Single Correct Answer Type

1.	If $\cos x + \cos y - \cos(x + y)$	$(-y) = \frac{3}{2}$, then		
	a) $x + y = 0$	b) $x = 2y$	c) $x = y$	d) $2x = y$
2.	The number of values of	y in $[-2\pi, 2\pi]$ satisfying the	e equation $ \sin 2x + \cos 2x $	$ x = \sin y $ is
	a) 3	b) 4	c) 5	d) 6
3.	In $\triangle ABC$, the median AD	divides $\angle BAC$ such that $\angle B$	$AD: \angle CAD = 2:1$. Then $\cos \theta$	S(A/3) is equal to
	$\sin B$	$\sin C$	$\frac{2 \sin B}{2}$	d) None of these
	$2 \sin C$	$2 \sin B$	sin C	
4.	The equation $\sin^2 \theta - \frac{1}{\sin^2 \theta}$	$\frac{4}{3\theta-1} = 1 - \frac{4}{\sin^3 \theta - 1}$ has		
	a) No root	b) One root	c) Two roots	d) Infinite roots
5.	$If f(x) = \sin^6 x + \cos^6 x,$	then range of $f(x)$ is		
	a) $\begin{bmatrix} 1 \\ - & 1 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 3 \\ - & - \end{bmatrix}$	c) $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$	d) None of these
C	[4] The number of colutions	$\begin{bmatrix} 4' \\ 4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	
6.	a) 7	$\sin x + \sin 2x + \sin 3x =$	$\cos x + \cos 2x + \cos 3x$, 0	$\leq x \leq 2\pi$, is
7	$d \int d \int d d d d d d d d d d d d d d d d$	DJJ n D) where $A = D = \pi$ then	(1) (1) V^{+1} is equal to	ujo
/.	f(y) = (1 + tan A)(1 - tan A)	(ID) where $A - D = \frac{1}{4}$, then	$(y+1)^{s}$ is equal to	1) 04
0	a) 9	b) 4	c) 27	d) 81
8.	In triangle <i>ABC</i> , if sin <i>A</i> co	$B = \frac{1}{4}$ and 3 tan $A = \tan B$	B_{1} , thencot ² A is equal to	
	a) 2	b) 3	c) 4	d) 5
9.	The range of <i>y</i> such that	the equation in $x, y + \cos x$	$= \sin x$ has a real solution	is
	a) [-2,2]	b) $[-\sqrt{2}, \sqrt{2}]$	c) [-1,1]	d) [-1/2, 1/2]
10.	The value of $\cos 2(\theta + \phi)$	$) + 4\cos(\theta + \phi)\sin\theta\sin\phi$	$+ 2 \sin^2 \phi$ is	
	a) Independent of θ only		b) Independent of ϕ only	
	c) Independent of both θ	and ϕ	d) Dependent on θ and ϕ	
11.	If $x_1, x_2, x_3, \dots, x_n$ are in A sec $x2$ sec $x3+\dots+$ sec $xn-2$	P. whose common differen <i>I</i> sec <i>xn</i> is	ce is α , then the value of si	$n \alpha (\sec x_1 \sec x_2 +$
	$sin(n-1)\alpha$		$\sin n\alpha$	
	a) $\frac{1}{\cos x_1 \cos x_n}$		b) $\frac{1}{\cos x_1 \cos x_n}$	
	c) $\sin(n-1) \alpha \cos x_1 \cos x_$	x_n	d) $\sin n \alpha \cos x_1 \cos x_n$	
12.	If $\sin x + \sin^2 x = 1$, then	the value of $\cos^{12} x + 3\cos^{12} x$	$x^{10}x + 3\cos^8 x + \cos^6 x - \cos^6 x$	2 is equal to
	a) 0	b) 1	c) -1	d) 2
13.	In triangle <i>ABC</i> , $\angle A = 30$ triangle is	°, $BC = 2 + \sqrt{5}$, then the dis	stance of the vertex A from	the orthocenter of the
			$\sqrt{3}+1$	1
	a) 1	b) $(2 + \sqrt{5})\sqrt{3}$	c) $\frac{1}{2\sqrt{2}}$	d) $\frac{1}{2}$
14.	In triangle ABC, medians	AD and CE are drawn. If A	$D = 5, \angle DAC = \pi/8$ and \angle	$ACE = \pi/4$, then the area of
	the triangle <i>ABC</i> is equal	to		
	ی ²⁵	b) ²⁵	ی ²⁵	d) ¹⁰
	a) <u>9</u>	<u>b) 3</u>	$(1)\frac{1}{18}$	$\frac{1}{3}$
15.	If $\theta = \pi/4n$, then the value	ue of tan θ tan 2 θ tan(2n -	$(-2)\theta$ tan $(2n-1)\theta$ is	
	a) -1	b) 1	c) 0	d) 2
16.	$e^{ \sin x } + e^{- \sin x } + 4a =$	0 will have exactly four diff	erent solutions in $[0, 2\pi]$ if	
	a) $a \in R$	b) $a \in \left[-\frac{e}{4}, -\frac{1}{4}\right]$	c) $a \in \left\lfloor \frac{-1 - e^2}{4e}, \infty \right\rfloor$	d) None of these
17.	The numerical value of ta	nn 20° tan 80° cot 50° is equa	al to	

a)
$$\sqrt{3}$$
 b) $\frac{1}{\sqrt{3}}$ c) $2\sqrt{3}$ d) $\frac{1}{2\sqrt{3}}$
18. In ΔABC , let $R = \operatorname{circumvalus} r = \operatorname{inradius}$ if r is the distance between the circumcentre and the incentre, then ratio R/r is equal to
a) $\sqrt{2} - 1$ b) $\sqrt{3} - 1$ c) $\sqrt{2} + 1$ d) $\sqrt{3} + 1$
19. If $A + B + C = 3\pi/2$, then $\cos 2A + \cos 2B + \cos 2C$ is equal to
a) -1 do s $A \cos B \cos C$ d) $1 - 4 \sin A \sin B \sin C$
c) $1 + 2 \cos A \cos B \cos C$ d) $1 - 4 \sin A \sin B \sin C$
20. In triangle ABC , line joining circumcentre and incentre is parallel to side AC , then $\cos A + \cos C$ is equal to
a) -1 ob 1 c) -2 d) 2
21. The roots of the equation $4x^2 - 2\sqrt{5}x + 1 = 0$ are
a) $\sin 36^2$, $\sin 18^6$ b) $\sin 18^3$, $\cos 36^6$ c) $\sin 36^6$, $\cos 18^6$ d) $\cos 18^6$, $\cos 36^6$
22. Let $0 < x < \pi/A$, then (sec $2x - \tan 2x$) equals
a) $\tan (x - \frac{\pi}{4})$ b) $\tan (\frac{\pi}{4} - x)$ c) $\tan (x + \frac{\pi}{4})$ d) $\tan^2 (x + \frac{\pi}{4})$
23. A quadratic equation whose roots are $\csc^2\theta$ and $\sec^2\theta$ can be
a) $x^2 - 5x + 2 = 0$ b) $x^2 - 3x + 6 = 0$ c) $x^2 - 5x + 5 = 0$ d) None of these
24. The value of $\tan 6^6 \tan 24^6 \tan 78^6$ is
a) 1 b) $1/2$ c) $1/4$ d) $1/8$
25. If $f(x) = \log(\frac{14x}{1-2})$, then
a) $f(x_1) - f(x_2) = f(x_1 + x_2)$ b) $f(x + 2) - 2f(x + 1) + f(x) = 0$
c) $f(x_1 + f(x + 1) = f(x^2 + x)$ d) $f(x_1) + f(x_2) = f(\frac{x_1 + x_2}{1 + x_1x_2})$
26. In triangle ABC , if $\cos A + \cos B + \cos C = \frac{7}{2}$, then $\frac{\pi}{8}$ is equal to
a) $\frac{3}{4}$ b) $\frac{4}{3}$ c) $\frac{2}{3}$ c) $\frac{2}{3}$ d) $\frac{3}{2}$
27. Let n be a positive integer such that $\sin \frac{\pi}{2n} + \cos \frac{\pi}{2} = \frac{7}{2}$. Then
a) $6 \le n \le 8$ b) $4 < n < 8$ c) $4 \le n \le 8$ d) $4 < n < 8$
28. If $\tan(A - B) = 1$ and $\sec(A + B) = 2/\sqrt{3}$, then the smallest positive values of A and B, respectively, are
a) $\frac{25x_1}{24}$, $\frac{19\pi}{24}$ b) $\frac{19\pi}{24}$, $\frac{25\pi}{24}$ c) $\frac{31\pi}{24}$, $\frac{13\pi}{24}$ d) $\frac{13\pi}{24}$, $\frac{3\pi}{24}$
29. One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
a) $(0, \frac{\pi}{2})$ b) $((-\frac{\pi}{2}, 0)$ c) $(\frac{\pi}{2}, \pi)$ d) None of these
31. In $AABC$, if $\frac{\sin A}{\sin \sin \frac{\pi}{2}}$ c) $\frac{\pi}{2}$, $\frac{\pi}{4}$ c) $\frac{\pi}{4}$

35.	If $\sin(y + z - x)$, $\sin(z + z)$	(x - y), sin $(x + y - z)$ are	e in A.P., then tan x , tan y, ta	n z are in
	a) A.P.	b) G.P.	c) H.P.	d) None of these
36.	$\sin^2 A - \sin^2 B$	is equal to		
	$\sin A \cos A - \sin B \cos B$ a) $\tan(A - B)$	b) $tan(A + B)$	c) $\cot(A - B)$	d) $\cot(A + B)$
37.	If $\tan^2 \theta = 2 \tan^2 \phi + 1$,	then $\cos 2\theta + \sin^2 \phi$ equals	5	
	a) -1	b) 0	c) 1	d) None of these
38.	Let <i>AD</i> be a median of th	the ΔABC . If AE and AF are i	medians of the triangle ABL	and ADC, respectively, and
	$AD = m_1, AE = m_2, AF =$	$= m_3$, then $a^2/8$ is equal to	0	
	a) $m_2^2 + m_3^2 - 2m_1^2$	b) $m_1^2 + m_2^2 - 2m_3^2$	c) $m_1^2 + m_3^2 - 2m_2^2$	d) None of these
39.	The number $N = 6 \log_{10}$	$2 + \log_{10} 31$ lies between t	two successive integers who	ose sum is equal to
	a) 5	b) 7	c) 9	d) 10
40.	Let $A_0A_1A_2A_3A_4A_5$ be a	regular hexagon inscribed i	in a circle of unit radius. Th	en the product of the
	lengths of the line segme	ents A_0A_1 , A_0A_2 and A_0A_4 is	3	
	a) 3/4	b) 3√ <u>3</u>	c) 3	d) 3√3/2
41.	The general values of θ s	satisfying the equation 2 sin	$n^2 \theta - 3\sin\theta - 2 = 0$ is $(n \theta)$	$\equiv Z$)
	a) $n\pi + (-1)^n \pi/6$	b) $n\pi + (-1)^n \pi/2$	c) $n\pi + (-1)^n 5\pi/6$	d) $n\pi + (-1)^n 7\pi/6$
42.	If the lengths of the sides	s of triangle are 3, 5 and 7, t	then the largest angle of the	triangle is
	π	$b^{5\pi}$	2π	3π
	$\frac{a}{2}$	6	$\frac{1}{3}$	$\frac{1}{4}$
43.	If $\sin \theta$ and $-\cos \theta$ are the set of the set	he roots of the equation ax^2	$a^2 - bx - c = 0$, where $a, b = a$	and <i>c</i> are the sides of a
	triangle ABC, then cos B	is equal to		
	a) $1 - \frac{c}{2}$	b) $1 - \frac{c}{-}$	c) $1 + \frac{c}{2}$	d) $1 + \frac{c}{2}$
11	2a	$-3\cos\theta$	² <i>y</i> 2 <i>a</i>	3a
44.	If $5 \tan \theta = 4$, then $\frac{5 \sin \theta}{5 \sin \theta}$	$\frac{1}{1+2\cos\theta}$ is equal to		
	a) 0	b) 1	c) 1/6	d) 6
45.	If $\cot(\alpha + \beta) = 0$, then s	$in(\alpha + 2\beta)$ can be		
	a) $-\sin \alpha$	b) sin β	c) $\cos \alpha$	d) $\cos\beta$
46.	The general solution of c	$\cos x \cos 6x = -1$ is		
	a) $x = (2n + 1)\pi, n \in Z$		b) $x = 2n\pi, n \in Z$	
	c) $x = n\pi, n \in \mathbb{Z}$		d) None of these	
47.	If $a, b \in [0, 2\pi]$ and the e of $(a + b)$ can be	equation $x^2 + 4 + 3\sin(ax + a)$	(b) - 2x = 0 has at least of	one solution, then the value
	$.7\pi$	5π	9π	d) None of these
	a) $\frac{1}{2}$	b) $\frac{1}{2}$	c) $\frac{1}{2}$	
48.	The total number of orde	ered pairs (x, y) satisfying	$ x + y = 4 \sin\left(\frac{\pi x^2}{2}\right) = 1$	is equal to
	a) 2	b) 2	$\frac{1}{3}$	d) (
10	a) 2 In triangle ABC $(A - \pi)$	$/2$ then $\tan(C/2)$ is equal t	CJ 4	u) o
ч).	a - c	a - h	a-c	a - b
	a) $\frac{n}{2h}$	b) $\frac{a}{2c}$	c) $\frac{h}{h}$	d) $\frac{a-b}{c}$
50.	If $\sin \theta_1 \sin \theta_2 - \cos \theta_1 \cos \theta_2$	$\theta_2 + 1 = 0$, then the value	e of $\tan(\theta_1/2) \cot(\theta_2/2)$ is a	always equal to
	a) –1	b) 1	c) 2	d) -2
51.	In triangle ABC , tan A +	$\tan B + \tan C = 6$ and $\tan A$	$\tan B = 2$, then the values of	of tan A. tan B. tan C are
	a) 1.2.3	b) 3. 2/3. 7/3	c) 4.1/2.3/2	d) None of these
52	If the median of ΛABC the	rough A is perpendicular to	OAB, then	
02.	a) $\tan A + \tan B = 0$	b) 2 tan $A + \tan B = 0$	c) $\tan A + 2 \tan B = 0$	d) None of these
53.		$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	(0) (-7)	
	If $\sin \theta = \frac{1}{2}$ and $\cos \theta = \frac{1}{2}$	$-\frac{1}{2}$, then the general value	or θ is $(n \in \mathbb{Z})$ is	
	a) $2n\pi + \frac{5\pi}{}$	b) $2n\pi + \frac{\pi}{2}$	c) $2n\pi + \frac{7\pi}{}$	d) $2n\pi + \frac{\pi}{4}$
E 4	6	ý 6	6	- 4
54.	If $\log_2 x + \log_x 2 = \frac{15}{3} =$	$\log_2 y + \log_y 2$ and $x \neq y$	then $x + y =$	

	a) 2	b) 65/8	c) 37/6	d) None of these
55.	If 'O' is the circumcentre of	of $\triangle ABC$ and R_1, R_2 and R_3	are the radii of the circumc	ircles of triangles
	<i>OBC</i> , <i>OCA</i> and <i>OAB</i> , respe	ectively, then $\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ h	as the value equal to	
	a) $\frac{abc}{2D^2}$	b) $\frac{R^3}{R}$	c) $\frac{4\Delta}{R^2}$	d) $\frac{\Delta}{4R^2}$
56.	2K ³ In an acute angled triangle	abc e ABC $r + r_{c} = r_{c} + r_{c}$ and	K^2 $ \langle R \rangle = \frac{\pi}{2}$ then	4 <i>K</i> ²
00.	a) $h \pm 2c \neq 2a \neq 2h \pm 2c$	-120, 11, 11, 11, 12, 13, 100, 100, 100, 100, 100, 100, 100,	(2) $\frac{2}{3}$, then b) $h \pm Ac < Aa < 2h \pm Ac$	
	a) $b + 2c < 2a < 2b + 2c$ c) $b + 4c < 4a < 4b + 4c$, ,	d) $b + 3c < 3a < 3b + 3c$	
57.	The radii r_1, r_2, r_3 of the es	scribed circles of the triang	le <i>ABC</i> are in H.P. If the are	ea of the triangle is 24 cm ²
	and its perimeter is 24 cm	n, then the length of its larg	est side is	
	a) 10	b) 9	c) 8	d) None of these
58.	In triangle ABC, base BC a	and area of triangle Δ are fi	xed. Locus of the centroid	of triangle <i>ABC</i> is a
	straight line that is		b) Dight biggstor of side P	
	a) Parallel to side <i>BC</i>		b) Right Disector of side b	$=1\left(\sqrt{\Delta}\right)$
50	c) Right angle of BL		d) inclined at an angle sin $\sin^2 x$	$\left(\frac{BC}{BC}\right)$ to side BC
59.	Which of the following is	not the general solution of	$2^{\cos 2x} + 1 = 3.2^{-\sin^2 x}?$	
	a) $n\pi$, $n \in Z$	b) $\left(n+\frac{1}{2}\right)\pi$, $n \in Z$	c) $\left(n-\frac{1}{2}\right)\pi, n \in \mathbb{Z}$	d) None of these
60.	If $\frac{\sin(x+y)}{\cos(x+y)} = \frac{a+b}{\cos(x+y)}$ they	$\frac{\tan x}{1}$ is equal to		
	$\sin(x-y) = a - b$, then $\tan y$ is equal to			
	a) $\frac{b}{a}$	b) $\frac{a}{b}$	c) ab	d) None of these
61.	If x_1 and x_2 are two distin	ict roots of the equation a c	$\cos x + b \sin x = c$, then tan	$\frac{x_1+x_2}{2}$ is equal to
	a) $\frac{a}{-}$	b) $\frac{b}{-}$	c) _	d) $\frac{a}{-}$
62	b	a	a a	C
02.	$m^{2} = m^{2} - 4mn$	$m^{2} + m^{2} - 4mn$	c) $m^2 - n^2 - m^2 + n^2$	d) $m^2 - n^2 - 4\sqrt{mn}$
63.	In triangle ABC, if P. O. R	divides sides BC . AC and A	B. respectively. in the ratio	k: 1 (in order). If the ratio
	$\left(\frac{\operatorname{area} PQR}{k}\right)$ is $\frac{1}{k}$, then k is equivalent	mal to	_ ,	
	Area ABC/ 3'	h) 2	c) 3	d) None of these
64.	If $r \in \left(\pi \frac{3\pi}{2}\right)$ then $4\cos^2$	$\left(\frac{\pi}{2}-\frac{x}{2}\right)+\sqrt{4\sin^4 x+\sin^2}$	$\frac{2}{2r}$ is always equal to	
	a) 1	$\begin{pmatrix} 4 & 2 \end{pmatrix}$		d) None of these
65.	The area of the circle and	the area of a regular polyg	on of <i>n</i> sides and of perime	ter equal to that of the
	circle are in the ratio of			
	a) $\tan\left(\frac{\pi}{-}\right):\frac{\pi}{-}$	b) $\cos\left(\frac{\pi}{2}\right):\frac{\pi}{2}$	c) $\sin \frac{\pi}{\pi} \cdot \frac{\pi}{\pi}$	d) $\cot\left(\frac{\pi}{-}\right):\frac{\pi}{-}$
66	If $\sin 6\theta + \sin 4\theta + \sin 2\theta$	(n) $n= 0 then \theta is equal to (n)$	nn ∈Z)	(n) n
00.	a) $\frac{n\pi}{n}$ or $n\pi + \frac{\pi}{n}$	b) $\frac{n\pi}{n}$ or $n\pi + \frac{\pi}{n}$	c) $\frac{n\pi}{n\pi}$ or $2n\pi + \frac{\pi}{n\pi}$	d) None of these
67	$\frac{19}{4} = 3$	⁴ ⁶	⁵ 4 6	
07.	a) A rational number	b) An irrational number	c) A prime number	d) None of these
68.	If $S = \{x \in N : 2 + \log_2 \sqrt{x}\}$	$\frac{1}{x+1} > 1 - \log_{1/2} \sqrt{4-x^2}$?}, then	.)
	a) $S = \{1\}$	b) $S = Z$	c) $S = N$	d) None of these
69.	If $ 2\sin\theta - \csc\theta \ge 1a$	and $\theta \neq \frac{n\pi}{2}$, $n \in I$, then	,	,
	a) $\cos 2\theta \ge 1/2$	b) $\cos 2\theta \ge 1/4$	c) $\cos 2\theta \le 1/2$	d) $\cos 2\theta \le 1/4$
70.	If $(1 - \tan \theta)(1 + \tan \theta)$ s	$ec^2 \theta + 2^{tan^2 \theta} = 0$, then the	the number of values of θ in	the interval $(-\pi/2, \pi/2)$
	are			
	a) 1	b) 2	c) 3	d) 4

71.	Sum of all the solutions in	$[0, 4\pi]$ of the equation tan	$x + \cot x + 1 = \cos\left(x + \frac{\pi}{4}\right)$) is
	a) 3π	b) π/2	c) 7π/2	d) 4π
72.	If $\tan\frac{\pi}{9}$, x and $\tan\frac{5\pi}{18}$ are in	A.P. and $\tan\frac{\pi}{9}$, y and $\tan\frac{7\pi}{16}$	$\frac{\tau}{3}$ are also in A.P., then	
	a) $2x = y$	b) <i>x</i> > 2	c) $x = y$	d) None of these
73.	The general solution of th	e equation $\sin x - 3 \sin 2x$	$+\sin 3x = \cos x - 3\cos 2x$	$\alpha + \cos 3x$ is $(n \in Z)$
	a) $n\pi + \frac{\pi}{8}$	b) $\frac{n\pi}{2} + \frac{\pi}{8}$	c) $(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$	d) $2n\pi + \cos^{-1}\frac{2}{3}$
74.	If $\cos 2B = \frac{\cos(A+C)}{\cos(A-C)}$, the	tan A , tan B , tan C are	in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
75.	The equation $\cos x + \sin x$	z = 2 has	-	
	a) Only one solution		b) Two solutions	
	c) No solution		d) Infinite number of solu	tions
76.	The general solution of th	e trigonometric equation s	$\sin x + \cos x = 1$ is given by	7
	a) $x = 2n\pi$, $n = 0, \pm 1, \pm 2$	<u>-</u>		
	b) $x = 2n\pi + \pi/2; n = 0, $	<u>+, +</u> 2,		
	c) $x = n\pi + (-1)^n \frac{\pi}{n} - \frac{\pi}{n}$	n = 0 + 1 + 2		
	<i>c) x nn (1) 4 4</i>	<i>n</i> 0, <u>-</u> 1, <u>-</u> 2,		
	d) None of these			
77.	The number of values of θ	which satisfy the equation	$\sin 3\theta - \sin \theta = 4\cos^2 \theta$	$-2, \forall \theta \in [0, 2\pi]$, is
=0	a) 4	b) 5	c) 7	d) 0
/8.	If $\cos B \cos C + \sin B \sin C$	$\sin^2 A = 1$, then triangle A	BC IS	
	a) Isosceles and right ang	led		
	b) Equilateral	rates are greater than - l		
	d) None	angles are greater than $\pi/4$	ł	
70	U) None If $\sin 2\theta = \cos 2\theta$ and θ is	an aguta angla than ain A	oquala	
79.	$\frac{11}{5} \sin 2\theta = \cos 3\theta \sin \theta \sin \theta$	$\sqrt{\sqrt{E}}$ 1		
	a) $\frac{\sqrt{5}-1}{4}$	b) $-\left(\frac{\sqrt{5-1}}{4}\right)$	c) $\frac{\sqrt{5+1}}{4}$	d) $\frac{-\sqrt{5}-1}{4}$
80.	The number of solutions of	of $\sec^2 \theta + \csc^2 \theta + 2 \cos^2 \theta$	$ec^2\theta = 8, 0 \le \theta \le \pi/2$ is	
	a) 4	b) 3	c) 0	d) 2
81.	Which of the following is o	correct?		-
	a) $\sin 1^\circ > \sin 1$	b) sin 1° < sin 1	c) $\sin 1^\circ = \sin 1$	d) $\sin 1^\circ = \frac{\pi}{180} \sin 1$
82.	One of the general solutio	ns of 4 sin θ sin 2 θ sin 4 θ =	$\sin 3\theta$ is	
	a) $(3n \pm 1)\pi/12, \forall n \in \mathbb{Z}$		b) $(4n \pm 1)\pi/9, \forall n \in \mathbb{Z}$	
00	c) $(3n \pm 1)\pi/9, \forall n \in \mathbb{Z}$		d) $(3n \pm 1)\pi/3, \forall n \in \mathbb{Z}$	1 00
83.	The side of triangle <i>ABC</i> a	re in A.P. (order being <i>a</i> , <i>b</i>)	(c) and satisfy $\frac{2!}{1!9!} + \frac{2!}{3!7!} + \frac{2!}{5}$	$\frac{1}{5!5!} = \frac{8^{2}}{(2b)!}$, then the value
	OI COS A + COS B IS 12	13	11	10
	a) $\frac{12}{7}$	b) $\frac{15}{7}$	c) $\frac{11}{7}$	d) $\frac{10}{7}$
84.	$If \sin^{-1} a + \sin^{-1} b + \sin^{-1} b$	${}^{1}c = \pi$, then $a\sqrt{1 - a^2} + b$	$v\sqrt{1-b^2} + c\sqrt{1-c^2}$ is equi-	al to
	a) $a + b + c$	b) $a^2 b^2 c^2$	c) 2 <i>abc</i>	d) 4 <i>abc</i>
85.	If in a triangle, $\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_2}{r_2}\right) \left(1 - $	$-\frac{r_1}{r_3}$ = 2, then the triangl	e is	
	a) Right angled	b) Isosceles	c) Equilateral	d) None of these
86.	In triangle <i>ABC</i> if angle <i>C</i>	is 90° and area of triangle	is 30 sq. units, then the min	imum possible value of the
	hypotenuse <i>c</i> is equal to	_	_	_
	a) 30√2	b) 60√2	c) 120√2	d) √ <u>30</u>
87.	In triangle ABC, angle A is	greater than angle B. If th	e measures of angles A and	B satisfy the equation

