13.NUCLEI

Single Correct Answer Type

1. The radioactivity of a sample is R_{1} at a time T_{1} and R_{2} at a time T_{2}. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proportional to
a) $\begin{aligned} & R_{1} T_{1} \\ & =R_{2} T_{2}\end{aligned}$
b) $R_{1}-R_{2}$
c) $\left.\frac{\left(R_{1}-R_{2}{ }_{2}\right.}{T} \mathrm{~d}\right)\left(\begin{array}{l}\left(R_{1}\right. \\ \left.-R_{2}\right) T\end{array}\right.$
2. The half life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially both them have the same number of atoms. Then

X and Y have the	X and Y decay at	Y will decay at	X will decay at
a) same decay rate initially	b) the samec) rate always	a faster rate than X	d) a faster rate than Y

3. Consider the following reaction
${ }^{1} \mathrm{H}_{2}+{ }^{1} \mathrm{H}_{2} \rightarrow{ }_{1} \mathrm{He}^{4}+Q$
If $m\left({ }_{1} \mathrm{H}^{2}\right)=2.0141 \mathrm{u} ; m\left({ }_{2} \mathrm{He}^{4}\right)=4.0024 \mathrm{u}$, the energy Q released (in MeV) in this fusion reaction is
a) 12
b) 6
c) 24
d) 48
4. Which of the following is a correct statement?
a) Beta
b) Gamma
c) Alpha
d) Protons
rays are rays are particle and same as high- are neutron cathode energy singly shave $\begin{array}{llll}\text { rays } & \text { neutron } & \begin{array}{l}\text { ionized } \\ \text { helium } \\ \text { atoms }\end{array} & \begin{array}{l}\text { exactly } \\ \text { the } \\ \text { same } \\ \end{array}\end{array}$
5. 90% of a radioactive sample is left undecayed after time t has elapsed. What percentage of the initial sample will decay in a total time $2 t$?
a) 20%
b) 19%
c) 40%
d) 38%
6. Binding energy per nucleon verses mass number curve for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is

a) $Y \rightarrow 2 Z$
b) $\xrightarrow[\rightarrow X+Z]{W}$
c) $W \rightarrow 2 Y \mathrm{~d})^{X} Y+Z$
7. The binding energies of nuclei X and Y are E_{1} and E_{2}, respectively. Two atoms of X fuse to give one atom of Y and an energy Q is released. Then,
Q
Q
Q
Q
a) $=2 E_{1}$
b) $=E_{2}$
c) $<2 E_{1}$
d) $>E_{2}$
$-E_{2}$
$-2 E_{1}$
$-E_{2}$
$-2 E_{1}$
8. A radioactive sample of U^{238} decays to Pb through a process for which half life is 4.5×10^{9} years. The ratio of number of nuclei of $P b$ to U^{238} after a time of 1.5×10^{9} years (given $2^{1 / 3}=1.26$)
a) 0.12
b) 0.26
c) 1.2
d) 0.37
9. What is the power output of ${ }_{92} U^{235}$ reactor if it takes 30 days to use up 2 kg of fuel and if each fission gives 185 MeV of usable energy? Avogadro's number $=6.02 \times 10^{26}$ per kilomole
a) 45
b) 58.46
c) 72
d) 92
megawa
megawa
megawa
megawa
tt tt tt tt
10. In hydrogen spectrum, the wavelength of $\mathrm{H} \alpha$ line is 656 nm , whereas in the spectrum of a distant galaxy, H α line wavelength is 706 nm . Estimated speed of the galaxy with respect to earth is
a) ${ }^{2} \times 10^{8} \mathrm{~m} \mathrm{~s}$
b) $\begin{aligned} & 2 \\ & \times 10^{7} \mathrm{~m}\end{aligned}$
c) ${ }^{2} \times 10^{6} \mathrm{~m}$
$\mathrm{s}^{\mathrm{d})}{ }^{2} \times 10^{5} \mathrm{~m} \mathrm{~s}$
11. After 280 days, the activity of a radioactive sample is 6000 dps . The activity reduces to 3000dps after another 140 days. The initial activity of the sample(in dps) is
a) 6000
b) 9000
c) 3000
d) 24000
12. The binding energies per nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$ and helium (${ }_{2} \mathrm{He}^{4}$) atoms are 1.1 MeV and 7 MeV . If two deuteron atoms react to form a single helium atom, then the energy released is
a) 13.9 MeVb$) 26.9 \mathrm{MeVc}) 23.9 \mathrm{MeVd}) 19.2 \mathrm{MeV}$
13. In the options given below, let E denote the rest mass energy of a nucleus and n a neutron. the correct option is
$E\left({ }_{92}^{236} U\right) \quad E\left({ }_{92}^{236} U\right) \quad E\left({ }_{92}^{236} U\right) \quad E\left({ }_{92}^{236} U\right)$

$+2 E(n)+2 E(n)+2 E(n)+2 E(n)$
14. N_{1} atoms of a radioactive element emit N_{2} beta particles per second. The decay constant of the element is (in s ${ }^{-1}$)
a) $\frac{N_{1}}{N_{2}}$
b) $\frac{N_{2}}{N_{1}}$
c) $N_{1} \ln (2$
(2)
d) $N_{2} \ln (2)$
15. The binding energy of an electron in the ground state of He -atom is $E_{0}=24.6 \mathrm{eV}$. The energy required to remove both the electrons from the atom is
a) 24.6 eV
b) 79.0 eV
c) 54.4 eV
d) None of these
16. A nucleus ${ }_{z}^{A} \mathrm{X}$ emits an α-particle. The resultant nucleus emits a β^{+}particle. The respective atomic and mass numbers of the final nucleus will be
a) $\begin{aligned} & Z-3, A \\ & -4\end{aligned}$
b) $\begin{aligned} & Z-1, A \\ & -4\end{aligned}$
c) $\begin{aligned} & Z-2, A \\ & -4\end{aligned}$
d) $Z, A-2$
17. Order of magnitude of density of uranium nucleus is [$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$]
a) $\left.\left.\left.10^{20} \mathrm{~kg} \mathrm{nb}\right) 10^{17} \mathrm{~kg} \mathrm{nc}\right) 10^{14} \mathrm{~kg} \mathrm{nd}\right) 10^{11} \mathrm{~kg} \mathrm{n}$
18. The half-life period of a radioactive element X is same as the mean lifetime of another radioactive element Y. Initially, both of them have the same number of atoms. Then,
a) X and Y
b) X and Y
c) Y will
d) X will
have the
same
decay
rate rate than X than Y
initially always
19. A newly prepared radioactive nuclide has a decay constant λ of $10^{-6} \mathrm{~s}^{-1}$. What is the approximate half-life of the nuclide?
a) 1 hour
b) 1 day
c) 1 week
d) 1 month
20. A star initially has 10^{40} deuterons. It produces energy via the processes ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{1}^{3} \mathrm{H}+$ p and ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H}+\mathrm{n}$
If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of
[Given: $\quad M\left({ }^{2} \mathrm{H}\right)=2.014 \mathrm{u}, M(\mathrm{n})=$ $1.008 \mathrm{u}, M(\mathrm{p})=1.008 \mathrm{u} \quad$ and $M\left({ }^{4} \mathrm{He}\right)=$ 4.001 u]
a) $10^{6} \mathrm{~s}$
b) $10^{8} \mathrm{~s}$
c) $10^{12} \mathrm{~s}$
d) $10^{16} \mathrm{~s}$
21. A radioactive nucleus A finally transforms into a stable nucleus B. Then, A and B may be
a) Isobars
b) Isotones c
c) Isotopes
None of these
22. As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized $L i$ atom $(Z=3)$ is
a) 1.51
b) 13.6
c) 40.8
d) 122.4
23. Masses of two isobars ${ }_{29} \mathrm{Cu}^{64}$ and ${ }_{30} \mathrm{Zn}^{64}$ are $63.9298 u$ and $63.9292 u$, respectively. It can be concluded from these data that

	Zn^{64} is	Cu^{64} is	Cu^{64} is
Both the	radioacti	radioacti	radioacti
isobars	ve,	ve,	ve,
are	b) decayingc)	decayingd) decaying	
are	to Cu^{64}	to Zn^{64}	to Zn^{64}
stable	through	through	through
	β-decay	γ-decay	β-decay

24. Binding energy per nucleon for C^{12} is 7.68 MeV and for C^{13} is 7.74 MeV . The energy required to remove a neutron from C^{13} is
a) 5.49 MeVb
b) 8.46 MeVc
) 9.45 MeVd$) 15.49 \mathrm{Me}$
25. A radioactive sample S 1 having an activity of $5 \mu C i$ has twice the number of nuclei as another sample $S 2$ which has an activity of $10 \mu \mathrm{Ci}$. The half lives of $S 1$ and $S 2$ can be
a) 20 years b)
b) 20 years c)
10 years d
d) 5 years and 5 and 10 each each years, respecti vely vely years,
26. The luminous dials of watches are usually made by mixing a zinc sulphide phosphor with an α-particle emitter. The mass of radium (mass number 226, half-life 1620 years) that is needed to produce an average of 10α particles per second for this purpose is
a) 2.77 mg
b) 2.77 g
c) $\begin{aligned} & 2.77 \times \\ & 10^{-23} \mathrm{~g}\end{aligned}$
d) $\begin{aligned} & 2.77 \times \\ & 10^{-13} \mathrm{~kg}\end{aligned}$
27. Calculate the binding energy of a deuteron atom, which consists of a proton and a neutron, given that the atomic mass of the deuteron is 2.014102 u
a) 0.002388 b
b) 2.014102 c
c) 2.16490 ld$) \begin{aligned} & 2.224 \\ & \mathrm{MeV}\end{aligned}$
28. A radioactive substance X decays into another radioactive substance Y. Initially, only X was present. λ_{x} and λ_{y} are the disintegration
constants of X and Y . N_{y} will be maximum when
a) $\frac{N_{y}}{N_{x}-N_{y}}$ b) $\frac{N_{x}}{\lambda_{x}-N_{y}}$ c)
N_{y} c) $\lambda_{y} N_{y}$
d) $\begin{aligned} & \lambda_{y} N_{x} \\ & =\lambda_{x} N_{y}\end{aligned}$
29. A proton and a neutron are both shot at $100 \mathrm{~ms}^{-1}$ towards a ${ }_{6}^{12} \mathrm{C}$ nucleus. Which particle, if either, is more likely to be absorbed by the nucleus?
a) The
b) The proton neutron
c) Both equally d likely to be absorbe d
d) Neither particles particle are will be about absorbe
30. To determine the half-life of radioactive element, a student plots graph of $\ln \left|\frac{d N(t)}{d t}\right|$ versus t. Here $\frac{d N(t)}{d t}$ is the rate of radioactive decay at time t. If the number of radioactive nuclei of this element decreases by a factor of p after 4.16 yr , the value of p is

a) 8
b) $7^{\text {c }}$
c) 4
d) 8.5
31. A star initially has 10^{40} deutrons. It produces energy via the processes ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{H}^{2}+$ p and ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{n}$
If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of [The mass of the nuclei are as follows: $\mathrm{M}\left(\mathrm{H}^{2}\right)=2.014$ a.m. $\mathrm{u} . \mathrm{M}(\mathrm{n})=1.008$ a.m. u.. $\mathrm{M}(\mathrm{p})=1.007$ a.m. u. $. \mathrm{M}\left(\mathrm{He}^{4}\right)=$ 4.001 a. m. u..]
a) $10^{6} \mathrm{~s}$
b) $10^{8} \mathrm{~s}$
c) $10^{12} \mathrm{~s}$
d) $10^{16} \mathrm{~s}$
32. After an interval of one day, $1 / 16$ th initial amount of a radioactive material remains in a sample. Then, its half-life is
a) 6 h
b) 12 h
c) 1.5 h
d) 3 h
33. In the following atoms and molecules for the transition from $n=2$ to $n=1$, the spectral
line of minimum wavelength will be produced by
a) Hydroge b) Deuteriuc) Uni-
d) Den atom m atom ionized ionized helium lithium
34. ${ }^{238} \mathrm{U}$ decays with a half-life of 4.5×10^{9} years, the decay series eventually ending at ${ }^{206} \mathrm{~Pb}$, which is stable. A rock sample analysis shows that the ratio of the number of atoms of ${ }^{206} \mathrm{~Pb}$ and ${ }^{238} \mathrm{U}$ is 0.0058 . Assuming that all the ${ }^{206} \mathrm{~Pb}$ is produced by the decay of ${ }^{238} \mathrm{U}$ and that all other half-lives on the chain are negligible, the age of the rock sample is $\left(\ln 1.0058=5.78 \times 10^{-3}\right)$
a) $\begin{aligned} & 38 \times 10^{8} \\ & \text { years }\end{aligned}$
b) 38×10^{6}
c) $\begin{aligned} & 19 \times 10^{8} \\ & \text { years }\end{aligned}$
d) $\begin{aligned} & 19 \times 10^{6} \\ & \text { years }\end{aligned}$
35. Samples of two radioactive nuclides, X and Y , each have equal activity A at time $t=0$. X has a half-life of 24 years and Y a half-life of 16 years. The samples are mixed together. What will be the total activity of the mixture at $t=48$ years?
a) $\frac{1}{2} A_{0}$
b) $\frac{1}{4} A_{0}$
c) $\frac{3}{16} A_{0}$
d) $\frac{3}{8} A_{0}$
36. In a problem 43 , number of atoms decayed between time interval t_{1} and t_{2} are
a) $\frac{\ln (2)}{\lambda}\left(R_{1} \mathrm{~b}\right)$
$R_{1} e^{-\lambda t_{2}}$
$\left.-R_{2} e^{-\lambda t} \mathrm{c}\right)$
$\left.-R_{2}\right)$
d) $\left(\frac{R_{1}-R_{2}}{\lambda}\right.$
37. ${ }^{22}$ Ne nucleus, after absorbing energy, decays into two α-particles and an unknown nucleus. The unknown nucleus is
a) Nitrogen
b) Carbon
c) Boron
d) Oxygen
38. In an α-decay, the kinetic energy of α-particle is 48 MeV and Q value of the reaction is
50 MeV . The mass number of the mother nucleus is (assume that daughter nucleus is in ground state)
a) 96
b) 100
c) 104
d) None of these
39. If 10% of a radioactive substance decays in every 5 years, then the percentage of the substance that will have decayed in 20 years will be
a) 40%
b) 50%
c) 65.6%
d) 34.4%
40. Half-life of a radioactive substance A is two times the half-life of another radioactive substance B. Initially, the number of A and B are N_{A} and N_{B}, respectively. After three halflives of A, number of nuclei of both are equal. Then, the ratio N_{A} / N_{B} is
a) $1 / 4$
b) $1 / 8$
c) $1 / 3$
d) $1 / 6$
41. If a star can convert all the He nuclei completely into oxygen nuclei, the energy released per oxygen nuclei is (Mass of the nucleus is 4.0026 amu and mass of oxygen nucleus is 15.9994 amu)
a) 7.6 MeV
b) 5 V V
42. Half-lives of two radioactive substances A and B are, respectively, 20 min and 40 min . Initially, the samples of A and B have equal number of nuclei. After 80 min , the ratio of the remaining number of A and B nuclei is
a) $1: 16$
b) $4: 1$
c) $1: 4$
d) $1: 1$
43. The activity of a radioactive sample is 1.6 curie, and its half-life is 2.5 days. Its activity after 10 days will be
a) 0.8 curieb) 0.4 curie c) 0.1 curie d) 0.16 curie
44. What is the age of an ancient wooden piece if it is known that the specific activity of C^{14} nuclide in it amounts to $3 / 5$ of that in fresh trees? Given: the half of C nuclide is 5570 years and $\log _{e}(5 / 3)=0.5$
a) 0 years
b) 2000
c) 3000
d) 4000 years
years years
45. A sample of radioactive material decays simultaneously by two processes A and B with half-lives $\frac{1}{2}$ and $\frac{1}{4} h$, respectively. For first half hour it decays with the process A , next one hour with the process B, and for further half an hour with both A and B. If originally there were N_{0} nuclei, find the number of nuclei after 2 h of such decay
a) $\frac{N_{0}}{(2)^{8}}$
b) $\frac{N_{0}}{(2)^{4}}$
c) $\frac{N_{0}}{(2)^{6}}$
d) $\frac{N_{0}}{(2)^{5}}$
46. A radioactive element X converts into another stable element Y . Half-life of X is 2 h . Initially, only X is present. After time t, the ratio of atoms of X and Y is found to be 1:4. Then t in hours is
a) 2
b) 4
c) Betweend) 6 4 and 6
47. Binding energy per nucleon of ${ }_{1} \mathrm{H}^{2}$ and ${ }_{2} \mathrm{He}^{4}$ are 1.1 MeV and 7.0 MeV , respectively. Energy released in the process ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2}={ }_{2} \mathrm{He}^{4}$ is a) 20.8 MeVb$) 16.6 \mathrm{MeVc}) 25.2 \mathrm{MeVd}) 23.6 \mathrm{MeV}$
48. A hydrogen like atom of atomic number Z is in an excited state of quantum number $2 n$. It can emit a maximum energy photon of 204 eV . If it
makes a transition to quantum state n, a photon of energy 40.8 eV is emitted. The value of n will be
a) 1
b) 2
c) 3
d) 4
49. ${ }_{19}^{49} \mathrm{~K}$ isotope of potassium has a half-life of $1.4 \times 10^{9} \mathrm{yr}$ and decays to form stable argon, ${ }_{18}^{40} \mathrm{Ar}$. A sample of rock has been taken which contains both potassium and argon in the ratio 1:7, i.e.,
$\frac{\text { Number of potassium }-40 \text { atoms }}{\text { Number of argon }-40 \text { atom }}=\frac{1}{7}$
Assuming that when the rock was formed no argon-40 was present in the sample and none has escaped subsequently, determine the age of the rock
$4.2 \times$
$9.8 \times$
$1.4 \times$
a) 10^{9}
years
b) 10^{9}
c) 10^{9}
years
d)
10×10^{9}
years
50. During a nuclear fusion reaction
a) A heavy
nucleus
b) A light
c) A heavy
d) Two
light
breaks
into two
fragmen
ts by
itself
nucleus
nucleus nuclei combine to give a heavier nucleus and possibly other products
51. The initial activity of a certain radioactive isotope was measured as 16000 counts $\min ^{-1}$. Given that the only activity measured was due to this isotope and that its activity after 12 h was 2100 counts min^{-1}, its half-life, in hours, is nearest to [Given $\log _{e}(7.2)=2$)]
a) 9.0
b) 6.0
c) 4.0
d) 3.0
52. Some radioactive nucleus may emit

	All the three	All the three	
Only one a) α, β or γ b) at a time	${ }^{\alpha, \beta}$ and after another	c) ${ }_{\gamma}^{\alpha, \beta}$ and simultan eously	d) and β simultan eously

53. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean lifetime of one species is τ and that of the other is 5τ. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of
time. Which of the following figures best represents the form of this plot?
a)

54. Atomic mass number of an element is 232 and its atomic number is 90 . The end product of this radioactive element is an isotope of lead (atomic mass 208 and atomic number 82). The number of α - and β-particles emitted are
a) $\begin{aligned} & \alpha=3, \beta \\ & =3\end{aligned}$
b) $\begin{aligned} & \alpha=6, \beta \\ & =4\end{aligned}$
c) $\begin{aligned} & \alpha=6, \beta \\ & =0\end{aligned}$
d) $\begin{aligned} & \alpha=4, \beta \\ & =6\end{aligned}$
55. The compound unstable nucleus ${ }_{92}^{236} \mathrm{U}$ often decays in accordance with the following reaction $\quad{ }_{92}^{236} \mathrm{U} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+\quad$ order particles
In the nuclear reaction presented above, the 'other particle' might be
a) An alphab) Two
c) One
d) Two
particle, protons proton neutron
which and one
consist neutron
of two
protons
and two
neutron
s
56. In which of the following processes, the number of protons in the nucleus increase?
a) α-decay
b) $\begin{aligned} & \beta^{-} \text {decay }\end{aligned}$
c) $\begin{aligned} & \beta^{+} \text {- } \\ & \text { decay }\end{aligned}$
d) ${ }_{\text {capture }}^{\text {k- }}$
57. Consider α-particles, β-particles and γ-rays, each having an energy of 0.5 MeV . In increasing order of penetrating powers, the radiations are:
a) α, β, γ
b) α, γ, β
c) β, γ, α
d) γ, β, α
58. If in nature there may not be an element for which the principle quantum number $n>4$, then the total possible number of elements will be
a) 60
b) 32
c) 4
d) 64
59. A freshly prepared radioactive source of halflife 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with the source is
a) 6 h
b) 12 h
c) 24 h
d) 128 h
60. In the nuclear reaction given by ${ }_{2} \mathrm{He}^{4}+$ ${ }_{7} \mathrm{~N}^{14} \rightarrow{ }_{1} \mathrm{H}^{1}+\mathrm{X}$, the nucleus X is
a) Nitrogenb
b) Nitrogenc)
Oxygen
d) Oxygen of mass of mass of mass $16 \quad 17$
16 of mass 17
61. The fraction of a radioactive material which remains active after time t is $9 / 16$. The fraction which remains active after time $t / 2$ will be
a) $\frac{4}{5}$
b) $\frac{7}{8}$
c) $\frac{3}{5}$
d) $\frac{3}{4}$
62. Which of the following is in the increasing order for penetrating power
a) α, β, γ
b) β, α, γ
c) γ, α, β
d) γ, β, α
63. Assuming that about 20 MeV of energy is released per fusion reaction ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow+{ }_{2} \mathrm{He}^{4}+\mathrm{E}+$ other particles Then the mass of ${ }_{1} \mathrm{H}^{2}$ consumed per day in a fusion reactor of power 1 megawatt will approximately be
a) 0.001 g
b) 0.1 g
c) 10.0 g
d) 1000 g
64. A radioactive sample S_{1} having an activity of $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample S_{2} which has an activity of $10 \mu \mathrm{Ci}$. The half lives of S_{1} and S_{2} can be
a) 20 yr
b) 20 yr
c) 10 yr
d) 5 yr
and 5 yr and 10 each each ,respecti yr
vely ,respecti
vely
65. Consider two arbitrary decay equations and mark the correct alternative(s) given below:
66. $\quad{ }_{92}^{230} \mathrm{U} \rightarrow n+{ }_{92}^{229} \mathrm{U}$
67. $\quad{ }_{92}^{230} \mathrm{U} \rightarrow p+{ }_{91}^{229} \mathrm{U}$

Given: $M\left({ }_{92}^{230} \mathrm{U}\right)=230.033927 \mathrm{u}$,
$M\left({ }_{92}^{229} \mathrm{U}\right)=229.03349 \mathrm{u}, m_{n}=1.008665 \mathrm{u}$,
$M\left({ }_{91}^{229} \mathrm{~Pa}\right)=229.032089, m_{p}=$
$1.007825,1$ a. m.u $=931.5 \mathrm{MeV}$
a) Only
b) Only
c) Both the d)
d) Neither
decay (i)
decay decays of the is (ii) is are two possible possible possible decays is possible
66. 1.00 kg of ${ }^{235} \mathrm{U}$ undergoes fission process. If energy released per event is 200 MeV , then the total energy released is
a) $\begin{aligned} & 5.12 \\ & \times 10^{2}\end{aligned}$
b) $\begin{aligned} & 6.02 \\ & \times 10\end{aligned}$
5.12
d) $\begin{aligned} & 6.02 \\ & \times 10^{26} \mathrm{M}\end{aligned}$
67. A sample of a radioactive element has a mass
of 10 g at an instant $t=0$. The approximate mass of this element in the sample after two mean lives is
a) 1.35 g
b) 2.50 g
c) 3.70 g
d) 6.30 g
68. The activity of a radioactive element decreases to one-third of the original activity I_{0} in a period of nine years. After a further lapse of nine years, its activity will be
a) I_{0}
b) $(2 / 3) I_{0}$
c) $\left(I_{0} / 9\right)$
d) $\left(I_{0} / 6\right)$
69. During a negative beta decay

a) An	b) An	c) A	d) A part of
atomic	electron	neutron	the
electron	which is	in the	binding
is	already	nucleus	energy
ejected	present	decays	of the
	within	emitting	nucleus
	the	an	is
	nucleus	electron	converte
	is		d into an
	ejected		electron

70. The binding energy per nucleon of O^{16} is 7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is
a) 3.52
b) 3.64
c) 4.23
d) 7.86
71. Given a sample of Radium-226 having half-life of 4 days. Find the probability, a nucleus disintegrates after 2 half lives
a) 1
b) $1 / 2$
c) 1.5
d) $3 / 4$
72. The equation $4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{H} e^{2}+2 e^{-}+26 \mathrm{MeV}$ represents
a) β-decay
b) γ-decay
c) Fusion
d) Fission
73. A neutron of energy 1 MeV and mass
$1.6 \times 10^{-27} \mathrm{~kg}$ passes a proton at such a distance that the angular momentum of the neutron relative to the proton approximately equals 10^{-33} Js. The distance of closest approach neglecting the interaction between particles is
a) 0.44 nm
b) 0.44 mm c$) 0.44 \AA$
d) 0.44 fm
74. There are two ratio nuclei A and B. A is an alpha emitter and B a beta emitter. Their disintegration constants are in the ratio of 1:2. What should be the ratio of number of atoms of A and B at any time t so that probabilities of getting alpha and beta particles are same at that instant?
a) $2: 1$
b) $1: 2$
c) e
d) e^{-1}
75. The following deuterium reactions and corresponding reaction energies are found to
occur
${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N} Q=8.53 \mathrm{MeV}$
${ }^{15} \mathrm{~N}(\mathrm{~d}, \alpha){ }^{13} \mathrm{C} \quad Q=7.58 \mathrm{MeV}$
${ }^{13} \mathrm{C}(\mathrm{d}, \alpha){ }^{11} \mathrm{~B} \quad Q=5.16 \mathrm{MeV}$
The rotation ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{15} \mathrm{~N}$ represents the reaction ${ }^{14} \mathrm{~N}+\mathrm{d} \rightarrow{ }^{15} \mathrm{~N}+\mathrm{p}$
${ }_{2}^{4} \mathrm{He}=4.0026$ a.m.u.,${ }_{1}^{2} \mathrm{He}=$
2.014 a. m. u. , ${ }_{1}^{1} \mathrm{H}=$
1.0078 a.m. u. , $n=1.0087$ a.m. u. (1 a.m. u. $=$ 931 MeV)
The Q values of the reaction ${ }^{11} \mathrm{~B}(\alpha, \mathrm{n}){ }^{14} \mathrm{~N}$ is
a) 0.5 eV
b) 0.5 MeV
c) 0.05 MeVd$) 0.05 \mathrm{eV}$
76. A radioactive sample decays by 63% of its initial value in 10 s . It would have decayed by 50% of its initial value in
a) 7 s
b) 14 s
c) 0.7 s
d) 1.4 s
77. Assuming that about 200 MeV of energy is released per fission of ${ }_{92} \mathrm{H}^{235}$ nuclei, the mass of U^{235} consumed per day in a fission reactor of power 1 megawatt will be approximately
a) $10^{-2} \mathrm{~g}$
b) 1 g
c) 100 g
d) $10,000 \mathrm{~g}$
78. In a sample of rock; the ratio of ${ }^{206} \mathrm{~Pb}$ to ${ }^{238} \mathrm{U}$ nuclei is found to be 0.5 . The age of the rock is (given half-life of U^{238} is 4.5×10^{9} years)
a) $2.25 \times$ $4.5 \times$
$4.5 \times$
$2.25 \times$
a) $\begin{aligned} & 2.25 \times \\ & 10^{9} \text { year }\end{aligned}$
b) $10^{9} \ln 3$
c) $10^{9} \frac{\ln \left(\frac{3}{2}\right)}{\ln 2}$
d) $10^{9} \ln \left(\frac{3}{2}\right)$
79. The binding energy of deuteron ${ }_{1}^{2} H$ is
1.112 MeV per nucleon and an α-particle ${ }_{2}^{4} \mathrm{He}$ has a binding energy of 7.047 MeV per nucleon. Then in the fusion reaction ${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} \mathrm{He}+Q$, the energy Q released is
a) 1 MeV
b) 11.9 MeVc$)$
) 23.8 MeVd$) 931 \mathrm{MeV}$
80. The half-life of ${ }^{131}$ I is 8 days. Given a sample of ${ }^{131}$ I at time $t=0$, we can assert that

