3.MATRICES

Single Correct Answer Type

1. If A and B are two square matrices such that $B=-A^{-1} B A$, then
$(A+B)^{2}$ is equal to
a) $A^{2}+B^{2}$
b) O
c) $A^{2}+2 A B+B^{2}$
d) $A+B$
2. If the system of equations $x+a y=0, a z+y=0$ and $a x+z=0$ has infinite solutions, then the value of a is
a) -1
b) 1
c) 0
d) No real values
3. If $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, then $A^{T} A^{-1}$ is
a) $\left[\begin{array}{ll}-\cos 2 x & \sin 2 x \\ -\sin 2 x & \cos 2 x\end{array}\right]$
b) $\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$
c) $\left[\begin{array}{ll}\cos 2 x & \cos 2 x \\ \cos 2 x & \sin 2 x\end{array}\right]$
d) None of these
4. If $P=\left[\begin{array}{cc}\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$, then $P^{T} Q^{2005} P$ is
a) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lr}1 & 2005 \\ 2005 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 0 \\ 2005 & 1\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
5. Let $A=\left[\begin{array}{ll}0 & \alpha \\ 0 & 0\end{array}\right]$ and $(A+1)^{50}-50 A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then the value

Of $a+b+c+d$ is
a) 2
b) 1
c) 4
d) None of these
6. The inverse of a skew-symmetric matrix of odd order is
a) A symmetric matrix
b) A skew symmetric
c) Diagonal matrix
d) Does not exist
7. If $A=\left[a_{i j}\right]_{4 \times 4}$, such that $a_{i j}=\left\{\begin{array}{ll}2, & \text { when } i=j \\ 0, & \text { when } i \neq j\end{array}\right\}$, then $\left\{\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj} A))}{7}\right\}$ is (where $\{\cdot\}$ represents fractional part function)
a) $1 / 7$
b) $2 / 7$
c) $3 / 7$
d) None of these
8. A is an involuntary matrix given by $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$, then the inverse of $A / 2$ will be
a) 2 A
b) $\frac{A^{-1}}{2}$
c) $\frac{A}{2}$
d) A^{2}
9. If $A^{2}-A+1=0$, then the inverse of A is
a) A^{-2}
b) $A+I$
c) $I-A$
d) $A-I$
10.

If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / 2 \\ -4 & 3 & c \\ 5 / 2 & 1-3 / 2 & 1 / 2\end{array}\right]$, then the values
Of a and c are equal to
a) 1,1
b) $1,-1$
c) 1,2
d) $-1,1$
11. If $\left[\begin{array}{cc}1 / 25 & 0 \\ x & 1 / 25\end{array}\right]=\left[\begin{array}{cc}5 & 0 \\ -a & 5\end{array}\right]^{-2}$, then the value of x is
a) $a / 125$
b) $2 a / 125$
c) $2 a / 25$
d) None of these
12. Let A and B be two 2×2 matrices. Consider the statements

1. $A B=O \Rightarrow A=O$ or $B=O$
2. $A B=I_{2} \Rightarrow A=B^{-1}$
3. $(A+B)^{2}=A^{2}+2 A B+B^{2}$

Then
a) (i) and (ii) are false, (iii) is true
b) (i) And (iii) are false, (i) is true
c) (i) is false, (ii) and (iii) are true
d) (i) and (iii) are false, (ii) is true
13. If A is order 3 square matrix such that $|A|=2$, then $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|$ is
a) 512
b) 256
c) 64
d) None of these
14. For two unimodular complex numbers $-z_{2}$ and z_{2},
$\left[\begin{array}{cc}\overline{z_{1}} & -z_{2} \\ z_{2} & z_{1}\end{array}\right]^{-1}\left[\begin{array}{cc}z_{1} & z_{2} \\ -\overline{z_{2}} & \frac{z_{1}}{z_{1}}\end{array}\right]^{-1}$ is equal to
a) $\left[\begin{array}{ll}\frac{z_{1}}{z_{1}} & \frac{z_{2}}{z_{2}}\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right]$
d) None of these
15. If A is a square matrix of order n such that $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$ then the value of n can be
a) 4
b) 2
c) Either 4 or 2
d) None of these
16. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]($ where $b c \neq 0)$ satisfies the equations $x^{2}+k=0$, then
a) $a+d=0$
b) $k=-|A|$
c) $k=|A|$
d) None of these
17. Let $(x)=\frac{1+x}{1-x}$. If A is matrix for which $A^{3}=0$, then $f(A)$ is
a) $I+A+A^{2}$
b) $I+2 A+A^{2}$
c) $I-A-A^{2}$
d) None of these
18. The inverse of a diagonal matrix is
a) A diagonal matrix
b) a skew symmetric matrix
c) A symmetric matrix
d) None of these
19. If A and B are square matrices of order n, then $A-\lambda I$ and $B-\lambda I$ commute for every scalar λ, only if
a) $A B=B A$
b) $A B+B A=0$
c) $A=-B$
d) None of these
20. Consider three matrices $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$. Then the value of the sum $\operatorname{tr}(A)+\operatorname{tr}\left(\frac{A B C}{2}\right)+\operatorname{tr}\left(\frac{A(B C)^{2}}{4}\right)+\operatorname{tr}\left(\frac{A(B C)^{3}}{8}\right)+\cdots+\infty$ is
a) 6
b) 9
c) 12
d) None
21. If $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, then A^{8} equals
a) $4 B$
b) $128 B$
c) $-128 B$
d) $-64 B$
22. Let A be an $n^{t h}$-order square matrix and B be its adjoint, then $\left|A B+K I_{n}\right|$ is (where K is a scalar quantity)
a) $(|A|+K)^{n-2}$
b) $(|A|+K)^{n}$
c) $(|A|+K)^{n-1}$
d) None of these
23. If $A^{3}=O$, then $I+A+A^{2}$ eauals
a) $I-A$
b) $\left(I+A^{1}\right)^{-1}$
c) $(I-A)^{-1}$
d) None of these
24. If $A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$ and $a^{2}+b^{2}+c^{2}+d^{2}=1$, then A^{-1} is equal to
a) $\left[\begin{array}{cc}a+i b & -c-i d \\ -c+i d & a-i b\end{array}\right]$
b) $\left[\begin{array}{cc}a+i b & -c+i d \\ -c+i d & a-i b\end{array}\right]$
c) $\left[\begin{array}{cc}a-i b & -c-i d \\ -c-i d & a+i b\end{array}\right]$
d) None of these
25.

Given that matrix $A=\left[\begin{array}{lll}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$. If $x y z=60$ and $8 x+4 y+3 z=20$, then $A(\operatorname{adj} A)$ is equal to
а) $\left[\begin{array}{ccc}64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64\end{array}\right]$
b) $\left[\begin{array}{ccc}88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88\end{array}\right]$
c) $\left[\begin{array}{ccc}68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68\end{array}\right]$
d) $\left[\begin{array}{ccc}34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34\end{array}\right]$
26. If $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$, then sum of all the elements
of matrix A is
a) 0
b) 1
c) 2
d) -3
27. Let $(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, where $\alpha \in R$. Then $(F(\alpha))^{-1}$ is equal to
a) $F\left(\alpha^{-1}\right)$
b) $F(-\alpha)$
c) $F(2 \alpha)$
d) None of these
28. If $A(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]$ then $A(\alpha, \beta)^{-1}$ is equal to
a) $A(-\alpha,-\beta)$
b) $A(-\alpha, \beta)$
c) $A(\alpha,-\beta)$
d) $A(\alpha, \beta)$
29. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $A=$
a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
d) $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
30. If adj $B=A,|P|=|Q|=1$, then $\operatorname{adj}\left(Q^{-1} B P^{-1}\right)$ is
a) $P Q$
b) $Q A P$
c) $P A Q$
d) $P A^{-1} Q$
31. A is a 2×2 matrix such that $A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

The sum of the elements of A is
a) -1
b) 0
c) 2
d) 5
32. If A and B are two non-singular matrices of the same order

Such that $B^{r}=I$, for some positive integer $r>1$. Then $A^{-1} B^{r-1} A-A^{-1} B^{-1} A=$
a) I
b) $2 I$
c) 0
d) $-I$
33. $(-A)^{-1}$ is always equal to (where A is $n^{\text {th }}$-order square matrix)
a) $(-1)^{n} A^{-1}$
b) $-A^{-1}$
c) $(-1)^{n-1} A^{-1}$
d) None of these
34.

The equation $\left[\begin{array}{lll}1 & x & y\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=[0]$ has
(i)for $y=0(\mathrm{p})$ rational roots
(ii) for $y=-1$ (q) irrational roots
(r) integral roots

Then
(i)(ii)
a) (p)
(r)
b) (q) (p)
c) $(\mathrm{p}) \quad(\mathrm{q})$
d) (r) (p)
35. If P is non-singular matrix, then value of $\operatorname{adj}\left(P^{-1}\right)$ in terms of P is
a) $P /|P|$
b) $P|P|$
c) P
d) None of these
36. If A and B are two non-zero square matrices of the same order such that the product $A B=O$, then
a) Both A and B must be singular
b) Exactly one of them must be singular
c) Both of them are non-singular
d) None of these
37. If $A=\left[\begin{array}{cc}0 & -\tan \alpha / 2 \\ \tan \alpha / 2 & 0\end{array}\right]$ and I is a 2×2 unit matrix, then
$(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \sin \alpha\end{array}\right]$ is
a) $-I+A$
b) $I-A$
c) $-I-A$
d) None of these
38. If A is non-singular and $(A-2 I)(A-4 I)-0$, then $\frac{1}{6} A+\frac{4}{3} A^{-1}$

Is equal to
a) 0
b) I
c) $2 I$
d) $6 I$
39. Which of the following is an orthogonal matrix?
a) $\left[\begin{array}{ccc}6 / 7 & 2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ 3 / 7 & -6 / 7 & 2 / 7\end{array}\right]$
b) $\left[\begin{array}{ccc}6 / 7 & 2 / 7 & 3 / 7 \\ 2 / 7 & -3 / 7 & 6 / 7 \\ 3 / 7 & 6 / 7 & -2 / 7\end{array}\right]$
c) $\left[\begin{array}{ccc}-6 / 7 & -2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ -3 / 7 & 6 / 7 & 2 / 7\end{array}\right]$
d) $\left[\begin{array}{ccc}6 / 7 & -2 / 7 & 3 / 7 \\ 2 / 7 & 2 / 7 & -3 / 7 \\ -6 / 7 & 2 / 7 & 3 / 7\end{array}\right]$
40. If matrix A is given by $A=\left[\begin{array}{cc}6 & 11 \\ 2 & 4\end{array}\right]$, then the determinant of $A^{2005}-6 A^{2004}$ is
a) 2^{2006}
b) $(-11)^{2005}$
c) $-2^{2005} \cdot 7$
d) $(-9)^{2004}$
41. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is
a) $3 I$
b) O
c) I
d) $2 I$
42. Let A, B be two matrices such that they commute, then for any positive integer n,

1. $\quad A B^{n}=B^{n} A$ (ii) $(A B)^{n}=A^{n} B^{n}$
a) Only (i) is correct
b) Both (i) and (ii) are correct
c) Only (ii) is correct
d) None of (i) and (ii) is correct
2. Given $2 x-y+2 z=2, x-2 y+2 z=-4, x+y+\lambda z=4$ then the value of λ such that the given system of equations has no solution, is
a) 3
b) 1
c) 0
d) -3
3. The number of solutions of the matrix equation $X^{2}=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ is
a) More than 2
b) 2
c) 0
d) 1
4. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is
a) A skew-symmetric matrix
b) A symmetric matrix
c) A diagonal matrix
d) None of these
5. If $A, B, A+I, A+B$ are idempotent matrices, then $A B$ is equal

To
a) $B A$
b) $-B A$
c) I
d) O
47. If $A=\left[\begin{array}{ll}a & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then value of α for which $A^{2}=B$ is
a) 1
b) -1
c) 4
d) No real values
48. Let a and b be two real numbers such that $a>1, b>1$.

If $A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then $\lim _{n \rightarrow \infty} A^{-1}$ is
a) Unit matrix
b) Null matrix
c) $2 I$
d) None of these
49. If A and B are symmetric matrices of the same order and
$X=A B+B A$ and $Y=A B-B A$, then $(X Y)^{T}$ is equal to
a) $X Y$
b) $Y X$
c) $-Y X$
d) None of these
50.

If $A=\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right], B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ and if A is invertible,
Then which of the following is not true?
a) $|A|=|B|$
b) $|A|=-|B|$
c) $|\operatorname{adj} A|=-|\operatorname{adj} B|$
d) A is invertble if and only if B is invertible
51. In which of the following type of matrix inverse does not exist always
a) Idempotent
b) Orthogonal
c) Involuntary
d) None of these
52.

The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions, is
a) 0
b) $2^{9}-1$
c) 168
d) 2
53. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1\end{array}\right] \operatorname{and} B=\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$. Which of the following is true?
a) $A X=B$ has a unique solution
b) $A X=B$ has exactly three solutions
c) $A X=B$ has infinity many solutions
d) $A X=B$ is inconsistent
54. The matrix X for which $\left[\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right] X=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$ is
a) $\left[\begin{array}{cc}-2 & -4 \\ -3 & 1\end{array}\right]$
b) $\left[\begin{array}{rr}-\frac{1}{5} & \frac{2}{5} \\ -\frac{3}{10} & \frac{1}{5}\end{array}\right]$
c) $\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right] \quad$ d) $\left[\begin{array}{cc}6 & 2 \\ \frac{11}{2} & 2\end{array}\right]$
55. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$. $\operatorname{Then} \operatorname{tr}(A)-\operatorname{tr}(B)$ has the value equal to
a) 0
b) 1
c) 2
d) None
56. Elements of matrix A of order 10×10 are defined as $a_{w}=w^{i+j}$ (where w is cube coot of unity), then trace (A) of the matrix is
a) 0
b) 1
c) 3
d) None of these
57. The number of diagonal matrix A of ordern for which $A^{3}=A$ is
a) 1
b) 0
c) 2^{n}
d) 3^{n}
58. The product of matrices $A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos ^{2} \phi & \cos \emptyset \sin \phi \\ \cos \emptyset \sin \emptyset & \sin ^{2} \emptyset\end{array}\right]$ is a null matrix if $\theta-\phi=$
a) $2 n \pi, n \in Z$
b) $n \frac{\pi}{2}, n \in Z$
c) $(2 n+1) \frac{\pi}{2}, n \in Z$
d) $n \pi, n \in Z$
59. If A is an orthogonal matrix, then A^{-1} equals
a) A^{T}
b) A
c) A^{2}
d) None of these
60. If $A=\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]$ is $n^{\text {th }}$ root of I_{2}, then choose the correct statement:

1. If n is odd, $a=1, b=0$
2. If n is odd, $a=-1, b=0$
3. If n is even, $a=1, b=0$
4. If n is even, $a=-1, b=0$
a) i, ii, iii
b) ii, iii, iv
c) i, ii, iii, iv
d) i, iii, iv
5. If $n^{\text {th }}$-order square matrix A is a orthogonal, then,
$|\operatorname{adj}(\operatorname{adj} A)|$ is
a) Always - 1 if n is even
b) Always 1 if n is odd
c) Always 1
d) None of these
6. For each real $x,-1<x<1$. Let $A(x)$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$. Then
a) $A(z)=A(x) A(y)$
b) $A(z)=A(x)-A(y)$
c) $A(z)=A(x)+A(y)$
d) $A(z)=A(x)[A(y)]^{-1}$
7. If A and B are square matrices of the same order and A is non-singular, then for a positive integer
$n,\left(A^{-1} B A\right)^{n}$ is equal to
a) $A^{-n} B^{n} A^{n}$
b) $A^{n} B^{n} A-^{n}$
c) $A^{-1} B^{n} A$
d) $n\left(A^{-1} B A\right)$
8. If $k \in R_{0}$, then $\operatorname{det}\left\{\operatorname{adj}\left(k I_{n}\right)\right\}$ is equal to
a) k^{n-1}
b) $k^{n(n-1)}$
c) k^{n}
d) k
9.

If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(y)=\left[\begin{array}{ccc}\cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y\end{array}\right]$
Then $[F(x) G(-y)]^{-1}$ is equal to
a) $F(-x) G(-y)$
b) $G(-y) F(-x)$
c) $F\left(x^{-1}\right) G\left(y^{-1}\right)$
d) $G\left(y^{-1}\right) F\left(x^{-1}\right)$
66. If $A^{2}=I$, then the value of $\operatorname{det}(A-I)$ is (where A has order 3)
a) 1
b) -1
c) 0
d) Cannot say anything
67. If A is a non-singular matrix such that $A A^{T}=A^{T} A$ and
$B=A^{-1} A^{T}$, then matrix B is
a) Involuntary
b) Orthogonal
c) Idempotent
d) None of these
68.

