11.THE P-BLOCK ELEMENTS

Single Correct Answer Type

1.	Which of the following	is arranged in the increasi	ng order of enthalpy of vap	orization?	
	a) NH ₃ , PH ₃ , AsH ₃	b) AsH ₃ , PH ₃ , NH ₃	c) NH ₃ , AsH ₃ , PH ₃	d) PH ₃ , AsH ₃ , NH ₃	
2.	The number of $P - O -$	P bonds in cyclic metapho	osphoric acid is		
	a) Zero	b) Two	c) Three	d) Four	
3.	Phosphorus trichloride	e, PCl ₃ , undergoes hydrolys	sis to produce an oxoacid. I	t has the formula	
	a) HPO ₃	b) H_3PO_3	c) H_3PO_4	d) H_3PO_2	
4.	Principal cause of ozon	e depletion is the			
	a) Presence of fluoroca	rbons	b) Acid rain		
	c) Photochemical smog	5	d) Green-house effect		
5.	Following are neutral of	oxides except			
	a) NO	b) N ₂ 0	c) CO	d) NO_2	
6.	Thermodynamically m	ost stable form of carbon is	S		
	a) Graphite	b) Diamond	c) Ionsdaleite	d) Chaoite	
7.	In making casting of m	etal, silicon is used as			
	a) Oxidizer	b) Semiconductor	c) Deoxidizer	d) None of these	
8.	Reactivity of borazole i	s greater than that of benz	zene because		
	a) Borazole is polar compound		b) Borazole is non-pol	b) Borazole is non-polar compound	
	c) Borazole is electron	deficient compound	d) Of localized electros	s in it	
9.	Cold solution of barium	n nitrite on mixing with sul	phuric acid produces		
	a) $BaSO_4 + HNO_2$	b) $BaSO_4 + HNO_3$	c) $BaSO_4 + NO_2$	d) $BaSO_4 + N_2 + O_2$	
10.	Borax is used				
	a) As a flux in brazing a	and in silver soldering	b) In making enamel		
	c) In leather tanning		d) In all given above		
11.	Which is the incorrect	statement about silicones?			
	a) They are repeating u	inits (SiO_4) in silicates			
	b) They are synthetic p	olymers containing repeat	$ed R_2SiO_2$ units		
	c) They are formed by	hydrolysis of R ₂ SiCl ₂			
	d) All the above are inc	correct statements			
12.	SnCl ₂ can be used as				
	a) Reducing agent		b) Oxidizing agent		
	c) Catalyst in Friedel C	rafts reaction	d) A base		
13.	In aqueous solution Ga	Cl disproportionates to			
	a) GaCl ₂ and GaCl ₃	b) Ga and GaCl ₃	c) GaCl ₂ and Ga	d) GaCl ₃ and GaCl ₅	
14.	$p\pi$ - $p\pi$ multiple bonds of	occur between			
	a) C and C	b) C and O	c) C and N	d) In all cases	
15.	Thermite welding uses	Al because of			
	a) Its low melting poin	t	b) Its lightness		
	c) Its greater affinity fo	or oxygen	d) All the properties gi	ven above	
16.	BF ₃ behaves as a				
	a) Lewis acid and lone	pair from the Lewis base i	s filled into empty $2p_z$ orbi	tal	
	b) Lewis base and lone	pair on B is donated to em	pty orbital of the Lewis aci	d	
	c) Amphoteric species	due to interaction with aci	d and base both		
	d) Polymer substance				
17	The structural formula	of hypophoenhorus acid is			

	O O	Q	Ö
	a) H P OH B) H P OH	c) HO POH	d) HO P OH
18.	Nitrites in water may react with amines under acidio	c conditions in the stomach	
	a) Give carcinogenic compounds	b) Given proteins	
	c) Keep stomach acidity free	d) Produce free amino aci	ds
19.	$NH_4Cl(s)$ is heated in a test tube. Vapours are broug	=	
	blue and then to red. It is because of		
	a) Formation of NH ₄ OH and HCl	b) Formation of NH ₃ and	HCl
	c) Greater diffusion of NH ₃ than HCl	d) Greater diffusion of HC	l than NH ₃
20.	In H ₂ O, Ga ⁺ changes to		
	a) Ga ³⁺ b) Ga	c) Ga and Ga ³⁺	d) Ga ²⁺ and Ga ³⁺
21.	Among the VA (15) group elements one of them form	ns a compound sold under	the name ' Pearl White '. The
	element used is		
	a) N b) P	c) Sb	d) Bi
22.	The best oxidizing agent of the following oxides is		
	a) SnO ₂ b) PbO ₂	c) HgO	d) MgO
23.	In which of the following the angle between the two	covalent bond is maximum	?
	a) H_2O b) CO_2	c) CH ₄	d) NH ₃
24.	Stability of hydrides of carbon family is in order		
	a) $CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$		
	b) $CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$		
	c) $CH_4 > SnH_4 > GeH_4 > SiH_4 > PbH_4$		
	d) None of the above		
25.	A substance which gives an yellow precipitate when	boiled with an excess of ni	tric acid and ammonium
	molybdate, ad red precipitate with AgNO ₃ is		
	a) Orthophosphate b) Pyrophosphate	c) Metaphosphate	d) Hypophosphate
26.	(Me ₂) ₂ SiCl ₂ on hydrolysis will produce	1) ()() ()	
	a) $(Me)_2Si(OH)_2$	b) $(Me)_2Si = 0$	
0.7	c) $[-0 - (Me)_2 Si - 0 -]_n$	d) Me ₂ SiCl(OH)	1
27.	Light-emitting diodes (LED), laser-diodes and memo	• •	
20	a) Gallium b) Aluminium	c) Arsenic	d) Gallium-arsenide
28.	Silicon is an important constituent of	a) Chlanamhyrll	d) Haamaalahin
20	a) Rocks b) Amalgams Which of the following helides is least stable and de-	c) Chlorophyll	d) Haemoglobin
29.	Which of the following halides is least stable and do		d) DPI
20	a) CI ₄ b) SnI ₄	c) GeI ₄	d) PbI ₄
30.	Which reaction takes place during respiration?	b) $C + O_2 \rightarrow CO_2$	
	a) $6CO_2 + 6H_2O \rightarrow 6O_2 + C_6H_{12}O_6$	$0) C + O_2 \rightarrow CO_2$	
	c) $C + \frac{1}{2}O_2 \to CO$	d) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO$	$_{2} + 6H_{2}O$
31.	Dry ice is		
	a) $H_2O(s)$ b) $NH_3(g)$	c) $CO_2(s)$	d) PH ₃ (g)
32.	Common name of phosgene is		
	a) Carbon tetrachloride	b) Phosphoryl chloride	
	c) Carbonyl chloride	d) Phosphorus trichloride	
33.	Aqueous solution of borax reacts with 2 moles of aci	ds. This is because of	
	a) Formation of 2 moles of B(OH) ₃ only		

d) Formation of 2 moles each of $[B(OH)_4]^-$ and $B(OH)_3$, of which only $[B(OH)_4]^-$ reacts with acid

b) Formation of 2 moles of $[B(OH)_4]^-$ only

c) Formation of 1 mole each of $\rm B(OH)_3$ and $\rm [B(OH)_4]^-$

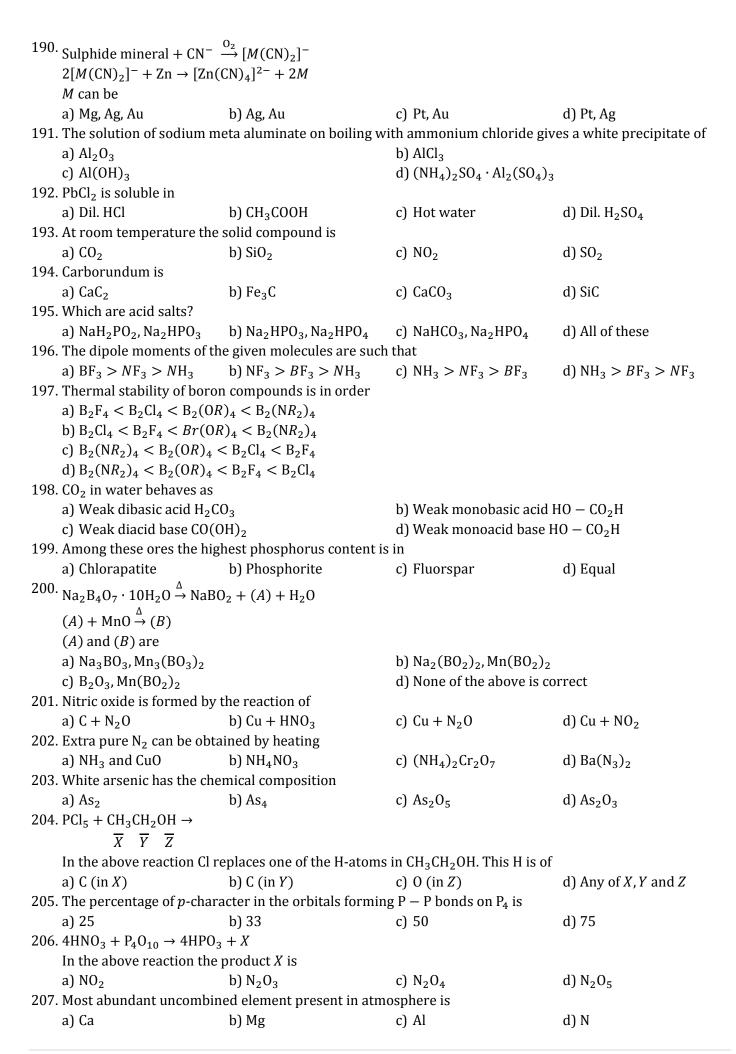
34.	Sindoor is represented by	<i>I</i>			
	a) $Pb(NO_3)_2$	b) $PbCO_3 \cdot Pb(OH)_2$	c) $Pb(OH)_2 \cdot 4PbCO_3$	d) Pb ₃ O ₄	
35.	Which of the following sta	atements are true for zeoli	tes?		
	1. They are formed by the	replacement of some of tl	ne silicon atoms of the SiO_2	lattice, by say, aluminium	
	2. They have a more close	ed structure than feldspar			
	3. They can absorb CO ₂ , NH ₃ and EtOH				
	4. They can separate strai	ght chain hydrocarbons fr	om a mixture containing bo	oth straight, chain and	
	branched chain hydrocar	bons			
	Of these statements				
	a) 1, 2 and 3 are correct	b) 1, 3 and 4 are correct	c) 1, 2 and 4 are correct	d) 2, 3 and 4 are correct	
36.	The structure of BF ₃ is				
	a) Tetrahedral	b) Pyramidal	c) Planar triangular	d) T-shaped	
37.	For the hydrides of nitrog	gen family going down the	group		
	a) Stability decreases		b) Reducing activity incre	eases	
	c) Bond angle HMH decre	eases	d) All the above variation	s followed	
38.	Gas that strikes in thunde	ering of light is			
	a) CO	b) NO	c) CO_2	d) H ₂	
39.	Na ₃ AlF ₆ is added to Al ₂ O ₃	3 to			
	a) Improve the electrical	conductivity of the cell	b) Increases rate of produ	uction	
	c) Increase the melting po	oint	d) Decrease the electrical	conductivity	
40.	The thermal disproportion	nation of B ₂ Cl ₄ gives			
	a) BCl ₃	b) B ₄ Cl ₄	c) B ₈ Cl ₈	d) All of these	
41.	Borazine $B_3N_3H_6(A)$ is converted into disubstituted product $B_3N_3H_4X_2(B)$. Number of isomers of B wo				
	be				
	a) 2		b) 4		
	c) 6		d) No isomer, exists as sin	ngle product	
42.	Select the incorrect states	nent			
	a) Mixture of $\mathrm{NH_4Cl}$ and $\mathrm{NaNO_3}$ on heating gives $\mathrm{N_2}$ gas				
		ating fluid and as propella	nt in aerosols		
	c) Phosphine is formed w	hen P ₄ react with NaOH			
	d) Phosphine dissolves in	water forming P ₂ O ₅			
43.	$p\pi$ - $p\pi$ multiple bonding b	etween nitrogen atoms is	present in		
	a) Hyponitrous acid	b) Nitrous acid	c) Nitric acid	d) In all of these	
44.	Radius of Ga is less than t	hat of Al because of			
	a) Lanthanoid contraction	n	b) Greater screening effect		
	c) Inert pair effect		d) None of these		
45.	The oxide which is not a r	educing agent is			
	a) CO ₂	b) NO ₂	c) SO ₂	d) ClO ₂	
46.	NH ₃ can't be obtained by				
	a) Heating of NH ₄ NO ₃ or	a) Heating of NH ₄ NO ₃ or NH ₄ NO ₂			
	b) Heating of NH ₄ Cl or (NH ₄) ₂ CO ₃				
	c) Heating of NH ₄ NO ₃ with NaOH				
	d) Reaction of AlN or Mg ₃	N_2 or $CaCN_2$ with H_2O			
47.	Which of the following is	false statement?			
	a) BH ₃ is a Lewis acid		b) All the B – H distance equal	in diborane (B ₂ H ₆) are	
	c) Boranes are easily hyd	rolysed	d) LiAlH ₄ reduces BCl ₃ to	borane	
48.	Litharge is chemically	-			
	a) PbO	b) PbO ₂	c) Pb ₃ O ₄	d) $(CH_3COO)_2Pb$	
49.	Select the incorrect states	, <u>-</u>	- •	· • • • •	
	a) It self ionizes as NO ⁺ , N				

	b) Substance containing NO^+ is said to be acid and that containing NO_3^- is said to be base				
	c) N_2O_4 is paramagnetic				
	d) NO ₂ dimerises to N ₂ O ₄	with disappearance in pa	ramagnetism		
50.	The crystal structures of				
	$a) -C \equiv C - C \equiv C -$	b) -C=C-C=C-	c) -C-C-	d) All of these	
51.			• •		
	I. $NaBH_4 + BF_3$ (in ether)	= =			
	II. NaBH ₄ + I ₂ \rightarrow				
	III. $BF_3 + NaH \rightarrow$				
	a) I, III	b) I, II	c) II, III	d) I, II and III	
52.	Beryllium and aluminium	•		<i>,</i>	
	a) They belong t same gro		b) They have different el	ectronegativity	
	c) They have same electron	-	d) They have same ioniza	•	
53.	· ·	s the highest first ionization		0,	
	a) Lithium	b) Beryllium	c) Boron	d) Carbon	
54.			ials and light-emitting devi	ces (LED)?	
	I. Gallium-phosphides		0	,	
	II. Indium-phosphides				
	III. Gallium-arsenides				
	IV. Indium-arsenides				
	a) All	b) Except I all	c) Except I, II all	d) Only IV	
55.	Boron carbide is used				
	a) In nuclear reactor to al	osorb neutrons	b) As an abrasive		
	c) Both (a) and (b)		d) None of the above		
56.	Acid rain may cause				
	a) Rusting easier		b) Stone-cancer in Taj Ma	ahal	
	c) Non-fertility of soil		d) All of the above		
57.	'Anhydrone' is a very effe	ctive desiccant (water abs	orber) used in 'dry batterie	es.' It is	
	a) Conc. H ₂ SO ₄	b) P ₂ O ₅	c) CaCl ₂	d) $Mg(ClO_4)_2$	
58.	Mixture of Al(OH) ₃ and F	$e(OH)_3$ can be separated b	у		
	a) HCl	b) NH ₄ OH	c) NaOH	d) HNO ₃	
59.	Select the correct stateme	ents(s)			
	a) Cyanamide ion (CN_2^{2-})) is isoelectronic with ${\rm CO_2}$	and has the same linear str	ructure	
	b) Mg ₂ C ₃ reacts with water to form propyne				
	c) CaC ₂ has NaCl type of l	attice			
	d) All the above are corre				
60.	=- -		o Portland cement. It is just	tto	
	=	te of the cement during hy	dration		
	b) Slow down the setting	_			
	c) Both (a) and (b) are correct				
	d) None of the above is co				
61.	Which is/are used as liga				
	a) CN ⁻	b) CO	c) Both (a) and (b)	d) None of these	
62.	Pb ₃ O ₄ reacts with HNO ₃				
		and PbO remains unreacted			
		nd PbO ₂ remains unreacted			
		$_3)_4$, and PbO remains unre	eacted		
(2)	d) Pb ₃ O ₄ remains insolub				
63.	From B ₂ H ₆ all the followi	ng can be prepared except	. •		

