

8.THE D-AND F-BLOCK ELEMENTS

Single Correct Answer Type

1. The oxygen carrying pigment, oxy-hacmocyanin, containing two copper ions is diamagnetic, because a) The two copper ions is in +1 oxidation state b) One of the copper ions is in +1 oxidation state and the other is in +2 oxidation state c) There are strong anti-ferromagnetic interactions between the two copper ions d) There are strong anti-ferromagnetic interactions between the two copper ions c) Select the correct statement a) ZnSO ₄ , 7H ₂ O is called epsom salt b) ZnSO ₄ , 7H ₂ O is called epsom salt c) ZnSO ₄ , 7H ₂ O is called epsom salt c) ZnSO ₄ , 7H ₂ O is called epsom salt c) ZnSO ₄ , 7H ₂ O is called epsom salt c) ZnSO ₄ , 7H ₂ O is called epsom salt c) Much one of the following is paramagnetic as well as coloured ion? a) Cu ⁺ b) Cu ²⁺ c) Sc ²⁺ d) Ti ⁴⁺ 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ² ₇ , SO ² ₇ , CrO ² ₇ c) Cl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , PO ² ₇ , SO ² ₇ , CrO ² ₇ c) Cl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , PO ² ₇ , SO ² ₇ , CrO ² ₇ c) Buth (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ²⁺ to [Xe]4d ²⁺ 4f ¹⁴⁺ b) [Xe]4d ¹⁴⁺ f ¹⁴⁺ to [Xe]4d ²⁺ 4f ¹⁴⁺ c) [Xe]4d ²⁺ 4f ²⁺ f ¹⁴⁺ b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions 9. Calomel (Hg ₂ Cl ₂) on reactions with ammonium hydroxide gives a) HgO b) H ₂ A ₀ O b) H ₂ A ₀ O ₂ c) [CrO ² ₇ , Cr ₂ O ² ₇ d) H ₂ Cr ₂ O ₇ , CrO ² ₇ a) Cr b) Ni c) C Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O → A ³⁺ B? a) Cobalt b) Iron c) Manganese d) Magnesium 13. Or the following transition metals, the maximum number of oxidation states are exhibited by a) Chomium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Tita				
b) One of the copper ions is in +1 oxidation state and the other is in +2 oxidation state c) There are strong anti-ferromagnetic interactions between the two copper ions d) There are ferromagnetic interactions between the two copper ions 2. Select the correct statement a) ZnSO ₄ , 7H ₂ O is called epsom salt b) ZnSO ₄ , 7H ₂ O is comorphous with Glauber's salt c) ZnSO ₄ , 7H ₂ O is called epsom salt d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu ⁺ b) Cu ²⁺ c) Sc ³⁺ d) Ti ⁴⁺ 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ³ , SO ³⁺ , CrO ³⁺ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , PO ³⁺ , SO ³⁺ , CrO ³⁺ , CrO ³⁺ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xel/4 ¹⁺ to [Xel/4 ¹⁺⁶] c) [Xel/4 ¹⁺ to [Xel/4 ¹⁺⁶] d) [Xel/4 ¹⁺ to [Xel/4 ¹⁺⁶] d) Cu ²⁺ to [Xel/4 ¹⁺⁶] d) [Xel/4 ¹⁺⁰ to [Xel/4 ¹⁺⁶] d) [Xel/4 ¹⁺⁰ to [Xel/4 ¹⁺⁶] d) [Xel/4 ¹⁺⁰ to [Xel/4 ¹⁺⁶] d) Cu ²⁺ to [Xel/4 ¹⁺⁶] d	1.	The oxygen carrying pigment, oxy-haemocyanin, c	containing two copper ions i	is diamagnetic, because
c) There are strong anti-ferromagnetic interactions between the two copper ions d) There are ferromagnetic interactions between the two copper ions 2. Select the correct statement a) $2nSO_4 \cdot 7H_2O$ is called epsom salt b) $2nSO_4 \cdot 7H_2O$ is comorphous with Glauber's salt c) $2nSO_4 \cdot 7H_2O$ is isomorphous with Glauber's salt c) $2nSO_4 \cdot 7H_2O$ is isomorphous with Glauber's salt d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu^+ b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of $SiCl_n, TiCl_n, PO_1^3 - SO_1^2 - CrO_1^2 - Cl_n$ isostructural are a) $SiCl_n, TiCl_n, PO_1^3 - SO_2^2 - CrO_2^2 - Cl Both (a) and (b) d)$ None of these 6. Ln^{3+} (trivalent lanthanides ions) have EC a) $ Xe 4f^{1+}$ to $ Xe 4f^{14}$ d) $ Xe 4f^{14}$ to $ Xe 4f^{14}$ c) $ Xe 4f^{2} + f^{0}$ to $ Xe 4f^{14}$ d) $ Xe 4f^{10}$ to $ Xe 4f^{14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives none of the above reactions d) Gives none of the above reactions from b) Ni c) $2n$ d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ b) $R_2O_7A_7O_7C_7A_7^{2-} = CR d) H_2Cr_2O_7, CrO_4^{2-}$ 12. The metal present in vitamin B_{12} is a) $COoblt$ b) $Ni c$ $2n$ d) Cu 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) $CrO_3 + H_2O \rightarrow A^{OFF} = DR$ c) $R_1A^{OFF} = La^{3+} < Lu^{3+} + ML^{3+} = ML^{3+} = ML^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu$		a) The two copper ions are in +1 oxidation state		
c) There are strong anti-ferromagnetic interactions between the two copper ions d) There are ferromagnetic interactions between the two copper ions 2. Select the correct statement a) $2nSO_4 \cdot 7H_2O$ is called epsom salt b) $2nSO_4 \cdot 7H_2O$ is comorphous with Glauber's salt c) $2nSO_4 \cdot 7H_2O$ is isomorphous with Glauber's salt c) $2nSO_4 \cdot 7H_2O$ is isomorphous with Glauber's salt d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu^+ b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of $SiCl_n, TiCl_n, PO_1^3 - SO_1^2 - CrO_1^2 - Cl_n$ isostructural are a) $SiCl_n, TiCl_n, PO_1^3 - SO_2^2 - CrO_2^2 - Cl Both (a) and (b) d)$ None of these 6. Ln^{3+} (trivalent lanthanides ions) have EC a) $ Xe 4f^{1+}$ to $ Xe 4f^{14}$ d) $ Xe 4f^{14}$ to $ Xe 4f^{14}$ c) $ Xe 4f^{2} + f^{0}$ to $ Xe 4f^{14}$ d) $ Xe 4f^{10}$ to $ Xe 4f^{14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives none of the above reactions d) Gives none of the above reactions from b) Ni c) $2n$ d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ a) $R_2On_4H_2O_7A_0^{OFF} = DR$ b) $R_2O_7A_7O_7C_7A_7^{2-} = CR d) H_2Cr_2O_7, CrO_4^{2-}$ 12. The metal present in vitamin B_{12} is a) $COoblt$ b) $Ni c$ $2n$ d) Cu 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) $CrO_3 + H_2O \rightarrow A^{OFF} = DR$ c) $R_1A^{OFF} = La^{3+} < Lu^{3+} + ML^{3+} = ML^{3+} = ML^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu$		b) One of the copper ions is in $+1$ oxidation state	and the other is in $+2$ oxida	tion state
d) There are ferromagnetic interactions between the two copper ions 2. Select the correct statement a) ZnSO ₄ · 7H ₂ O is isomorphous with Glauber's salt c) ZnSO ₄ · 7H ₂ O is isomorphous with Glauber's salt c) ZnSO ₄ · 7H ₂ O with Ba's is called lithopone d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu ⁺ b) Cu ²⁺ c) Sc ³⁺ d) Ti ⁴⁺ 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ³⁺ ₇ , SO ³⁺ ₇ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , b) SO ²⁺ ₇ , CCO ²⁺ ₇ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , b) SO ²⁺ ₇ , CrO ²⁺ ₇ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , b) SO ²⁺ ₇ , CrO ²⁺ ₇ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , b) SO ²⁺ ₇ , CrO ²⁺ ₇ , CCl ₄ isostructural are a) SiCl ₄ /f ¹⁴ to [Xe]4d ¹⁴ f ¹⁴ b) [Xe]4d ¹⁴ f ¹⁵ to [Xe]4d ¹⁴ f ¹⁴ c) [Xe]4d ²⁴ f ¹⁰ to [Xe]4d ¹⁴ f ¹⁴ d) [Xe]4f ¹⁶ to [Xe]4d ¹⁴ f ¹⁴ c) [Xe]4d ²⁴ f ¹⁰ to [Xe]4d ¹⁴ f ¹⁴ d) [Xe]4f ¹⁴ d)				
2. Select the correct statement a) ZnSQ ₄ · TH ₂ O is called epsom salt b) ZnSO ₄ · TH ₂ O with BaS is called lithopone d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu ⁺ b) Cu ²⁺ c) Sc ²⁺ d) Ti ⁴⁺ 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrat b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ³⁺ ₄ , SQ ²⁺ ₇ , CrO ⁴ ₄ - () Su ²⁺ c) (a both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) SiCl ₄ , TiCl ₄ b) SO ²⁺ ₄ , CrO ³⁺ ₄ c) Su ²⁺ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) SiCl ₄ , TiCl ₄ b) Su ²⁺ ₄ , Tl ⁴⁺ d) [Xe]4d ¹ df ¹⁺ to [Xe]4d ¹ 4f ¹⁺⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O → A B? a) H ₂ OC ₄ , H ₂ C ₂ O ₇ b) H ₂ Cr ₂ O ₇ , CrO ₃ c) CrO ²⁺ ₄ , Cr ₂ O ⁷⁻ d) H ₂ Cr ₂ O ₇ , CrO ²⁺ ₄ 12. The metal present in vitamin B ₁₂ Is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chronium (Z = 24) b) Manganes (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 711 a) Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) Ferric alum b) Potash alum c) Both				
a) $2nSO_4 \cdot 7H_2O$ is called epsom salt b) $2nSO_4 \cdot 7H_2O$ is isomorphous with Glauber's salt c) $2nSO_4 \cdot 7H_2O$ with BaS is called lithopone d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu^+ b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CCl_4 (sostructural are a) SiCl ₄ , PI_4^{-14} (b) SiCl ₄ PI_4^{-14} (b) SiCl ₄ PI_4^{-14} (c) [Xe] $4P_4^{-1}$ to [Xe] $4P_4^{-14}$ (c) [Xe] $4P_4^{-1}$ to [Xe] $4P_4^{-14}$ (b) [Xe] $4P_4^{-1}$ to [Xe] $4P_4^{-14}$ (c) [Xe] $4P_4^{-1}$ to [Xe] $4P_4^{-14}$ (c) [Xe] $4P_4^{-14}$ (b) [Xe] $4P_4^{-14}$ (c) [Xe] $4P_4^{-14}$ to [Xe] $4P_4^{-14}$ (c) [Xe] $4P_4^{-14}$ (b) [Xe] $4P_4^{-14}$ (c) [Xe] $4P_$	2.		r r r r r r r r r r r r r r r r r r r	
b) $2nSO_4 \cdot 7H_2O$ vith BaS is called lithopone d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu^+ b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) $Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl4, TiCl4, PO32+, SO42-, CrO42-, Cl4 isostructural are a) SiCl4, TiCl4, PO34-, SO42-, CrO42- c) Both (a) and (b) d) None of these 6. Ln^{3+} (trivalent lanthanides ions) have ECa) [Scl_4/f^{1-} to [Scl_4/f^{1-4}] b) [Scl_4/d^{1-4}f^{1-1} to [Scl_4/d^{1-4}f^{1-4}]c) [Xel_4/d^2 4f^0 to [Xel_4/d^1 4f^{1-4}] d) [Xel_4/f^{1-4}] to [Xel_4/f^{1-4}]7. Stainless steel is an alloy ofa) Cu b) Ni and Cr c) Mn d) Zn8. Hypo (Na_2S_3,O_3)a) Dissolves AgBr in photographic plateb) Gives white precipitate with AgNO3; white precipitate changes to black on dilutionc) Gives both reactionsd) Gives none of the above reactions9. Calomel (Hg2Cl2) on reaction with ammonium hydroxide givesa) HgO b) Hg2O c) C) NH2 - Hg - Hg - Cl d) HgNH2Cl10. Which forms protective and non-corrosive oxide layer?a) Cr b) Ni c) Zn d) Cu11. What are the speciex A and B in the followingCrO_3 + H_2O \rightarrow A \xrightarrow{OIII} Bi2a) L^{2}Or_4, H_2Cr_2O_7, CrO_3^{2-} (c) CrO_4^{2-}, Cr_2O_7^{2-} d) H_2Cr_2O_7, CrO_4^{2-}12. The metal present in vitamin Bi2 isa) Cobalt b) Iron c) Manganese d) Magnesium13. Of the following transition metals, the maximum number of oxidation states are exhibited bya) Cromium (Z = 24) b) Magnagenes (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22)14. The correct order of ionic radii of Y3+, La3+, Eu3+ and Lu3+ is(Atomic number of Y = 39, La = 57, Fu = 63, Lu = 71)a) Lu3+ < Lu3+(2) Y3+ < La3+ < Eu3+ > Lu3+(3) Fortic alum b) Potash alum c) Both (a) and (b) d) None of these16. KMnO$				
c) $ZnSO_4 \cdot 7H_2O$ with BaS is called lithopone d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu^* b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO_4^{-7} , SO_4^{-7} , CrO_4^{-7} c) Both (a) and (b) d) None of these 6. Ln^{3+} (trivalent lanthanides ions) have EC a) $[Xe]4f^{-1}$ to $[Xe]4d^{-1}4f^{-14}$ b) $[Xe]4d^{-1}4f^{-1}$ to $[Xe]4d^{-1}4f^{-14}$ c) $[Xe]4d^{-2}4f^{-0}$ to $[Xe]4d^{-1}4f^{-14}$ d) $[Xe]4f^{-14}$ to $[Xe]4d^{-1}4f^{-14}$ c) $[Xe]4d^{-2}4f^{-0}$ to $[Xe]4d^{-1}4f^{-14}$ d) $[Xe]4f^{-14}$ d) $[Xe]4f^{-14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_2O_3)$ a) Dissolves AgBr in photographic plate b) Gives none of the above reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O $\rightarrow A \xrightarrow{Oit} BP$ a) L ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 7. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < $Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+}$ 15. Coagulation of blood takes place by a) Forric alum b) Potash alum c) Both (a) and (b)			lt	
d) All the above are correct statement 3. Which of the following is paramagnetic as well as coloured ion? a) Cu ⁺ b) Cu ²⁺ c) Sc ³⁺ d) Ti ⁴⁺ 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , b) SO ² ₄ , CrO ² ₄ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ¹⁺ to [Xe]4f ¹⁴ b) [Xe]4d ¹⁴ f ¹⁺ to [Xe]4d ¹⁴ f ¹⁺⁴ c) [Xe]4f ²⁺ to [Xe]4d ¹⁴ f ¹⁺⁴ d) [Xe]4f ¹⁺⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) Hg0 b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrorsive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O $\rightarrow A \xrightarrow{OIII} B$? a) Coobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < Eu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ b) Cagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ² /H ⁺ d) All of these				
3. Which of the following is paramagnetic as well as coloured ion? a) $(u^+$ b) $(u^2+$ c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ³⁻ ₄ , SO ³⁻ ₄ , CrO ³⁻ ₄ c) Cl ₄ isostructural are a) SiCl ₄ , TiCl ₄ , PO ³⁻ ₄ , SO ³⁻ ₄ , CrO ³⁻ ₄ c) Both (a) and (b) d) None of these 6. Ln^{3+} (trivalent lanthanides ions) have EC a) $[Xe]4d^{1}$ to $[Xe]4d^{1}4f^{14}$ d) $[Xe]4d^{1}4f^{1}$ to $[Xe]4d^{1}4f^{14}$ c) $[Xe]4d^{2}4f^{0}$ to $[Xe]4d^{1}4f^{14}$ d) $[Xe]4f^{1}$ to $[Xe]4f^{14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions 4. Gives none of the above reactions 9. Calomel (Hg_2Cl_2) on reaction with ammonium hydroxide gives a) Hg0 b) Hg_20 c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O + A \frac{OH^-}{DR}$ a) Cabolt b) Hy ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO^{2-}_4 , $Cr_2O^{2-}_7$ d) H ₂ Cr ₂ O ₇ , CrO^{2-}_4 a) Cr b) Ni c) C Zn d) Magnesium 3. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < $La^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Lu^{3+} < Cu^{3+} < La^{3+} < Ci A = Croalution of blood takes place by a) Ferric alum b) Pota shalum c) Both (a) and (b) d) None of these 16. KMnO4 spot can be bleached by a) H2O2/H+ b) SO2/H+ c) C2O2/H+ d) All of these$				
a) Cu^{+} b) Cu^{2+} c) Sc^{3+} d) Ti^{4+} 4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ₄ ²⁺ , SO ₄ ²⁺ , CrO ₄ ²⁺ c) (a isostructural are a) SiCl ₄ , TiCl ₄ , PO ₄ ³⁺ , SO ₄ ²⁺ , CrO ₄ ²⁺ c) Cob th (a) and (b) d) None of these 6. Ln^{3+} (trivalent lanthanides ions) have EC a) [Xe]4f ⁻¹ to [Xe]4f ⁻¹⁴ b) SO ₄ ²⁺ f ⁻¹⁴ d) [Xe]4d ¹⁴ f ⁻¹⁴ to [Xe]4d ¹⁴ f ⁻¹⁴ () [Xe]4d ² 4f ⁰ to [Xe]4d ¹⁴ f ⁻¹⁴ d) [Xe]4f ¹⁰ to [Xe]4f ¹⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Disolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr O ₃ + H ₂ O + A ^{OH-} B? a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁺ , Cr ₂ O _{7²⁻} d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Coblut b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 711 a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Lu ³⁺ <	3	-	coloured ion?	
4. Which one of the following nitrates will leave behind a metal on strong heating? a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ₃ ²⁻ , SO ₄ ²⁻ , CrO ₄ ²⁻ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ¹ to [Xe]4f ¹⁴ b) SO ₄ ²⁻ , CrO ₄ ²⁻ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ²⁺ to [Xe]4f ¹⁴ b) [Xe]4f ¹⁴ d) [Xe]4f ⁰ to [Xe]4f ¹⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O $\wedge \frac{OH^{-1}}{DP}$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , CrO ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Magnese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ 5. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	5.			d) T;4+
a) Ferric nitrate b) Copper nitrate c) Manganese nitrate d) Silver nitrate 5. Out of SiCl ₄ , TiCl ₄ , PO ₄ ²⁻ , SO ₄ ²⁻ , CrO ₄ ²⁻ , CCl ₄ isostructural are a) SiCl ₄ , TiCl ₄ b) SO ₄ ²⁻ , CrO ₄ ²⁻ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ¹ to [Xe]4f ¹⁴ b) [Xe]4d ¹ 4f ¹⁴ d) [Xe]4f ⁰ to [Xe]4f ¹⁴ c) [Xe]4d ² 4f ⁰ to [Xe]4d ¹ 4f ¹⁴ d) [Xe]4f ⁰ to [Xe]4f ¹⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S _{0.3}) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) Hg0 b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O $\rightarrow A \xrightarrow{OH^-}$ B? a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺ b) La ³⁺ < Eu ³⁺ < Lu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	4	, ,	,	,
5. Out of SiCl ₄ , TiCl ₄ , PO ₄ ²⁻ , SO ₄ ²⁻ , CrO ₄ ²⁻ , Cl ₄ isostructural are a) SiCl ₄ , TiCl ₄ b) SO ₄ ²⁻ , CrO ₄ ²⁻ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ¹ to [Xe]4f ¹⁴ b) [Xe]4d ¹ 4f ¹⁴ d) [Xe]4f ⁰ to [Xe]4d ¹ 4f ¹⁴ c) [Xe]4d ² 4f ⁰ to [Xe]4d ¹ 4f ¹⁴ d) [Xe]4f ⁰ to [Xe]4f ¹⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O $\rightarrow A \xrightarrow{OII^-}$ B? a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ , CrO ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < V ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ (Cogulation of blodot takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 15. Coagulation of bload takes place by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ² /H ⁺ d) All of these	4.	_		-
a) SiCl ₄ , TiCl ₄ b) SO ₄ ²⁻ , CrO ₄ ²⁻ c) Both (a) and (b) d) None of these 6. Ln ³⁺ (trivalent lanthanides ions) have EC a) [Xe]4f ¹ to [Xe]4f ¹⁴ b) [Xe]4f ¹⁴ d] [Xe]4f ¹ to [Xe]4d ¹ 4f ¹⁴ c) [Xe]4f ² 4f ⁰ to [Xe]4d ¹ 4f ¹⁴ d] [Xe]4f ⁰ to [Xe]4f ¹⁴ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following CrO ₃ + H ₂ O \rightarrow A ^{OH-} B? a) H ₂ CrQ ₀ , CrQ ₀ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺ c) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Lu ³⁺ (Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Lu ³⁺ (Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Lu ³⁺ < Lu ³⁺ (Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Eu ³⁺ <	_		, ,	d) Silver nitrate
6. Ln^{3+} (trivalent lanthanides ions) have EC a) $[Xe]4f^{-1}$ to $[Xe]4f^{1+}$ b) $[Xe]4d^{-1}4f^{-1}$ to $[Xe]4d^{-1}4f^{-1+}$ c) $[Xe]4d^{-2}4f^{-0}$ to $[Xe]4d^{-1}4f^{-1+}$ d) $[Xe]4f^{-0}$ to $[Xe]4d^{-1}4f^{-1+}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H_2CrO_4 , $H_2Cr_2O_7$ b) $H_2Cr_2O_7$, Cr_2O_3 c) CrO_4^{2-} , $Cr_2O_7^{2-}$ d) $H_2Cr_2O_7$, CrO_4^{2-} 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 711 a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) $C_2O_4^{2-}/H^+$ d) All of these	5.			
a) $[Xe]4f^1$ to $[Xe]4f^{14}$ b) $[Xe]4d^14f^1$ to $[Xe]4d^14f^1$ to $[Xe]4d^14f^1$ c) $[Xe]4d^2 4f^0$ to $[Xe]4d^1 4f^{14}$ d) $[Xe]4f^0$ to $[Xe]4f^{14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) Hg0 b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < Eu ³⁺ < La ³⁺ < V ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ () Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ () Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ () Cogulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be blacked by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	_		c) Both (a) and (b)	d) None of these
c) $[Xe]4d^2 4f^0$ to $[Xe]4d^1 4f^{14}$ d) $[Xe]4f^0$ to $[Xe]4f^{14}$ 7. Stainless steel is an alloy of a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg_2Cl_2) on reaction with ammonium hydroxide gives a) HgO b) Hg_2O c) NH ₂ – Hg – Hg – Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} BP$; a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium $(Z = 24)$ b) Manganese $(Z = 25)$ c) Iron $(Z = 26)$ d) Titanium $(Z = 22)$ 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < V ³⁺ c) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	6.			
7.Stainless steel is an alloy of a) Cub) Ni and Crc) Mnd) Zn8.Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions9.Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgOb) Hg ₂ Oc) NH ₂ - Hg - Hg - Cld) HgNH ₂ Cl10.Which forms protective and non-corrosive oxide layer? a) Crb) Nic) Znd) Cu11.What are the species A and B in the following CrO ₃ + H ₂ O → A $\stackrel{OH^-}{\longrightarrow}$ B? a) H ₂ Cr ₂ O ₇ , Cr ₂ O ₇ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12.The metal present in vitamin B ₁₂ is a) Cobaltb) Ironc) Manganesed) Magnesium13.Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24)b) Manganese (Z = 25) c) Iron (Z = 26)d) Titanium (Z = 22)14.The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Lu ³⁺ < La ³⁺ b) La ³⁺ < Lu ³⁺ < Lu ³⁺ 15.Coagulation of blood takes place by a) Ferric alumb) Potash alum c) Both (a) and (b)d) None of these16.KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these				$l^1 4 f^{14}$
a) Cu b) Ni and Cr c) Mn d) Zn 8. Hypo (Na ₂ S ₃ O ₃) a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ – Hg – Hg – Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Lu ³⁺ (2) Y ³⁺ < La ³⁺ < Lu ³⁺ > Lu ³⁺ (3) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these		c) [Xe] $4d^2 4f^0$ to [Xe] $4d^1 4f^{14}$	d) [Xe]4 f^0 to [Xe]4 f^{14}	
8. Hypo $(Na_2S_3O_3)$ a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < La ³⁺ < Lu ³⁺ < Lu ³⁺ (C) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	7.	Stainless steel is an alloy of		
a) Dissolves AgBr in photographic plate b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ – Hg – Hg – Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B$? a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Lu ³⁺ < Lu ³⁺ < Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ c) Y ³⁺ < La ³⁺ < Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these		a) Cu b) Ni and Cr	c) Mn	d) Zn
b) Gives white precipitate with AgNO ₃ ; white precipitate changes to black on dilution c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ – Hg – Hg – Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following CrO ₃ + H ₂ O $\rightarrow A \xrightarrow{OH^-} B$? a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Lu ³⁺ < Lu ³⁺ < Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < Lu ³⁺ c) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	8.	Hypo $(Na_2S_3O_3)$		
c) Gives both reactions d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ – Hg – Hg – Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (<i>Z</i> = 24) b) Manganese (<i>Z</i> = 25) c) Iron (<i>Z</i> = 26) d) Titanium (<i>Z</i> = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < V ³⁺ b) La ³⁺ < Eu ³⁺ < Lu ³⁺ < Lu ³⁺ (Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these		a) Dissolves AgBr in photographic plate		
d) Gives none of the above reactions 9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) HgO b) Hg ₂ O c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (<i>Z</i> = 24) b) Manganese (<i>Z</i> = 25) c) Iron (<i>Z</i> = 26) d) Titanium (<i>Z</i> = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Zu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these		b) Gives white precipitate with AgNO ₃ ; white prec	pipitate changes to black on	dilution
9. Calomel (Hg ₂ Cl ₂) on reaction with ammonium hydroxide gives a) Hg0 b) Hg ₂ 0 c) NH ₂ - Hg - Hg - Cl d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species <i>A</i> and <i>B</i> in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) H ₂ CrO ₄ , H ₂ Cr ₂ O ₇ b) H ₂ Cr ₂ O ₇ , Cr ₂ O ₃ c) CrO_4^{2-} , Cr ₂ O ₇ ²⁻ d) H ₂ Cr ₂ O ₇ , CrO ₄ ²⁻ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (<i>Z</i> = 24) b) Manganese (<i>Z</i> = 25) c) Iron (<i>Z</i> = 26) d) Titanium (<i>Z</i> = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < <i>E</i> u ³⁺ < <i>L</i> a ³⁺ < <i>L</i> u ³⁺ d) Y ³⁺ < <i>L</i> u ³⁺ < <i>L</i> u ³⁺ < <i>L</i> a ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these		c) Gives both reactions		
a) HgO b) Hg ₂ O c) $NH_2 - Hg - Hg - Cl$ d) HgNH ₂ Cl 10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B$? a) $H_2CrO_4, H_2Cr_2O_7$ b) $H_2Cr_2O_7, Cr_2O_3$ c) $CrO_4^2^-, Cr_2O_7^{}$ d) $H_2Cr_2O_7, CrO_4^{2-}$ 12. The metal present in vitamin B ₁₂ is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺ b) La ³⁺ < Eu ³⁺ < Lu ³⁺ < Lu ³⁺ < La ³⁺ c) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₂ ²⁻ /H ⁺ d) All of these		d) Gives none of the above reactions		
10. Which forms protective and non-corrosive oxide layer? a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B$? a) H_2CrO_4 , $H_2Cr_2O_7$ b) $H_2Cr_2O_7$, Cr_2O_3 c) $CrO_4^2^-$, $Cr_2O_7^2^-$ d) $H_2Cr_2O_7$, $CrO_4^2^-$ 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium (Z = 24) b) Manganese (Z = 25) c) Iron (Z = 26) d) Titanium (Z = 22) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺ b) La ³⁺ < Eu ³⁺ < Lu ³⁺ d) Y ³⁺ < Lu ³⁺ < Eu ³⁺ < La ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	9.	Calomel (Hg_2Cl_2) on reaction with ammonium hydrogeneous terms of the second secon	droxide gives	
a) Cr b) Ni c) Zn d) Cu 11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) $H_2CrO_4, H_2Cr_2O_7$ b) $H_2Cr_2O_7, Cr_2O_3$ c) $CrO_4^{2-}, Cr_2O_7^{2-}$ d) $H_2Cr_2O_7, CrO_4^{2-}$ 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$) 14. The correct order of ionic radii of Y^{3+}, La^{3+}, Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39, La = 57, Eu = 63, Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO_4 spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these		a) HgO b) Hg ₂ O	c) $NH_2 - Hg - Hg - Cl$	d) HgNH ₂ Cl
11. What are the species A and B in the following $CrO_3 + H_2O \rightarrow A \xrightarrow{OH^-} B?$ a) $H_2CrO_4, H_2Cr_2O_7$ b) $H_2Cr_2O_7, Cr_2O_3$ c) $CrO_4^{2-}, Cr_2O_7^{2-}$ d) $H_2Cr_2O_7, CrO_4^{2-}$ 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$)14. The correct order of ionic radii of Y^{3+}, La^{3+}, Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39, La = 57, Eu = 63, Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these16. KMnO_4 spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	10.	Which forms protective and non-corrosive oxide l	ayer?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a) Cr b) Ni	c) Zn	d) Cu
a) H_2CrO_4 , $H_2Cr_2O_7$ b) $H_2Cr_2O_7$, Cr_2O_3 c) CrO_4^{2-} , $Cr_2O_7^{2-}$ d) $H_2Cr_2O_7$, CrO_4^{2-} 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$) 14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	11.	What are the species <i>A</i> and <i>B</i> in the following		
a) H_2CrO_4 , $H_2Cr_2O_7$ b) $H_2Cr_2O_7$, Cr_2O_3 c) CrO_4^{2-} , $Cr_2O_7^{2-}$ d) $H_2Cr_2O_7$, CrO_4^{2-} 12. The metal present in vitamin B_{12} is a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$) 14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these		$CrO_{1} + H_{2}O \rightarrow A \xrightarrow{OH^{-}} B2$		
12. The metal present in vitamin B_{12} is a) Cobaltb) Ironc) Manganesed) Magnesium13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$)b) Manganese ($Z = 25$)c) Iron ($Z = 26$)d) Titanium ($Z = 22$)14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alumb) Potash alumc) Both (a) and (b)d) None of these16. KMnO_4 spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these			c) $(r \Omega^{2-} r \Omega^{2-})$	d H Cr O CrO^{2-}
a) Cobalt b) Iron c) Manganese d) Magnesium 13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$) 14. The correct order of ionic radii of Y ³⁺ , La ³⁺ , Eu ³⁺ and Lu ³⁺ is (Atomic number of Y = 39, La = 57, Eu = 63, Lu = 71) a) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺ c) Y ³⁺ < La ³⁺ < Eu ³⁺ > Lu ³⁺ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H ₂ O ₂ /H ⁺ b) SO ₂ /H ⁺ c) C ₂ O ₄ ²⁻ /H ⁺ d) All of these	12		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	uj 11201207, 0104
13. Of the following transition metals, the maximum number of oxidation states are exhibited by a) Chromium ($Z = 24$) b) Manganese ($Z = 25$) c) Iron ($Z = 26$) d) Titanium ($Z = 22$)14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alumb) Potash alumc) Both (a) and (b)d) None of these16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	12.		a) Manganasa	d) Magnagium
a) Chromium $(Z = 24)$ b) Manganese $(Z = 25)$ c) Iron $(Z = 26)$ d) Titanium $(Z = 22)$ 14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	10		, ,	, .
14. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic number of $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ 17. Coagulation of the bleached by b) SO_2/H^+	15.	_		-
$ \begin{array}{ll} (\text{Atomic number of } Y = 39, \text{La} = 57, \text{Eu} = 63, \text{Lu} = 71) \\ \text{a) } \text{Lu}^{3+} < \text{Eu}^{3+} < \text{La}^{3+} < Y^{3+} \\ \text{c) } Y^{3+} < \text{La}^{3+} < \text{Eu}^{3+} > \text{Lu}^{3+} \\ \text{d) } Y^{3+} < \text{Lu}^{3+} < \text{Eu}^{3+} < \text{La}^{3+} \\ \text{for all in of blood takes place by} \\ \text{a) Ferric alum} \\ \text{b) Potash alum} \\ \text{c) Both (a) and (b)} \\ \text{d) None of these} \\ \text{for all in block of the se} \\ for all in $	14			$d \int \Pi(a) \Pi(a) = 22 $
a) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ b) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ d) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ 15. Coagulation of blood takes place by a) Ferric alumb) Potash alumc) Both (a) and (b)d) None of these16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	14.			
c) $Y^{3+} < La^{3+} < Eu^{3+} > Lu^{3+}$ 15. Coagulation of blood takes place by a) Ferric alum b) Potash alum c) Both (a) and (b) d) None of these 16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these			-	
15. Coagulation of blood takes place by a) Ferric alumb) Potash alumc) Both (a) and (b)d) None of these16. KMnO ₄ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these)	
a) Ferric alumb) Potash alumc) Both (a) and (b)d) None of these16. $KMnO_4$ spot can be bleached by a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these		, ,	d) $Y^{s+} < Lu^{s+} < Eu^{s+}$	$< La^{3+}$
16. $KMnO_4$ spot can be bleached by a) H_2O_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these	15.			
a) H_2O_2/H^+ b) SO_2/H^+ c) $C_2O_4^{2-}/H^+$ d) All of these			c) Both (a) and (b)	d) None of these
	16.			
17. If $FeCl_3 \cdot 6H_2O$ would exist as a complex, one mole of it in aqueous solution on reaction with excess of			, , ,	
	17.	If $FeCl_3 \cdot 6H_2O$ would exist as a complex, one mole	e of it in aqueous solution or	reaction with excess of

