Single Correct Answer Type

1.	Which of the following is	an addition polymer?						
	a) Nylon-6		b) Dacron					
	c) High-density polythen	e	d) Nylon-6, 6					
2.	Nylon-6 is prepared from							
	a) Adipic acid and hexam		b) Caprolactum	b) Caprolactum				
	c) Urea and formaldehyd		d) None of these					
3.			ne inner side of non-stick pa	ans?				
	a) Bakelite	b) PVC	c) Teflon	d) Polypropylene				
4.	•	•	ain without producing any					
	a) Thermosetting polyme	=	b) Thermoplastic polyme	=				
	c) Bakelite		d) Melamine					
5.	The monomer of the poly	mer	,					
	CH -							
	∨∨СH ₂ −С−СH ₂ −С СH ₂ С	is.						
		H ₂						
	0113	-						
			c) $CH_3CH = CHCH_3$	d) $H_2C - C(CH_3)_2$				
6.	All terpenes have carbon							
	a) Isoprene units	b) Vinyl units	,	d) Ethylene units				
7.			d resistant, and heat resistant, polymer, is:					
	a) Si	b) SiO ₂	c) R ₂ SiO	d) None of these				
8.	-	an example of copolymer?						
	a) Buna-S	b) PAN	c) Polythene	d) PTFE				
9.			olecular masses M_1 , M_2 , M_3 ,	respectively, then mass				
	average molar is expresse							
	a) $\frac{\sum \text{NiMi}^2}{\sum \text{NiMi}}$	$\sum NiMi$	c) $\frac{\sum Mi^2}{\sum Ni}$	d) $\frac{\sum \text{NiMi}}{\sum \text{Mi}}$				
	<u>_</u>	—		∑ Mi				
10.	Which of the following is	a biodegradable polymer?						
	a) Cellulose	b) Nylon-6	c) Polyvinyl chloride	d) Polythene				
11.	The commercial name of) is:					
	a) Lucite	b) Plexiglas	c) Perspex	d) All the above				
12.	Bakelite is:							
	a) Chain-growth polymer		b) Step-growth polymer					
	c) Both (a) and (b)		d) Elastomer					
13.	GuttaPercha is:							
	a) trans-Polyisoprene							
		s to a plastic-like material o	on heating					
	c) Used in underwater ca	bles and golf balls						
	d) All the above							
14.	Which of the following is		• •					
	a) Nylon-6, 6	b) Nylon-2-nylon-6	c) Dextran	d) PHBV				
15.	$CH_2 = C - CH = CH_3$ Isoprene.	CH ₂ ,						
	Isoprene, CH ₃	, is the repeating unit i	n:					
	a) Vitamin A	b) Terpenes	c) Rubber (natural)	d) All the above				
16.	Mass-average molecular i	mass of a polymer is deterr	nined by:					
	a) Light scattering and ul	tracentrifuge method	b) Osmotic pressure					
	c) Depression of freezing	point	d) Elevation in boiling point					

17. Identify (X):

$$\text{CHCl}_{3} \xrightarrow{\text{SbF}_{3}} \text{CHF}_{2}\text{Cl} \xrightarrow{\text{1070 K}} (X) + 2\text{HCl}$$

- a) $F_2C = CF_2$
- b) CIFC = CFCI
- c) $F_2C = CFCl$
- d) $F_2C = CCl_2$

18. Which of the following is used in paints?

- a) Terylene
- b) Chloroprene
- c) Glyptal
- d) Nylon

19. Molecular weights of macromolecules are determined by:

- a) Elevation of boiling point
- c) Osmotic pressure

- b) Depression in freezing point
- d) None of these
- 20. Polymer used in bullet-proof glass is:
 - a) Nomex
- b) Lexan
- c) PMMA
- d) Kevlar

21. Which of the following is not correctly matched?

a)
$$\frac{O}{\left[-NH-(CH_2)_6-NH-CO-(CH_2)_4 \stackrel{O}{C}\right]_n}$$

Neoprene:

b)
$$\left\{ \begin{array}{c} \mathsf{CH}_2 - \mathsf{C} = \mathsf{CH} - \mathsf{CH}_2 \\ \mathsf{CI} \end{array} \right\}_n$$

c)
$$\begin{array}{c} O & O & O \\ O & C & C \\ O &$$

d) PMMA: $CH_2 - CC - COOCH_3$

22. Terylene (Dacron) is the polyester of:

- a) Hexamethylenediamineandadipic acid
- c) Melamine and formaldehyde

b) Vinyl chloride and formaldehyde d) Ethylene glycol and terephthalic acid

- 23. Which polymer is generally used in carry bags?
 - a) Polyester
- b) Bakelite
- c) Polyethylene
- d) Alkyd resin

24. Which of the following is a chain-growth polymer?

- a) Nucleic acid
- b) Starch
- c) Polystyrene
- d) Proteins

25. Which of the following is a copolymer?

- a) Polytetrafluoroethylene
- c) Polyethylene

- b) Polyvinyl chloride
- d) Nylon-6, 6
- 26. A polymeric sample in which 30% molecules have a molecular mass 20,000, 40% have 30,000 and the rest 30% have 60,000. The $(M\overline{n})$ and $(M\overline{w})$ of this sample are:
 - a) 36,000, 43,333
- b) 43,333, 36,000
- c) 72,000, 86,666
- d) 86,666, 72,000
- 27. Number-average molecular mass of a polymer is determined by:
 - a) Light scattering and ultracentrifuge method
 - c) Depressing of freezing point
- b) Osmotic pressure
- 28. Which of the following is a chain-growth polymer?
 - a) Nylon
- b) Dacron
- c) Glyptal
- d) Polypropylene

