

2.RELATIONS AND FUNCTIONS

Single Correct Answer Type

1.		$\operatorname{ere} f(x) = \sin x + [x^2/a]$	be an odd function. Then th	e set of values of parameter
	a is/are a) (–10, 10)~{0}	b) (0, 10)	c) [100,∞)	d) (100,∞)
2.		on $f(x) = \frac{a^{x-1}}{a^{n}(x+1)}$ is symm	netrical about y-axis, then n	
	a) 2	b) $\frac{2}{3}$	1	d) $-\frac{1}{3}$
•		5	$\frac{c}{4}$	$a) - \frac{1}{3}$
3.	The domain of the functi	on $f(x) = \sqrt{\log\left(\frac{1}{ \sin x }\right)}$ is		
	a) $R - \{-\pi, \pi\}$	b) $R - \{n\pi n \in Z\}$	c) $R - \{2n\pi n \in z\}$	d) (−∞, ∞)
4.	Let $f(x) = \frac{\alpha x}{x+1}, x \neq -1$.	Then for what value of α is	f(f(x)) = x?	
_	a) √2	b) $-\sqrt{2}$	c) 1	d) — 1
5.	If $f: [1, \infty) \rightarrow [2, \infty)$ is giv	en by $f(x) = x + \frac{1}{x}$, then f	$x^{-1}(x)$ equals	
	Z		c) $\frac{\left(x-\sqrt{x^2-4}\right)}{2}$	
6.		$n^{-1}[2x^2 - 3]$, where [.] der	notes the greatest integer fu	
	a) $\left(-\sqrt{\frac{3}{2}},\sqrt{\frac{3}{2}}\right)$		b) $\left(-\sqrt{\frac{3}{2}},-1\right] \cup \left(-\sqrt{\frac{5}{2}},\right)$	$\sqrt{\frac{5}{2}}$
	c) $\left(-\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}\right)$		d) $\left(-\sqrt{\frac{5}{2}}, -1\right] \cup \left[1, \sqrt{\frac{5}{2}}\right)$	
7.	Domain of definition of t	he function $f(x) = \sqrt{\sin^{-}(x)}$	$(2x) + \frac{\pi}{6}$ for real valued x, is	
	a) $\left[-\frac{1}{4},\frac{1}{2}\right]$		c) $\left(-\frac{1}{2},\frac{1}{9}\right)$	
8.	Let $f: R \rightarrow R$, g: $R \rightarrow R$ be following is injective?	two given functions such t	that f is injective and g is such as f is injective and f is such as f is a such as f is the formula f is the form	urjective, then which of the
	a) $g_0 f$	b) <i>f</i> ₀ g	c) g ₀ g	d) None of these
9.			ber of functions f from x to	o y such that it is onto and
	there are exactly three el a) 75	lements x in X such that f (b) 90		J) 120
10.	$f: N \to N$ where $f(x) = x$,	c) 100	d) 120
			c) One-one and onto	d) Many-one and onto
11.		f(0) = 2, f(1) = 3 and f(1) = 3	(x+2) = 2f(x) - f(x+1)) for every real x , then $f(5)$
	is a) 7	b) 13	c) 1	d) 5
12.	,	on $f(x) = \log_2 \left(-\log_{1/2} \left(1 \right) \right)$	<i>,</i>	uj 5
	a) (0, 1)	b) (0, 1]	$(x^{1/4})$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	d) (1,∞)
13.			denotes the fractional par	
	a) $[-1,1] \sim \left(\frac{1}{2},1\right)$		b) $\left[-1, -\frac{1}{2}\right] \cup \left[0, \frac{1}{2}\right] \cup \{1\}$	
				~
	c) $\left[-1, \frac{1}{2}\right]$		d) $\left[-\frac{1}{2},1\right]$	
14.		R be two one-one and onto a. If $h(x) = f(x) + g(x)$, th		e the mirror ima <i>g</i> es if each

a) One-one and onto. b) Only one-one and not onto. d) Neither one-one nor onto. c) Only onto but not one-one. 15. The range of $f(x) = \sec^{-1}(\log_3 \tan x + \log_{\tan x} 3)$ is a) $\left[\frac{\pi}{3}, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \frac{2\pi}{3}\right]$ c) $\left(\frac{2\pi}{3},\pi\right)$ d) None of these b) $\left[0,\frac{\pi}{2}\right)$ 16. The domain of definition of the function f(x) given by the equation $2^x + 2^y = 2$ is c) $-\infty < x \le 0$ d) $-\infty < x < 1$ b) $0 \le x \le 1$ a) $0 < x \le 1$ 17. The domain of f(x) is (0, 1), then, domain of $f(e^x) + f(\ln|x|)$ is d) (*-e*, 1) a) (−1, e) b) (1, e) c) (−*e*, −1) 18. If $f(x) = \begin{cases} x^2, \text{ for } x \ge 0 \\ x, \text{ for } x < 0 \end{cases}$ then fof(x) is given by b) x^4 for $x \ge 0$, x^2 for x < 0a) x^2 for $x \ge 0$, x for x < 0c) x^4 for $x \ge 0$, $-x^2$ for x < 0d) x^4 for x > 0, x for x < 0^{19.} The function $f(x) = \frac{\sec^{-1} x}{\sqrt{x-|x|}}$, where [x] denotes the greatest integer less than or equal to x, is defined for all *x* ∈ a) *R* b) $R - \{(-1, 1) \cup \{n | n \in Z\}\}$ c) $R^+ - (0, 1)$ d) $R^+ - \{n | n \in N\}$ 20. Let $f: \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] \to [0, 4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$. Then $f^{-1}(x)$ is given by a) $\sin^{-1}\left(\frac{x-2}{2}\right) - \frac{\delta}{6}$ b) $\sin^{-1}\left(\frac{x-2}{2}\right) + \frac{\pi}{6}$ c) $\frac{2\pi}{3} + \cos^{-1}\left(\frac{x-2}{2}\right)$ d) None of these 21. Let $f: N \to N$ defined by $f(x) = x^2 + x + 1, x \in N$, then f is c) One-one but not onto d) None of these a) One-one onto b) Many-one onto 22. If $f(3x + 2) + f(3x + 29) = 0 \forall x \in R$, then the period of f(x) is c) 10 d) None of these a) 7 b) 8 23. Which of the following functions is periodic? a) f(x) = x - [x] where [x] denotes the largest integer less than or equal to the real number x b) $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0c) $f(x) = x \cos x$ d) None of these 24. If $f(x) = \begin{cases} x^2 \sin \frac{\pi x}{2}, & |x| < 1 \\ x|x|, & |x| \ge 1 \end{cases}$ then f(x) is a) An even function b) An odd function c) A periodic function d) None of these 25. The domain of the function $f(x) = \frac{\sin^{-1}(3-x)}{\ln(|x|-2)}$ Is d) $(-\infty, -3) \cup [2, \infty)$ b) $(2, 3) \cup (3, 4]$ a) [2,4] c) [2,∞) ^{26.} If f(x) is an even function and satisfies the relation $x^2 f(x) - 2f\left(\frac{1}{x}\right) = g(x)$ where g(x) is an odd function, then f(5) equals a) 0 b) $\frac{50}{75}$ c) $\frac{49}{75}$ d) None of these ^{27.} If $f(x) = \frac{\sin([x]\pi)}{x^2 + x + 1}$, where [.] denotes the greatest integer function, then a) f is one-one b) f is not one-one and non-constant c) *f* is a constant function d) None of these 28. If *x* satisfies $|x - 1| + |x - 2| + |x - 3| \ge 6$, then a) $0 \le x \le 4$ b) $x \le -2$ or $x \ge 4$ c) $x \le 0$ or $x \ge 4$ d) None of these 29. The period of function $2^{\{x\}} + \sin \pi x + 3^{\{x/2\}} + \cos 2\pi x$ (where $\{x\}$ denotes the fractional part of x) is

	a) 2	b) 1	c) 3	d) None of these
30.		$ \sin x - \cos x $ and $\phi(x)$ tive fundamental periods of	of $f(x)$, $g(x)$ and $f(x)$, $g(x)$	
	a) π,π,π	b) π, 2π, π	c) $\pi, \pi, \frac{\pi}{2}$	d) $\pi, \frac{\pi}{2}, \pi$
31.	The range of $\sin^{-1} \left[x^2 + \frac{1}{2} \right]$	$\left[\frac{1}{2}\right] + \cos^{-1}\left[x^2 - \frac{1}{2}\right]$, where	[.] denotes the greatest inte	ger function, is
	-	b) {π}	c) $\{\frac{\pi}{2}\}$	d) None of these
32.		odic functions with period 7	and 11, respectively. Then	the period of $F(x) =$
	$f(x)g\left(\frac{x}{5}\right) - g(x)f\left(\frac{x}{3}\right)$ is			
	a) 177	b) 222	c) 433	d) 1155
33.		$ff(x) = \sqrt{x^{12} - x^9 + x^4 - x^9 + x^6 - x^6 + x^6 - x^6 + x^6$		
24	a) $[0, 1]$ Let $E = (1, 2, 2, 4)$ and E	b) $[1, \infty)$		d) R E ic
54.	a) 14	= {1, 2}. Then the number (b) 16	c) 12	d) 8
35.	2	$y(x) = x^2 - 1$, then $g(f(x))$	-	2
		b) $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$		d) [0, <i>π</i>]
36	23		⁵ ¹ 2 ²	
50.	The range of the function	6 16		
37	a) $(-\infty,\infty)$	b) $[0,1)$		d) (-1, 1)
57.		$y = \frac{f(x)}{y}$	for all positive real number	f(30) = 20,
	then the value of $f(40)$ is		.) 40	
38	a) 15	b) 20	c) 40	d) 60
50.	The range of $f(x) = \sin^{-1}$	() · · · · ·		
20	a) $[0, \pi/2]$	b) $(0, \pi/6)$	c) $[\pi/6, \pi/2]$	d) None of these
39.	a) $D \equiv x \in [1, 2), R \in \{0\}$	R) of $f(x) = \sin^{-1}(\cos^{-1}[x])$) where [.] denotes the gre	atest integer function is
	b) $D \equiv x \in [0, 1], R \equiv \{-$			
	c) $D \equiv x \in [-1, 1], R \equiv \{$	$0, \sin^{-1}\left(\frac{\pi}{2}\right), \sin^{-1}(\pi)$		
	d) $D \equiv x \in [-1, 1], R \equiv \left\{ \right.$	$-\frac{\pi}{2}, 0, \frac{\pi}{2}$		
40.	The range of the function	$f(x) = {}^{7-x} P_{x-3}$ is		
	a) {1, 2, 3}	b) {1, 2, 3, 4, 5, 6}		d) {1, 2, 3, 4, 5}
41.	If <i>x</i> is real, then the value	of the expression $\frac{x^2+14x+9}{x^2+2x+3}$	lies between	
	a) 5 and 4		c) -5 and 4	d) None of these
42.	The domain of the function	$\int f(x) = \frac{x}{\sqrt{\sin(\ln x) - \cos(\ln x)}}$	$(n \in Z)$ Is	
	a) $(e^{2n\pi}, e^{(3n+1/2)\pi)}$	• • • • •	b) $(e^{(2n+1/4)\pi}, e^{(2n+5/4)\pi})$)
	c) $(e^{(2n+1/4)\pi}, e^{(3n-3/4)\pi})$)	d) None of these	
43.	If $af(x+1) + bf\left(\frac{1}{x+1}\right) =$	$x, x \neq -1, a \neq b$, then $f(2)$	2) is equal to	
	a) $\frac{2a+b}{2(a^2-b^2)}$	b) $\frac{a}{a^2 - b^2}$	c) $\frac{a+2b}{a^2-b^2}$	d) None of these
44.	The range of $f(x) = [\sin x]$	$ x + \cos x $, where [.] den	otes the greatest integer fu	inction, is
	a) {0}	b) {0, 1}	c) {1}	d) None of these
45.		the equation $x \sin x = 1, x \in [x, x]$		d) ()
46.	a) 2 If $f(2x + 3y, 2x - 7y) =$	b) 3 20x, then $f(x, y)$ equals	c) 4	d) 0
	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

17		b) $7x + 3y$	c) $3x - 7y$	d) $x - ky$
47.	The range of $f(x) = \sin^{-1} a$ a) $\left(0, \frac{\pi}{2}\right]$		c) $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$	d) $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
48.	The function $f(x) = \sin(x)$	÷ ا	13 21	10 21
	a) Even function	b) Odd function π	c) Neither even nor odd	d) Periodic function
49.	Let $f(x) = \begin{cases} \sin x + \cos x \\ \sin x + \sin x \\ \sin x$	$\cos x, \ 0 < x < \frac{\pi}{2}$ $x = \pi/2 \qquad \text{then its}$	odd extension is	
	$\tan^2 x + \cos^2 x$	$\int_{-\infty}^{\infty} x, \ 0 < x < \frac{\pi}{2}$ $x = \pi/2 \qquad \text{then its}$ $\int_{-\infty}^{\infty} \frac{\pi}{2} < x < \pi$		
	$\left(-\tan^2 x - \operatorname{cosec} x\right)$	$-\pi < x < -\frac{\pi}{2}$	$\left(-\tan^2 x + \operatorname{cosec} x\right)$	$-\pi < x < -\frac{\pi}{2}$
	a) $\left\{ -a, x \right\}$	$=-\frac{\pi}{2}$	b) $\begin{cases} -a, x \end{cases}$	$=-\frac{\pi}{2}$
	a) $\begin{cases} -\tan^2 x - \csc x, \\ -a, & x \\ -\sin x + \cos x, \end{cases}$	$-\frac{\pi}{2} < x < 0$	b) $\begin{cases} -\tan^2 x + \csc x, \\ -a, & x \\ \sin x - \cos x, \end{cases}$	$-\frac{\pi}{2} < x < 0$
	$\left(-\tan^2 x + \operatorname{cosec} x\right)$	$-\pi < x < -\frac{\pi}{2}$	$\int \tan^2 x + \cos x$, –	$\pi < x < -\frac{\pi}{2}$
	c) $\begin{cases} -\tan^2 x + \csc x, \\ a, x = \\ \sin x - \cos x, \end{cases}$	$=-\frac{\pi}{2}$	$d)\begin{cases} \tan^2 x + \cos x, & -a, & x = \\ \sin x + \cos x, & -a \end{cases}$	$-\frac{\pi}{2}$
	$\sin x - \cos x$,	$-\frac{\pi^2}{2} < x < 0$	$\sin x + \cos x$, –	$\frac{\pi}{2} < x < 0$
50.		$x \ge 1$, Then the set $\{x: f(x)\}$		L
	a) $\left\{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right\}$	$\left[\frac{-i\sqrt{3}}{2}\right]$	b) {0, 1, -1}	
	c) {0, -1}		d) empty	
51.			re $[x]$ = the greatest intege	
52.	a) <i>R</i> If the period of $\frac{\cos(\sin(nx))}{\cos(\sin(nx))}$	b) $[0, +\infty)$ $\frac{1}{2}, n \in N$, is 6π , then n is equ	c) $(-\infty, 0]$	d) None of these
	a) 3 $\tan(x/n)$	b) 2	c) 6	d) 1
53.			n defined by $f(x) = x^2$, the	
	a) Injective but not surjectivec) Bijective	ctive	b) Surjective but not injectived) Nine of these	ctive
54.	The range of $f(x) = \sin x$	$x + \left[\cos x + \left[\tan x + \left[\sec x\right]\right]\right]$	$[:]]], x \in (0, \pi/4)$, where $[.]$	denotes the greatest
	integer function $\leq x$, is		-	
55.	a) $\{0, 1\}$	b) $\{-1, 0, 1\}$		d) None of these
001			a), then the set of values of 1	d) None of these
E ć	a) [0,∞)	b) [2, 1]	c) $\left[\frac{1}{4},\infty\right)$	
56.		on $f(x) = \frac{1}{\sqrt{4x - x^2 - 10x + 9 }}$ is		
57		b) $(0, 7 + \sqrt{40})$	c) $\left(7 - \sqrt{40}, \infty\right)$	d) None of these
57.	Range of the function $f(x = a)$ (1, ∞)	20 1 20 1 1	c) [1, 7/3]	d) (1, 7/5)
58.			$\sin^4 x$ for $x \in R$, then the r	
	a) $\left(\frac{3}{4}, 1\right]$	b) $\left[\frac{3}{4}, 1\right)$	c) $\left[\frac{3}{4}, 1\right]$	d) $\left(\frac{3}{4}, 1\right)$
59.			τ and [.] denotes the greate	st integer function is
	a) An odd function	b) Even function	c) Neither odd nor even	d) None of these
60.	The number of solutions	of the equation $[y + [y]] =$	$2\cos x$, where $y = \frac{1}{3} \left[\sin x\right]$	+ $\left[\sin x + \left[\sin x\right]\right]$ (where

[] denotes the greatest integer function) is
a) 4 b] 2 c) 3 d) 53
61. The graph of
$$(y - x)$$
 against $(y + x)$ is shown
 $\begin{pmatrix} y - x \end{pmatrix}$
 $\begin{pmatrix} y + x \end{pmatrix}$
Which one of the following shows the graph of y against x?
 $\begin{pmatrix} y \end{pmatrix}$
 $\begin{pmatrix} y \end{pmatrix}$

c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$ d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$ 72. If $f: X \to Y$, where X and Y are sets containing natural numbers, $f(x) = \frac{x+5}{x+2}$ then the number of elements in the domain and range of f(x) are respectively a) 1 and 1 b) 2 and 1 c) 2 and 2 d) 1 and 2 73. Given the function $f(x) = \frac{a^x + a^{-x}}{2}$ (where a > 2). Then f(x + y) + f(x - y) =d) None of these c) $\frac{f(x)}{f(y)}$ a) 2f(x).f(y) b) f(x).f(y)74. Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, then $f(1) + f(2) + f(3) + \dots + f(n)$ is equal to a) nf(n) - 1 b) (n+1)f(n) - n c) (n+1)f(n) + n d) nf(n) + n75. The domain of $f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + [\log(3-x)]^{-1}$ Is a) [-2, 6] b) $[-6, 2) \cup (2, 3)$ c) [-6, 2]76. If the function $f: [1, \infty) \to [1, \infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ Is a) [-2,6] d) [−2, 2] ∪ (2, 3) a) $\left(\frac{1}{2}\right)^{x(x-1)}$ b) $\frac{1}{2} (1 + \sqrt{1 + 4 \log_2 x})$ d) Not defined c) $\frac{1}{2} (1 - \sqrt{1 + 4 \log_2 x})$ 77. If $f\left(x+\frac{1}{2}\right)+f\left(x-\frac{1}{2}\right)=f(x)$ for all $x \in R$, then the period of f(x) is b) 2 d) 4 78. The domain of the function $f(x) = \frac{1}{\sqrt{10}C_{x-1} - 3 \times 10}C_x}$ contains the points c) All natural numbers d) None of these a) 9, 10, 11 b) 9, 10, 12 79. The function $f: N \to N$ (N is the set of natural numbers) defined by f(n) = 2n + 3 is c) Bijective a) Surjective only b) Injective only d) None of these 80. If $f: R^+ \to R$, $f(x) + 3xf(\frac{1}{x}) = 2(x+1)$, then f(99) is equal to c) 50 b) 30 d) 60 81. If [x] and {x} represent the integral and fractional parts of x, respectively, then the value of $\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}$ is a) x c) {*x*} d) x + 2001b) [*x*] 82. If $f: [0, \infty] \to [0, \infty]$ and $f(x) = \frac{x}{1+x}$, then *f* is a) One-one and onto b) One-one but not onto c) Onto but not one-one 83. If $f(x) = \begin{cases} x, x \text{ is rational} \\ 1-x, x \text{ is irrational} \end{cases}$ then f(f(x)) is d) Neither one-one nor onto b) = $\begin{cases} x, & x \text{ is irrational} \\ 1-x, & x \text{ is rational} \end{cases}$ a) $x \forall x \in R$ c) $\begin{cases} x, & x \text{ is rational} \\ 1-x, & x \text{ is irrational} \end{cases}$ d) None of the 84. Let h(x) = |kx + 5|, the domain of f(x) is [-5, 7], the domain of f(h(x)) is [-6, 1] and the range of h(x) is the same as the domain of f(x), then the value of k is b) 2 a) 1 c) 3 d) 4 $f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ 0, \text{ if } x \text{ is irrational} \\ x, \text{ if } x \text{ is rational} \end{cases} \text{ and } f(x) = \begin{cases} 0, \text{ if } x \text{ is rational} \\ x, \text{ if } x \text{ is irrational} \end{cases}. \text{ Then, } f - g \text{ is } \end{cases}$ 85. a) One-one and into b) Neither one-one nor onto c) Many one and onto d) One-one and onto 86. The domain of $f(x) = \log |\log x|$ Is a) (0,∞) b) (1,∞) c) $(0, 1) \cup (1, \infty)$ d) (−∞, 1) 87. If $f: R \to R$ is an invertible function such that f(x) and $f^{-1}(x)$ are symmetric about the line y = -x, then a) f(x) is odd

b) f(x) and $f^{-1}(x)$ may not be symmetric about the line y = xc) f(x) may not be odd d) None of these 88. If $f\left(2x + \frac{y}{8}, 2x - \frac{y}{8}\right) = xy$, then f(m, n) + (n, m) = 0a) Only when m = n b) Only when $m \neq n$ c) Only when m = -n d) For all m and nThe period of the function $f(x) = c^{\sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right)}$ is (where *c* is constant) 89. b) $\frac{\pi}{2}$ a) 1 d) Cannot be determined 90. The range of $f(x) = [1 + \sin x] + [2 + \sin \frac{x}{2}] + [3 + \sin \frac{x}{3}] + \dots + [n + \sin \frac{x}{n}]$, $\forall x \in [0, \pi]$, where [.] denotes the greatest integer function, is a) $\left\{\frac{n^2+n-2}{2}, \frac{n(n+1)}{2}\right\}$ b) $\left\{\frac{n(n+1)}{2}\right\}$ c) $\left\{\frac{n^2+n-2}{2}, \frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$ d) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$ 91. The range of f(x) = (x + 1)(x + 2)(x + 3)(x + 4) + 5 for $x \in [-6, 6]$ is a) [4,5045] b) [0, 5045] c) [-20, 5045] d) None of these 92. If $f(x) = \log_e \left(\frac{x^2 + e}{x^2 + 1}\right)$, then the range of f(x) is b) [0, 1] c) [0, 1) a) (0, 1) d) (0, 1] 93. Let $f(x) = \sqrt{|x| - \{x\}}$ (where {.} denotes the fractional part of x) and X, Y are its domain and range, respectively, then a) $x \in \left(-\infty, \frac{1}{2}\right)$ and $Y \in \left[\frac{1}{2}, \infty\right)$ b) $x \in \left(-\infty, -\frac{1}{2}\right] \cup [0, \infty)$ and $Y \in \left[\frac{1}{2}, \infty\right)$ c) $X \in \left(-\infty, -\frac{1}{2}\right] \cup [0, \infty)$ and $Y \in [0, \infty)$ d) None of these 94. If *X* and *Y* are two non-empty sets where $f: X \to Y$ is function is defined such that $f(C) = \{f(x) : x \in C\}$ for $C \subseteq X$ And $f^{-1}(D) = \{x: f(x) \in D\}$ for $D \subseteq Y$, For any $A \subseteq X$ and $B \subseteq Y$, then a) $f^{-1}(f(A)) = A$ b) $f^{-1}(f(A)) = A$ only if f(X) = Yd) $f(f^{-1}(B)) = B$ c) $f(f^{-1}(B)) = B$ only if $B \subseteq f(x)$ Possible values of *a* such that the equation $x^2 + 2ax + a = \sqrt{a^2 + x - \frac{1}{16}} - \frac{1}{16}$, $x \ge -a$, has two distinct 95. real roots are given by a) [0, 1] d) $\left(\frac{3}{4},\infty\right)$ b) $[-\infty, 0)$ c) [0,∞) 96. If f(x) is a polynomial satisfying f(x)f(1/x) = f(x) + f(1/x) and f(3) = 28, then f(4) is equal to b) 65 c) 17 d) None of these 97. If $f(x + f(y)) = f(x) + y \forall x, y \in R$ and f(0) = 1, then the value of f(7) is b) 7 d) 8 a) 1 98. If $f(x) = \cos(\log_e x)$, then $f(x)f(y) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(xy)\right]$ has the value b) 1/2 d) None of these 99. If *f* is periodic, g is polynomial function and f(g(x)) is periodic and g(2)=3, g(4)=7 then g(6) is a) 13 b) 15 c) 11 d) None of these 100. A function F(x) satisfies the functional equation $x^2F(x) + F(1-x) = 2x - x^4$ for all real x. F(x) must be c) $1 + x^2$ a) x^2 b) $1 - x^2$ d) $x^2 + x + 1$ 101. The total number of solutions of $[x]^2 = x + 2\{x\}$, where [.] and {.} denote the greatest integer function and fractional part, respectively, is equal to a) 2 b) 4 d) None of these c) 6

