

Single Correct Answer Type

- 1. Beta-emission takes place
 - a) From the elements above the band of stability
 - b) When neutron is converted to proton
 - c) With shifting of the new element one group towards right
 - d) Following all the facts given above
- 2. The angular momentum of an electron in 4s orbital, 3p orbital, and 4th orbit are

a)
$$0, \frac{1}{\sqrt{2}}, \frac{h}{\pi}, \frac{2h}{\pi}$$

b) $\frac{1}{\sqrt{2}}, \frac{h}{2}, \frac{2h}{\pi}, 0$
c) $0, \frac{\sqrt{2h}}{\pi}, \frac{4h}{\pi}$
d) $\frac{\sqrt{2h}}{\pi}, \frac{4h}{\pi}, 0$

3. Slow neutrons can bring about the fission of

a)
$$_{92}U^{235}$$
 b) $_{82}U^{238}$ c) $_{82}Pb^{207}$ d) $_{88}U^{226}$
4. When passing through a magnetic field the largest deflection is experienced by

a)
$$\alpha$$
 –rays b) β –rays c) γ –rays d) All equal

5. A radioactive element decays by the sequence, and with half-lives, given below

$$X \xrightarrow{\alpha} Y \xrightarrow{2\beta} Z$$

a) 3,7

Which of the following statements about this system are correct?

- a) After two hours, less than 10% of the initial X is left
- b) Maximum amount of Y present at any time before 30 min is less then 50% of the initial amount of X
- c) Atomic numbers of *X* and *Z* are same
- d) All of the above are correct statements
- 6. ₄Be⁷captures a K electron into its nucleus. What is the mass number and atomic number of the nuclide formed?

7. When electronic transition occurs from higher energy state to lower energy state with energy difference equal to ΔE electron volts, the wavelength of the line emitted is approximately equal to

a)
$$\frac{12395}{\Delta E} \times 10^{-10}$$
 m b) $\frac{12395}{\Delta E} \times 10^{10}$ m c) $\frac{12395}{\Delta E} \times 10^{-10}$ cm d) $\frac{12395}{\Delta E} \times 10^{10}$ cm
8. Which of the following nuclei is unstable?
a) ${}_{5}B^{10}$ b) ${}_{4}Be^{10}$ c) ${}_{7}N^{14}$ d) ${}_{8}O^{16}$
9. Thiosulphate ion, $S_2O_3^{2^-}$ on acidification changes to SO_2 along with precipitation of sulphur ${}^{35}S^{32}SO_3^{2^-} + 2H^+ \rightarrow H_2O + SO_2 + S$
Which is the correct statement?
a) ${}^{35}S$ is in sulphur b) ${}^{35}S$ is in SO_2 c) ${}^{35}S$ is in both d) ${}^{35}S$ is in none
10. The electrons, identified by quantum numbers *n* and *l*
1. $n = 4, l = 1$
2. $n = 4, l = 0$
3. $n = 3, l = 2$

4.
$$n = 3, l = 1$$

Can be placed in the order of increasing energy, from the lowest to highest, as

a) iv < ii < iii < i b) ii < iv < i < iii c) i < iii < ii < iv d) iii < i < iv < ii11. After the emission of a β –particle followed by α –particle from $^{214}_{83}$ Bi;the number of neutrons in the

d) 4,7

	atom is			
	a) 130	b) 129	c) 128	d) 127
12.	In the Schrodinger's wa	ve equation Ψ represents		
	a) Orbit	b) Wave function	c) Wave	d) Radial probability
13.	Which of the following	has the maximum penetrati	ng power?	
	a) α –particle	b) Proton	c) γ –particle	d) Positron
14.	Which of the following	projectiles is the best for bo	mbarding the nuclide?	
	a) α –particle	b) Proton	c) Deuteron	d) Neutron
15.	Which of the following	is false?	-	-
	The energy of an elecal quantum number n	ctron in an orbital of a hydro	ogen-like species depends o	only on the principal
	b) The angular moment numbers l and m	um of an electron of an orb	ital of a multielectron atom	n depends on the quantum
	c) The expression of an	gular momentum of an elec	tron in an orbital is given a	is $\sqrt{l(l-1)}\left(\frac{h}{2\pi}\right)$
	d) The z-component of	angular momentum of an el	ectron in an orbital is give	n as $m\left(\frac{n}{2\pi}\right)$
16.	Which of the following	elements belongs to 4 <i>n</i> -seri	es?	
	a) Pb-207	b) Bi-209	c) Pb-208	d) Pb-206
17.	The radius of second Bo	ohr's orbit is	,	2
	a) 0.053 nm	0.053	a) 0.052 x 4 mm	d) 0 052 x 20 mm
	-	$\frac{1}{4}$ nm	$CJ 0.053 \times 4 \text{ nm}$	a) 0.053 × 20 nm
18.	Sodium chloride impart	ts a yellow colour to the Bur	nsen flame. This can be inte	erpreted due to the
	a) Low ionization energy	gy of sodium		
	b) Sublimation of metal	lic sodium to give yellow va	pour	
	c) Emission of excess en	nergy absorbed as a radiation	on in the visible region	
	d) Photosensitivity of s	odium		
19.	When n/p ratio of an is	otope is greater than the sta	able isotope of that elemen	t, it emits
	a) β –particles	b) α –particles	c) Neutron	d) Positron
20.	The electronic configur	ation of a diapositive ion M ²	²⁺ is 2, 8,14 and its mass nu	mber is 56. The number of
	a) 32	b) 42	c) 30	d) 34
21.	Total binding energy of	α-narticles is		
<u> </u>	a) 28 3 MeV	h) 2.83 MeV	c) 20 5 MeV	d) 0 283 MeV
22	The energy of an electro	on in the first Bohr orbit for	hydrogen is –136 eV Wh	ich one of the following is a
	nossible excited state for	or electron in Bohr orbit of h	vdrogen atom?	ten one of the following is a
	a) -34 eV	h $-6.8 eV$	c) -17 eV	d) 13.6 eV
23	Rutherford's experimer	t which established the nu	clear model of the atom us	ed a heam of
20.	a) B-particles which im	ninged on a metal foil and g	ot absorbed	
	h) v-rays which imping	red on a metal foil and eiect	ed electrons	
	c) Helium atom which	impinged on a metal foil and	d got scattered	
	d) Helium nuclei which	implinged on a metal foil ar	nd got scattered	
24	The radiations from a n	aturally occurring radioacti	ve substance as seen after	deflection by a magnet in
21.	one direction are	aturally occurring radioacti	ve substance, as seen arter	uchection by a magnet m
	a) Definitely alpha rays		h) Definitely heta rays	
	c) Both alpha and beta	rave	d) Fither alpha or heta r	-2 <i>V</i> S
25	A radioisotone has half	life of 10 years. What nerce	ntage of the original amou	ays nt of it would you expect to
23.	remain after 20 years?	life of 10 years. What perce	intage of the ofightal amou	int of it would you expect to
	a) ()	h) 12 5	c) 25	9 B
26	which of the following:	nuclear reaction occurs in n	ature for the formation of	tritium?
20.	a) $J_i^6 \perp m^1 \rightarrow H_0^4$	$\pm 2 H^3$	h) $_{-}B^{10} \perp _{n}^{n1} \rightarrow 2 \square_{n}$	$A^4 + A^3$
	c) $-N^{14} \perp m^1 \rightarrow C^{12}$	⊥ H ³	d) $Ba^9 \perp D^2 \rightarrow 2$	и 1 ¹¹ 2 ⁴ д. H ³
	$rac{1}{7}$ $rac{1}{7}$ $rac{1}{7}$ $rac{1}{6}$	· 1··	$u_{14} \mu \nu + 1 \nu - 2 2 \Pi \theta$	- 111

27.	The number of neutrons accompanying the formation neutron by U^{235}_{235} followed by pusher fraction is	on of ${}_{54}$ Xe ¹³⁹ and ${}_{38}$ Sr ⁹⁴ from	om the absorption of a slow
	$\frac{1}{92} = \frac{1}{100} + \frac{1}{2} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100} = \frac{1}{10$	a) 1	4) 0
20	a) U D) Z The first ionization notantial in electron valte of nitu	CJ I	UJ 3
28.	The first ionization potential in electron voits of mitr	ogen and oxygen atoms are	, respectively, given by
20	a) 14.6, 13.6 b) 13.6, 14.6	c) 13.6, 13.6	d) 14.6, 14.6
29.	The most radioactive of the isotopes of an element is	s the one with the largest va	alue of its
•	a) Half-life b) Neutron number	c) Atomic number	d) Decay constant
30.	Which of the following statements about quantum n	umbers is wrong:	
	a) If the value of $l = 0$, the electron distribution is sp	oherical	
	b) The shape of the orbital is given by subsidiary qua	antum number	
	c) The Zeeman's effect is explained by magnetic quar	ntum number	
01	d) The spin quantum number gives the orientations	of electron cloud	
31.	One curie of activity is equivalent to 2.7 ± 10^7 lists a set of activity is equivalent to		
	a) 3.7×10^{7} disintegrations per second		
	b) 3.7×10^{10} disintegrations per second		
	c) 3.7×10^4 disintegrations per second		
22	d) None		
32.	The ratio of the energy of photon of 2000 A wavelen	gth radiation to that of 400	0 A radiation is
~~	a) 1/4 b) 4	c) 1/2	d) 2
33.	The correct ground state electronic configuration of	chromium atom is	
~ .	a) $[Ar]3d^{3} 4s^{1}$ b) $[Ar]3d^{4} 4s^{2}$	c) $[Ar]3d^{\circ} 4s^{\circ}$	d) [Ar]3d ³ 4s ²
34.	Which reaction shows artificial transmutation by α -	-bombardment?	
	a) $\frac{1}{7}N + \frac{1}{2}He \rightarrow \frac{1}{8}O + \frac{1}{1}H$	b) $\frac{23}{92}$ $U \rightarrow \frac{23}{90}$ Th + $\frac{4}{2}$ He	
	c) ${}_{6}^{14}\text{C} \rightarrow {}_{-1}^{14}\text{N} + {}_{-1}^{0}e$	d) None of the above	
35.	When $_{92}U^{238}$ decays it emits an α -particle. The new	nuclide in turn emits a β -p	article to give another
	nuclide X. The mass number and atomic number of X	are, respectively	
	a) 234 and 91 b) 234 and 96	c) 232 and 88	d) 234 and 88
36.	Among the following nuclides, the highest binding en	hergy per nucleon is found	tor
	a) ${}_{1}^{3}H$ b) ${}_{8}^{6}O$	c) ²⁶ ₂₆ Fe	d) $\frac{235}{92}$ U
37.	${}_{6}C^{14}$ in the upper atmosphere is formed by the actio	on of neutron on	
	a) $_7N^{14}$ b) $_8O^{17}$	c) ${}_{6}C^{12}$	d) ₈ 0 ¹⁸
38.	The kinetic energy of the photoelectrons does not de	epend upon	
	a) Intensity of incident radiation	b) Frequency of incident i	radiation
20	c) Wavelength of incident radiation	d) Wave number of incide	ent radiation
39.	In uranium mineral, the atomic ratio $N_{\rm U-238}/N_{\rm Pb-20}$	$_{6}$ is nearly equal to one. Th	e age (in years) of the
	mineral is nearly (half-life period of U-238 is 4.5×1	0° yr)	
	a) $3.0 \times 10^{\circ}$ b) $4.5 \times 10^{\circ}$	c) 3.0×10^{9}	d) 4.5 × 10°
40.	Hydrogen bomb is based on the principle of		
	a) Nuclear fission b) Nuclear fusion	c) Nuclear explosion	d) Chemical reaction
41.	The wave mechanical model of an atom is based upo	on which of the following eq	uations?
	a) Schrödinger's equation	b) De Broglie's equation	
40	c) Heisenberg's uncertainty principle	d) All the above	
42.	The correct set of four quantum numbers for the value $1/2$	ence (outermost) electron $1 + 1/2$	of rubialum $(Z = 37)$ is
12	a) 5, 0, 0, $\pm 1/2$ b) 5, 1, 0, $\pm 1/2$	CJ 5, 1, 1, $\pm 1/2$	a) $6, 0, 0, + 1/2$
43.	The radiation that produces the greatest number of the	lons as it passes through m	atter is
11	a) α D) γ The decay of a radioactive element follows first and	CJ p	a) p
44.	The decay of a radioactive element follows first order a) Half life period $-a$ constant /V where V is decay	constant	
	a) That the period $=$ a constant/A, where A is decay b) The rate of decay is independent of temperature	CUIISIdIIL	
	c) The rate on the altered by changing chamical accurate	ditions	
	c) The rate can be altered by thanging themical cond		

d) The element will be completely transformed into new element after expiry of two half-life period After three half lives, the percentage of fraction of amount left is

45.	After three half lives, the	percentage of fraction of an	nount left is	
	a) 6.35	b) 12.5	c) 50	d) 75
46.	The SI unit of radioactivi	ty is		
	a) Curie	b) Micro-curie	c) Rutherford	d) Becquerel
47.	Which nuclear reaction is	s not balanced?	-	
	a) ${}_{5}^{10}B + {}_{2}^{4}He \rightarrow {}_{7}^{13}N + {}_{7}^{13}N$	$\frac{1}{2}n$	b) $^{238}_{02}$ U + $^{4}_{2}$ He $\rightarrow ^{241}_{05}$ Am	$+ \frac{1}{0}n$
	c) ${}^{40}_{10}\text{Ar} + {}^{1}_{1}\text{H} \rightarrow {}^{40}_{10}\text{K} + {}^{1}_{10}$	<u>n</u>	d) ${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}$	Ĥ
48	Atoms with the same ma	ss number but having diffe	cent nuclear charges are cal	lled
10.	a) Isotones	h) Isobars	c) Isochors	d) Isotones
49	The number of radial nor	les of 3s and 2 <i>n</i> -orbitals ar	e respectively	
171	a) 2 0	b) 0.2	c) 1 2	d) 2 11
50.	C-14 has a life of 5760 ve	ars, 100 mg of sample cont	aining C-14 is reduced to 2	5 mg in
001	a) 11520 years	h) 2880 years	c) 1440 years	d) 17280 years
51	Tritium ³ Hhas a half-life	of 12 26 yr $A = 5.00$ mL sam	nle of tritiated water has a	$a_{1}^{2} = 200$ years
51.	10^9 cpm How many years	will it take for the activity	to fall to 3.00 \times 10 ⁸ cpm ²	ractivity of 2.10 ×
	a) 6.13	h) 12 26	c) 24.52	d) 36 78
52	aj 0.15 If a radioactivo olomont i	of 12.20	CJ 24.32	uj 50.70
52.	a) Will be increased	s placeu ill all evacuateu co	h) Will be decreased	ation
	a) Will change yery clight	+]+,	d) Will romain unchanged	4
F 2	$T_{ro} = 100 \text{ min}$ $T_{7r} = 100 \text{ r}$	nin	u) wiii remain unchanged	1
53.	$A \xrightarrow[N_{A}]{N_{A}} B \xrightarrow[N_{B}]{N_{B}} B$	C		
	At equilibrium N_A/N_B is			
	a) 1	h) 2	c) 0.5	d) 20
54	In nuclear reactors heavy	water is used as a		a) 20
01.	a) Fuel	h) Projectile	c) Moderator	d) Arrester
55	The energy of an electron	in the first Bohr orbit of H	atom is -13.6 eV The nose	sible energy value(s) of the
00.	excited state(s) for electron	ons in Bohr orbits of hydro	ogen is(are)	sible energy value(3) of the
	a) -34 eV	h) -4.2 eV	(a e)	d) +6.8 eV
56	Which one of the following	ng does not consist of charge	red narticles of matter?	uj 10.0 CV
50.	a) α -narticles	h) B -rays	c) y = rays	d) Anode rave
57	The nhenomenon radioa	ctivity is associated with	cj y Tays	uj Anoue rays
57.	a) Decay of nucleus			
	a) Decay of flucieus b) Fussion of nucleus			
	c) Emission of electrons	or protons		
	d) Rearrangement in the	extra nuclear electron		
58	Which nuclear reaction is	c_{xii} a nuclear electron c_{xi}	n?	
50.	235 II $\rightarrow ^{231}$ Th $\pm ^{4}$ Ho		b) $75 c_{0} \rightarrow 75 Br \pm 0 c_{0}$	
	a) $_{92}^{10} \cup = _{90}^{90} \Pi = _{2}^{11} \square = _{2}^{11}$	111	d) None of the above	
50	$C \int_{7}^{7} N + {}_{2}He \rightarrow {}_{8}^{7}O + {}_{3}^{7}O + {$		a) None of the above	
59.	The ratio of energy of ph	oton of $\lambda = 2000$ A to that (of $\lambda = 4000$ A is	1) 4 /0
6.0	a) 2	b) 1/4	c) 4	d) 1/2
60.	Amongst the following el	ements (whose electronic o	configurations are given be	low), the one having the
	highest ionization energy	is		
	a) [Ne] $3s^2 3p^1$	b) [Ne] $3s^2 3p^3$	c) [Ne] $3s^2 3p^2$	d) [Ar] $3d^{10}$ $4s^2$ $4p^3$
61.	REM is a unit of			
	a) Radiation dosage	b) Binding energy	c) Packing fraction	d) Radioactivity
62.	The possible sub-shells in	n n = 3 energy shell are:		
	a) <i>s</i> , <i>p</i> , <i>d</i>	b) <i>s</i> , <i>p</i> , <i>d</i> , <i>f</i>	c) <i>s</i> , <i>p</i>	d) <i>s</i> only
63.	In a series of three steps	in radioactive disintegratio	n sequence starting with $\frac{2}{8}$	²⁸ Ra,the particles emitted
	are, successively, β^- , β^- a	nd α –particles. The result	ing product is an isotope of	

	a) ₉₂ U	b) ₉₀ Th	c) ₈₈ Ra	d) ₈₆ Rn
64.	The work function of a m	etal is 4.2 eV. If radiations of	of 2000 Å fall on the metal,	then the kinetic energy of
	the fastest photoelectron	is:		
	a) 1.6×10^{-19} J	b) 16 × 10 ¹⁰ J	c) 3.2×10^{-19} J	d) 6.4×10^{-10} J
65.	1 g of $^{200}_{79}$ Au ($T_{50} = 13$ da	ays)emits a β –particle form	ning a stable Hg atom. Hg f	ormed at the end of 52 days
	is		0 0 0	
	a) 0.0625 g	b) 0.9375 g	c) 0.7500 g	d) 0.2500 g
66.	If the threshold waveleng	gth (λ_0) for ejection of elect	ron from metal is 330 nm,	then work function for the
	photoelectric emission is			
	a) 1.2 × 10 ⁻¹⁸ J	b) 1.2 × 10 ⁻²⁰ J	c) 6×10^{-29} J	d) 6×10^{-12} J
67.	For which of the followin	g electron distributions is g	ground state, the Pauli's exc	clusion principle is violated?
	2s $2p$	2s $2p$	2s $2p$	2s $2p$
	a) ↑↓ ↑ ↑	b) ↑ ↑ ↑ ↑	c) ↑↑ ↑↓ ↑	
68.	The transition in He^{\oplus} ion	that would have the same	wavelength as the first Lvr	nan line in hydrogen
	spectrum is			
	a) $2 \rightarrow 1$	b) 5 → 3	c) $4 \rightarrow 2$	d) $6 \rightarrow 4$
69.	Aluminiu-25 decays by en	nitting a positron. The spec	cies immediately produced	has
	a) 12p, 13n, 13e ⁻	b) 13p, 12n, 13e ⁻	c) 12p, 13n, 12e ⁻	d) 14p, 11n, 14e ⁻
70.	The reaction			
	$_1D^2 + _1T^3 \rightarrow _1He^2 + _0T^3$	n^1		
	Is an example of			
	a) Nuclear fission		b) Nuclear fusion	
	c) Artificial radioactivity		d) Radioactive disintegra	tion
71.	Atomic mass of an element	nt is not necessarily a whol	e number because	
	a) It contains electrons, p	protons, and neutrons	b) It exists in allotropic for	orms
	c) It contains isotopes		d) Atoms are no longer in	ndivisible
72.	Which of the following ar	rangements of electrons is	mostly likely to be stable?	
	a) $3d$ $4s$ 1	b) $\begin{array}{c} 3d \\ \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \end{array} \begin{array}{c} 4s \\ \uparrow \end{array}$	c) $3d$ $4s$	d) $3d$ $4s$ $1 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
73.	A photon of frequency n of	causes photoelectric emissi	on from a surface with thre	eshold frequency v_0 . The de
	Broglic wavelength λ of the second	he photoelectron emitted is	s given as	
	h	h	[1] 1] mc ²	h
	a) $\Delta n = \frac{n}{2m\lambda}$	b) $\Delta n = \frac{\pi}{\lambda}$	c) $\left \frac{1}{v_0} - \frac{1}{v} \right = \frac{1}{h}$	d) $\lambda = \left \frac{\pi}{2m \Lambda n} \right $
74				$\sqrt{2m} \Delta n$
74.	a) 1	lired electrons are		
	a_{j} 1 b) 2			
	c) 3			
	d) 4			
75.	Which of the following is	false?		
	Bracket spectral series	for which $n_1 = 4$ and $n_2 =$	5.6.7 lies in the infrare	d region of the
	a) electromagnetic radiat	tion	-,-,-,-	
	b) The orbital $3d_{r^2}$ is sym	nmetrical about <i>z</i> -axis		
	c) The orbital $3d_{rv}$ has n	o probability of finding elec	ctron along <i>x</i> - and <i>y</i> -axis	
	d) The orbital $3d_{-2}$ ha	s no probability of finding	electron along <i>x</i> - and <i>v</i> -axi	S
76	The energy equivalent to	1 amu is?	- <u>G</u>	
	a) 931.5 MeV	b) 93.15 MeV	c) 460 MeV	d) 554 MeV
77.	1 g atom of an α -emitting	$_{z}X^{A}$ (half life = 10 hr) was	s placed in sealed containe	rs, 4.52×10^{23} . Helium
-	atoms will accumulate in	the container after	1	,
	a) 4.52 hr	b) 10.00 hr	c) 9.40 hr	d) 20.00 hr