The matrix $A=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$ is
a) Idempotent matrix
b) Involutory matrix
c) Nilpotent matrix
d) None of these
69. If A and B are two matrices such that $A B=B$ and $B A=A$, then
a) $\left(A^{5}-B^{5}\right)^{3}=A-B$
b) $\left(A^{5}-B^{5}\right)^{3}=A^{3}-B^{3}$
c) $A-B$ is idempotent
d) $A-B$ is nilpotent
70. If A is singular matrix, then adj A is
a) Singular
b) Non-singular
c) Symmetric
d) Not defined
71. If A is a non-diagonal involutory matrix, then
a) $A-I=O$
b) $A+I=O$
c) $A-I$ is non-zero singular
d) None of these
72. If $A_{1}, A_{3}, \ldots, A_{2 n-1}$ are n skew symmetric matrices of same order, then $B=\sum_{r=1}^{n}(2 r-1)\left(A_{2 r-1}\right)^{2 r-1}$ will be
a) Symmetric
b) Skew-symmetric
c) Neither symmetric nor skew-symmetric
d) Data not adequate
73. If A and B are two non-singular matrices such that $A B=C$, then $|B|$ is equal to
a) $\frac{|C|}{|A|}$
b) $\frac{|A|}{|C|}$
c) $|C|$
d) None of these
74. If P is an orthogonal matrix and $Q=P A P^{T}$ and $x=P^{T} Q^{1000} P$,

Then x^{-1} is, where A is involutary matrix
a) A
b) I
c) A^{1000}
d) None of these
75. If $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & 1\end{array}\right]$, then $A\left(\bar{A}^{T}\right)$ equals
a) O
b) I
c) $-I$
d) $2 I$
76. If A is symmetric as well as skew-symmetric matrix, then A is
a) Diagonal matrix
b) Null matrix
c) Triangular matrix
d) None of these
77. If A and B are square matrices of the same order and A is non-singular, then for a positive integer n, $\left(A^{-1} B A\right)^{n}$ is equal to
a) $A^{-n} B^{n} A^{n}$
b) $A^{n} B^{n} A^{-n}$
c) $A^{-1} B^{n} A$
d) $n\left(A^{-1} B A\right)$
78. If $A\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=\frac{1+x}{1-x}$, then $f(A)$ is
a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
d) None of these
79. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be the square root of two-rowed unit matrix, then α, β and γ should satisfy the relation
a) $1-\alpha^{2}+\beta \gamma=0$
b) $\alpha^{2}+\beta \gamma-1=0$
c) $1+\alpha^{2}+\beta \gamma=0$
d) $1-\alpha^{2}-\beta \gamma=0$
80. If A and B are squares matrices such that $A^{2006}=O$ and $A B=A+B$, then $\operatorname{det}(B)$ equals
a) 0
b) 1
c) -1
d) None of these
81.

If $A(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]$, then $A(\alpha, \beta)^{-1}$ in terms of
Function of A is
a) $A(\alpha,-\beta)$
b) $A(-\alpha,-\beta)$
c) $A(-\alpha, \beta)$
d) None of these
82. Matrix A such that $A^{2}=2 A-I$, where I is the identity matrix,

Then for $n \geq 2, A^{n}$ is equal to
a) $2^{n-1} A-(n-1) I$
b) $2^{n-1} A-I$
c) $n A-(n-1) I$
d) $n A-I$
83. Identify the incorrect statement in respect of two square matrices A and B conformable for sum and product:
a) $t_{r}(A+B)=t_{r}(A)+t_{r}(B)$
b) $t_{r}(\alpha A)=\alpha t_{r}(A), \alpha \in R$
c) $t_{r}\left(A^{T}\right)=t_{r}(A)$
d) None of these
84. If A is a 3×3 skew-symmetric matrix, then trace of A is equal to
a) -1
b) 1
c) $|A|$
d) None of these
85. If Z is an idempotent matrix, then $(I+Z)^{n}$
a) $I+2^{n} Z$
b) $I+\left(2^{n}-1\right) Z$
c) $I-\left(2^{n}-1\right) Z$
d) None of these
86. If A is a nilpotent matrix of index 2 , then for any positive integer $n, A(I+A)^{n}$ is equal to
a) A^{-1}
b) A
c) A^{n}
d) I_{n}
87. If both $A-\frac{1}{2} I$ and $A+\frac{1}{2}$ are orthogonal matrices, then
a) A is orthogonal
b) A is skew-symmetric matrix of even order
c) $A^{2}=\frac{3}{4} I$
d) None of these

Multiple Correct Answers Type

88. If $A(\theta)=\left[\begin{array}{cc}\sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta\end{array}\right]$, then which of the following is not true?
a) $A(\theta)^{-1}=A(\pi-\theta)$
b) $A(\theta)+=A(\pi+\theta)$ is a null matrix
c) $A(\theta)$ is invertible for all $\theta \in R$
d) $A(\theta)^{-1}=A(-\theta)$
89. If $S=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ and $A=\left[\begin{array}{lll}b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b\end{array}\right](a, b, c \neq 0)$, then $S A S^{-1}$ is
a) Symmetric matrix
b) Diagonal matrix
c) Invertible matrix
d) Singular matrix
90.

If $A_{1}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right], A_{2}=\left[\begin{array}{cccc}0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0\end{array}\right]$,
Then $A_{i} A_{k}+A_{k} A_{i}$ is equal to
a) $2 I$ if $i=k$
b) O if $i \neq k$
c) 2I if $i \neq k$
d) O always
91.

Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then
a) $A^{2}-4 A-5 I_{3}=0$
b) $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
c) A^{3} is not invertible
d) A^{2} is invertible
92. If C is skew-symmetric matrix of order n and X is $n \times 1$ column matrix, then $X^{T} C X$ is
a) Singular
b) Non-singular
c) Invertible
d) Non-invertible
93.

If $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1 / 3\end{array}\right]$, then
a) $|A|=-1$
b) $\operatorname{adj} A=\left[\begin{array}{ccc}-1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1 / 3\end{array}\right]$
c) $A=\left[\begin{array}{ccc}1 & 1 / 3 & 7 \\ 0 & 1 / 3 & 1 \\ 0 & 0 & -3\end{array}\right]$
d) $A=\left[\begin{array}{ccc}1 & 1 / 3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$
94. If A, B and C are three square matrices of the same order, then $A B=A C \Rightarrow B=C$. Then
a) $|A| \neq 0$
b) A is invertible
c) A may be orthogonal
d) A is symmetric
95. If A is a matrix such that $A^{2}+2 A+2 I=0$, then which of the following is/are true?
a) A is non-singular
b) A is symmetric
c) A cannot be skew-symmetric
d) $A^{-1}=-\frac{1}{2}(A+I)$
96. If $\left(\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right)\left(\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right)^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then
a) $a=\cos 2 \theta$
b) $a=1$
c) $b=\sin 2 \theta$
d) $b=-1$
97.

If $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is an orthogonal matrix, then
a) $a=-2$
b) $a=2, b=1$
c) $b=-1$
d) $b=1$
98. If $A B=A$ and $B A=B$, then
a) $A^{2} B=A^{2}$
b) $B^{2} A=B^{2}$
c) $A B A=A$
d) $B A B=B$
99. If B is an idempotent matrix, and $A=1-B$, then
a) $A^{2}=A$
b) $A^{2}=I$
c) $A B=0$
d) $B A=O$
100. Let A and B are two non-singular square matrices, A^{T} and B^{T} are the transpose matrices of A and B, respectively, then which of the following are correct?
a) $B^{T} A B$ is symmetric matrix if A is symmetric
b) $B^{T} A B$ is symmetric matrix if B is symmetric
c) $B^{T} A B$ is skew-symmetric matrix for every matrix A
d) $B^{T} A B$ is skew-symmetric matrix if A is skew-symmetric
101.

The rank of the matrix $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right]$ is
a) 1 if $a=6$
b) 2 is $a=1$
c) 3 if $a=2$
d) 1 if $a=-6$
102. Suppose a_{1}, a_{2}, \cdots are real number, with $a_{1} \neq 0$. If $a_{1}, a_{2}, a_{3}, \cdots$ are in AP., then
a) $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{5} & a_{6} & a_{7}\end{array}\right]$ is singular (where $i=\sqrt{-1}$)
b) The system of equations $a_{1} x+a_{2} y+a_{3} z=0, a_{4} x+a_{5} y+a_{6} z=0$, had infinite number of solutions
c) $B=\left[\begin{array}{cc}a_{1} & i a_{2} \\ i a_{2} & a_{1}\end{array}\right]$ is non-singular
d) None of these
103. If $A B=A$ and $B A=B$, then which of the following is/are true?
a) A is idempotent
b) B is idempotent
c) A^{T} is idempotent
d) None of these
104. Which of the following statements is/are true about square matrix A of order n ?
a) $(-A)^{-1}$ is equal to $-A^{-1}$ when n is odd only.
b) If $A^{n}=O$, then $I+A+A^{2}+\cdots+A^{n-1}=(I-A)^{-1}$.
c) If A is skew-symmetric matrix of odd order, then its inverse does not exist.
d) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ holds always.
105.

If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then
a) $\operatorname{adj}(\operatorname{adj} A)=A$
b) $|\operatorname{adj}(\operatorname{adj} A)=1|$
c) $|\operatorname{adj} A|=1$
d) None of these
106. If $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}+2 A B$, then
a) $a=-1$
b) $a=1$
c) $b=2$
d) $b=-2$
107.

Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$. Then
a) $A^{2}-4 A-5 I_{3}=0$
b) $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
c) A^{3} is not invertible
d) A^{2} is invertible
108. If A is unimodular, then which of the following is unimodular?
a) $-A$
b) A^{-1}
c) $\operatorname{adj} A$
d) ωA, where ω is cube root of unity
109. Let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Then which of following is not true?
a) $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} A^{-n}=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$
b) $\lim _{n \rightarrow \infty} \frac{1}{n} A^{-n}=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$
c) $A^{-n}=\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right] \forall n \neq N$
d) None of these
110. If $A_{\alpha}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then
a) $A_{\alpha} \cdot A_{(-\alpha)}=I$
b) $A_{\alpha} \cdot A_{(-\alpha)}=0$
c) $A_{\alpha} \cdot A_{\beta}=A_{\alpha+\beta}$
d) $A_{\alpha} \cdot A_{\beta}=A_{\alpha-\beta}$
111. Which of the following is correct?
a) $B^{\prime} A B$ is symmetric if A is symmetric
b) $B^{\prime} A B$ is skew-symmetric if A is symmetric
c) $B^{\prime} A B$ is symmetric if A is skew-symmetric
d) $B^{\prime} A B$ is skew-symmetric if A is skew-symmetric
112. If D_{1} and D_{2} are two 3×3 diagonal matrices, then which of the following is/are true?
a) $D_{1} D_{2}$ is diagonal matrix
b) $D_{1} D_{2}=D_{2} D_{1}$
c) $D_{1}^{2}+D_{2}^{2}$ is a diagonal matrix
d) None of these
113. If A and B are two invertible matrices of the same order, then $\operatorname{adj}(A B)$ is equal to
a) $\operatorname{adj}(B) \operatorname{adj}(A)$
b) $|B||A| B^{-1} A^{-1}$
c) $|B||A| A^{-1} B^{-1}$
d) $|A||B|(A B)^{-1}$
114. A skew-symmetric matrix A satisfies the relation $A^{2}+I=0$, where I is a unit matrix then A is
a) Idempotent
b) Orthogonal
c) Of even order
d) Odd order
115. If A and B are symmetric and commute, then which of the following is/are symmetric?
a) $A^{-1} B$
b) $A B^{-1}$
c) $A^{-1} B^{-1}$
d) None of these
116. If $A=\left(a_{i j}\right)_{n \times n}$ and f is a function, we define $f(A)=\left(f\left(a_{i j}\right)\right)_{n \times n}$

Let $A=\left(\begin{array}{cc}\pi / 2-\theta & \theta \\ -\theta & \pi / 2-\theta\end{array}\right)$. Then
a) $\sin A$ is invertible
b) $\sin A=\cos A$
c) $\sin A$ is orthogonal
d) $\sin (2 A)=\sin A \cos A$
117. If α, β, γ are three real numbers and $A=\left[\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos (\alpha-\gamma) \\ \cos (\beta-\alpha) & 1 & \cos (\beta-\gamma) \\ \cos (\gamma-\alpha) & \cos (\gamma-\beta) & 1\end{array}\right]$, then which of following is/are true?
a) A is singular
b) A is symmetric
c) A is orthogonal
d) A is not invertible
118. If $\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal, then
a) $a= \pm \frac{1}{\sqrt{2}}$
b) $b= \pm \frac{1}{\sqrt{12}}$
c) $c= \pm \frac{1}{\sqrt{3}}$
d) None of these

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 119 to 118. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

119
Statement 1:

$$
A=\left[\begin{array}{lll}
4 & 0 & 4 \\
2 & 3 & 3 \\
1 & 2 & 2
\end{array}\right], B^{-1}=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right] \text {. Then }(A B)^{-1} \text { does not exist }
$$

Statement 2: Since $|A|=0,(A B)^{-1}=B^{-1} A^{-1}$ is meaningless
120 Let A be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is $\quad 2 \times 2$ identity matrix.
Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and $|A|=$ determinant of matrix A.
Statement 1: $\operatorname{Tr}(A)=0$
Statement 2: $|A|=1$.
121
Statement 1: If A is a skew-symmetric matrix of order 3×3, then $\operatorname{det}(A)=0$ or $|A|=0$
Statement 2: If A is square matrix, then $\operatorname{det}(A)=\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(-A^{\prime}\right)$

Statement 1: If the matrices $A, B,(A+B)$ are non-singular, then $\left[A(A+B)^{-1} B\right]^{-1}=B^{-1}+A^{-1}$
Statement 2: $\quad\left[A(A+B)^{-1} B\right]^{-1}=\left[A\left(A^{-1}+B^{-1}\right) B\right]^{-1}$
$=\left[\left(I+A B^{-1}\right) B\right]^{-1}$
$=\left[\left(B+A B^{-1} B\right)\right]^{-1}$
$=[(B+A I)]^{-1}$
$=[(B+A)]^{-1}$
$=B^{-1}+A^{-1}$

Statement 1: Let A, B be two square matrices of the same order such that $A B=B A, A^{m}=0$ and $B^{n}=O$ for same positive integers m, n, then there exists a positive integer r such that $(A+B)^{r}=0$
Statement 2: If $A B=B A$ then $(A+B)^{r}$ can be expanded as binomial expansion

Statement 1: If A is orthogonal matrix of order 2 , then $|A|= \pm 1$
Statement 2: Every two-rowed real orthogonal matrix is of any one of the forms $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ or $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$
125 Let A be 2×2 matrix.
Statement 1: $\quad \operatorname{Adj}(\operatorname{adj} A)=A$
Statement 2: $|\operatorname{adj} A|=A$
126 Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by $\operatorname{Tr}(A)$, the sum of diagonal entries of A. Assume that $A^{2}=I$
Statement 1: If $A \neq I$ and $A \neq-I$, then $\operatorname{det}(A)=-1$.
Statement 2: If $A \neq I$ and $A \neq-I$, then $\operatorname{Tr} \mathrm{A} \neq 0$.

Statement 1: If a, b, c, d are real numbers and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $A^{3}=0$, then $A^{2}=0$
Statement 2: For matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we have $A^{2}-(a+d) A+(a d-b c) \mathrm{I}=0$

Statement 1: If $D=\operatorname{diag}\left[d_{1}, d_{2} \ldots . . d_{n}\right]$, then
$D^{-1}=\operatorname{diag}\left[d_{1}^{-1}, d_{2}^{-1} \ldots, d_{n}^{-1}\right]$
Statement 2: If $D=\operatorname{diag}\left[d_{1}, d_{2} \ldots d_{n}\right]$, then

$$
D^{n}=\operatorname{diag}\left[d_{1}^{n}, d_{2}^{n} \ldots, d_{n}^{n}\right]
$$

Statement 1:
If $F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then
$[F(\alpha)]^{-1}=F(-\alpha)$
Statement 2:
For matrix $G(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]$,
We have $[G(\beta)]^{-1}=G(-\beta)$.

Statement 1: The determinant of a matrix $A=\left[a_{i j}\right]_{5 \times 5}$ where $a_{i j}+a_{i j}=0$ for all i and j is zero
Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

Statement 1: Matrix $3 \times 3, a_{i j}=\frac{i-j}{i+2 j}$ cannot be expressed as a sum symmetric and skew-symmetric matrix
Statement 2: Matrix $3 \times 3, a_{i j}=\frac{i-j}{i+2 j}$ is neither symmetric nor skew-symmetric

Statement 1: $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7\end{array}\right]$ is a diagonal matrix
Statement 2: $A=\left[a_{i j}\right]$ is square matrix such that $a_{i j}=0, \forall i \neq j$, then A is called diagonal matrix 133

Statement 1: For a singular square matrix $A, A B=A C \Rightarrow B=C$
Statement 2: If $|A|=0$, then A^{-1} does not exist

Statement 1: The inverse of $A=\left[\begin{array}{ll}3 & 4 \\ 3 & 5\end{array}\right]$ does not exist
Statement 2: The matrix A is non-singular
135
Statement 1: If A, B, C are matrices such that $\left|A_{3 \times 3}\right|=3,\left|B_{3 \times 3}\right|=-1$ and $\left|C_{2 \times 2}\right|=+2$, then $|2 A B C|=-12$
Statement 2: For matrices A, B, C of the same order, $|A B C|=|A||B||C|$
136
Statement 1: The inverse of the matrix $A=\left[a_{i j}\right]_{n \times n}$ where $a_{i j}=0, i \geq j$ is $B=\left[a_{i j}^{-1}\right]_{n \times n}$
Statement 2: The inverse of singular matrix does not exist.
137
Statement 1: If a matrix of order 2×2, commutes with every matrix of order 2×2, then it is scalar matrix
Statement 2: A scalar matrix of order 2×2 commutes with every 2×2 matrix

Statement 1: \quad The matrix $A=\frac{1}{3}\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is an orthogonal matrix
Statement 2: If A and B are orthogonal, then $A B$ is also orthogonal

Statement 1: If $A=\left[a_{i j}\right]_{n \times n}$ is such that $a_{i j}=\bar{a}_{j i}, \forall i, j$ and $A^{2}=0$, then matrix A null matrix.
Statement 2: $|A|=0$
140
Statement 1: $\quad|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=|A|^{(n-1) 3}$
Statement 2: $\quad|\operatorname{adj} A|=|A|^{n}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II. 141.