No	No	All	A given
nucleus	nucleus	nuclei	nucleus
will	will	will	may
a) decay	b) decay	c) decay	d)decay at
before	before	before	any time
$t=4$	$t=8$	$t=16$	after
days	days	days	$t=0$

81. In the fusion reaction ${ }_{1}^{2} \mathrm{He}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$, the masses of deuteron, helium and neutron expressed in a.m.u. are 2.015, 3.017 and 1.009 , respectively. If 1 kg of deuterium undergoes complete fusion, find the amount of total energy released ($1 \mathrm{a} . \mathrm{m} . \mathrm{u} .=931.5 \mathrm{meV} / \mathrm{c}^{2}$)

$$
\text { a) } \approx 6.02 \times b) \approx 5.6 \times \text { c) } \approx 9.0 \times \mathrm{d}) \approx 0.9 \times
$$

$10^{13} \mathrm{~J} \quad 10^{13} \mathrm{~J} \quad 10^{13} \mathrm{~J} \quad 10^{13} \mathrm{~J}$
82. Uranium ores contain one radium-226 atom for every 2.8×10^{6} uranium-238 atoms.
Calculate the half-life of ${ }_{92} \mathrm{U}^{238}$, given that the half-life of ${ }_{88} \mathrm{Ra}^{226}$ is 1600 years $\left({ }_{88} \mathrm{Ra}^{226}\right.$ is a decay product of ${ }_{92} \mathrm{U}^{238}$)
$1.75 \times$
$1600 \times$
$4.5 \times \quad 1600 \times$
a) 10^{3}
b) $\frac{238}{92}$ years
c) 10^{9}
d) 238
years
years
years
83. Atomic masses of two isobars ${ }_{29}^{64} \mathrm{Cu}$ and ${ }_{30}^{64} \mathrm{Zn}$ are 63.9298 u and 63.9292 u , respectively. It can be concluded from this data that

Both the isobars are stable	radioacti ve,	radioacti ve,	radioact ve,
	b) decaying c	decaying	decayi
	to ${ }^{64} \mathrm{Cu}$	to ${ }^{64} \mathrm{Zn}$	to ${ }^{64} \mathrm{Z}$
	through	through	through
	β-decay	β-decay	γ-decay

84. The half-life period of $\operatorname{RaB}\left({ }_{82} \mathrm{~Pb}^{214}\right)$ is 26.8 min . The mass of one curie of RaB is
a) $\begin{aligned} & 3.71 \times \\ & 10^{10} \mathrm{~g}\end{aligned}$
b) $\begin{aligned} & 3.71 \times \\ & 10^{-10} \mathrm{~g}\end{aligned}$
c) $\begin{aligned} & 8.61 \times \\ & 10^{10} \mathrm{~g}\end{aligned}$
d) $\begin{aligned} & 3.064 \times \\ & 10^{-8} \mathrm{~g}\end{aligned}$
85. A nucleus with atomic number Z and neutron number N undergoes two decay processes. The result is a nucleus with atomic number $Z-3$ and neutron number $N-1$. Which decay processes took place?
a) $\begin{aligned} & \text { Two } \beta^{-} \\ & \text {decays }\end{aligned}$
b) $\begin{aligned} & \text { Two } \beta^{+} \\ & \text {decays }\end{aligned}$
c) $\begin{array}{ll}\text { decay } & \text { decay } \\ \text { and a } \beta^{-} & \text {and a } \beta^{+} \\ \text {decay } & \text { decay }\end{array}$

An $\alpha-\quad$ An $\alpha-$
86. ${ }_{92} \mathrm{U}^{238}$ absorbs a neutron. The product emits an electron. This product further emits an electron. The result is
a) ${ }_{94} \mathrm{Pu}^{239}$
b) ${ }_{90} \mathrm{Pu}^{239}$
c) ${ }_{93} \mathrm{Pu}^{237}$
d) ${ }_{94} \mathrm{Pu}^{237}$
87. The percentage of quantity of a radioactive material that remains after 5 half-lives will be
a) 31%
b) 3.125%
c) 0.3%
d) 1%
88. A stationery Thorium nucleus ($A=220, Z=$ 90) emits an alpha particle with kinetic energy E_{α}. What is the kinetic energy of the recoiling nucleus?
a) $\frac{E_{\alpha}}{108}$
b) $\frac{E_{\alpha}}{110}$
c) $\frac{E_{\alpha}}{55}$
d) $\frac{E_{\alpha}}{54}$
89. An element A decays into an element C by a two-step process:
$\mathrm{A} \rightarrow \mathrm{B}+\mathrm{He}_{2}^{4}$ and $\mathrm{B} \rightarrow \mathrm{C}+2 \mathrm{e}_{-1}^{0}$
a) A and C
b) A and C
c) B and C d) A and B
are are
isotopes isobars isotopes isobars
90. A $5 \times 10^{-4} \AA$ photon produces an electronpositron pair in the vincinity of a heavy nucleus. Rest energy of electron is 0.511 MeV . If they have the same kinetic energies, the energy of each particle is nearly
a) 1.2 MeV
b) 12 MeV
c) 120 MeV d$) \frac{1200}{\mathrm{MeV}}$
91. The electron emitted in beta radiation originates from
a) Inner
b) Free
c) Decay of d) Photon orbits of electron a escaping atoms S existing neutron in a from the nucleus in a nucleus nuclei
92. The minimum frequency of a γ-ray that causes a deuteron to disintegrate into a proton and a neutron is ($m_{d}=2.0141 \mathrm{a} . \mathrm{m} . \mathrm{u} ., m_{p}=$ 1.0078 a.m. u. , $\left.m_{n}=1.0087 \mathrm{a} . \mathrm{m} . \mathrm{u}\right)$
a) $\begin{aligned} & 2.7 \\ & \times 10\end{aligned}$
b) $\begin{array}{r}5.4 \\ \times 10\end{array}$
c) $\begin{aligned} & 10.8 \\ & \times 10^{20}\end{aligned}$
d) 21.6
3. Let E_{1} and E_{2} be the binding energies of two nuclei A and B. It is observed that two nuclei of A combine together to form a B nucleus. This observation is correct only if

Nothing
a) $E_{1}>E_{2}$
b) $E_{2}>E_{1}$
c) $E_{2}>2 E_{1}$ d) can be
said
94. If mass of $U^{235}=235.12142$ a. m. u., mass of $U^{236}=236.1205 \mathrm{a} . \mathrm{m} . \mathrm{u}$. and mass of neutron $=1.008665 \mathrm{a} . \mathrm{m} . \mathrm{u}$. , then the energy required to remove one neutron from the nucleus of U^{236} is nearly about
a) 75 MeV
b) 6.5 MeV
c) 1 eV
d) Zero
95. In fission, the percentage of mass converted into energy is about
a) 10%
b) 1%
c) 0.1%
d) 0.01%
96. The energy released in a typical nuclear fusion reaction is approximately
a) 25 MeV
b) 200 MeV
c) 800 MeV d
1050 Me
97. Mark out the incorrect statement
a) A free
b) A free
c) In beta
d) All of the neutron proton minus above
can transfor can transfor decay, the m itself into photon m itself electron into originat neutron es from nucleus
98. For uranium nucleus how does its mass vary with volume?
a) $m \propto V$
b) $\begin{aligned} & m \\ & \propto 1 / V\end{aligned}$
c) $m \propto \sqrt{V}$ d) $m \propto V^{2}$
99. An element X decays, first by positron emission and then two α-particles are emitted in successive radioactive decay. If the product nucleus has a mass number 229 and atomic number 89 , the mass number and atomic number of element X are
a) 237,93
b) 237,94
c) 221,84
d) 237,92
100. At any instant, the ratio of the amounts of two radioactive substances is $2: 1$. If their half-lives be, respectively, 12 h and 16 h , then after two days, what will be the ratio of the substances?
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) $1: 4$
101. If the decay or disintegration constant of a radioactive substance is λ, then its half life and mean life are respectively
a) $\frac{\frac{1}{\lambda} \text { and }}{\frac{\log _{e} 2}{\lambda}}$
b) $\frac{\frac{1}{\lambda}}{\frac{\log _{e} 2}{\lambda}}$ and
c) $\begin{aligned} & \lambda \log _{e} 2 \\ & \text { and } \frac{1}{\lambda}\end{aligned}$
d) $\frac{\lambda}{\frac{1}{\lambda}} \frac{1}{\log _{e} 2}$ and
102. Rank the following nuclei in order from largest to smallest value of the binding energy per nucleon: (i) ${ }_{2}^{4} \mathrm{He}$, (ii) ${ }_{24}^{52} \mathrm{Cr}$, (iii) ${ }_{62}^{152} \mathrm{Sm}$, (iv) ${ }_{80}^{100} \mathrm{Hg}$, (v) ${ }_{92}^{252} \mathrm{Cf}$

$$
\begin{array}{llll}
E_{(\mathrm{v})} & E_{(\mathrm{i})} & E_{(\mathrm{ii})} & E_{(\mathrm{i})} \\
>E_{(\mathrm{iv})} & >E_{(\mathrm{ii})} & >E_{(\mathrm{iii})} & =E_{(\mathrm{ii)}}
\end{array}
$$

a) $>E_{\text {(iii) }}$
b) $>E_{\text {(iii) }}$
c) $>E_{\text {(iv) }}$
d) $=E_{\text {(iii) }}$
$>E_{(\mathrm{ii})} \quad>E_{(\mathrm{iv})} \quad>E_{(\mathrm{v})} \quad=E_{(\mathrm{iv})}$
$>E_{(\mathrm{i})} \quad>E_{(\mathrm{v})} \quad>E_{(\mathrm{i})} \quad=E_{(\mathrm{v})}$
103. Plutonium has atomic mass 210 and a decay constant equal to $5.8 \times 10^{-8} \mathrm{~S}^{-1}$. The number of α-particles emitted per second by 1 mg Plutonium is
(Avogadro's constant $=6.0 \times 10^{23}$)
a) $\begin{aligned} & 1.7 \\ & \times 10^{9}\end{aligned}$
b) $\begin{aligned} & 1.7 \\ & \times 10^{11}\end{aligned}$
c) $\begin{aligned} & 2.9 \\ & \times 10^{11}\end{aligned}$
d) $\begin{aligned} & 3.4 \\ & \times 10^{9}\end{aligned}$
104. Neutron decay in the free space is given as follows: ${ }_{0} \mathrm{n}^{1} \rightarrow{ }_{1} \mathrm{H}^{1}+{ }_{-1} \mathrm{e}^{0}+[]$
Then, the parenthesis represents
a) Photon
b) Gravitonc) Neutrin
d) Antineut 0 rino
105. U-235 can decay by many ways, let us here consider only two ways A and B. In decay of U235 by means of A , the energy released per fission is 210 MeV while in B it is 186 MeV . Then, the uranium 235 sample is more likely to decay by
a) Scheme
b) Scheme
c) Equally
d) It

likely for	depends
both	on half-
schemes	life of
	schemes
	A and B

106. The decay constant of a radioactive sample is λ. The half-life and mean-life of the sample are, respectively, given by
a) $\begin{aligned} & 1 / \lambda \text { and } \\ & (\ln 2) / \lambda\end{aligned}$
b) $\begin{aligned} & (\operatorname{In} 2) \lambda \\ & \text { and } 1 / \lambda\end{aligned}$
c) $\begin{aligned} & \lambda(\operatorname{In} 2) \\ & \text { and } 1 / \lambda\end{aligned}$
d) $\begin{aligned} & \lambda /(\operatorname{In} 2) \\ & \text { and } 1 / \lambda\end{aligned}$
107. The half-life of ${ }^{131}$ I is 8 days. Given a sample of ${ }^{131}$ I at time $t=0$, we can assert that

| No | No | | all nuclei |
| :--- | :--- | :--- | :--- | | A given |
| :--- |
| nucleus |
| nucleus | will \quad nucleus

a) decay
b) decay
before
before
$t=4$
$t=8$
days
days
c) decay
$t=16$
days
d) decay at any time after
$t=0$
108. In the disintegration series
${ }_{92}^{238} \mathrm{U} \xrightarrow{\alpha} \mathrm{X} \xrightarrow{\beta^{-\mathrm{A}} \mathrm{Y}}$
The values of Z and A, respectively, will be
a) 92,326
b) 88,230
c) 90,234
d) 91,234
109. The nuclear radius of ${ }_{8} \mathrm{O}^{16}$ is $3 \times 10^{-15} \mathrm{~m}$. If an atomic mass unit is $1.67 \times 10^{-27} \mathrm{~kg}$, then the nuclear density is approximately?
a) 2.35
b) 2.35
$\mathrm{kg} \mathrm{c} \begin{aligned} & 2.35 \\ & \times 10^{17}\end{aligned}$
d) $\begin{aligned} & 2.35 \\ & \times 10^{17} \mathrm{~kg}\end{aligned}$
110. There are two radioactive substances A and B. Decay constant of B is two times that of A. Initially, both have equal number of nuclei. After n half-lives of A, rates of disintegration of both are equal. The value of n is
a) 1
b) 2
c) 4
d) All of these
111.

\[

\]

The ratio of N_{1} to N_{2} when N_{2} is maximum is At no
a) ${ }_{\text {is }}^{\text {ti }}$
time this
b) 2
c) $1 / 2$
d) $\frac{\ln 2}{2}$
possible
112. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ, respectively. If initially they have the same number of nuclei, the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time
a) $\frac{1}{10 \lambda}$
b) $\frac{1}{11 \lambda}$
c) $\frac{11}{10 \lambda}$
d) $\frac{1}{9 \lambda}$
113. Number of nuclei of a radioactive substance are 1000 and 900 at times $t=0$ and time $t=2 \mathrm{~s}$. Then, number of nuclei at time $t=4 \mathrm{~s}$ will be
a) 800
b) 810
c) 790
d) 700
114. Gold ${ }_{79}^{198} \mathrm{Au}$ undergoes β^{-}decay to an excited state of ${ }_{80}^{198} \mathrm{Hg}$. If the excited state decays by emission of a γ-photon with energy 0.412 MeV , the maximum kinetic energy of the electron emitted in the decay is (This maximum occurs when the antineutrino has negligible energy. The recoil energy of the ${ }_{80}^{198} \mathrm{Hg}$ nucleus can be ignored. The masses of the neutral atoms in their ground states are 197.968225 u for ${ }_{79}^{198} \mathrm{Au}$ and 197.966752 u for ${ }_{79}^{198} \mathrm{Hg}$.)
a) 0.412 Meb$) 1.371 \mathrm{Mec}) 0.959 \mathrm{Med}) 1.473 \mathrm{Me}$
115. The mean life time of a radionuclide, if its activity decreases by 4% for every 1 h , would be [product is non-radioactive, i.e., stable]
a) 25 h
b) 1.042 h
c) 2 h
d) 30 h
116. A radioactive nucleus decay by two different processes. The mean value period for the first process is t_{1} and that for the second process is t_{2}. The effective mean value period for the two processes is
a) $\frac{t_{1}+t_{2}}{2}$
b) $t_{1}+t_{2}$
c) $\sqrt{t_{1} t_{2}}$
d) $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
117. A radioactive isotope is being produced at a constant rate X . Half-life of the radioactive substance is Y. After some time, the number of radioactive nuclei become constant. The value of this constant is
a) $\frac{X Y}{\ln (2)}$
b) $X Y$
c) $(\mathrm{XY}) \ln (2 \mathrm{~d}) \frac{X}{Y}$
118. Four physical quantities are listed in Column I.

Their values are listed in Column II in a random order

Column I	Column II
p. Thermal energy of air molecules at room temperature	(i) 0.02 eV
q. Binding energy of heavy nuclei per nucleon	(ii) 2 eV
r. X-ray photon energy	(iii)10 keV
s. Photon energy of visible light	(iv)7 MeV

The correct matching of Column I and Column II is given by
$\mathrm{p} \rightarrow \mathrm{i}, \mathrm{q} \quad \mathrm{p} \rightarrow \mathrm{i}, \mathrm{q} \quad \mathrm{p} \rightarrow \mathrm{ii}, \mathrm{q}$
$\mathrm{p} \rightarrow \mathrm{ii}, \mathrm{q}$
$\begin{aligned} & \text { a) } \rightarrow \mathrm{iv}, \mathrm{r} \\ & \rightarrow \mathrm{iii}, \mathrm{s}\end{aligned}$
b) \rightarrow iii, r
$\begin{aligned} &\mathrm{c}) \rightarrow \mathrm{i}, \mathrm{r} \\ & \rightarrow \mathrm{iii}, \mathrm{s}\end{aligned}$
d) $\begin{aligned} \rightarrow i v, r \\ \rightarrow i, s\end{aligned}$
\rightarrow ii
\rightarrow iv
\rightarrow iv
\rightarrow iii
119. A certain radioactive material can undergo three different types of decay, each with a different decay constant $\lambda, 2 \lambda$ and 3λ. Then, the effective decay constant $\lambda_{\text {eff }}$ is
a) 6λ
b) 4λ
c) 2λ
d) 3λ
120. The wavelength of the first spectral line in the Balmer series of hydrogen atom is $6561 \AA$. The wavelength of the second spectral line in the Balmer series of singly ionized helium atom is
a) $1215 \AA$
b) $1640 \AA$
c) $2430 \AA$
d) $4687 \AA$
121. The ratio of molecular mass of two radioactive substances is $\frac{3}{2}$ and the ratio of their decay constants is $\frac{4}{3}$. Then, the ratio of their initial activity per mole will be
a) 2
b) $\frac{8}{9}$
c) $\frac{4}{3}$
d) $\frac{9}{8}$
122. An energy of 24.6 eV is required to remove one of the electrons from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is
a) 79.0
b) 51.8
c) 49.2
d) 38.2
123. If ${ }_{92} \mathrm{U}^{238}$ changes to ${ }_{85} \mathrm{At}^{210}$ by a series of α and β-decays, the number of α - and β-decays undergone is
a) 7 and 5
b) 7 and 7
c) 5 and 7
d) 7 and 9
124. The probability of survival of a radioactive nucleus for one mean life is
a) $\frac{1}{e}$
b) $1-\frac{1}{e}$
c) $\frac{\ln 2}{e}$
d) $1-\frac{\ln 2}{e}$
125. A radioactive nuclide is produced at the constant rate of n per second (say, by bombarding a target with neutrons). The expected number N of nuclei in existence $t \mathrm{~s}$ after the number is N_{0} is given by

$$
\begin{array}{ccc}
N & =\frac{n}{\lambda} & =\frac{n}{\lambda} \\
\text { a) }_{N}=N_{0} e^{-\lambda t} \mathbf{b} \begin{array}{lll}
\frac{n}{\lambda} & \text { c) } & +\left(\begin{array}{ll}
N_{0} & \text { d) }
\end{array}+\left(N_{0}\right.\right. \\
+N_{0} e^{-\lambda t} & \left.-\frac{n}{\lambda}\right) e^{-\lambda t} & \left.+\frac{n}{\lambda}\right) e^{-\lambda t}
\end{array}
\end{array}
$$

126. Beta rays emitted by a radioactive material are
a) Electro
b) The magneti c $\quad \mathrm{s}$ radiatio orbiting
c) Charged d) Neutral particles particles emitted by the
127. A radio isotope ' X ' has a half-life of 10 s . Find the number of nuclei in the sample (if initially there are 1000 isotopes which are falling from rest from a height of 3000 m) when it is at a height of 1000 m from the reference plane
a) 50
b) 250
c) 29
d) 100
128. Half-life of a radio active substance A is 4 days. The probability that a nucleus will decay in two half-lives is
a) $\frac{1}{4}$
b) $\frac{3}{4}$
c) $\frac{1}{2}$
d) 1
129. The half-life of radioactive radon is 3.8 days. The time at the end of which $1 / 20$ th of the radon sample will remain undecayed is (given $\log _{10} e=0.4343$)
a) 3.8 days
b) 16.5
c) 33 days
d) 76 days
days
130. In the case of thorium ($A=232$ and $Z=90$), we obtain an isotope of lead ($A=208$ and $Z=82$) after some radioactive disintegration. The number of α - and β particles emitted are, respectively,
a) 6,3
b) 6,4
c) 5,5
d) 4,6
131. What would be the energy required to dissociate completely 1 g of Ca-40 into its constituent particles?
Given: Mass of proton $=1.007277$ a.m. u.,
Mass of neutron $=1.00866 \mathrm{a}$. m. u.
Mass if Ca-40 $=39.97545 \mathrm{a} . \mathrm{m} . \mathrm{u}$
(take $1 \mathrm{a} . \mathrm{m} . \mathrm{u} .=931 \mathrm{MeV}$)
None of
a) $\begin{aligned} & 4.813 \\ & \times 10^{24} \mathrm{~m}\end{aligned}$

4.81
d) the above
132. The largest wavelength in the ultraviolet region of the hydrogen spectrum is 122 nm . The smallest wavelength in the infrared region of the hydrogen spectrum (to the nearest integer is)
a) 802 nm
b) 823 nm
c) 1882 nmd
d) 1648 nm
133. The activity of a radioactive substance is R_{1} at time t_{1} and R_{2} at time $t_{2}\left(>t_{1}\right)$. Its decay constant is λ. Then
a) $R_{1} t_{1}$
$\left.\mathrm{b})_{\left.=R_{1} e^{\lambda\left(t_{1}\right.} \mathrm{c}\right)^{\frac{R_{1}-R_{2}}{t_{2}-t_{1}}}=\mathrm{c}}^{\text {onstant }} \mathrm{d}\right)=R_{1} e^{\lambda\left(t_{2}\right.}$
134. The nuclear radius of a nucleus with nucleon number 16 is $3 \times 10^{-15} \mathrm{~m}$. Then, the nuclear radius of a nucleus with nucleon number 128
is
a) $\begin{aligned} & 3 \times \\ & 10^{-15} \mathrm{~m}\end{aligned}$
b) $\begin{aligned} & 1.5 \times \\ & 10^{-15} \mathrm{~m}\end{aligned}$
c) $\begin{aligned} & 6 \times \\ & 10^{-15} \mathrm{~m}\end{aligned}$
d) $\begin{aligned} & 4.5 \\ & \times 10^{-15} \text { r }\end{aligned}$
135. A heavy nucleus having mass number 200 gets disintegrated into two small fragments of mass numbers 80 and 120 . If binding energy per nucleon for parent atom is 6.5 MeV and for daughter nuclei is 7 MeV and 8 MeV , respectively, then the energy released in the decay will be
a) 200 MeVb)
b) $-200 \mathrm{Mec}) 220 \mathrm{MeV}$
d) 180 MeV
136. Why is a ${ }_{2}^{4} \mathrm{He}$ nucleus stable than a ${ }_{3}^{4} \mathrm{Li}$ nucleus?
a) The
strong
b) The laws
) Forces
d) None of nuclear nuclear force is physics
larger
when
the
neutron
containi other the
forbid
nucleus force
to
proton ng more lithium
ratio is
higher
protons nucleus than less neutron stable s
137. The half-life of At is $100 \mu \mathrm{~s}$. The time taken for the radioactivity of a sample of At to decay to $1 / 16$ th of its initial value is
a) $400 \mu \mathrm{~s}$
b) $6.3 \mu \mathrm{~s}$
c) $40 \mu \mathrm{~s}$
d) $300 \mu \mathrm{~s}$
138. A radioactive nucleus ' X ' decays to a stable nucleus ' Y '. Then, time graph of rate of formation of ' Y ' against time ' t ' will be:
a)

b)

c)

139. A radioactive substance is being consumed at a constant rate of $1 \mathrm{~s}^{-1}$. After what time will the number of radioactive nuclei become 100 . Initially, there were 200 nuclei present
a) 1 s
b) $\frac{1}{\ln (2)} \mathrm{s}$
c) $\ln (2) s$
d) 2 s
140. A nucleus moving with velocity \vec{v} emits an $\alpha-$ particle. Let the velocities of the α-particle and the remaining nucleus be $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ and their masses be m_{1} and m_{2}, then
a) \vec{v}, \vec{v}_{1} and b)None of
c) $\vec{v}_{1}+\vec{v}_{2}$
d) $m_{1} \vec{v}_{1}+$

\vec{v}_{2} must	the two	must be	$m_{2} \vec{v}_{2}$
be	of \vec{v}, \vec{v}_{1} parallel	must be	
parallel	and \vec{v}_{2}	to \vec{v}	parallel
to each	should		to \vec{v}
other	be perallel		
	to each other		

141. Certain radioactive substance reduces to 25% of its value in 16 days. Its half-life is
a) 32 days
b) 8 days
c) 64 days
d) 28 day
142. The half-life of a certain radioactive isotope is 32 h . What fraction of a sample would remain after 16 h ?
a) 0.25
b) 0.71
c) 0.29
d) 0.75
143. A helium atom, a hydrogen atom and a neutron have masses of $4.003 \mathrm{u}, 1.008 \mathrm{u}$ and 1.009 u (unified atomic mass units), respectively. Assuming that hydrogen atoms and neutrons can fuse to form helium, what is binding energy of a helium nucleus?
a) 2.01 u
b) 3.031 u
c) 1.017 u
d) 0.031 u
144. The rest mass of a deuteron is equivalent to an energy of 1876 MeV , that of a proton to 939 MeV and that of a neutron to 940 MeV A deuteron may disintegrate to a proton and a neutron if it

Emits an	Captures	Emits an	Captures			
X-ray	an X-ray	X-ray	an X-ray			
a)	photon	b)	photon	photon	p)	photon
:---						
of						

145. The activity of a radioactive element decreases to one-third of the original activity A_{0} in a period of 9 years. After a further lapse of 9 years, its activity will be
a) A_{0}
b) $\frac{2}{3} A_{0}$
c) $\frac{A_{0}}{9}$
d) $\frac{A_{0}}{6}$
146. There are n number of radioactive nuclei in a sample that undergoes beta decay. If from the sample, n^{\prime} number of β-particles are emitted every 2 s , then half-life of nuclei is
0.693
a) $n^{\prime} / 2$
b) $\times(2 n$
c) $\frac{0.693}{\left./ n^{\prime}\right)}$
(d) $\begin{aligned} & 0.693 \\ & \times n / n^{\prime}\end{aligned}$
147. A radioactive nucleus undergoes a series of decays according to the scheme
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta} A_{2} \xrightarrow{\alpha} A_{3} \xrightarrow{\gamma} A_{4}$
If the mass number and atomic number of A
are 180 and 72 , respectively, then what are these number for A_{4} ?
a) 172 and
b) 174 and
c) 176 and
d) 176 and $\begin{array}{llll}69 & 70 & 69 & 70\end{array}$
148. When an atom undergoes β^{+}decay,
a) A
b) A protonc) A
d) A proton neutron 'changes neutron 'changes 'changes into' a 'changes into' an into' a proton neutron into' an antineut antiprot ron on
149. From a newly formed radioactive substance (Half life 2 hours), the intensity of radiation is 64 times the permissible safe level. The minimum time after which work can be done safely from this source is
a) 6 hours
b) 12 hoursc) 24 hours
sd) 128 hour
150. Stationery nucleus ${ }^{238} \mathrm{U}$ decays by a emission generating a total kinetic energy T :
${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \alpha$
What is the kinetic energy of the α-particle?