	AgNO ₃ forms				
	a) 1 mole of AgCl (white p	recinitate)	b) 2 moles of AgCl		
	c) 3 moles of AgCl	(colpitate)	d) No reaction		
18		e hydrogen from dilute ac	e acids. It will react with water to form hydrogen only		
10.			n of steam. The metal is pro		
		b) Potassium	c) Copper	d) Mercury	
19	Most transition metals	b) i otassiulli	c) copper	u) Mercury	
17.	I. forms sets of compounds	s which display different o	vidation states of the metal	1	
	II. form coloured ions in so		Aluation states of the metal	L	
	III. burn vigorously in oxyg				
	IV. replace H_2 from dilute a				
		b) II, III, IV and correct	c) I II are correct	d) All are correct	
20.	On passing Cl_2 gas into alk	-	-	aj fill are correct	
20.	a) Red purple solution of N				
	b) Colourless NaFeO ₂ is for		$F_{Fe_2}O_2$ into NaOH		
	c) $Fe(OH)_3$ is formed				
	d) No reaction takes place				
21.	The number of moles of KI	MnO_4 reduced by one mole	e of KI in alkaline medium i	is	
		b) Five	c) One	d) Two	
22.	The electronic configuration	on of (Gd) (At. no. 64) is		-	
	a) [Xe] $4f^8$, $5d^9$, $6s^2$	b) [Xe] $4f^7$, $5d^1$, $6s^2$	c) [Xe] $4f^6$, $5d^2$, $6s^2$	d) [Xe]4 <i>f</i> ³ , 5 <i>d</i> ³ , 6 <i>s</i> ²	
23.	Iron is dropped in very dil	. HNO ₃ , it gives			
	a) Ferric nitrate		b) Ferric nitrate and NO ₂		
	c) Ferrous nitrate and am	nonium nitrate	d) Ferrous nitrate and nit	ric oxide	
24.	The element Ds lies in				
	a) <i>s</i> -block	b) <i>p</i> -block	c) <i>d</i> -block	d) <i>f</i> -block	
25.	The reactivity of transition				
	a) The decrease in the atom	nic number	b) The increase in the ato	mic umber	
	c) Low heat of hydration		d) None of the above		
26.	Which of the following is u				
~ -		b) Hg_2Cl_2	c) HgCl ₂	d) ZnSO ₄	
27.	Which of the following are			$[N_{1}(H, \alpha), 1^{2+}]$	
	a) TiCl ₄ , O_2 , $[Ni(CN)_4]^{2-}$, $[J_4]^{2-}$, $[Ni(CN)_4]^{2-1}$	$N1(H_2O)_4]^{2^+}$	b) TiCl ₄ , $[Ni(CN)_4]^{2-}$, CO,	$[N1(H_2O)_4]^2$	
20	c) TiCl ₄ , [Ni(CN) $_{4}^{2-}$], CO		d) TiCl ₄ , $[Ni(CN)_4]^{2-}$, O_2		
28.	Which forms interstitial co	1	a) N:	d) All of these	
20	a) Fe Europium is	b) Co	c) Ni	d) All of these	
29.	-	b) <i>p</i> -block element	c) <i>d</i> -block element	d) <i>f</i> -block element	
30	Which of the following is n	<i>,</i> .	cj <i>a</i> -block element	u) j -block element	
50.	_	b) Cm	c) Fm	d) Tm	
31	The methods chiefly used t	-	2		
51.	a) Self reduction and carbo		b) Self reduction and elec		
	c) carbon reduction and se		d) Cyanide process and ca		
32.	Cementite is				
	a) Interstitial compound o	f iron and carbon	b) An alloy of Fe and Cr		
	c) A compound resembling		d) An ore of iron		
33.	· ·		-		
	a) Ammoniacal CuCl is use	d to measure the amount	of CO in gas samples		
	b) Ammoniacal CuCl gives				
	c) Both (a) and (b) are cor	rect			

d) None of the above is correct

	d) None of the above is co			
34.	The diamagnetic species			
	a) $[Ni(CN)_4]^{2-}$	b) [NiCl ₄] ^{2–}	c) $[CoCl_4]^{2-}$	d) [CoF ₆] ^{2–}
35.). Rust spots can be remov	ed by	
	a) Na ₂ S ₂ O ₃ (hypo)	b) SO ₂	c) H ₂ C ₂ O ₄ (oxalic acid)	d) KMnO4
36.	Which of the following ex	ists as white salt in anhyd	rous state?	
	a) CuF ₂	b) CuSO ₄	c) Both (a) and (b)	d) None of theses
37.	When (A) NH ₄ VO ₃ is heat	ed		
	$(B)(NH_4)_2Cr_2O_7$ is heate	d		
	a) In both cases N ₂ is form	ned	b) In both cases NH ₃ is fo	ormed
	c) In (A) NH ₃ and in (B) N	$_2$ are formed	d) In $(A)N_2$ and in $(B)NH$	I_3 are formed
38.	Which is the correct state	ement?		
			let coloured diamagnetic [($CrO(O_2)(OH)]^{-}$ ion
	b) In alkaline H ₂ O ₂ , K ₃ Cr	O_8 (with tetraperoxo speci	es) $[Cr(0_2)_4]^{3-}$ is formed	
	c) In ammoniacal solution	n, $K_2Cr_2O_7$ gives (NH ₃) ₃ Cr	04	
	d) All of the above are con	rrect statements		
39.	Sugar in urine sample car	n be detected by		
	I. Fehling's solution			
	II. Benedict's solution			
	III. Tollen's solution			
	Select the correct alterna	te		
	a) I, II, III	b) I, III	c) I, II	d) II, III
40.	Haemoglobin and chlorop			
	a) Fe, Co	b) Fe, Mn	c) Mg, Fe	d) Fe, Mg
41.	Traces of MnO_4^- in conc. H			2
	a) $Mn_2 0_7^-$	b) MnO_3^+	c) MnO ₂	d) MnO_4^{2-}
42.	Which is not blackened by			
	a) $Pb(CH_3COO)_2$	b) $Zn(CH_3COO)_2$	c) $Cu(CH_3COO)_2$	d) $Hg(CH_3COO)_2$
43.	In $[Fe(CN)_5(NO^+)]^{2-}$, Fe			
	a) Magnetic measuremen	t	b) Colligative property	
	c) Colour		d) Hybridization	
44.	Which among the following	•		
	a) Cu	b) Pb	c) Ag	d) Hg
45.	Anhydrous ferric chloride			
	, .	c chloride at a high temper		
		n a stream of dry chlorine	gas	
	c) Reaction of ferric oxide			
	d) Reaction of metallic iro			
46.	Select the correct relative	•	1 > p < q 2 = 1 > p < q 2 = 1	
	a) $[Cu(CN)_4]^{3-} > [Cd(CN)_4]^{3-}$	$])_{4}]^{5-}$	b) $PtCl_4^{2-} > NiCl_4^{2-}$	N 12-
. –	c) $[NiCl_6]^{2-} > [PtCl_6]^{2-}$	10	d) $[Cd(CN)_4]^{2-} > [Cu(CN)_4]^{2-}$	N) ₄] ³⁻
47.	Which is wrongly matche			
	a) Duralumin – Al + Cu +	Mg + Mn	b) Alnico – Fe + Al + Ni +	- Cu
	c) German silver – Cu + Z	ln + Ni	d) Monel metal – Cu + Zn	u + Sn
48.	Which of the following is	not correct?		
	a) La(OH) ₃ is less basic the formula of the form			
		nic radius of Ln ³⁺ ion decr		
	· ·	nt of transition series rath		
	-	d Hf are same because of la		
40	The atomic numbers of w	anadium (U) ahmamaium (C	r) manganaga (Mn) and in	on and noon activaly ?