Page 7

102. The domain of definition of the function $y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2} =$

c) [–2, 1) excluding 0 d) None of these a) (-3, -2) excluding -2.5 b) [0, 1] excluding 0.5 103. Let $f(x) = \sin x$ and $g(x) = \log_e |x|$. If the ranges of the composition function fog and gof are R_1 and R_2 , respectively, then a) $R_1 = \{u: -1 \le u < 1\}, R_2 = \{v: -\infty < v < 0\}$

- b) $R_1 = \{u: -\infty < u < 0\}, R_2 = \{v: -\infty < v < 0\}$ c) $R_1 = \{u: -1 < u < 1\}, R_2 = \{v: -\infty < v < 0\}$
- d) $R_1 = \{u: -1 \le u \le 1\}, R_2 = \{v: -\infty < v \le 0\}$

104. Let $f(x) = ([a]^2 - 5[a] + 4)x^3 - (6\{a\}^2 - 5\{a\} + 1)x - (\tan x) \times \operatorname{sgn} x$ be an even function for all $x \in R$, then the sum of all possible values of 'a' is (where $[\cdot]$ and $\{\cdot\}$ denote greatest integer function and fractional part functions, respectively)

a)
$$\frac{17}{6}$$
 b) $\frac{53}{6}$ c) $\frac{31}{3}$ d) $\frac{35}{3}$

105. The range of the function *f* defined by $f(x) = \left[\frac{1}{\sin\{x\}}\right]$ (where [.] and {.} respectively denote the greatest

integer and the fractional part functions) is

a) *I*, the set of integers

c) *W*, the set of whole numbers

b) *N*, the set of natural numbers d) {1, 2, 3, 4,...}

d) None of these

106. The period of the function $f(x) = [6x + 7] + \cos \pi x - 6x$, where [.] denotes the greatest integer function, is

a) 3 b) 2π c) 2

107. If f(x + y) = f(x). f(y) for all real x, y and $f(0) \neq 0$, then the function $g(x) = \frac{f(x)}{1 + \{f(x)\}^2}$ is c) Odd if f(x) > 0a) Even function b) Odd function d) Neither even nor odd 108. A real-valued function f(x) satisfies the functional equation f(x - y) = f(x)f(y) - f(a - x)f(a + y), where *a* is a given constant and f(0) = 1. f(2a - x) is equal to d) f(a) + f(a - x)a) f(x)b) -f(x)c) f(-x)109. If *f* and g are one-one function, then a) f + g is one-one b) *f* g is one-one c) *fog* is one-one d) None of these Let $f_1(x)$ $\begin{cases} x, 0 \le x \le 1\\ 1, x > 1\\ 0, \text{ otherwise} \end{cases}$ and $f_2(x) = f_1(-x)$ for all x110. $f_3(x) = -f_2(x)$ for all x $f_4(x) = f_3(-x)$ for all x Which of the following is necessarily true? a) $f_4(x) = f_1(x)$ for all x b) $f_1(x) = -f_3(-x)$ for all x c) $f_2(-x) = f_4(x)$ for all x d) $f_1(x) + f_3(x) = 0$ for all x 111. The range of the function $f(x) = |x - 1| + |x - 2|, -1 \le x \le 3$, is b) [1, 5] a) [1, 3] c) [3, 5] d) None of these 112. Let f(x) = |x - 1|. Then a) $f(x^2) = (f(x))^2$ b) f(x + y) = f(x) + f(y)c) f(|x|) = |f(x)|d) None of these 113. The number of real solutions of the equation $\log_{0.5}|x| = 2|x|$ is d) None of these b) 2 a) 1 c) 0 114. The function f satisfies the functional equation $3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10x + 30$ for all real $x \neq 1$. The value

of *f*(7) is

a) 8 b) 4 c) -8 d) 11 115. Let g(x) = f(x) - 1. If $f(x) + f(1 - x) = 2 \forall x \in R$, then g(x) is symmetrical about

a) Origin b) The line $x = \frac{1}{2}$ d) The point $\left(\frac{1}{2}, 0\right)$ c) The point (1, 0) 116. The range of $f(x) = \cos^{-1}\left(\frac{1+x^2}{2x}\right) + \sqrt{2-x^2}$ is c) $\left\{1, 1+\frac{\pi}{2}\right\}$ a) $\{0, 1 + \frac{\pi}{2}\}$ b) $\{0, 1 + \pi\}$ d) {1, 1 + π } 117. If f(x + 1) + f(x - 1) = 2f(x) and f(0) = 0, then $f(n), n \in N$, is b) $\{f(1)\}^n$ c) 0 a) *nf*(1) d) None of these 118. The domain of the function $f(x) = \frac{1}{\sqrt{\{\sin x\} + \{\sin(\pi + x)\}}}$ where $\{\cdot\}$ denotes the fractional part, is b) $(2n + 1) \pi/2, n \in \mathbb{Z}$ a) [0, π] c) (0, π) d) None of these 119. The domain of the function $f(x) = \left[\log_{10}\left(\frac{5x-x^2}{4}\right)\right]^{1/2}$ a) $-\infty < x < \infty$ b) $1 \le x \le 4$ c) $4 \le x \le 16$ d) $-1 \le x \le 1$ 120. The period of the function $\left|\sin^{3}\frac{x}{2}\right| + \left|\cos^{5}\frac{x}{5}\right|$ is a) 2π c) 8π d) 5π 121. The entire graph of the equation $y = x^2 + kx - x + 9$ is strictly above the *x*-axis if and only if a) *k* < 7 b) −5 < *k* < 7 c) k > -5d) None of these 122. The domain of $f(x) = \frac{1}{\sqrt{|\cos x| + \cos x|}}$ is b) $(2n\pi, \overline{2n+1}\pi), n \in \mathbb{Z}$ a) $[-2n\pi, 2n\pi], n \in \mathbb{Z}$ c) $\left(\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right), n \in \mathbb{Z}$ d) $\left(\frac{(4n-1)\pi}{2}, \frac{(4n+1)\pi}{2}\right), n \in \mathbb{Z}$ 123. Let $f: X \to yf(x) = \sin x + \cos x + 2\sqrt{2}$ is invertible. Then which $X \to Y$ is not possible? b) $\left[-\frac{3\pi}{4},\frac{\pi}{4}\right] \rightarrow \left[\sqrt{2},3\sqrt{2}\right]$ a) $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \rightarrow \left[\sqrt{2}, 3\sqrt{2}\right]$ c) $\left[-\frac{3\pi}{4},\frac{3\pi}{4}\right] \rightarrow \left[\sqrt{2},3\sqrt{2}\right]$ d) None of these 124. If $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x^2}$ and $h(x) = x^2$ a) $fog(x) = x^2$ $x \neq 0, h(g(x)) = \frac{1}{x^2}$ b) $h(g(x)) = \frac{1}{x^2}$ $x \neq 0, fog(x) = x^2$ c) $fog(x) = x^2, x \neq 0, h(g(x)) = (g(x))^2, x \neq 0$ d) None of these 125. If $f: R \to R$ is a function satisfying the property $f(2x + 3) + f(2x + 7) = 2, \forall x \in R$, then the fundamental period of f(x) is a) 2 c) 8 d) 12 126. The domain of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ Is a) $R - \{-1, -2\}$ b) (−2,∞) c) $R = \{-1, -2, -3\}$ d) $(-3, \infty) - \{-1, -2\}$ 127. The sum of roots of the equation $\cos^{-1}(\cos x) = [x]$, [.] denotes the greatest integer function is c) $\pi - 3$ a) $2\pi + 3$ b) $\pi + 3$ d) $2\pi - 3$ 128. The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is a) $R = \{-1, -2\}$ b) $(-2, \infty)$ c) $R = \{-1, -2, -3\}$ d) $(-3, \infty) - \{-1, -2\}$ 129. The period of $f(x) = [x] + [2x] + [3x] + [4x] + \dots [nx] - \frac{n(n+1)}{2}x$, where $n \in N$, is (where $[\cdot]$ represents greatest integer function) c) $\frac{1}{n}$ d) None of these b) 1 a) n 130. The number of solutions of $\tan x - mx = 0$, m > 1 in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is a) 1 d) *m* 131. The domain of $f(x) = \ln (ax^3 + (a + b)x^2 + (b + c)x + c)$, where $a > 0, b^2 - 4ac = 0$, is (where [·]

represents greatest integer function).		
a) $(-1, \infty) \sim \left\{-\frac{b}{2a}\right\}$ b) $(1, \infty) \sim \left\{-\frac{b}{2a}\right\}$	c) $(-1, 1) \sim \left\{-\frac{b}{2a}\right\}$	d) None of these
132. If $f(x) = \max \left\{ x^3, x^2, \frac{1}{64} \right\} \forall x \in [0, \infty)$, then	(20)	
C 049		
a) $f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ x^3, & x > 1 \end{cases}$		
b) $f(x) = \begin{cases} \frac{1}{64}, & 0 \le x \le \frac{1}{4} \\ x^2, & \frac{1}{4} < x \le 1 \\ x^3, & x > 1 \end{cases}$		
b) $f(x) = \begin{cases} x^2, & \frac{1}{x} < x \le 1 \end{cases}$		
$ \begin{pmatrix} 4 \\ x^3, & x > 1 \end{pmatrix} $		
$\left(\frac{1}{1}\right)$ $0 \le x \le \frac{1}{2}$		
c) $f(x) = \begin{cases} \frac{1}{64}, & 0 \le x \le \frac{1}{8} \\ x^2, & \frac{1}{8} < x \le 1 \\ x^3, & x > 1 \end{cases}$		
$x^2, \overline{8} < x \le 1$		
$\begin{pmatrix} x^3, & x > 1 \\ (1, & 1) \end{pmatrix}$		
d) $f(x) = \begin{cases} \frac{1}{64}, & 0 \le x \le \frac{1}{8} \\ x^3, & x > 1/8 \end{cases}$		
133. If the period of $\frac{\cos(\sin(nx))}{\tan(\frac{x}{n})}$, $n \in N$ is 6π then $n =$		
a) 3 b) 2	c) 6	d) 1
134. The domain of the function $f(x) = \sqrt{\ln_{(x -1)}(x^2 + x^2)}$		
a) $[-3, -1] \cup [1, 2]$ c) $(-\infty, -3] \cup (-2, -1) \cup (2, \infty)$	b) $(-2, -1) \cup [2, \infty)$	
135. The number of solutions of $2 \cos x = \sin x , 0 \le x \le 1$	d) None of these 4π is	
a) 0 b) 2	(c) 4	d) Infinite
136. Function $f: (-\infty, -1) \rightarrow (0, e^5]$ defined by $f(x) = e^{-1}$,	uj minite
a) Many-one and onto b) Many-one and into		d) One-one and into
137. If $F(n + 1) = \frac{2F(n) + 1}{2}n = 1, 2, \text{ and } F(1) = 2$, then		,
a) 52 b) 49	c) 48	d) 51
138. The equation $ x - 2 + a = 4$ can have four distinct	,	5
a) $(-\infty, -4)$ b) $(-\infty, 0]$	c) [4,∞)	d) None of these
139. Let $f(x) = e^{\{e^{ x } \operatorname{sgn} x\}}$ and $g(x) = e^{\{e^{ x } \operatorname{sgn} x\}}$, $x \in R$ w	vhere {} and [] denotes the	e fractional and integral part
functions, respectively. Also $h(x) = \log(f(x)) + \log(x)$		
a) An odd function.	b) An even function.	
c) Neither an odd nor an even function.	d) Both odd as well as ev	ven function.
140. If $f(x) = \sqrt[n]{x^m}$, $n \in N$, is an even function, then <i>m</i> is		
a) Even integer	b) Odd integer	
c) Any integer	d) $f(x)$ -even is not possi	
141. If $g(x) = x^2 + x - 2$ and $\frac{1}{2}gof(x) = 2x^2 - 5x + 2$, t	hen which is not a possible	e f(x)?
a) $2x - 3$ b) $-2x + 2$	c) $x - 3$	d) None of these
142. If $\log_3(x^2 - 6x + 11) \le 1$, then exhaustive range of		
a) $(-\infty, 2) \cup (4, \infty)$	b) $(2, 4)$	
c) $(-\infty, 1) \cup (1, 3) \cup (4, \infty)$ 143. If $f(x + y) = f(x) + f(y) - xy - 1 \forall x, y \in R$ and f	d) None of these $f(1) = 1$ then the number	of solutions of $f(n) - n n c$
N is	(1) - 1, then the number	or solutions of $f(n) = n, n \in$
a) 0 b) 1	c) 2	d) More than 2
144. If $g: [-2, 2] \to R$ where $f(x) = x^3 + \tan x + \left[\frac{x^2 + 1}{p}\right]$ is	2	2
	,	

[.] denotes the greatest integer function is

a) -5 < P < 5b) *P* < 5 c) P > 5d) None of these 145. Let *S* be the set of all triangles and R^+ be the set of positive real numbers. Then the function $f: S \rightarrow C$ R^+ , $f(\Delta) = \text{area of } \Delta$, where $\Delta \in S$ is

a) Injective but not surjective b) Surjective but not injective c) Injective as well as surjective d) Neither injective nor surjective

146. The second degree polynomial f(x), satisfying f(0) = 0, f(1) = 1, f'(x) > 0 for all $x \in (0, 1)$ b) $f(x) = ax + (1 - a)x^2$: $\forall a \in (0, \infty)$ a) $f(x) = \phi$

c)
$$f(x) = ax + (1 - a)x^2, a \in (0, 2)$$
 d) No such polynomial

147. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and

f(e) = 1. Then

b) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ c) $xf(x) \to 1$ as $x \to 0$ d) $f(x) = \log_e x$ a) f(x) is bounded

Multiple Correct Answers Type

^{148.} Let $f(x) + f(y) = f\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right)(f(x))$ is not identically zero). Then a) $f(4x^3 - 3x) + 3f(x) = 0$ b) $f(4x^3 - 3x) + 3f(x)$ c) $f(2x\sqrt{1-x^2}) + 2f(x) = 0$ d) $f(2x\sqrt{1-x^2}) + 2f(x)$ 14

49. If
$$f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$$
, where [x] stands for the greatest integer function, then

$$f\left(\frac{\pi}{2}\right) = -1$$
 b) $f(\pi) = 1$ c) $f(-\pi) = 0$ d) $f\left(\frac{\pi}{4}\right) = 1$

150. Which of the following pairs of functions is/are identical?

a)
$$f(x) = \tan(\tan^{-1} x)$$
 and $g(x) = \cot(\cot^{-1} x)$
b) $f(x) = \text{sgn}(x)$ and $g(x) = \text{sgn}(\text{sgn}(x))$
c) $f(x) = \cot^2 x . \cos^2 x$ and $g(x) = \cot^2 x - \cos^2 x$

d)
$$f(x) = e^{\ln \sec^{-1} x}$$
 and $g(x) = \sec^{-1} x$

151. Which of the following is/are not a function ([.] and {.} denotes the greatest integer and fractional part functions respectively)?

х

a) $\frac{1}{\ln[1-|x|]}$ b) $\frac{x!}{\{x\}}$ d) $\frac{\ln(x-1)}{\sqrt{(1-x^2)}}$ c) $x! \{x\}$ 152. If f(x) = 3x - 5, then $f^{-1}(x)$ a) Is given by $\frac{1}{3x-5}$ b) Is given by $\frac{x+5}{3}$ c) Does not exist because *f* is not one-one d) Does not exist because *f* is not onto 153. If f(x) is a polynomial of degree *n* such that f(0) = 0, $f(1) = \frac{1}{2}$, ..., $f(n) = \frac{n}{n+1}$, then the value of f(n+1)is b) $\frac{n}{n+2}$ when *n* is even c) $-\frac{n}{n+1}$ when *n* is odd d) -1 when *n* is even a) 1 when *n* is odd 154. If $f: R \to N \cup \{0\}$, where f (area of triangle joining points P(5, 0), Q(8, 4) and R(x, y) such that the angle *PRQ* is a right)=number of triangle. Then, which of the following is true? b) f(7) = 0a) f(5) = 4c) f(6.25) = 2d) f(x) is into 155. Let $f: R \to R$ be a function defined by $f(x + 1) = \frac{f(x) - 5}{f(x) - 3} \forall x \in R$. Then which of the following statement(s) is/are true a) f(2008) = f(2004)b) f(2006) = f(2010) c) f(2006) = f(2002) d) f(2006) = f(2018)156. The domain of the function $f(x) = \log_e \left\{ \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} \right\}$ contains which of the following interval/intervals. b) $\left(\pi, \frac{3}{2}\right)$ c) $\left(\frac{3\pi}{2}, 5\right)$ d) None of these a) $(3, \pi)$

157. Let $f(x) = \sec^{-1}[1 + \cos^2 x]$ where [.] denotes the greatest integer function. Then a) The domain of *f* is *R* b) The domain of f is [1, 2]c) The domain of f is [1, 2]d) The range of f is $\{\sec^{-1} 1, \sec^{-1} 2\}$ 158. $f(x) = x^2 - 2ax + a(a+1), f:[a,\infty) \rightarrow [a,\infty)$. If one of the solutions of the equation $f(x) = f^{-1}(x)$ is 5049, then the other may be a) 5051 b) 5048 c) 5052 d) 5050 159. $f: R \to [-1, \infty)$ and $f(x) = \ln([|\sin 2x| + |\cos 2x|])$ (where [.] is the greatest integer function). a) f(x) has range Z b) f(x) is periodic with fundamental period $\pi/4$ c) f(x) is invertible in $\left[0, \frac{\pi}{4}\right]$ d) f(x) is into function 160. If f(x) satisfies the relation f(x + y) = f(x) + f(y) for all $x, y \in R$ and f(1) = 5, then a) f(x) is an odd function b) f(x) is an even function d) $\sum_{r=1}^{m} f(r) = \frac{5m(m+2)}{3}$ c) $\sum_{r=1}^{n} f(r) = 5^{m+1}C_2$ 161. Let $f(x) = \max\{1 + \sin x, 1, 1 - \cos x\}, x \in [0, 2\pi] \text{ and } g(x) = \max\{1, |x - 1|\}x \in \mathbb{R}, \text{ then } x \in [0, 2\pi] \}$ b) g(f(1)) = 1 c) f(f(1)) = 1a) g(f(0)) = 1d) $f(g(0)) = 1 + \sin 1$ 162. If $y = f(x) = \frac{x+2}{x-1}$ then b) f(1) = 3a) x = f(y)c) *y* increases with *x* for x < 1d) *f* is a rational function of *x* 163. If the function f satisfies the relation $f(x + y) + f(x - y) = 2f(x)f(y) \forall x, y \in R$ and $f(0) \neq 0$, then a) f(x) is an even function b) f(x) is an odd function c) If f(2) = a then f(-2) = ad) If f(4) = b then f(-4) = -b^{164.} If $g(f(x)) = |\sin x|$ and $f(g(x)) = (\sin \sqrt{x})^2$, then a) $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ b) $f(x) = \sin x, g(x) = |x|$ c) $f(x) = x^2, g(x) = \sin \sqrt{x}$ d) *f* and g cannot be determined 165. Which of the following function is/are periodic a) $f(x) = \begin{cases} 1, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$ b) $f(x) = \begin{cases} x - [x]; & 2n \le x < 2n + 1 \\ \frac{1}{2}; & 2n + 1 \le x < 2n + 2 \end{cases}$, where [.] denotes the greatest integer function, $n \in Z$ c) $f(x) = (-1)^{\left[\frac{2x}{\pi}\right]}$, where [.] denotes the greatest integer function c) $f(x) = (-1)^{\lfloor \pi \rfloor}$, where [.] denotes the greatest integer function d) $f(x) = x - [x + 3] + \tan\left(\frac{\pi x}{2}\right)$, where [.] denotes the greatest integer function, and *a* is a rational number 166. Let g(x) be a function defined on [-1, 1]. If the area of the equilateral triangle with two of its vertices as (0, 0) and (x, g(x)) is $\sqrt{3}/4$ then the function g(x) is a) $g(x) = \pm \sqrt{1 - x^2}$ b) $g(x) = \sqrt{1 - x^2}$ c) $g(x) = -\sqrt{1 - x^2}$ d) $g(x) = \sqrt{1 + x^2}$ 167. Let $f(x) = \frac{3}{4}x + 1$, and $f^n(x)$ be defined as $f^2(x) = f(f(x))$, and for $n \ge 2$, $f^{n+1}(x) = f(f^n(x))$. If $\lambda = \lim_{n \to \infty} f^n(x)$, then a) λ is independent of x b) λ is a linear polynomial in x c) The line $y = \lambda$ has slope 0 d) The line $4y = \lambda$ touches the unit circle with centre at the origin 168. If the following functions are defined from [-1, 1] to [-1, 1], select those which are not objective c) $(\operatorname{sgn}(x)) \ln(e^x)$ d) $x^3(\operatorname{sgn}(x))$ b) $\frac{2}{\pi} \sin^{-1}(\sin x)$ a) $\sin(\sin^{-1}x)$

169. Consider the real-valued function satisfying $2f(\sin x) + f(\cos x) = x$. then

a) Domain of f(x) is R

c) Range of f(x) is $\left[-\frac{2\pi}{3}, \frac{\pi}{3}\right]$

b) Domain of f(x) is [-1, 1]

d) Range of f(x) is R

170. Let $f(x) = \operatorname{sgn}(\cot^{-1} x) + \tan(\frac{\pi}{2}[x])$, where [x] is the greatest integer function less than or equal to x.

Then which of the following alternatives is/are true?

a) f(x) is many one but not even function

b) f(x) is periodic function

c) f(x) is bounded function

d) Graph of f(x) remains above the x-axis

171. Which of the following function/ functions have the graph symmetrical about the origin?

a) f(x) given by $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ b) f(x) given by $f(x) + f(y) = f(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ c) f(x) given by $f(x + y) = f(x) + f(y) \forall x, y \in R$ d) None of these 172. If $f: R^+ \to R^+$ is a polynomial function satisfying the functional equation f(f(x)) = 6x - f(x), then f(17)is equal to a) 17 b) -51 c) 34 d) -34 173. Which of the following functions are identical? a) $f(x) = \ln x^2$ and $g(x) = 2 \ln x$ b) $f(x) = \log_x e$ and $g(x) = \frac{1}{\log_e x}$ c) $f(x) = \sin(\cos^{-1} x)$ and $g(x) = \cos(\sin^{-1} x)$ d) None of these 174. Consider the function y = f(x) satisfying the condition $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}(x \neq 0)$, then a) Domain of f(x) is R b) Domain of f(x) is R - (-2, 2)c) Range of f(x) is $[-2, \infty)$ 175. Let $f(x) =\begin{cases} x^2 - 4x + 3, \ x < 3 \\ x - 4, \ x \ge 3 \end{cases}$ and $g(x) =\begin{cases} x - 3, \ x < 4 \\ x^2 + 2x + 2, \ x \ge 4 \end{cases}$ then, which of the following is/are true? b) f(g(3)) = 3d) (f - g)(4) = 0a) (f + g)(3.5) = 0c) (fg)(2) = 1

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 176 to 175. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

176 Consider the functions $f: R \to R$, $f(x) = x^3$ and $g: R \to R$, g(x) = 3x + 4.

Statement 1: f(g(x)) is an onto an function.

Statement 2: g(x) is an onto function.

Statement 1: $f(x) = \log_e x$ cannot be expressed as a sum of odd and even function

Statement 2: $f(x) = \log_e x$ is neither odd nor even function.

178

Statement 1: Function $f(x) = x^2 + \tan^{-1} x$ is a non-periodic function.

Statement 2: The sum of two non-periodic functions is always non-periodic.

179 Consider f and g be real-valued functions such that $f(x + y) + f(x - y) = 2f(x) \cdot g(y) \forall x, y \in R$.

Statement 1: If f(x) is not identically zero and $|f(x)| \le 1 \forall x \in R$, then $|g(y)| \le 1 \forall y \in R$.

Statement 2: For any two real numbers *x* and *y*, $|x + y| \le |x| + |y|$.

180

Statement 1: If $f: R \to R$, y = f(x) is periodic and continuous function, then y = f(x) cannot be onto.

Statement 2: A continuous periodic function is bounded.

181

Statement 1: If $x \in [1, \sqrt{3}]$, then the range of $f(x) = \tan^{-1} x$ is $[\pi/4, \pi/3]$.

Statement 2: If $x \in [a, b]$, then the range of f(x) is [f(a), f(b)].

182 Consider the function if $f(x) = sin(kx) + \{x\}$, where $\{x\}$ represents the fractional part function.

Statement 1: f(x) is periodic for $k = m\pi$ where *m* is a rational number.

Statement 2: The sum of two periodic functions is always periodic.

183

Statement 1: If $f(x) = \cos x$ and $g(x) = x^2$, then f(g(x)) is an even function.

Statement 2: If f(g(x)) is an even function, then both f(x) and g(x) must be even function.

¹⁸⁴ Consider the function satisfying the relation if $f\left(\frac{2\tan x}{1+\tan^2 x}\right) = \frac{(1+\cos 2x)(\sin^2 x+2\tan x)}{2}$ **Statement 1:** Range of y = f(x) is *R*.

