

Single Correct Answer Type

		C C		
1.	Aluminium hydroxide	e forms a positively charg	ed sol. Which of the follow	ing ionic substance should be
	most effective in coag	gulating the sol?		
	a) NaCl	b) CaCl ₂	c) $Fe_2(SO_4)_3$	d) K ₃ PO ₄
2.		S_2S_3 prefers to adsorb	-) -2(4)3	-) 3 - 4
	a) NO_3^{\ominus}	b) K⊕	c) S ²⁻	d) H⊕
n	5	,	,	,
3.			f cracking of hydrocarbons	
	a) Copper	b) Zeolite	c) Nickel	d) Molybdenum
4.		dispersed phase in a lyop		
	, ,	charged substances on dis		
		kinetic potential develope		
	-	n electrical layer between	i two phases	
	d) The viscosity of the			
5.		g can act as a protective c	colloid?	
	a) Gelatin			
	b) Silica gel			
	c) Oil-in-water emuls	sion		
	d) All correct			
6.	Which one of the follo	owing is a natural colloid?		
	a) Sodium chloride so	olution	b) Cane sugar solut	ion
	c) Urea solution		d) Blood	
7.	Gold number of a lyo	philic sol is such a proper	ty that	
	a) The larger its value	e, the greater is the peptiz	ing power	
	b) The lower its value	e, the greater is the peptiz	ing power	
	c) The lower its value	e, the greater is the protec	ting power	
	d) The larger its value	e, the greater is the protec	cting power	
8.	Which is/are correct	statements about the role	e of a catalyst in a reaction?)
	a) It is reactant in a ra	ate-determining step and	then a product of some sul	bsequent step
	b) It provides an alter	rnate mechanism with a lo	ower energy of activation	
	c) It increases the rat	e of chemical reaction bu	t does not itself undergo a	permanent change during the
	course of the react	ion		
	d) All of the above			
9.	The diameter of collo	idal particle is of the orde	er	
	a) 10 ⁻³ m	b) 10 ⁻⁶ m	c) 10 ⁻¹⁵ m	d) 10 ⁻⁷ m
10.	Compared to commo	n colloidal sols micelles h	ave:	
	a) Higher colligative	properties	b) Lower colligative	e properties
	c) Same colligative p	roperties	d) None is true	
11.	The colligative prope	rty of a colloidal sol comp	ared to the solution of non	-electrolyte of same
	concentration will be			-
	a) Same	b) Higher	c) Lower	d) Higher or lower
12.		, ,		ective coagulation agent for Sb_2S_3
	sol is		75 1 /	0 0 2 3
	a) Na ₂ SO ₄	b) CaCl ₂	c) $Al_2(SO_4)_3$	d) NH4Cl
13.		merization of ethene is:	-)2 (4/3	
	a) TiCl ₄ and AlR ₃	b) Fe, Co	c) H ₃ PO ₄	d) Zeolites
14.		,	, , ,	means of diffusion through
	=	nder the influence of an e		
	- and a set in the monitor une u			

	a) Electro-osmosis b) Electrodialys	s c) Electrophoresis	d) Peptization			
15.	Softening of hard water is done using sodiu	ım aluminium silicate (zeolite).	This causes			
	a) Adsorption of Ca^{2+} and Mg^{2+} ions of har	d water replacing Na $^\oplus$ ions				
	b) Adsorption of Ca ²⁺ and Mg ²⁺ ions of har	d water replacing Al ³⁺ ions				
	c) Both true					
	d) None is true					
16.	Lyophilic sols are					
	a) Irreversible sols		d from inorganic compounds			
	c) Coagulated by adding electrolytes	d) Self-stabilising				
17.	Soaking of water by a sponge is an example					
	a) Simple adsorption b) Physical adso	. , .				
18.	Among the following, the surfactant that w	ill form micelles in aqueous solu	ution at the lowest molar			
	concentration at ambient conditions, is					
	a) $CH_3(CH_2)_{15}N^+(CH_3)_3Br^-$	b) $CH_3(CH_2)_{11}OSO_3^{-1}$				
10	c) $CH_3(CH_2)_6COO^-Na^+$	d) $CH_3(CH_2)_{11}N^+(CH_2)_$	H ₃) ₃ Br			
19.	Which is not the correct statement for a cat	alyst?				
	 a) It does not alter <i>E</i>_a b) The surface of a catalyst adsorbs reactant 	to				
	c) Catalyst may form intermediates with re					
	d) Action of enzyme catalyst is always spec					
20.	Which one of the following statements is w					
	a) It is a selective and specific process					
	b) It is a reversible process					
	c) An increase in the gaseous adsorbate car	uses an increase in a adsorption	. However, at high pressure, the			
	adsorption becomes constant					
	d) It is an endothermic process					
21.	Micelles are					
	a) Ideal solution b) Associated co	lloids c) Adsorbed surfaces	s d) Absorbent solutes			
22.	Non-ionogenic surfactants are					
	a) R-{SO ₃ Na	b) C ₁₇ H ₃₅ COONa				
	c) $C_n H_{2n+1}(OCH_2CH_2)_x OH$	d) All				
23	Smoke has generally blue tinge. It is due to	u) Ali				
20.	a) Scattering b) Coagulation	c) Brownian motion	d) Electro-osmosis			
24.	There is no scum formation when hard wat	-				
			d) None			
			-			
25.	Colloidal solutions of gold prepared by diffe		colours because of			
	a) Different diameters of colloidal gold par	ticles				
	b) Variable valency of gold					
	c) Different concentrations of gold particle					
26	d) Impurities produced by different method					
26.	There is desorption of physical adsorption		araaad			
	a) Temperature is increasedc) Pressure is increased	b) Temperature is de d) Concentration is i				
27.	Tyndall effect is not observed in	u) concentration is n	licieaseu			
27.	a) Suspension b) True solution	c) Emulsions	d) Colloidal solution			
28.	Adsorption is the phenomenon in which su		aj conoradi solution			
_0.	a) Accumulates on the surface of the other		y of the other substance			
	c) Remains close to the other substance	d) None is correct	· · · · · · · · · · · · · · · · · · ·			
29.	If liquid is dispersed in solid medium, then					

20	a) Sol	b) Emulsion	c) Liquid aerosol	d) Gel		
30.		nO_2 is peptized by a small a	amount of NaOH. These col	loidal particles may be		
	represented as $(2 - 2)^{2}$		λ. σ. σ. ο. ο			
	a) $[SnO_2]SnO_3^{2-}$; $2Na^{\oplus}$		c) $[SnO_2]Na^{\oplus}; OH^{\ominus}$	d) [SnO₂]Sn ⁴⁺ ; OH⊖		
31.	-	colloidal systems, fog is an	-			
	a) Liquid dispersed in ga	S	b) Gas dispersed in gas			
	c) Solid dispersed in gas		d) Solid dispersed in liqu	id		
32.	Which of the following statements is incorrect regarding physisorption?					
	a) It occurs because of van der Waals forces					
	b) Liquefiable gases are adsorbed more easily					
	c) Under high pressure it					
		n ($\Delta H_{adsorption}$) is low and				
33.		= =	solution on adding an elec			
	a) Dialysis	b) Peptization	c) Electrophoresis	d) Electro-osmosis		
34.	The rate of chemisorption					
	a) Decreases with increase		b) Increases with increas	=		
	c) Is independent of pres		d) Is independent of temp	perature		
35.	Sorption is the term used					
	a) Adsorption takes place	e	b) Absorption takes place	2 2		
	c) Both take place		d) Desorption takes place	2		
36.	Smoke is a dispersion of					
	a) Gas in gas	b) Gas is solid	c) Solid in gas	d) Liquid in gas		
37.	Which of the following is					
	a) Water vapour is absorbed by anhydrous calcium chloride both adsorbed by silica gel					
	b) NH ₃ is absorbed by water but adsorbed by charcoal					
		by animal charcoal based o	n adsorption			
	d)					
38.	An emulsifier is an agent					
	a) Accelerates the disper		b) Homogenises an emul			
	c) Stabilizes an emulsion		d) Aids the flocculation of			
39.	The migration of positively charged colloidal particles, under an electrical field, towards the cathode is					
	called					
	a) Cataphoresis	b) Electro-osmosis	c) Sedimentation	d) Electrodialysis		
40.	, ,	t) with column B (process))			
		A B				
	1. SiO ₂ I. Cracking	•				
	2. Pt II. of benze					
		obile converter				
			c) $1 \rightarrow II, 2 \rightarrow III, 3 \rightarrow I$			
41.		rward and backward react	ion are equal in cases (num	ierical values) where		
	a) $\Delta H = 0$		b) No catalyst present	. .		
	c) $\Delta S = 0$	1 1 1.1	d) Stoichiometry is the m			
42.			mulsion remains colourless			
	a) O-in-W	b) W-in-O	c) 0-in-0	d) W-in-W		
43.		Chromatography is a technique based on				
	a) Adsorption and then d	hispersion of solute	b) Absorption of solute			
	c) Hydration of solute d) Evapouration of solute Freundlich equation for adsorption of gases (in amount of <i>X</i> g) on a solid (in amount of mg) at consta					
44.	-	,	ount of X g) on a solid (in ar	nount of mg) at constant		
	temperature can be expr		V 1			
	a) $\log \frac{X}{m} = \log P + \frac{1}{n} \log P$	K	b) $\log \frac{X}{m} = \log K + \frac{1}{n} \log R$	0		
				D		