Slightly
Slightly Slightly
a) less than b) $T / 2$
T/2
c) less thand)greater
$T \quad$ than T
151. A freshly prepared radioactive source of halflife 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
a) 6 h
b) 12 h
c) 24 h
d) 28 h
152. The fission of a heavy nucleus gives, in general, two smaller nuclei, two or three neutrons, some β-particles, and some γ-radiation. It is always true that the nuclei produced
a) Have a
b) Have
total
rest-
mass
that is
greater
off the
greater
part of
large
c) Travel ind) Have exactly neutronopposite todirectio proton
energies
that ns
ratios that are too low for stability
the
original energy
nucleus released
153. Fast neutrons can easily be slowed down by
a) The use of lead shieldin through with strong
b) Passing
c) Elastic
d) Applyin
g water heavy electric nuclei field
154. The rate of decay of a radioactive element at any instant is 10^{3} disintegrations s^{-1}. If the half-life of the elements is 1 s , then the rate of decay after 1 s will be
a) $500 \mathrm{~s}^{-1}$
b) $\left.1000 \mathrm{~s}^{-1} \mathrm{c}\right) 250 \mathrm{~s}^{-1}$
d) $2000 \mathrm{~s}^{-1}$
155. Which of the following statements is incorrect for nuclear forces?
a) These
b) They arec)
They ared)
They
stronges
t in
depende
nt
depende
charge effective result
charge effective result nt depende only for from interacti on of every nucleon with the nearest limited number of nucleons
156. A radioactive nucleus is being produced at a constant rate α per second. Its decay constant is λ. If N_{0} are the number of nuclei at time $t=0$, then maximum number of nuclei possible are
a) $\frac{\alpha}{\lambda}$
b) $N_{0} \frac{\alpha}{\lambda}$
c) N_{0}
d) $\frac{\alpha}{\lambda}+N_{0}$
157. In the nuclear reaction
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{H}^{3}+{ }_{0} \mathrm{n}^{1}$
If the mass of the deuterium atom
$=2.014741$ a.m.u., mass of ${ }_{2} \mathrm{He}^{3}$ atom
$=3.016977$ a.m.u. and mass of neutron
$=1.008987$ a.m.u., then the Q value of the reaction is nearly
a) 0.00352
) 3.27 MeVc$) 0.82 \mathrm{MeVd}) 2.45 \mathrm{MeV}$
158. An α-particle of 5 MeV energy strikes with a nucleus of uranium at stationary at an scattering angle of 180°. The nearest distance upto which α-particle reaches the nucleus will be of the order of
a) $1 \AA$
b) $\left.10^{-10} \mathrm{~cm} \mathrm{c}\right) 10^{-12} \mathrm{~cm}$
d) $10^{-15} \mathrm{~cm}$
159. A radionuclide A_{1} with decay constant λ_{1} transform into a radioactive A_{2} with decay constant λ_{2}. Assuming that at the initial moment the preparation contained only the radioactive A_{1}, then the time interval after which the activity of the radioactive A_{2} reaches its maximum value is
a) $\frac{\ln \left(\lambda_{2} / \lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}$ b) $\frac{\ln \left(\lambda_{1} / \lambda_{2}\right)}{\lambda_{2}-\lambda_{1}}$ c) $\left.-\lambda_{1}\right)$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
160. Consider one of fission reactions of ${ }^{235} \mathrm{U}$ by thermal neutrons ${ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{38}^{94} \mathrm{Sr}+{ }_{54}^{140} \mathrm{Xe}+$ 2 n . The fission fragments are however unstable and they undergo successive β-decay until ${ }_{38}^{94} \mathrm{Sr}$ becomes ${ }_{40}^{94} \mathrm{Zr}$ and ${ }_{54}^{140} \mathrm{Xe}$ becomes ${ }_{58}^{140} \mathrm{Ce}$. The energy released in this process is [Given $m\left({ }^{235} \mathrm{U}\right)=235.439, m(\mathrm{n})=$ $1.00866 \mathrm{u}, m\left({ }^{94} \mathrm{Zr}\right)=93.9064 \mathrm{u}, m\left({ }^{140} \mathrm{Ce}\right)=$ $139.9055 \mathrm{u}, 1 \mathrm{u}=931 \mathrm{MeV}$

Cannot
a) 156 MeV b$) 208 \mathrm{MeV} \mathrm{c)} 456 \mathrm{MeV} \mathrm{d}$) $\begin{aligned} & \text { compute }\end{aligned}$
d
161. A free nucleus of mass $24 \mathrm{a} . \mathrm{m}$. u. emits a gamma photon (when initially at rest). The energy of the photon is 7 MeV . The recoil energy of the nucleus in keV is
a) 2.2
b) 1.1
c) 3.1
d) 2.2
162. The half-life of radium is 1500 years. In how many years will 1 g of pure radium be reduced to one centigram?
$3.927 \times$
$9.972 \times$
$99.927 \times 0.927 \times$
a) 10^{2}
b) 10^{2}
c) 10^{2}
d) 10^{2}
years
years
years
years
163. If the Q value of an endothermic reaction is 11.32 MeV , then the minimum energy of the reactant nuclei to carry out the reaction is (in laboratory frame of reference)
Less
Greater
Data is
a) 11.32 Meb) than
c) than
d)insufficie
$11.32 \mathrm{Me} \quad 11.32 \mathrm{Me} n t$
164. If a nucleus such ${ }^{226} \mathrm{Ra}$ that is initially at rest undergoes alpha decay, then which of the following statements is true?
a) The
b) The
c) The
d) We
alpha
particle particle
alpha
particle
cannot
has has less and anything
more kinetic daughte about
kinetic energy r kinetic
energy than the nucleus energy
than the daughte both of alpha
daughte r have particle
r nucleus same and
nucleus
kinetic daughte energy r nucleus
165. Two radioactive materials X_{1} and X_{2} have
decay constants 10λ and λ, respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time
a) $\frac{1}{10 \lambda}$
b) $\frac{1}{11 \lambda}$
c) $\frac{11}{10 \lambda}$
d) $\frac{1}{9 \lambda}$
166. On an average, a neutron loses half of its energy per collision with a quasi-free proton. To reduce a 2 MeV neutron to a thermal neutron having energy 0.04 eV , the number of collisions required is nearly
a) 50
b) 52
c) 26
d) 15
167. A container is filled with a radioactive substance for which the half-life is 2 days. A week later, when the container is opened, it contains 5 g of the substance. Approximately how many grams of the substances were initially placed in the container?
a) 40
b) 60
c) 80
d) 100
168. In a sample of a radioactive substance, what fraction of the initial nuclei will remain undecayed after a time $t=T / 2$, where $T=$ half-life of radioactive substance?
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2 \sqrt{2}}$
c) $\frac{1}{4}$
d) $\frac{1}{\sqrt{2}-1}$
169. Binding energy per nucleon vs. mass number curve for nuclei is shown in $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are four nuclei indicated on the curve. The process that would release energy is

a) $Y \rightarrow 2 Z$
b) $\xrightarrow{W} X+Z$
c) $\mathrm{W} \rightarrow 2 \mathrm{Y}$
d) $\xrightarrow[\rightarrow Y+Z]{X}$
170. A certain radioactive element has half-life of 4 days. The fraction of material that decays in 2 days is
a) $1 / 2$
b) $1 / \sqrt{2}$
c) $\sqrt{2}$
d) $\begin{aligned} & (\sqrt{2} \\ & -1) / \sqrt{2}\end{aligned}$
171. The half-life of a radioactive decay is x times its mean life. The value of x is
a) 0.3010
b) 0.6930
c) 0.6020
d) $\frac{1}{0.6930}$
172. The half-life of radium is 1620 years and its atomic weight is 226 . The number of atoms that will decay from its 1 g sample per second
will be
a) $\begin{aligned} & 3.6 \\ & \times 10^{10}\end{aligned}$
b) $\begin{aligned} & 3.6 \\ & \times 10^{12}\end{aligned}$
c) $\begin{aligned} & 3.1 \\ & \times 10^{15}\end{aligned}$
d) $\begin{aligned} & 31.1 \\ & \times 10^{15}\end{aligned}$
173. A radioactive sample undergoes decay as per the following graph. At time $t=0$, the number of undecayed nuclei is N_{0}. Calculate the number of nuclei left after 1 h

a) N_{0} / e^{8}
b) N_{0} / e^{10}
c) N_{0} / e^{12}
d) N_{0} / e^{14}

Multiple Correct Answers Type

174. Let m_{p} be the mass of proton, m_{n} the mass of a neutron, M_{1} the mass of a ${ }_{10}^{20} \mathrm{Ne}$ nucleus and M_{2} the mass of a ${ }_{20}^{40} \mathrm{Ca}$ nucleus. Then,
a) $\begin{aligned} & M_{2} \\ & =2 M_{1}\end{aligned}$
b) $\begin{aligned} & M_{2} \\ & >2 M_{1}\end{aligned}$
c) $\begin{aligned} & M_{2} \\ & <2 M_{1}\end{aligned}$
M_{1}
175. Mark out the correct statement(s)

a) In both	b) In	c) In fusiond)	In fusion
fission	fission	process,	process,
and	process,	BE per	BE per
fusion	BE per	nucleon	nucleon
processe	nucleon	of	of
s, the	of	reactant	reactant
mass of	reactant	nuclide	nuclide
reactant	nuclide	is less	is
nuclide	is less	than the	greater
is	than the	binding	than the
greater	binding	energy	binding
than the	energy	per	energy
mass of	per	nucleon	per
product	nucleon	of	nucleon
nuclide	of	product	of
	product	nuclide	product
	nuclide		nuclide

176. An electron in hydrogen atom first jumps from second excited state to first excited state and then from first excited state to ground state. Let the ratio of wavelength, momentum and energy of photons emitted in these two cases be a, b and c respectively. Then
a) $a=\frac{9}{4}$
b) $b=\frac{5}{27}$
c) $\begin{aligned} & c \\ & =5 / 27\end{aligned}$
d) $c=\frac{1}{a}$
177. For a certain radioactive substance, it is observed that after 4 h , only 6.25% of the original sample is left undecayed. If follows that ${ }^{1} 1$

178. In Bohr's model of the hydrogen atom

179. The phenomenon of nuclear fission can be carried out both in a controlled and in an uncontrolled way. Out of the following the correct statements vis-à-vis these phenomena are:

a) The	b) It is the	c) The	d) The
fission	'surface	'control	energy
energy	to	rods' in	eleased
	ratio of	nuclear	fission
action	the	ct	w
much	sample	ust be	as
re	of	ade of	nergy
an	nuclear	a	released
nventi	fuel	material	per unit
onal	used	that	ass
clear	which	absorbs	the fu
ction	determi	neutron	
s and	nes	s	nuclear

b) It is the
c) The
d) The
fission surface 'control energy $\begin{array}{ll}\text { energy } & \text { to } \\ \text { released } & \text { volume' }\end{array}$ nuclear fission reaction the is much sample more than nuclear conven onal nuclear which s and nes s nuclear
in the
sample
at that
time
183. From the following equations, pick out the possible nuclear fusion reaction:

$$
\begin{array}{lcl}
& & \\
& & \\
& & { }_{92} \mathrm{U}^{235} \mathrm{n}^{1} \\
{ }_{6} \mathrm{C}^{13} & { }_{6} \mathrm{C}^{12} & { }_{7} \mathrm{C}^{14}
\end{array}+{ }_{54} \mathrm{Xe}^{1 \mathrm{C}} .
$$

184. Two samples A and B of same radioactive nuclide are prepared. Sample A has twice the initial activity of sample B. For this situation, mark out the correct statement(s)
a) The half-b) The half-c) After
d) After lives of lives of each has each has both the the passed passed samples samples through through would are 5 half- 5 halfbe same different lives, the lives, ratio of ratio of activity activitie of A to $B \quad s$ of A to is $2: 1 \quad B$ is $64: 1$
185. An O^{16} nucleus is spherical and has a radius R and a volume $V=\frac{4}{3} \pi R^{3}$. According to the empirical observations, the volume of the ${ }_{54} \mathrm{X}^{128}$ nucleus assumed to be spherical is V^{\prime} and radius is R^{\prime}. Then
a) $V^{\prime}=8 \mathrm{~V}$
b) $V^{\prime}=2 V$
c) $R^{\prime}=2 R$
d) $R^{\prime}=8 R$
186. Assume that the nuclear binding energy per nucleon (B / A) versus mass number (A) is as shown in the figure. Use this plot to choose the correct choice(s) given below

Fusion	Fusion	Fission	Fission
of two	of two	of a	of a
nuclei	nuclei	nucleus	nucleus
nith	with	c) lying in	d) lying in
with	mass	the mass	the mass
mass	mam		
numbers	numbers	range of	range of

lying in	lying in	$100<$	$200<$
the	the	$A<200$	$A<260$
range of	range of	will	will
$1<A<$	$51<$	release	release
50 will	$A<100$	energy	energy
release	will	when	when
energy	release	broken	broken
	energy	into two	into two
		equal fragmen	equal
		ts	s

187. It has been found that nuclides with $2,8,20$, 50,82 , and 126 protons or neutrons are exceptionally stable. These numbers are referred to as the magic numbers and their existence has led us to
a) The idea
b) The so
c) The so-
d) Have a of called called conveni
periodici 'liquid 'shell ent
ty in drop
nuclear
properti
es
model of model of explanat ion of 'nuclear fission'
similar
to the
periodici
ty of
chemical
element
s in
periodic
table
188. Which of the following statement(s) is (are) correct?

The rest The rest In

mass of	mass of	nuclear	In
a stable	a stable	fission,	nuclear
nucleus	nucleus	energy is	fission,
is	is	released	energy is
greater	greater	by fusing	released

a)

than the	b) than the	two	d) by
sum of	sum of	nuclei of	fragment
the rest	the rest	medium	ation of
masses	masses	mass	a very
of its	of its	(approxi	heavy
separate	separate	mately	nucleus
d	d	100	
nucleons	nucleons	a.m. u.)	

189. Mark out the correct statement (s)
a) Higher
b) If the
c) Binding
binding binding energy energy

energy	energy	of a	of a
per	of	nucleus	nucleus
nucleon	nucleus	can be	is
means	were	negative	always the
nucleus	then it		positive

190. Which of the following isotopes is used for treatment for cancer?
a) K^{40}
b) Co^{60}
c) Sr^{90}
d) I^{131}
191. Choose the correct statements from the following:

192. A nuclide A undergoes α-decay and another nuclide B undergoes β-decay. Then,

All of the
α particles emitted
a) by A will b) have almost the same speed

All the \quad The β β - particles particles emitted emitted by B
c) by B will d)may have have almost widely the same different speed speeds
193. Atomic weight of Boron is 10.81 and it has two isotopes ${ }_{5} \mathrm{~B}^{10}$ and ${ }_{5} \mathrm{~B}^{11}$. Then the ratio would be
a) 19:81
b) 10: 11
c) $15: 16$
d) $81: 12$
194. In an electron transition inside a hydrogen atom, orbital angular momentum may change by ($h=$ Planck constant)
a) h
b) $\frac{h}{\pi}$
c) $\frac{h}{2 \pi}$
d) $\frac{h}{4 \pi}$
195. Mark out the correct statement(s)

196. If A, Z and N denote the mass number, the atomic number, and the neutron number for a given nucleus, we can say that

$$
\begin{array}{lll}
\text { Isobars } & \text { Isotopes } & \text { Isotopes } \\
\text { have the } & \text { have the } & \text { have the }
\end{array}
$$

${ }^{\text {a) }} \begin{aligned} & N \\ & = \\ & Z+A\end{aligned}$

197. In a nuclear reactor
a) $\begin{aligned} & \text { The } \\ & \text { chain }\end{aligned}$
b) $\begin{aligned} & \text { The } \\ & \text { thick }\end{aligned}$
c) $\begin{aligned} & \text { Heavy } \\ & \text { water }\end{aligned}$
d) $\begin{aligned} & \text { Out of } \\ & U^{238} \text { and }\end{aligned}$

reaction	concrete	(or	U^{235}
is kept	shield is	graphite	natural
under	used to)	uranium
control	slow	moderat	has less
by rods	down	e the	than 1\%
of	the	activity	of U^{235}
cadmiu	speed of	of the	
m, which	fast	reactor	
reduces	neutrons		
the rate			

198. The decay constant of a radioactive substance is 0.173 year $^{-1}$. Therefore,
a) Nearly
b) Half-life
c) One-
d) All of the 63% of of the fourth of above
the radioacti the
radioacti ve radioacti
ve substanc ve
substanc e is substanc
e will $\quad(1 / 0.17 \quad$ e will be
decay in
3)year left after
(1/0.17 8 years
3)year
199. It is observed that only 0.39% of the original radioactive sample remains undecayed after eight hours. Hence

If the number of radioacti ve nuclei of this substanc e at a
d) given instant is 10 , then the number left after 30 min would be 7.5
200. Mark the correct statement(s)

For an For an For an For an exother exother endothe exother mic mic rmic mic
a) reaction, b) reaction, c) reaction, d)reaction, if Q if Q if we the BE value is value is give the per $+12.56+12.56$ energy nucleon

MeV and	MeV and	equal to	of
the KE of	the KE of	$\|Q\|$ value	products
incident	incident	of	should
particle	particle	reaction,	be
is 2.44	is 2.44	then the	greater
MeV,	MeV	reaction	than the
then the	then the	will be	BE per
total KE	total KE	carried	nucleon
of	of	out	of
products	products		reactant
of	of		s
reaction	reaction		
is 15.00	is 12.56		
MeV	MeV		

201. The energy, the magnitude of linear momentum and orbital radius of an electron in a hydrogen atom corresponding to the quantum number n are E, P and r respectively. Then according to Bohr's theory of hydrogen atom,

$P r$ is	P / E is	$E r$ is
a) proporti b) proporti c) $)$	$E P r$ is	
constant		
onal to n	onal to n	proporti
for all	onal to	
orbits	$1 / n$	

Assertion - Reasoning Type

This section contain(s) 0 question(s) numbered 202 to 201. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True;

Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True;

Statement 2 is not correct explanation for
Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

202
Statement 1: Neutrons penetrate matter more readily as compared to protons
Statement 2: Neutrons are slightly more massive than protons
203
Statement 1: According to classical theory, the proposed path of an
electron in Rutherford atom model will be parabolic
Statement 2: According to electromagnetic theory an accelerated particle continuously emits radiation

Statement 1: Balmer series lies in the visible region of electromagnetic spectrum.
Statement 2: $\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$, where $n=3,4,5$

Statement 1: The ionizing power of β particle is less compared to α particles but their penetrating power is more
Statement 2: The mass of β-particle is less than the mass of α-particle

Statement 1: It is not possible to use ${ }^{35} \mathrm{Cl}$ as the fuel for fusion energy
Statement 2: The binding energy of ${ }^{35} \mathrm{Cl}$ is too small

Statement 1: Hydrogen atom consists of only one electron but its emission spectrum has many lines
Statement 2: Only Lyman series is found in the absorption spectrum of hydrogen atom whereas in the emission spectrum, all the series are found
208
Statement 1: 1 amu is equivalent to 931 MeV.
Statement 2: Energy equivalent (E) or $\operatorname{mass}(m)$ is $E=m c^{2}$

Statement 1: Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate
Statement 2: According to classical physics all moving electrons radiate

Statement 1: On a decay, daughter nucleus shifts two places to the left from the parent nucleus.
Statement 2: An alpha particle carries four units of mass.
211
Statement 1: The binding energy per nucleon, for nuclei with atomic mass number $A>$ 100, decreases with A
Statement 2: The nuclear forces are weak for heavier nuclei
212
Statement 1: Light nuclei are most stable if $N=Z$, while heavy nuclei are more stable if $N>Z$. [$N \rightarrow$ number of neutrons, $Z \rightarrow$ number of protons]
Statement 2: As the number of protons increases in a nucleus, the Coulomb's repulsive, force increases, which tends to break the nucleus apart. So, to keep the nucleus stable, more number of neutrons are needed which are neutral in nature

Statement 1: $\quad{ }_{z} X^{4}$ undergoes 2α-decays, 2 β-decays (negative β) and 2 γ-decays. As a result, the daughter product is ${ }_{z-2} \mathrm{Y}^{\mathrm{A}-\mathrm{B}}$
Statement 2: In α-decay, the mass number decreases by 4 unit and atomic number decreases by 2 unit. In β-decay (negative β), the mass number remains unchanged and atomic number increases by 1 unit. In γ-decay, mass number and atomic number remain unchanged
214
Statement 1: Isobars are the element having same mass number but different atomic number

Statement 2: Neutrons and protons are present inside nucleus

Statement 1: Density of all the nuclei is same
Statement 2: Radius of nucleus is directly proportional to the cube root of mass number

Statement 1: Electron capture occurs more often than positron emission in heavy elements
Statement 2: Heavy elements exhibit radioactivity

Statement 1: The ionisation potential of hydrogen to be 13.6 eV , the ionised potential of doubly ionized lithium is 122.4 eV .
Statement 2: Energy in nth state of hydrogen atom is $E_{n}=-\frac{13.6}{n^{2}}$

Statement 1: Heavy nuclides tend to have more number of neutrons than protons
Statement 2: In heavy nuclei, as there is coloumbic repulsion between protons, so excess of neutrons are preferable
219

Statement 1: All nuclei are not of same size
Statement 2: Size depends on atomic mass

Statement 1: The mass of β-particles when they are emitted is higher than the mass of electrons obtained by other mean
Statement 2: β-particle and electron, both are similar particles
221

Statement 1: Cobalt-60 is useful in cancer therapy
Statement 2: Cobalt-60 is source of γ radiations capable of killing
cancerous cell

Statement 1: $\quad 4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}^{2+}+2 e^{+}+$ 26 MeV ,represents fusion.
Statement 2: The above case is a β-decay.

223

Statement 1: The fission of a heavy nucleus is always accompanied with the neutrons along with two product nuclei
Statement 2: For a lighter stable nuclide, the $\frac{N}{Z}$ ratio has to be slightly greater than 1

Statement 1: Radioactive nuclei emits β^{-1} particles
Statement 2: Electrons exist inside the nucleus

Statement 1: A certain radioactive substance has a half-life period of 30 days. Its disintegration constant is 0.0231 day $^{-1}$

Statement 2: The decay constant is related with half-life $\lambda=\frac{0.6931}{T}$

Statement 1: ${ }_{38} \mathrm{Sr}^{90}$ from the radioactive fall out from a nuclear bomb ends up in the bones of human beings through the milk consumed by them. It causes impairment of the production of red blood cells
Statement 2: The energy β-particle emitted in the decay of ${ }^{90} \mathrm{Sr}$ damage to bone marrow

Statement 1: The ratio of time taken for light emission from an atom to that for release of nuclear energy in fission is $1: 100$.
Statement 2: Time taken of the light emission from an atom is of the order of $10^{-8} \mathrm{~S}$.

Statement 1: Electrons in the atom are held due to coulomb forces

Statement 2: The atom is stable only because the centripetal force due to Coulomb's law is balanced by the centrifugal force

Statement 1: Amongst alpha, beta and gamma rays, α-particle has maximum penetrating power
Statement 2: The alpha particle is heavier than beta and gamma rays

Statement 1: Radioactivity of 10^{8} undecayed radioactive nuclei of half life of 50 days is equal to that of 1.2×10^{8} number of undecayed nuclei of some other material with half life of 60 days
Statement 2: Radioactivity is proportional to half-life

Statement 1: The positively charged nucleus of an atom has a radius of almost $10^{-15} \mathrm{~m}$
Statement 2: In α-particle scattering experiment, the distance of closest approach for α particles is $\simeq 10^{-15} \mathrm{~m}$

Statement 1: ${ }^{90} \mathrm{Sr}$ from the radioactive fall out from a nuclear bomb ends up in the bones of human beings through the milk consumed by them. It causes impairment of the production of red blood cells.

Statement 2: The energetic β-particles emitted in the decay of ${ }^{90} \mathrm{Sr}$ damage the bone marrow.

Statement 1: In alpha decay of different radioactive nuclides, the
energy of alpha particles has been compared. It is found that as the energy of alpha particle increases the half-life of the decay goes on decreasing
Statement 2: More is the energy in any decay process, more is the probability of decaying the nuclide which leads to faster rate of decay

Statement 1: (A) Fission of ${ }_{92}^{235} \mathrm{U}$ is brought about by thermal neutron, whereas that of ${ }_{92}^{238} \mathrm{U}$ is brought about by a fast neutron.
Statement 2: $\quad{ }_{92}^{235} \mathrm{U}$ is an even-odd nucleus, whereas ${ }_{92}^{238} \mathrm{U}$ is an eveneven nucleus.

