

10.STRAIGHT LINES

Single Correct Answer Type

1.	OPQR is a square and M	, N are the middle points	of the sides PQ and QR,	respectively, then the ratio of the		
	areas of the square and	the triangle OMN is				
	a) 4:1	b) 2:1	c) 8:3	d) 7:3		
2.	Vertices of a parallelogr	am <i>ABCD</i> are <i>A</i> (3, 1), <i>B</i> (1	(3, 6), C(13, 21) and D(3, 21)	16). If a line passing through the		
	origin divides the parall	elogram into two congrue	ent parts, then the slope	of the line is		
	a) 11/12	b) 11/8	c) 25/8	d) 13/8		
3.	One diagonal of a square	e is along the line $8x - 15$	y = 0 and one of its vert	tex is (1, 2). Then the equations		
	of the sides of the squar	e passing through this ver	rtex are			
	a) $23x + 7y = 9,7x + 2$	3y = 53	b) $23x - 7y + 9 = 0$	0,7x + 23y + 53 = 0		
	c) $23x - 7y - 9 = 0,7x$	x + 23y - 53 = 0	d) None of these			
4.	If a straight line through	origin bisects the line pa	ssing through the given	points (a cos α , a sin α) and		
	$(a \cos \beta, a \sin \beta)$, then t	$(a \cos \beta, a \sin \beta)$, then the lines				
	a) Are perpendicular		b) Are parallel			
	c) Have an angle betwee	en them of $\pi/4$	d) None of these			
5.	If the lines represented	by the equation $3y^2 - x^2$	$+2\sqrt{3}x - 3 = 0$ are rota	ated about the point $(\sqrt{3}, 0)$		
	through an angle 15°, or	ne clockwise direction and	l other in anti clockwise	direction, so that they become		
	perpendicular, then the	equation of the pair of lin	es in the new position is			
	a) $v^2 - x^2 + 2\sqrt{3} + 3 =$	0	b) $v^2 - x^2 + 2\sqrt{3}x - \frac{1}{2}$	-3 = 0		
	() $y^2 - x^2 - 2\sqrt{3}x + 3$	- 0	d) $v^2 - x^2 + 3 = 0$			
6	If the sum of the distance	es of a point from two pe	rnendicular lines a nlane	is 1 then its locus is		
0.	a) Square		b) Circle	13 1, then its locus is		
	c) Straight ling		d) Two intersecting	lines		
7	The distance between the	na two lines represented k	w the equation $9r^2 - 24$	$4ry \pm 16y^2 = 12r \pm 16y = 12 =$		
7.		le two lilles representeu t	$\frac{1}{24}$	$x_{xy} + 10y = 12x + 10y = 12 =$		
	a) 8/5	h) 6/5	c) 11/5	d) None of these		
8	In ΛABC if orthocentre	b) $0,0$ he (1, 2) and circumcentr	$e he (0, 0)$ centroid of Λ	ABC is		
0.	a) $(1/2, 2/3)$	b) $(1/3 \ 2/3)$	c) $(2/3 \ 1)$	d) None of these		
9	Vertices of a triangle are	$(3 4) (5 \cos \theta - 5 \sin \theta) a$	und $(5 \sin A - 5 \cos A)$ w	where $A \in R$ Locus of its		
).	orthocentre is	((), ·), () () () () () () ()	ind (5 511 0, 5 603 0), w			
	of the centre is a) $(r \pm y = 1)^2 \pm (r = y)^2$	$(-7)^2 - 100$	b) $(x \pm y = 7)^2 \pm (x$	$(- y - 1)^2 - 100$		
	a) $(x + y - 7)^2 + (x + y)^2$	$(7)^{2} = 100$ $(1)^{2} = 100$	d) $(x + y - 7)^2 + (x + y - 7)^2$	$(x - y + 1)^2 = 100$		
10	If the area of the rhomb	y = 1) = 100 us anclosed by the lines <i>h</i>	$u_{j}(x + y - 7) + (x + my + n - 0 ho 2 sa x)$	y - y + 1 = 100		
10.	a) $l m n$ are in C P	b) $l = m$ are in C.P.	$r \perp my \perp n = 0$ be 2 sq. (d) $ln = m$		
11	ABCD is a square $A = ($	1 2) $R = (3 - 4)$ If line C	D passes through (3.8)	then midnoint of CD is		
11.	ADCD is a square $A = (1 - 1)$	(3, -4). If find $(3, -4)$. If find $(3, -4)$.	D passes through $(5, 0)$	d) $(24/5, 1/5)$		
12	L, and L, are two lines	If the reflection of L_{i} in L_{i}	(2, 3)	in L coincide then the angle		
12.	L_1 and L_2 are two mes.	If the reflection of $L_1 \prod L_2$	$\frac{1}{2}$ and the reflection of L_2	In L_1 conicide, then the angle		
	a) 30°	b) 60°	c) 45°	d) 90°		
12	Area of the parallelogra	bj 00 m formed by the lines y —	$-mr y - mr \pm 1 y - m$	$u_{j} = 0$		
15.	All a of the parametogram	b) $2/lm \pm nl$	- nix, y = nix + 1, y = ni	d) $1/(m - n)$		
11	a) $ m + n /(m - n)$ If the lines $ax + n + 1 - 1$	0 x + hy + 1 = 0 and x	$\int \frac{1}{(m + n)}$	$u_{j} = 1/(m - n)$		
14.	If the lines $ax + y + 1 =$	-0, x + 0y + 1 = 0 and $x + 1 = 0$	+ y + c = 0 (a, b, c Dem)	g distinct and different from 1)		
	are concurrent, then $\left(\frac{1}{1-1}\right)$	$\left(\frac{1}{1-a}\right) + \left(\frac{1}{1-b}\right) + \left(\frac{1}{1-c}\right) =$				
4 -	aju	b) 1	c) $1/(a + b + c)$	d) None of these		
15.	The line parallel to the x bx - 2av - 3a = 0 whe	x-axis and passing through ere $(a, b) \neq (0, 0)$ is	n the intersection of the	lines $ax + 2by + 3b = 0$ and		
	a) Above the <i>x</i> -axis at a	distance of 3/2 units from	n it			
		•				

	b) Above the <i>x</i> -axis at a distance of 2/3 units from it	Ţ	
	c) Below the <i>x</i> -axis at a distance of 3/2 units from it	:	
	d) Below the x-axis at a distance of $2/3$ units from it	-	
16.	Consider the points $A(0, 1)$ and $B(2, 0)$, and P be a p	point on the line $4x + 3y + 3y$	9 = 0. Coordinates of P
	such that $ PA - PB $ is maximum are		
	a) (-12/5, 17/5) b) (-84/5, 13/5)	c) (-6/5,17/5)	d) (0, −3)
17.	Two medians drawn from acute angles of a right and	gled triangle intersect at an	angle $\pi/6$. If the length of
	the hypotenuse of the triangle is 3 units, the area of	triangle (in sq. units) is	5 , 6
	a) $\sqrt{3}$ b) 3	$c)\sqrt{2}$	d) 9
18	The number of integral points (x, y) (i.e. x and y ho	th are integers) which lie i	the first quadrant but not
10.	on the coordinate axes and also on the straight line	3r + 5v = 2007 is equal to	i che mot quaurant pat not
	a) 133 b) 135	c) 138	d) 140
19	The equation $r^2 v^2 - 9v^2 + 6r^2 v + 54v = 0$ represe	ents	u) 110
17.	a) A pair of straight lines and a circle	h) A nair of straight lines	and a narabola
	a) A set of four straight lines forming a square	d) None of these	and a parabola
20	A triangle is formed by the lines $x + y = 0$ $x - y = 0$	0 and $lr \perp mv = 1$ If l and	m vary subject to the
20.	condition $l^2 \pm m^2 = 1$ then the locus of its circumce	0 and $tx + my = 1.11t$ and	in vary subject to the
	condition $t^2 + m^2 = 1$, then the focus of its circumon a) $(x^2 - y^2)^2 = x^2 + y^2$	b) $(x^2 \perp y^2)^2 - (x^2 \perp y^2)^2$)
	a) $(x^2 + y^2) = 4x^2y^2$	b) $(x + y) = (x - y)$ d) $(x^2 + y^2)^2 = (x^2 + y^2)^2$)2
21	If the equations $y = mx + c$ and $x \cos \alpha + y \sin \alpha =$	(x - y) = (x + y)) Tht line then
21.	In the equations $y = mx + c$ and $x \cos u + y \sin u = c$	p represent the same strang	glit life, then $d^2 + a^2 + a^2 = 1$
	a) $p = c\sqrt{1 + m^2}$ b) $c = p\sqrt{1 + m^2}$	c) $cp = \sqrt{1 + m^2}$	a) $p^2 + c^2 + m^2 = 1$
22.	The graph $y^2 + 2xy + 40 x = 400$ divides the plan	e into regions. Then the are	ea of bounded region is
	a) 200 sq. units b) 400 sq. units	c) 800 sq. units	d) 500 sq. units
23.	The number of values of ' a ' for which the lines		
	2x + y - 1 = 0,		
	ax + 3y - 3 = 0, and		
	3x + 2y - 2 = 0		
	Are concurrent is) 2	
24	a) 0 b) 1	CJ Z	a) infinite
24.	Locus of the image of the point (2, 3) in the line $(x - x) = x^2 + x^2$	$-2y + 3) + \lambda(2x - 3y + 4)$	$= 0 \text{ is } (\lambda \in R)$
	a) $x^2 + y^2 - 3x - 4y - 4 \equiv 0$	$\begin{array}{c} \text{D} & 2x^2 + 3y^2 + 2x + 4y \\ \text{d} & \text{Neuro of the set} \end{array}$	-7 = 0
25	c) $x^2 + y^2 - 2x - 4y + 4 = 0$	a) None of these	
25.	Equations of diagonals of square formed by lines $x = x^2$	= 0, y = 0, x = 1 and y = 1	are
26	a) $y = x, y + x = 1$ b) $y = x, x + y = 2$	c) $2y = x, y + x = 1/3$	a) $y = 2x, y + 2x = 1$
20.	A pair of perpendicular straight lines is drawn through	ight the of ight for ming with	the line $2x + 5y = 6$ and
	isosceles triangle right anglet at the origin. The equ	b) $F_{w}^{2} = 26w_{W} = F_{w}^{2} = 0$	
	a) $5x^2 - 24xy - 5y^2 = 0$	$\int 5x^2 - 26xy - 5y^2 = 0$	
27	$CJ 5x^{2} + 24xy - 5y^{2} = 0$ The line <i>PO</i> where equation is $x = x = 2$ sute the x	$a_{1}^{2} 5x^{2} + 26xy - 5y^{2} = 0$	o line DA is retated about D
27.	The line PQ whose equation is $x - y = 2$ cuts the x- through $4\Gamma^{\circ}$ in the anticle elevine direction. The actu	axis at P and Q is $(4, 2)$. The stion of the line PQ in the n	e lille PQ is folated about P
	through 45° in the anticiockwise direction. The equa	ation of the line PQ in the n	ew position is
20	a) $y = -\sqrt{2}$ b) $y = 2$	C) x = 2	a) $x = -2$
28.	If the slope of one line represented by $a^3x^2 - 2hxy$	$+b^{3}y^{2} = 0$ is square of the	e slope of another line, then
•	a) $h = 2ab(a + b)$ b) $h = ab(a + b)$	c) $3h = 2ab(a+b)$	d) $2h = ab(a+b)$
29.	The equations of the sides of a triangle are $x + y - \frac{1}{2}$	y = 0, x - y + 1 = 0 and $y = 0$	-1 = 0. Then the
	coordinates of the circumcentre are		
•	a) (2, 1) b) (1, 2)	c) (2, -2)	d) (1, −2)
30.	A beam of light is sent along the line $x - y = 1$, which	n after refraction from the .	<i>x</i> -axis enters the opposite
	side by running through 30° towards the normal at	the point of incidence on th	he x -axis. Then the equation
	side by running through 30° towards the normal at of the refracted ray is	the point of incidence on th	e <i>x</i> -axis. Then the equation

	c) $(2 - \sqrt{3})x + y = (2 + $	$\sqrt{3}$)	d) $y = (2 - \sqrt{3})(x - 1)$			
31.	ABC is a variable triangle	e such that A is (1, 2) B and	<i>C</i> lie on line $y = x + \lambda$ (wh	here λ is a veriable), then		
	locus of the orthocentre of triangle ABC is					
	a) $(x-1)^2 + y^2 = 4$	b) $x + y = 3$	c) $2x - y = 0$	d) None of these		
32.	A line of fixed length 2 ur	nits moves so that its ends a	are on the positive <i>x</i> -axis a	nd that part of the line		
	x + y = 0 which lies in the	ne second quadrant. Then t	he locus of the midpoint of	the line has the equation		
	a) $x^2 + 5y^2 + 4xy - 1 =$	0	b) $x^2 + 5y^2 + 4xy + 1 =$	0		
	c) $x^2 + 5y^2 - 4xy - 1 =$	0	d) $4x^2 + 5y^2 + 4xy + 1 =$	= 0		
33.	The number of integral v	alues of <i>m</i> , for which the <i>x</i> -	coordinate of the point of i	ntersection of the lines		
	3x + 4y = 9 and $y = mx$	+ 1 is also n integer is				
	a) 2	b) 0	c) 4	d) 1		
34.	If $u = a_1 x + b_1 y + c_1 = 0$	$0, v = a_2 x + b_2 y + c_2 = 0 a$	and $a_1/a_2 = b_1/b_2 = c_1/c_2$, then the curve $u + kv = 0$		
	is					
	a) The same straight line	u	b) Different straight line			
	c) Not a straight line		d) None of these			
35.	If $x - 2y + 4 = 0$ and $2x$	+ y - 5 = 0 are the sides of	of a isosceles triangle havin	g are 10 sq. units the		
	equation of third side is					
	a) $3x - y = -9$	b) $3x - y + 11 = 0$	c) $x - 3y = 19$	d) $3x - y + 15 = 0$		
36.	The locus of the point which moves such that its distance from the point (4, 5) is equal to its distance from					
	the line $7x - 3y - 13 = 0$	U is				
07	a) A straight line	b) A circle	c) A parabola	d) An ellipse		
37.	If the vertices P and Q of	a triangle PQR are given by	7(2, 5) and $(4, -11)$, respe	ctively, and the point R		
	moves along the line <i>i</i> v gi	1 = 0, 1 = 0,	ien the locus of the centriod	t of the triangle PQR is a		
	straight line parallel to	h OP		d) N		
20	dJFQ	UJ QA v v proin C. P. with some	CJ RF	up N ints $P(x, y) \cap (x, y)$ and		
50.	$R(r_{2}, v_{2})$		common ratio, then the po	$(x_1, y_1), Q(x_2, y_2)$ and		
	a) Lie on a straight line		h) Lie on an ellinse			
	c) Lie on a circle		d) Are vertices of a trians	zle		
39.	The coordinates of two co	onsecutive vertices A and E	s of a regular hexagon ABC	, DEF are (1, 0) and (2, 0),		
	respectively. The equatio	n of the diagonal <i>CE</i> is	0 0			
	a) $\sqrt{3}x + y = 4$	b) $x + \sqrt{3}v + 4 = 0$	c) $x + \sqrt{3}v = 4$	d) None of these		
40.	If sum of the distance of a	a point from two perpendic	ular lines in a plane is 1, th	en its locus is		
	a) A square		b) A circle			
	c) A straight line		d) Two intersecting lines			
41.	P(m, n) (where m, n are	natural numbers) is any po	oint in the intertior of the q	uadrilateral formed by the		
	pair of lines $xy = 0$ and the lines $2x + y - 2 = 0$ and $4x + 5y = 20$. The possible number of positions of					
	the point <i>P</i> is					
	a) 7	b) 5	c) 4	d) 6		
42.	Equation of a straight lin	e on which length of perpe	ndicular from the origin is	four units and the line		
	makes an angle of 120° w	vith the <i>x</i> -axis is				
	a) $x\sqrt{3} + y + 8 = 0$	b) $x\sqrt{3} - y = 8$	c) $x\sqrt{3} - y = 8$	d) $x - \sqrt{3}y + 8 = 0$		
43.	If the quadrilateral forme	ed by the lines $ax + by + c$	= 0, a'x + b'y + c = 0, ax	+ by + c' = 0, a'x + b'y +		
	c' = 0 have perpendicula	c' = 0 have perpendicular diagonals, then				
	a) $b^2 + c^2 = {b'}^2 + {c'}^2$	b) $c^2 + a^2 = {c'}^2 + {a'}^2$	c) $a^2 + b^2 = {a'}^2 + {b'}^2$	d) None of these		
44.	Let <i>a</i> and <i>b</i> be non-zero a	and real numbers. Then, the	e equation $(ax^2 + by^2 + c)$	$(x^2 - 5xy + 6y^2) = 0$		
	represents					
	Four straight lines, wh	c = 0 and a, b are of the	Two straight lines and	a circle, when $a = b$ and c		
	same sign		is of sign opposite to t	hat of a		
	c) Two straight lines and	hyperbola, when a and b	d) A circle and an ellipse	, when <i>a</i> and <i>b</i> are of the		

are of the same sign and c is of sign opposite to that of a

45.	If $P(1 + t/\sqrt{2}, 2 + t/\sqrt{2})$ be any point on a line, then	the range of the values of	t for which the point P lies
	between the parallel lines $x + 2y = 1$ and $2x + 4y = 1$	= 15 is	
	a) $-4\sqrt{2}/3 < t < 5\sqrt{2}/6$ b) $0 < t < 5\sqrt{2}/6$	c) $4\sqrt{2}/< t < 0$	d) None of these
46.	If an triangle <i>ABC</i> , $A \equiv (1, 10)$, circumcentre $\equiv (-1, -1)$	$(3, 2/3)$ and orthocentre \equiv	(11/4, 4/3), then the
	coordinates of mid-point of side opposite to A is		
	a) (1, -11/3) b) (1, 5)	c) (1, -3)	d) (1, 6)
47.	The area enclosed by $2 x + 3 y \le 6$ is		
	a) 3 sq. units b) 4 sq. units	c) 12 sq. units	d) 24 sq. units
48.	Through a point <i>A</i> on the <i>x</i> -axis a straight line is dra	wn parallel to y-axis so as	to meet the pair of straight
	lines $ax^2 + 2hxy + by^2 = 0$ in <i>B</i> and <i>C</i> . If $AB = Bc$,	then	
	a) $h^2 = 4ab$ b) $8h^2 = 9ab$	c) $9h^2 = 8ab$	d) $4h^2 = ab$
49.	A variable line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that h	armonic mean of <i>a</i> and <i>b</i> is	s8. then the least area of
	triangle made by the line with the coordinate axes is	5	
	a) 8 sq. unit b) 16 sq. unit	c) 32 sq. unit	d) 64 sq. unit
50.	The straight line $ax + bx + c = 0$ where $abc \neq 0$ wi	ll pass through the first qua	adrant if
	a) $ac > 0, bc > 0$ b) $c > 0$ and $bc < 0$	c) <i>bc</i> > 0 and/or <i>ac</i> > 0	d) <i>ac</i> < 0 and/or <i>bc</i> < 0
51.	If the intercept made on the line $y = mx$ by lines $y = mx$	= 2 and $y = 6$ is less than 5	, then the range of values of
	<i>m</i> is		
	a) $(-\infty, -4/3) \cup (4/3, +\infty)$	b) (-4/3,4/3)	
	c) (-3/4,4/3)	d) None of these	
52.	If each of the points $(x_1, 4)$, $(-2, y_1)$ lies on the line j	oining the points $(2, -1)$, (5, -3) then the point
	$P(x_1, y_1)$ lies on the line		
	a) $6(x + y) - 25 = 0$ b) $2x + 6y + 1 = 0$	c) $2x + 3y - 6 = 0$	d) $6(x + y) + 25 = 0$
53.	P is a point on the line $y + 2x = 1$ and, Q and R are	two points on the line $3y +$	6x = 6 such that triangle
	PQR is an equilateral triangle. The length of the side	e of the triangle is	
	a) $2/\sqrt{5}$ b) $3/\sqrt{5}$	c) 4/√5	d) None of these
54.	The equation to the straight line passing through the	e point ($a\cos^3\theta$, $a\sin^3\theta$)	and perpendicular to the
	line $x \sec \theta + y \csc \theta = a$ is		2.0
	a) $x \cos \theta - y \sin \theta = a \cos 2\theta$	b) $x \cos \theta + y \sin \theta = a \cos \theta$	os 2 θ
	c) $x \sin \theta + y \cos \theta = a \cos 2\theta$	a) None of these $(0, 7)$ $P(10, 7)$ and $C(10, 0)$)]] [;]];] [[]]
55.	A rectangular billiard table has vertices at $P(0,0), Q$ at $M(2,4)$ and movies in a straight line to the top of t	(0, 7), R(10, 7) and $S(10, 0)$). a small dillard dall starts
	at $M(5, 4)$ and moves in a straight line to the top of $(5, 4)$ and moves in a straight line to the top of $(5, 4)$	ine table, bounces to the right of	do is
	(7, 1). The y-coordinate of the point $(7, 1)$.		
56	The equation of the straight line which passes through	(-4.3) such the	u) 4 hat the nortion of the line
50.	between the axes is divided internally by the point i	n the ratio 5.3 is	hat the portion of the line
	a) $9x - 20y + 96 = 0$ b) $9x + 20y = 24$	c) $20x + 9y + 53 = 0$	d) None of these
57.	$ x_1 \ y_1 \ 1 $ $ a_1 \ b_1 \ 1 $	6 20 1 3 9 1 66 6	
	If $\begin{vmatrix} 1 \\ x_2 \end{vmatrix} \begin{vmatrix} 1 \\ y_2 \end{vmatrix} = \begin{vmatrix} 1 \\ a_2 \end{vmatrix} \begin{vmatrix} 1 \\ b_2 \end{vmatrix}$ then the two triangles	s with vertices (x_1, y_1) , (x_2, y_1)	y_2), (x_3 , y_3) and
	$\begin{vmatrix} x_3 & y_3 & 1 \end{vmatrix} \begin{vmatrix} a_3 & b_3 & 1 \end{vmatrix}$		
	$(a_1, b_1), (a_2, b_2), (a, b_3)$ are		
	a) Equal in area b) Similar	c) Congruent	d) None of these
58.	The equation of the bisector of the acute angle betw	een the lines $2x - y + 4 =$	0 and $x - 2y = 1$ is
	a) $x + y + 5 = 0$ b) $x - y + 1 = 0$	c) $x - y = 5$	d) None of these
59.	If one side of rhombus has end points (4, 5) and (1,	1) then the maximum area	of the rhombus is
<i></i>	a) 50 sq. units b) 25 sq. units	c) 30 sq. units	d) 20 sq. units
60.	Consider points $A(3, 4)$ and $B(7, 13)$. If P be a point	on the line $y = x$ such that	PA + PB is minimum, then
	coordinates of P are		

a) (12/7, 12/7)

b) (13/7, 13/7)

- c) (31/7, 31/7)
- d) (0, 0)
- 61. The number of straight lines equidistant from three non-collinear points in the plane of the points is equal to
 - a) 0

c) 2

d) 3

62. The point A(2, 1) is translated parallel to the line x - y = 3 by a distance 4 units. if the new position A' is in third quadrant, then the coordinates of A' are

a) $(2 + 2\sqrt{2}, 1 + 2\sqrt{2})$ b) $(-2 + \sqrt{2}, -1 - 2\sqrt{2})$ b) 1

c) $(2 - 2\sqrt{2}, 1 - 2\sqrt{2})$

d) None of these

- 63. The number of possible straight lines, passing through (2, 3) and forming a triangle with coordinate axes, whose area is 12 sq. units, is
- a) One b) Two c) Three d) Four 64. If the straight lines x + y - 2 = 0, 2x - y + 1 = 0 and ax + by - c = 0 are concurrent, then the family of lines 2ax + 3by + c = 0 (*a*, *b*, *c* are nonzero) is concurrent at
- a) (2, 3) b) (1/2, 1/3) c) (-1/6, -5/9) d) (2/3, -7/5)65. The straight lines x + 2y - 9 = 0, 3x + 5y - 5 = 0 and ax + by - 1 = 0 are concurrent, if the straight line 35x - 22y + 1 = 0 passes through the point a) (a, b) b) (b, a) c) (-a, -b) d) None of these
- 66. Given A(0,0) and B(x, y) with $x \in (0, 1)$ and y > 0. Let the slope of the line AB equal to m_1 . Point C lies on the line x = 1 such that the slope of BC equal to m_2 where $0 < m_2 < m_1$. If the area of the triangle ABC can be expressed as $(m_1 m_2)f(x)$, then the largest possible value of x is a) 1 b) 1/2 c) 1/4 d) 1/8

67. If the pairs of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common, then the joint equation of the other two lines is given by a) $3x^2 + 8xy - 3y^2 = 0$ b) $3x^2 + 10xy + 3y^2 = 0$

c)
$$y^2 + 2xy - 3x^2 = 0$$

d) $x^2 + 2xy - 3y^2 = 0$

- 68. If two vertices of a triangle are (-2, 3) and (5, -1), orthocentre lies at the origin and centroid on the line x + y = 7, then the third vertex lies at
- a) (7, 4)
 b) (8, 14)
 c) (12, 21)
 d) None of these
 69. Points *A* and *B* are in the first quadrant; point 'O' is the origin. If the slope of *OA* is 1, slope of *OB* is 7 and *OA* = *OB*, then the slope of *AB* is

a) -1/5 b) -1/4 c) -1/3 d) -1/2

70. The image of P(a, b) in the line y = -x is Q and the image of Q in the y = x is R. Then the midpoint of PR is

- a) (a + b, b + a)b) ((a + b)/2, (b + 2)/2)
- c) (a b, b a) d) (0, 0)

71. Te area of the triangle formed by the lines y = ax, x + y - a = 0 and the *y*-axis is equal to

a)
$$\frac{1}{2|1+a|}$$
 b) $\frac{a^2}{|1+a|}$ c) $\frac{1}{2}\left|\frac{a}{1+a}\right|$ d) $\frac{a^2}{2|1+a|}$
The second instead of the fact of the norm of division from the point (2, 2) on the line, $x_1 + 2x_2 + 4$

72. The coordinates of the foot of the perpendicular from the point (2, 3) on the line -y + 3x + 4 = 0 are given by

a)
$$(37/10, -1/10)$$
 b) $(-1/10, 37/10)$ c) $(10/37, -10)$ d) $(2/3, -1/3)$

73. Let *PS* be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to *PS* is

a)
$$2x - 9y - 7 = 0$$
 b) $2x - 9y - 11 = 0$ c) $2x + 9y - 11 = 0$ d) $2x + 9y + 7 = 0$
74. The pair of lines represented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ are perpendicular to each other for

	a) Two values of <i>a</i>	b) <i>a</i>	c) For one value of <i>a</i>	d) For no value of <i>a</i>
75.	The line $L_1 = 4x + 3y - 4x + 3y - 3y$	12 = 0 intersects the <i>x</i> -and	nd the <i>y</i> -axes at <i>A</i> and <i>B</i> , r	especetively. A variable line
	perpendicular to L_1 int	ersects the <i>x</i> -and the <i>y</i> -a	exes at P and Q , respection	vely. Then the locus of the
	circumcentre of triangle	ABQ is		
	a) $3x - 4y + 2 = 0$	b) $4x + 3yy + 7 = 0$	c) $6x - 8y + 7 = 0$	d) None of these
76.	Two sides of a triangle an	e along the coordinate axe	s and the medians through	the vertices (other than the
	origin) are mutually perp	pendicular. the number of s	such triangles is/are	
	a) Zero	b) Two	c) Four	d) Infinite
77.	The straight lines $x + y =$	= 0, 3x + y - 4 = 0, x + 3y	v - 4 = 0 from a triangle with	hich is
	a) Isosceles	b) Equilateral	c) Right angles	d) None of these
78.	Let $A = (3, -4), B = (1, 2)$	2), let $P = (2k - 1, 2k + 1)$	be a variable point such th	hat $PA + PB$ is the minimum.
	then <i>k</i> is			
	a) 7/9	b) 0	c) 7/8	d) None of these
79.	$A \equiv (-4,0), B \equiv (4,0). M$	<i>I</i> and <i>N</i> are the variable po	oints of y-axis such that M l	ies below N and $MN = 4$.
	Line joining AM and BN	intersect at 'P'. Locus of 'P'	is	
	a) $2xy - 16 - x^2 = 0$	b) $2xy + 16 - x^2 = 0$	c) $2xy + 16 + x^2 = 0$	d) $2xy - 16 + x^2 = 0$
80.	The angle between the pa	air of lines whose equation	is $4x^2 + 10xy + my^2 + 5x^2$	x + 10y = 0 is
	a) tan ⁻¹ (3/8)		b) $\tan^{-1}(3/4)$	
	c) $\tan^{-1}(2\sqrt{25-4m}/m)$	$(+4), m \in R$	d) None of these	
81.	If two the lines represent	ted by $x^4 + x^3 v + c x^2 v^2 - c x^2 v^2$	$xv^3 + v^4 = 0$ bisect the ar	ngle between the other two.
-	then the value of <i>c</i> is			
	a) 0	b) —1	c) 1	d) -6
82.	The locus of the orthocer	ntre of the triangle formed	by the lines $(1 + p)x - py$	+ p(1 + p) = 0, (1 + q)x -
	qv + q(1 + q) = 0 and v	= 0, where $p \neq q$ is		
	a) A hyperbola	b) A parabola	c) An ellipse	d) A straight line
83.	The straight lines $7x - 2$	y + 10 = 0 and $7x + 2y - 10 = 0$	10 = 0 form an isosceles the	riangle with the line $y = 2$.
	area of this triangle is eq	ual to		
	a) 15/7 sq. units	b) 10/7 sq. units	c) 18/7 sq. units	d) None of these
84.	An equation of a line thr	ough the point (1, 2) whos	e distance from the point (3	3, 1) has the greatest value
	is			ý C
	a) $y = 2x$	b) $y = x + 1$	c) $x + 2y = 5$	d) $y = 3x - 1$
85.	The orthocentre of the tr	iangle formed by the lines	xy = 0 and $x + y = 1$ is	
	a) (1/2, 1/2)	b) (1/3, 1/3)	c) (0, 0)	d) (1/4, 1/4)
86.	The centroid of an equila	teral triangle is (0, 0). If tw	vo vertices of the triangle li	e on $x + y = 2\sqrt{2}$ then one
	of them will have its coor	dinates	C C	-
	a) $(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$	b) $(\sqrt{2} + \sqrt{3}, \sqrt{2} - \sqrt{3})$	c) $(\sqrt{2} + \sqrt{5}, \sqrt{2} - \sqrt{5})$	d) None of these
87.	If the equation of base of	an equilateral triangle is 2	x - v = 1 and the vertex is	(-1, 2), then the length of
	the sides of the triangle is	S	, , , , , , , , , , , , , , , , , , , ,	
		2		45
	a) $\frac{20}{2}$	b) $\frac{z}{\sqrt{z}}$	c) $\frac{8}{15}$	d) $\frac{15}{2}$
	$\sqrt{3}$	√ 15	$\sqrt{15}$	$\sqrt{2}$
88.	Let <i>PQR</i> be a right-angle	d isosceles triangle, right a	ngled at $P(2, 1)$. If the equa	tion of the line <i>QR</i> is
	2x + y = 3, then the equation $2x + y = 3$, then the equation $2x + y = 3$.	ation representing the pair	of lines PQ and PR is	
	a) $3x^2 - 3y^2 + 8xy + 20$	0x + 10y + 25 = 0	b) $3x^2 - 3y^2 + 8xy - 20$	0x - 10y + 25 = 0
	c) $3x^2 - 3y^2 + 8xy + 10$	0x + 15y + 20 = 0	d) $3x^2 - 3y^2 - 8xy - 15$	5y - 20 = 0
89.	A line is drawn perpendi	cular to line $y = 5x$, meeting	ng the coordinate axes at A	and <i>B</i> . If the area of triangle
	OAB is 10 sq. units where	e 'O' is the origin, then the	equation of drawn line is	
	a) 3 <i>x</i> – <i>y</i> – 9	b) $x - 5y = 10$	c) $x + 4y = 10$	d) $x - 4y = 10$
90	If $a/bc = -2 = \sqrt{h/c} +$	$\sqrt{c/h}$ where $a, h, c > 0$ the	$\frac{1}{2}$ n family of lines $\sqrt{a}x \pm \sqrt{b}$	$\sqrt{a} = 0$ passes through