	c) $\frac{X}{m} \propto P^n$		d) $\frac{X}{m} = \log P + \frac{1}{n} \log K$	
45	III.		m ¹ ³ ⁿ ¹ ³	
45.	Which one of the following			
	-	s more pronounced for sma	aller particles than for bigg	er ones
	b) Sols of metal sulphides			
		tes, the bigger the size of th		
		rcoal to adsorb chlorine mo	ore strongly than hydrogen	sulphide
46.	Example of an intrinsic co			n – ()
	a) As ₂ S ₃ sol	b) S sol	c) Egg albumin	d) Fe(OH) ₃ sol
47.	• • • •	e application of ferric chlor	ride. This is because	
	a) The blood starts flowing			
		orms a solid, which seals th		
		d and thus the blood vessel	l is sealed	
	d) The ferric chloride sea			
48.	_	talyst is used during the hy	-	
	a) Fe	b) Ni	c) Pt	d) Mo
49.		not a characteristic of chen		
	a) It is irreversible		b) It is specific	
	c) It is multi-layer pheno		d) Heat of adsorption is a	
50.	-	ic acid on activated charcoa		
	a) Adsorbent	b) Adsorbate	c) Adsorber	d) Absorber
51.		with water-in-oil emulsion,		
	a) Dispersion medium is	coloured	b) Dispersed phase is col	oured
	c) Both coloured		d) None is coloured	
52.	-	per gram of adsorbent incr	eases with pressure, but af	ter a certain limit is
	=	omes constant. It is where		
	a) Multilayers are formed		b) Desorption takes place	2 2
	c) Temperature is increa		d) Adsorption also starts	
53.	Brownian motion is a/an			
	a) Electrical property		c) Optical property	d) Colligative property
54.		ms a sol with a negative cha	arge. Which of the followin	g ionic substances should
	be most effective in coage			
	a) KCl	b) MgCl ₂	c) $Al_2(SO_4)_3$	d) Na ₃ PO ₄

Multiple Correct Answers Type

- 55. Which of the following statements is/are correct?
 - a) Anhydrous AlCl₃ is used as a catalyst in Friedel-Crafts reaction
 - b) Iron is used as a catalyst in Haber's process of manufacturing $\rm NH_3$
 - c) The oxidation of SO_2 to SO_3 requires $\mathrm{V_2O_5}$ as the catalyst
 - d) The hydrogenation of oil requires nickel as the catalyst
- 56. Which of the following is/are not possible in case of auto-catalysis?
 - a) Reactant catalysis

b) Heat produced in the reaction catalysis

c) Product catalysis

- d) Solvent catalysis
- 57. Which is/are not correct in case of catalyst?
 - a) A catalyst is active only in solution
 - b) The addition of catalyst changes the equilibrium constant
 - c) A catalyst speeds up forward reaction and slows the backward reaction
 - d) The composition of equilibrium mixture is not changes by a catalyst
- 58. On adding AgNO₃ solution into KI solution, a negative charged colloidal sol is obtained when they are in

- a) 100 mL of 0.1 M AgNO₃ + 100 mL of 0.1 M KI
- b) 100 mL of 0.1 M AgNO₃ + 100 mL of 0.2 M KI
 d) 100 mL of 0.15 AgNO₃ + 100 mL of 0.25 M KI
- c) 100 mL of 0.2 M AgNO $_3$ + 100 mL of 0.1 M KI
- 59. Choose the correct reason(s) for the stability of the **lyophobic** colloidal particles.
 - a) Preferential adsorption of ions on their surface from the solution
 - b) Preferential adsorption of solvent on their surface from the solution
 - c) Attraction between different particles having opposite charges on their surface
 - d) Potential difference between the fixed layer and the diffused layer of opposite charges around the colloidal particles
- 60. Which statement(s) is/are true in case of catalyst?
 - a) The catalysts is unchanged chemically at the end of a reaction
 - b) The catalyst accelerates the reaction
 - c) In a reversible reaction, the catalyst alters the equilibrium position
 - d) A small amount of catalyst is often sufficient to bring about a large change in reaction
- 61. Which of the following statements is/are correct in the case of heterogeneous catalyst?
 - a) The catalyst lowers the energy of activation
 - b) The catalyst actually forms a compound with the reactant
 - c) The surface of the catalyst plays a very important role
 - d) There is no change in the energy of activation
- 62. The correct statement(s) pertaining to the adsorption of a gas on a solid surface is (are)
 - a) Adsorption is always exothermic
 - b) Physisorption may transform into chemisorption at high temperature
 - c) Physisorption increases with increasing temperature but chemisorption decreases with increasing temperature
 - d) Chemisorption is more exothermic than physisorption, however it is very slow due to higher energy of activation.
- 63. A catalyst :
 - a) Remains unchanged chemically at the end of a reaction
 - b) Usually does not initiate a reaction
 - c) Does not alter the equilibrium in a reversible reaction
 - d) Is used for altering the velocity of the reaction
- 64. Which of the following is/are negatively charged sol?

	a) Gold sol	b) Prussian blue dye	c) Hemoglobin	d) Starch
65.	Which of the following st	atements is/are true?		
	a) Iron is used as a cataly	st in the hydrogenation of	foils	

- b) V_2O_5 is used as a catalyst in the oxidation of SO_2 to SO_3
- c) Haber's process requires iron as a catalyst
- d) Thermite process does not involve any catalyst
- 66. Which is/are not natural colloid(s)?

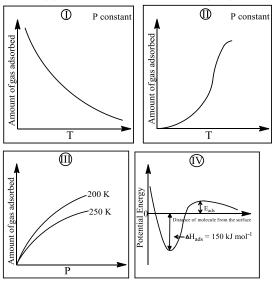
	a) NaCl	b) Blood	c) RCOONa	d) Sugar
67.	Anionic surfactants are			

- a) $C_{15}H_{31}COONa$ b) $R O SO_3Na$ c) $C_{18}H_{37}NH_3Cl$ d) All
- 68. Cationic surfactant(s) is/are :
 - a) The substances whose cation possesses surface activity
 - b) $C_n H_{2n+1}(OCH_2CH_2)_x OH$
 - c) C₁₈H₃₇NH₃Cl

d)
$$R \longrightarrow SO_3Na$$

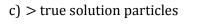
- 70. Which of the following is/are the characteristic of a catalyst?
 - a) It changes equilibrium point
 - b) It alter the rate of reaction
 - c) It intiates the reaction
 - d) It increases the average KE of molecules
- 71. 1 mol of [Ag] Ag^{\oplus} sol is coagulated by
 - a) 1 mol of KI
 - c) 300 mL of 1 M Na₃PO₄ solution

- b) 500 mL of 1 M $\rm K_2SO_4$
- d) 1 mol of AgI
- 72. Which of the following statements is/are correct?
 - a) Physical adsorption is multilayer, non-directional and non-specific
 - b) In some cases, solvent may be adsorbed in preference to the solute on the surface of the adsorbent
 - c) Chemical adsorption increases with increase in temperature
 - d) Due to adsorption, surface energy increases
- 73. Protons accelerate the hydrolysis of esters. This is an example of :
 - a) A promoter
 - b) A heterogeneous catalyst
 - c) An acid base catalyst
 - d) An autocatalyst
- 74. Which of the following statements is/are correct?
 - a) Enzymes are catalysts found in organisms
 - b) Enzymes are proteins
 - c) Enzymes can catalyse any reaction
 - d) Enzymes activity is maximum at about 300K
- 75. Which of the following statements is/are correct?
 - a) Increase of pressure increases the amount of adsorption
 - b) Increase of temperature may decrease the amount of adsorption
 - c) The adsorption may be monolayered or multilayered
 - d) Particle size of the adsorbent will not affect the amount of adsorption
- 76. Which one of the following is/are correct statement for physisorption?
 - a) It is a reversible process b) It requires less heat of adsorption
 - c) It requires activation energy d) It takes place at low temperature
- 77. Which one of the followings is/are an example of homogeneous catalysis?
 - a) Formation of SO_3 in the chamber process
 - b) Formation of SO_3 in the contact process
 - c) Hydrolysis of an ester in the presence of acid
 - d) Decomposition of KClO₃ in the presence of MnO₂
- 78. Which of the following is/are colloid(s)?


