HT*, we have $\frac{\vec{a}+\vec{b}+\vec{c}+\vec{t}}{2} = \frac{\vec{b}+\vec{c}}{2} \Rightarrow \vec{t} = -\vec{a}$ $\therefore \overrightarrow{AT} = -2\vec{a} \Rightarrow \overrightarrow{AT} = |-2\vec{a}| = 2|\vec{a}| = 2R.$ But $BC = 2R \sin A = R$, therefore AT = 2BC156 **(b)** $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$ $\therefore \overrightarrow{AD} = \frac{1}{2} \{ \left(-3\hat{\imath} + 4\hat{k} \right) + \left(5\hat{\imath} - 2\hat{\jmath} + 4\hat{k} \right) \}$ $=\hat{\iota}-\hat{\jmath}+4\hat{k}$ Length of $AD = \sqrt{1 + 1 + 16} = \sqrt{18}$ 157 (c) $\left|\vec{a} + \vec{b}\right| < \left|\vec{a} - \vec{b}\right|$ $\Rightarrow \frac{\pi}{2} < \theta < \frac{3\pi}{2}$ 158 (a) Differentiate the curve $6x + 8(xy_1 + y) + 4yy_1 = 0$ m_T at (1,0) is $6 + 8(y_1(0)) = 0$ $y_1(0) = -\frac{3}{4}$ $m_N = \frac{4}{3}$ Unit vector = $\pm \frac{(3\hat{\iota}+4\hat{\jmath})}{5}$ Again normal vector of magnitude $10 = \pm (6\hat{\iota} + 1)$ 8ĵ) 159 (a) Let *l*, *m* and *n*be the direction cosines of the required vector Then, l = m(given). Therefore Required vector $\vec{r} = l\hat{\imath} + m\hat{\jmath} + n\hat{k} = l\hat{\imath} + l\hat{\jmath} + n\hat{k}$ (i) Now, $l^2 + m^2 + n^2 = 1 \Rightarrow 2l^2 + n^2 = 1$ Since, \hat{r} is perpendicular to $-\hat{\iota} + 2\hat{j} + 2\hat{k}$ $\vec{r}(-\hat{\iota}+2\hat{j}+2\hat{k}) = 0 \Rightarrow -l+2l+2n = 0 \Rightarrow l+$ 2n = 0 (ii) From (i)and (ii), we get: $n = \pm \frac{1}{3}$, $l = \pm \frac{2}{3}$ Hence, required vector $\vec{r} = \frac{1}{3} (\pm 2\hat{\imath} \pm 2\hat{\jmath} \mp \hat{k}) =$ $\pm \frac{1}{3}(2\hat{\imath}+2\hat{\jmath}-\hat{k})$ 160 **(b)**

 $|a| + |b| + |c| = \sqrt{a^2 + b^2 + c^2}$ $\Leftrightarrow 2 |ab| + 2|bc| + 2|ca| = 0$ $\Leftrightarrow ab = bc = ca = 0 \Leftrightarrow$ any two of *a*, *b* and *c* are zero 161 (a) *a*, *b* and *c* are distinct negative number and vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar $\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$ $\Rightarrow ac + c^2 - ab - ac = 0$ $\Rightarrow c^2 = ab$ \Rightarrow a, c, b are in G.P So *c* is the G.M. of *a* and *b* 162 (b,d) Since $\vec{a} = (1, 3 \sin 2\alpha)$ makes on obtuse angle with the *z*-axis, its *z*-component is negative $\Rightarrow -1 \leq \sin 2\alpha < 0$ But $\vec{b} \cdot \vec{c} = 0$ (:: orthogonal) $\tan^2\alpha - \tan\alpha - 6 = 0$ $\therefore (\tan \alpha - 3)(\tan \alpha + 2) = 0$ $\Rightarrow \tan \alpha = 3, -2$ Now, $\tan \alpha = 3$. Therefore, $\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} = \frac{6}{1+9} = \frac{3}{5}$ (not possible as $\sin 2\alpha < 0$ Now, if $\tan \alpha = -2$, $\Rightarrow \sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} = \frac{-4}{1 + 4} = \frac{-4}{5}$ $\Rightarrow \tan 2\alpha > 0$ $\Rightarrow 2\alpha$ is the third quadrant. Also, $\sqrt{\sin \alpha/2}$ is meaningful. If $0 < \sin \alpha/2 < 1$, then $\alpha =$ $(4n + 1)\pi - \tan^{-1} 2$ and $\alpha = (4n + 2)\pi - \tan^{-1} 2$ 163 (b,c,d) Obviously, $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is a vector in the plane of \vec{a} and \vec{b} and hence perpendicular to $\vec{a} \times \vec{b}$. It is also equally inclined to \vec{a} and \vec{b} as it is along angle bisector 164 (a,b,c) Consider $\vec{V}_1 \cdot \vec{V}_2 = 0 \Rightarrow A = 90^\circ$ $\vec{V}_1 = \sqrt{3}(\hat{a} \times \vec{b})$ $\vec{V}_2 = \vec{b} \cdot (\vec{a} \cdot \vec{b})\hat{a}$ $(\pi/2)$ -6 Using the sine law, $\left|\frac{\vec{b} - (\hat{a} \cdot \vec{b})\hat{a}}{\sin \theta}\right| = \frac{\sqrt{3}|\hat{a} \times \vec{b}|}{\cos \theta}$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \frac{|\vec{b} - (\vec{a} \cdot \vec{b})\vec{a}|}{|\vec{a} \times \vec{b}|}$$

$$= \frac{1}{\sqrt{3}} \frac{|(\vec{a} \times \vec{b}) \times \hat{a}|}{|\vec{a} \times \vec{b}|}$$

$$= \frac{1}{\sqrt{3}} \frac{|\vec{a} \times \vec{b}||\vec{a}| \sin 90^{\circ}}{|\vec{a} \times \vec{b}|} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$
165 (a,b)
 $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$

$$= \vec{a}(\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})\vec{b}$$

$$= \vec{b} \times (\vec{a} \times \vec{b})$$

$$\Rightarrow |\vec{a}| = |\vec{b} \times (\vec{a} \times \vec{b})|$$

$$= |\vec{b}||\vec{a} \times \vec{b}| \sin 90^{\circ}$$

$$= |\vec{b}||\vec{a} \times \vec{b}| \sin 90^{\circ}$$

$$= |\vec{b}||\vec{a} \times \vec{b}|$$

$$= 0$$

$$\Rightarrow |\vec{v}| = |\vec{u}| + |\vec{u} \cdot \vec{b}|$$
166 (a,b)
Let $\vec{EB} = p, \vec{AB}$ and $\vec{CE} = q\vec{CD}$

$$\int_{A}^{B} \vec{c} \cdot \vec{c} + \vec{CE} = \vec{0}$$

$$pm(2\hat{i} - 6\hat{j} + 2\hat{k}) + (\hat{i} - 2\hat{j})$$

$$+ qn(-6\hat{i} + 15\hat{j} - 3\hat{k}) = \vec{0}$$

$$\Rightarrow (2pm + 1 - 6qn)\hat{i} + (-6pm - 2 + 15qn)\hat{j}$$

$$+ (2pm - 6qn)\hat{k} = 0$$

$$\Rightarrow 2pm - 6qn + 1 = \vec{0}, -6pm - 2 + 15qn$$

$$= \vec{0}, 2pm - 6qn = \vec{0}$$
Solving these, we get

$$p = 1/(2m) \text{ and } q = 1/(3n)$$

$$\cdot 0 < 1/(2m) \le 1 \text{ and } 0 < 1/(3n) \le 1$$

$$\Rightarrow m \ge 1/2 \text{ and } n \ge 1/3$$
167 (a,c)
We have $\vec{v} = \vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \sin \theta \hat{n} = \sin \theta$
Now, $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$

$$= \vec{a} - \vec{b} \cos \theta \text{ (where } \vec{a} \cdot \vec{b} = \cos \theta)$$

$$\therefore |\vec{u}|^2 = |\vec{a} - \vec{b} \cos \theta|^2$$

 $= 1 - \cos^2 \theta = \sin^2 \theta = |v|^2$ $\Rightarrow |\vec{u}| = |\vec{v}|$ Also, $\vec{u} \cdot \vec{b} = \vec{a} \cdot \vec{b} - (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{b})$ $= \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b}$ = 0 $\therefore |\vec{u} \cdot \vec{b} = 0|$ $|\vec{v}| = |\vec{u}| + |\vec{u} \cdot \vec{b}|$ is also correct 168 (a,c) We have, $\overrightarrow{AB} = -\hat{\imath} - \hat{\jmath} - 4\hat{k}$, $\overrightarrow{BC} = -3\hat{\imath} + 3\hat{\jmath}$ and $\overrightarrow{CA} = 4\hat{\imath} - 2\hat{\imath} + 4\hat{k}$. Therefore $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 3\sqrt{2}$ and $|\overrightarrow{CA}| = 6$ Clearly, $|\overrightarrow{AB}|^2 + |\overrightarrow{BC}|^2 = |\overrightarrow{AC}|^2$ Hence, the triangle is right-angled isosceles triangle 169 (a,c) $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b}$ $= (\vec{4} - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$ $\Rightarrow (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} + (\vec{a} \cdot \vec{b})\vec{b}$ $= (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$ Now, $(\vec{c} \cdot \vec{c})a = \vec{c}$. Therefore, $(\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{c}) = (\vec{c} \cdot \vec{c}) \Rightarrow \vec{a} \cdot \vec{c} = 1$ $\Rightarrow 1 + \vec{a} \cdot \vec{b} = 4 - 2x - \sin y, x^2 - 1 = -(\vec{a} \cdot \vec{b})$ $\Rightarrow 1 = 4 - 2x - \sin y + x^2 - 1$ $\Rightarrow \sin y = x^2 - 2x + 2 = (x - 1)^2 + 1$ But $\sin y \le 1 \Rightarrow x = 1$, $\sin y = 1$ $\Rightarrow y = (4n+1)\frac{\pi}{2}, n \in I$ 170 (b,d)

Since \vec{a} and \vec{b} are equally inclined to \vec{c}, \vec{c} must be of the from $t\left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\right)$ Now $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|}\vec{a} + \frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}\vec{b} = \frac{|\vec{a}||\vec{b}|}{|\vec{a}|+|\vec{b}|}\left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\right)$ Also, $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|}\vec{a} + \frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|}\vec{b} = \frac{|\vec{a}||\vec{b}|}{2|\vec{a}|+|\vec{b}|}\left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\right)$ Other two vectors cannot be written in the form $t\left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\right)$

171 **(b)**

We know that if \hat{n} is perpendicular to \vec{a} as well as \vec{b} , then

 $\hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \operatorname{or} \frac{\vec{b} \times \vec{a}}{|\vec{b} \times \vec{a}|}$

As $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ represent two vectors in opposite directions, we have two possible values of \hat{n}

172 **(b,c)**

We have, $\vec{a} = 2p\hat{i} + \hat{j}$

On rotation, let \vec{b} be the vector with components (p+1) and 1 so that $\vec{b} = (p+1)\hat{\imath} + \hat{\imath}$ Now $|\vec{a}| = |\vec{b}| \Rightarrow a^2 = b^2$ $\Rightarrow 4p^2 + 1 = (p+1)^2 + 1$ $\Rightarrow 4p^2 = (p+1)^2$ $\Rightarrow 2p = \pm (p+1)$ $\Rightarrow 3p = -1 \text{ or } p = 1$ $\therefore p = -1/3 \text{ or } p = 1$ 173 (b,d) $\vec{a} \times (\vec{r} \times \vec{a}) = \vec{a} \times \vec{b}$ $3\vec{r} - (\vec{a}\cdot\vec{r})\vec{a} = \vec{a}\times\vec{b}$ Also $|\vec{r} \times \vec{a}| = |\vec{b}|$ $\Rightarrow \sin^2 \theta = \frac{2}{2}$ $\Rightarrow (1 - \cos^2 \theta) = \frac{2}{3}$ $\Rightarrow \frac{1}{3} = \cos^2 \theta$ $\Rightarrow \vec{a} \cdot \vec{r} = \pm 1$ $\Rightarrow 3\vec{r} + \vec{a} = \vec{a} \times \vec{b}$ $\Rightarrow \vec{r} = \frac{1}{2} (\vec{a} \times \vec{b} \pm \vec{a})$ 174 (a,b,d) $(\lambda - 1)(\vec{a}_1 - \vec{a}_2) + \mu(\vec{a}_2 + \vec{a}_3)$ $+\gamma(\vec{a}_3 + \vec{a}_4 - 2\vec{a}_2) + \vec{a}_3 + \delta\vec{a}_4$ i.e., $(\lambda - 1)\vec{a}_1 + (1 - \lambda + \mu - 2\gamma)\vec{a}_2 +$ $(\mu + \gamma + 1)\vec{a}_3 + (\gamma + \delta)\vec{a}_4 = \vec{0}$ since $\vec{a}_1, \vec{a}_2, \vec{a}_3$ and \vec{a}_4 are linearly independent $\lambda - 1 = 0, 1 - \lambda + \mu - 2\gamma = 0, \mu + \gamma + 1$ = 0 and $\gamma + \delta = 0$ i.e., $\lambda = 1, \mu = 2\gamma, \mu + \gamma + 1 = 0, \gamma + \delta = 0$ i.e., $\lambda = 1, \mu = -\frac{2}{3}, \gamma = -\frac{1}{3}, \delta = \frac{1}{3}$ 175 (a,b) We have, $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})$ $\Rightarrow \left|\vec{a} - \vec{b}\right|^2 = \left|\vec{a}\right|^2 + \left|\vec{b}\right|^2 - 2\left|\vec{a}\right|\left|\vec{b}\right|\cos 2\theta$ $\Rightarrow \left|\vec{a} - \vec{b}\right|^2 = 2 - 2\cos 2\theta \; (\because \left|\vec{a}\right| = \left|\vec{b}\right| = 1)$ $\Rightarrow \left| \vec{a} - \vec{b} \right|^2 = 4 \sin^2 \theta$ $\Rightarrow |\vec{a} - \vec{b}| = 2|\sin\theta|$ Now, $|\vec{a} - \vec{b}| < |$ $\Rightarrow 2|\sin\theta| < 1$ $\Rightarrow |\sin \theta| < \frac{1}{2}$ $\Rightarrow \theta \in [0, \pi/6) \text{ or } \theta \in (5\pi/6, \pi]$ 176 (a,b,c,d) Since, \vec{a} and \vec{b} are collinear. $\therefore \vec{a} = \lambda \vec{b}$

