Single Correct Answer Type

1. $\lim _{x \rightarrow 0} \frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sec x-\cos x}=$
a) -1
b) 1
c) 0
d) 2
2.

The value of $\lim _{x \rightarrow \infty} \frac{\left(2^{x^{n}}\right)^{\frac{1}{e^{x}}}-\left(3^{x^{x}}\right)^{\frac{1}{x}}}{x^{n}}($ where $n \in N)$ is
a) $\log n\left(\frac{2}{3}\right)$
b) 0
c) $n \log n\left(\frac{2}{3}\right)$
d) Not defined
3. $\lim _{x \rightarrow 1}\left[\operatorname{cosec} \frac{\pi x}{2}\right]^{1 /(1-x)}$ (where [•]) represents the greatest integer function) is equal to
a) 0
b) 1
c) ∞
d) Does not exist
4. $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-n+1}{n^{2}-n-1}\right)^{n(n-1)}$ is equal to
a) e
b) e^{2}
c) e^{-1}
d) 1
5. $\lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)}{1-\cos x}$ is equal to
a) 0
b) ∞
c) -2
d) 2
6. $\lim _{x \rightarrow 1} \frac{1-x^{2}}{\sin 2 \pi x}$ is equal to
a) $\frac{1}{2 \pi}$
b) $\frac{-1}{\pi}$
c) $\frac{-2}{\pi}$
d) None of these
7. The value of $\lim _{x \rightarrow \pi} \frac{1+\cos ^{3} x}{\sin ^{2} x}$ is
a) $1 / 3$
b) $2 / 3$
c) $-1 / 4$
d) $3 / 2$
8. If $f(x)=\left\{\begin{array}{ll}\frac{\sin [x]}{x}, & \text { for }[x] \neq 0 \\ 0, & \text { for }[x]=0\end{array}\right.$, where $[x]$ denotes the greatest integer less than or equal to x, then $\lim _{x \rightarrow 0} f(x)$ is
a) 1
b) 0
c) -1
d) None of these
9. $\lim _{x \rightarrow 0} \frac{x^{4}\left(\cot ^{4} x-\cot ^{2} x+1\right)}{\left(\tan ^{4} x-\tan ^{2} x+1\right)}$ is equal to
a) 1
b) 0
c) 2
d) None of these
10. $\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}$ is equal to
a) 2
b) -2
c) $1 / 2$
d) $-1 / 2$
11. $\lim _{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}},(m<n)$ is equal to
a) 1
b) 0
c) n / m
d) None of these
12. The value of $\lim _{x \rightarrow 2} \frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2}$ is
a) $\frac{1}{8 \sqrt{3}}$
b) $\frac{1}{4 \sqrt{3}}$
c) 0
d) None of these
13. $\lim _{x \rightarrow \pi / 2} \frac{\sin (x \cos x)}{\cos (x \sin x)}$ is equal to
a) 0
b) $p / 2$
c) p
d) $2 p$
14. $\lim _{x \rightarrow \infty} \frac{\sin ^{4} x-\sin ^{2} x+1}{\cos ^{4} x-\cos ^{2} x+1}$ is equal to
a) 0
b) 1
c) $\frac{1}{3}$
d) $\frac{1}{2}$
15. If $\lim _{x \rightarrow-2^{-}} \frac{a e^{1 /|x+2|}-1}{2-e^{1 /|x+1|}}=\lim _{x \rightarrow-2^{+}} \sin \left(\frac{x^{4}-16}{x^{5}+32}\right)$, then a is
a) $\sin \frac{3}{5}$
b) 2
c) $\sin \frac{2}{5}$
d) $\sin \frac{1}{5}$
16. $\lim _{x \rightarrow 1} \frac{n x^{n+1}-(n+1) x^{n}+1}{\left(e^{x}-e\right) \sin \pi x}$, where $n=100$ is equal to
a) $\frac{5050}{\pi e}$
b) $\frac{100}{\pi e}$
c) $-\frac{5050}{\pi e}$
d) $-\frac{4950}{\pi e}$
17. $\lim _{x \rightarrow 0}\left\{(1+x)^{\frac{2}{x}}\right\}$ (where $\{\cdot\}$ denotes the fractional part of x) is equal to
a) $e^{2}-7$
b) $e^{2}-8$
c) $e^{2}-6$
d) None of these
18. $\lim _{x \rightarrow \infty}[\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}]$ is equal to
a) 0
b) $\frac{1}{2}$
c) $\log 2$
d) e^{4}
19. The value of $\lim _{x \rightarrow a} \sqrt{a^{2}-x^{2}} \cot \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}$ is
a) $\frac{2 a}{\pi}$
b) $-\frac{2 a}{\pi}$
c) $\frac{4 a}{\pi}$
d) $-\frac{4 a}{\pi}$
20. $\lim _{x \rightarrow 1} \frac{1+\sin \pi\left(\frac{3 x}{1+x^{2}}\right)}{1+\cos \pi x}$ is equal to
a) 0
b) 1
c) 2
d) 4
21. If $f:(1,2) \rightarrow R$ satisfies the inequality
$\frac{\cos (2 x-4)-33}{2}<f(x)<\frac{x^{2}|4 x-8|}{x-2}, \forall x \in(1,2)$, then $\lim _{x \rightarrow 2^{-}} f(x)$ is
a) 16
b) Cannot be determined from the given information
c) -16
d) Does not exist
22. $\lim _{x \rightarrow \infty} \frac{(2 x+1)^{40}(4 x-1)^{5}}{(2 x+3)^{45}}$ is equal to
a) 16
b) 24
c) 32
d) 8
23. If $\lim _{x \rightarrow 0} \frac{x^{n}-\sin x^{n}}{x-\sin ^{n} x}$ is non-zero finite, then n must be equal
a) 4
b) 1
c) 2
d) 3
24. Let $\lim _{x \rightarrow 0} \frac{[x]^{2}}{x^{2}}=l$ and $\lim _{x \rightarrow 0} \frac{\left[x^{2}\right]}{x^{2}}=m$, where [•] denotes greatest integer, then
a) l exists but m does not
b) m exists but does not
c) Both l and m exist
d) Neither l nor m exists
25. The value of $\lim _{x \rightarrow 1}\left(\frac{p}{1-x^{p}}-\frac{q}{1-x^{q}}\right) ; p, q, \in N$ equals
a) $\frac{p+q}{2}$
b) $\frac{p q}{2}$
c) $\frac{p-q}{2}$
d) $\sqrt{\frac{p}{q}}$
26. If $\lim _{x \rightarrow 0} \frac{[(a-n) n x-\tan x] \sin n x}{x^{2}}=0$, where n is non-zero real number, then a is equal to
a) 0
b) $\frac{n+1}{n}$
c) n
d) $n+\frac{1}{n}$
27. If $\lim _{x \rightarrow \infty}\left(\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right)=2$, then
a) $a=1, b=1$
b) $a=1, b=2$
c) $a=1, b=-2$
d) None of these
28. The value of $\lim _{x \rightarrow 2} \frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}}-2^{1-x}}$ is
a) 16
b) 8
c) 4
d) 2
29. The value of $\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{e^{1 / n}}{n}+\frac{e^{2 / n}}{n}+\cdots+\frac{e^{(n-1) / n}}{n}\right]$ is
a) 1
b) 0
c) $e-1$
d) $e+1$
30. $\lim _{y \rightarrow 0} \frac{(x+y) \sec (x+y)-x \sec x}{y}$ is equal to
a) $\sec x(x \tan x+1)$
b) $x \tan x+\sec x$
c) $x \sec x+\tan x$
d) None of these
31. $\lim _{x \rightarrow \infty} \frac{\cot ^{-1}\left(x^{-a} \log _{a} x\right)}{\sec ^{-1}\left(a^{x} \log _{x} a\right)}(a>1)$ is equal to
a) 2
b) 1
c) $\log _{a} 2$
d) 0
32. $\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h-h^{2}+1\right)-f(1)}$, given that $f^{\prime}(2)=$ and $f^{\prime}(1)=4$
a) does not exist
b) is equal to $-3 / 2$
c) is equal to $3 / 2$
d) is equal to 3
33. If $f(x)=\left\{\begin{array}{c}x^{n} \sin \left(1 / x^{2}\right), x \neq 0 \\ 0, x \neq 0\end{array},(n \in I)\right.$, then
a) $\lim _{x \rightarrow 0} f(x)$ exists for $n>1$
b) $\lim _{x \rightarrow 0} f(x)$ exists for $n<0$
c) $\lim _{x \rightarrow 0} f(x)$ does not exist for any value of n
d) $\lim _{x \rightarrow 0} f(x)$ cannot be determined
34. If $\lim _{x \rightarrow a}\left(\frac{f(x)}{\mathrm{g}(x)}\right)$ exist, then
a) Both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} \mathrm{~g}(x)$ must exist
b) $\lim _{x \rightarrow a} f(x)$ need not exist but $\lim _{x \rightarrow a} \mathrm{~g}(x)$ exists
c) Neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} \mathrm{~g}(x)$ may exist
d) $\lim _{x \rightarrow a} f(x)$ exists but $\lim _{x \rightarrow a} \mathrm{~g}(x)$ need not exist
35. The value of $\lim _{x \rightarrow 2}\left(\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}-\left(\frac{x+\sqrt{2 x}}{x-2}-\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right)$ is
a) $1 / 2$
b) 2
c) 1
d) None of these
36. $\lim _{x \rightarrow \infty} \frac{e^{1 / x^{2}}-1}{2 \tan ^{-1}\left(x^{2}\right)-\pi}$ is equal to
a) 1
b) -1
c) $\frac{1}{2}$
d) $-\frac{1}{2}$
37. $\lim _{x \rightarrow 1} \frac{x \sin (x-[x])}{x-1}$, where [•] denotes the greatest integer function, is equal to
a) 0
b) -1
c) Non-existent
d) None of these
38. For $x \in R, \lim _{x \rightarrow \infty}\left(\frac{x-3}{x+2}\right)^{x}$ is equal to
a) e
b) e^{-1}
c) e^{-5}
d) e^{5}
39. $\lim _{x \rightarrow 0}\left[\frac{\sin (\operatorname{sgn}(x))}{(\operatorname{sgn}(x))}\right]$, where $[\cdot]$ denotes the greatest integer function, is equal to
a) 0
b) 1
c) -1
d) Does not exist
40. $\lim _{x \rightarrow \infty}\left((x+5) \tan ^{-1}(x+5)-(x+1) \tan ^{-1}(x+1)\right)$ is equal to
a) π
b) 2π
c) $\pi / 2$
d) None of these
41. $\lim _{x \rightarrow \infty}\left(\frac{1}{e}-\frac{x}{1+x}\right)^{x}$ is equal to
a) $\frac{e}{1-e}$
b) 0
c) $e^{\frac{e}{1-e}}$
d) Does not exist
42. Let $f(x)=\left\{\begin{array}{l}x+1, x>0 \\ 2-x, x \leq 0\end{array}\right.$ and
$\mathrm{g}(x)=\left\{\begin{array}{cc}x+3, & x<1 \\ x^{2}-2 x-2,1 \leq x<2, \text { then } \lim _{x \rightarrow 0} \mathrm{~g}(f(x)) \text { is } \\ x-5, & x \geq 2\end{array}\right.$
a) 2
b) 1
c) -3
d) Does not exists
43. $\lim _{x \rightarrow \infty}\left(\frac{x^{3}}{3 x^{2}-4}-\frac{x^{2}}{3 x+2}\right)$ is equal to
a) Does not exist
b) $1 / 3$
c) 0
d) $2 / 9$
44. $\lim _{n \rightarrow \infty} \sum_{x=1}^{20} \cos ^{2 n}(x-10)$ is equal to
a) 0
b) 1
c) 19
d) 20
45. The value of the limit $\lim _{x \rightarrow 0} \frac{a^{\sqrt{x}}-a^{1 / \sqrt{x}}}{a \sqrt{x}+a^{1 / \sqrt{x}}}, a>1$ is
a) 4
b) 2
c) -1
d) 0
46. If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is
a) 0
b) ∞
c) 1
d) None of these
47. The value of $\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x+\log (1-x)}{x^{3}}$ is
a) $\frac{1}{2}$
b) $-\frac{1}{2}$
c) 0
d) None of these
48. $\lim _{x \rightarrow \infty} \frac{x^{2} \tan \frac{1}{x}}{\sqrt{8 x^{2}+7 x+1}}$ is equal to
a) $-\frac{1}{2 \sqrt{2}}$
b) $\frac{1}{2 \sqrt{2}}$
c) $\frac{1}{\sqrt{2}}$
d) Does not exist
49. $\lim _{x \rightarrow 0}\left[\min \left(y^{2}-4 y+11\right) \frac{\sin x}{x}\right]$ (where [•] denotes the greatest integer function) is
a) 5
b) 6
c) 7
d) Does not exist
50. $\lim _{x \rightarrow \pi / 2}\left[x \tan x-\left(\frac{\pi}{2}\right) \sec x\right]$ is equal to
a) 1
b) -1
c) 0
d) None of these
51. $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is equal to
a) $-\pi$
b) π
c) $\pi / 2$
d) 1
52. If $f(x)=0$ be a quadratic equation such that $f(-\pi)=f(\pi)=0$ and $f\left(\frac{\pi}{2}\right)=-\frac{3 \pi^{2}}{4}$, then $\lim _{x \rightarrow-\pi} \frac{f(x)}{\sin (\sin x)}$ is equal to
a) 0
b) π
c) 2π
d) None of these
53. The value of $\lim _{m \rightarrow \infty}\left(\cos \frac{x}{m}\right)^{m}$ is
a) 1
b) e
c) e^{-1}
d) None of these
54. $\lim _{x \rightarrow \infty} \frac{\left(1+x+x^{2}\right)}{x(\operatorname{In} x)^{3}}$ is equal to
a) 2
b) e^{2}
c) e^{-2}
d) None of these
55. $\lim _{x \rightarrow-1} \frac{1}{\sqrt{|x|-\{-x\}}}$ (where $\{x\}$ denotes the fractional part of x) is equal to
a) Does not exist
b) 1
c) ∞
d) $\frac{1}{2}$
56. If $G(x)=-\sqrt{25-x^{2}}$, then $\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}$ is
a) $\frac{1}{24}$
b) $\frac{1}{5}$
c) $-\sqrt{24}$
d) None of these
57. $\lim _{x \rightarrow 0} \frac{\left(2^{m}+x\right)^{1 / m}-\left(2^{n}+x\right)^{1 / n}}{x}$ is equal to
a) $\frac{1}{m 2^{m}}-\frac{1}{n 2^{n}}$
b) $\frac{1}{m 2^{m}}+\frac{1}{n 2^{n}}$
c) $\frac{1}{m 2^{m-1}}-\frac{1}{n 2^{n-1}}$
d) $\frac{1}{m 2^{m-1}}+\frac{1}{n 2^{n-1}}$
58. The value of $\lim _{x \rightarrow 1}(2-x)^{\tan \frac{\pi x}{2}}$ is
a) $e^{-2 / \pi}$
b) $e^{1 / \pi}$
c) $e^{2 / \pi}$
d) $e^{-1 / \pi}$
59. $\lim _{n \rightarrow \infty}\left\{\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\cdots+\frac{n}{1-n^{2}}\right\}$ is equal to
a) 0
b) $-\frac{1}{2}$
c) $\frac{1}{2}$
d) None of these
60. $\lim _{x \rightarrow 0} \frac{x^{a} \sin ^{b} x}{\sin \left(x^{c}\right)}$, where $a, b, c \in R \sim\{0\}$, exists and has non-zero value, then
a) $a+c=b$
b) $b+c=a$
c) $a+b=c$
d) None of these
61. $\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1+\sin x}\right)^{\operatorname{cosec} x}$ is equal to
a) e
b) $\frac{1}{e}$
c) 1
d) None of these
62. $\lim _{x \rightarrow 0} \frac{1}{x} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is equal to
a) 1
b) 0
c) 2
d) None of these
63. If $\lim _{n \rightarrow \infty} \frac{n \cdot 3^{n}}{n(x-2)^{n}+n \cdot 3^{n+1}-3^{n}}=\frac{1}{3^{\prime}}$, then the range, of x is (where $n \in N$)
a) $[2,5)$
b) $(1,5)$
c) $(-1,5)$
d) $(-\infty, \infty)$
64. If $\lim _{x \rightarrow 0}\left(x^{-3} \sin 3 x+a x^{-2}+b\right)$ exists and is equal to 0 , then
a) $a=-3$ and $b=9 / 2$
b) $a=3$ and $b=9 / 2$
c) $a=-3$ and $b=-9 / 2$
d) $a=3$ and $b=-9 / 2$
65. $\lim _{x \rightarrow 0}\left[\left(1-e^{x}\right) \frac{\sin x}{|x|}\right]$ is (where [•] represents the greatest integer function)
a) -1
b) 1
c) 0
d) Does not exist
66. $\lim _{x \rightarrow 0} \frac{\cos (\tan x)-\cos x}{x^{4}}$ is equal to
a) $1 / 6$
b) $-1 / 3$
c) $1 / 2$
d) 1
67. If $\lim _{x \rightarrow 0} \frac{x^{n} \sin ^{n} x}{x^{n}-\sin ^{n} x}$ is non-zero finite, then n is equal to
a) 1
b) 2
c) 3
d) None of these
68. If $f(x)=\frac{2}{x-3}, \mathrm{~g}(x)=\frac{x-3}{x+4}$ and $h(x)=-\frac{2(2 x+1)}{x^{2}+x-12^{2}}$, then $\lim _{x \rightarrow 3}[f(x)+\mathrm{g}(x)+h(x)]$ is
a) -2
b) -1
c) $-\frac{2}{7}$
d) 0
69. Let $f(x)=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{3}{\pi} \tan ^{-1} 2 x\right)^{2 n}+5}$. Then the set of values of x for which $f(x)=0$ is
a) $|2 x|>\sqrt{3}$
b) $|2 x|<\sqrt{3}$
c) $|2 x| \geq \sqrt{3}$
d) $|2 x| \leq \sqrt{3}$
70. The value of $\lim _{x \rightarrow 0}\left(\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ (where [•] represents the greatest integral function) is
a) 199
b) 198
c) 0
d) None of these
71. $\lim _{x \rightarrow 1} \frac{(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{2 n}\right)}{\left\{(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{n}\right)\right\}^{2}}, n \varepsilon N$
a) ${ }^{2 n} P_{n}$
b) ${ }^{2 n} C_{n}$
c) $(2 n)$!
d) None of these
72.
$\lim _{x \rightarrow-1}\left(\frac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\frac{1-\cos (x+1)}{(x+1)^{2}}}$ is equal to
a) 1
b) $(2 / 3)^{1 / 2}$
c) $(3 / 2)^{1 / 2}$
d) $e^{1 / 2}$
73. $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}+3 \sqrt[3]{x}+4 \sqrt[4]{x}+\cdots+n^{x}}{\sqrt[n]{(2 x-3)}+\sqrt[3]{(2 x-3)}+\cdots+\sqrt[n]{(2 x-3)}}$ is equal to
a) 1
b) ∞
c) $\sqrt{2}$
d) None of these
74. For $x>0, \lim _{x \rightarrow 0}\left((\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right)$ is
a) 0
b) -1
c) 1
d) 2
75. $\lim _{x \rightarrow \infty} \frac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}}$ is equal to
a) 0
b) 1
c) -1
d) Does not exist
76. $\lim _{x \rightarrow 0}\left(\frac{1^{x}+2^{x}+3^{x}+\cdots+n^{x}}{n}\right)^{1 / x}$ is equal to
a) $(n!)^{n}$
b) $(n!)^{1 / n}$
c) n !
d) $\operatorname{In}(n!)$
77. The value of $\lim _{n \rightarrow \infty}\left[\frac{2 n}{2 n^{2}-1} \cos \frac{n+1}{2 n-1}-\frac{n}{1-2 n} \cdot \frac{n(-1)^{n}}{n^{2}+1}\right]$ is
a) 1
b) -1
c) 0
d) None of these
78. If $f(x)=\frac{\cos x}{(1-\sin x)^{1 / 3}}$, then
a) $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=-\infty$
b) $\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\infty$
c) $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\infty$
d) None of these
79. If $f(x)$ is differentiable and strictly increasing function, then the value of $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(x)}{f(x)-f(0)}$ is
a) 1
b) 0
c) -1
d) 2
80. $f(x)=\frac{\operatorname{In}\left(x^{2}+e^{x}\right)}{\operatorname{In}\left(x^{4}+e^{2 x}\right)}$. Then $\lim _{n \rightarrow \infty} f(x)$ is equal to
a) 1
b) $1 / 2$
c) 2
d) None of these
81. $\lim _{x \rightarrow \infty} \frac{(x+1)^{10}+(x+2)^{10}+\cdots+(x+100)^{10}}{x^{10}+10^{10}}$ is equal to
a) 0
b) 1
c) 10
d) 100
82. The value of $\lim _{x \rightarrow 1^{-}} \frac{1-\sqrt{x}}{\left(\cos ^{-1} x\right)^{2}}$ is
a) 4
b) $1 / 2$
c) 2
d) $1 / 4$
83. $\lim _{x \rightarrow \infty} \frac{n(2 n+1)^{2}}{(n+2)\left(n^{2}+3 n-1\right)}$ is equal to
a) 0
b) 2
c) 4
d) ∞
84.

