

3.MATRICES

Single Correct Answer Type

1.	If A and B are two square matrices such that $B = -A^{-1} BA$, then						
	$(A + B)^2$ is equal to						
	a) $A^2 + B^2$ b) O	c) $A^2 + 2AB + B^2$	d) <i>A</i> + <i>B</i>				
2.	If the system of equations $x + ay = 0$, $az + y = 0$ as	ndax + z = 0 has infinite so	olutions, then the value of <i>a</i>				
	is						
2	a) -1 b) 1	c) 0	d) No real values				
3.	If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$, then $A^T A^{-1}$ is						
	a) $\begin{bmatrix} -\cos 2x & \sin 2x \\ -\sin 2x & \cos 2x \end{bmatrix}$ b) $\begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$	c) $\begin{bmatrix} \cos 2x & \cos 2x \\ \cos 2x & \sin 2x \end{bmatrix}$	d) None of these				
4.	If $P = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, the	en $P^T Q^{2005} P$ is					
	a) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$						
	b) $\begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix}$						
	c) $\begin{bmatrix} 2005 & 1 \end{bmatrix}$						
5.	Let $A = \begin{bmatrix} 0 & \alpha \\ 0 & \alpha \end{bmatrix}$ and $(A + 1)^{50} - 50A = \begin{bmatrix} a & b \\ 0 & \alpha \end{bmatrix}$. There	n the value					
	$[0 \ 0]$ $[c \ d]$						
	a) 2 b) 1	റ്റ് 4	d) None of these				
6.	The inverse of a skew-symmetric matrix of odd ord	er is					
	a) A symmetric matrix b) A skew symmetric	c) Diagonal matrix	d) Does not exist				
7.	If $A = [a_{ij}]_{4 \times 4}$, such that $a_{ij} = \begin{cases} 2, & \text{when } i = j \\ 0, & \text{when } i \neq j \end{cases}$, then	nen					
	$\left\{\frac{\det (\operatorname{adj}(\operatorname{adj} A))}{2}\right\}$ is (where {·} represents fractional particular for the formula of the formula	art function)					
	a) 1/7 $b) 2/7$	c) 3/7	d) None of these				
8.	<i>A</i> is an involuntary matrix given by						
	$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$						
	$A = \begin{bmatrix} 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$, then the inverse of $A/2$ will be						
	a) 2 <i>A</i> b) $\frac{A^{-1}}{2}$	c) $\frac{A}{2}$	d) <i>A</i> ²				
9.	If $A^2 - A + 1 = 0$, then the inverse of A is						
	a) A^{-2} b) $A + I$	c) <i>I</i> – <i>A</i>	d) <i>A</i> − <i>I</i>				
10.	If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & 1 - 3/2 & 1/2 \end{bmatrix}$,	then the values					
	Of <i>a</i> and <i>c</i> are equal to						
	a) 1,1 b) 1,-1	c) 1, 2	d) –1, 1				
11.	If $\begin{bmatrix} 1/25 & 0 \\ x & 1/25 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}^{-2}$, then the value of x is						
	a) <i>a</i> /125 b) 2 <i>a</i> /125	c) 2a/25	d) None of these				
12.	Let <i>A</i> and <i>B</i> be two 2×2 matrices. Consider the sta	tements					
	1. $AB = U \implies A = U \text{ or } B = U$						
	$2. \qquad AB = I_2 \implies A = B^{-1}$						
	$3. \qquad (A+B)^2 = A^2 + 2AB + B^2$						

Then a) (i) and (ii) are false, (iii) is true b) (i) And (iii) are false, (i) is true c) (i) is false, (ii) and (iii) are true d) (i) and (iii) are false, (ii) is true 13. If *A* is order 3 square matrix such that |A|=2, then |adj(adj(adj A))| is b) 256 a) 512 c) 64 d) None of these 14. For two unimodular complex numbers $-z_2$ and z_2 , $\begin{bmatrix} \overline{z_1} & -z_2 \\ \overline{z_2} & z_1 \end{bmatrix}^{-1} \begin{bmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{bmatrix}^{-1} \text{ is equal to}$ a) $\begin{bmatrix} z_1 & z_2 \\ \overline{z_1} & \overline{z_2} \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ d) None of these 15. If *A* is a square matrix of order *n* such that $|adj(adjA)| = |A|^9$ then the value of *n* can be c) Either 4 or 2 b) 2 a) 4 d) None of these 16. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (where $bc \neq 0$) satisfies the equations $x^2 + k = 0$, then a) a + d = 0 b) k = -|A| c) k = |A|d) None of these 17. Let $(x) = \frac{1+x}{1-x}$. If *A* is matrix for which $A^3 = 0$, then f(A) is a) $I + A + A^2$ b) $I + 2A + A^2$ c) $I - A - A^2$ d) None of these 18. The inverse of a diagonal matrix is a) A diagonal matrix b) a skew symmetric matrix c) A symmetric matrix d) None of these 19. If *A* and *B* are square matrices of order *n*, then $A - \lambda I$ and $B - \lambda I$ commute for every scalar λ , only if a) AB = BAb) AB + BA = 0c) A = -Bd) None of these ^{20.} Consider three matrices $A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$. Then the value of the sum tr(A) + tr $\left(\frac{ABC}{2}\right)$ + tr $\left(\frac{A(BC)^2}{4}\right)$ + tr $\left(\frac{A(BC)^3}{8}\right)$ + ... + ∞ is a) 6 b) 9 c) 12 d) None If $A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, then A^8 equals a) 4B b) 128B c) -128B d) -64B a) 6 b) 9 21. If $A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, then A^8 equals 22. Let *A* be an n^{th} -order square matrix and *B* be its adjoint, then $|AB + KI_n|$ is (where *K* is a scalar quantity) b) $(|A| + K)^n$ a) $(|A| + K)^{n-2}$ c) $(|A| + K)^{n-1}$ d) None of these 23. If $A^3 = 0$, then $I + A + A^2$ eauals c) $(I - A)^{-1}$ a) *I – A* b) $(I + A^1)^{-1}$ d) None of these a) I - A b) $(I + A^{1})^{-1}$ c) $(I - A)^{-1}$ d) None of these 24. If $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$ and $a^{2} + b^{2} + c^{2} + d^{2} = 1$, then A^{-1} is equal to a) $\begin{bmatrix} a+ib & -c-id \\ -c+id & a-ib \end{bmatrix}$ b) $\begin{bmatrix} a+ib & -c+id \\ -c+id & a-ib \end{bmatrix}$ c) $\begin{bmatrix} a-ib & -c-id \\ -c-id & a+ib \end{bmatrix}$ d) None of these 25. Given that matrix $A = \begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$. If xyz = 60 and 8x + 4y + 3z = 20, then A(adjA) is equal to a) $\begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix}$ b) $\begin{bmatrix} 88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88 \end{bmatrix}$ c) $\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$ d) $\begin{bmatrix} 34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34 \end{bmatrix}$ 26. If $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$, then sum of all the elements of matrix A is of matrix A is a) 0 c) 2 b) 1 d) -3 Let $(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where $\alpha \in R$. Then 27. $(F(\alpha))^{-1}$ is equal to

a)
$$F(\alpha^{-1})$$
 b) $F(-\alpha)$ c) $F(2\alpha)$ d) None of these
28. If $A(\alpha, \beta) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta} \end{bmatrix}$ then $A(\alpha, \beta)^{-1}$ is equal to
a) $A(-\alpha, -\beta)$ b) $A(-\alpha, \beta)$ c) $A(\alpha, -\beta)$ d) $A(\alpha, \beta)$
29. If $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} A \begin{bmatrix} 7 \\ 5 & -3 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix}$, then $A = \frac{1}{2}$ and $A(\alpha, \beta) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ d) $-\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
30. If add $B = A, |P| = |Q| = 1$, then adj $(Q^{-1}BP^{-1})$ is
a) PQ b) QAP c) PAQ d) $PA^{-1}Q$
31. A is a 2 × 2 matrix such that $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $A^2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
The sum of the elements of A is
a) -1 b) 0 c) 2 d) 5
21. If A and B are two non-singular matrices of the same order
Such that $B^r = I$, for some positive integer $r > 1$. Then $A^{-1}B^{r-1}A - A^{-1}B^{-1}A = \frac{1}{3}$ i) b) $2A^{-1}$ c) 0 d) $-I$
31. $(-A)^{-1}$ is always equal to (where A is n^{th} -order square matrix)
a) $(-1)^{nA^{-1}}$ b) $-A^{-1}$ c) $(-1)^{n-1}A^{-1}$ d) None of these
34. The equation $[1 x y] \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix} = [0]$ has
(i)for $y = -1(q)$ irrational roots
(ii) for $y = -1(q)$ irrational roots
(iii) for $y = -1(q)$ irrational roots
(i) integral roots
Then
a) $P/|P|$ b) $P|P|$ c) P d) None of these
35. If P is non-singular matrix, then value of adj (P^{-1}) in terms of P is
a) $P/|P|$ b) $P|P|$ c) P d) None of these
36. If A and B must be singular b) $E x_{\alpha}(t)$ on of these
37. If $A = \begin{bmatrix} 1 \\ \tan \alpha/2 & 0 \\ 0 \end{bmatrix} (a) I = A + a A = A + a A = A + a^{-1} A = A^{-1} B^{-1} A = A^{-1} B^{-1} A = A^{-1} B^{-1} A^{-1} B^{-1} A^{-1} B^{-1} A^{-1} B^{-1} A^{-1} A^{-1} B^{-1} A^{-1} A^$

a) 3I b) 0 d) 21 c) I 42. Let *A*, *B* be two matrices such that they commute, then for any positive integer *n*, $AB^n = B^n A$ (ii) $(AB)^n = A^n B^n$ 1. a) Only (i) is correct b) Both (i) and (ii) are correct c) Only (ii) is correct d) None of (i) and (ii) is correct 43. Given 2x - y + 2z = 2, x - 2y + 2z = -4, $x + y + \lambda z = 4$ then the value of λ such that the given system of equations has no solution, is a) 3 b) 1 c) 0 d) -3 The number of solutions of the matrix equation $X^2 = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ is 44. b) 2 d) 1 a) More than 2 45. If A is a skew-symmetric matrix and n is odd positive integer, then A^n is a) A skew-symmetric matrix b) A symmetric matrix c) A diagonal matrix d) None of these 46. If A, B, A + I, A + B are idempotent matrices, then AB is equal То a) BA b) -BA c) I47. If $A = \begin{bmatrix} a & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$ is d) 0 d) No real values b) -1 48. Let *a* and *b* be two real numbers such that a > 1, b > 1. If $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, then $\lim_{n \to \infty} A^{-1}$ is a) Unit matrix b) Null matrix c) 21 d) None of these 49. If *A* and *B* are symmetric matrices of the same order and X = AB + BA and Y = AB - BA, then $(XY)^T$ is equal to c) -YXa) XY d) None of these If $A = \begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix}$, $B = \begin{bmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{bmatrix}$ and if A is invertible, 50. Then which of the following is not true? a) |A| = |B|b) |A| = -|B|c) |adjA| = -|adjB|d) A is invertble if and only if B is invertible 51. In which of the following type of matrix inverse does not exist always b) Orthogonal c) Involuntary d) None of these a) Idempotent 52. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A \begin{vmatrix} x \\ y \end{vmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has exactly two distinct solutions, is b) $2^9 - 1$ c) 168 d) 2 a) 0 Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$. Which of the following is true? 53. a) AX = B has a unique solution b) AX = B has exactly three solutions c) AX = B has infinity many solutions d) AX = B is inconsistent 54. The matrix *X* for which $\begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$ is b) $\begin{bmatrix} -\frac{1}{5} & \frac{2}{5} \\ 3 & 1 \end{bmatrix}$ c) $\begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$ d) $\begin{bmatrix} 6 & 2 \\ 11 \\ 2 & 2 \end{bmatrix}$ a) $\begin{bmatrix} -2 & -4 \\ -3 & 1 \end{bmatrix}$ Let $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ 5 & 2 & 1 \end{bmatrix}$ and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$. Then tr(A) - tr(B) has the value equal to 55.

	a) 0	b) 1	c) 2	d) None
56.	Elements of matrix A of or	der 10×10 are defined as	$sa_w = w^{i+j}$ (where w is cub	e coot of unity), then trace
	(A) of the matrix is			
	a) 0	b) 1	c) 3	d) None of these
57.	The number of diagonal m	atrix A of ordern for whicl	h $A^3 = A$ is	,
	a) 1	b) 0	c) 2 ⁿ	d) 3 ⁿ
58.		$\int \cos^2 \theta \cos \theta \sin \theta$	n <i>θ</i>],	
50.	The product of matrices A	$= \begin{bmatrix} \cos \theta & \sin \theta & \sin^2 \theta \\ \sin^2 \theta & \sin^2 \theta \end{bmatrix}$	and	
	$B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$	$\begin{bmatrix} n & 0 \\ 0 \end{bmatrix}$ is a null matrix if $\theta - q$	$\phi =$	
	a) $2n\pi, n \in Z$	b) $n\frac{\pi}{2}, n \in \mathbb{Z}$	c) $(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$	d) $n\pi, n \in Z$
59.	If A is an orthogonal matri	ix, then A^{-1} equals	-	
	a) A^T	b) A	c) A^2	d) None of these
60.	If $A = \begin{bmatrix} a & b \end{bmatrix}$ is n^{th} root of	of I_{2} , then choose the corre	ct statement:	,
	1. If n is odd, $a = 1$, l	b = 0		
	2. If <i>n</i> is odd, $a = -1$, b = 0		
	3. If <i>n</i> is even, $a = 1$,	b = 0		
	4. If <i>n</i> is even, $a = -2$	1, b = 0		
	a) i, ii, iii	b) ii, iii, iv	c) i, ii, iii, iv	d) i, iii, iv
61.	If <i>nth</i> -order square matrix	Ais a orthogonal, then,		
	adj(adj A) is			
	a) Always -1 if n is even		b) Always 1 if <i>n</i> is odd	
	c) Always 1		d) None of these	
62.	For each real $x, -1 < x < $	1. Let $A(x)$ be the matrix		
	$(1-x)^{-1}\begin{bmatrix} 1 & -x\\ -x & 1 \end{bmatrix}$ and z	$x = \frac{x+y}{1+xy}$. Then		
	a) $A(z) = A(x)A(y)$	b) $A(z) = A(x) - A(y)$	c) $A(z) = A(x) + A(y)$	d) $A(z) = A(x)[A(y)]^{-1}$
63.	If A and B are square matr	rices of the same order and	A is non-singular, then for	a positive integer
	$n, (A^{-1}BA)^n$ is equal to			
	a) $A^{-n}B^nA^n$	b) $A^n B^n A - n$	c) $A^{-1}B^{n}A$	d) $n(A^{-1}BA)$
64.	If $k \in R_0$, then det{adj(kI_n)} is equal to		
	a) <i>k</i> ^{<i>n</i>-1}	b) $k^{n(n-1)}$	c) <i>kⁿ</i>	d) <i>k</i>
65.	$\left[\cos x - \sin x\right]$	$0] [\cos y]$	$0 \sin y$	
	If $F(x) = \sin x \cos x$	0 and $G(y) = 0$	1 0	
		1] $[-\sin y]$	$0 \cos y$	
	Then $[F(x)G(-y)]^{-1}$ is eq	ual to		
	a) $F(-x)G(-y)$	b) $G(-y)F(-x)$	c) $F(x^{-1})G(y^{-1})$	d) $G(y^{-1})F(x^{-1})$
66.	If $A^2 = I$, then the value of	f det $(A - I)$ is (where A ha	s order 3)	
	a) 1	b) -1	c) 0	d) Cannot say anything
67.	If A is a non-singular matr	ix such that $AA^T = A^T A$ and	ıd	
	$B = A^{-1}A^T$, then matrix B	is		
	a) Involuntary	b) Orthogonal	c) Idempotent	d) None of these
68.	[-5 -8	0]		
	The matrix $A = \begin{bmatrix} 3 & 5 \end{bmatrix}$	0 is		
	L1 2	-1J		
<i>(</i>)	a) Idempotent matrix	b) Involutory matrix	cj Nilpotent matrix	a) None of these
69.	It A and B are two matrice	es such that $AB = B$ and BA	A = A, then	
	a) $(A^{\circ} - B^{\circ})^{\circ} = A - B$		b) $(A^5 - B^5)^3 = A^3 - B^3$	
	c) $A - B$ is idempotent		d) $A - B$ is nilpotent	
70.	If <i>A</i> is singular matrix, the	n adj A is		
	a) Singular	b) Non-singular	c) Symmetric	d) Not defined