- 29. Which of the following sets contains only thermoplastics?
 - a) Glyptal, Melmac, PAN

b) Polythene, Bakelite, Nylon-6

d) Elevation in boiling point

c) PVC, PMMA, Polystyrene

- d) Polypropylene, Urea-formaldehyde, Teflon
- 30. Teflon, styron, and neoprene are all:
 - a) Copolymers

b) Monomers

c) Homopolymers

d) Condensation polymers

- 31. Saran is a copolymer of:
 - a) Vinyl chloride and vinyl acetate
 - b) Vinylidene chloride (1, 1-dichroethene) and vinyl chloride
 - c) Ethylene chloride and vinyl chloride
 - d) Vinyl acetate and methyl acetate
- 32. Interpaticle forces present in Nylon-6, 6 are:
 - a) Dipole-dipole interactions

b) Hydrogen bonding

	c) Van der Waals force	d) None of these					
33.	Which is not a macromolecule?						
	a) DNA b) Insulin	c) Palmitate	d) Starch				
34.	Which of the following is not a condensation polym	er?					
	a) Nylon-6, 6 b) PTEE	c) Dacron	d) Glyptal				
35.	Polyurethanes:						
	a) Have structural features of both an ester and an $$	amide					
	b) Have the formula O						
	b)						
	c) Are obtained from p -phenylene disocyanate and	ethylene glycol					
	d) Are used as foam rubber in upholstery						
36.	In the vulcanisation of rubber:						
	a) Sulphur reacts to form a new compound						
	b) Sulphur cross-links are introduced						
	c) Sulphur forms a very thin protective layer over r	ubber					
	d) All the statements are correct						
37.	A copolymer is:						
	a) Styrene butadiene rubber	b) Polythene					
	c) Terylene	d) Nylon					
38.	Which one is not the chain-growth polymer?						
	a) Natural rubber b) Polythene	c) Polypropylene	d) Terylene				
39.	Which of the following monomers gives the polymer						
	a) $CCl_2 = CCI_2$	b) $CH_2 = CHCl$					
4.0	c) $CH_2 = C(CI) - CH = CH_2$	d) $CF_2 = CF_2$					
40.	Glyptal is the polymer of:		.1 1: .1				
	a) Ethylene glycol	b) Ethylene glycol and ph	ithalic acid				
11	c) Ethylene glycol and adipic acid Which of the following statements is not true about	d) Caprolactum					
41.	Which of the following statements is not true about a) Polymers have high viscosity	b) Polymers do not carry	any chargo				
	c) Polymers scatter light	d) Polymers have low mo					
42	Which of the following is the polymers can be used	, ,					
12.	a) SBR b) PAN	c) PTFE	d) PVC				
43.	Which of the following is a step-growth polymer?	0) 1 11 11	a) i vo				
	a) Polyacrylonitrile b) Polyisoprene	c) Nylon	d) Polythene				
44.	Polymer formation from monomers starts by:	, ,	, ,				
	a) Condensation reaction between monomers						
	b) Conversion of monomer to monomer ions by pro	otons					
	c) Coordination reaction between monomers						
	d) Hydrolysis of monomers						
45.	Which of the following is not correct regarding tery	lene?					
	a) Condensation polymer	b) Synthetic fibre					
	c) Step-growth polymer	d) Thermosetting plastic					
46.	Nylon-6 is made from:						
	a) Adipic acid b) Chloroprene	, , , , , , , , , , , , , , , , , , ,					
47.	If N_1 , N_2 , N_3 , are the number of molecules with m	olecular masses M ₁ , M ₂ , M ₃ ,	, respectively, the				
	number-average molecular mass is expressed as:	N N					
	a) $\frac{N_1 M_1^2 + N_2 M_2^2 + \cdots}{N_1 M_1 + N_2 M_2 + \cdots} = \frac{\sum NiMi^2}{\sum NiMi}$	b) $\frac{N_1M_1 + N_2M_2 + \cdots}{N_1 + N_2 + \cdots} = \frac{N_1M_1 + N_2M_2 + \cdots}{N_1 + N_2 + \cdots}$	NiMi				
			∑ Ni				
	c) $\frac{\sum Mi^2}{\sum Ni}$	d) $\frac{\sum \text{NiMi}}{\sum \text{Mi}}$					
	ΣNi	∑Mi					

48.	Orlonahs a unit of:						
	a) Vinly cyanide	b) Isoprene	c) Glycol	d) Acrolein			
49.	Natural rubber is:						
	a) All-trans polyisoprene	<u> </u>	b) Chloroprene				
	c) Buna-S		d) All-cis polyisoprene				
50.	The repeating units of PT	FE are:					
	a) $Cl_2CH - CH_3$	b) $F_2C = CF_2$	c) $F_3C - CF_3$	d) $FCIC = CF_2$			
51.	The basic unit of neopren	ie is:					
	a) Chloroprene	b) Isoprene	c) Styrene	d) Butadiene			
52.	Which one is a synthetic	polymer?					
	a) Starch	b) Silk	c) Protein	d) Neoprene			
53.	Which of the following is	a polyamide?					
	a) Teflon	b) Nylon-6,6	c) Bakelite	d) Terylene			
54.	The abbreviation PDI refe	ers to:					
	a) Name of the polymer		b) Polydipersity index of	the polymer			
	c) Application of the poly	mer	d) Polydiagonal index				
55.	The weakest interparticle	e forces are present in:					
	a) Thermosetting polyme	ers	b) Thermoplastic polyme	ers			
	c) Fibres		d) Elastomers				
56.	Acrilan is a hard material	and has high melting poin	t. Which of the following re	presents its structure?			
	a) $\left(\begin{array}{c} CH_2 - CH \\ CN \end{array}\right)_n$	b) \leftarrow $CH_2 \longrightarrow$ $CH_2 \longrightarrow$ $CH_2 \longrightarrow$ $COOCH_3 / n$	c) $\left(\begin{array}{c} CH_2 - CH \\ CI \end{array}\right)_n$	d) $-\left(\begin{array}{c} CH_2-CH \\ COOC_2H_5 \end{array}\right)_n$			
57.	Which of the following is	a natural polymer?					
	a) Bakelite	b) Cellulose	c) PVC	d) Neoprene			
58.	Which one is not a step p		6) 1 1 6	w) 1.00p10110			
	a) Nylon-6, 6	b) Nylon-6	c) Glyptal	d) PMMA			
59.	• •	ubber) is obtained by free		•			
	•	%) and 30% phenyl ethene					
	b) Chloroprene and styre						
	c) Vinyl acetylene and sty						
	d) Isoprene and 1, 3-buta						
60.	Natural rubber is a polym						
	a) Styrene	b) Ethyne	c) Butadiene	d) Isoprene			
61.	The turbidity of a polyme	•	,	, 1			
	a) Light absorbed by the		b) Light transmitted by the solution				
	c) Light scattered by the		d) None of the above				
62.	Peptide bond is a key feat		,				
	a) Polysaccharide	b) Proteins	c) Nucleotide	d) Vitamins			
63.	•	ylene from calcium carbide		,			
	$CaC_2 + 2H_2O \rightarrow Ca(OH)_2$	=	•				
	$C_2H_2 + H_2 \rightarrow C_2H_4$						
	$nC_2H_4 \rightarrow (CH_2 - CH_2)_n$						
	The amount of polyethyle	ene obtained from 64 kg of	CaC ₂ is:				
	a) 14 kg	b) 7 kg	c) 21 kg	d) 28 kg			
64.		, ,	, ,	ly used free radical initiator			
	is:	-					
	a) $Ph - CO - O - O - CO$	Ph, benzoyleperoxide	b) $(CH_3)_3C - 0 - 0 - C(CH_3)_3$, tert-butyl peroxide				

