Single Correct Answer Type

1. $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)$ is equal to
a) 5
b) 13
c) 15
d) 6
2. The value of $\lim _{|x| \rightarrow \infty} \cos \left(\tan ^{-1}\left(\sin \left(\tan ^{-1} x\right)\right)\right)$ is equal to
a) -1
b) $\sqrt{2}$
c) $-\frac{1}{\sqrt{2}}$
d) $\frac{1}{\sqrt{2}}$
3. The value of $\sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)$ is equal to
a) Zero
b) $24-2 \pi$
c) $4 \pi-24$
d) None of these
4. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, then $x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}=K\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)$, where K is equal to
a) 1
b) 2
c) 4
d) None of these
5. $\cot ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right]\left(\right.$ where $\left.x \in\left[0, \frac{\pi}{2}\right]\right)$ is equal to
a) $\pi-x$
b) $2 \pi-x$
c) $\frac{x}{2}$
d) $\pi-\frac{x}{2}$
6. The product of all values of x satisfying the equation
$\sin ^{-1} \cos \left(\frac{2 x^{2}+10|x|+4}{x^{2}+5|x|+3}\right)=\cos \left(\cot ^{-1}\left(\frac{2-18|x|}{9|x|}\right)\right)+\frac{\pi}{2}$ is
a) 9
b) -9
c) -3
d) -1
7. The value of $\sin ^{-1}\left[x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right]$ is equal to
a) $\sin ^{-1} x+\sin ^{-1} \sqrt{x}$
b) $\sin ^{-1} x-\sin ^{-1} \sqrt{x}$
c) $\sin ^{-1} \sqrt{x}-\sin ^{-1} x$
d) None of these
8. If $x^{2}+y^{2}+z^{2}=r^{2}$, then $\tan ^{-1}\left(\frac{x y}{z r}\right)+\tan ^{-1}\left(\frac{y z}{x r}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right)$ is equal to
a) π
b) $\frac{\pi}{2}$
c) 0
d) None of these
9. If $\tan ^{-1} x+2 \cot ^{-1} x=\frac{2 \pi}{3}$, then x is equal to
a) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
b) 3
c) $\sqrt{3}$
d) $\sqrt{2}$
10. The value of $\sin ^{-1}\left(x^{2}-4 x+6\right)+\cos ^{-1}\left(x^{2}-4 x+6\right)$ for all $x \in R$ is
a) $\frac{\pi}{2}$
b) π
c) 0
d) None of these
11. Let $\left|\begin{array}{ccc}\tan ^{-1} x & \tan ^{-1} 2 x & \tan ^{-1} 3 x \\ \tan ^{-1} 3 x & \tan ^{-1} x & \tan ^{-1} 2 x \\ \tan ^{-1} 2 x & \tan ^{-1} 3 x & \tan ^{-1} x\end{array}\right|=0$, then the number of values of x satisfying the equation is
a) 1
b) 2
c) 3
d) 4
12. The value of $\cos ^{-1} \sqrt{\frac{2}{3}}-\cos ^{-1} \frac{\sqrt{6}+1}{2 \sqrt{3}}$ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{6}$
13. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\cdots\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \cdots\right)=\frac{\pi}{2}$ for $0<|x|<\sqrt{2}$, then x equals
a) $1 / 2$
b) 1
c) $-1 / 2$
d) -1
14. The trigonometric equation $\sin ^{-1} x=2 \sin ^{-1} a$ has a solution for
a) All real values
b) $|a|<\frac{1}{2}$
c) $|a| \leq \frac{1}{\sqrt{2}}$
d) $\frac{1}{2}<|a|<\frac{1}{\sqrt{2}}$
15. The value of ' a ', for which $a x^{2}+\sin ^{-1}\left(x^{2}-2 x+2\right)+\cos ^{-1}\left(x^{2}-2 x+2\right)=0$ has a real solution is
a) $\frac{\pi}{2}$
b) $-\frac{\pi}{2}$
c) $\frac{2}{\pi}$
d) $-\frac{2}{\pi}$
16. Of $\tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right]$ is equal to
a) $\frac{2 a}{b}$
b) $\frac{2 b}{a}$
c) $\frac{a}{b}$
d) $\frac{b}{a}$
17. $\sin ^{-1}(\sin 5)>x^{2}-4 x$ holds if
a) $x=2-\sqrt{9-2 \pi}$
b) $x=2+\sqrt{9-2 \pi}$
c) $x>2+\sqrt{9-2 \pi}$
d) $x \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})$
18. The sum of the solutions of the equation $2 \sin ^{-1} \sqrt{x^{2}+x+1}+\cos ^{-1} \sqrt{x^{2}+x}=\frac{3 \pi}{2}$ is
a) 0
b) -1
c) 1
d) 2
19. The value of $\tan ^{-1}\left(\frac{x \cos \theta}{1-x \sin \theta}\right)-\cot ^{-1}\left(\frac{\cos \theta}{x-\sin \theta}\right)$ is
a) 2θ
b) θ
c) $\theta / 2$
d) Independent of θ
20. If $a \sin ^{-1} x-b \cos ^{-1} x=c$, then $a \sin ^{-1} x+b \cos ^{-1} x$ is equal to
a) 0
b) $\frac{\pi a b+c(b-a)}{a+b}$
c) $\frac{\pi}{2}$
d) $\frac{\pi a b+c(a-b)}{a+b}$
21. If $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then the value of $\tan ^{-1}\left(\frac{\tan x}{4}\right)+\tan ^{-1}\left(\frac{3 \sin 2 x}{5+3 \cos 2 x}\right)$ is
a) $x / 2$
b) $2 x$
c) $3 x$
d) x
22.

The value of $\sin ^{-1}\left(\cot \left(\sin ^{-1} \sqrt{\frac{2-\sqrt{3}}{4}}+\cos ^{-1} \frac{\sqrt{12}}{4}+\sec ^{-1} \sqrt{2}\right)\right)$ is
a) 0
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) None of these
23. The value of x which satisfies equation $2 \tan ^{-1} 2 x=\sin ^{-1} \frac{4 x}{1+4 x}$ is valid in the interval
a) $\left[\frac{1}{2}, \infty\right)$
b) $\left(-\infty,-\frac{1}{2}\right]$
c) $[-1,1]$
d) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
24. If $\left|\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right|<\frac{\pi}{2}$, then
a) $x \in\left[-\frac{1}{3}, \frac{1}{\sqrt{3}}\right]$
b) $x \in\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
c) $x \in\left(0, \frac{1}{\sqrt{3}}\right)$
d) None of these
25. $\sum_{r=1}^{n} \sin ^{-1}\left(\frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}}\right)$ is equal to
a) $\tan ^{-1}(\sqrt{n})-\frac{\pi}{4}$
b) $\tan ^{-1}(\sqrt{n+1})-\frac{\pi}{4}$
c) $\tan ^{-1}(\sqrt{n})$
d) $\tan ^{-1}(\sqrt{n+1})$
26. $\cos ^{-1}\left(\cos \left(\frac{5 \pi}{4}\right)\right)$ is given by
a) $\frac{5 \pi}{4}$
b) $\frac{3 \pi}{4}$
c) $\frac{-\pi}{4}$
d) None of these
27. If $\tan ^{-1} \frac{a+x}{a}+\tan ^{-1} \frac{a-x}{a}=\frac{\pi}{6}$, then $x^{2}=$
a) $2 \sqrt{3} a$
b) $\sqrt{3} a$
c) $2 \sqrt{3} a^{2}$
d) None of these
28. The value $2 \tan ^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2}\right]$ is equal to
a) $\cos ^{-1}\left(\frac{a \cos \theta+b}{a+b \cos \theta}\right)$
b) $\cos ^{-1}\left(\frac{a+b \cos \theta}{a \cos \theta+b}\right)$
c) $\cos ^{-1}\left(\frac{a \cos \theta}{a+b \cos \theta}\right)$
d) $\cos ^{-1}\left(\frac{b \cos \theta}{a \cos \theta+b}\right)$
29. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, then
a) $x+y+z-x y z=0$
b) $x+y+z+x y z=0$
c) $x y+y z+z x+1=0$
d) $x y+y z+z x-1=0$
30. If $2 \tan ^{-1} x=\pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, then
a) $x>1$
b) $x<1$
c) $x>-1$
d) $-1<x<1$
31. If x takes negative permissible value, then $\sin ^{-1} x$ is equal to
a) $\cos ^{-1} \sqrt{1-x^{2}}$
b) $-\cos ^{-1} \sqrt{1-x^{2}}$
c) $\cos ^{-1} \sqrt{x^{2}-1}$
d) $\pi-\cos ^{-1} \sqrt{1-x^{2}}$
32. The solution set of the equation $\sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} x=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}-\sin ^{-1} x$ is
a) $[-1,1]-\{0\}$
b) $(0,1] U\{-1\}$
c) $[-1,0) \mathrm{U}\{1\}$
d) $[-1,1]$
33. If $\sin ^{-1} a+\sin ^{-1} b+\sin ^{-1} c=\pi$, then the value of $a \sqrt{\left(1-a^{2}\right)}+b \sqrt{\left(1-b^{2}\right)}+c \sqrt{\left(1-c^{2}\right)}$ will be
a) $2 a b c$
b) $a b c$
c) $\frac{1}{2} a b c$
d) $\frac{1}{3} a b c$

a) $\frac{1}{8} \leq a<2$
b) $a<2$
c) $a \in R-\{2\}$
d) $a \in\left[0, \frac{1}{8}\right) \cup(2, \infty)$
35. The number of integral values of k for which the equation $\sin ^{-1} x+\tan ^{-1} x=2 k+1$ has a solution is
a) 1
b) 2
c) 3
d) 4
36. The value of $\tan \left(\sin ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right) \tan \left(\cos ^{-1}\left(\sin \left(\cos ^{-1} x\right)\right)\right)$, where $x \in(0,1)$, is equal to
a) 0
b) 1
c) -1
d) None of these
37. If $\cot ^{-1} \frac{n}{\pi}>\frac{\pi}{6}, n \in N$, then the maximum value of n is
a) 6
b) 7
c) 5
d) None of these
38. $\sum_{m=1}^{n} \tan ^{-1}\left(\frac{2 m}{m^{4}+m^{2}+2}\right)$ is equal to
a) $\tan ^{-1}\left(\frac{n^{2}+n}{n^{2}+n+2}\right)$
b) $\tan ^{-1}\left(\frac{n^{2}-n}{n^{2}-n+2}\right)$
c) $\tan ^{-1}\left(\frac{n^{2}+n+2}{n^{2}+n}\right)$
d) None of these
39. $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x\right), x \neq 0$, is equal to
a) x
b) $2 x$
c) $\frac{2}{x}$
d) None of these
40. The number of solution of the equation $\sin ^{-1} x+\sin ^{-1}(1-x)=\cos ^{-1} x$ is
a) 1
b) 0
c) 2
d) None of these
41. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$, then
a) $x^{2}+y^{2}+z^{2}+x y z=0$
b) $x^{2}+y^{2}+z^{2}+2 x y z=0$
c) $x^{2}+y^{2}+z^{2}+x y z=1$
d) $x^{2}+y^{2}+z^{2}+2 x y z=1$
42. If $\left[\cot ^{-1} x\right]+\left[\cos ^{-1} x\right]=0$, where $[\cdot]$ denotes the greatest integer function, then the complete set of values of x is
a) $(\cos 1,1]$
b) $(\cos 1, \cos 1)$
c) $(\cos 1,1]$
d) None of these
43. If $\sin ^{-1}(x-1)+\cos ^{-1}(x-3)+\tan ^{-1}\left(\frac{x}{2-x^{2}}\right)=\cos ^{-1} k+\pi$, then the value of k is
a) 1
b) $-\frac{1}{\sqrt{2}}$
c) $\frac{1}{\sqrt{2}}$
d) None of these
44. $\sin ^{-1}\left(3 x-2-x^{2}\right)+\cos ^{-1}\left(x^{2}-4 x+3\right)=\frac{\pi}{4}$ can have a solution for $x \in$
a) $[1,2]$
b) $\left(\frac{3+\sqrt{5}}{2}, 2+\sqrt{2}\right)$
c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$
d) None of these
45. $\cos ^{-1}\left(\cos \left(2 \cot ^{-1}(\sqrt{2}-1)\right)\right)$ is equal to
a) $\sqrt{2}-1$
b) $\frac{\pi}{4}$
c) $\frac{3 \pi}{4}$
d) None of these
46. If $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$, then
a) $[-1,1]$
b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$
c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$
d) None of these
47. Range of $f(x)=\sin ^{-1} x+\tan ^{-1} x+\sec ^{-1} x$ is
a) $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
b) $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
c) $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
d) None of these
48. The value of x for which $\sin \left[\cot ^{-1}(1+x)\right]=\cos \left(\tan ^{-1} x\right)$ is
a) $\frac{1}{2}$
b) 1
c) 0
d) $-\frac{1}{2}$
49. Range of $\tan ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ is
a) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $\left(-\frac{\pi}{2}, \frac{\pi}{4}\right]$
d) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
50. If $\sin ^{-1}\left(\frac{5}{x}\right)+\sin ^{-1}\left(\frac{12}{x}\right)=\frac{\pi}{2}$, then x is equal to
a) $\frac{7}{13}$
b) $\frac{4}{3}$
c) 13
d) $\frac{13}{7}$
51. If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$, then $4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to
a) 4
b) $2 \sin ^{2} \alpha$
c) $-4 \sin ^{2} \alpha$
d) $4 \sin ^{2} \alpha$
52. The number of solution of the equation $\cos ^{-1}\left(\frac{1+x^{2}}{2 x}\right)-\cos ^{-1} x=\frac{\pi}{2}+\sin ^{-1} x$ is given by
a) 0
b) 1
c) 2
d) 3
53. The value of $\sin ^{-1}\left(\cos \left(\cos ^{-1}(\cos x)+\sin ^{-1}(\sin x)\right)\right)$, where $x \in\left(\frac{\pi}{2}, \pi\right)$, is equal to
a) $\frac{\pi}{2}$
b) $-\pi$
c) π
d) $-\frac{\pi}{2}$
54. If $x_{1}=2 \tan ^{-1}\left(\frac{1+x}{1-x}\right), x_{2}=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, where $x \in(0,1)$, then $x_{1}+x_{2}$ is equal to
a) 0
b) 2π
c) π
d) None of these
55. If $\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z=\frac{\pi}{2}, x, y, z>0$ and $x y<1$, then $x+y+z$ is also equal to
a) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
b) $x y z$
c) $x y+y z+z x$
d) None of these
56. $\tan ^{-1}\left[\frac{\cos x}{1+\sin x}\right]$ is equal to
a) $\frac{\pi}{4}-\frac{x}{2}$, for $x \in\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
b) $\frac{\pi}{4}-\frac{x}{2}$, for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $\frac{\pi}{4}-\frac{x}{2}$, for $x \in\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right)$
d) $\frac{\pi}{4}-\frac{x}{2}$, for $x \in\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right)$
57. If $\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1}\left(\frac{2 b}{1+b^{2}}\right)=2 \tan ^{-1} x$, then x is equal to $[a, b \in(0,1)]$
a) $\frac{a-b}{1+a b}$
b) $\frac{b}{1+a b}$
c) $\frac{b}{1-a b}$
d) $\frac{a+b}{1-a b}$
58. If $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$, then $\sin x$ is
a) $\tan ^{2} \frac{\alpha}{2}$
b) $\cot ^{2} \frac{\alpha}{2}$
c) $\tan a$
d) $\cot \frac{\alpha}{2}$
59. $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$ is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{4}$ or $-\frac{3 \pi}{4}$
60. If $\sin ^{-1} x=\theta+\beta$ and $\sin ^{-1} y=\theta-\beta$, then $1+x y$ is equal to
a) $\sin ^{2} \theta+\sin ^{2} \beta$
b) $\sin ^{2} \theta+\cos ^{2} \beta$
c) $\cos ^{2} \theta+\cos ^{2} \theta$
d) $\cos ^{2} \theta+\sin ^{2} \beta$
61. The value of $2 \tan ^{-1}\left(\operatorname{cosec} \tan ^{-1} x-\tan \cot ^{-1} x\right)$ is equal to
a) $\cot ^{-1} x$
b) $\cot ^{-1} \frac{1}{x}$
c) $\tan ^{-1} x$
d) None of these
62. The value of $\tan \left(\frac{1}{2} \cos ^{-1}\left(\frac{\sqrt{5}}{3}\right)\right)$ is
a) $\frac{3+\sqrt{5}}{2}$
b) $3+\sqrt{5}$
c) $\frac{1}{2}(3-\sqrt{5})$
d) None of these
63. If $A=\tan ^{-1}\left(\frac{x \sqrt{3}}{2 K-x}\right)$ and $B=\tan ^{-1}\left(\frac{2 x-K}{K \sqrt{3}}\right)$, then the value of $A-B$ is
a) 0°
b) 45°
c) 60°
d) 30°
64. The value of the expression $\sin ^{-1}\left(\sin \frac{22 \pi}{7}\right)+\cos ^{-1}\left(\cos \frac{5 \pi}{3}\right)+\tan ^{-1}\left(\tan \frac{5 \pi}{7}\right)+\sin ^{-1}(\cos 2)$ is
a) $\frac{17 \pi}{42}-2$
b) -2
c) $\frac{-\pi}{21}-2$
d) None of these
65. The value of $\sum_{r=0}^{\infty} \tan ^{-1}\left(\frac{1}{1+r+r^{2}}\right)$ is equal to
a) $\frac{\pi}{2}$
b) $\frac{3 \pi}{4}$
c) $\frac{\pi}{4}$
d) None of these
66. The value of $\cos \left(\frac{1}{2} \cos ^{-1} \frac{1}{8}\right)$ is
a) $\frac{3}{4}$
b) $-\frac{3}{4}$
c) $\frac{1}{16}$
d) $\frac{1}{4}$
67. If $x \in[-1,0)$, then $\cos ^{-1}\left(2 x^{2}-1\right)-2 \sin ^{-1} x$ is equal to
a) $-\frac{\pi}{2}$
b) π
c) $\frac{3 \pi}{2}$
d) -2π
68. If $x \in(0,1)$, then the value of $\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ is equal to
a) $-\frac{\pi}{2}$
b) Zero
c) $\frac{\pi}{2}$
d) π
69. If $f(x)=\sin ^{-1}\left(\frac{\sqrt{3}}{2} x-\frac{1}{2} \sqrt{1-x^{2}}\right),-\frac{1}{2} \leq x \leq 1$, then $f(x)$ is equal to
a) $\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(x)$
b) $\sin ^{-1} x-\frac{\pi}{6}$
c) $\sin ^{-1} x+\frac{\pi}{6}$
d) None of these
70. The number of solutions of the equation $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$ is
a) 2
b) 3
c) 1
d) 0
71. If we consider only the principal values of the inverse trigonometric functions, then the value of $\tan \left(\cos ^{-1} \frac{1}{5 \sqrt{2}}-\sin ^{-1} \frac{4}{\sqrt{17}}\right)$ is
a) $\frac{\sqrt{29}}{3}$
b) $\frac{29}{3}$
c) $\frac{\sqrt{3}}{29}$
d) $\frac{3}{29}$
72. If $3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$, where $|x|<1$, then x is equal to
a) $\frac{1}{\sqrt{3}}$
b) $-\frac{1}{\sqrt{3}}$
c) $\sqrt{3}$
d) $-\frac{\sqrt{3}}{4}$
73. Complete solution set of $\left[\cot ^{-1} x\right]+2\left[\tan ^{-1} x\right]=0$, where $[\cdot]$ denotes the greatest integer function, is equal to
a) $(0, \cot 1)$
b) $(0, \tan 1)$
c) $(\tan 1, \infty)$
d) $(\cot 1, \tan 1)$
74. There exists a positive real number x satisfying $\cos \left(\tan ^{-1} x\right)=x$. Then the value of $\cos ^{-1}\left(\frac{x^{2}}{2}\right)$ is
a) $\frac{\pi}{10}$
b) $\frac{\pi}{5}$
c) $\frac{2 \pi}{5}$
d) $\frac{4 \pi}{5}$
75. $\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$ is equal to
a) $\tan ^{-1}\left(2^{n}\right)$
b) $\tan ^{-1}\left(2^{n}\right)-\frac{\pi}{4}$
c) $\tan ^{-1}\left(2^{n+1}\right)$
d) $\tan ^{-1}\left(2^{n+1}\right)-\frac{\pi}{4}$
76. The number of real solutions of the equation $\tan ^{-1} \sqrt{x^{2}-3 x+2}+\cos ^{-1} \sqrt{4 x-x^{2}-3}=\pi$ is
a) One
b) Two
c) Zero
d) Infinite
77. The number of real solutions of $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\pi / 2$ is
a) Zero
b) One
c) Two
d) Infinite
78. If $\tan ^{-1}\left(\sin ^{2} \theta-2 \sin \theta+3\right)+\cot ^{-1}\left(5^{\sec ^{2} y}+1\right)=\frac{\pi}{2}$, then the value of $\cos ^{2} \theta-\sin \theta$ is equal to
a) 0
b) -1
c) 1
d) None of these
79. If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$, then $\frac{1+x^{4}+y^{4}}{x^{2}-x^{2} y^{2}+y^{2}}$ is equal to
a) 1
b) 2
c) $\frac{1}{2}$
d) None of these
80. The value of $\tan \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]$ is
a) $\frac{6}{17}$
b) $\frac{7}{16}$
c) $\frac{16}{7}$
d) None of these
81. For the equation $\cos ^{-1} x+\cos ^{-1} 2 x+\pi=0$, the number of real solution is
a) 1
b) 2
c) 0
d) ∞
82. The principal value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ is
a) $-\frac{2 \pi}{3}$
b) $\frac{2 \pi}{3}$
c) $\frac{4 \pi}{3}$
d) None of these
83. The range of values of p for which the equation $\sin \cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)=p$ has a solution is
a) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
b) $[0,1)$
c) $\left(\frac{1}{\sqrt{2}}, 1\right)$
d) $(-1,1)$
84. If $u=\cot ^{-1} \sqrt{\tan \alpha}-\tan ^{-1} \sqrt{\tan \alpha}$, then $\tan \left(\frac{\pi}{4}-\frac{u}{2}\right)$ is equal to
a) $\sqrt{\tan \alpha}$
b) $\sqrt{\cot \alpha}$
c) $\tan \alpha$
d) $\cot \alpha$
85. If $3 \tan ^{-1}\left(\frac{1}{2+\sqrt{3}}\right)-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$, then x is equal to
a) 1
b) 2
c) 3
d) $\sqrt{2}$
86. The maximum value of $f(x)=\tan ^{-1}\left(\frac{(\sqrt{12}-2) x^{2}}{x^{4}+2 x^{2}+3}\right)$ is
a) 18°
b) 36°
c) 22.5°
d) 15°
87. The value of $\sin \left(2 \sin ^{-1}(0.8)\right)$ is equal to
a) $\sin 1.2^{\circ}$
b) $\sin 1.6^{\circ}$
c) 0.48
d) 0.96
88. The values of x satisfying the equation $\sin \left(\tan ^{-1} x\right)=\cos \left(\cot ^{-1}(x+1)\right)$ is
a) $\frac{1}{2}$
b) $-\frac{1}{2}$
c) $\sqrt{2}-1$
d) No finite value
89. If $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x$, then x is equal to
a) 1
b) $\sqrt{3}$
c) $\frac{1}{\sqrt{3}}$
d) None of these
90. If $f(x)=x^{11}+x^{9}-x^{7}+x^{3}+1$ and $f\left(\sin ^{-1}(\sin 8)\right)=\alpha, \alpha$ is a constant, then $f\left(\tan ^{-1}(\tan 8)\right)$ is equal to
a) α
b) $\alpha-2$
c) $\alpha+2$
d) $2-\alpha$
91. If $\cos ^{-1} \sqrt{p}+\cos ^{-1} \sqrt{1-p}+\cos ^{-1} \sqrt{1-q}=\frac{3 \pi}{4}$, then the value of q is
a) 1
b) $\frac{1}{\sqrt{2}}$
c) $\frac{1}{3}$
d) $\frac{1}{2}$
92. The principal value of $\sin ^{-1}(\sin 10)$ is
a) 10
b) $10-3 \pi$
c) $3 \pi-10$
d) None of these
93. The value of $\frac{\alpha^{3}}{2} \operatorname{cosec}^{2}\left(\frac{1}{2} \tan ^{-1} \frac{\alpha}{\beta}\right)+\frac{\beta^{3}}{2} \sec ^{2}\left(\frac{1}{2} \tan ^{-1}\left(\frac{\beta}{\alpha}\right)\right)$ is equal to
a) $(\alpha-\beta)\left(\alpha^{2}+\beta^{2}\right)$
b) $(\alpha+\beta)\left(\alpha^{2}-\beta^{2}\right)$
c) $(\alpha+\beta)\left(\alpha^{2}+\beta^{2}\right)$
d) None of these
94. The least and the greatest values of $\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}$ are
a) $\frac{-\pi}{2}, \frac{\pi}{2}$
b) $\frac{-\pi^{3}}{8}, \frac{\pi^{3}}{8}$
c) $\frac{\pi^{3}}{32}, \frac{7 \pi^{3}}{8}$
d) None of these
95. The number of real solutions of the equation $\sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x),-\pi \leq x \leq \pi$, is
a) 0
b) 1
c) 2
d) Infinite
96. Which of the following is the solution set of the equation $2 \cos ^{-1} x=\cot ^{-1}\left(\frac{2 x^{2}-1}{2 x \sqrt{1-x^{2}}}\right)$?
a) $(0,1)$
b) $(-1,1)-\{0\}$
c) $(-1,0)$
d) $[-1 ; 1]$
97. The value of $\sec \left[\tan ^{-1} \frac{b+a}{b-a}-\tan ^{-1} \frac{a}{b}\right]$ is
a) 2
b) $\sqrt{2}$
c) 4
d) 1
98. Sum of roots of the equation $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x-2)$ is
a) $3 / 2$
b) 1
c) $1 / 2$
d) 2
99. If $0<x<1$, then $\sqrt{1+x^{2}}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}-1\right]^{1 / 2}$ is equal to
a) $\frac{x}{\sqrt{1+x^{2}}}$
b) x
c) $x \sqrt{1+x^{2}}$
d) $\sqrt{1+x^{2}}$
100. The equation $3 \cos ^{-1} x-\pi x-\frac{\pi}{2}=0$ has
a) One negative solution
b) One positive solution
c) No solution
d) More than one solution
101. If $\tan (x+y)=33$ and $x=\tan ^{-1} 3$, then y will be
a) 0.3
b) $\tan ^{-1}(1.3)$
c) $\tan ^{-1}(0.3)$
d) $\tan ^{-1}\left(\frac{1}{18}\right)$