90. If $a/bc = -2 = \sqrt{b/c} + \sqrt{c/b}$, where a, b, c > 0, then family of lines $\sqrt{ax} + \sqrt{by} + \sqrt{c} = 0$ passes through the fixed point given by

	a) $(1, 1)$	h) $(1, -2)$	c) $(-1, 2)$	d) (-1, 1)
91.	Equation of a line which	is narallel to the line comm	on to the nair of lines giver	$hy 6x^2 - xy - 12y^2 = 0$
	and $15x^2 + 14xy - 8y^2 =$	= 0 and at a distnace 7 fron	n it is	
	a) $3r - 4v = -35$	b) $5r - 2v = 7$	c) $3r + 4y = 35$	d) $2x - 3y = 7$
92	The equation of the line s	egment AB is $v = r$ If A an	d B lie on the same side of	te line mirror $2x - y = 1$
<u>, </u>	the the image of AB has t	he equation	a <i>D</i> he on the same state of	$\frac{1}{2} \frac{1}{2} \frac{1}$
	a) $r + v = 2$	b) $8r + v = 9$	c) $7x - y = 6$	d) None of these
93.	A light ray emerging from	the point source placed at	P(2,3) is reflected at a point	int ' O ' on the <i>v</i> -axis and
201	then passes through the r	point $R(5, 10)$. Coordinates	of ' O ' are	
	a) (0, 3)	b) (0, 2)	c) $(0, 5)$	d) None of these
94.	If the origin is shifted to h	be point $(ab/(a - b, 0))$ with	out rotation, then the equa	ation $(a - b)(x^2 + v^2) - b^2$
	2abx = 0 becomes			
	a) $(a - b)(x^2 + y^2) - (a - b)(x^2 + y^2) = (a -$	$(+b)xy + abx = a^2$	b) $(a + b)(x^2 + v^2) = 2a$	b
	c) $(x^2 + y^2) = (a^2 + b^2)$		d) $(a - b)^2(x^2 + y^2) = a$	$^{2}h^{2}$
95.	The number of triangles t	hat the four lines $v = x + 3$	3. v = 2x + 3. v = 3x + 2a	nd $v + x = 3$ form is
201	a) 4	b) 2	c) 3	d) 1
96.	The point (4, 1) undergoe	es the following three trans	formation successively	-) -
	i. Reflection about the line	e v = x	· · · · · · · · · · · · · · · · · · ·	
	ii. Translation through a c	listance 2 units along the p	ositive direction of <i>x</i> -axis	
	iii. Rotation through an ai	rgle $\pi/4$ about the origin in	the counterclockwise dire	ction
	Then the final position of	the point is given by the co	ordinates	
	a) $(1/\sqrt{2}, 7/\sqrt{2})$	b) $(-\sqrt{2}, 7\sqrt{2})$	c) $(-1/\sqrt{2}, 7/\sqrt{2})$	d) $(\sqrt{2}, 7\sqrt{2})$
97.	Line <i>L</i> has intercepts <i>a</i> and	d b on the coordinates axe	s. When the axes are rotate	d through a given angle
	keeping the origin fixed, t	he same line <i>L</i> has intercer	ots p and q. Then,	
				1 1 1 1
	a) $a^2 + b^2 = p^2 + q^2$	b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	c) $a^2 + p^2 = b^2 + q^2$	d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
98.	In the ABC, the coordinat	es of <i>B</i> are $(0, 0)$, <i>AB</i> = 2, 2	$\angle ABC = \pi/3$ and the middl	e point of <i>BC</i> has the
	coordinates (2, 0. The cer	triod of the triangle is		
	a) (1/2,√3/2)	b) (5/3, 1/√3)	c) $(4 + \sqrt{3}/3, 1/3)$	d) None of these
99.	A triangle ABC with verti	$\cos A(-1,0), B(-2,3/4)$ ar	nd $C(-3, -7/6)$ has its orth	ocentre <i>H</i> . Then the
	orthocentre of triangle Bo	CH will be		
	a) (-3, -2)	b) (1, 3)	c) (-1,2)	d) None of these
100	If the ends of the base of a	an isosceles triangle are at	(2, 0) and (0, 1) and the eq	uation of one side is $x = 2$,
	then the orthocentre of the	ie triangle is		
	a) (3/2, 3/2)	b) (5/4, 1)	c) (3/4, 1)	d) (4/3, 7/12)
101	Given $A \equiv (1, 1)$ and AB i	s any line through it cutting	g the <i>x</i> -axis in <i>B</i> . If <i>AC</i> is pe	rpendicular to AB and
	meets the <i>y</i> -axis in <i>C</i> , the	n the equation of locus of n	nidpoint P of BC is	
	a) $x + y = 1$	b) $x + y = 2$	c) $x + y = 2xy$	d) $2x + 2y = 1$
102	In a trinagle <i>ABC</i> , $A \equiv (\alpha)$	β), $B \equiv (2, 3)$ and $C \equiv (1, 3)$	3) and point A lies on line y	$v = 2x + 3$ where $\alpha \in I$.
	Area of $\triangle ABC$, \triangle , is such the	hat $[\Delta] = 5$. Possible coord	inates of <i>A</i> are (where [.] re	epresents greatest integer
	function)			
	a) (2, 3)	b) (5, 13)	c) (-5, -7)	d) (-3, -5)
103	. Two vertices of a triangle	are $(4, -3)$ and $(-2, 5)$. If	the orthocentre of the trian	Igle is at $(1, 2)$, then the
	third vertex is			
101	a) $(-33, -26)$	bJ (33, 26)	cj (26, 33)	d) None of these
104.	1 ne line $x/3 + y/4 = 1$ m	ieets the y-axis and x-axis a	at <i>A</i> and <i>B</i> , respectively. A s	square ABCD is constructed
	on the line segment AB av	way from the origin. The co	ordinates of the vertex of t	ne square farthest from the
	origin are $(7, 2)$	(4,7)		
105	a) $(/, 3)$	UJ(4, /)	CJ(0,4)	$UJ(3, \delta)$
102	. The distance between the	e two parallel lines is 1 unit	. A point A is chosen to lie	between the lines at a

distance '*d*' from one of them. Triangle *ABC* is equilateral with *B* on one line and *C* on the other parallel line. The length of the side of the equilateral triangle is

a) $(2/3)\sqrt{d^2 + d + 1}$ b) $2\sqrt{(d^2 - d + 1)/3}$ c) $2\sqrt{d^2 - d + 1}$ d) $\sqrt{d^2 - d + 1}$ 106. The combined equation of straight lines that can be obtained by reflecting the lines y = |x - 2| in the *y*-

- U6. The combined equation of straight lines that can be obtained by reflecting the lines y = |x 2| in the yaxis is
 - a) $y^2 + x^2 + 4x + 4 = 0$ b) $y^2 + x^2 4x + 4 = 0$ c) $y^2 x^2 + 4x 4 = 0$ d) $y^2 x^2 4x 4 = 0$ In AABC the coordinates of the context A are (4 = 1) and lines x = x = 1 = 0 and 2x = x = 2 are interval.
- 107. In $\triangle ABC$ the coordinates of the vertex *A* are (4, -1) and lines x y 1 = 0 and 2x y = 3 are internal bisectors of angles *B* and *C*. Then, radius of incircle of triangle *ABC* is

a)
$$4/\sqrt{5}$$
 b) $3/\sqrt{5}$ c) $6/\sqrt{5}$ d) $7/\sqrt{5}$

108. θ_1 and θ_2 are the inclination of lines L_1 and L_2 with x-axis. if L_1 and L_2 pass through $p(x_1, y_1)$, then equation of one of the angle bisector of these lines is

a)
$$\frac{x - x_1}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y_1}{\sin\left(\frac{\theta_1 - \theta_2}{2}\right)}$$

b)
$$\frac{x - x_1}{-\sin\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y_1}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}$$

c)
$$\frac{x - x_1}{\sin\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y_1}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}$$

d)
$$\frac{x - x_1}{-\sin\left(\frac{\theta_1 - \theta_2}{2}\right)} = \frac{y - y_1}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}$$

109. *OPQR* is a square and *M*, *N* are the midpoints of the sides *PQ* and *QR*, respectively. If the ratio of the areas of the square and the triangle *OMN* is λ : 6, then $\lambda/4$ is equal to

110. Consider 3 lines as fallows

 $L_1: 5x - y + 4 = 0$ $L_2: 3x - y + 5 = 0$

$$L_2: 3x$$
 $y + 3 = 0$
 $L_3: x + y + 8 = 0$

If these lines enclose a triangle *ABC* and sum of the squares of the tangent to the interior angles can be expressed in the form p/q where p and q are relatively prime numbers, then the value of p + q is a) 500 b) 450 c) 230 d) 465

111. Let A_r , r = 1, 2, 3, ... be points on the number line such that $OA_1, OA_2, OA_3, ...$ are in G.P. where O is origin and the common ratio of the G.P. be a positive proper fraction. Let M_r be the middle point of the line segment A_rA_{r+1} . Then the value $\sum_{r=1}^{\infty} OM_r$ is equal to

a)
$$\frac{OA_1(OSA_1 - OA_2)}{2(OA_1 + OA_2)}$$
 b) $\frac{OA_1(OA_1 - OA_2)}{2(OA_1 + OA_2)}$ c) $\frac{OA_1}{2(OA_1 - OA_2)}$ d) ∞

112. *A* is a point on either of two $y + \sqrt{3}|x| = 2$ at a distance of $4\sqrt{3}$ units from their point of intersection. The coordinates of the foot of perpendicular from *A* on the bisector of the angle between them are a) $(2/\sqrt{3}, 2)$ b) (0, 0) c) $(2\sqrt{3}, 2)$ d) (0, 4)

113. The condition on a and *b*, such that the portion of the line ax + by - 1 = 0, intercepted between the lines ax + y = 0 and x + by = 0, subtends a right angle at the origin is a) a = b b) a + b = 0 c) a = 2b d) 2a = b

114. *m*, *n* are integers with 0 < n < m. *A* is the point (m, n) on the Cartesian plane. *B* is the reflection of *A* in the line y = x. *C* is the reflection of *B* in the *y*-axis, *D* is the reflection of *C* in the *x*-axis and *E* is the reflection of *D* in the *y*-axis. The area of the pentagon *ABCDE* is a) 2m(m+n) b) m(m+3n) c) m(2m+3n) d) 2m(m+3n)

a)
$$2m(m+n)$$
 b) $m(m+3n)$ c) $m(2m+3n)$ d) $2m(m+3n)$
115. The equation $a^2x^2 + 2h(a+b)xy + b^2y^2 = 0$ and $ax^2 + 2hxy + by^2 = 0$ represent

- a) Two pairs of perpendicular straight lines
- b) Two pairs of parallel straight lines
- c) Two pairs of straight lines which are equally inclined to each other
- d) None of these

116. The combined equation of the lines l_1 , l_2 is $2x^2 + 6xy + y^2 = 0$ and that of the lines m_1 , m_2 is $4x^2 + 18xy + y^2 = 0$. If the angle between l_1 and m_2 be α , then the angle between l_2 and m_1 will be a) $\pi/2 - \alpha$ b) 2α c) $\pi/4 + \alpha$ d) α

117. Let *O* be the origin. If A(1, 0) and B(0, 1) and P(x, y) are points such that xy > 0 and x + y < 1, then

a) P lies either inside the triangle OAB or in the mid quadrant b) Pcannot lie inside the triangle OAB c) *P* lies inside the triangle *OAB* d) *P* lies in the first quadrant only 118. The line x + 3y - 2 = 0 bisects the angle between a pair of straight line s of which one has equation x - 7y + 5 = 0. the equation of the other line is a) 3x + 3y - 1 = 0b) x - 3y + 2 = 0c) 5x + 5y - 3 = 0d) None of these 119. Let *ABC* be a triangle. Let *A* be the point (1, 2), y = x be the perpendicular bisector of *AB* and x - 2y + 1 = 0 be the angle bisector of $\angle C$. If equation of *BC* is given by ax + by - 5 = 0, then the value of a + b is a) 1 b) 2 c) 3 d) 4 120. The equation x - y = 4 and $x^2 + 4xy + y^2 = 0$ represent the sides of a) An equilateral triangle b) A right angled triangle c) An isosceles triangle d) None of these 121. If P = (1, 0), Q = (-1, 0) and R = (2, 0) are three given points, then locus of the point *S* satisfying the relation $SQ^2 + SR^2 = 2SP^2$ is a) A straight line parallel to x-axis b) A circle passing through the origin c) A circle with the centre at the origin d) A straight line parallel to y-axis 122. If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1 - a_2)x + a_2 + a_3 + a_4 + a_4$ $(b_1 - b_2)y + c = 0$, then the value of *c* is a) $a_1^2 - a_2^2 + b_1^2 - b_2^2$ b) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ c) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$ d) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$ 123. A rectangle ABCD, where $A \equiv (0, 0), B \equiv (4, 0), C \equiv (4, 2), D \equiv (0, 2)$, undergoes the following transformations successively: (i) $f_1(x, y) \rightarrow (y, x)$, (ii) $f_2(x, y) \rightarrow (x + 3y, y)$, (iii) $f_3(x, y) \rightarrow ((x - y))$ y)/2, (x + y)/2). The final figure will be c) A rectangle a) A square b) A rhombus d) A parallelogram 124. The extremities of the base of an isosceles triangle are (2, 0) and (0, 2). If the equation of one of the equal side is x = 2, then equation of other equal side is d) 2x + y = 2b) x - y + 2 = 0 c) y = 2a) x + y = 2125. Distance of origin from line $(1 + \sqrt{3})y + (1 - \sqrt{3})x = 10$ along the line $y = \sqrt{3}x + k$ is a) $5/\sqrt{2}$ b) $5\sqrt{2} + k$ c) 10 d) 0 126. A light ray coming along the line 3x + 4y = 5 gets reflected from the line ax + by = 1 and goes along the line 5x - 12y = 10. Then a) a = 64/115, b = 112/15b) a = 14/15, b = -8/115d) a = 64/15, b = 14/15c) a = 64/115, b = -8/115127. In a triangle *ABC*, if *A* is (2, -1), and 7x - 10y + 1 = 0 and 3x - 2y + 5 = 0 are equations of an altitude and an angle bisector, respectively, drawn from *B*, then equation of *BC* is a) x + y + 1 = 0b) 5x + y + 17 = 0c) 4x + 9y + 30 = 0d) x - 5y - 7 = 0128. One of the diagonals of a square is the portion of the line x/2 + y/3 = 0 intercepted between the axes. Then the extermities of the other diagonal are c) (0, 0), (-1, 1)a) (5, 5), (-1, 1)b) (0, 0), (4, 6) d) (5, 5), (4, 6) 129. If the extremities of the base of an isosceles triangle are the points (2a, 0) and (0, a) and the equation of one of the sides is x = 2a, then the area of the triangle is a) $5a^2$ sq. units b) $5a^2/2$ sq. units c) $25a^2/2$ sq. units d) None of these 130. In a triangle *ABC* if $A \equiv (1, 2)$ and internal angle bisectors through *B* and *C* are y = x and y = -2x, then the inradius *r* of the $\triangle ABC$ is c) 2/3 d) None of these a) $1/\sqrt{3}$ b) $1/\sqrt{2}$

131. The foot of the perpe	endicular on the line $3x + y$	$= \lambda$ drawn from the origin	is <i>C</i> . If the line cuts the <i>x</i> -axis
and y-axis at A and I	<i>3</i> , respectively, then <i>BC</i> : <i>CA</i>	is	
a) 1:3	b) 3:1	c) 1:9	d) 9:1
132. If it is possible to dra	wn a line which belongs to	all the given family of lines	$y - 2x + 1 + \lambda_1(2y - x - 1) =$
$0, 3y - x - 6\lambda_2(y - y) = 0$	$3x+6) = 0, ax+y-2+\lambda$	$_{3}(6x + xy - a) = 0$, then	
a) $a = 4$	b) <i>a</i> = 3	c) $a = -2$	d) $a = 2$
133. The line $x + y = p$ m	ieets the <i>x</i> -and <i>y</i> -axes at <i>A</i> a	ind <i>B</i> , respectively. <i>A</i> triang	gle <i>APQ</i> is inscribed in the
triangle OAB, O bein	g the origin, with right angle	e at Q . P and Q lie, respective	rely, on <i>OB</i> and <i>AB</i> . If the area
of the area of the tria	ingle APQ is 3/8th of the are	ea of the triangle <i>OAB</i> , then	AQ/BQ is equal to
a) 2	b) 2/3	c) 1/3	d) 3
134. In a triangle <i>ABC</i> , th	e bisectors of angles <i>B</i> and (f lie along the lines $x = y$ a	nd $y = 0$. if A is (1, 2), then the
equation of line <i>BC</i> i	S		
a) $2x + y = 1$	b) $3x - y = 5$	c) $x - 2y = 3$	d) $x + 3y = 1$
135. If $\sum_{i=1}^{4} (x_1^2 + y_1^2) \le 2$	$x_1x_3 + 2x_2x_4 + 2y_2y_3 + 2y$	$_{1}y_{4}$ the points $(x_{1}, y_{1}), (x_{2}, y_{1})$	y_2), (x_3 , y_3), (x_4 , y_4) are
a) The vertices of a r	ectangle	b) Collinear	
c) Trapezium		d) None of these	
136. The number of integ	ral values of <i>m</i> , for which th	e <i>x</i> -coordinate of the point	of intersection of the lines
3x + 4y = 9 and $y =$	mx + 1 is also integer is		
a) 2	b) 0	c) 4	d) 1
137. The straight lines 4a	x + 3by + c = 0, where $a + by + c = 0$	b + c = 0, are concurrent	at the point
a) (4, 3)	b) (1/4, 1/3)	c) (1/2, 1/3)	d) None of these
138. A straight line passir	ng through $P(3, 1)$ meets the	e coordinate axes at A and B	3. It is given that distance of this
straight line from the	e origin '0' is maximum. Are	ea of triangle <i>OAB</i> is equal t	0
a) 50/3 sq. units	b) 25/3 sq. units	c) 20/3 sq. units	d) 100/3 sq. units
139. A rectangle <i>ABCD</i> ha	is its side <i>AB</i> parallel to line	y = x and vertices A, B and	d D lie on $y = 1, x = 2$ and
x = -2, respectively	'. locus of vertex 'C' is		
a) $x = 5$	b) $x - y = 5$	c) $y = 5$	d) $x + y = 5$
140. Line $ax + by + p = 0$	0 makes angle $\pi/4$ with x co	$a + y \sin \alpha = p, p \in R^+$.	t these lines and the line
$x\sin\alpha - y\cos\alpha = 0$	are concurrent, then		
a) $a^2 + b^2 = 1$	b) $a^2 + b^2 = 2$	c) $2(a^2 + b^2) = 1$	d) None of these
141. If the equation of any	y two diagonals of a regular	pentagon belongs to family	y of lines $(1+2\lambda)y -$
$(2+\lambda)x+1-\lambda=0$) and their lengths are sin 36	6°, then locus of centre of ci	ircle circumscribing the given
pentagon (the triang	les formed by these diagona	als with slides of pentagon	have no side common) is $\frac{2}{3}$
a) $x^2 + y^2 - 2x - 2y^2$	$y + 1 + \sin^2 72^\circ = 0$	b) $x^2 + y^2 - 2x - 2y$	$+\cos^2 72^\circ = 0$
c) $x^2 + y^2 - 2x - 2y$	$y + 1 + \cos^2 72^\circ = 0$	d) $x^2 + y^2 - 2x - 2y$	$+\sin^2 72^\circ = 0$
142. If the equation of the	pair of straight lines passin	ig through the point (1, 1),	one making an angle θ with the
positive direction of	<i>x</i> -axis and the other making	g the same angle with posit	ive direction of y-axis, is
$x^2 - (a+2)xy + y^2$	$+a(x+y-1) = 0, a \neq -2$	2, then the value of $\sin 2\theta$ i	S
a) <i>a</i> – 2	b) a + 2	c) $2/(a+2)$	d) 2/a
143. The incentre of the t	riangle with vertices $(1, \sqrt{3})$	(0,0) and $(2,0)$ is	
a) (1, √3/2)	b) (2/3, 1/√3)	c) $(2/3,\sqrt{3}/2)$	d) $(1, 1/\sqrt{3})$
144. If a pair of perpendic	cular straight lines drawn th	rough the origin forms an i	sosceles triangle with the line
2x + 3y = 6, then ar	ea of the triangle so formed	is	
a) 36/13	b) 12/17	c) 13/5	d) 17/13
145. A line 'L' is drawn fr	om $P(4,3)$ to meet the lines	L_1 and L_2 given by $3x + 4y$	y + 5 = 0 and $3x + 4y + 15 = 0$
at points A and B, re	spcetively. From 'A', a line p	erpendicular to <i>L</i> is drawn	meeting the line L_2 at A_1 .
Similarly from point	'B', a line perpendicular to B	L is drawn meeting the line	L_1 at B_1 . Thus a parallelogram
AA_1BB_1 is formed. T	hen the equation of L' so th	at the area of the parallelog	gram AA_1BB_1 is least is
a) $x - 7y + 17 = 0$	b) $7x + y + 31 = 0$	c) $x - 7y - 17 = 0$	d) $x + 7y - 31 = 0$
146. The vertices of a tria	ngle are $(pq, 1/(pq), (qr, 1/$	(qr)) and $(rq, 1/(rp))$ whe	ere p, q, r are the roots of the

equation $y^3 - 3y^2 + 6y + 1 = 0$. the coordinates of its centriod are a) (1, 2) b) (2, −1) c) (1,−1) d) (2, 3) 147. *P*, *Q*, *R* and *S* are the points of intersection with the coordinate axes of the lines px + qy = pq and qx + py = pq, then (P, Q > 0)a) *P*, *Q*, *R*, *S* from a parallelogram b) *P*, *Q*, *R*, *S* from a rhombus c) *P*, *Q*, *R*, *S* are concyclic d) None of these 148. If one of the lines of $my^2 + (1 - m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then *m* is a) 3 c) -1/2d) −1 b) 2 149. The equation of straight line passing through (-a, 0) and making the triangle with axes of area 'T' is a) $2Tx + a^2y + 2aT = 0$ b) $2Tx - a^{2y} + 2aT = 0$ c) $2Tx - a^{2y} - 2aT = 0$ d) None of these 150. Locus of a point is equidistant from the lines $x + y - 2\sqrt{2} = 0$ and $x + y - \sqrt{2} = 0$ is b) $x + y - 3\sqrt{2} = 0$ c) $2x + 2y - 3\sqrt{2} = 0$ d) $2x + 2y - 5\sqrt{2} = 0$ a) $x + v - 5\sqrt{2} = 0$ 151. The area of a parallelogram formed by the lines $ax \pm bx \pm c = 0$ is a) $c^2/(ab)$ b) $2c^2/(ab)$ c) $c^{2}/2ab$ d) None of these 152. Line *L* ha sintercepts *a* and *b* on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line *L* has intercepts *p* and *q* then, b) $1/a^2 + 1/b^2 = 1/p^2 + 1/q^2$ a) $a^2 + b^2 = p^2 + q^2$ c) $a^2 + p^2 = b^2 + q^2$ d) $1/a^2 + 1/p^2 = 1/b^2 + 1/q^2$ 153. The lines $y = m_1 x$, $y = m_2 x$ and $y = m_3 x$ make equal intercepts on the line x + y = 1, then a) $2(1 + m_1)(1 + m_3) = (1 + m_2)(2 + m_1 + m_3)$ b) $(1 + m_1)(1 + m_3) = (1 + m_2)(1 + m_1 + m_3)$ d) $2(1 + m_1)(1 + m_2) = (1 + m_2)(1 + m_1 + m_3)$ c) $(1 + m_1)(1 + m_2) = (1 + m_3)(2 + m_1 + m_3)$ 154. The condition that one of the straight line given by the equation $ax^2 + 2hxy + by^2 = 0$ may coincide with one of those given by the equation $a'x^2 + 2h'^{xy} + b'y^2 = 0$ is a) $(ab' - a'b)^2 = 4(ha' - h'a)(bh' - b'h')$ b) $(ab' - a'b)^2 = (ha' - h'a)(bh' - b'h')$ c) $(ha' - h'a)^2 = 4(ab' - a'b)(bh' - b'h')$ d) $(bh' - b'h)^2 = 4(ab' - a'b)(ha' - h'a)$ d) $(bh' - b'h)^2 = 4(ab' - a'b)(ha' - h'a)$ 155. If the point $(x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1))$ divides the join of (x_1, y_1) and (x_2, y_2) internally, then b) 0 < *t* < 1 c) *t* > 1 d) t = 1a) *t* < 0 156. The straight lines represented by $(y - mx)^2 = a^2(1 + m)$ and $(y - nx)^2 = a^2(1 + n^2)$ form a b) Rhombus c) Trapezium a) Rectangle d) None of these 157. If the vertices of a triangle are $(\sqrt{5}, 0)$, $(\sqrt{3}, \sqrt{2})$ and (2, 1), then the orthocentre of the triangle is b) (0, 0) a) $(\sqrt{5}, 0)$ c) $(\sqrt{5} + \sqrt{3} + 2, \sqrt{2} + 1)$ d) None of these 158. If $A(1, p^2)$, B(0, 1) and C(p, 0) are the coordinates of three points, then the value of p for which the area of the triangle *ABC* is minimum is d) None of these a) $1/\sqrt{3}$ b) $-1/\sqrt{3}$ c) $1/\sqrt{2}$ 159. If the straight lines 2x + 3y - 1 = 0, x + 2y - 1 = 0 and ax + by - 1 = 0 form a triangle with origin as orthocentre, then (a, b) is given by a) (6, 4) b) (-3, 3)c) (-8,8) d) (0,7) 160. A square of side a lies above the *x*-axis and has vertex at the origin. The side passing through the origin makes an angle $\alpha(0 < \alpha < \pi/4)$ with the positive direction of *x*-axis. The equation of its diagonal not passing through the origin is a) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$ b) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$ c) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ d) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$ 161. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. with same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) a) Lie on a straight line b) Lie on an ellipse c) Lie on a circle d) Are vertices of a triangle

Multiple Correct Answers Type

162. The straight line repres	ented by $x^2 + mxy - 2y^2 + m$	+3y - 1 = 0 meets at	
a) (-1/3,2/3)	b) (-1/3, -2/3)	c) (1/3, 2/3)	d) None of these
163. Equation (s) of the strai	ght line(s), inclined at 30° t	to the <i>x</i> -axis such that the l	ength of its (each of their)
	b) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$		d) /ī. r/ī. o
a) $x + \sqrt{3y} + 5\sqrt{3} = 0$	$0 \int x - \sqrt{3y} + 5\sqrt{3} = 0$	$x + \sqrt{3y} - 5\sqrt{3} = 0$	$u_{1}x - \sqrt{3y} - 5\sqrt{3} = 0$
164. If $(-4, 0)$ and $(1, -1)$ ar	e two vertices of a triangle	of area 4 sq. units, then its	third vertex lies on
a) $y = x$	b) $5x + y + 12 = 0$	c) $x + 5y - 4 = 0$	d) $x + 5y + 12 = 0$
165. Let $u \equiv ax + by + a\sqrt[3]{b}$ bisectors of the angle fo	$= 0, v \equiv bx - ay + b\sqrt[3]{a} =$ rmed by $k_1u - k_2v = 0$ and	$0, a, b \in R$ be two straight d $k_1 u + k_2 v = 0$ for nonzer	lines. The equations of the ro real k_1 and k_2 are
a) $y = 0$	b) $k_2 u + k_4 v = 0$	c) $k_0 y - k_0 y = 0$	d) $v = 0$
166 The points (0.8/3) (1.1)	(82, 30) and $(82, 30)$ are vertices	s of	
a) An abtuse-angled tria	ingle	h) And acute-angled tria	angle
a) A right angled triang		d) None of these	angie
L_{167} Let $0 = (0, 0)$ $A = (0, 4)$	P = (f, 0) ' P' he a maxim	a point such that the area of	ftriangle DOA is two times
107. Let $0 = (0, 0), A = (0, 4)$	B = (0, 0), P be a moving	g point such that the area t	of thangle POA is two times
the area of triangle POB	Locus of P will be stright	t line whose equation can b	
a) x + 3y = 0	bJ x + 2y = 0	$c) \ 2x - 3y = 0$	$d \int 3y - x = 0$
168. The sides of a triangle a	re the straight lines $x + y =$	$= 1,7y = x \text{ and } \sqrt{3}y + x =$	0. Then which of the
following is an interior	point of the triangle?		
In an obtused-angle tria	ngle orthocentre and circu	mcentre are exterior to the	triangle
a) Circumcentre	b) Centriod	c) Incentre	d) Orthocentre
169. If one of the lines given	by the equation $2x^2 + pxy$	$+3y^2 = 0$ coincide with o	ne of those given buy
$2x^2 + qxy - 3y^2 = 0$ ar	d the other lines represent	ted by them be perpendicu	lar, then
a) <i>p</i> = 5	b) $p = -5$	c) $q = -1$	d) $q = 1$
170. If m_1 and m_2 are the root	ots of the equation $x^2 - ax$	-a - 1 = 0, then the area	of the triangle formed by the
three straight lines $y =$	$m_1 x, y = m_2 x$ and $y = a(a)$	$t \neq -1$) is	
$a^{2}(a+2)$		$-a^2(a+2)$	
a) $\frac{1}{2(a+1)}$ if $a > -1$		b) $\frac{1}{2(a+1)}$ if $a < -3$	1
c) $\frac{-a^2(a+2)}{2(a+1)}$ if $-2 < -2$	a — 1	d) $\frac{a^2(a+2)}{2(a+1)}$ if $a < -2$	
171 Angle made with the r_{-2}	wis hy two lines drown thr	2(u + 1)	is the line $r + y - 4$ at a
distance $\sqrt{6}/2$ from the	noint $(1, 2)$ are	ough the point (1, 2) cutth	y = 1 at a
π 5π	7π 11 π	π 3π	d) None of these
a) $\frac{\pi}{12}$ and $\frac{5\pi}{12}$	b) $-\frac{7\pi}{12}$ and $-\frac{11\pi}{12}$	c) $\frac{\pi}{2}$ and $\frac{5\pi}{2}$	uj Nolle of these
172 Two sides of a triangle a	12 12 $12The lines (a + h)x + (a + h)x$	(-h)y - 2ah = 0	
(a-b)x + (a+b)y - 2	Pah = 0 If the triangle is is	osceles and the third side r	asses through point
(h - a, a - h) then the	ab = 0. If the triangle is is		usses through point
(b) $u, u = 0$	b) $r = v \pm 2(h - a)$	c) $r = h \pm a = 0$	d) $y = a + b = 0$
172 If the points $(a^3/(a-1))$	$(a^2 - 3)/(a - 1)) (b^3/(b^3)$	$b = 1$ $(b^2 = 3)/(b = 1)$ a	$(h^2 - 2)/(h - 1)$ and
$(c^3/(c-1), (c^2-3)/(c^2-3))$	$(a^{-} - 3)/(a^{-} - 1)), (b^{-}/(a^{-} - 1)), where a, b, c are dif$	Ferent from 1, lie on the line	e lx + my + n = 0, then
a) $a + b + c = -\frac{m}{l}$		b) $ab + bc + ca = \frac{n}{l}$	
c) $abc = \frac{(m+n)}{l}$		d) $abc - (bc + ca + ab)$)+3(a+b+c)=0
174. Given three straight line	x = 2x + 11y - 5 = 0.24x + 11y - 1	7v - 20 = 0 and $4x - 3v$	-2 = 0. Then.
a) They form a triangle		b) They are concurrent	
c) One line hisects the a	ngle hetween the other two	a) Two of them are para	allel
175 The points $\Delta(0, 0)$ R(co	s_{α} sin α and $C(cos R sin \alpha)$	β are the vertices of a right	ht-angled triangle if
$\alpha - \beta = 1$	$\alpha - R = 1$	$\alpha - R = 1$	$\alpha - \beta = 1$
a) $\sin \frac{\pi \rho}{2} = \frac{1}{\sqrt{2}}$	b) $\cos \frac{\pi - p}{2} = -\frac{1}{\sqrt{2}}$	c) $\cos \frac{\alpha - \beta}{2} = \frac{1}{\sqrt{2}}$	d) $\sin \frac{\alpha - \beta}{2} = -\frac{1}{\sqrt{2}}$

176. If (x, y) be a variable point on the line y = 2x lying between the lines 2(x + 1) + y = 0 and x + 3(y - 1) = 0, then

a) $x \in (-1/2, 6/7)$ b) $x \in (-1/2, 3/7)$ c) $y \in (-1, 3/7)$ d) $y \in (-1, 6/7)$