	C_6H_5 — $N \longrightarrow O$, azoxybenzene c) $\parallel C_6H_5$ — N	d) CH ₂ N ₂ , diazome	thane
65	Which one of the following is used to make 'nor	n-stick' cookware?	
05.	a) Polystrene	b) PVC	
	c) Poly (ethylene terephthalate)	d) Polytetrafluroro	ethylene
66.	Synthetic human hair wigs are made from a cop	• •	-
00.	a) PVC b) Polyacrylonitrile	c) Cellulose	d) Dynel
67.	$\sim \sim NH (CH_2)_6 NHCO (CH_2)_4 CO \sim is:$		w, 2, 1.6.
	a) Addition polymer	b) Copolymer	
	c) Homopolymer	d) Thermosetting p	oolymer
68.	Zeigler-Natta catalysts		
	a) Are triethylaluminium titanium tetrachlorid	e complex $(C_2H_5)_3Al + Ti$	Cl ₄
	b) Are used to prepare stereospecific addition p	·	
	c) Are employed to have stereochemical control	ol of the polymerisation pr	ocess
	d) All the above		
69.	Which of the following is a fully fluorinated pol		
	a) Thiokol b) Teflon	c) Neoprene	d) PVC
70.	If N_1 , N_2 , N_3 , are the number of molecules with		$I_2, M_3,,$ respectively, the
	number, Z-average molar mass $(M\overline{z})$ is defined	as:	
	a) $\frac{\sum \text{NiMi}^2}{\sum \text{NiMi}}$		
	b) $\frac{\sum \text{NiMi}}{\sum \text{Ni}}$		
	c) $\frac{\sum \text{NiMi}^3}{\sum \text{NiMi}^2}$		
	d) $\frac{\sum \text{NiMi}^3}{\sum \text{NiMi}}$		
71.	The PDI (polydispersity index) is the radio of w		` ' '
	natural polymers, which are generally monodis	=	inthetic polymers which are
	always polydispersed, PDI is because $M\overline{w}$ is		L.C. L.
	a) Greater than 1, 1, higher	b) 1, greater than 1	_
70	c) Less than 1, 1, lower	d) 1, less than 1, lov	wer
/ Z.	A polymer of prop-2-enenitrile is called:	.) D	1) Tr. Cl.
70	a) Saran b) Orlon	c) Dacron	d) Teflon
/3.	Soft drink and baby-feeding bottles are general	=	d) Delegations
74	a) Polyurea b) Polyurethane	c) Polyester	d) Polystyrene
/4.	The chemical name of melamine is:	h) 2 Amina 1 2 E	triagino
	a) 2, 4-Diamino-1, 3, 5-triazine	b) 2-Amino-1, 3, 5-1	
75	c) 2, 4, 6-Triamino-1, 3, 5-triazine	d) 1, 3, 5-Triamino	-2, 4, 6-triazine
75.	Terylene is a condensation polymer of ethylene	= -	d) Toronhthalic acid
76	a) Salicylic acid b) Phthalic acid	c) Benzoic acid	d) Terephthalic acid
70.	Nylon threads are made of: a) Polygingly polymor b) Polygingly polymor c) Polygingly pol	mar a) Dalvastar nalum	or d) Polyamida nolymar
77	a) Polyvinyl polymerb) Polyethylene polyOne would come across the terms isotactic, syn	mer c) Polyester polym	
//.	a) Polymers b) Dyes	c) Crystals	d) Textiles
7Ω	GRA is a copolymer of:	c) drystais	uj reatiles
<i>,</i> 0.	a) Butadiene and acrylonitrile	b) Butadiene and a	dinic acid
	c) Chloroprene and acrylonitrile	d) Chloroprene and	_
79	The interparticle forces between linear chains	•	a daipie deid