49. The atomic numbers of vanadium (V), chromium (Cr), manganese (Mn) and iron are respectively 23, 24,

	25 and 26. Which one of these may be expected to h a) V b) Cr	ave the highest second ioni c) Mn	ization enthalpy? d) Fe		
50.	In context with the transition elements, which of the a) In addition to the normal oxidation state, the zero				
	complexes.				
	b) In the highest oxidation state, the transition meta		=		
	c) In the highest oxidation state of the first five tran are used for bonding.	sition elements (Sc to Mn),	all the 4s and 4d electrons		
	Once the d^5 configuration is exceeded, the tender	ncy to involve all the 3 <i>d</i> ele	ctrons in bonding		
	d) decreases.				
51.	Ti ²⁺ is purple while Ti ⁴⁺ is colourless because				
	a) There is no crystal field effect in Ti ⁴⁺				
	b) Ti ²⁺ has $3d^2$ configuration				
	c) Ti ⁴⁺ has $3d^2$ configuration				
52	d) Ti^4 is a very small cation when compared to Ti^{2+} In dilute alkaline solution MnO_4^- changes to	and hence, does not absorb	o any radiation		
52.	a) MnO_4^{2-} b) MnO_2	c) Mn_2O_3	d) MnO		
53.	Among the following pair of ions, the lower oxidation				
	other in	Ĩ			
	a) Ti ⁺ , Ti ³⁺ b) Cu ⁺ , Cu ²⁺	c) Cr ²⁺ , Cr ³⁺	d) V ²⁺ , VO ²⁺		
54.	Interstitial compound is formed by				
	a) Fe, Co b) Co, Ni	c) Fe, Ni	d) All of these		
55.	Which of the following compounds is amphoteric?	c) $C_{\pi}(OU)$	d = (OU)		
56	a) $Cr(OH)_2$ b) $Fe(OH)_2$ CuSO ₄ can be estimated volumetrically	c) Cr(OH) ₃	d) $Fe(OH)_3$		
50.	a) By reaction with KI followed by reaction with $Na_2S_2O_3$				
	b) By reaction with BaCl ₂	20203			
	c) By reaction with K_4 Fe(CN) ₆				
	d) None of the above is correct				
57.	The atomic size of cerium and promethium is quite	close, due to			
	a) They are in same period in Periodic Table				
	b) Their electronic configuration is samec) <i>f</i>-electrons have poor shielding effect				
	d) Nuclear charge is higher on cerium than prometh	ium			
58.	The basic and amphoteric oxides of transition metal				
	a) Soluble in oxidizing acids forming hexa-aquo ions				
	b) Insoluble in oxidizing acids forming hexa-aquo io				
	c) Soluble in non-oxidising acids forming hexa-aque				
50	d) Insoluble in non-oxidising acids forming hexa-aq	uo ions $[M(H_20)_6]^{n+1}$			
59.	Most common oxidation state of lanthanides is a) $+2$ b) $+3$	c) +4	d) +5		
60.	Which of the following alloys is used for making ma	,	uj + 5		
001	a) Alnico b) German silver	c) Invar	d) Monel metal		
61.	Which of the following is not an actinide?		2		
	a) Curium b) Californium	c) Uranium	d) Terbium		
62.	Select the correct statement				
	a) PH_3 reduces $AgNO_3$ to metallic Ag				
	b) Organic tissues turn AgNO₃ black by reducing it tc) AgCN is soluble in KCN	0 Ag			
	d) All of the above are correct statements				
	a france and a solve and correct statements				

62	When MnO is fused with	VOIL a coloured compour	d formed the product and	ita golounia
63.		=	d formed, the product and	
	a) K_2MnO_4 , purple colour		c) Mn ₂ O ₃ , brown	d) Mn ₃ O ₄ , black
64.	_	de and in acidic medium it		N 10 ²
~ -	a) VO^{2+}	b) VO_2^+	c) V ³⁺	d) VO_2^{2+}
65.	Which of the following do	0		
	a) NH ₄ OH	b) NaNO ₃	c) $Na_2S_2O_3$	d) Na_2CO_3
66.		• • • •	eep violet solution in ether) having two peroxy
	linkage. Oxidation numbe			
	a) +10	b) -10	c) +4	d) +6
67.	Solder is an alloy of			
	a) 70% lead, 30% tin	b) 30% lead, 70% tin	c) 80% lead, 20% tin	d) 90% copper, 10% tin
68.	In acidic medium MnO_4^{2-}			
	a) Disproportionates to M	InO ₂ and MnO ₄	b) Is oxidized to MnO ₄	
	c) Is reduced to MnO ₂		d) Is reduced to Mn ²⁺	
69.	Green vitriol is formed by	7		
	a) $FeS_2 + H_2O + O_2$	b) $FeS_2 + H_2O + CO_2$	c) $FeS_2 + CO + CO_2$	d) $FeS_2 + CO$
70.	The lanthanide contraction	on is responsible for the fac	et that	
	a) Zn and Y have about th	ie same radii		
	b) Zr and Nb have similar	oxidation state		
	c) Zr and Hf have about the	he same radii		
	d) Zr and Zn have the sam	ne oxidation state		
71.	MnO_4^{2-} can be converted	to MnO ₄		
	a) By oxidation with Cl_2		b) By electrochemical oxi	dation at anode
	c) By both (a) and (b) me	ethods	d) By none of the above n	nethods
72.	Bell-metal is an alloy of			
	a) Cu + Pb	b) Cu + Sn	c) Cu + Zn	d) Cu + Ni
73.	When KCN comes in cont	act with blood, one dies im	mediately, it is due to	
	-	plex with iron of haemoglo		
	b) CN^- combines with H_2	0 of blood causing it poiso	n	
	c) Both (a) and (b) are co	orrect		
	d) None of the above is co			
74.	The ability of <i>d</i> -block elements of <i>d</i> -blo	ments to form complexes is	s due to	
	a) Small and highly charg	ed ions		
	b) Vacant low energy orb	itals to accept lone pair of	electrons from ligands	
	c) Both (a) and (b) are co			
	d) None of the above is co			
75.	$K_2Cr_2O_7$ on heating with		2	
	a) CrO_4^{2-}	b) $Cr(OH)_3$	c) $Cr_2 O_7^{2-}$	d) $Cr(OH)_2$
76.	-	s of two separate alkaline s	solutions. One solution cont	ains CuSO ₄ . The other
	solution contains			
	a) NaHCO ₃	b) $KNaC_4H_4O_6$	c) KHCO ₃	d) K_2CO_3
77.	Aluminium appears like g			
	a) 90% Cu	b) 75% Ni	c) 80% Sn	d) 80% Co
78.		nuclear charge increases, t	-	
	a) Increases		b) Decreases	,
-	c) First decreases and the		d) First increases and the	
79.			he main cause of lanthanide	e contraction?
	-	<i>l</i> -electron by 4 <i>f</i> -electrons		
	b) Poorer shielding of 5 <i>d</i>			
	c) Effective shielding of o	ne 4 <i>f</i> -electrons by another	r in the subshell	

d) Poor shielding of one of 4*f*-electrons by another in the subshell 80. Lanthanoids are a) 14 elements in the sixth period (atomic number = 90 to 103) that are filling 4*f*-sublevel b) 14 elements in the seventh period (atomic no. = 90 to 103) that are filling 5f-sublevel c) 14 elements in the sixth period (atomic no. =58 to 71) that are filling 4*f*-sublevel d) 14 elements in the seventh period (atomic no. = 58 to 71) that are filling 4*f*-sublevel 81. Finely divided iron combines with CO to give a) $Fe(CO)_5$ b) $Fe_2(CO)_9$ c) $Fe_2(CO)_{12}$ d) $Fe(CO)_6$ 82. Cerium (Z = 58) is an important member of lanthanides. Which of the following statements about cerium is incorrect? a) The common oxidation states of cerium are +3 and +4b) The +3 oxidation states of cerium is more stable than the +4 state c) The +4 oxidation state of cerium is not known in solutions d) Cerium (IV) acts as an oxidizing agent 83. At pH = 12, $Cr_2O_7^{2-}$ changes to c) CrO_4^{2-} a) CrO_3 b) CrO_2^{2+} d) No change 84. Arrange VO_2^+ , $Cr_2O_7^{2-}$ and MnO_4^- in increasing oxidizing power a) $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$ b) $VO_2^+ < Cr_2O_7^{2-} < MnO_4^$ c) $VO_2^+ < MnO_4^- < Cr_2O_7^{2-}$ d) $Cr_2 O_7^{2-} < Mn O_4^- < V O_2^+$ 85. Hg₂Cl₂ ionises as.... and cation bus..... unpaired electron(s) b) Hg_2^{2+} and $2Cl^-$, two c) Hg_2^{2+} and $2Cl^-$, one d) Hg_2^{2+} and $2Cl^-$, no a) 2Hg⁺ and 2Cl⁻, two 86. The colourless species is d) $[V(H_2O)_6]SO_4 \cdot H_2O$ b) VOSO₄ c) Na_3VO_4 a) VCl_3 87. Which of the following is called white vitriol? b) MgSO₄ \cdot 7H₂O c) $ZnSO_4 \cdot 7H_2O$ d) $Al_2(SO_4)_3$ a) $ZnCl_2$ 88. To protect iron against corrosion, the most durable metal plating on it, is a) Nickel plating b) Tin planting c) Copper plating d) Zinc plating 89. Which represents correct comparison of the stability of ions? c) $Cr0_4^{2-} < Cr^{3+}$ b) $Cr^{2+} < Cr^{3+}$ a) $MnO_4^- < Mn^{2+}$ d) All of these 90. Increasing value of magnetic moments of III: $[V(H_20)_6]^{3+}$ II: $[Ti(H_20)_6]^{2+}$, I: Ni(CO)₄, IV: $[V(H_20)_6]^{2+}$ is a) I < II < III < IVb) IV < *III* < *II* < *I* c) II < III < I < IVd) II < I < III < IV91. Ni²⁺, in traces, can be tested using a) Sodium nitroprusside b) Dimethyl glyoxime c) Ammonium sulphocyanide d) Potassium ferrocyanide 92. The main reason for larger number of oxidation state exhibited by the actinides than that corresponding lanthanides. is a) Lesser energy difference between 5f and 6d orbitals than between 4f and 5d-orbitals b) Larger atomic size of actinides than the lanthanides c) More energy difference between 5f and 6d orbitals than between 4f and 5d-orbitals d) Greater reactive nature of the actinides than the lanthanides 93. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is b) 4 a) 3 c) 5 d) 6 94. At pH = 4, $Cr_2O_4^{2-}$ exists as a) CrO_{4}^{2-} b) CrO_3 c) CrO_{2}^{2+} d) $Cr_2 O_7^{2-}$ 95. Which is not the true statement? a) Ions of *d*-block elements are coloured due to *d*-*d* transition b) Ions of *f*-block elements are coloured due to *f*-*f* transition

	c) $[S_{c}(H_{-}\Omega)_{-}]^{3+}$ $[T_{i}(H_{-}\Omega)_{-}]^{3+}$) ₆] ⁴⁺ are coloured complex	765	
	d) Cu^+ is colourless ion		162	
96	The oxides, CrO_3 , MoO_3 a	nd WO_{α} are strongly		
<i>y</i> 0.	a) Neutral	b) Acidic	c) Basic	d) None of these
97	•	ansition element shows the	,	a) None of these
<i>.</i>	a) Mn	b) Fe	c) V	d) Cr
98	Magnetic moment of Fe is	,		
201	a) $[Fe(H_2O)_6]^{2+}$	b) $[Cr(H_2O)_6]^{2+}$	c) Both (a) and (b)	d) None of these
99.		four different test tubes cor		
	precipitate. It may be		0	0
	a) CHCl ₃	b) CaCl ₂	c) KNO ₃	d) CCl ₄
100	-	n external indicator in the d	-	<i>y</i>
	observed			0 0
	a) Colourless to blue	b) Blue to red	c) Colourless to red	d) Blue to colourless
101			a red precipitate which dis	solves in excess KI to give a
		eover, the solution of metal		
	thiocyanate gives rise to	a deep blue crystalline prec	ipitate. The metal ion is	
	a) Pb ²⁺	b) Hg ²⁺	c) Cu ²⁺	d) Co ²⁺
102	. The oxide Cr_2O_3 is			
	a) Acidic	b) Amphoteric	c) Basic	d) Ozonide
103	. Which alloy contains Cu,	Sn and Zn?		
	a) Gun metal	b) Solder	c) Type metal	d) Bronze
104	. By annealing, steel			
	a) Become soft		b) Becomes liquid	
	c) Becomes hard and brit		d) Is covered with a thin f	film of Fe ₃ O ₄
105	. Spin only magnetic mom	ent of the compound Hg[Co		
	a) √3	b) √ <u>15</u>	c) $\sqrt{24}$	d) √8
400				
106	. Match column I with Colu	1mn II and select the correc	t answer using the codes g	iven below the Columns
106	Column I Colum	nn II	t answer using the codes g	iven below the Columns
106	Column I Colum (Metals) (Ores	nn II)	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzurit	nn II) te	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarna	nn II) te Illite	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalam	nn II) te illite nine	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarna	nn II) te illite nine	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassit	nn II) te illite nine	t answer using the codes g	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodes	nn II) te illite nine	t answer using the codes g b) 3 4 1 2	iven below the Columns
106	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesABCDCD	nn II) te illite nine		iven below the Columns
	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesABCABCDa) 3421	nn II) te illite nine terite	b) 3 4 1 2	iven below the Columns
	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCDA)342a)342c)4132	nn II) te illite nine cerite ent(s)	b) 3 4 1 2	iven below the Columns
	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion arise	nn II) te illite nine cerite ent(s)	b) 3 4 1 2 d) 4 3 2 1	iven below the Columns
	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are c	nn II <u>)</u> te illite nine cerite ent(s) s due to <i>d-d</i> * transition he complimentary colour a orrect	b) 3 4 1 2 d) 4 3 2 1	iven below the Columns
107	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is contact	nn II) te illite nine cerite ent(s) s due to <i>d-d</i> * transition he complimentary colour a correct porrect	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound	iven below the Columns
107	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 413c) 413c) 413c) 413c) 413c) 413c) 5Colour of the ion ariseb) Colour we observe is tcc) Both (a) and (b) are cd) None of the above is con.The colour imparted by C	$\frac{nn \text{ II}}{2}$ $\frac{1}{2}$ $\frac{1}{2$	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound	
107	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalarD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coloura) Green	ent(s) s due to <i>d-d</i> * transition he complimentary colour a orrect prrect Co(II) compounds to glass is b) Deep blue	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound	d) Red
107	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coThe colour imparted by Ca) Green. Extraction for zinc from z	ent(s) s due to <i>d-d</i> * transition he complimentary colour a orrect prrect Co(II) compounds to glass is b) Deep blue	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound	
107	Column I (Metals)Colum (OresA.ZincAzuritB.TinCarnaC.CopperCalarD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coloura) GreenExtraction for zinc from za) Electrolytic reduction	ent(s) s due to d - d * transition he complimentary colour a orrect correct Co(II) compounds to glass is b) Deep blue zinc blende is achieved by	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound	
107	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coThe colour imparted by Ca) GreenExtraction for zinc from za) Electrolytic reductionb) Roasting followed by r	ent(s) s due to <i>d-d</i> * transition he complimentary colour a correct correct Co(II) compounds to glass is b) Deep blue zinc blende is achieved by reduction with carbon	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound c) Yellow	
107	Column I (Metals)Colum (OresA.ZincAzuritB.TinCarnaC.CopperCalarD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coloura) GreenExtraction for zinc from za) Electrolytic reductionb) Roasting followed by rc) Roasting followed by r	ent(s) ent(s) s due to <i>d-d</i> * transition he complimentary colour a orrect Co(II) compounds to glass is b) Deep blue zinc blende is achieved by reduction with carbon reduction with another met	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound c) Yellow	
107 108 109	Column I (Metals)Colum (Ores)A.ZincAzuritB.TinCarnaC.CopperCalamD.MagnesimCassitCodesCodesABCa) 342c) 4132Select the correct statema) Colour of the ion ariseb) Colour we observe is tc) Both (a) and (b) are cd) None of the above is coThe colour imparted by Ca) GreenExtraction for zinc from za) Electrolytic reductionb) Roasting followed by r	ent(s) s due to <i>d-d</i> * transition he complimentary colour a correct correct Co(II) compounds to glass is b) Deep blue zinc blende is achieved by reduction with carbon reduction with another met self reduction	b) 3 4 1 2 d) 4 3 2 1 bsorbed by the compound c) Yellow	

a) $[Zn(H_2O)_6]^{2+}$ b) $[V(H_2O)_6]^{2+}$ 111. If H_2S gas is passed into a solution of Cu^{2+}, Cd^{2+} ha		d) $[Fe(H_2O)_6]^{2+}$
 a) CuS and CdS both are precipitated b) Soluble complex [Cu(CN)₄]³⁻ and [Cd(CN)₄]²⁻ a c) Soluble complex [Cu(CN)₄]³⁻ and [Cd(CN)₄]²⁻ a d) Soluble complex [Cu(CN)₄]³⁻ and [Cd(CN)₄]²⁻ a 	s are formed, of which Cd	S is precipitated as yellow ppt
112. Some of the following reagents are used as primary		
I: KMnO ₄ ; II: NaOH; III: K ₂ Cr ₂ O ₇ ;		
IV: $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$ V: $H_2C_2O_4 \cdot 2H_2$	20	
Select the primary standard		
a) All except II, IV b) All except I, II	c) All except I, II, III	d) Only IV
113. MnO_4^{2-} (1 mol) in neutral aqueous medium disprop		
a) $\frac{2}{3}$ mol of MnO ₄ ⁻ and $\frac{1}{3}$ mol of MnO ₂	b) $\frac{1}{3}$ mol of MnO ₄ ⁻ and $\frac{2}{3}$	mol of MnO ₂
c) $\frac{1}{3}$ mol of Mn ₂ O ₇ and $\frac{1}{7}$ mol of MnO ₂	d) $\frac{2}{3}$ mol of Mn ₂ O ₇ and	¹ / ₂ mol of MnO ₂
114. Which pair of compounds is expected to show simi	lar colour in aqueous medi	ium?
	c) VOCl ₂ and FeCl ₂	
115. An extremely hot copper wire reacts with steam to		
a) Cu_2O b) CuO_2	c) Cu_2O_2	d) CuO
116. A red solid is insoluble in water. However, it becom	ies soluble if some KI is ad	ded to water. Heating the red
solid in a test tube results in liberation of some viol		
the cooler parts of the test tube. The red solid is		
a) $(NH_4)_2 Cr_2 O_7$ b) HgI ₂	c) HgO	d) Pb_3O_4
117. Select the correct order of sizes of different species		
a) $Zr = Hf; Nb = Ta; Fe = Co = Ni$		
b) Zr ⁴⁺ < Zr; Nb ³⁺ < Ta ³⁺ , Fe ³⁺ < Fe ²⁺ < Fe		
c) $Zr^{4+} = Hf^{4+}$; $Nb^{3+} = Ta^{3+}$; $Fe < Co < Ni$		
d) $Zr^{4+} < Hf^{4+}$, $Nb^{3+} = Ta^{3+}$, $Ni < Cu < Co$		
118. Stainless steel does not rust because		
a) Chromium and nickel combine with iron		
b) Chromium forms an oxide layer and protects iro	n from rusting	
c) Nickel present in it, does not rust		
d) Iron forms a hard chemical compound with chro	=	
119. AgCl and NaCl are colourless. NaBr and NaI are also	o colourless but AgBr and A	AgI are coloured. This is due
to		
a) Ag ⁺ polarises Br ⁻ and I ⁻	b) Ag ⁺ has unpaired <i>d</i> -	
c) Ag^+ depolarises Br^- and I^-	d) None of the above is	
120. Among K, Ca, Fe and Zn the element which can form	=	-
a) Fe b) Zn	c) K	d) Ca
121. NH_4Cl is used to clear metal surface because		
a) It dissociates into NH_3 and HCl on heating		
b) NH_3 forms soluble complexes with the metal c) HCl forms a volatile		
d) None of the above		
122. Stainless steel contains		
a) $Fe + Cr + Cu$ b) $Fe + C + Ni$	c) Fe + Cr + Ni	d) Fe + Ni + Cu
123. Select the correct statement		ujie i ni i du
a) Fe and Mo atoms are present in nitrogen fixing e	nzvmes	
b) A cobalt atom lies at the centre of the vitamin B_1		
c) Fe atoms are involved in the ferrodoxins of phot		
d) All of the above are correct statements	, r	
-		