 $\Rightarrow (x \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) = \lambda(\hat{\mathbf{i}} + y\hat{\mathbf{j}} - z\hat{\mathbf{k}})$ On comparing $x = \lambda, -2 = \lambda y$ and $5 = -\lambda z$ For $\lambda = 1$ x = 1, y = -2 and z = -5Option (a) is correct. For $\lambda = \frac{1}{2}$ $x = \frac{1}{2}$, y = -4 and z = -10Option (b) is correct. For $\lambda = -\frac{1}{2}$ $x = -\frac{1}{2}$, y = 4 and z = 10Option (c) is correct. and for $\lambda = -1$ x = -1, y = 2 and z = 5Option (d) is correct. 177 (a,c) $\vec{\mathbf{r}} = \lambda_1 \vec{\mathbf{r}}_1 + \lambda_2 \vec{\mathbf{r}}_2 + \lambda_3 \vec{\mathbf{r}}_3$(i) On putting the values of $\vec{\mathbf{r}}, \vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2$ and $\vec{\mathbf{r}}_3$, in Eq. (i) and then compare. Then, we get $\lambda_1, \lambda_2, \lambda_3$ 178 (a,b,c,d) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ $\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$ $\Rightarrow \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$ $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ $\Rightarrow \cos \theta = \frac{|\vec{a}.\vec{b}|}{|\vec{a}||\vec{b}|}$ From (i) and (ii), $\sin^2\theta + \cos^2\theta = 1$ $\Rightarrow \left| \vec{a} \times \vec{b} \right|^2 + \left(\vec{a} \cdot \vec{b} \right)^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2$ If $\theta = \pi/4$, then $\sin \theta = \cos \theta = 1/\sqrt{2}$. Therefore, $\left|\vec{a} \times \vec{b}\right| = \frac{\left|\vec{a}\right|\left|\vec{b}\right|}{\sqrt{2}}$ and $\vec{a} \cdot \vec{b} = \frac{\left|\vec{a}\right|\left|\vec{b}\right|}{\sqrt{2}}$ $|\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}$ $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n} = \frac{|\vec{a}||b|}{\sqrt{2}} \hat{n}$ $\vec{a} \times \vec{b} = (\vec{a} \cdot \vec{b})\hat{n}$ 179 (a,b,c) For coplanar vectors, $\begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & \mu \\ 0 & 0 & 2\lambda - 1 \end{vmatrix} = 0$ $\Rightarrow (2\lambda - 1)\lambda = 0 \Rightarrow \lambda = 0, \frac{1}{2}$ 180 **(b,c)** $\overrightarrow{AC} = \vec{a} + \vec{b}$ $\therefore |\overrightarrow{AC}| = |\overrightarrow{a} + \overrightarrow{b}|$

 $\therefore \left| \overrightarrow{AC} \right|^2 = |\vec{a}|^2 + \left| \vec{b} \right|^2 + 2\vec{a} \cdot \vec{b}$ $= \left|3\vec{\alpha} - \vec{\beta}\right|^2 + \left|\vec{\alpha} + 3\vec{\beta}\right|^2 + 2\left(3\vec{\alpha} - \vec{\beta}\right) \cdot \left(\vec{\alpha} + 3\vec{\beta}\right)$ $= 16|\vec{\alpha}|^2 + 4|\vec{\beta}|^2 + 16\vec{\alpha}\cdot\vec{\beta}$ = 80 + 16(2)(2)(1/2)= 112 $\therefore |\overrightarrow{AC}| = 4\sqrt{7}$ $|\overrightarrow{BD}| = |\overrightarrow{a} - \overrightarrow{b}|$ $\left|\overrightarrow{BD}\right|^2 = |\vec{a}|^2 + \left|\vec{b}\right|^2 - 2\vec{a}\cdot\vec{b}$ $= |3\vec{\alpha} - \vec{\beta}|^{2} + |\vec{\alpha} + 3\vec{\beta}|^{2} - 2(3\vec{\alpha} - \vec{\beta}) \cdot (\vec{\alpha} + 3\vec{\beta})$ $= 4|\vec{\alpha}|^2 + 4|\vec{\beta}|^2 = 16\vec{\alpha}\cdot\vec{\beta}$ = 80 - 16(2)(2)(1/2)= 48 $\therefore |\overrightarrow{BD}| = 4\sqrt{3}$ 181 (b,d) Let $\vec{\alpha} = \hat{\imath} - \hat{\jmath} - \hat{k}$, $\vec{\beta} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{\gamma} = -\hat{\imath} + \hat{\jmath} + \hat{k}$ Let required vector $\vec{a} = x\hat{\imath} + y\hat{\jmath} + z\hat{\jmath}$ $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar $\Rightarrow \begin{vmatrix} x & y & z \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 0 \Rightarrow y = z$ Also, \vec{a} and $\vec{\alpha}$ are perpendicular $\Rightarrow x - y - z = 0$ $\Rightarrow x = zy$ \Rightarrow Options *b* and *d* are correct 182 (a,b,c,d) $x\hat{\imath} + (x+1)\hat{\jmath} + (x+2)\hat{k}, (x+3)\hat{\imath} + (x+4)\hat{\jmath} +$ $(x + 5)\hat{k}$ and $(x + 6)\hat{i} + (x + 7)\hat{j} + (x + 8)\hat{k}$ are coplanar We have determinant of their coefficients as х $x + 1 \quad x + 2$ $x + 3 \quad x + 4 \quad x + 5$ $|x+6 \quad x+7 \quad x+8|$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have $\begin{vmatrix} x & 1 & 2 \\ x + 3 & 1 & 2 \\ x + 6 & 1 & 2 \end{vmatrix} = 0$ Hence $x \in R$ 183 (a,d) We have, $\vec{c} = \vec{a} \times \vec{b} \Rightarrow \vec{c} \perp \vec{a} \text{ and } \vec{c} \perp \vec{b} \\ \text{and } \vec{a} = \vec{b} \times \vec{c} \Rightarrow \vec{a} \perp \vec{b} \text{ and, } \vec{a} \perp \vec{c} \end{cases} \Rightarrow \vec{a} \perp \vec{b} \perp \vec{c}$ Now, $\vec{a} \times \vec{b} = \vec{c}$

 $\Rightarrow (\vec{b} \times \vec{c}) \times \vec{b} = \vec{c} \qquad [\because \vec{a} = \vec{b} \times \vec{c}]$ $\Rightarrow (\vec{b} \cdot \vec{b})\vec{c} - (\vec{b} \cdot \vec{c})\vec{b} = \vec{c}$ $\Rightarrow \left| \vec{b} \right|^2 \vec{c} = \vec{c} \qquad \left[\because \vec{b} \perp \vec{c} \ \because \vec{b} \cdot \vec{c} = 0 \right]$ $\Rightarrow |\vec{b}| = 1$ Also, $\vec{c} = \vec{a} \times \vec{b}$ $\Rightarrow |\vec{c}| = |\vec{a} \times \vec{b}|$ $\Rightarrow |\vec{c}| = |\vec{a}| |\vec{a}| \sin \pi/2$ $\left[\because \left| \vec{b} \right| = 1 \right]$ $\Rightarrow |\vec{c}| = |\vec{a}|$ 184 (b,d) $\vec{d} \cdot \vec{a} = [\vec{a}\vec{b}\vec{c}]\cos y = -\vec{d} \cdot (\vec{b} + \vec{c})$ $\Rightarrow \cos y = -\frac{\vec{d} \cdot (\vec{b} + \vec{c})}{[\vec{a} \cdot \vec{b} \cdot \vec{c}]}$ Similarly, $\sin x = -\frac{\vec{d} \cdot (\vec{a} + \vec{b})}{|\vec{a}\vec{b}\vec{c}|}$ and $\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{|\vec{a}\vec{b}\vec{c}|} = -2$ $\therefore \sin x + \cos y + 2 = 0$ $\Rightarrow \sin x + \cos y = -2$ $\Rightarrow \sin x = -1, \cos y = -1$ Since we want the minimum value of $x^{2} + y^{2}, x = -\pi/2, y = \pi$: The minimum value of $x^2 + y^2$ is $5\pi^2/4$ 185 (a,c,d) $\overrightarrow{OA} = -4\hat{\imath} + 3\hat{k}; \overrightarrow{OB} = 14\hat{\imath} + 2\hat{\jmath} - 5\hat{k}$ $\hat{a} = \frac{-4\hat{\iota} + 3\hat{k}}{5}; \hat{b} = \frac{14\hat{\iota} + 2\hat{\jmath} - 5\hat{k}}{15}$ $\vec{r} = \frac{\lambda}{15} [-12\hat{\imath} + 9\hat{\jmath} + 14\hat{\imath} + 2\hat{\jmath} - 5\hat{k}]$ $\vec{r} = \frac{\lambda}{15} [2\hat{\imath} + 2\hat{\jmath} + 4\hat{k}]$ $\vec{r} = \frac{2\lambda}{15} [\hat{\imath} + \hat{\jmath} + 2\hat{k}]$ 186 (b,d) $\vec{V}_1 = \vec{V}_2$ $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ $\Rightarrow (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$ $\Rightarrow (\vec{a} \cdot \vec{b})\vec{c} = (\vec{b} \cdot \vec{c})\vec{a}$ \Rightarrow either \vec{c} and \vec{a} are collinear \vec{b} is perpendicular to both \vec{a} and $\vec{c} \Rightarrow \vec{b} = \lambda(\vec{a} \times \vec{c})$ 187 (a,c) Dot product of two vectors gives a scalar quantity 188 (a,b,d) Points $A(\hat{i} + \hat{j})$, $B(\hat{i} - \hat{j})$ and $C(p\hat{i} + q\hat{j} + r\hat{k})$ are collinear Now $\overrightarrow{AB} = -2\hat{j}$ and $\overrightarrow{BC} = (p-1)\hat{i} + (q-1)\hat{j} + (q-1)\hat{j}$ rĥ Vector \vec{AB} and \vec{BC} must be collinear $\Rightarrow p = 1, r = 0 \text{ and } q \neq 1$

189 (a,b,c)
We have,

$$AM = \text{projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

 $\therefore \vec{AM} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right) \vec{a}$
 $\overrightarrow{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$
Now, in ΔADB
 $\vec{AD} = \vec{AM} + \vec{MD} \Rightarrow \vec{DM} = \vec{AM} - \vec{AD}$
 $\Rightarrow \vec{DM} = \frac{(\vec{a} \cdot \vec{b})\vec{a}}{|\vec{a}|^2} - \vec{b}$
Also, $\vec{DM} = \frac{1}{|\vec{a}|^2} [(\vec{a} \cdot \vec{b})\vec{a} - |\vec{a}|^2\vec{b}]$
 $\Rightarrow \vec{MD} = \frac{1}{|\vec{a}|^2} [(\vec{a} \cdot \vec{b})\vec{a} - |\vec{a}|^2\vec{b}]$
 $\Rightarrow \vec{MD} = \frac{1}{|\vec{a}|^2} [(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}]$
 $= \vec{DM}$
190 (a,d)
Let $\vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$
Then the diagonals of the parallelogram are
 $\vec{p} = \vec{a} + \vec{b}$ and $\vec{q} = \vec{b} - \vec{a}$
i.e., $\vec{p} = 3\hat{i} + 6\hat{j} - 2\hat{k}$, $\hat{q} = -\hat{i} - 2\hat{j} + 8\hat{k}$
So, unit vectors along the diagonals are
 $\frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$ and $\frac{1}{\sqrt{69}}(-\hat{i} - 2\hat{j} + 8\hat{k})$
191 (a,c,d)
 $\vec{a} = \frac{1}{3}(2\hat{i} - 2\hat{j} + \hat{k})$
 $|\vec{a}|^2 = \frac{1}{9}(4 + 4 + 1) = 1 \Rightarrow |\vec{a}| = 1$
Let $\vec{b} = 2\hat{i} - 4\hat{j} + 3\hat{k}$. Then
 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{5}{\sqrt{29}} \Rightarrow \theta \neq \frac{\pi}{3}$
Let $\vec{c} = -\hat{i} + \hat{j} - \frac{1}{2}\hat{k} = \frac{-3}{2}\hat{a} \Rightarrow \vec{c}||\vec{d}$
Let $\vec{d} = 3\hat{i} + 2\hat{j} + 2\hat{k}$. Then $\vec{a} \cdot \vec{d} = 0 \Rightarrow \vec{a} \pm \vec{d}$
192 (a,b,c,d)
Since \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ are non-coplnar
 $\vec{r} = x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})$
 $\therefore \vec{r} \times \vec{b} = \vec{a} \Rightarrow x\vec{a} \times \vec{b} + z\{(\vec{a} \cdot \vec{b})\vec{b} - (\vec{b} \cdot \vec{b})\vec{a}\} = \vec{a}$
 $\Rightarrow -(1 + z|\vec{b}|^2\vec{a} + x\vec{a} \times \vec{b} = 0)(\text{since } \vec{a} \cdot \vec{b} = 0)$
 $\therefore x = 0$ and $x = -\frac{1}{|\vec{b}|^2}$

Thus, $\vec{r} = y\vec{b} - \frac{\vec{a}\times\vec{b}}{\left|\vec{b}\right|^2}$, where y is the parameter 193 (a,c) $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$ Taking cross with \vec{b} in the first equation, we $\operatorname{get} \vec{b} \times (\vec{a} \times \vec{b}) = \vec{b} \times \vec{c} = \vec{a}$ $\Rightarrow \left|\vec{b}\right|^2 \vec{a} - (\vec{a} \cdot \vec{b})\vec{b} = \vec{a} \Rightarrow \left|\vec{b}\right| = 1 \text{ and } \vec{a} \cdot \vec{b} = 0$ Also $|\vec{a} \times \vec{b}| = |\vec{c}| \Rightarrow |\vec{a}| |\vec{b}| \sin \frac{\pi}{2} = |\vec{c}| \Rightarrow |\vec{a}| = |\vec{c}|$ 194 (a.c) We have $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{c} = \hat{i} + \hat{j} - \hat{k}$ 2ƙ Any vector in the plane of \vec{b} and \vec{c} is $\vec{u} = u\vec{b} + \lambda\vec{c}$ $= \mu(\hat{\imath} + 2\hat{\jmath} - \hat{k}) + \lambda(\hat{\imath} + \hat{\jmath} - 2\hat{k})$ $= (\mu + \lambda)\hat{\imath} + (2\mu + \lambda)\hat{\jmath} - (\mu + 2\lambda)\hat{k}$ Given that the magnitude of projection of \vec{u} on \vec{a} is $\sqrt{2/3}$ $\Rightarrow \left| \frac{2}{3} = \left| \frac{\vec{u} \cdot \vec{a}}{|\vec{a}|} \right| \right|$ $\Rightarrow \sqrt{\frac{2}{3}} = \left| \frac{2(\mu + \lambda) - (2\mu + \lambda) - (\mu + 2\lambda)}{\sqrt{6}} \right|$ $\Rightarrow |-\lambda - \mu| = 2$ $\Rightarrow \lambda + \mu = 2 \text{ or } \lambda + \mu = -2$ Therefore, the required vector is either $2\hat{i} + 3\hat{j} - 3\hat{k}$ or $-2\hat{i} - \hat{j} + 5\hat{k}$ 195 (a,c) Here $(l\vec{a} + m\vec{b}) \times \vec{b} = \vec{c} \times \vec{b} \Rightarrow l\vec{a} \times \vec{b} = \vec{c} \times \vec{b}$ $\Rightarrow l(\vec{a} \times \vec{b})^2 = (\vec{c} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \Rightarrow l$ $=\frac{\left(\vec{c}\times\vec{b}\right)\cdot\left(\vec{a}\times\vec{b}\right)}{\left(\vec{a}\times\vec{b}\right)^{2}}$ Similarly, $m = \frac{(\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^2}$ 196 (c,d) Since $\left[\vec{a}\vec{b}\vec{c}\right] = 0$, \vec{a} , \vec{b} and \vec{c} are coplanar vectors Further, since \vec{d} is equally inclined to \vec{a} , \vec{b} and \vec{c} $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0$ $\vec{d} \cdot \vec{x} = \vec{d} \cdot \vec{y} = \vec{d} \cdot \vec{z} = 0$ $\vec{d} \cdot \vec{r} = 0$ 197 (c,d) Let \vec{a} , \vec{b} and \vec{c} lie in the x - y plane Let $\vec{a} = \hat{i}, \vec{b} = -\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{i}$ and $\vec{c} = -\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}$. Therefore, $|\vec{p} + \vec{q} + \vec{r}| = |\lambda \vec{a} + \mu \vec{b} + v \vec{c}|$