	a) H ₃ BO ₃	b) NaBH ₄	c) $B_2(CH_3)_6$	d) B ₂ O ₃		
64.	Unstable lead compounds	are				
	a) PbCl ₄ , PbBr ₄ and PbI ₄	b) PbCl ₂ , PbBr ₂ and PbI ₂	c) PbO, PbO ₂ and Pb ₃ O ₄	d) $PbCl_4^{2-}$, $PbCl_6^{2-}$		
65.	The variation in element-element bond energy follows the order					
		a) $C - C > Si - Si > Ge - Ge > Sn - Sn > Pb - Pb$				
	b) $Si - Si > C - C > Pb - Pb > Sn - Sn > Ge - Ge$					
	•	-Sn > Pb - Pb > Si - Si				
	,	-Pb > Ge - Ge > Si - Si				
66.	Indium is used					
00.	a) To dope crystals to ma	ke n-n-n transistors	b) In thermistors			
	c) In low melting point so		d) All the above are correct	^ †		
67	Stable oxides of carbon ar		a) Thi the above are correct			
07.	a) CO , CO_2 , C_3O_2		c) CO, CO ₂	d) $C_2O_1C_3O_2$		
68		nosphorus suffers from a di	-	, - , -		
00.	a) Arthrities	b) Phossy jaw	c) Rickets	d) Cancer		
69	In liquid NH ₃	b) i nossy javv	c) Hences	a) dancer		
07.	a) NH ₄ Cl is an acid		b) NaNH ₂ is a base			
	c) CH ₃ COOH behaves as s	trong acid	d) All of the above facts ar	e true		
70	, .	or iron to prevent it from r	=	c ti de		
70.	a) Pb ₃ O ₄	b) PbO	c) PbO ₂	d) Pb ₂ O		
71	Which is insoluble in exce		c) 1 b02	u) 1 520		
, 1.	a) Al(OH) ₃	b) Cu(OH) ₂	c) Zn(OH) ₂	d) Cd(OH) ₂		
72	Which is the most sponta	, , . .	c) 211(011) ₂	u) (u(011)2		
, 2.	——————————————————————————————————————	b) $Ga^{3+} + 2e^- \rightarrow Ga^+$	c) $In^{3+} + 2e^{-} \rightarrow In^{+}$	d) $Tl^{3+} + 2e^{-} \rightarrow Tl^{+}$		
73	=	ig potassium ferrocyanide o	=	=		
75.	a) CO	b) CO ₂	c) SO ₂	d) SO ₃		
74	$(Me)_2SiCl_2$ on hydrolysis	· -	c) 50 ₂	u) 503		
, 1.	a) $(Me)_2Si(OH)_2$	will produce	b) $(Me)_2 Si = 0$			
	c) $[-0 - (Me)_2 Si - 0 -]_n$		d) $Me_2SiCl(OH)$			
75	Chooses the correct states	•	a) Mezolai(OH)			
75.	a) Superphosphate is [3Ca		b) Triple superphosphate	is 4Ca(HaPO.)		
	c) Both (a) and (b) are co		l) None of the above is correct			
76	CO behaves as	511000	a) Ivone of the above is co.			
, 0.	a) Lewis acid	b) Lewis base	c) Amphoteric oxide	d) None of these		
77	NO_2 is not obtained when		ej imphoterie omae	a) Hone of these		
, , .	a) $Pb(NO_3)_2$	b) AgNO ₃	c) LiNO ₃	d) KNO ₃		
78.	Which of the following is	, , ,	0) 203	w) 111.03		
	-	BH ₄ and LiAlH ₄ are specific	b) B ₂ H ₄ reduces alkene to	primary alcohol		
	c) Both (a) and (b) are th		d) None of the above is fal			
79.			,			
	a) Is covalent					
	b) Is volatile					
	c) Is hygroscopic					
	d) Forms HCl in moist air					
80.	White lead is					
•	a) PbSO ₄ · PbO	b) PbCO ₃ · PbO	c) PbCO ₃	d) $Pb(OH)_2 \cdot PbCO_3$		
81.		due to the presence of oxid	· ·	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	a) Chromium	b) Cobalt	c) Gold	d) silver		
82.	Which gas cannot be colle	•	•	•		
	a) 0 ₂	b) PH ₃	c) N ₂	d) SO ₂		

83.	Artificial gem used for cut	tting glass is					
	a) Graphite	b) Diamond	c) SiC	d) CaCN ₂			
84.	N ₂ gas is passed or heated	d Mg and B. Product	s formed are				
	a) Mg_3N_2 , BN		b) Mg ₃ N ₂ , BN an	dMg_3B_2			
	c) MgN, BN		d) No reaction				
85.	Element $M + N_2 \xrightarrow{\Delta} \xrightarrow{H_2O} N$	JH.					
	Element <i>M</i> belonging to g						
	a) B or Al	b) Ga or Al	c) Mg or Al or B	d) Mg or B			
86.	Fe ²⁺ reduces NH ₂ OH to	b) da oi in	of rigor in or D	u) rig or B			
00.	a) NH ₃	b) N ₃ H	c) N ₂ H ₄	d) N ₂			
87.	Select the incorrect stater	, ,	c) 112114	a) 112			
071			ids like Si and B				
		a) Interstitial carbides are formed by metalloids like Si and Bb) Covalent carbides are formed by metalloids					
	c) CO and CN ⁻ both are fatal due to complex formation with Fe(III) present in blood						
	d) SiC is called carborund	=					
88.	Carbon monoxide is a poi		dote used for this poison	ing is			
	a) Pure oxygen	b) Carbonic acid	c) Carborundum				
89.	Solid crystalline PCl ₅ has	=	•	.,			
	a) Bi-pyramidal moieties			d tetrahedral ions			
		c) Square-pyramidal moieties d) Pentagonal moieties					
90.	Out of Si, Ge, Sn and Pb wl		, ,				
	a) Pb	b) Sn	c) Ge	d) Si			
91.		B can be obtained from halide by van Arkel method. This involves reaction					
		a) $2BCl_3 + 3H_2 \xrightarrow{\text{red hot W or Ta}} 2B + 6HCl$					
	b) $2BI_3 \xrightarrow{\text{red hot W or Ta}} 2B$	b) $2BI_3 \xrightarrow{\text{red hot W or Ta}} 2B + 3I_2$					
	c) Both (a) and (b)	-					
	d) None of the above						
92.	In diamond crystal each c	arbon atom is linke	d with carbon atoms. The	number of carbon atoms linked is			
	a) 2	b) 4	c) 3	d) 1			
93.	Select the correct stateme	ents					
	a) Hydrides of B and Si ar	e volatile and catch	es fire on exposure to air				
	b) Oxide of B and Si(B ₂ O ₃	and SiO ₂) are acidi	c in nature				
	c) Borates and silicates ha	ave tetrahedral BO ₄	and SiO ₄ structural units	3			
	d) All the above are corre	ct statements					
94.	Thallium and lead are class	ssified as chemically	soft because				
	a) They have higher affinities for soft anions as I ⁻ and S ²⁻ ions						
	b) They are soft in reactivity						
	c) They are stable in lower oxidation state (Tl+, Pb ²⁺)						
	d) They are stable in high	er oxidation state (Γl ³⁺ , Pb ⁴⁺)				
95.	Select the incorrect stater	nent about hydrides	s of group 15 elements				
	a) The central atom in the	a) The central atom in the hydride is sp^2 hydridised					
	b) NH ₃ readily form NH ₄ ⁺	b) NH_3 readily form NH_4^+ salts with H^+ ; PH_4^+ salts are formed with H^+ under anhydrous condition					
	c) The tetrahedron is dist	orted due to repuls	ion between the lone pair	of electrons and the bond pairs			
	The bond energy of the	eM - H bond decrea	ases from NH_3 to BiH_3 be	cause of increase in the size of the			
	d) element						
96.	Alzheimer's disease is cau	ised due to Al intera	action with internal organ	ns of the body if food is contaminated			
	with Al. This disease						
	a) Induces senility in your	ng persons	b) Causes memo	ry loss			
	c) Both (a) and (b) are co	rrect	d) None of the al	oove is correct			

97.	7. Which among the following statements is false regarding glass?					
	a) It absorbs ultra-violet light					
	b) It consists of silicates of					
	c) HF causes marking on	_	12 1 1			
00	d) All the halogen acids (HF, HCl, HBr and HI) are stored in glass bottles 8. Silicones are					
98.		ntaining repeated R_2 SiO ur	nite			
	b) Silicates with common	- ·	iits			
	•	up (SiH ₃) similar to alkyl (S	SiH ₂) ₂ CO			
	d) Zircon (neso silicates)		372			
99.	, ,		de in water produces CO ₂ .	This experiment indicates		
	that			-		
	a) The oxide is that of a n	ion-metal	b) The oxide is basic			
	c) The oxide is amphoter	ric	d) The oxide is neutral			
100	-	ate chains are collectively				
	a) Olivine	b) Zircon	c) Pyroxenes	d) Natrolite		
101	. Consider the reaction,					
	(NH4)2HAsO3 + CuSO4 -	$\rightarrow \underbrace{\text{CuHAsO}_3}_{\text{green ppt}} + (\text{NH}_4)_2 \text{SO}_4$				
	The green precipitate is a	0 11				
	a) Pair's green	b) Scheele's green	c) Verdigrl's green	d) Rinmann's green		
102	=	ralent bonds formed by N a	= =	w)		
	a) 3, 5	b) 3, 6	c) 4, 5	d) 4, 6		
103	. Fusion of borane with Na	OH produces				
	a) $B_2O_3 + H_2$	b) $NaBO_2 + H_2$	c) $Na_2B_4O_7 + H_2$	d) $Na_3BO_3 + H_2$		
104	. The true statement for th	ie acids of phosphorus. ${ m H_3}$ I	PO_2 , H_3PO_3 and H_3PO_4 is			
		$H_3PO_4 < H_3PO_3 < H_3PO_2$				
	b) All of them are reducing	=				
	c) All of them are tribasion					
405		phorus is tetrahedral in all	the three			
105	. Buckminster fullerene is	b) C (0	a) D: d	4) C 00		
106	a) Pure graphite . Fe ³⁺ oxidises NH ₂ OH to	b) C-60	c) Diamond	d) C-90		
100	a) NO_2	b) N ₂ O	c) N ₂	d) NO		
107	. An example of an "ortho"	, <u>-</u>	C) N ₂	u) NO		
107	a) HAsO ₂	b) H ₃ AsO ₄	c) $(HPO_3)_n$	d) H ₄ As ₂ O ₇		
108	. What is the role of phosp		o_{j} (III o_{3}) η	a) 114110207		
	a) It reduces pH of the w					
	b) It increase pH of the w					
	c) It removes Ca ²⁺ and M	Ig ²⁺ ions from water that c	auses hardness			
	d) It increases its solubili	ty in water				
109		ent about stability of catior				
	a) $Ge^{4+} > Sn^{4+} > Pb^{4+}$		b) $Ge^{2+} < Sn^{2+} < Pb^{2+}$			
	c) $Pb^{2+} > Pb^{4+} > Sn^{4+}$		d) All the above are corre	ect statement		
110	. PI ₃ upon hydrolysis gives					
	a) Monobasic acid and di		b) Monobasic acid and tr			
111	c) Monbasic acid and a sa		d) Dibasic acid and tribas			
111			e diue solution which decol	ourises KMnO ₄ and oxidizes		
	KI to I ₂ . Gaseous substan a) N ₂ O ₅	b) NH ₃	c) N ₂ O ₃	d) HNO ₃		
112	. In BF ₃	<i>b)</i> 14113	c) 11203	aj invog		
	s					


a) All the B $-$ F bonds are single covalents in nat		
b) Boron-fluorine bond has some double bond ch		
c) Bond energy and bond length of $B-F$ bond in	dicate its single bond chara	acter
d) All the bonds are ionic		
113. Quartz is a crystalline variety of		
a) Silicon carbide b) Sodium silicate	c) Silica	d) Silicon
114. Select the correct statements		
a) Hydrides of B and Si are volatile and catch fire	on exposure to air	
b) Oxides of B and Si(B ₂ O and SiO ₂) are acidic in	nature	
c) Borates and silicates have tetrahedral BO ₄ and	l SiO ₄ structural units	
d) All the above are correct statements		
115. Calgon (sodium metaphosphate) finds applicatio	n as	
a) Artificial jewel b) Paint	c) A resin	d) Washing powder
116. Bonding present between the carbon atoms in gr	aphite is	
a) Metallic b) Ionic	c) Covalent	d) Van der Waals' forces
117. Dipole moment of CO is very small (0.1 D) (inspir	te of the larger difference ir	n electronegativity) between C
and 0) and negative end of the dipole lies near th	ne less electronegative C-ato	om. It is due to
a) Occupation of anti-bonding molecular orbitals	•	
b) Occupation of empty <i>d</i> -orbitals		
c) Occupation of lone-pairs		
d) Occupation of the lone pairs as well as empty of	d-orbitals	
118. The correct structural representation of diborance		
НН		
a) $[BH_2]^+ + [BH_4]^-$ b) $H \cdot B - B \cdot H$	c) B H B	d) $H_2 \begin{bmatrix} H \\ H \end{bmatrix} B = B \begin{bmatrix} H \\ H \end{bmatrix}$
$a_{j} \left[BH_{2} \right]^{*} + \left[BH_{4} \right] \qquad b_{j} \qquad \qquad b_{j} \qquad $	C) H B H	$a_1 a_2 \mid B = B \mid H \mid$
н н	., ., ,,	,
119. Select the correct statement(s)		
a) Red oxide is called litharge	b) Yellow oxide is calle	ed massicot
c) Both (a) and (b) are correct	d) None of the above is	s correct
120. Consider the following reactions,		
$I: ZnO + C \rightarrow Zn + CO$		
II: $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$		
III: $Al_2O_3 + 2Cr \rightarrow Cr_2O_3 + 2Al$		
In this, possible reactions are		
a) I, III b) II, III	c) I, II	d) I, II, III
121. $B(OH)_3 + NaOH \rightleftharpoons NaBO_2 + Na[B(OH)_4] + H_2O$		
How can this reaction is made to proceed in forw	ard direction?	
a) Addition of cis-1,2-diol	b) Addition of borax	
c) Addition of <i>trans-</i> 1,2-diol	d) Addition of Na ₂ HPC	0_4
122. Which of the following dibasic acids shows geom	etrical isomerism?	
a) Hyponitrous acid H ₂ N ₂ O ₂	b) Maleic acid C ₄ H ₄ O ₄	
c) Both (a) and (b)	d) None of the above	
123. In the reaction, $B_2O_3 + C + Cl_2 \rightarrow A + CO A$ is	,	
a) BCl ₂ b) B ₂ Cl ₂	c) CCl ₂	d) BCl ₃
124. Molecule(s) possessing three-centre-two electro	· -	, ,
include		
	c) B ₂ H ₆ and XeF ₆	d) B ₂ H ₆ alone
125. B ₂ Cl ₄	c) =2116 and 1101 6	a, 2216 alone
a) Can be formed by passing BCl_3 over Hg at low	pressure in an electric disc	harge
b) Can exist on non-eclipsed and planar structure		7.101 DC
c) Decomposes at low temperature	•	
of Decomposes at low temperature		

	d) Can show all the facts g	iven above			
126	26. 1 mole each of H_3PO_2 , H_3PO_3 and H_3PO_4 will neutralize x moles of NaOH, y moles of $Ca(OH)_2$ and z mole				
	of Al(OH) ₃ (assuming all a	as strong electrolytes). x , y	, z are in the ratio of		
	a) 3:1.5:1	b) 1:2:3	c) 3:2:1	d) 1:1:1	
127	. Which silicon compound i		,		
	a) Asbestos	b) Silicones	c) Zeolite	d) Mica	
128	. On heating lead nitrate the		0) 2001100	w) 1 1100	
120	a) NO	b) NO ₂	c) N ₂ O	d) N ₂ O ₅	
129	. In which cases geometry of	,	^ =	u) 11205	
12)	a) $N(CH_3)_3$	b) N(SiH ₃) ₃	c) Both (a) and (b)	d) None of these	
120		b) N(31113)3	c) both (a) and (b)	u) Notice of these	
130	On hydrolysis, PCl ₃ gives	b) II DO	a) DOCI	4) IIDO	
101	a) H ₃ PO ₃	b) H ₃ PO ₄	c) POCl ₃	d) HPO ₃	
131	. Stabilities of adducts form			1) DE . DD . D.Cl	
400	, , ,	, , ,	c) $BCl_3 < BBr_3 < BF_3$	a) $BF_3 < BBr_3 < BCI_3$	
132	. On photochemical decomp	·			
	a) NO and O_2	b) NO ₂ and O ₂			
133	. The solubility of $Al(OH)_3$	in strong NaOH solution is	-	ation of	
	a) AlO_3^- ion		b) Double salt		
	c) A peptised colloidal sol		d) A complex hydroxyl alı	ıminate ion	
134	. Which one of the followin	g is not a green house gas?			
	a) CO ₂	b) H ₂ O	c) N ₂	d) 0_3	
135	. Boric acid is the trivial na	me for			
	a) Orthoboric acid	b) Metaboric acid	c) Pyroboric acid	d) None of these	
136	. Boric acid is a weak acid. '	Γhus, it behaves as			
	Proton donor as in				
	a) $H_3BO_3 + H_2O \rightleftharpoons H_3O^+$	$+ H_2BO_3^-$			
	An hydroxyl acceptor a				
	b) $B(OH)_3 + H_2O \rightleftharpoons [B(OH)_3]$	H)']- + H+			
	Proton acceptor as in	/4] 1			
	c) $H_3BO_3 + H_2O \rightleftharpoons H_4BO_3$	+ + OH-			
	d) An electron donor as in $H_3BO_3 \rightleftharpoons H_3BO_3^+ + e^-$	L			
127			The Vie		
13/	The reaction of P_4 with X	leads selectively to P_4U_{10} . I			
	a) Dry O_2		b) A mixture of O ₂ and N ₂		
	c) Moist O ₂		d) O_2 in the presence of a	queous NaOH	
138	. On passing CO ₂ into aque	ous solution containing Al ³			
	a) $Al_2(CO_3)_3$ is formed		b) Al(OH) ₃ is precipitated	l	
	c) $[Al(OH)_4]^-$ is formed		d) Colloidal Al(OH) ₃		
139	. Glass is best described as	a			
	a) Solid	b) Liquid	c) Super cooled liquid	d) Colloidal sol	
140	. Phosgene can be obtained	when			
	a) White phosphorus read	ct with alkali	b) Calcium phosphide rea	cts with water	
	c) Chloroform reacts with	air	d) Bone comes in contact	with water	
141	. Boron does not form B ³⁺	cation easily. It is due to			
	Energy required to form	1 B ³⁺ ion is for more than	that which would be comp	ensated by lattice energies	
	a) or hydration energies of		•		
	b) Boron is non-metal				
	c) Boron is semiconducto	r			
	d) None of the above				
142	. Which of the following ha	s the regular tetrahedral st	ructure?		
	9	_			