124.	Lanth	anide and a	ctinides	resemble	in			
	a) Ele	ctronic con	figuratio	n		b) Oxidation state		
	c) Ion	ization ene	rgy			d) Formation of comp	olexes	
125.	In Na	₂ [Fe(CN) ₅ N	0], sodiu	ım nitropı	russide,			
	a) Ox	idation state	e of Fe is	+2		b) This has NO ⁺ as lig	and	
	c) Bo	th (a) and (b)			d) None of the above	is correct	
126.	The r	eactivity of	transitio	n element	s decreases with			
	a) Th	e decrease i	n the ato	mic numb	ber	b) The increase in the	atomic number	
	c) Lov	w heat of hy	^r dration			d) None of the above		
127.	Whick	n of the follo	owing arr	rangemen	ts does not repre	sent the correct order	of the property stated against	
	it?							
	a) V ²⁻	+ < Cr ²⁺ <	$Mn^{2+} <$	<i>F</i> e ²⁺ : par	ramagnetic behav	vior		
		+ < Co ²⁺ <						
	c) Co ³	$^{3+} < Fe^{3+} <$	< C r ³⁺ <	: Sc ³⁺ : sta	bility in aqueous	solution		
	d) Sc	< Ti < Cr <	< <i>Mn</i> : nu	umber of o	xidation states			
128.	There	are three u	inpaired	electrons	in $[Co(H_2O)_6]^{2+}$	and calculated value of	f magnetic moment is 3.87 BM	
	which	is quite dif	ferent fr	om the ex	perimental value	of 4.40 BM. This is bec	ause of	
	a) Inc	rease in nu	mber of ι	unpaired e	electrons			
	b) Sor	ne contribu	tion of th	ne orbital	motion of the ele	ctron to the magnetic r	noment	
	c) Cha	ange in orbi	tal spin o	of the elec	tron			
	d) <i>d-d</i>	l^* transitior	1					
129.	First	E of 5 <i>d</i> -eler	ments ar	e higher t	han those of 3d a	nd 4 <i>d</i> -elements. This is	s due to	
	a) Gre	eater effecti	ve nuclea	ar charge	acting on outer v	alence electrons		
	b) Gre	eater effecti	ve nuclea	ar charge	is experienced be	cause of the weak shie	lding of the nucleus by 4 <i>f</i> -	
	b) ele	ctrons						
	c) Bo	th (a) and (b)					
	d) No	ne of the ab	ove					
130.	Whick	n is most sol	luble in v	vater?				
	a) Ag	Br		b) AgCl		c) AgF	d) AgI	
131.	The ir	ncorrect cor	ifiguratio	on is				
	a) K =	= [Ar]4 <i>s</i> 1		b) Cr = [[Ar]3d ⁵ , 4s ¹	c) $Cr = [Ar]3d^4, 4s^2$	d) $Cu = [Ar]3d^{10}, 4s^1$	
132.	FeCl ₃	$\cdot 6H_20$ is ac	tually					
	a) [Fe	$(H_20)_6]Cl_3$				b) [Fe(H ₂ O ₅)Cl]Cl ₂ \cdot H	ł ₂ 0	
		$(H_2 0)_4 Cl_2]$	$Cl \cdot 2H_2C$)		d) $[Fe(H_2O)_3Cl_3] \cdot 3H$	20	
					ugh Mn is in (+7)	oxidation state. It is d	ue to	
	a) Ox	ygen gives o	colour to	it				
	b) Cha	arge transfe	r when N	In gives it	ts electron to oxy	gen		
	c) Cha	arge transfe	er when c	oxygen giv	ves its electron to	Mn making it Mn(+VI)) hence, coloured	
	-	ne of the ab				<u> </u>		
134.	Aque	ous ZnO can	neutrali	ze HCl as	well as NaOH sol	ution. Thus. ZnO is an		
	-	dic oxide		b) Basic		c) Amphoteric oxide	d) Amphiprotic oxide	
	-	num oxidati	ion state	-		y 1		
	a) Os			b) Mn		c) Cr	d) Co	
	-	the Colum	n I with (-	and select the co	-	codes given below the Columns	
		Column I	Column				0	
		(Alloys)	(Consti					
	A.	Gun	Lead +					
		metal						
	В.	German		+ tin +				
		silver	zinc					
	С.	Brass	Copper	+ zinc	1			

silver Brass

Copper + zinc

C.

	- 1								
D.	Solder	Copper + zinc							
Cad		+ nickel							
Cod									
	B C D			b) 4	n	1	n		
2	3 4 2			b) 4					
,	4 3 1			d) 3	I	Ζ	4		
	son of passivi	•			•				
-	$e_2 0_3$	b) Fe ₃ O ₄		c) Fe					d) $Fe_2O_3 \cdot 3H_2O$
138. Mat	-	unds of Column I wi	th oxidation st	ate of C	olun	nn I	I		
-	Column I	Column II							
A.		Cl ₃ 5 2							
В. С.	CrO_5	6							
D.	K_3CrO_8 (NH ₃) ₃ CrO ₄								
Cod		4 5							
	3 C D								
	654			b) 3	Λ.	5	6		
,	654 563			d) 6			6 3		
		comont have which	alament com-	-			5		
	-	cement have, which	element comm			:			
a) F		b) Al		c) Na		(11		NO12+	d) All of these
		number (EAN) of Fe	in brown ring			e(H ₂	$(0)_{5}$	NOJ ² '	
a) 3		b) 37		c) 38					d) 39
141. Mat	_	ts in Column I with t	heir uses in Co	olumn I	I				
	Column I	Column II							
А.	TiCl ₄	Adams catalyst in							
D	DACI	reduction							
В.	PdCl ₂	In preparation of $(CH_3)_2SiCl_2$							
C.	Pt/PtO	Reppe synthesis							
D.	Cu	Used as the Ziegle	r-						
		Natta catalyst in							
		polythene							
		production							
Е.	Ni-	Wacker process for	r						
	complexes	converting							
		C_2H_4 to CH_3CHO							
Cad									
Cod		7							
	BCDE			1.3.4	-	~	4	2	
,	5 1 2			b) 4			1	3	
c) 5		2		d) 2	1	3	5	4	
		rue statement about							
-		iometric and is meta	al deficient						
-	is basic oxide								
		lution change to Fe($(H)_3$ and then	to Fe ₂ C) ₃ · ((H ₂ C)) _n b	y atm	ospheric oxygen
-	•	our with KCNS							
143. A w	hite solid Y, o	n heating gives off a	gas which turr	ns lime	wate	er m	ilky	the re	esidue is yellow when hot;
whit	te when cold.	The solid <i>Y</i> is proba	bly						
	nCO ₃	b) PbCO ₃		c) Zn	SO4				d) $Zn(NO_3)_2$
,	5	of non-stoichiometric	compound?	-	-				
	aCl, FeO, MgC		-	c) Fe	₃ 0₄,	NaC	l, Cu	S	d) CuCl, CuS, MgO
-	_	of duralumin is	-	<u> </u>	, ·+/	0	,		, , , · - 0 -
	l 94%, Mg 6%			b) Cu	56%	6. Zr	1 2 4 ⁰	%, Ni 2	0%
		<i>.</i>		29 00	207	J, 11	1	5,111 2	

c) Cu 95, Al 5%	d) Al95%, Cu 4%, Mn 0.5	5% Mg 0 5%
146. $K_2Cr_2O_7/H^+$ changes to green by	aj 11170 70, 00 170,111 010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a) Fe^{2+} b) SO_3^{2-}	c) Both (a) and (b)	d) None of thee
147. The pair of compounds having metals in their highe		
a) MnO ₂ , FeCl ₃	b) $[MnO_4]^-$, CrO_2Cl_2	
c) $[Fe(CN)_6]^{3-}$, $[Co(CN)_3]$	d) $[NiCl_4]^{2-}$, $[CoCl_4]^{-}$	
148. $[Fe(H_2O)_5NO]^{2+}$ is brown-ring complex in NO ₃ ⁻ . In	<i>y L L L L</i>	
NO transform its electron to Ee^{2+} so that there are		making iron as $Fe(I)$ and
a) nitrosyl as NO ⁺	e un ce creeti ons unpun cu	
b) Magnetic moment of Fe is 3.87 BM		
c) The colour is due to charge transfer		
d) All of the above are correct statements		
149. Four successive members of the first row transition	elements are listed below	with their atomic numbers.
Which one of them is expected to have the highest t		
a) Vanadium ($Z = 23$) b) Chromium ($Z = 24$)		d) Manganese ($Z = 25$)
150. In alkaline H_2O_2 , $Cr_2O_7^{2-}$ changes to tetraperoxo spe		
a) CrO_4^{2-} 6 b) CrO_5 6		
151. $_{4K_2Cr_2O_7} \xrightarrow{\text{Heat}} _{4K_2CrO_4} + _{3O_2} + X$; in the above re		-) 0
		4) 6-0
a) CrO ₃ b) Cr ₂ O ₇ 152. Elements after atomic number 92 are called	c) Cr_2O_3	d) Cr0 ₅
	h) Actinoida	
a) Lanthanoids c) Inner-transition elements	b) Actinoids	nto
153. The lanthanoid contraction is due to	d) Transuranium eleme	iits
a) Filling of $4f$ before $4d$	b) Filling of 4 <i>d</i> before 4	f
c) Filling of $4f$ before $5d$	d) Filling of 5 <i>d</i> before 4	
154. Which of the following types of metals form the mos	, ,	
a) Alkali metals b) Alkaline earth metals		d) All of the above
155. In reduction of dichromate by Fe(II), the number of		
a) 2 b) 3	c) 4	d) 1
156. Which is the coloured ion		
a) $[Cu(CN)_4]^{3-}$ b) $[Sc(H_2O)_6]^{3+}$	c) $[Mn(H_2O)_2]^{3+}$	d) All of these
157. The compound that get oxidized even on exposure		
a) Fe_2O_3 b) $FeCl_2$	c) FeCl ₃	d) $Fe_2(SO_4)_3$
158. If zinc pieces are added yellow FeCl ₃ solution, it tur	, ,	
FaCl solution is acidic due to hydrolysis and zine		
a) of FeCl ₃ to FeCl ₂	Ĩ	
b) FeCl ₃ solution is basic and zinc added produces H	H_2 which reduces FeCl ₃ to	FeCl ₂
c) Zinc reduces FeCl ₃ to FeCl ₂		
d) None of the above is correct		
159. When MnO_2 is fused with KOH and KNO_2 , a coloure	d compound is formed, the	e product and its colour is
a) K ₂ MnO ₄ , green b) KMnO ₄ , purple	c) Mn ₂ O ₃ , brown	d) Mn ₃ O ₄ , black
160. Mixture is supposed to contain nitrates of Pb ²⁺ and	Hg ₂ ²⁺ . On adding dil. HCl b	ooth are precipitated as white
precipitate		
Select the correct statement(s)		
PbCl ₂ (white precipitate) is soluble in hot water a)	and formation of yellow p	recipitate on adding KI to hot
a) solution confirms Pb ²⁺		
b) Hg_2Cl_2 is blackened by NH_3 , and change to $HgCl_2$	$_2$ by aqua-regia. HgCl ₂ can	be detected by KI is formed
c) Both tests are conclusive		
d) None of the tests is conclusive		
161. $(NH_4)_2 Cr_2 O_7$ on heating gives a gas which is also gi	ven by	

161. $(NH_4)_2Cr_2O_7$ on heating gives a gas which is also given by

a) Heating NH_4NO_2 b) Heating NH_4NO_3	c) $Mg_3N_2 + H_2O$	d) Na + H_2O_2			
162. Ferromagnetism is shown by a) Zn, Cu, Cd b) Fe, Co, Ni	c) Zn, Hg, Se	d) All of these			
163. Magnetic moment of $Cr(Z = 24)$, $Mn^+(Z = 25)$ and		-			
a) $x < y < z$ b) $x = y < z$	c) $z < x = y$	d) $x = y = z$			
164. The trivalent ion having largest size is					
a) Ti b) Zr	c) Hf	d) La			
165. The nature of Fe_2O_3 is					
a) Acidic b) Basic	c) Amphoteric	d) None of these			
166. Amongst the following, identify the species with a		te			
a) MnO_4^- b) $Cr(CN)_6^{3-}$	c) NiF ₆ ²⁻	d) CrO_2Cl_2			
167. Select the coloured and paramagnetic ions					
a) Cu ⁺ , Zn ²⁺ , Cd ²⁺ b) Sc ³⁺ , Ti ⁴⁺ , V ⁵⁺	c) Cu ²⁺ , Cr ⁺ , Mn ²	d) Ni ²⁺ , Cu ⁺ , Hg ²⁺			
168. In $Cr_2O_7^{2-}$ every Cr is linked to					
a) Two O atom b) Three O atoms	c) Four O atoms	d) Five O atoms			
169. Silver ornaments turn black by atmospheric					
a) O ₂ b) N ₂	c) Cl ₂	d) H ₂ S			
170. The highest magnetic moment will be shown by					
a) Ni b) Co	c) Fe	d) Sc			
171. Which one of the following elements shows maxim	num number of different o	xidation states in its			
compounds?					
a) Eu b) La	c) Cd	d) Am			
172. Which is not the true statement about $KMnO_4$?					
-	a) Its solution is unstable in acidic medium				
b) Its small quantity added to conc. H_2SO_4 , a green	coloured solution contair	ning MnO_3^+ ions is formed			
	c) MnO_4^- changes to Mn^{2+} in basic solution				
d) It is self-indicator in Fe ²⁺ or $Cr_2O_4^{2-}$ titration					
173. Addition of $SnCl_2$ to $HgCl_2$ give precipitate					
a) White turning to red	b) White turning to grey				
c) Black turning to white	d) None of the above				
174. Due to lanthanide contraction	b) Zr and Hf have equa	l sizo			
a) Fe, Co, Ni have equal sizec) All <i>f</i>-block ions have equal size	d) All isoelectronic ion				
175. Only +2, +3, +4 oxidation states are shown by	uj Ali isoelecti ollic ioli	s llave equal size			
a) Sc, Ti b) Fe, Ni	c) Ti, Ni	d) Zn, Ni			
176. Pyrolusite in MnO_2 is used to prepare KMnO ₄ . Step		uj 211, 141			
$MnO_2 \xrightarrow{I} MnO_4^{2-} \xrightarrow{II} MnO_4^{-}$					
I and II are					
a) Fuse with KOH/air, electrolytic oxidation					
b) Fuse with KOH/air, electrolytic reduction c) Fuse with conc HNO_3 /air, electrolytic reduction					
d) All the above are correct					
177. Which catalyst is matched according to its name a	nd function				
Catalyst Name Function					
TiCl ₄ Fenton Oxidation					
a) 's of alcohols					
reagen					
b) FeSO ₄ Ziegler Polythene					
c) Pd/C Lindlar Hydrogen					

			to give <i>cis-</i> alkene	
d)	Pt/PtO	Adam	Synthesis of	
uj			CH ₃ OH	
178. Th	e radii of tł	ne elemen	ts from chromi	ium ($Z = 24$) to copper ($Z = 29$) are very close to one another. This

is due to

15 uuc to		
a) Lanthanide contraction		
The fact that successive addition of d -electron b) the nucleus	ns screen the outer electron	ns $(4s)$ from the inward pull of
c) Increase in radii due to increase in <i>n</i> is compe	ensated by decrease in radi	i due to increase in Z
d) Atomic radii do not remain constant but decr	-	
179. Guigret's green is	C C	
a) NiO \cdot 2H ₂ O b) Cr ₂ O ₃ \cdot 2H ₂ O	c) $CuSO_4 \cdot 2H_2O$	d) $Cr0 \cdot 2H_20$
180. Which of the following pair of element cannot fo	rm an alloy?	ý <u>-</u>
a) Zn, Cu b) Fe, Hg	c) Fe, C	d) Hg, Na
181. The outer electronic configuration of transitiona	l elements is	
a) $(n-1)s^2nd^{1-2}$	b) $(n+1)s^2nd^{1-5}$	
c) $(n-1)s^2p^6(n-1)d^{1-10}$, $ns^{1,2}$	d) $ns^2(n+1)d^{1-10}$	
182. Magnetic moment of $[Ni(CN)_4]^{2-}$ is zero but tha		М
It is because of		-
a) Different oxidation state of Ni in two complex	es	
CN^{-} is a strong ligand making two unpaired e		ile in $[Ni(H_2O)_4]^{2+}$, two
b) electrons remain unpaired H_20 being weak li		
c) Both (a) and (b)	Build	
d) None of the above		
183. In which case(s) there is change in oxidation nu	mher	
a) Aqueous solution of CrO_4^{2-} is acidified		nto $(r_0 \Omega_{-}^{2-}/H^+)$
c) $Cr_2O_7^{2-}$ solution is made alkaline	d) CrO_2Cl_2 is dissolve	
184. The mercury is the only metal which is liquid at	,	
a) Weak metallic bond	b) High ionization en	aray
c) High vapour pressure	d) Both (a) and (b)	ergy
185. Consider the following statement	u) botii (a) aliu (b)	
I. The size the lanthanide M^{3+} ions decreases as	the atomic number of M in	crosso
II. Electronic spectra of lanthanides show very b		ciease
III. As with transition metals, coordination numb		nthanida comployaç
	-	antifailue complexes
Which of the statements given above is/are corr a) I only b) I and II		d) III only
	c) I and III	d) III only
186. Which shows maximum magnetic moment amor a) Fe ²⁺ b) Co ²⁺	c) Ni ²⁺	d) Mn ²⁺
· ·	,	2
187. There are three electrons unpaired in $[Co(H_2O)]$		
which is quite different from the experimental v	alue of 4.40 BM. This is bec	ause of
a) Increase in number of unpaired electrons	a ala atuan ta tha magnatia.	
b) Some contribution of the orbital motion of the	e electron to the magnetic r	noment
c) Change in orbital spin of the electron		
d) $d - d^*$ transition		
188. Select the correct statement(s)	$(0^2 - 1) = 10 = 10$	
a) α -Fe ₂ O ₃ has hexagonally close-packed lattice holes		
γ -Fe ₂ O ₃ has cubic close-packed arrangement	of O ^{2–} ion with Fe ³⁺ ions r	andomly distributed in both the
octahedral and tetrahedral sites		
c) Fe_3O_4 , Fe_2O_3 and FeO all and tend to be non-s	stoichiometric	
		P a g e 13