Statement 2: Linear function has range *R* if domain is *R*.

185 Let $f(x) = (x+1)^2 - 1, x \ge -1$

Statement 1: The set $\{x: f(x) = f^{-1}(x)\} = \{0, -1\}$

Statement 2: *f* is a bijection.

186

Statement 1: $f(x) = \cos(x^2 - \tan x)$ is a non-periodic function.

Statement 2: $x^2 - \tan x$ is a non-periodic function.

187

Statement 1: The graph of $y = \sec^2 x$ is symmetrical about *y*-axis.

Statement 2: The graph of $y = \tan x$ is symmetrical about origin.

```
188 Consider the functions f(x) = \log_e x and g(x) = 2x + 3.
```

Statement 1: f(g(x)) is a one-one function.

Statement 2: g(x) is a one-one function.

189

Statement 1: The solution of equation $||x^2 - 5x + 4| - |2x - 3|| = |x^2 - 3x + 1|$ is $x \in (-\infty, 1] \cup \left[\frac{3}{2}, 4\right]$. Statement 2: If |x + y| = |x| + |y|, then $x, y \ge 0$.

190

```
Statement 1: The period of function f(x) = sin\{x\} is 1, where {.} represents fractional part function.

Statement 2: g(x) = \{x\} has period 1.
```

191

Statement 1:	If $g(x) = f(x) - 1$. If $f(x) + f(1 - x) = 2 \forall x \in R$, then $g(x)$ is symmetrical about the
	point (1/2 , 0).
Statement 2:	If $g(a - x) = -g(a + x) \forall x \in R$, then $g(x)$ is symmetrical about the point (a, 0).
192	

```
Statement 1: A continuous surjective function f: R \to R, f(x) can never be a periodic function.

Statement 2: For a surjective function f: R \to R, f(x) to be periodic, it should necessarily be a discontinuous function.
```

193

```
Statement 1: The period of f(x) = \sin x is 2\pi \Rightarrow the period of g(x) = |\sin x| is \pi.
```

Statement 2: The period of $f(x) = \cos x$ is $2\pi \Rightarrow$ the period of $g(x) = |\cos x|$ is π .

194

Statement 1: $f(x) = \sin x$ and $g(x) = \cos x$ are identical functions.

Statement 2: Both the functions have the same domain and range.

195

Statement 1: $f: N \to R$, $f(x) = \sin x$ is a one-one function.

Statement 2: The period of sin *x* is 2π and 2π is an irrational number.

196

Statement 1: $f(x) = \sqrt{ax^2 + bx + c}$ has a range $[0, \infty)$ if $b^2 - 4ac > 0$. **Statement 2:** $ax^2 + bx + c = 0$ has real roots if $b^2 - 4ac = 0$.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

197.

Column-I

(B)	$f(x) = \log_3(x^2 - 4x - 5)$	

(C) $f(x) = \log_3(x^2 - 4x + 5)$

(D)
$$f(x) = \log_3(4x - 5 - x^2)$$

(A) $f(x) = \log_3(5 + 4x - x^2)$

CODES :

	Α	В	С	D
a)	r	S	q	р
b)	q	р	r	S
c)	р	r	q	S
d)	q	S	р	r

Column- II

Column- II

- (p) Function not defined
- (q) $[0,\infty)$

(r) (−∞,2]

(s) *R*

198. {.} denotes the fractional part function and [.] denotes the greatest integer function:

Column-I

(A)	$f(x) = e^{\cos^4 \pi x + x - [x] + \cos^2 \pi x}$	(p)	1/3
(B)	$f(x) = \cos 2\pi \{2x\} + \sin 2\pi \{2x\}$	(q)	1/4

(C) $f(x) = \sin 3\pi \{x\} + \tan \pi[x]$ (r) 1/2

(D) f(x) = 3x - [3x + a] - b, where $a, b \in R^+$ (s) 1

CODES :

	Α	В	С	D
a)	S	r	S	р
b)	S	р	S	r
c)	р	S	S	r
d)	S	r	р	S

199. Let $f: R \to R$ and $g: R \to R$ be functions such that f(g(x)) is a one-one function.

Column-I

Column- II

(A) Then g(x)

(p) Must be one-one

(B) Then f(x)

(C) If g(x) is onto then f(x)

(D) If g(x) is into then f(x)

CODES:

	Α	В	С	D
a)	р	q	р	q, r
b)	q	р	q, r	р
c)	q	р	р	q, r
d)	q, r	р	q	р

200.

Column-I

(A) x ²	$x^{2} \tan x = 1, x \in [0, 2\pi]$	(p)	5
--------------------	-------------------------------------	-----	---

(B)	$2^{\cos x} = \sin x , x \in [0, 2\pi]$	(q)	2
------------	--	-----	---

- (C) If f(x) is a polynomial of degree 5 with real coefficients such that f(|x|) = 0 has 8 real roots, then the number of roots of f(x) = 0
- **(D)** $7^{|x|}(|5-|x||) = 1$

CODES:

	Α	В	С	D
a)	q	S	р	S
b)	р	S	q	S
c)	S	q	р	S
d)	q	р	S	S

- 201. The function f(x) is defined on the interval [0, 1] Then match the following columns **Column-I**
 - (A) $f(\tan x)$

(B) $f(\sin x)$

(C) $f(\cos x)$

(D) $f(2 \sin x)$

CODES :

- (q) May not be one-one
- (r) May be many-one
- (s) Must be many-one

Column- II

- (g) 2
- (r) 3
- (s) 4

Column- II

(p)
$$\left[2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right], n \in \mathbb{Z}$$

(q) $\left[2n\pi, 2n\pi + \frac{\pi}{6}\right] \cup \left[2n\pi + \frac{5\pi}{6}, (2n+1)\pi\right], n \in \mathbb{Z}$
(r) $\left[2n\pi, (2n+1)\pi\right], n \in \mathbb{Z}$
(s) $\left[n\pi, n\pi + \frac{\pi}{4}\right], n \in \mathbb{Z}$

Α	В	С	D
S	r	р	q
q	р	S	r
q	S	r	р
р	S	r	q
	s q q	s r q p q s	s r p q p s q s r

202.

Column-I

(A)	$f(x) = \cos(\sin x - \cos x)$	(p)	π
(B)	$f(x) = \cos(\tan x + \cot x)\cos(\tan x - \cot x)$	(q)	$\pi/2$
(C)	$f(x) = \sin^{-1}(\sin x) + e^{\tan x}$	(r)	4π

(D)
$$f(x) = \sin^3 x \sin 3x$$
 (s) 2π

CODES:

	Α	В	C	D
a)	q	q	S	р
b)	q	S	q	р
c)	q	р	q	S
d)	р	q	q	S

203. If $f: R \to R$ is defined by

 $f(x) = \begin{cases} x+4 & \text{for } x < -4 \\ 3x+2 & \text{for } -4 \le x < 4, \\ x-4 & \text{for } x \ge 4 \end{cases}$ Then the correct matching of List I from List II is Column-I

(A) f(-5) + f(-4)

- **(B)** f(|f(-8)|)(2) 4
- (C) f(f-7) + f(3)(3) -11
- **(D)** f(f(f(0))) + 1

Column- II

- (1) 14
- - (4) -1
- (5) 1
- (6) 0

CODES:

	Α	В	С	D
a)	3	6	2	5

Page | 18

Column- II

b)	3	4	2	5
c)	4	3	2	1
d)	3	6	5	2

204.

Column-I

Column- II

- (A) $f: R \to \left[\frac{3\pi}{4}, \pi\right)$ and $f(x) = \cot^{-1}(2x x^2 2)$, (p) One-one then f(x) is
- **(B)** $f: R \to R$ and $f(x) = e^{px} \sin qx$ where (q) Into $p, q \in R^+$, then f(x) is
- (C) $f: \mathbb{R}^+ \to [4, \infty]$ and $f(x) = 4 + 3x^2$, then f(x) (r) Many-one is'

(D)
$$f: X \to X$$
 and $f(f(x)) = x \forall x \in X$, then $f(x)$ is (s) Onto

CODES:

	Α	В	С	D
a)	r, s	r, s	p, q	p, s
b)	p, q	p, s	r, s	r, s
c)	r, s	p, q	r, s	p, s
d)	r, s	p, s	r, s	p, q

205.

Column-I

(A) $f(x) = \{(\operatorname{sgn} x)^{\operatorname{sgn} x}\}^n; x \neq 0, n \text{ is an odd}$ integer

(B)
$$f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$$

(C) $f(x) = \begin{cases} 0, & \text{If } x \text{ is rational} \\ 1, & \text{If } x \text{ is irrational} \end{cases}$
(D) $f(x) = \max\{\tan x, \cot x\}$

	Α	В	С	D
a)	р	q	q,s	p,s
b)	q,s	p,s	р	q
c)	р	q	p,s	q,s
d)	р	q,s	q	p,s

206.

Column-I

Column- II

- (p) Odd function
- (q) Even function
- (r) Neither odd nor even function
- (s) Periodic

(A) $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right), g(x) = 2\tan^{-1}x$ (p) $x \in \{-1, 1\}$ (B) $f(x) = \sin^{-1}(\sin x)$ and $g(x) = \sin(\sin^{-1} x)$ (q) $x \in [-1, 1]$ (C) $f(x) = \log_{x^2} 25$ and $g(x) = \log_x 5$ (r) $x \in (-1, 1)$ (D) $f(x) = \sec^{-1} x + \csc^{-1} x, g(x)$ (s) $x \in (0, 1)$ $= \sin^{-1} x + \cos^{-1} x$ **CODES:** В С А D a) r,s p,q,r,s S р b) p,q,r,s r,s р S c) р p,q,r,s S r,s d) p,q,r,s р r,s S

Linked Comprehension Type

This section contain(s) 21 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 207 to -207**

Consider the functions

 $f(x) = \begin{cases} x+1, \ x \le 1\\ 2x+1, \ 1 < x \le 2 \end{cases} \text{ and } g(x) = \begin{cases} x^2, \ -1 \le x < 2\\ x+2, \ 2 \le x \le 3 \end{cases}.$

207. The domain of the function
$$f(g(x))$$
 isa) $[0,\sqrt{2}]$ b) $[-1,2]$ c) $[-1,\sqrt{2}]$ d) None of these

Paragraph for Question Nos. 208 to - 208

Consider the function f(x) satisfying the identity $f(x) + f\left(\frac{x-1}{x}\right) = 1 + x$, $\forall x \in R - \{0, 1\}$ and g(x) = 2f(x) - x + 1.

208. The domain of
$$y = \sqrt{g(x)}$$
 is
a) $\left(-\infty, \frac{1-\sqrt{5}}{2}\right] \cup \left[1, \frac{1+\sqrt{5}}{2}\right]$
b) $\left(-\infty, \frac{1-\sqrt{5}}{2}\right] \cup (0, 1) \cup \left[\frac{1+\sqrt{5}}{2}, \infty\right)$
c) $\left[\frac{1-\sqrt{5}}{2}, 0\right] \cup \left[\frac{-1+\sqrt{5}}{2}, 1\right]$
d) None of these

Paragraph for Question Nos. 209 to - 209

Let $f: N \to R$ be a function satisfying the following conditions, f(1) = 1/2 and f(1) + 2, f(2) + 3, $f(3) + \dots + nf(n) = n(n+1)$, f(n) for $n \ge 2$.

209. The value of $f(10)$	$(003) = \frac{1}{K}$, where K equals		
a) 1003	b) 2003	c) 2005	d) 2006

Paragraph for Question Nos. 210 to - 210

If $(f(x))^2 \times f\left(\frac{1-x}{1+x}\right) = 64x, \forall x \in Df$, then

210. f(x) is equal to

a)
$$4x^{2/3} \left(\frac{1+x}{1-x}\right)^{1/3}$$
 b) $x^{1/3} \left(\frac{1-x}{1+x}\right)^{1/3}$ c) $x^{2/3} \left(\frac{1-x}{1+x}\right)^{1/3}$ d) $x \left(\frac{1+x}{1-x}\right)^{1/3}$

Paragraph for Question Nos. 211 to - 211

 $f(x) = \begin{cases} x - 1, -1 \le x \le 0 \\ x^2, \ 0 \le x \le 1 \end{cases} \text{ and } g(x) = \sin x. \text{ Consider the functions } h_1(x) = f(|g(x)|) \text{ and } h_2(x) = |f(g(x))|$

- 211. Which of the following is not true about $h_1(x)$?
 - a) It is periodic function with period π b) Range is [0, 1] c) Domain is R

d) None of these

Paragraph for Question Nos. 212 to - 212

If $a_0 = x$, $a_{n+1} = f(a_n)$, where n = 0, 1, 2, ..., then answer the following questions.

212. If $f(x) = \sqrt[m]{(a - x^m)}, x > 0, m \ge 2, m \in N$. Then a) $a_n = x, n = 2k + 1$, where k is integer b) $a_n = f(x)$ if n = 2k, where k is integer c) Inverse of a_n exists for any value of n and md) None of these

Paragraph for Question Nos. 213 to - 213

Let
$$f(x) = f_1(x) - 2f_2(x)$$

Where $f_1(x) = \begin{cases} \min\{x^2, |x|\}, & |x| \le 1\\ \max\{x^2, |x|\}, & |x| > 1 \end{cases}$
And $f_2(x) = \begin{cases} \min\{x^2, |x|\}, & |x| > 1\\ \max\{x^2, |x|\}, & |x| \le 1 \end{cases}$
And $g(x) = \begin{cases} \min\{f(t): -3 \le t \le x, -3 \le x < 0\}\\ \max\{f(t): 0 \le t \le x, 0 \le x \le 3\} \end{cases}$.

213. For $-3 \le x \le -1$, the range of $g(x)$ is	
a) [-1,3]	b) [-1, -15]	c) [-1,9]

d) None of these

Paragraph for Question Nos. 214 to - 214

Let $f(x) = \begin{cases} 2x + a, \ x \ge -1 \\ bx^2 + 3, \ x < -1 \end{cases}$ And $g(x) = \begin{cases} x + 4, \ 0 \le x \le 4 \\ -3x - 2, -2 < x < 0 \end{cases}$

214. g($f(x)$) is not defined if	
a) $a \in (10, \infty), b \in (5, \infty)$	b) $a \in (4, 10), b \in (5, \infty)$
c) $a \in (10, \infty), b \in (0, 1)$	d) $a \in (4, 10), b \in (1, 5)$

Paragraph for Question Nos. 215 to - 215

Let $f: R \to R$ is a function satisfying f(2 - x) = f(2 + x) and f(20 - x) = f(x), $\forall x \in R$. For this function f, answer the following.

215. If f(0) = 5, then the minimum possible number of values of x satisfying f(x) = 5, for $x \in [0, 170]$, is a) 21 b) 12 c) 11 d) 22

Paragraph for Question Nos. 216 to - 216

Consider two functions $f(x) = \begin{cases} [x], -2 \le x \le -1 \\ |x|+1, -1 < x \le 2 \end{cases}$ and $g(x) = \begin{cases} [x], -\pi \le x < 0 \\ \sin x, 0 \le x \le \pi \end{cases}$, where [.] denotes the greatest integer function.

216. The exhaustive domain of g(f(x)) is a) [0, 2] b) [-2, 0] c) [-2, 2] d) [-1, 2]

Integer Answer Type

^{217.} Let *f* be a real – valued invertible function such that $f\left(\frac{2x-3}{x-2}\right) = 5x - 2, x \neq 2$. Then the value of $f^{-1}(13)$ is 218. $f: R \to Rf(x^2 + x + 3) + 2f(x^2 - 3x + 5) = 6x^2 - 10x + 17 \forall x \in R$, then the value of f(5) is 219. A continuous function f(x) on $R \rightarrow R$ satisfies the relation $f(x) + f(2x + y) + 5xy = f(3x - y) + 2x^2 + 1$ for $\forall x, y \in R$, Then the value of |f(4)| is 220. Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. If N is number of onto function from E to F, then the value of N/2 is Number of integral values of x satisfying the inequality $\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{44}$ 222. If $4^x - 2^{x+2} + 5 + ||b-1| - 3| = |\sin y|, x, y, b \in R$, then the possible value of *b* is ^{223.} The function of *f* is continuous and has the property f(f(x)) = 1 - x, then the value of $f(\frac{1}{4}) + f(\frac{3}{4})$ is ^{224.} If *a*, *b* and *c* are non-zero rational numbers, the sum of all the possible values of $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c}$ is 225. Let $f(x) = \sin^{23} x - \cos^{22} x$ and $g(x)1 + \frac{1}{2}\tan^{-1}|x|$, then the number of values of x in interval $[-10\pi, 8\pi]$ satisfying the equation f(x) = sgn(g(x)) is 226. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$ then (gof)(x) is ^{227.} An even polynomial function f(x) satisfies a relation $f(2x)\left(1 - f\left(\frac{1}{2x}\right)\right) + f(16x^2y) = f(-2) - f(-2)$ $f(4xy) \forall x, y \in R - \{0\}$ and f(4) = -255, f(0) = 1, then the value of |(f(2) + 1)/2| is 228. Number of integral values of x for which $\frac{\frac{\pi}{2\tan^{-1}x} - 4(x-4)(x-10)}{x! - (x-1)!} < 0$

- ^{229.} Number of integers in the domain of function, satisfying $f(x) + f(x^{-1}) = \frac{x^2 + 1}{x}$, is
- 230. If θ be the fundamental period of function $f(x) = \sin^{99} x + \sin^{99} \left(x + \frac{2\pi}{3}\right) + \sin^{99} \left(x + \frac{4\pi}{3}\right)$, then complex number $z = |z|(\cos \theta + i \sin \theta)$ lies in the quadrant number.
- 231. Number of integral values of *a* for which $f(x) = \log(\log_{1/3}(\log_7(\sin x + a)))$ be defined for every real values of *x*
- 232. If $f: N \to N$, and $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$, $\forall x_1, x_2 \in N$ and f(f(n)) = 3n, $\forall n \in N$, then f(2) = 233. Suppose that f(x) is a function of the form $f(x) = \frac{ax^8 + bx^6 + cx^4 + dx^2 + 15x + 1}{x} (x \neq 0)$. If f(5) = 2, then the value of |f(-5)/4| is
- 234. Suppose that *f* is an even, periodic function with period 2, and that f(x) = x for all *x* in the interval [0, 1]. The value of [10f(3.14)] is (where [.] represents the greatest integer function)
- 235. Number of values of *x* for which $||x^2 x + 4| 2| 3| = x^2 x 12$ is
- 236. Let $f: R \to R$ be a continuous onto function satisfying $f(x) + f(-x) = 0, \forall x \in R$. If f(-3) = 2 and f(5) = 4 in [-5,5], then the minimum number of roots of the equation f(x)=0 is
- 237. Let $f(x) = 3x^2 7x + c$, where 'c' is a variable coefficient and $x > \frac{7}{6}$. Then the value of [c] such that
 - f(x) touches $f^{-1}(x)$ is (where [.] represents greatest integer function
- ^{238.} If $f(x) = \sqrt{4 x^2} + \sqrt{x^2 1}$, then the maximum value of $(f(x))^2$ is
- 239. Let a > 2 be a constant. If there are just 18 positive integers satisfying the inequality (x a)(x 2a)(x a)(x 2a)(x a)(x 2a)(x a)(x 2a)(x a)(x a^2) < 0, then the value of *a* is
- 240. The function $f(x) = \frac{x+1}{x^3+1}$ can be written as the sum of an even function g(x) and an odd function h(x).then the value of |g(0)| is
- 241. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a function which satisfies f(x). $f(y) = f(xy) + 2\left(\frac{1}{x} + \frac{1}{y} + 1\right)$ for x, y > 0, then possible value of f(1/2) is
- 242. If f(x) is an odd function and f(1) = 3, and f(x + 2) = f(x) + f(2), then the value of f(3) is
- 243. Number of integral values of x for which the function $\sqrt{\sin x + \cos x} + \sqrt{7x x^2 6}$ is defined is
- 244. If $x = \frac{4}{9}$ satisfy the equation $\log_a(x^2 x + 2) > \log_a(-x^2 + 2x + 3)$, then sum of all possible distinct values of [x] is (where [.] represents greatest integer function)
- ^{245.} A function *f* from integers to integers is defined as $(x) = \begin{cases} n+3, & n \in \text{odd} \\ n/2, & n \in \text{even} \end{cases}$. Suppose
 - $k \in \text{odd and } f(f(f(k))) = 27$, then the sum of digits of k is
- 246. If *T* is the period of the function $f(x) = [8x + 7] + |\tan 2\pi x + \cot 2\pi x| 8x$ (where [.] denotes the greatest integer function), then the value of 1/T is

2.RELATIONS AND FUNCTIONS

						: ANSV	W	ER K	EY:						
1)	d	2)	d	3)	b	4)	d	145)	b	146)	С	147)	d	1)	
5)	а	6)	d	7)	а	8)	d	,	a, d	2)	a, c	3)	a, b, c	-	
) 9)	d	10)	с	11)	b	12)	а		, a, b, d	,		,		,	
13)	b	14)	d	15)	а	16)	d	5)	b	6)	a, b	7)	a, b, c,	d	
17)	С	18)	d	19)	b	20)	b	,	8)	, a, b, c,		,			
) 21)	С	22)	d	23)	a	24)	b	9)	a, b, c	10)	a, d	11)	b, d	12)	
25)	b	26)	а	27)	с	28)	С	,	b, d	,		,		,	
29)	а	30)	С	31)	b	32)	d	13)	a, c	14)	a,b,d	15)	a,d	16)	
33)	d	34)	а	35)	b	36)	С	,	a, c	,		,		,	
37)	а	38)	С	39)	а	40)	а	17)	a	18)	a, b, c,	a, b, c, d		b,c	
41)	С	42)	b	43)	а	44)	С	-	20)	a, c, d			19)		
45)	с	46)	b	47)	С	48)	b	21)	b, c, d	22)	b, c	23)	a, b, c,	d	
49)	b	50)	С	51)	d	52)	С	-	24)	a, b, c		-			
53)	d	54)	С	55)	С	56)	d	25)	b, c	26)	b, c	27)	b, d	28)	
57)	С	58)	С	59)	а	60)	d	-	a, b, c	-		-		-	
61)	С	62)	b	63)	а	64)	а	1)	b	2)	b	3)	С	4)	а
65)	С	66)	С	67)	b	68)	С	5)	а	6)	С	7)	С	8)	С
69)	b	70)	а	71)	С	72)	а	9)	d	10)	с	11)	b	12)	а
73)	а	74)	b	75)	b	76)	b	13)	b	14)	b	15)	b	16)	а
77)	С	78)	d	79)	b	80)	С	17)	а	18)	а	19)	d	20)	а
81)	С	82)	b	83)	а	84)	b	21)	d	1)	а	2)	а	3)	а
85)	d	86)	С	87)	а	88)	d		4)	а					
89)	d	90)	d	91)	а	92)	d	5)	а	6)	а	7)	а	8)	а
93)	С	94)	С	95)	d	96)	b	9)	а	10)	а	1)	С	2)	b
97)	а	98)	d	99)	С	100)	b		3)	d	4)	а			
101)	b	102)	С	103)	d	104)	d	5)	d	6)	d	7)	а	8)	a
105)	d	106)	С	107)	a	108)	b	9)	С	10)	С	1)	3	2)	7
109)	С	110)	b	111)	b	112)	d		3)	7	4)	7			
113)	b	114)	b	115)	d	116)	С	5)	7	6)	4	7)	1	8)	0
117)	а	118)	d	119)	b	120)	b	9)	9	10)	1	11)	7	12)	5
121)	b	122)	d	123)	С	124)	С	13)	2	14)	3	15)	3	16)	3
125)	С	126)	d	127)	а	128)	d	17)	7	18)	8	19)	1	20)	3
129)	b	130)	С	131)	а	132)	С	21)	5	22)	6	23)	5	24)	0
133)	С	134)	С	135)	С	136)	d	25)	4	26)	9	27)	3	28)	1
137)	а	138)	а	139)	а	140)	a	29)	6	30)	4				
141)	С	142)	d	143)	b	144)	С								

: HINTS AND SOLUTIONS :