Column-I

Column- II
(A) $(I-A)^{n}$ is if A is idempotent
(p) $\quad 2^{n-1}(I-A)$
(B) $(I-A)^{n}$ is if A is involuntary
(q) $I-n A$
(C) $(I-A)^{n}$ is if A is nilpotent of index 2
(r) A
(D) If a is orthogonal, then $\left(A^{T}\right)^{-1}$
(s) $I-A$

CODES :

	A	B	C	D
a)	s	p	q	r
b)	p	q	r	s
c)	q	r	s	p
d)	r	s	p	q

142. Match List I with List II and select the correct answer using the codes given below the lists

Column-I

Column- II
(A) $(\operatorname{adj} A)^{-1}$
(1) $k^{n-1}(\operatorname{adj} A)$
(B) $\left(\operatorname{adj} A^{-1}\right)$
(2) $\frac{A}{|A|}$
(C) $\operatorname{adj}(k A)$
(3) $|A|^{n-2} A$
(D) $\operatorname{adj}(\operatorname{adj} A)$
(4) $\frac{\operatorname{adj}(\operatorname{adj} A)}{|A|^{2}}$

CODES :

A
B
C
D
a) $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
b) $\begin{array}{lllll}3 & 4 & 2 & 1\end{array}$
$\begin{array}{lllll}\text { c) } & 4 & 3 & 2 & 1\end{array}$
$\begin{array}{lllll}\text { d) } & 2 & 4 & 1 & 3\end{array}$
143. Match List I with List II and select the correct answer using the codes given below the lists

Column-I

Column- II
(A) A is a square matrix such that $A^{2}=A$
(1) Nilpotent matrix
(B) A is a square matrix such that $A^{m}=O$
(2) Involutory matrix
(C) A is square matrix such that $A^{2}=I$
(3) Symmetric matrix
(D) A is square matrix such that $A^{T}=A$
(4) Idempotent matrix

CODES :

	A	B	C	D
a)	1	3	2	4
b)	3	4	2	1
c)	4	3	2	3
d)	4	1	2	3

144.

Column-I

Column- II
(A) If $|A|=2$, then $\left|2 A^{-1}\right|=$ (where A is of
(p) 1 Order 3)
(B) If $|A|=1 / 8$, then $|\operatorname{adj}(\operatorname{adj}(2 A))|=$ (where A is
(q) 4 of
Order 3)
(C) If $(A+B)^{2}=A^{2}+B^{2}$, and $|A|=2$, then
(r) 24
$|B|=$ (where A and B are of odd order)
(D) $\left|A_{2 \times 2}\right|=2,\left|B_{3 \times 3}\right|=3$ and $\left|C_{4 \times 4}\right|=4$, then
(s) 0 $|A B C|$ is equal to

CODES :

	A	B	C	D
a)	P	q	r	s
b)	r	s	q	p

c) \quad q
p
s
r
d) $\quad \mathbf{s} \quad r \quad r \quad p \quad q$
145.
(A) If A is an idempotent matrix and I is an Identity matrix of the same order, then The value of n, such that
$(A+I)^{n}=I+127$ is
(B) If $(I-A)^{-1}=I+A+A^{2}+\cdots+A^{7}$, the
$A^{n}=0$ where n is
(C) If A is matrix such that
$a_{i j}=(i+j)(i-j)$, then A is singular if Order of matrix is
(D) If a non-singular matrix A is symmetric, Show that A^{-1} is also symmetric, then Order of A can be
CODES :

	A	B	C	D
a)	S	r	r, s	$\mathrm{r}, \mathrm{s}, \mathrm{q}, \mathrm{p}$
b)	r	s	p, r	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
c)	p	q	q, s	$\mathrm{s}, \mathrm{p}, \mathrm{q}, \mathrm{r}$
d)	q	p	s, r	$\mathrm{q}, \mathrm{p}, \mathrm{r}, \mathrm{s}$

(q) 10
(p) 9
(r) 7
(r) 7
(s) 8

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 146 to -146
A and B are two matrices of same order 3×3, where
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9\end{array}\right]$
146. The value of $\operatorname{adj}(\operatorname{adj} A)$ is equal to
a) $-A$
b) $4 A$
c) $8 A$
d) 16 A

Paragraph for Question Nos. 147 to - 147

Two $n \times n$ square matrices A and B are said to be similar, if there exists a non-singular matrix P such that $P A P^{-1}=B$
147. If A and B are two singular matrices, then
a) $\operatorname{det}(A)=\operatorname{det}(B)$
b) $\operatorname{det}(A)+\operatorname{det}(B)=0$
c) $\operatorname{det}(A B) \neq 0$
d) None of these

Paragraph for Question Nos. 148 to - 148

Let A and B are two matrices of same order 3×3, where $A=\left[\begin{array}{ccc}1 & 2 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right] \quad B=\left[\begin{array}{lll}3 & 2 & 4 \\ 3 & 2 & 5 \\ 2 & 1 & 4\end{array}\right]$
148. If A is singular matrix, then $\operatorname{tr}(A+B)$ is equal to
a) 6
b) 12
c) 24
d) 17

Paragraph for Question Nos. 149 to - 149

Let A is matrix of order 2×2 such that $A^{2}=0$
149. $A^{2}-(a+d) A+(a d-b c) I$ is equal to
a) I
b) O
c) $-I$
d) None of these

Paragraph for Question Nos. 150 to - 150

If A and B are two square matrices of order 3×3 which satisfy $A B=A$ and $B A=B$, then
150. Which of the following is true?
a) If matrix A is singular then matrix B is non-singular
b) If matrix A is non-singular then matrix B is singular
c) If matrix A is singular then matrix B is also singular
d) Cannot say anything

Paragraph for Question Nos. 151 to - 151

Consider an arbitrary 3×3 matrix $A=\left[a_{i j}\right]$ a matrix $B=\left[b_{i j}\right]$ is formed
Such that $b_{i j}$ is the sum of all the elements except $a_{i j}$ in the $i^{\text {th }}$ row of A
Answer the following question.
151. If there exists a matrix X with constant elements such that $A X=B$, then X is
a) Skew-symmetric
b) Null matrix
c) Diagonal matrix
d) None of these

Paragraph for Question Nos. 152 to - 152

Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its principal diagonal.
Further consider a matrix $U_{3 \times 3}$ with its column as U_{1}, U_{2}, U_{3} such that
$A^{50} U_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} U_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
Then answer the following questions
152. The value of $\left|A^{50}\right|$ equals
a) 0
b) 1
c) -1
d) 25

Paragraph for Question Nos. 153 to - 153

Let A be a square matrix of order 2 or 3 and I be the identity matrix of the same order. Then the matrix $A-\lambda I$ is called characteristic matrix of the matrix A, where λ is some complex number. The determinant of the characteristic matrix is called characteristic determinant of the matrix A which will of course be a polynomial of degree 3 in λ. The equation $\operatorname{det}(A-\lambda I)=0$ is called characteristic equation of the matrix A and its roots (the values of λ) are called characteristic roots or eigenvalues. It is also known that every square matrix has its characteristic equation
153. The eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ are
a) $2,1,1$
b) $2,3,-2$
c) $-1,1,3$
d) None of these

Paragraph for Question Nos. 154 to - 154

Let A be a $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A I_{n}$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of A For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{ccc}x & y & z \\ u & v & w\end{array}\right]$
And solve $A R=I_{3}$, i.e.,
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}x & y & z \\ u & v & w\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow x-u=1 \quad y-v=0 \quad z-w=0$
$x+u=0 \quad y+v=1 \quad z+w=0$
$2 x+3 u=0 \quad 2 y+3 v=0 \quad 2 z+3 w=1$
As this system of equations is inconsistent, we say there is no right inverse for matrix A
154. Which of the following matrices is NOT left inverse of

Matrix $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$?
a) $\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
c) $\left[\begin{array}{rrr}-\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
d) $\left[\begin{array}{ccc}0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$

Paragraph for Question Nos. 155 to - 155

If e^{A} is defined as $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots=\frac{1}{2}\left[\begin{array}{ll}f(x) & g(x) \\ g(x) & f(x)\end{array}\right]$
Where $A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$ and $0<x<1$, then I is an identity matrix
155. $\int \frac{g(x)}{f(x)} d x$ is equal to
a) $\log \left(e^{x}-e^{-x}\right)+c$
b) $\log \left(e^{x}-e^{-x}\right)+c$
c) $\log \left(e^{2 x}-1\right)+c$
d) None of these

Integer Answer Type

156. If $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ is an idempotent matrix and $f(x)=x-x^{2}$ and $b c$
$=1 / 4$ then the value of $1 / f(a)$ is
157. $A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$ and $\left.A^{8}+A^{6}+A^{4}+A^{2}+I\right) V=\left[\begin{array}{c}0 \\ 11\end{array}\right]$ (where I is the 2×2 identity matrix), then the product of all elements of matrix V is.
158. Let $A=\left[\begin{array}{c}3 x^{2} \\ 1 \\ 6 x\end{array}\right], B=\left[\begin{array}{lll}a & b & c\end{array}\right]$ and $C+\left[\begin{array}{ccc}(x+2)^{2} & 5 x^{2} & 2 x \\ 5 x^{2} & 2 x & (x+2)^{2} \\ 2 x & (x+2)^{2} & 5 x^{2}\end{array}\right]$ be three given matrices, where a, b, c and $x \in R$, Given that $\operatorname{tr}(A B)=\operatorname{tr}(C) x \in R$, where $\operatorname{tr} \cdot(A)$ denotes trace of A. if $f(x)=a x^{2}+b x+c$ then the value of $f(1)$ is
159. If A is an idempotent matrix satisfying, $(I-0.4 A)^{-1}=I-\alpha A$ where I is the unit matrix of the same order as that of A then the value of $|9 \alpha|$ is equal to
160.

The equation $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has a solution for (x, y, z) besides $(0,0,0)$. Then the value of k is
161. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and $\operatorname{tr}(A)=12$, then the value of $|A|^{1 / 2}$ is
162. Let A be the set of all 3×3 skew symmetric matrices whose entries are either $-1,0$ or 1 . If there are exactly three 0 's, three 1 's and three (-1)'s, then the number of such matrices, is
163. Let S be the set which contains all possible values of l, m, n, p, q, r for which
$A=\left[\begin{array}{ccc}1^{2}-3 & p & 0 \\ 0 & m^{2}-8 & q \\ r & 0 & n^{2}-15\end{array}\right]$ be a non-singular idempotent matrix. Then the sum of all the elements of the set S is
164. Let X be the solution set of the equation $A^{x}=I$, where $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ and I is the corresponding unit matrix and $x \subseteq N$ then the minimum value of $\sum\left(\cos ^{x} \theta+\sin ^{x} \theta\right), \theta \in R$
165. $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$ and $f(x)$ is defined as $f(x)=\operatorname{det} .\left(A^{T} A^{-1}\right)$ then the value of $\underbrace{f(f(f(f \ldots \ldots . f(x))))}_{n \text { times }}$ is $(n \geq 2)$.
166. If A is a square matrix of order3 that $|A|=2$ then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
167. Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a matrix such that $A A^{T}=4 I$ and $a_{i j}+2 c_{i j}=0$

Where $c_{i j}$ is the cofactor of $a_{i j}$ and I is the unit matrix of order3.
$\left|\begin{array}{ccc}a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4\end{array}\right|+5 \lambda\left|\begin{array}{ccc}a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4\end{array}\right|=0$
Then the value of 10λ is

: ANSWER KEY :															
1)	a	2)	a	3)	b	4)	a	9)	c	10)	a	1)	4	2)	0
5)	a	6)	d	7)	a	8)	a		3)	4	4)	6			
9)	c	10)	b	11)	b	12)	d	5)	2	6)	4	7)	8	8)	0
13)	b	14)	c	15)	a	16)	c	9)	2	10)	1	11)	4	12)	4
17)	b	18)	a	19)	a	20)	a								
21)	b	22)	b	23)	c	24)	a								
25)	c	26)	b	27)	b	28)	a								
29)	a	30)	c	31)	d	32)	c								
33)	b	34)	c	35)	a	36)	b								
37)	c	38)	b	39)	a	40)	b								
41)	c	42)	b	43)	b	44)	a								
45)	a	46)	b	47)	d	48)	b								
49)	c	50)	a	51)	a	52)	a								
53)	a	54)	d	55)	c	56)	d								
57)	d	58)	c	59)	a	60)	d								
61)	b	62)	a	63)	c	64)	b								
65)	b	66)	d	67)	b	68)	b								
69)	b	70)	a	71)	c	72)	b								
73)	a	74)	b	75)	b	76)	b								
77)	c	78)	c	79)	b	80)	a								
81)	b	82)	c	83)	d	84)	c								
85)	b	86)	b	87)	b	1)									
	$\begin{aligned} & \mathbf{a , b}, \mathbf{c} \\ & \text { a,b,d } \end{aligned}$	2)	a, b, c	3)	a, b	4)									
5)	$\begin{aligned} & a, d \\ & a, c, d \end{aligned}$	6)	a, b, c	7)	a, b, c	8)									
9)	$\begin{aligned} & \text { a, c } \\ & \text { a, b, c } \end{aligned}$	10)	a, c	11)	a, b, c	12)									
13)	$\begin{aligned} & \text { a,d } \\ & \mathbf{a}, \mathrm{b}, \mathrm{c} \end{aligned}$	14)	b,d	15)	a, b, c	16)									
17)	$\begin{aligned} & \mathbf{b}, \mathbf{c} \\ & \mathbf{a}, \mathbf{b}, \mathbf{c}, \end{aligned}$		a, b, c	19)		20)									
21)	$\begin{aligned} & \text { b, c } \\ & \text { a,d } \end{aligned}$	22)	b, c	23)	a,c	24)									
25)	$\begin{aligned} & \text { a, b, c } \\ & \text { a, b, c } \end{aligned}$	26)	a, b, c	27)	b, c	28)									
29)	a, c	30)	a, b, c	31)	a, c		a								
	2)	c	3)	c	4)	c									
5)	b	6)	a	7)	b	8)	c								
9)	a	10)	b	11)	b	12)	a								
13)	d	14)	a	15)	d	16)	a								
17)	d	18)	d	19)	a	20)	b								
21)	b	22)	c	1)	a		d								
	3)	d	4)	c											
5)	b	1)	a	2)	a	3)	c								
	4)	b													
5)	c	6)	d	7)	b	8)	c								

: HINTS AND SOLUTIONS :

1 (a)
As $B=-A^{1} B A$, we get
$A B=-B A$ or $A B+B A=0$
Now,
$(A+B)^{2}=(A+B)(A+B)$
$=A^{2}+B A+B A+B^{2}$
$=A^{2}+0+B^{2}$
$=A^{2}+B^{2}$
2 (a)
Given, equations $(x+a y=0, a z+y=0, a x+$ $z=0$ has infinite soluations.
\therefore Using Crames's rule, its determinant $=0$
$\Rightarrow\left|\begin{array}{ccc}1 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right| 0$
$\Rightarrow 1+a^{3}=0 \Rightarrow a=-1$
3 (b)
$|A|=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]=1+\tan ^{2} x \neq 0$
So A is invertible. Also,
$\operatorname{adj} A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]^{T}=\left[\begin{array}{cc}1 & -\tan x \\ \tan x & 1\end{array}\right]$
Now,
$A^{-1}=\frac{1}{|A|}$ adj A
$\Rightarrow A^{-1}=\frac{1}{1+\tan ^{2} x}\left[\begin{array}{cc}1 & -\tan x \\ \tan x & 1\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{1+\tan ^{2} x} & \frac{-\tan x}{1+\tan ^{2} x} \\ \frac{\tan x}{1+\tan ^{2} x} & \frac{1}{1+\tan ^{2} x}\end{array}\right]$
$\therefore A^{T} A^{-1}$
$=\left[\begin{array}{cc}1 & -\tan x \\ \tan x & 1\end{array}\right]\left[\begin{array}{cc}\frac{1}{1+\tan ^{2} x} & \frac{-\tan x}{1+\tan ^{2} x} \\ \frac{\tan x}{1+\tan ^{2} x} & \frac{1}{1+\tan ^{2} x}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1-\tan ^{2} x}{1+\tan ^{2} x} & \frac{-2 \tan x}{1+\tan ^{2} x} \\ \frac{2 \tan x}{1+\tan ^{2} x} & \frac{1-\tan ^{2} x}{1+\tan ^{2} x}\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$
4 (a)
As, $P P^{T}=\left[\begin{array}{cc}\sqrt{3 / 2} & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right]\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow P P^{T}=I$ or $P^{T}=P^{-1}$
As, $\quad Q=P A P^{T}$
$\left.\therefore P^{T} Q^{2005} P=P^{T}\left[P A P^{T}\right)(P A P)^{T}\right) \ldots 2005$ times $] P$
$=\frac{\left(P^{T} P\right) A\left(P^{T} P\right) A\left(P^{T} P\right) \ldots\left(P^{T} P\right) A\left(P^{T} P\right)}{2005 \text { times }}$
$=I A^{2005}=A^{2005}$
$\therefore A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], A^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \ldots$ and so on
$A^{2005}=\left[\begin{array}{rr}1 & 2005 \\ 0 & 1\end{array}\right]$
$\Rightarrow P^{T} Q^{2005} P=\left[\begin{array}{rr}1 & 2005 \\ 0 & 1\end{array}\right]$
5 (a)
We have, $A^{2}=0, A^{k}=0, \forall k \geq 2$
Thus,

$$
\begin{aligned}
& (A+I)^{50}=I+50 A \\
& \Rightarrow(A+I)^{50}=I+50 A \\
& \Rightarrow a=1, b=0, c=0, d=1
\end{aligned}
$$

6 (d)
Let A be a skew-symmetric matrix of order n. By definition,
$A^{\prime}=-A$
$\Rightarrow\left|A^{\prime}\right|=|-A|$
$\Rightarrow|A|=(-1)^{n}|A|$
$\Rightarrow|A|=-|A|[\because n$ is odd $]$
$\Rightarrow 2|A|=0$
$\Rightarrow|A|=0$
Hence, A^{-1} does not exist
(a)

