

9.SEQUENCES AND SERIES

Single Correct Answer Type

1.	If <i>x</i> , 2 <i>y</i> , 3 <i>z</i> are in A.P., whe	ere the distinct numbers <i>x</i> ,	y, z are in G.P., then the con	nmon ratio of the G.P. is
	a) 3	b) $\frac{1}{3}$	c) 2	d) $\frac{1}{2}$
2.	If $b_i = 1 - a_i$, $na = \sum_{i=1}^n a_i$	a_i , $nb = \sum_{i=1}^n b_i$, then $\sum_{i=1}^n a_i$	$a_i b_i + \sum_{i=1}^n (a_i - a)^2 =$	
	a) <i>ab</i>	b) <i>—nab</i>	c) (<i>n</i> + 1) <i>ab</i>	d) nab
3.	If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ to $\infty =$	$\frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ eq	quals	
	a) $\pi^2/8$	b) $\pi^2/12$	c) $\pi^2/3$	d) $\pi^2/2$
4.	Consider the sequence 1, 1	2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8,	8, 8, Then 1025 th term v	will be
_	a) 2 ⁹	b) 2 ¹¹	c) 2 ¹⁰	d) 2 ¹²
5.	If x, y, z are in G.P. and a^x	$= b^y = c^z$, then		
~	a) $\log_b a = \log_a c$	b) $\log_c b = \log_a c$	c) $\log_b a = \log_c b$	d) None of these
6.	The sum $\frac{1^3}{1} + \frac{1^3+2^3}{1+3} + \frac{1^3+2^3}{1+3}$	$\frac{3+3^{5}}{3+5}$ + to 16 terms is		
-	a) 246	b) 646	c) 446 $H_1 + 2 H_{-1} + 3$	d) 746
7.	If $H_1, H_2,, H_{20}$ be 20 har	monic means between 2 an	and 3, then $\frac{H_1+2}{H_1-2} + \frac{H_{20}+3}{H_{20}-3} =$	
	a) 20	b) 21	c) 40	d) 38
8.	The value of $\sum_{i=1}^{n} \sum_{i=1}^{i} \sum_{k=1}^{j} \sum_{$	$_{=1}$ 1 = 220, then the value	of <i>n</i> equals	
	a) 11	b) 12	c) 10	d) 9
9.	The value of $0.2^{\log_{\sqrt{5}}\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{2}\right)}$	$(\frac{1}{16}+\cdots)$ is	,	,
	a) 4	b) log 4	c) log 2	d) None of these
10.	The sum 1 + 3 + 7 + 15 +	- 31 + … to 100 terms is		
	a) 2 ¹⁰⁰ – 102	b) 2 ⁹⁹ – 101	c) 2 ¹⁰¹ - 102	d) None of these
11.	The positive integer n for	which $2 \times 2^2 + 3 \times 2^3 + 4$	$\times 2^4 + \dots + n \times 2^n = 2^{n+1}$	⁰ is
	a) 510	b) 511	c) 512	d) 513
12.	If $x_1, x_2,, x_{20}$ are in H.P.	and x_1 , 2, x_{20} are in G.P., th	en $\sum_{r=1}^{19} x_r x_{r+1} =$	
	a) 76	b) 80	c) 84	d) None of these
13.	Let $n \in N$, $n > 25$. Let A , C n. The least value of n for	G, H denote the arithmetic r which $A, G, H \in \{25, 269,\}$	nean, geometric mean and (n, n) is	harmonic mean of 25 and
	a) 49	b) 81	c) 169	d) 225
14.	The sum of 20 terms of th	e series whose r^{th} term is g	given by $T(n) = (-1)^n \frac{n^2 + n}{n}$	$\frac{i+1}{i}$ is
	20	21	21	d) None of these
	a) $\frac{19!}{19!} - 2$	b) $\frac{1}{20!} - 1$	c) $\frac{1}{20!}$,
15.	If $a^2 + b^2$, $ab + bc$ and b^2	$+ c^2$ are in G.P. , then a, b, c	c are in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
16.	If S_p denotes the sum of the	ne series $1 - r^p + r^{2p} - r^3$	$p + \cdots$ to ∞ and S_p the sum	of the series $1 - r^p + $
	$r^{2p} - r^{3p} + \cdots \text{ to } \infty, r <$	1, then $S_p + s_p$ in terms of	S_{2p} is	1
	a) 2 <i>S</i> _{2p}	b) 0	c) $\frac{1}{2} S_{2p}$	$d) - \frac{1}{2}S_{2p}$
17.	Find the sum $(x + 2)^{n-1}$ -	$(x+2)^{n-2}(x+1) + (x+1)$	$(x^{2})^{n-3}(x+1)^{2} + \dots + (x+1)^{n-3}(x+1)^{2} + \dots + (x+1)^{n-3}(x+1)^{2}$	$(-1)^{n-1}$
	a) $(x+2)^{n-2} - (x+1)^n$		b) $(x+2)^{n-1} - (x+1)^{n-1}$	-1
	c) $(x+2)^n - (x+1)^n$		d) None of these	
18.	If the sum of <i>n</i> terms of an	A.P. is $cn(n-1)$, where c	\neq 0, then sum of the squar	es of these terms is
	a) $c^2 n(n+1)^2$	b) $\frac{2}{3}c^2n(n-1)(2n-1)$	c) $\frac{2c^2}{3}n(n+1)(2n+1)$	d) None of these

19.	If S_n denotes the sum of f	first <i>n</i> terms of an A.P. who	se first term is a and $\frac{S_{nx}}{S_{x}}$ is	independent of x , then $S_p =$
	a) <i>p</i> ³	b) <i>p</i> ² <i>a</i>	c) <i>pa</i> ²	d) <i>a</i> ³
20.	If $a_1, a_2, a_3, \dots, a_{2n+1}$ are i	in A.P., then $\frac{a_{2n+1}-a_1}{a_{2n+1}+a_1} + \frac{a_{2n}-a_2}{a_{2n}+a_2}$	$\frac{a_2}{a_2} + \dots + \frac{a_{n+2}-a_n}{a_{n+2}+a_n}$ is equal t	0
	a) $\frac{n(n+1)}{2} \times \frac{a_2 - a_1}{a_{n+1}}$	b) $\frac{n(n+1)}{2}$	c) $(n+1)(a_2 - a_1)$	d) None of these
21.	If the sides of a right angl	ed triangle are in A.P., then	the sines of the acute angle	es are
	a) $\frac{3}{5}, \frac{4}{5}$	b) $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$	c) $\frac{1}{2}, \frac{\sqrt{3}}{2}$	d) None of these
22.	The geometric mean betv	ween -9 and -16 is		
	a) 12	b) —12	c) -13	d) None of these
23.	Concentric circles of radii	i 1, 2, 3,,100 cm are drawi	n. The interior of the smalle	est circle is coloured red
	and the angular regions a	re coloured alternately gre	en and red, so that no two	adjacent regions are of the
	same colour. Then, the to	tal area of the green region	s in sq. cm is equal to	
	a) 1000 <i>π</i>	b) 5050π	c) 4950π	d) 5151π
24.	The third term of a geome	etric progression is 4. The p	product of the first five terr	ns is
	a) 4 ³	b) 4 ⁵	c) 4 ⁴	d) None of these
25.	If a, b, c, d are in G.P., then	$(b-c)^2 + (c-a)^2 + (d+c)^2$	$(-b)^2$ in equal to	
	a) $(a - d)^2$	b) $(ad)^2$	c) $(a + d)^2$	d) $(a/d)^2$
26.	The sum of the series $\frac{x}{x}$	$-+\frac{x^2}{2}+\frac{x^4}{2}+\cdots$ to infir	nite terms, if $ x < 1$, is	
	r	x^{2} 1- x^{4} 1- x^{8} 0 1	$1 \perp r$	d) 1
	a) $\frac{x}{1-x}$	b) $\frac{1}{1-x}$	c) $\frac{1+x}{1-x}$	d) 1
27	If $\ln(a + c) \ln(a - c)$ and	$d \ln(a - 2b + c)$ are in A P	$1 - \lambda$	
27.	a) a b c are in A P	h) $a^2 h^2 c^2$ are in A P	c) a b c are in G P	d) a b c are in H P
28	The sum of $0.2 \pm 0.004 \pm 0.004$	-0.00006 + 0.000008 +	\cdot to ∞ is	
20.	a) $\frac{200}{891}$	b) $\frac{2000}{9801}$	c) $\frac{1000}{9801}$	d) None of these
29.	In a sequence of $(4n + 1)$	terms the frist $(2n + 1)$ te	rms are in AP whose comm	on difference is 2, and the
	last $(2n + 1)$ terms are in GP whose common ratio is 0.5 if the middle terms of the AP and GP are equal			
	then the middle term of t	he sequence is		•
	$n \cdot 2^{n+1}$	$n \cdot 2^{n+1}$	a a a	d) None of these
	a) $\frac{2^n - 1}{2^n - 1}$	$\frac{1}{2^{2n}-1}$	c) $n \cdot 2^n$	-
30. If $a_1, a_2,, a_n$ are in A.P. with common difference $d \neq 0$, then sum of the series sin d [sec a_1 sec a_2		$s \sin d [\sec a_1 \sec a_2 +$		
	$\sec a_2 \sec a_3 + \dots + \sec a_n$	$n-1$ sec a_n] is		
	a) cosec a_n – cosec a	b) $\cot a_n - \cot a$	c) $\sec a_n - \sec a_1$	d) $\tan a_n - \tan a_1$
31.	$a, b, c, d \in R^+$ such that a	, <i>b</i> , and <i>c</i> are in A.P. and <i>b</i> , <i>c</i>	c and d are in H.P., then	
	a) $ab = cd$	b) $ac = bd$	c) $bc = ad$	d) None of these
32.	ABCD is a square of lengt	th $a, a \in N, a > 1$. Let L_1, L_2	, L_3 , be points on <i>BC</i> such	h that $BL_1 = L_1L_2 = L_2L_3 =$
	$\dots = 1 \text{ and } M_1, M_2, M_3, \dots$	be points on <i>CD</i> such that <i>C</i>	$CM_1 = M_1M_2 = M_2M_3 = \cdots$	$= 1.$ Then $\sum_{n=1}^{a-1} (AL_n^2 +$
	<i>LnMn2)</i> is equal to			
	a) $\frac{1}{-a(a-1)^2}$		h) $\frac{1}{-}(a-1)(2a-1)(4a-1)(4a)$	– 1)
	$2^{u(u-1)}$		$2^{(u-1)(2u-1)(4u)}$	1)
	c) $\frac{1}{2}a(a-1)(4a-1)$		d) None of these	
33.	Value of $\left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{3^2}\right)$	$\left(1+\frac{1}{3^4}\right)\left(1+\frac{1}{3^8}\right)\cdots\infty$ is eq	ual to	
	a) 3	b) $\frac{6}{\pi}$	c) $\frac{3}{2}$	d) None of these
34.	If S denotes the sum ton i	5 infinity and S., the sum of <i>n</i>	$\frac{1}{2}$ terms of the series $1 + \frac{1}{2} + \frac{1}{2}$	$\frac{1}{2} + \frac{1}{2} + \cdots$ such that
	$S - S_n < \frac{1}{m}$ then the le	ast value of n is		4 8 , 50000 0000
	1000, ener ene re			

	a) 8	b) 9	c) 10	d) 11
35.	If $(1 + x)(1 + x^2)(1 + x^4)$	$(1 + x^{128}) = \sum_{r=0}^{n} x^r$, t	hen <i>n</i> is equal to	
	a) 256	b) 255	c) 254	d) None of these
36.	Let $S = \frac{4}{19} + \frac{44}{19^2} + \frac{444}{19^3} + \cdots$	• up to ∞ . Then <i>S</i> is equal to		
~-	a) 40/9	b) 38/81	c) 36/171	d) None of these
37.	The first term of an infinit	te geometric series is 21. Th	he second term and the sum	of the series are both
	positive integers. Then wi	hich of the following is not	the possible value of the se	cond term
20	a) 12	D) 14	C) 18 $c_1 \pm c_2 c_1^2 + c_2 c_2^2$	a) None of these $r + \log^3 r + \frac{1}{2} m$
38.	Let $S \subset (0, \pi)$ denote the s	set of values of <i>x</i> satisfying	the equation 8^{1+1}	$x + 1\cos x + 1\cos \omega = 4^3$. Then,
	a) {π/3}	b) { $\pi/3, -2\pi/3$ }	c) $\{-\pi/3, 2\pi/3\}$	d) { $\pi/3, 2\pi/3$ }
39.	The coefficient of x^{19} in the	ne polynomial $(x - 1)(x - 1)$	2) $(x - 2^2) \cdots (x - 2^{19})$ is	
	a) $2^{20} - 2^{19}$	b) 1 – 2 ²⁰	c) 2 ²⁰	d) None of these
40.	In a G.P. the first, third and Then the forth term of the	d fifth terms may be consid e A.P., knowing that its first	ered as the first, fourth and term is 5 is	l sixteenth terms of an A.P.
	a) 10	b) 12	c) 16	d) 20
41.	Consider an A.P. a_1, a_2, a_3	, such that $a_3 + a_5 + a_8 =$	$= 11 \text{ and } a_4 + a_2 = -2$, the	en the value of $a_1 + a_6 + a_7$
	is			
	a) -8	b) 5	c) 7	d) 9
42.	If a, b, c are in A.P., then $\frac{a}{ba}$	$\frac{1}{c}, \frac{1}{c}, \frac{2}{b}$ will be in		
	a) A.P.	b) G.P.	c) H.P.	d) None of these
43.	If the sum to infinity of the	e series $1 + 2r + 3r^2 + 4r^3$	$^3 + \cdots$ is 9/4, then value of r	is
	a) 1/2	b) 1/3	c) 1/4	d) None of these
44.	If $1^2 + 2^2 + 3^2 + \dots + 200$	$3^2 = (2003)(4007)(334)$	and $(1)(2003) + (2)(2002)$) + (3)(2001) + … +
	(2003)(1) = (2003)(334)(x), then x equals			
	a) 2005	b) 2004	c) 2003	d) 2001
45.	If $(1^2 - t_1) + (2^2 - t_2) + $	$\dots + (n^2 - t_n) = \frac{n(n^2 - 1)}{3}$, the	ten t_n is equal to	
	a) <i>n</i> ²	b) 2 <i>n</i>	c) $n^2 - 2n$	d) None of these
46.	Let the positive numbers	a, b, c, and d be in A.P. The	n abc, abd, acd, and bcd are	2
	a) Not in A.P./G.P./H.P.	b) In A.P.	c) In G.P.	d) In H.P.
47.	If the sum of first <i>n</i> term	ns of an AP is cn^2 , then th	ne sum of squares of thes	e <i>n</i> terms is
	$n(4n^2-1)c^2$	$n(4n^2+1)c^2$	$n(4n^2-1)c^2$	$n(4n^2+1)c^2$
	a) <u> </u>	3	3	6
48.	If S_n denotes the sum of fi	rst 'n' terms of an A.P. and	$\frac{S_{3n} - S_{n-1}}{S_{2n} - S_{2n-1}} = 31$, then the val	ue of <i>n</i> is
	a) 21	b) 15	c) 16	d) 19
49.	The sum of an infinite geo	ometric series is 162 and th	e sum of its first <i>n</i> terms is	160. If the inverse of its
	common ratio is an intege	er, then which of the follow	ing is not a possible first ter	m?
	a) 108	b) 144	c) 160	d) None of these
50.	If the sides of a triangle ar satisfies ratio <i>r</i> satisfies the satisfies ratio <i>r</i> satisfies the sa	e in G.P., and its largest ang he inequality	gle is twice the smallest, the	en the common ratio <i>r</i>
	a) $0 < r < \sqrt{2}$	b) $1 < r < \sqrt{2}$	c) 1 < <i>r</i> < 2	d) None of these
51.	If x , $2x + 2$, and $3x + 3$ ar	e first three terms of a G.P.,	then the fourth term is	
	a) 27	b) —27	c) 13.5	d) -13.5
52.	The sum of $i - 2 - 3i + 4$	··· up to 100 terms, where	$i = \sqrt{-1}$ is	
	a) 50(1 – <i>i</i>)	b) 25 <i>i</i>	c) $25(1+i)$	d) 100(1 − <i>i</i>)
53.	Let $f(x) = 2x + 1$. Then t	he number of real number	of real values of <i>x</i> for which	n the three unequal
	numbers $f(x), f(2x), f(4x)$	x) are in G.P. is		
	a) 1	b) 2	c) 0	d) None of these

54.	Let a_n be the n^{th} term of a	G.P. of positive numbers. I	Let $\sum_{n=1}^{100} a_{2n} = \alpha$ and $\sum_{n=1}^{100} a_{2n} = \alpha$	$a_{2n-1} = \beta$, such that $\alpha \neq \beta$
	β , then the common ratio is	S		
	a) <i>α/β</i>	b) β/α	c) $\sqrt{\alpha/\beta}$	d) $\sqrt{\beta/\alpha}$
55.	150 workers were engaged	l to finish a piece of work i	in a certain number of days	. Four workers stopped
	working on the second day	, four more workers stopp	ped their work on the third	day and so on. It took 8
	more days to finish the wo	rk. Then the number of da	ys in which the work was c	ompleted is
	a) 29 days	b) 24 days	c) 25 days	d) None of these
56.	If <i>a</i> , <i>b</i> , <i>c</i> are digits, then the	rational number represer	nted by 0. <i>cababab</i> is	
	a) <i>cab</i> /990		b) $(99c + ba)/990$	
F 7	c) $(99c + 10a + b)/99$	- 13715	d) $(99c + 10a + b)/990$	
57.	Sum of the first <i>n</i> terms of	the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{10}{16} +$	··· is equal to	
50	a) $2^n - n - 1$	b) $1 - 2^{-n}$	c) $n + 2^{-n} - 1$	d) $2^{n} + 1$
58.	Suppose that $F(n+1) = \frac{2}{n}$	$\frac{r(n)+1}{2}$ for $n = 1, 2, 3,$ and	d F(1) = 2. Then, $F(101) e$	quals
	a) 50	b) 52	c) 54	d) None of these
59.	If $(1-p)(1+3x+9x^2+2)$	$27x^3 + 81x^4 + 243x^5) =$	$1 - p^6$, $p \neq 1$, then the value	le of $\frac{p}{x}$ is
	$\frac{1}{2}$	b) 3	$\frac{1}{2}$	d) 2
6.0	a) 3 a (1) b i a		2	
60.	Sum of three numbers in G	.P. be 14. If one is added to	o first and second and 1 is s	ubtracted from the third,
	the new numbers are in A.I	P. The smallest of them is	a) (d) 10
61	$dJ \Delta$	U_{J}^{4}	(j, 0)	uj 10
01.	(p+q) termora d.r. is	$rac{1}{rac{1}{1}}$	$15 b$ where $a, b \in K$, then	d) None of these
	a) $\frac{a^3}{a}$	b) $\frac{b^3}{2}$	c) \sqrt{ab}	uj None of these
	\sqrt{b}	√ a	, , , , , , , , , , , , , , , , , , , ,	
62.	If $a_1, a_2, a_3(a_1 > 0)$ are thr	ee successive terms of a G	.P. with common ratio r , th	e value of <i>r</i> for which
	$a_3 > 4a_2 - 3a_1$ holds is given by	ven by		
	a) 1 < <i>r</i> < 3	b) $-3 < r < -1$	c) $r > 3$ or $r < 1$	d) None of these
63.	If $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$	$\cdots = \frac{n}{4}$, then value of $\frac{1}{1 \times 3}$ +	$\frac{1}{5\times7} + \frac{1}{9\times11} + \cdots$ is	
	a) π/8	b) π/6	c) π/4	d) π/36
64.	If $a_1, a_2, a_3,$ are in A.P., th	ien a_p , a_q , a_r are in A.P. if p	p,q,r are in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
65.	If $\sum_{r=1}^{n} r^4 = l(n)$, then $\sum_{r=1}^{n} r^4 = l(n)$	$_{=1}(2r-1)^4$ is equal to		
	a) $I(2n) - I(n)$	b) $I(2n) - 16I(n)$	c) $I(2n) - 8I(n)$	d) $I(2n) - 4I(n)$
66.	Let T_r and S_r be the r^{tn} term	m and sum up to r^{tn} term	of a series respectively. If f	or an odd number
	$n, S_n = n$ and $T_n = \frac{T_{n-1}}{n^2}$, the	en T_m (<i>m</i> being even) is		
	2 - 2	$2m^2$	(m + 1) ²	d) $\frac{2(m+1)^2}{2(m+1)^2}$
	$\frac{a}{1+m^2}$	$1 + m^2$	$(1)\frac{1}{2+(m+1)^2}$	$(1)\frac{1}{1+(m+1)^2}$
67.	If $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, then	value of $S_n = 1 + \frac{3}{2} + \frac{5}{3} + \frac{5}{3}$	$\cdots + \frac{99}{50}$ is	
	a) <i>H</i> ₅₀ + 50	b) 100 – <i>H</i> ₅₀	c) $49 + H_{50}$	d) <i>H</i> ₅₀ + 100
68.	Three numbers form an inc	creasing G.P. If the middle	number is doubled, then th	e new numbers are in A.P.
	The common ratio of the G	.P. is	_	_
	a) $2 - \sqrt{3}$	b) $2 + \sqrt{3}$	c) $\sqrt{3} - 2$	d) $3 + \sqrt{2}$
69.	If x , y , and z are in G.P., and	1x + 3, y + 3, and z + 3 ar	re in H.P., then	
70	a) $y = 2$	b) $y = 3$	c) $y = 1$	d) $y = 0$
70.	Let α , and β be the roots of	$x^2 - x + p = 0$ and γ and	1 \circ be the root of $x^2 - 4x +$	$q = 0.$ If α, β , and γ, δ are
	III G.P., then the integral value $-2 - 32$	itues of p and q, respective b) -2 3	are	d) _6 _22
71	$a_j = 2, = 32$ If the nth ath ath and ath to	$U_J = 2, S$	$c_j = 0, 3$	$u_{J} = 0, -32$
/ 1.	$\mu = \mu , \gamma , \mu $ and $\lambda = \mu$		p = q, q = r, r = s are	111

	a) A.P.	b) G.P.	c) H.P.	d) None of these
72.	If the ratio of the sum to a	n terms of two A.P.'s is (5 n	+ 3): (3 $n + 4$), then the rat	io of their 17 th terms is
	a) 172:99	b) 168:103	c) 175:99	d) 171:103
73.	If <i>a</i> , <i>b</i> , and <i>c</i> are in A.P. an	d p, p' are, respectively, A.	M. and G.M. between <i>a</i> and	<i>b</i> while <i>q</i> , <i>q</i> ′ are,
	respectively, the A.M. and	I G.M. between <i>b</i> and <i>c</i> , the	n	
	a) $p^2 + q^2 = p'^2 + q'^2$	b) $pq = p'q'$	c) $p^2 - q^2 = p'^2 - q'^2$	d) None of these
74.	Greatest integer by which	$1 + \sum_{r=1}^{30} r \times r!$ is divisible	e is	
	a) Composite number	b) Odd number	c) Divisible by 3	d) None of these
75.	After striking the floor, a	certain ball redounds (4/5) th of height from which it l	nas fallen. Then the total
	distance that it travels be	fore coming to rest. if it is g	zently dropped from a heig	nt of 120 m is
	a) 1260 m	b) 600 m	c) 1080 m	d) None of these
76.	Consider the ten number	$s ar ar^2 ar^3 \dots ar^{10}$. If the	eir sum is 18 and the sum o	f their reciprocals is 6 then
	the product of these ten r	numbers, is		
	a) 81	b) 243	c) 343	d) 324
77.	Jota a a hotoma	of an A D if $a_1 + a_2 + \dots + a_p - p$	p^2 $n \neq a$ then a_6 equals	,
	Let $a_1, a_2, a_3,$ be terms	of all A.P. If $\frac{1}{a_1 + a_2 + \dots + a_q} = \frac{1}{q}$	$\frac{1}{a_{21}^2}$, $p \neq q$, then $\frac{1}{a_{21}}$ equals	
	a) 41/11	b) 7/2	c) 2/7	d) 11/41
78.	In a geometric series, the	first term is <i>a</i> and common	n ratio is r . If S_n denotes the	e sum of the <i>n</i> terms and
	$U_n = \sum_{n=1}^n S_n$ then $rS_n +$	$(1-r)U_n$ equals		
	a) 0	b) <i>n</i>	c) na	d) nar
79.	If x , y , and z are distinct p	prime numbers, then		
	a) x , y , and z may be in A	.P. but not in G.P.	b) x , y , and z may be in G.	P. but not in A.P.
	c) <i>x</i> , <i>y</i> , and <i>z</i> can neither	be in A.P. nor in G.P.	d) None of these	
80.	If $(1 + 3 + 5 + \dots + p) +$	$(1+3+5+\dots+q) = (1-1)^{-1}$	$+3 + 5 + \dots + r$) where eac	ch set of parentheses
	contains the sum of of <i>p</i> -	+ q + r (where $p > 6$) is		
	a) 12	b) 21	c) 45	d) 54
81.	If a_1, a_2, \ldots, a_n are in H.P	., then		
	$\frac{a_1}{a_2+a_3+\cdots+a_n}, \frac{a_2}{a_1+a_3+\cdots+a_n},$, $\frac{a_n}{a_1 + a_2 + \dots + a_{n-1}}$ are in		
	a) A.P.	b) G.P.	c) H.P.	d) None of these
82.	If $\log_2(5 \times 2^x + 1)$, $\log_4($	$(2^{1-x} + 1)$ and 1 are in A.P.,	, then <i>x</i> equals	
	a) log ₂ 5	b) 1 – log ₅ 2	c) log ₅ 2	d) None of these
83.	The 15 th term of the serie	$es 2\frac{1}{2} + 1\frac{7}{2} + 1\frac{1}{2} + \frac{20}{2} + \cdots$	is	
	10	2 13 9 23 10	10	d) None of these
	a) $\frac{10}{39}$	b) $\frac{10}{21}$	c) $\frac{23}{23}$	uj None or these
84.	Let a_1, a_2, a_3, a_4 and a_5 be	e such that a_1, a_2 and a_3 are	e in A.P., a_2 , a_3 and a_4 are in	n G.P., and a_3 , a_4 and a_5 are
	in H.P. Then $\log_e a_1$, \log_e	a_3 and $\log_e a_5$ are in		
	a) G.P.	b) A.P.	c) H.P.	d) None of these
85.	Let $a = 111 \dots 1$ (55 digit	s), $b = 1 + 10 + 10^2 + \dots + 10^2$	$+ 10^4$, $c = 1 + 10^5 + 10^{10} + 10^{10}$	$10^{15} + \dots + 10^{50}$, then
	a) $a = b + c$	b) $a = bc$	c) $b = ac$	d) $c = ab$
86.	The number of terms con	nmon between the series 1	$+2+4+8+\cdots$ to 100 ter	rms and $1 + 4 + 7 + 10 + \cdots$
	to 100 terms is			
	a) 6	b) 4	c) 5	d) None of these
87.	If $\alpha \in \left(0, \frac{\pi}{2}\right)$ then $\sqrt{x^2 + x^2}$	$\frac{1}{r} + \frac{\tan^2 \alpha}{1}$ is always great	ter than or equal to	
	If $uc \left(0, \frac{1}{2}\right)$, then \sqrt{x}	$x + \sqrt{x^2 + x}$ is always given		2
	a) 2 tan α	b) 1	c) 2	d) sec ² α
88.	If $ax^3 + bx^2 + cx + d$ is c	divisible by $ax^2 + c$, then a	, <i>b</i> , <i>c</i> , <i>d</i> are in	
	a) A.P.	b) G.P.	c) H.P.	d) None of these
89.	If the p^{tn} , q^{tn} , and r^{th} term	ms of an A.P. are in G.P., the	en common ratio of the G.P.	is
	a) $\frac{pr}{r^2}$	b) $\frac{r}{r}$	c) $\frac{q+r}{r}$	d) $\frac{q-r}{r}$
	, d,	p	p + q	p - q

