Single Correct Answer Type

1. If $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, then
a) $x+y=0$
b) $x=2 y$
c) $x=y$
d) $2 x=y$
2. The number of values of y in $[-2 \pi, 2 \pi]$ satisfying the equation $|\sin 2 x|+|\cos 2 x|=|\sin y|$ is
a) 3
b) 4
c) 5
d) 6
3. In $\triangle A B C$, the median $A D$ divides $\angle B A C$ such that $\angle B A D: \angle C A D=2$: 1 . Then $\cos (A / 3)$ is equal to
a) $\frac{\sin B}{2 \sin C}$
b) $\frac{\sin C}{2 \sin B}$
c) $\frac{2 \sin B}{\sin C}$
d) None of these
4. The equation $\sin ^{2} \theta-\frac{4}{\sin ^{3} \theta-1}=1-\frac{4}{\sin ^{3} \theta-1}$ has
a) No root
b) One root
c) Two roots
d) Infinite roots
5. If $f(x)=\sin ^{6} x+\cos ^{6} x$, then range of $f(x)$ is
a) $\left[\frac{1}{4}, 1\right]$
b) $\left[\frac{1}{4}, \frac{3}{4}\right]$
c) $\left[\frac{3}{4}, 1\right]$
d) None of these
6. The number of solutions of $\sin x+\sin 2 x+\sin 3 x=\cos x+\cos 2 x+\cos 3 x, 0 \leq x \leq 2 \pi$, is
a) 7
b) 5
c) 4
d) 6
7. If $y=(1+\tan A)(1-\tan B)$ where $A-B=\frac{\pi}{4}$, then $(y+1)^{y+1}$ is equal to
a) 9
b) 4
c) 27
d) 81
8. In triangle $A B C$, if $\sin A \cos B=\frac{1}{4}$ and $3 \tan A=\tan B$, then $\cot ^{2} A$ is equal to
a) 2
b) 3
c) 4
d) 5
9. The range of y such that the equation in $x, y+\cos x=\sin x$ has a real solution is
a) $[-2,2]$
b) $[-\sqrt{2}, \sqrt{2}]$
c) $[-1,1]$
d) $[-1 / 2,1 / 2]$
10. The value of $\cos 2(\theta+\phi)+4 \cos (\theta+\phi) \sin \theta \sin \phi+2 \sin ^{2} \phi$ is
a) Independent of θ only
b) Independent of ϕ only
c) Independent of both θ and ϕ
d) Dependent on θ and ϕ
11. If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are in A.P. whose common difference is α, then the value of $\sin \alpha\left(\sec x_{1} \sec x_{2}+\right.$ $\sec x 2 \sec x 3+\ldots+\sec x n-1 \sec x n$ is
a) $\frac{\sin (n-1) \alpha}{\cos x_{1} \cos x_{n}}$
b) $\frac{\sin n \alpha}{\cos x_{1} \cos x_{n}}$
c) $\sin (n-1) \alpha \cos x_{1} \cos x_{n}$
d) $\sin n \alpha \cos x_{1} \cos x_{n}$
12. If $\sin x+\sin ^{2} x=1$, then the value of $\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x-2$ is equal to
a) 0
b) 1
c) -1
d) 2
13. In triangle $A B C, \angle A=30^{\circ}, B C=2+\sqrt{5}$, then the distance of the vertex A from the orthocenter of the triangle is
a) 1
b) $(2+\sqrt{5}) \sqrt{3}$
c) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
d) $\frac{1}{2}$
14. In triangle $A B C$, medians $A D$ and $C E$ are drawn. If $A D=5, \angle D A C=\pi / 8$ and $\angle A C E=\pi / 4$, then the area of the triangle $A B C$ is equal to
a) $\frac{25}{9}$
b) $\frac{25}{3}$
c) $\frac{25}{18}$
d) $\frac{10}{3}$
15. If $\theta=\pi / 4 n$, then the value of $\tan \theta \tan 2 \theta \ldots \tan (2 n-2) \theta \tan (2 n-1) \theta$ is
a) -1
b) 1
c) 0
d) 2
16. $e^{|\sin x|}+e^{-|\sin x|}+4 a=0$ will have exactly four different solutions in $[0,2 \pi]$ if
a) $a \in R$
b) $a \in\left[-\frac{e}{4},-\frac{1}{4}\right]$
c) $a \in\left[\frac{-1-e^{2}}{4 e}, \infty\right]$
d) None of these
17. The numerical value of $\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ}$ is equal to
a) $\sqrt{3}$
b) $\frac{1}{\sqrt{3}}$
c) $2 \sqrt{3}$
d) $\frac{1}{2 \sqrt{3}}$
18. In $\triangle A B C$, let $R=$ circumradius, $r=$ inradius, if r is the distance between the circumcentre and the incentre, then ratio R / r is equal to
a) $\sqrt{2}-1$
b) $\sqrt{3}-1$
c) $\sqrt{2}+1$
d) $\sqrt{3}+1$
19. If $A+B+C=3 \pi / 2$, then $\cos 2 A+\cos 2 B+\cos 2 C$ is equal to
a) $1-4 \cos A \cos B \cos C$
b) $4 \sin A \sin B \sin C$
c) $1+2 \cos A \cos B \cos C$
d) $1-4 \sin A \sin B \sin C$
20. In triangle $A B C$, line joining circumcentre and incentre is parallel to side $A C$, then $\cos A+\cos C$ is equal to
a) -1
b) 1
c) -2
d) 2
21. The roots of the equation $4 x^{2}-2 \sqrt{5} x+1=0$ are
a) $\sin 36^{\circ}, \sin 18^{\circ}$
b) $\sin 18^{\circ}, \cos 36^{\circ}$
c) $\sin 36^{\circ}, \cos 18^{\circ}$
d) $\cos 18^{\circ}, \cos 36^{\circ}$
22. Let $0<x<\pi / 4$, then $(\sec 2 x-\tan 2 x)$ equals
a) $\tan \left(x-\frac{\pi}{4}\right)$
b) $\tan \left(\frac{\pi}{4}-x\right)$
c) $\tan \left(x+\frac{\pi}{4}\right)$
d) $\tan ^{2}\left(x+\frac{\pi}{4}\right)$
23. A quadratic equation whose roots $\operatorname{are~}_{\operatorname{cosec}}{ }^{2} \theta$ and $\sec ^{2} \theta$ can be
a) $x^{2}-5 x+2=0$
b) $x^{2}-3 x+6=0$
c) $x^{2}-5 x+5=0$
d) None of these
24. The value of $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$ is
a) 1
b) $1 / 2$
c) $1 / 4$
d) $1 / 8$
25. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then
a) $f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1}+x_{2}\right)$
b) $f(x+2)-2 f(x+1)+f(x)=0$
c) $f(x)+f(x+1)=f\left(x^{2}+x\right)$
d) $f\left(x_{1}\right)+f\left(x_{2}\right)=f\left(\frac{x_{1}+x_{2}}{1+x_{1} x_{2}}\right)$
26. In triangle $A B C$, if $\cos A+\cos B+\cos C=\frac{7}{4}$, then $\frac{R}{r}$ is equal to
a) $\frac{3}{4}$
b) $\frac{4}{3}$
c) $\frac{2}{3}$
d) $\frac{3}{2}$
27. Let n be a positive integer such that $\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{x}}{2}$. Then
a) $6 \leq n \leq 8$
b) $4<n \leq 8$
c) $4 \leq n \leq 8$
d) $4<n<8$
28. If $\tan (A-B)=1$ and $\sec (A+B)=2 / \sqrt{3}$, then the smallest positive values of A and B, respectively, are
a) $\frac{25 \pi}{24}, \frac{19 \pi}{24}$
b) $\frac{19 \pi}{24}, \frac{25 \pi}{24}$
c) $\frac{31 \pi}{24}, \frac{13 \pi}{24}$
d) $\frac{13 \pi}{24}, \frac{31 \pi}{24}$
29. One root of the equation $\cos x-x+\frac{1}{2}=0$ lies in the interval
a) $\left(0, \frac{\pi}{2}\right)$
b) $\left(-\frac{\pi}{2}, 0\right)$
c) $\left(\frac{\pi}{2}, \pi\right)$
d) $\left(\pi, \frac{3 \pi}{2}\right)$
30. Let α and β be any two positive values of x for which $2 \cos x,|\cos x|$ and $1-3 \cos ^{2} x$ are in G.P. The minimum value of $|\alpha-\beta|$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) None of these
31. In $\triangle A B C$, if $\frac{\sin A}{c \sin B}+\frac{\sin B}{c}+\frac{\sin C}{b}=\frac{c}{a b}+\frac{b}{a c}+\frac{a}{b c}$, then the value of angle A is
a) 120°
b) 90°
c) 60°
d) 30°
32. The most general value for which $\tan \theta=-1, \cos \theta=\frac{1}{\sqrt{2}}$ is $(n \in Z)$
a) $n \pi+\frac{7 \pi}{4}$
b) $n \pi+(-1)^{n} \frac{7 \pi}{4}$
c) $2 n \pi+\frac{7 \pi}{4}$
d) None of these
33. If $\tan \theta=\sqrt{n}$ where $n \in N, \geq 2$, then $\sec 2 \theta$ is always
a) A rational number
b) An irrational number
c) A positive integer
d) A negative integer
34. Let $x=\sin 1^{\circ}$, then the value of the expression $\frac{1}{\cos 0^{\circ} \cdot \cos 1^{\circ}}+\frac{1}{\cos 1^{\circ} \cdot \cos 2^{\circ}}+\frac{1}{\cos 2^{\circ} \cdot \cos 3^{\circ}}+\cdots+\frac{1}{\cos 44^{\circ} \cdot \cos 45^{\circ}}$ is equal to
a) x
b) $1 / x$
c) $\sqrt{2} / x$
d) $x / \sqrt{2}$
35. If $\sin (y+z-x), \sin (z+x-y), \sin (x+y-z)$ are in A.P., then $\tan x, \tan y, \tan z$ are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
36. $\frac{\sin ^{2} A-\sin ^{2} B}{\sin A \cos A-\sin B \cos B}$ is equal to
a) $\tan (A-B)$
b) $\tan (A+B)$
c) $\cot (A-B)$
d) $\cot (A+B)$
37. If $\tan ^{2} \theta=2 \tan ^{2} \phi+1$, then $\cos 2 \theta+\sin ^{2} \phi$ equals
a) -1
b) 0
c) 1
d) None of these
38. Let $A D$ be a median of the $\triangle A B C$. If $A E$ and $A F$ are medians of the triangle $A B D$ and $A D C$, respectively, and $A D=m_{1}, A E=m_{2}, A F=m_{3}$, then $a^{2} / 8$ is equal to
a) $m_{2}^{2}+m_{3}^{2}-2 m_{1}^{2}$
b) $m_{1}^{2}+m_{2}^{2}-2 m_{3}^{2}$
c) $m_{1}^{2}+m_{3}^{2}-2 m_{2}^{2}$
d) None of these
39. The number $N=6 \log _{10} 2+\log _{10} 31$ lies between two successive integers whose sum is equal to
a) 5
b) 7
c) 9
d) 10
40. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is
a) $3 / 4$
b) $3 \sqrt{3}$
c) 3
d) $3 \sqrt{3} / 2$
41. The general values of θ satisfying the equation $2 \sin ^{2} \theta-3 \sin \theta-2=0$ is $(n \in Z)$
a) $n \pi+(-1)^{n} \pi / 6$
b) $n \pi+(-1)^{n} \pi / 2$
c) $n \pi+(-1)^{n} 5 \pi / 6$
d) $n \pi+(-1)^{n} 7 \pi / 6$
42. If the lengths of the sides of triangle are 3,5 and 7 , then the largest angle of the triangle is
a) $\frac{\pi}{2}$
b) $\frac{5 \pi}{6}$
c) $\frac{2 \pi}{3}$
d) $\frac{3 \pi}{4}$
43. If $\sin \theta$ and $-\cos \theta$ are the roots of the equation $a x^{2}-b x-c=0$, where a, b and c are the sides of a triangle $A B C$, then $\cos B$ is equal to
a) $1-\frac{c}{2 a}$
b) $1-\frac{c}{a}$
c) $1+\frac{c}{2 a}$
d) $1+\frac{c}{3 a}$
44. If $5 \tan \theta=4$, then $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$ is equal to
a) 0
b) 1
c) $1 / 6$
d) 6
45. If $\cot (\alpha+\beta)=0$, then $\sin (\alpha+2 \beta)$ can be
a) $-\sin \alpha$
b) $\sin \beta$
c) $\cos \alpha$
d) $\cos \beta$
46. The general solution of $\cos x \cos 6 x=-1$ is
a) $x=(2 n+1) \pi, n \in Z$
b) $x=2 n \pi, n \in Z$
c) $x=n \pi, n \in Z$
d) None of these
47. If $a, b \in[0,2 \pi]$ and the equation $x^{2}+4+3 \sin (a x+b)-2 x=0$ has at least one solution, then the value of $(a+b)$ can be
a) $\frac{7 \pi}{2}$
b) $\frac{5 \pi}{2}$
c) $\frac{9 \pi}{2}$
d) None of these
48. The total number of ordered pairs (x, y) satisfying $|x|+|y|=4, \sin \left(\frac{\pi x^{2}}{3}\right)=1$ is equal to
a) 2
b) 3
c) 4
d) 6
49. In triangle $A B C, \angle A=\pi / 2$, then $\tan (C / 2)$ is equal to
a) $\frac{a-c}{2 b}$
b) $\frac{a-b}{2 c}$
c) $\frac{a-c}{b}$
d) $\frac{a-b}{c}$
50. If $\sin \theta_{1} \sin \theta_{2}-\cos \theta_{1} \cos \theta_{2}+1=0$, then the value of $\tan \left(\theta_{1} / 2\right) \cot \left(\theta_{2} / 2\right)$ is always equal to
a) -1
b) 1
c) 2
d) -2
51. In triangle $A B C, \tan \mathrm{~A}+\tan \mathrm{B}+\tan \mathrm{C}=6$ and $\tan A \tan B=2$, then the values of $\tan A, \tan B, \tan C$ are
a) $1,2,3$
b) $3,2 / 3,7 / 3$
c) $4,1 / 2,3 / 2$
d) None of these
52. If the median of $\triangle A B C$ through A is perpendicular to $A B$, then
a) $\tan A+\tan B=0$
b) $2 \tan A+\tan B=0$
c) $\tan A+2 \tan B=0$
d) None of these
53. If $\sin \theta=\frac{1}{2}$ and $\cos \theta=-\frac{\sqrt{3}}{2}$, then the general value of θ is $(n \in Z)$ is
a) $2 n \pi+\frac{5 \pi}{6}$
b) $2 n \pi+\frac{\pi}{6}$
c) $2 n \pi+\frac{7 \pi}{6}$
d) $2 n \pi+\frac{\pi}{4}$
54. If $\log _{2} x+\log _{x} 2=\frac{10}{3}=\log _{2} y+\log _{y} 2$ and $x \neq y$ then $x+y=$
a) 2
b) $65 / 8$
c) $37 / 6$
d) None of these
55. If ' O ' is the circumcentre of $\triangle A B C$ and R_{1}, R_{2} and R_{3} are the radii of the circumcircles of triangles $O B C, O C A$ and $O A B$, respectively, then $\frac{a}{R_{1}}+\frac{b}{R_{2}}+\frac{c}{R_{3}}$ has the value equal to
a) $\frac{a b c}{2 R^{3}}$
b) $\frac{R^{3}}{a b c}$
c) $\frac{4 \Delta}{R^{2}}$
d) $\frac{\Delta}{4 R^{2}}$
56. In an acute angled triangle $A B C, r+r_{1}=r_{2}+r_{3}$ and $\angle B>\frac{\pi}{3}$, then
a) $b+2 c<2 a<2 b+2 c$
b) $b+4 c<4 a<2 b+4 c$
c) $b+4 c<4 a<4 b+4 c$
d) $b+3 c<3 a<3 b+3 c$
57. The radii r_{1}, r_{2}, r_{3} of the escribed circles of the triangle $A B C$ are in H.P. If the area of the triangle is $24 \mathrm{~cm}^{2}$ and its perimeter is 24 cm , then the length of its largest side is
a) 10
b) 9
c) 8
d) None of these
58. In triangle $A B C$, base $B C$ and area of triangle Δ are fixed. Locus of the centroid of triangle $A B C$ is a straight line that is
a) Parallel to side $B C$
b) Right bisector of side $B C$
c) Right angle of $B C$
d) Inclined at an angle $\sin ^{-1}\left(\frac{\sqrt{\Delta}}{B C}\right)$ to side $B C$
59. Which of the following is not the general solution of $2^{\cos 2 x}+1=3.2^{-\sin ^{2} x}$?
a) $n \pi, n \in Z$
b) $\left(n+\frac{1}{2}\right) \pi, n \in Z$
c) $\left(n-\frac{1}{2}\right) \pi, n \in Z$
d) None of these
60. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$, then $\frac{\tan x}{\tan y}$ is equal to
a) $\frac{b}{a}$
b) $\frac{a}{b}$
c) $a b$
d) None of these
61. If x_{1} and x_{2} are two distinct roots of the equation $a \cos x+b \sin x=c$, then $\tan \frac{x_{1}+x_{2}}{2}$ is equal to
a) $\frac{a}{b}$
b) $\frac{b}{a}$
c) $\frac{c}{a}$
d) $\frac{a}{c}$
62. If $\tan \theta+\sin \theta=m$ and $\tan \theta-\sin \theta=n$, then
a) $m^{2}-n^{2}=4 m n$
b) $m^{2}+n^{2}=4 m n$
c) $m^{2}-n^{2}=m^{2}+n^{2}$
d) $m^{2}-n^{2}=4 \sqrt{m n}$
63. In triangle $A B C$, if P, Q, R divides sides $B C, A C$ and $A B$, respectively, in the ratio $k: 1$ (in order). If the ratio $\left(\frac{\text { area } P Q R}{\operatorname{area} A B C}\right)$ is $\frac{1}{3}$, then k is equal to
a) $1 / 3$
b) 2
c) 3
d) None of these
64. If $x \in\left(\pi, \frac{3 \pi}{2}\right)$, then $4 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)+\sqrt{4 \sin ^{4} x+\sin ^{2} 2 x}$ is always equal to
a) 1
b) 2
c) -2
d) None of these
65. The area of the circle and the area of a regular polygon of n sides and of perimeter equal to that of the circle are in the ratio of
a) $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
b) $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
c) $\sin \frac{\pi}{n}: \frac{\pi}{n}$
d) $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
66. If $\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$, then θ is equal to $(n \in Z)$
a) $\frac{n \pi}{4}$ or $n \pi \pm \frac{\pi}{3}$
b) $\frac{n \pi}{4}$ or $n \pi \pm \frac{\pi}{6}$
c) $\frac{n \pi}{4}$ or $2 n \pi \pm \frac{\pi}{6}$
d) None of these
67. $\log _{4} 18$ is
a) A rational number
b) An irrational number
c) A prime number
d) None of these
68. If $S=\left\{x \in N: 2+\log _{2} \sqrt{x+1}>1-\log _{1 / 2} \sqrt{4-x^{2}}\right\}$, then
a) $S=\{1\}$
b) $S=Z$
c) $S=N$
d) None of these
69. If $|2 \sin \theta-\operatorname{cosec} \theta| \geq 1$ and $\theta \neq \frac{n \pi}{2}, n \in I$, then
a) $\cos 2 \theta \geq 1 / 2$
b) $\cos 2 \theta \geq 1 / 4$
c) $\cos 2 \theta \leq 1 / 2$
d) $\cos 2 \theta \leq 1 / 4$
70. If $(1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0$, then the number of values of θ in the interval $(-\pi / 2, \pi / 2)$ are
a) 1
b) 2
c) 3
d) 4
71. Sum of all the solutions in $[0,4 \pi]$ of the equation $\tan x+\cot x+1=\cos \left(x+\frac{\pi}{4}\right)$ is
a) 3π
b) $\pi / 2$
c) $7 \pi / 2$
d) 4π
72. If $\tan \frac{\pi}{9}, x$ and $\tan \frac{5 \pi}{18}$ are in A.P. and $\tan \frac{\pi}{9}, y$ and $\tan \frac{7 \pi}{18}$ are also in A.P., then
a) $2 x=y$
b) $x>2$
c) $x=y$
d) None of these
73. The general solution of the equation $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is $(n \in Z)$
a) $n \pi+\frac{\pi}{8}$
b) $\frac{n \pi}{2}+\frac{\pi}{8}$
c) $(-1)^{n} \frac{n \pi}{2}+\frac{\pi}{8}$
d) $2 n \pi+\cos ^{-1} \frac{2}{3}$
74. If $\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$, then $\tan A, \tan B, \tan C$ are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
75. The equation $\cos x+\sin x=2$ has
a) Only one solution
b) Two solutions
c) No solution
d) Infinite number of solutions
76. The general solution of the trigonometric equation $\sin x+\cos x=1$ is given by
a) $x=2 n \pi, n=0, \pm 1, \pm 2, \ldots$
b) $x=2 n \pi+\pi / 2 ; n=0, \pm, \pm 2, \ldots$
c) $x=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4} n=0, \pm 1, \pm 2, \ldots$
d) None of these
77. The number of values of θ which satisfy the equation $\sin 3 \theta-\sin \theta=4 \cos ^{2} \theta-2, \forall \theta \in[0,2 \pi]$, is