- 177. Consider the straight lines x + 2y + 4 = 0 and 4x + 2y 1 = 0. The line 6x + 6y + 7 = 0 isa) Bisector of the angle including originb) Bisector of acute angle
 - c) Bisector of obtuse angle
- d) None of the above
- 178. Two straight lines u = 0 and v = 0 pass through the origin and angle between them is $\tan^{-1}(7/9)$. If the ratio of the slope of v = 0 and u = 0 is 9/2 then their equations are

a)
$$y + 3x = 0$$
 and $3y + 2x = 0$
b) $2y + 3x = 0$ and $3y + x = 0$

- c) 2y = 3x and 3y = x d) y = 3x and 3y = 2x
- 179. If the straight line ax + cy = 2b where a, b, c > 0 makes a triangle of area 2 sq. units with coordinate axes, then
- a) *a*, *b*, *c* are in G.P.
 b) *a*, -*b*, *c* are in G.P.
 c) *a*, 2*b*, *c* are in G.P.
 d) *a*, -2*b*, *c* are in G. P.
 180. The straight line 3*x* + 4*y* 12 = 0 meets the coordinates axes at *A* and *B*. An equilateral triangle *ABC* is constructed. The possible coordinates of vertex '*C*' are

a)
$$\left(2\left(1-\frac{3\sqrt{3}}{4}\right),\frac{3}{2}\left(1-\frac{4}{\sqrt{3}}\right)\right)$$

b) $\left(-2(1+\sqrt{3}),3/2(1-\sqrt{3})\right)$
c) $\left(2(1+\sqrt{3}),3/2(1+\sqrt{3})\right)$
d) $\left(2\left(1+\frac{3\sqrt{3}}{4}\right),\frac{3}{2}\left(1+\frac{4}{\sqrt{3}}\right)\right)$

181. If $x^2 + 2hxy + y^2 = 0$ represents the equation of the straight lines through the origin which make an angle α with the straight line y + x = 0, then

a)
$$\sec 2\alpha = h$$

b) $\cos \alpha = \sqrt{(1+h)/(2h)}$
d) $\cot \alpha = \sqrt{(h+1)/(h-1)}$

182. If $(a \cos \theta_1, a \sin \theta_1)$, $(a \cos \theta_2, a \sin \theta_2)$ and $(a \cos \theta_3, a \sin \theta_3)$ represents the vertices of an equilateral triangle inscribed in a circle, then

a) $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0$ b) $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 0$ c) $\tan \theta_1 + \tan \theta_2 + \tan \theta_3 = 0$ d) $\cot \theta_1 + \cot \theta_2 + \cot \theta_3 = 0$

183. All points lying inside the triangle formed by the points (1, 3), (5, 0) and (-1, 2) satisfy a) $3x + 2y \ge 0$ b) $2x + y - 13 \ge 0$ c) $2x - 3y - 12 \le d$ d) $-2x + y \ge 0$

184. If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of a triangle, then the equation

 $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} + \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$ Represents

Represents

- a) The median through A
- b) The altitude through *A*d) The line joining the centroid with a vertex
- c) The perpendicular bisector of *BC* d) The line joining the centroid with a vertex 185. The area of triangle *ABC* is 20 cm². The coordinates of vertex *A* are (-5, 0) and those of *B* are (3, 0). The vertex *C* lies on the line x y = 2. The coordinates of *C* are

a)
$$(5, 3)$$
 b) $(-3, -5)$ c) $(-5, -7)$ d) $(7, 5)$
186. If (α, α^2) lies inside the triangle formed by the lines $2x + 3y - 1 = 0, x + 2y - 3 = 0, 5x - 6y - 1 = 0$
then

a)
$$2\alpha + 3\alpha^2 - 1 > 0$$
 b) $\alpha + 2\alpha^2 - 3 < 0$ c) $\alpha + 2\alpha^2 - 3 < 0$ d) $6\alpha^2 - 5\alpha + 1 > 0$
187. If each of the vertices of a triangle has integral coordinates, then the triangle may be
a) Right angled b) Equilateral c) Isosceles d) None of these

188. If the vertices *P*, *Q*, *R* of a triangle *PQR* are rational points, which of the following points of the triangle *PQR* is (are) always rational points(s)? (A rational point is a point whose coordinates are rational numbers)

a) Centroid b) Incentre c) Circumcentre d) Orthocentre

189.	Angles made with <i>x</i> -axis b	by a straight line drawn thr	ough (1, 2) so that it inters	ects $x + y = 4$ at a distance
	$\sqrt{6}/3$ from (1, 2) are			
	a) 105°	b) 75°	c) 60°	d) 15°
190.	The equation of the lines	passing through the point (1, 0) and at a distance $\sqrt{3}/$	2 from the origin are
	a) $\sqrt{3}x + y - \sqrt{3} = 0$	b) $x + \sqrt{3}v - \sqrt{3} = 0$	c) $\sqrt{3}x - v - \sqrt{3} = 0$	d) $x - \sqrt{3}y - \sqrt{3} = 0$
191.	The lines $x + 2y + 3 = 0$.	x + 2y - 7 = 0 and $2x - y$	-4 = 0 are the sides of a	square. Equation of the
	remaining side of the squa	are can be		- quar or _ quarrent or the
	a) $2x - y + 6 = 0$	b) $2x - y + 8 = 0$	c) $2x - y - 10 = 0$	d) $2x - y - 14 = 0$
192.	Sides of a rhombus are pa	rallel to the lines $x + y - 1$	= 0 and $7x - y - 5 = 0$. If	t is given that diagonals of
	the rhombus intersect at ((1,3) and one vertex $'A'$ of	the rhombus lies on the lin	v = 2x. Then the
	coordinates of the vertex.	A are		
	a) (8/5, 16/5)	b) $(7/15, 14/15)$	c) $(6/5, 12/5)$	d) (4/15, 8/15)
193	In a $\triangle ABC, A \equiv (\alpha, \beta), B \equiv$	$\equiv (1,2), C \equiv (2,3)$ and poir	(0, 0, 12, 0)	$(+3 \text{ where } \alpha, \beta \in \text{ integer})$
1,01	and area of the triangle is	S such that $[S] = 2$ where $[S] = 2$	denotes the greatest int	eger function. Then all
	possible coordinates of <i>A</i>			
	a) $(-7, -11)$	b) $(-6, -9)$	c) (2,7)	d) (3, 9)
194.	If $P(1, 2), O(4, 6), R(5, 7)$	and $S(a, b)$ are the vertices	of a parallelogram <i>PORS</i> , t	then
	a) $a = 2, b = 4$	b) $a = 3, b = 4$	c) $a = 2, b = 3$	d) $a = 1$ or $b = -1$
195.	If <i>P</i> is a point (x, v) on the	e line $v = -3x$ such that P a	and the point $(3, 4)$ are on t	the opposite sides of the
	line $3x - 4y = 8$. then			T T T
	a) $x > 8/15$	b) $x > 8/5$	c) $v < -8/5$	d) $v < -8/15$
196.	Three lines $px + qy = r =$	= 0, qx + ry + p = 0 and rx	r + py + q = 0 are concurr	ent if
	a) $p + q + r = 0$		b) $p^2 + q^2 + r^2 = pr + rp$	p + pq
	c) $p^3 + q^3 + r^3 = 3pqr$		d) None of these	
197.	The lines joining the origi	n to the point of intersectio	n of $3x^2 + mxy - 4x + 1 =$	= 0 and 2x + y - 1 = 0 are
	at right angles. Then whic	h of the following is not pos	ssible value of <i>m</i> ?	·
	a) -4	b) 4	c) 7	d) 3
198.	If (-6, -4), (3, 5), (-2, 1)	are the vertices of a paralle	logram, then remaining ve	ertex can be
	a) (0, -1)	b) (7, 9)	c) (-1,0)	d) (-11, -8)
199.	If $(x/a) + (y/b) = 1$ and	(x/c) + (y/d) = 1 intersec	t the axes at four concyclic	points and $a^2 + c^2 = b^2 + c^2$
	d^2 , then these lines can in	tersect at $(a, b, c, d > 0)$		
	a) (1, 1)	b) (1, -1)	c) (2, -2)	d) (3, 3)
200.	If $bx + cy = a$, where a, b	, <i>c</i> are the same sign, be a li	ne such that the area enclo	osed by the line and the axes
	of reference is $\frac{1}{2}$ unit ² , the	en		
	8		, a	
	a) <i>b</i> , <i>a</i> , <i>c</i> are in GP	b) <i>b</i> , 2 <i>a</i> , <i>c</i> are in GP	c) $b, \frac{1}{2}, c$ are in GP	d) $b, -2a, c$ are in GP
201.	If one of the lines of my^2 -	$(1-m^2)xy - mx^2 = 0$ is	s a bisector of the angle bet	tween the lines $xy = 0$, then
	<i>m</i> is			
	a) 1	b) 2	c) -1/2	d) -1
202.	The ends of a diagonal of a	square are $(2, -3)$ and (-1)	, 1). Another vertex of the s	square can be
	a) (-3/2,-5/2)	b) (5/2, 1/2)	c) (1/2, 5/2)	d) One of these
203.	Two sides of a rhombus O	ABC (lying entirely in first	quadrant or third quadran	t) of area equal to 2 sq.
	units are $y = x/\sqrt{3}$, $y = \sqrt{3}$	$\overline{3} x$. Then possible coordinates $\overline{3} x$.	ates of Bis/are (O being or	igin)
	a) $(1 + \sqrt{3}, 1 + \sqrt{3})$	b) $(-1 - \sqrt{3}, -1 - \sqrt{3})$	c) $(3 + \sqrt{3}, 3 + \sqrt{3})$	d) $(\sqrt{3} - 1, \sqrt{3} - 1)$
204.	Equation of a straight line	passing through the point	(2, 3) and inclined at an an	igle of $\tan^{-1}(1/2)$ with the
	line $y + 2x = 5$ is			
	a) <i>y</i> = 3	b) <i>x</i> = 2	c) $3x + 4y - 18 = 0$	d) $4x + 3y - 17 = 0$
205.	If the chord $y = mx + 1$ o	f the circle $x^2 + y^2 = 1$ sub	tends an angle of measure	45° at the major segment
	of the circle, then the valu	e of <i>m</i> is		
	a) 2	b) 1	c) -1	d) None of these

- 206. Two roads are represented by the equation y x = 6 and x + y = 8. An inspection bunglow has to be so constructed that it is at a distance of 100 from each of the roads. Possible location of the bunglow is given by
 - a) $(100\sqrt{2} + 1,7)$ b) $(1 100\sqrt{2},7)$ c) $(1,7 + 100\sqrt{2})$ d) $(1,7 100\sqrt{2})$

207. The *x*-coordinates of the vertices of a square of unit area are the roots of the equation $x^2 - 3|x| + 2 = 0$ and the *y*-coordinates of the vertices are the roots of the equation $y^2 - 3y + 2 = 0$. Then the possible vertices of the square is/are

a) (1, 1), (2, 1), (2, 2), (1, 2)

b) (-1, 1), (-2, 1), (-2, 2), (-1, 2)

c) (2, 1), (1, -1), (1, 2), (2, 2)

d)
$$(-2, 1), (-1, -1), (-1, 2), (-2, 2)$$

- 208. The diagonals of a parallelogram *PQRS* are along the lines x + 3y = 4 and 6x 2y = 7. Then *PQRS* must be a
 - a) Rectangle b) Square c) Cyclic quadrilateral d) Rhombus
- 209. The lines x + y 1 = 0, $(m 1)x + (m^2 7)y 5 = 0$ and (m 2)x + (2m 5)y = 0 are

a) Concurrent for three values of *m* b) Concurrent for one value of *m*

- c) Concurrent for no value of m d) Are parallel for m = 3
- 210. Consider the equation $y y_1 = m(x x_1)$. If *m* and x_1 are fixed and different lines are drawn for different values of y_1 , then
 - a) The lines will pass through a fixed point
 - c) All the lines intersect the line $x = x_1$
- b) There will be a set of parallel lines
- d) All the lines will be parallel to the line $y = x_1$
- 211. Let $P(\sin \theta, \cos \theta)$ ($0 \le \theta \le 2\pi$) be a point in triangle with vertices (0, 0), ($\sqrt{3/2}$, 0) and (0, $\sqrt{3/2}$). Then, a) $0 < \theta < \pi/12$ b) $5\pi/2 < \theta < \pi/2$ c) $0 < \theta < 5\pi/2$ d) $5\pi/2 < \theta < \pi$
- 212. The equation $x^3 + x^2y xy^2 = y^3$ represents
 - a) Three real straight lines
 - b) Lines in which two of them are perpendicular to each other
 - c) Lines in which two of them are coincident
 - d) None of these
- 213. The equations of two equal sides *AB* and *AC* of an isosceles trinagle *ABC* are x + y = 5 and 7x y = 3, respectively. Then the equations of the sides *BC* if $ar(\Delta ABC) = 5$ unit²

a) x - 3y + 1 = 0 b) x - 3y - 21 = 0 c) 3x + y + 2 = 0 d) 3x + y - 12 = 0

214. The equation of the lines on which the perpendiculars from the origin make 30° angle with *x*-axis and which form a triangle of area $50/\sqrt{3}$ with axes are

a) $\sqrt{3} x + y - 10 = 0$ b) $\sqrt{3}x + y + 10 = 0$ c) $x + \sqrt{3}y - 10 = 0$ d) $x - \sqrt{3}y - 10 = 0$ 215. The combined equation of three sides of a triangle is $(x^2 - y^2)(2x + 3y - 6) = 0$. If (-2, 0) is an interior point and (*b*, 1) is an exterior point of the triangle, then

a) 2 < a < 10/3 b) -2 < a < 10/3 c) -1 < b < 9/2 d) -1 < b < 1

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 216 to 215. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

216

	Statement 1:	If point of intersection of the lines $4x + 3y = \lambda$ and $3x - 4y = \mu \forall \lambda, \mu \in R$ is (x_1, y_1) , then the locus of (λ, μ) is $x + 7y = 0, \forall x_1 = y_1$
	Statement 2:	If $4\lambda + 3\mu > 0$ and $3\lambda - 4\mu > 0$, then (x_1, y_1) is in first quadrant
217		
	Statement 1:	If <i>a</i> , <i>b</i> , <i>c</i> are variable such that $3a + 2b + 4c = 0$, then the family of lines given by $ax + by + c = 0$ pass through a fixed point (3, 2)
	Statement 2:	The equation $ax + by + c = 0$ will represent a family of straight the passing through a fixed point iff there exists a relation between a, b and c
218	Lines $L_1: y - x$ bisector of the a Statement 1 :	= 0 and L_2 : $2x + y = 0$ intersect the line L_3 : $y + 2 = 0$ at P and Q , respectively. The acute angle between L_1 and L_2 intersects L_3 at R . The ratio PR : PQ equals $2\sqrt{2}$: $\sqrt{5}$.
	Statement 2:	In any triangle, bisector of an angle divides the triangle into two similar triangles.
219		
	Statement 1:	If the lines $2x + 3y + 19 = 0$ and $9x + 6y - 17 = 0$ cut the axis in <i>A</i> , <i>B</i> and <i>y</i> -axis at <i>C</i> , <i>D</i> , then points <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are concyclic
	Statement 2:	Since $OA \times OB = OC \times OD$, where <i>O</i> is origin, therefore <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are concyclic
220		
	Statement 1:	If the point $(2a, -5, a^2)$ is on the same side of the line $x + y - 3 = 0$ as that of the origin, then $a \in (2, 4)$
001	Statement 2:	The points (x_1, y_1) and (x_2, y_2) lie on the same or opposite sides of the line $ax + by + c = 0$, as $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ have the same or opposite signs
221		
	Statement 1:	If sum of algebraic distance from points $A(1, 1)$, $B(2, 3)$, $C(0, 2)$ is zero on the line ax + by + c = 0, then $a + 3b + c = 0$
	Statement 2:	The centroid of triangle is (1, 2)
222		
	Statement 1:	The incentre of a triangle formed by the lines $x \cos(\pi/9) + y \sin(\pi/9) = \pi, x \cos(8\pi/9) + y \sin(8\pi/9) = \pi; x \cos(13\pi/9) + y \sin(13\pi/9) = \pi \text{ is } (0, 0)$
	Statement 2:	Any point equidistant from the given three non-concurrent straight lines in the plane is incentre of the triangle
223		
	Statement 1:	If the points (1, 2) and (3, 4) be on the same side of the line $3x - 5y + \lambda = 0$, then $\lambda < 7$ or $\lambda > 11$
	Statement 2:	If the points (x_1, y_1) and (x_2, y_2) be on the same side of the line $f(x, y) \equiv ax + by + c = 0$, then
		$\frac{f(x_1, y_1)}{f(x_2, y_2)} < 0$
224		
	Statement 1:	Lines passing through the given point and is equally inclined to the given two lines are always perpendicular

Statement 2: Angle bisector of the given two lines are always perpendicular

225		
	Statement 1:	The joint equation of lines $y = x$ and $y = -x$ is $y^2 = -x^2$, i.e., $x^2 + y^2 = 0$
	Statement 2:	The joint equation of lines $ax + by = 0$ and $cx + dy = 0$ is $(ax + by)(cx + dy) = 0$, where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are constant
226		
	Statement 1:	Let the vertices of a $\triangle ABC$ are $A(-5, -2)$, $B(7, 6)$ and $C(5, -4)$. Then coordinates of circumcentre are $(1, 2)$
	Statement 2:	In a right angle triangle, midpoint of hypotenuse is the circumcenter of the triangle
227		
	Statement 1:	Each point on the line $y - x + 12 = 0$ is equidistant from the lines $4y + 3x - 12 = 0$, $3y + 4x - 24 = 0$
	Statement 2:	The locus of a point which is equidistant from two given lines is the angular bisector of the two lines
228		
	Statement 1:	If $(a_1x + b_1y + c_1) + (a_2x + b_2y + c_2) + (a_3x + b_3y + c_3) = 0$, then lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$ cannot be parallel
	Statement 2:	If sum of the equations for three straight lines is identically zero, then they are either concurrent or parallel
229		
	Statement 1:	If $-2h = a + b$, then one line of the pair of lines $ax^2 + 2hxy + by^2 = 0$ bisects the angle between coordinate axes in positive quadrant
	Statement 2:	If $ax + y(2h + a) = 0$ is a factor of $ax^2 + 2hxy + by^2 = 0$, then $b + 2h + a = 0$
230		
	Statement 1:	The internal angle bisector of angle <i>C</i> of a triangle <i>ABC</i> with sides <i>AB</i> , <i>AC</i> and <i>BC</i> as $y = 0, 3x + 2y = 0$ and $2x + 3y + 6 = 0$, respectively is $5x + 5y + 6 = 0$
	Statement 2:	Image of point <i>A</i> with respect to $5x + 5y + 6 = 0$ lies on side <i>BC</i> of the triangle
231		
	Statement 1:	Each point on the line $y - x + 12 = 0$ is equidistant from the lines $4y + 3x - 12 = 0$, $3y + 4x - 24 = 0$
	Statement 2:	The locus of a point which is equidistant from two given lines is the angular bisector of two the lines
232		
	Statement 1:	The lines $(a + b)x + (a - b)y - 2ab = 0$, $(a - b)x + (a + b)y - 2ab = 0$ and $x + y = 0$ form an isosceles triangle
	Statement 2:	If internal bisector of any of triangle is perpendicular to the opposite side, then the given triangle is isosceles
233		
	Statement 1:	If the vertices of a triangle are having rational coordinates then its centroid, circumcentre and orthocentre are rational

	Statement 2:	In any triangle, orthocentre, centroid and circumcentre are collinear and centroid divides the line joining orthocentre and circumcentre in the ratio 2:1
234		
	Statement 1:	The area of the triangle formed by the points $A(1000, 1002), B(1001, 1004), C(1002, 1003)$ is same as the area formed by $A'(0, 0), B'(1, 2), C'(2, 1)$
	Statement 2:	The area of the triangle is constant with respect to translation of axes
235		
	Statement 1:	If the diagonals of the quadrilateral formed by lines $px + qy + r = 0$, $p'x + q'y + r = 0$ are at right angles, then $p^2 + q^2 = {p'}^2 + {q'}^2$
	Statement 2:	Diagonals of a rhombus are bisected and perpendicular to each other
236		
	Statement 1:	If joint equation of the lines $2x - y = 5$ and $x + 2y = 3$ is $2x^2 + 3xy - 2y^2 - 11x - 7y + 15 = 0$
	Statement 2:	Every second degree equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, always represents a pair of straight line
237		
	Statement 1:	The lines $(a + b)x + (a - 2b)y = a$ are concurrent at the point (2/3, 1/3)
	Statement 2:	The lines $x + y - 1 = 0$ and $x - 2y = 0$ intersect at the point (2/3, 1/3)

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

238. Consider the triangle formed by the lines

Column-I

(p) $(-\infty, 7/3) \cup (13/4, \infty)$

Column- II

(B) Values of α if $(\alpha, 0)$ lies inside triangle

(A) Values of α if $(0, \alpha)$ lies inside triangle

- **(C)** Values of α if $(\alpha, 2)$ lies inside triangle
- **(D)** Value of α if $(1, \alpha)$ lies outside triangle

CODES:

	Α	В	С	D
a)	Р	q	r	S
b)	S	r	q	р
c)	q	r	S	t

- (q) $-4/3 < \alpha < 1/2$
- (r) No value of α
- (s) $5/3 < \alpha < 7/2$

d) p q t s

239.

Column-I

(A) The value k for which 4x² + 8xy + ky² = 9 is (p) 3 the equation of a pair of straight lines is (B) If the sum of the slopes of the lines given by (q) -3 x² - 2cxy - 7y² = 0 is four times their product, then the value of c is (C) When the value of c is

- (C) If the gradient of one of the lines $x^2 + kxy + (r) + 2y^2 = 0$ is twice that of the other, then h = 1
- **(D)** If the lines $ax^2 + 2hxy + by^2 = 0$ are equally (s) 4 inclined to the lines $ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$, then the value of λ can be

CODES :

	Α	В	С	D
a)	S,r	p,q	p,q,r,s	t
b)	p,q	r,s	t	q
c)	p,q,r,s	р	S	t
d)	S	r	p,q	p,q,r,s

240.

Column-I

(A)	The dist	(p)	2					
	$4\sqrt{2}(x +$	$4\sqrt{2}(x+7y) - 42 = 0$ is						
(B)	If the su	If the sum of the distance of a point from two						
	perpend	perpendicular lines in a plane is 1, then its						
(C)	If $6x + 6$	x + y = 0) is acute	angle bisector of	f (r)	3		
(9)	line x +	2y + 4 = 0	0 and 4x +	+2y - 1 = 0, th	en	U		
	<i>m</i> is equ	al to		-				
(D)	Area of t	he triangle	e formed	by the lines	(s)	1		
005	$y^2 - 9xy$	$y + 18x^2 =$	= 0 and <i>y</i>	= 6 is				
COL	DES :							
	Α	В	С	D				
a)	Р	q	r	S				
b)	q	р	S	r				
b) c)	q p	p s	s q	r r				

Column- II

241.

Column- II

Column-I

- (A) The lines y = 0; y = 1; x 6y + 4 = 0 and x + 6y 9 = 0 constitute a figure which is
- (B) The points A(a, 0), B(0, b), C(c, 0) and D(0, d) (q) A rho are such that ac = bd and a, b, c, d are all non-zero. The points A, B, C and D always constitute
- (C) The figure formed by the four lines (r) A square $ax \pm by \pm c = 0$ ($a \neq b$) is
- (D) The line pairs $x^2 8x + 12 = 0$ and (s) A trapezium $y^2 14y + 45 = 0$ constitute a figure which is

	Α	В	С	D
a)	Q	r	p,r	s,t
b)	p,s	р	q	p,q,r
c)	S	r	S	p,q
d)	p,q,r	s,t	r	p,q

242.

Column-I

- (A) A straight line with slope passing through (1, (p) $5\sqrt{2}$ 4) meets the coordinates axes of *A* and *B*. The minimum length of OA + OB, *O* being the origin, is
- **(B)** If the point *P* is symmetric to the point (q) $3\sqrt{2}$ Q(4, -1) with respect to the bisector of the first quadrant, then the length of *PQ* is
- **(C)** On the portion of the straight line x + y = 2 (r) 9/2 between the axis a square is constructed away from the origin.with this portion as one of its sides. If *d* denotes the perpendicular distance of a side of this square from the origin then the maximum value of *d* is
- **(D)** If the parametric equation of a line is given by (s) 9 $x = 4 + \lambda/\sqrt{2}$ and $y = -1 + \sqrt{2}\lambda$ where λ is a parameter, then the intercept made by the line on the *x*-axis is

CODES :

	Α	В	С	D
a)	Р	S	q	t
b)	р	р	q	S
c)	S	р	q	r

Column- II

- (p) A cyclic quadrilateral
- (q) A rhombus

d) q t r s

243.

Column-I

- (A) Four lines x + 3y 10 = 0, x + 3y 20 = 0, 3x y + 5 = 0 and 3x y 5 = 0 form a figure which is
- **(B)** The points A(1, 2), B(2, -3), C(-1, -5) and D(-2, 4) in order are the vertices of
- (C) The lines 7x + 3y 33 = 0, 3x 7y + 19 = 0, 3x 7y 10 and 7x + 3y 4 = 0 from a figure which is
- (D) Four lines 4y 3x 7 = 0, 3y 4x + 7 = 0, 4y 3x 21 = 0, 3y 4x + 14 = 0 form a figure which is

CODES:

	Α	В	С	D
a)	S,t	r,s	q	р
b)	q,r,s	р	q,s	q
c)	р	q	r	s,t
d)	q,s	р	r	t

244.

Column-I

- (A) Two vertices of a triangle are (5, -1) and (p) (-4, -7) (-2, 3). If orthocentre of the third vertex are
 (B) A point on the line x + y = 4 which lies at a (q) (-7, 11)
- unit distance from the line 4x + 3y = 10 is
- (C) Orthocentre of the triangle formed by the lines (r) (2, -2)x + y - 1 = 0, x - y + 3 = 0, 2x + y = 7 is
- **(D)** If 2*a*, *b*, *c* are in A.P., then lines ax + by = c are (s) (-1, 2) concurrent at

CODES :

	Α	В	С	D
a)	Р	q	S	r
b)	t	r	S	р
c)	q	р	r	t
d)	S	р	q	r

245.

Column-I

Column- II

- (p) Quadrilateral which is neither a parallelogram nor a trapezium
- (q) A parallelogram
- (r) A rectangle of area 10 sq. units
- (s) A square

Column- II

Column- II

(A) If lines 3x + y - 4 = 0, x - 2y - 6 = 0 and (p) -4 $\lambda x + 4y + \lambda^2 = 0$ are concurrent, then value of λ is

- **(B)** If the points $(\lambda + 1, 1)$, $(2\lambda + 1, 3)$ and (q) -1/2 $(2\lambda + 2, 2\lambda)$ are collinear, then the value of λ is
- (C) If line $x + y 1 |\lambda/2| = 0$, passing through (r) 4 the intersection of x - y + 1 = 0 and 3x + y - 5 = 0, is perpendicular to one of them, then the value of λ is
- **(D)** If line $y x 1 + \lambda = 0$ is equidistant from (s) 2 the points (1, -2) and (3, 4) then λ is

CODES :

	Α	В	С	D
a)	P,q	q	s,t	r
b)	s,p	q,r	t	q
c)	S	t,s	q	p,q
d)	p,s	q,s	p,r	S

246. *O* is origin and *B* is a point on the *x*-axis at a distance of 2 units from the origin

Column-I

circumference of the circle such that $\triangle OAB$ is

Column- II

(A)	If $\triangle AOB$ is equilateral triangle, then the	(p)	$(-1, \sqrt{3})$
	coordinates of A can be		_
(B)	If $\triangle AOB$ is isosceles such that $\angle OAB$ is 30°,	(q)	$(-1, 2 - \sqrt{3})$
	then coordinates of A can be		
(C)	If <i>OB</i> is one side of rhombus of area $\sqrt{3}$ units,	(r)	$(-3, -\sqrt{3})$
	then other vertices of rhombus can be		
(D)	If <i>OB</i> is a chord of circle with radius equal to	(s)	$(1, 2 + \sqrt{3})$
	<i>OB</i> , then coordinates of point <i>A</i> on the		

CODES :

isosceles can be

	Α	В	С	D
a)	Р	p,s	p,r	q,s
b)	q	p,q	s,r	t
c)	S	р	q	r
d)	s,t	r	p,s	q

247. Consider the lines repressed by equation $(x^2 + xy - x)x(x - y) = 0$, forming a triangle. Then match the following

Column-I

Column- II

(A) Orthocentre of triangle

```
(p) (1/6, 1/2)
```

	(B) Circumcentre					(q)	$(1/(2+2\sqrt{2}),1/2)$	
(C) Centroid					(r)	(0, 1/2)		
(D) Incentre					(s)	(1/2, 1/2)		
CODES :								
		Α	В	С	D			
	a)	S	r	р	q			
	b)	S	q	r	р			
	c)	р	q	r	S			
	d)	q	r	S	t			

Linked Comprehension Type

This section contain(s) 23 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 248 to -248

The locus of a moving point is the path traced out by that point under one or more given conditions. Technically, a locus represents the 'set of points' which lies on it.