Multiple Correct Answers Type

102. If the equation $\sin ^{-1}\left(x^{2}+x+1\right)+\cos ^{-1}(\lambda x+1)=\frac{\pi}{2}$ has exactly two solutions, then λ cannot have the integral value
a) -1
b) 0
c) 1
d) 2
103. The value (s) of x satisfying the equation $\sin ^{-1}|\sin x|=\sqrt{\sin ^{-1}|\sin x|}$ is/are given by (n is any integer)
a) $n \pi-1$
b) $n \pi$
c) $n \pi+1$
d) $2 n \pi+1$
104. If $2 \tan ^{-1} x+\sin ^{-1} \frac{2 x}{1+x^{2}}$ is independent of x, then
a) $x>1$
b) $x<-1$
c) $0<x<1$
d) $-1<x<0$
105. If $a \leq \tan ^{-1} x+\cot ^{-1} x+\sin ^{-1} x \leq b$, then
a) $a=0$
b) $b=\frac{\pi}{2}$
c) $a=\frac{\pi}{4}$
d) $b=\pi$
106. Which one of the following quantities is/are positive?
a) $\cos \left(\tan ^{-1}(\tan 4)\right)$
b) $\sin \left(\cot ^{-1}(\cot 4)\right)$
c) $\tan \left(\cos ^{-1}(\cos 5)\right)$
d) $\cot \left(\sin ^{-1}(\sin 4)\right)$
107. Equation $1+x^{2}+2 x \sin \left(\cos ^{-1} y\right)=0$ is satisfied by
a) Exactly one value of x
b) Exactly two values of x
c) Exactly one value of y
d) Exactly two values of y
108. If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$ and $\sin 2 x=\cos 2 y$, then
a) $x=\frac{\pi}{8}+\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}$
b) $y=\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}-\frac{\pi}{12}$
c) $x=\frac{\pi}{12}+\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}$
d) $y=\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}-\frac{\pi}{8}$
109. $2 \cot ^{-1} 7+\cos ^{-1}\left(\frac{3}{5}\right)$ is equal to
a) $\cot ^{-1}\left(\frac{44}{117}\right)$
b) $\operatorname{cosec}^{-1}\left(\frac{125}{117}\right)$
c) $\tan ^{-1}\left(\frac{4}{117}\right)$
d) $\cos ^{-1}\left(\frac{44}{125}\right)$
110. If the equation $\sin ^{-1}\left(x^{2}+x+1\right)+\cos ^{-1}(\lambda x+1)=\frac{\pi}{2}$ has exactly two solutions, then λ cannot have the integral value
a) -1
b) 0
c) 1
d) 2
111. If $\alpha, \beta(\alpha<\beta)$ are the roots of the equation $6 x^{2}+11 x+3=0$, then which of the following are real?
a) $\cos ^{-1} \alpha$
b) $\sin ^{-1} \beta$
c) $\operatorname{cosec}^{-1} \alpha$
d) Both $\cot ^{-1} \alpha$ and $\cot ^{-1} \beta$
112. If $a \leq \tan ^{-1} x+\cot ^{-1} x+\sin ^{-1} x \leq b$, then
a) $a=0$
b) $b=\frac{\pi}{2}$
c) $a=\frac{\pi}{4}$
d) $b=\pi$
113. If $f(x)=\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$, then
a) $f(x)$ has the least value of $\frac{\pi^{2}}{8}$
b) $f(x)$ has the greatest value of $\frac{5 \pi^{2}}{8}$
c) $f(x)$ has the least value of $\frac{\pi^{2}}{16}$
d) $f(x)$ has the greatest value of $\frac{5 \pi^{2}}{4}$
114. The value of $k(k>0)$ such that the length of the longest interval in which the function $f(x)=$ $\sin ^{-1}|\sin k x|+\cos ^{-1}(\cos k x)$ is constant is $\pi / 4$ is/are
a) 8
b) 4
c) 12
d) 16
115. If $z=\sec ^{-1}\left(x+\frac{1}{x}\right)+\sec ^{-1}\left(y+\frac{1}{y}\right)$, where $x y<0$, then the possible values of z is (are)
a) $\frac{8 \pi}{10}$
b) $\frac{7 \pi}{10}$
c) $\frac{9 \pi}{10}$
d) $\frac{21 \pi}{20}$
116. If $\sin ^{-1}\left(a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+\cdots\right)+\cos ^{-1}\left(1+b+b^{2}+\cdots\right)=\frac{\pi}{2}$, then
a) $b=\frac{2 a-3}{3 a}$
b) $b=\frac{3 a-2}{2 a}$
c) $a=\frac{3}{2-3 b}$
d) $a=\frac{2}{3-2 b}$
117. Which of the following is a rational number?
a) $\sin \left(\tan ^{-1} 3+\tan ^{-1} \frac{1}{3}\right)$
b) $\cos \left(\frac{\pi}{2}-\sin ^{-1} \frac{3}{4}\right)$
c) $\log _{2}\left(\sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)\right)$
d) $\tan \left(\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}\right)$
118. Which of the following quantities is/are positive?
a) $\cos \left(\tan ^{-1}(\tan 4)\right)$
b) $\sin \left(\cot ^{-1}(\cot 4)\right)$
c) $\tan \left(\cos ^{-1}(\cos 5)\right)$
d) $\cot \left(\sin ^{-1}(\sin 4)\right)$
119. If α, β and γ are the roots of $\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1} 3 x$, then
a) $\alpha+\beta+\gamma=0$
b) $\alpha \beta+\beta \gamma+\gamma \alpha=-1 / 4$
c) $\alpha \beta \gamma=1$
d) $|\alpha-\beta|_{\max }=1$
120. If $\cot ^{-1}\left(\frac{n^{2}-10 n+21.6}{\pi}\right)>\frac{\pi}{6}, n \in N$, then n can be
a) 3
b) 2
c) 4
d) 8
121. If $\tan ^{-1} y=4 \tan ^{-1} x$, then y is infinite, if
a) $x^{2}=3+2 \sqrt{2}$
b) $x^{2}=3-2 \sqrt{2}$
c) $x^{4}=6 x^{2}-1$
d) $x^{4}=6 x^{2}+1$
122. Which of the following is/are the value of $\cos \left[\frac{1}{2} \cos ^{-1}\left(\cos \left(-\frac{14 \pi}{5}\right)\right)\right]$?
a) $\cos \left(-\frac{7 \pi}{5}\right)$
b) $\sin \left(\frac{\pi}{10}\right)$
c) $\cos \left(\frac{2 \pi}{5}\right)$
d) $-\cos \left(\frac{3 \pi}{5}\right)$
123. The value (s) of x satisfying the equation $\sin ^{-1}|\sin x|=\sqrt{\sin ^{-1}|\sin x|}$ is/are given by (n is any integer)
a) $n \pi-1$
b) $n \pi$
c) $n \pi+1$
d) $2 n \pi+1$
124. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$, then
a) $x^{2}+y^{2}+z^{2}+2 x y z=1$
b) $2\left(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z\right)=\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z$
c) $x y+y z+z x=x+y+z-1$
d) $\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right) \geq 6$
125. If α is a real number for which $f(x)=\log _{e} \cos ^{-1} x$ is defined, then a possible value of $[\alpha]$ (where [•] denotes the greatest integer function) is
a) 0
b) 1
c) -1
d) -2
126. If $f(x)=\sin ^{-1} x+\sec ^{-1} x$ is defined, then which of the following value/values is/are in its range?
a) $-\pi / 2$
b) $\pi / 2$
c) π
d) $3 \pi / 2$
127. Indicate the relation which can hold in their respective domain for infinite values of x
a) $\tan \left|\tan ^{-1} x\right|=|x|$
b) $\cot \left|\cot ^{-1} x\right|=|x|$
c) $\tan ^{-1}|\tan x|=|x|$
d) $\sin \left|\sin ^{-1} x\right|=|x|$
128. $\cos ^{-1} x+\cos ^{-1}\left(\frac{x}{2}+\frac{1}{2} \sqrt{3-3 x^{2}}\right)$ is equal to
a) $\frac{\pi}{3}$ for $x \in\left[\frac{1}{2}, 1\right]$
b) $\frac{\pi}{3}$ for $x \in\left[0, \frac{1}{2}\right]$
c) $2 \cos ^{-1} x-\cos ^{-1} \frac{1}{2}$ for $x \in\left[\frac{1}{2}, 1\right]$
d) $2 \cos ^{-1} x-\cos ^{-1} \frac{1}{2}$ for $x \in\left[0, \frac{1}{2}\right]$
129. To the equation $2^{2 x / \cos ^{-1} x}-\left(a+\frac{1}{2}\right) 2^{\pi / \cos ^{-1} x}-a^{2}=0$ has only one real root, then
a) $1 \leq a \leq 3$
b) $a \geq 1$
c) $a \leq-3$
d) $a \geq 3$
130. $2 \cot ^{-1} 7+\cos ^{-1}\left(\frac{3}{5}\right)$ is equal to
a) $\cot ^{-1}\left(\frac{44}{117}\right)$
b) $\operatorname{cosec}^{-1}\left(\frac{125}{117}\right)$
c) $\tan ^{-1}\left(\frac{4}{117}\right)$
d) $\cos ^{-1}\left(\frac{44}{125}\right)$
131. If $S_{n}=\cot ^{-1}(3)+\cot ^{-1}(7)+\cot ^{-1}(13)+\cot ^{-1}(21)+\cdots n$ terms, then
a) $S_{10}=\tan ^{-1} \frac{5}{6}$
b) $S_{\infty}=\frac{\pi}{4}$
c) $S_{6}=\sin ^{-1} \frac{4}{5}$
d) $S_{20}=\cot ^{-1} 1.1$
132. If $\tan ^{-1} y=4 \tan ^{-1} x$, then y is infinite, if
a) $x^{2}=3+2 \sqrt{2}$
b) $x^{2}=3-2 \sqrt{2}$
c) $x^{4}=6 x^{2}-1$
d) $x^{4}=6 x^{2}+1$
133. If $\left(\sin ^{-1} x+\sin ^{-1} w\right)\left(\sin ^{-1} y+\sin ^{-1} z\right)=\pi^{2}$, then $D=\left|\begin{array}{ll}x^{N_{1}} & y^{N_{2}} \\ Z^{N_{3}} & w^{N_{4}}\end{array}\right|\left(N_{1}, N_{2}, N_{3}, N_{4} \in N\right)$
a) Has a maximum value of 2
b) Has a minimum value of 0
c) 16 different D are possible
d) Has a minimum value of -2
134. $2 \tan ^{-1}(-2)$ is equal to
a) $-\cos ^{-1}\left(\frac{-3}{5}\right)$
b) $-\pi+\cos ^{-1} \frac{3}{5}$
c) $-\frac{\pi}{2}+\tan ^{-1}\left(-\frac{3}{4}\right)$
d) $-\pi+\cot ^{-1}\left(-\frac{3}{4}\right)$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 135 to 134. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: $\tan \left[\cos ^{-1}\left(\frac{1}{\sqrt{82}}\right)-\sin ^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$ is equal to $\frac{29}{3}$
Statement 2:
$\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}=\frac{51}{50}$,
if $x=\frac{1}{5 \sqrt{2}}$
136
Statement 1: The equation $\sin ^{-1} x-\cos ^{-1} x=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ has unique solution
Statement 2:

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} ; \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
$$

137
Statement 1: $\quad \operatorname{cosec}^{-1}\left(\frac{3}{2}\right)+\cos ^{-1}\left(\frac{2}{3}\right)-2 \cot ^{-1}\left(\frac{1}{7}\right)-\cot ^{-1}(7)$ is equal to $\cot ^{-1} 7$.
Statement 2:

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}
$$

$\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$,
$\operatorname{cosec}^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)$
$\cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right)$

Statement 1: The solution of system of equation $\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}=\frac{p \pi^{2}}{4}$ and

$$
\left(\cos ^{-1} x\right)\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{4}}{16} \text { is } x=\cos \frac{\pi^{2}}{4} \text { and } y= \pm 1, \forall p \in I
$$

Statement 2: $\quad A M \geq G M$

Statement 1: The solution of system of equation $\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}=\frac{p \pi^{2}}{4}$ and $\left(\cos ^{-1} x\right)\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{4}}{16}$ is $x=\cos \frac{\pi^{2}}{4}$ and $y= \pm 1, \forall p \in I$
Statement 2: $\quad A M \geq G M$

Statement 1: Principal value of $\sin ^{-1}(\sin 3)$ can be 3 if we restrict the domain of $f(x)=\sin x$ to $[\pi / 2,3 \pi / 2]$
Statement 2: The restriction that the principal values of $\sin ^{-1}(\sin x)$ is $[-\pi / 2,-\pi / 2]$ is a matter of convention. We could have allowed principal values $[\pi / 2,3 \pi / 2]$ without affection the condition required for definition of inverse function

Statement 1: The value of $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$ is $\frac{\pi}{4}$
Statement 2: If $x>0, y>0$, then

$$
\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{y+x}\right)=\frac{\pi}{4}
$$

Statement 1: Range of $f(x)=\tan ^{-1} x+\sin ^{-1} x+\cos ^{-1} x$ is $(0, \pi)$
Statement 2: $f(x)=\tan ^{-1} x+\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}+\tan ^{-1} x$, for $x \in[-1,1]$

Statement 1: $\quad \sin ^{-1}\left(\frac{1}{\sqrt{e}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$
Statement 2: $\quad \sin ^{-1} x>\tan ^{-1} y$ for $x>y, \forall x, y \in(0,1)$
144
Statement 1: $\quad \operatorname{cosec}^{-1}\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right)>\sec ^{-1}\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right)$
Statement 2: $\operatorname{cosec}^{-1} x<\sec ^{-1} x$ if $1 \leq x<\sqrt{2}$
145
Statement 1: If $x<0, \tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$
Statement 2: $\quad \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, \forall x \in R$

Statement 1: If $x<0, \tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$
Statement 2:

$$
\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, \forall x \in R
$$

Statement 1: Number of roots of the equation $\cot ^{-1} x+\cos ^{-1} 2 x+\pi=0$ is zero

Statement 2: Range of $\cot ^{-1} x$ and $\cos ^{-1} x$ is $(0, \pi)$ and $[0, \pi]$, respectively

Statement 1: $\quad \sin ^{-1} 2 x+\sin ^{-1} 3 x=\frac{\pi}{3}$

$$
\Rightarrow x=\sqrt{\left(\frac{3}{76}\right)} \text { only }
$$

Statement 2: Sum of two negative angles cannot be positive

Statement 1: $\quad \operatorname{cosec}^{-1}\left(\frac{3}{2}\right)+\cos ^{-1}\left(\frac{2}{3}\right)-2 \cot ^{-1}\left(\frac{1}{7}\right)-\cot ^{-1}(7)$ is equal to $\cot ^{-1} 7$.
Statement 2: $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$,

$$
\begin{aligned}
& \tan ^{-1} x+\cot ^{-1} x=\frac{\bar{\pi}}{2} \\
& \operatorname{cosec}^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Statement 1: $\quad \tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}$
Statement 2: For $x>0, y>0, \tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{y+x}\right)=\frac{\pi}{4}$

Statement 1: Principal value of $\cos ^{-1}(\cos 30)$ is $30-9 \pi$
Statement 2: $30-9 \pi \in[0, \pi]$

Statement 1: The equation $\sin ^{-1} x-\cos ^{-1} x=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ has unique solution
Statement 2:

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} ; \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
$$

Statement 1: If $p>q>0$ and $p r<-1<q r$, then

$$
\tan ^{-1}\left(\frac{p-q}{1+p q}\right)+\tan ^{-1}\left(\frac{q-r}{1+q r}\right)+\tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi
$$

Statement 2: $\quad \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$ for all x, y

Statement 1: If $p>q>0$ and $p r<-1<q r$, then

$$
\tan ^{-1}\left(\frac{p-q}{1+p q}\right)+\tan ^{-1}\left(\frac{q-r}{1+q r}\right)+\tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi
$$

Statement 2: $\quad \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$ for all x, y
Let $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Statement 1:

$$
f^{\prime}(2)=-\frac{2}{5}
$$

Statement 2: $\quad \sin ^{-1}\left(\frac{2 x}{1+x_{7}^{2}}\right)=\pi-2 \tan ^{-1} x, \forall x>1$

Statement 1: $\tan \left[\cos ^{-1}\left(\frac{1}{\sqrt{82}}\right)-\sin ^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$ is equal to $\frac{29}{3}$
Statement 2: $\quad\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}=\frac{51}{50}$, if $x=\frac{1}{5 \sqrt{2}}$
157
Statement 1: The value of $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$ is $\frac{\pi}{4}$
Statement 2: If $x>0, y>0$, then

$$
\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{y+x}\right)=\frac{\pi}{4}
$$

158
Statement 1: Domain of $\tan ^{-1} x$ and $\cot ^{-1} x$ is R
Statement 2: $f(x)=\tan x$ and $\mathrm{g}(x)=\cot x$ are unbounded functions
159
Statement 1: $\quad \sin ^{-1} 2 x+\sin ^{-1} 3 x=\frac{\pi}{3}$
$\Rightarrow x=\sqrt{\left(\frac{3}{76}\right)}$ only
Statement 2: Sum of two negative angles cannot be positive

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
160.

Column-I

Column- II

(A) $\left(\sin ^{-1} x\right)^{2}+\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{2}}{2}$
$\Rightarrow x^{3}+y^{3}=$
(p) 1
(B) $\left(\cos ^{-1} x\right)^{2}+\left(\cos ^{-1} y\right)^{2}=2 \pi^{2}$
(q) -2
$\Rightarrow x^{5}+y^{5}$
(C) $\left(\sin ^{-1} x\right)^{2}\left(\cos ^{-1} y\right)^{2}=\frac{\pi^{4}}{4} \Rightarrow|x-y|$
(r) 0
(D) $\left|\sin ^{-1} x-\sin ^{-1} y\right|=\pi \Rightarrow x^{y}$
(s) 2

CODES :
A
B
C
D
a) $\quad \mathrm{q} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{q}$
b) \quad q,r,s \quad q \quad r,s \quad p
c) $\quad \mathrm{p} \quad \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{q} \quad \mathrm{r}, \mathrm{s}$
d) $\quad \mathrm{r}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{q}$
161.

Column-I

Column- II
(A) Range of $f(x)=\sin ^{-1} x+\cos ^{-1} x+\cot ^{-1} x$ is
(p) $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
(B) Range of $f(x)=\cot ^{-1} x+\tan ^{-1} x+$ $\operatorname{cosec}^{-1} x$ is
(q) $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
(C) Range of $f(x)=\cot ^{-1} x+\tan ^{-1} x+\cos ^{-1} x$ is (r) $\{0, \pi\}$
(D) Range of $f(x)=\sec ^{-1} x+\operatorname{cosec}^{-1} x+\sin ^{-1} x$
(s) $\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]$ is
CODES :

	A	B	C	D
a)	p	q	r	s
b)	r	s	p	q
c)	q	r	s	p
d)	s	p	q	r

162.

Column-I

Column- II
(A) $\sin ^{-1} \frac{4}{5}+2 \tan ^{-1} \frac{1}{3}=$
(p) $\pi / 6$
(B) $\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{16}=$
(q) $\pi / 2$
(C) If $A=\tan ^{-1} \frac{x \sqrt{3}}{2 \lambda-x}$ and $B=\tan ^{-1}\left(\frac{2 x-\lambda}{\lambda \sqrt{3}}\right)$, then
(r) $\pi / 4$ the value of $A-B$ is
(D) $\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}=$
(s) π

CODES :

	A	B	C	D
a)	q	s	p	r
b)	s	r	q	p
c)	p	q	r	s
d)	r	p	s	q

163.

(A) $\sin ^{-1} x+x>0$, for
(p) $x<0$
(B) $\cos ^{-1} x-x \geq 0$, for
(q) $x \in(0,1]$
(C) $\tan ^{-1} x+x<0$, for
(r) $x \in[-1,0)$
(D) $\cot ^{-1} x+x>0$, for
(s) $x>0$

CODES:

	A	B	C	D
a)	P, r	$\mathrm{q}, \mathrm{r}, \mathrm{S}$	q	r
b)	q	r	p, r	$\mathrm{q}, \mathrm{r}, \mathrm{S}$
c)	r	q	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p, r
d)	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p, r	r	q

164.

Column-I

Column- II
(A) $x \in[\pi, 2 \pi] \Rightarrow\left|\tan ^{-1}(\tan x)\right|$ can be
(p) $|x-2 \pi|$
(B) $x \in[\pi, 2 \pi] \Rightarrow\left|\cot ^{-1}(\cot x)\right|$ can be
(q) $|x-\pi|$
(C) $x \in[-\pi, \pi] \Rightarrow\left|\sin ^{-1}(\sin x)\right|$ can be
(r) $|x|$
(D) $x \in[-\pi, \pi] \Rightarrow\left|\cos ^{-1}(\cos x)\right|$ can be
(s) $|x+\pi|$

CODES :

	A	B	C	D
a)	$\mathrm{Q}, \mathrm{r}, \mathrm{S}$	p, r	p, q	q
b)	q	p, q	p, r	$\mathrm{q}, \mathrm{r}, \mathrm{S}$
c)	p, q	q	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p, r
d)	p, r	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	q	p, q

165.

