

2.INVERSE TRIGONOMETRICE FUNCTIONS

Single Correct Answer Type

1.	$\sec^{2}(\tan^{-1}2) + \csc^{2}(\tan^{-1}2)$	$\cot^{-1} 3$) is equal to		
C	a) 5 The value of lim	b) 13 $(\tan^{-1}(\sin(\tan^{-1}x)))$ is as	c) 15	d) 6
2.	The value of $\lim_{ x \to\infty} \cos x$	$(\tan^{-1}(\sin(\tan^{-1}x)))$ is eq		1
	a) —1	b) √2	c) $-\frac{1}{\sqrt{2}}$	d) $\frac{1}{\sqrt{2}}$
3.	The value of sin ⁻¹ (sin 12	$) + \cos^{-1}(\cos 12)$ is equal		
	a) Zero	b) $24 - 2\pi$	c) $4\pi - 24$	d) None of these
4.	If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}y$ equal to	$z = \pi$, then $x^4 + y^4 + z^4$	$x^4 + 4x^2y^2z^2 = K(x^2y^2 + y)$	$z^{2} + z^{2}x^{2}$), where K is
	a) 1	b) 2	c) 4	d) None of these
5.	$\cot^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right]\left($	where $x \in \left[0, \frac{\pi}{2}\right]$ is equal t	24	×
	a) <i>π</i> – <i>x</i>	b) $2\pi - x$	c) $\frac{x}{2}$	d) $\pi - \frac{x}{2}$
6.		of <i>x</i> satisfying the equation		
	$\sin^{-1}\cos\left(\frac{2x^2+10 x +4}{x^2+5 x +3}\right) =$	$\cos\left(\cot^{-1}\left(\frac{2-18 x }{9 x }\right)\right) + \frac{\pi}{2}$ is	5	
	a) 9	b) —9	c) -3	d) —1
7.	L	$\overline{x} - \sqrt{x}\sqrt{1 - x^2}$] is equal to		
-		b) $\sin^{-1} x - \sin^{-1} \sqrt{x}$		d) None of these
8.	If $x^2 + y^2 + z^2 = r^2$, then	$\tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) +$	$\tan^{-1}\left(\frac{xz}{yr}\right)$ is equal to	
	a) <i>π</i>	b) $\frac{\pi}{2}$	c) 0	d) None of these
9.	If $\tan^{-1} x + 2 \cot^{-1} x = \frac{2}{3}$	$\frac{\pi}{3}$, then x is equal to		
	a) $\frac{\sqrt{3}-1}{\sqrt{2}+1}$	b) 3	c) √3	d) √2
10.	The value of $\sin^{-1}(x^2 - 4)$	$4x + 6) + \cos^{-1}(x^2 - 4x + 6)$	6) for all $x \in R$ is	
	a) $\frac{\pi}{2}$	b) <i>π</i>	c) 0	d) None of these
11.	Let $\begin{vmatrix} \tan^{-1}x & \tan^{-1}2x \\ \tan^{-1}3x & \tan^{-1}x \\ \tan^{-1}2x & \tan^{-1}3x \end{vmatrix}$	$\frac{\tan^{-1} 3x}{\tan^{-1} 2x} = 0$, then the number of the formula $\left \tan^{-1} x \right $	umber of values of <i>x</i> satisfy	ing the equation is
	a) 1	b) 2	c) 3	d) 4
12.	The value of $\cos^{-1}\sqrt{\frac{2}{3}} - c$	$\cos^{-1}\frac{\sqrt{6}+1}{2\sqrt{3}}$ is equal to		
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{6}$
13.	5	Ť	$=\frac{\pi}{2}$ for $0 < x < \sqrt{2}$, then	0
	a) 1/2	b) 1	c) -1/2	d) —1
14.		$\sin^{-1} x = 2 \sin^{-1} a \text{ has}$		1 1
	a) All real values	b) $ a < \frac{1}{2}$	c) $ a \le \frac{1}{\sqrt{2}}$	d) $\frac{1}{2} < a < \frac{1}{\sqrt{2}}$
15.	The value of 'a', for which π		$(x^{2} - 2x + 2) = 0$	
	a) $\frac{\pi}{2}$	b) $-\frac{\pi}{2}$	c) $\frac{2}{\pi}$	d) $-\frac{2}{\pi}$
16.	$\int \frac{\pi}{4} = \frac{1}{2}\cos^{-1}\frac{a}{b} + ta$	$ an\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right] \text{ is equal to} $)	n

	a) $\frac{2a}{b}$	b) $\frac{2b}{a}$	c) $\frac{a}{b}$	d) $\frac{b}{a}$
17.	$\sin^{-1}(\sin 5) > x^2 - 4x$ ho	olds if	0	u
	a) $x = 2 - \sqrt{9 - 2\pi}$		b) $x = 2 + \sqrt{9 - 2\pi}$	
	c) $x > 2 + \sqrt{9 - 2\pi}$		d) $x \in (2 - \sqrt{9 - 2\pi}, 2 +$)
18.	The sum of the solutions	of the equation $2 \sin^{-1} \sqrt{x^2}$	$x^{2} + x + 1 + \cos^{-1}\sqrt{x^{2} + x} =$	$=\frac{3\pi}{2}$ is
10	a) 0	b) -1	c) 1	d) 2
19.	The value of $\tan^{-1}\left(\frac{x\cos}{1-x\sin^{-1}}\right)$	$\left(\frac{\theta}{\ln\theta}\right) - \cot^{-1}\left(\frac{\cos\theta}{x-\sin\theta}\right)$ is		
20	a) 2θ If $a \sin^{-1} x$ $b \cos^{-1} x =$	b) θ <i>c</i> , then $a \sin^{-1} x + b \cos^{-1} b$	c) $\theta/2$	d) Independent of θ
20.				$\pi ab + c(a - b)$
	a) 0	b) $\frac{\pi ab + c(b-a)}{a+b}$		d) $\frac{\pi ab + c(a-b)}{a+b}$
21.	If $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then the v	alue of $\tan^{-1}\left(\frac{\tan x}{4}\right) + \tan^{-1}$	$1\left(\frac{3\sin 2x}{5+3\cos 2x}\right)$ is	
	a) <i>x</i> /2	b) 2 <i>x</i>	c) 3 <i>x</i>	d) <i>x</i>
22.	The value of $\sin^{-1}\left(\cot\left(s\right)\right)$	$\sin^{-1}\sqrt{\frac{2-\sqrt{3}}{4}} + \cos^{-1}\frac{\sqrt{12}}{4} + s$	$\sec^{-1}\sqrt{2}$)) is	
	a) 0	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$	d) None of these
23.	The value of <i>x</i> which satis	sfies equation 2 tan ⁻¹ 2 $x =$	$\sin^{-1}\frac{4x}{1+4x}$ is valid in the in	terval
	-1	/ 11	c) [-1,1]	d) $\left[-\frac{1}{2},\frac{1}{2}\right]$
24			•)[-,-]	2'2]
27.	If $\left \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right < \frac{\pi}{2}$, then		. 1.	
	L 5 V 3	b) $x \in \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$	c) $x \in \left(0, \frac{1}{\sqrt{3}}\right)$	d) None of these
25.	$\sum_{r=1}^{n} \sin^{-1}\left(\frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}}\right)$ is equation	qual to		
	a) $\tan^{-1}(\sqrt{n}) - \frac{\pi}{4}$	b) $\tan^{-1}\left(\sqrt{n+1}\right) - \frac{\pi}{4}$	c) $\tan^{-1}(\sqrt{n})$	d) $\tan^{-1}(\sqrt{n+1})$
26.	$\cos^{-1}\left(\cos\left(\frac{5\pi}{4}\right)\right)$ is given	by		
	a) $\frac{5\pi}{4}$	b) $\frac{3\pi}{}$	c) $\frac{-\pi}{4}$	d) None of these
27.	4	4	5 4	
	If $\tan^{-1}\frac{a+x}{a} + \tan^{-1}\frac{a-x}{a} =$ a) $2\sqrt{3}a$	b) $\sqrt{3}a$	c) $2\sqrt{3}a^2$	d) None of these
28.)) ()	cj 2y3u	a) None of these
	The value $2 \tan^{-1} \left[\sqrt{\frac{a-b}{a+b}} t \right]$	$\left[an \frac{1}{2} \right]$ is equal to		
	a) $\cos^{-1}\left(\frac{a\cos\theta+b}{b}\right)$	b) $\cos^{-1}\left(\frac{a+b\cos\theta}{a+b\cos\theta}\right)$	c) $\cos^{-1}\left(\frac{a\cos\theta}{a+b\cos\theta}\right)$	d) $\cos^{-1}\left(\frac{b\cos\theta}{b\cos\theta}\right)$
29.	$(a + b \cos \theta)$ If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} y$		$(a + b\cos\theta)$	$(a\cos\theta + b)$
		2	c) $xy + yz + zx + 1 = 0$	d) $xy + yz + zx - 1 = 0$
30.	If $2 \tan^{-1} x = \pi + \tan^{-1} ($			
	a) <i>x</i> > 1	b) $x < 1$	c) $x > -1$	d) $-1 < x < 1$
31.		ssible value, then $\sin^{-1} x$ is		
	·	•	c) $\cos^{-1}\sqrt{x^2-1}$	•
32.	The solution set of the eq	uation $\sin^{-1}\sqrt{1-x^2} + \cos^{-1}$	$x^{-1}x = \cot^{-1}\frac{\sqrt{1-x^2}}{x} - \sin^{-1}x$	<i>x</i> is
	a) [-1,1] - {0}	b) (0, 1]U {-1}		d) [-1, 1]
33.	If $\sin^{-1}a + \sin^{-1}b + \sin^{-1}b$	$^{-1}c = \pi$, then the value of c	$a\sqrt{(1-a^2)} + b\sqrt{(1-b^2)} + $	$-c\sqrt{(1-c^2)}$ will be

			1	1
	a) 2 <i>abc</i>	b) abc	c) $\frac{1}{2}abc$	d) $\frac{1}{3}abc$
34.	If $2^{2\pi/\sin^{-1}x} - 2(a+2)2^{2\pi/\sin^{-1}x} - 2(a+2)2^{2\pi/\sin^{-1}x} + $	$\frac{\pi}{\sin^{-1}x} + 8a < 0$ for at least	st one real <i>x</i> , then	
	a) $\frac{1}{8} \le a < 2$	b) <i>a</i> < 2	c) $a \in R - \{2\}$	d) $a \in \left[0, \frac{1}{8}\right) \cup (2, \infty)$
35.	The number of integral va	alues of <i>k</i> for which the equ	uation $\sin^{-1} x + \tan^{-1} x = 2$	2k + 1 has a solution is
20	a) 1 The scalar of ten $(\sin^{-1}(\cos^{-1}))$	b) 2 $(\sin^{-1} x)$ to $(\cos^{-1} (\sin^{-1} x))$	c) 3 ($$	d) 4
36.	a) 0	$(\sin^{-1} x)) \tan(\cos^{-1}(\sin^{-1} x))$ b) 1	$(\cos^{-1} x)), \text{ where } x \in (0, 1)$	d) None of these
37.	,	n the maximum value of <i>n</i> is	,	,
	a) 6	b) 7	c) 5	d) None of these
38.	$\sum_{m=1}^{n} \tan^{-1}\left(\frac{2m}{m^4 + m^2 + 2}\right)$ is	equal to		
		b) $\tan^{-1}\left(\frac{n^2-n}{n^2-n+2}\right)$		d) None of these
39.	$\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x\right) + \tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x\right$	$\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}x\right), x \neq 0, \text{ is eq}$	qual to	
	a) <i>x</i>	b) 2 <i>x</i>	c) $\frac{2}{3}$	d) None of these
40.	The number of solution o	If the equation $\sin^{-1} x + \sin^{-1} x$	$a^{-1}(1-x) = \cos^{-1}x$ is	
	a) 1	b) 0	c) 2	d) None of these
41.	If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} x$ a) $x^2 + y^2 + z^2 + xyz =$	•	b) $x^2 + y^2 + z^2 + 2xyz =$: 0
	c) $x^2 + y^2 + z^2 + xyz =$		d) $x^2 + y^2 + z^2 + 2xyz =$	
42.		0, where $[\cdot]$ denotes the gr	eatest integer function, the	n the complete set of values
	of x is a) (cos 1, 1]	b) (cos 1, cos 1)	c) (cos 1, 1]	d) None of these
43.		$(x-3) + \tan^{-1}\left(\frac{x}{2-x^2}\right) = \cos^{-1}\left(\frac{x}{2-x^2}\right) = \cos^{-1}\left(\frac{x}{2-x^2}\right$		-
		(2-x)	1	
	a) 1	h) $-\frac{1}{1}$	c) —	d) None of these
11	-	b) $-\frac{1}{\sqrt{2}}$	c) $\frac{1}{\sqrt{2}}$	d) None of these
44.	-	$x^{-1}(x^2 - 4x + 3) = \frac{\pi}{4}$ can ha	ave a solution for $x \in$	
44.	-	V 2	ave a solution for $x \in$	d) None of these
	$\sin^{-1}(3x - 2 - x^2) + \cos^{-1}(3x - x^2) + \cos^{$	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$	ave a solution for $x \in$	
	$\sin^{-1}(3x - 2 - x^2) + \cos^2(x - 2)$ a) [1, 2]	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$	
45.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(3x - x^{2}) +$	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$	ave a solution for $x \in$	d) None of these
45.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(3x - 2 - x^{2}) + \cos^{-1}(x - 2x) + \cos^{-1$	$s^{-1}(x^{2} - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^{2}}$, then	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$	d) None of these
45. 46.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(3x - 2 - x^{2}) + \cos^{-1}(x - 2x^{2}) + \cos^{-1}(x - 2x^{2}) + \cos^{-1}(x - 2x^{2}) + \cos^{-1}(x - 2x^{2}) = -1$ $\sin^{-1}(x - 2x^{2}) = -1$ $\sin^{-1}(x - 2x^{2}) = -1$	$s^{-1}(x^{2} - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^{2}}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$	d) None of these d) None of these
45. 46.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(3x - 2 - x^{2}) + \cos^{-1}(x - x^{2}) + \cos^{-1}(x - x^{2}) = \sin^{-1}(x - x^{2})$ a) [1, 2] a) $\sqrt{2} - 1$ If $2\sin^{-1}x = \sin^{-1}(2x\sqrt{2})$ a) [-1, 1] Range of $f(x) = \sin^{-1}x - x^{2}$	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^2}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$	d) None of these d) None of these
45. 46. 47.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(x) = \sin^{-1}(\sqrt{2} - x^{2}) = \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2})))$ a) $\sqrt{2} - 1$ If $2 \sin^{-1} x = \sin^{-1}(2x\sqrt{2})$ a) $[-1, 1]$ Range of $f(x) = \sin^{-1} x - x^{-1}$ a) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$	$s^{-1}(x^{2} - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^{2}}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is b) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$	d) None of thesed) None of thesed) None of these
45. 46. 47.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{-1}(x^{2} - x^{2}) + \cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2})))$ $\cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2})))$ $\sin^{-1}(2x - x^{2}) = \sin^{-1}(2x - x^{2})$ $\sin^{-1}(2x - x^{2}) = \sin^{-1}(2x - $	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^2}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$	 d) None of these d) None of these d) None of these d) None of these
45. 46. 47. 48.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{2} x^{2}$ a) [1,2] $\cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2}))^{2} - 1$ a) $\sqrt{2} - 1$ If $2 \sin^{-1} x = \sin^{-1}(2x\sqrt{2} - x^{2})^{2}$ a) [-1,1] Range of $f(x) = \sin^{-1} x - x^{2}$ a) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)^{2}$ The value of x for which so a) $\frac{1}{2}$	$s^{-1}(x^{2} - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^{2}}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is b) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ sin[$\cot^{-1}(1 + x)$] = cos(tar	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$ n ⁻¹ x) is	d) None of thesed) None of thesed) None of these
45. 46. 47. 48.	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{2} x$ a) [1, 2] $\cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2})))$ a) $\sqrt{2} - 1$ If $2 \sin^{-1} x = \sin^{-1}(2x\sqrt{2})$ a) [-1, 1] Range of $f(x) = \sin^{-1} x - x^{-1}$ a) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ The value of x for which s a) $\frac{1}{2}$ Range of $\tan^{-1}\left(\frac{2x}{1+x^{2}}\right)$ is	$s^{-1}(x^{2} - 4x + 3) = \frac{\pi}{4} \operatorname{can} ha$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^{2}}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is b) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ sin[$\cot^{-1}(1 + x)$] = $\cos(\tan b) 1$	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$ n ⁻¹ x) is c) 0	d) None of these d) None of these d) None of these d) None of these d) $-\frac{1}{2}$
 45. 46. 47. 48. 49. 	$\sin^{-1}(3x - 2 - x^{2}) + \cos^{2} x^{2}$ a) [1, 2] $\cos^{-1}(\cos(2 \cot^{-1}(\sqrt{2} - x^{2})) + \cos^{2} x^{2}$ a) $\sqrt{2} - 1$ If $2 \sin^{-1} x = \sin^{-1}(2x\sqrt{2} - x^{2})$ a) $[-1, 1]$ Range of $f(x) = \sin^{-1} x - x^{2}$ a) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ The value of x for which so a) $\frac{1}{2}$	$s^{-1}(x^2 - 4x + 3) = \frac{\pi}{4} \operatorname{can} \operatorname{ha}$ b) $\left(\frac{3 + \sqrt{5}}{2}, 2 + \sqrt{2}\right)$ 1))) is equal to b) $\frac{\pi}{4}$ $\overline{1 - x^2}$, then b) $\left[-\frac{1}{\sqrt{2}}, 1\right]$ + $\tan^{-1}x + \sec^{-1}x$ is b) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ sin[$\cot^{-1}(1 + x)$] = $\cos(\tan x)$ b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	ave a solution for $x \in$ c) $\left(\frac{3-\sqrt{5}}{2}, 2-\sqrt{2}\right)$ c) $\frac{3\pi}{4}$ c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ c) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$ n ⁻¹ x) is	 d) None of these d) None of these d) None of these d) None of these