d) All the above are correc	t statements		
189. CrO_2^{2+} is the cation from			
a) CrO	b) Cr_2O_3	c) CrO ₅	d) CrO ₃
190. The most abundant elemen	nt is		
a) Cu	b) Hg	c) Cd	d) Fe
191. Which of the following chlored	oride is water insoluble?		
a) HCl	b) AgCl	c) Both (a) and (b)	d) None of these
192. KI and CuSO ₄ solutions on	mixing produce		
a) $Cu_2I_2 + K_2SO_4$	b) $Cu_2I_2 + KI_3 + K_2SO_4$	c) $CuI_2 + K_2SO_4$	d) $CuI_2 + KI_3 + K_2SO_4$
193. Fe is made passive by			
a) dil. H ₂ SO ₄	b) dil. HCl	c) Aqua-regia	d) conc. H ₂ SO ₄
194. The Mohr;s salt is shown b	у		
a) $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O_4$)	b) $FeSO_4(NH_3)_2SO_4 \cdot 6H_2$	0
c) $K_2SO_4Al_2(SO_4)_3 \cdot 24H_2$		d) $FeSO_2(NH_2)_4SO_4 \cdot 6H_2$	0
195. $\operatorname{Cr}_2 \operatorname{O}_7^{2-} \xrightarrow{\mathrm{pH}=x} \operatorname{Cr}\operatorname{O}_4^{2-} \xrightarrow{\mathrm{pH}=y} \operatorname{Cr}$	$r_{a}\Omega^{2-}$ nH values x and y of	ran he	
	b) 4 and 8		d) β and β
196. The incorrect statement fo	,	c) 8 and 4	d) 8 and 9
a) It shows magnetic prop	erty		
b) It has variable valency			
c) It has tendency of forma			
d) It has complete <i>d</i> -orbita			
197. German silver is an alloy of			
	b) Ag, Cu, Au	c) Cu, Zn, Ni	d) Cu, Zn, Sn
198. Among the following the c			
	b) $K_3[Cu(CN)_4]$	c) CuF ₂	d) $[Cu(CH_3CN)_4]BF_4$
199. Which oxides will not give			
	b) ZnO	c) Ag ₂ 0	d) All of these
200. The magnetic moment μ , o	f transition metals is relat	ed to the number of unpair	ed electrons, <i>n</i> as
a) $\mu = n(n+2)^2$	b) $\mu = n^2(n+2)$	c) $\mu = \frac{\pi}{(n+2)}$	d) $\mu = \sqrt{n(n+2)}$
201. Following elements do not			
_	b) Zn, Hg, Cd	c) Sc, Ti, V	d) Fe, Co, Ni
202. Impure metal form volatile	, -		
•	b) Fe	c) Ni	d) Pt
203. Which of the following lant	,	,	ujrt
_	-		d) Corium
	b) Nobelium	c) Thorium	d) Cerium
204. The transition metal used a		a) Cabalt	d) All of these
	b) Platinum	c) Cobalt	d) All of these
205. $Na_2S_2O_3$			
a) Reduces Cu^{2+} to Cu^{+}	$(0, 0, 1)^{3-1}$	b) Reduces I_2 to I^-	
c) Complexes AgBr as [Ag(d) Undergoes all the abov	e are correct
206. Select the correct statemen		1 11 1.1	
a) Pu ⁴⁺ disproportionates		ongly acidic solution	
b) Maximum oxidation stat	te of Np is +7		
c) UO_2^{2+} is stable			
d) All of the above are corr			
207. Which of the following elements			
	b) Cu	c) Mn	d) Mo
208. An aqueous solution of Col			
a) $[Co(H_2O)_4Cl_2]$	b) $[Co(H_2O)_2Cl_4]^{2-}$	c) $[CoCl_4]^{2-}$	d) $[Co(H_2O)_2Cl_2]$

209. Out of $[Fe(CN)_6]^{4-}$, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ a) All have identical geometry b) All are paramagnetic c) All are diamagnetic d) $[Fe(CN)_6]^{4-}$ is diamagnetic but $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ are paramagnetic 210. When I^- is oxidized by MnO_4^- in alkaline medium, I^- convets into a) 10_{3}^{-} b) I_2 c) 10_{4}^{-} d) I0⁻ 211. Factors which affect the stability of the compounds are a) The energy of sublimation b) The lattice energy c) The salvation energy d) All of the above 212. Select the incorrect statement(s) a) Ionisation energies of 5d-elements are greater than those of 3d and 4d elements b) Cu(I) is diamagnetic while Cu(II) is paramagnetic c) $[Ti(H_2O_6)]^{3+}$ is coloured while $[Sc(H_2O_6)]^{3+}$ colourless d) Transition elements cannot form complexes 213. Second ionization energies of chromium and copper are larger than those of their neighbouring elements (V, Mn, Ni, Zn). It is due to the fact that a) Second electron in each case is removed from 4s orbital Second electron is removed from stable half-filled 3*d* sub-orbit in case of chromium and from stable b) completely filled 3*d* sub-robit in case of copper c) Electrode potential of these elements (Cr and Cu) are higher than those of their neighbouring elements d) Their atomic radii are different due to screening effect 214. Alkaline KMnO₄ (Baeyer's reagent) can be used to test unsaturation in (A) $CH = CH_2$ (A)In this case a) Unsaturation in side-chain is affected b) Unsaturation in benzene nucleus is affected c) Unsaturation in both is affected d) Baeyer's reagent cannot be used 215. Increasing basic properties of TiO_2 , ZrO_2 and HfO_2 are in order a) $\text{TiO}_2 < ZrO_2 < HfO_2$ b) $\text{HfO}_2 < ZrO_2 < TiO_2$ c) $\text{HfO}_2 < TiO_2 < ZrO_2$ d) $\text{ZrO}_2 < TiO_2 < HfO_2$ 216. Which of the following dissolves in hot conc. NaOH solution? a) Fe b) Zn c) Cr d) Ag 217. Fulminating gold is a) $AuCl_3$ b) Au_2S c) $Au(NH_2) = NH$ d) $H[Au(Cl)_4]$ 218. The stability of ferric ion is due to a) Half filled *f*-orbitals b) Half filled *d*-orbitals c) Completely filled *f*-orbitals d) Completely filled *d*-orbitals 219. Cuprous ion is colourless while cupric ion is coloured because a) Both have half-filled p-and d-orbitals b) Both have unpaired electrons in *d*-orbitals c) Cuprous ion has incomplete *d*-orbital and cupric ion has a complete *d*-orbital d) Cuprous ion as a complete d-orbital and cupric ion has an incomplete d-orbital 220. Select the correct statement for the lesser number of oxidations states in 3*d*-series a) In the beginning of the series it can be due to the presence of too few electrons to loose or share b) Towards the end of the series, it can be ascribed to the presence of too many electrons and thus fewer

- empty orbitals to share electrons with the ligands
- c) Both (a) and (b) are correct

d) None of the above is correct		
221. The common oxidation state of the elements of lant		
a) +1 b) +3	c) +4	d) +6
222. The element which forms ions in dimeric state is		
a) Iron b) Mercury	c) Cadmium	d) nickel
223. At 300°C, FeCl ₃		
a) Decomposes into $FeCl_2$ and Cl_2		
b) Decomposes into Fe and Cl_2		
c) Sublimes to give liquid $FeCl_3$		
d) Sublimes to give gaseous dimer $(FeCl_3)_2$		
224. Formula of green vitriol oil is		
a) $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ b) $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	c) $ZnSO_4 \cdot 7H_2O$	d) $CuSO_4 \cdot 5H_2O$
225. CrO_2Cl_2 is formed while testing		
a) NO_3^- b) Cl ⁻	c) Cr ³⁺	d) Fe ³⁺
226. Given below, catalyst and corresponding process/	reaction are matched. The	mismatch is
a) $[RhCl(PPh_3)_2]$: Hydrogenation		
b) $TiCl_4 + Al(C_2H_5)_3$: Polymerisation		
c) V_2O_5 : Haber-Bosch process		
d) Nickel : Hydrogenation		
227. Atoms of the transition elements are smaller than t		its. This is because of
a) Usual contraction in size across a horizontal per		
b) Orbital electrons added to the penultimate d -she	ell rather than to the outer	shell of the atom
c) Both (a) and (b)		
d) None of the above		
228. Transition metals show paramagnetism due to	h) Iliah lattian anayar	
a) Characteristic configuration	b) High lattice energy	
c) Variable oxidation states 229. Which one of the following statements is not correc	d) Unpaired electrons	
C C		
a) Zinc dissolves in sodium hydroxide solutionb) Carbon monoxide reduces iron (III) oxide to iror		
c) Mercury (II) iodide dissolves in excess of potass		
d) Tin (IV) chloride is made by dissolving tin soluti		hloric acid
230. Cl_2 gas is obtained by various reactions but not by		
	h) way was a	Δ
a) KMnO ₄ + conc. HCl $\xrightarrow{\Delta}$	b) KCl + $K_2Cr_2O_7$ + cor	ac. $H_2SO_4 \rightarrow$
c) $MnO_2 + conc. HCl \xrightarrow{\Delta}$	d) KCl + $F_2 \rightarrow$	
231. Which is called chromic acid?		
a) CrO b) Cr_2O_3	c) CrO ₃	d) CrO ₂
232. Which of the following statements concerning lant	nanides elements is false?	
a) Lanthanides are separated from one another by	ion-exchange method	
b) Ionic radii of trivalent lanthanides steadily incre	ase with increase in the at	omic number
c) All lanthanides are highly dense metals		
d) More characteristic oxidation state of lanthanide	es elements is +3	
233. Paramagnetism is given by the relation $\mu = 2\sqrt{s(s)}$	+1) magnetons where 's'	is the total spin. On this basis,
the paramagnetism of Cu ⁺ ion is		
a) 3.88 magnetons b) 2.83 magnetons	c) 1.41 magnetons	d) Zero
234. Isomorphous salts are		
a) Green vitriol, blue vitriol and Epsom salt	b) Green, vitriol, white	vitriol and blue vitriol
c) Green vitriol, white vitriol and Epsom salt	d) Blue vitriol, white vit	riol and Epsom salt
235. Cu ²⁺ has a stronger polarizing power than that of C	Ca ²⁺ because	
a) Cu^{2+} ion has smaller than Ca^{2+} ion		

b) Ca^{2+} has input and configuration whereas	Cu^{2+} ion does not					
b) Ca ²⁺ has inert gas configuration whereas Cu ²⁺ ion does not						
c) Copper shows variable valency, calcium does not						
d) Cu^{2+} is smaller than Ca^{2+} ion and the <i>d</i> -e		nucleus poorly				
236. Which of the following is most stable among						
a) Cu ⁺ b) Fe ⁺	c) Fe ²⁺	d) Fe ³⁺				
237. KMnO ₄ is the oxosalt of						
a) MnO_2 b) Mn_2O_7	c) MnO ₃	d) Mn_2O_3				
238. Lanthanide for which +II and +III oxidation	n states are common is					
a) La b) Nd	c) Ce	d) Eu				
239. What would happen when as solution of pot	tassium chromate is treated wit	h an excess of dilute nitric acid?				
a) Cr^{3+} and $Cr_2O_7^{2-}$ are formed	b) $Cr_2O_7^{2-}$ and H_2O ar	e formed				
c) CrO_4^{2-} is reduced to +3 state of Cr	d) None of the above					
240. Which are not blackend by atmospheric H_2 S	-					
a) TiO_2 b) ZnO	c) ZnSO ₄ + BaS	d) All of these				
241. $(NH_4)_2Cr_2O_7$ on heating gives a gas which is	· ·	- ,				
a) Heating NH_4NO_2 b) Heating NH_4N		d) Na(Comp.) + H_2O_2				
242. In the following reaction	og8322 -					
$nCH_2 = CH_2 \rightarrow [-CH_2 - CH_3 -]_n$						
Catalyst is						
a) Adam b) Ziegler-Natta	c) Ni/Pd	d) Fe/Mo				
243. When K_2CrO_4 is added to $CuSO_4$ soluble, the						
$CuCr_2O_7$ is due to	ere is formation of cuci 04 as w	en as cuci 207. Por mation of				
a) Basic nature of CuSO ₄ solution which con	r^{2-} to r^{2-}					
b) Acidic nature of $CuSO_4$ solution which co						
c) $CuSO_4$ has the typical property of convert	ting $CuCrO_4$ is formed to $CuCr_2$	0 ₇				
d) No CuCr ₂ O ₇ is formed						
244. Catalyst used in making H_2SO_4 in contact pr						
a) $V_2 O_5$ b) $Fe_2 O_3$	c) Cr ₂ O ₃	d) CrO ₃				
245. Which of the following is a highly corrosive						
a) FeCl ₂ b) PbCl ₂	c) Hg ₂ Cl ₂	d) HgCl ₂				
246. Which pair of compounds is expected to sho	ow similar colour in aqueous me	edium?				
a) FeCl ₃ and CuCl ₂ b) VOCl ₂ and CuC	Cl_2 c) $VOCl_2$ and $FeCl_2$	d) FeCl ₂ and MnCl ₂				
247. Oxidation state of Fe in Fe_3O_4 is						
a) $\frac{3}{2}$ b) $\frac{4}{5}$	c) $\frac{5}{4}$	d) $\frac{8}{3}$				
2 3	1	3				
248. If a person is asked to prepare the blue prin	t of a building plan, he can use					
a) $FeCl_3 + K_4[Fe(CN)_6]$						
b) $FeCl_2 + K_3[Fe(CN)_6]$						
c) $FeCl_2 + K_4[Fe(CN)_6]$						
d) Fe(Ct) + K ₃ [Fe(CN) ₆]Ct is citrate						
249. Most oxidizing agent is						
a) $[WO_4]^{2-}$ b) $[CrO_4]^{2-}$	c) [CeO ₄] ²⁻	d) [MnO ₄] ²⁻				
250. HgCl ₂ is soluble in						
a) Cold water	b) NaCl solution due t	to formation of $HgCl_4^{2-}$				
c) Both (a) and (d)	d) None of the above					
251. The colour of light absorbed by an aqueous						
a) Orange-red b) Blue-green	c) Yellow	d) Violet				
252. Maximum magnetic moment is shown by						
a) d^5 b) d^6	c) <i>d</i> ⁷	d) <i>d</i> ⁸				
253. Transition elements does not show	cj u	u ju				
255. IT answord elements uses not snow						

254. When KI (excess) is added to	
I. $CuSO_4$ II. $HgCl_2$ III. $Pb(NO_3)_2$	
a) A white ppt of CuI in I, a orange ppt HgI_2 in II and a yellow ppt PbI_2 in III	
b) A white ppt of CuI in I, an orange ppt. dissolving to HgI_4^{2-} in II, and a yellow ppt of PbI ₂ in II	
c) A white ppt of CuI, HgI_2 and PbI_2 in each case	
d) None of the above is correct	
255. Philospher's wool on treatment with cobalt nitrate, produces	
a) $CoBaO_2$ b) $CoZnO_2$ c) $CoSrO_2$ d) $CoMgO_2$	
256. Magnetic moment of $[Ti(H_2O)_6]^{3+}$ is	
a) 1.73 BM b) 2.83 BM c) 3.87 BM d) 4.90 BM	
257. Which of the following is not a member of $3d$ -transition series?	
a) Fe b) Co c) Au d) Cu	
258. The purest form of Fe is	
a) Stainless steel b) Steel c) Cast iron d) Wrought in	on
259. FeSO ₄ solution gives brown colour ring in testing nitrates or nitrite. This is	
a) $[Fe(H_2O)_5NO]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ c) $[Fe(H_2O)_4(NO)_2]^{2+}$ d) $[Fe(H_2O)_4(NO)_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ c) $[Fe(H_2O)_4(NO)_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ c) $[Fe(H_2O)_4(NO)_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ c) $[Fe(H_2O)_4(NO)_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ c) $[Fe(H_2O)_4(NO)_2]^{2+}$ b) $[Fe(H_2O)_5NO_2]^{2+}$ b) $[Fe(H_$	10] ²⁺
260. Different (variable) oxidation state is shown by transition elements. It is due to the fact	
a) $(n-1)d$ electrons may be excited to <i>ns</i> orbital	
b) ns electrons may be excited to $(n-1)d$ orbitals	
c) $(n-1)d$ -electron may get involved along with ns electrons in bonding	
d) None of the above facts is correct	
261. Ag is obtained from AgNO ₃ with	
a) NH_3 b) PH_3 c) AsH_3 d) Na_2CO_3	
262. Which ore contains both iron and copper?	
a) Cuprite b) Chalcocite c) Chalcopyrite d) Malachite	
263. When H_2O_2 is added to an acidified solution of $K_2Cr_2O_7$	
a) Solution turns green due to formation of Cr_2O_3	
b) Solution turns yellow due to formation of K_2CrO_4	
c) A deep blue-violet coloured compound $CrO(O_2)_2$ is formed	
d) Solution gives green ppt of $Cr(OH)_3$	
264. In an atmosphere with industrial smog, Cu corrodes to	
a) Basic sulphate $Cu_2(OH)_2SO_4$ b) Basic carbonate $Cu_2(OH)_2CO_3$	
c) Both (a) and (b) d) None of the above	
265. For CrO_3 following is not true statement	
a) It is called chromic acid	
b) It is colourless due to $3d^{10}$ configuration	
c) It is bright orange solid and colour arises due to charge transfer	
d) It is toxic and corrosive	
266. Misch metal is	
a) An alloy of lanthanide and copper	
b) An alloy of lanthanide and nickel	
c) An alloy of lanthanide, iron and carbon	
d) An alloy of calcium and copper	
267. FeCr ₂ O ₄ (chromite) is converted to Cr by following steps	
Chromite $\stackrel{I}{\rightarrow}$ Na ₂ CrO ₄ $\stackrel{II}{\rightarrow}$ Cr ₂ O ₃ $\stackrel{III}{\rightarrow}$ Cr	
I, II and III are	
I II III	
a) Na ₂ CO ₃ /air, Δ C C b) NaOH/air Δ C, Δ Al, Δ	
c) NaOH/air, Δ C, Δ Mg, Δ d) conc. H ₂ SO ₄ , Δ NH ₄ Cl, Δ C, Δ	