$$= \left| \lambda \hat{\imath} + \mu \left(-\frac{1}{2} \hat{\imath} + \frac{\sqrt{3}}{2} \hat{\jmath} \right) + \nu \left(-\frac{1}{2} \hat{\imath} - \frac{\sqrt{3}}{2} \hat{\jmath} \right) \right|$$

$$= \left| \left(\lambda - \frac{\mu}{2} - \frac{\nu}{2} \right) \hat{\imath} + \frac{\sqrt{3}}{2} (\mu - \nu) \hat{\jmath} \right|$$

$$= \sqrt{\lambda^{2} + \mu^{2} + \nu^{2}} - \lambda \mu - \lambda \nu - \mu \nu$$

$$= \frac{1}{\sqrt{2}} \sqrt{\lambda - \mu^{2} + (\mu - V)^{2} + (\nu - \lambda)^{2}}$$

$$\geq \frac{1}{\sqrt{2}} \sqrt{1 + 1 + 4} = \sqrt{3}$$

$$\Rightarrow |\vec{p} + \vec{q} + \vec{r}| \text{ can take a value equal to } \sqrt{3} \text{ and } 2$$
8 (b,c)
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} \vec{b}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{1}{2} \vec{b}$$

$$\Rightarrow \vec{a} \cdot \vec{c} = \frac{1}{2} \text{ and } \vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow 1 \cdot 1 \cos \alpha = \frac{1}{2} \text{ and } \vec{a} \perp \vec{b}$$

$$\Rightarrow \alpha = \frac{\pi}{3} \text{ and } \vec{a} \perp \vec{b}$$
10 (c)
$$|\vec{u}\vec{v}\vec{w}| = |\vec{v}\vec{w}\vec{u}| = |\vec{w}\vec{u}\vec{v}|$$
But $|\vec{v}\vec{u}\vec{w}| = -|\vec{u}\vec{v}\vec{w}|$
1 (a,c)
We have $[\vec{p}\vec{q}\vec{r}] = \frac{1}{|\vec{a}\vec{b}\vec{c}|}$. Therefore,
$$[\vec{p}\vec{q}\vec{r}] > 0$$

$$\mathbf{a} \cdot x > 0, x[\vec{a}\vec{b}\vec{c}] + \frac{|\vec{p}\vec{q}\vec{r}|}{x} \ge 2 \text{ (using A.M. } \ge G.M)$$
b. Similarly, use A.M. $\ge G.M.$
2 (a,c)
Let \vec{r} = \vec{b} + t\vec{c}
Or \vec{r} = (1 + t)\hat{\mathbf{i}} + (2 + t)\hat{\mathbf{j}} - (1 + 2t)\hat{\mathbf{k}} \dots(i)
 \therefore Projection of \vec{r} on \vec{a} is $\sqrt{(2/3)}$.
$$\therefore \frac{\vec{r} \cdot \vec{a}}{|\vec{a}|} = \sqrt{\frac{2}{3}}$$

$$\therefore -t - 1 = \pm 2$$

$$\therefore t = -3, 1$$
Putting in Eq. (i) wa get

19

20

20

20

Putting in Eq. (i), we get

$$\vec{\mathbf{r}} = -2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 5\hat{\mathbf{k}}$$

Or $\vec{\mathbf{r}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$
203 (a,b,d)
 $\vec{V}_1 = l\vec{a} + m\vec{b} + n\vec{c}$
 $\vec{V}_2 = n\vec{a} + l\vec{b} + m\vec{c}$
 $\vec{V}_3 = m\vec{a} + n\vec{b} + l\vec{c}$
when \vec{a}, \vec{b} and \vec{c} are

non-coplanar Therefore, $\begin{bmatrix} \vec{V}_1 \vec{V}_2 \vec{V}_3 \end{bmatrix} = \begin{vmatrix} l & m & n \\ n & l & m \\ m & n & l \end{vmatrix} = 0$ $\Rightarrow (l+m+n)[(l-m)^2 + (m-n)^2 + (n-l)^2]$ = 0 $\Rightarrow l + m + n = 0$ Obviously, $lx^2 + mx + n = 0$ is satisfied by x = 1due x = 1 due to (i) $l^3 + m^3 + n^3 = 3 lmn$ $\Rightarrow (l + m + n)(l^2 + m^2 + n^2 - lm - mn - ln) =$ 0, which is true 204 (a,d) $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$ $\Rightarrow \vec{a} \cdot \vec{b} = \frac{\left|\vec{b}\right|^2}{2}$ Also $\vec{a} \cdot \vec{b} + \frac{1}{\left|\vec{b}\right|^2 + 2}$ $=\frac{\left|\vec{b}\right|+2}{2}+\frac{1}{\left|\vec{b}\right|^{2}+2}-1$ $\geq \sqrt{2} - 1$ (using A.M. \geq G.M.) 205 (a,b,c) It is given that $\vec{\alpha}$, \vec{b} and $\vec{\gamma}$ are coplanar vectors. Therefore, $\left[\vec{\alpha}\vec{\beta}\vec{\gamma}\right] = 0$ $\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ $\Rightarrow 3 abc - a^3 - b^3 - c^3 = 0$ $\Rightarrow a^3 + b^3 + c^3 - 3abc = 0$ $\Rightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ca) = 0$ $\Rightarrow a + b + c = 0 \quad [\because a^2 + b^2 + c^2 - ab - bc - ca]$ ≠ 0] $\Rightarrow \vec{v} \cdot \vec{\alpha} = \vec{v} \cdot \vec{\beta} = \vec{v} \cdot \vec{\gamma} = 0$ $\Rightarrow \vec{v}$ is perpendicular to $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ 206 (b,c,d) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0$ $\Rightarrow \left(\left[\vec{a} \vec{c} \vec{d} \right] \vec{b} - \left[\vec{b} \vec{c} \vec{d} \right] \vec{a} \right) \cdot \left(\vec{a} \times \vec{d} \right) = 0$ $\Rightarrow [\vec{a}\vec{c}\vec{d}][\vec{b}\vec{a}\vec{d}] = 0$ \Rightarrow Either \vec{c} or \vec{b} must lie in the plane of \vec{a} and \vec{d} 207 (b,d) For \vec{A} , \vec{B} and \vec{C} to form a left-handed system $\left[\vec{A}\vec{B}\vec{C}\right] < 0$ $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & 1 & 5 \end{vmatrix} = 11\hat{i} - 6\hat{j} - \hat{k}$ (i) is satisfied by options (b) and (d)

208 (a,b) Given, $\frac{1}{6}\hat{\imath} - \frac{1}{3}\hat{\jmath} + \frac{1}{3}\hat{k} = (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$ $= \left[\vec{a} \vec{b} \vec{d} \right] \vec{c} - \left[\vec{a} \vec{b} \vec{c} \right] \vec{d}$ $= [\vec{a}\vec{b}\vec{d}]\vec{c}$ $[: \vec{a}, \vec{b}$ and \vec{c} are coplanar] $\left[\vec{a}\vec{b}\vec{d}\right] = \left(\vec{a}\times\vec{b}\right)\cdot\vec{d}$ $= |\vec{a} \times \vec{b}| |\vec{d}| \cos \theta \; (\because \vec{d} \perp \vec{a}, \vec{d} \perp \vec{b}, \because \vec{d}| |\vec{a} \times \vec{b})$ $= ab \sin 30^{\circ} \cdot 1 \cdot (\pm 1) (:: \theta = 0 \text{ or } \pi)$ $= 1 \cdot 1 \cdot \frac{1}{2} \cdot 1(\pm 1) = \pm \frac{1}{2}$ From (i) $\vec{c} = \pm \left(\frac{1}{3}\hat{\iota} - \frac{2}{3}\hat{\jmath} + \frac{2}{3}\hat{k}\right) = \pm \frac{\hat{\iota} - 2\hat{\jmath} + 2\hat{k}}{3}$ 209 (b,c) Since, $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$ Then, $|\overrightarrow{AC}| = |\overrightarrow{a} + \overrightarrow{b}|$ $\left| \overrightarrow{\mathbf{AC}} \right|^2 = (\overrightarrow{\mathbf{a}})^2 + (\overrightarrow{\mathbf{b}})^2 + 2\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ $=\left\{\left(3\vec{\alpha}-\vec{\beta}\right)^{2}+\left(\vec{\alpha}+3\vec{\beta}\right)^{2}\right\}+2(3\vec{\alpha}-\vec{\beta})\cdot(\vec{\alpha}$ $+ 3\vec{B}$) $= 9 \vec{\alpha}^{2} + \vec{\beta}^{2} - 6\vec{\alpha} \cdot \vec{\beta} + \vec{\alpha}^{2} + 9\vec{\beta}^{2} + 6\vec{\alpha} \cdot \vec{\beta} + 6\alpha^{2}$ $-6\beta^2 + 16\vec{\alpha}\cdot\vec{\beta}$ $= 16\alpha^2 + 4\beta^2 + 16\vec{\alpha}\cdot\vec{\beta}$ $= 64 + 16 + 16 |\vec{\alpha}| |\vec{\beta}| \cos \frac{\pi}{3}$ $= 64 + 16 + 16 \times 2 \times 2 \times \frac{1}{2}$ = 64 + 16 + 32 = 112 $\therefore AC = 4\sqrt{7}$, similarly $BD = 4\sqrt{3}$ 210 (a,b,c) Let $\vec{A} = \vec{a} \times \vec{b}$, $\vec{B} = \vec{c} \times \vec{d}$ and $\vec{C} = \vec{e} \times \vec{f}$ We know that $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot \vec{A}$ $(\vec{A} \times \vec{B})$ $= (\vec{a} \times \vec{b}) \cdot [(\vec{c} \times \vec{d}) \times (\vec{e} \times \vec{f})]$ $= (\vec{a} \times \vec{b}) \cdot [\{(\vec{c} \times \vec{d}) \cdot \vec{f}\} \vec{e} - \{(\vec{c} \times \vec{d}) \cdot \vec{e}\} \vec{f}\}$ $= [\vec{c}\vec{d}\vec{f}][\vec{a}\vec{b}\vec{e}] - [\vec{c}\vec{d}\vec{e}][\vec{a}\vec{b}\vec{f}]$ Similarly, other parts can be obtained 211 (b,c) We have $\vec{A} + \vec{B} = \vec{a}$ $\Rightarrow \vec{A} \cdot \vec{a} + \vec{B} \cdot \vec{a} = \vec{a} \cdot \vec{a}$ $\Rightarrow 1 + \vec{B} \cdot \vec{a} = a^2 (\text{given} \vec{A} \cdot \vec{a} = 1)$ $\Rightarrow \vec{B} \cdot \vec{a} = a^2 - 1$ (i)

Also
$$\vec{A} \times \vec{B} = \vec{b}$$

 $\Rightarrow \vec{a} \times (\vec{A} \times \vec{B}) = \vec{a} \times \vec{b}$
 $\Rightarrow (\vec{a} \cdot \vec{B})\vec{A} - (\vec{a} \cdot \vec{A})\vec{B} = \vec{a} \times \vec{b}$
 $\Rightarrow (a^2 - 1)\vec{A} - \vec{B} = \vec{a} \times \vec{b}(\text{using (i)}) \text{ and}$
 $\vec{a} \cdot \vec{A} = 1$ (ii)
and $\vec{A} + \vec{B} = \vec{a}$ (iii)
From (ii) and (iii)
 $\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$
 $\vec{B} = \vec{a} - \left\{ \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2} \right\}$
Or $\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$
Thus $\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$ and $\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$
212 (a,b,c,d)
 $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0 \forall x \in R$
 $\Rightarrow (a_1 + a_2) + \sin^2 x(a_3 - 2a_2) = 0$
 $\Rightarrow a_1 + a_2 = 0$ and $a_3 - 2a_2 = 0$
 $\frac{a_1}{-1} = \frac{a_2}{1} = \frac{a_3}{2} = \lambda(\neq 0)$
 $\Rightarrow a_1 = -\lambda, a_2 = \lambda, a_3 = 2\lambda$
213 (b,d)
 $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{b} + \vec{a}$
 $\Rightarrow [(\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})](\vec{b} + \vec{a})$
 $- \{(\vec{a} - \vec{b}) \cdot (\vec{b} + \vec{a})\}(2\vec{a} + \vec{b})$
 $= \vec{b} + \vec{a}$
 $\Rightarrow (2 - \vec{a} \cdot \vec{b} - 1)(\vec{b} + \vec{a}) = \vec{b} + \vec{a}$
 $\Rightarrow either \vec{b} + \vec{a} = \vec{0} \text{ or } 1 - \vec{a} \cdot \vec{b} = 1$
 $\Rightarrow either \vec{b} = -\vec{a} \text{ or } \vec{a} \cdot \vec{b} = 0$
 $\Rightarrow either \vec{b} = -\vec{a} \text{ or } \vec{a} \cdot \vec{b} = 0$
 $\Rightarrow either \vec{b} = \vec{a} \text{ or } \theta = \pi/2$
214 (b,c)
Let \vec{R} be the resultant
Then $\vec{R} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = (p+1)\hat{i} + 4\hat{j}$
Given, $|\vec{R}| = 5$. Therefore,
 $(p+1)^2 + 16 = 25$
 $\Rightarrow p + 1 = \pm 3$
 $\therefore p = 2, -4$
215 (a,b,c)
 $\vec{AB} + \vec{BC} = \vec{AC}$
 $\vec{BC} = \frac{2\vec{u}}{|\vec{u}|} - \frac{\vec{u}}{|\vec{v}|} + \frac{\vec{v}}{|\vec{v}|} = \frac{\vec{u}}{|\vec{u}|} + \frac{\vec{v}}{|\vec{v}|}$
 $\vec{AB} \cdot \vec{BC} = \left(\frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|}\right) \left(\frac{\vec{u}}{|\vec{u}|} + \frac{\vec{v}}{|\vec{v}|}\right)$
 $= (\vec{u} - \vec{v}) \cdot (\vec{u} + \vec{v}) = 1 - 1 = 0$
 $\Rightarrow \angle{B} = 90^{\circ}$
 $\Rightarrow 1 + \cos 2A + \cos 2B + \cos 2C = 0$