71. If *A* is a non-diagonal involutory matrix, then a) A - I = 0b) A + I = 0c) A - I is non-zero singular d) None of these 72. If $A_1, A_3, \dots, A_{2n-1}$ are *n* skew symmetric matrices of same order, then $B = \sum_{r=1}^{n} (2r-1)(A_{2r-1})^{2r-1}$ will be b) Skew-symmetric a) Symmetric c) Neither symmetric nor skew-symmetric d) Data not adequate 73. If *A* and *B* are two non-singular matrices such that AB = C, then |B| is equal to d) None of these a) $\frac{|C|}{|A|}$ b) $\frac{|A|}{|C|}$ c) |C| 74. If *P* is an orthogonal matrix and $Q = PAP^T$ and $x = P^T Q^{1000} P$, Then x^{-1} is, where *A* is involutary matrix c) A¹⁰⁰⁰ a) A d) None of these 75. If $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & 1 \end{bmatrix}$, then $A(\overline{A}^T)$ equals a) 0 b) *I* c) −*I* d) 21 76. If *A* is symmetric as well as skew-symmetric matrix, then *A* is a) Diagonal matrix b) Null matrix c) Triangular matrix d) None of these 77. If *A* and *B* are square matrices of the same order and *A* is non-singular, then for a positive integer *n*, $(A^{-1}BA)^n$ is equal to a) $A^{-n}B^nA^n$ c) $A^{-1}B^{n}A$ d) $n(A^{-1}BA)$ b) $A^n B^n A^{-n}$ 78. If $A \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $f(x) = \frac{1+x}{1-x}$, then f(A) is a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ d) None of these 79. If $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is to be the square root of two-rowed unit matrix, then α , β and γ should satisfy the relation a) $1 - \alpha^2 + \beta \gamma = 0$ b) $\alpha^2 + \beta \gamma - 1 = 0$ c) $1 + \alpha^2 + \beta \gamma = 0$ d) $1 - \alpha^2 - \beta \gamma = 0$ 80. If *A* and *B* are squares matrices such that $A^{2006} = O$ and AB = A + B, then det(*B*) equals a) 0 c) −1 d) None of these If $A(\alpha, \beta) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta} \end{bmatrix}$, then $A(\alpha, \beta)^{-1}$ in terms of 81. Function of *A* is b) $A(-\alpha, -\beta)$ c) $A(-\alpha,\beta)$ a) $A(\alpha, -\beta)$ d) None of these 82. Matrix *A* such that $A^2 = 2A - I$, where *I* is the identity matrix, Then for $n \ge 2$, A^n is equal to a) $2^{n-1}A - (n-1)I$ b) $2^{n-1}A - I$ c) nA - (n-1)Id) *nA* − *I* 83. Identify the incorrect statement in respect of two square matrices *A* and *B* conformable for sum and product: a) $t_r(A + B) = t_r(A) + t_r(B)$ b) $t_r(\alpha A) = \alpha t_r(A), \alpha \in R$ c) $t_r(A^T) = t_r(A)$ d) None of these 84. If *A* is a 3×3 skew-symmetric matrix, then trace of *A* is equal to a) –1 c) |A| d) None of these b) 1 85. If *Z* is an idempotent matrix, then $(I + Z)^n$ c) $I - (2^n - 1)Z$ a) $I + 2^{n}Z$ b) $I + (2^n - 1)Z$ d) None of these 86. If A is a nilpotent matrix of index 2, then for any positive integer $n, A(I + A)^n$ is equal to c) *A*^{*n*} a) A^{-1} b) A d) I_n 87. If both $A - \frac{1}{2}I$ and $A + \frac{1}{2}$ are orthogonal matrices, then a) A is orthogonal b) A is skew-symmetric matrix of even order

c)
$$A^2 = \frac{3}{4}I$$

d) None of these

Multiple Correct Answers Type

a) $B^T A B$ is symmetric matrix if A is symmetric b) *B^TAB* is symmetric matrix if *B* is symmetric c) $B^T A B$ is skew-symmetric matrix for every matrix A d) $B^T A B$ is skew-symmetric matrix if A is skew-symmetric The rank of the matrix $\begin{bmatrix} -1 & 2 & 5\\ 2 & -4 & a - 4\\ 1 & -2 & a + 1 \end{bmatrix}$ is 101. c) 3 if a = 2b) 2 is a = 1a) 1 if a = 6d) 1 if a = -6102. Suppose a_1, a_2, \dots are real number, with $a_1 \neq 0$. If a_1, a_2, a_3, \dots are in AP., then a) $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_5 & a_6 & a_7 \end{bmatrix}$ is singular (where $i = \sqrt{-1}$) b) The system of equations $a_1x + a_2y + a_3z = 0$, $a_4x + a_5y + a_6z = 0$, had infinite number of solutions c) $B = \begin{bmatrix} a_1 & ia_2 \\ ia_2 & a_1 \end{bmatrix}$ is non-singular d) None of these 103. If AB = A and BA = B, then which of the following is/are true? b) *B* is idempotent c) A^T is idempotent d) None of these a) *A* is idempotent 104. Which of the following statements is/are true about square matrix A of order n? a) $(-A)^{-1}$ is equal to $-A^{-1}$ when *n* is odd only. b) If $A^n = 0$, then $I + A + A^2 + \dots + A^{n-1} = (I - A)^{-1}$. c) If *A* is skew-symmetric matrix of odd order, then its inverse does not exist. d) $(A^{T})^{-1} = (A^{-1})^{T}$ holds always. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1 \end{bmatrix}$, then 105. a) $\operatorname{adj}(\operatorname{adj} A) = A$ b) $|\operatorname{adj}(\operatorname{adj} A) = 1|$ c) $|\operatorname{adj} A| = 1$ 106. If $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2 + 2AB$, then d) None of these d) b = -2a) a = -1c) *b* = 2 107. $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Then a) $A^2 - 4A - 5I_3 = 0$ b) $A^{-1} = \frac{1}{5}(A - 4I_3)$ c) A^3 is not invertible d) A^2 is invertible 108. If A is unimodular, then which of the following is unimodular? a) – A b) A⁻¹ c) adj A d) ωA , where ω is cube root of unity ^{109.} Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Then which of following is not true? a) $\lim_{n \to \infty} \frac{1}{n^2} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$ b) $\lim_{n \to \infty} \frac{1}{n} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$ c) $A^{-n} = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \forall n \neq N$ 110. If $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then d) None of these a) $A_{\alpha} \cdot A_{(-\alpha)} = I$ b) $A_{\alpha} \cdot A_{(-\alpha)} = 0$ d) $A_{\alpha} \cdot A_{\beta} = A_{\alpha-\beta}$ c) $A_{\alpha} \cdot A_{\beta} = A_{\alpha+\beta}$ 111. Which of the following is correct? a) B'AB is symmetric if A is symmetric b) *B'AB* is skew-symmetric if *A* is symmetric c) *B'AB* is symmetric if *A* is skew-symmetric d) B'AB is skew-symmetric if A is skew-symmetric 112. If D_1 and D_2 are two 3× 3 diagonal matrices, then which of the following is/are true? a) $D_1 D_2$ is diagonal matrix b) $D_1 D_2 = D_2 D_1$ c) $D_1^2 + D_2^2$ is a diagonal matrix d) None of these

113. If A and B are two invertible matrices of the same order, then adj(AB) is equal to b) $|B||A|B^{-1}A^{-1}$ c) $|B||A|A^{-1}B^{-1}$ d) $|A||B|(AB)^{-1}$ a) adj(B) adj(A)114. A skew-symmetric matrix A satisfies the relation $A^2 + I = 0$, where I is a unit matrix then A is a) Idempotent b) Orthogonal c) Of even order d) Odd order 115. If *A* and *B* are symmetric and commute, then which of the following is/are symmetric? b) *AB*⁻¹ c) $A^{-1}B^{-1}$ a) $A^{-1}B$ d) None of these 116. If $A = (a_{ij})_{n \times n}$ and f is a function, we define $f(A) = (f(a_{ij}))_{n \times n}$ Let $A = \begin{pmatrix} \pi/2 - \theta & \theta \\ -\theta & \pi/2 - \theta \end{pmatrix}$. Then a) sin *A* is invertible b) $\sin A = \cos A$ c) sin*A* is orthogonal d) sin(2A) = sin A cosA117. If α , β , γ are three real numbers and $A = \begin{bmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{bmatrix}$, then which of following is/are true? a) A is singular b) A is symmetric c) A is orthogonal d) *A* is not invertible 118. $If \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal, then a) $a = \pm \frac{1}{\sqrt{2}}$ b) $b = \pm \frac{1}{\sqrt{12}}$ c) $c = \pm \frac{1}{\sqrt{3}}$ d) None of these

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 119 to 118. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

119

Statement 1: $A = \begin{bmatrix} 4 & 0 & 4 \\ 2 & 3 & 3 \\ 1 & 2 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}.$ Then $(AB)^{-1}$ does not exist Statement 2: Since $|A| = 0, (AB)^{-1} = B^{-1}A^{-1}$ is meaningless

120 Let *A*be a 2× 2 matrix with non-zero entries and let $A^2 = I$, where *I* is 2× 2 identity matrix. Define Tr (*A*)=sum of diagonal elements of *A* and |A| = determinant of matrix *A*. **Statement 1:** Tr (*A*)=0

```
Statement 2: |A| = 1.
```

121

Statement 1: If *A* is a skew-symmetric matrix of order 3×3 , then det(*A*) = 0 or |A| = 0

Statement 2: If *A* is square matrix, then det(A) = det(A') = det(-A')

122

Statement 1: If the matrices A, B, (A + B) are non-singular, then $[A(A + B)^{-1}B]^{-1} = B^{-1} + A^{-1}$

```
Statement 2: [A(A + B)^{-1}B]^{-1} = [A(A^{-1} + B^{-1})B]^{-1}

= [(I + AB^{-1})B]^{-1}

= [(B + AB^{-1}B)]^{-1}

= [(B + AI)]^{-1}

= [(B + A)]^{-1}

= B^{-1} + A^{-1}
```

123

Statement 1: Let *A*, *B* be two square matrices of the same order such that AB = BA, $A^m = 0$ and $B^n = 0$ for same positive integers m, n, then there exists a positive integer r such that $(A + B)^r = 0$

Statement 2: If AB = BA then $(A + B)^r$ can be expanded as binomial expansion

124

Statement 1: If A is orthogonal matrix of order 2, then $|A| = \pm 1$

Statement 2: Every two-rowed real orthogonal matrix is of any one of the forms $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ or $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ 125 Let A be 2 × 2 matrix.

Statement 1: Adj(adj A) = A

Statement 2: |adj A| = A

126 Let *A* be a 2×2 matrix with real entries. Let *I* be the 2× 2 identity matrix. Denote by Tr (*A*), the sum of diagonal entries of *A*. Assume that $A^2 = I$ **Statement 1:** If $A \neq I$ and $A \neq -I$, then det (*A*) = -1.

Statement 2: If $A \neq I$ and $A \neq -I$, then Tr $A \neq 0$.

127

Statement 1: If *a*, *b*, *c*, *d* are real numbers and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $A^3 = 0$, then $A^2 = 0$ **Statement 2:** For matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $A^2 - (a + d)A + (ad - bc)I = 0$

128

Statement 1: If $D = \text{diag}[d_1, d_2, \dots, d_n]$, then $D^{-1} = \text{diag}[d_1^{-1}, d_2^{-1}, \dots, d_n^{-1}]$ **Statement 2:** If $D = \text{diag}[d_1, d_2, \dots, d_n]$, then $D^n = \text{diag}[d_1^n, d_2^n, \dots, d_n^n]$

129

Statement 1:
If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then
 $[F(\alpha)]^{-1} = F(-\alpha)$
Statement 2:
For matrix $G(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$
We have $[G(\beta)]^{-1} = G(-\beta)$.

Statement 1: The determinant of a matrix $A = [a_{ij}]_{5\times 5}$ where $a_{ij} + a_{ij} = 0$ for all *i* and *j* is zero

Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

131

Statement 1: Matrix 3× 3, $a_{ij} = \frac{i-j}{i+2j}$ cannot be expressed as a sum symmetric and skew-symmetric matrix **Statement 2:** Matrix 3× 3, $a_{ij} = \frac{i-j}{i+2j}$ is neither symmetric nor skew-symmetric

132

Statement 1: $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ is a diagonal matrixStatement 2: $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is square matrix such that $a_{ij} = 0, \forall i \neq j$, then A is called diagonal matrix

133

Statement 1: For a singular square matrix $A,AB = AC \Rightarrow B = C$

Statement 2: If |A| = 0, then A^{-1} does not exist

134

Statement 1:	The inverse of $A = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4\\5 \end{bmatrix}$ does not exist
Statement 2:	The matrix A is non-sir	ngular

135

Statement 1:	If <i>A</i> , <i>B</i> , <i>C</i> are matrices such that $ A_{3\times3} = 3$, $ B_{3\times3} = -1$ and $ C_{2\times2} = +2$, then
	2ABC = -12
Statement 2:	For matrices A, B, C of the same order, $ ABC = A B C $

136

Statement 1:	The inverse of	of the matrix $A =$	$\left[a_{ij}\right]_{n \times n}$	where $a_{ij} = 0, i \ge j$ is $B =$	$= \left[a_{ij}^{-1}\right]_{n \times n}$

Statement 2: The inverse of singular matrix does not exist.

137

Statement 1:	If a matrix of order 2×2 , commutes with every matrix of order 2×2 , then it is scalar			
	matrix			
Statement 2:	A scalar matrix of order 2×2 commutes with every 2×2 matrix			

138

Statement 1: The matrix $A = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1 \end{bmatrix}$ is an orthogonal matrix **Statement 2:** If *A* and *B* are orthogonal, then *AB* is also orthogonal **Statement 1:** If $A = [a_{ij}]_{n \times n}$ is such that $a_{ij} = \overline{a}_{ji}, \forall i, j \text{ and } A^2 = 0$, then matrix *A* null matrix.

Statement 2: |A| = 0

140

Statement 1: $|adj(adj(adj A))| = |A|^{(n-1)3}$ Statement 2: $|adjA| = |A|^n$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

Column- II

Column- II

141.

(A) $(I - A)^n$ is if A is idempotent							$2^{n-1}(I - A)$
	(B)	$(I-A)^n$	is if A is ir	nvoluntary	y	(q)	I - nA
	(C)	$(I-A)^n$	is if A is n	ilpotent o	f index 2	(r)	Α
	(D)	If a is ort	hogonal, t	then $(A^T)^-$	-1	(s)	I - A
	COD	ES :					
		Α	В	С	D		
	a)	S	р	q	r		
	b)	р	q	r	S		
	c)	q	r	S	р		
	d)	r	S	р	q		

Column-I

142. Match List I with List II and select the correct answer using the codes given below the lists

(A)	$(adj A)^{-1}$				(1)	$k^{n-1}(\operatorname{adj} A)$
(B)	$(adj A^{-1})$				(2)	$\frac{A}{ A }$
(C)	adj (<i>kA</i>)				(3)	$ A ^{n-2}A$
(D)	adj (adj A)				(4)	$\frac{\operatorname{adj}(\operatorname{adj} A)}{ A ^2}$
COD	DES :					
	Α	В	С	D		
a)	1	2	3	4		

b)	3	4	2	1
c)	4	3	2	1
d)	2	4	1	3

143. Match List I with List II and select the correct answer using the codes given below the lists

Column-I

(B) *A* is a square matrix such that $A^m = 0$

(C) *A* is square matrix such that $A^2 = I$

(D) *A* is square matrix such that $A^T = A$

CODES :

	Α	В	С	D
a)	1	3	2	4
b)	3	4	2	1
c)	4	3	2	3
d)	4	1	2	3

Column- II

- (1) Nilpotent matrix
- (2) Involutory matrix
- (3) Symmetric matrix
- (4) Idempotent matrix

144.