268. Which of the following mixture is chromic acid		
a) $K_2Cr_2O_7 + HCl$	b) K_2SO_4 + conc. H_2SO_4	
c) $K_2Cr_2O_7 + conc. H_2SO_4$	d) $H_2SO_4 + HCl$	
269. A transition element <i>X</i> has a configuration [Ar] $3d^4$		s atomic number is
a) 25 b) 26	c) 22	d) 19
270. ZnO in CH_3COOH gives bluish white ppt with X. X is	5	,
a) $K_4[Fe(CN)_6]$ b) $K_3[Fe(CN)_6]$	c) Na ₂ [Fe(CN) ₅ NO]	d) $Fe(CO)_5$
271. A jeweler is selling 22-carat gold articles with 95%	purity, it is approximately	
a) Exact b) 3.5% higher	c) 3.5% lower	d) 5% lower
272. Out of $AgNO_3$, AgF and $AgClO_4$, water soluble salts a	are	
a) AgF b) AgF, AgNO ₃	c) AgF, AgNO ₃ , AgClO ₄	d) None of these
273. Fe_3O_4 is called		
a) Haematite b) Magnetite	c) Casserite	d) Dolomite
274. Cr^{2+} and Mn^{3+} both have d^4 configuration. Thus		
a) Both are reducing agents		
b) Both are oxidizing agents		
c) Cr ²⁺ is an oxidizing agent while Mn ³⁺ is a reduct		
d) Mn ³⁺ is an oxidizing agent while Cr ²⁺ is a reduct	ing agent	
275. An ³⁺ (trivalent actinoid ions) have configuration		
a) $5f^0$ to $5f^{14}$ b) $5f^1$ to $5f^{14}$	c) $5f^2$ to $5f^{14}$	d) 5 <i>f</i> ⁰ to 5 <i>f</i> ¹³
276. TiCl ₄ is a		
a) Bronsted-Lowry acid b) Bronsted-Lowry base	-	d) Lewis base
277. CrO_3 liberates CO_2 with Na_2CO_3 solution. Thus, CrO_3	-	
a) An acidic oxide	b) A basic oxide	
c) An amphoteric oxide	d) A non-stoichiometric	
278. A blue solution of copper sulphate becomes darker		of ammonia. This is because
a) Ammonia molecules replace water molecules in	the solution	
b) Ammonia is stronger ligand than water	124	
c) Ammonia forms a stable complex ion $[Cu(NH_3)_4]$	J ² with Cu ² ions	
d) All of the above are correct		
279. The oxidation number of Mn in the product of alkal	ind ovidative flicion of Mnl	L_ 1C
a) 2 b) 3	c) 4	d) 6
280. Uranium reacts with conc. HNO_3	c) 4	d) 6
280. Uranium reacts with conc. HNO_3 a) To give U(NO ₃) ₄ and H ₂	c) 4 b) To give U(NO ₃) ₂ and 1	d) 6 NO ₂
280. Uranium reacts with conc. HNO_3 a) To give U(NO ₃) ₄ and H ₂ c) UO ₂ (NO ₃) ₂ and H ₂	c) 4 b) To give U(NO ₃) ₂ and 1 d) To make metal passiv	d) 6 NO ₂ e
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition 	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passiv a elements listed below with 	d) 6 NO ₂ e
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/l} 	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passive elements listed below with M²⁺ value? 	d) 6 NO ₂ e h atomic numbers. Which
280. Uranium reacts with conc. HNO_3 a) To give $U(NO_3)_4$ and H_2 c) $UO_2(NO_3)_2$ and H_2 281. Four successive members of the first row transition one of them is expected to have the highest $E^{\circ}_{M^{3+}/I}$ a) $Cr(Z = 24)$ b) $Mn(Z = 25)$	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passiv n elements listed below with M²⁺ value? c) Fe(Z = 26) 	d) 6 NO ₂ e h atomic numbers. Which d) $Co(Z = 27)$
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/1} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transition of the transition of the following characteristics of the transition of the transition of the following characteristics of the transition of the transition of the following characteristics of the tra	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passiv n elements listed below with M²⁺ value? c) Fe(Z = 26) 	d) 6 NO ₂ e h atomic numbers. Which d) $Co(Z = 27)$
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/1} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transition of the transition of the following characteristics of the transition of the following characteris	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passive elements listed below with w²⁺ value? c) Fe(Z = 26) ansition metals is associate 	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/I} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transactivity? a) Colour of hydrated ions 	c) 4 b) To give $U(NO_3)_2$ and 1 d) To make metal passiv n elements listed below with M^{2+} value? c) Fe($Z = 26$) ansition metals is associate b) Variable oxidation sta	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/1} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transition activity? a) Colour of hydrated ions c) High enthalpy of atomization 	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passive elements listed below with a state of the state o	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/I} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transitivity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxide 	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive the elements listed below with the elements listed below with the elements listed below with the elements is associated below the elements is associated by Variable oxidation stated by Variable oxidation stated by Paramagnetic behavior the order 	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/I} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transition context of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) 	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive n elements listed below with m²⁺ value? c) Fe(Z = 26) ansition metals is associate b) Variable oxidation state d) Paramagnetic behavior de follows the order 	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or
280. Uranium reacts with conc. HNO_3 a) To give $U(NO_3)_4$ and H_2 c) $UO_2(NO_3)_2$ and H_2 281. Four successive members of the first row transition one of them is expected to have the highest $E^{\circ}_{M^{3+}/I}$ a) $Cr(Z = 24)$ b) $Mn(Z = 25)$ 282. Which one of the following characteristics of the tra- activity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) a) TiO > FeO > VO > CrO	 c) 4 b) To give U(NO₃)₂ and 1 d) To make metal passive elements listed below with a select on the select of the	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or
280. Uranium reacts with conc. HNO_3 a) To give $U(NO_3)_4$ and H_2 c) $UO_2(NO_3)_2$ and H_2 281. Four successive members of the first row transition one of them is expected to have the highest $E^{\circ}_{M^{3+}/I}$ a) $Cr(Z = 24)$ b) $Mn(Z = 25)$ 282. Which one of the following characteristics of the tra- activity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) a) TiO > <i>FeO</i> > <i>VO</i> > <i>CrO</i> c) TiO > <i>CrO</i> > <i>TiO</i> > <i>FeO</i>	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive the elements listed below with the elements listed below with the elements listed below with the elements is associate to be for the element of t	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/I} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transitivity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) a) TiO > <i>FeO</i> > <i>VO</i> > <i>CrO</i> c) TiO > <i>CrO</i> > <i>TiO</i> > <i>FeO</i> 284. For Ni and Pt different IP in MJ mol⁻¹ are give below 	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive the elements listed below with the elements listed below with the elements listed below with the elements is associate to be for the element of t	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or
 280. Uranium reacts with conc. HNO₃ a) To give U(NO₃)₄ and H₂ c) UO₂(NO₃)₂ and H₂ 281. Four successive members of the first row transition one of them is expected to have the highest E°_{M³⁺/I} a) Cr(Z = 24) b) Mn(Z = 25) 282. Which one of the following characteristics of the transitivity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) a) TiO > <i>FeO</i> > <i>VO</i> > <i>CrO</i> c) TiO > <i>CrO</i> > <i>TiO</i> > <i>FeO</i> 284. For Ni and Pt different IP in MJ mol⁻¹ are give below 	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive the elements listed below with the elements listed below with the elements listed below with the elements is associate to be for the element of t	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or
280. Uranium reacts with conc. HNO_3 a) To give $U(NO_3)_4$ and H_2 c) $UO_2(NO_3)_2$ and H_2 281. Four successive members of the first row transition one of them is expected to have the highest $E^{\circ}_{M^{3+}/I}$ a) $Cr(Z = 24)$ b) $Mn(Z = 25)$ 282. Which one of the following characteristics of the tra- activity? a) Colour of hydrated ions c) High enthalpy of atomization 283. The basic character of the transition metal monoxid (Atomic number Ti = 22, V = 23, Cr = 24, Fe = 26) a) TiO > <i>FeO</i> > <i>VO</i> > <i>CrO</i> c) TiO > <i>CrO</i> > <i>TiO</i> > <i>FeO</i>	 c) 4 b) To give U(NO₃)₂ and I d) To make metal passive the elements listed below with the elements listed below with the elements listed below with the elements is associate to be for the element of t	d) 6 NO ₂ e h atomic numbers. Which d) Co($Z = 27$) d with their catalytic tes or

Hence

- a) Nickel (II) compounds tend to be thermodynamically more stable than platinum (II)
- b) Platinum (IV) compounds tend to be more stable than nickel (IV)
- c) Both (a) and (b) are correct
- d) None of the above is correct

285. Silver nitrate solution is kept in brown bottles in the laboratory because

- a) It reacts with ordinary bottles
- b) Ordinary bottles catalyst the decomposition
- c) The materials of brown bottles doo not react with it

d) Brown bottles cut the passage of light through it

286. Stability of Cu^+ and Ag^+ halide complexes are in the order

- a) I > r > Cl > Fb) F > Cl > Br > Ic) Cl > F > I > Brd) Br > I > Cl > F
- c) Cl > F > I > Br287. Based on the following equilibria

 $Fe^{2+} \rightleftharpoons Fe^{3+} + e^-; \quad E^\circ = -0.771 V$

 $[Fe(CN)_6]^{4-} \rightleftharpoons [Fe(CN)_6]^{3-} + e^-; E^\circ = -0.36 \text{ V}$

Select the correct statements

a) Iron in +2 state is more stable than in +3 state

b) Unstable ion can be stabilized by complexing it with a suitable ligand

c) Both (a) and (b)

d) None of the above are correct statements

288. Which one of the following ionic species will impart colour to an aqueous solution?

- a) Ti^{4+} b) Cu^{+} c) Zn^{2+}
- 289. Non-stoichiometry is shown
 - a) Due to variable valency of transition elements

b) Due to defects in solid structures

- c) Due to both (a) and (b)
- d) Due to none of the above
- 290. Which of the following statements is not correct?

a) $La(OH)_3$ is less basic than $Lu(OH)_3$

- b) In lanthanide series ionic radius of Ln³⁺ ion decreases
- c) La is actually an element of transition series rather lanthanide
- d) Atomic radius of Zr and Hf are same because of lanthanide contraction

Multiple Correct Answers Type

291. The transition m	netals that do not form ama	lgam are	
a) Zn	b) Fe	c) Pt	d) Cd
292. Select the correc	ct statement(s) about [CoCl	$_{6}$] ^{4–} complex	
a) It is paramag	netic	b) It is a low-sp	in complex
c) Oxidation nu	mber of cobalt is –4	d) The coordina	ation number of cobalt is 6
293. Select the correc	ct statement(s) about oxide	es of <i>d</i> -block elements	
a) M0 type oxid	es have NaCl-type structure	е	
b) All oxides are	e thermodynamically stable	, their heats of formation h	being negative ($\Delta H_f^{\circ} < 0$)
c) Oxides of the	same metal in different oxi	dation state have differen	t stabilities
d) The oxides ar	e basic in low oxidation sta	tes and acidic in high oxid	ation states
294. The species that	undergoes disproportiona	tion in an alkaline mediun	n are
a) MnO ₄ ^{2–}	b) NO ₂	c) Cl ₂	d) ClO ₄
295. Which are corre	ct statements?		
a) In less acidic	solution $K_2 Cr_2 O_7$ and $H_2 O_2$	gives violet coloured dia	magnetic $[CrO(O_2)(OH)]^-$ ion

d) Cr³⁺

		$[C_{1}(0), 13=) + (c_{1}, c_{2}, c_{3})$	
	b) In alkaline H_2O_2 , K_2CrO_8 (with tetraperoxo specie	es $[Cr(O_2)_4]^\circ$) is formed	
	c) In animoniacal solution, $(NH_3)_2CrO_4$ is formed		
	d) CrO_4^{2-} changes to $Cr_2O_7^{2-}$ by oxidation		
296	When KCN is added to CuSO ₄ solution		
	a) KCN acts as a reducing agent		
	b) KCN acts as a complexing agent		
	c) Complex $K_3[Cu(CN)_4]$ is formed		
	d) Complex $K_2[Cu(CN)_4]$ is formed		
297	Chromium trioxide (CrO ₃)		
	a) Is soluble in water forming dichromate		
	b) Is soluble in alkali forming chromate		
	c) Has peroxy linkage		
	d) Is oxidized to CrO_5 by H_2O_2 in alkali solution		
298	Colour of transition metal ions are due to		
	a) Variable valency	b) $d - d$ transition	
	c) Incompletely filled <i>d</i> -orbitals	d) Charge transfer	
299	Which will not give metal on heating?		
	a) Ag_2CO_3 b) $ZnCO_3$	c) HgO	d) CuO
300	Which of the following are coloured due to charge tr		
	a) $KMnO_4$ b) CrO_3	c) CuSO ₄	d) FeCl ₃
301	Reduction of the metal centre in aqueous permanga		
	a) Three electrons in neutral medium	b) Five electrons in neutr	
0.00	c) Three electrons in alkaline medium	d) Five electrons in acidi	c medium
302	Lanthanoids are		. 1.11
	a) 14 elements in the sixth period (atomic no. = 90		
	b) 14 elements in the seventh period (atomic no. = (2) 14 elements in the sinth period (atomic no. = (2)		
	c) 14 elements in the sixth period (atomic no. = 58	, – .	
202	d) 14 elements in the seventh period (atomic no. = $E_{\text{eff}} = C_{\text{eff}} = C_{e$	58 to 71) that are filling 4)	-sublevel
303	For CrO_3 following is not true statement		
	a) It is called chromic acid		
	b) It is colourless due to $3d^0$ configuration	have transfor	
	c) It is bright orange solid and colour arises due to c	liaige transfer	
204	d) It is toxic and corrosive Standard reduction electroide notantial at $7n^{2+}/7n$ i	~ 0.7 (U.This means	
504	Standard reduction electrode potential at Zn^{2+}/Zn is a) ZnO is reduced to Zn by H_2	s = 0.76 V. This means	
	b) Zn liberates H_2 with conc. Acids	.11	
	c) Zn is generally the anode in an electrochemical ced) Zn is generally the cathode in an electrochemical		
305	Why does aqueous Fe(III) ion develop intense red co		CN ⁻ ion while Fe(II) ion
303	does not?	JIOUI WHEN IT TEACTS WITH 5	
	a) Fe(III) ion forms a charge transfer complex with S	SCN ⁻ ions	
	b) Fe(III) is reduced to Fe(I) which is deep red in col		
	c) SCN ⁻ ion is oxidized to CN ⁻ which forms red colo		ion
	d) SCN^- does not form any complex with Fe(III) ion	- , ,	1011
306	Which are correct statements about KMnO ₄ ?		
500	a) Its solution is unstable in acidic medium		
	b) Its small quantity added to conc. H_2SO_4 , a green c	oloured solution containin	$g MnO_2^+$ jons is formed
	c) MnO_4^- changes to Mn^{2+} in basic solution		J J
	d) It is self-indicator in Fe^{2+} or $C_2O_4^{2-}$ titration		
307	Which of the following chemical reactions is/are inv	volved in the developing of	photographic plate?
207			r

a) AgBr + $2NH_3(aq)$	$\rightarrow [\Lambda_{\alpha}(NH)] Pr$	b) $A_{\alpha}Br \pm 2N_{2}S$	$0_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$			
,	$\rightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2\text{NaBR}$,	$AgBr \rightarrow 2Ag + C_6H_4O_2 + 2HBr$			
, , , , , , , , , , , , , , , , , , , ,		$u_{1} u_{6} u_{14} (011)_{2} + 2$	$AgDI \rightarrow ZAg + C_6 II_4 O_2 + ZIIDI$			
308. When CO_2 is passed into aqueous						
a) Na ₂ CrO ₄ solution, its yellow colour changes to orange b) K_2MnO_4 solution, it disproportionate to KMnO ₄ and MnO ₂						
_	, its orange colour change	-				
	s pink colour changes to g					
309. Electron transfer from	$h \operatorname{Fe}(H_2 O)_6^{-1}$ to $\operatorname{Fe}(H_2 O)_6^{-1}$					
a) d - d transition		b) Inner sphere el				
c) $S_N 1$ mechanism		d) Outer sphere el	ectron transfer			
310. FeSO ₄ on heating give						
a) SO_3	b) SO_2	c) Fe_2O_3	d) S			
311. Which of the followin	g halides react(s) with Ag	$g_{\rm NO_3}(aq)$ to give a precip	itate that dissolves in			
$Na_2S_2O_3(aq)?$						
a) HCl	b) FF	c) HBr	d) HI			
312. Select the correct stat		1 1 11				
a) $\frac{1}{2}$	In is added to $K_4[Fe(CN)_6$	j solution, in addition to	Fe ^{III} [Fe ^{III} (CN) ₆] ⁻ , Fe ^{II} [Fe ^{III} (CN) ₆] ⁻			
	to side redox reaction	1 1 1 1 1 1 1 1 1 1				
b) When FeCl ₂ solution	on is added to $K_3[Fe(CN)_6]$] solution, in addition to I	Fe ^{II} [Fe ^{II} (CN) ₆] ⁻ Fe ^{III} [Fe ^{II} (CN) ₆] ⁻			
	to side redox reaction					
	s paramagnetic while Fe ^{II}					
	s diamagnetic while Fe ^{II} [F	$[e^{III}(CN)_6]^-$ is paramagned	etic			
313. Select the correct stat						
2	ole oxidation states can be		lectrode potential			
	nd Cr ³⁺ is stable in aqueou					
-	Fe ³⁺ is unstable in aerate	d water				
d) All of the above are						
314. N_2 gas can be obtained						
a) $(NH_4)_2 Cr_2 O_7$	b) NH ₄ NO ₂	c) NH ₄ VO ₃	d) NH ₄ NO ₃			

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 315 to 314. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

315

- **Statement 1:** $CuSO_4$. $5H_2O$ on heating to 250°C loses all the five H_2O molecules and becomes anhydrous
- **Statement 2:** All the five H_2O molecules are coordinated to the central Cu^{2+} ion

316

Statement 1: Oxalates and carbonates of lanthanides are almost insoluable in water

	Statement 2:	Salts of lanthanides usually contains water of crystallisation
317		
	Statement 1:	Mercury is liquid at room temperature
	Statement 2:	In mercury, there is no unpaired d -electron and thus, metallic bonding is weakest
318		
	Statement 1:	Chromium is hard but mercury is soft.
	Statement 2:	Chromium is a 3d transition elements.
319		
	Statement 1:	Equivalent mass of $KMnO_4$ is equal to one third of its molecular mass when it acts as an oxidising agent in an alkaline medium
	Statement 2:	
320		
	Statement 1:	Magnetic moments values of actinides are lesser than the theoretically predicted values.
	Statement 2:	Actinide elements are strongly paramagnetic.
321		
	Statement 1:	Tungsten has the highest melting point
	Statement 2:	Tungsten is a covalent compound
322		
	Statement 1:	Mercury vapour is shining silvery in appearance.
	Statement 2:	Mercury is a metal with shining silvery appearance.
323		
	Statement 1:	Europium(II) is more stable than cerium(II).
	Statement 2:	Cerium salts are used as a catalyst in petroleum cracking.
324		
	Statement 1:	The free gaseous Cr atom has six unpaired electrons.
	Statement 2:	Half filled s- orbital has greater stability.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

325. Match the neutral coordination compounds (in Column I) with metals therein (in Column II)

Column-I								Column- II
(,	(A)	Nitrogenas	ses				(1)	Cu
((B)	Cytochrom	ie oxidase	!			(2)	Мо
((C)	Cytochrom	ne C				(3)	Zn
((D)	Carboxy pe	eptidase				(4)	Fe
C	COD	ES :						
		А	В	C	D			
а	ı)	1	2	3	4			
b)	2	1	4	3			
C	:)	4	3	2	1			
d	i)	3	4	1	2			
326. M	Mato	h the alloys	s (in Colur	nn I) wit	h their co	onstituen	ts (in	Column II)
			Col	umn-I				Column- II
(4	(A)	Invar					(1)	70% Cu + 30% Zn
((B)	Brass					(2)	66% Ni + 33% Cu
((C)	Monel					(3)	36% Ni
((D)	Coinage m	etal				(4)	60% Ni + 20% Fe + 20% Cr
((E)	Nichrome					(5)	75% Cu + 25% Ni
C	COD	ES :						
		Α	В	С	D	Ε		
а	ı)	3	1	2	5	4		
b))	2	3	4	1	4		
C	:)	4	5	3	2	4		
d	ł)	5	2	1	3	4		
327. N	Mato	h the comp	ounds in	Column I	with the	ir uses in	Colu	mn II
			Col	umn-I				Column- II
(4	(A)	Hg_2Cl_2					(1)	Metallurgical extraction of Ag
		F 0					$\langle \mathbf{n} \rangle$	

(2) Electrode(3) Luminous paints

(4) Lithopone

(D) Zn

(B) ZnO

(C) ZnSO₄

Page | 24

CODES:

	Α	В	С	D
a)	2	3	4	1
b)	3	2	1	4
c)	4	1	2	3
d)	1	4	3	2

328. Match List I with List II and select the correct answer using the codes given below the lists.

	Column-I	
(A)	Cr ³⁺	(p) $\sqrt{35}$
(B)	Fe ²⁺	(q) $\sqrt{30}$
(C)	Ni ²⁺	(r) $\sqrt{24}$
(D)	Mn ²⁺	(s) $\sqrt{15}$
		(t) $\sqrt{8}$

CODES:

