7.THE P-BLOCK ELEMENTS

Single Correct Answer Type

1.	which of the following at rangements does not truly		9			
	a) $Br_2 < Cl_2 < F_2$: Oxidising power	b) Br $< Cl < F$: Ele				
	c) Br $< F < Cl$: Electron affinity	d) $Br_2 < Cl_2 < F_2$: Bo				
2.	Consider the following reactions in which atoms ha	ve been labelled with is	otopes (indicated by *)			
	(I) $S^*SO_3^{2-} + 2H^+ \rightarrow H_2SO_4 + S$					
	(II) $Na_2HgI_2I_2^* + 2AgNO_3 \rightarrow 2AgI + HgI_2 + 2NaNO_3$	3				
	In which case isotopes are equivalent in the produc	ts?				
	a) I b) II	c) Both I and II	d) None of these			
3.	What does Green Chemistry in terms of environment	nt mean?				
	a) Green house effect					
	b) Reactions related to depletion of ozone layer					
	c) Photosynthetic reactions in plants					
	d) Reduction in the use and production of hazardou	ıs chemicals				
4.	The number of $S - S$ bonds in sulphur trioxide trim	er, (S_3O_9) is				
	a) Three b) Two	c) One	d) Zero			
5.	Extra pure N ₂ can be obtained by heating					
	a) NH ₃ with CuO b) NH ₄ NO ₃	c) $(NH_4)_2 Cr_2O_7$	d) Ba (N ₃) ₂			
6.	Which of the following is not a chalcogen?		5 . 5.2			
	a) Se b) 0	c) S	d) Na			
7.	Select the correct statements		,			
	a) Helium has the lowest melting point and boiling point					
	b) Helium can diffuse through rubber, PVC and even glass					
	c) Ar, Kr and Xe form clathrate					
	d) All the above are correct statements					
8.	Select the correct statement(s)					
	a) Cl ₂ O and ClO ₂ are used as bleaching agents and a	as germicides				
	b) I_2O_5 is used in the quantitative estimation of CO	J				
	Bond angle XOX varies in the order					
	c) FOF < ClOCl < BrOBr					
	d) All of the above are correct statements					
9.	Chlorine dioxide					
	a) Is paramagnetic in nature	b) Has odd-electron b	ond			
	c) Is stable	d) Has all the above p				
10.	Of the following acids	, ,	•			
	I. Hypophosphorous acid					
	II. Oxalic acid					
	III. Glycine					
	a) I, II are monobasic, III dibasic and amphoteric					
	b) II monobasic, I dibasic acid, III amphoteric					
	c) I monobasic, II dibasic, III amphoteric					
	d) I, II dibasic, III amphoteric					
11.	In case of oxygen family (Group 16)					
• •	a) The tendency for catenation decreases markedly	as we go down the grou	D C			
	Maximum coordination of oxygen is four due to l	_	_			
	b) presence of d -orbital					
	c) The tendency to form multiple bonds with C, N a	nd 0 decreases as going	down the group from S to Te			
	1	0 0	U 1			

	d) All of the above are con			
12.	Dissociation of HI into H ₂	$_{2}$ and I_{2} is		
	a) Kinetically controlled			
	b) Thermodynamically co	ontrolled		
	c) Kinetically as well as the	hermodynamically controll	ed	
	d) Neither kinetically nor	thermodynamically contro	olled	
13.	Which is most basic fluor	ide?		
	a) XeF ₆		b) XeF ₂	
	c) XeF ₄		d) None is basic, all are a	cids
14.	Which one of the following	ng is not a true "per acid"?		
	a) HClO ₄	b) H ₂ SO ₅	c) $H_2S_2O_8$	d) H ₃ PO ₅
15.	Maximum coordination n	umber of oxygen in liquid v	water is	
	a) Two	b) Three	c) Four	d) Five
16.	ClO ₂ is the anhydride of			
	a) HOCl	b) HClO ₂	c) HClO ₃	d) HClO ₂ and HClO ₃
17.	Which of the following at	oms has the highest ionizat	tion energy?	
	a) F	b) Cl	c) Br	d) I
18.	Na ₂ CO ₃ reacts with SO ₂ i	n alkaline medium to produ	ace	
	a) Na ₂ SO ₄	b) Na ₂ SO ₃	c) NaHSO ₄	d) NaHSO ₃
19.	HClO ₄ , HNO ₃ and HCl are	all very strong acids in aqu	ieous solution. In glacial ac	etic acid medium, their acid
	strength is such that			
	a) $HClO_4 > HNO_3 > HCl$		b) $HNO_3 > HClO_4 > HCl$	
	c) $HCl > HClO_4 > HNO_3$		d) $HCl > HClO_4 \sim HNO_3$	
20.	Thermal stability of hydr	ates of group 18 elements		
	a) Increases down the gr	oup	b) Decreases down the gr	roup
	c) Remains unchanged		d) First increases up to A	r and then decreases
21.	"Chlorine-type" laundry	bleaches are in reality aque	ous solution of	
	a) HOCl	b) HClO ₃	c) NaClO ₃	d) NaOCl
22.	Basic character of fluorid	es increases in the order		
		b) $XeF_2 < XeF_4 < XeF_6$	c) $XeF_2 = XeF_4 < XeF_6$	d) $XeF_2 > XeF_4 < XeF_6$
23.	S - S bond is present in			
	a) α -(SO ₃) _n	b) γ -(S ₃ O ₉)	c) $H_2S_2O_3$	d) $H_2S_2O_8$
24.	-	absorption of oxygen and i	_	
	a) Caustic soda	b) Pyrogallol	c) Conc sulphuric acid	d) Turpentine oil
25.	Which is/are true statem	` '		
		n order $F^- > Cl^- > Br^- > 1$	I-	
	b) HI is strongest acid of			
		M-X bond decreases in the	ne order M $-$ F $>$ $M - Cl >$	$\rightarrow M - Br > M - I$
	d) All the above are corre			
26.	Ozone layer is being depl		1) (1) (1)	,
	a) No emission from supe	ersonic jets	b) Chlorofluorocarbon us	sed as aerosols
	c) Both (a) and (b)		d) None of the above	
27.	=	ydrides of oxygen family is		~ II C. ~ II C
	a) H_2 Po $< H_2$ Te $< H_2$ Se $<$		b) $H_2Po < H_2O < H_2Te <$	
20	c) $H_2S < H_2O < H_2Te <$		d) $H_2O < H_2S < H_2Te <$	$H_2Se < H_2P0$
28.	Consider the following co			
	I. $Na_2S_2O_3$ II. $Na_2S_4O_3$	· -	fforent evidation states for	same time of stores
		identify those that have di		
29.	a) I and III The term 'thie' is used in	b) I and III	c) I and II	d) I, II and III
<u>۷</u> ٦.		the names of all of the follo	= = =	d) Na CO
	a) $Na_2S_2O_3$	b) NaCS ₃	c) NaSCN	d) Na ₂ SO ₃

50.	MOSt a	bunuant i	1001	e gas ili ali is			
	a) He			b) Ne		c) Rn	d) Ar
31.	A rare	gas that v	vas (detected in the su	un before its disc	covery on earth is	
	a) He			b) Ne		c) Ar	d) Kr
32.	Aqueo	us hypo s	oluti	ion on reaction w	vith aqueous Agl	NO ₃ gives	
	_			ing to black	1 0	b) White ppt chan	ging to black
	-		_	ing to blue		d) No ppt	88
33	-			_	s used by the div	ers inside the sea?	
00.	a) 0 ₂ -			b) $O_2 + X_0$		c) $O_2 + Ar$	d) $O_2 + N_2$
34			امسا	ng is not oxidise		02 1 711	u) 02 1 102
JT.	a) KI	of the fon	IO VV I	b) FeSO ₄	u by O ₃ :	c) KMnO ₄	d) K ₂ MnO ₄
35.	-	ır diovido	low	els in the atmosp	horo can ho rodi	•	uj Kzwiio4
55.	_			ers in the atmosp	nere can be reut		y to attract it in factory chimneys
	-	e efficient		-		d) Low-sulphur fu	-
26	-			-engines ducing agent whe	nn.	u) Low-Suipiiui iu	leis
30.	_	sed over h		0 0	511	b) Mirrod with mai	int II C
	•				alution	b) Mixed with moi	-
27				cidified KMnO ₄ s	olution	d) Passed through	reso ₄ solution
37.		$HCl \rightarrow A +$			C C + - C 1	C-l++l	
		is passed i	into	aqueous solution	n of C to form A.	Select the correct s	statements based on the above
	facts				12 . 1		
	-		_	es from yellow t		n	
	-			acetate paper bla			
				colour with K ₃ [I	e(CN) ₆]		
0.0	-	he above					
38.	_		and	ionization consta	ant are maximur		
	a) HF,			b) HF, HI		c) HI, HF	d) HI, HI
39.			of su	lphur used as a s	solvent in rubbe		
	, -	(OH)Cl		b) SO ₂		c) SO ₃	d) S_2Cl_2
40.		_		ower of fluorine	is due to		
	a) Higl	n electron	affi	nity			
	b) Higl	h heat of c	lisso	ciation and low	heat of hydratio	n	
	c) Low	heat of d	isso	ciation and high	heat of hydratio	n	
	d) Higl	h heat of c	lisso	ciation and high	heat of hydratic	on	
41.	Which	is most th	ıern	nodynamically st	able allotropic fo	orm of phosphorus	?
	a) Red			b) White		c) Black	d) Yellow
42.	Which	one of the	e fol	lowing is square	planar?		
	a) XeF	4		b) XeO ₄		c) XeO ₃ F	d) XeO_3F_2
43.	Na_2S_2	0_3 is used	in p	hotography for f	fixing the negativ	ve. It removes the A	AgBr by
	a) Con	nplex form	natio	on $Na_3[Ag(S_2O_3)$	2]	b) Oxidation of Ag	Br to Br ₂
	c) Red	uction of	AgB	r to Ag		d) Formation of do	ouble salt
44.	Which	of the foll	lowi	ng have highest	melting points?		
	a) <i>p-</i> b	lock elem	ents	b) s- block	k elements	c) <i>d</i> -block elemen	nts d) None of these
45.	Match	Column I	witl	n Column II and s	select the correc	t answer using the	codes given below the column
	С	olumn I		Column II			
	A	KeF ₄	1	Distorted			
				octahedral			
		KeF ₆	2	Tetrahedral			
		XeO_3	3	Square planar			
	Codes	XeO ₄	4	Pyramidal			
	coues						