Column-I

(A) $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x$, then x can take
(p) $[1 / 2,1]$ values
(B) $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$, then x can take
(q) $[-1 / 2,0]$ values
(C) $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \sin ^{-1} x$, then x can take values
(D) $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \cos ^{-1} x$, then x can take values
CODES :

	A	B	C	D
a)	p	q, s	r, s	r, s
b)	r, s	p	q, s	r, s
c)	q, s	r, s	p	q
d)	q	q, s	q, s	r, s

Linked Comprehension Type

This section contain(s) 15 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 166 to -166
$\sum_{r=1}^{n} \tan ^{-1}\left(\frac{x_{1}-r_{r-1}}{1+x_{r-1} x_{r}}\right)=\sum_{r=1}^{n}\left(\tan ^{-1} x_{r}-\tan ^{-1} x_{r-1}\right)$
$=\tan ^{-1} x_{n}-\tan ^{-1} x_{0}, \forall n \in N$
On the basis of above information, answer the following questions:
166. The sum to infinite terms of the series $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{2}{9}\right)+\ldots+\tan ^{-1}\left(\frac{2^{n-1}}{1+2^{2 n-1}}\right)+\ldots$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) π
d) none of these

Paragraph for Question Nos. 167 to - 167

$f(x)=\sin \left\{\cot ^{-1}(x+1)\right\}-\cos \left(\tan ^{-1} x\right)$
And $a=\cos \tan ^{-1} \sin \cot ^{-1} x$
On the basis of above information, answer the following question:
167. The value of x for which $f(x)=0$ is
a) $-\frac{1}{2}$
b) 0
c) $\frac{1}{2}$
d) 1

Paragraph for Question Nos. 168 to - 168
$\sum_{r=1}^{n} \tan ^{-1}\left(\frac{x_{1}-r_{r-1}}{1+x_{r-1} x_{r}}\right)=\sum_{r=1}^{n}\left(\tan ^{-1} x_{r}-\tan ^{-1} x_{r-1}\right)$
$=\tan ^{-1} x_{n}-\tan ^{-1} x_{0}, \forall n \in N$
On the basis of above information, answer the following questions:
168. The sum to infinite terms of the series $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{2}{9}\right)+\ldots+\tan ^{-1}\left(\frac{2^{n-1}}{1+2^{2 n-1}}\right)+\ldots$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) π
d) none of these

Paragraph for Question Nos. 169 to - 169

$f(x)=\sin \left\{\cot ^{-1}(x+1)\right\}-\cos \left(\tan ^{-1} x\right)$
And $a=\cos \tan ^{-1} \sin \cot ^{-1} x$
On the basis of above information, answer the following question:
169. The value of x for which $f(x)=0$ is
a) $-\frac{1}{2}$
b) 0
c) $\frac{1}{2}$
d) 1

Paragraph for Question Nos. 170 to - 170

For $x, y, z, t \in R, \sin ^{-1} x+\cos ^{-1} y+\sec ^{-1} z \geq t^{2}-\sqrt{2 \pi} t+3 \pi$
170. The value of $x+y+z$ is equal to
a) 1
b) 0
c) 2
d) -1

Paragraph for Question Nos. 171 to - 171

$a x+b\left(\sec \left(\tan ^{-1} x\right)\right)=c$ and $a y+b\left(\sec \left(\tan ^{-1} y\right)\right)=c$
171. The value of $x y$ is
a) $\frac{2 a b}{a^{2}-b^{2}}$
b) $\frac{c^{2}-b^{2}}{a^{2}-b^{2}}$
c) $\frac{c^{2}-b^{2}}{a^{2}+b^{2}}$
d) None of these

Paragraph for Question Nos. 172 to - 172

Consider the system of equations $\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}=\frac{p \pi^{2}}{4}$ and $\left(\cos ^{-1} x\right)\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{4}}{16}, p \in Z$
172. The value of p for which system has a solution is
a) 1
b) 2
c) 0
d) -1

Paragraph for Question Nos. 173 to - 173

Let $\cos ^{-1}\left(4 x^{3}-3 x\right)=a+b \cos ^{-1} x$
173. If $x \in\left[-\frac{1}{2},-1\right)$, then the value of $a+b \pi$ is
a) 2π
b) 3π
c) π
d) -2π

Integer Answer Type

174. If $x=\sin ^{-1}\left(a^{6}+1\right)+\cos ^{-1}\left(a^{4}+1\right)-\tan ^{-1}\left(a^{2}+1\right), a \in R$, then the value of $\sec ^{2} x$ is \qquad
175. Number of values of x for which $\sin ^{-1}\left(x^{2}-\frac{x^{4}}{3}+\frac{x^{6}}{9} \cdots\right)+\cos ^{-1}\left(x^{4}-\frac{x^{8}}{3}+\frac{x^{12}}{9} \cdots\right)=\frac{\pi}{2}$, where $0 \leq|x|<$
$\sqrt{3}$, is
176. If $\tan ^{-1}\left(x+\frac{3}{x}\right)-\tan ^{-1}\left(x-\frac{3}{x}\right)=\tan ^{-1} \frac{6}{x^{\prime}}$, then the value of x^{4} is
177. Let $\cos ^{-1}(x)+\cos ^{-1}(2 x)+\cos ^{-1}(3 x)$ be π. If x satisfies the equation $a x^{3}+b x^{2}+c x-1=0$, then the value of $(b-a-c)$ is \qquad
178. If the area enclosed by the curves $f(x)=\cos ^{-1}(\cos x)$ and $\mathrm{g}(x)=\sin ^{-1}(\cos x)$ in $x \in[9 \pi / 4,15 \pi / 4]$ is $a \pi^{2} / b$ (where a and b are coprime), then the value of $(a-b)$ is \qquad
179. If $0<\cos ^{-1} x<1$ and $1+\sin \left(\cos ^{-1} x\right)+\sin ^{2}\left(\cos ^{-1} x\right)+\sin ^{3}\left(\cos ^{-1} x\right)+\cdots \infty=2$, then the value of $12 x^{2}$ is \qquad
180. Number of integral values of x satisfying the equation $\tan ^{-1}(3 x)+\tan ^{-1}(5 x)=\tan ^{-1}(7 x)+\tan ^{-1}(2 x)$ is
181. The solution set of inequality $\left(\cot ^{-1} x\right)\left(\tan ^{-1} x\right)+\left(2-\frac{\pi}{2}\right) \cot ^{-1} x-3 \tan ^{-1} x-3$ $\left(2-\frac{\pi}{2}\right)>0$ is (a, b), then the value of $\cot ^{-1} a+\cot ^{-1} b$ is \qquad
182. If the roots of the equation $x^{3}-10 x+11=0$ are u, v and w. Then the value of $3 \operatorname{cosec}^{2}\left(\tan ^{-1} u+\right.$ $\tan -1 v+\tan -1 w$ is \qquad
183. If range of the function $f(x)=\sin ^{-1} x+2 \tan ^{-1} x+x^{2}+4 x+1$ is $[p, q]$, then the value of $(p+q)$ is
\qquad
184. If the domain of the function $f(x)=\sqrt{3 \cos ^{-1}(4 x)-\pi}$ is $[a, b]$, then the value of $4 a+64 b$ is \qquad
185. Absolute value of sum of all integers in the domain of $f(x)=\cot ^{-1} \sqrt{(x+3) x}+\cos ^{-1} \sqrt{x^{2}+3 x+1}$ is
186. If n is the number of terms of the series $\cot ^{-1} 3, \cot ^{-1} 7, \cot ^{-1} 13, \cot ^{-1} 21, \ldots$, whose sum $\frac{1}{2} \cos ^{-1}\left(\frac{24}{145}\right)$, then the value of $n-5$ is \qquad
187. The least value of $\left(1+\sec ^{-1} x\right)\left(1+\cos ^{-1} x\right)$ is \qquad

: ANSWER KEY :															
1)	c	2)	d	3)	a	4)	b	9)	a,c,d	10)	b,c,d	11)	a,d	12)	
5)	d	6)	a	7)	b	8)	b		a,d						
9)	c	10)	d	11)	a	12)	d	13)	b	14)	c,d	15)	a,c	16)	
13)	b	14)	c	15)	b	16)	b		a,b,c						
17)	d	18)	b	19)	b	20)	d	17)	a,b,c	18)	a,b,d	19)	a,c	20)	
21)	d	22)	a	23)	d	24)	b		a,b,c						
25)	c	26)	b	27)	c	28)	a	21)	b,c,d	22)	a,b,c	23)	a,b	24)	
29)	d	30)	a	31)	b	32)	c		a,c						
33)	a	34)	d	35)	b	36)	b	25)	b	26)	a,b,c,d	27)	a,d	28)	
37)	c	38)	a	39)	c	40)	c		b,c						
41)	d	42)	c	43)	c	44)	d	29)	a,b,d	30)	a,b,d	31)	a,b,c	32)	
45)	c	46)	c	47)	c	48)	d		a,c,d						
49)	a	50)	c	51)	d	52)	b	33)	a,b,c	1)	d	2)	a	3)	d
53)	d	54)	c	55)	b	56)	a		4)	a					
57)	d	58)	a	59)	c	60)	b	5)	a	6)	a	7)	a	8)	d
61)	c	62)	c	63)	d	64)	a	9)	a	10)	c	11)	d	12)	d
65)	a	66)	a	67)	b	68)	c	13)	a	14)	a	15)	d	16)	a
69)	b	70)	c	71)	d	72)	a	17)	d	18)	a	19)	d	20)	d
73)	d	74)	c	75)	b	76)	c	21)	a	22)	d	23)	a	24)	b
77)	c	78)	c	79)	b	80)	d	25)	a	1)	b	2)	d	3)	a
81)	c	82)	e	83)	b	84)	a		4)	b					
85)	b	86)	d	87)	d	88)	d	5)	c	6)	a	1)	a	2)	a
89)	c	90)	d	91)	d	92)	c		3)	a	4)	a			
93)	c	94)	c	95)	c	96)	a	5)	d	6)	b	7)	b	8)	c
97)	b	98)	a	99)	c	100)	b	1)	2	2)	3	3)	9	4)	3
101)	c	1)	a,c,d	2)	a,b,c	3)		5)	1	6)	9	7)	1	8)	5
	a,b	4)	a,d					9)	6	10)	4	11)	7	12)	3
5)	$\begin{aligned} & \mathbf{a , b} \\ & \mathbf{a , b}, \mathbf{d} \end{aligned}$	6)	a,c	7)	a,d	8)		13)	6	14)	1				

: HINTS AND SOLUTIONS :

1 (c)
Let $\tan ^{-1} 2=\alpha \Rightarrow \tan \alpha=2$
and $\cot ^{-1} 3=\beta \Rightarrow \cot \beta=3$
$\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)$

$$
\begin{aligned}
& =\sec ^{2} \alpha+\operatorname{cosec}^{2} \beta \\
& =1+\tan ^{2} \alpha+1+\cot ^{2} \beta
\end{aligned}
$$

$=2+(2)^{2}+(3)^{2}=15$
2 (d)

$$
\begin{aligned}
& \lim _{|x| \rightarrow \infty} \cos \left(\tan ^{-1}\left(\sin \left(\tan ^{-1} x\right)\right)\right) \\
& \quad=\cos \left(\tan ^{-1}\left(\sin \left(\tan ^{-1} \infty\right)\right)\right) \\
& =\cos \left(\tan ^{-1}(\sin (\pi / 2))\right) \\
& =\cos \left(\tan ^{-1}(1)\right)=\cos (\pi / 4)=\frac{1}{\sqrt{2}}
\end{aligned}
$$

3 (a)

$$
\begin{aligned}
\sin ^{-1}(\sin 12)+ & \cos ^{-1}(\cos 12) \\
& =\sin ^{-1}(\sin (12-4 \pi)) \\
& +\cos ^{-1}(\cos (4 \pi-12)) \\
=12-4 \pi+4 \pi & -12=0
\end{aligned}
$$

(b)

Since $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$
$\therefore \sin ^{-1} x+\sin ^{-1} y=\pi-\sin ^{-1} z$
$\Rightarrow \sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)=\pi-\sin ^{-1}(z)$
$\Rightarrow x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=\sin \left(\pi-\sin ^{-1}(z)\right)$ $=\sin \left(\sin ^{-1} z\right)=z$
$\Rightarrow x^{2}\left(1-y^{2}\right)=z^{2}+y^{2}\left(1-x^{2}\right)-2 z y \sqrt{1-x^{2}}$
$\Rightarrow\left(x^{2}-y^{2}-z^{2}\right)^{2}$

$$
=4 y^{2} z^{2}\left(1-x^{2}\right)
$$

$\Rightarrow x^{4}+y^{4}+z^{4}-2 x^{2} y^{2}-2 x^{2} z^{2}+2 y^{2} z^{2}$

$$
=4 y^{2} z^{2}-4 x^{2} y^{2} z^{2}
$$

$\Rightarrow x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}$

$$
\begin{aligned}
& =2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \Rightarrow K \\
& =2
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \cot ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right] \\
& =\cot ^{-1}\left[\begin{array}{l}
\frac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})}{(\sqrt{1-\sin x}-\sqrt{1+\sin x})} \\
\left.\frac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})}{(\sqrt{1-\sin x}+\sqrt{1+\sin x})}\right] \\
=\cot ^{-1}\left[\frac{(1-\sin x)+(1+\sin x)+2 \sqrt{1-\sin ^{2} x}}{(1-\sin x)-(1+\sin x)}\right] \\
=\cot ^{-1}\left[\frac{2(1+\cos x)}{-2 \sin x}\right] \\
=\cot ^{-1}\left[-\frac{2 \cos ^{2}(x / 2)}{2 \sin (x / 2) \cos (x / 2)}\right]=\cot ^{-1}\left(-\cot \frac{x}{2}\right) \\
=\cot ^{-1}\left[\cot \left(\pi-\frac{x}{2}\right)\right]=\pi-\frac{x}{2}
\end{array}\right.
\end{aligned}
$$

6 (a)

$$
\begin{aligned}
& \frac{\pi}{2}-\cos ^{-1} \cos \left(\frac{2\left(x^{2}+5|x|+3\right)-2}{x^{2}+5|x|+3}\right) \\
& \quad=\cot ^{\cot ^{-1}}\left(\frac{2}{9|x|}-2\right)+\frac{\pi}{2} \\
& \frac{\pi}{2}-2+\frac{2}{x^{2}+5|x|+3}=\frac{2}{9|x|}-2+\frac{\pi}{2} \\
& \Rightarrow|x|^{2}-4|x|+3=0 \\
& |x|=1,3 \Rightarrow x= \pm 1, \pm 3
\end{aligned}
$$

(b)

Let $x=\sin \theta$ and $\sqrt{x}=\sin \phi$, where $x \in[0,1] \rightarrow$ $\theta, \phi \in[0, \pi / 2]$

$$
\Rightarrow \theta-\phi \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]
$$

$$
\begin{aligned}
& \text { Now, } \sin ^{-1}\left(x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right)= \\
& \sin ^{-1}\left(\sin \theta \sqrt{1-\sin ^{2} \phi}-\sin \phi \sqrt{1-\sin ^{2} \theta}\right) \\
& =\sin ^{-1}(\sin \theta \cos \phi-\sin \phi \cos \theta) \\
& =\sin ^{-1} \sin (\theta-\phi)=\theta-\phi
\end{aligned}
$$

$$
=\sin ^{-1}(x)-\sin ^{-1}(\sqrt{x})
$$

$8 \quad$ (b)
We have $\frac{x y}{z r} \frac{y z}{x r}=\frac{y^{2}}{r^{2}}=\frac{y^{2}}{x^{2}+y^{2}+z^{2}}<1$

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow \tan ^{-1}\left(\frac{x y}{z r}\right)+\tan ^{-1}\left(\frac{y z}{x r}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right) \\
\quad=\tan ^{-1}\left(\frac{\frac{x y}{z r}+\frac{y z}{x r}}{1-\frac{x y}{z r} \frac{y z}{x r}}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right)
\end{array} \\
& =\tan ^{-1}\left(\frac{\frac{y\left(x^{2}+z^{2}\right)}{x z r}}{\frac{r^{2}-y^{2}}{r^{2}}}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right)
\end{aligned} \begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{y r\left(x^{2}+z^{2}\right)}{x z}}{\left(x^{2}+z^{2}\right)}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right) \\
& =\tan ^{-1}\left(\frac{y r}{x z}\right)+\tan ^{-1}\left(\frac{x z}{y r}\right)=\frac{\pi}{2}
\end{aligned}
$$

9 (c)

$$
\tan ^{-1} x+2 \cot ^{-1} x=\frac{2 \pi}{3}
$$

$$
\Rightarrow \tan ^{-1} x=2\left(\frac{\pi}{3}-\cot ^{-1} x\right)
$$

$$
=2\left(\frac{\pi}{3}-\left(\frac{\pi}{2}-\tan ^{-1} x\right)\right)
$$

$$
=2\left(-\frac{\pi}{6}+\tan ^{-1} x\right)
$$

$$
\Rightarrow \tan ^{-1} x=\frac{\pi}{3} \Rightarrow x=\tan \frac{\pi}{3}=\sqrt{3}
$$

10 (d)

$$
\begin{aligned}
\sin ^{-1}\left(x^{2}-4 x\right. & +6)+\cos ^{-1}\left(x^{2}-4 x+6\right) \\
& =\sin ^{-1}\left((x-2)^{2}+2\right) \\
& +\cos ^{-1}\left((x-2)^{2}+2\right)
\end{aligned}
$$

$(x-2)^{2}+2 \geq 2$, for which $\sin ^{-1} x$ and $\cos ^{-1} x$ are not defined

11 (a)
Expanding, we have

$$
\begin{aligned}
& \left(\tan ^{-1} x\right)^{3}+\left(\tan ^{-1} 2 x\right)^{3}+\left(\tan ^{-1} 3 x\right)^{3} \\
& \quad=3 \tan ^{-1} x \tan ^{-1} 2 x \tan ^{-1} 3 x \\
& \Rightarrow x=0
\end{aligned}
$$

12 (d)

$$
\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)-\cos ^{-1}\left(\frac{\sqrt{6}+1}{2 \sqrt{3}}\right)
$$

$$
\begin{aligned}
=\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)- & \tan ^{-1}\left(\frac{\sqrt{3}-\sqrt{2}}{1+\sqrt{6}}\right) \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& -\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} \sqrt{2}\right] \\
= & \left(\tan ^{-1} \frac{1}{\sqrt{2}}+\tan ^{-1} \sqrt{2}\right)-\tan ^{-1} \sqrt{3} \\
= & \frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}
\end{aligned}
$$

13 (b)

$$
\begin{gathered}
\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}\right) \\
=\frac{\pi}{2}
\end{gathered}
$$

$$
\Rightarrow \cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots\right)
$$

$$
=\frac{\pi}{2}-\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}\right)
$$

$$
=\cos ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}\right)
$$

14 (c)
$\sin ^{-1} x=2 \sin ^{-1} a$
Now $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{2} \leq 2 \sin ^{-1} a \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{4} \leq \sin ^{-1} a \leq \frac{\pi}{4}$
$\Rightarrow \frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}} \Rightarrow|a| \leq \frac{1}{\sqrt{2}}$
15 (b)
The given equation is $a x^{2}+\sin ^{-1}\left((x-1)^{2}+\right.$ $1+\cos -1 x-12+1=0$

Now, $-1 \leq(x-1)^{2}+1 \leq 1 \Rightarrow x=1$
So, we have $a+\frac{\pi}{2}=0 \Rightarrow a=-\frac{\pi}{2}$
16 (b)
$\tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right]$
Let $\frac{1}{2} \cos ^{-1} \frac{a}{b}=\theta \Rightarrow \cos 2 \theta=\frac{a}{b}$
Thus, $\tan \left[\frac{\pi}{4}+\theta\right]+\tan \left[\frac{\pi}{4}-\theta\right]=\frac{1+\tan \theta}{1-\tan \theta}+\frac{1-\tan \theta}{1+\tan \theta}$
$=\frac{1+\tan ^{2} \theta+2 \tan \theta+1+\tan ^{2} \theta-2 \tan \theta}{\left(1-\tan ^{2} \theta\right)}$
$=\frac{2\left(1+\tan ^{2} \theta\right)}{1-\tan ^{2} \theta}=\frac{2}{\cos 2 \theta}=\frac{2}{(a / b)}=\frac{2 b}{a}$
17 (d)
$\frac{3 \pi}{2}<5<\frac{5 \pi}{2}$
$\Rightarrow \sin ^{-1}(\sin 5)=5-2 \pi$
Given $\sin ^{-1}(\sin 5)>x^{2}-4 x$
$\Rightarrow x^{2}-4 x+4<9-2 \pi$
$\Rightarrow(x-2)^{2}<9-2 \pi$
$\Rightarrow-\sqrt{9-2 \pi}<x-2<\sqrt{9-2 \pi}$
$\Rightarrow 2-\sqrt{9-2 \pi}<x<2+\sqrt{9-2 \pi}$
18 (b)
$0 \leq x^{2}+x+1 \leq 1$ and $0 \leq x^{2}+x \leq 1$
$\therefore x=-1,0$
For $x=-1$
L.H.S. $=2 \sin ^{-1} 1+\cos ^{-1} 0=\frac{3 \pi}{2}$
$\therefore x=-1$ is a solution
For $x=0$, L. H.S. $=2 \sin ^{-1} 1+\cos ^{-1} 0=\frac{3 \pi}{2}$
Therefore, $x=0$ is a solution and sum of the solutions $=-1$

19
(b)
$\tan ^{-1}\left(\frac{x \cos \theta}{1-x \sin \theta}\right)-\cot ^{-1}\left(\frac{\cos \theta}{x-\sin \theta}\right)$
$=\tan ^{-1}\left(\frac{x \cos \theta}{1-x \sin \theta}\right)$
$-\tan ^{-1}\left(\frac{x-\sin \theta}{\cos \theta}\right)$
$=\tan ^{-1}\left(\frac{\frac{x \cos \theta}{1-x \sin \theta}-\frac{x-\sin \theta}{\cos \theta}}{1+\left(\frac{x \cos \theta}{1-x \sin \theta}\right)\left(\frac{x-\sin \theta}{\cos \theta}\right)}\right)$
$=\tan ^{-1}\left(\begin{array}{c}x \cos ^{2} \theta-x+\sin \theta+ \\ \frac{x^{2} \sin \theta-x \sin ^{2} \theta}{\cos \theta-x \cos \theta \sin \theta+} \\ x^{2} \cos \theta-x \cos \theta \sin \theta\end{array}\right)$
$=\tan ^{-1}\left(\frac{-x \sin ^{2} \theta+\sin \theta+x^{2} \sin \theta-x \sin ^{2} \theta}{\cos \theta-2 x \cos \theta \sin \theta+x^{2} \cos \theta}\right)$
$=\tan ^{-1}\left(\frac{-2 x \sin ^{2} \theta+\sin \theta+x^{2} \sin \theta}{\cos \theta-2 x \cos \theta \sin \theta+x^{2} \cos \theta}\right)$
$=\tan ^{-1}\left(\frac{\sin \theta\left(-2 x \sin \theta+1+x^{2}\right)}{\cos \theta\left(1-2 x \sin \theta+x^{2}\right)}\right)$

$$
=\tan ^{-1}(\tan \theta)=\theta
$$

20 (d)
$a \sin ^{-1} x-b \cos ^{-1} x=c$
We have $b \sin ^{-1} x+b \cos ^{-1} x=\frac{b \pi}{2} \Rightarrow$ $(a+b) \sin ^{-1} x=\frac{b \pi}{2}+c$
$\Rightarrow \sin ^{-1} x=\frac{\frac{(b \pi)}{2}+c}{a+b}$
$\Rightarrow \cos ^{-1} x=\frac{\pi a b+c(a-b)}{a+b}$
21 (d)

$$
\begin{aligned}
\tan ^{-1}\left(\frac{\tan x}{4}\right)+ & \tan ^{-1}\left(\frac{3 \sin 2 x}{5+3 \cos 2 x}\right) \\
& =\tan ^{-1}\left(\frac{\tan x}{4}\right) \\
& +\tan ^{-1}\left(\frac{\frac{6 \tan x}{1+\tan ^{2} x}}{5+\frac{3\left(1-\tan ^{2} x\right)}{1+\tan ^{2} x}}\right)
\end{aligned}
$$