7

8

9

```
1
        (d)
        Since f (x) is an odd function, \left[\frac{x^2}{a}\right] = 0 for all
        x \in [-10, 10]
        \Rightarrow 0 \le \frac{x^2}{a} < 1 \text{ for all } x \in [-10, 10] \Rightarrow a > 100
2
        (d)
        f(x) = \frac{a^x - 1}{x^n (a^x + 1)}
        f(x) is symmetrical about y-axis
        \Rightarrow f(x) = f(-x)
        \Rightarrow \frac{a^{x} - 1}{x^{n}(a^{x} + 1)} = \frac{a^{-x} - 1}{(-x)^{n}(a^{-x} + 1)}
        \Rightarrow \frac{a^{x}-1}{x^{n}(a^{x}+1)} = \frac{1-a^{x}}{(-x)^{n}(1+a^{x})} \Rightarrow x^{n} = -(-x)^{n}
        \Rightarrow the value of n which satisfy this relation is -\frac{1}{3}
3
        (b)
        f(x) is defined for \log\left(\frac{1}{|\sin x|}\right) \ge 0
        \Rightarrow \frac{1}{|\sin x|} \ge 1 \text{ and } |\sin x| \ne 0
        \Rightarrow |\sin x| \neq 0 \quad \left[ \because \frac{1}{|\sin x|} \ge 1 \text{ for all } x \right]
        \Rightarrow x \neq n\pi, n \in Z
        Hence, the domain of f(x) = R - \{n\pi : n \in Z\}
4
        (d)
        f(x) = \frac{\alpha x}{x+1}, x \neq -1
        f(f(x)) = x \Rightarrow \frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\frac{\alpha x}{x+1} + 1} = x
        \Rightarrow \frac{\alpha^2 x}{(\alpha+1)x+1} = x
        \Rightarrow (\alpha + 1)x^2 + (1 - \alpha^2)x = 0
        \Rightarrow \alpha + 1 = 0 and 1 - \alpha^2 = 0
        [As true \forall x \neq 1 \therefore Eq. (1) is an identity]
        \Rightarrow \alpha = -1
5
        (a)
        f\colon [1,\infty)\to [2,\infty)
        f(x) = x + \frac{1}{x} = y
        \Rightarrow x^2 - yx + 1 = 0
        \Rightarrow x = \frac{y \pm \sqrt{y^2 - 4}}{2}
        But given f: [1, \infty) \rightarrow [2, \infty)
        \therefore x = \frac{y + \sqrt{y^2 - 4}}{2}
6
        (d)
        We must have -1 \leq [2x^2 - 3] \leq 1
```

 $\Rightarrow -1 \le 2x^2 - 3 < 2 \Rightarrow 1 \le x^2 < \frac{5}{2}$ $\Rightarrow x \in \left(-\sqrt{\frac{5}{2}}, -1\right] \cup \left[1, \sqrt{\frac{5}{2}}\right)$ (a) Here, $f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$, to find domain we must have, $\sin^{-1}(2x) + \frac{\pi}{6} \ge 0$ $\left(\operatorname{but}-\frac{\pi}{2}\leq \operatorname{sin}^{-1}\theta\leq \frac{\pi}{2}\right)$ $\therefore \qquad -\frac{\pi}{6} \le \sin^{-1}(2x) \le \frac{\pi}{2}$ $\Rightarrow \sin\left(-\frac{\pi}{6}\right) \le 2x \le \sin\left(\frac{\pi}{2}\right)$ $\Rightarrow -\frac{1}{2} \le 2x \le 1 \Rightarrow x \in \left[-\frac{1}{4}, \frac{1}{2}\right]$ (d) If *f* is injective and g is surjective \Rightarrow fog is injective \Rightarrow fof is injective (d) Image b_1 is assigned to any three of the six preimages in ${}^{6}C_{3}$ ways Rest two images can be assigned to remaining three pre-images in $2^3 - 2$ ways (as function is onto) Hence number of functions are ${}^{6}C_{3} \times (2^{3} - 2) =$ $20 \times 6 = 120$ 10 (c) $f(x) = \begin{cases} x - 1, & x \text{ is even} \\ x + 1, & x \text{ is odd} \end{cases}$ where is clearly are oneone and onto 11 **(b)** Put $x = 0 \Rightarrow f(2) = 2f(0) - f(1) = 2 \times 2 - 3 =$ $Put x = 1 \Rightarrow f(3) = 6 - 1 = 5$ Put $x = 2 \Rightarrow f(4) = 2f(2) - f(3) = 2 \times 1 - 5 =$ -3Put $x = 3 \Rightarrow f(5) = 2f(3) - f(4) = 2(5) -$ (-3) = 1312 (a) f(x) is defined if $-\log_{1/2}\left(1+\frac{1}{x^{1/4}}\right)-1>0$ $\Rightarrow \log_{1/2} \left(1 + \frac{1}{r^{1/4}} \right) < -1$

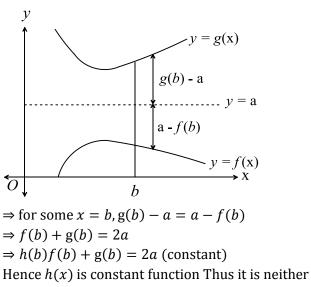
$$\Rightarrow 1 + \frac{1}{x^{1/4}} > \left(\frac{1}{2}\right)^{-1}$$
$$\Rightarrow \frac{1}{x^{1/4}} > 1$$
$$\Rightarrow 0 < x < 1$$

13 **(b)**

We must have $2\{x\}^2 - 3\{x\} + 1 \ge 0 \Rightarrow \{x\} \ge 1 \text{ or } \{x\} \le 1/2$ Thus, we have $0 \le \{x\} \le 1/2 \Rightarrow x \in [n, n + 12, n \in I]$

14 **(d)**

y = f(x) and y = g(x) are mirror image of each other about line y = a



one-one nor onto

15 (a)

$$f(x) = \sec^{-1}(\log_{3} \tan x + \log_{\tan x} 3)$$

$$f(x) = \sec^{-1}\left(\log_{3} \tan x + \frac{1}{\log_{3} \tan x}\right)$$
Now for log₃ tan x to get defined, tan x $\in (0, \infty)$
 $\Rightarrow \log_{3} \tan x \in (-\infty, \infty)$ or log₃ tan x $\in R$
Also $x + \frac{1}{x} \leq -2$ or $x + \frac{1}{x} \geq 2$
 $\Rightarrow \log_{3} \tan x + \frac{1}{\log_{3} \tan x} \leq -2$ or log₃ tan x + $\frac{1}{\log_{3} \tan x} \geq 2$
 $\Rightarrow \sec^{-1}\left(\log_{3} \tan x + \frac{1}{\log_{3} \tan x}\right) \leq \sec^{-1}(-2)$ or
 $\sec^{-1}\left(\log_{3} \tan x + \frac{1}{\log_{3} \tan x}\right) \geq \sec^{-1}2$
 $\Rightarrow f(x) \leq \frac{2\pi}{3}$ or $f(x) \geq \frac{\pi}{3}$
 $\Rightarrow f(x) \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \frac{2\pi}{3}\right]$
16 (d)
It is given that $2^{x} + 2^{y} = 2 \forall x, y \in R$
 $\Rightarrow 2^{y} = 2 - 2^{x}$
 $\Rightarrow y = \log_{2}(2 - 2^{x})$

⇒ function is defined only when $2 - 2^x > 0$ or $2^x < 2$

0r
$$x < 1$$

17 (c)
 $f(x)$ is defined for $x \in (0, , 1)$
 $\Rightarrow f(e^x) + f(\ln|x|)$ is defined for,
 $0 < e^x < 1$ and $0 < \ln|x| < 1$
 $\Rightarrow -\infty < x < 0$ and $1 < |x| < e$
 $\Rightarrow x \in (-\infty, 0)$ and $x \in (-e, -1) \cup (1, e)$
 $\Rightarrow x \in (-e, -1)$
18 (d)
 $f(f(x)) = \begin{cases} (f(x))^2, & \text{for } f(x) \ge 0 \\ f(x) & \text{for } f(x) < 0 \end{cases}$

$$f(f(x)) = \begin{cases} (f(x)) &, & \text{for } f(x) \ge 0 \\ f(x), & \text{for } f(x) < 0 \end{cases}$$
$$= \begin{cases} (x^2)^2, & x^2 \ge 0, & x \ge 0 \\ x^2, & x \ge 0, & x < 0 \\ x^2, & x^2 < 0, & x \ge 0 \\ x, & x < 0, & x < 0 \end{cases} = \begin{cases} x^4, & x \ge 0 \\ x, & x < 0 \\ x, & x < 0 \end{cases}$$

19 **(b)**

The function $\sec^{-1} x$ is defined for all $x \in R - (-1, 1)$ and the function $\frac{1}{\sqrt{x-[x]}}$ is defined for all $x \in R - Z$ So the *g*iven function is defined for all $x \in R - \{(-1, 1) \cup \{n | n \in Z\}\}$

20 **(b)**

$$y = f(x) = \sqrt{3} \sin x - \cos x + 2 = 2 \sin \left(x - \frac{\pi}{6}\right) + 2 (1)$$

Since $f(x)$ is one-one and onto, f is invertible.
From (1) $\sin \left(x - \frac{\pi}{6}\right) = \frac{y-2}{2}$
 $\Rightarrow x = \sin^{-1} \frac{y-2}{2} + \frac{\pi}{6}$

$$\Rightarrow f^{-1}(x) = \sin^{-1}\left(\frac{x-2}{2}\right) + \frac{\pi}{6}$$

21 (c) Let $x, y \in N$ such that f(x) = f(y)Then f(x) = f(y) $\Rightarrow x^2 + x + 1 = y^2 + y + 1$ $\Rightarrow (x - y)(x + y + 1) = 0$ $\Rightarrow x = y \text{ or } x = (-y - 1) \notin N$ \therefore *f* is one-one Also, f(x) does not take all positive integral values. Hence *f* is into 22 (d) f(3x+2) + f(3x+29) = 0 (1)Replacing *x* by x + 9, we get f(3(x+9)+2) + f(3(x+9)+29 = 0 $\Rightarrow f(3x + 29) + f(3x + 56) = 0 (2)$ From (1) and (2), we get f(3x + 2) = f(3x + 56) $\Rightarrow f(3x+2) = f(3(x+18)+2)$ \Rightarrow f(x) is periodic with period 54

23 (a) $f(x) = \{x\}$ is periodic with period 1 $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0 is non-periodic $g(x) = \frac{1}{x}$ is non-periodic Also $f(x) = x \cos x$ is non-periodic as g(x) = x is non-periodic 24 (b) $f(-x) = \begin{cases} (-x)^2 \sin \frac{\pi(-x)}{2}, & |-x| < 1\\ (-x)|-x|, & |-x| \ge 1 \end{cases}$ $= \begin{cases} -x^2 \sin \frac{\pi x}{2}, & |x| < 1\\ -x|x|, & |x| \ge 1 \end{cases}$ =-f(x)25 **(b)** $f(x) = \frac{\sin^{-1}(3-x)}{\log(|x|-2)}$ 29 Let $q(x) = \sin^{-1}(3 - x)$ $\Rightarrow -1 \leq 3 - x \leq 1$ The domain of g(x) is [2, 4] And let $h(x) = \log(|x| - 2)$ 30 $\Rightarrow |x| - 2 > 0 \text{ or } |x| > 2$ $\Rightarrow x < -2 \text{ or } x > 2$ $\Rightarrow (-\infty, -2) \cup (2, \infty)$ We know that $(f/g)(x)\frac{f(x)}{\sigma(x)} \forall x \in D_1 \cap D_2 - \{x \in R: g(x) = 0\}$: the domain of $f(x) = (2, 4] - \{3\} = (2, 3) \cup$ (3, 4]26 (a) $x^{2}f(x) - 2f\left(\frac{1}{x}\right) = g(x) \text{ and } 2f\left(\frac{1}{x}\right) - 4x^{2}f(x)$ 32 $=2x^2g\left(\frac{1}{x}\right)$ (Replacing x by $\frac{1}{x}$) $\Rightarrow -3x^2f(x) = g(x) + 2x^2g\left(\frac{1}{x}\right)$ (Eliminating $f\left(\frac{1}{n}\right)$) $\Rightarrow f(x) = -\left(\frac{g(x) = 2x^2g\left(\frac{1}{x}\right)}{3x^2}\right)$ \therefore g(x) and x² are odd and even functions, respectively So, f(x) is an odd function But f(x) is given even \Rightarrow $f(x) = 0 \forall x$ Hence, f(5) = 0

27 (c) $f(x) = \frac{\sin[x]\pi}{x^2 + x + 1}$ Let $[x] = n \in$ integer $\Rightarrow \sin[x]\pi = 0$ $\Rightarrow f(x) = 0$ \Rightarrow *f*(*x*) is constant function 28 (c) Let |x - 1| + |x - 2| + |x - 3| < 6 $\Rightarrow |(x-1) + (x-2) + (x-3)|$ |x - 1| + |x - 2| + |x - 3| < 6 $\Rightarrow |3x - 6| < 6$ $\Rightarrow |x-2| < 2$ $\Rightarrow -2 < x - 2 < 2$ $\Rightarrow 0 < x < 4$ Hence, for $|x - 1| + |x - 2| + |x - 3| \ge 6, x \le 0$ or $x \ge 4$. (a) The period of $\sin \pi x$ and $\cos 2\pi x$ is 2 and 1, respectively The period of $2^{\{x\}}$ is 1 The period of $3^{\{x/2\}}$ is 2 Hence, the period of f(x) is LCM of 1 and 2=2 (c) Clearly $f(x + \pi) = f(x)$, $g(x + \pi) = g(x)$ and $\emptyset\left(x+\frac{\pi}{2}\right)$ $= \{(-1)f(x)\}\{(-1)g(x)\} = \emptyset(x)$ 31 **(b)** $\left[x^{2} + \frac{1}{2}\right] = \left[x^{2} - \frac{1}{2} + 1\right] = 1 + \left[x^{2} - \frac{1}{2}\right]$ Thus, from domain point of view, $\left[x^2 - \frac{1}{2}\right] = 0, -1 \Rightarrow \left[x^2 + \frac{1}{2}\right] = 1, 0$ $\Rightarrow f(x) = \sin^{-1}(1) + \cos^{-1}(0) \text{ or } \sin^{-1}(0) +$ $\cos^{-1}(-1)$ $\Rightarrow f(x) = \{\pi\}$ (d) The period of f(x) is $7 \Rightarrow$ The period of $f\left(\frac{x}{3}\right)$ is $\frac{7}{1/3} = 21$ The period of g(x) is $11 \Rightarrow$ The period of $g\left(\frac{x}{z}\right)$ is $\frac{11}{1/5} = 55$ Hence, T_1 = period of $f(x)g\left(\frac{x}{5}\right) = 7 \times 55 = 385$ and $T_2 = \text{period of } g(x) f\left(\frac{x}{3}\right) = 11 \times 21 = 231$ \therefore period of $F(x) = LCM\{T_1, T_2\}$ $= LCM{385, 231}$ $= 7 \times 11 \times 3 \times 5$ = 1155

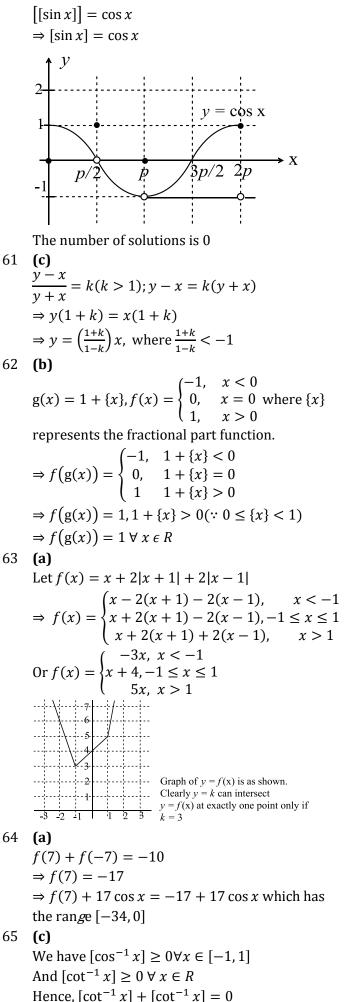
33 (d) $f(x) = \sqrt{x^{12} - x^9 + x^4 - x + 1}$ We must have $x^{12} - x^9 + x^4 - x + 1 \ge 0$ Obviously (1) is satisfied by $x \in (-\infty, 0]$ Also, $x^9(x^3 - 1) + x(x^3 - 1) + 1 \ge 0 \forall x \in [1, \infty)$ Further, $x^{12} - x^9 + x^4 - x + 1 = (1 - x) + x^4 + x^4 - x + 1 = (1 - x) + x^4 + x^4$ $x^4(1-x^5) + x^{12}$ is also satisfied by $x \in (0,1)$ Hence, the domain is R 34 (a) From E to F we can define, in all, $2 \times 2 \times 2 \times 2 =$ 16 functions (2 options for each elements of E) out of which 2 are into, when all the elements of E map to either 1 or 2. \therefore No. of onto function = 16 - 2 = 1435 (b) $\therefore g(f(x)) = (\sin x + \cos x)^2 - 1$, is invertible (*ie*, bijective) $\Rightarrow g(f(x)) = \sin 2x$, is bijective We know sin x is bijective only when $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Thus, g(f(x)) is bijective if, $-\frac{\pi}{2} \le 2x \le \frac{\pi}{2}$ $-\frac{\pi}{\Lambda} \le x \le \frac{\pi}{\Lambda}$ ⇒ 36 (c) $f(x) = \frac{e^{x} - e^{|x|}}{e^{x} + e^{|x|}} = \begin{cases} 0, \ x \ge 0\\ \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}, & x < 0 \end{cases}$ Clearly, f(x) is identically zero if $x \ge 0$ (1) If x < 0, let $y = f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \Rightarrow e^{2x} = \frac{1+y}{1-y}$ $\therefore x < 0 \Rightarrow e^{2x} < 1 \Rightarrow 0 < e^{2x} < 1$ $: 0 < \frac{1+y}{1-y} < 1$ $\Rightarrow \frac{1+y}{1-y} > 0$ and $\frac{1+y}{1-y} < 1$ $\Rightarrow (y+1)(y-1) < 0 \text{ and } \frac{2y}{1-y} < 0$ $\Rightarrow -1 < y < 1$ and y < 0 or y > 1 $\Rightarrow -1 < y < 0$ (2) Combining (1) and (2), we get $-1 < y \le 0 \Rightarrow$ Range = (-1, 0]37 (a) $f(xy) = \frac{f(x)}{y}$ $\Rightarrow f(y) = \frac{f(1)}{y}$ (putting x = 1) $\Rightarrow f(30) = \frac{f(1)}{30} \text{ or } f(1) = 30 \times f(30) = 30 \times$ 20 = 600Now $f(40) = \frac{f(1)}{40} = \frac{600}{40} = 15$ 38 (c) Here, $\frac{x^2+1}{x^2+2} = 1 - \frac{1}{x^2+2}$

Now, $2 \le x^2 + 2 < \infty$ for all $x \in R$ $\Rightarrow \frac{1}{2} \ge \frac{1}{x^2 + 2} > 0$ $\Rightarrow -\frac{1}{2} \le \frac{-1}{r^2 + 2} < 0$ $\Rightarrow \frac{1}{2} \le 1 - \frac{1}{r^2 + 2} < 1$ $\Rightarrow \frac{\pi}{6} \le \sin^{-1} \left(1 - \frac{1}{r^2 + 2} \right) < \frac{\pi}{2}$ 39 (a) When [x] = 0 we have $\sin^{-1}(\cos^{-1}0) =$ $\sin -1(\pi 2)$, not defined When [x] = -1 we have $\sin^{-1}(\cos^{-1} - 1) =$ $\sin -1(\pi)$, not defined When [x] = 1 we have $\sin^{-1}(\cos^{-1} 1) =$ $\sin -10=0$ Hence, $x \in [1, 2)$ and the range of function is $\{0\}$ 40 (a) We have $f(x) = {}^{7-x}P_{x-3} = \frac{(7-x)!}{(10-2x)!}$ We must have 7 - x > 0, $x \ge 3$ and $7 - x \ge x - 3$ $\Rightarrow x > 7, x \ge 3$ and $x \le 5$ $\Rightarrow 3 \le x \le 5$ $\Rightarrow x = 3, 4, 5$ Now $f(3) = \frac{4!}{4!} = 1, f(4) = \frac{3!}{2!} = 3, f(5) = \frac{2!}{0!} = 2$ Hence, $R_f = \{1, 2, 3\}$ 41 (c) $\frac{x^2 + 14x + 9}{x^2 + 2x + 3} = y$ $\Rightarrow x^2 + 14x + 9 = x^2v + 2xv + 3v$ $\Rightarrow x^{2}(y-1) + 2x(y-7) + (3y-9) = 0$ Since *x* is real, $\therefore 4(y-7)^2 - 4(3y-9)(y-1) > 0$ $\Rightarrow 4(y^2 + 49 - 14y) - 4(3y^2 + 9 - 12y) > 0$ $\Rightarrow (y+5)(y-4) < 0;$ \therefore *y* lies between -5 and 4 42 **(b)** For the domain $sin(\ln x) > cos(\ln x)$ and x > 0 $2n\pi + \frac{\pi}{4} < \ln x < 2n\pi + \frac{5\pi}{4}, n \in N \cup \{0\}$ 43 (a) $af(x+1) + bf\left(\frac{1}{x+1}\right) = (x+1) - 1$ (1) Replacing x + 1 by $\frac{1}{x+1}$, we get : $af\left(\frac{1}{x+1}\right) + bf(x+1) = \frac{1}{x+1} - 1$ (2) $(1) \times a - (2) \times b \Rightarrow (a^2 - b^2)f(x+1)$ $= a(x+1) - a - \frac{b}{x+1} + b$ Putting x = 1, $(a^2 - b^2)f(2) = 2a - a - \frac{b}{2} + b =$ $a + \frac{b}{a}$

 $=\frac{2a+b}{2}$ 44 (c) $y = |\sin x| + |\cos x|$ $\Rightarrow y^2 = 1 + |\sin 2x|$ $\Rightarrow 1 \le y^2 \le 2$ $\Rightarrow y \in [1, \sqrt{2}]$ $\Rightarrow f(x) = 1 \forall x \in R$ 45 (c) $x\sin x = 1 (1)$ $\Rightarrow y = \sin x = \frac{1}{x}$ Root of equation (1) will be given by the point(s) of intersection of the graphs $y = \sin x$ and $y = \frac{1}{x}$. Graphically, it is clear that we get four roots. 46 **(b)** Let 2x + 3y = m and 2x - 7y = n $\Rightarrow y = \frac{m-n}{10}$ and $x = \frac{7m-3n}{20}$ $\Rightarrow f(m,n) = 7m + 3n$ $\Rightarrow f(x,y) = 7x + 3y$ 47 (c) For the function to get defined $0 \le x^2 + x + 1 \le x^2 + x^$ 1. But $x^2 + x + 1 \ge \frac{3}{4} \Rightarrow \frac{\sqrt{3}}{2} \le \sqrt{x^2 + x + 1} \le 1$ $\Rightarrow \frac{\pi}{3} \le \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) \le \frac{\pi}{2}$ 48 **(b)** $f(x) = \sin\left(\log\left(x + \sqrt{1 + x^2}\right)\right)$ $\Rightarrow f(-x) = \sin\left[\log\left(-x + \sqrt{1 + x^2}\right)\right]$ $\Rightarrow f(-x) = \sin \log \left(\left(\sqrt{1 + x^2} \right) \right)$ $(-x)\frac{(\sqrt{1+x^2}+x)}{(\sqrt{1+x^2}+x)}$ $\Rightarrow f(-x) = \sin \log \left| \frac{1}{(x + \sqrt{1 + x^2})} \right|$ $\Rightarrow f(-x) = \sin\left[-\log\left(x + \sqrt{1 + x^2}\right)\right]$ $\Rightarrow f(-x) = -\sin\left[\log\left(x + \sqrt{1 + x^2}\right)\right]$ $\Rightarrow f(-x) = -f(x)$ \Rightarrow f(x) is an odd function

49 **(b)** For odd function f(x) = -f(-x) $= -\begin{cases} \sin(-x) + \cos(-x), & 0 \le -x < \pi/2 \\ a, & -x = \pi/2 \\ \tan^2(-x) + \csc(-x), & \pi/2 < -x < \pi \end{cases}$ $= \begin{cases} \sin x - \cos x, & -\pi/2 < x \le 0 \\ -a, & x = -\pi/2 \\ \tan^2 x + \csc x, & -\pi < x < -\pi/2 \end{cases}$ 50 (c) Since $f(x) = (x + 1)^2 - 1$ is continuous function, solution of $f(x) = f^{-1}(x)$ lies on the line y = x $\Rightarrow f(x) = f^{-1}(x) = x$ $\Rightarrow (x+1)^2 - 1 = x$ $\Rightarrow x^2 + x = 0$ $\Rightarrow x = 0 \text{ or } -1$ \Rightarrow The required set is $\{0, -1\}$ 51 (d) $x^2 - [x]^2 \ge 0 \Rightarrow x^2 \ge [x]^2$ This is true for all positive values of *x* and all negative integer x 52 (C) The period of $\cos(\sin nx)$ is $\frac{\pi}{n}$ and the period of $\tan\left(\frac{x}{n}\right)$ is πn Thus, $6\pi = \text{LCM}\left(\frac{\pi}{n}, \pi n\right)$ By checking for the different values of n, n = 653 (d) $f(x) = x^2$ is many-one as f(1) = f(-1) = 1. Also *f* is into, as the range of function is $[0, \infty)$ which is subset of *R* (co-domin). \therefore *f* is neither injective nor surjective. 54 (c) Given $f(x) = \left[\sin x + \left[\cos x + \left[\tan x + \left[\sec x\right]\right]\right]\right]$ = $[\sin + p]$, where $p = \left[\cos x + [\tan x + [\sec x]]\right]$ $= [\sin x] + p$, (as p is integer) $= [\sin x] + \left| \cos x + [\tan x + [\sec x]] \right|$ $= [\sin x] + [\cos x] + [\tan x] + [\sec x]$ Now, for $x \in (0, \pi/4)$, $\sin x \in \left(0, \frac{1}{\sqrt{2}}\right)$, $\cos x \in$ $\left(\frac{1}{\sqrt{2}},1\right)$, $\tan x \in (0,1)$, $\sec x \in \left(1,\sqrt{2}\right)$ $\Rightarrow [\sin x] = 0, [\cos x] = 0, [\tan x] = 0 \text{ and}$ $[\sec x] = 1$ \Rightarrow The range of f(x) is 1 55 (c) Since co-domain = $\left[0, \frac{\pi}{2}\right]$ \therefore for *f* to be onto, the range = $\left[0, \frac{\pi}{2}\right]$