70 Wh	ich of the following is/			
79. WIII	0 1	are elastic gel?		
a) G	Gelatin	b) Silicic acid	c) Agar agar	d) Starch
80. The	e aerosol is/are the coll	loidal system(s) of :		
a) S	Solid dispersed in gas			
b) L	iquid dispersed in gas			
c) G	Gas dispersed in solid			
d) G	Gas dispersed in liquid			
81. Diff	erence in between cry	stalloid and colloid is of :		
a) P	Particle size			
b) T	To exhibit Tyndall effec	t		
c) D	Diffusion through a me	mbrane		

d) None of the above

82.	Which of the follow	ving is/are lyophobic colloid	ls?	
	a) Gold sol	b) As ₂ S ₃ sol	c) Fe(OH) ₃ sol	d) Starch sol
83.	Which of the follow	ving statements is/are corre	ect about physical adsorptio	n?
	a) It is a selective a	nd specific process		
	b) It is a reversible	process		
	c) An increase in th	ne gaseous adsorbate causes	s increase in adsorption. Ho	wever, at higher pressure the
	adsorption beco			
	d) It is an endother	•		
84.		ving belong(s) to the family		
	a) Lipase	b) Pepsin	c) Ptylin	d) Cellulose
85.		ving are macromolecular co		
	a) Starch	b) Soap	c) Detergent	d) Cellulose
86.	-	the pH at which colloidal pa		
	a) Coagulate		b) Become electrical	•
	-	d either electrodes	d) None of the above	2
87.	A catalyst :			
	a) Alters the veloci	•		
		rgy of activation of the give	n process	
	=	ne state of equilibrium		
	d) Decreases entro			
88.	1 mol of [AgI] Ag ⁺	sol is coagulated by		
	a) 1 mol of KI		b) 500 mL of 1 M K ₂	SO ₄
	c) 1 L of 1 M KI		d) None of these	
89.	Tyndall effect is ap	plicable when		


89. Tyndall effect is applicable when

- a) The diameter of the dispersed particle is not much smaller than the wavelength of the light used
- b) The diameter of the dispersed particles is much smaller than the wavelength of the light used
- c) The refractive indices of the dispersed phase and the dispersion medium must be same
- d) The refractive indices of the dispersed phase and the dispersion medium must differ greatly in magnitude
- 90. The given graphs/data I, II, III and IV represent general trends observed for different physisorption and chemisorption processes under mild conditions of temperature and pressure. Which of the following choice(s) about I, II, III and IV is (are) correct?

- a) I is physisorption and II is chemisorption
- b) I is physisorption and III is chemisorption
- c) IV is chemisorption and II is chemisorption
- d) IV is chemisorption and III is chemisorption

91.	Which act(s) as nega	itive catalyst?		
	a) Lead tetraethyl as	antiknock compound		
	b) Glycerol in decom	position of H_2O_2		
	c) Ethanol in oxidati	on of chloroform		
	d) None of the above	2		
92.	Which of the following	ng is/are not correctly mate	hed?	
	a) Emulsion-curd	b) Foam-mist	c) Aerosol-smoke	d) Solid sol-cake
93.	Which is/are true sta	atements(s)?		
	a) Water is absorbed	l by anhydrous CaCl ₂		
	b) Water is adsorbed	l by silica gel		
	c) NH ₃ is absorbed b	y water but adsorbed by ch	arcoal	
	d) Decolourisation o	f sugar by animal charcoal i	s based on adsorption	
94.	Which of the following	ng is/are aerosols?		
	a) Smoke	b) Milk	c) Butter	d) Fog
95.	Catalyst increases th	e rate by		
	a) Decreasing E_a	b) Increasing E _a	c) Decreasing pressur	e d) Increasing entropy
96.	The rate of a reaction	n increases with the additio	n of a catalyst. Which of the	following statements does/do
	not explain this?			
	a) The average kinet	ic energy of the molecules o	lecreases	
	b) The number of co	llision increases		
	c) The activation end	ergy increases		
	d) The activation end	ergy decreases		
97.	Multimolecular collo	ids are present in?		
	a) Sol of sulphur	b) Sol of protein	c) Sol of gold	d) Soap solution
98.	Which is/are not lyo		, ,	
	a) Gelatin	b) Sulphur	c) Starch	d) Protein
99.	Anionic surfactant(s			2
	a) The substances w	hose anion possesses surfac	ce activity	
	-			
	b) $C_{15}H_{31}COONa$ and	$R \longrightarrow SO_3Na$		
	c) Anions are associa	ted to form micelle		
	d) C ₁₈ H ₃₇ NH ₃ Cl			
100		ng increase(s) the activation	a of a solid adsorbort?	
100		ace of the solid adsorbent		
	b) Subdividing the so			
		ited steam through the porc	us adsorbant	
	d) Adsorption at ver			
101		ol particles may be brought	in hy :	
101	a) Heating	of particles may be brought	III by .	
	b) Adding oppositive	ly charged col		
	c) Adding electrolyte			
	d) Persistent dialysis			
102		ng statements is/are not co	rract?	
102		increases the speed of a rea		
		it take part in the reaction	CUUII	
		ect the nature of the produc	ts formed	
100		/s an external substance add	ted to the reaction mixture	
103	The size of the colloi $2 > suspension particular and the second second$	-		
	a) > suspension par			
	b) < suspension par			

d) None of the above

104. Which is not the adsorption isobar for chemisorption?

- b) It provides an alternate mechanism with a lower energy of activation
- c) It increases the rate of chemical reaction but does not itself undergo a permanent change during the course of the reaction
- d) It increases quantity of the product

116. Which is/are true in case of catalyst?

- a) A catalyst usually does not initiate a reaction
- b) It does not alter the position of equilibrium in a reversible reaction
- c) A catalyst remains unchanged in quality and composition at the end of a reaction
- d) Catalysts are sometimes very specific in respect of a reaction
- 117. The capacity of an ion to coagulate a colloidal solution depends on :a) Its shapeb) Amount of its chargec) The sign of charged) None of these
- 118. When a catalyst is added to a system, the :
 - a) Value of the equilibrium constant decreases
 - b) Equilibrium concentration are unaffected
 - c) Rate of reaction is increased
 - d) Activation energy of the reaction decreases
- 119. Mark the incorrect statements. A catalyst :
 - a) Remains chemically unchanged at the end of a chemical reaction
 - b) Is used up in the course of a reaction
 - c) Is a reactant required in small quantity
 - d) Is not specific in its action

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 120 to 119. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

120

- **Statement 1:** For the coagulation of sols carrying positive charge, PO_4^{3-} ions are more efficient than SO_4^{2-} or Cl⁻ ions
- Statement 2: This follows Hardy-Schulze rule

121

- **Statement 1:** A catalyst lowers the threshold energy level for reaction.
- **Statement 2:** Catalyst combines with reactant to form an exothermic intermediate and provide another pathway to reaction.

122

- **Statement 1:** Aqueous gold colloidal solution is red in colour
- **Statement 2:** The colour arises due to scattering of light by colloidal gold particles

123		
	Statement 1:	In chemisorption, adsorption keeps on increasing with temperature
	Statement 2:	Heat keeps on providing more and more activation energy
124		
	Statement 1:	The molecules on the surface have lesser energy.
	Statement 2:	During adsorption the surface of solid is in a state of relaxation.
125		
	Statement 1:	Zeolites are water softner as well as catalyst.
	Statement 2:	The catalytic action of zeolites is based upon their shape selectivity.
126		
	Statement 1:	The mass of nickel catalyst recovered after being used in the hydrogenation of an oil is
	Statement 2:	less than the mass of nickel added to the reaction Catalyst take part in the reaction but are recovered in the end
127		
	Statement 1:	The micelle formed by sodium stearate in water has – COO^{\ominus} groups at the surface
	Statement 2:	Surface tension of water is reduced by addition of stearate
128		
	Statement 1:	A colloidal solution of $Fe(OH)_3$ formed by peptization carries positive charge.
	Statement 2:	During formation of $Fe(OH)_3$ solution, electrons are lost by the particles.
129		
	Statement 1:	The activity of a catalyst depends upon the strength of physisorption .
	Statement 2:	The reactant must adsorb very strongly for the catalyst to be active.
130		
	Statement 1:	Colloidal solutions are stable but colloidal particles do not settle down.
	Statement 2:	Brownian movement counters the force of gravity actively on colloidal particles.
131		
	Statement 1:	Creaming from milk is known as phase inversion.
	Statement 2:	An agitation of milk brings in a change of D.P. into D.M. and <i>vice – versa</i> .
132		
	Statement 1:	The micelle formation by a surfactant takes place at certain concentration at definite
	Statement 2:	temperature. The temperature above which a surfactant forms micelle is called Kraft point.
		_ *