78.	The two electrons have the following sets of quantum X: 3, 2, -2 , $+1/2$	n numbers:	
	Y: 3, 0, 0, +1/2		
	What is true of the following		
	a) X and Y have same energy	b) X and Y have unequal e	energy
	c) X and Y represent same electron	d) None of the statement	is correct
79.	For a given principal level $n = 4$, the energy of its su	bshells is of the order	
	a) $s < d < f < p$ b) s	c) $d < f < p < s$	d) s
80.	The unstable nucleus $^{212}_{82}$ Pbdecays with β - particle ϵ follows that the	emission, having a half-life	of 10 h. From this it
	I. mass number of the product is 212		
	II. atomic number of the product is 81		
	III. fraction of the original isotope remaining after 20) h is 1/4	
	IV. Nucleus formed is stable		
	Select the correct alternate		
01	a) I, II and III b) I and III	c) II and IV	d) IV
81.	which is different in isotopes of an element?	a) Number of protons	d) Number of electrone
Q 2	a) Atomic number D) Mass number	2) omits an a particle the	nroduct has mass number
02.	and atomic number	2) ennis an u-particle, the	product has mass number
	a) 236 and 92 b) 234 and 90	c) 238 and 90	d) 236 and 90
83	Which of the following is false?	cj 250 and 50	uj 230 anu 90
001	The angular momentum of an electron due to its s	pinning is given as $\sqrt{s(s+1)}$	1) $\left(\frac{h}{2\pi}\right)$, where <i>s</i> can take a
	value of 1/2	(h)	
	The angular momentum of an electron due to its s	pinning is given as $m_s\left(\frac{\pi}{2\pi}\right)$, where m_s can take the
	value of $+ 1/2$		
	c) The azimuthal quantum number cannot have nega	ative values	
	d) The potential energy of an electron in an orbit is t	wice in magnitude as comp	oared to its kinetic energy
84.	$A \xrightarrow{k_A}{r}$ product $B \xrightarrow{k_B}{r}$ product		
	T_A T_B T_B	priods T_1 and T_2 (in years) a	and k (year ⁻¹) and
	$k_{\rm p}$ (atom ⁻¹ year ⁻¹) If half-life periods are equal dist	T_A and T_B (in years) and the start	of disintegration with same
	concentration would be	integration rate at the start	of disintegration with sume
	a) $k_A T_A$ b) 0.693	c) Both (a) and (b)	d) None of these
85.	The orbital diagram in which the Aufbau principle is	violated is	.,
	2s $2p$ $2p$ $2p$		
	a) $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$ b) $\uparrow \uparrow \uparrow \uparrow \uparrow$	c) [↑↓ ↑ ↑ ↑	d) [↑↓] [↑↓ ↑↓ ↑]
86.	Two nuclei are not identical but have the same numb	per of nucleons. These are	
	a) Isotopes b) Isobars	c) Isotones	d) None
87.	When ${}_{17}Cl^{35}$ undergoes (n, p) reaction, the radioison	tope formed is	
	a) $_{15}P^{32}$ b) $_{16}S^{35}$	c) ${}_{16}S^{34}$	d) ₁₅ P ³⁴
88.	For an α –emitting isotope, the value of disintegratic	on constant is 0.49×10^{-10}	per year. The amount of
	the isotope of a given sample will reduce to half its va	alue after a period (in year	s) of nearly
	a) 0.45×10^{10} b) 0.9×10^{10}	c) 1.41 × 10 ¹⁰	d) 2.82×10^{10}
89.	The number of spherical nodes in $3p$ orbital are:		
	a) One b) Three	c) None	d) Two
90.	The transition of electrons in H atom that will emit n	naximum energy is	
	a) $n_3 \rightarrow n_2$ b) $n_4 \rightarrow n_3$	c) $n_5 \rightarrow n_4$	d) $n_6 \rightarrow n_5$
91.	The end product of $(4n+2)$ disintegration series is		

	a) ₈₂ Pb ²⁰⁴	b) ₈₂ Pb ²⁰⁸	c) ₈₂ Pb ²⁰⁶	d) ₈₂ Pb ²⁰⁹
92.	The limiting line in Balme	r series will have a frequer	ncy of	2.02
	a) $32.29 \times 10^{15} \text{s}^{-1}$	b) $3.65 \times 10^{14} \text{s}^{-1}$	c) $-8.22 \times 10^{14} \text{s}^{-1}$	d) $8.22 \times 10^{14} \text{s}^{-1}$
93.	An atom bomb is based or	n the principle of		-
	a) Nuclear fusion	b) Nuclear fission	c) Radioactivity	d) Combustion
94.	The heaviest subatomic p	article is		-
	a) Neutron	b) Positron	c) Electron	d) Proton
95.	The exact path of electron	2p orbital cannot be deter	mined, the above statemer	nt is based upon
	a) Hund's rule	b) Bohr's rule	c) Uncertainty principle	d) Aufbau principle
96.	The ratio of potential ener	rgy and total energy of an e	electron in a Bohr orbit of a	hydrogen-like species is
	a) 2	b) -2	c) 1	d) —1
97.	The orbital diagram in wh	nich the Aufbau principle is	violated is	
	a) [↑↓ [↑↓ ↑]	b) ↑ ↑↓ ↑ ↑	c) ↑↓ ↑ ↑ ↑	d) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$
98.	Which nuclear reaction is	an example of fusion emis	sion?	
<i>y</i> 0.	a) $^{238}_{238}$ Pu + $^{4}_{2}$ He \rightarrow + $^{242}_{242}$ (2m	b) $^{22}_{11}$ Na $\rightarrow ^{22}_{10}$ Ne $+ ^{0}_{10}$ B	
	c) ${}_{2}^{7}\text{Li} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{1}n + {}_{7}^{7}\text{Be}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	d) $^{41}_{10}\text{Ar} + {}^{0}_{10}e \rightarrow {}^{41}_{11}\text{Cl}$	
99	Ac^{227} is a member of a	rtinium series. Another me	mber of the same series of	
<i>, , ,</i>	a) U^{235}	h) $a Th^{232}$	$(c) = \Delta c^{225}$	d) $-P^{34}$
100	Water used as moderator	in nuclear reactor is called		u) 151
100.	a) Heavy water	b) Hared water	c) Nuclear water	d) Critical water
101	For the energy levels in a	atom, which one of the fo	llowing statement is correc	·†?
101	a) There are seven princip	nal electron energy levels		
	b) The second principal e	nergy level has four sub-en	ergy levels and contain a m	naximum of eight electrons
	c) The principal energy le	evel N can have a maximum	of 32 electrons	
	d) The 4 <i>s</i> sub-energy leve	el has high energy than 3d s	subenergy level	
102.	The outermost electronic	configuration of the most e	electronegative element is	
	a) $ns^2 np^3$	b) $ns^2 np^4$	c) $ns^2 np^5$	d) $ns^2 np^6$
103.	One microcurie of radiation	on is the quantity of radioa	ctive substance which prod	luces
	a) 3.7×10^{10} disintegration	on per second (dps)	b) 6.02 × 10^4 dps	
	c) 3.7×10^4 dps		d) 3.7×10^7 dps	
104.	Ionizing radiation is			
	a) Radiation that only inte	eracts with ions		
	b) The same as a proton			
	c) A neutron that has acqu	uired a charge, thus formin	g an ion	
	d) High-energy radiation	that removes electrons from	m atom or molecules	
105.	Which combinations of qu	antum number <i>n, l, m, s,</i> fo	or the electron in an atom d	loes not provide a
	permissible solution of th	e wave equation?		
	a) 3, 2, -2, 1/2	b) 3,3,1,-1/2	c) 3,2,1,1/2	d) 3,1,1,-1/2
106.	Which of the following is	true?		
	a) Diapositive zinc exhibit	ts paramagnetism due to lo	oss of two electrons from a	3d orbital of neutral atom
	b) In β -emission from a n	ucleus, the atomic number	of the daughter element de	ecreases by 1
	The emission of one α -	particle from a radioactive	atom results in the decreas	se of atomic number by 2
	and mass number by 4			
	d) The successive emissio	n of two β -particles from a	radioactive atom results in	n the decrease of atomic
	number by 1			
107.	The term nucleon refers t	0		
	a) Electrons belonging to	an atom that undergoes nu	iclear decay	
	b) Electrons that are emit	ted from a nucleus in a nuc	clear reaction	
	c) The nuclei of a specific	isotope		
	d) Both protons and neut	rons		

108. Bohr's atomic model can exp	plain the spectrum of				
a) Hydrogen atoms only		b) Atoms or ions which are unielectron			
c) Atoms or ions which have	only two electrons	d) Hydrogen molecule			
109. $^{30}_{15}X$ changes to $^{30}_{14}$ Siby emiss	sion of				
a) α –particle b)) β –particle	c) Positron	d) Proton		
110. 'Fat man' relates to					
a) Pu-bomb		b) U-bomb			
c) Th-bomb		d) Literary word from a b	ook		
111. Ionizing radiation is dangered	ous to living things becau	ise			
a) It causes nuclear reaction	S				
b) It causes thermal burns					
c) It alters the chemical stru	cture of atom molecules				
d) It causes electrons to be c	aptured by the nucleus				
112. Select the correct statement					
a) MRI uses radiowaves to st	timulate certain nuclei ir	the presence of magnetic	field		
b) P-32 is used for leukemia	therapy				
c) I-123 is used in imaging the	he brain				
d) All of the above					
113. One atomic unit is equal to					
a) 1.492×10^{-3} ergs b)	$1.492 \times 10^{-2} \text{ ergs}$	c) 1.492×10^{-10} ergs	d) None		
114. Of the following nuclides, the	e one most likely to be ra	adioactive is			
a) $^{31}_{15}P$ b)) ⁶⁶ 30Zn	c) $\frac{14}{7}$ N	d) ¹⁴ ₆ C		
115. Which is the best description	n of an alpha particle?				
a) Charge +2; mass of 4 amu	ı; high penetrating powe	r			
b) Charge +2;mass of 4 amu	low penetrating power;				
c) Charge -1 ; mass of 0 amu	i;medium penetrating po	ower			
d) Charge 0; mass of 0 amu,n	o penetrating power				
116. The negative value of packin	g fraction indicates that	the isotope is			
a) Unstable b)) Very stable	c) Artificial	d) Stable		
117. The maximum number of ele	ectrons that can have pri	nciple quantum number, <i>n</i>	= 3 and spin quantum		
number, $m_s = -\frac{1}{2}$, is					
a) 3 b') 5	c) 7	d) 9		
118. To trace the flow of blood, ra	dioisotope used is	,	,		
a) Co-60 b) Na-24	c) P-32	d) I-123		
119. The radiant energy from the	sun is due to	,	,		
a) Combustion b)) Nuclear fusion	c) Nuclear fission	d) Chemical reaction		
120. The nuclear process that tak	es place when a hydroge	en bomb is exploded is of th	ne same nature as the		
process		-			
a) In the center of the earth		b) In the sun and stars			
c) During a red dust storm		d) During atom bomb fiss	ion		
121. The total spin and magnetic	moment for the atom wi	th atomic number 24 are:			
a) $+2 \sqrt{49}$ PM	$12\sqrt{2E}$ DM	c) $+\frac{3}{\sqrt{49}}$ PM	d $\sqrt{25}$ PM		
a) ± 3 , $\sqrt{40}$ DM D) <u>τ</u> ο, γοο dm	$C_{j} \pm \frac{1}{2}, \sqrt{40} \text{ BM}$	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$		
122. For two different disintegrat	ion half-lives are equal a	at equilibrium. This is only	when		
a) $N_1 = N_2$ b)) $\lambda_1 = \lambda_2$	c) $(T_{75})_1 = (T_{75})_2$	d) All of these		
123. Bohr's model of atom is not i	in agreement with				
a) Line spectra hydrogen ato	om				
b) Pauli's principle					
c) Planck's theory					
d) Heisenberg's principle					

124. The correct ground state	e electronic configuration of	chromium atom is	
a) [Ar]3d ⁵ 4s ¹	b) [Ar] $3d^4 4s^2$	c) [Ar]3d ⁶ 4s ⁰	d) [Ar]4d ⁵ 4s ¹
125. Bombardment of alumin shown, Products X, Y ar	hium by α particle leads to its additional to a sectively are	s artificial disintegration in	two ways, (i) and (ii) as
	a 2 respectively are		
$\xrightarrow{27} \text{Al} \xrightarrow{(11)} \xrightarrow{15} \text{P} +$	Y		
(i)			
$30_{14} \text{Si} + X$ $30_{14} \text{Si} + Z$	Z		
a) Proton, neutron, posi	tron	b) Neutron, positron, pro	ton
c) Proton, positron, neut	tron	d) Positron, proton, neutr	on
126. When two electrons are	placed in two degenerate of	rbitals of the atom, the ener	gy is lower if their spin is
parallel. The statement i	s based upon		
a) Pauli's exclusion	b) Bohr's rule	c) Hund's rules	d) Aufbau principle
127. At two stages of disinteg	ration, disintegration const	ants are respectively 1×10^{10}	0^{-2} s ⁻¹ and 1 × 10 ⁻⁵ s ⁻¹ .At
first stage 2000 atoms a a) 2	re disintegrating. At second b) 2×10^{6}	stage number of atoms dis c) 2×10^{-6}	integrating would be d) 2×10^9
128. The correct set of quant	um numbers for the unpaire	ed electron of chlorine atom	is:
nIm_l	-		
a) 2 1 0	b) 2 1 1	c) 3 1 1	d) 3 0 0
129. The correct set of quant	um numbers for the unpaire	ed electron of chloride atom	is
n l m	-		
a) 2 1 0		b) 2 1 0	
c) 3 1 1		d) 3 0 0	
130. The energy released dur	ing the fission of 1 kg of ura	nium is	
a) 9×10^{23} ergs	b) 9.0×10^{10} ergs	c) 9.0×10^{18} ergs	d) 9.0×10^8 ergs
131. ${}^{14}_{7}\text{N} + {}^{1}_{0}n \rightarrow {}^{14}_{6}\text{C} + {}^{1}_{1}\text{His}$	s written as		
a) $^{14}_{7}$ N (<i>n</i> , <i>e</i>) $^{1}_{1}$ H	b) $\frac{14}{7}$ N (p, n) $\frac{14}{6}$ C	c) ${}^{14}_{7}$ N $(n, p) {}^{14}_{6}$ C	d) ${}_{6}^{14}C(p,n) {}_{7}^{14}N$
132. Rutherford's scattering	experiment is related to the	size of the	
a) Nucleus	b) Atom	c) Electron	d) Neutron
133. Which of the radioactive	isotopes is used for temper	ature control in blood dise	ase?
a) P ³²	b) H ³	c) Rn ²³³	d) I ¹³¹
134. A cyclotron is used to	,		2
a) Accelerate neutrons	b) Accelerate electrons	c) Accelerate protons	d) Accelerate α -particles
135. Heisenberg's uncertaint	y principle rules out the exa	ct simultaneous measurem	ent of:
a) Probability and intens	sity	b) Energy and velocity	
c) Charge density and ra	idius	d) Position and velocity	
136. The sum of the number of	of neutrons and proton in th	ie isotope of hydrogen is	
a) 6	b) 5	c) 4	d) 3
137. Which of the following is	s not an example of ionizing	radiation?	
a) X-ravs	b) γ – ravs	c) α – rays	d) UV-ravs
138. An isotope of $_{22}$ Ge ⁷⁶ is		-)	
a) $_{22}Ge^{77}$	h) $_{22}As^{77}$	() $24Se^{77}$	d)Se ⁷⁸
139. Of the following nuclides	s, the one most likely to dec	av by positron (B^+) emissio	n is
a) ⁵⁹ Cu	h) ⁶³ Cu	c) ⁶⁷ Cu	d) ⁶⁸ Cu
140 In vivo studies radioisot	tone used is	cj du	aj da
a) Cr-51	h) Co-60	c) Na-24	d) P-32
141 Which hydrogen like sne	ecies will have same radius	as that of Bohr orbit hydrog	$\frac{1}{2}$
a) $n = 2 \operatorname{Li}^{2+}$	h) $n = 2 \text{ Re}^{3+}$	c) $n = 2 \text{ He}^+$	d) $n = 3 \text{ I} i^{2+}$
147 The ratio of the onergy of	$a_1 = 2, b_2$	$c_j n = 2$, nc anoth radiation to that of A	$\Delta f n = 0, \Pi$
· · ··································	a photon of 2000 A waver	engen raulation to that 01 40	500 m autation 15

a) 1/4	b) 4	c) 1/2	d) 2
143. The energy of an electro	on in the first Bohr orbit of I	H atom is —13.6 eV. The pos	sible energy value(s) of the
excited state (s) for ele	ctrons in Bohr orbits of hydr	rogen is/are	
a) -3.4 eV	b) -4.2 eV	c) -6.8 eV	d) +6.8 eV
144. Neutrons are more effe	ctive projectiles than protor	ns because they	-
a) Are attracted by the	nuclei	b) Are not repelled by the	e nuclei
c) Travel with high spe	ed	d) None of above	
145. $^{27}_{13}$ Al is a stable isotope.	$^{27}_{13}$ Al is expected to disinteg	grate by	
a) α –emission	b) β –emission	c) Positron emission	d) Neutron emission
146. If two light nuclei are fu	sed together in nuclear read	ction, the average energy pe	r nucleon
a) Increases	5	b) Decreases	
c) Cannot be determine	d	d) Remains same	
147. A sievert is		,	
a) The amount of radiat	tion that produces $2.1 imes 10^{\circ}$	units of charge in one cm ³ o	of air
b) A unit used to measu	re the amount of radiation a	absorbed per gram of tissue	
c) A unit that allows bo	th for the energy and the pe	netrating power of different	t types of radiation
d) The SI unit for radiat	ion absorbed	01	51
148. Radioactive disintegrat	ion differs from a chemical o	change in being a/an	
a) Nuclear process	b) Exothermic change	c) Spontaneous process	d) First order kinetics
149. If Hund's rule is not foll	owed magnetic moment of	Fe^{2+} Mn \oplus and Cr all having	v 24 electrons will be in
order			
a) $Fe^{2+} < Mn^{\oplus} < Cr$	b) $Fe^{2+} = Cr < Mn^{\oplus}$	c) $Fe^{2+} = Mn^{\oplus} < Cr$	d) $Mn^{2+} = Cr < Fe^{2+}$
150 The nuclear reaction ($\frac{1}{2}$	${}^{0}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He}$) is o	f the type	
2 n n	$\frac{1}{2} \int \frac{1}{2} $	$c) n \alpha$	d) a n
151 Which of the following i	s artificial radioactive serie	c) 11, u	uju,n
a) $4n \pm 1$	b) $An \perp 2$	s: c) An	d) $4n \pm 3$
152 Radioactive disintegrat	ion differs from a chemical ($c_{j} = n$	uj 1 11 5
a) An exothermic chance		h) A spontaneous process	2
c) A nuclear process	je –	d) A unimolecular first-ou	der reaction
153 The instability of a nucl	ous is due to	uj A uninolecular mist-ol	
a) High proton electron	ratio	h) High electron neutron	ratio
c) Low proton electron	ratio	d) Low proton neutron r	ntio
154 The electronic configur	ation of an element is $1s^2$ 2	s^2 2n6 3s ² 3d ⁵ 4s ¹ This ren	prosonts its
a) Excited state	h) Ground state	c) Cationic form	d) Anionic form
155 The distance between n	ucleons in atomic nucleus i	s of the order of (1 Fermi –	10^{-13} cm
a) 2 Fermi	h) 25 Formi	c) 100 Formi	d) 40 Fermi
156 The decreasing order of	f energy for the electrons re	nresented by the following	sets of quantum numbers is:
1 $n - 4 l = 0 m - 0$ s	$- \pm 1/2$	presented by the following.	sets of qualitum numbers is.
2n = 3l = 1m = 1s	= -1/2		
3n = 3l = 2m = 0s	$= \pm 1/2$		
4n = 3l = 0m = 0s	= -1/2		
a) $1 > 2 > 3 > 4$	h) 2 > 1 > 3 > 4	c) $3 > 1 > 2 > 4$	d) 4 > 3 > 2 > 1
157 The equipment used to	carry out nuclear reaction i	n a controlled manner is cal	led
a) Breeder reactor	carry out nuclear reaction i	h) Nuclear reactor	
c) Thermonuclear fission	าท	d) Cyclotron	
158 The atomic mass and at	omic number of lead are 20	8 and 82. The atomic mass a	and atomic number of
bismuth are 209 and 83	The neutron/proton ratio	in an atom	
a) Is higher in lead than	in bismuth	b) Is lower in lead than in	bismuth
c) Is equal in both lead	and bismuth	d) None	
159. How many α – particles	are emitted in the nuclear 1	transformation: ${}_{\circ}Po^{215} \rightarrow {}_{\circ}$	$_{2} Pb^{211} + ?_{2} He^{4}$
		04- 04- 04	L

a) 0		b) 1	c) 2			d) 3	
		(.	 	~	-		

160. The work function (Φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metals is :

	M et	L i	N a	K	M g	C u	A g	Fe	P t	W	
	al	2	2	2	2	1	4	47	6	4	
	Φ(e		2. 3		3. 7	4. 8	4	4.7	0	4. 7	
		.4	Ū	2		Ŭ	3		3	5	
	a) 2				•	•		•			
	b) 4										
	c) 6										
	d) 8										
161.	Whic	h is	the c	corre	ect co	ombi	natio	on?			
	Chan	ge i	n								
	Emis	sion	Ato	mic	Mas	S	Neu	tron			
	Num	ber	num	iber	num	iber					
	a) α		- 2	2	_	- 2		-2			b) $\beta - +1 0 -1$
	c) γ			0.	(0		-1			d) $\beta^+ - 1 = 0 = 0$
162.	In the	e est	terifi	cati	on of	an o	rgar	ic aci	$d R \cdot$	– CO	OHby alcohol R'OH, O of acid is isotopic
	R-C	-0^{18}	H + <i>R</i>	2'-0	H→	R-C	-0-	- <i>R</i> ′ + ŀ	I₂O		
	Whic	h of	the	follo	wing	g stat	eme	nt is c	orre	ect?	
	a) ¹⁸	0is	in es	ter							
	b) ¹⁸	0is	in w	ater							
	c) ¹⁸	0is	in bo	oth							
	d) ¹⁸	0is	in no	one							
163.	Cons	titue	ents	of w	rine a	re ca	rboi	n, hyd	roge	en an	l oxygen. Half-lives of 13 C, 15 Oand 3 Hare respectively 5730
	yr, 12	24 s	and	12.5	yr. A	A bot	tle o	f wine	e wa	s sea	ed about 6 years ago. To confirm its age, which of the
	isoto	pes	wou	ld yo	ou ch	oose	to d	letern -	nine	its ag	e?
	a) $_{6}^{13}$	С					b) $\frac{1}{8}$	50			c) ${}_{1}^{3}$ H d) Any of these
164.	Whic	h of	the	follo	wing	g is tr	ue?	_			
	a) Th	le el	ectro	on d	ensit	y in t	he x	y-pla	ne ir	$13d_x$, orbital is zero
	b) Th	e el	ectro	on d	ensit	ies in	the	xy-a	nd x	z-pla	ne in $3d_{yz}$ orbital are zero
	c) Th	e el	ectro	on d	ensit	y in t	he x	y-pla	ne ir	$1 3d_z$	orbital is zero
	d) Pa	uli e	exclu	sion	ı prin	ciple	is f	ollowe	ed b	y bos	ons which have integral spin
165.	Atom	ic w	veigh	t of	Th is	232	and	its at	omi	c nun	ber is 90. The number of α - and β -particles which will be
	lost s	o th	at ar	ı iso	tope	ofle	ad (a	atomi	c we	ight	08 and atomic number 82) is produced is
	a) 4α	: + 6	5β				b) 6	$\alpha + 4\beta$	3		c) $8\alpha + 2\beta$ d) $10\alpha + 2\beta$
166.	50 ⁴ th	n(III	B) ei	mits	part	icles	such	n that	new	elen	ent is in IIA. Particles emitted is/are
	a) On	$a \alpha$	one,	β			b) 0	ne β ,c	ne a	X	c) Only one β d) Only one α
167.	The r	adi	us of	the	first	Bohr	orb	it for 1	He⊕	is	
	a) 0.5	529	Å				b) 0.	264 Å			c) 0.132 Å d) 0.176 Å
168.	The a	ige o	ofro	cks o	on ea	rth o	r the	e samj	oles	of ro	ks and dust brought back form the moon can be found by
	deter	mir	ing t	the p	oropo	ortio	n of 1	radioa	ctiv	e	In the rock of dust.
	a) Po	tass	sium	and	stab	le cal	ciur	n			b) Uranium and stable lead
	c) Ca	rbo	n and	d sta	ble c	arbo	n				d) Radium and stable lead
169.	Whic	h of	the	follo	wing	g has	mag	ic nur	nbe	r of n	eutrons?
	a) ₁₃	Al ²⁷	/				b) ₈	₃ Bi ²⁰⁹			c) $_{92}U^{238}$ d) $_{26}Fe^{56}$
170.	The c	chen	nist v	who	help	ed in	the	disco	very	ofth	e maximum number of transuranic element is:

a) Sir Robert Robinson	b) Sir J.J. Thomson	c) Professor Sea Borg	d) Sir N.C. Hishel-wood				
171. Which of the following set of quantum numbers is an impossible arrangement?							
a) $n = 3, m = -2, s = +1$./2	b) $n = 4, m = 3, s = +1/2$					
c) $n = 5, m = 2, s = -1/2$	2	d) $n = 3, m = -3, s = -1/2$					
172. Which of the following ar	e fissile isotopes?						
1. ${}^{238}_{92}$ U 2. ${}^{233}_{92}$ U 3. ${}^{239}_{94}$ Pu 4	4. ²³² U						
Select the correct answer	from the following.						
a) 1 and 2	b) 2 and 3	c) 1 and 4	d) All of these				
173. Rutherford's α -particle so	cattering experiment event	ually led to the conclusion (that				
a) Mass and energy are re	elated						
b) Electrons occupy space	e around the nucleus						
c) Neutrons are buried de	eep in the nucleus						
d) The point of impact wi	th matter can be precise de	termined					
174. How many electrons in a	n atom with atomic number	r 105 can have (n+l) = 8?)				
a) 30	b) 17	c) 15	d) Unpredictable				
175. The density of nucleus is	abouttimes the den	sity of atom					
a) 10 ⁻¹⁴	b) 10 ¹²	c) 10 ⁻⁸	d) 10 ¹⁰				
176. The set of quantum numb	pers not applicable to an ele	ectron					
a) 1,1,1, +1/2	b) 1,0,0,+1/2	c) 1,0,0,-1/2	d) 2,0,0,+1/2				
177. Weight of ¹⁴² Cto have rat	dioactivity 1 curie [λ (disint	tegration constant = $4.4 \times$	$10^{-12} \mathrm{s}^{-1}$] is				
a) 2×10^{-4} kg	b) 0.9×10^{-4} kg	c) 1.7×10^{-4} kg	d) 3.7×10^{-10} kg				
178. The maximum binding en	ergy per nucleon is indicat	ed in the mass number ran	ge				
a) 40-60	b) 50-60	c) 20-30	d) 55-60				
179. Which of the following nu	clear changes is incorrect?						
a) $_{20}$ Ca ⁴⁰ + $_0n^1 \rightarrow _{19}$ K ⁴⁰	$^{0} + {}_{1} H^{1}$	b) $_{48}Mg^{24} + \alpha \rightarrow _{14}Si^{27} + \alpha$	$+ 0n^{1}$				
c) $_{48}$ Cd ¹¹³ + $_0n^1 \rightarrow _{48}$ Cd	$d^{112} + _{-1}e^0$	d) $_{20}Co^{43} + \alpha \rightarrow _{21}Si^{46} +$	- ₁ H ¹				
180. The total number of <i>p</i> -ele	ectrons are						
a) 6	b) 12	c) 18	d) 24				
181. The triad of nuclei that ar	e isotonic is						
a) ${}_{6}^{14}C_{7}^{15}N_{6}^{17}F$	b) ${}^{12}_{6}$ C ${}^{14}_{7}$ N ${}^{19}_{9}$ F	c) ${}^{14}_{6}C{}^{14}_{7}N{}^{17}_{6}F$	d) ${}^{14}_{6}C_{7}^{14}N_{9}^{19}F$				
182. Consider the following nu	clear reactions						
I. ${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}I$	H						
II. ${}^{9}_{4}\text{Be} + {}^{1}_{1}\text{H} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{H}$	e						
III. $^{24}_{12}Mg + ^{4}_{2}He \rightarrow ^{27}_{14}Si +$	$-\frac{1}{0}n$						
IV. ${}_{5}^{10}\text{B} + {}_{2}^{4}\text{He} \rightarrow {}_{7}^{13}\text{N} +$	$\frac{1}{n}n$						
Examples of induced radi	oactivity would include rea	actions					
a) III and IV	b) I and II	c) I, III and IV	d) I, II, III and IV				
183. The radius of an atomic n	ucleus is of the order of		, , ,				
a) 10^{-10} cm	b) 10 ⁻¹³ cm	c) 10 ⁻¹⁵ cm	d) 10 ⁻⁸ cm				
184. Moderator used in a nucl	ear reactor is)	,				
a) Graphite	b) Heavy water	c) Both (a) and (b)	d) None of these				
185. Living things contain C^{12}	and C ¹³ , C ¹² is stable and C	¹³ decays and declines in p	roportional quantity. The				
technique that used this r	principle for determining th	ne age of fossils skeletons, o	old trees, and dinosaurs is				
called	1 0	,	,				
a) C-12 dating	b) Radiocarbon dating	c) Carbon age	d) Fossil carbon				
186. The line spectrum of two	elements is not identical be	ecause	-				
a) They do not have same	e number of neutrons						
b) They have dissimilar n	nass number						
c) They have different en	ergy level schemes						
d) They have different nu	mber of valence electrons						
, ,							