Statement 1: For the scattering of α particles at large angles, only the nucleus of the atom is responsible
Statement 2: Nucleus is very heavy in comparison to electrons

Statement 1: The mass of a nucleus can be either less than or more than the sum of the masses of nucleons present in it
Statement 2: The whole mass of the atom is considered in the nucleus

Statement 1: The amount of energy required to remove an average nucleon from different nuclei having different mass numbers is approximately the same, while to remove an average electron from atoms having different mass numbers widely varying amounts of energies are required
Statement 2: Nucleons in a nucleus are bounded by short-range
nuclear force while in a electrons in an atom are bounded by long-range Coulomb's forces

Statement 1: The force of repulsion between atomic nucleus and α-particle varies with distance according to inverse square law
Statement 2: Rutherford did α-particle scattering experiment

Statement 1: Half-life of a certain radioactive element is 100 days. After 200 days, fraction left undecayed will be 50%
Statement 2: $\quad \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$, where symbols have usual meaning.

Statement 1: A nucleus having energy E_{1} decays be β^{-} emission to daughter nucleus having energy E_{2}, but the β^{-} rays are emitted with a continuous energy spectrum having end point energy $E_{1}-E_{2}$.
Statement 2: To conserve energy and momentum in β - decay at least three particles must take part in the transformation.
241 This question contains statements I and statements II of the four choices given after the statements, choose the one that best describes the two statements.
Statement 1: Energy is released when heavy nuclei undergo fission of light nuclei undergo fusion.
Statement 2: For heavy nuclei, binding energy per nucleon increases with increasing Z while for light nuclei it decreases with increasing Z.
242
Statement 1: The nucleus ${ }_{Z}^{A} X$ is having atomic mass as well as its
mass number as A
Statement 2: Mass number of an element is an integer that specifies an isotope and has no units, while atomic mass is generally not an integer

Statement 1: To determine the age of certain very old organic samples, dating of the sample with radioactive isotopes having larger half-life is a better choice than with radioactive isotopes having smaller half-lives
Statement 2: The activity of a radioactive sample having smaller halflife is negligibly small after a very long time and hence makes it next to impossible to get detected
244
Statement 1: $\quad{ }_{Z} X^{A}$ undergoes 2α-decays, 2β-decays and 2γ-decays and the daughter product is ${ }_{Z-2} Y^{A-8}$
Statement 2: In α-decay the mass number decreases by 4 and atomic number decrease by 2 . In β decay the mass number remains unchanged, but atomic number increases by 1 only
245
Statement 1: Energy is released in nuclear fission
Statement 2: Total binding energy of the fission fragments is larger than the total binding energy of the parent nucleus
246
Statement 1: If the half-life of a radioactive substance is 40 days then 25% substance decays in 20 days
Statement 2: $\quad N=N_{0}=\left(\frac{1}{2}\right)^{n}$ where
$n=\frac{\text { Time elapsed }}{\text { half-life period }}$

Matrix-Match Type

This section contain(s) 0 questions. Each question contains Statements given in 2 columns which have to be matched. Statements in columns I have to be matched with Statements in columns II.

247 Column II gives certain systems undergoing a process. Column I suggests changes in some of the parameters related to the system. Match the statements in Column I to the appropriate process(es) from Column II

Column-I

Column- II
(A) The energy of the system is increased
(p) System : A capacitor, initially unchanged Process: It is connected to a battery
(B) Mechanical energy (q) System : A gas in an is provided to the system, which is converted into energy of random motion of its parts adiabatic container fitted with an adiabatic piston Process: The gas is compressed by pushing the piston
(C) Internal energy of (r) System : A gas in the system is rigid container converted into its Process: The gas mechanical energy gets cooled due to colder atmosphere surrounding it
(D) Mass of the system (s) System : A heavy is decreased
nucleus, initially at rest Process: The nucleus fissions into two fragments of nearly equal masses and some neutrons are emitted
(t) System : A resistive wire loop Process : The loop is placed in a time varying magnetic field perpendicular to its plane

Codes:

$\begin{array}{lllll}\text { (c) } & \text { q,r,s } & \text { q,r,s } & \text { q,r,s } & \text { p,r,s } \\ \text { (d) } & \text { p,s } & \text { p,r,s } & \text { r,s } & \text { q,r,s }\end{array}$
249 In Column I some of the nuclear reactions are given. Match this with the energy involved in these reactions in Column II

Column-I

Column- II

(A) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
(p) 3.3 MeV
$\rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+\mathrm{E}_{1}$
(B) ${ }_{1}^{3} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
(q) 18.3 MeV
$\rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+\mathrm{E}_{2}$
(C) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
(r) 4 MeV
$\rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+\mathrm{E}_{3}$
(D) ${ }_{2}^{3} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
(s) 17.6 MeV
$\rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{H}+\mathrm{E}_{4}$
(t) 200 MeV

Codes:

	A	B	C	D
(a)	p	q	r	s
(b)	s	p	q	r
(c)	q	r	s	p
(d)	r	s	p	q

250 Four physical quantities are given in Column I and their order of values in Column II. Match approximately

Column-I

Column- II

(A) Thermal energy of (p) 0.02 eV air molecules at room temperature
(B) Binding energy of (q) 2 eV heavy nuclei per nucleon
(C) X-ray photon
(r) 10 KeV energy
(D) Photon energy of (s) 7 MeV visible light
Codes:
A B
C D
(a) $\mathrm{p} \quad \mathrm{s} \quad \mathrm{r} \quad \mathrm{q}$
(b) $\mathrm{s} \quad \mathrm{r} \quad \mathrm{q} \quad \mathrm{p}$

(c)	r	q	p	s
(d)	q	p	s	r

Column-I

Column- II
(A) Stability of nucleus (p) - ve decided by
(B) Four radioactive substance
(q) Binding energy per spontaneously decays because its
(C) For the stable orbit(r) Neutron-proton or bound orbit, ratio total energy is
(D) Stopping potential (s) Packing fraction
(t) Mass defect

Codes:

	A	B	C	D
(a)	R, s	s, t	q	t, r
(b)	$\mathrm{r}, \mathrm{s}, \mathrm{t}$	q	p	p
(c)	q	t, r	s, t	$\mathrm{r}, \mathrm{s}, \mathrm{t}$
(d)	t, r	$\mathrm{r}, \mathrm{s}, \mathrm{t}$	p,	q

252

Column-I

Column- II
(A) Nuclear fusion (p) Satisfies $E=m c^{2}$
(B) Nuclear fission
(C) β-decay
(r) Generally possible for nuclei with higher atomic number and unstable
(D) Exothermic nuclear reaction
(s) Essentially proceeds by weak nuclear forces
(t) Significant momentum conservation

Codes:

	A	B	C	D
(a)	P,r	s	q, s	p,q,t
(b)	s	q, s	$\mathrm{p}, \mathrm{q}, \mathrm{t}$	p, r
(c)	$\mathrm{p}, \mathrm{q}, \mathrm{t}$	p, r,	s	q, s
(d)	q, s	$\mathrm{p}, \mathrm{q}, \mathrm{t}$	p, r	s

Column-I

Column- II
(A) Photoelectric
(p) Photon
effect
(B) Wave
(q) Frequency
(C) X-rays
(r) K capture
(D) Nucleus
(s) γ-rays

Codes:

	A	B	C	D
(a)	q	r	s	p
(b)	r	s	p	q
(c)	s	q	p	r
(d)	p	q	r	s

254

Column-I

Column- II
(A) Binding energy per(p) Shell model nucleon for middle order of element is
(B) Nuclear force \quad (q) 8.8 MeV depends on
(C) For nuclear fission,(r) 2.5 ev $\frac{Z^{2}}{A}$ is
(D) Magic numbers 2, (s) Spin of nucleons $8,20,28,50,82$,
126 are explained by
(t) Greater than 15

Codes:

	A	B	C	D
(a)	p	s	t	p
(b)	s	t	p	p
(c)	t	p	p	s
(d)	p	t	s	p

255 Match the Column I of properties with Column - II of reactions

Column-I

Column- II

(A) Mass of products (p) α-decay formed is less than the original mass of the system in
(B) Binding energy per(q) β-decay nucleon increase in
(C) Mass number is
(r) Nuclear fission conserved in
(D) Charge number is conserved in
Codes:

	A	B	C	D
(a)	P,q,r	r,s	q, s	p, s
(b)	p,q,r,	p,q,r,s	p, q, r, s	p, q, r, s
	s			
(c)	p, q	q, s	p, s	q, p
(d)	q, s	p, s	p, q	r, s

Linked Comprehension Type

This section contain(s)0 paragraphs. Based upon each paragraph, multiple choice questions have to be answered. Each question has at least 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 256-255
According to Bohr's theory of hydrogen atom, electrons revolve around the nucleus in stationary orbits. The radius of stationery orbits $r \propto n^{2}$. Velocity of electron in stationary orbits $v \propto \frac{1}{n}$ and total energy of electron in stationary orbits $-E \propto$
$\frac{1}{n^{2}}$. Energy emitted when an electron jumps from outer orbit n_{2} to inner n_{1} is,
$h v=E_{2}-E_{1}=R h c\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
where $R=$ Rydberg constant
$=1.097 \times 10^{7} \mathrm{~m}^{-1}$
256. Total energy of electron in first stationary orbit of hydrogen atom is -13.6 eV . The energy in second stationery orbit would be
a) 13.6 eV
b) 8.6 eV
c) $-13.6 \mathrm{eVd})-3.4 \mathrm{eV}$

Paragraph for Question Nos. 257-257
Atomic number (Z) of an element is the number of protons present in the nucleus of an atom of the element.Mass number (A) is total number of protons and neutrons present in the nucleus of the atom of the element. The size of nucleus is given by $R=R_{0} A^{1 / 3}$,where $R_{0}=$ a constant
$=1.2 \times 10^{-15} \mathrm{~m}$. Nuclear density $\rho=$
$\frac{3 m}{4 \pi R_{0}^{3}}=$ constant
$=2.29 \times 10^{77} \mathrm{kgm}^{-3}$
257. Number of neutrons in a gold nucleus with $A=197$ and $Z=79$ is
a) 79
b) 197
c) 118
d) None of these

Paragraph for Question Nos. 258-258

Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant λ and half-life $T_{1 / 2}$. At time $t=0$, there are N_{0} nuclei of the element X
258. The number N_{X} of nuclei of X at time $t=T_{1 / 2}$ is

$$
\text { a) } \frac{K+\lambda N_{0}}{2 \lambda} \text { b) } \begin{array}{ll}
\left(2 \lambda N_{0}\right. \\
-K) \frac{1}{\lambda} & \text { c) }
\end{array} \begin{array}{ll}
\lambda N_{0} & \text { Data } \\
\left.+\frac{K}{2}\right] \frac{1}{\lambda} & \text { d)insufficie } \\
\text { nt }
\end{array}
$$

Paragraph for Question Nos. 259-259

A radionuclide with decay constant λ is being produced in a nuclear reactor at a rate $q_{0} t$ per second, where q_{0} is a positive constant and t is the time. During each decay, E_{0} energy is released. The production of radionuclide starts at time $t=0$
259. Which differential equation correctly represents the above process?
a) $\frac{d N}{d t}+\lambda N_{\text {b) }} \frac{d N}{d t}-\lambda N_{\text {c) }} \frac{d N}{d t}$
$=q_{0} t \quad=q_{0} t$
$=\lambda N$
d) $\begin{aligned} & \frac{d N}{d t} \\ & +q_{0} t\end{aligned}$
$=-\lambda N$

Paragraph for Question Nos. 260-260

Various rules of thumb have been proposed by the scientific community to explain the mode of radioactive decay by various radioisotopes. One of the major rules is called the n / p ratio. If all the known isotopes of the elements are plotted on a graph of number of neutrons (n) versus number of protons (p), it is observed that all isotopes lying outside of a 'stable' n / p ratio region are radioactive as shown in

The graph exhibits straight line behavior with unit slope up to $p=25$. Above $p=25$, those isotopes with an n / p ratio lying below the stable region usually undergo electron capture while those with n / p ratios lying above the stable region usually undergo beta decay. Very heavy isotopes ($p>83$) are unstable because of their relatively large nuclei and they undergo alpha decay. Gamma ray emission does not involve the release of a particle. It represents a change in an atom from a higher energy level to a lower energy level
260. How would the radioisotope of magnesium with atomic mass 27 undergo radioactive decay?
a) Electron b) Alpha capture decay
c) Beta decay
d) Gamma
ray emission

Paragraph for Question Nos. 261-261

The radionuclide ${ }^{56} \mathrm{Mn}$ is being produced in a cyclotron at a constant rate P by bombarding a manganese target with deuterons. ${ }^{56} \mathrm{Mn}$ has a halflife of 2.5 h and the target contains large number of only the stable manganese isotopes ${ }^{56} \mathrm{Mn}$. The reaction that produces ${ }^{56} \mathrm{Mn}$ is
${ }^{56} \mathrm{Mn}+\mathrm{d} \rightarrow{ }^{56} \mathrm{Mn}+\mathrm{p}$
After being bombarded for a long time, the activity
of ${ }^{56} \mathrm{Mn}$ becomes constant, equal to $13.86 \times$ $10^{10} \mathrm{~s}^{-1}$. (Use $\ln 2=0.693$; Avagardo number $=6 \times 10^{2}$; atomic weight of ${ }^{56} \mathrm{Mn}=56 \mathrm{~g} \mathrm{~mol}^{-1}$.)
261. At what constant rate $P,{ }^{56} \mathrm{Mn}$ nuclei are being produced in the cyclotron during the bombardment?

$$
\text { a) } \begin{aligned}
& 2 \\
& \times 10^{11} \mathrm{nt}{ }^{\text {b) }} \begin{array}{l}
13.86 \\
\times 10^{10} \mathrm{nt}
\end{array}{ }^{\text {c) }} \times 10^{9.6} \mathrm{nt}{ }^{10} \times 10^{10} \mathrm{nt}
\end{aligned}
$$

Paragraph for Question Nos. 262-262

Many unstable nuclei can decay spontaneously to a nucleus of lower mass but different combination of nucleons. The process of spontaneous emission of radiation is called radioactivity. Three types of radiations are emitted by radioactive substance Radioactive decay is a statistical process.
Radioactivity is independent of all external conditions
The number of decays per unit time or decay rate is called activity. Activity exponentially decreases with time. Mean lifetime is always greater than halflife time
262. Choose the correct statement about radioactivity:

Radioact $\begin{array}{ll}\text { Radioact } & \text { When a } \\ \text { ivity is } & \text { nucleus } \\ \text { indepen } & \text { undergo } \\ \text { dent of } & \text { es } \alpha \text { - or }\end{array}$
a) $\begin{array}{lll}\text { ivity is a } & \text { digh } & \text { c) } \beta \text {-decay, d) All of } \\ \text { statistica } & \text { high } & \text { these } \\ \text { l process } & \text { tempera } & \text { its } \\ & \text { ture and } & \text { atomic } \\ & \text { high } & \text { number } \\ & \text { pressure } & \text { changes }\end{array}$

Paragraph for Question Nos. 263-263

All nuclei consist of two types of particles-protons and neutrons. Nuclear force is the strongest force. Stability of nucleus is determined by the neutronproton ratio or mass defect or binding energy per nucleus or packing fraction. Shape of nucleus is calculated by quadrupole moment. Spin of nucleus depends on even or odd mass number. Volume of nucleus depends on the mass number. Whole mass of the atom (nearly 99\%) is centered at the nucleus. Magnetic moment of the nucleus is measured in terms of the nuclear magnetons
263. The correct statements about nuclear force is/are
a) Charge
b) Short-
c) Non-
d) Spin-

indepen	range	conserv	depende
dent	force	ative force	nt force

Paragraph for Question Nos. 264-264

When subatomic particles undergo reactions, energy is conserved, but mass is not necessarily conserved. However, a particle's mass 'contributes' to its total energy, in accordance with Einstein's famous equation, $E=m c^{2}$
In this equation, E denotes the energy a particle carries because of its mass. The particle can also have additional energy due to its motion and its interaction with order particles
Consider a neutron at rest, and well separated from other particles. It decays into a proton, an electron, and an undetected third particle:
Neutron \rightarrow proton + electron + ???
The table below summarizes some data from a single neutron decay. An MeV (mega electron volt) is a unit energy. Column 2 shows the rest mass of the particle times the speed of light squared

Particle	Mass $\times \mathbf{c}^{\mathbf{2}}(\mathbf{M e V})$	Kineti \mathbf{c} energ \mathbf{y} $\mathbf{(M e V}$ $)$
Neutron	940.97	0.00
Proton	939.67	0.01
electron	0.51	0.39

264. Assuming the table contains no major errors, what can we conclude about the (mass $\times \mathrm{c}^{2}$) of the undetected third particle?

Paragraph for Question Nos. 265-265

The compound unstable nucleus ${ }_{92}^{236} \mathrm{U}$ often decays in accordance with the following reaction:
${ }_{92}^{236} \mathrm{U} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+$ other particles
During the reaction, the uranium nucleus 'fission' (splits) into the two smaller nuclei. The reaction is energetically favorable because the small nuclei have higher nuclear binding energy per nucleon
(although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons) Inside a nucleus, the nucleons (protons and neutrons) attract each other with a 'strong nuclear' force. All nucleons exert approximately the same strong nuclear force on each other. This force holds the nucleus together. Importantly, the strong nuclear force becomes important only when the protons and neutrons are very close together at intranuclear distances
265. In the nuclear reaction presented above, the 'other particles' might be
a) An alphab) Two
c) One
d) Two particle, protons
proton neutron which consists and one s of two protons
and neutron s

Paragraph for Question Nos. 266-266

A beam of alpha particles is incident on a target of lead. A particular alpha particle comes in 'head-on' to a particular lead nucleus and stops 6.50×10^{-14} m away from the center of the nucleus.(The point is well outside the nucleus.) Assuming that the lead nucleus, which has 82 protons, remains at rest. The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$
266. Calculate the electrostatic potential energy at the instant when the alpha particle stops?
a) 36.3 MeVb
) 45.0 MeVc)
3.63 MeVd) 40.0 MeV

Paragraph for Question Nos. 267-267

A nucleus, kept at rest in free space, break up into two smaller nuclei of masses m and $2 m$. Total energy generated in this fission is E. The bigger part is radioactive, emits five gamma ray photons in the direction opposite to its velocity, and finally comes to rest. Now, answer the following questions: (given: $h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}, m=1.00 \times$ $10^{-26} \mathrm{~kg}, E=3.63 \times 10^{-8} \mathrm{mc}^{2}, c=3 \times 10^{8} \mathrm{~ms}^{-1}$
267. Fractional loss of mass in the fission is
a) $\begin{aligned} & 1.21 \\ & \times 10^{-8}\end{aligned}$
b) $\begin{aligned} & 2.56 \\ & \times 10^{-8}\end{aligned}$
c) $\begin{aligned} & 1.73 \\ & \times 10^{-8}\end{aligned}$
d) $\begin{aligned} & 3.52 \\ & \times 10^{-8}\end{aligned}$

Paragraph for Question Nos. 268-268

The results of activity measurements on a
radioactive sample are given in the table below.

Time (h)	Decays $\left(\mathrm{s}^{-1}\right)$
0	20000
0.5	14800
1.0	11000
1.5	8130
2.0	6020
2.5	4460
3.0	3300
4.0	1810
5.0	1000
6.0	550
7.0	300

268. The half-life of the radioactive nuclei is nearly $(\ln 2=0.693, \ln 3=1.0986)$
a) 2.5 h
b) 7 h
c) 5 h
d) 1.2 h

Paragraph for Question Nos. 269-269

Scientists are working hard to develop nuclear fusion reactor. Nuclei of heavy hydrogen, ${ }_{1}^{2} \mathrm{H}$, known as deuteron and denoted by D, can be thought of as a candidate for fusion reactor. The $D-$ D reaction is ${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} H e+n+$ energy. In the core of fusion reactor, a gas of heavy hydrogen is fully ionized into deuteron nuclei and electrons. This collection of ${ }_{1}^{2} \mathrm{H}$ nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperatures in the reactor core are too high and no material wall can be used to confine the plasma. Special techniques are used which confine the plasma for a time t_{0} before the particles fly away from the core. If n is the density (number/volume) of deuterons, the product $n t_{0}$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater than $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{3}$. It may be helpful to use the following : Boltzmann constant
$k=8.6 \times 10^{-5} \mathrm{eV} / \mathrm{K} ; e^{2}=1.44 \times 10^{-9} \mathrm{eVm}$
269. In the core of nuclear fusion reactor, the gas becomes plasma because of

a) Strong	b) Coulom c)	Coulom d) The high	
nuclear	b force	b force	tempera
force	acting	acting	ture
acting	between	between	maintain
between	the	deutero	ed
the	deutero	ns-	inside
deutero	ns	electron	the

b) Coulom
b force
acting between eutero ns

When a particle is restricted to move along x-axis between $x=0$ and $x=a$, where a is nanometer dimension, its energy can take only certain specific values. The allowed energies of the particle moving in such a restricted region, correspond to the formation of standing waves with nodes at its ends $x=0$ and $x=a$. The wavelength of this standing wave is related to the linear momentum p of the particle according to the de Broglie relation. The energy of the particle of mass m is related to its linear momentum as $E=\frac{p^{2}}{2 m}$. Thus, the energy of the particle can be denoted by a quantum number n^{\prime} taking values $1,2,3, \ldots \ldots(n=1$, called the ground state) corresponding to the number of loops in the standing wave.
Use the model described above to answer the following three questions for a particle moving in the line $x=0$ to $x=a$.
Take $h=6.6 \times 10^{-34} \mathrm{~J} s$ and $e=1.6 \times 10^{-19} \mathrm{C}$
270. The allowed energy for the particle for a particular value of n is proportional to
a) a^{-2}
b) $a^{-3 / 2}$
c) a^{-1}
d) a^{2}

Paragraph for Question Nos. 271-271

In a mixture of $\mathrm{H}-\mathrm{He} e^{+}$gas ($\mathrm{He}{ }^{+}$is singly ionized $H e$ atom), H atoms and He^{+}ions are excited to their respective first excited states. Subsequently, H atoms transfer their total excitation energy to He^{+} ions (by collisions). Assume that the Bohr model of atom is exactly valid
271. The quantum number n of the state finally populated in He^{+}ions is
a) 2
b) 3
c) 4
d) 5

Paragraph for Question Nos. 272-272

The key feature of Bohr's theory of spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a
proton. We will extend this to a general rotational motion to find quantized rotational energy of a diatomic molecule assuming it to be rigid. The rule to be applied is Bohr's quantization condition
272. A diatomic molecule has moment of inertia I. By Bohr's quantization condition its rotational energy in the $n^{\text {th }}$ level ($n=0$ is not allowed) is

$$
\text { a) } \frac{1}{n^{2}}\left(\frac { h ^ { 2 } } { 8 \pi ^ { 2 } I } \text { b) } \frac { 1 } { n } (\frac { h ^ { 2 } } { 8 \pi ^ { 2 } I }) \text { c) } n (\frac { h ^ { 2 } } { 8 \pi ^ { 2 } I }) \text { d) } n ^ { 2 } \left(\frac{h^{2}}{8 \pi^{2} I}\right.\right.
$$

Paragraph for Question Nos. 273-273
The β-decay process, discovered around 1900, is basically the decay of a neutron (n), in the laboratory, a proton (p) and an electron $\left(e^{-}\right)$are observed as the decay products of the neutron therefore, considering the decay of a neutron as a two-body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has a continuous spectrum. Considering a three-body decay process, i.e. $n \rightarrow p+e^{-}+\bar{v}_{e}$, around 1930, Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino $\left(\bar{v}_{e}\right)$ to be massless and possessing negligible energy, and neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the electron is $0.8 \times 10^{6} \mathrm{eV}$. The kinetic energy carried by the proton is only the recoil energy
273. What is the maximum energy of the antineutrino
a) Zero

> Much larger d) than $0.8 \times$ $10^{6} \mathrm{eV}$

Integer Answer Type

: ANSWER KEY :

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 (d)
$R_{1}=N_{1} \lambda, R_{2}=N_{2} \lambda$
Also,
$T=\frac{\log _{e} 2}{\lambda}$ or $\lambda=\frac{\log _{e} 2}{T}$
$\therefore R_{1}-R_{2}=\left(N_{1}-N_{2}\right) \lambda$
$=\left(N_{1}-N_{2}\right) \frac{\log _{e} 2}{T}$
$\therefore\left(N_{1}-N_{2}\right)=\frac{\left(R_{1}-R_{2}\right) T}{\log _{e} 2}$
i.e., $\left(N_{1}-N_{2}\right) \propto\left(R_{1}-R_{2}\right) T$

2 (c)
$\left(T_{1 / 2}\right)_{x}=\left(t_{\text {mean }}\right)_{y}$
$\Rightarrow \frac{0.693}{\lambda_{x}}=\frac{1}{\lambda_{y}} \Rightarrow \lambda_{x}=0.693 \lambda_{y}$ or $\lambda_{x}<\lambda_{y}$
Also rate of decay $=\lambda N$
Initially number of atoms (N) of both are equal but since $\lambda_{y}>\lambda_{x}$, therefore, y will decay at a faster rate than x
3 (c)
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{He}^{4}+\mathrm{Q}$
$\Delta m=m\left({ }_{2} \mathrm{He}^{4}\right)-2 m\left({ }_{1} \mathrm{H}^{2}\right)$
$\Delta m=4.0024-2(2.0141)$
$\Delta m=-0.0258 \mathrm{u}$
Now, $Q=c^{2} \Delta m$
Or $=(0.0258)(931.5) \mathrm{MeV}$
$\mathrm{Or} \approx 24 \mathrm{MeV}$
4 (a)
Both the beta rays and the cathode rays are made up of electrons. So, only option (a) is correct
Gamma rays are electromagnetic waves
Alpha particles are doubly ionized helium atoms Protons and neutrons have approximately the same mass
Therefore, (b), (c) and (d) are wrong options
5 (b)
90% of the sample is left undecayed after time t
$\therefore \frac{9}{10} N_{0}=N_{0} e^{-\lambda t}$
$\lambda=\frac{1}{t} \ln \left(\frac{10}{9}\right)$
After time $2 t$,
$N_{c}=N_{0} e^{-\lambda(2 t)}=N_{0} e^{-\frac{1}{t}\left[\ln \left(\frac{10}{9}\right)\right] 2 t}$
$N=N_{0} e^{-\ln \left(\frac{10}{9}\right)^{2}}=N_{0}\left(\frac{9}{10}\right)^{2} \approx 81 \%$ of N_{0}
Therefore, 19% of initial value will decay in time $2 t$

Energy is released in a process when total binding energy (B.E.) of the nucleus is increased or we can say when total B. E. of products is more than the reactants. By calculation we can see that only in case of option (c), this happens
Given $W \rightarrow 2 Y$
B. E. of reactants $=120 \times 7.5=900 \mathrm{MeV}$ and $B . E$. of products $=2 \times(60 \times 8.5)=$ 1020 MeV
i.e., B.E. of products $>$ B.E. of reactants
(b)

During fusion, binding energy of daughter nucleus is always greater than the total binding energy of the parent nuclei. The difference of binding energies is released. Hence,
$Q=E_{2}-2 E_{1}$
(b)