	a) $\frac{7}{13}$	b) $\frac{4}{3}$	c) 13	d) $\frac{13}{7}$
51.	If $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$,	then $4x^2 - 4xy \cos \alpha + y^2$	is equal to	,
	a) 4	b) $2 \sin^2 \alpha$	c) $-4\sin^2\alpha$	d) $4 \sin^2 \alpha$
52.	The number of solution o	f the equation $\cos^{-1}\left(\frac{1+x^2}{2x}\right)$	$-\cos^{-1}x = \frac{\pi}{2} + \sin^{-1}x$ is	given by
	a) 0	b) 1	c) 2	d) 3
53.	The value of $\sin^{-1}(\cos(\cos))$	$\cos^{-1}(\cos x) + \sin^{-1}(\sin x))$), where $x \in \left(\frac{\pi}{2}, \pi\right)$, is equal	ll to
	a) $\frac{\pi}{2}$	b) <i>-π</i>	c) <i>π</i>	d) $-\frac{\pi}{2}$
54.	If $x_1 = 2 \tan^{-1} \left(\frac{1+x}{1-x} \right)$, $x_2 = \frac{1}{2} \left(\frac{1+x}{1-x} \right)$	$= \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, where $x \in C$	$(0, 1)$, then $x_1 + x_2$ is equal	to
	a) 0	b) 2π	c) <i>π</i>	d) None of these
55.		$z^{-1} = \frac{\pi}{2}, x, y, z > 0$ and xy	y < 1, then $x + y + z$ is also	
	a) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$	b) <i>xyz</i>	c) $xy + yz + zx$	d) None of these
56.	$\tan^{-1}\left[\frac{\cos x}{1+\sin x}\right]$ is equal to			
	a) $\frac{\pi}{4} - \frac{x}{2}$, for $x \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$	<u>(</u>)		
	b) $\frac{\pi}{4} - \frac{x}{2}$, for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	/		
	$T L \cdot L'$			
	c) $\frac{\pi}{4} - \frac{x}{2}$, for $x \in \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$			
	d) $\frac{\pi}{4} - \frac{x}{2}$, for $x \in \left(-\frac{3\pi}{2}, -\frac{3\pi}{2}\right)$	$\left(-\frac{\pi}{2}\right)$		
57.	If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2a}{1+a^2}\right)$	$\left(\frac{2b}{b^2}\right) = 2 \tan^{-1} x$, then x is $\left(\frac{2b}{b^2}\right) = 2 \tan^{-1} x$	equal to $[a, b \in (0, 1)]$	
	a) $\frac{a-b}{1+ab}$	b) $\frac{b}{b}$	c) $\frac{b}{1-ab}$	d) $\frac{a+b}{1-ab}$
58.	1 + ab If $\cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\cos \alpha)$	1 + ub	1 - ab	1-ab
	a) $\tan^2 \frac{\alpha}{2}$		c) tan <i>a</i>	d) $\cot \frac{\alpha}{2}$
59	-			2
57.	$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)i$		π	
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{4}$ or $-\frac{3\pi}{4}$
60.		$y^{-1} y = \theta - \beta$, then $1 + xy$		
61		-	c) $\cos^2 \theta + \cos^2 \theta$	d) $\cos^2 \theta + \sin^2 \beta$
01.		b) $\cot^{-1} \frac{1}{x}$ - $\tan \cot^{-1} x$) is		d) None of these
	a) $\cot^{-1} x$	X	c) $\tan^{-1} x$,
62.	The value of $\tan\left(\frac{1}{2}\cos^{-1}\right)$	$\left(\frac{\sqrt{5}}{3}\right)$ is		
	a) $\frac{3+\sqrt{5}}{2}$	b) $3 + \sqrt{5}$	c) $\frac{1}{2}(3-\sqrt{5})$	d) None of these
63.	If $A = \tan^{-1}\left(\frac{x\sqrt{3}}{2K-x}\right)$ and B	$B = \tan^{-1}\left(\frac{2x-K}{K\sqrt{3}}\right)$, then the	value of $A - B$ is	
	a) 0°	b) 45°	c) 60°	d) 30°
61	·) ·			
04.	,	$\cos \sin^{-1} \left(\sin \frac{22\pi}{7} \right) + \cos^{-1} \left(\sin \frac{22\pi}{7} \right) + \cos^{-1} \left(\sin \frac{2\pi}{7} \right) + \cos^{-1} \left(\sin $	$\left(\cos\frac{5\pi}{3}\right) + \tan^{-1}\left(\tan\frac{5\pi}{7}\right) +$	$\sin^{-1}(\cos 2)$ is
04.	The value of the expression 17π	on $\sin^{-1}\left(\sin\frac{22\pi}{7}\right) + \cos^{-1}(b) - 2$	$ \left(\cos\frac{5\pi}{3}\right) + \tan^{-1}\left(\tan\frac{5\pi}{7}\right) + c\right) \frac{-\pi}{21} - 2 $	sin ⁻¹ (cos 2) is d) None of these
	The value of the expression	b) -2		

	a) $\frac{\pi}{2}$	b) $\frac{3\pi}{4}$	c) $\frac{\pi}{4}$	d) None of these
66.	The value of $\cos\left(\frac{1}{2}\cos^{-1}\right)$	$\left(\frac{1}{8}\right)$ is		
	a) $\frac{3}{4}$	b) $-\frac{3}{4}$	c) $\frac{1}{16}$	d) $\frac{1}{4}$
67.	4	$(2x^2 - 1) - 2\sin^{-1}x$ is equ	10	4
	a) $-\frac{\pi}{2}$	b) <i>π</i>	c) $\frac{3\pi}{2}$	d) –2π
68.	If $x \in (0, 1)$, then the value	ue of $\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{2x}\right)$	$\left(\frac{1-x^2}{1+x^2}\right)$ is equal to	
	a) $-\frac{\pi}{2}$	b) Zero	c) $\frac{\pi}{2}$	d) π
69.	If $f(x) = \sin^{-1}\left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\right)^{-1}$	$\sqrt{1-x^2}$, $-\frac{1}{2} \le x \le 1$, then	f(x) is equal to	
	a) $\sin^{-1}\left(\frac{1}{2}\right) - \sin^{-1}(x)$	b) $\sin^{-1} x - \frac{\pi}{6}$	c) $\sin^{-1}x + \frac{\pi}{6}$	d) None of these
70.	The number of solutions	of the equation $\tan^{-1}(1 + z)$	$x) + \tan^{-1}(1-x) = \frac{\pi}{2}$ is	
	a) 2	b) 3	c) 1	d) 0
71.	· · · ·	、 -	se trigonometric functions,	then the value of
	$\tan\left(\cos^{-1}\frac{1}{5\sqrt{2}} - \sin^{-1}\frac{4}{\sqrt{12}}\right)$	20		2
	a) $\frac{\sqrt{29}}{3}$	b) $\frac{29}{3}$	c) $\frac{\sqrt{3}}{29}$	d) $\frac{3}{29}$
72.	If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}$	$\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) =$	$=\frac{\pi}{3}$, where $ x < 1$, then x is	s equal to
	a) $\frac{1}{\sqrt{3}}$	b) $-\frac{1}{\sqrt{3}}$	c) $\sqrt{3}$	d) $-\frac{\sqrt{3}}{4}$
73.		$[\cot^{-1} x] + 2[\tan^{-1} x] = 0,$	where $[\cdot]$ denotes the great	test integer function, is
	equal to a) (0, cot 1)	b) (0, tan 1)	c) (tan 1,∞)	d) (cot 1, tan 1)
74.	There exists a positive re	al number <i>x</i> satisfying cos($(\tan^{-1} x) = x$. Then the val	ue of $\cos^{-1}\left(\frac{x^2}{2}\right)$ is
	a) $\frac{\pi}{10}$	b) $\frac{\pi}{5}$	c) $\frac{2\pi}{5}$	d) $\frac{4\pi}{5}$
75.	$\sum_{r=1}^{n} \tan^{-1}\left(\frac{2^{r-1}}{1+2^{2r-1}}\right)$ is equation	jual to	5	5
	a) $\tan^{-1}(2^n)$	b) $\tan^{-1}(2^n) - \frac{\pi}{4}$	c) $\tan^{-1}(2^{n+1})$	d) $\tan^{-1}(2^{n+1}) - \frac{\pi}{4}$
76.			$\sqrt{x^2 - 3x + 2} + \cos^{-1}\sqrt{4x}$	
77	a) One	b) Two	c) Zero	d) Infinite
//.	a) Zero	ions of $\tan^{-1}\sqrt{x(x+1)} + s$ b) One	$\sin^{-1}\sqrt{x^2 + x} + 1 = \pi/2$ is c) Two	d) Infinite
78.			$\frac{\pi}{2}$, then the value of $\cos^2 \theta$	
	is equal to		2	
70	a) 0	b) -1	c) 1	d) None of these
79.	If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, t	hen $\frac{1+x^2+y^2}{x^2-x^2y^2+y^2}$ is equal to		
	a) 1	b) 2	c) $\frac{1}{2}$	d) None of these
80.	The value of $\tan\left[\cos^{-1}\left(\frac{2}{3}\right)\right]$	$\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)$ is		
	a) $\frac{6}{17}$	b) $\frac{7}{16}$	c) $\frac{16}{7}$	d) None of these
81.	For the equation $\cos^{-1} x$	$+\cos^{-1}2x + \pi = 0$, the nu	mber of real solution is	
	a) 1	b) 2	c) 0	∞ (b

82.	The principal value of sin	$n^{-1}\left(\sin\frac{2\pi}{3}\right)$ is		
	a) $-\frac{2\pi}{3}$	b) $\frac{2\pi}{3}$	c) $\frac{4\pi}{3}$	d) None of these
83.	The range of values of <i>p</i> f	for which the equation sin c	$\cos^{-1}(\cos(\tan^{-1}x)) = p \text{ has}$	s a solution is
	a) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	b) [0, 1)	c) $\left(\frac{1}{\sqrt{2}}, 1\right)$	d) (-1,1)
84.	If $u = \cot^{-1} \sqrt{\tan \alpha} - \tan \alpha$	$\frac{1}{\sqrt{\tan \alpha}}$, then $\tan\left(\frac{\pi}{4}-\frac{u}{2}\right)$	is equal to	
	a) $\sqrt{\tan \alpha}$	b) $\sqrt{\cot \alpha}$	c) $\tan \alpha$	d) $\cot \alpha$
85.	If $3 \tan^{-1}\left(\frac{1}{2+\sqrt{3}}\right) - \tan^{-1}\left(\frac{1}{2+\sqrt{3}}\right)$	$x^{-1}\frac{1}{x} = \tan^{-1}\frac{1}{3}$, then x is equivalent.	qual to	
	a) 1	b) 2	c) 3	d) $\sqrt{2}$
86.	The maximum value of f	$(x) = \tan^{-1}\left(\frac{(\sqrt{12}-2)x^2}{x^4+2x^2+3}\right)$ is		
	a) 18°	b) 36°	c) 22.5°	d) 15°
87.	The value of $sin(2 sin^{-1}($	0.8)) is equal to		
	a) sin 1.2°	b) sin 1.6°	c) 0.48	d) 0.96
88.	1	the equation $\sin(\tan^{-1} x)$	$= \cos(\cot^{-1}(x+1))$ is	
	a) $\frac{1}{2}$	b) $-\frac{1}{2}$	c) $\sqrt{2} - 1$	d) No finite value
89.	If $\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$, t	hen x is equal to		
	a) 1		1	d) None of these
		b) √3	c) $\frac{1}{\sqrt{3}}$	
90.				$f(\tan^{-1}(\tan 8))$ is equal to
01	a) α	b) $\alpha - 2$	c) α + 2	d) 2 – α
91.	If $\cos^{-1}\sqrt{p} + \cos^{-1}\sqrt{1} - \frac{1}{\sqrt{1}}$	$\frac{1}{p} + \cos^{-1}\sqrt{1-q} = \frac{3\pi}{4}$, th	en the value of q is	
	a) 1	b) $\frac{1}{\sqrt{2}}$	c) $\frac{1}{2}$	d) $\frac{1}{2}$
92	The principal value of sin	V Z	3	2
,	a) 10	b) $10 - 3\pi$	c) 3π – 10	d) None of these
93.	The value of $\frac{\alpha^3}{\alpha} \operatorname{cosec}^2 \left(\frac{1}{\alpha}\right)$	$\tan^{-1}\frac{\alpha}{\beta} + \frac{\beta^3}{2}\sec^2\left(\frac{1}{2}\tan^{-1}\right)$	$\left(\frac{\beta}{2}\right)$ is equal to	
		b) $(\alpha + \beta)(\alpha^2 - \beta^2)$		d) None of these
94.		t values of $(\sin^{-1} x)^3 + (\cos^{-1} x)^3$		
	a) $\frac{-\pi}{2}, \frac{\pi}{2}$	b) $\frac{-\pi^3}{8}$, $\frac{\pi^3}{8}$		d) None of these
~ -		0 0	01 0	
95.		ions of the equation $\sqrt{1+c}$		
06	a) 0	b) 1	c) 2	d) Infinite $r^{2}-1$
96.		the solution set of the equa	(1)	1 2 2 2
07	a) $(0, 1)$		c) (-1,0)	d) [-1;1]
97.	The value of sec $\tan^{-1}\frac{b}{b}$	<i>u b</i> 1		
	a) 2	b) $\sqrt{2}$	c) 4	d) 1
98.		$\sin \sin^{-1} x - \cos^{-1} x = \sin x$		1) 2
99	a) 3/2 If 0 < <i>x</i> < 1, then	b) 1	c) 1/2	d) 2
<u>,</u> ,		$(\cot^{-1} x)^2 - 1]^{1/2}$ is	equal to	
	x		c) $x\sqrt{1+x^2}$	d) $\sqrt{1+2}$
	a) $\frac{x}{\sqrt{1+x^2}}$	b) x	$\int x \sqrt{1 + x^2}$	d) $\sqrt{1+x^2}$
100	The equation $3\cos^{-1}x$ –	$\pi x - \frac{\pi}{2} = 0$ has		