A B C D

	a) 1 2 3 4		b) 3 1 4 2	
	c) 1 3 2 4		d) 2 4 1 3	
46.	Which is the strongest ox	ridizing agent out of the fol	lowing?	
	a) I ₂	b) Cl ₂	c) Br ₂	d) F ₂
47.	SO ₂ can reduce			
	a) HClO ₃ to HCl	b) $Cr_2O_7^{2-}/H^+$ to Cr^{3+}	c) MnO_4^-/H^+ to Mn^{2+}	d) All of those
48.	· ·	nitrite on mixing with sulph	nuric acid produces	
	a) $BaSO_4 + HNO_2$	=	c) $BaSO_4 + NO_2$	d) $BaSO_4 + N_2 + O_2$
49.	ClO ₃ is the mixed anhydr		5) - 3.5 54 . 3.6 2	
	a) HClO ₂ and HClO ₃		c) HClO ₂ and HClO ₄	d) HClO ₂ and HClO ₃
50	Oxalic acid on heating wi	, ,	oj maroz una maro.	a) more z una more 3
50.	a) H ₂ O and CO ₂	b) CO, CO_2 and H_2O	c) CO ₂ and H ₂ S	d) CO and CO ₂
51		as mixture is used by the di		a) do ana do ₂
J1.	a) O_2 + He	b) 0_2 + Xe	c) $0_2 + Ar$	d) $O_2 + N_2$
52.		following reagents except		u) 02 1 N2
JZ.	a) K_2MnO_4	Tollowing reagents except	=	
	, <u> </u>	1.	b) Moist iodine	
F 2	c) Potassium ferrocyanic		d) Mercury	
53.		vith bleaching powder form		1) ((())
- 4	a) CHCl ₃	b) CCl ₃ CHO	c) CH ₂ ClCHO	d) CCl ₄
54.	End-product of the hydro) W O	D. W. O
	a) XeF ₄ O	b) XeF ₂ O ₂	c) XeO ₃	d) XeO_3^-
55.		I_2SO_5 and $H_2S_2O_8$ peroxy a		
	a) $H_2S_2O_3$, $H_2S_4O_6$		c) H_2SO_5 , $H_2S_2O_8$	d) $H_2S_2O_3$ and $H_2S_2O_8$
56.	The active constituent of	= = =		
	a) Ca(OCl) ₂	b) Ca(OCl)Cl	c) $Ca(ClO_2)_2$	d) Ca(ClO ₂)Cl
57.	Liver of sulphur is a mixt			
		ide (A) and potassium thio	ousulphate (B)	
	b) Potassium carbonate (, , , , ,		
	c) Potassium disulphide	(D) and (B) above		
	d) (<i>B</i>) and (<i>D</i>) above			
58.	Oil of vitriol is			
	a) HNO ₃	b) HCl	c) H_2SO_4	d) H_3PO_4
59.	For advertisement the co	oloured discharged tubes co	ontain	
	a) He	b) Ne	c) Ar	d) Kr
60.	= = = =		XI and $CHCl_3$ added. It is obs	
	a) Violet colour in CHCl ₃	-	b) Yellow colour in CHCl ₃	· =
	c) Yellow colour in aqueo	_	d) Violet colour in CHCl ₃	=
61.			imum. It is because in case o	
	a) Electrons are nearer to	o fluorine due to high elect	ronegativity of F compared	to Cl to Br
	b) Lone pair-lone pair re	pulsion decreases bond an	gle	
	c) Both (a) and (b) are co	orrect		
	d) None of the above is co	orrect		
62.	Which is the incorrect sta	atement?		
	a) All halogens form oxy	acids		
	b) All halogens show -1 ,	+1, +3, +5, +7 oxidation s	states	
	c) Hydrofluoric acid forn	ns KHF_2 and K_2F_2 and attac	cks glass	
	d) Oxidising power is in o	order $F_2 > Cl_2 > Br_2 > I_2$		
63.	Estimation of ozone can	be made quantitatively by		
	a) Decomposition into 0;	$_2$ and absorption of $\rm O_2$ into	pyrogallol	

	c) Uxidative ozonolysis method		
	d) All methods given above		
64.	Consider the following compounds		
	I. Sulphur dioxide		
	II. Hydrogen peroxide III. Ozone		
	Among these compounds, those which can act as	bleaching agents would incl	ude
	a) I and III b) II and III	c) I and II	d) I, II and III
65.	Least stable oxide of chlorine is		
	a) Cl ₂ O ₄ b) ClO ₂	c) Cl ₂ O ₇	d) Cl_2O_6
66.	Acid strength of H X ($X = F, Cl, Br, I$) is dependent	on	
	a) The electronegativity differences of H and X		
	b) The tendency of the hydrated molecule to form	ı H ⁺	
	c) Both (a) and (b)		
	d) None of the above		
67.	All of the following have a tetrahedral shape exce	pt	
	a) SO ₄ ²⁻ b) XeF ₄	c) ClO_4^-	d) XeO ₄
68.	Which have distorted geometry based on VSEPR i	model?	
	a) XeF ₂ , XeF ₄ , XeO ₃ b) XeOF ₂ , XeO ₃ , XeF ₂	c) NH_3 , SO_2 , H_2O	d) All of these
69.	Xenon fluorides acts as fluoride acceptor with		
	a) RbF b) CsF	c) Both (a) and (b)	d) None of these
70.	When molten sulphur is suddenly cooled by pour	ing into water, it takes the f	orm of
	a) Milk of sulphur b) Colloidal sulphur	c) Flower of sulphur	d) Plastic sulphur
71.	An important product in the ozone depletion by c	hlorofluorocarbons is	
	a) Cl ₂ b) OCl	c) F ₂	d) O_2F_2
72.	Hydrates of helium and neon have not been prepa	ared because of	
	a) Low polarisability b) Small size	c) Low boiling point	d) All of these
73.	A bottle completely filled with conc. H_2SO_4 is left	unstoppered for several day	ys and we observe
	spontaneous overflow of acid. It is due to		
	a) Change in temperature	b) Hygroscopic nature	of H ₂ SO ₄
	c) Absorption of air by H ₂ SO ₄	d) Dehydration of H ₂ SC	4
74.	Which of the following bonds has the least energy	<i>i</i> ?	
	a) Se – Se b) Te – Te	c) S – S	d) $0 - 0$
75.	Helium accumulates in the earth's crust through		
	a) α -decay of radioactive element	b) Thermonuclear reac	tions
	c) β -decay of radioactive element	d) γ -decay of radioactive	re element
76.	Which reaction is not feasible?		
	a) $2KI + Br_2 \rightarrow 2KBr + I_2$	b) $2KBr + I_2 \rightarrow 2KI + B$	r_2
	c) $2KBr + Cl_2 \rightarrow 2KCl + Br_2$	d) $2H_2O + 2F_2 \rightarrow 4HF -$	+ O ₂
77.	The tetrahedral arrangement of perchlorate ion is	s due to	
	a) Presence of a lone pair of electrons	b) Trigonal bipyramida	l shape of the ion
	c) sp ³ hybridisation	d) sp^2 hybridisation	
78.	The inert gas abundantly found in atmosphere is		
	a) Kr b) He	c) Ar	d) Xe
79.	The reaction of P_4 with X leads selectively to P_4O_6		
	a) dry O_2	b) A mixture of O ₂ and I	
	c) Moist O ₂	d) O ₂ in the presence of	=
80.	A considerable part of the harmful UV rays of the		ace of the earth. This is
	because high above the earth's atmosphere, there		
	a) O ₃ b) CO ₂	c) SO ₂	d) NO
81.	Oxidative ozonolysis of 2-butene in the presence	of Zn or dimethyl sulphide f	orms

	a) CH ₃ CHO	b) CH ₃ COOH	c) CO ₂	d) $(CH_3)_2CO$
82.	0 0	of the following is		
	a) H ₂ S	b) Cl ⁻	c) SO_4^{2-}	d) 0_3
83.	Cl ₂ O, Br ₂ O, I ₂ O have position	tive value of ΔG (free energ	y) indicating that	
	a) These oxides are stabl	e		
	b) These oxides are unsta	able and changes to X_2 and	0_2	
	c) These disproportionat	e into X^- and $X0^-$		
	d) These oxides can form	interhalogen compounds		
84.	Inert atmosphere for wel	ding of metals is obtained b	ру	
	a) Ar, He	b) N ₂ , He	c) O_2 , N_2	d) Ar, N ₂
85.	Yellow oils of sulphur is/	are	,	-
	a) H ₂ S	b) H_2S_2 , H_2S_3	c) H ₂ SO ₄	d) CS ₂ , NH ₂ CSNH ₂
86.	10 g of bleaching powder		ed 100 mL of 1 N hypo. Thu	is, % of pure bleaching
	powder is	•	• • • • • • • • • • • • • • • • • • • •	
	a) 100%	b) 80%	c) 63.5%	d) 35.5%
87.			for the industrial and labora	•
		ate in respect of all of the fo		<i>y</i> 1 1
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
88.	Which of the following ga	•	·, _ · · · · · · · · · · · · · · · · · ·	,
	a) SO ₂	b) H ₂	c) NH ₃	d) CO ₂
89.	· -	sulphur by the borehole mo	, ,	u) u 2
07.	a) The Frasch process	outpilat by the boronois	b) The Lablanc process	
	c) The Calcaroni process		d) The Mannheium proce	SS
90.	•	oduct is formed by the read	ction of sulphur dioxide wit	
, 0.	sunlight?	oddet is formed by the read	ction of surpliar aloxide with	in emorme in presence or
	a) SO ₂ Cl	b) SO ₂ Cl ₂	c) SOCl ₂	d) SO ₃ Cl
91		ng compounds is not a prote	· -	u) 503 di
71.	a) SO(OH) ₂	b) SO ₂ (OH) ₂	c) B(OH) ₃	d) $Po(OH)_3$
92	Shape of O_2F_2 is similar t	· · -	c) b(on)3	u) 10(011)3
<i>,</i> <u>.</u> .	a) C_2F_2	b) H ₂ O ₂	c) H_2F_2	d) C ₂ H ₂
93	Which of the following ha		c) 1121 2	uj džiiž
,,,	a) $H_2S_2O_6$	b) H ₂ S ₂ O ₈	c) $H_2S_2O_3$	d) H ₂ S ₄ O ₆
Q1.	Select the incorrect state:	•	c) 1123203	u) 1125406
74.		l as bleaching agents for pa	nor nuln and toytiles	
	b) OCl ⁻ (hypohalites) sal		per purp and textiles	
	c) OCl ⁻ disproportionate	•		
		by Br ⁻ in acidic medium		
05	XeF_6 is conducting in the			
93.	*	b) RbF	e) HE	d) All of those
06	a) BF ₃		c) HF	d) All of these
96.			h) ClO is navamagnatica	nd oviete in liquid etete
	a) Cl_2O_6 is diamagnetic in		b) ClO ₃ is paramagnetic a	-
07	c) Cl ₂ O ₆ is anhydride of I	•	d) ClO ₃ forms dimer due t	-
97.	_	-	banned as they were conta	minated with radioactivity
			e beyond prescribed limit?	12. 4.
00	a) F	b) Cl	c) I	d) At
98.	For H ₃ PO ₃ and H ₃ PO ₄ the		1) II DO : 101 : .	1 .
	a) H ₃ PO ₃ is dibasic and re	-	b) H ₃ PO ₃ is dibasic and no	-
0.0	c) H ₃ PO ₃ is tribasic and re	-	d) H ₃ PO ₃ is tribasic and no	on reducing
99.	Which does not have (S -		\ a .	N. G. G
	a) $H_2S_2O_3$	b) H ₂ S ₂ O ₅	c) $H_2S_2O_4$	d) S ₃ O ₉