	$3\sin x - 4\sin^3 x - k = 0$, $0 < k < 1$, then the measu	ure of angle <i>C</i> is	
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{2}$	c) $\frac{2\pi}{3}$	d) $\frac{5\pi}{6}$
88.	The range of k for which	the inequality $k \cos^2 x - k$	$\cos x + 1 \ge 0 \ \forall x \in (-\infty, \infty)$), is
	a) $k < \frac{-1}{2}$	b) $\frac{-1}{2} \le k \le 4$	c) <i>k</i> > 4	d) $\frac{1}{2} \le k \le 5$
89.	The number of solution o	$f\sin^4 x - \cos^2 x \sin x + 2s$	$\sin^2 x + \sin x = 0 \text{ in } 0 \le x \le$	$\leq 3\pi$ is
	a) 3	b) 4	c) 5	d) 6
90.	In any triangle ABC, sin ² .	$A - \sin^2 B + \sin^2 C$ is always	ys equal to	
	a) 2 sin A sin B cos C	b) 2 sin A cos B sin C	c) $2 \sin A \cos B \cos C$	d) 2 sin A sin B sin C
91.	Let $f(n) = 2 \cos nx \forall n \in$	<i>N</i> , then $f(1) f(n + 1) - f(n +$	(n) is equal to	
	a) $f(n+3)$	b) $f(n+2)$	c) $f(n+1) f(2)$	d) $f(n+2)f(2)$
92.	If the equation $\cot^4 x - 2$ values of 'a' is equal to	$\csc^2 x + a^2 = 0$ has at l	east one solution, then the s	sum of all possible integral
	a) 4	b) 3	c) 2	d) 0
93.	$\cos^3 x \sin 2x = \sum_{r=0}^n a_r \sin x$	$(r x) \forall x \in R$, then		
	a) $n = 5, a_1 = 1/2$	b) $n = 5, a_1 = 1/4$	c) $n = 5, a_2 = 1/8$	d) $n = 5, a_2 = 1/4$
94.	In triangle ABC, if tan(A/	$(2) = 5/6$ and $\tan(B/2) = 2$	20/37, the sides <i>a</i> , <i>b</i> and <i>c</i> a	ire in
	a) A.P.	b) GP.	c) H.P.	d) None of these
95.	If $\sin x + \csc x = 2$, the	$\sin \sin^n x + \csc^n x$ is equal	ll to	
	a) 2	b) 2 ⁿ	c) 2^{n-1}	d) 2^{n-2}
96.	The equation $2\cos^2\frac{x}{2}\sin^2$	$x^{2} x = x^{2} = x^{-2}; 0 < x \le \frac{\pi}{2}$	as	
	a) No real solution		b) One real solution	
	c) More than one solution	n	d) None of these	
97.	If in $\triangle ABC$, sin $A \cos B = \frac{1}{2}$	$\frac{\sqrt{2}-1}{\sqrt{2}}$ and $\sin B \cos A = \frac{1}{\sqrt{2}}$, the	hen the triangle is	
	a) Equilateral		b) Isosceles	
	c) Right angled		d) Right-angled isosceles	
98.	In triangle <i>ABC</i> , $\angle A = 60^{\circ}$	°, $\angle B = 40^{\circ}$ and $\angle C = 80^{\circ}$.	If <i>P</i> is the centre of the circ	umcircle of triangle <i>ABC</i>
	with radius unity, then th	e radius of the circumcircle	e of triangle BPC is	
0.0		b) $\sqrt{3}$	CJ Z	a) $\sqrt{3/2}$
99.	The number of solutions interval $[0, 2\pi]$ is	of the pair of equations 2 s	$\ln^2 \theta - \cos 2\theta = 0$ and 2 cos	$S^2 \theta - 3 \sin \theta = 0$ in the
	a) Zero	b) One	c) Two	d) Four
100	\cdot The value of $\frac{\log_2 24}{\log_{96} 2} - \frac{\log_2}{\log_1}$	$\frac{192}{2^2}$ is		
	a) 3	b) 0	c) 2	d) 1
101	. Number of solutions the e	equation $\cos(\theta) \cdot \cos(\pi\theta) =$	= 1 has	
	a) 0	b) 2	c) 1	d) Infinite
102	$\cdot \text{ If } 1 + \sin x + \sin^2 x + $	$x^3 + \cdots \infty$ is equal to $4 + 2$	$2\sqrt{3}, 0 < x < \pi$, then x is eq	ual to
	$\frac{\pi}{2}$	h) $\frac{\pi}{-}$	$\frac{\pi}{n}$ or $\frac{\pi}{n}$	d) $\frac{\pi}{2\pi}$ or $\frac{2\pi}{2\pi}$
400	⁴ 6	³ 4	⁶ 3 ⁶ 6	3 3
103	If $\cos x = \tan y$, $\cos y = 1$	$\tan z$, $\cos z = \tan x$, then th	e value of $\sin x$ is	
104	a) $2\cos 18^\circ$	DJ COS 18°	cj sin 18°	a) $2 \sin 18^\circ$
104	\cdot If $\tan \theta = -\frac{1}{3}$, then $\sin \theta$ i	S		
	a) $-\frac{4}{5}$ but not $\frac{4}{5}$	b) $-\frac{4}{5}$ or $\frac{4}{5}$	c) $\frac{4}{5}$ but not $-\frac{4}{5}$	d) None of these
105	. Let $\theta \in [0, 4\pi]$ satisfy the	equation $(\sin \theta + 2)(\sin \theta$	$(\sin \theta + 4) = 6$. If the s	sum of all the values of $ heta$ is
	of the form $k\pi$, then the v	alue of <i>k</i> is		
	a) 6	b) 5	c) 4	d) 2

106	^{106.} The sum of all the solutions of the equation $\cos\theta\cos\left(\frac{\pi}{2}+\theta\right)\cos\left(\frac{\pi}{2}-\theta\right)=\frac{1}{4}, \theta\in[0,6\pi]$				
	a) 15 <i>π</i>	b) 30π	c) $\frac{100\pi}{2}$	d) None of these	
107	If $a \sin x + b \cos(x + \theta) + b \cos(x + \theta)$	$b\cos(x-\theta) = d$, then the	e minimum value of $ \cos \theta $	is equal to	
	a) $\frac{1}{2 b }\sqrt{d^2-a^2}$	b) $\frac{1}{2 a }\sqrt{d^2-a^2}$	c) $\frac{1}{2 d }\sqrt{d^2-a^2}$	d) None of these	
108	If $a \le 3\cos x + 5\sin(x - x)$	$\pi/6$ $\leq b$ for all <i>x</i> , then (<i>a</i> ,	b) is		
	a) $(-\sqrt{19}, \sqrt{19})$	b) (-17, 17)	c) $(-\sqrt{21},\sqrt{21})$	d) None of these	
109	In triangle <i>ABC</i> , $a = 5$, $b =$	= 3 and $c =$ 7, the value of 3	$3\cos C + 7\cos B$ is equal to)	
	a) 5	b) 10	c) 7	d) 3	
110	The value of $\cot 70^\circ + 4 \cot 70^\circ$	$0 \text{ s} 70^{\circ} \text{ is}$		1	
	a) $\frac{1}{\sqrt{3}}$	b) √ <u>3</u>	c) 2√3	d) $\frac{1}{2}$	
111	The number of solution of	f the equation $\tan x \tan 4x =$	$= 1 \text{ for } 0 < x < \pi \text{ is}$		
	a) 1	b) 2	c) 5	d) 8	
112.	A piece of paper is in the s polygon of eight sides (oc	shape of a square of side 1 1 tagon). The area of the pol	m long. It is cut at the four ygon is	corners to make a regular	
	a) $2(\sqrt{2}-1)m^2$	b) $(\sqrt{2} - 1)m^2$	c) $\frac{1}{\sqrt{2}}$ m ²	d) None of these	
113	If in triangle <i>ABC</i> , $\angle B = 9$	0° , then $\tan^2(A/2)$ is	·		
	a) $\frac{b-c}{c}$	b) $\frac{b+c}{c}$	$c) \frac{2bc}{dc}$	d) None of these	
111	b + c	b - c	b - c		
114	If $\frac{1}{6}$ sin θ , cos θ , tan θ are i	in G.P., then θ is equal to (<i>n</i>	$\in Z$)		
	a) $2n\pi \pm \frac{\pi}{3}$	b) $2n\pi \pm \frac{\pi}{6}$	c) $n\pi + (-1)^n \frac{\pi}{3}$	d) $n\pi + \frac{\pi}{3}$	
115	If $2^{x+y=6^y}$ and $3^{x-1} = 2^y$	⁷⁺¹ , then the value of (log 3	$-\log 2)/(x - y)$ is		
	a) 1	b) $\log_2 3 - \log_3 2$	c) log (3/2)	d) None of these	
116	$3(\sin x - \cos x)^4 + 6(\sin x)$	$(x + \cos x)^2 + 4(\sin^6 x + \cos^6 x)^2$	$s^6 x$) is equal to	n	
117	a) 11	b) 12	c) 13	d) 14	
11/.	If sec α and cosec α are the α and α	the roots of $x^2 - px + q + 0$, b) $m^2 = q(q + 2)$, then $a) m^2 + a^2 - 2a$	d) None of these	
118	$a_{1}p_{2}^{2} = q(q - 2)$ If $\cos 25^{\circ} + \sin 25^{\circ} = n$ the	$y_{1} = q(q + 2)$	$c_j p + q = 2q$	u) None of these	
110	a) $\sqrt{2 - n^2}$	b) $-\sqrt{2-n^2}$	() $n\sqrt{2-n^2}$	d) $-n\sqrt{2-n^2}$	
119	If $\cot^2 x = \cot(x - y) \cot(x - y)$	(x - z), thencot 2x is equal	to (where $x \neq +\pi/4$)	«) pv2 p	
	a) $\frac{1}{2}(\tan y + \tan z)$	b) $\frac{1}{2}(\cot y + \cot z)$	c) $\frac{1}{2}(\sin y + \sin z)$	d) None of these	
120	The total number of solut	ions of $\cos x = \sqrt{1 - \sin 2x}$	in $[0, 2\pi]$ is equal to		
	a) 2	b) 3	c) 5	d) None of these	
121	If θ is eliminated from the	e equations $x = a \cos(\theta - a)$	(a) and $y = b \cos(\theta - \beta)$, the	$\sin \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos(\alpha - \beta)$	
	is equal to				
	a) $\sec^2(\alpha - \beta)$	b) $\operatorname{cosec}^2(\alpha - \beta)$	c) $\cos^2(-\beta)$	d) $\sin^2(\alpha - \beta)$	
122	If $\cos \theta_1 = 2 \cos \theta_2$, then t	$\tan \frac{\theta_1 - \theta_2}{2} \tan \frac{\theta_1 + \theta_2}{2}$ is equal to	0		
	a) $\frac{1}{3}$	b) $-\frac{1}{3}$	c) 1	d) -1	
123	The value of $\frac{1 + 2 \log_3 2}{(1 + \log_3 2)^2} + ($	$(\log_6 2)^2$ is			
	a) 2	b) 3	c) 4	d) 1	
124	Given that $(1 + \sqrt{1 + x})$ ta	an $y = 1 + \sqrt{1 - x}$. Then si	n 4 <i>y</i> is equal to		
	a) 4 <i>x</i>	b) 2 <i>x</i>	c) <i>x</i>	d) None of these	

125. If $ \cos\theta \sin\theta + \sqrt{\sin^2\theta}$	$+\sin^2\alpha\} \le k$, then the val	lue of <i>k</i> is	
a) $\sqrt{1 + \cos^2 \alpha}$	b) $\sqrt{1 + \sin^2 \alpha}$	c) $\sqrt{2 + \sin^2 \alpha}$	d) $\sqrt{2 + \cos^2 \alpha}$
126. If $\ln\left(\frac{a+b}{3}\right) = \left(\frac{\ln a + \ln b}{2}\right)$, the second secon	hen $\frac{a}{b} + \frac{b}{a}$ is equal to		
a) 1	b) 3	c) 5	d) 7
127. A variable triangle ABC is	s circumscribed about a fix	ed circle of unit radius. Side	e BC always touches the
circle at <i>D</i> and has fixed d	lirection. If <i>B</i> and <i>C</i> vary in	n such a way that (BD)(CD)	= 2, then locus of vertex A
will be a straight line			
a) Parallel to side <i>BC</i>		b) Perpendicular to side <i>E</i>	3C
c) Making an angle $(\pi/6)$	with <i>BC</i>	d) Making an angle sin ⁻¹ ((2/3) with <i>BC</i>
128. Let $f(\theta) = \frac{\cot \theta}{1 + \cot \theta}$ and α .	$+\beta = \frac{5\pi}{4}$, then the value f	$(\alpha)f(\beta)$ is	
a) $\frac{1}{2}$	b) $-\frac{1}{2}$	c) 2	d) None of these
129. If in $\triangle ABC$, $b = 3$ cm, $c =$	4 cm and the length of the	perpendicular from A to th	e side <i>BC</i> is 2 cm, then the
number of solutions of th	e triangle is		
a) 1	b) 0	c) 3	d) 2
130. If $\sin \theta_1 - \sin \theta_2 = a$ and	$\cos \theta_1 + \cos \theta_2 = b$, then		
a) $a^2 + b^2 \ge 4$	b) $a^2 + b^2 \le 4$	c) $a^2 + b^2 \ge 3$	d) $a^2 + b^2 \le 2$
131. In in triangle ABC, $\sum \sin \frac{A}{2}$	$=\frac{6}{5}$ and $\sum II_1 = 9$ (where	I_1 , I_2 and I_3 are ex-centres	
and <i>I</i> is in-centre, then ci	rcumradius <i>R</i> is equal to		
15	h) 15	ى 15	d) 4
a) <u>8</u>	$5)\frac{1}{4}$	$\frac{c}{2}$	$\frac{11}{12}$
132. $x^{\log_5 x} > 5$ imlies			
a) $x \in (0, \infty)$		b) <i>x</i> ∈ $(0, 1/5) \cup (5, ∞)$	
c) $x \in (1, \infty)$		d) $x \in (1, 2)$	
133. The number of values of p	x for which $\sin 2x + \cos 4x$	z = 2 is	
a) 0	b) 1 π	c) 2	d) Infinite
^{134.} $\tan^6 \frac{\pi}{9} - 33 \tan^4 \frac{\pi}{9} + 27 \tan^6 \frac{\pi}{9}$	$an^2 \frac{\pi}{9}$ is equal to		
a) 0	b) √3	c) 3	d) 9
135. The value of <i>b</i> for which t	the equation $2 \log_{1/25}(bx + b)$	$+28) = -\log_5(12 - 4x - x)$	²) has coincident roots if
a) $b = -12$	b) <i>b</i> = 4	c) $b = 4$ or $b = -12$	d) $b = -4$ or $b = 12$
136.	$\sin x \cos x$	$\cos x$	π , , , π :-
The number of distinct re	cos x sin x $\cos x = \cos x$	$\cos x = 0$ in the interval –	$\frac{1}{4} \le x \le \frac{1}{4}$ IS
a) 0	b) 2	c) 1	d) 3
137. The value of $3^{\log_4 5} - 5^{\log_4 5}$	⁴³ is	-)	
a) 0	b) 1	c) 2	d) None of these
138. The number of real value	ues of the parameter k	for which $(\log_{16} x)^2 - \log_1 x$	$\int_{16} x + \log_{16} k = 0$ with real
coefficients will have exac	ctly one solution is		
a) 2	b) 1	c) 4	d) None of these
139. If the hypotenuse of a rigl	ht-angled triangle is four ti	imes the length of the perpe	endicular drawn from the
opposite vertex to it, then	the difference of the two	acute angles will be	
a) 60°	b) 15°	c) 75°	d) 30°
140. If <i>a</i> , <i>b</i> , <i>c</i> are distinct position	ive numbers different from	1 such that $(\log_b a \log_c a - d \log_c a)$	$-\log_a a) + (\log_a b \log_c b - b)$
log <i>bb+</i> loga <i>c</i> log <i>bc</i> -logc <i>c</i> -	<i>=0,</i> then <i>abc</i> is		
a) 0	b) E	c) 1	d) None of these
141. The general solution of si	$n 3\alpha = 4 \sin \alpha \sin(x + \alpha) s$	$\sin(x-\alpha)$ is	
a) $n\pi \pm \pi/4$, $\forall n \in Z$	b) $n\pi \pm \pi/3$, $\forall n \in Z$	c) $n\pi \pm \pi/9, \forall n \in \mathbb{Z}$	d) $n\pi \pm \pi/12$, $\forall n \in Z$
142. If $\sec \theta - 1 = (\sqrt{2} - 1) \tan \theta$	In θ , then θ is equal to $(n \in \theta)$	$\in Z$)	

	a) $(2n - 1)\pi$	b) $2n\pi + \frac{\pi}{4}$	c) $2n\pi - \frac{\pi}{4}$	d) $2n\pi + \frac{\pi}{3}$
143.	Which of the following is	not the solution of $\log_x \left(\frac{5}{2}\right)$	$\left(-\frac{1}{r}\right) > \left(\frac{5}{2} - \frac{1}{r}\right)?$	Ū
	a) $\left(\frac{2}{5}, \frac{1}{2}\right)$	b) (1,2)	c) $\left(\frac{2}{5}, \frac{3}{4}\right)$	d) None of these
144.	If $\cos 3x + \sin \left(2x - \frac{7\pi}{6}\right) =$	= -2, then x is equal to (k	$\in Z$)	
	a) $\frac{\pi}{3}(6k+1)$	b) $\frac{\pi}{3}(6k-1)$	c) $\frac{\pi}{3}(2k+1)$	d) None of these
145.	The minimum value of the	e expression $2\log_{10} x - \log_{10} x$	$g_x 0.01$, where $x > 1$, is	
	a) 2	b) 0.1	c) 4	d) 1
146.	In any $\triangle ABC$, if $\cot \frac{A}{2}$, $\cot \frac{A}{2}$	$\frac{3}{2}$, cot $\frac{c}{2}$ are in A.P., then a, b	, c are in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
147.	In $\triangle ABC$, $\angle B = \pi/3$. The	range of values of <i>x</i> , where	$x = \sin A \sin C$, is the inter	val
	a) $\left[-\frac{1}{4},\frac{3}{4}\right]$	b) $\left(0,\frac{3}{4}\right)$	c) $\left(0, \frac{3}{4}\right]$	d) $\left[\frac{1}{4}, \frac{3}{4}\right]$
148.	If point <i>P</i> lies on sides of a	a right-angled triangle ABC	, then $PA + PB + PC$ is min	nimum when P is the
	a) Orthocenter			
	b) Circumcentre			
	c) Mid-point of the smalle	est side		
	d) None of these			
149.	In triangle ABC, $\tan \frac{A}{2}$, tan	$\frac{B}{2}$, tan $\frac{C}{2}$ are in H.P., then th	e value of $\cot \frac{A}{2} \times \cot \frac{C}{2}$ is eq	ual to
	a) 1	b) 2	c) 3	d) 4
150.	If one side of a triangle is	double the other, and the a	ngles on opposite sides dif	fer by 60°, then the triangle
	is			
	a) Equilateral	b) Obtuse angled	c) Right angled	d) Acute angled
151.	If $(\sin x + \cos x)^2 + k \sin x$	$x \cos x = 1$ holds $\forall x \in R$, t	hen the value of <i>k</i> equals	
	a) 2	b) 2	c) -2	d) 3
152.	The total number of solut	ions of $sin\{x\} = cos\{x\}$ (wh	nere {.} denotes the fractio	nal part) in $[0, 2\pi]$ is equal
	to			
	a) 5	b) 6	c) 8	d) None of these
153.	The value of $\cos y \cos \left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	$(-x) - \cos\left(\frac{\pi}{2} - y\right)\cos x + \sin\left(\frac{\pi}{2} - $	$\sin y \cos\left(\frac{\pi}{2} - x\right) + \cos x \sin x$	$\left(\frac{\pi}{2}-y\right)$ is zero if
	a) $x = 0$	b) $y = 0$	c) $x = y$	d) $n\pi + y - \frac{\pi}{4}$ $(n \in Z)$
154.	If $\theta = 3\alpha$ and $\sin \theta = \frac{a}{\sqrt{a^2}}$	$\frac{1}{1+2}$ The value of the express	sion a cosec $\alpha - b \sec \alpha$ is	1
	a			d) None of these
	a) $\sqrt{a^2 + b^2}$	b) $2\sqrt{a^2 + b^2}$	c) $a + b$.,
155.	If $f(\theta) = 5\cos\theta + 3\cos\theta$	$\left(\theta + \frac{\pi}{2}\right) + 3$, then range of f	$f(\theta)$ is	
	a) $[-5, 11]$	(3) $(-3, 9]$	c) [-2 10]	d) [_4 10]
156	Consider the system of lir	by $\begin{bmatrix} 3, 5 \end{bmatrix}$		uj[4,10]
150.	$(\sin 3\theta)x - y + z = 0$	$\frac{1}{2}$		
	$(\cos 2\theta)x + 4y + 3z = 0$			
	2x + 7y + 7z = 0			
	Then which of the followi	ng can be the values of θ for	or which the system has a n	on-trivial solution
	a) $n\pi + (-1)^n \pi/6, \forall n \in$	Ζ	b) $n\pi + (-1)^n \pi/3, \forall n \in$	Ζ
	c) $n\pi + (-1)^n \pi/9, \forall n \in$	Ζ	d) None of these	
157.	If in $\triangle ABC$, AC is double o	f <i>AB</i> , then the value of cot	$\frac{4}{2} \cot \frac{B-C}{2}$ is equal to	
	. 1	1	2 2	1
	a) $\frac{1}{3}$	b) $-\frac{1}{3}$	c) 3	d) $\frac{1}{2}$
158.	The least value of $6 \tan^2 \phi$	$b + 54 \cot^2 \phi + 18$ is		-