	a) BF ₄	b) SF ₄	c) XeF ₄	d) $[Ni(CN)_4]^{2-}$
143.	All of the following are bas	ses except		
	a) N ₂ H ₄	b) NH ₂ OH	c) NH ₃	d) N ₃ H
	=	isomerism is not exhibited	?	
	a) Hyponitrous acid	b) 2-butene	c) 1-butene	d) 2-pentene
	$Al_2(SO_4)_3$ is used in the fo		,	<i>y</i> 1
		ripitant in treating drinking	water and sewage	
	b) In paper industry		,	
	c) As a mordant in dyeing			
	d) In plastic industry			
	Consider the following sta	tements		
	-		ly to four other carbon ato	ms by sn^3 bonds
			oms held together by weak	
		_	tendency to form $p\pi$ - $p\pi$ be	
	In this	amona ser accare and to res	tendency to form ph ph bo	onus to itsen
	a) Only I and II are correct	-	b) Only I is correct	
	c) Only II and III are corre		d) All the above are correct	rt statements
	-	nt(s) about group 13 (IIIA)	_	
		(H_3) decreases as we move		
	b) MX ₃ is a strong Lewis a		9	
	c) $[Al(H_2O)_6]^{3+}$ exists in a			
	d) All the above are correct			
	Diamagnetic species can b			
	a) B ₂ Cl ₄	b) GaCl ₂	c) GaS	d) All of these
	=	-	educing and complex form	•
	a) HNO ₃	b) HCl	c) H ₂ SO ₄	d) HNO ₂
	H_3BO_3 is	-,	-)24) 2
	a) Monobasic and weak Le	ewis acid	b) Monobasic and weak Br	consted acid
	c) Monobasic and strong I		d) Tribasic and weak Bron	
	_		s would increase the acidity	
	a) Urea	O	b) Superphosphate of lime	
	c) Ammonium sulphate		d) Potassium nitrate	
	Non-oxide ceramics can be	9	,	
	a) B ₄ C	b) SiC	c) Si ₃ N ₄	d) All of these
	Carbogen is	,	7 3 4	,
	a) Mixture of CO + CO ₂		b) Mixture of $O_2 + CO_2$	
	c) Pure form of carbon		d) Unsaturated organic co	mpound
	Lead pencil contains		,	1
	a) Lead		b) Graphite	
	c) Alloy of lead and tin		d) Alloy of lead and graph	ite
	$p\pi$ - $p\pi$ multiple bonding is	present in	, ,	
	a) Oxides of nitrogen	•	b) Oxides f phosphorus	
	c) Halides of nitrogen		d) Halides of phosphorus	
	=	eated to red heat the residu		
	a) Boron	b) Boric oxide	c) Metaboric acid	d) Pyroboric acid
	Stability of pentahalides is		-	
	a) $P > Sb > As > Bi$ for g		b) $F > Cl > Br$ for given e	lement
	c) Both (a) and (b)		d) None of the above	
	NaOCl reacts with NH ₃ to	produce		
	a) NH ₂ OH	b) NH ₂ NH ₂	c) N ₂	d) NO

159. $d\pi$ - $p\pi$ bonding is shown	in					
a) NO_3^- , NO_2^- , N^{3-} , CN^{-}	b) P_2O_3 , P_2O_5 . PO_4^{3-}	c) NH ₃ , PH ₃ , BiH ₃	d) CO , NO , CO_2 , NO_2			
160. Glacial phosphoric acid i	S					
a) HPO ₃	b) H ₃ PO ₃	c) H_3PO_4	d) $H_4P_2O_7$			
161. Paramagnetic species ar	e					
a) NO_1, NO_2, O_2	b) N_2O_2 , N_2O_4 , O_3	c) NO^+, NO_2^+, O_2^+	d) O ₂ , CO, CO ₂			
162. Anodizing can be done b	y electrolyzing dilute H ₂ SO	$ ho_4$ with Al as anode. This res	sults in			
a) The formation of prot	ective oxide layer (Al ₂ O ₃)					
b) The formation of Al ₂ ($SO_4)_3$ and SO_2 gas					
c) The formation of AlH ₃	and SO ₂ gas					
d) The formation of Al(H	d) The formation of Al(HSO_3) ₃ and H_2 gas					
163. $MH_3 + H^+ \rightarrow MH_4^+$						
ΔG° is most negative wh	en <i>M</i> is					
a) N	b) P	c) As	d) Sb			
164. The solid PCl ₅ exists as						
a) PCl ₃	b) PCl ₄ ⁺	c) PCl ₆	d) PCl ₄ and PCl ₆			
165. Marsh gas primarily con	tains					
a) CH ₄	b) C ₂ H ₆	c) H ₂ S	d) C_2H_2			
166. Lead is soluble in						
a) CH ₃ COOH	b) H ₂ SO ₄	c) HCl	d) HNO ₃			
167. MnO_4^-/H^+ oxidises NO_2^-	to					
a) N ₂	b) NH ₃	c) NO_3^-	d) N ₂ O			
168. Following metals are sol	uble in aqua-regia					
a) Pt	b) Au	c) Ag	d) All of these			
169. General formula of alum	inium alums is ($M^{ m I}$ is mond					
a) $[M^{I}(H_{2}O)_{6}][Al(H_{2}O)_{6}]$	$](SO_4)_2$	b) $[M^{I}(H_{2}O)_{4}][Al(H_{2}O)_{6}]$	$[(SO_4)_2]$			
c) $[M^{I}(H_{2}O)_{4}][Al(H_{2}O)_{4}]$	$](SO_4)_4$	d) $[M^{I}(H_{2}O)_{6}][Al(H_{2}O)_{6}]$	$[(SO_4)_4]$			
170. Select the incorrect state	ements					
a) B_2H_6 has all B — H bo	nd equal					
b) AlH ₃ is colourless sol	d and is polymeric contain	ing Al – H – Al bridges				
c) LiAlH ₄ is ionic compo	und					
$AlX_3(X = Cl, Br, I)$ have	ve low melting point, are co	valent and have the haloge	n-bridged dimeric			
structurea						
171. Bond angle of 109°28′ is	found in					
a) NH ₃	b) H ₂ O	c) $\stackrel{\oplus}{\mathrm{CH}}_5$	d) $^{⊕}_{\mathrm{NH_4}}$			
172. The dipole moments of t	he given molecules are suc	-	4			
=	· ·	c) $NH_3 > NF_3 > BF_3$	d) $NH_a > RF_a > NF_a$			
173. The relative stability of t			u) Nii3 > Di 3 > Ni 3			
Ti ⁺ > T l ³⁺ > G a ³⁺ > G a		•				
$Tl^+ > In^+ > Ga^+$	L					
Is an example of						
a) Redox potential	b) disproportionation	c) Inert pair effect	d) Electron-affinity			
174. Method used for obtaini		•	•			
a) Oxidation	b) Electrochemical	c) Crystallisation	d) Zone refining			
175. Nitrogen is obtained by	•		u)			
a) NH ₄ NO ₂	b) NH ₄ NO ₃	c) AgNO ₃	d) $Pb(NO_3)_3$			
$176. B(OH)_3 + NaOH \rightleftharpoons NaBO$,	,) \ -3/3			
	made to proceed in forwar	d direction?				
a) Addition of cis-1, 2-di	•	b) Addition of borax				
c) Addition of <i>trans-</i> 1, 2		d) Addition of Na ₂ HPO ₄				

177	. Consider the following sta	atements for diborane				
	1. Boron is approximately	σsp^3 hybridized				
	$2. B - H - B$ angle is 180°					
	3. There are two terminal	B – H bonds for each boro	n atom			
	4. There are only 12 bond	ing electron available				
	Of these statements					
	a) 1, 2 and 4 are correct	b) 1, 2 and 3 are correct	c) 2, 3 and 4 are correct	d) 1, 3 and 4 are correct		
178	Which of the following is	the ionic carbide?				
	a) Fe ₃ C	b) SiC	c) CaC ₂	d) Cu ₂ C		
179	Polyphosphates are used	as water softening agents b	pecause they			
	a) Form soluble complexe	es with anionic species				
	b) Precipitate anionic spe	cies				
	c) Form soluble complexe	es with cationic species				
	d) Precipitate cationic spe	ecies				
180	. Compound A undergoes h	ydrolysis to produce a colo	ourless gas with rotten fish	smell. The gas gives a		
	vortex ring. The gas is					
	a) PH ₃	b) P ₂ O ₃	c) P_2O_5	d) P_2S_5		
181	. Nitrogen differs from P, A	s, Sb and Bi in the following	g properties			
	a) It forms diatomic mole	cule				
	b) It is not able to extent i	ts coordination number be	yond four			
	c) Nitrogen does not func	tion as a Lewis acid wherea	as P, As, Sb and Bi do so			
	d) In all the properties give	en above				
182	Extraction of metal from t	the ore cassiterite involves				
	a) Carbon reduction of an	oxide ore	b) Self-reduction of a sulp	hide ore		
	c) Removal of copper imp	ourity	d) Removal of iron impur	ity		
183	N_20 (laughing gas) finds	use in the following except				
	a) As a propellant for whi	pped ice-cream	b) As an anaesthetic			
	c) For the preparation of	N_3H	d) As fuel for rockets			
184	Which one of the followin	g statements about the zeo	lite is false?			
	a) They are used as cation	n exchangers				
	b) They have open structu	ure which enables them to	take up small molecules			
	c) Zeolites are aluminosil	icats having three dimension	onal network			
	d) Some of the SiO ₄ ⁴⁻ units	s are replaced by AlO_4^{5-} and	$d AlO_6^{9-}$ ions in zeolites			
185	. Which is/are true stateme	ents?				
	Diamond is unaffected	by conc acids but graphite	reacts with hot conc. HNO ₃	forming mellitic acid,		
	a) $C_6(COOH)_6$					
	b) CO is toxic because it fo	orms a complex with haemo	oglobin in the blood			
	c) C ₃ O ₂ , carbon suboxide	e, is a foul-smelling gas				
	d) All the above are true s	statements				
186	. Which of the following sta	atements are true?				
	a) Cold and very dilute Hi	NO_3 forms NH_4NO_3 with Zr	n or Sn			
	b) Concentrated HNO ₃ for	rms H ₂ SnO ₃ with Sn				
	c) Cold and more concent	crated HNO_3 forms NO_2 wit	h Cu			
	d) All the above are corre	ct				
187	. In plants, atmospheric nit	rogen is converted into				
	a) Carbohydrate	b) Proteins	c) Amino acids	d) Fats		
188	Silicon reacts with hot so	lution of NaOH forming				
	a) Si(OH) ₄	b) Si(OH) ₂	c) SiO ₂	d) Na ₄ SiO ₄		
189	Metallic tin and conc. HNO	O ₃ reacts to form				
	a) Metastannic acid	b) Stannic nitrate	c) Stannous nitrite	d) Stannous nitrate		

sulphuric acid a) Has two hydroxyl groups in its structure c) Is a dibasic acid 3) Has greater affinity for water 209. Aqueous solution of SnO liberates CO ₂ with NaHCO ₃ . This shows that SnO is a) An acidic oxide b) A basic oxide c) An amphoteric oxide d) A Lewis acid	
c) Is a dibasic acid d) Has greater affinity for water 209. Aqueous solution of SnO liberates ${\rm CO_2}$ with NaHCO $_3$. This shows that SnO is	
209. Aqueous solution of SnO liberates CO ₂ with NaHCO ₃ . This shows that SnO is	
a) An acidic oxide b) A basic oxide c) An amphoteric oxide d) A Lewis acid	
210. Which of the following cuts ultraviolet rays?	
a) Soda glass b) Crooke's glass c) Pyrex d) None of these	
211. Pure N_2 is prepared in the laboratory by heating a mixture of	
a) NH_4Cl and $NaOH$ b) NH_4OH and $NaCl$ c) NH_4Cl and $NaNO_2$ d) NH_4Cl and $NaNO_3$	
212. Graphite is a good conductor of heat and electricity because it contains	
a) Layers of carbon atoms b) Sheet like structure	
c) Free electrons d) $p\pi$ - $p\pi$ bonding	
213. When boron is fused with NaOH, products formed are	
a) $Na_2B_4O_7$ and H_2 b) $NaBO_2$ and H_2 c) Na_3BO_3 and H_2 d) B_2O_3 and H_2	
214. The silicate anion in the mineral kinoite is a chain of three SiO ₄ tetrahedra that share corners with	
adjacent tetrahedral. The mineral also contains Ca ²⁺ ions, Cu ²⁺ ions, and water molecules in a 1:1:1 r	atio.
The mineral is	
a) $Ca_2Cu_2Si_3O_{10} \cdot 2H_2O$ b) $CaCuSi_3O_{10} \cdot H_2O$ c) $Ca_2Cu_2Si_3O_8 \cdot 2H_2O$ d) $Ca_2Cu_2Si_3O_6 \cdot 2H_2O$	0
215. Compound used on thermal insulator is	
a) Silica gel b) Zeolites c) Silicones d) Asbestos	
216. Arsenic drugs are mainly used for the treatment of	
a) Cholera b) Typhoid c) Jaundice d) Syphilis	
217. Which is used as a rocket fuel?	
a) N ₂ H ₄ b) Polybudiene c) Both (a) and (b) d) None of these	
218. Formula of the following silicate anion is	
a) SiO_4^{4-} b) $Si_2O_7^{6-}$ c) $Si_2O_8^{6-}$ d) $Si_3O_9^{6-}$	
219. Which of the following phosphorus is the most reactive?	
a) Red phosphorus b) White phosphorus c) Scarlet phosphorus d) Violet phosphorus	
220. The borax bead test can be used to detect the presence of	
a) Al^{3+} b) Mg^{2+} c) Fe^{3+} d) Na^{+}	
221. With FeCl ₃ , a neutral solution of orthophosphate gives an yellow precipitate insoluble in	
a) CH ₃ COOH b) HCl c) H ₂ SO ₄ d) NaOH	
222. BF ₃ on hydrolysis forms	
a) H ₃ BO ₃ b) HBF ₄ c) Both (a) and (b) d) None of these	
223. Which of the following statements about H ₃ BO ₃ is not correct?	
a) It is strong tribasic acid	
b) It is prepared by acidifying an aqueous solution of borax	
c) It has a layer structure in which planar BO_3 units are joined by hydrogen bonds	
d) It does not act as a Lewis acid by accepting hydroxyl ion	
224. Which of the following oxides of nitrogen is solid?	
a) NO_2 b) N_2O c) N_2O_3 d) N_2O_5	
225. When zeolite is treated with hard water, there is exchange reaction between calcium/magnesium	
225. When zeolite is treated with hard water, there is exchange reaction between calcium/magnesium ion/and	
ion/and	
ion/and a) Aluminium ion b) Sodium ion c) Water of hydration d) Sulphate ion	
ion/and	