90.	The largest term common	to the sequences 1, 11, 21,	31, to 100 terms and 31	, 36, 41, to 100 terms is
	a) 381	b) 471	c) 281	d) None of these
91.	The number of terms of a	n A.P. is even; the sum of th	e odd terms is 24, and of th	e even terms is 30, and the
	last term exceeds the first	by 10/2, then the number	of terms in the series is	
	a) 8	b) 4	c) 6	d) 10
92.	Let $\{t_n\}$ be a sequence of i	ntegers in G.P. in which t_4 :	$t_6 = 1:4 \text{ and } t_2 + t_5 = 216$	5. Then t_1 is
	a) 12	b) 14	c) 16	d) None of these
93.	If $b_{n+1} = \frac{1}{1-b_n}$ for $n \ge 1$ as	nd $b_1 = b_3$, then $\sum_{r=1}^{2001} b_r^{200}$	¹ is equal to	
	a) 2001	b) -2001	c) 0	d) None of these
94.	The rational number which	ch equals the number $2.\overline{357}$	7 with recurring decimal is	
	a) $\frac{2355}{1001}$	b) $\frac{2379}{997}$	c) <u>2355</u> 999	d) None of these
95.	If <i>a</i> , <i>b</i> , and <i>c</i> are in G.P. and $\frac{a}{x} + \frac{c}{y}$ is	d x, y , respectively, be arith	hmetric means between <i>a</i> , i	b and b, c, then the value of
	a) 1	b) 2	c) 1/2	d) None of these
96.	If the sum of the first 2 <i>n</i> to	erms of the A.P. 2, 5, 8,, is	s equal to the sum of the first	st <i>n</i> terms of A.P. 57, 59, 61,
	, then <i>n</i> equals			
	a) 10	b) 12	c) 11	d) 13
97.	If x , y , and z are p^{th} , q^{th} and	nd r th terms respectively o	f an A.P. and also of a G.P., t	hen $x^{y-z}y^{z-x}z^{x-y}$ is equal
	to			
	a) <i>xyz</i>	b) 0	c) 1	d) None of these
98.	In an A.P. of which <i>a</i> is the	e first term, if the sum of the	e first <i>p</i> terms is zero, then	the sum of the next <i>q</i>
	terms is			
	a) $-\frac{a(p+q)p}{q+1}$	b) $\frac{a(p+q)p}{p+1}$	c) $-\frac{a(p+q)q}{p-1}$	d) None of these
99.	If three positive real num	bers <i>a</i> , <i>b</i> , <i>c</i> are in A.P., such	that $abc = 4$, then the mini	imum value of <i>b</i> is
	a) $2^{1/3}$	b) $2^{2/3}$	c) $2^{1/2}$	d) $2^{3/2}$
100.	The sum of the series $a - $	(a+d) + (a+2d) - (a+d)	$(3d) + \cdots$ up to $(2n + 1)$ te	rms is
	a) <i>-nd</i>	b) $a + 2nd$	c) $a + nd$	d) 2 <i>nd</i>
101.	101. The sum of 20 terms of a series of which every even term is 2 times the term before it, and every odd		fore it, and every odd term	
	is 3 times the term before	it, the first term being unit	y is	
	a) $\left(\frac{2}{7}\right) (6^{10} - 1)$	b) $\left(\frac{3}{7}\right)(6^{10}-1)$	c) $\left(\frac{3}{5}\right)(6^{10}-1)$	d) None of these
102.	If the sum of <i>m</i> terms of a	n A.P. is the same as the su	m of its <i>n</i> terms, then the su	m of its $(m + n)$ terms is
	a) <i>mn</i>	b) <i>-mn</i>	c) 1/mn	d) 0
103.	If <i>a</i> , <i>b</i> , and <i>c</i> are in A.P., <i>p</i> ,	q and r are in H.P. and ap, l	<i>bq</i> , and <i>cr</i> are in G.P., then ^{<i>p</i>}	$\frac{r}{r}$ + $\frac{r}{r}$ is equal to
	ac	а с	h a	^p p ¹
	a) $\frac{a}{c} - \frac{c}{a}$	b) $\frac{a}{c} + \frac{c}{a}$	c) $\frac{b}{a} + \frac{q}{b}$	d) $\frac{b}{a} - \frac{q}{b}$
104	Coefficients of r^{18} in $(1 \pm$	$r \pm 2r^2 \pm 3r^3 \pm \pm 18r^2$	$\frac{18}{2}$ is equal to	y D
101.	a) 995	h) 1005	c) 1225	d) None of these
105	If a h and c are in GP th	en the equations $ax^2 + 2b^2$	$r + c = 0$ and $dr^2 + 2er + 1$	f = 0 have a common root
105.	if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in			
	a) A.P.	b) G.P.	c) H.P.	d) None of these
106.	If <i>a</i> , <i>b</i> , and <i>c</i> are in G.P., th	en $a + b$, 2 b , and $b + c$ are	in	-
	a) A.P.	b) G.P.	c) H.P.	d) None of these
107.	If in a progression a_1, a_2, \ldots	, etc., $(a_r - a_{r+1})$ bears a	constant ratio with $a_r \times a_r$	$_{+1}$, then the terms of the
	progression are in			
	a) A.P.	b) G.P.	c) H.P.	d) None of these

108.	$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \cdots}$	$\frac{1}{x(2r+1)}$ is equal to		
	a) $\frac{1}{3}$	b) $\frac{3}{2}$	c) $\frac{1}{2}$	d) None of these
109.	Consider an infinite geom term is 3/4, then	etric series with first term o	a and common ratio r. If its	sum is 4 and the second
	a) $a = \frac{4}{7}, r = \frac{3}{7}$	b) $a = 2, r = \frac{3}{8}$	c) $a = \frac{3}{2}, r = \frac{1}{2}$	d) $a = 3, r = \frac{1}{4}$
110.	<i>ABC</i> is a right-angled trian $n + 1$ equals parts and $L_1 I$ then the sum of the length	ngle in which $\angle B = 90^{\circ}$ and $M_1, L_2M_2,, L_nM_n$ are line s	$BC = a$. If <i>n</i> points L_1, L_2 , segments parallel to <i>BC</i> an	\dots, L_n on AB is divided in d M_1, M_2, \dots, M_n are on AC ,
	a) $\frac{a(n+1)}{2}$	b) $\frac{a(n-1)}{2}$	c) $\frac{an}{2}$	d) None of these
111.	If <i>a</i> , <i>b</i> and <i>c</i> are in A.P. the a) 2 <i>abc</i>	n $a^3 + c^3 - 8b^3$ is equal to b) 6 <i>abc</i>	c) 4 <i>abc</i>	d) None of these
112.	An infinite GP has first t	erm <i>x</i> and sum 5, then		
	a) $x < -10$	b) $-10 < x < 0$	c) $0 < x < 10$	d) $x > 10$
113.	If t_n denotes the n^{th} term	of the series $2 + 3 + 6 + 12$	$1 + 18 + \dots$ then t_{50} is	
111	a) $49^2 - 1$	b) 49^2	c) $50^2 + 1$	d) $49^2 + 2$
114.	The coefficient of x^{13} in the x^{13} in the x^{13}	the product $(x - 1)(x - 3)$.	(x - 99) is	d) None of these
115	If a h and c are in ΔP and	b = a c = b and a are in (CJ = 2500	u) None of these
115.	a) 1.2.3	a b = a, c = b and a are in c h) 1.3.5	c) $2.3.4$	d) 1·2·4
116.	The sum of an infinite G.P.	is 57 and the sum of their (cubes is 9747, then commo	on ratio of the G.P. is
	a) 1/3	b) 2/3	c) 1/6	d) None of these
117.	The maximum sum of the	series $20 + 19^{\frac{1}{2}} + 18^{\frac{2}{2}} + \cdots$	· is	,
	a) 210	b) 200	c) 220	d) None of these
118	Let $a \in (0, 1]$ satisfies the	equation $a^{2008} - 2a + 1 =$	$0 \text{ and } S = 1 + a + a^2 + \cdots$	$+a^{2007}$ Sum of all possible
110.	value(s) of S is			
	a) 2010	b) 2009	c) 2008	d) 2
119.	The line $x + y = 1$ meets :	x-axis at A and v-axis at B.	<i>P</i> is the mid-point of <i>AB</i> :	a) <u>-</u>
	P_1 is the foot of the perper	ndicular from <i>P</i> to <i>OA</i> :	, i i i i i i i i i i i i i i i i i i i	
	M_1 is that of P_1 from OP ; P_1	P_2 is that of M_1 from OA ; M_2	is that of P_2 from OP ; P_3 is	that of M_2 from OA ; and
	so on.			
	If P_n denotes the n^{th} foot of	of the perpendicular on OA:	: then <i>OP_n</i> is	
	P M_1 M_2 Q $P_3 P_2 P_1$ A			
	a) $\left(\frac{1}{2}\right)^{n-1}$	b) $\left(\frac{1}{2}\right)^n$	c) $\left(\frac{1}{2}\right)^{n+1}$	d) None of these
120.	The sum to 50 terms of th	e series $1 + 2(1 + \frac{1}{2}) + 3$	$\left(1+\frac{1}{2}\right)^2+\cdots$ is given by	
	a) 2500	b) 2550	$\binom{2}{50}$ (2, 50) (2	d) None of these
121	If $t = \frac{1}{(m+2)(m+2)}$ for	$n_{m} = 1.2.2$ then $\frac{1}{2} + \frac{1}{2}$	1^{1} 1^{1}	uj None of these
161.	$11 \iota_n = \frac{1}{4} (n+2)(n+3) \text{ IO}$	$n = 1, 2, 3,, \text{ then } \frac{1}{t_1} + \frac{1}{t_2}$	$+\frac{1}{t_3}+\cdots+\frac{1}{t_{2003}}=$	1000
	a) $\frac{4006}{2006}$	b) $\frac{4003}{2007}$	c) $\frac{4006}{2000}$	d) $\frac{4006}{2000}$
177	3006	3007	3008	3009
144.	The sum of series $1 + \frac{1}{5} + \frac{1}{5}$	$\frac{1}{5^2} + \frac{1}{5^3} + \cdots \propto 1S$		

Page | 7

100	a) 7/16 The value of $\sum_{n=1}^{n} (x + x)$	b) $5/16$	c) 105/64	d) 35/16
123	a) $(-1)^n [(n+1)a^{n+1} - a]$	ar(-a) is equal to	b) $(-1)^n (n+1) a^{n+1}$	
	$(n+2)a^{n+1}$	v]	na^n	
	c) $(-1)^n \frac{2}{2}$		a) $(-1)^n \frac{1}{2}$	
124	. If $ a < 1$ and $ b < 1$, the	n the sum of the series $1 +$	$(1+a)b + (1+a+a^2)b^2$	$+(1+a+a^2+a^3)b^3+$
	••• is		1	
	a) $\frac{1}{(1-a)(1-b)}$		b) $\frac{1}{(1-a)(1-ab)}$	
	c) $\frac{1}{(1-b)(1-ab)}$		d) $\frac{1}{(1-a)(1-b)(1-ab)}$	<u>,</u>
125	If $a, \frac{1}{n}, c$ and $\frac{1}{n}, q, \frac{1}{r}$ form two	vo arithmetic progressions	of the same common differ	rence, then <i>a</i> , <i>q</i> , <i>c</i> are in A.P.
	if p p			
	a) <i>p, b, r</i> are in A.P.	b) $\frac{1}{n}$, $\frac{1}{h}$, $\frac{1}{r}$ are in A.P.	c) <i>p</i> , <i>b</i> , <i>r</i> are in G.P.	d) None of these
126	Let $\alpha, \beta \in R$. If α, β^2 be th	e roots of quadratic equation	$pon x^2 - px + 1 = 0 and \alpha^2,$	β be the roots of quadratic
	equation $x^2 - qx + 8 = 0$, then the value of 'r' if $\frac{r}{8}$ b	e arithmetic mean of <i>p</i> and	q is
	a) $\frac{83}{2}$	b) 83	c) 83	പ <u>83</u>
105	2 16 14 2	$0^{2} + 10^{2} = 0^{10}$	8	4
127	If x, y, z are real and $4x^2$ -	$+9y^2 + 16z^2 - 6xy - 12y$	z - 8zx = 0, then x, y, z are	e in
100	a) A.P.	DJGP.	CJ H.P.	d) None of these
128	. Let $a_1, a_2,, a_{10}$ be in A.P	h_1, h_2, \dots, h_{10} be in H.	P. If $a_1 = h_1 = 2$ and $a_{10} = 2$	$h_{10} = 3$, then $a_4 h_7$ is
100	aj Z	DJ 3	CJ 5	
129	If a, x and b are in A.P., $a, \frac{1}{2}$	y, and b are in G.P. and a, z	b are in H.P. such that $x =$	9z and $a > 0, b > 0$, then
400	a) $ y = 3z$	b) $x = 3 y $	c) $2y = x + z$	d) None of these
130	• The sum to 50 terms of th	e series $\frac{3}{1^2} + \frac{3}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 2^2}$	$\frac{1}{3^2} + \cdots$ is	
	a) $\frac{100}{100}$	b) $\frac{150}{1}$	c) $\frac{200}{200}$	d) $\frac{50}{-1}$
101	17	17	⁵ 51	17 2
131	• The harmonic mean of the	e roots of the equation (5 +	$(\sqrt{2})x^2 - (4 + \sqrt{5})x + 8 +$	$2\sqrt{5} = 0$ is
	a) 2	b) 4	c) 6	d) 8
		Multiple Correct	Answers Type	
132	. The consecutive digits of a form an A.P. If 792 is subt reverse order. Then numb	a three digit number are in racted from this, then we g per is divisible by	G.P. If the middle digit be in et the number constituting	ncreased by 2, then they of same three digits but in

d) None of these a) 7 b) 49 c) 19 133. In the $20^{\mbox{\tiny th}}$ row of the triangle 1 2 3 4 5 6 7 8 9 10 × × × •. a) Last term = 210 b) First term =191 c) Sum = 4010 d) Sum = 4200 134. If the first and the $(2n - 1)^{st}$ terms of an A.P., a G.P. and a H.P. are equal and their n^{th} terms are a, b and crespectively, then a) a = b = cb) $a \ge b \ge c$ c) a + b = bd) $ac - b^2 = 0$ 135. If $A_1, A_2: G_1, G_2$; and H_1, H_2 are two arithmetic, geometric and harmonic means respectively, between two quantities a and b then ab is equal to

136. Let $E = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$. Then, c) *E* > 2 d) *E* < 2 b) E > 3/2137. If *a*, *b*, and *c*, are in G.P. and *x* and *y*, respectively, be arithmetric means between *a*, *b* and *b*, *c*, then b) $\frac{a}{x} + \frac{c}{y} = \frac{c}{a}$ c) $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$ a) $\frac{a}{r} + \frac{c}{v} = 2$ d) $\frac{1}{x} + \frac{1}{y} = \frac{2}{ac}$ 138. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is 32/81, then b) $r = 2\sqrt{2}/3$ c) $S_{\infty} = 6$ d) None of these a) r = 1/3139. If the first and the (2n - 1)th term of an AP, GP and HP are positive and equal and their *n*th terms are *a*, *b*, *c* respectively, then d) $ac - b^2 = 0$ a) a = b = cb) $a \ge b \ge c$ c) a + c = b140. Let T_r be the r^{th} term of an A.P., for r = 1, 2, 3, ... If for some positive integers m, n, we have $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then T_{mn} equals d) 0 c) 1 a) $\frac{1}{mn}$ b) $\frac{1}{m} + \frac{1}{n}$ 141. If a, b, c are in HP, then the value of $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$ is b) $\frac{1}{4} \left(\frac{3}{c^2} + \frac{2}{ca} - \frac{1}{a^2} \right)$ a) $\frac{2}{hc} - \frac{1}{h^2}$ c) $\frac{3}{b^2} - \frac{2}{ab}$ d) None of these 142. If $S_n = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \cdots$, then a) $S_{40} = -820$ b) $S_{2n} > S_{2n+2}$ c) $S_{51} = 1326$ 143. If x > 1, y > 1, and z > 1 are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$, and $\frac{1}{1+\ln z}$ are in d) $S_{2n+1} > S_{2n-1}$ b) H.P. d) None of these a) A.P. 144. If sum of an infinite G.P. p, 1, 1/p, $1/p^2$, ... is 9/2, then value of p is a) 2 145. For the series, $S = 1 + \frac{1}{(1+3)}(1+2)^2 + \frac{1}{(1+3+5)}(1+2+3)^2 + \frac{1}{(1+3+5+7)}(1+2+3+4)^2 + \cdots$ a) 7th term is 16 b) 7th term is 18 c) Sum of first 10 terms is $\frac{505}{4}$ d) Sum of first 10 terms is $\frac{405}{4}$ 146. $\frac{1}{\sqrt{2}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{11}} + \dots n$ terms, is equal to a) $\frac{\sqrt{3n+2}-\sqrt{2}}{3}$ b) $\frac{n}{\sqrt{2+3n}+\sqrt{2}}$ d) Less than $\sqrt{\frac{n}{3}}$ c) Less than *n* 147. If $x^2 + 9y^2 + 25z^2 = xyz\left(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\right)$, then a) x, y, and z are in H.P. b) $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in A.P. c) x, y, z are in G.P. d) $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in G.P. 148. Consider a sequence $\{a_n\}$ with $a_1 = 2$ and $a_n = \frac{a_{n-1}^2}{a_{n-2}}$ for all $n \ge 3$, terms of the sequence being distinct. Given that a_2 and a_5 are positive integers and $a_5 \le 162$ then the possible values(s) of a_5 can be a) 162 b) 64 c) 32 149. If *p*, *q*, and *r* are in A.P. then which of the following is/are true? b) p^{th} , q^{th} and r^{th} terms of G.P. are in G.P. d) None of these a) p^{th} , q^{th} and r^{th} terms of A.P, are in A.P. c) p^{th} , q^{th} and r^{th} terms of H.P, are in H.P. 150. If *a*, *b*, *c*, and *d* are four unequal positive numbers which are in A.P., then a) $\frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$ b) $\frac{1}{a} + \frac{1}{d} < \frac{1}{b} + \frac{1}{c}$ c) $\frac{1}{b} + \frac{1}{c} > \frac{4}{a+d}$ d) $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$ 151. If n > 1, the values of the positive integer m for which $n^m + 1$ divides $a = 1 + n + n^2 + \dots + n^{63}$ is/are b) 16 c) 32 d) 64 152. If $\sum_{r=1}^{n} r(r+1)(2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then

a) a - b = d - cb) e = 0c) a, b - 2/3, c - 1 are in A.P. d) (b + d)/a is an integer 153. For an increasing A.P. a_1, a_2, \dots, a_n if $a_1 + a_3 + a_5 = -12$ and $a_1a_3a_5 = 80$, then which of the following is/are true? a) $a_1 = -10$ 154. If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c'}$ then b) $a_2 = -1$ c) $a_3 = -4$ d) $a_5 = +2$ a) a, b, and c are in H.P. b) a, b, and c are in A.P. c) b = a + cd) 3a = b + c155. Given that x + y + z = 15 when a, x, y, z, b are in A.P. and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ when a, x, y, z, b are in H.P. Then b) One possible value of a + 2b is 11 a) G.M. of *a* and *b* is 3 c) A.M. of *a* and *b* is 6 d) Greatest value of a - b is 8 156. If $1 + 2x + 3x^2 + 4x^3 + \dots \infty \ge 4$, then a) Least value of x is 1/2b) Greatest value of x is 4/3c) Least value of is x 2/3d) Greatest value of x does not exists 157. For a positive integer *n*, let $a(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{(2^n)-1}$. Then, a) $a(100) \le 100$ d) *a*(200) > 100 b) a(100) > 100c) $a(200) \le 100$ 158. The next term of the G.P. x, $x^2 + 2$, and $x^3 + 10$ is a) $\frac{729}{16}$ b) 6 c) 0 d) 54 159. If the non-zero numbers x, y, z are in AP and $\tan^{-1} x$, $\tan^{-1} y$, $\tan^{-1} z$ are in AP, then b) $y^2 = zx$ d) $z^{2} = xv$ a) x = y = zc) $x^2 = yz$ 160. For a positive integer *n*, let $a(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{(2^n) - 1}$. Then, a) a(100) < 100d) *a*(200) > 100 b) *a*(100) > 100 c) $a(200) \le 100$ 161. Let $a_1, a_2, a_3, ..., a_n$ be in G.P. such that $3a_1 + 7a_2 + 3a_3 - 4a_5 = 0$. Then common ratio of G.P. can be a) 2 b) $\frac{3}{2}$ c) $\frac{5}{2}$ d) $-\frac{1}{2}$ 162. If the sum of *n* terms of an A.P. is given by $S_n = a + bn + cn^2$, where *a*, *b*, *c* are independent of *n*, then b) Common difference of A.P. must be 2b a) a = 0c) Common difference of A.P. must be 2c d) First term of A.P. is b + c163. The numbers 1, 4, 16 can be three terms (not necessarily consecutive) of a) No AP b) Only one GP c) Infinite number of APs d) Infinite number of GPs 164. If *a*, *b*, and *c* are in H.P. then the value of $\frac{(ac+ab-bc)(ab+bc-ac)}{(abc)^2}$ is a) $\frac{(a+c)(3a-c)}{4a^2c^2}$ b) $\frac{2}{bc} - \frac{1}{b^2}$ c) $\frac{2}{bc} - \frac{1}{a^2}$ d) $\frac{(a-c)(3a+c)}{4a^2c^2}$ 165. For $0 < \phi < \pi/2$, if $x = \sum_{n=0}^{\infty} \cos^{2n} \phi$, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$, and $z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$, then a) xyz = xz + yb) xyz = xy + zc) xyz = x + y + zd) xyz = yz + x166. If $p(x) = \frac{1+x^2+x^4+\dots+x^{2n-2}}{1+x+x^2+\dots+x^{n-1}}$ is a polynomial in *x*, then *n* can be b) 10 c) 20 d) 17 a) 5 167. Which of the following can be terms (not necessarily consecutive) of any A.P. a) 1, 6, 19 b) $\sqrt{2}, \sqrt{50}, \sqrt{98}$ c) log 2, log 16, log 128 d) $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$ 168. Let S_1, S_2, \dots be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10 cm, then for which of the following values of n is the area of S_n less than 1 sq. cm? a) 7 b) 8 c) 9 d) 10

Page | 10

169. Let *n* be an odd integers. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$, for every value of θ , then

a) $b_0 = 1, b_1 = 3$	b) $b_0 = 0, b_1 = n$
c) $b_0 = -1, b_1 = n$	d) $b_0 = 0, b_1 = n^2 - 3n + 3$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 170 to 169. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

170

Statement 1: If $x^2 + 9y^2 + 25z^2 = xyz\left(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\right)$, then *x*, *y*, *z* are in H.P. **Statement 2:** If $a_1^2 + a_2^2 + \dots + a_n^2 = 0$, then $a_1 = a_2 = a_3 = \dots = a_n = 0$

171 Let *a*, *b*, *c* be three positive real numbers which are in HP.

Statement 1: $\frac{a+b}{2a-b} + \frac{c+b}{2c-b} \ge 4$. Statement 2: If x > 0, then $x + \frac{1}{x} \ge 4$.

172

Statement 1: If sum f *n* terms of a series $2n^2 + 3n + 1$, then series is an AP.

Statement 2: Sum of *n* terms of an AP is always of the form $pn^2 + qn$.

173

```
Statement 1: If |x - 1|, |x - 3| are first three terms of an AP, then its sixth term is 7< third terms.
```

Statement 2: a, a + d, a + 2d, ... are in AP $(d \neq 0)$, then sixth term is (a + 5d).

174

Statement 1: In a G.P. if the $(m + n)^{\text{th}}$ term be p and $(m - n)^{\text{th}}$ term be q, then its m^{th} term is \sqrt{pq} **Statement 2:** T_{m+n}, T_m, T_{m-n} are in G.P.

175

Statement 1: Sum of the series $1^3 - 2^3 + 3^3 - 4^3 + \dots + 11^3 = 378$

Statement 2: For any odd integer $n \ge 1$, $n^3 - (n-1)^3 + \dots + (-1)^{n-1} 1^3 = \frac{1}{4} (2n-1)(n+1)^2$

176

Statement 1: There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)

Statement 2: Given terms are integers

177

Statement 1: If 3x + 4y = 5, then the greatest value of x^2y^3 is $\frac{3}{16}$.

Statement 2: Greatest value occurs when 9x = 8y.

178

```
Statement 1: Let p_1, p_2, ..., p_n and x be distinct real number such that

(\sum_{r=1}^{n-1} p_r^2) x^2 + 2(\sum_{r=1}^{n-1} p_r p_{r+1}) x + \sum_{r=2}^n p_r^2 \le 0, then p_1, p_2, ..., p_n are in G.P. and when

a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2 = 0, a_1 = a_2 = a_3 = \dots = a_n = 0

Statement 2: If \frac{p_2}{p_1} = \frac{p_3}{p_2} = \dots = \frac{p_n}{p_{n-1}}, then p_1, p_2, \dots, p_n are in G.P.
```

179 Let $a, r \in R - \{0, 1, -1\}$ and n be an even number

Statement 1: $a \times ar \times ar^2 \cdots ar^{n-1} = (a^2 r^{n-1})^{n/2}$

Statement 2: Product of *i*th term from the beginning and from the end in a G.P. is independent of *i*

180

Statement 1:	The sum of <i>n</i> terms of two arithmetic progressions are in the ratio $(7n + 1)$: $(4n + 17)$,
	then the ratio of their <i>n</i> th terms is 7: 4.
Statement 2:	If $S_n = ax^2 + bx + c$, then $T_n = S_n - S_{n-1}$

181

Statement 1:	If the arithmetic mean of two numbers is 5/2, geometric mean of the numbers is 2, then
	the harmonic mean will be 8/5
Statement 2:	For a group of positive numbers (G. M.) ² = (A. M.) × (H. M.)

182

Statement 1:	If sum of <i>n</i> terms of a series is $6n^2 + 3n + 1$ then the series is in AP.

Statement 2: Sum of *n* terms of an AP is always of the form $an^2 + bn$.

183

Statement 1:	3, 6, 12 are in GP, then 9, 12, 18 are in HP.
--------------	---

Statement 2: If middle term is added in three consecutive terms of a GP, resultant will be in HP.

184

	Statement 1:	The numbers $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ cannot be the terms of a single A.P. with non-zero common
		difference
	Statement 2:	If $p, q, r(p \neq q)$ are terms (not necessarily consecutive) of an A.P., then there exists a
		rational number k such that $(r - q)/(q - p) = k$
185		
	Statement 1:	$x = 1111 \cdots 91$ times is composite number

Statement 2: 91 is composite number

Statement 1: Coefficient of x^{14} in $(1 + 2x + 3x^2 + \dots + 16x^{15})^2$ is 560

Statement 2:

$$\sum_{r=1}^{n} r(n-r) = \frac{n(n^2 - 1)}{6}$$

187

Statement 1: If an infinite G.P. has 2^{nd} term x and its sum is 4, then x belongs to (-8, 1)

Statement 2: Sum of an infinite G.P. is finite if for its common ratio r, 0 < |r| < 1

188

Statement 1: Let
$$F_1(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, then $\sum_{r=1}^n F_1(r) = (n+1)F_1(n) - n$.
Statement 2: $\frac{1^{-1} + 2^{-1} + 3^{-1} + \dots + n^{-1}}{n}$
 $> \left(\frac{1+2+3+\dots+n}{n}\right)^{-1}$
or $\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) > \frac{n^2}{\sum n}$
or $\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) > \frac{2n}{(n+1)}$

189

Statement 1: $1^{99} + 2^{99} + \dots + 100^{99}$ is divisible by 10100 **Statement 2:** $a^n + b^n$ is divisible by a + b if *n* is odd

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

190.