QΛ	a) H-bonds Isotactic polypropylene p		c) Ionic bonds	d) Coordinate bonds
ου.	a) All methyl groups are o	on one side of the extended	chain. It is a highly crystal	lite, has high melting point,
	and forms strong fiber			
		esent alternate regularly fro		
		distributed at random. It is	s a soft, elastic, and rubbery	/ material
	d) None of these			
81.		determining the molecular		
	a) Osmotic pressure		b) Gas density	
	c) Lowering of freezing p		d) Direct weighing of a sin	ngle molecule
82.	The starting material of P			
	a) Monochlorotrifluoro et	thylene	b) Tetrafluoroethylene	
	c) Vinyl chloride		d) Styrene	
83.	Which is used for the form			
	a) Sulphurous acid	b) Adipic acid	c) Sulphur hexafluoride	d) Phthalic acid
84.	$F_2C = CF_2$ is a monomer			
	a) Teflon	b) Glyptal	c) Buna-S	d) Nylon-6
85.	Cellulose is a condensation	= -		
	a) Maltose	b) β-Glucose	c) α-Glucose	d) β-Fructose
86.		nyl chloride), nylon and nat	tural rubber, the polymer in	n which the intermolecular
	force of attraction is weal			
	a) Nylon	b) Poly (vinyl chloride)	-	d) Natural rubber
87.		om condensation of sebacic		
	a) Terylene	b) Nylon-6	c) Nylon-6, 10	d) Dacron
88.	=	a common example of fibre		D
00	a) Bakelite	b) Buna-S	c) Nylon-6, 6	d) Nylon-6
89.	Monomer of	1		
	Monomer of $-\begin{bmatrix} CH_3 \\ -C-CH_2- \\ CH_3 \end{bmatrix}$	ia.		
	Monomer of $-C-CH_2-$	_ IS:		
	[CH ₃	\rfloor_n		
	a) 2-Methylpropene	b) Ethene	c) Propylene	d) Styrene
90.	Which of the following re-	presents the example of a h	nomopolymer?	
	a) PMMA	b) Bakelite	c) Glyptal	d) Neoprene
91.	Chloroprene is the repeat	ing unit in:		
	a) PVC	b) Neoprene	c) Polystylene	d) Polythene
92.	Which of the following is	not a polymer?		
	a) Sucrose	b) Teflon	c) Starch	d) Enzyme
93.	Which of the following se	ts contains only copolymer	s?	
	a) SBR, Glyptal, Nylon-6, 6	6	b) Polythene, Polyester, P	VC
	c) Nylon-6, Butyl rubber,	Neoprene	d) Melmac, Bakelite, Teflo	on
		Multiple Comest	Americana Tempo	
		Multiple Correct		
94.	=	e used as chain transfer age		
	a) CCl ₄	b) CBr ₄	c) Benzoquinone	d) Benzoyl peroxide
95.	Which of the following ca	=		
	a) Sodium hexametaphos	phate	b) Di- <i>n</i> -butylphthalate	
	c) Tricresyl phosphate		d) Diethyl phthalate	
96.	Which is used in the form	-		
	a) Sulphurhexa fluoride	b) Adipic acid	c) Sulphurous acid	d) Phthalic acid

97.	Which of the following po	lymers contain 1, 3-butadi	ene as one of the monomer	S?
	a) Butyl rubber	b) Nitrile rubber	c) ABS plastic	d) SBR
98.	Which of the following pr	ocesses can be used to prep	pare polystyrene?	
	a) Anionic	b) Cationic	c) Free radicals	d) Ziegler-Natta
99.	Which of the following are	e polyamide polymers?		
	a) Nylon-6, 10	b) Nylon-6, 6	c) Nylon-5	d) Perlon-U
100	. Which of the following are	e condensation polymears?	?	
	a) Polypropylene	b) Nylon-6	c) Glyptal	d) Teflon
101	. Vulcanised rubber resists	:		
	a) Wear and tear due to fi	riction	b) Cryogenic temperature	9
	c) High temperature		d) Action of acids	
102	. Which of the followingfib	res are made of polyamides	s?	
	a) Wool	b) Natural silk	c) Rayon	d) Nylon
103	. Which of the following are	e used as free radical chain	initiators?	
	a) Benzoyl peroxide	b) <i>t</i> -Butyl peroxide	c) CCl ₄	d) Benzoquinone
104	. Which of the following are	e biodegradable polymers?		
	a) Nylon-6, 6	b) PHBV	c) Nylon-2-Nylon-6	d) Polychloroprene
105	. Among the following elas	tomers are		
	a) Natural rubber	b) Law sulphur rubber	c) Buna-S	d) Butyl rubber
106	. Which of the following po	lymers can be made by cat	ionic addition polymerisati	on mechanism?
	a) PVC	b) PP	c) HDPE	d) LDPE
107	. Among the following chai	n transfer reagent are		
	a) Carbon tetrachloride	b) Benzoyl peroxide	c) Benzoquinone	d) Carbon tetrabromide
108	. Which of the following are	e biodegradable polymers?		
	a) PHBV		b) Nylon-2, 6	
	c) Polyglycolic and polyla	ctic acids	d) Perlon-U	
109	. Which of the following sta	atements are correct about	Nylon-6, 6?	
	a) Nylon fibres have high	er tensile strength than ter	ylenefibres	
	b) Nylon fibres have lowe	r tensile strength than tery	lenefibres	
	c) In nylon, there is stron	g intermolecular H-bondin	g, while in terylene there is	weak dipole-dipole
	interaction			
	d) In nylon, there is weak	dipole-dipole interaction,	while in terylene there is st	rong intermolecular H-
	bonding			
110	. Which of the following fib	ers are made of polyamide	es?	
	a) Wool	b) Natural rubber	c) Artificial silk	d) Nylon
111.	. Which of the following po	lymers can be made by ado	dition polymerisation react	ion?
	a) Nylon-6	b) Perlon-U	c) HDPE	d) LDPE
112.	. The field of polymer chen	nistry was revolutionised b	y:	
	a) Kharasch in USA		b) Karl Ziegler in German	y
	c) Giulio Natta in Italy		d) Barton in England	
113.	. Which of the following po	lymers can be made by fre	e radical addition polymeri	sation mechanism?
	a) PE	b) HDPE	c) LDPE	d) Teflon
114	. Which of the following are	e condensation copolymers	s?	
	a) Nylon-6	b) Nylon-6, 6	c) Dacron	d) Glyptal
115.	. Polymerisation of buta-1,	3-diene by free radical me	chanism gives:	
	a) trans-1, 4-Polybutadie	ene	b) cis-1, 4-Polybutadiene	
	c) Polyvinyl polythene		d) Polyallylpolyethene	
116	. Nylon-5, 10 can be prepai	red by:		
	a) $H_2N(CH_2)_5NH_2 + Deca$	noic acid (Sebacic acid)		
	b) $HOOC(CH_2)_3 + COOH$			
	c) $H_2N(CH_2)_cNH_2 + HOO$	C(CH ₂) ₂ COOH		