P a g e **| 11**

13	3
----	---

	Statement 1:	Addition of $AgNO_3(aq)$ to $KI(aq)$ gives -ve sol whereas addition of $KI(aq)$ to $AgNO_3$ gives +ve sol of AgI.
	Statement 2:	The sol particles adsorbs the common ions present in solution and acquire their charge.
134		
	Statement 1:	A needle can float on clear water but sinks when some detergent is added to it.
	Statement 2:	Detergent reduced the surface tension of water.
135		
	Statement 1:	Thermal decomposition of KClO ₃ (s) in presence of MnO ₂ (s) is an example of homogeneous catalysis.
	Statement 2:	A homogeneous catalysis involves phase $P = 1$.
136		
	Statement 1:	Physical adsorption of molecules on the surface requires activation energy
	Statement 2:	Because the bonds of adsorbed molecules are broken
137		
	Statement 1:	ZSM – 5 is used as a catalyst in petrochemical industries
	Statement 2:	Zeolites are three dimensional network silicates in which some silicon atoms are replaced by aluminium atoms
138		
	Statement 1:	Catalysts are always transition metals
	Statement 2:	Transition metals have variable oxidation state
139		
	Statement 1:	Small quantity of soap is used to prepare a stable emulsion
	Statement 2:	Soap lowers the interfacial tension between oil and water
140		
	Statement 1:	Hard water consumes more soap.
	Statement 2:	The ion responsible for cleansing action is precipitated out by Ca ²⁺ or Mg ²⁺ ion.
141		
	Statement 1:	Aqueous gold colloidal solution is red in colour.
	Statement 2:	The colour arises due to scattering of light by colloidal gold particles.
142		
	Statement 1:	Activity of an enzyme is pH dependent

Statement 2: Change in pH affects the solubility of the enzyme in water

143		
	Statement 1:	Now-a-days term catalyst means specifically a substance that accelerates the reaction.
	Statement 2:	The terms inhibitor is commonly used for substances which retards the rate of reaction.
144		
	Statement 1:	The effectiveness of catalyst has found more applications in solid catalyst and gaseous reactant systems.
	Statement 2:	A large number of industrial preparations are based on this type of reactions.
145		
	Statement 1:	The charge on lyophobic particles is responsible for their nature to exist as sol.
	Statement 2:	It is the formation of thin layer around sol particles which is responsible for stability of lyophilic sols.
146		
	Statement 1:	Oxidation of Na_2SO_3 is not caused by air but in presence of Na_3AsO_3 both undergo oxidation simultaneously.
	Statement 2:	Neither Na_2SO_3 nor Na_3AsO_3 is oxidised by air.
147		
	Statement 1:	Langmuir adsorption is a single-layer phenomenon
	Statement 2:	It is due to van der Waals forces
148		
	Statement 1:	Fe^{3+} can be used for coagulation of As_2S_3 sol
	Statement 2:	Fe^{3+} reacts with As_2S_3 to give Fe_2S_3
149		
	Statement 1:	The activity of catalyst more or less specific.
	Statement 2:	A catalyst for one reaction is not necessary to catalyse the other reaction.
150		
	Statement 1:	Gelatin is often used as protective colloid.
	Statement 2:	Protection is a property of lyophilic colloids.
151		
	Statement 1:	A yellow coloured As_2S_3 sol on mixing with red coloured $Fe(OH)_3$ sol gives colourless solution.
	Statement 2:	The –ve charge of As_2S_3 sol particles is neutralised by +ve charge of $Fe(OH)_3$ sol particles
152		and thus, sols are destabilized and show mutual coagulation.

	Statement 1:	The separation of insoluble impurities from a colloidal solution required dialysis.		
	Statement 2:	The ionic impurities present in colloidal solution are separated by electrodialysis.		
153				
	Statement 1:	The stability of lyophobic sols is lesser than lyophilic sols.		
	Statement 2:	Lyophilic sols possess loving nature for liquid.		
154				
	Statement 1:	A catalyst speeds up a reaction but does not participate in its mechanism		
	Statement 2:	A catalyst provides an alternative path of lower activation energy to the reactants		
155				
	Statement 1:	Alcohols are dehydrated to hydrocarbons in the presence of acidic zeolites		
	Statement 2:	Zeolites are porous catalysts		
156				
	Statement 1:	$C_{12}H_{25}NH_3Cl$ and $C_{12}H_{25}COONa$ are colloidal electrolyte.		
	Statement 2:	The substances which behave as electrolyte at lower concentration and above definite		
157		concentration forms sol are called colloidal electrolyte.		
	Statement 1:	An emulsion becomes stable if soap is added to it.		
	Statement 2:	Soap contains hydrophilic hydrophobic parts.		
158				
	Statement 1:	Lead tetraethyl acts as inhibitor for combustion of gasoline.		
	Statement 2:	It retards the precombustion of gasoline		
159				
	Statement 1:	Fruit formation process shows increase in the rate with passage of time		
	Statement 2:	Hydrolysis of ester is homogeneous autocatalytic reaction		
160				
	Statement 1:	The concentration of sulphide ores by froth floatation is based on emulsification.		
	Statement 2:	Pine oil in water forms emulsion.		
161				
	Statement 1:	Physical adsorption is weaker than chemical adsorption.		
	Statement 2:	Activated complex formed during adsorption possess lower energy level in		
162		chemisorption as it is more exothermic.		

	Statement 1:	ll enzymes are proteins, but all proteins are not enzymes			
	Statement 2:	Enzymes are biocatalysts and posses a stable configuration having active sites			
163					
	Statement 1:	Micelles are formed by surfactants above CMC.			
	Statement 2:	The conductivity of a solution having surfactant molecule decreases sharply at CMC.			
164					
	Statement 1:	The presence of a catalyst increases the speed of the forward and backward reactions to			
	Statement 2:	the same extent Activation energy for both the forward and backward reactions is lowerd to same extent			
165					
	Statement 1:	According to Freundlich $\frac{x}{m}$ = K.P ^{1/n} .			
	Statement 2:	The isotherm shows variation of the amount of gas adsorbed by the adsorbent with			
166		temperature.			
	Statement 1:	Enzymes are proteins and enzyme catalysed reactions are called biological catalysis.			
	Statement 2:	The activity of enzyme as catalyst is increased in presence of vitamins.			
167					
	Statement 1:	A reaction cannot become fast by itself unless a catalyst is added			
	Statement 2:	A catalyst always increases the speed of a reaction			
168					
	Statement 1:	According to Freundlich, $\frac{x}{m} = k \cdot p^{1/n}$			
	Statement 2:	The isotherm shows variation of the amount of gas adsorbed by the adsorbent with			
169		temperature			
	Statement 1:	Medicines are more effective in colloidal form than in tablet form.			
	Statement 2:	The colloidal state possess larger surface area than coarse form.			
170					
	Statement 1:	The blue colour of sky is due to scattering of light by dirt or dust particles present in air.			
	Statement 2:	Larger size of dispersed phase particles show more scattering as well as higher is the			
171		wavelength of light longer is scattering.			
	Statement 1:	Lyophilic colloids are called reversible sols			
	Statement 2:	Lyophilic sols are liquid loving			

172

	Statement 1:	Hydrolysis of ethyl acetate in the presence of acid is a reaction of first order whereas in presence of alkali, it is reaction of second order
	Statement 2:	Acid only acts as a catalyst whereas alkali acts as one of the reactants
173		
	Statement 1:	A colloidal state, a dispersion of a dispersed phase in a dispersion medium is a heterogeneous state.
	Statement 2:	The particle size of dispersed phase ranges between true solution and suspension state.
174		
	Statement 1:	The digestion of fat in intestine involves emulsification.
	Statement 2:	Bile salts stabilize the emulsion so formed.
175		
	Statement 1:	A catalyst increases the rate of a reaction.
	Statement 2:	In presence of a catalyst, the activation energy of the reaction increases.
176		
	Statement 1:	Sol particles show Tyndall effect.
	Statement 2:	The scattering is directly proportional to size of sol particle.
177		
	Statement 1:	A reaction cannot become fast by itself unless a catalyst is added
	Statement 2:	A catalyst always increases the speed of a reaction

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

178.

		Colu	mn-I			Column- II
(A)	Nickel				(p)	Conversion of SO_2 into SO_3
(B)	V ₂ O ₅				(q)	Conversion of starch into sugar
(C)	Diastase				(r)	Accumulation of molecules at the surface of a solid or liquid
(D)	Adsorption				(s)	Hydrogenation of vegetable oils
COD	ES :					
	Α	В	С	D		

a)	r	q	р	S
b)	S	р	q	r
c)	q	r	S	р
d)	р	S	r	q

179.

Column-I

- (A) Gold number
- (B) Lyophobic
- (C) Butter
- (D) Hardy Schulze rule
- (E) Micelles

CODES:

	Α	В	С	D	Ε
a)	R	S	u	q	t
b)	S	t	q	r	t
c)	q	r	S	u	t
d)	S	u	q	t	t

Column- II

- (p) Solvent heating
- (q) Coagulation
- (r) Protective colloids
- (s) Solvent
- (t) Associated colloids
- (u) An emulsion

180. This section contains questions each with two columns –I and II. Match the items given in column I with that in column II

		Co		Column- II		
(A)	A) Dispersion of Al(OH) ₃ by small quantity of AlCl ₃					Macromolecular colloid
(B)	5	of large q	uantity of	f AlCl ₃ in (a)	(q)	Selective adsorption
(C)) Solution of hemoglobin in water				(r)	Flocculation
(D) Chromatographic separation of components of a solutionCODES :				ents of (s)	Peptization	
	Α	В	С	D		
a)	r	р	q	S		
b)	S	r	р			
c)	р	q	S	r		

d) q s r p

181.