216 (a,b,d) $\vec{a} = \left[\pm (\hat{\imath} - \hat{\jmath}) \pm (\hat{\jmath} + \hat{k}) \right]$ $=\pm(\hat{\imath}+\hat{k}),\pm(\hat{\imath}-2\hat{\jmath}-\hat{k})$ 217 (a,b,c) We know that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} =$ $\vec{c} \times \vec{a}$ Given $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0} \Rightarrow 2\vec{a} \times \vec{b} = 6\vec{b} \times \vec{c} = 3\vec{c} \times \vec{c}$ Hence $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 2(\vec{a} \times \vec{b})$ or $6(\vec{b} \times \vec{c})$ or $3(\vec{c} \times \vec{a})$ 218 (a,b,c,d) Since \vec{a} , \vec{b} and \vec{c} are unit vectors inclined at an angle θ $|\vec{a}| = |\vec{b}| = 1$ and $\cos \theta = \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ Now $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ $\Rightarrow \vec{a} \cdot \vec{c} = \alpha(\vec{a} \cdot \vec{a}) + \beta(\vec{a} \cdot \vec{b} + \gamma\{\vec{a} \cdot (\vec{a} \times \vec{b})\}\$ $\Rightarrow \cos \theta = \alpha |\vec{a}|^2 (\because \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot (\vec{a} \times \vec{b}) = 0)$ $\Rightarrow \cos \theta = \alpha$ Similarly, by taking dot product on both sides of (i) by \vec{b} , we get $\beta = \cos \theta$ $\therefore \alpha = \beta$ Again, $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ $\Rightarrow |\vec{c}|^2 = \left|\alpha\vec{a} + \beta\vec{b} + \gamma(\vec{a}\times\vec{b})\right|^2$ $= \alpha^2 |\vec{a}|^2 + \beta^2 |\vec{b}|^2 + \gamma^2 |\vec{a} \times \vec{b}|^2 + 2\alpha\beta (\vec{a} \cdot \vec{b})$ $+ 2\alpha\gamma\{\vec{a}\cdot(\vec{a}\times\vec{b})\} + 2\beta\gamma(b\cdot\{\vec{a}$ $\times \vec{b}$ $\Rightarrow 1 = \alpha^2 + \beta^2 + \gamma^2 \left| \vec{a} \times \vec{b} \right|^2$ $\Rightarrow 1 = 2\alpha^{2} + \gamma^{2} \{ |\vec{a}|^{2} |b|^{2} \sin^{2} \pi/2 \}$ $\Rightarrow 1 = 2\alpha^2 + \gamma^2 \Rightarrow \alpha^2 = \frac{1 - \gamma^2}{2}$ But $\alpha = \beta = \cos \theta$ $1 = 2\alpha^2 + \gamma^2 \Rightarrow \gamma^2 = 1 - 2\cos^2\theta = -\cos 2\theta$ $\therefore \beta^2 = \frac{1-\gamma^2}{2} = \frac{1+\cos 2\theta}{2}$ 219 (a,c,d) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ Or $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a}$ Or $(\vec{a} \cdot \vec{b})\vec{c} - (\vec{c} \cdot \vec{b})\vec{a} = \vec{0}$ $\text{Or } \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ Or $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ Or $\vec{b} \times (\vec{c} \times \vec{a}) = (\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ 220 (c) We are given that $\vec{a} = a_1\hat{\iota} + a_2\hat{\jmath} + a_3\hat{k}$ $\vec{b} = b_1\hat{\iota} + b_2\hat{j} + b_3\hat{k}$ $\vec{c} = c_1\hat{\imath} + c_2\hat{\jmath} + c_3\hat{k}$

Then
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = |\vec{a}\vec{b}\vec{c}|^2$$

= $(|\vec{a} \times \vec{b} \cdot \vec{c}|^2$
= $(|\vec{a} \times \vec{b}|)^2$ (since \vec{c} is \perp to \vec{a} and \vec{b}, \vec{c} is
 \perp to $\vec{a} \times \vec{b}$)
= $(|\vec{a} \times \vec{b}|)^2$
= $(|\vec{a}||\vec{b}| \cdot \sin\frac{\pi}{6})^2$
= $(\frac{1}{2}\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2})^2$
= $\frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$
221 (a,c)
Since, vectors $(x, x + 1, x + 2), (x + 3, x + 4, x + 5)$ and $(x + 6, x + 7, x + 8)$ are coplanar.
 $\therefore \begin{vmatrix} x & x + 1 & x + 2 \\ x + 3 & x + 4 & x + 5 \\ x + 6 & x + 7 & x + 8\end{vmatrix}$
Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$
 $\begin{vmatrix} x & 1 & 2 \\ x + 3 & 1 & 2 \\ z + 3 & 1 & 2\end{vmatrix} = 0$
 $x + 6 & 1 & 2$
 $0 = 0 \quad (C_2 = C_3)$
 $\therefore x \in R$
222 (b,c)
Let $\vec{a} = \hat{i} + x\hat{j} + 3\hat{k}, \hat{\beta} = 4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$
Given, $2|\vec{a}| = |\vec{\beta}|$
 $\Rightarrow 2\sqrt{10 + x^2} = \sqrt{20 + 4(2x - 1)^2}$
 $\Rightarrow 10 + x^2 = 5 + (4x^2 - 4x + 1)$
 $\Rightarrow 3x^2 - 4x - 4 = 0$
 $\Rightarrow x = 2, -\frac{2}{3}$
223 (a,b,c,d)
 $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$
 $= (yz + yx + zx)\{(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}\}$
It is orthogonal to $\hat{i} + \hat{j} + \hat{k}$ as $(y - z)(1) + (z - x)(1) + (x - y)(1) = 0$
It is orthogonal to $\hat{i} + \hat{j} + \hat{k}$ as $(y - z)(1) + (z - x)(1) + (x - y)(1) = 0$
Also it is orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$
224 (a,d)
 $\vec{a} = \hat{i} - \hat{j} + \hat{k}$
 $\vec{b} = 2\hat{i} + \hat{j}$
and $\vec{c} = 3\hat{j} - 2\hat{k}$

Since $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ 0 & 3 & -2 \end{vmatrix} = 0$ Therefore, \vec{a} , \vec{b} and \vec{c} are coplanar vectors Further since \vec{d} is equally inclined to \vec{a} , \vec{b} and \vec{c} , we have $\therefore \vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0$ $\therefore \vec{d} \cdot \vec{x} = \vec{d} \cdot \vec{y} = \vec{d} \cdot \vec{z} = 0$ $\therefore \vec{d} \cdot \vec{r} = 0$ 225 (a,d) Given $\vec{c} = \lambda_1 \vec{a} + \vec{\lambda}_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$ and $\vec{a} \cdot \vec{b} = 0$, $|\vec{a}| = 1$, $|\vec{b}| = 1$ From (i), $\vec{a} \cdot \vec{c} = \lambda_1$, $\vec{c} \cdot \vec{b} = \lambda_2$ and $\vec{c} \cdot (\vec{a} \times \vec{b}) = |\vec{a} \times \vec{b}|^2 \lambda_3$ $= (1.1\sin 90^\circ)^2 \lambda_3 = \lambda_3$ Hence $\lambda_1 + \lambda_2 + \lambda_3 = (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot \vec{c}$ 226 (a,c) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = -(\vec{c} \cdot \vec{b})\vec{a} + (\vec{a} \cdot \vec{c})\vec{b}$ We have been given $(\vec{a} \times (\vec{b} \times \vec{c})) \cdot ((\vec{a} \times \vec{b}) \times \vec{c})$ \vec{c}) = 0. Therefore $\left((\vec{a}\cdot\vec{c})\vec{b}-\left(\vec{a}\cdot\vec{b}\right)\vec{c}\right)\cdot\left((\vec{a}\cdot\vec{c})\vec{b}-\left(\vec{c}\cdot\vec{b}\right)\vec{a}\right)=0$ $\Rightarrow (\vec{a} \cdot \vec{c})^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{c}) (\vec{b} \cdot \vec{c}) (\vec{a} \cdot \vec{b})$ $-(\vec{a}\cdot\vec{b})(\vec{a}\cdot\vec{c})(\vec{b}\cdot\vec{c})$ $+ \left(\vec{a} \cdot \vec{b}\right) \left(\vec{b} \cdot \vec{c}\right) \left(\vec{c} \cdot \vec{a}\right) = 0$ $\Rightarrow (\vec{a} \cdot \vec{c})^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{c}) (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{c})$ $\Rightarrow (\vec{a} \cdot \vec{c}) \quad \left((\vec{a} \cdot \vec{c}) (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{c}) \right) = 0$ $\vec{a} \cdot \vec{c} = 0 \operatorname{or}(\vec{a} \cdot \vec{c}) |\vec{b}|^2 = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$ 227 (a) $\sqrt{(p+2)^2+1} = \sqrt{p^2+1}$ $\Rightarrow p^2 + 4 + 4p + 1 = p^2 + 1$ $\Rightarrow 4p = -4$ $\Rightarrow p = -1$ Hence a is the correct option 228 (c) We have, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{c}} \times \vec{\mathbf{d}}$...(i) and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$...(ii) $:: (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$ $= \vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} + \vec{d} \times \vec{c}$

$$= \vec{c} \times \mathbf{d} - \mathbf{b} \times \mathbf{d} + \mathbf{b} \times \mathbf{d} - \vec{c} \times \mathbf{d}$$

$$= 0 \quad [\text{from Eqs. (i) and (ii)}]$$

$$\therefore \vec{a} - \vec{d} \text{ and } \vec{b} - \vec{c} \text{ are parallel.}$$
229 (c)
Since, \overrightarrow{PQ} is not parallel to, \overrightarrow{TR} .

$$\overrightarrow{PQ} \times (\overrightarrow{PQ}) = \overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{RS} = \overrightarrow{RS} \times$$

unit vector \vec{u} and \vec{v} is $\frac{\vec{u} + \vec{v}}{2 \cos \frac{\theta}{2}}$ where θ is the angle

between vectors \vec{u} and \vec{v}

Hence statement 1 is false, however statement 2 is true

233 **(a)**

We have adjacent sides of triangle $|\vec{a}| = 3$, $|\vec{b}| = 4$

The length of the diagonal is $|\vec{a} + \vec{b}| = 5$

Since it satisfies the Pythagoras theorem, $\vec{a} \perp \vec{b}$

Hence the parallelogram is a rectangle

Hence length of the other diagonal is $\left| \vec{a} - \vec{b} \right| = 5$

234 **(a)**

Given vectors are non-coplanar. Hence the answer is (A)

235 **(a)**

Statement 2 is true

Also,
$$(\hat{\imath} \times \vec{a}) \cdot \vec{b} = \hat{\imath} \cdot (\vec{a} \times \vec{b})$$

$$\Rightarrow \vec{a} \times \vec{b} = (\hat{\imath} \cdot (\vec{a} \times \vec{b}))\hat{\imath} + (\vec{j} \cdot (\vec{a} \times \vec{b}))\hat{\jmath}$$

$$+ (\hat{k} \cdot (\vec{a} \times \vec{b}))\hat{k}$$

236 (c)
Since,
$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d})$$

$$= \frac{3}{2} \times 2 - \frac{1}{2} \times 3$$

$$= 3 - \frac{3}{2} = \frac{3}{2}$$
237 (d)
 $\overrightarrow{AD} = 2\hat{i} - \hat{k}, \overrightarrow{BD} = -2\hat{i} - \hat{j} - 3\hat{k} \text{ and } \overrightarrow{CD} = 2\hat{i} - \hat{j}$
Volume of tetrahedron is $\frac{1}{6} [\overrightarrow{ADBDCD}] =$
 $\frac{1}{6} \begin{vmatrix} 0 & 2 & -1 \\ -2 & -1 & -3 \\ 2 & -1 & 0 \end{vmatrix} = \frac{8}{3}$
Also, the area of the triangle ABC is $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| =$
 $\frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 2 \\ -2 & 3 & -1 \end{vmatrix}$
 $= \frac{1}{2} |-9\hat{i} - 2\hat{j} + 12\hat{k}|$

$$=\frac{\sqrt{229}}{2}$$

Then $\frac{8}{3} = \frac{1}{3} \times (\text{distance of } D \text{ from base } ABC) \times (\text{area of triangle } ABC)$

Distance of *D* from base $ABC = 16/\sqrt{229}$

238 **(b)**

Let $\vec{d} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \vec{c}$

 $\Rightarrow \left[\vec{d} \vec{a} \vec{b} \right] = \lambda_3 \left[\vec{c} \vec{a} \vec{b} \right] \Rightarrow \lambda_3 = 1$

 $[\vec{c}\vec{a}\vec{b}] = 1$ (because \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors)

Similarly,
$$\lambda_1 = \lambda_2 = 1$$

 $\Rightarrow \vec{d} = \vec{a} + \vec{b} + \vec{c}$

Hence statement 1 and Statement 2 are correct, but Statement 2 does not explain Statement 1 as it does not give the value of dot products

239 (d)

$$\vec{A} \times ((\vec{A} \cdot \vec{B})\vec{A} - (\vec{A} \cdot \vec{A})\vec{B}) \cdot \vec{C}$$

 $= \left(\underbrace{\vec{A} \times (\vec{A} \cdot \vec{B})\vec{A}}_{\text{zero}} - (\vec{A} \cdot \vec{A})\vec{A} \times \vec{B})\right) \cdot \vec{C}$
 $= -|\vec{A}|^2[\vec{A}\vec{B}\vec{C}]$
Now, $|\vec{A}|^2 = 4 + 9 + 36 = 49$
 $[\vec{A}\vec{B}\vec{C}] = \begin{vmatrix} 2 & 3 & 6 \\ 1 & 1 & -2 \\ 1 & 2 & 1 \end{vmatrix}$
 $= 2(1 + 4) - 1(3 - 12) + 1(-6)$
 $= 10 + 9 - 12 = 7$
 $\therefore |-|\vec{A}|^2[\vec{A}\vec{B}\vec{C}]| = 49 \times 7 = 343$
240 (a)
 $2\vec{a} + 2\vec{b} = 5\vec{a} = 0$

 $2\vec{a} + 3\vec{b} - 5\vec{c} = 0$

$$\Rightarrow 3(\vec{b} - \vec{a}) = 5(\vec{c} - \vec{a}) \Rightarrow \overrightarrow{AB} = \frac{5}{3}\overrightarrow{AC}$$

 $\Rightarrow \overrightarrow{AB} \text{ and } \overrightarrow{AC} \text{ must be parallel since there is a common point } A. The points A, B and C must be collinear$

241 **(b)** Obviously, statement 1 is true

$$\cos 2\alpha + \cos 2\beta$$

+ $\cos 2\gamma$
= $2\cos^2 \alpha - 1$
+ $2\cos^2 \beta - 1 + 2\cos^2 y - 1$

$$= 2(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) - 3 = 2 - 3 = -1$$

Hence, Statement 2 is true but does not explain Statement 1 as it is result derived using the result in the statement