187. Which of the following nuclear reactions is an exam	ple of nuclear fusion?					
a) ${}^{12}_{6}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma$	b) ${}^{14}_{7}\text{N} + {}^{1}_{0}n \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{1}\text{H}$					
c) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$	d) $\frac{235}{92}$ U + $\frac{1}{0}n \rightarrow \frac{142}{56}$ Ba + $\frac{91}{36}$ Kr + $3\frac{1}{0}n$					
188. The high temperature required to initiate nuclear fi	usion reaction is initially attained through					
a) Solar energy	b) Burning of hydrocarbon					
c) Nuclear fission	d) All of the above					
189. When the quantity of radioactive substance is incre	ased two times, the number of atoms disintegrating per					
unit time is						
a) Doubled	b) Increased by square of two					
c) Increased but not to a great extent	d) Not affected					
190. Among the following transitions in hydrogen and hydr	ydrogen-like ion spectrum, which one emits light of					
longest wavelength?						
a) $n = 2$ to $n = 1$ for H	b) $n = 4$ to $n = 3$ for Li ²⁺					
c) $n = 4$ to $n = 3$ for He ^{\oplus}	d) $n = 5$ to $n = 2$ for H					
191. Match Column I with Column II and select the corre	ct answer					
Column I Column II						
(Isotope) (Characteristic)						
A $\frac{40}{20}$ Ca 1. Unstable,						
α –emitter						
B $\begin{bmatrix} 133\\53 \end{bmatrix}$ 2. Unstable,						
β –emitter						
$\begin{bmatrix} 1 & \frac{1}{53} \end{bmatrix}$ 3. Unstable,						
$D = \frac{232}{232}$ Th 4 stable						
Codes						
A B C D						
a) 1 2 3 4	b) 1 3 2 4					
c) $4 \ 3 \ 2 \ 1$	d) $4 \ 2 \ 3 \ 1$					
192. In what ratio should 17 Cl ³⁷ and 17 Cl ³⁵ be present si	$a_{\rm r}$ as to obtain $a_{\rm r}$ ($a_{\rm r}$) ^{35.5} ?					
a) 1:2 b) 1:1	c) 1:3 d) 3:1					
193. If the wavelength of the first line of the Balmer serie	es of hydrogen atom is 656.1 nm, the wavelength of the					
second line of this series would be						
a) 218.7 nm b) 328.0 nm	c) 486.0 nm d) 640.0 nm					
194. The half-life of ⁹⁹ Tcis 6.0 h. Hence, average-life is	, , , , , , , , , , , , , , , , , , ,					
a) 4.17 h b) 3.0 h	c) 8.66 h d) 8.00 h					
195. Which equation is true for transient equilibrium? (2	λ = disintegration constant; t = half-life)					
a) $N_1 \lambda_1 = N_2 \lambda_2$ b) $N_1 t_2 = N_2 t_1$	c) Both (a) and (b) d) None of these					
196. Which of the following statements concerning Bohr	's model is false?					
a) It predicts that probability of electron near nucle	eus is more					
b) The angular momentum of electron in H atom =	$nh/2\pi$					
c) It introduces the idea of stationary states	b) The angular momentum of electron in fraction $-nn/2n$					
d) It explains the line spectrum of hydrogen						
a i it explains the line spectrum of hydrogen	,					
$197. \frac{238}{238}$ U(III B, actinide series) emits one α – particle.	New element will be a/an					
197. $^{238}_{92}$ U(III B, actinide series) emits one α – particle. I	New element will be a/an					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal	New element will be a/an c) Actinide d) Chalcogen					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{23}$ U $\rightarrow {}^{4}_{23}$ He + ${}^{231}_{23}$ Th	New element will be a/an c) Actinide d) Chalcogen b) $\frac{75}{25}$ Se $\rightarrow \frac{75}{25}$ Br $+ \frac{9}{26}$					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{92}$ U $\rightarrow {}^{4}_{2}$ He + ${}^{231}_{90}$ Th c) ${}^{123}_{21}$ L $\rightarrow {}^{123}_{21}$ L = energy	New element will be a/an c) Actinide d) Chalcogen b) ${}^{75}_{34}$ Se $\rightarrow {}^{75}_{35}$ Br $+ {}^{0}_{-1}e$ d) ${}^{235}_{34}$ II $+ {}^{1}n \rightarrow {}^{142}$ Ba $+ {}^{91}Kr + 3 {}^{1}n$					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{92}$ U $\rightarrow {}^{4}_{2}$ He + ${}^{231}_{90}$ Th c) ${}^{123}_{53}$ I $\rightarrow {}^{123}_{53}$ I + energy 199. The nucleus of an atom is made up of <i>n</i> protons and	New element will be a/an c) Actinide d) Chalcogen b) ${}^{75}_{34}$ Se $\rightarrow {}^{75}_{35}$ Br $+ {}^{0}_{-1}e$ d) ${}^{235}_{92}$ U $+ {}^{0}_{0}n \rightarrow {}^{142}_{56}$ Ba $+ {}^{91}_{36}$ Kr $+ 3 {}^{0}_{0}n$					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{92}$ U $\rightarrow {}^{4}_{2}$ He + ${}^{231}_{90}$ Th c) ${}^{123}_{53}$ I $\rightarrow {}^{123}_{53}$ I + energy 199. The nucleus of an atom is made up of <i>p</i> protons and a) <i>n</i> even <i>n</i> odd b) <i>n</i> mboth odd	New element will be a/an c) Actinide d) Chalcogen b) ${}^{75}_{34}Se \rightarrow {}^{75}_{35}Br + {}^{0}_{-1}e$ d) ${}^{235}_{92}U + {}^{0}_{0}n \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3 {}^{0}_{0}n$ <i>n</i> neutrons. For the most stable and abundant nuclei c) nodd neven d) n nboth even					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{92}$ U $\rightarrow {}^{4}_{2}$ He + ${}^{231}_{90}$ Th c) ${}^{123}_{53}$ I $\rightarrow {}^{123}_{53}$ I + energy 199. The nucleus of an atom is made up of <i>p</i> protons and a) <i>p</i> even, <i>n</i> odd b) <i>p</i> , <i>n</i> both odd 200. Eka-Hg will have HIPAC nomenclature as Lub. Its a	New element will be a/an c) Actinide d) Chalcogen b) ${}^{75}_{34}Se \rightarrow {}^{75}_{35}Br + {}^{0}_{-1}e$ d) ${}^{235}_{92}U + {}^{0}_{0}n \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3 {}^{0}_{0}n$ nneutrons. For the most stable and abundant nuclei c) podd, neven d) p, nboth even tomic number is					
197. ${}^{238}_{92}$ U(III B, actinide series) emits one α – particle. I a) Alkali metal b) Alkaline earth metal 198. Which reaction is an example of chain reaction? a) ${}^{235}_{92}$ U $\rightarrow {}^{4}_{2}$ He + ${}^{231}_{90}$ Th c) ${}^{123}_{53}$ I $\rightarrow {}^{123}_{53}$ I + energy 199. The nucleus of an atom is made up of <i>p</i> protons and a) <i>p</i> even, <i>n</i> odd b) <i>p</i> , <i>n</i> both odd 200. Eka-Hg will have IUPAC nomenclature as Uub. Its a a) 80 b) 110	New element will be a/an c) Actinide d) Chalcogen b) ${}^{75}_{34}Se \rightarrow {}^{75}_{35}Br + {}^{0}_{-1}e$ d) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3 {}^{1}_{0}n$ <i>n</i> neutrons. For the most stable and abundant nuclei c) podd, neven d) <i>p</i> , <i>n</i> both even tomic number is c) 111 d) 112					

201.	The shortest and longest v	vave number in H spectrur	n of Lyman series is $(R = R)$	ydberg constant)
	a) $\frac{3}{4}R, R$	b) $\frac{1}{R}, \frac{4}{3}R$	c) $R, \frac{4}{3}R$	d) $R, \frac{3}{4}R$
202.	The radioisotope used in t	he treatment of cancer is		
	a) C-12	b) Co-60	c) I-31	d) P-31
203.	Which of the following pro	operties of an element is a v	whole number?	
	a) Atomic mass	b) Atomic volume	c) Atomic radius	d) Mass number
204.	Which of the following par	rticles is emitted in the nuc	lear reaction $_{13}$ Al ²⁷ + $_{2}$ He	$e^4 \to {}_{14}P^{30} + \cdots?$
	a) ₀ n ¹	b) $_{-1}e^{0}$	c) ₁ H ¹	d) ₁ H ²
205.	The half-life of $^{24}_{11}$ Nais 15.	0 h. What percentage of it r	emains after 60 h?	
	a) 0.00%	b) 3.13%	c) 6.25%	d) 12.5%
206.	Which of the following do	es not characterize X-rays?)	
	a) The radiations can ioniz	ze gases		
	b) They cause ZnS to fluor	esce		
	c) They are deflected by e	lectric and magnetic fields		
	d) They have wavelengths	shorter than ultraviolet ra	lys	
207.	Which of the following is f	alse?		
	a) The <i>d</i> orbitals are no m	ore degenerate in the pres	ence of a magnetic field	
	b) The spin quantum num	ber was introduced to expl	ain the splitting of spectral	lines of hydrogen atom in
	the presence of a magn	etic field		
	c) Pauli exclusion principl	e is followed by fermions v	vhich have half integral spi	ns
	d) The energy of an orbita	l in an atom remains the sa	me with increase in the po	sitive charge in its nucleus
208.	When a radioactive isotop	e decays into a nucleus wh	ich is also unstable and une	dergoes decay, and this
	process is repeated severa	al times, the succession of r	eaction is called	
	a) Decay series	b) Fission reaction	c) Fusion reaction	d) Spallation
209.	The total number of s elec	trons are		
	a) 8	b) 6	c) 4	d) 10
210.	If Aufbau rule is not follow	ved in filling of suborbitals,	then block of the element	will change in
	a) K(19)	b) Sc (21)	c) V (23)	d) Ni (28)
211.	What is X in the nuclear re	eaction		
	$_{7}N^{14} + _{1}H^{1} \rightarrow _{8}O^{15} + X$			
	a) ₁ H ²	b) ₀ n ¹	c) γ	d) $_{-1}e^{0}$
212.	In excited H atom, when e	lectron drops from $n = 4,5$,	6 to $n = 1$, there is emissio	n of
	a) UV light	b) Visible light	c) IR light	d) Radio waves
213.	How many unpaired elect	rons are there in Ni ²⁺ ?		
	a) 0	b) 2	c) 4	d) 8
214.	Which of the following is a	natural radioactive eleme	nt?	
	a) Uranium	b) Radium	c) Thorium	d) All of these
215.	The wave number of the fi	irst line of Balmer series of	hydrogen is 15200 cm ⁻¹ . T	The wave number of the
	first Balmer line of Li ²⁺ io	n is		
	a) 15200 cm ⁻¹	b) 60800 cm ⁻¹	c) 76000 cm ⁻¹	d) 136800 cm ⁻¹
216.	Rutherford's scattering ex	periment is related to the s	size of the	
	a) Nucleus	b) Atom	c) Electron	d) Neutron
217.	An oxide of N has vapour of	density 46. Find the total n	umber of electrons in its 92	2 g. (N_A =Avogadro's
	number)			
	a) 46 <i>N</i> _A	b) 38 <i>N</i> _A	c) 54 <i>N</i> _A	d) 30 <i>N</i> _A
218.	Select the correct stateme	nt		
	a) The more negative the	packing fraction of an elem	ent, the more stable should	l be the nucleus
	b) Packing fraction = $\frac{\text{mas}}{2}$	$\frac{\text{s defect}}{1} \times 10^4$		
	isoto	pic mass		

c) Fe and Al have positive values of packing fraction

d) All of the above 219. The number of protons and neutrons for most stable element is a) Even-odd b) Even-even c) Odd-odd d) Odd-even 220. $^{269}_{110}$ Dsis the recently discovered element IUPAC nomenclature is a) Unu b) Uhe c) Uun d) Nuu 221. Which of the following is true? a) The half-filled and fully-filled electronic configurations are less stable than the other configurations having the same number of electrons b) The symbol *s* for the orbitals having l = 0 has its origin from the term spherical symmetrical The increasing order for the values of e/m (charge/mass) for electron (e), proton (p), neutron(n), and alpha particle (α) is $n < \alpha < p < e$ d) The energy of photon having wavelength 800 nm is larger than that having 400 nm 222. The emission of a particle from an unstable nucleus is called a) Mutation b) Fission c) Nuclear decay d) Fusion 223. If $_{92}U^{235}$ assumed to decay only by emitting two α - and one β -particles, the possible product of decay is a) ${}_{89}Ac^{231}$ b) $_{89}Ac^{235}$ c) $_{89}Ac^{236}$ d) $_{89}Ac^{227}$ 224. Which results in the formation of an isotope of the parent element? a) Emission of one α –particle b) Emission of two β –particles c) Emission of one α –and two β –particles d) None of the above 225. 'Little boy' relates to a) Pu-bomb b) U-bomb c) H-bomb d) He-bomb 226. The wavelength associated with a golf ball weighing 200 g and moving at a speed of 5 m h^{-1} is of the order c) 10⁻³⁰m a) 10^{-10} m b) 10⁻²⁰m d) 10^{-40} m 227. Which of the following is false? a) The number of orbitals for a given value of *l* is equal to 2l + 1b) The number of orbitals for a given value of n is equal to n^2 c) An atom having unpaired electrons is diamagnetic in nature d) All s orbitals are spherical symmetrical in shape 228. An orbital with l = 0 is a) Symmetrical about *X*-axis only b) Symmetrical about Y-axis only c) Spherically symmetrical d) Unsymmetrical 229. The half-life of nickel-65 is 2.5 days. How much of a 100 g sample has decyed after 7.5 days? a) 12.5 g b) 50.0 g c) 75.0 g d) 87.5 g 230. The energy released in nuclear reactions corresponding to 1 amu is about a) 940 MeV b) 932 MeV c) 918 MeV d) 900 MeV 231. Rutherford's experiment on the scattering of α -particles showed for the first time that the atom has a) Electrons b) Protons c) Nucleus d) Neutrons 232. In which of the following the magic numbers of both protons and neutrons are present d) ₅₀Sn¹¹⁸ a) $_{50}$ Sn¹²³ b) ₈₂Pb²⁰⁸ c) ₈₂Pb²⁰⁶ 233. Which product is formed by α –emission from $^{235}_{92}$ U? a) $\frac{231}{90}$ Th b) ²³³₉₀Th d) ²³⁵₉₂U c) $^{235}_{93}$ Np 234. Which of the following is true? According to Pauli's exclusion principle, no two electrons in an atom can have the same values of a) quantum numbers n, l and mb) The total energy of an electron in an orbit is half of its potential energy c) The speed of an electron in a orbit increases with increase of its quantum number nd) The energy of an electron in a orbit decreases with increase of its quantum number n 235. The neutron/proton ratio in an isotope can be decreased by the emission of

a) An electron b) A neutron c) A gamma ray d) A positron

236. In an oil drop experiment, the following charges (in arbitrary units) were found on a series of oil droplets:

	$2.30 \times 10^{-15}, 6.90 \times 10^{-15}$	$^{-15}$, 1.38 × 10 ⁻¹⁴			
	5.75×10^{-15} , 3.45×10^{-15} , 1.96×10^{-14}				
	The magnitude of charge on the electron (in the same unit) is				
	a) 1.15×10^{-15}	b) 2.30 $\times 10^{-15}$	c) 0.575×10^{-15}	d) 1.96×10^{-14}	
237	. The half-life period of a	substance is 1600 min. I	How much fraction of the su	bstance will remain after 6400	
	min?				
	a) 1/16	b) 1/4	c) 1/8	d) 1/2	
238	. The principal quantum r	number of an atom is rel	ated to the	5 1	
	a) Size of the orbital		b) Spin angular mome	entum	
	c) Orientation of the orb	ital in space	d) Orbital angular mo	mentum	
239	. The wavelength of a spe	ctral line for an electron	ic transition is inversely re	lated to	
	a) The number of electro	ons undergoing the tran	sition		
	b) The nuclear charge of	the atom			
	c) The difference in the	energy of the energy lev	els involved in the transitio	n	
	d) The velocity of the ele	ectrons undergoing the t	transition		
240	. The number of nodal pla	nes in a p_x orbital is			
	a) One	b) Two	c) Three	d) Zero	
241	. Which of the following s	ets of quantum number	s is not possible?		
	a) $n = 4, l = 1, m = 0, s$	= +1/2	b) <i>n</i> = 4, <i>l</i> = 3, <i>m</i> = -	-3, s = -1/2	
	c) $n = 4, l = -1, m = +2$	2, s = -1/2	d) $n = 4, l = 1, m = 0$	s = -1/2	
242	. ³⁷ ₁₈ Ar captures a K-electr	on into its nucleus. The	product atom formed is		
	a) ³⁷ Cl	b) ³⁸ ₁₈ Ar	c) ³⁶ ₁₈ Ar	d) ³⁸ ₁₇ Cl	
243	. Which of the following o	rbitals does not have th	e angular node?		
	a) p_x -orbital	b) d_{z^2} -orbital	c) p_{ν} -orbital	d) 1 <i>s</i> -orbital	
244	. Which of the following is	s true?			
	a) Neutrino is a positive	ly charged electron			
	b) The magnetic momen	t of an atom is related to	o the number of unpaired el	ectrons in its electronic	
	configuration				
	c) Bohr theory can be su	ccessfully modified to e	explain the electronic spectr	um of multielectron atom	
	d) The angular momentu	um of an electron in an a	atom is given as $n\left(\frac{h}{h}\right)$		
245	In the nuclear reaction	$27 \Lambda \downarrow 4 H_{0} \rightarrow 30 \chi \downarrow 1$	$\sqrt{2\pi}$		
215		$13 \text{ m} + 2 \text{ m} + 7 \text{ m} + 15 \text{ m} + 0^{10}$	c) S	d) Ar	
246	The number of spherical	DJI nodes in As orbital is	0,5	u) Al	
240		h) m	c) 2	d) 3	
247	a) + Electromagnetic radiatio	$0 j \propto$	c_{j}	u) 5	
247	a) Illtraviolet	h) Radio wave	c) X-ray	d) Infrared	
248	Binding energy due to m	ass defect of ⁴ Heis 28 M	MeV Thus hinding energy n	er nucleon is	
240	a) 14 MeV	h) 28 MeV	c) 7 MeV	d) 4.67 MeV	
249	Which of the following is	s used as neutron absor	her in the nuclear reactor?		
27)	a) Water	s used as neutron absor	h) Deuterium		
	c) Some compound of u	anium	d) Cadmium		
250	The number of spectral	lines obtained in Bohr s	nectrum of hydrogen atom	when an electron is excited	
250	from 2nd orbit to 5th or	hit is	peetrum of nyur ogen atom	when an electron is excited	
		bit, 15			
	a) 5 h) 6				
	c) 10				
	d) 5				
251	. Which one of the followi	ng sets of quantum num	iber represents an impossib	ple arrangement?	
-01]	op-eoento an imposon		

ι	1	n s	
3	2	-2	1/2

c) 3 2 -3 1/2	d) 5 3	0 -1/2]
252. The radius of the second Bohr orbit for	r Li ²⁺ is		-
a) $0.529 \times \frac{4}{3}$ Å b) $0.529 \times \frac{4}{3}$	$\frac{2}{3}$ Å c) 0.529 ×	$\frac{4}{9}$ Å	d) 0.529 × $\frac{2}{9}$ Å
253. Which of the following species will pro-	oduce the shortest waveler	ngth for the trans	sition $n = 2$ to $n = 1$?
a) Hydrogen atom	b) Singly ic	onized helium	
c) Deuterium atom	d) Doubly i	ionized lithium	
254. Nuclear fission was experimentally ob	served by		
a) Planck b) Rutherfo	rd c) J. J. Thor	nson	d) Hahn and Strassman
255. The fundamental particles which are r	esponsible for keeping nu	cleons together i	is:
a) Meson b) Antiprot	on c) Positror	1	d) Electron
256. In hydrogen spectrum, the series of lin	ies appearing in ultra viole	et region of elect	romagnetic spectrum are
called			
a) Balmer lines b) Lyman li	nes c) Pfund lin	nes	d) Brackett lines
257. The ratio of kinetic energy and total er	ergy of an electron in a Bo	ohr orbit of a hyd	drogen-like species is
a) 1/2 b) -1/2	c) 1		d) —1
258. Atomic radii of fluorine and neon in Ar	ngstrom units are respectiv	vely given by	
a) 0.72, 1.60 b) 1.60, 1.6	0 c) 0.72, 0.7	'2	d) None of these
259. The wavelength associated with a golf	ball weighing 200 g and m	loving at a speed	$1 \text{ of } 5 \text{ m h}^{-1} \text{ is of the order}$
a) 10^{-10} m b) 10^{-20} m	c) 10 ⁻³⁰ m		d) 10 ⁻⁴⁰ m
260. Which of the following pairs represent	ts isobars?	25	
a) $_{19}K^{40}$ and $_{11}Na^{23}$ b) $_{2}He^{3}$ and	d $_{2}\text{He}^{4}$ c) $_{12}\text{Mg}^{24}$	and ₁₂ Mg ²⁵	d) $_{19}K^{40}$ and $_{20}Ca^{40}$
261. Least branching is found in which of the	ie following radioactive se	ries?	
a) $4n + 2$ b) $4n$	c) 4 <i>n</i> + 3		d) 4 <i>n</i> + 1
262. All of the statements about nuclear rea	actions are true except		
a) Nuclear reactions involve changes i	n the nucleus of an atom		
b) The rate of a nuclear reaction is inc	reased by the addition of a	catalyst	
c) A nuclear reaction is unaffected by	the chemical state of the at	toms involved	
d) Nuclear reactions of the same eleme	ent vary according to whic	h isotope is invo	lved
263. Which of the following is not a charact	eristic of Planck's quantur	n theory of radia	ation?
a) Radiations are associated with ener	·gy		
b) Magnitude of energy associated wit	h a quantum is equal to hv	r	
c) Radiation energy is neither emitted	nor absorbed continuous	ly	
d) A body can emit less or more than a	'quantum of energy'		
264. All nuclides exhibit radioactivity when	the atomic number excee	ds	
a) 80 b) 83	c) 90		d) 92
265. Which of the following pairs is not a fis	ssionable material?		
a) U^{238} b) U^{233}	c) Pu ²³⁹		d) U^{235}
266. Match the radioisotopes with their app	plications from the alterna	tes given	
Radioisotopes Applications			
I. Cobalt-60 P. Leukemia thera	ару		
II. Potassiu-40 Q. Thyroid therap	У		
III. lodine-123 R. Geological dati	ng		
IV. Phosphours-32 S. Cancer therapy			
V. Carbon-14 T. Archeological d	ating		
AJP Q K S T	b) T S	кŲР	
CJSKQPT 207 The helf life water haffeld to the helf life	d) S R	Q T P	
267. The nair-life period of a radioactive ele	ement is 140 days. After 56	ou days, one gran	n of the element will
reauce to			