a) 4
b) 5
c) 7
d) 0
78. If $\cos B \cos C+\sin B \sin C \sin ^{2} A=1$, then triangle $A B C$ is
a) Isosceles and right angled
b) Equilateral
c) Isosceles whose equal angles are greater than $\pi / 4$
d) None
79. If $\sin 2 \theta=\cos 3 \theta$ and θ is an acute angle, then $\sin \theta$ equals
a) $\frac{\sqrt{5}-1}{4}$
b) $-\left(\frac{\sqrt{5}-1}{4}\right)$
c) $\frac{\sqrt{5}+1}{4}$
d) $\frac{-\sqrt{5}-1}{4}$
80. The number of solutions of $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \operatorname{cosec}^{2} \theta=8,0 \leq \theta \leq \pi / 2$ is
a) 4
b) 3
c) 0
d) 2
81. Which of the following is correct?
a) $\sin 1^{\circ}>\sin 1$
b) $\sin 1^{\circ}<\sin 1$
c) $\sin 1^{\circ}=\sin 1$
d) $\sin 1^{\circ}=\frac{\pi}{180} \sin 1$
82. One of the general solutions of $4 \sin \theta \sin 2 \theta \sin 4 \theta=\sin 3 \theta$ is
a) $(3 n \pm 1) \pi / 12, \forall n \in Z$
b) $(4 n \pm 1) \pi / 9, \forall n \in Z$
c) $(3 n \pm 1) \pi / 9, \forall n \in Z$
d) $(3 n \pm 1) \pi / 3, \forall n \in Z$
83. The side of triangle $A B C$ are in A.P. (order being a, b, c) and satisfy $\frac{2!}{1!9!}+\frac{2!}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}$, then the value of $\cos A+\cos B$ is
a) $\frac{12}{7}$
b) $\frac{13}{7}$
c) $\frac{11}{7}$
d) $\frac{10}{7}$
84. If $\sin ^{-1} a+\sin ^{-1} b+\sin ^{-1} c=\pi$, then $a \sqrt{1-a^{2}}+b \sqrt{1-b^{2}}+c \sqrt{1-c^{2}}$ is equal to
a) $a+b+c$
b) $a^{2} b^{2} c^{2}$
c) $2 a b c$
d) $4 a b c$
85. If in a triangle, $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$, then the triangle is
a) Right angled
b) Isosceles
c) Equilateral
d) None of these
86. In triangle $A B C$ if angle C is 90° and area of triangle is 30 sq. units, then the minimum possible value of the hypotenuse c is equal to
a) $30 \sqrt{2}$
b) $60 \sqrt{2}$
c) $120 \sqrt{2}$
d) $\sqrt{30}$
87. In triangle $A B C$, angle A is greater than angle B. If the measures of angles A and B satisfy the equation
$3 \sin x-4 \sin ^{3} x-k=0,0<k<1$, then the measure of angle C is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\frac{2 \pi}{3}$
d) $\frac{5 \pi}{6}$
88. The range of k for which the inequality $k \cos ^{2} x-k \cos x+1 \geq 0 \forall x \in(-\infty, \infty)$, is
a) $k<\frac{-1}{2}$
b) $\frac{-1}{2} \leq k \leq 4$
c) $k>4$
d) $\frac{1}{2} \leq k \leq 5$
89. The number of solution of $\sin ^{4} x-\cos ^{2} x \sin x+2 \sin ^{2} x+\sin x=0$ in $0 \leq x \leq 3 \pi$ is
a) 3
b) 4
c) 5
d) 6
90. In any triangle $A B C, \sin ^{2} A-\sin ^{2} B+\sin ^{2} C$ is always equal to
a) $2 \sin A \sin B \cos C$
b) $2 \sin A \cos B \sin C$
c) $2 \sin A \cos B \cos C$
d) $2 \sin A \sin B \sin C$
91. Let $f(n)=2 \cos n x \forall n \in N$, then $f(1) f(n+1)-f(n)$ is equal to
a) $f(n+3)$
b) $f(n+2)$
c) $f(n+1) f(2)$
d) $f(n+2) f(2)$
92. If the equation $\cot ^{4} x-2 \operatorname{cosec}^{2} x+a^{2}=0$ has at least one solution, then the sum of all possible integral values of ' a ' is equal to
a) 4
b) 3
c) 2
d) 0
93. $\cos ^{3} x \sin 2 x=\sum_{x=0}^{n} a_{r} \sin (r x) \forall x \in R$, then
a) $n=5, a_{1}=1 / 2$
b) $n=5, a_{1}=1 / 4$
c) $n=5, a_{2}=1 / 8$
d) $n=5, a_{2}=1 / 4$
94. In triangle $A B C$, if $\tan (A / 2)=5 / 6$ and $\tan (B / 2)=20 / 37$, the sides a, b and c are in
a) A.P.
b) GP.
c) H.P.
d) None of these
95. If $\sin x+\operatorname{cosec} x=2$, then $\sin ^{n} x+\operatorname{cosec}^{n} x$ is equal to
a) 2
b) 2^{n}
c) 2^{n-1}
d) 2^{n-2}
96. The equation $2 \cos ^{2} \frac{x}{2} \sin ^{2} x=x^{2}=x^{-2} ; 0<x \leq \frac{\pi}{2}$ has
a) No real solution
b) One real solution
c) More than one solution
d) None of these
97. If in $\triangle A B C, \sin A \cos B=\frac{\sqrt{2}-1}{\sqrt{2}}$ and $\sin B \cos A=\frac{1}{\sqrt{2}}$, then the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) Right-angled isosceles
98. In triangle $A B C, \angle A=60^{\circ}, \angle B=40^{\circ}$ and $\angle C=80^{\circ}$. If P is the centre of the circumcircle of triangle $A B C$ with radius unity, then the radius of the circumcircle of triangle $B P C$ is
a) 1
b) $\sqrt{3}$
c) 2
d) $\sqrt{3} / 2$
99. The number of solutions of the pair of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is
a) Zero
b) One
c) Two
d) Four
100. The value of $\frac{\log _{2} 24}{\log _{96} 2}-\frac{\log _{2} 192}{\log _{12} 2}$ is
a) 3
b) 0
c) 2
d) 1
101. Number of solutions the equation $\cos (\theta) \cdot \cos (\pi \theta)=1$ has
a) 0
b) 2
c) 1
d) Infinite
102. If $1+\sin x+\sin ^{2} x+\sin ^{3} x+\cdots \infty$ is equal to $4+2 \sqrt{3}, 0<x<\pi$, then x is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
d) $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
103. If $\cos x=\tan y, \cos y=\tan z, \cos z=\tan x$, then the value of $\sin x$ is
a) $2 \cos 18^{\circ}$
b) $\cos 18^{\circ}$
c) $\sin 18^{\circ}$
d) $2 \sin 18^{\circ}$
104. If $\tan \theta=-\frac{4}{3}$, then $\sin \theta$ is
a) $-\frac{4}{5}$ but not $\frac{4}{5}$
b) $-\frac{4}{5}$ or $\frac{4}{5}$
c) $\frac{4}{5}$ but not $-\frac{4}{5}$
d) None of these
105. Let $\theta \in[0,4 \pi]$ satisfy the equation $(\sin \theta+2)(\sin \theta+3)(\sin \theta+4)=6$. If the sum of all the values of θ is of the form $k \pi$, then the value of k is
a) 6
b) 5
c) 4
d) 2
106. The sum of all the solutions of the equation $\cos \theta \cos \left(\frac{\pi}{3}+\theta\right) \cos \left(\frac{\pi}{3}-\theta\right)=\frac{1}{4}, \theta \in[0,6 \pi]$
a) 15π
b) 30π
c) $\frac{100 \pi}{3}$
d) None of these
107. If $a \sin x+b \cos (x+\theta)+b \cos (x-\theta)=d$, then the minimum value of $|\cos \theta|$ is equal to
a) $\frac{1}{2|b|} \sqrt{d^{2}-a^{2}}$
b) $\frac{1}{2|a|} \sqrt{d^{2}-a^{2}}$
c) $\frac{1}{2|d|} \sqrt{d^{2}-a^{2}}$
d) None of these
108. If $a \leq 3 \cos x+5 \sin (x-\pi / 6) \leq b$ for all x, then (a, b) is
a) $(-\sqrt{19}, \sqrt{19})$
b) $(-17,17)$
c) $(-\sqrt{21}, \sqrt{21})$
d) None of these
109. In triangle $A B C, a=5, b=3$ and $c=7$, the value of $3 \cos C+7 \cos B$ is equal to
a) 5
b) 10
c) 7
d) 3
110. The value of $\cot 70^{\circ}+4 \cos 70^{\circ}$ is
a) $\frac{1}{\sqrt{3}}$
b) $\sqrt{3}$
c) $2 \sqrt{3}$
d) $\frac{1}{2}$
111. The number of solution of the equation $\tan x \tan 4 x=1$ for $0<x<\pi$ is
a) 1
b) 2
c) 5
d) 8
112. A piece of paper is in the shape of a square of side 1 m long. It is cut at the four corners to make a regular polygon of eight sides (octagon). The area of the polygon is
a) $2(\sqrt{2}-1) \mathrm{m}^{2}$
b) $(\sqrt{2}-1) \mathrm{m}^{2}$
c) $\frac{1}{\sqrt{2}} \mathrm{~m}^{2}$
d) None of these
113. If in triangle $A B C, \angle B=90^{\circ}$, then $\tan ^{2}(A / 2)$ is
a) $\frac{b-c}{b+c}$
b) $\frac{b+c}{b-c}$
c) $\frac{2 b c}{b-c}$
d) None of these
114. If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then θ is equal to $(n \in Z)$
a) $2 n \pi \pm \frac{\pi}{3}$
b) $2 n \pi \pm \frac{\pi}{6}$
c) $n \pi+(-1)^{n} \frac{\pi}{3}$
d) $n \pi+\frac{\pi}{3}$
115. If $2^{x+y=6^{y}}$ and $3^{x-1}=2^{y+1}$, then the value of $(\log 3-\log 2) /(x-y)$ is
a) 1
b) $\log _{2} 3-\log _{3} 2$
c) $\log (3 / 2)$
d) None of these
116. $3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$ is equal to
a) 11
b) 12
c) 13
d) 14
117. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of $x^{2}-p x+q+0$, then
a) $p^{2}=q(q-2)$
b) $p^{2}=q(q+2)$
c) $p^{2}+q^{2}=2 q$
d) None of these
118. If $\cos 25^{\circ}+\sin 25^{\circ}=p$, then $\cos 50^{\circ}$ is
a) $\sqrt{2-p^{2}}$
b) $-\sqrt{2-p^{2}}$
c) $p \sqrt{2-p^{2}}$
d) $-p \sqrt{2-p^{2}}$
119. If $\cot ^{2} x=\cot (x-y) \cot (x-z)$, thencot $2 x$ is equal to (where $x \neq \pm \pi / 4$)
a) $\frac{1}{2}(\tan y+\tan z)$
b) $\frac{1}{2}(\cot y+\cot z)$
c) $\frac{1}{2}(\sin y+\sin z)$
d) None of these
120. The total number of solutions of $\cos x=\sqrt{1-\sin 2 x}$ in $[0,2 \pi]$ is equal to
a) 2
b) 3
c) 5
d) None of these
121. If θ is eliminated from the equations $x=a \cos (\theta-\alpha)$ and $y=b \cos (\theta-\beta)$, then $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos (\alpha-\beta)$ is equal to
a) $\sec ^{2}(\alpha-\beta)$
b) $\operatorname{cosec}^{2}(\alpha-\beta)$
c) $\cos ^{2}(-\beta)$
d) $\sin ^{2}(\alpha-\beta)$
122. If $\cos \theta_{1}=2 \cos \theta_{2}$, then $\tan \frac{\theta_{1}-\theta_{2}}{2} \tan \frac{\theta_{1}+\theta_{2}}{2}$ is equal to
a) $\frac{1}{3}$
b) $-\frac{1}{3}$
c) 1
d) -1
123. The value of $\frac{1+2 \log _{3} 2}{\left(1+\log _{3} 2\right)^{2}}+\left(\log _{6} 2\right)^{2}$ is
a) 2
b) 3
c) 4
d) 1
124. Given that $(1+\sqrt{1+x}) \tan y=1+\sqrt{1-x}$. Then $\sin 4 y$ is equal to
a) $4 x$
b) $2 x$
c) x
d) None of these
125. If $\left|\cos \theta\left\{\sin \theta+\sqrt{\sin ^{2} \theta+\sin ^{2} \alpha}\right\}\right| \leq k$, then the value of k is
a) $\sqrt{1+\cos ^{2} \alpha}$
b) $\sqrt{1+\sin ^{2} \alpha}$
c) $\sqrt{2+\sin ^{2} \alpha}$
d) $\sqrt{2+\cos ^{2} \alpha}$
126. If $\ln \left(\frac{a+b}{3}\right)=\left(\frac{\ln a+\ln b}{2}\right)$, then $\frac{a}{b}+\frac{b}{a}$ is equal to
a) 1
b) 3
c) 5
d) 7
127. A variable triangle $A B C$ is circumscribed about a fixed circle of unit radius. Side $B C$ always touches the circle at D and has fixed direction. If B and C vary in such a way that $(B D)(C D)=2$, then locus of vertex A will be a straight line
a) Parallel to side $B C$
b) Perpendicular to side $B C$
c) Making an angle $(\pi / 6)$ with $B C$
d) Making an angle $\sin ^{-1}(2 / 3)$ with $B C$
128. Let $f(\theta)=\frac{\cot \theta}{1+\cot \theta}$ and $\alpha+\beta=\frac{5 \pi}{4}$, then the value $f(\alpha) f(\beta)$ is
a) $\frac{1}{2}$
b) $-\frac{1}{2}$
c) 2
d) None of these
129. If in $\triangle A B C, b=3 \mathrm{~cm}, c=4 \mathrm{~cm}$ and the length of the perpendicular from A to the side $B C$ is 2 cm , then the number of solutions of the triangle is
a) 1
b) 0
c) 3
d) 2
130. If $\sin \theta_{1}-\sin \theta_{2}=a$ and $\cos \theta_{1}+\cos \theta_{2}=b$, then
a) $a^{2}+b^{2} \geq 4$
b) $a^{2}+b^{2} \leq 4$
c) $a^{2}+b^{2} \geq 3$
d) $a^{2}+b^{2} \leq 2$
131. In in triangle $A B C, \sum \sin \frac{A}{2}=\frac{6}{5}$ and $\sum I I_{1}=9$ (where I_{1}, I_{2} and I_{3} are ex-centres and I is in-centre, then circumradius R is equal to
a) $\frac{15}{8}$
b) $\frac{15}{4}$
c) $\frac{15}{2}$
d) $\frac{4}{12}$
132. $x^{\log _{5} x}>5$ imlies
a) $x \in(0, \infty)$
b) $x \in(0,1 / 5) \cup(5, \infty)$
c) $x \in(1, \infty)$
d) $x \in(1,2)$
133. The number of values of x for which $\sin 2 x+\cos 4 x=2$ is
a) 0
b) 1
c) 2
d) Infinite
134. $\tan 6 \frac{\pi}{9}-33 \tan ^{4} \frac{\pi}{9}+27 \tan ^{2} \frac{\pi}{9}$ is equal to
a) 0
b) $\sqrt{3}$
c) 3
d) 9
135. The value of b for which the equation $2 \log _{1 / 25}(b x+28)=-\log _{5}\left(12-4 x-x^{2}\right)$ has coincident roots if
a) $b=-12$
b) $b=4$
c) $b=4$ or $b=-12$
d) $b=-4$ or $b=12$
136. The number of distinct real roots of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is
a) 0
b) 2
c) 1
d) 3
137. The value of $3^{\log _{4} 5}-5^{\log _{4} 3}$ is
a) 0
b) 1
c) 2
d) None of these
138. The number of real values of the parameter k for which $\left(\log _{16} x\right)^{2}-\log _{16} x+\log _{16} k=0$ with real coefficients will have exactly one solution is
a) 2
b) 1
c) 4
d) None of these
139. If the hypotenuse of a right-angled triangle is four times the length of the perpendicular drawn from the opposite vertex to it, then the difference of the two acute angles will be
a) 60°
b) 15°
c) 75°
d) 30°
140. If a, b, c are distinct positive numbers different from 1 such that $\left(\log _{b} a \log _{c} a-\log _{a} a\right)+\left(\log _{a} b \log _{c} b-\right.$ $\log b b+\log a \log b c-\log c c=0$, then $a b c$ is
a) 0
b) E
c) 1
d) None of these
141. The general solution of $\sin 3 \alpha=4 \sin \alpha \sin (x+\alpha) \sin (x-\alpha)$ is
a) $n \pi \pm \pi / 4, \forall n \in Z$
b) $n \pi \pm \pi / 3, \forall n \in Z$
c) $n \pi \pm \pi / 9, \forall n \in Z$
d) $n \pi \pm \pi / 12, \forall n \in Z$
142. If $\sec \theta-1=(\sqrt{2}-1) \tan \theta$, then θ is equal to $(n \in Z)$
a) $(2 n-1) \pi$
b) $2 n \pi+\frac{\pi}{4}$
c) $2 n \pi-\frac{\pi}{4}$
d) $2 n \pi+\frac{\pi}{3}$
143. Which of the following is not the solution of $\log _{x}\left(\frac{5}{2}-\frac{1}{x}\right)>\left(\frac{5}{2}-\frac{1}{x}\right)$?
a) $\left(\frac{2}{5}, \frac{1}{2}\right)$
b) $(1,2)$
c) $\left(\frac{2}{5}, \frac{3}{4}\right)$
d) None of these
144. If $\cos 3 x+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2$, then x is equal to $(k \in Z)$
a) $\frac{\pi}{3}(6 k+1)$
b) $\frac{\pi}{3}(6 k-1)$
c) $\frac{\pi}{3}(2 k+1)$
d) None of these
145. The minimum value of the expression $2 \log _{10} x-\log _{x} 0.01$, where $x>1$, is
a) 2
b) 0.1
c) 4
d) 1
146. In any $\triangle A B C$, if $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in A.P., then a, b, c are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
147. In $\triangle A B C, \angle B=\pi / 3$. The range of values of x, where $x=\sin A \sin C$, is the interval
a) $\left[-\frac{1}{4}, \frac{3}{4}\right]$
b) $\left(0, \frac{3}{4}\right)$
c) $\left(0, \frac{3}{4}\right]$
d) $\left[\frac{1}{4}, \frac{3}{4}\right]$
148. If point P lies on sides of a right-angled triangle $A B C$, then $P A+P B+P C$ is minimum when P is the
a) Orthocenter
b) Circumcentre
c) Mid-point of the smallest side
d) None of these
149. In triangle $A B C, \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are in H.P., then the value of $\cot \frac{A}{2} \times \cot \frac{C}{2}$ is equal to
a) 1
b) 2
c) 3
d) 4
150. If one side of a triangle is double the other, and the angles on opposite sides differ by 60°, then the triangle is
a) Equilateral
b) Obtuse angled
c) Right angled
d) Acute angled
151. If $(\sin x+\cos x)^{2}+k \sin x \cos x=1$ holds $\forall x \in R$, then the value of k equals
a) 2
b) 2
c) -2
d) 3
152. The total number of solutions of $\sin \{x\}=\cos \{x\}$ (where $\{$.$\} denotes the fractional part) in [0,2 \pi]$ is equal to
a) 5
b) 6
c) 8
d) None of these
153. The value of $\cos y \cos \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-y\right) \cos x+\sin y \cos \left(\frac{\pi}{2}-x\right)+\cos x \sin \left(\frac{\pi}{2}-y\right)$ is zero if
a) $x=0$
b) $y=0$
c) $x=y$
d) $n \pi+y-\frac{\pi}{4}(n \in Z)$
154. If $\theta=3 \alpha$ and $\sin \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}$ The value of the expression $a \operatorname{cosec} \alpha-b \sec \alpha$ is
a) $\frac{a}{\sqrt{a^{2}+b^{2}}}$
b) $2 \sqrt{a^{2}+b^{2}}$
c) $a+b$
d) None of these
155. If $f(\theta)=5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$, then range of $f(\theta)$ is
a) $[-5,11]$
b) $[-3,9]$
c) $[-2,10]$
d) $[-4,10]$
156. Consider the system of linear equations in x, y and z :
$(\sin 3 \theta) x-y+z=0$
$(\cos 2 \theta) x+4 y+3 z=0$
$2 x+7 y+7 z=0$
Then which of the following can be the values of θ for which the system has a non-trivial solution
a) $n \pi+(-1)^{n} \pi / 6, \forall n \in Z$
b) $n \pi+(-1)^{n} \pi / 3, \forall n \in Z$
c) $n \pi+(-1)^{n} \pi / 9, \forall n \in Z$
d) None of these
157. If in $\triangle A B C, A C$ is double of $A B$, then the value of $\cot \frac{A}{2} \cot \frac{B-C}{2}$ is equal to
a) $\frac{1}{3}$
b) $-\frac{1}{3}$
c) 3
d) $\frac{1}{2}$
158. The least value of $6 \tan ^{2} \phi+54 \cot ^{2} \phi+18$ is