I: 54 when A.M. \geq G.M. is applicable for $6 \tan^2 \phi$, 54 $\cot^2 \phi$, 18 **II**: 54 when A.M. \geq G.M. is applicable for 6 tan² ϕ , 54 cot² ϕ and 18 added further **III:** 78 when $\tan^2 \phi = \cot^2 \phi$ a) I is correct b) I and II are correct c) III is correct d) None of the above is correct 159. If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the maximum and minimum values of u^2 is given by c) $(a + b)^2$ a) $2(a^2 + b^2)$ b) $2\sqrt{a^2 + b^2}$ d) $(a - b)^2$ 160. With usual notations, in triangle *ABC*, $a \cos(B - C) + b \cos(C - A) + c \cos(A - B)$ is equal to a) $\frac{abc}{R^2}$ b) $\frac{abc}{4R^2}$ c) $\frac{4 abc}{R^2}$ d) $\frac{abc}{2R^2}$ b) $\frac{abc}{4R^2}$ a) $\frac{abc}{R^2}$ 161. If $3 \tan^2 \theta - 2 \sin \theta = 0$, then θ is equal to $(n \in Z)$ a) $2n\pi \pm \frac{\pi}{4}$ b) $n\pi + (-1)^n \frac{\pi}{6}$ c) $n\pi - (-1)^n \frac{\pi}{6}$ d) $n\pi + \frac{\pi}{3}$ 162. If $S = \{x \in R : (\log_{0.6} 0.216) \log_5(5 - 2x) \le 0\}$, then S is equal to a) [2.5,∞) b) [2, 2.5) c) (2, 2.5) d) (0, 2.5) 163. In triangle *ABC*, $\angle A = \pi/3$ and its incircle is of unit radius. If the radius of the circle touching the sides AB, AC internally and incircle externally is x, then the value of x is a) 1/2 b) 1/4 d) None of these c) 1/3 164. The equation $\tan^4 x - 2 \sec^2 x + a = 0$ will have at least one solution if b) *a* ≥ 2 a) $1 < a \le 4$ d) None of these c) $a \leq 3$ 165. In $\triangle ABC$, (a + b + c)(b + c - a) = kbc if c) 0 < *k* < 4 a) *k* < 0 b) k > 0d) k > 4166. The distance between the two parallel lines is 1 unit. A point 'A' is chosen to lie between the lines at a distance 'd' from one of them. Triangle ABC is equilateral with B on one line and C on the other parallel line. The length of the side of the equilateral triangle is a) $\frac{2}{3}\sqrt{d^2 + d + 1}$ b) $2\sqrt{\frac{d^2 - d + 1}{3}}$ c) $2\sqrt{d^2 - d + 1}$ d) $\sqrt{d^2 - d + 1}$ 167. If $\sin \theta$, 1, $\cos 2\theta$ are in G.P., then θ is equal to $(n \in Z)$ a) $n\pi + (-1)^n \frac{\pi}{2}$ b) $n\pi + (-1)^{n-1} \frac{\pi}{2}$ c) $2n\pi$ d) None of these 168. Number of solutions of $\sin 5x + \sin 3x + \sin x = 0$ for $0 \le x \le \pi$ is a) 1 b) 2 c) 3 d) None of these 169. If *H* is the orthocenter of a acute-angled triangle *ABC* whose circumcircle is $x^2 + y^2 = 16$, then circumdiameter of the trangle HBC is a) 1 b) 2 c) 4 d) 8 170. The solution set of the inequality $\log_{10}(x^2 - 16) \le \log_{10}(4x - 11)$ is a) (4,∞) b) (4, 5] c) (11/4,∞) d) (11/4, 5) 171. Solution set of the inequality $\log_3(x+2)(x+4) + \log_{1/3}(x+2) < (1/2) \log_{\sqrt{3}} 7$ is b) (-2,3) a) (-2, -1)c) (-1, 3)d) (3,∞) 172. If $2x^{\log_4 3} + 3^{\log_4 x} = 27$, then *x* is equal to b) 4 a) 2 c) 8 d) 16 173. The number of solutions of $[\sin x + \cos x] = 3 + [-\sin x] + [-\cos x]$ (where [.] denotes the greatest integer function), $x \in [0, 2\pi]$, is b) 4 c) Infinite d) 1 a) 0 174. If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then θ is equal to $(n \in Z)$ a) $n\pi$ b) $n\pi/2$ c) $n\pi/4$ If $x \in (\pi, 2\pi)$ and $\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} = \cot\left(a + \frac{x}{2}\right)$, then *a* is equal to a) *nπ* d) $n\pi/8$ 175.

a)	$\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{2}$	d) None of these
176. If	$\frac{r}{r} = \frac{r_2}{r_2}$, then	Z	3	
ຊີ	$r_1 r_3'$) $A = 90^{\circ}$	h) $B = 90^{\circ}$	c) $C = 90^{\circ}$	d) None of these
177. In	n an equilateral triangle, t	the inradius, circumradius	and one of the ex-radii are	in the ratio
a)) 2: 3: 5	b) 1: 2: 3	c) 1: 3: 7	d) 3: 7: 9
178. T	he value of $\cos^2 10^\circ$ – co	$10^{\circ} \cos 50^{\circ} + \cos^2 50^{\circ}$ is	equal to	
a`	$(\frac{4}{-})$	b) $\frac{1}{-}$	c) $\frac{3}{-}$	d) 3
170 .	3	³ 3	^y 4	
179. Ir	$\Delta ABC, \cot \frac{1}{2} + \cot \frac{1}{2} + \cot \frac{1}{2}$	$t = \frac{1}{2}$ is equal to		
a)	$\left(\frac{\Delta}{r^2}\right)$	b) $\frac{(a+b+c)^2}{abc}$ 2R	c) $\frac{\Delta}{r}$	d) $\frac{\Delta}{Rr}$
180. Ir	n triangle <i>ABC</i> , 2 <i>ac</i> sin $\left(\frac{1}{2}\right)$	(A - B + C) is equal to		
a)	$a^{2} + b^{2} + c^{2}$	b) $c^2 + a^2 - b^2$	c) $b^2 - c^2 - a^2$	d) $c^2 - a^2 - b^2$
181. If	$a + b = 3 - \cos 4\theta$ and	$a-b=4\sin 2 heta$, then ab i	s always less than or equal	to
a)	$(\frac{1}{2})$	b) 1	c) $\frac{2}{2}$	d) $\frac{3}{4}$
182 т	2	sticfuing $u \log_r (1-x)^2 = 0$ is	3	4
) A subset of R containing	$\frac{1}{2} N$		
b`	A subset of <i>R</i> containing	Z (set of all integers)		
c)) Is a finite set containing	at least two elements		
d) A finite set			
183. If	in triangle <i>ABC</i> , sin <i>A</i> cos	$B = 1/4$ and $3 \tan A = \tan A$	n <i>B</i> , then the triangle is	
a)) Right angled	b) Equilateral	c) Isosceles	d) None of these
184. If	$f(x) = \cos^2 \theta + \sec^2 \theta$,	then		
a]	$\int f(x) < 1$	b) $f(x) = 1$	c) $2 > f(x) > 1$	d) $f(x) \ge 2$
185. lf	P is a point on the altitud	de AD of the triangle ABC s	Such that $\angle CBP = B/3$, the B	n AP is equal to
a)	$2a\sin\frac{3}{3}$	b) $2b\sin\frac{d}{3}$	c) $2c \sin \frac{b}{3}$	d) $2c \sin \frac{d}{3}$
186. T	he value of $\sin^2 \frac{\pi}{2} + \sin^2 \frac{\pi}{2}$	$\frac{3\pi}{2} + \sin^2 \frac{5\pi}{2} + \sin^2 \frac{7\pi}{2}$ is	-	-
a) 1	b) 2	1	1 ¹
-	-		$\frac{1}{8}$	$\frac{1}{2} \frac{2}{8}$
187. lf	$f 0 < \alpha < \frac{\pi}{6}$, then α (cose	$c \alpha$) is		
a) Less than $\pi/6$	b) Greater than $\pi/6$	c) Less than $\pi/3$	d) Greater than $\pi/3$
188. _{If}	$2\sin\theta$ th	$\frac{1-\cos\theta+\sin\theta}{\sin\theta}$ is equ	ual to	
11	$\frac{1}{1+\cos\theta+\sin\theta}$, th	$1 + \sin \theta$ is equ		
a]	1 + x	b) $1 - x$	c) x	d) 1/x
189. Ir	1 triangle ABC, if a: b: c =	7:8:9, then cos A : cos B 1: 22	s equal to	d) None of these
a)	$)\frac{11}{63}$	b) $\frac{22}{63}$	c) $\frac{2}{9}$	u) None of these
190. T	he general solution of the	e equation $\sin^{100} x - \cos^{10} x$	$x^{0} = 1$ is	
a)	$2n\pi + \frac{\pi}{2}, n \in I$	b) $n\pi + \frac{\pi}{2}$, $n \in I$	c) $n\pi + \frac{\pi}{4}, n \in I$	d) $2n\pi - \frac{\pi}{2}$, $n \in I$
191. If	<i>A, B, C</i> are acute positive	e angles such that $A + B + B$	$C = \pi \operatorname{and} \operatorname{cot} A \operatorname{cot} B \operatorname{cot} C$	= k, then
2)	$K < \frac{1}{1}$	$WK > \frac{1}{1}$	r = 1	d λ λ
d	$3\sqrt{3}$	$\sqrt{3\sqrt{3}}$	$\sqrt{N} < \frac{1}{9}$	$\frac{1}{3}$
192. If	<i>a, b, c</i> are consecutive po	ositive integers and log(1 +	-ac) = 2K, then the value	of K is
a)) log b	b) $\log a$	c) 2	d) 1
193. G	eneral solution of $\sin^2 x$.	$-5\sin x\cos x - 6\cos^2 x =$	0 IS	l
aj	$j x = nn - n/4, n \in \mathbb{Z}$ on	ıy	$n_n + \tan^{-1} 6, n \in \mathbb{Z}$ on	ıy

c) Both (a) and (b)		d) None of these	
194. The set of all x satisfying	the equation $x^{\log_3 x^2 + (\log_3 x)}$	$x^{2} = 1/x^{2}$ is	
a) {1,9}	b) {1, 9, 1/81}	c) {1, 4, 1/81}	d) {9, 1/81}
195. Given both θ and \emptyset are th	e acute angles $\sin \theta = \frac{1}{2}$, co	s $\emptyset = \frac{1}{2}$, then the value of θ	+ Ø belongs to
a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$	b) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$	c) $\left(\frac{2\pi}{3}, \frac{5\pi}{6}\right]$	d) $\left(\frac{5\pi}{6},\pi\right]$
196. If $\frac{\cos(x-y)}{\cos(x+y)} + \frac{\cos(z+t)}{\cos(z-t)} = 0$, t	hen the value of tan <i>x</i> tan <i>y</i>	tan z tan t is equal to	
a) 1	b) —1	c) 2	d) –2
197. Given that a, b, c are the s	ides of a triangle ABC which	h is right angled at <i>C</i> , then	the minimum value of
$\begin{pmatrix} c & c \end{pmatrix}^2$ is	0	0 0 ,	
$\left(\frac{a}{a} + \frac{b}{b}\right)$ is			
a) 0	b) 4	c) 6	d) 8
198. The number of solutions	of $12\cos^3 x - 7\cos^2 x + 4c$	$\cos x = 9 \text{ is}$	
$a_{\rm J} U$	DJZ	c) Infinite	a) None of these
199. If $3\tan(\theta - 15^\circ) = \tan(\theta)$	+ 15°), then θ is equal to (π	$n \in Z$) π	d) None of these
a) $n\pi + \frac{\pi}{4}$	b) $n\pi + \frac{\pi}{8}$	c) $n\pi + \frac{\pi}{3}$	u) None of these
^{200.} If $\frac{3\pi}{4} < \alpha < \pi$, then $\sqrt{2 \cot \alpha}$	$t \alpha + \frac{1}{\sin^2 \alpha}$ is equal to		
a) $1 + \cot \alpha$	b) $-1 - \cot \alpha$	c) $1 - \cot \alpha$	d) $-1 + \cot \alpha$
201. If $\sin x + \cos x = \frac{\sqrt{7}}{2}$ where	e $x \in A$, then $\tan \frac{x}{2}$ is equal	to	
$3 - \sqrt{7}$	$\sqrt{7}-2$	$4 - \sqrt{7}$	d) None of these
a) $\frac{1}{3}$	b) <u>- 3</u>	c) $\frac{1}{4}$,
202. The value of $\tan 9^\circ - \tan 2$	$27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$ is	-	
a) 2	b) 3	c) 4	d) None of these
203. $\tan\left(\frac{p\pi}{4}\right) = \cot\left(\frac{q\pi}{4}\right)$ if $(n \in \mathbb{R})$	$\Xi Z)$		
a) $p + q = 0$	b) $p + q = 2n + 1$	c) $p + q = 2n$	d) $p + q = 2(2n + 1)$
204. Let $f(\theta) = \sin \theta (\sin \theta + \sin \theta)$	sin 3 θ). Then $f(\theta)$ is		
a) ≥ 0 only when $\theta \geq 0$	b) ≤ 0 for all real θ	c) ≥ 0 for all real θ	d) ≤ 0 only when $\theta \leq 0$
205. The complete solution of	$7\cos^2 x + \sin x \cos x - 3 =$	0 is given by	
a) $n\pi + \frac{\pi}{2} (n \in Z)$		b) $n\pi - \frac{\pi}{2} (n \in Z)$	
c) $n\pi + \tan^{-1}\left(\frac{3}{4}\right) (n \in Z)$)	d) $n\pi + \frac{3\pi}{4}$, $k\pi + \tan^{-1}\left(\frac{4\pi}{4}\right)$	$\left(k, n \in Z\right)$
206. If $\log_{10}\left[\frac{1}{2^{x}+x-1}\right] = x[\log_{10} \log_{10} \log_{1$	$_{0}5-1$], then $x=$	1 (0	,,
a) 4	b) 3	c) 2	d) 1
207. In $\triangle ABC$, if $b^2 + c^2 = 2a^2$, then value of $\frac{\cot A}{\cot B + \cot C}$ is	,	
$\frac{1}{2}$	h) $\frac{3}{-}$	$c) \frac{5}{-}$	$d) \frac{5}{2}$
2	$\frac{2}{12\log x}$	2	3
^{208.} The value of x satisfying	$\sqrt{3}^{-4+2\log_{\sqrt{5}}x} = 1/9$ is		
a) 2	b) 3	c) 4	d) None of these
209. If α , β , γ , δ are the smalles	st positive angles in ascendi	ng order of magnitude whi	ch have their sines equal to
the positive quantity k, th	en the value of $4\sin\frac{\alpha}{2} + 3$ s	$ in\frac{\beta}{2} + 2\sin\frac{\gamma}{2} + \sin\frac{\delta}{2} $ is equal	al to
a) $2\sqrt{1-k}$	b) $2\sqrt{1+k}$	c) $\frac{\sqrt{1+k}}{2}$	d) None of these
210. The value of $\log ab - \log b $	b =		
a) log <i>a</i>	b) $\log a $	c) $-\log a$	d) None of these
211. If $(4)^{\log_9 3} + (9)^{\log_2 4} = (2)^{\log_2 4}$	$(10)^{\log_x 83}$, then x is equal to		

a) 2 b) 3 c) 10 d) 30
212. In triangle ABC, internal angle bisector *LA* makes an angle
$$\theta$$
 with side *BC*. The value of sin θ is equal to
a) $|\sin(\frac{B}{2}-C)|$ b) $|\sin(\frac{B}{2}-C)|$ c) $\cos(\frac{B-C}{2})$ d) $\cos(\frac{B}{2}-C)$
213. If both the distinct roots of the equation $|\sin x|^2 + |\sin x| + b = 0$ in $[0, \pi]$ are real, then the values of *b* are
a) $[-2, 0]$ b) $(-2, 0)$ c) $[-2, 0]$ d) None of these
214. The maximum value of $(\cos \alpha_1)(\cos \alpha_2) \dots (\cos \alpha_n)$, unser the restrictions $0 \le \alpha_1, \alpha_2, \dots \alpha_n \le \pi/2$ and
 $(\cot \alpha_1)(\cot \alpha_2) \dots (\cot \alpha_n) = 11s$
a) $1/2^{D/2}$ b) $1/2^n$ c) $1/2\pi$ d) 1
215. If $\sqrt{\log_2 x} - 0.5 = \log_2 \sqrt{x}$, then *x* equals
a) 0 d0 integer b) Prime number c) Composite number d) Irrational
216. The value of $49^{(1-16x)^2} + 5^{-16x^2}$ is
a) $227/2$ b) $25/2$ c) $625/16$ d) None of these
217. If *A* and *B* are acute positive angles satisfying the equations $3 \sin^2 A + 2 \sin^2 B = 1$ and $3 \sin 2A - 2x \sin 2D = 0$, then *A* + 2 *B* is equal to
a) π b) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{6}$
218. If the equation $2^x + 4^x = 2^x + 4^x$ is solved for *y* in terms of *x*, where $x < 0$, then the sum of the solutions is
a) $x \log_2(1-2^x)$ b) $x + \log_2(1-2^x)$ c) $\log_2(1-2^x)$ d) $x \log_2(2^x + 1)$
219. If $\tan x = \pi \tan y$, $n \in R^+$, then the maximum value of $8e^{e^x}(x-y)$ is equal to
a) $(\frac{n+1)^2}{4n}$ b) $\frac{(n+1)^2}{2}$ d) $\frac{(n+1)^2}{4n}$
220. In the given figure, *AB* is the diameter of the circle, centered at '0'. If $\angle COA = 60^x$, $AB = 2r$, $AC = d$ and $CD = l$, then *l* is equal to
3) $3/4$ b) $2/3/3$ c) $5/6$ d) $7/8$
222. The solution of $4\sin^2 x + \tan^2 x + \csc^2 x + \cot^2 x - 6 = 0$ is
a) $m \pm \frac{\pi}{4}$ b) $2m \pm \frac{\pi}{4}$ c) $m + \frac{\pi}{3}$ d) $n\pi - \frac{\pi}{6}$
223. If in a $AABC$, $\cos 3A + \cos 3B + \cos 3G = 1$, then one angle must be exactly equal to
a) 90° b) 45° c) 120° d) 3
226. In trangle ABC , $\frac{b}{a} = \frac{2}{3}$ and $x = \frac{b}{a}$. Then the number of triangles as $xisfying these conditions is
a) 0 (2\pi, \frac{\pi}{4}$ b) $2m \pm \frac{\pi}{4}$ c) $2\pi + \frac{\pi}{3}$ k at $\frac{\pi}{3}$ k at $\frac{\pi}{3}$ k at $\frac{$

229.	If $0 \le x \le 2\pi$, then the nu	mber of solutions of 3(sin a	$(x + \cos x) - 2(\sin^3 x + \cos x)$	$(^{3}x) = 8$ is
	a) 0	b) 1	c) 2	d) 4
230.	In triangle <i>ABC</i> , $a^2 + c^2 =$	$= 2002b^2$, then $\frac{\cot A + \cot C}{\cot B}$ is e	equal to	
	a) $\frac{1}{2004}$	b) $\frac{2}{2004}$	c) $\frac{3}{2224}$	d) $\frac{4}{2004}$
221	$\frac{1}{2001}$	2001 then one of the values of t	2001	2001
231.	$112 \sec 20 = \tan \varphi + \cot \varphi$	b) $\pi/4$	$\gamma \pm \psi_{13}$	d) None of these
232.	$\frac{\sqrt{2}-\sin\alpha-\cos\alpha}{\sin\alpha-\cos\alpha}$ is equal to	0) 11/4	cj n/3	uj None or these
	a) $\sec\left(\frac{\alpha}{2} - \frac{\pi}{8}\right)$	b) $\cos\left(\frac{\pi}{8} - \frac{\alpha}{2}\right)$	c) $\tan\left(\frac{\alpha}{2}-\frac{\pi}{8}\right)$	d) $\cot\left(\frac{\alpha}{2}-\frac{\pi}{2}\right)$
233.	If $A = \sin 45^\circ + \cos 45^\circ$ and	nd $B = \sin 44^\circ + \cos 44^\circ$, th	ien	
	a) $A > B$	b) <i>A</i> < <i>B</i>	c) $A = B$	d) None of these
234.	If the inequality $\sin^2 x + a$	$a\cos x + a^2 > 1 + \cos x \text{ hol}$	ds for any $x \in R$ then the la	argest negative integral
	value of $'a'$ is			
	a) -4	b) -3	c) -2	d) —1
235.	$If \frac{1+\sin 2x}{1-\sin 2x} = \cot^2(a+x) \forall x$	$x \in R \sim \left(n\pi + \frac{\pi}{4}\right)$, $n \in N$, th	en a can be	
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) $\frac{3\pi}{4}$	d) None of these
236.	If A, B, C are angles of a tri	iangle, then $2\sin\frac{A}{2}\csc\frac{B}{2}$	$\sin\frac{c}{2} - \sin A \cot\frac{B}{2} - \cos A$ is	
	a) Independent of A, B, C		b) Function of <i>A</i> , <i>B</i>	
	c) Function of <i>C</i>		d) None of these	
237.	If $\tan^2 \alpha \tan^2 \beta + \tan^2 \beta \tan^2 \beta$ tan $\sin^2 \beta + \sin^2 \gamma$ is	$n^2 \gamma + \tan^2 \gamma \tan^2 \alpha + 2 \tan^2 \alpha$	$\alpha^2 \alpha \tan^2 \beta \tan^2 \gamma = 1$, then	the value of $\sin^2 \alpha$ +
	a) 3	b) 2	c) 1	d) None of these
238.	The ratio of the area of a r	regular polygon of <i>n</i> sides in	scribed in a circle to that o	of the polygon of same
		b) A		d) 12
220	aj u Which of the following is t	0)4	$(1 2 i \sin \theta)$ where $i = \sqrt{2}$	u) 12
239.	which of the following is ($rue \operatorname{lor} z = (3 + 2i \sin \theta)/(3 + 2i \sin \theta)/($	$(1 - 2 I \sin \theta)$, where $t = \sqrt{1 - 2 I \sin \theta}$	-1
	a) 2 is purely real for $\theta =$	$nn \pm n/3, n \in \mathbb{Z}$		
	b) z is purely infaginary it	$n \theta = nn \pm n/2, n \in \mathbb{Z}$		
	d) None of these	$nn, n \in \mathbb{Z}$		
240	In any triangle the minim	$um value of r r r /r^3$ is equi	ual to	
240.	a) 1	b) Q		d) None of these
241	The equation $\sin^4 r + \cos^4 r$	$4 r + \sin 2r + \alpha = 0$ is solv	able for	uj None of these
211.	a) $-5/2 < \alpha < 1/2$	h) $-3 < \alpha < 1$	c) $-3/2 < \alpha < 1/2$	d) $-1 < \alpha < 1$
242	$If^{\sin x} = \cos x = \tan x = k + i$	then $ba \perp \frac{1}{2} \perp \frac{ak}{ak}$ is equal	to	
	$\prod \frac{a}{a} - \frac{b}{b} - \frac{c}{c} - \kappa,$	$\frac{1}{ck} + \frac{1}{1+bk}$ is equal	10	~
	a) $k\left(a+\frac{1}{a}\right)$	b) $\frac{1}{k}\left(a+\frac{1}{a}\right)$	c) $\frac{1}{k^2}$	d) $\frac{a}{k}$
243.	If $\tan A = \frac{1 - \cos B}{\sin B}$, then	tan 2A is		
	a) $\tan 2A = \tan B$		b) $\tan 2A = \tan^2 B$	
	c) $\tan 2A = \tan^2 B + 2 \tan^2 B$	n B	d) None of these	
244.	The number of roots of th	e equation $\log_{3\sqrt{x}} x + \log_{3x} x$	$\sqrt{x} = 0$ is	
	a) 1	b) 2	c) 3	d) 0
245.	If $\frac{x}{\cos\theta} = \frac{y}{\cos\left(\theta - \frac{2\pi}{3}\right)} = \frac{z}{\cos\left(\theta - \frac{2\pi}{3}\right)}$	$\frac{2\pi}{3}$, then $x + y + z$ is equal	l to	
	a) 1	b) 0	c) -1	d) None of these
246.	The general value of x sat	isfying the equation 2 cot ² :	$x + 2\sqrt{3}\cot x + 4\csc x + 4$	-8 = 0 is

	a) $n\pi - \frac{\pi}{6}$, $n \in \mathbb{Z}$	b) $n\pi + \frac{\pi}{6}, n \in \mathbb{Z}$	c) $2n\pi - \frac{\pi}{6}, n \in \mathbb{Z}$	d) $2n\pi + \frac{\pi}{6}, n \in \mathbb{Z}$
247	$\frac{1}{1}$ If r v z are in A P then $\frac{1}{2}$	$\frac{n x - \sin z}{1}$ is equal to	0	0
	(x, y, z) are (x, y, z) are (x, y, z) (constant)	$\cos z - \cos x$	a c $in a$	d) coc v
248	$A \int t dH y$	$C = \sqrt{3} \pm 1$ then $\frac{C-B}{1}$ is equivalent.	c) sin y	$u j \cos y$
	a) 15°	b) 20°	c) 45°	d) None of these
249	In triangle ABC, sin A, sin	<i>B</i> and sin <i>C</i> are in A.P. then	CJ 45	u) None of these
- 17	a) The altitudes are in H.P).		
	b) The altitudes are in A.P			
	c) The altitudes are in G.P			
	d) None of these			
250	The value of the expression	$n \frac{2(\sin 1^\circ + \sin 2^\circ + \sin 3^\circ + \dots + \sin 8^\circ}{2(\cos 1^\circ + \cos 2^\circ + \dots + \cos 44^\circ)}$	$\frac{39^\circ)}{1}$ equals	
	a) √2	b) $1/\sqrt{2}$	c) 1/2	d) 1
251	Product of roots of the eq	uation $\frac{\log_8(8/x^2)}{(\log x)^2} = 3$ is		
	a) 1	b) $1/2$	c) 1/3	d) 1/4
252	$\cdot \sec^2 \theta = \frac{4xy}{(x+y)^2}$ is true if an	nd only if		, , , , , , , , , , , , , , , , , , ,
	$(x+y)^2$ a) $x + y \neq 0$	b) $x = v \ x \neq 0$	c) $r = v$	d) $x \neq 0$ $y \neq 0$
253	If x_1 and x_2 are the roots of	of the equation e^2 , $x^{\ln x} = x^{\ln x}$	x^3 with $x_1 > x_2$, then	
	a) $x_1 = 2x_2$	b) $x_1 = x_2^2$	c) $2x_1 = x_2^2$	d) $x_1^2 = x_2^3$
254	. If $\cos p\theta + \cos q\theta = 0$, the	en the different values of θ	are in A.P. where the comm	ion difference is
	π	h) $\frac{\pi}{}$	$\frac{2\pi}{2\pi}$	$\frac{3\pi}{3\pi}$
	a) $p + q$	p - q	p + q	$p \pm q$
255	$. If \cos^2 A + \cos^2 B + \cos^2 C$	$C = 1$, then $\triangle ABC$ is		
254	a) Equilateral	b) Isosceles	c) Right angled	d) None of these
256	. The total number of solut	$\frac{1000 \text{ of } \sin^2 x + \cos^2 x}{100 \text{ of } \sin^2 x} = \sin^2 x$	$x \cos x \ln [0, 2\pi]$ is equal to) d) None of these
257	d $\int \mathcal{L}$	$\frac{b}{b}$	(j 0)	uj none or these
207	$\sqrt{(u + \sqrt{2})^2}$	$(u - b) / (u - b) + \sqrt{(u - b)} / (u - b) / ($	(1 + D) is equal to	d) $2 \sin \alpha \sqrt{2 \cos 2 \alpha}$
258	a) $2 \sin x / \sqrt{\sin 2x}$	(a, b) for each of which the	c) $2\cos x / \sqrt{\sin 2x}$	$d \int 2 \sin x / \sqrt{\cos 2x}$ $d \int 2 \sin x / \sqrt{\cos 2x}$
250	holds true for all $x \in R$ are	ρ	$u(\cos x - 1) + b$	$f = \cos(ax + b) - 1$
	a) 1	b) 2	c) 3	d) 4
259	. We are given <i>b</i> , <i>c</i> and sin <i>l</i>	B such that B is acute and b	$c < c \sin B$. Then	,
	a) No triangle is possible		b) One triangle is possible	
	c) Two triangles are possi	ible	d) A right-angled triangle	is possible
260	In triangle <i>ABC</i> , $a = 5, b =$	= 4 and c = 3. G is the cent	roid of the triangle. Circum	radius of triangle <i>GAB</i> is
	$\sqrt{10}$	$1)^{5}$	5 /	13^{3}
	a) 2√13	b) $\frac{12}{12}\sqrt{13}$	c) $\frac{1}{3}\sqrt{13}$	a) $\frac{1}{2}\sqrt{13}$
261	In any triangle <i>ABC</i> , $\frac{a^2+b^2}{R^2}$	$\frac{+c^2}{2}$ has the maximum value	e of	
	a) 3	b) 6	c) 9	d) None of these
262	The set of values of θ satis	sfying the inequation 2 sin ²	$\theta - 5\sin\theta + 2 > 0$, where	$e \ 0 < heta < 2\pi$, is
	a) $\left(0,\frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6},2\pi\right)$	b) $\left[0,\frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6},2\pi\right]$	c) $\left[0,\frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3},2\pi\right]$	d) None of these
263	If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 =$	= 3, then $\cos \theta_1 + \cos \theta_2 + \cos \theta_2$	$\cos \theta_3$ is equal to	
044	a) 3	b) 2	c) 1	d) 0
264	• The sum of all roots of sin	$\left(\pi \log_3\left(\frac{1}{x}\right)\right) = 0 \text{ in } (0, 2\pi)$	is	
	a) 3/2	b) 4	c) 9/2	d) 13/3