$=\tan ^{-1}\left(\frac{\tan x}{4}\right)+\tan ^{-1}\left(\frac{6 \tan x}{8+2 \tan ^{2} x}\right)$
$=\tan ^{-1}\left(\frac{\tan x}{4}\right)+\tan ^{-1}\left(\frac{3 \tan x}{4+\tan ^{2} x}\right)$
$=\tan ^{-1}\left(\frac{\frac{\tan x}{4}+\frac{3 \tan x}{4+\tan ^{2} x}}{1-\frac{3 \tan ^{2} x}{4\left(4+\tan ^{2} x\right)}}\right)\left[\right.$ as $\left|\frac{\tan x}{4} \frac{3 \tan x}{4+\tan ^{2} x}\right|$
$<1]$
$=\tan ^{-1}\left(\frac{16 \tan x+\tan ^{3} x}{16+\tan ^{2} x}\right)$
$=\tan ^{-1}(\tan x)=x$

(a)

We have $\sin ^{-1}\left(\cot \left(\sin ^{-1} \sqrt{\frac{2-\sqrt{3}}{4}}+\cos ^{-1} \frac{\sqrt{12}}{4}+\right.\right.$ $\left.\left.\sec ^{-1} \sqrt{2}\right)\right)$

$$
\begin{gathered}
=\sin ^{-1}\left(\operatorname { c o t } \left(\sin ^{-1}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)+\cos ^{-1} \frac{\sqrt{3}}{2}\right.\right. \\
\left.\left.+\cos ^{-1} \frac{1}{\sqrt{2}}\right)\right)
\end{gathered}
$$

$$
=\sin ^{-1}\left[\cot \left(15^{\circ}+30^{\circ}+45^{\circ}\right)\right]
$$

$$
=\sin ^{-1}\left(\cot \left(90^{\circ}\right)\right)=\sin ^{-1}(0)=0
$$

(d)
$2 \tan ^{-1} 2 x=\sin ^{-1} \frac{4 x}{1+4 x^{2}}$
$\Rightarrow-\frac{\pi}{2} \leq 2 \tan ^{-1} 2 x \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{4} \leq \tan ^{-1} 2 x \leq \frac{\pi}{4}$
$\Rightarrow-1 \leq 2 x \leq 1$
$\Rightarrow-\frac{1}{2} \leq x \leq \frac{1}{2}$
24 (b)
We have

$$
\begin{gathered}
\left|\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right|<\frac{\pi}{3} \Rightarrow-\frac{\pi}{3}<\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\
<\frac{\pi}{3} \\
\Rightarrow 0 \leq \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\frac{1-x^{2}}{1+x^{2}} \leq 1 \\
\Rightarrow 1+x^{2}<2\left(1-x^{2}\right) \leq 2\left(1+x^{2}\right) \Rightarrow 0 \leq x^{2}<\frac{1}{3} \\
\Rightarrow-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}
\end{gathered}
$$

25

$$
\begin{aligned}
& \text { (c) } \\
& \begin{array}{l}
\sin ^{-1}\left(\frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}}\right)=\tan ^{-1}\left(\frac{\sqrt{r}-\sqrt{r-1}}{1+\sqrt{r(r-1)}}\right) \\
\Rightarrow \sum_{r=1}^{n} \sin ^{-1}\left(\frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}}\right) \\
\quad=\sum_{r=1}^{n}\left(\tan ^{-1} \sqrt{r}-\tan ^{-1} \sqrt{r-1}\right) \\
=\tan ^{-1} \sqrt{n}
\end{array}
\end{aligned}
$$

26 (b)

$$
\begin{aligned}
\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right) & =\cos ^{-1}\left(\cos \left(2 \pi-\frac{5 \pi}{4}\right)\right) \\
& =\cos ^{-1}\left(\cos \frac{3 \pi}{4}\right)=\frac{3 \pi}{4}
\end{aligned}
$$

27 (c)
Given equation is $\tan ^{-1} \frac{a+x}{a}+\tan ^{-1} \frac{a-x}{a}=\frac{\pi}{6}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{a+x}{a}+\frac{a-x}{a}}{1-\frac{a+x}{a} \frac{a-x}{a}}\right)=\frac{\pi}{6}$
$\Rightarrow \frac{2 a^{2}}{x^{2}}=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \Rightarrow x^{2}=2 \sqrt{3} a^{2}$
28 (a)
$2 \tan ^{-1}\left[\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2}\right]$
$=\cos ^{-1}\left[\frac{1-\left(\frac{a-b}{a+b}\right) \tan ^{2} \frac{\theta}{2}}{1+\left(\frac{a-b}{a+b}\right) \tan ^{2} \frac{\theta}{2}}\right]\left[\because 2 \tan ^{-1} x\right.$
$\left.=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right]$
$=\cos ^{-1}\left[\frac{(a+b)-(a-b) \tan ^{2} \frac{\theta}{2}}{(a+b)+(a-b) \tan ^{2} \frac{\theta}{2}}\right]$
$=\cos ^{-1}\left[\frac{a\left(1-\tan ^{2} \frac{\theta}{2}\right)+b\left(1+\tan ^{2} \frac{\theta}{2}\right)}{a\left(1+\tan ^{2} \frac{\theta}{2}\right)+b\left(1-\tan ^{2} \frac{\theta}{2}\right)}\right]$
$=\cos ^{-1}\left[\frac{\frac{a\left(1-\tan ^{2} \frac{\theta}{2}\right)}{1+\tan ^{2} \frac{\theta}{2}}+b}{a+b\left(\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)}\right]$
$=\cos ^{-1}\left[\frac{a \cos \theta+b}{a+b \cos \theta}\right]$
29 (d)
Given that $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1}\left[\frac{x+y+z-x y z}{1-x y-y z-x z}\right]=\frac{\pi}{2}$
Hence, $x y+y z+z x-1=0$
30 (a)
Let $\tan ^{-1} x=\theta$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2} \Rightarrow-\pi<$ $2 \theta<\pi$

Let $\frac{\pi}{2}<2 \theta<\pi \Rightarrow \frac{\pi}{4}<\theta<\frac{\pi}{2} \Rightarrow \frac{\pi}{4}<\tan ^{-1} x<$ $\frac{\pi}{2} \Rightarrow x>1$

$$
\begin{gathered}
\Rightarrow \tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)=\tan ^{-1}(\tan 2 \theta) \\
=\tan ^{-1}(\tan (2 \theta-\pi))=2 \theta-\pi \\
=2 \tan ^{-1} x-\pi
\end{gathered}
$$

31 (b)
If $x<0$, then $\sin ^{-1} x<0$ but $\cos ^{-1} \sqrt{1-x^{2}}$ is always positive

So, $\sin ^{-1} x=-\cos ^{-1} \sqrt{1-x^{2}}$
32 (c)
$\sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} x$

$$
=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}-\sin ^{-1} x
$$

or $\frac{\pi}{2}+\sin ^{-1} \sqrt{1-x^{2}}=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}$
$\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}+\sin ^{-1} \sqrt{1-x^{2}}=0$
$\Rightarrow x \in[-1,0) \cup\{1\}$
33 (a)
Let $\sin ^{-1} a=A, \sin ^{-1} b=B$ and $\sin ^{-1} c=C$
$\Rightarrow \sin A=a, \sin B=b, \sin C=c$
and $A+B+C=\pi \Rightarrow \sin 2 A+\sin 2 B+\sin 2 C=$ $4 \sin A \sin B \sin C$ (i)
$\Rightarrow \sin A \cos A+\sin B \cos B+\sin C \cos C$

$$
=2 \sin A \sin B \sin C
$$

$\Rightarrow \sin A \sqrt{\left(1-\sin ^{2} A\right)}+\sin B \sqrt{\left(1-\sin ^{2} B\right)}+$ $\sin C \sqrt{1-\sin ^{2} C}=2 \sin A \sin B \sin C$ (ii)

$$
\begin{aligned}
\Rightarrow a \sqrt{\left(1-a^{2}\right)} & +b \sqrt{\left(1-b^{2}\right)}+c \sqrt{\left(1-c^{2}\right)} \\
& =2 a b c
\end{aligned}
$$

Trick: Let $a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}, c=1$
Then $a \sqrt{1-a^{2}}+b \sqrt{1-b^{2}}+c \sqrt{1-c^{2}}=$
$\frac{1}{\sqrt{2}} \sqrt{1-\frac{1}{2}}+\frac{1}{\sqrt{2}} \sqrt{1-\frac{1}{2}}+1 \sqrt{1-1}=1$
$34 \quad$ (d)
$2^{2 \pi / \sin ^{-1} x}-2(a+2) 2^{\pi / \sin ^{-1} x}+8 a<0$
$\left(2^{\pi / \sin ^{-1} x}-4\right)\left(2^{\pi / \sin ^{-1} x}-2 a\right)<0$
Now $2^{\pi / \sin ^{-1} x} \in\left(0, \frac{1}{4}\right] \cup[4, \infty)$
Now for $2^{\pi / \sin ^{-1} x} \in\left(0, \frac{1}{4}\right]$, we have $\left(2^{\pi / \sin ^{-1} x}-\right.$ $4<0$
$\Rightarrow 2^{\pi / \sin ^{-1} x}-2 a>0$
$\Rightarrow 2 a<2^{\pi / \sin ^{-1} x} \Rightarrow 2 a<\frac{1}{4}$
$\Rightarrow 0 \leq a<\frac{1}{8}$
Similarly, for $2^{\pi / \sin ^{-1} x} \in[4, \infty), a>2$, we get
$a \in\left[0, \frac{1}{8}\right) \cup(2, \infty)$
35 (b)
Given that $\sin ^{-1} x+\tan ^{1} x=2 k+1$
The range of the function $\sin ^{-1} x+\tan ^{-1} x$ is $\left[\frac{-3 \pi}{4}, \frac{3 \pi}{4}\right]$ [as both functions are increasing]

Therefore, the integral values of k are -1 and 0
36 (b)
$\tan \left(\sin ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right) \tan \left(\cos ^{-1}\left(\sin \left(\cos ^{-1} x\right)\right)\right)$
$=\tan \left(\sin ^{-1}\left(\cos \left(\cos ^{-1} \sqrt{1-x^{2}}\right)\right)\right)$
$\tan \left\{\cos ^{-1}\left(\sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)\right)\right\}$
$=\tan \left(\sin ^{-1} \sqrt{1-x^{2}}\right) \tan \left(\cos ^{-1} \sqrt{1-x^{2}}\right)$
$=\tan \left(\cos ^{-1} x\right) \tan \left(\sin ^{-1} x\right)$
$=\tan \left(\cos ^{-1} x\right) \tan \left(\pi / 2-\cos ^{-1} x\right)$

$$
=\tan \left(\cos ^{-1} x\right) \cot \left(\cos ^{-1} x\right)=1
$$

37 (c)
$\cot ^{-1} \frac{n}{\pi}>\frac{\pi}{6}$
$\Rightarrow \frac{n}{\pi}<\cot \frac{\pi}{6} \quad$ [as $\cot ^{-1} x$ is a decreasing function]
$\Rightarrow \frac{n}{\pi}<\sqrt{3} \Rightarrow n<\sqrt{3} \pi \Rightarrow n<5.46 \Rightarrow$ maximum value of n is 5

38 (a)
We
have $\sum_{m=1}^{n} \tan ^{-1}\left(\frac{2 m}{m^{4}+m^{2}+2}\right)=$
$\sum_{m=1}^{n} \tan ^{-1}\left(\frac{2 m}{1+\left(m^{2}+m+1\right)\left(m^{2}-m+1\right)}\right)$
$=\sum_{m=1}^{n} \tan ^{-1}\left(\frac{\left(m^{2}+m+1\right)-\left(m^{2}-m+1\right)}{1+\left(m^{2}+m+1\right)\left(m^{2}-m+1\right)}\right)$
$=\sum_{m=1}^{n}\left[\tan ^{-1}\left(m^{2}+m+1\right)-\tan ^{-1}\left(m^{2}-m+1\right)\right]$

$$
\begin{aligned}
&=\left(\tan ^{-1} 3-\tan ^{-1} 1\right)+\left(\tan ^{-1} 7-\tan ^{-1} 3\right) \\
&+\left(\tan ^{-1} 13-\tan ^{-1} 7\right)+\cdots \\
&+\left[\tan ^{-1}\left(n^{2}+n+1\right)\right. \\
&\left.-\tan ^{-1}\left(n^{2}-n+1\right)\right]
\end{aligned}
$$

$$
=\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1} 1
$$

$$
=\tan ^{-1}\left(\frac{n^{2}+n}{2+n^{2}+n}\right)
$$

For $n \rightarrow \infty$, sum $=\tan ^{-1}(1)=\frac{\pi}{4}$
39 (c)

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x\right) \\
& =\frac{1+\tan \left(\frac{1}{2} \cos ^{-1} x\right)}{1-\tan \left(\frac{1}{2} \cos ^{-1} x\right)} \\
& +\frac{1-\tan \left(\frac{1}{2} \cos ^{-1} x\right)}{1+\tan \left(\frac{1}{2} \cos ^{-1} x\right)} \\
& =\frac{\left(1-\tan \left(\frac{1}{2} \cos ^{-1} x\right)\right)^{2}}{1-\tan ^{2}\left(\frac{1}{2} \cos ^{-1} x\right)} \\
& =2 \frac{1+\tan ^{2}\left(\frac{1}{2} \cos ^{-1} x\right)}{1-\tan ^{2}\left(\frac{1}{2} \cos ^{-1} x\right)} \\
& =\frac{\left(1+\tan \left(\frac{1}{2} \cos ^{-1} x\right)\right)^{2}+}{\cos \left(\cos ^{-1} x\right)}=\frac{2}{x}
\end{aligned}
$$

40 (c)
We have $\sin ^{-1} x+\sin ^{-1}(1-x)=\cos ^{-1} x$
$\Rightarrow \sin \left(\sin ^{-1} x+\sin ^{-1}(1-x)\right)=\sin \left(\cos ^{-1} x\right)$
$\Rightarrow x \sqrt{1-(1-x)^{2}}+\sqrt{1-x^{2}}(1-x)=\sqrt{1-x^{2}}$
$\Rightarrow x \sqrt{1-(1-x)^{2}}=x \sqrt{1-x^{2}}$
$\Rightarrow x=0$ or $2 x-x^{2}=1-x^{2} \Rightarrow x=0$ or $x=\frac{1}{2}$
41 (d)
Given that $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$
$\Rightarrow \cos ^{-1}(x)+\cos ^{-1}(y)=\pi-\cos ^{-1}(z)$
$\Rightarrow \cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)=\cos ^{-1}(-z)$
$\Rightarrow x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}=-z$
$\Rightarrow(x y+z)=\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}$
Squaring both sides, we get $x^{2}+y^{2}+z^{2}+$ $2 x y z=1$

Trick: Put $x=y=z=\frac{1}{2}$ so that $\cos ^{-1} \frac{1}{2}+$ $\cos ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}=\pi$

42 (c)
$\left[\cot ^{-1} x\right]+\left[\cos ^{-1} x\right]=0$
As $\cos ^{-1} x, \cot ^{-1} x \geq 0,\left[\cot ^{-1} x\right]=\left[\cos ^{-1} x\right]=0$
$\left[\cot ^{-1} x\right]=0 \Rightarrow x \in(\cot 1, \infty)$ (i)
$\left[\cos ^{-1} x\right]=0 \Rightarrow x \in(\cos 1,1]$
Hence, from Eqs. (i) and (ii), $x \in(\cot 1,1]$

43 (c)
$\sin ^{-1}(x-1) \Rightarrow-1 \leq x-1 \leq 1 \Rightarrow 0 \leq x \leq 2$
$\cos ^{-1}(x-3) \Rightarrow-1 \leq x-3 \leq 1 \Rightarrow 2 \leq x \leq 4$
$\therefore x=2$
So, $\sin ^{-1}(2-1)+\cos ^{-1}(2-3)+\tan ^{-1} \frac{2}{2-4}=$ $\cos ^{-1} k+\pi$
$\Rightarrow \sin ^{-1} 1+\cos ^{-1}(-1)+\tan ^{-1}(-1)$

$$
=\cos ^{-1} k+\pi
$$

$\Rightarrow \frac{\pi}{2}+\pi-\frac{\pi}{4}=\cos ^{-1} k+\pi$
$\Rightarrow \cos ^{-1} k=\frac{\pi}{4} \Rightarrow k=\frac{1}{\sqrt{2}}$

44 (d)

$$
\begin{gathered}
\sin ^{-1}(-(x-1)(x-2))+\cos ^{-1}((x-3)(x-1)) \\
=\frac{\pi}{4}
\end{gathered}
$$

For $x \in[1,2] \Rightarrow \sin ^{-1}(-(x-1)(x-2)) \in$ $[0, \pi / 2)$
and $\cos ^{-1}((x-3)(x-1)) \in[\pi / 2, \pi] \Rightarrow$ no solution in the given range

Also, $-1 \leq 3 x-2-x^{2} \leq 1$ and $-1 \leq x^{2}-4 x+$ $3 \leq 1 \Rightarrow 2-\sqrt{2} \leq x \leq \frac{3+\sqrt{5}}{2}$

45 (c)

$$
\begin{gathered}
\cos ^{-1}\left(\cos \left(2 \cot ^{-1}(\sqrt{2}-1)\right)\right) \\
=\cos ^{-1}\left(\cos \left(2\left(67.5^{\circ}\right)\right)\right) \\
=\cos ^{-1}\left(\cos \left(135^{\circ}\right)\right)=135^{\circ}=\frac{3 \pi}{4}
\end{gathered}
$$

46 (c)
$2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
Range of the right-hand angle is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow-\frac{\pi}{2} \leq 2 \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow \frac{-\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{4}$
$\Rightarrow x \in\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$
47 (c)
$f(x)=\sin ^{-1} x+\tan ^{-1} x+\sec ^{-1} x$, clearly
domain of $f(x)$ is $x= \pm 1$
Thus, the range is $\{f(1), f(-1)\}$, i.e., $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
48
(d)

Given, $\sin \left[\cot ^{-1}(1+x)\right]=\cos \left(\tan ^{-1} x\right)$
$\therefore \sin \left(\sin ^{-1} \frac{1}{\sqrt{1+\left(1+x^{2}\right)}}\right)$

$$
=\cos \left(\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right)
$$

$\Rightarrow \frac{1}{\sqrt{1+\left(1+x^{2}\right)}}=\frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow 1+x^{2}+2 x+1=x^{2}+1$
$\Rightarrow \quad x=-\frac{1}{2}$
(a)
$1+x^{2} \geq 2|x| \Rightarrow \frac{2|x|}{1+x^{2}} \leq 1$
$\Rightarrow-1 \leq \frac{2 x}{1+x^{2}} \leq 1 \Rightarrow \tan ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
50 (c)
Put $\sin ^{-1} \frac{5}{x}=A \Rightarrow \frac{5}{x}=\sin A$
$\sin ^{-1} \frac{12}{x}=B \Rightarrow \frac{12}{x}=\sin B \Rightarrow A+B=\frac{\pi}{2}$
$\Rightarrow \sin A=\sin \left(\frac{\pi}{2}-B\right)=\cos B=\sqrt{1-\sin ^{2} B}$
$\Rightarrow \frac{5}{x}=\sqrt{1-\frac{144}{x^{2}}} \Rightarrow \frac{169}{x^{2}}=1$
$\Rightarrow x^{2}=169 \Rightarrow x=13 \quad[\because x=-13$ doses not satisfy the given equation]

51 (d)
We have $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$

$$
\begin{aligned}
\Rightarrow x=\cos \left(\cos ^{-1}\right. & \left.\frac{y}{2}+\alpha\right) \\
& =\cos \left(\cos ^{-1} \frac{y}{2}\right) \cos \alpha \\
& -\sin \left(\cos ^{-1} \frac{y}{2}\right) \sin \alpha
\end{aligned}
$$

$=\frac{y}{2} \cos \alpha-\sqrt{1-\frac{y^{2}}{4}} \sin \alpha$
$\Rightarrow 2 x=y \cos \alpha-\sin \alpha \sqrt{4-y^{2}}$
$\Rightarrow 2 x-y \cos \alpha=-\sin \alpha \sqrt{4-y^{2}}$
Squaring, we get
$4 x^{2}+y^{2} \cos ^{2} \alpha-4 x y \cos \alpha=4 \sin ^{2} \alpha-y^{2} \sin ^{2} \alpha$ $\Rightarrow 4 x^{2}-4 x y \cos \alpha+y^{2}=4 \sin ^{2} \alpha$

52 (b)

$$
\cos ^{-1}\left(\frac{1+x^{2}}{2 x}\right)=\frac{\pi}{2}+\left(\sin ^{-1} x+\cos ^{-1} x\right)
$$

$$
\Rightarrow \cos ^{-1}\left(\frac{1+x^{2}}{2 x}\right)=\pi \Rightarrow\left(\frac{1+x^{2}}{2 x}\right)=\cos \pi
$$

$$
=-1 \Rightarrow x^{2}+1+2 x=0 \Rightarrow x
$$

$$
=-1
$$

53 (d)
$\sin ^{-1}\left(\cos \left(\cos ^{-1}(\cos x)+\sin ^{-1}(\sin x)\right)\right)$

$$
\begin{aligned}
& =\sin ^{-1}(\cos (x+\pi-x))[\operatorname{as} x \\
& \in(\pi / 2, \pi)]
\end{aligned}
$$

$=\sin ^{-1}(\cos \pi)=\sin ^{-1}(-1)=-\frac{\pi}{2}$
54 (c)

$$
\begin{gathered}
x_{1}=2 \tan ^{-1}\left(\frac{1+x}{1-x}\right) \text { and } x_{2}=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\
=\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)
\end{gathered}
$$

Now $\frac{1+x}{1-x}>1 \Rightarrow x_{1}=\pi+\tan ^{-1}\left(\frac{2\left(\frac{1+x}{1-x}\right)}{1-\left(\frac{1+x}{1-x}\right)^{2}}\right)=\pi+$ $\tan ^{-1}\left(\frac{1-x^{2}}{-2 x}\right)=\pi-\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)$
$\Rightarrow x_{1}+x_{2}=\pi$
55 (b)
$\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z=\frac{\pi}{2}$
$\Rightarrow \frac{\pi}{2}-\tan ^{-1} x+\frac{\pi}{2}-\tan ^{-1} y+\frac{\pi}{2}-\tan ^{-1} z=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$
$\Rightarrow \tan ^{-1} x+\tan ^{-1} y=\pi-\tan ^{-1} z$
$\Rightarrow \tan \left(\tan ^{-1} x+\tan ^{-1} y\right)=\tan \left(\pi-\tan ^{-1} z\right)$
$\Rightarrow \frac{x+y}{1-x y}=-z$
$\Rightarrow x+y+z=x y z$
56 (a)
$\tan ^{-1}\left[\frac{\cos x}{1+\sin x}\right]=\tan ^{-1}\left[\frac{\sin [(\pi / 2)-x]}{1+\cos [(\pi / 2)-x]}\right]$
$=\tan ^{-1}\left[\begin{array}{c}2 \sin \left[\left(\frac{\pi}{4}\right)-\left(\frac{x}{2}\right)\right] \\ \frac{\cos [(\pi / 4)-(x / 2)]}{2 \cos ^{2}[(\pi / 4)-(x / 2)]}\end{array}\right]$
$=\tan ^{-1} \tan \left(\frac{\pi}{4}-\frac{x}{2}\right)=\frac{\pi}{4}-\frac{x}{2}$
$\Rightarrow-\frac{\pi}{2}<\frac{\pi}{4}-\frac{x}{2}<\frac{\pi}{2}$
$\Rightarrow-\frac{3 \pi}{4}<-\frac{x}{2}<\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow-\frac{\pi}{4}<\frac{x}{2}<\frac{3 \pi}{4} \\
& \Rightarrow-\frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{2}
\end{aligned}
$$

57 (d)
Since $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=2 \tan ^{-1} x$ for $x \in(-1,1)$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1}\left(\frac{2 b}{1+b^{2}}\right)=2 \tan ^{-1} x \\
& \Rightarrow 2 \tan ^{-1} a+2 \tan ^{-1} b=2 \tan ^{-1} x \\
& \Rightarrow \tan ^{-1} a+\tan ^{-1} b=\tan ^{-1} x \\
& \Rightarrow \tan ^{-1}\left(\frac{a+b}{1-a b}\right)=\tan ^{-1} x \\
& \Rightarrow x=\frac{a+b}{1-a b}
\end{aligned}
$$