I: 54 when A.M. \geq G.M. is applicable for $6 \tan ^{2} \phi, 54 \cot ^{2} \phi, 18$
II: 54 when A.M. \geq G.M. is applicable for $6 \tan ^{2} \phi, 54 \cot ^{2} \phi$ and 18 added further
III: 78 when $\tan ^{2} \phi=\cot ^{2} \phi$
a) I is correct
b) I and II are correct
c) III is correct
d) None of the above is correct
159. If $u=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}+\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}$, then the difference between the maximum and minimum values of u^{2} is given by
a) $2\left(a^{2}+b^{2}\right)$
b) $2 \sqrt{a^{2}+b^{2}}$
c) $(a+b)^{2}$
d) $(a-b)^{2}$
160. With usual notations, in triangle $A B C, a \cos (B-C)+b \cos (C-A)+c \cos (A-B)$ is equal to
a) $\frac{a b c}{R^{2}}$
b) $\frac{a b c}{4 R^{2}}$
c) $\frac{4 a b c}{R^{2}}$
d) $\frac{a b c}{2 R^{2}}$
161. If $3 \tan ^{2} \theta-2 \sin \theta=0$, then θ is equal to $(n \in Z)$
a) $2 n \pi \pm \frac{\pi}{4}$
b) $n \pi+(-1)^{n} \frac{\pi}{6}$
c) $n \pi-(-1)^{n} \frac{\pi}{6}$
d) $n \pi+\frac{\pi}{3}$
162. If $S=\left\{x \in R:\left(\log _{0.6} 0.216\right) \log _{5}(5-2 x) \leq 0\right\}$, then S is equal to
a) $[2.5, \infty)$
b) $[2,2.5)$
c) $(2,2.5)$
d) $(0,2.5)$
163. In triangle $A B C, \angle A=\pi / 3$ and its incircle is of unit radius. If the radius of the circle touching the sides $A B, A C$ internally and incircle externally is x, then the value of x is
a) $1 / 2$
b) $1 / 4$
c) $1 / 3$
d) None of these
164. The equation $\tan ^{4} x-2 \sec ^{2} x+a=0$ will have at least one solution if
a) $1<a \leq 4$
b) $a \geq 2$
c) $a \leq 3$
d) None of these
165. In $\triangle A B C,(a+b+c)(b+c-a)=k b c$ if
a) $k<0$
b) $k>0$
c) $0<k<4$
d) $k>4$
166. The distance between the two parallel lines is 1 unit. A point ' A ' is chosen to lie between the lines at a distance ' d ' from one of them. Triangle $A B C$ is equilateral with B on one line and C on the other parallel line. The length of the side of the equilateral triangle is
a) $\frac{2}{3} \sqrt{d^{2}+d+1}$
b) $2 \sqrt{\frac{d^{2}-d+1}{3}}$
c) $2 \sqrt{d^{2}-d+1}$
d) $\sqrt{d^{2}-d+1}$
167. If $\sin \theta, 1, \cos 2 \theta$ are in G.P., then θ is equal to $(n \in Z)$
a) $n \pi+(-1)^{n} \frac{\pi}{2}$
b) $n \pi+(-1)^{n-1} \frac{\pi}{2}$
c) $2 n \pi$
d) None of these
168. Number of solutions of $\sin 5 x+\sin 3 x+\sin x=0$ for $0 \leq x \leq \pi$ is
a) 1
b) 2
c) 3
d) None of these
169. If H is the orthocenter of a acute-angled triangle $A B C$ whose circumcircle is $x^{2}+y^{2}=16$, then circumdiameter of the trangle $H B C$ is
a) 1
b) 2
c) 4
d) 8
170. The solution set of the inequality $\log _{10}\left(x^{2}-16\right) \leq \log _{10}(4 x-11)$ is
a) $(4, \infty)$
b) $(4,5]$
c) $(11 / 4, \infty)$
d) $(11 / 4,5)$
171. Solution set of the inequality $\log _{3}(x+2)(x+4)+\log _{1 / 3}(x+2)<(1 / 2) \log _{\sqrt{3}} 7$ is
a) $(-2,-1)$
b) $(-2,3)$
c) $(-1,3)$
d) $(3, \infty)$
172. If $2 x^{\log _{4} 3}+3^{\log _{4} x}=27$, then x is equal to
a) 2
b) 4
c) 8
d) 16
173. The number of solutions of $[\sin x+\cos x]=3+[-\sin x]+[-\cos x]$ (where [.] denotes the greatest integer function), $x \in[0,2 \pi]$, is
a) 0
b) 4
c) Infinite
d) 1
174. If $\cos \theta+\cos 7 \theta+\cos 3 \theta+\cos 5 \theta=0$, then θ is equal to $(n \in Z)$
a) $n \pi$
b) $n \pi / 2$
c) $n \pi / 4$
d) $n \pi / 8$
175. If $x \in(\pi, 2 \pi)$ and $\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\cot \left(a+\frac{x}{2}\right)$, then a is equal to
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) None of these
176. If $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$, then
a) $A=90^{\circ}$
b) $B=90^{\circ}$
c) $C=90^{\circ}$
d) None of these
177. In an equilateral triangle, the inradius, circumradius and one of the ex-radii are in the ratio
a) $2: 3: 5$
b) $1: 2: 3$
c) $1: 3: 7$
d) 3: 7:9
178. The value of $\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}$ is equal to
a) $\frac{4}{3}$
b) $\frac{1}{3}$
c) $\frac{3}{4}$
d) 3
179. In $\triangle A B C, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$ is equal to
a) $\frac{\Delta}{r^{2}}$
b) $\frac{(a+b+c)^{2}}{a b c} 2 R$
c) $\frac{\Delta}{r}$
d) $\frac{\Delta}{R r}$
180. In triangle $A B C, 2 a c \sin \left(\frac{1}{2}(A-B+C)\right)$ is equal to
a) $a^{2}+b^{2}+c^{2}$
b) $c^{2}+a^{2}-b^{2}$
c) $b^{2}-c^{2}-a^{2}$
d) $c^{2}-a^{2}-b^{2}$
181. If $a+b=3-\cos 4 \theta$ and $a-b=4 \sin 2 \theta$, then $a b$ is always less than or equal to
a) $\frac{1}{2}$
b) 1
c) $\frac{2}{3}$
d) $\frac{3}{4}$
182. The set of all values of x satisfying $x^{\log _{x}(1-x)^{2}}=9$ is
a) A subset of R containing N
b) A subset of R containing Z (set of all integers)
c) Is a finite set containing at least two elements
d) A finite set
183. If in triangle $A B C, \sin A \cos B=1 / 4$ and $3 \tan A=\tan B$, then the triangle is
a) Right angled
b) Equilateral
c) Isosceles
d) None of these
184. If $f(x)=\cos ^{2} \theta+\sec ^{2} \theta$, then
a) $f(x)<1$
b) $f(x)=1$
c) $2>f(x)>1$
d) $f(x) \geq 2$
185. If P is a point on the altitude $A D$ of the triangle $A B C$ such that $\angle C B P=B / 3$, then $A P$ is equal to
a) $2 a \sin \frac{C}{3}$
b) $2 b \sin \frac{C}{3}$
c) $2 c \sin \frac{B}{3}$
d) $2 c \sin \frac{C}{3}$
186. The value of $\sin ^{2} \frac{\pi}{8}+\sin ^{2} \frac{3 \pi}{8}+\sin ^{2} \frac{5 \pi}{8}+\sin ^{2} \frac{7 \pi}{8}$ is
a) 1
b) 2
c) $1 \frac{1}{8}$
d) $2 \frac{1}{8}$
187. If $0<\alpha<\frac{\pi}{6}$, then $\alpha(\operatorname{cosec} \alpha)$ is
a) Less than $\pi / 6$
b) Greater than $\pi / 6$
c) Less than $\pi / 3$
d) Greater than $\pi / 3$
188. If $x=\frac{2 \sin \theta}{1+\cos \theta+\sin \theta}$, then $\frac{1-\cos \theta+\sin \theta}{1+\sin \theta}$ is equal to
a) $1+x$
b) $1-x$
c) x
d) $1 / x$
189. In triangle $A B C$, if $a: b: c=7: 8: 9$, then $\cos A: \cos B$ is equal to
a) $\frac{11}{63}$
b) $\frac{22}{63}$
c) $\frac{2}{9}$
d) None of these
190. The general solution of the equation $\sin ^{100} x-\cos ^{100} x=1$ is
a) $2 n \pi+\frac{\pi}{3}, n \in I$
b) $n \pi+\frac{\pi}{2}, n \in I$
c) $n \pi+\frac{\pi}{4}, n \in I$
d) $2 n \pi-\frac{\pi}{3}, n \in I$
191. If A, B, C are acute positive angles such that $A+B+C=\pi$ and $\cot A \cot B \cot C=k$, then
a) $K \leq \frac{1}{3 \sqrt{3}}$
b) $K \geq \frac{1}{3 \sqrt{3}}$
c) $K<\frac{1}{9}$
d) $K>\frac{1}{3}$
192. If a, b, c are consecutive positive integers and $\log (1+a c)=2 K$, then the value of K is
a) $\log b$
b) $\log a$
c) 2
d) 1
193. General solution of $\sin ^{2} x-5 \sin x \cos x-6 \cos ^{2} x=0$ is
a) $x=n \pi-\pi / 4, n \in Z$ only
b) $n \pi+\tan ^{-1} 6, n \in Z$ only
c) Both (a) and (b)
d) None of these
194. The set of all x satisfying the equation $x^{\log _{3} x^{2}+\left(\log _{3} x\right)^{2}-10}=1 / x^{2}$ is
a) $\{1,9\}$
b) $\{1,9,1 / 81\}$
c) $\{1,4,1 / 81\}$
d) $\{9,1 / 81\}$
195. Given both θ and \emptyset are the acute angles $\sin \theta=\frac{1}{2}, \cos \emptyset=\frac{1}{3}$, then the value of $\theta+\emptyset$ belongs to
a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$
b) $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
c) $\left(\frac{2 \pi}{3}, \frac{5 \pi}{6}\right]$
d) $\left(\frac{5 \pi}{6}, \pi\right]$
196. If $\frac{\cos (x-y)}{\cos (x+y)}+\frac{\cos (z+t)}{\cos (z-t)}=0$, then the value of $\tan x \tan y \tan z \tan t$ is equal to
a) 1
b) -1
c) 2
d) -2
197. Given that a, b, c are the sides of a triangle $A B C$ which is right angled at C, then the minimum value of $\left(\frac{c}{a}+\frac{c}{b}\right)^{2}$ is
a) 0
b) 4
c) 6
d) 8
198. The number of solutions of $12 \cos ^{3} x-7 \cos ^{2} x+4 \cos x=9$ is
a) 0
b) 2
c) Infinite
d) None of these
199. If $3 \tan \left(\theta-15^{\circ}\right)=\tan \left(\theta+15^{\circ}\right)$, then θ is equal to $(n \in Z)$
a) $n \pi+\frac{\pi}{4}$
b) $n \pi+\frac{\pi}{8}$
c) $n \pi+\frac{\pi}{3}$
d) None of these
200. If $\frac{3 \pi}{4}<\alpha<\pi$, then $\sqrt{2 \cot \alpha+\frac{1}{\sin ^{2} \alpha}}$ is equal to
a) $1+\cot \alpha$
b) $-1-\cot \alpha$
c) $1-\cot \alpha$
d) $-1+\cot \alpha$
201. If $\sin x+\cos x=\frac{\sqrt{7}}{2}$ where $x \in A$, then $\tan \frac{x}{2}$ is equal to
a) $\frac{3-\sqrt{7}}{3}$
b) $\frac{\sqrt{7}-2}{3}$
c) $\frac{4-\sqrt{7}}{4}$
d) None of these
202. The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is
a) 2
b) 3
c) 4
d) None of these
203. $\tan \left(\frac{p \pi}{4}\right)=\cot \left(\frac{q \pi}{4}\right)$ if $(n \in Z)$
a) $p+q=0$
b) $p+q=2 n+1$
c) $p+q=2 n$
d) $p+q=2(2 n+1)$
204. Let $f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)$. Then $f(\theta)$ is
a) ≥ 0 only when $\theta \geq 0$
b) ≤ 0 for all real θ
c) ≥ 0 for all real θ
d) ≤ 0 only when $\theta \leq 0$
205. The complete solution of $7 \cos ^{2} x+\sin x \cos x-3=0$ is given by
a) $n \pi+\frac{\pi}{2}(n \in Z)$
b) $n \pi-\frac{\pi}{2}(n \in Z)$
c) $n \pi+\tan ^{-1}\left(\frac{3}{4}\right)(n \in Z)$
d) $n \pi+\frac{3 \pi}{4}, k \pi+\tan ^{-1}\left(\frac{4}{3}\right)(k, n \in Z)$
206. If $\log _{10}\left[\frac{1}{2^{x}+x-1}\right]=x\left[\log _{10} 5-1\right]$, then $x=$
a) 4
b) 3
c) 2
d) 1
207. In $\triangle A B C$, if $b^{2}+c^{2}=2 a^{2}$, then value of $\frac{\cot A}{\cot B+\cot C}$ is
a) $\frac{1}{2}$
b) $\frac{3}{2}$
c) $\frac{5}{2}$
d) $\frac{5}{3}$
208. The value of x satisfying $\sqrt{3}^{-4+2 \log _{\sqrt{5}} x}=1 / 9$ is
a) 2
b) 3
c) 4
d) None of these
209. If $\alpha, \beta, \gamma, \delta$ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then the value of $4 \sin \frac{\alpha}{2}+3 \sin \frac{\beta}{2}+2 \sin \frac{\gamma}{2}+\sin \frac{\delta}{2}$ is equal to
a) $2 \sqrt{1-k}$
b) $2 \sqrt{1+k}$
c) $\frac{\sqrt{1+k}}{2}$
d) None of these
210. The value of $\log a b-\log |b|=$
a) $\log a$
b) $\log |a|$
c) $-\log a$
d) None of these
211. If $(4)^{\log _{9} 3}+(9)^{\log _{2} 4}=(10)^{\log _{x} 83}$, then x is equal to
a) 2
b) 3
c) 10
d) 30
212. In triangle $A B C$, internal angle bisector $\angle A$ makes an angle θ with side $B C$. The value of $\sin \theta$ is equal to
a) $\left|\sin \left(\frac{B-C}{2}\right)\right|$
b) $\left|\sin \left(\frac{B}{2}-C\right)\right|$
c) $\cos \left(\frac{B-C}{2}\right)$
d) $\cos \left(\frac{B}{2}-C\right)$
213. If both the distinct roots of the equation $|\sin x|^{2}+|\sin x|+b=0$ in $[0, \pi]$ are real, then the values of b are
a) $[-2,0]$
b) $(-2,0)$
c) $[-2,0)$
d) None of these
214. The maximum value of $\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)$, unser the restrictions $0 \leq \alpha_{1}, \alpha_{2}, \ldots \alpha_{n} \leq \pi / 2$ and $\left(\cot \alpha_{1}\right)\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1$ is
a) $1 / 2^{n / 2}$
b) $1 / 2^{n}$
c) $1 / 2 n$
d) 1
215. If $\sqrt{\log _{2} x}-0.5=\log _{2} \sqrt{x}$, then x equals
a) Odd integer
b) Prime number
c) Composite number
d) Irrational
216. The value of $49^{\left(1-\log _{7} 2\right)}+5^{-\log _{5} 4}$ is
a) $27 / 2$
b) $25 / 2$
c) $625 / 16$
d) None of these
217. If A and B are acute positive angles satisfying the equations $3 \sin ^{2} A+2 \sin ^{2} B=1$ and $3 \sin 2 A-$ $2 \sin 2 B=0$, then $\mathrm{A}+2 \mathrm{~B}$ is equal to
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
218. If the equation $2^{x}+4^{y}=2^{y}+4^{x}$ is solved for y in terms of x, where $x<0$, then the sum of the solutions is
a) $x \log _{2}\left(1-2^{x}\right)$
b) $x+\log _{2}\left(1-2^{x}\right)$
c) $\log _{2}\left(1-2^{x}\right)$
d) $x \log _{2}\left(2^{x}+1\right)$
219. If $\tan x=n \tan y, n \in R^{+}$, then the maximum value of $\sec ^{2}(x-y)$ is equal to
a) $\frac{(n+1)^{2}}{2 n}$
b) $\frac{(n+1)^{2}}{n}$
c) $\frac{(n+1)^{2}}{2}$
d) $\frac{(n+1)^{2}}{4 n}$
220. In the given figure, $A B$ is the diameter of the circle, centered at ' O^{\prime}. If $\angle C O A=60^{\circ}, A B=2 r, A C=$ d and $C D=l$, then l is equal to