A relation f(x, y) = 0 between x and y which is satisfied by each point on the locus and such that each point satisfying the equation is on the locus is called the equation of the locus. On the basis of above information, answer the following questions :

On the basis of above information, answer the following questions :

248. The locus of the point of intersection of the lines $x \sin \theta + (1 - \cos \theta)y = a \sin \theta$ and $x \sin \theta - (1 + \cos \theta)y + a \sin \theta = 0$ is

a) $x^2 - y^2 = a^2$ b) $x^2 + y^2 = a^2$ c) $y^2 = ax$ d) None of these

Paragraph for Question Nos. 249 to - 249

Let *L* be the line belonging to the family of the straight lines $(a + 2b)x + (a - 3b)y + a - 8b = 0, a, b \in R$, which is farthest from the point (2, 2)

249. The equation of line *L* is a) x + 4y + 7 = 0 b) 2x + 3y + 4 = 0 c) 4x - y - 6 = 0 d) None of these

Paragraph for Question Nos. 250 to - 250

The equation of an altitude of an equilateral triangle is $\sqrt{3}x + y = 2\sqrt{3}$ and one of the vertices is $(3, \sqrt{3})$

250. The possible n	umber of triangle is		
a) 1	b) 2	c) 3	d) 4

Paragraph for Question Nos. 251 to - 251

For points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ of the coordinate plane, a new distance d(P, Q) is defined by $d(P, Q) = |x_1 - x_2| + |y_1 - y_2|$. Let O = (0, 0) and A = (3, 2). Consider the set of points *P* in the first quadrant which are equidistant (with respect to the new distance) from *O* and *A*

- 251. The set of points *P* consists of
 - a) One straight line only
 - b) Union of two line segments
 - c) Union of two infinite rays
 - d) Union of a line segment of finite length and an infinite ray

Paragraph for Question Nos. 252 to - 252

A variable line 'L' is drawn through O(0, 0) to meet the lines L_1 and L_2 given by y - x - 10 = 0 and y - x - 20 = 0 at the points *A* and *B*, respectively

252. A point <i>P</i> is taken on ' <i>L</i>	such that $2/OP = 1/OA +$	1/OB. Then the locus of	of 'P' is
a) $3x + 3y = 40$	b) $3x + 3y + 40 = 0$	c) $3x - 3y = 40$	d) $3y - 3x = 40$

Paragraph for Question Nos. 253 to - 253

The line 6x + 8y = 48 intersects the coordinates axes at *A* and *B* respectively. *A* line *L* bisects the area and the perimeter of the triangle *OAB* where *O* is the origin

253. The number of such lines possible is								
a) 1	b) 2	c) 3	d) More than 3					

Paragraph for Question Nos. 254 to - 254

A(1,3) and C(-2/5, -2/5) are the vertices of a triangle *ABC* and the equation of the internal angle bisector of $\angle ABC$ is x + y = 2

254. Equation of side *BC* is

a) 7x + 3y - 4 = 0 b) 7x + 3y + 4 = 0 c) 7x - 3y + 4 = 0 d) 7x - 3y - 4 = 0

Paragraph for Question Nos. 255 to - 255

Let *ABCD* be a parallelogram whose equations for the diagonals *AC* and *BD* are x + 2y = 3 and 2x + y = 3, respectively. If length of diagonal *AC* = 4 units and area of parallelogram *ABCD* = 8 sq. units, then

255. The length of othe	r diagonal <i>BD</i> is		
a) 10/3	b) 2	c) 20/3	d) None of these

Paragraph for Question Nos. 256 to - 256

Consider a triangle *PQR* with coordinates of its vertices as P(-8, 5), Q(-15, -19) and R(1, -7). The bisector of

the interior angle of *P* has the equation which can be written in the form ax + 2y + c = 0

256. The distance betw	ween the orthocentre and th	e circumcentre of the tria	ngle PQR is
a) 25/2	b) 29/2	c) 37/2	d) 51/2

Paragraph for Question Nos. 257 to - 257

Let us consider the situation when axes are inclined at an angle ' ω '. If coordinates of a point *P* are (x_1 , y_1), then PN = x, $PM = y_1$, where *PM* is parallel to *y*-axis and *PN* is parallel *x*-axis. straight line through *P* that makes an angle θ with *x*-axis is

Therefore, if slope of the line is *m*, then angle of inclination of the line with *x*-axis is given by $\tan \theta = \left(\frac{m \sin \omega}{1 + m \cos \omega}\right)$

257. The axes being inclined at an angle of 60°, the inclination of the straight line y = 2x + 5 with *x*-axis is a) 30° b) $\tan^{-1}(\sqrt{3}/2)$ c) $\tan^{-1} 2$ d) 60°

Paragraph for Question Nos. 258 to - 258

Consider the triangle having vertices O(0, 0), A(2, 0) and $B(1, \sqrt{3})$. Also $b \le \min(a_1, a_2, a_3, \dots, a_n)$ means $b \le a_1$ when a_1 is least; $b \le a$ when a_2 is least and so on. From this we can say $b \le a_1, b \le a_2, \dots, b \le a_n$

258. Let *R* be the region consisting of all those points *P* inside Δ*OAB* which satisfy $d(P, OA) \le \min [d(P, OB), d(P, AB)]$. where *d* denotes the distance from the point to the corresponding line. Then the area of the region *R* is a) $\sqrt{3}$ sq. units
b) $(2 + \sqrt{3})$ sq. units
c) $\sqrt{3}/2$ sq. units
d) $1/\sqrt{3}$ sq. units

Paragraph for Question Nos. 259 to - 259

Let *ABCD* is a square with sides of unit length. points *E* and *F* are taken onsides *AB* and *AD* respectively so that AE = AF. Let *P* be a point inside the square *ABCD*

259. The maximum possible are a of quadrilateral *CDFE* is

	1	1		
a) 1/8		b) 1/4	c) 5/8	d) 3/8

Integer Answer Type

- 260. Consider a \triangle *ABC* whose sides *AB*, *BC* and *CA* are represents by the straight lines 2x + y = 0, x + py = q and x y = 3, respectively. The point *P* is (2, 3) is orthocentre then the value of (p + q)/10 is
- 261. Absolute value of the sum of the abscissas of the points on the line x + y = 4 that lie at a unit distance from the line 4x + 3y 10 = 0 is
- 262. The number of values of k for which the lines (k + 1)x + 8y = 4k and kx + (k + 3)y = 3k 1 are coincident
- 263. If the area enclosed by the graph of $x^2y^2 9x^2 25y^2 + 225 = 0$ is *A* if then value of *A*/10 is
- 264. The sides of a triangle *ABC* lie on the lines 3x + 4y = 0, 4x + 3y = 0 and x = 3. let (h, k) be the centre of the circle inscribed in $\triangle ABC$. The value of (h + k) equals
- 265. A man starts from the point P(-3, 4) and reaches point Q(0, 1) touching *x*-axis at $R(\alpha, 0)$ such that PR + RQ is minimum, then $5|\alpha| =$
- 266. Number of value of *b* fro which in an acute triangle *ABC*, if the coordinates of orthocentre '*H*' are (4, b), centroid '*G*' are (b, 2b 8) and circumcentre '*S*' are (-4, 8) is
- 267. The line x = C cuts the triangle with vertices (0, 0), (1, 1) and (9, 1) into two regions. For the area of the two regions to be same, *C* must be equal to
- 268. The line 3x + 2y = 24 meets the *y*-axis at *A* and the *x*-axis at *B*. The perpendicular bisector of *AB* meets the line through (0, -1) parallel to *x*-axis at *C*. If the area of the triangle *ABC* is *A* then the value of *A*/13 is
- 269. The distance between the circumcentre and orthocentre of the triangle whose vertices are (0, 0), (6, 8) and (-4, 3) is *L*, then the value of $\frac{2}{\sqrt{5}}L$ is
- 270. If area of the triangle formed by the line x + y = 3 and the angle bisectors of the pair of lines $x^2 y^2 + 4y 4 = 0$ is *A*, then the value of 16*A* is
- 271. For all real values of *a* and *b*, lines (2a + b)x + (a + 3b)y + (b 3a) = 0 and mx + 2y + 6 = 0 are concurrent, then |m| is equal to
- 272. The points (x, y) lies on the line 2x + 3y = 6. Smallest value of the quantity $\sqrt{x^2 + y^2}$ is *m* then the value of $\sqrt{13}m$ is
- 273. Triangle *ABC* with AB = 13, BC = 5 and AC = 12 slides on the coordinates axis with *A* and *B* on the positive *x*-axis and positive *y*-axis respectively, the locus of vertex *C* is a line 12x ky = 0, then the value of *k* is
- 274. If the area of triangle formed by the points (2a, b)(a + b, 2b + a) and (2b, 2a) be 2 sq. units, then the area of the triangle whose vertices are (a + b, a b), (3b a, b + 3a) and (3a b, 3b a) will be
- 275. The area of the triangular region in the first quadrant bounded on the left by the *y*-axis, bounded above by the line 7x + 4y = 168 and bounded below by the line 5x + 3y = 121 is *A*, then the value of 3A/10 is
- 276. The sides of a triangle have the combined equation $x^2 3y^2 2xy + 8y 4 = 0$. The third side, which is variable always passes through the point(-5, -1). If the range of values of the slope of the third line is such that the origin is an interior point of the triangle is (*a*, *b*) then the value of $\left(a + \frac{1}{b}\right)$ is
- 277. The point *A* divided the join of P(-5, 1), Q(3, 5) in the ratio *k*: 1, then the integral value of *k* for which the area of $\triangle ABC$ where *B* is (1, 5) and *C* is (7, -2) is equal to 2 units in magnitude is

10.STRAIGHT LINES

: ANSWER KEY :															
1)	C	2)	h	3)	C	4)	Я		a.h						
1) 5)	b b	2) 6)	a	5) 7)	a	1) 8)	u h	17)	a,b a,b,c,d	18)	ah	19)	ad	20)	
9)	d	0) 10)	u b	11)	d	12)	b	1,1	a.b.d	10)	ujb	17)	uju	20)	
13)	d	14)	b	15)	c	16)	b	21)	a.b	22)	a.c	23)	a.d	24)	
17)	a	, 18)	a	19)	С	20)	a	,	b,d	,	- , -	-)	- •	,	
21)	b	22)	с	23)	d	24)	С	25)	a,c,d	26)	a,c	27)	a,c,d	28)	
25)	а	26)	а	27)	с	28)	d	-	b,d	-		-		2	
29)	а	30)	d	31)	b	32)	а	29)	a,c	30)	a,d	31)	a,c	32)	
33)	а	34)	а	35)	а	36)	а		a,b,c,d						
37)	d	38)	а	39)	С	40)	a	33)	а	34)	a,c	35)	a,b,c	36)	
41)	b	42)	а	43)	С	44)	b		a,b,c,d						
45)	а	46)	а	47)	С	48)	b	37)	b,c,d	38)	a,b,c,d	39)	b,d	40)	
49)	С	50)	d	51)	а	52)	b		a,d						
53)	а	54)	а	55)	а	56)	а	41)	a,b	42)	a,b	43)	b,c	44)	
57)	a	58)	b	59)	b	60)	С		b,c			>	_		
61)	d	62)	C	63)	c	64)	C	45)	a,b,c,d	46)	a,b	47)	d	48)	
65)	a	66)	d	67) 54)	b	68) 52)	d	40)	c,d	F (1)		F 4)		=0)	
69J 72)	a d	70) 74)	a	71)	a	72)	b	49)	b,c	50)	a,c	51)	a,b,c	52)	
73J 77)	u	74J 79)	a	75J 70)	C d	70J 90)	d h	E2)	a,b,c,u	E4)	ad	1)	Ь	2)	d
77) 81)	a d	70) 82)	d d	77) 83)	u c	84)	U a	333	a,u 3)	54j h	a,u 4)	1) 2	D	2)	u
85)	u C	86)	u a	87)	L a	88)	a h	5)	J) d	6)	т) d	a 7)	C	8)	ſ
89)	a	90)	d d	91)	a C	92)	C	9)	a	0) 10)	d	,, 11)	a	12)	с а
93)	c	94)	d	95)	c c	96)	c	13)	d	14)	b	15)	b	16)	a
97)	b	98)	b	99)	d	100)	b	17)	a	18)	c	19)	a	20)	a
101)	a	102)	b	103)	b	104)	b	21)	С	22)	a	1)	b	2)	d
105)	b	106)	d	107)	с	108)	d	-	3)	c	4)	b		-	
109)	b	110)	d	111)	b	112)	b	5)	c	6)	b	7)	а	8)	d
113)	b	114)	b	115)	С	116)	d	9)	а	10)	а	1)	b	2)	а
117)	а	118)	С	119)	b	120)	a		3)	b	4)	d			
121)	d	122)	d	123)	d	124)	С	5)	d	6)	а	7)	b	8)	С
125)	d	126)	С	127)	b	128)	a	9)	а	10)	b	11)	d	12)	С
129)	b	130)	b	131)	d	132)	а	1)	5	2)	4	3)	1	4)	6
133)	d	134)	b	135)	а	136)	а	5)	0	6)	3	7)	0	8)	3
137)	d	138)	а	139)	C	140)	b	9)	7	10)	5	11)	8	12)	2
141)	а	142)	C	143)	d	144)	a	13)	6	14)	5	15)	8	16)	5
145)	a	146)	b	147)	C	148)	a L	17)	4	18)	7				
149j 152)	D	150) 154)	C	151) 155)	D h	152J	D h								
155J 157)	a	154J 159)	a d	155J 150)	U C	150J 160)	U C								
161)	เ ว	130)	u ac	139J 2)	t hd	100J 3)	ι								
101)	c d	1) 4)	a,c a d	2)	b,u	5)									
5)	d		a,d	7)	b. c	8)									
~,	- a,b.c.d	~,		. ,	-,-	~)									
9)	a,c.d	10)	a,d	11)	a,b	12)									
,	a,b,d	- ,		,		,									
13)	b,c	14)	a,c	15)	b,d	16)									

: HINTS AND SOLUTIONS :

4

5

1 **(c)**

Let the coordinates of vertices O, P, Q, R be (0,0), (a, 0), (a, a), (0, a), respectively. Then, we get the coordinates of M as (a, a/2) and those of N as (a/2, a)

Therefore, area of ΔOMN is

Area of the square is a^2 . Hence, the required ratio is 8:3

(b)

$$(3, x + 1) \xrightarrow{(3, 16)} x \xrightarrow{(13, 21)} p(13, 21 - x)$$

$$(3, x + 1) \xrightarrow{(3, 16)} x \xrightarrow{(13, 21)} p(13, 21 - x)$$

$$B(13, 6)$$

$$M = \frac{21 - x}{13} = \frac{x + 1}{3}$$

$$\Rightarrow 63 - 3x = 13x + 13$$

$$\Rightarrow 16x = 50$$

$$\Rightarrow x = \frac{25}{8}$$
Hence, $m = \left(\frac{25}{8} + 1\right) \times \frac{1}{3} = \frac{33}{24} = \frac{11}{8}$

3

Slope of *BD* is 8/15 and angle made by *BD* with *DC* and *BC* is 45°. So let slope of *DC* be*m*. Then,

$$\tan 45^{\circ} = \pm \frac{m - \frac{8}{15}}{1 + \frac{8}{15}m}$$

$$\Rightarrow (15 + 8m) = \pm (15m - 8)$$

$$\Rightarrow m = \frac{23}{7} \text{ and } -\frac{7}{23}$$

Hence, the equations of *DC* and *BC* are $y-2 = \frac{23}{7}(x-1)$ $\Rightarrow 23x - 7y - 9 = 0$ and $y - 2 = -\frac{7}{23}(x - 1)$ $\Rightarrow 7x + 23y - 53 = 0$ (a) Midpoint of $(a \cos \alpha, a \sin \alpha)$ and $(a\cos\beta, a\sin\beta)$ is $P\left(\frac{a\left(\cos\alpha+\cos\beta\right)}{2},\frac{a(\sin\alpha+\sin\beta)}{2}\right)$ $A(a \cos \alpha, a \sin \alpha)$ $B(a \circ \beta, a \sin \beta)$ 0 Slope of line AB is $\frac{a\sin\beta - a\sin\alpha}{a\cos\beta - a\cos\alpha} = \frac{\sin\beta - \sin\alpha}{\cos\beta - \cos\alpha} = m_1$ and slope of *OP* is $\frac{\sin\alpha + \sin\beta}{\cos\alpha + \cos\beta} = m_2$ Now, $m_1 \times m_2 = \frac{\sin^2 \beta - \sin^2 \alpha}{\cos^2 \beta - \cos^2 \alpha} = -1$ Hence, the lines are perpendicular **(b)** The given equation of pair of straight lines can be rewritten as $(\sqrt{3}y - x + \sqrt{3})(\sqrt{3}y + x - \sqrt{3}) = 0$ Their separate equations are $\sqrt{3}y - x + \sqrt{3} =$ 0 and $\sqrt{3}y + x - \sqrt{3} = 0$ or $y = \frac{1}{\sqrt{3}}x - 1$ and $y = -\frac{1}{\sqrt{3}}x + 1$ or $y = (\tan 30^\circ)x - 1$ and $y = (\tan 150^\circ)x + 1$ 30 30° X 0 $(\sqrt{3}, 0)$ After rotation through an angle of 15°, the lines are $(y - 0) = \tan 45^{\circ} (x - \sqrt{3})$ and $(y - 0) - \sqrt{3}$ $\tan 135^{\circ} (x - \sqrt{3})$ or $y = x - \sqrt{3}$ and $y = -x + \sqrt{3}$ Their combined equation is

$$(y - x + \sqrt{3})(y + x - \sqrt{3}) = 0 \text{ or } y^2 - x^2 + 2\sqrt{3}x - 3 = 0$$

6 (a)

Let the two perpendicular lines be the coordinate axes. Let (x, y) be the point, sum of whose distance from two axes is 1. Then we must have |x| + |y| = 1or $\pm x \pm y = 1$ These are the four lines x + y = 1, x - y =

1, -x + y = 1, -x - y = 1. Any two adjacent sides are perpendicular to each other. Also, each line is equidistant from origin. Therefore, figure formed is a square

7 (a)

 $9x^2 - 24xy + 16y^2 - 12x + 16y - 12 = 0$ $\Rightarrow (3x - 4y + 2)(3x - 4y - 6) = 0$ Hence, distance between lines is $\frac{|6-(-2)|}{5} = 8/5$

8 **(b)**

$$\int_{(0,0)}^{1} \frac{2}{G} \xrightarrow{H}_{(1,2)}$$

$$G \equiv \left(\frac{1 \times 1 + 2 \times 0}{3}, \frac{2 \times 1 + 2 \times 0}{3}\right)$$

$$= \left(\frac{1}{3}, \frac{2}{3}\right)$$

9 (d)

Distance of all the points from (0, 0) are 5 units. That means circumcentre of the triangle formed by the given points is (0, 0). If $G \equiv (h, k)$ be the centroid of the triangle, then 3h = 3 + $5(\cos\theta + \sin\theta), 3k = 4 + 5(\sin\theta - \cos\theta)$. If $H(\alpha,\beta)$ be the orthocenter, then $OG: GH = 1:2 \Rightarrow \alpha = 3h, \beta = 3k$ $\cos\theta + \sin\theta = \frac{\alpha - 3}{5}, \sin\theta - \cos\theta = \frac{\beta - 4}{5}$ $\Rightarrow \sin \theta = \frac{\alpha + \beta - 7}{10}, \cos \theta = \frac{\alpha - \beta + 1}{10}$ Thus the locus of (α, β) is $(x + y - 7)^{2} + (x - y + 1)^{2} = 100$ 10 **(b)** Solving the sides of the rhombus, its vertices are (0, -n/m), (-n/l, 0), (0, n/m) and (n/l, 0). Hence, the area is $\frac{1}{2} \times \frac{2n}{m} \times \frac{2n}{l} = 2$ \Rightarrow $n^2 = lm$. Therefore, l, m, n are in G.P. d) D

(3, 8)(1, 2)(3, -4) $m_{AB} = \frac{-4-2}{3-1} = -3$ Thus equation of *CD* is y - 8 = -3(x - 3), i.e., y + 3x = 17. Equation of right bisector of *AB* is

$$y + 1 = \frac{1}{3}(x - 2)$$

$$\Rightarrow 3y = x - 5$$

Solving it with line *CD*, we get

$$x = 24/5, y = 1/5.$$
 Thus midpoint of *CD* is (24/5, 1/5)

12 (b)

From the figure, $3\theta = 180 \Rightarrow \theta = 60^{\circ}$ (d) 13

y = mx is a line through (0, 0), y = mx + 1 is a line parallel to above line having *y*-intercept 1 The vertices are O(0, 0), A(1/(m - 1), m/(m - 1))*n*)). Area of parallelogram is given by $2 \times Ar(\Delta OAB)$

$$= 2 \times \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ \frac{1}{m-n} & \frac{m}{m-n} & 1 \end{vmatrix}$$
$$= \frac{1}{|m-n|}$$

14 **(b)**

If the given lines are concurrent, then

$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} = 0 \text{ (Applying } C_2 \to C_2 - C_1$$

and $C_3 \to C_3 - C_1$)

$$\Rightarrow a(b-1)(c-1) - (c-1)(1-a) - (b-1)(1-a) = 0$$

$$\Rightarrow \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

[Dividing by $(1-a)(1-b)(1-c)$]
Adding 1 on both sides, we get

$$\Rightarrow \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

The line passing through the intersection of the lines

ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 is $ax + 2by + 3b + \lambda(bx - 2ay - 3a) = 0$ $\Rightarrow (a+b\lambda)x + (2b-2a\lambda)y + 3b - 3\lambda a = 0$ (i) Line Eq. (i) is parallel to *x*-axis. Therefore, $a + b\lambda = 0 \Rightarrow \lambda = -\frac{a}{b} = 0$ Putting the value of λ in Eq. (i), we get

$$y\left(2b + \frac{2a^2}{b}\right) + 3b + \frac{3a^2}{b} = 0$$
$$\Rightarrow y = -\frac{3}{2}$$

So, it is 3/2 units below *x*-axis b)

Equation of *AB* is

$$y-1 = \frac{0-1}{2-1}x \Rightarrow x+2y-2 = 0$$
$$|PA - PB| \le AB$$

Thus, |PA - PB| is maximum if points A, B and P are collinear

Hence, solving x + 2y - 2 = 0 and 4x + 3y + 9 =0, we get point P = (-84/5, 13/5)

17 (a)

Slope of is AG = -b/(2a). Now,

$$\tan 30^{\circ} = \frac{\frac{3b}{2a}}{1 + \frac{b^{2}}{a^{2}}}$$

$$(0, b)^{2} = \frac{1}{2} \frac{3ba}{(a, 0)}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{3ba}{2(a^{2} + b^{2})}$$

$$\Rightarrow \frac{1}{2}ab = \left(\frac{a^{2} + b^{2}}{3\sqrt{3}}\right)$$

$$= 9/3\sqrt{3} = \sqrt{3} \text{ (Putting } a^{2} + b^{2} = 9\text{)}$$
18 (a)
We have,

 $3x + 5y = 2007 \Rightarrow x + \frac{5y}{3} = 669$ Clearly, 3 must divide 5y and so y = 3k, for some $k \in N$ Thus, x + 5k = 669 $\Rightarrow 5k \leq 668$ $\Rightarrow k \leq \frac{668}{5} \Rightarrow k \leq 133$ 19 (c) We have, $x^2y^2 - 9y^2 - 6x^2y + 54y = 0$ $\Rightarrow y^2(x^2 - 9) - 6y(x^2 - 9) = 0$ $\Rightarrow y(y-6)(x-3)(x+3) = 0$ \Rightarrow y = 0, y = 6, x = 3, x = -3 So, the given equation represents four straight lines which form a square 20 (a) Coordinates of circumcentre are $l/(l^2 - l^2)$ m^2), $m/(m^2 - l^2)$ Hence,

$$(1) \quad y = -x \quad (h, k) \quad y = x \\ (h, k) \quad y = x \\ lx + my = 1 \\ 45^{\circ} \left(\frac{1}{m+l}, \frac{1}{m+l}\right) \\ (0, 0) \quad (0, 0)$$

$$h = \frac{l}{l^2 - m^2}$$
 (i)

$$k = -\frac{m}{l^2 - m^2}$$
 (ii)
Square and adding (i)and (ii), we get

$$h^{2} + k^{2} = \frac{l^{2} + m^{2}}{(l^{2} - m^{2})^{2}} = \frac{1}{(l^{2} - m^{2})^{2}}$$
(putting $l^{2} + m^{2} = 1$)

$$\therefore \frac{1}{(l^{2} - m^{2})^{2}} = (h^{2} - k^{2})^{2}$$
Therefore, the locus is $x^{2} + y^{2} = (x^{2} - y^{2})^{2}$

21 **(b)**

If the given lines represents the same line, then the lengths of the perpendicular from the origin to the lines are equal, so that

$$\frac{c}{\sqrt{1+m^2}} = \frac{p}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}}$$
$$\Rightarrow c = p\sqrt{1+m^2}$$

(y + 20)(y + 2x - 20) = 0For $x \le 0$, the equation is (y - 20)(y + 2x + 20) = 0Hence, the area is $20 \times 40 = 800$ sq. units 23 (d)

All values of 'a'

24 (c)

The family of lines $(x - 2y + 3) + \lambda(2x - 3y + 4=0)$ are concurrent at point P(1, 2)If image of point A(2,3) in the above variable line is B(h,k) then AP = BP $\Rightarrow (h - 1)^2 + (k - 2)^2 = (2 - 1)^2 + (3 - 2)^2$ Hence, locus of point P is $x^2 + y^2 - 2x - 4y + 4 = 0$

25 **(a)**

Coordinates of the vertices of the square are A(0,0), B(0,1), C(1,1) and D(1,0)

Now the equation of AC is

$$y = x$$

And that of *BD* is

$$y - 1 = -\frac{1}{1}(x - 0)$$

$$\Rightarrow x + y = 1$$

26 (a)

$$2x + 3y = 6$$

$$\tan 45^{\circ} = \left| \frac{m - \left(\frac{-2}{3}\right)}{1 + m\left(\frac{-2}{3}\right)} \right|$$

(0, 0)

$$m_1 = m_2$$

(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)

27 (c)

Clearly, the equation of PQ in the new position is x = 2

28 (d)

 $a^{3}x^{2} - 2hxy + b^{3}y^{2} = 0$ Let the slope of lines be m_{1} and m_{2} . Then,

$$m_1 + m_2 = \frac{2h}{b^3}, m_1 m_2 = \frac{a^3}{b^3}$$

Given $m_2^2 = m_1 \implies m_2^3 = \frac{a^3}{b^3}$

 $\Rightarrow m_{2} = \frac{a}{b}$ Also $m_{2}^{2} + m_{2} = \frac{2h}{b^{3}}$ $\Rightarrow \frac{2h}{b^{3}} = \frac{a}{b} + \frac{a^{2}}{b^{2}}$ $\Rightarrow ab + a^{2}\frac{2h}{b}$ $\Rightarrow 2h = a^{2}b + ab^{2} = ab(a + b)$ 29 (a)

Since the triangle is right angled, so the circumcentre will be the middle point of hypotenuse, i.e., (2,1)

(d) Y A(1, 0) B(0, -1) A(1, 0) A(1, 0)

From figure refracted ray makes an angle of 15° with positive direction of *x*-axis and passes through the point (1,0). Its equation is $(y - 0) = \tan(45^\circ - 30^\circ) (x - 1)$ or $y = (2 - \sqrt{3})(x - 1)$

31 **(b)**

32

30

As altitude from A is fixed and the orthocenter lies on altitude, hence x + y = 3 is the required locus

If $\angle BAO = \theta$, then $BM = 2 \sin \theta$ and $MO = BM = 2 \sin \theta$, $MA = 2 \cos \theta$. Hence, $A = (2 \cos \theta - 2 \sin \theta, 0)$ and $B = (-2 \sin \theta, 2 \sin \theta)$. since P(x, y) is the midpoint of AB, so $2x = (2 \cos \theta) + (-4 \sin \theta)$ or $\cos \theta - 2 \sin \theta = x$ $2y = (2 \sin \theta)$ or $\sin \theta = y$ Eliminating θ , we have $(x + 2y)^2 + y^2 = 1$ or $x^2 + 5y^2 + 4xy - 1 = 0$

33 **(a)**

Solving 3x + 4y = 9, y = mx + 1, we get $x = \frac{5}{3+4m}$. Here, *x* is an integer if 3 + 4m = 1, -1, 5, -5. Hence, m = -2/4, -4/4, 2/4, -8/4. So, *m* has two integral values

34 **(a)**

Since $a_1/a_2 = b_1/b_2 = c_1/c_2$, then u = 0 and v = 0 are same straight line. Hence, u + kv = 0 is also the same straight line

35 **(a)**

Given lines are mutually perpendicular and intersect at (6/5, 13/5)

Equations of angle bisectors of the given lines are $x - 2y + 4 = \pm (2x + y - 5)$, i.e, x + 3y = 9 and 3x - y = 1Side *BC* will be parallel to these bisectors. Let AD = a $\Rightarrow AB = a\sqrt{2}$ and area of $\triangle ABC$ is $\Delta_{ABC} = \frac{1}{2} \times (a\sqrt{2})^2 = a^2 = 10$ $\Rightarrow a = \sqrt{10}$ Let equation of *BC* be $x + 3y = \lambda$. Then, $\frac{6}{2} - \frac{39}{2} = \lambda$

$$\sqrt{10} = \frac{\frac{1}{5} - \frac{3}{5} - \lambda}{\sqrt{10}} \Rightarrow \lambda = -1, 19$$

Therefore, equation of *BC* is x + 3y = -1 or x + 3y = 19If equation of *BC* is $3x - y = \lambda$, then

$$\sqrt{10} = \frac{\frac{18}{5} - \frac{13}{5} - \lambda}{\sqrt{10}} \Rightarrow \lambda = -9,11$$

Hence, equation of *BC* is 3x - y = -9 or 3x - y = 11

36 **(a)**

The point (4, 5) lies on the given line 7x - 3y - 13 = 0. The locus of the point equidistant from the given point and the line is a line perpendicular to 7x - 3y - 13 = 0 at (4, 5)

37 (d)

R(x, y) lies on 9x + 7y + 4 = 0Hence, $R\left(a\frac{-(4+9a)}{7}\right), a \in R$

$$P(2, 5) \xrightarrow{R(a, b)} Q(4, -11)$$

$$h = \left(\frac{2+4+a}{3}\right) = \frac{6+a}{3} \quad (i)$$

$$k = \frac{5 - 11 - \frac{(4+9a)}{7}}{3}$$

$$= \frac{-46-9a}{7\times3} \quad (ii)$$

From (i) and (ii), we get

$$3h - 6 = \frac{-(21k - 46)}{9}$$

$$\Rightarrow 27h + 21k - 54 + 46 = 0$$

Hence, the locus is $9x + 7y - 8/3$
parallel to N

38 (a)

Let $x_1 = a, x_2 = ar$ and $x_3 = ar^2; y_1 = b, y_2 = br$ and $y_3 = br^2$. Now, $\frac{y_2 - y_1}{x_2 - x_1} = \frac{br - b}{ar - a} = \frac{b}{a}$ And $\frac{y_3 - y_2}{x_3 - x_2} = \frac{br^2 - br}{ar^2 - ar} = \frac{b}{a}$

= 0. This line is

Therefore, slope of *PQ* is equal to slope of *QR*. Hence, points *P*, *Q*, *R* are collinear

39 **(c)**

$$\Rightarrow C \equiv (2 + 1 \times \cos 60^\circ, 1 \times \sin 60^\circ) = \left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)$$
$$E \equiv (1, 1 \times \sin 60^\circ + 1 \times \sin 60^\circ) = (1, \sqrt{3})$$
Therefore, the equation of *CE* is

$$y - \sqrt{3} = \frac{\sqrt{3} - \frac{\sqrt{3}}{2}}{1 - \frac{5}{2}}(x - 1)$$

40 **(a)**

Let the two perpendicular lines be taken as the coordinate axes. If (h, k) be any point on the locus, then according to the given condition |h| + |k| = 1. Hence, the locus of (h, k) is |x| + |y| = 1. This consists of four line segments enclosing *a* square as shown in the figure below

41 **(b)**

42 (a)

Given that slope is $-\sqrt{3}$. Therefore, the line is $y = -\sqrt{3}x + c$ $\Rightarrow \sqrt{3}x + y = c$

$$\Rightarrow \sqrt{3x} + y = c$$

$$y$$

$$\sqrt{3x} + y = 8$$

$$\sqrt{3x} + y = -8$$
No. |c|

Now,
$$\left|\frac{c}{2}\right| = 4 \Rightarrow c = \pm 8 \Rightarrow x\sqrt{3} + y = \pm 8$$

43 **(c)**

Since the diagonals are perpendicular, so the given quadrilateral is a rhombus. So, the distance between two pairs of parallel sides are equal. Hence,

$$\frac{c'-c}{\sqrt{a^2+b^2}} = \left|\frac{c'-c}{\sqrt{a'^2+b'^2}}\right|$$
$$\Rightarrow a^2+b^2 = a'^2+b'^2$$

44 **(b)**

Let *a* and *b* be non-zero real numbers. Therefore, the given equation $(ax^2 + by^2 + c)(x^2 - 5xy + 6y^2) = 0$ implies either

either $x^2 - 5xy + 6y^2 = 0$ $\Rightarrow (x - 2y)(x - 3y) = 0$ $\Rightarrow x = 2y \text{ and } x = 3y$ Represent two straight lines passing through origin. or $ax^2 + by^2 + c = 0$ When c = 0 and a and b are of same signs, then $ax^2 + by^2 + c = 0$ $\Rightarrow x = 0 \text{ and } y = 0$ Which is a point specified as the origin. When a = b and c is of sign opposite to that of a, then $ax^2 + by^2 + c = 0$ represents a circle. Hence, the given equation,

 $(ax^2 + by^2 + c)(x^2 - 5xy + 6y^2) = 0$

may represents two straight lines and a circle.

$$\begin{array}{c} x + 2y = 1 \\ \hline \\ 2x + 4y = 15 \end{array}$$

Let *P* be on x + 2y = 1. Then, $1 + \frac{t}{\sqrt{2}} + 2\left(2 + \frac{t}{\sqrt{2}}\right) = 1$ or $t = \frac{-4\sqrt{2}}{3}$ Let *P* be on 2x + 4y = 15. Then,

$$2\left(1+\frac{t}{\sqrt{2}}\right)+4\left(2+\frac{t}{\sqrt{2}}\right)=15$$

or $t=\frac{5\sqrt{2}}{6}$

since point lies between the lines and x = t, then

$$t \in \left(\frac{-4\sqrt{2}}{3}, \frac{5\sqrt{2}}{3}\right)$$

Circumcentre $0 \equiv (-1/3, 2/3)$ and orthocenter $H \equiv (11/3, 4/3)$

$$\begin{array}{c|c} 1:2 \\ \hline \\ O \\ G \\ H \end{array}$$

Therefore, the coordinates of *G* are (1, 8/9), now, the point *A* is (1, 10) as *G* is (1, 8/9). Hence, *AD*: *DG* = 3: 1

:
$$D_x = \frac{3-1}{2} = 1$$
, $D_y = \frac{\frac{8}{3} - 10}{2} = -\frac{11}{3}$

Hence, the coordinates of the midpoint of *BC* are (1, -11/3)

47 **(c)**

The given inequality is equivalent to the following system of inequalities

 $2x + 3y \le 6$, when $x \ge 0, y \ge 0$ $2x - 3y \le 6$, when $x \ge 0, y \le 0$ $-2x + 3y \le 6$, when $x \le 0, y \le 0$ $-2x - 3y \le 6$, when $x \le 0, y \le 0$