From given data $|A|=2^{4}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=\left(2^{4}\right)^{9}=2^{36}$
$\Rightarrow\left\{\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj} A}{7}\right\}=\left\{\frac{2^{36}}{7}\right\}=\left\{\frac{(7+1)^{12}}{7}\right\}=\frac{1}{7}$
8 (a)
A is involuntary. Hence,
$A^{2}=I \Rightarrow A=A^{-1}$
Also,
$(k A)^{-1}=\frac{1}{k}(A)^{-1}$
$\Rightarrow\left(\frac{1}{2} A\right)^{-1}=2(A)^{-1} \Rightarrow 2 A$
9 (c)
$A^{2}-A+I=0$
$\Rightarrow I=A-A^{2}$
$I A^{-1}=A A^{-1}-A^{2} A^{-1}$
$\Rightarrow A^{-1}=I-A$
10 (b)
We have,
$\begin{aligned} I & =\frac{1}{2}\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ -08 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right] \\ & =\left[\begin{array}{ccc}1 & 0 & c+1 \\ 0 & 1 & 2(c+1) \\ 4(1-a) & 3(a-1) & 2+a c\end{array}\right]\end{aligned}$
Comparing the elements of $A A^{-1}$ with those of I, we have
$c+1=0 \Rightarrow c=-1$
$\Rightarrow c=-1$ and $a-I=0 \Rightarrow a=1$
11 (b)
Let, $A=\left[\begin{array}{cc}5 & 0 \\ -a & 5\end{array}\right]$
$\Rightarrow \operatorname{adj}(A)=\left[\begin{array}{ll}5 & 0 \\ a & 5\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{|A|}\left[\begin{array}{ll}5 & 0 \\ a & 5\end{array}\right]=\frac{1}{25}\left[\begin{array}{ll}5 & 0 \\ a & 5\end{array}\right]$
$\Rightarrow A^{-2}=\left(A^{-1}\right)^{2}=\frac{1}{25}\left[\begin{array}{ll}5 & 0 \\ a & 5\end{array}\right] \frac{1}{25}\left[\begin{array}{cc}5 & 0 \\ a & 5\end{array}\right]$
$=\frac{1}{625}\left[\begin{array}{cc}25 & 0 \\ 10 a & 25\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{25} & 0 \\ \frac{2 a}{125} & \frac{1}{25}\end{array}\right]$
$\left[\begin{array}{cc}\frac{1}{25} & 0 \\ x & \frac{1}{25}\end{array}\right]\left[\begin{array}{cc}\frac{1}{25} & 0 \\ \frac{2 a}{125} & \frac{1}{25}\end{array}\right]$
$\Rightarrow x=2 a / 125$
12 (d)
(i) is false

If $A=\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$, then
$A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
(ii) is true as the product $A B$ is an identity matrix, if and only if B is inverse of the matrix A
(iii) is false since matrix multiplication in not commutative

13 (b)
We know that $\mid \operatorname{adj}(\operatorname{adj} A))\left|=|A|^{(n-1)^{2}}\right.$
$\Rightarrow|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=|\operatorname{adj} A|^{(n-1)^{2}}$
$=|A|^{(n-1)^{3}}$
$=2^{8}=256$
14 (c)
$\left[\begin{array}{cc}\bar{z}_{1} & -z_{2} \\ \bar{z}_{1} & z_{1}\end{array}\right]^{-1}\left[\begin{array}{cc}z_{1} & z_{2} \\ -\bar{z}_{2} & z_{1}\end{array}\right]^{-1}$
$=\left(\left[\begin{array}{cc}z_{1} & z_{2} \\ -\bar{z}_{2} & \bar{z}_{1}\end{array}\right]\left[\begin{array}{cc}\bar{z}_{1} & -z_{2} \\ \bar{z}_{2} & z_{1}\end{array}\right]\right)^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
z_{1} \bar{z}_{1} & 0 \\
0 & z_{2} \bar{z}_{2}+z_{1} \bar{z}_{1}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} & 0 \\
0 & \left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
\end{aligned}
$$

15 (a)
We know that in a square matrix of order n,
$|\operatorname{adj} A|=|A|^{n-1}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|\operatorname{adj} A|^{n-1}=|A|^{(n-1)^{2}}$
$\Rightarrow n^{2}-2 n-8=0$
$\Rightarrow n=4$ as $n=-2$ is not possible
16 (c)
We have,
$A^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+b c & a b+d b \\ a c+c d & b c+d^{2}\end{array}\right]$
As A satisfies $x^{2}+k=0$, therefore
$A^{2}+k I=0$
$\Rightarrow\left[\begin{array}{cc}a^{2}+b+k & (a+d) b \\ (a+d) c & b c+d^{2}+k\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow a^{2}+b c+k=0, b c+d^{2}+k=0$
and $(a+d) b=(a+d) c=0$
As $b c \neq 0, b \neq 0, c \neq 0$, so
$a+d=0$
$\Rightarrow a=-d$
Also,
$k=-\left(a^{2}+b c\right)$
$=-\left(d^{2}+b c\right)$
$=-((-a d)+b c)$
$=|A|$
17 (b)
$(I-A) f(A)=I+A$
$\Rightarrow f(A)=(I+A)(I-A)^{-1}$
$=(I+A)\left(I+A+A^{2}\right)$
$=I+A+A^{2}+A+A^{2}+A^{3}$
$=I+2 A+2 A^{2}$
18
(a)
$A=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, \cdots, d_{n}\right)$
$\Rightarrow|A|=\left(d_{1} \times d_{2} \times d_{3} \times d_{4} \times \cdots \times d_{n}\right)$
Now,
Cofactor of d_{1} is $d_{2} d_{3} \cdots d_{n}$
Cofactor of d_{2} is $d_{1} \times d_{3} \times d_{4} \cdots d_{n}$
Cofactor of d_{3} is $d_{1} \times d_{2} \times d_{4} \cdots d_{n}$
:
Cofactor of d_{n} is $d_{1} \times d_{2} \times d_{3} \cdots d_{n-1}$
$\Rightarrow A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\operatorname{diag}\left(d_{1}^{-1}, d_{2}^{-1}, d_{3}^{-1}, \cdots, d_{n}^{-1}\right)$
Hence, A^{-1} is also a diagonal matrix.
19
(a)
$(A-\lambda I)(B-\lambda I)=(B-\lambda I)(A-\lambda I)$
$\Rightarrow A B-\lambda(A+B) I+\lambda^{2} I^{2}$

$$
=B A-\lambda(B+A) I+\lambda^{2} I^{2}
$$

$\Rightarrow A B=B A$
20 (a)
$B C=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right] \Rightarrow B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \operatorname{tr}(A)+\operatorname{tr}\left(\frac{A B C}{2}\right)+\operatorname{tr}\left(\frac{A(B C)^{2}}{4}\right)+\operatorname{tr}\left(\frac{A(B C)^{3}}{8}\right)$
$+\cdots+\infty$
$=\operatorname{tr}(A)+\operatorname{tr}\left(\frac{A}{2}\right)+\operatorname{tr}\left(\frac{A}{2^{2}}\right)+\cdots$
$=\operatorname{tr}(A)+\frac{1}{2} \operatorname{tr}(A)+\frac{1}{2^{2}} \operatorname{tr}(A) \ldots$
$=\frac{\operatorname{tr}(A)}{1-(1 / 2)}$
$=2 \operatorname{tr}(A)=2(2+1)=6$
21 (b)
We have,
$A=i B$
$\Rightarrow A^{2}=(i B)^{2}=i^{2} B^{2}=-B^{2}=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=-2 B$
$\Rightarrow A^{4}=(-2 B)^{2}=4 B^{2}=4(2 B)=8 B$
$\Rightarrow\left(A^{4}\right)^{2}=(8 B)^{2}$
$\Rightarrow A^{8}=64 B^{2}=128 B$
22 (b)
We have, $A B=A(\operatorname{adj} A)=|A| I_{n}$
$\therefore A B+K I_{n}=|A| I_{n}+K I_{n}$
$\Rightarrow A B+K I_{n}=(|A|+k) I_{n}$
$\Rightarrow\left|A B+K I_{n}\right|=\left|(|A|+k) I_{n}\right|\left(\because\left|\alpha I_{n}=\alpha^{n}\right|\right)$
$=(|A|+K)^{n}$
23 (c)
Given
$A^{3}=0$
Now,
$(I-A)\left(I+A+A^{2}\right)$
$=I^{2}+I A+I A^{2}-A I-A^{2}-A^{3}$
$=I-A^{3}$
$=I$
$\Rightarrow(I-A)^{-1}=I+A+A^{2}$
24 (a)
We have,
$|A|=(a+i b)(a-i b)-c+i d(c+i d)$
$a^{2}+b^{2}+c^{2}+d^{2}=1$
$\operatorname{And} \operatorname{adj}(A)=\left[\begin{array}{cc}a-i b & -c-i d \\ -c-i d & a+i b\end{array}\right]$
Then $A^{-1}=\left[\begin{array}{cc}a-i b & -c-i d \\ -c+i d & a-i b\end{array}\right]$
$25 \quad$ (c)
$A \operatorname{adj} A|A| I$
$|A|=x y z-8 x-3(z-8)+2(2-2 y)$
$|A|=x y z-(8 x+3 z+4 y)+28$
$=60-20+28$
$=68$
$\Rightarrow A(\operatorname{adj} A)=68\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68\end{array}\right]$
(b)

Since the product matrix is 3×3 matrix and the pre-multi-plier of A is a 3×2 matrix, therefore A is 2×3 matrix. Let,
$A=\left[\begin{array}{lll}l & m & n \\ x & y & z\end{array}\right]$. Then the given equation becomes

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 0 \\
-3 & 4
\end{array}\right]\left[\begin{array}{ccc}
l & m & n \\
x & y & z
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right]
$$

$\Rightarrow\left[\begin{array}{ccc}2 l-x & 2 m-y & 2 n-z \\ l & m & x \\ -3 l+4 x & -3 m+4 y & -3 n+4 z\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{array}\right]
$$

$\Rightarrow 2 l-x=-1,2 m-y=-8,2 n-z=-10, l$
$=1, m=-2, n=-5$
$\Rightarrow x=3, y=4, z=0, l=1, m=-2, n=-5$
$\Rightarrow A=\left[\begin{array}{lll}l & m & n \\ x & y & z\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & -5 \\ 3 & 4 & 0\end{array}\right]$
27 (b)
We have,
$F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow \operatorname{adj}(F(\alpha))$

$$
=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Also,

$$
\begin{aligned}
& \operatorname{det}(F(\alpha))=1 \\
& \Rightarrow[F(\alpha)]^{-1}= {\left[\begin{array}{ccc}
\cos (-\alpha) & -\sin (-\alpha) & 0 \\
\sin (-\alpha) & \cos (-\alpha) & 0 \\
0 & 0 & 1
\end{array}\right] } \\
&=F(-\alpha)
\end{aligned}
$$

28 (a)
We have,
$A(\alpha, \beta)^{-1}=\frac{1}{e^{\beta}}\left[\begin{array}{ccc}e^{\beta} \cos \alpha & -e^{\beta} \sin \alpha & 0 \\ e^{\beta} \sin \alpha & e^{\beta} \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$=A(-\alpha,-\beta)$

29 (a)
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]^{-1}$
$\Rightarrow A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}-3 & -2 \\ -5 & -3\end{array}\right]$
$\Rightarrow A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
30 (c)
$\operatorname{adj}\left(Q^{-1} B P^{-1}\right)=\operatorname{adj}\left(P^{-1}\right) \operatorname{adj}(B) \operatorname{adj}\left(Q^{-1}\right)$
$=\frac{P}{|P|} A \frac{\mathcal{Q}}{|\mathcal{Q}|}$
$=P A Q$
31 (d)
$A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
$A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Let A be given by $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The first equation gives
$a-b=-1$
$c-d=2(4)$
For second equation gives
$A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=A\left(A\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=A\left(\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
This gives
$-a+2 b=1$
$-c+2 d=0$
Eqs. (3) $+(5) \Rightarrow b=0$ and $a=-1$
Eqs. (4) $+(6) \Rightarrow d=2$ and $c=4$
So the sum $a+b+c+d=5$.
32 (c)
Given $B^{r}=I \Rightarrow B^{r} B^{-1}=I B^{-1} \Rightarrow B^{r-1}=B^{-1}$
$\Rightarrow A^{-1} B^{r-1} A-A^{-1} B^{-1} A=A^{-1} B^{-1} A-A^{-1} B^{-1} A$

$$
=0
$$

33 (b)

$$
\begin{gathered}
(-A)^{-1}=\frac{\operatorname{adj}(-A)}{|-A|}=\frac{(-1)^{n-1} \operatorname{adj}(A)}{(-1)^{n}|A|}=\frac{\operatorname{adj}(A)}{-|A|} \\
=-A^{-1}
\end{gathered}
$$

34 (c)
$\left[\begin{array}{lll}1 & x & y\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=10$
$\Rightarrow\left[\begin{array}{lll}1 & 3+2 x & 1-x+y\end{array}\right]\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=[0]$
$\Rightarrow\left[1+3 x+2 x^{2}+y-x y+y^{2}\right]=[0]$
$\Rightarrow 2 x^{2}+y^{2}+y+3 x-x y+1=0$
If $y=0,2 x^{2}+3 x+1=0$
$\Rightarrow(2 x-1)(x+1)=0$
$\Rightarrow x=-1 / 2,-1$ (rational roots)
If $y=-1,2 x^{2}+4 x+1=0$
$\Rightarrow x=\frac{-4 \pm \sqrt{12}}{4}=\frac{-2 \pm \sqrt{3}}{2}$ (irrational roots)
35 (a)
We know that for any non-singular matrix A,
$A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$
Now put $A=P^{-1}$. Then we have
$\left(P^{-1}\right)^{-1}=\frac{1}{\left|P^{-1}\right|} \operatorname{adj}\left(P^{-1}\right)$
$\Rightarrow P=|P| \operatorname{adj}\left(P^{-1}\right)$
$\Rightarrow \operatorname{adj}\left(P^{-1}\right)=\frac{P}{|P|}$
36 (b)
If possible assume that A is non-singular, then A^{-1} exists.
Thus,
$A B=0 \Rightarrow A^{-1}(A B)=\left(A^{-1} A\right) B=0$
$\Rightarrow I B=0$ or $B=0 \times($ a contradiction $)$
Hence, both A and B must be singular.
37 (c)
Since $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$ and
given $A=\left[\begin{array}{cc}0 & \tan \alpha / 2 \\ -\tan \alpha / 2 & 0\end{array}\right]$
$\therefore I-A=\left[\begin{array}{cc}1 & -\tan \alpha / 2 \\ \tan \alpha / 2 & 1\end{array}\right](1)$
Now, $(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}1 & \tan \alpha / 2 \\ -\tan \alpha / 2 & 1\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}1 & \tan \alpha / 2 \\ -\tan \alpha / 2 & 1\end{array}\right]$
$\left[\begin{array}{cc}\frac{1-\tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2} & -\frac{2 \tan \alpha / 2}{1+\tan ^{2} \alpha / 2} \\ \frac{2 \tan \alpha / 2}{1+\tan ^{2} \alpha / 2} & \frac{1-\tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2}\end{array}\right]$
$=\left[\begin{array}{c}\frac{1-\tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2}+\frac{2 \tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2} \\ \frac{-\tan \alpha / 2\left(1-\tan ^{2} \alpha / 2\right)}{1+\tan ^{2} \alpha / 2}+\frac{2 \tan \alpha / 2}{1+\tan ^{2} \alpha / 2}\end{array}\right.$
$\left.\begin{array}{c}-\frac{2 \tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2}+\frac{\tan \alpha / 2\left(1-\tan ^{2} \alpha / 2\right)}{1+\tan ^{2} \alpha / 2} \\ \frac{2 \tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2}+\frac{1-\tan ^{2} \alpha / 2}{1+\tan ^{2} \alpha / 2}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{\left(1+\tan ^{2} \alpha / 2\right)}{\left(1+\tan ^{2} \alpha / 2\right)} & -\frac{\left(1+\tan ^{2} \alpha / 2\right)}{\left(1+\tan ^{2} \alpha / 2\right)} \\ \tan \alpha / 2 & \\ \frac{\left(1+\tan ^{2} \alpha / 2\right)}{\left(1+\tan ^{2} \alpha / 2\right)} & \frac{\left(1+\tan ^{2} \alpha / 2\right)}{\left(1+\tan ^{2} \alpha / 2\right)}\end{array}\right]$
$=\left[\begin{array}{cc}1 & -\tan \alpha / 2 \\ \tan \alpha / 2 & 1\end{array}\right]$
$=I-A \quad[$ using (1) $]$

38 (b)
We have,
$(A-2 I)(A-4 I)=0$
$\Rightarrow A^{2}-2 A-4 A+8 I=0$
$\Rightarrow A^{2}-6 A+8 I=0$
$\Rightarrow A^{-1}\left(A^{2}-6 A+8 I\right)=A^{-1} 0$
$\Rightarrow A-6 I+8 A^{-1}=0$
$\Rightarrow A+8 A^{-1}=6 I$
$\Rightarrow \frac{1}{6} A+\frac{4}{3} A^{-1}=1$
39 (a)
Matrix $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ is orthogonal if

$$
\begin{aligned}
\sum a_{i}^{2}=\sum b_{i}^{2} & =\sum c_{i}^{2}=1 ; \sum a_{i} b_{i}=\sum b_{i} c_{i} \\
& =\sum c_{i} a_{i}=0
\end{aligned}
$$

40 (b)
$\left|A^{2005}-6 A^{2004}\right|=|A|^{2004}|A-6 I|$
$2^{2004}\left|\begin{array}{ll}0 & 11 \\ 2 & -2\end{array}\right|=(-22) 2^{2004}=(-11)(2)^{2005}$
41 (c)
Given $A^{2}=A$. Now,
$(I+A)^{3}-7 A=I^{3}+3 I^{2} A+3 I A^{2}+A^{3}-7 A$
$=I+3 A+3 A+A-7 A$
$=I+O$
$=I$
42 (b)
$A B^{n}=A B B B B B \cdots B$
$=(A B) B B B \cdots B$
$=B(A B) B B B \cdots B$
$=B B(A B) B B \cdots B$
:
$=B^{n} A$
$(A B)^{n}=(A B)(A B)(A B) \cdots(A B)$
$=A(B A)(B A)(B A) \cdots(B A) B$
$=A(A B)(A B)(A B) \cdots(A B) B$
$=A^{2}(B A)(B A)(B A) \cdots(B A) B^{2}$
$=A^{3}(B A)(B A)(B A) \cdots(B A) B^{3}$
\vdots
$=A^{n} B^{n}$
(b)