a) $d \sqrt{3}$
b) $d / \sqrt{3}$
c) $3 d$
d) $\sqrt{3} d / 2$
221. In triangle $A B C$, if $A-B=120^{\circ}$ and $R=8 r$ where R and r have their usual meaning, then cos C equals
a) $3 / 4$
b) $2 / 3$
c) $5 / 6$
d) $7 / 8$
222. The solution of $4 \sin ^{2} x+\tan ^{2} x+\operatorname{cosec}^{2} x+\cot ^{2} x-6=0$ is
a) $n \pi \pm \frac{\pi}{4}$
b) $2 n \pi \pm \frac{\pi}{4}$
c) $n \pi+\frac{\pi}{3}$
d) $n \pi-\frac{\pi}{6}$
223. If in a $\triangle A B C, \cos 3 A+\cos 3 B+\cos 3 C=1$, then one angle must be exactly equal to
a) 90°
b) 45°
c) 120°
d) None of these
224. The greatest value of $\sin ^{4} \theta+\cos ^{4} \theta$ is
a) $1 / 2$
b) 1
c) 2
d) 3
225. In triangle $A B C, \frac{a}{b}=\frac{2}{3}$ and $\sec ^{2} A=\frac{8}{5}$. Then the number of triangles satisfying these conditions is
a) 0
b) 1
c) 2
d) 3
226. If $(21.4)^{a}=(0.00214)^{b}=100$, then the value of $\frac{1}{b}-\frac{1}{b}$ is
a) 0
b) 1
c) 2
d) 4
227. Complete the set of values of x in $(0, \pi)$ satisfying the equation $1+\log _{2} \sin x+\log _{2} \sin 3 x \geq 0$ is
a) $\left(\frac{2 \pi}{3}, \frac{3 \pi}{4}\right]$
b) $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
c) $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{2 \pi}{3}, \pi\right)$
d) $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
228. The numerical value of $\tan \frac{\pi}{3}+2 \tan \frac{2 \pi}{3}+4 \tan \frac{4 \pi}{3}+8 \tan \frac{8 \pi}{3}$ is equal to
a) $-5 \sqrt{3}$
b) $-5 / \sqrt{3}$
c) $5 \sqrt{3}$
d) $5 / \sqrt{3}$
229. If $0 \leq x \leq 2 \pi$, then the number of solutions of $3(\sin x+\cos x)-2\left(\sin ^{3} x+\cos ^{3} x\right)=8$ is
a) 0
b) 1
c) 2
d) 4
230. In triangle $A B C, a^{2}+c^{2}=2002 b^{2}$, then $\frac{\cot A+\cot C}{\cot B}$ is equal to
a) $\frac{1}{2001}$
b) $\frac{2}{2001}$
c) $\frac{3}{2001}$
d) $\frac{4}{2001}$
231. If $2 \sec 2 \theta=\tan \phi+\cot \phi$, then one of the values of $\theta+\phi$ is
a) $\pi / 2$
b) $\pi / 4$
c) $\pi / 3$
d) None of these
232. $\frac{\sqrt{2}-\sin \alpha-\cos \alpha}{\sin \alpha-\cos \alpha}$ is equal to
a) $\sec \left(\frac{\alpha}{2}-\frac{\pi}{8}\right)$
b) $\cos \left(\frac{\pi}{8}-\frac{\alpha}{2}\right)$
c) $\tan \left(\frac{\alpha}{2}-\frac{\pi}{8}\right)$
d) $\cot \left(\frac{\alpha}{2}-\frac{\pi}{2}\right)$
233. If $A=\sin 45^{\circ}+\cos 45^{\circ}$ and $B=\sin 44^{\circ}+\cos 44^{\circ}$, then
a) $A>B$
b) $A<B$
c) $A=B$
d) None of these
234. If the inequality $\sin ^{2} x+a \cos x+a^{2}>1+\cos x$ holds for any $x \in R$ then the largest negative integral value of ' a ' is
a) -4
b) -3
c) -2
d) -1
235. If $\frac{1+\sin 2 x}{1-\sin 2 x}=\cot ^{2}(a+x) \forall x \in R \sim\left(n \pi+\frac{\pi}{4}\right), n \in N$, then a can be
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{3 \pi}{4}$
d) None of these
236. If A, B, C are angles of a triangle, then $2 \sin \frac{A}{2} \operatorname{cosec} \frac{B}{2} \sin \frac{C}{2}-\sin A \cot \frac{B}{2}-\cos A$ is
a) Independent of A, B, C
b) Function of A, B
c) Function of C
d) None of these
237. If $\tan ^{2} \alpha \tan ^{2} \beta+\tan ^{2} \beta \tan ^{2} \gamma+\tan ^{2} \gamma \tan ^{2} \alpha+2 \tan ^{2} \alpha \tan ^{2} \beta \tan ^{2} \gamma=1$, then the value of $\sin ^{2} \alpha+$ $\sin ^{2} \beta+\sin ^{2} \gamma$ is
a) 3
b) 2
c) 1
d) None of these
238. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same circle is $3: 4$. Then the value of n is
a) 6
b) 4
c) 8
d) 12
239. Which of the following is true for $z=(3+2 i \sin \theta) /(1-2 \mathrm{i} \sin \theta)$, where $i=\sqrt{-1}$
a) z is purely real for $\theta=n \pi \pm \pi / 3, n \in Z$
b) z is purely imaginary for $\theta=n \pi \pm \pi / 2, n \in Z$
c) z is purely real for $\theta=n \pi, n \in Z$
d) None of these
240. In any triangle, the minimum value of $r_{1} r_{2} r_{3} / r^{3}$ is equal to
a) 1
b) 9
c) 27
d) None of these
241. The equation $\sin ^{4} x+\cos ^{4} x+\sin 2 x+\alpha=0$ is solvable for
a) $-5 / 2 \leq \alpha \leq 1 / 2$
b) $-3 \leq \alpha \leq 1$
c) $-3 / 2 \leq \alpha \leq 1 / 2$
d) $-1 \leq \alpha \leq 1$
242. If $\frac{\sin x}{a}=\frac{\cos x}{b}=\frac{\tan x}{c}=k$, then $b c+\frac{1}{c k}+\frac{a k}{1+b k}$ is equal to
a) $k\left(a+\frac{1}{a}\right)$
b) $\frac{1}{k}\left(a+\frac{1}{a}\right)$
c) $\frac{1}{k^{2}}$
d) $\frac{a}{k}$
243. If $\tan A=\frac{1-\cos B}{\sin B}$, then $\tan 2 A$ is
a) $\tan 2 A=\tan B$
b) $\tan 2 A=\tan ^{2} B$
c) $\tan 2 A=\tan ^{2} B+2 \tan B$
d) None of these
244. The number of roots of the equation $\log _{3 \sqrt{x}} x+\log _{3 x} \sqrt{x}=0$ is
a) 1
b) 2
c) 3
d) 0
245. If $\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$, then $x+y+z$ is equal to
a) 1
b) 0
c) -1
d) None of these
246. The general value of x satisfying the equation $2 \cot ^{2} x+2 \sqrt{3} \cot x+4 \operatorname{cosec} x+8=0$ is
a) $n \pi-\frac{\pi}{6}, n \in Z$
b) $n \pi+\frac{\pi}{6}, n \in Z$
c) $2 n \pi-\frac{\pi}{6}, n \in Z$
d) $2 n \pi+\frac{\pi}{6}, n \in Z$
247. If x, y, z are in A.P, then $\frac{\sin x-\sin z}{\cos z-\cos x}$ is equal to
a) $\tan y$
b) $\cot y$
c) $\sin y$
d) $\cos y$
248. In $\triangle A B C$, if $A=30^{\circ}, b=2, c=\sqrt{3}+1$, then $\frac{C-B}{2}$ is equal to
a) 15°
b) 30°
c) 45°
d) None of these
249. In triangle $A B C, \sin A, \sin B$ and $\sin C$ are in A.P, then
a) The altitudes are in H.P.
b) The altitudes are in A.P.
c) The altitudes are in G.P.
d) None of these
250. The value of the expression $\frac{2\left(\sin 1^{\circ}+\sin 2^{\circ}+\sin 3^{\circ}+\cdots+\sin 89^{\circ}\right)}{2\left(\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}\right)+1}$ equals
a) $\sqrt{2}$
b) $1 / \sqrt{2}$
c) $1 / 2$
d) 1
251. Product of roots of the equation $\frac{\log _{8}\left(8 / x^{2}\right)}{\left(\log _{8} x\right)^{2}}=3$ is
a) 1
b) $1 / 2$
c) $1 / 3$
d) $1 / 4$
252. $\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}$ is true if and only if
a) $x+y \neq 0$
b) $x=y, x \neq 0$
c) $x=y$
d) $x \neq 0, y \neq 0$
253. If x_{1} and x_{2} are the roots of the equation $e^{2} \cdot x^{\ln x}=x^{3}$ with $x_{1}>x_{2}$, then
a) $x_{1}=2 x_{2}$
b) $x_{1}=x_{2}^{2}$
c) $2 x_{1}=x_{2}^{2}$
d) $x_{1}^{2}=x_{2}^{3}$
254. If $\cos p \theta+\cos q \theta=0$, then the different values of θ are in A.P. where the common difference is
a) $\frac{\pi}{p+q}$
b) $\frac{\pi}{p-q}$
c) $\frac{2 \pi}{p+q}$
d) $\frac{3 \pi}{p \pm q}$
255. If $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1$, then $\triangle A B C$ is
a) Equilateral
b) Isosceles
c) Right angled
d) None of these
256. The total number of solution of $\sin ^{4} x+\cos ^{4} x=\sin x \cos x$ in $[0,2 \pi]$ is equal to
a) 2
b) 4
c) 6
d) None of these
257. If $\tan x=b / a$, then $\sqrt{(a+b) /(a-b)}+\sqrt{(a-b) /(a+b)}$ is equal to
a) $2 \sin x / \sqrt{\sin 2 x}$
b) $2 \cos x / \sqrt{\cos 2 x}$
c) $2 \cos x / \sqrt{\sin 2 x}$
d) $2 \sin x / \sqrt{\cos 2 x}$
258. Number of ordered pair(s) (a, b) for each of which the equality $a(\cos x-1)+b^{2}=\cos \left(a x+b^{2}\right)-1$ holds true for all $x \in R$ are
a) 1
b) 2
c) 3
d) 4
259. We are given b, c and $\sin B$ such that B is acute and $b<c \sin B$. Then
a) No triangle is possible
b) One triangle is possible
c) Two triangles are possible
d) A right-angled triangle is possible
260. In triangle $A B C, a=5, b=4$ and $c=3$. G is the centroid of the triangle. Circumradius of triangle $G A B$ is equal to
a) $2 \sqrt{13}$
b) $\frac{5}{12} \sqrt{13}$
c) $\frac{5}{3} \sqrt{13}$
d) $\frac{3}{2} \sqrt{13}$
261. In any triangle $A B C, \frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ has the maximum value of
a) 3
b) 6
c) 9
d) None of these
262. The set of values of θ satisfying the inequation $2 \sin ^{2} \theta-5 \sin \theta+2>0$, where $0<\theta<2 \pi$, is
a) $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
b) $\left[0, \frac{\pi}{6}\right] \cup\left[\frac{5 \pi}{6}, 2 \pi\right]$
c) $\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, 2 \pi\right]$
d) None of these
263. If $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$, thencos $\theta_{1}+\cos \theta_{2}+\cos \theta_{3}$ is equal to
a) 3
b) 2
c) 1
d) 0
264. The sum of all roots of $\sin \left(\pi \log _{3}\left(\frac{1}{x}\right)\right)=0$ in $(0,2 \pi)$ is
a) $3 / 2$
b) 4
c) $9 / 2$
d) $13 / 3$
265. Which of the following is not the value of $\sin 27^{\circ}-\cos 27^{\circ}$?
a) $-\frac{\sqrt{3-\sqrt{5}}}{2}$
b) $-\frac{\sqrt{5-\sqrt{5}}}{2}$
c) $-\frac{\sqrt{5}-1}{2 \sqrt{2}}$
d) None of these
266. One of the general solutions of $4 \sin ^{4} x+\cos ^{4} x=1$ is
a) $n \pi \pm \alpha / 2, \alpha=\cos ^{-1}(1 / 5), \forall n \in Z$
b) $n \pi \pm \alpha / 2, \alpha=\cos ^{-1}(3 / 5), \forall n \in Z$
c) $2 n \pi \pm \alpha / 2, \alpha=\cos ^{-1}(1 / 3), \forall n \in Z$
d) None of these
267. Let α and β be such that $\pi<\alpha-\beta<3 \pi$. If $\sin \alpha+\sin \beta=-\frac{21}{65}$ and $\cos \alpha+\cos \beta=-\frac{17}{65}$, then the value of $\cos \frac{\alpha-\beta}{2}$ is
a) $-\frac{3}{\sqrt{130}}$
b) $\frac{3}{\sqrt{130}}$
c) $\frac{6}{65}$
d) $-\frac{6}{65}$
268. If a, b and c are the sides of a triangle, then the minimum value of $\frac{2 a}{b+c-a}+\frac{2 b}{c+a-b}+\frac{2 c}{a+b-c}$ is
a) 3
b) 9
c) 6
d) 1
269. The number of solutions of the equation $\sin ^{3} x \cos x+\sin ^{2} x \cos ^{2} x+\sin x \cos ^{3} x=1$, in the interval $[0,2 \pi]$, is
a) 4
b) 2
c) 1
d) 0
270. The sum of all the solution of $\cot \theta=\sin 2 \theta,(\theta \neq n \pi, n$ integer $), 0 \leq \theta \leq \pi$ is
a) $3 \pi / 2$
b) π
c) $3 \pi / 4$
d) 2π
271. If $(x+1)^{\log _{10}(x+1)}=100(x+1)$, then
a) All the roots are positive real numbers.
b) All the roots lie in the interval $(0,100)$
c) All the roots lie in the interval $[-1,99]$
d) None of these
272. If $a^{4} \cdot b^{5}=1$, then the value of $\log _{a}\left(a^{5} b^{4}\right)$ equals
a) $9 / 5$
b) 4
c) 5
d) $8 / 5$
273. $\frac{\sin 3 \theta+\sin 5 \theta+\sin 7 \theta+\sin 9 \theta}{\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta}$ is equal to
a) $\tan 3 \theta$
b) $\cot 3 \theta$
c) $\tan 6 \theta$
d) $\cot 6 \theta$
274. If the inequality $\sin ^{2} x+a \cos x+a^{2}>1+\cos x$ holds for any $x \in R$, then the largest negative integral value of a is
a) -4
b) -3
c) -2
d) -1
275. The total number of solutions of $|\cot x|=\cot x+\frac{1}{\sin x}, x \in[0,3 \pi]$ is equal to
a) 1
b) 2
c) 3
d) 0
276. If in $\triangle A B C, 8 R^{2}=a^{2}+b^{2}+c^{2}$, then the triangle $A B C$ is
a) Right angled
b) Isosceles
c) Equilateral
d) None of these
277. $\sin x+\cos x=y^{2}-y+a$ has no value of x for any value of y if a belongs to
a) $(0, \sqrt{3})$
b) $(-\sqrt{3}, 0)$
c) $(-\infty,-\sqrt{3})$
d) $(\sqrt{3}, \infty)$
278. If $\log _{4} 5=a$ and $\log _{5} 6=b$, then $\log _{3} 2$ is equal to
a) $\frac{1}{2 a+1}$
b) $\frac{1}{2 b+1}$
c) $2 a b+1$
d) $\frac{1}{2 a b-1}$
279. The smallest +ve x satisfying the equation $\log _{\cos x} \sin x+\log _{\sin x} \cos x=2$ is
a) $\pi / 2$
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 6$
280. If $\alpha+\beta=\pi / 2$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ equals
a) $2(\tan \beta+\tan \gamma)$
b) $\tan \beta+\tan \gamma$
c) $\tan \beta+2 \tan \gamma$
d) $2 \tan \beta+\tan \gamma$
281. The value of $\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}+\cos \frac{7 \pi}{7}$ is
a) 1
b) -1
c) 0
d) None of these
282. If $\cos x=\frac{2 \cos y-1}{2-\cos y}$, where $x, y \in(0, \pi)$, then $\tan \frac{x}{2} \cot \frac{y}{2}$ is equal to
a) $\sqrt{2}$
b) $\sqrt{3}$
c) $\frac{1}{\sqrt{2}}$
d) $\frac{1}{\sqrt{3}}$
283. The value of expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
a) 2
b) $2 \sin 20^{\circ} / \sin 40^{\circ}$
c) 4
d) $4 \sin 20^{\circ} / \sin 40^{\circ}$
284. In triangle $A B C, \angle A B C=120^{\circ}, A B=3$ and $B C=4$. If perpendicular constructed to the side $A B$ at A and to the side $B C$ at C meets at D, then $C D$ is equal to
a) 3
b) $\frac{8 \sqrt{3}}{3}$
c) 5
d) $\frac{10 \sqrt{3}}{3}$
285. The equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ in the variable x has real roots. Then p can take any value in the interval
a) $(0,2 \pi)$
b) $(-\pi, 0)$
c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
d) $(0, \pi)$
286. The equation $\sin x(\sin x+\cos x)=k$ has real solutions if and only if k is a real number such that
a) $0 \leq k \leq \frac{1+\sqrt{2}}{2}$
b) $2-\sqrt{3} \leq k \leq 2+\sqrt{3}$
c) $0 \leq k \leq 2-\sqrt{3}$
d) $\frac{1-\sqrt{2}}{2} \leq k \leq \frac{1+\sqrt{2}}{2}$
287. If a, b and A are given in a triangle and c_{1}, c_{2} are the possible values of the third side, then $c_{1}^{2}+c_{2}^{2}-$ $2 c_{1} c_{2} \cos A=$ is equal to
a) $4 a^{2} \sin 2 A$
b) $4 a^{2} \sin ^{2} A$
c) $4 a^{2} \cos 2 A$
d) $4 a^{2} \cos ^{2} A$
288. In triangle $A B C$, if $r_{1}=2 r_{2}=3 r_{3}$, then $a: b$ is equal to
a) $\frac{5}{4}$
b) $\frac{4}{5}$
c) $\frac{7}{4}$
d) $\frac{4}{7}$
289. If $\operatorname{cosec} \theta-\cot \theta=q$, then the value of $\operatorname{cosec} \theta$ is
a) $q+\frac{1}{q}$
b) $q-\frac{1}{q}$
c) $\frac{1}{2}\left(q+\frac{1}{q}\right)$
d) None of these
290. $\tan 20^{\circ}+\tan 40^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$ is equal to
a) $\frac{1}{\sqrt{3}}$
b) $\sqrt{3}$
c) $-\frac{1}{\sqrt{3}}$
d) $-\sqrt{3}$
291. If $(1+\tan \alpha)(1+\tan 4 \alpha)=2, \alpha \in(0, \pi / 16)$ then α is equal to
a) $\frac{\pi}{20}$
b) $\frac{\pi}{30}$
c) $\frac{\pi}{40}$
d) $\frac{\pi}{60}$
292. Given $A=\sin ^{2} \theta+\cos ^{2} \theta$, then for all real θ,
a) $1 \leq A \leq 2$
b) $3 / 4 \leq A \leq 1$
c) $13 / 16 \leq A \leq 1$
d) $3 / 4 \leq A \leq 13 / 16$
293. In $\triangle A B C, \sin A+\sin B+\sin C=1+\sqrt{2}$ and $\cos A+\cos +\cos C=\sqrt{2}$ if the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) Right-angled isosceles
294. The equation $\sin ^{2} \theta=\frac{x^{2}+y^{2}}{2 x y}$ is possible if
a) $x=y$
b) $x=-y$
c) $2 x=y$
d) None of these
295. If $\tan \beta=2 \sin \alpha \sin \gamma \operatorname{cosec}(\alpha+\gamma)$, then $\cot \alpha, \cot \beta, \cot \gamma$ are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
296. Let area of triangle $A B C$ is $(\sqrt{3}-1) / 2, b=2$ and $c=(\sqrt{3}-1)$ and $\angle A$ is acute. The measure of the angle C is
a) 15°
b) 30°
c) 60°
d) 75°
297. $\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\sin A+\sin B+\sin C}$ is equal to
a) $8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
b) $8 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
c) $8 \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$
d) $8 \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$
298. If $\alpha+\beta+\gamma=2 \pi$, then
a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}=1$
c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
d) None of these
299. If $\sin (\alpha+\beta)=1, \sin (\alpha-\beta)=\frac{1}{2}$, thentan $(\alpha+2 \beta) \tan (2 \alpha+\beta)$ is equal to, $\alpha, \beta \in(0, \pi / 2)$
a) 1
b) -1
c) 0
d) None of these
300. The general solution of $\tan \theta+\tan 2 \theta+\tan 3 \theta=0$ is
a) $\theta=n \pi / 6, n \in Z$
b) $\theta=n \pi \pm \alpha, n \in Z$, where $\tan \alpha=1 / \sqrt{2}$
c) Both a and b
d) None of these
301. The number of solutions of $2 \sin ^{2} x+\sin ^{2} 2 x=2, x \in[0,2 \pi]$ is
a) 4
b) 5
c) 7
d) 6
302. The minimum vertical distance between the graphs of $y=2+\sin x$ and $y=\cos x$ is
a) 2
b) 1
c) $\sqrt{2}$
d) $2-\sqrt{2}$
303. The equation $\cos ^{8} x+b \cos ^{4} x+1=0$ will have a solution if b belongs to
a) $(-\infty, 2]$
b) $[2, \infty)$
c) $(-\infty,-2]$
d) None of these
304. If $\sin ^{2} \theta=\frac{x^{2}+y^{2}+1}{2 x}$, then x must be
a) -3
b) -2
c) 1
d) None of these
305. $\frac{1}{4}\left[\sqrt{3} \cos 23^{\circ}-\sin 23^{\circ}\right]$ is equal to
a) $\cos 43^{\circ}$
b) $\cos 7^{\circ}$
c) $\cos 53^{\circ}$
d) None of these
306. Number of solutions of $\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right), \theta \in[0,6 \pi]$, is
a) 5
b) 7
c) 4
d) 5
307. In $\triangle A B C$, if $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}$ and $\sin ^{2} \frac{C}{2}$ are in H.P., then a, b and c will be in
a) A.P.
b) G.P.
c) H.P.
d) None of these
308. Number of ordered pairs which satisfy the equation $x^{2}+2 x \sin (x y)+1=0$ are (where $y \in[0,2 \pi]$)
a) 1
b) 2
c) 3
d) 0
309. Let $a>1$ be a real number. Then the number of roots equation $a^{2 \log _{2} x}=5+4 x^{\log _{2} a}$ has
a) 2
b) Infinite
c) 0
d) 1
310. If $\log _{2} x+\log _{2} y \geq 6$, then the least value of $x+y$ is
a) 4
b) 8
c) 16
d) 32
311. In $\triangle A B C, a, b, A$ are given and c_{1}, c_{2} are two values of the third side c. The sum of the areas of the two triangles with sides a, b, c_{1} and a, b, c_{2} is
a) $(1 / 2) b^{2} \sin 2 A$
b) $(1 / 2) a^{2} \sin 2 A$
c) $b^{2} \sin 2 A$
d) None of these
312. In triangle $A B C$, line joining the circumcentre and orthocenter is parallel to side $A C$, then the value of $\tan A \tan C$ is equal to
a) $\sqrt{3}$
b) 3
c) $3 \sqrt{3}$
d) None of these
313. In a convex quadrilateral $A B C D, A B=a, B C=b, C D=c$ and $D A=d$. This quadrilateral is such that a circle can be inscribed in it and a circle can be also circumscribed about it, then $\tan ^{2}(A / 2)$ is equal to
a) $\frac{a d}{b c}$
b) $\frac{a b}{c d}$
c) $\frac{c d}{a b}$
d) $\frac{b c}{a d}$
314. The number of solutions of the equation $\tan x+\sec x-2 \cos x$ lying in the interval $[0,2 \pi]$ is
a) 0
b) 1
c) 2
d) 3
315. If $\log _{y} x+\log _{x} y=1, x^{2}+y=12$, then the value of $x y$ is
a) 9
b) 12
c) 15
d) 21
316. If $\log _{3}\left\{5+4 \log _{3}(x-1)\right\}=2$, then x is equal to
a) 2
b) 4
c) 8
d) $\log _{2} 16$
317. If $\log _{a} 3=2$ and $\log _{b} 8=3$, then $\log _{a} b$ is
a) $\log _{3} 2$
b) $\log _{2} 3$
c) $\log _{3} 4$
d) $\log _{4} 3$
318. General solution of $\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta$ is
a) $\theta=n \pi / 12$, where $n \in Z$
b) $\theta=n \pi / 9$, where $n \in Z$
c) $\theta=n \pi+\pi / 12$, where $n \in Z$
d) None of these
319. If I is the incentre of a triangle $A B C$, then the ratio $I A: I B: I C$ is equal to
a) $\operatorname{cosec} \frac{A}{2}: \operatorname{cosec} \frac{B}{2}: \operatorname{cosec} \frac{C}{2}$
b) $\sin \frac{A}{2}: \sin \frac{B}{2}: \sin \frac{C}{2}$
c) $\sec \frac{A}{2}: \sec \frac{B}{2}: \sec \frac{C}{2}$
d) None of these
320. If $x y^{2}=4$ and $\log _{3}\left(\log _{2} x\right)+\log _{1 / 3}\left(\log _{1 / 2} y\right)=1$, then x equals
a) 4
b) 8
c) 16
d) 64
321. If α is a root of $25 \cos ^{2} \theta+5 \cos \theta-12=0, \frac{\pi}{2}<\alpha<\pi$, then $\sin 2 \alpha$ is equal to
a) $\frac{24}{25}$
b) $-\frac{24}{25}$
c) $\frac{13}{18}$
d) $-\frac{13}{18}$
322. The general solution of the equation $8 \cos x \cos 2 x \cos 4 x=\sin 6 x / \sin x$ is
a) $x=(n \pi / 7)+(\pi / 21), \forall n \in Z$
b) $x=(2 \pi / 7)+(\pi / 14), \forall n \in Z$
c) $x=(n \pi / 7)+(\pi / 14), \forall n \in Z$
d) $x=(n \pi)+(\pi / 14), \forall n \in Z$
323. The total number of solutions of $\ln |\sin x|=-x^{2}+2 x$ in $\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ is equal to
a) 1
b) 2
c) 4
d) None of these
324. In triangle $A B C, \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}$ is equal to
a) $\tan \frac{A}{2} \cot \frac{B}{2}$
b) $\cot \frac{A}{2} \tan \frac{B}{2}$
c) $\cot \frac{A}{2} \cot \frac{B}{2}$
d) $\tan \frac{A}{2} \tan \frac{B}{2}$
325. The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is
a) $1 / 4$
b) $3 / 4$
c) $1 / 8$
d) $3 / 8$
326. If $x, y \in[0,2 \pi]$ and $\sin x+\sin y=2$, then the value of $x+y$ is
a) π
b) $\pi / 2$
c) 3π
d) None of these
327. The set of all x in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfying $|4 \sin x-1|<\sqrt{5}$ is given by
a) $\left(-\frac{\pi}{10}, \frac{3 \pi}{10}\right)$
b) $\left(\frac{\pi}{10}, \frac{3 \pi}{10}\right)$
c) $\left(\frac{\pi}{10}, \frac{3 \pi}{10}\right)$
d) None of these
328. For $n \in Z$, the general solution of $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is $(n \in Z)$
a) $\theta=2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
b) $\theta=n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{12}$
c) $\theta=2 n \pi \pm \frac{\pi}{4}$
d) $\theta=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{12}$
329. $\sin ^{2 n} x+\cos ^{2 n} x$ lies between
a) -1 and 1
b) 0 and 1
c) 1 and 2
d) None of these
330. Number of roots of $(1-\tan \theta)(1+\sin 2 \theta)=1+\tan \theta$ for $\theta \in[0,2 \pi]$ is
a) 3
b) 4
c) 5
d) None of these
331. The number of solutions of $\sum_{r=1}^{5} \cos r x=5$ in the interval $[0,2 \pi]$ is
a) 0
b) 2
c) 5
d) 10
332. If $\tan 3 \theta+\tan \theta=2 \tan 2 \theta$, then θ is equal to $(n \in Z)$
a) $n \pi$
b) $\frac{n \pi}{4}$
c) $2 n \pi$
d) None of these
333. If $\frac{\sin x}{\sin y}=\frac{1}{2}, \frac{\cos x}{\cos y}=\frac{3}{2}$ where $x, y \in\left(0, \frac{\pi}{2}\right)$, then the value of $(x+y)$ is equal to
a) $\sqrt{13}$
b) $\sqrt{14}$
c) $\sqrt{17}$
d) $\sqrt{15}$
334. In any $\triangle A B C$, the value of $a\left(b^{2}+c^{2}\right) \cos A+b\left(c^{2}+a^{2}\right) \cos B+c\left(a^{2}+b^{2}\right) \cos C=$
a) $3 a b c^{2}$
b) $3 a^{2} b c$
c) $3 a b c$
d) $3 a b^{2} c$
335. For triangle $A B C, R=5 / 2$ and $r=1$. Let I be the incentre of the triangle and D, E and F be the feet of the
perpendiculars from I to $B C, C A$ and $A B$, respectively. The value of $\frac{I D \times I E \times I F}{I A \times I B \times I C}$ is equal to
a) $\frac{5}{2}$
b) $\frac{5}{4}$
c) $\frac{1}{10}$
d) $\frac{1}{5}$
336. Given $b=2, c=\sqrt{3}, \angle A=30^{\circ}$, then inradius of $\triangle A B C$ is
a) $\frac{\sqrt{3}-1}{2}$
b) $\frac{\sqrt{3}+1}{2}$
c) $\frac{\sqrt{3}-1}{4}$
d) None of these
337. If θ_{1} and θ_{2} are two values lying in $[0,2 \pi]$ for which $\tan \theta=\lambda$, then $\tan \frac{\theta_{1}}{2} \tan \frac{\theta_{2}}{2}$ is equal to
a) 0
b) -1
c) 2
d) 1
338. Number of roots of $\cos ^{2} x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0$ which lie in the interval $[-\pi, \pi]$ is
a) 2
b) 4
c) 6
d) 8
339. If $\tan \alpha$ is equal to the integral solution of the inequality $4 x^{2}-16 x+15<0$ and $\cos \beta$ is equal to the slope of the bisector of the first quadrant, then $\sin (\alpha+\beta) \sin (\alpha-\beta)$ is equal to
a) $\frac{3}{5}$
b) $\frac{3}{5}$
c) $\frac{2}{\sqrt{5}}$
d) $\frac{4}{5}$
340. $\tan 100^{\circ}+\tan 125^{\circ}+\tan 100^{\circ} \tan 125^{\circ}$ is equal to
a) 0
b) $1 / 2$
c) -1
d) 1
341. If $\pi<\alpha<\frac{3 \pi}{2}$, then $\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}+\sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}}$ is equal to
a) $\frac{2}{\sin \alpha}$
b) $-\frac{2}{\sin \alpha}$
c) $\frac{1}{\sin \alpha}$
d) $-\frac{1}{\sin \alpha}$
342. Equation $\log _{4}(3-x)+\log _{0.25}(3+x)=\log _{4}(1-x)+\log _{0.25}(2 x+1)$ has
a) Only one prime solution
b) Two real solutions
c) No real solution
d) None of these
343. Given that $\log (2)=0.3010 \ldots$,.., the number of digits in the number 2000^{2000} is
a) 6601
b) 6602
c) 6603
d) 6604
344. If $\sin \theta+\cos \theta=\frac{1}{5}$ and $0 \leq \theta<\pi$, then $\tan \theta$ is
a) $-4 / 3$
b) $-3 / 4$
c) $3 / 4$
d) $4 / 3$
345. If $\cos (A-B)=3 / 5$ and $\tan A \tan B=2$, then
a) $\cos A \cos B=1 / 5$
b) $\sin A \sin B=-2 / 5$
c) $\cos A \cos B=-1 / 5$
d) $\sin A \sin B=-1 / 5$
346. If $\cos \alpha+\cos \beta=0 \sin \alpha+\sin \beta$, thencos $2 \alpha+\cos 2 \beta$ is equal to
a) $-2 \sin (\alpha+\beta)$
b) $-2 \cos (\alpha+\beta)$
c) $2 \sin (\alpha+\beta)$
d) $2 \cos (\alpha+\beta)$
347. In triangle $A B C, \angle C=2 \pi / 3$ and $C D$ is the internal angle bisector of $\angle C$, meeting the side $A B$ at D. Length $C D$ is equal to
a) $\frac{a b}{2(a+b)}$
b) $\frac{2 a b}{a+b}$
c) $\frac{2 a b}{\sqrt{3(a+b)}}$
d) $\frac{a b}{a+b}$
348. In triangle $A B C, \angle B=\pi / 3$ and $\angle C=\pi / 4$. Let D divide $B C$ internally in the ratio 1:3. Then $\frac{\sin \angle B A D}{\sin \angle C A D}$ equals
a) $\frac{1}{\sqrt{5}}$
b) $\frac{1}{3}$
c) $\frac{1}{\sqrt{3}}$
d) $\sqrt{\frac{2}{3}}$
349. Let $\theta \in\left(0, \frac{\pi}{4}\right)$ and $t_{1}=(\tan \theta)^{\tan \theta}, t_{2}=(\tan \theta)^{\cot \theta}, t_{3}=(\cot \theta)^{\tan \theta}$ and $t_{4}=(\cot \theta)^{\tan \theta}$, then
a) $t_{1}>t_{2}>t_{3}>t_{4}$
b) $t_{4}>t_{3}>t_{1}>t_{2}$
c) $t_{3}>t_{1}>t_{2}>t_{4}$
d) $t_{2}>t_{3}>t_{1}>t_{4}$
350. If D is the mid-point of the side $B C$ of triangle $A B C$ and $A D$ is perpendicular to $A C$, then
a) $3 b^{2}=a^{2}-c^{2}$
b) $3 a^{2}=b^{2}-3 c^{2}$
c) $b^{2}=a^{2}-c^{2}$
d) $a^{2}+b^{2}=5 c^{2}$
351. If A, B and C are angles of a triangle such that angle A is obtuse, then $\tan B \tan C$ will be less than
a) $\frac{1}{\sqrt{3}}$
b) $\frac{\sqrt{3}}{2}$
c) 1
d) None of these
352. $A B C$ is an equilateral triangle of side 4 cm . If R, r and h are the circumradius, inradius and altitude, respectively, then $\frac{R+r}{h}$ is equal to
a) 4
b) 2
c) 1
d) 3
353. One of the general solutions of $\sqrt{3} \cos \theta-3 \sin \theta=4 \sin 2 \theta \cos 3 \theta$ is
a) $m \pi+\pi / 18, m \in Z$
b) $m \pi / 2+\pi / 6, \forall m \in Z$
c) $m \pi / 3+\pi / 18, m \in Z$
d) None of these
354. In $\triangle A B C, a^{2}+b^{2}+c^{2}=a c+a b \sqrt{3}$, then the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) None of these
355. The least value of $2 \sin ^{2} \theta+3 \cos ^{2} \theta$ is
a) 1
b) 2
c) 3
d) 5
356. In triangle $A B C$, let $\angle C=\pi / 2$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to
a) $a+b$
b) $b+c$
c) $c+a$
d) $a+b+c$
357. The number of pairs of integer (x, y) that satisfy the following two equations $\left\{\begin{array}{l}\cos (x y)=x \\ \tan (x y)=y\end{array}\right.$ is
a) 1
b) 2
c) 4
d) 6
358. In $\triangle A B C$, the bisector of the angle A meets the side $B C$ at D and the circumscribed circle at E, then $D E$ equals
a) $\frac{a^{2} \sec \frac{A}{2}}{2(b+c)}$
b) $\frac{a^{2} \sin \frac{A}{2}}{2(b+c)}$
c) $\frac{a^{2} \cos \frac{A}{2}}{2(b+c)}$
d) $\frac{a^{2} \operatorname{cosec} \frac{A}{2}}{2(b+c)}$
359. The total number of solutions of $\tan x+\cot x=2 \operatorname{cosec} x$ in $[-2 \pi, 2 \pi]$ is
a) 2
b) 4
c) 6
d) 8
360. In a right-angled isosceles triangle, the ratio of the circumradius and inradius is
a) $2(\sqrt{2}+1): 1$
b) $(\sqrt{2}+1): 1$
c) 2:1
d) $\sqrt{2}: 1$
361. Let $y=(\sin x+\operatorname{cosec} x)^{2}+(\cos x+\sec x)^{2}+(\cos x+\sec x)^{2}$, then the minimum value of $y, \forall x \in R$, is
a) 7
b) 3
c) 9
d) 0
362. In triangle $A B C, R(b+c)=a \sqrt{b c}$ where R is the circumradius of the triangle. Then the triangle is
a) Isosceles but not right
b) Right but not isosceles
c) Right isosceles
d) Equilateral
363. Assume that θ is a rational multiple of π such that $\cos \theta$ is a distinct rational. Number of values of $\cos \theta$ is
a) 3
b) 4
c) 5
d) 6
364. Value of $\frac{3+\cot 80^{\circ} \cot 20^{\circ}}{\cot 80^{\circ}+\cot 20^{\circ}}$ is equal to
a) $\cos 20^{\circ}$
b) $\tan 50^{\circ}$
c) $\cot 50^{\circ}$
d) $\cot \sqrt{20^{\circ}}$
365. Two medians drawn from the acute angles of a right-angled triangle intersect at an angle $\pi / 6$. If the length of the hypotenuse of the triangle is 3 units, then the area of the triangle (in sq. units) is
a) $\sqrt{3}$
b) 3
c) $\sqrt{2}$
d) 9