58 (a)

$$
\begin{aligned}
& \cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x \\
& \Rightarrow \tan ^{-1}\left(\frac{1}{\sqrt{\cos \alpha}}\right)-\tan ^{-1}(\sqrt{\cos \alpha})=x \\
& \Rightarrow \tan ^{-1} \frac{\frac{1}{\sqrt{\cos \alpha}}-\sqrt{\cos \alpha}}{1+\frac{1}{\sqrt{\cos \alpha}} \sqrt{\cos \alpha}}=x \\
& \Rightarrow \tan ^{-1} \frac{1-\cos \alpha}{2 \sqrt{\cos \alpha}}=x \\
& \Rightarrow \tan x=\frac{1-\cos \alpha}{2 \sqrt{\cos \alpha}} \\
& \Rightarrow \cot x=\frac{2 \sqrt{\cos \alpha}}{1-\cos \alpha}
\end{aligned}
$$

$$
\Rightarrow \operatorname{cosec} x=\sqrt{1+\frac{4 \cos \alpha}{(1-\cos \alpha)^{2}}}=\frac{1+\cos \alpha}{1-\cos \alpha}
$$

$$
\Rightarrow \sin x=\frac{1-\cos \alpha}{1+\cos \alpha}=\frac{2 \sin ^{2}(\alpha / 2)}{2 \cos ^{2}(\alpha / 2)}=\tan ^{2} \alpha / 2
$$

59 (c)

$$
\begin{aligned}
& \tan ^{-1} \frac{x}{y}-\tan ^{-1}\left(\frac{x-y}{x+y}\right) \\
& \quad=\tan ^{-1} \frac{x}{y}-\tan ^{-1}\left(\frac{1-(y / x)}{1+(y / x)}\right) \\
& =\tan ^{-1} \frac{x}{y}-\left(\tan ^{-1} 1-\tan ^{-1} \frac{y}{x}\right)
\end{aligned}
$$

$=\tan ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}-\frac{\pi}{4}$
$=\tan ^{-1} \frac{x}{y}+\cot ^{-1} \frac{x}{y}-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
60
(b)

Obviously, $x=\sin (\theta+\beta)$ and $y=\sin (\theta-\beta)$

$$
\begin{gathered}
\Rightarrow 1+x y=1+\sin (\theta+\beta) \sin (\theta-\beta) \\
=1+\sin ^{2} \theta-\sin ^{2} \beta \\
=\sin ^{2} \theta+\cos ^{2} \beta
\end{gathered}
$$

61 (c)

$$
\begin{aligned}
& 2 \tan ^{-1}\left(\operatorname{cosec} \tan ^{-1} x-\tan \cot ^{-1} x\right) \\
& \\
& =2 \tan ^{-1}\left[\operatorname{cosec} \tan ^{-1} x\right. \\
& \\
& \left.-\tan \cot ^{-1} x\right]
\end{aligned}
$$

$=2 \tan ^{-1}\left[\operatorname{cosec}\left\{\operatorname{cosec}^{-1} \frac{\sqrt{1+x^{2}}}{x}\right\}\right.$

$$
\left.-\tan ^{-1}\left\{\tan ^{-1}\left(\frac{1}{x}\right)\right\}\right]
$$

$=2 \tan ^{-1}\left[\sqrt{\frac{1+x^{2}}{x}}-\frac{1}{x}\right]=2 \tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right]$
$=2 \tan ^{-1}\left[\frac{\sec \theta-1}{\tan \theta}\right] \quad[$ putting $x=\tan \theta]$
$=2 \tan ^{-1}\left[\frac{1-\cos \theta}{\sin \theta}\right]=2 \tan ^{-1}\left[\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right]$
$=2 \tan ^{-1} \tan \frac{\theta}{2}=2 \times \frac{\theta}{2}=\theta=\tan ^{-1} x$

62 (c)
Let $\cos ^{-1}\left(\frac{\sqrt{5}}{3}\right)=\alpha$. Then $\cos \alpha=\frac{\sqrt{5}}{3}$, where $0<$ $\alpha<\frac{\pi}{2}$

Now, $\tan \frac{\alpha}{2}=\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\sqrt{\frac{1-\sqrt{5} / 3}{1+\sqrt{5} / 3}}=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}=$ $\sqrt{\frac{(3-\sqrt{5})^{2}}{9-5}}=\frac{1}{2}(3-\sqrt{5})$

63
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$=\frac{\frac{\sqrt{3} x}{2 K-x}-\frac{2 x-K}{\sqrt{3} K}}{1+\frac{\sqrt{3} x}{2 K-x} \frac{2 x-K}{\sqrt{3} K}}$
$=\frac{3 K x-(2 x-K)(2 K-x)}{(2 K-x) \sqrt{3} K+\sqrt{3} x(2 x-K)}$
$=\frac{3 K x-\left(4 K x-2 x^{2}-2 K^{2}+K x\right)}{2 \sqrt{3} K^{2}-\sqrt{3} K x+2 \sqrt{3} x^{2}-\sqrt{3} K x}$
$=\frac{2 x^{2}-2 K x+2 K^{2}}{2 \sqrt{3} x^{2}-2 \sqrt{3} K x+2 \sqrt{3} K^{2}}=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$
$\therefore A-B=30^{\circ}$

64 (a)
$\sin ^{-1} \sin \left(\frac{22 \pi}{7}\right)=\sin ^{-1} \sin \left(3 \pi+\frac{\pi}{7}\right)=-\frac{\pi}{7}$
$\cos ^{-1} \cos \left(\frac{5 \pi}{3}\right)=\cos ^{-1} \cos \left(2 \pi-\frac{\pi}{3}\right)=\frac{\pi}{3}$
$\tan ^{-1} \tan \left(\frac{5 \pi}{7}\right)=\tan ^{-1} \tan \left(\pi-\frac{2 \pi}{7}\right)=-\frac{2 \pi}{7}$
$\sin ^{-1} \cos (2)=\frac{\pi}{2}-\cos ^{-1} \cos 2=\frac{\pi}{2}-2$
Therefore, the required value $=-\frac{\pi}{7}+\frac{\pi}{3}-\frac{2 \pi}{7}+$ $\frac{\pi}{2}-2$
$=\frac{(-18+35) \pi}{42}-2=\frac{17 \pi}{42}-2$
65 (a)
$\tan ^{-1}\left(\frac{1}{1+r+r^{2}}\right)=\tan ^{-1}\left(\frac{r+1-r}{1+r(r+1)}\right)$
$=\tan ^{-1}(r+1)-\tan ^{-1}(r)$
$\Rightarrow \sum_{r=0}^{n}\left[\tan ^{-1}(r+1)-\tan ^{-1}(r)\right]$
$=\tan ^{-1}(n+1)-\tan ^{-1}(0)$
$=\tan ^{-1}(n+1)$
$\Rightarrow \sum_{r=0}^{\infty} \tan ^{-1}\left(\frac{1}{1+r+r^{2}}\right)=\tan ^{-1}(\infty)=\frac{\pi}{2}$
66 (a)
Let $\cos ^{-1}\left(\frac{1}{8}\right)=\theta$, where $0<\theta<\pi$, then $\frac{1}{2} \cos ^{-1} \frac{1}{8}=\frac{1}{2} \theta$
$\Rightarrow \cos \left(\frac{1}{2} \cos ^{-1} \frac{1}{8}\right)=\cos \frac{\theta}{2}$
Now, $\cos ^{-1} \frac{1}{8}=\theta \Rightarrow \cos \theta=\frac{1}{8} \Rightarrow \cos ^{2} \frac{\theta}{2}=\frac{9}{16} \Rightarrow$
$\cos \frac{\theta}{2}=\frac{3}{4}$
67
(b)
$\cos ^{-1}\left(2 x^{2}-1\right)=2 \pi-2 \cos ^{-1} x($ as $x<0)$
$\Rightarrow \cos ^{-1}\left(2 x^{2}-1\right)-2 \sin ^{-1} x$

$$
=2 \pi-2 \cos ^{-1} x-2 \sin ^{-1} x
$$

$=2 \pi-2\left(\cos ^{-1} x+\sin ^{-1} x\right)$
$=2 \pi-2 \frac{\pi}{2}=\pi$
68 (c)
Let $y=\tan ^{-1}\left(\frac{1-x^{2}}{2 x}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Put $x=\tan \theta$. As $x \in(0,1), \theta \in\left(0, \frac{\pi}{4}\right)$ and $\frac{\pi}{2}-2 \theta \in(0, \pi / 2)$
$\therefore y=\tan ^{-1}(\cot 2 \theta)+\cos ^{-1}(\cos 2 \theta)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-2 \theta\right)\right) \\
& +\cos ^{-1}(\cos 2 \theta)
\end{aligned}
$$

$=\frac{\pi}{2}-2 \theta+2 \theta=\frac{\pi}{2}$
69
(b)

Let $x=\sin \theta$ where $-\frac{1}{2} \leq x \leq 1 \Rightarrow-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}$
Then $f(x)=\sin ^{-1}\left(\frac{\sqrt{3}}{2} x-\frac{1}{2} \sqrt{1-x^{2}}\right)$
$=\sin ^{-1}\left(\frac{\sqrt{3}}{2} \sin \theta-\frac{1}{2} \cos \theta\right)$
$=\sin ^{-1}\left(\sin \left(\theta-\frac{\pi}{6}\right)\right)$
$=\theta-\frac{\pi}{6}=\sin ^{-1} x-\frac{\pi}{6}\left[\because \theta-\frac{\pi}{6} \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)\right]$
$70 \quad$ (c)
$\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1}(1+x)=\frac{\pi}{2}-\tan ^{-1}(1-x)$
$=\cot ^{-1}(1-x)$
$=\tan ^{-1}\left(\frac{1}{1-x}\right)$
$\Rightarrow 1+x=\frac{1}{1-x} \Rightarrow 1-x^{2}=1 \Rightarrow x=0$
(d)

$$
\begin{aligned}
\tan \left(\cos ^{-1} \frac{1}{5 \sqrt{2}}\right. & \left.-\sin ^{-1} \frac{4}{\sqrt{17}}\right) \\
& =\tan \left[\tan ^{-1} 7-\tan ^{-1} 4\right] \\
& =\tan \left(\tan ^{-1}\left(\frac{3}{29}\right)\right)=\frac{3}{29}
\end{aligned}
$$

72 (a)
Put $x=\tan \theta$

$$
\begin{array}{r}
\therefore 3 \sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}-4 \cos ^{-1} \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\
+2 \tan ^{-1} \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{\pi}{3}
\end{array}
$$

$\Rightarrow 3 \sin ^{-1}(\sin 2 \theta)-4 \cos ^{-1}(\cos 2 \theta)$

$$
+2 \tan ^{-1}(\tan 2 \theta)=\frac{\pi}{3}
$$

$$
\begin{gathered}
\Rightarrow 3(2 \theta)-4(2 \theta)+2(2 \theta)=\frac{\pi}{3} \Rightarrow 2 \theta=\frac{\pi}{3} \Rightarrow \theta \\
=\frac{\pi}{6} \Rightarrow x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}
\end{gathered}
$$

73 (d)

$$
\begin{gathered}
{\left[\cot ^{-1} x\right]+2\left[\tan ^{-1} x\right]=0 \Rightarrow\left[\cot ^{-1} x\right]} \\
=0,\left[\tan ^{-1} x\right]=0
\end{gathered}
$$

or $\left[\cot ^{-1} x\right]=2,\left[\tan ^{-1} x\right]=-1$
Now $\left[\cot ^{-1} x\right]=0 \Rightarrow x \in(\cot 1, \infty)$
$\left[\tan ^{-1} x\right]=0 \Rightarrow x \in(0, \tan 1)$
Therefore, for $\left[\cot ^{-1} x\right]=\left[\tan ^{-1} x\right]=0, x \in$ $(\cot 1, \tan 1)$
$\left[\cot ^{-1} x\right]=2 \Rightarrow x \in(\cot 3, \cot 2]$
$\left[\tan ^{-1} x\right]=-1 \Rightarrow x \in[-\tan 1,0) \Rightarrow$ No such x exists

Thus, the solution set is $(\cot 1, \tan 1)$
(c)

Let $\tan ^{-1}(x)=\theta \Rightarrow x=\tan \theta \Rightarrow \cos \theta=x \Rightarrow$ $\frac{1}{\sqrt{1+x^{2}}}=x$

$$
\begin{aligned}
\Rightarrow x^{2}\left(1+x^{2}\right)= & 1 \Rightarrow x^{2}=\frac{-1 \pm \sqrt{5}}{2} \Rightarrow x^{2} \\
& =\frac{\sqrt{5}-1}{2} \Rightarrow \frac{x^{2}}{2}=\frac{\sqrt{5}-1}{4}
\end{aligned}
$$

Now $\cos ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)=\cos ^{-1}\left(\sin \frac{\pi}{10}\right)=$ $\cos ^{-1}\left(\cos \frac{2 \pi}{5}\right)=\frac{2 \pi}{5}=\frac{2 \pi}{5}$

75

$$
\begin{aligned}
& \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)=\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{r} 2^{r-1}}\right) \\
& =\sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r}-2^{r-1}}{1+2^{r} 2^{r-1}}\right) \\
& =\sum_{r=1}^{n}\left[\tan ^{-1}\left(2^{r}\right)-\tan ^{-1}\left(2^{r-1}\right)\right] \\
& =\tan ^{-1}\left(2^{n}\right)-\tan ^{-1}(1) \\
& =\tan ^{-1}\left(2^{n}\right)-\frac{\pi}{4}
\end{aligned}
$$

76 (c)
Since
$\sqrt{x^{2}-3 x+2} \geq 0 \Rightarrow 0 \leq \tan ^{-1} \sqrt{x^{2}-3 x+2}<\frac{\pi}{2}$
and
$\sqrt{4 x-x^{2}-3} \geq 0 \Rightarrow 0<\cos ^{-1} \sqrt{4 x-x^{2}-3} \leq \frac{\pi}{2}$
Adding, we have $0<$ L. H. S. $<\pi$
Therefore, the given equation has no solution
77 (c)
$\tan ^{-1} \sqrt{[x(x+1)]}=(\pi / 2)-\sin ^{-1} \sqrt{\left(x^{2}+x+1\right)}$

$$
=\cos ^{-1} \sqrt{x^{2}+x+1}
$$

$$
=\tan ^{-1} \frac{\sqrt{-x^{2}-x}}{\sqrt{x^{2}+x+1}}
$$

$\Rightarrow \sqrt{x(x+1)}=\frac{\sqrt{-x^{2}-x}}{\sqrt{x^{2}+x+1}} \Rightarrow x=0,-1$ are the only real solutions

78 (c)
From the given equation $\sin ^{2} \theta-2 \sin \theta+3=$ $5^{\sec ^{2} y}+1$, we get
$(\sin \theta-1)^{2}+2=5^{\sec ^{2} y}+1$
L. H. S. ≤ 6, R. H.S. ≥ 6

Possible solution is $\sin \theta=-1$ when L. H. S. $=$ R. H. S $\Rightarrow \cos ^{2} \theta=0 \Rightarrow \cos ^{2} \theta-\sin \theta=1$

(b)

$$
\begin{gathered}
\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2} \Rightarrow \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1} y \\
\Rightarrow \sin ^{-1} x=\sin ^{-1} \sqrt{1-y^{2}} \\
\Rightarrow x^{2}+y^{2}=1
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow \frac{1+x^{4}+y^{4}}{x^{2}-x^{2} y^{2}+y^{2}}=\frac{1+\left(x^{2}+y^{2}\right)^{2}-2 x^{2} y^{2}}{1-x^{2} y^{2}} \\
=\frac{1+1-2 x^{2} y^{2}}{1-x^{2} y^{2}}=2
\end{gathered}
$$

80 (d)
$\tan \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]$
$=\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
$=\tan \left(\tan ^{-1}\left(\frac{(3 / 4)+(2 / 3)}{1-(3 / 4) \times(2 / 3)}\right)\right)$
$=\frac{17}{12} \times \frac{12}{6}=\frac{17}{6}$
81 (c)
We have $\cos ^{-1} x+\cos ^{-1}(2 x)=-\pi$, which is not possible as $\cos ^{-1} x$ and $\cos ^{-1} 2 x$ never take negative values

82 (e)
The principal value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=$ principal value of $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\pi / 3$

83 (b)
$\sin \cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)=p$
For $x \in R \tan ^{-1} x \in(-\pi / 2, \pi / 2)$
$\cos \left(\tan ^{-1} x\right) \in(0,1]$
$\cos ^{-1} \cos \left(\tan ^{-1} x\right) \in[0, \pi / 2)$
$\sin \left(\cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)\right) \in[0,1)$
84 (a)
Let $\sqrt{\tan \alpha}=\tan x$, then $u=\cot ^{-1}(\tan x)-$
$\tan ^{-1}(\tan x)=\frac{\pi}{2}-x-x=\frac{\pi}{2}-2 x$
$\Rightarrow 2 x=\frac{\pi}{2}-u \Rightarrow \frac{\pi}{4}-\frac{u}{2}$
$\Rightarrow \tan x=\tan \left(\frac{\pi}{4}-\frac{u}{2}\right)$
$\Rightarrow \sqrt{\tan \alpha}=\tan \left(\frac{\pi}{4}-\frac{u}{2}\right)$
85 (b)
The given equation can be written as
$3 \tan ^{-1}(2-\sqrt{3})=\tan ^{-1}\left(\frac{1}{x}\right)+\tan ^{-1}\left(\frac{1}{3}\right)$
$\Rightarrow 3\left(15^{\circ}\right)=\tan ^{-1} \frac{\frac{1}{x}+\frac{1}{3}}{1-\frac{1}{x} \frac{1}{3}} \Rightarrow 1=\frac{3+x}{3 x-1} \Rightarrow x=2$
86 (d)
$f(x)=\tan ^{-1}\left(\frac{(\sqrt{12}-2) x^{2}}{x^{4}+2 x^{2}+3}\right)$
$=\tan ^{-1}\left(\frac{2(\sqrt{3}-1)}{x^{2}+\frac{3}{x^{2}}+2}\right)$
As $x^{2}+\frac{3}{x^{2}} \geq 2 \sqrt{3}$ [using A.M. \geq G.M.]
$\Rightarrow x^{2}+\frac{3}{x^{2}}+2 \geq 2+2 \sqrt{3}$
$\therefore(f(x))_{\max }=\tan ^{-1}\left(\frac{2(\sqrt{3}-1)}{2(\sqrt{3}+1)}\right)=\frac{\pi}{12}$
87 (d)
$\sin \left(2 \sin ^{-1}(0.8)\right)$

$$
\begin{aligned}
& =\sin \left(\sin ^{-1}(2\right. \\
& \left.\left.\times 0.8 \sqrt{1-(0.8)^{2}}\right)\right) \\
& =\sin \left(\sin ^{-1} 0.96\right)=0.96
\end{aligned}
$$

88

$$
\begin{aligned}
& \frac{x}{\sqrt{1+x^{2}}}=\frac{x+1}{\sqrt{(x+1)^{2}+1}} \\
& \Rightarrow x^{2}\left[(x+1)^{2}+1\right]=(x+1)^{2}\left[\left(x^{2}+1\right)\right] \\
& \Rightarrow x^{2}(x+1)^{2}+x^{2}=x^{2}(x+1)^{2}+(x+1)^{2} \\
& \Rightarrow x^{2}=(x+1)^{2} \Rightarrow x+1=x \text { not possible }
\end{aligned}
$$

as $x \rightarrow \infty$
$\Rightarrow x+1=-x \Rightarrow x=-1 / 2$ which is also not possible as for this L. H.S. <0 but R.H.S. >0

89 (c)
We have $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1}\left[\frac{1-\tan \theta}{1+\tan \theta}\right]=\frac{1}{2} \theta \quad($ putting $x=\tan \theta)$
$\Rightarrow \tan ^{-1}\left[\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \tan \theta}\right]=\frac{\theta}{2}$
$\Rightarrow \tan ^{-1} \tan \left(\frac{\pi}{4}-\theta\right)=\frac{\theta}{2}$
$\Rightarrow \frac{\pi}{4}-\theta=\frac{\theta}{2}$
$\Rightarrow \theta=\frac{\pi}{6}=\tan ^{-1} x$
$\Rightarrow x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$
90 (d)
$f(x)+f(-x)=2$
Now $\left(\sin ^{-1}(\sin 8)\right)=3 \pi-8=y$
and $\left(\tan ^{-1}(\tan 8)\right)=(8-3 \pi)$
Hence, $f(y)+f(-y)=2$
Given, $f(y)=\alpha$ we have $f(-y)=2-\alpha$
(d)

Let $\alpha=\cos ^{-1} \sqrt{p}, \beta=\cos ^{-1} \sqrt{1-p}$ and $\gamma=\cos ^{-1} \sqrt{1-q}$
$\Rightarrow \cos \alpha=\sqrt{p}, \cos \beta=\sqrt{1-p}$ and $\cos \gamma=\sqrt{1-q}$
Therefore, $\sin \alpha=\sqrt{1-p}, \sin \beta=\sqrt{p}$ and
$\sin \gamma=\sqrt{q}$
The given equation may be written as

$$
\begin{aligned}
& \alpha+\beta+\gamma=\frac{3 \pi}{4} \\
& \Rightarrow \alpha+\beta=\frac{3 \pi}{4}-\gamma \\
& \Rightarrow \cos (\alpha+\beta)=\cos \left(\frac{3 \pi}{4}-\gamma\right)
\end{aligned}
$$

$$
\Rightarrow \cos \alpha \cos \beta-\sin \alpha \sin \beta=\cos \left(\pi-\left(\frac{\pi}{4}+\gamma\right)\right)
$$

$$
=-\cos \left(\frac{\pi}{4}+\gamma\right)
$$

$$
\Rightarrow \sqrt{p} \sqrt{1-p}-\sqrt{1-p} \sqrt{p}
$$

$$
=-\left(\frac{1}{\sqrt{2}} \sqrt{1-q}-\frac{1}{\sqrt{2}} \sqrt{q}\right)
$$

$$
\Rightarrow 0=\sqrt{1-q}-\sqrt{q} \Rightarrow 1-q=q \Rightarrow q=\frac{1}{2}
$$

(c)
$\sin ^{-1}(\sin 10)=\sin ^{-1}[\sin (3 \pi-10)]=3 \pi-10$
(c)

$$
\begin{aligned}
& \frac{\alpha^{3}}{2} \operatorname{cosec}^{2}\left(\frac{1}{2} \tan ^{-1} \frac{\alpha}{\beta}\right)+\frac{\beta^{3}}{2} \sec ^{2}\left(\frac{1}{2} \tan ^{-1} \frac{\beta}{\alpha}\right) \\
& =\alpha^{3} \frac{1}{1-\cos \left(\tan ^{-1}\left(\frac{\alpha}{\beta}\right)\right)}+\beta^{3} \frac{1}{1+\cos \left(\tan ^{-1} \frac{\beta}{\alpha}\right)} \\
& =\alpha^{3} \frac{1}{1-\cos \left(\cos ^{-1}\left(\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}\right)\right)} \\
& +\beta^{3} \frac{1}{1+\cos \left(\cos ^{-1} \frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}\right)} \\
& =\alpha^{3} \frac{1}{1-\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}}+\beta^{3} \frac{1}{1+\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}} \\
& =\sqrt{\alpha^{2}+\beta^{2}}\left(\frac{\alpha^{3}}{\sqrt{\alpha^{2}+\beta^{2}}-\beta}+\frac{\beta^{3}}{\sqrt{\alpha^{2}+\beta^{2}}+\alpha}\right) \\
& =\sqrt{\alpha^{2}+\beta^{2}}\left(\alpha^{3} \frac{\left(\sqrt{\alpha^{2}+\beta^{2}}+\beta\right)}{\alpha^{2}}\right. \\
& \left.+\beta^{3} \frac{\left(\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right.}{\beta^{2}}\right) \\
& =\sqrt{\alpha^{2}+\beta^{2}}\left[\alpha\left(\sqrt{\alpha^{2}+\beta^{2}}+\beta\right)\right. \\
& \left.+\beta\left(\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right)\right] \\
& =\sqrt{\alpha^{2}+\beta^{2}}(\alpha+\beta) \sqrt{\alpha^{2}+\beta^{2}} \\
& =(\alpha+\beta)\left(\alpha^{2}+\beta^{2}\right)
\end{aligned}
$$