Column-I

- (A) If $\sum n = 210$, then $\sum n^2$ is divisible by the (p) 16 greatest prime number which is greater than
- **(B)** Between 4 and 2916 is inserted odd number (q) 10 (2n + 1) G.M's. Then the (n + 1) the G.M. is divisible by greatest odd integer which is less than
- (C) In a certain progression, four consecutive (r) 34 terms are 40, 30, 24, 20. Then the integral part of the next term of the progression is more than
- (D) $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \text{ to } \infty = \frac{a}{b}$, where H.C.F. (s) 30 (*a*, *b*) = 1, then *a* - *b* is less than

CODES :

Column- II

	Α	В	С	D
a)	R,s	p,q	r,s	p,q,r,s
b)	p,q,r,s	r,s	p,q	r,s
c)	p,q	r,s	p,q,r,s	r,s
d)	r,s	p,q,r,s	r,s	p,q

191.

Column-I

Column- II

(A)	If a, b, c :	are in G.P.,	(p)	A.P.			
	log _a 10,	$\log_b 10$, lo	og _c 10 are	in			
(B)	If $\frac{a+be^x}{a-be^x} = \frac{b+ce^x}{b-ce^x} = \frac{c+de^x}{c-de^x}$, then <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in						H.P.
(C)	If a, b, c a	are in A.P.;	<i>a, x, b</i> ar	e in G.P. and	l b, y, c	(r)	G.P.
	are in G.	P., then x^2	b^2, y^2 ar	e in			
(D)	If x, y, x are in G.P., $a^x = b^y = c^z$, then						None of these
	$\log a$, $\log b$, $\log c$ are in						
COD	DES :						
	Α	В	С	D			
പ	a		n	74			
aj	q	ſ	р	Ľ			

b)	r	р	q	S
c)	S	r	р	q
d)	р	S	r	q

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 192 to -192

Directions (Q.No.27 and 28) For first *n* natural numbers n(n + 1)(2n + 1)

$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

If $a_1, a_2, a_3, \dots a_n \in AP$, then sum of n terms of the sequence $\frac{1}{a_1 a_2}, \frac{1}{a_2 a_3}, \dots, \frac{1}{a_n - 1} a_n$ equals $\frac{n-1}{a_1 a_n}$. The sum of n terms of a GP with first term a and common ratio r is given by $S_n = \frac{lr-a}{r-1}$ for $r \neq 1$ and na for r = 1. The sum of infinite term of GP is the limiting value of $\frac{lr-a}{r-1}$ when $n \to \infty$ and -1 < r < 1 where l is the last term of the sequence.

On the basis of above information, answer the following questions.

192. The sum of *n* terms of the series

$$\frac{3}{1^{2}} + \frac{5}{1^{2} + 2^{2}} + \frac{7}{1^{2} + 2^{2} + 3^{2}} + \dots \text{ is}$$

a) $\frac{6n}{n+1}$ b) $\frac{n}{n+1}$ c) $\frac{6n}{(n+1)^{2}}$ d) None of these

Paragraph for Question Nos. 193 to - 193

If *A*, *G* and *H* are respectively arithmetic, geometric and harmonic means between *a* and *b* both being unequal and positive, then

$$A = \frac{a+b}{2} \Rightarrow a+b = 2A$$

$$G = \sqrt{ab} \Rightarrow G^{2} = ab, H = \frac{2ab}{a+b}$$

$$\Rightarrow G^{2} = AH$$

On the basis of above information, answer the following question.

193. If the geometric and harmonic means of two numbers are 16 $12\frac{4}{5}$, then the ratio of one number to the

other is a) 1:4 b) 2:3 c) 1:2 d) 2:1

Paragraph for Question Nos. 194 to - 194

Sum of certain consecutive odd positive integers is $57^2 - 13^2$

194. Number of integers are			
a) 40	b) 37	c) 44	d) 51

Paragraph for Question Nos. 195 to - 195

Consider three distinct real numbers *a*, *b*, *c* in a G.P. with $a^2 + b^2 + c^2 = t^2$ and $a + b + c = \alpha t$. Sum of the common ratio and its reciprocal is denoted by *S*

195. Complete set of α^2 is

a) $\left(\frac{1}{3},3\right)$ b) $\left[\frac{1}{3},3\right]$ c) $\left(\frac{1}{3},3\right) - \{1\}$ d) $\left(-\infty,\frac{1}{3}\right) \cup (3,\infty)$

Paragraph for Question Nos. 196 to - 196

In a G.P., the sum of the first and last term is 66, the product of the second and the last but one is 128 and the sum of the terms is 126

196. If an increasing G.P. is considered, then the number of terms in G.P. isa) 9b) 8c) 12d) 6

Paragraph for Question Nos. 197 to - 197

Four different integers form an increasing A.P. One of these numbers is equal to the sum of the squares of the other three numbers. Then

197. The product of all number a) −2	rs is b) 1	c) 0	d) 2						
Paragraph for Question Nos. 198 to - 198									
Consider the sequence in the fo	orm of groups (1), (2, 2), (3	, 3, 3), (4, 4, 4, 4), (5, 5, 5, 5	i),						
198. The 2000th term of the sequence is not divisible by a) 3b) 9c) 7d) None of the									
Paragraph for Question Nos. 19	9 to - 199								
There are two sets <i>A</i> and <i>B</i> each of which consists of three numbers in A.P. whose sum is 15 and where <i>D</i> and <i>d</i> are the common differences such that $D - d = 1$. If $\frac{p}{q} = \frac{7}{8}$, where <i>p</i> and <i>q</i> are the product of the numbers, respectively, and $d > 0$ in the two sets									
199. Sum of the product of the a) 51	numbers in set A taken two b) 71	o at a time is c) 74	d) 86						
Paragraph for Question Nos. 20	0 to - 200								
Let $A_1, A_2, A_3, \dots, A_m$ be the arit means between 1 and 1024. Th	hmetic means between —2 he product of geometric me	and 1027 and $G_1, G_2, G_3,$ ans is 2 ⁴⁵ and sum of arith	, G_n be the geometric metic means is $1025 imes 171$						
200. The value of $\sum_{r=1}^{n} G_r$ is a) 512	b) 2046	c) 1022	d) None of these						
Paragraph for Question Nos. 20	1 to - 201								
Two consecutive numbers from 1, 2, 3,, <i>n</i> are removed. The arithmetic mean of the remaining numbers is 105/4									
201. The value of <i>n</i> lies in a) [45, 55]	b) [52, 60]	c) [41, 49]	d) None of these						
Paragraph for Question Nos. 20	2 to - 202								
Two arithmetic progressions h	ave the same numbers. The	e ratio of the last term of th	e first progression to first						

term of the second progression is equal to the ratio of the last term of the second progression to the first term of the first progression and is equal to 4, the ratio of the sum of the n terms of the first progression to the sum of the n terms of the second progression to the sum of the n terms of the second progression to the sum of the n terms of the second progression to the sum of the n terms of the second progression is equal to 2

202. The ratio of their common difference is							
a) 12	b) 24	c) 26	d) 9				

Paragraph for Question Nos. 203 to - 203

The numbers *a*, *b*, and *c* are between 2 and 18, such that

- 1. Their sum is 25
- 2. The numbers 2, *a*, and *b* are consecutive terms of an A.P.
- 3. The numbers *b*, *c*, 18 are consecutive terms of a G.P.

203. The value of <i>abc</i> is			
a) 500	b) 450	c) 720	d) None of these

Paragraph for Question Nos. 204 to - 204

Let $T_1, T_2, T_3, ..., T_n$ be the terms of a sequence and let $(T_2 - T_1) = T'_1, (T_3 - T_2) = T'_2, ..., (T_n - T_{n-1}) = T'_{n-1}$ **Case I:**

If $T'_1, T'_2, \dots, T'_{n-1}$ are in A.P., then T_n is quadratic in 'n'. If $T'_1 - T'_2, T'_2 - T'_3$, ..., are in A.P., then T_n is cubic in n **Case II:**

If $T'_1, T'_2, \dots, T'_{n-1}$ are not in A.P., but in G.P., then $T_n = ar^n + b$, where r is the common ratio of the G.P. T'_1, T'_2, T'_3, \dots and $a, b \in R$. Again, if $T'_1, T'_2, \dots, T'_{n-1}$ are not in G.P. but $T'_2 - T'_1, T'_3 - T'_2, \dots, T'_{n-2}$ are in G.P., then T_n is of form $ar^n + bn + c$ and r is the common ratio of the G.P. $T'_2 - T'_1, T'_3 - T'_2, T'_4 - T_3, \dots$ and $a, b, c \in R$

204. The sum of 20 ter	ms of the series $3 + 7 + 14$	$4 + 24 + 37 + \cdots$ is	
a) 4010	b) 3860	c) 4240	d) None of these

Integer Answer Type

- 205. Let *a*, *b*, *c*, *d* be four distinct real numbers in A.P. Then half of the smallest positive value of *k* satisfying $2(a b) + k(b c)^2 + (c a)^3 = 2(a d) + (b d)^2 + (c d)^3$ is
- 206. Let sum of first three terms of G.P. with real terms is $\frac{13}{12}$ and their product is -1. If the absolute value of the sum of their infinite terms is *S*, then the value of 7*S* is
- 207. Let *S* denote sum of the series $\frac{3}{2^3} + \frac{4}{2^{4} \cdot 3} + \frac{5}{2^{6} \cdot 3} + \frac{6}{2^{7} \cdot 5} + \cdots \infty$. Then the value of S^{-1} is
- 208. Let $S = \sum_{n=1}^{9999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(\sqrt[4]{n} + \sqrt[4]{n+1})}$, then *S* equals
- 209. The 5th and 8th terms of a geometric sequence of real numbers are 7! and 8! respectively. If the sum to first *n* terms of the G.P. is 2205, then *n* equals
- 210. The coefficient of the quadratic equation $ax^2 + (a + d)x + (a + 2d) = 0$ are consecutive terms of a positively valued, increasing arithmetic sequence. Then the least integral value of $\frac{d}{a}$ such that the equation has real solutions is
- 211. Let $a_1, a_2, a_3, \dots a_{101}$ are in G.P. with $a_{101} = 25$ and $\sum_{i=1}^{201} a_i = 625$. Then the value of $\sum_{i=1}^{201} \frac{1}{a_i}$ equals
- 212. If the roots of $10x^3 nx^2 54x 27 = 0$ are in harmonic progression, then '*n*' equals
- 213. The terms a_1 , a_2 , a_3 form an arithmetic sequence whose sum is 18. The terms $a_1 + 1$, $a_2 a_3 + 2$, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is
- 214. The difference between the sum of the first k terms of the series $1^3 + 2^3 + 3^3 + \dots + n^3$ and the sum of the first k terms of $1 + 2 + 3 + \dots + n$ is 1980. The value of k is
- 215. Number of positive integral ordered pairs of (*a*, *b*) such that 6, *a*, *b* are in harmonic progression is
- 216. Let $a_n = 16, 4, 1, ...$ be a geometric sequence. Define P_n as the product of the first *n* terms. Then the value of

 $\frac{1}{4}\sum_{n=1}^{\infty}\sqrt[n]{P_n}$ is

- 217. If the equation $x^3 + ax^2 + bx + 216 = 0$ has three real roots in G.P. then b/a has the equal to
- 218. Given a, b, c are in A.P., b, c, d are in G.P. and c, d, e are in H.P. If a = 2 and e = 18, then the sum of all possible value of 'c' is
- 219. Let $a + ar_1 + ar_1^2 + ... + \infty$ and $a + ar_2 + ar_2^2 + ... + \infty$ be two infinite series of positive numbers with the same first term. The sum of the first series is r_1 , and the sum of the second series is r_2 . Then the value of $(r_1 + r_2)$ is
- 220. For a, b, > 0, let 5a b, 2a + b, a + 2b be in A.P. and $(b + 1)^2, ab + 1, (a 1)^2$ are in G.P., then the value of $(a^{-1} + b^{-1})$ is
- 221. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369. The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. If the seventh term of the geometric progression is T_7 , then the value of $T_2/9$ is
- 222. The value of the $\sum_{n=0}^{\infty} \frac{2n+3}{3^n}$ is equal to

9.SEQUENCES AND SERIES

	: ANSWER KEY :														
1)	b	2)	d	3)	а	4)	С		c,d						
5)	С	6)	С	7)	с	8)	С	33)	a,b	34)	b,c	35)	a,d	36)	
9)	а	10)	С	11)	d	12)	a		a,b,c						
13)	d	14)	b	15)	b	16)	a	37)	b,c,d	38)	b	1)	а	2)	С
17)	С	18)	b	19)	b	20)	а		3)	d	4)	d			
21)	а	22)	b	23)	b	24)	b	5)	а	6)	d	7)	b	8)	а
25)	а	26)	а	27)	d	28)	d	9)	b	10)	а	11)	d	12)	а
29)	а	30)	d	31)	С	32)	С	13)	d	14)	а	15)	а	16)	b
33)	С	34)	d	35)	b	36)	b	17)	а	18)	d	19)	b	20)	а
37)	d	38)	d	39)	b	40)	d	1)	b	2)	а	1)	а	2)	а
41)	С	42)	d	43)	b	44)	a		3)	С	4)	С			
45)	d	46)	d	47)	С	48)	b	5)	d	6)	С	7)	d	8)	b
49)	С	50)	b	51)	d	52)	а	9)	С	10)	а	11)	С	12)	d
53)	d	54)	а	55)	С	56)	d	13)	С	1)	8	2)	4	3)	2
57)	С	58)	b	59)	b	60)	а		4)	9					
61)	С	62)	С	63)	а	64)	а	5)	3	6)	7	7)	1	8)	0
65)	b	66)	d	67)	b	68)	b	9)	1	10)	9	11)	7	12)	8
69)	b	70)	а	71)	b	72)	b	13)	6	14)	0	15)	1	16)	6
73)	С	74)	d	75)	С	76)	b	17)	3	18)	6				
77)	d	78)	С	79)	a	80)	b								
81)	С	82)	d	83)	а	84)	b								
85)	b	86)	C	87)	a	88)	d								
89)	d L	90)	d	91) 05)	b	92)	а								
93)	b	94)	С	95)	b	96J	С								
97)	C	98J	C J	99J	D L	100)	C								
101)	C	102)	a	103)	D	104J	D								
105)	a d	100)	C	107	C d	108)	C								
109)	u d	110)	l c	111) 115)	u	112)	L h								
113)	u a	114)	ι 2	110)	a h	110)	บ ว								
121)	a d	122)	a d	173	b h	120)	a c								
121)	u h	126)	u h	123)	C C	124)	d								
129)	h	130)	a	131)	b b	1)	u								
127)	a.b.c	2)	a.b.c	3)	b.d	4)									
	a.b.c	_,		.,	2,4	-)									
5)	a,b,d	6)	a,c	7)	a,b.c	8)									
-,	b.d	-)	,-	.,	,,-	-,									
9)	C	10)	a.b.c	11)	a,b,c,d	12)	b								
13)	b,c	, 14)	a,c	, 15)	a,b,c	, 16)									
2	a,b	2		-		1									
17)	a,c	18)	a,b,c	19)	a,c	20)									
-	a,b,c	-	·	-		-									
21)	a,b,c,d	22)	a,c,d	23)	a,c	24)									
	a,b,d														
25)	a,d	26)	a,d	27)	a,d	28)									
	a,b														
29)	a,d	30)	b,d	31)	a,c,d	32)									

: HINTS AND SOLUTIONS :

5

6

7

1 **(b)**

(b) x, y, and z are in G.P. Hence, $y = xr, z = xr^2$ Also, x, 2y, and 3z are in A.P. Hence, 4y = x + 3z $\Rightarrow 4xr = x + 3xr^2$ $\Rightarrow 3r^2 - 4r + 1 = 0$ $\Rightarrow (3r - 1)(r - 1) = 0$ $\Rightarrow r = 1/3 \ (r \neq 1 \text{ is not possible as } x, y, z \text{ are distinct})$

2

$$\begin{aligned} \mathbf{(d)} &\sum_{i=1}^{n} a_{i}b_{i} = \sum_{i=1}^{n} a_{i}(1-a_{i}) \\ &= na - \sum_{i=1}^{n} a_{i}^{2} \\ &= na - \sum_{i=1}^{n} (a_{i}-a)^{2} + a^{2} + 2a(a_{i}-a)] \\ &= na - \sum_{i=1}^{n} (a_{i}-a)^{2} - \sum_{i=1}^{n} a^{2} - 2a \sum_{i=1}^{n} (a_{i}-a) \\ &\Rightarrow \sum_{i=1}^{n} a_{i}b_{i} + \sum_{i=1}^{n} (a_{i}-a)^{2} \\ &= na - na^{2} \\ -2a(na \\ -na) \\ &\begin{bmatrix} \because \sum_{i=1}^{n} b_{i} = \sum_{i=1}^{n} 1 - \sum_{i=1}^{n} a_{i} \\ &\therefore nb = n - na \\ \text{or } a + b = 1 \end{bmatrix} \\ &= na(1-a) = nab \\ \end{aligned}$$

$$\begin{aligned} \mathbf{(a)} \\ &\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \cdots \\ &= \left(\frac{1}{1^{2}} + \frac{1}{5^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}} + \cdots \right) \\ &- \left(\frac{1}{2^{2}} + \frac{1}{4^{2}} + \frac{1}{6^{2}} + \cdots \right) \\ &= \frac{\pi^{2}}{6} - \frac{1}{4} \left(\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \cdots \right) \\ &= \frac{\pi^{2}}{6} - \frac{1}{4} \left(\frac{\pi^{2}}{6}\right) \end{aligned}$$

4 (c)

 $=\frac{\pi^2}{8}$

 $\Rightarrow 1025^{\text{th}} \text{ term } 2^{10}$

3

Let the 1025th term fall is in the n^{th} group. Then $1 + 2 + 4 + \dots + 2^{n-1} < 1025$ $\leq 1 + 2 + 4 + \dots + 2^n$ $\Rightarrow 2^{n-1} < 1026 \le 2^{n+1}$ $\Rightarrow n = 10$

(c) x, y, and z are in G.P. Hence, $y^2 = -xz$ (1) We have, $a^x = b^y = c^z = \lambda$ (say) $\Rightarrow x \log a = y \log b = z \log c = \log \lambda$ $\Rightarrow x = \frac{\log \lambda}{\log a}, y = \frac{\log \lambda}{\log b}, z = \frac{\log \lambda}{\log c}$ Putting the values of x, y, and z in (1), we get $\left(\frac{\log\lambda}{\log b}\right)^2 = \frac{\log\lambda}{\log a} \frac{\log\lambda}{\log c}$ $\Rightarrow (\log b)^2 = \log a \log c$ $\Rightarrow \log_{h} a = \log_{c} b$ (c) $T_n = \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{1 + 3 + 5 + \dots + n \text{ terms}}$ $= \frac{\sum n^3}{\frac{n}{2} [2 \times 1 + (n-1)2]}$ $=\frac{1}{4} \times \frac{n^2 (n+1)^2}{n^2} = \frac{1}{4} (n^2 + 2n + 1) \quad (1)$ $S_n = \frac{1}{4} \left(\sum n^2 + 2 \sum n + n \right)$ $=\frac{1}{4}\left[\frac{n(n+1)(2n+1)}{6} + 2 \times \frac{n(n+1)}{2} + n\right]$ $=\frac{n}{24}[2n^2+3n+1+6n+6+6]$ $=\frac{n}{24}[2n^2+9n+13]$ Putting n = 16, we get $S_{16} = \frac{16}{24} [2(256) + 144 + 13]$ $=\frac{2}{3}(669) = 446$ (c) $\frac{H_1+2}{H_1-2} + \frac{H_{20}+3}{H_{20}-3} = \frac{\frac{1}{2} + \frac{1}{H_1}}{\frac{1}{2} - \frac{1}{H_1}} + \frac{\frac{1}{3} + \frac{1}{H_{20}}}{\frac{1}{2} - \frac{1}{H_{20}}}$ $=\frac{\frac{1}{2}+\frac{1}{2}+d}{\frac{1}{2}-d-\frac{1}{2}}+\frac{\frac{1}{3}+\frac{1}{3}-d}{\frac{1}{2}+d-\frac{1}{2}}$ $=\frac{\frac{2}{2}+d}{-d}+\frac{\frac{2}{3}-d}{d}$ $=\frac{\frac{2}{3}-1}{d}-2$ $= 2 \times 21 - 2$ [as also, $\frac{1}{3} = \frac{1}{2} + 21d$] = 40

8 (c) The sum equals $\frac{n(n+1)(n+2)}{6} = 220$ Which is true for n = 109 (a) We have, $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1/4}{1 - 1/2} = \frac{1}{2}$ Hence, $0.2^{\log_{\sqrt{5}}(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots)} = 0.2^{\log_{\sqrt{5}}\frac{1}{2}}$ $= (\frac{1}{5})^{\log_{\sqrt{5}}\frac{1}{2}}$ $= (5^{-1})^{2\log_{5}\frac{1}{2}}$ $= (5)^{\log_{5} 4}$ = 4

10 **(c)**

Here the successive differences are 2, 4, 8, 16,... which are in G.P.

$$S = 1 + 3 + 7 + 15 + 31 + \dots + T_{100}$$

$$S = (2^{1} - 1) + (2^{2} - 1) + (2^{3} - 1) + \dots + (2^{100} - 1)$$

$$= (2 + 2^{2} + 2^{3} + \dots + 2^{100}) - 100$$

$$= 2\left(\frac{2^{100} - 1}{2 - 1}\right) - 100$$

$$= 2^{101} - 102$$
(d)

11 **(d)**

We have, $2^{n+10} = 2 \times 2^2 + 3 \times 2^3 + 4 \times 2^4 + \dots + n \times 2^n$ $\Rightarrow 2(2^{n+10}) = 2 \times 2^3 + 3 \times 2^4 + \dots + (n-1)$ $\times 2^n + n \times 2^{n+1}$

Subtracting, we get

$$\begin{aligned} -2^{n+10} &= 2 \times 2^2 + 2^3 + 2^4 + \dots + 2^n - n \times 2^{n+1} \\ &= 8 + \frac{8(2^{n-2} - 1)}{2 - 1} - n \cdot 2^{n+1} \\ &= 8 + 2^{n+1} - 8 - n \times 2^{n+1} = 2^{n+1} - (n)2^{n+1} \\ &\Rightarrow 2^{10} = 2n - 2 \Rightarrow n = 513 \end{aligned}$$

12 **(a)**

Clearly,
$$\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_{20}}$$
 will be in A.P. Hence,
 $\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{x_3} - \frac{1}{x_2} = \dots = \frac{1}{x_{r+1}} - \frac{1}{x_r} = \dots$
 $= \lambda \text{ (say)}$
 $\Rightarrow \frac{x_r - x_{r+1}}{x_r x_{r+1}} = \lambda$
 $\Rightarrow x_r x_{r+1} = -\frac{1}{\lambda} (x_{r+1} - x_r)$
 $\Rightarrow \sum_{r=1}^{19} x_r x_{r+1} = -\frac{1}{\lambda} \sum_{r=1}^{19} (x_{r+1} - x_r)$
 $= -\frac{1}{\lambda} (x_{20} - x_1)$

Now,
$$\frac{1}{x_{20}} = \frac{1}{x_1} + 19\lambda$$

 $\Rightarrow \frac{x_1 - x_{20}}{x_1 x_{20}} = 19\lambda$
 $\Rightarrow \sum_{r=1}^{19} x_r x_{r+1} = 19x_1 x_{20} = 19 \times 4 = 76$
(: $x_1, 2, x_{20}$ are in G.P., then $x_1 x_{20} = 4$)
13 (d)
 $A = \frac{25 + n}{2}, G = 5\sqrt{n}, H = \frac{50n}{25 + n}$
As A, G, H are natural numbers, n must be odd
perfect square. Now, H will be a natural number,
if we take $n = 225$
14 (b)
 $T_r = (-1)^r \left[\frac{r^2 + r + 1}{r!} + \frac{1}{(r-1)!} + \frac{1}{r!} \right]$
 $= (-1)^r \left[\frac{1}{(r-2)!} + \frac{1}{(r-1)!} + \frac{1}{(r-1)!} + \frac{1}{r!} \right]$
 $= \left[\frac{(-1)^r}{r!} + \frac{(-1)^r}{(r-1)!} \right] + \left[\frac{(-1)^r}{(r-1)!} + \frac{(-1)^r}{(r-2)!} \right]$
 $= \left[\frac{(-1)^r}{r!} - \frac{(-1)^{r-1}}{(r-1)!} \right] + \left[\frac{(-1)^{r-1}}{(r-1)!} - \frac{(-1)^{r-2}}{(r-2)!} \right]$
 $= V(r) - V(r - 1)$
 $\therefore \sum_{r=1}^n T_r = V(n) - V(0)$
 $= \left[\frac{(-1)^n}{n!} - \frac{(-1)^{n-1}}{(n-1)!} \right] - 1$
Therefore the sum of 20 terms is
 $\left[\frac{1}{20!} - \frac{-1}{19!} \right] - 1 = \frac{21}{20!} - 1$
15 (b)
 $a^2 + b^2, ab + bc, b^2 + c^2$ are in G.P.
 $\Rightarrow (ab + bc)^2 = (a^2 + b^2)(b^2 + c^2)$
 $\Rightarrow a^2b^2 + b^2c^2 + 2ab^2c$
 $= a^2b^2 + a^2c^2 + b^2c^2 + b^4$
 $\Rightarrow b^4 + a^2c^2 - 2ab^2c = 0$
 $\Rightarrow (b^2 - ac)^2 = 0$
 $\Rightarrow b^2 = ac$
 $\Rightarrow a, b, and c are in G.P.$
16 (a)
 $S_p = \frac{1}{1 - r^p}, S_p = \frac{1}{1 + r^p}, S_{2p} = \frac{1}{1 - r^{2p}}$