Here $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{1 / 3}$
Where $n=$ Number of half lives $=\frac{1}{3}$
$\Rightarrow \frac{N}{N_{0}}=\frac{1}{1.26} \Rightarrow \frac{N_{U}}{N_{P b}+N_{U}}=\frac{1}{1.26}$
$\Rightarrow N_{P b}=0.26 N_{U} \Rightarrow \frac{N_{P b}}{N_{U}}=0.26$
(b)

Number of atoms in 2 kg fuel
$\frac{2}{235}=6.02 \times 10^{26}=5.12 \times 10^{24}$
Fission rate $=$ Number of atoms fissioned in one second
$=\frac{5.12 \times 10^{24}}{30 \times 24 \times 60 \times 60}$
$=1.975 \times 10^{18} \mathrm{~s}^{-1}$
Each fission gives 185 MeV . Hence, energy obtained in one second,
$P=185 \times 1.975 \times 10^{18} \mathrm{MeV} \mathrm{s}^{-1}$
$=185 \times 1.975 \times 10^{18} \times 1.6 \times 10^{-19} \mathrm{~J} \mathrm{~s}^{-1}$
(b)

According to Doppler's effect of light, the wavelength shift is given by
$\Delta \lambda=\frac{V}{c} \times \lambda$
$\Rightarrow V=\frac{\Delta \lambda \times c}{\lambda}=\frac{(706-656)}{656} \times 3 \times 10^{8}$
$=2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
11 (d)

Activity reduces from 6000dps to 3000dps in 140 days. It implies that half-life of the radioactive sample is 140 days. In 280 days (or two halflives)activity will remain $\frac{1}{4}$ th of the initial activity . Hence the initial activity of the sample is $4 \times 6000 \mathrm{dps}=24000 \mathrm{dps}$

12 (c)

Total binding energy of helium atom $\left({ }_{2} \mathrm{He}^{4}\right)$ is
$4 \times 7=28 \mathrm{MeV}$
Total binding energy of deuteron ${ }_{1} \mathrm{H}^{2}(1 \mathrm{p}+1 \mathrm{n})$ is
$2 \times 1.1=2.2 \mathrm{MeV}$
Hence, binding energy of 2 deuterons is
$2 \times 2.2=4.4 \mathrm{MeV}$
So, the energy released in forming helium nucleus
from two deuterons is
$28-4.4 \mathrm{MeV}=23.6 \mathrm{MeV}$
13 (a)
Rest mass of parent nucleus should be greater than the rest mass of daughter nuclei.
14 (b)
Activity of a radioactive substance,
$R=\lambda N$
$\therefore \lambda=\frac{R}{N}$
Here, $R=N_{2}$ particles per second and $N=N_{1}$
$\therefore \lambda=\frac{N_{2}}{N_{1}}$
15 (b)
The total energy required to make the electron free from nucleus is the sum of the energy required to separate the electrons from the influence of each other and the energy required to separate the electrons from the influence of nucleus i.e.,
Total required energy $=\mathrm{BE}$ of electron in He atom

+ ionization energy of He atom
$=\left(24.6+13.6 \times 2^{2}\right) \mathrm{eV}$
$=(24.6+54.4) \mathrm{eV}=79 \mathrm{eV}$
16 (a)
${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{Z-2}^{A-4} \mathrm{Y}$
${ }_{Z-2}^{A-4} \mathrm{Y} \rightarrow e^{+}+{ }_{Z-3}^{A-4} \mathrm{Y}^{\prime}$
During β^{+}emission
${ }_{T} \mathrm{p}^{1} \rightarrow{ }_{0} \mathrm{n}^{1}+\beta^{+}$
The proton changes into neutron. So, charge number decreases by 1 but mass number remains unchanged
17 (b)
Nuclear density of an atom of mass number A,
$D=\frac{\text { mass }}{\text { volume }}=\frac{A\left(1.67 \times 10^{-27}\right)}{\frac{4}{3} \pi\left[1.25 \times 10^{-15} A^{1 / 3}\right]^{3}}$
$\left[\because V=\frac{4}{3} \pi R^{3}, R=R_{0} A^{1 / 3}, R_{0}=1.25 \times 10^{-15}\right]$
$\therefore D=2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
18 (c)
$\left(t_{1 / 2}\right)_{\mathrm{x}}=\left(t_{\text {mean }}\right)_{\mathrm{y}}$
$\frac{0.693}{\lambda_{x}}=\frac{1}{\lambda_{y}}$
$\lambda_{x}=0.693 \lambda_{y}$
$\lambda_{\mathrm{x}}<\lambda_{\mathrm{y}}$
Or Rate of decay $=\lambda N$
Initially, number of atoms (N) of both are equal but since $\lambda_{\mathrm{y}}<\lambda_{\mathrm{x}}$, therefore, Y will decay at a faster rate than X
19 (c)
Decay constant, $\lambda=10^{-6} \mathrm{~s}^{-1}$. The half-life $T_{1 / 2}$ is thus given by
$T_{1 / 2}=\frac{0.639}{\lambda}=\frac{0.639}{10^{-6}}=0.693 \times 10^{6} \mathrm{~s}$
$=192.5 \mathrm{~h} \approx 8$ days $=1.14$ week
≈ 1 week
20 (c)
The net reaction is
$3\left({ }_{1}^{2} \mathrm{H}\right) \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}+\mathrm{p}$
$Q=\left[3 \times m\left({ }^{2} \mathrm{H}\right)+m\left({ }^{4} \mathrm{He}\right)-m(\mathrm{n})-m(\mathrm{p})\right]$
$\times 931 \mathrm{MeV}$
$=3.87 \times 10^{-12} \mathrm{~J}$
This is energy produced by the consumption of 3 deuteron atoms. So, the total energy released by 10^{40} deuteron is
$\frac{3.87 \times 10^{-12}}{3} \times 10^{40}=1.29 \times 10^{28} \mathrm{~J}$
Let total supply of deuteron in star be exhausted in t seconds. Then,
$10^{16} \times t=1.29 \times 10^{28}$
$\Rightarrow t=1.29 \times 10^{12} \mathrm{~s}$
21 (c)
A and B can be isotopes if number of β-decays is two times the number of α-decays
22 (d)
$E=-Z^{2} \times 13.6 \mathrm{eV}=-9 \times 13.6 \mathrm{eV}=-122.4 \mathrm{eV}$
So ionization energy $=+122.4 \mathrm{eV}$
23 (d)
The mass defect for ${ }^{64} \mathrm{Zn}$ is more than that for ${ }^{64} \mathrm{Cu} . \mathrm{So}, \mathrm{Zn}$ is more stable. Therefore, ${ }^{64} \mathrm{Cu}$ is radioactive and will decay to ${ }^{64} \mathrm{Zn}$ through β^{-}decay as follows
${ }_{64}^{29} \mathrm{Cu} \rightarrow{ }_{30}^{64} \mathrm{Zn} \rightarrow{ }_{-1}^{0} \mathrm{e}$

Alternative solution:

By the conservation of charge and nucleons, only potential is feasible

24 (b)
The difference in the binding energies is the energy required to add an extra neutron
25 (a)
Given that $\lambda_{1} N_{1}=5 \mu C i ; \lambda_{2} N_{2}=10 \mu C i ; \lambda_{2} N_{2}=$ $2 \lambda_{1} N_{1}$
Also $N_{1}=2 N_{2}$; Then $\lambda_{2} N_{2}=2 \lambda_{1}\left(2 N_{2}\right) \Rightarrow \lambda_{2}=$ $4 \lambda_{1}$
26 (d)
$\left|\frac{d N}{d t}\right|=\lambda N$
Number of radium nuclei in $m \mathrm{~g}=\frac{N_{A} m}{226}$
Decay constant, $\lambda=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{1620 \times 3.16 \times 10^{7}}$
$\left|\frac{d N}{d t}\right|=10=\frac{6.02 \times 10^{23} \mathrm{~m}}{226} \times \frac{0.693}{1620 \times 3.16 \times 10^{7}}$
$\therefore m=\frac{10 \times 226 \times 1620 \times 3.16 \times 10^{7}}{6.02 \times 10^{23} \times 0.693}$
$=2.77 \times 10^{-10} \mathrm{~g}$
$=2.77 \times 10^{-13} \mathrm{~kg}$
27 (d)
Atomic mass $M(\mathrm{H})$ of hydrogen and nuclear mass $\left(M_{n}\right)$ are
$M(\mathrm{H})=1.007825 \mathrm{u}$ and $M_{\mathrm{n}}=1.008665 \mathrm{u}$
Mass defect,
$\Delta m=\left[M(\mathrm{H})+M_{\mathrm{n}}-M(\mathrm{D})\right]$
$M(\mathrm{D})=$ mass of deuteron $=2.016490 \mathrm{u}-$
$2.014102 \mathrm{u}=0.002388 \mathrm{u}$
As 1 u corresponds to 931.494 MeV energy, therefore, mass defect corresponds to energy, $E_{\mathrm{b}}=0.002388 \times 931.5=2.224 \mathrm{MeV}$
28 (c)

Net rate of formation of Y at any time t is
$\frac{d N_{y}}{d t}=\lambda_{x} N_{x}-\lambda_{y} N_{y}$
N_{y} is maximum when
$\frac{d N_{y}}{d t}=0$
Or $\lambda_{x} N_{x}=\lambda_{y} N_{y}$
29 (b)
Once the neutron gets sufficiently close to the nucleus, the strong nuclear force sucks it in. Same happens with the proton except it is electrostatically repelled by the six protons already inside the carbon nucleus. The repulsion prevents a $100 \mathrm{~ms}^{-1}$ proton from getting close enough to the nucleus. Therefore, the answer is
(b)

30 (a)
$\left|\frac{d N}{d t}\right|=\mid$ Activity of radioactive substance \mid

$$
=\lambda N=\lambda N_{0} e^{-\lambda t} \quad\left(\because N=N_{0} e^{-\lambda t}\right)
$$

Taking \log both sides

$$
\ln \left|\frac{d N}{d t}\right|=\ln \left(\lambda N_{0}\right)-\lambda t
$$

Hence, $\ln \left|\frac{d N}{d t}\right|$ versus t graph is a straight line with slope- λ.
From the graph we can see that,

$$
\lambda=\frac{1}{2}=0.5 y r^{-1}
$$

Now applying the equation

$$
\begin{aligned}
N & =N_{0} e^{-\lambda t}=N_{0} e^{-0.5 \times 4.16} \\
& =N_{0} e^{-2.08}=0.125 N_{0} \\
& =\frac{N_{0}}{8}
\end{aligned}
$$

$i e$, nuclei decreases by a factor of 8 .
Hence the answer is 8 .
31 (c)
The given reactions are
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{H}^{3}+\mathrm{p}$
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{n}$
$3{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{n}+\mathrm{p}$
Mass defect,
$\Delta m=(3 \times 2.014-4.001-1.007$

$$
-1.008) \text { a.m. u. }
$$

$=0.026 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
Energy released $=0.026 \times 931 \mathrm{MeV}$
$=0.026 \times 931 \times 1.6 \times 10^{-13} \mathrm{~J}$
$=3.87 \times 10^{-12} \mathrm{~J}$
This is the energy produced by the consumption of three deuteron atoms. Therefore, total energy released by 10^{40} deuterons is
$\frac{10^{40}}{3} \times 3.87 \times 10^{-12} \mathrm{~J}=1.29 \times 10^{28} \mathrm{~J}$
The average power radiated is $P=10^{6} \mathrm{~W}$ or $10^{16} \mathrm{~J} \mathrm{~s}^{-1}$
Therefore, total time to exhaust all deuteron of the star will be

$$
t=\frac{1.29 \times 10^{28}}{10^{16}}=1.29 \times 10^{12} \mathrm{~s} \approx 10^{12} \mathrm{~s}
$$

32 (a)
$N=\frac{N_{0}}{2^{t / T}}$
$\frac{N_{0}}{16}=\frac{N_{0}}{2^{t / T}}$
$2^{t / T}=16=2^{4}$ or $\frac{t}{T}=4$
Or $T=\frac{t}{T}=\frac{24}{4} \mathrm{~h}=6 \mathrm{~h}$
33 (d)
$\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
For di-ionised lithium the value of Z is maximum
34 (b)
After a time t, a sample ${ }^{238} \mathrm{U}$ originally consisting of N atoms will have decayed to $N e^{-\lambda t}$. The number of ${ }^{206} \mathrm{~Pb}$ atoms,
$N_{\mathrm{Pb}}=N\left(1-e^{-\lambda t}\right)$
$\therefore \frac{N_{\mathrm{Pb}}}{N_{\mathrm{u}}}=N \frac{\left(1-e^{-\lambda t}\right)}{N e^{-\lambda t}}=0.0058$
$e^{\lambda t}-1=0.0058 \Rightarrow e^{\lambda t}=1.0058$
$\therefore t=\frac{1}{\lambda} \ln (1.0058)=\frac{\left(4.5 \times 10^{9} \text { years }\right)}{\ln 2} \ln (1.0058)$
$=0.0376 \times 10^{9}$ years $=38 \times 10^{6}$ years
35 (d)
X has activity A_{0} at $t=0$ and its half-life is 24
years
Y has activity A_{0} at $t=0$ and its half-life is 16
years
At $t=48$ years, activity of $\mathrm{X}=\frac{1}{4} \mathrm{~A}_{0}$
(2 half-lives have elapsed)
At $t=48$ years, activity of $Y=\frac{1}{8} A_{0}$
(3 half-lives have elapsed)
Thus, total activity of the mixtures of X and Y at $t=48$ years is
$\frac{1}{4} A_{0}+\frac{1}{8} A_{0}=\frac{3}{8} A_{0}$
36 (d)
$R_{1}=\lambda N_{1} \Rightarrow N_{1}=\frac{R_{1}}{\lambda}$
and $R_{2}=\lambda N_{2} \Rightarrow N_{2}=\frac{R_{2}}{\lambda}$
Therefore, number of atoms decayed
$=N_{1}-N_{2}\left(\frac{R_{1}-R_{2}}{\lambda}\right)$
37 (b)
${ }_{10}^{22} \mathrm{Ne} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+{ }_{6}^{14} \mathrm{X}$
The new element X has a atomic number 6.
Therefore, the element is carbon
38 (b)
Let ${ }_{Z}^{A} X \rightarrow{ }_{A-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}$
$K_{\alpha}=\frac{m_{y}}{m_{y}+m_{\alpha}} Q$
$\therefore K_{\alpha}=\frac{A-4}{A} Q$
Or $48=\frac{A-4}{A} \times 50 \Rightarrow A=100$
39 (d)
$N=N_{0} e^{-\lambda t}$
$\Rightarrow \frac{N_{0}}{N}=e^{\lambda t}$
$\lambda t=\log _{e} \frac{N_{0}}{N}$
$t=\frac{1}{\lambda} \log _{e} \frac{N_{0}}{N}$
$t \propto \log _{e} \frac{N_{0}}{N}$
$5 \propto \log _{e} \frac{100}{90}$
and $20 \propto \log _{e} \frac{N_{0}}{N}$
Dividing,
$\frac{5}{20}=\frac{\log _{10} \frac{100}{90}}{\log _{10} \frac{N_{0}}{N}}$
Or $\log _{10} \frac{N_{0}}{N}=4 \log _{10} \frac{10}{9}$
Or $\frac{N_{0}}{N}=\left(\frac{10}{9}\right)^{4} \Rightarrow \frac{N}{N_{0}}=0.6561$
Percentage of substance decayed is

$$
(1-0.6561) \times 100=34.39
$$

(b)

Three half-lives of A is equivalent to six half-lives of B
Hence,
$N_{A}\left(\frac{1}{2}\right)^{3}=N_{B}\left(\frac{1}{2}\right)^{6}$
Or $\frac{N_{A}}{N_{B}}=\frac{1}{8}$
41 (c)
$4\left({ }_{2} \mathrm{He}^{4}\right)={ }_{8} \mathrm{O}^{16}$
Mass defect,

$$
\begin{gathered}
\Delta m=\{4(4.0026)-15.9994\} \mathrm{amu} \\
=0.01 \text { lamu }
\end{gathered}
$$

\therefore Energy released per oxygen nuclei

$$
\begin{aligned}
& =(0.011)(931.48) \mathrm{MeV} \\
& =10.24 \mathrm{MeV}
\end{aligned}
$$

42 (c)
We know that
$N=N_{0}\left(\frac{1}{2}\right)^{n_{A}}$
For A,
$N=N_{0}\left(\frac{1}{2}\right)^{n_{A}}=N_{0}\left(\frac{1}{2}\right)^{4}=\frac{N_{0}}{16}$
$\left[\because n_{A}=\frac{t}{T_{A}}=\frac{80}{20}=4\right]$
For B,
$N_{B}=N_{0}\left(\frac{1}{2}\right)^{n_{B}}=N_{0}\left(\frac{1}{2}\right)^{2}=\frac{N_{0}}{4}$
$\therefore \frac{N_{A}}{N_{B}}=\frac{1}{4}$ or $N_{A}: N_{B}=1: 4$
43 (c)
Since four half-lives have elapsed
$A=\frac{A_{0}}{2^{4}}=\frac{A_{0}}{16}=\frac{1.6}{16}$ curie $=0.1$ curie

44 (d)
$\frac{3}{5} N_{0}=N_{0} e^{-\lambda t}$
$\Rightarrow e^{\lambda t}=\frac{5}{3}$
$\log _{e} e^{\lambda t}=\log _{e} \frac{5}{3}$ or $\lambda t=\log _{e} \frac{5}{3}$
Or $t=\frac{1}{\lambda} \log _{e} \frac{5}{3}$
$=\frac{T}{0.693} \times 0.5\left[\because T=\frac{0.693}{\lambda}\right]$
$=\frac{5570 \times 0.5}{0.693}$ years $=4018.7$ years
$=4000$ years
45 (a)
After first half hours,
$N=N_{0} \frac{1}{2}$
For $t=\frac{1}{2} \mathrm{~h}$ to $t=1 \frac{1}{2} \mathrm{~h}, 1 \mathrm{~h}=$ four half-lives
Hence, $N=\left(N_{0} \frac{1}{2}\right)\left[\frac{1}{2}\right]^{4}=N_{0}\left(\frac{1}{2}\right)^{5}$
For $t=\frac{1}{2}$ to $t=2 \mathrm{~h}$
$\left[\right.$ for both A and $B, \frac{1}{t_{1 / 2}}=\frac{1}{t_{1 / 2}}+\frac{1}{t_{1 / 4}}=2+4=6$

$$
\left.\Rightarrow t_{1 / 2}=\frac{1}{6}\right]
$$

$\frac{1}{2} \mathrm{~h}=$ three half-lives
$\therefore N=\left[\left(N_{0} \frac{1}{2}\right)^{5}\right]\left(\frac{1}{2}\right)^{3}=N_{0}\left(\frac{1}{2}\right)^{8}$
46 (c)
Let N_{2} be the number of atoms of X at time $t=0$.
Then, at $t=4 \mathrm{~h}$ (two half-lives)
$N_{x}=\frac{N_{0}}{4}$ and $N_{y}=\frac{3 N_{0}}{4}$
$\therefore \frac{N_{x}}{N_{y}}=\frac{1}{3}=0.33$
At $t=6 \mathrm{~h}$ (three half-lives)
$N_{x}=\frac{N_{0}}{8}$ and $N_{y}=\frac{7 N_{0}}{8}$ or $\frac{N_{x}}{N_{y}}=\frac{1}{7} \approx 0.142$
The given ratio $\frac{1}{4}$ lies between $\frac{1}{3}$ and $\frac{1}{7}$
Therefore, t lies between 4 h and 6 h
47 (d)
Energy released would be
$\Delta E=$ total binding energy of ${ }_{2} \mathrm{He}^{4}-2 \times$ (total binding energy of ${ }_{1} \mathrm{He}^{4}$)
$=4 \times 7.0-2(1.1)(2)$
$=23.6 \mathrm{MeV}$
48 (b)
Let ground state energy (in eV) be E_{1}
Then from the given condition
$E_{20}-E_{1}=204 \mathrm{eV}$

Or $\frac{E_{1}}{4 n^{2}}-E_{1}=204 e V$
$\Rightarrow E_{1}\left(\frac{1}{4 n^{2}}-1\right)=204 e V$
and $E_{2 n}-E_{n}=40.8 \mathrm{eV}$
$\Rightarrow \frac{E_{1}}{4 n^{2}}-\frac{E_{1}}{n^{2}}=E_{1}\left(-\frac{3}{4 n^{2}}\right)=40.8 \mathrm{eV}$
From equation (i) and (ii)
$\frac{1-\frac{1}{4 n^{2}}}{\frac{3}{4 n^{2}}}=5 \Rightarrow n=2$
49 (a)
At present,
$\frac{\text { Number of K atoms }}{\text { Number of Ar atom }}=\frac{1}{7}$
Let age of rock be n half-lives of K-nuclide. Then, $\left(\frac{1}{2}\right)^{n}=\frac{\text { Number of } \mathrm{K}-\text { atoms present now }}{\text { Number of } \mathrm{K}-\text { atom present initially }}$

$$
=\frac{1}{1+7}
$$

Where number of K atoms present initially $=$ number of K atoms + number of Ar atoms present now
$\therefore n=3$
So, age of rock is 3 half-lives of K nuclides, i.e., 4.2×10^{9} years
$51 \quad$ (c)
$A=A_{0} e^{-\lambda t} ; 2100=16000 e^{-12 \lambda} \Rightarrow e^{12 \lambda}=7.6$
$\Rightarrow 12 \lambda=\log _{e} 7.6=2 \Rightarrow \lambda=\frac{2}{12}=\frac{1}{6}$
$\therefore T=\frac{0.6931 \times 6}{1}=4$
52 (a)
No radioactive substance emits both α and β particles simultaneously. Some substances emit α-particles and some other emits β-particles,
γ-rays are emitted along with both α and
β-particles
53 (d)
$N_{1}=N_{0} e^{-\frac{t}{\tau}} \quad$ (i) and $\tau=\frac{1}{\lambda_{1}}$
$N_{2}=N_{0} e^{-\lambda_{2} t}=N_{0} e^{-\frac{1}{5 \tau}}$ (ii) and $5 \tau=\frac{1}{\lambda_{2}}$
Adding (i) and (ii), we get
$N=N_{1}+N_{2}=N_{0}\left(e^{-t / \tau}+e^{-t / 5 \tau}\right)$

1. Is not the correct option as there is a time τ for which N is constant, which means for time τ there is no process of radioactivity which does not makes sense
2. and (c) show intermediate increase in the number of radioactive atoms which is impossible as N will only decrease exponentially. Hence, the correct option is
(d)

54 (b)
Number of α-particles emitted $=\frac{232-208}{4}=6$
Decrease in charge number due to α-emission $=$ 12
But actual decrease in charge number
$=90-82=8$
Clearly, four β-particles are emitted
55 (d)
Nuclear reactions conserve total charge, and also conserve the total approximate mass. The other particles in the reaction will have mass
$=236-140-94=2$
The other particles are two neutrons. Hence, (a) is not correct.
For nuclei, number of protons tells the charge. So, the other particles must have charge Z such that $92=54+38+Z$
$\therefore Z=0$
Therefore, the other particles have a total atomic mass 2 and total charge 0 . Hence, only (d) is correct
56 (b)
For α decay: ${ }_{x} \mathrm{~A}^{\mathrm{y}} \rightarrow{ }_{\mathrm{x}-2} \mathrm{~B}^{\mathrm{y}-4}+\alpha$
For β^{-}decay: ${ }_{x} \mathrm{~A}^{\mathrm{y}} \rightarrow{ }_{\mathrm{x}+1} \mathrm{~B}^{\mathrm{y}}+{ }_{-1} \beta^{0}$
For β^{+}decay: $\mathrm{x}^{\mathrm{y}} \rightarrow{ }_{\mathrm{x}-1} \mathrm{~B}^{\mathrm{y}}+{ }_{+1} \beta^{0}$
For k-capture, there will be no change in the number of protons. Hence, only case in which number of protons increases is β^{-}decay
57 (c)
The penetrating power is dependent on velocity. For a given energy, the velocity of γ-radiation is highest and α-particle is least
58 (a)
For $n=1$, maximum number of states $=2 n^{2}=2$ and for $n=2,3,4$, maximum number of states would be $8,18,32$ respectively, Hence number of possible elements
$=2+8+18+32=60$
59 (b)
$\frac{A}{A_{0}}=\frac{N}{N_{0}}$
Let safe level activity be A, initial activity $=64 A$
Hence,
$\frac{N}{N_{0}}=\frac{A}{A_{0}}=\frac{A}{64 A}=\frac{1}{64}$
Or $\left(\frac{1}{2}\right)^{n}=\frac{1}{64}$ or $n=6$
Hence,
$\frac{t}{T}=n=6$
$\because T=2 \mathrm{~h}$
$\therefore t=12 \mathrm{~h}$
60 (d)
Use mass balance and balance of atomic number
61 (d)
$\frac{9}{16}=\left(\frac{1}{2}\right)^{\frac{t}{T}}$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{\frac{t}{2 T}}$
$\left(\frac{N}{N_{0}}\right)^{2}=\left(\frac{1}{2}\right)^{t / T}$ or $\left(\frac{N}{N_{0}}\right)^{2}=\frac{9}{16}$
Or $\frac{N}{N_{0}}=\frac{3}{4}$
Note the special technique used in the problem
(a)

Penetration power of γ is 100 times of β, while that of β is 100 times of α
63 (b)
$P=10^{6} \mathrm{~W}$
Time $=1$ day $=24 \times 36 \times 10^{2} s$
Energy produced,
$U=P t=10^{6} \times 24 \times 36 \times 10^{2} \mathrm{~s}$
$=24 \times 36 \times 10^{8} \mathrm{~J}$
Energy released per fusion reaction is
$20 \mathrm{MeV}=32 \times 10^{-13} \mathrm{~J}$
Energy released per atom of ${ }_{1} \mathrm{H}^{2}$ is
$32 \times 10^{-13} \mathrm{~J}$
Number of ${ }_{1} \mathrm{H}^{2}$ atoms used is
$\frac{24 \times 36 \times 10^{8}}{32 \times 10^{-12}}=22 \times 10^{21}$
Mass of 6×10^{23} atoms $=2 \mathrm{~g}$
Mass of 27×10^{21} atoms $=\frac{2}{6 \times 10^{23}}=27 \times 10^{21}=$ 0.1 g