Column-I

- (A) Activated charcoal
- **(B)** $x/m = KP^{1/n}$
- **(C)** For humidity control
- (D) Gas masks

CODES:

	Α	В	С	D
a)	S	r	р	q
b)	r	р	q	S
c)	р	q	S	р
d)	q	S	р	r

182.

- Column-I
- (A) Fog
- (B) Milk
- (C) Cheese
- (D) Soap lather

CODES:

	Α	В	С	D
a)	r	р	q	S
b)	S	r	р	q
c)	р	q	S	r
d)	q	S	r	р

183. Match the following

Column-I

- (A) Smoke
- (B) Milk
- (C) Butter

Column- II

- (p) A device to adsorb poisonous gases
- (q) One of the adsorbents
- (r) Silica gel
- (s) Freundlich adsorption isotherm

Column- II

- (p) Gel
- (q) Foam
- (r) Emulsion
- (s) Aerosol

Column- II

- (p) Aerosol of liquid
- (q) Aerosol of solid
- (r) Emulsion

(D) Fog

CODES:

	Α	В	С	D
a)	ii	i	iii	iv
b)	iii	ii	iv	i
c)	i	ii	iii	iv
d)	ii	iii	iv	i

184.

Column-I

- (A) Coagulation
- (B) Lyophilization
- (C) Peptization
- (D) Tyndall effect
- CODES :

	Α	В	С	D
a)	S	r	q	р
b)	r	р	S	q
c)	S	q	r	S
d)	q	S	р	r

185. Match list-I with list-II and select the correct match.

Column-I

- (A) Rain cloud
- (B) Milk of magnesia
- (C) Whipped cream
- (D) Soap in water

CODES:

	Α	В	С	D
a)	i	ii	iii	iv
b)	iv	i	ii	iii
c)	iv	ii	iii	i

Column- II

(p) Scattering

(s) Gel

- (q) Washing of precipitates
- (r) Purification of colloids
- (s) Electrolyte

Column- II

- (p) Sol
- (q) Foam
- (r) Micelles
- (s) Aerosol

d) iii i ii iv

186. Match the following :

Column-I

- (A) Dialysis
- (B) Peptization
- (C) Flocculation
- (D) Gold number
- CODES :

	Α	В	С	D
a)	i	iii	ii	iv
b)	iv	i	ii	iii
c)	ii	iv	iii	i
d)	iii	ii	iv	i

187.

Column-I

- (A) Physisorption
- (B) Chemisorption
- (C) Activated adsorption
- (D) Desorption
- (E) Electro-osmosis
- **CODES**:

	Α	В	С	D	Ε
a)	Р	q,r	q,r	S	t
b)	q,r	S	t	р	t
c)	t	р	q	t	t
d)	q	r	S	q,r	t

188.

Column-I

- (A) Placing silica gel in water vapour
- (B) Placing anhydrous CaCl₂ in water vapour

Column- II

- (p) Precipitate converts to colloidal solution
- (q) Precipitation of colloidal solution
- (r) Protective power
- (s) Purification of colloidal solution

Column- II

- (p) Multimolecular
- (q) High heat of activation
- (r) High temperature required
- (s) Low pressure required
- (t) Determination of charge on colloidal particles

Column- II

- (p) Enzymatic catalysis
- (q) Occlusion

	(C)	Placing fi containir		led nickel	in a close	(r)	Adsorption	
	(D)			solution	with blood	(s)	Adsorption	
	(E)		on of prot	eins into	amino acio	ds	(t)	Negative adsorption
	COD	DES :						
		Α	В	C	D	Ε		
	a)	S	q	р	r	t		
	b)	t	р	r	S	t		
	c)	r	S	q	t	t		
	d)	р	q	t	S	t		
189								
			C	olumn-I			Column- II	
	(A)	Purple of	cassius				(p)	Gel
	(B)	Cheese					(q)	Gold sol
	(C)	Dialysis					(r)	Robert Brown
	(D)	Brownia	n moveme	ent			(s)	Hydrophilic
	(E)	Water-lo	ving collo	ids			(t)	Purification of colloidal solutions
	COD	DES :						
		Α	В	С	D	Ε		
	a)	р	q	r	u	t		
	a) b)			r s	u t	t t		
		р	q					
	b)	p t	q u	S	t	t		

Linked Comprehension Type

This section contain(s) 18 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 190 to -190

Freundlich adsorption isotherm is obeyed by the adsorptions where the adsorbate forms a multimolecular layer on the surface of adsorbent. In such case, the degree of adsorption varies linearly with pressure but at high pressure, it becomes independent of pressure. It is given as

$$\frac{x}{m} = kp^{1/m}$$

Where, *k* and *n* constants

Langmuir adsorption isotherm is obeyed by the adsorption where the adsorbate forms only a unimolecular

adsorbed layer. The mathematical relation of Langmuir adsorption isotherm is $\frac{x}{m} = \frac{ap}{1+bp}$

^{190.} When $\log\left(\frac{x}{m}\right)$ is plotted against $\log p$, we get a straight line with slope a) $\frac{1}{n}$ b) n c) x

Paragraph for Question Nos. 191 to - 191

Emulsions are also the colloidal solutions in which disperse phase as well as dispersions medium are liquids. It may be oil in water or water in oil type. Bancroft proposed that the phase in which the emulsifier is more soluble becomes the outer phase of the emulsion. Emulsifiers can be used to stabilize the emulsion. Soaps, detergents, proteins and gum etc, are used as emulsifiers

d) *m*

191. Addition of lyophilic solution to the emulsion forms

- a) A protective film around the dispersed phase
- b) A protective film around the dispersion medium
- c) An aerosol
- d) True solution

Paragraph for Question Nos. 192 to - 192

Colloidal solution is a heterogeneous solution which contains particle of intermediate size, i.e., (diameter between 1 and 1000 nm) colloidal is not a substance but it is a state of a substance which depends upon the molecular size. Colloidal solutions are intermediate between true solutions and suspensions

192. The size of the colloidal p	articles lies in the range		
a) 10 nm – 1000 nm	b) 10 mμ – 1000 mμ	c) 1 nm – 1000 nm	d) 10 ⁻⁵ cm – 10 ⁻⁷ cm

Paragraph for Question Nos. 193 to - 193

A chemist studied the phenomenon of adsorption by putting blood charcoal in KCl solution. He observed difference in the behaviour with dilute KCl solution and with concentrated KCl solution. He also studied the adsorption of different gases on solid adsorbent and the effect of temperature on adsorption. He put forward a mathematical relationship relating x/m with equilibrium pressure

193. Which of the following is correct?

- a) Adsorption is always exothermic?
- b) Adsorption is always endothermic
- c) Physical adsorption is endothermic whereas chemisorptions is exothermic
- d) Chemical adsorption is endothermic whereas physical adsorption is exothermic

Paragraph for Question Nos. 194 to - 195

Colloidal dispersion have been classified into different types depending upon the physical state of the dispersed phase and the dispersion medium. They are prepared in the industry or in the laboratory by a number of

methods and then purified. The protective action of lyophilic colloids was studied by zsigmondy and he introduced a term called gold number

194. Which of the following does not form a lyophilic colloid?

- a) Rubber dissolved in benzene
- b) White of the egg dissolved into water
- c) Common salt added into benzene
- d) Stannous chloride solution added to gold chloride solution

Paragraph for Question Nos. 195 to - 196

Adsorption is the tendency of accumulation of molecular species at the surface of solid or liquid. Depending upon the nature of bonds or forces of attraction between adsorbate and adsorbent, it is classified between physisorption and chemisorption

195. Which of the following statements are correct? (More than one correct)

- a) Adsorption always leads to a decrease in enthalpy and entropy of the system
- b) Adsorption arises due to unsaturation in the enthalpy of valence forces of atoms or molecules on the surface
- c) Adsorption increases with rise in temperature
- d) Adsorption decreases the surface energy

Paragraph for Question Nos. 196 to - 197

Substances which alter the velocity of a reaction by mere presence, without undergoing any change in mass and composition are termed catalysts and the phenomenon is known as catalysis

196. According to the adsorption theory of catalysis, the rate of reaction increases because

- a) Adsorption lowers the activation energy of the reaction
- b) Concentration of reactant molecules at the active centers of the catalyst becomes high due to adsorption
- c) Adsorption increases the activation energy of the reaction
- d) Adsorption decreases the activation energy of the reaction