c) No solution	Jucion	d) More than one so	
	and $x = \tan^{-1} 3$, then y will l		
a) 0.3	b) tan ⁻¹ (1.3)	c) tan ⁻¹ (0.3)	d) $\tan^{-1}\left(\frac{1}{18}\right)$
	Multiple Cor	rect Answers Type	
102. If the equation sin integral value	$^{-1}(x^2 + x + 1) + \cos^{-1}(\lambda x + 1)$	1) = $\frac{\pi}{2}$ has exactly two sol	utions, then λ cannot have the
a) -1	b) 0	c) 1	d) 2
103. The value (s) of x a) $n\pi - 1$	satisfying the equation \sin^{-1} b) $n\pi$	$ \sin x = \sqrt{\sin^{-1} \sin x } \text{ is/}$ c) $n\pi + 1$	are given by (<i>n</i> is any integer) d) $2n\pi + 1$
-	$\frac{1}{1+x^2}$ is independent of x, the	-	
a) <i>x</i> > 1	b) $x < -1$	c) 0 < <i>x</i> < 1	d) $-1 < x < 0$
	$\operatorname{ot}^{-1} x + \sin^{-1} x \le b$, then π	π	
a) <i>a</i> = 0	b) $b = \frac{1}{2}$	c) $a = \frac{\pi}{4}$	d) $b = \pi$
a) cos(tan ⁻¹ (tan 4	Following quantities is/are positive (a) b) $\sin(\cot^{-1}(\cot 4))$ (b) $2x \sin(\cos^{-1} y) = 0$ is satisfi	c) $tan(cos^{-1}(cos 5))$	d) $\cot(\sin^{-1}(\sin 4))$
a) Exactly one val		b) Exactly two value	s of r
c) Exactly one val		d) Exactly two value	
	$y = \frac{\pi}{2}$ and sin $2x = \cos 2y$, the		
a) $x = \frac{\pi}{8} + \sqrt{\frac{1}{2} - \frac{\pi}{6}}$	b) $y = \sqrt{\frac{1}{2} - \frac{\pi^2}{64}} - \frac{\pi}{12}$	·	d) $y = \sqrt{\frac{1}{2} - \frac{\pi^2}{64}} - \frac{\pi}{8}$
109. $2 \cot^{-1} 7 + \cos^{-1}$	$\left(\frac{3}{5}\right)$ is equal to		
	b) $\csc^{-1}\left(\frac{125}{117}\right)$	c) $\tan^{-1}\left(\frac{4}{117}\right)$	d) $\cos^{-1}\left(\frac{44}{125}\right)$
110. If the equation sin	$x^{-1}(x^2 + x + 1) + \cos^{-1}(\lambda x + 1)$	1) = $\frac{\pi}{2}$ has exactly two sol	utions, then λ cannot have the
integral value			
a) —1	b) 0	c) 1	d) 2
	the roots of the equation $6x^2$		n of the following are real?
a) $\cos^{-1} \alpha$ c) $\csc^{-1} \alpha$		b) $\sin^{-1}\beta$ d) Both $\cot^{-1}\alpha$ and	$\cot^{-1}\beta$
	$\operatorname{ot}^{-1} x + \sin^{-1} x \le b$, then	aj both cot a and	
a) $a = 0$	_	c) $a = \frac{\pi}{4}$	d) $b = \pi$
113. If $f(x) = (\sin^{-1} x)$	$(\cos^{-1} x)^2$, then		
a) $f(x)$ has the least of the	0	b) $f(x)$ has the great	e e e e e e e e e e e e e e e e e e e
c) $f(x)$ has the least	ast value of $\frac{\pi}{16}$	d) $f(x)$ has the great	test value of $\frac{3\pi}{4}$
	$k > 0$) such that the length $s^{-1}(\cos kx)$ is constant is $\pi/4$		in which the function $f(x) =$
a) 8	b) 4	c) 12	d) 16
115. If $z = \sec^{-1}(x + \frac{1}{2})$	$\left(\frac{1}{x}\right) + \sec^{-1}\left(y + \frac{1}{y}\right)$, where xy	< 0, then the possible valu	es of z is (are)
a) $\frac{8\pi}{10}$	b) $\frac{7\pi}{10}$	c) $\frac{9\pi}{10}$	d) $\frac{21\pi}{20}$
10	10	10	20

b) One positive solution

a) One negative solution

116. If
$$\sin^{-1}\left(a - \frac{a^2}{3} + \frac{a^2}{3} + \cdots\right) + \cos^{-1}(1 + b + b^2 + \cdots) = \frac{\pi}{2}$$
, then
a) $b = \frac{2a - 3}{3a}$ b) $b = \frac{3a - 2}{2a}$ c) $a = \frac{3}{2 - 3b}$ d) $a = \frac{2}{3 - 2b}$
117. Which of the following is a rational number?
a) $\sin\left(\tan^{-1} 3 + \tan^{-1} \frac{1}{3}\right)$ b) $\cos\left(\frac{\pi}{2} - \sin^{-1} \frac{3}{4}\right)$
c) $\log_2\left(\sin\left(\frac{1}{4}\sin^{-1} \sqrt{\frac{63}{3}}\right)\right)$ d) $\tan\left(\frac{1}{2}\cos^{-1} \sqrt{\frac{5}{3}}\right)$
118. Which of the following quantities is/are positive?
a) $\cos(\tan^{-1}(\tan 4))$ b) $\sin(\cot^{-1}(\cot 4))$ c) $\tan(\cos^{-1}(\cos 5))$ d) $\cot(\sin^{-1}(\sin 4))$
119. If a_β and γ are the roots of $\tan^{-1}(x - 1) + \tan^{-1}x + \tan^{-1}x + 1 = \tan^{-1}x$, then
a) $a + b \gamma = 0$ d) $b^2 = \frac{\pi}{2}$, $n \in \mathbb{N}$, then n can be
a) $a + b \gamma = 0$ d) $b^2 = \frac{\pi}{2}$, $n \in \mathbb{N}$, then n can be
a) $3x^2 = 3 + 2\sqrt{2}$ b) $x^2 = 3 - 2\sqrt{2}$ c) $x^4 = 6x^2 - 1$ d) $x^4 = 6x^2 + 1$
120. If $\cot^{-1}\left(\frac{a^{-2}(\tan 4)}{\pi}\right) > \frac{\pi}{4}$, $n \in \mathbb{N}$, then n can be
a) $3x^2 = 3 + 2\sqrt{2}$ b) $3x^2 = 3 - 2\sqrt{2}$ c) $2x^4 = 6x^2 - 1$ d) $x^4 = 6x^2 + 1$
122. Which of the following is/are the value of $\cos\left[\frac{1}{2}\cos^{-1}\left(\cos\left(-\frac{5\pi}{3}\right)\right)\right]$?
a) $\cos\left(-\frac{7\pi}{5}\right)$ b) $\sin\left(\frac{\pi}{10}\right)$ c) $\cos\left(\frac{2\pi}{5}\right)$ d) $-\cos\left(\frac{3\pi}{5}\right)$
123. The value (s) of x satisfying the equation $\sin^{-1} |\sin x| = \sqrt{\sin^{-1}|\sin x|} |s|/are given by (n is any integer)
a) $n\pi - 1$ b) $n\pi$ c) $n + 1$ d) $2n\pi + 1$
124. If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}x = \pi$, then
a) $x^2 + y^2 + x^2 + 2xyz = 1$
b) $2(\sin^{-1}x + \sin^{-1}y) = \cos^{-1}x + \cos^{-1}y + \cos^{-1}z$
c) $xy + yx + xx = x + y + z - 1$
d) $\left(x + \frac{1}{x}\right) + \left(y + \frac{1}{y}\right) + \left(x + \frac{1}{x}\right) \ge 6$
125. If a is a real number for which $f(x) = \log c$, $\cos^{-1}x$ is defined, then a possible value of $[a]$ (where $[\cdot]$
denotes the greatest integer function) is
a) 0 b) 1 (c) -1 (d) -2$
126. $[f(x) = \sin^{-1}x + \sec^{-1}x is defined, then which of the following value values is /are in its range?
a) -\pi/2$ b) $3\pi/2$
127. Indicate the relation which can hold in their respective domain for infinite values of x
a) $\tan(\tan^{-1}x) = |x|$ b) $\cot(\cot^{-1}x) = |x|$ c) $\tan^{-1}(\tan x) = |x|$ d)

132. If $\tan^{-1} y = 4 \tan^{-1} x$, then y is infinite, if a) $x^2 = 3 + 2\sqrt{2}$ b) $x^2 = 3 - 2\sqrt{2}$ c) $x^4 = 6x^2 - 1$ d) $x^4 = 6x^2 + 1$ 133. If $(\sin^{-1} x + \sin^{-1} w)(\sin^{-1} y + \sin^{-1} z) = \pi^2$, then $D = \begin{vmatrix} x^{N_1} & y^{N_2} \\ z^{N_3} & w^{N_4} \end{vmatrix} (N_1, N_2, N_3, N_4 \in N)$ a) Has a maximum value of 2 b) Has a minimum value of 0 c) 16 different D are possible d) Has a minimum value of -2134. $2 \tan^{-1}(-2)$ is equal to a) $-\cos^{-1}\left(\frac{-3}{5}\right)$ b) $-\pi + \cos^{-1}\frac{3}{5}$ c) $-\frac{\pi}{2} + \tan^{-1}\left(-\frac{3}{4}\right)$ d) $-\pi + \cot^{-1}\left(-\frac{3}{4}\right)$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 135 to 134. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

135

Statement 1:
$$\tan \left[\cos^{-1} \left(\frac{1}{\sqrt{82}} \right) - \sin^{-1} \left(\frac{5}{\sqrt{26}} \right) \right]$$
 is equal to $\frac{29}{3}$
Statement 2: $\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^2 = \frac{51}{50},$
if $x = \frac{1}{5\sqrt{2}}$

136

Statement 1: The equation $\sin^{-1} x - \cos^{-1} x = \cos^{-1} \left(\frac{\sqrt{3}}{2}\right)$ has unique solution Statement 2: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}; \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$

137

Statement 1:
$$\csc^{-1}\left(\frac{3}{2}\right) + \cos^{-1}\left(\frac{2}{3}\right) - 2\cot^{-1}\left(\frac{1}{7}\right) - \cot^{-1}(7)$$
 is equal to $\cot^{-1} 7$.
Statement 2: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$,
 $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$,
 $\csc^{-1} x = \sin^{-1}\left(\frac{1}{x}\right)$
 $\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right)$

138

Statement 1: The solution of system of equation $\cos^{-1} x + (\sin^{-1} y)^2 = \frac{p\pi^2}{4}$ and $(\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi^4}{16}$ is $x = \cos \frac{\pi^2}{4}$ and $y = \pm 1, \forall p \in I$

Statement 2: $AM \ge GM$

139

Statement 1: The solution of system of equation $\cos^{-1} x + (\sin^{-1} y)^2 = \frac{p\pi^2}{4}$ and $(\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi^4}{4}$ is $x = \cos \frac{\pi^2}{4}$ and $y = \pm 1, \forall p \in I$

$$(\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi}{16}$$
 is $x = \cos \frac{\pi}{4}$ and $y = \pm 1, \forall p \in I$

Statement 2: $AM \ge GM$

140

- **Statement 1:** Principal value of $\sin^{-1}(\sin 3)$ can be 3 if we restrict the domain of $f(x) = \sin x$ to $[\pi/2, 3\pi/2]$
- **Statement 2:** The restriction that the principal values of $\sin^{-1}(\sin x)$ is $[-\pi/2, -\pi/2]$ is a matter of convention. We could have allowed principal values $[\pi/2, 3\pi/2]$ without affection the condition required for definition of inverse function

141

Statement 1: The value of $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right)$ is $\frac{\pi}{4}$ Statement 2: If x > 0, y > 0, then $\tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}$

142

Statement 1: Range of
$$f(x) = \tan^{-1} x + \sin^{-1} x + \cos^{-1} x$$
 is $(0, \pi)$

Statement 2:
$$f(x) = \tan^{-1} x + \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} + \tan^{-1} x$$
, for $x \in [-1, 1]$

143

Statement 1:
$$\sin^{-1}\left(\frac{1}{\sqrt{e}}\right) > \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$$

Statement 2: $\sin^{-1} x > \tan^{-1} y$ for $x > y, \forall x, y \in (0, 1)$

144

Statement 1:
$$\csc^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) > \sec^{-1}\left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right)$$

Statement 2: $\csc^{-1}x < \sec^{-1}x$ if $1 \le x < \sqrt{2}$

145

Statement 1: If
$$x < 0$$
, $\tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) = \frac{\pi}{2}$
Statement 2: $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, $\forall x \in R$

146

Statement 1: If x < 0, $\tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) = \frac{\pi}{2}$ **Statement 2:** $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, $\forall x \in R$

147

Statement 1: Number of roots of the equation $\cot^{-1} x + \cos^{-1} 2x + \pi = 0$ is zero

Statement 2: Range of $\cot^{-1} x$ and $\cos^{-1} x$ is $(0, \pi)$ and $[0, \pi]$, respectively