The value of $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}$ is
a) 1
b) -1
c) 0
d) None of these
85. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+2 x-1}{2 x^{2}-3 x-2}\right)^{\frac{2 x+1}{2 x-1}}$ is equal to
a) 0
b) ∞
c) $1 / 2$
d) None of these
86. $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
a) Exists and it equals $\sqrt{2}$
b) Exits and it equals $-\sqrt{2}$
c) Does not exist because $x-1 \rightarrow 0$
d) Does not exist because the left-hand limit is not equal to the right-hand limit
87. $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\operatorname{In}\left(\cos \left(2 x^{2}-x\right)\right)}$ is equal to
a) 2
b) -2
c) 1
d) -1
88. $\lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1}\right)^{\alpha}+\sin \frac{1}{n}\right)^{n}$ (where $\alpha \in Q$) is equal to
a) $e^{-\alpha}$
b) $-\alpha$
c) $e^{1-\alpha}$
d) $e^{1+\alpha}$
89. If $f(x)=\lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)$, then for $x>0, y>0, f(x y)$ is equal to
a) $f(x) f(y)$
b) $f(x)+f(y)$
c) $f(x)-f(y)$
d) None of these
90. The value of $\lim _{x-0} \frac{1}{x^{3}} \int_{0}^{x} \frac{t \log (1+t)}{t^{4}+4} d t$ is
a) 0
b) $\frac{1}{12}$
c) $\frac{1}{24}$
d) $\frac{1}{64}$
91. If $x_{1}=3$ and $x_{n+1}=\sqrt{2+x_{n}}, n \geq 1$, then $\lim _{n \rightarrow \infty} x_{n}$ is
a) -1
b) 2
c) $\sqrt{5}$
d) 3
92. $\lim _{n \rightarrow \infty} n^{2}\left(x^{1 / n}-x^{1 /(n+1)}\right), x>0$, is equal to
a) 0
b) e^{x}
c) $\log _{e} x$
d) None of these
93. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}$ equals
a) $\frac{8}{\pi} f(2)$
b) $\frac{2}{\pi} f(2)$
c) $\frac{2}{\pi} f\left(\frac{1}{2}\right)$
d) $4 f(2)$
94. Among (i) $\lim _{x \rightarrow \infty} \sec ^{-1}\left(\frac{x}{\sin x}\right)$ and (ii) $\lim _{x \rightarrow \infty} \sec ^{-1}\left(\frac{\sin x}{x}\right)$
a) (i) exists, (ii) does not exist
b) (i) does not exist, (ii) exists
c) Both (i) and (ii) exist
d) Neither (i) nor (ii) exists
95. The value of $\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{x-\cos \left(\sin ^{-1} x\right)}{1-\tan \left(\sin ^{-1} x\right)}$ is
a) $-\frac{1}{\sqrt{2}}$
b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{2}$
d) $-\sqrt{2}$

Multiple Correct Answers Type

96. Given a real-valued function f such that
$f(x)= \begin{cases}\frac{\tan ^{2}\{x\}}{\left(x^{2}-[x]^{2}\right)} & \text { for } x>0 \\ 1 & \text { for } x=0, \text { where }[x] \text { is the integral } \\ \sqrt{\{x\} \cot \{x\}} & \text { for } x<0\end{cases}$
Part and $\{x\}$ is the fractional part of x, then
a) $\lim _{x \rightarrow 0^{+}} f(x)=1$
b) $\lim _{x \rightarrow 0^{-}} f(x)=\cot 1$
c) $\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1$
d) $\tan ^{-1}\left(\lim _{x \rightarrow 0^{+}} f(x)\right)=\frac{\pi}{4}$
97. Which of the following is true ($\{\cdot\}$ denotes the fractional part of the function)?
a) $\lim _{x \rightarrow \infty} \frac{\log _{e} x}{\{x\}}=\infty$
b) $\lim _{x \rightarrow 2^{+}} \frac{x}{x^{2}-x-2}=\infty$
c) $\lim _{x \rightarrow-1^{-}} \frac{x}{x^{2}-x-2}=-\infty$
d) $\lim _{x \rightarrow \infty} \frac{\log _{0.5} x}{\{x\}}=\infty$
98. Given $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=2$, where $[\cdot]$ denotes greatest integer function, then
a) $\lim _{x \rightarrow 0}[f(x)]=0$
b) $\lim _{x \rightarrow 0}[f(x)]=1$
c) $\lim _{x \rightarrow 0}\left[\frac{f(x)}{x}\right]$ does not exists
d) $\lim _{x \rightarrow 0}\left[\frac{f(x)}{x}\right]$ exists
99. $\lim _{n \rightarrow \infty} \frac{-3 n+(-1)^{n}}{4 n-(-1)^{n}}$ is equal to
a) $-\frac{3}{4}$
b) 0 if n is even
c) $-\frac{3}{4}$ if n is odd
d) None of these
100. $\lim _{n \rightarrow \infty} \frac{1}{1+n \sin ^{2} n x}$ is equal to
a) -1
b) 0
c) 1
d) ∞
101. If $\lim _{x \rightarrow \infty}\left(a n-\frac{1+n^{2}}{1+n}\right)=b$, where a is finite number, then
a) $a=1$
b) $a=0$
c) $b=1$
d) $b=-1$
102. If $m, n \in N, \lim _{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}}$ is
a) 1 , if $n=m$
b) 0 , if $n>m$
c) ∞, if $n<m$
d) n / m, if $n<m$
103. If $f(x)=\frac{3 x^{2}+a x+a+1}{x^{2}+x-2}$, then which of the following can be correct
a) $\lim _{x \rightarrow 1} f(x)$ exists $\Rightarrow a=-2$
b) $\lim _{x \rightarrow-2} f(x)$ exists $\Rightarrow a=13$
c) $\lim _{x \rightarrow 1} f(x)=4 / 3$
d) $\lim _{x \rightarrow-2} f(x)=-1 / 3$
104. Let $f(x)=\left\{\begin{array}{cc}1+\frac{2 x}{a}, & 0 \leq x<1 \\ a x, & 1 \leq x<2\end{array}\right.$. If $\lim _{x \rightarrow 1} f(x)$ exists, then a is
a) 1
b) -1
c) 2
d) -2
105. If $\lim _{x \rightarrow 1}(2-x+a[x-1]+b[1+x])$ exists, then a and b can take the values (where [•] denotes, the greatest integer function)
a) $a=1 / 3, b=1$
b) $a=1, b=-1$
c) $a=9, b=-9$
d) $a=2, b=2 / 3$
106. If $f(x)=|x-1|-[x]$, where $[x]$ is the greatest integer less than or equal to x, then
a) $f(1+0)=-1, f(1-0)=0$
b) $f(1+0)=0=f(1-0)$
c) $\lim _{x \rightarrow 1} f(x)$ exists
d) $\lim _{x \rightarrow 1} f(x)$ does not exist
107. Let $f(x)=\frac{x^{2}-9 x+20}{x-[x]}$ (where $[x]$ is the greatest integer not greater than x), then
a) $\lim _{x \rightarrow 5^{-}} f(x)=0$
b) $\lim _{x \rightarrow 5^{+}} f(x)=1$
c) $\lim _{x \rightarrow 5} f(x)$ does not exist
d) None of these
108. $L=\lim _{x \rightarrow a} \frac{|2 \sin x-1|}{2 \sin x-1}$, then
a) Limit does not exist when $a=\pi / 6$
b) $L=-1$ when $a=\pi$
c) $L=1$ when $a=\pi / 2$
d) $L=1$ when $a=0$
109. $f(x)=\lim _{n \rightarrow \infty} \frac{x}{x^{2 n}+1^{\prime}}$, then
a) $f\left(1^{+}\right)+f\left(1^{-}\right)=0$
b) $f\left(1^{+}\right)+f\left(1^{-}\right)+f(1)=3 / 2$
c) $f\left(-1^{+}\right)+f\left(-1^{-}\right)=-1$
d) $f\left(1^{+}\right)+f\left(-1^{-}\right)=0$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 110 to 109. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

110
Statement 1: $\lim _{x \rightarrow \infty}\left(\frac{1^{2}}{x^{3}}+\frac{2^{2}}{x^{3}}+\frac{3^{2}}{x^{3}}+\cdots+\frac{x^{2}}{x^{3}}\right)=\lim _{x \rightarrow \infty} \frac{1^{2}}{x^{3}}+\lim _{x \rightarrow \infty} \frac{2^{2}}{x^{3}}+\cdots+\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}}=0$
Statement 2: $\lim _{x \rightarrow a}\left(f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)\right)=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)+\cdots+\lim _{x \rightarrow a} f_{n}(x)$, where $n \in N$

Statement 1: $\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{x}$ does not exist
Statement 2: $f(x)=\frac{\sqrt{1-\cos 2 x}}{x}$ is not defined at $x=0$

Statement 1: $\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ (where [.] represents the greatest integer function) does not exist
Statement 2: $\lim _{x \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ does not exist

Statement 1: If $<a_{n}>$ be a sequence such that $a_{1}=1$ and $a_{n+1}=\sin a_{n}$, then $\lim _{n \rightarrow \infty} a_{n}=0$
Statement 2: Since $x>\sin x \forall x>0$

Statement 1: If $\lim _{x \rightarrow 0}\left(f(x)+\frac{\sin x}{x}\right)$ does not exist, then $\lim _{x \rightarrow 0} f(x)$ does not exist
Statement 2: $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ exists and has value 1

Statement 1: $\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}\right]=0$
Statement 2: For $x \in(-\delta, \delta)$, where δ is positive and $\delta \rightarrow 0, \tan x>x$

Statement 1: $\lim _{x \rightarrow 0} \sin ^{-1}\{x\}$ does not exist (where $\{\cdot\}$ denotes fractional part function)

Statement 2: $\{x\}$ is discontinuous at $x=0$
117
Statement 1: If a and b are positive and $[x]$ denotes the greatest integer $\leq x$, then $\lim _{x \rightarrow 0^{+}} \frac{x}{a}\left[\frac{b}{x}\right]=\frac{b}{a}$
Statement 2: $\quad \lim _{x \rightarrow \infty} \frac{\{x\}}{x} \rightarrow 0$, where $\{x\}$ denotes fractional part of x
118
Statement 1: $\quad \lim _{x \rightarrow 0} \log _{e}\left(\frac{\sin x}{x}\right)=0$
Statement 2: $\quad \lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow 0} g(x)\right)$

Statement 1: $\quad \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\{\sin ^{2 m}(n!\pi x)\right\}=0, m, n \in N$, when x is rational
Statement 2: When $n \rightarrow \infty$ and x is rational, $n!x$ is integer
120
Statement 1:
$\lim _{x \rightarrow \alpha} \frac{\sin (f(x))}{x-\alpha}$, where $f(x)=a x^{2}+b x+c$, is finite and non-zero, then $\lim _{x \rightarrow \alpha} \frac{e^{\frac{1}{f(x)}}-1}{e^{\frac{1}{f(x)}}+1}$ does not exist
Statement 2: $\quad \lim _{x \rightarrow \alpha} \frac{\sin (f(x))}{x-\alpha}$ can take finite value only when it takes $\frac{0}{0}$ form 121

Statement 1: If $f(x)=\left\{\begin{array}{c}x, \text { if } x \text { is rational } \\ 1-x, \text { if } x \text { is rational }\end{array}\right.$, then $\lim _{x \rightarrow 1 / 2} f(x)$ does not exist
Statement 2: $\quad x \rightarrow 1 / 2$ can be rational or irrational value
122
Statement 1: If $f(x)=\frac{(x-1)(x-2)}{(x-3)(x-4)}$, then $\lim _{x \rightarrow-\infty} \sin ^{-1} f(x)$ exists, but $\lim _{x \rightarrow \infty} \cos ^{-1} f(x)$ does not exist
Statement 2: $\quad \sin ^{-1} x$ and $\cos ^{-1} x$ are defined for $x \in[-1,1]$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.
123.

Column-I

Column- II
(A) If $L=\lim _{x \rightarrow-1} \frac{\sqrt[3]{(7-x)}-2}{(x+1)}$, then $12 L=$
(p) -2
(B) If $L=\lim _{x \rightarrow \pi / 4} \frac{\tan ^{3} x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}$, then $-L / 4=$
(q) 2
(C) If $L=+\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}$, then $20 L=$
(r) 1
(D) If $L=\lim _{x \rightarrow \infty} \frac{\log x^{n}-[x]}{[x]}$, where $n \in N,([x]$ denotes
(s) -1
greatest less than or equal to x), then $-2 L=$ CODES :

	A	B	C	D
a)	s	r	p	q
b)	r	p	q	s
c)	p	q	s	r
d)	q	s	r	p

124.

Column-I

Column- II

(A) If $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x-1}\right)-a x-b=0$, where
(p) $y=-3$
$a>0$, then there exists at least one a and b for
which point $(a, 2 b)$ lies on the line
(B) If $\lim _{x \rightarrow \infty} \frac{\left(1+a^{3}\right)+8 e^{1 / x}}{1+\left(1-b^{3}\right) e^{1 / x}}=2$, then there exist at least
(q) $3 x-2 y-5=0$
one a and b for which point (a, b^{3}) lies on the
line
(C) If $\left.\lim _{x \rightarrow \infty}\left(\sqrt{x^{4}-x^{2}+1}\right)-a x^{2}-b\right)=0$, then
(r) $15 x-2 y-11=0$
there exists at least one a and b for which
point $(a,-4 b)$ lies on the line
(D) If $\lim _{x \rightarrow-a} \frac{x^{7}+a^{7}}{x+a}=7$, where $a<0$, then there
(s) $y=2$
exists at least one a for which point $(-a, 2)$
lies on the line

CODES :

	A	B	C	D
a)	P, q	r, s	p, r	r, s
b)	r,	p, q	p, r	s
c)	q	$\mathrm{p}, \mathrm{q}, \mathrm{r}$	r, s	r, s
d)	r,	p, q	q	r

125.