This is possible only when $x^2 + x + a \ge 0 \forall x \in R$ $\therefore 1^2 - 4a \le 0 \Rightarrow a \ge \frac{1}{4}$ 56 (d) $f(x) = \frac{1}{\sqrt{4x - |x^2 - 10x + 9|}}$ For f(x) to be defined $|x^2 - 10x + 9| < 4x$ $\Rightarrow x^2 - 10x + 9 < 4x \text{ and } x^2 - 10x + 9 > -4x$ $\Rightarrow x^2 - 14x + 9 < 0$ and $x^2 - 6x + 9 > 0$ $\Rightarrow x \in (7 - \sqrt{40}, 7 + \sqrt{40}) \text{ and } x \in R - \{-3\}$ $\Rightarrow x \in (7 - \sqrt{40}, -3) \cup (-3, 7 + \sqrt{40})$ 57 (c) Let $y = \frac{x^2 + x + 2}{x^2 + x + 1}$ $\Rightarrow x^{2}(y-1) + x(y-1) + (y-2) = 0, \forall x \in R$ Now, $D \ge 0 \Rightarrow (y-1)^2 - 4(y-1)(y-2) \ge 0$ ⇒ $(y-1){(y-1) - 4(y-2)} \ge 0$ $(y-1)(-3y+7) \ge 0$ ⇒ $\begin{array}{c|c} & + & - \\ \hline & + & - \\ \hline & 1 & - \\ 1 & - \\ \hline & \frac{7}{3} \end{array}$ $1 \le y \le \frac{7}{3}$ ⇒ 58 (c) $y = f(x) = \cos^2 x + \sin^4 x$ $\Rightarrow y = f(x) = \cos^2 x + \sin^2 x (1 - \cos^2 x)$ $\Rightarrow y = \cos^2 x + \sin^2 x - \sin^2 x \cos^2 x$ $\Rightarrow y = 1 - \sin^2 x \cos^2 x$ $\Rightarrow y = 1 - \frac{1}{4}\sin^2 2x$ $\therefore \frac{3}{4} \le f(x) \le 1 \quad (\because 0 \le \sin^2 2x \le 1)$ $\Rightarrow f(x) \in [3/4, 1]$ 59 (a) $f(-x) = \frac{\cos(-x)}{\left[-\frac{2x}{\pi}\right] + \frac{1}{2}} = \frac{\cos x}{-1 - \left[\frac{2x}{\pi}\right] + \frac{1}{2}}$ (as x is not an integral multiple of π) $\Rightarrow f(-x) = -\frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} = -f(x)$ \Rightarrow *f*(*x*) is an odd function. 60 (d) $[y + [y]] = 2\cos x$ $\Rightarrow [y] + [y] = 2\cos x \quad (\because [x+n] = [x] + n \text{ if } n \in$ I) $\Rightarrow 2[y] = 2\cos x \Rightarrow [y] = \cos x$ (1) Also $y = \frac{1}{3} \left[\sin x + \left[\sin x + \left[\sin x \right] \right] \right]$ $=\frac{1}{2}(3[\sin x])$ $= [\sin x]$ (2) From (1) and (2)



$$\Rightarrow [\cot^{-1} x] = [\cot^{-1} x] = 0$$
If $[\cos^{-1} x] = 0 \Rightarrow x \in (\cos 1, 1]$
If $[\cot^{-1} x] = 0 \Rightarrow x \in (\cot 1, \infty)$

$$\Rightarrow x \in (\cot 1, 1]$$
66 (c)
Given
$$f(x) =$$

$$\sqrt{(1 - \cos x)}\sqrt{(1 - \cos x)\sqrt{(1 - \cos x)}\sqrt{...\infty}}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2}}(1 - \cos x)^{\frac{1}{4}}(1 - \cos x)^{\frac{1}{9}...\infty}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \cdots \infty}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \cdots \infty}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2} + \frac{1}{4} + \frac{1}{9} + \cdots \infty}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}}$$

$$\Rightarrow f(x) = (1 - \cos x)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}}}$$

$$\Rightarrow f(x) = 1 - \cos x$$

$$\Rightarrow The range of f(x) is [0, 2)$$
67 (b)
$$\therefore f(x + 1) - f(x) = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow b\{(x + 1)^{2} - x^{2}\} + c = 8x + 3$$

$$\Rightarrow$$

 $\Rightarrow x < -1 \text{ or } x > 1 \text{ and } x > -3 \text{ and } x \neq -2$ ∴ $D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty)$ 72 (a) Let $y = \frac{x+5}{x+2} = 1 + \frac{3}{x+2} \Rightarrow x = 1$ Also, $y - 1 = \frac{3}{x+2} \Rightarrow x + 2 = \frac{3}{y-1}$ $\Rightarrow x = -2 + \frac{3}{\nu - 1}$ \Rightarrow *y* = 2 only as *x* and *y* are natural numbers 73 (a) We have f(x + y) + f(x - y) $=\frac{1}{2}[a^{x+y}+a^{-x-y}+a^{x-y}+a^{-x+y}]$ $=\frac{1}{2}[a^{x}(a^{y}+a^{-y})+a^{-x}(a^{y}+a^{-y})]$ $=\frac{1}{2}(a^{x}+a^{-x})(a^{y}+a^{-y})=2f(x)f(y)$ 74 **(b)** In the sum, $f(1) + f(2) + f(3) + \dots + f(n)$, 1 occurs *n* times, $\frac{1}{2}$ occurs (n-1) times, $\frac{1}{3}$ occurs (n-2) times and so on : f(1) + f(2) + f(3) + f($\cdots + f(n)$ $= n.1 + (n-1).\frac{1}{2} + (n-2).\frac{1}{3} + \dots + 1.\frac{1}{n}$ $=n\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)$ $-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n-1}{n}\right)$ $= nf(n) - \left[\left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{3}\right) + \left(1 - \frac{1}{4}\right) + \cdots \right]$ $+\left(1-\frac{1}{n}\right)$ = nf(n) - [n - f(n)]= (n+1)f(n) - n75 **(b)** $\cos^{-1}\left(\frac{2-|x|}{4}\right)$ exists if $-1 \le \frac{2-|x|}{4} \le 1$ $\Rightarrow -6 \leq -|x| \leq 2$ $\Rightarrow -2 \leq |x| \leq 6$ $\Rightarrow |x| \leq 6$ $\Rightarrow -6 \le x \le 6$ The function $[\log(3-x)]^{-1} = \frac{1}{\log(3-x)}$ is defined if 3 - x > 0 and $x \neq 2$, i.e., if $x \neq 2$ and x < 3Thus, the domain of the given function is $\{x \mid -6 \le x \le 6\} \cap \{x \mid x \ne 2, x < 3\} = [-6, 2] \cup$ (2, 3)76 **(b)** Given $y = 2^{x(x-1)}$ $\Rightarrow x(x-1) = \log_2 y$ $\Rightarrow x^2 - x - \log_2 y = 0$ $\Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_2 y}}{2}$

Only
$$x = \frac{1\pm\sqrt{1+4\log_2 y}}{2}$$
 lies in the domain

$$\Rightarrow f^{-1}(x) = \frac{1}{2} \left[1 + \sqrt{1 + 4\log_2 x} \right]$$
77 (c)
 $f\left(x + \frac{1}{2}\right) + f\left(x - \frac{1}{2}\right) = f(x)$
 $\Rightarrow f(x + 1) + f(x) = f\left(x + \frac{1}{2}\right)$
 $\Rightarrow f(x + 1) + f\left(x - \frac{1}{2}\right) = 0$
 $\Rightarrow f\left(x + \frac{3}{2}\right) = -f(x)$
 $\Rightarrow f(x + 3) = -f\left(x + \frac{3}{2}\right) = f(x)$
 $\therefore f(x)$ is periodic with period 3
78 (d)
Given function is defined if ${}^{10}C_{x-1} > 3{}^{10}C_x$
 $\Rightarrow \frac{1}{11 - x} > \frac{3}{x} \Rightarrow 4x > 33$
 $\Rightarrow x \ge 9$ but $x \le 10 \Rightarrow x = 9, 10$
79 (b)
79 (b)
79 (b)
79 (c)
79 (c)
79 (c)
79 (c)
70 (c)
70 (c)
70 (c)
70 (c)
70 (c)
71 (c)
72 (c)
73 (c)
74 (c)
75 (c)
75 (c)
75 (c)
76 (c)
76 (c)
76 (c)
77 (c)
77 (c)
78 (c)
79 (c)
79 (c)
70 (c)
70 (c)
70 (c)
70 (c)
70 (c)
71 (c)
72 (c)
73 (c)
74 (c)
75 (c)
75 (c)
75 (c)
76 (c)
77 (c)
76 (c)
76 (c)
77 (c)
70 (c

 $f(x) = \frac{x}{1+x} ie, y = \frac{x}{1+x} \Rightarrow y + yx = x$ $\Rightarrow x = \frac{y}{1-y} \Rightarrow \frac{y}{1-y} \ge 0 \text{ as } x \ge 0 \therefore 0 \le y \ne 1$ *ie*, Range \neq Codomain \therefore f(x) is one-one but not onto. 83 **(a)** $f(f(x)) = \begin{cases} f(x), & f(x) \text{ is rational} \\ 1 - f(x), & f(x) \text{ is irrational} \end{cases}$ $\Rightarrow f(f(x)) = \begin{cases} x, & x \text{ is rational} \\ 1 - (1 - x) = x, & x \text{ is irrational} \end{cases}$ x is irrational 84 **(b)** -5 < |kx + 5| < 7 $\Rightarrow -12 \le kx \le 2$ where $-6 \le x \le 1$ $\Rightarrow -6 \le \frac{k}{2} x \le 1$ where $-6 \le x \le 1$ $\therefore k = 2$ [: the range of h(x) = the domain of f(x)85 (d) Let $\phi(x) = f(x) - g(x)$ $= \begin{cases} x, x \in Q \\ -x, x \notin Q \end{cases}$ For one-one Take any straight line parallel to x-axis which will intersect $\phi(x)$ only at one point. $\Rightarrow \phi(x)$ is one-one. Foe onto As, $\phi(x) = \begin{cases} x, x \in Q \\ -x, x \notin Q \end{cases}$, which shows y = x and y = -x for irrational values $\Rightarrow y \notin$ real numbers. ∴ Range=Codomain $\Rightarrow \phi(x)$ is onto. Thus, f - g is one-one and onto. 86 (c) $f(x) = \log |\log x|, f(x)$ is defined if $|\log x| > 0$ and x > 0 i.e., if x > 0 and $x \neq 1$ (:: $|\log x| > 0$ if $x \neq 1$) $\Rightarrow x \in (0,1) \cup (1,\infty)$ 87 (a) Since f(x) and $f^{-1}(x)$ are symmetric about the line y = -xIf (α, β) lies on y = f(x) then $(-\beta, -\alpha)$ on $y = f^{-1}(x)$ $\Rightarrow (-\alpha, -\beta)$ lies on y = f(x) $\Rightarrow y = f(x)$ is odd 88 (d) Let $2x + \frac{y}{8} = \alpha$ and $2x - \frac{y}{8} = \beta$, then $x = \frac{\alpha + \beta}{4}$ and $y = 4(\alpha - \beta)$ Given, $f\left(2x + \frac{y}{8}, 2x - \frac{y}{8}\right) = xy$ $\Rightarrow f(\alpha, \beta) = \alpha^2 - \beta^2$ $\Rightarrow f(m,n) + f(n,m) = m^2 - n^2 + n^2 - m^2 = 0$

for all *m*, *n*

89 (d)

$$\sin^{2} x + \sin^{2} \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right)$$

$$= \sin^{2} x + \left(\frac{\sin x}{2} + \frac{\sqrt{3} \cos x}{2} \right)^{2}$$

$$+ \cos x \left(\frac{\cos x}{2} - \frac{\sqrt{3} \sin x}{2} \right)$$

$$= \sin^{2} x + \frac{\sin^{2} x}{4} + \frac{3 \cos^{2} x}{4} + \frac{\cos^{2} x}{2}$$

$$= \frac{5 \sin^{2} x}{4} + \frac{5 \cos^{2} x}{4} = 5/4$$

Hence, $f(x) = c^{5/4} = \text{constant}$, which is periodic whose period cannot be determined

90 **(d)**

$$f(x) = \frac{n(n+1)}{2} + [\sin x] + \left[\sin\frac{x}{2}\right] + \dots + \left[\sin\frac{x}{n}\right]$$

Thus, the range of $f(x) = \left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2} + 1\right\}$ as $x \in [0, \pi]$

Let g(x) = (x + 1)(x + 2)(x + 3)(x + 4)The rough graph of g(x) is given as

$$\int_{-4}^{+4} \int_{-3}^{-2} \int_{-2}^{-1} \int_{-1}^{+1} f(x) = (x+1)(x+2)(x+3)(x+4) = (x+1)(x+4)(x+2)(x+3) = (x^2+5x+4)(x^2+5x+6) = t(t+2) = (t+1)^2 - 1,$$

Where $t = x^2 + 5x$
Now $g_{min} = -1$, for which $x^2 + 5x - 1$ has real roots in $[-6, 6]$
Also $g(6) = 7 \times 8 \times 9 \times 10 = 5040$
Hence, the range of $g(x)$ is $[-1, 5040]$ for $x \in [-6, 6]$
Then, the range of $f(x)$ is $[4, 5045]$
92 (d)
 $f(x) = \ln\left(\frac{x^2+e}{x^2+1}\right) = \ln\left(\frac{x^2+1+e-1}{x^2+1}\right)$
 $= \ln\left(1+\frac{e-1}{x^2+1}\right)$
Now, $1 \le x^2+1 < \infty$
 $\Rightarrow 0 < \frac{1}{x^2+1} \le 1 \Rightarrow 0 < \frac{e-1}{x^2+1} \le e-1$
 $\Rightarrow 1 < 1 + \frac{e-1}{x^2+1} \le e \Rightarrow 0 < \ln\left(1+\frac{e-1}{x^2+1}\right) \le 1$
Hence, the range is $(0, 1]$
93 (c)

$$f(x) = \sqrt{|x| - \{x\}}$$
 is defined if $|x| \ge \{x\}$

$$\Rightarrow x \in \left(-\infty - \frac{1}{2}\right] \cup [0, \infty) \Rightarrow Y \in [0, \infty)$$

$$y = |x|$$

$$\Rightarrow f(x)f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$$

$$= \cos(\log x) \cos(\log y) - \frac{1}{2} \left[\cos(\log x - \log y) \right]$$

$$+ \cos(\log x + \log y)$$

$$= \cos(\log x) \cos(\log y)$$

$$- \frac{1}{2} \left[2\cos(\log x) \cos(\log y) \right]$$

$$= 0$$

99 (c)
From the given data $g(x)$ must be linear function
Hence, $g(x) = ax + b$
Also $g(2) = 2a + b = 3$ and $g(4) = 4a + b = 7$
Solving, we get $a = 2$ and $b = -1$
Hence, $g(x) = 2x - 1$
Then, $g(6) = 11$
100 (b)
 $x^2F(x) + F(1 - x) = 2x - x^4$ (1)
Replacing x by $1 - x$, we get
 $\Rightarrow (1 - x)^2F(1 - x) + F(x) = 2(1 - x) - (1 - x)^4$ (2)
Eliminating $F(1 - x)$ from (1) and (2), we get
 $F(x) = 1 - x^2$
101 (b)
 $[x]^2 = x + 2\{x\}$
 $\Rightarrow [x]^2 = x + 3\{x\}$
 $\Rightarrow \{x\} = \frac{[x]^2 - [x]}{3} < 1$
 $\Rightarrow 0 \le [x]^2 - [x] < 3$
 $\Rightarrow [x] \in \left(\frac{1 - \sqrt{3}}{2}, 0\right] \cup \left[1, \frac{1 + \sqrt{3}}{2}\right)$
 $\Rightarrow [x] = -1, 0, 1, 2$
 $\Rightarrow [x] = \frac{1}{3}, 0, 0, \frac{2}{3}$ (respectively)
 $\Rightarrow x = -\frac{1}{3}, 0, 1, \frac{8}{3}$
102 (c)
 $y = \frac{1}{\log_{10}(1 - x)} + \sqrt{x - 2}$
 $y = f(x) + g(x)$
Then, the domain of given function is $D_f \cap D_g$
Now, for the domain of $f(x) = \frac{1}{\log_{10}(1 - x)}$,
We know it is defined only when $1 - x > 0$ and $1 - x \neq 1$
 $\Rightarrow x < 1$ and $x \neq 0$ $\therefore D_f = (-\infty, 1) - \{0\}$
For the domain of $g(x) = \sqrt{x + 2}$
 $x + 2 \ge 0 \Rightarrow x \ge -2$
 $\therefore D_g = [-2, 1) - \{0\}$

103 (d) We have $fog(x) = f(g(x)) = sin(log_e|x|)$ $\log_e |x|$ has range *R*, for which $\sin(\log_e |x|) \in [-1, 1]$ $\therefore R_1 = \{u: -1 \le u \le 1\}$ Also $gof(x) = g(f(x)) = \log_e |\sin x|$ $\therefore 0 \le |\sin x| \le 1$ $\Rightarrow -\infty < \log_e |\sin x| \le 0$ $\Rightarrow R_2 = \{v: -\infty < v \le 0\}$ 104 (d) $f(x) = \alpha x^3 - \beta x - (\tan x) \operatorname{sgn} x$ f(-x) = f(x) $\Rightarrow -\alpha x^3 + \beta x - \tan x \operatorname{sgn} x = \alpha x^3 - \beta x$ $-(\tan x)(\operatorname{sgn} x)$ $\Rightarrow 2(-\alpha x^2 - \beta)x = 0 \forall x \in R$ $\Rightarrow \alpha = 0$ and $\beta = 0$ $\therefore [a]^2 - 5[a] + 4 = 0 \text{ and } 6\{a\}^2 - 5\{a\} + 1 = 0$ $\Rightarrow (3\{x\} - 1)(2\{x\} - 1) = 0$ $\therefore a = 1 + \frac{1}{3}, 1 + \frac{1}{2}, 4 + \frac{1}{3}, 4 + \frac{1}{2}$ Sum of values of $a = \frac{35}{2}$ 105 (d) $:: \{x\} \in [0, 1)$ $\sin x \in (0, \sin 1)$ as f(x) is defined if $\sin\{x\} \neq 0$ $\Rightarrow \frac{1}{\sin\{x\}} \in \left(\frac{1}{\sin 1}, \infty\right) \Rightarrow \left[\frac{1}{\sin\{x\}}\right] \in \{1, 2, 3, \dots\}$ Note that $1 < \frac{\pi}{3} \Rightarrow \sin 1 < \sin \frac{\pi}{3} = 0.866 \Rightarrow \frac{1}{\sin 1} >$ 1.155. 106 (c) $f(x) = [6x + 7] + \cos \pi x - 6x$ $= [6x] + 7 + \cos \pi x - 6x$ $= 7 + \cos \pi x - \{6x\}$ $\{6x\}$ has the period 1/6 and $\cos \pi x$ has the period 2, then the period of f(x) = LCM of 2 and 1/6which is 2 Hence, the period is 2 107 (a) Given f(x + y) = f(x)f(y) Put x = y = 0, then f(0) = 1Put y = -x, then $f(0) = f(x)f(-x) \Rightarrow f(-x) =$ f(x)Now, $g(x) = \frac{f(x)}{1 + \{f(x)\}^2}$ $\Rightarrow g(-x) \frac{f(-x)}{1 + \{f(-x)\}^2} = \frac{\frac{1}{f(x)}}{1 + \frac{1}{\{f(x)\}^2}}$ $=\frac{f(x)}{1+\{f(x)\}^2}=g(x)$ 108 (b) We have f(x - y) = f(x)f(y) - f(a - x)f(a + y)

y)
Putting
$$x = a$$
 and $y = a - x$, we get
 $f(a - (x - a) = f(a)f(x - a) - f(0)f(x)$ (1)
Putting $x = 0, y = 0$, we get
 $f(0) = f(0)(f(0)) - f(a)f(a)$
 $\Rightarrow f(0) = (f(0))^2 - (f(a))^2$
 $\Rightarrow 1 = (1)^2 - (f(a))^2$
 $\Rightarrow f(a) = 0$
 $\Rightarrow f(2a - x) = -f(x)$
109 (c)
(a) $f(x) = \sin x$ and $g(x) = \cos x, x \in [0, \pi/2]$

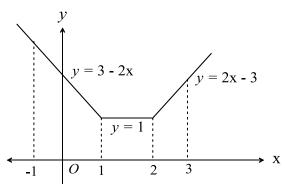
Here, both f(x) and g(x) are one-one functions

But $h(x) = f(x) + g(x) = \sin x + \cos x$ is manyone as $h(0) = h(\pi/2) = 1$

(b) $h(x) = f(x)g(x) = \sin x \cos x = \frac{\sin 2x}{2}$ is many-one, as $h(0) = h(\pi/2) = 0$

(c)It is a fundamental property

111 **(b)**

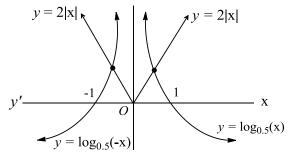


Clearly, from the graph, the range is $[1, f(-1)] \equiv [1, 5]$

If x < 1, f(x) = -(x - 1) - (x - 2) = -2x + 3. In this interval, f(x) is decreasing If $1 \le x < 2$, f(x) = x - 1 - (x - 2) = 1In this interval, f(x) is constant If $2 \le x \le 3$, f(x) = x - 1 + x - 2 = 2x - 3In this interval, f(x) is increasing $\therefore \max f(x) = \text{the greatest among } f(-1)$ and $f(3) = 5,\min f(x) = f(1) = 1$ So, the range = [1, 5]112 (d) f(x) = |x - 1| $\Rightarrow f(x)^2 = |x^2 - 1| \operatorname{and} (f(x))^2 = |x - 1|^2 = x^2 - 2x + 1$ $\Rightarrow f(x^2) \ne (f(x))^2$ Hence, option **a** is not true. $f(x + y) = f(x) + f(y) \Rightarrow |x + y - 1| =$ |x - 1| + |y - 1|, Which is absurd. Put x = 2, y = 3 and verify. Hence, option **b** is true. Consider f(|x|) = |f(x)|Put x = -5, then f(|-5|) = f(5) = 4 and |f(-5)| = |-5 - 1| = 6. \therefore **c** is not correct.