Clearly,
$$S_p + s_p = \frac{2}{1 - r^{2p}} = 2S_{2p}$$

7 (c)
We have,
 $\frac{(x+2)^n - (x+1)^n}{(x+2) - (x+1)}$

1

 $= (x+2)^{n-1} + (x+2)^{n-2}(x+1)$ $(x+2)^{n-3}(x+1)^2$ $+\cdots(x-1)^{n-1}$ Hence, the required sum is $(x+2)^n - (x+1)^n$ [:: (x+2) - (x+1) = 1] 18 **(b)** If t_r be the r^{th} term of the A.P., then $t_r = S_r - S_{r-1}$ = cr(r-1) - c(r-1)(r-2)= c(r-1)(r-r+2) = 2c(r-1)We have. $t_1^2 + t_2^2 + \dots + t_n^2$ $= 4c^2(0^2 + 1^2 + 2^2 + \cdots)$ $+(n-1)^{2}$ $=4c^2\frac{(n-1)n(2n-1)}{6}$ $=\frac{2}{3}c^{2}n(n-1)(2n-1)$ 19 (b) $\frac{S_{nx}}{S_x} = \frac{\frac{nx}{2}[2a + (nx - 1)d]}{\frac{x}{2}[2a + (x - 1)d]}$ $=\frac{n[(2a-d)+nxd]}{(2a-d)+xd}$ For $\frac{S_{nx}}{S_{x}}$ to be independent of *x*, $2a - d = 0 \Rightarrow 2a = d$ Now, $S_P = \frac{p}{2}[2a + (p-1)d] = p^2 a$ 20 (a) The general term can be given by $t_{r+1} = \frac{a_{2n+1-r} - a_{r+1}}{a_{2n+1-r} + a_{r+1}}, r = 0, 1, 2, \dots, n-1$ $=\frac{a_1+(2n-r)d-\{a_1+rd\}}{a_1+(2n-r)d+\{a_1+rd\}}$ $=\frac{(n-r)d}{a_1+nd}$ Therefore, the required sum is $S_n = \sum_{r+1}^{n-1} t_{r+1}$ $=\sum_{n=0}^{n-1}\frac{(n-r)d}{a_1+nd}$ $= \left[\frac{n + (n - 1) + (n - 2) + \dots + 1}{a_1 + nd}\right]d$ $=\frac{n(n+1)d}{2a_{n+1}}$ $=\frac{n(n+1)}{2}\frac{a_2-a_1}{a_{n+1}} \quad [\because d=a_2-a_1]$ 21 (a) Let $\angle C = 90^\circ$ being greatest and $B = 90^\circ - A$

The sides are a - d, a and a + d

We have $(a + d)^2 = (a - d)^2 + a^2$ (using Pythagoras Theorem) \therefore 4ad $-a^2 = 0 \Rightarrow a = 4d$ Hence the sides are 3d, 4d, 5d Clearly, $\sin A = \frac{BC}{AB} = \frac{a-d}{a+d} = \frac{3d}{5d} = \frac{3}{5}$ $\sin B = \frac{AC}{AB} = \frac{a}{a+d} = \frac{4d}{5d} = \frac{4}{5}$ a + d22 (b) Required G.M. is $\sqrt{-9 \times -16} = -12$ 23 (b) $\pi[(r_2^2 - r_1^2) + (r_4^2 - r_3^2) + \dots + (r_{100}^2 - r_{99}^2)]$ $= \pi [r_1 + r_2 + r_3 + r_4 + \dots + r_{100}] \quad (\because r_2 - r_1 \\ = r_4 - r_3 = \dots = r_{100} - r_{99} = 1)$ $=\pi[1+2+3+\cdots+r_{100}]$ $= 5050\pi$ sq. cm 24 **(b)** Given, $ar^2 = 4$ $\Rightarrow a \times ar \times ar^2 \times ar^3 \times ar^4 = a^5 r^{10} = (ar^2)^5$ $= 4^{5}$ 25 (a) Let *r* be the common ratio of the G.P., *a*, *b*, *c*, *d*. Then. $b = ar, c = ar^2$ and $d = ar^3$: $(b-c)^2 + (c-a)^2 + (d-b)^2$ $= (ar - ar^{2})^{2} + (ar^{2} - a)^{2} + (ar^{3} - ar)^{2}$ $= a^{2}r^{2}(1-r)^{2} + a^{2}(r^{2}-1)^{2} + a^{2}r^{2}(r^{2}-1)^{2}$ $=a^{2}(r^{6}-2r^{3}+1)$ $= a^2(1 - r^3)^2$ $= (a - ar^3)^2$ $= (a - d)^2$ 26 (a) The general term of the given series is $t_n = \frac{x^{2^{n-1}}}{1 - x^{2^n}} = \frac{1 + x^{2^{n-1}} - 1}{(1 + x^{2^{n-1}})(1 - x^{2^{n-1}})}$

$$\Rightarrow t_n = \frac{1}{1 - x^{2^{n-1}}} - \frac{1}{1 - x^{2^n}}$$
Now,

$$S_n = \sum_{n=1}^n t_n$$

$$= \left[\left\{ \frac{1}{1 - x} - \frac{1}{1 - x^2} \right\} + \left\{ \frac{1}{1 - x^2} - \frac{1}{1 - x^4} \right\} + \cdots + \left\{ \frac{1}{1 - x^{2^{n-1}}} - \frac{1}{1 - x^{2^n}} \right\} \right]$$

$$= \frac{1}{1 - x} - \frac{1}{1 - x^{2^n}}$$
Therefore, the sum to infinite terms is

$$\lim_{n \to \infty} S_n = \frac{1}{1 - x} - 1$$

$$= \frac{x}{1 - x} \quad [\because \lim_{n \to \infty} x^{2n} = 0, \text{ as } |x| < 1]$$
27 (d)
In $(a + c)$, In $(c - a)$, In $(a - 2b + c)$ are in A.P.
Hence, $a + c$, $c - a$, $a - 2b + c$ are in G.P.
Therefore,
 $(c - a)^2 = (a + c)(a - 2b + c)$
 $\Rightarrow (c - a)^2 = (a + c)^2 - 2b(a + c)$
 $\Rightarrow 2b(a + c) = (a + c)^2 - (c - a)^2$
 $\Rightarrow b = \frac{2ac}{a + c}$
Hence, a , b , and c are in H.P.
28 (d)
 $S = \frac{2}{10} + \frac{4}{10^3} + \frac{6}{10^5} + \frac{8}{10^7} + \cdots + \infty$ (1)
 $= \frac{\frac{2}{10}}{1 - \frac{1}{10^2}} + \frac{2 \times (\frac{1}{10^2})}{(1 - \frac{1}{10^2})^2}$
 $= \frac{20}{99} + \frac{200}{9801}$
 $= \frac{2180}{9801}$
29 (a)
Series is $a, a + 2, a + 4, \dots + a + 4n, (a + 4n0.5, a + 4n0.52, \dots a + 4n0.52n - 1$
The middle term of A.P. and G.P. are equal
 $\Rightarrow a + 2n = (a + 4n)(0.5)^n$
 $\Rightarrow a. 2^n + 2^{n+1}n = a + 4n$
 $\Rightarrow a = \frac{4n - n2^{n+1}}{2^n - 1}$
 \Rightarrow The middle term of entire sequence
 $= (a + 4n)0.5 = (\frac{4n - n2^{n+1}}{2^n - 1} + 4n) \frac{1}{2} = \frac{n.2^{n4}}{2^n - 1}$
30 (d)
As $a_1, a_2, a_3, \dots, a_{n-1}, a_n$ are in A.P., hence
 $d = a_2 - a_1 = a_3 - a_2 = \cdots = a_n - a_{n-1}$
sin $d [\sec a_1 \sec a_2 + \sec a_2 \sec a_3 + \cdots$

 $+ \sec a_{n-1} \sec a_n$

 $=\frac{\sin(a_2-a_1)}{\cos a_1\cos a_2}+\frac{\sin(a_3-a_2)}{\cos a_2\cos a_3}+\cdots$ $+\frac{\sin(a_n-a_{n-1})}{\cos a_{n-1}\cos a_n}$ $= (\tan a_2 - \tan a_1) + (\tan a_3 - \tan a_2) + \cdots$ + $(\tan a_n - \tan a_{n-1})$ $= \tan a_n - \tan a_1$ 31 (c) $2b = a + c, c = \frac{2bd}{b+d}$ $\Rightarrow 2bd = c(b+d)$ $\Rightarrow (a+c)d = c(b+d) [as 2b = a+c]$ $\Rightarrow ad + cd = bc + cd$ $\Rightarrow bc = ad$ 32 (c) $(AL_1)^2 + (L_1M_1)^2 = (a^2 + 1^2) + \{(a-1)^2 + 1^2\}$ $(AL_2)^2 + (L_2M_2)^2 = (a^2 + 2^2) + \{(a - 2)^2 + 2^2\}$ $(AL_{a-1})^2 + (L_{a-1}M_{a-1})^2$ $=a^{2} + (a - 1^{2}) + \{1^{2} + (a - 1)^{2}\}$ Therefore, the required sum is $(a-1)a^{2} + \{1^{2} + 2^{2} + \dots + (a-1)^{2}\}$ $+ 2\{1^2 + 2^2 + \dots + (a-1)^2\}$ $= (a-1)a^{2} + 3\frac{(a-1)a(2a-1)}{6}$ $=a(a-1)\left(a+\frac{2a-1}{2}\right)$ $=\frac{1}{2}(a-1)(4a-1)$ 33 (c) Consider the first product, $P = \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{3^2}\right) \left(1 + \frac{1}{3^4}\right) \left(1 + \frac{1}{3^8}\right)$ $...\left(1+\frac{1}{2^{2^n}}\right)$ $+ \frac{1}{1} = \frac{\left(1 - \frac{1}{3}\right)\left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{3^2}\right)\left(1 + \frac{1}{3^4}\right)\left(1 + \frac{1}{3^8}\right)}{\left(1 - \frac{1}{3^2}\right)}$ $= \frac{\left(1 - \frac{1}{3^2}\right)\left(1 + \frac{1}{3^2}\right)\left(1 + \frac{1}{3^4}\right)\left(1 + \frac{1}{3^8}\right)}{\dots\left(1 + \frac{1}{3^{2^n}}\right)}$ $= \frac{\left(1 - \frac{1}{3^2}\right)}{\left(1 - \frac{1}{3^2}\right)}$

$$\begin{pmatrix} 1 - \frac{1}{3^4} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{3^4} \end{pmatrix} \begin{pmatrix} 1 + \frac{1}{3^8} \end{pmatrix} \\ = \frac{\dots \left(1 + \frac{1}{3^{2^n}} \right)}{\left(1 - \frac{1}{3} \right)} \\ = \frac{1}{\left(1 - \frac{1}{3} \right)} \left(1 - \left(\frac{1}{3} \right)^{2^{n+1}} \right) \\ = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^{2^{n+1}} \right) \\ \Rightarrow \left(1 + \frac{1}{3} \right) \left(1 + \frac{1}{3^2} \right) \left(1 + \frac{1}{3^4} \right) \left(1 + \frac{1}{3^8} \right) \dots \text{ infinity} \\ = \lim_{n \to \infty} \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^{2^{n+1}} \right) \\ = \frac{3}{2}$$

34 (d)

We have,

$$S = \frac{1}{1 - \frac{1}{2}} = 2$$

$$S_n = \frac{(1 - 1/2^n)}{(1 - 1/2)} = 2\left(1 - \frac{1}{2^n}\right) = 2 - \frac{1}{2^{n-1}}$$

$$\therefore S - S_n < \frac{1}{1000} \Rightarrow \frac{1}{2^{n-1}} < \frac{1}{1000}$$

$$\Rightarrow 2^{n-1} > 1000$$

$$\Rightarrow n - 1 \ge 10$$

$$\Rightarrow n \ge 11$$
Hence, the least value of *n* is 11
35 **(b)**
Degree of *x* on L.H.S. is
 $1 + 2 + 4 + \dots + 128$
 $= 1 + 2 + 2^2 + \dots + 2^7$
 $= \frac{2^8 - 1}{2 - 1}$
 $= 255$
36 **(b)**
 $S = \frac{4}{19} + \frac{44}{19^2} + \frac{444}{19^3} + \dots$ (1)
 $\Rightarrow \frac{1}{19}S = \frac{4}{19^2} + \frac{44}{19^3} + \dots$ (2)
Subtracting (2) from (1), we get
 $\frac{18}{19}S = \frac{4}{19} + \frac{40}{19^2} + \frac{400}{19^3} + \dots$
 $= \frac{\frac{4}{19}}{1 - \frac{10}{19}}$
 $= 4/9$
 $\Rightarrow S = 38/81$
37 **(d)**
Let the series be 21, 21*r*, 21*r*², ...
Sum $= \frac{21}{1-r}$ is a positive integer

Also 21r is a positive integer

 $S = \frac{(21)(21)}{21-21r}$ as $21r \in N$ hence 21 - 21r must be an integer Also 21*r* < 21 Hence 21 - 21r may be equal to 1, 3, 7 or 9 i.e., must be a divisor of (21)(21)hence 21 - 21r = 1 or 3 or 7 or 9 21r = 20, 18, 14 or 1238 (d) We have that $-1 \le \cos x \le 1$ $\Rightarrow |\cos x| \le 1$ But, $x \in S \Rightarrow x \in (0, \pi) \Rightarrow |\cos x| < 1$ Now, $8^{1+|\cos x + \cos^2 x + |\cos^3 x| + \dots + \cos^\infty} = 4^3$ $\Rightarrow 8^{1/(1-|\cos x|)} = 8^2$ $\Rightarrow \frac{1}{1 - |\cos x|} = 2$ $\Rightarrow |\cos x| = \frac{1}{2}$ $\Rightarrow \cos x = \pm \frac{1}{2}$ $\Rightarrow x = \pi/3, 2\pi/3$ \Rightarrow *S* = { $\pi/3$, 2 $\pi/3$ } 39 **(b)** The coefficient of x^{19} in the polynomial $(x-1)(x-2)(x-2^2) \dots (x-2^{19})$ is $-(1+2+2^2+\dots+2^{19}) = -1\left(\frac{2^{20}-1}{2-1}\right)$ $= 1 - 2^{20}$ 40 (d) $a = 5, ar^2 = a + 3d, ar^4 = a + 15d$ $\therefore 5r^2 = 5 + 3d, 5r^4 = 5 + 15d$ $\Rightarrow r^4 = 1 + 3d$ $\Rightarrow 25r^4 = 25 + 75d$ $\Rightarrow (5+3d)^2 = 25+75d$ $\Rightarrow 25 + 30d + 9d^2 = 25 + 75d$ $\Rightarrow 9d^2 - 45d = 0$ $\Rightarrow d = 5.0$ $\Rightarrow T_4 = a + 3d = 5 + 15 = 20$ 41 (c) Given that $a_3 + a_5 + a_8 = 11$ $\Rightarrow a + 2d + a + 4d + a + 7d = 11$ $\Rightarrow 3a + 13d = 11 \quad (1)$ Given, $a_4 + a_2 = -2$ $\Rightarrow a + 3d + a + d = -2$ $\Rightarrow a = -1 - 2d$ (2) Putting value of a from (2) in (1), we get $3(-1-2d) + 13d = 11 \Rightarrow 7d = 14 \Rightarrow d = 2$ and a = -5

 $\Rightarrow a_1 + a_6 + a_7 = 7$ 42 (d) *a*, *b*, and *c* are in A.P. Hence, $2b = a + c \quad (1)$ $\frac{a}{bc} + \frac{2}{b} = \frac{a + 2c}{bc} \neq \frac{2}{c}$ $\Rightarrow \frac{a}{bc}, \frac{1}{c}, \frac{2}{b}$ are not in A.P. $\frac{bc}{a} + \frac{b}{2} = \frac{2bc + ab}{2a} \neq c$ Hence, the given numbers are not in H.P. Again, $\frac{a}{bc}\frac{2}{b} = \frac{2a}{b^2c} \neq \frac{1}{c^2}$ Therefore, the given numbers are not in G.P. 43 **(b)** $S = 1 + 2r + 3r^2 + 4r^3 + \cdots$ $rS = r + 2r^2 + 3r^3 + 4r^4 + \cdots$ $\Rightarrow (1-r)S = 1 + r + r^2 + r^3 + \cdots$ $=\frac{1}{1-r}$ $\Rightarrow S = \frac{1}{(1-r)^2}$ Given, $S = 9/4 \implies \frac{1}{(1-r)^2} = 9/4$ $\Rightarrow 1 - r = \pm \frac{2}{3}$ $\Rightarrow r = 1/3 \text{ or } 5/3$ Hence, r = 1/3 as 0 < |r| < 144 (a) $S = (1)(2003) + (2)(2002) + (3)(2001) + \cdots$ +(2003)(1) $=\sum_{r=1}^{2003} r (2003 - (r-1))$ $=\sum_{r=1}^{\infty}r(2004-r)$ $=\sum_{n=1}^{2003}2004r-\sum_{n=1}^{2003}r^2$ $=\frac{2004 \times 2003 \times 2004}{2} - 2003 \times 4007 \times 334$ $= 2003 \times 334 \times (6012 - 4007)$ $= 2003 \times 334 \times 2005$ Hence, x = 200545 (d) $(1^2 - t_1) + (2^2 - t_2) + \dots + (n^2 - t_n)$ $=\frac{1}{3}n(n^2-1)$ $\Rightarrow 1^2 + 2^2 + 3^2 + \cdots + n^2$ $-\{t_1 + t_2 + \dots + t_n\} = \frac{1}{3}n(n^2 - 1)$ $\Rightarrow \frac{n(n+1)(2n+1)}{6} - S_n = \frac{1}{3}n(n^2 - 1)$

$$\Rightarrow S_n = \frac{n(n+1)}{6} [2n+1-2(n-1)]$$

$$= \frac{n(n+1)}{6} [2n+1-2n+2]$$

$$= \frac{n(n+1)}{2}$$

$$\Rightarrow S_{n-1} = \frac{n(n-1)}{2}$$

$$\Rightarrow T_n = S_n - S_{n-1} = n$$
46 (d)

a, b, and c, d are in A.P. Therefore, d, c, b and a are also in A.P. Hence,

$$\frac{d}{abcd}, \frac{c}{abcd}, \frac{b}{abcd}, \frac{a}{abcd} are also in A.P.$$

$$\Rightarrow \frac{1}{abc}, \frac{1}{abcd}, \frac{1}{abcd}, \frac{1}{abcd} are in A.P.$$

$$\Rightarrow abc, abd, acd, bcd are in H.P.$$
47 (c)

Let $S_n = cn^2$, then

 $S_{n-1} = c(n-1)^2 = cn^2 + c - 2cn$

$$\therefore T_n = 2 cn - c \quad (\because T_n = S_n - S_{n-1})$$
 $T_n^2 = (2cn - c)^2 = 4c^2n^2 + c^2 - 4c^2n$

$$\therefore Sum = \sum T_n^2$$

$$= \frac{4c^2 \cdot n(n+1)(2n+1)}{6} + nc^2 - 2c^2n(n+1)$$

$$= \frac{2c^2(n(n+1)(2n+1) + 3nc^2 - 6c^2n(n+1))}{3}$$

$$= \frac{nc^2(4n^2 + 6n + 2 + 3 - 6n - 6)}{3}$$

$$= \frac{nc^2(4n^2 - 1)}{3}$$
48 (b)

 $S_{3n} = \frac{3n}{2} [2a + (3n - 1)d]$

$$\Rightarrow S_{3n} - S_{n-1} = \frac{1}{2} [2a(3n - n + 1)]$$

$$+ \frac{d}{2} [3n(3n - 1) - (n - 1)(n - 2)]$$

$$= \frac{1}{2} [2a(2n + 1) + d(8n^2 - 2)]$$

$$= a(2n + 1) + d(4n^2 - 1)$$

$$= (2n + 1)[a + (2n - 1)d]$$

$$S_{2n} - S_{2n-1} = (2n + 1)$$
Given,

 $\frac{S_{3n} - S_{n-1}}{S_{2n} - S_{2n-1}} = (2n + 1)$
Given,

 $\frac{S_{3n} - S_{n-1}}{S_{2n} - S_{2n-1}} = 31 \Rightarrow n = 15$
49 (c)

$$S_{\infty} = \frac{a}{1-r} = 162$$

$$S_n = \frac{a(1-r^n)}{1-r} = 160$$
Dividing,
$$1 - r^n = \frac{160}{162} = \frac{80}{81}$$

$$\Rightarrow 1 - \frac{80}{81} = r^n$$

$$\Rightarrow r^n = \frac{1}{81} \text{ or } \left(\frac{1}{r}\right)^n = 81$$
Now, it is given that $1/r$ is an integer and n is also an integer

Hence, the relation (1) implies that 1/r = 3,9 or 81 so that n = 4, 2 or 1

∴
$$a = 162 \left(1 - \frac{1}{3}\right)$$
 or $162 \left(1 - \frac{1}{9}\right)$ or
 $162 \left(1 - \frac{1}{81}\right)$
= 108 or 144 or 160

50 **(b)**

Let the sides of the triangle be a/2, a and ar, with a > 0 and r > 1. Let α be the smallest angle, so that the largest angle is 2α . Then α is opposite to the side a/r, and 2α is positive to the side ar. Applying sine rule, we get

$$\frac{a/r}{\sin a} = \frac{ar}{\sin 2a}$$

$$\Rightarrow \frac{\sin 2a}{\sin a} = r^{2}$$

$$\Rightarrow 2 \cos a = r^{2}$$

$$\Rightarrow r^{2} < 2$$

$$\Rightarrow r < \sqrt{2}$$
Hence, $1 < r < \sqrt{2}$
51 (d)
$$x, 2x + 2, 3x + 3 \text{ are in G.P. Hence,}$$

$$(2x + 2)^{2} = x(3x + 3)$$

$$\Rightarrow 4x^{2} + 8x + 4 = 3x^{2} + 3x$$

$$\Rightarrow x^{2} + 5x + 4 = 0$$

$$\Rightarrow x = -1, -4$$
So, the G.P. is $-4, -6, -9, ...$ (considering $x = -4$, as for $x = -1, 2x + 2 = 0$). Hence, the fourth term is $-9 \times 1.5 = -13.5$
52 (a)
Let,
$$S = i - 2 - 3i + 4 + 5i + ... + 100i^{100}$$

$$= i + 2i^{2} + 3i^{3} + 4i^{4} + 5i^{5} + ... + 100i^{101}$$

$$\Rightarrow S(1 - i) = \frac{i(i^{100} - 1)}{i - 1} - 100i^{101}$$

$$\Rightarrow S = \frac{-100i}{1-i} = -50i(1+i) = -50(i-1)$$
$$= 50(1-i)$$

53 **(d)**

f(x) = 2x + 1 $\Rightarrow f(2x) = 2(2x) + 1 = 4x + 1 \text{ and } f(4x) =$ 2(4x) + 1 = 8x + 1Now, f(x), f(2x), f(4x) are in G.P. Hence, $(4x + 1)^2 = (2x + 1)(8x + 1)$ $\Rightarrow 2x = 0$ Hence, f(x), f(2x), and f(4x) is equal to 1 which contradicts the given condition. Hence no such x exists

54 **(a)**

Let *a* be the first term and *r* be the common ratio of the given G.P. Then,

$$\begin{split} &\alpha = \sum_{n=1}^{100} a_{2n} \Rightarrow \ \alpha = a_2 + a_4 + \dots + a_{200} \\ &= ar + ar^3 + \dots + ar^{199} \\ &= ar(1 + r^2 + r^4 + \dots + r^{198}) \\ &\beta = \sum_{n=1}^{100} a_{2n-1} \Rightarrow \ \beta = a_1 + a_3 + \dots + a_{199} \\ &= a + ar^2 + \dots + ar^{198} \\ &= a(1 + r^2 + \dots + r^{198}) \\ &\text{Clearly, } \alpha / \beta = r \end{split}$$

55 (c)

56

Suppose the work is completed in n days when the workers stopped working. Since four workers stopped working every day except the first day. Therefore, the total number of workers who worked all the n days is the sum of n terms of an A.P. with first term 150 and common difference -4 i.e.,

$$\frac{n}{2}[2 \times 150 + (n-1) \times -4] = n(152 - 2n)$$

Had the workers not stopped working, then the work would have finished in (n - 8) days with 150 workers working on each day. Therefore, the total number of workers who would have worked all the *n* days is 150(n - 8)

$$\therefore n(152 - 2n) = 150(n - 8)$$

$$\Rightarrow n^{2} - n - 600 = 0$$

$$\Rightarrow (n - 25)(n + 24) = 0$$

$$\Rightarrow n = 25$$

Thus, the work is completed in 25 days
(d)
Let $P = 0$. cababab ...

$$\Rightarrow 10P = c. ababab ...$$
 (1)

 $\Rightarrow 10P = c.ababab \dots (1)$ and $1000P = cab.ababab \dots (2)$ 990P = cab - c

or
$$P = \frac{100c+10a+b-c}{990} = \frac{99c+10a+b}{990}$$

57 (c)
Let,
 $S = \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \cdots n \text{ terms}$
 $= (1 - \frac{1}{2}) + (1 - \frac{1}{4}) + (1 - \frac{1}{8})$
 $+ (1 - \frac{1}{16}) + \ldots n \text{ terms}$
 $= (1 + 1 + 1 + \cdots n \text{ times})$
 $- (\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \cdots + \frac{1}{2^n})$
 $= n - [\frac{1}{2}(1 - \frac{1}{2^n})] = n - 1 + 2^{-n}$
58 (b)
Given,
 $F(n + 1) = \frac{2F(n) + 1}{2}$
 $\Rightarrow F(n + 1) - F(n) = 1/2$
Hence, the given series is an A.P. with common
difference 1/2 and first term being 2. F(101) is
101st term of A.P. given by 2 + (101 - 1)(1/2) = 52
59 (b)
 $(1 - p)(1 + 3x + 9x^2 + 27x^3 + 81x^4 + 243x^5)$
 $= 1 - p^6$
 $\Rightarrow 1 + 3x + 9x^2 + 27x^3 + 81x^4 + 243x^5$
 $= \frac{1 - p^6}{1 - p}$
 $\Rightarrow 1 + 3x + 9x^2 + 27x^3 + 81x^4 + 243x^5$
 $= 1 + p + p^2 + p^3 + p^4 + p^5$
Comparing, we get $p = 3x$ or $p/x = 3$
60 (a)
Let the numbers be a, ar, ar^2 . Then,
 $a + ar + ar^2 = 14$ (given) (1)
Now, $a + 1, ar + 1, ar^2 - 1$ are in A.P.
 $\Rightarrow 2(ar + 1) = a + 1 + ar^2 - 1$
 $\Rightarrow 2ar + 2 = a + ar^2$ (2)
From (1) and (2),
 $2ar + 2 = 14 - ar$
 $\Rightarrow 3ar = 12$
 $\Rightarrow ar = 4$ (3)
From (1),
 $a + 4 + 4r = 14$

Let 'A' be first term and 'r' be the common ratio We have, $a = Ar^{p+q-1}, b = Ar^{p-q-1}$ $\Rightarrow ab = A^2 \times r^{2p-2}$ $\Rightarrow \sqrt{ab} = Ar^{p-1} = p^{\text{th}} \text{term}$ 62 (c) Let a_1, a_2 , and a_3 be first three consecutive terms of G.P. with common ratio r. Then, $a_2 = a_1 r$ and $a_3 = a_1 r^2$ Now, $a_3 > 4a_2 - 3a_1$ $\Rightarrow a_1 r^2 > 4a_1 r - 3a_1$ $\Rightarrow r^2 > 4r - 3$ $\Rightarrow r^2 - 4r + 3 > 0$ $\Rightarrow (r-1)(r-3) > 0$ $\Rightarrow r < 1 \text{ or } r > 3$ 63 (a) We have, $\frac{\pi}{4} = \left(1 - \frac{1}{3}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{9} - \frac{1}{11}\right) + \cdots$ $= \frac{2}{1 \times 3} + \frac{2}{5 \times 7} + \frac{2}{9 \times 1} + \cdots$ $\Rightarrow \frac{1}{1 \times 3} + \frac{1}{5 \times 7} + \frac{1}{9 \times 11} + \dots = \frac{\pi}{8}$ 64 **(a)** If *p*, *q*, *r* are in A.P., then in an A.P. or G.P. or an H.P. a_1, a_2, a_3, \dots etc, the terms a_p, a_q, a_r are in A.P., G.P. or H.P., respectively 65 **(b)** $I(2n) = 1^4 + 2^4 + 3^4 + \dots + (2n-1)^4 + (2n)^4$ $= [(1^4 + 3^4 + 5^4 + \dots + (2n-1)^4]]$ $+ 2^4(1^4 + 2^4 + 3^4 + 4^4 + \cdots n^4)$ $=\sum_{n=1}^{\infty}(2r-1)^4+16\times l(n)$ $\Rightarrow \sum_{r=1}^{n} (2r-1)^4 = I(2n) - 16I(n)$ 66 (d) $S_n - S_{n-2} = 2$ $\Rightarrow T_n + T_{n-1} = 2$ Also, $T_n + T_{n-1} = \left(\frac{1}{n^2} + 1\right) T_{n-1} = 2$ $\Rightarrow T_{n-1} = \frac{2}{1 + \frac{1}{n^2}} = \frac{2n^2}{1 + n^2}$ So, $T_m = \frac{2(m+1)^2}{1+(m+1)^2}$ $S_n = 1 + \frac{3}{2} + \frac{5}{3} + \dots + \frac{99}{50}$ $= (2 - 1) + \left(2 - \frac{1}{2}\right) + \left(2 - \frac{1}{3}\right) + \dots + \left(2 - \frac{1}{50}\right)$