Column-I

Column- II

(A) $\lim _{x \rightarrow 0}\left(\left[100 \frac{\sin x}{x}\right]+\left[100 \frac{\tan x}{x}\right]\right)$
(p) 198
(B) $\lim _{x \rightarrow 0}\left(\left[100 \frac{x}{\sin x}\right]+\left[100 \frac{\tan x}{x}\right]\right)$
(q) 199
(C) $\lim _{x \rightarrow 0}\left(\left[100 \frac{\sin ^{-1} x}{x}\right]+\left[100 \frac{\tan ^{-1} x}{x}\right]\right)$
(r) 200
(D) $\lim _{x \rightarrow 0}\left(\left[100 \frac{x}{\sin ^{-1} x}\right]+\left[100 \frac{\tan ^{-1} x}{x}\right]\right)$
(s) 201

CODES :

A
B
C
D
a) $\begin{array}{lllll}\mathrm{r} & \mathrm{q} & \mathrm{p} & \mathrm{s}\end{array}$
$\begin{array}{lllll}\text { b) } & q & r & q & p \\ \text { c) } & p & s & p & r\end{array}$
d) $\mathrm{q} \quad \mathrm{p} \quad \mathrm{r} \quad \mathrm{s}$

Linked Comprehension Type

This section contain(s) 8 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 126 to -126
Let $f(x)=\frac{\sin ^{-1}\left(1-\{x\} \times \cos ^{-1}(1-\{x\})\right.}{\sqrt{2\{x\}} \times(1-\{x\})}$, where $\{x\}$ denotes the fractional part of x
126. $R=\lim _{x \rightarrow 0+} f(x)$ is equal to
a) $\frac{p}{2}$
b) $\frac{\pi}{2 \sqrt{2}}$
c) $\frac{\pi}{\sqrt{2}}$
d) $\sqrt{2} \pi$

Paragraph for Question Nos. 127 to - 127

$A_{i}=\frac{x-a_{i}}{\left|x-a_{i}\right|}, i=1,2, \ldots, n$ and if $a_{1}<a_{2}<a_{3}<\ldots<a_{n}$
127. If $1 \leq m \leq n, m \in N$, then the value of $L=\lim _{x \rightarrow a_{m}^{-}}\left(A_{1} A_{2} \ldots A_{n}\right)$ is
a) Always 1
b) Always - 1
c) $(-1)^{n-m+1}$
d) $(-1)^{n-m}$

Paragraph for Question Nos. 128 to - 128

If $L=\lim _{x \rightarrow 0} \frac{\sin x+a e^{x}+b e^{-x}+c \operatorname{In}(1+x)}{x^{3}}=\infty$
128. The value of L is
a) $1 / 2$
b) $-1 / 3$
c) $-1 / 6$
d) 3

Paragraph for Question Nos. 129 to - 129
Let $a_{1}>a_{2}>a_{3} \ldots a_{n}>1$;
$p_{1}>p_{2}>p_{3} \ldots>p_{n}>0$; such that $p_{1}+p_{2}+p_{3}+\ldots+p_{n}$
Also $F(x)=\left(p_{1} a_{1}^{x}+p_{2} a_{2}^{x}+\ldots p_{n} a_{n}^{x}\right)^{1 / x}$
129. $\lim _{x \rightarrow 0^{+}} F(x)$ equals
a) $p_{1} \operatorname{In} a_{1}+p_{2} \operatorname{In} a_{2}+\ldots+p_{n} \operatorname{In} a_{n}$
b) $a_{1}^{p_{1}}+a_{2}^{p_{2}}+\ldots+a_{n}^{p_{n}}$
c) $a_{1}^{p_{1}} \cdot a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}$
d) $\sum_{r=1}^{n} a_{r} p_{r}$

Integer Answer Type

130. If $L=\lim _{x \rightarrow 0} \frac{e^{-x^{2} / 2}-\cos x}{x^{3} \sin x}$, then the value of $1 /(3 L)$ is
131. If $\lim _{x \rightarrow \infty} f(x)$ exists and is finite and nonzero and if $\lim _{x \rightarrow \infty}\left(f(x)+\frac{3 f(x)-1}{f^{2}(x)}\right)=3$, then the value of $\lim _{x \rightarrow \infty} f(x)$ is
132. Let $\lim _{x \rightarrow 1} \frac{x^{a}-a x+a-1}{(x-1)^{2}}=f(a)$. Then the value of $f(4)$ is
133. If $L=\lim _{x \rightarrow 2} \frac{(10-x)^{1 / 3}-2}{x-2}$, then the value of $|1 /(4 L)|$ is
134. If $\lim _{x \rightarrow 1}\left(1+a x+b x^{2}\right)^{\frac{c}{x-1}}=e^{3}$, then the value of $b c$ is
135. The value of $\lim _{x \rightarrow \infty} \frac{\log _{e}\left(\log _{e} x\right)}{e^{\sqrt{x}}}$ is
136. The integer n, for which $\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non-zero number, is
137. If $L=\lim _{n \rightarrow \infty}\left(2 \cdot 3^{2} \cdot 2^{3} \cdot 3^{4} \ldots 2^{n-1} \cdot 3^{n}\right)^{\frac{1}{\left(n^{2}+1\right)}}$, then the value of L^{4} is
138. $\lim _{x \rightarrow \infty} f(x)$, where $\frac{2 x-3}{x}<f(x)<\frac{2 x^{2}+5 x}{x^{2}}$, is
139. If $f(x)=\left\{\begin{array}{cc}x^{2}+2 & x \geq 2 \\ 1-x & x<2\end{array}\right.$ and $g(x)=\left\{\begin{array}{c}2 x \\ 3-x>1 \\ -x\end{array} x \leq 1\right.$, then the value of $\lim _{x \rightarrow 1} f(g(x))$ is
140. If $L=\lim _{x \rightarrow \infty}\left(x-x^{2} \log _{e}\left(1+\frac{1}{x}\right)\right)$, then the value of $8 L$ is
141. If $f(x)=\left\{\begin{array}{c}x-1, x \geq 1 \\ 2 x^{2}-2 x<1\end{array}, g(x)=\left\{\begin{array}{c}x+1, x>0 \\ -x^{2}+1 x \leq 0\end{array}\right.\right.$ and $h(x)=|x|$, then find $\lim _{x \rightarrow 0} f(g(h(x)))$
142. If $\lim _{x \rightarrow 0}\left[1+x+\frac{f(x)}{x}\right]^{1 / x}=e^{3}$, then the value of $\operatorname{In}\left(\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x}\right]^{1 / x}\right)$ is
143. If $\lim _{x \rightarrow 1} \frac{a \sin (x-1)+b \cos (x-1)+4}{x^{2}-1}=-2$, then $|a+b|$ is
144. If $\lim _{x \rightarrow 0} \frac{1-\sqrt{\cos 2 x} \cdot \sqrt[3]{\cos 3 x} \cdot \sqrt[4]{\cos 4 x} \ldots \sqrt[n]{\cos n x}}{x^{2}}$ has the value equal to 10 , then the value of n equals
145. $f(x)=\frac{3 x^{2}+a x+a+1}{x^{2}+x-2}$ and $\lim _{x \rightarrow-2} f(x)$ exists, then the value of $(a-4)$ is
146. Let $f^{\prime \prime}(x)$ be continuous at $x=0$. If $\lim _{x \rightarrow 0} \frac{2 f(x)-3 a f(2 x)+b f(8 x)}{\sin ^{2} x}$ exists and $f(0) \neq 0, f^{\prime}(0) \neq 0$, then the value of $3 a / b$ is
147. The value of $\lim _{n \rightarrow \infty}\left[\sqrt[3]{(n+1)^{2}}-\sqrt[3]{(n-1)^{2}}\right]$ is
148. Let $S_{n}=1+2+3+\cdots+n$ and $P_{n}=\frac{S_{2}}{S_{2}-1} \cdot \frac{S_{3}}{S_{3}-1} \cdot \frac{s_{4}}{S_{4}-1} \cdot \ldots \frac{S_{n}}{S_{n}-1}$, where $n \in N(n \geq 2)$. Then $\lim _{n \rightarrow \infty} P_{n}=$
149. The reciprocal of the value of $\lim _{x \rightarrow \infty}\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)$ is

: ANSWER KEY :

1)	b	2)	b	3)	b	4)	b	89)	b	90)	b	91)	b	92)	c
5)	d	6)	b	7)	d	8)	d	93)	a	94)	a	95)	a	1)	
9)	a	10)	c	11)	b	12)	a		a,b,c,d		a,b,c	3)	a,c	4)	
13)	b	14)	b	15)	c	16)	c		a,c						
17)	a	18)	b	19)	c	20)	a	5)	b,c	6)	a,c	7)	a,b,c	8)	
21)	c	22)	c	23)	b	24)	b		a,b,c,d						
25)	c	26)	d	27)	c	28)	b	9)	b,c	10)	b,c	11)	a,d	12)	
29)	c	30)	a	31)	b	32)	d		a,b,c						
33)	a	34)	c	35)	a	36)	d	13)	a,b,c	14)	b,c,d	1)	d	2)	b
37)	c	38)	c	39)	a	40)	b		3)	b	4)	a			
41)	d	42)	c	43)	d	44)	b	5)	a	6)	b	7)	b	8)	a
45)	c	46)	c	47)	b	48)	a	9)	c	10)	a	11)	a	12)	
49)	b	50)	b	51)	b	52)	c	13)	a	1)	a	2)	c	3)	b
53)	a	54)	d	55)	a	56)	d		1)	a	2)	c	3)	b	
57)	c	58)	c	59)	b	60)	c		4)	c					
61)	c	62)	d	63)	a	64)	a	1)	4	2)	1	3)	6	4)	3
65)	a	66)	b	67)	b	68)	c	5)	3	6)	0	7)	3	8)	6
69)	a	70)	b	71)	b	72)	b	9)	2	10)	6	11)	4	12)	0
73)	c	74)	c	75)	d	76)	b	13)	2	14)	8	15)	6	16)	9
77)	c	78)	d	79)	c	80)	b	17)	7	18)	0	19)	3	20)	2
81)	d	82)	d	83)	c		d								
85)	c	86)	d	87)	b		c								

: HINTS AND SOLUTIONS :

1 (b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sec x-\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\log \left[\left(1+x^{2}\right)^{2}-x^{2}\right]}{\left(1-\cos ^{2} x\right) / \cos x} \\
& =\lim _{x \rightarrow 0} \frac{\log \left(1+x^{2}+x^{4}\right)}{\sin x \tan x} \\
& =\lim _{x \rightarrow 0} \frac{\log \left(1+x^{2}\left(1+x^{2}\right)\right)}{x^{2}\left(1+x^{2}\right)} \cdot x^{2}\left(1+x^{2}\right)
\end{aligned}
$$

$$
\cdot \frac{1}{\frac{\sin x}{x} \cdot \frac{\tan x}{x} \cdot x^{2}}
$$

$$
=1 \cdot\left(\text { as } \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1\right)
$$

2 (b)

$$
\begin{aligned}
& L=\lim _{x \rightarrow \infty} \frac{\left(2^{x^{n}}\right)^{\frac{1}{e^{x}}}-\left(3 x^{n}\right)^{\frac{1}{e^{x}}}}{x^{n}} \\
&=\lim _{x \rightarrow \infty} \frac{(3)^{\frac{x^{n}}{e^{x}}}\left(\left(\frac{2}{3}\right)^{\frac{x^{n}}{e^{x}}}-1\right)}{x^{n}}
\end{aligned}
$$

Now, $\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{n!}{e^{x}}=0$ (differentiating numerator and denominator n times for L^{\prime}
Hopital's rule)
Hence $L=\lim _{x \rightarrow \infty}(3)^{\frac{x^{n}}{e^{x}}} \lim _{x \rightarrow \infty} \frac{\left(\frac{\left(\frac{x^{n}}{3}\right.}{\frac{e^{x}}{e^{x}}}-1\right)}{\frac{x^{n}}{e^{x}}} \lim _{x \rightarrow \infty} \frac{1}{e^{x}}$ $=1 \times \log (2 / 3) \times 0=0$
3 (b)
$\operatorname{cosec} \frac{\pi x}{2} \rightarrow 1$ when $x \rightarrow 1 \Rightarrow\left[\operatorname{cosec} \frac{\pi x}{2}\right]=1$
\therefore limit $=1$
4
(b)
$\lim _{n \rightarrow \infty}\left(\frac{n^{2}-n+1}{n^{2}-n-1}\right)^{n(n-1)}$
$=\lim _{n \rightarrow \infty}\left(\frac{n(n-1)+1}{n(n-1)-1}\right)^{n(n-1)}$
$=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n(n-1)}\right)^{n(n-1)}}{\left(1-\frac{1}{n(n-1)}\right)^{n(n-1)}}=\frac{e}{e^{-1}}=e^{2}$
5

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)}{1-\cos x}=\lim _{x \rightarrow 0} \frac{2 x\left(e^{x}-1\right)}{4 \sin ^{2} \frac{x}{2}} \\
& =2 \lim _{x \rightarrow 0}\left[\frac{(x / 2)^{2}}{\sin ^{2} \frac{x}{2}}\right]\left(\frac{e^{x}-1}{x}\right)=2
\end{aligned}
$$

6 (b)
$\lim _{x \rightarrow 1} \frac{1-x^{2}}{\sin 2 \pi x}$
$=-\lim _{x \rightarrow 1} \frac{2 \pi(1-x)(1+x)}{2 \pi \sin (2 \pi-2 \pi x)}$
$=-\lim _{x \rightarrow 1} \frac{(2 \pi-2 \pi x)}{\sin (2 \pi-2 \pi x)} \frac{1+x}{2 \pi}=\frac{-1}{\pi}$
(d)

We have $\lim _{x \rightarrow \pi} \frac{1+\cos ^{3} x}{\sin ^{2} x}$
$=\lim _{x \rightarrow \pi} \frac{(1+\cos x)\left(1-\cos x+\cos ^{2} x\right)}{(1-\cos x)(1+\cos x)}$
$=\lim _{x \rightarrow \pi} \frac{1-\cos x+\cos ^{2} x}{1-\cos x}=\frac{1+1+1}{1+1}=\frac{3}{2}$
8 (d)
The given function is
$f(x)=\left\{\begin{array}{rc}\frac{\sin [x]}{[x]} & \text { if } x \in(-\infty, 0) \cup[1, \infty) \\ 0 & \text { if } x \in[0,1)\end{array}\right.$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} \frac{\sin [-h]}{[-h]}$
$=\lim _{h \rightarrow 0} \frac{\sin (-1)}{(-1)}=\sin 1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} 0=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist
9 (a)
$\frac{x^{4}\left(\cot ^{4} x-\cot ^{2} x+1\right)}{\left(\tan ^{4} x-\tan ^{2} x+1\right)}$
$=\frac{x^{4}\left(1-\tan ^{2} x+\tan ^{4} x\right)}{\tan ^{4} x\left(\tan ^{4} x-\tan ^{2} x+1\right)}=\frac{x^{4}}{\tan ^{4} x}, x \neq 0$
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{4}\left(\cot ^{4} x-\cot ^{2} x+1\right)}{\left(\tan ^{4} x-\tan ^{2} x+1\right)}=\lim _{x \rightarrow 0} \frac{x^{4}}{\tan ^{4} x}=1$
10 (c)
$\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{4 \sin ^{4} x}$
$=\lim _{x \rightarrow 0} \frac{x}{4 \sin ^{4} x}\left[\frac{2 \tan x}{1-\tan ^{2} x}-2 \tan x\right]$
$=\lim _{x \rightarrow 0} \frac{x \tan ^{3} x}{2 \sin ^{4} x\left(1-\tan ^{2} x\right)}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{x}{\sin x} \frac{1}{\cos ^{3} x} \frac{1}{1-\tan ^{2} x}$
$=\frac{1}{2} \times 1 \times \frac{1}{1^{3}} \times \frac{1}{1-0}=\frac{1}{2}$
11 (b)
$\lim _{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}}=\lim _{x \rightarrow 0}\left(\frac{\sin x^{n}}{x^{n}}\right)\left(\frac{x^{n}}{x^{m}}\right)\left(\frac{x}{\sin x}\right)^{m}$
$=\lim _{x \rightarrow 0} x^{n-m}=0 \quad[\because m<n]$
12 (a)
$\lim _{x \rightarrow 2} \frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2}$
$=\lim _{x \rightarrow 2} \frac{1+\sqrt{2+x}-3}{(\sqrt{1+\sqrt{2+x}}+\sqrt{3})(x-2)}$ (Rationalizing)
$=\lim _{x \rightarrow 2} \frac{\sqrt{2+x}-2}{(\sqrt{1+\sqrt{2+x}}+\sqrt{3})(x-2)}$
$=\lim _{x \rightarrow 2} \frac{(x-2)}{(\sqrt{1+\sqrt{2+x}}+\sqrt{3})(\sqrt{2+x}+2)(x-2)}$ (Rationalizing)
$=\frac{1}{(2 \sqrt{3}) 4}=\frac{1}{8 \sqrt{3}}$
13 (b)
$L=\lim _{x \rightarrow \pi / 2} \frac{\sin (x \cos x)}{\sin \left(\frac{\pi}{2}-x \sin x\right)}$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x \cos x)}{(x \cos x)} \frac{x \cos x}{\sin \left(\frac{\pi}{2}-x \sin x\right)} \frac{\left(\frac{\pi}{2}-x \sin x\right)}{\left(\frac{\pi}{2}-x \sin x\right)}$
$=1 \times 1 \lim _{x \rightarrow \pi / 2} \frac{x \cos x}{\left(\frac{\pi}{2}-x \sin x\right)}$
Put $x=\pi / 2+h$
Then, $L=\lim _{h \rightarrow 0} \frac{\left(\frac{\pi}{2}+h\right) \cos \left(\frac{\pi}{2}+h\right)}{\frac{\pi}{2}-\left(\frac{\pi}{2}+h\right) \sin \left(\frac{\pi}{2}+h\right)}$
$=\lim _{h \rightarrow 0} \frac{-\left(\frac{\pi}{2}+h\right) \sin h}{\frac{\pi}{2}(1-\cos h)-h \cos h}$
$=\lim _{h \rightarrow 0} \frac{-\left(\frac{\pi}{2}+h\right)\left(\frac{\sin h}{h}\right)}{\frac{\pi}{2} \frac{(1-\cos h)}{h}-\cos h} \quad$ (Divide N^{r} and D^{r} by h)
$=\frac{-\left(\frac{\pi}{2}+0\right) 1}{0-1}=\frac{\pi}{2}$
14 (b)
$\lim _{x \rightarrow \infty} \frac{\sin ^{4} x-\sin ^{2} x+1}{\cos ^{4} x-\cos ^{2} x+1}$
$=\lim _{x \rightarrow \infty} \frac{\left(1-\cos ^{2} x\right)^{2}-\left(1-\cos ^{2} x\right)+1}{\cos ^{4} x-\cos ^{2} x+1}$
$=\lim _{x \rightarrow \infty} \frac{\cos ^{4} x-\cos ^{2} x+1}{\cos ^{4} x-\cos ^{2} x+1}$
$=1$
15 (c)
$\lim _{x \rightarrow-2^{-}} \frac{a e^{1 /|x+2|}-1}{2-e^{1 /|x+2|}}=\lim _{x \rightarrow-2^{-}} \frac{a-e^{-1 /|x+2|}}{2 e^{-1 /|x+2|}-1}=-a$
$\lim _{x \rightarrow-2^{-}} \sin \left(\frac{x^{4}-16}{x^{5}+32}\right)=\lim _{x \rightarrow-2^{-}} \sin \left(\frac{\frac{x^{4}-(-2)^{4}}{x-(-2)}}{\frac{x^{5}-(-2)^{5}}{x-(-2)}}\right)$
$=\sin \left(-\frac{2}{5}\right) \Rightarrow a=\sin \frac{2}{5}$
16
16 (c)
$I=\lim _{x \rightarrow 1} \frac{n x^{n}(x-1)-\left(x^{n}-1\right)}{\left(e^{x}-e\right) \sin \pi x}$