d) $H_2N(CH_2)_{10}NH_2 + HOOC(CH_2)_4COOH$ 117. Which of the following are biopolymers? a) Nucleic acid b) Leather c) Bakelite d) Orlon 118. Which of the following statements are correct about phenol-formaldehyde resin? a) Novolac or resol is a linear polymer and is used in the manufacture of adhesive b) Bakelite is a cross-linked polymer and is used in making switches and plugs c) Novolac is prepared when (P/F) (phenol/formaldehyde) ratio is greater than 1, whereas bakelite is prepared when (P/F) ratio is less than 1 d) Novolac is prepared when P/F<1, and bakelite is prepared when P/F>1 119. Which of the following are not thermosetting polymers? a) Bakelite b) Polystyrene c) PVC d) Melmac 120. By which of the following reaction sequence can nylon-5 be prepared? $\frac{\text{NH}_2\text{OH}}{}$? $\frac{\text{H}^{\oplus}}{\text{H}_3\text{O}^+}$? $\frac{\triangle}{\text{H}_3\text{O}^{\oplus}}$ Nylon-5 d) All 121. Polymerisation may occur through intermediate formation of: a) Carbocations b) Carbanions c) Freee radicals d) Carbenes 122. Which of the following are polyester polymers? a) Bakelite b) Dacron c) Glyptal resins d) Nylon-5 123. Which of the following are biopolymers? a) Nucleic acids b) Leather c) Bakelite d) Orlon 124. Which of the following polymers can be made by anionic addition polymerisation mechanism? a) PVC b) PAN c) Teflon 125. Which of the following polymers can be made by condensation polymerisation reaction? a) Dacron b) Nylon-6,6 c) Bakelite d) PE 126. Which of the following are plasticisers? b) DBP d) Sodium adipate c) Cresyl phosphate 127. Which monomer would polymerise in isotactic, syndiotactic, and atactic forms? b) $CH_3 - CH = CH_2$ a) $CH_2 = CCl_2$ c) $Ph - CH = CH_2$ d) All 128. Which of the following are polycarbamate ester polymers? b) Perlon-U a) Polyurethane c) Melmac d) Saran 129. Which of the following are addition homopolymers? a) Teflon b) SBR c) PVC d) Natural rubber 130. Which of the following is a monomer of Teflon?

Assertion - Reasoning Type

c) Tetrafluoroethane

b) Trifluoroethane

a) Difluoroethane

This section contain(s) 0 questions numbered 131 to 130. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

d) None of these

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1 $\,$
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

131

- **Statement 1:** Bakelite is a thermosetting plastic.
- **Statement 2:** In thermosetting plastics, the polymeric chains are held together by strong covalent bonds.

132

- **Statement 1:** PDI (polydispersity index) of natural polymer is unity, while that of synthetic polymer is greater than unity
- **Statement 2:** Natural polymer are homogeneous

133

- **Statement 1:** Novolac is soft and has a low melting point
- **Statement 2:** It is a highly cross-linked polymer

134

- **Statement 1:** Thermoplastics become soft on heating and hard on cooling.
- **Statement 2:** Thermoplastics are linear polymer and the polymeric chains are held together by weak intermolecular forces.

135

- **Statement 1:** In vulcanization of rubber, sulphur cross links are introduced.
- **Statement 2:** Vulcanization is a free radical initiated chain reaction.

136

- **Statement 1:** Buta-1, 3-diene is the monomer of GuttaPercha
- **Statement 2:** GuttaPercha is formed through cationic addition polymerisation

137

- **Statement 1:** PMMA is used for making tenses and light covers.
- **Statement 2:** It has excellent light transmission properties.

138

- **Statement 1:** Natural rubber is *cis*-polyisoprene.
- **Statement 2:** *trans*-polyisoprene cannot be formed.

139

	Statement 1:	Bakelite is hard and has high melting point
	Statement 2:	Intermolecular forces of attraction in it are H-bonding
140		
	Statement 1:	Polybutadiene is an example of step-growth polymer
	Statement 2:	Copolymerisation of butadiene and acrylonitrile gives Buna-N
141		
	Statement 1:	$M\overline{n}$ (number-average molecular mass) of a polymer is determined by osmotic pressure method, while $M\overline{w}$ (weight-average molecular mass) is determined by ultracentrifuge method
	Statement 2:	Osmotic pressure is a colligative property
142		
	Statement 1:	PUF (Polyurethane foam) is spongy
143	Statement 2:	During the preparation of PUF, $\rm CO_2$ is evolved, which forms bubbles that are trapped within the bulk of polymer. As it solidifies, it gives spongy product
	Statement 1:	Styrene is more reactive than propylene towards cationic polymerization
	Statement 2:	The carbocation resulting from styrene is more stable than that resulting from propylene
144		
	Statement 1:	Nylon fibresare stronger than terylenefibres
	Statement 2:	Intermolecular forces of attraction in terylene are H-bonding
145		
	Statement 1:	Teflon ahs high thermal stability and chemical inertness
	Statement 2:	It has strong $(C - F)$ bonds
146		
	Statement 1:	Nylon-6 is prepared by polymerization of caprolactam.
	Statement 2:	It is a polyamide
147		
	Statement 1:	Nylon 610 is a condensation copolymer.
	Statement 2:	It contains dioic acid having 6C atoms and a diamine having 10C atims.
148		
	Statement 1:	Polyvinyl alcohol is obtained by polymerization of vinyl alcohol.
	Statement 2:	Polyvinyl alcohol is prepared by hydrolysis of polyvinyl acetate.