Which represents a rhombus with sides $2x \pm 3y = 6$ and $2x \pm 3y = -6$ Length of the diagonals is 6 and 4 units along *x*and y-axes. Therefore, the required area is $1/2 \times 6 \times 4 = 12$ sq. units 2x - 3y = -62x + 3y = 62x + 3y = -62x - 3y = e48 (b) Given AB = BC $\tan \theta = \frac{AB}{OA} = m_1$ $\tan \alpha = \frac{2AB}{OA} = m_2$ $\frac{m_2}{m_1} = 2 \implies \frac{m_2 + m_1}{m_2 - m_1} = \frac{2 + 1}{2 - 1} = 3$ $\Rightarrow \frac{m_1 + m_2}{\sqrt{(m_1 + m_2)^2 - 4m_1m_2}} = 3$ $\Rightarrow -\frac{\frac{2h}{b}}{\sqrt{\frac{4h}{b^2} - \frac{4a}{b}}} = 3$ $\Rightarrow \frac{4h^2}{h^2} - \frac{4a}{h} = \frac{4h^2}{9h^2}$ $\Rightarrow \frac{4h^2}{h^2} \times \frac{8}{9} = \frac{4a}{h}$ $\Rightarrow 8h^2 = 9ab$ 49 **(c)** *a*, 8, *b* are in *H*. *P* $\Rightarrow \frac{1}{a} + \frac{1}{b} = 1/4$ $\Rightarrow b = \frac{4a}{a-4}$ \Rightarrow area, $A = \frac{4a^2}{2(a-4)}$ A is minimum at a = 8. Hence, minimum value of A is 32 sq. units 50 (d)

If the line meets the *x*-and *y*-axes at *A* and *B*, then $A \equiv (-c/a, 0), B \equiv (0, -c/b)$. The line will pass through the first quadrant if -c/a > 0 and/or -c/b > 0 \Rightarrow *ac* > 0 and/or *bc* < 0

51 (a)

The distance between (2/m, 2) and (6/m, 6) is less than 5. Hence,

$$\left(\frac{2}{m} - \frac{6}{m}\right)^2 + (2 - 6)^2 < 25$$

$$\Rightarrow \frac{16}{m^2} < 9$$

$$\Rightarrow m^2 > \frac{16}{9}$$

$$\Rightarrow m > \frac{4}{3} \text{ or } m < \frac{-4}{3}$$

52 **(b)**

The equation of the line joining the points (2, -1)and (5, -3) is given by

$$y+1 = \frac{-1+3}{2-5}(x-2)$$

or $2x + 3y - 1 = 0$ (i)
since $(x-4)$ and $(-2, x-1)$

since $(x_1, 4)$ and $(-2, y_1)$ lie on 2x + 3y - 1 = 0, therefore 11

$$2x_1 + 12 - 1 = 0 \implies x_1 = -\frac{11}{2}$$

and $-4 + 3y_1 - 1 = 0 \implies y_1 = \frac{5}{3}$
Thus (x_1, y_1) satisfies $2x + 6y + 1 = 0$

53 (a)

$$P$$

$$y + 2x = 1$$

$$1/\sqrt{5}$$

$$3y + 6x = 6$$

$$Q$$

$$R$$

The given lines are y + 2x = 1 and y + 2x = 2. The distance between the lines is $(2-1)/\sqrt{5} =$ $1/\sqrt{5}$ The side length of the triangle is

 $(1/\sqrt{5})$ cosec 60° = $2/\sqrt{5}$

54 (a)

Line perpendicular to $x \sec \theta + y \csc \theta = a$ is $x \operatorname{cosec} \theta - y \operatorname{sec} \theta = \lambda$ This line passes through the point $(a\cos^3\theta, a\sin^3\theta)$ Then, $(a\cos^3\theta)\csc\theta - (a\sin^3\theta)\sec\theta = \lambda$ $\Rightarrow \lambda = a \left(\frac{\cos^3 \theta}{\sin \theta} - \frac{\sin^3 \theta}{\cos \theta} \right)$ $= a \frac{\cos 2\theta}{\cos \theta \sin \theta}$ Hence, the equation of line is $x \cos \theta - y \sin \theta =$ $a\cos 2\theta$

55 (a)

$$\tan\theta = \frac{a-1}{3} = \frac{7-a}{10-b}$$

58 (b)

the acute angle. Writing the equations of the lines as 2x - y + 4 = 0 and -x + 2y + 1 = 0, the required bisector is $\frac{2x - y + 4}{\sqrt{5}} = \frac{-x + 2y + 1}{\sqrt{5}}$ 59 (b) From the figure A (4, 5 B(1, 1)Area of rhombus = $2 \times (\text{area of } \Delta ABD)$ $= 2 \times \frac{1}{2} \times 5 \times 5 \sin \theta$ $= 25 \sin \theta$ Hence, maximum area is 25 (when $\sin \theta = 1$) (c)

Consider a point A', the image of A in y = x. Therefore, the coordinates of A' are (4,3) or (Notice that A and B lie are the same side with respect top y = x). Then PA = PA'. Thus, PA + PB is minimum, if PA' + PB is minimum, i.e., if P, A', B are collinear. Now, the equation of AB is

$$y - 3 = \frac{13 - 3}{7 - 4}(x - 4)$$

$$\Rightarrow 3y - 10x + 31 = 0$$

It intersects y = x at (31/7, 31/7), which is the required point *P*

61 (d)

60

Three non-collinear points from *a* triangle and the line joining the midpoints of any sides is equidistant from all the three vertices

62 (c)

Since the point A(2, 1) is translated parallel to x - y = 3, therefore AA' has the same slope as that of x - y = 3. Therefore, *AA*' passes through (2, 1) and has the slope of 1. Here $\tan \theta = 1 \Rightarrow \cos \theta = 1/\sqrt{2}, \sin \theta = 1/\sqrt{2}$

Clearly from the figure, the origin is contained in

Thus, the equation of AA' is $\frac{x-2}{\cos(\pi/4)} = \frac{y-1}{\sin(\pi/4)}$ Since AA' = 4, therefore the coordinates of A' are given by $\frac{x-2}{\cos(\pi/2)} = \frac{y-1}{\sin(\pi/4)} = -4$ $\Rightarrow x = 2 - 4\cos\frac{\pi}{4}, y = 1 - 4\sin\frac{\pi}{4}$ $\Rightarrow x = 2 - 2\sqrt{2}, y = 1 - 2\sqrt{2}$ Hence, the coordinates of A' are $(2 - 2\sqrt{2}, 1 - 2\sqrt{2})$ 63 (c) Equating of any line through (2, 3) is y - 3 = m(x - 2) $\Rightarrow y = mx - 2m + 3$ From the figure, area of ΔOAB is ± 12 . That is, 1 (2m - 3)

$$\frac{1}{2} \left(\frac{2m-3}{m}\right) (3-2m) = \pm 12$$
(0, 3-2m)
(2, 3)
(2, 3)
(2, 3)
(3, -2m)
(2, 3)
(3, -2m)
(3, -2

Taking positive sign, we get $(2m + 3)^2 = 0$. This gives one value of *m* as -3/2. Taking negative sign, we get

 $4m^2 - 36m + 9 = 0 \ (D > 0)$

This is a quadratic in *m* which gives two values of *m*. Hence, three straight lines are possible

64 **(c)**

 $\begin{vmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ a & b & -c \end{vmatrix} = 0$ $\Rightarrow a + 5b - 3c = 0$ $\Rightarrow -\frac{a}{3} - \frac{5}{3}b + c = 0$ Hence, 2ax + 3by + c = 0 is concurrent at 2x = -1/3 and 3y = -5/3. So, x = -1/6, y = -5/965 (a) The three lines are concurrent, if $\begin{vmatrix} 1 & 2 & -9 \\ 3 & 5 & -5 \end{vmatrix} = 0$ $\Rightarrow 35a - 22b + 1 = 0$ Which is true if the line 35x - 22y + 1 = 0 passes through (a, b)

66 **(d)**

67

68

Let the coordinates of *C* be (1, *c*). Then,

$$m_2 = \frac{c - y}{1 - x}$$

or $m_2 = \frac{c - m_1 x}{1 - x}$
 $\Rightarrow m_2 - m_2 x = c - m_1 x$
 $\Rightarrow (m_1 - m_2)x = c - m_2$
 $\Rightarrow c = (m_1 - m_2)x + m_2$ (i)
Now area of $\triangle ABC$ is
 $\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ x & m_1 x & 1 \\ 1 & c & 1 \end{vmatrix} = \frac{1}{2} [cx - m_1 x]$
 $= \frac{1}{2} |[((m_1 - m_2)x + m_2)x - m_1 x]|]$
 $= \frac{1}{2} |[(m_1 - m_2)x^2 + m_2 x - m_1 x]|]$
 $= \frac{1}{2} (m_1 - m_2)(x - x^2)[\because x > x^2 \text{ in } (0, 1)]$
Hence, $f(x) = \frac{1}{2}(x - x^2)$
 $f(x)_{\text{max}} = \frac{1}{8}$ when $x = 1/2$
(b)

Let y = mx be a line common to the given pairs of lines. Then

$$am^{2} + 2m + 1 = 0 \text{ and } m^{2} + 2m + a = 0$$

$$\Rightarrow \frac{m^{2}}{2(1-a)} = \frac{m}{a^{2} - 1} = \frac{1}{2(1-a)}$$

$$\Rightarrow m^{2} = 1 \text{ and } m = -\frac{a+1}{2}$$

$$\Rightarrow (a + 1)^{2} = 4$$

$$\Rightarrow a = 1 \text{ or } -3$$

But for $a = 1$, the two pairs have both the l

But for a = 1, the two pairs have both the lines common. So a = -3 and the slope *m* of the line common to both the pairs is 1. Now,

$$x^{2} + 2xy + ay^{2} = x^{2} + 2xy - 3y^{2}$$

= $(x - y)(x + 3y)$
and $ax^{2} + 2xy + y^{2} = -3x^{2} + 2xy + y^{2} =$
 $-(x - y)(3x + y)$
so the equation of the required lines is
 $(x + 3y)(3x + y) = 0$
 $\Rightarrow 3x^{2} + 10y + 3y^{2} = 0$
(d)

Given O(0, 0) is the orthocentre. Let A(h, k) be the

third vertex, B(-2,3) and C(5,-1) the other two vertices. Then the slope of the line through A and *O* is k/h, while the lines through *B* and *C* has the slope -4/7. By the property of the orthocenter, these two lines must be perpendicular, so we have $\left(\frac{k}{h}\right)\left(-\frac{4}{7}\right) = -1 \Rightarrow k/h = \frac{7}{4}$ (i) Also, $\frac{5-2+h}{3} + \frac{-1+3+k}{3} = 7$ \Rightarrow h + k = 16 (ii) Which is not satisfied by the points given in (*a*), (*b*) or (*c*) 69 (d) $\tan \theta = 7$ OA = OB = r $\sin\theta = \frac{7}{5\sqrt{2}}, \cos\theta = \frac{1}{5\sqrt{2}}$ $B\left(\frac{r}{5\sqrt{2}}, \frac{7r}{5\sqrt{2}}\right)$ 45° Now, $m_{AB} = -1/2$ 70 (d) The point *Q* is (-b, -a) and the point *R* is (-a, -b). Therefore, the midpoint of *PR* is (0, 0)71 (d) B М $A \rightarrow x$ $B \equiv (o, a), A_1 \equiv \left(\frac{a}{1+a}, \frac{a^2}{1+a}\right)$ $\Delta_{OA,B} = \frac{1}{2}(OB)A_1M$ $=\frac{1}{2}|a|\left|\frac{a}{1+a}\right| = \frac{1}{2}\frac{a^2}{|1+a|}$ 72 **(b)** to - y + 3x + 4 = 0 is $\frac{y-3}{x-2} = -\frac{1}{3}$ or 3y + x - 11 = 0Therefore, foot is x = -1/10, y = 37/10

P(2, 2)Q(6, -1)*S*(13/2, 1) R(7, 3)Now slope of *PS* is $m = \frac{2-1}{2-13/2} = -\frac{2}{9}$ Then equation of the line passing through (1, -1)and parallel to PS is $y + 1 = -\frac{2}{9}(x - 1)$ or 2x + 9y + 7 = 074 (a) $3a + a^2 - 2 = 0$ $\Rightarrow a^2 + 3a - 2 = 0;$ $\Rightarrow a = \frac{-3 \pm \sqrt{9+8}}{2} = \frac{-3 \pm \sqrt{17}}{2}$ \Rightarrow Two values of a 75 (c) B(0, 4) $\overbrace{A(3,0)}^{A(3,0)} X$ Clearly, circumcentre of triangle ABQ will lie on the perpendicular bisector of line AB. Now equation of perpendicular bisector of line AB. Now equation of perpendicular bisector of line AB is 3x - 4y + 7/2 = 0. Hence, locus of circumcentre is 6x - 8y + 7 = 0

76 (a)

No such triangle is possible as the medians through the vertices of a right-angled triangle (other than right angle) cannot be perpendicular to each other

77 (a)

78

Solving the given equations of lines pairwise, we get the vertices of triangle as

A(-2,2), B(2,-2), C(1,1)

Then,

$$AB = \sqrt{16 + 16} = 4\sqrt{2}$$

BC = $\sqrt{1 + 9} = \sqrt{10}$

 $CA = \sqrt{9+1} = \sqrt{10}$ Hence, the triangle is isosceles

(c)

We know that $PA + PB \ge AB$ (by triangle

73 (d)

S is the midpoint of *Q* and *R*. Therefore, S = ((7+6)/2, (3-1)/2) = (13/2, 1)

inequality) So, PA + PB is the minimum if PA + PB = AB, i.e., A, P, B are collinear $\begin{vmatrix} -4 & 1 \\ 2 & 1 \end{vmatrix} = 0$ 3 1 :. |2k-1| 2k+1or 3(2-2k-1) + 4(1-2k+1) + 1(2k+1-1)4k+2=0or 3 - 6x + 8 - 8k + 3 - 2k = 0or 14 - 16k = 0 $\therefore k = \frac{7}{8}$ 79 (d) A(-4, 0)Let M = (0, h) \Rightarrow N = (0, h + 4). Equation of AM is $\frac{x}{-4} + \frac{y}{h} = 1$ $\Rightarrow \frac{y}{h} = \frac{4+x}{4} \Rightarrow h = \frac{4y}{4+x}$ Equation of BN is $\frac{x}{4} + \frac{y}{h+4} = 1$ $\Rightarrow \frac{y}{h+4} = \frac{4-x}{4}$ $\Rightarrow h+4=\frac{4y}{4-x}$ $\Rightarrow h = \frac{4y - 16 + 4x}{4 - x}$ $\Rightarrow \frac{4(y-4+x)}{4-x} = \frac{4y}{4+x} \text{ (eliminating } h\text{)}$ $\Rightarrow 2xy - 16 + x^2 = 0$, which is a required locus 80 **(b)** Being a pair of lines, $abc + 2fgh - af^2 - bg^2 - bg^2$ $ch^{2} = 0$ This gives m = 4. Now find angle between lines 81 (d) Since the product of the slope of the four lines represented by the given equation is 1 and a pair of lines represents the bisectors of the angles between the other two, the product of the slopes of each pair is -1So let the equation of one pair be $ax^2 + 2hxy - bxy = bxy + bxy$ $ay^2 = 0$. Then the equation of its bisectors is $\frac{x^2 - y^2}{2a} = \frac{xy}{h}$ By hypothesis,

 $x^4 + x^3y + cx^2y^2 - xy^3 + y^4$ $= (ax^{2} + 2hxy + ay^{2})(hx^{2} - 2axy - hy^{2})$ $= ah(x^{4} + y^{4}) + 2(h^{2} - a^{2})(x^{3}y - xy^{3})$ $-6ahx^2v^2$ (d) Given, lines are (1 + p)x - py + p(1 + p) = 0...(i) and (1 + q)x - qy + q(1 + q) = 0....(ii) and y = 0on solving Eqs. (i) and (ii), we get $C\{pq, (1+p)(1+q)\}$: Equation of altitude *CM* passing through *C* and perpendicular to AB is x = pq ...(iii) \therefore Slope of line (ii) is $\left(\frac{1+q}{q}\right)$: Slope of altitude BN (as shown in figure) is $\frac{-q}{1+q}$ \therefore Equation of BN is $y - 0 = \frac{-q}{1+q}(x+p)$ $\Rightarrow y = \frac{-q}{(1+q)}(x+p)$... (iv) Let orthocentre of triangle be H(h, k), which is the point of intersection of Eqs. (iii) and (iv). \therefore On solving Eqs. (iii) and (iv), we get x = pq and y = -pq \Rightarrow *h* = *pq* and *k* = -*pq* $\therefore h + k = 0$: Locus of H(h, k) is x + y = 0. (C) We have, $B \equiv \left(\frac{6}{7}, 2\right), C \equiv \left(-\frac{6}{7}, 2\right)$ $\Rightarrow BC = \frac{12}{7}, AD = 3$ $C \qquad B \qquad y = 2$ $7x - 2y + 10 = 0 \qquad (-10, 0) \qquad (-10, 0) \qquad X$ $\therefore \quad \Delta_{ABC} = \frac{1}{2} \times \frac{12}{7} 3 = \frac{18}{7} \text{ sq. units}$ 84 (a)

82

83

Obviously line through Q is at greatest distance from point P when it is perpendicular to PQ. Now slope of line PQ is $m_{PQ} = -1/2$. Then slope of perpendicular line passing through Q is y - 2 = 2(x - 1)or 2x - y = 0

85 **(c)**

The lines by which triangle is formed are x = 0, y = 0 and x + y = 1. Clearly, it is right triangle and we know that in a right angled triangle orthocenter coincides with the vertex at which right angle is formed. Therefore, orthocentre is (0,0)

86 **(a)**

Let the vertices '*B*' and '*C*' lie on the given line. Then,

 $OD = \frac{2\sqrt{2}}{\sqrt{2}} = 2$. Equation of *OD* is

 $y = x \Rightarrow x = y = \sqrt{2}$ (for point *D*) Also, $BD = OD \times \tan 60^\circ = 2\sqrt{3}$ for the coordinates of *B* and *C*. Using parametric equation of line, we get

$$\frac{x - \sqrt{2}}{-\frac{1}{\sqrt{2}}} = \frac{y - \sqrt{2}}{\frac{1}{\sqrt{2}}} = \pm 2\sqrt{3}$$

$$y$$

$$y$$

$$y$$

$$y = x$$

$$y$$

$$x + y = 2\sqrt{2}$$

$$\Rightarrow C \equiv (\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$$

and
$$B \equiv (\sqrt{2} - \sqrt{6}, \sqrt{2} + \sqrt{6})$$

87 **(a)**

$$\Rightarrow a = b + c + 2\sqrt{bc}$$

$$\Rightarrow a = (\sqrt{b} + \sqrt{c})^{2}$$

$$\Rightarrow (\sqrt{a} - \sqrt{b} - \sqrt{c})(\sqrt{a} + \sqrt{b} + \sqrt{c}) = 0$$

$$\Rightarrow \sqrt{a} - \sqrt{b} - \sqrt{c} = 0$$

Since $\sqrt{a} + \sqrt{b} + \sqrt{c} \neq 0$ ($\because a, b, c > 0$)
Comparing with $\sqrt{ax} + \sqrt{by} = \sqrt{c} = 0$, we have
 $x = -1, y = 1$
91 (c)
We have, $6x^{2} - xy - 12y^{2} = 0$ (i)
 $\Rightarrow (2x - 3y)(3x + 4y) = 0$
and $15x^{2} + 14xy - 8y^{2} = 0$
 $\Rightarrow (5x - 2y)(3x + 4y) = 0$ (ii)
Equation of the lie common to (i) and (ii) is
 $3x + 4y = 0$ (iii)
Equation of any line parallel to (iii) is
 $3x + 4y = k$
Since its distance from (iii) is 7, so
 $\left|\frac{k}{\sqrt{3^{2} + 4^{2}}}\right| = 7 \Rightarrow k = \pm 35$
92 (c)

We have to find locus of the point (*h*, *k*) whose image in the line 2x - y - 1 = 0 lies on the line y = x. Now, image of (h, k) in the line 2x - y - 1 = 0 is given by $\frac{x_2 - h}{2} = \frac{y_2 - k}{-1} = \frac{2(2h - k - 1)}{5}$ $\Rightarrow x_{2} = \frac{-3h + 4k + 4}{5}$ and $y_{2} = \frac{4h + 3k - 2}{5}$ This point lies on y = x. Then, $\frac{-3h+4k+4}{5} = \frac{4h+3k-2}{5} \Rightarrow 7h-k = 6$ 93 (c) If P_1 be the reflection of P in y-axis, the $P_1 = (-2, 3)$ R(5, 10)(0, *J* P(2, 3) P(-2, 3)**→**X 0 Equation of line P_1R is $(y-3) = \frac{10-3}{5+2}(x+2)$ $\Rightarrow y = x + 5$ It meets *y*-axis at $(0, 5) \Rightarrow Q \equiv (0,5)$

94 (d)

The given equation is-b $(a-b)^2(x^2+y^2) - 2abx = 0$ (i) The origin is shifted to(ab/(a - b), 0). Any point (x, y) on the curve (i) must be replaced with new point (X, Y) with reference to new axes, such that $x = X + \frac{ab}{a-b}$ and y = Y + 0

Substituting these in (i), we get

$$(a-b)\left[\left(X + \frac{ab}{a-b}\right)^{2} + Y^{2}\right] - 2ab\left[X + \frac{ab}{a-b}\right]$$

= 0
$$\Rightarrow (a-b)\left[X^{2} + \frac{a^{2}b^{2}}{(a-b)^{2}} + Y^{2} + \frac{2abX}{a-b}\right] - 2abX$$

$$-\frac{2a^{2}b^{2}}{a-b} = 0$$

$$\Rightarrow (a-b)(X^{2} + Y^{2}) = \frac{a^{2}b^{2}}{a-b}$$

$$\Rightarrow (a-b)^{2}(X^{2} + Y^{2}) = a^{2}b^{2}$$

(c)

95

A rough sketch of the lines is given below. There are three triangles namely *ABC*, *ABD*, *ACD*

96 **(c)**

Reflection about the line y = x, changes the point (4, 1) to (1, 4). On translation of (1,4) through a distance of 2 units along +*ve* direction of *x*-axis the point becomes (1+2, 4), i.e., (3, 4)

On rotation about origin through an angle $\pi/4$, the point *P* takes the position *P'* such that OP = OP'. Also OP = 5 = OP' and $\cos \theta = 3/5$, $\sin \theta = 4/5$. Now,

$$x = OP' \cos\left(\frac{\pi}{4} + \theta\right)$$

= $5\left(\cos\frac{\pi}{4}\cos\theta - \sin\theta\right)$
= $5\left(\frac{3}{5\sqrt{2}} - \frac{4}{5\sqrt{2}}\right)$
= $-\frac{1}{\sqrt{2}}$
 $y = OP' \sin\left(\frac{\pi}{4} + \theta\right)$
= $5\left(\sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta\right)$
= $5\frac{3}{5\sqrt{2}} + \frac{4}{5\sqrt{2}} = \frac{7}{\sqrt{2}}$
 $\therefore P' \equiv \left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
(b)

97 **(b)**

Suppose we rotate the coordinate axes in the anticlockwise direction through an angle α . The equation of the line *L* with respect to old axes is $\frac{x}{L} + \frac{y}{L} = 1$

$$\overline{a} + \overline{b} =$$

In this equation replacing x by $x \cos \alpha - y \sin \alpha$ and y by $x \sin \alpha + y \cos \alpha$, the equation of the line with respect to new axes is

$$\frac{x\cos\alpha - y\sin\alpha}{a} + \frac{x\sin\alpha + y\cos\alpha}{b} = 1$$

$$\Rightarrow x\left(\frac{\cos\alpha}{a} + \frac{\sin\alpha}{b}\right) + y\left(\frac{\cos\alpha}{b} - \frac{\sin\alpha}{a}\right) = 1 \quad (i)$$

The intercepts made by (i) on the coordinat

The intercepts made by (i) on the coordinates axes are given as p and q

Therefore,
$$\frac{1}{p} = \frac{\cos \alpha}{a} + \frac{\sin \alpha}{b}$$

and $\frac{1}{q} = \frac{\cos \alpha}{b} - \frac{\sin \alpha}{a}$

Squaring and adding, we get $\frac{1}{p^2} + \frac{1}{q^2} = \frac{1}{a^2} + \frac{1}{b^2}$

98 **(b)**

(2, 0) is midpoint of B(0, 0) and C, then C has coordinates (4,0). Also, A has coordinates $(0 + 2\cos \pi/3), 0 + 2\sin \pi/3) \equiv (1, \sqrt{3})$. Then centroid is $(5/3, 1/\sqrt{3})$

99 **(d)**

Orthocentre of triangle *BCH* is the vertex A(-1, 0)100 **(b)**

$$(0, 1)$$

 $(0, 1)$
 $(0, 1)$
 $(2, y_1)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$
 $(2, 0)$

From the figure,

$$2^{2} + (y_{1} - 1)^{2} = y_{1}^{2}$$

$$4 + y_1^2 + 1 - 2y_1 = y_1^2$$

 $5 = 2y_1$ or $y_1 = 5/2$ Equation of the line from (2, 5/2) to the given base is y - 5/2 = 2(x - 2)

or
$$2y - 5 = 4(x - 2)$$

at
$$y = 1, -3/4 = x - 2$$
 or $x = 5/4$

101 **(a)**

Equating of line *AB* is
$$y - 1 = m(x - 1)$$

$$\Rightarrow$$
 Equating of line *AC* is $y - 1 = -\frac{1}{m}(x - 1)$

$$(0, 1 + \frac{1}{m}) = 1 - \frac{1}{m}$$

$$2k = 1 + \frac{1}{m}$$

$$y$$

$$(1, 1)$$

$$(1 - \frac{1}{m}, 0)$$

$$(1 - \frac{1}{m}, 0)$$

$$k = 1 - \frac{1}{m}$$

Eliminating *m* we have locus x + y = 1

102 **(b)**

 $A \equiv (\alpha, 2\alpha + 3), BC = 1 \text{ unit. Equation of } BC \text{ is}$ y - 3 = 0Distance of *A* from *BC* is $p \Rightarrow |2\alpha + 3 - 3|$ Area of $\Delta ABC = \Delta = |\alpha|; 5 \le \Delta < 6 \Rightarrow 5 \le |\alpha| < 6$ 103 **(b)**

Let the third vertex be (h, k)

Now slope of *AD* is (k - 2)/(h - 1) slope of *BC* is (5 + 3)/(-2 - 4) = -4/3, slope of *BE* is (-3 - 2)/(4 - 1) = 5/3 and slope of *AC* is (k - 5)/(h + 2). Since *AD* \perp *BC* so $\frac{k - 2}{h - 1} \times \frac{-4}{3} = -1$ $\Rightarrow 3h - 4k + 5 = 0$ (i) Again since *BE* \perp *AC*, so $-\frac{5}{3} \times \frac{k - 5}{h + 2} = -1$ $\Rightarrow 3h - 5k + 31 = 0$ (ii) On solving (i) and (ii) we get h = 33, k = 26.

Hence, the third vertex is (33, 26)

104 **(b)**

The coordinates of *A* are (0,4) and those of *B* are (3,0)

$$BC = AB = \sqrt{3^2 + 4^2} = 5$$

$$\Rightarrow BL = BC \sin \theta \text{ and } CL = BC \cos \theta$$

$$\Rightarrow BL = 5 \times \frac{4}{5} = 4 \text{ and } CL = 5 \times \frac{3}{5} = 3$$

Similarly, MD = 4 and AM = 3. So, the coordinates of *C* are (OB + BL, CL) = (7,3) and those of *D* are (MD, OA + AM) = (4, 7)The coordinates of the vertex farthest from the origin is (4, 7)

105 **(b)**

From the figure, $x \cos(\theta + 30^\circ) = d$ (i) $x \sin \theta = 1 - d$ (ii) Dividing (i) by (ii), we have

$$\sqrt{3} \cot \theta = \frac{1+d}{1-d}$$

Squaring Eq. (ii) and putting the value of $\cot \theta$, we have
$$x^{2} = \frac{1}{3}(4d^{2} - 4d + 4)$$
$$\Rightarrow x = 2\sqrt{\frac{d^{2} - d + 1}{3}}$$

106 (d)
If we reflect $y = |x - 2|$ in y-axis, it will becomes
 $y = |-x - 2| = |x + 2|$. The reflected lines are
 $y = x + 2, y = -x - 2$. Their combined equation
is
 $(y - x - 2)(y + x + 2) = 0$
 $\Rightarrow y^{2} - (x - 2)^{2} = 0$
 $\Rightarrow y^{2} - (x - 2)^{2} = 0$
 $\Rightarrow y^{2} - x^{2} - 4x - 4 = 0$
107 (c)
Let incentre be/Then/(2, 1)
 $\Rightarrow IA = \sqrt{2^{2} + 2^{2}} = 2\sqrt{2}$
Also, $AI = r \csc \frac{1}{2}$
 $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$
 $\Rightarrow \tan(\frac{\pi}{2} + \frac{A}{2}) = \frac{1-2}{1+2}$
 $= \frac{1}{3}\cot \frac{1}{2} = 1$
So, $r = \frac{AI}{\csc \frac{A}{2}} = \frac{2\sqrt{2}}{\sqrt{1+\frac{1}{9}}}$
 $\frac{2\sqrt{2} \times 3}{\sqrt{10}} = \frac{6}{\sqrt{5}}$

108 (d)

Angle bisector will make the angles $(\theta_1 + \theta_2)/2$ and $(\pi/2 + (\theta_1 + \theta_2)/2)$ with the *x*-axis. Hence, their equations are

$$\frac{x - x_1}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)} = \frac{y - y_1}{\sin\left(\frac{\theta_1 + \theta_2}{2}\right)}$$

or
$$\frac{x - x_1}{-\sin\left(\frac{\theta_1 + \theta_2}{2}\right)} = \frac{y - y_1}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}$$

109 **(b)**

We can assume that *OP* and *OR* are *x*-axis and *y*-axis, respectively. Let OP = a. Then area of square *OPQR* is a^2

Coordinates of *M* and *N* are (a, a/2) and (a/2, a) respectively

$$\therefore \operatorname{ar}(\Delta OMN) = \frac{1}{2} \begin{vmatrix} a & a/2 \\ a/2 & a \end{vmatrix} = \frac{3a^2}{8}$$
$$\therefore \frac{8}{3} = \frac{\lambda}{6}$$
$$\lambda = 16$$

110 **(d)**

Arranging the lines in descending order of slope, we have

$$m_{1} = 5, m_{2} = 3 \text{ and } m_{3} = -1$$

$$\therefore \tan A = \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} = \frac{2}{1 + 15} = \frac{1}{8}$$

$$\tan B = \frac{m_{2} - m_{3}}{1 + m_{2}m_{3}} = \frac{3 + 1}{1 - 3} = -2$$

$$\tan C = \frac{m_{3} - m_{1}}{1 + m_{3}m_{1}} = \frac{-1 - 5}{1 - 5} = \frac{3}{2}$$

$$\sum \tan^{2} A = \frac{1}{64} + 4 + \frac{9}{4} = \frac{1 + 256 + 144}{64}$$

$$= \frac{401}{64}$$

$$\Rightarrow p + q = 465$$

$$OM_{r} = OA_{r} + \frac{OA_{r+1} - OA_{r}}{2}$$

$$= \frac{OA_{r} + OA_{r+1}}{2}$$

$$= \frac{1}{2} \{OA_{1} \times k^{r-1} + OA_{1} \times k^{r}\}$$

$$= \frac{OA_{1}}{2} (1+k)k^{r-1}$$

$$\therefore \sum_{r=1}^{\infty} OM_{r} = \frac{OA_{1}}{2} (1+k) \sum_{r=1}^{\infty} k^{r-1}$$

$$= \frac{OA_{1}}{2} (1+k) \times \frac{1}{1-k}$$

$$= \frac{OA_{1}}{2} \times \frac{1 + \frac{OA_{2}}{OA_{1}}}{1 - \frac{OA_{2}}{OA_{1}}}$$

$$= \frac{OA_{1}(OA_{1} + OA_{2})}{2(OA_{1} - OA_{2})}$$
112 **(b)**

From the figure $y + \sqrt{3}x = 2$ for x > 0

$$y - \sqrt{3}x = 2$$
 for $x < 0$
 $y - \sqrt{3}x = 2$ for $x < 0$

113 **(b)**

Lines ax + y = 0 and x + by = 0 intersect at O(0,0)