242 (b)

$$\therefore \overrightarrow{BA} = \overrightarrow{BC} - \overrightarrow{AC}$$

$$= \left(\frac{\overrightarrow{e}}{|\overrightarrow{e}|} + \frac{\overrightarrow{f}}{|\overrightarrow{f}|}\right) - \left(\frac{2\overrightarrow{e}}{|\overrightarrow{e}|}\right)$$

$$= -\left(\frac{\overrightarrow{e}}{|\overrightarrow{e}|} + \frac{\overrightarrow{f}}{|\overrightarrow{f}|}\right)$$
Now, $\overrightarrow{BA} \cdot \overrightarrow{BC} = -\left(\frac{\overrightarrow{e}}{|\overrightarrow{e}|} + \frac{\overrightarrow{f}}{|\overrightarrow{f}|}\right)\left(\frac{\overrightarrow{e}}{|\overrightarrow{e}|} + \frac{\overrightarrow{f}}{|\overrightarrow{f}|}\right)$

$$= -\left(\frac{e^2}{e^2} - \frac{f^2}{f^2}\right) = -(1 - 1) = 0$$

$$\Rightarrow \angle B = 90^{\circ}$$

$$\therefore \cos 2A + \cos 2C = 2\cos(A + C)\cos(A - C)$$

$$= 2\cos(180^{\circ} - B)\cos(A - C)$$

$$= 2\cos(90^{\circ}\cos(A - C))$$

$$= 0$$

$$\therefore \cos 2A + \cos 2B + \cos 2C = -1$$
Also, if $\angle C = 90^{\circ}$
Then, $\cos 2A + \cos 2B = 2\cos(A + B)\cos(A - B)$

$$= 2\cos(180^{\circ} - C)\cos(A - B)$$

$$= 2\cos(90^{\circ}\cos(A - B))$$

$$= 0$$

$$\therefore \cos 2A + \cos 2B + \cos 2C = -1$$

243 (c)

$$: [\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}] = (\vec{a} \times \vec{b}) \cdot \{ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) \}$$

$$= (\vec{a} \times \vec{b}) \cdot \{ (\vec{b} \cdot (\vec{c} \times \vec{a})) \vec{c} - (\vec{c} \cdot (\vec{c} \times \vec{a})) \vec{b} \}$$

$$= (\vec{a} \times \vec{b}) \cdot \{ [\vec{b} \vec{c} \vec{a}] \vec{c} - 0 \}$$

$$= (\vec{a} \times \vec{b} \cdot \vec{c}) [\vec{b} \vec{c} \vec{a}] = [\vec{a} \vec{b} \vec{c}]^{2}$$

$$: \vec{a}, \vec{b}, \vec{c} \text{ are coplanar.}$$

$$: [\vec{a} \vec{b} \vec{c}] = 0 \text{ and then} [\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}] = 0$$
Hence, $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

244 (a)

 $\frac{3}{2} = \frac{p}{3} = \frac{3}{q} \Rightarrow p = \frac{9}{2} \text{ and } q = 2$

Thus, both the statements are true and Statement 2 is the correct explanation for statement for Statement 1

245 **(b)**

We know that vector in the direction of angular bisector of unit vectors \vec{a} and \vec{b} is $\frac{\vec{a}+\vec{b}}{2\cos\frac{\theta}{2}}$

Where $\vec{a} = \overrightarrow{AB} = l_1\hat{\imath} + m_1\hat{j} + n_1\hat{k}$ and $\vec{b} = \overrightarrow{AD} = l_2\hat{\imath} + m_2\hat{\jmath} + n_3\hat{k}$

Thus unit vector along the bisector is $\frac{l_1+l_2}{\cos\frac{\theta}{2}}\hat{\iota} + \frac{m_1+m_2}{\cos\frac{\theta}{2}}\hat{j} + \frac{n_1+n_2}{\cos\frac{\theta}{2}}\hat{k}$

Hence statement 1 is true

Also, in triangle ABD, by cosine rule

$$\cos\theta = \frac{AB^2 + AD^2 - BD^2}{2AB.AD}$$

 $\Rightarrow \cos \theta$

 $=\frac{1+1-\left|(l_1-l_2)\hat{\imath}+(m_1-m_2)\hat{\jmath}+(n_1-n_2)\hat{k}\right|^2}{2}$ [249 (b)

$$\Rightarrow \cos \theta = \frac{2 - [(l_1 - l_2)^2 + (m_1 - m_2)^2 + (n_1 - n_2)^2]}{2} = \frac{2 - [2 - 2(l_1 l_2 + m_1 m_2 + n_1 n_2)]}{2} = l_1 l_2 + m_1 m_2 + n_1 n_2$$

Hence, Statement 2 is true but does not explain Statement 1

246 (b)
If
$$\vec{\mathbf{a}} = \vec{\mathbf{b}}$$
 then, $|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}|$
Now, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = |\vec{\mathbf{a}}|^2$
and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{b}}|^2$
 $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}|^2 = |\vec{\mathbf{b}}|^2$

But it is true that if $|\vec{a}| = |\vec{b}|$ does not implies that $\vec{a} = \vec{b}$

247 **(b)**

 $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ only if \vec{a}, \vec{b} and \vec{c} are coplanar

$$\Rightarrow \left[\vec{a}\vec{b}\vec{c}\right] = 0$$

Hence, statement 2 is true

Also,
$$[\vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a}] = 0$$
 even if $[\vec{a}\vec{b}\vec{c}] \neq 0$

Hence, Statement 2 is not the correct explanation for Statement 1

248 (a)

Let the three given unit vectors be \hat{a} , \hat{b} and \hat{c} . Since they are mutually perpendicular $\hat{a} \cdot (\hat{b} \times \hat{c}) = 1$. Therefore,

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 1$$
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 1$$

Hence, $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ and $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$ may be mutually perpendicular

 $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0 \Rightarrow \vec{\mathbf{r}} \perp \vec{\mathbf{a}}$ We have, $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = 0 \Rightarrow \vec{\mathbf{r}} \perp \vec{\mathbf{b}}$ $\vec{\mathbf{r}} \cdot \vec{\mathbf{c}} = 0 \Rightarrow \vec{\mathbf{r}} \perp \vec{\mathbf{c}}$ $\Rightarrow \vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}} \text{ are coplanar vectors.}$ Also, $\because \vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} = 0$ $\therefore \vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} = 0$ Also, $\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + \vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \vec{\mathbf{a}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = 0$ $0 + [\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}] + 0 = 0$ $\therefore [\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}] = 0$ Here, $\vec{\mathbf{c}} \cdot \vec{\mathbf{c}} = 0$

Hence, \vec{a} , \vec{b} , \vec{c} are coplanar.

250 (a)

 $3\vec{a} - 2\vec{b} + 5\vec{c} - 6\vec{d} = (2\vec{a} - 2\vec{b})$ $+(-5\vec{a} + 5\vec{c}) + (6\vec{a} - 6\vec{d})$ $= -2\vec{A}\vec{B} + 2\vec{A}\vec{C} - 6\vec{A}\vec{D} = \vec{0}$

Therefore \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are linearly dependent. Hence by Statement 2 Statement 1 is true

251 **(b)**

A vector along the bisector is $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} = \frac{-5\hat{\iota}+7\hat{\jmath}+2\hat{k}}{9}$

Hence $\vec{c} = -5\hat{\imath} + 7\hat{\jmath} + 2\hat{k}$ is along the bisector. It is obvious that \vec{c} makes an equal angle with \vec{a} and \vec{b} . However, statement 2 does not explain Statement 1, as a vector equally inclined to given two vectors is not necessarily coplanar

252 **(c)**

 $\ln \Delta ABC, \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = -\overrightarrow{CA} \Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$

 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ is the triangle law of addition

Hence, Statement 1 is true and Statement 2 is false

Given, $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ Now, $|\vec{\mathbf{a}} \times \hat{\mathbf{i}}|^2 = (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) \cdot (\vec{\mathbf{a}} \times \hat{\mathbf{i}})$ $= (a_3\hat{\mathbf{j}} - a_2\hat{\mathbf{k}}) \cdot (a_3\hat{\mathbf{j}} - a_2\hat{\mathbf{k}})$ $= a_3^2 + a_2^2$ Similarly, $|\vec{\mathbf{a}} \times \hat{\mathbf{j}}|^2 = a_1^2 + a_3^2$ and $|\vec{\mathbf{a}} \times \hat{\mathbf{k}}|^2 = a_1^2 + a_1^2$ $\therefore |\vec{\mathbf{a}} \times \hat{\mathbf{i}}|^2 + |\vec{\mathbf{a}} \times \hat{\mathbf{j}}|^2 + |\vec{\mathbf{a}} \times \hat{\mathbf{k}}|^2$ $= 2(a_1^2 + a_2^2 + a_3^2) = 2|\vec{\mathbf{a}}|^2$ Hence, both A and R are true and (R) is correct reason for (A). 254 (c) $\therefore |2\vec{\mathbf{a}} - \vec{\mathbf{b}}| = 5$ $\Rightarrow |2\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = 5^2$ $\Rightarrow 4a^2 + b^2 - 4\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 25$ $\Rightarrow 16 + 9 - 4\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 25$ $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ $\therefore |2\vec{\mathbf{a}} + \vec{\mathbf{b}}| = \sqrt{|2\vec{\mathbf{a}} + \vec{\mathbf{b}}|^2}$ $= \sqrt{[4a^2 + b^2 + 4(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})]}$ $= \sqrt{(16 + 9 + 0)} = 5$ $\therefore |\vec{\mathbf{p}} - \vec{\mathbf{q}}| = |\vec{\mathbf{p}} + \vec{\mathbf{q}}|$

Which is possible only when $\vec{p} \perp \vec{q}$.

255 **(a)**

If \vec{a} and \vec{b} are reciprocal then,

$$\vec{\mathbf{a}} = \lambda \, \vec{\mathbf{b}}, \lambda \in R^{+} \text{ and } |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| = 1$$

$$\Rightarrow |\vec{\mathbf{a}}| = |\lambda| |\vec{\mathbf{b}}|$$

$$\therefore |\lambda| = \frac{|\vec{\mathbf{a}}|}{|\vec{\mathbf{b}}|} = \frac{1}{|\vec{\mathbf{b}}|^{2}}$$

$$\therefore \lambda \in R^{+}$$

$$\therefore \lambda = \frac{1}{|\vec{\mathbf{b}}|^{2}}$$

$$\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \frac{\vec{\mathbf{b}}}{|\vec{\mathbf{b}}|^{2}} \cdot \vec{\mathbf{b}} = \frac{|\vec{\mathbf{b}}|^{2}}{|\vec{\mathbf{b}}|^{2}} = 1$$

256 **(c)**

Component of vector $\vec{b} = 4\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ in the

Then component in the direction perpendicular to the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $\vec{b} - 3\hat{i} + 3\hat{j} + \hat{k}$ $3\hat{k} = \hat{\iota} - \hat{\iota}$ 257 **(b) a**. $|\vec{a} + \vec{b}| = |\vec{a} + 2\vec{b}|$ $a^{2} + h^{2} + 2 \vec{a} \cdot \vec{b} = a^{2} + 4h^{2} + 4 \vec{a} \cdot \vec{b}$ Or $2 \vec{a} \cdot \vec{b} = -3b^2 < 0$ Hence, angle between \vec{a} and \vec{b} is obtuse **b**. $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$ or $a^2 + b^2 + 2\vec{a}\cdot\vec{b} = a^2 + 4b^2 - 4\vec{a}\cdot\vec{b}$ or $6 \vec{a} \cdot \vec{b} = 3b^2$ Hence, angle between \vec{a} and \vec{b} is acute **c**. $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ $\Rightarrow \vec{a} \cdot \vec{b}$ Hence, \vec{a} is perpendicular to \vec{b} **d**. $\vec{c} \times (\vec{a} \times \vec{b})$ lies in the plane of vectors \vec{a} and \vec{b} A vector perpendicular to this plane is parallel to $\vec{a} \times \vec{b}$ Hence, angle is 0° 258 (a) $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b}$ $\therefore \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \vec{a} + \vec{a} \quad (i)$ $\overrightarrow{AD} = 2\overrightarrow{BC} = 2\overrightarrow{b}$ (ii) (because *AD* is parallel to BC and twice its length) $\overrightarrow{CD} = \overrightarrow{AD} - \overrightarrow{AC} = 2\overrightarrow{b} - (\overrightarrow{a} + \overrightarrow{b})$ $= \vec{b} - \vec{a}$ $\overrightarrow{FA} = -\overrightarrow{CD} = \overrightarrow{a} - \overrightarrow{b}$ (iii) $\overrightarrow{DE} = -\overrightarrow{AB} = -\overrightarrow{a}$ (iv) $\overrightarrow{EF} = -\overrightarrow{BC} = -\overrightarrow{b}$ (v)

direction of $\vec{a} = \hat{\iota} + \hat{j} + \hat{k}$ is $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|}$ or $3\hat{\iota} + 3\hat{j} + 3\hat{k}$.

 $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = 2\overrightarrow{b} - \overrightarrow{a}$ (vi) $\overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{b} - \overrightarrow{a} = \overrightarrow{b} - 2\overrightarrow{a}$ (vii) 259 **(b)** $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b}$ $\therefore \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \vec{a} + \vec{a} \quad (i)$ $\overrightarrow{AD} = 2\overrightarrow{BC} = 2\overrightarrow{b}$ (ii) (because *AD* is parallel to BC and twice its length) $\overrightarrow{CD} = \overrightarrow{AD} - \overrightarrow{AC} = 2\overrightarrow{b} - (\overrightarrow{a} + \overrightarrow{b})$ $= \vec{h} - \vec{a}$ $\overrightarrow{FA} = -\overrightarrow{CD} = \overrightarrow{a} - \overrightarrow{b}$ (iii) $\overrightarrow{DE} = -\overrightarrow{AB} = -\overrightarrow{a}$ (iv) $\overrightarrow{EF} = -\overrightarrow{BC} = -\overrightarrow{b}$ (v) $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = 2\overrightarrow{b} - \overrightarrow{a}$ (vi) $\overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{b} - \overrightarrow{a} = \overrightarrow{b} - 2\overrightarrow{a}$ (vii) 260 (a) **a**. Vector $-3\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ and $\hat{\imath} + \hat{\jmath}$ are coplanar with \vec{a} and \vec{b} **b**. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ -2 & 2 & 2 \end{vmatrix}$ $= 2\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ **c**. If \vec{c} is equally inclined to \vec{a} and \vec{b} , then we must have $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$, which is true for vectors in options *p*, *q*, *s* **d**. Vector is forming a triangle with *a* and *b*. Then $\vec{c} = \vec{a} + \vec{b} = -3\hat{i} + 3\hat{j} + 4\hat{k}$ 261 (b) $(\mathbf{i})\mathbf{\vec{a}}\cdot\mathbf{\vec{b}} = (\mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}})\cdot(\mathbf{\hat{i}} - \mathbf{\hat{j}} + \mathbf{\hat{k}}) = 1$ $\mathbf{\vec{b}} \cdot \mathbf{\vec{d}} = (\mathbf{\hat{i}} - \mathbf{\hat{j}} + \mathbf{\hat{k}}) \cdot (\mathbf{\hat{i}} - \mathbf{\hat{j}} - \mathbf{\hat{k}}) = 1$ $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{d}$ $(ii)\mathbf{\vec{b}}\cdot\mathbf{\vec{c}} = (\mathbf{\hat{i}} - \mathbf{\hat{j}} + \mathbf{\hat{k}})\cdot(\mathbf{\hat{i}} + \mathbf{\hat{j}} - \mathbf{\hat{k}}) = -1$ $\vec{\mathbf{a}} \cdot \vec{\mathbf{d}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}) = -1$ $\therefore \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{a}} \cdot \vec{\mathbf{d}}$ (iii) $\begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 0 + 2 + 2 = 4$ $(iv)\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$