61 **(c)**

 $\Rightarrow a + 4r = 10 \quad (4)$ From (3) and (4),

 $a + \frac{16}{a} = 10 \Rightarrow a = 2,8$

Hence, the smallest number is 2

68 **(b)** Let the three numbers be a/r, a, ar. As the numbers form an increasing G.P., so r > 1. It is given that a/r, 2a, ar are in A.P. Hence, $4a = \frac{a}{r} + ar$ $\Rightarrow r^2 - 4r + 1 = 0$ $\Rightarrow r = 2 + \sqrt{3}$ $= 2 + \sqrt{3}$ [:: *r* > 1] 69 **(b)** x, y, z are in G.P. Hence, y = xzNow, x + 3, y + 3, z + 3 are in H.P. Hence, $y+3 = \frac{2(x+3)(z+3)}{(x+3)+(z+3)}$ $=\frac{2[xz+3(x+z)+9]}{[(x+z)+6]}$ $=\frac{2[y^2+3(x+z)+9]}{[x+z+6]}$ Obviously, y = 3 satisfies it 70 (a) α , β are the roots of $x^2 - x + p = 0$. Hence, $\alpha + \beta = 1$ $\alpha\beta = p$ γ , δ are the roots of $x^2 - 4xd + q = 0$. Hence, $\therefore \gamma + \delta = 4 \quad (3)$ $\alpha, \beta, \gamma, \delta$ are in G.P. Let $\alpha = a, \beta = ar, \gamma = ar^2, \delta =$ ar^3 , Substituting these values in Eqs. (1), (2), (3) and (4), we get $\alpha + ar = 1$ (5) $a^2r = p \quad (6)$ $ar^2 + ar^3 = 4$ (7) $a^2 r^5 = q \qquad (8)$ Dividing (7) by (5), we get $\frac{ar^{2}(1+r)}{a(1+r)} = \frac{4}{1} \implies r^{2} = 4 \implies r = 2, -2$ $(5) \Rightarrow a = \frac{1}{1+r} = \frac{1}{1+2} \text{ or } \frac{1}{1-2} = \frac{1}{3} \text{ or } -1$ As p is an integer (given), r is also an integer (2 or -2). Therefore, from (6), $a \neq 1/3$. Hence, a = -1and r = -2 $\therefore p = (-1)^2 \times (-2) = -2$ $q = (-1)^2 \times (-2)^5 = -32$ 71 **(b)** Given that a + (p-1)d = Aa + (q - 1)d = AR $a + (r - 1)d = AR^2$ $a + (s - 1)d = AR^3$

Where R is common ratio of G.P. Now, $p-q = \frac{A-AR}{d}, q-r = R\left(\frac{A-AR}{d}\right)$ $r-s = R^2 \left(\frac{A-AR}{d}\right)$ Clearly, p - q, q - r, r - s are in G.P. 72 **(b)** $\frac{\frac{n}{2}(2a+(n-1)d)}{\frac{n}{2}(2a'+(n-1)d')} = \frac{5n+3}{3n+4}$ $\Rightarrow \frac{(2a + (2n - 2)d)}{(2a' + (2n - 2)d')}$ $=\frac{5(2n-1)+3}{3(2n-1)+4}$ (replace *n* by 2*n* $\Rightarrow \frac{(a+(n-1)d)}{(a'+(n-1)d')} = \frac{10n-2}{6n+1}$ $\Rightarrow \frac{(a + (17 - 1)d)}{(a' + (17 - 1)d')} = \frac{168}{103}$ 73 (c) 2b = a + ca, p, b, q, c are in A.P. Hence, $p = \frac{a+b}{2}$ and $q = \frac{b+c}{2}$ Again, *a*, *p*′, *b*, *q*′, and *c* are in G.P. Hence, $p' = \sqrt{ab}$ and $q' = \sqrt{bc}$ $\Rightarrow p^2 - q^2 = \frac{(a-c)(a+c+2b)}{4}$ = (a - c)b= ab - bc $= p'^2 - q'^2$ 74 (d) $r \times r! = (r+1-1) \times r!$ = (r+1)! - r!= V(r) - V(r-1) $\Rightarrow \sum_{r=1}^{30} r(r!) = V(31) - V(0)$ $\Rightarrow 1 + \sum^{50} r(r!) = 31!$ Which is divisible by 31 consecutive integers which is a prime number 75 (c) Initially the ball falls from a height of 120 m. After striking the floor, it rebounds and goes to a height of $\frac{4}{r} \times (120)$ m. Now, if falls from a height of $\frac{4}{r}$ × (120) m and after rebounding goes to a height of $\frac{4}{5}\left(\frac{4}{5}(120)\right)$ m. This process is continued till the ball comes to rest Hence, the total distance travelled is

$$120 + 2\left[\frac{4}{5}(120) + \left(\frac{4}{5}\right)^2(120) + \dots \infty\right]$$
$$= 120 + 2\left[\frac{\frac{4}{5}(120)}{1 - \frac{4}{5}}\right] = 1080 \text{ m}$$

76 **(b)**

Given
$$\frac{ar(r^{10}-1)}{r-1} = 18$$
 (1)
Also $\frac{\frac{1}{ar}(1-\frac{1}{r^{10}})}{1-\frac{1}{r}} = 6$
 $\Rightarrow \frac{1}{ar^{11}} \cdot \frac{(r^{10}-1)r}{r-1} = 6$
 $\Rightarrow \frac{1}{a^2 r^{11}} \cdot \frac{ar(r^{10}-1)}{r-1} = 6$ (2)
From (1) and (2),
 $\frac{1}{a^2 r^{11}} \cdot 18 = 6$
 $\Rightarrow a^2 r^{11} = 3$
Now $P = a^{10} r^{55} = (a^2 r^{11})^5 = 3^5 = 243$

77 (d)

Given,
$$a_1, a_2, a_3, ...$$
 are terms of A.P.

$$\therefore \frac{a_1 + a_2 + \cdots + a_p}{a_1 + a_2 + \cdots + a_q} = \frac{p^2}{q^2}$$

$$\Rightarrow \frac{\frac{p}{2}[2a_1 + (p-1)d]}{\frac{q}{2}[2a_1 + (q-1)d]} = \frac{p}{q^2}$$

$$\Rightarrow \frac{2a_1 + (p-1)d}{2a_1 + (q-1)d} = \frac{p}{q}$$

$$\Rightarrow [2a_1 + (p-1)d]q = [2a_1 + (q-1)d]p$$

$$\Rightarrow 2a_1(q-p) = d[(q-1)p - (p-1)q]$$

$$\Rightarrow 2a_1(q-p) = d[(q-p)$$

$$\Rightarrow 2a_1 = d$$

$$\therefore \frac{a_6}{a_{21}} = \frac{a_1 + 5d}{a_1 + 20d} = \frac{a_1 + 10a_1}{a_1 + 40a_1} = \frac{11}{41}$$
78 (c)
 $S_n = \frac{a(r^n - 1)}{r - 1}$

$$\Rightarrow U_n = \sum_{n=1}^n \frac{a(r^n - 1)}{r - 1} = \frac{a}{r - 1} \sum_{n=1}^n (r^n - 1)$$

$$\Rightarrow U_n = \frac{a}{r - 1} \{r + r^2 + \cdots + r^n - n\}$$

$$= \frac{a}{r - 1} \{\frac{r(r^n - 1)}{r - 1} - n\}$$

$$\Rightarrow (r - 1)U_n = \frac{ar(r^n - 1)}{r - 1} - an$$

$$\Rightarrow (r - 1)U_n = rS_n - an$$

$$\Rightarrow rS_n + (1 - r)U_n = an$$
79 (a)
 $x, y, z \text{ are in G.P.}$

$$\Leftrightarrow y^2 = xz$$

$$\Leftrightarrow x \text{ is factor of } y \text{ (not possible)}$$
Taking $x = 3, y = 5, z = 7$, we have x, y, z are in

A.P. Thus *x*, *y*, *z* may be in A.P. but not in G.P. 80 **(b)** We know that $1 + 3 + 5 + \dots + (2k - 1) = k^2$. Thus, the given equation can be written as $\left(\frac{p+1}{2}\right)^2 + \left(\frac{q+1}{2}\right)^2 = \left(\frac{r+1}{2}\right)^2$ $\Rightarrow (p+1)^2 + (q+1)^2 = (r+1)^2$ As p > 6, p + 1 > 7, we may take p + 1 = 8, q + 1 = 1, q + 11 = 6, r + 1 = 10Hence, p + q + r = 2181 (c) a_1, a_2, \dots, a_n are in H.P. $\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n} \text{ are in A.P.}$ $\Rightarrow \frac{a_1 + a_2 + a_3 + \dots + a_n}{a_1},$ $\frac{a_{1}}{a_{1}+a_{2}+a_{3}+\dots+a_{n}},$ $\frac{a_{1}+a_{2}+a_{3}+\dots+a_{n}}{a_{2}},$ $\dots, \frac{a_{1}+a_{2}+a_{3}+\dots+a_{n}}{a_{n}} \text{ are in A.P.}$ $\Rightarrow 1 + \frac{a_2 + a_3 + \dots + a_n}{a_1},$ u_{1} $1 + \frac{a_{1} + a_{3} + \dots + a_{n}}{a_{2}},$ $\dots, 1 + \frac{a_{1} + a_{2} + \dots + a_{n-1}}{a_{n}} \text{ are in A.P.}$ $\Rightarrow \frac{a_{2} + a_{3} + \dots + a_{n}}{a_{1}},$ $\frac{a_1 + a_3 + \dots + a_n}{a_2},$ $\dots, \frac{a_1 + a_2 + \dots + a_{n-1}}{a_n} \text{ are in A. P}$ $\Rightarrow \frac{a_1}{a_2 + a_3 + \dots + a_n},$ $\frac{a_2}{a_1 + a_3 + \dots + a_n},$ $\dots, \frac{a_n}{a_1 + a_2 + \dots + a_{n-1}} \text{ are in H. P.}$ 82 (d) The given numbers are in A.P. Therefore, $2\log_4(2^{1-x}+1) = \log_2(5 \times 2^x + 1) + 1$ $\Rightarrow 2\log_{2^{2}}\left(\frac{2}{2^{x}}+1\right) = \log_{2}(5 \times 2^{x}+1) + \log_{2} 2$ $\Rightarrow \frac{2}{2} \log_2\left(\frac{2}{2^x} + 1\right) = \log_2(5 \times 2^x + 1) 2$ $\Rightarrow \log_2\left(\frac{2}{2^x} + 1\right) = \log_2(10 \times 2^x + 2)$ $\Rightarrow \frac{2}{2^x} + 1 = 10 \times 2^x + 2$ $\Rightarrow \frac{2}{y} + 1 = 10y + 2$, where $2^x = y$ $\Rightarrow 10y^2 + y - 2 = 0$ $\Rightarrow (5y-2)(2y+1) = 0$ \Rightarrow y = 2/5 or y = -1/2 $\Rightarrow 2^{x} = 2/5 \text{ or } 2^{x} = -1/2$

 $\Rightarrow x = \log_2(2/5)$ [: 2^x cannot be negative] $\Rightarrow x = \log_2 2 - \log_2 5$ $\Rightarrow x = 1 - \log_2 5$ 83 (a) Reciprocals of the terms of the series are 2/5, 13/20, 9/10, 23/20, ... or 8/20, 13/20, 18/20, 23/20, ... Its *n*th term is $\frac{8+(n-1)5}{20} = \frac{5n+3}{20}$ Therefore, the 15th term is $\frac{20}{78} = \frac{10}{30}$ 84 (b) We have, a_1, a_2, a_3 are in A.P. $\Rightarrow 2a_2 = a_1 + a_3$ (1) a_2, a_3, a_4 are in G.P. $\Rightarrow a_3^2 = a_2 a_4$ (2) a_3, a_4, a_5 are in H.P. $\Rightarrow a_4 = \frac{2a_3a_5}{a_3 + a_5}$ Putting $a_2 = \frac{a_1 + a_3}{2}$ and $a_4 = \frac{2a_3 a_5}{a_3 + a_5}$ in (2), we get $a_3^2 = \frac{a_1 + a_3}{2} \times \frac{2a_3a_5}{a_2 + a_5}$ $\Rightarrow a_3^2 = a_1 a_5$ Hence, a_1 , a_3 , and a_5 are in G.P. So, $\log_e a_1$, $\log_e a_3$ and $\log_e a_5$ are in A.P. 85 (b) $a = 1 + 10 + 10^2 + \dots + 10^{54}$ $=\frac{10^{55}-1}{10-1}=\frac{10^{55}-1}{10^5-1}\times\frac{10^5-1}{10-1}=bc$ 86 (c) For G.P., $t_n = 2^{n-1}$; for A.P. $T_m = 1 + (m-1)3 =$ 3m - 2They are common if $2^{n-1} = 3m - 2$. For G.P. 100th term is 2^{99} . For A.P. 100^{th} term is 1 +(100 - 1)3 = 298. Now we must choose value of m such that 3m-2 is of type 2^{n-1} . Hence, 3m - 2 = 1, 2, 4, 8, 16, 32, 64, 128, 256 for which m = 1, 4/3, 2, 10/3, 6, 34/2, 22, 130/3, 86. Hence, possible values of m are 1, 2, 6, 22, 86. Hence, there are five common terms 87 (a) Here, $\alpha \in \left(0, \frac{\pi}{2}\right) \Rightarrow \tan \alpha \text{ is } (+ve)$ [as, we know if $a, b > 0 \Rightarrow \frac{a+b}{2} \ge \sqrt{ab} \ ie, AM \ge GM$] $\frac{\sqrt{x^2 + x + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}}}{2}$ $\geq \sqrt{\sqrt{x^2 + x} \cdot \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}} [using AM \geq GM]$ $\Rightarrow \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}} \ge 2 \tan \alpha$

88 (d) Since $ax^3 + bx^2 + cx + d$ is divisible by $ax^2 + c$, therefore, when $ax^3 + bx^2 + cx + d$ is divided by $ax^2 + c$ the remainder should be zero. Now when $ax^3 + bx^2 + cx + d$ is divided by $ax^2 + c$, then the remainder is (bc/a) - d $\therefore \frac{bc}{a} - d = 0$ $\Rightarrow bc = ad$ $\Rightarrow \frac{b}{a} = \frac{d}{c}$ Hence, from this, *a*, *b*, *c*, *d* are not necessarily in G.P. 89 (d) $p^{\text{th}}, q^{\text{th}}, r^{\text{th}}$ terms of A.P. are $a + (p-1)d = x \quad (1)$ $a + (q - 1)d = xR \quad (2)$ $a + (r - 1)d = xR^2$ (3) Where *R* is common ratio of G.P. Subtracting (2) from (3) and (1) from (2) and then dividing the former by the later, we have $\frac{q-r}{p-q} = \frac{xR^2 - xR}{xR - x} = R$ (d) 100^{th} term of 1, 11, 21, 31, ... is 1 + (100 - 1)10 =991 100th term of 31, 36, 41, 46, ... is 31 + (100 - 1)5 = 526Let the largest common term be 526. Then, 526 = 31 + (n - 1)10 $\Rightarrow n = 50.5$ But *n* is an integer; hence n = 50. Hence, the largest common term in 31 + (50 - 1)10 = 521(b) Let the series have 2*n* terms and the series is a, a + d, a + 2d, ..., a + (2n - 1)dAccording to the given conditions, we have $[a + (a + 2d) + (a + 4d) + \dots + (a + (2n - 2)d)]$ = 24 $\Rightarrow \frac{n}{2}[2a + (n-1)2d] = 24$ $\Rightarrow n[a + (n-1)d] = 24 \quad (1)$ Also, $[(a + d) + (a + 3d) + \dots + (a + 3d)]$ 2n-1d=30 $\Rightarrow \frac{n}{2}[2(a+d) + (n-1)2d] = 30$ $\Rightarrow n[(a+d) + (n-1)d] = 30 \quad (2)$ Also, the last term exceeds the first by 21/2. Therefore, a + (2n - 1)d - a = 21/2 $\Rightarrow (2n-1)d = 21/2 \quad (3)$

90

91

Now, subtracting (1) from (2), nd = 6(4)Dividing (3) by (4), we get $\frac{2n-1}{n} = \frac{21}{12}$ $\Rightarrow n = 4$ 92 (a) $\frac{t_4}{t_c} = \frac{1}{4} \Rightarrow \frac{ar^3}{ar^5} = \frac{1}{4} \Rightarrow r^2 = 4 \Rightarrow r = \pm 2$ Also, $t_2 + t_5 = 216$ $\Rightarrow ar + ar^4 = 216$ $\Rightarrow a + 8a = 108$ $\Rightarrow a = 12 \text{ (where } r = 2)$ 93 **(b)** $b_2 = \frac{1}{1 - b_1}$ $b_3 = \frac{1}{1 - b_2} = \frac{1}{1 - \frac{1}{1 - b_1}} = \frac{1 - b_1}{-b_1} = \frac{b_1 - 1}{b_1}$ $b_1 = b_3 \Rightarrow b_1^2 - b_1 + 1 = 0$ $\Rightarrow b_1 = -\omega \text{ or } \omega^2 \Rightarrow b_2 = \frac{1}{1+\omega} = -\omega \text{ or } \omega^2$ $\sum_{r=1}^{2001} b_r^{2001} = \sum_{r=1}^{2001} (-\omega)^{2001}$ $=-\sum_{n=1}^{\infty} 1$ = -200194 (c) $2.\overline{357} = 2 + 0.357 + 0.000357 + \dots \infty$ $= 2 + \frac{357}{10^3} + \frac{357}{10^6} + \dots \infty$ $=2+\frac{\frac{1}{10^3}}{1-\frac{1}{10^3}}$ $=2+\frac{357}{999}=\frac{2355}{999}$ Alternative solution: Let, x = 2.357 $\Rightarrow 1000x = 2357.\overline{357}$ On subtracting, we get $999x = 2355 \implies x = \frac{2355}{999}$ 95 (b) Given, $b^2 = ac$ and $x = \frac{a+b}{2}$, $y = \frac{b+c}{2}$. Therefore, $\frac{a}{x} + \frac{c}{y} = \frac{2a}{a+b} + \frac{2c}{b+c}$ $=\frac{2a(b+c)+2c(a+b)}{(a+b)(b+c)}$

 $= 2\frac{2ac+ab+bc}{ab+ac+b^2+bc}$ $=2\frac{2ac+ab+bc}{2ac+ab+bc}$ =296 (c) Given, terms $= 57 + 59 + 61 + \dots n$ 2 + 5 + 8 + ... 2nterms $\Rightarrow \frac{2n}{2} [4(2n-1)3] = \frac{n}{2} [114 + (n-1)2]$ $\Rightarrow 6n + 1 = n + 56$ $\Rightarrow 5n = 55$ $\Rightarrow n = 11$ 97 (c) Given that x, y, and z are p^{th} , q^{th} and r^{th} terms of an A.P. $\therefore x = A + (p-1)D$ y = A + (q - 1)Dz = A + (r - 1)D $\Rightarrow x - y = (p - q)D$ y-z = (q-r)Dz - x = (r - p)DWhere *A* is the first term and *D* is the common difference. Also *x*, *y*, *z* are the p^{th} , q^{th} and r^{th} terms of a G.P. $\therefore x = aR^{p-1}, y = aR^{q-1}, z = aR^{r-1}$ $\therefore x^{x-z} y^{z-x} z^{x-y}$ $= (aR^{p-1})^{y-z} (aR^{q-1})^{z-x} (aR^{r-1})^{x-y}$ $= a^{y-z+z-x+x-y} R^{(p-1)(y-z)+(q-1)(z-x)+(r-1)(x-y)}$ $= A^{0}R^{(p-1)(q-r)D + (q-1)(r-p)D + (r-1)(p-q)D}$ $= A^0 R^0 = 1$ 98 (c) Given, $S_p = 0$. Therefore, $\frac{p}{2}[2a + (p-1)d] = 0 \Rightarrow d = \frac{-2a}{n-1}$ (1) Sum of next q terms is sum of an A.P. whose first term will be $T_{p+1} = a + pd$ $\therefore S = \frac{q}{2} [2(a+pd) + (q-1)d]$ $=\frac{q}{2}[2a + (p-1)d + (p+q)d]$ $=\frac{q}{2}\left[0-(p+q)\frac{2a}{n-1}\right]$ $=-a\frac{(p+q)q}{p-1}$ [Using (1)] 99 (b) Since a, b, c are in A.P., therefore, b - a = d and c - b = d, where *d* is the common difference of the A.P.

 $\therefore a = b - d$ and c = b + d

Now,
$$abc = 4$$

 $\Rightarrow (b-d)b(b+d) = 4$
 $\Rightarrow b(b^2 - d^2) = 4$
But, $b(b^2 - d^2) < b \times b^2$
 $\Rightarrow b(b^2 - d^2) < b^3$
 $\Rightarrow 4 < b^3$
 $\Rightarrow b^3 > 4$
 $\Rightarrow b > 2^{2/3}$
Hence, the minimum value of b is $2^{2/3}$
100 (c)
 $S = [a - (a+d)] + [(a+2d) - (a+3d)] + \dots + [(a+(2n-2)d)] - a + (2n-1)d] + (a+2nd)]$
 $= [(-d) + (-d) + \dots + n \text{ times}] + a + 2nd$
 $= -nd + a + 2nd$
 $= a + nd$
101 (c)
The series is
 $1 + 2 + 2 \times 3 + 2^2 \times 3 + 2^2 \times 3^2 + 2^3 \times 3^2 + \dots$
to 20 terms
 $= (1 + 2 \times 3 + 2^2 \times 3^2 + \dots \text{ to 10 terms})$
 $+ (2 + 2^2 \times 3 + 2^3 \times 3^2 + \dots \text{ to 10 terms})$
 $+ (2 + 2^2 \times 3 + 2^3 \times 3^2 + \dots \text{ to 10 terms})$
 $= \frac{1(2^{10}3^{10} - 1)}{6 - 1} + \frac{2(2^{10}3^{10} - 1)}{6 - 1}$
 $= (\frac{3}{5})(6^{10} - 1)$
102 (d)
Let a be the first term and d be the common
difference of the given A.P. Then,
 $S_m = S_n \Rightarrow \frac{m}{2}[2a + (m - 1)d]$
 $= \frac{n}{2}[2a + (n - 1)d]$
 $\Rightarrow 2a(m - n) + \{m(m - 1) - n(n - 1)\}d = 0$

 $\Rightarrow 2a(m-n) + \{(m^2 - n^2) - (m-n)\}d = 0$

 $\Rightarrow 2a + (m+n-1)d = 0 \quad [\because m-n \neq 0] \quad (1)$ Now, $S_{m+n} = \frac{m+n}{2} [2a + (m+n-1)d] = \frac{m+n}{2} \times (1)$

 $\Rightarrow (m-n)[2a + (m+n-1)d] = 0$

 $\frac{p}{r} + \frac{r}{n} = \frac{p^2 + r^2}{pr} = \frac{(p+r)^2 - 2pr}{pr}$

 $=\frac{\frac{4p^2r^2}{q^2}-2pr}{pr} \quad \begin{bmatrix} \because p,q,r \text{ are in H. P.} \\ \therefore q = \frac{2pr}{p+r} \end{bmatrix}$

-2 [:: *ap*, *bq*, *cr* are in A. P.