222	, .	b) NH ₄ Cl	c) $(NH_4)_2SO_2$	d) NH ₄ NO ₂		
228.	By passing air over red ho	=				
		b) Water gas	c) Oil gas	d) Producer gas		
229.	Which is least basic?					
	, ,	b) NCl ₃	c) NBr ₃	d) NI ₃		
230.	The decrease stability of h	igher oxidation state in p - $\mathfrak k$	block with increasing atomi	ic number is due to		
	a) Decrease in bond energ	y as going down the group				
	b) Energy required to unpartial additional bonds	air ns^2 electrons is not con	npensalted by the energy re	eleased in forming the two		
	c) Both of the above					
	d) None of the above					
231.	Substances burn more rea	dily in N2O than in air beca	nuse N ₂ O			
	a) Is reactive at high temp		2			
	b) Dissociates to give O_2 th					
	c) The activation energy is	• •	emperature			
	d) Acts as a catalyst	8	· · ·			
232.	HNO ₃ in pure state is color	ırless but it is often of vell	ow colour. It is due to			
	a) Unstable structure of H	_				
	b) Photochemical decompo					
	c) Interaction of atmospheric gases with HNO ₃					
	d) Conversion of HNO ₃ int	_				
233.	Both NF ₃ and NCl ₃ are cov	-	extent of hydrolysis becau	se		
	a) NF_3 is more stable than NCl_3 and hydrolysis product of NF_3 , HOF , does not exist b) Dipole moment of NF_3 is greater than that of NCl_3					
	c) Electronegativity of F is					
	d) Cl can expand it octet by	=				
234.	A certain compound on bu	•	ides. One of the oxides turr	ned lime water milky, the		
	other turned anhydrous Co					
		b) S, N and C	c) S, C and H	d) S, H and Na		
235.	Which is silane?					
	a) SiO_2	b) SiO ₃	c) SiH ₄	d) Si		
236.	Which one of the following	bonds has the highest bor	nd energy?			
	a) C – C	b) Si — Si	c) Ge – Ge	d) Sn — Sn		
237.	The electronegativities of l	N, C, Si and P are such that				
	a) $P < Si < C < N$	b) Si $< P < N < C$	c) Si $< P < C < N$	d) $P < Si < N < C$		
238.	A colourless salt gives a w	hite ppt (soluble in ammor	nium acetate) and a brown	coloured pungent gas on		
	reaction with conc. H ₂ SO ₄ .	Salt is				
	a) $Ba(NO_3)_2$	b) $Pb(NO_3)_2$	c) NaNO ₃	d) NH ₄ NO ₃		
239.	Which of the following spe	cies have undistorted octa	hedral structures?			
	1. SF ₆					
	2. PF ₆					
	$3. \operatorname{SiF}_{6}^{2-}$					
	4. SeF ₆					
	Select the correct answer	using the code below				
		b) 1, 3 and 4	c) 1, 2 and 3	d) 1, 2 and 4		
240.	Which of the following con			-		
	-	b) SiCl ₄	c) CCl ₄	d) BCl ₃		
241.	Water glass is		· .	, ,		
	a) Glass made up of water		b) Sodium silicate			
	c) Water gas		d) Crystal carbonate			
	_		- •			

242. With ex	cess of Cl ₂ ammo	nia forms		
a) Amm	onium chloride	b) Nitrogen trichloride	c) Nitrosyl chloride	d) Nitrogen
243. Compou	ınd used in safety	y matches is		
a) P ₄ S ₃		b) P ₄	c) P_2O_5	d) PCl ₃
	f the following st	tatement regarding <i>ortho</i> b	· - ·	, ,
	s as a monobasic		b) It is soluble in hot water	er
	a planar structu		d) It acts as a tribasic acid	
•	$a_2B_4O_7 \cdot 10H_2O_1$		a, ro acts as a crisusic acts	•
	$B_4O_5(OH)_4$ · $8H_2$	=	b) $Na_2[B_4O_4(OH)_6] \cdot 7H_2$	0
,	$B_4O_3(OH)_8 \cdot 6H_2$	=	d) $Na_2[B_4O_2(OH)_{10}] \cdot 5H$	
,		=		-
		is more stable compared to	o that of nitrogen even thro	ugh they belong to same
	t is due to	h	h) I	
	reactivity of pho	ospnorus	b) Inert nature of nitroge	
=	ence of d -orbital		d) Large size of phosphor	rus atom
_		n following is heated	> xx o	1) *****
a) Pb(N		b) $AgNO_3$	c) LiNO ₃	d) KNO ₃
=	eric oxides are			
a) SnO,	_	b) GeO, GeO ₂	c) Both (a) and (b)	d) None of these
249. Orthobo	ric acid H ₃ BO ₃ b	ehaves as weak monobasic	acid giving H_30^+ and	
a) H ₂ B(† 2	b) H ₂ BO ₂	c) [B(OH) ₄] ⁻	d) $[B(OH)_4]^+$
250. Soda fre	e glass fibre are	made of		
a) H ₃ B0	$_3$, B_2O_3 and Ca_3	$(BO_3)_2$	b) H_3BO_3 , B_2O_3	
c) H ₃ B(['] 3		d) B_2O_3	
251. Select tl	ie correct statem	ent(s) about H ₃ BO ₃		
	triangular BO ₃ -			
		lles are hydrogen bonded		
=	(a) and (b) are c			
-		tements is correct		
	as is used in aera			
a) CO ₂	as is used in acre	b) SO ₂	c) CO	d) Water vapours
, -	white phoephor	us will differ but not in	c) co	d) water vapours
		us will ullier but not in	b) Solubility in CHCl ₃	
a) Smel		22222	, ,	
=	oiting phosphores		d) Reactions with HNO ₃	
	•	ave the highest melting poi		
	ck elements		b) s-block elements	
•	ck elements		d) All have equal melting	points
	ouse effect is due			
-		th's delicate thermal balan		
-	-	diation by atmospheric gase	es particularly water vapou	rs
c) Both	(a) and (b)			
d) None	of the above			
256. In B ₂ H ₆				
a) Ther	e is direct boron-	boron bond		
b) The I	B − H bonds are i	onic		
c) It is i	sostructural to C ₂	$_{2}H_{6}$		
		ed through hydrogen bridge	es	
-	converted into E			
	$H_3BO_3 \stackrel{\Delta}{\rightarrow} B_2O_3$	**		
		\rightarrow D		
	reagents are	1) 4 : 1 0) A : 1 5	15 A + 1 3 A
a) Acid,	Al	b) Acid, C	c) Acid, Fe	d) Acid, Mg

258	. Ambidentate ligands are			
	a) NO ₂	b) CN ⁻	c) CNS ⁻	d) All of these
259	. In P ₄ (tetrahedral)			
	a) Each P is joined to four	P	b) Each P is joined to thre	e P
	c) Each P is joined to two	P	d) P ₄ does not exist	
260	. Carbon and silicon belong	to group 14. What is the n	ature of carbide of silicon?	
	a) Covalent	b) Ionic	c) Interstitial	d) None of these
261	. AlO ₂ is known as	,	,	
	a) Aluminium dioxo ion	b) Meta aluminate ion	c) Dioxo aluminium ion	d) Aluminium oxide ion
262	. Major minerals containing		,	,
	a) DNA	b) RNA	c) KNO ₃ , NaNO ₃	d) All of these
263	. Which of the following is/	•	-, -3,3	.,
	NO ₂ , NO, N ₂ O ₄ , N ₂ O ₂ , N ₂ O	= =		
	a) Only NO ₂	b) NO ₂ , NO	c) NO, NO ₂ , N ₂ O ₅	d) All are paramagnetic
264	. Which of the following co	, <u>-</u>	0)0,0 2,2 0 3	.,
	a) B ₂ Cl ₄ , BCl ₂ , Cl ₂ B	· -	c) Ga[GaCl ₄]·Ga ₂ S ₂	d) All of these
265	. Which involves breaking of	_	o) an[an a-4] anzaz	-,
_00	a) Boiling of H ₂ S	b) Melting of SiO ₃	c) Melting of KCN	d) Boiling of CCl ₄
266	. Which of the following is 1	, 0	of recomb or reco	u) 2011118 01 0014
200	a) N_2O_5	b) P ₂ O ₅	c) As ₂ O ₅	d) Sb ₂ O ₅
267	. Select the correct stateme		0) 110205	u) 55205
207			disation and crystallizes in	an fcc structure similar to
	a) diamond	o crock one in an op ing or i	arsacron and orystamizes m	
		l insulator, granhite is an e	electrical conductor but sili	con is a semiconductor
	c) Most common silica is o		need tear contactor but on	
	d) All of the above are cor	=		
268	. In graphite, additional ele			
200	a) Localized on each C-ato			
	b) Localized on every thir			
	c) Present in anti-bonding			
	d) Delocalized forming ex			
269	. Water softener is	tended it bonding system		
20)	a) Borax	b) Zeolite	c) Both (a) and (b)	d) None of these
270	. Name of the structure of s		. , , , , ,	=
270	a) Pyrosilicate	meates in which three oxy	b) Sheet silicate	narea is
	c) Linear chain silicate		d) Three dimensional silic	rate
271	. Al ³⁺ of KAl(SO ₄) ₂ · 12H ₂ C	(alum) can be replaced by	•	cate
2,1	a) Cr^{3+}	b) Co ³⁺	c) Fe ³⁺	d) All of these
272	. The substance used as a fa	,	•	a) fill of these
212	a) Na ₂ PO ₄	ist arying agent in the labo	b) P ₂ O ₅	
	c) Charcoal		d) Anhydrous calcium chl	orida
272	. Standard reduction electr	odo notontial of load suggo	= =	
2/3	(unreactive). It is due to	ode potential of lead sugge	ists that it is reactive inetar	but it appears more noble
	a) Surface coating of oxid	0	b) High over potential of i	coduction of U+ to U
	=	C	d) None of the above	reduction of fi to fi ₂
274	c) Both (a) and (b)	minium is allowed to yeart		Lawa
Z/4	. An alloy of boron and alur	ininum is allowed to react		
	a) BN, AlN and H ₂		b) $B(NH_2)_3$, $Al(NH_2)_3$ and	п п2
275	c) BN, Al(NH ₂) ₃ and H ₂	s the highest selections	d) $B(NH_2)_3$, AlN and H_2	
2/3	. Which of the following has			d) Cool gas
	a) Water gas	b) Producer gas	c) Carbonium oxide	d) Coal gas

276.	When chlorine is passed t	through molten tin, the pro	duct obtained is	
	a) SnCl ₄	b) [SnCl ₆] ²⁻	c) [SnCl ₄] ²⁻	d) SnCl ₂
277.	When vapours of SiCl4 are	e passed over hot Mg, then	the product formed is	
	a) $SiCl_2 + MgCl_2$		c) MgSiCl ₆	d) $Si + MgCl_2$
278.	Borax is used as a buffer s	since		
	a) Its aqueous solution co	ntains equal amount of we	eak acid and its salt	
	b) It is easily available	•		
		ntains equal amount of str	ong acid and its salt	
	d) Statement that borax is	=	g · · · · · · · · · · ·	
279		•	rding to their properties sh	own. Select the correct
_,,,	matching	ono ming ur o muconou ucoo	rumg to their properties on	
	a) Cl_2O_7 – acidic		b) Al ₂ Cl ₆ – white fumes	
	c) Al_2O_3 – amphoteric		d) All of the above are con	rect matching
280.	The wrong statement abo	ut N ₂ O is	a, or az o , e ar e eo.	
	a) It is nitrous oxide	a	b) It is least reactive oxid	e of nitrogen
	c) It is not a linear molecu	ıle	d) It is known as laughing	· ·
281	=	$_{3}$ is less than that of NH $_{3}$ b		, 8 ⁴⁰
201.	a) F is more reactive than		ceaase	
	b) NH ₃ forms associated r			
	, ,	dividual bond polarities is l	ess	
	=	-	opposed by the polarity of l	one nair
282	Consider the following bo	-	opposed by the polarity of i	one pan
202.	1. BF ₃ 2. BCl ₃			
	5	s of these halides are such	that	
			c) 4 < 3 < 2 < 1	d) $4 < 2 < 3 < 1$
283	=	hospheric CO_2 have been ri	=	u) + < 2 < 3 < 1
203.	a) Use of fossil fuels	b) Acid rain	c) Photochemical smog	d) Ozona danlation
284			um coordination of carbon	<u> </u>
201.		that of silicon is 6. This is o		is commonly occurring
	a) Large size of silicon	that of silicon is o. This is t	b) More electropositive n	ature of silicon
	c) Availability of <i>d</i> -orbita	l in silicon	d) Both (a) and (b)	ature of silicon
285	N_2O is formed when	i ili silicoli	a) both (a) and (b)	
205.	a) Moist Fe reacts with No	n	b) Sn ²⁺ reacts with conc.	HNO, in presence of HCl
	c) Cold dil. HNO ₃ reacts w		d) By all the reactions	invog in presence of fici
286	Hot conc. HNO_3 converts		d) by all the reactions	
200.	a) Graphite oxide	grapilite liito	b) Benzene hexacarboxyl	ic acid
	c) Both (a) and (b)		d) None of the above	ic aciu
297		wwis formed only from D (D_3 ; the rest area formed fro	m D O Acid formed from
207.	P_2O_3 is	iw is formed only from F ₂ C	73, the rest area formed fro	III r ₂ 0 ₅ . Acid for filed from
	a) HPO ₃	b) H ₂ P ₂ O ₇	c) H ₂ PO ₄	4) II DO
200	, ,	$UJ \Pi_2 \Gamma_2 U_7$	$c_1 n_2 r o_4$	d) H_2PO_3
200.	$PbO_2 \rightarrow PbO \ \Delta G_{298} < 0$ $SnO_2 \rightarrow SnO \ \Delta G_{298} > 0$			
		state of Dh and Sn will be		
	Most probable oxidation s	b) Pb ⁴⁺ , Sn ²⁺	c) Pb ²⁺ , Sn ²⁺	d) Pb ²⁺ , Sn ⁴⁺
200	a) Pb ⁴⁺ , Sn ⁴⁺			uj PD , SII
289.		eatment with steam produc		4) MII + Ca(OII)
200	a) NH ₃ + CaO	b) NH ₃ + CaHCO ₃	c) $NH_3 + CaCO_3$	d) $NH_3 + Ca(OH)_2$
290.	Pure boron is best prepar	eu by		
	a) Heating B ₂ O ₃ with H ₂	aw IV		
	b) Heating B_2O_3 with Na O_2			
	c) Heating KBF ₄ with Na	or K		

201	d) Heating BBr ₃ with H ₂ in the presence of a catalyst 91 . While testing BO ₃ ³⁻ , there is green-edged flame on heating the salt with conc. H ₂ SO ₄ and CH ₃ OH. Green				
291.		is green-edged flame on he	eating the salt with conc. H_2	2SO ₄ and CH ₃ OH. Green	
	colour is of				
	a) $(CH_3)_3B$	b) $(CH_3O)_3$ B	c) B_2O_3	d) H_3BO_3	
292.	=	ximum carbon percentage			
	a) Peat	b) Bituminous	c) Lignite	d) Anthracite	
293.	The statement true for N ₃				
	a) It has non-linear struct				
	b) It is called pseudohalog				
	=	cate of nitrogen in this anio	n is +1		
	d) It is isoelectronic with	-			
294.			amounts of two gases at -		
	a) N ₂ 0	b) N ₂ O ₃	c) N_2O_4	d) N_2O_5	
295.	Which is a set of acid salts				
	a) NaH ₂ PO ₂ , Na ₂ HPO ₃ , Na		b) Na ₂ HPO ₃ , NaH ₂ PO ₃ , Na	₂ HPO ₄	
	c) NaHCO ₃ , NaH ₂ PO ₃ , Na ₂	•	d) All of the above		
296.	Hardening of cement is du	ie to			
	a) Dehydration		b) Hydrolysis		
	c) Hydration and hydroly	sis	d) Polymerization		
297.	H_3BO_3 is				
	a) Monobasic acid and we		b) Monobasic and weak B		
	c) Monobasic and strong l		d) Tribasic and weak Broi	nsted acid	
298.	Boron nitride has the stru				
	a) Both diamond and grap	hite	b) Graphite		
	c) Diamond		d) NaCl		
299.	-	osphorus is used as washir			
	a) Wavellite	b) Microcosmic salt	c) Calgon	d) Chlorapatite	
300.	Alums are used as mordar				
	·	· ·	n fibre in the hydrolysis pro	cess	
		H formed due to hydrolysis			
	c) Both (a) and (b)				
	d) None of the above				
301.	Out of CO ₂ , SiO ₂ , GeO, SnO				
		c , SnO_2 is amphoteric and P			
	· -	$(NO_3)_2$ on reaction with H	INO_3		
	c) Both (a) and (b) are co				
	d) None of the above is co	rrect			
302.	Of the following acids				
	I: hypo phosphorous acid				
	II: hydrofluoric acid				
	III: oxalic acid				
	IV: glycine	1:1 1 1777 1 .			
	=	dibasic acid and IV amphoto	eric		
	b) II monobasic: I, III diba	-			
	c) I monobasic, II, III dibas	=			
202	d) I, II, III dibasic: IV ampl				
303.	=	s the highest first ionization		D.C. J.	
204	a) Lithium	b) Beryllium	c) Boron	d) Carbon	
<i>3</i> U4.	=	plants and animal tissues an		J) Co J.M.:	
	a) N and P	b) N and As	c) Cu and Mg	d) Ca and Mg	