a) $\frac{1}{2}$ g	b) $\frac{1}{4}$ g	c) $\frac{1}{8}$ g	d) $\frac{1}{16}$ g			
268. The orbital angular momentum of an electron in $2s$ orbital is						
a) $+\frac{1}{2}\frac{h}{2\pi}$	b) Zero	c) $\frac{h}{2\pi}$	d) $\sqrt{2} \frac{h}{2\pi}$			
269. Which of the following se	ets of quantum number is al	lowable:				
a) $n = 2, l = 1, m = 0, s$	= +1/2	b) $n = 2, l = 2, m = -1, s$	x = -1/2			
c) $n = 2, l = -2, m = 1, l$	s = +1/2	d) $n = 2, l = 1, m = 0, s =$	= 0			
270. Any <i>p</i> orbital can accomm	nodate upto					
a) Fore electrons		b) Six electrons				
c) Two electrons with pa	rallel spins	d) Two electrons with op	posite spins			
271. The missing fission prod	uct in the reaction					
$^{235}_{92}\text{U} + ^{1}_{0}n \rightarrow ^{146}_{57}\text{La} + \cdots$	$+ 3\frac{1}{0}n$ is					
a) ⁸⁶ ₃₅ Br	b) ⁸⁷ ₃₅ Br	c) $^{89}_{35}Br$	d) ⁸⁹ ₃₂ Ge			
272. When a radioactive subs	tance is subjected to a vacu	um, the rate of disintegration	on per second			
a) Increases considerabl	у					
b) Increases only if the p	roducts are gaseous					
c) Is not affected						
d) Suffers a slight decrea	se					
273. Select the correct alterna	ite.					
a) ${}^{1}_{1}p \rightarrow {}^{1}_{0}n$ is positron e	mission	b) ${}^{1}_{1}p \rightarrow {}^{1}_{0}n$ is K-electron	capture			
c) Both (a) and (b)		d) None of the above				
274. Which of the properties	of radioisotopes make them	useful as tracers in medica	al or agricultural			
applications?						
I. Their chemical behavio	our is the same as non-radio	active isotope				
II. They emit various typ	es of radiation					
III. The nuclear reaction	is unaffected by the chemica	al state of the isotope				
a) I only	b) I and III	c) I and II	d) All of these			
275. A certain metal when irr	adiated to light ($v = 3.2 \times 1$	10 ¹⁶ Hz) emits photoelectro	ons with twice kinetic			
energy as did photoelect	rons when the same metal i	s irradiated by light ($v = 2$	1.0×10^{16} Hz) The v_0			
(threshold frequency) of	metal is					
a) 1.2×10^{14} Hz	b) 8×10^{15} Hz	c) 1.2 × 10 ¹⁶ Hz	d) 4×10^{12} Hz			
276. A method which uses rac	lioactivity for determining t	he age of prehistoric mater	rials is called			
a) Carbon dating	b) Deuterium dating	c) Radium dating	d) Uranium dating			
277. What transition in the hy	drogen spectrum would ha	ve the same wavelength as	the Balmer transition			
$n = 4$ and $n = 2$ of He ^{\oplus}	spectrum?					
a) $n_1 = 1$ to $n_2 = 2$	b) $n_1 = 2$ to $n_2 = 4$	c) $n_1 = 1$ to $n_2 = 3$	d) $n_1 = 2$ to $n_2 = 3$			
278. Which is based on nuclea	ar fusion reaction?					
a) Hydrogen bomb	b) Atom bomb	c) RDX	d) REX			
279. If half-life period is 100 y	vears, average life is nearly					
a) 100 yr	b) 70 yr	c) 44 yr	d) 90 yr			
280. If velocity of an electron	is 1st orbit of H atom is V, w	hat will be the velocity in 3	3rd orbit of Li ²⁺ ?			
2) K	V	a) 21/	4) 0V			
a) v	<u> </u>	CJ 3V	u) 91			
281. From the reaction given	below, deduce the group of	polonium in the periodic ta	able (Pb belongs to group			
14)						
$_{84}Po^{210} \rightarrow {}_{82}Pb^{206} + {}_{2}He^{206}$	e ⁴					
a) 2	b) 14	c) 6	d) 16			
282. Which of the following re-	elates to photon both as way	ve motion and as a stream of	of particles?			
a) Interference	b) $E = mc^2$	c) Diffraction	d) $E = hv$			
283. The first use of quantum	theory to explain the struct	cure of atom was made by				

a) Heisenberg	b) Bohr	c) Planck	d) Einstein			
284. Which of the followin	g is true?					
a) The outer electron	a) The outer electronic configuration of the ground state chromium atom is $3d^4 4s^2$					
b) Gamma rays are el	b) Gamma rays are electromagnetic radiations of wavelengths of 10^{-6} cm to 10^{-5} cm					
c) The energy of the educationd) The electron densi	electron in the 3 <i>d</i> orbital is l ty in the <i>xy</i> -plane in $3d_{x^2-y}$	ess than that in the 4s orb 2 orbital is zero	vital of a hydrogen atom			
285. The increasing order	(lowest first) for the values	of e/m (charge/mass) for	r electron (e), proton (p),			
neutron (n) , and alph	a particle (α) is		d) n a n a			
a) e, p, n, α 286 Which of the followin	U j n, p, e, u	U_{μ} , p , u , e	$u_j n, u, p, e$			
200. Which of the followin	b) $F = mc^2$	c) Diffraction	d) $F = h_{12}$			
287 The total number of a	$D_{J}L = Inc$	c) Dimaction	d f L = h v			
207. The total number of a	h) 2	c) 3	d) 4			
288 Which of the followin	σ gave the idea of nucleus of	f the atom?	uj i			
a) Oil drop experiment	t	b) Davisson and Gern	ner's experiment			
c) α -ray scattering ex	periment	d) Austen's mass spe	ctrogram experiment			
289. The energy of hydrog	en atom in its ground state i	s = 13.6 eV. The energy of	the level corresponding to the			
auantum number n =	= 5 is					
a) -0.54 eV	b) -5.40 eV	c) –0.85 eV	d) -2.72 eV			
290. The experimental evi	dence for dual nature of mat	tter comes from				
a) Planck's experiment	nt	b) De Broglie's exper-	iment			
c) Davison and Germ	er's experiment	d) Rutherford's expended	riment			
291. Which of the followin	g sets of quantum is not cor	rectly represented in case	of the indicated spectral series			
of hydrogen atom?			-			
a) Lyman series $n_1 =$	1; $n_2 = 2,3,4,$	b) Balmer series $n_1 =$	= 2; $n_2 = 3,4,5,$			
c) Paschen series n_1 :	$= 2; \ n_2 = 3,4,5,$	d) Lyman series $n_1 =$	4; $n_2 = 5,6,7,$			
292. Which of the followin	g is true?					
The ionization ene	rgy of a hydrogen-like speci	es in its ground state is eq	ual to the magnitude of energy			
a) of the orbit having	n = 1					
b) The ionization ene	rgy of a hydrogen-like speci	es in its ground state incre	eases in proportion to the			
		_ h				
c) According to the u	ncertainty principle, $\Delta p \Delta x \leq \Delta x$	$\leq \frac{1}{4\pi}$				
d) The energy of an el number <i>n</i>	lectron in an orbital of a mul	tielectron atom depends	only on the principal quantum			
293. In a radioactive series	s, a radioactive isotope deca	ys to stable isotope. $^{232}_{90}$ Th	decays by emission of six			
α —and four β —parti	cles. Stable isotope is					
a) Pu-256	b) Th-232	c) Rn-220	d) Pb-208			
294. Bohr's model can exp	lain					
a) The spectrum of hy	drogen atom only					
b) The spectrum of ar	n atom or ion containing one	e electron only				
c) The spectrum of a	hydrogen molecule					
d) The solar spectrum	1					
295. Fuel used in a breede	r-reactor is					
a) Uranium-235	b) Plutonium-239	c) Uranium-238	d) All of these			
296. Group displacement l	aw was given by					
a) Becquerel	b) Rutherford	c) Mendeleef	d) Soddy and Fazan			
297. A certain nuclide has	a half life period of 30 min. I	f a sample containing 600	atoms is allowed to decay for			
90 min, how many at	oms will remain?					
a) 200 atoms	b) 450 atoms	c) 75 atoms	d) 150 atoms			
298. For a <i>d</i> electron, the c	orbital angular momentum i	S				

	a) $\sqrt{6}\left(\frac{h}{2\pi}\right)$	b) $\sqrt{2}\left(\frac{h}{2\pi}\right)$	c) $\left(\frac{h}{2\pi}\right)$	d) $2\left(\frac{h}{2\pi}\right)$		
299.	Which of the following has a) Mg^{2+}	s the maximum number of ו b) דו ³⁺	unpaired electrons?	d) Fe^{2+}		
300.	At radioactive equilibrium	the ratio between the ato	of v ms of two radioactive elem	ents A and B was found to		
500.	be 3.1×10^9 : 1 respective	elv. If $T_{r,0}$ of the element A i	is 2×10^{10} vr.then T_{r_0} of th	e element <i>B</i> is		
	a) 6.2×10^9 vr	b) 6.45 vr	c) 2×10^{10} vr	d) 3.1×10^9 vr		
301.	Which shape is associated	with the orbital designated	l bv n = 2, l = 1?			
	a) Spherical	b) Tetrahedral	c) Dumb-bell	d) Pvramidal		
302.	A unit used to measure the	e amount of radiation absor	rbed per gram of tissue is			
	a) Curie	b) Roentgen	c) Rem	d) Rad		
303.	Which out of the following	configurations is incorrect	t?	,		
	a) $1s^2 2s^2 2p_r^2 2p_v^2 2p_z^0$	b) $1s^2 2s^2 2p_r^1 2p_r^1$	c) $1s^2 2s^2 2p_r^1 2p_y^1 2p_z^1$	d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$		
304.	Consider the following sta	tements	, i <i>n</i> iy i2	, <u> </u>		
	I. 'Carbon-dating' is based	on the measurement of act	ivity of ¹⁴ C			
	II. ⁴⁰ Kis used to determin	e age of the objects up to 1	million years old			
	III. The uranium-lead met	hod is based on the natural	uranium-238 decay series	which ends up with the		
	production of stable lead-	206	2	•		
	Select the correct stateme	nts				
	a) I, II	b) II, III	c) I, III	d) I, II, III		
305.	A substance is kept for 2 h	ours and three-fourth of th	at substance disintegrates	during this period. The		
	half life of the substance is	5				
	a) 2 hr	b) 1 hr	c) 30 min	d) 4 hr		
306.	The exchange of particles	considered responsible for	holding the nucleus togeth	ner are called		
	a) Mesons	b) Antiprotons	c) Positron	d) Neutrons		
307.	The ratio of the radii of the	e three Bohr orbits is				
	a) 1: 1/2: 1/3	b) 1:2:3	c) 1:4:9	d) 1:8:27		
308.	08. The spectral line obtained when an electron jumps from $n = 6$ to $n = 2$ level in hydrogen atom belongs to					
	the					
	a) Balmer series	b) Lyman series	c) Paschen series	d) Pfund series		
309.	An element is isobaric wit	h the inert gas atom $_{18}A^{40}$.	The electronic arrangement	nt of the element is		
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² . H	low many neutrons does ea	ich atom of the element car	rry in its nucleus?		
	a) 22	b) 20	c) 18	d) 16		
310.	The ratio of the radii of the	e atom to the nucleus is	2			
	a) 10 ⁴ :1	b) 10 ⁻⁴ : 1	c) 10^2 : 1	d) 10 ³ : 1		
311.	The wavelength of H_{α} line	of Balmer series is X Å. Wh	hat is the X of H_{β} line of Bal	mer series		
	a) $X \frac{108}{100}$ Å	b) $X \frac{80}{100}$ Å	c) $\frac{1}{10} \frac{80}{100}$ Å	d) $\frac{1}{4} \frac{108}{100}$ Å		
212	80	¹ 108	⁵ X 108	⁵ X 80		
312.	In which process maximum $a_1 2^2 H \rightarrow 3 H + 1 H$	m energy is attained?	b) $211 + 311 + 411a + 1m$			
	a) $2_1 \Pi \rightarrow 1 \Pi + 1 \Pi$		$u_{1} = u_{1} = u_{1} = u_{1}$			
212	C) $_{3}LI + _{1}H \rightarrow Z_{2}He$		uj Equal	·-		
313.	The amount of radiation th	hat produces 2.1×10^{-1} unit	s of charge in 1 cm ² of air	d) Dod		
214	a) Curie Which turns of rediction is	D) Roenigen	CJ Kelli	d) Rad		
314.	which type of radiation is	b) R	e plate:	d) a and B		
215	a) u	UJ p via number and different m	τ) γ	u) u anu p		
515.	a) Isobars	b) Isomers	ass numbers are called	d) Isotones		
216	aj isubais If the energy of electron in	UJ ISUIIICIS Hatom is given by overess	130101103 sion = 1312 /n ² kI mol ⁻¹ +	uj isolopes		
510.	avoite the electron from m	cound state to second orbit	ыон,— 1312/11 КЈ ШОГ [–] , l ie	nen me energy required to		
	a) 328 bl	b) 656 bl	13 c) 984 bl	d) 1312 bl		
	uj 520 Nj	0,000 M	CJ JOI NJ	uj 1012 Nj		

317. An isotone of $_{32}$ Ge⁷⁶ is i. ₃₂Ge⁷⁷ ii. ₃₃As⁷⁷ iii. ₃₄Se⁷⁷ iv. 34Se⁷⁸ a) Only (i) and (ii) b) Only (ii) and (iii) c) Only (ii) and (iv) d) (ii), (iii), and (iv) 318. There are 0.618 μ g of ²⁰⁶Pb and 0.238 μ g of ²³⁸U in a rock. If T_{50} of ²³⁸U is 1.5×10^9 yr, age of the rock is a) $1.5 \times 10^9 \text{yr}$ b) $3.0 \times 10^9 \text{yr}$ c) $4.5 \times 10^9 \text{yr}$ d) $0.75 \times 10^9 \text{yr}$ 319. Radioactivity can be used in a) Diagnostic b) Therapeutic c) Both (a) and (b) d) None of these 320. The radius of an atomic nucleus is of the order of b) 10⁻¹³ cm c) 10^{-15} cm a) 10^{-10} cm d) 10^{-8} cm 321. Match Column I with Column II and select the correct answer, using the codes given Column I Column II ³²P Α 1. Location of tumour in brain ²⁴Na Location of blood 2. B clots and circulatory disorders ⁶⁰Co С 3. Radio-therapy 131 I D Agriculture research 4. Codes A B C D a) 4 1 2 3 b) 4 3 2 1 c) 4 2 3 1 d) 3 1 2 4 322. If wavelength is equal to the distance travelled by the electron in one second, then d) $\lambda = \sqrt{h/m}$ b) $\lambda = h/m$ c) $\lambda = \sqrt{h/p}$ a) $\lambda = h/p$ 323. The valency of element is a) +2 b) +3 c) Both +2 and +3d) +1 324. A cricket ball of 0.5 kg is moving with a velocity of 100 m s⁻¹. The wavelength associated with its motion is b) 66×10^{-34} m c) 1.32×10^{-35} m d) 6.6×10^{-28} m a) 1/100 cm 325. Which of the following is false? a) Pfund spectral series for which $n_1 = 5$ and $n_2 = 6,7$, ... Lies in the far infrared region of the electromagnetic radiation b) Visible region of electromagnetic radiations has wavelength from 400 nm to 800 nm c) Balmer spectral series lies in the visible portion of the electromagnetic radiation d) Lyman spectral series lies in the visible portion of the electromagnetic radiation 326. Select the correct statement a) α – and β – particles can be detected by a Geiger counter b) Neutron can be detected by conversion into α –particle by addition of $\frac{10}{5}$ B c) Both (a) & (b) d) None of the above 327. The number of spectral lines obtained in Bohr spectrum of hydrogen atom when an electron is excited from ground level to 5th orbit is b) 5 c) 8 a) 10 d) 15 328. Which electronic level would allow the hydrogen atom to absorb a photon but not to emit a photon? a) 3s b) 2p c) 2s d) 1s 329. At equilibrium, number of atoms disintegrating at two different stages are in the ration of 1 : 10. If half-life of first stage is 15 minutes, half-life second stage would be a) 150 min b) 15 min c) 1.5 min d) 30 min

330. The magnetic quantum number	r of an atom is related	to the		
a) Size of the orbital		b) Spin angular momentum		
c) Orbital angular momentum		d) Orientation of the orbit	al in space	
331. $_{13}$ Al ²⁷ is a stable isotope. $_{13}$ Al ²⁹ is expected to disintegrate by				
a) α –emission b) β	-emission	c) Positron emission	d) Proton emission	
332. Which experimental observation	on given in the first col	umn correctly accounts for	the phenomenon given in	
the second column?				
Experimental observation Ph	nenomenon			
a) X-ray spectra p. C	Charge on nucleus			
b) α -particle scattering q. Q	uantized electron orbi	it		
c) Photo electric effect r. T	'he nuclear atom			
d) Emission spectra s. Q	uantisation of energy			
333. Any <i>p</i> orbital can accomodate u	up to			
a) Four electrons		b) Two electrons with par	allel spin	
c) Six electrons		d) Two electrons with opp	oosite spin	
334. The unit of radiation exposure	which allows for the e	nergy and penetrating pow	ver of different types of	
radiation is				
a) Curie b) R	oentgen	c) Rem	d) Sievert	
335. At 200°C, hydrogen molecules l	have velocity $2.4 imes 10^{5}$	⁵ cm s ⁻¹ . The de Broglie wa	velength in this case is	
approximately				
a) 1 Å b) 1	000 Å	c) 100 Å	d) 10 Å	
336. In nuclear reaction,		-		
${}^{7}_{3}\text{Li} + {}^{1}_{1}\text{H} \rightarrow 2 {}^{4}_{2}\text{He}$				
The mass loss is nearly 0.02 am	1u. Hence, the energy r	eleased (in units of million	kcal/mol) in the process	
is approximately		,		
a) 430 b) 22	20	c) 120	d) 50	
337. A neutral atom of an element h	as 2K, 8L, 9M and 2N e	electrons. The atomic numb	per of element is:	
a) 20 b) 2	1	c) 22	d) 23	
338. The end product of 4n series is		-		
a) $_{82}Pb^{208}$ b) $_{8}$	2 Pb ²⁰⁷	c) $_{82}$ Pb ²⁰⁹	d) $_{82}Pb^{204}$	
339. The total spin and magnetic mo	oment for the atom wit	th atomic number 7 are:		
a) +3 $\sqrt{3}$ BM b) +	$-1\sqrt{8}$ BM	c) $+\frac{3}{\sqrt{15}}$ BM	d) $0\sqrt{8}$ BM	
		$\frac{1}{2}$	a) 0, v 0 DM	
340. If <i>r</i> is radius of first orbit, the ra	idius of nth orbit of the	e H atom will be	0 0	
a) <i>rn</i> ² b) <i>rn</i>	n	c) <i>r/n</i>	d) $r^2 n^3$	
341. Artificial radioactivity was first	t discovered by			
a) Sea Borg b) R	utherford	c) Einstein	d) Irene Curie	
342. Which of the following orbital of	does not make sense?			
a) 3 <i>d</i> b) 2	f	c) 5 <i>p</i>	d) 7 <i>s</i>	
343. 1 amu is equal to	22.5			
a) 1.66×10^{-27} kg b) 6.	$.02 \times 10^{23} \text{ kg}$	c) 1 kg	d) 1×10^{-3} kg	
344. If 8.0 g of radioactive isotope ha	as a half life of 10 hour	rs, the half life of 2.0 g of th	e same substance is	
a) 2.5 hours b) 5.	.0 hours	c) 10 hours	d) 40 hours	
345. The ionization potential hydrog	gen atom is 13.6 eV. Th	ne energy required to remo	ove an electron in the $n = 2$	
state of the hydrogen atom is				
a) 3.4 eV b) 6.	.8 eV	c) 13.6 eV	d) 27.2 eV	
346. The electronic configuration of	an element is $1s^2$, $2s^2$, 2p ⁶ , 3s ² , 3p ⁶ , 3d ⁵ , 4s ¹ . Th	is represents its	
a) Excited state b) G	round state	c) Cationic form	d) Anionic form	
347. Magic number elements are the	ose isotopes of elemen	ts		
a) In which the number of protons or neutrons is 2,8,20,28,50,82, or 125				

	b) Which are relatively me	ore abundant		
	c) Which are unusually sta	able		
	d) All of these			
348	Assuming that only partic	les emitted from atoms du	ring natural radioactive de	cay are αand β –particles,
	which of the following ato	ms could not possibly resu	ılt from the natural decay o	f ²³⁵ ₉₂ U
	a) $^{231}_{89}$ Ac	b) ²²⁷ ₈₉ Ac	c) $^{225}_{89}$ Ac	d) ²⁰⁷ ₈₂ Pb
349	The important principles	that do not help in assignin	g electronic configuration	to atoms are
	a) Aufbau rule	1 0	b) Hund's rule	
	c) Heisenberg uncertainty	<i>v</i> principle	d) Pauli's exclusion princi	iple
350	The binding energy of an o	element is 64 Mey. If BE/n	ucleon is 6.4, then the num	her of nucleons are
000	a) 10	h) 64	c) 16	d) 6
351	The ratio of kinetic energy	v and notential energy of a	n electron in a Rohr orhit of	f a hydrogen-like species is
551	$_{2}$ 1/2	b) $-1/2$	പി	d) = 1
252	a) 1/2 In the chain reaction	0) = 1/2		u) –1
552	$\frac{238}{2}$			
	$\overline{92}^{\circ} \cup \rightarrow Ba + Kr + 3\overline{0}n +$	energy <i>E</i>		
	Neutrons and energy proc	fuced at <i>n</i> th step will be :	$an an 1 \pi$	
	a) 3 <i>n</i> , <i>nE</i>	b) 3", nE	c) $3^n, 3^{n-1}E$	d) 3^{n-1} , <i>nE</i>
353	Due to β –emission n/p ratio	atio changes to	4	. 4
	a) $\frac{n+1}{n-1}$	h) $\frac{n}{1}$	c) $\frac{n-1}{2}$	d) $\frac{n+1}{n+1}$
	p - 1	p + 1	p + 1	p + 1
354	Which of the following is a	an artificial man-made seri	es?	
	a) Thorium series	b) Neptunium series	c) Uranium series	d) Actinium series
		Multiple Correct	Answers Type	
355	Which sets of quantum nu	umber are consistent with t	he theory?	
555	(2) n - 2 l - 1 m - 0 c - 1	- 1/2	b) $n = 4 l = 2 m = -2 c$	1 / 2
	a) $n = 2, l = 1, m = -0, s = -2$	-1/2	$ \begin{array}{c} \text{J} \\ \text$	= -1/2
250	C) $n = 5, t = 2, m = -5, s$ The lightest particle is (an	-+1/2	$u_{j} u = 4, i = 5, m = -5, s$	- + 1/2
350	. The lightest particle is/ar		a) Maaataa a	d) O a catical c
055	a) Electron	b) Proton	c) Neutron	d) p-particle
357	When α -particles are sent	through a thin metal foil, r	nost of them go straight the	rough the foil because
	a) α -particles are much he	eavier than electrons	b) α -particles are positive	ely charged
	c) Most part of the atom is	s empty space	d) α -particles move with	high velocity
358	. Many elements have non-	integral atomic masses bec	cause	
	a) They have isotopes			
	b) Their isotopes have not	n-integral masses		
	c) Their isotopes have diff	ferent masses		
	d) The constituents neutro	ons, protons, and electrons	combine to given fractiona	al masses
359	The isotone(s) of $^{77}_{32}$ Ge is/	/are		
	a) ⁷⁷ ₃₂ Ge	b) ⁷⁷ ₃₃ As	c) $^{77}_{34}$ As	d) ⁷⁸ ₃₄ Se
360	Mass defect of 1 g gives er	nergy equal to		
	a) 9×10^{23} J	b) $5.625 \times 10^{32} \text{eV}$	c) 2.15×10^{10} kcal	d) 9 \times 10 ⁶ ergs
361	. Which of the following set	s of quantum number is/a	re not permitted?	, 0
	、	1	· · · · · · · · · · · · · · · · ·	
	a) $n = 3, l = 3, m = +1, s$	$=+\frac{1}{2}$		
		1		
	n = 3, l = 2, m = +2, s	$=-\frac{1}{2}$		
	c) $m = 2l = 1$ $m = +2$ =	_ 1		
	$c_{j} n = s, i = 1, m = +2, s$	$-\frac{1}{2}$		
	d) $n = 3 l - 0 m - 0 s - 1$	$\frac{1}{1}$		
	$a_{j,n} = 0, i = 0, m = 0, s =$	2		

photon, the two photons hav	/e:
c) Same phase	d) Same wavelength
c) Stationary particles	d) All of the above
H atom is —13.6 eV. The pos	sible energy value (s) of the
ogen is(are)	
c) −6.8 eV	d) +6.8 eV
city has the minimum energ	gy and thus is most stable
lesser than, or equal to that	of 4s orbital depending
endence irrespective of the	value of principal quantum
ed more than α -particles in s	spite of α -particles having
en atom can be represented	by
c) $\uparrow \downarrow \uparrow \downarrow$ $\uparrow \downarrow \downarrow$	d) $\uparrow \downarrow \uparrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$
tant during disintegration	
for an electron of quantum r	number $n = 4$ and $m = 2$?
im of an electron in an orbit	?
c) $0.5 \frac{h}{-}$	d) $0.3 - \frac{h}{2}$
π	π
oelectric effect is doubled:	
nlaco	
place	
ectrum of	
rgoes a radioactive decay pr	ocess. it will remain neutral
8	,
c) A <i>K</i> -capture process	d) A β-decav
j irrir	- , , , , , , , , , , , , , , , , , , ,
c) 2 <i>d</i>	d) 3p
l in a hydrogen atom?	- L
c) 3	d) 4
ot depend upon:	
	photon, the two photons have c) Same phase c) Stationary particles f atom is -13.6 eV. The pose ogen is(are) c) -6.8 eV city has the minimum energy lesser than, or equal to that endence irrespective of the second and more than α-particles in second c) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ $\uparrow \downarrow \downarrow \downarrow$ cant during disintegration for an electron of quantum respective of quantum respective un of an electron in an orbit c) $0.5 \frac{h}{\pi}$ oelectric effect is doubled: place bectrum of: rgoes a radioactive decay prespective c) $A K$ -capture process c) $2d$ l in a hydrogen atom? c) 3 ot depend upon:

	c) Initial amount of radio	bactive element taken		
0.74	d) Nature of radioactive	element		
3/6	. The radial part of wave f	unction depends on the qua	ntum numbers	
077	a) n	D J l	c) l, m_1	d) <i>n</i> only
3//	. Which of the following sp	becies has (have) five unpair	red electrons?	N F 2+
0.50	a) Ls	b) Mn	c) Mn ²⁺	d) Fe ² '
378	For emission of a-particle $_{92}U^{235}{2}He^{4} \rightarrow_{90} Th^{231}$	e from uranium nucleus:		
	Shortage of two electron	s in thorium is due to		
	a) Conversion of electron	n to positron		
	b) Adsorption in the nucl	leus		
	c) Annihilation			
	d) Combination with pos	itron to evolve energy		
379	. An electron jumps from 1 a) Number of spectral lin	th level to 1st level, the factors $n = \frac{n(n-1)}{2}$	t(s) which is/are correct of	H-atom, is/are:
	b) Number of spectral lir	$hes = \sum_{n=1}^{2} (\Delta n)$		
	c) If $n = 4$, the number of	f spectral lines = 6		
	d) Number of spectral lin	nes = n(n-1)		
380	. The energy of an electron	n in the first energy level of	H atom is —13.6 eV. The po	ossible energy value (s) of
	the excited state (s) for t	he electron in He $^{\oplus}$ is (are)	r	
	a) -54.4 eV	b) –13.6 eV	c) – 3.4 eV	d) –6.4 eV
381	. Two radioactive substan	ces X and Y have disintegra	tion constant in the ratio 2	: 1. If half-life of Y is 4 days
	then after 12 days startin	ng with equal mole fraction	of each in mixture of <i>X</i> and	Y
	a) Mole fraction of X and	Yremains unchanged		
	b) Mole fraction of <i>X</i> is la	rger than that of Y		
	c) Mole fraction of <i>X</i> is si	maller than that of <i>Y</i>		
	d) Half-life of <i>X</i> is smalle	r than that of Y		
382	. Which orbital of the follo	wing is lower in energy in a	many electron atom?	
	a) 2p	b) 3 <i>d</i>	c) 4 <i>s</i>	d) 5 <i>f</i>
383	. The maximum kinetic en	ergy of photoelectrons is di	rectly proportional to	of the incident radiation
	a) Wave number	b) Wavelength	c) Frequency	d) Intensity
384	. The angular momentum	of P electron is		
	$h_{\overline{L}}$	$h t \sqrt{2}$	$h_{\sqrt{2}}$	
	a) $\frac{1}{2\pi}\sqrt{6}$	$DJ n\sqrt{2}$	$\frac{c}{2\pi}\sqrt{2}$	$a) n \sqrt{6}$
385	. Decrease in atomic numb	per is observed during		
	a) Alpha emission	b) Beta emission	c) Positron emission	d) Electron capture
386	. Which of the following co	onfiguration is/are correct f	or the first excitation state	of given species?
	a) Cr : [Ar]3d ⁵ ,4s ¹	b) Fe ²⁺ : [Ar]3d ⁵	c) Mn^{3+} : [Ar] $3d^3$, $4s^1$	d) Co ³⁺ : [Ar]3d ⁵ , 4s ¹
387	. Which of the following st	atements about radioactivit	ty is/are true?	
	a) It involves outer electric	rons activity.		
	b) It is not affected by ter	mperature or pressure.		
	c) It is an exothermic pro	ocess.		
	d) The radioactivity of ar	element is not affected by	any other element compou	nded by it.
388	. In a sample of H-atoms, e	electrons make transitions f	rom $n = 5$ to $n = 1$. If all the	e spectral lines are
	observed, then the line h	aving the third highest ener	gy will correspond to	
	a) 5 → 3	b) 4 → 1	c) 3 → 1	d) 5 → 4
389	. Which among the followi	ing nuclides is/are likely to	be stable?	
	a) ₄₉ In ¹¹⁴	b) ₁₂ Mg ²⁴	c) ₄₈ Cd ¹¹⁴	d) ₁₅ P ³⁰
390	If electrons fall from 4 th correct?	level to observant lower lev	vel finally attains 1^{st} level in	n H atom, then which is/are

 a) Possible lines may belong to Lyman, Balmer, Pasc b) Possible wavelengths emitted out may be six c) Only one wavelength will come out 	hen series	
d) Only Lyman series will be formed		
391. Which of the following elements are isotopes		
a) C ¹² b) C ¹³	c) C ¹⁴	d) N ¹⁴
392. Which of the following statement/s is/are correct?		
a) A photon is a positively charged nuclear particle		
b) A photon is a particle of light energy		
c) A photon is a quantum of light	ide but not necessarily ligh	tanaray
393. The wave nature of electron was verified by	due but not necessarily light	t energy
a) De Broglie b) Davisson and Germer	c) G.P. Thomson	d) Rutherford
394. Ground state configuration of nitrogen can be repres	sented as:	,
b) 1 1 1 1 1		
c) (1) (1) (1) (1) (1)		
d) (1) (1) / / / / /		
395. The atomic nucleus contains		
a) Protons b) Neutrons	c) Electrons	d) Photons
396. If the value of $(n + l)$ is more than 3 and less than 6,	then what will be the poss	ible number of orbitals?
a) 6 b) 9 207 Which of the following statements is (are connect?)	c) 10	d) 13
For all values of n , the p orbitals have the same sh a) given atom	hape, but the overall size inc	creases as <i>n</i> increase, for a
b) The fact that there is a particular direction along	which each p orbital has m	aximum electron density,
c) The charge cloud of a single electron in $2n_{\rm eff}$ atomi	ic orbitals consists of two lo	bles of electron density
d) None is correct		
398. Which among the following is/are fissible?		
a) $_{92}U^{235}$ b) $_{92}U^{238}$	c) ₉₄ Pu ²³⁹	d) ₉₄ Pu ²³⁸
399. An electron has spin quantum number $(s)+1/2$ and	magnetic quantum numbe	r is -1 . It can be present in
a) <i>s</i> orbital b) <i>d</i> orbital	c) <i>p</i> orbital	d) <i>f</i> orbital
400. The sum of the number of neutrons and protons in t	he isotope of hydrogen is	N 0
a) b b) 5	CJ 4	a) 3
The energy of an electron in a many electron atom $a^{(1)}$ but for a given, the lower the value of l the lower	n generally increases with a	an increase in value of <i>n</i> ,
b) An electron close to the nucleus experiences a lar	ge electrostatic attraction	
For a given value of <i>n</i> , ans-electron penetrates of	the nucleus more than a <i>p</i> -	electron, which penetrates
^{c)} more than a <i>d</i> -electron, and so on		
d) None is correct		
402. In the decay process:		
$A \xrightarrow{-\alpha} B \xrightarrow{-\beta} C \xrightarrow{-\beta} D$		
a) A and B are isodiaphers	b) A and C are isotones	
c) A and D are isotopes	d) B, C, and D are isobars	
403. The nuclear reaction(s) accompanied with the emiss 117×114	sion of neutron(s) is/are	
a) $_{13}AI^{1'} + _{2}He^4 \rightarrow _{15}P^{30}$	b) ${}_{6}C^{12} + {}_{1}H^{1} \rightarrow {}_{7}N^{13}$	

c) ${}_{15}P^{30} \rightarrow {}_{14}\text{Si}^{30}{}_{1}e^{0}$

404. Radioactivity is generally does not found in

a) Light nuclei

c) Heavy nuclei

- d) $_{96}\text{Am}^{241} + _{2}\text{He}^{4} \rightarrow _{97}\text{Bk}^{244} + _{1}e^{0}$
- b) Stable nuclei
- d) Nuclei of intermediate mass

- 405. Select the correct statement:
 - a) The concept of shell was given by Bohr
 - b) The concept of subshells within a shell was given by Pauli
 - c) The degeneracy of orbitals exists in presence of magnetic field
 - d) The splitting of a line in fine lines under the influence of magnetic field was proposed by Zeeman
- 406. Let A_n and A_1 be the area enclosed by the *n*th and first orbit in a hydrogen atom. The graph of $\ln (A_n/A_1)$ against $\ln(n)$:
 - a) Will pass through the origin
 - b) Will be a straight line with slope 4
 - c) Will be a monotonically increasing non-linear curve
 - d) Will be a circle

407. Which of the following statements are correct for an electron that has n = 4 and m = -2?

- a) The electron may be in a *d*-orbital
- b) The electron is in the fourth principal electronic shell
- c) The electron may be in a *p*-orbital
- d) The electron must have the spin quantum number =+1/2
- 408. The mass defect of the nuclear reaction ${}_{5}B^{8} \rightarrow_{4} Be^{8} + {}_{1}e^{0}$ is Δm ; the wrong expression is/are
 - a) $\Delta m = \text{atomic mass of } (_4\text{Be}^8 _5\text{B}^8).$
 - b) $\Delta m = \text{atomic mass of } (_4\text{Be}^8 _5\text{B}^8) + \text{mass of one electron.}$
 - c) $\Delta m = \text{atomic mass of } (_4\text{Be}^8 _5\text{B}^8) + \text{mass of one positron.}$
 - d) Δm = atomic mass of (${}_{4}Be^{8} {}_{5}B^{8}$) + mass of one electrons.
- 409. Photoelectric effect supports quantum nature of light because:
 - a) There is a minimum frequency below which no photoelectrons are emitted
 - b) The maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity
 - c) Even when the metal surface is faintly illuminated the photoelectrons depends only on the frequency of light and not on its intensity
 - d) Electric charge of the photoelectrons is quantized
- 410. Ground state electronic configuration of nitrogen atom can be represented as

a) Th²³², Pb²⁰⁸ b) Np²³⁷, Bi²⁰⁹ c) U²³⁵, Pb²⁰⁶ d) U²³⁸, Pb²⁰⁶

- 412. Which is correct statement in case of Hund's rule?
 - a) It states that if more than one atomic orbital of the same energy is available, electrons will occupy different atomic orbitals with parallel spins, as far as possible, in the configuration of lowest energy
 - b) Total energy of many electron atom with more than one electron occupying a set of degenerate orbitals is lowest, if as far as possible, electrons occupy different atomic orbitals and have parallel spins
 - c) Hund's rule forbid any configuration that does not violate the Pauli's exclusion principle
 - d) Hund's rule simply tells us which of the possible configurations is lowest in energy and other configurations are those of excited states, higher in energy than the ground state
- 413. Which of the following is/are correct?
 - a) 1 Fermi = 10^3 dps b) 1 curie = 3.7×10^{10} dps
 - c) 1 rutherford = 10^6 dps d) 1 becquerel = 1 dps
- 414. When α -particles are sent through a thin metal foil, most of them go straight through the foil because,
 - a) α -particles are much heavier than electrons
 - b) α -particles are positively charged

	c) Most part of the atom i	s empty space		
	d) α -particles move with	high speed		
415.	The probability of finding	, the electron in p_x orbital i	is	
	a) Maximum on two oppo	osite sides of the nucleus al	ong X-axis	
	b) Zero at the nucleus			
	c) They produce heating	effect		
	d) They can affect photog	raphic plate		
416.	When an electron makes	a transition from $(n + 1)$ s	tate to <i>n</i> state, the frequence	cy of emitted radiations is
	related to <i>n</i> according to	$(n \gg 1)$	-	-
	a) $v \propto n^{-3}$	b) $v \propto n^2$	c) $v \propto n^3$	d) $v \propto n^{\frac{2}{3}}$
417.	Which of the following sta	atements is/are correct?		
	a) Neutron was discovere	ed by Chadwick		
	b) Nuclear fission was dis	scovered by Hahn and Stras	ssmann.	
	c) Polonium was discover	red by Madam Curie.		
	d) Nuclear fusion was dis	covered by Fermi.		
418.	Which of the following ar	e α-emitters?		
	a) Po ²¹³	b) Pb ²¹⁵	c) Rn ²²²	d) Ra^{226}
419.	Which of the following pr	oducts in a hydrogen aton	are independent of the pr	inciple quantum number <i>n</i> ?
	The symbol(s) has/have	their usual meanings:		
	a) <i>vn</i> .	b) <i>Er</i>	c) En^2	d) <i>vr</i>
420.	Which of the following co	ntain (s) material particles	s?	
	a) α -rays	b) β -rays	c) $v - rays$	d) Anode rays
421.	Which of the following is	/are correct configuration((s)?	
	a) $_{4}$ Pd : [Kr]5 d^{10}	b) $_{20}Cu^+$: [Ar] $3d^{10}$	c) $_{24}$ Cr : [Ar] $3d^{5}$. $4s^{1}$	d) $_{25}$ Mn ⁺ : [Ar]3 d^{5} 4s ¹
422	Magnetic moment of $V(Z)$	= 23). Cr(Z = 24).and Mn	(Z = 25) are x, y, z, respect	tively, hence
1221	a) $x = y = z$	b) $x < v < z$	(2) $x < z < v$	d) $z < v < x$
423.	Which of the following sta	atements concerning Bohr'	's model is/are true?	
1201	a) It predicts that probab	ility of electron near nucle	us is more	
	b) Angular momentum of	electron in H atom = $nh/2$	2π	
	c) It introduces the idea of	of stationary states		
	d) It explains line spectru	m of hydrogen		
424.	Rutherford's α -scattering	experiment led to the follo	owing conclusions:	
	a) Atom has largely empt	v space		
	b) The centre of the atom	has positively charged nuc	cleus	
	c) The size of the nucleus	is very small as compared	to the size of the atom	
	d) Electrons revolve arou	nd the nucleus		
425.	Which of the followings n	uclides belong to actinium	(U^{235}) series?	
	a) Pb ²⁰⁷	b) Po ²¹⁵	c) Po ²¹³	d) 1H ³
426.	The nuclide X undergoes	α -decay and another nucli	des Y undergoes β^{\ominus} -decay.	which of the following
	statements is/are correct	?	uee i unuergoes p ueeuj,	which of the following
	a) The β^{Θ} -particles emitt	ed by Y may have widely d	ifferent speeds.	
	b) The α -narticles emitted	d by X may have widely dif	ferent speeds.	
	c) The α -narticles emitted	d by X will have almost san	ne sneed	
	d) The ß-particles emitted	d by X will have almost san	ne speed.	
427.	Which of the following sta	atements is/are correct?	ie speed	
	a) There is no probability	of finding a <i>p</i> -electron rig	ht at the nucleus	
	The orbital d_{π}^2 has two	lobes of electron density d	lirected along the z-axis and	da ring of electron density
	b) (called dough nut) cen	tred in the <i>xv</i> -plane		
	c) The orientation of <i>n</i> and	d <i>d</i> orbitals minimizes ele	ctron-electron repulsion in	many electron atoms
	d) None is correct		· · · · · · · · · · · · · · · · · · ·	,

- 428. Which statement (s) about cathode rays is/are correct?
 - a) They travel in straight lines towards cathode
 - b) They produce fluorescent discharge through the walls of the tube
 - c) They produce heating effect

c) Sign of wave function

- d) They can affect photographic plate
- 429. What transition in He⁺ ion shall have the same wave number as the first line in Balmer series of H atoms? a) $7 \rightarrow 5$ b) $6 \rightarrow 4$ c) $5 \rightarrow 3$ d) $4 \rightarrow 2$
- 430. Which of the following is/are not indicated by the sign of lobes in an atom?
 - a) Sign of charges b) Sign of probability distribution
 - d) Presence or absence of electron
- 431. The charge cloud of a single electron in a $2p_x$ atomic orbital has two lobes of electron density. This means a) There is a high probability of locating the electron in the $2p_x$ atomic orbital at values of x > 0
 - There is a high probability of locating it at values of x > 0 but no probability at all of the locating it any
 - b) where in the *yz*-plane along which x = 0
 - c) There is a great probability of finding a *p* electron right at the nucleus
 - d) All are correct
- 432. Which of the following statements are correct?
 - a) The electronic configuration of Cr is $[Ar]3d^5$, $4s^1$ (atomic number of Cs = 24)
 - b) The magnetic quantum number may have a negative value
 - In Silver atom, 23 electrons have a spin of one type and 24 of the opposite type. (Atomic number of Ag = 47)
 - d) The oxidation state of nitrogen in NH_3 is -3
- 433. When the intensity of a light source is increased:
 - a) The number of photons emitted by the source in unit time increases
 - b) The total energy of the photons emitted per unit time increases
 - c) More energetic photons are emitted
 - d) Faster photons are emitted
- 434. Which of the following statements is/are correct?
 - a) The electronic configuration of Cr is $[Ar]3d^54s^1$ (atomic number of Cr is 24)
 - b) The magnetic quantum number may have a negative value
 - c) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type (atomic number of Ag is 47)
 - d) The oxidation state of nitrogen in HN_3is-3
- 435. Select the correct statement(s)
 - a) ¹³¹Iis used for the treatment of thyroid cancer
 - b) ⁵⁹Cocannot be used for treatment of cancer
 - c) ³³Pis used for treatment of leukemia
 - d) Excessive use of radioactive elements cause cancer
- 436. Which statement (s) is/are correct?
 - a) Electrons in motion behave as if they are waves
 - b) *s*-orbital is non-directional
 - c) An orbital can accommodate a maximum of two electrons with parallel spins
 - d) The energies of the various sub-levels in the same shell of H atom are in order s > p > d > f
- 437. ²³⁸₉₂U(III B) undergoes follows emissions

$${}^{238}_{92} \text{U} \xrightarrow{-\alpha} A \xrightarrow{-\alpha} B \xrightarrow{-\beta} C$$

Which is/are correct statements?

- a) A will be of IB group
- c) *B* will be of IIA (alkaline earth metal) group
- 438. Half-life period for ratioactive element is
 - a) Always constant

- b) A will be of IIIB group
- d) C will be of IIIA (boron family) group
- b) Variable

a) Electrons behaves as a wave b) s-orbital is non-directional c) An orbital can accommodate a maximum of two electrons with parallel spins d) The energies of the various sub-shells in the same shell are in the order s > p > d > f440. Consider the ground state of Cr atom(Z = 24). The number of electrons with the azimuthal quantum number, l = 1 and 2, respectively, are a) 16 and 5 b) 12 and 5 c) 16 and 5 d) 12 and 4 441. Which of the following nuclei are doubly magic? b) ₂He⁴ c) $_{0}0^{16}$ d) $_{82}Pb^{208}$ a) $_{92}U^{238}$ 442. The magnitude of spin angular momentum of an electron is given by b) $S = \frac{\sqrt{3}}{2} \times \frac{h}{2\pi}$ c) $S = \sqrt{s(s+1)} \frac{h}{2\pi}$ d) $S = \pm \frac{1}{2} \times \frac{h}{2\pi}$ a) $S = s \frac{h}{2\pi}$ 443. In a nuclear reactor, oxides of which of the following metals are used as fuel material? b) Thorium c) Actinium d) Plutonium a) Uranium 444. Which of the following statement/s is/are correct? a) The oxidation state of nitrogen in HN₃ is 3 b) The electronic configuration of Cr is $(3d^5)(4s^1)$ c) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type (At. No. 47) d) The magnetic quantum number may have negative values 445. Which of the following properties are possessed by cathode ray? b) Travel with speed of light a) Dual nature c) Have negative charge d) Possess magnetic effect 446. Which of the following are isotones? a) $_{18}Ar^{40}$ b) $_{20}Ca^{42}$ c) $_{21}$ Sc⁴³ d) $_{21}$ Sc⁴¹ 447. Which of the following does not relate to photon both as wave motion and as stream of particles? b) $E = mc^{2}$ a) E = hvc) Interference d) Diffraction 448. A hydrogen-like atom in ground state absorbs *n* photons having the same energy and its emits exactly *n* photons when electrons transition takes placed. Then, the energy of the absorbed photon may be a) 91.8 eV b) 40.8 eV c) 48.4 eV d) 54.4 eV 449. An electron is not deflected on passing through a certain region because a) There is no magnetic field in that region b) There is a magnetic field but velocity of the electron is parallel to the direction of magnetic field c) The electron is a chargeless particle d) None of the above 450. Which of the following is/are incorrect? a) 1 curie = 3.7×10^{10} dis b) Actinium series starts with U²³⁸. c) Nuclear isomers contain the same number of protons and neutrons. d) The decay constant is independent of the amount of the substance taken. 451. Select the correct statement (s). a) Neutron-proton ratio after a nuclide, $^{238}_{92}$ Uloses an lpha —particle is 1.6 b) ²⁷₁₃Alcan be converted to ³⁰₁₅Pby (α , *n*) reaction c) Nuclear fusion reactions are known as thermonuclear reactions d) Larger the value of disintegration constant, greater the stability of radioactive element 452. Which of the following series in H-spectra occurs in 1R region a) Lyman b) Pashen c) Bracket d) Balmer 453. Which of the following is/are not radioactive element(s)?

d) Independent of initial concentration

c) Independent of final concentration

439. Which of the following statement(s) is/are correct?

a) Sulphur b) Tellurium c) Selenium d) Polonium

454. Radioactive disintegration rate is affected by

- a) Temperature b) Pressure
- 455. Which statement(s) concerning light is/are true?
 - a) It is a form of energy
 - b) It can be deflected by a magnet
 - c) It consists of photons of same energy
 - d) It is part of electromagnetic spectrum
- 456. Which of the following are correct?
 - a) Only Lyman series is observed in emission and absorption spectrum both
 - b) The continuum in line spectrum is noticed after a certain value of n
 - The wavelength of m^{th} line of Balmer series is

c)
$$\frac{1}{\lambda} = R_{\rm H} Z^2 \left[\frac{1}{2^2} - \frac{1}{m^2} \right]$$

d) The number of spectral lines given when electron drops from 5th to 2nd shell are six

- 457. Which of the following is/are the examples of induced radioactivity?
 - a) $_{7}N^{14}+_{2}He^{4} \rightarrow _{8}O^{17}+_{1}H^{1}$ b) $_{4}Be^{9}+_{1}H^{1} \rightarrow _{3}Li^{9}+_{2}He^{4}$ c) $_{12}Mg^{24}+_{2}He^{4} \rightarrow _{14}Si^{27}+_{0}n^{1}$ d) $_{5}B^{10}+_{2}He^{4} \rightarrow _{7}N^{13}+_{0}n^{1}$
- 458. Which of the following is/are correct when a nuclide of mass number (*A*) and atomic number (*Z*) undergoes radioactive process?
 - a) Both *A* and *Z* decrease, the process is called α -decay.
 - b) A remains unchanged and Z decreases by 1. The process is called β^{\oplus} or positron decay or K-electron capture.
 - c) Both A and Z remain unchanged, the process is called γ -decay.
 - d) Both A and Z increase, the process is called nuclear isomerism.
- 459. Which of the following is/are true?
 - a) The most radioactive element present in pitchblende is uranium.
 - b) P-32 is used for the treatment of leukaemia.
 - c) CO_2 present in the air contains C-12 only.
- d) Omission of γ -rays changes the mass number but not atomic number
- 460. Which of the following statements about radioactivity are correct?
 - a) It is a nuclear property
 - b) It does not involve any rearrangement of electrons
 - c) It is not affected by the presence of other elements
 - d) Its rate is affected by the change in temperature and/or pressure
- 461. Which of the following statement/s is/are correct?
 - a) Stark effect is the splitting of spectral lines when source is placed in electric field
 - b) Beyond a certain limit in spectrum of an atom, there is continuum
 - c) The intensities of spectral line in line spectrum decreases with increase in the value of n
 - d) Shielding effect is possible in H-atom
- 462. Bohr's atomic model is based on the following postulates:
 - a) An atom consists of nucleus
 - b) An electron can rotate only in certain energy levels
 - c) An electron remains moving with continuous loss of energy
 - d) None of the above
- 463. A radioactive element A decays by the sequence and with half-lives given below:

 $A_{30\min}^{\alpha} B_{2} \overset{2\beta}{\underset{days}{\rightarrow}} C$

Which of the following statements about this system are correct?