148

Statement 1:
$$\sin^{-1} 2x + \sin^{-1} 3x = \frac{\pi}{3}$$

 $\Rightarrow x = \sqrt{\left(\frac{3}{76}\right)}$ only

Statement 2: Sum of two negative angles cannot be positive

149

Statement 1:
$$\csc^{-1}\left(\frac{3}{2}\right) + \cos^{-1}\left(\frac{2}{3}\right) - 2\cot^{-1}\left(\frac{1}{7}\right) - \cot^{-1}(7)$$
 is equal to $\cot^{-1} 7$.
Statement 2: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$,
 $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$,
 $\csc^{-1} x = \sin^{-1}\left(\frac{1}{x}\right)$
 $\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right)$

150

Statement 1:
$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$$

Statement 2: For $x > 0, y > 0, \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}$

151

Statement 1: Principal value of $\cos^{-1}(\cos 30)$ is $30 - 9\pi$

Statement 2: $30 - 9\pi \in [0, \pi]$

152

Statement 1: The equation $\sin^{-1} x - \cos^{-1} x = \cos^{-1} \left(\frac{\sqrt{3}}{2}\right)$ has unique solution Statement 2: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}; \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$

153

Statement 1: If
$$p > q > 0$$
 and $pr < -1 < qr$, then
 $\tan^{-1}\left(\frac{p-q}{1+pq}\right) + \tan^{-1}\left(\frac{q-r}{1+qr}\right) + \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi$
Statement 2: $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ for all x, y

154

Statement 1: If
$$p > q > 0$$
 and $pr < -1 < qr$, then
 $\tan^{-1}\left(\frac{p-q}{1+pq}\right) + \tan^{-1}\left(\frac{q-r}{1+qr}\right) + \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi$
Statement 2: $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ for all x, y
155 Let $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$
Statement 1: $f'(2) = -\frac{2}{5}$

156

Statement 1: $\tan \left[\cos^{-1} \left(\frac{1}{\sqrt{82}} \right) - \sin^{-1} \left(\frac{5}{\sqrt{26}} \right) \right]$ is equal to $\frac{29}{3}$ Statement 2: $\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^2 = \frac{51}{50}$, if $x = \frac{1}{5\sqrt{2}}$

157

Statement 1: The value of $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right)$ is $\frac{\pi}{4}$ Statement 2: If x > 0, y > 0, then $\tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}$

158

Statement 1: Domain of $\tan^{-1} x$ and $\cot^{-1} x$ is *R*

Statement 2: $f(x) = \tan x$ and $g(x) = \cot x$ are unbounded functions

159

Statement 1:
$$\sin^{-1} 2x + \sin^{-1} 3x = \frac{\pi}{3}$$

 $\Rightarrow x = \sqrt{\left(\frac{3}{76}\right)}$ only

Statement 2: Sum of two negative angles cannot be positive

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

160.

Column-I

(A) $(\sin^{-1}x)^2 + (\sin^{-1}y)^2 = \frac{\pi^2}{2}$ (p) 1 $\Rightarrow x^3 + y^3 =$ (B) $(\cos^{-1}x)^2 + (\cos^{-1}y)^2 = 2\pi^2$ (q) -2 $\Rightarrow x^5 + y^5$ (C) $(\sin^{-1}x)^2(\cos^{-1}y)^2 = \frac{\pi^4}{4} \Rightarrow |x - y|$ (r) 0 (D) $|\sin^{-1}x - \sin^{-1}y| = \pi \Rightarrow x^y$ (s) 2

CODES :

	Α	В	С	D
a)	q	r,s	р	q

Column- II

b)	q,r,s	q	r,s	р
c)	р	q,r,s	q	r,s
d)	r,s	р	q,r,s	q

161.

Column-I

Column- II

Column- II

(A) Range of $f(x) = \sin^{-1} x + \cos^{-1} x + \cot^{-1} x$ is	(p)	$\left[0,\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right]$
(B) Range of $f(x) = \cot^{-1} x + \tan^{-1} x + \csc^{-1} x$ is	(q)	$\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$
(C) Range of $f(x) = \cot^{-1} x + \tan^{-1} x + \cos^{-1} x$ is	(r)	$\{0,\pi\}$
(D) Range of $f(x) = \sec^{-1} x + \csc^{-1} x + \sin^{-1} x$ is	(s)	$\left[\frac{3\pi}{4},\frac{5\pi}{4}\right]$
CODES :		

	Α	В	С	D
a)	р	q	r	S
b)	r	S	р	q
c)	q	r	S	р
d)	S	р	q	r

162.

Column-I

(A)
$$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} =$$
 (p) $\pi/6$
(B) $\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} =$ (q) $\pi/2$
(C) If $A = \tan^{-1}\frac{x\sqrt{3}}{2\lambda - x}$ and $B = \tan^{-1}\left(\frac{2x - \lambda}{\lambda\sqrt{3}}\right)$, then (r) $\pi/4$
the value of $A - B$ is
(D) $\tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{1}{3} =$ (s) π
CODES :

	Α	В	С	D
a)	q	S	р	r
b)	S	r	q	р
c)	р	q	r	S
d)	r	р	S	q

163.

Column-I

Column- II

Page 14

(A) $\sin^{-1} x + x > 0$, for	(p)	<i>x</i> < 0
(B) $\cos^{-1} x - x \ge 0$, for	(q)	$x \in (0,1]$
(C) $\tan^{-1} x + x < 0$, for	(r)	$x\in [-1,0)$
(D) $\cot^{-1} x + x > 0$, for	(s)	x > 0
CODES :		

	Α	В	С	D
a)	P,r	q,r,s	q	r
b)	q	r	p,r	q,r,s
c)	r	q	q,r,s	p,r
d)	q,r,s	p,r	r	q

164.

Column-I

(A)	$x \in [\pi, 2\pi] \Rightarrow \tan^{-1}(\tan x) $ can be
(B)	$x \in [\pi, 2\pi] \Rightarrow \cot^{-1}(\cot x) $ can be
(C)	$x \in [-\pi, \pi] \Rightarrow \sin^{-1}(\sin x) $ can be
(D)	$x \in [-\pi, \pi] \Rightarrow \cos^{-1}(\cos x) $ can be
COD	DES :

uU	LU	•	

	Α	В	С	D
a)	Q,r,s	p,r	p,q	q
b)	q	p,q	p,r	q,r,s
c)	p,q	q	q,r,s	p,r
d)	p,r	q,r,s	q	p,q

165.

Column-I

- (A) $\cos^{-1}(4x^3 3x) = 3\cos^{-1}x$, then x can take (p) [1/2, 1] values
- **(B)** $\sin^{-1}(3x 4x^3) = 3\sin^{-1}x$, then x can take (q) [-1/2, 0]values
- (C) $\cos^{-1}(4x^3 3x) = 3\sin^{-1}x$, then x can take (r) $[0, \sqrt{3}/2]$ values
- **(D)** $\sin^{-1}(3x 4x^3) = 3\cos^{-1}x$, then *x* can take (s) [0, 1/2] values

CODES:

Column- II

(p) $|x - 2\pi|$ (q) $|x - \pi|$

(r) |x|

(s) $|x + \pi|$

Column- II

	Α	В	С	D
a)	р	q,s	r,s	r,s
b)	r,s	р	q,s	r,s
c)	q,s	r,s	р	q
d)	q	q,s	q,s	r,s

Linked Comprehension Type

This section contain(s) 15 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 166 to -166**

$$\sum_{r=1}^{n} \tan^{-1} \left(\frac{x_1 - r_{r-1}}{1 + x_{r-1} x_r} \right) = \sum_{r=1}^{n} (\tan^{-1} x_r - \tan^{-1} x_{r-1})$$
$$= \tan^{-1} x_n - \tan^{-1} x_0, \forall n \in N$$

On the basis of above information, answer the following questions:

166. The sum to infinite terms of the series

$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{2}{9}\right) + \dots + \tan^{-1}\left(\frac{2^{n-1}}{1+2^{2n-1}}\right) + \dots \text{ is}$$

a) $\frac{\pi}{4}$ b) $\frac{\pi}{2}$ c) π d) none of these

Paragraph for Question Nos. 167 to - 167

 $f(x) = \sin{\cot^{-1}(x+1)} - \cos{(\tan^{-1}x)}$ And $a = \cos{\tan^{-1}\sin{\cot^{-1}x}}$ On the basis of above information, answer the following question:

167. The value of *x* for which f(x) = 0 is

a)
$$-\frac{1}{2}$$
 b) 0 c) $\frac{1}{2}$ d) 1

Paragraph for Question Nos. 168 to - 168

 $\sum_{r=1}^{n} \tan^{-1} \left(\frac{x_1 - r_{r-1}}{1 + x_{r-1} x_r} \right) = \sum_{r=1}^{n} (\tan^{-1} x_r - \tan^{-1} x_{r-1})$ $= \tan^{-1} x_n - \tan^{-1} x_0, \forall n \in \mathbb{N}$

On the basis of above information, answer the following questions:

168. The sum to infinite terms of the series

$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{2}{9}\right) + \dots + \tan^{-1}\left(\frac{2^{n-1}}{1+2^{2n-1}}\right) + \dots \text{ is}$$

a) $\frac{\pi}{4}$ b) $\frac{\pi}{2}$ c) π

d) none of these

Paragraph for Question Nos. 169 to - 169

 $f(x) = \sin{\cot^{-1}(x+1)} - \cos{(\tan^{-1}x)}$ And $a = \cos{\tan^{-1}\sin{\cot^{-1}x}}$ On the basis of above information, answer the following question:

169. The value of *x* for which
$$f(x) = 0$$
 is
a) $-\frac{1}{2}$ b) 0 c) $\frac{1}{2}$ d) 1

Paragraph for Question Nos. 170 to - 170

For $x, y, z, t \in R$, $\sin^{-1} x + \cos^{-1} y + \sec^{-1} z \ge t^2 - \sqrt{2\pi} t + 3\pi$

170. The value of <i>x</i>	y + y + z is equal to		
a) 1	b) 0	c) 2	d) —1

Paragraph for Question Nos. 171 to - 171

 $ax + b (\sec(\tan^{-1} x)) = c \text{ and } ay + b (\sec(\tan^{-1} y)) = c$

171. The value of *xy* is

a)
$$\frac{2ab}{a^2 - b^2}$$
 b) $\frac{c^2 - b^2}{a^2 - b^2}$ c) $\frac{c^2 - b^2}{a^2 + b^2}$ d) None of these

Paragraph for Question Nos. 172 to - 172

Consider the system of equations $\cos^{-1} x + (\sin^{-1} y)^2 = \frac{p\pi^2}{4}$ and $(\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi^4}{16}$, $p \in Z$

172. The value of p for which system has a solution isa) 1b) 2c) 0d) -1

Paragraph for Question Nos. 173 to - 173

Let $\cos^{-1}(4x^3 - 3x) = a + b \cos^{-1} x$

^{173.} If
$$x \in \left[-\frac{1}{2}, -1\right)$$
, then the value of $a + b\pi$ is
a) 2π b) 3π c) π d) -2π

Integer Answer Type

174. If $x = \sin^{-1}(a^6 + 1) + \cos^{-1}(a^4 + 1) - \tan^{-1}(a^2 + 1)$, $a \in R$, then the value of $\sec^2 x$ is ______ 175. Number of values of x for which $\sin^{-1}\left(x^2 - \frac{x^4}{3} + \frac{x^6}{9}\cdots\right) + \cos^{-1}\left(x^4 - \frac{x^8}{3} + \frac{x^{12}}{9}\cdots\right) = \frac{\pi}{2}$, where $0 \le |x| < 1$ $\sqrt{3}$, is _____

- 176. If $\tan^{-1}\left(x + \frac{3}{x}\right) \tan^{-1}\left(x \frac{3}{x}\right) = \tan^{-1}\frac{6}{x}$, then the value of x^4 is ______
- 177. Let $\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x)$ be π . If *x* satisfies the equation $ax^3 + bx^2 + cx 1 = 0$, then the value of (b a c) is _____
- 178. If the area enclosed by the curves $f(x) = \cos^{-1}(\cos x)$ and $g(x) = \sin^{-1}(\cos x)$ in $x \in [9\pi/4, 15\pi/4]$ is $a\pi^2/b$ (where *a* and *b* are coprime), then the value of (a b) is _____
- 179. If $0 < \cos^{-1} x < 1$ and $1 + \sin(\cos^{-1} x) + \sin^{2}(\cos^{-1} x) + \sin^{3}(\cos^{-1} x) + \dots = 2$, then the value of $12x^{2}$ is
- 180. Number of integral values of x satisfying the equation $\tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x)$ is
- 181. The solution set of inequality $(\cot^{-1} x)(\tan^{-1} x) + (2 \frac{\pi}{2})\cot^{-1} x 3\tan^{-1} x 3$

 $(2-\frac{\pi}{2}) > 0$ is (a, b), then the value of $\cot^{-1} a + \cot^{-1} b$ is _____

- 182. If the roots of the equation $x^3 10x + 11 = 0$ are u, v and w. Then the value of $3 \operatorname{cosec}^2 (\tan^{-1} u + \tan -1v + \tan -1w)$ is _____
- 183. If range of the function $f(x) = \sin^{-1} x + 2 \tan^{-1} x + x^2 + 4x + 1$ is [p, q], then the value of (p + q) is
- 184. If the domain of the function $f(x) = \sqrt{3\cos^{-1}(4x) \pi}$ is [a, b], then the value of 4a + 64b is _____
- 185. Absolute value of sum of all integers in the domain of $f(x) = \cot^{-1}\sqrt{(x+3)x} + \cos^{-1}\sqrt{x^2+3x+1}$ is
- 186. If *n* is the number of terms of the series $\cot^{-1} 3$, $\cot^{-1} 7$, $\cot^{-1} 13$, $\cot^{-1} 21$, ..., whose sum is $\frac{1}{2}\cos^{-1}\left(\frac{24}{145}\right)$, then the value of n 5 is _____
- 187. The least value of $(1 + \sec^{-1} x)(1 + \cos^{-1} x)$ is _____