305. H ₃ BO ₃ and HBO ₂ d	lo not differ in		
a) Oxidation numb		c) Melting point	d) Structure
306. Percentage of lead		, 01	,
a) 30	b) 20	c) 10	d) Zero
307. Holme's signals car	,	3) = 3	,
a) $CaC_2 + CaCN_2$		c) $CaC_2 + CaCO_3$	d) $Ca_3P_2 + CaCN_2$
	mainly used for the treatment of		aj dagiz i daditz
a) Cholera	b) Typhoid	c) Jaundice	d) Syphilis
•	r refractive index is prepared us	= :	u j sypiinis
a) NiO	b) CoO	c) PbO	d) CaO
310. The incorrect state		C) FUO	u) cao
	3 is a covalent substance	int and hailing naint	
	s generally have low melting poi		
•	vs a more stable forms as compo	una to individual atom	
d) CCl ₄ is a non-po			
	ving is not an acid anhydride?		13.00
a) CO ₂	b) CO	c) SO ₂	d) SO ₃
312. Light elements B, A			
	affinity for oxygen)	b) Fluorophiles (high a	-
c) Both type		d) None of the types gi	iven
313. Which is/are used	as an anaesthetic?		
a) N_2O	b) C ₂ H ₄	c) CHCl ₃	d) All of these
314. The element which	forms oxides in all oxidation sta	ates $+1$ to $+5$ is	
a) N	b) P	c) As	d) Sb
315. The bond angle in A	${\sf AsH_3}$ is greater than that in		
a) NH ₃	b) H ₂ O	c) BCl ₃	d) None of these
316. Select the correct s	tatement(s)		
a) Aluminium disso	olves in dilute minereal acids but	t is made passive by conc	entrated nitric acid
b) Aluminium vess	el can be used as storage of NaO	Н	
c) Both (a) and (b)			
d) None of the abov	ve		
317. Dimer formation ca			
a) BH ₃	b) AlCl ₃	c) NO_2	d) All of these
• •	SO_3 . Number of $(S - S)$ bonds in		,
a) Three	b) Two	c) One	d) Zero
•	tic compounds is done using a m	•	-
formed in the nitra		2 т	3
a) NO ₂ (nitronium	-		
b) NO_3^- (nitrate ion	-		
c) NO ⁺ (nitrosoniu			
d) NO_2^- (nitrite ion	,		
320. In which case hydr			
SiMe ₂	,Me	∠SiMe ₂ ∖	,Me
a) Me_2Si SiMe ₂ SiMe ₂	>Si <	b) Me ₂ Si SiMe ₂	Si
SiMe ₂	Н	SiMe ₂	D
c) At equal rate		d) No hydrolysis	
321. Anion containing b	oth three-and four-coordinated	boron is	
a) $[B(OH)_4]^-$	b) B ₃ O ₆ ³⁻	c) $[B_4O_5(OH)_4]^{2-}$	d) $BO_3BO_4^{4-}$
322. Hydrazine is not			
a) A reducing agen	t b) An oxidizing agent	c) An acid	d) A base
323 NaOH can't be stor			

	a) Al vessel	b) Zn vessel	c) Both (a) and (b)	d) None of these
324	. Which of the following co	mpounds do not exist?		
	N ₄ , P ₄ , PCl ₅ , NCl ₅ , NCl ₃ , P ₂ (O_5 , NO_2 , PO_2		
	a) N ₄ , NCl ₅ , NO ₂		c) PCl ₅ , NCl ₅ , PO ₂	d) All of these
325		ple bonds with itself and w		
	a) P, As	b) N, As	c) N, P	d) N
326		w volatility of white phosp	•	- ,
	a) Tetrahedrally arranged		b) Bond angle of 60°	
	c) Weak van der Waals' fo		d) Increased steric (strain	ı) factor
327		straction of silver is remove		i) idetoi
327	a) Parke's process	b) Solvay process	c) Cyanide process	d) None of these
328	. Boron sesquioxide is	b) solvay process	c) Gyamac process	uj wone of these
320	a) B_2O_3	b) BO ₃	c) BO ₃ ³	d) BO ₂
220	· - ·		_	· -
329			$d B_2 H_6 \cdot 2NH_3$ with NH_3 , a I	Lewis Dase. Tills
		$[\mathrm{BH}_2(\mathrm{NH}_3)_2]^+$ and $[\mathrm{BH}_4]^-$ io		
		d into borazine, B ₃ N ₃ H ₆ (ca	alled inorganic benzene)	
	c) Both (a) and (b) are co			
200	d) None of the above is co		1. 1.11	1
330			exposed to sunlight the pro	
204	a) Thionyl chloride	b) Phosgene	c) Phosphine	d) Carbon tetrachloride
331	. Nitric oxide is paramagne			
	a) Gaseous state	b) Liquid state	c) Solid state	d) Polymeric state
332	. Nitrosonium ion (NO ⁺) is			
	a) Carbon dioxide	•	c) Nitrogen dioxide	d) Nitric oxide
333	. Select the incorrect stater			
	a) Mellitic acid is benzene	-		
	b) Pb dissolves in conc. He			
	c) Pb dissolves in hot NaC	0 2		
	d) Diamond is unreactive	but graphite forms $(CF)_n$ v	vith F ₂	
334	. Concentrated nitric acid, ı	upon long standing turns y	ellow-brown due to the for	mation of
	a) NO	b) NO ₂	c) N ₂ 0	d) N_2O_4
335	. The sides of safety matche	es contain		
	a) Red phosphorus + san	d powder		
	b) P ₄ S ₃			
	c) $Ca_3(PO_4)$ + glass piece	es .		
	d) KClO ₃ , KNO ₃ , sulphur +	- antimony		
336	. Alum is found to contain l	nydrated monovalent cation	n $[M(H_2O)_6]^+$, trivalent cat	tion $[M'(H_2O)_6]^{3+}$ and
	SO_4^{2-} in the ratio of			
	a) 1:1:1	b) 1:2:3	c) 1:3:2	d) 1:1:2
337	,	ed as food additives and ge		
		at to brown coloured mate		
	b) Prevent growth of botu			
	-	xidized meat by NO by reac	tion of heme in blood	
	d) Make all of the function			
338	. Select the correct stateme	_		
	a) Catenation is maximun			
	Carban has propaga		ltiple bonds to itself and to	other elements like O and
	b) N	, ., ., p.v p.v ma.	1 1 2 2 3 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4	
	c) Both (a) and (b) are co	rrect		
	d) None of the above is co			

339.	Global warming is called					
	a) Photochemical smog	b) Green-house effect	c) Acid rain	d) Respiration		
340.	Select the correct stateme	nt				
	a) Oxides of carbon family	$\gamma(MO_2)$ are all network sol	ids with octahedral coordin	nation		
	b) Silicon dioxide (silica) i	is a network solid with tetr	ahedral coordination and is	s a giant molecule		
	c) GeO ₂ , SnO ₂ and PbO ₂ are	re all acidic oxides				
	d) None of the above appe	ears correct				
341.	Element of group 14 used	in semiconductors are				
	a) C, Si, Ge	b) Si, Ge, Sn	c) Si, Ge	d) B, Si, Ge		
342.	Which of the following oxi	ides of nitrogen is paramag	metic?			
	a) N ₂ 0	b) N ₂ O ₅	c) NO ₂	d) N_2O_3		
343.	Which is/are correct state	ements about P_4O_6 and P_4O	10?			
	a) Both form oxyacids H ₃ I	PO ₃ and H ₃ PO ₄ respectivel	y			
	b) In P ₄ O ₆ each P is joined	to four 0 and in P ₄ O ₁₀ each	h P is joined to six O atoms			
	c) Both (a) and (b)					
	d) None of the above					
344.	The major constituent in o	cement is				
	a) Silica	b) Magnesium oxide	c) Calcium carbonate	d) Iron oxide		
345.	In the preparation of red p	phosphorus from white pho	osphorus			
	a) MnO ₂ is used as a catal	yst				
	b) The white phosphorus is treated in an electric furnace					
	c) A little iodine is used as	s catalyst				
	d) The gas P ₄ is released					
346.	Methanides are					
	a) Mg ₂ C ₃ , Be ₂ C, Al ₄ S ₃ and	CaC_2	b) Mg ₂ C ₃ , Be ₂ C and Al ₄ C ₃			
	c) Be ₂ C, Al ₄ C ₃ and CaC ₂		d) Be ₂ C and Al ₄ C ₃			
347.	The type of hybridization	of boron in diborane is				
	a) sp	b) sp^2	c) sp^3	d) sp^3d^2		
348.	Graphite is a soft solid lub	ricant extremely difficult to	o melt. The reason for this a	anomalous behaviour is		
	that graphite					
	a) Is a non-crystalline sub	stance				
	b) Is an allotropic form of	diamond				
	c) Has molecules of variab	ole molecular masses like p	olymers			
	d) Has carbon atoms arrai	nged in large plates of rings	s of strongly bound carbon	atoms with weak		
	interplate bonds					
349.	Name of structure of silica	ites in which three oxygen	atoms of $[SiO_4]^{4-}$ are share	d is		
	a) Pyrosilicate		b) Sheet silicate			
	c) Linear chain silicate		d) Three dimensional silic	ate		
350.	Among the following, the]	paramagnetic compound is	3			
	a) Na_2O_2	b) P ₂ O ₅	c) N ₂ 0	d) KO ₂		
		Multiple Correct	Answers Type			
351.	Conc. H ₂ SO ₄ reacts with c	arbon forming				
	a) CO ₂	b) SO ₂	c) H ₂ CO ₃	d) H_2SO_3		
352.	- -	prolactam which is formed	· - ·	, <u>L</u> J		
•	a) Cyclohexanone and hyd	=	b) Cyclohexanone and hyd	drazine		
	c) Benzophenon and hydr		d) Benzophenone and hyd			
353	Select the correct stateme		, promone and ny c	<i>y</i>		
	a) BF ₃ forms adducts with	• /				

b) BCl₂ forms adducts with NH₃, H₂O and RNH₂ c) BCl₃ reacts with liquid NH₃ and ethanol forming B(NH₂)₃ and B(OEt)₃ d) $[BCl_4]^-$, $[BBr_4]^-$ and $[BI_4]^-$ ions can be made only in non-aqueous media 354. Select the correct statement(s) a) Diborane is an electron-deficient compound b) Diborane is stoichiometrically analogous to ethane (C₂H₆) c) Total electrons involved in bonding are 12 in diborane and ethane d) Total electrons involved in bonding are 12 in diborane and 14 in ethane 355. Group 14 (carbon family) elements have the following properties a) They are all network solids with octahedral network b) Only SiO₂ is a network solid with tetrahedral coordination and is a giant molecule c) SnO₂ and PbO₂ are amphoteric oxides d) All oxides are acidic 356. Select the correct statement(s) a) BF₃ fumes strongly in moist air and is partially hydrolysed by excess of water b) $^{BF_3}_{temperature}$ is converted into the adducts $^{BF_3} \cdot ^{H_2}O$ and $^{BF_3} \cdot ^{2H_2}O$ with small amounts of water at low temperature c) H₂BO₃ is a weak acid but HBF₄ is a very strong acid d) KBF₄ is sparingly soluble in water 357. Boric acid is a weak Lewis acid proton comes from a) By its ionization b) When it forms complex with H₂O c) When it forms borate esters with alcohol d) All of the above 358. The nitrogen oxide(s) that contain(s) N - N bond(s) is (are) b) N_2O_3 c) N_2O_4 d) N_2O_5 359. SiO₂ exists in the form/s is a) Cristobalite b) Tridymite c) Quartz d) None of these 360. Select the correct statement(s) a) Aluminium monohalides are formed by the reactions of the trihalides with aluminium at 1300K followed by rapid cooling b) Aluminium monochloride (red) is formed when aluminium reacts with HCl at 1200 K c) Aluminium monohalides disproportionate at room temperature d) Ga₂Cl₄ exists as Ga⁺[GaCl₄]⁻ and is diamagnetic and has crystalline structure 361. Select the correct statement(s) a) Boron trimethyl is a weaker Lewis acid than the boron trihalides or monborane b) Lewis acid property when Me₃N is a donor is in order: BBr₃ > BCl_3 > BF_3 ~BH₃ > BMe_3 Lewis and property when Me₃P is a donor is in order: c) $BBr_3 > BCl_3 \sim BH_3 > BF_3 \sim BMe_3$ d) Lewis acid property when CO is a donor: no adduct is formed with halides and Lewis acid property of $BH_3 \gg BF_3 \cdot BMe_3$ 362. Select ionic carbides c) CaC_2 , Mg_2C_3 d) CaC₂, SiC, Mg₂C₃ a) Al_4C_3 , CaC_2 , Mg_2C_3 b) Al_4C_3 , SiC, B_4C 363. SiCl₄ is hydrolysed but CCl₄ is not hydrolysed because a) Si has vacant d-orbital and can accommodate lone-pair of electrons from oxygen of water b) Si has relatively large size and can increase its coordination number from four to five c) Si has relatively smaller size and thus interaction with H₂O is spontaneous d) Si has oxidation number of six while carbon has oxidation number of four in all its compounds 364. Correct statement(s) out of the following is a) $N(CH_3)_3$ has pyramidal structure b) N(SiH₃)₃ shows planar arrangement c) SiC is highly volatile d) SiO₂ is called silane 365. +3 oxidation state is more characteristics in case of

	a) B	b) Tl	c) Ga	d) Al			
366	Silly putty						
	a) Is a silicone polymer						
	b) Has a composition inter	mediate between silicone	oils and silicone rubbers				
	c) Is an asbestos						
	d) Is not related to any che	emical					
367.	Silicones						
	a) Are synthetic polymer of		0_2) units				
	b) Are formed by hydrolys						
	c) Are natural occurring repeating (SiO_4) units						
	d) Single R_2 SiO ₂ unit						
368.	Carbon suboxide (C_3O_2) is		1237.1	1.00			
	a) Carbon reacts with con-		b) Malonic acid reacts wit				
260	c) Carbon reacts with stro	•	d) Oxalic acid is heated st	rongly			
369.	Select the correct stateme	• •	. 1 1. 1 1.				
	a) In graphite, only three 6	· · · · · · · · · · · · · · · · · · ·					
	b) π -bonding electrons in	= -					
	c) Conduction of electricity in graphite is due to mobile electrons						
270	d) Diamond is insulator du		ectrons				
370.	370. Select the correct statement(s)						
	a) $SbCl_3$ is hydrolysed to orange $SbOCl$ soluble in dil. HCl b) $BiCl_3$ is hydrolysed to white $BiOCl$ soluble in dil. HCl						
	c) PCl ₅ can change to PCl ₆						
	d) NCl ₅ and PCl ₅ are stable		in hybridizacion of i				
371	Thermodynamic tendency	-	X(σ) would be favoured by				
571	a) Low H $- X$ bond energy		b) High electron affinity of				
	c) High lattice energy of P.		d) High electronegativity				
372	Heating of oxalic acid with	• , ,	a) mgm electronegativity				
	a) SO ₂	b) CO ₂	c) SO ₃	d) CO			
373.	The following side reaction	· -	-	· ,			
	$N_2H_4 + 2NH_2Cl \rightarrow N_2 + 2N_2Cl \rightarrow $						
	a) Is catalysed by traces of	-					
	b) Is suppressed by addition						
	c) Is made reversible by re	emoving N ₂					
	d) Is made reversible by a	dding NaOH					
374	The great thermal and che	mical stability of silicones	is attributed to high streng	gth of			
	a) Silicon-carbon bond	b) Silicon-oxygen bond	c) Silicon-silicon bond	d) Carbon-carbon bond			
375	Select the statement(s)						
	The enthalpy difference a)	e between α - and β - graph	ite is very large and thus tw	vo forms are not			
	interconvertible						
	= -		te is very small and two for	ms are interconvertible			
	c) α -graphite changes to β						
	d) β -graphite changes to α	• .					
376.	Actual source of protons in		-				
	a) $B(OH)_3(aq) + 2H_2O(l)$						
	$\begin{array}{c} 3B(OH)_3(aq) \rightleftharpoons [B_3O_3(aq)] \end{array}$	$[(OH_4)]^-(aq) + H^+(aq) + 2$	2H ₂ O(l)				
	In neutral or basic solut						
	c) $B(OH)_3 \rightleftharpoons H_2BO_2^- + H^+$						
277	d) All of the above						
3/7	N_2H_4 reduces IO_3^-/H^+						

	a) To I ⁺					
	b) With I ₂ as an intermedi		lour in CCl ₄ layer			
	c) Indicated by blue colou	r with starch				
	d) To I ⁻					
378	N_2H_4					
	a) Is an endothermic comp	oound				
	b) Burns in air with evolut	ion of heat in an exotherr	mic compound			
	c) Is kinetically stable					
	d) Reduces FeCl ₃ to FeCl ₂					
379	. Select the correct stateme	nt(s)				
	a) COCl ₂ is called phosphir	ne gas				
	b) C ₃ O ₂ (carbon suboxide)) has sp^2 hybridised carb	ons			
	c) CO is toxic because it fo	rms a complex with haem	noglobin in the blood			
	Diamond is unaffected by concentrated acid but graphite is oxidized to mellitic acid with concentrated d)					
	HNO ₃					
380	. Select the correct stateme	nt(s)				
	a) A saturated solution of	boric acid in water is neu	tral to the indicator bromo	cresol green		
	b) AlF ₃ is insoluble in anhy	ydrous HF				
	c) Aqueous solution of KH	F ₂ is basic to the indicato	r bromocresol green			
	d) Aqueous solution of box	ric acid and potassium hy	drogen difluoride is alkalin	e to bromocresol indicator		
381	Which of the following sta	tements is/are correct?				
	a) CO is good reducing age	ent	b) CO has the structure C	$C \equiv 0$		
	c) Water gas is equimolar	mixture of CO and N_2	d) Coal gas is a mixture o	of CO,H ₂ , CH ₄ and CO ₂		
382	10.01 N ₂ H ₄ and H ₂ O ₂ show cent	ral atoms				
	a) Hybridisation of centra	latoms	b) Oxidizing nature			
	c) Reducing nature		d) Molar mass			
383	Which fumes in moist air?					
	a) AlCl ₃	b) BF ₃	c) CuSO ₄	d) NH ₃		
384	In acidic medium N ₂ H ₄					
	a) Is oxidized to N ₂		b) Loses four electrons			
	c) Has equivalent mass 8		d) Reduces AuCl ₃ to AuC	l		
385	Select the correct stateme	nt(s)				
	a) In α -graphite, the layers	s are arranged in the sequ	uence ABAB			
	b) In β -graphite, the layers	s are arranged in the sequ	ience ABCABC			
	c) In α -graphite, the layers	s are arranged in the sequ	ience ABCABC			
	d) In β -graphite, the layers	s are arranged in the sequ	uence ABAB			
386	. Gases responsible for "gre	en-house effect" are				
	a) CO ₂	b) H ₂ O	c) 0_3	d) N ₂		
387	. Select the correct stateme	nt(s)				
	a) Graphite is composed o	f planar, two dimensional	l sheets of sp^2 hybridised c	arbon atoms		
	b) Each sheet is a network					
	c) The layers in graphite a	re held together by relati	vely weak van der Waals' fo	orces of attraction		
	d) Graphite is thermodyna	mically the most stable a	llotropic form of carbon			
388	Select the correct stateme	nt(s)	-			
	NH ₂ OH forms syn and ant	ti isomer with				
	a) Benzaldehyde	b) Acetone	c) Acetaldehyde	d) Benzophenone		
389	NH ₂ OH can be used as					
	a) An oxidizing agent					
	b) A reducing agent					
	c) A autioxidant in photog	raphic developers				
		=				