- a) The mass number of B is greater than A
- b) After two hours, less than 10% of the initial A is left
- c) Maximum amount of B present at any time is less than 50% of the initial amount of A

c) Electric field

d) None of these

d) The atomic numbers of A and C are the same 464. Which of the following orbitals has (have) one spherical node? a) 1s b) 2s c) 2p d) 3p 465. Ground state electronic configuration of nitrogen atom can be represented by b) $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow d) $|\uparrow\downarrow||\uparrow\downarrow||\downarrow||\downarrow|$ a) |↑↓||↑↓|| ↑ | ↑ | ↑ | c) |1↓||1↓ ↓ Ť ↓ | 466. Which of the following statements are incorrect? a) The third ionization energy of lithium is 9 times the second ionization energy of helium b) The second ionization energy of helium is 4 times the first ionization of hydrogen c) Radius of third orbit of Li²⁺ is 3 times the radius of third orbit of hydrogen atom d) For designating an orbital three quantum numbers are needed 467. In a nuclear reactor, heavy water is used to a) Increases the speed of neutrons b) Decreases the speed of neutrons c) Transfer the heat from the reactor d) None of above 468. Which of the following is/are correct? a) α –rays are more penetrating than β -rays. b) α –rays have greater ionizing power than β -rays. c) β -particles are not present in the nucleus, yet they are emitted from the nucleus. d) α –rays are not emitted simultaneously with α –and β -rays. 469. Which of the following statement about quantum number is correct? a) If the value of l = 0, the electron distribution is spherical b) The shape of orbital is given by subsidiary quantum number c) The Zeeman's effect is explained by magnetic quantum number d) The spin quantum number gives the orientations of electron cloud 470. The total energy of the electron of H-atom in the second quantum state is $\pm E_2$. The total energy of the He⁺ atom in the third quantum state is c) $-\left(\frac{16}{9}\right)E_2$ a) $-\left(\frac{16}{9}\right)E_2$ d) $\pm \left(\frac{3}{2}\right) E_2$ b) + $\left(\frac{4}{9}\right)E_2$ 471. Which of the following provides wave nature to light? a) Diffraction b) Interference c) Photoelectric effect d) E = hv472. Target nucleus A is converted to product nucleus B by (p, n) as :(A(p, n) BIn this case a) A and B are isotopes b) A and B are isobars c) A and B are isotones d) *B* has higher atomic number than that of *A* 473. Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let r, u, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. in ground state: a) $r_A > r_B$ b) $u_A < u_B$ c) $E_A < E_B$ d) $L_A > L_B$ 474. In which of the following situations the heavier of the two particles have smaller de Broglie wavelength? The two particles : a) Move with the same speed b) Move with same linear momentum c) Move with the same kinetic energy d) Have fallen through the same height 475. The angular momentum of *d* electron is a) $\frac{h}{2\pi}\sqrt{6}$ d) $\frac{h}{2\pi}\sqrt{2}$ c) ħ√2 b) *ħ*√6

2.STRUCTURE OF ATOM

						: ANS	W	ER K	EY:						
1)	d	2)	а	3)	а	4)	b	189)	а	190)	С	191)	d	192)	С
5)	d	6)	а	7)	а	8)	b	, 193)	С	, 194)	С	195)	С	196)	а
9)	а	10)	а	11)	С	12)	b	197)	с	198)	d	199)	d	200)	d
13)	С	14)	d	15)	b	16)	С	201)	а	202)	С	203)	d	204)	С
17)	С	18)	С	19)	а	20)	С	205)	с	206)	С	207)	d	208)	а
21)	а	22)	а	23)	d	24)	d	209)	а	210)	а	211)	С	212)	а
25)	С	26)	С	27)	d	28)	а	213)	b	214)	d	215)	d	216)	а
29)	d	30)	d	31)	b	32)	d	217)	а	218)	d	219)	b	220)	С
33)	а	34)	а	35)	а	36)	С	221)	С	222)	С	223)	d	224)	С
37)	а	38)	а	39)	b	40)	b	225)	b	226)	С	227)	С	228)	С
41)	d	42)	b	43)	а	44)	а	229)	d	230)	b	231)	С	232)	b
45)	b	46)	а	47)	b	48)	b	233)	а	234)	b	235)	а	236)	а
49)	а	50)	а	51)	d	52)	d	237)	а	238)	а	239)	С	240)	b
53)	b	54)	С	55)	а	56)	С	241)	С	242)	а	243)	d	244)	b
57)	а	58)	а	59)	а	60)	b	245)	b	246)	d	247)	b	248)	С
61)	а	62)	а	63)	С	64)	С	249)	d	250)	b	251)	С	252)	а
65)	b	66)	b	67)	С	68)	С	253)	d	254)	d	255)	а	256)	b
69)	С	70)	b	71)	С	72)	а	257)	d	258)	а	259)	С	260)	d
73)	d	74)	а	75)	d	76)	a	261)	d	262)	b	263)	d	264)	b
77)	d	78)	b	79)	b	80)	b	265)	а	266)	С	267)	d	268)	b
81)	b	82)	b	83)	b	84)	С	269)	а	270)	d	271)	b	272)	С
85)	b	86)	b	87)	b	88)	С	273)	С	274)	d	275)	d	276)	а
89)	а	90)	а	91)	С	92)	С	277)	а	278)	а	279)	С	280)	а
93)	b	94)	а	95)	С	96)	а	281)	d	282)	d	283)	b	284)	С
97)	b	98)	С	99)	а	100)	а	285)	d	286)	d	287)	а	288)	С
101)	С	102)	С	103)	С	104)	d	289)	a	290)	С	291)	С	292)	a
105)	b	106)	С	107)	d	108)	b	293)	d	294)	b	295)	d	296)	d
109)	С	110)	a	111)	C	112)	d	297)	С	298)	a	299)	d	300)	b
113)	a	114)	d	115)	b	116)	d	301)	C	302)	d	303)	а	304)	d
117)	d	118)	b	119)	b	120)	b	305)	b	306)	а	307)	C	308)	а
121)	а	122)	d	123)	d	124)	а	309)	b	310)	a	311)	b	312)	С
125)	а	126)	С	127)	b	128)	С	313)	b	314)	b	315)	a	316)	C
129)	С	130)	а	131)	C	132)	a	317)	С	318)	b	319)	С	320)	b
133)	a J	134)	C	135)	a	136)	a	321)	C J	322)	a	323)	C	324)	ر د
137)	a	138)	a	139)	a	140J	a h	325)	a	326)	C J	327)	a h	328)	۵ ۲
141) 145)	C d	142)	a h	143)	a d	144J 140)	D	329)	a a	330)	a	331J 225)	D	332)	a
145)	u h	140J 150)	D	147)	a	148J 152)	d	3335	u h	334J 220)	C	335)	a	330)	a
149)	d d	150)	C h	151J 155)	a	152J 156)	C	33/J 241)	U d	330J 242)	a h	222J	C	340J 244)	a
153)	u h	154)	U d	155)	d h	150)	C h	341J 245)	u	342J 246)	U h	343J 247)	a	344J 240)	C
15/J 161)	U h	120J 162)	u h	162) 162)	U C	10UJ 164)	U h	343J 340)	d C	340J 2501	U a	34/J 251)	a h	340J 357)	с Л
165)	D h	166)	d d	167)	L h	169)	U h	252)	C C	254)	a h	331J 1)	U ahc	332J 2)	u
160)	D h	170)	u c	107J 171)	Ь	100J 172)	U C	5555	u ad	334J 21	U C	1) 4)	a,u,t a c	4J	
173)	h	174)	с h	175)	u h	176)	с а	5)	h d	5) 6)	с с	7)	ahr	8)	
177)	ы а	179)	h	179)	C	180)	a h	5)	a h 4	с d	L	<i>'</i>)	ajuju	U)	
181)	а Я	182)	d	183)	с h	184)	с С	91	h.c	10)	а	11)	ahce	12)	
185)	u h	186)	u r	187)	c	188)	с с	~,	a d	10)	u	11)	սյոյել		
1005	5	1005	č	107 J	č	100)	e	l	uju						

13)	c b, d	14)	a, b, c	15)	a, d	16)		121)	a,b
17)	a, c	18)	b,c	19)	b,d	20)	с		
21)	a,b,c	22)	a,b	23)	b,c	24)			
	c,d								
25)	a, b, c	26)	b,d	27)	c, d	28)	a		
29)	a,c	30)	b,c	31)	a,c,d	32)			
	c, d								
33)	b,c,d	34)	С	35)	b,c	36)			
	a, b								
37)	a,b,c	38)	b, c	39)	a,b	40)			
41)	a, u	42)	d	42)	aha	44)			
41)	a,D	42J	u	43J	a,D,C	44J			
45)	a,c h c d	46)	d	47)	ahc	48)			
15)	a.c.d	10)	u	175	а,в,с	10)			
49)	a.d	50)	a.b.d	51)	a.d	52)			
	a, b	,		-)	- , -	- ,			
53)	b,d	54)	a,b,c	55)	a, b, c	56)			
	a,d								
57)	a,d	58)	a,b,c,d	59)	c,d	60)			
	a,c								
61)	a,b,d	62)	а	63)	a,b,c	64)			
	a,d				_	_			
65)	a, b	66)	a,b,d	67)	a, b, c,	d			
(0)	68) bad	C 70)	. h .	71)	. h	7 2)			
69)	D,C,A	70)	a,d,c	/1)	a,D	72)			
73)	u,c ahc	74)	hcd	75)	h	76)			
/3)	a,b,c a.h.d	74)	b , c , u	755	U	70)			
77)	a.b.c	78)	a.b.c	79)	a. b	80)			
,	a,b,c	-)	- , - , -			,			
81)	a, b	82)	a, b	83)	b, c	84)			
	a,d								
85)	a,b	86)	b	87)	b,c,d	88)			
	b,c								
89)	a, b, d	90)	b,c,d	91)	a,b,c,d	92)			
	a,b,c			~ -					
93)	b,c,d	94)	a,b	95)	a,b	96)			
07)	c,a	00)	ha	00)	aha	100)	0		
97J 101)	a, b, c	90J 102)	D,C	99J 102)	a, b, c	100)	d		
101)	a, u a h c	102)	a, D, u	103)	a,D,C,U	104)			
105)	a, b, c	106)	a.b.c	107)	a. h. c	108)			
100)	a.b	100)	4,5,0	1075	u, b, c	100)			
109)	b,d	110)	b,d	111)	a,d	112)			
,	a,b,c	,		,		,			
113)	b,c	114)	b,c,d	115)	a,b,c	116)			
	a,c								
117)	a, b, d	118)	b, d	119)	b, c	120)			
	a, c, d								

: HINTS AND SOLUTIONS :

2	(a)		electrons in various subshells of an atom takes
	2K, 8L, 9M, and 2N		place in the increasing order of energy, starting
	$1s^22s^2$ $2p^63s^2$ $3p^6$ $3d^14s^2$		with the lower most
	(K means $n = 1$, L means $n = 2$)		The following order is observed:
	(M means $n = 3$, N means $n = 4$)		1s 2s 2n 3s 3n 4s 3d 4n 5s 4d 5n 6s 4f 5d 6n 7s
	Structure is $3d^1$, $4s^2$		According to Bohr-Bury rule $(n + l)$ rule the
	Atomic number 21		subshell with the lower value of $(n + l)$ is filled
	The total number of pe^-		first. If the values for $(n \pm l)$ are equal the one
	$2n^6 + 3n^6 = 12$		with the smaller values of $(n + i)$ are equal, the one
5	(d)		
U	$-\alpha$ -2β		$\frac{n}{l}$ $\frac{l}{(n+l)}$
	$_{A}X \xrightarrow{30 \text{ min}} _{A-2}Y \xrightarrow{2 \text{ days}} _{A}Z$		1. 4 1 5
	, i i i i i i i i i i i i i i i i i i i		II. 4 0 4 iii 3 2 5
	A is atomic number of X		iv 3 1 4
		11	(c)
	Half-life period of $X = 30$ min	**	$^{214}\text{Bi} \longrightarrow ^{214}\text{Y} \longrightarrow ^{210}\text{V}$
	Total time $-2h - 120$ min		83 1 $^{-\beta}$ 84 $^{-\alpha}$ 82 1
	10tar time - 2 fr - 120 film		Newtweet 210 02 120
	(v) number of half-lives $-\frac{120}{4} - 4$		Neutron = $210 - 82 = 128$
	30°	12	(h)
	$(1)^4$		Ψ -wave function
	X left after 4 half-lives $N = N_0 \left(\frac{1}{2}\right)$	11	(d)
		TT	Noutron is the best projectile
	$= 100 \left(\frac{1}{1} \right) = 6.25\%$	15	(b)
	(16)	15	(b) 1 Truc
	Thus (a) is true		1. Illue
			2. False . The angular momentum depends
	Before 30 min (= half-life) amount of X left >		only on the azimuthal quantum number
	50%		5 1
			3. True
	Hence, <i>Y</i> formed < 50%		
	(ain a balf life of V) is 2000 min $>>$ half life of A		4. True
	(since nan-nie of I) is 2000 $lim >> nan-nie of A)$	16	
	Thus. (b) is correct	10	(C) Dh 200 halanga ta 4n aaniaa
		17	PD-200 belongs to 4π series
	<i>X</i> and <i>Y</i> are isotopes with same atomic number <i>A</i> ,	1/	(C)
	thus, (c) is correct		$r_n = \frac{r_1 \text{ for } H \times n^2}{-}$
6	(a)		$=\frac{0.53 \text{ A} \times 2^2}{2}$
	$_4\text{Be}^7 + _{-1}\text{e}^0 \rightarrow _3\text{Li}^7$		
	So, atomic number=3, mass number=7		$= 0.53 \times 4 \text{ A} = 0.053 \times 4 \text{ nm}$
7	(a)		$= (1 \text{ A} = 10^{-10} \text{ m}, 1 \text{ nm} = 10^{-9} \text{ m})$
	$hc = 6.62 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}$	19	(a)
	$\lambda = \frac{1}{\Delta E} = \frac{1}{E \times 1.602 \times 10^{-19}}$		Isotope must have some number of proton,
	$= 12395 \times 10^{-10}$ m		therefore β -particle will be emitted
10	(a)	20	(c)
	iv < ii < iii < i		Electronic configuration of $M^{2+} = 2 + 8 + 14 =$
	According to Aufbau's principle, filling of		24e ⁻
	initia o principie, initia oi		Since two e^- has been lost in forming M^{2+} ion
		I	<u> </u>

from metal, so total number of protons should be = 24 + 2 = 26Hence, number of neutrons = 56 - 26 = 3022 (a) $E_n \text{ for } \mathrm{H}_2^{\oplus} = \frac{E_1 \text{ for } \mathrm{H} \times Z^2}{2\pi^2}$ $E_1 = -13.6 \text{ eV}$ The possible excited state values are: $E_2 = \frac{-13.6}{4} = -3.4 \text{ eV}$ $E_3 = \frac{-13.6}{0} = -1.5 \text{ eV}$ $E_4 = \frac{-13.6}{16} = -0.85 \text{ eV}$ So, the value is only -3.4 eV25 (c) $t_{1/2} = 10$ year; T = 20 years We know, $T = nt_{1/2} \Rightarrow n = \frac{20}{10} = 2$ And $N = \left(\frac{1}{2}\right)^n N_0$ $\frac{N}{N_{\rm e}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ % of $\frac{N}{N_0} = \frac{1}{4} \times 100 = 25\%$ 27 (d) $_{92}U^{235} + _{0}n^{1} \rightarrow _{54}Xe^{139} + _{38}Sr^{94} + 3 _{0}n^{1}$ 28 (a) Ionization potential of nitrogen is more that of oxygen. This is because nitrogen has more stable fully half-filled *p* orbitals 29 (d) $-\frac{dN}{dt} = \lambda[A]$ Greater the values of λ (decays constant) greater the activity 30 (d) Spin does not give the orientation of electron cloud 32 (d) E = hv and $\Delta E = \frac{hc}{\lambda}$ $\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{4000}{2000} = 2$ 33 (a) Cr(Z = 24) $[Ar]3d^5 4s^1$ This is because d^5 is a more stable half-filled configuration. Reasons for the stability of halffilled and fully filled orbitals are symmetry and

exchange energy

34 (a) $^{14}_{7}$ Nis bombarded by α –particle 35 (a) $_{92}U^{238} \rightarrow _{Z}X^{A} + _{2}He^{4} + _{-1}e^{0}$ Equating mass number of both sides 238 = A + 4 + 0 $\therefore A = 238 - 4 = 234$ Equating atomic number of both sides 92 = Z + 2 - 1 $\therefore Z = 92 - 1 = 91$ 37 (a) $_{7}N^{14} \rightarrow _{1}n^{0} + _{6}C^{14}$ 39 (b) $\left(1 + \frac{N_{\rm U}(238)}{N_{\rm ph}(206)}\right) = (2)^n$ $(1+1) = (2)^n$ $\therefore n = 1 = \frac{t}{T_{\text{FO}}}$ $\therefore t = T_{50} = 4.5 \times 10^9 \text{yr}$ 42 **(b)** Rb(z = 37) $[Kr]_{36} 5s^1$ For the last electron: n = 5, l = 0, m = 0, s = 1/244 (a) $t_{1/2} = \frac{0.693}{\kappa}$ 45 **(b)** Given n = 3, we know that $N = \left(\frac{1}{2}\right)^n N_0$ $\therefore \left(\frac{N}{N_0}\right) = \left(\frac{1}{2}\right)^n = \frac{1}{8}$ $\operatorname{Or} \frac{N}{N_0}\% = \frac{1}{8} \times 100 = 12.5\%$ 47 (b) $^{238}_{92}$ U + $^{4}_{2}$ He $\rightarrow ^{241}_{95}$ Am + $^{1}_{0}n$ LHS RHS Mass number 242 242 balanced Atomic number 94 95 unbalanced 48 (b) Isobars have different mass number 49 (a) Number of radial nodes = (n - l - 1)For 3s, n = 3, l = 0 (number of radial node=2)

For 2p, n = 2, l = 1 (number of radial node=0)

1 (d)

$$C = C_0 \left(\frac{1}{2}\right)^y$$

$$(3.00 \times 10^8) = (2.40 \times 10^9) \left(\frac{1}{2}\right)^y$$

$$\left(\frac{1}{2}\right)^y = \left(\frac{1}{8}\right) = \left(\frac{1}{2}\right)^3$$

$$\therefore y = 3 \text{ or } \frac{t}{T_{50}} = 3$$

$$\therefore t = 3 \times T_{50} = 36.78 \text{ yr}$$

52 **(d)**

5

The rate of disintegration does not depend upon environmental factors

53 **(b)**

If T_{75} of $B \rightarrow C$ is 100 min, then $T_{50} = 50$ min

Thus, $N_A T_B = N_B T_A$ $\frac{N_A}{N_B} = \frac{T_A}{T_B} = \frac{100}{50} = 2$

54 **(c)**

Heavy water (D_20) works as a moderator to slow down the speed of neutron

55 (a)

The energy of an electron in Bohr orbits of hydrogen atom is given by the expression

 $E_n = -\frac{\text{Constant}}{n^2}$

Where *n* takes only integral values. For the first Bohr orbit, n = 1, and it is given that

$$E_1 = -13.6 \text{ eV. Hence}$$
$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

Of the given values of energy, only -3.4 eV can be obtained by substituting n = 2 in the above expression

56 **(c)**

 γ –rays are neutral particles

59 **(a)**

6

$$E_{1} = hv_{1} = h\frac{c}{\lambda_{1}} = \frac{hc}{2000}$$

$$E_{2} = hv_{2} = h\frac{c}{\lambda_{2}} = \frac{hc}{4000}$$

$$\frac{E_{1}}{E_{2}} = \frac{hc \times 4000}{2000 \times hc} = 2$$
3 (c)

$$\overset{228}{_{88}}\text{Ra} \xrightarrow[-\beta]{_{-\beta}} \overset{228}{_{-\beta}} X \xrightarrow[-\alpha]{_{-\alpha}} \overset{224}{_{88}} Y$$

64 (c) KE = (Energy of radiation – Work function) $= \left(h \times \frac{c}{\lambda} - 4.2\right)$ $= \left(\frac{6.6 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m}}{2000 \times 10^{-10} \text{ m}}\right)$ $-(4.2 \times 1.602 \times 10^{-19} \text{ J})$ $= (9.9 \times 10^{-19} \text{ J}) - (6.7 \times 10^{-19} \text{ J})$ $= 3.2 \times 10^{-19} \text{ J}$ 65 (b)

(b)
$$^{200}_{79}\text{Au} \longrightarrow ^{200}_{80}\text{Hg} + ^{0}_{-1}e \qquad (\beta \text{ -particle})$$

 $\uparrow \text{ isobars} \uparrow$

Number of half-life $=\frac{52}{13}=4$

Au left after 52 days, $C = C_0 \left(\frac{1}{2}\right)^n = 1 \left(\frac{1}{2}\right)^4 = \frac{1}{16}$ Hg formed = $1 - \frac{1}{16} = \frac{15}{16} = 0.9375$ g

Ig formed =
$$1 - \frac{1}{16} = \frac{15}{16} = 0.9375$$
 g

66 **(b)**
Work function = Threshold energy

$$= hv_0 = \frac{hc}{\lambda_o}$$

 $= \frac{6.6 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ m}}{330 \times 10^{-9} \text{ m}} = 6.6 \times 10^{-29} \text{ J}$
68 **(c)**

$$\overline{V}_{\text{He}} = \frac{1}{\lambda} = R \times 2^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$

$$= R \left(\frac{4}{n_{1}^{2}} - \frac{4}{n_{2}^{2}} \right) \dots (i)$$

$$\overline{V}_{\text{H}_{2}} = \frac{1}{\lambda} = R \left(\frac{1}{1^{2}} - \frac{1}{2^{2}} \right) \dots (ii)$$
Compare equations (i) and (ii), we get
$$\therefore \frac{1}{1^{2}} = \frac{4}{n_{1}^{2}}, n_{1}^{2} = 4, n_{1} = 2$$

$$\frac{4}{n_{2}^{2}} = \frac{1}{2^{2}}, n_{2}^{2} = 16, n_{2} = 4$$

$$(4 \rightarrow 2)$$
69 (c)
$$\frac{25}{13} \text{Al} \rightarrow \frac{0}{1} e + \frac{25}{12} \text{Mg}$$
Proton changes to neutron $\frac{1}{1} \text{H} \rightarrow \frac{1}{0} n + \frac{0}{1} e$

$$\frac{25}{12} \text{Mghas 12 protons}$$
13 neutrons
12 electrons

Atomic number (% Abundance) × $(Isotope)_1 + \%$ of $(Isotope)_2$ = 100 73 (d) $E_i = IE + KE$ OrE_1 = Threshold *E* or Work function + KE $\left(hv = hv_0 + \frac{1}{2}mu^2\right)$ 0r $hn = hn_0 + \frac{1}{2} mu^2$ $\frac{1}{2}mu^2 = h(n - n_0) = h \Delta n$ (i) $\left(\lambda = \frac{h}{mu}, \therefore u = \frac{h}{m\lambda}\right)$ Substitute the value of *u* in equation (i) $\frac{1}{2}m\cdot\frac{h^2}{m^2\lambda^2}=h\,\Delta n$ $\frac{h}{2\lambda^2 m} = \Delta n$ $\therefore \lambda = \sqrt{\frac{h}{2m\Delta n}}$ 74 (a) 8L, 9M, and 2N 2K, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ $\begin{pmatrix} \text{K means } n = 1, \text{L means } n = 2 \\ \text{M means } n = 3, \text{N means } n = 4 \end{pmatrix}$ Structure is $3d^1$, $4s^2$ Atomic number 21 Total number of unpaired $d e^ 3d_1 = 1$ 75 (d) 5. True. True. See fig (i) below 6. 7. True. See fig (e) below 8. False. See fig (h) below Fig. 4.42 Orbital diagram for s, p, and d orbitals

76 (a) 1 amu = 931.5 MeV 78 (b) In X; l = dIn Y, l = sEnergy of d > s79 (b) s80 (b) $<math>{}^{212}_{82}$ Pb $\rightarrow {}^{212}_{82}$ Bi $+ {}^{-0}_{-1}$ e (β)

$$N = N_0 \left(\frac{1}{2}\right)^y = N_0 \left(\frac{1}{2}\right)^2 = \frac{N_0}{4}$$

Where,
$$y = \frac{\text{total time}}{\text{half-life}} = \frac{20}{10} = 2$$

Thus, I and III are true

81 **(b)**

Isotopes have same atomic number but different mass number

82 **(b)**

83

Emission of an α -particle means mass is decreased by 4 units and charge by 2 units. Thus, $_{92}U^{238} \xrightarrow{-\alpha} _{90}U^{234}$ Thus, the mass number = 234 Atomic number = 90 **(b)**

True.

False. The expression $m_s\left(\frac{h}{2\pi}\right)$ is that of *z*-component of angular momentum

True. The azimuthal quantum number has the value 0, 1, 2, ..., (n - 1)

True. The expressions are

$$KE = \frac{1}{2}mv^{2} = \frac{1}{2}\frac{Ze^{2}}{(4\pi\varepsilon_{0})r}$$
$$PE = -\frac{Ze^{2}}{(4\pi\varepsilon_{0})r}$$

84 **(c)**

Based on units of k (disintegration constant) we conclude that disintegration of A follows first-order kinetics and that of B follows second-order kinetics

$$T_{50}(A) = \frac{0.693}{k_A}$$

$$T_{50}(B) = \frac{1}{k_B[B]}$$
Also, $T_{50}(A) = T_{50}(B)$ (given)

$$\frac{0.693}{k_A} = \frac{1}{k_B[B]}$$

$$\therefore \frac{k_A}{k_B} = 0.693 [B] = 0.693 [A]$$
 given $[A] = [B]$
(Rate)_A = $k_A[A]$
(Rate)_B = $k_B[B]^2 = k_B[A]^2$
 $\frac{(\text{Rate})_A}{(\text{Rate})_B} = \frac{k_A[A]}{k_B[A]^2} = \frac{k_A}{k_B[A]} = 0.693$
Also, $k_A T_A = k_A \times \frac{0.693}{k_A} = 0.693$
Thus, (a) and (b) are true
88 (c)
Half-life = $\frac{0.693}{\lambda} = \frac{0.693}{0.49 \times 10^{-10}}$ yr
= 1.41 × 10¹⁰ yr
89 (a)
Angular nodes = 1,
Spherical nodes = $n - l - 1 = 3 - 1 - 1 = 1$
90 (a)
 $n_3 \to n_2$
92 (c)
The limiting line of Balmer series refers to the transition from ∞ to 2nd orbit
 $v = 3.29 \times 10^{15} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) s^{-1} (n_1 = 2, n = \infty)$
= $3.29 \times 10^{15} \times \frac{1}{4} = 8.22 \times 10^{14} s^{-1}$
94 (a)
Neutron

96 (a)

$$\frac{\text{KE}}{E_{\text{Total}}} = \frac{-Ze^2}{r_n} / \frac{-Ze^2}{2r_n} = 2$$
97 **(b)**

According to Aufbau's principle, filling of electrons in various subshells of an atom takes place in the increasing order of energy, starting with the lower most. The following order is observed:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s ..