Since, given system of equations has no solution,
$\Delta=0$ and any one amongst $\Delta x, \Delta y, \Delta z$ is non-zero.
Where $\quad \Delta=\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
And $\Delta z=\left|\begin{array}{ccr}2 & -1 & 2 \\ 1 & -2 & -4 \\ 1 & 1 & \lambda\end{array}\right|=6 \neq 0$
$\Rightarrow \lambda=1$
(a)

Let, $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\Rightarrow X^{2}=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$
$\Rightarrow a^{2}+b c=1$ and $a b+b d=1 \Rightarrow b(a+d)=1$ $a c+c d=2 \Rightarrow c(a+d)=2 \Rightarrow 2 c=c$
Also,
$b c+d^{2}=3 \Rightarrow d^{2}-a^{2}=2$
$\Rightarrow(d-a)(a+d)=2 \Rightarrow d-a=2 b \quad$ (using
$\left.b c=1-a^{2}\right)$
$a+d=1 / b$
$\Rightarrow 2 d=2 b+1 / b, \quad 2 a=1 / b-2 b$
$d=b+1 / b, \quad a=1 / b-2 b$
$c=2 b$
$\Rightarrow\left(b^{2}+\frac{1}{4 b^{2}}+1\right)+2 b^{2}=3$
$\Rightarrow 3 b^{2}+\frac{1}{4 b^{2}}=2$
$\Rightarrow 3 x+\frac{1}{4 x}=2$
$\Rightarrow b= \pm \frac{1}{\sqrt{6}}$ or $b= \pm \frac{1}{\sqrt{2}}$
Therefore, matrices are
$\left(\begin{array}{cc}0 & 1 / \sqrt{2} \\ \sqrt{2} & \sqrt{2}\end{array}\right)\left(\begin{array}{cc}0 & -1 / \sqrt{2} \\ -\sqrt{2} & -\sqrt{2}\end{array}\right)\left(\begin{array}{cc}2 / \sqrt{6} & -1 / \sqrt{6} \\ 2 / \sqrt{6} & 4 / \sqrt{6}\end{array}\right)$
(a)

Given A is skew-symmetric Hence,
$A^{T}=-A$
$\Rightarrow A^{n}=\left(-A^{T}\right)^{n}=-\left(A^{n}\right)^{T} \quad$ (given n is odd)
Hence, A^{n} is skew-symmetric
46
(b)

Given $A, B, A+I, A+B$ are idempotent. Hence,
$A^{2}=A, B^{2}=B,(A+I)^{2}=A+I$ and $(A+B)^{2}=$
$A+B$
$\Rightarrow A^{2}+B^{2}+A B+B A=A+B$
$\Rightarrow A+B+A B+B A=A+B$
$\Rightarrow A B+B A=0$
(d)
$A^{2}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
$\therefore \quad A^{2}=B \Rightarrow\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$
$\Rightarrow \quad \alpha^{2}=1$ and $\alpha+1=5$
Which is not possible at the same time.
\therefore No real values of α exists.
48
(b)
$A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$
$\Rightarrow A^{2}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & b^{2}\end{array}\right)$
$\Rightarrow A^{3}=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & b^{2}\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}a^{3} & 0 \\ 0 & b^{3}\end{array}\right)$
$\Rightarrow A^{n}=\left(\begin{array}{cc}a^{n} & 0 \\ 0 & b^{n}\end{array}\right)$
$\Rightarrow\left(A^{n}\right)^{-1}=\frac{1}{a^{n} b^{n}}\left(\begin{array}{cc}a^{n} & 0 \\ 0 & b^{n}\end{array}\right)=\left(\begin{array}{cc}a^{-n} & 0 \\ 0 & b^{-n}\end{array}\right)$
$\Rightarrow \lim _{n \rightarrow \infty}\left(A^{n}\right)^{-1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ as $a>1$ and $b>1$
49 (c)
Given that
$X=A B+B A \Rightarrow X=X^{T}$
And
$Y=A B-B A$
$\Rightarrow Y=-Y^{T}$
Now, $(X Y)^{T}=Y^{T} X^{T}=-Y X$.
50 (a)
$|B|=\left|\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right|$ (Multiplying R_{2} by -1$)$
$=-\left|\begin{array}{lll}q & -b & y \\ p & -a & x \\ r & -c & z\end{array}\right|\left(\right.$ Multiplying C_{2} by -1)
$=\left|\begin{array}{lll}q & b & y \\ p & a & x \\ r & c & z\end{array}\right|$ (Changing R_{1} with R_{2})
$=-\left|\begin{array}{lll}q & b & y \\ p & a & x \\ r & c & z\end{array}\right|$
$=-\left|\begin{array}{lll}q & b & y \\ p & a & x \\ r & c & z\end{array}\right|$
Hence $|A|=-|B|$, obviously when $|A| \neq 0,|B| \neq$
0. Also, \mid adj $B\left|=|B|^{2}\right.$
$=(-|A|)^{2}=|A|^{2}$
51 (a)
For involuntary matrix,
$A^{2}=I$
$\Rightarrow\left|A^{2}\right|=|I| \Rightarrow|A|^{2} \Rightarrow|A|= \pm 1$
For idempotent matrix,
$A^{2}=A$
$\Rightarrow\left|A^{2}\right|=|A| \Rightarrow|A|^{2} \Rightarrow|A| \Rightarrow|A|=0$ or 1
For orthogonal matrix,
$A A^{T}=I$
$\Rightarrow\left|A A^{T}\right|=|I| \Rightarrow|A|\left|A^{T}\right|=1 \Rightarrow|A|^{2}=1 \Rightarrow|A|=$ ± 1.
Thus if matrix A is idempotent it may not be invertible.
52 (a)
Since, $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is linear equation in three variables and that could have only unique, no solution or infinitely many solution.
\therefore It is not possible to have two solutions.
Hence, number of matrices A is zero.
53 (a)
$|A|=1(0-10)-2(2-6)+3(4-0)$
$=-10+8+12=10$
$\Rightarrow|A| \neq 0$
\Rightarrow Unique solution
Let, $A=\left[\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right]$ and $B=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$
Then the matrix equation is $A X=B$.
$\therefore|A|=\left[\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right]=-2+12 \neq 0$
So A is and invertible matrix. Also,
$\operatorname{adj} A=\left[\begin{array}{cc}-2 & -3 \\ 4 & 1\end{array}\right]^{T}=\left[\begin{array}{cc}-2 & 4 \\ -3 & 1\end{array}\right]$
So,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{10}\left[\begin{array}{ll}-2 & 4 \\ -3 & 1\end{array}\right]$
Now,
$A X=B$
$\Rightarrow A^{-1}(A X)=a^{-1} B$
$\Rightarrow\left(A^{-1} A\right) X=A^{-1} B$
$\Rightarrow I X=A^{-1} B$
$\Rightarrow X=A^{1} B$
$\Rightarrow X=\frac{1}{10}\left[\begin{array}{ll}-2 & 4 \\ -3 & 1\end{array}\right]\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]=\left[\begin{array}{cc}6 & 2 \\ 11 / 2 & 2\end{array}\right]$
$A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=$
$\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$
$\Rightarrow \operatorname{tr}(A)+2 \operatorname{tr}(B)=-1$
and $2 \operatorname{tr}(A)-\operatorname{tr}(B)=3$
Let $\operatorname{tr}(A)=x$ and $\operatorname{tr}(B)=y$. Then,
$x+2 y=-1$ and $2 x-y=3$
Solving, $x=1$ and $y=-1$. Hence,

$$
\operatorname{tr}(A)-\operatorname{tr}(B)=x-y=2
$$

56 (d)
$\operatorname{tr}(A)=\sum_{i=j} a_{i j}$
$=\left(a_{11}+a_{22}+a_{33}+\cdots+a_{100010}\right)$
$=\left(w^{2}+w^{4}+w^{6}+\cdots+w^{20}\right)$
$=w^{2}\left(1+w^{2}+w^{4}+\cdots+w^{18}\right)$
$=w^{2}\left[\left(1+w+w^{2}\right)+\cdots+\left(1+w+w^{2}\right)+1\right]$
$=w^{2} \times 1$
$\Rightarrow \operatorname{tr}(A)=w^{2}$
(d)
$A=\operatorname{diag}\left(d_{1}, d_{2} \ldots \ldots . d_{n}\right)$
Given, $A^{3}=A$
$\Rightarrow \operatorname{diag}\left(d_{1}^{3}, d_{2}^{3}, \ldots, d_{n}^{3}\right)=\operatorname{diag}\left(d_{1}, d_{2} \ldots, d_{n}\right)$
$\Rightarrow d_{1}^{3}=d_{1}, d_{2}^{3}=d_{2} \ldots, d_{n}^{3}=d_{n}$
Hence, all $d_{1}, d_{2}, d_{3} \ldots, d_{n}$ have three possible values $\pm 1,0$. Each diagonal element can be selected in three ways. Hence, the number Of different matrices is 3^{n}
(c)
$A B=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$
$\left[\begin{array}{cc}\cos ^{2} \emptyset & \cos \emptyset \sin \emptyset \\ \cos \emptyset \sin \emptyset & \sin ^{2} \emptyset\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta \cos ^{2} \emptyset & \cos ^{2} \theta \cos \emptyset \sin \emptyset+ \\ +\cos \theta \cos \emptyset \sin \theta \sin \emptyset & \cos \theta \sin \theta \sin ^{2} \emptyset \\ \cos \theta \sin \theta \cos ^{2} \emptyset & \cos \theta \cos \emptyset \sin \theta \\ +\cos \theta \sin \theta \cos \emptyset \sin \emptyset \sin \emptyset+\sin ^{2} \theta \sin ^{2} \emptyset\end{array}\right]$
$=\left[\begin{array}{cc}\cos \theta \cos \emptyset & \cos \theta \sin \emptyset \\ (\cos (\theta-\emptyset) & (\cos (\theta-\emptyset)) \\ \sin \theta \cos \emptyset & \sin \theta \sin \emptyset \\ (\cos (\theta-\emptyset)) & (\cos (\theta-\emptyset))\end{array}\right]$
$=(\cos (\theta-\emptyset))\left[\begin{array}{cc}\cos \theta \cos \emptyset & \cos \theta \sin \emptyset \\ \sin \theta \cos \emptyset & \sin \theta \sin \emptyset\end{array}\right]$
Now, $A B=O \Rightarrow \cos (\theta-\emptyset)=0 \Rightarrow \theta-\emptyset=$ $(2 n+1) \pi / 2, n \in Z$.
59 (a)
$A \times A^{T}=I$
$\Rightarrow\left|A \times A^{T}\right|=|I|$
$\Rightarrow|A|^{2}=1$
$\Rightarrow|A|= \pm 1$
$\Rightarrow A^{-1}$ exists
$\Rightarrow A^{-1} \times A \times A^{T}=A^{-1} \times I$
$\Rightarrow A^{-1}=A^{T}$
60 (d)
If A is $n^{\text {th }}$ root of I_{2}, then $A^{n}=I_{2}$. Now,
$A^{2}=\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]=\left[\begin{array}{cc}a^{2} & 2 a b \\ 0 & a^{2}\end{array}\right]$
$A^{3}=A^{2} A=\left[\begin{array}{cc}a^{2} & 2 a b \\ 0 & a^{2}\end{array}\right]\left[\begin{array}{cc}a & b \\ 0 & a\end{array}\right]=\left[\begin{array}{cc}a^{3} & 3 a^{2} b \\ 0 & a^{3}\end{array}\right]$
Thus,
$A^{n}=\left[\begin{array}{cc}a^{n} & n a^{n-1} b \\ 0 & a^{n}\end{array}\right]$
Now,
$A^{n}=I \Rightarrow\left[\begin{array}{cc}a^{n} & n a^{n-1} b \\ 0 & a^{n}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow a^{n}=1, b=0$
61 (b)
Since A is orthogonal, hence
$A A^{T}=I$
$\Rightarrow\left|A A^{T}\right|=1$
$\Rightarrow\left|A^{2}\right|=1$
$\Rightarrow|A|== \pm 1$
Now, $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$

62 (a)
$A(x) A(y)=(1-x)^{-1}(1$

$$
\begin{aligned}
& \quad-y)^{-1}\left[\begin{array}{cc}
1 & -x \\
-x & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -y \\
-y & 1
\end{array}\right] \\
& =(1+x y-(x+y))^{-1}\left[\begin{array}{cc}
1+x y & -(x+y) \\
-(x+y) & 1+x y
\end{array}\right] \\
& =\left(1-\frac{(x+y)}{1+x y}\right)^{-1}\left[\begin{array}{cc}
1 & -\frac{x+y}{1+x y} \\
-\frac{x+y}{1+x y} & 1
\end{array}\right]=A(z)
\end{aligned}
$$

63 (c)
$\left(A^{-1} B A\right)^{2}=\left(A^{-1} B A\right)\left(A^{-1} B A\right)$
$=A^{-1} B\left(A A^{-1}\right) B A$
$=A^{-1} B I B A=A^{-1} B^{2} A$
$\left(A^{-1} B A\right)^{3}=\left(A^{-1} B^{2} A\right)\left(A^{-1} B A\right)$
$=A^{-1} B^{2}\left(A A^{-1}\right) B A$
$=A^{-1} B^{3} A$ and so on
$\therefore\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$
64 (b)
$\left(k I_{n}\right) \operatorname{adj}\left(k I_{n}\right)=\left|k I_{n}\right| I_{n}[\operatorname{using} A(\operatorname{adj} A)=|A| I]$
$\operatorname{adj}\left(k I_{n}\right)=k^{n-1} I_{n}$
$\left|\operatorname{adj}\left(k I_{n}\right)\right|=k^{n(n-1)}$
65 (b)
We have,
$[F(x) G(y)]^{-1}=[G(y)]^{-1}[F(x)]^{-1}$
$=G(-y) F(-x)$
(d)
$\operatorname{det}(A-I)=\operatorname{det}\left(A-A^{2}\right)$
$=\operatorname{det} A(I-A)$
$=\operatorname{det} A \times \operatorname{det}(I-A)$
$=-\operatorname{det} A \times \operatorname{det}(I-A)$
Now,
$A^{2}=I$
$\Rightarrow \operatorname{det}\left(A^{2}\right)=\operatorname{det}(I)$
$\Rightarrow(\operatorname{det} A)^{2}=1$
$\Rightarrow \operatorname{det}(A)= \pm 1$
Thus, $\operatorname{det}(A)$ can be 1 or -1 , which we cannot say anything about $\operatorname{det}(A-I)$.
(b)

Given,
$B=A^{-1} A^{T}$
$\Rightarrow B^{T}=\left(A^{-1} A^{T}\right)=A \times\left(A^{-1}\right)^{T}$
$\Rightarrow B \times B^{T}=A^{-1} A^{T} \times A \times\left(A^{-1}\right)^{T}$
$=A^{-1} \times\left(A^{T} \times A\right)\left(A^{-1}\right)^{T}$
$=A^{-1}\left(A \times A^{T}\right)\left(A^{-1}\right)^{T}$
$=\left(A^{-1} A\right) \times\left(A^{-1} A\right)^{T}=I \times I^{T}=I$
68
(b)
$A^{2}=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}25-24+0 & -40-40+0 & 0+0+0 \\ -15+15+0 & -24+25+0 & 0+0+0 \\ -5+6+0 & -8+10-2 & 0+0+1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
Hence, the matrix A is involutory.
69 (b)
Since $A B=B$ and $B A=A$, so
$B A B=B^{2}$
$\Rightarrow(B A) B=B^{2}$
$\Rightarrow A B=B^{2}$
$\Rightarrow B=B^{2}$
Hence, B is idempotent and similarly A.
$(A-B)^{2}=A^{2}-A B-B A+B^{2}=A-B-A+B$

$$
=0
$$

Therefore, $A-B$ is nilpotent
70 (a)
$A \operatorname{adj} A=|A| I$
$\Rightarrow|A \operatorname{adj} A|=|A|^{n} \quad[$ If A is of order $n \times n]$
$\Rightarrow|A||\operatorname{adj} A|=|A|^{n}$
$\Rightarrow|\operatorname{adj} A|=|A|^{n-1}$
Now, A is singular,
$\therefore|A|=0$
$\Rightarrow|\operatorname{adj} A|=0$
Hence adj A is singular.
71 (c)
$A^{2}=I$
$\Rightarrow A^{2}-I=0$
$\Rightarrow(A+I)(A-I)=0$
Therefore, either $|A+I|=0$ or $|A-I|=0$. If
$|A-I| \neq 0$, then $(A+I)(A-I)=0 \Rightarrow A-I=0$
which is not so.
$\therefore|A-I|=0$ and $A-I \neq 0$
72 (b)
$B=A_{1}+3 A_{3}^{3}+\cdots+(2 n-1)\left(A_{2 n-1}\right)^{2 n-1}$
$B^{T}=\left[A_{1}+3 A_{3}^{3}+\cdots+(2 n-1)\left(A_{2 n-1}\right)^{2 n-1}\right]$
$=-B$
Hence, B is skew-symmetric
73 (a)
$A B=C$
$\Rightarrow|A B|=|C|$
$\Rightarrow|A||B|=|C|$
$\Rightarrow|B|=\frac{|C|}{|A|}$
74 (b)
$P^{T} P=I$
$\mathcal{Q}=P A P^{T}$
$\therefore x=P^{T} Q^{1000} P=P^{T}\left(P A P^{T}\right)^{1000} P$
$=P^{T} P A P^{T}\left(P A P^{T}\right)^{999} P$
$=I A P^{T} \cdot P A P^{T}\left(P A P^{T}\right)^{998} P$
$=A I P^{T}\left(P A P^{T}\right)^{997} P$
$=A^{2} P^{T} P A P^{T}\left(P A P^{T}\right)^{997} P$
$=A^{3} P^{T}\left(\left(P A P^{T}\right)^{997} P\right.$
:
$=A^{1000}=I \quad(\because A$ is involuntary $)$
Hence, $x^{-1}=I$
75 (b)
Let, $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & 1\end{array}\right]$
$\therefore A^{T}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1-i \\ 1-i & 1\end{array}\right]$
$\Rightarrow\left(\bar{A}^{T}\right)=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$
$\therefore A\left(A^{-T}\right)=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right] \times \frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$
$=\frac{1}{3}\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
76
(b)