Column-I

(A)	If $ A = 2$ Order 3	(p)	1					
(B)	If $ A = 1$ of	If $ A = 1/8$, then $ adj(adj(2A)) = (where A is of$						
(C)	$\begin{aligned} \text{Order 3} \\ \text{If } (A + B) \\ B &= (w) \end{aligned}$	Order 3) If $(A + B)^2 = A^2 + B^2$, and $ A = 2$, then B = (where A and B are of odd order)						
(D)	$ A_{2\times 2} =$ ABC is	$[2, B_{3\times3}]$ equal to	= 3 and ($ \Sigma_{4\times4} = 4, \text{th}$	ien	(s)	0	
COD	ES :	•						
	Α	В	С	D				
a)	Р	q	r	S				
b)	r	S	q	р				
c)	q	р	S	r				
d)	S	r	р	q				

145.

Column-I

Column- II

Column- II

(A)	If A is an Identity I The value $(A + I)^n$	idempote natrix of t e of <i>n</i> , suc	ent matrix the same o h that	and <i>I</i> is an order, then	(p)	9
(D)	$(A+I)^{\alpha}$	= I + 12I	$\frac{1}{1}$	1.47 the		10
(в)	$\prod (I - A)$	= = I +	$A + A^{-} +$	$\cdots + A^{*}$, the	(q)	10
(\mathbf{n})	$A^{\prime\prime} = 0 W$	nere n is				-
(L)	If A is ma	trix such	that		(r)	/
	$a_{ij} = (i - $	(i - j)	, then A is	s singular if		
	Order of	matrix is				
(D)	If a non-s	singular m	atrix A is	symmetric,	(s)	8
	Show tha	t A^{-1} is a	lso symme	etric, then		
	Order of	A can be				
COD	ES :					
	Α	В	С	D		

a)	S	r	r,s	r,s,q,p
b)	r	S	p,r	p,q,r,s
c)	р	q	q,s	s,p,q,r
d)	q	р	s,r	q,p,r,s

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 146 to -146

A and	B ai	re tv	vo matrice	s of sai	ne order 3	× 3, where			
$A = \left[\right]$	1 2 2 3 5 6	2 3 3 4 5 8	and $B =$	[3 2 2 3 7 2	5 8 9				
146. 7	Гhe v	value	e of adj (ad	j <i>A</i>) is	equal to				
a	a) — A	4			b) 4 <i>A</i>		c) 8A	(d) 16 A

Paragraph for Question Nos. 147 to - 147

Two $n \times n$ square matrices A and B are said to be similar, if there exists a non-singular matrix P such that $PAP^{-1} = B$

147. If A and B are two singular matrices, thena) det(A) = det(B)b) det(A) + det(B) = 0c) $det(AB) \neq 0$ d) None of these

Paragraph for Question Nos. 148 to - 148

	[1	2	$\lambda + 2$]		[3	2	- 41
et A and B are two matrices of same order 3×3 , where $A =$	2	4	8	B =	3	2	5
	L3	5	10		2	1	4

148. If A is singular	matrix, then tr $(A + B)$ is equa	al to	
a) 6	b) 12	c) 24	d) 17
Paragraph for Ques	tion Nos. 149 to - 149		
Let <i>A</i> is matrix of order 2×2 such that $A^2 = 0$			
149. $A^2 - (a + d)A$	+(ad-bc)I is equal to		
a) <i>I</i>	b) <i>O</i>	c) − <i>I</i>	d) None of these

Paragraph for Question Nos. 150 to - 150

If *A* and *B* are two square matrices of order 3×3 which satisfy AB = A and BA = B, then

150. Which of the following is true?

a) If matrix A is singular then matrix B is non-singular

b) If matrix *A* is non-singular then matrix *B* is singular

c) If matrix *A* is singular then matrix *B* is also singular

d) Cannot say anything

Paragraph for Question Nos. 151 to - 151

Consider an arbitrary 3×3 matrix $A = [a_{ij}]$ a matrix $B = [b_{ij}]$ is formed Such that b_{ij} is the sum of all the elements except a_{ij} in the i^{th} row of AAnswer the following question.

151. If there exists a matrix .	X with constant eleme	ents such that $AX = B$, then X is	
a) Skew-symmetric	b) Null matrix	c) Diagonal matrix	d) None of these

Paragraph for Question Nos. 152 to - 152

Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ satisfies $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. And trace of a square matrix X is equal to the sum of

elements in its principal diagonal.

Further consider a matrix $U_{3\times 3}$ with its column as U_1, U_2, U_3 such that

$$A^{50} \cup_{1} = \begin{bmatrix} 1\\25\\25 \end{bmatrix}, A^{50} \cup_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, A^{50} \cup_{3} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Then answer the following questions

152. The value of
$$|A^{50}|$$
 equals

 a) 0
 b) 1
 c) -1
 d) 25

Paragraph for Question Nos. 153 to - 153

Let *A* be a square matrix of order 2 or 3 and *I* be the identity matrix of the same order. Then the matrix $A - \lambda I$ is called characteristic matrix of the matrix*A*, where λ is some complex number. The determinant of the characteristic matrix is called characteristic determinant of the matrix*A* which will of course be a polynomial of degree 3 in λ . The equation det($A - \lambda I$) = 0 is called characteristic equation of the matrix *A* and its roots (the values of λ) are called characteristic roots or eigenvalues. It is also known that every square matrix has its characteristic equation

153.
The eigenvalues of the matrix
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$$
 are
a) 2, 1, 1 b) 2, 3, -2 c) -1, 1, 3 d) None of these

Paragraph for Question Nos. 154 to - 154

Let *A* be a $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that LAI_n , then *L* is called left inverse of *A*. Similarly, if there exists a matrix *R* of type $n \times m$ such that $AR = I_m$, then *R* is called right inverse of *A*. For example, to find right inverse of matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}, \text{ we take } R = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix}$$

And solve $AR = I_3$, i.e.,
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow x - u = 1 \qquad y - v = 0 \qquad z - w = 0$$

$$x + u = 0 \qquad y + v = 1 \qquad z + w = 0$$

$$2x + 3u = 0 \qquad 2y + 3v = 0 \qquad 2z + 3w = 1$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A

154. Which of the following matrices is NOT left inverse of

$$\begin{array}{c} \text{Matrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} ? \\ \text{a)} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \\ \begin{array}{c} \text{b)} \begin{bmatrix} 2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \\ \begin{array}{c} \text{c)} \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \\ \begin{array}{c} \text{d)} \begin{bmatrix} 0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \\ \end{array}$$

Paragraph for Question Nos. 155 to - 155

If e^A is defined as $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = \frac{1}{2} \begin{bmatrix} f(x) & g(x) \\ g(x) & f(x) \end{bmatrix}$ Where $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$ and 0 < x < 1, then *I* is an identity matrix

155.
$$\int \frac{g(x)}{f(x)} dx$$
 is equal to
a) $\log(e^x - e^{-x}) + c$ b) $\log(e^x - e^{-x}) + c$ c) $\log(e^{2x} - 1) + c$ d) None of these

Integer Answer Type

- 156. If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix and $f(x) = x x^2$ and bc = 1/4 then the value of 1/f(a) is
- ^{157.} $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$ and $A^8 + A^6 + A^4 + A^2 + I)V = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ (where *I* is the 2 × 2 identity matrix), then the product of all elements of matrixV is.
- Let $A = \begin{bmatrix} 3x^2 \\ 1 \\ 6x \end{bmatrix}$, $B = [a \ b \ c]$ and $C + \begin{bmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{bmatrix}$ be three given matrices, where a, b, cand $x \in R$, Given that $\operatorname{tr}(AB) = \operatorname{tr}(C) \ x \in R$, where $\operatorname{tr} (A)$ denotes trace of A. if $f(x) = ax^2 + bx + c$ then 158.

the value of f(1) is

- 159. If *A* is an idempotent matrix satisfying, $(I 0.4A)^{-1} = I \alpha A$ where I is the unit matrix of the same order as that of *A* then the value of $|9\alpha|$ is equal to
- The equation $\begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ has a solution for (x, y, z) besides (0, 0, 0). Then the value of k is 160.
- 161. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and tr(*A*)=12, then the value of $|A|^{1/2}$ is
- 162. Let *A* be the set of all 3×3 skew symmetric matrices whose entries are either -1,0 or 1. If there are exactly three 0's, three 1's and three (-1)'s, then the number of such matrices, is
- 163. Let *S* be the set which contains all possible values of *l*, *m*, *n*, *p*, *q*, r for which

 $A = \begin{bmatrix} 1^2 - 3 & p & 0 \\ 0 & m^2 - 8 & q \\ r & 0 & n^2 - 15 \end{bmatrix}$ be a non-singular idempotent matrix. Then the sum of all the elements of the set *S* is

164.

Let *X* be the solution set of the equation $A^x = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and *I* is the corresponding unit matrix and $x \subseteq N$ then the minimum value of $\sum (\cos^x \theta + \sin^x \theta), \theta \in R$

165. $A = \begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$ and f(x) is defined as $f(x) = det.(A^TA^{-1})$ then the value of $\underbrace{f(f(f(f(1, \dots, f(x)))))}_{n \text{ times}}$ is $(n \ge 2)$.

166. If *A* is a square matrix of order3 that |A| = 2 then $|(adjA^{-1})^{-1}|$ is

167. Let $A = [a_{ij}]_{3\times 3}$ be a matrix such that $AA^T = 4I$ and $a_{ij} + 2c_{ij} = 0$

Where c_{ij} is the cofactor of a_{ij} and *I* is the unit matrix of order3.

$$\begin{vmatrix} a_{11} + 4 & a_{12} & a_{13} \\ a_{21} & a_{22} + 4 & a_{23} \\ a_{31} & a_{32} & a_{33} + 4 \end{vmatrix} + 5\lambda \begin{vmatrix} a_{11} + 4 & a_{12} & a_{13} \\ a_{21} & a_{22} + 4 & a_{23} \\ a_{31} & a_{32} & a_{33} + 4 \end{vmatrix} = 0$$

Then the value of 10 λ is

						ANS	W	ER	KEY :						
1)	а	2)	а	3)	b	4)	a	9)	С	10)	а	1)	4	2)	
5)	а	6)	d	7)	а	8)	а		3)	4	4)	6		2	
9)	С	10)	b	11)	b	12)	d	5)	2	6)	4	7)	8	8)	
13)	b	14)	С	15)	а	16)	С	9)	2	10)	1	11)	4	12)	
17)	b	18)	а	19)	а	20)	а								
21)	b	22)	b	23)	С	24)	а								
25)	С	26)	b	27)	b	28)	а								
29)	а	30)	С	31)	d	32)	С								
33)	b	34)	С	35)	а	36)	b								
37)	С	38)	b	39)	а	40)	b								
41)	С	42)	b	43)	b	44)	а								
45)	а	46)	b	47)	d	48)	b								
49)	С	50)	а	51)	а	52)	а								
53)	а	54)	d	55)	С	56)	d								
57)	d	58)	С	59)	а	60)	d								
61)	b	62)	a	63)	С	64)	b								
65)	b	66)	d	67)	b	68)	b								
69)	b	70)	а	71)	С	72)	b								
73)	а	74)	b	75)	b	76)	b								
77)	С	78)	С	79)	b	80)	а								
81)	b	82)	С	83)	d	84)	С								
85)	b	86)	b	87)	b	1)									
	a, b, c	2)	a, b, c	3)	a, b	4)									
	a,b,d		_		_										
5)	a, d	6)	a, b, c	7)	a, b, c	8)									
a)	a, c, d	4.00				4.0.)									
9)	a, c	10)	a, c	11)	a, b, c	12)									
4.0.)	a, b, c					10									
13)	a, d	14)	b,d	15)	a, b, c	16)									
4 2)	a, b, c	4.00		4.0)		20)									
17)	D, C	18)	a, b, c	19)	a, d	20)									
21)	a, D, C,	a 22)	ha	22)		24)									
21)	D, C	22)	D, C	23)	a,c	24)									
25)	a,u	26)	a h a	27)	ha	201									
255	a, b, c	20)	a, D, C	275	D, C	20]									
20)	a, D, C	20)	a h a	21)		1)	•								
295	a, c 2)	30j	a, u, u 2)	51j	a, c	1) c	a								
5)	2) b	(6)	3) 2	נ 7)	4) h	เ 8)	c								
3) 9)	0 2	0) 10)	a h	') 11)	b h	0) 12)	с 2								
13)	d	14)	a	15)	d	16)	a a								
17)	d	18)	d	19)	a	20)	h								
21)	h h	221	u C	1)	a	2)	d b								
	3)	, d	4)	-) C	u	-,	u								
5)	b	- 1)	-, a	21	а	3)	ſ								
5)	4)	-, b	u	-)	u	5)	L								
5)	., C	6)	d	7)	b	8)	ſ								
<i>J</i>	·	v)	u	<i>'</i>)		<i>v</i> ,	·	1							

3.MATRICES

3.MATRICES

: HINTS AND SOLUTIONS :

5

6

7

8

9

1 (a)

As $B = -A^{1}BA$, we get AB = -BA or AB + BA = 0Now, $(A + B)^2 = (A + B)(A + B)$ $= A^2 + BA + BA + B^2$ $= A^2 + 0 + B^2$ $= A^2 + B^2$

2

3

4

(a) Given, equations (x + ay = 0, az + y = 0, ax + y = 0z=0 has infinite solutions. ∴ Using Crames's rule, its determinant=0 $\Rightarrow \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} 0$ \Rightarrow 1 + $a^3 = 0 \Rightarrow a = -1$ **(b)** $|A| = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix} = 1 + \tan^2 x \neq 0$ So A is invertible. Also $\operatorname{adj} A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$ Now. $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$ $\Rightarrow A^{-1} = \frac{1}{1 + \tan^2 x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{1 + \tan^2 x} & \frac{-\tan x}{1 + \tan^2 x} \\ \frac{\tan x}{1 + \tan^2 x} & \frac{1}{1 + \tan^2 x} \end{bmatrix}$ $\therefore A^T A^{-1}$ $=\begin{bmatrix}1\\\tan x\end{bmatrix}$ $1 - \tan^2 x - 2\tan x$ $\frac{1}{1 + \tan^2 x} \quad \frac{1}{1 + \tan^2 x}$ $\frac{2\tan x}{1+\tan^2 x} \quad \frac{1-\tan^2 x}{1+\tan^2 x}$ $\frac{1}{1 + \tan^2 x}$ $= \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$ (a) As, $PP^{T} = \begin{bmatrix} \sqrt{3/2} & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow PP^T = I \text{ or } P^T = P^{-1}$...(i) As, $Q = PAP^T$ $\therefore P^T Q^{2005} P = P^T [PAP^T)(PAP)^T) \dots 2005 \text{ times}]P$