100.	The absorption of UV rad			
	=	s of our planet from injurio		
		ım between the concentrat	tions of 0_2 and 0_3	
	c) Makes both the function	n effective		
	d) Makes no function effe	ctive		
101.	Acid strength of oxoacids	of chlorine is in order		
	a) HOCl < HClO ₂ < HClO ₃	$_3 < HClO_4$	b) $HClO_4 < HClO_3 < HClO_3$	$O_2 < HOCl$
	c) $HClO_3 < HClO_4 < HClO_4$	$O_2 < HOCl$	d) $HClO_2 < HClO_3 < HOO$	$Cl < HClO_4$
102.	Which one of the followin	g is the weakest base as pe	er the Bronsted concept?	
	a) [ClO ₄] ⁻	b) [ClO ₃] ⁻	c) [ClO ₂] ⁻	d) [ClO] ⁻
103.	H ₂ S precipitates aqueous	ZnCl ₂ solution in		
	a) Acidic medium	b) Neutral medium	c) Both (a) and (b)	d) None of these
104.	Among the following the	number of compounds tha	t can react with PCl ₅ to give	$e POCl_3 is O_2$, CO_2 , SO_2 , H_2O ,
	$H_2 SO_4, P_4O_{10}$			
	a) 1	b) 2	c) 3	d) 4
105.	Consider the following bo	oron halides		
	I. BF ₃ II. BCl ₃			
	III. BBr ₃ IV.Bl ₃			
		s of these halides are such t	that	
	a) $I < II < III < IV$	b) $I < III < II < IV$	c) IV < <i>III</i> < <i>II</i> < <i>I</i>	d) $IV < II < III < I$
106.	The [XeF] ⁺ ions are attacl	=	,	,
	a) With a linear F-bridge	[- 0]	b) With an angular F-brid	ge
	c) With H-bond		d) With tetrahdral F-brid	•
107.		n convert acidified $Cr_2O_7^{2-}$	- · ·	5
1071	_	b) SO ₃ /H ₂ SO ₃ /H ₂ S	_	d) $S_2O_3^{2-}/SO_3/Fe^{3+}$
108			n the solution of the halide	, _ , , ,,
100.	a) Br ₂ added to NaI	=	c) Cl ₂ added to KCl	d) Cl ₂ added to NaF
100	$CaOCl2 + H2O + CO2 \rightarrow C$		c) Gi ₂ added to KGi	u) Ci ₂ added to Nai
10).	This reaction is simply	aco3 + caci2 + floci		
	a) Oxidation		b) Reduction	
	c) Redox		d) Hydrolysis in presence	of CO
110		fronza in the presence of	Ar, Kr or Xe under pressure	
110.				
	a) $\frac{\text{Atoms of noble gas (a)}}{\text{composition } 8G \cdot 26\text{H}_2}$		ice of ice giving clathrates c	orresponding to the
	b) These are called noble			
	c) Both (a) and (b) are co			
111	d) None of the above is co			
111.	There is $p\pi$ - $d\pi$ multiple by	•	a) NO	4) NO
112	a) CS ₂	b) CO ₂	c) NO ₂	d) NO
112.), acidity of H_2O is maximum	im because	
	a) Oxygen contains two lo		ann.	
	_	ess than 109°28′ due to VSE	SPK	
	c) Oxygen is more electro	=		
110	d) H ₂ O is an associated lie	=	. 11: 1 7: 1	
113.	= =	s in the monoatomic state i	n metallic lattice. It also exi	sts in two crystalline forms
	The metal is	13.5.1	201	15 m 11 · ·
	a) Sulphur	b) Polonium	c) Selenium	d) Tellurium
114.	Consider the following sp			
	I. $[O_2]^{2-}$ II. $[CO]^+$ II			
	Among these species sign	na bond alone is present in		

	a) I, II, and III	b) II alone	c) II and III	d) I alone
115	. When Cl ₂ is passed throug	gh cold dil. NaOH, the prod	ucts are	
	a) NaCl, NaOCl and H ₂ O	b) NaCl, NaClO ₂ and H ₂ O	c) NaCl, NaClO ₃ and H ₂ O	d) NaCl, NaClO ₄ and H ₂ O
116	. Consider the following pr	operties of the noble gases		
		ounds which are colourles		
	II. They generally do not f			
		idation states in their comp	oounds	
	IV. Generally do not form	=		
	Select the correct propert	-		
	a) I, II, III	b) II, III	c) I, III	d) I
117		mpounds possesses Lewis	•) -
	I. BF ₃ II. SiF ₄	III.PF ₅		
		using the codes given belo	W	
	Codes	asing the cours given sele		
	a) I alone	b) I, II and III	c) II and III	d) I and III
11Ω	. The interhalogen compou	=	c) ii ana iii	uj i anu in
110	a) ICl	b) IF ₅	c) BrF ₅	d) BrCl ₇
110		D) 11 ⁻⁵	C) DIF5	u) bi Gi ₇
119	. Hypervalent ion is/are	b) PO ₄ ³⁻	a) CO2-	4) CIO-
120	a) SO_3^{2-}	, 1	c) SO_4^{2-}	d) ClO ₄
120	. Consider the following tra			
	I. $XeF_6 + NaF \rightarrow Na^+[XeF_6]$			
	II. $2PCl_5(s) \rightarrow [PCl_4]^+[PC]$	-		
		$\rightarrow [Al(H_2O)_5OH]^{2+} + H_3O^+$		
	Possible transformation			
	a) I, II, III	b) I, III	c) I, II	d) II, III
121	-	-	s of chlorine is removed usi	=
	a) CaOCl ₂ , Na ₂ SO ₃	b) Na ₂ S ₂ O ₃ , CaOCl ₂		d) $CaOCl_2$, $Na_2S_2O_3$
122		ement in the universe (afte		
	a) Al	b) Fe	c) He	d) Ne
123	. In the following			
	a) CSI ₃ will ionize to give		b) RbICl ₂ will give RbCl and	
	c) KBrICl will give KCl and		d) All of the above are cor	rect
124	. Which is/are true stateme	ents?		
	a) Sulphur trioxide exists	as cyclic trimer in solid sta	ite, S_3O_9	
	b) Selenium trioxide solid	is a cyclic tetramer, Se_4O_1	2	
	c) TeO ₃ is a solid with a n	etwork structure in which	TeO ₆ octahedra share all ve	ertices
	d) All of the above are cor	rect		
125	$1.5_{2}0_{3}^{2-}$ has			
	a) S – S linkage			
	b) S – O linkage			
	c) Both (a) and (b)			
	d) None of these			
126	. Which of the underlined a	itoms in oxyacids have sp^3	hybridised atoms?	
		b) H ₂ SO ₄ , H ₃ PO ₄ , HNO ₃	<u>-</u>	d) H <u>Cl</u> O ₄ , H <u>N</u> O ₃ , H <u>Cl</u> O ₃
127	· — — —		of HF as non- aqueous solve	
	a) HCl behaves as an acid			
	b) HClO ₄ behaves as a bas			
		ve as base and HF as an aci	d	
	d) All of the above are cor			
	=, ==== or end above are cor			

128. Which one is the strongest bond?

	a) Br – F	b) F – F	c) Cl – F	d) Br – Cl
129.	Bleaching powder is disin	fectant for purification of v	vater when water born ger	ms are killed. But
	disinfectant activity is des	stroyed. It is due to its dispi	oportion into	
	a) CaCl ₂ and Cl ₂	b) CaCl ₂ and Ca(ClO ₃) ₂	c) CaO and Cl ₂	d) CaO, Cl ₂ and CaCl ₂
130.	-	s in traffic signals is due to	-	,
	a) Sb_2S_3	b) HgI ₂	c) CdS	d) CdSe
131.		vo-centre two electron bon	ds and three centre-four el	•
	include			
	a) B ₂ H ₆ and SiF ₄	b) XeF ₆ and BF ₆	c) B ₂ H ₆ and XeF ₆	d) B ₂ H ₆ alone
132.		used in vulcanization of rub		, <u> </u>
	a) SF ₆	b) CF ₄	c) Cl ₂ F ₂	d) C_2F_2
133.	Alkali ozonides are		,	, <u> </u>
	a) Paramagnetic in nature			
		e and decompose to supero	xides	
		as size of alkali metal decre		
	d) Having all the above sta			
134.	XeF ₂ formswith AsF ₅			
	a) XeF ⁺ cation and AsF ₄ ⁺		b) XeF ₂ ⁻ anion and AsF ₄ ⁺	
	c) AsF ₄ ⁺ cation and AsF ₄ ⁻		d) XeF+cation and AsF ₆ a	nion
135.	In the presence of H ₂ O, SO	o ₂ acts as		
	a) An oxidizing agent	b) A reducing agent	c) A hydrolyzing agent	d) A redox reagent
136.	Which one will liberate Br	r ₂ from KBr?		
	a) I ₂	b) SO ₂	c) HI	d) Cl ₂
137.	Iodine test is shown by			
	a) Glucose	b) Starch	c) Glycogen	d) Polypeptide
138.	In the preparation of HBr	or HI, Na X ($X = Br, I$) is tre	eated with ${ m H_3PO_4}$ and not b	y conc. H ₂ SO ₄ and since
138.			eated with H_3PO_4 and not be by H_2SO_4 oxidises HX to X	
138.	In the preparation of HBr a) H ₂ SO ₄ makes the react c) Na ₃ PO ₄ is water solubl	ion reversible		$Z_2(Br, I)$
	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water soluble	ion reversible	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water solubl	$Z_2(Br, I)$
	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water solubl Which of the following specific	ion reversible e ecies have undistorted octa	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water solubl	$Z_2(Br, I)$
	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water solubl Which of the following sp. I. $\rm SF_6$ II. $\rm PF_6^-$	ion reversible e ecies have undistorted octa	b) H_2SO_4 oxidises HX to X d) Na_2SO_4 is water soluble whedral structures? SeF ₆	$Z_2(Br, I)$
	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water solubl Which of the following sp. I. $\rm SF_6$ II. $\rm PF_6^-$	ion reversible e ecies have undistorted octa III. SiF ₆ ^{2–} IV	b) H_2SO_4 oxidises HX to X d) Na_2SO_4 is water soluble whedral structures? SeF ₆	$Z_2(Br, I)$
139.	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water solubl Which of the following spot. SF ₆ II. $\rm PF_6^-$ Select the correct answer	ion reversible e ecies have undistorted octa III. SiF ₆ ^{2–} IV. using the codes given belov b) I, III and IV	b) H_2SO_4 oxidises HX to X d) Na_2SO_4 is water soluble whedral structures? SeF ₆	Y ₂ (Br, I) e
139.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following specific $I.SF_6$ II. PF_6^- Select the correct answer a) II, III and IV	ion reversible e ecies have undistorted octa III. SiF ₆ ^{2–} IV. using the codes given belov b) I, III and IV	b) H_2SO_4 oxidises HX to X d) Na_2SO_4 is water soluble whedral structures? SeF ₆	Y ₂ (Br, I) e
139. 140.	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water solubl Which of the following spot. SF ₆ II. PF ₆ Select the correct answer a) II, III and IV The gas not absorbed by $\rm CO_4$	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble shedral structures? . SeF ₆ w c) I, II and III	Y ₂ (Br, I) e d) I, II and IV
139. 140.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following specific $I.SF_6$ II. PF_6^- Select the correct answer a) II, III and IV. The gas not absorbed by G a) G	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble shedral structures? . SeF ₆ w c) I, II and III	Y ₂ (Br, I) e d) I, II and IV
139. 140.	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water soluble. Which of the following specific $\rm II.\ SF_6$ II. $\rm PF_6^-$ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He Electron affinity is positive.	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble shedral structures? . SeF ₆ w c) I, II and III c) Ar	Y ₂ (Br, I) e d) I, II and IV d) Kr
139. 140. 141.	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water soluble. Which of the following species I. $\rm SF_6$ II. $\rm PF_6^-$ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive a) O changes into O-c. O changes into O+	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ w c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always	Y ₂ (Br, I) e d) I, II and IV d) Kr
139. 140. 141.	a) $\rm H_2SO_4$ makes the react c) $\rm Na_3PO_4$ is water soluble. Which of the following species I. $\rm SF_6$ II. $\rm PF_6^-$ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive a) O changes into O-c. O changes into O+	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ w c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always	Y ₂ (Br, I) e d) I, II and IV d) Kr
139. 140. 141.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species $I.SF_6$ II. PF_6^- Select the correct answer a) II, III and IV. The gas not absorbed by G a) He Electron affinity is positive a) O changes into O^- c) O changes into O^+ Which of the following care a) O conc. O	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species $I.SF_6$ II. PF_6^- Select the correct answer a) II, III and IV. The gas not absorbed by G a) G and G be a G be a G concatalogue of G conc	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when n be used as dehydrating ag b) POCl ₃	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species $I.SF_6$ II. PF_6^- Select the correct answer a) II, III and IV. The gas not absorbed by G a) G and G be a G be a G concatalogue of G conc	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when h be used as dehydrating agory attements are correct for all the electron to acquire stable	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species of the correct answer a) II. FF_6 . Select the correct answer a) II, III and IV. The gas not absorbed by ca) FF_6 a) FF_6 and FF_6 be selectron affinity is positive. a) FF_6 concapts into FF_6 concapts into FF_6 which of the following can a) FF_6 conc. FF_6 conc. FF_6 which of the following states a) They all need to gain on	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when h be used as dehydrating ag b) POCl ₃ atements are correct for all he electron to acquire stabl id of the type HX	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species of the correct answer a) II. FF_6 . Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive a) O changes into O^- c) O changes into O^+ Which of the following car a) Conc. H_2SO_4 . Which of the following star a) They all need to gain on b) They all form strong according to the solution of the so	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne ee, when h be used as dehydrating ag b) POCl ₃ utements are correct for all he electron to acquire stabl id of the type HX rrect	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141. 142. 143.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species of the correct answer a) II. FF_6 . Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive. a) O changes into O^- c) O changes into O^+ . Which of the following care a) Conc. H_2SO_4 . Which of the following stars a) They all need to gain on b) They all form strong acc. Both (a) and (b) are co	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne ee, when h be used as dehydrating ag b) POCl ₃ utements are correct for all he electron to acquire stabl id of the type HX rrect	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139. 140. 141. 142. 143.	a) H ₂ SO ₄ makes the react c) Na ₃ PO ₄ is water soluble. Which of the following species of the correct answer a) II. SF ₆ II. PF ₆ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive. a) O changes into O ⁻ c) O changes into O ⁺ . Which of the following care a) Conc. H ₂ SO ₄ . Which of the following star a) They all need to gain or b) They all form strong acc. Both (a) and (b) are cod. None of the above is considered.	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne ee, when h be used as dehydrating ag b) POCl ₃ utements are correct for all he electron to acquire stabl id of the type HX rrect	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br a	d) I, II and IV d) Kr hys negative d) All of these
139.140.141.142.143.144.	a) H ₂ SO ₄ makes the react c) Na ₃ PO ₄ is water soluble. Which of the following species of the correct answer a) II. SF ₆ II. PF ₆ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive. a) O changes into O ⁻ c) O changes into O ⁺ . Which of the following care a) Conc. H ₂ SO ₄ . Which of the following star a) They all need to gain or b) They all form strong acc. Both (a) and (b) are cod. None of the above is co.	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when h be used as dehydrating ago b) POCl ₃ htements are correct for all he electron to acquire stable id of the type HX rrect rrect b) B ₃ N ₃ H ₆	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always and sents? c) P ₂ O ₅ three halogens (X), Cl, Br are configuration	d) I, II and IV d) Kr ays negative d) All of these nd I?
139.140.141.142.143.144.	a) H ₂ SO ₄ makes the react c) Na ₃ PO ₄ is water soluble. Which of the following species of the correct answer a) II. SF ₆ II. PF ₆ Select the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive. a) O changes into O ⁻ c) O changes into O ⁺ Which of the following car a) Conc. H ₂ SO ₄ . Which of the following star a) They all need to gain or b) They all form strong acc. Both (a) and (b) are cod. None of the above is cowhich is thermocromic?	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne e, when h be used as dehydrating ago b) POCl ₃ htements are correct for all he electron to acquire stable id of the type HX rrect rrect b) B ₃ N ₃ H ₆	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ W c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always and sents? c) P ₂ O ₅ three halogens (X), Cl, Br are configuration	d) I, II and IV d) Kr ays negative d) All of these nd I?
139.140.141.142.143.144.145.	a) H_2SO_4 makes the react c) Na_3PO_4 is water soluble. Which of the following species of the correct answer a) II, III and IV. The gas not absorbed by ca) He. Electron affinity is positive. a) O changes into O^- c) O changes into O^+ Which of the following cara. Conc. H_2SO_4 . Which of the following stars. They all need to gain on b) They all form strong acc. Both (a) and (b) are cod. None of the above is cowhich is thermocromic? a) S_4N_4 . Which of the following has a) $H_2S_2O_3$.	ion reversible e ecies have undistorted octa III. SiF ₆ ²⁻ IV. using the codes given below b) I, III and IV coconut charcoal is b) Ne ee, when h be used as dehydrating ag b) POCl ₃ tements are correct for all he electron to acquire stabl id of the type HX rrect rrect b) B ₃ N ₃ H ₆ s peroxy linkage?	b) H ₂ SO ₄ oxidises HX to X d) Na ₂ SO ₄ is water soluble the dral structures? SeF ₆ c) I, II and III c) Ar b) O ⁻ changes into O ²⁻ d) Electron affinity is always gents? c) P ₂ O ₅ three halogens (X), Cl, Br are configuration c) S ₈ c) H ₂ S ₂ O ₇	d) I, II and IV d) Kr ays negative d) All of these nd I?