Paragraph for Question Nos. 197 to - 198

Only the surface atoms in an adsorbent play an active role in adsorption. These atoms possess some residual forces such as van der Waals forces and chemical forces. In the process of adsorption, weak adsorbate is substituted by strong adsorbate. Activated charcoal used in the gas mask is already exposed to the atmospheric air, so gases and water vapours in air are adsorbed on its surface. When the mask is exposed to chlorine atmosphere, the gases are displaced by chlorine. In general, easily liquifable gases such as CO_2 , NH_3 , Cl_2 and SO_2 are adsorbed to a greater extent than the elemental gases, e.g., H_2 , N_2 , O_2 , He, etc

- 197. Gas mask works on the principle of
 - a) Chemical adsorption
 - b) Physical adsorption
 - c) Both physical adsorption and chemical adsorption
 - d) None of these

Paragraph for Question Nos. 198 to - 199

Emulsions are also called the colloidal solutions in which the disperse phase as well as dispersion medium are liquids. It may be oil-in-water or water-in-oil type. Emulsifiers can be used to stablize the emulsion. Soaps, detergents, proteins, and gums are used as emulsifiers

198. Which of the following examples is/are oil-in-water-type emulsion?						
a) Ink	b) Detergent	c) Soap	d) Milk			

Paragraph for Question Nos. 199 to - 200

There are certain substances which behave as normal, strong electrolyte at low concentration but at higher concentration they behave as colloidal solutions due to the formation of aggregated particles. Such colloids are called associated colloids and the aggregated particles are called micelles. The formation of micelles takes place above certain concentration called critical micellization concentration (CMC) and a characteristic temperature

199. Micelles are			
a) Emulsion-cum-gel	b) Adsorbed catalyst	c) Associated colloids	d) Ideal solutions

Paragraph for Question Nos. 200 to - 200

The catalytic activity and colloidal nature of a substance are surface phenomenon. Both these properties depend upon the property of adsorption. Adsorption may be physisorption or chemisorption. Adsorption is spontaneous and always leads to decrease in entropy along with evolution of heat. Chemisorption is irreversible with temperature, unilayer, specific and directional. Adsorbate molecules adsorb on catalyst surface and thus, lowers the energy of activation of reaction to provide a new pathway for reaction. In colloidal state dispersed phase particles possess the adsorption characteristics at the interface.

200. Select the correct statements :

- 1. Adsorption is spontaneous at all the temperatures.
- 2. Gases having high critical temperature possess more tendency for adsorption.
- 3. An adsorbent possesses more tendency for adsorption if it is in colloidal state.
- 4. Chemical adsorption first decreases with increase in temperature and then increases.
- 5. Water molecules are adsorbed in $CaCl_2(s)$.

a) 1,2,3,4,5 b) 2,3,4 c) 1,2,3,4	d) 2,3
----------------------------------	--------

Integer Answer Type

201. The gold number of gelatin is 0.01. Calculate the amount of gelatin to be added to 1000 mL of a colloidal							
sol of gold to prevent its coagulation, before adding 1 mL of 10% NaCl solution							
a) 2	b) 1	c) 4	d) 5				
202. From the given	following sol how many ca	in coagulate silica acid sol?					
Fe(OH) ₃ , Ca(OH) ₂ , Al(OH) ₃ , Starch, Clay, A	s ₂ S ₃ , CdS, Basic dye					
a) 4	b) 3	c) 2	d) 8				
203. 526.3 mL of 0.5 m HCl is shaken with 0.5 g of activated charcoal and filtered. The concentration of the							
filterate is redu	ced to 0.4 m. The amout of	adsorption (x/m) is					

a) 3	b) 6	c) 8	d) 4	
204. In an exper	iment, addition of 5.0 mL, of 0.0	06 M BaCl ₂ to 10.0 mL of	arsenic sulphite sol just causes the	
complete c	oagulation in 34 h. The flocculat	ing value of the effective i	on is :	
a) 2	b) 3	c) 4	d) 5	
205. The coagul	ation of 100 mL of a colloidal sol	of gold is completely pre	vented by addition of 0.03 g of	
			the gold number of Haemoglobin	
a) 4	b) 8	c) 3	d) 9	
206. 11.42 g O ₂	gas is adsorbed on 2 g of metal p	oowder. The volume of O ₂	adsorbed in litre/g of metal powder	ſ
at STP is				
207. How many	of the following represent surfa	ce phenomenon? Adsorpt	ion, Surface tension, Surface energy,	,
Viscosity, A	Absorption, Dissolution of soap in	n water, Silica gel in prese	nce of moisture	
208. From the g	iven following sol how many car	coagulate the haemoglol	oin sol?	
Fe(OH) ₃ , C	a(OH) ₂ , Al(OH) ₃ , starch, clay, As	₂ S ₃ , CdS, basic dye		
a) 1	b) 3	c) 4	d) 8	
209. For the coa	gulation of 500 mL of arsenious	sulphide sol, 2 mL of 1M	NaCl is required. What is the	
folcculation	n value of NaCl?			
a) 3	b) 2	c) 5	d) 4	
210. In an adsor	ption experiment, a graph betw	een $\log(x/m)$ versus $\log l$	' was found to be linear with a slope	of
45°. The in	tercept on the y axis was found	to be 0.301. Calculate the	amount of the gas adsorbed per gran	n
of charcoal	under a pressure of 3.0 atm			
a) 4	b) 2	c) 6	d) 8	

5.SURFACE CHEMISTRY

	: ANSWER KEY :														
1)	d	2)	С	3)	b	4)	С		d	6)	d	7)	b	8)	а
5)	а	6)	d	7)	с	8)		9)	С	10)	d	11)	а	12)	С
9)	d	10)	b	11)	с	12)	С	13)	d	14)	с	15)	с	16)	b
13)	b	14)	b	15)	a	16)	d	17)	е	18)	b	19)	b	20)	a
17)	d	18)	а	19)	a	20)	d	21)	С	22)	a	23)	С	24)	Ċ
21)	b	22)	С	23)	a	24)	b	25)	С	26)	d	27)	а	28)	C
25)	а	26)	а	27)	b	28)	а	29)	С	30)	d	31)	d	32)	C
29)	d	30)	а	31)	а	32)	d	33)	b	34)	С	35)	е	36)	C
33)	b	34)	b	35)	С	36)	С	37)	С	38)	а	39)	С	40)	а
37)	е	38)	b	39)	а	40)	С	41)	С	42)	С	43)	b	44)	d
41)	а	42)	а	43)	а	44)	b		а	46)	С	47)	d	48)	e
45)	а	46)	С	47)	С	48)	b	-	С	50)	С	51)	С	52)	b
49)	С	50)	а	51)	а	52)	а	53)	а	54)	С	55)	С	56)	С
53)	b	54)	С	1)	a, b, c,			57)	С	58)	d	1)	b	2)	а
	2)	a,b,d	3)	a, b, c	4)	b,d			3)	b	4)	d			
5)	a, d	6)	a, b, d	7)	a,b,c	8)		5)	b	6)	d	7)	а	8)	b
	a, b, d		_					9)	b	10)	a	11)	С	12)	С
9)	a, c, d	10)	a,d	11)	b, c, d	12)		1)	a	2)	a	3)	С	4)	а
	a, c, d				-			5)	d	6)	a,b,d	7)	b	8)	C
13)	a,b	14)	a, c	15)	a,b,c	16)		9)	d	10)	a	11)	b	1)	b
4 =)	b,c,d	4.0)		4.02		9.0)		-	2)	a	3)	d T	4) -	a	
17)	a,b	18)	a,b	19)	c, d	20)		5)	C	6) 10)	4	7)	5	8)	С
21)	a, b, d		a h d	221	aad	24)		9)	d	10)	С				
21)	a,b,c	22)	a,b,d	23)	a,c,d	24)									
25)	a, b, c	26)	a, b	27)	a h c	28)									
255	a,c,d a,b,c	20)	a, D	27)	a, b, c	20]									
29)	a,b,c a,b,c	30)	a,b,c	31)	a,d	32)									
275	a,b,c	30)	a,0,0	51)	a,u	525									
33)	a, b, c,	d	34)	a,b,c	35)	a,d									
00)	36)	a, c	01)	u,6,6	00)	uju									
37)	a, b, c		a,b,d	39)	a, b, c,	d									
<i></i>	40)	a,d	.,.,.	,	,,,	-									
41)	a,c	42)	a, b, c	43)	a,c	44)									
,	, a, c, d	-		,		,									
45)	a, b, c		b,c	47)	a, b, c,	d									
	48)	a,b,d		1											
49)	b, c	50)	a,b,d	51)	a,b,c	52)									
-	c,d	2		-		-									
53)	a,b,d	54)	a,c,d	55)	a, c, d	56)									
	a,b,c														
57)	b,c,d	58)	a, b, c	59)	b, c, d	60)									
	b, c, d														
61)	a,b,c	62)	b, d	63)	b, c	64)									
	b, c, d														
65)	b, c, d	1)	а	2)	С	3)	а								
	4)	е													