Multiple Correct Answers Type

366. If in triangle $A B C, a, b, c$ and angle A are given and $c \sin A<a<c$, then
a) $b_{1}+b_{2}=2 c \cos A$
b) $b_{1}+b_{2}=c \cos A$
c) $b_{1} b_{2}=c^{2}-a^{2}$
d) $b_{1} b_{2}=c^{2}+a^{2}$
367. The values of θ lying between $\theta=0$ and $\theta=\theta / 2$ and satisfying the equation $\left|\begin{array}{ccc}1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$ are
a) $7 \pi / 24$
b) $5 \pi / 24$
c) $11 \pi / 24$
d) $\pi / 24$
368. If $\left(\operatorname{cosec}^{2} \theta-4\right) x^{2}+(\cot \theta+\sqrt{3}) x+\cos ^{2} \frac{3 \pi}{2}=0$ holds true for all real x, then the most general values of θ can be given by $(n \in Z)$
a) $2 n \pi+\frac{11 \pi}{6}$
b) $2 n \pi+\frac{5 \pi}{6}$
c) $2 n \pi \pm \frac{7 \pi}{6}$
d) $n \pi \pm \frac{11 \pi}{6}$
369. Which of the following statements are always correct (where Q denotes the set of rationals)?
a) $\cos 2 \theta \in \mathcal{Q}$ and $\sin 2 \theta \in \mathcal{Q} \Rightarrow \tan \theta \in \mathcal{Q}$ (if defined)
b) $\tan \theta \in \mathcal{Q} \Rightarrow \sin 2 \theta, \cos 2 \theta$ and $\tan 2 \theta \in \mathcal{Q}$ (if defined)
c) if $\sin \theta \in \mathcal{Q}$ and $\cos \theta \in \mathcal{Q} \Rightarrow \tan 3 \theta \in \mathcal{Q}$ (if defined)
d) if $\sin \theta \in Q \Rightarrow \cos 3 \theta \in \mathcal{Q}$
370. If $\sin ^{2} x-2 \sin x-1=0$ has exactly four different solutions in $x \in[0, n \pi]$, then value/values of n is/are $(n \in N)$
a) 5
b) 3
c) 4
d) 6
371. For the equation $1-2 x-x^{2}=\tan ^{2}(x+y)+\cot ^{2}(x+y)$
a) Exactly one value of x exists
b) Exactly two values of x exists
c) $y=-1+n \pi+\pi / 4, n \in Z$
d) $y=1+n \pi+\pi / 4, n \in Z$
372. If the angles of a triangle are 30° and 45°, and the included side is $(\sqrt{3}+1) \mathrm{cm}$, then
a) Area of the triangle is $\frac{1}{2}(\sqrt{3}+1)$ sq. units
b) Area of the triangle is $\frac{1}{2}(\sqrt{3}-1)$ sq. units
c) Ratio of greater side to smaller side is $\frac{\sqrt{3}+1}{\sqrt{2}}$
d) Ratio of greater side to smaller side is $\frac{1}{4 \sqrt{3}}$
373. If $\log _{k} x \cdot \log _{5} k=\log _{x} 5, k \neq 1, k>0$, then x is equal to
a) k
b) $1 / 5$
c) 5
d) None of these
374.

For $0 \leq x \leq 2 \pi$, then $2^{\operatorname{cosec}^{2} x} \sqrt{\frac{1}{2} y^{2}-y+1} \leq \sqrt{2}$
a) Is satisfied by exactly one value of y
b) Is satisfied by exactly two value of x
c) Is satisfied by x for which $\cos x=0$
d) Is satisfied by x for which $\sin x=0$
375. Let $\tan x-\tan ^{2} x>0$ and $|2 \sin x|<1$. Then the intersection of which of the following two sets satisfies both the inequalities?
a) $x>n \pi, n \in Z$
b) $x>n \pi-\pi / 6, n \in Z$
c) $x<n \pi-\pi / 4, n \in Z$
d) $x<n \pi+\pi / 6, n \in Z$
376. A solution of the equation $(1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0$, where θ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is given by
a) $\theta=0$
b) $\theta=\frac{\pi}{3}$
c) $\theta=-\frac{\pi}{3}$
d) $\theta=\frac{\pi}{6}$
377. The equation $x^{3}-\frac{3}{4} x=-\frac{\sqrt{3}}{8}$ is satisfied by
a) $x=\cos \left(\frac{5 \pi}{18}\right)$
b) $x=\cos \left(\frac{7 \pi}{18}\right)$
c) $x=\cos \left(\frac{23 \pi}{18}\right)$
d) $x=\cos \left(\frac{17 \pi}{18}\right)$
378. If the equation $x^{\log _{a} x^{2}}=\frac{x^{k-2}}{a^{k}}, a \neq 0$, has exactly one solution for x, then the value of k is/are
a) $6+4 \sqrt{2}$
b) $2+6 \sqrt{3}$
c) $6-4 \sqrt{2}$
d) $2-6 \sqrt{3}$
379. For a positive integer n, let $f_{n}(\theta)=\left(\tan \frac{\theta}{2}\right)(1+\sec \theta)(1+\sec 2 \theta)(1+\sec 4 \theta) \ldots\left(1+\sec 2^{n} \theta\right)$. Then
a) $f_{2}(\pi / 16)=1$
b) $f_{3}(\pi / 32)=1$
c) $f_{4}(\pi / 64)=1$
d) $f_{5}(\pi / 128)=1$
380. In triangle $A B C$ if $2 a^{2} b^{2}+2 b^{2} c^{2}=a^{4}+b^{4}+c^{4}$, then angle B is equal to
a) 45°
b) 135°
c) 120°
d) 60°
381. $C F$ is the internal bisector of angle C of $\triangle A B C$, then $C F$ is equal to
a) $\frac{2 a b}{a+b} \cos \frac{C}{2}$
b) $\frac{a+b}{2 a b} \cos \frac{C}{2}$
c) $\frac{b \sin A}{\sin \left(B+\frac{C}{2}\right)}$
d) None of these
382. If $\tan \theta=\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}$, then
a) $\sin \alpha-\cos \alpha= \pm \sqrt{2} \sin \theta$
b) $\sin \alpha+\cos \alpha= \pm \sqrt{2} \cos \theta$
c) $\cos 2 \theta=\sin 2 \alpha$
d) $\sin 2 \theta+\cos 2 \alpha=0$
383. Which of the following number(s)is/are rational?
a) $\sin 15^{\circ}$
b) $\cos 15^{\circ}$
c) $\sin 15^{\circ} \cos 15^{\circ}$
d) $\sin 15^{\circ} \cos 75^{\circ}$
384. Which of the following quantities are rational?
a) $\sin \left(\frac{11 \pi}{12}\right) \sin \left(\frac{5 \pi}{12}\right)$
b) $\operatorname{cosec}\left(\frac{9 \pi}{10}\right) \sec \left(\frac{4 \pi}{5}\right)$
c) $\sin ^{4}\left(\frac{\pi}{8}\right)+\cos ^{4}\left(\frac{\pi}{8}\right)$
d) $\left(1+\cos \frac{2 \pi}{9}\right)\left(1+\cos \frac{4 \pi}{9}\right)\left(1+\cos \frac{8 \pi}{9}\right)$
385. The minimum value of the expression $\sin \alpha+\sin \beta+\sin \gamma$, where α, β, γ are real numbers satisfying $\alpha+\beta+\gamma=\pi$ is
a) Positive
b) Zero
c) Negative
d) -3
386. The equation $\log _{x+1}(x-0.5)=\log _{x-0.5}(x+1)$ has
a) Two real solutions
b) No prime solution
c) One integral solution
d) No irrational solution
387. $(a+2) \sin \alpha+(2 a-1) \cos \alpha=(2 a+1)$ if $\tan \alpha$ is
a) $3 / 4$
b) $4 / 3$
c) $2 a /\left(a^{2}+1\right)$
d) $2 a /\left(a^{2}-1\right)$
388. There exists triangle $A B C$ satisfying
a) $\tan A+\tan B+\tan C=0$
b) $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{7}$
c) $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=\sqrt{3}$
d) $\sin A+\sin B=\frac{\sqrt{3}+1}{2}, \cos A \cos B=\frac{\sqrt{3}}{4}=\sin A \sin B$
389. If $\log a x=b$ for permissible values of a and x, then identify the statement (s) which can be correct.
a) If a and b are two irrational numbers, then x can be rational.
b) If a is rational and b is irrational, then x can be rational.
c) If a is irrational and $=\mathrm{b}$ is rational, then x can be rational.
d) If a is rational and b is rational, then x can be rational.
390. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is
a) $\frac{3}{4}$
b) $3 \sqrt{3}$
c) 3
d) $\frac{3 \sqrt{3}}{2}$
391. If $(\sin \alpha) x^{2}-2 x+b \geq 2$ for all the real values of $x \leq 1$ and $\alpha \in(0, \pi / 2) \cup(\pi / 2, \pi)$, then the possible real values of b is/are
a) 2
b) 3
c) 4
d) 5
392. If $\sin ^{2} x-a \sin x+b=0$ has only one solution in $(0, \pi)$, then which of the following statements are correct?
a) $a \in(-\infty, 1] \cup[2, \infty)$
b) $b \in(-\infty, 0] \cup[1, \infty)$
c) $a=1+b$
d) None of these
393. Which of the following, when simplified, reduces to unity?
a) $\log _{10} 5 \cdot \log _{10} 20+\left(\log _{10} 2\right)^{2}$
b) $\frac{2 \log 2+\log 3}{\log 48-\log 4}$
c) $-\log _{5} \log _{3} \sqrt{5 \sqrt{9}}$
d) $\frac{1}{6} \log _{\frac{\sqrt{3}}{2}}\left(\frac{64}{27}\right)$
394. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be
a) $5-\sqrt{6}$
b) $3 \sqrt{3}$
c) 5
d) $5+\sqrt{6}$
395. For $\alpha=\pi / 7$ which of the following hold(s) good?
a) $\tan \alpha \tan 2 \alpha \tan 3 \alpha=\tan 3 \alpha-\tan 2 \alpha-\tan \alpha$
b) $\operatorname{cosec} \alpha=\operatorname{cosec} 2 \alpha+\operatorname{cosec} 4 \alpha$
c) $\cos \alpha-\cos 2 \alpha+\cos 3 \alpha=1 / 2$
d) $8 \cos \alpha \cos 2 \alpha \cos 4 \alpha=1$
396. The equation $\sqrt{1+\log _{x} \sqrt{27}} \log _{3} x+1=0$ has
a) No integral solution
b) One irrational solution
c) Two real solutions
d) No prime solution
397. There exists a triangle $A B C$ satisfying the conditions
a) $b \sin A=a, A<\pi / 2$
b) $b \sin A>a, A>\pi / 2$
c) $b \sin A<a, A<\pi / 2$
d) $b \sin A<a, A<\pi / 2, b>a$
398. If $\cos \beta$ is the geometric mean between $\sin \alpha$ and $\cos \alpha$, where $0<\alpha, \beta<\pi 2$, then $\cos 2 \beta$ is equal to
a) $-2 \sin ^{2}\left(\frac{\pi}{4}-\alpha\right)$
b) $-2 \cos ^{2}\left(\frac{\pi}{4}+\alpha\right)$
c) $2 \sin ^{2}\left(\frac{\pi}{4}+\alpha\right)$
d) $2 \cos ^{2}\left(\frac{\pi}{4}-\alpha\right)$
399. If in a triangle $P Q R, \sin P, \sin Q, \sin R$ are in A.P., then
a) The altitudes are in A.P.
b) The altitudes are in H.P.
c) The medians are in G.P.
d) The medians are in A.P.
400. If $\log _{1 / 2}(4-x) \geq \log _{1 / 2} 2-\log _{1 / 2}(x-1)$, then x belongs to
a) $(1,2]$
b) $[3,4)$
c) $(1,3]$
d) $[1,4)$
401. Which of the following do/does not reduce to unity?
a) $\frac{\sin \left(180^{\circ}+A\right)}{\tan \left(180^{\circ}+A\right)} \frac{\cot \left(90^{\circ}+A\right)}{\tan \left(90^{\circ}+A\right)}$
a)
$\frac{\cos \left(360^{\circ}-A\right) \operatorname{cosec} A}{\sin (-A)}$
b) $\frac{\sin (-A)}{\sin \left(180^{\circ}+A\right)}-\frac{\tan \left(90^{\circ}+A\right)}{\cot A}$
$+\frac{\cos A}{\sin \left(90^{\circ}+A\right)}$
c) $\frac{\sin 24^{\circ} \cos 6^{\circ}-\sin 6^{\circ} \cos 24^{\circ}}{\sin 21^{\circ} \cos 39^{\circ}-\cos 51^{\circ} \sin 69^{\circ}}$
d) $\frac{\cos \left(90^{\circ}+A\right) \sec (-A) \tan \left(180^{\circ}-A\right)}{\sec \left(360^{\circ}+A\right) \sin \left(180^{\circ}+A\right) \cot \left(90^{\circ}-A\right)}$
402. Sides of $\triangle A B C$ are in A.P. If $a<\min \{b, c\}$, then $\cos A$ may be equal to
a) $\frac{4 b-3 c}{2 b}$
b) $\frac{3 c-4 b}{2 c}$
c) $\frac{4 c-3 b}{2 b}$
d) $\frac{4 c-3 b}{2 c}$
403. The sides of $\triangle A B C$ satisfy the equation $2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$. Then
a) The triangle is isosceles
b) The triangle is obtuse
c) $B=\cos ^{-1}(7 / 8)$
d) $A=\cos ^{-1}(1 / 4)$
404. Which of the following identities, wherever defined, hold(s) good?
a) $\cot \alpha-\tan \alpha=2 \cot 2 \alpha$
b) $\tan \left(45^{\circ}+\alpha\right)-\tan \left(45^{\circ}-\alpha\right)=2 \operatorname{cosec} 2 \alpha$
c) $\tan \left(45^{\circ}+\alpha\right)+\tan \left(45^{\circ}-\alpha\right)=2 \sec 2 \alpha$
d) $\tan \alpha+\cot \alpha=2 \tan 2 \alpha$
405. If the sides of a right-angled triangle are in G.P., then the cosines of the acute angle of the triangle are
a) $\frac{\sqrt{5}-1}{2}$
b) $\frac{\sqrt{5}+1}{2}$
c) $\sqrt{\frac{\sqrt{5}-1}{2}}$
d) $\frac{\sqrt{\sqrt{5}+1}}{2}$
406. In which of the following sets the inequality $\sin ^{6} x+\cos ^{6} x>5 / 8$ holds good?
a) $(-\pi / 8, \pi / 8)$
b) $(3 \pi / 8,5 \pi / 8)$
c) $(\pi / 4,3 \pi / 4)$
d) $(7 \pi / 8,9 \pi / 8)$
407. The number of all the possible triplets $\left(a_{1}, a_{2}, a_{3}\right)$ such that $a_{1}+a_{2} \cos (2 x)+a_{3} \sin ^{2}(x)=0$ for all x is
a) 0
b) 1
c) 3
d) Infinite
408. A circle centred at O has radius 1 and contains the point A. Segment $A B$ is tangent to the circle at A and $\angle A O B=\theta$. If point C lies on $O A$ and $B C$ bisects the angle $A B O$, then $O C$ equals