Put $x=1+h$ so that as $x \rightarrow 1, h \rightarrow 0$
$\therefore I=-\lim _{h \rightarrow 0} \frac{h \cdot n(1+h)^{n}-\left((1+h)^{n}-1\right)}{e\left(e^{h}-1\right) \sin \pi h}$
$I=-\lim _{x \rightarrow 1} \frac{n \cdot h\left(1+{ }^{n} C_{1} h+{ }^{n} C_{2} h^{2}+{ }^{n} C_{3} h^{3}+\cdots\right)}{\pi e\left(h^{2}\right)\left(\frac{e^{h}-1}{h}\right)}$
$\frac{-\left(1+{ }^{n} C_{1} h++{ }^{n} C_{2} h^{2}++{ }^{n} C_{3} h^{3}+\cdots-1\right)}{\left(\frac{\sin \pi h}{\pi h}\right)}$
$=-\frac{n^{2}-{ }^{n} C_{2}}{\pi e}=-\left[\frac{2 n^{2}-n(n-1)}{2 \pi e}\right]=-\frac{n^{2}+n}{2(\pi e)}$

$$
=-\frac{n(n+1)}{2(\pi e)}
$$

If $n=100 \Rightarrow 1=-\left(\frac{5050}{\pi e}\right)$
17 (a)
$(1+x)^{2 / x}=(1+x)^{2 / x}-\left[(1+x)^{2 / x}\right]$
Now, $\lim _{x \rightarrow 0}(1+x)^{2 / x}=e^{2}$
$\Rightarrow \lim _{x \rightarrow 0}\left\{(1+x)^{2 / x}\right\}=e^{2}-\left[e^{2}\right]=e^{2}-7$
18 (b)
$\lim _{x \rightarrow \infty}[\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}]$
$=\lim _{x \rightarrow \infty} \frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}+\sqrt{x}}}$ (Rationalizing)
$\lim _{x \rightarrow \infty} \frac{\sqrt{1+x^{-1 / 2}}}{\sqrt{1+\sqrt{x^{-1}+x^{-3 / 2}}}+1}=\frac{1}{2}$
19 (c)
$\lim _{x \rightarrow a} \sqrt{a^{2}-x^{2}} \cot \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}$
$=\lim _{x \rightarrow a} \frac{\sqrt{a^{2}-x^{2}}}{\tan \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}}$
$=\frac{2}{\pi} \lim _{x \rightarrow a} \frac{\frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}}{\tan \frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}}(a+x)=\frac{4 a}{\pi}$
20 (a)
$\lim _{x \rightarrow 1} \frac{1+\sin \pi\left(\frac{3 x}{1+x^{2}}\right)}{1+\cos \pi x}$
$=\lim _{x \rightarrow 1} \frac{1-\cos \left(\frac{3 \pi}{2}-\frac{3 \pi x}{1+x^{2}}\right)}{1-\cos (\pi-\pi x)}$
$=\lim _{x \rightarrow 1} \frac{2 \sin ^{2}\left(\frac{3 \pi}{4}-\frac{3 \pi x}{2\left(1+x^{2}\right)}\right)}{2 \sin ^{2}\left(\frac{\pi}{2}-\frac{\pi x}{2}\right)}$
$=\lim _{x \rightarrow 1}\left(\frac{\frac{3 \pi}{4}-\frac{3 \pi x}{2\left(1+x^{2}\right)}}{\frac{\pi}{2}-\frac{\pi x}{2}}\right)^{2}$
$=\lim _{x \rightarrow 1} 9\left(\frac{\frac{1}{2}-\frac{x}{1+x^{2}}}{1-x}\right)^{2}=\lim _{x \rightarrow 1} 9\left(\frac{x-1}{2\left(1+x^{2}\right)}\right)^{2}=0$
21 (c)
$\frac{\cos (2 x-4)-33}{2}<f(x)<\frac{x^{2}|4 x-8|}{x-2}$
$\Rightarrow \lim _{x \rightarrow 2^{-}} \frac{\cos (2 x-4)-33}{2}<\lim _{x \rightarrow 2^{-}} f(x)$

$$
<\lim _{x \rightarrow 2^{-}} \frac{x^{2}|4 x-8|}{x-2}
$$

$\Rightarrow-16<\lim _{x \rightarrow 2^{-}} f(x)<\lim _{x \rightarrow 2^{-}} \frac{x^{2}(8-4 x)}{x-2}$
$\Rightarrow-16<\lim _{x \rightarrow 2^{-}} f(x)<-16$
$\Rightarrow \lim _{x \rightarrow 2^{-}} f(x)=-16$ (by sandwich theorem)
22 (c)
$\lim _{x \rightarrow \infty} \frac{(2 x+1)^{40}(4 x-1)^{5}}{(2 x+3)^{45}}$
$=\lim _{x \rightarrow \infty} \frac{\left(2+\frac{1}{x}\right)^{40}\left(4-\frac{1}{x}\right)^{5}}{\left(2+\frac{3}{x}\right)^{45}}$
(Dividing numerator and denominator by x^{45})
$=\frac{2^{40} 4^{5}}{2^{45}}$
$=2^{5}=32$
(b)

For $n=0$, we have $\lim _{x \rightarrow 0} \frac{1-\sin 1}{x-1}=\sin 1-1$
For $n=1, \lim _{x \rightarrow 0} \frac{x-\sin x}{x-\sin x}=1$
For $n=2, \lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{x-\sin ^{2} x}=\lim _{x \rightarrow 0} \frac{1 \frac{\sin ^{2} x}{x^{2}}}{\frac{1}{x}-\frac{\sin ^{2} x}{x^{2}}}$
This does not exist
For $n=3$ also given limit does not exist
Hence $n=0$ or 1
24
$\frac{[x]^{2}}{x^{2}}=\left[\begin{array}{c}0 \text { if } 0<x<1 \\ \frac{1}{x^{2}} \text { if }-1<x<0\end{array} \Rightarrow l\right.$ does not exist
$\frac{\left[x^{2}\right]}{x^{2}}=\left[\begin{array}{c}0 \text { if } 0<x<1 \\ 0 \text { if }-1<x<0\end{array} \Rightarrow m\right.$ exists and is equal to $0]$

25 (c)
$\lim _{x \rightarrow 1} \frac{p-q+q x^{p}-p x^{q}}{1-x^{p}-x^{q}+x^{p+q}}\left(\frac{0}{0}\right)$
$=\lim _{x \rightarrow 1} \frac{p q x^{p-1}-p q x^{q-1}}{-p x^{p-1}-q x^{q-1}+(p+q) x^{p+q-1}}\left(\frac{0}{0}\right)$ (L' Hopital Rule)
$=\lim _{x \rightarrow 1} \frac{p q(p-1) x^{p-2}-p q(q-1) x^{q-2}}{-p(p-1) x^{p-2}-q(q-1) x^{q-2}+(p+q)(p+q-1) x^{p+q-2}}$
(L'Hopital rule)
$=\frac{p-q}{2}$
(d)

Given, $\lim _{x \rightarrow 0} \frac{\{(a-n) n x-\tan x\} \sin n x}{x^{2}}=0$
$\Rightarrow \quad \lim _{x \rightarrow 0}\left((a-n) n-\frac{\tan x}{x}\right) \cdot \frac{\sin n x}{x}=0$
$\Rightarrow \quad[\{a-n\} n-1] n=0$
$\Rightarrow \quad a=n+\frac{1}{n}$
27 (c)
$\lim _{x \rightarrow \infty}\left(\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right)=2$
$\Rightarrow \lim _{x \rightarrow \infty} \frac{x^{3}(1-a)-b x^{2}-a x+(1-b)}{x^{2}+1}=2$
$\Rightarrow 1-a=0$ and $-b=2$
$\Rightarrow a=1, b=2$
28 (b)
$\lim _{x \rightarrow 2} \frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}}-2^{1-x}}$
$=\lim _{x \rightarrow 2} \frac{\left(2^{x}\right)^{2}-6 \times 2^{x}+2^{3}}{\sqrt{2^{x}-2}}$ [Multiplying N^{r} and D^{r} by $\left.2^{x}\right]$
$=\lim _{x \rightarrow 2} \frac{\left(2^{x}-4\right)\left(2^{x}-2\right)\left(\sqrt{2^{x}}+2\right)}{\left(\sqrt{2^{x}}-2\right)\left(\sqrt{2^{x}}+2\right)}$
$=\lim _{x \rightarrow 2} \frac{\left(2^{x}-4\right)\left(2^{x}-2\right)\left(\sqrt{2^{x}}+2\right)}{\left(2^{x}-4\right)}$
$=\lim _{x \rightarrow 2}\left(2^{x}-2\right)\left(\sqrt{2^{x}}+2\right)=\left(2^{2}-2\right)(2+2)=8$
29 (c)
$\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{e^{1 / n}}{n}+\frac{e^{2 / n}}{n}+\cdots+\frac{e^{(n-1) / n}}{n}\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{1+e^{1 / n}+\left(e^{1 / n}\right)^{2}+\cdots+\left(e^{1 / n}\right)^{n-1}}{n}\right]$
$=\lim _{n \rightarrow \infty} \frac{1 \cdot\left[\left(e^{1 / n}\right)^{n}-1\right]}{n\left(e^{1 / n}-1\right)}=(e-1) \lim _{n \rightarrow \infty} \frac{1}{\left(\frac{e^{1 / n}-1}{1 / n}\right)}$
$=(e-1) \times 1=(e-1)$
30 (a)
$\lim _{y \rightarrow 0}\left\{\frac{x\{\sec (x+y)-\sec x\}}{y}+\sec (x+y)\right\}$
$=\lim _{y \rightarrow 0}\left[\frac{x}{y}\left\{\frac{\cos x-\cos (x+y)}{\cos (x+y) \cos x}\right\}\right]+\lim _{y \rightarrow 0} \sec (x+y)$
$=\lim _{y \rightarrow 0}\left[\frac{x 2 \sin \left(x+\frac{y}{2}\right) \sin \left(\frac{y}{2}\right)}{y \cos (x+y) \cos x}\right]+\sec x$
$=\lim _{y \rightarrow 0}\left[\frac{x \sin \left(x+\frac{y}{2}\right)}{\cos (x+y) \cos x} \times \frac{\sin \left(\frac{y}{2}\right)}{\frac{y}{2}}\right]+\sec x$
$=x \tan x \sec x+\sec x$
$=\sec x(x \tan x+1)$
31 (b)
$\lim _{x \rightarrow \infty} \frac{\cot ^{-1}\left(x^{-a} \log _{a} x\right)}{\sec ^{-1}\left(a^{x} \log _{x} a\right)}(a>1)$
$=\lim _{x \rightarrow \infty} \frac{\cot ^{-1}\left(\frac{\log _{a} x}{x^{a}}\right)}{\sec ^{-1}\left(\frac{a^{x}}{\log _{a} x}\right)} \operatorname{as}_{x \rightarrow \infty}\left(\frac{\log _{a} x}{x^{a}}\right) \rightarrow 0$
and $\left(\frac{a^{x}}{\log _{a} x}\right) \rightarrow \infty$ (using L' Hopital rule)
$\therefore I=\frac{\pi / 2}{\pi / 2}=1$
32 (d)
$\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h-h^{2}+1\right)-f(1)}$
$=\lim _{h \rightarrow 0} \frac{\left\{f^{\prime}\left(2 h+2+h^{2}\right)\right\} \cdot(2+2 h)-0}{\left\{f^{\prime}\left(h-h^{2}+1\right)\right\} \cdot(1-2 h)-0}$ [using L' Hospital's rule]
$=\frac{f^{\prime}(2) .2}{f^{\prime}(1) \cdot 1}=\frac{6.2}{4.1}=3$
33 (a)
For $n>1$,
$\lim _{x \rightarrow 0} x^{n} \sin \left(1 / x^{2}\right)=0 \times($ any value between -1 to 1) $=0$

For $n<0$,
$\lim _{x \rightarrow 0} x^{n} \sin \left(1 / x^{2}\right)=\infty \times$ (any value between -1 to 1) $=\infty$

34 (c)
If $f(x)=\sin \left(\frac{1}{x}\right)$ and $g(x)=\frac{1}{x}$, then both $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ do not exist, but $\lim _{x \rightarrow 0} \frac{f(x)}{\mathrm{g}(x)}=0$ exists
35 (a)

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left[\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}\right. \\
& -\left(\frac{\sqrt{x}(\sqrt{x}+\sqrt{2})}{(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})}\right. \\
& \left.-\left(\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right] \\
& =\lim _{x \rightarrow 2}\left[\frac{x^{2}+2 x+4}{x(x+2)}-\left(\frac{\sqrt{x}-\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right] \\
& =\lim _{x \rightarrow 2}\left[\frac{x^{2}+2 x+4}{x(x+2)}-1\right]=\frac{12}{8}-1=\frac{1}{2}
\end{aligned}
$$

(d)
$\lim _{x \rightarrow \infty} \frac{e^{1 / x^{2}}-1}{2 \tan ^{-1}\left(x^{2}\right)-\pi}$
$=\lim _{t \rightarrow 0^{+}} \frac{e^{t^{2}}-1}{2 \cot ^{-1} t^{2}-\pi}$
$=\lim _{t \rightarrow 0^{+}} \frac{e^{t^{2}}-1}{-2 \tan t^{2}}$
$=\lim _{t \rightarrow 0^{+}}-\frac{1}{2} \frac{e^{t^{2}}-1}{t^{2} \frac{\tan t^{2}}{t^{2}}}=-\frac{1}{2}$
$\lim _{x \rightarrow 1} \frac{x \sin (x-[x])}{x-1}$
Now L.H.L $=\lim _{h \rightarrow 0} \frac{(1-h) \sin (1-h-[1-h])}{(1-h)-1}$
$=\lim _{h \rightarrow 0} \frac{(1-h) \sin (1-h)}{-h}=-\infty$
R.H.L $=\lim _{h \rightarrow 0} \frac{(1+h) \sin (1+h-[1+h])}{(1+h)-1}=\lim _{h \rightarrow 0} \frac{(1+h) \sin h}{h}=1$

Hence, the limit does not exist
38 (c)
$\lim _{x \rightarrow \infty}\left(\frac{x-3}{x+2}\right)^{x}=e^{\lim _{x \rightarrow \infty}\left[\frac{x-3}{x+2}-1\right] x}$
$=e^{\lim _{x \rightarrow \infty}\left[\frac{-5 x}{x+2}\right]}=e^{-5}$
39 (a)
$\lim _{x \rightarrow 0^{+}}\left[\frac{\sin (\operatorname{sgn} x)}{\operatorname{sgn}(x)}\right]$
$=\lim _{x \rightarrow 0^{+}}\left[\frac{\sin 1}{1}\right]$
$=0$
$=\lim _{x \rightarrow 0^{-}}\left[\frac{\sin (\operatorname{sgn} x)}{\operatorname{sgn} x}\right]$
$=\lim _{x \rightarrow 0^{-}}\left[\frac{\sin (-1)}{-1}\right]$
$=\lim _{x \rightarrow 0^{-}}[\sin 1]$
$=0$
Hence, the given limit is 0
40 (b)
Given limit is $\lim _{x \rightarrow \infty}(x+1)\left[\tan ^{-1}(x+5)-\right.$

$$
\begin{aligned}
& x+1+4 \tan -1(x+5) \\
& =\lim _{x \rightarrow \infty}\left[(x+1) \tan ^{-1} \frac{4}{1+(x+1)(x+5)}\right. \\
& \left.\quad+4 \tan ^{-1}(x+5)\right]
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty}\left[(x+1) \tan ^{-1} \frac{\frac{4}{x^{2}+6 x+6}}{\left(\frac{4}{x^{2}+6 x+6}\right)} \times \frac{4}{x^{2}+6 x+6}\right.
$$

$$
\left.+4 \tan ^{-1}(x+5)\right]
$$

$=0+4 \times \frac{\pi}{2}=2 \pi$
41 (d)
$\lim _{x \rightarrow \infty}\left(\frac{1}{e}-\frac{x}{1+x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{1}{e}-\frac{1}{\frac{1}{x}+1}\right)^{x}$

$$
=\left(\frac{1}{e}-1\right)^{\infty}
$$

$=(\text { some negative value })^{\infty}$ which is not defined as base is -ve
42 (c)
As $x \rightarrow 0^{-} \Rightarrow f(x) \rightarrow f\left(0^{-}\right)=2^{+}$
$\Rightarrow \lim _{x \rightarrow 0^{-}} \mathrm{g}(f(x))=\mathrm{g}\left(2^{+}\right)=-3$
Also as $x \rightarrow 0^{+} \Rightarrow f(x) \rightarrow f\left(0^{+}\right)=1^{+}$
$\Rightarrow \lim _{x \rightarrow 0^{+}} \mathrm{g}(f(x))=\mathrm{g}\left(1^{+}\right)=-3$
Hence $\lim _{x \rightarrow 0} g(f(x))$ exists and is equal to -3
$\Rightarrow \lim _{x \rightarrow 0} g(f(x))=-3$
(d)
$=\lim _{x \rightarrow \infty}\left(\frac{x^{3}}{3 x^{2}-4}-\frac{x^{2}}{3 x+2}\right)$
$=\lim _{x \rightarrow \infty} \frac{x^{3}(3 x+2)-x^{2}\left(3 x^{2}-4\right)}{\left(3 x^{2}-4\right)(3 x+2)}$
$=\lim _{x \rightarrow \infty} \frac{2 x^{3}+4 x^{2}}{9 x^{3}+6 x^{2}-12 x-8}$
$=\lim _{x \rightarrow \infty} \frac{2+\frac{4}{x}}{9+\frac{6}{x}-\frac{12}{x^{2}}-\frac{8}{x^{3}}}$
$=2 / 9$
44
(b)
$\because \lim _{n \rightarrow \infty} \cos ^{2 n} x=\left\{\begin{array}{l}1, x=r \pi, r \in I \\ 0, x \neq r \pi, r \in I\end{array}\right.$
Here, for $x=10, \lim _{n \rightarrow \infty} \cos ^{2 n}(x-10)=1$
And in all other cases it is zero
$\therefore \lim _{n \rightarrow \infty} \sum_{x=1}^{\infty} \cos ^{2 n}(x-10)=1$
45 (c)
$\lim _{x \rightarrow 0} \frac{a^{\sqrt{x}}-a^{1 / \sqrt{x}}}{a^{\sqrt{x}}+a^{1 / \sqrt{x}}}, a>1$
Put $x=t^{2}$
$\therefore \lim _{t \rightarrow 0} \frac{a^{t}-a^{1 / t}}{a^{t}+a^{1 / t}}$
$\Rightarrow \lim _{t \rightarrow 0} \frac{a^{t-1 / t}-1}{a^{t-1 / t}+1}=\frac{a^{-\infty}-1}{a^{-\infty}+1}=\frac{0-1}{0+1}=-1$
46
(c)
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\cos ^{2} x}{x}}}=\sqrt{\frac{1-0}{1+0}}=1$
47
$\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x+\log (1-x)}{x^{3}}$
$1+\left(x-\frac{x^{3}}{3!}+\cdots\right)-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)$
$=\lim _{x \rightarrow 0} \frac{+(}{}$
$=-\frac{1}{3!}-\frac{1}{3}=-\frac{1}{2}$
48
(a)
$\lim _{x \rightarrow-\infty} \frac{x^{2} \tan \frac{1}{x}}{\sqrt{8 x^{2}+7 x+1}}=\lim _{x \rightarrow-\infty} \frac{x^{2} \tan \frac{1}{x}}{-x \sqrt{8+\frac{7}{x}+\frac{1}{x^{2}}}}$
$=-\lim _{x \rightarrow-\infty} \frac{\tan \frac{1}{x}}{\frac{1}{x} \sqrt{8+\frac{7}{x}+\frac{1}{x^{2}}}}=-\frac{1}{2 \sqrt{2}}$
49 (b)
$\min \left(y^{2}-4 y+11\right)=\min \left[(y-2)^{2}+7\right]=7$
$\Rightarrow L=\lim _{x \rightarrow 0}\left[\min \left(y^{2}-4 y+11\right) \frac{\sin x}{x}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{7 \sin x}{x}\right]$
$=[$ a value slightly lesser than 7] $(|\sin x|<|x|$, when $x \rightarrow 0$)
$\Rightarrow L=\lim _{x \rightarrow 0}\left[7 \frac{\sin x}{x}\right]=6$
50 (b)
$\lim _{x \rightarrow \pi / 2}\left[x \tan x-\left(\frac{\pi}{2}\right) \sec x\right]$
$=\lim _{x \rightarrow \pi / 2} \frac{2 x \sin x-\pi}{2 \cos x} \quad\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow \pi / 2} \frac{[2 \sin x+2 x \cos x]}{-2 \sin x}$
$=-1 \quad$ (Applying L'Hopital's rule)
51 (b)
$\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin \left(\pi-\pi \cos ^{2} x\right)}{x^{2}}[\sin (\pi \\
& -\theta)=\sin \theta]
\end{aligned}
$$