Let $A=\left[a_{i j}\right]$. Since A is skew-symmetric,
therefore
$a_{i j}=0$ and $a_{i j}=-a_{i j}(i \neq j)$
A is symmetric as well, so $a_{i j}=a_{j i}$ for all i and j
$\therefore a_{i j}=0$ for all $i \neq j$
Hence, $a_{i j}=0$ for all i and j, i.e., A is null matrix.
(c)
$\left(A^{-1} B A\right)^{2}=\left(A^{-1} B A\right)\left(A^{-1} B A\right)$
$=A^{-1} B\left(A A^{-1}\right) B A$
$=A^{-1} B I B A=A^{-1} B^{2} A$
$\Rightarrow\left(A^{-1} B A\right)^{3}=\left(A^{-1} B^{2} A\right)\left(A^{-1} B A\right)$
$=A^{-1} B^{2}\left(A A^{-1}\right) B A$
$=A^{-1} B^{2} I B A$
$=A^{-1} B^{3} A$ and so on
$\Rightarrow\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$
$78 \quad$ (c)
$f(x)=\frac{1+x}{1-x}$
$\Rightarrow(1-x) f(x)=1+x$
$\Rightarrow(I-A) f(A)=(I+A)$
$\Rightarrow f(A)=(I-A)^{-1}(I+A)$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)$
$\Rightarrow f(A)=\left(\left[\begin{array}{cc}0 & -2 \\ -2 & 0\end{array}\right]^{-1}\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\right)$
$=\frac{\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]}{-4}$
$=\frac{\left[\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right]}{-4}$
$=\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
79 (b)
We have,
$\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\alpha^{2}+\beta \gamma & 0 \\ 0 & \alpha^{2}+\beta \gamma\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \alpha^{2}+\beta \gamma-1=0$
80 (a)
$A B=A+B$
$\Rightarrow B=A B-A=A(B-I)$
$\Rightarrow \operatorname{det}(B)=\operatorname{det}(A) \operatorname{det}(B-I)=0$
$\Rightarrow \operatorname{det}(B)=0$
81 (b)
$|A(\alpha, \beta)|=\cos ^{2} \alpha e^{\beta}+\sin ^{2} \alpha e^{\beta}=e^{\beta}$
Now,
$A(\alpha, \beta)^{-1}=\frac{1}{e^{\beta}} \operatorname{adj}(A(\alpha, \beta))$
$=\frac{1}{e^{\beta}}\left[\begin{array}{ccc}e^{\beta} \cos \alpha & -\sin \alpha e^{\beta} & 0 \\ e^{\beta} \sin \alpha & \cos \alpha e^{\beta} & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{-\beta}\end{array}\right]$
$=A(-\alpha,-\beta)$
82 (c)
Given, $A^{2}=2 A-I$
Now, $A^{3}=A\left(A^{2}\right)$
$=A(2 A-I)$
$=2 A^{2}-A$
$=2(2 A-I)-A$
$=3 A-2 I$
$A^{4}=A\left(A^{3}\right)$
$=A(3 A-2 I)$
$=3 A^{2}-2 A$
$=3(2 A-I)-2 A$
$=4 A-3 I$
Following this, we can say $A^{n}=n A-(n-1) I$.
83 (d)
A is involuntary. Hence,
$A^{2}=I \Rightarrow A=A^{-1}$
Also,
$(k A)^{-1}=\frac{1}{k}(A)^{-1}$
$\Rightarrow\left(\frac{1}{2} A\right)^{-1}=2(A)^{-1} \Rightarrow 2 A$
84 (c)
As A is a skew-symmetric matrix,
$A^{T}=-A$
$\Rightarrow a_{i j}=0, \forall i$
$\Rightarrow \operatorname{tr}(A)=0$
Also,
$|A|=\left|A^{T}\right|=|-A|=(-1)^{3}|A|$
$\Rightarrow 2|A|=0$
$\Rightarrow|A|=0$
$85 \quad$ (b)
Z is idempotent, then
$Z^{2}=Z \Rightarrow Z^{1}, Z^{4}, \ldots, Z^{n}=Z$
$\therefore(I+Z)^{n}={ }^{n} C_{0} I^{n}+{ }^{n} C_{1} I^{n-1} Z$
$+{ }^{n} C_{2} I^{n-2} Z^{2}+\cdots+{ }^{n} C_{n} Z^{n}$
$={ }^{n} C_{0} I+{ }^{n} C_{1} Z+{ }^{n} C_{2} Z+{ }^{n} C_{3}+\cdots$
$+{ }^{n} C_{n} Z$
$=I+\left({ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+\cdots+{ }^{n} C_{n}\right) Z$
$=I+\left(2^{n}-1\right) Z$
86 (b)
$A^{2}=O, A^{3}=A^{4}=\cdots=A^{n}=0$
Then, $A(I+A)^{n}=A(I+n A)=A+n A^{2}=A$
87 (b)
$\left(A^{\prime}-\frac{1}{2} I\right)\left(A-\frac{1}{2} I\right)=\mathrm{I}$ and $\left(A^{\prime}+\frac{1}{2} I\right)\left(A+\frac{1}{2} I\right)=\mathrm{I}$
$\Rightarrow A+A^{\prime}=0 \quad$ (subracting the two results)
$\Rightarrow A^{\prime}=-A$
$\Rightarrow A^{2}=-\frac{3}{4} I$
$\Rightarrow\left(\frac{-3}{4}\right)^{n}=(\operatorname{det}(A))^{2}$
$\Rightarrow n$ is even
$88 \quad \mathbf{(a , b} \mathbf{b} \mathbf{c})$
We have, $|A(\theta)=1|$
Hence, A is invertible.
$A(\pi+\theta)=\left[\begin{array}{cc}\sin (\pi+\theta) & \cos (\pi+\theta) \\ i \cos (\pi+\theta) & \sin (\pi+\theta)\end{array}\right]$
$=\left[\begin{array}{ll}-\sin \theta & -i \cos \theta \\ -i \cos \theta & -\sin \theta\end{array}\right]=A(\theta)$
$\operatorname{adj}(A(\theta))=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ -i \cos \theta & \sin \theta\end{array}\right]$
$\Rightarrow A(\theta)^{-1}=\left[\begin{array}{cc}\sin \theta & -i \cos \theta \\ -i \cos \theta & \sin \theta\end{array}\right]=A(\pi+\theta)$
$89 \quad \mathbf{(a , b}, \mathbf{c})$
$S=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \Rightarrow S^{-1}=\frac{1}{2}\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
We have,
$S A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{lll}b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b\end{array}\right]$
$=\left[\begin{array}{ccc}0 & 2 a & 2 a \\ 2 b & 0 & 2 b \\ 2 c & 2 c & 0\end{array}\right]$
$\therefore S A S^{-1}=\left[\begin{array}{ccc}0 & 2 a & 2 a \\ 2 b & 0 & 2 b \\ 2 c & 2 c & 0\end{array}\right] \frac{1}{2}\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
$=\left[\begin{array}{lll}0 & a & a \\ b & 0 & b \\ c & c & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}2 a & 0 & 0 \\ 0 & 2 b & 0 \\ 0 & 0 & 2 c\end{array}\right]$
$=\operatorname{diag}(2 a, 2 b, 2 c)$
$90 \quad \mathbf{a}, \mathbf{b})$

Let $I=k=1$ (say). Then,

$$
\begin{gathered}
A_{i} A_{k}=A_{i} A_{k}=A_{1} A_{1} \\
A_{i} A_{k}=A_{1} A_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=l \\
A_{2} A_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=l
\end{gathered}
$$

$$
\therefore A_{i} A_{k}+A_{k} A_{i}=l+l=2 l
$$

If $i \neq k$ let $i=3$ and $k=2$, then

$$
\begin{aligned}
A_{i} A_{k}=A_{1} A_{2} & =\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
-i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & i
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
A_{2} A_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{cccc}
-i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i
\end{array}\right]
\end{gathered}
$$

$$
\Rightarrow A_{1} A_{2}+A_{2} A_{1}=0
$$

91 (a,b,d)

$$
\begin{aligned}
& A^{2}-4 A-5 I_{3} \\
& =\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]-4\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right] \\
& -5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
9 & 8 & 8 \\
8 & 9 & 8 \\
8 & 8 & 9
\end{array}\right]+\left[\begin{array}{ccc}
-4 & -8 & -8 \\
-8 & -4 & -8 \\
-8 & -8 & -4
\end{array}\right]+\left[\begin{array}{ccc}
-5 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & -5
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=O \\
& \therefore A^{2}-4 A-5 I_{3}=O \\
& \Rightarrow A^{-1} A^{2}-4 A^{-1} A-5 A^{-1} I_{3}=O
\end{aligned}
$$

$\Rightarrow \quad\left(A^{-1} A\right) A-4 I_{3}-5 A^{-1}=0$
$\Rightarrow I A-4 I_{3}-5 A^{-1}=0$
$\Rightarrow A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
Also, $\left|A^{2}\right|=\left|\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right|$
$=9(81-64)-8(72-64)+8(64-72)$
$=9 \times 17-8 \times 8+8 \times(-8)$
$=153-128=25 \neq 0$
$\therefore A^{2}$ is invertible
And $A^{3}=A \cdot A^{2}$
$=A \cdot\left(4 A-5 I_{3}\right)=4\left(A^{2}-5 A\right)$
$=\left[\begin{array}{lll}36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36\end{array}\right]+\left[\begin{array}{ccc}-5 & -10 & -10 \\ -10 & -5 & -10 \\ -10 & -10 & -5\end{array}\right]$
$=\left[\begin{array}{lll}31 & 22 & 22 \\ 22 & 31 & 22 \\ 22 & 22 & 31\end{array}\right]$
$\therefore\left|A^{3}\right| \neq 0$
$\therefore A^{3}$ is invertible
92 (a, d)
Here X is a $n \times 1$ matrix, C is a $n \times n$ matrix and X^{T} is a $1 \times n$ matrix. Hence $X^{T} C X$ is a 1×1
matrix. Let $X^{T} C X=k$. then,
$\left(X^{T} C X\right)^{T}=X^{T} C^{T}\left(X^{T}\right)^{T}=X^{T}(-C) X=-X^{T} C X$

$$
=-k
$$

$\Rightarrow k=-k$
$\Rightarrow k=0$
$\Rightarrow X^{T} C X$ is null matrix

($\mathbf{a}, \mathbf{b}, \mathbf{c}$)

$\left|A^{-1}\right|=-1 \Rightarrow|A|=-1$
Now, use adj $A=|A| A^{-1}$ and $A=\left(A^{-1}\right)^{-1}$
94 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
If $|A| \neq 0$, then
$A B=A C$
$\Rightarrow A^{-1} A B=A^{-1} A C$
$\Rightarrow B=C$
Also if A is orthogonal matrix, then $A A^{T}=I$
$\Rightarrow\left|A A^{T}\right|=1 \Rightarrow|A|^{2}=1 \Rightarrow A$ is invertible

($\mathbf{a}, \mathbf{c}, \mathbf{d}$)

Given, $A^{2}+2 A+2 I=0$
$\Rightarrow A^{2}+A=-2 I$
$\Rightarrow\left|A^{2}+A\right|=|-2 I|$
$\Rightarrow|A||A+I|=(-2)^{n}$
$\Rightarrow|A| \neq 0$
Therefore, A is non-singular, hence its inverse exists. Also, multiplying the given equation both sides with A^{-1}, we get
$A^{-1}=-\frac{1}{2}(A+I)$
(a, c)

We have,
$\left(\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right)^{-1}=\frac{1}{1+\tan ^{2} \theta}\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$=\cos ^{2} \theta\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$=\cos ^{2} \theta\left[\begin{array}{cc}1-\tan ^{2} \theta & -2 \tan \theta \\ 2 \tan \theta & 1-\tan ^{2} \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 \theta & -\sin \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
$\therefore a-\cos 2 \theta, b=\sin 2 \theta$
97 (\mathbf{a}, \mathbf{c})
A is orthogonal matrix.
$\therefore A A^{T}=1$
$\Rightarrow \frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right] \frac{1}{3}\left[\begin{array}{ccc}1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow \frac{1}{9}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]\left[\begin{array}{ccc}1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}9 & 0 & a+4+2 b \\ 0 & 9 & 2 a+2-2 b \\ a+4+2 b & 2 a+2-2 b & a^{2}+4+b^{2}\end{array}\right]$

$$
=\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

$\Rightarrow a+4+2 b=0,2 a+2-2 b=0$ and $a^{2}+4+$
$b^{2}=9$
$\Rightarrow a+2 b+4=0, a-b+1=0$ and $a^{2}+b^{2}=5$
$\Rightarrow a=-2, b=-1$
98 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
We have, $A^{2} B=A(A B)=A A=A^{2}, B^{2} A=$
$B(B A)=B B=B^{\wedge} 2$,
$A B A=A(B A)=A B=A$ and $B A B=B(A B)=$
$B A=B$
99 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
B is an idempotent matrix
$\therefore B^{2}=B$
Now,
$A^{2}=(I-B)^{2}$
$=(I-B)(I-B)$
$=I-I B-I B+B^{2}$
$I-B-B+B^{2}$
$=I-2 B+B^{2}$
$=I-2 B+B$
$=I-B$
$=A$
Therefore, A is idempotent. Again,
$A B=(I-B) B=I B-B^{2}=B-B^{2}=B^{2}-B^{2}$ $=0$
Similarly, $B A=B(I-B)=B I-B^{2}=B-B=0$ 100 (\mathbf{a}, \mathbf{d})
$\left(B^{T} A B\right)^{T} B^{T} A^{T}\left(B^{T}\right)^{T}=B^{T} A^{T} B=B^{T} A B$ if A is
symmetric
Therefore, $B^{T} A B$ is symmetric if A is symmetric
Also, $\left(B^{T} A B\right)^{T}=B^{T} A^{T} B=B^{T}(-A) B=$ $-\left(B^{T} A^{T} B\right)$
Therefore, $B^{T} A B$ if A is skew-symmetric if A is skew-symmetric
101 (b,d)
Let $A=\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right] \sim\left[\begin{array}{ccc}-1 & 2 & 5 \\ 0 & 0 & a+6 \\ 0 & 0 & a+6\end{array}\right]$
$\left(R_{2} \rightarrow R_{2}+2 R_{1}, R_{3} \rightarrow R_{3}+R_{1}\right)$
Clearly rank of A is 1 , if $a=-6$
Also, for $a=1,|A|=\left|\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & -3 \\ 1 & -2 & 2\end{array}\right|=0$
and $\left|\begin{array}{cc}2 & 5 \\ -4 & -3\end{array}\right|=-6+20=14 \neq 0$
\therefore Rank of A is 2 , if $a=1$
102 (a, b, c)
Applying $R_{3} \rightarrow R_{3}-R_{2} \rightarrow R_{2}-R_{1}$, we get
$|a|=3\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ d & d & d \\ d & d & d\end{array}\right]=0$
Where d is the common difference of the AP.
Therefore, the given system of equation has
infinite number of
Solution. Also,
$|B|=a_{1}^{2}+a_{2}^{2} \neq 0$
103 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
Given, $A B=A, B A=B$
$\Rightarrow B \times A B=B \times A$
$\Rightarrow(B A) B=B$
$\Rightarrow B^{2}=B$
Also,
$A \times B \times A=A B$
$\Rightarrow(A B) A=A$
$\Rightarrow A^{2}=A$
$\operatorname{Now}\left(A^{T}\right)^{2}=\left(A^{T} \times A^{T}\right)=(A \times A)^{T}=\left(A^{2}\right)^{T}=A^{T}$
Similarly, $\left(B^{T}\right)^{2}=B^{T}$
$\Rightarrow A^{T}$ and B^{T} are idempotent
104 (b, c)
$(-A)^{-1}=\frac{\operatorname{adj}(-A)}{|-A|}=\frac{(-1)^{n-1} \operatorname{adj}(A)}{(-1)^{n}|A|}=\frac{\operatorname{adj}(A)}{-|A|}=-A^{-1}$
(for any value of n)
Given, $A^{n}=0$
Now,
$(I-A)\left(I+A+A^{2}+\cdots+A^{n-1}\right)=I-A^{n}=I$
$\Rightarrow(I-A)^{-1}=I+A+A^{2}+\cdots+A^{n-1}$
105 (a, b, c)
$\because|A|=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$

$$
\begin{aligned}
& =3(-3+4)+3(2-0) \\
& +4(-2-0)=1
\end{aligned}
$$

$\therefore \operatorname{adj}(\operatorname{adj} A)=|A|^{3-2} A=A$ and $\mid \operatorname{adj}(\operatorname{adj} A)=$ $A A=1$