2.INVERSE TRIGONOMETRICE FUNCTIONS

						ANS	W	ER K	EY :					
1)	С	2)	d	3)	а	4)	b	9)	a,c,d	10)	b,c,d	11)	a,d	12)
5)	d	6)	а	7)	b	8)	b		a,d					
9)	С	10)	d	11)	а	12)	d	13)	b	14)	c,d	15)	a,c	16)
13)	b	14)	С	15)	b	16)	b		a,b,c					
17)	d	18)	b	19)	b	20)	d	17)	a,b,c	18)	a,b,d	19)	a,c	20)
21)	d	22)	а	23)	d	24)	b		a,b,c					
25)	С	26)	b	27)	С	28)	а	21)	b,c,d	22)	a,b,c	23)	a,b	24)
29)	d	30)	а	31)	b	32)	С		a,c					
33)	а	34)	d	35)	b	36)	b	25)	b	26)	a,b,c,d	27)	a,d	28)
37)	С	38)	а	39)	С	40)	С		b,c					
41)	d	42)	С	43)	С	44)	d	29)	a,b,d	30)	a,b,d	31)	a,b,c	32)
45)	С	46)	С	47)	С	48)	d		a,c,d					
49)	а	50)	С	51)	d	52)	b	33)	a,b,c	1)	d	2)	а	3)
53)	d	54)	С	55)	b	56)	а		4)	а				
57)	d	58)	а	59)	С	60)	b	5)	а	6)	а	7)	а	8)
61)	С	62)	С	63)	d	64)	а	9)	а	10)	С	11)	d	12)
65)	а	66)	а	67)	b	68)	С	13)	а	14)	а	15)	d	16)
69)	b	70)	С	71)	d	72)	а	17)	d	18)	a	19)	d	20)
73)	d	74)	С	75)	b	76)	С	21)	а	22)	d	23)	а	24)
77)	С	78)	С	79)	b	80)	d	25)	а	1)	b	2)	d	3)
81)	С	82)	e	83)	b	84)	а		4)	b				
85)	b	86)	d	87)	d	88)	d	5)	С	6)	a	1)	а	2)
89)	С	90)	d	91)	d	92)	С		3)	а	4)	а		
93)	С	94)	С	95)	С	96)	а	5)	d	6)	b	7)	b	8)
97)	b	98)	а	99)	С	100)	b	1)	2	2)	3	3)	9	4)
101)	С	1)	a,c,d	2)	a,b,c	3)		5)	1	6)	9	7)	1	8)
	a,b	4)	a,d					9)	6	10)	4	11)	7	12)
5)	a, b	6)	a,c	7)	a,d	8)		13)	6	14)	1			

: HINTS AND SOLUTIONS :

1 **(c)**

Let $\tan^{-1} 2 = \alpha \Rightarrow \tan \alpha = 2$ and $\cot^{-1} 3 = \beta \Rightarrow \cot \beta = 3$ $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ $= \sec^2 \alpha + \csc^2 \beta$ $= 1 + \tan^2 \alpha + 1 + \cot^2 \beta$ $= 2 + (2)^2 + (3)^2 = 15$

2 **(d)**

 $\lim_{|x|\to\infty} \cos(\tan^{-1}(\sin(\tan^{-1}x)))$ $= \cos(\tan^{-1}(\sin(\tan^{-1}\infty)))$

$$= \cos(\tan^{-1}(\sin(\pi/2)))$$

$$= \cos(\tan^{-1}(1)) = \cos(\pi/4) = \frac{1}{\sqrt{2}}$$

3 (a)

$$\sin^{-1}(\sin 12) + \cos^{-1}(\cos 12) = \sin^{-1}(\sin(12 - 4\pi)) + \cos^{-1}(\cos(4\pi - 12))$$

$$= 12 - 4\pi + 4\pi - 12 = 0$$

4 **(b)**

5

Since
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$$

 $\therefore \sin^{-1} x + \sin^{-1} y = \pi - \sin^{-1} z$
 $\Rightarrow \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) = \pi - \sin^{-1}(z)$
 $\Rightarrow x \sqrt{1 - y^2} + y \sqrt{1 - x^2} = \sin(\pi - \sin^{-1}(z))$
 $= \sin(\sin^{-1} z) = z$
 $\Rightarrow x^2 (1 - y^2) = z^2 + y^2 (1 - x^2) - 2zy \sqrt{1 - x^2}$
 $\Rightarrow (x^2 - y^2 - z^2)^2$
 $= 4y^2 z^2 (1 - x^2)$
 $\Rightarrow x^4 + y^4 + z^4 - 2x^2 y^2 - 2x^2 z^2 + 2y^2 z^2$
 $= 4y^2 z^2 - 4x^2 y^2 z^2$
 $\Rightarrow x^4 + y^4 + z^4 + 4x^2 y^2 z^2$
 $= 2(x^2 y^2 + y^2 z^2 + z^2 x^2) \Rightarrow K$
 $= 2$
(d)

$$\cot^{-1} \left[\frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right]$$

= $\cot^{-1} \left[\frac{\left(\sqrt{1 - \sin x} + \sqrt{1 + \sin x}\right)}{\left(\sqrt{1 - \sin x} - \sqrt{1 + \sin x}\right)} \right]$
= $\cot^{-1} \left[\frac{\left(1 - \sin x\right) + \left(1 + \sin x\right) + 2\sqrt{1 - \sin^2 x}}{\left(1 - \sin x\right) - \left(1 + \sin x\right)} \right]$
= $\cot^{-1} \left[\frac{2\left(1 + \cos x\right)}{\left(1 - 2\sin x\right)} \right]$
= $\cot^{-1} \left[-\frac{2\cos^2(x/2)}{2\sin(x/2)\cos(x/2)} \right] = \cot^{-1} \left(-\cot\frac{x}{2} \right)$
= $\cot^{-1} \left[\cot\left(\pi - \frac{x}{2}\right) \right] = \pi - \frac{x}{2}$
6 (a)
 $\frac{\pi}{2} - \cos^{-1} \cos\left(\frac{2\left(x^2 + 5|x| + 3\right) - 2}{x^2 + 5|x| + 3}\right)$
= $\cot \cot^{-1} \left(\frac{2}{9|x|} - 2\right) + \frac{\pi}{2}$
 $\frac{\pi}{2} - 2 + \frac{2}{x^2 + 5|x| + 3} = \frac{2}{9|x|} - 2 + \frac{\pi}{2}$
 $\Rightarrow |x|^2 - 4|x| + 3 = 0$
 $|x| = 1, 3 \Rightarrow x = \pm 1, \pm 3$

(b)

7

Let $x = \sin \theta$ and $\sqrt{x} = \sin \phi$, where $x \in [0, 1] \rightarrow \theta, \phi \in [0, \pi/2]$

$$\Rightarrow \theta - \phi \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

Now,
$$\sin^{-1}(x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2}) =$$

 $\sin^{-1}(\sin\theta \sqrt{1-\sin^2\phi} - \sin\phi\sqrt{1-\sin^2\theta})$

$$=\sin^{-1}(\sin\theta\cos\phi-\sin\phi\cos\theta)$$

$$= \sin^{-1}\sin(\theta - \phi) = \theta - \phi$$
$$= \sin^{-1}(x) - \sin^{-1}(\sqrt{x})$$

(b)

8

We have $\frac{xy}{zr}\frac{yz}{xr} = \frac{y^2}{r^2} = \frac{y^2}{x^2+y^2+z^2} < 1$

$$\Rightarrow \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right)$$
$$= \tan^{-1}\left(\frac{\frac{xy}{zr} + \frac{yz}{xr}}{1 - \frac{xy}{zr}\frac{yz}{xr}}\right) + \tan^{-1}\left(\frac{xz}{yr}\right)$$
$$= \tan^{-1}\left(\frac{\frac{y(x^2 + z^2)}{xzr}}{\frac{r^2 - y^2}{r^2}}\right) + \tan^{-1}\left(\frac{xz}{yr}\right)$$
$$= \tan^{-1}\left(\frac{\frac{yr(x^2 + z^2)}{xz}}{(x^2 + z^2)}\right) + \tan^{-1}\left(\frac{xz}{yr}\right)$$
$$= \tan^{-1}\left(\frac{\frac{yr}{xz}}{xz}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) = \frac{\pi}{2}$$

9 **(c)**

$$\tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$$

$$\Rightarrow \tan^{-1} x = 2\left(\frac{\pi}{3} - \cot^{-1} x\right)$$

$$= 2\left(\frac{\pi}{3} - \left(\frac{\pi}{2} - \tan^{-1} x\right)\right)$$

$$= 2\left(-\frac{\pi}{6} + \tan^{-1} x\right)$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{3} \Rightarrow x = \tan\frac{\pi}{3} = \sqrt{3}$$

 $\sin^{-1}(x^2 - 4x + 6) + \cos^{-1}(x^2 - 4x + 6)$ = $\sin^{-1}((x - 2)^2 + 2)$ + $\cos^{-1}((x - 2)^2 + 2)$

 $(x-2)^2 + 2 \ge 2$, for which $\sin^{-1} x$ and $\cos^{-1} x$ are not defined

11 (a)

Expanding, we have

$$(\tan^{-1} x)^3 + (\tan^{-1} 2x)^3 + (\tan^{-1} 3x)^3$$

= 3 \tan^{-1} x \tan^{-1} 2x \tan^{-1} 3x

$$\Rightarrow x = 0$$

12 (d)
$$\cos^{-1}\left(\sqrt{\frac{2}{3}}\right) - \cos^{-1}\left(\frac{\sqrt{6}+1}{2\sqrt{3}}\right)$$

$$= \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) - \tan^{-1}\left(\frac{\sqrt{3} - \sqrt{2}}{1 + \sqrt{6}}\right)$$

$$= \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

$$- [\tan^{-1}\sqrt{3} - \tan^{-1}\sqrt{2}]$$

$$= \left(\tan^{-1}\frac{1}{\sqrt{2}} + \tan^{-1}\sqrt{2}\right) - \tan^{-1}\sqrt{3}$$

$$= \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$$

(b)

$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots\right) + \cos^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4}\right)$$

$$= \frac{\pi}{2}$$

$$\Rightarrow \cos^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4} \dots\right)$$

$$= \frac{\pi}{2} - \sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4}\right)$$

$$= \cos^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4}\right)$$

13

$$\sin^{-1} x = 2 \sin^{-1} a$$

$$\operatorname{Now} -\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} \le 2 \sin^{-1} a \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{4} \le \sin^{-1} a \le \frac{\pi}{4}$$

$$\Rightarrow \frac{1}{\sqrt{2}} \le a \le \frac{1}{\sqrt{2}} \Rightarrow |a| \le \frac{1}{\sqrt{2}}$$

15 **(b)**

The given equation is $ax^2 + \sin^{-1}((x-1)^2 + 1 + \cos^{-1}x - 12 + 1 = 0)$

Now, $-1 \le (x-1)^2 + 1 \le 1 \Rightarrow x = 1$ So, we have $a + \frac{\pi}{2} = 0 \Rightarrow a = -\frac{\pi}{2}$

16 **(b)** $\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right]$ $\operatorname{Let}\frac{1}{2}\cos^{-1}\frac{a}{b} = \theta \Rightarrow \cos 2\theta = \frac{a}{b}$ Thus, $\tan\left[\frac{\pi}{4} + \theta\right] + \tan\left[\frac{\pi}{4} - \theta\right] = \frac{1 + \tan\theta}{1 - \tan\theta} + \frac{1 - \tan\theta}{1 + \tan\theta}$

$$= \frac{1 + \tan^2 \theta + 2 \tan \theta + 1 + \tan^2 \theta - 2 \tan \theta}{(1 - \tan^2 \theta)}$$

$$= \frac{2(1 + \tan^2 \theta)}{1 - \tan^2 \theta} = \frac{2}{\cos 2\theta} = \frac{2}{(a/b)} = \frac{2b}{a}$$
17 (d)

$$\frac{3\pi}{2} < 5 < \frac{5\pi}{2}$$

$$\Rightarrow \sin^{-1}(\sin 5) = 5 - 2\pi$$
Given $\sin^{-1}(\sin 5) > x^2 - 4x$

$$\Rightarrow x^2 - 4x + 4 < 9 - 2\pi$$

$$\Rightarrow (x - 2)^2 < 9 - 2\pi$$

$$\Rightarrow -\sqrt{9 - 2\pi} < x - 2 < \sqrt{9 - 2\pi}$$

$$\Rightarrow 2 - \sqrt{9 - 2\pi} < x < 2 + \sqrt{9 - 2\pi}$$
18 (b)

$$0 \le x^2 + x + 1 \le 1 \text{ and } 0 \le x^2 + x \le 1$$

$$\therefore x = -1, 0$$
For $x = -1$
L. H. S. = $2 \sin^{-1} 1 + \cos^{-1} 0 = \frac{3\pi}{2}$

$$\therefore x = -1 \text{ is a solution}$$
For $x = 0$, L. H. S. = $2 \sin^{-1} 1 + \cos^{-1} 0 = \frac{3\pi}{2}$
Therefore, $x = 0$ is a solution and sum of the solutions $= -1$
19 (b)

$$\tan^{-1} \left(\frac{x \cos \theta}{1 - x \sin \theta}\right) - \cot^{-1} \left(\frac{\cos \theta}{x - \sin \theta}\right)$$

$$= \tan^{-1} \left(\frac{x \cos \theta}{1 - x \sin \theta}\right)$$

$$= \tan^{-1} \left(\frac{x \cos \theta}{1 - x \sin \theta}\right)$$

$$= \tan^{-1} \left(\frac{x \cos \theta}{1 - x \sin \theta} + \frac{x^2 \sin \theta - x \sin^2 \theta}{\cos \theta - x \cos \theta \sin \theta}\right)$$

$$= \tan^{-1} \left(\frac{-x \sin^2 \theta + \sin \theta + x^2 \sin \theta - x \sin^2 \theta}{\cos \theta - 2x \cos \theta \sin \theta + x^2 \cos \theta} \right)$$

$$= \tan^{-1} \left(\frac{-2x \sin^2 \theta + \sin \theta + x^2 \sin \theta}{\cos \theta - 2x \cos \theta \sin \theta + x^2 \cos \theta} \right)$$

$$= \tan^{-1} \left(\frac{\sin \theta \left(-2x \sin \theta + 1 + x^2 \right)}{\cos \theta \left(1 - 2x \sin \theta + x^2 \right)} \right)$$

$$= \tan^{-1} (\tan \theta) = \theta$$
20 (d)

$$a \sin^{-1} x - b \cos^{-1} x = c$$
We have $b \sin^{-1} x + b \cos^{-1} x = \frac{b\pi}{2} \Rightarrow$

$$(a + b) \sin^{-1} x = \frac{b\pi}{2} + c$$

$$\Rightarrow \sin^{-1} x = \frac{\pi a b + c(a - b)}{a + b}$$
21 (d)

$$\tan^{-1} \left(\frac{\tan x}{4} \right) + \tan^{-1} \left(\frac{3 \sin 2x}{5 + 3 \cos 2x} \right)$$

$$= \tan^{-1} \left(\frac{\tan x}{4} \right)$$

$$+ \tan^{-1} \left(\frac{6 \tan x}{1 + \tan^2 x} \right)$$

$$= \tan^{-1} \left(\frac{\tan x}{4} \right) + \tan^{-1} \left(\frac{6 \tan x}{3 + 2 \tan^2 x} \right)$$

$$= \tan^{-1} \left(\frac{\tan x}{4} \right) + \tan^{-1} \left(\frac{3 \tan x}{4 + \tan^2 x} \right)$$

$$= \tan^{-1} \left(\frac{(16 \tan x)}{4 + \tan^2 x} \right) \left[as \left| \frac{\tan x}{4} \frac{3 \tan x}{4 + \tan^2 x} \right| \right]$$

$$= \tan^{-1} \left(\frac{16 \tan x + \tan^3 x}{16 + \tan^2 x} \right)$$

$$= \tan^{-1} \left(\frac{16 \tan x + \tan^3 x}{16 + \tan^2 x} \right)$$

$$= \tan^{-1} \left((16 \tan x) = x \right)$$
22 (a)
We have $\sin^{-1} \left(\cot \left(\sin^{-1} \sqrt{\frac{2 - \sqrt{3}}{4}} + \cos^{-1} \frac{\sqrt{12}}{4} + \sec^{-1} \sqrt{2} \right) \right)$

$$= \sin^{-1}\left(\cot\left(\sin^{-1}\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right) + \cos^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{1}{\sqrt{2}}\right)\right)$$

$$= \sin^{-1} [\cot(15^\circ + 30^\circ + 45^\circ)]$$
$$= \sin^{-1} (\cot(90^\circ)) = \sin^{-1}(0) = 0$$