 $\Rightarrow b^2 q^2 = acpr$]

 $=\frac{(a+c)^2}{ac} - 2 \quad [a, b, c, \text{ are in A. P.} \Rightarrow 2b = a+c]$

0 = 0 [Using (1)]

 $=\frac{4pr}{a^2}-2=\frac{4b^2}{ac}$

103 (b)

104 (b) Coefficient of x^{18} in $(1 + x + 2x^2 + 3x^3 + \dots +$ 18x182 =Coefficient of x^{18} in $(1 + x + 2x^2 + 3x^3 + \dots +$ *18x18×1+x+2x2+3x3+...+18x18* $= 1 \times 18 + 1 \times 17 + 2 \times 16 + \dots + 17 \times 1 + 18$ x 1 $= 36 + \sum_{r=1}^{17} r(18 - r)$ $= 36 + 18 \sum_{i=1}^{17} r - \sum_{i=1}^{17} r^2$ = 1005105 (a) For first equation $D = 4b^2 - 4ac = 0$ (as given *a*, *b*, *c* are in G.P.) \Rightarrow equation has equal roots which are equal to $-\frac{b}{a}$ each Thus it should also be the root of the second equation Thus, $d\left(\frac{-b}{a}\right)^2 + 2e\left(\frac{-b}{c}\right) + f = 0$ $\Rightarrow d \frac{b^2}{a^2} - 2 \frac{be}{a} + f = 0$ $\Rightarrow d\frac{ac}{a^2} - 2\frac{be}{a} + f = 0 \text{ (as } b^2 = ac)$ $\Rightarrow \frac{d}{a} + \frac{f}{c} = 2\frac{eb}{ac} = 2\frac{e}{b}$ 106 (c) Let a = 1, b = 2, c = 4 Then, a + b = 3, 2b = 4, b + c = 6 $\Rightarrow \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}$ and $\frac{1}{6} - \frac{1}{4} = -\frac{1}{12}$ Hence, a + b, 2b, b + c are in H.P. 107 (c) $\frac{a_r - a_{r+1}}{a_r a_{r+1}} = k \quad \text{(constant)}$ $\Rightarrow \frac{1}{a_{r+1}} - \frac{1}{a_r} = k$ $\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}$ are in A.P. \Rightarrow a_1, a_2, a_3, \dots , are in H.P. 108 (c) $T(r) = \frac{r}{1 \times 3 \times 5 \times \dots \times (2r+1)}$ $=\frac{2r+1-1}{2(1\times 3\times 5\cdots (2r+1))}$ $=\frac{1}{2}\left(\frac{1}{1\times3\times5\cdots(2r-1)}\right)$ $\frac{1}{1 \times 3 \times 5 \cdots (2r+1)}$

 $=\frac{a}{c}+\frac{c}{a}$

$$= -\frac{1}{2} [V(r) - V(r-1)]$$

$$\Rightarrow \sum_{r=1}^{n} T(r) = -\frac{1}{2} (V(n) - V(0))$$

$$= \frac{1}{2} \left(1 - \frac{1}{1 \times 3 \times 5 \times \dots \times (2n+1)} \right)$$

$$\Rightarrow \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \dots \times (2r+1)}$$

$$= \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{1 \times 3 \times 5 \times \dots \times (2n+1)} \right) = \frac{1}{2}$$

$$\Rightarrow (d)$$

109 **(d)**

Sum is 4 and second term is ³/₄. It is given that first term is *a* and common ratio is *r*. Hence, $\frac{a}{1-r} = 4 \text{ and } ar = 3/4 \implies r = \frac{3}{4a}$ Therefore, $\frac{a}{1-r} = 4 \implies \frac{4a^2}{1-r} = 4$

$$\frac{1}{1-\frac{3}{4a}} \xrightarrow{-4} \xrightarrow{-4} \frac{3}{4a-3} \xrightarrow{-4}$$

$$\Rightarrow a^2 - 4a + 3 = 0$$

$$\Rightarrow (a-1)(a-3) = 0$$

$$\Rightarrow a = 1 \text{ or } 3$$
When $a = 1, r = 3/4$ and when $a = 3, r = 1/4$

|r| < 1] $\Rightarrow -1 < \frac{5-x}{5} < 1 \quad \Rightarrow \quad 0 < x < 10$ 113 (d) $2 + 3 + 6 + 11 + 18 + \cdots$ $= (0^2 + 2) + (1^2 + 2) + (2^2 + 2)$ $+(3^2+2)+\cdots$ Hence, $t_{50} = 49^2 + 2$ 114 (c) Here, number of factors is 50. Therefore, the coefficient of x^{49} is $-1 - 3 - 5 - \dots - 99 = -\frac{50}{2}(1 + 99) = -2500$ 115 (a) We have, 2b = a + c $(c-b)^2 = (b-a)a$ $\Rightarrow (b-a)^2 = (b-a)a \ [2b = a + c \ \Rightarrow b - a$ = c - b] $\Rightarrow b = 2a$ $\Rightarrow c = 3a$ [Using 2b = a + c] \Rightarrow a: b: c = 1: 2: 3 116 **(b)** Let *a* be the first term and *r* the common ratio of the G.P. Then, the sum is given by $\frac{a}{1-r} = 57$ (1) Sum of the cubes is 9747. Hence, $a^3 + a^3 r^3 + a^3 r^6 + \dots = 9747$ $\Rightarrow \frac{a^3}{1-r^3} = 9747 \quad (2)$ Dividing the cube of (1) by (2), we get $\frac{a^3}{(1-r)^3} \frac{(1-r^3)}{a^3} = \frac{(57)^3}{9747}$ $\Rightarrow \frac{1-r^3}{(1-r)^3} = 19$ $\Rightarrow \frac{1+r+r^2}{(1-r)^2} = 19$ $\Rightarrow 18r^2 - 39r + 18 = 0$ $\Rightarrow (3r-2)(6r-9) = 0$ \Rightarrow r = 2/3 or r = 3/2= 2/3 [: $r \neq 3/2$, because 0 < |r| < 1 for an infinite G.P.] 117 (a) n^{th} term of the series is 20 + (n-1)(-2/3)For the sum to be maximum, $n^{\text{th}} \text{term} \ge 0$ $\Rightarrow 20 + (n-1)\left(-\frac{2}{3}\right) \ge 0$ $\Rightarrow n \leq 31$ Thus, the sum of 31 terms is maximum and is

$$\frac{31}{2} \left[40 + 30 \times \left(-\frac{2}{3} \right) \right] = 310$$
118 (a)
Let $a = 1$, then $S_1 = 2008$
If $a \neq 1$ then $S = \frac{a^{2008} - 1}{a - 1}$
But $a^{2008} = 2a - 1$, therefore, $S_2 = \frac{2(a - 1)}{a - 1} = 2$
 $\therefore S = S_1 + S_2 = 2010$
119 (b)
We have,
 $(OM_{n-1})^2 = (OP_n)^2 + (P_n M_{n-1})^2$
 $= 2(OP_n)^2$
 $= 2\alpha_n^2 (\text{say})$
Also,
 $(OP_{n-1})^2 = (OM_{n-1})^2 + (P_{n-1}M_{n-1})^2$
 $\Rightarrow \alpha_{n-1}^2 = 2\alpha_n^2 + \frac{1}{2}\alpha_{n-1}^2$
 $\Rightarrow \alpha_n = \frac{1}{2}\alpha_{n-1}$
 $\Rightarrow OP_n = \alpha_n = \frac{1}{2}\alpha_{n-1} = \frac{1}{2^2}\alpha_{n-1} = \cdots = \frac{1}{2^n}$
 $= \left(\frac{1}{2}\right)^n$

120 **(a)**

Let 1 + 1/50 = x. Let *S* be the sum of 50 terms of the given series. Then, $S = 1 + 2x + 3x^2 + 4x^3 + \dots + 49x^{48} + 50x^{49}$ (1) $xS = x + 2x^2 + 3x^3 + \dots + 49x^{49} + 50x^{50}$ (2)

$$(1 - x)S = 1 + x + x^{2} + x^{3} + \dots + x^{49} - 50x^{50}$$

[Subtracting (2) from (1)]
$$\Rightarrow S(1 - x) = \frac{1 - x^{50}}{1 - x} - 50x^{50}$$
$$\Rightarrow S(-1/50) = -50(1 - x^{50}) - 50x^{n}$$
$$\Rightarrow \frac{1}{50}S = 50$$
$$\Rightarrow S = 2500$$

121 **(d)**

Let
$$t_n = \frac{1}{4(n+2)(n+3)}$$
. Then,
 $\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \dots + \frac{1}{t_{2003}}$
 $= 4 \left[\frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \frac{1}{5 \times 6} + \dots + \frac{1}{2005 \times 2006} \right]$
 $= 4 \left[\frac{1}{3} - \frac{1}{2006} \right]$
 $= 4 \times \frac{2003}{3(2006)} = \frac{4006}{3009}$
122 (d)
Let,

$$S = 1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \cdots \infty$$
Then,

$$\frac{1}{5}S = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \cdots \infty$$

$$\Rightarrow S\left(1 - \frac{1}{5}\right) = 1 + 3\left[\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \cdots \infty\right]$$

$$\Rightarrow \frac{4}{5}S = 1 + 3 \times \frac{1/5}{1 - (1/5)} = 1 + \frac{3}{4} = \frac{7}{4}$$

$$\Rightarrow S = \frac{35}{16}$$
123 (b)

$$T_r = r(-a)^r + (r+1)a(-a)^r$$

$$= r(-a)^r - (r+1)(-a)^{r+1}$$

$$= v_r - v_{r+1} \text{ (say)}$$
So,

$$\sum_{r=0}^n T_r = \sum_{r=0}^n (v_r - v_{r+1})$$

$$= v_0 - v_{n+1}$$

$$= -(n+1)(-a)^{n+1}$$
124 (c)
We have,

$$1 + (1+a)b + (1+a+a^2)b^2 + (1+a+a^2+a^3)b^3 + \cdots \infty$$

$$= \sum_{n=1}^{\infty} (1+a+a^2+\cdots+a^{n-1})b^{n-1}$$

$$= \sum_{n=1}^{\infty} (\frac{1-a^n}{1-a})b^{n-1}$$

$$= \sum_{n=1}^{\infty} (\frac{1-a^n}{1-a})b^{n-1}$$

$$= \sum_{n=1}^{\infty} \frac{b^{n-1}}{1-a} - \sum_{n=1}^{\infty} \frac{a^nb^{n-1}}{1-a}$$

$$= \frac{1}{1-a}\sum_{n=1}^{\infty} b^{n-1} - \frac{a}{1-a}\sum_{n=1}^{\infty} (ab)^{n-1}$$

$$= \frac{1}{(1-ab)(1-b)}$$
125 (b)
Since *a*, *q* and *c* are in A.P., so

$$2q = a + c$$

$$\Rightarrow \frac{1}{p} + \frac{1}{r} = \frac{2}{b}$$

$$\Rightarrow \frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{r}$$
are in A.P.

And for the equation $x^2 - qx + 8 = 0$, The product of roots $\alpha^2 \beta = 8$ Hence, $(\alpha\beta^2)(\alpha^2\beta) = 8$ $\Rightarrow \alpha^3 \beta^3 = 8 \Rightarrow \alpha \beta = 2$ \therefore From $\alpha\beta^2 = 1$, we have $\beta = \frac{1}{2}$ and from $\alpha^2 \cdot \beta =$ 8, we have $\alpha = 4$ Hence, from sum of roots $= -\frac{b}{a}$, we have $p = \alpha + \beta^2 = 4 + \frac{1}{4} = \frac{17}{4}$ and $q = \alpha^2 + \beta = 16 + \beta^2$ $\frac{1}{2} = \frac{33}{2}$ $\frac{\overline{r}}{\overline{o}}$ is arithmetic mean of p and q $\therefore \frac{r}{8} = \frac{p+q}{2}$ $\Rightarrow r = 4(p+q) = 4\left(\frac{17}{4} + \frac{33}{2}\right) = 17 + 66 = 83$ 127 (c) Multiplying the given expression by 2 and rewriting it, we have $\Rightarrow (2x - 3y)^{2} + (3y - 4z)^{2} + (4z - 2x)^{2} = 0$ $\Rightarrow 2x = 3y = 4z$ $\Rightarrow \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. \Rightarrow x, y, z are in H.P. 128 (d) $a = h_1 = 2, a_{10} = h_{10} = 3$ $3 = a_{10} = 2 + 9d \Rightarrow d = 1/9$ $\therefore a_4 = 2 + 3d = 7/3$ Also, $3 = h_{10} \Rightarrow \frac{1}{3} = \frac{1}{h_{10}} = \frac{1}{2} + 9D$ $\Rightarrow D = -\frac{1}{54}$ $\Rightarrow \frac{1}{h_7} = \frac{1}{2} + 6D = \frac{1}{2} - \frac{1}{9} = \frac{7}{18}$ $\therefore a_4 h_7 = \frac{7}{2} \times \frac{18}{7} = 6$ 129 (b) *x* is A.M. of *a* and *b*, *y* is G.M. of *a*, and *b*, *z* is H.M. of *a* and *b*, *z* is H.M. of *a* and *b* $y^2 = xz$ Also given, x = 9z $\Rightarrow x = 9y^2/x \Rightarrow 9y^2 = x^2 \Rightarrow x = 3|y|$ 130 (a) Let T_r be the r^{th} term of the given series. Then, $T_r = \frac{2r+1}{1^2+2^2+\dots+r^2}$ $=\frac{6(2r+1)}{(r)(r+1)(2r+1)}$ $= 6\left(\frac{1}{n} - \frac{1}{n+1}\right)$

So, sum is given by $\sum_{r=0}^{50} T_r = 6 \sum_{r=0}^{50} \left(\frac{1}{r} - \frac{1}{r+1} \right)$ $= 6\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\cdots\right]$ $+\left(\frac{1}{50}-\frac{1}{51}\right)\right]$ $= 6 \left[1 - \frac{1}{51} \right]$ $=\frac{100}{17}$ 131 (b) Harmonic mean *H* of roots α and β is $H = \frac{2\alpha\beta}{\alpha+\beta} = \frac{2\frac{5+2\sqrt{5}}{5+\sqrt{2}}}{\frac{4+\sqrt{5}}{5}} = 4$ 132 (a,b,c) Let the three digit number be xyz. According to given condition, we have $y^2 = xz \quad (1)$ 2(y+2) = x + z (2) 100x + 10y + z - 792 = 100z + 10y + x $\Rightarrow x - z = 8$ (3)Squaring (2) and (3), and subtracting, we have $4xz = 4(y+2)^2 - 64$ (4) $\Rightarrow y^2 = (y+2)^2 - 16$ [Using (1)] $\Rightarrow y = 3$ $\Rightarrow x + z = 10$ [Using (2)] $\Rightarrow x = 9, z = 1$ Hence, the number is $931 = 7^2 \times 19$ 133 (a,b,c) Last term in n^{th} row is $1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$ (1) As terms in the n^{th} row forms an A.P. with common difference 1, so First term = Last term – (n - 1)(1) $=\frac{1}{2}n(n+1)-n+1$ $=\frac{1}{2}(n^2 - n + 2)$ (2) Sum of terms = $\frac{1}{2}n \left[\frac{1}{2}(n^2 - n + 2) + \frac{1}{2}(n^2 + n)\right]$ $=\frac{1}{2}n(n^2+1)$ (3) Now, put n = 20 in (1), (2), (3) to get required answers 134 (b,d) Let *x* be the first and *y* be the (2n - 1)th term of A.P., G.P. and H.P. whose *n*th terms are *a*, *b*, *c*, respectively. Now according to the property of

A.P., G.P. and H.P., *x*, *a*, *y* ar ein A.P.; *x*, *b*, *y* are in

G.P. and x, c, y are in H.P. Hence,

$$a = \frac{x + y}{2} = A. M.$$

$$b = \sqrt{xy} = G. M.$$

$$c = \frac{2xy}{x + y} = H. M.$$

Now, A.M., G.M. and H.M. are in G.P. Hence

$$b^{2} = ac$$

Also, A. M. \geq G. M. \geq H. M. Hence, $a \geq b \geq c$

135 (a,b,c)

Since A_1, A_2 are two arithmetic means between a and b, therefore, a, A_1, A_2 b are in A.P. with common difference d given by

$$d = \frac{b-a}{2+1} = \frac{b-a}{3} \left[\text{Using } d = \frac{b-a}{n+1} \right]$$

Now,
$$A_1 = a + d = a + \frac{b-a}{3} = \frac{2a+b}{3}$$

and

$$A_{2} = a + 2d = a + 2\left(\frac{b-a}{3}\right) = \frac{a+2b}{3}$$

It is given that G_1G_2 are two geometric means between a and b. Therefore, a, G_1 , G_2 , b are in G.P. with common ratio r given by

$$r = \left(\frac{b}{a}\right)^{\frac{1}{2+1}} = \left(\frac{b}{a}\right)^{1/3} \left[\because r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}} \right]$$

Now,

$$G_1 = ar = a \left(\frac{b}{a}\right)^{1/3} = a^{2/3}b^{1/3}$$

and

$$G_2 = ar^2 = a\left(\frac{b}{a}\right)^{2/3} = a^{1/3}b^{2/3}$$

It is also given that H_1 , H_2 are two harmonic means between a and b, therefore, a, H_1 , H_2 , b are in H.P. Hence, 1/a, $1/H_1$, $1/H_2$, 1/b, are in A.P. with common difference D given by

$$D = \frac{a-b}{(2+1)ab} = \frac{a-b}{3ab} \left[\because D = \frac{a-b}{(n+1)ab} \right]$$

Now,

$$\frac{1}{H_1} = \frac{1}{a} + D = \frac{1}{a} + \frac{a-b}{3ab} = \frac{a+2b}{3ab}$$

$$\Rightarrow H_1 = \frac{3ab}{a+2b}$$

$$\frac{1}{H_2} = \frac{1}{a} + 2D$$

$$= \frac{1}{a} + \frac{2(a-b)}{3ab}$$

$$= \frac{2a+b}{3ab}$$

$$\Rightarrow H_2 = \frac{3ab}{2a+b}$$

We have,

$$A_{1}H_{2} = \frac{2a+b}{3} \times \frac{3ab}{2a+b} = ab,$$

$$A_{2}H_{1} = \frac{a+2b}{3} \times \frac{3ab}{a+2b} = ab,$$

$$G_{1}G_{2} = (a^{2/3} b^{1/3})(a^{21/3} b^{2/3}) = ab$$

$$\therefore A_{1}H_{2} = A_{2}H_{1} = G_{1}G_{2} = ab$$
136 (a,b,d)

$$E < 1 + \frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \cdots$$

$$= 1 + (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \cdots = 2$$

$$E > 1 + \frac{1}{(2)(3)} + \frac{1}{(3)(4)} + \cdots$$

$$= 1 + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \cdots = \frac{3}{2}$$
137 (a,c)
a, b, c are in G.P. Hence,

$$b^{2} = ac (1)$$
x is A.M. of a and b. Hence,

$$2x = a + b (2)$$
y is A.M. of b and c. Hence,

$$2y = b + c (3)$$

$$\therefore \frac{a}{x} + \frac{c}{y} = a \times \frac{2}{a+b} + c$$

$$\times \frac{2}{b+c} [Using (2) and (3)]$$

$$= 2 \left[\frac{ab+ac+ac+bc}{ab+ac+b^{2}+bc} \right]$$

$$= 2 [Using (i)]$$
Again,

$$\frac{1}{x} + \frac{1}{y} = \frac{2}{a+b} + \frac{2}{b+c}$$

$$= \frac{2(a+c+2b)}{ab+ac+b^{2}+bc} \quad (\because b^{2} = ac)$$

$$= \frac{2(a+c+2b)}{b(a+c+2b)}$$

$$= \frac{2}{b}$$
138 (a,b,c)
Given that $a = 4, T_{3} - T_{5} = 32/81$. Hence,

$$a(r^{2} - r^{4}) = 32/81$$
or $r^{4} - r^{2} + 8/81 = 0$
or $81r^{4} - 81r^{2} + 8 = 0$
or $(9r^{2} - 8)(9r^{2} - 1) = 0$

$$\therefore r^{2} = 8/9, 1/9$$
Therefore, the value of r is to be +ve since all the terms are +ve
For $r = 1/3$

$$S_{\infty} = \frac{a}{1-r} = \frac{4}{1-\frac{1}{2}} = \frac{4 \times 3}{2} = 6$$

Similarly, we can find S_{∞} when $r = 2\sqrt{2}/3$

139 **(b,d)**

Since, *n*th term of the first (2n - 1) terms is the middle term. Therefore, *a* is the AM(*A*); *b* is the GM(*G*) and *c* is the HM(*H*) of the series, whose first term and the last term are equal. We know that

 $A \ge G \ge H$ and $AH = G^2$ Therefore, $a \ge b \ge c$ and $ac - b^2 = 0$ 140 (c)

$$T_m = a + (m - 1)d = 1/n$$

$$T_n = a + (n - 1)d = 1/m$$

$$\Rightarrow (m - n)d = 1/n - 1/m = (m - n)/mn$$

$$\Rightarrow d = 1/mn$$

$$\Rightarrow a = \frac{1}{mn}$$

$$\therefore T_{mn} = a + (mn - 1)d$$

141 **(a,b,c)**

If a, b, c are in HP, then
$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$

Let $E = \left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$
 $= \left(\frac{3}{b} - \frac{2}{a}\right) \frac{1}{b} = \frac{3}{b^2} - \frac{2}{ab}$
Again, $E = \left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$
 $= \left(\frac{2}{c} - \frac{1}{b}\right) \frac{1}{b} = \frac{2}{bc} - \frac{1}{b^2}$
Also, $E = \left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$
 $= \frac{1}{4} \left(\frac{1}{a} + \frac{1}{c}\right)^2 + \frac{1}{2} \left(\frac{1}{c^2} - \frac{1}{a^2}\right)$
 $= \frac{1}{4} \left(\frac{3}{c^2} + \frac{2}{ca} - \frac{1}{a^2}\right)$

142 (a,b,c,d)

Clearly, n^{th} term of the given series is negative or positive according as n is even or odd,

respectively

Case I: When *n* is even: In this case, the given series is

 $S_n = 1^2 - 2^2 + 3^2 - 4^2 + \dots + (n-1)^2 - n^2$ = $(1^2 - 2^2) + (3^2 - 4^2) + \dots + ((n-1)^2 - n^2)$ = $(1-2)(1+2) + (3-4)(3+4) + \dots + ((n-1)-(n))(n-1+n)$ = $-(1+2+3+4+\dots + (n-1)+n)$ = $-\frac{n(n+1)}{2}$ (1) Case II: When *n* is odd: In this case, the given

Case II: When n is odd: In this case, the given series is

$$\begin{split} S_n &= (1^2 - 2^2) + (3^2 - 4^2) + \cdots \\ &+ \{(n-2)^2 - (n-1)^2\} + n^2 \end{split}$$

 $= (1-2)(1+2) + (3-4)(3+4) + \dots +$ $((n-2) - (n-1)) \times ((n-2) + (n-1)) + n^2$ $= -(1 + 2 + 3 + 4 + \dots + (n - 2) + (n - 1)) + n^{2}$ $= -\frac{(n-1)(n-1+1)}{2} + n^2 = \frac{n(n+1)}{2} \quad (2)$ $\Rightarrow S_{40} = -820 \quad [\text{Using (1)}]$ $S_{51} = 1326$ [Using (2)] Also, $S_{2n} > S_{2n+2}$ [From (1)] $S_{2n+1} > S_{2n-1}$ [From (2)] 143 (b) If x, y, and z are in G.P. (x, y, z > 1), then $\log x$, $\log y$, $\log z$ are in A.P. Hence, $1 + \log x$, $1 + \log y$, $1 + \log z$ will also be in A.P. $\Rightarrow \frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ will be in H.P. 144 (b,c) We have, $\frac{p}{1-1/p} = \frac{9}{2}$ $\Rightarrow 2p^2 - 9p + 9 = 0$ $\Rightarrow p = 3/2, 3$ 145 (a,c) $S = 1 + \frac{1}{(1+3)}(1+2)^2$ $+\frac{1}{(1+3+5)}(1+2+3)^2$ $+\frac{1}{(1+3+5+7)}(1+2+3+4)^2+\cdots$ The r^{th} term is given by $T_r = \frac{1}{r^2} (1 + 2 + \dots + r)^2$ $=\frac{1}{r^2}\left\{\frac{r(r+1)}{2}\right\}^2$ $=\frac{r^2+2r+1}{4}$ \therefore $T_7 = 16$ and $S_{10} = \sum_{r=1}^{10} T_r$ $=\frac{1}{4}\left\{\frac{(10)(10+1)(20+1)}{6}+(10)(10+1)+10\right\}$ $=\frac{505}{4}$

146 (a,b,c)

$$\frac{1}{\sqrt{2} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{11}} + \dots n \text{ terms}$$

$$= \frac{\sqrt{5} - \sqrt{2}}{3} + \frac{\sqrt{8} - \sqrt{5}}{3} + \dots$$

$$+ \frac{\sqrt{5 + (n - 1)^3} - \sqrt{2 + (n - 1)^3}}{3}$$

$$= \frac{\sqrt{3n + 2} - \sqrt{2}}{3(\sqrt{3n + 2} + \sqrt{2})}$$

$$= \frac{n}{\sqrt{3n + 2} + \sqrt{2}}$$

$$= \frac{n}{\sqrt{2 + 3n} + \sqrt{2}} < \frac{n}{\sqrt{3n}} < n$$
147 (a,b)

$$x^2 + 9y^2 + 25z^2 = 15yz + 5zx + 3xy$$

$$\Rightarrow (x)^2 + (3y)^2 + (5z)^2 - (x)(3y) - (3y)(5z)$$

$$- (x)(5z) = 0$$

$$\Rightarrow \frac{1}{2}[(x - 3y)^2 + (3y - 5z)^2 + (x - 5z)^2] = 0$$

$$x = 34 = 5z$$

$$\Rightarrow x: y: z = \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{5}$$
Therefore, 1/x, 1/y, and 1/z are in A.P. and x, y, and z are in H.P.
148 (a,c)
Given a_1 = 2; \frac{a_n}{a_n - 1} = \frac{a_{n-1}}{a_{n-2}}
$$\Rightarrow a_1, a_2, a_3, a_4, a_5, \dots \text{ in G.P.}$$
Let $a_2 = x$ then for $n = 3$ we have

$$\frac{a_3}{a_2} = \frac{a_2}{a_1} = \frac{x^2}{2}$$

$$\Rightarrow a_1^2 = a_1a_3$$

$$\Rightarrow a_3 = \frac{x^2}{2}$$
i.e. $2, x, \frac{x^2}{2}, \frac{x^3}{4}, \frac{x^4}{8}, \dots$ with common ratio $r = \frac{x}{2}$
given $\frac{x^4}{8} \le 162$

$$\Rightarrow x^4 \le 1296 \le x \le 6$$
Also $x = \frac{x^4}{8}$ and are integers

$$\Rightarrow x \text{ must be even then only $\frac{x^4}{8}$ will be an integer
Hence possible values of $x_1 \le 4$ and 6. ($x \ne 2$ as terms are distinct)
Hence possible values of $a_5 = \frac{a^4}{8}$ is $\frac{a^4}{8}, \frac{6^4}{8}$.
149 (a,b,c)
If p, q, r are in A.P., then $p^{\text{th}}, q^{\text{th}}$ and r^{th} terms are equal distant terms which are always in the same series of which they are terms$$

150 **(a,c)**

Let b = a + p, c = a + 2p, d = a + 3p (where p is common difference). Then,

$$\frac{\frac{1}{a} + \frac{1}{d}}{\frac{1}{b} + \frac{1}{c}} = \frac{\frac{1}{a} + \frac{1}{a+3p}}{\frac{1}{a+p} + \frac{1}{a+2p}}$$

$$= \frac{(a+p)(a+2p)}{a(a+3p)}$$

$$= \frac{a^2 + 3ap + 2p^2}{a^2 + 3ap} > 1$$

$$\therefore \frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$$

$$\left(\frac{1}{b} + \frac{1}{c}\right)(a+d) = \left(\frac{1}{a+p} + \frac{1}{a+2p}\right)(a+a+3p)$$

$$= \frac{(2a+3p)^2}{a^2 + 3ap + 2p^2}$$

$$= 4 + \frac{p^2}{a^2 + 3ap + 2p^2} > 4$$

151 **(a,b,c)**

$$a = \frac{n^{64} - 1}{n - 1}$$

$$= (n + 1)(n^{2} + 1)(n^{4} + 1)(n^{8} + 1)(n^{16} + 1)(n^{32} + 1)$$

152 **(a,b,c,d)**

$$an^4 + bn^3 + cn^2 + dn + c$$

 $= 2\sum_{r=1}^n r(r+1)(r+2) - \sum_{r=1}^n r(r+1)$
 $= \frac{2}{4}n(n+1)(n+2)(n+3) - \frac{1}{3}n(n+1)(n+2)$
 $= \frac{1}{6}(3n^4 + 16n^3 + 27n^2 + 14n)$

$$a_{1} + a_{3} + a_{5} = -12$$

$$a + a + 2d + a + 4d = -12 \quad (d > 0)$$

$$a + 2d = -4 \quad (1)$$

$$a_{1}a_{3}a_{5} = 80$$

$$a(a + 2d)(a + 4d) = 80$$
or $(-4 - 2d)(-4 + 2d) = -20 \Rightarrow d = \pm 3$
Since A.P. is increasing, so $d = +3$; $a = -10$.
Hence,

$$a_{1} = -10; a_{2} = -7$$

$$a_{3} = a + 2d = -10 + 6 = -4$$

$$a_{5} = a + 4d = -10 + 12 = 2$$
154 (a,c)

$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$$

$$\Rightarrow \frac{1}{b-a} - \frac{1}{c} = \frac{1}{a} - \frac{1}{b-c}$$

$$\Rightarrow \frac{c-b+a}{c(b-a)} = \frac{b-c-a}{a(b-c)}$$

$$\Rightarrow c - b + a = 0 \text{ or } \frac{1}{c(b-a)} = \frac{1}{a(c-b)}$$

$$\Rightarrow b = a + c \text{ or } bc - ac = ac - ab$$

 $\Rightarrow b = a + c$ or $b = \frac{2ac}{a + c}$ 155 (a,b,d) $x + y + z = 3\left(\frac{a+b}{2}\right)$ $\Rightarrow 15 = 3 \frac{(a+b)}{2}$ $\Rightarrow a + b = 10$ $\frac{1}{x} + \frac{1}{x} + \frac{1}{z} = \frac{3\left(\frac{1}{a} + \frac{1}{b}\right)}{2}$ $\Rightarrow \frac{5}{3} = \frac{3(a+b)}{2ab} = \frac{3 \times 10}{2ab}$ $\Rightarrow ab = 9$ (2) From (1) and (2), *a* = 9, *b* = 1 or *a* = 1 and *b* = 9. Hence, G.M. $=\sqrt{ab}=3, a+2b=11 \text{ or } 19$ 156 (a,d) $S = 1 + 2x + 3x^2 + 4x^3 + \dots \infty$ $\Rightarrow xS = x + 2x^2 + 3x^3 + 4x^4 + \dots \infty$ $\Rightarrow (1-x)S = 1 + x + x^2 + \dots \infty = \frac{1}{1-x}$ $\Rightarrow S = \frac{1}{(1-x)^2}$ Now, $S \ge 4 \Rightarrow \frac{1}{(1-r)^2} > 4$ $\Rightarrow (x-1)^2 \leq \frac{1}{4}$ $\Rightarrow -\frac{1}{2} \le x - 1 \le \frac{1}{2}$ $\Rightarrow \frac{1}{2} \le x \le \frac{3}{2}$. Also 0 < |x| < 1 $\Rightarrow \frac{1}{2} \le x < 1$ 157 (a,d) We have $a(n) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{2n-1}$ $= 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right)$ $+\left(\frac{1}{8}+\ldots+\frac{1}{15}\right)+\ldots+\frac{1}{2^{n}-1}$ $=1+\left(\frac{1}{2}+\frac{1}{2^2-1}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{2^3-1}\right)$ $+\left(\frac{1}{2^3}+\ldots+\frac{1}{2^4\pm 1}\right)+\ldots$ $< 1 + 1 + \ldots + 1 = n$ Thus, a(100) < 100Also,