Hence, if *AB* subtebds right angle at O(0, 0), then ax + y = 0 and x + by = 0 are perpendicular to each other

$$(-a)\left(-\frac{1}{b}\right) = -1$$
$$\Rightarrow a + b = 0$$

114 **(b)**

Area of rectangle *BCDE* is 4*mn*. Area of $\triangle ABE$ ius $\frac{2m(m-n)}{2} = m^2 - mn$

Therefore, the area of pentagon is $4mn + m^2 - mn = m^2 + 3mn$

115 **(c)**

The given equations are $a^2x^2 + 2h(a + b)xy + b^2y^2 = 0$ (i) and $ax^2 + 2hxy + by^2 = 0$ (ii) The equation of the bisectors of the angles between the lines represented by (i) is

$$\frac{x^2 - y^2}{a^2 - b^2} = \frac{xy}{h(a+b)}$$

or
$$\frac{x^2 - y^2}{a-b} = \frac{xy}{b}$$

which is same as equation of the bisectors of angles between the line pair (ii). Thus, two lines pairs are equally inclined to each other

116 **(d)**

The combined equation of bisectors of angles between the lines of the first pair is

$$\frac{x^2 - y^2}{2 - 1} = \frac{xy}{9}$$

As these equations are the same, the two pairs are equally inclined to each other

117 **(a)**

Since xy > 0, *P* lies either in the first quadrant or in the third quadrant. The inequality x + y < 1represents all points below the line x + y = 1so that xy > 0 and x + y < 1 imply that *P* lies either inside the triangle *OAB* or in third quadrant 118 **(c)**

Family of line through the given lines is

$$L \equiv x - 7y + 5 + \lambda(x + 3y - 2) = 0$$
 (i)

For line L = 0 in the diagram, distance of any point say (2, 0) on the line x + 3y - 2 = 0 from the line x - 7y + 5 = 0 and the line L = 0 must be same

$$\Rightarrow \left|\frac{2+5}{\sqrt{50}}\right| = \left|\frac{2+2\lambda+5-2\lambda}{\sqrt{(1+\lambda)^2+(3\lambda-7)^2}}\right|$$

$$\Rightarrow 10\lambda^2 - 40\lambda = 0$$

$$\Rightarrow \lambda = 4 \text{ or } 0$$

Hence, $L = 0, \lambda = 4$

$$\Rightarrow \text{Required line is } 5x + 5y - 3 = 0$$

119 **(b)**

The point *B* is (2,1). The image of *A*(1,2) in the line x - 2y + 1 = 0 is given by $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{4}{5}$

Hence, coordinates of the point are (9/5, 2/5)Since the point lies on *BC*, therefore the equation of *BC* is 3x - y - 5 = 0. Hence, a + b = 2

120 (a)

Acute angle between the lines $x^2 + 4xy + y^2 = 0$ is $\tan^{-}(2\sqrt{4-1})/(1+1) = \tan^{-1}\pi/3$. Angle bisector of $x^2 + 4xy + y^2 = 0$ are given by $\frac{x^2 - y^2}{1-1} = \frac{xy}{2}$ $x^2 - y^2 = 0 \Rightarrow x = \pm y$

As x + y = 0 is perpendicular to x - y = 4, the given triangle is isosceles with vertical angle equal to $\pi/3$ and hence it is equilateral

121 **(d)**

We have P = (1, 0), Q = (-1, 0), R = (2, 0). Let S = (x, y). Now given that $SQ^2 = SR^2 = 2SP^2$. Hence, $(x + 1)^2 + y^2 + (x - 2)^2 + y^2 = 2[(x - 1)^2 + y^2]$ $\Rightarrow 2x^2 + 2y^2 - 2x + 5 = 2x^2 + 2y^2 - 4x + 2$ $\Rightarrow 2x + 3 = 0$

$$\Rightarrow x = -3/2$$

Which is a straight line parallel to *y*-axis

122 **(d)**

Let (h, k) be the point on the locus. Then by the given conditions,

 $(h-a_1)^2 + (k-b_1)^2 = (h-a_2)^2 + (k-b_2)^2$

$$\Rightarrow 2h(a_1 - a_2) + 2k(b_1 - b_2) + a_2^2 + b_2^2 - a_1^2 - b_1^2 = 0$$

$$\Rightarrow h(a_1 - a_2) + k(b_1 - b_2) + \frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2 - b_1^2$$

$$c = \frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$$

123 (d)

Clearly, *A* will remain as (0, 0); f_1 will make *B* as (0,4); f_2 will make it (12, 4) and f_3 will make it (4,8); f_1 will make C as (2, 4); f_2 will make it (14,4); f_3 will make it (5,9). Finally f_1 will make D as (2,0) f_2 will make ixt (2, 0) f_3 will make it (1, 1). So we finally get $A \equiv (0,0)$, $B \equiv (4,8)$, $C \equiv (5,9)$, $D \equiv (1, 1)$. Hence,

$$m_{AB} = \frac{8}{4}, m_{BC} = \frac{9-8}{5-4} = 1, m_{CD} = \frac{9-1}{5-1}$$
$$= \frac{8}{4}, m_{AD} = 1, m_{AC} = \frac{9}{5}, m_{BD}$$
$$= \frac{8-1}{4-1} = 7/3$$

Hence, the final figure will be a parallelogram 124 **(c)**

Above figure represents the given isosceles triangle. Clearly the equation of other equal side is y = 2

125 (**d**)

Angle between both the lines is 45°. Hence, $OP = OP'\sqrt{2} = (5/\sqrt{2}) \times \sqrt{2} = 5$

126 **(c)**

ax + by = 1 will be one of the bisector of the given line. Equation of bisectors of the given lines

are

$$\frac{3x + 4y - 5}{5} = \pm \left(\frac{5x - 12y - 10}{13}\right)$$

$$\Rightarrow 64x - 8y = 115$$
or $14x + 112y = 15$

$$\Rightarrow a = \frac{64}{115}, b = -\frac{8}{115}$$
or $a = \frac{14}{15}, b = \frac{12}{115}$

127 **(b)**

BD and *BE* intersect at *B*. Coordinates of *B* are (-3, -2)

$$\begin{array}{c} B(-3, -2) \\ \hline \\ 7x - 10y + 1 = 0 \\ \hline \\ A \\ (2, -1) \end{array} \xrightarrow{E \ D} C \\ \hline \\ m_{AB} = \frac{1}{5} \\ \Rightarrow \tan \theta = \left| \frac{\frac{3}{2} - \frac{1}{5}}{1 + \frac{3}{10}} \right| = \left| \frac{\frac{3}{2} - m}{1 + \frac{3m}{2}} \right| \\ \Rightarrow 1 = \left| \frac{3 - 2m}{2 + 3m} \right| \\ \Rightarrow \pm 1 = \frac{3 - 2m}{2 + 3m} \\ \Rightarrow m = 1/5 \text{ (rejected) or } -5 \\ \text{Equation of } BC \text{ is} \end{array}$$

y + 2 = -5(x + 3) $\Rightarrow 5x + y + 17 = 0$

Alternative Solution:

Take image of (2, -1) in the line *BD* to get a point on *BC*

128 (a)

Extremities of the given diagonal are (4,0) and (0,6). Hence, slope of this diagonal is -3/2 and slope of other diagonal is 2/3. The equation of the other diagonal is

$$\frac{x-2}{\frac{3}{\sqrt{13}}} = \frac{y-3}{\frac{2}{\sqrt{13}}} = r$$

For the extremities of the diagonals, $r = \pm \sqrt{13}$. Hence, $x - 2 = \pm 3, y - 3 = \pm 2$

x = 5, -1 and y = 5, 1

Therefore, the extremities of the diagonal are (5,5) and (-1,1)

129 **(b)**

Let the coordinates of the third vertex be (2a, t). Now, AC = BC. Hence,

$$t = \sqrt{4a^2 + (a-t)^2} \Rightarrow t = \frac{5a}{2}$$

So the coordinates of third vertex *C* are (2*a*, 5*a*/2). Therefore, area of the triangle is

$$\pm \frac{1}{2} \begin{vmatrix} 2a & \frac{5a}{2} & 1 \\ 2a & 0 & 1 \\ 0 & a & 1 \end{vmatrix} = \begin{vmatrix} a & \frac{5a}{2} & 1 \\ 0 & -\frac{5a}{2} & 0 \\ 0 & a & 1 \end{vmatrix} = \frac{5a^2}{2} \text{ sq. units}$$

130 **(b)**

Images of *A* about y = x, y = -2x are A_1 and A_2 which lie on *BC*. Now $A_1 \equiv (2, 1)$ and $A_2 \equiv (-11/5, 2/5)$. Equation of *BC* is x - 7y + 5 = 0. Hence,

$$r = ID = \left|\frac{5}{\sqrt{1+49}}\right| = \frac{1}{\sqrt{2}}$$

131 **(d)**

$$\begin{array}{c}
Y \\
B \\
O \\
O \\
O \\
O \\
A \\
X \\
Tan(180^{\circ} - \theta) = \text{slope of } AB = -3 \\
\therefore \tan \theta = 3 \\
\therefore \tan \theta = 3 \\
\therefore \frac{OC}{AC} = \tan \theta, \frac{OC}{BC} = \cot \theta \\
\Rightarrow \frac{BC}{AC} = \frac{\tan \theta}{\cot \theta} = \tan^2 \theta = 9
\end{array}$$

132 **(a)**

First two family of lines passes through (1, 1) and (3, 3), respectively. The point of intersection of lines belonging to third family of lines will lie on line y = xHence, $\Rightarrow ax + x - 2 = 0$ and 6x + ax - a = 0or $\frac{2}{a+1} = \frac{a}{6+a}$ $\Rightarrow a^2 - a - 12 = 0 \Rightarrow (a - 4)(a + 3) = 0$ 133 **(d)**

$$\frac{\Delta AQP}{\Delta AOB} = \frac{3}{8}$$

or $\frac{P^2\lambda}{\frac{(\lambda+1)^2}{\frac{1}{2}p^2}} = \frac{3}{8}$

The value 1/3 is rejected because this gives negative coordinates of *P* and it is given that *P* lies on *OB*

134 **(b)**

Reflection of *A* in the two angle bisectors will lie on the line *BC*, so (2,1) and (1, -2) will lie on *BC*. Equation of *BC* will be $y + 2 = \left(\frac{1+2}{2-1}\right)(x-1)$

i.e., 3x - y = 5

135 (a)

Let $A \equiv (x_1, y_1), B \equiv (x_2, y_2), C \equiv (x_3, y_3), D \equiv (x_4, y_4)$ $(x_4, y_4)D$ $B(x_2, y_2)$ $(x_1, y_1)A$ $C(x_3, y_3)$

Given,

136

$$x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + y_{1}^{2} + y_{2}^{2} + y_{3}^{2} + y_{4}^{2} - 2x_{1}x_{3}$$

$$- 2x_{2}x_{4} - 2y_{2}y_{3} - 2y_{1}y_{4} \le 0$$

$$\Rightarrow (x_{1} - x_{3})^{2} + (x_{2} - x_{4})^{2} + (y_{2} - y_{3})^{2}$$

$$+ (y_{1} - y_{4})^{2} \le 0$$

$$\Rightarrow x_{1} = x_{3}, x_{2} = x_{4}, y_{2} = y_{3}, y_{1} = y_{4}$$

$$\Rightarrow \frac{x_{1} + x_{2}}{2} = \frac{x_{3} + x_{4}}{2} \text{ and } \frac{y_{1} + y_{2}}{2} = \frac{y_{4} + y_{3}}{2}$$

Hence, *AB* and *CD* bisect Each other
Therefore, *ACBD* is a parallelogram
Also $AB^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$

$$= (x_{3} - x_{4})^{2} + (y_{4} - y_{3})^{2}$$

$$= CD^{2}$$

Thus *ACBD* is a parallelogram and *AB* = *CD*,
hence is a rectangle
(a)
x-coordinate of the point of intersection is
 $3x + 4(mx + 1) = 9$

$$\Rightarrow (3 + 4m)x = 5 \Rightarrow x = \frac{5}{3 + 4m}$$

For *x* to be an integer 3 + 4*m* should be a divisor

of 5, i.e., 1, −1, 5 or −5. Hence, $3 + 4m = 1 \Rightarrow m = -1/2$ (not integer) $3 + 4m = -1 \Rightarrow m = -1$ (integer) $3 + 4m = 5 \Rightarrow m = 1/2$ (not an integer) $3 + 4m = -5 \Rightarrow m = -2$ (integer) Hence, there are two integral values of m 137 (d) The set of lines is 4ax + 3by + c = 0, where a + b + c = 0. Eliminating *c*, we get 4ax + 3by - (a+b) = 0 $\Rightarrow a(4x-1) + b(3y-1) = 0$ This passes through the intersection of the lines 4x - 1 = 0 and 3y - 1 = 0, i.e., x = 1/4, y = 1/3, i.e., (1/4, 1/3) 138 (a) B P(3, 1)Line *AB* will be farthest from origin if *OP* is right angled to the line drawn. Hence, $m_{OP} = \frac{1}{3} \Rightarrow m_{AB} = -3$ Thus equation of *AB* is (y-1) = -3(x-3) $\Rightarrow A \equiv \left(\frac{10}{3}, 0\right), B \equiv (0, 10)$ $\Rightarrow \Delta_{OAB} = \frac{1}{2}(oA)(OB) = \frac{1}{2} \times \frac{10}{3} \times 10$ $=\frac{100}{6}$ sq. units 139 (c) Let the equation of side *AB* be y = x + a. Then, $A \equiv (1 - a, 1), B \equiv (2, 2 + a)$. Equation of side AD isy - 1 = -(x - (1 - a)). Hence, $D \equiv (-2, 4 - a)$ x = -2x = -2X Let $C \equiv (h, k)$. Then, h + 1 - a = 2 - 2 \Rightarrow h = a - 1 and k + 1 = 2 + a + 4 - a $\Rightarrow k = 5$ Thus locus of *C* is y = 5140 **(b)**

Lines $x \cos \alpha + y \sin \alpha = p$ and $x \sin \alpha - p$ $y \cos \alpha = 0$ are mutually perpendicular. Thus ax + by + p = 0 will be equally inclined to these lines and would be the angle bisector of these. Now equations of angle bisectors is $x \sin \alpha - y \cos \alpha = \pm (x \cos \alpha + y \sin \alpha - p)$ $\Rightarrow x(\cos \alpha - \sin \alpha) + y(\sin \alpha + \cos \alpha) = p$ or $x(\sin \alpha + \cos \alpha) - y(\cos \alpha - \sin \alpha) = p$ comparing these lines with ax + by = p = 0, we get h

$$\frac{a}{\cos \alpha - \sin \alpha} = \frac{b}{\sin \alpha + \cos \alpha} = 1$$

$$\Rightarrow a^{2} + b^{2} = 2$$

or $\frac{a}{\sin \alpha + \cos \alpha} = \frac{b}{\cos \alpha - \sin \alpha} = 1$

$$\Rightarrow a^{2} + b^{2} = 2$$

141 (a)

(1, 1)729

The point of intersection of diagonals, i.e., (1, 1), lies on circumcircle. Hence - 2D aim 720

$$\Rightarrow T = 2R \sin 72$$

$$R = \frac{\sin 36^{\circ}}{2 \sin 72^{\circ}} = \cos 72^{\circ}$$

Therefore, the locus is $(x - 1)^{2} + (y - 1)^{2} = \cos^{2} 72^{\circ}$,
Hence, $x^{2} + y^{2} - 2x - 2y + 1 + \sin^{2} 72^{\circ} = 0$
142 (c)
Equations of the given lines are
 $y - 1 = \tan \theta (x - 1)$ and
 $y - 1 = \cot \theta (x - 1)$
So their joint equation is

$$[(y - 1) - \tan \theta (x - 1)][(y - 1) - \cot \theta (x - 1)] = 0$$

$$\Rightarrow (y - 1)^{2} - (\tan \theta + \cot \theta)(x - 1)(y - 1) + (x - 1)^{2} = 0$$

$$\Rightarrow x^{2} - (\tan \theta + \cot \theta)xy + y^{2} + (\tan \theta + \cot \theta - 2)(x + y - 1) = 0$$

Comparing with the given equation, we get $\tan \theta + \cot \theta = a + 2$

$$\Rightarrow \frac{1}{\sin \theta \cos \theta} = a + 2$$
$$\Rightarrow \sin 2\theta = \frac{2}{a+2}$$

143 (d)

Here AB = BC = CA = 2. So, it is an equilateral triangle and the incentre coincides with centroid. Therefore, centroid is

$$\left(\frac{0+1+2}{3}, \frac{0+0+\sqrt{3}}{3}\right) = \left(1, \frac{1}{\sqrt{3}}\right)$$

144 (a)

Distance of (0, 0) from the line 2x + 3y - 6 = 0 is $6/\sqrt{4+9} = 6/\sqrt{13}$. The area of the triangle is $(6/\sqrt{13})^2 = 36/13$ (0, 2) $x^{2} 2x + 3y - 6 = 0$ 145 (a) P(4, 3)΄ Α A_1 The given lines $(L_1 \text{ and } L_2)$ are parallel and distance between them (BC or AD) is (15-5)/5 = 2 units. Let $\angle BCA = \theta \Rightarrow AB =$ *BC* cosec θ and $AA_1 = AD \sec \theta = 2 \sec \theta$. now area of parallelogram $AA_1 BB_1$ is $\Delta = AB \times AA_1 = 4 \sec \theta \csc \theta$ 8 $=\frac{1}{\sin 2\theta}$ Clearly, Δ is least for $\theta = \pi/4$. Let slope *AB* be *m* Then, $1 = \left| \frac{m + 3/4}{1 - \frac{3m}{4}} \right|$ \Rightarrow 4m + 3 = ±(4 - 3m) \Rightarrow m = 1/7 or -7 Hence, the equation of 'L' is x - 7y + 17 = 0or 7x + y - 31 = 0146 **(b)** *p*, *q*, *r* are the roots of equation $y^3 - 3y^2 + 6y +$ 1 = 0. So, p + q + r = 3, pq + qr + rp = 6 and pqr = -1. Now, the centroid of the triangle is $\left(\frac{pq+qr+rp}{3}, \frac{\frac{1}{pq}+\frac{1}{qr}+\frac{1}{rp}}{3}\right)$ i.e., $\left(\frac{pq+qr+rp}{3}, \frac{p+q+r}{3nqr}\right) = \left(\frac{6}{3}, \frac{3}{-3}\right)$ or (2, -1)

147 (c)

If the point of intersection of two lines with coordinate axes be concylic, then product of intercepts on *x*-axis is equal to product of intercepts on *y*-axis by these lines. This is a geometric property. The intercepts on *x*-axis are *p* and q and whose product is pq. Also, the

intercepts on *y*-axis are *p*, and *q*, whose product is 153 (a) also *pq*. Hence, the four points are concylic

148 (d)

Here my(y - mx) + x(y - mx) = 0, i.e., $(y - mx) \times (my + x) = 0$. So, the lines are y = mx and y = (-1/m)x. Bisectors between the lines xy = 0 are y = x and y = -x. Therefore, m = 1 or -1

149 **(b)**

If the line cuts off the axes at *A* and *B*, then area of triangle is $\frac{1}{2} \times OA \times OB = T$

$$\Rightarrow \frac{1}{2} \times a \times OB = T \Rightarrow OB = \frac{2T}{a}$$

Hence, the equation of line is
$$\frac{x}{-a} + \frac{y}{2T/a} = 1$$

$$\Rightarrow 2Tx - a^2y + 2aT = 0$$

150 **(c)**

For any point P(x, y) that is equidistant from given line, we have

$$x + y - \sqrt{2} = -(x + y - 2\sqrt{2})$$

$$\Rightarrow 2x + 2y - 3\sqrt{2} = 0$$

151 **(b)**

The given lines $ax \pm by \pm c = 0$ $\Rightarrow \frac{x}{\pm c/a} + \frac{y}{\pm c/b} = 1$

The vertex atA(c/a, a), C(-c/a, 0), B(0, c/b, D0, -c/b. Therefore, the diagonals *AC* and *BD* of quadrilateral *ABCD* are perpendicular. Hence, it is a rhombus whose area is given by

$$\frac{1}{2} \times AC \times BD = \frac{1}{2} \times \frac{2c}{a} \times \frac{2c}{b} = \frac{2c^2}{ab}$$

152 **(b)**

As *L* has intercepts *a* and *b* on the axes, equation of *L* is

$$\frac{x}{a} + \frac{y}{b} = 1$$
 (i)

Let *x*-and *y*-axes be rotated through an angle θ in anticlockwise direction. In new system, intercepts are *p* an *q*, therefore equation of *L* becomes $\frac{x}{p} + \frac{y}{q} = 1$ (ii)

As the origin is fixed in rotation, the distance of line from origin in both the cases should be same. Hence, we get

$$d = \left| \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right| = \left| \frac{1}{\sqrt{\frac{1}{p^2} + \frac{1}{q^2}}} \right|$$
$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$$

Solving the equation of the lines, we get

$$A = \left(\frac{1}{1+m_1}, \frac{m_1}{1+m_1}\right), C = \left(\frac{1}{1+m_3}, \frac{m_3}{1+m_3}\right)$$
If $AB = BC$, then midpoint of AC lies on
 $y = m_2 x$
 $\Rightarrow \frac{\frac{m_1}{1+m_1} + \frac{m_3}{1+m_3}}{2} = m_2 \left[\frac{\frac{1}{1+m_1} + \frac{1}{1+m_3}}{2}\right]$
(a)

154 **(a**

Let the common line be y = mx. Then it must satisfy both the equations. Therefore, we have $bm^2 + 2hm + a = 0$ (i) $b'm^2 + 2h'm + a' = 0$ (ii) Solving Eqs. (i) and (ii), we get $\frac{m^2}{2(ha' - h'a)} = \frac{m}{ab' - a'b} = \frac{a}{2(bh' - b'h)}$ Eliminating *m*, we get $\left[\frac{ab'-a'b}{2(bh'-b'h)}\right]^2 = \frac{ha'-h'a}{bh'-b'h}$ $\Rightarrow (ab' - a'b)^2 = 4(ha' - h'a)(bh' - b'h)$ 155 (b) $(x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1) = (x_1(1 - t) + t(y_2 - y_1)) = (x_1(1 - t)) + t(y_2 - y_1) = (x_1(1 - t)) = (x_1(1$ $tx_2, y_1(1-t) + ty_2$ is the point which divides the join of (x_1, y_1) and (x_2, y_2) in the ratio *t*: (1 - t) which is positive if 0 < t < 1156 **(b)** The straight lines represented by $(y - mx)^2 =$ $a^{2}(1+m^{2})$ are $y - mx = \pm a\sqrt{1 + m^2}$ i.e., $y - mx = a\sqrt{1 + m^2}$ (i) and $v - mx = -a\sqrt{1 + m^2}$ (ii) Similarly, the straight lines represented by $(y - nx)^2 = a^2(1 + n^2)$ are $y - nx = a\sqrt{1 + n^2}$ (iii) and $y - nx = -a\sqrt{1 + n^2}$ (iv) Since the lines (i) and (ii) are parallel, so the distance between (i) and (ii) is $\left|\frac{a\sqrt{1+m^2} + a\sqrt{1+m^2}}{\sqrt{1+m^2}}\right| = |2a|$

Similarly the lines (iii) and (iv) are parallel lines and the distance between them is |2a|. Since the distances between parallel lines are same, hence the four lines form a rhombus

157 **(c)**

The circumcentre of the triangle is (0, 0) as all the vertices lie on the circle $x^2 + y^2 = 5$. So the orthocenter will be (sum of *x* coordinates, sum of *y* coordinates)

158 (d)

ι.

$$A = \frac{1}{2} \begin{vmatrix} 1 & p^2 & 1 \\ 0 & 1 & 1 \\ p & 0 & 1 \end{vmatrix}$$
$$= \frac{1}{2} [1(1-0) + p(p^2 - 1)]$$
$$= \frac{1}{2} (p^3 - p + 1)$$

Hence, $A = \frac{1}{2}|p^3 - p + 1|$. Now, minimum value of modulus is zero. Since A(p) is cubic, it must vanish for some p other than given in (a), (b), (c)

159 **(c)**

Equation of *AO* is $2x + 3y - 1 + \lambda(x + 2y - 1) = 0$, where $\lambda = -1$ since the line passes through the origin. So, x + y = 0. Since *AO* is perpendicular to *BC*, so

0

-1. Now, BO is

$$(-1)\left(-\frac{a}{b}\right) = -1$$

$$\therefore a = -b$$

Similarly,

$$(2x + 3y - 1) + \mu(ax - ay - 1) =$$

Will be the equation of *BO* for $\mu =$
perpendicular to *AC*. Hence,

$$\left\{-\frac{(2-a)}{3+a}\right\}\left(-\frac{1}{2}\right) = -1$$

$$\therefore a = -8, b = 8$$

160 **(c)**

The coordinates of *A* and *b* are as shown in the figure

The equation of the diagonal AB is $y - a \sin \alpha = \frac{a \cos \alpha - a \sin \alpha}{-a \sin \alpha - a \cos \alpha} (x - a \cos \alpha)$ $\Rightarrow y(\cos \alpha + \sin \alpha) - a(\sin \alpha \cos \alpha + \sin^2 \alpha)$ $= -(\cos \alpha - \sin \alpha)x + a \cos \alpha (\cos \alpha - \sin \alpha)$ $\Rightarrow y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$

161 **(a)**

Let $x_2 = x_1 r$, $x_3 = x_1 r^2$ and so is $y_2 = y_1 r$, $y_3 = y_1 r^2$

Where *r* is common ratio

$$\begin{split} &\therefore \ \Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \\ &= \begin{vmatrix} x_1 & y_1 & 1 \\ rx_1 & ry_1 & 1 \\ r^2x_1 & r^2y_1 & 1 \end{vmatrix} \\ &= r \times r^2 \begin{vmatrix} x_1 & y_1 & 1 \\ x_1 & y_1 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} \\ &= 0 \end{split}$$

Hence, the points are collinear

162 **(a,c)**

The equation represents a pair of straight lines. Hence,

$$1 \times (-2)(-1) + 2\left(\frac{3}{2}\right) \times 0 \times \frac{m}{2} - 1 \times \left(\frac{3}{2}\right)^2 - (-2)$$
$$\times 0^2 - (-1) \times \left(\frac{m}{2}\right)^2 = 0$$

 $\Rightarrow m = 1, -1$

The points of intersection of the pair of lines are obtained by solving

$$\frac{\partial S}{\partial x} = 2x + my = 0$$

and $\frac{\partial S}{\partial y} = mx - 4y + 3 = 0$

When m = 1, then required point is the intersection of 2x + y = 0, x - 4y + 3 = 0. When m = -1, the required point is the intersection of 2x - y = 0, -x - 4y + 3 = 0

163 **(b,d)**

According to question AB = 10. So, $OA = 10 \sin 30^\circ = 5$. Then equation of line is

$$y = \frac{1}{\sqrt{3}}x \pm 5$$

or
$$x - \sqrt{3}y \pm 5\sqrt{3} = 0$$

164 **(c,d)**

Let the third vertex be (x, y). Then,

 $\frac{1}{2} \begin{vmatrix} x & y & 1 \\ -4 & 0 & 1 \\ 1 & -1 & 1 \end{vmatrix} = \pm 4$ $\Rightarrow x + 5y + 4 = \pm 4$ $\Rightarrow x + 5y + 12 = 0 \text{ or } x + 5y - 4 = 0$ Hence, the third vertex lies on x + 5y + 12 = 0 or x + 5y - 4 = 0

165 **(a,d)**

Note that the lines are perpendicular. Assume the coordinate axes to be directed along to be directed along u = 0 and v = 0. Now the lines $k_1u - k_2v = 0$ and $k_1u + k_2v = 0$ are equally inclined with uv axes. Hence, the bisectors are u = 0 and v = 0

166 **(d)**

Let $A \equiv (0, 8/3), B \equiv (1, 3)$ and $C \equiv (82, 30)$ Now, slope of line *AB* is (3 - 8/3)/(1 - 0) = 1/3. Slope of line *BC* is (30 - 3)/(82 - 1) = 27/81 = 1/3. Therefore, *AB*||*BC* and *B* is common point. Hence, *A*, *B*, *C* are collinear

167 (a,d)

Let point *P* be (x, y)

$$A(0, 4)$$

$$A(0, 4)$$

$$A(0, 4)$$

$$A(0, 4)$$

$$A(0, 4)$$

$$A(0, 4)$$

$$B(0, 0)$$

$$A_{POA} = \frac{1}{2}(OA)|x| = 2|x|$$

$$A_{POB} = \frac{1}{2}(OB)|y| = 2|y|$$

$$A_$$

Clearly from the figure above, the triangle is obtuse angled. Hence, centroid and incentre lie inside the triangle. Orthocentre and circumcentre lie outside the triangle.