$94 \quad$ (c)
We have $\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}=\left(\sin ^{-1} x+\right.$ $\cos -1 x 3-3 \sin -1 \cos -1 x \sin -1 x+\cos -1 x$
$=\frac{\pi^{3}}{8}-3\left(\sin ^{-1} x \cos ^{-1} x\right) \frac{\pi}{2}$
$=\frac{\pi^{3}}{8}-\frac{3 \pi}{2} \sin ^{-1} x\left(\frac{\pi}{2}-\sin ^{-1} x\right)$
$=\frac{\pi^{3}}{8}-\frac{3 \pi^{2}}{4} \sin ^{-1} x+\frac{3 \pi}{2}\left(\sin ^{-1} x\right)^{2}$
$=\frac{\pi^{3}}{8}+\frac{3 \pi}{2}\left[\left(\sin ^{-1} x\right)^{2}-\frac{\pi}{2} \sin ^{-1} x\right]$
$=\frac{\pi^{3}}{8}+\frac{3 \pi}{2}\left[\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2}\right]-\frac{3 \pi^{3}}{32}$
$=\frac{\pi^{3}}{32}+\frac{3 \pi}{2}\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2}$
So, the least value is $\frac{\pi^{3}}{32}$ when $\left(\sin ^{-1} x-\frac{\pi}{4}\right)=0$
And the greatest value occurs when $\left(\sin ^{-1} x-\right.$ $\pi 42=-\pi 2-\pi 42=9 \pi 216$

Therefore, the greatest value is $\frac{\pi^{3}}{32}+\frac{9 \pi^{2}}{16} \times \frac{3 \pi}{2}=$ $\frac{7 \pi^{3}}{8}$

95
(c)

Here $|\cos x|=\sin ^{-1}(\sin x)$

From the graph, number of solutions is 2
96 (a)
$2 \cos ^{-1} x=\cot ^{-1}\left(\frac{2 x^{2}-1}{2 x \sqrt{1-x^{2}}}\right)$
Put $x=\cos \theta:$ LHS $=2 \theta ; 0 \leq \theta \leq \pi$ and
$-1 \leq x \leq 1$
R. H. S. $=\cot ^{-1}\left(\frac{\cos 2 \theta}{2 \cos \theta|\sin \theta|}\right)=\cot ^{-1}(\cot 2 \theta)=$ 2θ if $0<2 \theta<\pi$ (ii)

From Eqs. (i) and (ii), we get $0<\theta<\pi / 2$
$\therefore x \in(0,1)$
97 (b)

$$
\begin{gathered}
\tan ^{-1} \frac{b+a}{b-a}-\tan ^{-1} \frac{a}{b}=\tan ^{-1} \frac{\frac{b+a}{b-a}-\frac{a}{b}}{1+\frac{b+a}{b-a} \frac{a}{b}} \\
=\tan ^{-1} \frac{b^{2}+a b-a b+a^{2}}{b^{2}-a b+a b+a^{2}}=\tan ^{-1} \frac{a^{2}+b^{2}}{a^{2}+b^{2}} \\
=\tan ^{-1} 1=\frac{\pi}{4}
\end{gathered}
$$

Therefore, the required value $=\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$
98 (a)
$\sin ^{-1} x-\cos ^{-1} x=\sin ^{1}(3 x-2)$
$\Rightarrow \frac{\pi}{2}-\cos ^{-1} x-\cos ^{-1} x=\frac{\pi}{2}-\cos ^{-1}(3 x-2)$
$\Rightarrow 2 \cos ^{-1} x=\cos ^{-1}(3 x-2)$. Also $x \in[-1,1]$
$\Rightarrow \cos ^{-1}\left(2 x^{2}-1\right)=\cos ^{-1}(3 x-2)$ and $(3 x-$ $2 \in-1$, 1, i.e., $-1 \leq 3 x-2 \leq 1$
$\Rightarrow 2 x^{2}-1=3 x-2$; hence, $x \in\left[\frac{1}{3}, 1\right]$
$\Rightarrow 2 x^{2}-3 x+1=0 \Rightarrow x=1$ or $\frac{1}{2}$
99

(c)

$\sqrt{1+x^{2}}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}-1\right]^{1 / 2}$ $=\sqrt{1+x^{2}}\left[\left\{x \cos \left(\cos ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right)\right.\right.$

$$
\left.\left.+\sin \left(\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right)\right\}^{2}-1\right]^{1 / 2}
$$

$=\sqrt{1+x^{2}}\left[\left\{x \cdot \frac{x}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}}\right\}^{2}-1\right]^{1 / 2}$
$=\sqrt{1+x^{2}}\left[1+x^{2}-1\right]^{1 / 2}$
$=x \sqrt{1+x^{2}}$
100
(b)
$3 \cos ^{-1} x-\pi x-\frac{\pi}{2}=0 \Rightarrow \cos ^{-1} x=\frac{\pi x}{3}+\frac{\pi}{6}$

101 (c)
$x=\tan ^{-1} 3 \Rightarrow \tan x=3$
$\tan (x+y)=33$
$\Rightarrow \frac{\tan x+\tan y}{1-\tan x \tan y}=33$
$\Rightarrow \frac{3+\tan y}{1-3 \tan y}=33$
$\Rightarrow 3+\tan y=33-99 \tan y$
$\Rightarrow 100 \tan y=30$
$\Rightarrow \tan y=0.3 \Rightarrow y=\tan ^{-1}(0.3)$

102 (a,c,d)

The given equation holds, if
$x^{2}+x+1=\lambda x+1$
And $-1 \leq x^{2}+x+1 \leq 1$
$\Rightarrow x(x+1-\lambda)=0$ and $-1 \leq x \leq 0$
$\Rightarrow x=0$ or $\lambda-1$ and $-1 \leq x \leq 0$
$\therefore x=0$ is one solution and for another different solution
$-1 \leq \lambda-1<0$.
$\Rightarrow 0 \leq \lambda<1$, so only integral value λ can have is 0.

103 (a,b,c)
The solution of $y=\sqrt{y}$ is $y=0$ or $y=1$
if $\sin ^{-1}|\sin x|=1$
$\Rightarrow x=1$ or $\pi-1 \quad[$ in the interval $(0, \pi)]$
But $y=\sin ^{-1}|\sin x|$ is periodic with period π, so $x=n \pi+1$ or $n \pi-1$
Again, if $\sin ^{-1}|\sin x|=0$
$\Rightarrow x=n \pi$
104 (a,b)
We know that
if $|x| \leq 1$, then $2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
if $x>1,2 \tan ^{-1} x=\pi-\sin ^{-1} \frac{2 x}{1+x^{2}}$
if $x<-1,2 \tan ^{-1} x=-\pi-\sin ^{-1} \frac{2 x}{1+x^{2}}$
Hence, the required values are $x<-1$ or $x>1$

105 (a,d)

We have,
$\tan ^{-1} x+\cot ^{-1} x+\sin ^{1} x=\frac{\pi}{2}+\sin ^{-1} x \ldots$ (i)
Since, $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow 0 \leq \frac{\pi}{2}+\sin ^{-1} x \leq \pi$
$\Rightarrow 0 \leq \tan ^{-1} x+\cot ^{-1} x+\sin ^{-1} x \leq \pi$ [from
Eq.(i)]
$\therefore a=0$ and $b=\pi$
106 (a, b)
a. $\cos \left(\tan ^{-1}(\tan (4-\pi))\right)=\cos (4-\pi)=$ $\cos (\pi-4)=-\cos 4>0$
b. $\sin \left(\cot ^{-1}(\cot (4-\pi))\right)=\sin (4-\pi)=$
$-\sin 4>0($ as $\sin 4<0)$
c. $\tan \left(\cos ^{-1}(\cos (2 \pi-5))\right)=\tan (2 \pi-5)=$ $-\tan 5>0($ as $\tan 5<0)$
d. $\cot \left(\sin ^{-1}(\sin (\pi-4))\right)=\cot (\pi-4)=$ $-\cot 4<0$

107 (a,c)
Given equation is $x^{2}+2 x \sin \left(\cos ^{-1} y\right)+1=0$.
Since x is real, $D \geq 0$
$\therefore 4\left(\sin \left(\cos ^{-1} y\right)\right)^{2}-4 \geq 0$
$\Rightarrow\left(\sin \left(\cos ^{-1} y\right)\right)^{2} \geq 1$
$\Rightarrow \sin \left(\cos ^{-1} y\right)= \pm 1$
$\Rightarrow \cos ^{-1} y= \pm \frac{\pi}{2} \Rightarrow y=0$
Putting value of y in the original equation, we have $x^{2}+2 x+1=0 \Rightarrow x=-1$

Hence, the equation has only one solution

108 (a,d)

For the given equation $0 \leq x, y \leq 1$
Also, $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1} x=\cos ^{-1} y=\sin ^{-1} \sqrt{1-y^{2}}$
$\Rightarrow x=\sqrt{1-y^{2}} \Rightarrow x^{2}+y^{2}=1$
Again, $\sin 2 x=\cos 2 y$
$\Rightarrow \cos \left(\frac{\pi}{2}-2 x\right)=\cos 2 y$
$\Rightarrow \frac{\pi}{2}-2 x=2 n \pi \pm 2 y$, where $n \in I$
$\Rightarrow x \pm y=\frac{\pi}{4}-n \pi$
From Eqs. (i) and (ii), we get
$x=\frac{\pi}{8}+\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}$ and $y=\sqrt{\frac{1}{2}-\frac{\pi^{2}}{64}}-\frac{\pi}{8}$
109 (a,b,d)
$2 \cot ^{-1} 7=2 \tan ^{-1}\left(\frac{1}{7}\right)$
$=\cos ^{-1}\left(\frac{1-\frac{1}{49}}{1+\frac{1}{49}}\right)=\cos ^{-1} \frac{24}{25}$
Now , $2 \cot ^{-1} 7+\cos ^{-1} \frac{3}{5}$
$=\cos ^{-1} \frac{24}{25}+\cos ^{-1} \frac{3}{5}$
$=\cos ^{-1}\left(\frac{24}{25} \cdot \frac{3}{5}-\frac{7}{25} \cdot \frac{4}{5}\right)=\cos ^{-1} \frac{44}{125}$
Since, $\frac{44}{125}>0$
$\therefore 0<\cos ^{-1} \frac{44}{125}<\frac{\pi}{2}$
Let $\cos ^{-1} \frac{44}{125}=\theta$, then $\cos \theta=\frac{44}{125}$
$\therefore \operatorname{cosec} \theta=\frac{125}{117}$ or $\theta=\operatorname{cosec}^{-1} \frac{125}{117}$
Also, $\cot \theta=\frac{44}{117}$
$\therefore \theta=\cot ^{-1} \frac{44}{117}$

110 ($\mathbf{a}, \mathbf{c}, \mathrm{d}$)

The given equation holds, if
$x^{2}+x+1=\lambda x+1$
And $-1 \leq x^{2}+x+1 \leq 1$
$\Rightarrow x(x+1-\lambda)=0$ and $-1 \leq x \leq 0$
$\Rightarrow x=0$ or $\lambda-1$ and $-1 \leq x \leq 0$
$\therefore x=0$ is one solution and for another different solution
$-1 \leq \lambda-1<0$.
$\Rightarrow 0 \leq \lambda<1$, so only integral value λ can have is 0.

111 (b,c,d)
$6 x^{2}+11 x+3=0$
$\Rightarrow(2 x+3)(3 x+1)=0$
$\Rightarrow x=-3 / 2,-1 / 3$
For $x=-3 / 2, \cos ^{-1} x$ is not defined as domain of $\cos ^{-1} x$ is $[-1,1]$ and for $x=-1 / 3, \operatorname{cosec}^{-1} x$ is
not defined as domain of $\operatorname{cosec}^{-1} x$ is $R-(-1,1)$. However, $\cot ^{-1} x$ is defined for both of these values as domain of $\cot ^{-1} x$ is R

112 (\mathbf{a}, d)

We have,
$\tan ^{-1} x+\cot ^{-1} x+\sin ^{1} x=\frac{\pi}{2}+\sin ^{-1} x \ldots$
Since, $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow 0 \leq \frac{\pi}{2}+\sin ^{-1} x \leq \pi$
$\Rightarrow 0 \leq \tan ^{-1} x+\cot ^{-1} x+\sin ^{-1} x \leq \pi$ [from
Eq.(i)]
$\therefore a=0$ and $b=\pi$
113 (a,d)
Let $f(x)=\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$
$=\left(\sin ^{-1} x+\cos ^{-1} x\right)^{2}-2 \sin ^{-1} x \cos ^{-1} x$
$=\frac{\pi^{2}}{4}-2 \sin ^{-1} x\left[\frac{\pi}{2}-\sin ^{-1} x\right]$
$=\frac{\pi^{2}}{4}-\pi \sin ^{-1} x+2\left(\sin ^{-1} x\right)^{2}$
$=2\left[\left(\sin ^{-1} x\right)^{2}-\frac{\pi}{2} \sin ^{-1} x+\frac{\pi^{2}}{8}\right]$
$=2\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2}+2\left[\frac{\pi^{2}}{16}\right]$
Now, $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow-\frac{3 \pi}{4} \leq \sin ^{-1} x-\frac{\pi}{4} \leq \frac{\pi}{4}$
$\Rightarrow 0 \leq\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2} \leq \frac{9 \pi^{2}}{16}$
$\Rightarrow 0 \leq 2\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2} \leq \frac{9 \pi^{2}}{8}$
$\Rightarrow \frac{\pi^{2}}{8} \leq\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2}+\frac{\pi^{2}}{8} \leq \frac{5 \pi^{2}}{4}$
114 (b)
$f(x)=\sin ^{-1}|\sin k x|+\cos ^{-1}(\cos k x)$
Let $g(x)=\sin ^{-1}|\sin x|+\cos ^{-1}(\cos x)$
$g(x)\left\{\begin{array}{cc}2 x, & 0 \leq x \leq \frac{\pi}{2} \\ \pi, & \frac{\pi}{2}<x<\frac{3 \pi}{2} \\ 4 \pi-2 x, & \frac{3 \pi}{2}<x \leq 2 \pi\end{array}\right.$
$g(x)$ is periodic with period 2π and is constant in the continuous interval
$\left[2 n \pi+\frac{\pi}{2}, 2 n \pi+\frac{3 \pi}{2}\right]$
(where $n \in I$) and $f(x)=\mathrm{g}(k x)$
So, $f(x)$ is constant in the interval $\left[\frac{2 n \pi}{k}+\frac{\pi}{2 k}, \frac{2 n \pi}{k}+\right.$ $3 \pi 2 k$
$\Rightarrow \frac{\pi}{4}=\frac{3 \pi}{2 k}-\frac{\pi}{2 k} \Rightarrow \frac{\pi}{k}=\frac{\pi}{4} \Rightarrow k=4$
115 (c,d)
$x y<0 \Rightarrow x+\frac{1}{x} \geq 2, y+\frac{1}{y} \leq-2$
or $x+\frac{1}{x} \leq-2, y+\frac{1}{y} \geq 2$
$x+\frac{1}{x} \geq 2 \Rightarrow \sec ^{-1}\left(x+\frac{1}{x}\right) \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$

$$
\begin{aligned}
y+\frac{1}{y} \leq-2 \Rightarrow & \sec ^{-1}\left(y+\frac{1}{y}\right) \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right] \Rightarrow z \\
& \in\left(\frac{5 \pi}{6}, \frac{7 \pi}{6}\right)
\end{aligned}
$$

116 (a,c)

The given relation is possible when $a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+$ $\cdots=1+b+b^{2}+\cdots$

Also, $\quad-1 \leq a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+\cdots \leq 1$ and $-1 \leq 1+$ $b+b^{2}+\cdots \leq 1$
$\Rightarrow|b|<1 \Rightarrow|a|<3$ and $\frac{a}{1+\frac{a}{3}}=\frac{1}{1-b}$
$\Rightarrow \frac{3 a}{a+3}=\frac{1}{1-b}$, there are infinitely many solutions
$\Rightarrow 3 a-3 a b=a+3 \Rightarrow 2 a-3 a b=3$
$\Rightarrow b=\frac{2 a-3}{3 a}$ and $a=\frac{3}{2-3 b}$

117 (a,b,c)

(a) $\sin \left(\tan ^{-1} 3+\tan ^{-1} \frac{1}{3}\right)=\sin \frac{\pi}{2}=1$
(b) $\cos \left(\frac{\pi}{2}-\sin ^{-1} \frac{3}{4}\right)=\cos \left(\cos ^{-1} \frac{3}{4}\right)=\frac{3}{4}$
(c) $\sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$

Let $\sin ^{-1} \frac{\sqrt{63}}{8}=\theta$
$\Rightarrow \sin \theta=\frac{\sqrt{63}}{8} \Rightarrow \cos \theta=\frac{1}{8}$
We have $\cos \frac{\theta}{2}=\sqrt{\frac{1+\cos \theta}{2}}=\frac{3}{4}$
$\Rightarrow \sin \frac{\theta}{4}=\sqrt{\frac{1-\cos \frac{\theta}{2}}{2}}=\frac{1}{2 \sqrt{2}}$
Now, $\log _{2} \sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)=\log _{2} \frac{1}{2 \sqrt{2}}=-\frac{3}{2}$
(d) $\cos ^{-1} \frac{\sqrt{5}}{3}=\theta \Rightarrow \cos \theta=\frac{\sqrt{5}}{3}$
$\therefore \tan \frac{\theta}{2}=\frac{3-\sqrt{5}}{2}$ which is irrational

118 (a,b,c)

a. $\cos \left(\tan ^{-1}(\tan (4-\pi))\right)=\cos (4-\pi)=$ $\cos (\pi-4)=-\cos 4>0$
b. $\sin \left(\cot ^{-1}(\cot (4-\pi))\right)=\sin (4-\pi)=$
$-\sin 4>0($ as $\sin 4<0)$
c. $\tan \left(\cos ^{-1}(\cos (2 \pi-5))\right)=\tan (2 \pi-5)=$ $-\tan 5>0($ as $\tan 5<0)$
d. $\cot \left(\sin ^{-1}(\sin (\pi-4))\right)=\cot (\pi-4)=$ $-\cot 4<0$

119 (a,b,d)

$$
\begin{aligned}
\tan ^{-1}(x-1)+ & \tan ^{-1}(x)+\tan ^{-1}(x+1) \\
& =\tan ^{-1} 3 x \\
\Rightarrow \tan ^{-1}(x-1) & +\tan ^{-1}(x) \\
& =\tan ^{-1} 3 x-\tan ^{-1}(x+1)
\end{aligned}
$$

$\Rightarrow \tan ^{-1}\left[\frac{(x-1)+x}{1-(x-1)(x)}\right]=\tan ^{-1}\left[\frac{3 x-(x+1)}{1+3 x(x+1)}\right]$
$\Rightarrow \frac{2 x-1}{1-x^{2}+x}=\frac{2 x-1}{1+3 x^{2}+3 x}$
$\Rightarrow\left(1-x^{2}+x\right)(2 x-1)$ $=\left(1+3 x^{2}+3 x\right)(2 x-1)$
$\Rightarrow x=0, \pm \frac{1}{2}$

120 (a,c)

We have
$\cot ^{-1}\left(\frac{n^{2}-10 n+21.6}{\pi}\right)>\frac{\pi}{6}$
$\Rightarrow \frac{n^{2}-10 n+21.6}{\pi}$
$<\cot \frac{\pi}{6} \quad$ (as $\cot x$ is decreasing for $\left.0<x<\pi\right)$
$\Rightarrow n^{2}-10 n+21.6<\pi \sqrt{3}$
$\Rightarrow n^{2}-10 n+25+21.6-25<\pi \sqrt{3}$
$\Rightarrow(n-5)^{2}<\pi \sqrt{3}+3.4$
$\Rightarrow-\sqrt{\sqrt{3} \pi+3.4}<n-5<\sqrt{\sqrt{3} \pi+3.4}$
$\Rightarrow 5-\sqrt{\sqrt{3} \pi+3.4}<n<5+\sqrt{\sqrt{3} \pi+3.4}$
Since $\sqrt{3 \pi}=5.5$ nearly, $\sqrt{\sqrt{3} \pi+3.4} \sim \sqrt{8.9} \sim 2.9$
$\Rightarrow 2.1<n<7.9$
$\therefore n=3,4,5,6,7\{$ as $n \in N\}$

121 (a,b,c)

If we put $x=\tan \theta$, then given equality becomes
$\tan ^{-1} y=4 \theta$
$\Rightarrow y=\tan 4 \theta=\frac{2 \tan 2 \theta}{1-\tan ^{2} 2 \theta}$
$=\frac{2\left[\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right]}{1-\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)^{2}}$
$=\frac{2 \times 2 x\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}-4 x^{2}}=\frac{4 x\left(1-x^{2}\right)}{1-6 x^{2}+x^{4}}$
So that y is infinite, if $x^{4}-6 x^{2}+1=0$
$\Rightarrow x^{2}=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}$
122 (b,c,d)
$\cos \left(-\frac{14 \pi}{5}\right)=\cos \frac{14 \pi}{5}=\cos \frac{4 \pi}{5}$
Hence, $\cos \frac{1}{2} \cos ^{-1}\left(\cos \frac{4 \pi}{5}\right)=\cos \frac{2 \pi}{5}$

123 (a,b,c)

The solution of $y=\sqrt{y}$ is $y=0$ or $y=1$
if $\sin ^{-1}|\sin x|=1$
$\Rightarrow x=1$ or $\pi-1 \quad[$ in the interval $(0, \pi)]$
But $y=\sin ^{-1}|\sin x|$ is periodic with period π, so $x=n \pi+1$ or $n \pi-1$
Again, if $\sin ^{-1}|\sin x|=0$
$\Rightarrow x=n \pi$
124 (a,b)

$$
\begin{aligned}
& \cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi \\
& \quad \Rightarrow \sin ^{-1}+\sin ^{-1} y+\sin ^{-1} z=\pi / 2 \\
& \Rightarrow \cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}(-z) \\
& \quad \Rightarrow x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}=-z \\
& \quad \Rightarrow x^{2}+y^{2}+z^{2}+2 x y z=1
\end{aligned}
$$

125 (a,c)
Domain of $f(x)=\log _{e} \cos ^{-1} x$ is $x \in[-1,1)$
$\therefore[\alpha]=-1$ or 0

126 (b)

We know that $\sin ^{-1} x$ is defined for $x \in$ $[-1,1]$ and $\sec ^{-1} x$ is defined for $x \in(-\infty,-1] \cup$ $[1, \infty)$

Hence, the given function is defined for $x \in\{-1,1\}$

Therefore, $f(1)=\pi / 2, f(-1)=\pi / 2$
127 (a,b,c,d)
Since $\left|\tan ^{-1} x\right|=\left\{\begin{array}{cl}\tan ^{-1} x, & \text { if } x \geq 0 \\ -\tan ^{-1} x, & \text { if } x<0\end{array}\right.$
$\Rightarrow\left|\tan ^{-1} x\right|=\tan ^{-1}|x| \forall x \in R$
$\Rightarrow \tan \left|\tan ^{-1} x\right|=\tan \tan ^{-1}|x|=|x|$
Also $\left|\cot ^{-1} x\right|=\cot ^{-1} x ; \forall x \in R$
$\Rightarrow \cot \left|\cot ^{-1} x\right|=x, \forall x \in R$
$\tan ^{-1}|\tan x|=\left\{\begin{array}{cc}x, & \text { if } \tan x>0 \\ -x, & \text { if } \tan x<0\end{array}\right.$
$\sin \left|\sin ^{-1} x\right|=\left\{\begin{array}{cc}x, & x \in[0,1] \\ -x, & x \in[-1,0)\end{array}\right.$

128 (a,d)
Case 1: If $0 \leq x \leq \frac{1}{2}$, then

$$
\begin{aligned}
\cos ^{-1}\left(\frac{x}{2}+\frac{1}{2}\right. & \left.\sqrt{3-3 x^{2}}\right) \\
& =\cos ^{-1}\left(x \frac{1}{2}+\sqrt{1-x^{2}} \frac{\sqrt{3}}{2}\right) \\
& =\cos ^{-1} x-\cos ^{-1} \frac{1}{2}
\end{aligned}
$$