 $a(n) = 1 + \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{4}\right)$ $+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots\frac{1}{2^{n}-1}$ $= 1 + \frac{1}{2} + \left(\frac{1}{2^{1} + 1} + \frac{1}{2^{n}}\right) + \left(\frac{1}{2^{n}} + \frac{1}{2^{3}}\right) + \cdots$ $+\left(\frac{1}{2^{n-1}}+1\right)$ $> 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dots + \frac{2^{n-1}}{2^n} - \frac{1}{2^n}$ $> 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dots + \frac{2^{n-1}}{2n} - \frac{1}{2n}$ $= 1 + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}\right) - \frac{1}{2^n}$ $=1+\frac{n}{2}-\frac{1}{2n}=\left(1-\frac{1}{2n}\right)+\frac{n}{2}$ Thus, $a > \left(1 - \frac{1}{2^{200}}\right) + \frac{200}{2} > 100$ i.e., a(200) > 100158 (a,d) $x_{1}x^{2} + 2_{2}x^{3} + 10$ are in G.P. Hence, $x(x^{3} + 10) = (x^{2} + 2)^{2} = x^{4} + 4x^{2} + 4$ $\Rightarrow 4x^2 - 10x + 4 = 0$ $\Rightarrow 2x^2 - 5x + 2 = 0$ $\Rightarrow x = 2, \frac{1}{2}$ The 4th term of G.P. is $(x^3 + 10)r = (x^3 + 10)\left(\frac{x^2 + 2}{x}\right)$ $= \begin{cases} 54 \text{ when } x = 2\\ \frac{729}{16} \text{ when } x = \frac{1}{2} \end{cases}$ 159 (a,b) We have, 2y = x + z and $2 \tan^{-1} y =$ tan-1x+tan-1z. $\Rightarrow \frac{2y}{1-y^2} = \frac{x+z}{1-xz}$ $\Rightarrow y^2 = xz$ S0, *x*, *y*, *z* are in GP which is possible, if x = y = z160 (a,d) $a(n) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n - 1}$ $= 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \ldots + \frac{1}{7}\right)$ $+\left(\frac{1}{8}+\ldots+\frac{1}{15}\right)+\ldots\left(\frac{1}{2^{n-1}+1}\ldots\frac{1}{2^n-1}\right)<1$ $+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}+\ldots+\frac{1}{4}\right)+\left(\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{2}\right)$ $+\ldots+\left(\frac{1}{2^{n-1}+1}+\frac{1}{2^{n-1}+1}+\ldots+\frac{1}{2^{n-1}+1}\right)$

 $= 1 + \frac{2}{2} + \frac{4}{4} + \frac{8}{8} + \dots \frac{2^{n-1}}{2^{n-1}} \underbrace{1 + 1 + 1 + \dots + 1}_{(n-1) \text{ times}}$ = nThus, a(100) < 100. Next, $a(n) = 1 + \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{4}\right)$ $+\left(\frac{1}{5}+\ldots+\frac{1}{8}\right)+\ldots+\frac{1}{2^{n-1}+1}+\ldots+\frac{1}{2^n-1}$ $> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right)$ $+\left(\frac{1}{8}+\frac{1}{8}...+\frac{1}{8}\right)+...+\left(\frac{1}{2^{n}-1}\right)$ $+\frac{1}{2^{n}-1}+\ldots+\frac{1}{2^{n}-1}\right)$ $=1+\frac{1}{2}+\frac{2}{4}+\frac{4}{8}+\ldots+\frac{2^{n}-1}{2^{n}}-\frac{1}{2^{n}}$ $=\underbrace{1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\dots+\frac{1}{2}-\frac{1}{2^{n}}}_{n \text{ times}}$ $=\left(1-\frac{1}{2n}\right)+\frac{n}{2}$ Therefore, $a(200) > \left(1 - \frac{1}{2^n}\right) + \frac{200}{2} > 100$ 161 (b,d) Given $3a_1 + 7a_2 + 3a_3 - 4a_5 = 0$ $\Rightarrow 7(a_1 + a_2 + a_3) = 4(a_1 + a_3 + a_5)$ $\Rightarrow 7(1 + r + r^2) = 4(1 + r^2 + r^4)$ \Rightarrow 7 = 4($r^2 - r + 1$) $\Rightarrow 4r^2 - 4r + 1 = 4$ $\Rightarrow (2r-1)^2 = 4$ $\Rightarrow 2r - 1 = \pm 2$ $\Rightarrow r = 3/2, -1/2$ 162 (a,c,d) $S_n = \frac{n}{2} [2a' + (n-1)d] = a + bn + cn^2$ $\Rightarrow na' + \frac{n(n-1)}{2}d = a + bn + cn^2$ $\Rightarrow \left(a' - \frac{d}{2}\right)n + \frac{n^2d}{2} = a + bn + cn^2$ On comparing $a = 0, b = a' - \frac{d}{2}, c = \frac{d}{2} \Rightarrow d = 2c$ 163 (c,d) $4 = 1 + (n-1)d, 16 = 1 + (m-1)d \Rightarrow \frac{15}{3} = \frac{m-1}{n-1}$ or $\frac{n-1}{1} = \frac{m-1}{5} = p$ = positive integer \therefore n = p + 1, m = 5p + 1. So, n m have infinite pairs of values Also, $4 = 1.r^n$, $16 = 1, r^m \Rightarrow rm^{-n} = 4 = r^n$. So, m - n = n $\frac{m}{2} = \frac{n}{1} = q$ = positive integer. So, *m*, *m* have infinite pairs of values 164 (a,b)

$$\begin{pmatrix} \frac{1}{b} + \frac{1}{c} - \frac{1}{a} \end{pmatrix} \begin{pmatrix} \frac{1}{c} + \frac{1}{a} - \frac{1}{b} \end{pmatrix} \\ = \begin{pmatrix} \frac{1}{b} + \frac{1}{c} - \frac{2}{b} + \frac{1}{c} \end{pmatrix} \begin{pmatrix} \frac{1}{c} + \frac{1}{b} - \frac{1}{c} \end{pmatrix} \\ = \begin{pmatrix} \frac{2}{c} - \frac{1}{b} \end{pmatrix} \frac{1}{b} = \frac{2}{bc} - \frac{1}{b^2} \\ \text{Also by eliminating } b, we get the given expression
$$\frac{(a+c)(3a-c)}{4a^2c^2} \\ \text{165 (b,c)} \\ \text{We have, for } 0 < \phi < \pi/2 \\ x = \sum_{n=0}^{\infty} \cos^{2n} \phi \\ = 1 + \cos^2 \phi + \cos^4 \phi + \dots \infty \\ = \frac{1}{1 - \cos^2 \phi} \\ = \frac{1}{1 - \cos^2 \phi} \\ y = \sum_{n=0}^{\infty} \sin^{2n} \phi \\ = 1 + \sin^2 \phi + \sin^4 \phi + \dots \infty \\ = \frac{1}{1 - \sin^2 \phi} \\ z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi \\ = 1 + \cos^2 \phi \sin^2 \phi + \cos^4 \phi \sin^4 \phi + \dots \infty \\ = \frac{1}{1 - \cos^2 \phi} \\ x = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi \\ = \frac{1}{1 - \cos^2 \phi} (3) \\ \text{Subtracting the values of } \cos^2 \phi \text{ and } \sin^2 \phi \text{ in (3), from (1) and (2), we get} \\ z = \frac{1}{1 - \frac{1}{x} \frac{1}{y}} \\ \Rightarrow z = \frac{xy}{xy - 1} \\ \Rightarrow xyz - z = xy \\ \Rightarrow xyz = xy + 9z \\ \text{Also } x + y + z = \frac{1}{\cos^2 \phi} + \frac{1}{\sin^2 \phi} + \frac{1}{1 - \cos^2 \phi \sin^2 \phi} \\ = \frac{(1 - \cos^2 \phi \sin^2 \phi) + \cos^2 \phi \sin^2 \phi}{\cos^2 \phi \sin^2 \phi (1 - \cos^2 \phi \sin^2 \phi)} \\ \end{cases}$$$$

$$\frac{1}{\sin^2 \phi (1 - \cos^2 \phi \sin^2 \phi)} = xyz$$

and (c) both are correct

 $(\sin^2 \phi + \cos^2 \phi)(1 - \cos^2 \phi \sin^2 \phi)$

 $=\frac{+\cos^2\phi\sin^2\phi}{\cos^2\phi\sin^2\phi(1-\cos^2\phi\sin^2\phi)}$

 $=\frac{1}{\cos^2\phi}$

Thus, (b)

166 (a,d)

 $p(x) = \left(\frac{1-x^{2n}}{1-x^2}\right) \left(\frac{1-x}{1-x^n}\right) = \frac{1+x^n}{1+x}$ As p(x) is a polynomial, x = -1 must be a zero of $1 + x^n$, Hence, $1 + (-1)^n = 0$. So, *n* must be odd 167 (a,b,c) Let *a*, *b*, *c* are *p*th, *q*th and *r*th terms of A.P. then a = A + (p - 1)D, b = A + (q - 1)D, c = A + (r - 1)D1)D $\Rightarrow \frac{r-q}{q-p} = \frac{c-b}{b-a}$ is rational number Now for, 1, 6, 19 $\frac{r-q}{q-p} = \frac{19-6}{6-1}$ is rational number For $\sqrt{2}$, $\sqrt{50}$, $\sqrt{98}$, $\frac{r-q}{q-p} = \frac{\sqrt{98} - \sqrt{50}}{\sqrt{50} - \sqrt{2}} = \frac{7\sqrt{2} - 5\sqrt{2}}{5\sqrt{2} - \sqrt{2}}$ $=\frac{1}{2}$ is rational number For $\log 2$, $\log 16$, $\log 128$ $\frac{r-q}{q-p} = \frac{\log 128 - \log 16}{\log 16 - \log 2} = \frac{7\log 2 - 4\log 2}{4\log 2 - \log 2}$ = 1 is rational number But for $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$, $\frac{r-q}{q-p}$ is not rational number 168 (b,c,d) We have, length of side of S_n is equal to the length of a diagonal of S_{n+1} . Hence, Length of a side of $S_n = \sqrt{2}$ (Length of a side of S_{n+1}) $\Rightarrow \frac{\text{Length of a side of } S_{n+1}}{\text{Length of side of } S_n} = \frac{1}{\sqrt{2}}, \text{ for all } n \ge 1$ Hence, sides of $S_1, S_2, ..., S_n$ form a G.P. with common ratio $1/\sqrt{2}$ and first term 10 : Side of $S_n = 10 \left(\frac{1}{\sqrt{2}}\right)^{n-1} = \frac{10}{2^{n-1}}$ \Rightarrow Area of $S_n = (\text{side})^2 = \left(\frac{10}{2^{n-1}}\right) = \frac{100}{2^{n-1}}$ Now, area of $S_n < 1 \Rightarrow n = b, c, d$ 169 **(b)** Putting $\theta = 0$, we get $b_0 = 0$ $\therefore \sin n\theta = \sum_{r=1}^{n} b_r \sin^r \theta$ $\Rightarrow \frac{\sin n\theta}{\sin \theta} = \sum_{r=1}^{n} b_r (\sin \theta)^{r-1}$ $= b_1 + b_2 \sin \theta + b_3 \sin^2 \theta + \dots + b_{hn} \sin^{n-1} \theta$ Taking limit as $\theta \to 0$, we obtain $\lim_{\theta \to 0} \frac{\sin n\theta}{\sin \theta} = b_1 \implies b_1 = n$ 170 (a) $x^{2} + 9y^{2} + 25z^{2} = xyz\left(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\right)$ $\Rightarrow x^{2} + 9y^{2} + 25z^{2} - 15yz - 5xz - 3xy = 0$

 $\Rightarrow 2x^{2} + 18y^{2} + 50z^{2} - 30yz - 10xz - 6xy = 0$ $\Rightarrow (x - 3y)^{2} + (3y - 5z)^{2} + (5z - x)^{2} = 0$ $\Rightarrow x - 3y = 0, 3y - 5z = 0, 5z - x = 0$ $\Rightarrow x = 3y = 5z = k \text{ (say)}$ $\Rightarrow x = k, y = k/3, z = k/5$

Hence, *x*, *y*, *z* are in H.P. Hence option (a) is correct

171 (c)

$$\therefore b = \frac{2ac}{a+c}$$

$$\Rightarrow \frac{b}{a} = \frac{2c}{a+c} \text{ and } \frac{b}{c} = \frac{2a}{a+c}$$
Now, $\frac{a+b}{2a-b} = \frac{1+b/a}{2-b/a} = \frac{a+3c}{2a}$
And $\frac{c+b}{2c-b} = \frac{1+b/c}{2-b/c} = \frac{3a+c}{2c}$
Thus, $\frac{a+b}{2a-b} + \frac{c+b}{2c-b} \ge 1 + \frac{3}{2} \left(\frac{c}{a} + \frac{a}{c}\right) \ge 1 + \frac{3}{2} (2) = 4$

172 (d)

Sum of *n* terms of AP is given by $S_n = \frac{n}{2} [2a + (n-1)d].$

Hence, sum of *n* terms of an AP is always of the form $pn^2 + qn$

Hence, option (d) is correct.

173 (d) Case I : x < 1

Then, 1 - x, 3, 3 - x are in AP.

$$6 = 4 - 2x \Rightarrow x = -1$$

∴ Terms are 2, 3, 4

 \therefore Sixth term = 7

Case II : 1 < *x* < 3

Then, x - 1, 3, x - 3 are in AP.

6 = 2 (impossible)

Case III : x > 3

Then, x - 1, 3, x - 3 are in AP.

 $6 = 2x - 4 \Rightarrow x = 5$

Then term are 4, 3, 2

 \therefore Sixth term is -1

174 (a)

Statement 2 is true as it is a property of sequence in G.P.

Now T_{m-n} , T_m and T_{m+n} are in G.P> (:: Tm from Tm-n and Tm+n from T are at same distance $\therefore T_m^2 = T_{m-n}T_{m+n}$

 $\Rightarrow T_m = \sqrt{pq}$

175 **(d)**

For odd integer *n*, we have

$$S_{n} = n^{3} - (n-1)^{3} + \dots + (-1)^{n-1} 1^{3}$$

$$= [1^{3} + 2^{3} + 3^{3} + \dots + (n-1)^{3} + n^{3}] - 2[2^{3} + 4^{3} + 6^{3} + \dots + (n-1)^{3}]$$

$$= \frac{n^{2}(n+1)^{2}}{4} - 2 \times 2^{3} \left[1^{3} + 2^{3} + \dots \left(\frac{n-1}{2}\right)^{3} \right]$$

$$= \frac{n^{2}(n+1)^{2}}{4} - 2^{4} \frac{\left(\frac{n-1}{2}\right)^{2} \left(\frac{n-1}{2} + 1\right)^{2}}{4}$$

$$= \frac{n^{2}(n+1)^{2}}{4} - \frac{(n-1)^{2}(n+1)^{2}}{4}$$

$$= \frac{(n+1)^{2}}{4} [n^{2} - (n-1)^{2}]$$

$$= \frac{1}{4} (2n-1)(n+1)^{2}$$

Now, putting n = 11 in above formula, $S_{11} = 756$. Hence statement 1 is false and statement 2 is correct 176 **(b)**

Let, if possible, 8 be the first term and 12 and 27 be n^{th} and n^{th} terms, respectively. Then,

$$12 = ar^{m-1} = 8r^{m-1}, 27 = 8r^{n-1}$$

$$\Rightarrow \frac{3}{2} = r^{m-1}, \left(\frac{3}{2}\right)^3 = r^{n-1} = r^{3(m-1)}$$

$$\Rightarrow n - 1 = 3m - 3 \text{ or } 3m + n + 2$$

$$\Rightarrow \frac{m}{1} = \frac{n+2}{3} = k \text{ (say)}$$

$$\therefore m = k, n = 3k - 2$$

By giving k different values, we get the integral value of m and n. Hence there can be infinite number of G.P.'s whose any the three terms will be 8, 12, 27 (not consecutive). Obviously, statement 2 is not a correct explanation of statement 1

177 **(a)**

We know, if ax + by = k and the expression $x^m y^m (m, n \ge 1)$ will be maximum when $\left(\frac{ax}{m}\right)^m \left(\frac{by}{n}\right)^n$ is maximum and this is maximum at $\frac{ax}{m} = \frac{by}{n} = \frac{ax+by}{m+n} = \frac{k}{m+n}$.

Since, x^2y^3 will be maximum at

$$\frac{3x}{2} = \frac{4y}{3} = \frac{5}{5}$$
$$\Rightarrow x = \frac{2}{3}, y = \frac{3}{4}$$
$$\therefore \frac{x}{y} = \frac{8}{9} \text{ or } 9x = 8y$$

 $\therefore \text{ Maximum value of } x^2 y^3 = \left(\frac{2}{3}\right)^2 \left(\frac{3}{4}\right)^3 = \frac{3}{16}$

178 **(b)**

The given inequality is

$$\begin{array}{rl} (p_1^2 + p_2^2 + \ldots + p_{n-1}^2) x^2 \\ &\quad + 2(p_1 p_2 + p_2 p_3 + \ldots p_{n-1} p_n) x \\ &\quad + (p_2^2 + \ldots + p_n^2) \leq 0 \end{array}$$

$$\Rightarrow \ (p_1 x + p_2)^2 + (p_2 x + p_3)^2 + \ldots + (p_{n-1} x + p_n 2 \leq 0 \ (1) \end{array}$$

But each one of the terms on the L.H.S. is a perfect square and hence is positive or zero

Therefore (1) holds only if

$$p_1 x + p_2 = 0 = p_2 x + p_3 = p_3 x + p_4 = \cdots$$
$$= p_{n-1} x + p_n$$
$$\Rightarrow -x = \frac{p_2}{p_1} = \frac{p_3}{p_2} = \cdots = \frac{p_n}{p_{n-1}}$$

Hence, p_1, p_2, \dots, p_n are in G.P.

179 (a)

We have,

$$a \times ar \times ar^{2} \times ... \times ar^{n-1} = a^{n} \times r^{1+2+...+(n-1)}$$

= $a^{n} r^{\frac{n(n-1)}{2}} (a^{2} r^{n-1})^{n/2}$

Hence, statement 1 is true

Also, $(a \times r^{i-1})(a \times r^{n-ik}) = a^2 \times r^{n-1}$, which is independent of k. Hence, statement 2 is a correct explanation for statement 1, as in the product of $a, ar, ar^2, ..., ar^{n-1}$, there are n/2 groups of numbers, whose product is a^2r^{n-1} . Hence (a) is the correct option

180 (d)

$$: \frac{S_n}{S_{n'}} = \frac{(7n+1)}{(4n+17)} = \frac{n(7n+1)}{n(4n+17)}$$

$$: S_n = (7n^2 + n)\lambda, S'_n = (4n^2 + 17n)\lambda$$
Then, $\frac{T_n}{T'_n} = \frac{S_n - S_{n-1}}{S'_n - S'_{n-1}}$

$$= \frac{7(2n-1) + 1}{4(2n-1) + 17}$$

$$= \frac{14n - 6}{8n + 13}$$

$$\Rightarrow T_n: T'_n = (14n - 6): (8n + 13)$$

181 (a)

For two positive numbers (G. M.)² = (A. M.) × (H. M.)

182 (d)

∴ Sum of *n* terms of an AP is $S_n = \frac{n}{2} [2A + n-1D]$.

Where *A* and *D* are first term and common difference.

Hence, sum always of the form $an^2 + bn$.

If a, b, c are in GP, then a + b, b + b, c + b are in HP.

$$\Rightarrow (2b) = \frac{2(a+b)(b+c)}{(a+b)+(c+b)}$$
$$\Rightarrow b(a+2b+c) = (a+b)(b+c)$$
$$\Rightarrow b(a+c) + 2b^{2} = ab + ac + b^{2} + bc$$
$$\Rightarrow b^{2} = ac \quad (\because a, b, c \text{ are in GP})$$

184 (a)

Let p, q, r be the l^{th}, m^{th} and n^{th} terms of an A.P. Then

p = (a + (l - 1)d, q = a + (m - 1)d and r = a + (n - 1)d

Hence, r - q = (n - m)d and q - p = (m - l)d, so that

$$\frac{r-q}{p-q} = \frac{(n-m)d}{(m-l)d} = \frac{n-m}{m-l} \quad (\because d \neq 0)$$

Since, *l*, *m*, *n* are positive integers and $m \neq l$, (n - m)/(m - l) is a rational number. From (1), using $p = \sqrt{2}$, $q = \sqrt{3}$, $r = \sqrt{5}$, we have

$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{3} - \sqrt{2}} = \frac{n - m}{m - l}$$
 (which is not possible)

Hence,
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$ cannot be the terms of an A.P.

185 **(b)**

$$x = 1111 \dots 91 \text{ times}$$

 $= 1 + 10 + 10^2 + 10^3 + \dots + 10^{90}$
 $= \frac{1(10^{91} - 1)}{10 - 1}$
 $= \frac{(10^{13 \times 7} - 1)}{10 - 1}$
 $= \frac{((10^{13})^7 - 1)}{10^{13} - 1} \times \frac{(10^{13} - 1)}{10 - 1}$
 $= (1 + 10^{13} + 10^{26} + \dots 10^{78}) \times (1 + 10 + 10^2 + \dots + 10^{12})$

=composite numbers

But statement 2 is not a correct explanation of statement 1 as 111 has 1 digit 3 times, and 3 is a prime number but $111 = 3 \times 37$ is a composite

183 (a)

number. Hence (b) is the correct option

186 (a)

Coefficient of x^{14} in $(1 + 2x + 3x^2 + ... + 16x^{15})^2$

Coefficient of x^{14} in $(1 + 2x + 3x^2 + ... + 16x^{15})^2(1 + 2x + 3x^2 + ... + 16x^{15})^2$

$$= 1 \times 15 + 2 \times 14 + \dots + 15 \times 1$$

$$\sum_{r=1}^{15} r(16 - r)$$

Also,

$$\sum_{r=1}^{n-1} r(n-r) = \sum_{r=1}^{n-1} nr - \sum_{r=1}^{n-1} r^2$$
$$= n \frac{n(n-1)}{2} - \frac{n(n-1)(2n-1)}{6}$$
$$= \frac{n(n-1)}{6} (3n - (2n-1))$$
$$= \frac{n(n^2 - 1)}{6}$$
$$\Rightarrow \sum_{r=1}^{15} r(16 - r) = \frac{15(15^2 - 1)}{6} = 560$$

Hence option (a) is correct

187 (d)

Sum =
$$\frac{x/r}{1-r} = 4$$
 (where *r* is common ratio)
 $x = 4r(1-r) = 4(r-r^2)$
For $r \in (-1, -1) - \{10\}$
 $r - r^2 \in (-2, \frac{1}{4}) - \{0\}$
 $\Rightarrow x \in (-8, 1) - \{0\}$
188 **(b)**
 $\therefore \sum_{r=1}^{n} F_1(r) = \sum_{r=1}^{n} \{1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{r}\}$
 $= 1 \cdot n + \frac{1}{2}(n-1) + \frac{1}{3}(n-2) + ... + 1 \cdot \frac{1}{n}$

 $= n\left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\right) - \left\{\frac{1}{2} + \frac{2}{3} + \ldots + \left(\frac{n-1}{n}\right)\right\}$

$$= nF_1(n) - \left\{ \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{3}\right) + \left(1 - \frac{1}{4}\right) + \dots + \left(1 - \frac{1}{n}\right) \right\}$$

$$= nF_1(n) - \{n - F_1(n)\} = (n+1)F_1(n) - n$$

189 (a)

Statement 2 is true as

$$\frac{a^n + b^n}{a + b} = \frac{a^n - (-b)^n}{a - (-b)}$$
$$= a^{n-1} - a^{n-2}b + a^{n-3}b^2$$
$$- \dots (-1)^{n-1}b^{n-1}$$

Now,

$$1^{99} + 2^{99} + \dots 100^{99}$$

= (1⁹⁹ + 100⁹⁹) + (2⁹⁹ + 99⁹⁹)
+ \dots + (50⁹⁹ + 51⁹⁹)

Each bracket is divisible by 101; hence the sum is divided by 101. Also,

$$1^{99} + 2^{99} + L \dots 100^{99}$$

= (1⁹⁹ + 99⁹⁹) + (2⁹⁹ + 98⁹⁹)
+ \dots + (49⁹⁹ + 51⁹⁹) + 50⁹⁹ + 100⁹⁹

Here, each bracket and 50^{99} and 100^{99} are divisible by 100. Hence sum is divisible by 100. Hence sum is divisible by $101 \times 100 = 10100$

190 **(b)**

1.
$$\sum n = 210$$

 $\Rightarrow n(n-1) = 420$
 $\Rightarrow (n-20)(n+21) = 0$
 $\Rightarrow n = 20$
Hence,

$$\sum n^2 = \frac{n}{6}(n+1)(2n+1)$$
$$= \frac{20}{6}(21)(41)$$
$$= (10)(7)(41)$$

Hence, the greatest prime number by which $\sum n^2$ which is divisible is 41

2. 4,
$$G_1, G_2, \dots, G_{n+1}, \dots, G_{2n}, G_{2n+1}, 2916$$

 G_{n+1} will be the middle mean of (2n + 1) odd

means and it will be equidistant from the first and last terms. Hence,

4, G_{n+1} 2916 will also be in G.P. So,

$$\Rightarrow G_{n+1}^2 = 4 \times 2916$$

 $= 4 \times 9 \times 324$

 $= 4 \times 9 \times 4 \times 81$

 $\Rightarrow G_{n+1} = 2 \times 3 \times 2 \times 9 = 108$

Hence, the greatest odd number by which G_{n+1} is divisible is 27

3. Terms are 40, 30, 24, 20. Now,

$$\frac{1}{30} - \frac{1}{40} = \frac{1}{120}$$
$$\Rightarrow \frac{1}{24} - \frac{1}{30} = \frac{6}{24 \times 30} = \frac{1}{120}$$

and

$$\frac{1}{20} - \frac{1}{24} = \frac{4}{20} = \frac{1}{120}$$

Hence, 1/30, 1/24, 1/20 are in A.P. with common difference d = 1/120. Hence, the next term is 1/20+1/120=7/120. Therefore, the next term of given series is $\frac{120}{7} = 17\frac{1}{7}$. Hence, the integral part of $17\frac{1}{7}$ is 17

4.
$$S = 1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \infty$$

 $\Rightarrow \frac{1}{5}S = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \dots$
 $\Rightarrow S\left(1 - \frac{1}{5}\right) = 1 + 3\left[\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots \infty\right]$
 $\Rightarrow \frac{4}{3}S = 1 + 3\left[\frac{1/5}{1 - 1/5}\right] = 1 + \frac{3}{4} = \frac{7}{4}$
 $\Rightarrow S = \frac{35}{16}$
 $\Rightarrow a = 35 \text{ and } b = 16$
 $\Rightarrow a - b = 19$
191 (a)

1. *a*, *b*, *c*, are in G.P. Hence,

 $b^2 = ac$

$$\Rightarrow 2 \log_{10} b = \log_{10} a + \log_{10} c$$

$$\Rightarrow \frac{2}{\log_{b} 10} = \frac{1}{\log_{a} 10} + \frac{1}{\log_{c} 10}$$

$$\Rightarrow \frac{2}{y} = \frac{1}{x} + \frac{1}{z}$$

Hence, x, y, z are in H.P.
2. $\frac{a+be^{x}}{a-be^{x}} = \frac{b+ce^{x}}{b-ce^{x}} = \frac{c+de^{x}}{c-de^{x}}$

$$\Rightarrow \frac{2a}{a-be^{x}} - 14 = \frac{2b}{b-ce^{x}} - 1 = \frac{2c}{c-de^{x}} - 1$$

$$\Rightarrow \frac{a-be^{x}}{a} = \frac{b-ce^{x}}{b} = \frac{c-de^{x}}{c}$$

$$\Rightarrow 1 - \frac{b}{a}e^{x} = 1 - \frac{c}{b}e^{x} = 1 - \frac{d}{e}e^{x}$$

$$\Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c}$$

Hence, a, b, c, d are in G.P.