c) Stimulate growth of plants	d) None of the above	
147. Aqueous solutions of hydrogen sulphide and sulph	hur dioxide when mixed toge	ether yield
a) Sulphur trioxide and water	b) Sulphur and sulphurio	cacid
c) Sulphur and water	d) Hydrogen preroxide a	nd sulphur
148. The correct order of $0 - 0$ bond length in 0_2 , H_2O		•
a) $H_2O_2 > O_3 > O_2$ b) $O_2 > H_2O_2 > O_3$		d) $0_2 > 0_3 > H_2 O_2$
149. When an article is bleached by SO ₂ it loses its colo		
a) Exposure to air b) Heating	c) Dilution	d) None of these
150. Acid strength of oxoacids of halogen is in order	,	.,
a) $HOF > HOCl > HOBr > HOI$	b) $HOI > HOBr > HOCl$	> HOF
c) $HOI > HOCl > HOBr > HOF$	d) $HOCl > HOBr > HOI$	
151. Inter- halogen compounds can be	4,1104.7 1102.7 1101	7 1101
a) ICl ₃ b) BrF ₅	c) IF ₇	d) All of these
152. Select the correct statement(s)		a) In or these
a) O_3 molecule is resonance stabilized		
b) There is 3-centre, 4-electron π -bond system in	0	
c) Ozone layer is being depleted by fluorocarbons	-	
	•	
d) All the above are correct statements		
153. Which has peroxy linkage?	3.0	D.M Cil
a) Perchloric acid b) Hypochloro acid	c) Para perchloric acid	d) None of these
154. The compound which has no reaction with KMnO.		15 77 1
a) Perdisulphuric acid b) Sulphurous acid	c) Hydrogen sulphide	d) Hydrogen peroxide
155. Which is the best fluorinating agent?		
a) XeF ₂ b) XeF ₄	c) XeF ₆	d) XeO_2F_2
156. Which one of the following oxoacids of chlorine is		
a) HClO b) HClO ₂	c) HClO ₃	d) HClO ₄
157. Which of the following is not known?		
a) XeF ₆ b) XeF ₄	c) KrF ₆	d) Cs ₂ XeF ₆
158. Bleaching powder contains		
a) CaO and Cl ₂ molecules	b) Ca^{2+} and OCl_2^{2-} ions	
c) Ca ²⁺ , Cl ⁻ and OCl ⁻ ions	d) Ca^{2+} , O^{2-} ions and Cl_2	molecule
159. Which one of the following acid possesses oxidisir	ng, reducing and complex for	ming properties?
a) HNO ₃ b) HCl	c) H ₂ SO ₄	d) HNO ₂
160. Xenon fluorides acts as fluoride donor with		
a) AsF ₃ b) BF ₃	c) HF	d) All of these
161. $\ln SO_3^{2-}$	-	
a) $d\pi$ - $p\pi$ bond between S and O is delocalised	b) Bonds between S and	O are equivalents
c) There is sp^3 hybridised sulphur atom	d) All of the facts given a	•
162. Tincture of iodine is		
a) CHI ₃ in alcohol b) I ₂ in alcohol	c) I ₂ in KI	d) CHI ₃ in KI
163. The formula for calcium chlorite is	6) 1 ₂ 1	u) 01113 111 111
a) $Ca(ClO_4)_2$ b) $Ca(ClO_3)_2$	c) CaClO ₂	d) $Ca(ClO_2)_2$
164. The mixture of concentrated HCl and HNO ₃ made	-	u) cu(cio ₂) ₂
a) ClO ₂ b) NOCl	c) NCl ₃	d) N ₂ O ₄
$\frac{1}{165}$. The greater reactivity of F_2 is due to	c) NGI3	u) N ₂ O ₄
a) Lower electron affinity of F	b) Lower bond energy of	FE — E hand
-	d) Gaseous state of F ₂	i r bonu
c) Higher electronegativity of F	uj vasevus state vi r ₂	
166. Which has maximum p K_a value?	a) II Co	d) U To
a) H ₂ O b) H ₂ S	c) H ₂ Se	d) H ₂ Te
167. To a piece of charcoal sulphuric acid is added. The	:11	

- a) There is no reaction
- c) SO₂ and CO₂ evolved

- b) Water gas is formed
- d) CO and SO₂ are evolved

Multiple Correct Answers Type

168. Base on the E° values gives

$$\frac{1}{2}F_{2} + e^{-} \rightarrow F^{-} \qquad E^{\circ} = 2.87 \text{ V}$$

$$\frac{1}{2}Cl_{2} + e^{-} \rightarrow Cl^{-} \qquad E^{\circ} = 1.40 \text{ V}$$

$$\frac{1}{2}Br_{2} + e^{-} \rightarrow Br^{-} \qquad E^{\circ} = 1.09 \text{ V}$$

$$\frac{1}{2}I_{2} + e^{-} \rightarrow I^{-} \qquad E^{\circ} = 0.62 \text{ V}$$

- a) Oxidizing power of F₂ is maximum
- b) Oxidizing power of I₂ is maximum
- c) Oxidizing power is in order $F_2 > Cl_2 > Br_2 > I_2$ d) Oxidizing power is in order $F_2 < Cl_2 < Br_2 < I_2$
- 169. Which of the following statements is/are correct?
 - a) He_{II} has much lower entropy
 - b) Transition of He_I to He_{II} takes place, across the line $\lambda \lambda' = 2.2$ K
 - c) It has very high viscosity
 - d) He_{II} is unique liquid that exhibits superconductivity
- 170. Helium is used
 - a) As a refrigerant (in liquid form) in low-temperature physics
 - b) As a substituent for nitrogen in the breathing gas for deep-sea diverse
 - c) In radiation therapy
 - d) In fluorescent tubes
- 171. Complete hydrolysis of XeF₂ gives
 - a) HF

b) 0_2

- c) XeOF₂
- d) Xe

- 172. Select the correct statement(s)
 - a) Chile saltpetre (NaNO₃) is a main source of I₂
 - b) IO_3^- is reduced to I^- and which in turn oxidized to I_2 by IO_3^- in acidic medium
 - c) Anhydrous HF is a non-conductor of electricity
 - d) F₂ is obtained by electrolysis of molten KHF₂
- 173. CHCl₃ and H₂O form two separate immiscible layers Br₂(orange) and I₂(violet) are soluble in organic layer due to a greater extent. In test tube A (KI + CHCl₃ + H₂O) and test tube B (KI + KBr + CHCl₃ + H2OCl2 gas is passed then (Base on the E° values gives

$$\frac{1}{2}F_{2} + e^{-} \rightarrow F^{-} \qquad E^{\circ} = 2.87 \text{ V}$$

$$\frac{1}{2}Cl_{2} + e^{-} \rightarrow Cl^{-} \qquad E^{\circ} = 1.40 \text{ V}$$

$$\frac{1}{2}Br_{2} + e^{-} \rightarrow Br^{-} \qquad E^{\circ} = 1.09 \text{ V}$$

$$\frac{1}{2}I_{2} + e^{-} \rightarrow I^{-} \qquad E^{\circ} = 0.62 \text{ V}$$

- a) Organic layer in A appear violet
- b) Organic layer in B appear orange
- c) Organic layer in *B* appear violet
- d) Organic layer in B first appear violet then orange
- 174. Concentrated sulphuric acid is
 - a) Oxidising agent
- b) Hygroscopic
- c) Efflorescent
- d) Sulphonating agent