5.SURFACE CHEMISTRY

	: HINTS AND	SO	LUTIONS :
1	(d)	27	(b)
	$Al(OH)_3$ is positively charged sol. K_3PO_4 has		Tyndall effect is observed for colloidal solution
	greater negative charge. Hence, it is most effective	29	(d)
	in coagulation of $Al(OH)_3$ sol		It is factual statement
6	(d)	31	(a)
	Blood is a natural colloid		In fog, liquid water is dispersed in gas
7	(c)	32	(d)
	The reciprocal of gold number is directly		Enthalpy of adsorption regarding physisorption is
	proportional to the protecting power		not positive. Rather it is negative
12	(c)	33	(b)
	Sb_2S_3 is an anionic sol, therefore cation of highest		Peptization is a process of passing of a precipitate
	valency (Al ³⁺ in the present case) would be most		into colloidal solution on the addition of
	effective coagulating agent.	~ -	electrolyte
13	(b)	35	(c)
1.4	For polymerization of ethene, Fe and Co is used	4.4	In sorption and adsorption take place
14	(b)	44	(b) $X = 1/m + X = 1/m$
1 Г	Dialysis is a process of purifying a substance		$\frac{X}{m} \propto P^{1/n} \text{ or } \frac{X}{m} = KP^{1/n}$
15	(a) Hardnaga of water is due to corbonate or subbate		Taking log on both sides,
	Hardness of water is due to carbonate or sulphate of Ca ²⁺ and Mg ²⁺ ions. When sodium aluminium		$\log \frac{X}{m} = \log K + \frac{1}{n} \log P$
	silicate is added Na ^{\oplus} replaces Ca ²⁺ and Mg ²⁺ by	10	
	adsorption, and hence water become soft	48	(b)
16	(d)	50	Ni is used for catalytic hydrogenation of oil
10	Lyophilic sols are self stabilizing because these	50	(a) Adsorption is a substance on which adsorption
	sols are reversible and are highly hydrated in the		takes place
	solution.	54	(c)
17	(d)	51	As ₂ S ₃ sol is a negatively charged colloid. Al ³⁺ has
	Soaking of water by a sponge is adsorption		greater charge, therefore, $Al_2(SO_4)_3$ is most
	because water also accumulates in bulk of sponge		effective in the coagulation of As_2S_3 sol
	as well as on the surface of it	58	(b,d)
18	(a)		AgI is precipitated by reaction of equivalent
	Sodium dodecyl sulphate (SDS)		amount of Ag ⁺ and I ⁻ . I ⁻ is adsorbed (if present
	CMC (mm)>-10		in excess) on the surface of AgI forming negatively
	Hexadecyl trimethyl ammonium bromide (CTAB)		charged colloidal sol. Thus,
	Note At a certain concentration surfactant		
	molecules start to aggregate and form micelle, the		$Ag^+ + I^- \rightarrow AgI$
	concentration is called critical		$AgI + I^- \rightarrow [AgI]I^-$
	micellisationconcentration(CMC).		O FO-1-
19	(a)		(a) 100 mL of 0.1 M AgNO ₃ = 10 millimol Ag ⁺
•	Catalyst changes the activation energy (E_a)		100 mL of 0.01 M KI = 10 millimol L ²
20	(d)		$100 \text{ mL of } 0.01 \text{ M KI} = 10 \text{ millimol I}^-$
22	Adsorption is an exothermic process		AgI is only precipitated
23	(a)		
26	Due to scattering, smoke has blue tinge		(b) 20 millimol $I^- > 10$ millimol Ag^+
20	(a) On increasing the temperature, adsorption		Thus, AgI is precipitated and then $[AgI]I^-$
	decreases		in procipiation and then [rigi]i
	ucu cases	l	

	colloidal sol is formed	88	(a,b,c)
	(c) 20 millimole of $Ag^+ > 10$ millimole of I^-		One mole of [AgI]Ag ⁺ is coagulated by 1 mol of I^-
	AgI is precipitated and then [AgI]Ag ⁺ colloidal		$[AgI]Ag^+ + I^- \rightarrow AgI + AgI$
	sol is formed		$2[\text{AgI}]\text{Ag}^{+} + \text{SO}_{4}^{2-} \rightarrow 2\text{AgI} + \text{Ag}_2\text{SO}_4$
	(d) 25 millimole $I^- > 15$ millimole of Ag^+		2 mol 1 mol
	Thus, [AgI]I ⁻ colloidal sol is formed		1 mol 0.5 mol
69	(a,b,c)		500 mL of 1 M $K_2SO_4 = 0.5$ mol
	Gold sol is negatively charged. Hence, most effective for coagulation will be Mg ²⁺ ions		Thus, (b) is true
70	(b,c,d)		$1 \text{ L of } 1 \text{ M KI} = 1 \text{ mol } \text{I}^-$
72	Catalyst does not change equilibrium (a,b)		Thus, (c) is also true
	(c) is wrong because chemical adsorption first increases and then decreases with increase in temperature(d) is wrong because as a result of adsorption,	92	(a,b,d) Smoke is an aerosol (solid carbon particles dispersed in air)
	there is a decrease in surface energy	94	(a,d) Milk is emulsion, butter is gel. Smoke and fog have
75	(a,b,c) Particle size of an adsorbent affects the amount of		gas (air) as the dispersion medium and hence are
	adsorption	95	aerosol (a,c)
76	(a,b,d)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Catalyst decreases the activation energy for the
79	Physisorption does not require activation energy (a,c,d)		reaction hence reaction speeds up. It also decreases entropy (more negative), therefore,
00	Silicic acid is a non-elastic gel		free energy less positive or more spontaneous
83	(a,b,c) Adsorption is a selective, specific and reversible	102	(a,b,d)
	process. It increases in the gaseous adsorbate. But it is an exothermic process		A catalyst is a substance that may increase or decrease the speed of reaction, also it may be added from outside and sometimes may produced
84	(a,b,c)	104	during the reaction (a,b,d)
85	Cellulose is not an enzyme (a,d)		In chemisorptions, adsorption first increases and
	Starch and cellulose are high molecular mass	105	then decreases (a,b,c)
	molecules	100	Dust is an aerosol and not a solid sol
		108	(a,c,d) Efficiency of catalyst depends upon the number of
			free valencies
		110	(a,b,c)
			 is wrong because zeolites are not used as such but are first heated in vaccum so that the water of hydration is lost
			2. is wrong, because enzyme have maximum activity at pH of 7.4
			3. is wrong because enzyme has maximum activity at 37°C

111 (b,c,d)

According to adsorption theory, the surface of a catalyst adsorbs reactants. According to intermediate compound theory, a catalyst may form intermediate with the reactants. Action of enzyme catalyst is always specific

115 **(a,b,c)**

A catalyst is reactant in a rate-determining (r/d) step and then a product of some subsequent step. It also provides an alternate mechanism with a lower energy of activation. It alters rate of chemical reaction but can not change quantity of the product

120 **(a)**

According to Hardy-Schulze rule coagulating power of an electrolyte is directly proportional to the fourth power of the valency of the ions causing coagulation

121 **(c)**

Catalyst lowers energy of activation and threshold energy and provide another pathway to reaction.

122 **(a)**

The colours is due to scattering. It depends upon the size of particles. Finest gold sol has red colour. As the size of the particle increases, it becomes purple, then blue, and finally golden yellow

123 **(e)**

In chemisorptions, adsorption first increases and then decreases with change in temperature

124 **(d)**

The molecules on the surface, have higher energy than those inside.

The surface of a solid or liquid is in state or strain or tension on account of the unbalanced or residual forces.

125 **(d)**

Both are different facts but true.

128 **(c)**

During formation of $Fe(OH)_3$ sol, Fe^{3+} ions are adsorbed on the particles.

129 **(d)**

The activity of a catalyst depends upon the strength of chemisorption to a large extent.

The reactant must absorb reasonably strongly for

the catalyst to be active but must not adsorb so strongly that they are immobilized and other reactants are left with no space on catalyst surface for adsorption.

131 **(c)**

Milk is o/w emulsion, cream is w/o emulsion. To convert a o/w emulsion into w/o emulsion is known as phase inversion which can be achieved by mechanical agitation.

132 **(d)**

Both are different facts but true.

133 **(c)**

$$\begin{array}{l} \operatorname{AgNO}_{3} + \operatorname{KI}_{\operatorname{Excess}} \longrightarrow [\operatorname{AgI}]^{I-} \\ \operatorname{KI} + \operatorname{AgNO}_{3} \longrightarrow [\operatorname{AgI}]^{\operatorname{Ag}} + \\ \operatorname{Excess} \end{array} \right\}$$

The preferential adsorption of common ion on AgI particles provides –ve and +ve charge.

134 **(c)**

Explanation is correct reason for statement.

135 **(b)**

Heterogeneous system has $P \ge 2S + S$ has P = 2.