Also,
$|\operatorname{adj} A|=|A|^{3-1}=|A|^{2}=I^{2}=1$
106 (a, d)
Given, $(A+B)^{2}=A^{2}+B^{2}+2 A B$
$\Rightarrow(A+B)(A+B)=A^{2}+B^{2}+2 A B$
$\Rightarrow A^{2}+A B+B A+B^{2}=A^{2}+B^{2}+2 A B \Rightarrow B A$

$$
=A B
$$

$\Rightarrow\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}a+2 & -a+1 \\ b-2 & -b-1\end{array}\right]=\left[\begin{array}{cc}a-b & 1+1 \\ 2 a+b & 2-1\end{array}\right]$
The corresponding elements of equal matrices are equal.
$a+2=a-b,-a+1=2 \Rightarrow a=-1$
$b-2=2 a+b,-b-1=1 \Rightarrow b=-2$
$\Rightarrow a=-1, \quad b=-2$
107 ($\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$)
$A^{2}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]$
We have,
$A^{2}-4 A-5 I_{3}=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]-4\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$

$$
-5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=0
$$

$\Rightarrow 5 I_{3}=A^{2}-4 A=A\left(A-4 I_{3}\right)$
$\Rightarrow I_{3}=\frac{1}{5}\left(A-4 I_{3}\right) \Rightarrow A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
Note that $|A|=5$. Since $\left|A^{3}\right|=|A|^{3}=5^{3} \neq 0, A^{3}$ is invertible. Simi-larly, A^{2} invertible
108 (b, c)
$\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$
$\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1$
$\operatorname{det}(\operatorname{adj} A)=|A|^{n-1}=1$
Hence, $|\omega A|=\omega^{n}|A|=1$ only when $n=3 k, k \in$ Z
109 (b, c)
$A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$
$\Rightarrow\left(A^{-1}\right)^{2}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
Similarly,
$\left(A^{-1}\right)^{3}=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$

And $\left(A^{-1}\right)^{n}=\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right] \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{n} A^{-n}=$
$\lim _{n \rightarrow \infty}\left[\begin{array}{cc}1 / n & 0 \\ -1 & 1 / n\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$
$\lim _{n \rightarrow \infty} \frac{1}{n^{2}} A^{-n}=\lim _{n \rightarrow \infty}\left[\begin{array}{cc}1 / n^{2} & 0 \\ -1 & 1 / n^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
110 (a,c)
$A_{\alpha} \cdot A_{(-\alpha)}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha\end{array}\right.$.
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
$=\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha\end{array}\right.$.
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
Also, $A_{\alpha} \cdot A_{\beta}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \alpha \cos \beta-\sin \alpha \sin \beta & \cos \alpha \sin \beta+\sin \alpha \cos \end{array}\right.$
$=[\sin \alpha \cos \beta+\cos \alpha \sin \beta \quad-\sin \alpha \sin \beta+\cos \alpha c c$
$=\left[\begin{array}{ll}\cos (\alpha+\beta) & \sin (\alpha+\beta) \\ \sin (\alpha+\beta) & \cos (\alpha+\beta)\end{array}\right]=A_{(\alpha+\beta)}$
111 (a,d)
Let A be a symmetric matrix
Then, $A^{\prime}=A$
Now, $\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A^{\prime}\left(B^{\prime}\right)^{\prime} \quad\left[\because(A B)^{\prime}=B^{\prime} A^{\prime}\right]$
$=B^{\prime} A^{\prime} B \quad\left[\because(B)^{\prime}=B\right]$
$=B^{\prime} A B \quad\left[\because \quad A^{\prime}=A\right]$
$\Rightarrow B^{\prime} A B$ is a symmetric matrix
Now, let A be a skew-symmetric matrix
Then, $A^{\prime}=-A$
$\therefore\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A^{\prime}\left(B^{\prime}\right)^{\prime} \quad\left[\because(A B)^{\prime}=B^{\prime} A^{\prime}\right]$
$=B^{\prime} A^{\prime} B \quad\left[\because\left(B^{\prime}\right)^{\prime}=B\right]$
$=B^{\prime}(-A) B \quad\left[\because \quad A^{\prime}=-A\right]$
$=-B^{\prime} A B$
$\therefore B^{\prime} A B$ is a skew-symmetric matrix
112 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
All are properties of diagonal matrix.
114 (b, c)
Since A is skew-symmetric, $A^{T}=-A$. We have,
$A^{2}+I=0$
$\Rightarrow A^{2}=-1$ or $A A=-I$
$\Rightarrow A(-A)=I$
$\Rightarrow A A^{T}=I$
Again, we know that
$|A|=\left|A^{T}\right|$ and $|k A|=k^{n}|A|$
Where n is the order of A. Now,
$A^{T}=(-1)^{n} \times A$
$\Rightarrow\left|A^{T}\right|=(1)^{n}|A|$
$\Phi I[1-1) n|A|=0$
Hence either $|A|=0$ or $1-(-1)^{n}=0$, i. e., n is even. But
$A^{2}=0-1=-1$
$\Rightarrow|A|^{2}=(-1)^{n}|I|=(-1)^{n} \neq 0$
Hence, the only possibility is that A is of even order
115 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
Given that A and B commute, we have
$A B=B A(\because A$ and B are symmetric)(1)
Also,
$A^{T}=A, B^{T}=B$
$\left(A^{-1} B\right)^{T}=B^{T}\left(A^{-1}\right)^{T}=B A^{-1}$
(\because if A is symmetric A^{-1} is also symmetric)
Also from Eq. (1),
$A B A^{-1}=B$
$\Rightarrow I B A^{-1}=A^{-1} B$
$\Rightarrow B A^{-1}=A^{-1} B$
Hence, from Eq. (2),
$\left(A^{-1} B\right)^{T}=A^{-1} B$
Thus, $A^{-1} B$ is symmetric Similarly, $A B^{-1}$ is also symmetric Also,
$B A=A B$
$\Rightarrow(B A)^{-1}=(A B)^{-1}$
$\Rightarrow A^{-1} B^{-1}=B^{-1} A^{-1}$
$\Rightarrow\left(A^{-1} B^{-1}\right)^{T}=\left(B^{-1} A^{-1}\right)^{T}$
$=\left(A^{-1}\right)^{T}\left(B^{-1}\right)^{T}$
$=A^{-1} B^{-1}$
Hence, $A^{-1} B^{-1}$ is symmetric
116 (a, c)
$\sin A\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $\cos A=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
$\therefore|\sin A|=\cos ^{2} \theta+\sin ^{2} \theta=1$.
Hence $\sin A$ is invertible.
Also,
$(\sin A) \times(\sin A)^{T}=$
$\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=I$
Hence, $\sin A$ is orthogonal. Also,
$2 \sin A \cos A=2\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
$=2\left[\begin{array}{cc}2 \sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta \\ \cos ^{2} \theta-\sin ^{2} \theta & 0\end{array}\right]$
$=2\left[\begin{array}{ll}\sin 2 \theta & 1 \\ \cos 2 \theta & 0\end{array}\right]$
$\neq \sin 2 A$
117 ($\mathbf{a}, \mathrm{b}, \mathrm{c}$)
$A=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ \cos \gamma & \sin \gamma & 0\end{array}\right]\left[\begin{array}{ccc}\cos \alpha & \cos \beta & \cos \gamma) \\ \sin \alpha & \sin \beta & \sin \gamma) \\ 0 & 0 & 0\end{array}\right]$
Thus, A is symmetric and $|A|=0$, hence singular
and not invertible. Also,
$A A^{T} \neq 1$
118 (\mathbf{a}, \mathbf{c})
$A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
Now,
$A^{T}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
Hence, A is orthogonal. Therefore,

$$
\begin{gathered}
A A^{T}=I \Rightarrow\left[\begin{array}{ccc}
0 & 2 b & c \\
a & b & -c \\
a & -b & c
\end{array}\right]\left[\begin{array}{ccc}
0 & a & a \\
2 b & b & -b \\
c & -c & c
\end{array}\right] \\
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Equating the corresponding elements, we get
$4 b^{2}+c^{2}=1$
$2 b^{2}-c^{2}=0$
$a^{2}+b^{2}+c^{2}=1$
Solving Eqs. (1), (2) and (3), we get
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
119 (a)
Statement 1 is true as $|A|=0$. Since $|B| \neq 0$,
statement 2 is also true and correct explanation of statement 1

120 (c)
A satisfies $A^{2}-\operatorname{Tr}(A) \cdot A+(\operatorname{det} A) I=0$
On comparing with $A^{2}-I=0$,we get
$\operatorname{Tr}(A)=0,|A|=-1$

Alternate

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c, d \neq 0$
Now $A^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\Rightarrow \quad A^{2}=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]$
$\Rightarrow \quad a^{2}+b c=1, b c+d^{2}=1$
and $a b+b d=a c+c d=0$
Also, $c \neq 0$ and $b \neq 0 \Rightarrow a+d=0$

$$
\operatorname{Tr}(A)=a+d=0
$$

and $|\mathrm{A}|=a d-b c=-a^{2}-b c=-1$

Let $A=\left[\begin{array}{ccc}0 & -c & b \\ c & 0 & a \\ -b & -a & 0\end{array}\right]$
And $A=-A^{\prime}$
$\therefore \operatorname{det}(A)=\operatorname{det}\left(-A^{\prime}\right)$
$=-\operatorname{det}\left(A^{\prime}\right)=-\operatorname{det} A$
$\therefore \operatorname{det} A=0$
$\because \operatorname{det} A^{\prime}=\operatorname{det}\left(-A^{\prime}\right)$ is not true
$\therefore \operatorname{det}\left(-A^{\prime}\right)=(-1)^{3} \operatorname{det}\left(A^{\prime}\right)=-\operatorname{det} A^{\prime}$
122 (c)
$\left[A(A+B)^{-1} B\right]^{-1}=B^{-1}\left((A+B)^{-1}\right)^{-1} A^{-1}$
$=B^{-1}(A+B) A^{-1}=\left(B^{-1}+I\right) A^{-1}=B^{-1} I+$ $I A^{-1}=B^{-1}+A^{-1}$

Hence, statement 1 is true. Statement 2 is false as $(A+B)^{-1}=A^{-1}+B^{-1}$ is not true

123 (b)
Since $A B=B A$, we have
$(A+B)^{r}=$
If $r=m+n$, then
$A^{r-p} B^{p}=A^{m} B^{r-p-m}=0$ if $p \leq n$
and $A^{r-p} B^{p}=A^{r-p} B^{n} B^{p-n}=0$ if $p>n$
Then, $(A=B)^{r}=0$, for $r=m+n$
Thus, both the statements are correct but statement 2 is not currently explaining statement 1

124 (a)
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}a^{2}+b^{2} & a c+b d \\ a c+b d & c^{2}+d^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow a^{2}+b^{2}=1(1)$
$c^{2}+d^{2}=1(2)$
$a c+b d=1(3)$
$\Rightarrow \frac{a}{d}=\frac{-b}{c}= \pm 1$
Also, we must have $a, b, c, d \in[-1,1]$ for Eqs. (1)
and (2) to get
Defined Hence, without loss of generality, we can assume $a=\cos \theta$ and $b=\sin \theta$

So for $\frac{a}{d}=\frac{-b}{c}=1$, we have
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and for $\frac{a}{d}=\frac{-b}{c}=-1$,
we have $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

(b)

$|\operatorname{adj} A|=|A|^{n-1}=|A|^{2-1}=|A|$
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A=|A|^{0} A=A$
126 (c)
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\because A^{2}=1\right]$ $\Rightarrow \quad\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \quad b(a+d)=0, \quad c(a+d)=0$
and $a^{2}+b c=1, b c+d^{2}=1$
$\Rightarrow \quad a=1, d=-1, b=c=0$
If $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, then
$A^{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
If $A \neq I, A \neq-I$, then
$\operatorname{det}(A)=-1$ (statement I is true)
Statement II, $\operatorname{Tr}(A)=1-1=0$, Statement II is false.

127 (a)

Given
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\Rightarrow A^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]$
Hence,
$A^{2}-(a+d) A+(a d-b c) I$
$=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]-(a+d)\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ $+(a d-b c)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cr}a^{2}+b c-\left(a^{2}+a d\right)+(a d-b c) & a b+b d- \\ a c+c d-(a c+c d) & b c+d^{2}-(a d+\end{array}\right.$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$=0$

Given,
$A^{3}=0$
$\Rightarrow|A|=0$ or $a d-b c=0$
$\Rightarrow A^{2}-(a+d) A=0$ or $A^{2}=(a+d) A$

Case (i)
$a+d=0$
From eq. (1)
$A^{2}=0$

Case (ii)
$a+d \neq 0$

Given,
$A^{3}=0$
$\Rightarrow A^{2} A=O$
$\Rightarrow(A+d) A . A=O$
$\Rightarrow A^{2}=0$

128 (b)

Both the statements are true as both are standard properties of diagonal matrix. But statement 2
does not explain statement 1
129 (b)
$\operatorname{adj}(F(\alpha))=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
Also,
$|F(\alpha)|=1$
Then,
$[F(\alpha)]^{-1}=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (-\alpha) & \sin (-\alpha) & 0 \\ -\sin (-\alpha) & \cos (-\alpha) & 0 \\ 0 & 0 & 1\end{array}\right]$
$=F(-\alpha)$
Similarly, we can prove that $[G(\beta)]^{-1}=G(-\beta)$
But again given matrices $F(\alpha)$ and $G(\beta)$ are special matrices for which this type of result holds

In general, such result is not true. You can verify with any other matrix. Hence, both statements are true but statement 2 is correct explanation of statement 1

130 (a)
$A=-A^{T} \Rightarrow|A|=-\left|A^{T}\right|=-|A|$
$\Rightarrow 2|A|=0$
$\Rightarrow|A|=0$
131 (d)
Matrix $a_{i j}=\frac{i-j}{i+2 j}$ is $A=\left[\begin{array}{ccc}0 & -\frac{1}{5} & -\frac{2}{7} \\ \frac{1}{4} & 0 & -\frac{1}{8} \\ \frac{2}{5} & \frac{1}{7} & 0\end{array}\right]$ which is neither

Symmetric nor skew-symmetric But this is not the reason for which A cannot be expressed as sum of symmetric and skew-symmetric matrix. In fact any matrix can be expressed as a sum of symmetric and skew-symmetric matrix. Hence, statement 1 is false but statement 2 is true

132 (a)
$A=\left[a_{i j}\right]_{n \times n}$ is square matrix such that $a_{i j}=$ 0 , for $i \neq j$, then A is called diagonal matrix. Thus,
the given statement is true and $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7\end{array}\right]$ is a diagonal matrix

133 (d)
A^{-1} exists only for non-singular matrix
$\therefore A B=A C \Rightarrow B=C$ if A^{-1} exists
134 (a)
$\because|A|=\left|\begin{array}{ll}3 & 4 \\ 3 & 5\end{array}\right|=15-12=3 \neq 0$
$\therefore A$ is non-singular matrix
$\therefore A^{-1}$ is exist
135 (d)
$A B C$ is not defined, as order of A, B and C are such that theyare not conformable for multiplication

136 (d)
Statement 1 is false
$\because A=\left|A_{i j}\right|_{n \times n}$ where $a_{i j}=0, i \geq j$
Therefore, $|A|=0$ and hence A is singular. So, inverse of A is not defined

In statement $2,|A|=0$. Therefore, inverse of A is not defined

137 (a)
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad B=\left[\begin{array}{ll}x & y \\ z & u\end{array}\right]$
Also, $A B=B A$ (given)
$\Rightarrow\left[\begin{array}{ll}a x+b z & a y+b u \\ c x+d z & c y+d u\end{array}\right]=\left[\begin{array}{ll}a x+c y & b x+d y \\ a z+c u & b z+d u\end{array}\right]$
On comparing, we get
$a x+b z=a x+c y$
$\Rightarrow \quad b z=c y$
$\Rightarrow \frac{z}{c}=\frac{y}{b}=\lambda \quad$ (say)
$\therefore \quad y=b \lambda, z=c \lambda$
And $a y+b u=b x+d y$
$\Rightarrow a b \lambda+b u=b x+b d \lambda$ [from Eq. (i)]
$\Rightarrow a \lambda+u=x+d \lambda=k$ (say)

For $\lambda=0 ; y=0, z=0, u=k, x=k$
Then, $B=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]=$ scalar matrix
Then, if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$
Then, $A B=B A=\left[\begin{array}{ll}a k & b k \\ c k & d k\end{array}\right]=k A$
138 (b)

$$
\begin{aligned}
& \because A A^{\prime}=\frac{1}{3}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
-2 & -2 & -1
\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{ccc}
1 & -2 & -2 \\
-2 & 1 & -2 \\
2 & 2 & -1
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
\end{aligned}
$$

$\therefore A$ is orthogonal
Also, if A and B are orthogonal, then $A B$ is orthogonal

139 (b)
Let, $A=\left[\begin{array}{lll}d_{1} & z_{1} & z_{2} \\ \bar{z}_{1} & d_{2} & z_{3} \\ \bar{z}_{2} & \bar{z}_{3} & d_{3}\end{array}\right]$
$A^{2}=0$
$\Rightarrow\left[\begin{array}{lll}d_{1} & z_{1} & z_{2} \\ \bar{z}_{3} & d_{2} & z_{3} \\ \bar{z}_{2} & \bar{z}_{3} & d_{3}\end{array}\right]\left[\begin{array}{lll}d_{1} & z_{1} & z_{2} \\ \bar{z}_{1} & d_{2} & z_{3} \\ \bar{z}_{2} & \bar{z}_{3} & d_{3}\end{array}\right]$
$=\left[\begin{array}{ccc}d_{1}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} & d_{1} z_{1}+d_{2} z_{2}+z_{2} \bar{z}_{3} & d_{1} \\ d_{1} \bar{z}_{1}+d_{2} \bar{z}_{1}+z_{3} \bar{z}_{2} & d_{2}^{2}+\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2} & \bar{z}_{1} \\ d_{1} \bar{z}_{2}+\bar{z}_{3} \bar{z}_{1}+d_{3} \bar{z}_{2} & z_{1} \bar{z}_{2}+d_{2} \bar{z}_{3}+d_{3} \bar{z}_{3} & d\end{array}\right.$
\Rightarrow Diagonal elements $d_{1}=d_{2}=d_{3}=0$ and $\left|z_{1}\right|=$ $\left|z_{2}\right|=\left|z_{3}\right|=0$
$\Rightarrow z_{1}=z_{2}=z_{3}=0$
$\Rightarrow A=$ Null matrix

Thus, statement 1 is true. Also,
$A^{2}=0 \Rightarrow|A|^{2}=0 \quad$ or $|A|=0$
Thus, statement 2 is true but it does not explain statement 1

We know that $|\operatorname{adj} A|=|A|^{n-1}$. Hence, statement 2 is false.