64 (a)
Activity of $S_{1}=\frac{1}{2}$ (activity of S_{2})
Or $\quad \lambda_{1} N_{1}=\frac{1}{2}\left(\lambda_{2} N_{2}\right)$
Or $\quad \frac{\lambda_{1}}{\lambda_{2}}=\frac{N_{2}}{2 N_{1}}$
Or $\quad \frac{T_{1}}{T_{2}}=\frac{2 N_{1}}{N_{2}}$
Given $\quad N_{1}=2 N_{2}$
$\therefore \quad \frac{T_{1}}{T_{2}}=4$
65 (d)
For decay (i):
$Q=[230.033927-229.033496-1.008665]$

$$
\times 931.5
$$

$=-7.7 \mathrm{MeV}$

For decay (ii):
$Q=[230.033927-229.032089-1.007825]$ $\times 931.5$
$=-5.6 \mathrm{MeV}$
As Q is negative for both the decays, so none of the decays is allowed
66 (c)
The number of nuclei in $1 \mathrm{~kg}{ }^{235} \mathrm{U}$ is
$N=\frac{N_{A}}{235} \times\left(1 \times 10^{3}\right)$
$N=\frac{6.023 \times 10^{23}}{235} \times 10^{3}=2.56 \times 10^{24}$ nuclei
Total energy released is
$E=N \times 200 \mathrm{MeV}$
$=5.12 \times 10^{26} \mathrm{MeV}$
67 (a)
Let $t=0, M_{0}=10 \mathrm{~g}$
$t=2 \tau=2\left(\frac{1}{\lambda}\right)$
Then,
$M=M_{0} e^{-\lambda t}=10 e^{-\lambda\left(\frac{2}{\lambda}\right)}$
$=10\left(\frac{1}{e}\right)^{2}=1.35 \mathrm{~g}$
68 (c)
$\frac{A}{I_{0}}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$ or $A=\frac{I_{0}}{9}$
69 (c)
Following nuclear reaction takes place
${ }_{0} \mathrm{n}^{-1} \Rightarrow{ }_{1} \mathrm{H}^{1}+{ }_{-1} \mathrm{e}^{0}+\bar{v}$
70 (c)
The equation is $O^{17} \rightarrow{ }_{0} n^{1}+O^{16}$
\therefore Energy required $=$ B.E. of $O^{17}-$ B.E. of O^{16}
$=17 \times 7.75-16 \times 7.97=4.23 \mathrm{MeV}$
71 (d)
$N=N_{0}\left(\frac{1}{2}\right)^{2} \Rightarrow \frac{N}{N_{0}}=\frac{1}{4}$
Probability $=1-\frac{N}{N_{0}}=1-\frac{1}{4}=\frac{3}{4}$
72 (c)
$4{ }_{1}^{1} \mathrm{H}^{+} \rightarrow{ }_{2}^{4} \mathrm{He}^{2+}+2 e^{-}+26 \mathrm{MeV}$ represents a fusion reaction

73 (d)
If d is the distance of closest approach given, then the angular momentum $=m v d=10^{-33} \mathrm{~J} \mathrm{~s}$
$E=\frac{1}{2} m v^{2}=1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$
Momentum,
$p=\sqrt{2 m_{\mathrm{n}} E}=\sqrt{2 \times 1.6 \times 10^{-27} \times 1.6 \times 10^{-13}}$
$=1.6 \sqrt{2} \times 10^{-20} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
$=\frac{1}{1.6 \sqrt{2}} \times 10^{-13}=\frac{100}{1.6 \sqrt{2}} \mathrm{fm}=0.44 \mathrm{fm}$
$\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{2}$
Probabilities of getting α - and β-particles are same. Thus, rates of disintegration are equal
$\therefore \lambda_{A} N_{A}=\lambda_{B} N_{B}$
Or $\frac{N_{A}}{N_{B}}=\frac{\lambda_{B}}{\lambda_{A}}=2$
75 (c)
The Q value of the first reaction implies that ${ }^{14} \mathrm{~N}+\mathrm{d}={ }^{15} \mathrm{~N}=\mathrm{p}+8.53 \mathrm{MeV}$
Where ${ }^{14} \mathrm{~N}$ represents the mass of ${ }^{14} \mathrm{~N}$ nucleus in energy units. This can be rearranged to give
${ }^{14} \mathrm{~N}-{ }^{15} \mathrm{~N}=\mathrm{p}-\mathrm{d}+8.53 \mathrm{MeV}$
The second reaction similarly implies as
${ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}=\alpha-\mathrm{d}+7.58 \mathrm{MeV}$
And the third reaction gives
${ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}=\alpha-\mathrm{d}+5.16 \mathrm{MeV}$
Adding these three equations, we have
${ }^{14} \mathrm{~N}-{ }^{11} \mathrm{~B}=\mathrm{p}+2 \alpha-3 \mathrm{~d}+21.27 \mathrm{MeV}$
${ }^{11} B(\alpha, n){ }^{14} N={ }^{11} B-{ }^{14} N+\alpha-n$
$=3 \mathrm{~d}-\alpha-\mathrm{p}-\mathrm{n}-21.27 \mathrm{MeV}$
Now,
$3 \mathrm{~d}-\alpha-\mathrm{p}-\mathrm{n}=(3 \times 2.014-4.0020-1.0078$

- 1.0087)a. m. u.
$=0.0229 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
$\therefore Q=(0.0229 \times 931-21.27) \mathrm{MeV}=0.05 \mathrm{MeV}$
$76 \quad$ (a)
Given, $N_{2}=\frac{N_{0}}{e}=N_{0} e^{-\lambda t} \Rightarrow t=\frac{1}{\lambda}=10 \mathrm{~s}$
$\therefore T_{1 / 2}=\frac{\ln 2}{\lambda}=0.693 \times 10 \approx 7 \mathrm{~s}$
77 (b)
Power P of fission reactor,
$P=10^{6} \mathrm{~W}=10^{6} \mathrm{~J} \mathrm{~s}^{-1}$
Time $=t=1$ day $=24 \times 36 \times 10^{2} \mathrm{~s}$
Energy produced, $U=P t$
Or $U=10^{6} \times 24 \times 36 \times 10^{2}$
$=24 \times 36 \times 10^{8} \mathrm{~J}$
Energy released per fission of U^{235} is
$200 \mathrm{MeV}=32 \times 10^{-12} \mathrm{~J}$

Number of U^{235} atoms used is
$\frac{24 \times 36 \times 10^{8}}{32 \times 10^{-12}}=27 \times 10^{20}$
Mass of 6×10^{23} atoms of $U^{235}=235 \mathrm{~g}$
Mass of 27×10^{20} atoms of U^{235} is
$\left(\frac{235}{6 \times 10^{23}}\right)\left(27 \times 10^{20}\right)=1.058 \mathrm{~g}=1 \mathrm{~g}$
78 (c)
Suppose an initial radioactive I decays to a final product F with a half-life $T_{1 / 2}$
At any time, $N_{1}=N_{0} e^{-\lambda t}$
$\frac{N_{\mathrm{F}}}{N_{\mathrm{I}}}=\frac{N_{0}-N_{\mathrm{I}}}{N_{\mathrm{I}}}=\left(\frac{N_{0}}{N_{\mathrm{I}}}-1\right)$
$\frac{N_{0}}{N_{\mathrm{I}}}=\left(1+\frac{N_{\mathrm{F}}}{N_{\mathrm{I}}}\right)=1+0.5=1.5$
$e^{\lambda t}=1.5 \Rightarrow \lambda t=\ln 1.5$
$\therefore \frac{T_{1 / 2} \ln (1.5)}{\ln 2}=4.5 \times 10^{9} \frac{\ln \left(\frac{3}{2}\right)}{\ln 2}$ year
79 (c)
Energy equivalent to ${ }_{1} H^{2}=2 \times 1.112=$
2.224 MeV

Energy equivalent to ${ }_{2} \mathrm{He}^{4}=4 \times 7.047=$ 28.188 MeV

From the equation, energy released
$=28.188-2 \times 2.224=23.74 \mathrm{MeV} \approx 24 \mathrm{MeV}$
80 (d)
Number of nuclei decreases exponentially,
$N=N_{0} e^{-\lambda t}$
Rate of decay, $-\frac{d N}{d t}=\lambda N$
Therefore, decay process lasts upto $t=\infty$.
Therefore, a given nucleus may decay at any time after $t=0$
81 (c)
Mass defect,
$\Delta m=2(2.015)-(3.017+1.009)=0.004$ a.m.u.
As 1 a.m. u. $=931.5 \mathrm{MeV} / c^{2}$, energy released will be $0.004 \times 931.5 \mathrm{MeV}=3.726 \mathrm{MeV}$
Energy released per deuteron is
$\frac{3.726}{2}=1.863 \mathrm{MeV}$
Number of molecules in 1 kg deuterons is
$\frac{6.02 \times 10^{26}}{2}=3.01 \times 10^{26}$
Therefore, energy released per kg of deuterium fusion
$=\left(3.01 \times 10^{26} \times 1.863\right)$
$=5.6 \times 10^{26} \mathrm{MeV} \approx 9.0 \times 10^{13} \mathrm{~J}$
82 (c)
$N_{1} \lambda_{1}=N_{2} \lambda_{2}$
$T=\frac{0.693}{\lambda}$
Hence,
$2.8 \times 10^{6} \times \frac{0.693}{T_{1}(\mathrm{U})}$
$=1 \times \frac{0.693}{T_{2}(\mathrm{Ra})}$
$\therefore T_{1}(\mathrm{U})=1600 \times 2.8 \times 10^{6}$
$=4.48 \times 10^{9}$ years
$\approx 4.5 \times 10^{6}$ years
83 (c)
Expected atomic mass of Cu must be less than that of zinc, but it is not so. So, it means Cu is radioactive and unstable and decays to Zn through β-decay
84 (d)
Here, $T=26.8 \mathrm{~min}=26.8 \times 60 \mathrm{~s}$
\therefore Decay constant,
$\lambda=\frac{0.693}{T}=\frac{0.693}{26.8 \times 60}$
$=4.32 \times 10^{-4} \mathrm{~s}^{-1}$
Now, 1 curie is equal to 3.71×10^{10}
disintegrations per second $=3.71 \times 10^{10}$
If N be the number of atoms in one curie, then
$-\frac{d N}{d t}=\lambda N$
Or $3.71 \times 10^{10}=431 \times 10^{-4} \mathrm{~N}$
$\therefore N=\frac{3.71 \times 10^{10}}{4.31 \times 10^{-4}}=8.607 \times 10^{13}$
Further, atomic weight of $\mathrm{RaB}=214$ and
Avogadro's number $=6.025 \times 10^{23}$
Mass of one atom $=\frac{214}{6.025 \times 10^{23}}$
Mass of N atoms $=\left(\frac{214}{6.025 \times 10^{23}}\right) \times\left(8.607 \times 10^{13}\right)$
$=3.064 \times 10^{-8} \mathrm{~g}$
85 (d)
Two protons and two neutrons are lost in an α decays, so Z and N each decrease by 2 . A β^{+}decay changes a proton to a neutron, so Z decreased by 1 and N increases by 1 . The net result is Z
decreases by 3 and N decreases by 1
${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \xrightarrow{\alpha \text {-decay }}{ }_{\mathrm{Z}-2}^{\mathrm{A}-4} \mathrm{Y} \xrightarrow{\beta \text {-decay }}{ }_{\mathrm{Z}-3}^{\mathrm{A}-4} \mathrm{Z}$
Initially, number of neutrons $N_{\mathrm{i}}=(A-Z)$
Now, number of neutrons, $N_{f}=A-4-Z+3=$ $N_{\mathrm{i}}-1$
86 (a)

$$
\begin{aligned}
{ }_{92} \mathrm{U}^{238}+{ }_{0} \mathrm{n}^{1} & \rightarrow{ }_{92} \mathrm{U}^{239} \rightarrow{ }_{-1} e^{0}+{ }_{9} \mathrm{~Np}^{239} \\
& \rightarrow{ }_{-1} e^{0}+{ }_{94} \mathrm{Pu}^{239}
\end{aligned}
$$

87 (b)
$\frac{N}{N_{0}}=\frac{1}{2^{5 T / T}}$
$\frac{N}{N_{0}}=\frac{1}{2^{5}}$
$\therefore \frac{N}{N_{0}} \times 100=\frac{100}{32}=3.125$
88 (d)
The α-particle emitting radioactive gas, thoron220 , decays to radium-216 an emits an α-particle. The reaction can be represented by
${ }_{90}^{220} \mathrm{Th} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{66}^{216} \mathrm{Ra}$
By conservation of momentum, we have
momentum of α-particle $=$ momentum of
recoiling nucleus Ra
$\Rightarrow m_{\alpha} v_{\alpha}=m_{\mathrm{R}} v_{\mathrm{R}}$
$\Rightarrow \frac{v_{\mathrm{R}}}{v_{\alpha}}=\frac{m_{\alpha}}{m_{\mathrm{R}}}=\frac{4}{216}=\frac{1}{54}$
The kinetic energy of $\mathrm{Ra}, E_{\mathrm{R}}$, is related to the kinetic energy of alpha particle E_{α} by
$\frac{E_{\mathrm{R}}}{E_{\alpha}}=\frac{\frac{1}{2} m_{\mathrm{R}} v_{\mathrm{R}}^{2}}{\frac{1}{2} m_{\alpha} v_{\alpha}^{2}}=\left(\frac{m_{R}}{m_{\alpha}}\right)\left(\frac{v_{\mathrm{R}}}{m_{\alpha}}\right)^{2}=\left(\frac{m_{R}}{m_{\alpha}}\right)\left(\frac{m_{\alpha}}{m_{\mathrm{R}}}\right)^{2}$
$=\frac{m_{\alpha}}{m_{\mathrm{R}}}=\frac{1}{54}$
$\therefore E_{R}=\frac{E_{\alpha}}{54}$
89 (a)
Isotopes A and C have same number of protons
90 (b)
If the kinetic energy of each particle is k, then
$2 k+2(0.511 \mathrm{MeV})=\frac{h c}{\lambda}=\frac{12.4 \times 10^{-3} \mathrm{MeV} \AA}{5 \times 10^{-4} \AA}$

$$
=24.8 \mathrm{MeV}
$$

$\Rightarrow k=\frac{24.8-1.022}{2}=11.9 \mathrm{MeV}$
91 (c)
We know that in a nucleus, neutron converts into proton as follows:
$n \rightarrow \mathrm{p}^{+} \rightarrow \mathrm{e}^{-}$
Thus, decay of neutron is responsible for β radiation orgination
92 (b)
Total mass of the products $=2.0165 \mathrm{a} . \mathrm{m} . \mathrm{u}$., which is greater than the mass of the deuteron by $0.0024 \mathrm{a} . \mathrm{m} . \mathrm{u}$. The extra mass must be provided by the energy of the photon so that minimum possible frequency must be given by
$v=\frac{0.0024 \mathrm{a} . \mathrm{m} . \mathrm{u} . c^{2}}{h}\left(1 \mathrm{a} . \mathrm{m} . \mathrm{u} .=1.66 \times 10^{-27} \mathrm{~kg}\right)$
$\Rightarrow v=5.4 \times 10^{20} \mathrm{~Hz}$
(c)

Transformation occurs only when the same net energy is released, which is possible only when
$E_{2}>2 E_{1}$
94 (b)
Mass of one atom of U^{235} is
235.121420 a.m. u

Mass of neutron $=1.008665 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
Sum of the masses of U^{235} and neutron
$=236.130085=236.130 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
Mass of one atom of U^{236} is
236.123050 a.m. u. $=236.123$ a. m. u.

Mass defect $=236.136-236.123$
$=0.007 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
Therefore, energy required to remove one neutron is
$0.007 \times 931 \mathrm{MeV}=6.517 \mathrm{MeV}=6.5 \mathrm{MeV}$
95 (c)
Binding energy per nucleon of fission products is
8.5 MeV. Binding energy per nucleon of reactants $=7.6 \mathrm{MeV}$
Increase in binding energy per nucleon is
$8.5-7.6=0.9 \mathrm{MeV}$
Energy released per nucleon in fission is 0.9 MeV
\therefore Fractional energy released $=\frac{0.9}{931}=\frac{1}{1000}$
Percentage of mass converted into energy during fission
$=\frac{1}{1000} \times 100=0.1 \%$
97 (a)
When a free neutron decays to a proton along with an electron and an antineutrino, the Q value of the reaction is positive which means the reaction is possible all by itself, while a free proton cannot convert itself into a neutron due to negative Q value
In beta minus decay, the electron originates from nucleus only, by the transformation of neutron into a proton, with simultaneous emission of an antineutrino
(a)

Nuclear density is constant hence, mass \propto volume
Or $\quad m \propto V$
99 (b)
${ }_{Z}^{A} X \xrightarrow{\text { Proton }}{ }_{Z-1}^{A} Y \xrightarrow{2 \alpha}{ }_{A-5}^{A-8} Y$
Given $A-8=224$ and
$Z-5=89 \Rightarrow A=237, Z=94$
100 (a)
Let $\frac{M_{1}}{M_{2}}($ mass ratio $)=\frac{1}{2}$
2 days $=2 \times 24 \mathrm{~h}=48 \mathrm{~h}$
For first substance, 4 half-life periods and for second substance 3 half-life periods are passed;
the masses are reduced to
$M_{1}^{\prime}=M_{1} \times\left(\frac{1}{2}\right)^{4}$
$M_{2}^{\prime}=M_{2} \times\left(\frac{1}{2}\right)^{3}$
$\therefore \frac{M_{1}^{\prime}}{M_{2}^{\prime}}=\frac{M_{1}}{M_{2}} \times \frac{1}{2}=\frac{2}{1} \times \frac{1}{2}=\frac{1}{1}$
102 (c)
The binding energy per nucleon is lowest for very light nuclei such as ${ }_{2}^{4} \mathrm{He}$, is greatest around $A=60$, and then decreases with increasing A
103 (b)
Number of α-particles per second $=$ activity
$=(-d N / d t)=N \lambda$
Where
$N=\frac{6.0 \times 10^{23}}{210} \times 1 \times 10^{-3}$
$\lambda=5.8 \times 10^{-8} \mathrm{~S}^{-1}$
So,
$A=N \lambda$
$=\frac{6.0 \times 10^{23}}{210} \times 1 \times 10^{-3} \times 5.8 \times 10^{-8}$
$=1.7 \times 10^{11}$
104 (d)
The emission of antineutrino is a must for the validity of different laws
105 (a)
Since scheme A releases more energy than scheme B, scheme A is more likely to occur. This is because the more the energy released, the more stable the daughter nucleus is. A heavy nucleus undergoes fission such that its products will be more stable than the parent nucleus
107 (d)
As we regard the decay process as a spontaneous and statistical process, therefore the decay can start any time after $t=0$. Therefore, the answer is (d)
108 (d)
α-decay decreases mass number by 4 and reduces charge number by 2. β-decay keeps mass number unchanged and increases charge by 1. Clearly, option (d) is the right choice
109 (b)
For nucleus of ${ }_{8} \mathrm{O}^{16}$:
Mass $=(16)(1.67 \times 10-27) \mathrm{kg}$
Volume $=\frac{4}{3} \pi R^{3}$
$=\frac{4}{3} \pi\left(3 \times 10^{-15}\right)^{3} \mathrm{~m}^{3}$
$=36 \pi \times 10^{-45} \mathrm{~m}^{3}$

Density $=\frac{\text { mass }}{\text { volume }}=\frac{16 \times 67 \times 10^{-27} \mathrm{~kg}}{36 \pi \times 10^{-46} \mathrm{~m}^{3}}$
$=2.35 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$

110 (a)

Let $\lambda_{A}=\lambda$ and $\lambda_{B}=2 \lambda$. Initially, rate of disintegration of A is λN_{0} and that of B is $2 \lambda N_{0}$. After one half-life of A, rate of disntigration of A will become $\frac{\lambda N_{0}}{2}$ (half-life of $B=$ one-half the halflife of A). So, after one half-life of A or two halflives of B,
$\left(-\frac{d N}{d t}\right)=\left(-\frac{d N}{d t}\right)_{B}$
$\therefore n=1$
111 (b)
$\frac{d N_{2}}{d t}=\lambda N_{1}-2 \lambda N_{2}$
For n_{2} to be maximum,
$\frac{d N_{2}}{d t}=0$
$\Rightarrow \lambda N_{1}=2 \lambda N_{2}$ or $\frac{N_{1}}{N_{2}}=2$
112 (d)
$N_{x_{1}}=N_{0} e^{-\lambda t}$
$N_{x_{2}}=N_{0} e^{-\lambda t}$
$\frac{N_{x_{1}}}{N_{x_{2}}}=\frac{1}{e}=\frac{e^{-10 \lambda t}}{e^{-\lambda t}}=e^{-9 \lambda t}$
$9 \lambda t=1 \Rightarrow t=\frac{1}{9 \lambda}$
113 (b)
In 2 s only 90% nuclei are left behind. Thus, in next $2 \mathrm{~s} 90 \%$ of 900 or 810 nuclei will be left
114 (c)
$m\left({ }^{198} \mathrm{Au}_{79}\right)=197.968225 \mathrm{u}$
$m\left({ }_{79}^{198} \mathrm{Hg}\right)=197.966752 \mathrm{u}$
Mass defect,
$\Delta m=1.473 \times 10^{-3} \mathrm{u}=1.371 \mathrm{MeV}$
Energy of γ-proton $=0.412 \mathrm{MeV}$
Maximum kinetic energy of the electron emitted in the decay is
$E_{e}=1.371 \mathrm{MeV}-0.412 \mathrm{MeV}=0.959 \mathrm{MeV}$
115 (a)
From given information,
$\frac{d N}{d t}=\frac{-0.04 N}{3600}$
Computing above equation with standard decay equation,
$\frac{d N}{d t}=-\lambda N$
$\lambda=1.1 \times 10^{-5} \mathrm{~s}^{-1}$
$\therefore \tau=\frac{1}{\lambda}=\frac{3600}{0.04} \mathrm{~s}=25 \mathrm{~h}$
116 (d)

Let the decay constants for the first and second processes be λ_{1} and λ_{2} and the effective decay constant for the combined process be λ. Then, $\lambda_{1}=\frac{\log _{e} 2}{t_{1}}, \lambda_{2}=\frac{\log _{e} 2}{t_{2}}$ and $\lambda=\frac{\log _{e} 2}{t}$
Now, the probability for decay through first process in a small time interval $d t$ is $\lambda_{1} d t$ and the probability for decay through second process in the same time interval $d t$ is $\lambda_{2} d t$. The probability for decay by the combined process in the same time interval $d t$ is $\lambda_{1} d t+\lambda_{2} d t$
But this is also equal to $\lambda d t$
$\therefore \lambda d t=\lambda_{1} d t+\lambda_{2} d t$
$\therefore \lambda=\lambda_{1}+\lambda_{2}$
Or $\frac{\log _{e} 2}{t}=\frac{\log _{e} 2}{t_{1}}+\frac{\log _{e} 2}{t_{2}}$
Or $\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$ or $t=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
117 (a)
Number of radio nuclei become constant, when rate of production becomes equal to rate of decay, $X=\lambda N$
Or $N=\frac{X}{\lambda}$. Given $y=\frac{\ln 2}{\lambda}$
$\Rightarrow N=\frac{X Y}{\ln (2)}$
119 (a)
$\frac{d N_{A}}{d t}=\left(-\lambda N_{A}\right)+\left(-2 \lambda N_{A}\right)+\left(-2 \lambda N_{A}\right)=-6 \lambda N_{A}$
120 (a)
$\frac{1}{\lambda_{H_{2}}}=R Z_{H}^{2}\left[\frac{1}{4}-\frac{1}{9}\right]=R(1)^{2}\left[\frac{5}{36}\right]$
$\frac{1}{\lambda_{H e}}=R Z_{H e}^{2}\left[\frac{1}{4}-\frac{1}{16}\right]=R(4)\left[\frac{3}{16}\right]$
$\frac{\lambda_{H e}}{\lambda_{H_{2}}}=\frac{1}{4}\left[\frac{16}{3} \times \frac{5}{36}\right]=\frac{5}{27}$
$\lambda_{H e}=\frac{5}{27} \times 6561=1215 \AA$
121 (c)
Activity, $R=\lambda N$. Number of nuclei (N) per mole are equal for both the substances
$\therefore R \propto \lambda$
Or $\frac{R_{1}}{R_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{4}{3}$
122 (a)
After the removal of first electron remaining atom will be hydrogen like atom
So energy required to remove second electron
from the atom $E=13.6 \times \frac{2^{2}}{1}=54.4 \mathrm{eV}$
\therefore Total energy required $=24.6+54.4=79 \mathrm{eV}$
123 (b)
Let number of α-decays are x and number of β decays are y. Then,
$92-2 x+y=85$
Or $2 x-y=7$ (i)
and $238-4 x=210$
$\therefore x=7$
Substituting this value in Eq. (1), we get $y=7$
124 (a)
Probability of survival for any nucleus at time t is
$P=\frac{N}{N_{0}}=\frac{N_{0} e^{-\lambda t}}{N_{0}}=e^{-\lambda t}$
So, in one mean life, required probability is
$e^{-\lambda \times \frac{1}{\lambda}}=\frac{1}{e}$
125 (c)
$\frac{d N}{d t}=n-\lambda N$
Because the population N is simultaneously increasing at rate n and decreasing due to decay at rate λN
$\int_{N_{0}}^{N} \frac{d N}{n-\lambda N}=\int_{0}^{t} d t$
$\frac{1}{\lambda} \ln \left(\frac{n-\lambda N_{0}}{n-\lambda N}\right)=t$
$N=\frac{n}{\lambda}+\left(N_{0}-\frac{n}{\lambda}\right) e^{-\lambda t}$
126 (c)
β-particles are radioactive material emitted by the nucleus
127 (b)
Calculate time when it reaches a height of 1000 m , then use $A=\lambda N$
128 (b)
After two half-lives $\frac{1}{4}$ th fraction of nuclei will remain undecayed or $\frac{3}{4}$ th fraction will decay.
Hence, the probability that a nucleus decays in two half-lives is $\frac{3}{4}$.
129 (b)
$T_{1 / 2}=3.8$ day
$\therefore \lambda=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{3.8}=0.182$
If the initial number of atoms is $a=A_{0}$, then after time t the number of atoms is $a / 20=A$. We have to find t
$t=\frac{2.303}{\lambda} \log \frac{A_{0}}{A}=\frac{2.303}{0.182} \log \frac{a}{a / 20}=\frac{2.303}{0.182} \log 20$ $=16.46$ day
130 (b)
Decrease in mass number $=232-208=24$
Number of α-particles emitted $=\frac{24}{4}=6$
Due to emission of 6 particles, decrease in charge
number is 12 . But actual decrease in charge number is 8 . Clearly, 4β-particles are emitted 131 (a)