a) $\sec \theta(\sec \theta-\tan \theta)$
b) $\frac{\cos ^{2} \theta}{1+\sin \theta}$
c) $\frac{1}{1+\sin \theta}$
d) $\frac{1-\sin \theta}{\cos ^{2} \theta}$
409. If A is the area and $2 s$ is the sum of the sides of a triangle, then
a) $A \leq \frac{s^{2}}{4}$
b) $A \leq \frac{s^{2}}{3 \sqrt{3}}$
c) $A<\frac{s^{2}}{\sqrt{3}}$
d) None of these
410. Let α, β and γ be some angles in the first quadrant satisfying $\tan (\alpha+\beta)=15 / 8$ and $\operatorname{cosec} \gamma=17 / 8$, then which of the following hold(s) good?
a) $\alpha+\beta+\gamma=\pi$
b) $\cot \alpha \cot \beta \cot \gamma=\cot \alpha+\cot \beta+\cot \gamma$
c) $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$
d) $\tan \alpha \tan \beta+\tan \beta \tan \gamma+\tan \gamma \tan \alpha=1$
411. The expression $3\left[\sin ^{4}\left(\frac{3}{2} \pi-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-2\left[\sin ^{6}\left(\frac{1}{2} \pi+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]$ is equal to
a) 0
b) 1
c) 3
d) None of these
412. Let $2 \sin ^{2} x+3 \sin x-2>0$ and $x^{2}-x-2<0$ (x is measured in radians). Then x lies in the interval
a) $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
b) $\left(-1, \frac{5 \pi}{6}\right)$
c) $(-1,2)$
d) $\left(\frac{\pi}{6}, 2\right)$
413. If in $\triangle A B C, \angle A=90^{\circ}$ and $c, \sin B, \cos B$ are rational numbers, then
a) a is rational
b) a is irrational
c) b is rational
d) b is irrational
414. A general solution of $\tan ^{2} \theta+\cos 2 \theta=1$ is $(n \in Z)$
a) $n \pi-\frac{\pi}{4}$
b) $2 n \pi+\frac{\pi}{4}$
c) $n \pi+\frac{\pi}{4}$
d) $n \pi$
415. If $\cos (x+\pi / 3)+\cos x=a$ has real solutions, then
a) Number of integral values of a are 3
b) Sum of number of integral values of a is 0
c) When $a=1$, number of solutions for $x \in[0,2 \pi]$ are 3
d) When $a=1$, number of solutions for $x \in[0,2 \pi]$ are 2
416. Lengths of the tangents from A, B and C to the incircle are in A.P., then
a) r_{1}, r_{2}, r_{3} are in H.P.
b) r_{1}, r_{2}, r_{3} are in A.P.
c) a, b, c are in A.P.
d) $\cos A=\frac{4 c-3 b}{2 b}$
417. The solution of the equation $9 \cos ^{12} x+\cos ^{2} 2 x+1=6 \cos ^{6} x \cos 2 x+6 \cos ^{6} x-2 \cos 2 x$ is/are
a) $x=n \pi+\frac{\pi}{2}, n \in I$
b) $x=n \pi+\cos ^{-1}\left(\sqrt[4]{\frac{2}{3}}\right), n \in I$
c) $x=n \pi-\cos ^{-1}\left(\sqrt[4]{\frac{2}{3}}\right), n \in I$
d) None of the above
418. Suppose $A B C D$ (in order) is a quadrilateral inscribed in a circle. Which of the following is/are always true?
a) $\sec B=\sec D$
b) $\cot A+\cot C=0$
c) $\operatorname{cosec} A=\operatorname{cosec} C$
d) $\tan B+\tan D=0$
419. If $\cos 3 \theta=\cos 3 \alpha$, then the value of $\sin \theta$ can be given by
a) $\pm \sin \alpha$
b) $\sin \left(\frac{\pi}{3} \pm \alpha\right)$
c) $\sin \left(\frac{2 \pi}{3}+\alpha\right)$
d) $\sin \left(\frac{2 \pi}{3}-\alpha\right)$
420. For $a>0, \neq 1$, the roots of the equation $\log _{a x} a+\log _{x} a^{2}+\log _{a^{2} x} a^{3}=0$ are given by
a) $a^{-4 / 3}$
b) $a^{-3 / 4}$
c) a
d) $a^{-1 / 2}$
421. In $\triangle A B C$, if $\cos \frac{A}{2}=\sqrt{\frac{b+c}{2 c}}$, then
a) Area of triangle is $\frac{1}{2} a b$
b) Circumradius is equal to $\frac{1}{2} c$
c) Area of triangle is $\frac{1}{2} b c$
d) Circumradius is equal to $\frac{1}{2} a$
422. The real solutions of the equation $2^{x+2} \cdot 5^{6-x}=10^{x^{2}}$ is/are
a) 1
b) 2
c) $-\log _{10}(250)$
d) $\log _{10} 4-3$
423. If $x+y=2 \pi / 3$ and $\sin x / \sin y=2$, then
a) The number of values of $x \in[0,4 \pi]$ are 4
b) Number of values of $x \in[0,4 \pi]$ are 2
c) Number of values of $y \in[0,4 \pi]$ are 4
d) Number of values of $y \in[0,4 \pi]$ are 8
424. If the tangents of the angles A and B of triangle $A B C$ satisfy the equation $a b x^{2}-c^{2} x+a b=0$, then
a) $\tan A=a / b$
b) $\tan B=b / a$
c) $\cos C=0$
d) $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$
425. Which of the following is/are correct?
a) $(\tan x)^{\ln (\sin x)}>(\cot x)^{\ln (\sin x)}, \forall x \in(0, \pi / 4)$
b) $4^{\ln \operatorname{cosec} x}<5^{\ln \operatorname{cosec} x}, \forall x \in(0, \pi / 2)$
c) $(1 / 2)^{\ln (\cos x)}<(1 / 3)^{\ln (\cos x)}, \forall x \in(0, \pi / 2)$
d) $2^{\ln (\tan x)}>2^{\ln (\sin x)}, \forall x \in(0, \pi / 2)$
426. If in a $\triangle A B C$,
$\sin ^{4} A+\sin ^{4} B+\sin ^{4} C$
$=\sin ^{2} B \sin ^{2} C+2 \sin ^{2} C \sin ^{2} A+2 \sin ^{2} A \sin ^{2} B$, then $A=$
a) $\frac{\pi}{6}, \frac{5 \pi}{6}$
b) $\frac{\pi}{3}, \frac{5 \pi}{6}$
c) $\frac{5 \pi}{6}, \frac{2 \pi}{3}$
d) None of these
427. $\cos (\sin x)=\frac{1}{\sqrt{2}}$, then x must be lie in the interval
a) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
b) $\left(-\frac{\pi}{4}, 0\right)$
c) $\left(\pi, \frac{3 \pi}{2}\right)$
d) $\left(\frac{\pi}{2}, \pi\right)$
428. If $\sin ^{3} \theta+\sin \theta \cos \theta+\cos ^{3} \theta=1$, then θ is equal to $(n \in Z)$
a) $2 n \pi$
b) $2 n \pi+\frac{\pi}{2}$
c) $2 n \pi-\frac{\pi}{2}$
d) $n \pi$
429. The area of a regular polygon of n sides is (where r is inradius, R is circumradius and a is side of the triangle)
a) $\frac{n R^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
b) $n r^{2} \tan \left(\frac{\pi}{n}\right)$
c) $\frac{n a^{2}}{4} \cot \frac{\pi}{n}$
d) $n R^{2} \tan \left(\frac{\pi}{n}\right)$
430. Let $0 \leq \theta \leq \pi / 2$ and $x=X \cos \theta+Y \sin \theta, y=X \sin \theta-Y \cos \theta$ such that $x^{2}+4 x y+y^{2}=a X^{2}+b Y^{2}$, where a, b are constants. Then,
a) $a=-1, b=3$
b) $\theta=\frac{\pi}{4}$
c) $a=3, b=-1$
d) $\theta=\frac{\pi}{3}$
431. If $x+y=\pi / 4$ and $\tan x+\tan y=1$, then $(n \in Z)$
a) $\sin x=0$ always
b) when $x=n \pi+\pi / 4$ then $y=-n \pi$
c) when $x=n \pi$ then $y=n \pi+(\pi / 4)$
d) when $x=n \pi+\pi / 4$ then $y=n \pi-(\pi / 4)$
432. If $\frac{\log x}{b-c}=\frac{\log y}{c-a}=\frac{\log z}{a-b}$, then which of the following is/are true?
a) $x y z=1$
b) $x^{a} y^{b} z^{c}=1$
c) $x^{b+c} y^{c+a} z^{a+b}=1$
d) $x y z=x^{a} y^{b} z^{c}$
433. If $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, then
a) $x+y=0$
b) $x=2 y$
c) $x=y$
d) $\cos ^{2}\left(\frac{x-y}{2}\right) \geq 1$
434. The value of x in $(0, \pi / 2)$ satisfying $\frac{\sqrt{3}-1}{\sin x}+\frac{\sqrt{3}+1}{\cos x}=4 \sqrt{2}$ is
a) $\frac{\pi}{12}$
b) $\frac{5 \pi}{12}$
c) $\frac{7 \pi}{24}$
d) $\frac{11 \pi}{36}$
435. If $\frac{x}{y}=\frac{\cos A}{\cos B}$, where $A \neq B$, then
a) $\tan \left(\frac{A+B}{2}\right)=\frac{x \tan A+y \tan B}{x+y}$
b) $\tan \left(\frac{A-B}{2}\right)=\frac{x \tan A-y \tan B}{x+y}$
c) $\frac{\sin (A+B)}{\sin (A-B)}=\frac{y \sin A+x \sin B}{y \sin A-x \sin B}$
d) $x \cos A+y \cos B=0$
436. The expression $\left(\tan ^{4} x+2 \tan ^{2} x+1\right) \cos ^{2} x$ when $x=\pi / 12$ can be equal to
a) $4(2-\sqrt{3})$
b) $4(\sqrt{2}+1)$
c) $16 \cos ^{2} \pi / 12$
d) $16 \sin ^{2} \pi / 12$
437. The number of values of x in the interval $[0,5 \pi]$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2=0$ is
a) 0
b) 5
c) 6
d) 10
438. For the smallest positive values of x and y, the equation $2(\sin x+\sin y)-2 \cos (x-y)=3$ has a solution, then which of the following is/are true?
a) $\sin \frac{x+y}{2}=1$
b) $\cos \left(\frac{x-y}{2}\right)=\frac{1}{2}$
c) Number of ordered pairs (x, y) is 2
d) Number of ordered pairs (x, y) is 3
439. If $\sin x+\cos x=\sqrt{y+\frac{1}{y}}$ for $x \in[0, \pi]$, then
a) $x=\pi / 4$
b) $y=0$
c) $y=1$
d) $x=3 \pi / 4$
440. If $b>1, \sin t>0, \cos t>0$ and $\log _{b}(\sin t)=x$, then $\log _{\mathrm{b}}(\cos t)$ is equal to
a) $\frac{1}{2} \log _{b}\left(1-b^{2 x}\right)$
b) $2 \log \left(1-b^{x / 2}\right)$
c) $\log _{b} \sqrt{1-b^{2 x}} \log _{b}\left(1-b^{2 x}\right)$
d) $\sqrt{1-x^{2}}$
441. In a right-angled triangle, the hypotenuse is $2 \sqrt{2}$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are
a) $\frac{\pi}{3}$
b) $\frac{\pi}{8}$
c) $\frac{3 \pi}{8}$
d) $\frac{\pi}{6}$
442. For $0<\emptyset \leq \pi / 2$, if $x=\sum_{n=0}^{\infty} \cos ^{2 n} \emptyset, y=\sum_{n=0}^{\infty} \sin ^{2 n} \emptyset, z=\sum_{n=0}^{\infty} \cos ^{2 n} \emptyset \sin ^{2 n} \emptyset$, then
a) $x y z=x z+y$
b) $x y z=x y+z$
c) $x y z=x+y+z$
d) $x y z=y z+x$
443. Which of the following inequalities hold true in any triangle $A B C$?
a) $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8}$
b) $\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \leq \frac{3 \sqrt{3}}{8}$
c) $\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}<\frac{3}{4}$
d) $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2} \leq \frac{9}{4}$
444. In a triangle, the angles are in A.P. and the lengths of the two larger sides are 10 and 9 , respectively, then the length of the third side can be
a) $5+\sqrt{6}$
b) 0.7
c) $5-\sqrt{6}$
d) None of these
445. Which of the following sets can be the subset of the general solution of $1+\cos 3 x=2 \cos 2 x(n \in Z)$?
a) $n \pi+\frac{\pi}{3}$
b) $n \pi+\frac{\pi}{6}$
c) $n \pi-\frac{\pi}{6}$
d) $2 n \pi$
446. If in a triangle, $\sin ^{4} A+\sin ^{4} B+\sin ^{4} C=\sin ^{2} B \sin ^{2} C+2 \sin ^{2} C \sin ^{2} A+2 \sin ^{2} A \sin ^{2} B$, then its angle A is equal to
a) 30°
b) 120°
c) 150°
d) 60°
447. Let $A B C$ be an isosceles triangle with base $B C$. If ' r^{\prime} is the radius of the circle inscribed in $\triangle A B C$ and r_{1} is the radius of the circle escribed opposite to the angle A, then the product $r_{1} r$ can be equal to Where R is the radius of the circumcircle of the $\triangle A B C$
a) $R^{2} \sin ^{2} A$
b) $R^{2} \sin ^{2} 2 B$
c) $\frac{1}{2} a^{2}$
d) $\frac{a^{2}}{4}$
448. $\tan |x|=|\tan x|$, if
a) $x \in(-\pi(2 k+1) / 2,-\pi k), k \in I$
b) $x \in[\pi k, \pi(2 k+1) / 2], k \in I$
c) $x \in\{-\pi k,-\pi(2 k-1) / 2\}, k \in I$
d) $x \in\{\pi(2 k-1) / 2, \pi k\}, k \in I$
449. $\sin \theta+\sqrt{3} \cos \theta=6 x-x^{2}-11,0 \leq \theta \leq 4 \pi, x \in R$, holds for
a) No values of x and θ
b) One value of x and two values of θ
c) Two values of x and two values of θ
d) Two point of values of (x, θ)
450. In acute-angled triangle $A B C, A D$ is the altitude. Circle drawn with $A D$ as its diameter cuts the $A B$ and $A C$ at P and Q, respectively. Length $P Q$ is equal to
a) $\frac{\Delta}{2 R}$
b) $\frac{a b c}{4 R^{2}}$
c) $2 R \sin A \sin B \sin C$
d) $\frac{\Delta}{R}$
451. If $\sin \left(x+20^{\circ}\right)=2 \sin x \cos 40^{\circ}$ where $x \in(0, \pi / 2)$ then which of the following hold(s) good?
a) $\cos 2 x=1 / 2$
b) $\operatorname{cosec} 4 x=2$
c) $\sec \frac{x}{2}=\sqrt{6}-\sqrt{2}$
d) $\tan \frac{x}{2}=(2-\sqrt{3})$
452. If $4 \sin ^{4} x+\cos ^{4} x=1$, then x is equal to $(n \in Z)$
a) $n \pi$
b) $n \pi \pm \sin ^{-1} \sqrt{\frac{2}{5}}$
c) $\frac{2 n \pi}{3}$
d) $2 n \pi \pm \frac{\pi}{4}$
453. If sides of triangle $A B C$ are a, b and c such that $2 b=a+c$, then
a) $\frac{b}{c}>\frac{2}{3}$
b) $\frac{b}{c}>\frac{1}{3}$
c) $\frac{b}{c}<2$
d) $\frac{b}{c}<\frac{3}{2}$
454. If $0 \leq \theta \leq \pi$ and $81^{\sin ^{2} \theta}+81^{\cos ^{2} \theta}=30$, then θ is
a) 30°
b) 60°
c) 120°
d) 150°
455. If $p, q \in N$ satisfy the equation $x^{\sqrt{x}}=(\sqrt{x})^{x}$, then p and q are
a) Relatively prime
b) Twin prime
c) Coprime
d) If $\log _{q} p$ is defined, then $\log _{p} q$ is not and vice
456. If $\cos p \theta=\sin q \theta$, then the general values of θ are
a) $\frac{(2 n+1) \pi}{2(p+q)}, n \in I$
b) $\frac{(2 n+1) \pi}{2(p-q)}, n \in I$
c) $\frac{(4 n-1) \pi}{2(p-q)}, n \in I$
d) $\frac{(4 n+1) \pi}{2(p+q)}, n \in I$
457. Let $f(x)=\log \left(\log _{1 / 3}\left(\log _{7}(\sin x+a)\right)\right)$ be defined for every real value of x, then the possible value of a is
a) 3
b) 4
c) 5
d) 6

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 458 to 457. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: The incentre of the triangle formed by the feet of altitudes from the vertices of triangle $A B C$ to the opposite sides is the orthocenter of the triangle $A B C$
Statement 2: The incentre of triangle $A B C$ is orthocenter of the triangle $I_{1} I_{2} I_{3}$, where I_{1}, I_{2}, I_{3} are excentres of triangle $A B C$

Statement 1: Equation $\sqrt{1-\sin 2 x}=\sin x$ has 1 solution for $x \in[0, \pi / 4]$
Statement 2: $\quad \cos x>\sin x$ when $x \in[0, \pi / 4]$
460
Statement 1: $\quad \gamma-\alpha=\frac{2 \pi}{3}$
Statement 2: $\quad \cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$
461
Statement 1: General solution of $\frac{\tan 4 x-\tan 2 x}{1+\tan 4 x \tan 2 x}=1$ is $x=\frac{n \pi}{2}+\frac{\pi}{8}, n \in I$
Statement 2: General solution of $\tan \alpha=1$ is $\alpha=n \pi+\frac{\pi}{4}, n \in I$

Statement 1: $\sin x=a$, where $-1<a<0$, then for $x \in[0, n \pi]$ has $2(n-1)$ solutions $\forall n \in N$
Statement 2: $\sin x$ takes value a exactly two times when we take one complete rotation covering all the quadrant starting from $x=0$

Statement 1: The equation $\sin ^{2} x+\cos ^{2} y=2 \sec ^{2} z$ is solvable when only $\sin x=1 ; \cos y=1$ and $\sec z=1$, where $x, y, z \in R$
Statement 2: The maximum value of $\sin x$ and $\cos y$ is 1 and minimum value of $\sec z$ is 1

Statement 1: $\sin \pi / 18$ is a root of $8 x^{3}-6 x+1=0$
Statement 2: For any $\theta \in R, \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
465
Statement 1: In $(0, \pi)$, the number of solutions of the equation $\tan \theta+\tan 2 \theta+\tan 3 \theta=\tan \theta \tan 2 \theta \tan 3 \theta$ is two
Statement 2: $\tan 6 \theta$ is not defined at

$$
\theta=(2 n+1) \frac{\pi}{12}, n \in I
$$

Statement 1: If the incircle of the triangle $A B C$ passes through its circumcentre, then $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=$ $\sqrt{2}$
Statement 2: Distance between the circumcentre and incentre is $\sqrt{R^{2}-2 r R}$
467
Statement 1: Number of solution of $n|\sin x|=m|\cos x|$ (where $m, n \in Z)$ in $[0,2 \pi]$ is independent of m and n
Statement 2: Multiplying trigonometric functions by constant changes only range of the function but period remains same

Statement 1: $\sin \left(\frac{2 \pi}{7}\right)+\sin \left(\frac{4 \pi}{7}\right)+\sin \left(\frac{8 \pi}{7}\right)=-\frac{1}{2}$

Statement 2: $\quad \cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)$ is complex 7 th root of unity

Statement 1: The minimum value of $27^{\cos 2 x} 81^{\sin 2 x}$ is $\frac{1}{243}$.
Statement 2: The minimum value of $a \cos \theta+b \sin \theta$ is $-\sqrt{a^{2}+b^{2}}$.

Statement 1: $\quad \cos 36^{\circ}>\sin 36^{\circ}$
Statement 2: $\cos 36^{\circ}>\tan 36^{\circ}$

471
Statement 1: If $f(\theta)=(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$, then the minimum value of $f(\theta)$ is 9 .
Statement 2: Maximum value of $\sin 2 \theta$ is 1

Statement 1: If the quadrilateral \mathcal{Q}_{1} formed by joining mid-points of sides of another quadrilateral \mathcal{Q}_{2} is cyclic, then Q_{1} is necessarily a rectangle
Statement 2: \quad The quadrilateral \mathcal{Q}_{1} formed by joining mid-points of sides of another quadrilateral Q_{2} is always a parallelogram

Statement 1: If $a=3, b=7, c=8$, and internal angle bisector $A I$ meets $B C$ at D (where I is incentre), then $A I / I D=11 / 2$
Statement 2: Internal angle bisector of angle A divides the side $B C$ in ratio $A B / A C$

Statement 1: In a triangle, the least value of the sum of cosines of its angles is unity
Statement 2: $\quad \cos A+\cos B+\cos C=1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, if A, B, C are the angles of a triangle 475

Statement 1: $\cos ^{3} \alpha+\cos ^{3}\left(\alpha+\frac{2 \pi}{3}\right)+\cos ^{3}\left(\alpha+\frac{4 \pi}{3}\right)=3 \cos \alpha \cos \left(\alpha+\frac{2 \pi}{3}\right) \cos \left(\alpha+\frac{4 \pi}{3}\right)$
Statement 2: If $a+b+c=0 \Leftrightarrow a^{3}+b^{3}+c^{3}=3 a b c$ 476

Statement 1: If I is incentre of $\triangle A B C$ and I_{1} excentre opposite to A and P is the intersection of $I I_{1}$ and $B C$, then $I P \cdot I_{1} P=B P \cdot P C$
Statement 2: In $\triangle A B C, I$ is incentre and I_{1} is excentre opposite to A then $I B I_{1} C$ must be square 477

Statement 1: The equation $\sin (\cos x)=\cos (\sin x)$ has no real solution
Statement 2: $\quad \sin x \pm \cos x \in[-\sqrt{2}, \sqrt{2}]$

Statement 1: Circumradius of $\Delta I_{1} I_{2} I_{3}$ is $2 R$
Statement 2: Circumradius of the triangle formed by feet of altitudes of $\triangle A B C$ is $R / 2$

Statement 1: If $x+y+z=x y z$, then at most one of the numbers can be negative.
Statement 2: In a triangle $A B C, \tan A+\tan B+\tan C=\tan A \tan B \tan C$ and there can be at most one obtuse angle in a triangle.
480 In acute-angled $\triangle A B C, a>b>c$
Statement 1: $\quad r_{1}>r_{2}>r_{3}$
Statement 2: $\quad \cos A<\cos B<\cos C$

Statement 1: $\quad \cos 1<\cos 7$
Statement 2: $1<7$
482
Statement 1: The value of x for which $(\sin x+\cos x)^{1+\sin 2 x}=2$, when $0 \leq x \leq \pi$ is $\pi / 4$ only
Statement 2: The maximum value of $\sin x+\cos x$ occurs when $x=\pi / 4$
483
Statement 1: In any $\triangle A B C$, the maximum value of $r_{1}+r_{2}+r_{3}=9 R / 2$
Statement 2: In any $\triangle A B C, R \geq 2 r$

Statement 1: $\tan 5^{\circ}$ is an irrational number
Statement 2: $\tan 15^{\circ}$ is an irrational number
485
Statement 1: $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \tan 8 \alpha+16 \cot 16 \alpha=\cot \alpha$
Statement 2: $\cot \alpha-\tan \alpha=2 \cot 2 \alpha$

Statement 1: If side $B C$ and ratio of r_{2} and r_{3} of an acute-angled triangle is given, then the locus of A is a hyperbola
Statement 2: If base of a triangle is given and difference of two variable sides is constant (less than the base), then locus of variable vertex is a hyperbola
487 Let l_{1}, l_{2}, l_{3} be the lengths of the internal bisectors of angles A, B, C of $\triangle A B C$, respectively
Statement 1:

$$
\frac{\cos \frac{A}{2}}{l_{1}}+\frac{\cos \frac{B}{2}}{l_{2}}+\frac{\cos \frac{C}{2}}{l_{3}}=2\left(\frac{l_{1}}{a}+\frac{l_{2}}{b}+\frac{l_{3}}{c}\right)
$$

Statement 2:

$$
l_{1}^{2}=b c\left[1-\left(\frac{a}{a+c}\right)^{2}\right], l_{2}^{2}=c a\left[1-\left(\frac{b}{c+a}\right)^{2}\right], l_{3}^{2}=a b\left[1-\left(\frac{c}{a+b}\right)^{2}\right]
$$

Statement 1: $\quad \cos 1<\sin 1$

Statement 2: In the first quadrant, cosine decreases but sine increases
489 Let f be any one of the six trigonometric functions. Let $A, B \in R$ satisfying $f(2 A)=f(2 B)$
Statement 1: $\quad A=n \pi+B$, for some $n \in Z$
Statement 2: $\quad 2 \pi$ is one of the period of f

Statement 1: If $x y+y z+z x=1$, then $\Sigma \frac{x}{\left(1+x^{2}\right)}=\frac{2}{\sqrt{\Pi\left(1+x^{2}\right)}}$
Statement 2: In a $\triangle A B C$
$\sin 2 A+\sin 2 B-\sin 2 C=4 \cos A \cos B \sin C$

Statement 1: If $x y+y z+z x=1$ where $x, y, z \in R^{+}$, then $\frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{z}{1+z^{2}}=\frac{2}{\sqrt{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}}$
Statement 2: In a triangle $A B C, \sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$.

Statement 1: If $C=45^{\circ}, B=60^{\circ}$, then the line joining A and circumcentre (O) divides $B C$ in ratio $2: \sqrt{3}$
Statement 2: Line joining A and circumcenter (O) divides $B C$ in ratio $\frac{\sin 2 C}{\sin 2 B}$ 493

Statement 1: Equation $x \sin x=1$ has four roots for $x \in(-\pi, \pi)$
Statement 2: The graph of $y=\sin x$ and $y=1 / x$ cuts exactly two times for $x \in(0, \pi)$ 494

Statement 1: The minimum value of the expression $\sin \alpha+\sin \beta+\sin \gamma$ is negative, where α, β, γ are real numbers such that $\alpha+\beta+\gamma=\pi$
Statement 2: If α, β, γ are the angles of a triangle, then $\sin \alpha+\sin \beta+\sin \gamma=4 \cos \alpha / 2 \cos \beta / 2 \cos \gamma / 2$ 495

Statement 1: If in a triangle, $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$ then one of the angles must be 90°
Statement 2: In any triangle $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2+2 \cos A \cos B \cos C$

Statement 1: $\tan 4<\tan 7.5$

Statement 2: $\tan x$ is always an increasing function

Statement 1: The equation $\sin (\cos x)=\cos (\sin x)$ does not possess real roots.
Statement 2: If $\sin x>0$, then $2 n \pi<x<(2 n+1), n \in I$

Statement 1: The maximum and minimum values of the function $f(x)=\frac{1}{3 \sin x+4 \cos x-2}$ do not exist.
Statement 2: The given function is an unbounded function.

Statement 1: If $\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right)$, then $\sin \theta+\cos \theta= \pm \sqrt{2}$
Statement 2: $-\sqrt{2} \leq \sin \theta+\cos \theta \leq \sqrt{2}$ 500

Statement 1: Equation $\sin x=e^{x}$ has infinite solutions
Statement 2: $y=e^{x}$ is an unbounded function
501 If $A+B+C=\pi$, then
Statement 1: $\quad \cos ^{2} A+\cos ^{2} B+\cos ^{2} C$ has its minimum value $\frac{3}{4}$
Statement 2: Maximum value of $\cos A \cos B \cos C$ is $\frac{1}{8}$
502
Statement 1: In triangle $A B C, D$ is a point on the side $A B$ such that $C D^{2}=A D . D B$, then the greatest value of $\sin A \sin B$ is $\sin ^{2}(C / 2)$
Statement 2: Greatest value of $\sin A \sin B$ occurs when $C D$ is the angle bisector of angle C

Statement 1: $\quad \sin 3<\sin 1<\sin 2$.
Statement 2: $\sin x$ is positive in first and second quadrants.

Statement 1: In any triangle $A B C$,
$\ln \left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right) \ln \cot \frac{A}{2}+\ln \cot \frac{B}{2}+\ln \cot \frac{C}{2}$
Statement 2:
$\ln (1+\sqrt{3}+(2+\sqrt{3}))=\ln 1+\ln \sqrt{3}+\ln (2+\sqrt{3})$

Statement 1: If $\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}+\cdots+\sin ^{2} \theta_{n}=0$, then the different sets of values of $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ for which $\cos \theta_{1}+\cos \theta_{2}+\cdots 9 \cos \theta_{n}=n-4$ is $n(n-1)$.
Statement 2: If $\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}+\cdots+\sin ^{2} \theta_{n}=0$, then $\cos \theta_{1}, \cos \theta_{2}, \ldots, \cos \theta_{n}= \pm 1$.

Statement 1: If $\sin ^{2} A=\sin ^{2} B$ and $\cos ^{2} A=\cos ^{2} B$, then $A=n \pi+B, n \in I$
Statement 2: If $\sin A=\sin B$ and $\cos A=\cos B$, then $A=n \pi+B, n \in I$

Statement 1: If α and β are two distinct solutions of the equation $a \cos x+b \sin x=c$, then $\tan \left(\frac{\alpha+\beta}{2}\right)$ is independent of c
Statement 2: Solution of $a \cos x+b \sin x=c$ is possible, if $-\sqrt{\left(a^{2}+b^{2}\right)} \leq c \leq \sqrt{\left(a^{2}+b^{2}\right)}$
508
Statement 1: The equation $\sin x=x^{2}+x+1$ has no solution
Statement 2: The curve $y=\sin x$ and $y=x^{2}+x+1$ do not intersect each other when graph is observed

Statement 1: The number of solution of the equation $|\sin x|=|x|$ is only one
Statement 2: $\quad|\sin x| \geq 0 \forall x \in R$

Statement 1: If a, b, c are the sides of a triangle, then the minimum value of $\frac{2 a}{b+c-a}+\frac{2 b}{c+a-b}+\frac{2 c}{a+b-c}$ is 9
Statement 2: A. M. \geq G. M. \geq H. M.
511
Statement 1: In $\triangle A B C$, the centroid (G) divides line joining orthocenter (H) and circumcenter in ratio 2: 1
Statement 2: The centroid (G) divides the median $A D$ in ratio 2:1
512
Statement 1:
$\prod_{r=1}^{n}\left(1+\sec 2^{r} \theta\right)=\tan 2^{n} \theta \cot \theta$
Statement 2: $\prod_{r=1}^{n} \cos \left(2^{r-1} \theta\right)=\frac{\sin \left(2^{n} \theta\right)}{2^{n} \sin \theta}$
513
Statement 1: If $\sin x+\cos x=\sqrt{\left(y+\frac{1}{y}\right)}, x \in[0, \pi]$, then $x=\frac{\pi}{4}, y=1$
Statement 2: $A M \geq G M$
514
Statement 1: The number of real solutions of the equation $\cos (x)=7^{x}+7^{-x}$ is zero
Statement 2: \quad Since, $|\cos x| \leq 1$
515
Statement 1: If A, B, C are the angles of a triangle such that angle A is obtuse, then $\tan B \tan C>1$.
Statement 2: In any triangle, $\tan A=\frac{\tan B+\tan C}{\tan B \tan C-1}$.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
516.