- 175. Select the correct statement(s)
 - a) Colours of the halogens (F_2, Cl_2, Br_2, I_2) in the gas phase are complimentary colours

	b) Colour is due to transition of an electron from the	e highest occupied π^* molec	cular orbital to the lowest
	unoccupied σ* molecular orbital		
	c) ClO ₂ is paramagnetic due to unpaired electrons		
450	d) ClO ₂ dimerises to Cl ₂ O ₄ as NO ₂ dimerises to N ₂ O ₄	ł	
176	. Pyrophosphorous acid, H ₄ P ₂ O ₅		
	a) Is dibasic acid	b) Contains P in + 5 oxida	
455	c) Contains one P – O – P bond	d) Is strongly reducing in	nature
177	. In the structure of		
	a) F_2^+ , bond angle is smaller than the tetrahedral an		ne pair repulsion
	b) IF ₄ ⁺ , there is sp^3 hybridisation with bond angle of		
	c) IF ₆ ⁺ , there are six bonding electrons and no lone p	airs	
	IF ₄ , two F-atoms one at equatorial positions and the distribution of the distribution of the property of the property of the distribution of the property of the distribution of the property of	two are inclined at an angle	e less than 120° due to lone
4=0	pair-bond pair repulsion		
178	Select the correct statement(s)		
	a) pK_a value of HI (strongest halogen acid) is most r		
	b) High H – F bond strength makes H – F a weak act	-	n
	c) Halogen forms clatharates by freezing solution in		
450	d) K_a values of HX is in order of HF < HCl < HBr <	HI	
179	. Which of the following statements is/are correct?		
	a) XeF ₂ is linear molecule	b) XeF ₂ has square planar	
100	c) XeF ₄ is linear molecule	d) XeF ₄ has square planar	structure
180	In the conversion of Br^- to BrO_2^-		
	a) There is anodic oxidation in basic solution	. 00)	
	b) Equivalent mass of Br ⁻ is 20 (atomic weight of Br	= 80)	
	c) There is anodic oxidation in acidic medium		
101	d) There is cathodic reduction in basic solution		
101	sp^2 hybridization is involved in the molecules of	a) CO	4) CO
102	a) CO b) SO_3	c) CO ₂	d) SO ₂
102	. White phosphorus (P_4) has	b) Six P — P single bond	
	a) P – P – P angle of 60°c) Four P – P single bond	d) Four lone pairs of elect	rong
102	. Which of the following statement is incorrect?	uj roui ione pans oi elect	10118
103	a) B_2 is paramagnetic, C_2 is also paramagnetic		
	b) O_2 is paramagnetic, O_3 is also paramagnetic		
	c) O_2 is paramagnetic, O_3 is diamagnetic		
	d) Different observation is found in their bond lengt.	hs increase when NO \rightarrow NO	ı +
184	Select the correct statement(s) about the XeF ₄	is merease when no 7 no	
101	a) They are thermodynamically stable		
	b) Xe — F bond energy is very high		
	c) They are endothermic compounds		
	d) They are exothermic compounds		
185	. Which are correct statements?		
100	a) All halogens form oxoacids		
	b) All halogens show -1 , $+1$, $+3$, $+5$, $+7$ oxidation gl	ass	
	c) Hydrofluoric acid forms KHF ₂ and K ₂ F ₂ and attac		
	d) Oxidizing power is in order $F_2 > Cl_2 > Br_2 > I_2$	8	
186	Oxidising agent(s) is/are		
	a) XeF ₂ b) XeF ₄	c) XeF ₆	d) XeOF ₄
187	Fractional evaporation of liquid argon under reduce	, ,	*
	a) Rn b) Ne	c) Kr	d) Xe
	•	-	-

- 188. In the conversion of BrO_3^- to $BrO_4^$
 - a) There is no change in oxidation number
 - b) Reduction takes place in basic solution
 - c) Reaction also takes place by XeF₂
 - d) Equivalent mass of BrO₃ is one-half of ionic mass
- 189. Select the correct statement(s). Bond order of
 - a) He₂ is zero
- b) He₂⁺ is 0.5
- c) He_2^{2+} is 1.0
- d) Be₂ is zero

- 190. Which practical is/are supposed to be correct?
 - a) Preparation of XeF₆ in glass or quartz apparatus b) Storing of HF in glass or quartz apparatus

c) Storing of HNO₃ in Al vessel

- d) Storing of NaOH in Al vessel
- 191. Which is/are Lewis acid as well as Lewis base (amphoteric)?
 - a) XeF₂

b) XeF₄

c) XeF₆

d) XeF_6^{2-}

- 192. The correct statement(s) about O_3 is (are)
 - a) 0 0 bond length are equal

b) Thermal decomposition of O₃ is endothermic

c) O₃ is diamagnetic in nature

- d) O_3 has a bent structure
- 193. The unbalanced chemical reactions given in Column I show missing reagent or condition (?) which are provided in Column II. Match Column I with Column II and select the correct answer using the code given below the Column

	Column I		Column II
P.	$PbO_2 + H_2SO_4 \stackrel{?}{\rightarrow}$	1.	NO
	$PbSO_4 + O_2 +$ other product		
Q.	$Na_2S_2O_3+H_2O \xrightarrow{?}$ $NaHSO_4+$ other	2.	I ₂
	product		
R.	$N_2H_4 \stackrel{?}{\rightarrow} N_2 +$	3.	Warm
C	other product ? $XeF_2 \rightarrow Xe + other$	4.	Cl ₂
S.	product		

Codes

$$P \quad Q \quad R \quad S$$

d) 3 4 2 1

- 194. Select the correct statement(s)
 - a) ClO₂ and Cl₂O are used as bleaching agents for paper pulp and textiles
 - b) OCl⁻ salts are used as detergents
 - c) OCl⁻ disproportionates in alkaline medium
 - d) BrO₃ is oxidized to Br₂ by Br⁻ in acidic medium
- 195. Select the correct statement(s)
 - a) The noble gases are present to the extent of about 1% in the earth's atmosphere, the chief component being argon
 - b) Helium is the second most abundant element in the universe after hydrogen
 - c) There are two stable isotopes of helium ³₂He, ⁴₂He
 - d) $^{4}_{2}$ He is formed by thermonuclear fusion reaction in stars $^{4}_{1}$ H $\rightarrow ^{4}_{2}$ He + 2 $_{1}$ e 0

196. In the following reaction,

$$XeF_2 + BrO_3^- + H_2O \rightarrow BrO_4^- + Xe + 2HF$$

a) XeF₂ is an oxidizing agent

b) XeF₂ is a reducing agent

c) BrO₃ is oxidized to BrO₄

d) XeF₂ is reduced to HF

197. Which of the following is present in an electric discharge tube containing helium?

a) He²⁺

b) He₂

c) H⁺

d) He+

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 198 to 197. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

198

- **Statement 1:** Among chalcogens, tendency of catenation is maximum for sulphur.
- **Statement 2:** S-S bond dissociation energy is higher then 0-0 bond dissociation energy.

199

- **Statement 1:** The van der Waals' forces are directly proportional to the ionisation potentials
- **Statement 2:** Van der Waals' forces increases as the size and diffuseness of the electron clouds increases

200

- **Statement 1:** PCl₅ is covalent in gaseous and liquid states but ionic in solid state
- **Statement 2:** PCl₅ in solid state consists of tetrahedral PCl₅⁺ cation and octahedral PCl₆⁻ anion

201

- **Statement 1:** Helium and beryllium have similar outer electronic configuration of the type ns^2
- **Statement 2:** Helium and beryllium both are chemically inert

202

- **Statement 1:** Oxygen is more electronegative than sulphur, yet H₂S is acidic, while H₂O is neutral
- **Statement 2:** H S bond is weaker than O H bond

203

- **Statement 1:** OF_2 is named as oxygen difluoride.
- **Statement 2:** OF_2 is oxygen is less electronegative than fluorine.

204

- **Statement 1:** White phosphorus is more reactive than red phosphorus.
- **Statement 2:** red phosphorus consists of P₄ tetrahedral units linked to one another to form linear chains.

Statement 1: Helium is the only substance that can't be solidified at atmospheric pressure **Statement 2:** The zero point energy of helium is very high 206 **Statement 1:** Red phosphorus is less volatile than white phosphorus **Statement 2:** Red phosphorus has a discrete tetrahedral structure 207 **Statement 1:** The ionization energy of gallium remains nearly same as that of aluminium. **Statement 2:** This is due to shielding of outer shell electrons form the nucleus by the d electrons of gallium. 208 **Statement 1:** All the noble gases have ns^2np^6 electronic configuration in their outermost shell **Statement 2:** In noble gases all the energy levels which are occupied are completely filled 209 **Statement 1:** The aqueous solution of XeF₂ is powerful oxidizing agent **Statement 2:** The hydrolysis of XeF₂ is show in dilute acid but rapid in basic solution 210 **Statement 1:** Liquid NH₃ is used for refrigeration. **Statement 2:** Liquid NH₃ does not vaporize quickly. 211 **Statement 1:** Ozone is a powerful oxidizing agent in comparison to O_2 Statement 2:

Ozone is diamagnetic but O₂ is paramagnetic

212

Statement 1: PCl₅ and PbCl₄ are thermally unstable

Statement 2: They produce same gas on thermal decomposition

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

213. Match list I (Molecules) with list II (Boiling points) and select the correct answer

Column-I Column-II

	(B)	PH_3					(q)	211K					
	(C)	AsH_3					(r)	186K					
	(D)	SbH ₃					(s)	264K					
	(E)	BiH ₃					(t)	240K					
	COD	ES:											
		A	В	С	D	E							
	a)	r	q	t	S	p							
	b)	t	r	q	r	p							
	c)	p	S	t	q	p							
	d)	p	q	r	S	p							
214. Match molecules/ions (in Column I) with their shapes (in Column II)													
			Colu			Column- II							
	(A)	CIF ₃					(p)	Square planar					
	(B)	$[PCl_4]^+$					(q)	T-shaped					
	(C)	XeF ₄					(r)	Tetrahedral					
	(D)	XeO_3					(s)	Pyramidal					
	COD	CODES:											
		A	В	С	D								
	a)	b	a	d	С								
	b)	С	a	b	d								
	c)	b	С	a	d								
	d)	d	c	a	b								
215. Match the compounds (in Column I) with the structures (in Column II)													
			Colu		Column- II								
	(A)	XeF ₄			(p)	Distorted octahedral							
	(B)	XeF ₆					(q)	Tetrahedral					
	(C)	XeO_3					(r)	Square planar					
	(D)	XeO_4		(s)	Pyramidal								
	COD	ES:											

(p) 290K

(A) NH₃

	A	В	C	D
a)	С	a	d	b
b)	d	С	a	b
c)	a	b	d	С
d)	b	d	a	c

216. All the compounds listed in Column I react with water. Match the result of the respective reactions with the appropriate option listed in Column II

Column-I

- (A) $(CH_3)_2SiCl_2$
- **(B)** XeF₄
- **(C)** Cl₂
- **(D)** VCl₅
- **CODES:**

A

 \mathbf{C}

- D
- a) a,b,e a,b,c,d b

В

- b) a,b,c,d a,b,e a,d a
- a,b,c,d c) a a, d a,b,e
- d) a,b,e a,b,c,d a a, d
- 217. Match the acids (in Column I) with number of acid salts formed by them (in Column II)

Column-I

- (A) Hypophosporous acid
- (B) Orthophosphorous acid
- (C) Orthophosphoric acid
- (D) Mellitic acid
- **CODES:**
 - A
- a) b
- b)
 - С
 - a

c)

d)

- - b
- d

В

С

a

b

- D
- d a
- d b
- d C

 \mathbf{C}

C a

- Column-II
- (p) Hydrogen halide formation
- (q) Redox reaction
- (r) Reacts with glass
- (s) Polymerization
- (t) O_2 formation

Column-II

- (p) Two
- (q) Zero
- (r) One
- (s) Five

Column-I

- (A) Alumino –silicate glass
- **(B)** Calcium –alkali silicate glass
- (C) Lead glass
- (D) Soda glass

- Column- II
- (p) Very high transparency
- (q) Cheap laboratory glass-wares
- (r) Optical glass
- (s) Domestic glass for window
- (t) Low coefficient of expansion

CODES:

- A B C D
- a) A b c d
- **b)** e d c b
- c) e d b c
- **d)** d b e c
- 219. Match the compounds (in Column I) with the structures (in Column II)