Page | 15

265	. Which of the following is 1	not the value of sin 27° – c	os 27° ?	
	a) $-\frac{\sqrt{3-\sqrt{5}}}{2}$	b) $-\frac{\sqrt{5-\sqrt{5}}}{2}$	c) $-\frac{\sqrt{5}-1}{2\sqrt{2}}$	d) None of these
266.	. One of the general solutio	ns of $4\sin^4 x + \cos^4 x = 1$	is	
	a) $n\pi \pm \alpha/2, \alpha = \cos^{-1}(1)$	$(5), \forall n \in \mathbb{Z}$		
	b) $n\pi \pm \alpha/2, \alpha = \cos^{-1}(3)$	$(5), \forall n \in \mathbb{Z}$		
	c) $2n\pi + \alpha/2$, $\alpha = \cos^{-1}(1)$	$1/3$, $\forall n \in \mathbb{Z}$		
	d) None of these	, ,,		
267.	• Let α and β be such that π	$\alpha < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \alpha$	$\sin\beta = -\frac{21}{65}$ and $\cos\alpha + \cos\alpha$	as $\beta = -\frac{17}{65}$, then the value
	of $\cos \frac{\alpha - \beta}{2}$ is			
	3	3	<u></u> 6	
	a) $-\frac{1}{\sqrt{130}}$	b) $\sqrt{130}$	$\frac{c}{65}$	$d - \frac{1}{65}$
268	If <i>a</i> , <i>b</i> and <i>c</i> are the sides of	of a triangle, then the minin	num value of $\frac{2a}{1} + \frac{2b}{1}$	$\frac{1}{1} + \frac{2c}{1}$ is
	a) 3	b) 9	b+c-a $c+a-b$	b = a+b-c
269	The number of solutions of	of the equation $\sin^3 r \cos r$	$\pm \sin^2 r \cos^2 r \pm \sin r \cos^3$	x - 1 in the interval
209	$\begin{bmatrix} 0 & 2\pi \end{bmatrix}$ is		$\pm \sin \lambda \cos \lambda \pm \sin \lambda \cos$	x = 1, in the interval
	$[0, 2\pi], 15$	h) 2	റി 1	4) 0
270	The sum of all the solution	0 J Z p of cot $A = \sin 2A$ ($A \neq n\pi$	(j) I to n integer) $0 \leq A \leq \pi$ is	uj u
270	$_{2}$ $3\pi/2$	$\int dt = \sin 2\theta, (\theta \neq \pi)$	r, n integer), $0 \le 0 \le n$ is	d) 2π
271	a) $5\pi/2$ If $(x + 1)\log_{10}(x+1) = 100$	U = U = U	CJ 511/4	u) 2 <i>n</i>
2/1.	$(x + 1)^{10} = 100$	(x + 1), then		
	a) All the roots are positiv	e real numbers.		
	b) All the roots lie in the in	$\left[\left(0, 100 \right) \right]$		
	c) All the roots lie in the li	nterval [—1, 99]		
272	d) None of these	(1 (5)4)		
Z/Z	If $a^{T} \cdot b^{S} = 1$, then the value $a^{T} \cdot b^{S} = 1$	ue of $\log_a(a^3b^4)$ equals	\ -	
0.50	a) $9/5$	b) 4	c) 5	d) 8/5
2/3	$\frac{\sin 3\theta + \sin 5\theta + \sin 7\theta}{2\theta + \sin 7\theta}$	$\frac{1}{1}$ is equal to		
	$\cos 3\theta + \cos 5\theta + \cos 7\theta$	$+\cos 9\theta$	c) tan 6A	d) cot 60
274	a) tail SU If the inequality $\sin^2 x + c$	$\int coc x + a^2 > 1 + coc x ho^2$	$\int t d n = 0$	uj col ov
2/4	. If the inequality sin $x + i$	$l \cos x + u > 1 + \cos x \sin \theta$	$105 101 ally x \in K, ulen ule$	largest negative integral
	value of u is	h) _2	a) _2	d) _1
275	$a_j = 4$	0 -3	$c_j = 2$	uj =1
273	• The total number of solution	$ \cot x = \cot x + \frac{1}{\sin x}$	$\frac{1}{x}, x \in [0, 3\pi]$ is equal to	
	a) 1	b) 2	c) 3	d) 0
276	If in $\triangle ABC$, $8R^2 = a^2 + b^2$	$c^2 + c^2$, then the triangle <i>AB</i>	C is	
	a) Right angled	b) Isosceles	c) Equilateral	d) None of these
277.	$\sin x + \cos x = y^2 - y + c$	a has no value of x for any v	value of y if a belongs to	
	a) $(0, \sqrt{3})$	b) $(-\sqrt{3}, 0)$	c) $\left(-\infty, -\sqrt{3}\right)$	d) (√3,∞)
278	If $\log_4 5 = a$ and $\log_5 6 =$	b, then $\log_3 2$ is equal to		
	1	1		
	a) $\frac{1}{2a+1}$	b) $\frac{1}{2b+1}$	c) $2ab + 1$	a) $\frac{1}{2ab-1}$
279	The smallest +ve x satisfy	ving the equation log _{cos x} si	$n x + \log_{\sin x} \cos x = 2 is$	
	a) π/2	b) π/3	c) π/4	d) π/6
280	If $\alpha + \beta = \pi/2$ and $\beta + \gamma$	$= \alpha$, then tan α equals		
	a) 2(tan β + tan γ)	b) $\tan \beta + \tan \gamma$	c) $\tan\beta + 2\tan\gamma$	d) 2tan β + tan γ
281	The value of $\cos \frac{\pi}{2} + \cos \frac{2\pi}{2}$	$\frac{\pi}{2} + \cos \frac{3\pi}{2} + \cos \frac{4\pi}{2} + \cos \frac{5\pi}{2}$	$+\cos\frac{6\pi}{2}+\cos\frac{7\pi}{2}$ is	
	7 7 a) 1	b) -1	c) 0	d) None of these
	,	,	,	,

282.	If $\cos x = \frac{2\cos y - 1}{2 - \cos y}$, whe	ere $x, y \in (0, \pi)$, then $\tan \frac{x}{2}$	$\cot \frac{y}{2}$ is equal to	
	a) √2	b) √3	c) $\frac{1}{\sqrt{2}}$	d) $\frac{1}{\sqrt{3}}$
283.	The value of expression $$	3cosec 20° – sec 20°is equ	al to	
	a) 2	b) 2 sin 20°/ sin 40°	c) 4	d) 4 sin 20°/ sin 40°
284.	In triangle <i>ABC</i> , $\angle ABC = 1$	$120^{\circ}, AB = 3 \text{ and } BC = 4.$	If perpendicular constructe	ed to the side <i>AB</i> at <i>A</i> and
	to the side BC at C meets	at <i>D</i> , then <i>CD</i> is equal to		
	a) 3	b) $\frac{8\sqrt{3}}{3}$	c) 5	d) $\frac{10\sqrt{3}}{3}$
285.	The equation $(\cos p - 1)x$ value in the interval	$x^2 + (\cos p)x + \sin p = 0$ in	the variable <i>x</i> has real roo	ts. Then <i>p</i> can take any
	a) (0, 2π)	b) (<i>-π</i> , 0)	c) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	d) (0, π)
286.	The equation $\sin x (\sin x -$	$+\cos x$ = k has real solution	ons if and only if <i>k</i> is a real	number such that
	a) $0 \le k \le \frac{1 + \sqrt{2}}{2}$	b) $2 - \sqrt{3} \le k \le 2 + \sqrt{3}$	c) $0 \le k \le 2 - \sqrt{3}$	d) $\frac{1-\sqrt{2}}{2} \le k \le \frac{1+\sqrt{2}}{2}$
287.	If <i>a</i> , <i>b</i> and <i>A</i> are given in a $2c_1c_2 \cos A = $ is equal to	triangle and c_1, c_2 are the j	possible values of the third	side, then $c_1^2 + c_2^2 - c_1^2$
	a) $4a^2 \sin 2A$	b) $4a^2 \sin^2 A$	c) $4a^2 \cos 2A$	d) $4a^2 \cos^2 A$
288.	In triangle ABC, if $r_1 = 2r_2$	$a_2 = 3r_2$, then $a: b$ is equal to	0	.,
	ς 5	4	ِ ۲	
	a) $\frac{-}{4}$	$\frac{5}{5}$	c) $\frac{-}{4}$	$\frac{a}{7}$
289.	If $\csc \theta - \cot \theta = q$, the	n the value of cosec $ heta$ is		
	a) $q + \frac{1}{q}$	b) $q - \frac{1}{q}$	c) $\frac{1}{2}\left(q+\frac{1}{q}\right)$	d) None of these
290.	$\tan 20^\circ + \tan 40^\circ + \sqrt{3} \tan \theta$	n 20° tan 40° is equal to		
	1	h $\sqrt{2}$	1	d) /2
	a) $\frac{1}{\sqrt{3}}$	DJ V 3	$c_{J} = \frac{1}{\sqrt{3}}$	$a_{J} - \sqrt{3}$
291.	If $(1 + \tan \alpha)(1 + \tan 4\alpha)$	$= 2, \alpha \in (0, \pi/16)$ then α is	is equal to	
	$\frac{\pi}{2}$	h) $\frac{\pi}{}$	$r = \frac{\pi}{2}$	d) $\frac{\pi}{}$
202	$^{2}20$	³ 30	⁵ 40	60
292.	Given $A = \sin^2 \theta + \cos^2 \theta$, then for all real θ ,		
	a) $1 \le A \le 2$	b) $3/4 \le A \le 1$	c) $13/16 \le A \le 1$	d) $3/4 \le A \le 13/16$
293.	$\ln \Delta ABC, \sin A + \sin B + s$	in $C = 1 + \sqrt{2}$ and $\cos A + \sqrt{2}$	$\cos + \cos C = \sqrt{2}$ if the tria	ngle is
	a) Equilateral		b) Isosceles	
	c) Right angled	2	d) Right-angled isosceles	
294.	The equation $\sin^2 \theta = \frac{x^2 + y^2}{2x}$	$\frac{y^2}{y}$ is possible if		
	a) $x = y$	b) $x = -y$	c) $2x = y$	d) None of these
295.	If $\tan \beta = 2 \sin \alpha \sin \gamma \cos \beta$	$\sec(\alpha + \gamma)$, then $\cot \alpha$, $\cot \beta$	β , cot γ are in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
296.	Let area of triangle ABC is	$s(\sqrt{3}-1)/2, b=2 \text{ and } c=$	$= (\sqrt{3} - 1)$ and $\angle A$ is acute.	The measure of the angle
	C is			
	a) 15°	b) 30°	c) 60°	d) 75°
297.	$\frac{\sin 2A + \sin 2B + \sin 2C}{\sin 4 + \sin R + \sin C}$	s equal to		
	A B C	<i>A B C</i>	. <i>A B C</i>	A B C
200	a) $8\sin\frac{\pi}{2}\sin\frac{\pi}{2}\sin\frac{\pi}{2}$	b) $8\cos\frac{\pi}{2}\cos\frac{\pi}{2}\cos\frac{\pi}{2}$	c) $8 \tan \frac{1}{2} \tan \frac{1}{2} \tan \frac{1}{2}$	d) $8 \cot \frac{1}{2} \cot \frac{1}{2} \cot \frac{1}{2}$
298.	If $\alpha + \beta + \gamma = 2\pi$, then	αβγ		
	a) $\tan \frac{\pi}{2} + \tan \frac{p}{2} + \tan \frac{r}{2} = \tan \frac{r}{2}$	$an\frac{\pi}{2}tan\frac{\mu}{2}tan\frac{r}{2}$		

b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\beta}{2}$	$n\frac{\gamma}{2} + \tan\frac{\gamma}{2}\tan\frac{\alpha}{2} = 1$		
c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} =$	$= -\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}$		
d) None of these			
299. If $\sin(\alpha + \beta) = 1$, $\sin(\alpha + \beta) = 1$	$(\alpha - \beta) = \frac{1}{\alpha}$, then $(\alpha + 2\beta)$	$\tan(2\alpha + \beta)$ is equal to, α, β	$R \in (0, \pi/2)$
a) 1	b) -1	c) 0	d) None of these
300. The general solution of	$\tan \theta + \tan 2\theta + \tan 3\theta = 0$	lis	-
a) $\theta = n\pi/6, n \in \mathbb{Z}$		b) $\theta = n\pi \pm \alpha, n \in Z$, wh	ere tan $\alpha = 1/\sqrt{2}$
c) Both a and b		d) None of these	
301. The number of solution	$\sin \text{ of } 2\sin^2 x + \sin^2 2x = 2, x$	$x \in [0, 2\pi]$ is	
a) 4	b) 5	c) 7	d) 6
302. The minimum vertical	distance between the graphs	s of $y = 2 + \sin x$ and $y = \cos x$	$\sin x$ is
a) 2	b) 1	c) √2	d) 2 − √2
303. The equation $\cos^{6} x + i$	$b\cos^4 x + 1 = 0$ will have a	solution if b belongs to	
a) $(-\infty, 2]$	b) [2,∞)	CJ (−∞, −2]	d) None of these
S04. If $\sin^2 \theta = \frac{x + y + 1}{2x}$, then	n <i>x</i> must be		
a) -3	b) -2	c) 1	d) None of these
$\frac{305.}{4} \frac{1}{4} \left[\sqrt{3} \cos 23^\circ - \sin 23^\circ \right]$	is equal to		
a) cos 43°	b) cos 7°	c) cos 53°	d) None of these
306. Number of solutions of	$\tan\left(\frac{\pi}{2}\sin\theta\right) = \cot\left(\frac{\pi}{2}\cos\theta\right)$	$\theta \in [0, 6\pi]$, is	
a) 5	b) 7	c) 4	d) 5
307. In $\triangle ABC$, if $\sin^2 \frac{A}{2}$, $\sin^2 \frac{A}{2}$	$\frac{B}{2}$ and $\sin^2\frac{C}{2}$ are in H.P., then	a, b and c will be in	
a) A.P.	b) G.P.	c) H.P.	d) None of these
308. Number of ordered pai	rs which satisfy the equation	$\ln x^2 + 2x\sin(xy) + 1 = 0$ as	re (where $y \in [0, 2\pi]$)
a) 1	b) 2	c) 3	d) 0
309. Let $a > 1$ be a real num	ber. Then the number of ro	ots equation $a^{2\log_2 x} = 5 +$	$4x^{\log_2 a}$ has
a) 2	b) Infinite	c) 0	d) 1
310. If $\log_2 x + \log_2 y \ge 6$, t	hen the least value of $x + y$	IS	4) 22
dJ 4 311 In <i>AABC</i> a b A are give	UJ Ø en and c. c. are two values (CJ 10 of the third side c The sum	uj 32 of the grade of the two
triangles with sides <i>a</i> , <i>b</i>	c_1, c_2 are two values c_2, c_1 and a, b, c_2 is	of the third side c. The sum	of the areas of the two
a) $(1/2)b^2 \sin 2A$	b) $(1/2)a^2 \sin 2A$	c) $b^2 \sin 2A$	d) None of these
312. In triangle <i>ABC</i> , line joi tan <i>A</i> tan <i>C</i> is equal to	ning the circumcentre and c	orthocenter is parallel to sid	e <i>AC</i> , then the value of
a) √3	b) 3	c) 3√3	d) None of these
313. In a convex quadrilater	$\operatorname{ral} ABCD, AB = a, BC = b, C$	D = c and $DA = d$. This qua	adrilateral is such that a
circle can be inscribed	in it and a circle can be also	circumscribed about it, then	$\tan^2(A/2)$ is equal to
a) $\frac{ad}{d}$	b) <u>ab</u>	c) <u><i>cd</i></u>	d) $\frac{bc}{d}$
<i>bc</i>	d	ab	$\int ad$
	h = 1	$cx = 2\cos x$ lying in the inte	d) 3
$315. \text{ If } \log_{10} x + \log_{10} y = 1.x$	$v^2 + v = 12$ then the value of	of rv is	u) 5
a) 9	h) 12	c) 15	d) 21
316. If $\log_2(5 + 4)\log_2(x - 1)$	= 2, then x is equal to	cj 15	u) 21
a) 2	b) 4	c) 8	d) log ₂ 16
317. If $\log_a 3 = 2$ and $\log_b 8$	= 3, then $\log_a b$ is	,	9 02 -
a) log ₃ 2	b) log ₂ 3	c) log ₃ 4	d) log ₄ 3
318. General solution of tan	$\theta + \tan 4\theta + \tan 7\theta = \tan \theta$	$\tan 4 heta$ $\tan 7 heta$ is	

a) $\theta = n\pi/12$, where $n \in Z$ b) $\theta = n\pi/9$, where $n \in Z$ c) $\theta = n\pi + \pi/12$, where $n \in Z$ d) None of these 319. If *I* is the incentre of a triangle *ABC*, then the ratio *IA*: *IB*: *IC* is equal to a) $\operatorname{cosec} \frac{A}{2} : \operatorname{cosec} \frac{B}{2} : \operatorname{cosec} \frac{C}{2}$ b) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$ c) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$ d) None of these 320. If $xy^2 = 4$ and $\log_3(\log_2 x) + \log_{1/3}(\log_{1/2} y) = 1$, then x equals d) 64 b) 8 321. If α is a root of $25 \cos^2 \theta + 5 \cos \theta - 12 = 0$, $\frac{\pi}{2} < \alpha < \pi$, then $\sin 2\alpha$ is equal to b) $-\frac{24}{25}$ a) $\frac{24}{25}$ d) $-\frac{13}{10}$ c) $\frac{13}{18}$ 322. The general solution of the equation $8 \cos x \cos 2x \cos 4x = \sin 6x / \sin x$ is a) $x = (n\pi/7) + (\pi/21), \forall n \in \mathbb{Z}$ b) $x = (2\pi/7) + (\pi/14), \forall n \in \mathbb{Z}$ c) $x = (n\pi/7) + (\pi/14), \forall n \in \mathbb{Z}$ d) $x = (n\pi) + (\pi/14), \forall n \in \mathbb{Z}$ 323. The total number of solutions of $\ln|\sin x| = -x^2 + 2x$ in $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is equal to a) 1 b) 2 324. In triangle *ABC*, $\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C}$ is equal to d) None of these c) 4 b) $\cot \frac{A}{2} \tan \frac{B}{2}$ c) $\cot \frac{A}{2} \cot \frac{B}{2}$ d) $\tan \frac{A}{2} \tan \frac{B}{2}$ a) $\tan \frac{A}{2} \cot \frac{B}{2}$ 325. The value of $(1 + \cos \frac{\pi}{8})(1 + \cos \frac{3\pi}{8})(1 + \cos \frac{5\pi}{8})(1 + \cos \frac{5\pi}{8})$ is a) 1/4 d) 3/8 326. If $x, y \in [0, 2\pi]$ and $\sin x + \sin y = 2$, then the value of x + y is b) π/2 a) π c) 3π d) None of these ^{327.} The set of all x in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfying $|4 \sin x - 1| < \sqrt{5}$ is given by c) $\left(\frac{\pi}{10}, \frac{3\pi}{10}\right)$ d) None of these b) $\left(\frac{\pi}{10}, \frac{3\pi}{10}\right)$ a) $\left(-\frac{\pi}{10},\frac{3\pi}{10}\right)$ 328. For $n \in Z$, the general solution of $(\sqrt{3} - 1) \sin \theta + (\sqrt{3} + 1) \cos \theta = 2$ is $(n \in Z)$ b) $\theta = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{12}$ a) $\theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12}$ d) $\theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{12}$ c) $\theta = 2n\pi \pm \frac{\pi}{4}$ 329. $\sin^{2n} x + \cos^{2n} x$ lies between a) -1 and 1 b) 0 and 1 c) 1 and 2 d) None of these 330. Number of roots of $(1 - \tan \theta)(1 + \sin 2\theta) = 1 + \tan \theta$ for $\theta \in [0, 2\pi]$ is a) 3 b) 4 c) 5 d) None of these 331. The number of solutions of $\sum_{r=1}^{5} \cos r x = 5$ in the interval [0, 2 π] is b) 2 d) 10 c) 5 332. If $\tan 3\theta + \tan \theta = 2 \tan 2\theta$, then θ is equal to $(n \in Z)$ b) $\frac{n\pi}{4}$ d) None of these a) *nπ* c) 2nπ ^{333.} If $\frac{\sin x}{\sin y} = \frac{1}{2}, \frac{\cos x}{\cos y} = \frac{3}{2}$ where $x, y \in (0, \frac{\pi}{2})$, then the value of (x + y) is equal to a) √13 b) $\sqrt{14}$ c) $\sqrt{17}$ d) $\sqrt{15}$ 334. In any $\triangle ABC$, the value of $a(b^{2} + c^{2})\cos A + b(c^{2} + a^{2})\cos B + c(a^{2} + b^{2})\cos C =$ a) $3abc^2$ b) 3*a*²*bc* d) $3 ab^2 c$ c) 3abc 335. For triangle ABC, R = 5/2 and r = 1. Let I be the incentre of the triangle and D, E and F be the feet of the