Filling of 2p orbital cannot start before the completion of the 2s orbital

Incorrect:

$$\uparrow$$
 $\uparrow\downarrow$
 \uparrow

 Correct:

 $\uparrow\downarrow$
 \uparrow
 \uparrow

98 (c)

Smaller nuclei fuse to form heavier nuclei in nuclear fusion reaction

99 (a)

Both belong to 4n + 1 series

102 (c)

 ns^2 , np^5 is the electronic configuration of a halogen, and halogens are most electronegative

103 (c)

 $1 \text{ curie} = 3.8 \times 10^{10} \text{ dps}$

Hence, 1 microcurie = 1×10^{-6} curie

$$= 3.7 \times 10^{10} \times 10^{-6}$$
dps

 $= 3.7 \times 10^4 dps$

106 (c)

1

∞)

False. The electronic configuration of Zn^{2+} (atomic number 30) is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$. There are no unpaired electrons, hence, it is diamagnetic

False. In β emission, the atomic number of daughter element is increased by 1, due to the basic conversion of neutron into proton in the nucleus

True. An α -particle is ${}^{4}_{2}$ He²⁺. Hence, atomic number and mass number of daughter element are decreased by 2 and 4, respectively

False. There will occur an increase in atomic number by 2

$$\stackrel{m}{n} A \stackrel{-\beta}{\longrightarrow} \stackrel{m}{n+1} B \stackrel{-\beta}{\longrightarrow} \stackrel{m}{n+2} C$$

107 (d)

Nucleon consists of protons and neutrons

108 (b)

Bohr can explain hydrogen-like elements

114 (d)

$$_{6}^{14}Cn = 14 - 6 = 8$$

 $p = 6$
 $\frac{n}{p} = \frac{8}{6} = 1.33 > 1$

Hence, $\frac{1^4}{6}$ Chas $\frac{n}{p}$ ratio greater than 1. It emits particles to have $\frac{n}{p} = 1$. Thus, neutron changes to proton by emission of α –particles

 ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$

115 **(b)**

 $(_{2}\text{He}^{4})^{2+}$

 $\alpha-\text{particles}$ have low penetrating power. It is positively (+2) charged helium nucleus

117 (d)

When n = 3, l = 0, 1, 2 *i.e.*, there are 3s, 3p and 3d-orbital's. If all these orbitals are completely occupied as

Total 18 electrons, 9 electrons with $s = +\frac{1}{2}$ and 9 with

$$s=-\frac{1}{2}.$$

119 **(b)**

 $^{1}_{1}H + ~^{1}_{1}H \rightarrow ~^{2}_{1}H$

 ${}^2_1\text{H} + {}^1_1\text{H} \rightarrow {}^3_2\text{He} \dots$

120 **(b)**

In hydrogen bomb, nuclear fusion takes place

121 **(a)**

Atomic number =24 Structure is $3d^5$, $4s^1$, n = 6Total spin = $\pm \frac{1}{2} \times 6 = \pm 3$ Magnetic moment = $\sqrt{n(n+2)} = \sqrt{6(6+2)} =$

√48 BM 122 (d)

 $N_1\lambda_1 = N_2\lambda_2$ at equilibrium

 $\frac{N_1}{t_1} = \frac{N_2}{t_2} t_1$ and t_2 are half-lives

If $t_1 = t_2$ then $N_1 = N_2$

If $\lambda_1 = \lambda_2$ then $N_1 = N_2$

Since, $T_{75} = 2T_{50}$ Hence, if $(T_{75})_1 = (T_{75})_2$ Then $N_1 = N_2$ 126 (c) Hund's rule 127 (b) For disintegration $N_1\lambda_1 = N_2\lambda_2$ $N_2 = \frac{\lambda_1}{\lambda_2} N_1 = \frac{1 \times 10^{-2}}{1 \times 0^{-5}} \times 200$ $= 2 \times 10^{6}$ 129 (c) Cl(Z = 18) $[Ne]3s^23p^5$ For the last electron: n = 3, l = 1, m = -1, 0, or +1130 (a) $E = mc^2$ $= m \times 931 \text{ MeV}$ 131 (c) Neutron is absorbed (n)Proton is released (p) $^{14}_{7}$ N(n, p) $^{14}_{6}$ C 132 (a) According to Rutherford's model of atom, an atom consists of a positively chargedheavy part called nucleus where most of the mass of the atom is concentrated. Protons and neutrons are present in the nucleus. Size of the nucleus is very small compared to the size of the atom

Around the nucleus, there is extranuclear part in which there are electrons

Electrons revolve around the nucleus in circular orbit like planets around the sun and they are called planetary electrons

136 **(d)**

 H_1^2 ; T_1^3

138 **(a)**

Atoms having same number of protons are called isotopes

141 **(c)**

Radius of orbit $(r) = \frac{n^2 h^2}{4\pi^2 m e^2} \times \frac{1}{Z}$ In it *h*, π , *m* and *e* are constants, so after substituting these values, we get

$$r = \frac{0.529n^2}{Z} \text{\AA}$$

$$Z = 1 \text{ for H}$$

$$\therefore r_H = \frac{0.529n^2}{1} \text{\AA} \qquad \dots \text{(i)}$$

The transition from n = 2 to n = 1 in H-atom will have the same wavelength as the transition from n = 4 to n = 2 in He⁺ ion.

143 **(a)**

 $E_n = \frac{-13.6}{n^2} Z^2 \text{ eV}$ For n = 2, for H atom, $E = \frac{-13.6}{2^2} 1^2 \text{ eV} = -3.4 \text{ eV}$

Other values cannot be obtained for n = 3,4,5,6 etc

144 **(b)**

 γ —particles are neutral, hence they do not get repelled by the electrostatic force of nuclei

145 **(d)**

 $^{29}_{13}\mathrm{Al} \rightarrow \,^{27}_{13}\mathrm{Al} + 2\,^{1}_{0}n$

146 **(b)**

Due to mass defect some energy is lost as heat energy

148 (a)

Radioactive disintegration is a nuclear process

149 **(b)**

Fe²⁺: [Ar] $3d^6$ unpaired electron=0 Mn²⁺: [Ar] $3d^54s^1$ unpaired electron=2 Cr: [Ar] $3d^4s^2$ unpaired electron=0 If Hund's rule is not followed

150 **(c)**

It capture neutrons and emits α –particle

Thus,
$$(n, \alpha) \stackrel{10}{_{5}} B \xrightarrow[n \uparrow captured]{\alpha \downarrow emitted}$$
⁷₃Li

151 **(a)**

Artificial series is (4n + 1)

152 (c)

Radioactive disintegration is a nuclear process

153 (d)

The nucleus is unstable, if $p/n \ll 1$

154 **(b)**

 $_{24}$ Cr = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ This is the ground state electronic configuration for chromium. There is only one electron in the 4s orbital because d^5 is a more stable half-filled configuration. Reasons for the stability of the halffilled and fully filled orbitals are symmetry and exchange energy 158 (d) ${}_{82}Pb^{208}; p = 82; n = 208 - 82 = 126$ ${}_{83}Bi^{209}; p = 83; n = 209 - 83 = 126$ $n/p \text{ for Pb} = \frac{126}{82} = 1.53$ $n/p \text{ for Bi} = \frac{126}{83} = 1.51$ $\therefore \frac{n}{p} \text{ for Pb} > \frac{n}{p} \text{ for Bi}$ 159 (b) Let $x \alpha$ -particles are emitted ${}_{84}Po^{215} \rightarrow {}_{82}Pb^{211} + x {}_{2}He^{4}$ Equating the atomic mass of both sides 215 = 211 + 4x

$$\therefore x = \frac{215 - 211}{4} = \frac{4}{4} = 1$$

Therefore, one α –particle is emitted

160 **(b)**

Energy of photon =
$$\frac{hc}{\lambda}J = \frac{hc}{e\lambda}eV$$

= $\frac{6.625 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9} \times 1.602 \times 10^{-19}} = 4.14 eV$

For photoelectric effect to occur, energy of incident photons, must be greater than work functions of metal. Hence, only Li, Na, K and Mg have work functions less than 4.14 V.

162 **(b)**

OH of acid is lost in esterification of acid

$$R \stackrel{O}{=} \stackrel{18}{\xrightarrow{}} + R'OH \longrightarrow R \stackrel{O}{=} \stackrel{I}{\xrightarrow{}} -OR' + HOH$$

goes with H₂O

164 **(b)**

5. **False**. See fig.(e) below

- 6. **True**. See fig (g) below
- 7. **True**. See fig (i) below
- 8. **False**. Bosons does not follow Pauli exclusion principle

165 **(b)**

Let the reaction emits $x \alpha$ -particles and $y \beta$ particles ${}_{90}\text{Th}^{232} \rightarrow x {}_{2}\text{He}^{4} + y {}_{-1}e^{0} + {}_{82}\text{Pb}^{208}$ Equating atomic mass number of both sides 232 = 4x + y(0) + 208 $\therefore x = \frac{232 - 208}{4} = \frac{24}{4} = 6$ $\therefore \alpha$ -particle emitted = 6 Equating atomic number of both sides $90 = 82 + 6 \times 2 + y(-1)$ $\therefore y = 94 - 90 = 4$ $\therefore \beta$ -particle emitted = 4

166 **(d)**

 $^{234}_{90}$ th $\xrightarrow{-\alpha_1}^{230}_{88}$ Rn

Note Element with atomic number 88 belongs to IIA

171 (d)

 $n \neq m$

173 **(b)**

According to Rutherford's model of atom, an atom consists of a positively charged heavy part called nucleus where most of the mass of the atom is concentrated. Protons and neutrons are present in the nucleus

Size of the nucleus is very small compared to the size of the atom

Around the nucleus, there is extranuclear part in which there are electrons

Electrons revolve around the nucleus in circular orbits, like planets around the sun, and they are called plantary electrons

174 **(b)**

$$5f^{14}, 6d^3 \Rightarrow 17e^-$$

 $5f^{14} = (n+l) = 5 + 3 = 8$

 $6d^3 = (n+l) = 6+2 = 8$ 177 (a)

 $1 \text{ curie} = 3.7 \times 10^{10} \text{ dps}$

$$-\frac{dN}{dt} = kN$$

3.7 × 10¹⁰ = 4.4 × 10⁻¹² × $\frac{w}{14}$ × 6.02 × 10²³
 $w = 1.96 \times 10^{-1}$ g ≈ 2 × 10⁻⁴kg

179 **(c)**

In the given reaction, conservation of atomic mass and atomic number is violated

180 **(b)**

2K, 8L, 9M, and 2N $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ (K means n = 1, L means n = 2) M means n = 3, N means n = 4) Structure is $3d^1$, $4s^2$ Atomic number 21 The total number of $pe^ 2p^6 + 3p^6 = 12$

181 **(a)**

Isotonic means having the same number of neutrons

	$^{15}_{7}N$	$^{14}_{6}$ C	$^{14}_{9}\text{F}^{\ominus}$
Neutrons	8	8	8
(J)			

182 **(d)**

In all cases daughter elements change to stable nuclei

$${}^{17}_{8}0 \rightarrow {}^{16}_{8}0 + {}^{1}_{0}n \, \text{etc}$$

183 **(b)** $r \approx 10^{-13} \text{cm}$

190 **(c)**

Longest λ or shortest *E*

- 1. $\frac{1}{\lambda} = r\left(\frac{1}{1} \frac{1}{4}\right) = \frac{3R}{4} = 0.75R$
- 2. $\frac{1}{\lambda} = R \times Z^2 \left(\frac{1}{3^2} \frac{1}{4^2}\right) = R \times 9 \times \frac{7}{144} = 0.4375R$
- 3. $\frac{1}{\lambda} = R \times 2^2 \left(\frac{1}{3^2} \frac{1}{4^2}\right) = R \times 4 \times \frac{7}{144} = 0.194R$

4.
$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{5^2}\right) = R \times \frac{21}{100} = 0.21R$$

Lowest value of $1/\lambda$ or highest value of λ or lowest *E* is in (c)

192 (c)

Let x% of Cl^{37} and (100 - x)% of Cl^{35} be present in 17Cl^{35.5} $\therefore 35.5 = \frac{x \times 37 + (100 - x) \times 35}{100}$ Solve for *x*, x = 25 \therefore % of Cl³⁷ = 25 :. % of $Cl^{35} = 75$ ∴ Ratio is 1:3 193 (c) $\bar{v}_1 = \frac{1}{\lambda_1} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5R}{36}$ $\lambda = \frac{36}{5R}$ $\bar{v}_2 = \frac{1}{\lambda_2} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3R}{16}$ $\lambda_2 = \frac{10}{3R}$ When $\frac{36}{5R} \rightarrow 656.1 \text{ nm}$ $\therefore \frac{16}{3R} = \frac{656.1 \times 5R \times 16}{36 \times 3R} = 486 \text{ nm}$ 194 (c) Average life = $1.443 \times \text{half-life}$ $= 1.443 \times 6.0 = 8.658$ h

195 (c)

For transient equilibrium

 $\left(\frac{dN}{dt}\right)_{\text{parent element}} = \left(\frac{dN}{dt}\right)_{\text{daughte}}$

 $\lambda_1 N_1 = \lambda_2 N_2$

 λ_1 and λ_2 are disintegration constant N_1 and N_1 are the number of atoms

Also,
$$\lambda_1 \propto \frac{1}{\text{half-life } t_1}$$
 and $\lambda_2 \propto \frac{1}{t_2}$

Thus, $N_1\lambda_1 = N_2\lambda_2$

$$\frac{N_1}{t_1} = \frac{N_2}{t_2}$$
 or $N_1 t_2 = N_2 t_2$

197 (c)

 $^{238}_{92}$ U $\rightarrow ^{234}_{90}$ th + $^{4}_{2}$ He

lllB α – particle

Elements with atomic number 90 to 103 form 5fseries and are called actinides. They are placed in group IIIB

Three neutrons are released due to attack of one neutron. Additional two electrons further attack U-nucleus and thus a chain reaction starts 199 (d) ${}^{12}_{6}$ C, ${}^{16}_{8}$ O, ${}^{24}_{12}$ Mgwith even neutrons are even protons are satble

200 (d)

- Uub
- $\uparrow \uparrow \uparrow$
- 1 1 2

201 (a)

Shortest \bar{v} means shortest *E* and vice versa When, $n = 1, n_2 = 2$ $\bar{v} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3}{4}R$ Longest \bar{v} means longest E When $n_1 = 1, n_2 = \infty$ $\bar{v} = R\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) = R$

203 (d)

Mass number is a whole number 204 (c) ${}_{13}A^{27} + {}_{2}He^4 \rightarrow {}_{14}P^{30} + {}_{Z}X^A$ Equating mass number of both sides 27 + 4 = 30 + A $\therefore A = 31 - 30 = 1$ Equating atomic number of both sides 13 + 2 = 14 + Z $\therefore Z = 1$ \therefore Particle is $_1$ H¹ 205 (c) $^{24}_{11}\text{Na} \rightarrow ^{24}_{12}\text{Mg} + ^{0}_{-1}\text{e}$

(β)

y = number of half-life = $\frac{60}{15} = 4$

$$N = N_0 \left(\frac{1}{2}\right)^3$$
$$= 100 \left(\frac{1}{2}\right)^4 = \frac{100}{16} = 6.25\%$$

206 (c)

X-rays are not having any charge, therefore they are not deflected by electric and magnetic fields 207 (d)

> True. It is true to the fact that the electron interacts in different manner with the

external magnetic field

True. This splitting is known as Zeeman effect

True.

False. It decreases with increase in the value of atomic number as is evident from the expression

$$E = -\frac{1}{n^2} \left[\frac{2\pi^2 m \left(\frac{Ze^2}{4\pi\varepsilon_0}\right)^2}{h^2} \right]$$

209 **(a)**

2K, 8L, 9M, and 2N $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ (K means n = 1, L means n = 2(M means n = 3, N means n = 4) Structure is $3d^1$, $4s^2$ Atomic number 21 The total number of $s e^ 1s^2 + 2s^2 + 3s^2 + 4s^2 = 8$

210 **(a)**

If Aufbau rule is not followed, electronic configuration is K: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$. Last electron is in 3d (instead of 4s), hence d block (but it is of s block)

211 **(c)**

 $_{7}N^{14} + _{1}H^{1} \rightarrow _{8}O^{15} + _{Z}X^{A}$ Equating mass number of both sides 14 + 1 = 15 + A $\therefore A = 0$ Equating atomic number of both sides 7 + 1 = 8 + Z $\therefore Z = 0$

The particle is
$$\gamma$$

213 **(b)**
Ni(Z = 28) or $3d^8 4s^2$
 \therefore Ni²⁺ = d^8
215 **(d)**
 $\overline{v}_{H_2^{\oplus}} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = 15200 \text{ cm}^{-1}$
 $\overline{v}_{Li^{2+}} = RZ^2\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = 3^2 \times 15200$
= 136800 cm⁻¹
217 **(a)**
Vapour density = 46
Molecular weight= 92
So, compound is N₂O₄
Total number of e⁻ = 7 × 2 + 8 × 4 =

Total number of e^- in 1 mole= $46N_A$

219 **(b)**

When both neutron and protons are even the nucleus is most stable

46

220 **(c)**

₁₁₀D is U u n

 $\uparrow \uparrow \uparrow$

221 **(c)**

False. The half-filled and fully-filled electronic configurations are more stable. It is due to the larger exchange energy

False. The symbol *s*stands for sharp-a term used in the characterization of spectral lines. The symbols *p*, *d* and *f* stand for principal, diffuse, and fundamental, respectively

True.

False. The expression is $E = hc/\lambda$

Hence, energy and wavelength are inversely related

223 **(d)**

 $_{92}U^{235} \rightarrow _{Z}X^{A} + 2 _{2}He^{4} + _{-1}e^{0}$ Equating the mass number of both sides $235 = A + 2 \times 4 + 0$ $\therefore A = 235 - 8 = 227$ Similarly, equating atomic number of both sides $92 = Z + 2 \times 2 - 1$ $\therefore Z = 92 - 3 = 89$ $\therefore _{Z}X^{A} = _{89} Ac^{227}$

A and C have same atomic number and are thus isotopes. Thus, emission of one α –and two β –particles result in the formation of an isotope

226 (c)

The de Broglie wavelength is

$$\lambda = \frac{h}{mv} = \frac{(6.626 \times 10^{-34} \text{J s})}{(0.200 \text{ kg})\{5m/(60 \times 60 \text{ s})\}}$$
$$= 2.4 \times 10^{-30} \text{m}$$

227 **(c)**

1. **True**. The number of orbitals for a given value *l* is equal to the permitted value of *m* which can take values $0, \pm 1, \pm 2, ..., \pm l$, at total of 2l + 1 values

2. **True**.

- 3. **False**. A diamagnetic atom has no unpaired electrons
- 4. **True**.

228 (c)

l = 0 or sorbital

229 (d)

y = number of half-life $= \frac{7.5}{2.5} = 3$

$$N = N_0 \left(\frac{1}{2}\right)^{\gamma}$$
$$= 100 \left(\frac{1}{2}\right)^3$$

Amount left = $\frac{100}{8}$ = 12.5 g

Amount decayed = 100 - 12.5 = 87.5 g

230 **(b)**

1 amu = 1.66×10^{-24} g = 1.66×10^{-27} kg

 $E = mc^2$

$$= 1.66 \times 10^{-27} \times (3 \times 0^8)^2$$

 $= 1.4950 \times 10^{-10} \text{ J}$

 $= \frac{1.4950 \times 10^{-10} \text{ J}}{1.602 \times 10^{-19} \text{ J/eV}}$ $= 933.21 \times 10^{6} \text{ eV}$ = 933.21 MeV

231 **(c)**

According to the conclusions of Rutherford's α scattering experiment,most of the atom is empty. So, the α -particles go across undeflected. The positive charge is concentrated in a very small space in the atom, which deflected the positively charged α -particles. This small and positively charged heavy centre is called the nucleus. α particles that happen to travel in line with the nucleus get deflected by 180°

233 **(a)**

 $^{235}_{92}$ U $\rightarrow {}^{b}_{a}$ X + $^{4}_{2}$ He

b + 4 = 235 thus b = 231

a + 2 = 92 and a = 90

thus, b_aX is ${}^{231}_{90}X$

234 **(b)**

False. The correct statement is as under:

No two electrons in an atom can have the same values of all the four quantum numbers n, l, m, and m_s

True. The expressions are

$$PE = -\frac{Ze^2}{(4\pi\varepsilon_0)r}$$

$$E = KE + PE$$

$$=\frac{1}{2}\frac{Ze^2}{(4\pi\varepsilon_0)r}-\frac{Ze^2}{(4\pi\varepsilon_0)r}=-\frac{1}{2}\frac{Ze^2}{(4\pi\varepsilon_0)r}$$

False. The expression of velocity is $v = \frac{1}{n}$ (constant)

False. The expression of velocity is $E = -\frac{1}{n^2}$ (constant)

235 (a)

If proton increases, then neutron/proton ratio decreases. When neutron changes to proton, a β –particle (electron) is emitted

 ${}^{1}_{0}n \rightarrow {}^{1}_{1}\mathrm{H} + {}^{0}_{-1}\mathrm{e}$

Thus, n (neutron) decreases and p (proton) increases. Thus, neutron/proton decreases

236 **(a)**

The magnitude of the charge should be smallest and other charges should be integral multiple of that smallest charge, so, in this problem, smallest charge is 2.30×10^{-15} , but, other charges are not integral multiple of this charge

So, smallest charge is 1.15×10^{-15} because other charges are integral multiple of this charge

237 (a)

 $t_{1/2} = 1600 \text{ min}, \text{T} = 6400 \text{ min}$ Number of half lines $= \frac{6400}{1600} = 4$

We know that
$$N = \left(\frac{1}{2}\right) N$$

Or
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

238 **(a)**

The larger the value of the principle quantum number, larger the size of the shell and hence the orbital

239 **(c)**

 $\Delta E = hv$ and $\Delta E = \frac{hc}{\lambda}$

The wavelength of a spectral line for an electronic transition is inversely related to the difference in the energy of the energy levels involved in the transition

240 **(b)**

242

yz-plane

Orbital	m	Shape	Nodal plane
p_x	<u>±1</u>	Dumb-bell	уz
p_y	<u>±1</u>	Dumb-bell	ZX
p_z	0	Dumb-bell	xy
(a)			

$${}^{7}_{8}\text{Ar} + {}^{0}_{-1}\text{e} \rightarrow {}^{37}_{17}\text{X}$$

 $^{37}_{17}$ Xwith atomic number 17 is Cl

Thus, ³⁷₁₇Cl

243 (d)

sorbitals are independent of angular wave function. Thus, they do not have any angular node. They have only spherical node. The number of spherical nodes in *s* orbitals are given by (n - 1), where *n* is the principal quantum number

244 **(b)**

False. The neutrino has zero charge and seems to have rest mass equal to zero. It is emitted along with the emission of a position (positive charge of +1e and mass equal to electron). For example

 $^{19}_{10}\text{Ne} \rightarrow ~^{19}_{9}\text{F} + ~^{0}_{1}\text{e} + \text{V}$

Antineutrino is emitted along with the emission of β -particle

True. The expression of magnetic moment is

$$\mu_m = \sqrt{n(n+2)}\mu_B$$

False

False. The correct expression is

$$L = \sqrt{l(l+2)} \left(\frac{h}{2\pi}\right)$$

245 **(b)**

 $^{30}_{15}$ Xwith atomic number – 15 is isotope of phosphorus

247 **(b)**

Wavelength (A)
$3 \times 10^{14} - 3 \times 10^{7}$
$6 \times 10^{6} - 7600$
3800 - 150
150 - 0.1

248 (c)

Binding energy per nucleon =
$$\frac{\text{Total energy}}{\text{number of nucleon}}$$

$$=\frac{28}{4}=7 \text{ MeV}$$

250 **(b)**

Number of spectral lines from n_1 to n_2

$$=\frac{(n_2 - n_1 + 1)(n_2 - n_1)}{2}$$
$$=\frac{(5 - 2 + 1)(5 - 2)}{2} = 6$$

251 (c) For every value of *l*, *m* can be from -lto+lthrough 0(zero). For l = 2, m cannot be -3252 (a) $r_n = \frac{r_1 \text{for H} \times n^2}{Z} = \frac{0.529 \text{ Å} \times n^2}{Z}$ r_2 for Li²⁺ = $\frac{0.529 \times 2^2}{3} = \frac{0.529 \times 4}{3}$ Å 253 (d) Shortest λ will be produced in the ion, which has high Z value Z for $H_2^{\oplus} = 1$, Z for $He^{\oplus} = 2$ Z for D = 2, Z for Li²⁺ = 3 255 (a) Meson 256 **(b)** Lyman series 257 (d) $\frac{\mathrm{KE}}{E_{\mathrm{Total}}} = \frac{1}{2} \frac{-Ze^2}{r_n} \Big/ -\frac{Ze^2}{2r_n} = -1$ 258 (a) Electronic configuration of fluorine and neon are 2,7 and 2, 8, respectively 259 (c) m = 200 g = 0.2 kg $v = 5 \text{ m h}^{-1} = \frac{5}{60 \times 60} \text{ m s}^{-1} = 0.00139 \text{ m s}^{-1}$ $\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{0.2 \times 0.00139} = 2.3 \times 10^{-30} \text{ m}$ 260 (d) Isobars have same atomic mass number 262 **(b)** Catalyst has no effect on nucleus reactions 264 **(b)** Radioactive element has atomic number > 83 267 (d) $T = n \times t_{1/2}$ $\therefore n = \frac{T}{t_{1/2}} = \frac{560}{140} = 4$ Now, $N_t = N_0 \left(\frac{1}{2}\right)^n = 1 \times \left(\frac{1}{2}\right)^4 = \frac{1}{16} \text{g}$ 268 (b) The orbital angular momentum is: $\frac{h}{2\pi}\sqrt{l(l+1)}$ The orbital angular momentum for an electron in sorbital (l = 0) is 0 270 (d)