Statement 1: Plexiglas is the commercial name of PMMA

Statement 2: It is used in making contact lens, because it has an excellent light transmission property

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

150.

Column-I

- (A) Isotactic polypropene
- (B) Syndiotacticpolypropene
- (C) Atacticpolypropene
- (D) Saran
- (E) Plexiglas or Lucite or Acrylite or Perspex

CODES:

	A	В	С	D	E
a)	S	t	r	p	q
b)	t	r	p	q	q
c)	r	p	q	S	q
d)	q	S	t	r	q

151.

Column-I

- (A) Neoprene
- (B) GuttaPercha

Column- II

$$(p) \qquad \begin{array}{c} \text{Me} \\ -\text{CH}_2 - \text{C} \\ \text{COOMe} \\ n \end{array}$$

- (q) Me H Me H Me H
- $(r) \quad \begin{array}{c} CI & CI \\ -CH_2 C CH_2 CH \end{array}$
- (s) Me HH Me Me H
- (t) Me H Me H H M

Column- II

$$(p) \quad \text{CH}_2\text{-CH=CH}$$

$$-CH_2-CH-CH_2$$

$$\begin{array}{c}
(q) & CI \\
-CH_2-C=CH-
\end{array}$$

(C) Buna-S

(D) Buna-N

$$CH_2$$
- CH - CH_2

CODES:

- A В \mathbf{C} D
- a) q p
- b) r S q
- c) S p q
- d) p q r S
- 152. Match List I(Polymers) with List II(Monomers) and select the correct answer using the codes given below

Column-I

(1) Phthalic acid and ethylene glycol

(A) Buna N

(B) Nylon 66

(2) Terephthalic acid and ethylene glycol

Column-II

(C) Dacron

(3) Hexamethylenediamine and adipic acid

(D) Glyptal plastic

(4) Isobutylene and isoprene (5) Arylonitrile and butadiene

- **CODES:**
 - A В \mathbf{C} D
- 2 a) 5
- 2 b) 3 1
- 3 2 c) 4 1
- d) 5 3 1 2

153.

Column-I

Column- II

(A) Perlon-U or Polyurethane

(p) Phenol + $CH_2 = 0$

- (B) Resol or Novolac
- (C) PHBV
- (D) Polyglycolic and polylactic acid
- **(E)** Nylon-2,6

- (q)

 - (r)
 - (s)
- $\begin{array}{c} \text{H}_2\text{N} \xrightarrow{6} \xrightarrow{4} \xrightarrow{2} \xrightarrow{1} \text{COOH} \\ \text{Me} \\ \text{HO} \xrightarrow{3} \xrightarrow{2} \xrightarrow{1} \text{COOH} + \\ \text{OH} \xrightarrow{3} \xrightarrow{2} \xrightarrow{1} \text{COOH} \end{array}$

CODES:

- \mathbf{C} A В D E
- a) t q p
- b) S r q p p
- c) r p t q p
- d) p q p

154.

Column-I

- (A) Number-average molecular mass $(M\overline{n})$
- **(B)** Weight-average molecular mass $(M\overline{w})$
- (C) PDI of natural polymer
- **(D)** PDI of synthetic polymer

CODES:

- A В \mathbf{C} D
- a) P r S q
- b) q p r
- c) S r q p
- d) S q p r

Column- II

- (p) Light scattering and ultracentrifuge methods
- (q) Osmotic pressure method
- (r) PDI=1
- PDI>1

Column-I

- (A) HDPE
- (B) Polypropene
- (C) PVC
- (D) Dacron

CODES:

- \mathbf{C} A В
- a) r S q p
- b) q r p
- c) p q
- d) p S r q

156.

Column-I

D

- (A) Acrilon
- (B) Vinyon
- (C) Dynel or Vinyon-N
- (D) Natural rubber
- (E) PCTFE

CODES:

a)

- A

 - t S
- b) q
- c) S
- d) r
- r p

t

В

p

S

 \mathbf{C}

- q
- t

D

q

E

q

q

q

q

157.

Column-I

- (A) Number-average molecular mass $(M\overline{n})$
- **(B)** Weight-average molecular mass $(M\overline{w})$

Column- II

- (p) Cationic addition polymerisation
- Condensation polymerisation
- Free radical addition polymerisation
- (s) Anionic addition polymerisation

Column- II

- (r) $CH_2 = \dot{C} - CH = CH_2$
- (t)

- Column-II

- (C) Z-average molecular mass $(M\overline{z})$
- (r) $\frac{\sum \text{NiMi}^3}{\sum_i \text{NiMi}}$

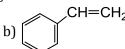
(D) Polydispersity index (PDI)

(s) $\frac{M\overline{w}}{M\overline{n}}$

CODES:

	A	В	C	D
a)	Q	r	p	s
b)	r	p	S	q
c)	p	S	q	r
d)	S	q	r	р

Linked Comprehension Type


This section contain(s) 17 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 158 to -158

A polymer is a large molecule made by linking together repeating units of small molecule called monomers. The process of linking them up is called polymerization. On the basis of mode of polymerization, polymers are of two types; addition polymers and condensation polymers. Addition polymers are formed by repeated addition of monomer molecules possessing double or triple bonds. Addition polymers may be homopolymer (single monomeric species) or copolymers (two different monomers). The condensation polymers are formed by repeated condensation reaction between two different bifunctional or trifunctional monomeric units with the elimination of small molecules such as H_2O , alcohol etc