262 (a) $\left[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}\right] = 36$ $\operatorname{Or}\left[\vec{a}\vec{b}\vec{c}\right] = 6$ \Rightarrow Volume of tetrahedron formed by vectors \vec{a}, \vec{b} and \vec{c} is $\frac{1}{6}[\vec{a}\vec{b}\vec{c}]] = 1$ $[\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}] = 2[\vec{a}\vec{b}\vec{c}] = 12$ $\vec{a} - \vec{b}, \vec{b} - \vec{c}$ and $\vec{c} - \vec{a}$ are coplanar $\Rightarrow \left[\vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a}\right] = 0$ 263 (d) **a**. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 2 \\ -1 & -2 & -1 \end{vmatrix} = 3\hat{i} - 3\hat{j} + 3\hat{k}$ Hence, the area of the triangle is $\frac{3\sqrt{3}}{2}$ **b**. The area of the parallelogram is $3\sqrt{3}$ c. The area of a parallelogram whose diagonals are $2\vec{a}$ and $4\vec{b}$ is $\frac{1}{2}|2\vec{a}\times 4\vec{b}| = 12\sqrt{3}$ d. Volume of the parallelepiped $= |(\vec{a} \times \vec{b}) \cdot \vec{c}| = \sqrt{9 + 36 + 9} = 3\sqrt{6}$ 264 (c) **a**. $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$ $\Rightarrow \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a}\cdot\vec{b} + 2\vec{b}\cdot\vec{c} + 2\vec{c}\cdot\vec{a} = 6$ $|\vec{a}| = 1$ **b**. \vec{a} is perpendicular to $\vec{b} + \vec{c}$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \quad (i)$ *b* I perpendicular to a + c $\Rightarrow \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \quad \text{(ii)}$ \vec{c} is perpendicular to $\vec{a} + \vec{b}$ $\Rightarrow \vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{c} \cdot \vec{b} = 0 \quad \text{(iii)}$ From (i), (ii) and (iii), we get $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ $\therefore \left| \vec{a} + \vec{b} + \vec{c} \right| = 7$ **c**. $(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}) = 21$ **d**. We know that $\begin{bmatrix} \vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2$ and $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$ $= \begin{vmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{vmatrix}$ = 32 $\therefore \left[\vec{a} \vec{b} \vec{c} \right] = 4\sqrt{2}$ 265 (b) **a**. If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular, then $\left[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}\right] = \left[\vec{a}\vec{b}\vec{c}\right]^2$ $= (|\vec{a}||\vec{b}||\vec{c}|)^2 = 16$

b. Given \vec{a} and \vec{b} are two unit vectors, i.e., $|\vec{a}| = |\vec{b}| = 1$ and angle between them is $\pi/3$ $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} \Rightarrow \sin \frac{\pi}{3} = |\vec{a} \times \vec{b}|$ $\frac{\sqrt{3}}{2} |\vec{a} \times \vec{b}|$ Now $\begin{bmatrix} \vec{a}\vec{b} + \vec{a} \times \vec{b}\vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a}\vec{a} \times \vec{b}\vec{b} \end{bmatrix}$ $= 0 + \left[\vec{a}\vec{a} \times \vec{b}\vec{b} \right]$ $= \left(\vec{a} \times \vec{b}\right) \cdot \left(\vec{b} \times \vec{a}\right)$ $= -(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})$ $= -\left|\vec{a} \times \vec{b}\right|^2$ $=-\frac{3}{2}$ **c**. It \vec{b} and \vec{c} are orthogonal $\vec{b} \cdot \vec{c} = 0$ Also, it is given that $\vec{b} \times \vec{c} = \vec{a}$. Now $[\vec{a}\vec{a} + \vec{b}\vec{b} + \vec{c}] + [\vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}]$ $= [\vec{a}\vec{b}\vec{c}]$ $= \vec{a} \cdot (\vec{b} \times \vec{c})$ $= \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 1$ (because \vec{a} is a unit vector) **d**. $[\vec{x}\vec{y}\vec{a}] = 0$ therefore \vec{x}, \vec{y} and \vec{a} are coplanar (i) $\left[\vec{x}\vec{y}\vec{b}\right] = 0$ Therefore, \vec{x} , \vec{y} and \vec{b} are coplanar (ii) Also, $\left[\vec{a}\vec{b}\vec{c}\right] = 0$ Therefore, \vec{a} , \vec{b} and \vec{c} are coplanar (iii) From (i), (ii) and (iii), \vec{x} , \vec{y} and \vec{c} are coplanar. Therefore, $[\vec{x}\vec{y}\vec{c}] = 0$ 266 (a) a. Given equations are consistent if $(\hat{\imath} + \hat{\jmath}) + \lambda(\hat{\imath} + 2\hat{\jmath} - \hat{k})$ $= (\hat{i} + 2\hat{j}) + \mu(-\hat{i} + \hat{j} + a\hat{k})$ \Rightarrow 1 + λ = 1 - μ , 1 + 2 λ = 2 + μ , - λ = $a\mu$ $\Rightarrow \lambda = 1/3 \text{ and } \mu = -1/3$ $\Rightarrow a = 1$ **b**. $a = \lambda \hat{\imath} - 3\hat{\jmath} - \hat{k}$ $\vec{b} = 2\lambda\hat{\imath} + \lambda\hat{\jmath} - \hat{k}$ Angle between $\vec{a} \cdot \vec{b} > 0$ $\Rightarrow 2\lambda^2 - 3\lambda + 1 > 0$ $Or (2\lambda - 1)(\lambda - 1) > 0$ Or $\lambda \in \left(-\infty, \frac{1}{2}\right) \cup (1, \infty)$ Also \vec{b} makes on obtuse angle with the axes. Therefore. $\vec{b} \cdot \hat{\iota} < 0 \Rightarrow \lambda < 0$ $\vec{b} \cdot \hat{j} < 0 \Rightarrow \lambda < 0$ (ii)

Combining these two, we get $\lambda = -4, -2$

c. If vectors $2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\hat{\imath} + 2\hat{\jmath} + (1 + a)\hat{k}$ and $3\hat{\imath} + a\hat{\jmath} + 5\hat{k}$ are coplanar, then 12 -11 1 2 1 + a3 а 5 $0r a^2 + 2a - 8 = 0$ Or(a+4)(a-2) = 00r a = -4, 2 $\mathbf{d}.\,\vec{A}=2\hat{\imath}+\lambda\hat{\jmath}+3\hat{k}$ $B = 2\hat{\imath} + \lambda\hat{\jmath} + \hat{k}$ $C = 3\hat{\imath} + \hat{\jmath} + 0.\,\hat{k}$ $\vec{A} + \lambda \vec{B} = 2(1+\lambda)\hat{\imath} + (\lambda+\lambda^2)\hat{\jmath} + (3+\lambda)\hat{k}$ Now $(\vec{A} + \lambda \vec{B}) \perp \vec{C}$. Therefore, $(\vec{A} + \lambda \vec{B}).\vec{C} = 0$ Or $6(1 + \lambda) + (\lambda + \lambda^2) + 0 = 0$ $\operatorname{Or} \lambda^2 + 7\lambda + 6 = 0$ $Or (\lambda + 6)(\lambda + 1) = 0$ $0r \lambda = -6, = -1$ $\Rightarrow |2\lambda| = 12, 2$

267 **(b)**

The vector equations of *CD* and *BE* are $\vec{\mathbf{r}}_1 = (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) + \frac{\lambda}{3}(7\hat{\mathbf{j}} - 7\hat{\mathbf{k}})$...(i) and $\vec{\mathbf{r}}_2 = (-\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) + \frac{\mu}{3}(7\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 7\hat{\mathbf{k}})$ (ii)

The intersection point of $\overrightarrow{\textbf{CD}}$ and $\overrightarrow{\textbf{BE}}$.

268 **(d)**

The equation of the plane parallel to the given plane

 $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) + \lambda = 0 \quad ...(i)$ This plane passes through $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$. Therefore, $(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 4\hat{\mathbf{k}}) \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) + \lambda = 0$ $\Rightarrow 8 + 12 + 12 + \lambda = 0$ $\therefore \lambda = -32$ Hence, required plane is $\vec{\mathbf{r}} \cdot (4\hat{\mathbf{i}} - 12\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = 32$ 269 (c)

$$: \begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix} \begin{bmatrix} \vec{u} \cdot \vec{v} \cdot \vec{w} \end{bmatrix} = \begin{vmatrix} \vec{a} \cdot \vec{u} & \vec{b} \cdot \vec{u} & \vec{c} \cdot \vec{u} \\ \vec{a} \cdot \vec{v} & \vec{b} \cdot \vec{v} & \vec{c} \cdot \vec{v} \\ \vec{a} \cdot \vec{w} & \vec{b} \cdot \vec{w} & \vec{c} \cdot \vec{w} \end{vmatrix}$$

$$: \begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix}^2 = \begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix} \begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

$$Now, \vec{a} \cdot \vec{a} = a^2 = |\vec{a}|^2 = 16$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = |\vec{a}| |\vec{b}| \cos \pi/3 = 4 \cdot 4 \cdot \frac{1}{2} = 8$$

$$\vec{a} \cdot \vec{c} = \vec{c} \cdot \vec{a} = |\vec{a}| |\vec{c}| \cos \pi/3 = 4 \cdot 4 \cdot \frac{1}{2} = 8$$

$$\vec{b} \cdot \vec{b} = b^2 = |\vec{b}|^2 = 16$$

$$\vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{b} = |\vec{b}| |\vec{c}| \cos \pi/3 = 4 \cdot 4 \cdot \frac{1}{2} = 8$$

$$\vec{c} \cdot \vec{c} = |\vec{c}|^2 = 4^2 = 16$$
From Eq. (i)
$$\begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix}^2 = \begin{vmatrix} 16 & 8 & 8 \\ 8 & 16 & 8 \\ 8 & 8 & 16 \end{vmatrix}$$

$$= 8^3 \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 8^3 \cdot 4 = 64 \times 32$$

$$|[\vec{a} \cdot \vec{b} \cdot \vec{c}]| = 32\sqrt{2}$$

Volume of the parallelepiped = $|[\vec{a} \cdot \vec{b} \cdot \vec{c}]| = 32\sqrt{2}$ 270 (c)

Thus
$$DQ = \frac{1}{4}DB$$
 and $PB = \frac{1}{4}DB$

$$\therefore PQ = \frac{1}{2}DB, i.e.PQ:DB = 1:2$$

271 (c) Let the position vectors of A, B, C and D and be $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} , respectively Then OA: CB = 2:1 $\Rightarrow \overrightarrow{OA} = 2\overrightarrow{CB}$ $\Rightarrow \vec{a} = 2(\vec{b} - \vec{c})$ (i) and OD: AB = 1:3 $3\overrightarrow{OD} = \overrightarrow{AR}$ $\Rightarrow 3\vec{d} = (\vec{b} - \vec{a}) = \vec{b} - 2(\vec{b} - \vec{c}) \text{(using (i))}$ $\Rightarrow 3\vec{d} = -\vec{b} + 2\vec{c}$ Let $OX: XC = \lambda$: 1 and $AX: XD = \mu$: 1 Now, *X* divides *OC* in the ratio λ : 1. Therefore, P.V. of $X = \frac{\lambda \vec{c}}{\lambda + 1}$ X also divides *AD* in the ratio μ : 1 P.V. of $X = \frac{\mu \vec{d} + \vec{a}}{\mu + 1}$ (iv) From (iii) and (iv), we get $\frac{\lambda \vec{c}}{\lambda + 1} = \frac{\mu \vec{d} + \vec{a}}{\mu + 1}$ $\Rightarrow \left(\frac{\lambda}{\lambda+1}\right)\vec{c} = \left(\frac{\mu}{\mu+1}\right)\vec{d} + \left(\frac{1}{\mu+1}\right)\vec{a}$ $\Rightarrow \left(\frac{\lambda}{\lambda+1}\right)\vec{c} = \left(\frac{\mu}{\mu+1}\right)\left(\frac{-\vec{b}+2\vec{c}}{3}\right)$ $+\left(\frac{1}{u+1}\right)2(\vec{b}-\vec{c})$ (using (i)and (ii)) $\Rightarrow \left(\frac{\lambda}{\lambda+1}\right)\vec{c} = \left(\frac{6-\mu}{3(\mu+1)}\right)\vec{b}$ $+\left(\frac{2\mu}{3(\mu+1)}-\frac{2}{\mu+1}\right)\vec{c}$ $\Rightarrow \left(\frac{\lambda}{\lambda+1}\right)\vec{c} = \left(\frac{6-\mu}{3(\mu+1)}\right)\vec{b}$ $+\left(\frac{2\mu-6}{3(\mu+1)}\right)\vec{c}$ $\Rightarrow \left(\frac{6-\mu}{3(\mu+1)}\right)\vec{b} + \left(\frac{2\mu-6}{3(\mu+1)} - \frac{\lambda}{\lambda+1}\right)$ $\vec{c} = \vec{0}$ $\Rightarrow \frac{6-\mu}{3(\mu+1)} = 0 \text{ and } \frac{2\mu-6}{3(\mu+1)} - \frac{\lambda}{\lambda+1}$ = 0(as \vec{b} and \vec{c} are non – collinear) $\Rightarrow \mu = 6, \lambda = \frac{2}{c}$ Hence OX: XC = 2:5272 (c) Consider the regular hexagon ABCDEF with

centre at O(origin)

 $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2\overrightarrow{AO} + 2\overrightarrow{OB} + 2\overrightarrow{OC}$ $= 2(\overrightarrow{AO} + \overrightarrow{OB}) + 2\overrightarrow{OC}$ $= 2\overrightarrow{AB} + 2\overrightarrow{AB}$ (:: $\overrightarrow{OC} = \overrightarrow{AB}$) $= 4\overrightarrow{AB}$ $\vec{R} = \vec{AB} + \vec{AC} + \vec{AD} + \vec{AE} + \vec{AF}$ $= \overrightarrow{ED} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{CD}(:: \overrightarrow{AB} = \overrightarrow{ED} \text{ and } \overrightarrow{AF}$ $= \overrightarrow{CD}$) $= (\overrightarrow{AC} + \overrightarrow{CD}) + (\overrightarrow{AE} + \overrightarrow{ED}) + \overrightarrow{AD}$ $= \overrightarrow{AD} + \overrightarrow{AD} + \overrightarrow{AD} = 3\overrightarrow{AD} = 6\overrightarrow{AO}$ 273 (b) Taking dot product of $\vec{u} + \vec{v} + \vec{w} = \vec{a}$ with \vec{u} , we have $1 + \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = \vec{a} \cdot \vec{u} = \frac{3}{2} \Rightarrow \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = \frac{1}{2}$ (i) Similarly, taking dot product with \vec{v} , we have $\vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v} = \frac{3}{4}$ (ii) Also, $\vec{a} \cdot \vec{u} + \vec{a} \cdot \vec{v} + \vec{a} \cdot \vec{w} = \vec{a} \cdot \vec{a} = 4$ $\Rightarrow \vec{a} \cdot \vec{w} = 4 - \left(\frac{3}{2} + \frac{7}{4}\right) = \frac{3}{4}$ Again, taking dot product with \vec{w} , we have $\vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} = \frac{3}{4} - 1 = -\frac{1}{4}$ (iii) Adding (i), (ii) and (iii), we have $2(\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}+\vec{v}\cdot\vec{w})=1$ $\Rightarrow \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} = \frac{1}{2} \quad \text{(iv)}$ Subtracting (i), (ii) and (iii) from (iv), we have $\vec{v} \cdot \vec{w} = 0, \vec{u} \cdot \vec{w} = -\frac{1}{4} \text{ and } \vec{u} \cdot \vec{v} = \frac{3}{4}$ Now, the equation $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$ and $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}$ can be written as $(\vec{u} \cdot \vec{w})\vec{v} - \vec{v}$ $(\vec{u} \cdot \vec{v})\vec{w} = \vec{b}$ and $(\vec{u} \cdot \vec{w})\vec{v} - (\vec{v} \cdot \vec{w})\vec{u} = \vec{c} \Rightarrow$ $-\frac{1}{4}\vec{v}-\frac{3}{4}\vec{w}=\vec{b},-\frac{1}{4}\vec{v}=\vec{c}$, i. e., $\vec{v}=-4\vec{c}$ $\Rightarrow \vec{c} - \frac{3}{4}\vec{w} = \vec{b} \Rightarrow \vec{w} = \frac{4}{3}(\vec{c} - \vec{b}) \text{ and } \vec{u} = \vec{a} - \vec{v} - \vec{c}$ $\vec{w} = \vec{a} + 4\vec{c} - \frac{4}{3}\vec{c} + \frac{4}{3}\vec{b} = \vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$ 274 (d) Given that $|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$ and they are inclined at an angle of 60° with each other $\therefore \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{z} = \vec{z} \cdot \vec{x} = \sqrt{2} \cdot \sqrt{2} \cos 60^\circ = 1$ $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a} \Rightarrow (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} = \vec{a} \Rightarrow \vec{y} - \vec{x} \cdot \vec{y}$ $\vec{z} = \vec{a}$ (i) Similarly, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b} \Rightarrow \vec{z} - \vec{x} = \vec{b}$ (ii)