3. Given,
$$2b = a + c$$
, $x^2 = ab$, $y^2 = bc$. Now,
 $x^2 + y^2 = b(a + c) = b \ 2b = 2b^2$
 $\Rightarrow x^2 + y^2 = 2b^2$

Hence, x^2 , b^2 , y^2 are in A.P.

4.
$$x \log a = y \log b = z \log c = k$$
(say)

Also,

$$y^2 = xz$$

 $\Rightarrow \frac{k^2}{(\log b)^2} = \frac{k^2}{\log a \log c}$

Hence, $\log a$, $\log b$, $\log c$ are in G.P.

192 (a)
Let
$$S = \frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$$

 $\therefore T_r = \frac{2r+1}{1^2 + 2^2 + \dots + r^2} = 6\left(\frac{1}{r(r+1)}\right)$
 $= 6\left(\frac{1}{r} - \frac{1}{r+1}\right)$
 $\therefore S_n = \frac{6n}{n+1}$
193 (a)
Since, $\sqrt{ab} = 16$ and $\frac{2ab}{a+b} = 12\frac{4}{5}$
 $\therefore 2 \times \frac{256}{a+b} = \frac{64}{5}$
 $\Rightarrow a+b = 40$
 $= 8 + 32$

 $\Rightarrow \frac{a}{b} = \frac{1}{4}$ 194 (c) Let the odd integers be 2m + 1, 2m + 3, 2m + 5, ... and let their number be *n*. Then, $57^2 - 13^2 = (n/2)[2(2m + 1) + (n - 1) \times 2]$ = n(2m + 1) $= 2mn + n^2$ $\Rightarrow 57^2 - 13^2 = (n+m)^2 - m^2$ \Rightarrow *m* = 13 and *n* + *m* = 57 $\Rightarrow n = 57 - 13 = 44$ Hence, the required odd integers are 27, 29, 31, ...,113 195 (c) *a*, *b*, *c* are in G.P. Hence, *a*, *ar*, ar^2 are in G.P. So, $\frac{a^2 + a^2r^2 + a^2r^4}{(a + ar + ar^2)^2} = \frac{t^2}{\alpha^2 t^2} = \frac{1}{\alpha^2}$ $\alpha^2 = \frac{r^2 + r + 1}{r^2 - r + 1}$ Let $\alpha^2 = v$ $\therefore \quad y = \frac{r^2 + r + 1}{r^2 - r + 1}$ $(y-1)r^2 - r(y+1) + (y-1) = 0$ For real *r*, $(y+1)^2 - 4(y-1)^2 \ge 0$ $\Rightarrow \frac{1}{3} \le y \le 3$ But $y \neq 1/3, 1, 3$ (:: $r \neq 1, -1, 0$) $\therefore \frac{1}{3} < y < 3 \text{ and } y \neq 1$ $\alpha^2 \in \left(\frac{1}{2}, 3\right) - \{1\}$ 196 (d) Let *a* be the first term and *r* the common ratio of the given G.P. Further, let there be *n* terms in the given G.P. Then. $a_1 + a_n = 66 \Rightarrow a + ar^{n-1} = 66$ (i) $a_2 \times a_{n-1} = 128$ $\Rightarrow ar \times ar^{n-2} = 128$ $\Rightarrow a \times (ar^{n-1}) = 128 \Rightarrow ar^{n-1} = \frac{128}{a}$ Putting this value of ar^{n-1} in (i), we get $a + \frac{128}{a} = 66$ $\Rightarrow a^2 - 66a + 128 = 0$ $\Rightarrow (a-2)(a-64) = 0$ $\Rightarrow a + 2,64$ Putting a = 2 in (1), we get $2 + 2 \times r^{n-1} = 66 \implies r^{n-1} = 32$ Putting a = 64 in (1), we get

 $64 + 64r^{n-1} = 66 \Rightarrow r^{n-1} = \frac{1}{32}$ for an increasing G.P., r > 1. Now, $S_n = 126$ $\Rightarrow 2\left(\frac{r^n-1}{r-1}\right) = 126$ $\Rightarrow \frac{r^n - 1}{r - 1} = 63$ $\Rightarrow \frac{r^{n-1} \times r - 1}{r - 1} = 63$ $\Rightarrow \frac{32r-1}{r} = 63$ $\Rightarrow r = 2$ $:: r^{n-1} = 32 \implies 2^{n-1} = 32 = 2^5 \implies n-1 = 5$ $\Rightarrow n = 6$ For decreasing G.P., a = 64 and r = 1/2. Hence, the sum of infinite terms is $64/\{1 - (1/2)\} = 128$ For a = 2, r = 2 terms are 2, 4, 8, 16, 32, 64. For a = 64, r = 1/2 terms are 64, 32, 16, 8, 4, 2. Hence difference is 62 197 (c) Let the four integers be a - d, a + d and a + 2d, where *a* and *d* are integers and d > 0. Now, $a + 2d = (a - d)^{2} + a^{2} + (a + d^{2})$ $\Rightarrow 2d^2 - 25d + 3a^2 - a = 0 \quad (1)$ $\therefore d = \frac{1}{2} \left[1 \pm \sqrt{1 + 2a - 6a^2} \right] \quad (2)$ Since *d* is a positive integer, so $1 + 2a - 6a^2 > 0$ $\Rightarrow 6a^2 - 2a - 1 < 0$ $\Rightarrow \frac{1-\sqrt{7}}{6} < a < \frac{1+\sqrt{7}}{6} \quad (\because a \text{ is an integer})$ $\Rightarrow a = 0$ Hence from (2), d = 1 or 0But since d > 0 $\therefore d = 1$ Hence, the four numbers are -1, 0, 1, 2198 (d) 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ... Let us write the terms in the groups as follows: 1, (2, 2), (3, 3, 3), (4, 4, 4, 4), ... consisting of 1, 2, 3, 4, ... terms. Let 2000^{th} term fall in n^{th} group. Then, $\frac{(n-1)n}{2} < 2000 \le \frac{n(n+1)}{2}$ $\Rightarrow n(n-1) < 4000 \le n(n+1)$ Let us consider, n(n-1) < 4000 $\Rightarrow n^2 - n - 4000 < 0$ $\Rightarrow n < \frac{1 + \sqrt{16001}}{2} \Rightarrow n < 64$

We have,

 $n(n+1) \ge 4000 \Rightarrow n^2 + n - 4000 \ge 0 \Rightarrow n$ ≥ 63

That means 2000th term falls is 63^{rd} group. That also means that the 2000th term is 63. Now, total number of terms up to 62^{nd} group is $(62 \times 63)/2 = 1953$. Hence, sum of first 2000 terms is $1^2 + 2^2 + \ldots 62^2 + 63(2000 - 1953)$ $= \frac{62(63)125}{6} + 63 \times 47 = 84336$ Sum of the remaining terms is $63 \times 16 = 1008$ 199 **(b)** Let numbers is set *A* be a - D and these in set *B* be b - d, b, b + d. Now, 3a = 3b = 15

 $\Rightarrow a = b = 5$ $Set A = \{5 - D, 5, 5 + D\}$ Set $B = \{5 - d, 5, 5 + d\}$ Where D = d + 1Also, $\frac{p}{q} = \frac{5(25 - D^2)}{5(25 - d^2)} = \frac{7}{8}$ $\Rightarrow 25(8-7) = 8(d+1)^2 - 7d^2$ \Rightarrow *s* = -17,1 but *d* > 0 \Rightarrow *d* = 1 So, the numbers in set *A* are 3, 5, 7 and the numbers in set *B* are 4, 5, 6 Now, sum of product of numbers in set *A* taken two at a time is $3 \times 5 + 3 \times 7 + 5 \times 7 = 71$. The sum of product of numbers in set *B* taken two at a time is $4 \times 5 + 5 \times 6 + 6 \times 4 = 74$. Also, $p = 3 \times 5 \times 7 = 105$ and $q = 4 \times 5 \times 6 = 120$ $\Rightarrow q - p = 10$

200 **(c)**

$$G_{1}, G_{2}, \dots G_{n} = \left(\sqrt{1 \times 1024}\right)^{n} = 2^{5n}$$

Given,

$$2^{5n} = 2^{45} \Rightarrow n = 9$$

Hence,

$$r = (1024)^{\frac{1}{9+1}} = 2$$

$$\Rightarrow G_{1} = 2, r = 2$$

$$\Rightarrow G_{1} + G_{2} + \dots + G_{9} = \frac{2 \times (2^{9} - 1)}{2 - 1} = 1024 - 2$$

$$= 1022$$

201 **(a)**

Let *m* and (m + 1) be the removed numbers from 1, 2, ..., *n* Then, sum of the remaining numbers is n(n + 1)/2 - (2m + 1)From given condition, $\frac{105}{4} = \frac{\frac{n(n+1)}{2} - (2m + 1)}{(n-2)}$ $\Rightarrow 2n^2 - 103n - 8m + 206 = 0$ Since *n* and *m* are integers, so *n* must be even. Let n = 2k. Then,

$$m = \frac{4k^2 + 103(1-k)}{4}$$

Since *m* is an integer, then 1 - k must be divisible by 4. Let k = 1 + 4t. Then we get n = 8t + 2 and $m = 16t^2 - 95t + 1$. Now, $1 \le m < n$ $\Rightarrow 1 \le 16T^2 - 95t + 12 < 8t + 2$ Solving, we get t = 6. Hence, n = 50 and m = 7Hence, the removed numbers are 7 and 8. Also, sum of all numbers is 50(50 + 1)/2 = 1275202 (c) Let the first term *a* and common difference *d* of the first A.P. and the first6 term b and commo0n difference *e* of the second A.P. and let the number of terms be *n*. Then, $\frac{a + (n-1)d}{2} = \frac{b + (n-1)e}{2} = 47$ (1) $\frac{n}{2}[2a+(n-1)d]$ (2) $\frac{n}{2}[2b+(n-1)e]$ From (1) and (2), we get a - 4b + (n - 1)d = 0(3) b - 4a + (n - 1)e = 0(4)2a - 4b + (n - 1)d - 2(n - 1)e = 0(5) $4 \times (3) + (4)$ gives -15b + 4(n-1)d + (n-1)e = 0(6) $(4) \times 2 + (5)$ gives -7b + 2(n-1)d - 3(n-1)e = 0(7)Further, $15 \times (7) - 7 \times (6)$ gives 2(n-1)d - 52(n-1)e = 0Or de = 26e (:: n > 1) $\therefore d/e = 26$ Putting d = 26e in (3) and solving it with (4), we get a = 2(n-1)e, b = 7(n-1)eThen, the ratio of their n^{th} terms is 2(n-1)e + (n-1)26e 7

$$\overline{7(n-1)e + (n-1)e} = \frac{1}{2}$$

203 (d) We have, a + b + c = 25 (1) 2a = b + 2 (2) $c^2 = 18b$ (3) Eliminating *a* from (1) and (2), we have $b = 16 - \frac{2c}{3}$ Then from (3), $c^2 = 18\left(16 - \frac{2c}{3}\right)$ $\Rightarrow c^2 + 12c - 18 \times 16 = 0$ $\Rightarrow (c - 12)(c + 24) = 0$ Now, c = -24 is not possible since it does not lie between 2 and 18. Hence, c = 12. Then from (3), b = 8 and finally from (2), a = 5Thus, a = 5, b = 8and *c* = 12. Hence, $abc = 5 \times 8 \times 12 = 480$ Also, equation $ax^2 + bc + c = 0$ is $5x^2 + 8x + bc + c = 0$ 12 = 0, which has imaginary roots If *a*, *b*, *c* are roots of the equation $x^3 + qx^2 + rx + qx^2 + qx^2 + rx + qx^2 + qx^2$ s = 0, then sum of product of roots taken two at a time is $r = 5 \times 8 + 5 \times 12 + 8 \times 12 = 196$ 204 (c) Clearly here the differences between the successive terms are $7 - 2, 14 - 7, 24, 14, \dots$ i.e...4, 7, 10, ... which are in A.P. \therefore $T_n = an^2 + bn + c$ Thus, we have 3 = a + b + c7 = 4a + 2b + c14 = 9a + 3b + cSolving, we get a = 3/2, b = -1/2, c = 2. Hence, $T_n = \frac{1}{2}(3n^2 - n + 4)$ $\therefore S_n = \frac{1}{2} \Big[3 \sum n^2 - \sum n + 4n \Big]$ $=\frac{1}{2}\left[3\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + 4n\right]$ $=\frac{n}{2}(n^2+n+4)$ $\Rightarrow S_{20} = 4240$ 205 (8) Since *a*, *b*, *c*, *d* are in A..P. $\therefore b - a = c - b = d - c = D$ (let common difference) $\Rightarrow d = a + 3D$ $\Rightarrow a - d = -3D$ and d = b + 2D $\Rightarrow b - d = -2D$ Also $c = a + 2D \Rightarrow c - a = 2D$

: Given equation $2(a - b) + k(b - c)^2 + b^2$ $(c-a)^3 = 2(a-d) + (b-d)^2 + (c-d)^3$ Becomes $-2D + kD^2 + (2D)^3 = -6D + 4D^2 - D^3$ $\Rightarrow 9D^2 + (k-4)D + 4 = 0$ Since D is real $\Rightarrow (k-4)^2 - 4(4)(9) \ge 0$ $\Rightarrow k^2 - 8k - 128 \ge 0 \Rightarrow (k - 16)(k + 8) \ge 0$ $\therefore k \in (-\infty, -8] \cup [16, \infty)$ Hence, the smallest positive value of k = 16206 (4) Let $\frac{a}{r}$, *a*, *ar* be the three terms in G.P> : Product of terms = $a^3 - 1$ (Given) $\Rightarrow a = -1$ Now, sum of terms = $\frac{a}{r} + a + ar = \frac{13}{12}$ (Given) $\Rightarrow \frac{-1}{r} - 1 - r = \frac{13}{12}$ $\Rightarrow 12r^2 + 25r + 12 = 0$ \therefore (3r+4)(4r+3) = 0 $\Rightarrow r = \frac{-4}{2}, \frac{-3}{4}$ But $r \neq \frac{-4}{r}$ $\therefore |S| = \left|\frac{a}{1-r}\right| = \left|\frac{-1}{1-\left(\frac{-3}{r}\right)}\right| = \left|\frac{-1}{1+\frac{3}{r}}\right| = \left|\frac{-4}{7}\right|$ $=\frac{4}{7}$ 207 (2) Let $S = \sum_{r=1}^{\infty} \frac{r+2}{2^{r+1}r(r+1)}$ $=\sum_{r=1}^{\infty} \frac{2(r+1)-r}{2^{r+1} \cdot r \cdot (r+1)}$ $=\sum_{r=1}^{\infty} \frac{1}{2^{r+1}} \left(\frac{2}{r} - \frac{1}{r+1} \right)$ $=\sum_{r=1}^{\infty} \left(\frac{1}{2^{r} \cdot r} - \frac{1}{2^{r+1}(r+1)}\right)$ $= \lim_{n \to \infty} \left[\left(\frac{1}{2^{1} 1} - \frac{1}{2^{2} 2} \right) + \left(\frac{1}{2^{2} 2} - \frac{1}{2^{3} 3} \right) \right]$ $+\left(\frac{1}{2^3.3}-\frac{1}{2^4.4}\right)\right]$ $= + \ldots + \left(\frac{1}{2^{n} n} - \frac{1}{2^{n+1} (n+1)}\right)$ $= \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2^{n+1} \cdot (n+1)} \right)$ $\therefore S = \frac{1}{2}$ Hence, $S^{-1} = 2$ 208 (9) Given $S = \sum_{n=1}^{9999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(\sqrt[4]{n} + \sqrt[4]{n+1})}$

$$= \sum_{n=1}^{9999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(\sqrt[4]{n} + \sqrt[4]{n+1})}
\left(\frac{\sqrt[4]{n} - \sqrt[4]{n+1}}{\sqrt[4]{n} - \sqrt[4]{n+1}}\right)
= \sum_{n=1}^{9999} ((n+1)^{1/4} - n^{1/4})
= \left(\left(\frac{2^{\frac{1}{4}} - 1\right) + \left(3^{\frac{1}{4}} - 2^{\frac{1}{4}}\right) + \left(4^{\frac{1}{4}} - 3^{\frac{1}{4}}\right) + \dots + \right)
(9999 + 1)^{\frac{1}{4}} - (9999)^{\frac{1}{4}}\right)
= (10^4)^{\frac{1}{4}} - 1 = 9
209 (3)
Let a, ar, ar2, ar3, ... are in G.P.
Now ar4 = 7! and ar7 = 8!
 \therefore On dividing, we get *r*³ = 8 \Rightarrow *r* = 2
Hence, *a*. 2⁴ = 5040
 \therefore *a* = $\frac{5040}{16}$ = 315
So 315, 630, 1260, ... are in G.P.
 \therefore *S*₃ = 2205 \Rightarrow *n* = 3
210 **(7)**
*ax*² + (*a* + *d*)*x* + (*a* + 2*d*) = 0
a, *a* + *d*, *a* + 2*d* are in increasing A.P. (*d* > 0)
For real roots *D* \ge 0
 \Rightarrow (*a* + *d*)² - 4*a*(*a* + 2*d*) \ge 0
 \Rightarrow (*a* - 3*a*)² - 12*a*² \ge 0
 \Rightarrow (*d* - 3*a*)² - 12*a*² \ge 0
 \Rightarrow (*d* - 3*a*) - $\sqrt{12a}$)(*d* - 3*a* + $\sqrt{12a}$) \ge 0
 \Rightarrow $\left[\frac{d}{a} - (3 + 2\sqrt{3})\right] \left[\frac{d}{a} - (3 - 2\sqrt{3})\right] \ge 0$
 \therefore $\frac{d}{a}\Big|_{\text{Min}} = 3 + 2\sqrt{3}$
 \Rightarrow least integral value = 7
211 **(1)**
Let *a* be the first term *r* be the common ratio of G.P.
 $\therefore \frac{a(1 - r^{201})}{1 - r} = 625$$$

$$\sum_{i=1}^{201} \frac{1}{a_i} = \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{201}}\right)$$

$$= \frac{1}{a} + \frac{1}{ar} + \dots + \frac{1}{ar^{200}}$$

$$= \frac{\frac{1}{a} \left(\left(\frac{1}{r}\right)^{201} - 1\right)}{\left(\frac{1}{r} - 1\right)}$$

$$= \frac{1}{a} \left(\frac{1 - r^{201}}{1 - r}\right) \frac{1}{r^{200}}$$

$$= \frac{1}{a} \times \frac{625}{a} \times \frac{1}{r^{200}} \text{ [from (1)]}$$

 $=\frac{625}{(ar^{100})^2}=\frac{625}{(a_{101})^2}=\frac{625}{625}=1$ 212 (0) $10x^2 - nx^2 - 54x - 27 = 0$ has roots in H.P. Put x = 1/t $27t^2 + 54t^2 + nt - 10 = 0$ This equation ahs roots in A.P., let the roots are a - d, a and a + d $\therefore 3a = -\frac{54}{27} \Rightarrow a = -\frac{2}{3}$ Also $(a - d)a(a + d) = \frac{10}{27}$ $\therefore \frac{2}{3} \left(\frac{4}{9} - d^2 \right) = -\frac{10}{27} \Rightarrow \left(\frac{4}{9} - d^2 \right) = -\frac{5}{9}$ $\therefore d^2 = 1 \Rightarrow d = \pm 1$ For d = 1, roots are $-\frac{2}{3} + 1$, $-\frac{2}{3}$, $-\frac{2}{3} - 1 \Rightarrow$ $\frac{1}{3}, -\frac{2}{3}, -\frac{5}{3}$ For $d = -\frac{2}{3}, -1, -\frac{2}{3}, -\frac{2}{3} + 1 \Rightarrow -\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}$ $\therefore \frac{n}{27} = \frac{10}{9} - \frac{5}{9} - \frac{2}{9} \Rightarrow \frac{n}{27} = \frac{3}{9}$ $\Rightarrow n = 9$ 213 (1) Let $a_1 = a - d$; $a_2 = a$; $a_3 = a + d$ $\therefore 3a = 18 \Rightarrow a = 6$ Hence, the number in A.P. 6 - d, d, 6 + d $a_1 + 1, a_2, a_3 + 2$ in G.P. i.e. 7-,68 + d in G.P> $\therefore 36 = (7-d)(8+d)$ $36 = 56 - d - d^2$ $d^2 + d - 20 = 0$ Hence, the sum of all possible common different is -1214 (9) $\left[\frac{k(k+1)}{2}\right]^2 - \frac{k(k+1)}{2} = 1980$ $\Rightarrow \frac{k(k+1)}{2} \left[\frac{k(k+1)}{2} - 1 \right] = 1980$ $\Rightarrow k(k+1)(k^2+k-2) = 1980 \times 4$ $\Rightarrow (k-1)k(k+1)(k+2) = 8.9.10.11$ $\therefore k - 1 = 8 \Rightarrow k = 9$ 215 (7) 6, *a*, *b* in H.P> $\Rightarrow \frac{1}{6}, \frac{1}{a}, \frac{1}{b}$ are in A.P. $\Rightarrow \frac{2}{a} = \frac{1}{6} + \frac{1}{b}$ $\Rightarrow \frac{1}{b} = \frac{2}{a} - \frac{1}{6}$ $\Rightarrow \frac{1}{b} = \frac{12 - a}{6a}$

$$\Rightarrow b = \frac{6a}{12 - a}$$

$$a \in \{3, 4, 6, 8, 9, 10, 11\}$$
216 (8)
For the G.P. $a, ar, ar^2, ...$
 $P_n = a(ar)(ar^2) ...(ar^{n-1}) = a^n .r^{n(n-1)/2}$
 $\therefore S = \sum_{n=1}^{\infty} \sqrt[n]{P_n} = \sum_{n=1}^{\infty} ar^{(n-1)/2}$
Now, $\sum_{n=1}^{\infty} ar^{(n-1)/2} = a[1 + \sqrt{r} + r + r + rr + ... + ... + ... = a1 - r$
Given $a = 16$ and $r = 1/4$
 $\therefore S = \frac{16}{1 - (1/2)} = 32$
217 (6)
Let $\frac{a}{r}$, a, ar be the roots
 $\therefore a^3 = -216$
Again $\frac{a^2}{r} + a^2r + a^2 = b$
 $a^2(1 + r + \frac{1}{r}) = b$ (2)
And $(1 + r + \frac{1}{r}) = -a$ (3)
On dividing (2) by (3), we get
 $\Rightarrow a = -\frac{b}{a}$
 $\Rightarrow a^3 = -\frac{b^3}{a^3}$ (4)
From (1) and (4), $(\frac{b}{a})^3 = 216$
 $\Rightarrow \frac{b}{a} = 6$
218 (0)
 a, b, c are in A.P> $\Rightarrow b = \frac{a+c}{2}$ (1)
 b, c, d are in G.P. $\Rightarrow c^2 = bd$ (2)
And c, d, e are in H.P. $\Rightarrow d = \frac{2ce}{c+e}$ (3)
Now $c^2 = bd \Rightarrow c^2 = (\frac{a+c}{2})(\frac{2ce}{c+e})$ [using
and (3]
 $\therefore c^2 + ce = ae + ce$
 $\Rightarrow c^2 = ae$
Now given $a = 2$ and $e = 18$
 $\therefore c^2 = ae \Rightarrow c^2 = 2 \times 18 = 36 \Rightarrow c = 6 \text{ or } -6$
219 (1)
 $\frac{a}{1-r_1} = r_1$ and $\frac{a}{1-r_2} = r_2$
Hence, r_1 and r_2 are the roots of $\frac{a}{1-r} = r$
 $\Rightarrow r^2 - r + a = 0$
 $\Rightarrow r_1 + r_2 = 1$
220 (6)
10 for the given A.P., we have $2(2a + b) = (5a - b) + (a + 2b)$
 $\Rightarrow b = 2a$ (1)

(1)

Also for the given G.P. , we have $(ab + 1)^2 =$ $(a-1)^2(b+1)^2$ (ii) : Putting b = 2a from (i) in (ii), we get a = 0, -2or $\frac{1}{4}$ But a > 0, so $a = \frac{1}{4}$ and $b = 2a = \frac{1}{2}$ Hence, $(a^{-1} + b^{-1}) = 2 + 4 = 6$ 221 **(3)** $369 = \frac{9}{2}[2 + (9 - 1)d]$ $\Rightarrow 82 = 2 + 8d$ $\Rightarrow d = 10$ Now $ar^8 = a + 8d = 1 + 8 \times 80 = 81$ $\Rightarrow r^8 = 81$ $\Rightarrow r = \sqrt{3}$ $\Rightarrow ar^{(7-1)} = 1 \times \left(\sqrt{3}\right)^6 = 27$ 222 (6) We have $S = 3 + \sum_{n=1}^{\infty} \frac{2n+3}{3^n} = 3 + \underbrace{\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}}_{S} + \underbrace{$ $\sum_{\substack{n=1\\S_2}}^{\infty} \frac{2n}{3^n}$ Now $S_1 = \sum_{n=1}^{\infty} \frac{1}{3^{n-1}} = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots \infty$ $\therefore S_1 = \frac{1}{1 - \left(\frac{1}{2}\right)} = \frac{3}{2}$ $S_2 = \sum_{n=1}^{\infty} \frac{2n}{3^n} = \frac{2}{3} + \frac{4}{3^2} + \frac{6}{3^3} + \frac{8}{3^4} + \dots \infty$ $S_{2} = \frac{2}{3} + \frac{4}{3^{2}} + \frac{6}{3^{3}} + \frac{8}{3^{4}} + \dots \infty$ Now, $\frac{S_{2}}{3} = +\frac{2}{3} + \frac{4}{3^{2}} + \frac{6}{3^{3}} + \dots \infty$ $\frac{2S_{2}}{3} = \frac{2}{3} \left[1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \dots \infty \right]$ [On subtracting] $\therefore S_2 = \frac{1}{1 - \left(\frac{1}{2}\right)} = \frac{3}{2}$ Hence, $S = 3 + \frac{3}{2} + \frac{3}{2} = 6$