158. Which one of the following cannot form addition polymers?

a)
$$CH_2 = CH_2$$

c) HOOC(CH₂)₄COOH

d) None of these

Paragraph for Question Nos. 159 to - 159

Neoprene is synthetic rubber which is obtained by polymecrisation of 2-chloro -1, 3 butadiene. In it the configuration of polymer is trans. Its properties are inproved by vulcanisation, which is infact the hardening of rubber by heating is presence of sulphur causes cross-linking of separate polymer chains through disulphide bonds and thus vulcanized chains are locked together in one giant molecule. Cross-linking prevents the polymer from being torn when it is stretched, and the cross-links provide a reference framework for the material to return to when the stretching force is removed

159. The tensile strength, elasticity and resistance to abrasion can be increased by a process called

- a) Diazotisation
- b) Vulcanisation
- c) Isomerisation
- d) Polymerisation

Paragraph for Question Nos. 160 to - 160

This section contains six paragraphs. Based on each paragraph, four-six multiple choice questions have to be answered. Each question has four choices (a), (b), (c), and (d), out of which only one is correct

(A)
$$\frac{2 \text{ eq. HBr}}{\text{Peroxide}}$$
 (B) $\frac{\text{KCN}}{\text{Polymer}}$ (C) $\frac{\text{LAH}}{\text{H}_3\text{O}}$ (D)

(F) $\frac{+ \text{D}}{\text{Polymer}}$ (E)

160. Compound (B) is:

d) All

Paragraph for Question Nos. 161 to - 161

$$(A) \xrightarrow{CH_{2}N_{2} + h\nu} (B) \xrightarrow{H_{2}NOH} (C) \xrightarrow{H^{\oplus}} (D)$$

$$(A) \xrightarrow{Polymer} \xrightarrow{\Delta/H_{3}O^{\oplus}} (D)$$

161. Compound (B) is:

d) \rightarrow OMe

Paragraph for Question Nos. 162 to - 162

Br
$$KCN$$
 (B) LAH (C) $2COCl_2$ (D) $Aq. NaOH$ (E) $+$ D $Copolymerisation$ $Polymer (F)$

162. Compound (B) is:

b)
$$NC(CH_2)_4CN$$

c)
$$NC(CH_2)_6Br$$

d) NC(CH₂)₆CN

Paragraph for Question Nos. 163 to - 163

OH
$$(A) + CH_2 = O \xrightarrow{\Theta \text{OH}} (C) + (D) \xrightarrow{\text{risation}} \text{Linear polymer}$$

$$(B) \qquad \qquad Polymerisation \qquad Polymerisation \qquad (E)$$

$$(C) + (D) \xrightarrow{\text{risation}} \text{Polymerisation}$$

$$(E) \qquad (E)$$

$$(F) \qquad (F)$$

163. Compounds (C) and (D) are:

Paragraph for Question Nos. 164 to - 164

Me
(A)

$$CH_2 = CH_2 \xrightarrow{Baeyer's} (D)$$

Me
(B)
Polymerisation
Polymer
(E)

Polymerisation
Polymer
(G)

Me
(G)

 Me
(G)

164. Polymer (E) is:

- a) Dacron
- b) Terylene
- c) Myler
- d) All

Paragraph for Question Nos. 165 to - 165

COOEt NaOEt (B)
$$\frac{(i) \text{ H}_3\text{O}^{\oplus}}{(ii) \Delta}$$
 (C) $\frac{\text{NH}_2\text{OH}}{\text{NH}_2\text{OH}}$ (D)

Polymer(F) $\frac{\text{Polymeri-sation}}{\text{Sation}}$ (E)

165. The conversion (A) to (B) is called:

- a) Claisen ester condensation
- c) IntramolecularClaisen ester condensation
- b) Dieckmann reaction
- d) Claisen-Schmidt reaction

15.POLYMERS

: ANSWER KEY:															
1)	С	2)	b	3)	С	4)	b	9)	a,b,d	10)	a,b	11)	b,c	12)	
5)	d	6)	a	7)	C	8)	a		a,b,c,d						
9)	a	10)	a	11)	d	12)	b	13)	b	14)	a,d	15)	a,b,c	16)	
13)	d	14)	b	15)	d	16)	a		a,c						
17)	a	18)	c	19)	C	20)	b	17)	a,b,d	18)	c,d	19)	b,c	20)	
21)	c	22)	d	23)	C	24)	c		a,b,c						
25)	d	26)	a	27)	b	28)	d	21)	a,b,c,d	22)	a,b,c	23)	a	24)	
29)	c	30)	c	31)	b	32)	b		a,b						
33)	c	34)	b	35)	c	36)	b	25)	a,b,c	26)	b,c	27)	a,c	28)	
37)	a	38)	d	39)	c	40)	b		a,b,c						
41)	d	42)	c	43)	c	44)	a	29)	b,c	30)	a,b	31)	a,b,c	32)	
45)	d	46)	d	47)	b	48)	a		a,b,c						
49)	d	50)	b	51)	a	52)	d	33)	a,b,c	34)	b,c	35)	a,b	36)	
53)	b	54)	b	55)	d	56)	a		a,c,d						
57)	b	58)	d	59)	a	60)	d	37)	d	1)	b	2)	a	3)	c
61)	c	62)	b	63)	d	64)	a		4)	a					
65)	d	66)	d	67)	b	68)	a	5)	c	6)	d	7)	a	8)	c
69)	b	70)	c	71)	b	72)	a	9)	c	10)	d	11)	a	12)	a
73)	d	74)	c	75)	d	76)	d	13)	a	14)	c	15)	a	16)	b
77)	a	78)	a	79)	a	80)	a	17)	c	18)	d	19)	a	1)	d
81)	a	82)	a	83)	b	84)	a		2)	a	3)	d	4)	c	
85)	b	86)	d	87)	c	88)	c	5)	b	6)	c	7)	b	8)	a
89)	a	90)	d	91)	b	92)	a	1)	c	2)	b	3)	a	4)	b
93)	a	1)	a,b	2)	b,c	3)	b	5)	b	6)	b	7)	d	8)	
	4)	a,b,c,d	l						b,c						
5)	a,b,c,d a,d	6)	a,b,c	7)	b,c	8)									