	perpendiculars from I to I	BC, CA and AB, respectivel	y. The value of $\frac{ID \times IE \times IF}{IA \times IB \times IC}$ is e	equal to
	a) $\frac{5}{2}$	b) $\frac{5}{4}$	c) $\frac{1}{10}$	d) $\frac{1}{5}$
336	Given $b = 2, c = \sqrt{3}, \angle A =$	= 30°, then inradius of ΔAB	C is	
	a) $\frac{\sqrt{3}-1}{2}$	b) $\frac{\sqrt{3}+1}{2}$	c) $\frac{\sqrt{3}-1}{4}$	d) None of these
337	If θ_1 and θ_2 are two values	s lying in $[0, 2\pi]$ for which	$\tan \theta = \lambda$, then $\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2}$	is equal to
	a) 0	b) -1	c) 2	d) 1
338	Number of roots of $\cos^2 x$	$+\frac{\sqrt{3}+1}{2}\sin x - \frac{\sqrt{3}}{4} - 1 = 0$	which lie in the interval $[-n]$	π, π] is
	a) 2	b) 4	c) 6	d) 8
339	If $\tan \alpha$ is equal to the inte	gral solution of the inequa	lity $4x^2 - 16x + 15 < 0$ and	d cos β is equal to the slope
	of the bisector of the first	quadrant, then $\sin(\alpha + \beta)$	$\sin(\alpha - \beta)$ is equal to	
	a) $\frac{3}{5}$	b) $\frac{3}{5}$	c) $\frac{2}{\sqrt{2}}$	d) $\frac{4}{r}$
340	5 tan 100° + tan 125° + tan	5 100° tan 125° is equal to	ν5	5
010	a) 0	b) 1/2	c) -1	d) 1
341	If $\pi < \alpha < \frac{3\pi}{2}$ then $\sqrt{1-\cos^2 \theta}$	$\frac{s\alpha}{1+\cos\alpha}$ is equal to	,	,
	$11 n < a < 2$, then $\sqrt{1+\cos 2}$	$s\alpha = \sqrt{1 - \cos \alpha}$ is equal to	1	1
	a) $\frac{z}{\sin \alpha}$	b) $-\frac{2}{\sin \alpha}$	c) $\frac{1}{\sin \alpha}$	d) $-\frac{1}{\sin \alpha}$
342	Equation $\log_4(3-x) + \log_4(3-x)$	$g_{0.25}(3+x) = \log_4(1-x)$	$+\log_{0.25}(2x+1)$ has	SIII u
	a) Only one prime solutio	n	b) Two real solutions	
	c) No real solution		d) None of these	
343	Given that $\log(2) = 0.301$	0, the number of digits in	1 the number 2000 ²⁰⁰⁰ is	
244	a) 6601	b) 6602	c) 6603	d) 6604
344.	If $\sin \theta + \cos \theta = \frac{1}{5}$ and 0	$\leq \theta < \pi$, then tan θ is		
- · -	a) -4/3	b) -3/4	c) 3/4	d) 4/3
345	A = B = 3/5 and t	an A tan $B = 2$, then b) sin A sin $B = -2/5$	a) and A and $R = -1/F$	d) $\sin 4 \sin R = -1/F$
346	a) $\cos A \cos B = 1/5$ If $\cos \alpha + \cos \beta = 0 \sin \alpha$	$D = \frac{1}{2} \sin \beta = \frac{1}{2} \sin \beta$ + sin β then cos 2α + cos 2	$C \int \cos A \cos B = -1/5$ β is equal to	$a) \sin A \sin B = -1/5$
510	a) $-2\sin(\alpha + \beta)$	b) $-2\cos(\alpha + \beta)$	c) $2 \sin(\alpha + \beta)$	d) $2\cos(\alpha + \beta)$
347	In triangle ABC, $\angle C = 2\pi$	/3 and <i>CD</i> is the internal ar	igle bisector of $\angle C$, meeting	g the side <i>AB</i> at <i>D</i> . Length
	CD is equal to			
	ab	b) $\frac{2ab}{2ab}$	2ab	d ab
	2(a+b)	a + b	$\sqrt{3(a+b)}$	a + b
348.	In triangle <i>ABC</i> , $\angle B = \pi/3$	$3 \text{ and } \angle C = \pi/4. \text{ Let } D \text{ divides}$	de <i>BC</i> internally in the ratio	to 1:3. Then $\frac{\sin \angle BAD}{\sin \angle CAD}$ equals
	a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{1}{5}$	d) $\frac{2}{2}$
	$\sqrt{5}$	- 3	$\sqrt{3}$	$\sqrt{3}$
349.	Let $\theta \in \left(0, \frac{\pi}{4}\right)$ and $t_1 = (ta)$	$(\tan\theta)^{\tan\theta}, t_2 = (\tan\theta)^{\cot\theta},$	$t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 = ($	$(\cot \theta)^{\tan \theta}$, then
	a) $t_1 > t_2 > t_3 > t_4$	b) $t_4 > t_3 > t_1 > t_2$	c) $t_3 > t_1 > t_2 > t_4$	d) $t_2 > t_3 > t_1 > t_4$
350.	If D is the mid-point of the	e side BC of triangle ABC as $h^2 = h^2 = 2a^2$	nd AD is perpendicular to A	AC, then d) $a^2 + b^2 = \Gamma a^2$
251	a) $3D^2 = u^2 - c^2$ If A B and C are angles of	D) $3u^2 = v^2 - 3c^2$	$c_{J} D^{-} = u^{-} - c^{-}$	$a_{J}a^{2} + b^{2} = 5c^{2}$
551	1	$\sqrt{3}$	c) 1	d) None of these
	a) $\frac{1}{\sqrt{3}}$	b) $\frac{\sqrt{3}}{2}$	-, -	. ,
352	ABC is an equilateral trian	ngle of side 4 cm. If R, r and	d <i>h</i> are the circumradius, in	radius and altitude,

respectively, then $\frac{R+r}{h}$ is equal to

	a) 4	b) 2	c) 1	d) 3			
353.	One of the general solution	ns of $\sqrt{3}\cos\theta - 3\sin\theta = 4$	$\sin 2\theta \cos 3\theta$ is				
	a) $m\pi + \pi/18, m \in Z$	b) $m\pi/2 + \pi/6, \forall m \in Z$	c) $m\pi/3 + \pi/18, m \in Z$	d) None of these			
354.	54. In $\triangle ABC$, $a^2 + b^2 + c^2 = ac + ab\sqrt{3}$, then the triangle is						
	a) Equilateral	b) Isosceles	c) Right angled	d) None of these			
355.	The least value of $2 \sin^2 \theta$	$+ 3\cos^2\theta$ is					
	a) 1	b) 2	c) 3	d) 5			
356.	In triangle <i>ABC</i> , let $\angle C = z$	$\pi/2$. If r is the inradius and	<i>R</i> is circumradius of the tr	iangle, then $2(r+R)$ is			
	equal to						
	a) <i>a</i> + <i>b</i>	b) <i>b</i> + <i>c</i>	c) <i>c</i> + <i>a</i>	d) <i>a</i> + <i>b</i> + <i>c</i>			
357.	The number of pairs of int	eger (x, y) that satisfy the	following two equations {	$os(xy) = x_{is}$			
			(ta	$an(xy) = y^{10}$			
	a) 1	b) 2	c) 4	d) 6			
358.	In $\triangle ABC$, the bisector of the	the angle A meets the side B	<i>C</i> at <i>D</i> and the circumscrib	ed circle at <i>E</i> , then <i>DE</i>			
	equals						
	$a^2 \sec \frac{A}{2}$	b) $a^2 \sin \frac{A}{2}$	$a^2 \cos \frac{A}{2}$	d) $a^2 \operatorname{cosec} \frac{A}{2}$			
	$\frac{a}{2(b+c)}$	$\frac{b}{2(b+c)}$	$\frac{1}{2(b+c)}$	$\frac{2(b+c)}{2(b+c)}$			
359.	The total number of soluti	$\cos of \tan x + \cot x = 2 \cos x$	sec x in $[-2\pi, 2\pi]$ is				
	a) 2	b) 4	c) 6	d) 8			
360.	In a right-angled isosceles	triangle, the ratio of the cir	rcumradius and inradius is				
	a) $2(\sqrt{2}+1):1$	b) $(\sqrt{2} + 1): 1$	c) 2:1	d) √2: 1			
361.	Let $y = (\sin x + \csc x)^2$	$+(\cos x + \sec x)^2 + (\cos x)^2$	$(x + \sec x)^2$, then the minim	um value of $y, \forall x \in R$, is			
	a) 7	b) 3	c) 9	d) 0			
362.	In triangle $ABC, R(b + c)$	$= a\sqrt{bc}$ where <i>R</i> is the circ	umradius of the triangle. T	`hen the triangle is			
	a) Isosceles but not right		b) Right but not isosceles				
	c) Right isosceles		d) Equilateral				
363.	Assume that θ is a rationa	l multiple of π such that cos	s $ heta$ is a distinct rational. Nu	mber of values of $\cos \theta$ is			
	a) 3	b) 4	c) 5	d) 6			
364.	Value of $\frac{3 + \cot 80^\circ \cot 20^\circ}{\cot 80^\circ + \cot 20^\circ}$ is e	equal to					
	a) cos 20°	b) tan 50°	c) cot 50°	d) $\cot \sqrt{20^{\circ}}$			
365.	Two medians drawn from	the acute angles of a right-	angled triangle intersect a	t an angle $\pi/6$. If the length			
	of the hypotenuse of the tr	riangle is 3 units, then the a	rea of the triangle (in sq. u	nits) is			
	a) √3	b) 3	c) $\sqrt{2}$	d) 9			

Multiple Correct Answers Type

366. If in triangle *ABC*, *a*, *b*, *c* and angle *A* are given and $c \sin A < a < c$, then a) $b_1 + b_2 = 2c \cos A$ b) $b_1 + b_2 = c \cos A$ c) $b_1 b_2 = c^2 - a^2$ d) $b_1 b_2 = c^2 + a^2$ 367. The values of θ lying between $\theta = 0$ and $\theta = \theta/2$ and satisfying the equation $\begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{vmatrix} = 0 \text{ are}$ a) $7\pi/24$ b) $5\pi/24$ b) 5π/24 a) 7π/24 c) 11π/24 d) $\pi/24$ 368. If $(\csc^2 \theta - 4)x^2 + (\cot \theta + \sqrt{3})x + \cos^2 \frac{3\pi}{2} = 0$ holds true for all real *x*, then the most general values of θ can be given by $(n \in Z)$ b) $2n\pi + \frac{5\pi}{6}$ c) $2n\pi \pm \frac{7\pi}{6}$

- a) $2n\pi + \frac{11\pi}{6}$ d) $n\pi \pm \frac{11\pi}{6}$
- 369. Which of the following statements are always correct (where *Q* denotes the set of rationals)? a) $\cos 2\theta \in Q$ and $\sin 2\theta \in Q \Rightarrow \tan \theta \in Q$ (if defined)

b) $\tan \theta \in Q \implies \sin 2\theta$, $\cos 2\theta$ and $\tan 2\theta \in Q$ (if defined) c) if $\sin \theta \in Q$ and $\cos \theta \in Q \Rightarrow \tan 3\theta \in Q$ (if defined) d) if $\sin \theta \in Q \Rightarrow \cos 3\theta \in Q$ 370. If $\sin^2 x - 2 \sin x - 1 = 0$ has exactly four different solutions in $x \in [0, n\pi]$, then value/values of *n* is/are $(n \in N)$ a) 5 b) 3 d) 6 c) 4 371. For the equation $1 - 2x - x^2 = \tan^2(x + y) + \cot^2(x + y)$ a) Exactly one value of *x* exists b) Exactly two values of *x* exists c) $y = -1 + n\pi + \pi/4, n \in \mathbb{Z}$ d) $y = 1 + n\pi + \pi/4, n \in \mathbb{Z}$ 372. If the angles of a triangle are 30° and 45°, and the included side is $(\sqrt{3} + 1)$ cm, then a) Area of the triangle is $\frac{1}{2}(\sqrt{3}+1)$ sq. units b) Area of the triangle is $\frac{1}{2}(\sqrt{3}-1)$ sq. units c) Ratio of greater side to smaller side is $\frac{\sqrt{3}+1}{\sqrt{2}}$ d) Ratio of greater side to smaller side is $\frac{1}{4\sqrt{3}}$ 373. If $\log_k x \cdot \log_5 k = \log_x 5$, $k \neq 1, k > 0$, then x is equal to a) k d) None of these b) 1/5 c) 5 374. For $0 \le x \le 2\pi$, then $2^{\csc^2 x} \sqrt{\frac{1}{2}y^2 - y + 1} \le \sqrt{2}$ b) Is satisfied by exactly two value of x a) Is satisfied by exactly one value of y c) Is satisfied by *x* for which $\cos x = 0$ d) Is satisfied by x for which $\sin x = 0$ 375. Let $\tan x - \tan^2 x > 0$ and $|2 \sin x| < 1$. Then the intersection of which of the following two sets satisfies both the inequalities? b) $x > n\pi - \pi/6, n \in \mathbb{Z}$ c) $x < n\pi - \pi/4, n \in \mathbb{Z}$ d) $x < n\pi + \pi/6, n \in \mathbb{Z}$ a) $x > n\pi, n \in \mathbb{Z}$ 376. A solution of the equation $(1 - \tan \theta)(1 + \tan \theta) \sec^2 \theta + 2^{\tan^2 \theta} = 0$, where θ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is given by d) $\theta = \frac{\pi}{c}$ b) $\theta = \frac{\pi}{2}$ c) $\theta = -\frac{\pi}{3}$ a) $\theta = 0$ 377. The equation $x^3 - \frac{3}{4}x = -\frac{\sqrt{3}}{8}$ is satisfied by ^{377.} The equation $x^3 - \frac{3}{4}x = -\frac{\sqrt{3}}{8}$ is satisfied by a) $x = \cos\left(\frac{5\pi}{18}\right)$ b) $x = \cos\left(\frac{7\pi}{18}\right)$ c) $x = \cos\left(\frac{23\pi}{18}\right)$ d) $x = \cos\left(\frac{17\pi}{18}\right)$ ^{378.} If the equation $x^{\log_a x^2} = \frac{x^{k-2}}{a^k}$, $a \neq 0$, has exactly one solution for x, then the value of k is/are b) $2 + 6\sqrt{3}$ a) $6 + 4\sqrt{2}$ c) $6 - 4\sqrt{2}$ d) 2 - $6\sqrt{3}$ 379. For a positive integer *n*, let $f_n(\theta) = (\tan \frac{\theta}{2})(1 + \sec \theta)(1 + \sec 2\theta)(1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$. Then a) $f_2(\pi/16) = 1$ b) $f_3(\pi/32) = 1$ c) $f_4(\pi/64) = 1$ d) $f_5(\pi/128) = 1$ 380. In triangle *ABC* if $2a^2b^2 + 2b^2c^2 = a^4 + b^4 + c^4$, then angle *B* is equal to a) 45° b) 135° d) 60° c) 120° 381. *CF* is the internal bisector of angle *C* of $\triangle ABC$, then *CF* is equal to c) $\frac{b \sin A}{\sin \left(B + \frac{c}{2}\right)}$ d) None of these a) $\frac{2ab}{a+b}\cos\frac{C}{2}$ b) $\frac{a+b}{2ab}\cos\frac{C}{2}$ 382. If $\tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$, then a) $\sin \alpha - \cos \alpha = \pm \sqrt{2} \sin \theta$ b) $\sin \alpha + \cos \alpha = \pm \sqrt{2} \cos \theta$ d) $\sin 2\theta + \cos 2\alpha = 0$ c) $\cos 2\theta = \sin 2\alpha$ 383. Which of the following number(s)is/are rational? b) $\cos 15^{\circ}$ c) $\sin 15^{\circ} \cos 15^{\circ}$ d) $\sin 15^{\circ} \cos 75^{\circ}$ a) sin 15° 384. Which of the following quantities are rational?

a)
$$\sin\left(\frac{11\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$$

b) $\csc\left(\frac{9\pi}{10}\right)\sec\left(\frac{4\pi}{5}\right)$
c) $\sin^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right)$
d) $\left(1 + \cos\frac{2\pi}{9}\right)\left(1 + \cos\frac{4\pi}{9}\right)\left(1 + \cos\frac{8\pi}{9}\right)$

385. The minimum value of the expression $\sin \alpha + \sin \beta + \sin \gamma$, where α, β, γ are real numbers satisfying $\alpha + \beta + \gamma = \pi$ is

- a) Positive b) Zero c) Negative d) -3386. The equation $\log_{x+1}(x - 0.5) = \log_{x-0.5}(x + 1)$ has a) Two real solutions b) No prime solution c) One integral solution d) No irrational solution 387. $(a + 2) \sin \alpha + (2a - 1) \cos \alpha = (2a + 1)$ if $\tan \alpha$ is a) 3/4 b) 4/3 c) $2a/(a^2 + 1)$ d) $2a/(a^2 - 1)$
- 388. There exists triangle *ABC* satisfying
 - a) $\tan A + \tan B + \tan C = 0$
 - b) $\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{7}$ c) $(a+b)^2 = c^2 + ab$ and $\sqrt{2} (\sin A + \cos A) = \sqrt{3}$ d) $\sin A + \sin B = \frac{\sqrt{3} + 1}{2}$, $\cos A \cos B = \frac{\sqrt{3}}{4} = \sin A \sin B$

389. If $\log a = b$ for permissible values of *a* and *x*, then identify the statement (*s*) which can be correct.

a) If *a* and *b* are two irrational numbers, then *x* can be rational.

- b) If *a* is rational and *b* is irrational, then *x* can be rational.
- c) If a is irrational and =b is rational, then x can be rational.
- d) If *a* is rational and *b* is rational, then *x* can be rational.

390. Let $A_0A_1A_2A_3A_4A_5$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A_0A_1 , A_0A_2 and A_0A_4 is

a)
$$\frac{3}{4}$$
 b) $3\sqrt{3}$ c) 3 d) $\frac{3\sqrt{3}}{2}$

- 391. If $(\sin \alpha)x^2 2x + b \ge 2$ for all the real values of $x \le 1$ and $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$, then the possible real values of *b* is/are
- a) 2 b) 3 c) 4 d) 5 392. If $\sin^2 x - a \sin x + b = 0$ has only one solution in $(0, \pi)$, then which of the following statements are correct?
- a) $a \in (-\infty, 1] \cup [2, \infty)$ b) $b \in (-\infty, 0] \cup [1, \infty)$ c) a = 1 + b d) None of these 393. Which of the following, when simplified, reduces to unity?

a)
$$\log_{10} 5 . \log_{10} 20 + (\log_{10} 2)^2$$

b) $\frac{2 \log 2 + \log 3}{\log 48 - \log 4}$
c) $-\log_5 \log_3 \sqrt{5\sqrt{9}}$
d) $\frac{1}{6} \log_{\frac{\sqrt{3}}{2}} \left(\frac{64}{27}\right)$

394. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be

a) $5 - \sqrt{6}$ b) $3\sqrt{3}$ c) 5 d) $5 + \sqrt{6}$

395. For $\alpha = \pi/7$ which of the following hold(s) good?

a) $\tan \alpha \tan 2\alpha \tan 3\alpha = \tan 3\alpha - \tan 2\alpha - \tan \alpha$

b) cosec α = cosec 2α + cosec 4α

c) $\cos \alpha - \cos 2\alpha + \cos 3\alpha = 1/2$

d) $8 \cos \alpha \cos 2\alpha \cos 4\alpha = 1$

396. The equation $\sqrt{1 + \log_x \sqrt{27} \log_3 x} + 1 = 0$ has a) No integral solution b) One irrational solution c) Two real solutions d) No prime solution 397. There exists a triangle ABC satisfying the conditions a) $b \sin A = a, A < \pi/2$ b) $b \sin A > a$, $A > \pi/2$ c) $b \sin A < a, A < \pi/2$ d) $b \sin A < a, A < \pi/2, b > a$ 398. If $\cos \beta$ is the geometric mean between $\sin \alpha$ and $\cos \alpha$, where $0 < \alpha, \beta < \pi 2$, then $\cos 2\beta$ is equal to a) $-2\sin^2\left(\frac{\pi}{4}-\alpha\right)$ b) $-2\cos^2\left(\frac{\pi}{4}+\alpha\right)$ c) $2\sin^2\left(\frac{\pi}{4}+\alpha\right)$ d) $2\cos^2\left(\frac{\pi}{4}-\alpha\right)$ 399. If in a triangle *PQR*, sin *P*, sin *Q*, sin *R* are in A.P., then a) The altitudes are in A.P. b) The altitudes are in H.P. d) The medians are in A.P. c) The medians are in G.P. 400. If $\log_{1/2}(4 - x) \ge \log_{1/2} 2 - \log_{1/2}(x - 1)$, then x belongs to a) (1, 2] b) [3,4) c) (1,3] d) [1,4) 401. Which of the following do/does not reduce to unity? a) $\frac{\frac{\sin(180^\circ + A)}{\tan(180^\circ + A)}}{\frac{\cos(360^\circ - A)}{\cos(260^\circ - A)}} \frac{\frac{\cot(90^\circ + A)}{\cot(90^\circ + A)}}{\csc(A)}$ sin(-A) $\frac{\sin(-A)}{\sin(180^{\circ} + A)} - \frac{\tan(90^{\circ} + A)}{\cot A}$ b) $\frac{\sin(180^{\circ} + A)}{+\frac{\cos A}{\sin(90^{\circ} + A)}}$ c) $\frac{\sin 24^{\circ} \cos 6^{\circ} - \sin 6^{\circ} \cos 24^{\circ}}{\sin 21^{\circ} \cos 39^{\circ} - \cos 51^{\circ} \sin 69^{\circ}}$ d) $\frac{\cos(90^{\circ} + A) \sec(-A) \tan(180^{\circ} - A)}{\sec(360^{\circ} + A) \sin(180^{\circ} + A) \cot(90^{\circ} - A)}$ 402. Sides of $\triangle ABC$ are in A.P. If $a < \min\{b, c\}$, then $\cos A$ may be equal to a) $\frac{4b-3c}{2h}$ b) $\frac{3c - 4b}{2c}$ c) $\frac{4c - 3b}{2b}$ d) $\frac{4c-3b}{2c}$ 403. The sides of $\triangle ABC$ satisfy the equation $2a^2 + 4b^2 + c^2 = 4ab + 2ac$. Then a) The triangle is isosceles b) The triangle is obtuse c) $B = \cos^{-1}(7/8)$ d) $A = \cos^{-1}(1/4)$ 404. Which of the following identities, wherever defined, hold(s) good? a) $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$ b) $tan(45^\circ + \alpha) - tan(45^\circ - \alpha) = 2 \operatorname{cosec} 2\alpha$ c) $\tan(45^\circ + \alpha) + \tan(45^\circ - \alpha) = 2 \sec 2\alpha$ d) $\tan \alpha + \cot \alpha = 2 \tan 2\alpha$ 405. If the sides of a right-angled triangle are in G.P., then the cosines of the acute angle of the triangle are c) $\frac{\sqrt{5}-1}{2}$ d) $\frac{\sqrt{5}+1}{2}$ a) $\frac{\sqrt{5}-1}{2}$ b) $\frac{\sqrt{5+1}}{2}$ 406. In which of the following sets the inequality $\sin^6 x + \cos^6 x > 5/8$ holds good? a) $(-\pi/8, \pi/8)$ b) $(3\pi/8, 5\pi/8)$ c) $(\pi/4, 3\pi/4)$ d) $(7\pi/8, 9\pi/8)$ 407. The number of all the possible triplets (a_1, a_2, a_3) such that $a_1 + a_2 \cos(2x) + a_3 \sin^2(x) = 0$ for all x is a) 0 b) 1 c) 3 d) Infinite 408. A circle centred at O has radius 1 and contains the point A. Segment AB is tangent to the circle at

A and $\angle AOB = \theta$. If point C lies on OA and BC bisects the angle ABO, then OC equals

420. For $a > 0, \neq 1$, the roots of the equation $\log_{ax} a + \log_x a^2 + \log_{a^2 x} a^3 = 0$ are given by a) $a^{-4/3}$ b) $a^{-3/4}$ c) a d) $a^{-1/2}$