Mass defect,
$\Delta m=20(1.007277+1.00866)-39.97545$
$=40.31874-39.97545$
$=0.34329$ a.m. u.
\therefore Binding energy $=0.34329 \times 931=319.6 \mathrm{MeV}$
When one atom of Ca-40 completely dissociates, the energy to be supplied $=319.6 \mathrm{MeV}$
1 g of Ca-40 contains $\frac{6.023 \times 10^{23}}{40}=1.506 \times 10^{22}$ atoms
The energy required for the dissociation of 1 g of Ca-40
$=319.6 \times 1.506 \times 10^{22}$
$=4.813 \times 10^{24} \mathrm{MeV}$
132 (b)
$\frac{1}{122 n m}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3 R}{4}$
$\Rightarrow \frac{1}{\lambda}=R\left(\frac{1}{3^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{9} \Rightarrow \frac{\lambda}{122}=\frac{3}{4} \times 9=\frac{27}{4}$
$\Rightarrow \lambda=823 \mathrm{~nm}$
133 (b)
Let R_{0} be the initial activity. Then,
$R_{1}=R_{0} e^{-\lambda t_{1}}$
and $R_{2}=R_{0} e^{-\lambda t_{2}}$
$\therefore \frac{R_{2}}{R_{1}}=e^{\lambda\left(t_{1}-t_{2}\right)}$
Or $R_{2}=R_{1} e^{\lambda\left(t_{1}-t_{2}\right)}$
134 (c)
Radius R of a nucleus changes with the nucleon number A of the nucleus as
$R=1.3 \times 10^{-15} \times A^{1 / 3} \mathrm{~m}$
Hence,
$\frac{R_{2}}{R_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{1 / 3}=\left(\frac{128}{16}\right)^{1 / 3}=(8)^{1 / 3}=2$
$\therefore R_{2}=2 R_{1}=2\left(3 \times 10^{-15}\right) \mathrm{m}$
$=6 \times 10^{-15} \mathrm{~m}$
135 (c)
Energy released is
$(80 \times 7+120 \times 8-200 \times 6.5)=220 \mathrm{MeV}$
136 (c)
All neutrons attract each other with the same strong nuclear force. So, the strong nuclear force holds together three protons and one neutron $\left({ }_{3}^{4} \mathrm{Li}\right)$ just as vigourously as it holds together two protons and two neutrons $\left({ }_{2}^{4} \mathrm{He}\right)$. Specifically, protons electrostastically repel other protons. This repulsion tries to make a nucleus fly apart. Since ${ }_{2}^{4} \mathrm{He}$ contains only two protons, the
attractive strong nuclear forces overcome the repulsion of the protons. Hence, the nucleus holds together. But in ${ }_{3}^{4} \mathrm{Li}$, the mutual repulsion of the three protons overcomes the strong nuclear attractions and the nucleus falls apart (or undergoes radioactive decay into a more stable nucleus). Therefore, the answer will be (c)
137 (a)
$\frac{1}{16}=\frac{1}{2^{\frac{t}{100}}}$
Or $\frac{1}{2^{4}}=\frac{1}{2^{t / 100}}$ or $4=\frac{t}{100}$
Or $t=400 \mu \mathrm{~s}$
138 (c)
$N=N_{0} e^{-\lambda t}, N_{\mathrm{Y}}=N_{0}\left(1-e^{-\lambda t}\right)$
$\frac{d N}{d t}=+\lambda N_{0} e^{-\lambda t}$
Which decreases exponentially with time
139 (c)
Let N be the number of nuclei at any time t. Then,
$\frac{d N}{d t}=200-\lambda N$
$\therefore \int_{0}^{N} \frac{d N}{200-\lambda N}=\int_{0}^{t} d t$
Or $N=\frac{200}{\lambda}\left(1-e^{-\lambda t}\right)$
Given: $N=100$ and $\lambda=1 \mathrm{~s}^{-1}$
$\therefore 100=200\left(1-e^{-t}\right)$
Or $e^{-t}=\left(\frac{1}{2}\right) \therefore t=\ln (2) \mathrm{s}$
140 (d)
Since no external force is present, so momentum conservation principle is completely applicable
$\therefore m \vec{v}_{1}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}$
Or $\left(m_{1}+m_{2}\right) \overrightarrow{v_{1}}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}$
141 (b)
$\frac{N_{0}}{4}=\frac{N_{0}}{2 n} \Rightarrow n=2$
Thus, 10 days $=2$ half-lives
\therefore Half-life $=8$ days

142 (b)

The radioactive decay constant λ is given by
$\lambda=\frac{\ln 2}{T_{1 / 2}}=\frac{0.693}{32} \mathrm{~h}^{-1}$
From the equation $N=N_{0} e^{-\lambda t}$, the fraction of a sample remaining after 16 h is given by
$\frac{N}{N_{0}}=e^{-\lambda t}=e^{-\left(\frac{0.693}{32}\right)}=e^{-0.3465}=0.71$
143 (d)
Refer to the definition of mass defect
144 (d)
Disintegration of deuteron to a proton and a
neutron can be represented by
${ }_{1}^{2} \mathrm{H}+\mathrm{Q} \rightarrow{ }_{1}^{1} \mathrm{H}+{ }_{0}^{1} \mathrm{n}$
The energy captured is the γ-ray photon E_{γ} is given by
$E_{\gamma}+1876=939+940$
$\Rightarrow E_{\gamma}=(939+940)-1876=3 \mathrm{MeV}$
145 (c)
$\frac{A_{0}}{3}=A_{0}\left(\frac{1}{2}\right)^{\frac{9}{T_{1 / 2}}}$
$A^{\prime}=\frac{A_{0}}{3}\left(\frac{1}{2}\right)^{\frac{9}{T_{1 / 2}}}$
Dividing, we get
$\frac{A^{\prime} \times 3}{A_{0}}=\frac{1}{3}$ or $A^{\prime}=\frac{A_{0}}{9}$
146 (b)
$t_{1 / 2}=\frac{0.639}{\lambda}$
147 (a)
Two α-particles reduce mass number by 8
Therefore, new mass number $=180-8=172$
Emission of two α-particles reduces charge number by 4
Emission of β-particles increases charge number by 1
Therefore, the new charge number $=72-4+$ $1=69$
148 (b)
A nucleus contains protons and neutrons with no antiprotons and antineutrons. Hence, answer can be either (b) or (d). Due to conservation of spin, the answer is (b)
149 (b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{64}=\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=6$
After 6 half lives intensity emitted will be safe
\therefore Total time taken $=6 \times 2=12 \mathrm{hrs}$
150 (c)
Let the kinetic energy of the α-particle be E_{α} and that of the thorium Th be $E_{\text {th }}$. The ratio of kinetic energies is
$\frac{E_{\alpha}}{E_{\mathrm{th}}}=\frac{\frac{1}{2} m_{\alpha} v_{\alpha}^{2}}{\frac{1}{2} m_{\mathrm{th}} v_{\mathrm{th}}^{2}}=\left(\frac{m_{\alpha}}{m_{\mathrm{th}}}\right)\left(\frac{v_{\alpha}}{v_{\mathrm{th}}}\right)$
By conservation of momentum, the momentum of α-particle and that of the recoiling thorium must be equal. Thus,
$m_{\alpha} v_{\alpha}=m_{\text {th }} v_{\text {th }}$
Or $\frac{v_{\alpha}}{v_{\text {th }}}=\frac{m_{\text {th }}}{m_{\alpha}}$
Substituting Eq. (ii) in Eq. (i), we have
$\frac{E_{\alpha}}{E_{\mathrm{th}}}=\left(\frac{m_{\alpha}}{m_{\mathrm{th}}}\right)\left(\frac{m_{\mathrm{th}}}{m_{\alpha}}\right)^{2}=\frac{m_{\mathrm{th}}}{m_{\alpha}}=\frac{234}{4}=58.5$
Thus, the kinetic energy of the α-particle expressed as the fraction of the total kinetic energy T is the given by
$E_{\alpha}=\frac{58.5}{1+58.5} T=\frac{58.5}{59.5} T=0.98 T$
Which is slightly less than T
151 (b)
From $R=R_{0}\left(\frac{1}{2}\right)^{n}$, we have
$1=64\left(\frac{1}{2}\right)^{n}$
Or $n=6=$ number of half-lives
$t=n \times t_{1 / 2}=6 \times 2=12 \mathrm{~h}$
152 (b)
The nuclear fission differs from other nuclear reaction in three respects

1. The nucleus is deeply divided into two large fission fragments or nuclei of roughly equal mass. The nuclei or fission fragments fly apart at great speed and thus posses large kinetic energies that carry off the greater part of the energy released
2. The mass decrease is appreciable and hence large energy is released
3. Other neutrons, called fission neutrons, are emitted in the process. Small amount of energy is released in the form of radiation

153 (b)

Fast neutrons can be easily slowed down by passing them through water. This is because of comparable masses the energy passed by neutron to water molecule is high
154 (a)
$\frac{A_{2}}{A_{1}}=\frac{N_{2}}{N_{1}}$
$\frac{A_{2}}{10^{3}}=\frac{1}{2}$ or $A_{2}=\frac{1000}{2}=500 \mathrm{~s}^{-1}$
155 (b)
Nuclear forces are charge independent
156 (a)
Maximum number of nuclei will be present when rate of decay = rate of formation
Or $\lambda N=\alpha$
$\therefore N=\frac{\alpha}{\lambda}$
$Q=\left(\Sigma B_{r}-\Sigma B_{p}\right) c^{2}$
Where $\Sigma B_{r}=$ sum of the masses of reactants
and $\Sigma B_{p}=$ sum of the masses of the products
$\Sigma B_{r}=2 \times 2.014741$ a.m. u. $=4.0294892$ a.m.u.
$\Sigma B_{p}=(3.016977+1.008987)$ a. m. u.
$=4.025964 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
$\Sigma B_{r}-\Sigma B_{p}=(4.029482-4.025694)$ a. m. u.
$=0.003518 \mathrm{a} . \mathrm{m} . \mathrm{u}$.
Decrease in mass appears as equivalent energy,
$\therefore Q=0.003518 \times 931 \mathrm{MeV}$
$=3.27 \mathrm{MeV}$
158 (c)
At closest distance of approach
Kinetic energy $=$ Potential energy
$\Rightarrow 5 \times 10^{6} \times 1.6 \times 10^{-19}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{(z e)(2 e)}{r}$
For uranium $z=92$, so $r=5.3 \times 10^{-12} \mathrm{~cm}$
159 (d)
Conserve the number of nucleons
160 (b)
The complete fission reaction is
${ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{40}^{94} \mathrm{Zr}+{ }_{58}^{140} \mathrm{Ce}+2 \mathrm{n}+6 \mathrm{e}^{-1}$
$Q=\left[m\left({ }^{235} \mathrm{U}\right)-m\left({ }^{94} \mathrm{Zr}\right)-m\left({ }^{140} \mathrm{Ce}\right)-m(\mathrm{n})\right] c^{2}$
$=208 \mathrm{MeV}$
161 (b)
Use conservation of linear momentum
162 (b)
Here, half-life of radium, $t=1500$ years
Disintegration constant $\lambda=\frac{0.693}{T}=\frac{0.696}{1500}$ year $^{-1}$
$N_{0}=1 \mathrm{~g} N=10 \mathrm{mg}=1$ centigram $=10^{-2} \mathrm{~g}$
$\therefore N=10 \mathrm{mg}$
Now apply $N=N_{0} e^{-\lambda t}$
163 (c)
The minimum energy needed to carry out an endothermic reaction is greater than the Q value of the reaction. This is because to conserve the momentum some extra energy has to be provided $K E_{\text {min }}\left(1+\frac{m}{M}\right) \times|Q|$, where m is the mass of the incident particle and M is the mass of target
164 (a)
As the alpha particle decays, the daughter nucleus recoils. In such a process, the momentum conservation holds good,
So,
$P_{\alpha}=P_{D}=P$
$K_{\alpha}=\frac{P^{2}}{2 M_{\alpha}}$ and $K_{D}=\frac{P^{2}}{2 M_{D}}$
As $M_{D}>M_{\alpha}$, so $K_{\alpha}>K_{D}$
165 (d)
$N_{1}=N_{0} e^{-10 \lambda t}$ and $N_{2}=N_{0} e^{-\lambda t}$
$\therefore \frac{N_{1}}{N_{2}}=\frac{e^{-10 \lambda t}}{e^{-\lambda t}}=\frac{1}{e^{9 \lambda t}}$
Given,
$\frac{N_{1}}{N_{2}}=\frac{1}{e} \Rightarrow \frac{1}{e^{9 \lambda t}}=\frac{1}{e}$
Or $9 \lambda t=1$ or $t=\left(\frac{1}{9 \lambda}\right)$
166 (c)
Let n collisions are required for the given condition. Then,
$\left(\frac{1}{2}\right)^{n} \times 2 \mathrm{MeV}=0.04 \times 10^{-6} \mathrm{MeV}$
$2^{n}=\frac{2}{0.04} \times 10^{6}=50 \times 10^{6}$
After solving above equation, $n=26$
167 (c)
For this substance 7 days correspond to 3.5 halflives. Over 3 half-lifes the sample reduces to $\frac{1}{2^{3}}=\frac{1}{8}$ of its initial mass. After 4 half-lifes, the sample has only $\frac{1}{2^{4}}=\frac{1}{16}$ of its initial mass. Hence, after 3.5 half-lives the sample must contain somewhere between $1 / 8$ and $1 / 16$ of its initial mass
Hence, 5 g is somewhere between $1 / 8$ and $1 / 16$ of the initial mass
So, the initial mass is somewhere between
$8 \times 5=40 \mathrm{~g}$ and $16 \times 5=80 \mathrm{~g}$
168 (a)
Fraction of nuclei which remain undecayed is
$f=\frac{N}{N_{0}}=\frac{N_{0} e^{-\lambda t}}{N_{0}}$
$=e^{-\lambda t}$
$=e^{-\left(\frac{\ln 2}{T}\right)\left(\frac{T}{2}\right)}$
$=\frac{1}{e^{\ln \sqrt{2}}}=\frac{1}{\sqrt{2}}$
169 (c)
Energy will be released when stability increases.
This will happen when binding energy per
nucleon increases

	Reactant	Product
Reaction (a)	$60 \times 8.5 \mathrm{MeV}$ $=510 \mathrm{MeV}$	$20 \times 30 \times 5$ $=300 \mathrm{MeV}$
Reaction (b)	120×7.5 $=900 \mathrm{MeV}$	$(90 \times 8+$ $30 \times 5)$ $=870 \mathrm{MeV}$
Reaction (c)	120×7.5 $=900 \mathrm{MeV}$	$2 \times 60 \times 8.5$ $=1020 \mathrm{MeV}$
Reaction (d)	90×8 $=720 \mathrm{MeV}$	$60 \times 8.5+$ 30×5 $=600 \mathrm{MeV}$

170 (d)
After n half-lives, the radioactive nuclei remaining is $\frac{N_{0}}{2^{n}}$. So, number of nuclei disintegrated in n halflives is $\left(N_{0}-\frac{N_{0}}{2^{n}}\right)$
For $n=\frac{1}{2}$, the fraction disintegrated is $\left(1-\frac{1}{\sqrt{2}}\right)$
171 (b)
$T_{1 / 2}=\frac{0.693}{\lambda}$ or $T_{1 / 2}=0.693\left[\frac{1}{\lambda}\right]$
Or $T_{1 / 2}=0.693 \tau$
Clearly, $x=0.693$
172 (a)
According to Avogadro's hypothesis,
$N_{0}=\frac{6.02 \times 10^{23}}{226}=2.66 \times 10^{21}$
Half-life $=T=\frac{0.693}{\lambda}=1620$ years
$\therefore \lambda=\frac{0.6931}{1620 \times 3.16 \times 10^{7}}$
$=1.35 \times 10^{-11} \mathrm{~s}^{-1}$
Because half-life is very much large as compared to its time interval, hence $N \approx N_{0}$. Now,
$\frac{d N}{d t}=\lambda N \approx \lambda N_{0}$
Or $d N \approx \lambda N_{0} d t$
$=\left(1.35 \times 10^{-11}\right)\left(2.66 \times 10^{21}\right) \times 1$
$=3.61 \times 10^{10}$
173 (c)
$t=0, N=N_{0}$
$t=6.93, N=N_{0} / 4$
$N_{0} / 4$ is the sample left after two half-lives
$\therefore 2 t_{1 / 2}=6.93$
$\Rightarrow 2 \times \frac{0.693}{\lambda}=6.93 \Rightarrow \lambda=0.2 \mathrm{~min}^{-1}$
$\Rightarrow t=60 \mathrm{~min}$
$\therefore N=N_{0} e^{-\lambda t}=N_{0} e^{-0.2 \times 60}=\frac{N_{0}}{e^{12}}$

Multiple Correct Answers Type
 174 (c,d)

Due to mass defect (which is finally responsible for the binding energy of the nucleus), mass of a nucleus is always less than the sum of masses of its constituent particles
${ }_{10}^{20} \mathrm{Ne}$ is made up of 10 protons plus 10 neutrons Therefore, mass of ${ }_{10}^{20} \mathrm{Ne}$ nucleus,
$M_{1}<10\left(m_{\mathrm{p}}+m_{\mathrm{n}}\right)$
Also, heavier the nucleus, more is the mass defect
$20\left(m_{\mathrm{n}}+m_{\mathrm{p}}\right)-M_{2}>10\left(m_{\mathrm{p}}+m_{\mathrm{n}}\right)-M_{1}$
Thus, $10\left(m_{\mathrm{n}}+m_{\mathrm{p}}\right)>M_{2}-M_{1}$
Or $M_{2}<M_{1}+10\left(m_{\mathrm{p}}+m_{\mathrm{n}}\right)$
Now, since $M_{1}<10\left(m_{\mathrm{p}}+m_{\mathrm{n}}\right)$
$\therefore M_{2}<2 M_{1}$
175 (a,b,c)
In general, fission and fusion processes are exothermic reactions, i.e., energy is released.
Hence, mass of products must be less than mass of the reactant nuclides, and BE / A of reactants $<\mathrm{BE} / A$ of products nuclides
176 (a,c,d)
First transition is from $n=3$ to $n=2$. Second transaction is from $n=2$ to $n=1$
$\therefore \frac{E_{1}}{E_{2}}=c=\frac{1 / 2^{2}-1 / 3^{2}}{1 / 1^{2}-1 / 2^{2}}$
$=\frac{5 / 36}{3 / 4}=\frac{5}{36} \times \frac{4}{3}=\frac{5}{27}$
As $p=\frac{E}{c}$, therefore,
$\frac{p_{1}}{p_{2}}=b=\frac{E_{1}}{E_{2}}=c$ ie, $b=c=\frac{5}{27}$
As $E=\frac{h c}{\lambda} \therefore \lambda \propto \frac{1}{E}$
or $a=\frac{\lambda_{1}}{\lambda_{2}}=\frac{E_{2}}{E_{1}}=\frac{27}{5}=\frac{1}{c}$ or $c=\frac{1}{a}$

177 (a,b,c,d)

We have, $6.25 \%=\frac{6.25}{100}=\frac{1}{16}$
The given time of 4 h thus equals 4 half-lives so that the half-life is 1 h
Since half-life $=\frac{\ln 2}{\text { decay constant }}$ and mean life $=\frac{1}{\text { decay constant }}$, after further 4 h , the amount left over would be $\frac{1}{2^{4}} \times \frac{1}{2^{4}}$, i. e. $\frac{1}{256}$ or $\frac{100}{256}$ or 0.39% of original amount
178 ($\mathbf{a}, \mathbf{c}, \mathrm{d}$)
$r_{n}=\frac{n^{2} a_{0}}{z}$
$T_{E}=-\frac{13.6 Z^{2}}{n^{2}} ; L=\frac{n h}{2 \pi}$
$P E \propto \frac{1}{n^{2}}$
$|P E|=2 \times|K E|$
Thus option (a), (c), (d) are correct
179 (a,b,c)
The last statement is incorrect because the amount of energy released per unit mass of the fuel is much more for fusion than for fission. Hence, (a), (b) and (c) are correct
181 (a,b,c)
If the nuclear reaction involving β-decay is
$\mathrm{n} \rightarrow \mathrm{p}+e^{-1}$, the spins on two sides are not equal as all the three (neutron, proton and electron) have spins of $+\frac{1}{2}$. So, to conserve angular momentum (spin), some other particle must be emitted.
Through experiments it has been observed that direction of emitted electron and recoiling nuclei are almost never exactly opposite as required for linear momentum to be conserved
During β-decay, the energy of electron is found to vary continuously from 0 to a maximum value (this maximum value is a characteristic of nuclide). To explain this experimental observation, we also need some other particle
182 (a,b,c)
We know,
$N=N_{0} e^{-\lambda t}$
Where, $N=$ number of decayed nuclei in the sample at time t,
$N_{0}=$ initial number of nuclei
Hence, total number of undecayed nuclei
$=\left(N_{0}-N\right)$
Substituting it in (i), we get
$N_{0}-N=N_{0}\left(1-e^{-\lambda t}\right)$
This shows that the total number of undecayed nuclei decays exponentially with time and total number of decayed unclei grows exponentially with time. Now,
$R=-\lambda N=\frac{d N}{d t} \quad(R=$ activity $)$
Hence, activity $(R) \propto$ number of undecayed nuclei Therefore, (a), (b), (c) are correct answers
184 (a,c)
Half-lives of both the samples would be same as half-life is property of radioactive material and is independent of number of nuclei present or its activity. Let $R_{0 \mathrm{~B}}=R_{0}$, then $R_{0 \mathrm{~A}}=2 B_{0}$, where R_{0} denotes initial activity
Activity of A after 5 half-lives is
$R_{\mathrm{A}}=\frac{R_{0 \mathrm{~A}}}{2^{5}}=\frac{2 R_{0}}{2^{5}} a$
Activity of B after 5 half-lives is
$R_{\mathrm{B}}=\frac{R_{\mathrm{OB}}}{2^{5}}=\frac{R_{0}}{2^{5}}$
$\therefore \frac{R_{\mathrm{A}}}{R_{\mathrm{B}}}=\frac{2}{1}$
185 (\mathbf{a}, \mathbf{c})
$R=R_{0} A^{1 / 3}$
For $0^{16}, R=R_{0}(16)^{1 / 3}$
For ${ }_{54} \mathrm{X}^{128}, R^{\prime}=R_{0}(128)^{1 / 3}$
$R^{\prime}=\left(\frac{128}{16}\right)^{1 / 3} R=2 R$
$\therefore V^{\prime}=\frac{4}{3} \pi R^{1 / 3}=8 \mathrm{~V}$
186 (b,d)
If in nuclear reaction binding energy per nucleon increases, energy is released
187 (a,c)
The idea of 'magic number' has led to the shell model and the nuclides with these number of protons or neutrons have been compared with the 'inert gases' vis-à-vis stability in terms of 'closed shells'
188 (a,d)
In nuclear fusion, two or more lighter nuclei are combined to form a relatively heavy nucleus and thus, releasing the energy
189 (a,b,d)
It has been observed that total mass of nucleus is always less than the sum of the masses of its nucleus. The energy difference between the nucleus and its constituent particles due to their mass difference is termed as the binding energy of the nucleus.
In other words, we can say that to break the nucleus into its constituent particles, some energy is needed to be supplied. This energy is termed as binding energy of the nucleus
For (a) more is the binding energy per nucleon, more is the energy required to break the nucleus and hence we can say the more stable the nucleus is
For (b), (c) and (d), in actual the binding energy is always positive but if it were zero, then nucleus will break spontaneously
190 (b)
Co^{60} is used for treatment of cancer
191 (b,c)
Statement (a) is incorrect. The ${ }_{2} \mathrm{He}^{4}$ nucleus (or the α-particle) is exceptionally stable and has a much higher value of BE per nucleon than that for most other light nuclei. Statement (b) is correct but the reason of decrease in binding energy is different for the cases of smaller and larger values of A. The reason for the decrease in the BE per nucleon for nuclei with large A is that with an increase in the number of protons, the Coulomb repulsion increases. On the other hand, the decrease in the BE per nucleon for nuclei with small A is due to a surface effect: the nucleons at
the surface being less strongly bound than those in the interior. Statement (c) is also correct. The energy required to remove one neutron (i.e., one nucleon) is the same as the binding energy per nucleon for a given isotope
Statement (d) is incorrect. To ensure both charge and mass number conservation, a proton must be produced as a by-product of the reaction:
${ }_{1} \mathrm{D}^{2}+{ }_{1} \mathrm{D}^{2} \rightarrow{ }_{1} \mathrm{~T}^{3}{ }_{1} \mathrm{P}^{1}+\mathrm{Q}$
192 (a,d)
In α-decay, the entire energy is carried away by the α-particles as its kinetic energy. In β^{-}-decay, the energy is shared between the β-particle and the anti-neutrino. Hence, the speed of the β particle will vary, depending on the energy of the anti-neutrino
193 (a)
Let percentage of ${ }_{5} B^{10}$ be x and percentage of ${ }_{5} B^{11}=(100-x)$
\therefore Average atomic weight
$=\frac{x \times 10+(100-x) 11}{100}=10.81$
$10 x+110-11 x=1081$
$x=1100-1081=19$
$\therefore 100-x=100-19=81$

194 (b,c)

Orbital angular momentum $(L)=n \frac{h}{2 \pi}$
When $n=1, L=\frac{h}{2 \pi}$. When $n=2, L=\frac{h}{\pi}$
195 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
All the statements are very conceptual statements related to different decays
196 (b,c,d)
Statement (a) is incorrect. In fact,
$A=Z+N$
Statements (b), (c) and (d) are correct; they are the definitions of isobars, isotopes and isotones
197 (a,d)

1. True, Cd absorbs neutrons
2. No, concrete reflects, does not slow down
3. 'Moderate the activity' is not correct. 'Moderator' in the sense of slowing the neutrons is different
4. True, it is a fact

198 (a,c)
$\lambda=(0.173 \text { year })^{-1}$
$N=N_{\mathrm{O}} e^{-\lambda t}$
As $t=\frac{1}{\lambda^{\prime}}$, hence
$N=\frac{N_{0}}{e}=\frac{N_{0}}{2.178}=0.37 N_{0}$
$\Rightarrow T=\frac{0.693}{\lambda}=\frac{0.693}{0.173}=4$ years
199 (a,b,c)
Use $\frac{N}{N_{0}}=e^{-\lambda t}$
200 (a,d)
For an exothermic reaction
$X+x \rightarrow Y+y$
If K_{i} is the kinetic energy of incident particle x , then from energy conservation
$K_{\mathrm{i}}+\left(m_{x}+m_{x}\right) c^{2}=K_{\mathrm{Y}}+K_{\mathrm{y}}+\left(M_{\mathrm{Y}}+m_{\mathrm{y}}\right) c^{2}$
$K_{\mathrm{Y}}+K_{\mathrm{y}}=K_{\mathrm{i}}+\left(m_{x}+M_{\mathrm{X}}-M_{\mathrm{Y}}-m_{\mathrm{y}}\right) c^{2}$
$K_{\mathrm{Y}}+K_{y}=K_{\mathrm{i}}+Q$
In any exothermic reaction, mass of the products is less than the mass of reactants, i.e., in products, the nucleons are more tightly bound and hence have greater BE per nucleon as compared to BE per nucleon of reactants. For endothermic reaction to be carried out, minimum energy given to the reactant must be greater than $|Q|$ value

201 (a,b,c,d)

We know that $E \propto \frac{1}{n^{2}} ; P \propto \frac{1}{n}$ and $r \propto n^{2}$
$\operatorname{Pr} \propto \frac{1}{n}\left(n^{2}\right) i e, \operatorname{Pr} \propto n$
$\frac{P}{E} \propto \frac{1 / n}{1 / n} i e, \frac{P}{E} \propto n$
$E r \propto \frac{1}{n^{2}} \times n^{2} i e, E r=$ constant for all orbits.
$E P r \propto \frac{1}{n^{2}} \cdot \frac{1}{n} n^{2} i e, E P r$ is proportional to $1 / n$

Assertion - Reasoning Type

202 (b)
Neutron is about 0.1 more massive than proton.
But the unique thing about the neutron is that while it is heavy, it has no charge (it is neutral). This lack of charge gives it the ability to penetrate matter without interacting as compared to the beta particles or alpha particles

203 (d)
According to classical electromagnetic theory, an accelerated charged particle continuously emits
radiation. As electrons revolving in circular paths are constantly experiencing centripetal acceleration, hence they will be losing hteir energy continuously and the orbital radius will go on decreasing, form spiral and finally the electron will fall in the nucleus

204 (a)
The wavelength in Balmer series is given by
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right), n=3,4,5 \ldots$
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
$\frac{1}{\lambda_{\max }}=\frac{36}{5 R}=\frac{36 \times 1}{5 \times 1.097 \times 10^{7}}=6563 \AA$
and $\frac{1}{\lambda_{\text {min }}}=R\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)$
$\lambda_{\text {min }}=\frac{4}{R}=\frac{4}{1.097 \times 10^{7}}=3646 \AA$
205 (b)
β-particles, being emitted with very high speed compared to α-particles, pass for very little time near the atoms of the medium. So the probability of the atoms being ionized is comparatively less.
But due to this reason, their loss of energy is very slow and they can penetrate the medium through a sufficient depth

206 (c)
In fusion, lighter nuclei are used so fusion is not possible with ${ }^{35} \mathrm{Cl}$. Also binding energy of ${ }^{35} \mathrm{Cl}$ is not too small

207 (b)

When the atom gets appropriate energy from outside, then this electron rises to some higher energy level. Now it can return either directly to the lower energy level or come to the lowest energy level after passing through other lower energy levels, hence all possible transitions take place in the source and many lines are seen in the spectrum

208 (a)
Substituting $m=1 \mathrm{amu}=1.67 \times 10^{-24} \mathrm{~kg}$ and
$c=3 \times 10^{8} \mathrm{~ms}^{-1}$ in the energy-mass equivalence relation

$$
\begin{aligned}
& E=m c^{2} \\
& =1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2} \\
& =1.67 \times 10^{-27} \times 9 \times 10^{16} \mathrm{~J} \\
& =\frac{1.67 \times 10^{-27} \times 9 \times 10^{16}}{1.6 \times 10^{-13}} \mathrm{MeV}=931 \mathrm{MeV}
\end{aligned}
$$

209 (b)

Bohr postulated that electrons in stationary orbits around the nucleus do not radiate.