Therefore, it is an obtuse angled triangle

Let,
$$\frac{2}{3}x^2 + \frac{p}{3}xy + y^2 = (y - mx)(y - m'x)$$

and $\frac{2}{-3}x^2 + \frac{q}{-3}xy + y^2 = (y + \frac{1}{m}x)(y - m'x)$
Then, $m + m' = -\frac{p}{3}$, $mm' = \frac{2}{3}$ (i)
 $\frac{1}{m} - m' = \frac{-q}{3}$, $-\frac{m'}{m} = -\frac{2}{3}$ (ii)
 $\Rightarrow m^2 = 1 \Rightarrow m = \pm 1$
If $m = 1, m' = 2/3$ and sop $= -5, q = -1$. If
 $m = -1, m' = -2/3$ and so $p = 5, q = 1$

170 (a,c,d)

Vertices of the given triangle are (0, 0), (a/m, a)and $(a/m_2, a)$. So the area of the triangle is equal to $a^2(m_2 - m_1)/(2m_1m_2)$. Since m_1, m_2 are the roots of $x^2 - ax - a - 1 = 0$, so $m_1 + m_2 = a; m_1 m_2 = -(a + 1)$ $\Rightarrow (m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1m_2$ $= a^2 + 4(a+1)$ $= (a + 2)^2$ $\Rightarrow m_1 - m_2 = \pm (a+2)$ So the required area is $\Delta = \pm \frac{a^2(a+2)}{-2(a+1)} = \pm \frac{a^2(a+2)}{2(a+1)}$ Since area is a positive quantity, so $\Delta = \frac{a^2(a+2)}{2(a+1)} \text{ if } a > -1 \text{ or } a < -2$ and $\Delta = -\frac{a^2(a+2)}{2(a+1)}$ if -2 < a < -1171 (a,d) $\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta} = \pm \frac{\sqrt{6}}{3}$ $\therefore x = 1 \pm \frac{\sqrt{6}}{3} \cos \theta, y = 2 \pm \frac{\sqrt{6}}{2} \sin \theta$ $\Rightarrow 3 \pm \frac{\sqrt{6}}{3}(\cos \theta + \sin \theta) = 4$

 $\Rightarrow \pm (\cos \theta + \sin \theta) = \frac{3}{\sqrt{6}} = \sqrt{\frac{3}{2}}$ On squaring both sides, we get $1 \pm \sin 2\theta = \frac{3}{2}$ $\Rightarrow \sin 2\theta = \frac{1}{2}\sin\left(\frac{\pi}{6}\right)$ $\Rightarrow 2 \theta = n \pi + (-1)^n \frac{\pi}{6}, n \in I$ $\Rightarrow \theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}, n \in I$ For $n = 0, \theta = \frac{\pi}{12}$, for $n = 1, \theta = \frac{\pi}{2} - \frac{\pi}{12} = \frac{5\pi}{12}$ For n = -1, $\theta = -\frac{\pi}{2} - \frac{\pi}{12} = -\frac{7\pi}{12}$ For n = -2, $\theta = -\pi + \frac{\pi}{12} = -\frac{11\pi}{12}$ 172 (a,b) As (a+b)x + (a-b)y - 2ab = 0and (a - b)x + (a + b)y - 2ab = 0the equation of the angle bisectors are (a+b)x + (a-b)y - 2ab $= \pm \{(a-b)x + (a+b)y - 2ab\}$ $\Rightarrow 2bx - 2by = 0$ ie, x = y ...(i) and 2ax + 2ay - 4ab = 0 ie, x + y = 2b ...(ii) \therefore Equation of third side as given by Eq. (i) is x - y = k satisfying the point (b - a, a - b) $\therefore k = 2b - 2a$ \therefore The line is x - y = 2(b - a)From Eq. (ii), x + y - 2b = k is passing through the point (b - a, a - b) $\therefore k = -2b$ \therefore The line is x + y = 0173 (a,b,d) Since the given point lies on the line lx + my + my + myn = 0, so a, b, c are the roots of the equation $l\left(\frac{t^{3}}{t-1}\right) + m\left(\frac{t^{2}-3}{t-1}\right) + n = 0$ or $lt^3 + mt^2 + nt - (3m + n) = 0$ (i) Hence, $a + b + c = -\frac{m}{l}$ $ab + bc + ca = \frac{n}{l}$ (ii) $abc = \frac{3m+n}{l}$ (iii) So, from Eqs. (i), (ii) and (iii), we get abc - (bc + ca + ab) + 3(a + b + c) = 0174 (b,c) For the two lines 24x + 7y - 20 = 0 and 4x - 3y - 2 = 0, the angle bisectors are given by $\frac{24x + 7y - 20}{25} = \pm \frac{4x - 3y - 2}{5}$ Taking positive sign, we get

2x + 11y - 5 = 0175 (a,c) Since points $AB = AC = 1, \Delta$ is right angled at point A. We have $\tan \alpha \tan \beta = 1$ $\Rightarrow \cos(\alpha - \beta) = 0 \Rightarrow \alpha - \beta = \frac{\pi}{2}$ 176 (b,d) x+3(y-1)=0= 2xSolving y = 2x, 2(x + 1) + y = 0, we get x = 0-1/2, y = -1. Solving y = 2x, x + 3(y - 1) = 0, we get x = 3/7, y = 6/7177 (a,b) Given lines are x + 2y + 4 = 0 and 4x + 2y - 1 =0 $\Rightarrow x + 2y + 4 = 0$ and -4x - 2y + 1 = 0Here, (1)(-4) + (2)(-2) = -8 < 0: Bisector of the angle is acute angle bisector including origin Its equation is $\frac{x+2y+4}{\sqrt{5}} = \frac{(-4x-2y+1)}{2\sqrt{5}}$ $\Rightarrow 6x + 6y + 7 = 0$ 178 (a,b,c,d) Let the slope of u = 0 be*m*. Then slope of v = 0 is Therefore, $\frac{7}{9} = \left| \frac{m - \frac{9m}{2}}{1 + m \times \frac{9m}{2}} \right| = \left| \frac{-7m}{2 + 9m^2} \right|$ $\Rightarrow 9m^2 - 9m + 2 = 0 \text{ or } 9m^2 + 9m + 2 = 0$ $m = \frac{9 \pm \sqrt{81 - 72}}{18} = \frac{9 \pm 3}{18} = \frac{2}{3}, \frac{1}{3}$ or $m = \frac{-9\pm 3}{18} = -\frac{2}{3}, -\frac{1}{2}$ therefore, equations of the lines are 3y = x and 2y = 3x1. 2. 3y = 2x and y = 3x3. x + 3y = 0 and 3x + 2y = 04. 2x + 3y = 0 and 3x + y = 0

179 **(a,b)**

The area of the triangle is given by

$$= \frac{1}{2} \times \frac{2b}{a} \times \frac{2b}{c} = \frac{2b^2}{ac} = 2$$

$$\Rightarrow b^2 = ac$$

$$\Rightarrow a, b, c \text{ are in G.P. So, } a, -b, c \text{ are in G.P.}$$

180 (a,d)

$$(0, 3)B \xrightarrow{C} C$$

$$AB = 5, D \equiv \left(2, \frac{3}{2}\right)$$

$$CD = 5 \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}, \text{ slope of } AB \text{ is } -3/4, \text{ slope of } CD \text{ is } 4/3$$
If $C \equiv (h, k)$, then
$$\frac{h-2}{3/5} = \frac{k-3/2}{4/5} = \pm \frac{5\sqrt{3}}{2}$$

$$\Rightarrow h = 2\left(1 - \frac{3\sqrt{3}}{4}\right), k = \frac{3}{2}\left(1 - \frac{4}{\sqrt{3}}\right)$$
or $h = 2\left(1 + \frac{3\sqrt{3}}{4}\right), k = \frac{3}{2}\left(1 + \frac{4}{\sqrt{3}}\right)$

181 **(a,b,d)**

Equation of the lines given by $x^2 + 2hxy + y^2 = 0$ be $y = m_1 x$ and $y = m_2 x$. Since these make an angle α with y + x = 0 whose slope is -1, so $\frac{m_1 + 1}{1 - m_1} = \tan \alpha = \frac{-1 - m_2}{1 - m_2}$ $\Rightarrow m_1 + m_2 = \frac{(\tan \alpha - 1)^2 + (\tan \alpha + 1)^2}{\tan^2 \alpha - 1}$ $= \frac{-2 \sec^2 \alpha \times \cos^2 \alpha}{\cos 2\alpha}$ $\therefore -2 \sec 2\alpha = -2h$ $\Rightarrow \sec 2\alpha = h$ $\Rightarrow \cos 2\alpha = \frac{1}{h} \Rightarrow 2 \cos^2 \alpha - 1 = \frac{1}{h}$ $\Rightarrow \cos \alpha = \sqrt{\frac{1+h}{2h}}$ and $\cot \alpha = \sqrt{\frac{h+1}{h-1}}$

182 **(a,b)**

Verteces $(a \cos \theta_1, a \sin \theta_1)$, $(a \cos \theta_2, a \sin \theta_2)$ and $(a \cos \theta_3, a \sin \theta_3)$ are equidistant from origin (0, 0). Hence, the origin is circumcentre (centroid) of circumcircle. Therefore, the coordinates of centroid are

$$\left(\frac{a(\cos\theta_1 + \cos\theta_2 + \cos\theta_3)}{3}, \frac{a(\sin\theta_1 + \sin\theta_2 + \sin\theta_3)}{3}\right)$$

But as the centroid is the origin (0, 0), therefore

 $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0$ and $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 0$

183 **(a,c)**

Substituting the coordinates of the points (1, 3)(5, 0) and (-1, 2) in 3x + 2y, we obtain the values 9, 15 and 1 which are all +ve. Therefore, all the points lying inside the triangle formed by given points satisfy $3x + 2y \ge 0$. Substituting the coordinates of the given points in 2x + 3y - 13, we find the values -2, -3 and -9 which are all - ve. So, (b) is not correct

Again substituting the given points in 2x - 3y - 12 we get, -19, -2, -20 which are all –ve. It follows that all points lying inside the Δ formed by given point satisfy $2x - 3y - 12 \le 0$. So (c) is the correct answer

Finally substituting the coordinates of the given point in -2x + y, we get 1, -10 and 4 which are all +ve. So (d) is not correct

184 **(a,d)**

Equation of line passing through two given points (x_1, y_1) and (x_2, y_2) is

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

Now given expression is
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} + \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 + x_3 & y_2 + y_3 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 + x_3 & \frac{y_2 + y_3}{2} & 1 \end{vmatrix} = 0$$

This is the equation of the line passing through the points (x_1, y_1) and $((x_2 + x_3)/2, (y_2 + y_3)/2)$. This is a equation of median through vertex *A*

185 **(b,d)**

Let any point on the line x - y = 2 be C(h, h - 2)Given area of $\triangle ABC$ is

$$\begin{vmatrix} \frac{1}{2} \begin{vmatrix} h & h-2 & 1 \\ -5 & 0 & 1 \\ 3 & 0 & 1 \end{vmatrix} = 20$$

$$\Rightarrow |8(h-2)| = 40$$

$$\Rightarrow h-2 = \pm 5$$

$$\Rightarrow h = 7, -3$$

Hence, the points are (7, 5) and (-3, -5)
186 **(a,c,d)**

O and the point (α, α^2) lie on the opposite sides w.r.t. 2x + 3y - 1 = 0. Hence, $\Rightarrow 2\alpha + 3\alpha^2 - 1 > 0$ (i) *O* and the point (α, α^2) lie to the same side w.r.t. x + 2y - 3 = 0. Hence, $\Rightarrow \alpha + 2\alpha^2 - 3 < 0$ (ii) Again *O* and the point (α, α^2) lie on the same side w.r.t. 5x - 6y - 1 = 0. Hence, $5\alpha - 6\alpha^2 - 1 < 0$ $\Rightarrow 6\alpha^2 - 5\alpha + 1 > 0$

189 (b,d)

Let the angle be θ . then, equation of the given line [193 (a,b,c,d)] is

 $\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta}$ (i)

The coordinates of a point on (i) at a distance $\sqrt{6}/3$ from (1, 2) are $(1 + \sqrt{6}/3 \cos \theta, 2 +$ $\sqrt{6}/3\sin\theta$). This point lies on x + y = 4. Therefore,

$$1 + \frac{\sqrt{6}}{3}\cos\theta + 2 + \frac{\sqrt{6}}{3}\sin\theta = 4$$

$$\Rightarrow \cos\theta + \sin\theta = \sqrt{\frac{3}{2}}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos(\theta - \pi/4) = \cos(\pm\pi/6)$$

$$\Rightarrow \theta - \pi/4 = \pm\pi/6$$

$$\Rightarrow \theta = 75^{\circ} \text{ or } \theta = 15^{\circ}$$

190 (a,c)

The equations of lines passing through (1, 0) are given by y = m(x - 1). Its distance from origin is $\sqrt{3}/2$

Hence,

$$\Rightarrow \left| \frac{-m}{\sqrt{1+m^2}} \right| = \sqrt{3}/2 \Rightarrow m = \pm\sqrt{3}$$
Hence the lines are $\sqrt{3}x \pm y = \sqrt{3}$.

 $\sqrt{3} = 0$ and Hence, the lines are $\sqrt{3}x + y - y$ $\sqrt{3}x - y - \sqrt{3} = 0$

191 (a,d)

Distance between x + 2y + 3 = 0 and x + 2y - 7 = 0 is $10/\sqrt{5}$. Let the remaining side parallel to 2x - y - 4 = 0 be $2x - y + \lambda = 0$. We have,

$$\frac{|\lambda + 4|}{\sqrt{5}} = \frac{10}{\sqrt{5}} \Rightarrow \lambda = 6, -14$$

Thus the remaining side is $2x - y + 6 = 0$ or $2x - y - 14 = 0$

192 (a,c)

It is clear that diagonals of the rhombus will be parallel to the bisectors of the given lines and will pass through (1, 3). Equations of bisectors of the given lines are

$$\frac{x+y-1}{\sqrt{2}} = \pm \left(\frac{7x-y-5}{5\sqrt{2}}\right)$$

or $2x - 6y = 0, 6x + 2y = 5$

Therefore, the equations of diagonals are x - 3y + 8 = 0 and 3x + y - 6 = 0. Thus the required vertex will be the point where these lines meet the liney = 2x. Solving these lines we get possible coordinates as (8/5, 16/5) and (6/5, 16/5)12/5)

The point
$$A(\alpha, \beta)$$
 lies on $y = 2x + 3$. Hence,

$$y = 2x + 3$$

$$B = 2\alpha + 3$$

$$A = (\alpha, 2\alpha + 3)$$
Area of ΔABC is
$$\begin{vmatrix} \frac{1}{2} \begin{vmatrix} \alpha & 2\alpha + 3 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{2} [\alpha(2-3) + (2\alpha + 3)(2-1) + 1(3-4)] \end{vmatrix}$$

$$= \frac{1}{2} [-\alpha + 2\alpha + 3 - 1] = \frac{1}{2} [\alpha + 2] = S$$

$$[S] = 2 \Rightarrow 2 \le S < 3$$

$$\therefore 2 \le \frac{1}{2} |\alpha + 2| < 6$$

$$|\alpha + 2| < 6 \Rightarrow -6 < \alpha + 2 < 6$$

$$\Rightarrow -8 < \alpha < 4 \text{ (i)}$$
and $|\alpha + 2| \ge 4 \Rightarrow \alpha + 2 \ge 4 \text{ or } \alpha + 2 \le -4$

$$\Rightarrow \alpha \ge 2 \text{ or } \alpha \le -6 \text{ (ii)}$$
From Eqs. (i) and (ii),

$$-8 < \alpha \le -6 \text{ or } 2 \le \alpha < 4$$

$$\Rightarrow \alpha = -7, -6, 2, 3$$
Possible coordinates of A are

$$(-7, -11), (-6, -9), (2, 7), (3, 9)$$
194 (a)
Given that points are $O(0, 0)$ and $B(2, 0)$

From figure, $\triangle ABC$ is equilateral

Hence, $\tan 60^\circ = k$

or $k = \sqrt{3}$ (for first quadrant) or $k = -\sqrt{3}$ (for fourth quadrant). Then possible coordinates are $(1, \pm \sqrt{3})$

Similarly, for second quadrant, the point is $(-1, -\sqrt{3})$

And for third quadrant, the point is $(-1, -\sqrt{3})$

Case (i)

If OA = AB, then $\angle A = 30^{\circ}$

 $\therefore \ \angle AOB = 75^{\circ}$

 $\therefore \frac{AM}{OM} = \tan 75^\circ$

 $AM = OM \tan 75^\circ$

- $k = 1 \times (2 + \sqrt{3})$
- $\therefore k = 2 + \sqrt{3}$

Hence, point *A* is $(1, 2 + \sqrt{3})$. By symmetry, all possible points are $(\pm 1, \pm (2 + \sqrt{3}))$

Case (ii)

AO = OB

 $\therefore \ \angle AOB = 120^{\circ}$

 $AM = 2\sin 60^\circ = \sqrt{3}$

And $OM = 2\cos 60^\circ = 1$

Hence, point *A* is $(1, -\sqrt{3})$ by symmetry, all possible points are $(\pm 1, \pm \sqrt{3})$

Let $\angle DOB = \angle ABM = \theta$. Area of $\triangle OAB$ is $\frac{1}{2} \times OB \times AM = \frac{1}{2} \times \sqrt{3}$

$$\Rightarrow 2 \times 2 \sin \theta = \sqrt{3}$$

$$\Rightarrow \sin \theta = \frac{\sqrt{3}}{4} \Rightarrow AM = \sqrt{3} \text{ and } BM = 1$$

Hence, *A* has coordinates $(3, \sqrt{3})$. By symmetry, all possible coordinates are $(\pm 3, \pm \sqrt{3})$

O'M + OA

Hence, the coordinate *A* will be $(1, 2 + \sqrt{3})$ in first quadrant. By symmetry, all possible coordinates of *A* are $(\pm 1, \pm (2 + \sqrt{3}))$

195 (a,c)

Let L = 3x - 4y - 8. Then the value of L at (3,4) is $3 \times 3 - 4 \times 4 - 8 = -15 < 0$. Hence, for the point P(x, y) we should have L > 0 $\Rightarrow 3x - 4y - 8 > 0$ $\Rightarrow 3x - 4(-3x) - 8 > 0$ [:: P(x, y) lies on y = -3x] $\Rightarrow x > 8/15$ and -y - 4y - 8 > 0 $\Rightarrow y < -8/5$ 196 **(a,b,c)** For concurrency, of three lines px + qy + r = 0, qx + ry + p = 0, rx + py + q = 0, we must

have. $\begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix} = 0$ $\Rightarrow 3pqr - p^3 - q^3 - r^3 = 0$ $\Rightarrow (p+q+r)(p^2+q^2+r^2-pq-pr-rq)=0$ 197 (a,b,c,d) Equation of the lines joining the origin to the points of intersection of the given lines is $3x^{2} + mxy - 4x(2x + y) + 1(2x + y)^{2} = 0$ (by homogenization) $\Rightarrow x^2 - mxy - y^2 = 0$ Which are perpendiculars for all values of *m* 198 (b,c,d) If the remaining vertex is (h, k), then (-2, 1)(-6, -4) h - 2 = -6 + 4, k + 1 = 5 - 4 $\Rightarrow h = -1, k = 0$ h + 3 = -6 - 2, k + 5 = -4 + 1 $\Rightarrow h = -11, k = -8$ (-2, 1) h - 6 = 3 - 2, k - 4 = 5 + 1 $\Rightarrow h = 7, k = 9$ 199 (a,b,c,d) D(0, d)C(0, b)(a, 0)If points A, B, C, D are concyclic, then ac = bd. The

If points A, B, C, D are concyclic, then ac = ba. The coordinates of the points of intersection of lines are

 $\left(\frac{ac(b-d)}{bc-ad}, \frac{bd(c-a)}{bc-ad}\right)$ Let coordinates of the point intersection be (h, k)Then $h = \frac{ac(b-d)}{bc-ad}, k = \frac{bd(c-a)}{bc-ad}$ given $c^2 + a^2 = b^2 + d^2$. Since ac = bd, so $(c-a)^2 = (b-a)^2$ or $(c - a) = \pm (b - d)$ Then the locus of the points of intersection is $y = \pm x$ 200 (b,d) $bx + cy = a \Rightarrow \frac{x}{(a/b)} + \frac{y}{(a/c)} = 1$ Area of $\triangle OAB = \frac{1}{8}$ (given) (0, a/c) $\frac{(a/b, 0)}{4} x$ $\Rightarrow \frac{1}{2} \cdot \frac{a}{b} \cdot \frac{a}{c} = \pm \frac{1}{8} \Rightarrow \frac{a^2}{bc} = \pm \frac{1}{4}$ $\Rightarrow (2a)^2 = \pm bc$ \therefore b, +2a, c are in GP 201 (a,d) Here, my(y - mx) + x(y - mx) = 0 $\Rightarrow (y - mx)(my + x) = 0$ So, the lines are y = mx or y = (-1/m)x. Bisectors between the lines xy = 0 are y = x and y = -x. Therefore, m = 1, -1202 (a,b) C(2, -3)A(-1, 1) $AC = \sqrt{3^2 + 4^2} = 5$ The midpoint *P* of $AC = \left(\frac{1}{2}, -1\right)$ Slope of AC is $\frac{-4}{3}$ Therefore, slope of *BD* is $\frac{3}{4} = \tan \theta$ Therefore, coordinates of *B* and *D* are $\equiv \left(1/2 \pm \frac{5}{2}\cos\theta, -1 \pm \frac{5}{2}\sin\theta\right)$ 203 (a,b)

Here, $\angle COA = 30^{\circ}$ Area of rhombus $= 2 \times \frac{1}{2} \times OA \times OC \sin 30^{\circ}$ $\Rightarrow 2 = \frac{1}{2}x^{2}$ $\Rightarrow OA = OC = 2$ Also, $\angle OAB = 150^{\circ}$ $\Rightarrow \cos 150^{\circ} = \frac{OA^{2} + AB^{2} - OB^{2}}{2 OA \times AB}$ $OB^{2} = 8 + 4\sqrt{3} \Rightarrow OB = \sqrt{2}(\sqrt{3} + 1)$ Hence, the coordinates of *B* are $(\pm\sqrt{2}(\sqrt{3} + 1) + 1\cos 45^{\circ})$

204 (b,c)

Let slope of line is *m*. Then $\frac{1}{2} = \left| \frac{m - (-2)}{1 + (-2)m} \right|$ $\Rightarrow m = -3/4 \text{ and } \infty$ Hence, equation of line is y - 3 = -3/4(x - 2)and x = 2

205 **(b,c)**

The chord subtends 90° at the centre (0, 0). Making $x^2 + y^2 = 1$ homogenous in the second degree with the help of y = mx + 1, we get $x^2 + y^2 = (y - mx)^2$ or $(1 - m^2)x^2 + 2mxy = 0$ The angle between these lines is 90° if $1 - m^2 + 0 = 0$. i.e., $m = \pm 1$

206 (a,b,c,d)

Let position of bunglow is $P(x_1, y_1)$, then PM = 100 and PN = 100

$$(0, 8) x + y = 8$$

$$(0, 8) X + y = 8$$

$$(0, 6) X + y = 8$$

$$(0, 6) X + y = 8$$

$$(0, 6) X + y = 8$$

$$P(x_1, y_1) + S = \pm 100$$

$$(0, 6) X + y = 8$$

$$(0, 6) X + y = 8$$

$$(0, 6) X + y = 8$$

$$P(x_1, y_1) + S = \pm 100$$

$$(0, 6) X + y = 8$$

$$P(x_1, y_1) + S = \pm 100$$

$$(0, 6) X + y = 8$$

$$(0, 6) X$$

 $x_1 = 1 \pm 100\sqrt{2}, 1$ and $y_1 = 7, 7 \pm 100\sqrt{2}$ Hence, possible location of bunglow are $(1+100\sqrt{2},7), (1-100\sqrt{2},7), (1,7+$ 1002,(1,7-1002) 207 (a,b) $x^2 - 3|x| + 2 = 0$ $\Rightarrow (|x| - 1)(|x| - 2) = 0 \Rightarrow x = \pm 1, \pm 2$ $y^2 - 3x + 2 = 0$ $\Rightarrow (y-1)(y-2) = 0 \Rightarrow y = 1,2$ B'From the figure two such squares are possible whose coordinates are A(1,2), B(2,2), C(2,1), D(1,1) and A'(-2,2), B'(-1,2), C'(-1,1), D'(-2,1)208 (d) Slope of x + 3y = 4 is -1/3 and slope of 6x - 2y = 7 is 3. Therefore, these two lines are perpendicular which shows that both diagonals are perpendicular. Hence, PQRS must be a rhombus 209 (c,d) If lines x + y - 1 = 0, $(m - 1)x + (m^2 - 7)y - (m - 1)x + (m - 1)x$ 5 = 0 and (m - 2)x + (2m - 5)y = 0 are concurrent, then $\Delta = 0$ $\Rightarrow \begin{vmatrix} 1 & 1 & -1 \\ m-1 & m^2 - 7 & -5 \\ m-2 & 2m-5 & 0 \end{vmatrix} = 0$ $\Rightarrow (m-2)(-5+m^2-7)$ -(2m-5)(-5+m-1)+0=0 $\Rightarrow (m-2)(m^2-12) - (2m-5)(m-6) = 0$ $\Rightarrow m^3 - 4m^2 + 5m - 6 = 0$ $\Rightarrow (m-3)(m^2-m+2) = 0$ $\Rightarrow m = 3$ but $m^2 - m + 2 = 0$ has no real roots. If m = 3, then two lines are parallel 211 (a,c) $B(0, \sqrt{(3/2)})$ P Equation of lines along OA, OB and AB are

y = 0, x = 0 and $x + y = \sqrt{3/2}$, respectively

Now *P* and *B* will lie on the same side of y = 0 if $\cos \theta > 0$. Similarly, *P* and *A* will lie on the same side of x = 0 if $\sin \theta > 0$ and *P* and *O* will lie on the same side of $x + y = \sqrt{3/2}$ if $\sin \theta + \cos \theta < \sqrt{3/2}$. Hence, *P* will lie inside the ΔABC if

 $\sin \theta > 0$, $\cos \theta > 0$ and $\sin \theta + \cos \theta < \sqrt{3/2}$. Now,

 $\sin\theta + \cos\theta < \sqrt{\frac{3}{2}}$ $\Rightarrow \sin(\theta + \pi/4) < \sqrt{\frac{3}{4}}$

Since $\sin \theta > 0$ and $\cos \theta > 0$, so $0 < \theta < \pi/12$ or $5\pi/12 < \theta < \pi/2$

212 (a,b,c)

The equation is $x^{2}(x + y) - y^{2}(x + y) = 0$ or $(x + y)^{2}(x - y) = 0$ It represents the lines x + y = 0, x + y = 0, x - y = 0 213 (a,b,c,d)

$$x + y = 5$$

$$B$$

$$D$$

$$C$$

$$A(1, 4)$$

$$7x - y = 3$$

Side *BC* will be perpendicular to the bisector of

the angleBAC. Now equations of the bisectors of lines AB and AC are $\frac{(x+y-5)}{\sqrt{2}} = \pm \frac{(7x-y-3)}{5\sqrt{2}}$ $\Rightarrow x - 3y + 11 = 0$ or 3x + y - 7 = 0Let equation of side *BC* be $x - 3y + \lambda = 0$ and altitude through vertex A b eAD. Then equation of AD is 3x + y - 7 = 0. If $AD = \lambda$, then $\triangle ABC = \frac{1}{2} \times$ $|BC| = \frac{1}{2} \times \lambda \times 2\lambda |\tan \theta| = I^2 |\tan \theta|$. Hence, $\lambda \times \frac{1}{2} = 5 \implies \lambda^2 = 10$ $\Rightarrow (11 - \lambda)^2 = 100$ $\Rightarrow 11 - \lambda = \pm 10 \Rightarrow \lambda = 1, -21$ Hence, equation of *BC* is x - 3y + 1 = 0 or x - 3y - 21 = 0. Similarly, if equation of *BC* is $3x + y + \lambda = 0$, then equation of *AD* will be x - 3y + 11 = 0. Therefore, $|\tan \theta| = \left| \frac{7 - \frac{1}{3}}{1 + \frac{7}{2}} \right| = 2$ $\Rightarrow \lambda^2 |\tan \theta| = 2\lambda^2 = 5 \Rightarrow \lambda^2 = \frac{5}{2}$ $\frac{5}{2} = \frac{(3+4+\lambda)^2}{10}$ \Rightarrow 7 + λ = ±5 \Rightarrow λ = 2, -12 Hence, equation of *BC* is 3x + y + 2 = 0 or 3x + y - 12 = 0. Finally, there are four possible equations of side *BC*, viz, x - 3y + 1 = 0, 3y - 21 = 0, 3x + y + 2 = 0 or 3x + y - 12 = 0214 (a,b) Let *p* be the length of the perpendicular from the origin on the given line. Then its equation in normal form is $x \cos 30^\circ + y \sin 30^\circ = p$ or $\sqrt{3}x + y = 2p$ This meets the coordinate axes at $A\left(\frac{2p}{\sqrt{2}}, 0\right)$ and B(0,2p). Therefore, area of $\triangle AOB$ is $\frac{1}{2}\left(\frac{2p}{\sqrt{3}}\right)2p = \frac{2p^2}{\sqrt{3}}$ By hypothesis, $\frac{2p^2}{\sqrt{3}} = \frac{50}{\sqrt{3}} \Rightarrow p = \pm 5$

Hence, the lines are $\sqrt{3}x + y \pm 10 = 0$ 215 (a,d)

The separate equations of the sides are x - y = 0, x + y = 0 and 2x + 3y - 6 = 0. The point (-2, *a*) moves on the line x = -2 and (*b*, 1) moves on the line y = 1. From the figure, the *y*-coordinates of points of intersection of x = -2 with y = -x and 2x + 3y = 6 give the range of values of *a*. The *x*-coordinates of the points of intersection of y = 1 with y = -x and y = x give the range of values of *b*

216 **(b)**

On solving
$$4x + 3y = \lambda$$
 and $3x - 4y = \mu$
We get $x_1 = \frac{4\lambda + 3\mu}{25}$ and $y_1 = \frac{3\lambda - 4\mu}{25}$
 $\Rightarrow x_1 = y_1$
 $\Rightarrow \frac{4\lambda + 3\mu}{25} = \frac{3\lambda - 4\mu}{25}$
 $\Rightarrow \lambda + 7\mu = 0$
 \therefore locus of (λ, μ) is $x + 7y = 0$
For first quadrant $x_1 > 0$ and $y_1 > 0$
 $ie, \frac{4\lambda + 3\mu}{25} > 0$ and $\frac{3\lambda - 4\mu}{25} > 0$
or $4\lambda + 3\mu > 0$ and $3\lambda - 4\mu > 0$

217 (d)

First, let the equation ax + by + c = 0 represent a family of straight lines passing through (a, b) for different values of a, b and c

Then, we have to show that there is a linear relation between a, b and c and have to prove that the equation ax + by + c = 0 represent a family of lines passing through a fixed point. Let the linear relation be

la+mb+nc=0

$$\Rightarrow \left(\frac{l}{n}\right)a + \left(\frac{m}{n}\right)b + c = 0$$
$$\Rightarrow ar + br + c = 0 \text{ always parts}$$

 $\Rightarrow ax + by + c = 0 \text{ always passes through a fixed}$ point $\left(\frac{l}{n}, \frac{m}{n}\right)$

$$\therefore 3a + 2b + 4c = 0$$

$$\Rightarrow \left(\frac{3}{4}\right)a + \left(\frac{2}{4}\right)b + c = 0$$

and $ax + by + c = 0$ represents a system of

concurrent lines passing through $\left(\frac{3}{4}, \frac{1}{2}\right)$

Thus, statement I is false and II is true

218 **(b)**

In $\triangle OPQ$, OR is the internal bisector of $\angle POQ$

219 **(a)**

From the figure, both the statements are true and statement 2 correctly explains statement 1

220 (d)

According to given data $2a - 5 + a^2 - 3 < 0$ or $a^2 + 2a - 8 < 0$ or (a - 2)(a + 4) < 0 or $a \in (-4, 2)$

221 (d)

We know that if sum of algebraic distances from three points on the variable line is zero, then the line always passes through the mean of the given point, which is centroid of triangle formed by given three points. But centroid of triangle is (1, 2). Hence, the line must pass through it, for which a + 2b + c = 0. Therefore, statement 1 is false and statement 2 is true

222 (c)

Statement 2 is false as point satisfying such property can be ex-centre of the triangle. However, statement 1 is true as (0,0) is at distance π from all the lines and it lies inside the triangle

223 **(c)**

Let $f(x, y) \equiv 3x - 5y + \lambda$ \therefore Points (1, 2) and (3, 4) be on the same side of the line $3x - 5y + \lambda = 0$, then

$$\frac{f(1,2)}{f(3,4)} > 0$$

$$\Rightarrow \frac{3-10+\lambda}{9-20+\lambda} > 0$$

$$\Rightarrow \frac{\lambda-7}{\lambda-11} > 0$$

$$\therefore \ \lambda < 7 \text{ or } \lambda > 11$$

224 **(a)**

Any line equally inclined to given lines is always parallel to angle bisectors

225 (d)

The joint equation of y = x and y = -x is (x - y)(x + y) = 0, i.e., $x^2 - y^2 = 0$

226 (a)

We have,
$$(m_{AC})(m_{BC}) = \left(\frac{-4+2}{5+5}\right)\left(\frac{-4-6}{5-7}\right) = -1$$

Therefore, *ABC* is right-angled triangle with *C* as the right angle. Hence, circumcentre is midpoint of *AB*, i.e., (1, 2)

227 (a)

Bisectors of the given lines $\operatorname{are}(3x + 4y - 12)/5 = \pm(4x + 3y - 24)/5$, of which one the bisectors is y - x + 12 = 0. Also any point on the bisector is always equidistant from the given lines

228 (d)

Statement 1 is false since (x - 2) + (2x - 4) + (6 - 3x) = 0 but the lines x - 2 = 0, 2x - 4 = 0and 6 - 3x = 0 are parallel. Statement 2 is a standard result whose more general form as follows. Let $L_1 = 0, L_2 = 0, L_3 = 0$ be three lines. Now, if we can find λ, μ, ν (not all zero) such that $\lambda L_1 + \mu L_2 + \nu L_3 = 0$, then the three line $L_1 = 0, L_2 = 0, L_3 = 0$ are either concurrent or parallel

229 **(b)**

Put 2h = -(a + b) in $ax^2 + 2hxy + by^2 = 0$. Then,

$$ax^2 - (a+b)xy + by^2 = 0$$

$$\Rightarrow (x - y)(ax - by) = 0$$

Therefore, one of the lines bisects the angle between coordinates axes in positive quadrant. Also putting b = -2h - 1 in ax - by, we have ax - by = ax - (-2h - a)y = ax + (2h + a)y. Hence, ax + (2h + a) is a factor of $ax^2 + (2h + a)$. However, statement 2 is not correct explanation of statement 1

230 **(b)**

Bisectors of angle C are

$$\frac{3x+2y}{\sqrt{13}} = \pm \frac{2x+3y+6}{\sqrt{13}}$$

or x - y - 6 = 0 and 5x + 5y + 6 = 0

According to given equations of sides, internal angle bisector at *C* will have negative slope. Also, image of *A* will lie on *BC* respect to both bisectors, from which we can conclude that 5x + 5y + 6 = 0is internal angle bisector. Hence, statement 2 is not correct explanation of statement 1

231 (a)

Equation of bisector of 4y + 3x - 12 = 0 and 3y + 4x - 24 = 0 is $\frac{4y + 3x - 12}{\sqrt{16 + 9}} = \pm \frac{3y + 4x - 24}{\sqrt{9 + 16}}$ $\Rightarrow y - x + 12 = 0$ and 7y + 7x - 36 = 0 \therefore The line y - x + 12 = 0 is the angular bisector 232 (a)