$=\lim _{x \rightarrow 0} \frac{\sin \left(\pi \sin ^{2} x\right)}{\pi \sin ^{2} x} \times \frac{\left(\pi \sin ^{2} x\right)}{x^{2}}=\pi$
Given $f(x)=x^{2}-\pi^{2}$
$\lim _{x \rightarrow-\pi} \frac{x^{2}-\pi^{2}}{\sin (\sin x)}=\lim _{h \rightarrow 0} \frac{(-\pi+h)^{2}-\pi^{2}}{\sin (\sin (-\pi+h))}$

$$
=\lim _{n \rightarrow 0} \frac{-2 h \pi+h^{2}}{-\sin (\sin h)}
$$

$=\lim _{h \rightarrow 0} \frac{h-2 \pi}{\frac{-\sin (\sin h)}{\sin h} \times \frac{\sin h}{h}}=2 \pi$
53 (a)
$\lim _{m \rightarrow \infty}\left(\cos \frac{x}{m}\right)^{m}$
$=\lim _{m \rightarrow \infty}\left[1-\left(1-\cos \frac{x}{m}\right)\right]^{m}$
$=\lim _{m \rightarrow \infty}\left[1-2 \sin ^{2} \frac{x}{2 m}\right]^{m}$
$=e^{\lim _{m \rightarrow \infty}\left(-2 \sin ^{2} \frac{x}{2 m}\right) m}=1$
(d)
$\lim _{x \rightarrow \infty} \frac{1+x+x^{2}}{x(\operatorname{In} x)^{3}}=\lim _{t \rightarrow 0^{+}} \frac{t^{2}+t+1}{t^{2} \frac{1}{t}\left(\operatorname{In}\left(\frac{1}{t}\right)\right)^{3}}$
$=\lim _{t \rightarrow 0^{+}} \frac{1+t+t^{2}}{-t(\operatorname{In} t)^{3}}=+\infty$

55 (a)
L.H. L. $=\lim _{x \rightarrow-1^{-}} \frac{1}{\sqrt{|x|-\{-x\}}}$

$$
=\lim _{x \rightarrow-1^{-}} \frac{1}{\sqrt{-x-(x+2)}}
$$

$=\lim _{x \rightarrow-1^{-}} \frac{1}{\sqrt{-2 x-2}}=\infty$
R.H.L $=\lim _{x \rightarrow-1^{+}} \frac{1}{\sqrt{|x|-\{-x\}}}$

$$
=\lim _{x \rightarrow-1^{-}} \frac{1}{\sqrt{-x-(x+1)}}
$$

$=\lim _{x \rightarrow-1^{-}} \frac{1}{\sqrt{-2 x-1}}=1$
Hence, the limit does not exist
56
(d)
$\lim _{x \rightarrow 1} \frac{-\sqrt{25-x^{2}}-(-\sqrt{24})}{x-1}$
$=\lim _{x \rightarrow 1} \frac{\sqrt{24}-\sqrt{25-x^{2}}}{x-1} \times \frac{\sqrt{24}+\sqrt{25-x^{2}}}{\sqrt{24}+\sqrt{25-x^{2}}}$
$=\lim _{x \rightarrow 1} \frac{x^{2}-1}{(x-1)\left[\sqrt{24}+\sqrt{25-x^{2}}\right]}$
$=\frac{2}{2 \sqrt{24}}=\frac{1}{2 \sqrt{6}}$
(c)
$\lim _{x \rightarrow 0} \frac{\left(2^{m}+x\right)^{1 / m}-\left(2^{n}+x\right)^{1 / n}}{x}$
$=\lim _{x \rightarrow 0} \frac{\left(2^{m}+x\right)^{1 / m}-2}{x}-\lim _{x \rightarrow 0} \frac{\left(2^{n}+x\right)^{1 / n}-2}{x}$
$=\lim _{a \rightarrow 2} \frac{a-2}{a^{m}-2^{m}}-\lim _{b \rightarrow 2} \frac{b-2}{b^{n}-2^{n}} \quad\left[\right.$ Putting $2^{m}+x=a^{m}$
and $2^{n}+x=b^{n}$]
$=\frac{1}{m 2^{m-1}}-\frac{1}{n 2^{n-1}}$
58 (c)
$\lim _{x \rightarrow 1}(2-x)^{\tan \frac{\pi x}{2}}$
$=\lim _{x \rightarrow 1}\{1+(1-x)\}^{\tan \frac{\pi x}{2}}$
$=e^{\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}}$
$=e^{\lim _{x \rightarrow 1}(1-x) \cot \left(\frac{\pi}{2}-\frac{\pi x}{2}\right)}$
$=e^{\lim _{x \rightarrow 1} \frac{(1-x)}{\tan \left(\frac{\pi}{2}-\frac{\pi x}{2}\right)}}$
$=e^{\frac{2}{\pi} \lim _{x \rightarrow 1} \frac{\frac{\pi}{2}(1-x)}{\tan \left(\frac{\pi}{2}(1-x)\right)}}$
$=e^{2 / \pi}$
59
(b)
$\lim _{n \rightarrow \infty}\left(\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\cdots+\frac{n}{1-n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{1+2+3+\cdots+n}{1-n^{2}}$
$=\lim _{n \rightarrow \infty} \frac{\frac{n(n+1)}{2}}{1-n^{2}}$
$=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2\left[\frac{1}{n^{2}}-1\right]}=-1 / 2$
60 (c)
$\lim _{x \rightarrow 0} \frac{x^{a} \sin ^{b} x}{\sin x^{c}}$
$=\lim _{x \rightarrow 0} x^{a}\left(\frac{\sin x}{x}\right)^{b}\left(\frac{x^{c}}{\sin x^{c}}\right) x^{b-c}=\lim _{x \rightarrow 0} x^{a+b-c}$
This limit will have non-zero value if $a+b=c$
61 (c)
The given limit is $\lim _{x \rightarrow 0}\left[(1+\tan x)^{\operatorname{cosec} x} /\right.$
$\left.(1+\sin x)^{\operatorname{cosec} x}\right]$
$=\lim _{x \rightarrow 0}\left[(1+\tan x)^{\cot x}\right\}^{\sec x} x /\{1$

$$
\left.\left./(1+\sin x)^{\operatorname{cosec} x}\right\}\right]
$$

$=e^{\sec 0} \frac{1}{e}=e \frac{1}{e}=1$
(d)

We know that $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\left\{\begin{array}{c}2 \tan ^{-1} x, x \geq 0 \\ -2 \tan ^{-1} x, x \leq 0\end{array}\right.$
$\Rightarrow \lim _{x \rightarrow 0^{+}} \frac{1}{x} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\lim _{x \rightarrow 0^{+}} \frac{2 \tan ^{-1} x}{x}=2$, and
$\lim _{x \rightarrow 0^{-}} \frac{1}{x} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\lim _{x \rightarrow 0^{+}}\left[-\frac{2 \tan ^{-1} x}{x}\right]=-2$
63 (a)
$\lim _{n \rightarrow \infty} \frac{n \cdot 3^{n}}{n(x-2)^{n}+n \cdot 3^{n+1}-3^{n}}=\frac{1}{3}$
$\Rightarrow \lim _{n \rightarrow \infty} \frac{1}{\frac{(x-2)^{n}}{3^{n}}+3-\frac{1}{n}}\left(\right.$ Dividing N^{r} and D^{r} by $n \times 3^{n}$)
For $\lim _{n \rightarrow \infty}$ to be equal to $1 / 3$
$\lim _{n \rightarrow \infty} \frac{1}{n} \rightarrow($ which is true $)$ and $\lim _{n \rightarrow \infty}\left(\frac{x-2}{3}\right)^{n} \rightarrow 0$
$\Rightarrow 2 \leq x<5$
64 (a)
$\lim _{x \rightarrow 0} \frac{\sin 3 x}{x^{3}}+\frac{a}{x^{2}}+b$
$=\lim _{x \rightarrow 0} \frac{\sin 3 x+a x+b x^{3}}{x^{3}}$
$=\lim _{x \rightarrow 0} \frac{3 \frac{\sin 3 x}{3 x}+a+b x^{2}}{x^{2}}$
For existence, $(3+a)=0$
$\Rightarrow a=-3$
$\therefore L=\lim _{x \rightarrow 0} \frac{\sin 3 x-3 x+b x^{3}}{x^{3}}$
$=27 \lim _{t \rightarrow 0} \frac{\sin t-t}{t^{3}}+b=0(3 x=t)$
$=-\frac{27}{6}+b=0$
$\Rightarrow b=\frac{9}{2}$

65 (a)
$\lim _{x \rightarrow 0^{+}}\left[\left(1-e^{x}\right) \frac{\sin x}{|x|}\right]$
$=\lim _{x \rightarrow 0^{+}}\left[\left(0^{-}\right) \frac{\sin x}{x}\right]=\left[0^{-}\right]=-1$
$=\lim _{x \rightarrow 0^{-}}\left[\left(1-e^{x}\right) \frac{\sin x}{|x|}\right]$
$=\lim _{x \rightarrow 0^{-}}\left[\left(0^{+}\right) \frac{\sin x}{-x}\right]=\left[0^{-}\right]=-1$
Hence $\lim _{x \rightarrow 0}\left[\left(1-e^{x}\right) \frac{\sin x}{|x|}\right]=-1$
(b)
$\cos (\tan x)-\cos x$

$$
=2 \sin \left(\frac{x+\tan x}{2}\right) \sin \left(\frac{x-\tan x}{2}\right)
$$

$\Rightarrow \lim _{x \rightarrow 0} \frac{\cos (\tan x)-\cos x}{x^{4}}$

$$
=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{x+\tan x}{2}\right) \sin \left(\frac{x-\tan x}{2}\right)}{x^{4}}
$$

$=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{x+\tan x}{2}\right) \sin \left(\frac{x-\tan x}{2}\right)}{x^{4}\left(\frac{x+\tan x}{2}\right)\left(\frac{x-\tan x}{2}\right)}\left(\frac{x^{2}-\tan ^{2} x}{4}\right)$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{x^{2}-\tan ^{2} x}{x^{4}}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{x^{2}-\left(x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\cdots\right)^{2}}{x^{4}}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{1}{x^{2}}\left(1-\left(1+\frac{x^{2}}{3}+\frac{2}{15} x^{4}+\cdots\right)^{2}\right)=-\frac{1}{3}$
67
(b)
$\lim _{x \rightarrow 0} \frac{x^{n} \sin ^{n} x}{x^{n}-\sin ^{n} x}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{n}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{n}}{x^{n}-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{n}}$
$=\lim _{x \rightarrow 0} \frac{x^{n}\left(1-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{n}}{1-\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{n}}$
$=\lim _{x \rightarrow 0} \frac{x^{n}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{n}}{1-\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{n}}$
For $n=2$,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{2}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{2}}{1-\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{2}} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{x^{2}\left(1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)^{2}}{\left(2-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right)\left(\frac{x^{2}}{3!}-\frac{x^{4}}{5!}+\cdots\right)} \\
& =\frac{1(1-0+\cdots)^{2}}{(2-0+0)\left(\frac{1}{3!}-0+\cdots\right)}
\end{aligned}
$$

68 (c)
We have $f(x)+\mathrm{g}(x)+h(x)=\frac{x^{2}-4 x+17-4 x-2}{x^{2}+x-12}$
$=\frac{x^{2}-8 x+15}{x^{2}+x-12}=\frac{(x-3)(x-5)}{(x-3)(x+4)}$
$\therefore \lim _{x \rightarrow 3}[f(x)+\mathrm{g}(x)+h(x)]=\lim _{x \rightarrow 3} \frac{(x-3)(x-5)}{(x-3)(x+4)}$

$$
=-\frac{2}{7}
$$

69 (a)
Given $\mathrm{g}(x)=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{3}{\pi} \tan ^{-1} 2 x\right)^{2 n}+5}=0$
$\Rightarrow\left[\left(\frac{3}{\pi} \tan ^{-1} 2 x\right)^{2}\right]^{n} \rightarrow \infty$
$\Rightarrow\left(\frac{3}{\pi} \tan ^{-1} 2 x\right)^{2}>1$
$\Rightarrow\left|\tan ^{-1} 2 x\right|>\frac{\pi}{3}$
$\Rightarrow \tan ^{-1} 2 x<-\frac{\pi}{3}$ or $\tan ^{-1} 2 x>\frac{\pi}{3}$
$\Rightarrow 2 x<-\sqrt{3}$ or $2 x>\sqrt{3} \Rightarrow|2 x|>\sqrt{3}$
70 (b)
We know that $\lim _{x \rightarrow 0} \frac{\sin x}{x} \rightarrow 1^{-}$and $\lim _{x \rightarrow 0} \frac{x}{\sin x} \rightarrow 1^{+}$
So, $\lim _{x \rightarrow 0}\left[100 \frac{x}{\sin x}\right]+\lim _{x \rightarrow 0}\left[99 \frac{\sin x}{x}\right]$
$=100+98=198$
71 (b)
$\lim _{x \rightarrow 1} \frac{(1+x)\left(1-x^{2}\right) \ldots\left(1-x^{2 n}\right)}{\left\{(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{n}\right)\right\}^{2}}$
$=\lim _{x \rightarrow 1} \frac{\left(\frac{1-x}{1-x}\right)\left(\frac{1-x^{2}}{1-x}\right) \ldots\left(\frac{1-x^{2 n}}{1-x}\right)}{\left(\left(\frac{1-x}{1-x}\right)\left(\frac{1-x^{2}}{1-x}\right) \ldots\left(\frac{1-x^{n}}{1-x}\right)\right)^{2}}$
$=\frac{1 \times 2 \times 3 \ldots(2 n)}{\left(1 \times 2 \times 3 \ldots n^{2}\right)}=\frac{(2 n)!}{n!n!}={ }^{2 n} C_{n}$
72
(b)
$\lim _{x \rightarrow-1}\left(\frac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\frac{1-\cos (x+1)}{(x+1)^{2}}}$
$=\left(\lim _{x \rightarrow 1} \frac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\lim _{x \rightarrow 1} \frac{1-\cos (x+1)}{(x+1)^{2}}}$

$$
=\left(\frac{2}{3}\right)^{\lim _{x \rightarrow-1} \frac{\sin (x+1)}{2(x+1)}}=\left(\frac{2}{3}\right)^{\frac{1}{2}}
$$

73 (c)
Since the highest degree of x is $1 / 2$, divide numerator and denominator by \sqrt{x}, then we have limit $\frac{2}{\sqrt{2}}$ or $\sqrt{2}$
74 (c)
Here, $\lim _{x \rightarrow 0}(\sin x)^{1 / x}+\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{\sin x}=0+$
$\lim _{x \rightarrow 0} e^{\log \left(\frac{1}{x}\right)^{\sin x}}$
$\left[\begin{array}{c}\lim _{x \rightarrow 0}(\sin x)^{\frac{1}{x}} \rightarrow 0 \\ \text { as, } \\ 0<\sin x<1\end{array}\right]$
$=e^{\lim _{x \rightarrow 0} \frac{\log (1 / x)}{\operatorname{cosec} x}}=e^{\lim _{x \rightarrow 0} \frac{x\left(-\frac{1}{x^{2}}\right)}{\operatorname{cosec} x \cot x}}$
[by L'Hospital's rule]
$=e^{\lim _{x \rightarrow 0} \frac{\sin x}{x} \tan x}=e^{0}=1$
75
(d)

The given limit is $\lim _{x \rightarrow \infty} \frac{\frac{2}{x}+2+\frac{\sin 2 x}{x}}{\left(2+\frac{\sin 2 x}{x}\right) e^{\sin x}}$
$=\frac{0+2+0}{(2+0) \times\left(\text { a value between } \frac{1}{e} \text { and } e\right)}$
$\left[\because \lim _{x \rightarrow \infty} \sin x \in(-1,1)\right]$
Hence limit does not exist
76 (b)
$\lim _{x \rightarrow 0}\left(\frac{1^{x}+2^{x}+\cdots+n^{x}}{n}\right)^{1 / x}$
$=e^{\lim _{x \rightarrow \infty}\left(\frac{1^{x}-1}{n}+\frac{2^{x}-1}{n}+\cdots+\frac{n^{x}-1}{n}\right)^{\frac{1}{x}}}$
$=e^{\lim _{x \rightarrow \infty} \frac{1}{}\left\{\frac{x^{x}-1}{x}+\frac{2^{x}-1}{x}+\cdots+\frac{n^{x}-1}{x}\right\}}$
$=e^{\frac{1}{n}[\log 1+\log 2+\cdots+\log n]}$
$=e^{\frac{1}{n}(\log n!)}=e^{\log (n!)^{\frac{1}{n}}}=(n!)^{\frac{1}{n}}$
77
$\lim _{n \rightarrow \infty}\left[\frac{2}{2-\frac{1}{n^{2}}} \cdot \frac{1}{n} \cos \left(\frac{1+1 / n}{2-1 / n}\right)-\frac{1}{\left(\frac{1}{n}-2\right)} \cdot \frac{(-1)^{n}}{\left(1+\frac{1}{n^{2}}\right)}\right.$ $\left.\cdot \frac{1}{n}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{2-\frac{1}{n^{2}}}\right.$

$$
\left.\cdot \cos \left(\frac{1+\frac{1}{n}}{2-\frac{1}{n}}\right)-\frac{1}{\left(\frac{1}{n}-2\right)} \cdot \frac{(-1)^{n}}{\left(1+\frac{1}{n^{2}}\right)}\right]
$$

$=0 \times\left[\frac{2}{2} \times \cos \frac{1}{2}+\frac{1}{2} \times \frac{1}{1}\right]=0$
78
(d)
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{(1-\sin x)^{1 / 3}}=\lim _{t \rightarrow 0} \frac{-\sin t}{(1-\cos t)^{1 / 3}}$
$=-\lim _{t \rightarrow 0} \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{\left(2 \sin ^{2} \frac{t}{2}\right)^{1 / 3}}$
$=-\lim _{t \rightarrow 0} 2^{2 / 3} \cos \frac{t}{2}\left(\sin \frac{t}{2}\right)^{1 / 3}=0$
(c)