Column-I

(A) The smallest integer greater than $\frac{1}{\log _{3} \pi}+\frac{1}{\log _{4} \pi}$ is
(B) Let $3^{a}=4,4^{b}=5,5^{c}=6,6^{d}=7,7^{c}=$
(q) 3

8 and $8^{f}=9$.
Then the value of the product (abcdef) is
(C) Characteristic of the logarithm of 2008 to the
(r) 1 base 2 is
(D) If $\log _{2}\left(\log _{2}\left(\log _{3} x\right)\right)=\log _{2}\left(\log _{3}\left(\log _{2} y\right)\right)=0$,
(s) 2
then the value of $(x-y)$ is
CODES :

	A	B	C	D
a)	q	s	p	r
b)	p	r	q	s
c)	q	s	r	p
d)	r	p	q	s

517.

Column-I

Column- II

(A) If the sines of the angles A and B of a triangle
(p) Right angled $A B C$ satisfy the equation $c^{2} x^{2}-c(a+b) x+$ $a b=0$, the triangle can be
(B) If one angle of a triangle is 30° and the lengths (q) Isosceles of the sides adjacent to it are 40 and $40 \sqrt{3}$, the triangle can be
(C) If two angle of a triangle $A B C$ satisfy the (r) Equilateral equation $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$, then the triangle can be $(x \in(0, \pi / 2))$
(D) In triangle (s) Obtuse angled
$A B C, \cos A \cos B+\sin A \sin B \sin C=1$, then the triangle can be

CODES :

	A	B	C	D
a)	Q, s	p	p, q	p
b)	p, q	p	q, s	q

c) $\quad \mathrm{p}$ q,s
p
p, q
d) $q \quad p, q \quad p \quad q, s$
518.
(A) $\max _{\theta \in R}\{5 \sin \theta+3 \sin (\theta-\alpha)\}=7$ then the set
(p) $2 n \pi+3 \pi / 4, n \in Z$ of possible values of α is
(B) $x \neq \frac{n \pi}{2}$ and $(\cos x)^{\sin ^{2} x-3 \sin x+2}=1$
(q) $2 n \pi \pm \frac{\pi}{3} ; n \in Z$
(C) $\sqrt{(\sin x)}+2^{1 / 4} \cos x=0$
(r) $2 n \pi+\cos ^{-1}(1 / 3), n \in Z$
(D) $\log _{5} \tan x=\left(\log _{5} 4\right)\left(\log _{4}(3 \sin x)\right.$
(s) No solution

CODES :

	A	B	C	D
a)	s	r	q	p
b)	p	q	r	s
c)	q	s	p	r
d)	r	p	q	s

519. If $\cos \theta-\sin \theta=\frac{1}{5}$ where $0<\theta<\frac{\pi}{2}$
Column-I
(A) $(\cos \theta+\sin \theta) / 2$
(p) $\frac{4}{5}$
(B) $\sin 2 \theta$
(q) $\frac{7}{10}$
(C) $\cos 2 \theta$
(r) $\frac{24}{25}$
(D) $\cos \theta$
(s) $\frac{7}{25}$

CODES :

	A	B	C	D
a)	q	r	s	p
b)	s	p	q	r
c)	p	q	s	r
d)	q	s	p	r

520.

Column-I
Column- II
(A) Suppose $A B C$ is a triangle with three acute
(p) $1^{\text {st }}$ quadrant angles A, B and C. The point whose
coordinates are $(\cos B-\sin A, \sin B-\cos A)$
can be in the
(B) If $2^{\sin \theta}>1$ and $3^{\cos \theta}<1$, then $\theta \in$
(q) $2^{\text {nd }}$ quadrant
(C) $|\cos x+\sin x|=|\sin x|+|\cos x|$
(r) $3^{\text {rd }}$ quadrant
(D) If $\sqrt{\frac{1-\sin A}{1+\sin A}}+\frac{\sin A}{\cos A}=\frac{1}{\cos A}$, for all permissible
(s) $4^{\text {th }}$ quadrant values of A, then A can belong to

CODES :

A
B
C
D
a) $p \quad q \quad r, s \quad p, r$
b) $\begin{array}{llll}\mathrm{q} & \mathrm{p} & \mathrm{q} & \mathrm{s}\end{array}$
c) $q \quad q \quad p, r \quad p, s$
d) $\begin{array}{llll}\mathrm{p} & \mathrm{s} & \mathrm{q} & \mathrm{q}\end{array}$
521. Let O be the circumcentre, H be the orthocenter, I be the incentre and I_{1}, I_{2}, I_{3} be the excentres of acuteangled $\triangle A B C$

Column-I

Column- II
(A) Angle subtended by $O I$ at vertex A
(p) $|B-C|$
(B) Angle subtended by $H I$ at vertex A
(q) $\frac{|B-C|}{2}$
(C) Angle subtended by $O H$ at vertex A
(r) $\frac{B+C}{2}$
(D) Angle subtended by $I_{2} I_{3}$ at I_{1}
(s) $\frac{B}{2}-C$

CODES :

	A	B	C	D
a)	q	q	p	r
b)	p	r	s	q
c)	s	p	r	q
d)	r	s	q	p

522.

Column-I

Column- II

(A) $\cos \frac{A}{2}=\frac{b+c}{a}$
(p) Always right angled
(B) $a \tan A+b \tan B$ $=(a+b) \tan \left(\frac{A+B}{2}\right)$
(C) $a \cos A=b \cos B$
(r) May be right angled
(D) $\cos A=\frac{\sin B}{2 \sin C}$
(s) May be right-angled isosceles

CODES :

	A	B	C	D
a)	$\mathrm{Q}, \mathrm{r}, \mathrm{s}$	r, s	p, r	q, r
b)	r, s	p, r	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p, q
c)	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	r, s	p, q	p, r
d)	p, r	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	r, s	$\mathrm{q}, \mathrm{r}, \mathrm{s}$

523.

Column-I

Column- II
(A) $\cos ^{2} 2 x+\cos ^{2} x=1$
(p) $x=\left\{n \pi+\frac{\pi}{4}\right\} \cup\left\{n \pi+\frac{\pi}{6}\right\} n \in Z$
(B) $\cos x+\sqrt{3} \sin x=\sqrt{3}$
(q) $x=\frac{n \pi}{3}, n \in Z$
(C) $1+\sqrt{3} \tan ^{2} x=(1+\sqrt{3}) \tan x$
(r) $x=(2 n-1) \frac{\pi}{6}, n \in Z$
(D) $\tan 3 x-\tan 2 x-\tan x=0$
(s) $x=\left\{2 n \pi+\frac{\pi}{2}\right\} \cup\left\{2 n \pi+\frac{\pi}{6}\right\}, n \in Z$

CODES :

	A	B	C	D
a)	r	s	p	q
b)	p	q	r	s
c)	s	p	q	r
d)	q	r	s	p

524. In acute-angled triangle $A B C$

Column-I

(A) $\cos A, \cos B, \cos C$ are in A.P.
(B) $\sin (A / 2), \sin (B / 2), \sin (C / 2)$ are in A.P.
(C) Distances of circumcentre from the vertices of the triangle $A B C$ are in A.P.
(D) Circumradii of triangles $O B C, O A C$ and $O A B$ are in H.P. (where O is cicumcentre of triangle $A B C$)

CODES :

	A	B	C	D
a)	R, s	p, q	q, r	q
b)	p, q	r, s	p, q	p, q
c)	q, r	q	r, s	p, q

Column- II

(p) Distances of orthocenter from vertices of triangle are in A.P.
(q) Distances of orthocenter from sides of triangle are in H.P.
(r) Distances of incentre from vertices of triangle are in H.P.
(s) Distances of incentre from excentres of triangle are in A.P.
d) $p \quad p, q \quad q, r \quad r, s$
525.

Column-I

(A) The maximum value of $\{\cos (2 A+\theta)+$ $\cos 2 B+\theta$, where A, B are constants, is
(B) The maximum value of $\{\cos 2 A+\cos 2 B\}$, where $(A+B)$ is constant and $A, B \in(0, \pi / 2)$, is
(C) The minimum value of $\{\sec 2 A+\sec 2 B\}$, where $(\mathrm{A}+\mathrm{B})$ is constant and $A, B \in(0, \pi / 4)$, is
(D) The minimum value of $\sqrt{\{\tan \theta+\cot \theta-2 \cos 2(A+B)\}}$ where A, B are constants and $\theta \in(0, \pi / 2)$, is

CODES :

A
B
C
D
a) $\mathrm{s} \quad \mathrm{r} \quad \mathrm{q} \quad \mathrm{p}$
b) $\begin{array}{llll}\text { q } & p & \mathrm{~s} & \mathrm{r}\end{array}$
c) $\begin{array}{lllll}\text { q } & \text { r } & \text { p } & \text { s }\end{array}$
d) $\begin{array}{llll}\text { r } & \text { s } & \text { q } & p\end{array}$
526.

Column-I

Column- II
(A) In triangle $A B C, 3 \sin A+4 \cos B=$

6 and $3 \cos A+4 \sin B=1$, then $\angle C$ can be
(B) In any triangle, if $(\sin A+\sin B+$
$\sin C \sin A+\sin B-\sin C=3 \sin A \sin B$, then the angle C
(C) If $8 \sin x \cos ^{5} x-8 \sin ^{5} x \cos x$
(r) 165°
$=1$, then $x=$
(D) ${ }^{\prime} O$ ' is the centre of the inscribed circle in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle $A B C$ with right angled at C. If the circle is tangent to $A B$ at D, then the angle $\angle C O D$ is

CODES :

	A	B	C	D
a)	p	q	r	s
b)	q	b	s	r
c)	r	s	p	q
d)	s	p	r	q

527.

Column-I

(A) The value of $\log _{2} \log _{2} \log _{4} 256+2 \log \sqrt{2}^{2}$ is
(p) 1
(B) If $\log _{3}(5 x-2)-2 \log _{3} \sqrt{3 x+1}=1-$
(q) 6
$\log _{3} 4$, then $x=$
(C) Product of roots of the equation
(r) 3 $7^{\log _{7}\left(x^{2}-4 x+5\right)}=(x-1)$ is
(D) Number of integers satisfying $\log _{2} \sqrt{x}-$
(s) 5 $2\left(\log _{1 / 4} x\right)^{2} x+1>0$ are
CODES :

	A	B	C	D
a)	p	q	r	s
b)	s	p	q	r
c)	r	s	q	p
d)	q	p	r	s

528.

Column-I

(A) $x^{3}+x^{2}+4 x+2 \sin x=0$ in $0 \leq x \leq 2 \pi$
(B) $\sin e^{x} \cos e^{x}=2^{x-2}+2^{-x-2}$
(C) $\sin 2 x+\cos 4 x=2$
(D) $30|\sin x|=x$ in $0 \leq x \leq 2 \pi$

Column- II

CODES :

	A	B	C	D
a)	s	q	p	s
b)	q	s	s	p
c)	p	r	s	s
d)	s	p	q	s

529.

Column-I

Column- II

(A) $2^{\log _{(2 \sqrt{2})} 15}$ is
(B) $3 \sqrt{\left(5^{1 / \log _{7} 5}+\frac{1}{\sqrt{\left(-\log _{10} 0.1\right.}}\right)}$ is
(p) Rational
(q) Irrational
(C) $\log _{3} 5 \cdot \log _{25} 27$ is
(r) Composite
(D) Product of roots of equation $x^{\log _{10} x}=100 x$ is
(s) Prime

CODES :
A
B
C
D
a) $\quad \mathrm{P}, \mathrm{r} \quad \mathrm{q} \quad \mathrm{r} \quad \mathrm{s}$
b) p
p, r q
p
c) $\quad \mathrm{q} \quad \mathrm{p}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{p}, \mathrm{r}$
d) $\quad \mathrm{p} \quad \mathrm{p} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{q}$
530.

Column-I

Column- II
(A) $\sin \left(410^{\circ}-A\right) \cos \left(400^{\circ}+A\right)+\cos \left(410^{\circ}-\right.$ $A \sin 400^{\circ}+A$ has the value equal to
(B) $\frac{\cos ^{2} 1^{\circ}-\cos ^{2} 2^{\circ}}{2 \sin 3^{\circ} \sin 1^{\circ}}$ is equal to
(C) $\sin \left(-870^{\circ}\right)+\operatorname{cosec}\left(-660^{\circ}\right)$
$+\tan \left(-855^{\circ}\right)+\cot \left(840^{\circ}\right)$
(r) $\frac{1}{2}$
$+\cos \left(480^{\circ}\right)+\sec \left(900^{\circ}\right)$
(D) If $\cos \theta=\frac{4}{5}$ where $\theta \in\left(\frac{3 \pi}{2}, 2 \pi\right)$ and $\cos \phi=$ $\frac{3}{5}$ where $\phi \in\left(0, \frac{\pi}{2}\right)$, then $\cos (\theta-\phi)$ has the value equal to

CODES :

	A	B	C	D
a)	s	r	p	q
b)	p	q	r	s
c)	q	r	p	s
d)	s	p	r	q

531. For all real values of θ

Column-I
Column- II
(A) $A=\sin ^{2} \theta+\cos ^{4} \theta$
(p) $A \in[-1,1]$
(B) $A=3 \cos ^{2} \theta+\sin ^{4} \theta$
(q) $A \in\left[\frac{3}{4}, 1\right]$
(C) $A=\sin ^{2} \theta-\cos ^{4} \theta$
(r) $A \in[2 \sqrt{2}, \infty)$
(D) $A=\tan ^{2} \theta+2 \cot ^{2} \theta$
(s) $A \in[1,3]$

CODES :

	A	B	C	D
a)	q	s	p	r
b)	s	p	r	q
c)	p	r	s	q
d)	r	s	p	q

532. If $\cos \alpha+\cos \beta=1 / 2$ and $\sin \alpha+\sin \beta=1 / 3$

Column-I

Column- II

(A) $\cos \left(\frac{\alpha+\beta}{2}\right)$
(B) $\cos \left(\frac{\alpha-\beta}{2}\right)$
(C) $\tan \left(\frac{\alpha+\beta}{2}\right)$
(D) $\tan \left(\frac{\alpha-\beta}{2}\right)$
(p) $\pm \frac{\sqrt{13}}{12}$
(q) $\frac{2}{3}$
(r) $\pm \frac{3}{\sqrt{13}}$
(s) $\pm \sqrt{\frac{131}{13}}$

CODES :

	A	B	C	D
a)	r	p	q	s
b)	p	q	r	s
c)	q	r	p	s
d)	r	p	q	s

533.

Column-I
Column- II
(A) $\cos 20^{\circ}+\cos 80^{\circ}-\sqrt{3} \cos 50^{\circ}$
(p) -1
(B) $\cos 0^{\circ}+\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}$ $+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}$
(C) $\cos 20^{\circ}+\cos 40^{\circ}+\cos 60^{\circ}$
$-4 \cos 10^{\circ} \cos 20^{\circ} \cos 30^{\circ}$
(D) $\cos 20^{\circ} \cos 100^{\circ}+\cos 100^{\circ} \cos 140^{\circ}$
(q) $-\frac{3}{4}$
(r) 1
(s) 0

$$
-\cos 140^{\circ} \cos 200^{\circ}
$$

CODES :

	A	B	C	D
a)	p	q	r	s
b)	s	r	p	q

c) r p s
q
d) r
q
s
p
534.

Column-I

Column- II
(A) $b>c \sin B, b<c$ and B is an acute angle
(p) 0
(B) $b>c \sin B, c<b$, and B is an acute angle
(q) 2
(C) $b>c \sin B, c<b$ and B is an obtuse angle
(r) Data insufficient
(D) $b>c \sin B, c>b$ and B is an obtuse angle
(s) 1

CODES :

	A	B	C	D
a)	q	s	s	p
b)	s	q	p	s
c)	p	r	q	s
d)	r	s	s	q

535.

Column-I

Column- II
(A) If $x^{2}+y^{2}=1$ and $P=\left(3 x-4 x^{3}\right)^{2}+$
(p) 1
$\left(3 y-4 y^{3}\right)^{2}$, then P is equal to
(B) If $a+b=3-\cos 4 \theta$ and $a-b=4 \sin 2 \theta$,
(q) 4
then the maximum value of $(a b)$ is
(C) The least positive integral value of x for which
(r) 5
$3 \cos \theta=x^{2}-8 x+19$ holds good is
(D) If $x=\frac{4 \lambda}{1+\lambda^{2}}$ and $y=\frac{2-2 \lambda^{2}}{1+\lambda^{2}}$, where λ is a real
(s) 8 parameter, then $x^{2}-x y+y^{2}$ lies between $[a, b]$ then $(a+b)$ is
CODES :

	A	B	C	D
a)	p	p	q	s
b)	s	q	p	p
c)	s	p	q	p
d)	q	s	p	p

Linked Comprehension Type

This section contain(s) 42 paragraph(s) and based upon each paragraph, multiple choice questions have to be
answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. Paragraph for Question Nos. 536 to -536

If $P_{n}=\sin ^{n} \theta+\cos ^{n} \theta$ where $n \in W$ (whole number) and $\theta \in R$ (real number)
536. If $P_{1}=m$, then the value of $4\left(1-P_{6}\right)$ is
a) $3(m-1)^{2}$
b) $3\left(m^{2}-1\right)^{2}$
c) $3(m+1)^{2}$
d) $3\left(m^{2}+1\right)^{2}$

Paragraph for Question Nos. 537 to - 537

Let α is a root of the equation $(2 \sin x-\cos x)(1+\cos x)=\sin ^{2} x, \beta$ is a root of the equation $3 \cos ^{2} x-$ $10 \cos x+3=0$ and γ is a root of the equation $1-\sin 2 x=\cos x-\sin x, 0 \leq \alpha, \beta, \gamma \leq \pi 2$
537. $\cos \alpha+\cos \beta+\cos \gamma$ can be equal to
a) $\frac{3 \sqrt{6}+2 \sqrt{2}+6}{6 \sqrt{2}}$
b) $\frac{3 \sqrt{3}+8}{6}$
c) $\frac{3 \sqrt{3}+2}{6}$
d) None of these

Paragraph for Question Nos. 538 to - 538

Let $A B C$ is a triangle, O is a point inside the triangle so that its distance from A, B, C is respectively $a, b, c . L, M, N$ are the feet of the perpendiculars from O to $A B, B C, C A$ respectively. x, y, z are respectively the distance of O from L, M, N
$\angle O A L=\alpha, \angle O B M=\beta, \angle O C N=\gamma$
538. $A L+B M+C N$ is equal to
a) $a \cos \alpha+b \cos \beta+c \cos \gamma$
b) $a \sin \alpha+b \sin \beta+c \sin \gamma$
c) $x \cos \alpha+y \sin \beta+z \cos \gamma$
d) $x \sin \alpha+y \sin \beta+z \sin \gamma$

Paragraph for Question Nos. 539 to - 539

Whenever the terms on the two sides of the equation are of different nature, then equations are known as nonstandard form, some of them are in the form of an ordinary equation but cannot be solved by standard procedures.
Non-standard problems require high degree of logic, they also require the use of graphs, inverse properties of functions, inequalities
539. The number of solutions of the equation $2 \cos \left(\frac{x}{2}\right)=3^{x}+3^{-x}$ is
a) 1
b) 2
c) 3
d) None of these

Paragraph for Question Nos. 540 to - 540

If $\sin \alpha=A \sin (\alpha+\beta), A \neq 0$, then
540. The value of $\tan \alpha$ is
a) $\frac{A \sin \beta}{1-A \cos \beta}$
b) $\frac{A \sin \beta}{1+A \cos \beta}$
c) $\frac{A \cos \beta}{1-A \sin \beta}$
d) $\frac{A \sin \beta}{1+A \cos \beta}$

Paragraph for Question Nos. 541 to - 541

If $\alpha, \beta, \gamma, \delta$ are the solutions of the equation $\tan \left(\theta+\frac{\pi}{4}\right)=3 \tan 3 \theta$, no two of which have equal tangents
541. The value of $\tan \alpha+\tan \beta+\tan \gamma+\tan \delta$ is
a) $1 / 3$
b) $8 / 3$
c) $-8 / 3$
d) 0

Paragraph for Question Nos. 542 to - 542

$\sin \alpha+\sin \beta=\frac{1}{4}$ and $\cos \alpha+\cos \beta=\frac{1}{3}$
542. The value of $\sin (\alpha+\beta)$ is
a) $\frac{24}{25}$
b) $\frac{13}{25}$
c) $\frac{12}{13}$
d) None of these

Paragraph for Question Nos. 543 to - 543

To find the sum $\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}+\sin ^{2} \frac{8 \pi}{7}$ we follow the following method.
Put $7 \theta=2 n \pi$, where n is any integer
Then $\sin 4 \theta=\sin (2 n \pi-3 \theta)=-\sin 3 \theta$
This means that $\sin \theta$ takes the values $0, \pm \sin (2 \pi / 7), \pm \sin (4 \pi / 7)$ and $\pm \sin (8 \pi / 7)$.
Since $\sin (6 \pi / 7)=\sin (8 \pi / 7)$, from equation (1), we now get
$2 \sin 2 \theta \cos 2 \theta=4 \sin ^{3} \theta-3 \sin \theta$
$\Rightarrow 4 \sin \theta \cos \theta\left(1-2 \sin ^{2} \theta\right)=\sin \theta\left(4 \sin ^{2} \theta-3\right)$
Rejecting the value $\sin \theta=0$, we get
$4 \cos \theta\left(1-2 \sin ^{2} \theta\right)=4 \sin ^{2} \theta-3$
$\Rightarrow 16 \cos ^{2} \theta\left(1-2 \sin ^{2} \theta\right)^{2}=\left(4 \sin ^{2} \theta-3\right)^{2}$
$\Rightarrow 16\left(1-\sin ^{2} \theta\right)\left(1-4 \sin ^{2} \theta+4 \sin ^{4} \theta\right)=16 \sin ^{4} \theta-24 \sin ^{2} \theta+9$
$\Rightarrow 64 \sin ^{6} \theta-112 \sin ^{4} \theta-56 \sin ^{2} \theta-7=0$
This is cubic in $\sin ^{2} \theta$ with the roots $\sin ^{2}(2 \pi / 7), \sin ^{2}(4 \pi / 7)$ and $\sin ^{2}(8 \pi / 7)$
The sum of these roots is $\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}+\sin ^{2} \frac{8 \pi}{7}=\frac{112}{64}=\frac{7}{4}$
Now answer the following questions
543. The value of $\left(\tan ^{2} \frac{\pi}{7}+\tan ^{2} \frac{2 \pi}{7}+\tan ^{2} \frac{3 \pi}{7}\right)\left(\cot ^{2} \frac{\pi}{7}+\cot ^{2} \frac{2 \pi}{7}+\cot ^{2} \frac{3 \pi}{7}\right)$ is
a) 105
b) 35
c) 210
d) None of these

Paragraph for Question Nos. 544 to - 544

An altitude $B D$ and a bisector $B E$ are drawn in the triangle $A B C$ from the vertex B. It is known that the length of side $A C=1$, and the magnitudes of the angles $B E C, A B D, A B E, B A C$ form an arithmetic progression
544. The area of circle circumscribing $\triangle A B C$ is
a) $\frac{\pi}{8}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) π

Paragraph for Question Nos. 545 to - 545

Consider the cubic equation
$x^{3}-(1+\cos \theta+\sin \theta) x^{2}+(\cos \theta \sin \theta+\cos \theta+\sin \theta) x-\sin \theta \cos \theta=0$ whose roots are x_{1}, x_{2} and x_{3}
545. The value of $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ equals
a) 1
b) 2
c) $2 \cos \theta$
d) $\sin \theta(\sin \theta+\cos \theta)$

Paragraph for Question Nos. 546 to - 546

Consider the equation $\sec \theta+\operatorname{cosec} \theta=a, \theta \in(0,2 \pi)-\{\pi / 2, \pi, 3 \pi / 2\}$
546. If the equation has four real roots, then
a) $|a| \geq 2 \sqrt{2}$
b) $|a|<2 \sqrt{2}$
c) $a \geq-2 \sqrt{2}$
d) None of these

Paragraph for Question Nos. 547 to - 547

Consider the system of equations
$\sin x \cos 2 y=\left(a^{2}-1\right)^{2}+1$,
$\cos x \sin 2 y=a+1$
547. Number of values of a for which the system has a solution is
a) 1
b) 2
c) 3
d) Infinite