136 **(e)**

Activation energy is needed for chemical adsorption and not for physical adsorption. Breaking of bonds also takes place only in chemical adsorption

137 **(b)**

ZSM-5 converts alcohols directly into gasoline (petrol) by dehydrating them so that a mixture of hydrocarbons is formed

140 **(c)**

$$2RCOONa + Ca^{2+} \rightarrow (RCOO)_2 Ca + 2Na^+$$
Insoluble

141 **(a)**

The colour of colloidal solution depends upon the wavelength of light scattered by the dispersed particles which in turn depends upon size and nature of particles. Finest gold colloidal solution is red, as the size increase it become purple, blue and finally yellow.

142 **(c)**

With change in pH, the extent of protonation of

the bases changes

143 **(d)**

Both are different facts but true.

144 **(c)**

Explanation is correct reason for statement.

145 **(d)**

Both are different facts but true.

146 **(a)**

It is called induced oxidation.

147 **(c)**

The single layer formed may be due to van der Waals adsorption or chemisorption

148 **(c)**

 Fe^{3+} neutralize the charge on the negatively charged As_2S_3 particles

149 **(d)**

Both are different facts but true.

150 (d)

Both are different facts but true.

151 (c)

Explanation is correct reason for statement.

152 **(b)**

Soluble impurities are removed by dialysis.

154 **(e)**

Catalyst may decreases the speed of reaction

155 **(c)**

Dehydration is not due to porous nature but due to the acidic group present in zeolites

156 **(c)**

Explanation is correct reason for statement.

157 **(a)**

Soap coats the drops of an emulsion and check them from coming together and emulsion stabilized.

158 **(c)**

Explanation is correct reason for statement. 160 **(c)**

Explanation is correct reason for statement.

161 **(c)**

Explanation is correct reason for statement. **163** (d)

Both are facts.

164 **(a)**

Catalyst does not change the equilibrium point

165 **(c)**

Freundilch adsorption isotherm gives an empirical relationship between the quality of gas adsorbed by unit mass of solid adsorbed and pressure at a particular temperature.

166 **(d)**

Both are different facts but true.

167 **(e)**

Catalyst always does not increase the speed of reaction

168 **(c)**

Freundlich adsorption isotherm gives an empirical relationship between the quantity of gas adsorbed by unit mass of solid adsorbent and pressure at a particular temperature

169 **(c)**

Larger surface area provides more pronounced adsorption of medicine over tissues and thus effectiveness increases.

170 **(c)**

Explanation is correct reason for statement.

171 **(b)**

If the dispersion medium is separated from the dispersed phase, the lyophilic sol can be reconstituted by simply remixing with the disperson medium. That is why these sols are also called reversible sols

173 **(c)**

Explanation is correct reason for statement.

175 **(c)**

A catalyst increases the rate of reaction because in the presence of catalyst the activation energy of the reaction and decreases.

176 **(c)**

Sol particles show Tyndall effect due to **scattering of light.** Also the scattering is directly proportional to size of sol particles.

177 **(d)**

There are reactions in which one of the products acts as catalyst (autocatalysis) and no catalyst is added

178			have a straight line with slope $\left(\frac{1}{n}\right)$ and intercept
	$(\mathbf{d} \rightarrow \mathbf{r})$ Adsorption is the accumulation of any		log k
	substance on the surface of liquid or metal. It is a		
	surface phenomenon		
179	(a)		
	$(\mathbf{a} \rightarrow \mathbf{r})$ Gold number is the minimum number of		$\log \frac{\dot{x}}{m}$ slope $= \frac{1}{n}$
	milligrams of a lyophilic sol, needed to protect		
	10 mL of gold sol by addition of 1 mL of 10% NaCl		$\int \log k$
180	(b)		$\log p \longrightarrow$
	$(\mathbf{a} \rightarrow \mathbf{s})$ Peptization is a process of conversion of a	191	(a)
	freshly precipitated substances into colloidal sol	171	Addition of lyophilic solution to the emulsion
	by shaking with suitable electrolyte		
	$(\mathbf{b} \rightarrow \mathbf{r})$ Flocculation is minimum numbers of		forms a protective film around the dispersed
	millimoles of the electrolyte required for		phase
	complete coagulation of one liter of a colloidal sol	193	(a)
	$(\mathbf{c} \rightarrow \mathbf{p})$ Blood is a natural colloid		Adsorption is always exothermic
181	· • ·	194	
	$(d \rightarrow p)$ Gas mask works on the participle of		$SnCl_2 + AuCl_3$ react to form gold sol which is a
	adsorption		lyophobic sol
184	-	200	
-	$(\mathbf{d} \rightarrow \mathbf{p})$ Scattering of dust particle by collision	200	1. Adsorption decreases with increase in
	with light is Tyndall effect		temperature but
185			$\Delta G = -ve$ at high temperature.
	Rain cloud is an example of aerosol. Milk of		$\Delta H = -\text{ve and } \Delta S = -\text{ve, thus } T \Delta S$
	magnesia is a sol. Whipped cream is foam. Or soap		= -ve
	in water is a form of associated colloids, <i>ie</i> ,		$\therefore \Delta G = \Delta H - T \Delta S = -ve - (-ve) =$
	micelles		less negative
186	(b)		2. Gases having high critical temperature are
	Dialysis is used to purification of colloidal solution		easily liquefiable due to higher forces of
	In peptization, freshly prepared precipitates		attractions among molecules and thus, also show
	converted in to colloidal solution.		more adsorption.
	Flocculation is precipitation of colloidal solution.		3. Adsorption extent of an adsorbent is more if its
	Gold number is a scale of protective power		surface area is more.
187	(a)		4. Chemisorption requires energy of activation.
	$(\mathbf{c} \rightarrow \mathbf{q}, \mathbf{r})$ Activated adsorption requires high		5. H_2O is absorbed on CaCl ₂ and nor adsorbed.
	temperature	201	
188	(c)		Gold number of gelatin $= 0.01$
	$(\mathbf{b} \rightarrow \mathbf{s})$ In adsorption, molecules of substances are		or 0.01 mg gelatin required to be added to 10 mL
	accumulated in bulk also		of gold sol to completely prevent coagulation of 1
189	(c)		mL of 10% NaCl solution
	$(\mathbf{c} \rightarrow \mathbf{t})$ Dialysis is the purification of colloids		Therefore gelatin added to 1000 mL of gold sol to
190	(a)		prevent coagulation $= \frac{0.01 \times 1000}{10} = 1 \text{ mg}$
	Freundlich adsorption isotherm is given as	202	
	~	202	
	$\frac{x}{m} = kp^{1/n}$		Silicic acid is negatively charged sol. Hence the sol
	<i>III</i>		with positive charge can coagulate silicic acid, i.e., $F_{2}(OH) = C_{2}(OH) = Al(OH)$ basis due
	or, $\log \frac{x}{m} = \log k + \frac{1}{n} \log p$	202	$Fe(OH)_3$, $Ca(OH)_2$, $Al(OH)_3$, basic dye
	$\frac{1}{m} = \frac{1}{m} $	203	

Thus, when $\log\left(\frac{x}{m}\right)$ is plotted against $\log p$, we

Mass of HCl acid adsorbed by 10 g charcoal $= 526.3 \times 10^{-3}(0.5 - 0.4) \times 38 \approx 2$ (Mw of $HCl = 38 \text{ g mol}^{-1}$)

The amount of adsorption x = 2

$$\frac{m}{m} = \frac{2}{0.5} = 4$$

204 **(a)**

 As_2S_3 sol is negatively charged owing to preferential adsorption of S^{2-} ions. Cation would be effective ion in coagulation

Flocculating value = millimole of the effective ion per litre of sol

$$=\frac{5\times0.006\times10^3}{5+10}=2$$

205 **(c)**

Haemoglobin added to 100 mL of gold sol to prevent coagulation by 1 mL of 10% NaCl = 0.03 g = 30 mg Haemoglobin required to be added to 10 mL of gold sol to prevent coagulation by 1 mL of 10% NaCl sol = 3 mg Therefore, gold number of haemoglobin =3

208 **(c)**

Haemoglobin is positively charged sol. Hence the sol with negative charge can coagulate haemoglobic, i.e., starch, clay, As₂S₃, CdS

209 (d)

2 mL of 1 M NaCl contains NaCl = $\frac{2}{1000}$ = 2 mmol

Thus 500 mL of As₂S₃ sol require NaCl for complete coagulation = 2 mmol Hence 1 L, i.e., 1000 mL of the sol require NaCl for complete coagulation = 4 mmol Therefore, flocculation value of NaCl = 4 210 (c) $\log \frac{x}{m} = \log K + \frac{1}{n} \log P$ \therefore Plot of $\log \frac{x}{m}$ versus $\log P$ is linear with slope = $\frac{1}{n}$

and intercept = log K Thus $\frac{1}{n} = \tan \theta = \tan 45^\circ = 1$ or n = 1log K = 0.301 or K = antilog 0.301 = 2 At P = 3 atm $\frac{x}{m} = KP^{1/n} = 2 \times (3)^1 = 6$