Here, $\quad \lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(x)}{f(x)-f(0)}=\lim _{x \rightarrow 0} \frac{f^{\prime}\left(x^{2}\right) \cdot 2 x-f^{\prime}(x)}{f^{\prime}(x)}$
$=\frac{-f^{\prime}(0)}{f^{\prime}(0)}=-1$
80 (b)
$L=\lim _{x \rightarrow \infty} \frac{\operatorname{In}\left(x^{2}+e^{x}\right)}{\operatorname{In}\left(x^{4}+e^{2 x}\right)}=\lim _{x \rightarrow \infty} \frac{\operatorname{In} e^{x}\left(1+\frac{x^{2}}{e^{x}}\right)}{\operatorname{In} e^{2 x}\left(1+\frac{x^{4}}{e^{2 x}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{x+\operatorname{In}\left(1+\frac{x^{2}}{e^{x}}\right)}{2 x+\operatorname{In}\left(1+\frac{x^{4}}{e^{2 x}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x} \operatorname{In}\left(1+\frac{x^{2}}{e^{x}}\right)}{2+\frac{1}{x} \operatorname{In}\left(1+\frac{x^{4}}{e^{2 x}}\right)}$
Note that $\underset{x \rightarrow \infty}{\operatorname{as}} \frac{x^{2}}{e^{x}} \rightarrow 0$ and $\underset{x \rightarrow \infty}{\text { as }} \frac{x^{2}}{e^{2 x}} \rightarrow 0$ (Using L' Hopital's rule)
Hence $L=\frac{1}{2}$
81 (d)
$\lim _{x \rightarrow \infty} \frac{(x+1)^{10}+(x+2)^{10}+\cdots+(x+100)^{10}}{x^{10}+10^{10}}$
$=\lim _{x \rightarrow \infty} \frac{x^{10}\left[\begin{array}{c}\left(1+\frac{1}{x}\right)^{10}+\left(1+\frac{2}{x}\right)^{10}+ \\ \ldots+\left(1+\frac{100}{x}\right)^{10}\end{array}\right]}{x^{10}\left[1+\frac{10^{10}}{x^{10}}\right]}$
$=100$
82 (d)
We have $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{\left(\cos ^{-1} x\right)^{2}}$
$=\lim _{x \rightarrow 1} \frac{(1-\sqrt{x})(1+\sqrt{x})}{\left(\cos ^{-1} x\right)^{2}(1+\sqrt{x})}$
$=\lim _{x \rightarrow 1} \frac{1-x}{\left(\cos ^{-1} x\right)^{2}(1+\sqrt{x})}$
$=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}(1+\sqrt{\cos \theta})} 1$, where $x=\cos \theta \quad[\because x \rightarrow 1 \Rightarrow$
$\cos \theta \rightarrow 1 \Rightarrow \theta \rightarrow 0$
$=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}\left(\frac{1}{1+\sqrt{\cos \theta}}\right)$
$=\lim _{\theta \rightarrow 0} \frac{2 \sin ^{2} \frac{\theta}{2}}{4 \frac{\theta^{2}}{4}}\left(\frac{1}{1+\sqrt{\cos \theta}}\right)$
$=\frac{1}{2} \lim _{\theta \rightarrow 0}\left(\frac{\sin \frac{\theta}{2}}{\frac{\theta}{2}}\right)^{2} \frac{1}{(1+\sqrt{\cos \theta})}=\frac{1}{2}(1)^{2} \frac{1}{(1+1)}$

$$
=\frac{1}{4}
$$

83 (c)
$\lim _{n \rightarrow \infty} \frac{n(2 n+1)^{2}}{(n+2)\left(n^{2}+3 n-1\right)}$
$=\lim _{n \rightarrow \infty} \frac{\left(2+\frac{1}{n}\right)^{2}}{\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}-\frac{1}{n^{2}}\right)}$
$=\frac{(2+0)^{2}}{(1+0)(1+0+0)}=4$
(d)
$\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}$
$=\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2} \cdot 2 \sin ^{2} x}}{x}=\lim _{x \rightarrow 0} \frac{|\sin x|}{x}$
\therefore L. H.L. $=\lim _{h \rightarrow 0} \frac{|\sin (0-h)|}{0-h}=\lim _{h \rightarrow 0} \frac{|-\sin h|}{-h}$

$$
=\lim _{h \rightarrow 0} \frac{\sin h}{-h}=-1
$$

R. H. L. $=\lim _{h \rightarrow 0} \frac{|\sin (0+h)|}{0+h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$

As L.H.L. \neq R.H.L., therefore, the given limit does not exist
85 (c)
$\lim _{x \rightarrow \infty}\left(\frac{x^{2}+2 x-1}{2 x^{2}-3 x-2}\right)^{\frac{2 x+1}{2 x-1}}$
$=\lim _{x \rightarrow \infty}\left(\frac{1+\frac{2}{x}-\frac{1}{x^{2}}}{2-\frac{3}{x}-\frac{2}{x^{2}}}\right)^{\frac{2+1 / x}{2-1 / x}}$
$=1 / 2$
86 (d)
L. H. $\mathrm{L}=\lim _{x \rightarrow 1^{-}} \frac{\sqrt{1-\cos [2(x-1)]}}{x-1}$
$=\lim _{x \rightarrow 1^{-}} \frac{\sqrt{2 \sin ^{2}(x-1)}}{x-1}$
$=\sqrt{2} \lim _{x \rightarrow 1^{-}} \frac{|\sin (x-1)|}{x-1}$
$=\sqrt{2} \lim _{h \rightarrow 0} \frac{|\sin (-h)|}{-h}=\sqrt{2} \lim _{h \rightarrow 0} \frac{\sin h}{-h}=-\sqrt{2}$
Again, R. H. L. $=\lim _{x \rightarrow 1^{+}} \sqrt{2} \frac{|\sin (x-1)|}{x-1}$
$=\lim _{h \rightarrow 0} \sqrt{2} \frac{|\sin h|}{h}$
$=\lim _{h \rightarrow 0} \sqrt{2} \frac{\sin h}{h}=\sqrt{2}$
L.H.L \neq R.H.L. Therefore, $\lim _{x \rightarrow 1} f(x)$ does not exist
(b)
$\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\operatorname{In}\left(\cos \left(2 x^{2}-x\right)\right)}$
$=\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\log \left(1-2 \sin ^{2}\left(\frac{2 x^{2}-x}{2}\right)\right)}$
$=\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right) x^{2}}{\frac{x^{2} \log \left(1-2 \sin ^{2}\left(\frac{2 x^{2}-x}{2}\right)\right)}{-2 \sin ^{2}\left(\frac{2 x^{2}-x}{2}\right)}\left[-2 \sin ^{2}\left(\frac{2 x^{2}-x}{2}\right)\right]}$
$=\lim _{x \rightarrow 0}-\frac{x^{2}}{\frac{2 \sin ^{2}\left(\frac{2 x^{2}-x}{2}\right)}{\left(\frac{2 x^{2}-x}{2}\right)^{2}}\left(\frac{2 x^{2}-x}{2}\right)^{2}}$
$=\lim _{x \rightarrow 0}-\frac{2 x^{2}}{\left(2 x^{2}-x\right)^{2}}=\lim _{x \rightarrow 0}-\frac{2}{(2 x-1)^{2}}=-2$
(c)
1^{∞} form
$L=e^{\lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1}\right)^{\alpha}+\sin \frac{1}{n}-1\right)}$

$$
=e^{\lim _{n \rightarrow \infty} n \sin \frac{1}{n}+\lim _{n \rightarrow \infty} n\left(\left(\frac{n}{n+1}\right)^{\alpha}-1\right)}
$$

Consider $\lim _{n \rightarrow \infty} n\left(\left(\frac{n}{n+1}\right)^{\alpha}-1\right)=\lim _{n \rightarrow \infty} n\left(\left(\frac{1}{1+1 / n}\right)^{\alpha}-\right.$ 1

Put $n=\frac{1}{y}$
$=\lim _{y \rightarrow 0} \frac{1}{y}\left(\left(\frac{1}{1+y}\right)^{\alpha}-1\right)=\lim _{y \rightarrow 0} \frac{1-(1+y)^{\alpha}}{y}=-a$
$\therefore L=e^{1-\alpha} \quad$ (Using binomial)
89 (b)
$f(x)=\lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)$
$=\lim _{n \rightarrow \infty} \frac{x^{1 / n}-1}{1 / n}$
$=\lim _{m \rightarrow 0} \frac{x^{m}-1}{m}\left(\right.$ where $\frac{1}{n}$ replaced by $\left.m\right)$
$=\operatorname{In} x$
$\Rightarrow f(x y)=\operatorname{In}(x y)=\operatorname{In} x+\operatorname{In} y=f(x)+f(y)$
90 (b)
Given limit
$=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \frac{t \log (1+t)}{t^{4}+4} d t}{x^{3}}$
Using L' Hospital's rule,
$=\lim _{x \rightarrow 0} \frac{\frac{x \log (1+x)}{x^{4}+4}}{3 x^{2}}$
$=\lim _{x \rightarrow 0} \frac{\log (1+x)}{3 x} \cdot \frac{1}{x^{4}+4}$
$=\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12}$
91 (b)
$x_{n+1}=\sqrt{2+x_{n}}$
$\Rightarrow \lim _{n \rightarrow \infty} x_{n+1}=\sqrt{2+\lim _{n \rightarrow \infty} x_{n}}$
$\Rightarrow t=\sqrt{2+t} \quad\left(\because \lim _{x \rightarrow \infty} x_{n+1}=\lim _{x \rightarrow \infty} x_{n}=t\right)$
$\Rightarrow t^{2}-t-2=0$
$\Rightarrow(t-2)(t+1)=0$
$\Rightarrow t=2\left(\because x_{n}>0 \forall n \therefore t>0\right)$

92 (c)
$\lim _{n \rightarrow \infty} n^{2}\left(x^{1 / n}-x^{\frac{1}{n+1}}\right)=\lim _{n \rightarrow \infty} n^{2} \cdot x^{\frac{1}{n+1}}\left(x^{\frac{1}{n}-\frac{1}{n+1}-1}\right)$
$=\lim _{n \rightarrow \infty} x^{\frac{1}{n+1}}\left(x^{\frac{1}{n(n+1)}}-1\right) n^{2}$
$=\lim _{n \rightarrow \infty} x^{\frac{1}{n+1}} \cdot \frac{x^{\frac{1}{n(n+1)}}-1}{\frac{1}{n(n+1)}} \cdot \frac{n^{2}}{n(n+1)}=1 \cdot \log _{e} x \cdot 1$
$=\log _{e} x$
93 (a)
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_{2}^{\sec ^{2} x} f(t) d t}{x^{2}-\frac{\pi^{2}}{16}}$ $\left[\frac{0}{0}\right.$ from $]$
$=\lim _{x \rightarrow \frac{\pi}{4}} \frac{f\left(\sec ^{2} x\right) 2 \sec x \sec x \tan x}{2 x}$
$\therefore \quad L=\frac{2 f(2)}{\pi / 4}=\frac{8 f(2)}{\pi}$
94 (a)
i. $\lim _{x \rightarrow \infty} \sec ^{-1}\left(\frac{x}{\sin x}\right)$
$=\sec ^{-1}\left(\frac{\infty}{\sin \infty}\right)$
$=\sec ^{-1}\left(\frac{\infty}{\text { any value between }-1 \text { to } 1}\right)$
$=\sec ^{-1}(\pm \infty)=\frac{\pi}{2}$
ii. $\lim _{x \rightarrow \infty} \sec ^{-1}\left(\frac{\sin x}{x}\right)=\sec ^{-1}\left(\frac{\sin \infty}{\infty}\right)$
$\sec ^{-1}\left(\frac{\text { any value between }-1 \text { to } 1}{\infty}\right)$
$\sec ^{-1} 0=$ not defined
Hence (i) exists but (ii) does not exist
95 (a)
Let $\sin ^{-1} x=\theta$. Then, $x=\sin \theta$
Now, $x \rightarrow \frac{1}{\sqrt{2}} \Rightarrow \sin \theta \rightarrow \frac{1}{\sqrt{2}} \Rightarrow \theta \rightarrow \frac{\pi}{4}$
$\therefore \lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{x-\cos \left(\sin ^{-1} x\right)}{1-\tan \left(\sin ^{-1} x\right)}$
$=\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\sin \theta-\cos \theta}{1-\tan \theta}$
$=\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{(\sin \theta-\cos \theta)}{(\cos \theta-\sin \theta)} \cos \theta$
$=\lim _{\theta \rightarrow \frac{\pi}{4}}-\cos \theta=-\frac{1}{\sqrt{2}}$
96
(a,b,c,d)
We have $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{k \rightarrow 0^{+}} \frac{\tan ^{2}\{x\}}{\left(x^{2}-[x]^{2}\right)}$
$=\lim _{x \rightarrow 0^{+}} \frac{\tan ^{2} x}{x^{2}}=1$ (1)
$\left(\because x \rightarrow 0^{+} ;[x]=0 \Rightarrow\{x\}=x\right)$
Also $\lim _{k \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \sqrt{\{x\} \cot \{x\}}=\sqrt{\cot 1}$
$\left(\because x \rightarrow 0^{-} ;[x]=-1 \Rightarrow\{x\}=x+1 \Rightarrow\{x\} \rightarrow 1\right)$

Also, $\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=\cot ^{-1}(\cot 1)=1$
97 (a,b,c)
$\lim _{x \rightarrow \infty} \frac{\log _{e} x}{\{x\}}=\frac{\text { Positive infinity }}{\text { A value between } 0 \text { and } 1}=\infty$
$\lim _{x \rightarrow 2^{+}} \frac{x}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x}{(x-2)(x+1)}$

$$
=\lim _{h \rightarrow 0} \frac{2+h}{h(3+h)}=\infty
$$

$\lim _{h \rightarrow-1} \frac{x}{x^{2}-x-2}=-\lim _{h \rightarrow-1^{-}} \frac{x}{(x-2)(x+1)}$
$=\lim _{h \rightarrow 0} \frac{-1-h}{(-3-h)(-h)}=\lim _{h \rightarrow 0} \frac{1+h}{(3+h)(h)}=-\infty$
98 (a,c)
Since $x^{2}>0$ and limit equals $2, f(x)$ must be a positive quantity. Also since $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=2$. The denominator \rightarrow zero and limit is finite, therefore $f(x)$ must be approaching to zero or $\lim _{x \rightarrow 0}[f(x)]=$ 0^{+}
Hence $\lim _{x \rightarrow 0}[f(x)]=0$
$\lim _{x \rightarrow 0^{+}}\left[\frac{f(x)}{x}\right]=\lim _{x \rightarrow 0^{+}}\left[x \frac{f(x)}{x^{2}}\right]=0$ and $\lim _{x \rightarrow 0^{-}}\left[\frac{f(x)}{x}\right]=$
$\lim _{x \rightarrow 0^{-}}\left[x \frac{f(x)}{x^{2}}\right]=-1$
Hence $\lim _{x \rightarrow 0}\left[\frac{f(x)}{x}\right]$ does not exist
99 (a,c)
$\lim _{n \rightarrow \infty} \frac{-3+\frac{(-1)^{n}}{n}}{4+\frac{(-1)^{n}}{n}}=\frac{-3}{4}$
100 (b,c)
Case I $x \neq m \pi$ (m is an integer)
$\lim _{x \rightarrow \infty} \frac{1}{1+n \sin ^{2} n x}=\frac{1}{\infty}=0$
Case II $x=m \pi$ (m is an integer
$\lim _{n \rightarrow \infty} \frac{1}{1+n \sin ^{2} n x}=\frac{1}{1}=1$
101 (a,c)
Limit $=\lim _{n \rightarrow \infty} \frac{a n(1+n)-\left(1+n^{2}\right)}{1+n}$
$=\lim _{n \rightarrow \infty} \frac{(a-1) n^{2}+a n-1}{n+1}$
$=\infty$ if $a-1 \neq 0$
If $a-1=0$, limit $=\lim _{n \rightarrow \infty} \frac{a n-1}{n+1}=a=b$
$\therefore a=b=1$

102 (a,b,c)

$L=\lim _{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}}=\lim _{x \rightarrow 0} \frac{\frac{\sin x^{n}}{x^{n}} x^{n}}{\frac{(\sin x)^{m}}{x^{m}} x^{m}}=\lim _{x \rightarrow 0} x^{n-m}$
If $n=m$, then
$L=(\text { a very small value near to zero })^{\text {exactly zero }}$

$$
=1
$$

If $n>m$, then
$L=(\text { a very small value near to zero })^{\text {positive integer }}$

$$
=0
$$

If $n<m$, then
$L=(\text { a very small value near to zero })^{\text {negative integer }}$

$$
=\infty
$$

103 (a,b,c,d)
$f(x)=\frac{3 x^{2}+a x+a+1}{(x+2)(x-1)}$
As $x \rightarrow 1, D^{r} \rightarrow 0$, hence as $x \rightarrow 1, N^{r} \rightarrow 0$
$\therefore 3+2 a+1=0 \Rightarrow a=-2 \Rightarrow$ (A)
As $x \rightarrow-2, D^{r} \rightarrow 0$, hence as $x \rightarrow-2, N^{r} \rightarrow 0$
$\therefore 12-2 a+a+1=0 \Rightarrow a=13 \Rightarrow$ (B)
Now $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 1} \frac{3 x^{2}-2 x-1}{(x+2)(x-1)}=\lim _{x \rightarrow 1} \frac{(3 x+1)(x-1)}{(x+2)(x-1)}=$ $\frac{4}{3}$
Now $\lim _{x \rightarrow-2} \frac{3 x^{2}+13 x+14}{(x+2)(x-1)}=\lim _{x \rightarrow-2} \frac{(3 x+7)(x+2)}{(x+2)(x-1)}=-\frac{1}{3}$
104 (b,c)
R.H. limit $=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} a(1+h)=a$
L.H. limit $=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} a\left\{1+\frac{2}{a}(1+h)\right\}=$
$1+\frac{2}{a}$
$\lim _{x \rightarrow 1} f(x)$ exists \Rightarrow R.H. limit $=$ L.H. limit
$\Rightarrow a=1+\frac{2}{a}$
$\Rightarrow a=2,-1$
105 (b,c)
Since the greatest integer function is
discontinuous (sensitive) at integral values of x, then for a given limit to exist both left- and righthand limit must be equal
L.H.L. $=\lim _{x \rightarrow 1^{-}}(2-x+a[x-1]+b[1+x])$
$=2-1+a(-1)+b(1)=1-a+b$
R.H.L. $=\lim _{x \rightarrow 1^{+}}(2-x+a[x-1]+b[1+x])$
$=2-1+a(0)+b(2)=1+2 b$
Om comparing we have $-a=b$
106 (a,d)

$$
\begin{gathered}
f(1+0)=\lim _{h \rightarrow 0}\{|1+h-1|-[1+h]\} \\
=\lim _{h \rightarrow 0}\{h-1\}=-1 \\
f(1-0)=\lim _{h \rightarrow 0}\{|1-h-1|-[1-h]\} \\
=\lim _{h \rightarrow 0}\{h-0\}=0
\end{gathered}
$$