$$\vec{y} = \vec{a} + \vec{z}, \vec{x} = \vec{z} - \vec{b} \text{ (from (i) and (ii))(iii)}$$
Now, $\vec{x} \times \vec{y} = \vec{c}$

$$\Rightarrow (\vec{z} - \vec{b}) \times (\vec{z} + \vec{a}) = \vec{c}$$

$$\Rightarrow \vec{z} \times (\vec{a} - \vec{b}) \times \vec{z} - \vec{b} \times \vec{a} = \vec{c}$$

$$\Rightarrow \vec{z} \times (\vec{a} + \vec{b}) = \vec{c} + (\vec{b} \times \vec{a})(iv)$$

$$\Rightarrow (\vec{a} + \vec{b}) \times \{\vec{z} \times (\vec{a} + \vec{b})\}$$

$$= (\vec{a} + \vec{b}) \times \vec{c} + (\vec{a} + \vec{b}) \times (\vec{b} \times \vec{a})$$

$$\Rightarrow (\vec{a} + \vec{b})^2 \vec{z} - \{(\vec{a} + \vec{b}) \cdot \vec{z}\}(\vec{a} + \vec{b}) = (\vec{a} + \vec{b}) \times \vec{c} + |\vec{a}|^2 \vec{b} - |\vec{b}|^2 \vec{a} + (\vec{a} \cdot \vec{b})(\vec{b} - \vec{a})(v)$$
Now, (i) $\Rightarrow |\vec{a}|^2 = |\vec{y} - \vec{z}|^2 = 2 + 2 - 2 = 2$
Similarly, (ii) $\Rightarrow |\vec{b}|^2 = 2$
Also (i) and (ii) $\Rightarrow \vec{a} + \vec{b} = \vec{y} - \vec{x} \Rightarrow |\vec{a} + \vec{b}|^2 = 2$
(vi)
Also $(\vec{a} + \vec{b}) \cdot \vec{z} = (\vec{y} - \vec{x}) \cdot \vec{z} = \vec{y} \cdot \vec{z} - \vec{x} \cdot \vec{z} = 1 - 1 = 0$
And $\vec{a} \cdot \vec{b} = (\vec{y} - \vec{z}) \cdot (\vec{z} - \vec{x})$

$$= \vec{y} \cdot \vec{z} - \vec{x} \cdot \vec{y} - |\vec{z}|^2 + \vec{x} \cdot \vec{z} = -1$$
Thus from (v), we have $2\vec{z} = (\vec{a} + \vec{b}) \times \vec{c} + 2(\vec{b} - \vec{a}) - (\vec{b} - \vec{a}) \text{ or } \vec{z} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} + \vec{b} - a$
 $\therefore \vec{y} = \vec{a} + \vec{z} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} + \vec{b} + \vec{a}] \text{ and}$
 $\vec{x} = \vec{z} - \vec{b} = (1/2)[(\vec{a} + \vec{b}) \times \vec{c} - (\vec{a} + \vec{b})]$
275 (b)
Given
 $\vec{x} \times \vec{y} = \vec{a}(i)$
 $\vec{y} \cdot \vec{z} = \vec{b}(i)$
 $\vec{x} \cdot \vec{y} = 1$ (iv)
 $\vec{y} \cdot \vec{z} = 1(v)$
From (i) and (ii) $(\vec{x} \times \vec{y}) \times (\vec{y} \times \vec{z}) = \vec{a} \times \vec{b}$
 $\therefore [\vec{x}\vec{y}\vec{z}]\vec{y} - [\vec{y}\vec{y}\vec{z}]\vec{x} = \vec{a} \times \vec{b} \Rightarrow \vec{y} = \frac{\vec{a} \times \vec{b}}{\gamma}$ (vi)
Also from (i), we get $(\vec{x} \cdot \vec{y}) \times \vec{y} = \vec{a} \times \vec{y}$
 $\Rightarrow (\vec{x} \cdot \vec{y}) \vec{y} - (\vec{y} \cdot \vec{y})\vec{x} = \vec{a} \times \vec{y} \Rightarrow \vec{x}$
 $= (1/|\vec{y}|^2)(\vec{y} - \vec{a} \times \vec{y})$
 $\Rightarrow \vec{x} \frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} - \vec{a} \cdot (\vec{a} \times \vec{b})]$
Also from (i).($\vec{y} \times \vec{z}$) $\leq \vec{y} = \vec{b} \times \vec{y} \Rightarrow \vec{y} \Rightarrow \vec{y} = \vec{z}$
 $= \vec{x} \cdot \vec{y} = \vec{z} \vec{z} = \vec{z} - \vec{z} = (\vec{z} \cdot \vec{y})\vec{y} = \vec{z} = \vec{$

$$\Rightarrow \vec{z} = \frac{1}{|\vec{y}|^2} [\vec{y} + \vec{b} \times \vec{y}]$$
$$= \frac{\gamma}{|\vec{a} \times \vec{b}|^2} [\vec{a} \times \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})]$$
(b)

276

 $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$ and $|\vec{A}| = |\vec{B}| = 1$ and $\vec{A} \cdot \vec{B} = 0$ is given Now $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$ $(\vec{P} \times \vec{B}) \times \vec{B} = (\vec{A} - \vec{P}) \times \vec{B}$ (taking cross product with \vec{B} on the sides) $\Rightarrow (\vec{P} \cdot \vec{B})\vec{B} - (\vec{B} \cdot \vec{B})\vec{P} = \vec{A} \times \vec{B} - \vec{P} \times \vec{B}$ $\Rightarrow (\vec{P} \cdot \vec{B})\vec{B} - \vec{P} = \vec{A} \times \vec{B} - \vec{A} + \vec{P}$ $\Rightarrow 2\vec{P} = \vec{A} - \vec{A} \times \vec{B} - (\vec{P} \cdot \vec{B})\vec{B}$ $\Rightarrow \vec{P} = \frac{\vec{A} - \vec{A} \times \vec{B} - (\vec{P} \cdot \vec{B})\vec{B}}{2}$ Taking dot product with \vec{B} on both sides of (i), we get $\vec{P} \cdot \vec{B} = \vec{A} \cdot \vec{B} - \vec{P} \cdot \vec{B}$ $\Rightarrow \vec{P} \cdot \vec{B} = 0$ $\Rightarrow \vec{P} = \frac{\vec{A} + \vec{B} \times \vec{A}}{2}$ $Now(\vec{P} \times \vec{B}) \times \vec{B} = (\vec{P} \cdot \vec{B}) \cdot \vec{B} - (\vec{B} \cdot \vec{B}) \vec{P} = -\vec{P}$ $\vec{P}, \vec{A}, \vec{P} \times \vec{B} (= \vec{A} - \vec{P})$ are dependent Also $\vec{P} \cdot \vec{B} = 0$ And $\left|\vec{P}\right|^2 = \left|\frac{\vec{A}-\vec{A}\times\vec{B}}{2}\right|^2$ $=\frac{\left|\vec{A}\right|^{2}\left|\vec{A}\times\vec{B}\right|^{2}}{4}$ $=\frac{1+1}{4}=\frac{1}{2} \Rightarrow |\vec{P}|=\frac{1}{\sqrt{2}}$ 277 (b) $\vec{a} = \left[(2\hat{\imath} + 3\hat{\jmath} - 6\hat{k}) \cdot \frac{(2\hat{\imath} - 3\hat{\jmath} + 6\hat{k})}{7} \right] \frac{2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}}{7}$ $=\frac{-41}{49}(2\hat{\imath}-3\hat{\jmath}+6\hat{k})$ $\vec{a} = \frac{-41}{49} \left((2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}) \cdot \frac{(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})}{7} \right)$ $\times \frac{(-2\hat{\imath}+3\hat{\jmath}+6\hat{k})}{7}$ $=\frac{-41}{(49)^2}(-4-9+36)(-2\hat{\imath}+3\hat{\jmath}+6\hat{k})$ $=\frac{943}{49^2}(2\hat{\imath}-3\hat{\jmath}+6\hat{k})$ 278 (b) Point *G* is $\left(\frac{4}{3}, \frac{1}{3}, \frac{8}{3}\right)$. Therefore, $\left|\overrightarrow{AG}\right|^2 = \left(\frac{5}{3}\right)^2 + \frac{1}{9} + \left(\frac{5}{3}\right)^2 = \frac{51}{9}$

Or
$$|\overrightarrow{AG}| = \frac{\sqrt{51}}{3}$$

 $\overrightarrow{AB} = -4i + 4j + 0\hat{k}$
 $\overrightarrow{AC} = 2i + 2j + 2\hat{k}$
 $\overrightarrow{AC} = 2i + 2j + 2\hat{k}$
 $\overrightarrow{AB} = 2i + 2\hat{k}$
Area of $\Delta ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = 4\sqrt{6}$
 $\overrightarrow{AD} = -3i - 5j + 3\hat{k}$
The length of the perpendicular from the on the opposite face
 $= |\operatorname{Projection of } \overrightarrow{AD} \text{ on } \overrightarrow{AB} \times \overrightarrow{AC}| = \frac{(-3i - 5j + 3\hat{k})(i + j - 2\hat{k})}{\sqrt{6}}|$
 $= \left|\frac{(-3i - 5j + 3\hat{k})(i + j - 2\hat{k})}{\sqrt{6}}\right|$
 $= \left|\frac{(-3i - 5j + 3\hat{k})(i + j - 2\hat{k})}{\sqrt{6}}\right|$
 $= 1 = 3 \text{ or } a_1 = 2$
 $a_2 + 0 = 1 \text{ or } a_2 = 1$
 $a_3 - 1 = 7 \text{ or } a_3 = 8$
 $\therefore D(2, 1, 8)$
 \overrightarrow{D}
 $\overrightarrow{AB} = -i + j - 5\hat{k}$
 $\overrightarrow{AD} = 0i + 2j + 4\hat{k}$
 $\overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} i & j & \hat{k} \\ -1 & 1 & -5 \\ 0 & 2 & 4\end{vmatrix}$
 $= 14\hat{i} + 4\hat{j} - 2\hat{k}$
 $= 2(7\hat{i} + 2\hat{j} - \hat{k})$
 $\Rightarrow d = 2\sqrt{2}$
280 (d)
Let $\vec{r} = x\hat{i} + y\hat{j}$

vertex D

 $x^{2} + y^{2} + 8x - 10y + 40 = 0$, which is a circle centre C(-4, 5), radius r = 1 $p_1 = \max\{(x+2)^2 + (y-3)^2\}$ $p_2 = \min\{(x+2)^2 + (y-3)^2\}$ Let *P* be (-2, 3). Then $CP = \sqrt{2}, r = 1$ $p_2 = \left(2\sqrt{2} - 1\right)^2$ $p_1 = \left(2\sqrt{2} + 1\right)^2$ $p_1 + p_2 = 18$ Slope = $AB = \left(\frac{dy}{dx}\right)_{(2,2)} = -2$ Equation of AB, 2x + y = 6 $\overrightarrow{OA} = 2\hat{\imath} + 2\hat{\jmath}, \overrightarrow{OB} = 3\hat{\imath}$ $\overrightarrow{AB} = \hat{\iota} - 2\hat{\jmath}$ \overrightarrow{AB} . $\overrightarrow{OB} = (\hat{\imath} - 2\hat{\jmath})(3\hat{\imath}) = 3$ 281 (a) $\vec{a} = \overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$ (i) $\overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{b}$ $\overrightarrow{AD} \times \overrightarrow{AB} = \overrightarrow{c}$ $\overrightarrow{AB} \cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{|\overrightarrow{a}|}{3} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{a} = \frac{|\overrightarrow{a}|^2}{3}$ $\overrightarrow{AC} \cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{|\overrightarrow{a}|}{3} \Rightarrow \overrightarrow{AC} \cdot \overrightarrow{a} = \frac{|\overrightarrow{a}|^2}{3}$ $\therefore (\overrightarrow{AB} \times \overrightarrow{AC}) \times \vec{a} = \vec{b} \times \vec{a}$ $\therefore \frac{|\vec{a}|^2}{3} \overrightarrow{AC} - \frac{|a|^2}{3} \overrightarrow{AB} = \vec{b} \times \vec{a}$ $\therefore \overrightarrow{AC} - \overrightarrow{AB} = 3 \frac{\overrightarrow{b} \times \overrightarrow{a}}{|\overrightarrow{a}|^2} \quad (ii)$ $|a|^2 = \overrightarrow{AB} \cdot \vec{a} + \overrightarrow{AC} \cdot \vec{a} + \overrightarrow{AD} \cdot \vec{a}$ $\therefore \frac{|\vec{a}|^2}{3} = \vec{A}\vec{D} \cdot \vec{a}$ $(\overrightarrow{AD} \times \overrightarrow{AB}) \times \vec{a} = \vec{c} \times \vec{a}$ $\overrightarrow{AB} - \overrightarrow{AD} = 3 \frac{\overrightarrow{c} \times \overrightarrow{a}}{|a|^2}$ (iii) From (i), (ii) and (iii), we get $AB = \frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$ Now from (ii) and(iii), we get \overrightarrow{AC} and \overrightarrow{AD} as $\overrightarrow{AC} = \frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$ $\overrightarrow{AD} = \frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{c} \times \vec{a})}{|\vec{a}|^2}$ 282 (6)

Let
$$\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$$

 $\vec{u} = \hat{i} - 2\hat{j} + 3\hat{k}; \vec{v} = 2\hat{i} + \hat{j} + 4\hat{k}; \vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}$
 $(\vec{u} \cdot \vec{R} - 15)\hat{i} + (\vec{v} \cdot \vec{R} - 30)\hat{j} + (\vec{w} \cdot \vec{R} - 25)\hat{k} = \vec{0}$
(given)
So $\vec{u} \cdot \vec{R} = 15 \Rightarrow x - 2y + 3z = 15$ (i)
 $\vec{v} \cdot \vec{R} = 30 \Rightarrow 2x + y + 4z = 30$ (ii)
 $\vec{w} \cdot \vec{R} = 25 \Rightarrow x + 3y + 3z = 25$ (iii)
Solving, we get
 $x = 4$
 $y = 2$
 $z = 5$