Any orbital can have a maximum of two electrons and with opposite spins. This is according to Pauli's exclusion principle

Unknown species is ${}_{a}^{b}X$ 235 + 1 = 146 + b + 3b = 8792 + 0 = 67 + aa = 35Thus, ${}^{b}_{a}X$ is ${}^{87}_{35}Br$ 272 (c) Rate of disintegration does not depend upon the environmental factor 274 (d) I, II and III are true 275 (d) $\mathrm{KE} = hv_0 - hv_0$ $hv_1 - hv_0 = 2(hv_2 - hv_0)$ $v_0 = 2(v_2 - v_1)$ $= 2(2.0 \times 10^{16}) - (3.2 \times 10^{16})$ $= 8 \times 10^{15} \text{s}^{-1} = 8 \times 10^{15} \text{ Hz}$ 277 (a) $\overline{v}_{\mathrm{H}_{2}^{\oplus}} = \frac{1}{\lambda_{\mathrm{H}^{\oplus}}} = R\left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)$...(i) $\overline{v}_{\text{He}} = \frac{1}{\lambda_{\text{H}}} = RZ^2 \left(\frac{1}{2^2} - \frac{1}{4^2}\right)$ $= R \times 4 \left(\frac{1}{4} - \frac{1}{16} \right)$ $= R \times \left(\frac{4}{4} - \frac{4}{16}\right) = R \times \left(1 - \frac{1}{4}\right)...(ii)$ Comparing equations (i) and (ii) $\therefore \frac{1}{n^2} = 1, n_1 = 1$ $\frac{1}{n_2^2} = \frac{1}{4}, n_2 = 2$ 279 (c) Average life = $1.44 \times T_{50} = 144$ yr 280 (a) $V_{\text{H}_{\odot}} = \frac{2\pi Z e^2}{nh} \text{ or } V \propto \frac{Z}{n}$ $V_{T} \oplus \propto 1(Z=1, n=1)$

271 (b)

$$V_{\text{Li}^{2+}} \propto \frac{Z}{n} \propto \frac{3}{3} \propto 1(Z=3, n=3)$$

Therefore, velocity of e^- in the third orbit of Li^{2+} is the same velocity of an e^- in the first orbit of H atom, i.e., V

- 281 (d)
 - According to the group displacement law
- 283 **(b)**

The first use of quantum theory to explain the structure of atom was made by Bohr

- 284 (c)
 - 1. **False**. The configuration is $3d^54s^1$
 - 2. **False**. The wavelength of gamma rays is of the order of 10^{-11} m
 - 3. **True**. In hydrogen atom, the energy of an electron depends only on the principal quantum number of the orbital which it occupies
 - 4. **False**. In *xz*-plane, there is no electron density if an electron occupies $3d_{x^2-y^2}$ orbital

285 (d)

	n	α	p	е
е	0	2	1	1
т	1	4	1	1/1832
e/m	0	0.5	1	1837
				1

- 286 **(d)**
- For photon, E = hv (in form of particle and wave) 287 **(a)**

2K, 8L, 9M, and 2N $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ (K means n = 1, L means n = 2(M means n = 3, N means n = 4) Structure is $3d^1$, $4s^2$ Atomic number 21 Total number of unpaired e⁻ $3d_1 = 1, n = 1$

289 (a)

29

$$E_n = \frac{E \text{ for } H \times Z^2}{n^2} = \frac{-13.6 \times 1^2}{25} = -0.54 \text{ eV}$$
2 (a)

True. For ionization, $n_2 = \infty$. Hence

$$\Delta E = R\left(\frac{1}{n_1^2}\right)$$

False. The ionization energy increases in proportion to the square of the positive charge in the nucleus as is evident from the expression

$$R = \frac{2\pi^2 m \left(\frac{Ze^2}{4\pi\varepsilon_0}\right)^2}{h^3 c}$$

 $\Delta \tilde{E}_i = R$

False. The correct expression is $\Delta P \Delta x \ge \frac{h}{4\pi}$

False. For a multi-electron atom, the energy of an orbital depends on both principal and azimuthal quantum numbers. The larger the value of n + l, the larger the energy. For the same value of n + l, the larger the value of n, the larger the energy

293 **(d)**

(d)
$$^{232}_{90}$$
 Th $\xrightarrow{-6\alpha}_{78}^{208}$ X loss of 12 protons (atomic number)
 $_{-4\beta}\downarrow$ and 24 units atomic mass
 $^{208}_{82}$ Y increase in 4 units of atomic number

Thus, ²⁰⁸₈₂Pb

294 **(b)**

Bohr's model is only applicable to a single electron species $(H, H_2^{\oplus}, Li^{2+}, Be^{3+})$

297 (c)

$$t_{1/2} = 30, T = 90 \quad \therefore \ n = \frac{T}{t_{1/2}} = \frac{90}{30} = 3$$

 \therefore Number of half lives = 3

We know that $N = \left(\frac{1}{2}\right)^n N_0$

∴ *N* (Number of atom left after) = $\left(\frac{1}{2}\right)^3 \times 600$ disintegration)

$$\therefore N = \frac{1}{2} \times 600 = 75$$
 atoms

298 **(a)**

The orbital angular momentum is: $\frac{h}{2\pi}\sqrt{l(l+1)}$ The orbital angular momentum for an electron in*d* orbital (l = 2) is

$$\frac{h}{2\pi}\sqrt{l(l+1)} = \frac{h}{2\pi}\sqrt{2(2+1)} = \frac{h}{2\pi}\sqrt{6}$$

299 **(d)**

Ion	Electronic configuration	Unpaired electrons
Mg ²⁺	$1s^2$, $2s^2$ $2p^6$	0
Ti ³⁺	$[Ar]4s^0 3d^1$	1
V ³⁺	$[Ar]4s^0 3d^2$	2
Fe ²⁺	[Ar]3s ⁰ 3d ⁶	4

300 (b)

$$\frac{N_{A}}{N_{B}} = \frac{(T_{50})_{A}}{(T_{50})_{B}}$$

$$3.1 \times 10^{9} = \frac{2 \times 10^{10}}{(T_{50})_{B}}$$

$$(T_{50})_{B} = 6.45 \text{ yr}$$
301 (c)

$$l = 1, \text{ therefore porbitals}$$
303 (a)

$$1s^{2}, 2s^{2}, 2p_{x}^{2}, 2p_{y}^{1}, 2p_{y}^{1}, 2p_{z}^{1} \text{ (Pauli's exclusion principle)}$$
305 (b)
Given,
Amount left $N = 1 - \frac{3}{4} = \frac{1}{4}$

$$N = N_{0} \left(\frac{1}{2}\right)^{n} \Rightarrow \left(\frac{N}{N_{0}}\right) = \left(\frac{1}{2}\right)^{n}$$

$$\Rightarrow \left(\frac{1}{4}\right) = \left(\frac{1}{2}\right)^{n} \text{ or } n = 2$$
We know $T = n \times t_{1/2} \Rightarrow t_{1/2} = \frac{2}{2} = 1 \text{ hr}$
307 (c)

$$r = \frac{n^{2}a_{0}}{z}, \frac{n = 1}{z = 1}$$

$$r_{1} = a_{0}$$

$$r_{2} = 4a_{0}$$

$$r_{3} = 9a_{0}$$
Hence, ratio is 1:4:9
309 (b)
Atomic number of inert gas atom = 20
Atomic mass of inert gas atom = 40 (isobaric to Ar^{40})
$$\therefore \text{ Number of neutron = 40 - 20 = 20}$$
311 (b)

$$H_{\alpha} \text{ line of Balmer series means first line of Balmer series}$$

$$n_{1} = 2, n_{2} = 3$$

$$\overline{v} = \frac{1}{\lambda_{\alpha}} = R\left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) = \frac{5R}{36}$$

$$\therefore \lambda_{\alpha} = \frac{36}{5R} = X$$

$$H_{\beta} \text{ line of Balmer series means, second line of Balmer series, $n_{1} = 2, n_{2} = 4$

$$\overline{v} = \frac{1}{\lambda_{\beta}} = R\left(\frac{1}{2^{2}} - \frac{1}{4^{2}}\right) = \frac{3R}{16}$$

$$\therefore \lambda_{\beta} = \frac{16}{3R} = X$$
When $\frac{3R}{36} = X$
Then $\frac{16}{3R} = X$
Then $\frac{16}{3R} = \frac{X}{108}$
And the product of the second of the second the s$$

 β –particles are negatively charged hence attracted towards positive plate

316 (c)

$$\frac{-1321}{4} - \left(\frac{1312}{1}\right) = 984 \text{ kJ}$$
317 (c)
Isotones have same number of neutrons
 ${}_{32}\text{Ge}^{76}n = 76 - 32 = 44$
1. ${}_{32}\text{Ge}^{77}n = 77 - 32 = 45$
2. ${}_{33}\text{As}^{77}n = 77 - 33 = 44$
3. ${}_{34}\text{Se}^{77}n = 77 - 34 = 43$
4. ${}_{34}\text{Se}^{78}n = 78 - 34 = 44$
So answer is (c)
318 (b)
Based on rock-dating
 $\left(1 + \frac{[\text{Pb}]}{[\text{U}]} = (2)^n$
 $\left(1 + \frac{\frac{0.618 \times 10^{-6}}{2.238 \times 10^{-6}}\right) = (2)^n$
 $(2)^2 = (2)^n$
 $n = 2$
 $2 = \frac{t}{T_{50}}$
 $t = 2 \times T_{50} = 3 \times 10^9 \text{ yr}$
320 (b)
The radius of an atomic nucleus is of the order of 10^{-13} cm
322 (d)
 $\lambda = \frac{h}{m\lambda} \text{ distance travelled in one second by velocity $V = vcm = \lambda$
 $\lambda = \frac{h}{m\lambda} \Rightarrow \lambda^2 = \frac{h}{m} \Rightarrow \lambda = \sqrt{\frac{h}{m}}$
323 (c)$

2K, 8L, 9M, and 2N $1s^22s^2 2p^63s^2 3p^6 3d^14s^2$

 $\begin{pmatrix} \text{K means } n = 1, \text{L means } n = 2 \\ \text{M means } n = 3, \text{N means } n = 4 \end{pmatrix}$ Structure is $3d^1$, $4s^2$ Atomic number 21 Valency of element in Structure is $3d^1$, $4s^2$ So, e⁻ can be excited form 4*s* and 3*d* both (since energy difference between 3*d* and 4*s* is very very small) So, valency is +2 and +3 both 324 (c) $\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{0.5 \times 100} = 1.324 \times 10^{-34} \times 10^{-1}$ $= 1.324 \times 10^{-35}$ m 325 (d) 5. True. 6. True. 7. True. 8. False. Lyman spectral series lies in the ultraviolet region 327 (a) Number of spectral lines from the ground state $=\frac{n(n-1)}{2}=\frac{5\times4}{2}=10$ 328 (d) The lowest energy state is 1s. It is not possible from this state to lose energy 329 (a) Smaller the half-life, larger the number of atoms thus, $\frac{N_1}{t_1} = \frac{N_2}{t_2}$ $N_1 t_2 = N_2 t_1$ $t_2 = \frac{N_2}{N_1} t_1 - \frac{10}{1} \times 15 = 150 \text{ min}$ 331 (b) The species ${}_{13}Al^{29}$ (number of neutrons = 16) contains more neutrons than the isotope 13Al²⁷ (number of neutrons = 14). Neutrons on decomposition show β-emission $_0n^1 \rightarrow _1\mathrm{H}^1 + _{-1}e^0$ β –particle 333 (d) Hund's rule 335 (a) $\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-27} \text{ erg s}}{\frac{2}{N_A} \times 2.4 \times 10^5 \text{ cm s}^{-1}}$ $\left(\text{Mass of 1 molecule of H}_2 = \frac{2}{6.02 \times 10^{23}}\right)$

 $=\frac{6.6\times10^{-27}\times6.02\times10^{23}}{2\times2.4\times10^5}$ $= 8.27 \times 10^{-9}$ cm $= 0.8 \times 10^{-8} \text{ cm} = 0.8 \text{ Å} \approx 1 \text{ Å}$ 336 (a) Mass defect = 0.02 amu $=\frac{0.02}{N_0}$ g atom⁻¹ $=\frac{0.02}{N_0} \times N_0$ g mol⁻¹ $= 0.02 \text{ g mol}^{-1}$ $E = mc^2 = 0.02 \times 9 \times 10^{20} \text{erg mol}^{-1}$ $=\frac{0.02 \times 9 \times 10^{20} \times 0.002}{8314 \times 10^7 \times 10^6}$ million kcal mol⁻¹ $\approx 430 \left(\begin{array}{c} 1 \text{ million} = 10^6 \\ 8.314 \times 10^7 \text{ erg} = 0.002 \text{ kcal} \end{array} \right)$ 337 (b) 8L, 9M, and 2N 2K, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ $\begin{pmatrix} \text{K means } n = 1, \text{L means } n = 2 \\ \text{M means } n = 3, \text{N means } n = 4 \end{pmatrix}$ Structure is $3d^1$, $4s^2$ Atomic number21 339 (c) Atomic number =7 Structure is $1s^2, 2s^2, 2p^3$ 1 1 1 n = 3, Total spin = $\pm \frac{1}{2}n = \pm \frac{1}{2} \times 3 = \pm \frac{3}{2}$ Magnetic moment = $\sqrt{n(n+2)}$ $=\sqrt{3(3+2)}=\sqrt{15}$ BM 342 (b) For *f* orbital, l = 3, here n = 2But n < l344 (c) Half life is independent to the initial amount of substance 346 (b) The element is chromium atom in the ground state 348 (c) If α –particles are emitted, difference in atomic mass should be in multiple of 4 units (a) 235-231 = 4 units Yes (b) 235-227 = 8 units Yes (c) 235-225 = 10 units No

350 **(a)**

Binding energy = 64 MeV Binding energy/nucleon = 6.4 \therefore number of nucleon = $\frac{64}{6.4} = 10$

351 **(b)**

$$\begin{bmatrix} PE = -\frac{Ze^2}{r_n}, KE = \frac{1}{2}\frac{Ze^2}{r_n} \\ E_{Total} = \frac{-Ze^2}{r_n} + \frac{1}{2}\frac{Ze^2}{r_n} = \frac{-Ze^2}{2r_n} \\ E_{Total} = \frac{1}{2}PE \\ KE = -\frac{1}{2}PE \\ KE = -\frac{1}{2}PE \\ \frac{KE}{PE} = \frac{1}{2}\frac{Ze^2}{r_n} / \frac{-Ze^2}{2r_n} = -\frac{1}{2} \end{bmatrix}$$

352 **(d)**

In the chain reaction.

	Energy	Neutrons
First step	Ε	3
Second	3 <i>E</i>	9
step		
Third step	9 <i>E</i>	27
<i>n</i> th step	$3^{n-1}E$	3 ⁿ

353 **(c)**

Due to β –emission, neutron changes to proton

 ${}^1_0n \rightarrow {}^1_1\mathrm{H} + {}^0_{-1}\mathrm{e}$

$${}^{M}_{Z}A \rightarrow {}^{M}_{Z+1}B + {}^{0}_{-1}e$$

Neutron n = M - Z Neutron = M - (Z + 1)Proton p = Z Proton = Z - 1Proton = Z + 1

Neutron decreases by 1 unit and proton increases by 1 unit

Thus, new ratio is $\left(\frac{n-1}{p+1}\right)$

355 **(a,b,c)**

In d, n = l, i.e., 3 but $l \neq n$

357 **(c)**

When α -particles are sent through a thin metal foil, most of them go straight the foil because most part of the atom is an empty space

358 **(a,c)**

Most of the elements are found in nature as a mixture of isotopes which have different atomic masses. Therefore, the atomic mass of any element is the average of the atomic masses of

isotopes of that element **Example:**

Given that the abundance of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe is 5%, 90% and 5% respectively, the atomic mass of Fe is calculated as follows: Atomic mass of iron = $\frac{(5\times54)+(90\times56)+(5\times57)}{100}$ = 55.95

359 **(b,d)**

Species having the same number of neutrons are called isotones

	⁷⁶ 32Ge	⁷⁷ ₃₃ As	⁷⁸ ₃₄ Se
Neutrons	34	34	34

363 **(b,c)**

Heisenberg principle is only for microscopic particles which are moving with very high speed

364 **(a)**

Excited state is given as $=\frac{-13.6 \text{ eV}}{n^2}$

e.g.,
$$n = 2, E = \frac{-13.6}{4} = -3.4 \text{ eV}$$

366 **(a,d)**

Both (a) and (d) are correct because each *p*orbital has one electron with parallel spin. This is correct in accordance with Hund's rule of maximum multiplicity

372 **(b,c)**

 γ –particle is neutral while in K-capture electrical neutrality is maintained by capturing an electron fron K-shell

373 **(b,d)**

Angular quantum number (l) may have value less than the principal quantum number

i.e.
$$l < n$$

a.4 f : $n = 3, l = 3$
c.2 d : $n = 2, d = 2$

Number of nodes= n - l - 1 = 4 - 0 - 1 = 3

377 **(b,c)**

Mn(atomic number = 25) Electronic configuration

$$= 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$$

$$3d^{5} =$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

Mn²⁺

Electronic configuration = $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$

$$3d^5 =$$

The possible energy values of the excited state for an electron must be integral, multiple to the ground state energy. In other words, energy absorbed or emitted must be integral multiple (Planck's theory)

382 **(a)**

According to (n + l) rule For 2s, n = 2, l = 0 $\therefore n + l = 2$ Similarly for 3d = (n + l) = 54s = (4 + 0) = 4 $5f \rightarrow 5f = (5 + 3) = 8$ $\therefore 2s$ is lower in energy

383 (a,c)

The maximum kinetic energy of photoelectrons is directly proportional to wave number (\overline{v}) and frequency (v) of the incident radiation because energy (E) of photon is given by the relation $E = hv = hc\overline{v}$ $E \propto \overline{v} \propto v$

384 (b,c)

Angular momentum = $\sqrt{l(l+1)}\frac{h}{2\pi}$ For *d* electron, l = 2 \therefore Angular momentum = $\sqrt{2(2+1)}\frac{h}{2\pi} = \sqrt{6} \cdot \frac{h}{2\pi}$ Or $\hbar = \frac{h}{2\pi}$ \therefore Angular momentum = $\sqrt{6} \cdot \hbar$

385 **(a,c,d)**

 $z^{XA} \xrightarrow{-\alpha} z_{-2}Y^{A-4} \quad (\alpha \text{-emission})$ $z^{XA} \xrightarrow{-\beta} z_{+1}Y^{A}$ (\$\beta\$-emission\$) $z^{XA} \xrightarrow{-1} e^{0} z_{+1}Y^{A} \quad (\text{positron -emision})$ $z^{XA} \xrightarrow{-1} e^{0} \rightarrow z_{-1}Y^{A} \quad (\text{electron capture})$

388 (c)

Third highest energy between : n = 5 and n = 1 $\Rightarrow 3 \rightarrow 1$

389 **(b,c)**

Both have even number of neutrons and protons and n/p ratio of Mg = 1 and Cd ≈ 1

391 **(a,b,c)**

Isotopes: Elements that contain same atomic number

395 **(a,b)**

The atomic nucleus contains protons and neutrons

396 (d)

It corresponds to 3p(3), 3d(5), 4s(1), 4p(3), 5s(1) = 13

400 (d)

Tritium is an isotope of hydrogen which has one proton and two neutrons. So, the total is 3

```
403 (a,d)
```

$${}_{13}\text{Al}^{27} + {}_{2}\text{He}^{4} \rightarrow {}_{15}\text{P}^{30} + {}_{0}n^{1}$$

$${}_{96}\text{Am}^{241} + {}_{2}\text{He}^{4} \rightarrow {}_{97}\text{Bk}^{244} + {}_{1}e^{0} + {}_{0}n^{1}$$

407 **(b,d)**

n = 4 (principal shell) m = -2s = +1/2

410 **(a,d)**

In singly filled orbital electrons must align in one direction or they all must be spin-up (\uparrow) or spin-down (\downarrow)

416 **(a)**

$$v = \frac{c}{\lambda} = RcZ^2 \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right)$$
$$= RcZ^2 \left(\frac{1+2n}{n^2(n+1)^2}\right)$$
$$\approx RcZ^2 \frac{(2n)}{n^4} \propto n^{-3}$$

422 (c)

V: 3 unpaired electrons ⇒ *x* Cr: 6 unpaired electrons ⇒ *y* Mn:5 unpaired electrons ⇒ *z* \therefore *y* > *z* > *x*

424 **(a,b,c)**

Refer to Rutherford's atomic experiment

425 **(a,b)**

Both Pb²⁰⁷ and Po²¹⁵ belong to 4n + 3 series 429 **(b)**

For H atom, first Balmar linein series is

$$E_{3} - E_{2} = \frac{-E_{1}(H)}{(3)^{2}} - \frac{E_{1}(H)}{(2)^{2}} = \frac{5E_{1}(H)}{36}$$
For He[⊕]ion (Z = 2)

$$E_{6} - E_{4} = -\frac{E_{1}(H) \times (2)^{2}}{6^{2}} - \frac{E_{1}(H) \times (2)^{2}}{4^{2}}$$

$$= -E_{1}(H) \times 2^{2} \left| \frac{16 - 36}{16 \times 36} \right|$$

$$= \frac{4 \times 20}{36 \times 16} E_{1}(H) = \frac{5E_{1}(H)}{36}$$
434 (a,b,c)
Cr(Z = 24)
[Ar] 3d^{5} 4s^{1}
This is because d⁵ is a more stable half-filled
configuration. Reasons for the stability of half-
filled and fully filled orbitals are symmetry and
exchange energy
For every value of l, m can be from $-l$ to $+l$
through 0
Ag(z = 47)
 $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{10} 4p^{6} 5s^{1} 4d^{10}$
23 electrons have a spin of one type and 24 of the
opposite type

438 (a,d)

 $t_{1/2} = \frac{0.693}{K}$

Therefore, $t_{1/2}$ is always constant and independent of initial concentration

439 (a,b)

Order of energies of different orbital is s

440 **(b)**

Cr: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5(Z = 24 \text{ for Cr})$ $l = 1 \Rightarrow p \text{ orbital} \Rightarrow 12 \text{ electrons}$ $l = 2 \Rightarrow d \text{ orbital} \Rightarrow 5 \text{ electrons}$

441 **(b,c,d)**

Both neutron and proton are magic numbers 442 **(b,c)**

Spin angular momentum = $\sqrt{s(s+1)} \cdot \frac{h}{2\pi}$

$$S = \sqrt{\frac{1}{2}\left(\frac{1}{2} + 1\right)} \frac{h}{2\pi}$$
$$= \frac{\sqrt{3}}{2} \times \frac{h}{2\pi}$$

444 **(b,c,d)**

The choice (a) is incorrect as the oxidation state of nitrogen in HN₃ is $-\frac{1}{3}$ and not -3

446 (a,b,c)

Isotones:Elements that contain same number of neutrons

448 (a,b)

Exp: Number of dark lines (in absorption), i.e., excitation = Number of bright lines (in emission),

i.e., de-excitation

It is possible only when the e^- is excited to n = 2 from ground state

Clearly, $\Delta E = 91.8 \text{ eV}$ and 40.8 eV are possible (Li²⁺) (He^{\oplus})

450 **(c,d)**

Nuclear isomers have same atomic number and atomic mass number. The decay constant depends upon initial amount of substance,

$$K = \frac{2.303}{t} \log \frac{a}{a - x}$$
453 (a,b,c)

Polonium is a radioactive element

457 (a,b,c,d)

In all reactions, an artificial disintegration of a stable nuclei leads to a radioactive isotope

463 **(b,d)**

2 hours = 4 half lives, therefore, amount left = 6.25% of original. Loss of one α -particles does not change the atomic number

465 **(a,d)**

Only the configuration of (a) and (d) follow Hund's rule

466 **(a,b,c)**

IE of hydrogen like species = $IE(H) \times Z^2/n^2$ Radius of orbits in hydrogen like species is given by the relation

$$r_n = 0.529 \times \frac{n^2}{Z} \text{\AA}$$

470 **(a,c)**

Energy of electrons in *n*th state = $-\frac{Z^2}{n^2} \times 13.6 \text{ eV}$

$$E_{2}(H) = -\frac{13.6}{4} eV$$

$$E_{3}(He^{+}) = -\frac{13.6 \times 4}{9}$$

$$\frac{E_{2}}{E_{3}} = \frac{9}{16}$$

$$E_{3} = \frac{16}{9}E_{2}$$

For negative value of E_2 , E_3 will be, negative and for positive value of E_2 , it will also be positive

475 **(a,b)**

Angular momentum = $\sqrt{l(l+1)}\frac{h}{2\pi}$ For *d* electron, l = 2 \therefore Angular momentum = $\sqrt{2(2+1)}\frac{h}{2\pi} = \sqrt{6} \cdot \frac{h}{2\pi}$ Or $\hbar = \frac{h}{2\pi}$ \therefore Angular momentum = $\sqrt{6} \cdot \hbar$

DCAM classes Dynamic Classes for Academic Master