107 (a,b,c)
$=\lim _{x \rightarrow 5^{-}} \frac{x^{2}-9 x+20}{x-[x]}=\lim _{x \rightarrow 5^{-}} \frac{(x-5)(x-4)}{x-4}$

$$
=\lim _{x \rightarrow 5^{-}}(x-5)=0
$$

$=\lim _{x \rightarrow 5^{+}} \frac{x^{2}-9 x+20}{x-[x]}=\lim _{x \rightarrow 5^{+}} \frac{(x-5)(x-4)}{x-5}$

$$
=\lim _{x \rightarrow 5^{+}}(x-4)=1
$$

108 (a,b,c)
$L=\lim _{x \rightarrow a} \frac{|2 \sin x-1|}{2 \sin x-1}$
For $a=\pi / 6$, L.H.L. $=\lim _{x \rightarrow \frac{\pi^{-}}{6}} \frac{1-2 \sin x}{2 \sin x-1}=-1$,
R.H.L. $=\lim _{x \rightarrow \frac{\pi^{+}}{6}} \frac{2 \sin x-1}{2 \sin x-1}=1$

Hence the limit does not exist
For $a=\pi, \lim _{x \rightarrow \pi} \frac{1-2 \sin x}{2 \sin x-1}=-1$ (as in
neighbourhood of $\pi, \sin x$ is less than $1 / 2$)
For $a=\pi, \lim _{x \rightarrow \pi / 2} \frac{2 \sin x-1}{2 \sin x-1}=1$ (as in
neighbourhood of $\pi / 2, \sin x$ approaches to 1)
109 (b,c,d)
$f(x)=\lim _{x \rightarrow \infty} \frac{x}{x^{2 n}+1}$
$=\left\{\begin{array}{c}x, x^{2}<1 \\ 0, x^{2}>1 \\ 1 / 2, x=1 \\ -1 / 2, x=-1\end{array}\right.$
$\Rightarrow f\left(1^{+}\right)=f\left(-1^{-}\right)=0$
$f\left(1^{-}\right)=1, f\left(-1^{+}\right)=-1$
$f(1)=1 / 2$
110 (d
$\lim _{x \rightarrow \infty}\left(\frac{1^{2}}{x^{3}}+\frac{2^{2}}{x^{3}}+\frac{3^{2}}{x^{3}}+\cdots+\frac{x^{2}}{x^{3}}\right)$
$=\lim _{x \rightarrow \infty} \frac{x(x+1)(2 x+1)}{6 x^{3}}=\frac{1}{3}$
111 (b)
$L=\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{2}|\sin x|}{x}$
\Rightarrow L.H.L. $=-\sqrt{2}$ and R.H.L. $=\sqrt{2}$
Hence, the limit of the function does not exist. Also, statement 2 is true, but it is not the correct explanation of statement 1 . As for limit to exist, it is not necessary that function is defined at that point

112 (b)

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)=\lim _{h \rightarrow 0}[h]\left(\frac{1-e^{-1 / h}}{1+e^{-1 / h}}\right)= \\
=0 \\
\lim _{x \rightarrow 0^{-}}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)=\lim _{h \rightarrow 0}[-h]\left(\frac{e^{-1 / h}-1}{e^{-1 / h}+1}\right) \\
=-1 \times(-1)=1
\end{gathered}
$$

Thus, given limit does not exists. Also $\lim _{x \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ does not exist, but this cannot be taken as only reason for non-existence of $\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$

113 (a)
$\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sin a_{n}=\lim _{n \rightarrow \infty} a_{n}$
$\Rightarrow \lim _{n \rightarrow \infty}\left(a_{n}-\sin a_{n}\right)=0$ which is possible only when $\lim _{n \rightarrow \infty} a_{n}=0$

114 (a)
If $\lim _{x \rightarrow 0} f(x)$ exists, then $\lim _{x \rightarrow 0}\left(f(x)+\frac{\sin x}{x}\right)$ always exists as $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ exists finitely

Hence $\lim _{x \rightarrow 0} f(x)$ must not exist
115 (b)
For $x \in(-\delta, \delta), \sin x<x \Rightarrow \lim _{x \rightarrow 0} \frac{\sin x}{x}=1^{-}$
$\Rightarrow\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}\right]=0$
Also, $x \in(-\delta, \delta)$, $\tan x>x$, but from this nothing can be said about the relation between $\sin x$ and x

Hence, both the statements are true but statement 2 is not the correct explanation of statement 1

116 (b)
Limit of function $y=f(x)$ exists at $x=a$, though it is discontinuous at $x=a$. Consider the function $f(x)=\frac{x^{2}-4}{x-2}$. Here, $f(x)$ is not defined at $x=2$, but limit of functions exists, as $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}}=$ 4

117 (a)
$L=\lim _{x \rightarrow 0^{+}} \frac{x}{a}\left[\frac{b}{x}\right]$
$=\lim _{x \rightarrow 0^{+}} \frac{x}{a}\left(\frac{b}{x}-\left\{\frac{b}{x}\right\}\right)$
$=\lim _{x \rightarrow 0^{+}}\left(\frac{b}{a}-\frac{x}{a}\left\{\frac{b}{x}\right\}\right)$
$=\frac{b}{a}-\frac{b}{a} \lim _{x \rightarrow 0^{+}} \frac{\left\{\frac{b}{x}\right\}}{\frac{b}{x}}$
$=\frac{b}{a}-\frac{b}{a} \lim _{y \rightarrow \infty} \frac{\{y\}}{y} \quad\left(\right.$ where $y=\frac{b}{x}$ and $\left.b>0\right)=\frac{b}{a}$
Also, if $b<0, L=\frac{b}{a}-\frac{b}{a} \lim _{y \rightarrow \infty} \frac{\{y\}}{y}=\frac{b}{a}$

118 (c)
Obviously statement 1 is true, but statement 2 is not always true

Consider, $f(x)=[x]$ and $\mathrm{g}(x)=\sin x$ (where [•] represents greatest integer function)

Here $\lim _{x \rightarrow \pi^{+}}[\sin x]=-1$
and $\lim _{x \rightarrow \pi^{-}}[\sin x]=0$
$\Rightarrow \lim _{x \rightarrow \pi}[\sin x]$ does not exist
119 (a)
When $n \rightarrow \infty$ and x is rational or $x=\frac{p}{q}$, where p and q are integers and $q \neq 0$
$n!x=n!\times \frac{p}{q}$ is integer as $n!$ has factor q when $n \rightarrow \infty$

Also, when $n!x$ is integer, $\sin (n!\pi x)=0 \Rightarrow$ given limit is zero

120 (a)
For $\lim _{x \rightarrow \alpha} \frac{\sin (f(x))}{x-\alpha}$, denominator tends to 0 ; hence the numerator must also tena to 0 for limit to be finite. Then, α is a root of the equation
$a x^{2}+b x+c=0$ or $f(\alpha)=0$. Also, consider $f\left(\alpha^{+}\right) \rightarrow 0^{+}$and $f\left(\alpha^{-}\right) \rightarrow 0^{-}$
$\Rightarrow \lim _{x \rightarrow \alpha^{+}} \frac{e^{1 / f(x)}-1}{e^{1 / f(x)}+1}=\lim _{x \rightarrow \alpha^{+}} \frac{1-e^{-1 / f(x)}}{1+e^{-1 / f(x)}}=1$
and $\lim _{x \rightarrow \alpha^{-}} \frac{e^{1 / f(x)}-1}{e^{1 / f(x)}+1}=-1$
Thus, both the statements are true and statement 2 is the correct explanation of statement 1

121 (d)
Obviously, statement 2 is true, as on the number line immediate neighbourhood of $1 / 2$ is either
rational or irrational, but this does not stop $f(x)$ to have limit at $x=1 / 2$. As $f(1 / 2)=$ $1 / 2, f\left(1 / 2^{+}\right)=\lim _{x \rightarrow 1 / 2^{+}} x=1 / 2$ (if $1 / 2^{+}$is rational) or $\lim _{x \rightarrow 1 / 2^{+}}(1-x)=1-1 / 2=1 / 2$ (if $1 / 2^{+}$is irrational)

Hence $\lim _{x \rightarrow 1 / 2^{+}} f(x)=1 / 2$
With similar argument, we can prove that
$\lim _{x \rightarrow 1 / 2^{-}} f(x)=1 / 2$. Hence, limit of function exists at $x=1 / 2$

122 (a)
$\lim _{x \rightarrow \infty} \frac{(x-1)(x-2)}{(x-3)(x-4)}$
$=\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+2}{x^{2}-7 x+12}$
$=\lim _{x \rightarrow \infty} \frac{1-\frac{3}{x}+\frac{2}{x^{2}}}{1-\frac{7}{x}+\frac{12}{x^{2}}} \rightarrow 1$ (from right-hand side of 1)
Hence $\lim _{x \rightarrow \infty} \cos ^{-1} f(x)$ does not exist as $\cos ^{-1} x$ is defined for $x \in[-1,1]$

Also, $\lim _{x \rightarrow-\infty} \frac{1-\frac{3}{x}+\frac{2}{x^{2}}}{1-\frac{7}{x}+\frac{12}{x^{2}}} \rightarrow 1$ (from left-hand side of 1)
Hence $\lim _{x \rightarrow \infty} \cos ^{-1} f(x)$ exists

123 (a)

a. Let $x+1=h$

Then, $\lim _{x \rightarrow-1} \frac{\sqrt[3]{(7-x)}-2}{(x+1)}$
$=\lim _{h \rightarrow 0} \frac{(8-h)^{1 / 3}-2}{h}$
$=\lim _{h \rightarrow 0} \frac{2\left(1-\frac{h}{8}\right)^{1 / 3}-2}{h}$
$=2 \lim _{h \rightarrow 0} \frac{\left(1-\frac{1}{3} \frac{h}{8}\right)-1}{h}$
$=-\frac{1}{12}$
b. we have $\lim _{x \rightarrow \pi / 4} \frac{\tan ^{3} x-\tan x}{\cos (x+\pi / 4)}$
$=\lim _{x \rightarrow \pi / 4} \frac{\tan x(\tan x-1)(\tan x+1)}{\cos (x+\pi / 4)}$
$=\lim _{x \rightarrow \pi / 4} \frac{\tan x(\sin x-\cos x)(\tan x+1)}{\cos x \cos (x+\pi / 4)}$
$=-\lim _{x \rightarrow \pi / 4} \frac{\tan x(\cos x-\sin x)(\tan x+1)}{\cos x \cos (x+\pi / 4)}$

$$
\begin{aligned}
& =-\sqrt{2} \lim _{x \rightarrow \pi / 2} \frac{\tan x\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right)(\tan x+1)}{\cos x \cos (x+\pi / 4)} \\
& =-\sqrt{2} \lim _{x \rightarrow \pi / 4} \frac{\tan x(\tan x+1)}{\cos x} \\
& =-\sqrt{2} \times 2 \times \sqrt{2}=-8 \\
& \text { c. } \lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3} \\
& =\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{(2 x+3)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{(2 x+3)(\sqrt{x}-1)(\sqrt{x}+1)} \\
& =\lim _{x \rightarrow 1} \frac{(2 x-3)}{(2 x+3)(\sqrt{x}+1)} \\
& =\frac{2-3}{(2+3)(\sqrt{1}+1)} \\
& =-1 / 10 \\
& \text { d. } \lim _{x \rightarrow \infty} \frac{\log x^{n}-[x]}{[x]} \\
& =\lim _{x \rightarrow \infty} \frac{\log x^{n}}{[x]}-\lim _{x \rightarrow \infty} \frac{[x]}{[x]} \\
& =0-1 \\
& =-1
\end{aligned}
$$

(c)
a. Here, $a>0$, if $a \leq 0$, then limit $=\infty$

$$
\begin{aligned}
& \left(\sqrt{\left(x^{2}-x+1\right)}-a x-b\right)\left(\sqrt{x^{2}-x+1}\right) \\
\therefore & \lim _{x \rightarrow \infty} \frac{(a x+b)}{\left.\left(\sqrt{\left(x^{2}-x+1\right.}\right)+a x+b\right)} \\
\Rightarrow & \lim _{x \rightarrow \infty} \frac{\left(x^{2}-x+1\right)-(a x+b)^{2}}{\sqrt{\left(x^{2}-x+1\right)}+a x+b}=0 \\
\Rightarrow & \lim _{x \rightarrow \infty} \frac{\left(1-a^{2}\right) x^{2}-(1+2 a b) x+\left(1-b^{2}\right)}{\sqrt{\left(x^{2}-x+1\right)}+a x+b}=0 \\
\Rightarrow & \lim _{x \rightarrow \infty} \frac{\left(1-a^{2}\right) x-(1+2 a b)+\frac{\left(1-b^{2}\right)}{x}}{\sqrt{1-\frac{1}{x}+\frac{1}{x^{2}}}+a+\frac{b}{x}}
\end{aligned}
$$

This is possible only when $1-a^{2}=0$ and
$1+2 a b=0$
$\therefore a= \pm 1$
$\Rightarrow a=1 \quad(\because a>0)$
$\Rightarrow b=-1 / 2$
$\Rightarrow(a, 2 b)=(1,-1)$
b. Divide numerator and denominator by $e^{1 / x}$, then
$\lim _{x \rightarrow \infty} \frac{\left(1+a^{3}\right) e^{-\frac{1}{x}}+8}{e^{-\frac{1}{x}}+\left(1-b^{3}\right)}=2$
$\Rightarrow \frac{0+8}{0+1-b^{3}}=2$
$\Rightarrow 1-b^{3}=4$
$\therefore b^{3}=-3 \Rightarrow b=-3^{1 / 3}$

Then, $a \in R$
$\Rightarrow\left(a, b^{3}\right)=(a,-3)$
c. $\left.\lim _{x \rightarrow \infty}\left(\sqrt{\left(x^{4}-x^{2}+1\right.}\right)-a x^{2}-b\right)=0$

Put $x=\frac{1}{t} \quad \therefore \lim _{t \rightarrow 0}\left(\sqrt{\left(\frac{1}{t^{4}}-\frac{1}{t^{2}}+1\right)}-\frac{a}{t^{2}}-b\right)=0$
$\Rightarrow \lim _{t \rightarrow 0} \frac{\sqrt{\left(1-t^{2}+t^{4}\right)}-a-b t^{2}}{t^{2}}=0$
Since R.H.S. is finite, numerator must be equal to 0 at $t \rightarrow 0$
$\therefore 1-a=0 \quad \therefore a=1$
From equation (1), $\lim _{t \rightarrow 0} \frac{\sqrt{\left(1-t^{2}+t^{4}\right)}-1-b t^{2}}{t^{2}}=0$
$\lim _{t \rightarrow 0}\left(-1+t^{2}\right)\left(\frac{\left(1-t^{2}+t^{4}\right)^{1 / 2}-(1)^{1 / 2}}{\left(1-t^{2}+t^{4}\right)-1}\right)=b$
$\Rightarrow(-1)\left(\frac{1}{2}\right)=b \Rightarrow a=1, b=-\frac{1}{2} \Rightarrow(a,-4 b)$

$$
=(1,2)
$$

d. $\lim _{x \rightarrow-a} \frac{x^{7}-(-a)^{7}}{x-(-a)}=7 \Rightarrow 7 a^{6}=7 \Rightarrow a^{6}=1 \Rightarrow a=$ -1

125 (b)
We know that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ (but a value which is smaller than 1)
$\Rightarrow\left[\lim _{x \rightarrow 0} 100 \frac{\sin x}{x}\right]=99$
and $\left[\lim _{x \rightarrow 0} 100 \frac{x}{\sin x}\right]=100$
(Also $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1$ (but a value which is more than 1)
$\Rightarrow\left[\lim _{x \rightarrow 0} 100 \frac{\sin ^{-1} x}{x}\right]=100$
and $\left[\lim _{x \rightarrow 0} 100 \frac{x}{\sin ^{-1} x}\right]=99$
$\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$ (but a value which is bigger than 1)
$\Rightarrow\left[\lim _{x \rightarrow 0} 100 \frac{\tan x}{x}\right]=100$
and $\left[\lim _{x \rightarrow 0} 100 \frac{\tan ^{-1} x}{x}\right]=99$
Hence

1. $\lim _{x \rightarrow 0}\left(\left[100 \frac{\sin x}{x}\right]+\left[100 \frac{\tan x}{x}\right]\right)=199$
2. $\lim _{x \rightarrow 0}\left(\left[100 \frac{x}{\sin x}\right]+\left[100 \frac{\tan x}{x}\right]\right)=200$
3. $\lim _{x \rightarrow 0}\left(\left[100 \frac{\sin ^{-1} x}{x}\right]+\left[100 \frac{\tan ^{-1} x}{x}\right]\right)=199$
4. $\quad \lim _{x \rightarrow 0}\left(\left[100 \frac{x}{\sin ^{-1} x}\right]+\left[100 \frac{\tan ^{-1} x}{x}\right]\right)=198$