 $(P^{T}P)A(P^{T}P)A(P^{T}P)...(P^{T}P)A(P^{T}P)$ 2005 times $=IA^{2005} = A^{2005}$ $\therefore A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ $A^{3} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} ... \text{ and so on}$ $A^{2005} = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow P^{T} Q^{2005} P = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ (a) We have, $A^2 = 0, A^k = 0, \forall k \ge 2$ Thus, $(A+I)^{50} = I + 50A$ $\Rightarrow (A+I)^{50} = I + 50A$ $\Rightarrow a = 1, b = 0, c = 0, d = 1$ (d) Let *A* be a skew-symmetric matrix of order *n*. By definition, A' = -A $\Rightarrow |A'| = |-A|$ $\Rightarrow |A| = (-1)^n |A|$ \Rightarrow |A| = -|A|[:: n is odd] $\Rightarrow 2|A| = 0$ $\Rightarrow |A| = 0$ Hence, A^{-1} does not exist (a) From given data $|A| = 2^4$ \Rightarrow |adj (adj A)| = $(2^4)^9 = 2^{36}$ $\Rightarrow \left\{ \frac{\det (\operatorname{adj} (\operatorname{adj} A))}{7} \right\} = \left\{ \frac{2^{36}}{7} \right\} = \left\{ \frac{(7+1)^{12}}{7} \right\} = \frac{1}{7}$ (a) A is involuntary. Hence, $A^2 = I \Rightarrow A = A^{-1}$ Also. $(kA)^{-1} = \frac{1}{k}(A)^{-1}$ $\Rightarrow \left(\frac{1}{2}A\right)^{-1} = 2(A)^{-1} \Rightarrow 2A$ (c) $A^2 - A + I = 0$ $\Rightarrow I = A - A^2$ $IA^{-1} = AA^{-1} - A^2A^{-1}$ $\Rightarrow A^{-1} = I - A$ 10 (b) We have,

$$I = \frac{1}{2} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -5 & -3 & 1 \\ 5 & -3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & c+1 \\ 0 & 1 & 2(c+1) \\ 4(1-a) & 3(a-1) & 2+ac \end{bmatrix}$$
Comparing the elements of AA^{-1} with those of I , we have
 $c+1=0 \Rightarrow c=-1$
 $\Rightarrow c=-1$ and $a-I=0 \Rightarrow a=1$
11 (b)
Let, $A = \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}$
 $\Rightarrow adj(A) = \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}$
 $\Rightarrow A^{-1} = \frac{1}{|A|} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}$
 $\Rightarrow A^{-1} = \frac{1}{|A|} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}$
 $\Rightarrow A^{-2} = (A^{-1})^2 = \frac{1}{25} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix} \frac{1}{25} \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}$
 $= \frac{1}{625} \begin{bmatrix} 25 & 0 \\ 10a & 25 \end{bmatrix}$
 $= \begin{bmatrix} \frac{1}{25} & 0 \\ \frac{2a}{125} & \frac{1}{25} \end{bmatrix}$
 $\Rightarrow x = 2a/125$
12 (d)
(i) is false
If $A = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, then
 $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$
(ii) is true as the product AB is an identity matrix, if and only if B is inverse of the matrix A
(iii) is false since matrix multiplication in not commutative
13 (b)
We know that $|adj(adjA)\rangle| = |A|^{(n-1)^2}$
 $\Rightarrow |adj(adj(adjA))| = |adj|A|^{(n-1)^2}$
 $\Rightarrow |adj(adj(adjA))| = |adj|A|^{(n-1)^2}$
 $= |A|^{(n-1)^3}$
 $= 2^8 = 256$
14 (c)
 $\begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_1 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & -z_2 \\ \overline{z}_1 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_1 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_2 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_1 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_1 & \overline{z}_1 \end{bmatrix} \begin{bmatrix} \overline{z}_1 & \overline{z}_2 \\ \overline{z}_1 & \overline{$

 $= \begin{bmatrix} z_1 \bar{z}_1 & 0 \\ 0 & z_2 \bar{z}_2 + z_1 \bar{z}_1 \end{bmatrix}^{-1}$ $= \begin{bmatrix} |z_1|^2 + |z_2|^2 & 0 \\ 0 & |z_1|^2 + |z_2|^2 \end{bmatrix}^{-1}$ $= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$ 15 (a) We know that in a square matrix of order *n*, $|adj A| = |A|^{n-1}$ $\Rightarrow |\operatorname{adj}(\operatorname{adj} A)| = |\operatorname{adj} A|^{n-1} = |A|^{(n-1)^2}$ $\Rightarrow n^2 - 2n - 8 = 0$ \Rightarrow *n* = 4 as *n* = -2 is not possible 16 **(c)** We have, $A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^{2} + bc & ab + db \\ ac + cd & bc + d^{2} \end{bmatrix}$ As *A* satisfies $x^2 + k = 0$, therefore $A^2 + kI = 0$ $\Rightarrow \begin{bmatrix} a^2 + b + k & (a+d)b\\ (a+d)c & bc+d^2+k \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ $\Rightarrow a^2 + bc + k = 0, bc + d^2 + k = 0$ and (a + d)b = (a + d)c = 0As $bc \neq 0$, $b \neq 0$, $c \neq 0$, so a + d = 0 $\Rightarrow a = -d$ Also, $k = -(a^2 + bc)$ $= -(d^2 + bc)$ = -((-ad) + bc)= |A|17 **(b)** (I - A)f(A) = I + A $\Rightarrow f(A) = (I+A)(I-A)^{-1}$ $= (I+A)(I+A+A^2)$ $= I + A + A^2 + A + A^2 + A^3$ $= I + 2A + 2A^2$ 18 (a) $A = \text{diag}\left(d_1, d_2, d_3, \cdots, d_n\right)$ $\Rightarrow |A| = (d_1 \times d_2 \times d_3 \times d_4 \times \cdots \times d_n)$ Now, Cofactor of d_1 is $d_2 d_3 \cdots d_n$ Cofactor of d_2 is $d_1 \times d_3 \times d_4 \cdots d_n$ Cofactor of d_3 is $d_1 \times d_2 \times d_4 \cdots d_n$ Cofactor of d_n is $d_1 \times d_2 \times d_3 \cdots d_{n-1}$ $\Rightarrow A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \operatorname{diag}(d_1^{-1}, d_2^{-1}, d_3^{-1}, \cdots, d_n^{-1})$ Hence, A^{-1} is also a diagonal matrix. 19 (a) $(A - \lambda I)(B - \lambda I) = (B - \lambda I)(A - \lambda I)$

 $\Rightarrow AB - \lambda(A + B)I + \lambda^2 I^2$ $= BA - \lambda(B + A)I + \lambda^2 I^2$ $\Rightarrow AB = BA$ 20 (a) $BC = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \Rightarrow B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \operatorname{tr}(A) + \operatorname{tr}\left(\frac{ABC}{2}\right) + \operatorname{tr}\left(\frac{A(BC)^2}{4}\right) + \operatorname{tr}\left(\frac{A(BC)^3}{8}\right)$ $= \operatorname{tr}(A) + \operatorname{tr}\left(\frac{A}{2}\right) + \operatorname{tr}\left(\frac{A}{2^2}\right) + \cdots$ $= tr(A) + \frac{1}{2}tr(A) + \frac{1}{2^2}tr(A) \dots$ $=\frac{\operatorname{tr}(A)}{1-(1/2)}$ = 2tr(A) = 2(2 + 1) = 621 (b) We have, A = iB $\Rightarrow A^{2} = (iB)^{2} = i^{2}B^{2} = -B^{2} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = -2B$ $\Rightarrow A^4 = (-2B)^2 = 4B^2 = 4(2B) = 8B$ $\Rightarrow (A^4)^2 = (8B)^2$ $\Rightarrow A^8 = 64B^2 = 128B$ 22 **(b)** We have, $AB = A(adjA) = |A|I_n$ $\therefore AB + KI_n = |A|I_n + KI_n$ $\Rightarrow AB + KI_n = (|A| + k)I_n$ $\Rightarrow |AB + KI_n| = |(|A| + k)I_n|(\because |\alpha I_n = \alpha^n|)$ $= (|A| + K)^n$ 23 (c) Given $A^{3} = 0$ Now, $(I - A)(I + A + A^2)$ $= I^{2} + IA + IA^{2} - AI - A^{2} - A^{3}$ $= I - A^{3}$ = I $\Rightarrow (I - A)^{-1} = I + A + A^2$ 24 (a) We have, |A| = (a+ib)(a-ib)-c+id(c+id) $a^2 + b^2 + c^2 + d^2 = 1$ And $\operatorname{adj}(A) = \begin{bmatrix} a - ib & -c - id \\ -c - id & a + ib \end{bmatrix}$ Then $A^{-1} = \begin{bmatrix} a - ib & -c - id \\ -c + id & a - ib \end{bmatrix}$

25 (c) A adj A|A|I|A| = xyz - 8x - 3(z - 8) + 2(2 - 2y)|A| = xyz - (8x + 3z + 4y) + 28= 60 - 20 + 28= 68 $\Rightarrow A(\mathrm{adj}A) = 68 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$ 26 **(b)** Since the product matrix is 3×3 matrix and the pre-multi-plier of *A* is a 3×2 matrix, therefore *A* is 2×3 matrix. Let, $A = \begin{bmatrix} l & m & n \\ x & y & z \end{bmatrix}$. Then the given equation becomes $\begin{bmatrix} x & y & z \end{bmatrix}$ $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} l & m & n \\ x & y & z \end{bmatrix} = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2l - x & 2m - y & 2n - z \\ l & m & x \\ -3l + 4x & -3m + 4y & -3n + 4z \end{bmatrix}$ $= \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$ $\Rightarrow 2l - x = -1, 2m - v = -8, 2n - z = -10, l$ = 1, m = -2, n = -5 $\Rightarrow x = 3, y = 4, z = 0, l = 1, m = -2, n = -5$ $\Rightarrow A = \begin{bmatrix} l & m & n \\ x & y & z \end{bmatrix} = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$ 27 (b) We have, $F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \operatorname{adj}(F(\alpha))$ $= \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Also, $\det(F(\alpha)) = 1$ $\Rightarrow [F(\alpha)]^{-1} = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0\\ \sin(-\alpha) & \cos(-\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}$ 28 (a) We have, $A(\alpha,\beta)^{-1} = \frac{1}{e^{\beta}} \begin{bmatrix} e^{\beta} \cos \alpha & -e^{\beta} \sin \alpha & 0\\ e^{\beta} \sin \alpha & e^{\beta} \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$ $= A(-\alpha, -\beta)$

29 (a)

$$\begin{bmatrix}
2 \\
3 \\
2
\end{bmatrix}
A \begin{bmatrix}
-5 \\
5 \\
-3
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
-3 \\
2
\end{bmatrix}
^{-1} \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
-3 \\
2
\end{bmatrix}
^{-1} \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
-3 \\
2
\end{bmatrix}
^{-1} \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
-3 \\
2
\end{bmatrix}
^{-1} \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
-5 \\
-3
\end{bmatrix}
= A = \begin{bmatrix}
2 \\
-3 \\
2
\end{bmatrix}
\begin{bmatrix}
1 \\
3
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix}
\begin{bmatrix}
-5 \\
-3
\end{bmatrix}
= \begin{bmatrix}
1 \\
1
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\begin{bmatrix}
-5 \\
-3
\end{bmatrix}
= A = \begin{bmatrix}
2 \\
-3 \\
2
\end{bmatrix}
\begin{bmatrix}
2 \\
-3
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix}
\begin{bmatrix}
-5 \\
-3
\end{bmatrix}
= \begin{bmatrix}
-1 \\
1
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\begin{bmatrix}
-1 \\
2
\end{bmatrix}
\begin{bmatrix}
-1$$

 $\Rightarrow x = \frac{-4\pm\sqrt{12}}{4} = \frac{-2\pm\sqrt{3}}{2}$ (irrational roots) 35 **(a)** We know that for any non-singular matrix *A*, $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$ Now put $A = P^{-1}$. Then we have $(P^{-1})^{-1} = \frac{1}{|P^{-1}|} \operatorname{adj}(P^{-1})$ $\Rightarrow P = |P| \operatorname{adj}(P^{-1})$ $\Rightarrow \operatorname{adj}(P^{-1}) = \frac{P}{|P|}$ 36 **(b)** If possible assume that A is non-singular, then A^{-1} exists. Thus, $AB = 0 \Rightarrow A^{-1}(AB) = (A^{-1}A)B = 0$ \Rightarrow *IB* = 0 or *B* = 0 ×(*a* contradiction) Hence, both *A* and *B* must be singular. 37 (c) Since $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = and given $A = \begin{bmatrix} 0 & \tan \alpha/2 \\ -\tan \alpha/2 & 0 \end{bmatrix}$ $\therefore I - A = \begin{bmatrix} 1 & -\tan \alpha/2 \\ \tan \alpha/2 & 1 \end{bmatrix}$ (1) Now, $(I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ $= \begin{bmatrix} 1 & \tan \alpha/2 \\ -\tan \alpha/2 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ $\tan \alpha/2$ $=\begin{bmatrix}1&t\\-\tan{\alpha/2}\end{bmatrix}$ 1 $\begin{bmatrix} \frac{1-\tan^2 \alpha/2}{1+\tan^2 \alpha/2} & -\frac{2\tan \alpha/2}{1+\tan^2 \alpha/2} \end{bmatrix}$ $\begin{bmatrix} \frac{2 \tan \alpha/2}{1 + \tan^2 \alpha/2} & \frac{1 - \tan^2 \alpha/2}{1 + \tan^2 \alpha/2} \end{bmatrix}$ $= \begin{bmatrix} \frac{1 - \tan^2 \alpha/2}{1 + \tan^2 \alpha/2} + \frac{2 \tan^2 \alpha/2}{1 + \tan^2 \alpha/2} \\ \frac{-\tan \alpha/2(1 - \tan^2 \alpha/2)}{1 + \tan^2 \alpha/2} + \frac{2 \tan \alpha/2}{1 + \tan^2 \alpha/2} \end{bmatrix}$ $-\frac{2\tan^{2} \alpha/2}{1+\tan^{2} \alpha/2} + \frac{\tan \alpha/2(1-\tan^{2} \alpha/2)}{1+\tan^{2} \alpha/2}$ $\frac{2\tan^2\alpha/2}{1+\tan^2\alpha/2} + \frac{1-\tan^2\alpha/2}{1+\tan^2\alpha/2}$ $= \begin{bmatrix} \tan \alpha/2 \\ (1 + \tan^2 \alpha/2) \\ (1 + \tan^2 \alpha/2) \\ \tan \alpha/2 \\ (1 + \tan^2 \alpha/2) \\ (1 + \tan^2 \alpha/2) \\ (1 + \tan^2 \alpha/2) \end{bmatrix} \begin{bmatrix} \tan \alpha/2 \\ (1 + \tan^2 \alpha/2) \\ (1 + \tan^2 \alpha/2) \end{bmatrix}$ $-\tan \alpha/2$ $\tan \alpha/2$ = I - A [using (1)]

38 (b)
We have,

$$(A - 2I)(A - 4I) = 0$$

 $\Rightarrow A^2 - 2A - 4A + 8I = 0$
 $\Rightarrow A^2 - 6A + 8I = 0$
 $\Rightarrow A^{-1}(A^2 - 6A + 8I) = A^{-1}0$
 $\Rightarrow A - 6I + 8A^{-1} = 0$
 $\Rightarrow A + 8A^{-1} = 6I$
 $\Rightarrow \frac{1}{6}A + \frac{4}{3}A^{-1} = 1$
39 (a)
Matrix $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ is orthogonal if
 $\sum a_i^2 = \sum b_i^2 = \sum c_i^2 = 1; \sum a_i b_i = \sum b_i c_i$
 $= \sum c_i a_i = 0$
40 (b)
 $|A^{2005} - 6A^{2004}| = |A|^{2004}|A - 6I|$
 $2^{2004} \begin{bmatrix} 0 & 11 \\ 2 & -2 \end{bmatrix} = (-22)2^{2004} = (-11)(2)^{2005}$
41 (c)
Given A² = A. Now,
 $(I + A)^3 - 7A = I^3 + 3I^2A + 3IA^2 + A^3 - 7A$
 $= I + 3A + 3A + A - 7A$
 $= I + 0$
 $= I$
42 (b)
 $AB^n = ABBBBB \cdots B$
 $= B(AB)BBB \cdots B$
 $= B(AB)BBB \cdots B$
 $= B(AB)BBB \cdots B$
 $= B(AB)(BA)(BA)(AB) \cdots (AB)B$
 $= A(BA)(BA)(BA)(BA) \cdots (BA)B$
 $= A(AB)(BA)(BA)(BA) \cdots (BA)B$
 $= A^2(BA)(BA)(BA) \cdots (BA)B^2$
 $= A^3(BA)(BA)(BA) \cdots (BA)B^3$
 \vdots
 $= A^n B^n$
43 (b)
Since, given system of equations has no solution,
 $\Delta = 0$ and any one amongst $\Delta x, \Delta y, \Delta z$ is non-zero
Where $\Delta = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$
 $\Rightarrow \lambda = 1$
44 (a)