: HINTS AND SOLUTIONS :

63 **(d)**

 $n \text{ mol of CaC}_2 = n \text{ mol of C}_2 H_4 = n \text{mol of } -(-CH_2-CH_2)$

 $n \times 64 \text{ kg} = n \times 28 \text{ kg} = n \times 28 \text{ kg}$ Amount of polyethene = 28 kg

81 **(a)**

Osmotic pressure method is best for the determination of molecular weight of polymers and proteins since O. P., through very small, is measurable. On the other hand, in other colligative properties (e.g., $\Delta T_{\rm b}$, $\Delta T_{\rm f}$, $\Delta p/p^0$ methods), the difference is very small and cannot be measured. Moreover, in O.P. method, heating is not required, while in other methods, heating is required which changes the properties of polymer and proteins

86 **(d)**

Nylon has amide linkage capable of forming intermolecular H-bonding as:

$$\begin{bmatrix}
H & O \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 &$$

Due to H-bonding,nylon has strong intermolecular attraction. Cellulose is a polyhydroxy compound,also capable of forming strong intermolecular H-bonding. Polyvinyl chloride is a polar polymer due to carbon chlorine bond and it possessstrong dipole-dipole attraction. Natural rubber is poly-isoprene,a hydrocarbon,possess weak van der Waals' attraction.

cis-poly (isoprene) natural rubber

96 **(b**

Hexamethylenediamine and adipic acid is used in the formation of nylon-66.

$$n \text{ H}_2\text{N} - (\text{CH}_2)_6 - \text{NH}_2 + \text{nHOOC} - (\text{CH}_2)_4 - \text{COOH}$$

hexamethylenediamine

$$\begin{bmatrix}
H & O & O \\
N & (CH2)6 & NH & C & (CH2)4 & C
\end{bmatrix}_{n} +_{n} H2O$$

$$\begin{bmatrix}
D & O & O \\
CH2)4 & C
\end{bmatrix}_{n}$$

97 **(a,b,c,d)**

- (c) ABS (refers to styrene butadiene styrene)
- (d) SBR (refers to styrene butadiene rubber)
- (a) Butyl rubber also refers to butadiene
- (b) Nitrile rubber refer to Buna-N

100 **(b,c)**

Glyptal and bylon-6 are condensation polymers.

102 **(a,b,d)**

Rayon is made of cellulose

105 **(a,b,c,d)**

Elastomers one polymers in which the polymer chain are held together by van der waal's forces of attraction. Example-natural rubber vulcanized rubber, buna-S and butyl rubber

107 (a,d)

Carbon tetra chloride and carbon tetra bromide act as chain transfer reagent in vinyl polymerization

110 (a,b,d)

Only artificial silk is a polysaccharide while all other are polypeptides (proteins)

111 (c,d)

Alkenes undergo addition polymerisation

113 **(a,b,c)**

These do not contain EDG or EWG, so they can be prepared by free radical addition polymerisation

114 (a,b,c,d)

All polyesters and polyamides are condensation polymers

116 **(a)**

Nylon-5, 10 refers to 5-C-atom diamine and 10-C-atom dibasic acid (first numeral refers to diamine and second numeral refers to dicarboxylic acid)

117 (a,b)

Nucleic acid and leather are biopolymers.

125 (a,b,c)

Polyester and polyamide undergo condensation polymerisation

130 **(d)**

Teflon is an addition polymer of tetrafluoroethylene.

$$nF_2C$$
 — CF_2 Heat F_2C — CF_2 — CF_2

It is used to make non-sticky utensils.

131 **(b)**

Bakelite is a thermosetting plastic. These are across linked high polymers formed from their monomers by condensation polymerisation. The chains are held together by strong covalent bonds.

133 **(c)**

Novolac is a linear-chain polymer

134 (a)

Reason is the correct explanation of assertion.

135 **(c)**

Vulcanization is a process of treating natural rubber with sulphur or some compound of sulphur under heat so, as to modify it properties. The cross linking give mechanical strength to the rubber.

136 (d)

GuttaPercha is synthetic rubber and its monomer is isoprene.

Since isoprene has EDG, so it is prepared by cationic addition polymerisation

137 (a)

Statement I is the correct explanation of statement II

138 **(c)**

Statement II is incorrect, because of the presence of double bond polyisoprene can exist in two geometrical isomeric forms

139 **(c)**

It is a highly cross-linked polymer

140 (d)

Polybutadiene is an example of chain-growth polymer (addition polymerisation)

143 (a)

Statement I is the correct explanation of A.

144 (c)

Intermolecular forces of attraction in nylon are H-bonding

145 (a)

Both statements are correct, and statements 2 is the correct explanation of statement 1

146 **(b)**

Correct explanation is nylon-6 is condensation polymer of 6-amino hexanoic acid

147 (c)

Nylon 610-monomer units.

1.H₂N(CH₂)₆NH₂ (heamethylene diamine)

2.HOOC(CH₂)COOH (sebacic acid)

148 **(d)**

Polyvinyl alcohol cannot be prepared by polymerisation of vinyl alcohol since it readily tautomerises to acetaldehyde

152 **(d)**

Buna-N is a polymer of acrylonitrile ($CH_2 = CHCN$ and butadiene $CH_2 = CH = CH = CH_2$

Nylon-66 is a polymer of hexamethylenediamine (NH₂—(CH₂)₆—NH₂) and adipic acid (HOOC—(CH₂)₄—COOH).

Dacron (terylene) is a polymer of terephthalic acid.

Glycol ($HOCH_2 - CH_2OH$)

Glyptal plastic is a polymer of phthalic acid

158 (c)

HOOC(CH₂)₂COOH From condensation polymers.

159 **(b)**

Vulcanization is responsible for tensile strength, elasticity and resistance to abrasion of rubber.