This is the one of Bohr's postulate. According to this the moving electrons radiates only when they go from one orbit to the next lower orbit

211 (c)
Nuclear foce is nearly same for all nucleus

212 (a)

Here, both the statements are correct and statement II correctly explains Statement I

213 (a)

Statement II, is true by definition and correctly explains Statement I, namely, ${ }_{z} X^{4}$ undergoes 2α decay, 2β-decays (negative β) and 2γ-decays. As a result, the daughter product is ${ }_{Z-2} X^{A-B}$

215 (a)
Experimentally, it is found that the average radius of a nucleus is given by
$R=R_{0} A^{1 / 3}$ where $R_{0}=1.1 \times 10^{-15} M=1.1 \mathrm{fm}$ and $A=$ mass number

216 (b)

Electron capture occurs more often than positron emission in heavy elements. This is because if positron emission is energetically allowed, electron capture is necessarily allowed, but the reverse is not true, i.e., when electron capture is energetically allowed, positron emission is not necessarily allowed

217 (a)
From Bohr's theory the energy of hydrogen atom in the $n^{\text {th }}$ state is given by $E_{n}=\frac{13.6}{n^{2}} \mathrm{eV}$. For an atom of atomic number Z, with one electron in the outer orbit (singly ionised He or double ionised lithium) we use $E_{n}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}$, where Z is atomic number. Hence, ground state energy of
doubly ionised lithium is $\frac{-13.6 \times 9}{1^{2}}=-122.4 \mathrm{eV}$
Ionisation potential (potential to be applied to electron to overcome this energy) is 122.4 V .

218 (a)

Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I

219 (a)
The radius of nucleus is given by $R=$
$R_{0} A^{1 / 3}$ where R_{0} is a constant $=1.1 \times 10^{-15} \mathrm{~m}$.
For different nuclei mass number A is different, therefore R is different

220 (b)
β-particles are emitted with very high velocity (up to $0.99 c$). So, according to Einstein's theory of relatively, the mass of a β-particle is much higher compared to its rest mass $\left(m_{0}\right)$. The velocity of electrons obtained by other means is very small compared to c (velocity of light). So its mass remains nearly m_{0}. But β-paricle and electron both are similar particles

221 (a)

Factual
222 (c)
From the reaction hydrogen is converted into helium, with the nucleus releasing two positions and energy. Because of positron emission it cannot be β - decay. The energy emitted and participation of light nuclei correspond to the fusion reaction.

223 (a)
When fission of heavy nucleus takes place, it splits itself into two lighter nuclei which are having too many neutrons and are highly unstable. To attain stability, they decay neutrons and hence try to achieve N / Z ratio somewhat greater than 1

224 (c)

Nuclear stability depends upon the ratio of neutron to proton. If the n / p ratio is more than the critical value, then a neutron gets converted into a proton forming a β^{-}particle in the process $n \rightarrow p+e^{-}$

The β^{-}particle (e^{-}) is emitted from the nucleus in some radioactive transformation. So electrons do not exist in the nucleus but they result in some
nuclear transformation

225 (a)

From the relation,
$\lambda=\frac{0.6931}{T}$
$\therefore \lambda=\frac{0.6931}{30}=0.0231$ day $^{-1}$
226 (a)
${ }_{38} \mathrm{Sr}^{90}$ decays to ${ }_{39} \mathrm{Y}^{90}$ when β-rays emission is occurred. Sr gets absorbed in bones along with calcium which causes impairment of the production of red blood cells. So, assertion is true.

Now, $\mathrm{Sr}^{90} \xrightarrow{\beta} \mathrm{Y}^{90}$
Sr decays to Yttrium Sr^{90} emits β-rays of very high energy. Bone marrow is damaged by these high energetic β-particles. So, reason is also true

228 (c)

According to postulates of Bohr's atom model, the electron revolves around the nucleus in fixed orbit of definite radii. As long as the electron is in a certain orbit it does not radiate any energy

229 (d)
The penetrating power is maximum in case of gamma rays because gamma rays are electromagnetic radiations of very small wavelength

230 (c)
Radioactivity $=-\frac{d N}{d t}=\lambda N=\frac{0.693 N}{T_{1 / 2}}$

$$
\begin{aligned}
=\frac{0.693 \times 10^{8}}{50} & =\frac{0.693 \times 1.2 \times 10^{8}}{60} \\
& =0.693 \times 2 \times 10^{6}
\end{aligned}
$$

Radioactivity is proportional to $1 / T_{1 / 2}$, and not to $T_{1 / 2}$

231 (a)

In α-particle scattering experiment, Rutherford found a small number of α-particles which were scattered back through an angle approaching to 180°. This is possible only if the positive charges are concentrated at the centre or nucleus of the atom

232 (b)
5. If Assertion is True, Reason is True, Reason is correct explanation of 1
6. If Assertion is True, Reason is True, Reason is not correct explanation of 1
7. If Assertion is True, Reason is False
8. If Assertion is False, Reason is True

233 (a)

Statement II is correctly explaining Statement I
More probability of decay means faster decay process and hence shorter half-life

234 (b)

Fission of U^{235} occurs by slow neutrons only (of energy about 1 eV) or even by thermal neutrons (of energy bout 0.025 eV). Fission of ${ }_{92}^{238} \mathrm{U}$ is brought about by a fast neutron. ${ }_{92}^{235} \mathrm{U}$ has odd mass number and even atomic number, hence it is an even-odd nucleus whereas ${ }_{92}^{238} \mathrm{U}$ has even mass number and even atomic number, hence it is an even-even nucleus.
235 (a)
We know that an electron is very light particle as compared to an α-particle. Hence electron cannot scatter the α-particle at large angles, according to law of conservation of momentum. On the other hands, mass of nucleus is comparable with the mass of α-particle, hence only the nucleus of atom is responsible for scattering of α-particles

236 (d)

The whole mass of the atom is concentrated at nucleus and $M_{\text {nucleus }}<$ (Sum of the masses of nucleons) because, when nucleons combine some energy is wasted

237 (a)

As in a nucleus, nucleons are bounded by shortrange nuclear force, so a given nucleon is in interaction only with neighboring nucleons. So, detaching a nucleon from a nucleus is irrespective of the fact that how many nucleons are present in the nucleus. Moreover, due to short-range nuclear force only, the E_{b} / A versus A curve is slowly varying for $A>40$

While, in atoms electrons are bound with nucleus by Coulomb's force which is a long-range force and depends on the number of protons in the
nucleus and electron separation from the nucleus. If we take the average of the energies required to detach all the electrons from the outermost shell to the innermost K shell, then this average increases rapidly with increase in atomic number

Rutherford confirmed that the repulsive force on α-particle due to nucleus varies with distance according to inverse square law and that the positive charges are concentrated at the centre and not distributed throughout the atom

Number of half-lives
$n=\frac{t}{T}=\frac{200}{100}=2$
The fraction left undecayed is given
$\therefore \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=\frac{1}{4} \times 100 \%=25 \%$

In particle situation, at least three particles take place in transformation, so energy for β particle+ energy of third particle $=E_{1}-E_{2}$ Hence, energy of β-particle $\leq E_{1}-E_{2}$
241 (a)
Here, statement I is correct and Statement II is wrong can be directly concluded from binding energy/nucleon curve.

Atomic mass and mass number are different. Mass number is simply representing number of nucleons, while atomic mass is the average of the masses of isotopes of a given element and has units of u (atomic mass unit)

243 (a)

If the half-life of a radioactive isotope is small as compared to the age of organic sample, then over the age of the sample the activity of radioactive isotope becomes very small and hence is impossible to detect. While this process will not arise if we use radioactive isotope having larger half-life for dating with organic samples

244 (a)

In $\alpha=$ decay, the mass number decreases by 4 and atomic number decreases by 2 . In β-decay, the mass number does not change but atomic number
changes by 1.In α-decay the atomic and mass number remain unchanged.

The reaction can be summarised as

$$
\begin{aligned}
{ }_{Z} X^{A} & \xrightarrow{2 \alpha}{ }_{Z-4} M^{A-B} \\
& \xrightarrow{2 \beta}{ }_{Z-2} Y^{A-8} \xrightarrow{2 \gamma}{ }_{Z-2} Y^{A-8}
\end{aligned}
$$

Thus, at a far extent reason explain assertion but not completely

245 (b)
In a nuclear fission, when a bigger nucleus is fissioned into two light weight nuclei, then due to mass defect some energy is released. According to concept of binding energy, fission can occur because the total mass energy will decrease; that is $\Delta E_{b n}$ (binding energy) will increase. We see that for high mass nuclide ($A=240$), the binding energy per nucleon is about $7.6 \mathrm{MeV} /$ nucleon. For the middle weight nuclides $(A=120)$, it is about $8.5 \mathrm{MeV} /$ nucleon. Thus, binding energy of fission fragments is larger than the total binding energy of the parent nucleus

246 (d)
Here, $N=N_{0}\left(\frac{1}{2}\right)^{t / T}$
or $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T}$
where T is the half-life period and $\frac{N}{N_{0}}$ is fraction of atoms left after time t. Here , $T=40$ days and $\frac{N}{N_{0}}=\frac{25}{100}=\frac{1}{4}$

Putting the values of T and $\frac{N}{N_{0}}$ in Eq. (i), we get
$\frac{1}{4}=\left(\frac{1}{2}\right)^{t / 40}$ or $\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{t / 40}$
or $\frac{t}{40}=2$ or $t=80$ days

Matrix Match Type

247 (a)

(A) (p) Capacitor is charged, hence its energy is increased
(q) The temperature is increased, henc its energy is increased or as the external positive work is done, hence energy increases
(r) The temperature decreases, its energy is decreased
(s) All natural process, energy of the system decreases
(t) The current is produced. Hence energy of the system increases
(B) (p), (r), (s) no mechanical energy is provided to the system
(q) The mechanical energy is provided which increases the temperature and hence random motion of molecules
(t) Mechanical work is done to change the magnetic field, which increases the mechanical energy of electron and these electrons strike with stationary positive charge and energy is converted in random motion
(C) (s) Internal binding energy is converted into mechanical energy
(D) (s) Mass changes only in nuclear process

1. In the given spontaneous radioactive decay, the number of protons remain constant and all conservation principles are decayed
2. In fusion reaction of two hydrogen nuclei, a proton is decreased as a position shall be emitted in the reaction. All the three conservation principles are obeyed
3. In the given fission reaction, the number of protons remain constant and all conservation principles are obeyed
4. In beta negative decay, a neutron transforms into a proton within the nucleus and the electron is ejected out

249 (d)

$E_{1}=\left[2 m\left({ }_{1} \mathrm{H}^{2}\right)-m\left({ }_{1} \mathrm{H}^{3}\right)-m\left({ }_{1} \mathrm{H}^{1}\right)\right] 931.5 \mathrm{MeV}$
$E_{2}=\left[-m\left({ }_{2} \mathrm{He}^{4}\right)-m\left({ }_{0} \mathrm{n}^{1}\right)+m\left({ }_{1} \mathrm{H}^{3}\right)\right.$
$\left.+m\left({ }_{1} \mathrm{H}^{2}\right)\right] \times 931.5 \mathrm{meV}$
$=17.6 \mathrm{MeV}$
$E_{3}=\left[-m\left({ }_{2} \mathrm{He}^{3}\right)-m\left({ }_{0} \mathrm{n}^{1}\right)+2 m\left({ }_{1} \mathrm{H}^{2}\right)\right]$
$\times 931.5 \mathrm{meV}=3.3 \mathrm{MeV}$
$E_{4}=\left[m\left({ }_{2} \mathrm{He}^{3}\right)-m\left({ }_{1} \mathrm{H}^{2}\right)-m\left({ }_{2} \mathrm{He}^{4}\right)\right.$
$\left.-m\left({ }_{1} \mathrm{H}^{1}\right)\right] \times 931.5 \mathrm{MeV}$
$=18.3 \mathrm{MeV}$
250 (a

1. Thermal energy of air molecules at room temperature:
$k T=1.38 \times 10^{-23} \times 300 \mathrm{~J}=0.025 \mathrm{eV}$
2. Binding energy of heavy nuclei per nucleon $\approx 7 \mathrm{MeV}$
3. X-ray wavelength $\approx 1 \AA$

$$
E=\frac{h c}{\lambda} \simeq 12 \mathrm{KeV}
$$

4. For visible light: wavelength $s \approx 6000 \AA$
$E=\frac{h c}{\lambda} \simeq 2 \mathrm{eV}$
251 (b)
Stability of nucleus is decided by
5. Mass defect \rightarrow greater \rightarrow stability greater
6. Neutron-proton ratio, i.e., $e \frac{N}{P} \simeq 1=1 \rightarrow$ More stable
7. \quad Packing fraction $=$ negative \rightarrow more stable
8. Binding energy per nucleon greater \rightarrow greater stability

For radioactive substance binding energy per nucleon is minimum. So, they are unstable

For bound orbit, total energy is always negative
Stopping potential is the particular negative potential when no electron reaches the plate (i.e., anode)

252 (c)

In nuclear fusion, two lighter nuclei fuse and make big nuclei. In this, mass defect is converted into energy according to $E=m c^{2}$
In nuclear fission, heavy nuclei split into two or more than two smaller nuclei. In this process, mass is converted into energy according to
$E=m c^{2}$
In β-decay, neutron proton ratio decreases, so nucleus becomes more stable
Both nuclear fission and nuclear fusion are exothermic reactions
253 (d)
For all types of waves, sound wave, light wave, string wave the term related is frequency, which is given only in one option. Other phenomenon are property matching.
Photoelectric effect proves photon character of light
γ-rays can only be produced from nucleus

In case of k capture x-rays are emitted
254 (a)
Binding energy per nucleon for middle order element is maximum because middle order element is most stable
So, (a) \rightarrow (q)
Nuclear force depends only on spin of nucleons So, (b) \rightarrow (s)
For nuclear fission, $\frac{Z^{2}}{A}$ is greater than 15
So, (c) \rightarrow (t)
Magic numbers are explained by Shell model
So, (d) \rightarrow (q)
255 (b)
In all the reactions in Column II:
Mass of products will be less than original mass of the system. The mass converts into energy, hence binding energy increases
Basically, in all four reactions mentioned in
Column II, energy is released and hence for all
$m_{\text {products }}>m_{\text {original system }}$
As energy is released in all 4 reactions,
$\mathrm{BE} /$ nucleons increases in all
Mass number and charge number are conserved in all processes

Linked Comprehension Type

256 (d)
As $E \propto \frac{1}{n^{2}}$
$\therefore E_{2}=-\frac{13.6}{2^{2}} \mathrm{eV}=-3.4 \mathrm{eV}$

257 (c)
$N=A-Z=197-79=118$

258 (a)
$\frac{d N_{x}}{d t}=K-\lambda N_{x}$
$\left.N_{\mathrm{X}}=\frac{1}{\lambda}\left[K-K-\lambda N_{0}\right) e^{-\lambda t}\right]$
$\frac{d N_{Y}}{d t}=\lambda N_{\mathrm{X}}$
$N_{\mathrm{Y}}=K_{t}+\left(\frac{K-\lambda N_{0}}{\lambda}\right) e^{-\lambda t}-\frac{K-\lambda N_{0}}{\lambda}$
259 (a)
$\frac{d N}{d t}=q_{0} t-\lambda N ; \frac{d N}{d t}+\lambda N=q_{0} t$
260 (c)
From the graph and the fact that the n / p (=no. of neutrons/no. of protons) ratio for magnesium is $27 / 12$, which is greater than 1 (=unit slope)
261 (b)
In equilibrium,

Rate of decay = rate of production
262 (d)
Radioactivity is independent of all external conditions. When a nucleus undergoes an α decay, its atomic number decreases by 2 and in beta decay, atomic number increases by 1

All options are basic properties of nuclear forces. So, all options are correct
264 (d)
According to the passage, subatomic reactions do not conserve mass. So, we cannot find the third particle's mass by setting $m_{\text {neutron }}$ equal to $m_{\text {proton }}+m_{\text {electron }}+m_{\text {third particle. }}$. By constrast, the total energy in this case, the sum of 'mass energy' and kinetic energy, is conserved. If E denotes total energy, then
$E_{\text {neutron }}=E_{\text {proton }}+E_{\text {electron }}+E_{\text {third particle }}$ The neutron has energy 949.97 MeV . The proton has energy $939.67 \mathrm{MeV}+0.01 \mathrm{MeV}=$ 939.69 MeV. The electron has energy
$0.51 \mathrm{MeV}=0.39 \mathrm{MeV}=0.90 \mathrm{MeV}$. Therefore, the third particle has energy
$E_{\text {third particle }}=E_{\text {neutron }}-E_{\text {proton }}-$ Electron
We just found the third particle's total energy, the sum of its mass energy and kinetic energy.
Without more information, we cannot figure out how much of that energy is mass energy
265 (d)
Nuclear reactions conserve total charge and also conserve the total approximate mass (as measured by the atomic mass number).
Therefore, since the uranium, xenon, and strontium nuclei have atomic masses 236,140 and 94 , the 'other particles' must have total atomic mass A such that
$236=140+94+A$
So, $A=2$. The other particles are two nucleons.
This narrows down the answer to options (b), (c) and (d). For nuclei, the atomic number -i.e., the number of protons-tells us the charge. So, the other particles must have total charge Z such that $92=54+38+Z$ or $Z=0$
In summary, the other particles have total atomic mass 2 and total charge 0 . Only option (d) fits this description
266 (c)
If the particles are treated as point charges,
$U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}$
$Q_{1}=2 e$ (alpha particle), $q_{2}=82 e$ (gold nucleus),
$r=6.5 \times 10^{-14} \mathrm{~m}$
$\therefore U=\left(8.987 \times 10^{8} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{2}\right)$

$$
\begin{aligned}
& \times \frac{(2 \times 82)\left(1.602 \times 10^{-19} \mathrm{C}\right)}{6.50 \times 10^{-14} \mathrm{~m}} \\
& =5.82 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

Or $U=5.82 \times 10^{-13} \mathrm{~J} \times\left(\frac{1 \mathrm{eV}}{1.602 \times 10^{-19} \mathrm{~J}}\right)=3.63 \times$
$10^{6} \mathrm{eV}=3.63 \mathrm{MeV}$
267 (a)
Use conservation of energy and momentum
Momentum of a photon $=h / \lambda$
268 (d)
$\frac{d N}{d t}=\lambda N(t)$
From the given data,
$20000=\lambda N(0)$
$14800=\lambda N(0.5 \mathrm{~h})$
$\frac{N}{N_{0}}=\frac{148}{200}$
$N=N_{0} e^{-\lambda t}$
$\therefore e^{-\lambda t}=\frac{148}{200}$
Or $\lambda=\frac{\left(\ln \frac{200}{148}\right)}{t} \approx 1.6 \times 10^{-4}$ decays s $^{-1}$
Half-life, $T=\frac{0.693}{\lambda}=4340 \mathrm{~s}=1.2 \mathrm{~h}$
269 (d)
The high temperature maintained inside the reactor core
270 (a)
$E=\frac{p^{2}}{2 m} ; p=\frac{h}{\lambda} \Rightarrow E=\frac{h^{2}}{2 m \lambda^{2}}$
For standing waves $\lambda=\frac{2 a}{n} \Rightarrow E=\frac{h^{2} n^{2}}{8 m a^{2}} \Rightarrow E \propto$
a^{-2}
271 (c)
$E_{n}=-\frac{13.6}{n^{2}}\left(z^{2}\right)$
In first excited state $E_{\mathrm{H}_{2}}=-3.4 \mathrm{eV}$ and
$E_{H e}=-13.6 \mathrm{eV}$
272 (d)
$I \omega=\frac{n h}{2 \pi}$
Rotational kinetic energy $=\frac{1}{2} I \omega^{2}=\frac{1}{2} \frac{n^{2} h^{2}}{4 \pi^{2} I}=\frac{n^{2} h^{2}}{8 \pi^{2} I}$
273 (c)
$K E_{\text {max }}$ of β^{-}
$Q=0.8 \times 10^{6} \mathrm{eV}$
$K E_{P}+K E_{\beta^{-}}+K E_{\bar{v}}=Q$
$K E_{P}$ is almost zero
When $K E_{\beta^{-}}=0$
Then $K E_{\bar{v}}=Q-K E_{P} \cong Q$

Integer Answer Type

274 (4)
We have $\frac{t}{t_{1 / 2}}=\frac{40 \text { hours }}{20 \text { hours }}=2$
Thus, $A=\frac{A_{0}}{2^{t / t_{1 / 2}}}=\frac{A_{0}}{2^{2}}=\frac{A_{0}}{4}$
So, one fourth of the original activity will remain after 40 hours
275 (0)
The activity of the sample at time t is given by $A=A_{0} e^{-} \lambda^{t}$
Where λ is the decay constant and A_{0} is the activity at time $t=0$ when the capacitor plates the connected. The charge on the capacitor at time t is given by
$Q=Q_{0} e^{-t / C R}$
Where Q_{0} is the charge at $t=0$ and $C=100 \mu \mathrm{~F}$ Thus,
$\frac{Q}{A}=\frac{Q_{0}}{A_{0}} \frac{e^{-t / C R}}{e^{-\lambda t}}$
It is independent of t if $\lambda=\frac{1}{C R}$
Or $R=\frac{1}{\lambda C}=\frac{t_{a v}}{C}=\frac{20 \times 10^{-3}}{100 \times 10^{-6} \mathrm{~F}}=200 \Omega$
276 (8)

$6\left(t_{\mathrm{eq}}\right)$
$\Rightarrow N=\frac{N_{0}}{(2)^{3}} \Rightarrow \frac{N_{0}}{N}=8$
277 (2)
$R_{1}=\lambda N_{1}, R_{2}=\lambda N_{2}$,
No of atoms decayed in $\left(T_{1}-T_{2}\right)$

$$
\begin{gathered}
=N_{1}-N_{2}=\frac{R_{1}-R_{2}}{\lambda}=\frac{\left(R_{1}-R_{2}\right) T}{\ln 2} \\
=\frac{2\left(R_{1}-R_{2}\right) T}{\ln 4}
\end{gathered}
$$

Hence $n=2$
278 (2)
In one half-life the number of active nuclei reduces to half the original number. Thus, in two half-lives the number is reduced to $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$ of the
original number. The number of remaining active nuclei is, therefore,
$8.0 \times 10^{18} \times\left(\frac{1}{2}\right)=2 \times 10^{18}$
x and y are number of α-decays and β-decays respectively
$92-2 x+y=85$ (i)
Or $2 x-y=7$ (ii)
Similarly, $238-4 x=210$
$x=7$, put in (i) we get $y=7$
280 (1)
$N=N_{0} e^{-\lambda t}$
$\frac{d N}{d t}=10^{10}=N_{0}(\lambda) e^{-10^{-9} t}$, at $(t=0)$
$10^{10}=N_{0} 10^{-9} \Rightarrow N_{0}=10^{19}$
Mass of sample $=N_{0}$ (mass of the atom)
$=N_{0} 10^{-25}$
$=10^{-6} \mathrm{kgm}=10^{-6} \times 10^{3} \mathrm{gm}=10^{-3} \mathrm{gm}=1 \mathrm{mg}$
281 (6)
Effective decay constant will be sum of all
different decay constants
So $\lambda_{\text {eff }}=\lambda+2 \lambda+3 \lambda=6 \lambda$, hence $n=6$
282 (6)
We have to find the time at which
$\lambda_{A} N_{A}=\lambda_{B} N_{B}$
$\left(\frac{\ln 2}{T_{A}}\right)\left(4 N_{0} e^{-\lambda_{A} t}\right)=\left(N_{0}\right)\left(\frac{\ln 2}{T_{B}}\right)\left(e^{-\lambda_{B} t}\right)$
$e^{\left(\lambda_{A}-\lambda_{B}\right) t}=8$
$\left(\lambda_{A}-\lambda_{B}\right) t=\ln 8=3(\ln 2)$
$\left(\frac{\ln 2}{1}-\frac{\ln 2}{2}\right) t=3 \ln (2) \Rightarrow t=6$ minutes