Let, $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\Rightarrow X^{2} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix}$ $\Rightarrow a^2 + bc = 1$ and $ab + bd = 1 \Rightarrow b(a + d) = 1$ $ac + cd = 2 \Rightarrow c(a + d) = 2 \Rightarrow 2c = c$ Also, $bc + d^2 = 3 \Rightarrow d^2 - a^2 = 2$ $\Rightarrow (d-a)(a+d) = 2 \Rightarrow d-a = 2b$ (using $bc = 1 - a^2$) a + d = 1/b $\Rightarrow 2d = 2b + 1/b, \ 2a = 1/b - 2b$ d = b + 1/b, a = 1/b - 2bc = 2b $\Rightarrow \left(b^2 + \frac{1}{4b^2} + 1\right) + 2b^2 = 3$ $\Rightarrow 3b^2 + \frac{1}{4h^2} = 2$ $\Rightarrow 3x + \frac{1}{4x} = 2$ $\Rightarrow b = \pm \frac{1}{\sqrt{6}}$ or $b = \pm \frac{1}{\sqrt{2}}$ Therefore, matrices are $\begin{pmatrix} 0 & 1/\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & -1/\sqrt{2} \\ -\sqrt{2} & -\sqrt{2} \end{pmatrix} \begin{pmatrix} 2/\sqrt{6} & -1/\sqrt{6} \\ 2/\sqrt{6} & 4/\sqrt{6} \end{pmatrix}$ 45 **(a)** Given A is skew-symmetric Hence, $A^T = -A$ $\Rightarrow A^n = (-A^T)^n = -(A^n)^T$ (given *n* is odd) Hence, A^n is skew-symmetric 46 **(b)** Given A, B, A + I, A + B are idempotent. Hence, $A^{2} = A, B^{2} = B, (A + I)^{2} = A + I \text{ and} (A + B)^{2} =$ A + B $\Rightarrow A^2 + B^2 + AB + BA = A + B$ $\Rightarrow A + B + AB + BA = A + B$ $\Rightarrow AB + BA = 0$ 47 (d) $A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix}$ $\therefore \quad A^2 = B \Rightarrow \begin{bmatrix} \alpha^2 & 0\\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 5 & 1 \end{bmatrix}$ $\Rightarrow \alpha^2 = 1 \text{ and } \alpha + 1 = 5$ Which is not possible at the same time. \therefore No real values of α exists. 48 **(b)** $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ $\Rightarrow A^{2} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} a^{2} & 0 \\ 0 & b^{2} \end{pmatrix}$ $\Rightarrow A^{3} = \begin{pmatrix} a^{2} & 0 \\ 0 & b^{2} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} a^{3} & 0 \\ 0 & b^{3} \end{pmatrix}$ $\Rightarrow A^{n} = \begin{pmatrix} a^{n} & 0 \\ 0 & b^{n} \end{pmatrix}$

 $\Rightarrow (A^n)^{-1} = \frac{1}{a^n b^n} \begin{pmatrix} a^n & 0\\ 0 & b^n \end{pmatrix} = \begin{pmatrix} a^{-n} & 0\\ 0 & b^{-n} \end{pmatrix}$ $\Rightarrow \lim_{n \to \infty} (A^n)^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ as a > 1 and b > 149 (c) Given that $X = AB + BA \Rightarrow X = X^T$ And Y = AB - BA $\Rightarrow Y = -Y^T$ Now, $(XY)^T = Y^T X^T = -YX$. 50 (a) $|B| = \begin{vmatrix} q & -b & y \\ -p & a & -x \\ r & -c & z \end{vmatrix}$ (Multiplying R_2 by -1) $= - \begin{vmatrix} q & -b & y \\ p & -a & x \\ r & -c & z \end{vmatrix}$ (Multiplying C_2 by -1) $= \begin{vmatrix} q & b & y \\ p & a & x \\ r & c & z \end{vmatrix}$ (Changing R_1 with R_2) $= - \begin{vmatrix} q & b & y \\ p & a & x \\ r & c & z \end{vmatrix}$ $= - \begin{vmatrix} q & b & y \\ p & a & x \\ r & c & z \end{vmatrix}$ Hence |A| = -|B|, obviously when $|A| \neq 0$, $|B| \neq$ 0. Also, $|adj B| = |B|^2$ $= (-|A|)^2 = |A|^2$ 51 (a) For involuntary matrix, $A^2 = I$ $\Rightarrow |A^2| = |I| \Rightarrow |A|^2 \Rightarrow |A| = \pm 1$ For idempotent matrix, $A^2 = A$ $\Rightarrow |A^2| = |A| \Rightarrow |A|^2 \Rightarrow |A| \Rightarrow |A| = 0 \text{ or } 1$ For orthogonal matrix, $AA^T = I$ $\Rightarrow |AA^T| = |I| \Rightarrow |A||A^T| = 1 \Rightarrow |A|^2 = 1 \Rightarrow |A| =$ ±1. Thus if matrix A is idempotent it may not be invertible. 52 (a) Since, $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is linear equation in three variables and that could have only unique, no solution or infinitely many solution. : It is not possible to have two solutions. Hence, number of matrices A is zero. 53 (a) |A| = 1(0 - 10) - 2(2 - 6) + 3(4 - 0)= -10 + 8 + 12 = 1058

 $\Rightarrow |A| \neq 0$ \Rightarrow Unique solution 54 (d) Let, $A = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$ Then the matrix equation is AX = B. $|A| = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} = -2 + 12 \neq 0$ So *A* is and invertible matrix. Also, adj $A = \begin{bmatrix} -2 & -3 \\ 4 & 1 \end{bmatrix}^T = \begin{bmatrix} -2 & 4 \\ -2 & 1 \end{bmatrix}$ So. $A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{10} \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix}$ Now, AX = B $\Rightarrow A^{-1}(AX) = a^{-1}B$ $\Rightarrow (A^{-1}A)X = A^{-1}B$ $\Rightarrow IX = A^{-1}B$ $\Rightarrow X = A^1 B$ $\Rightarrow X = \frac{1}{10} \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 11/2 & 2 \end{bmatrix}$ 55 (c) $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix} \text{ and } 2A - B =$ $\begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$ \Rightarrow tr(A) + 2tr(B) = -1 and 2tr(A) - tr(B) = 3Let tr(A) = x and tr(B) = y. Then, x + 2y = -1 and 2x - y = 3Solving, x = 1 and y = -1. Hence, tr(A) - tr(B) = x - y = 256 **(d)** $\operatorname{tr}(A) = \sum_{i=i} a_{ii}$ $= (a_{11} + a_{22} + a_{33} + \dots + a_{10\infty 10})$ $= (w^2 + w^4 + w^6 + \dots + w^{20})$ $= w^{2}(1 + w^{2} + w^{4} + \dots + w^{18})$ $= w^{2}[(1 + w + w^{2}) + \dots + (1 + w + w^{2}) + 1]$ $= w^2 \times 1$ \Rightarrow tr(A) = w^2 57 (d) $A = \text{diag} (d_1, d_2 \dots \dots d_n)$ Given, $A^3 = A$ \Rightarrow diag $(d_1^3, d_2^3, \dots, d_n^3) =$ diag (d_1, d_2, \dots, d_n) $\Rightarrow d_1^3 = d_1, d_2^3 = d_2 \dots, d_n^3 = d_n$ Hence, all $d_1, d_2, d_3 \dots, d_n$ have three possible values ± 1 , 0. Each diagonal element can be selected in three ways. Hence, the number Of different matrices is 3^n

3 **(c)**

$$AB = \begin{bmatrix} \cos^{2}\theta & \cos\theta\sin\theta \\ \sin^{2}\theta \end{bmatrix}$$

$$\begin{bmatrix} \cos^{2}\theta & \cos^{2}\theta\sin\theta \\ \cos\theta\sin\theta & \sin^{2}\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2}\theta\cos^{2}\theta & \cos^{2}\theta\cos\theta\sin\theta + \sin^{2}\theta \\ \cos\theta\sin\theta\sin\theta & \cos^{2}\theta & \cos\theta\sin\theta + \sin^{2}\theta \\ \cos\theta\sin\theta\cos\theta & \sin\theta\sin\theta & \cos\theta\sin\theta + \sin^{2}\theta\sin^{2}\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta\cos\theta & \cos\theta\sin\theta & \sin\theta + \sin^{2}\theta\sin^{2}\theta \\ (\cos(\theta - \theta)) & (\cos(\theta - \theta)) \\ \sin\theta\cos\theta & \sin\theta & \sin\theta \\ (\cos(\theta - \theta)) & (\cos(\theta - \theta)) \end{bmatrix}$$

$$= (\cos(\theta - \theta)) \begin{bmatrix} \cos\theta\cos\theta & \cos\theta\sin\theta \\ \sin\theta\cos\theta & \sin\theta\sin\theta \\ (\cos(\theta - \theta)) & (\cos\theta - \theta) = 0 \Rightarrow \theta - \theta = (2n + 1)\pi/2, n \in \mathbb{Z}.$$
59 (a)
$$A \times A^{T} = I$$

$$\Rightarrow |A \times A^{T}| = |I|$$

$$\Rightarrow |A| = \pm 1$$

$$\Rightarrow A^{-1} exists$$

$$\Rightarrow A^{-1} \times A \times A^{T} = A^{-1} \times I$$

$$\Rightarrow A^{-1} exists$$

$$\Rightarrow A^{-1} = A^{T}$$
60 (d)
If A is nth root of I₂, then Aⁿ = I₂. Now,
$$A^{2} = \begin{bmatrix} a \\ 0 \\ a \end{bmatrix} \begin{bmatrix} a \\ 0 \\ a^{2} \end{bmatrix} = \begin{bmatrix} a^{3} & 3a^{2}b \\ 0 & a^{3} \end{bmatrix}$$
Thus,
$$A^{n} = \begin{bmatrix} a^{n} & na^{n-1}b \\ 0 & a^{n} \end{bmatrix}$$
Now,
$$A^{n} = I \Rightarrow \begin{bmatrix} a^{n} & na^{n-1}b \\ 0 & a^{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow a^{n} = 1, b = 0$$
61 (b)
Since A is orthogonal, hence
$$AA^{T} = I$$

$$\Rightarrow |A|^{2}| = 1$$

$$\Rightarrow |A|^{2}| = 1$$

$$\Rightarrow |A| = \pm 1$$
Now, |adj(adj A)| = |A|^{(n-1)^{2}}

62 (a)

$$A(x)A(y) = (1 - x)^{-1}(1 - y)^{-1} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} \begin{bmatrix} 1 & -y \\ -y & 1 \end{bmatrix}$$

$$= (1 + xy - (x + y))^{-1} \begin{bmatrix} 1 + xy - (x + y) \\ -(x + y) & 1 + xy \end{bmatrix}$$

$$= (1 - \frac{(x + y)}{1 + xy})^{-1} \begin{bmatrix} 1 & -\frac{x + y}{1 + xy} \\ -\frac{x + y}{1 + xy} \end{bmatrix} = A(z)$$
63 (c)

$$(A^{-1}BA)^{2} = (A^{-1}BA)(A^{-1}BA)$$

$$= A^{-1}B(AA^{-1})BA$$

$$= A^{-1}B(AA^{-1})BA$$

$$= A^{-1}B^{2}A(A^{-1}BA)$$

$$= A^{-1}B^{2}(AA^{-1})BA$$

$$= A^{-1}B^{2}(AA^{-1})BA$$

$$= A^{-1}B^{3}A \text{ and so on}$$

$$\therefore (A^{-1}BA)^{n} = A^{-1}B^{n}A$$
64 (b)

$$(kI_{n}) \operatorname{adj}(kI_{n}) = |kI_{n}|I_{n}[\operatorname{using} A(\operatorname{adj} A) = |A|I]$$

$$\operatorname{adj}(kI_{n}) = k^{n(n-1)}$$
65 (b)
We have,

$$[F(x)G(y)]^{-1} = [G(y)]^{-1}[F(x)]^{-1}$$

$$= G(-y)F(-x)$$
66 (d)

$$\operatorname{det}(A - I) = \operatorname{det}(A - A^{2})$$

$$= \operatorname{det} A \setminus \operatorname{det}(I - A)$$

$$= -\operatorname{det} A \times \operatorname{det}(I - A)$$

$$= -\operatorname{det} A \times \operatorname{det}(I - A)$$

$$= \operatorname{det}(A^{2}) = \operatorname{det}(I)$$

$$\Rightarrow (\det A)^2 = 1$$

$$\Rightarrow \det(A) = \pm 1$$

Thus, $\det(A)$ can be 1 or -1, which we cannot say
anything about $\det(A - I)$.

67 **(b)**

Given,

$$B = A^{-1}A^{T}$$

$$\Rightarrow B^{T} = (A^{-1}A^{T}) = A \times (A^{-1})^{T}$$

$$\Rightarrow B \times B^{T} = A^{-1}A^{T} \times A \times (A^{-1})^{T}$$

$$= A^{-1} \times (A^{T} \times A)(A^{-1})^{T}$$

$$= (A^{-1}A \) \times (A^{-1}A)^{T} = I \times I^{T} = I$$
68 **(b)**

$$A^{2} = \begin{bmatrix} -5 \ -8 \ 0 \\ 3 \ 5 \ 0 \\ 1 \ 2 \ -1 \end{bmatrix} \begin{bmatrix} -5 \ -8 \ 0 \\ 3 \ 5 \ 0 \\ 1 \ 2 \ -1 \end{bmatrix}$$

 $= \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = I$ 0 1 Hence, the matrix *A* is involutory. 69 **(b)** 75 **(b)** Since AB = B and BA = A, so $BAB = B^2$ $\Rightarrow (BA)B = B^2$ $\Rightarrow AB = B^2$ $\Rightarrow B = B^2$ Hence, *B* is idempotent and similarly*A*. $(A - B)^2 = A^2 - AB - BA + B^2 = A - B - A + B$ = 0Therefore, A - B is nilpotent 70 (a) 76 **(b)** $A \operatorname{adj} A = |A|I$ \Rightarrow |A adj A| = |A|ⁿ [If *A* is of order $n \times n$] \Rightarrow |A||adj A| = |A|ⁿ \Rightarrow |adj A| = |A|ⁿ⁻¹ Now, A is singular, $\therefore |A| = 0$ \Rightarrow |*adj A*| = 0 77 (c) Hence adj A is singular. 71 (c) $A^2 = I$ $\Rightarrow A^2 - I = 0$ $\Rightarrow (A+I)(A-I) = 0$ Therefore, either |A + I| = 0 or |A - I| = 0. If $|A - I| \neq 0$, then $(A + I)(A - I) = 0 \Rightarrow A - I = 0$ which is not so. \therefore |A - I| = 0 and $A - I \neq 0$ 78 (c) 72 (b) $B = A_1 + 3A_3^3 + \dots + (2n-1)(A_{2n-1})^{2n-1}$ $B^{T} = [A_{1} + 3A_{3}^{3} + \dots + (2n-1)(A_{2n-1})^{2n-1}]$ = -BHence, *B* is skew-symmetric 73 (a) AB = C $\Rightarrow |AB| = |C|$ $\Rightarrow |A||B| = |C|$ $\Rightarrow |B| = \frac{|C|}{|A|}$ 74 **(b)** $P^T P = I$ $Q = PAP^T$ $\therefore x = P^T Q^{1000} P = P^T (PAP^T)^{1000} P$ $= P^T P A P^T (P A P^T)^{999} P$ 79 $= IAP^T \cdot PAP^T (PAP^T)^{998} P$