Now,

$$
|\operatorname{adj}(\operatorname{adj} A)|=|\operatorname{adj} A|^{n-1}=\left||A|^{n-1}\right|^{n-1}
$$

$$
=|A|^{(n-1)^{2}}
$$

Then,
$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=\mid \operatorname{adj}(\operatorname{adj} A))\left.\right|^{n-1}$

$=|A|^{(n-1)^{3}}$
Hence, statement 1 is true
141 (a)
A is involuntary, hence,
$A^{2}=I$
$\Rightarrow A^{3}=A^{5}=\cdots=A$ and $A^{2}=A^{4}=A^{6}=\cdots=I$
$\Rightarrow(I-A)^{n}={ }^{n} C_{0} I-{ }^{n} C_{1} A+{ }^{n} C_{2} A^{2}-{ }^{n} C_{3} A^{3}$

$$
+\cdots
$$

$={ }^{n} C_{0} I-{ }^{n} C_{1} A+{ }^{n} C_{2} I-{ }^{n} C_{3} A+{ }^{n} C_{4} I-\cdots$
$=\left({ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+\cdots\right) I$

$$
-\left({ }^{n} C_{1} A+{ }^{n} C_{3}+{ }^{n} C_{5}+\cdots\right)
$$

$A=2^{n-1}(I-a)$
$\Rightarrow\left[(I-A)^{n}\right] A^{-1}=2^{n-1}(I-a) A^{-1}$
$=2^{n-1}\left(A^{-1}-I\right)$
c if a is nilpotent of index 2 , then
$A^{2}=A^{3}=A^{4} \ldots=A^{n}=0$
$\Rightarrow(I-A)^{n}={ }^{n} C_{0} I-{ }^{n} C_{1} A+{ }^{n} C_{2} A{ }^{2}-{ }^{n} C_{3} A^{3}$
$+\cdots$
$=I-n A+O+O+\cdots$
$=I-n a$
d A is orthogonal. Hence,
$A A^{r}=I$
$\Rightarrow\left(A^{T}\right)^{-1}=A$
143 (d)
$A^{2}=A \Rightarrow A$ is idempotent matrix
$A^{m}=O \Rightarrow A$ is nilpotent matrix
$A^{2}=I \Rightarrow A$ is involutory matrix
$A^{T}=A \Rightarrow A$ is symmetric matrix
(c)
$|A|=2 \Rightarrow\left|2 A^{-1}\right|=2^{3} /|A|=4$
$|\operatorname{adj}(\operatorname{adj}(2 A))|=|2 A|^{4}=$
$2^{12} /|A|^{4}=2^{12} / 2^{12}=1$
$(A+B)^{2}=A^{2}+B^{2}$
$\Rightarrow A B+B A=O$
$\Rightarrow|A B|=|-B A|=-|A B|$
$\Rightarrow|A B|=0$
$\Rightarrow|B|=0$
Product $A B C$ is not defined
145 (b)
Since A is idempotent, $A^{2}=A^{3}=A^{4}=\cdots=A$.
now,
$(A+I)^{n}=I+{ }^{n} C_{1} A+{ }^{n} C_{2} A+\cdots+{ }^{n} C_{n} A{ }^{n}$
$=I+{ }^{n} C_{1} A+{ }^{n} C_{2} A+\cdots+{ }^{n} C_{n} A$
$=I+{ }^{n} C_{1} A+{ }^{n} C_{2} A+\cdots+{ }^{n} C_{n} A$
$=I+\left({ }^{n} C_{1} A+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}\right) A$
$=I+\left(2^{n}-1\right) A$
$\Rightarrow 2^{n}-1=127$
$\Rightarrow n=7$

We have,
$(I-A)\left(I+A+A^{2}+\cdots+A^{7}\right)$
$=I+A+A^{2}+\cdots+A^{7}$ $+\left(-A-A^{2}-A^{3}-A^{4} \ldots-A^{8}\right)$
$=I-A^{8}$
$=I\left(\right.$ if $\left.A^{8}=O\right)$
Here matrix A is skew-symmetric and since
$|A|=\left|A^{7}\right|=(-1)^{n}|A|$
So $|A|\left(1-(-1)^{n}\right)=0$. As n is odd, hence $|A|=0$. hence a is singular,

If A is symmetric, A^{-1} is also symmetric for matrix of any order
$|A|=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8\end{array}\right|$
$=1(24-24)-2(16-20)+3(12-15)$
$=-1$
$|B|=\left|\begin{array}{lll}3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9\end{array}\right|$
$=3(27-16)-2(18-56)+5(4-21)$
$=24$
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A=|A| A=-A$
147 (a)
Since, $A=P^{-1} B P$
$\Rightarrow \operatorname{det}(A)=\operatorname{det}\left(P^{-1} B P\right)$
$=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(B) \operatorname{det}(P)$
$=\frac{1}{\operatorname{det}(P)} \operatorname{det}(B) \operatorname{det}(P)$
$\Rightarrow \operatorname{det}(A)=\operatorname{det}(B)$
148 (c)
Since, $\left[\begin{array}{ccc}1 & 2 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]=0$
$\Rightarrow 1(40-40)-3(20-24)+(\lambda+2)(10-12)$
$=0$
$\Rightarrow \lambda=4$
Now, $A+B=\left[\begin{array}{lll}4 & 5 & 10 \\ 5 & 6 & 13 \\ 5 & 6 & 14\end{array}\right]$
$\therefore \operatorname{tr}(A+B)=4+6+14=24$
149 (b)
Let,
$a=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\Rightarrow A^{2}-(a+d) A+(a d-b c) I$
$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]-(a+d)\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+(a d$ $-b c)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]-\left[\begin{array}{ll}a^{2}+a d & a b+b d \\ a c+c d & a d+d^{2}\end{array}\right]$

$$
+\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]
$$

$=0$
150 (c)
$A B=A \Rightarrow|A B|=|A|$
$\Rightarrow|A|=0$ or $|B|=1$
$B A=B \Rightarrow|B A|=|B|$
$\Rightarrow|A|=1$ or $|B|=0$
If $|A|=0$, then from Eq. (2), $|B|=0$
If $|B|=0$, then from Eq. (1), $|A|=0$
151 (d)
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
$\Rightarrow B=\left[\begin{array}{lll}a_{12}+a_{13} & a_{11}+a_{13} & a_{11}+a_{12} \\ a_{22}+a_{23} & a_{21}+a_{23} & a_{21}+a_{22} \\ a_{32}+a_{33} & a_{31}+a_{33} & a_{31}+a_{32}\end{array}\right]$
$\Rightarrow X=A^{-1} B$
$\Rightarrow \frac{1}{|A|}\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$
$\left[\begin{array}{lll}a_{12}+a_{13} & a_{11}+a_{13} & a_{11}+a_{12} \\ a_{22}+a_{23} & a_{21}+a_{23} & a_{21}+a_{22} \\ a_{32}+a_{33} & a_{31}+a_{33} & a_{31}+a_{32}\end{array}\right]$
$=\frac{1}{|A|}\left[\begin{array}{ccc}0 & |A| & |A| \\ |A| & 0 & |A| \\ |A| & |A| & 0\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
$\Rightarrow\left|A_{1} B\right|=2$
$\Rightarrow\left|A^{1}\right||B|=2$
$\Rightarrow|B|=2|A|$
152 (b)
$A^{n}-A^{n-2}=A^{2}-I \Rightarrow A^{50}=A^{48}+A^{2}-I$
Further,
$A^{48}=A^{46}+A^{2}-I$
$A^{46}=A^{44}+A^{2}-I$
$\vdots \quad \vdots \quad \vdots \quad \vdots$
$A^{4}=A^{2} A^{2}-I$
$A^{50}=25 A^{2}-24 I$
Here,
$A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
$\Rightarrow A^{50}=\left[\begin{array}{ccc}25 & 0 & 0 \\ 25 & 25 & 0 \\ 25 & 0 & 25\end{array}\right]-24\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1
\end{array}\right]
$$

$\therefore\left|A^{50}\right|=1$
Also, $\operatorname{tr}\left(A^{50}\right)=1+1+1=3$, Further,
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \cup_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
Similarly,
$U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $U_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Rightarrow U\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, i.e., $|U|=1$
153 (c)
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$
$\Rightarrow \lambda I=\left[\begin{array}{lll}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right]$
$\Rightarrow A-\lambda \mathrm{I}=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 2 & 3-\lambda & 4 \\ -1 & -1 & -2-\lambda\end{array}\right]$
$\Rightarrow \operatorname{det}(A-\lambda \mathrm{I})=-(\lambda-1)(\lambda+1)(\lambda-3)$
Thus, the characteristic roots are $-1,1$ and 3 .

As second row of all the options is same, we are to look at the
Elements of the first row. Let the left inverse be
$\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$. Then,
$\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\therefore a+b+2 c=1$
$-a+b+3 c=1$, i.e., $b=\frac{1-5 c}{2}, a=\frac{1+c}{2}$
Thus, matrices in the options (a), (b) and (d) are the inverses and
Matrix in option (c) is not the left inverse
155 (a)
$A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{ll}2 x^{2} & 2 x^{2} \\ 2 x^{2} & 2 x^{2}\end{array}\right], A^{3}$

$$
=\left[\begin{array}{ll}
2^{2} x^{2} & 2^{2} x^{2} \\
2^{2} x^{2} & 2^{2} x^{2}
\end{array}\right]
$$

And so on. Then
$e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots$
$=\left[\begin{array}{cc}1+x+\frac{2 x^{2}}{2!} & x+\frac{2 x^{2}}{2!} \\ +\frac{2^{2} x^{3}}{3!}+\cdots+\frac{2^{2} x^{3}}{3!}+\cdots \\ x+\frac{2 x^{2}}{2!} & 1+x+\frac{2 x^{2}}{2!} \\ +\frac{2^{2} x^{3}}{3!}+\cdots+\frac{2^{2} x^{3}}{3!}+\cdots\end{array}\right]$
$=\left[\begin{array}{c}\frac{1}{2}\left(\begin{array}{c}1+2 x \\ +\frac{2^{2} x^{2}}{2!} \\ +\frac{2^{3} x^{3}}{3!}+\cdots\end{array}\right)+\frac{1}{2} \frac{1}{2}\binom{1+2 x+}{\frac{2^{2} x^{2}}{2!}+\cdots}-\frac{1}{2} \\ \frac{1}{2}\left(\begin{array}{c}1+2 x \\ +\frac{2^{2} x^{2}}{2!} \\ +\frac{2^{3} x^{3}}{3!}+\cdots\end{array}\right)-\frac{1}{2}\binom{1+2 x}{+\frac{2^{2} x^{2}}{2!}+\cdots}+\frac{1}{2}\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{ll}e^{2 x}+1 & e^{2 x}-1 \\ e^{2 x}-1 & e^{2 x}+1\end{array}\right]$
$\Rightarrow f(x)=e^{2 x}+1$ and $g(x)=e^{2 x}-1$
$\int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

$$
=\log \left(e^{x}+e^{-x}\right)+c
$$

156 (4)
$\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ is and idempotent matrix
$\Rightarrow\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]^{2}=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a^{2}+b c & a b+b-a b \\ a c+c-a c & b c+(1-a)^{2}\end{array}\right]=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}a^{2}+b c & b \\ c & b c+(1-a)^{2}\end{array}\right]=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$
$\Rightarrow a^{2}+b c=a$
$a-a^{2}=b c=1 / 4 \quad$ (given)
$f(a)=1 / 4$
157 (0)
$A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$
$\Rightarrow A^{2}=A \cdot A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$\Rightarrow A^{4}=A^{2} \cdot A^{2}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}3^{2} & 0 \\ 0 & 3^{2}\end{array}\right]$
$\Rightarrow A^{8}=\left[\begin{array}{cc}3^{4} & 0 \\ 0 & 3^{4}\end{array}\right]$
And $A^{6}=A^{4} \cdot A^{2}=\left[\begin{array}{cc}3^{2} & 0 \\ 0 & 3^{2}\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}3^{2} & 0 \\ 0 & 3^{2}\end{array}\right]$
Let $V=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$A^{8}+A^{6}+A^{4}+A^{2}+I$
$\left[\begin{array}{cc}81 & 0 \\ 0 & 81\end{array}\right]+\left[\begin{array}{cc}27 & 0 \\ 0 & 27\end{array}\right]+\left[\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}121 & 0 \\ 0 & 121\end{array}\right]$
$\left(A^{8}+A^{6}+A^{4}+A^{2}+I\right) V=\left[\begin{array}{c}0 \\ 11\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}121 & 0 \\ 0 & 121\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}0 \\ 11\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}121 x \\ 121 y\end{array}\right]=\left[\begin{array}{c}0 \\ 11\end{array}\right]$
$\Rightarrow x=0$ and $y=1 / 11$
$\Rightarrow V=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}0 \\ 1 / 11\end{array}\right]$
158 (4)
We have $A B=\left[\begin{array}{ccc}3 a x^{2} & 3 b x^{2} & 3 c x^{2} \\ a & b & c \\ 6 a x & 6 b x & 6 c x\end{array}\right]$
Now tr $\cdot(A B)=\operatorname{tr} \cdot(C)$
$\Rightarrow 3 a x^{2}+b+6 c x=(x+2)^{2}+2 x+5 x^{2} \forall x \in$ R (Identity)
$\Rightarrow 3 a x^{2}+6 c x+b=6 x^{2}+6 x+4$
$\Rightarrow a=2, \quad c=1, b=4$
159 (6)
Given $A^{2}=A$
$\Rightarrow \mathrm{I}=(\mathrm{I}-0.4 \mathrm{~A})(\mathrm{I}-\alpha A)$
$=I-A \alpha-0.4 A+0.4 \alpha A^{2}$
$=I-A \alpha-0.4 A+0.4 \alpha A$
$=I-A(0.4+\alpha)+0.4 \alpha A$
$\Rightarrow \quad 0.4 \alpha=0.4+\alpha$
$\Rightarrow \quad \alpha=-2 / 3$
$\Rightarrow|9 \alpha|=6$
160 (2)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 2 \\
1 & 3 & 4 \\
3 & 4 & k
\end{array}\right]=0} \\
& \Rightarrow \\
& 1(3 k-16)-2(k-12)+2(4-9=0)
\end{aligned}
$$

$\Rightarrow \quad 3 k-16-2 k+24-10=0$
$\Rightarrow \quad k=2$
161 (4)
A diagonal matrix is commutative with every square matrix if it is scalar matrix so every diagonal element is 4
$\therefore|A|=64$
162 (8)
In a skew symmetric matrix, diagonal elements
are zero. Also $\left.a_{i j}+a\right) i j=0$
Hence number of matric $=2 \times 2 \times 2=8$
163 (0)
For idempotent matrix, $A^{2}=A$
$\Rightarrow A^{-1} A^{2}=A^{-1} A \quad(\because A$ is non-singular $)$
$\Rightarrow A+I$
Thus non-singular idempotent matrix is always a unit matrix.
$\therefore l^{2}-3=1 \Rightarrow l= \pm 2$
$m^{2}-8=1 \Rightarrow m= \pm 3$
$n^{2}-15=1 \Rightarrow n= \pm 4$
And $p=q=r=0$
\Rightarrow required sum is 0
164 (2)
Let X be the solution set of the equation $A^{x}=I$, where $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ and I is the
corresponding unit matrix and $x \subseteq N$ then the minimum value of $\sum\left(\cos ^{x} \theta+\sin ^{x} \theta\right), \theta \in R$
165 (1)
$A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$
Hence, det. $A=\sec ^{2} x$
$\therefore \operatorname{det} A^{T}=\sec ^{2} x$
Now $f(x)=\operatorname{det} .\left(A^{T} A^{-1}\right)$
$=\left(\operatorname{det} . A^{T}\right)(\operatorname{det} . A)^{-1}$
$=\frac{\operatorname{det} .\left(A^{T}\right)}{\operatorname{det}(A)}=1$
Hence, $f(x)=1$

166 (4)
$\left|\operatorname{adj} A^{-1}\right|=\left|A^{-1}\right|^{2}=\frac{1}{|A|^{2}}$
$\Rightarrow\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|=\frac{1}{\left|\operatorname{adj} A^{-1}\right|}$
$=|A|^{2}=2^{2}=4$
167
(4)

Given that $A A^{T}=4 I$
$\Rightarrow|A|^{2}=4$
$\Rightarrow|A|= \pm 2$
So $A^{T}=4 A^{-1}=4 \frac{\operatorname{adj} A}{|A|}$
$\Rightarrow\left[\begin{array}{lll}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33}\end{array}\right]=\frac{4}{|A|}\left[\begin{array}{lll}c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33}\end{array}\right]$
Now $a_{i j}=\frac{4}{|A|} c_{i j}$
$\Rightarrow-2 c_{i j}=\frac{4}{|A|} c_{i j}\left(a s a_{i j}+2 c_{i j}=0\right)$
$\Rightarrow|A|=-2$
Now $|A+4 I|=\left|A+A A^{T}\right|$
$=|A|\left|I+A^{T}\right|$
$=-2\left|(I+A)^{T}\right|$
$=-2|I+A|$
$\Rightarrow|A+4 I|+2|A+I|=0$,
So on comparing, we get $5 \lambda=2 \Rightarrow \lambda=\frac{2}{5}$
Hence , $10 \lambda=4$