Column-I

Column-II

- (A) P₄(B) S₈
- **(C)** AlCl₃
- **(D)** PCl₅

- (p) Crown
- (q) Dimer
- (r) Tetrahedral
- (s) Linear
- (t) Trigonal bipyramid

CODES:

- A B C D
- a) c d a c
- **b)** a b c e
- c) c e a b
- d) c a b e

Linked Comprehension Type

This section contain(s) 19 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 220 to -220

Due to the presence of two lone pairs of electrons on the central atom, hydrides of this group elements have

bent (V) shapes. The central atom in these hydrides is sp^3 hybridized. Due to strong H-bonding m.p. and bp. of hydride of oxygen are very high. On moving down the group, the covalent character increases. This can be explained on the basis of Fajans rule, which states that the tendency to form covalent bonds increases as the size of the anion M^{2-} increases. As the size of the atom in H_2M increases, the strength of H-M bond decreases, Hence, the tendency to release hydrogen as proton increases down the group

220. Bond angle is minimum for

a) H₂Se

b) H₂S

- c) H₂Te
- d) H_2O

Paragraph for Question Nos. 221 to - 221

The trihalides of this group elements are predominantly covalent and have pyramidal structures, with a lone pair of electrons in the fourth orbital. Except NE_3 and PF_3 , the trihalides are readily hydrolysed by water. They are Lewis bases because of the presence of lone pair of electrons. Due to absence of d-orbitals in its valence shell, nitrogen does not form pentahalides, while P, As and Sb form pentahalides due to unsymmetrical shape where some bond angles are of 90° and other are of 120° . PCl_5 is not very stable. It behave as a good chlorinating agent

221. Which of the following compound is not known?

a) NCl₅

b) NI₃

- c) SbCl₃
- d) NCl₃

Paragraph for Question Nos. 222 to - 222

The noble gases have closed shell electronic configuration and are monatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other interactions. Xenon reacts directly only with F_2 and gives compound from oxidation states II to VIII are known. XeF_4 and XeF_6 are violently hydrolysed by water to give stable aqueous solution of XeO_3

222. XeF₆ on reaction with XeO₃ gives

- a) XeO_2F_2
- b) XeOF₂
- c) Xe

d) XeOF₄

Paragraph for Question Nos. 223 to - 223

It is difficult to liquify noble gases as their atoms are held by weak van der Waals' forces. Noble gases have stable ns^2np^6 fully filled electronic configuration, so, ionisation energy of noble gases is very high. They are slightly soluble in water. Their solubility generally increases with the increases in atomic number. The m. p and b. p. increases from He to Rn because of increase in magnitude of van der Waals' forces

223. Which of the following noble gases is the least polarizable?

a) Ne

b) Ar

c) He

d) Xe

Paragraph for Question Nos. 224 to - 225

Peroxydisulphuric acid and its salts are powerful oxidizing agents, thus can be used to estimate reducing agents and also to study the kinetics of the reaction

Answer the following questions

224. Peroxydisulphuric acid

- a) Is also called Marshall's acid
- c) Liberates I₂ with KI in a fast reaction
- b) Has two peroxy linkages
- d) Has oxidation number of sulphur as +7

Paragraph for Question Nos. 225 to - 226

Two acids have been derived from H₂O₂ by replacing H by (SO₂OH) group. Both the acids have one peroxy linkage H - O - O - H

$$H-O-O-SO_2-OH$$
 H_2SO_5

$${\sf HO-SO_2-O-O-SO_2-OH}\atop {\sf H_2S_2O_8}$$

Based on the above study answer the following questions

225. Which is called Marshall's acid and which is called Caro's acid?

- a) H_2SO_5 , $H_2S_2O_8$
- b) $H_2S_2O_8$, H_2SO_5
- c) H_2SO_5 , $H_2S_2O_7$ d) $H_2S_2O_3$, H_2SO_5

Paragraph for Question Nos. 226 to - 227

Sodium thiosulphate is the laboratory reagent used in iodometric and iodimetric titration. This also finds used in photography

Based on the above passage, answer the following questions

226. If I_2 is the titre in a titration A and I_2 is formed in situin a titration B, then these are respectively

a) Iodometric, iodimetric

b) Iodimetric, Iodometric

c) Both Iodimetric

d) Both Iodometric

Paragraph for Question Nos. 227 to - 228

When metallic copper is heated with conc. sulphuric acid, various types of products are formed depending on standard reduction potential

Answer the following questions based on the above study

227. Which reaction is possible?

a)
$$Cu + 2H^+ \rightarrow Cu^{2+} + H_2$$

b)
$$Cu^{2+} + H_2 \rightarrow Cu + 2H^+$$

c) Both (a) and (b)

d) None of the above

Paragraph for Question Nos. 228 to - 228

Consider the following change,

$$BrO_2 \rightarrow Br_2O + A$$

BrO₂ and A are formed by the change of equal number oxidation number

Based on this change, answer the following questions

228. Oxide A could be

Paragraph for Question Nos. 229 to - 229

This question concerns the elements of Group 17 — fluorine, chlorine, bromine and iodine When sodium chloride is treated with concentrated sulphuric acid, a colourless gas, X, which fumes in moist air, is formed. When sodium iodide is treated in the same way a coloured vapour, Y, is product If 90% phosphoric(v) acid is used instead of sulphuric acid, a colourless gas is produced in each reaction

229. Gases *X* and *Y* are respectively

Paragraph for Question Nos. 230 to - 230

Water pollution can be by dissolved gases. Bad smell of water is due to H_2S and can be removed by treatment with bleaching powder

 $CaOCl_2 + H_2O \rightarrow Ca(OH)_2(aq) + Cl_2(aq)$

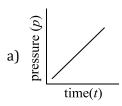
Bleaching powder

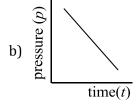
$$H_2S(aq) + Cl_2(aq) \rightarrow 2HCl(aq) + S(s)$$

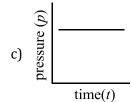
Based on the above treatment answer the following questions

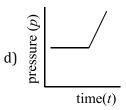
230. If H_2S content of contaminated water is 22 ppm by mass, Cl_2 required to remove all the H_2S from 200 gallons of water (1 gallon = 3.785 L) is

Paragraph for Question Nos. 231 to - 231


 ${\rm XeO_3}$ is an oxidizing agent and this can be used to estimate reducing agents


I: $XeO_3 + 6H^+ + 9I^- \rightarrow Xe + 3H_2O + 3I_3^-$


II: $XeO_3 + 6H^+ + 6Fe^{2+} \rightarrow Xe + 3H_2O + 6Fe^{3+}$


Answer the following questions

231. Reaction can be studied by measuring pressure of the reaction mixture with time variation can be of the type

Paragraph for Question Nos. 232 to - 232

 XeO_3 is one of the strong oxidising agents in aqueous media :

I: $XeO_3 + 6H^+ + 6e^- \rightleftharpoons Xe + 3H_2O$, $E^\circ = 2.1 \text{ V}$

II: $HXeO_4^- + 3H_2O + 6e^- \rightleftharpoons Xe + 7OH^-, E^\circ = 1.2 \text{ V}$

Answer the following questions

- 232. Which reaction is more spontaneous theoretically?
 - a) I

b) II

- c) Both equally
- d) Can't be predicted

Paragraph for Question Nos. 233 to - 233

Bleaching powder and bleach solution are produced on a large scale and used in several house hold products. The effectiveness of bleach solution is often measured by iodometry

- 233. 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N $\rm Na_2S_2O_3$ was used to reach the end point. The molarity of the household bleach solution, is
 - a) 0.48 M
- b) 0.96 M
- c) 0.24 M
- d) 0.024 M

Paragraph for Question Nos. 234 to - 234

The reaction of Cl_2 gas with cold-dilute and hot concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, P and Q respectively. The Cl_2 gas reacts with SO_2 gas, in the presence of charcoal, to give a product R. R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus T

- 234. P and Q respectively, are the sodium salts of
 - a) Hypochlorous and chloric acids

b) Hypochlorous and chlorous acids

c) Chloric and perchloric acid

d) Chloric and hypochlorous acids

Integer Answer Type

235. In the following reaction,

$$XeO_3 + 6H^+ + 6Fe^{2+} \rightarrow Xe + 3H_2O + 6Fe^{2+}$$
 equivalent mass of $XeO_3 = \frac{molar \ mass}{.....}$

- 236. Cl_2 disproportionates to Cl^- and species A such that equivalent mass of Cl_2 is 71. Thus, oxidation number of chlorine in species A is
- 237. How many of the following can be the oxidizing agent? H_2S , H_2SO_4 , H_2SO_3 , $H_2S_2O_3$
- 238. How many S S bonds are there in S_3O_9 ?
- 239. For inert gases $\frac{c_p}{c_v} = \frac{5}{...}$
- 240. Bond –order of He_2^{2+} is
- 241. How many lone-pairs and bond-pairs are present in IF₇?
- 242. ClO₂ is paramagnetic due to unpaired electron(s)
- 243. O₂ is paramagnetic due to unpaired electrons
- 244. CaOCl₂ (bleaching powder) has two types chlorine with different oxidation numbers . Sum of oxidation number is
- 245. SO₂ turns lime water milky, 3.2 g of SO₂ gives milkyness g
- 246. In XeF₄ there are lone pairs of electron
- 247. Number of electrons forming bond between Cl and O in ClO₂ is
- 248. Reaction of Br₂ with Na₂CO₃ in hot aqueous solution gives sodium bromide and sodium bromate with the

evolution of CO_2 gas. The number of sodium bromide molecules involved in the balanced chemical equation is

249. In the following reaction,

$$XeF_2 + BrO_3^- + H_2O \rightarrow Xe + BrO_4^- + 2HF$$

equivalent mass of $BrO_3^- = \frac{molar \, mass}{molar \, mass}$

- 250. Total number of hybrid orbitals in XeO₃ is
- 251. Maximum oxidation state shown by sulphur in its compound is.....
- 252. s-character in XeO_4 is 1/ of total hybrid orbitals
- 253. Out of F, Cl, Br, I, Xe, Ne, O, how many forms compounds with positive oxidation state?
- 254. How many of them are water insoluble? AgF, AgCl, AgBr, AgI, CaF₂, BaSO₄
- 255. How many lone- pairs are present in ClI₃?
- 256. How many SOS angles are there in S_3O_9 ?
- 257. ClO_2 has odd-electron bonds. How many electrons are involved in (Cl 0) bond?
- 258. SO_2 reduces $Cr_2O_7^{2-}$ to Cr^{3+} ; change in oxidation number of Cr is.....
- 259. There is also formation of insoluble CuS (black) when copper reacts with conc. H₂SO₄. What is change in oxidation number of sulphur?
- 260. Maximum acidic character is shown by the oxyacids of halogens with oxidation number of halogens as
- 261. How many of the following

have peroxy linkages?

$$H_2S_2O_3$$
, $H_2S_2O_8$, H_2SO_5 , CrO_5 , BaO_2 , KO_2

- 262. 500 mL of chlorine contaminated water is treated with KI and mixture required 100 mL of 0.01 M hypo. What is concentration of Cl₂ in millimoles per litre?
- 263. Br⁻ and BrO_x⁻ in acidic medium forms Br₂ where x =
- 264. XeF₆ reacts with quartz forming XeO₃

$$2XeF_6 + xSiO_2 \rightarrow$$

What is the value of?