 $= AIP^{T}(PAP^{T})^{997}P$ $= A^2 P^T P A P^T (P A P^T)^{997} P$ $= A^{3}P^{T}((PAP^{T})^{997}P$ $= A^{1000} = I$ (:: A is involuntary) Hence, $x^{-1} = I$ Let, $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & 1 \end{bmatrix}$ $\therefore A^{T} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ 1-i & 1 \end{bmatrix}$ $\Rightarrow (\bar{A}^T) = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ $\therefore A(A^{-T}) = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix} \times \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ $=\frac{1}{3}\begin{bmatrix}3&0\\0&3\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I$ Let $A = [a_{ii}]$. Since A is skew-symmetric, therefore $a_{ii} = 0$ and $a_{ii} = -a_{ii}(i \neq j)$ A is symmetric as well, so $a_{ij} = a_{ji}$ for all *i* and *j* $\therefore a_{ii} = 0$ for all $i \neq j$ Hence, $a_{ii} = 0$ for all *i* and *j*, i.e., *A* is null matrix. $(A^{-1}BA)^2 = (A^{-1}BA)(A^{-1}BA)$ $= A^{-1}B(AA^{-1})BA$ $= A^{-1}BIBA = A^{-1}B^2A$ $\Rightarrow (A^{-1}BA)^3 = (A^{-1}B^2A)(A^{-1}BA)$ $= A^{-1}B^2(AA^{-1})BA$ $= A^{-1}B^2IBA$ $= A^{-1}B^3A$ and so on $\Rightarrow (A^{-1}BA)^n = A^{-1}B^nA$ $f(x) = \frac{1+x}{1-x}$ $\Rightarrow (1-x)f(x) = 1+x$ $\Rightarrow (I - A)f(A) = (I + A)$ $\Rightarrow f(A) = (I - A)^{-1}(I + A)$ $= \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \right)$ $\Rightarrow f(A) = \left(\begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \right)$ $= \frac{\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}}{\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}}$ -1 -1-1 -1(b) We have,

 $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \alpha^2 + \beta \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \alpha^2 + \beta \gamma - 1 = 0$ 80 (a) AB = A + B $\Rightarrow B = AB - A = A(B - I)$ $\Rightarrow \det(B) = \det(A) \det(B - I) = 0$ \Rightarrow det (B) = 0 81 **(b)** $|A(\alpha,\beta)| = \cos^2 \alpha e^\beta + \sin^2 \alpha e^\beta = e^\beta$ Now, $A(\alpha,\beta)^{-1} = \frac{1}{\rho^{\beta}} \operatorname{adj} \left(A(\alpha,\beta) \right)$ $= \frac{1}{e^{\beta}} \begin{bmatrix} e^{\beta} \cos \alpha & -\sin \alpha e^{\beta} & 0\\ e^{\beta} \sin \alpha & \cos \alpha e^{\beta} & 0\\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & e^{-\beta} \end{bmatrix}$ $= A(-\alpha, -\beta)$ 82 (c) Given, $A^2 = 2A - I$ Now, $A^3 = A(A^2)$ = A(2A - I) $= 2A^2 - A$ = 2(2A - I) - A= 3A - 2I $A^4 = A(A^3)$ = A(3A - 2I) $= 3A^2 - 2A$ = 3(2A - I) - 2A= 4A - 3IFollowing this, we can say $A^n = nA - (n - 1)I$. 83 (d) A is involuntary. Hence, $A^2 = I \Rightarrow A = A^{-1}$ Also, $(kA)^{-1} = \frac{1}{k}(A)^{-1}$ $\Rightarrow \left(\frac{1}{2}A\right)^{-1} = 2(A)^{-1} \Rightarrow 2A$ 84 (c) As A is a skew-symmetric matrix, $A^T = -A$ $\Rightarrow a_{ii} = 0, \forall i$ \Rightarrow tr(A)=0 Also. $|A| = |A^{T}| = |-A| = (-1)^{3}|A|$ $\Rightarrow 2|A| = 0$ $\Rightarrow |A| = 0$

85 **(b)** Z is idempotent, then $Z^2 = Z \Rightarrow Z^1, Z^4, \dots, Z^n = Z$ $\therefore (I+Z)^n = {}^n C_0 I^n + {}^n C_1 I^{n-1} Z$ + ${}^{n}C_{2}I^{n-2}Z^{2} + \cdots + {}^{n}C_{n}Z^{n}$ $= {}^{n}C_{0}I + {}^{n}C_{1}Z + {}^{n}C_{2}Z + {}^{n}C_{3} + \cdots + {}^{n}C_{n}Z$ = I + ({}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \cdots + {}^{n}C_{n})Z $= I + (2^n - 1)Z$ 86 **(b)** $A^2 = 0, A^3 = A^4 = \dots = A^n = 0$ Then, $A(I + A)^n = A(I + nA) = A + nA^2 = A$ 87 **(b)** $\left(A'-\frac{1}{2}I\right)\left(A-\frac{1}{2}I\right)=I$ and $\left(A'+\frac{1}{2}I\right)\left(A+\frac{1}{2}I\right)=I$ $\Rightarrow A + A' = 0$ (subtracting the two results) $\Rightarrow A' = -A$ $\Rightarrow A^2 = -\frac{3}{4}I$ $\Rightarrow \left(\frac{-3}{4}\right)^n = (\det(A))^2$ \Rightarrow *n* is even 88 (a, b, c) We have, $|A(\theta) = 1|$ Hence, *A* is invertible. $A(\pi + \theta) = \begin{bmatrix} \sin(\pi + \theta) & \cos(\pi + \theta) \\ i\cos(\pi + \theta) & \sin(\pi + \theta) \end{bmatrix}$ $= \begin{bmatrix} -\sin\theta & -i\cos\theta \\ -i\cos\theta & -\sin\theta \end{bmatrix} = A(\theta)$ adj $(A(\theta)) = \begin{bmatrix} \sin\theta & \cos\theta \\ -i\cos\theta & \sin\theta \end{bmatrix}$ $\Rightarrow A(\theta)^{-1} = \begin{bmatrix} \sin\theta & -i\cos\theta \\ -i\cos\theta & \sin\theta \end{bmatrix} = A(\pi + \theta)$ 89 (a, b, c) $S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \Rightarrow S^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ We have, $SA = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b \end{bmatrix}$ [0 2a 2a] $= \begin{bmatrix} 2b & 0 & 2b \\ 2c & 2c & 0 \end{bmatrix}$ $\therefore SAS^{-1} = \begin{bmatrix} 0 & 2a & 2a \\ 2b & 0 & 2b \\ 2c & 2c & 0 \end{bmatrix} \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} 0 & a & a \\ b & 0 & b \\ c & c & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} 2a & 0 & 0 \\ 0 & 2b & 0 \end{bmatrix}$ 0 2c=diag(2a, 2b, 2c)90 (a, b)

Let
$$I = k = 1$$
 (say). Then,
 $A_i A_k = A_i A_k = A_1 A_1$
 $A_i A_k = A_1 A_1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = l$
 $A_2 A_2 = \begin{bmatrix} 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -i & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix} = l$
 $\therefore A_i A_k + A_k A_i = l + l = 2l$
If $i \neq k$ let $i = 3$ and $k = 2$, then
 $A_i A_k = A_1 A_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \end{bmatrix}$
 $A_2 A_1 = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \end{bmatrix}$
 $\Rightarrow A_1 A_2 + A_2 A_1 = 0$
91 (a,b,d)
 $A^2 - 4A - 5I_3 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -i \end{bmatrix}$
 $= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} + \begin{bmatrix} -4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4 \end{bmatrix} + \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $\Rightarrow (A^{-1}A)A - 4I_3 - 5A^{-1} = 0$ $\Rightarrow IA - 4I_3 - 5A^{-1} = 0$ $\Rightarrow A^{-1} = \frac{1}{5}(A - 4I_3)$ Also, $|A^2| = \begin{vmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{vmatrix}$ = 9(81 - 64) - 8(72 - 64) + 8(64 - 72) $= 9 \times 17 - 8 \times 8 + 8 \times (-8)$ $= 153 - 128 = 25 \neq 0$ $\therefore A^2$ is invertible And $A^3 = A \cdot A^2$ $= A \cdot (4A - 5I_3) = 4(A^2 - 5A)$ $= \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} + \begin{bmatrix} -5 & -10 & -10 \\ -10 & -5 & -10 \\ -10 & -10 & -5 \end{bmatrix}$ $= \begin{bmatrix} 31 & 22 & 22 \\ 22 & 31 & 22 \\ 22 & 22 & 21 \end{bmatrix}$ 22 22 31 $\therefore |A^3| \neq 0$ $\therefore A^3$ is invertible 92 (a, d) Here *X* is a $n \times 1$ matrix, *C* is a $n \times n$ matrix and X^T is a 1 × *n* matrix. Hence $X^T C X$ is a 1 × 1 matrix. Let $X^T C X = k$. then, (X^TCX)^T = X^TC^T(X^T)^T = X^T(-C)X = -X^TCX= -k $\Rightarrow k = -k$ $\Rightarrow k = 0$ $\Rightarrow X^T C X$ is null matrix 93 (a, b, c) $|A^{-1}| = -1 \Rightarrow |A| = -1$ Now, use adj $A = |A|A^{-1}$ and $A = (A^{-1})^{-1}$ 94 (a, b, c) If $|A| \neq 0$, then AB = AC $\Rightarrow A^{-1}AB = A^{-1}AC$ $\Rightarrow B = C$ Also if *A* is orthogonal matrix, then $AA^T = I$ $\Rightarrow |AA^T| = 1 \Rightarrow |A|^2 = 1 \Rightarrow A$ is invertible 95 (a, c, d) Given, $A^2 + 2A + 2I = 0$ $\Rightarrow A^2 + A = -2I$ $\Rightarrow |A^2 + A| = |-2I|$ $\Rightarrow |A||A+I| = (-2)^n$ $\Rightarrow |A| \neq 0$ Therefore, A is non-singular, hence its inverse exists. Also, multiplying the given equation both sides with A^{-1} , we get $A^{-1} = -\frac{1}{2}(A+I)$ 96 (a, c)

We have, $\begin{pmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{pmatrix}^{-1} = \frac{1}{1+\tan^2\theta} \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $= \cos^{2} \theta \begin{bmatrix} 1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan \theta \\ \tan \theta & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan \theta \\ 1 \end{bmatrix}$ $= \cos^{2} \theta \begin{bmatrix} 1 - \tan^{2} \theta & -2\tan \theta \\ 2\tan \theta & 1 - \tan^{2} \theta \end{bmatrix}$ $= \begin{bmatrix} \cos 2\theta & -\sin \theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ $\therefore a - \cos 2\theta$, $b = \sin 2\theta$ 97 (a, c) A is orthogonal matrix. $\therefore AA^T = 1$ $\Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 9 & 0 & a+4+2b \\ 0 & 9 & 2a+2-2b \\ a+4+2b & 2a+2-2b & a^2+4+b^2 \end{bmatrix}$ $= \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$ $\Rightarrow a + 4 + 2b = 0, 2a + 2 - 2b = 0$ and $a^2 + 4 + 2b = 0$ $h^2 = 9$ $\Rightarrow a + 2b + 4 = 0, a - b + 1 = 0$ and $a^2 + b^2 = 5$ $\Rightarrow a = -2, b = -1$ 98 (a, b, c) We have, $A^2B = A(AB) = AA = A^2$, $B^2A =$ $B(BA) = BB = B^2,$ ABA = A(BA) = AB = A and BAB = B(AB) =BA = B99 (a, b, c) *B* is an idempotent matrix $\therefore B^2 = B$ Now, $A^2 = (I - B)^2$ = (I - B)(I - B) $= I - IB - IB + B^2$ $I - B - B + B^2$ $= I - 2B + B^2$ = I - 2B + B= I - B= ATherefore, A is idempotent. Again, $AB = (I - B)B = IB - B^2 = B - B^2 = B^2 - B^2$ = 0Similarly, $BA = B(I - B) = BI - B^2 = B - B = 0$ 100 (a, d) $(B^{T}AB)^{T}B^{T}A^{T}(B^{T})^{T} = B^{T}A^{T}B = B^{T}AB$ if A is

symmetric Therefore, *B^TAB* is symmetric if *A* is symmetric Also, $(B^T A B)^T = B^T A^T B = B^T (-A)B =$ $-(B^T A^T B)$ Therefore, $B^T A B$ if A is skew-symmetric if A is skew-symmetric 101 **(b,d)** Let $A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1 \end{bmatrix} \sim \begin{bmatrix} -1 & 2 & 5 \\ 0 & 0 & a+6 \\ 0 & 0 & a+6 \end{bmatrix}$ $(R_2 \to R_2 + 2R_1, R_3 \to R_3 + R_1)$ Clearly rank of *A* is 1, if a = -6Also, for a = 1, $|A| = \begin{vmatrix} -1 & 2 & 5 \\ 2 & -4 & -3 \\ 1 & -2 & 2 \end{vmatrix} = 0$ and $\begin{vmatrix} 2 & 5 \\ -4 & -3 \end{vmatrix} = -6 + 20 = 14 \neq 0$ \therefore Rank of *A* is 2, if a = 1102 (a, b, c) Applying $R_3 \rightarrow R_3 - R_2 \rightarrow R_2 - R_1$, we get $|a| = 3 \begin{bmatrix} a_1 & a_2 & a_3 \\ d & d & d \\ d & d & d \end{bmatrix} = 0$ Where d is the common difference of the AP. Therefore, the given system of equation has infinite number of Solution. Also, $|B| = a_1^2 + a_2^2 \neq 0$ 103 (a, b, c) Given, AB = A, BA = B $\Rightarrow B \times AB = B \times A$ $\Rightarrow (BA)B = B$ $\Rightarrow B^2 = B$ Also, $A \times B \times A = AB$ $\Rightarrow (AB)A = A$ $\Rightarrow A^2 = A$ Now $(A^T)^2 = (A^T \times A^T) = (A \times A)^T = (A^2)^T = A^T$ Similarly, $(B^T)^2 = B^T$ $\Rightarrow A^T$ and B^T are idempotent 104 **(b, c)** $(-A)^{-1} = \frac{\operatorname{adj}(-A)}{|-A|} = \frac{(-1)^{n-1}\operatorname{adj}(A)}{(-1)^n|A|} = \frac{\operatorname{adj}(A)}{-|A|} = -A^{-1}$ (for any value of *n*) Given, $A^n = 0$ Now. $(I - A)(I + A + A^{2} + \dots + A^{n-1}) = I - A^{n} = I$ $\Rightarrow (I - A)^{-1} = I + A + A^2 + \dots + A^{n-1}$ 105 (a, b, c)

 $|A| = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$ = 3(-3+4) + 3(2-0)+4(-2-0) = 1 \therefore adj(adjA) = $|A|^{3-2} A = A$ and |adj(adjA) =AA=1Also, $|adjA| = |A|^{3-1} = |A|^2 = I^2 = 1$ 106 (a, d) Given, $(A + B)^2 = A^2 + B^2 + 2AB$ $\Rightarrow (A+B)(A+B) = A^2 + B^2 + 2AB$ $\Rightarrow A^{2} + AB + BA + B^{2} = A^{2} + B^{2} + 2AB \Rightarrow BA$ $\Rightarrow \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} a+2 & -a+1 \\ b-2 & -b-1 \end{bmatrix} = \begin{bmatrix} a-b & 1+1 \\ 2a+b & 2-1 \end{bmatrix}$ The corresponding elements of equal matrices are equal. a + 2 = a - b, $-a + 1 = 2 \Rightarrow a = -1$ $b - 2 = 2a + b, -b - 1 = 1 \Rightarrow b = -2$ $\Rightarrow a = -1$, b = -2107 (a, b, c, d) $A^{2} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$ We have, $A^{2} - 4A - 5I_{3} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ $-5\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} = 0$ $\Rightarrow 5I_3 = A^2 - 4A = A(A - 4I_3)$ $\Rightarrow I_3 = \frac{1}{5}(A - 4I_3) \Rightarrow A^{-1} = \frac{1}{5}(A - 4I_3)$ Note that |A| = 5. Since $|A^3| = |A|^3 = 5^3 \neq 0$, A^3 is invertible. Simi-larly, A^2 invertible 108 (b, c) $\det(-A) = (-1)^n \det(A)$ $\det(A^{-1}) = \frac{1}{\det(A)} = 1$ $det(adiA) = |A|^{n-1} = 1$ Hence, $|\omega A| = \omega^n |A| = 1$ only when $n = 3k, k \in$ Ζ 109 (b, c) $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ $\Rightarrow (A^{-1})^2 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ Similarly, $(A^{-1})^3 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$