Case 2: If $\frac{1}{2} \leq x \leq 1$, then
$\cos ^{-1}\left(\frac{x}{2}+\frac{1}{2} \sqrt{3-3 x^{2}}\right)=\cos ^{-1} \frac{1}{2}-\cos ^{-1} x$
129 (b,c)
$1 \leq \frac{\pi}{\cos ^{-1} x}<\infty \Rightarrow 2 \leq 2 \frac{\pi}{\cos ^{-1} x}<\infty$
Hence, 2 should lie between or on the roots of
$t^{2}-\left(a+\frac{1}{2}\right) t-a^{2}=0$ where $t=2^{\pi / \cos ^{-1} y}$
$\Rightarrow f(2) \leq 0 \Rightarrow a^{2}+2 a-3 \geq 0 \Rightarrow a$

$$
\in(-\infty,-3] \cup[1, \infty)
$$

130 (a,b,d)

$2 \cot ^{-1} 7=2 \tan ^{-1}\left(\frac{1}{7}\right)$
$=\cos ^{-1}\left(\frac{1-\frac{1}{49}}{1+\frac{1}{49}}\right)=\cos ^{-1} \frac{24}{25}$
Now , $2 \cot ^{-1} 7+\cos ^{-1} \frac{3}{5}$
$=\cos ^{-1} \frac{24}{25}+\cos ^{-1} \frac{3}{5}$
$=\cos ^{-1}\left(\frac{24}{25} \cdot \frac{3}{5}-\frac{7}{25} \cdot \frac{4}{5}\right)=\cos ^{-1} \frac{44}{125}$
Since, $\frac{44}{125}>0$
$\therefore 0<\cos ^{-1} \frac{44}{125}<\frac{\pi}{2}$
Let $\cos ^{-1} \frac{44}{125}=\theta$, then $\cos \theta=\frac{44}{125}$
$\therefore \operatorname{cosec} \theta=\frac{125}{117}$ or $\theta=\operatorname{cosec}^{-1} \frac{125}{117}$
Also, $\cot \theta=\frac{44}{117}$
$\therefore \theta=\cot ^{-1} \frac{44}{117}$

131 (a,b,d)

Let t_{r} denote the r th term of the series $3,7,13,21, \ldots$ and
$S=3+7+13+21+\cdots+t_{n}$
$\frac{-S=3+7+13+\cdots+t_{n-1}+t_{n}}{0=3+4+6+8+\cdots+2 n-t_{n}}$
$\Rightarrow t_{n}=3+4+6+\cdots+2 n=1+2 \times \frac{1}{2} n(n+1)$

$$
=n^{2}+n+1
$$

Let $T_{r}=\cot ^{-1}\left(r^{2}+r+1\right)=\tan ^{-1}\left(\frac{1}{r^{2}+r+1}\right)=$ $\tan ^{-1}\left(\frac{r+1-r}{1+r(r+1)}\right)=\tan ^{-1}(r+1)-\tan ^{-1} r$

Thus, the sum of the first n terms of the given series is

$$
\left.\begin{array}{l}
\left.\left.\begin{array}{l}
\sum_{r=1}^{n}\left[\tan ^{-1}(r+1)\right.
\end{array}\right)-\tan ^{-1} r\right] \\
\quad=\tan ^{-1}(n+1)-\tan ^{-1}(1)
\end{array} \begin{array}{rl}
=\tan ^{-1}\left[\frac{n+1-n}{1+1(n+1)}\right]=\tan ^{-1}\left(\frac{n}{n+2}\right) \\
& =\tan ^{-1}\left(\frac{1}{1+\frac{2}{n}}\right)
\end{array}\right] \begin{aligned}
& \Rightarrow S_{\infty}=\lim _{n \rightarrow \infty} \tan ^{-1}\left(\frac{1}{1+\frac{2}{n}}\right)=\frac{\pi}{4}, S_{10}=\tan ^{-1} \frac{10}{12} \\
& \quad=\tan ^{-1} \frac{5}{6}
\end{aligned}
$$

$$
S_{6}=\tan ^{-1} \frac{3}{4}=\sin ^{-1} \frac{3}{5}
$$

$$
S_{20}=\tan ^{-1} \frac{10}{11}=\cot ^{-1} 1.1
$$

132 (a,b,c)
If we put $x=\tan \theta$, then given equality becomes $\tan ^{-1} y=4 \theta$
$\Rightarrow y=\tan 4 \theta=\frac{2 \tan 2 \theta}{1-\tan ^{2} 2 \theta}$
$=\frac{2\left[\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right]}{1-\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)^{2}}$
$=\frac{2 \times 2 x\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}-4 x^{2}}=\frac{4 x\left(1-x^{2}\right)}{1-6 x^{2}+x^{4}}$
So that y is infinite, if $x^{4}-6 x^{2}+1=0$
$\Rightarrow x^{2}=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}$
133 (a,c,d)
$\left(\sin ^{-1} x+\sin ^{-1} w\right)\left(\sin ^{-1} y+\sin ^{-1} z\right)=\pi^{2}$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} w=\sin ^{-1} y+\sin ^{-1} z=\pi$
or $\sin ^{-1} x+\sin ^{-1} w=\sin ^{-1} y+\sin ^{-1} z=-\pi$
$\Rightarrow x=y=z=w=1$ or $x=y=z=w=-1$
Hence, the maximum value of $\left|\begin{array}{ll}x^{N_{1}} & y^{N_{2}} \\ Z^{N_{3}} & w^{N_{4}}\end{array}\right|=$
$\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|=2$ and minimum value $\left|\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right|=-2$
Also, there are 16 different determinants as each place value is either 1 or -1

134 (a,b,c)

Let $\tan ^{-1}(-2)=\theta \Rightarrow \tan \theta=-2 \Rightarrow \theta=$ $(-\pi / 2,0)$
$\Rightarrow 2 \theta=(-\pi, 0)$
$\cos (-2 \theta)=\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=-\frac{3}{5}$
$\Rightarrow-2 \theta=\cos ^{-1}\left(\frac{-3}{5}\right)=\pi-\cos ^{-1} \frac{3}{5}$
$\Rightarrow 2 \theta=-\pi+\cos ^{-1} \frac{3}{5}=-\pi+\tan ^{-1} \frac{4}{3}$
$=-\pi+\cot ^{-1} \frac{3}{4}$
$=-\pi+\frac{\pi}{2}-\tan ^{-1} \frac{3}{4}=-\frac{\pi}{2}-$
$\tan ^{-1} \frac{3}{4}$
$=-\frac{\pi}{2}+\tan ^{-1}\left(-\frac{3}{4}\right)$
135 (d)
$\tan \left[\cos ^{-1}\left(\frac{1}{\sqrt{82}}\right)-\sin ^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$
$=\tan \left(\tan ^{-1} 9-\tan ^{-1} 5\right)$
$=\tan \tan ^{-1}\left(\frac{9-5}{1+9 \times 5}\right)=\frac{2}{23}$
In statement II, put $\cot ^{-1} x=y \Rightarrow x=\cot y$
$\mathrm{LHS}=(\cot y \cos y+\sin y)^{2}$
$=\frac{\left(\cos ^{2} y+\sin ^{2} y\right)^{2}}{\sin ^{2} y}$
$=1+\cot ^{2} y=1+x^{2}$
$=1+\frac{1}{50}=\frac{51}{50}\left(\because x=\frac{1}{5 \sqrt{2}}\right)$
136 (a)
Statement II is true.
Given, $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$
And from statement II
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
Adding Eqs. (i) and (ii), we get
$2 \sin ^{-1} x=\frac{2 \pi}{3}$
$\Rightarrow \sin ^{-1} x=\frac{\pi}{3}$
$\Rightarrow x=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
\therefore Given equation has unique solution.
\Rightarrow Statement I is true.

137 (d)
$\begin{aligned} \sin ^{-1}\left(\frac{2}{3}\right)+\cos ^{-1} & \left(\frac{2}{3}\right) \\ & -\tan ^{-1} 7-\cot ^{-1} 7-\cot ^{-1}\left(\frac{1}{7}\right)\end{aligned}$
$=\frac{\pi}{2}-\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{7}\right)=-\tan ^{-1} 7$

138 (a)
$\because \mathrm{AM} \geq \mathrm{GM}$
$\therefore \frac{\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}}{2} \geq \sqrt{\left(\cos ^{-1} x\right)\left(\sin ^{-1} y\right)^{2}}$
$\Rightarrow \frac{p \pi^{2}}{8} \geq \frac{\pi^{2}}{4}$
$\Rightarrow P \geq 2$
Thus, we conclude that the only value of p that satisfies all conditions is $p=2$.

Then, $\cos ^{-1} x=\left(\sin ^{-1} y\right)^{2}$
$\Rightarrow\left(\cos ^{-1} x\right)^{2}=\frac{\pi^{4}}{16}$
$\Rightarrow \cos ^{-1} x= \pm \frac{\pi^{2}}{4}$
$\Rightarrow x=\cos \left(\pm \frac{\pi^{2}}{4}\right)$
$\therefore x=\cos \left(\frac{\pi^{2}}{4}\right)$
Also , $\left(\sin ^{-1} y\right)^{4}=\frac{\pi^{4}}{16}$
$\Rightarrow \sin ^{-1} y= \pm \frac{\pi}{2}$
$\therefore y=\sin \left(\pm \frac{\pi}{2}\right)= \pm 1$
139 (a)
$\because \mathrm{AM} \geq \mathrm{GM}$
$\therefore \frac{\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}}{2} \geq \sqrt{\left(\cos ^{-1} x\right)\left(\sin ^{-1} y\right)^{2}}$
$\Rightarrow \frac{p \pi^{2}}{8} \geq \frac{\pi^{2}}{4}$
$\Rightarrow P \geq 2$
Thus, we conclude that the only value of p that satisfies all conditions is $p=2$.

Then, $\cos ^{-1} x=\left(\sin ^{-1} y\right)^{2}$
$\Rightarrow\left(\cos ^{-1} x\right)^{2}=\frac{\pi^{4}}{16}$
$\Rightarrow \cos ^{-1} x= \pm \frac{\pi^{2}}{4}$
$\Rightarrow x=\cos \left(\pm \frac{\pi^{2}}{4}\right)$
$\therefore x=\cos \left(\frac{\pi^{2}}{4}\right)$
Also , $\left(\sin ^{-1} y\right)^{4}=\frac{\pi^{4}}{16}$
$\Rightarrow \sin ^{-1} y= \pm \frac{\pi}{2}$
$\therefore y=\sin \left(\pm \frac{\pi}{2}\right)= \pm 1$
141 (a)
$\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \cdot \frac{1}{7}}\right)=\frac{\pi}{4}$
$=\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{x+y}\right)=\frac{\pi}{4}$
Both statement I and statement II are true and statement II is correct explanation of statement I.

142 (d)
Obviously, statement 2 is correct, but when $x \in[-1,1]$ we have $\tan ^{-1} x \in[-\pi / 4, \pi / 4]$.

It implies that $\frac{\pi}{2}+\tan ^{-1} x \in[\pi / 4,3 \pi / 4]$
Hence, statement 2 is true but statement 1 is false
143 (a)
$\sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}>\tan ^{-1} x$

$$
>\tan ^{-1} y\left[\because x>y, \frac{x}{\sqrt{1-x^{2}}}>x\right]
$$

Therefore, statement 2 is true
Now, $e<\pi \Rightarrow \frac{1}{\sqrt{e}}>\frac{1}{\sqrt{\pi}}$
By statement 2, we have
$\sin ^{-1}\left(\frac{1}{\sqrt{e}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{e}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$
Therefore, statement 1 is true
144 (c)
$\operatorname{cosec}^{-1} x>\sec ^{-1} x$
$\Rightarrow \operatorname{cosec}^{-1} x>\frac{\pi}{2}-\operatorname{cosec}^{-1} x$
$\Rightarrow \operatorname{cosec}^{-1} x>\frac{\pi}{4}$
$\Rightarrow 1 \leq x<\sqrt{2}$ and $\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right) \in[1, \sqrt{2})$
But statement 2 is false

145 (d)
If $x<0, \tan ^{-1}\left(\frac{1}{x}\right)=-\pi+\cot ^{-1} x$
$\tan ^{-1} x+\tan ^{-1} \frac{1}{x}=\tan ^{-1} x-\pi+\cot ^{-1} x$
$=-\pi+\frac{\pi}{2}=-\frac{\pi}{2}$
Statement I is false but statement II is true
146 (d)

$$
\begin{aligned}
& \text { If } x<0, \tan ^{-1}\left(\frac{1}{x}\right)=-\pi+\cot ^{-1} x \\
& \tan ^{-1} x+\tan ^{-1} \frac{1}{x}=\tan ^{-1} x-\pi+\cot ^{-1} x \\
& =-\pi+\frac{\pi}{2}=-\frac{\pi}{2}
\end{aligned}
$$

Statement I is false but statement II is true

147 (a)
Statement 2 is correct, from which we can say $\cot ^{-1} x+\cos ^{-1} 2 x=-\pi$ is not possible. Hence, both the statements are correct and statement 2 is the correct explanation of statement 1

148 (a)
$\because \sin ^{-1} 2 x+\sin ^{-1} 3 x=\frac{\pi}{3}$
$\Rightarrow \frac{\pi}{2}-\cos ^{-1} 2 x+\frac{\pi}{2}-\cos ^{-1} 3 x=\frac{\pi}{3}$
$\Rightarrow \cos ^{-1} 2 x+\cos ^{-1} 3 x=\frac{2 \pi}{3}$
$\Rightarrow \cos ^{-1}\left\{6 x^{2}-\sqrt{1-(2 x)^{2}} \sqrt{\left.1-(3 x)^{2}\right\}}=\frac{2 \pi}{3}\right.$
$\Rightarrow 6 x^{2}-\sqrt{\left(1-13 x^{3}+36 x^{4}\right)}=-\frac{1}{2}$
$\Rightarrow\left(6 x^{2}+\frac{1}{2}\right)^{2}=1-13 x^{2}+36 x^{4}$
$\Rightarrow 19 x^{2}=\frac{3}{4}$
$\Rightarrow x= \pm \sqrt{\frac{3}{76}}$
But sum of two negative number cannot be $\frac{\pi}{3}$.
$\therefore x=\sqrt{\frac{3}{76}}$ is the only solution
149 (d)

$$
\begin{aligned}
\sin ^{-1}\left(\frac{2}{3}\right)+\cos ^{-1} & \left(\frac{2}{3}\right) \\
& -\tan ^{-1} 7-\cot ^{-1} 7-\cot ^{-1}\left(\frac{1}{7}\right)
\end{aligned}
$$

$=\frac{\pi}{2}-\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{7}\right)=-\tan ^{-1} 7$
150 (a)
For $x>0, y>0$,
$\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{y+x}\right)$

$$
\begin{align*}
=\tan ^{-1}\left(\frac{x}{y}\right)+ & \tan ^{-1}\left(\frac{1-\frac{x}{y}}{1+\frac{x}{y}}\right) \tag{i}\\
& =\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1} 1-\tan ^{-1} \frac{x}{y} \\
& =\frac{\pi}{4}
\end{align*}
$$

Now, in Eq. (i), putting $\frac{x}{y}=\frac{3}{4}$, we get
$\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}$
Hence, both the statements are correct and statement 2 is the correct explanation of statement 1

151 (d)
$30-9 \pi \in[0, \pi]$ is true but it is not principal value of $\cos ^{-1}(\cos 30)$ as $\cos ^{-1}(\cos 30)=$ $\cos ^{-1}(\cos (9 \pi+(30-9 \pi)))=\cos ^{-1}(-\cos (30-$ $9 \pi=\pi-30-9 \pi=10 \pi-30$.

Hence, statement 2 is true but statement 1 is false
152 (a)
Statement II is true.
Given, $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6} \ldots$ (i)
And from statement II
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
Adding Eqs. (i) and (ii), we get
$2 \sin ^{-1} x=\frac{2 \pi}{3}$
$\Rightarrow \sin ^{-1} x=\frac{\pi}{3}$
$\Rightarrow x=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
\therefore Given equation has unique solution.
\Rightarrow Statement I is true.
(d)

Since $, p, q>0$ therefore $p q>0$
And $\tan ^{-1}\left(\frac{p-q}{1+p q}\right)=\tan ^{-1} p-\tan ^{-1} q$

Since, $q r>-1$
$\therefore \tan ^{-1}\left(\frac{q-r}{1+q r}\right)=\tan ^{-1} q-\tan ^{-1} r \ldots$
And since $p r<-1$ and $r<0$
$\therefore \tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi+\tan ^{-1} r-\tan ^{-1} p \ldots$
On adding Eqs. (i), (ii) and (iii), we get

$$
\begin{aligned}
\tan ^{-1}\left(\frac{p-q}{1+p q}\right) & +\tan ^{-1}\left(\frac{q-r}{1+q r}\right) \\
& +\tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi
\end{aligned}
$$

154 (d)
Since $, p, q>0$ therefore $p q>0$
And $\tan ^{-1}\left(\frac{p-q}{1+p q}\right)=\tan ^{-1} p-\tan ^{-1} q \ldots$ (i)
Since, $q r>-1$
$\therefore \tan ^{-1}\left(\frac{q-r}{1+q r}\right)=\tan ^{-1} q-\tan ^{-1} r \ldots$

And since $p r<-1$ and $r<0$
$\therefore \tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi+\tan ^{-1} r-\tan ^{-1} p$
On adding Eqs. (i), (ii) and (iii), we get

$$
\begin{aligned}
\tan ^{-1}\left(\frac{p-q}{1+p q}\right) & +\tan ^{-1}\left(\frac{q-r}{1+q r}\right) \\
& +\tan ^{-1}\left(\frac{r-p}{1+r p}\right)=\pi
\end{aligned}
$$

155 (a)
$f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\pi-2 \tan ^{-1} x, x \geq 1$
$\Rightarrow f^{\prime}(x)=-\frac{2}{1+x^{2}} \Rightarrow f^{\prime}(2)=-\frac{2}{5}$
Thus statement 1 is true, statement 2 is true and statement 2 is the correct explanation of statement 1

156 (d)
$\tan \left[\cos ^{-1}\left(\frac{1}{\sqrt{82}}\right)-\sin ^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$
$=\tan \left(\tan ^{-1} 9-\tan ^{-1} 5\right)$
$=\tan \tan ^{-1}\left(\frac{9-5}{1+9 \times 5}\right)=\frac{2}{23}$
In statement II, put $\cot ^{-1} x=y \Rightarrow x=\cot y$
$\mathrm{LHS}=(\cot y \cos y+\sin y)^{2}$
$=\frac{\left(\cos ^{2} y+\sin ^{2} y\right)^{2}}{\sin ^{2} y}$
$=1+\cot ^{2} y=1+x^{2}$
$=1+\frac{1}{50}=\frac{51}{50}\left(\because x=\frac{1}{5 \sqrt{2}}\right)$
157 (a)
$\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \cdot \frac{1}{7}}\right)=\frac{\pi}{4}$
$=\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{x+y}\right)=\frac{\pi}{4}$
Both statement I and statement II are true and statement II is correct explanation of statement I.

158 (b)
We know that $\tan ^{-1} x$ and $\cot ^{-1} x$ have domain R, also $\tan x$ and $\cot x$ are unbounded functions. On the other hand, $\sec x$ is an unbounded function, but its range is $R-(-1,1)$, and not R

159
59 (a)
$\because \sin ^{-1} 2 x+\sin ^{-1} 3 x=\frac{\pi}{3}$

$$
\begin{aligned}
& \Rightarrow \frac{\pi}{2}-\cos ^{-1} 2 x+\frac{\pi}{2}-\cos ^{-1} 3 x=\frac{\pi}{3} \\
& \Rightarrow \cos ^{-1} 2 x+\cos ^{-1} 3 x=\frac{2 \pi}{3} \\
& \Rightarrow \cos ^{-1}\left\{6 x^{2}-\sqrt{1-(2 x)^{2}} \sqrt{\left.1-(3 x)^{2}\right\}}=\frac{2 \pi}{3}\right. \\
& \Rightarrow 6 x^{2}-\sqrt{\left(1-13 x^{3}+36 x^{4}\right)}=-\frac{1}{2} \\
& \Rightarrow\left(6 x^{2}+\frac{1}{2}\right)^{2}=1-13 x^{2}+36 x^{4} \\
& \Rightarrow 19 x^{2}=\frac{3}{4} \\
& \Rightarrow x= \pm \sqrt{\frac{3}{76}}
\end{aligned}
$$

But sum of two negative number cannot be $\frac{\pi}{3}$.
$\therefore x=\sqrt{\frac{3}{76}}$ is the only solution
160 (b)
a. $\left(\sin ^{-1} x\right)^{2}+\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{2}}{2}$
$\Rightarrow\left(\sin ^{-1} x\right)^{2}=\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{2}}{4}$
$\Rightarrow \sin ^{-1} x= \pm \frac{\pi}{2}, \sin ^{-1} y= \pm \frac{\pi}{2}$
$\Rightarrow x= \pm 1$ and $y= \pm 1$
$\Rightarrow x^{3}+y^{3}=-2,0,2$
b. $\left(\cos ^{-1} x\right)^{2}+\left(\cos ^{-1} y\right)^{2}=2 \pi^{2}$
$\Rightarrow\left(\cos ^{-1} x\right)^{2}=\left(\cos ^{-1} y\right)^{2}=\pi$
$\Rightarrow x=y=-1$
$\Rightarrow x^{5}+y^{5}=-2$
c. $\left(\sin ^{-1} x\right)^{2}\left(\cos ^{-1} y\right)^{2}=\frac{\pi^{4}}{4}$
$\Rightarrow\left(\sin ^{-1} x\right)^{2}=\frac{\pi^{2}}{4}$ and $\left(\cos ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow\left(\sin ^{-1} x\right)= \pm \frac{\pi}{2}$ and $\left(\cos ^{-1} y\right)=\pi$
$\Rightarrow x= \pm 1$ and $y=-1$
$\Rightarrow-|x-y|=0,2$
d. $\left|\sin ^{-1} x-\sin ^{-1} y\right|=\pi$
$\Rightarrow \sin ^{-1} x=-\frac{\pi}{2}$ and $\sin ^{-1} y=\frac{\pi}{2}$
or $\sin ^{-1} x=\frac{\pi}{2}$ and $\sin ^{-1} y=-\frac{\pi}{2}$
$\Rightarrow x^{y}=1^{-(1)}$ or $(-1)^{1}=1$ or -1
161 (d)
a. $f(x)=\sin ^{-1} x+\cos ^{-1} x+\cot ^{-1} x$
$=\frac{\pi}{2}+\cot ^{-1} x, x \in[-1,1]$
For $x \in[-1,1], \cot ^{-1} x \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \Rightarrow \frac{\pi}{2}+\cot ^{-1} x \in$ $\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]$
b. $f(x)=\cot ^{-1} x+\tan ^{-1} x+\operatorname{cosec}^{-1} x$
$=\frac{\pi}{2}+\operatorname{cosec}^{-1} x$, where $x \in(-\infty,-1] \cup[1, \infty)$
Now $\operatorname{cosec}^{-1} x \in\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right] \Rightarrow \frac{\pi}{2}+$
$\operatorname{cosec}^{-1} x \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
c. $f(x)=\cot ^{-1} x+\tan ^{-1} x+\cos ^{-1} x$
$=\frac{\pi}{2}+\cos ^{-1} x$, where $x \in[-1,1] \Rightarrow \frac{\pi}{2}+\cos ^{-1} x \in$ $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
d. $\sec ^{-1} x+\operatorname{cosec}^{-1} x+\sin ^{-1} x$, where $x \in$ $\{-1,1\}$
$=\frac{\pi}{2}+\sin ^{-1} x$, where $x \in\{-1,1\}$
Hence, $f(x) \in\{0, \pi\}$