- 265. Acid rain is due to dissolved non-mettalic oxides $(SO_2, NO_2, P_2O_5, etc)$. 10 mL of acid rain sample required 5 mL of 0.01 M Ca $(OH)_2$ for making it neutral. What is pH of acid rain?
- 266. Ozonolys is of 2, 5 –dimethyl -2, 4-hex-diene gives total number of carbonyl compounds.......
- 267. How many of the following have underlined atoms in different oxidation state s?

$$K_2HgI_4$$
, $CaO\underline{Cl}_2$, $Na_2\underline{S}_2O_3$, $Na_2\underline{S}_4O_6$,
 $H_2\underline{S}O_5$, $H_2S_2O_8$, CrO_5 , I_3^-

- 268. 6.35 of impure bleaching powder paste is mixed with KI and I_3^- formed required 50 mL of 0.1 M hypo in neutral medium. Thus % purity of bleaching powder is......
- 269. Number phases in the following equilibrium is

$$Ra(s) \rightarrow Rn(g) + He(g)$$

- 270. $3Cl_2 + xNaOH \rightarrow NaCl + NaClO_3$, x is.....
- 271. Electrons left in the valence shell when Xe is converted to XeF₆ is
- 272. XeF_4 disproportionates in aqueous solution to Xe(0) and Xe(VI). Xe(VI) is formed from which oxidation state (.......)
- 273. Out of the following how many have Xe in sp^3d hybridisation? XeF_2 , XeF_4 , XeF_6 , $XeOF_2$, XeO_3
- 274. There are equal number of sulphur atoms in thiosulphuric acid, Marshall's acid and oleum. This number is
- 275. $^{35}_{17}$ Cl and $^{37}_{17}$ Cl are two isotopes of chlorine in mass ratio of 3: x where x =
- 276. One mole of SO₂Cl₂ on hydrolysis gives acids which can be neutralized by moles of NaOH
- 277. A(s) changes to B(s) in a nuclear reaction by

$$_{z}A(s) \rightarrow _{z-8}B(s)$$

Emission of α -particles only. Pressure exerted per unit volume in a closed vessel at temperature T K after two half-life was x RT. What is value of x?

- 278. Number of series of salts formed by hydrofluoric acid is
- 279. SO_2 reduces MnO_4^- to Mn^{2+} . Number of electrons involved in the reduction of MnO_4^- to Mn^{2+} is
- 280. There are total of π -bonds in XeO₃
- 281. How many of the following have Cl atom in sp^3 hybridised state? ClO_2 , Cl_2O , Cl_2O_7 , Cl_2O_6 , ClO_4
- 282. There are two types of sulphur with different oxidation states in thiosulphate ion. Difference in oxidation states is
- 283. 4.35 g of pyrolusite (MnO_2 mineral) is digested with conc. HCl and KI added. Mixture required 5 mL of 1 M $Na_2S_2O_3$ solution for complete reaction of KI₃ formed. What is % of pure MnO_2 in pyrolusite? (Mn = 55)

: ANSWER KEY:															
1)	d	2)	b	3)	d	4)	d	161)	d	162)	b	163)	d	164)	b
5)	d	6)	d	7)	d	8)	d	165)	b	166)	a	167)	c	1)	
9)	d	10)	c	11)	d	12)	a		a,c	2)	a,b,d	3)	a,b	4)	
13)	b	14)	a	15)	c	16)	d		a,b,d						
17)	a	18)	b	19)	a	20)	a	5)	a,b,c,d	6)	a,c	7)	a,b,d	8)	
21)	a	22)	a	23)	c	24)	b		a,b,c						
25)	d	26)	C	27)	a	28)	d	9)	a,c,d	10)	a,c,d	11)	a,b,c,d	12)	
29)	d	30)	a	31)	a	32)	b		a,d						
33)	a	34)	c	35)	d	36)	c	13)	a,b	14)	b,d	15)	a,b,d	16)	
37)	d	38)	b	39)	d	40)	C		a,b,d						
41)	C	42)	a	43)	a	44)	a	17)	a,b,d	18)	c,d	19)	a,b,c,d	20)	
45)	b	46)	d	47)	d	48)	a		b,c,d						
49)	b	50)	b	51)	a	52)	b	21)	a,b,c,d	22)	a,b,c,d	23)	c	24)	c
53)	a	54)	C	55)	C	56)	b	25)	a,c,d	26)	d	27)	a,c,d	28)	
57)	d	58)	C	59)	b	60)	a		a,b,d						
61)	a	62)	b	63)	b	64)	c	29)	a,c	30)	a,c,d	1)	a	2)	d
65)	a	66)	C	67)	b	68)	d		3)	b	4)	c			
69)	C	70)	d	71)	b	72)	d	5)	a	6)	a	7)	b	8)	a
73)	b	74)	b	75)	a	76)	b	9)	C	10)	a	11)	d	12)	b
77)	C	78)	b	79)	b	80)	a	13)	a	14)	b	15)	b	1)	b
81)	a	82)	a	83)	b	84)	a		2)	c	3)	a	4)	b	
85)	b	86)	C	87)	a	88)	b	5)	a	6)	b	7)	d	1)	C
89)	a	90)	b	91)	c	92)	b		2)	a	3)	a	4)	C	
93)	b	94)	a	95)	d	96)	C	5)	a	6)	b	7)	b	8)	b
97)	C	98)	a	99)	a	100)	C	*	C	10)	b	11)	d	12)	a
101)	a	102)	a	103)	b	104)	d	13)	a	14)	c	15)	a	1)	6
105)	a	106)	a	107)	C	108)	a		2)	1	3)	2	4)	0	
109)	d	110)	C	111)	a	112)	C	5)	3	6)	1	7)	7	8)	1
113)	b	114)	d	115)	a	-		9)	2	10)	0	11)	6	12)	2
117)	a	118)	d	119)	d	120)		13)	3	14)	5	15)	2	16)	4
121)	d	122)	C	123)	d	=		17)	6	18)	4	19)	5	20)	5
125)	C	126)	C	127)	C	-		21)	2	22)	3	23)	3	24)	6
129)	b	130)	d	131)	d	132)		25)	8	26)	7	27)	4	28)	1
133)	d	134)	d	135)	b	136)		29)	3	30)	3	31)	2	32)	3
137)	b	138)	b	139)	d	-		33)	6	34)	5	35)	2	36)	6
141)	b	142)	d	143)	C	144)		37)	0	38)	8	39)	2	40)	2
145)	b	146)	C	147)	C	-		41)	1	42)	4	43)	3	44)	2
149)	a	150)	b	151)	d	152)		45)	5	46)	3	47)	5	48)	8
153)	d	154)	a	155)	C	•		49)	5						
157)	c	158)	c	159)	a	160)	d								
								I							

: HINTS AND SOLUTIONS :

1 **(d)**

$$F_2 < Br_2 < Cl_2$$

5 **(d)**

$$Ba(N_3)_2 \rightarrow Ba(s) + 3N_2(g)$$

Azide salt of barium can be obtained in purest form as well as the decomposition product contain solid Ba as by product alongwith gaseous nitrogen hence to additional step of separation is required.

Other reaction are

$$NH_4 NO_3 \xrightarrow{Heat} N_2O + 2H_2O$$

$$2 \text{ NH}_3 + 3 \text{CuO} \xrightarrow{\text{Heat}} 3 \text{Cu} + 3 \text{H}_2 \text{O} + \text{N}_2$$

$$(NH_4)_2Cr_2O_7 \xrightarrow{Heat} Cr_2O_3 + 4H_2O + N_2$$

6 **(d)**

Oxygen family elements (0, S, Se, Te, Po) are called chalcogen

10 **(c)**

$$H_3PO_2 \rightleftharpoons H^+ + H_2PO_2^-$$

Monobasic, as only one H⁺ attached to O-atom

CH₂-NH₂] basic thus amphoteric

14 **(a)**

 $H_2SO_5 \ H_2S_2O_8 \ H_3PO_5$ peroxy sulphuric acid have peroxy H_3PO_5 peroxy phosphoric acid linkage

HClO₄ perchloric acid] no peroxy linkage

16 **(d)**

$$HClO_2 + HClO_3 \rightarrow 2ClO_2 + H_2O$$

17 **(a)**

Being smallest in size

18 **(b)**

$$Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$$

 $2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$

24 **(b)**

Pyrogallol dissolves 02

32 **(b)**

$$2AgNO_3 + Na_2S_2O_3 \rightarrow Ag_2S_2O_3 + 2NaNO_3$$
White

$$Ag_2S_2O_3 + H_2O \rightarrow Ag_2S + H_2SO_4$$

black

34 **(c)**

(a)
$$2KI + H_2O + O_3 \longrightarrow 2KOH + O_2 + I_2$$

oxidised

(b)

$$2FeSO_4 + H_2SO_4 + O_3 \longrightarrow Fe_2(SO_4)_3 + H_2O + O_2$$

$$oxidised$$

(c)
$$KMnO_4+O_3 \rightarrow no reaction$$

Because in $KMnO_4$, oxidation state of Mn is +7. Hence, it is the highest oxidation state of Mn, so $KMnO_4$ is not oxidized by ozone.

(d)

36 **(c)**

$$2MnO_4^- + 5SO_2 + 2H_2O \rightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$$

37 (d

$$FeS + 2HCl \rightarrow FeCl_2 + H_2S$$

$$A = B$$

$$2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2\text{FeCl}_2 + 2\text{HCl} + \text{S}$$

Yellow light green

$$(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$$

Black

$$FeCl_2 + K_3[Fe(CN)_6] \rightarrow KFe[Fe(CN)_6] + 2KCl$$

Turnbull's blue

41 **(c)**

Black phosphorous is highest thermodynamic stable form in red , black , white and yellow allotropic forms of phosphorus because its

ignition temperature is highest hence it is inert and has a layer structure.

 $AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$

47 **(d)**

$$\begin{aligned} & HClO_3 + e^- \stackrel{H^+}{\rightarrow} HCl \\ & Cr_2O_7^{2-} + e^- \stackrel{H^+}{\rightarrow} Cr^{3+} \\ & MnO_4^- + e^- \stackrel{H^+}{\rightarrow} Mn^{2+} \end{aligned}$$

48 **(a)**

 $Ba(NO_2)_2 + H_2SO_4 \rightarrow BaSO_4 + 2HNO_2$

$$HClO_3 + HClO_4 \rightarrow 2ClO_3 + H_2O$$

50 **(b)**

H₂SO₄ is dehydrating agent

COOH
$$\xrightarrow{\text{Conc. H}_2\text{SO}_4}$$
 $\xrightarrow{\text{CO} + \text{CO}_2 + \text{H}_2\text{O}}$

53 (a)

$$\begin{aligned} &\text{CaOCl}_2 + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + \text{Cl}_2 \\ &\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{2HCl} + \text{O} \\ &\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{O (oxidn)}} \text{CH}_3\text{CHO} \\ &\text{CH}_3\text{CHO} + \text{3Cl}_2 \rightarrow \text{CCl}_3\text{CHO} + \text{HCl} \\ &\text{CCl}_3\text{CHO} + \text{Ca(OH)}_2 \rightarrow \text{CHCl}_3 + (\text{HCOO)}_2\text{Ca} \end{aligned}$$

54 **(c)**

$$XeF_6 \rightarrow XeOF_4 \rightarrow XeO_2F_2 \rightarrow XeO_3$$

58

H₂SO₄ is the side produced in the extraction of Cu from CuSO₄ called blue- vitriol

60

$$2KBr + Cl_2 \rightarrow 2KCl + Br_2$$

 Br_2 also oxidizes KI to I_2 forming violet layer in $CHCl_3$

$$2KI + Br_2 \rightarrow 2KBr + I_2$$

violet

62 **(b)**

Fluorine shows only (-1) oxidation state

63 **(b)**

$$KI + H_2O + O_3 \rightarrow l_2 + KOH + O_2$$

 $l_2 + 2Na_2S_2O_3 \rightarrow 2Nal + Na_2S_4O_6$

64 **(c)**

H₂O₂ and SO₂ are bleaching agent

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

$$SO_2 + 2H_2O \rightarrow H_2SO_3 + 2H$$

Bleaching property

$$SO_4^{2-}$$
, CIO_4^- , XeO_4 — tetrahedral XeF_4 — sp^3d^2

RbF or CsF + XeF₄
$$\rightarrow$$
 [Rb]⁺[XeF₅]⁻

74 **(b)**

Bond- energy decreases going down the group Te - Te < Se - Se < S - S < O - O

$$^{226}_{88}$$
Ra $\rightarrow ^{222}_{86}$ Rn $+ ^{4}_{2}$ He

76 **(b)**

Oxidising power of
$$F_2 > Cl_2 > Br_2 > I_2$$

79 (b)

> White phosphorus on reaction with limited supply of oxygen gives lower oxide P₄O₆. Therefore, $air(O_2 + N_2)$ is a good source for controlled supply of oxygen and the best choice for controlled oxidation of white phosphorus into lower oxide P₄O₆.