113 **(b)**

Draw the graph of $y = \log_{0.5}|x|$ and y = 2|x|

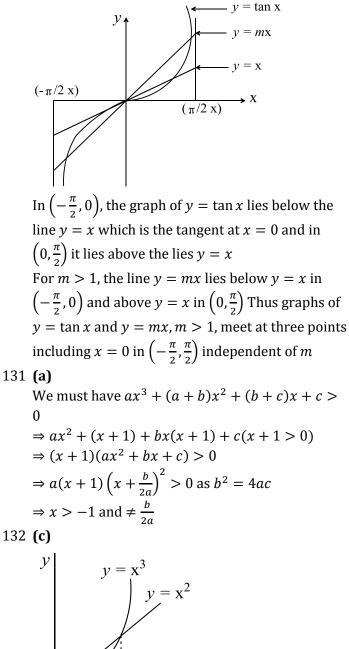


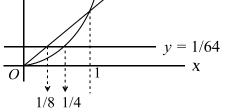
Clearly, from the graph, there are two solutions 114 **(b)**

 $3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10x + 30$ For x = 7, 3f(7) + 2f(11) = 70 + 30 = 100For x = 11, 3f(11) + 2f(7) = 140 $\frac{f(7)}{-20} = \frac{f(11)}{-220} = \frac{-1}{9-4} \Rightarrow f(7) = 4$ 115 (d) f(x) - 1 + f(1 - x) - 1 = 0 so g(x) +g(1-x) = 0Replacing *x* by $x + \frac{1}{2}$, we get $g\left(\frac{1}{2} + x\right) + \frac{1}{2}$ $g\left(\frac{1}{2} - x\right) = 0$ So, it is symmetrical about $\left(\frac{1}{2}, 0\right)$ 116 (c) $\cos^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined if $\left|\frac{1+x^2}{2x}\right| \le 1$ and $x \ne 0$ $\Rightarrow 1 + x^2 - 2|x| \le 0$ $\Rightarrow (|x| - 1)^2 \leq 0$ $\Rightarrow x = 1, -1$ Thus, the domain of f(x) is $\{1, -1\}$ Hence, the range is $\{1, 1 + \pi\}$ 117 (a) Putting $x = 1, f(2) + f(0) = 2f(1) \Rightarrow f(2) =$ 2f(1)Putting x = 2, f(3) + f(1) = 2f(2) $\Rightarrow f(3) = 2 \times 2f(1) - f(1) = 3f(1)$, and so on $\therefore f(n) = nf(1)$, for n = 1, 2, ..., nf(n+1) + f(n-1) = 2f(n) $\Rightarrow f(n+1) + (n-1)f(1) = 2nf(1)$ $\Rightarrow f(n+1) = (n+1)f(1)$ 118 (d)

 $f(x) = \frac{1}{\sqrt{(\sin x) + (\sin(\pi + x))}} = \frac{1}{\sqrt{(\sin x) + (-\sin x)}}$ Now $\{\sin x\} + \{-\sin x\} = \begin{cases} 0, \ \sin x \ \text{is an integer} \\ 1, \ \sin x \ \text{is not an integer} \end{cases}$ For f(x) to get defined $\{\sin x\} + \{-\sin x\} \neq 0$ $\Rightarrow \sin x \neq \text{integer}$ $\Rightarrow \sin x \neq \pm 1,0$ $\Rightarrow x \neq \frac{n\pi}{2}, n \in I$ Hence, the domain is $R - \left\{\frac{n\pi}{2}/n \in I\right\}$ 119 (b) We have $f(x) = \left[\log_{10}\left(\frac{5x-x^2}{4}\right)\right]^{1/2}$ (1) From (1), clearly f(x) is defined for those values of *x* for which $\log_{10}\left[\frac{5x-x^2}{4}\right] \ge 0$ $\Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 10^0$ $\Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 1$ $\Rightarrow x^2 - 5x + 4 \le 0$ $\Rightarrow (x-1)(x-4) \leq 0$ Hence, the domain of the function is [1, 4] 120 (b) $f(x) = \left|\sin^3 \frac{x}{2}\right| + \left|\cos^5 \frac{x}{5}\right|$ The period of $\sin^3 x$ is 2π \Rightarrow The period of $\sin^3 \frac{x}{2}$ is $\frac{2\pi}{1/2} = 4\pi$ \Rightarrow The period of $\sin^3 \frac{x}{2}$ is 2π The period of $\cos^5 x$ is 2π \Rightarrow The period of $\cos^5 \frac{x}{5}$ is $\frac{2\pi}{(\frac{1}{2})} = 10\pi$ \Rightarrow The period of $\left|\cos^{5}\frac{x}{2}\right|$ is 5π Now the period of f(x) = LCM of $\{2\pi, 10\pi\} = 10\pi$ 121 **(b)** $y = x^2 + (k - 1)x + 9$ $=\left(x+\frac{k-1}{2}\right)^{2}+9-\left(\frac{k-1}{2}\right)^{2}$ For entire graph to be above *x*-axis we should have $9 - \left(\frac{k-1}{2}\right)^2 > 0$ $\Rightarrow k^2 - 2k - 35 < 0 \Rightarrow (k - 7)(k + 5) < 0$ $\Rightarrow -5 < k < 7$ 122 (d) $|\cos x| + \cos x = \begin{cases} 0, & \cos x \le 0\\ 2\cos x, & \cos x > 0 \end{cases}$ For f(x) to defined $\cos x > 0$ $\Rightarrow x \in \left(\frac{(4n-1)\pi}{2}, \frac{(4n+1)\pi}{2}\right) n \in \mathbb{Z}$ (1st and 4th quadrant)

123 (c) $f(x) = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) + 2\sqrt{2}$ $\operatorname{Or} f(x) = \sqrt{2} \cos\left(x - \frac{\pi}{4}\right) + 2\sqrt{2}$ $\Rightarrow Y = \left[\sqrt{2}, 3\sqrt{2}\right] \text{ and } X = \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right] \text{ or } \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ 124 (c) $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x^2}$ and $h(x) = x^2$ $f(g(x)) = x^2, x \neq 0$ $h(g(x)) = \frac{1}{r^4} = (g(x))^2, x \neq 0$ 125 (c) f(2x+3) + f(2x+7) = 2 (1) Replace x by x + 2, f(2x + 7) + f(2x + 11) = 2(2)From (1) – (2) we get f(2x + 3) - f(2x + 11) =0 $\Rightarrow f(2x+3) = f(2x+11)$ $\Rightarrow f(2x+3) = f(2(x+4)+3)$ \Rightarrow Period of f(x) is 8 126 (d) Here x + 3 > 0 and $x^2 + 3x + 2 \neq 0$ $\therefore x > -3$ and $(x + 1)(x + 2) \neq 0$, i.e., $x \neq -1, -2$: The domain = $(-3, \infty) - \{-1, -2\}$ 127 (a) $\cos^{-1}(\cos x) = [x]$ 3 2 OThe solutions are clearly 0, 1, 2, 3, and $3 = 2\pi - x$ or $x = 2\pi - 3$ 128 (d) $\Rightarrow f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}$ For domain of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ $x^{2} + 3x + 2 \neq 0$ and x + 3 > 0 $\Rightarrow x \neq -1, -2 \text{ and } x > -3$ $\therefore D_f = (-3, \infty) - \{-1, -2\}$ 129 (b) $f(x) = [x] + [2x] + [3x] + \dots + [nx] - (x + 2x)$ $+3x+\cdots nx$ $= -(\{x\} + \{2x\} + \{3x\} + \dots + \{nx\})$ The period of $f(x) = LCM(1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}) = 1$ 130 (c)





Clearly, from the graph $f(x) = \begin{cases} \frac{1}{64}, & 0 \le x \le \frac{1}{8} \\ x^2, & \frac{1}{8} < x \le 1 \\ x^3, & x > 1 \end{cases}$

133 **(c)**

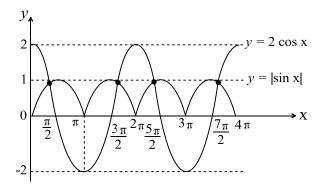
The period of $\cos(\sin nx)$ is $\frac{\pi}{n}$ and the period of $\tan\left(\frac{x}{n}\right)$ is πn Thus, $6\pi = \text{LCM}\left(\frac{\pi}{n}, \pi n\right)$ $\Rightarrow 6\pi = \frac{\pi}{n}\lambda_1 \Rightarrow n = \frac{\lambda_1}{6}$, and $6\pi = \lambda_2\pi n \Rightarrow n$ $= \frac{6}{\lambda_2}, \lambda_1, \lambda_2 \in I^+$ From $n = \frac{6}{\lambda_2} \Rightarrow n = 6, 3, 2, 1$ Clearly, for n = 6, we get the period of f(x) to be 6π 134 (c)

154 (

Case I $0 < |x| - 1 < 1 \Rightarrow 1 < |x| < 2$, then $x^2 + 4x + 4 \le 1$ $\Rightarrow x^2 + 4x + 3 \le 0$ $\Rightarrow -3 \le x \le -1$ So $x \in (-2, -1)$ (1) Case II $|x| - 1 > 1 \Rightarrow |x| > 2$, then $x^2 + 4x + 4 \ge 1$ $\Rightarrow x^2 + 4x + 3 \ge 0$ $\Rightarrow x \ge -1$ or $x \le -3$ So, $x \in (-\infty, -3] \cup (2, \infty)$ (2) From (1) and (2), $x \in (-\infty, -3] \cup (-2, -1) \cup (2, \infty)$

135 (c)

See the graph of $y = 2 \cos x$ and $y = |\sin x|$, their points of intersection represent the solution of the given equation



We find that the graphs intersect at four points. Hence, the equation has four solutions

136 **(d)**

 $f(x) = e^{x^3 - 3x + 2}$ Let $g(x) = x^3 - 3x + 2$; g'(x) $= 3x^2 - 3 = 3(x^2 - 1)$ $g'(x) \ge 0$ for $x \in (-\infty, -1]$ $\therefore f(x)$ = is increasing function $\therefore f(x)$ is one-one Now, the range of $f(x) = (0, e^4]$ But co-domain is $(0, e^5] \therefore f(x)$ is an into function 137 (a)

 $F(n+1) = \frac{2F(n)+1}{2} \Rightarrow F(n+1) - F(n) = \frac{1}{2}$ Put n = 1, 2, 3, ..., 100 and add, we get $F(101) - F(1) = 100 \times \frac{1}{2}$ $\Rightarrow F(101) = 52 \quad [\because F(1) = 2]$ 138 (a) $|x-2| + a = \pm 4$

 $\Rightarrow |x-2| = \pm 4 - a$ For 4 real roots, 4 - a > 0 and -4 - a > 0 $\Rightarrow a \in (-\infty, -4)$ 139 (a) $h(x) = \log(f(x).g(x)) = \log e^{\{y\}+[y]} = \{y\} +$ $[y] = e^{|x|} \operatorname{sgn} x$ $\therefore h(x) = e^{|x|} \operatorname{sgn} x = \begin{cases} e^x, & x > 0\\ 0, & x = 0\\ -e^{-x}, & x < 0 \end{cases}$ $\Rightarrow h(-x) = \begin{cases} e^{-x}, & x < 0\\ 0, & x = 0\\ -e^x, & x > 0 \end{cases}$ all x140 (a) Given $f(x) = \sqrt[n]{x^m}$, $n \in N$ is an even function where $m \in I$ $\Rightarrow f(x) = f(-x)$ $\Rightarrow \sqrt[n]{x^m} = \sqrt[n]{(-x)^m}$ $\Rightarrow x^m = (-x)^m$ \Rightarrow *m* is an even integer $\Rightarrow m = 2k, k \in I$ 141 (c) $\frac{1}{2}(gof)(x) = 2x^2 - 5x + 2 \text{ or } \frac{1}{2}g[f(x)]$ $= 2x^2 - 5x + 2$ $\therefore [\{f(x)\}^2 + \{f(x)\} - 2] = 2[2x^2 - 5x + 2]$ $\Rightarrow f(x)^{2} + f(x) - (4x^{2} - 10x + 6) = 0$ $\therefore f(x) = \frac{-1 \pm \sqrt{1 + 4(4x^2 - 10x + 6)}}{2}$ $=\frac{-1\pm\sqrt{(16x^2-40x+25)}}{2}=\frac{-1\pm(4x-5)}{2}=2x-3 \text{ or}$ -2x + 2142 (d) $\log_3(x^2 - 6x + 11) \le 1$ $\Rightarrow 0 < x^2 - 6x + 11 \le 3$ $\Rightarrow x \in [2, 4]$ 143 **(b)** Given $f(x + y) = f(x) + f(y) - xy - 1 \forall x, y \in R$ f(1) = 1f(2) = f(1+1) = f(1) + f(1) - 1 - 1 = 0 $f(3) = f(2+1) = f(2) + f(1) - 2 \quad 1 - 1 = -2$ f(n + 1) = f(n) + f(1) - n - 1 = f(n) - n< f(n)Thus, f(1) > f(2) > f(3) > ... and f(1) = 1: f(1) = 1 and f(n) < 1, for n > 1Hence, $f(n) = n, n \in N$ has only one solution n = 1144 (c) $g(x) = x^3 + \tan x + \left|\frac{x^2 + 1}{p}\right|$

 \Rightarrow g(-x) = (-x)³ + tan(-x) + $\left|\frac{(-x)^{2} + 1}{p}\right|$ $\Rightarrow g(-x) = -x^3 - \tan x + \left[\frac{x^2 + 1}{p}\right]$ \Rightarrow g(x) + g(-x) = 0 Because g(x) is a odd function $\therefore \left(-x^3 - \tan x + \left[\frac{x^2 + 1}{P} \right] \right) + \left(\frac{-x^3 - \tan x}{+ \left[\frac{x^2 + 1}{D} \right]} \right) = 0$ $\Rightarrow 2\left[\frac{(x^2+1)}{p}\right] = 0 \Rightarrow 0 \le \frac{x^2+1}{p} < 1$ Now $x \in [-2, 2]$ $\Rightarrow 0 \leq \frac{5}{p} < 1 \Rightarrow P > 5$ 145 **(b)** Two triangles may have equal areas \therefore *f* is not one-one Since each positive real number can represent area of a triangle $\therefore f$ is onto 146 (c) Let $f(x) = bx^2 + ax + c$ Since, $f(0) = 0 \Rightarrow c = 0$ And $f(1) = 0 \Rightarrow a + b = 1$ $\therefore \quad f(x) == ax + (1-a)x^2$ Also, f'(x) > 0 for $x \in (0, 1)$ $\Rightarrow \quad a + 2(1 - a)x > 0 \quad \Rightarrow \quad a(1 - 2x) + 2x$ $a > \frac{2x}{2x-1} \Rightarrow 0 < a < 2$ ⇒ Since, $x \in (0, 1)$ $f(x) = ax + (1 - a)x^2; 0 < a < 2$:. 147 (d) f(x) is continuous for all x > 0 and $f\left(\frac{x}{y}\right) =$ f(x) - f(y)Also f(e) = 1 \Rightarrow Clearly, $f(x) = \log_e x$ satisfies all these properties. \therefore $f(x) = \log_e x$, which is an unbounded function. 148 (a, d) Given $f(x) + f(y) = (x\sqrt{1-y^2} + y\sqrt{1-x^2})$ (1) Replace y by $x \Rightarrow 2f(x) = f(2x\sqrt{1-x^2})$ 3f(x) = f(x) + 2f(x) $= f(x) + f\left(2x\sqrt{1-x^2}\right)$ $= f\left(x\sqrt{1 - 4x^2(1 - x^2)} + 2x\sqrt{1 - x^2}\sqrt{1 - x^2}\right)$ $= f\left(x\sqrt{(2x^2 - 1)^2} + 2x(1 - x^2)\right)$ $= f(x|2x^2 - 1| + 2x - 2x^3)$ $= f(2x^3 - x + 2x - 2x^3)$ or $f(x - 2x^3 + 2x - 2x^3)$

$$2x^{3})$$
= $f(x)$ or $f(3x - 4x^{3})$
 $\Rightarrow f(x) = 0$ or $3f(x) = f(3x - 4x^{3})$
Consider $3f(x) = f(3x - 4x^{3})$
Replace x by $-x$, we get
 $3f(-x) = f(4x^{3} - 3x)$ (2)
Also from (1), $f(x) + f(-x) = f(0)$
Put $x = y = 0$ in (1), we have $f(0) = 0 \Rightarrow f(x) + f(-x) = 0$, thus $f(x)$ is an odd function
Now from (2) $-3f(x) = f(4x^{3} - 3x)$
 $\Rightarrow f(4x^{3} - 3x) + 3f(x) = 0$
149 (a, c)
 $f(x) = \cos[\pi^{2}]x + \cos[-\pi^{2}]x$,
We know $9 < \pi^{2} < 10$ and $-10 < -\pi^{2} < -9$
 $\Rightarrow [\pi^{2}] = 9$ and $[-\pi^{2}] = -10$
 $\Rightarrow f(x) = \cos 9x + \cos(-10x)$
 $\Rightarrow f(x) = \cos 9x + \cos 10x$
a. $f(\frac{\pi}{2}) = \cos \frac{\pi}{2} + \cos 5\pi = -1$ (true)
b. $f(x) = \cos 9x + \cos 10\pi = -1 + 1 = 0$ (false).
c. $f(-\pi) = \cos(-9\pi) + \cos(-10\pi) = \cos 9\pi + \cos 10\pi$
 $= -1 + 1 = 0$ (true)
d. $f(\frac{\pi}{4}) = \cos \frac{9\pi}{4} + \cos \frac{5\pi}{4} = \cos(2\pi + \frac{\pi}{4} + 0)$
(false)
Thus, **a** and **c** are correct options
150 (**a**, **b**, **c**)
 $f(x) = \tan(\tan^{-1}x) = x$ for all x and
 $g(x) = \cot(\cot^{-1}x) = x$ for all x
Hence, this pair is identical functions
 $f(x) = \operatorname{sgn}(x)$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$ have
domain R
 $f(x)$ has range $\{-1, 0, 1\}$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$
has range $\{-1, 0, 1\}$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$
has range $\{-1, 0, 1\}$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$
has range $\{-1, 0, 1\}$ and $(-\infty, -1] \cup [1, \infty)$
Hence, this pair is not identical functions
 $g(x) = \cot^{2} x - \cos^{2} x = \cos^{2} x (\operatorname{cosec}^{2} x - 1)$
 $= \cos^{2} x \cot^{2} x = f(x)$
 $f(x) = e^{\log e^{\operatorname{sec}^{-1}x}}$ has the domain $[1, \infty)$, whereas
 $g(x) = \sec^{-1}x$ has the domain $(-\infty, -1] \cup [1, \infty)$
Hence, this pair is not identical functions
151 (**a**, **b**, **d**)
 $f(x) = \frac{1}{|x||-|x||}$ is defined if $[1 - |x|] > 0$ and
 $1 - [x] \neq 1$
 $\Rightarrow [1 - |x|] \geq 2 \Rightarrow 1 - |x| \geq 2 \Rightarrow |x| \leq -1$ which
is not possible
 $f(x) = \frac{x!}{|x|}$ Hence $x!$ is defined only when x is
natural number, but $\{x\}$ becomes zero for these
values of x Hence, $f(x)$ is not defined in this case

 $f(x) = x! \{x\}$ is defined for x being a natural number Hence, f(x) is a function whose domain $x \in N$ $f(x) = \frac{\ln(x-1)}{\sqrt{(1-x^2)}}$ Here $\ln(x-1)$ is defined only when $x - 1 > 0 \Rightarrow x > 1$ Also $1 - x^2 > 0$ for denominator, i.e. -1 < x < 1 Hence, f(x) is not defined for any value of *x* 152 (b) f(x) = 3x - 5 (given) Let y = f(x) = 3x - 5 $\Rightarrow y + 5 = 3x \Rightarrow x = \frac{y + 5}{3}$ $\Rightarrow f^{-1}(x) = \frac{x+5}{3}$ 153 (a, b) (x + 1)f(x) - x is a polynomial degree n + 1 $\Rightarrow (x+1)f(x) - x = k(x)[x-1][x-2] \dots [x-n]$ (i) $\Rightarrow [n+2]f(n+1) - (n+1) = k[(n+1)!]$ Also, $1 = k(-1)(-2) \dots ((-n-1))$ (Putting x = -1 in (i)] $\Rightarrow 1 = k(-1)^{n+1}(n+1)!$ $\Rightarrow (n+2)f(n+1) - (n+1) = (-1)^{n+1}$ \Rightarrow f(n + 1) = 1, if *n* is odd and $\frac{n}{n+2}$, if *n* is even 154 (a, b, c, d) Since $\angle PRQ = \pi/2$ and points *P*, *Q*, *R* lie on the circle with PQ as diameter Also PQ = 5Now, the maximum area of the triangle is $\Delta_{\max} = \frac{1}{2}(5)\left(\frac{5}{2}\right) = 6.25$ R_1 Q R_3 R_4 For area = 5, we have four symmetrical positions of point R (shown as R_1, R_2, R_3, R_4) For area = 6.25 we have exactly two points For area = 7, no such points exist 155 (a. b. c. d)

$$f(x + 1) = \frac{f(x) - 5}{f(x) - 3} (1)$$

$$\Rightarrow f(x)f(x + 1) - 3f(x + 1) = f(x) - 5$$

$$\Rightarrow f(x) = \frac{3f(x + 1) - 5}{f(x + 1) - 1}$$

Replacing x by (x - 1), we get

 $f(x-1) = \frac{3f(x)-5}{f(x)-1}$ (2) Using (1), $f(x+2) = \frac{f(x+1)-5}{f(x+1)-3} = \frac{\frac{f(x)-5}{f(x)-3}-5}{\frac{f(x)-5}{f(x)-5}-3} = \frac{2f(x)-5}{f(x)-2}$ (3)Using (2), $f(x-2) = \frac{3f(x-1)-5}{f(x-1)-1} = \frac{3\left(\frac{3f(x)-5}{f(x)-1}\right)-5}{\frac{3f(x)-5}{f(x)-5}-1} =$ $\frac{2f(x)-5}{f(x)-2}$ (4) Using (3) and (4), we have f(x + 2) = f(x - 2) $\Rightarrow f(x + 4) = f(x) \Rightarrow f(x)$ is periodic with period 4 156 (a, b, c) f(x) is defined if $\log_{|\sin x|}(x^2 - 8x + 23) -$ *3*log*2*sin*x>0* $\Rightarrow \log_{|\sin x|}\left(\frac{x^2 - 8x + 23}{8}\right) > 0$ This is true if $|\sin x| \neq 0$, 1 and $\frac{x^2 - 8x + 23}{8} < 1$ Now, $\frac{x^2 - 8x + 23}{8} < 1 \Rightarrow x^2 - 8x + 15 < 0$ $\Rightarrow x \in (3,5) - \left\{\pi, \frac{3\pi}{2}\right\}$ Domain = $(3,\pi) \cup (\pi,\frac{3}{2}) \cup (\frac{3\pi}{2},5)$ 157 (a, d) $f(x) = \sec^{-1}[1 + \cos^2 x]$ f(x) is defined if $[1 + \cos^2 x] \le -1$ or $[1 + \cos^2 x] \ge 1$ $\Rightarrow [\cos^2 x] \le -2$ (not possible) or $[\cos^2 x] \ge 0$ $\Rightarrow \cos^2 \ge 0 \Rightarrow x \in R$ Now $0 \le \cos^2 x \le 1 \Rightarrow 1 \le 1 + \cos^2 x \le 2$ $\Rightarrow [1 + \cos^2 x] = 1,2$ $\Rightarrow \sec^{-1}[1 + \cos^2 x] = \sec^{-1} 1, \sec^{-1} 2$ Hence, the range is $\{\sec^{-1} 1, \sec^{-1} 2\}$ 158 (b, d) $f(x) = x^2 - 2ax + a(a+1)$ $f(x) = (x - a)^2 + a, x \in [a, \infty)$ Let $y = (x - a)^2 + a$ clearly $y \ge a$ $\Rightarrow (x-a)^2 = y-a$ $\Rightarrow x = a + \sqrt{y - a}$ $\therefore f^{-1}(x) = a + \sqrt{x - a}$ Now $f(x) = f^{-1}(x)$ $\Rightarrow (x-a)^2 + a = a + \sqrt{x-a}$ $(x-a)^2 = \sqrt{x-a}$ $\Rightarrow (x-a)^4 = (x-a)$ $\Rightarrow x = a \text{ or } (x - a)^3 = 1$ $\Rightarrow x = a \text{ or } a + 1$ If a = 5049, then a + 1 = 5050If a + 1 = 5049, then a = 5048159 (b, d)

The period of $f(x) = |\sin 2x| + |\cos 2x| is \pi/4$ \Rightarrow [*f*(*x*)] is also periodic with period $\pi/4$ Also $1 \le f(x) \le \sqrt{2}$ \Rightarrow [f(x)] = 1f(x) is a many-one and into function 160 (a, c) f(2) = f(1+1) = 2f(1) = 10f(3) = f(2 + 1) = f(2) + f(1) = 10 + 5 = 15Then, f(n) = 5n $\Rightarrow \sum_{r=1}^{m} f(r) = 5 \sum_{r=1}^{m} r = \frac{5m(m+1)}{2}$ Replace *y* by -x, \Rightarrow f(0) = f(x) + f(-x)Also put $x = y = 0 \Rightarrow f(0) = f(0) + f(0) \Rightarrow$ f(0) = 0 \Rightarrow f(x) + f(-x) = 0, hence, the function is odd 161 (a,b,d) $f(0) = \max\{1 + \sin 0, 1, 1 - \cos 0\} = 1$ $g(0) = \max\{1, |0-1|\} = 1$ $f(1) = \max\{1 + \sin 1, 1, 1 - \cos 1\} = 1 + \sin 1$ $g(f(0)) = g(1) = max\{1, |1-1|\} = 1$ $f(g(0)) = f(1) = 1 + \sin 1$ $g(f(1)) = g(1 + \sin 1) = \max\{1, |1 + \sin 1 - 1|\}$ = 1162 (a,d) Given that $f(x) = y = \frac{x+2}{x-1}$ **a**. Let $f(x) = \frac{x+2}{x-1} = y \Rightarrow x + 2 = xy - y$ $\Rightarrow x = \frac{2+y}{y-1} \Rightarrow x = f(y)$ ∴ a is correct. **b**. $f(1) \neq 3 \therefore \mathbf{b}$ is not correct. c. $f'(x) = \frac{x-1-x-2}{(x-1)^2} = \frac{-3}{(x-1)^2} < 0$ for $\forall x \in \mathbb{R} - \{1\}$ \Rightarrow *f*(*x*) is decreasing \forall *x* \neq 1 : c is not correct **d.** $f(x) = \frac{x+2}{x-1}$ is a rational function of x : **d** is the correct answer Thus, we get that **a**, and **d** are correct answer 163 (a, c) $f(x + y) + f(x - y) = 2f(x) \cdot f(y) (1)$ Put $x = 0 \Rightarrow f(y) + f(-y) = 2f(0)f(y)$ (2) Put $x = y = 0 \Rightarrow f(0) + f(0) = 2f(0)f(0)$ $\Rightarrow f(0) = 1 (asf(0) \neq 0)$ $\Rightarrow f(-y) = f(y) \text{ (from (2))}$ Hence the function is even then f(-2) = f(2) =а 164 (a) If $f(x) = \sin^2 x$ and $g(x) = \sqrt{x}$ Now, $f \circ g = f(g(x)) = f(\sqrt{x}) = \sin^2 \sqrt{x}$ and $gof(x) = g(f(x)) = g(\sin^2 x) = \sqrt{\sin^2 x} =$

 $|\sin x|$

again if
$$f(x) = \sin x$$
, $g(x) = |x|$
 $fog(x) = f(g(x)) = f(|x|) = \sin|x| \neq (\sin \sqrt{x})^2$
When $f(x) = x^2$, $g(x) = \sin \sqrt{x}$
 $fog(x) = f[g(x)] = f(\sin \sqrt{x}) = (\sin \sqrt{x})^2$
and $(gof)(x) = g[f(x)] = g(x^2) = \sin \sqrt{x^2} = \sin|x| \neq |\sin x|$
 \therefore **a** is the correct option.