- d) Oxime forming reagent (with carbonyl compound)
- 390. Consider the following statements
 - I: Boric acid is a mild antiseptic and is used as a food preservative
 - II: Borax and other borates are used in water-treatment, timber preservation, glass manufacture
 - III: Sodium peroxoborate is an important constituent of washing powder

Select the correct statement

a) I, II

b) II, III

c) I, III

d) I, II, III

391. Tin (II) chloride is used

a) As a mordant in dyeing

b) As a reducing agent

c) As an oxidizing agent

d) In the preparation of colloidal gold

392. Select the correct statement(s)

- a) On the basis of Lewis acidity, an oxygen atom is more effective than an fluorine atom as a π -donor towards boron
- b) 1, 2-diols have a strong tendency to form borate esters on account of chelate effect
- c) Borate esters are stable due to chelate effect
- d) None of the above is correct statement
- 393. Select the correct alternate(s)
 - a) The group BN is isoelectronic with C2
 - b) No species with $B \equiv N$ group is formed
 - c) Common form of boron nitride has an ordered layer structure closely resembling that of graphite
 - d) AlN has the wurtzite structure

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 394 to 393. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

394

Statement 1: Boranes are volatile and decompose to boron, and hydrogen at red heat

Statement 2: All the boranes react with ammonia depending on the conditions

395

Statement 1: Si–Si bonds are weaker than Si–O bonds

Statement 2: Silicon forms double bonds with itself

396

Statement 1: GeO, SnO and PbO are more basic and ionic than the corresponding GeO₂, SnO₂ and PbO₂

Statement 2: GeO is acidic while SnO And PbO are amphoteric

Statement 1: BF₃ is a useful organic catalyst for Friedel crafts reactions **Statement 2:** It is covalent, gaseous and hydrolysed by water 398 **Statement 1:** White phosphorus is more reactive than red phosphorus. red phosphorus consists of P4 tetrahedral units linked to one another to form linear **Statement 2:** chains. 399 **Statement 1:** Among chalcogens, tendency of catenation is maximum for sulphur. **Statement 2:** S-S bond dissociation energy is higher then 0-0 bond dissociation energy. 400 **Statement 1:** White phosphorus is stored under water. **Statement 2:** White phosphorus is highly reactive and catches fire spontaneously in air. 401 **Statement 1:** Calcium carbide on hydrolysis gives acetylene **Statement 2:** Calcium carbide contains C^{4-} anions 402 **Statement 1:** The ionization energy of gallium remains nearly same as that of aluminium. **Statement 2:** This is due to shielding of outer shell electrons form the nucleus by the d electrons of gallium. 403 **Statement 1:** OF_2 is named as oxygen difluoride. **Statement 2:** OF_2 is oxygen is less electronegative than fluorine. 404 **Statement 1:** Liquid NH₃ is used for refrigeration. **Statement 2:** Liquid NH₃ does not vaporize quickly.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

405. Match the compounds (in Column I) with their use (in Column II)

Column-II Column-II

(A) Boric acid (1) In Friedel-Craft acylation

- **(B)** Borax
- (C) Aluminium chloride
- **(D)** Sodium peroxoborate

- (2) Mild antiseptic
- (3) Washing powder
- (4) Buffer

CODES:

- A B C D
- **a)** 2 4 1 3
- **b)** 4 3 2 1
- **c)** 1 2 3 4
- **d)** 3 1 4 2
- 406. Match the species in Colum I with their characteristic(s) in Column II

Column-I

- **(A)** NH₂OH
- **(B)** N₃H
- (C) $NH_2 NH_2$
- **(D)** NH₃
- **(E)** N_2O

- Column- II
- (1) Reducing agent
- (2) Oxidizing agent
- (3) Weak base
- (4) Molecule or anion with linear strucuture
- (5) Isoelectronic of CO₂

CODES:

- A B C D E
- **a)** 1,2,3 1,4,5 1,2 1,3 1,2,4,5
- **b)** 1,2 1,2,3 1,4,5 1,2,4,5 1,2,4,5
- c) 1,2,4,5 1,2 1,3 1,4,5 1,2,4,5
- **d)** 1,4,5 1,3 1,2,4,5 1,2 1,2,4,5

$407.\,Match$ the types of borates (in Column I) with their formula (in Column II)

Column-I

- (A) Metaborate
- **(B)** Orthoborates
- (C) Pyroborates
- (D) Perborate

- Column- II
- (1) $NaBO_3 \cdot 4H_2O$
- (2) $Mg_2B_2O_5$
- $(3) K_3(BO_2)_3$
- (4) $Ca_3(BO_3)_2$

CODES:

Α

В

C

D

2 a) 4 1 3 2 2 b) 3 4 c) 2 3 4 1 d) 2 1 3 4

408. Match the reactions of metals with dilute HNO_3 (in Column I) with the nitrogen compounds (obtained by oxidation/reduction (in Column II)

Column-I

- nn-I Column- II
- (A) $Mg + dil. HNO_3$

(1) NO

(B) $Zn + dil. HNO_3$

(2) H₂

(C) $Sn + dil. HNO_3$

 $(3) N_2 0$

(D) Pb + dil. HNO_3

(4) NH₄NO₃

CODES:

- A B C D
- **a)** 2 3 4 1
- **b)** 3 2 1 4
- c) 4 1 3 2
- **d)** 1 4 2 3
- 409. Match the acids (in Column I) with number of acid salts formed by them (in Column II)

Column-I

Column- II

(A) Hypophosphorus acid

(1) Two

(B) Orthophosphorus acid

(2) Zero

(C) Orthophosphoric acid

(3) One

(D) Mellitic acid

(4) Five

- **CODES:**
 - A B C D
- **a)** 3 2 4 1
- **b)** 1 4 3 2
- **c)** 4 1 2 3
- **d)** 2 3 1 4
- 410. Match the items (in Column I) with their formula (in Column II)

Column-I

Column- II

(A) Tetraboric acid (1) $B_3N_3H_6$ **(B)** Borax (2) $Ga(OH)_2$ (C) Borazine (3) $H_2B_4O_7$ (D) Amphoteric (4) Na₂B₄O₇. 10H₂O **CODES:** A В \mathbf{C} \mathbf{D} 2 1 3 a) 4 4 2 3 b) 1 3 2 c) 4 1 d) 1 3 2 4 411. Match the oxide of Column I with their corresponding property (ies) in Column II Column-I Column-II (1) Oxidation state +2 (A) Pb_3O_4 **(B)** SnO_2 (2) Oxidation state +4 **(C)** PbO₂ (3) Amphoteric (4) Basic **(D)** CO₂ **(E)** GeO (5) Acidic **CODES:** A В \mathbf{C} D E 2,3 a) 2,4 1,3 1,2,3 2,5 2,4 2,3 2,5 2,5 b) 1,3 c) 1,2,3 2,3 2,4 2,5 2,5 d) 1,3 2,5 2,4 2,5 1,2,3 412. Match the compounds (in Column I) with their oxidation number of N (in Column II) Column-I Column- II (A) N_2H_4 (1) -1(2) 3 **(B)** NH₂OH

(C) HNO₂

(E) HNO₃

(3) 4 (4) 5

(5) -2

CODES:

	A	В	C	D	E
a)	2	3	4	5	1
b)	5	1	2	3	1
c)	1	2	3	4	1
d)	3	4	1	2	1

Linked Comprehension Type

This section contain(s) 17 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 413 to -413

Boric oxide B_2O_3 reacts with water to form boric acid. The net ionisation reaction of boric acid when dissolves in water is

$$B(OH)_3(aq) + 2H_2O(l) \rightarrow H_3O^+(aq) + [B(OH)]_4^-(aq)$$

Boric acid is quite toxic and slippery. The solution of the salt are generally quite complex because they contain polymers of the borate anions as well as the simple anion $[B(OH)]_4^-$, BO_3^{3-} and BO_4^{5-} . Borates hydrolyze in water to given basic solution and this is why boran is used in some cleaning agents

413. Which of the following statements is/are correct?

- a) Boric acid is Lewis base
- b) Hybridisation of boron in acid is sp^3
- c) Boric acid molecule held together by hydrogen bonding
- d) All of the above

Paragraph for Question Nos. 414 to - 414

Like halides of boron, halides of aluminium do not show back bonding because of increase in size of aluminium. Actually aluminium atoms complete their octets by forming dimers. Thus, chloride and bromide of aluminium exist as dimers, both in the vapour state and in polar. Solvents like benzene while the corresponding boron halides exists as monomer. In boron trihalides the extent of back bonding decreases with increase in size of halogens and thus, Lewis acid character increases

414. Which of the following reaction is incorrect?

- a) $BCl_3 + 3EtOH \rightarrow B(OEt)_3 + 3HCl$
- c) $BF_3 + F^- \rightarrow BF_4^-$

- b) $BF_3 + 2H_2O \rightarrow [BF_3OH]^- + H_3O^+$
- d) $BCl_3 + 2C_5H_5N \rightarrow Cl_3B(C_2H_5N)_2$

Paragraph for Question Nos. 415 to - 415

The tetrafluoroborate anion BF_4^- , is a Lewis base. The other tetrahaloborate anions, BCl_4^- and BBr_4^- , can be prepared in non-aqueous solvents

Based on the above short write-up, answer the following questions

- a) F donor
- c) A lone-pair donor

- b) A lone-pair acceptor
- d) Solvated in aqueous solution

Paragraph for Question Nos. 416 to - 416

Certain aspects of the aqueous chemistry of aluminium compounds derive from the nature of the hydrated aluminium ion- $[Al(H_2O)_6]^{3+}$

$$[Al(H_2O_6)]^{3+} + H_2O \rightleftharpoons [Al(H_2O)_5(OH^-)]^{2+} + H_3O^+$$

Read the above write-up and answer the following questions

416. Above equilibrium indicates that

- a) H₂O is a Lowry-Bronsted acid
- b) H₂O is a Lowry-Bronsted base
- c) H₂O is a Lowry-Bronsted acid as well as a base
- d) H₂O is neither acid nor base

Paragraph for Question Nos. 417 to - 417

Diborane is an electron deficient compound stoichiometrically, it is analogous to ethane, C₂H₆. However, the total number of electrons involved in bonding and less in diborane Read the above short note and answer the following question

417. Bonding electrons involved

a) In B_2H_6 is 14 and in C_2H_6 is 16

b) In B_2H_6 is 12 and in C_2H_6 is 14

c) In B_2H_6 is 10 and in C_2H_6 is 12

d) In B_2H_6 is 16 and in C_2H_6 is 18

Paragraph for Question Nos. 418 to - 418

Study the following sequence of reactions:

Alkaline
$$\stackrel{\text{H}_2\text{O}}{\longleftarrow} A$$
 (white crystalline) $\stackrel{\triangle}{\longrightarrow} B$ (transparent bead)
$$\downarrow \text{Cu}^{2^+}, \triangle \\ \downarrow \text{H}_2\text{SO}_4 \qquad \qquad \downarrow \triangle \text{ in reducing flame} \\ \downarrow E \text{ (white crystalline } D \text{ (red-coloured bead)} \\ \text{compound on cooling)}$$

418. A is

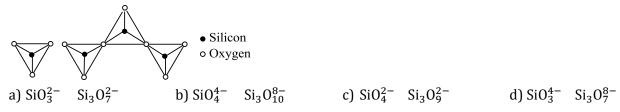
- a) NaBO₂
- b) $Na_2B_4O_7$ c) H_3BO_3
- d) HBO_3

Paragraph for Question Nos. 419 to - 420

Read the following discovery and answer the questions at the end

"Element carbon appears in many structural forms or allotropes. Three of these forms are crystalline -diamond, graphite and the recently discovered fullerence (buckyball) - while more than 40 others, including coke and carbon black, are amorphous. Now there seems to be set a fourth crystalline allotrope of carbon, reported in 1995 by Richard in 1995 by Richard Lagow at the University of Texas"

419. Newly discovered allotrope of carbon has the form


- a) Polyyne
- b) Fullerene
- c) Buckyball
- d) None of these

Paragraph for Question Nos. 420 to - 421

Read the following short write-up and answer the questions at the end of it

The name 'silica' covers an entire group of minerals, which have the general formula SiO_2 , the most common of which is quartz. Quartz is a framework silicate with SiO_4 tetrahedra arranged in spirals. The spirals can turn in a clockwise or anti-clockwise direction – a feature that results in there being two mirror images, optically active, varieties of quartz

420. The following pictures represent various silicate anions. Their formulae are respectively

Paragraph for Question Nos. 421 to - 422

Based on the following short report, answer the questions given at the end In some foam-type fire extinguishers, the reactants are $Al_2(SO_4)_3(aq)$ and $NaHCO_3(aq)$. When the extinguisher is activated, these reactants are allowed to mix producing $Al(OH)_3(s)$ and $CO_2(g)$. The $Al(OH)_3 - CO_2$ foam extinguishes the fire

421. CO₂ is formed as a result of

- a) reaction between Al3+ and HCO3
- b) Reaction between hydrolysis product of Al³⁺ and HCO₃
- c) Reaction between hydrolysis product of NaHCO₃ and Al₂(SO₄)₃
- d) Direct reaction between Al₂(SO₄)₃ and NaHCO₃

Paragraph for Question Nos. 422 to - 423

Question given below are based o the following technical report

The CO_2 as well as $\mathrm{H}_2\mathrm{O}$ absorbs strongly in the infrared region, and its presence in the atmosphere decreases the loss of heat from the earth by radiation. This global warming is called the 'green house effect' (other gases, including the oxides of nitrogen from car exhausts, freons from aerosols and refrigerators and methane from bacteria in the soil and in the rumen of cows, also add to the green house effect). The concentration of atmospheric CO_2 has increased by 10%. This is resulting in the increase in the mean temperature of the earth by 2.5°C, varying from 2°C at the equator to 4°C at the poles. This could have dramatic effect on the climate

422. As a result of green house effect, there can be

A: increase in rate of evaporation of water, thus, untimely more rain, flooding, etc

B: tropical storms in certain parts of the world

C: decrease in pH of the soil

a) B, C, D

b) A, C, D

c) A, B, D

d) A, B, C

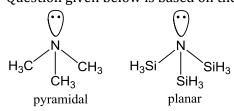
Paragraph for Question Nos. 423 to - 424

Read the following write-ups and answer the questions at the end of it

Silicones are synthetic polymers containing repeated R_2SiO units. Since, the empirical formula is that of a ketone (R_2CO), the name silicone has been given to these materials. Silicones can be made into oils, rubbery elastomers and resins. They find a variety of applications because of their chemical inertness, water repelling nature, heat-resistance and good electrical insulating property

Commercial silicone polymers are usually methyl derivatives and to a lesser extent phenyl derivatives and are synthesized by the hydrolysis of

 $R_2 \text{SiCl}_2[R = \text{methyl (Me)} \text{ or phenyl (} \varphi \text{)}]$

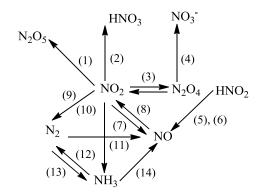

423. If we mix SiMe₃Cl with SiMe₂Cl₂, we get silicones of the type

c) Both (a) and (b)

d) None of the above

Paragraph for Question Nos. 424 to - 425

Question given below is based on the following structures:



424. Structures of $N(CH_3)_3$ and $N(SiH_3)_3$ and $N(SiH_3)_3$ are different. It is due to the fact that

- a) Silicone also uses *d*-orbitals in multiple bonding
- In case of N(SiH₃)₃, lone pair of N-atom is transferred to the empty d-orbitals of silicon ($p\pi$ - $d\pi$ overlapping)
- c) Both (a) and (b)
- d) None of the above

Paragraph for Question Nos. 425 to - 426

Consider the following scheme involving oxides and oxy-acids of nitrogen. Based on this answer the questions given at the end

425. Out of the following which reactions are disproportionatios?

a) 2, 10

b) 2, 3

c) 1, 11

d) 13, 14

Paragraph for Question Nos. 426 to - 427

Questions given below are based on the following experiment

An oxyacid of phosphorus has the following properties

Complete neutralization of the acid with sodium hydroxide solution gives an aqueous solution of sodium ion and oxy-acid anions in the ratio 2:1. When a solution of the acid is warmed with silver nitrate solution metallic silver is deposited

426. What is the structure of the oxy-acid?

c) 3

d) 4

Paragraph for Question Nos. 427 to - 427

The following flow diagram represents the industrial preparation of nitric acid from ammonia

NH₃ + O₂
$$\xrightarrow{(A)}$$
 NO $\xrightarrow{(B)}$ (C) water HNO₃ + NO $\xrightarrow{(air)}$ (in the property of the pr

Answer the questions given below

427. Which line of entry describes the undefined reagents, products and reaction conditions?

- \boldsymbol{A}
- B
- a) Catalyst cool
- $cool(-25^{\circ}C)$ NO_2
- b) Catalyst
- $cool (-25^{\circ}C) N_2O$
- c) Catalyst
- high pressure NO₂
- d) High pressure catalyst
- $N_{2}O_{3}$

 \mathcal{C}

Paragraph for Question Nos. 428 to - 428

 $\mbox{N}_{2}\mbox{H}_{4}$ reduces \mbox{IO}_{3}^{-} to \mbox{I}^{+} in acidic medium

$${\rm N_2H_4 + IO_3^- + H^+ \rightarrow N_2 + I^+ + H_2O}$$

Answer the following questions

- 428. Equivalent mass of N_2H_4 (molar mass = 42 g mol⁻¹) is
 - a) 42

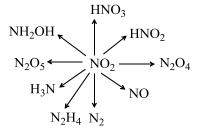
b) 21

c) 10.5

d) 14

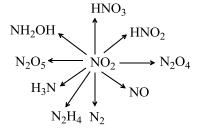
Integer Answer Type

- 429. More than four bonds are made with how many elements in carbon family?
- 430. In the hydrolysis of borax


 $Na_2B_4O_7 + 7H_2O \rightarrow 2Na[B(OH)_4] + B(OH)_3$ products formed are to be neutralized by HCl. Number of moles of *HCl* required per mole of borax hydrolysed is......