23 (d)

$$2 \tan^{-1} 2x = \sin^{-1} \frac{4x}{1 + 4x^2}$$
$$\Rightarrow -\frac{\pi}{2} \le 2 \tan^{-1} 2x \le \frac{\pi}{2}$$
$$\Rightarrow -\frac{\pi}{4} \le \tan^{-1} 2x \le \frac{\pi}{4}$$
$$\Rightarrow -1 \le 2x \le 1$$
$$\Rightarrow -\frac{1}{2} \le x \le \frac{1}{2}$$

24 **(b)**

We have

$$\begin{aligned} \left| \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right| &< \frac{\pi}{3} \Rightarrow -\frac{\pi}{3} < \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \\ &< \frac{\pi}{3} \end{aligned}$$
$$\Rightarrow 0 \le \cos^{-1} \frac{1 - x^2}{1 + x^2} < \frac{\pi}{3} \Rightarrow \frac{1}{2} < \frac{1 - x^2}{1 + x^2} \le 1$$
$$\Rightarrow 1 + x^2 < 2(1 - x^2) \le 2(1 + x^2) \Rightarrow 0 \le x^2 < \frac{1}{3} \\ \Rightarrow -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \end{aligned}$$

25 (c)

$$\sin^{-1}\left(\frac{\sqrt{r} - \sqrt{r-1}}{\sqrt{r(r+1)}}\right) = \tan^{-1}\left(\frac{\sqrt{r} - \sqrt{r-1}}{1 + \sqrt{r(r-1)}}\right)$$
$$\Rightarrow \sum_{r=1}^{n} \sin^{-1}\left(\frac{\sqrt{r} - \sqrt{r-1}}{\sqrt{r(r+1)}}\right)$$
$$= \sum_{r=1}^{n} (\tan^{-1}\sqrt{r} - \tan^{-1}\sqrt{r-1})$$
$$= \tan^{-1}\sqrt{n}$$

$$\cos^{-1}\left(\cos\frac{5\pi}{4}\right) = \cos^{-1}\left(\cos\left(2\pi - \frac{5\pi}{4}\right)\right)$$
$$= \cos^{-1}\left(\cos\frac{3\pi}{4}\right) = \frac{3\pi}{4}$$
$$(c)$$
Given equation is $\tan^{-1}\frac{a+x}{a} + \tan^{-1}\frac{a-x}{a} =$
$$\Rightarrow \tan^{-1}\left(\frac{\frac{a+x}{a} + \frac{a-x}{a}}{1 - \frac{a+x}{a}\frac{a-x}{a}}\right) = \frac{\pi}{6}$$

 $\frac{\pi}{6}$

$$\Rightarrow \frac{2a^2}{x^2} = \tan\frac{\pi}{6} = \frac{1}{\sqrt{3}} \Rightarrow x^2 = 2\sqrt{3}a^2$$

28 (a)

26 **(b)**

27

$$2 \tan^{-1} \left[\sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2} \right]$$

= $\cos^{-1} \left[\frac{1-\left(\frac{a-b}{a+b}\right) \tan^2 \frac{\theta}{2}}{1+\left(\frac{a-b}{a+b}\right) \tan^2 \frac{\theta}{2}} \right] \left[\because 2 \tan^{-1} x \right]$
= $\cos^{-1} \left[\frac{1-x^2}{1+x^2} \right]$
= $\cos^{-1} \left[\frac{(a+b)-(a-b) \tan^2 \frac{\theta}{2}}{(a+b)+(a-b) \tan^2 \frac{\theta}{2}} \right]$
= $\cos^{-1} \left[\frac{a \left(1-\tan^2 \frac{\theta}{2}\right)+b \left(1+\tan^2 \frac{\theta}{2}\right)}{a \left(1+\tan^2 \frac{\theta}{2}\right)+b \left(1-\tan^2 \frac{\theta}{2}\right)} \right]$
= $\cos^{-1} \left[\frac{\frac{a \left(1-\tan^2 \frac{\theta}{2}\right)}{1+\tan^2 \frac{\theta}{2}}+b \left(1-\tan^2 \frac{\theta}{2}\right)}{1+\tan^2 \frac{\theta}{2}} \right]$

$$= \cos^{-1} \left[\frac{a \cos \theta + b}{a + b \cos \theta} \right]$$

29 (d) Given that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$

$$\Rightarrow \tan^{-1}\left[\frac{x+y+z-xyz}{1-xy-yz-xz}\right] = \frac{\pi}{2}$$

Hence, xy + yz + zx - 1 = 0

30 **(a)** Let $\tan^{-1} x = \theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2} \Rightarrow -\pi < \theta$ $2\theta < \pi$

Let $\frac{\pi}{2} < 2\theta < \pi \implies \frac{\pi}{4} < \theta < \frac{\pi}{2} \implies \frac{\pi}{4} < \tan^{-1} x <$ $\frac{\pi}{2} \implies x > 1$ $\implies \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1} (\tan 2\theta)$ $= \tan^{-1} (\tan(2\theta - \pi)) = 2\theta - \pi$ $= 2 \tan^{-1} x - \pi$ (b)

31 **(b)**

If x < 0, then $\sin^{-1} x < 0$ but $\cos^{-1} \sqrt{1 - x^2}$ is always positive

So,
$$\sin^{-1} x = -\cos^{-1} \sqrt{1 - x^2}$$

32 (c)

$$\sin^{-1}\sqrt{1-x^{2}} + \cos^{-1}x$$

$$= \cot^{-1}\frac{\sqrt{1-x^{2}}}{x} - \sin^{-1}x$$
or $\frac{\pi}{2} + \sin^{-1}\sqrt{1-x^{2}} = \cot^{-1}\frac{\sqrt{1-x^{2}}}{x}$

$$\tan^{-1}\frac{\sqrt{1-x^{2}}}{x} + \sin^{-1}\sqrt{1-x^{2}} = 0$$

$$\Rightarrow x \in [-1,0] \cup \{1\}$$

33 (a)

Let $\sin^{-1} a = A$, $\sin^{-1} b = B$ and $\sin^{-1} c = C$ $\Rightarrow \sin A = a$, $\sin B = b$, $\sin C = c$ and $A + B + C = \pi \Rightarrow \sin 2A + \sin 2B + \sin 2C =$ $4 \sin A \sin B \sin C$ (i) $\Rightarrow \sin A \cos A + \sin B \cos B + \sin C \cos C$ $= 2 \sin A \sin B \sin C$ $\Rightarrow \sin A \sqrt{(1 - \sin^2 A)} + \sin B \sqrt{(1 - \sin^2 B)} +$ $\sin C \sqrt{1 - \sin^2 C} = 2 \sin A \sin B \sin C$ (ii) $\Rightarrow a \sqrt{(1 - a^2)} + b \sqrt{(1 - b^2)} + c \sqrt{(1 - c^2)}$ = 2abc *Trick*: Let $a = \frac{1}{\sqrt{2}}$, $b = \frac{1}{\sqrt{2}}$, c = 1Then $a\sqrt{1 - a^2} + b\sqrt{1 - b^2} + c\sqrt{1 - c^2} =$ $\frac{1}{\sqrt{2}} \sqrt{1 - \frac{1}{2}} + \frac{1}{\sqrt{2}} \sqrt{1 - \frac{1}{2}} + 1\sqrt{1 - 1} = 1$ 34 (d) $2^{2\pi/\sin^{-1}x} - 2(a+2)2^{\pi/\sin^{-1}x} + 8a < 0$ $(2^{\pi/\sin^{-1}x} - 4)(2^{\pi/\sin^{-1}x} - 2a) < 0$ Now $2^{\pi/\sin^{-1}x} \in (0, \frac{1}{4}] \cup [4, \infty)$ Now for $2^{\pi/\sin^{-1}x} \in (0, \frac{1}{4}]$, we have $(2^{\pi/\sin^{-1}x} - 4<0)$ $\Rightarrow 2^{\pi/\sin^{-1}x} - 2a > 0$ $\Rightarrow 2a < 2^{\pi/\sin^{-1}x} \Rightarrow 2a < \frac{1}{4}$ $\Rightarrow 0 \le a < \frac{1}{8}$ Similarly, for $2^{\pi/\sin^{-1}x} \in [4, \infty), a > 2$, we get

$$a \in \left[0, \frac{1}{8}\right) \cup (2, \infty)$$

value of *n* is 5

35 **(b)**

Given that $\sin^{-1} x + \tan^{1} x = 2k + 1$

The range of the function $\sin^{-1} x + \tan^{-1} x$ is $\left[\frac{-3\pi}{4}, \frac{3\pi}{4}\right]$ [as both functions are increasing]

Therefore, the integral values of k are -1 and 0

36 **(b)**

$$\tan(\sin^{-1}(\cos(\sin^{-1}x)))\tan(\cos^{-1}(\sin(\cos^{-1}x)))$$

$$= \tan\left(\sin^{-1}\left(\cos\left(\cos^{-1}\sqrt{1-x^{2}}\right)\right)\right)$$

$$\tan\left\{\cos^{-1}\left(\sin\left(\sin^{-1}\sqrt{1-x^{2}}\right)\right)\right\}$$

$$= \tan\left(\sin^{-1}\sqrt{1-x^{2}}\right)\tan\left(\cos^{-1}\sqrt{1-x^{2}}\right)$$

$$= \tan(\cos^{-1}x)\tan(\sin^{-1}x)$$

$$= \tan(\cos^{-1}x)\tan(\pi/2 - \cos^{-1}x)$$

$$= \tan(\cos^{-1}x)\cot(\cos^{-1}x) = 1$$
37 **(c)**

$$\cot^{-1}\frac{n}{\pi} > \frac{\pi}{6}$$

$$\Rightarrow \frac{n}{\pi} < \cot\frac{\pi}{6} \quad [\text{as } \cot^{-1}x \text{ is a decreasing function}]$$

$$\Rightarrow \frac{n}{\pi} < \sqrt{3} \Rightarrow n < \sqrt{3}\pi \Rightarrow n < 5.46 \Rightarrow \text{maximum}$$

38 (a)
We
have
$$\sum_{m=1}^{n} \tan^{-1} \left(\frac{2m}{m^{4} + m^{2} + 2} \right) =$$

 $\sum_{m=1}^{n} \tan^{-1} \left(\frac{2m}{1 + (m^{2} + m + 1) - (m^{2} - m + 1)} \right)$
 $= \sum_{m=1}^{n} \tan^{-1} \left(\frac{(m^{2} + m + 1) - (m^{2} - m + 1)}{1 + (m^{2} + m + 1)(m^{2} - m + 1)} \right)$
 $= \sum_{m=1}^{n} [\tan^{-1}(m^{2} + m + 1) - \tan^{-1}(m^{2} - m + 1)]$
 $= (\tan^{-1} 3 - \tan^{-1} 1) + (\tan^{-1} 7 - \tan^{-1} 3) + (\tan^{-1} 13 - \tan^{-1} 7) + \cdots + [\tan^{-1}(n^{2} + n + 1) - \tan^{-1}(n^{2} - n + 1)]$
 $= \tan^{-1}(n^{2} + n + 1) - \tan^{-1} 1 = \tan^{-1}\left(\frac{n^{2} + n}{2 + n^{2} + n}\right)$
For $n \to \infty$, sum $= \tan^{-1}(1) = \frac{\pi}{4}$
39 (c)
 $\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}x\right) = \frac{1 + \tan\left(\frac{1}{2}\cos^{-1}x\right)}{1 - \tan\left(\frac{1}{2}\cos^{-1}x\right)} + \frac{1 - \tan\left(\frac{1}{2}\cos^{-1}x\right)}{1 + \tan\left(\frac{1}{2}\cos^{-1}x\right)}$

$$\begin{pmatrix} 1 + \tan\left(\frac{1}{2}\cos^{-1}x\right) \end{pmatrix}^2 + \\ = \frac{\left(1 - \tan\left(\frac{1}{2}\cos^{-1}x\right)\right)^2}{1 - \tan^2\left(\frac{1}{2}\cos^{-1}x\right)} \\ = 2\frac{1 + \tan^2\left(\frac{1}{2}\cos^{-1}x\right)}{1 - \tan^2\left(\frac{1}{2}\cos^{-1}x\right)} \\ = \frac{2}{\cos(\cos^{-1}x)} = \frac{2}{x}$$

40 **(c)**

We have $\sin^{-1} x + \sin^{-1}(1-x) = \cos^{-1} x$ $\Rightarrow \sin(\sin^{-1} x + \sin^{-1}(1-x)) = \sin(\cos^{-1} x)$ $\Rightarrow x\sqrt{1 - (1-x)^2} + \sqrt{1 - x^2} (1-x) = \sqrt{1 - x^2}$

$$\Rightarrow x\sqrt{1 - (1 - x)^2} = x\sqrt{1 - x^2}$$
$$\Rightarrow x = 0 \text{ or } 2x - x^2 = 1 - x^2 \Rightarrow x = 0 \text{ or } x = \frac{1}{2}$$

41 (d) Given that $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ $\Rightarrow \cos^{-1}(x) + \cos^{-1}(y) = \pi - \cos^{-1}(z)$ $\Rightarrow \cos^{-1} \left(xy - \sqrt{1 - x^2} \sqrt{1 - y^2} \right) = \cos^{-1}(-z)$ $\Rightarrow xy - \sqrt{(1 - x^2)(1 - y^2)} = -z$ $\Rightarrow (xy + z) = \sqrt{(1 - x^2)(1 - y^2)}$ Squaring both sides, we get $x^2 + y^2 + z^2 + 2xyz = 1$

Trick: Put $x = y = z = \frac{1}{2}$ so that $\cos^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2} = \pi$

- 42 (c) $[\cot^{-1} x] + [\cos^{-1} x] = 0$ As $\cos^{-1} x, \cot^{-1} x \ge 0, [\cot^{-1} x] = [\cos^{-1} x] = 0$ $[\cot^{-1} x] = 0 \Rightarrow x \in (\cot 1, \infty)$ (i) $[\cos^{-1} x] = 0 \Rightarrow x \in (\cos 1, 1]$ (ii) Hence, from Eqs. (i) and (ii), $x \in (\cot 1, 1]$ 43 (c)
- $\sin^{-1}(x-1) \Rightarrow -1 \le x 1 \le 1 \Rightarrow 0 \le x \le 2$ $\cos^{-1}(x-3) \Rightarrow -1 \le x - 3 \le 1 \Rightarrow 2 \le x \le 4$ $\therefore x = 2$ So, $\sin^{-1}(2-1) + \cos^{-1}(2-3) + \tan^{-1}\frac{2}{2-4} = \cos^{-1}k + \pi$ $\Rightarrow \sin^{-1}1 + \cos^{-1}(-1) + \tan^{-1}(-1) = \cos^{-1}k + \pi$ $\Rightarrow \frac{\pi}{2} + \pi - \frac{\pi}{4} = \cos^{-1}k + \pi$ $\Rightarrow \cos^{-1}k = \frac{\pi}{4} \Rightarrow k = \frac{1}{\sqrt{2}}$