165 (a, b, c, d)

 $f(x) = \begin{cases} 1, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$ $\Rightarrow f(x+k) = \begin{cases} 1, & x+k \text{ is rational} \\ 0, & x+k \text{ is irrational} \end{cases}$ Where k is any rational number

 $\Rightarrow f(x+k) = \begin{cases} 1, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$ $\Rightarrow f(x+k) = f(x)$

 \Rightarrow f(x) is periodic function, but its fundamental period cannot be determined

 $f(x) = \begin{cases} x - [x], & 2n \le x < 2n + 1\\ 1/2, & 2n + 1 \le x < 2n + 2 \end{cases}$

Draw the graph from which it can be verified that period is 2

$$f(x) = (-1)^{\left[\frac{2x}{\pi}\right]}$$

$$\Rightarrow f(x + \pi) = (-1)^{\left[\frac{2(\pi + x)}{\pi}\right]} = (-1)^{\left[\frac{2x}{\pi}\right] + 2} = (-1)^{\left[\frac{2x}{\pi}\right]}$$

Hence, the period is π

$$f(x) = x - [x + 3] + \tan\left(\frac{\pi x}{2}\right)$$

$$= \{x\} - 3 + \tan\left(\frac{\pi x}{2}\right)$$

$$= \{x\} - 3 + \tan\left(\frac{\pi x}{2}\right)$$

{*x*} is periodic with period 1, $tan\left(\frac{\pi x}{2}\right)x$ is periodic with period 2

Now, the LCM of 1 and 2 is 2 Hence, the period of f(x) is 2

166 **(b,c)**

As (0,0) and (x, g(x)) are two vertices of an equilateral triangle; therefore, length of the side of Δ is

$$\sqrt{(x-0)^2 + (g(x)-0)^2} = \sqrt{x^2 + (g(x))^2}$$

$$\therefore \text{ The area of equilateral } \Delta = \frac{\sqrt{3}}{4} \left(x^2 + (g(x))^2\right)$$

$$= \frac{\sqrt{3}}{4}$$

$$\Rightarrow g(x)^2 = 1 - x^2$$

$$\Rightarrow g(x) = \pm \sqrt{1-x^2}$$

∴ **b**, **c** are the correct answers as **a** is not a function
(∵image of *x* is not unique)

167 **(a, c, d)**

$$f^{2}(x) = f\left(\frac{3}{4}x+1\right) = \frac{3}{4}\left(\frac{3}{4}x+1\right) + 1$$

$$= \left(\frac{3}{4}\right)^{2}x + \frac{3}{4} + 1 \quad (1)$$

$$f^{3}(x) = f\{f^{2}(x)\} = \frac{3}{4}\{f^{2}(x)+1\}$$

$$= \frac{3}{4}\left\{\left(\frac{3}{4}\right)^{2}x + \frac{3}{4} + 1\right\} + 1$$

$$= \left(\frac{3}{4}\right)^{3}x + \left(\frac{3}{4}\right)^{2} + \frac{3}{4} + 1$$

$$\therefore f^{n}(x) = \left(\frac{3}{4}\right)^{n}x + \left(\frac{3}{4}\right)^{n-1} + \left(\frac{3}{4}\right)^{n-2} + \dots + \left(\frac{3}{4}\right)$$

$$+ 1$$

$$= \left(\frac{3}{4}\right)^{n}x + \frac{1 - \left(\frac{3}{4}\right)^{n}}{1 - \frac{3}{4}}$$

$$\therefore \lambda = \lim_{n \to \infty} f^{n}(x) = 0 + 4 = 4$$

168 **(b, c, d)**

 $f(x) = \sin(\sin^{-1} x) = x \forall x \in [-1, 1]$ which is oneone and onto

$$f(x) = \frac{2}{\pi} \sin^{-1}(\sin x) = \frac{2}{\pi} x$$

The range of the function for $x \in [-1, 1]$ is $\left[-\frac{2}{\pi}, \frac{2}{\pi}\right]$ which is a subset of [-1, 1]

Hence, the function is one-one but not onto, hence not bijective

$$f(x) = (\operatorname{sgn}(x)) \ln(e^x) = (\operatorname{sgn}(x))x$$
$$= \begin{cases} x, & x > 0\\ -x, & x < 0\\ 0, & x = 0 \end{cases}$$

This function has the range [0, 1] which is a subset of [-1, 1]

Hence, the function is into Also, the function is many-one

$$f(x) = x^{3} \operatorname{sgn}(x) = \begin{cases} x^{3}, & x > 0\\ -x^{3}, & x < 0\\ 0, & x = 0 \end{cases}$$

Which is many-one and into

169 **(b, c)**

Given
$$2f(\sin x) + f(\cos x) = x$$
 (1)
Replace x by $\frac{\pi}{2} - x$
 $\Rightarrow 2f(\cos x) + f(\sin x) = \frac{\pi}{2} - x$ (2)
Eliminating $f(\cos x)$ from (1) and (2), we get
 $\Rightarrow 3f(\sin x) = 3x - \frac{\pi}{2}$
 $\Rightarrow f(\sin x) = x - \frac{\pi}{6}$

 $\Rightarrow f(x) = \sin^{-1} x - \frac{\pi}{6}$ f(x) has the domain [-1, 1]Also, $\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Rightarrow \sin^{-1} x - \frac{\pi}{6} \in \left[-\frac{2\pi}{3}, \frac{\pi}{3}\right]$ 170 (a, b, c, d) $f(x) = \operatorname{sgn}(\cot^{-1} x) + \tan\left(\frac{\pi}{2}[x]\right)$ $sgn(cot^{-1}x)$ is defined when $cot^{-1}x$ is defined, which is for $\forall x \in R$ $\tan\left(\frac{\pi}{2}[x]\right)$ is defined when $\frac{\pi}{2}[x] \neq \frac{(2n+1)}{2}\pi$, where $n \in Z$ \Rightarrow [x] \neq 2n + 1 \Rightarrow x \notin [2n + 1, 2x + 2) Hence domain of f(x) is $\bigcup_{n \in \mathbb{Z}} [2n, 2n + 1)$ Also $\cot^{-1} x > 0$, $\forall x \in R$, Then $f(x) = 1 + \tan(\frac{\pi}{2}[x]) = 1$ $\Rightarrow f(x) = 1, x \in D_f$ (0,1) (0,1Graph of $f(\mathbf{x}) = \operatorname{sgn}(\cot - 1\mathbf{x}) + \tan \frac{\pi}{2} [\mathbf{x}]$

From graph f(x) is periodic with period 2 171 **(a, b, c)**

 $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ Replace y by $-x \Rightarrow f(x) + f(-x) = f(0)$ (1) Put $x = y = 0 \Rightarrow f(0) + f(0) = f(0) \Rightarrow f(0) = 0$ $\Rightarrow f(x) + f(-x) = 0$ (from (1)) Hence, f(x) is an odd function $f(x) + f(y) = f\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right)$ Replace y by $-x \Rightarrow f(x) + f(-x) = f(0)$ (2) Put $x = y = 0 \Rightarrow f(0) + f(0) = f(0)$ $\Rightarrow f(0) = 0 \Rightarrow f(x) + f(-x) = 0 \text{ (from (2))}$ Hence, f(x) is an odd function f(x + y) = f(x) + f(y)Replace y by $-x \Rightarrow f(0) = f(x) + f(-x)$ (3) Put $x = y = 0 \Rightarrow f(0+0) = f(0) + f(0) \Rightarrow$ $f(0) = 0 \Rightarrow f(x) + f(-x) = 0 \text{ (from(3))}$ Hence, f(x) is an odd function 172 (b, c) f(x) must be a linear function, let f(x) = ax + b $\Rightarrow f(ax+b) = 6x - ax - b$ $\Rightarrow a(ax+b)+b=6x-ax-b$ $\Rightarrow a^2 = 6 - a$ and ab + b = -b $\Rightarrow a = 2 \text{ or } -3 \Rightarrow b = 0$ $\Rightarrow f(x) = 2x \text{ or } -3x \Rightarrow f(17) = 34 \text{ or } -51$ 173 **(b, c)** For $f(x) = \log x^2, x^2 > 0 \Rightarrow x \in \mathbb{R} - \{0\}$ 1.

For $g(x) = 2 \log x$, x > 0

Hence, f(x) and g(x) are not identical

2.
$$f(x) = \log_x e = \frac{1}{\log_e x} = g(x)$$

Hence, the functions are identical

3.
$$f(x) = \sin(\cos^{-1} x) = \sin\left(\frac{\pi}{2} - \sin^{-1} x\right) = \cos(-1x) = \cos(-1x)$$

Hence, the functions are identical

174 (b, d) $f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}$ $\Rightarrow f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} = \left(x+\frac{1}{x}\right)^{2} - 2$ $\Rightarrow f(y) = y^2 - 2$ Now $y = x + \frac{1}{x} \ge 2$ or ≤ -2 Hence, the domain of the function is $(-\infty, -2] \cup$ [2,∞) Also for these values of $y, y^2 \ge 4 \Rightarrow y^2 - 2 \ge 2$ Hence, the range of the function is $[2, \infty)$ 175 (a, b, c) (f + g)(3.5) = f(3.5) + g(3.5) = (-0.5) + 0.5= 0f(g(3)) = f(0) = 3 $(fg)(2) = f(2)g(2) = (-1) \times (-1) = 1$ (f - g)(4) = f(4) - g(4) = 0 - 26 = -26176 (b) Both the statements are true, but statement 2 is not a correct explanation of statement 1, as for f(g(x)) is onto it is necessary that f(x) is onto, but there is no restriction on g(x). 177 (b) A function which can be expressed as a sum of odd and even function need not to be odd or even But $f(x) = \log e^x$ is not defined for x < 0, hence statement 2 is true but not correct explanation of

178 (c)

statement 1

Obviously, $f(x) = x^2 + \tan^{-1} x$ is non-periodic, but sum of two non-periodic function is not always non-periodic, as f(x) = x and g(x) =-[x], where [.] represents the greatest integer function.

 $f(x) + g(x) = x - [x] = \{x\}$ is a periodic function

({.} represents the fractional part function)

179 **(a)**

Let $\max|f(x)| = M$ where $0 < M \le 1$ (since *f* is not identically zero and $|f(x)| \le 1 \forall x \in R$)

Now, $f(x + y) + f(x - y) = 2f(x) \cdot g(y)$ $\Rightarrow |2f(x) \cdot g(y)| = |f(x + y) + f(x - y)|$ $\Rightarrow 2|f(x)||g(y)| \le |f(x + y)| + |f(x - y)|$ $\le M + M$ $\Rightarrow |g(y)| \le 1 \text{ for } y \in R$

180 **(a)**

It is a fundamental concept.

181 **(c)**

 $f(x) \tan^{-1} x$ is an increasing function, then the range of function is $[\tan^{-1} 1, \tan^{-1} \sqrt{3}] \equiv [\pi/4, \pi/3].$

Hence, statement 1 is true. But statement 2 is not true in general. For non-monotonic function, statement 2 is false

182 (c)

 $\sin(kx)$ has period $\frac{\pi}{k}$ and period of $\{x\}$ is 1

Now LCM of $\frac{\pi}{k}$ and 1 exists only if k is a rational multiple of π (as LCM of rational and irrational number does not exist). Hence, statement 1 is true.

But statement 2 is false as sum of two periodic function is not necessarily periodic. Consider $f(x) = \sin x + \{x\}$

183 **(c)**

 $f \circ g(x)$ can be even also when one of them is even and other is odd

184 (d)

$$f\left(\frac{2\tan x}{1+\tan^2 x}\right) = \frac{(1+\cos 2x)(\sin^2 x + 2\tan x)}{2}$$

$$\Rightarrow f(\tan 2x) = \frac{2\cos^2 x (\sec^2 x + 2\tan x)}{2}$$

$$= 1+2\sin x \cos x = 1+\sin 2x$$

$$\Rightarrow f(y) = 1+y \text{ where } y = \sin 2x, \text{ now}$$

$$\sin 2x \in [-1,1]$$

$$\Rightarrow f(y) \in [0,2]$$
Hence, statement 1 is folge but statement 2 is the

Hence, statement 1 is false but statement 2 is true

185 **(c)**

Given $f(x) = (x+1)^2 - 1, x \ge -1$

 $\Rightarrow f'(x) = 2(x+1) \ge 0$ for $x \ge -1$

 \Rightarrow f(x) is one-one

Since, codomain of the given function is not given, hence it can be considered as R, the set of reals and consequently R is not onto.

Hence, *f* is not bijective. Statement II is false.

Also, $f(x) = (x + 1)^2 - 1 \ge -1$ for $x \ge -1$

$$\Rightarrow \qquad R_f = [-1, \infty)$$

$$f^{-1}(x) = \sqrt{x+1} - 1$$

Clearly, $f(x) = f^{-1}(x)$ at x = 0 and x = -1

Statement I is true.

186 **(b)**

Obviously, both the statements are true but statement 2 is not a correct explanation of statement 1, as function $f(x) = \cos(2x + 3)$ which is periodic though g(x) = 2x + 3 is nonperiodic

187 (a)

Obviously, the graph of $y = \tan x$ is symmetrical about origin, as it is an odd function.

Also derivative of an odd function is an even function, and $\sec^2 x$ is derivative of $\tan x$, hence both the statements are true, and statement 2 is a correct explanation of statement 1

188 **(b)**

Both the statements are true, but statement 2 is

not a correct explanation of statement 1 as f(g(x)) is one-one when g(x) is one-one and f(x) is many-one

189 **(b)**

Hence, statement 1 is true.

Statement 2 is true as it is the property of modulus function but is not a correct explanation of statement 1

190 **(b)**

Obviously, both the statements are true but statement 2 is not a correct explanation of statement 1, as for $f(x) = \cos(\sin x)$ the period is π , where $\sin x$ has period 2π . Thus, the period of f(g(x)) is not always same as that of g(x)

191 (a)

f(x) - 1 + f(1 - x) - 1 = 0; so g(x) + g(1 - x) = 0

Replacing x by
$$x + \frac{1}{2}$$
, we get $g\left(\frac{1}{2} + x\right) + g\left(\frac{1}{2} - x\right) = 0$

So it is symmetrical about $\left(\frac{1}{2}, 0\right)$

192 (a)

Consider $f(x) = \tan x$, which is surjective, periodic but discontinuous

194 **(d)**

Statement 1 is false, though $f(x) = \sin x$ and $g(x) = \cos x$ have same domain and range, $\cos x = \sin x$ does not hold for all $x \in R$.

However, the statement 2 is true

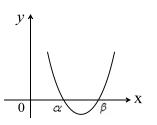
195 (a)

For any integer k, we have $f(k) = f(2n\pi + k)$ where $n \in Z$, but $2n\pi + k$ is not integer, hence f(x) is one-one

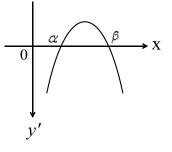
196 **(d)**

If $b^2 - 4ac > 0$ then $ax^2 + bx + c = 0$ has real distinct roots α , β .

If a > 0, then for $f(x) = \sqrt{ax^2 + bx + c}$ to get defined, $ax^2 + bx + c \ge 0$, then the range of f(x) is $[0, \infty)$ (as $b^2 - 4ac > 0$)



If a < 0, then for f(x) to get defined, $ax^2 + bx + c \ge 0$, then the range of f(x) is $\left[0, -\frac{b}{2a}\right]$.(as $b^2 - 4ac > 0$)

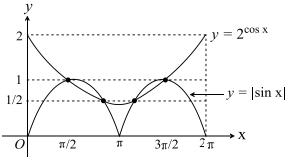


Hence, statement 1 is false, but statement 2 is true

197 (a)

a. $f(x) = \log_3(5 + 4x - x^2)$ $= \log_3(9 - (x - 2)^2)$ Now $-\infty < 9(x-2)^2 \le 9$ But for f(x) to get defined, $0 < 9 - (x - 2)^2 \le 9$ $\Rightarrow -\infty < \log_3(9 - (x - 2)^2) \le \log_3 9$ $\Rightarrow \Rightarrow -\infty < \log_3(9 - (x - 2)^2) \le 2$ Hence the range is $(-\infty, 2)$ b. $f(x) = \log_3(x^2 - 4x - 5)$ $= \log((x-2)^2 - 9)$ For f(x) to get defined, $0 < (x - 2)^2 - 9 < \infty$ $\Rightarrow \lim_{x \to \infty} \log x < \log_e (x - 2)^2 - 9 < \lim_{x \to \infty} \log x$ $\Rightarrow -\infty < f(x) < \infty$ Hence the range is R c. $f(x) = \log_3(x^2 - 4x + 5)$ $= \log_3((x-2)^2 + 1)$ $(x-2)^2 + 1 \epsilon [1,\infty)$

 $\Rightarrow \log_3(x^2 - 4x + 5) \in [0, \infty)$ d. $x = \log_3(4x - 5 - x^2)$ $= \log_3(-5 - (x^2 - 4x))$ $= \log_3(-1 - (x - 2)^2)$ Now, $-1 - (x - 2)^2 < 0$ for all x Hence, the function is not defined 198 (a) a. $f(x) = e^{\cos^4 \pi x + x - [x] + \cos^2 \pi x}$ $\cos^2 \pi x + \cos^4 \pi x$ has period 1 $x - [x] = \{x\}$ has period 1 Then the period of f(x) is 1 b. $f(x) = \cos 2\pi \{2x\} + \sin 2\pi \{2x\}$ the period {2} is 1/2 then the period of f(x) is 1/22 c. Clearly, $\tan \pi[x] =$ $0 \forall x \in R$ and the period of $\sin 3\pi \{x\}$ is equal to 1 d. f(x) = 3x - [3x + a] - b = 3x + a - a[3x + a] - (a + b) $= \{3x + a\} - (a + b)$ Thus the period f f(x) is 1 199 (a) Since, f(g(x)) is a one – one function $\Rightarrow f(g(x_1)) \neq f(g(x_2))$ whenever $g(x_1) = g(x_2)$ \Rightarrow (g(x₁)) \neq (g(x₂)) whenever $x_1 \neq x_2$ \Rightarrow g(x) is one – one If f(x) is not one – one, then f(x) =*y* is satisfied by $x = x_1, x_2$ \Rightarrow $f(x_1) = f(x_2) = y$ also *if* g(x) is onto, then Let $g(x_1) = x_1$ and $g(x_2) = x_2$ $\Rightarrow f(g(x_1)) = f(g(x_2))$ $\Rightarrow f(g(x))$ can not be one - one. 200 (a) p. $y = \tan x = \frac{1}{x^2}$ From the graph, it is clear that it will have two real roots. 0.5 f:(x)=1/x 0.5 q. See the graph of $y = 2^{\cos x}$ and y = $|\sin x|$. Two curves meet at four points for $\epsilon[0, 2\pi]$



So, the equation $2^{\cos x} = |\sin x|$ has our solutions r. Given that f(|x|) = 0 has real roots $\Rightarrow f(x) = 0$ has four positive roots.

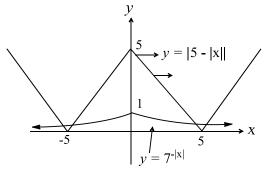
Since f(x) is a polynomial of degee 5, f(x) cannot have even number of real roots.

 \Rightarrow f(x) has all the five roots and one root is negative

s.
$$7^{|x|} (|5 - |x||) = 1$$

 $\Rightarrow |5 - |x|| = 7^{-|x|}$

Draw the graph of $y = 7^{-|x|}$ and y = |5 - |x||



From the graph, the number of roots is four 201 **(a)**

f (tan *x*) is defined if $0 \le \tan x \le 1$ $\Rightarrow x \epsilon \left[n\pi, n\pi + \frac{\pi}{4} \right], n \epsilon I$ $f(\sin x)$ is defined if $0 \le \sin x \le 1$ $\Rightarrow x \in [2n\pi, (2n+1)], n \in I$ $f(\cos x)$ is defined if $0 \le \cos x \le 1$ $\Rightarrow x \in \left[2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}\right], n \in I$ $f(2\sin x)$ is defined if $0 \le 2\sin x \le 1 \Rightarrow 0$ $< \sin x < 1/2$ $\Rightarrow \left[2n\pi, 2n\pi + \frac{\pi}{6}\right] \cup \left[2n\pi + \frac{5\pi}{6}, (2n+1)\pi\right], n \in I$ 202 (a) a. $f(x + \pi/2) = \cos(|\sin(x + \pi/2)| -$ $\cos^{(\pi)}(x+\pi/2)$ $= \cos(|\cos x| - |-\sin x|)$ $= \cos(|\cos x| - |\sin x|)$ $= \cos(|\sin x| - |\cos x|)$ = f(x)b. $f(x + \pi/2) = \cos[\tan(x + \pi/2) + \cot(x + \pi/2)]$ $\pi/2.\operatorname{costan} x + \pi/2 - \operatorname{cot} x + \pi/2$ $= \cos[-\cot x - \tan x] \cdot \cos[-\cot x + \tan x]$

$$= \cos(\tan x + \cot x) \cdot \cos(\tan x - \cot x)$$

= $f(x)$
c. The period of $\sin^{-1}(\sin x)$ is 2π . The period of e^{t}
= $LCM(2\pi, \pi) = 2\pi$
d. the given function is $f(x) = \sin^3 x \sin 3x$
 $\Rightarrow f(x) = \left(\frac{3 \sin x - \sin 3x}{4}\right) \sin 3x$
 $\Rightarrow f(x) = \frac{3}{8}(\cos 2x - \cos 4x) - \frac{1}{8}(1 - \cos 6x)$
 \Rightarrow The period of $f(x)$ is π
203 (a)
Given, $f(x) = \left\{ \begin{array}{l} x + 4, \text{ for } x < -4 \\ 3x + 2, \text{ for } -4 \le x < 4 \\ x - 4, \text{ for } x \ge 4 \end{array} \right.$
(A) $f(-5) + f(-4) = (-5 + 4) + (3(-4) + 2) = -11$
(B) $f(|f(-8)|) = f(|-8 + 4|) = f(4) = 4 - 4 = 0$
(C) $f(f(-7) + f(3)) = f(-7 + 4 + 9 + 2) = f(8) = 8 - 4 = 4$
(D) $f\left(f(f(f(0)))\right) + 1 = f\left(f(f(2))\right) + 1 = f(f(6 + 2)) + 1 = f(f(8)) + 1 = f(6 + 4) + 1 = 1$
204 (a)
a. $f(x) = \cot^{-1}(2x - x^2 - 2) = \cot^{-1}(-1 - (x - 1)^2) - 1 - (x - 1)^2 \le -1 \Rightarrow f(0) = f(2)$. Hence, $f(x)$ is many - one
 $\Rightarrow \cot^{-1}(2x - x^2 - 2) \in \left[\frac{3\pi}{4}, \pi\right]$
Hence, $f(x)$ is onto
Also, $f(3) = f(-1)$, hence function is many - one
 $-1 - (x - 1)^2 = -5$
b.

Clearly, from the graph that f(x) is many – one and onto

c.