And $(A^{-1})^n = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \Rightarrow \lim_{n \to \infty} \frac{1}{n} A^{-n} =$ $\lim_{n \to \infty} \begin{bmatrix} 1/n & 0\\ -1 & 1/n \end{bmatrix} = \begin{bmatrix} 0 & 0\\ -1 & 0 \end{bmatrix}$ $\lim_{n \to \infty} \frac{1}{n^2} A^{-n} = \lim_{n \to \infty} \begin{bmatrix} 1/n^2 & 0\\ -1 & 1/n^2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ 110 (a,c) $A_{\alpha} \cdot A_{(-\alpha)} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ $= \begin{bmatrix} \cos^2 \alpha + \sin^2 \alpha & \sin \alpha \cos \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \sin \alpha \cos \alpha & \cos^2 \alpha + \sin^2 \alpha \end{bmatrix}$ $=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I$ $= \begin{bmatrix} \cos^2 \alpha + \sin^2 \alpha & \sin \alpha \cos \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \sin \alpha \cos \alpha & \cos^2 \alpha + \sin^2 \alpha \end{bmatrix}$ $=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I$ Also, $A_{\alpha} \cdot A_{\beta} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$ $= \begin{bmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & \cos \alpha \sin \beta + \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \\ = \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = A_{(\alpha + \beta)}$ 111 (a,d) Let *A* be a symmetric matrix Then, A' = ANow, (B'AB)' = B'A'(B')' [:: (AB)' = B'A'] $= B'A'B \quad [\because (B)' = B]$ $= B'AB \quad [\because A' = A]$ \Rightarrow B'AB is a symmetric matrix Now, let *A* be a skew-symmetric matrix Then, A' = -A $\therefore (B'AB)' = B'A'(B')' \quad [\because (AB)' = B'A']$ = B'A'B [: (B')' = B] = B'(-A)B [$\because A' = -A$] = -B'AB∴ *B'AB* is a skew-symmetric matrix 112 (a, b, c) All are properties of diagonal matrix. 114 **(b, c)** Since *A* is skew-symmetric, $A^T = -A$. We have, $A^2 + I = 0$ $\Rightarrow A^2 = -1 \text{ or } AA = -I$ $\Rightarrow A(-A) = I$ $\Rightarrow AA^T = I$ Again, we know that $|A| = |A^T|$ and $|kA| = k^n |A|$ Where *n* is the order of *A*. Now, $A^T = (-1)^n \times A$ $\Rightarrow |A^T| = (1)^n |A|$ $\Phi I [1-1]n|A| = 0$ Hence either |A| = 0 or $1 - (-1)^n = 0$, i. e., *n* is even. But

 $A^2 = 0 - 1 = -1$ $\Rightarrow |A|^2 = (-1)^n |I| = (-1)^n \neq 0$ Hence, the only possibility is that *A* is of even order 115 (a, b, c) Given that A and B commute, we have AB = BA (:: A and B are symmetric)(1) Also. $A^T = A, B^T = B$ (2) $(A^{-1}B)^T = B^T (A^{-1})^T = BA^{-1}$ (:: if A is symmetric A^{-1} is also symmetric) Also from Eq. (1), $ABA^{-1} = B$ (3) $\Rightarrow IBA^{-1} = A^{-1}B$ $\Rightarrow BA^{-1} = A^{-1}B$ Hence, from Eq. (2), $(A^{-1}B)^T = A^{-1}B$ Thus, $A^{-1}B$ is symmetric Similarly, AB^{-1} is also symmetric Also. BA = AB $\Rightarrow (BA)^{-1} = (AB)^{-1}$ $\Rightarrow A^{-1}B^{-1} = B^{-1}A^{-1}$ $\Rightarrow (A^{-1}B^{-1})^T = (B^{-1}A^{-1})^T$ $= (A^{-1})^T (B^{-1})^T$ $= A^{-1}B^{-1}$ Hence, $A^{-1}B^{-1}$ is symmetric 116 (a, c) $\sin A \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \text{ and } \cos A = \begin{bmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$ $\therefore |\sin A| = \cos^2 \theta + \sin^2 \theta = 1.$ Hence sin *A* is invertible. Also, $(\sin A) \times (\sin A)^T =$ $\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ $= \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & 0\\ 0 & \cos^2 \theta + \sin^2 \theta \end{bmatrix}$ $=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ = IHence, sin *A* is orthogonal. Also, $2\sin A \cos A = 2 \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$ $= 2 \begin{bmatrix} 2\sin \theta \cos \theta & \cos^2 \theta + \sin^2 \theta \\ \cos^2 \theta - \sin^2 \theta & 0 \end{bmatrix}$ $= 2 \begin{bmatrix} \sin 2\theta & 1 \\ \cos 2\theta & 0 \end{bmatrix}$ $\cos\theta$ $\sin\theta$ $\neq \sin 2A$ 117 (a, b, c) $A = \begin{bmatrix} \cos \alpha & \sin \alpha & 0\\ \cos \beta & \sin \beta & 0\\ \cos \gamma & \sin \gamma & 0 \end{bmatrix} \begin{bmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \sin \alpha & \sin \beta & \sin \gamma \\ 0 & 0 & 0 \end{bmatrix}$ Thus, *A* is symmetric and |A| = 0, hence singular

and not invertible. Also, $AA^T \neq 1$ 118 (a, c) $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ Now. $A^T = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ Hence, A is orthogonal. Therefore, $AA^{T} = I \Rightarrow \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix} \begin{bmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Equating the corresponding elements, we get $4b^2 + c^2 = 1$ (1) $2b^2 - c^2 = 0$ (2) $a^2 + b^2 + c^2 = 1$ (3)Solving Eqs. (1), (2) and (3), we get $a = \pm \frac{1}{\sqrt{2}}, b = \pm \frac{1}{\sqrt{6}}, c = \pm \frac{1}{\sqrt{3}}$ 119 (a) Statement 1 is true as |A| = 0. Since $|B| \neq 0$, statement 2 is also true and correct explanation of statement 1

120 **(c)**

A satisfies $A^2 - \text{Tr}(A) \cdot A + (\det A)I = 0$

On comparing with $A^2 - I = 0$, we get

$$\mathrm{Tr}(A) = 0, |A| = -1$$

Alternate

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $a, b, c, d \neq 0$
Now $A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 $\Rightarrow \quad A^2 = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix}$
 $\Rightarrow \quad a^2 + bc = 1, bc + d^2 = 1$
and $ab + bd = ac + cd = 0$
Also, $c \neq 0$ and $b \neq 0 \Rightarrow a + d = 0$
 $\operatorname{Tr}(A) = a + d = 0$
and $|A| = ad - bc = -a^2 - bc = -1$
121 (c)

Let
$$A = \begin{bmatrix} 0 & -c & b \\ c & 0 & a \\ -b & -a & 0 \end{bmatrix}$$

And $A = -A'$
 $\therefore \det(A) = \det(-A')$
 $= -\det(A') = -\det A$
 $\therefore \det A = 0$
 $\therefore \det A' = \det(-A') \text{ is not true}$
 $\therefore \det(-A') = (-1)^3 \det(A') = -\det A'$
122 (c)
 $[A(A+B)^{-1}B]^{-1} = B^{-1}((A+B)^{-1})^{-1}A^{-1}$
 $= B^{-1}(A+B)A^{-1} = (B^{-1}+I)A^{-1} = B^{-1}I$
 $IA^{-1} = B^{-1} + A^{-1}$

Hence, statement 1 is true. Statement 2 is false as $(A + B)^{-1} = A^{-1} + B^{-1}$ is not true

123 **(b)**

Since AB = BA, we have

$$(A+B)^r =$$

If r = m + n, then

 $A^{r-p}B^p = A^m B^{r-p-m} = 0 \text{ if } p \leq n$

and $A^{r-p}B^p = A^{r-p}B^nB^{p-n} = 0$ if p > n

Then, $(A = B)^r = 0$, for r = m + n

Thus, both the statements are correct but statement 2 is not currently explaining statement 1

124 **(a)**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow a^2 + b^2 = 1(1)$$
$$c^2 + d^2 = 1(2)$$
$$ac + bd = 1(3)$$
$$\Rightarrow \frac{a}{d} = \frac{-b}{c} = \pm 1$$

Also, we must have $a, b, c, d \in [-1, 1]$ for Eqs. (1)

and (2) to get

1

1

 $B^{-1}I +$

Defined Hence, without loss of generality, we can assume $a = \cos \theta$ and $b = \sin \theta$

So for
$$\frac{a}{d} = \frac{-b}{c} = 1$$
, we have
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and for $\frac{a}{d} = \frac{-b}{c} = -1$,
we have $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$
25 (b)
 $\begin{vmatrix} \operatorname{adj} A \end{vmatrix} = |A|^{n-1} = |A|^{2-1} = |A|$
 $\operatorname{adj} (\operatorname{adj} A) = |A|^{n-2} A = |A|^0 A = A$
26 (c)
Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ [: $A^2 = 1$]
 $\Rightarrow \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $\Rightarrow b(a + d) = 0, \ c(a + d) = 0$
and $a^2 + bc = 1, \ bc + d^2 = 1$
 $\Rightarrow a = 1, d = -1, b = c = 0$
If $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then
 $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
If $A \neq I, \ A \neq -I$, then
det (A)=-1 (statement I is true)

Statement II, Tr(A) = 1 - 1 = 0, Statement II is false.

127 (a)

Given

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$\Rightarrow A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{bmatrix}$$

Hence,

$$A^{2} - (a + d)A + (ad - bc)I$$

$$= \begin{bmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{bmatrix} - (a + d) \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$+ (ad - bc) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a^{2} + bc - (a^{2} + ad) + (ad - bc) & ab + bd \\ ac + cd - (ac + cd) & bc + d^{2} - (ad) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= 0$$
Given,
$$A^{3} = 0$$

$$\Rightarrow |A| = 0 \text{ or } ad - bc = 0$$

$$\Rightarrow A^{2} - (a + d)A = 0 \text{ or } A^{2} = (a + d)A \qquad (1)$$
Case (i)
$$a + d = 0$$
From eq. (1)
$$A^{2} = 0$$
Case (ii)
$$a + d \neq 0$$
Given.

 $A^3 = 0$

 $\Rightarrow A^2 A = 0$

$$\Rightarrow (A+d)A.A = 0$$

$$\Rightarrow A^2 = 0$$

128 (b)

Both the statements are true as both are standard 132 (a) properties of diagonal matrix. But statement 2

does not explain statement 1
129 (b)

$$adj(F(\alpha)) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Also,

$$|F(\alpha)| = 1$$
Then,

$$[F(\alpha)]^{-1} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(-\alpha) & \sin(-\alpha) & 0 \\ -\sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= F(-\alpha)$$
Similarly, we can prove that $[G(\beta)]^{-1} = G(-\beta)$
But again given matrices $F(\alpha)$ and $G(\beta)$ are special matrices for which this type of result holds
In general, such result is not true. You can verify with any other matrix. Hence, both statements are true but statement 2 is correct explanation of statement 1
130 (a)
 $A = -A^T \Rightarrow |A| = -|A^T| = -|A|$
 $\Rightarrow 2|A| = 0$
131 (d)
Matrix $a_{ij} = \frac{i-j}{i+2j}$ is $A = \begin{bmatrix} 0 & -\frac{1}{5} & -\frac{2}{7} \\ \frac{1}{4} & 0 & -\frac{1}{8} \\ \frac{2}{5} & \frac{1}{7} & 0 \end{bmatrix}$ which is neither
Symmetric nor skew-symmetric But this is not the

+

Symmetric nor skew-symmetric But this is not the reason for which A cannot be expressed as sum of symmetric and skew-symmetric matrix. In fact any matrix can be expressed as a sum of symmetric and skew-symmetric matrix. Hence, statement 1 is false but statement 2 is true

 $-\frac{1}{8}$

0

which is

 $A = \left[a_{ij}\right]_{n \times n}$ is square matrix such that $a_{ij} =$ 0, for $i \neq j$, then A is called diagonal matrix. Thus, the given statement is true and $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ is

a diagonal matrix

133 (d)

 A^{-1} exists only for non-singular matrix

$$\therefore AB = AC \Rightarrow B = C \text{ if } A^{-1} \text{ exists}$$

134 **(a)**

 $|A| = \begin{vmatrix} 3 & 4 \\ 3 & 5 \end{vmatrix} = 15 - 12 = 3 \neq 0$

 $\therefore A$ is non-singular matrix

 $\therefore A^{-1}$ is exist

135 (d)

ABC is not defined, as order of *A*, *B* and *C* are such that theyare not conformable for multiplication

136 **(d)**

Statement 1 is false

 $\therefore A = |A_{ij}|_{n \times n}$ where $a_{ij} = 0, i \ge j$

Therefore, |A| = 0 and hence *A* is singular. So, inverse of *A* is not defined

In statement 2, |A| = 0. Therefore, inverse of A is not defined

137 (a)

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $B = \begin{bmatrix} x & y \\ z & u \end{bmatrix}$

Also, AB = BA (given)

$$\Rightarrow \begin{bmatrix} ax+bz & ay+bu\\ cx+dz & cy+du \end{bmatrix} = \begin{bmatrix} ax+cy & bx+dy\\ az+cu & bz+du \end{bmatrix}$$

On comparing, we get

$$ax + bz = ax + cy$$

$$\Rightarrow bz = cy$$

$$\Rightarrow \frac{z}{c} = \frac{y}{b} = \lambda \quad (say)$$

$$\therefore y = b\lambda, z = c\lambda$$
 ...(i)

And ay + bu = bx + dy

$$\Rightarrow ab\lambda + bu = bx + bd\lambda$$
 [from Eq. (i)]

$$\Rightarrow a\lambda + u = x + d\lambda = k$$
 (say)

For $\lambda = 0$; y = 0, z = 0, u = k, x = kThen, $B = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} =$ scalar matrix Then, if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$

Then,
$$AB = BA = \begin{bmatrix} ak & bk \\ ck & dk \end{bmatrix} = kA$$

138 **(b)**

$$:: AA' = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & -1 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

∴ A is orthogonal

Also, if *A* and *B* are orthogonal, then *AB* is orthogonal

139 **(b)**

Let,
$$A = \begin{bmatrix} d_1 & z_1 & z_2 \\ \overline{z}_1 & d_2 & z_3 \\ \overline{z}_2 & \overline{z}_3 & d_3 \end{bmatrix}$$

 $A^2 = O$
 $\Rightarrow \begin{bmatrix} d_1 & z_1 & z_2 \\ \overline{z}_3 & d_2 & z_3 \\ \overline{z}_2 & \overline{z}_3 & d_3 \end{bmatrix} \begin{bmatrix} d_1 & z_1 & z_2 \\ \overline{z}_1 & d_2 & z_3 \\ \overline{z}_2 & \overline{z}_3 & d_3 \end{bmatrix} \begin{bmatrix} d_1 & z_1 & z_2 \\ \overline{z}_1 & d_2 & z_3 \\ \overline{z}_2 & \overline{z}_3 & d_3 \end{bmatrix}$
 $= \begin{bmatrix} d_1 + |z_1|^2 + |z_2|^2 & d_1z_1 + d_2z_2 + z_2\overline{z}_3 & d_1 \\ d_1\overline{z}_1 + d_2\overline{z}_1 + z_3\overline{z}_2 & d_2^2 + |z_1|^2 + |z_3|^2 & \overline{z}_1 \\ d_1\overline{z}_2 + \overline{z}_3\overline{z}_1 + d_3\overline{z}_2 & z_1\overline{z}_2 + d_2\overline{z}_3 + d_3\overline{z}_3 & d \end{bmatrix}$
 \Rightarrow Diagonal elements $d_1 = d_2 = d_3 = 0$ and $|z_1| = |z_2| = |z_3| = 0$

$$\Rightarrow z_1 = z_2 = z_3 = 0$$

 \Rightarrow *A* =Null matrix

Thus, statement 1 is true. Also,

 $A^2 = 0 \Rightarrow |A|^2 = 0 \quad \text{or}|A| = 0$

Thus, statement 2 is true but it does not explain statement 1

140 **(c)**

We know that $|adjA| = |A|^{n-1}$. Hence, statement 2 is false.