421. In $\triangle ABC$, if $\cos \frac{A}{2} = \sqrt{\frac{b+c}{2c}}$, then a) Area of triangle is $\frac{1}{2}ab$ b) Circumradius is equal to $\frac{1}{2}c$ c) Area of triangle is $\frac{1}{2}bc$ d) Circumradius is equal to $\frac{1}{2}a$ 422. The real solutions of the equation 2^{x+2} . $5^{6-x} = 10^{x^2}$ is/are b) 2 d) $\log_{10} 4 - 3$ a) 1 c) $-\log_{10}(250)$ 423. If $x + y = 2\pi/3$ and $\sin x / \sin y = 2$, then b) Number of values of $x \in [0, 4\pi]$ are 2 a) The number of values of $x \in [0, 4\pi]$ are 4 d) Number of values of $y \in [0, 4\pi]$ are 8 c) Number of values of $y \in [0, 4\pi]$ are 4 424. If the tangents of the angles A and B of triangle ABC satisfy the equation $abx^2 - c^2x + ab = 0$, then b) $\tan B = b/a$ a) $\tan A = a/b$ d) $\sin^2 A + \sin^2 B + \sin^2 C = 2$ c) $\cos C = 0$ 425. Which of the following is/are correct? a) $(\tan x)^{\ln(\sin x)} > (\cot x)^{\ln(\sin x)}, \forall x \in (0, \pi/4)$ b) $4^{\ln \operatorname{cosec} x} < 5^{\ln \operatorname{cosec} x}, \forall x \in (0, \pi/2)$ c) $(1/2)^{\ln(\cos x)} < (1/3)^{\ln(\cos x)}, \forall x \in (0, \pi/2)$ d) $2^{\ln(\tan x)} > 2^{\ln(\sin x)}, \forall x \in (0, \pi/2)$ 426. If in a $\triangle ABC$, $\sin^4 A + \sin^4 B + \sin^4 C$ $= \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B$, then A =c) $\frac{5\pi}{6}, \frac{2\pi}{2}$ a) $\frac{\pi}{6}, \frac{5\pi}{6}$ b) $\frac{\pi}{2}$, $\frac{5\pi}{6}$ d) None of these 427. $\cos(\sin x) = \frac{1}{\sqrt{2}}$, then *x* must be lie in the interval c) $\left(\pi, \frac{3\pi}{2}\right)$ a) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ b) $\left(-\frac{\pi}{4},0\right)$ d) $\left(\frac{\pi}{2},\pi\right)$ 428. If $\sin^3 \theta + \sin \theta \cos \theta + \cos^3 \theta = 1$, then θ is equal to $(n \in Z)$ c) $2n\pi - \frac{\pi}{2}$ b) $2n\pi + \frac{\pi}{2}$ a) 2*nπ* d) $n\pi$ 429. The area of a regular polygon of *n* sides is (where *r* is inradius, *R* is circumradius and *a* is side of the triangle) a) $\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$ b) $nr^2 \tan\left(\frac{\pi}{n}\right)$ c) $\frac{na^2}{4}\cot\frac{\pi}{n}$ d) $nR^2 \tan\left(\frac{\pi}{n}\right)$ 430. Let $0 \le \theta \le \pi/2$ and $x = X \cos \theta + Y \sin \theta$, $y = X \sin \theta - Y \cos \theta$ such that $x^2 + 4xy + y^2 = aX^2 + bY^2$, where *a*, *b* are constants. Then, b) $\theta = \frac{\pi}{4}$ c) a = 3, b = -1 d) $\theta = \frac{\pi}{2}$ a) a = -1, b = 3431. If $x + y = \pi/4$ and $\tan x + \tan y = 1$, then $(n \in Z)$ b) when $x = n\pi + \pi/4$ then $y = -n\pi$ a) $\sin x = 0$ always c) when $x = n\pi$ then $y = n\pi + (\pi/4)$ d) when $x = n\pi + \pi/4$ then $y = n\pi - (\pi/4)$ 432. If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$, then which of the following is/are true? ing is/are true? c) $x^{b+c}y^{c+a}z^{a+b} = 1$ d) $xyz = x^ay^bz^c$ b) $x^{a}y^{b}z^{c} = 1$ a) xyz = 1433. If $\cos x + \cos y - \cos(x + y) = \frac{3}{2}$, then d) $\cos^2\left(\frac{x-y}{2}\right) \ge 1$ a) x + y = 0b) x = 2yc) x = y434. The value of x in (0, $\pi/2$) satisfying $\frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2}$ is c) $\frac{7\pi}{24}$ d) $\frac{11\pi}{26}$ b) $\frac{5\pi}{12}$ a) $\frac{\pi}{12}$ 435. If $\frac{x}{y} = \frac{\cos A}{\cos B}$, where $A \neq B$, then

	a) $\tan\left(\frac{A+B}{A}\right) = \frac{x \tan A + y \tan B}{x \tan A}$	b) $tan\left(\frac{A-B}{A}\right) = \frac{x tan A}{x tan A}$	$-y \tan B$
	$\left(\frac{1}{2}\right) = \frac{1}{x+y}$	$\left(\frac{1}{2}\right) = \frac{1}{x}$	+ <i>y</i>
	c) $\frac{\sin(A+B)}{\cos(A+B)} = \frac{y\sin A + x\sin B}{\cos(A+B)}$	d) $x \cos A + v \cos B = 0$	
400	$y \sin(A - B) = y \sin A - x \sin B$	(10)	
436	The expression $(\tan^2 x + 2 \tan^2 x + 1) \cos^2 x$ whe	n $x = \pi/12$ can be equal to	\mathbb{D} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
	a) $4(2 - \sqrt{3})$ b) $4(\sqrt{2} + 1)$	c) $16 \cos^2 \pi / 12$	d) 16 sin ² $\pi/12$
437.	The number of values of x in the interval $[0, 5\pi]$ sa	tisfying the equation $3 \sin^2 x$	$x - 7\sin x + 2 = 0$ is
420	a) 0 b) 5	$C \int 6$	d) 10
438.	then which of the following is/are true?	$z(\sin x + \sin y) - z \cos y$	s(x - y) = 3 has a solution,
	a) $\sin \frac{x+y}{2} = 1$	b) $\cos(\frac{x-y}{2}) = \frac{1}{2}$	
	c) Number of ordered pairs (x, y) is 2	d) Number of ordered pa	airs (x, y) is 3
439	If $\sin x + \cos x = \sqrt{y + \frac{1}{y}}$ for $x \in [0, \pi]$, then		
	a) $x = \pi/4$ b) $y = 0$	c) $y = 1$	d) $x = 3\pi/4$
440	If $b > 1$, sin $t > 0$, cos $t > 0$ and $\log_b(\sin t) = x$, the	then $\log_{b}(\cos t)$ is equal to	
	a) $\frac{1}{2}\log_b(1-b^{2x})$	b) $2\log(1-b^{x/2})$	
	c) $\log_b \sqrt{1 - b^{2x}} \log_b (1 - b^{2x})$	d) $\sqrt{1-x^2}$	
441	In a right-angled triangle, the hypotenuse is $2\sqrt{2}$ t	imes the perpendicular drav	wn from the opposite vertex.
	Then the other acute angles of the triangle are	2	
	a) $\frac{\pi}{3}$ b) $\frac{\pi}{8}$	c) $\frac{3\pi}{9}$	d) $\frac{\pi}{6}$
442	For $0 < \emptyset < \pi/2$, if $x = \sum_{n=0}^{\infty} \cos^{2n} \emptyset$, $y = \sum_{n=0}^{\infty} \sin^{2n} \emptyset$	$n^{2n} \emptyset$, $z = \sum_{m=0}^{\infty} \cos^{2n} \emptyset \sin^{2n}$	ⁿ Ø. then
	a) $xyz = xz + y$ b) $xyz = xy + z$	c) $xyz = x + y + z$	d) $xyz = yz + x$
443	Which of the following inequalities hold true in any	y triangle <i>ABC</i> ?	
	a) $\sin \frac{A}{\sin 2} \sin \frac{B}{\sin 2} \le \frac{1}{2}$	h) \cos^{A} \cos^{B} \cos^{C} $\sqrt{3}\sqrt{3}$	/3
	$2^{311} 2^{311} 2^{312} 2^{-8} 8$	$5 \cos \frac{1}{2} \cos \frac{1}{2} \cos \frac{1}{2} \le \frac{1}{8}$	3
	c) $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} < \frac{3}{4}$	d) $\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} \cos^2 \frac{A}{2}$	$\frac{9}{5} \leq \frac{9}{4}$
444	In a triangle, the angles are in A.P. and the lengths	of the two larger sides are 1	0 and 9, respectively, then
	the length of the third side can be	U U	
	a) $5 + \sqrt{6}$ b) 0.7	c) $5 - \sqrt{6}$	d) None of these
445	Which of the following sets can be the subset of the	e general solution of 1 + cos	$3x = 2\cos 2x \ (n \in Z)?$
	a) $n\pi + \frac{\pi}{2}$ b) $n\pi + \frac{\pi}{6}$	c) $n\pi - \frac{\pi}{6}$	d) 2 <i>nπ</i>
446	If in a triangle, $\sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 B$	$n^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A$	$A^2 A \sin^2 B$, then its angle A is
	equal to		<i>,</i> 0
	a) 30° b) 120°	c) 150°	d) 60°
447	Let <i>ABC</i> be an isosceles triangle with base <i>BC</i> . If 'n	r' is the radius of the circle i	nscribed in $\triangle ABC$ and r_1 is
	the radius of the circle escribed opposite to the any	gle A, then the product $r_1 r$ c	an be equal to
	Where <i>R</i> is the radius of the circumcircle of the ΔA	IBC	2
	a) $R^2 \sin^2 A$ b) $R^2 \sin^2 2B$	c) $\frac{1}{2}a^2$	d) $\frac{a^2}{4}$
448	$\tan x = \tan x $, if		
	a) $x \in (-\pi(2k+1)/2, -\pi k), k \in I$	b) $x \in [\pi k, \pi(2k + 1)/2]$	$, k \in I$
	c) $x \in \{-\pi k, -\pi (2k-1)/2\}, k \in I$	d) $x \in {\pi(2k-1)/2, \pi k}$	$k, k \in I$
449	$\sin\theta + \sqrt{3}\cos\theta = 6x - x^2 - 11, 0 \le \theta \le 4\pi, x \in \mathbb{R}$	R, holds for	
	a) No values of x and θ	b) One value of <i>x</i> and two	o values of θ
	c) Two values of x and two values of θ	a) Two point of values of	(x, θ)

450. In acute-angled triangle *ABC*, *AD* is the altitude. Circle drawn with *AD* as its diameter cuts the *AB* and *AC* at *P* and *Q*, respectively. Length *PQ* is equal to

a) $\frac{\Delta}{2R}$ b) $\frac{abc}{4R^2}$ c) $2R \sin A \sin B \sin C$ d) $\frac{\Delta}{R}$ 451. If $sin(x + 20^\circ) = 2 sin x cos 40^\circ$ where $x \in (0, \pi/2)$ then which of the following hold(s) good? b) cosec 4x = 2 c) $\sec \frac{x}{2} = \sqrt{6} - \sqrt{2}$ d) $\tan \frac{x}{2} = (2 - \sqrt{3})$ a) $\cos 2x = 1/2$ 452. If $4\sin^4 x + \cos^4 x = 1$, then x is equal to $(n \in Z)$ b) $n\pi \pm \sin^{-1} \sqrt{\frac{2}{5}}$ c) $\frac{2n\pi}{3}$ d) $2n\pi \pm \frac{\pi}{4}$ a) *nπ* 453. If sides of triangle *ABC* are *a*, *b* and *c* such that 2b = a + c, then a) $\frac{b}{c} > \frac{2}{3}$ b) $\frac{b}{c} > \frac{1}{3}$ c) $\frac{b}{c} < 2$ 454. If $0 \le \theta \le \pi$ and $81^{\sin^2 \theta} + 81^{\cos^2 \theta} = 30$, then θ is d) $\frac{b}{c} < \frac{3}{2}$ b) 60° c) 120° d) 150° 455. If $p, q \in N$ satisfy the equation $x^{\sqrt{x}} = (\sqrt{x})^x$, then p and q are b) Twin prime a) Relatively prime d) If $\log_q p$ is defined, then $\log_p q$ is not and vice versa c) Coprime 456. If $\cos p\theta = \sin q\theta$, then the general values of θ are a) $\frac{(2n+1)\pi}{2(p+q)}$, $n \in I$ b) $\frac{(2n+1)\pi}{2(p-q)}$, $n \in I$ c) $\frac{(4n-1)\pi}{2(p-q)}$, $n \in I$ d) $\frac{(4n+1)\pi}{2(p+q)}$, $n \in I$ 457. Let $f(x) = \log(\log_{1/3}(\log_7(\sin x + a)))$ be defined for every real value of *x*, then the possible value of *a* is a) 3 b) 4 c) 5 d) 6

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 458 to 457. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

458

Statement 1:	The incentre of the triangle formed by the feet of altitudes from the vertices of triangle
	ABC to the opposite sides is the orthocenter of the triangle ABC
Statement 2:	The incentre of triangle ABC is orthocenter of the triangle $I_1I_2I_3$, where I_1, I_2, I_3 are
	excentres of triangle ABC

Statement 1: Equation $\sqrt{1 - \sin 2x} = \sin x$ has 1 solution for $x \in [0, \pi/4]$

Statement 2: $\cos x > \sin x$ when $x \in [0, \pi/4]$

460 Let α , β , and γ satisfy $0 < \alpha < \beta < \gamma < 2\pi$ and $\cos(x + \alpha) + \cos(x + \beta) + \cos(x + \gamma) = 0 \forall x \in R$

Statement 1: $\gamma - \alpha = \frac{2\pi}{3}$ Statement 2: $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $\sin \alpha + \sin \beta + \sin \gamma = 0$

461

Statement 1: General solution of
$$\frac{\tan 4x - \tan 2x}{1 + \tan 4x \tan 2x} = 1$$
 is $x = \frac{n\pi}{2} + \frac{\pi}{8}$, $n \in I$
Statement 2: General solution of $\tan \alpha = 1$ is $\alpha = n\pi + \frac{\pi}{4}$, $n \in I$

462

Statement 1:	sın	x = a,	where -1	< a <	< 0,	then f	or $x \in$	$[0, n\pi]$	has $2(n -$	- 1) soli	utions $\forall i$	$n \in N$	
a a				. 1			,			1.			

Statement 2: sin *x* takes value *a* exactly two times when we take one complete rotation covering all the quadrant starting from x = 0

463

Statement 1:	The equation $\sin^2 x + \cos^2 y = 2 \sec^2 z$ is solvable when only $\sin x = 1$; $\cos y = 1$ and
	$\sec z = 1$, where $x, y, z \in R$
Statement 2:	The maximum value of sin x and cos y is 1 and minimum value of sec z is 1

464

Statement 1:	$\sin \pi / 18$ is a root of $8x^3 - 6x + 1 = 0$
Statement 2:	For any $\theta \in R$, $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

465

Statement 1:	In $(0, \pi)$, the number of solutions of the equation
	$\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta$ is two
Statement 2:	tan 6 θ is not defined at
	$\theta = (2n+1)\frac{\pi}{12}, n \in I$

466

Statement 1:	If the incircle of the triangle ABC passes through its circumcentre, then $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} =$
	$\sqrt{2}$
Statement 2:	Distance between the circumcentre and incentre is $\sqrt{R^2 - 2rR}$

467

Statement 1:	Number of solution of $n \sin x = m \cos x $ (where $m, n \in Z$) in $[0, 2\pi]$ is independent of
	<i>m</i> and <i>n</i>

Statement 2: Multiplying trigonometric functions by constant changes only range of the function but period remains same

Statement 1:
$$\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) = -\frac{1}{2}$$

Statement 2: $\cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$ is complex 7th root of unity

469

- **Statement 1:** The minimum value of $27^{\cos 2x} 81^{\sin 2x}$ is $\frac{1}{243}$.
- **Statement 2:** The minimum value of $a \cos \theta + b \sin \theta$ is $-\sqrt{a^2 + b^2}$.

470

Statement 1: $\cos 36^\circ > \sin 36^\circ$

Statement 2: $\cos 36^\circ > \tan 36^\circ$

471

Statement 1:	If $f(\theta) = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2$, then the minimum value of $f(\theta)$ is 9.
Statement 2:	Maximum value of sin 2θ is 1

472

Statement 1:	1: If the quadrilateral Q_1 formed by joining mid-points of sides of another quadrilateral Q_1				
	cyclic, then Q_1 is necessarily a rectangle				
Statement 2:	The quadrilateral \mathcal{Q}_1 formed by joining mid-points of sides of another quadrilateral \mathcal{Q}_2 is				
	always a parallelogram				
3					

473

Statement 1:	If $a = 3, b = 7, c = 8$, and internal angle bisector AI meets BC at D (where I is incentre)			
	then $AI/ID = 11/2$			
Statement 2:	Internal angle bisector of angle A divides the side BC in ratio AB/AC			

474

Statement 1: In a triangle, the least value of the sum of cosines of its angles is unity

Statement 2: $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, if *A*, *B*, *C* are the angles of a triangle

475

```
Statement 1: \cos^3 \alpha + \cos^3 \left(\alpha + \frac{2\pi}{3}\right) + \cos^3 \left(\alpha + \frac{4\pi}{3}\right) = 3\cos\alpha\cos\left(\alpha + \frac{2\pi}{3}\right)\cos\left(\alpha + \frac{4\pi}{3}\right)
Statement 2: If a + b + c = 0 \iff a^3 + b^3 + c^3 = 3abc
```

476

Statement 1:	If <i>I</i> is incentre of $\triangle ABC$ and I_1 excentre opposite to <i>A</i> and <i>P</i> is the intersection of II_1 and			
	<i>BC</i> , then $IP \cdot I_1P = BP \cdot PC$			
Statement 2:	In $\triangle ABC$, I is incentre and I_1 is excentre opposite to A then IBI_1 C must be square			

477

Statement 1: The equation sin(cos x) = cos(sin x) has no real solution

Statement 2: $\sin x \pm \cos x \in \left[-\sqrt{2}, \sqrt{2}\right]$

Statement 1: Circumradius of $\Delta I_1 I_2 I_3$ is 2*R*

Statement 2: Circumradius of the triangle formed by feet of altitudes of $\triangle ABC$ is R/2

479

Statement 1: If x + y + z = xyz, then at most one of the numbers can be negative.

Statement 2: In a triangle ABC, $\tan A + \tan B + \tan C = \tan A \tan B \tan C$ and there can be at most one obtuse angle in a triangle.

480 In acute-angled $\triangle ABC$, a > b > c

Statement 1: $r_1 > r_2 > r_3$

Statement 2: $\cos A < \cos B < \cos C$

481

Statement 1: $\cos 1 < \cos 7$

Statement 2: 1 < 7

482

Statement 1: The value of *x* for which $(\sin x + \cos x)^{1+\sin 2x} = 2$, when $0 \le x \le \pi$ is $\pi/4$ only

Statement 2: The maximum value of $\sin x + \cos x$ occurs when $x = \pi/4$

483

Statement 1: In any $\triangle ABC$, the maximum value of $r_1 + r_2 + r_3 = 9R/2$

Statement 2: In any $\triangle ABC$, $R \ge 2r$

484

Statement 1: tan 5° is an irrational number

Statement 2: tan 15° is an irrational number

485

Statement 1: $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \tan 8\alpha + 16 \cot 16\alpha = \cot \alpha$

Statement 2: $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$

486

- **Statement 1:** If side *BC* and ratio of r_2 and r_3 of an acute-angled triangle is given, then the locus of *A* is a hyperbola
- **Statement 2:** If base of a triangle is given and difference of two variable sides is constant (less than the base), then locus of variable vertex is a hyperbola
- 487 Let l_1, l_2, l_3 be the lengths of the internal bisectors of angles A, B, C of $\triangle ABC$, respectively

Statement 1: $\frac{\cos\frac{A}{2}}{l_1} + \frac{\cos\frac{B}{2}}{l_2} + \frac{\cos\frac{C}{2}}{l_3} = 2\left(\frac{l_1}{a} + \frac{l_2}{b} + \frac{l_3}{c}\right)$ Statement 2: $l_1^2 = bc\left[1 - \left(\frac{a}{a+c}\right)^2\right], l_2^2 = ca\left[1 - \left(\frac{b}{c+a}\right)^2\right], l_3^2 = ab\left[1 - \left(\frac{c}{a+b}\right)^2\right]$

488

Statement 1: $\cos 1 < \sin 1$

Statement 2: In the first quadrant, cosine decreases but sine increases

489 Let *f* be any one of the six trigonometric functions. Let $A, B \in R$ satisfying f(2A) = f(2B)

Statement 1: $A = n\pi + B$, for some $n \in Z$

Statement 2: 2π is one of the period of *f*

490

Statement 1:	If $xy + yz + zx = 1$, then $\sum \frac{x}{(1+x^2)} = \frac{2}{\sqrt{\prod(1+x^2)}}$
Statement 2:	In a $\triangle ABC$
	$\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cos B \sin C$

491

Statement 1: If xy + yz + zx = 1 where $x, y, z \in \mathbb{R}^+$, then $\frac{x}{1+x^2} + \frac{y}{1+y^2} + \frac{z}{1+z^2} = \frac{2}{\sqrt{(1+x^2)(1+y^2)(1+z^2)}}$

Statement 2: In a triangle *ABC*, $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.

492

Statement 1:	If $C = 45^{\circ}$, $B = 60^{\circ}$, then the line joining A and circumcentre (0) divides BC in rat					
	$2:\sqrt{3}$					
Statement 2:	Line joining A and circumcenter (0) divides BC in ratio $\frac{\sin 2C}{\sin 2B}$					
3						

493

Statement 1:	Equation $x \sin x = 1$ has four roots for $x \in (-\pi, \pi)$
Statement 2:	The graph of $y = \sin x$ and $y = 1/x$ cuts exactly two times for $x \in (0, \pi)$

494

```
Statement 1: The minimum value of the expression sin α + sin β + sin γ is negative, where α, β, γ are real numbers such that α + β + γ = π
Statement 2: If α, β, γ are the angles of a triangle, then sin α + sin β + sin γ = 4 cos α/2 cos β/2 cos γ/2
```

495

Statement 1: If in a triangle, $\sin^2 A + \sin^2 B + \sin^2 C = 2$ then one of the angles must be 90°

Statement 2: In any triangle
$$\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2 \cos A \cos B \cos C$$

496

Statement 1: tan 4 < tan 7.5

Statement 2: tan *x* is always an increasing function

Statement 1: The equation sin(cos x) = cos(sin x) does not possess real roots.

Statement 2: If $\sin x > 0$, then $2n\pi < x < (2n + 1), n \in I$

498

Statement 1: The maximum and minimum values of the function $f(x) = \frac{1}{3 \sin x + 4 \cos x - 2}$ do not exist. **Statement 2:** The given function is an unbounded function.

499

Statement 1: If
$$\tan\left(\frac{\pi}{2}\sin\theta\right) = \cot\left(\frac{\pi}{2}\cos\theta\right)$$
, then $\sin\theta + \cos\theta = \pm\sqrt{2}$
Statement 2: $-\sqrt{2} \le \sin\theta + \cos\theta \le \sqrt{2}$

500

Statement 1: Equation $\sin x = e^x$ has infinite solutions

Statement 2: $y = e^x$ is an unbounded function

501 If $A + B + C = \pi$, then

Statement 1: $\cos^2 A + \cos^2 B + \cos^2 C$ has its minimum value $\frac{3}{4}$

Statement 2: Maximum value of $\cos A \cos B \cos C$ is $\frac{1}{8}$

502

Statement 1:	In triangle ABC, D is a point on the side AB such that $CD^2 = AD$. DB, then the greatest
	value of sin A sin B is $sin^2(C/2)$
Ctatamant 7.	Createst value of sin A sin B assure when CD is the engle biggeter of angle C

```
Statement 2: Greatest value of sin A sin B occurs when CD is the angle bisector of angle C
```

503

Statement 1: $\sin 3 < \sin 1 < \sin 2$.

Statement 2: sin *x* is positive in first and second quadrants.

504

Statement 1: In any triangle *ABC*,

$$\ln\left(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\right) \ln \cot\frac{A}{2} + \ln \cot\frac{B}{2} + \ln \cot\frac{C}{2}$$
Statement 2:
$$\ln\left(1 + \sqrt{3} + (2 + \sqrt{3})\right) = \ln 1 + \ln \sqrt{3} + \ln(2 + \sqrt{3})$$

505

```
Statement 1: If \sin^2 \theta_1 + \sin^2 \theta_2 + \dots + \sin^2 \theta_n = 0, then the different sets of values of (\theta_1, \theta_2, \dots, \theta_n) for which \cos \theta_1 + \cos \theta_2 + \dots 9 \cos \theta_n = n - 4 is n(n - 1).

Statement 2: If \sin^2 \theta_1 + \sin^2 \theta_2 + \dots + \sin^2 \theta_n = 0, then \cos \theta_1, \cos \theta_2, \dots, \cos \theta_n = \pm 1.
```

506

```
Statement 1: If \sin^2 A = \sin^2 B and \cos^2 A = \cos^2 B, then A = n\pi + B, n \in I
```

Statement 2: If $\sin A = \sin B$ and $\cos A = \cos B$, then $A = n\pi + B$, $n \in I$

507				
	Statement 1:	If α and β are two distinct solutions of the equation $a \cos x + b \sin x = c$, then $\tan\left(\frac{\alpha + \beta}{2}\right)$		
	Statement 2:	is independent of <i>c</i> Solution of $a \cos x + b \sin x = c$ is possible, if $-\sqrt{(a^2 + b^2)} \le c \le \sqrt{(a^2 + b^2)}$		
508				
	Statement 1:	The equation $\sin x = x^2 + x + 1$ has no solution		
	Statement 2:	The curve $y = \sin x$ and $y = x^2 + x + 1$ do not intersect each other when graph is observed		
509				
	Statement 1:	The number of solution of the equation $ \sin x = x $ is only one		
	Statement 2:	$ \sin x \ge 0 \ \forall x \in R$		
510				
	Statement 1:	If <i>a</i> , <i>b</i> , <i>c</i> are the sides of a triangle, then the minimum value of $\frac{2a}{b+c-a} + \frac{2b}{c+a-b} + \frac{2c}{a+b-c}$ is 9		
	Statement 2:	$A. M. \ge G. M. \ge H. M.$		
511				
	Statement 1:	In $\triangle ABC$, the centroid (<i>G</i>) divides line joining orthocenter (<i>H</i>) and circumcenter in ratio 2: 1		
	Statement 2:	The centroid (<i>G</i>) divides the median <i>AD</i> in ratio 2: 1		
512				
	Statement 1:	$\prod_{i=1}^{n} (1 + \sec 2^r \theta) = \tan 2^n \theta \cot \theta$		
	Statement 2:	$\prod_{r=1}^{n} \cos(2^{r-1}\theta) = \frac{\sin(2^n \theta)}{2^n \sin \theta}$		

513

Statement 1:	If $\sin x + \cos x = \sqrt{\left(y + \frac{1}{y}\right)}$, $x \in [0, \pi]$, then $x = \frac{\pi}{4}$, $y = 1$
Statement 2:	$AM \ge GM$

514

Statement 1: The number of real solutions of the equation $cos(x) = 7^{x} + 7^{-x}$ is zero

Statement 2: Since, $|\cos x| \le 1$

515

Statement 1: If *A*, *B*, *C* are the angles of a triangle such that angle *A* is obtuse, then $\tan B \tan C > 1$.