126 (a)
We have $f(x)=\frac{\sin ^{-1}(1-\{x\}) \cos ^{-1}(1-\{x\})}{\sqrt{2\{x\}}(1-\{x\})}$
$\therefore \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1-\{0+h\}) \cos ^{-1}(1-\{0+h\})}{\sqrt{2\{0+h\}}(1-\{0+h\})}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1-h) \cos ^{-1}(1-h)}{\sqrt{2 h}(1-h)}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1-h)}{(1-h)} \lim _{h \rightarrow 0} \frac{\cos ^{-1}(1-h)}{\sqrt{2 h}}$
In second limit put $1-h=\cos \theta$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1-h)}{(1-h)} \lim _{\theta \rightarrow 0} \frac{\cos ^{-1}(\cos \theta)}{\sqrt{2(1-\cos \theta)}}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1-h)}{(1-h)} \lim _{\theta \rightarrow 0} \frac{\theta}{2 \sin (\theta / 2)} \quad(\because \theta>0)$
$=\sin ^{-1} 1 \times 1=\pi / 2$
and $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1+\{0-h\}) \cos ^{-1}(1-\{0-h\})}{\sqrt{2\{0-h\})}(1-\{0-h\})}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(1+h-i) \cos ^{-1}(1+h-1)}{\sqrt{2(-h+1)}(1+h-1)}$
$=\lim _{h \rightarrow 0} \frac{\sin ^{-1} h}{h} \lim _{h \rightarrow 0} \frac{\cos ^{-1} h}{\sqrt{2(1-h)}}=1 \frac{\pi / 2}{\sqrt{2}}=\frac{\pi}{2 \sqrt{2}}$
127 (c)
We have $A_{i}=\frac{x-a_{i}}{-\left(x-a_{i}\right)}=-1, i=1,2, \ldots, n$ and $a_{1}<a_{2}<\ldots<a_{n-1}<a_{n}$
Let x be in the left neighbourhood of a_{m}. Then $x-a_{i}<0$ for $i=m, m+1, \ldots, n$ and $x-a_{i}>0$ for $i=1,2, \ldots, m-1$. Therefore,
$A_{\mathrm{i}}=\frac{x-a_{i}}{-\left(x-a_{i}\right)}=-1$ for $i=m, m+1, \ldots, n$ and
$A_{\mathrm{i}}=\frac{x-a_{i}}{x-a_{i}}=1$ for $i=1,2, \ldots, m-1$
Similarly, if x is in the right neighbourhood of a_{m},
then $x-a_{i}<0$ for $i=m+1, \ldots, n$ and $x-a_{i}>0$
for $\mathrm{i}=1,2, \ldots, m$
$\therefore A_{\mathrm{i}}=\frac{x-a_{i}}{-\left(x-a_{i}\right)}=-1$ for $i=m+1, \ldots, n$ and
$A_{\mathrm{i}}=\frac{x-a_{i}}{x-a_{i}}=1$ for $i=1,2, \ldots, m$
Now, $\lim _{x \rightarrow a_{m}^{-}}\left(A_{1} A_{2} \ldots A_{n}\right)=(-1)^{n-m+1}$ and
$\lim _{x \rightarrow a_{m}^{+}}\left(A_{1} A_{2} \ldots A_{n}\right)=(-1)^{n-m}$
Hence, $\lim _{x \rightarrow a_{m}}\left(A_{1} A_{2} \ldots A_{n}\right)$ does not exist

128 (b)

$$
\begin{aligned}
& L=\lim _{x \rightarrow 0} \frac{\sin x+a e^{x}+b e^{-x}+c \operatorname{In}(1+x)}{x^{3}} \\
& \left.=\lim _{x \rightarrow 0} \frac{b\left(1-\frac{x^{3}}{3!}\right)+a\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)+}{2!}+\frac{x^{2}}{3!}\right)+c\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right) \\
& x^{3}
\end{aligned}
$$

$$
\begin{gathered}
(a+b)+(1+a-b+c) x \\
+\left(\frac{a}{2}+\frac{b}{2}-\frac{c}{2}\right) x^{2} \\
=\lim _{x \rightarrow 0} \frac{+\left(-\frac{1}{3!}+\frac{a}{3!}-\frac{b}{3!}+\frac{c}{3}\right) x^{3}}{x^{3}} \\
\Rightarrow a+b=0,1+a-b+c=0, \frac{a}{2}+\frac{b}{2}-\frac{c}{2}=0
\end{gathered}
$$

And $L=-\frac{1}{3!}+\frac{a}{3!}-\frac{b}{3!}+\frac{c}{3}$
Solving the first three equations, we get
$c=0, a=-1 / 2, b=1 / 2$
Then, $L=-1 / 3$
Equation $a x^{2}+b x+c=0$ reduces to
$x^{2}-x=0 \Rightarrow x=0,1| | x+c|-2 a|<4 b$ reduces
to $||x|+1|<2$
$\Rightarrow-2<|x|+1<2$
$\Rightarrow 0 \leq|x|<1$
$\Rightarrow x \in[-1,1]$
129 (c)
$\lim _{x \rightarrow 0^{+}} F(x)=\lim _{x \rightarrow 0^{+}}\left(p_{1} a_{1}^{x}+p_{2} a_{2}^{x}+\cdots+p_{n} a_{n}^{x}\right)^{1 / x}$
(1^{∞} form)
$=e^{\lim _{x \rightarrow 0}\left(\frac{p_{1} a_{1}^{x}+p_{2} a_{2}^{x}+\cdots+p_{n} a_{n}^{x}-1}{x}\right)}$
$=e^{\lim _{x \rightarrow 0}\left(p_{1} a_{1}^{x} \operatorname{In} a_{1}+p_{2} a_{2}^{x} \operatorname{In} a_{2}+\cdots+p_{n} a_{n}^{x} \operatorname{In} a_{n}\right)}$
$=e^{\left(p_{1} \operatorname{In} a_{1}+p_{2} \operatorname{In} a_{2}+\cdots+p_{n} \operatorname{In} a_{n}\right)}$
$=e^{\left(\operatorname{In} a_{1}^{p_{1}}+\operatorname{In} a_{2}^{p_{2}}+\cdots+\operatorname{In} a_{n}^{p_{n}}\right)}$
$=e^{\left(\operatorname{In} a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}\right)}$
$=a_{1}^{p_{1}} \cdot a_{2}^{p_{2}} a_{3}^{p_{3}} \ldots a_{n}^{p_{n}}$
130 (4)
$\lim _{x \rightarrow 0} \frac{e^{-x^{2} / 2}-\cos x}{x^{3} \sin x}$
$=\lim _{x \rightarrow 0} \frac{\left(1-\frac{\left(x^{2} / 2\right)}{1!}+\frac{\left(x^{2} / 2\right)^{2}}{2!}\right)-\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\right)}{x^{3}\left(x-\frac{x^{3}}{3!}\right)}$
$=\lim _{x \rightarrow 0} \frac{\left(\frac{x^{4}}{8}\right)-\left(\frac{x^{4}}{24}\right)}{x^{4}\left(1-\frac{x^{2}}{3!}\right)}=\frac{1}{12}$
131 (1)
$\lim _{x \rightarrow \infty}\left(f(x)+\frac{3 f(x)-1}{f^{2}(x)}\right)=3$
$\Rightarrow\left(\lim _{x \rightarrow \infty} f(x)+\frac{3 \lim _{x \rightarrow \infty} f(x)-1}{\left(\lim _{x \rightarrow \infty} f(x)\right)^{2}}\right)=3$
$\Rightarrow\left(y+\frac{3 y-1}{y^{2}}\right)=3$
$\Rightarrow y^{3}-3 y^{2}+3 y-1=0$
$\Rightarrow(y-1)^{3}=0$
$\Rightarrow y=1$

Put $x=1+h$
Then $f(a)=\lim _{h \rightarrow 0} \frac{(1+h)^{a}-a(1+h)+a-1}{h^{2}}$

$$
\left(1+a h+\frac{a(a-1)}{2!} h^{2}+\cdots\right)-
$$

$=\lim _{h \rightarrow 0} \frac{a-a h+a-1}{h^{2}}$
$\therefore f(a)=\frac{a(a-1)}{2}$
$\therefore f(4)=6$
133 (3)
$\lim _{x \rightarrow 2} \frac{(10-x)^{1 / 3}-2}{x-2}$
$=\lim _{h \rightarrow 0} \frac{(8-h)^{1 / 3}-2}{h} \quad$ (Put $\left.x=2+h\right)$
$=\lim _{h \rightarrow 0} \frac{2\left(1-\frac{h}{8}\right)^{1 / 3}-2}{h}$
$=2 \lim _{h \rightarrow 0} \frac{\left(1-\frac{h}{8}\right)^{1 / 3}-1}{h}$
$=2 \lim _{h \rightarrow 0} \frac{1-\frac{1}{3} \frac{h}{8}-1}{h}=-\frac{1}{12}$
134 (3)
$\lim _{x \rightarrow 1}\left(1+a x+b x^{2}\right)^{\frac{c}{x-1}}=e^{3}$
$\Rightarrow e^{\lim _{x \rightarrow 1}\left(1+a x+b x^{2}-1\right)^{\frac{c}{x-1}}}=e^{3}$
$\Rightarrow e^{\lim _{x \rightarrow 1} \frac{c\left(a x+b x^{2}\right)}{x-1}}=e^{3}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{c\left(a x+b x^{2}\right)}{x-1}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{c\left(a(1+h)+b(1+h)^{2}\right)}{1+h-1}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{(c a+b)+(a c+2 b) h+b h^{2}}{h}=3$
$\Rightarrow c a+b=0$ and $a c+2 b=3$
$\Rightarrow b=3$ and $a c=-3$
Also the form must be 1^{∞} for which $a+b=0 \Rightarrow$ $a=-3$ and $c=1$
135
Let $L=\lim _{x \rightarrow \infty} \frac{\log _{e}\left(\log _{e} x\right)}{e^{\sqrt{x}}}=\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{\frac{1}{x \log _{e} x}}{e^{\sqrt{x}} \frac{1}{2 \sqrt{x}}}$
$=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{e^{\sqrt{x}} x \log _{e} x}$
$=\lim _{x \rightarrow \infty} \frac{2}{e^{\sqrt{x}} \sqrt{x} \log _{e} x}$
136 (3)
$L=\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$
$=-\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)\left(\cos x-e^{x}\right)}{(1+\cos x) x^{n}}$
$=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin x}{x}\right)^{2}\left(\frac{1-\cos x}{x}+\frac{e^{x}-1}{x}\right)}{x^{n-3}} \frac{1}{1+\cos x}$
If L is finite non-zero, then $n=3$ (as for $n=1,2, L=0$ and for $n=4, L=\infty)$
137 (6)
It is obvious n is even, then
$\lim _{n \rightarrow \infty}\left(2^{1+3+5+\cdots+n / 2 \text { terms }} \cdot 3^{2+4+6+\cdots+n / 2 \text { terms })^{\frac{1}{\left(n^{2}+1\right)}}}\right.$
$=\lim _{n \rightarrow \infty}\left(2^{\frac{n^{2}}{4}} \cdot 3^{\frac{n(n+2)}{4}}\right)^{\frac{1}{\left(n^{2}+1\right)}}$
$=\lim _{n \rightarrow \infty} 2^{\frac{n^{2}}{4\left(n^{2}+1\right)}} \cdot 3^{\frac{n(n+2)}{4\left(n^{2}+1\right)}}$
$=2^{\lim _{n \rightarrow \infty} \frac{1}{4\left(1+\frac{1}{n^{2}}\right)}} \cdot 3^{\lim _{n \rightarrow \infty} \frac{\left(1+\frac{2}{n}\right)}{4\left(1+\frac{1}{n^{2}}\right)}}$
$=2^{\frac{1}{4}} 3^{\frac{1}{4}}=(6)^{\frac{1}{4}}$
138 (2)
$\lim _{x \rightarrow \infty} \frac{2 x-3}{x}<\lim _{x \rightarrow \infty} f(x)<\lim _{x \rightarrow \infty} \frac{2 x^{2}+5 x}{x^{2}}$
$\Rightarrow \lim _{x \rightarrow \infty} \frac{2-\frac{3}{x}}{1}<\lim _{x \rightarrow \infty} f(x)<\lim _{x \rightarrow \infty} \frac{2+\frac{5}{x^{2}}}{1}$
$\Rightarrow \lim _{x \rightarrow \infty} f(x)=2$
139 (6)
$\lim _{x \rightarrow 1^{+}} f(\mathrm{~g}(x))=f\left(\mathrm{~g}\left(1^{+}\right)\right)=f\left(2^{+}\right)=2^{2}+2=6$
and $\lim _{x \rightarrow 1^{-}} f(\mathrm{~g}(x))=f\left(\mathrm{~g}\left(1^{-}\right)\right)=f\left(3-1^{-}\right)=$
$f\left(2^{+}\right)=2^{2}+2=6$
Hence $\lim _{x \rightarrow 1} f(g(x))=6$
140 (4)
Let $x=1 / y$
$\Rightarrow \lim _{x \rightarrow \infty}\left(x-x^{2} \log _{e}\left(1+\frac{1}{x}\right)\right)$
$=\lim _{y \rightarrow 0}\left(\frac{1}{y}-\frac{\log _{e}(1+y)}{y^{2}}\right)$
$=\lim _{y \rightarrow 0}\left(\frac{y-\log _{e}(1+y)}{y^{2}}\right)$
$=\lim _{y \rightarrow 0}\left(\frac{y-\left(y-\frac{y^{2}}{2}\right)}{y^{2}}\right)=1 / 2$
141 (0)
$\lim _{x \rightarrow 0^{+}} f(g(h(x)))=f\left(g\left(0^{+}\right)\right)=f\left(1^{+}\right)=0$
$\lim _{x \rightarrow 0^{-}} f(\mathrm{~g}(h(x)))=f\left(\mathrm{~g}\left(0^{+}\right)\right)=f\left(1^{+}\right)=0$
Hence $\lim _{x \rightarrow 0} f(g(h(x)))=0$
142 (2)
$\lim _{x \rightarrow 0}\left[1+x+\frac{f(x)}{x}\right]^{1 / x}=e^{3}$
$\Rightarrow \lim _{x \rightarrow 0} e^{\lim _{x \rightarrow 0}\left[1+x+\frac{f(x)}{x}-1\right] \frac{1}{x}}=e^{3}$
$\Rightarrow \lim _{x \rightarrow 0} e^{\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]}=e^{3}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=2$
Now $\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x}\right]^{1 / x}=e^{\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x}-1\right] \frac{1}{x}}=$
$e^{\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}}=e^{2}$
143 (8)
Since RHS is finite quantity
\therefore At $x \rightarrow 1$, Numerator must be $=0$
$\therefore 0+b+4=0$
$\therefore b=-4$
Then $\lim _{x \rightarrow 1} \frac{a \sin (x-1)-4 \cos (x-1)+4}{\left(x^{2}-1\right)}=-2$
Put $x=1+h$, Then $\lim _{h \rightarrow 0} \frac{a \sinh +4(1-\cosh)}{h(2+h)}=-2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left(\frac{a \sinh }{h}\right)+4\left(\frac{1-\cosh }{h}\right)}{2+h}=-2$
$\Rightarrow \frac{a(1)+0}{2}=-2$
$\Rightarrow a=-4$
$\Rightarrow|a+b|=8$
144 (6)
$L=\lim _{x \rightarrow 0}=-\lim _{x \rightarrow 0} \frac{D \prod_{r=2}^{n}(\cos r x)^{1 / r}}{2 x}($ Using L'
Hospital's rule)
Let $y=\prod_{r=2}^{n}(\cos r x)^{1 / r}$
$\Rightarrow \operatorname{In} y=\sum_{r=2}^{n}\left(\frac{1}{r} \operatorname{In}(\cos r x)\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=-\sum_{r=2}^{n} \tan (r x)$
$\Rightarrow-D y=y \sum_{r=2}^{n} \tan (r x)$
$\Rightarrow D \prod_{r=2}^{n}(\cos r x)^{1 / r}=-y \sum_{r=2}^{n} \tan (r x)$
$\Rightarrow L=\lim _{x \rightarrow 0} \frac{y \cdot \sum_{r=2}^{n} \tan (r x)}{2 x}$
$=\frac{1}{2}[2+3+4+\cdots+n]$
$=\frac{1}{2}\left[\frac{n(n+1)}{2}-1\right]$
$=\frac{n^{2}+n-2}{4}$
$\Rightarrow \frac{n^{2}+n-2}{4}=10$
$\Rightarrow n^{2}+n-42=0$
$\Rightarrow(n+7)(n-6)=0$
$\Rightarrow n=6$
145 (9)
$f(x)=\frac{3 x^{2}+a x+a+1}{(x+2)(x-1)}$
As $x \rightarrow-2, D^{r} \rightarrow 0$, hence as $x \rightarrow-2, N^{r} \rightarrow 0$
$\therefore 12-2 a+a+1=0 \Rightarrow a=13$
146 (7)
We have,
$L=\lim _{x \rightarrow 0} \frac{2 f(x)-3 a f(2 x)+b f(8 x)}{\sin ^{2} x}$
For the limit to exist, we have $2 f(0)-3 a f(0)+$
$b f(0)=0$
$\Rightarrow 3 a-b=2[\because f(0) \neq 0$, given $]$
$\Rightarrow L=\lim _{x \rightarrow 0} \frac{2 f^{\prime}(x)-6 a f^{\prime}(2 x)+8 b f^{\prime}(8 x)}{2 x}$
For the limit to exist, we have $2 f^{\prime}(0)-6 a f^{\prime}(0)+$ $8 b f^{\prime}(0)=0$
$\Rightarrow 3 a-4 b=1\left[\because f^{\prime}(0) \neq 0\right.$, given $]$
Solving equations (1) and (2), we have $a=7 / 9$ and $b=1 / 3$
147

(0)

$\lim _{n \rightarrow \infty}\left[\sqrt[3]{(n+1)^{2}}-\sqrt[3]{(n-1)^{2}}\right]$
$=\lim _{n \rightarrow \infty} n^{2 / 3}\left[\left(1+\frac{1}{n}\right)^{2 / 3}-\left(1-\frac{1}{n}\right)^{2 / 3}\right]$
$=\lim _{n \rightarrow \infty} n^{2 / 3}\left[\left(1+\frac{2}{3} \cdot \frac{1}{n}+\frac{\frac{2}{3}\left(\frac{2}{2}-1\right)}{2!} \frac{1}{n^{2}} \ldots\right)\right.$

$$
\left.-\left(1-\frac{2}{3} \cdot \frac{1}{n}+\frac{\frac{2}{3}\left(\frac{2}{3}-1\right)}{2!} \frac{1}{n^{2}} \ldots\right)\right]
$$

$=\lim _{n \rightarrow \infty} n^{2 / 3}\left[\frac{4}{3} \cdot \frac{1}{n}+\frac{8}{81} \cdot \frac{1}{n^{3}}+\cdots\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{4}{3} \cdot \frac{1}{n^{1 / 3}}+\frac{8}{81} \cdot \frac{1}{n^{7 / 3}}+\cdots\right]=0$
148
(3)
$S_{n}=\frac{n(n+1)}{2}$ and $S_{n}-1=\frac{(n+2)(n-1)}{2}$
$\therefore \frac{S_{n}}{S_{n}-1}=\frac{n(n+1)}{2} \cdot \frac{2}{(n+2)(n-1)}$
$\Rightarrow \frac{S_{n}}{S_{n}-1}=\left(\frac{n}{n-1}\right)\left(\frac{n+1}{n+2}\right)$
$\Rightarrow P_{n}=\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdots \frac{n}{n-1}\right)\left(\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \cdots \frac{n+1}{n+2}\right)$
$\Rightarrow P_{n}=\left(\frac{n}{2}\right)\left(\frac{3}{n+2}\right)$
$\Rightarrow \lim _{n \rightarrow \infty} P_{n}=3$
149 (2)
We have

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \prod_{n=2}^{n} \frac{n^{2}-1}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \prod_{n=2}^{n} \frac{n-1}{n} \cdot \prod_{n=2}^{n} \frac{n+1}{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n}\right)\left(\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdots \frac{n+1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{n+1}{2}=\frac{1}{2}
\end{aligned}
$$