283 **(2)**

Let $\vec{a} = x\hat{\imath} - 3\hat{\jmath} - \hat{k}$ and $\vec{b} = 2x\hat{\imath} + x\hat{\jmath} - \hat{k}$ be the adjacent sides of the parallelogram now angle between \vec{a} and \vec{b} is acute

$$\Rightarrow |\vec{a} + \vec{b}| > |\vec{a} - \vec{b}|$$

$$\Rightarrow |3x\hat{i} + (x - 3)\hat{j} - 2\hat{k}|^2 > |-x\hat{i} - (x + 3)\hat{j}|^2$$

$$\Rightarrow 9x^2 + (x - 3)^2 + 4 > x^2 + (x + 3)^2$$

$$\Rightarrow 8x^2 - 12x + 4 > 0$$

$$\Rightarrow 2x^2 - 3x + 1 > 0$$

$$\Rightarrow (2x - 1)(x - 1) > 0$$

$$\Rightarrow x < 1/2 \text{ or } x > 1$$

Hence the least positive integral value is 2

284 (7)

$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$

$$\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$

$$\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$

L.H.S. = $[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}]$
= $[3\vec{a} \ 3\vec{b} \ 3\vec{c}] + [\vec{b}\vec{c}\vec{a}]$
= $3^3[\vec{a}\vec{b}\vec{c}] + [\vec{a}\vec{b}\vec{c}]$
= $28 \ [\vec{a}\vec{b}\vec{c}]$
285 (1)
Given, $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$
 $\Rightarrow (\vec{u} \times \vec{v} + \vec{u}) \times \vec{u} = \vec{v}$
 $\Rightarrow (\vec{u} \times \vec{v}) \times \vec{u} = \vec{v}$
 $\Rightarrow \vec{v} - (\vec{\mu} \cdot \vec{v}) = \vec{v}$

$$\Rightarrow (\vec{u} \cdot \vec{v})\vec{u} = 0 \Rightarrow (\vec{u}\vec{v}) = 0$$
Now, $[\vec{u}\vec{v}\vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w})$

$$= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v} + \vec{u}))$$

$$= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v}) + \vec{v} \times \vec{u})$$

$$= \vec{u} \left(\vec{v^2}\vec{u} - (\vec{u} \cdot \vec{v})\vec{v} + \vec{v} \times \vec{u} \right) = \vec{v^2}\vec{u^2} = 1$$
286 (9)
Vector $\vec{a} = \hat{\iota} + 2\hat{\jmath} - \hat{k}, \vec{b} = 2\hat{\iota} - \hat{\jmath} + \hat{k}, \vec{c} = \lambda\hat{\iota} + \hat{\jmath}$
 $2\hat{k}$ are coplanar

$$\Rightarrow \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ \lambda & 1 & 2 \end{vmatrix} = 0$$

$$\Rightarrow \lambda - 3 + 2(-5) = 0$$

$$\Rightarrow \lambda = 13$$

+

287 **(7)**

Let the vertices be A, B, C, D and O be the origin $\therefore \vec{O}A = \hat{\imath} - 6\hat{\jmath} + 10\hat{k}, OB = \hat{\imath} - 3\hat{\jmath} + 7\hat{k},$ $\vec{O}C = -5\hat{\imath} - \hat{\jmath} + \lambda\hat{k}, OD = 7\hat{\imath} - 4\hat{\jmath} + 7\hat{k}$ $\therefore \vec{A}B = \vec{O}B - \vec{O}A = -2\hat{\imath} + 3\hat{\jmath} - 3\hat{k}$ $\vec{A}C = \vec{O}C - \vec{O}A = 4\hat{\imath} + 5\hat{\jmath} + (\lambda - 10)\hat{k}$ $\vec{A}D = \vec{O}D - \vec{O}A = 6\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ Volume of tetrahedron $= \frac{1}{6} \begin{bmatrix} \vec{A}B \ \vec{A}C \ \vec{A}D \end{bmatrix} = \frac{1}{6} \begin{vmatrix} -2 & 3 & -3 \\ 4 & 5 & -10 \\ 6 & 2 & -3 \end{vmatrix}$ $=\frac{1}{6}\{-2(-15-2\lambda+20)-3(-12-6\lambda+60)$ -3(8-30) $= \frac{1}{6}(4\lambda - 10 - 144 + 18\lambda + 66)$ $= \frac{1}{6}(22\lambda - 88) = 11$ $0r 2\lambda - 8 = 6$ $\operatorname{Or} \lambda = 7$ 288 (3) Given, $\vec{a} + \vec{b} = \vec{c}$ Now vector \vec{c} is along the diagonal of the parallelogram which has adjacent side vector \vec{a} and \vec{b} . Since \vec{c} is also a unit vector, triangle formed by vectors \vec{a} and \vec{b} is an equilateral triangle

Then, area of triangle is $\frac{\sqrt{3}}{4}$

289 (1)

$$\vec{a} \cdot \vec{b} \Rightarrow \vec{a} \perp \vec{b}$$

 $\vec{a} \cdot \vec{c} = 0 \Rightarrow \vec{a} \perp \vec{c}$
 $\Rightarrow \vec{a} \perp \vec{b} - \vec{c}$
 $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}| = |\vec{a} \times (\vec{b} - \vec{c})|$
 $= |\vec{a}| |\vec{b} - \vec{c}| = |\vec{b} - \vec{c}|$
Now $|\vec{b} - \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2|\vec{b}| |\vec{c}| \cos \frac{\pi}{3}$
 $= 2 - 2x \times \frac{1}{2} = 1$
 $|\vec{b} - \vec{c}| = 1$

290 (6)

Here $\vec{O}A = \vec{a}, \vec{O}B = 10 \ \vec{a} + 2\vec{b}, \vec{O}C = \vec{b}$ q = Area of parallelogram with OA and OC as adjacent sides

$$p = \text{Area of quadrilateral } OABC$$

= Area of $\triangle OAB$ + Area of $\triangle OBC$
= $\frac{1}{2} |\vec{a} \times (10\vec{a} + 2\vec{b})| + \frac{1}{2} |(10\vec{a} + 2\vec{b}) \times \vec{b}|$
= $|\vec{a} \times \vec{b}| + 5 |\vec{a} \times \vec{b}|$
 $\therefore p = 6 |\vec{a} \times \vec{b}|$
Or $p = 6 q$ [From Eq. (i)]
 $\therefore k = 6$
291 (1)

Since angle between \vec{u} and $\hat{\imath}$ is 60°, we have $\vec{u} \cdot \vec{\imath} = |\vec{u}| |\hat{\imath}| \cos 60^\circ = \frac{|\vec{u}|}{2}$ Given that $|\vec{u} - \hat{\imath}|, |\vec{u}|, |\vec{u} - 2\hat{\imath}|$ are in G.P., so $|\vec{u} - \hat{\imath}|^2 = |\vec{u}| |\vec{u} - 2\hat{\imath}|$ Squaring both sides, $[|\vec{u}|^2 + |\hat{\imath}|^2 - 2\vec{u} \cdot \hat{\imath}]^2 = |\vec{u}|^2 [|\vec{u}|^2 + 4|\hat{\imath}|^2 - 4\vec{u} \cdot \hat{\imath}]$ $\left[|\vec{u}|^2 + 1 - \frac{2|\vec{u}|}{2}\right]^2 = |\vec{u}|^2 \left[|\vec{u}|^2 + 4 - 4\frac{|\vec{u}|}{2}\right]$ Or $|\vec{u}|^2 + 2|\vec{u}| - 1 = 0 \Rightarrow |\vec{u}| = -\frac{2\pm 2\sqrt{2}}{2}$ Or $|\vec{u}| = \sqrt{2} - 1$

292 (6) Let \vec{R} be the resultant Then $\vec{R} = \vec{F_1} + \vec{F_2} + \vec{F_3} = (p+1)\hat{\imath} + 4\hat{\jmath}$ Given $|\vec{R}| = 5$, therefore $R^2 = 25$ $\therefore (p+1)^2 + 16 = 25 \Rightarrow p+1 = \pm 3$ $\therefore p = 2, -4$ 293 (2) L.H.S = $\vec{d} - \vec{a} + \vec{d} - \vec{b} + \vec{h} - \vec{c} + 3(\vec{g} - \vec{h})$ $= 2\vec{d} - (\vec{a} + \vec{b} + \vec{c}) + 3\frac{(\vec{a} + \vec{b} + \vec{c})}{3} - 2\vec{h}$ $= 2\vec{d} - 2\vec{h} = 2(\vec{d} - \vec{h}) = 2\vec{H}D$ $\Rightarrow \lambda = 2$ 294 (6) $2\vec{V} + \vec{V} \times (\hat{\imath} + 2\hat{\jmath}) = (2\hat{\imath} + \hat{k})$ (i) Or $2\vec{V} \cdot (\hat{\imath} + 2\hat{\imath}) + 0 = (2\hat{\imath} + \hat{k}) \cdot (\hat{\imath} + 2\hat{\imath})$ Or $2\vec{V} \cdot (\hat{\imath} + 2\hat{\imath}) = 2$ $\operatorname{Or}\left|\vec{V}\cdot(\hat{\iota}+2\hat{j})\right|^2=1$ $\operatorname{Or} |\vec{V}|^2 \cdot |\hat{\iota} + 2\hat{\jmath}|^2 \cos^2 \theta = 1$ (θ is the angle between \vec{V} and $\hat{i} + 2\hat{j}$) $\operatorname{Or} |\vec{V}|^2 5(1 - \sin^2 \theta) = 1$ Or $|\vec{V}|^2 5 \sin^2 \theta = 5 |\vec{V}|^2 - 1$ (ii) From Eq. (i), we have $|2\vec{V} + \vec{V} \times (\hat{\imath} + 2\hat{\jmath})|^2 = |2\hat{\imath} + \hat{k}|^2$ Or $4|\vec{V}|^2 + |\vec{V} \times (\hat{\iota} + 2\hat{j})|^2 = 5$ Or $4|\vec{V}|^2 + |\vec{V}|^2 \cdot |\hat{\iota} + 2\hat{\imath}|^2 \sin^2 \theta = 5$ $\operatorname{Or} 4 \left| \vec{V} \right|^2 + 5 \left| \vec{V} \right|^2 \sin^2 \theta = 5$ Or $4 |\vec{V}|^2 + 5 |\vec{V}|^2 - 1 = 5$ $0r 9 |\vec{V}|^2 = 6$ Or $3|\vec{V}| = \sqrt{6}$ $=\sqrt{6}=\sqrt{m}$ $\therefore m = 6$ 295 (5) Let angle between \vec{a} and \vec{b} be θ We have $|\vec{a}| = |\vec{b}| = 1$ Now $|\vec{a} + \vec{b}| = 2\cos\frac{\theta}{2}$ and $|\vec{a} - \vec{b}| = 2\sin\frac{\theta}{2}$ Consider $F(\theta) = \frac{3}{2} \left(2\cos\frac{\theta}{2} \right) + 2 \left(2\sin\frac{\theta}{2} \right)$ $\therefore F(\theta) = 3\cos\frac{\theta}{2} + 4\sin\frac{\theta}{2}, \theta \in [0,\pi]$ 296 (2) $\overrightarrow{AB} = 2\hat{\imath} + \hat{\jmath} + \hat{k}, \overrightarrow{AC} = (t+1)\hat{\imath} + 0\hat{\jmath} - \hat{k}$ $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ t+1 & 0 & -1 \end{vmatrix}$ $= -\hat{i} + (t+3)\hat{j} - (t+1)\hat{k}$

$$= \sqrt{1 + (t + 3)\hat{j} - (t + 1)^2}$$

$$= \sqrt{2t^2 + 8t + 11}$$
Area of $\Delta ABC = \frac{1}{2} |\overline{AB} \times \overline{AC}|$

$$= \frac{1}{2} \sqrt{2t^2 + 8t + 1}$$
Let $f(t) = \Delta^2 = \frac{1}{4} (2t^2 + 8t + 1)$
 $f'(t) = 0 \Rightarrow t = -2$
At $t = -2, f''(t) > 0$
So Δ is minimum at $t = -2$
297 **(4)**
 $a = ai + 2j - 3k, b = i + 2\alpha j - 2k,$
 $c = 2i - \alpha j + k\{(\alpha \times b) \times (b \times c)\} \times (c \times a) = 0$
Or $\{[a \ b \ c]b - [a \ b \ b]c\} \times (c \times a) = 0$
Or $[a \ b \ c]b \times (c \times a) = 0$
Or $[a \ b \ c]b \times (c \times a) = 0$
Or $[a \ b \ c] = 0$ (\because a and c are not collinear)
 $\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 1 & 2\alpha & -2 \\ 2 & -\alpha & 1 \end{vmatrix}$
Or $\alpha(2\alpha - 2\alpha) - 2(1 + 4) - 3(-\alpha - 4\alpha) = 0$
Or $10 - 15 \alpha = 0$
 $\therefore \alpha = 2/3$
298 **(9)**
Since \vec{x} and \vec{y} are non-collinear vectors, therefore \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ are non-collinear vectors
 $[(a - 2)\alpha^2 + (b - 3)\alpha + c] + [(a - 2)\gamma^2 + (b - 3)\beta\beta + c]y + [(a - 2)\gamma^2 + (b - 3)\alpha + c] + [(a - 2)\gamma^2 + (b - 3)\beta + c] + [(a - 2)\gamma^2 + (b - 3)\beta + c] + [(a - 2)\gamma^2 + (b - 3)\beta + c] + [(a - 2)\gamma^2 + (b - 3)\beta + c] = 0$
Coefficient of each vector \vec{x}, \vec{y} and $\vec{x} \times \vec{y}$ is zero
 $(a - 2)\alpha^2 + (b - 3)\beta + c = 0$
The above three equations will satisfy if the coefficients of α, β and γ are zero because α, β and γ are three distinct real numbers
 $a - 2 = 0$ or $a = 2$,
 $b - 3 = 0$ or $b = 3$ and $c = 0$
 $\therefore a^2 + b^2 + c^2 = 2^2 + 3^2 + 0^2 = 4 + 9 = 13$

299 **(7)** Vectors along the sides are $\vec{a} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{b} = 2\hat{\imath} + 4\hat{\jmath} + \hat{k}$ Clearly the vector along the longer diagonal is $\vec{a} + \vec{b} = 3\hat{\imath} + 6\hat{\jmath} + 2\hat{k}$ Hence length of the longer diagonal is

 $\left|\vec{a} + \vec{b}\right| = \left|3\hat{\imath} + 6\hat{\jmath} + 2\hat{k}\right| = 7$

300 **(9)**

Here $\vec{F} = 3\hat{\imath} - \hat{\jmath} - 2\hat{k}$ $\vec{AB} = P.V. \text{ of } B - P.V \text{ of } A$ $= (-\hat{\imath} - \hat{\jmath} - 2\hat{k}) - (-3\hat{\imath} - 4\hat{\jmath} + \hat{k})$ $= 2\hat{\imath} + 3\hat{\jmath} - 3\hat{k}$ Let $\vec{s} = \vec{AB}$ be the displacement vector Now work done $= \vec{F}.\vec{s}$ $= (3\hat{\imath} - \hat{\jmath} - 2\hat{k}).(2\hat{\imath} + 3\hat{\jmath} - 3\hat{k})$ = 6 - 3 + 6 = 9