Statement 2: In any triangle, $\tan A = \frac{\tan B + \tan C}{\tan B \tan C - 1}$.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

516.

Column-I

Column- II

- (A) The smallest integer greater than $\frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi}$ (p) 10 is
- **(B)** Let $3^a = 4, 4^b = 5, 5^c = 6, 6^d = 7, 7^c =$ (q) 3 8 and $8^f = 9$.

Then the value of the product (*abcdef*) is

- (C) Characteristic of the logarithm of 2008 to the (r) 1 base 2 is
- (D) If $\log_2(\log_2(\log_3 x)) = \log_2(\log_3(\log_2 y)) = 0$, (s) 2 then the value of (x - y) is

CODES :

	Α	В	С	D
a)	q	S	р	r
b)	р	r	q	S
c)	q	S	r	р
d)	r	р	q	S

517.

Column-I

Column- II

(A) If the sines of the angles *A* and *B* of a triangle (p) Right angled *ABC* satisfy the equation $c^2x^2 - c(a + b)x + c(a + b)x$ ab = 0, the triangle can be **(B)** If one angle of a triangle is 30° and the lengths (q) Isosceles of the sides adjacent to it are 40 and $40\sqrt{3}$, the triangle can be (C) If two angle of a triangle ABC satisfy the (r) Equilateral equation $81^{\sin^2 x} + 81^{\cos^2 x} = 30$, then the triangle can be $(x \in (0, \pi/2))$ **(D)** In triangle (s) Obtuse angled ABC, $\cos A \cos B + \sin A \sin B \sin C = 1$, then the triangle can be **CODES**: Α В С D a) Q,s р p,q р b) p,q р q,s q

c)	р	q,s	р	p,q
d)	q	p,q	р	q,s

518.

Column-I

(A) $\max_{\theta \in R} \{5\sin\theta + 3\sin(\theta - \alpha)\} = 7 \text{ then the set} \quad (p) \quad 2n\pi + 3\pi/4, n \in Z \text{ of possible values of } \alpha \text{ is}$

(B)
$$x \neq \frac{n\pi}{2}$$
 and $(\cos x)^{\sin^2 x - 3\sin x + 2} = 1$

(C)
$$\sqrt{(\sin x)} + 2^{1/4} \cos x = 0$$

(D)
$$\log_5 \tan x = (\log_5 4)(\log_4 (3 \sin x))$$

(q)
$$2n\pi \pm \frac{\pi}{3}; n \in Z$$

(r)
$$2n\pi + \cos^{-1}(1/3)$$
, $n \in Z$

(s) No solution

CODES :

	Α	В	С	D
a)	S	r	q	р
b)	р	q	r	S
c)	q	S	р	r
d)	r	р	q	S

^{519.} If
$$\cos \theta - \sin \theta = \frac{1}{5}$$
 where $0 < \theta < \frac{\pi}{2}$
Column-I

- (A) $(\cos\theta + \sin\theta)/2$
- **(B)** sin 2*θ*
- **(C)** cos 2*θ*
- **(D)** cos θ

CODES :

	Α	В	С	D
a)	q	r	S	р
b)	S	р	q	r
c)	р	q	S	r
d)	q	S	р	r

520.

Column-I

Column- II

- (A) Suppose *ABC* is a triangle with three acute angles *A*, *B* and *C*. The point whose
- (p) 1st quadrant

(p) $\frac{4}{5}$ (q) $\frac{7}{10}$ (r) $\frac{24}{25}$ (s) $\frac{7}{25}$

coordinates are $(\cos B - \sin A, \sin B - \cos A)$ can be in the

- **(B)** If $2^{\sin \theta} > 1$ and $3^{\cos \theta} < 1$, then $\theta \in$ (q) 2nd quadrant
- (C) $|\cos x + \sin x| = |\sin x| + |\cos x|$ (r) 3rd quadrant
- If $\sqrt{\frac{1-\sin A}{1+\sin A}} + \frac{\sin A}{\cos A} = \frac{1}{\cos A}$, for all permissible (s) 4th quadrant (D) values of A, then A can belong to

CODES:

	Α	В	С	D
a)	р	q	r,s	p,r
b)	q	р	q	S
c)	q	q	p,r	p,s
d)	р	S	q	q

521. Let *O* be the circumcentre, *H* be the orthocenter, *I* be the incentre and I_1, I_2, I_3 be the excentres of acuteangled $\triangle ABC$

Column-I

(p) |B - C|(A) Angle subtended by OI at vertex A (q) $\frac{|B - C|}{2}$
(r) $\frac{B + C}{2}$ (B) Angle subtended by *HI* at vertex *A* (C) Angle subtended by *OH* at vertex *A* (s) $\frac{B}{2} - C$ **(D)** Angle subtended by I_2I_3 at I_1

CODES:

	Α	В	С	D
a)	q	q	р	r
b)	р	r	S	q
c)	S	р	r	q
d)	r	S	q	р

522.

Column-I

(A)
$$\cos \frac{A}{2} = \frac{b+c}{a}$$

(B) $a \tan A + b \tan B$
 $= (a+b) \tan \left(\frac{A+B}{2}\right)$
(C) $a \cos A = b \cos B$
(D) $\sin P$

(D)
$$\cos A = \frac{\sin B}{2 \sin C}$$

Column- II

- (p) Always right angled
- (q) Always isosceles
- (r) May be right angled
- (s) May be right-angled isosceles

CODES:

	Α	В	С	D
a)	Q,r,s	r,s	p,r	q,r
b)	r,s	p,r	q,r,s	p,q
c)	q,r,s	r,s	p,q	p,r
d)	p,r	q,r,s	r,s	q,r,s

523.

Column-I

(A)
$$\cos^2 2x + \cos^2 x = 1$$

- **(B)** $\cos x + \sqrt{3} \sin x = \sqrt{3}$
- (C) $1 + \sqrt{3} \tan^2 x = (1 + \sqrt{3}) \tan x$
- **(D)** $\tan 3x \tan 2x \tan x = 0$
- CODES :

	Α	В	С	D
a)	r	S	р	q
b)	р	q	r	S
c)	S	р	q	r
d)	q	r	S	р

524. In acute-angled triangle ABC

Column-I

- (A) $\cos A$, $\cos B$, $\cos C$ are in A.P.
- **(B)** sin(A/2), sin(B/2), sin(C/2) are in A.P.
- **(C)** Distances of circumcentre from the vertices of (r) the triangle *ABC* are in A.P.
- (D) Circumradii of triangles OBC, OAC and OAB are in H.P. (where O is cicumcentre of triangle ABC)

CODES :

	Α	В	С	D
a)	R,s	p,q	q,r	q
b)	p,q	r,s	p,q	p,q
c)	q,r	q	r,s	p,q

Column- II

(p)
$$x = \left\{ n\pi + \frac{\pi}{4} \right\} \cup \left\{ n\pi + \frac{\pi}{6} \right\} n \in Z$$

(q) $x = \frac{n\pi}{3}, n \in Z$
(r) $x = (2n-1)\frac{\pi}{6}, n \in Z$
(s) $x = \left\{ 2n\pi + \frac{\pi}{2} \right\} \cup \left\{ 2n\pi + \frac{\pi}{6} \right\}, n \in Z$

- (p) Distances of orthocenter from vertices of triangle are in A.P.
- (q) Distances of orthocenter from sides of triangle are in H.P.
- (r) Distances of incentre from vertices of triangle are in H.P.
- (s) Distances of incentre from excentres of triangle are in A.P.

d)	р	p,q	q,r	r,s
-	_		-	

525.

			Column- II				
(A)	The max	imum valı 9. where <i>A</i>	ue of {cos	(p)	$2\sin(A+B)$		
(B)	The maximum value of { $\cos 2A + \cos 2B$ }, where $(A + B)$ is constant and $A, B \in (0, \pi/2)$,					$2 \sec(A + B)$	
(C)	The minimum value of {sec 2 A + sec 2 B }, where (A+B) is constant and $A, B \in (0, \pi/4)$,					$2\cos(A+B)$	
(D) COD) The minimum value of $\sqrt{\{\tan \theta + \cot \theta - 2\cos 2(A + B)\}}$ where <i>A</i> , <i>B</i> are constants and $\theta \in (0, \pi/2)$, is					$2\cos(A-B)$	
	Δ	D	C	D			
	A	Б	Ľ	U			
a)	S	r	q	р			
b)	q	р	S	r			
c)	q	r	р	S			
d)	r	S	q	р			
		Co	olumn-I				Column- II
(A)	In triangle ABC, $3 \sin A + 4 \cos B =$ 6 and $3 \cos A + 4 \sin B = 1$ then $4C - \cos B =$				(p)	60°	
(B)	6 and 3 cos A + 4 sin B = 1, then $\angle C$ can be In any triangle, if $(\sin A + \sin B + \sin C \sin A + \sin B - \sin C = 3 \sin A \sin B$, then the					30°	
(C)	If $8 \sin x$	$\cos^5 x - 8$	3 sin ⁵ x co	s x	(r)	165°	

526.

(A)	In triang	le <i>ABC</i> , 3 s	$\sin A + 4 \mathrm{c}$	os B =	(p)
	6 and 3 c	os A + 4 si	in B = 1, t	hen ∠C can be	<u>j</u>
(B)	In any tri	angle, if (sin A + sir	B +	(q)
	$\sin \mathcal{C} \sin \mathcal{L}$	4+sin <i>B−</i> s	sin <i>C =3</i> sin	Asin <i>B,</i> then th	ie
	angle C				
(C)	If 8 sin <i>x</i>	$\cos^5 x - 8$	$\sin^5 x \cos^5 x$	S X	(r)
	= 1, then	x =			
(D)	'0' is the	centre of t	the inscrib	oed circle in a	(s)
	30° - 60	° – 90° tri	iangle AB(C with right	
	angled at	C. If the	circle is ta	ngent to	
	AB at D,	then the a	ngle ∠ <i>COI</i>	D is	
COD	ES :				
	Α	В	С	D	

А	D	L	U
р	q	r	S
q	b	S	r
r	S	р	q
S	р	r	q
	p q r s	p q q b r s s p	p q r q b s r s p s p r

7.5°

527.

Column-I

(A)	The value of $\log_2 \log_2 \log_4 256 + 2 \log \sqrt{2}^2$ is	(p)	1
(B)	If $\log_3(5x - 2) - 2\log_3\sqrt{3x + 1} = 1 - \log_2 4$ then $x = 1 - \log_2 4$	(q)	6
(C)	Product of roots of the equation $7^{\log_7(x^2-4x+5)} = (x-1)$ is	(r)	3
(D)	Number of integers satisfying $\log_2 \sqrt{x}$ –	(s)	5
	$2(\log_{1/4} x)^2 x + 1 > 0$ are		
COD	ES:		

	Α	В	С	D
a)	р	q	r	S
b)	S	р	q	r
c)	r	S	q	р
d)	q	р	r	S

528.

Column-I

(A)	$x^3 + x^2 + 4x + 2\sin x = 0 \text{ in } 0 \le x \le 2\pi$	(p)	4
(B)	$\sin e^x \cos e^x = 2^{x-2} + 2^{-x-2}$	(q)	1
(C)	$\sin 2x + \cos 4x = 2$	(r)	2
(D)	$30 \sin x = x \text{ in } 0 \le x \le 2\pi$	(s)	0
COD	FC .		

CODES :

	Α	В	С	D
a)	S	q	р	S
b)	q	S	S	р
c)	р	r	S	S
d)	S	р	q	S

529.

Column-I

(A)
$$2^{\log_{(2\sqrt{2})} 15}$$
 is
(B) $3\sqrt{\left(5^{1/\log_7 5} + \frac{1}{\sqrt{(-\log_{10} 0.1)}}\right)}$ is

Column- II

Column- II

- (p) Rational
- (q) Irrational

(C) $\log_3 5 . \log_{25} 27$ is

(r) Composite

(D) Product of roots of equation $x^{\log_{10} x} = 100 x$ is (s) Prime

CODES:

	Α	В	С	D
a)	P,r	q	r	S
b)	р	p, r	q	р
c)	q	p,s	р	p,r
d)	р	р	p, r	q

530.

Column-I

Column- II

(A)	$\sin(410^\circ - A)\cos(400^\circ + A) + \cos(410^\circ -$	(p)	-1
	<i>A</i> sin <i>400°+A</i> has the value equal to		
(B)	$\cos^2 1^\circ - \cos^2 2^\circ$	(q)	0
	2 sin 3° sin 1° is equal to		
(C)	$\sin(-870^{\circ}) + \csc(-660^{\circ})$	(r)	1
	$+ \tan(-855^{\circ}) + \cot(840^{\circ})$		2
	$+\cos(480^{\circ}) + \sec(900^{\circ})$		
(D)	If $\cos \theta = \frac{4}{5}$ where $\theta \in \left(\frac{3\pi}{2}, 2\pi\right)$ and $\cos \phi =$	(s)	1
	$\frac{3}{5}$ where $\phi \in \left(0, \frac{\pi}{2}\right)$, then $\cos(\theta - \phi)$ has the		
	value equal to		
COD	ES :		

	Α	В	С	D
a)	S	r	р	q
b)	р	q	r	S
c)	q	r	р	S
d)	S	р	r	q

531. For all real values of θ

Column-I

(A)
$$A = \sin^2 \theta + \cos^4 \theta$$

$$(B) \quad A = 3\cos^2\theta + \sin^4\theta$$

(C)
$$A = \sin^2 \theta - \cos^4 \theta$$

(D)
$$A = \tan^2 \theta + 2 \cot^2 \theta$$

CODES :

(p) $A \in [-1, 1]$ (q) $A \in \left[\frac{3}{4}, 1\right]$ (r) $A \in \left[2\sqrt{2}, \infty\right)$ (s) $A \in [1, 3]$

	Α	В	С	D
a)	q	S	р	r
b)	S	р	r	q
c)	р	r	S	q
d)	r	S	р	q

532. If $\cos \alpha + \cos \beta = 1/2$ and $\sin \alpha + \sin \beta = 1/3$

Column-I

(A)	$\cos\left(\frac{\alpha+\beta}{\alpha+\beta}\right)$
(B)	$\cos\left(\frac{\alpha-\beta}{2}\right)$
(C)	$(\alpha + \beta)$
	$\tan\left(\frac{1}{2}\right)$
(D)	$\tan\left(\frac{\alpha-\beta}{\alpha-\beta}\right)$
	(2)

CODES:

	Α	В	С	D
a)	r	р	q	S
b)	р	q	r	S
c)	q	r	р	S
d)	r	р	q	S

533.

Column-I

(A)	cos 20° +	- cos 80° -	$-\sqrt{3}\cos 5$	0°	(p)	-1
(B)	$\cos 0^{\circ} + $	$\cos\frac{\pi}{7} + \cos^{\frac{\pi}{7}}$	$\cos \frac{2\pi}{7} + \cos \frac{2\pi}{7}$	$s\frac{3\pi}{7}$	(q)	$-\frac{3}{4}$
	$+\cos\frac{4\pi}{7}$	$+\cos\frac{5\pi}{7}$	$+\cos\frac{6\pi}{7}$			
(C)	cos 20° +	- cos 40° +	$+\cos 60^{\circ}$		(r)	1
		- 4	cos 10° c	os 20° cos 30°		
(D)	cos 20° co	os 100° +	cos 100°	cos 140°	(s)	0
		— c	os 140° c	os 200°		
COD	ES :					
	Δ	R	C	n		

	A	D	L	U
a)	р	q	r	S
b)	S	r	р	q

Column- II

c)	r	р	S	q
d)	r	q	S	р

534.

Column-I

(A)	$b > c \sin B$, $b < c$ and B is an acute angle
-----	--

(B) $b > c \sin B$, c < b, and B is an acute angle

(C) $b > c \sin B$, c < b and B is an obtuse angle

(D) $b > c \sin B$, c > b and B is an obtuse angle

CODES :

	Α	В	С	D
a)	q	S	S	р
b)	S	q	р	S
c)	р	r	q	S
d)	r	S	S	q

535.

Column-I

(A)	If $x^2 + y^2 = 1$ and $P = (3x - 4x^3)^2 +$	(p)	1
	$(3y - 4y^3)^2$, then P is equal to		
(B)	If $a + b = 3 - \cos 4\theta$ and $a - b = 4 \sin 2\theta$,	(q)	4
	then the maximum value of (ab) is		
(C)	The least positive integral value of <i>x</i> for which	(r)	5
	$3\cos\theta = x^2 - 8x + 19$ holds good is		
(D)	If $x = \frac{4\lambda}{1+\lambda^2}$ and $y = \frac{2-2\lambda^2}{1+\lambda^2}$, where λ is a real	(s)	8
	parameter, then $x^2 - xy + y^2$ lies between		
	[a, b] then $(a + b)$ is		
COD	FC .		

CODES	2	

	Α	В	С	D
a)	р	р	q	S
b)	S	q	р	р
c)	S	р	q	р
d)	q	S	р	р

Column- II

(r) Data insufficient

(s) 1

Column- II

Linked Comprehension Type

This section contain(s) 42 paragraph(s) and based upon each paragraph, multiple choice questions have to be

answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 536 to -536**

If $P_n = \sin^n \theta + \cos^n \theta$ where $n \in W$ (whole number) and $\theta \in R$ (real number)

536. If $P_1 = m$, then the value of $4(1 - P_6)$ is a) $3(m-1)^2$ b) $3(m^2 - 1)^2$ c) $3(m+1)^2$ d) $3(m^2 + 1)^2$

Paragraph for Question Nos. 537 to - 537

Let α is a root of the equation $(2 \sin x - \cos x)(1 + \cos x) = \sin^2 x$, β is a root of the equation $3 \cos^2 x - 10\cos x + 3 = 0$ and γ is a root of the equation $1 - \sin 2x = \cos x - \sin x$, $0 \le \alpha$, β , $\gamma \le \pi 2$

537. $\cos \alpha + \cos \beta + \cos \gamma$ can be equal to

a) $\frac{3\sqrt{6} + 2\sqrt{2} + 6}{6\sqrt{2}}$ b) $\frac{3\sqrt{3} + 8}{6}$ c) $\frac{3\sqrt{3} + 2}{6}$ d) None of these

Paragraph for Question Nos. 538 to - 538

Let *ABC* is a triangle, *O* is a point inside the triangle so that its distance from *A*, *B*, *C* is respectively *a*, *b*, *c*. *L*, *M*, *N* are the feet of the perpendiculars from *O* to *AB*, *BC*, *CA* respectively. *x*, *y*, *z* are respectively the distance of *O* from *L*, *M*, *N*

 $\angle OAL = \alpha, \angle OBM = \beta, \angle OCN = \gamma$

538. $AL + BM + CN$ is equal to	
a) $a \cos \alpha + b \cos \beta + c \cos \gamma$	b) $a \sin \alpha + b \sin \beta + c \sin \gamma$
c) $x \cos \alpha + y \sin \beta + z \cos \gamma$	d) $x \sin \alpha + y \sin \beta + z \sin \gamma$

Paragraph for Question Nos. 539 to - 539

Whenever the terms on the two sides of the equation are of different nature, then equations are known as nonstandard form, some of them are in the form of an ordinary equation but cannot be solved by standard procedures.

Non-standard problems require high degree of logic, they also require the use of graphs, inverse properties of functions, inequalities

539. The number of	solutions of the equation 2	$\cos\left(\frac{x}{2}\right) = 3^x + 3^{-x}$ is	
a) 1	b) 2	c) 3	d) None of these

Paragraph for Question Nos. 540 to - 540

If $\sin \alpha = A \sin(\alpha + \beta)$, $A \neq 0$, then

540. The value of $\tan \alpha$ is a) $\frac{A \sin \beta}{1 - A \cos \beta}$ b) $\frac{A \sin \beta}{1 + A \cos \beta}$ c) $\frac{A \cos \beta}{1 - A \sin \beta}$ d) $\frac{A \sin \beta}{1 + A \cos \beta}$

Paragraph for Question Nos. 541 to - 541

If α , β , γ , δ are the solutions of the equation $\tan\left(\theta + \frac{\pi}{4}\right) = 3 \tan 3\theta$, no two of which have equal tangents

541. The value of $\tan \alpha + \tan \beta + \tan \gamma + \tan \delta$ isa) 1/3b) 8/3c) -8/3d) 0

Paragraph for Question Nos. 542 to - 542

 $\sin \alpha + \sin \beta = \frac{1}{4} \operatorname{and} \cos \alpha + \cos \beta = \frac{1}{3}$

542. The value of sin($(\alpha + \beta)$ is		
a) $\frac{24}{25}$	b) $\frac{13}{25}$	c) $\frac{12}{13}$	d) None of these

Paragraph for Question Nos. 543 to - 543

To find the sum $\sin^2 \frac{2\pi}{7} + \sin^2 \frac{4\pi}{7} + \sin^2 \frac{8\pi}{7}$ we follow the following method. Put $7\theta = 2n\pi$, where *n* is any integer Then $\sin 4\theta = \sin(2n\pi - 3\theta) = -\sin 3\theta$ This means that $\sin \theta$ takes the values $0, \pm \sin(2\pi/7), \pm \sin(4\pi/7)$ and $\pm \sin(8\pi/7)$. Since $\sin(6\pi/7) = \sin(8\pi/7)$, from equation (1), we now get $2 \sin 2\theta \cos 2\theta = 4 \sin^3 \theta - 3 \sin \theta$ $\Rightarrow 4 \sin \theta \cos \theta (1 - 2 \sin^2 \theta) = \sin \theta (4 \sin^2 \theta - 3)$ Rejecting the value $\sin \theta = 0$, we get $4 \cos \theta (1 - 2 \sin^2 \theta) = 4 \sin^2 \theta - 3$ $\Rightarrow 16 \cos^2 \theta (1 - 2 \sin^2 \theta)^2 = (4 \sin^2 \theta - 3)^2$ $\Rightarrow 16(1 - \sin^2 \theta)(1 - 4 \sin^2 \theta + 4 \sin^4 \theta) = 16 \sin^4 \theta - 24 \sin^2 \theta + 9$ $\Rightarrow 64 \sin^6 \theta - 112 \sin^4 \theta - 56 \sin^2 \theta - 7 = 0$ This is cubic in $\sin^2 \theta$ with the roots $\sin^2(2\pi/7), \sin^2(4\pi/7)$ and $\sin^2(8\pi/7)$ The sum of these roots is $\sin^2 \frac{2\pi}{7} + \sin^2 \frac{4\pi}{7} + \sin^2 \frac{8\pi}{7} = \frac{112}{64} = \frac{7}{4}$ Now answer the following questions

543. The value of
$$\left(\tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7}\right) \left(\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7}\right)$$
 is
a) 105 b) 35 c) 210 d) None of these

Paragraph for Question Nos. 544 to - 544

An altitude *BD* and a bisector *BE* are drawn in the triangle *ABC* from the vertex *B*. It is known that the length of side AC = 1, and the magnitudes of the angles *BEC*, *ABD*, *ABE*, *BAC* form an arithmetic progression

544. The area of circle circumscribing $\triangle ABC$ is

a) $\frac{\pi}{8}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) π
Paragraph for Question I	Nos. 545 to - 545		
Consider the cubic equation $x^3 - (1 + \cos \theta + \sin \theta)$	tion $x^2 + (\cos\theta\sin\theta + \cos\theta)$	$(\theta + \sin \theta)x - \sin \theta \cos \theta = 0$ w	whose roots are x_1, x_2 and x_3
545. The value of $x_1^2 + x_2^2$ a) 1	$x_2^2 + x_3^2$ equals b) 2	c) 2 cos θ	d) $\sin\theta$ (sin θ + cos θ)
Paragraph for Question I	Nos. 546 to - 546		
Consider the equation se	$ec \theta + cosec \theta = a, \theta \in \theta$	$(0, 2\pi) - \{\pi/2, \pi, 3\pi/2\}$	
546. If the equation has a) $ a \ge 2\sqrt{2}$	four real roots, then b) $ a < 2\sqrt{2}$	c) $a \ge -2\sqrt{2}$	d) None of these
Paragraph for Question I	Nos. 547 to - 547		
Consider the system of e $\sin x \cos 2y = (a^2 - 1)^2$ $\cos x \sin 2y = a + 1$	equations + 1,		
547. Number of values o a) 1	of <i>a</i> for which the systen b) 2	n has a solution is c) 3	d) Infinite
Paragraph for Question I	Nos. 548 to - 548		
Consider the equation \int_{C}	$\int_{0}^{x} (t^2 - 8t + 13) dt = x s$	$\sin(a/x)$	
548. The number of real a) 1	values of <i>x</i> for which th b) 2	ne equation has solution is c) 3	d) Infinite
Paragraph for Question I	Nos. 549 to - 549		
Consider the system of e $x \cos^3 y + 3x \cos y \sin^2 y$ $x \sin^3 y + 3x \cos^2 y \sin y$	equations y = 14 y = 13		
549. The value/values o a) $\pm 5\sqrt{5}$	f x is/are b) $\pm \sqrt{5}$	c) ±1√5	d) None of these