44 (d)

$$\sin^{-1}(-(x-1)(x-2)) + \cos^{-1}((x-3)(x-1)) = \frac{\pi}{4}$$

For $x \in [1, 2] \Rightarrow \sin^{-1}(-(x-1)(x-2)) \in [0, \pi/2, \pi] \Rightarrow no$
solution in the given range
Also, $-1 \le 3x - 2 - x^2 \le 1$ and $-1 \le x^2 - 4x + 3 \le 1 \Rightarrow 2 - \sqrt{2} \le x \le \frac{3+\sqrt{5}}{2}$
45 (c)
 $\cos^{-1}(\cos(2\cot^{-1}(\sqrt{2}-1))) = \cos^{-1}(\cos(2(67.5^{\circ})))$
 $= \cos^{-1}(\cos(135^{\circ})) = 135^{\circ} = \frac{3\pi}{4}$
46 (c)
 $2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2})$
Range of the right-hand angle is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 $\Rightarrow -\frac{\pi}{2} \le 2\sin^{-1}x \le \frac{\pi}{2}$
 $\Rightarrow \frac{-\pi}{2} \le \sin^{-1}x \le \frac{\pi}{4}$
 $\Rightarrow x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$
47 (c)
 $f(x) = \sin^{-1}x + \tan^{-1}x + \sec^{-1}x, \text{ clearly}$
domain of $f(x)$ is $x = \pm 1$
Thus, the range is $\{f(1), f(-1)\}$, i.e., $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$
48 (d)
Given, $\sin[\cot^{-1}(1+x)] = \cos(\tan^{-1}x)$
 $\therefore \sin\left(\sin^{-1}\frac{1}{\sqrt{1+(1+x^2)}}\right)$
 $= \cos\left(\cos^{-1}\frac{1}{\sqrt{1+x^2}}\right)$
 $\Rightarrow \frac{1}{\sqrt{1+(1+x^2)}} = \frac{1}{\sqrt{1+x^2}}$
 $\Rightarrow 1 + x^2 + 2x + 1 = x^2 + 1$
 $\Rightarrow x = -\frac{1}{2}$
49 (a)

$$1 + x^{2} \ge 2 |x| \Rightarrow \frac{2|x|}{1 + x^{2}} \le 1$$

$$\Rightarrow -1 \le \frac{2x}{1 + x^{2}} \le 1 \Rightarrow \tan^{-1}\left(\frac{2x}{1 + x^{2}}\right) \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
50 (c)
Put $\sin^{-1}\frac{5}{x} = A \Rightarrow \frac{5}{x} = \sin A$
 $\sin^{-1}\frac{12}{x} = B \Rightarrow \frac{12}{x} = \sin B \Rightarrow A + B = \frac{\pi}{2}$
 $\Rightarrow \sin A = \sin\left(\frac{\pi}{2} - B\right) = \cos B = \sqrt{1 - \sin^{2} B}$
 $\Rightarrow \frac{5}{x} = \sqrt{1 - \frac{144}{x^{2}}} \Rightarrow \frac{169}{x^{2}} = 1$
 $\Rightarrow x^{2} = 169 \Rightarrow x = 13 \quad [\because x = -13 \text{ doses not satisfy the given equation]}$
51 (d)
We have $\cos^{-1} x - \cos^{-1}\frac{y}{2} = \alpha$
 $\Rightarrow x = \cos\left(\cos^{-1}\frac{y}{2} + \alpha\right)$
 $= \cos\left(\cos^{-1}\frac{y}{2}\right)\cos \alpha$
 $- \sin\left(\cos^{-1}\frac{y}{2}\right)\sin \alpha$

$$= \frac{y}{2}\cos\alpha - \sqrt{1 - \frac{y^2}{4}}\sin\alpha$$

$$\Rightarrow 2x = y\cos\alpha - \sin\alpha\sqrt{4 - y^2}$$

$$\Rightarrow 2x - y\cos\alpha = -\sin\alpha\sqrt{4 - y^2}$$

Squaring, we get

$$4x^2 + y^2\cos^2\alpha - 4xy\cos\alpha = 4\sin^2\alpha - y^2\sin^2\alpha$$

$$\Rightarrow 4x^2 - 4xy\cos\alpha + y^2 = 4\sin^2\alpha$$

52 **(b)**

$$\cos^{-1}\left(\frac{1+x^2}{2x}\right) = \frac{\pi}{2} + (\sin^{-1}x + \cos^{-1}x)$$

 $\Rightarrow \cos^{-1}\left(\frac{1+x^2}{2x}\right) = \pi \Rightarrow \left(\frac{1+x^2}{2x}\right) = \cos \pi$
 $= -1 \Rightarrow x^2 + 1 + 2x = 0 \Rightarrow x$
 $= -1$
53 **(d)**

$$\sin^{-1}(\cos(\cos^{-1}(\cos x) + \sin^{-1}(\sin x)))$$

= $\sin^{-1}(\cos(x + \pi - x))$ [as $x \in (\pi/2, \pi)$]
= $\sin^{-1}(\cos \pi) = \sin^{-1}(-1) = -\frac{\pi}{2}$

54 (c)

$$x_1 = 2 \tan^{-1}\left(\frac{1+x}{1-x}\right)$$
 and $x_2 = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$
= $\tan^{-1}\left(\frac{1-x^2}{2x}\right)$

Now
$$\frac{1+x}{1-x} > 1 \Rightarrow x_1 = \pi + \tan^{-1}\left(\frac{2\left(\frac{1+x}{1-x}\right)}{1-\left(\frac{1+x}{1-x}\right)^2}\right) = \pi + \tan^{-1}\left(\frac{1-x^2}{-2x}\right) = \pi - \tan^{-1}\left(\frac{1-x^2}{2x}\right)$$
$$\Rightarrow x_1 + x_2 = \pi$$

55 **(b)**

$$\cot^{-1} x + \cot^{-1} y + \cot^{-1} z = \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} - \tan^{-1} x + \frac{\pi}{2} - \tan^{-1} y + \frac{\pi}{2} - \tan^{-1} z = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$

$$\Rightarrow \tan^{-1} x + \tan^{-1} y = \pi - \tan^{-1} z$$

$$\Rightarrow \tan(\tan^{-1} x + \tan^{-1} y) = \tan(\pi - \tan^{-1} z)$$

$$\Rightarrow \frac{x + y}{1 - xy} = -z$$

$$\Rightarrow x + y + z = xyz$$

56 (a)

$$\tan^{-1}\left[\frac{\cos x}{1+\sin x}\right] = \tan^{-1}\left[\frac{\sin[(\pi/2) - x]}{1+\cos[(\pi/2) - x]}\right]$$
$$= \tan^{-1}\left[\frac{2\sin\left[\left(\frac{\pi}{4}\right) - \left(\frac{x}{2}\right)\right]}{\cos[(\pi/4) - (x/2)]}\right]$$
$$= \tan^{-1}\tan\left(\frac{\pi}{4} - \frac{x}{2}\right) = \frac{\pi}{4} - \frac{x}{2}$$
$$\Rightarrow -\frac{\pi}{2} < \frac{\pi}{4} - \frac{x}{2} < \frac{\pi}{2}$$
$$\Rightarrow -\frac{3\pi}{4} < -\frac{x}{2} < \frac{\pi}{4}$$

$$\Rightarrow -\frac{\pi}{4} < \frac{x}{2} < \frac{3\pi}{4}$$
$$\Rightarrow -\frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{2}$$

57

(d) Since $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$ for $x \in (-1, 1)$ $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}x$ $\Rightarrow 2 \tan^{-1} a + 2 \tan^{-1} b = 2 \tan^{-1} x$ $\Rightarrow \tan^{-1}a + \tan^{-1}b = \tan^{-1}x$ $\Rightarrow \tan^{-1}\left(\frac{a+b}{1-ab}\right) = \tan^{-1}x$ $\Rightarrow x = \frac{a+b}{1-ab}$ 58 (a) $\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x$ $\Rightarrow \tan^{-1}\left(\frac{1}{\sqrt{\cos\alpha}}\right) - \tan^{-1}(\sqrt{\cos\alpha}) = x$ $\Rightarrow \tan^{-1} \frac{\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}}{1 + \frac{1}{\sqrt{\cos \alpha}} \sqrt{\cos \alpha}} = x$ $\Rightarrow \tan^{-1} \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}} = x$ $\Rightarrow \tan x = \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}}$ $\Rightarrow \cot x = \frac{2\sqrt{\cos \alpha}}{1 - \cos \alpha}$ $\Rightarrow \csc x = \sqrt{1 + \frac{4\cos\alpha}{(1 - \cos\alpha)^2}} = \frac{1 + \cos\alpha}{1 - \cos\alpha}$ $\Rightarrow \sin x = \frac{1 - \cos \alpha}{1 + \cos \alpha} = \frac{2 \sin^2(\alpha/2)}{2 \cos^2(\alpha/2)} = \tan^2 \alpha/2$

59 (c)

$$\tan^{-1}\frac{x}{y} - \tan^{-1}\left(\frac{x-y}{x+y}\right)$$

 $= \tan^{-1}\frac{x}{y} - \tan^{-1}\left(\frac{1-(y/x)}{1+(y/x)}\right)$
 $= \tan^{-1}\frac{x}{y} - \left(\tan^{-1}1 - \tan^{-1}\frac{y}{x}\right)$

$$= \tan^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x} - \frac{\pi}{4}$$
$$= \tan^{-1}\frac{x}{y} + \cot^{-1}\frac{x}{y} - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

60 **(b)**

Obviously, $x = \sin(\theta + \beta)$ and $y = \sin(\theta - \beta)$

$$\Rightarrow 1 + xy = 1 + \sin(\theta + \beta) \sin(\theta - \beta)$$
$$= 1 + \sin^2 \theta - \sin^2 \beta$$
$$= \sin^2 \theta + \cos^2 \beta$$

61 (c)

 $2 \tan^{-1}(\operatorname{cosec} \tan^{-1} x - \tan \operatorname{cot}^{-1} x)$ = $2 \tan^{-1}[\operatorname{cosec} \tan^{-1} x - \tan \operatorname{cot}^{-1} x]$

$$= 2 \tan^{-1} \left[\operatorname{cosec} \left\{ \operatorname{cosec}^{-1} \frac{\sqrt{1+x^2}}{x} \right\} - \tan^{-1} \left\{ \tan^{-1} \left(\frac{1}{x} \right) \right\} \right]$$

$$= 2 \tan^{-1} \left[\sqrt{\frac{1+x^2}{x}} - \frac{1}{x} \right] = 2 \tan^{-1} \left[\frac{\sqrt{1+x^2} - 1}{x} \right]$$
$$= 2 \tan^{-1} \left[\frac{\sec \theta - 1}{\tan \theta} \right] \text{ [putting } x = \tan \theta \text{]}$$

$$= 2 \tan^{-1} \left[\frac{1 - \cos \theta}{\sin \theta} \right] = 2 \tan^{-1} \left[\frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right]$$
$$= 2 \tan^{-1} \tan \frac{\theta}{2} = 2 \times \frac{\theta}{2} = \theta = \tan^{-1} x$$

62 **(c)**

Let
$$\cos^{-1}\left(\frac{\sqrt{5}}{3}\right) = \alpha$$
. Then $\cos \alpha = \frac{\sqrt{5}}{3}$, where $0 < \alpha < \frac{\pi}{2}$

Now,
$$\tan\frac{\alpha}{2} = \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \sqrt{\frac{1-\sqrt{5}/3}{1+\sqrt{5}/3}} = \sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} = \sqrt{\frac{(3-\sqrt{5})^2}{9-5}} = \frac{1}{2}(3-\sqrt{5})$$

63 **(d)**

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$
$$\frac{\sqrt{3}x}{\sqrt{3}x} = \frac{2x - K}{2}$$

$$=\frac{\frac{2K-x}{1+\frac{\sqrt{3}x}{2K-x}}}{1+\frac{\sqrt{3}x}{2K-x}}$$

$$= \frac{3Kx - (2x - K)(2K - x)}{(2K - x)\sqrt{3} K + \sqrt{3} x(2x - K)}$$

= $\frac{3Kx - (4Kx - 2x^2 - 2K^2 + Kx)}{2\sqrt{3} K^2 - \sqrt{3} Kx + 2\sqrt{3} x^2 - \sqrt{3} Kx}$
= $\frac{2x^2 - 2Kx + 2K^2}{2\sqrt{3} x^2 - 2\sqrt{3} Kx + 2\sqrt{3} K^2} = \frac{1}{\sqrt{3}} = \tan 30^\circ$
 $\therefore A - B = 30^\circ$

64 (a) $\sin^{-1}\sin\left(\frac{22\pi}{7}\right) = \sin^{-1}\sin\left(3\pi + \frac{\pi}{7}\right) = -\frac{\pi}{7}$ $\cos^{-1}\cos\left(\frac{5\pi}{3}\right) = \cos^{-1}\cos\left(2\pi - \frac{\pi}{3}\right) = \frac{\pi}{3}$ $\tan^{-1}\tan\left(\frac{5\pi}{7}\right) = \tan^{-1}\tan\left(\pi - \frac{2\pi}{7}\right) = -\frac{2\pi}{7}$ $\sin^{-1}\cos(2) = \frac{\pi}{2} - \cos^{-1}\cos 2 = \frac{\pi}{2} - 2$

Therefore, the required value $= -\frac{\pi}{7} + \frac{\pi}{3} - \frac{2\pi}{7} + \frac{\pi}{2} - 2$

$$=\frac{(-18+35)\pi}{42}-2=\frac{17\pi}{42}-2$$

65 (a)

$$\tan^{-1}\left(\frac{1}{1+r+r^{2}}\right) = \tan^{-1}\left(\frac{r+1-r}{1+r(r+1)}\right)$$

$$= \tan^{-1}(r+1) - \tan^{-1}(r)$$

$$\Rightarrow \sum_{r=0}^{n} [\tan^{-1}(r+1) - \tan^{-1}(r)]$$

$$= \tan^{-1}(n+1) - \tan^{-1}(0)$$

$$= \tan^{-1}(n+1)$$

$$\Rightarrow \sum_{r=0}^{\infty} \tan^{-1} \left(\frac{1}{1+r+r^2} \right) = \tan^{-1}(\infty) = \frac{\pi}{2}$$

66 (a)
Let
$$\cos^{-1}\left(\frac{1}{8}\right) = \theta$$
, where $0 < \theta < \pi$, then
 $\frac{1}{2}\cos^{-1}\frac{1}{8} = \frac{1}{2}\theta$
 $\Rightarrow \cos\left(\frac{1}{2}\cos^{-1}\frac{1}{8}\right) = \cos\frac{\theta}{2}$
Now, $\cos^{-1}\frac{1}{8} = \theta \Rightarrow \cos\theta = \frac{1}{8} \Rightarrow \cos^{2}\frac{\theta}{2} = \frac{9}{16} \Rightarrow$

$$\cos\frac{\theta}{2} = \frac{3}{4}$$

67 **(b)**

$$\cos^{-1}(2x^{2} - 1) = 2\pi - 2\cos^{-1}x \text{ (as } x < 0)$$

$$\Rightarrow \cos^{-1}(2x^{2} - 1) - 2\sin^{-1}x$$

$$= 2\pi - 2\cos^{-1}x - 2\sin^{-1}x$$

$$= 2\pi - 2(\cos^{-1}x + \sin^{-1}x)$$

$$= 2\pi - 2\frac{\pi}{2} = \pi$$

68 (c)