	Α	В	С	D
a)	р	r	t	S
b)	q	r	t	р
c)	S	r	t	р
d)	S	t	r	р

329. Match the complex ion (Column I) with its spin-only magnetic moment (Column II)

		Co	olumn-I			
(A)	[Co(NH ₃	$[3]_{6}]^{3+}$			(1)	1.73 BM
(B)	[Fe(CN)	₆] ^{3–}			(2)	5.92 BM
(C)	[Mn(H ₂	$(0)_{6}]^{2+}$			(3)	0.0 BM
(D)	[Ni(H ₂ O) ₆] ²⁺			(4)	2.83 BM
COD	DES :					
	Α	В	С	D		
a)	1	2	4	3		
b)	3	1	2	4		
c)	2	4	3	1		

Column- II

Column- II

Page | 25

330. Match the lanthanide ions (Ln³⁺, in Column I) with their calculated magnetic moments (in Column II)

550. Mat						
		Colu	mn-I			Column- II
(A)	Ce ³⁺				(1)	7.94 BM
(B)	Nd ³⁺				(2)	4.90 BM
(C)	Gd ³⁺				(3)	1.73 BM
(D)	Pm ³⁺				(4)	3.87 BM
COD	DES :					
	Α	В	C	D		
a)	4	3	2	1		
b)	2	1	3	4		
c)	3	4	1	2		
d)	1	2	4	3		
331. Mat	ch the catalys	sts in Colu	mn I with	their uses	in Column	ı II
		Colu	mn-I			Column- II
(
(A)	TiCl ₄				(1)	Adams catalyst in reduction
(A) (B)	TiCl ₄ PdCl ₂				(1) (2)	Adams catalyst in reduction In preparation of $(CH_3)_2SiCl_2$
	-					In preparation of $(CH_3)_2SiCl_2$
(B)	PdCl ₂ Pt/PtO				(2)	In preparation of (CH ₃) ₂ SiCl ₂ Reppe synthesis Used as the Natta catalyst in polythene
(B) (C)	PdCl ₂ Pt/PtO Cu				(2)(3)(4)	In preparation of $(CH_3)_2SiCl_2$ Reppe synthesis
(B) (C) (D) (E)	PdCl ₂ Pt/PtO Cu				(2)(3)(4)	In preparation of (CH ₃) ₂ SiCl ₂ Reppe synthesis Used as the Natta catalyst in polythene production
(B) (C) (D) (E)	PdCl ₂ Pt/PtO Cu Ni	В	С	D	(2)(3)(4)	In preparation of (CH ₃) ₂ SiCl ₂ Reppe synthesis Used as the Natta catalyst in polythene production
(B) (C) (D) (E)	PdCl ₂ Pt/PtO Cu Ni DES :	B 2	C 3	D 4	 (2) (3) (4) (5) 	In preparation of (CH ₃) ₂ SiCl ₂ Reppe synthesis Used as the Natta catalyst in polythene production

332. Match the species in Column I that can react (oxidize, reduce, give ppt) species in Column II

		Column-I	
(A)	Fe ²⁺	(1)	$Cr_2 0_7^{2-}$
(B)	$C_2 O_4^{2-}$	(2)	CrO_{4}^{2-}

c)

d)

Column- II

	(C)	Pb ²⁺					(3)	[Fe(CN) ₆] ³⁻
	(D)	Ag+					(4)	MnO ₄
	(E)	SO ₂					(5)	$S_2 O_3^{2-}$
	COD	ES:						
		Α	В	С	D	Е		
	a)	1,3,4	1,4	2	2,5	1,4		
	b)	1,4	2	2,5	1,3,4	1,4		
	c)	2	2,5	1,3,5	1,4	1,4		
	d)	2,5	1,3,4	2,4	1,4	1,4		
333	. Mate	ch the alloy	vs (in Colu	ımn I) wi	th their co	nstituen	ts (in	Colum II)
			Co	olumn-I				Column- II
	(A)	Invar					(1)	70% Cu + 30% Zn
	(B)	Brass					(2)	66% Ni + 33% Cu
	(C)	Monel					(3)	36% Ni
	(D)	Coinage n	netal				(4)	60% Ni + 20% Fe + 20% Cr
	(E)	Nicrome					(5)	75% Cu + 25% Ni
	COD	ES :						
		Α	В	С	D	Ε		
	a)	3	1	2	5	4		
	b)	1	2	3	4	4		
	c)	4	5	1	2	4		
	d)	2	3	4	1	4		
334	334. Match the alloys (in Column I) with the constituents metal (in Column II)							
			Co	olumn-I				Column- II
	(A)	Gun meta	1				(1)	Pb, Sn
	(B)	German s	ilver				(2)	Cu, Sn, Z
	(C)	Brass					(3)	Cu, Zn
	(D)	Solder					(4)	Cu, Zn, Ni
	COD	ES:						
		А	В	С	D			

a)	2	4	3	1
b)	4	2	1	3
c)	3	1	2	4
d)	1	3	4	2

335. Match the underlined atoms in Column I with oxidation number in Column II

		Co	olumn-I				
(A)	<u>Mn</u> 0 ₄					(1) 1	
(B)	<u>$Cr0_{4}^{2-}$</u>					(2) 2	
(C)	<u>Fe</u> [Fe [∥] (0	CN) ₆]-				(3) 3	
(D)	$Zn0_{2}^{2-}$					(4) 6	
(E)	$\left[\underline{Ag}(CN) \right]$	2]				(5) 7	
COD	ES :						
	Α	В	С	D	E		
a)	4	5	2	1	2		
b)	3	2	1	5	2		
c)	5	4	3	2	2		
d)	2	1	4	3	2		

336. Match the compounds of Column I with oxidation state of Column II

		Со	lumn-I			
(A)	$[Cr(H_20)_e]$	₅]Cl ₃			(1)	5
(B)	CrO ₅				(2)	4
(C)	K ₃ CrO ₈				(3)	6
(D)	$(NH_3)_3Cr$	04			(4)	3
COD	DES :					
	Α	В	С	D		

	Α	В	C	D
a)	3	2	4	1
b)	4	3	1	2
c)	1	4	3	2
d)	2	1	4	3

Column- II

Column- II

Linked Comprehension Type

This section contain(s) 20 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 337 to -337

The colour of the compounds of transition metals may be attributed to the presence of incomplete (n - 1)d sunshell. When an electron from a lower energy of *d*-orbital is excited to a higher energy *d*-orbital, the energy of excitation corresponds to the frequency of light absorbed. This frequency generally lies in the visible region. The colour observed. The frequency to complementary colour of the light absorbed. The frequency of the light absorbed is determined by the nature of the ligand. Paramagnetism is a property due to the presence of unpaired electrons. Paramagnetism increases with increase in number of unpaired electrons. Magnetism moment is calculated from the formula

 $\mu = \sqrt{n(n+2)}$ BM

337. The colourless species is

a) Na₃VO₄ b) VCl₃ c) VOSO₄ d) VH₃

Paragraph for Question Nos. 338 to - 338

The first triad metals iron, cobalt and nickel are known as ferrous metals. Iron and cobalt exhibit oxidation states +3 and +2 in their compounds, while nickel compounds are generally in the +2 oxidation state. The elements of the second and third triad are collectively known as platinum metals. These elements give halides having metals in divalent as well as trivalent states

338. The maximum oxidation state exhibited by manganese is					
a) +3	b) +7	c) +4	d) +6		

Paragraph for Question Nos. 339 to - 340

From the data given in the table, answer the following questions Covalent radii of the Transition Elements (pm)

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn 203 174 144 132 122 117 117 117 116 115 117 125 Zr Nb 145 134 Ht Ta 144 134

339. Atoms of the transition elements are similar than those of the *s*-block elements. This is because of

a) Usual contraction in size across a horizontal period

b) Orbital electrons added to the penultimate *d*-shell rather than to the outer shell of the atom

c) Both (a) and (b)

d) None of the above

Paragraph for Question Nos. 340 to - 341

Read the following short write-up and answer the questions given

"The transition elements have an unparalleled tendency to form coordination compound with Lewis base that is with groups which are able to donate an electron pair (called ligands)"

340. The tendency to form complexes by transition metal compared to s and p-block elements is due to

- a) Their smaller size
- b) Higher nuclear charge
- c) Presence of low energy vacant orbitals to accept lone pair of electrons donated by ligands
- d) All of the above

Paragraph for Question Nos. 341 to - 342

Taking into account the following experimental fact answer the questions given at the end "When metallic copper is heated with concentrated sulphuric acid, in addition to copper(II) sulphate and sulphur dioxide, some copper (II) sulphide is also formed"

341. In which reaction, SO_2 is formed?

a) $SO_4^{2-} + 2e^- \rightarrow$ b) $SO_4^{2-} + 8e^- \rightarrow$ c) $SO_4^{2-} + 6e^- \rightarrow$ d) In all of these

Paragraph for Question Nos. 342 to - 343

Read the following short write-up and answer the questions given at the end Recent X-ray work, IR and other spectroscopic methods have proved that Turnbull's blue is identical to Prussian blue

342. What is the common formula of Turnbull's blue and Prussian blue?						
a) $Fe_3[Fe(CN)_6]_2$	b) $Fe_4[Fe(CN)_6]_3$	c) KFe[Fe(CN) ₆]	d) KFe ₂ [Fe(CN) ₆]			

Paragraph for Question Nos. 343 to - 343

Based on the following statements answer the questions given at the end Statement The mercurous ion is written as Hg_2^{2+} while the cuprous ion is written as Cu^+ Statement Cu^+ is d^{10} ion and colourless but Cu_2O is red and Cu_2S is black

343. Mercurous ion is written as Hg_2^{2+} because

- a) Magnetic moment of mercurous ion is zero and thus, 6s unpaired electron has been used in bonding to make Hg_2^{2+}
- b) In aqueous solution two Hg⁺ ions are solvated forming Hg₂²⁺
- c) HgCl₂ disproportionates to Hg₂Cl₂ and Hg
- d) None of the above is correct

Paragraph for Question Nos. 344 to - 344

Based on the following experimental facts answer the questions given at the end "Green solution of potassium manganate (VI), turns purple and a brown solid is precipitated when CO_2 is bubbled into the solution"

344. Purple colour is due to formation of

a) Manganese dioxide (IV)

c) Manganese (II) ion

b) Potassium permanganate (VII)d) None of the above

Paragraph for Question Nos. 345 to - 345

Read the following passage and answer the questions at the end of it When a piece of iron is dipped in conc. HNO_3 , a slight reaction takes place which then ceases completely. There is no change in the appearance of the iron, but this does not displace Cu from $CuSO_4$ solution which is however a common property of Fe. This behavior is also observed with Cr and Al when in contact with HNO_3

345. Above phenomenon is called

a) Corrosion	b) Rusting	c) Passivity	d) Reduction

Paragraph for Question Nos. 346 to - 346

Based on the following qualitative test of chromium, answer the questions given at the end of it In qualitative analysis, a confirmatory test for chromium involves the formation of a blue transient peroxo species, CrO_5 . It is formed when H_2O_2 is added to on acidic solution containing $Cr_2O_7^{2-}$

346. Select the correct statement about CrO₅

- a) It has two types of oxygen-peroxide and oxide
- b) Oxidation number of Cr is +10
- c) It is formed by oxidation of $Cr_2 O_7^{2-}$
- d) All of the above are correct statements

Paragraph for Question Nos. 347 to - 347

Read the following observation and answer the questions given at the end In an atmosphere with industrial smog, Cu corrode to a basic sulphate $Cu_2(OH)_2SO_4$ and basic carbonate $Cu_2(OH)_2CO_3$

347. Basic sulphate is generally formed during acid rain with a reaction

a) $2Cu + 2H_2O + SO_3 \rightarrow Cu_2(OH)_2SO_4$	b) $2Cu + H_2O + SO_3 + O_2 \rightarrow Cu_2(OH)_2SO_4$
c) $2Cu + H_2O + SO_2 + O_2 \rightarrow Cu_2(OH)_2SO_4$	d) All of the above

Integer Answer Type

- 348. When CrO_5 is treated with H_2O_2 and KOH, a red-brown compound $K_3[Cr(O_2)_x]$ is formed
- 349. Complex when dimethyl-glyoxime (in alcohol) added to ammoical nickel chloride solution
- 350. 2.78 g of FeSO₄ \cdot xH₂O on treatment with excess of BaCl₂ solution gives 2.33 g of white precipitate of
 - BaSO₄. What is value of x? (Ba = 137, S = 32, Fe = 56, O = 16)
- 351. How many oxygen atoms are directly attached to one chromium in dichromate ion?
- 352. Complex when KCNS is added to \mbox{FeCl}_3 solution
- 353. Magnetic moment of Mn in MnSO₄ is 5.91 BM. Thus is has electrons in 3*d*-orbitals

354. What is the serial number of the colour formed when $K_2Cr_2O_7$ is made alkaline?

- V I B G Y O R
- 1 2 3 4 5 6 7
- 355. How many H_2O molecules are in coordination sphere in $FeCl_3 \cdot 6H_2O$
- 356. When CrO_5 is treated with H_2O_2 and KOH, a red-brown compound $K_3[Cr(O)_x]$ is formed. *x* is
- 357. 2.67 g of $CoCl_3 \cdot 6NH_3$ (molar mass = 267.4 g mol⁻¹) in aqueous solution gave 4.305 g of white precipitate of AgCl (molar mass = 143.5 g mol⁻¹). On reaction with excess of AgNO₃ solution. Thus, Cl atoms in outer sphere of the complex is.....
- 358. CrO₅ has..... peroxy linkage(s)
- 359. How many of the following are amphoteric?
 - ZnO, Al₂O₃, VO₂, V₂O₅, P₂O₅, Cr₂O₃, CrO₃
- 360. How many of the following pairs have approximately equal radii? (Zr, HF); (Nb, Ta); (Cr, Mn); (Mn, Fe); (Nb³⁺, Ta³⁺); (Zr⁴⁺, Hf⁴⁺)
- 361. How many of the following also forms dimer? NO₂, AlCl₃, FeCl₃, N₂O₅, CuSO₄, PCl₃
- 362. There are 24 electron in Mn⁺, Cr, Co³⁺, Fe²⁺, Ni⁴⁺ How many of these have *d*⁵ configuration?
- 363. Compound when SO_2 gas is passed into acidified $K_2Cr_2O_7$ solution
- 364. What is van't Hoff factor of $Hg_2(NO_2)_2$ if it is 100% ionized in aqueous solution?
- 365. Compounds when $K_2Cr_2O_7$ solution is made alkaline
- 366. Complex when NH_3 is added to $CuSO_4$ solution
- 367. Complex when $K_4[Fe(CN)_6]$ is added to $FeCl_3$ solution
- 368. Compound when Cl_2 gas is passed into K_2MnO_4 solution
- 369. Cr^+ (23 electrons) has..... electrons in (n 1)d orbitals
- 370. How many mole(s) of AgCl(s) are precipitated per mole of FeCl₃ \cdot 6H₂O on reaction with excess AgNO₃?
- 371. What is the sum of oxidation number of iron in Prussian blue?
- 372. How many of the following are paramagnetic a well as coloured species?

 O_2 , NO₂, Cu²⁺, Hg₂²⁺, Fe²⁺, Fe³⁺, [Fe(CN)₆]⁴⁻, [Fe(CN)₆]³⁻, [Ni(H₂O)₆]²⁺, [Ni(CN)₄]²⁻

- 373. Compound when $CuSO_4$ is treated with KI and then titrated with $Na_2S_2O_3$ solution
- 374. Number of oxygen atom(s) between two chromium atoms in $Cr_2 0_7^{2-}$ is.....
- 375. How many of the following pairs have approximately equal radii (Zr, Hf), (Nb, Ta), (Cr, Mn), (Mn, Fe), (Nb³⁺, Ta³⁺)(Zr⁴⁺, Hf⁴⁺)
- 376. Maximum oxidation state shown by manganese is.....
- 377. How many of the following have underlined atoms in different oxidation states? HgI_4^{2-} , $S_2O_3^{2-}$, $S_4O_6^{2-}$, CrO_5 , Fe_3O_4 , Pb_3O_4
- 378. How many of the following use outer *d*-orbital in complex formation?
 - $[Ni(H_2O)_4]^{2+}, Ni(CO)_4, [Ni(CN)_4]^{2-}, [Fe(CN)_6]^{4-}, [Fe(H_2O)_6]^{2+}, [Cr(NH_3)_6]^{3+}$
- 379. Compound when K_2CrO_4 solution is made acidic
- 380. Fe²⁺ (24 electrons) has..... electrons in 3*d*-orbitals

8.THE D-AND F-BLOCK ELEMENTS

: ANSWER KEY :															
1)	а	2)	С	3)	b	4)		189)	d	190)	b	191)	b	192)	b
5)	С	_, 6)	a	7)	b	8)		193)	c	194)	a	195)	c	196)	C
9)	d	10)	а	11)	d	12)	а		С	, 198)	С	, 199)	b	200)	(
, 13)	b	14)	d	15)	с	16)		201)	b	202)	С	203)	d	204)	(
17)	a) 18)	а	19)	С	20)	а		d	206)	d	207)	С	208)	(
, 21)	d	22)	b	23)	С	24)	С	209)	С	210)	a	211)	d	212)	(
25)	b	26)	b	27)	c	28)	a	a 4 a 2	b	214)	a	215)	a	216)	ł
29)	d	30)	d	31)	a	32)			С	, 218)	b	219)	d	220)	(
33)	c	34)	a	35)	С	36)	С		b	222)	b	223)	d	224)	ä
37)	С	38)	d	39)	a	40)		, 225)	a	, 226)	С	227)	С	, 228)	(
41)	b	42)	b	43)	а	44)	С		d	230)	b	, 231)	C	232)	ł
, 45)	b	46)	а	47)	d	48)			d	234)	С	235)	d	236)	а
49)	b	50)	b	, 51)	b	52)	а		b	238)	d	239)	b	240)	C
53)	b	54)	d	55)	c	56)	a		a	242)	b	243)	b	244)	a
57)	c	58)	С	59)	b	60)	a		d	246)	b	247)	d	248)	a
61)	d	62)	d	63)	a	64)	a		b	250)	b	251)	a	252)	a
65)	b	66)	d	67)	b	68)	a		c	254)	b	255)	b	256)	a
69)	a	70)	C	71)	c	72)	b	-	c	258)	d	259)	a	260)	C
73)	a	74)	c	75)	a	76)	b	-	b	262)	c	263)	c	<u> 264</u>)	Ċ
77)	a	78)	a	79)	d	80)	c	265)	b	266)	c	267)	b	268)	0
81)	a	82)	C L	83)	c c	84)	b	-	a	270)	a	271)	b	272)	(
85)	d	86)	c	87)	c	88)	d	-	b	274)	d	275)	b	276)	0
89)	d	90)	a	91)	b	92)	a		a	278)	d	279)	d	280)	Ċ
93)	d	94)	d	95)	c	96)	b	-	d	282)	b	283)	b	284)	0
97)	a	98)	c	99)	b	100)	d	-	d	286)	a	287)	c	288)	(
101)	b	102)	b	103)	a	104)	a		c	290)	a	1)	b,c	2)	•
105)	b	106)	b	107)	c	101)	b	-075	a,d	3)	a,b,c,d	-	b,c	_,	
109)	b	110)	a	111)	c	112)		5)	a,b,c	6)	a,b,c	7)	a,b,d	8)	
113)	a	114)	b	115)	d	116)	b	-	b,c,d	J	4,5,6	. ,	ujbju	J	
117)	a	118)	b	119)	a	120)		9)	b,d	10)	a,b	11)	c,d	12)	C
121)	b	122)	c	123)	d	123)		13)	b	14)	C	15)	a	16)	•
125)	c	122)	b	123)	a	121)	a	-	a,b,d	11)	C	13)	u	10)	
129)	b	130)	c	131)	c c	132)		17)	b,d	18)	a,b	19)	b	20)	
133)	c	134)	c	135)	a	136)	c	-	a,b,c	10)	ujb	17)	D	20)	
137)	b	131)	a	139)	a	140)		21)	a,c,d	22)	a,b,d	23)	a,b	24)	
141)	a	142)	d	143)	a	144)	b	-	a,b	,	ujoju	20)	ujb	- 1)	
145)	d	146)	c	147)	b	148)		1)	C	2)	а	3)	а	4)	ł
149)	d	150)	c	151)	c	152)		5)	b	-) 6)	b	7)	c	8)	
153)	c c	150) 154)	c	151)	b	152)		9)	b	10)	c	1)	b	2)	i
157)	b	151)	a	159) 159)	a	160)	c	-	3)	a	4)	c	U	2)	Ľ
161)	a	162)	b	163)	c c	164)		5)	b	6)	c	7)	d	8)	â
165)	a b	162)	d	163) 167)	c	164)		5) 9)	a	10)	a	7) 11)	u C	12)	ł
169)	d	170)	u C	107)	d	103)		3) 1)	a a	10) 2)	a b	3)	C C	12) 4)	י נ
109J 173)	u b	170) 174)	с b	171)	u C	172)		1) 5)	a a	2) 6)	C	3) 7)	a	4) 8)	l
173) 177)	c	174)	b	173)	b	170)		-	a C	10)	a	7) 11)	a b	1)	4
177) 181)	c	178)	b	179)	b	180) 184)	a	-	c 2)	10) 9	а 3)	11) 7	5 4)	1) 4	-
185)	с b	182)	d	183) 187)	b	184)		5)	2) 7	9 6)	5 5	7 7)	4) 5	4 8)	4
1001	U	100)	u	10/J	U	1005	u	5)	1	UJ	J	<i>'</i> J	5	σj	-