81 (a)

$$CH_3CH = CHCH_3 \xrightarrow[H_2O]{O_3/Zn} 2CH_3CHO$$

H₂O₂ is formed as side product when reacts with Zn or DMS and thus further oxidation of CH₃CHO to CH₃COOH is prevented

83 **(b)**

$$2X_2O \rightarrow 2X_2 + O_2$$

86 **(c)**

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

$$Cl_2 + 2Kl \rightarrow 2KCl + l_2$$

$$2Na_2S_2O_3 + l_2 \rightarrow 2Nal + Na_2S_4O_6$$

$$CaOCl_2 \equiv Cl_2 \equiv l_2 \equiv 2Na_2S_2O_3$$

Hypo = 100×10 milliequivalent

= 0.1 equivalent

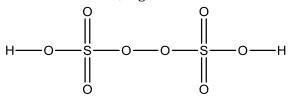
Thus, $CaOCl_2 \equiv 0.1$ equivalent

$$=\frac{12.7}{2}$$
g = 6.35 g in 10 g sample

Thus, % purity = 63.5%

90 **(b)**

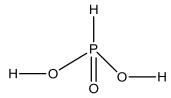
$$SO_2 + Cl_2 \xrightarrow{Sunlight} SO_2Cl_2$$


91 **(c)**

$$B(OH)_3 + H_2O \rightarrow B(OH)_4^- + H^+$$

H⁺ ion is released by H₂O

93


H₂S₂O₈ (Marshall's acid)has O—O linkage. Structure of H₂S₂O₈ is given as follows:

(d) 95

98 (a)

The structure of H₃PO₃ is given as

In this structure two —OH group are present, so it is dibasic acid. In it one P—H bond is present, so it 127 (c) provides hydrogen and due to such hydrogen it acts as reducting agent.

101 (a)

Acid strength ∝ oxidation number of Cl atom $HClO < HClO_2 < HClO_3 < HClO_4$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$+1 \qquad +3 \qquad +5 \qquad +7$$

102 (a)

If acid is weak, its conjugate base is strong and vice-versa

Vice-versa

$$\xrightarrow{\text{HCIO} < HCIO_2 < HCIO_3 < HCIO_4}}$$
 Acid strength

 $\xrightarrow{\text{CIO}^- > cIO_2^- > cIO_3^- > cIO_4^-}$ Conjugate base strength

 $\xrightarrow{\text{CIO}_4^-}$ is the weakest base

103 **(b)**

ZnCl₂ solution is acidic due to hydrolysis $ZnCl_2 + H_2O \rightarrow Zn(OH)_2 + 2HCl$ ZnS is not precipitated in acidic medium, but in neutral medium. HCl formed is neutralized by NH4OH/NH4Cl

104 (d)

PCl₅ produces POCl₃ with the following reagents $PCl_5 + SO_2 \rightarrow POCl_3 + SOCl_2$ $PCl_5+H_2O \longrightarrow POCl_3+2HCl$ $6PCl_5+P_4O_{10} \rightarrow 10POCl_3$

107 (c)

$$\begin{split} \text{Cr}_2\text{O}_7^{2-} + \text{SO}_3^{2-} &\to \text{SO}_4^{2+} + \text{Cr}^{3+} \\ &\quad \text{green} \\ \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{S} &\to \text{S} + \text{Cr}^{3+} \\ &\quad \text{green} \\ \text{Cr}_2\text{O}_7^{2-} + \text{Fe}^{2+} &\to \text{Cr}^{3+} + \text{Fe}^{3+} \end{split}$$

108 (a)

Oxidizing power of X_2 $F_2 > Cl_2 > Br_2 > I_2$

111 (a)

$$S = C = S$$

d- orbital is present in sulphur (in excited state)

115 (a)

$$2NaOH + Cl_2 \rightarrow NaCl + NaClO + H_2O$$

117 (a)

Boron is electron- deficient in BF₃

118 **(d)**

Due to steric effect

Oxidation number of Cl = +7Thus, maximum value

121 (d)

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

 $Cl_2 + 2Na_2S_2O_3 \rightarrow 2NaCl + Na_2S_4O_6$

$$\mathrm{HF} + \mathrm{HNO_3} \rightarrow \mathrm{H_2NO_3^{\oplus}} + \mathrm{F^-}$$

 $\mathrm{HF} + \mathrm{H_2SO_4} \rightarrow \mathrm{H_3SO_4^{\oplus}} + \mathrm{F^-}$

$$3Cl0^{-} \rightarrow 2Cl^{-} + Cl0_{3}^{-}$$

133 (d)

 0_3^- (ozonide) is paramagnetic

$$20_3^- \rightarrow 20_2^- + 0_2$$

Superoxide

Stability decreases as size of M^+ (alkali metal ion) decreases

134 (d)

$$XeF_2 + AsF_5 \rightarrow [XeF]^+[AsF_6]^-$$

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$$

H acts as reducing agent

136 (d)

$$2KBr + Cl_2 \rightarrow 2KCl + Br_2$$

$$0^- + e^- \rightarrow 0^{2-}$$

145 **(b)**

$$\mathrm{H_2SO_5} + \mathrm{H_2O} \rightarrow \mathrm{H_2SO_4} + \mathrm{H_2O_2}$$

147 (c)

$$2H_2S + SO_2 \rightarrow 2H_2O + 3S$$

148 (a)

0 = 0 double bond

$$H - 0 - 0 - H$$
 single bond

 $0 = 0 \rightarrow 0$ between double bond and single bond

Bond length
$$\propto \frac{1}{\text{Number of bonds}}$$

149 (a)

Colour
$$\xrightarrow{SO_2/reduction}$$
 Colourless $\xrightarrow{air/oxidation}$

154 (a)

H₂S₂O₈ has maximum oxidation state of sulphur and thus cannot be further oxidized by KMnO₄

156 **(d)**

HClO₄

+7 (least oxidiable)

160 **(d)**

$$AsF_5 + XeF_4 \rightarrow [XeF_3]^+[AsF_6]^-$$

 $BF_3 + XeF_4 \rightarrow [XeF_3]^+[BF_4^-]$
 $HF + XeF_4 \rightarrow [XeF_3]^+[HF_2]^-$

163 **(d)**

ClO₂ is chlorite

164 **(b)**

Mixture is called **aqua-regia** $HNO_3 + 3HCl \rightarrow NOCl + 2H_2O + 2Cl$

166 **(a)**

Acidic nature increases down the group $H_2O < H_2S < H_2Se < H_2Te$ $K_a \xrightarrow{\max}$ $pK_a \leftarrow$

167 (c)

$$C + H_2SO_4 \rightarrow CO_2 + H_2O + SO_2$$

169 (a,b,d)

 ${\rm He_{II}}$ has extremely low viscosity and readily form films only a few hundred atom thick, which flow without friction

171 (a,b,d)

Complete hydrolysis of XeF_2 gives $2XeF_2 + 2H_2O \rightarrow 2Xe + O_2 + 4HF$

174 (a,b,d)

Concentrated sulphuric acid $\rm H_2SO_4$ is hygroscopic oxidising agent and sulphonating agent. It is not an efflorescent

176 (a,c,d)

Pyrophosphorus acid is diabasic acid as it contains two P-OH bonds, strongly reducing in nature due to the presence of two P-H groups and contains one P-O-P bond

179 (a,d)

 XeF_2 is linear (sp^3d hybridisation) and XeF_4 is square planar (sp^3d^2 hybridisation)

181 (b,d)

Both SO_2 and SO_3 involve sp^2 hybridization of the central sulphur atom. Both CO and CO_2 involves sp-hybridisation and are linear

182 (a,b,d)

White phosphorus has tetrahedral structure in which each P atom lies at the corners of the regular tetrahedron. These are six single P - P bonds, four lone pairs of electrons and P - P - P bond angle of 60°

183 **(a,b,d)**

 ${\rm O}_2
ightarrow {
m Paramagnetic}$ molecule with two unpaired electrons in antibonding p-orbital

 $O_3 \rightarrow Diamagnetic molecule$

 $B_2 \rightarrow Paramagnetic$ with two unpaired electrons

 $NO \rightarrow {+ \atop NO}$, electrons removes from antibonding orbital, thus bond length decreases

187 **(b,c,d)**

Fractional evaporation of liquid argon under reduced pressure gives neon, krypton and xenon

197 (a,c,d)

In an electric discharge tube containing helium, ${\rm He_2}$ can't be present because it has a bond order zero and does not exist

198 (a)

Catenation means the tendency of an element to from chains of identical atoms which is pronounced in sulphur among chalcogens.

199 (d)

Van der Waals' forces or London forces are inversely proportional to the ionisation potential of the atoms

200 **(b)**

 ${
m PCl_5}$ is trigonal bipyramidal containing sp^3d hybridised P atom in liquid and gaseous state. Whereas, in solid state it consists of tetrahedral ${
m PCl_4^+}$ cation and octahedral ${
m PCl_6^+}$ anions

201 (c)

Helium is a noble gas but beryllium is a member of alkaline earth metal. Thus, beryllium is chemically active and helium is inactive

202 **(a)**

H-S bond is weaker than H-O bond hence, H_2S is more acidic than H_2O

203 (a)

The compound of oxygen and fluorine is more electronegative than oxygen fluorides as fluorine is more electronegative than oxygen

204 **(b)**

White P exists as discrete P_4 tetrahedral molecule having P-P-P bound angle 60° .Hence, molecule is under strain and more reactive while red P exits as P_4 tetrahedral joined together through covalent bounds giving polymeric structure.

205 (a)

Zero point energy of helium is so high that it outweighs the weak interatomic forces which are not strong enough to bind the helium atoms into the crystalline state

206 **(c)**

Red phosphorus is less volatile than white phosphorus because it exists in linked tetrahedral structures.

207 (a)

In Ga, 10-d electrons in penultimate shell shiled the nucleus change less effectively, the outer electrons is held frimly by the nucleus. As result, the ionisation energy remains nearly the same as that of aluminium in spite of the fact that atomic size increase.

208 (d)

All the noble gases except He, have ns^2np^6 electronic configuration in their outermost shell

209 **(b)**

 XeF_2 oxidise HCl to Cl_2 and Ce(III) to Ce(IV). Its oxidation potentials is +2.64 V

210 (a)

Liquid ammonia has a large heat of vaporization (0.327 cal/g). It is therefore used in ice plants.

211 **(b)**

Due to the ease with which it can liberate nascent oxygen, O_3 acts as a powerful oxidising agent.

$$0_3 \rightarrow 0_2 + 0$$

 $O_2 \rightarrow Paramagnetic due to presence of two unpaired electrons$

 $O_3 \rightarrow Diamagnetic molecules$

212 **(b)**

$$PCl_5 \xrightarrow{\Delta} PCl_3 + Cl_2$$

 PCl_5 decomposes into PCl_3 and Cl_2 as in its structure two P-Cl axial bonds are longer than other three P-Cl equatorial bonds

213 **(b)**

Except ammonia the boiling point generally increases down, the group due to increase inn magnitude of van der waals' forces. Ammonia shows intermolecular hydrogen bonding hence its boiling point is higher than AsH₃,but lower than SbH₃.

220 (c)

Bond angle decreases as the electronegativity of the element M in H_2M decreases. It is minimum for H_2 Te

221 **(a)**

Due to non availability of d-orbitals in case of nitrogen, NCl_5 is not known

222 (a)

$$XeF_6 + 2XeO_3 \rightarrow 3XeO_2F_2$$

223 **(c)**

Due to small size of helium (He), it is least polarizable