The given lines are

$$(a+b)x + (a-b)y - 2ab = 0$$
 (i)

$$(a-b)x + (a+b)y - 2ab = 0$$
 (ii)

$$x + y = 0 \qquad \text{(iii)}$$

The triangle formed by the lines (i), (ii) and (iii) is an isosceles triangle if the internal bisector of the vertical angle is perpendicular to the third side. Now equations of bisectors of the angle between lines (i) and (ii) are

$$\frac{(a+b)x + (a-b)y - 2ab}{\sqrt{[(a+b)^2 + (a-b)^2]}}$$
$$= \pm \frac{(a-b)x + (a+b)y - 2ab}{\sqrt{[(a-b)^2 + (a+b)^2]}}$$

or x - y = 0 (iv)

and x + y = 2b (v)

Obviously the bisector (iv) is perpendicular to the third side of the triangle. Hence, the given lines form an isosceles triangle

233 (c) Centroid $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ is a rational point. Orthocentre is intersection point of two altitudes which will bear rational coefficients when expressed as *a* straight line. So, orthocentre is also rational. Circumcentre is intersection point of two perpendicular bisectors which will bear rational coefficient when expressed as a straight line. So, circumcentre is also rational. But statement 2 is not true as in equilateral triangle all the centres coincide

234 (a)

Area of triangles is unaltered by shifting origin to any point. If origin is shifted to (1000, 1002), *A*, *B*, *C* become *P*(0, 0)*Q*(1, 2), *R*(2, 1).both are true

235 (a)

The quadrilateral is obviously a parallelogram and if the diagonals are at right angles, it must be a rhombus. Hence, the distance between the pairs of opposite sides must be the same, i.e.,

$$\frac{|r - r'|}{\sqrt{p^2 + q^2}} = \frac{r - r'}{\sqrt{p'^2 + {q'}^2}}$$
$$\Rightarrow p^2 + q^2 = {p'}^2 + {q'}^2$$

236 (c)

 $ax^{2} + 2bxy + by^{2} + 2gx + 2fy + c = 0$ Represents the general equation of second of second degree. It represents a pair of straight lines, if

 $\Delta \equiv abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$ Thus, statement II is false And the equation of the pair of straight lines formed by

2x - y = 5 and x + 2y = 3 is given by (2x - y - 5)(x + 2y - 3) = 0 $\Rightarrow 2x^2 + 3xy - 2y^2 - 11x - 7y + 15 = 0$ Thus, statement I is true

237 (a)

Statement 1 is true and follows from statement 2 as the family of lines can be written as a(x + y - 1) + b(x - 2y) = 0

238 **(b)**

2. Clearly, point $(\alpha, 0)$ lies on the *x*-axis, which is not intersecting any side of triangle, hence no such α exists

239 (d)

=

=

The equation $4x^2 + 8xy + ky^2 - 9 = 0$ represents a pair of straight lines if $(4)(k)(-a) - (-a)(4)^2 = 0$

$$\Rightarrow k = 4$$

$$m_1 + m_2 = 4m_1m_2$$

$$\Rightarrow -\frac{2h}{b} = \frac{4a}{b}$$

$$\Rightarrow -\frac{2(-c)}{-7} = \frac{4 \times 1}{-7}$$

$$\Rightarrow 2c = 4 \Rightarrow c = 2$$

Let m_1, m_2 be the slopes of the lines

$$x^{2} + hxy + 2y^{2} = 0$$
. Then,
 $m_{1} + m_{2} = -\frac{h}{2}, m_{1}m_{2} = \frac{1}{2}$
But $m_{1} = 2m_{2}$ (given). Therefore,
 $3m_{2} = -h/2$ and $2m_{2}^{2} = 1/2$,
i.e., $m_{2}^{2} = \frac{1}{4}$. Also, $m_{2} = -h/6$
 $\therefore \frac{h^{2}}{36} = \frac{1}{4} \Rightarrow h^{2} = 9 \Rightarrow h = \pm 3$

Equation of the bisectors of the angle between the lines $ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$ is

$$\frac{x^2 - y^2}{(a+\lambda) - (b+\lambda)} = \frac{xy}{h}$$

or
$$\frac{x^2 - y^2}{a-b} = \frac{xy}{h}$$

Which is same as the equation of the bisector of angles between the lines $ax^2 + 2hxy + by^2 = 0$

Thus, the two line pairs are equally inclined to each other for any value of λ

240 **(c)**

$$(x + 7y)^{2} + 4\sqrt{2}(x + 7y) - 42 = 0$$

$$\Rightarrow (x + 7y)^{2} + 7\sqrt{2}(x + y) - 3\sqrt{2}(x + y) - 42 = 0$$

$$\Rightarrow (x + y)[x + 7y + 7\sqrt{2}] - 3\sqrt{2}(x - 7y + 7\sqrt{2}) = 0$$

$$\Rightarrow (x + 7y + 7\sqrt{2})(x + 7y - 3\sqrt{2}) = 0$$

$$\Rightarrow x + 7y + 7\sqrt{2} = 0 \text{ and } x + 7y - 3\sqrt{2} = 0$$

$$\Rightarrow d = \left|\frac{7\sqrt{2} + 3\sqrt{2}}{\sqrt{1 + 49}}\right| = \frac{10\sqrt{2}}{\sqrt{50}} = 2$$

$$\bigvee_{N = 1}^{N} \frac{P(h, k)}{(0, 0) M} = x$$

6.

Let two perpendicular lines are coordinate axes.

Then,
 PM + PN = 1

 $\Rightarrow h+k=1$

Hence, the locus is x + y = 1

But if the point lies in other quadrants also, then |x| + |y| = 1. Hence, value of k is

Angle bisector between the lines x + 2y + 4 = 0 and

$$4x + 2y - 1 = 0 \text{ is}$$

$$\frac{x + 2y + 4}{\sqrt{1 + 4}} = \pm \frac{(-4x + 2y + 1)}{\sqrt{16 + 4}}$$

$$\Rightarrow x + 2y + 4 = \pm \frac{(-4x - 2y + 1)}{2}$$

$$\Rightarrow 2(x + 2y + 4) = \pm (-4x - 2y + 1)$$

Since AA' + BB' < 0 so +ve sign gives acute angle bisector. Hence,

$$2x + 4y + 8 = -4x - 2y + 1$$

$$\Rightarrow 6x + 6y + 7 = 0$$

$$\Rightarrow m = 7$$

We have,

$$y^{2} - 9xy + 18x^{2} = 0$$

Or
$$y^{2} - 6xy - 3xy + 18x^{2} = 0$$

$$\Rightarrow y(y - 6x) - 3x(y - 6x) = 0$$

$$\Rightarrow (y - 3x) = 0 \text{ and } y - 6x = 0$$

The third line is y = 6. Therefore, area of the triangle formed by these lines,

0

$$= \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 6 & 1 \\ 2 & 6 & 1 \end{vmatrix}$$
$$= \frac{1}{2} |6 - 12|$$
$$= 3 \text{ units}^{2}$$
241 **(b)**

Obviously, trapezium

$$\begin{array}{l} a = \sqrt{37} \\ b = \sqrt{37} \end{array} \} \Rightarrow a = b$$

Hence, isosceles trapezium

 \Rightarrow a cyclic quadrilateral

ac = bd

$$\Rightarrow \frac{b}{c} = \frac{a}{d}$$

 \Rightarrow rhombus

$$\tan \theta = \frac{b}{c} \\
 \tan \phi = \frac{a}{d} \\
 \Rightarrow \theta = \phi$$

Hence, cyclic quadrilateral

$$PQ = \sqrt{(4+1)^2 + (-1-4)^2}$$
$$= \sqrt{50} = 5\sqrt{2}$$

Page | 62

$$OC = \sqrt{2}$$

Maximum value of *d* is

$$OF = \sqrt{2} + 2\sqrt{2}$$

 $= 3\sqrt{2}$

d. The given is

$$x = 4 + \frac{1}{\sqrt{2}} \left(\frac{y+1}{\sqrt{2}} \right) \Rightarrow y = 2x - 9$$

Hence, the intercept made by x-axis is 9/2

243 **(b)**

$$3x - y - 5 = 0$$

1.

 $x + 3y - 10 = 0$

 h_1

 h_2

 $x + 3y - 20 = 0$

$$h_1 = \left| \frac{10}{\sqrt{10}} \right| = \sqrt{10}$$
$$h_2 = \frac{10}{\sqrt{10}} = \sqrt{10}$$

Hence, the given lines form a square of side
$$\sqrt{10}$$
. Therefore, the area 10 sq. units

Hence, the figure is not a parallelogram

3. Lines 7x + 3y - 33 = 0, 7x + 3y - 4 = 0are parallel and distance between them is $|29/\sqrt{58}|$. Lines 3x - 7y + 19 = 0, 3x - 7y - 10 are parallel and instance between them $|29/\sqrt{58}|$. Also, lines 7x + 3y - 33 = 0 and 3x - 7y + 19 = 0 are perpendicular. Hence, given lines form a square

d. Lines 4y - 3x - 7 = 0 and 4y - 3x - 21 = 0are parallel. Lines 3y - 4x + 7 = 0, 3y - 4x + 14 = 0 are parallel. Also, lines 4y - 3x - 7 = 0and 3y - 4x + 14 = 0 are not perpendicular. Hence, given lines form parallelogram

244 **(a)**

$$AH \perp BC \Rightarrow \left(\frac{k}{h}\right) \left(\frac{3+1}{-2-5}\right) = -1$$

 $\therefore 4k = 7h$ (i)

$$A(h, k)$$

$$(5, -1)B$$

$$C(-2, 3)$$

$$BH \perp AC \Rightarrow \left(\frac{0+1}{0-5}\right)\left(\frac{k-3}{h+2}\right) = -1$$

$$\therefore k - 3 = 5(h+2) \quad (ii)$$

$$\Rightarrow 7h - 12 = 20h + 40$$

$$\Rightarrow 13h = -52$$

$$\Rightarrow h = -4$$

$$\therefore k = -7$$
Hence, point, A is (-4, -7)

$$x + y - 4 = 0 \quad (i)$$

$$4x + 3y - 10 = 0 \quad (ii)$$
Let $(h, 4 - h)$ be the point on (i). Then,

$$\left|\frac{4h + 3(4 - h) - 10}{5}\right| = 1$$

$$\Rightarrow h + 2 = \pm 5$$

$$\Rightarrow h = 3, h = -7$$

Hence, the required point is either (3, 1) or (-7, 11)

Since lines x + y - 1 = 0 and x - y + 3 = 0are perpendicular, orthocentre of the triangle is the point of intersection of these lines, i.e, (-1,2)

Since, 2*a*, *b*, *c* are in A.P., so

$$b = \frac{2a+c}{2}$$
$$\Rightarrow 2a - 2b + c = 0$$

Comparing with the line ax + by + c = 0, we have x = 2 and y = -2. Hence, lines are concurrent at (2, -2)

245 **(d)**

Given lines are concurrent. So,

 $\begin{vmatrix} 3 & 1 & -4 \\ 1 & -2 & -6 \\ \lambda & 4 & \lambda^2 \end{vmatrix} = 0$ $\Rightarrow \lambda^2 + 2\lambda - 8 = 0$ $\Rightarrow \lambda = 2, -4$ Points are collinear. Hence, $\begin{vmatrix} \lambda + 1 & 1 & 1 \\ 2\lambda + 1 & 3 & 1 \\ 2\lambda + 2 & 2\lambda & 1 \end{vmatrix} = 0$ $\Rightarrow 2\lambda^2 - 3\lambda - 2 = 0 \Rightarrow \lambda = 2, -1/2$

The point of intersection of x - y + 1 = 0 and 3x + y - 5 = 0 is (1,2). It lies on the line $x + y - 1 - |\lambda/2| = 0$

$$\Rightarrow \lambda = \pm 4$$

The midpoint of (1, -2) and (3, 4) will satisfy

$$y - x - 1 + \lambda = 0$$

 $\Rightarrow \lambda = 2$

246 **(a)**

Given that points are O(0, 0) and B(2, 0)

From figure, $\triangle ABC$ is equilateral

Hence, $\tan 60^\circ = k$

or $k = \sqrt{3}$ (for first quadrant) or $k = -\sqrt{3}$ (for fourth quadrant). Then possible coordinates are $(1, \pm \sqrt{3})$

Similarly, for second quadrant, the point is $(-1, -\sqrt{3})$

And for third quadrant, the point is $(-1, -\sqrt{3})$

Case (i)

If OA = AB, then $\angle A = 30^{\circ}$

 $\therefore k = 2 + \sqrt{3}$

Hence, point *A* is $(1, 2 + \sqrt{3})$. By symmetry, all possible points are $(\pm 1, \pm (2 + \sqrt{3}))$

Case (ii)

AO = OB

 $\therefore \ \angle AOB = 120^{\circ}$

And $OM = 2\cos 60^\circ = 1$

Hence, point *A* is $(1, -\sqrt{3})$.by symmetry, all possible points are $(\pm 1, \pm \sqrt{3})$

 $\Rightarrow 2 \times 2 \sin \theta = \sqrt{3}$

 $\Rightarrow \sin \theta = \frac{\sqrt{3}}{4} \Rightarrow AM = \sqrt{3} \text{ and } BM = 1$

Hence, *A* has coordinates $(3, \sqrt{3})$. By symmetry, all possible coordinates are $(\pm 3, \pm \sqrt{3})$

From the above figure *A* has coordinates $(1, \sqrt{3})$

By symmetry, all possible coordinates are $(\pm 1, \pm \sqrt{3})$

$$OB = 2$$
 units $= OO' =$ radius

$$\Rightarrow OM = \frac{2}{2} = 1$$
 unit

 $\mathrm{In}\,\Delta\,OO'\,M,$

$$O'M = \sqrt{4-1} = \sqrt{3}$$

Since $\triangle OAB$ is isosceles hence point *A* lies on perpendicular bisector of *OB*

$$\therefore AM = \sqrt{3} + 2 = O'M + OA$$

Hence, the coordinate *A* will be $(1, 2 + \sqrt{3})$ in first quadrant. By symmetry, all possible coordinates of *A* are $(\pm 1, \pm (2 + \sqrt{3}))$

Page | 65

other words, lines x = 0, x + y - 1 = 0 and x - y = 0 form triangle *OAB* as shown in the above diagram

The triangle is right angled at point *B*, hence orthocentre is (1/2, 1/2). Also, circumcentre is midpoint of *OA* which is (0, 1/2). The centroid is

$$\left(\frac{0+\frac{1}{2}+0}{3},\frac{0+\frac{1}{2}+1}{3}\right)$$
 or $\left(\frac{1}{6},\frac{1}{2}\right)$

Also, OA = 1, $OB = OC = 1/\sqrt{2}$. Hence, the incentre is

$$\begin{pmatrix} 0\left(\frac{1}{\sqrt{2}}\right) + \frac{1}{2}(1) + 0\left(\frac{1}{\sqrt{2}}\right), \frac{0\left(\frac{1}{\sqrt{2}}\right) + \frac{1}{2}(1) + 1\left(\frac{1}{\sqrt{2}}\right)}{\frac{1}{\sqrt{2}} + 1 + \frac{1}{\sqrt{2}}}, \frac{1}{\sqrt{2}} + 1 + \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\equiv \left(\frac{1}{2 + 2\sqrt{2}}, \frac{1}{2}\right)$$

248 (b)

From the given equations we have,

$$\frac{1 - \cos \theta}{\sin \theta} = \frac{a - x}{y}$$

and $\frac{1 + \cos \theta}{\sin \theta} = \frac{a + x}{y}$
On multiplying, we get
 $\frac{1 - \cos^2 \theta}{\sin^2 \theta} = \frac{a^2 - x^2}{y^2}$
 $\Rightarrow x^2 + y^2 = a^2$

249 **(a)**

Given lines (x + y + 1) + b(2x - 3y - 8) = 0 are concurrent at point of intersection of the lines x + y + 1 = 0 and 2x - 3y - 8 = 0, which is farthest from the point B(2, 2), is perpendicular to *AB*. Now, slope of *AB* is 4. Then the required line is y + 2 = -(1/4)(x - 1) or x + 4y + 7 = 0

Let the triangle be *ABC* with $C \equiv (3, \sqrt{3})$ and altitude drawn through vertex (meeting *BC* at *D*) be $\sqrt{3}x + y - 2\sqrt{3} = 0$. If *B* is (x_b, y_b) , then we have

$$\frac{2(x_b - 3)}{\sqrt{3}} = \frac{y_b - \sqrt{3}}{2} = -\frac{2(3\sqrt{3} + \sqrt{3} - 2\sqrt{3})}{2}$$
$$= -2\sqrt{3}$$
$$\Rightarrow x_b = 0, y_b = 0$$

And coordinates of *D* is $(3/2, \sqrt{3}/2)$. Let coordinates of vertex *A* be (x_a, y_b) . Then,

 $\frac{x_a - \frac{3}{2}}{-1/2} = \frac{y_a - \sqrt{3}/2}{\sqrt{3}/2} = \pm 3$ $\Rightarrow (x_a, y_b) \equiv (0, 2\sqrt{3}) \text{ or } (3, -\sqrt{3})$ Hence, the remaining vertices are (0, 0) and (0, 2\sqrt{3}) \text{ or } (0, 0) \text{ and } (3, -\sqrt{3}). Also, the orthocenter is $(1, \sqrt{3})$ or (2, 0)

Let
$$P = (h, k)$$
 be a general point in the first quadrant such that

d(P,A) = d(P,O)|h-3| + |k-2| = |h| + |k| = h + k (i) [h and k are +ve, point P(h, k) being in first quadrant] If h < 3, k > 2, then (h, k) lies in region *I*. Then, $3 - h + 2 - k = h + k \Rightarrow h + k = 5/2$ If h > 3, k < 2, then (h, k) lies in region II. Then, h - 3 + 2 - k = h + k $\Rightarrow k = -1/2$ (not possible) If h > 3, k > 2 then (h, k) lies in region III. Then, $h - 3 + k - 2 = h + k \Rightarrow -5 = 0$ (not possible) if h < 3, k > 2, then (h, k) lies in region IV. Then, $3 - h + k - 2 = h + k \Rightarrow h = 1/2$ Hence, the required set consists of line segment x + y = 5/2 of finite lengths as shown in the first region and the ray x = 1/2 in the fourth region Obviously locus of *P* is union of line segment and one infinite ray 252 (d)

Let the parametric equation of drawn line be $\frac{x}{\cos \theta} = \frac{y}{\sin \theta} = r$ $\Rightarrow x = r \cos \theta, y = r \sin \theta$ Putting it in 'L₁', we get $r \sin \theta = r \cos \theta + 10$ $\Rightarrow \frac{1}{OA} = \frac{\sin \theta - \cos \theta}{10}$ Similarly, putting the general point of drawn line in the equation of L₂, we get $\frac{1}{OB} = \frac{\sin \theta - \cos \theta}{20}$ Let P = (h, k) and $OP = r \Rightarrow r \cos \theta = h, r \sin \theta = k$, we have $\frac{2}{r} = \frac{\sin \theta - \cos \theta}{10} + \frac{\sin \theta - \cos \theta}{20}$ $\Rightarrow 40 = 3r \sin \theta - 3r \cos \theta$ $\Rightarrow 3y - 3x = 40$ 253 (a)

Case I: Let the line *L* cut *AO* and *AB* at distance *x* and *y* from *A*. Then, the area of the triangle with sides *x* and *y* is

$$\frac{1}{2}xy\sin(\angle CAD) = \frac{1}{2}xy\frac{3}{5} = \frac{3xy}{10} = 12$$

$$\Rightarrow xy = 40$$

Also, x + y = 12 (from perimeter bisection). Then x and y are roots of $r^2 - 12x + 40 = 0$ which has imaginary roots

Case II: If the line *L* cuts *OB* and *BA* at distance *y* and *x* from *B*, then we have xy = 30 and x + y = 12

Solving, we get $x = 6 + \sqrt{6}$ and $y = 6 - \sqrt{6}$ **Case III**: If the line *L* cuts the sides *OA* and *OB* at distances *x* and *y* from *O*, then

$$x + y = 12$$
 and $xy = 24$

 $\therefore x, y = 6 \pm 2\sqrt{3}$ (not possible)

So there is a unique line possible. Let point *P* be (α, β) . Using parametric equation of *AB*, we have

 $\beta = 6 - \frac{3}{5}(6 + \sqrt{6})$ and $\alpha = \frac{4}{5}(6 + \sqrt{6})$ Hence, slope of *PQ* is $\frac{\beta - \sqrt{6}}{\alpha - 0} = \frac{10 - 5\sqrt{6}}{10}$ 254 **(b)**

Image of A(1, 3) in line x + y = 2 is (1 - 3)

 $2(2)/2, 3 - 2(2)/2) \equiv (-1,1)$ A(1, 3)(-1, 1) (-2/5, -2/5) So line *BC* passes through (-1, 1) and (-2/5, -2/5). The equation of line *BC* is $y - 1 = \frac{-2/5 - 1}{-2/5 + 1}(x + 1)$ \Rightarrow 7x + 3y + 4 = 0 255 (c))ө Angle between the diagonals is given by $\tan \theta = \left| \frac{-\frac{1}{2} + 2}{1+1} \right| = \frac{3}{4}$ $\Rightarrow \sin \theta = \frac{3}{r}$ Area of $\triangle CPB$ is $\frac{1}{2} \times PC \times PB \sin \theta = 2 \implies PB = \frac{10}{3}$ $\Rightarrow BD = \frac{20}{3}$ P(-8, 5)15 Л $\overline{R(1, -7)}$ Q(-15, -19) $\cdot 20$ Since triangle is right angled, circumcentre is the

midpoint of PQ and orthocenter is R(1, -7). Hence,

$$RM = \left| \sqrt{\left(\frac{23}{2} + 1\right)^2} \right| = 12\frac{1}{2}$$

257 **(b)**

$$\theta = 60^{\circ}, m = 2$$
$$\tan \theta = \frac{m \sin \omega}{1 + m \cos \omega} = \frac{2 \sin 60^{\circ}}{1 + 2 \cos 60^{\circ}}$$

$$= \frac{2 \times \sqrt{3}/2}{1 + 2 \times 1/2} = \frac{\sqrt{3}}{2}$$
$$\Rightarrow \theta = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

258 (d)

 $\overrightarrow{O} \xrightarrow{M(1,0)} \xrightarrow{A(2,0)} X$ $d(P,OA) \leq \min[d(P,OB), d(P,AB)]$ $\Rightarrow d(P,OA) \leq d(P,OB)$ And $d(P,OA) \leq d(P,AB)$ When $d(P,OA) \leq d(P,AB)$ When d(P,OA) = d(P < OB), *P* is equidistant from *OA* and *OB*, or *P* lies on angle bisector of lines *OA* and *OB*. Hence, when $d(P < OA) \leq d(P,OB)$, point *P* is nearer to *OA* than *OB* or lies below bisector of *OA* and *OB*. Similarly, when $d(P,OA) \leq d(P,AB)$, *P* is nearer to *OA* than *AB*, or lies below bisector of *OA* and *AB*. Therefore, the required area is equal to the area of ΔOIA Now,

 $\tan \angle BOA = \frac{\sqrt{3}}{1} = \sqrt{3}$ $\Rightarrow \angle BOA = 60^{\circ}$ Hence, triangle is equilateral. Then *I* coincides with centroid, which is $(1, 1/\sqrt{3})$

Therefore, area of $\triangle OIA$ is $\frac{1}{2}OA \times IM = (1/2) \times$

$$2 \times (1/\sqrt{3}) = 1/\sqrt{3}$$
 sq. unit

259 **(c)**

A(1, -2)x + py = q $\left(\frac{-q}{2p-1}, \frac{2q}{2p-1}\right)$ $\left(\frac{3p+q}{n+1},\frac{q-3}{n+1}\right)$ *P* is orthocenter $\Rightarrow AP \perp BC$ $\Rightarrow \left(-\frac{1}{n}\right)\left(\frac{3+2}{2-1}\right) = -1$ $\Rightarrow \frac{5}{p} \Rightarrow p = 5$ $: BP \perp AC$ $\Rightarrow \frac{27 - 2q}{18 + a} = -1 \Rightarrow q = 27 + 18$ $\Rightarrow a = 45$: p + q = 5 + 45 = 50261 (4) Any point on the line x + y = 4 is (t, 4 - 4) where $t \in R$ Now distance of this point from the line 4x + 3y - 10 = 0 is 1 $\Rightarrow \frac{|4t + 3(4 - t) - 10|}{5} = 1$ $\Rightarrow |t+2| = 5$ $\Rightarrow t = 3 \text{ or } t = -7$ \Rightarrow sum of values is -4262 (1) Lines (k + 1)x + 8y = 4k and kx + (k + 3)y =3k - 1 are coincident then we can compare ratio of coefficients $\Rightarrow \frac{k+1}{k} = \frac{8}{k+3} = \frac{4k}{3k-1}$ $\Rightarrow k^{2} + 4k + 3 = 8k$ and $24k - 8 = 4k^{2} + 12k$ $\Rightarrow (k-3)(k-1) = 0$ and (k-2)(k-1) = 0 $\Rightarrow k = 1$ 263 (6) $x^2y^2 - 9x^2 - 25y^2 + 225 = 0$ $\Rightarrow x^2(y^2 - 9) - 25(y^2 - 9) = 0$ $\Rightarrow (v^2 - 9)(x^2 - 25) = 0$ x = -5 \therefore Area $A = 10 \times 6 = 60$ sq. units

264 (0)

Equation of angle bisector of angle A $\frac{3x+4y}{5} = \pm \frac{4x+3y}{5} \Rightarrow x = \pm y$ Equation of internal bisector is x = -ySince *h* and *k* lie on the line x = -y $\Rightarrow h + k = 0$ x = 3*B*(3, -9/4) 3x + 4y = 0 $(3, -4)\hat{C}$ 265 **(3)** For PR = RQ to be minimum it should be the path of light P(-3, 4)Q(0, 1)A

 $R(\alpha, 0)$

From similar $\triangle PAR$ and $\triangle QMR$

 $\Rightarrow \frac{\alpha+3}{0-\alpha} = \frac{4}{1} \Rightarrow \alpha = -\frac{3}{5}$

As H, G and S are collinear

 $\begin{array}{c|c} 1 & b & 1 \\ 0 & 2b - 8 & 1 \\ -4 & 8 & 1 \\ 0 & -4 & b - 8 \\ -(b + 4) & 16 - 2b & 0 \\ \end{array} \right| = 0$

 $\Rightarrow (b-4)(16-2b) + (b+4)(b-8) = 0$

 $\Rightarrow 2(b-4)(8-b) + (b+4)(b-8) = 0$

 $\Rightarrow (8-b)[(2b-8) - (b+4)] = 0$

 $\therefore \frac{-8+4}{3} = b \quad \Rightarrow \quad b = \frac{-4}{3}$

And $\frac{16+b}{3} = 2b - 8 \Rightarrow b = 8$

(b, 2b - 8) (-4, 8)

But no common value of 'b' is possible

 $\Rightarrow (8-b)(b-12) = 0$

Also

(4, b)

C

266 (0)

 $\frac{AR}{RM} = \frac{PA}{OM}$

 $\therefore \ \angle PRA = \angle QRM$

Area of $\triangle OAB = \frac{1}{2}(1)(8) =$ sq units $A(1, 1) \qquad D(C, 1) \qquad B(9, 1) \\ E\left(C, \frac{C}{0}\right) \qquad \rightarrow r$ $O(0, \overline{0})$ Equation of *OB* is $y = \frac{1}{9}x$ Hence point *E* is $\left(C, \frac{C}{\alpha}\right)$ Now area of $\triangle BDE$ is 2 square units $\Rightarrow \frac{1}{2} \left(1 - \frac{C}{9} \right) (9 - C) = 2$ $\Rightarrow (9-C)^2 = 36$ $\Rightarrow 9 - C = +6$ $\Rightarrow C = 3$ 268 (7) Line 3x + 2y = 24 meets the axis at B(8, 0) and A(0, 12). Midpoint of AB is D(4, 6)Equation of perpendicular bisector of AB is $2x - 3y + 10 = 0 \quad (1)$ Now line through (0, -1) and parallel to x – axis is v = -1Co-ordinates of *C* where line (1) meets y = -1 is $C\left(-\frac{13}{2},-1\right)$ Now the area of triangle ABC $\Delta = \frac{1}{2} \begin{vmatrix} 0 & 12 & 1 \\ 8 & 0 & 1 \\ -\frac{13}{2} & -1 & 1 \end{vmatrix}$ $=\frac{1}{2}\left[0-12\left(8+\frac{13}{2}\right)+1(-8)\right]$ $=\frac{1}{2}[-6(29)-8]=91$ 269 (5) Given vertices of triangle are O(0,0), B(6,8) and C(-4,3)Slope of $OB = \frac{8}{6}$ Slope of $OC = -\frac{3}{4}$ $\therefore \ \angle BOC = \frac{\pi}{2}$ Δ OBC is right angled at OCircumcentre=midpoint of hypotenuse $BC = \left(1, \frac{11}{2}\right)$ Orthocenter =vertex O(0, 0)

267 (3)

Required distance = $\sqrt{\left(1 + \frac{121}{4}\right)} = \frac{5\sqrt{5}}{2}$ unit

270 (8)

Given pair of lines
$$x^2 - (y^2 - 4y + 4) = 0$$

 $\Rightarrow x^2 - (y - 2) = 0$
 $\Rightarrow (x + y - 2)(x - y + 2) = 0$
(0, 2)
(0, 2)
(1, 2)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(-2, 0)
(

Required area is $A = \frac{1.1}{2} = \frac{1}{2}$

271 (2)

Lines (2a + b)x + (a + 3b)y + (b - 3a) = 0 or a(2x + y - 3) + b(x + 3y + 1) = 0 are concurrent at point of intersection of lines 2x + y - 3 = 0 and x + 3y + 1 = 0 which is (2, -1). Now linemx + 2y + 6 = 0 must pass through this point $\Rightarrow 2m - 2 + 6 = 0$ or m = -2

272 **(6)**

Let $x = r \cos \theta$; $y = r \sin \theta$ $\Rightarrow 2r \cos \theta + 3r \sin \theta = 6$ $\Rightarrow r = \frac{6}{2 \cos \theta + 3 \sin \theta}$; and $r = \sqrt{x^2 + y^2}$ for *r* to be minimum $2 \cos \theta + 3 \sin \theta$ must be

maximum i.e., $\sqrt{13}$ $r_{\pm} = \frac{6}{100}$

Since $\angle BCA = 90^{\circ}$ Points *A*, *O*, *B*, *C* are concyclic Let $\angle AOC = \theta$ $\angle BOC = \angle BAC$ $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{5}{12}$ $\frac{x}{y} = \frac{5}{12} \angle 12x - 5y = 0$ 274 **(8)**

We know that the area of the triangle formed by

joining the mid points of any triangle is one fourth of that triangle. Therefore required area is 8

The given lines 7x + 4y = 168 and 5x + 3y = 121 intersect *P*(20, 7)

Now (-5, -1) lies on x - 3y + 2 = 0In limiting case line passing through (-5, -1) can be parallel to x + y - 2 = 0i.e. m > -1and maximum slope can occur if it passes through (0, 0)i.e. $m < \frac{1}{5} \Rightarrow m \in \left(-1, \frac{1}{5}\right)$ $\Rightarrow a = -1$ and $b = \frac{1}{5}$ $\Rightarrow \left(a + \frac{1}{b}\right) = -1 + 5 = 4$ 277 (7) Using section formula $A\left(\frac{3k-5}{k+1}, \frac{5k+1}{k+1}\right)$ Area of triangle *ABC* is 2 sq. units $\Rightarrow \frac{1}{2} \begin{vmatrix} 1 & 5 & 1 \\ 7 & -2 & 1 \\ \frac{3k-5}{k+1} & \frac{5k+1}{k+1} & 1 \end{vmatrix} = \pm 2$ Operating $R_2 \to R_2 - R_1; R_3 \to R_3 - R_1$

$$\begin{vmatrix} 1 & 5 & 1 \\ 6 & -7 & 0 \\ \frac{3k-5}{k+1} - 1 & \frac{5k+1}{k+1} - 5 & 0 \end{vmatrix} = \pm 4$$

$$\Rightarrow 6\left(\frac{5k+1-5k-5}{k+1}\right) + 7\left(\frac{3k-5-k-1}{k+1}\right)$$

$$= \pm 4$$

$$\Rightarrow -24 + 7(2k-6) = \pm 4(k+1)$$

$$\Rightarrow k = 7 \text{ or } k = \frac{31}{9}$$

DCAM classes Dynamic Classes for Academic Mastery