9)	8	10)	3	11)	2	12)	5 25)	7	26)	0	27)	1	28)	6
13)	6	14)	3	15)	2	16)	4 29)	7	30)	5	31)	2	32)	6
17)	3	18)	5	19)	2	20)	8 33)	6						
21)	1	22)	0	23)	1	24)	5							
							I							

: HINTS AND SOLUTIONS :

4 (d) $\operatorname{AgNO}_3 \xrightarrow{\Delta} \operatorname{Ag}_2 O \xrightarrow{\Delta} 2\operatorname{Ag} + O_2$ 9 $Hg_2Cl_2 + 2NH_3 \rightarrow HgNH_2Cl + Hg + NH_4Cl$ white black 11 (d) $CrO_3 + H_2O \rightarrow H_2CrO_4 \xrightarrow{OH^-} CrO_4^{2-}$ 52 **(a)** (A)*(B)* 17 (a) 53 **(b)** $[Fe(H_2O)_4Cl_2]Cl \cdot 2H_2O$ 20 (a) 56 (a) $Fe_2O_3 + OH^- + Cl_2 \rightarrow [FeO_4]^{2-}$ 21 (d) In alkaline solution, KMnO₄ is reduced to MnO₂ 58 (c) (black) $2KMnO_4 + 2H_2O \rightarrow 2MnO_2 + 2KOH + 3[O]$ $KI + 3[0] \rightarrow KIO_3$ $2KMnO_4 + 2H_2O + KI \rightarrow 2MnO_2 + 2KOH + KIO_3$ 63 **(a)** Hence, 2 moles of $KMnO_4$ are reduced to MnO_2 by 1 mole of KI 23 (c) 64 (a) Nascent H reduces NO to NH₃ which changes to NH₄NO₃ 68 **(a)** 31 (a) The methods chiefly used for the extraction of 83 (c) lead and tin from their ores are respectively self reduction and carbon reduction. (Because the 84 process of heating the ore strongly in the presence of excess of air is called roasting. It is mainly used in case of sulphide ores and the process of extracting a metal by fusion of the oxide ore with carbon is known as smelting.) 91 **(b)** 35 (c) Fe³⁺ forms soluble complex with oxalic acid 42 **(b)** 93 (d) Zns is white 49 **(b)** 94 (d) Cr^{3+} : [Ar] $3d^5$ stable 50 **(b)** 96 **(b)** As oxidation state increases, electronegativity increases thus acidic characteristic increases not 105 (b) basic. 51 **(b)** Ti(22): $[Ar]4s^2 3d^2$

1 $Ti^{2+}: [Ar] 3d^2$ $Ti^{4+}: [Ar] 3d^0$ Ti^{2+} has two unpaired electrons in 3*d* and thus *d* d^* transition is possible due to absorption of light in visible region $MnO_4^- \rightarrow MnO_4^{2-} + e^ Cu^+$: [Ar] $3d^{10}$ all electrons paired $2CuSO_4 + 4KI \rightarrow K_2SO_4 + Cu_2I_2 + I_2$ $I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$ Non-oxidising acids (as HCl) dissolve basic and emphoteric oxides, e.g., Cr₂O₃ $Cr_2O_3 + 6HCl \rightarrow 2CrCl_3 + 3H_2O$ CrCl₃ is hydrated in aqueous solution existing as $[Cr(H_2O_6)]^{3+}$ $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ purple colour $\mathrm{VO}_2 + 2\mathrm{H}^+ \rightarrow \mathrm{VO}^{2+} + \mathrm{H}_2\mathrm{O}$ $2MnO_4^{2-} \xrightarrow{H^+} MnO_2 + MnO_4^ Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^- + H_2O$ (b) This is due to increasing stability of the lower species to which they are reduced $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$ Oxidation state +5 +6+7 $Ni^{2+} + DMG \rightarrow [Ni(DMG)_2]^{2+}$ Cherry red ppt $6Fe^{2+} + Cr_2O_7^{2-} \rightarrow 6Fe^{3+} + 2Cr^{3+}$ $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ $CrO_3 + H_2O \rightarrow H_2CrO_4$ (acidic) $[Co(SCN)_4]^{2-}$, cobalt is +2 with three unpaired electrons in 3*d*. Thus, $\mu = \sqrt{15}$ BM

109 **(b)**

Zinc blende is roasted and then treated with coke for the reduction.

$$2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2 \uparrow$$

$$ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$$

113 **(a)**

 $3\mathrm{MnO_4^{2-}} \rightarrow \mathrm{MnO_2} + 2\mathrm{MnO_4^{-}}$

114 **(b)**

Colour of transition metal ion salt is due to d - d transition of unpaired electrons of d -orbital. Metal ion salt having similar number of unpaired electrons in d-orbitals shows similar colour in aqueous medium.

In VOCl_2 vanadium is present as V^{4+} and in CuCl_2 , copper is present as $\text{Cu}^{2+}.$

So,
$${}_{23}V=1s^2$$
, $2s^2 2p^6$, $3s^2 3p^63d^3$, $4s^2$
 $V^{4+} = 1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^1$
 $3d^1$

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline 1 & | & | & | \\ \hline Number of unpaired electrons = 1 \\ and {}_{29}Cu = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^1 \\ Cu^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9 \\ \hline 3d^9 \end{array}$

11 11 11 11 1

Number of unpaired electron =1

Hence, $VOCI_2$ and $CuCI_2$ show similar colour.

116 **(b)**

- $Hgl_{2} + 2KI \rightarrow K_{2}Hgl_{4}$ $Hgl_{2} \rightarrow Hg + I_{2} \text{ (violet)}$
- 125 (c)
 - $NO \rightarrow NO^+ + e^-$
 - $Fe^{3+} + e^- \rightarrow Fe^{2+}$

Oxidation state of Fe is +2 and NO⁺ is ligand

131 **(c)**

 $[Ar]4s^13d^5$

140 **(b)**

 $NO \rightarrow NO^{+} + e^{-} 25 + 12 \rightarrow 37$ $Fe^{2+} + e^{-} \rightarrow Fe^{+}(25e)$

- 142 **(d)**
 - Fe(III) gives red colours with KCNS

148 (d) NO \rightarrow NO⁺ + e⁻

 $Fe^{2+} + e^{-} \rightarrow Fe^{+} \text{ (three unpaired electrons)}$ $3d^{6} \qquad 3d^{7}$ $11 \quad 1 \quad 1 \quad 1 \quad 1$

Third electron which is removed in third

ionization potential enthalpy belongs to $3d^3$ subshell in V

In $_{23}V = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$ Third electron which is removed in third ionization potential enthalpy belongs to $3d^4$ subshell

 $_{24}$ Cr = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

Third electron which is removed in third ionization potential enthalpy belongs to $3d^6$ subshell

 $_{29}$ Fe = $1s^22s^22p^63s^23p^63d^64s^2$ Third electron which is removed in third ionization potential belongs to $3d^5$ subshell

In all elements shell and subshells are same. Required amount of energy is based upon the stability of *d*-subshell. Hence, Mn shows highest third ionization potential or enthalpy

 ${}_{25}\mathrm{Mn} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$

155 **(b)**

 $\operatorname{Cr}_2 \operatorname{O}_7^{2-} \xrightarrow{6e^-} 2\operatorname{Cr}^{3+}$ 6 electrons for two Cr 3 electrons per Cr

```
161 (a)
```

```
(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} Cr_2 O_3 + N_2 + 4H_2 O
NH_4 NO_2 \xrightarrow{\Delta} N_2 + 2H_2 O
```

162 **(b)**

Ferromagnetism is permanent magnetism in the atom/ion. It is due to unpaired electrons

$$Fe(26) = [Ar]3d^{6} 4s^{2}$$

$$11 1 1 1 1$$

$$3d^{6}$$

$$Co(27) = [Ar]3d^{7} 4s^{2}$$

$$11 11 1 1$$

$$3d^{7}$$

$$Ni(28) = [Ar]3d^{8} 4s^{2}$$

$$11 11 1 1$$

$$3d^{8}$$

163 **(c)**

Magnetic moment $\mu = \sqrt{N(N+2)}BM$ Where, N = unpaired electrons Cr(24) [Ar] $3d^54s^1$ N = 6, $\mu = \sqrt{48}BM = x$ Mn⁺ [Ar] $3d^54s^1$ N = 6, $\mu = \sqrt{48}BM = y$ Fe²⁺ [Ar] $3d^6$ N = 4, $\mu = \sqrt{24}BM = z$ $\boxed{111111}$ N = 4Thus, z < x = y167 **(c)**

Ion is coloured if there are unpaired electrons in

d-suborbit Paramagnetic nature is also due to unpaired electrons Thus, every coloured ion is also paramagnetic $Cu^{2+} = [Ar]3d^9$ one unpaired electron in 3d $Cr^+ = [Ar]3d^5$; five unpaired $Mn^{2+} = [Ar]3d^5$ electrons in 3d169 (d) $2Ag^+ + H_2S \rightarrow Ag_2S$ (black) 170 (c) Fe has 4 unpaired electrons 172 (c) MnO_4^- charges to MnO_4^{2-} or MnO_2 in basic medium 173 **(b)** $\operatorname{SnCl}_2 + \operatorname{HgCl}_2 \to \operatorname{Hg}_2\operatorname{Cl}_2 \xrightarrow{\operatorname{SnCl}_2} \operatorname{Hg}_2$ white grev 183 **(b)** $Cr_2O_7^{2-} + SO_2 \rightarrow SO_4^{2-} + Cr^{3+}$ +4 +6 +3 +6186 (d) $Mn^{2+}(d^5)$ 1 1 1 1 1 189 (d) $CrO_3 + 2H^+ \rightarrow CrO_2^{2+} + H_2O$ 192 (b) $2\text{CuSO}_4 + 4\text{KI} \rightarrow \text{Cu}_2\text{I}_2 + \text{K}_2\text{SO}_4 + \text{I}_2$ $I_2 + KI \rightarrow KI_3$ 195 (c) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$ pH > 7 (x > 7) $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ pH < 7(y < 7)198 (c) In CuF_2 , Cu^{2+} ion exist, having d^9 configuration. Unpaired electron causes colour (d - d)transition). In the crystalline form, CuF₂ is blue coloured. 199 (b) Metals lying above H in electrochemical series are not obtained from their oxides by heating $HgO \rightarrow Hg + O_2$ $ZnO \rightarrow Zn + O_2$ $Ag_2 0 \rightarrow Ag + 0_2$ 201 (b) Generally salts are colourless due to d^{10} configuration 210 (a) When I^- is oxidised by MnO_4^- in alkaline medium I^- converts into IO_3^- .

 $\begin{array}{cccc} 2KMnO_4 + 2KOH & \blacktriangleright 2K_2MnO_4 + H_2O + [O] \\ 2KMnO_4 + 2H_2O & \blacktriangleright 2MnO_2 + 3KOH + 2[O] \end{array}$ $2KMnO_4 + H_2O \xrightarrow{alkaline} 2MnO_2 + 2KOH + 3[O]$ $KI + 3[O] \longrightarrow KIO_3$ Hence, $2KMnO_4 + KI + H_2O \longrightarrow 2KOH + 2MnO_2 + KIO_3$ 213 (b) $(b) \operatorname{Cr}(24) = [\operatorname{Ar}] \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $4s^1$ $3d^5$ Completely $Cr^+ = [Ar]$ |1|1|1|1| ϵ half-filled 3*d*-subshell configuration Cu(29) = [Ar] [1, 1, 1, 1, 1, 1, 1, 1] $4s^1$ Completely $Cu^{+}(28) = [Ar] [1] [1] [1] [1] [4] <$ - filled 3*d*-subshell configuration Both are stable configuration and removal of next electron requires very high energy. Thus, second IE is very high V^+ [Ar] $3d^3 4s^1$) Second electron is removed for Mn^+ [Ar] $3d^5$ 4s¹) 4s subshell, thus, second IE is Ni^{+} [Ar] $3d^{8} 4s^{1}$) low Zn^{+} [Ar]3 d^{10} 4 s^{1}) 216 (b) $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ 230 **(b)** In this base CrO₂Cl₂ is formed 233 (d) Cu^+ , [Ar] $3d^{10}$ No unpaired electron, thus s = 0236 (a) Fe^{3+} : [Ar] $3d^5$; Cu⁺: [Ar] $3d^{10}$ 239 **(b)** $CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ 241 (a) Ammounium dichromate on heating gives N₂ gas which is also given by heating of NH₄NO₂. $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} Cr_2O_3 + 4H_2O + N_2 \uparrow$ $NH_4NO_2 \xrightarrow{\Delta} 2H_2O + N_2 \uparrow$ 243 (b) $CuSO_4 + 2H_2O \rightleftharpoons Cu(OH)_2 + H_2SO_4$ $2CrO_4^{2-} + 2H^+ \rightleftharpoons Cr_2O_7^{2-} + H_2O$ 252 (a) Maximum unpaired electrons 1 d^5 254 (b) I. $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + I_2 + K_2SO_4$

White ppt II. $HgCl_2 + 2KI \rightarrow 2KCl + Hgl_2 \downarrow$ Orange ppt $Hgl_2 + 2KI \rightarrow K_2 Hgl_4$ soluble III. $Pb(NO_3)_2 + 2KI \rightarrow Pbl_2 \downarrow + 2KNO_3$ Yellow ppt 259 (a) Ring is formed by charge transfer $NO \rightarrow NO^+ + e^ Fe^{2+} + e^- \rightarrow Fe^{2+}$ 262 (c) 0re Chemical composition Cuprite Cu_2O Chalcocite Cu_2S Chalcopyrite CuFeS₂ Malachite $Cu(OH)_2$. $CuCO_3$ In these ores, chalcopyrite (CuFeS₂) Contains both iron and copper. 271 (b) 24 carat gold is 100% Thus, 22-carat gold is 91.67% Thus, 3.5% higher 274 (d) $Mn^{3+} + e^- \rightarrow Mn^{2+}$ $3d^4$ $3d^5$ Extra stability is gained when Mn³⁺ is reduced to Mn²⁺ and is thus an oxidizing agent $Cr^{2+} \rightarrow Cr^{3+} + e^{-}$ has half-filled | 1 | 1 | 1 | 1 | 1 t_{2g} level $3d^4$ 279 (d) $2MnO_2 + 4 KOH + O_2$ $\xrightarrow{\text{Fusion}} 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}$ Oxidation number of Mn in K₂MnO₄ is $2 \times (1) + x + 4(-2) = 0$ x = +6281 (d) $E_{\rm red}^{\rm o}$ increases left to right 286 (a) Larger anion stabilizes to a greater extent 287 (c) $E^{\circ} < 0$, it means forward equilibria are not spontaneous Thus, Fe²⁺ is more stable than Fe³⁺ In $[Fe(CN)_6]^{4-}$ oxidation number of Fe = +2 and in $[Fe(CN)_6]^{3-}$ oxidation number of Fe = +3

Due to complex ion, E° decreases, thus stability can be increased by complexing ion

291 **(b,c)**

On heating $\ensuremath{\mathsf{FeSo}}_4$ gives

 $2\text{FeSO}_4 \xrightarrow{\Delta} \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$

294 **(b,c)**

 MnO_4^{2-} , Cl_2 and NO_2 undergo disproportionation, *ie*, oxidation and reduction of same element simultaneously, in the alkaline medium $Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O$ $2NO_2 + 2NaOH \rightarrow NaNO_2 + NaNO_3 + H_2O$ MnO_4^{2-} is stable in strong alkali solution and disproportionate into MnO_4^- and MnO_2 in less basic, acidic and neutral medium

298 **(b,c,d)**

Transition metals show colour due d - dtransition, charge transfer and incompletely filled d-orbitals

307 **(b,d)**

Following reactions are involved in developing the photographic plate

$$2AgBr + C_6H_4(OH)_2 \rightarrow 2Ag + 2HBr + C_6H_4O_2$$

quinol(developer)
quinine(developing)

$$AgBr + 2Na_2S_2O_3 → Na_3[Ag(S_2O_3)_3] + NaBr$$
(soluble)

(fixing the image)

310 **(a,b,c)**

The transition metals that do not form amalgams with Hg are Fe and Pt

315 **(c)**

CuSO₄. 5H₂O
$$\xrightarrow{\text{Air}}$$
 CuSO₄. 3H₂O $\xrightarrow{100^{\circ}\text{C}}$
CuSO₄ $\xrightarrow{250^{\circ}\text{C}}$ CuSO₄. H₂O

One water molecular is hydrogen bonded to coordinated water molecules and SO_4^{2-} ion and remaining four are coordinated to the central Cu^{2+} ion

316 (a)

The solubility of many salts of lanthanides follows the pattern of group II elements

317 (a)

Statement II is the correct explanation of statement I

318 **(b)**

Chromium has maximum number of unpaired *d*-electrons. While Hg does not have any unpaired *d*-

electron.

319 **(b)**

In alkaline medium, $KMnO_4$ is reduced to MnO_2 which involves $3e^-$

Thus, its eq. wt = $\frac{M}{3}$

320 **(b)**

The magnetic moments are lesser than the theoretically predicted values. This is due to the fact that 5*f* electrons of actinides are less effectively shielded which results in quenching of orbital contribution.

322 **(d)**

Both assertion and reason are false. Mercury vapour are visible as no metallic bounding is possible in vapour state.

323 **(b)**

 $Eu^{2+}[Xe]4f^7 5d^{10}$ (more stable)

 $Ce^{2+}[Xe]4f^{1} 5d^{1}$

324 **(c)**

The free gaseous Cr atom has six unpaired electrons due to following electronic configuration $(Ar)3d^5 4s^1$. This is because half filled d-orbitals are more stable than incompletely filled *d*-orbitals. So, one electron jumps from $4s^2$ to 3d orbital.

$$\therefore \mu = \sqrt{n(n+2)}$$

$$Cr^{3+}(Z = 24): 3d^{3}4s^{0}, \mu = \sqrt{3(3+2)} = \sqrt{15}$$

$$Fe^{2+}(Z = 26): 3d^{6}4s^{0}, \mu = \sqrt{4(4+2)} = \sqrt{24}$$

$$Ni^{2+}(Z = 28): 3d^{8}4s^{0}, \mu = \sqrt{2(2+2)} = \sqrt{8}$$

$$Mn^{2+}(Z = 25): 3d^{5}4s^{0}, \mu = \sqrt{5(5+2)} = \sqrt{35}$$

337 **(a)**

Na₃VO₄ contains V in +5 oxidation state, which has all *d*-orbitals vacant and thus, colourless 338 **(b)**

Mn has $3d^54s^2$ outer electronic configuration. Therefore, by losing all *s* and *d*-electrons, the maximum oxidation state achieved is +7