162 (a)

a. $\sin ^{-1} \frac{4}{5}=\tan ^{-1} \frac{4}{3}$
$2 \tan ^{-1} \frac{1}{3}=\tan ^{-1} \frac{3}{4}=\cot ^{-1} \frac{4}{3}$
and $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$
b. $\tan ^{-1} \frac{12}{5}+\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{63}{16}=\pi+$ $\tan ^{-1} \frac{48+15}{20-36}+\tan ^{-1} \frac{63}{16}$
$=\pi-\tan ^{-1} \frac{63}{16}+\tan ^{-1} \frac{63}{16}=\pi$
c. $A=\tan ^{-1} \frac{x \sqrt{3}}{2 \lambda-x}$ and $B=\tan ^{-1}\left(\frac{2 x-\lambda}{\lambda \sqrt{3}}\right)$

Now, $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$=\frac{\frac{x \sqrt{3}}{2 \lambda-x}-\frac{2 x-\lambda}{\lambda \sqrt{3}}}{1+\frac{x \sqrt{3}}{2 \lambda-x} \frac{2 x-\lambda}{\lambda \sqrt{3}}}$
$=\frac{3 x \lambda+(2 x-\lambda)(x-2 \lambda)}{\sqrt{3}[\lambda(2 \lambda-x)+x(2 x-\lambda)]}$
$=\frac{1}{\sqrt{3}}\left[\frac{2 x^{2}-2 \lambda x+2 \lambda^{2}}{2 x^{2}-2 \lambda x+2 \lambda^{2}}\right]=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$
$\therefore A-B=30^{\circ}$
d. $\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}=\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{2 \frac{1}{3}}{1-\frac{1}{9}}=$
$\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{3}{4}$
$=\tan ^{-1} \frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \frac{3}{4}}=\tan ^{-1} 1=\pi / 4$
163 (b)

Refer graph for solution
$y=\sin ^{-1}(\sin x), y=\cos ^{-1}(\cos x), y=$
$\tan ^{-1}(\tan x)$ and $y=\cot ^{-1}(\cot x)$
165 (a)
a. $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x$
$0 \leq \cos ^{-1}\left(4 x^{3}-3 x\right) \leq \pi$
$\Rightarrow 0 \leq 3 \cos ^{-1} x \leq \pi \Rightarrow 0 \leq \cos ^{-1} x \leq(\pi / 3)$

$$
\Rightarrow(1 / 2) \leq x \leq 1
$$

b. $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$
$(-\pi / 2) \leq \sin ^{-1}\left(3 x-4 x^{3}\right) \leq(\pi / 2)$
$\Rightarrow(-\pi / 2) \leq 3 \sin ^{-1} x \leq(\pi / 2)$
$\Rightarrow(-\pi / 6) \leq \sin ^{-1} x \leq(\pi / 6)$
$\Rightarrow(-1 / 2) \leq x \leq(1 / 2)$
c. $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \sin ^{-1} x$
$0 \leq \cos ^{-1}\left(3 x-4 x^{3}\right) \leq \pi$
$\Rightarrow 0 \leq 3 \sin ^{-1} x \leq \pi$
$\Rightarrow 0 \leq \sin ^{-1} x \leq \pi / 3$
$\Rightarrow 0 \leq x \leq(\sqrt{3} / 2)$
d. $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \cos ^{-1} x$
$(-\pi / 2) \leq \sin ^{-1}\left(3 x-4 x^{3}\right) \leq(\pi / 2)$
$\Rightarrow(-\pi / 2) \leq 3 \cos ^{-1} x \leq(\pi / 2)$
$\Rightarrow(-\pi / 6) \leq \cos ^{-1} x \leq(\pi / 6)$
$\Rightarrow 0 \leq \cos ^{-1} x \leq(\pi / 6)$
$\Rightarrow 0 \leq x \leq(\sqrt{3} / 2)$
166 (a)
$\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r}-2^{r-1}}{1+2^{r} \cdot 2^{r-1}}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left\{\tan ^{-1}\left(2^{r}\right)-\tan ^{-1}\left(2^{r-1}\right)\right\}$
$=\lim _{n \rightarrow \infty}\left(\tan ^{-1} 2^{n}-\tan ^{-1} 2^{0}\right)$
$=\tan ^{-1} 2^{\infty}-\tan ^{-1} 1$
$=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
167 (a)
Since, $f(x)=0 \Rightarrow \sin \left\{\cot ^{-1}(x+1)\right\}=$
$\cos (\tan -1 x)$
$\Rightarrow \sin \sin ^{-1} \frac{1}{\sqrt{1+(x+1)^{2}}}=\cos \cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \frac{1}{\sqrt{1+(x+1)^{2}}}=\frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow 1+x^{2}=2+x^{2}+2 x$
$\Rightarrow x=-\frac{1}{2}$
168 (a)
$\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r-1}}{1+2^{2 r-1}}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{2^{r}-2^{r-1}}{1+2^{r} \cdot 2^{r-1}}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left\{\tan ^{-1}\left(2^{r}\right)-\tan ^{-1}\left(2^{r-1}\right)\right\}$
$=\lim _{n \rightarrow \infty}\left(\tan ^{-1} 2^{n}-\tan ^{-1} 2^{0}\right)$
$=\tan ^{-1} 2^{\infty}-\tan ^{-1} 1$
$=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
169 (a)
Since, $f(x)=0 \Rightarrow \sin \left\{\cot ^{-1}(x+1)\right\}=$ $\cos (\tan -1 x)$
$\Rightarrow \sin \sin ^{-1} \frac{1}{\sqrt{1+(x+1)^{2}}}=\cos \cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \frac{1}{\sqrt{1+(x+1)^{2}}}=\frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow 1+x^{2}=2+x^{2}+2 x$
$\Rightarrow x=-\frac{1}{2}$
170 (d)
$\sin ^{-1} x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1} y \in[0, \pi]$

$$
\begin{aligned}
\sec ^{-1} z \in\left[0, \frac{\pi}{2}\right) & \cup\left(\frac{\pi}{2}, \pi\right] \\
& \Rightarrow \sin ^{-1} x+\cos ^{-1} y+\sec ^{-1} z \\
& \leq \frac{\pi}{2}+\pi+\pi=\frac{5 \pi}{2}
\end{aligned}
$$

Also, $t^{2}-\sqrt{2 \pi} t+3 \pi$

$$
\begin{gathered}
=t^{2}-2 \sqrt{\frac{\pi}{2}} t+\frac{\pi}{2}-\frac{\pi}{2}+3 \pi=\left(t-\sqrt{\frac{\pi}{2}}\right)^{2}+\frac{5 \pi}{2} \\
\geq \frac{5 \pi}{2}
\end{gathered}
$$

The given inequation exists if equality holds, i.e.,
L.H.S. $=$ R.H.S. $=\frac{5 \pi}{2}$
$\Rightarrow x=1, y=-1, z=-1$ and $t=\sqrt{\frac{\pi}{2}} \Rightarrow$
$\cos ^{-1}\left(\cos 5 t^{2}\right)=\cos ^{-1}\left(\cos \left(\frac{5 \pi}{2}\right)\right)=\frac{\pi}{2}$
$\cos ^{-1}(\min \{x, y, z\})=\cos ^{-1}(-1)=\pi$

171 (b)

Given $a x+b\left(\sec \left(\tan ^{-1} x\right)\right)=c$ and $a y+$ $b\left(\sec \left(\tan ^{-1} y\right)\right)=c$

Let $\tan ^{-1} x=\alpha$ and $\tan ^{-1} y=\beta$, then the given relations are
$a \tan \alpha+b \sec \alpha=c$ and $a \tan \beta+b \sec \beta=c$
From these two relations, we can conclude that equation $a \tan \theta+b \sec \theta=c$ has roots α and β
$a \tan \theta+b \sec \theta=c$
$\Rightarrow b \sec \theta=c-a \tan \theta$
$\Rightarrow b^{2} \sec ^{2} \theta=c^{2}-2 a c \tan \theta+a^{2} \tan ^{2} \theta$
$\Rightarrow b^{2}+b^{2} \tan ^{2} \theta=c^{2}-2 a c \tan \theta+a^{2} \tan ^{2} \theta$
$\Rightarrow\left(a^{2}-b^{2}\right) \tan ^{2} \theta-2 a c \tan \theta+c^{2}-b^{2}=0$
Therefore, sum of the roots, $\tan \alpha+\tan \beta=x+$ $y=\frac{2 a c}{a^{2}-b^{2}}$
and the product of roots, $\tan \alpha \tan \beta=x y=\frac{c^{2}-b^{2}}{a^{2}-b^{2}}$ and $\frac{x+y}{1-x y}=\frac{\frac{2 a c}{a^{2}-b^{2}}}{1-\frac{c^{2}-b^{2}}{a^{2}-b^{2}}}=\frac{2 a c}{a^{2}-c^{2}}$

172 (b)
Let $\cos ^{-1} x=a \Rightarrow a \in[0, \pi]$
and $\sin ^{-1} y=b \Rightarrow b \in[-\pi / 2, \pi / 2]$
We have $a+b^{2}=\frac{p \pi^{2}}{4}$
and $a b^{2}=\frac{\pi^{4}}{16}$
Since $b^{2} \in\left[0, \pi^{2} / 4\right]$, we get $a+b^{2} \in$ [$0, \pi+\pi^{2} / 4$]

So, from Eq.(i) we get $0 \leq \frac{p \pi^{2}}{4} \leq \pi+\frac{\pi^{2}}{4}$
i. e., $0 \leq p \leq \frac{4}{\pi}+1$

Since $p \in Z$, so $p=0,1$ or 2
Substituting the value of b^{2} from Eq. (i) in Eq. (ii), we get

$$
\begin{aligned}
a\left(\frac{p \pi^{2}}{4}-a\right)= & \frac{\pi^{2}}{16} \Rightarrow 16 a^{2}-4 p \pi^{2} a+\pi^{4} \\
& =0 \quad \text { (iii) }
\end{aligned}
$$

Since $a \in R \Rightarrow D \geq 0$

$$
\begin{gathered}
\text { i. e., } 16 p^{2} \pi^{4}-64 \pi^{4} \geq 0 \Rightarrow p^{2} \geq 4 \Rightarrow p \geq 2 \Rightarrow p \\
=2
\end{gathered}
$$

Substituting $p=2$ in Eq. (iii), we get
$16 a^{2}-8 \pi^{2} a+\pi^{4}=0$

$$
\begin{aligned}
\Rightarrow\left(4 a-\pi^{2}\right)^{2} & =0 \Rightarrow a=\frac{\pi^{2}}{4}=\cos ^{-1} x \Rightarrow x \\
& =\cos \frac{\pi^{2}}{4}
\end{aligned}
$$

From Eq.(ii), we get $\frac{\pi^{2}}{4} b^{2}=\frac{\pi^{4}}{16} \Rightarrow b= \pm \frac{\pi}{2}=$ $\sin ^{-1} y \Rightarrow y= \pm 1$

173 (c)
Let $\cos ^{-1} x=\theta \Rightarrow x=\cos \theta$, where $\theta \in[0, \pi]$

$$
\begin{aligned}
\cos ^{-1}\left(4 x^{3}-3 x\right) & =\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\
& =\cos ^{-1}(\cos 3 \theta)=\cos ^{-1}(\cos \alpha)
\end{aligned}
$$

where $\alpha=3 \theta \in[0,3 \pi]$
Refer the graph of $y=\cos ^{-1}(\cos \alpha), \alpha \in[0,3 \pi]$

From the graph,

$$
\begin{aligned}
& \cos ^{-1}\left(4 x^{3}-3 x\right)=\cos ^{-1}(\cos \alpha) \\
& =\left\{\begin{array}{cc}
\alpha, & 0 \leq \alpha<\pi \\
2 \pi-\alpha, & \pi \leq \alpha \leq 2 \pi \\
\alpha-2 \pi, & 2 \pi<\alpha \leq 3 \pi
\end{array}\right. \\
& =\left\{\begin{array}{cc}
3 \cos ^{-1} x, & 0 \leq 3 \cos ^{-1} x<\pi \\
2 \pi-3 \cos ^{-1} x, & \pi \leq 3 \cos ^{-1} x \leq 2 \pi \\
3 \cos ^{-1} x-2 \pi, & 2 \pi<3 \cos ^{-1} x \leq 3 \pi
\end{array}\right. \\
& =\left\{\begin{array}{cc}
3 \cos ^{-1} x, & 0 \leq \cos ^{-1} x<(\pi / 3) \\
2 \pi-3 \cos ^{-1} x, & (\pi / 3) \cos ^{-1} x \leq(2 \pi / 3) \\
3 \cos ^{-1} x-2 \pi, & (2 \pi / 3)<3 \cos ^{-1} x \leq \pi
\end{array}\right. \\
& =\left\{\begin{array}{cc}
3 \cos ^{-1} x, & (1 / 2)<x \leq 1 \\
2 \pi-3 \cos ^{-1} x, & (-1 / 2) \leq x \leq(1 / 2) \\
3 \cos ^{-1} x-2 \pi, & -1 \leq x<-(1 / 2)
\end{array}\right. \\
& =\left\{\begin{array}{cc}
3 \cos ^{-1} x-2 \pi, & -1 \leq x<(-1 / 2) \\
2 \pi-3 \cos ^{-1} x, & (-1 / 2) \leq x \leq(1 / 2) \\
3 \cos ^{-1} x, & (1 / 2)<x \leq 1
\end{array}\right.
\end{aligned}
$$

For $x \in\left[-1,-\frac{1}{2}\right), \cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x-$ 2π
$\Rightarrow a=-2 \pi$ and $b=3 \Rightarrow a+b \pi=\pi$
For $x \in\left[-\frac{1}{2}, \frac{1}{2}\right], \cos ^{-1}\left(4 x^{3}-3 x\right)=2 \pi-$ $3 \cos ^{-1} x$
$\Rightarrow a=2 \pi$ and $b=-3 \Rightarrow \sin ^{-1}\left(\sin \frac{a}{b}\right)=$ $\sin ^{-1}\left(\sin \frac{2 \pi}{-3}\right)$
$=\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}$
For $x \in\left(\frac{1}{2}, 1\right], \cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x \Rightarrow$ $a=0$ and $b=3$
$\therefore \lim _{y \rightarrow a} b \cos (y)=\lim _{y \rightarrow 0} 3 \cos (y)=3$

174 (2)

Since $\sin ^{-1}$ is defined for $[-1,1]$
$\therefore a=0$
$\therefore x=\sin ^{-1} 1+\cos ^{-1} 1-\tan ^{-1} 1=\frac{\pi}{4}$
$\Rightarrow \sec ^{2} x=2$
175 (3)

$$
\sin ^{-1}\left(x^{2}-\frac{x^{4}}{3}+\frac{x^{6}}{9}-\cdots\right)
$$

$$
+\cos ^{-1}\left(x^{4}-\frac{x^{8}}{3}+\frac{x^{12}}{9} \cdots\right)=\frac{\pi}{2}
$$

$$
\Rightarrow\left(x^{2}-\frac{x^{4}}{3}+\frac{x^{6}}{9} \ldots \ldots\right)=\left(x^{4}-\frac{x^{8}}{3}+\frac{x^{12}}{9} \ldots \ldots\right)
$$

$$
\Rightarrow \frac{x^{2}}{1+\frac{x^{2}}{3}}=\frac{x^{4}}{1+\frac{x^{4}}{3}}
$$

$$
\Rightarrow \frac{3}{3+x^{2}}=\frac{3 x^{2}}{3+x^{4}} \text { or } x=0
$$

$$
\Rightarrow 9+3 x^{4}=9 x^{2}+3 x^{4} \text { or } x=0
$$

$$
\Rightarrow x^{2}=1 \Rightarrow x=0,1 \text { or }-1
$$

Therefore, the number of values is equal to 3
176 (9)
$\tan ^{-1}\left(x+\frac{3}{x}\right)-\tan ^{-1}\left(x-\frac{3}{x}\right)=\tan ^{-1} \frac{6}{x}$
$\Rightarrow \tan ^{-1}\left(\frac{\left(x+\frac{3}{x}\right)-\left(x-\frac{3}{x}\right)}{1+\left(x+\frac{3}{x}\right)\left(x-\frac{3}{x}\right)}\right)=\tan ^{-1} \frac{6}{x}$
$\Rightarrow x^{2}-\frac{9}{x^{2}}=0 \Rightarrow x^{4}=9$
177 (3)

$$
\left.\begin{array}{c}
\cos ^{-1}(x)+\cos ^{-1}(2 x)+\cos ^{-1}(3 x)=\pi \\
\Rightarrow \cos ^{-1}(2 x)+\cos ^{-1}(3 x)=\pi-\cos ^{-1}(x) \\
=\cos ^{-1}(-x)
\end{array} \begin{array}{c}
\Rightarrow \cos ^{-1}\left[(2 x)(3 x)-\sqrt{1-4 x^{2}} \sqrt{1-9 x^{2}}\right] \\
=\cos ^{-1}(-x)
\end{array}\right] \begin{gathered}
\Rightarrow 6 x^{2}-\sqrt{1-4 x^{2}} \sqrt{1-9 x^{2}}=-x \\
\Rightarrow\left(6 x^{2}+x\right)^{2}=\left(1-4 x^{2}\right)\left(1-9 x^{2}\right) \\
\Rightarrow x^{2}+12 x^{3}=1-13 x^{2} \\
\Rightarrow 12 x^{3}+14 x^{2}-1=0
\end{gathered}
$$

$\Rightarrow a=12 ; b=14 ; c=0$
$\Rightarrow b-a-c=14-12+1=3$

178 (1)
We have $g(x)=\sin ^{-1}(\cos x)=\frac{\pi}{2}-\cos ^{-1}(\cos x)$

Both the curves bound the regions of same area in $\left[\frac{\pi}{4}, \frac{7 \pi}{4}\right],\left[\frac{9 \pi}{4}, \frac{15 \pi}{4}\right]$ and so on

Therefore, the required are $=$ area of shaded square $=\frac{9 \pi^{2}}{8}=\frac{a \pi^{2}}{b}$
$\therefore a=9$ and $b=8 \Rightarrow a-b=1$

179 (9)
$1+\sin \left(\cos ^{-1} x\right)+\sin ^{2}\left(\cos ^{-1} x\right)+\cdots \infty=2$
$\Rightarrow \frac{1}{1-\sin \left(\cos ^{-1} x\right)}=2$
$\Rightarrow \frac{1}{2}=1-\sin \left(\cos ^{-1} x\right)$
$\Rightarrow \sin \left(\cos ^{-1} x\right)=\frac{1}{2} \Rightarrow \cos ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\frac{\sqrt{3}}{2} \Rightarrow 12 x^{2}=9$

180 (1)
$\tan ^{-1}(3 x)+\tan ^{-1}(5 x)=\tan ^{-1}(7 x)+\tan ^{-1}(2 x)$
$\Rightarrow \tan ^{-1}(3 x)-\tan ^{-1}(2 x)$ $=\tan ^{-1}(7 x)-\tan ^{-1}(5 x)$
$\Rightarrow \tan ^{-1}\left(\frac{3 x-2 x}{1+6 x^{2}}\right)=\tan ^{-1}\left(\frac{7 x-5 x}{1+35 x^{2}}\right)$
$\Rightarrow \frac{x}{1+6 x^{2}}=\frac{2 x}{1+35 x^{2}}$
$\Rightarrow x=0$ or $1+35 x^{2}=2+12 x^{2}$
$\Rightarrow x=0$ or $x=\frac{1}{\sqrt{23}}$ or $-\frac{1}{\sqrt{23}}$

181 (5)
$\left(\cot ^{-1} x\right)\left(\tan ^{-1} x\right)+\left(2-\frac{\pi}{2}\right) \cot ^{-1} x-3 \tan ^{-1} x$ $-3\left(2-\frac{\pi}{2}\right)>0$
$\Rightarrow \cot ^{-1} x>0$
$\Rightarrow\left(\cot ^{-1} x-3\right)\left(2-\cot ^{-1} x\right)>0$
$\Rightarrow\left(\cot ^{-1} x-3\right)\left(\cot ^{-1} x-2\right)<0$
$\Rightarrow 2<\cot ^{-1} x<3$
$\Rightarrow \cot 3<x<\cot 2$ [as $\cot ^{-1} x$ is a decreasing function]
\Rightarrow Hence, $x \in(\cot 3, \cot 2)$

$$
\begin{gathered}
\Rightarrow \cot ^{-1} a+\cot ^{-1} b=\cot ^{-1}(\cot 3)+\cot ^{-1}(\cot 2) \\
=5
\end{gathered}
$$

182 (6)
Let $\tan ^{-1} u=\alpha \Rightarrow \tan \alpha=u$
$\tan ^{-1} v=\beta \Rightarrow \tan \beta=v$
$\tan ^{-1} w=\gamma \Rightarrow \tan \gamma=w$
$\tan (\alpha+\beta+\gamma)=\frac{s_{1}-s_{3}}{1-s_{2}}=\frac{0-(-11)}{1-(-10)}=\frac{11}{11}=1$
$\therefore \alpha+\beta+\gamma=\tan ^{-1}(1)=\frac{\pi}{4}$
$\Rightarrow 3 \operatorname{cosec}^{2}\left(\tan ^{-1} u+\tan ^{-1} v+\tan ^{-1} w\right)=6$

183 (4)
$f(x)=\sin ^{-1} x+2 \tan ^{-1} x+(x+2)^{2}-3$
Domain of $f(x)$ is $[-1,1]$
Also $f(x)$ is an increasing function in the domain

$$
\begin{aligned}
\therefore p=f_{\min .}(x) & =f(-1)=-\frac{\pi}{2}+2\left(\frac{-\pi}{4}\right)+1-3 \\
& =-\pi-2
\end{aligned}
$$

and $q=f_{\text {max. }}(x)=f(1)=\frac{\pi}{2}+2\left(\frac{\pi}{4}\right)+9-6=$ $\pi+6$

Therefore, the range of $f(x)$ is $[-\pi-2, \pi+6]$
Hence, $(p+q)=4$
184 (7)
$f(x)=\sqrt{3 \cos ^{-1}(4 x)-\pi}$ is defined

If $\cos ^{-1} 4 x \geq \frac{\pi}{3} \Rightarrow 4 x \leq \frac{1}{2} \Rightarrow x \leq \frac{1}{8}$
Also, $-1 \leq 4 x \leq 1 \Rightarrow \frac{-1}{4} \leq x \leq \frac{1}{4}$
Therefore, from Eqs. (i) and (ii), we have domain: $x \in\left[\frac{-1}{4}, \frac{1}{8}\right]$
$\Rightarrow 4 a+64 b=7$
185 (3)
We must have $x(x+3) \geq 0$
$\Rightarrow x \geq 0$ or $x \leq-3$
Also, $-1 \leq x^{2}+3 x+1 \leq 1$
$\Rightarrow x(x+3) \leq 0 \Rightarrow-3 \leq x \leq 0$
From Eqs. (i) and (ii), we get $x=\{0,-3\}$
Hence, required sum is 3

186 (6)
$T_{n}=\tan ^{-1}\left(\frac{n+1-1}{1+(n+1) 1}\right)$
$=\tan ^{-1}(n+1)-\tan ^{-1}(n)$
Hence, $S_{n}=\tan ^{-1}(n+1)-\tan ^{-1} 1$
$=\tan ^{-1}\left(\frac{n+1-1}{1+(n+1) \cdot 1}\right)=\left(\tan ^{-1} \frac{n}{n+2}\right)$
$=\frac{1}{2} \cos ^{-1}\left(\frac{24}{145}\right)$
$\Rightarrow 2\left(\tan ^{-1} \frac{n}{n+2}\right)=\cos ^{-1}\left(\frac{24}{145}\right)$
$\Rightarrow \cos ^{-1}\left(\frac{2(n+1)}{n^{2}+2 n+2}\right)=\cos ^{-1}\left(\frac{24}{145}\right)$
$\Rightarrow\left(\frac{2(n+1)}{n^{2}+2 n+2}\right)=\left(\frac{24}{145}\right)$
$\Rightarrow 12(n+1)^{2}-145(n+1)+12=0$
$\Rightarrow((n+1)-12)(12(n+1)-1)=0$
$\Rightarrow n+1=12 \Rightarrow n=11$

187 (1)
Given expression is defined only for $x=1$ and -1
$\therefore f(1)=1$ and $f(-1)=(1+\pi)(1+\pi)=$ $(1+\pi)^{2}$

Hence, the least value is 1