- 431. A silicate mineral has three SiO_4 tetrahedra that share corners with adjacent tetrahedral. Mineral also contains Ca^{2+} , Cu^{2+} and H_2O in 1:1:1 molar ratio. Thus, total number of atoms of Cu, Si and Ca per unit of mineral is.....
- 432. Aluminium methanide contains carbon atom(s)
- 433. Total number of B and N atom in borazine is.....
- 434. How many of the fuel gases have CO and $\rm H_2$ both as combustible gases? LPG, water gas, Producer gas, Coal gas, CNG
- 435. B(OH)₃ can accept hydroxide ion(s) from H₂O
- 436. Out of the elements C, S, Ge, Sn and Pb and +4 oxidation state is shown by how many element(s)
- 437. Total number of σ bond in N₃H is.....
- 438. What is the total negative charge on the silicate $[Si_4O_{11}]$?
- 439. Number of isotopes of carbon
- 440. Out of B₂Cl₄, GaCl₂, GaS and S₂ number of diamagnetic substances are.....
- 441. ΔG is negative for the following reaction

$$Tl^{3+} \rightarrow Tl^{x+}$$


When $x = \dots$

442. Consider the following reactions

In how many reactions NO₂ has been oxidized?

- 443. Total number of atoms of carbon and oxygen in graphite oxide......
- 444. How many P H bonds are there in H_3PO_2 ?
- 445. In how many reactions NO₂ has been reduced in

- 446. Maximum covalency of aluminium is......
- 447. Borax is found to have..... tetrahedral unit(s)
- 448. Number of tribasic acid out of the following is

$$H_3BO_3, H_3PO_3, H_3PO_2, H_3PO_4$$

- 449. When malonic acid is dehydrated using P₄O₁₀ at 150°C, species formed has total number of atoms
- 450. How many POP bonds are there in P_4O_{10} ?
- 451. Total electrons involved in all the B H bridging bond is.....
- 452. Al(s) is to be converted into Al³⁺(aq) ion. How many steps are involved? (Assume ionization in one step)
- 453. How many species out of the following have reducing properties? NH₃, PH₃, H₃PO₂, H₃PO₃, H₃PO₄, LiAlH₄, BH₃
- 454. Alum is found to contain hydrated monovalent cation, trivalent cation and sulphate in the simplest ratio x: y: z where x + y + z =
- 455. How many of the following oxides are basic oxides?

$$CO_2$$
, SnO_2 , PbO , PbO_2 , Pb_3O_4 , Al_2O_3

- 456. $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g), K = 10^{-9} \text{ at } 300 \text{ K. What is } p_{CO_2}$?
- 457. Among the following the number of compounds that can react with PCl_5 to give $POCl_3$ is O_2 , CO_2 , SO_2 , H_2O , H_2SO_4 , P_4O_{10} is.....
- 458. Total electrons involved in all the B H terminal bonds is...
- 459. A phosphate mineral has formula $Ca_xP_3O_{12}F$. Thus, x is.....
- 460. In PCl_5 , how many (P Cl) are inclined at 120° with one each?
- 461. How many of the species are isoelectronic?

$$N_2O, CO_2, CN_2^{2-}, N_3^-, NH_2OH, N_3H$$

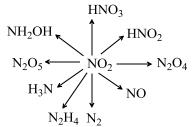
- 462. Inert pair effect is shown by how many elements? Ga, Al, Tl, Pb, Sn, Ge
- 463. A x —membered ring is formed in $(BN)_n$ where x is
- $464. B_2H_6$ has B H terminal bonds and B H bridging bonds which is equal to
- 465. In the following, equilibrium partial pressure of NH_3 , N_2 and H_2 gases are 4, 1 and 2 atm respectively at 300 K. What is the value of K_p ?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

466. How many of the species are paramagnetic?

$$N_2O, NO, NO_2, O_2, NO_2^+, NO^+, CO^+$$

467. For the half-cell reaction


$$M^{2+} + 2e^- \rightarrow M$$

 E° (in volts) are given for different metals

Cu	Zn	Fe	Pb	Sn
0.34	-0.76	-0.48	-0.13	-0.14

How many of these metals can reduce Cu²⁺ to Cu?

- 468. $Cl_2(g)$ is to be converted into $Cl^-(aq)$ ion. How many steps are involved?
- 469. In the oxidation of N₂H₄ to N₂, equivalent weight of N₂H₄ would be.....
- 470. 25.0 mL of 0.05 M solution of NH_2OH was boiled with excess of Fe^{3+} in acidic medium. The Fe^{2+} formed required 25.0 mL of 0.1 N $Cr_2O_7^{2-}$ in acidic medium. What is the oxidation number of the N in new product?
- 471. NO₃ is reduced to NH₄. What is change in oxidation number?
- 472. How many elements in group 14 are used as semiconductor?
- 473. Maximum change in oxidation number of nitrogen in

- 474. Total number of σ and π bonds in carbon suboxide (C_3O_2) is.....
- 475. A mixture contains 3 moles of CO and CO_2 . On passing the mixture over heated charcoal, volume increases to 5 moles. Thus, CO_2 in the mixture is mole(s)
- 476. How many of the following have two σ and two π bonds?

: ANSWER KEY :														
1)	d	2)	С	3)	b	4) a	189)	a	190)	b	191)	С	192)	С
5)	d	6)	a	7)	c	8) d	-	b	194)	d	195)	С	196)	c
9)	a	10)	d	11)	a	12) a	1	b	198)	a	199)	b	200)	С
13)	b	14)	d	15)	c	16) a	201)	b	202)	d	203)	d	204)	c
17)	a	18)	a	19)	c	20) c	205)	d	206)	d	207)	d	208)	a
21)	c	22)	b	23)	b	24) a	209)	a	210)	b	211)	С	212)	c
25)	a	26)	b	27)	d	28) a	213)	c	214)	a	215)	d	216)	a
29)	d	30)	d	31)	c	32) c	217)	c	218)	b	219)	b	220)	c
33)	d	34)	d	35)	b	36) c	221)	a	222)	c	223)	a	224)	c
37)	d	38)	b	39)	a	40) d	225)	a	226)	b	227)	a	228)	d
41)	b	42)	a	43)	a	44) b	229)	a	230)	c	231)	b	232)	b
45)	a	46)	a	47)	b	48) a	233)	a	234)	d	235)	c	236)	a
49)	C	50)	a	51)	d	52) c	237)	c	238)	b	239)	d	240)	b
53)	d	54)	a	55)	c	56) d	241)	b	242)	b	243)	a	244)	d
57)	d	58)	c	59)	d	60) b	245)	a	246)	c	247)	d	248)	c
61)	C	62)	b	63)	c	64) a	249)	C	250)	a	251)	C	252)	a
65)	a	66)	d	67)	c	68) b	253)	d	254)	a	255)	b	256)	d
69)	d	70)	a	71)	a	72) d	257)	d	258)	d	259)	b	260)	a
73)	a	74)	C	75)	C	76) b	261)	b	262)	c	263)	b	264)	d
77)	d	78)	d	79)	C	80) d	265)	b	266)	a	267)	d	268)	d
81)	b	82)	d	83)	C	84) b	269)	C	270)	b	271)	d	272)	d
85)	a	86)	b	87)	a	88) d	273)	C	274)	C	275)	d	276)	a
89)	b	90)	a	91)	b	92) b	277)	d	278)	a	279)	d	280)	c
93)	d	94)	a	95)	a	96) c	281)	d	282)	c	283)	d	284)	c
97)	d	98)	a	99)	a	100) c	,	d	286)	b	287)	d	288)	d
101)	b	102)	a	103)	d	104) d		C	290)	b	291)	b	292)	d
105)	b	106)	b	107)	b	108) d	,	d	294)	b	295)	С	296)	C
109)	d	110)	a	111)	C	112) b	,	a	298)	b	299)	С	300)	a
113)	C	114)	d	115)	d	-	301)	C	302)	C	303)	d	304)	a
117)	a	118)	C	119)	C	-	305)	a	306)	d	307)	b	308)	d
121)	a	122)	C	123)	d	-	309)	C	310)	b	311)	b	312)	C
125)	d	126)	d	127)	b	-	313)	d	314)	a	315)	d	316)	a
129)	a	130)	a	131)	a	•	317)	d	318)	d	319)	a	320)	C
133)	d	134)	d	135)	a	•	321)	d	322)	c	323)	С	324)	b
137)	b	138)	b	139)	c	-	325)	d	326)	d	327)	a	328)	a
141)	a	142)	a	143)	d	-	329)	c	330)	b	331)	a	332)	b
145)	d	146)	d	147)	d	-	333)	b	334)	b	335)	b	336)	d
149)	d	150)	a	151)	C	-	337)	d	338)	С	339)	b	340)	b
153)	b	154)	b	155)	a	-	341)	C	342)	C	343)	С	344)	C
157)	С	158)	b	159)	b	-	345)	C	346)	d	347)	c	348)	d
161)	a	162)	a	163)	a	•	349)	b	350)	d	1)	a,b,c,d	2)	a
165)	a	166)	d	167)	C	168) d		3)	a,c,d	4)	a,b,d	1.	0)	
169)	a	170)	a	171)	d	=	5)	b,c	6)	a,b,c,d	17)	b	8)	
173)	C	174)	d	175)	a	176) a		a,b,c	10)	- 1 ¹	1 4 4 3	- k - 1	12)	
177)	d	178)	C	179)	C	-	9)	a,b,c	10)	a,b,c,d	-	a,b,c,d	-	a
181)	d a	182)	a	183)	d	-	13)	a,b	14)	a,b	15)	a,c,d	16)	
185)	d	186)	d	187)	b	188) d	1	a,b						

17)	a,b	18)	b	19)	a,b,c,d	20)	
	a,b						
21)	a,b,c	22)	b,d	23)	a,b	24)	
	a,b						
25)	b,d	26)	a	27)	a,b,c	28)	
	a,b,c,d						
29)	c,d	30)	a,b,d	31)	a,d	32)	
	a,b,c						
33)	a,b	34)	a,b,c	35)	a,b	36)	
	a,b						
37)	a,b,c,d	38)	a,c	39)	a,b,c,d	40)	d
41)	a,b,d	42)	a,b,c	43)	a,b,c,d	1)	b
_	2)	c	3)	d	4)	b	
5)	b	6)	a	7)	a	8)	c
9)	a	10)	a	11)	a	1)	a
-	2)	a	3)	b	4)	a	
5)	ď	6)	c	7)	c	8)	b
1)	c	2)	d	3)	c	4)	c
5)	b	6)	b	7)	a	8)	b
9)	b	10)	d	11)	a	12)	c
13)	a,c	14)	b	15)	a	16)	c
1)	4	2)	2	3)	7	4)	3
5)	6	6)	2	7)	1	8)	1
9)	3	10)	6	11)	3	12)	3
13)	1	14)	2	15)	3	16)	2
17)	6	18)	6	19)	2	20)	1
21)	5	22)	6	23)	4	24)	3
25)	6	26)	4	27)	2	28)	9
29)	4	30)	8	31)	5	32)	3
33)	5	34)	5	35)	6	36)	8
37)	2	38)	4	39)	4	40)	3
41)	8	42)	1	43)	8	44)	2
45)	7	46)	8	47)	2	48)	3
,		,		,		,	

: HINTS AND SOLUTIONS :

$$PH_3 < AsH_3 < NH_3$$

Most

least

volatile

volatile due to

H-bonding

Electrons

$$Ba(NO_2)_2 + H_2SO_4 \rightarrow BaSO_4 + 2HNO_2$$

12 **(a**

$$SnCl_2 + 2FeCl_3 \rightarrow 2FeCl_2 + SnCl_4$$

13 **(b)**

↑ ↑ bv bv

reduction oxidation

14 **(d)**

$$C = C, C = O, C \equiv N$$

17 **(a)**

Monobasic acid

20 **(c)**

$$3Ga^+ \rightarrow 2Ga + Ga^{3+}$$
 (disproportionation)

22 **(b)**

$$Pb^{2+} + 2e^{-} \rightarrow Pb^{2+}$$

Stability of $Pb^{2+} > Pb^{4+}$, hence $Pb^{4+}(PbO_2)$ is best oxidizing agent

23 **(b)**

CO₂: 180°

SO₂: 119°

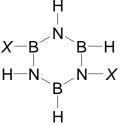
CH₄: 109°28′

NH₃: 107.0°

29 **(d)**

$$Pb^{4+} < Pb^{2+}$$

Thus, Pbl₄ is not formed


36 **(c)**

sp² hybridised B

38 **(b)**

$$N_2 + O_2 \rightarrow NO$$

41 **(b)**

In all four different isomers of B.

42 **(a**)

$$NH_4Cl + NaNO_3 \rightarrow NH_4NO_3 \stackrel{\Delta}{\rightarrow} N_2O \text{ (not } N_2)$$

46 **(a)**

$$NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$$

$$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$$

49 **(c)**

N₂O₄ is diamagnetic

53 **(d)**

56 **(d)**

CaCO₃ of Taj Mahal is affected by acid rain making its surface rough (called cancer)

58 **(c)**

NaOH dissolves $Al(OH)_3$; $Fe(OH)_3$ remains insoluble

 $NaOH + Al(OH)_3 \rightarrow Na[Al(OH)_4]$

soluble

62 **(b)**

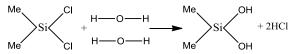
Pb₃O₄ is a double oxide PbO₂. 2PbO PbO is not affected by HNO₃ PbO changes to Pb(NO₃)₂

71 (a)

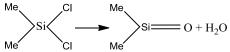
Al(OH)₃ is precipitated in NH₄OH medium

72 **(d)**

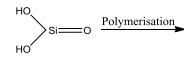
Stability of $Ga^+ < ln^+ < Tl^+$ $Ga^{3+} > ln^{3+} > Tl^{3+}$

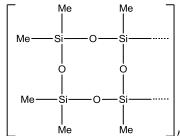

Due to inert pair effect

73 **(a)**


$$K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O$$

 $\rightarrow 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4$
 $+ 6CO$


74 **(c)**


Me₂SiCl₂ on hydrolysis will produce Me₂Si(OH)₂ as follows

MeSi(OH)₂ is unstable compound and it loses water molecule to give Me₂SiO. But silicon atom because of its very large size in comparison to oxygen, is unable to form π -bond. Thus, the product of hydrolysis is polymeric in nature.