Paragraph for Question Nos. 548 to - 548

Consider the equation $\int_{0}^{x}\left(t^{2}-8 t+13\right) d t=x \sin (a / x)$
548. The number of real values of x for which the equation has solution is
a) 1
b) 2
c) 3
d) Infinite

Paragraph for Question Nos. 549 to - 549

Consider the system of equations
$x \cos ^{3} y+3 x \cos y \sin ^{2} y=14$
$x \sin ^{3} y+3 x \cos ^{2} y \sin y=13$
549. The value/values of x is/are
a) $\pm 5 \sqrt{5}$
b) $\pm \sqrt{5}$
c) $\pm 1 \sqrt{5}$
d) None of these

Given that $\Delta=6, r_{1}=2, r_{2}=3, r_{3}=6$
550. Circumradius R is equal to
a) 2.5
b) 3.5
c) 1.5
d) None of these

Paragraph for Question Nos. 551 to - 551

Let $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$
551. Area of the triangle is equal to
a) 9
b) 12
c) 11
d) 10

Paragraph for Question Nos. 552 to - 552

p_{1}, p_{2}, p_{3} are altitude of triangle $A B C$ from the vertices A, B, C and Δ is the area of the triangle
552. The value of $p_{1}^{-2}+p_{2}^{-2}+p_{3}^{-2}$ is equal to
a) $\frac{a+b+c}{\Delta}$
b) $\frac{a^{2}+b^{2}+c^{2}}{4 \Delta^{2}}$
c) $\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
d) None of these

Paragraph for Question Nos. 553 to - 553

Let O be a point inside a $\triangle A B C$ such that $\angle O A B=\angle O B C=\angle O C A=\theta$
553. $\cot A+\cot B+\cos C$ is equal to
a) $\tan ^{2} \theta$
b) $\cot ^{2} \theta$
c) $\tan \theta$
d) $\cot \theta$

Paragraph for Question Nos. 554 to - 554

Let D, E and F be the feet of altitudes from the vertices of acute-angled triangle $A B C$ to the sides $B C, A C$ and $A B$, respectively. Triangle $D E F$ is defined as the pedal triangle of triangle $A B C$. (R and r are circumradius and inradius of triangle $A B C$, respectively)
554. Consider the following statements:
i. orthocenter of the triangle $A B C$ is incentre of the triangle $D E F$
ii. A, B, C are excentres of triangle $D E F$
a) Only (i) is true
b) Only (ii) is true
c) Both (i) and (ii) are true
d) Both (i) and (ii) are false

Paragraph for Question Nos. 555 to - 555

Incircle of $\triangle A B C$ touches the sides $B C, A C$ and $A B$ at D, E and F, respectively. Then answer the following questions
555. $\angle D E F$ is equal to
a) $\frac{\pi-B}{2}$
b) $\pi-2 B$
c) $A-C$
d) None of these

Paragraph for Question Nos. 556 to - 556

Internal bisectors of $\triangle A B C$ meet the circumcircle at points D, E and F,
556. The length of side $E F$ is
a) $2 R \cos \left(\frac{A}{2}\right)$
b) $2 R \sin \left(\frac{A}{2}\right)$
c) $R \cos \left(\frac{A}{2}\right)$
d) $2 R \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$

Integer Answer Type

557. Number of solution(s) of the equation $\frac{\sin x}{\cos 3 x}+\frac{\sin 3 x}{\cos 9 x}+\frac{\sin 9 x}{\cos 27 x}=0$ in the interval $\left(0, \frac{\pi}{4}\right)$ is \qquad
558. Consider a $\triangle A B C$ in which the sides are $a=(n+1), b=(n+2), c=n$ with $\tan C=4 / 3$, then the value of $\Delta / 12$ is \qquad
559. Number of integral values of a for which the eqution $\cos ^{2} x-\sin x+a=0$ has roots when $x \in(0, \pi / 2)$ is
560. Number of integers ≤ 10 satisfying the inequality $2 \log _{1 / 2}(x-1) \leq \frac{1}{3}-\frac{1}{\log _{x^{2}-x^{8}}}$ is \qquad
561. Number of solutions of the equation $(\sqrt{3}+1)^{2 x}+(\sqrt{3}-1)^{2 x}=2^{3 x}$ is \qquad
562. Number of solution of the equation $\sin ^{4} x-\cos ^{2} x \sin x+2 \sin ^{2} x+\sin x=0$ in $0 \leq x \leq 3 \pi$ is \qquad
563. If $f(\theta)=\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta}$ then value of $8 f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)$ is \qquad .
564. Number of integral value(s) of m for the equation $\sin x-\sqrt{3} \cos x=\frac{4 m-6}{4-m}$ has solutions $x \in[0,2 \pi]$ is
\qquad
565. Suppose x and y are real numbers such that $\tan x+\tan y=42$ and $\cot x+\cot y=49$. Then the prime number by which the value of $\tan (x+y)$ is not divisible by 5 is \qquad
566. The altitudes from the angular points A, B and C on the opposite sides $B C, C A$ and $A B$ of $\triangle A B C$ are 210,195 and 182 , respectively. Then the value of $a / 30$ is (where $a=B C$) \qquad
567. If a, b and c represent the lengths of sides of a triangle, then the possible integral value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$ is \qquad
568. Number of roots the equation $2^{\tan \left(x-\frac{\pi}{4}\right)}-2(0.25)^{\frac{\sin ^{2}\left(x-\frac{\pi}{4}\right)}{\cos 2 x}}+1=0$ is \qquad
569. Two equilateral triangles are constructed from a line segment of length L. If M and m are the maximum and minimum value of the sum of the areas of two plane figures, then the value of M / m is \qquad
570. If $f(x)=2(7 \cos x+24 \sin x)(7 \sin x-24 \cos x)$, for every $x \in R$, then maximum value of $(f(x))^{1 / 4}$ is \qquad
571. In $\triangle A B C, A B=52, B C=56, C A=60$. Let D be the foot of the altitude from A, and E be the intersection of the internal angle bisector of $\angle B A C$ with $B C$. Find the length $D E$ is \qquad _
572. Sum of all integral values of x satisfying the inequality $\left(3^{5 / 2 \log _{3}(12-3 x)}\right)-\left(3^{\log _{2} x}\right)>32$ is \qquad
573. In triangle $A B C, \sin A \sin B+\sin B \sin c+\sin C \sin A=9 / 4$ and $a=2$, then the value of $\sqrt{3} \Delta$, where Δ is area of triangle, is \qquad
574. The value of $\operatorname{cosec} 10^{\circ}+\operatorname{cosec} 50^{\circ}-\operatorname{cosec} 70^{\circ}$ is
575. In $\triangle A B C$, if $r=1, R=3$ and $s=5$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{3}$ is \qquad
576. If $\log _{4} A=\log _{6} B=\log _{9}(A+B)$, then $\left[4 \frac{B}{A}\right]$ (where [•] represents the greatest integer function) equals
\qquad
577. The difference of roots of the equation $\left(\log _{27} x^{3}\right)^{2}=\log _{27} x^{6}$ is \qquad
578. Suppose α, β, γ and δ are the interior angles of regular pentagon, hexagon, decagon and dodecagon, respectively, then the value of $|\cos \alpha \sec \beta \cos \gamma \operatorname{cosec} \delta|$ is
579. The maximum integral value of a for which the equation $a \sin x+\cos 2 x=2 a-7$ has a solution is
580. Number of values of p for which equation $\sin ^{3} x+1+p^{3}-3 p \sin x=0(p>0)$ has a root is \qquad
581. The sides of triangle $A B C$ satisfy the relations $a+b-c=2$ and $2 a b-c^{2}=4$, then square of the area of triangle is \qquad
582. Suppose A and B are two angles such that $A, B \in(0, \pi)$, and satisfy $\sin A+\sin B=1$ and $\cos A+\cos B=0$. Then the value of $12 \cos 2 A+4 \cos 2 B$ is \qquad .
583. The area of a right triangle is 6864 square units. If the ratio of its legs is $143: 24$, then the value of $[r / 4]$, where [•] represents the greatest integer function, is \qquad
584. α and β are the positive acute angles and satisfying equations $5 \sin 2 \beta=3 \sin 2 \alpha$ and $\tan \beta=3 \tan \alpha$ simultaneously. Then the value of $\tan \alpha+\tan \beta$ is \qquad
585. If $\sin ^{3} x \cos 3 x+\cos ^{3} x \sin 3 x=3 / 8$, then the value of $8 \sin 4 x$ is
586. Number of roots of the equation $|\sin x \cos x|+\sqrt{2+\tan ^{2} x+\cot ^{2} x}=\sqrt{3}, x \in[0,4 \pi]$, are \qquad
587. Integral value of x which satisfies the equation $\log _{6} 54+\log _{x} 16=\log _{\sqrt{2}} x-\log _{36} \frac{4}{9}$ is \qquad
588. In $\triangle A B C$, if $\angle C=3 \angle A, B C=27$ and $A B=48$. Then the value of $A C / 7$ is \qquad
589. $\triangle A B C, \angle C=2 \angle A$ and $A C=2 B C$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ (where R is circum-radius of triangle) is
\qquad
590. Number of roots of the equation $(3+\cos x)^{2}=4-2 \sin ^{8} x, x \in[0,5 \pi]$ are \qquad
591. The value of $\left(\log _{10} 2\right)^{3}+\log _{10} 8 \cdot \log _{10} 5+\left(\log _{10} 5\right)^{3}$ is \qquad
592. The value of $\frac{\sin 1^{\circ}+\sin 3^{\circ}+\sin 5^{\circ}+\sin 7^{\circ}}{\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \sin 4^{\circ}}$ is \qquad -.
593. The absolute value of the expression $\tan \frac{\pi}{16}+\tan \frac{5 \pi}{16}+\tan \frac{9 \pi}{16}+\tan \frac{13 \pi}{16}$ is \qquad
594. If $x, y \in R$ satisfy $(x+5)^{2}+(y-12)^{2}=(14)^{2}$, then the minimum value of is \qquad
595. The value of $9 \frac{\sin ^{4} t+\cos ^{4} t-1}{\sin ^{6} t+\cos ^{6} t-1}$ is \qquad
596. Number of integers satisfying the inequality $\log _{1 / 2}|x-3|>-1$ is \qquad
597.

The value of $\sqrt{3}\left|\frac{\frac{2 \sin \left(140^{\circ}\right) \sec \left(280^{\circ}\right)}{\sec \left(220^{\circ}\right)}+\frac{\sec \left(340^{\circ}\right)}{\operatorname{cosec}\left(20^{\circ}\right)}}{\frac{\cot \left(200^{\circ}\right)-\tan \left(280^{\circ}\right)}{\cot \left(200^{\circ}\right)}}\right|$ is \qquad .
598. Let $A B C D E F G H I J K L$ be a regular dodecagon. Then the value of $\frac{A B}{A F}+\frac{A F}{A B}$ is equal to \qquad
599. In a triangle $A B C, \angle C=\frac{\pi}{2}$. If $\tan \left(\frac{A}{2}\right)$ and $\tan \left(\frac{B}{2}\right)$ are the roots of the equation $a x^{2}+b x+c=0(a \neq 0)$, then the value of $\frac{a+b}{c}$ (where, a, b, c are sides of Δ opposite to angles A, B, C resp.) is \qquad -
600. The reciprocal of $\frac{2}{\log _{4}(2000)^{6}}+\frac{3}{\log _{5}(2000)^{6}}$ is \qquad
601. If $\log _{10} \sin x+\log _{10} \cos x=-1 \operatorname{andlog} \log _{10}(\sin x+\cos x)=\frac{\left(\log _{10} n\right)-1}{2}$, then the value of $' n / 3^{\prime}$ is \qquad
602. Number of triangles $A B C$ if $\tan A=x, \tan B=x+1$ and $\tan C=1-x$ is \qquad -
603. The lengths of the tangents drawn from the vertices A, B and C to the incircle of $\triangle A B C$ are 5,3 and 2, respectively. If the lengths of the parts of tangents within the triangle which are drawn parallel to the sides $B C, C A$ and $A B$ of the triangle to the incircle are α, β and γ, respectively, then the value the value of $[\alpha+\beta+\gamma]$ (where [•] represents greatest integer function) is \qquad
604. Sum of integers satisfying $\sqrt{\log _{2} x-1}-1 / 2 \log _{2}\left(x^{3}\right)+2>0$ is \qquad
605. If $\left(1+\tan 5^{\circ}\right)\left(1+\tan 10^{\circ}\right)\left(1+\tan 15^{\circ}\right) \ldots\left(1+\tan 45^{\circ}\right)=2^{k}$, then the value of ' k^{\prime} is \qquad
606. In $\triangle A E X, T$ is the midpoint of $X E$, and P is the midpoint of $E T$. If $\triangle A P E$ is equilateral of side length equal to unity, then the value of $\left[(A X)^{2} / 2\right]$ is (where $[\cdot]$ represents greatest integer function) \qquad
607. The value of $\log _{(\sqrt{3+2 \sqrt{2}}+\sqrt{3-2 \sqrt{2}})} 2^{9}$ is \qquad
608. The maximum value of $y=\frac{1}{\sin ^{6} x+\cos ^{6} x}$ is \qquad
609. If $\cos 4 x=a_{0}+a_{1} \cos ^{2} x+a_{2} \cos ^{4} x$ is true for all values of $x \in R$, then the value of $5 a_{0}+a_{1}+a_{2}$ is
610. If $\log _{a} b=2 ; \log _{b} c=2$ and $\log _{3} c=3+\log _{3} a$, then the value of $c /(a b)$ is \qquad .
611. The least integer greater than $\log _{2} 15 \cdot \log _{1 / 6} 2 \cdot \log _{3} 1 / 6$ is \qquad
612. In a triangle $A B C$, if $A-B=120^{\circ}$ and $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{1}{32}$ then, the value of $8 \cos C$ is \qquad
613. If $a=\log _{245} 175$ and $b=\log _{1715} 875$, then the value of $\frac{1-a b}{a-b}$ is \qquad
614. A circle inscribed in a triangle $A B C$ touches the side $A B$ at D such that $A D=5$ and $B D=3$. If $\angle A=$ 60°, then the value of $[B C / 3]$ (where $[\cdot]$ represents greatest integer function) is \qquad
615. The value of a for which system of equations $\sin ^{2} x+\cos ^{2} y=\frac{3 a}{2}$ and $\cos ^{2} x+\sin ^{2} y=\frac{a^{2}}{2}$ has a solution is
616. The greatest integer less than or equal to $\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}$ is \qquad
617. In a triangle $A B C$ if $\tan A=\frac{1}{2}, \tan B=k+\frac{1}{2}$ an $\tan C=2 k+\frac{1}{2}$, then the possible value of [k], where [•] represents greatest integer function is \qquad .
618. The minimum value of $\sqrt{(3 \sin x-4 \cos x-10)(3 \sin x+4 \cos x-10)}$ is \qquad
619. In $\triangle A B C$, if $\cos A+\sin A-\frac{2}{\cos B+\sin B}=0$, then the value of $\left(\frac{a+b}{c}\right)^{4}$ is \qquad
620. In $\triangle A B C$ the incircle touches the sides $B C, C A$ and $A B$, representively, at D, E and F. If the radius of the incircle is 4 units and $B D, C E$ and $A F$ are consecutive integers, then the value of $s / 3$, where s is a semiperimeter of triangle, is \qquad
621. Let $0 \leq a, b, c, d \leq \pi$ where b and c are not complementary, such that
$2 \cos a+6 \cos b+7 \cos c+9 \cos d=0$ and $2 \sin a-6 \sin b+7 \sin c-9 \sin d=0$, then the value of $3 \frac{\cos (a+d)}{\cos (b+c)}$ is \qquad
622. The maximum value of $\cos ^{2}\left(45^{\circ}+x\right)+(\sin x-\cos x)^{2}$ is \qquad

: ANSWER KEY:

1)	c	2)	b	3)	a	4)	d	189)	d	190)	b	191)	a	192)
5)	a	6)	d	7)	c	8)	b	193)	c	194)	b	195)	b	196)
9)	b	10)	b	11)	a	12)	c	197)	d	198)	c	199)	a	200)
13)	b	14)	b	15)	b	16)	d	201)	b	202)	c	203)	d	204)
17)	a	18)	c	19)	d	20)	b	205)	d	206)	d	207)	a	208)
21)	b	22)	b	23)	c	24)	a	209)	b	210)	b	211)	c	212)
25)	d	26)	b	27)	d	28)	a	213)	b	214)	a	215)	b	216)
29)	a	30)	d	31)	b	32)	c	217)	b	218)	b	219)	d	220)
33)	a	34)	b	35)	a	36)	b	221)	d	222)	a	223)	c	224)
37)	b	38)	c	39)	b	40)	c	225)	c	226)	c	227)	a	228)
41)	d	42)	c	43)	c	44)	c	229)	a	230)	b	231)	b	232)
45)	d	46)	a	47)	a	48)	c	233)	a	234)	b	235)	c	236)
49)	d	50)	a	51)	a	52)	c	237)	c	238)	a	239)	c	240)
53)	a	54)	d	55)	a	56)	d	241)	c	242)	b	243)	a	244)
57)	a	58)	a	59)	d	60)	b	245)	b	246)	c	247)	b	248)
61)	b	62)	d	63)	b	64)	b	249)	a	250)	a	251)	d	252)
65)	a	66)	a	67)	b	68)	a	253)	b	254)	c	255)	c	256)
69)	a	70)	b	71)	c	72)	a	257)	b	258)	b	259)	a	260)
73)	b	74)	b	75)	c	76)	c	261)	c	262)	a	263)	d	264)
77)	b	78)	a	79)	a	80)	d	265)	a	266)	a	267)	a	268)
81)	b	82)	c	83)	a	84)	c	269)	d	270)	a	271)	c	272)
85)	a	86)	d	87)	c	88)	b	273)	c	274)	b	275)	c	276)
89)	b	90)	b	91)	b	92)	d	277)	d	278)	d	279)	c	280)
93)	b	94)	a	95)	a	96)	a	281)	b	282)	b	283)	c	284)
97)	c	98)	a	99)	c	100)	a	285)	d	286)	d	287)	d	288)
101)	c	102)	d	103)	d	104)	b	289)	c	290)	b	291)	a	292)
105)	b	106)	b	107)	a	108)	a	293)	d	294)	a	295)	a	296)
109)	a	110)	b	111)	c	112)	a	297)	a	298)	a	299)	a	300)
113)	a	114)	a	115)	c	116)	c	301)	d	302)	d	303)	c	304)
117)	b	118)	c	119)	b	120)	a	305)	d	306)	b	307)	c	308)
121)	d	122)	b	123)	d	124)	c	309)	d	310)	c	311)	a	312)
125)	b	126)	d	127)	a	128)	a	313)	d	314)	c	315)	a	316)
129)	d	130)	b	131)	d	132)	b	317)	c	318)	d	319)	a	320)
133)	a	134)	c	135)	c	136)	c	321)	b	322)	c	323)	b	324)
137)	a	138)	a	139)	a	140)	c	325)	c	326)	a	327)	a	328)
141)	b	142)	b	143)	c	144)	d	329)	b	330)	c	331)	b	332)
145)	c	146)	a	147)	d	148)	a	333)	d	334)	c	335)	c	336)
149)	c	150)	c	151)	c	152)	b	337)	b	338)	b	339)	d	340)
153)	d	154)	b	155)	d	156)	a	341)	b	342)	d	343)	c	344)
157)	c	158)	b	159)	d	160)	a	345)	a	346)	b	347)	d	348)
161)	b	162)	b	163)	c	164)	c	349)	b	350)	a	351)	c	352)
165)	c	166)	b	167)	b	168)	c	353)	c	354)	c	355)	b	356)
169)	d	170)	b	171)	b	172)	d	357)	a	358)	a	359)	b	360)
173)	a	174)	d	175)	a	176)	c	361)	c	362)	c	363)	c	364)
177)	b	178)	c	179)	a	180)	b	365)	a	1)	a,c	2)	a,c	3)
181)	b	182)	d	183)	a	184)	d		a,b	4)	a,b,c			
185)	c	186)	b	187)	c	188)	c	5)	a,c	6)	a,d	7)	a,c	8)

	b, c							41)	a	42)	d	43)	b	44)	
9)	a,b,c	10)	a,d	11)	b,c	12)		45)	a	46)	b	47)	b	48)	
	a,b,d							49)	c	50)	b	51)	a	52)	b
13)	a, c	14)	a,b,c,d	15)	a,b	16)		53)	d	54)	b	55)	a	56)	a
	a,c							57)	a	58)	d	1)	a	2)	C
17)	a,b,c,d	18)	c	19)	a,b,c,d	20)	c		3)	c	4)	a			
21)	b, c, d	22)	b, d	23)	c,d	24)		5)	c	6)	a	7)	d	8)	d
	a, b, c,							9)	b	10)	a	11)	b	12)	b
25)	c	26)	c,d	27)	a,b,c	28)		13)	b	14)	c	15)	a	16)	a
	a, b, c							17)	d	18)	b	19)	a	20)	a
29)	a,d	30)	a,b,c	31)	a, d	32)		1)	b	2)	b	3)	a	4)	a
	a,d							5)	a	6)	d	7)	a	8)	a
33)	a,b	34)	b	35)	a, b	36)		9)	b	10)	b	11)	a	12)	a
	a,c, d							13)	a	14)	a	15)	a	16)	a
37)	a,c	38)	a,c,d	39)	a,c	40)		17)	b	18)	d	19)	c	20)	a
	a,c							21)	a	1)	6	2)	7	3)	1
41)	a,b,d	42)	d	43)	a,c,d	44)			4)	9					
	a,b							5)	1	6)	4	7)	4	8)	4
45)	b,d	46)	b	47)	d	48)		9)	5	10)	7	11)	2	12)	0
	a,c							13)	2	14)	5	15)	6	16)	3
49)	a,c,d	50)	a,b,d	51)	a,c,d	52)		17)	3	18)	6	19)	8	20)	6
	a,b,c							21)	8	22)	1	23)	6	24)	1
53)	b,c,d	54)	a,c,d	55)	a,d	56)		25)	3	26)	8	27)	5	28)	4
	a,b							29)	4	30)	0	31)	4	32)	5
57)	b, c, d	58)	a,c	59)	a,b,c,d	60)		33)	8	34)	3	35)	1	36)	4
	a,b,c,d							37)	4	38)	1	39)	6	40)	2
61)	a,c	62)	a,d	63)	a,b	64)		41)	3	42)	4	43)	1	44)	6
	a,b,c							45)	4	46)	0	47)	6	48)	5
65)	b,c	66)	b,c	67)	a, b, c,			49)	5	50)	6	51)	6	52)	4
	68)	c						53)	5	54)	3	55)	3	56)	7
69)	a,d	70)	a,b,c	71)	a,d	72)	c	57)	5	58)	4	59)	1	60)	2
73)	a,b,c	74)	a,c	75)	a,c	76)		61)	2	62)	7	63)	4	64)	7
	b,c							65)	7	66)	3				
77)	b,c	78)	a,b,d	79)	a,c	80)									
	b,c,d														
81)	a,c	82)	a,b,d	83)	a,b	84)									
	b,d														
85)	c,d	86)	a,c,d	87)	a,b	88)									
	a,c														
89)	$\begin{aligned} & \mathbf{a , b}, \mathbf{c}, \mathbf{d} \\ & \text { a,b,c } \end{aligned}$	90)	a, c, d	91)	c,d	92)									
1)	a	2)	a	3)	d	4)	d								
5)	d	6)	d	7)	a	8)	b								
9)	d	10)	a	11)	d	12)	a								
13)	b	14)	a	15)	a	16)	d								
17)	d	18)	a	19)	c	20)	a								
21)	a	22)	d	23)	b	24)	b								
25)	a	26)	a	27)	a	28)	a								
29)	a	30)	d	31)	b	32)	a								
33)	b	34)	d	35)	a	36)	a								
37)	b	38)	a	39)	b	40)	a								
							AM	classes						a g e	