 $y = -e^x$

$$y$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(0, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

$$(1, 4)$$

f(x) is defined if sin $x \in [-1,1]$ which is true for all $x \in R$ But g(x) is defined for only $x \in [-1,1]$ Hence, f(x) and g(x) are identical if $x \in [-1,1]$ c. $f(x) = \log_{x^2} 25$ and $g(x) = \log_x 5$ f(x) is defined for $\forall x \in R$ - {0,1}and g(x) is defined for (0, ∞) - {1} Hence, f(x) and g(x) are identical if $x \in (0,1) \cup$ $(1,\infty)$ d. $f(x) = \sec^{-1} x + \csc^{-1} x, g(x) =$ $\sin -1x + \cos -1x$ f(x) has domain R -(-1,1) and g(x) has domain [-1,1]Hence, both the functions are identical only if x = -1, 1207 (c) $f(x) = \begin{cases} x+1, & x \le 1\\ 2x+1, & 1 < x \le 2 \end{cases}$ $g(x) = \begin{cases} x^2, & -1 \le x < 2\\ x+2, & 2 \le x \le 3 \end{cases}$ $\Rightarrow f(x) = \begin{cases} g(x)+1, & g(x) \le 1\\ 2g(x)+1, & 1 < g(x) \le 2 \end{cases}$ 209 $\Rightarrow f(g(x))$ $= \begin{cases} x^2 + 1, \ x^2 \le 1, -1 \le x < 2\\ x + 2 + 1, \ x + 2 \le 1, 2 \le x \le 3\\ 2x^2 + 1, 1 < x^2 \le 2, -1 \le x < 2\\ 2(x + 2) + 1, 1 < x + 2 \le 2, 2 \le x \le 3 \end{cases}$ $\Rightarrow f(g(x)) = \begin{cases} x^2 + 1, & -1 \le x \le 1\\ 2x^2 + 1, & 1 < x \le \sqrt{2} \end{cases}$ Hence, the domain of f(x) is $\left[-1,\sqrt{2}\right]$ 208 (b) $f(x) + f\left(\frac{x-1}{x}\right) = 1 + x$ (1) In (1) replace x by $\frac{x-1}{x}$, we have $f\left(\frac{x-1}{x}\right) + \frac{x-1}{x}$ $f\left(\frac{\frac{x-1}{x}-1}{\frac{x-1}{x}}\right)$ $=1+\frac{x-1}{x}$ $\Rightarrow f\left(\frac{x-1}{x}\right) + f\left(\frac{1}{1-x}\right) = 1 + \frac{x-1}{x}$ (2) Now from (1) and (2), we have $f(x) - f\left(\frac{1}{1-x}\right) =$ $x - \frac{x-1}{x}(3)$ In (3) replace x by $\frac{1}{1-x}$, we have $f\left(\frac{1}{1-x}\right) - f\left(\frac{x-1}{x}\right)$ $=\frac{1}{1-x} - \frac{\frac{1}{1-x} - 1}{\frac{1}{1-x}}$ $\operatorname{Or} f\left(\frac{1}{1-x}\right) - f\left(\frac{x-1}{x}\right) = \frac{1}{1-x} - x$ (4) Now from (1) + (3) + (4), we have $2f(x) = 1 + x + x - \frac{x-1}{x} + \frac{1}{1-x} - x$ 210

$$\Rightarrow f(x) = \frac{x^3 - x^2 - 1}{2x(x - 1)} f(x) = \frac{x^3 - x^2 - 1}{2x(x - 1)} \Rightarrow g(x) = \frac{x^3 - x^2 - 1}{x(x - 1)} - x + 1 = \frac{x^2 - x - 1}{x(x - 1)} Now for $y = \sqrt{g(x)}$, we must have $\frac{x^2 - x - 1}{x(x - 1)} \ge 0$ or $\frac{\left(x - \frac{1 - \sqrt{5}}{2}\right)\left(x - \frac{1 + \sqrt{5}}{2}\right)}{x(x - 1)} \ge 0$
 $\Rightarrow x \in \left(-\infty, \frac{1 - \sqrt{5}}{2}\right] \cup (0, 1) \cup \left[\frac{1 + \sqrt{5}}{2}, \infty\right)$
6 (d)
Here,
 $f(1) + 2f(2) + 3f(3) + \cdots nf(n) = n(n + 1/n, for n \ge 2 (1)$
Replacing n by n + 1, we get
 $f(1) + 2f(2) + 3f(3) + \cdots + (n + 1)f(n + 1) = (n + 1)(n + 2)f(n + 1) (2)$
From (2) - (1), we get
 $(n + 1)f(n + 1) = (n + 2)f(n + 1) - nf(n)$
 $\Rightarrow f(n + 1) = (n + 2)f(n + 1) - nf(n)$
 $\Rightarrow nf(n) = (n + 2)f(n + 1) - nf(n)$
 $\Rightarrow nf(n) = (n + 1)f(n + 1)$
Putting n=2,3,4,..., we get
 $2f(2) = 3f(3) = 4f(4) = \cdots = nf(n)$
From (1), $f(1) + 2f(2) + 3f(3) + \cdots + nf(n) = n(n + 1)f(n)$
 $\Rightarrow f(1) + (n - 1) \cdot nf(n)$
 $= n(n + 1)f(n)$
 $\Rightarrow f(1) = 2nf(n)$
 $\Rightarrow f(n) = \frac{f(1)}{2n}$
 $= \frac{1}{2n}$
 $f(1003) = \frac{1}{2(1003)} = \frac{1}{2006}$$$

Putting
$$\frac{1-x}{1+x} = y$$
, or $x = \frac{1-y}{1+y}$, we get
 $\left\{ f\left(\frac{1-y}{1+y}\right) \right\} \cdot f(y) = 64 \left(\frac{1-y}{1+y}\right)$
 $\Rightarrow f(x) \cdot \left\{ f\left(\frac{1-x}{1+x}\right) \right\}^2 = 64 \left(\frac{1-x}{1+x}\right)$ (2)
From (1)²/(2), we get
 $\frac{f(x)^4 \left\{ f\left(\frac{1-x}{1+x}\right) \right\}^2}{f(x) \left\{ f\left(\frac{1-x}{1+x}\right) \right\}^2} = \frac{(64)^2}{64 \left(\frac{1-x}{1+x}\right)}$
 $\Rightarrow \{f(x)\}^3 = 64x^2 \left(\frac{1+x}{1-x}\right)$
 $\Rightarrow f(x) = 4x^{2/3} \left(\frac{1+x}{1-x}\right)^{1/3}$
 $x = f(9/7) = -4(9/7)^{2/3}(2)$

211 (d)

$$|g(x)| = |\sin x| x \in R$$

$$f(|g(x)|) = \begin{cases} |\sin x| - 1, & -1 \le |\sin x| < 0\\ (|\sin x|)^2, & 0 \le (|\sin x|) \le 1 \\ & = \sin^2 x, x \in R \end{cases}$$

$$f(g(x) = \begin{cases} \sin x - 1, & -1 \le \sin x < 0\\ \sin^2 x, & 0 \le \sin x \le 1 \\ & = \begin{cases} \sin x - 1, & (2n+1)\pi < x < 2n\pi\\ \sin^2 x, & 2n\pi \le x \le (2n+1)\pi \end{cases} n \in Z$$

$$\Rightarrow f(|g(x)|)$$

$$= \begin{cases} 1 - \sin x, & (2n+1)\pi < x < 2n\pi\\ \sin^2 x, & 2n\pi \le x \le (2n+1)\pi \end{cases} n \in Z$$

Clearly $h_1(x) = f(|g(x)|) = \sin^2 x$ has period π , range [0, 1] and domain R
212 (d)

Given
$$a_{n+1} = f(a_n)$$

Now $a_1 = f(a_0) = f(x)$
 $\Rightarrow a_2 = f(a_1) = f(f(a_0)) = fof(x)$
 $\Rightarrow a_n = \frac{fof of of \dots f(x)}{n \text{ times}}$
 $a_1 = f(x) = (a - x^m)^{1/m}$
 $\Rightarrow a_2 = f(f(x)) = \left[a - \{(a - x^m)^{1/m}\}^m\right]^{1/m} = x$
 $\Rightarrow a_3 = f\left(f(f(x))\right) = f(x)$

Obviously, the inverse does not exist when m is even and n is odd

213 (a)

 $f_1(x) = x^2$ and $f_2(x) = |x|$ $\Rightarrow f(x) = f_1(x) - 2f_2(x) = x^2 - 2|x|$ Graph of f(x)

 $\begin{cases}
f(x), -3 \le x < -1 \\
-1, -1 \le x < 0 \\
0, \ 0 \le x \le 2 \\
f(x), \ 2 < x \le 3
\end{cases}$ g(x) = $= \begin{cases} x^2 + 2x, -3 \le x < -1 \\ -1, -1 \le x < 0 \\ 0, \ 0 \le x \le 2 \end{cases}$ The range of g(x) for [-3, -1] is [-1, 3]214 (a) g(f(x)) is not defined if (i)-2 + a > 8 and (ii)b + 3 > 8a > 10 and b > 5215 (c) f(2-x) = f(2+x) (1) Replace x by 2 - x, \Rightarrow f(x) = f(4 - x) (2) Also given f(20 - x) = f(x)(3)From (1) and (2), f(4 - x) = f(20 - x)Replace x by 4 - x, \Rightarrow f(x) = f(x + 16)Hence the period of f(x) is 16. Given f(0) = 5. 216 (c) $g(f(x)) = \begin{cases} [f(x)] & -\pi \le f(x) < 0\\ \sin f(x), & 0 \le f(x) < \pi \end{cases}$ $\begin{cases} [[x]], & -\pi \le [x] < 0, & -2 \le x \le -1 \\ [|x|+1], & \pi \le |x|+1 < 0, & -1 < x \le 2 \\ \sin x, & 0 \le [x] < \pi, & -2 \le x \le -1 \\ \sin(|x|+1), & 0 \le |x|+1 \le \pi, & -1 < x \le 2 \end{cases}$ $[x], \qquad -2 \le x \le -1$ $= \begin{cases} x_{1}, \\ \sin(|x|+1), & -1 < x \le 2 \end{cases}$ Hence, the range domain is [-2, 2]Also for $-2 \le x \le -1$, [x] = -2, -1And for $-1 < x \le 2$, $|x| + 1 \in [1,3]$ $\Rightarrow \sin(|x|+1) \in [\sin 3,1]$ Hence, the number of integral points in the range is 4 217 (3) We have $f\left(\frac{2x-3}{x-2}\right) = 5x - 2 \implies f^{-1}(5x-2) \implies$ 2x-3x-2Let 5x - 2 = 13, then x = 3Hence, $f^{-1}(13) = \frac{2(3)-3}{3-2} = 3$ 218 (7) Obviously *f* is a linear polynomial

Let f(x) = ax + b hence $f(x^{2} + x + 3) + b$ $2f(x^2 - 3x + 5) = 6x^2 - 10x + 17$ $\Rightarrow [a(x^{2} + x + 3) + b] + 2[a(x^{2} - 3x + 5) + b]$ $\equiv 6x^2 - 10x + 17$ $\Rightarrow a + 2a = 6$ (1) $\Rightarrow a - 6a = -10$ (2) (comparing coeff. of x^2 and coeff. of x on both sides) $a \Rightarrow 2$ Again, 3a + b + 10a + 2b = 17 (comparing constant term) $\Rightarrow 6 + b + 20 + 2b = 17$ $\therefore f(x) = 2x - 3$ $\Rightarrow f(5) = 7$ 219 (7) Let $2x + y = 3x - y \Rightarrow 2y = x \Rightarrow y = \frac{x}{2}$ \therefore Put $y = \frac{x}{2}$ $\Rightarrow f(x) + f\left(\frac{5x}{2}\right) + \frac{5x^2}{2} = f\left(\frac{5x}{2}\right) + 2x^2 + 1$ $\Rightarrow f(x) = 1 - \frac{x^2}{2}$ $\Rightarrow f(4) = -7$ 220 (7) From E to Fwe can define, in all, $2 \times 2 \times 2 \times 2 =$ 16 functions (2 options for each elements of E either map to 1 or to 2 \therefore Number of onto function = 16 - 2 = 14221 (7) $\left(\frac{3}{4}\right)^{6x+10-x^2} <$ $\frac{-x^2}{<} < \frac{27}{64}$ $\Rightarrow 6x + 10 - x^2 > 3$ $\therefore x^2 - 6x - 7 < 0$ (+1)(x-7) < 0 $\Rightarrow 0, 1, 2, 3, 4, 5, 6$ 222 (4) $(2x^{2} - 4 \cdot 2^{x} + 4) + 1 + ||b - 1| - 3| = |\sin y|$ $\Rightarrow (2^{x} - 2)^{2} + 1 + ||b - 1| - 3| = |\sin y|$ $\Rightarrow (2^{x} - 2)^{2} + 1 + ||b - 1| - 3| = |\sin y|$ LHS \geq 1 and RHS \leq 1 $\therefore 2^{x} = 2, |b - 1| - 3 = 0$ $\Rightarrow (b-1) = \pm 3$ $\Rightarrow b = 4, -2$ 223 (1) Given f(f(x)) = -x + 1Replacing $x \to f(x)$ $f\left(f(f(x))\right) = -f(x) + 1$ f(1-x) = -f(x) + 1f(x) + f(1 - x) = 1

 $\Rightarrow f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right) = 1$ 224 **(0)** Let $x = \frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c}$ If exactly one – ve, then x = 1Exactly two – ve, then x = -1All three – ve , then x = -3All three +ve , then x = 3Then the required sum is 0 225 (9) $g(x) + \frac{1}{2} \tan^{-1}|x| + 1$ \Rightarrow sgn(g(x)) = 1 $\Rightarrow \sin^{23} x - \cos^{22} x = 1$ $\Rightarrow \sin^{23} x = 1 + \cos^{22} x$ which is possible if $\sin x = 1$ and $\cos x = 0$ $\Rightarrow \sin x = 1, x = 2n\pi + \frac{\pi}{2}$ hence $-10\pi \le 2n\pi + \frac{\pi}{2} \le 8\pi \Rightarrow -\frac{21}{4} \le n \le \frac{15}{4}$ $\Rightarrow -5 \le n \le 3$ Hence, number of values of x = 9. 226 (1) $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ $=\sin^2 x + \frac{1}{4} \left(\sin x + \sqrt{3}\cos x\right)^2$ $+\frac{1}{2}\cos x(\cos x-\sqrt{3}\sin x)$ $=\frac{5}{4}(\sin^2 x + \cos^2 x) = \frac{5}{4}$ (gof)x = g[f(x)]g(5/4) = 1227 (7) We have $f(2x) - f(2x)f(\frac{1}{2x}) + f(16x^2y) =$ f(-2) - f(4xy)Replacing y by $\frac{1}{8x^2}$, We get $f(2x) - f(2x)\left(\frac{1}{2x}\right) + f(2) = f(-2) - f\left(\frac{1}{2x}\right)$ $\therefore f(2x) + f\left(\frac{1}{2x}\right) = f(2x)f\left(\frac{1}{2x}\right) [\text{as } f(x) \text{ is even}]$ $\therefore f(2x) = 1 \pm (2x)^n$ $\Rightarrow f(x) = 1 \pm x^n$ Now $f(4) = 1 \pm 4^n = -255$ (Given) Taking negative sign, we get $256 = 4^n \Rightarrow n = 4$ Hence $f(x) = 1 - x^4$, which is an even function. $\Rightarrow f(2) = -15$ 228 (5) $x! - (x - 1)! \neq 0 \implies x \in I^+ - \{1\}$ $2^{\frac{\pi}{\tan^{-1}x}>4}$ as $\tan^{-1}x < \frac{\pi}{2}$ $\Rightarrow \frac{(x-4)(x-10)}{(x-1)!(x-1)} < 0$

$$\Rightarrow x \in \{5, 6, \dots, 9\}$$
229 (2)

$$f(x) + f\left(\frac{1}{x}\right) = x^{2} + \frac{1}{x}$$
Replacing $x \to \frac{1}{x}$; $f\left(\frac{1}{x}\right) + f(x) = \frac{1}{x^{2}} + x$

$$\Rightarrow \frac{1}{x^{2}} + x = x^{2} - \frac{1}{x^{2}}$$

$$\Rightarrow x - \frac{1}{x} = x^{2} - \frac{1}{x^{2}}$$

$$\Rightarrow \left(x - \frac{1}{x}\right) = \left(x - \frac{1}{x}\right)\left(x + \frac{1}{x}\right)$$

$$\Rightarrow \left(x - \frac{1}{x}\right) = \left(x + \frac{1}{x} - 1\right) = 0$$

$$x = \frac{1}{x}$$
; $x + \frac{1}{x} = 1$ (rejected)
Hence $x = 1$ or -1
230 (3)

Clearly fundamental period is $\frac{4\pi}{3}$, then z lies in the third quadrant.

231 (3)

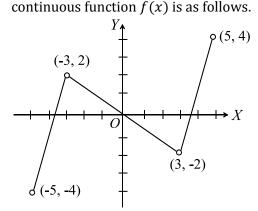
 $log_{1/3}(log_{7}(\sin x + a) > 0)$ $\Rightarrow 0 < log_{7}(\sin x + a) < 1$ $1 < (\sin x + a) < 7 \forall x \in R['a'should be less than the minimum value of 7 - sin x and 'a' must be greater than maximum value of 1 - sin x]$ $\Rightarrow 1 - sin x < a < 7 - sin x \forall x \in R$ 2 < a < 6

232 **(3)**

 $f(3n) = f(f(f(n))) = 3f(n), \forall n \in N$ Put n = 1, f(3) = 3f(1)If f(1) = 1, then f(f(1)) = f(1) = 1, but f(f(n)) = 3n \Rightarrow f(f(1)) = 3, giving 1 = 3 which is absurd. $\therefore f(1) \neq 1$ $\therefore 3 = f(f(1)) > f(1) > 1$ So f(1) = 2f(2) = f(f(1)) = 3233 (7) $f(x) = \frac{ax^8 + bx^6 + cx^4 + dx^2 + 15x + 1}{x}$ $= ax^{7} + bx^{5} + cx^{3} + dx + \frac{1}{x} + 15$ odd function Now f(x) + f(-x) = 30 $\Rightarrow f(-5) = 30 - f(5) = 28$ 234 (8) Since *f* is periodic with period 2 and $f(x) = x \forall x \in [0, 1]$ also f(x) is even \Rightarrow symmetry about *y*-axis

 \therefore graph of f(x) is as shown

y 1 X y -1 0 1 2 3 3.14 4 x f(3.14) = 4 - 3.14 = 0.86 235 (1) $|||x^2 - x + 4| - 2| - 3| = x^2 + x - 12$ $\Rightarrow ||x^2 - x + 2| - 3| = x^2 + x - 12$ $\Rightarrow ||x^2 - x - 1| = x^2 + x - 12$ $\Rightarrow |x^2 - x - 1| = x^2 + x - 12$ $\Rightarrow 2x = 11$ $\Rightarrow x = 11/2$ 236 (3) f(x) + f(-x) = 0 $\Rightarrow f(x)$ is an odd function. Since point (-3, 2) and (5,4) lie on the curve, therefore (3, -2) and (-5, -4) will also lie on the curve. For minimum number of roots, graph of



From the above graph of f(x), it is clear that equation f(x)=0 has at least three real roots. 237 **(5)**

f(x) and $f^{-1}(x)$ can only intersect on the line y = x and therefore y = x must be tangent at the common point of tangency

$$\therefore 3x^2 - 7x + c = x$$

$$\Rightarrow 3x^2 - 8x + c = 0 \dots (1)$$

This equation must have equal roots

$$\Rightarrow 64 - 12c = 0$$
$$\Rightarrow c = \frac{64}{12} = \frac{16}{3}$$

238 **(6)**

Let $x^2 = 4\cos^2\theta + \sin^2\theta$ Then $(4 - x^2) = 3\sin^2\theta$ and $(x^2 - 1) = 3\cos^2\theta$ $\therefore f(x) = \sqrt{3}|\sin\theta| + \sqrt{3}|\cos\theta|$ $\Rightarrow y_{\min} = \sqrt{3}$ and $y_{\max} = \sqrt{3}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = \sqrt{6}$

Hence range of f(x) is $\left[\sqrt{3}, \sqrt{6}\right]$ Hence maximum value of $(f(x))^2$ is 6 239 (5) As a > 2, hence $a^2 > 2a > a > 2$ Now $(x - a)(x - 2a)(x - a^2) < 0$ \Rightarrow the solution set is as shown Between (0, a) there are (a - 1) positive integers and between $(2a, a^2)$ there are $a^2 - 2a - 1 + a - a^2$ $1 = 18 \Rightarrow a^2 - a - 20 = 0$ (a-5)(a+4) = 0 $\therefore a = 5$ 240 (0) $g(x) = \frac{f(x) + f(-x)}{2}$ $=\frac{1}{2}\left[\frac{x+1}{x^3+1}+\frac{1-x}{1-x^3}\right]$ $=\frac{1}{2}\left[\frac{1}{x^2-x+1}+\frac{1}{1+x+x^2}\right]$ $=\frac{1}{2}\left[\frac{2(x^2+1)}{(x^2+1)^2-x^2}\right]$ $=\frac{x^2+1}{x^4+x^2+1}$ $=\frac{x^4-1}{x^6+1} \Rightarrow g(0)=1$ 241 (4) Put x = 1 and y = 1, $f^2(1) - f(1) - 6 = 0$ $\Rightarrow f(1) = 3 \text{ or } f(1) = -2$ Now put y = 1 $\Rightarrow f(x).f(1) = f(x) + 2\left(\frac{1}{x} + 2\right)$ $=f(x)+2\left(\frac{2x+1}{r}\right)$ $\Rightarrow f(x)[f(1) - 1] = \frac{2(2x + 1)}{2}$ $\Rightarrow f(x) = \frac{2(2x+1)}{x[f(1)-1]}$ For $f(1) = 3 f(x) = \frac{2x+1}{x}$ (1) and for $x = -2f(x) = \frac{2(2x+1)}{-3x}$ (2) $\Rightarrow f(1/2) = 4$ 242 (9) Given f(x + 2) = f(x) + f(2)Put x = -1, we have f(1) = f(-1) + f(2) $\Rightarrow f(1) = -f(1) + f(2) (asf(x))$ is an odd function) $\Rightarrow f(2) = 2f(1) = 6$

Now put x = 1, We have f(3) = f(1) + f(2) = 3 + 6 = 9243 (3) $f(x) = \sqrt{\sin x + \cos x} + \sqrt{7x - x^2 - 6}$ $=\sqrt{\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)}+\sqrt{(x-6)(1-x)}$ Now f(x) is defined if $\sin\left(x + \frac{\pi}{4}\right) \ge 0$ and $(x-6)(1-x) \ge 0$ $\Rightarrow 0 \le x + \frac{\pi}{4} \le \pi \text{ or } 2\pi \le x + \frac{\pi}{4} \le 3\pi \text{ and}$ $1 \le x \le 6$ $\Rightarrow -\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ or $\frac{7\pi}{4} \le x \le \frac{11\pi}{4}$ and $1 \le x \le 6$ $\Rightarrow x \in \left[1, \frac{3\pi}{4}\right] \cup \left[\frac{7\pi}{4}, 6\right]$ Integral values of *x* are x = 1, 2 and 6 244 (1) $\log_{a}(x^{2} - x + 2) > \log_{a}(-x^{2} + 2x + 3)$ Put $x = \frac{4}{9}$, $\log_a\left(\frac{142}{81}\right) > \log_a\left(\frac{299}{81}\right)$ $::\frac{142}{81} < \frac{299}{81} \Rightarrow 0 < a < 1$ $\Rightarrow \log_a(x^2 - x + 2) > \log_2(-x^2 + 2x + 3)$ Gives $0 < x^2 - x + 2 < -x^2 + 2x + 3$ $x^{2} - x + 2 > 0$ and $2x^{2} - 3x - 1 < 0$ $\Rightarrow \frac{3 - \sqrt{17}}{4} < x < \frac{3 + \sqrt{17}}{4}$ 245 (6) $\therefore k \in \text{odd}$ f(k) = k + 3 $f(f(k)) = \frac{k+3}{2}$ If $\frac{k+3}{2}$ is odd $\Rightarrow 27 = \frac{k+3}{2} + 3 \Rightarrow 45$ not possible $\Rightarrow \frac{k+3}{2}$ is even $\therefore 27 = f\left(f(f(k))\right) = f\left(\frac{k+3}{2}\right) = \frac{k+3}{4}$ $\therefore k = 105$ Verifying f(f(f(105))) = f(f(108)) = f(54) =27 $\therefore k = 105$ 246 (4) $f(x) = [8+7] + |\tan 2\pi x + \cot 2\pi x| - 8x$ $= [8x] - 8x - 7 + |\tan 2\pi x + \cot 2\pi x|$ $= -\{8x\} + |\tan 2\pi x + \cot 2\pi x| + 7$ Period of $\{8x\}$ is 1/8Also, $|\tan 2\pi x + \cot 2\pi x|$ $= \left| \frac{\sin 2\pi x}{\cos 2\pi x} + \frac{\cos 2\pi x}{\sin 2\pi x} \right| = \left| \frac{1}{\sin 2\pi x \cos 2\pi x} \right|$ $= |2 \operatorname{cosec} 4\pi x|$ Now period of 2 cosec $4\pi x$ is 1/2, then period of 2 cosec $4\pi x$ is 1/4,

 \therefore Period is L.C.M. of $\frac{1}{8}$ and $\frac{1}{4}$ which is $\frac{1}{4}$