76 **(b)**

Ligand in complexes, it is a Lewis base $Ni + 4CO \rightarrow [Ni(CO)_4]$

77 **(d)**

$$2KNO_3 \xrightarrow{\Delta} 2KNO_2 + O_2$$

78 **(d**)

(d)
$$CH_3COCH_3 \xrightarrow{\text{LiAlH}_4} CH_3CH_2OH + CH_3OH$$

$$\xrightarrow{\text{NaBH}_4} X$$

Thus, reducing action of $NaBH_4$ and $LiAlH_4$ is specific –true

$$CH_3CH = CH_2 \xrightarrow{B_2H_6} CH_3CH_2CH_2OH$$
 true

1° alcohol

79 **(c)** AlCl₃ + H₂O
$$\rightarrow$$
 Al(OH)₃ + 3HCl \uparrow

fumes

82 **(d)**

SO₂ is soluble in H₂O

85 **(a)**

$$\begin{aligned} \mathbf{B} + \mathbf{N_2} &\rightarrow \mathbf{BN} \xrightarrow{\mathbf{H_2O}} \mathbf{NH_3} \\ \mathbf{Al} + \mathbf{N_2} &\rightarrow \mathbf{AlN} \xrightarrow{\mathbf{H_2O}} \mathbf{NH_3} \end{aligned}$$

$$NH_4OH + Fe^{2+} \rightarrow Fe^{3+} + N_3H$$

88 **(d)**

$$CO + O_2 \rightarrow CO_2$$

89 **(b**

$$2PCl_5 \rightleftharpoons PCl_6^{\ominus} + PCl_4^{\ominus}$$

Octahedral tetrahedral

92 **(b)**

Due to tetravalent nature of carbon

97 **(d)**

HF can't be stored in glass bottles

99 **(a)**

Oxide
$$+Na_2CO_3 \rightarrow$$

Since carbonate is decomposed by oxide, forming ${\rm CO_2}$ thus, oxide is acidic in nature, and thus is oxide that of non-metal

103 **(d)**

$$6\text{NaOH} + \text{B}_2\text{H}_6 \rightarrow 2\text{Na}_3\text{BO}_3 + 6\text{H}_2$$

109 (d)

Due to inert-pair effect stability of +2 oxidation state increases and that of +4 oxidation state decreases along a group 14

110 (a)

$$Pl_3 + 3H_2O \rightarrow H_3PO_3 + Hl$$

Dibasic monobasic

125 **(d)**

There is free rotation about (B - B) bond and in liquid and gaseous state B_2Cl_4 exists as non-eclipsed and planar structure

$$\mathsf{BCl}_3 \xrightarrow{\mathsf{Hg}} \mathsf{B_2Cl_4} + \mathsf{Hg_2Cl_2}$$

126 (d)

$$H_3PO_2 + NaOH \rightarrow NaH_2PO_2 + 2H_2O$$

. У

monobasic

$$H_3PO_3 + Ca(OH)_2 \rightarrow CaHPO_3 + 2H_2O$$

dibasic y

$$\mathrm{H_3PO_4} + \mathrm{Al}(\mathrm{OH})_3 \rightarrow \mathrm{AlPO_4} + 3\mathrm{H_2O}$$

tribasic z

Thus,
$$x: y: z = 1: 1: 1$$

128 **(b)**

$$Pb(NO_3)_2 \xrightarrow{\Delta} 2NO_2 + PbO$$

130 (a)

$$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$$

 $Al(OH)_3 + NaOH \rightarrow Na[Al(OH)_4]$

138 **(b)**

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightleftharpoons CO_3^{2-} + 2H^+$$

 $2AI^{3+} + 3CO_3^{2-} + 3H_2O \rightarrow 2AI(OH)_3 + 3CO_2$

140 (c)

$$CHCl_3 + O_2 \rightarrow COCl_2 + HCl$$
phosgene

142 **(a)**

BF₄ -tetrahedral

 SF_4 : sp^3d (one lone pair)

 $XeF_4 \cdot sp^3d^2$ (two lone pairs)

 $[Ni(CN)_4]^{2-}$: dsp^2

147 **(d)**

- (a) (M H) bond energy decreases true
- (b) MX_3 is electron-deficient and thus is a Lewis acid true
- (c) Al^{3+} is hydrated due to +3 charge and smaller cationic size true

150 (a)

Central boron atom in $\rm H_3BO_3$ is electron deficient, therefore it accepts a pair of electron, hence it is weak Lewis acid. There is no d-orbital of suitable energy in boron atom. So, it can accommodate only one additional electron pair in its outermost shell. Thus, $\rm H_3BO_3$ is a monobasic weak Lewis acid.

$$H_2O + B(OH)_3 \rightarrow [B(OH)_4]^- + H^+$$

base acid

151 (c)

$$(NH_4)_2SO_4 \xrightarrow{H_2O} NH_4OH + H_2SO_4$$
weak base strong acid

156 **(b)**

$$2H_3BO_3 \rightarrow B_2O_3 + 3H_2O$$

158 **(b)**

$$NH_3 + NaOCl \rightarrow NaOH + NH_2Cl$$

 $NH_2Cl + NH_3 \rightarrow NH_2NH_2 + HCl$

163 (a)

NH₃ is protonated most easily Thus, ΔG° is most negative

166 (d)

PbCl₂, PbSO₄ – Insoluble CH₃COOH does not react Pb(NO₃)₂ – soluble

168 (d)

All these noble metals soluble in aqua regia (1 part HNO₃ (conc) 3 parts HCl (conc))

170 (a)

 B_2H_6 has two types of bonds α : formed by sharing of one electron between B

and H

 β : formed by sharing of two electrons between B and H

Bond length $\alpha > \beta$

171 (d)

There is no repulsion, thus bond angle of 109°28′ is retained

175 (a)

$$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$$

176 (a)

$$B(OH)_3 + NaOH$$

$$\Rightarrow$$
 NaBO₂ + Na⁺[B(OH)₄]⁻ + H₂O

This reaction is reversible reaction because sodium metaborate, $Na^+[B(OH)_4]^-$ formed by the reaction between $B(OH)_3$ and NaOH gets hydrolysed to regenerate $B(OH)_3$ and NaOH.

 $Na^{+}[B(OH)_{4}]^{-} \xrightarrow{Hydrolysis} NaOH + B(OH)_{3}$

If some quantity of polyhydroxy compounds like cis-1, 2-diol, catechol, glycerol etc is added to the reaction mixture then the B(OH)₃combines with such polyhydroxy compounds to give chelated complex compound. Due to complex compound formation, stability increases and due to higher stability of complex, reaction moves in forward direction.

178 (c)

$$CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$$

182 (a)

The important ore of tin is cassiterite (SnO_2) . Tin is extracted from cassiterite ore by carbon reduction method in a blast furnace.

$$SnO_2 + 2C \rightarrow Sn + 2CO$$

The product often contain traces of iron which is removed by blowing air through the melt to oxidise to FeO which then floats to the surface.

$$2\text{Fe} + 0_2 \rightarrow 2\text{Fe}0.$$

188 **(d)**

$$4NaOH + Si \rightarrow Na_4SiO_4 + 2H_2$$

190 **(b)**

Ag and Au are extracted by this method

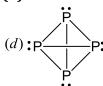
191 (c)

$$NH_4Cl + NaAlO_2 + H_2O \rightarrow NaCl + Al(OH)_3 + NH_3$$

194 (d)

195 (c)

Acid salts have ionisable H⁺ and can further react


with base forming next series of salts

Salts Normal salt Acid salt H₃PO₂ monobasic NaH₂PO₂ NaH₂PO₃ dibasic Na₂HPO₃ NaH₂PO₄ H_3PO_3 Na₂HPO₄ H₃PO₄ tribasic Na_3PO_4 dibasic H_2CO_3 Na_2CO_3 NaHCO₃

198 (a)

$$H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2-}$$

205 (d)

Each P-atom is sp^3 hybridised Thus, *p*-character is 75%

206 (d)

 N_2O_5 , HNO₃ have N-atom with +5 oxidation number

209 (a)

$$SnO + H_2O \rightarrow Sn(OH)_2 + H^+$$

 $HCO_3^- + H^+ \rightarrow CO_2 + H_2O$

$$6NaOH + 2B \rightarrow 2Na_3BO_3 + 3H_2$$

218 **(b)**

Charge

Two
$$Si^{4+}$$
 +8
Seven O^{2-} -14
 $Si_2O_7^{6-}$

220 **(c)**

Coloured cations are detected

222 **(c)**

$$BF_3 + 3H_2O \rightarrow H_3BO_3 + HF$$

 $HF + BF_3 \rightarrow HBF_4$

223 (a)

It is weak monobasic acid

226 **(b)**

Due to vacant electrons

228 (d)

$$(CO + N_2)$$

234 **(d)**

Oxide
$$\xrightarrow{\text{Lime water}}$$
 Milky] SO₂, CO₂
Oxide $\xrightarrow{\text{CuSO}_4}$ Blue] H₂O
Oxide \rightarrow pH > 9]Na₂O

241 **(b)**

247 (d)

$$2KNO_3 \xrightarrow{\Delta} 2KNO_2 + O_2$$

249 (c)

$$B(OH)_3 + 2H_2O \rightarrow [B(OH)_4]^- + H_3O^+$$

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

257 **(d)**

Borax
$$\stackrel{\text{H}^+}{\longrightarrow}$$
 H₃BO₃ $\stackrel{\Delta}{\rightarrow}$ B₂O₃ $\stackrel{\text{Mg}}{\longrightarrow}$ B

260 (a)

263 **(b)**

NO and NO₂ have unpaired electrons, thus paramagnetic

271 (d)

All being trivalent

274 (c)

$$B + NH_3 \rightarrow BN + H_2$$

 $Al + NH_3 \rightarrow Al(NH_2)_3 + H_2$

276 **(a)**

$$Sn + 2Cl_2 \rightarrow SnCl_4$$

277 (d)

$$SiCl_4 + 2Mg \rightarrow 2MgCl_2 + Si$$

278 **(a)**

$$B(OH)_3$$
 and $[B(OH)_4]^-$

288 **(d)**

Due to inert-pair effect

$$Pb^{2+} > Pb^{4+}$$

$$Sn^{4+} > Sn^{2+}$$

289 **(c)**

$$CaCN_2 + 3H_2O \rightarrow CaCO_3 - 2NH_3$$

291 **(b)**

$$BO_3^{3-} + H_2SO_4 \rightarrow H_3BO_3$$

$$H_3BO_3 + 3CH_3OH \rightarrow (CH_3O)_3B + H_2O$$

green

293 **(d)**

$$N_20$$
: $14 + 8 = 22$

$$N_3^-$$
: 21 + 1 = 22

294 **(b)**

$$NO + NO_2 \rightarrow N_2O_3$$

296 (c)

302 **(c)**

I. H₂PO₂ is monobasic acid forming NaH₂PO₂ II. H₂F₂ forms two series of salts KHF₂ and K₂F₂ Thus, dibasic acid

III. H₂C₂O₄ is dibasic acid

IV.
$$|$$
 COOH \leftarrow basic Thus, amphoteric.

305 **(a)**

$$H_3PO_3 +3$$

$$HBO_{2} +3$$

Graphite is present in lead pencils

307 **(b)**

Holme's signals are used to guide the ships. Containers with holes and filled with CaC_2 and Ca_3P_2 are thrown into sea water. Water reacts with CaC_2 forming C_2H_2 and Ca_3P_2 forming PH_3 $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + CH \equiv CH$ $Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$ PH $_3$ further reacts with H_2O and burns with flame which further ignites C_2H_2 and flame in the form of torch is helpful in guiding the ways to missing ships

310 **(b)**

Ionic compounds have high m.p. and high b.p.

311 **(b)**

H₂CO₃: CO₂ H₂SO₃: SO₂ H₂SO₄: SO₃

314 (a)

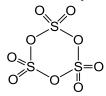
 $\begin{array}{ccc}
 N_2 0 & +1 \\
 N0 & +2 \\
 N_2 0_3 & +3
 \end{array}$

 $NO_2 + 4$

 $N_2O_5 + 5$

316 (a)

 $\begin{aligned} & 2\text{Al} + 6\text{HCl} \rightarrow 2\text{AlCl}_3 + 3\text{H}_2 \\ & 2\text{Al} + 3[0] \xrightarrow{\text{HNO}_3} \text{Al}_2\text{O}_3 \\ & 2\text{Al} + 2\text{NaOH} + 2\text{H}_2\text{O} \rightarrow 2\text{NaAlO}_2 + 3\text{H}_2 \end{aligned}$


317 (d)

 $2BH_3 \rightarrow B_2H_6$ $2AlCl_3 \rightarrow Al_2Cl_6$ $2NO_2 \rightarrow N_2O_4$

BH₃, AlCl₃ and NO₂, are all electron-deficients, hence dimer formation takes place

318 **(d)**

There is no (S - S) bond in S_3O_9

320 **(c**)

Since Si - H and Si - D bonds are not affected, hence hydrolysis takes place at equal rates

323 **(c)**

NaOH reacts with Al and Zn both thus cannot be stored in the vessel made of Al or Zn $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$ $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

325 **(d)**

 $C \equiv N, N \equiv N, O \leftarrow N = O$

327 **(a)**

In this process, molten zinc is added to mineral when silver is extracted into zinc in larger quantity than lead

330 **(b)**

 $CO + Cl_2 \rightarrow COCl_2$ phosgene

333 **(b)**

H₂PbCl₆ is formed

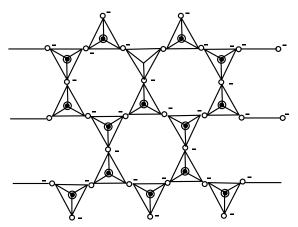
334 **(b)**

 $4HNO_3 \rightarrow 2H_2O + 2NO_2 + 3O_2$

338 (c)

 $C = C, C = 0, C \equiv N$

343 (c)


 $P_4O_6 + H_2O \rightarrow H_3PO_3$ (ON of +3 in both) $P_4O_{10} + H_2O \rightarrow H_3PO_4$ (ON of +5 in both)

346 (d)

$$\begin{split} & \text{Methanides} \xrightarrow{\text{H}_2\text{O}} \text{CH}_4 \\ & \text{Be}_2\text{C} \xrightarrow{\text{H}_2\text{O}} \text{CH}_4 \\ & \text{Al}_4\text{C}_3 \xrightarrow{\text{H}_2\text{O}} \text{CH}_4 \end{split}$$

349 **(b)**

The structure of silicates has been found with the help of X-ray diffraction technique. All silicates have tetrahedral SiO_4^{4-} ion as a basic building unit *i.e.*, all silicates are composed of many units. Tetrahedral shape of $[SiO_4]^{4-}$ ion is due to sp^3 -hybridisation of Si-atom. Sheet silicates are formed when three oxygen atoms (bridging 0-atoms) of each $(SiO_4)^{4-}$ unit are shared. Hence, the general formula of sheet silicates is $(Si_2O_5)^{2n-}$

350 (d)

 $KO_2 \rightleftharpoons K^+ + O_2^-$

 O_2^- (superoxide) is paramagnetic

359 **(a,b,c)**

 ${\rm SiO_2}$ exists in quartz , tridymite and cristobalite forms and each of these have a different structure

at high and low temperatures

365 (a,c,d)

B, Al and Ga show a characteristic oxidation state of +3 white. Tl shows +1 oxidation state which is more stable than+3 oxidation state

372 (b,d)

Conc. $\rm H_2SO_4$ acts as a dehydrating agent. Oxalic acid on dehydration will give CO and $\rm CO_2$ COOH

$$| \frac{\Delta}{\text{conc H}_2\text{SO}_4} \text{CO} + \text{CO}_2 + \text{H}_2\text{O}$$

COOH

381 (a,d)

CO has the structure C \leftarrow 0. Water gas is a mixture of CO and H₂. It acts as reducing agent as Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂ CuO + CO \rightarrow Cu + CO₂

391 (a,b,d)

 ${\rm Tin}$ (II) chloride, ${\rm SnCl_2}$ is a reducing agent. Therefore, it can form colloidal gold form gold salt solution

394 **(b)**

$$B_2H_6 + 6H_2O \rightarrow 2H_3BO_3 + 6H_2$$

 $B_2H_6 + NH_3 \text{ (excess)} \rightarrow B_2H_6 \cdot 2NH_3$
 $B_2H_6 + NH_3 \text{ (excess)} \rightarrow \text{Boron nitride}$

395 (c)

Si-Si bonds ar weaker than Si-O bonds and Si has no tendency to form double bonds with itself

396 (d)

Increased stability of lower valent states on descending a group is illustrated by the facts that Ge^{2+} and Sn^{2+} are strong reducing agent

397 **(b)**

$$BF_3 + H_2O \rightarrow H[BF_3OH]$$

 $BF_3 + 3H_2O \rightarrow H_3PO_3 + 3HF$

Since B has 6 electrons in the outer shell in BF₃ molecules, it can readily accept a lone pair of electrons from a donor atoms

398 **(b)**

White P exists as discrete P₄ tetrahedral molecule having P-P-P bound angle 60°.Hence, molecule is under strain and more reactive while red P exits

as P₄ tetrahedral joined together through covalent bounds giving polymeric structure.

399 (a)

Catenation means the tendency of an element to from chains of identical atoms which is pronounced in sulphur among chalcogens.

400 (a)

The ignition temperature of white P is low (about 30° C) in air. It readily catches fire giving dense fumes of phosphrous pentoxide. It is therefore kept in water.

401 **(c)**

Calcium carbide on hydrolysis gives acetylene. Calcium carbide contains C_2^{2-} anion

402 (a)

In Ga, 10-d electrons in penultimate shell shiled the nucleus change less effectively, the outer electrons is held frimly by the nucleus. As result, the ionisation energy remains nearly the same as that of aluminium in spite of the fact that atomic size increase.

403 (a)

The compound of oxygen and fluorine is more electronegative than oxygen fluorides as fluorine is more electronegative than oxygen

404 (a)

Liquid ammonia has a large heat of vaporization (0.327 cal/g). It is therefore used in ice plants.

413 (c)

Boric acid is Lewis acid, Boron possess sp^2 hybridisaion and their molecules are held together by hydrogen bonding

414 (d)

Only one electron pair of pyridine can be accommodated not two electron pairs