Paragraph for Question Nos. 550 to - 550

Given that $\Delta =$	6, <i>r</i> ₁ =	$2, r_2 =$	$3, r_3$	= 6
-----------------------	----------------------------	------------	----------	-----

550. Circumradius R	is equal to		
a) 2.5	b) 3.5	c) 1.5	d) None of these
Paragraph for Questi	on Nos. 551 to - 551		
Let $a = 6, b = 3$ and	$\cos(A-B) = \frac{4}{\pi}$		
	5		
551. Area of the triar	igle is equal to		
a) 9	b) 12	c) 11	d) 10

Paragraph for Question Nos. 552 to - 552

 p_1, p_2, p_3 are altitude of triangle *ABC* from the vertices *A*, *B*, *C* and Δ is the area of the triangle

552. The value of $p_1^{-2} + p_2^{-2} + p_3^{-2}$ is equal to a) $\frac{a+b+c}{\Delta}$ b) $\frac{a^2+b^2+c^2}{4\Delta^2}$ c) $\frac{a^2+b^2+c^2}{\Delta^2}$ d) None of these

Paragraph for Question Nos. 553 to - 553

Let *O* be a point inside a $\triangle ABC$ such that $\angle OAB = \angle OBC = \angle OCA = \theta$

553. $\cot A + \cot B + \cot $	s C is equal to		
a) $\tan^2 \theta$	b) $\cot^2 \theta$	c) tan $ heta$	d) cot θ

Paragraph for Question Nos. 554 to - 554

Let *D*, *E* and *F* be the feet of altitudes from the vertices of acute-angled triangle *ABC* to the sides *BC*, *AC* and *AB*, respectively. Triangle *DEF* is defined as the pedal triangle of triangle *ABC*. (*R* and *r* are circumradius and inradius of triangle *ABC*, respectively)

554. Consider the following statements:
i. orthocenter of the triangle ABC is incentre of the triangle DEF
ii. A, B, C are excentres of triangle DEF
a) Only (i) is true
b) Only (ii) is true
c) Both (i) and (ii) are true
b) Only (ii) and (ii) are false

Paragraph for Question Nos. 555 to - 555

Incircle of $\triangle ABC$ touches the sides *BC*, *AC* and *AB* at *D*, *E* and *F*, respectively. Then answer the following questions

555.
$$\angle DEF$$
 is equal to
a) $\frac{\pi - B}{2}$ b) $\pi - 2B$ c) $A - C$ d) None of these

Paragraph for Question Nos. 556 to - 556

Internal bisectors of $\triangle ABC$ meet the circumcircle at points *D*, *E* and *F*,

556. The length of side *EF* is

a) $2R \cos\left(\frac{A}{2}\right)$ b) $2R \sin\left(\frac{A}{2}\right)$ c) $R \cos\left(\frac{A}{2}\right)$ d) $2R \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$

Integer Answer Type

- 557. Number of solution(s) of the equation $\frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = 0$ in the interval $\left(0, \frac{\pi}{4}\right)$ is ______
- 558. Consider a $\triangle ABC$ in which the sides are a = (n + 1), b = (n + 2), c = n with $\tan C = 4/3$, then the value of Δ/12 is
- 559. Number of integral values of *a* for which the eqution $\cos^2 x \sin x + a = 0$ has roots when $x \in (0, \pi/2)$ is
- 560. Number of integers ≤ 10 satisfying the inequality $2 \log_{1/2}(x-1) \leq \frac{1}{3} \frac{1}{\log_{x^2-x^8}}$ is _____
- ^{561.} Number of solutions of the equation $(\sqrt{3}+1)^{2x} + (\sqrt{3}-1)^{2x} = 2^{3x}$ is _____
- 562. Number of solution of the equation $\sin^4 x \cos^2 x \sin x + 2 \sin^2 x + \sin x = 0$ in $0 \le x \le 3\pi$ is _____

^{563.} If
$$f(\theta) = \frac{1 - \sin 2\theta + \cos 2\theta}{2\cos 2\theta}$$
 then value of $8f(11^\circ) \cdot f(34^\circ)$ is_____.

564. Number of integral value(s) of *m* for the equation $\sin x - \sqrt{3} \cos x = \frac{4m-6}{4-m}$ has solutions $x \in [0, 2\pi]$ is

- 565. Suppose x and y are real numbers such that $\tan x + \tan y = 42$ and $\cot x + \cot y = 49$. Then the prime number by which the value of tan(x + y) is not divisible by 5 is _____
- 566. The altitudes from the angular points A, B and C on the opposite sides BC, CA and AB of $\triangle ABC$ are 210, 195 and 182, respectively. Then the value of a/30 is (where a = BC)
- 567. If *a*, *b* and *c* represent the lengths of sides of a triangle, then the possible integral value of $\frac{a}{a+c} + \frac{b}{c+a} + \frac{c}{a+b}$ is _

$$\frac{1}{b+c} + \frac{1}{c+a}$$

Number of roots the equation $2^{\tan(x-\frac{\pi}{4})} - 2(0.25)\frac{\sin^2(x-\frac{\pi}{4})}{\cos 2x} + 1 = 0$ is _____ 568.

- 569. Two equilateral triangles are constructed from a line segment of length *L*. If *M* and *m* are the maximum and minimum value of the sum of the areas of two plane figures, then the value of M/m is _____
- 570. If $f(x) = 2(7 \cos x + 24 \sin x)(7 \sin x 24 \cos x)$, for every $x \in R$, then maximum value of $(f(x))^{1/4}$ is _____
- 571. In $\triangle ABC$, AB = 52, BC = 56, CA = 60. Let *D* be the foot of the altitude from *A*, and *E* be the intersection of the internal angle bisector of $\angle BAC$ with BC. Find the length DE is
- 572. Sum of all integral values of x satisfying the inequality $(3^{5/2 \log_3(12-3x)}) (3^{\log_2 x}) > 32$ is _____
- 573. In triangle *ABC*, sin *A* sin *B* + sin *B* sin *c* + sin *C* sin *A* = 9/4 and *a* = 2, then the value of $\sqrt{3}\Delta$, where Δ is area of triangle, is _
- 574. The value of cosec 10° + cosec 50° cosec 70° is____
- 575. In Δ*ABC*, if r = 1, R = 3 and s = 5, then the value of $\frac{a^2 + b^2 + c^2}{3}$ is _____

576. If $\log_4 A = \log_6 B = \log_9(A + B)$, then $\left[4\frac{B}{A}\right]$ (where [·] represents the greatest integer function) equals

- 577. The difference of roots of the equation $(\log_{27} x^3)^2 = \log_{27} x^6$ is _____
- 578. Suppose α , β , γ and δ are the interior angles of regular pentagon, hexagon, decagon and dodecagon, respectively, then the value of $|\cos \alpha \sec \beta \cos \gamma \csc \delta|$ is _
- 579. The maximum integral value of *a* for which the equation $a \sin x + \cos 2x = 2a 7$ has a solution is
- 580. Number of values of p for which equation $\sin^3 x + 1 + p^3 3p \sin x = 0$ (p > 0) has a root is _____
- 581. The sides of triangle *ABC* satisfy the relations a + b c = 2 and $2ab c^2 = 4$, then square of the area of triangle is
- 582. Suppose *A* and *B* are two angles such that $A, B \in (0, \pi)$, and satisfy $\sin A + \sin B = 1$ and $\cos A + \cos B = 0$. Then the value of $12 \cos 2A + 4 \cos 2B$ is _____.
- 583. The area of a right triangle is 6864 square units. If the ratio of its legs is 143: 24, then the value of [r/4], where $[\cdot]$ represents the greatest integer function, is
- 584. α and β are the positive acute angles and satisfying equations $5 \sin 2\beta = 3 \sin 2\alpha$ and $\tan \beta = 3 \tan \alpha$ simultaneously. Then the value of $\tan \alpha + \tan \beta$ is _
- 585. If $\sin^3 x \cos 3x + \cos^3 x \sin 3x = 3/8$, then the value of $8 \sin 4x$ is _____
- 586. Number of roots of the equation $|\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3}, x \in [0, 4\pi]$, are _____
- 587. Integral value of x which satisfies the equation $\log_6 54 + \log_x 16 = \log_{\sqrt{2}} x \log_{36} \frac{4}{9}$ is _____
- 588. In $\triangle ABC$, if $\angle C = 3 \angle A$, BC = 27 and AB = 48. Then the value of AC/7 is _____

589. $\triangle ABC, \angle C = 2 \angle A$ and AC = 2 BC, then the value of $\frac{a^2 + b^2 + c^2}{R^2}$ (where *R* is circum-radius of triangle) is

- 590. Number of roots of the equation $(3 + \cos x)^2 = 4 2\sin^8 x$, $x \in [0, 5\pi]$ are _____
- 591. The value of $(\log_{10} 2)^3 + \log_{10} 8 . \log_{10} 5 + (\log_{10} 5)^3$ is _ 592. The value of $\frac{\sin 1^\circ + \sin 3^\circ + \sin 5^\circ + \sin 7^\circ}{\cos 1^\circ \cdot \cos 2^\circ \cdot \sin 4^\circ}$ is _____.

593. The absolute value of the expression $\tan \frac{\pi}{16} + \tan \frac{5\pi}{16} + \tan \frac{9\pi}{16} + \tan \frac{13\pi}{16}$ is _____

- 594. If $x, y \in R$ satisfy $(x + 5)^2 + (y 12)^2 = (14)^2$, then the minimum value of is _____
- 595. The value of $9 \frac{\sin^4 t + \cos^4 t 1}{\sin^6 t + \cos^6 t 1}$ is _____

596. Number of integers satisfying the inequality $\log_{1/2}|x-3| > -1$ is ______

597.
The value of
$$\sqrt{3} \left| \frac{\frac{2\sin(140^\circ)\sec(280^\circ)}{\sec(220^\circ)} + \frac{\sec(340^\circ)}{\csc(20^\circ)}}{\frac{\cot(200^\circ) - \tan(280^\circ)}{\cot(200^\circ)}} \right|$$
 is _____.

598. Let *ABCDEFGHIJKL* be a regular dodecagon. Then the value of $\frac{AB}{AF} + \frac{AF}{AB}$ is equal to ______

599. In a triangle ABC, $\angle C = \frac{\pi}{2}$. If $\tan\left(\frac{A}{2}\right)$ and $\tan\left(\frac{B}{2}\right)$ are the roots of the equation $ax^2 + bx + c = 0 (a \neq 0)$, then the value of $\frac{a+b}{c}$ (where, *a*, *b*, *c* are sides of Δ opposite to angles *A*, *B*, *C* resp.) is _____.

600. The reciprocal of $\frac{2}{\log_4(2000)^6} + \frac{3}{\log_5(2000)^6}$ is _____

- 601. If $\log_{10} \sin x + \log_{10} \cos x = -1$ and $\log_{10} (\sin x + \cos x) = \frac{(\log_{10} n) 1}{2}$, then the value of n/3' is _____
- 602. Number of triangles *ABC* if $\tan A = x$, $\tan B = x + 1$ and $\tan C = 1 x$ is _____.
- 603. The lengths of the tangents drawn from the vertices A, B and C to the incircle of $\triangle ABC$ are 5, 3 and 2, respectively. If the lengths of the parts of tangents within the triangle which are drawn parallel to the sides *BC*, *CA* and *AB* of the triangle to the incircle are α , β and γ , respectively, then the value the value of $[\alpha + \beta + \gamma]$ (where [·] represents greatest integer function) is _____
- 604. Sum of integers satisfying $\sqrt{\log_2 x 1} 1/2 \log_2(x^3) + 2 > 0$ is _____

605. If $(1 + \tan 5^{\circ})(1 + \tan 10^{\circ})(1 + \tan 15^{\circ}) \dots (1 + \tan 45^{\circ}) = 2^{k}$, then the value of 'k' is_____

- 606. In $\triangle AEX$, T is the midpoint of XE, and P is the midpoint of ET. If $\triangle APE$ is equilateral of side length equal to unity, then the value of $[(AX)^2/2]$ is (where [·] represents greatest integer function) _____ 607. The value of $\log_{(\sqrt{3+2\sqrt{2}} + \sqrt{3-2\sqrt{2}})} 2^9$ is _____ 608. The maximum value of $y = \frac{1}{\sin^6 x + \cos^6 x}$ is_____ 609. If $\cos 4x = a_0 + a_1 \cos^2 x + a_2 \cos^4 x$ is true for all values of $x \in R$, then the value of $5a_0 + a_1 + a_2$ is 610. If $\log_a b = 2$; $\log_b c = 2$ and $\log_3 c = 3 + \log_3 a$, then the value of c/(ab) is _____. 611. The least integer greater than $\log_2 15 \cdot \log_{1/6} 2 \cdot \log_3 1/6$ is _____ 612. In a triangle *ABC*, if $A - B = 120^{\circ}$ and $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \frac{1}{32}$ then, the value of 8 cos *C* is _____ 613. If $a = \log_{245} 175$ and $b = \log_{1715} 875$, then the value of $\frac{1-ab}{a-b}$ is _____ 614. A circle inscribed in a triangle ABC touches the side AB at D such that AD = 5 and BD = 3. If $\angle A =$ 60°, then the value of [BC/3] (where $[\cdot]$ represents greatest integer function) is _____ ^{615.} The value of *a* for which system of equations $\sin^2 x + \cos^2 y = \frac{3a}{2}$ and $\cos^2 x + \sin^2 y = \frac{a^2}{2}$ has a solution is 616. The greatest integer less than or equal to $\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ}$ is _____ 617. In a triangle *ABC* if $\tan A = \frac{1}{2}$, $\tan B = k + \frac{1}{2}$ and $\tan C = 2k + \frac{1}{2}$, then the possible value of [k], where $[\cdot]$ represents greatest integer function is _____. 618. The minimum value of $\sqrt{(3 \sin x - 4 \cos x - 10)(3 \sin x + 4 \cos x - 10)}$ is ______ 619. In ΔABC, if cos A + sin A $-\frac{2}{\cos B + \sin B} = 0$, then the value of $\left(\frac{a+b}{c}\right)^4$ is _____ 620. In $\triangle ABC$ the incircle touches the sides BC, CA and AB, representively, at D, E and F. If the radius of the incircle is 4 units and BD, CE and AF are consecutive integers, then the value of s/3, where s is a semiperimeter of triangle, is ____ 621. Let $0 \le a, b, c, d \le \pi$ where *b* and *c* are not complementary, such that
 - $2\cos a + 6\cos b + 7\cos c + 9\cos d = 0 \text{ and } 2\sin a 6\sin b + 7\sin c 9\sin d = 0, \text{ then the value}$ of $3\frac{\cos(a+d)}{\cos(b+c)}$ is _____
 - 622. The maximum value of $\cos^2(45^\circ + x) + (\sin x \cos x)^2$ is _____

3.TRIGONOMETRIC FUNCTIONS

						: ANS	W	ER K	EY :						
1)	С	2)	b	3)	а	4)	d	189)	d	190)	b	191)	а	192)	а
5)	а	6)	d	7)	С	8)	b	, 193)	С	194)	b	195)	b	196)	b
9)	b	10)	b	11)	а	12)	С	197)	d	198)	с	199)	а	200)	b
13)	b	14)	b	15)	b	16)	d	201)	b	202)	С	203)	d	204)	С
17)	а	18)	С	19)	d	20)	b	205)	d	206)	d	207)	а	208)	d
21)	b	22)	b	23)	С	24)	a	209)	b	210)	b	211)	С	212)	С
25)	d	26)	b	27)	d	28)	a	213)	b	214)	а	215)	b	216)	b
29)	а	30)	d	31)	b	32)	С	217)	b	218)	b	219)	d	220)	а
33)	а	34)	b	35)	а	36)	b	221)	d	222)	а	223)	С	224)	b
37)	b	38)	С	39)	b	40)	С	225)	С	226)	С	227)	а	228)	а
41)	d	42)	С	43)	С	44)	С	229)	а	230)	b	231)	b	232)	С
45)	d	46)	а	47)	а	48)	С	233)	а	234)	b	235)	С	236)	а
49)	d	50)	а	51)	а	52)	С	237)	С	238)	а	239)	С	240)	С
53)	а	54)	d	55)	а	56)	d	241)	С	242)	b	243)	а	244)	b
57)	а	58)	а	59)	d	60)	b	245)	b	246)	С	247)	b	248)	b
61)	b	62)	d	63)	b	64)	b	249)	а	250)	а	251)	d	252)	b
65)	а	66)	а	67)	b	68)	a	253)	b	254)	С	255)	С	256)	а
69)	а	70)	b	71)	С	72)	a	257)	b	258)	b	259)	а	260)	b
73)	b	74)	b	75)	С	76)	С	261)	С	262)	а	263)	d	264)	С
77)	b	78)	а	79)	а	80)	d	265)	а	266)	а	267)	а	268)	С
81)	b	82)	С	83)	а	84)	С	269)	d	270)	а	271)	С	272)	a
85)	а	86)	d	87)	С	88)	b	273)	С	274)	b	275)	С	276)	а
89)	b	90)	b	91)	b	92)	d	277)	d	278)	d	279)	С	280)	С
93)	b	94)	а	95)	а	96)	a	281)	b	282)	b	283)	С	284)	d
97)	С	98)	а	99)	С	100)	а	285)	d	286)	d	287)	d	288)	а
101)	С	102)	d	103)	d	104)	b	289)	С	290)	b	291)	а	292)	b
105)	b	106)	b	107)	а	108)	a	293)	d	294)	а	295)	а	296)	a
109)	а	110)	b	111)	С	112)	a	297)	a	298)	a	299)	а	300)	b
113)	a	114)	а	115)	C	116)	С	301)	d	302)	d	303)	С	304)	C
117)	b	118)	C	119)	b	120)	a	305)	d	306)	b	307)	С	308)	b
121)	d	122)	b	123)	d	124)	С	309)	d	310)	С	311)	а	312)	b
125)	b	126)	a	127)	a	128)	a	313)	a	314)	C	315)	а	316)	b
129)	a	130)	b	131)	a	132)	b	317)	C	318)	a	319)	a L	320)	a
133)	a	134)	C	135)	C	136)	C	321)	D	322)	C	323)	D	324)	C
13/)	a h	138)	a h	139)	a	140j	C d	325)	C h	326)	a	327)	a h	328)	a
141) 145)	D	142)	D	143)	C d	144J 140)	a	329)	D d	330)	C	331J 225)	D	332)	a
145)	C	140J	a	147)	a	148J 152)	d h	333J	u h	334J 220)	C h	335)	C d	330)	d d
149)	C d	150)	C h	151) 155)	C d	154J 156)	D	33/J 241)	U h	330J 242)	U d	339J 242)	u	340J 244)	u
153)	a	154)	U h	155)	u d	150)	a	341J 245)	D	344J 246)	u h	343J 247)	C d	344J 240)	a
157	C h	150J 162)	U h	159)	u c	160) 164)	a	345J 240)	a h	340J 250)	D	347J 251)	u c	340J 252)	a
165)	U C	166)	D h	167)	L h	169)	C C	252)	U C	254)	a	255)	L h	332J 256)	ι n
160)	с Л	170)	D h	107J 171)	D h	100J 172)	с Л	3333 3571	ι a	334J 359)	с а	323J 323J	D h	220) 220)	d h
173)	u a	174)	d b	175)	ы а	176)	u r	361)	a r	350)	u C	363)	C	364)	h
177)	a h	179)	u r	179)	a a	180)	с h	365)	a	1)	ar	2037 21	ar	30 1) 3)	U
181)	h	182)	d	183)	a	184)	d	5005	a.h	4)	a.h.c	-,	aje	5)	
185)	c	186)	h	187)	C	188)	c c	5)	a,c	6)	a.d	7)	a.c	8)	
	-	_00)		_3.5	-	-30)	-	-,		~,	,	.,	,•	~,	

	b, c							41)	а	42)	d	43)	b	44)	a
9)	a,b,c	10)	a,d	11)	b,c	12)		45)	а	46)	b	47)	b	48)	d
-	a,b,d	-		2		-		49)	с	50)	b	51)	а	52)	b
13)	a.c	14)	a.b.c.d	15)	a.b	16)		53)	d	54)	b	55)	а	56)	a
-)	a.c	,	- , - , - , - , -	-)		-)		57)	а	58)	d	1)	а	2)	С
17)	abcd	18)	C	19)	ahcd	20)	c	<i></i> ,	3)	со) С	4)	-) a	-	-,	•
21)	h c d	22)	e hd	23)	c d	24)	C	5)	c c	6)	-) a	u 7)	d	8)	d
21)	ah c	22) d	b , u	23)	c,u	24)		9) 9)	c h	10)	a 2	7) 11)	u h	12)	u h
25)	a, b, c,	u 26)	a d	27)	a h a	201		2) 12)	b h	10)	a	11) 15)	0	16)	0
25)	l a h a	20)	c,u	27)	a,D,C	20]		13)	ט ג	14)	L L	10)	d	10)	d
00)	a, b, c	2.01		24)		20)		1/)	a	18)	D	19)	a	20)	a
29)	a,d	30)	a,b,c	31)	a, d	32)		1)	D	2)	D	3)	a	4)	a
	a,d		_		_			5)	a	6)	d	7)	a	8)	a
33)	a,b	34)	b	35)	a, b	36)		9)	b	10)	b	11)	a	12)	a
	a,c, d							13)	а	14)	а	15)	а	16)	a
37)	a,c	38)	a,c,d	39)	a,c	40)		17)	b	18)	d	19)	С	20)	a
	a,c							21)	а	1)	6	2)	7	3)	1
41)	a,b,d	42)	d	43)	a,c,d	44)			4)	9					
	a,b							5)	1	6)	4	7)	4	8)	4
45)	b,d	46)	b	47)	d	48)		9)	5	10)	7	11)	2	12)	0
	a,c							13)	2	14)	5	15)	6	16)	3
49)	a.c.d	50)	a,b,d	51)	a.c.d	52)		17)	3	18)	6	19)	8	20)	6
,	a.b.c	,		,		,		21)	8	22)	1	23)	6	24)	1
53)	b.c.d	54)	a.c.d	55)	a.d	56)		25)	3	26)	8	27)	5	28)	4
,	2,0,0 a.h	<i></i>		55)		,		29)	4	30)	0	31)	4	32)	5
57)	h c d	58)	a (59)	ahcd	60)		22)	8	30)	3	31)	1	36)	4
575	b, c, u	50)	ajc	575	a,D,C,u	00)		33)	4	37) 28)	J 1	30)	6	30) 40)	т 2
61)	a, D, C, u	62)	a d	62)	a h	64)		37J 41)	+ 2	30j 42)	1	37J 42)	1	40)	6
01)	a,c a h c	02)	a,u	03)	a,u	04)		4I) 4E)	3	42) 46)	4 0	43)	1	44) 10)	5
6E)	a, D, C b c	66)	hc	67)	a h a	d		43)	4 E	40J 50)	6	47J 51)	6	40J 52)	.) Л
05)	D,C	00)	D,C	075	a, D, C,	a		49J 52)	5 F	50)	0	51)	0	52)	4
(0)	68)	C T O C		=4)	,	=0)		53)	5	54)	3	55)	3	50)	/
69) = 2)	a,d	70)	a,b,c	71)	a,a	72)	С	57)	5	58)	4	59)	1	60)	2
73)	a,b,c	74)	a,c	75)	a,c	76)		61)	2	62)	7	63)	4	64)	7
	b,c							65)	7	66)	3				
77)	b,c	78)	a,b,d	79)	a,c	80)									
	b,c,d														
81)	a,c	82)	a,b,d	83)	a,b	84)									
	b,d														
85)	c,d	86)	a,c,d	87)	a,b	88)									
	a,c														
89)	a,b,c,d	90)	a, c, d	91)	c,d	92)									
-	a,b,c	-		2		-									
1)	а	2)	а	3)	d	4)	d								
5)	d	6)	d	7)	а	8)	b								
9)	d	3) 10)	a	11)	d	12)	a								
-) 13)	u h	14)	a	15)	a	16)	d								
15) 17)	d	18)	a	19)	u C	201	u a								
1/J 21)	u a	10J 221	u d	17) 22)	c h	201	a h								
21J 25)	a	44J 261	u	23J 271	0	44J 201	U								
23J 20)	a	20J 20)	d d	47J 21)	d h	20J 221	d								
29J 222	a L	30)	u J	31J 25)	U	32J	đ								
33)	D	34J	a	35)	a	36J	а								
37)	b	38)	a	39)	b	40)	а								