Now,

 $|\operatorname{adj}(\operatorname{adj} A)| = |\operatorname{adj} A|^{n-1} = ||A|^{n-1}|^{n-1}$ $= |A|^{(n-1)^2}$

Then,

 $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))| = |\operatorname{adj}(\operatorname{adj} A))|^{n-1}$ $= ||A|^{(n-1)2}|^{n-1}$ $= |A|^{(n-1)^3}$

Hence, statement 1 is true

141 (a)

A is involuntary, hence, $A^{2} = I$ $\Rightarrow A^3 = A^5 = \dots = A$ and $A^2 = A^4 = A^6 = \dots = I$ $\Rightarrow (I - A)^{n} = {}^{n}C_{0}I - {}^{n}C_{1}A + {}^{n}C_{2}A^{2} - {}^{n}C_{3}A^{3}$ $= {}^{n}C_{0}I - {}^{n}C_{1}A + {}^{n}C_{2}I - {}^{n}C_{3}A + {}^{n}C_{4}I - \cdots$ $= ({}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \cdots)I$ $-({}^{n}C_{1}A + {}^{n}C_{3} + {}^{n}C_{5} + \cdots)$ $A = 2^{n-1}(I - a)$ $\Rightarrow [(I - A)^n]A^{-1} = 2^{n-1}(I - a)A^{-1}$ $= 2^{n-1}(A^{-1} - I)$ c if a is nilpotent of index 2, then $A^2=A^3=A^4\ldots=A^n=0$ $\Rightarrow (I - A)^{n} = {}^{n}C_{0}I - {}^{n}C_{1}A + {}^{n}C_{2}A^{2} - {}^{n}C_{3}A^{3}$ $= I - nA + O + O + \cdots$ = I - nad A is orthogonal. Hence, $AA^r = I$ $\Rightarrow (A^T)^{-1} = A$ $A^2 = A \Rightarrow A$ is idempotent matrix

143 (d)

 $A^m = 0 \Rightarrow A$ is nilpotent matrix $A^2 = I \Rightarrow A$ is involutory matrix $A^T = A \Rightarrow A$ is symmetric matrix 144 (c) $|A| = 2 \Rightarrow |2A^{-1}| = 2^3/|A| = 4$ $|adj(adj(2A))| = |2A|^4 =$ $2^{12}/|A|^4 = 2^{12}/2^{12} = 1$ $(A + B)^2 = A^2 + B^2$ $\Rightarrow AB + BA = 0$ $\Rightarrow |AB| = |-BA| = -|AB|$ $\Rightarrow |AB| = 0$ $\Rightarrow |B| = 0$

Product ABC is not defined

145 **(b)**

Since A is idempotent, $A^2 = A^3 = A^4 = \dots = A$. now, $(A+I)^{n} = I + {}^{n}C_{1}A + {}^{n}C_{2}A^{2} + \dots + {}^{n}C_{n}A^{n}$ $= I + {}^{n}C_{1}A + {}^{n}C_{2}A + \dots + {}^{n}C_{n}A$ $= I + {}^{n}C_1A + {}^{n}C_2A + \dots + {}^{n}C_nA$ $=I + ({}^{n}C_{1}A + {}^{n}C_{2} + \dots + {}^{n}C_{n})A$ $=I + (2^n - 1)A$ $\Rightarrow 2^n - 1 = 127$ $\Rightarrow n = 7$ We have, $(I - A)(I + A + A^2 + \dots + A^7)$ $= I + A + A^2 + \dots + A^7$ $+(-A - A^2 - A^3 - A^4 \dots - A^8)$ $= I - A^8$ $=I(if A^8 = 0)$ Here matrix A is skew-symmetric and since $|A| = |A^7| = (-1)^n |A|$ So $|A|(1 - (-1)^n) = 0$. As *n* is odd, hence |A| = 0. hence a is singular, If A is symmetric, A^{-1} is also symmetric for

matrix of any order

146 (a)

 $|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{vmatrix}$ = 1(24 - 24) - 2(16 - 20) + 3(12 - 15)= -1 $|B| = \begin{vmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{vmatrix}$ = 3(27 - 16) - 2(18 - 56) + 5(4 - 21)= 24adj (adj A) = $|A|^{n-2}A = |A|A = -A$ 147 (a) Since, $A = P^{-1}BP$ $\Rightarrow \det(A) = \det(P^{-1}BP)$ $= \det(P^{-1}) \det(B) \det(P)$ $=\frac{1}{\det(P)}\det(B)\det(P)$ $\Rightarrow \det(A) = \det(B)$ 148 (c) Since, $\begin{bmatrix} 1 & 2 & \lambda + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix} = 0$ $\Rightarrow 1(40-40) - 3(20-24) + (\lambda + 2)(10-12)$ = 0 $\Rightarrow \lambda = 4$ Now, $A + B = \begin{bmatrix} 4 & 5 & 10 \\ 5 & 6 & 13 \\ 5 & 6 & 14 \end{bmatrix}$ \therefore tr (A + B) = 4 + 6 + 14 = 24 149 (b) Let, $a = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\Rightarrow A^2 - (a+d)A + (ad - bc)I$ $= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - (a+d) \begin{bmatrix} a & b \\ c & d \end{bmatrix} + (ad$ $(-bc)\begin{bmatrix}1&0\\0&1\end{bmatrix}$ $= \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} - \begin{bmatrix} a^2 + ad & ab + bd \\ ac + cd & ad + d^2 \end{bmatrix}$ $+\begin{bmatrix} ad-bc & 0\\ 0 & ad-bc \end{bmatrix}$ = 0150 (c) $AB = A \Rightarrow |AB| = |A|$ (1) $\Rightarrow |A| = 0 \text{ or } |B| = 1$ $BA = B \Rightarrow |BA| = |B|$ (2) $\Rightarrow |A| = 1 \text{ or}|B| = 0$ If |A| = 0, then from Eq. (2), |B| = 0If |B| = 0, then from Eq. (1), |A| = 0151 (d) $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

 $\Rightarrow B = \begin{bmatrix} a_{12} + a_{13} & a_{11} + a_{13} & a_{11} + a_{12} \\ a_{22} + a_{23} & a_{21} + a_{23} & a_{21} + a_{22} \\ a_{32} + a_{33} & a_{31} + a_{33} & a_{31} + a_{32} \end{bmatrix}$ $\Rightarrow X = A^{-1}B$ $\Rightarrow \frac{1}{|A|} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$ $\begin{bmatrix} a_{12} + a_{13} & a_{11} + a_{13} & a_{11} + a_{12} \\ a_{22} + a_{23} & a_{21} + a_{23} & a_{21} + a_{22} \\ a_{32} + a_{33} & a_{31} + a_{33} & a_{31} + a_{32} \end{bmatrix}$ $= \frac{1}{|A|} \begin{bmatrix} 0 & |A| & |A| \\ |A| & 0 & |A| \\ |A| & |A| & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ $\Rightarrow |A_1B| = 2$ $\Rightarrow |A^1||B| = 2$ $\Rightarrow |B| = 2|A|$ 152 **(b)** $A^n - A^{n-2} = A^2 - I \Rightarrow A^{50} = A^{48} + A^2 - I$ Further, $A^{48} = A^{46} + A^2 - I$ $A^{46} = A^{44} + A^2 - I$: : $A^4 = A^2 A^2 - I$ $A^{50} = 25A^2 - 24I$ Here. $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ $\Rightarrow A^{50} = \begin{bmatrix} 25 & 0 & 0 \\ 25 & 25 & 0 \\ 25 & 0 & 25 \end{bmatrix} - 24 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix}$ $|A^{50}| = 1$ Also, $tr(A^{50}) = 1 + 1 + 1 = 3$, Further, $\begin{bmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 25 \\ 25 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} \cup_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ Similarly, $U_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ and } U_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \Rightarrow \bigcup \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}, \text{ i.e., } |\bigcup| = 1$ 153 (c) $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$ $\Rightarrow \lambda I = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$ $\Rightarrow A - \lambda \mathbf{I} = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 2 & 3 - \lambda & 4 \\ -1 & -1 & -2 - \lambda \end{bmatrix}$ $\Rightarrow \det(A - \lambda I) = -(\lambda - 1)(\lambda + 1)(\lambda - 3)$ Thus, the characteristic roots are -1, 1 and 3. 154 (c)

As second row of all the options is same, we are to look at the

Elements of the first row. Let the left inverse be
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
Then,
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\therefore a + b + 2c = 1$$

$$-a + b + 3c = 1$$
, i.e., $b = \frac{1-5c}{2}$, $a = \frac{1+c}{2}$
Thus, matrices in the options (a), (b) and (d) are

Thus, matrices in the options (a), (b) and (d) are the inverses and

Matrix in option (c) is not the left inverse 155 **(a)**

$$A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 2x^2 & 2x^2 \\ 2x^2 & 2x^2 \end{bmatrix}, A^3$$
$$= \begin{bmatrix} 2^2x^2 & 2^2x^2 \\ 2^2x^2 & 2^2x^2 \end{bmatrix}$$

And so on. Then

156

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots$$

$$= \begin{bmatrix} 1 + x + \frac{2x^{2}}{2!} & x + \frac{2x^{2}}{2!} \\ + \frac{2^{2}x^{3}}{3!} + \cdots + \frac{2^{2}x^{3}}{3!} + \cdots \\ x + \frac{2x^{2}}{2!} & 1 + x + \frac{2x^{2}}{2!} \\ + \frac{2^{2}x^{3}}{3!} + \cdots + \frac{2^{2}x^{3}}{3!} + \cdots \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 + 2x \\ + \frac{2^{2}x^{2}}{2!} \\ + \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} + \frac{1}{2} & \frac{1}{2} \begin{pmatrix} 1 + 2x + \\ 2^{2}x^{2} \\ 2! \\ + \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} - \frac{1}{2} \begin{bmatrix} 1 + 2x \\ \frac{2^{2}x^{2}}{2!} \\ + \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} - \frac{1}{2} \begin{bmatrix} \frac{1 + 2x}{2!} + \frac{1 + 2x}{2!} \\ \frac{1}{2!} \begin{pmatrix} 1 + 2x \\ \frac{2^{2}x^{2}}{2!} \\ + \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} - \frac{1}{2} \begin{bmatrix} \frac{1 + 2x}{2!} + \frac{1 + 2x}{2!} \\ \frac{1}{2!} \begin{pmatrix} \frac{1 + 2x}{2!} \\ \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} - \frac{1}{2} \begin{bmatrix} \frac{1 + 2x}{2!} \\ \frac{1 + 2x}{2!} \\ \frac{1 + 2x}{2!} \\ + \frac{2^{3}x^{3}}{3!} + \cdots \end{pmatrix} - \frac{1}{2} \begin{bmatrix} \frac{1 + 2x}{2!} \\ \frac{$$

$$\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$$
 is and idempotent matrix

$$\Rightarrow \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}^2 = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a^2 + bc & ab + b - ab \\ ac + c - ac & bc + (1-a)^2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$$

 $\Rightarrow \begin{bmatrix} a^2 + bc & b \\ c & bc + (1-a)^2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ $\Rightarrow a^2 + bc = a$ $a - a^2 = bc = 1/4$ (given) f(a) = 1/4157 (0) $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$ $\Rightarrow A^2 = A \cdot A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ $\Rightarrow A^{4} = A^{2} \cdot A^{2} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3^{2} & 0 \\ 0 & 3^{2} \end{bmatrix}$ $\Rightarrow A^8 = \begin{bmatrix} 3^4 & 0 \\ 0 & 3^4 \end{bmatrix}$ And $A^6 = A^4 \cdot A^2 = \begin{bmatrix} 3^2 & 0 \\ 0 & 3^2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3^2 & 0 \\ 0 & 3^2 \end{bmatrix}$ Let $V = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $A^8 + A^6 + A^4 + A^2 + I$ $\begin{bmatrix} 81 & 0\\ 0 & 81 \end{bmatrix} + \begin{bmatrix} 27 & 0\\ 0 & 27 \end{bmatrix} + \begin{bmatrix} 9 & 0\\ 0 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 0\\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 121 & 0\\ 0 & 121 \end{bmatrix}$ $(A^{8} + A^{6} + A^{4} + A^{2} + I)V = \begin{bmatrix} 0\\11 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 121 & 0 \\ 0 & 121 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 121x \\ 121y \end{bmatrix} = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ $\Rightarrow x = 0 \text{ and } y = 1/11$ $\Rightarrow V = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1/11 \end{bmatrix}$ 158 (4) We have $AB = \begin{bmatrix} 3ax^2 & 3bx^2 & 3cx^2 \\ a & b & c \\ 6ax & 6bx & 6cx \end{bmatrix}$ Now tr \cdot (*AB*) = tr \cdot (*C*) $\Rightarrow 3ax^2 + b + 6cx = (x + 2)^2 + 2x + 5x^2 \quad \forall x \in$ *R*(Identity) $\Rightarrow 3ax^2 + 6cx + b = 6x^2 + 6x + 4$ $\Rightarrow a = 2, \qquad c = 1, b = 4$ 159 (6) Given $A^2 = A$ \Rightarrow I=(I-0.4A)(I- αA) $= I - A\alpha - 0.4A + 0.4\alpha A^2$ $= I - A\alpha - 0.4A + 0.4\alpha A$ $= I - A(0.4 + \alpha) + 0.4\alpha A$ $\Rightarrow 0.4\alpha = 0.4 + \alpha$ $\Rightarrow \alpha = -2/3$ $\Rightarrow |9\alpha| = 6$ 160 (2) [1 2 2] $\begin{vmatrix} 1 & 3 & -4 \end{vmatrix} = 0$ 3 4 1(3k - 16) - 2(k - 12) + 2(4 - 9 = 0)

$$\Rightarrow 3k - 16 - 2k + 24 - 10 = 0$$

$$\Rightarrow k = 2$$
161 (4)
A diagonal matrix is commutative with every
square matrix if it is scalar matrix so every
diagonal element is 4

$$\therefore |A| = 64$$
162 (8)
In a skew symmetric matrix, diagonal elements
are zero. Also $a_{ij} + a)ij = 0$
Hence number of matric = $2 \times 2 \times 2 = 8$
163 (0)
For idempotent matrix, $A^2 = A$

$$\Rightarrow A^{-1}A^2 = A^{-1}A \quad (\because A \text{ is non-singular})$$

$$\Rightarrow A + I$$
Thus non-singular idempotent matrix is always a
unit matrix.

$$\therefore l^2 - 3 = 1 \Rightarrow l = \pm 2$$
 $m^2 - 8 = 1 \Rightarrow m = \pm 3$
 $n^2 - 15 = 1 \Rightarrow n = \pm 4$
And $p = q = r = 0$

$$\Rightarrow \text{ required sum is 0}$$
164 (2)
Let X be the solution set of the equation $A^x = I$,
where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the
corresponding unit matrix and $x \subseteq N$ then the
minimum value of $\sum (\cos^x \theta + \sin^x \theta), \theta \in R$
165 (1)
 $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$
Hence, det. $A = \sec^2 x$
 $\therefore \det A^T = \sec^2 x$
Now $f(x) = \det (A^T A^{-1})$
 $= (\det A^T)(\det A)^{-1}$
 $= \frac{\det (A^T)}{\det (A)} = 1$

Hence, f(x) = 1

166 **(4)** $|\mathrm{adj}A^{-1}| = |A^{-1}|^2 = \frac{1}{|A|^2}$ $\Rightarrow |(\mathrm{adj}A^{-1})^{-1}| = \frac{1}{|\mathrm{adj}A^{-1}|}$ $= |A|^2 = 2^2 = 4$ 167 (4) Given that $AA^T = 4I$ $\Rightarrow |A|^2 = 4$ $\Rightarrow |A| = \pm 2$ So $A^T = 4A^{-1} = 4\frac{\text{adj}A}{|A|}$ $\Rightarrow \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = \frac{4}{|A|} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}$ Now $a_{ij} = \frac{4}{|A|}c_{ij}$ $\Rightarrow -2c_{ij} = \frac{4}{|A|}c_{ij}(asa_{ij} + 2c_{ij} = 0)$ $\Rightarrow |A| = -2$ Now $|A + 4I| = |A + AA^{T}|$ $= |A||I + A^T|$ $= -2|(I + A)^{T}|$ = -2|I + A| $\Rightarrow |A+4I|+2|A+I|=0,$ So on comparing, we get $5\lambda = 2 \Rightarrow \lambda = \frac{2}{5}$ Hence , $10\lambda = 4$