Let $y = \tan^{-1}\left(\frac{1-x^2}{2x}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ Put $x = \tan \theta$. As $x \in (0, 1), \theta \in \left(0, \frac{\pi}{4}\right)$ and $\frac{\pi}{2} - 2\theta \in (0, \pi/2)$ $\therefore y = \tan^{-1}(\cot 2\theta) + \cos^{-1}(\cos 2\theta)$ $= \tan^{-1}\left(\tan\left(\frac{\pi}{2} - 2\theta\right)\right)$ $+ \cos^{-1}(\cos 2\theta)$ $= \frac{\pi}{2} - 2\theta + 2\theta = \frac{\pi}{2}$

69 **(b)**

71 (d)

Let $x = \sin \theta$ where $-\frac{1}{2} \le x \le 1 \Rightarrow -\frac{\pi}{6} \le \theta \le \frac{\pi}{2}$ Then $f(x) = \sin^{-1} \left(\frac{\sqrt{3}}{2} x - \frac{1}{2} \sqrt{1 - x^2} \right)$ $= \sin^{-1} \left(\frac{\sqrt{3}}{2} \sin \theta - \frac{1}{2} \cos \theta \right)$ $= \sin^{-1} \left(\sin \left(\theta - \frac{\pi}{6} \right) \right)$ $= \theta - \frac{\pi}{6} = \sin^{-1} x - \frac{\pi}{6} \left[\because \theta - \frac{\pi}{6} \in \left(\frac{-\pi}{3}, \frac{\pi}{3} \right) \right]$ 70 (c) $\tan^{-1}(1 + x) + \tan^{-1}(1 - x) = \frac{\pi}{2}$ $\Rightarrow \tan^{-1}(1 + x) = \frac{\pi}{2} - \tan^{-1}(1 - x)$ $= \cot^{-1}(1 - x)$ $= \tan^{-1} \left(\frac{1}{1 - x} \right)$ $\Rightarrow 1 + x = \frac{1}{1 - x} \Rightarrow 1 - x^2 = 1 \Rightarrow x = 0$

$\tan\left(\cos^{-1}\frac{1}{5\sqrt{2}} - \sin^{-1}\frac{4}{\sqrt{17}}\right)$ $= \tan[\tan^{-1}7 - \tan^{-1}4]$ $= \tan\left(\tan^{-1}\left(\frac{3}{29}\right)\right) = \frac{3}{29}$ 72 (a) Put $x = \tan \theta$ $\therefore 3\sin^{-1}\frac{2\tan\theta}{1+\tan^2\theta} - 4\cos^{-1}\frac{1-\tan^2\theta}{1+\tan^2\theta}$ $+2\tan^{-1}\frac{2\tan\theta}{1-\tan^2\theta}=\frac{\pi}{3}$ $\Rightarrow 3\sin^{-1}(\sin 2\theta) - 4\cos^{-1}(\cos 2\theta)$ $+ 2 \tan^{-1}(\tan 2 \theta) = \frac{\pi}{3}$ $\Rightarrow 3(2\theta) - 4(2\theta) + 2(2\theta) = \frac{\pi}{3} \Rightarrow 2\theta = \frac{\pi}{3} \Rightarrow \theta$ $=\frac{\pi}{6} \Rightarrow x = \tan \frac{\pi}{6} = \frac{1}{\sqrt{2}}$ 73 (d) $[\cot^{-1} x] + 2[\tan^{-1} x] = 0 \Rightarrow [\cot^{-1} x]$ $= 0, [\tan^{-1} x] = 0$ or $[\cot^{-1} x] = 2$, $[\tan^{-1} x] = -1$ Now $[\cot^{-1} x] = 0 \Rightarrow x \in (\cot 1, \infty)$ $[\tan^{-1} x] = 0 \Rightarrow x \in (0, \tan 1)$ Therefore, for $[\cot^{-1} x] = [\tan^{-1} x] = 0, x \in$ $(\cot 1, \tan 1)$ $[\cot^{-1} x] = 2 \Rightarrow x \in (\cot 3, \cot 2]$ $[\tan^{-1} x] = -1 \Rightarrow x \in [-\tan 1, 0) \Rightarrow \text{No such } x$ exists Thus, the solution set is (cot 1, tan 1) 74 (c) Let $\tan^{-1}(x) = \theta \Rightarrow x = \tan \theta \Rightarrow \cos \theta = x \Rightarrow$ $\frac{1}{\sqrt{1+x^2}} = x$ $\Rightarrow x^2(1+x^2) = 1 \Rightarrow x^2 = \frac{-1 \pm \sqrt{5}}{2} \Rightarrow x^2$ $=\frac{\sqrt{5}-1}{2}$ \Rightarrow $\frac{x^2}{2}=\frac{\sqrt{5}-1}{4}$ Now $\cos^{-1}\left(\frac{\sqrt{5}-1}{4}\right) = \cos^{-1}\left(\sin\frac{\pi}{10}\right) =$ $\cos^{-1}\left(\cos\frac{2\pi}{5}\right) = \frac{2\pi}{5} = \frac{2\pi}{5}$

75 **(b)**

$$\sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r-1}}{1+2^{2r-1}} \right) = \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r-1}}{1+2^{r} 2^{r-1}} \right)$$

$$= \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r}-2^{r-1}}{1+2^{r} 2^{r-1}} \right)$$

$$= \sum_{r=1}^{n} [\tan^{-1}(2^{r}) - \tan^{-1}(2^{r-1})]$$

$$= \tan^{-1}(2^{n}) - \tan^{-1}(1)$$

$$= \tan^{-1}(2^{n}) - \frac{\pi}{4}$$

76 (c) Since $\sqrt{x^2 - 3x + 2} \ge 0 \Rightarrow 0 \le \tan^{-1}\sqrt{x^2 - 3x + 2} < \frac{\pi}{2}$

and $\sqrt{4x - x^2 - 3} \ge 0 \Rightarrow 0 < \cos^{-1}\sqrt{4x - x^2 - 3} \le \frac{\pi}{2}$

Adding, we have $0 < L. H. S. < \pi$

Therefore, the given equation has no solution

77 (c)

$$\tan^{-1}\sqrt{[x(x+1)]} = (\pi/2) - \sin^{-1}\sqrt{(x^2 + x + 1)}$$

$$= \cos^{-1}\sqrt{x^2 + x + 1}$$

$$= \tan^{-1}\frac{\sqrt{-x^2 - x}}{\sqrt{x^2 + x + 1}}$$

$$\Rightarrow \sqrt{x(x+1)} = \frac{\sqrt{-x^2 - x}}{\sqrt{x^2 + x + 1}} \Rightarrow x = 0, -1 \text{ are the only}$$

real solutions

78 **(c)**

From the given equation $\sin^2 \theta - 2\sin \theta + 3 = 5^{\sec^2 y} + 1$, we get

 $(\sin \theta - 1)^2 + 2 = 5^{\sec^2 y} + 1$

L. H. S. \leq 6, R. H. S. \geq 6

Possible solution is $\sin \theta = -1$ when L. H. S. = R. H. S $\Rightarrow \cos^2 \theta = 0 \Rightarrow \cos^2 \theta - \sin \theta = 1$

79 **(b)**

$$\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \Rightarrow \sin^{-1} x = \frac{\pi}{2} - \sin^{-1} y$$
$$\Rightarrow \sin^{-1} x = \sin^{-1} \sqrt{1 - y^2}$$
$$\Rightarrow x^2 + y^2 = 1$$

$$\Rightarrow \frac{1+x^4+y^4}{x^2-x^2y^2+y^2} = \frac{1+(x^2+y^2)^2-2x^2y^2}{1-x^2y^2}$$
$$= \frac{1+1-2x^2y^2}{1-x^2y^2} = 2$$

$$\tan\left[\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right]$$

= $\tan\left(\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\right)$
= $\tan\left(\tan^{-1}\left(\frac{(3/4) + (2/3)}{1 - (3/4) \times (2/3)}\right)\right)$
= $\frac{17}{12} \times \frac{12}{6} = \frac{17}{6}$

81 **(c)**

We have $\cos^{-1} x + \cos^{-1}(2x) = -\pi$, which is not possible as $\cos^{-1} x$ and $\cos^{-1} 2x$ never take negative values

82 (e)

The principal value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \text{principal}$ value of $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \pi/3$

83 **(b)**

 $\sin \cos^{-1}(\cos(\tan^{-1} x)) = p$ For $x \in R \tan^{-1} x \in (-\pi/2, \pi/2)$ $\cos(\tan^{-1} x) \in (0, 1]$ $\cos^{-1} \cos(\tan^{-1} x) \in [0, \pi/2)$ $\sin(\cos^{-1}(\cos(\tan^{-1} x))) \in [0, 1)$

84 **(a)**

Let $\sqrt{\tan \alpha} = \tan x$, then $u = \cot^{-1}(\tan x) - \tan^{-1}(\tan x) = \frac{\pi}{2} - x - x = \frac{\pi}{2} - 2x$

$$\Rightarrow 2x = \frac{\pi}{2} - u \quad \Rightarrow \frac{\pi}{4} - \frac{u}{2}$$
$$\Rightarrow \tan x = \tan\left(\frac{\pi}{4} - \frac{u}{2}\right)$$
$$\Rightarrow \sqrt{\tan \alpha} = \tan\left(\frac{\pi}{4} - \frac{u}{2}\right)$$

85 **(b)**

The given equation can be written as

$$3\tan^{-1}(2-\sqrt{3}) = \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$

$$\Rightarrow 3(15^{\circ}) = \tan^{-1} \frac{\frac{1}{x} + \frac{1}{3}}{1 - \frac{1}{x3}} \Rightarrow 1 = \frac{3 + x}{3x - 1} \Rightarrow x = 2$$

86 **(d)**

$$f(x) = \tan^{-1} \left(\frac{(\sqrt{12} - 2)x^2}{x^4 + 2x^2 + 3} \right)$$

= $\tan^{-1} \left(\frac{2(\sqrt{3} - 1)}{x^2 + \frac{3}{x^2} + 2} \right)$
As $x^2 + \frac{3}{x^2} \ge 2\sqrt{3}$ [using A.M. \ge G.M.]
 $\Rightarrow x^2 + \frac{3}{x^2} + 2 \ge 2 + 2\sqrt{3}$
 $\therefore (f(x))_{\max} = \tan^{-1} \left(\frac{2(\sqrt{3} - 1)}{2(\sqrt{3} + 1)} \right) = \frac{\pi}{12}$

87 **(d)**

$$\sin(2\sin^{-1}(0.8)) = \sin\left(\sin^{-1}\left(2\right) \times 0.8\sqrt{1-(0.8)^2}\right)$$
$$= \sin(\sin^{-1}0.96) = 0.96$$

88 **(d)**

$$\frac{x}{\sqrt{1+x^2}} = \frac{x+1}{\sqrt{(x+1)^2+1}}$$

$$\Rightarrow x^2[(x+1)^2+1] = (x+1)^2[(x^2+1)]$$

$$\Rightarrow x^2(x+1)^2 + x^2 = x^2(x+1)^2 + (x+1)^2$$

$$\Rightarrow x^2 = (x+1)^2 \Rightarrow x+1 = x \text{ not possible}$$

as $x \to \infty$

 $\Rightarrow x + 1 = -x \Rightarrow x = -1/2$ which is also not possible as for this L. H. S. < 0 but R. H. S. > 0

89 **(c)**

We have
$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} \left[\frac{1-\tan\theta}{1+\tan\theta} \right] = \frac{1}{2} \theta \quad (\text{putting } x = \tan\theta)$$

$$\Rightarrow \tan^{-1} \left[\frac{\tan\frac{\pi}{4} - \tan\theta}{1+\tan\frac{\pi}{4}\tan\theta} \right] = \frac{\theta}{2}$$

$$\Rightarrow \tan^{-1} \tan\left(\frac{\pi}{4} - \theta\right) = \frac{\theta}{2}$$

$$\Rightarrow \frac{\pi}{4} - \theta = \frac{\theta}{2}$$
$$\Rightarrow \theta = \frac{\pi}{6} = \tan^{-1} x$$
$$\Rightarrow x = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

90 (d)

$$f(x) + f(-x) = 2$$

Now $(\sin^{-1}(\sin 8)) = 3\pi - 8 = y$
and $(\tan^{-1}(\tan 8)) = (8 - 3\pi)$
Hence, $f(y) + f(-y) = 2$
Given, $f(y) = \alpha$ we have $f(-y) = 2 - \alpha$

91 **(d)**

92

Let
$$\alpha = \cos^{-1} \sqrt{p}$$
, $\beta = \cos^{-1} \sqrt{1-p}$ and $\gamma = \cos^{-1} \sqrt{1-q}$

$$\Rightarrow \cos \alpha = \sqrt{p}, \cos \beta = \sqrt{1-p} \text{ and } \cos \gamma = \sqrt{1-q}$$

Therefore, $\sin \alpha = \sqrt{1-p}, \sin \beta = \sqrt{p}$ and
 $\sin \gamma = \sqrt{q}$

The given equation may be written as

$$\alpha + \beta + \gamma = \frac{3\pi}{4}$$

$$\Rightarrow \alpha + \beta = \frac{3\pi}{4} - \gamma$$

$$\Rightarrow \cos(\alpha + \beta) = \cos\left(\frac{3\pi}{4} - \gamma\right)$$

$$\Rightarrow \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos\left(\pi - \left(\frac{\pi}{4} + \gamma\right)\right)$$

$$= -\cos\left(\frac{\pi}{4} + \gamma\right)$$

$$\Rightarrow \sqrt{p}\sqrt{1 - p} - \sqrt{1 - p}\sqrt{p}$$

$$= -\left(\frac{1}{\sqrt{2}}\sqrt{1 - q} - \frac{1}{\sqrt{2}}\sqrt{q}\right)$$

$$\Rightarrow 0 = \sqrt{1 - q} - \sqrt{q} \Rightarrow 1 - q = q \Rightarrow q = \frac{1}{2}$$
92 (c)
sin⁻¹(sin 10) = sin⁻¹[sin(3\pi - 10)] = 3\pi - 10
93 (c)

$$\frac{\alpha^{3}}{2}\operatorname{cosec}^{2}\left(\frac{1}{2}\tan^{-1}\frac{\alpha}{\beta}\right) + \frac{\beta^{3}}{2}\operatorname{sec}^{2}\left(\frac{1}{2}\tan^{-1}\frac{\beta}{\alpha}\right)$$

$$= \alpha^{3}\frac{1}{1-\cos\left(\tan^{-1}\left(\frac{\alpha}{\beta}\right)\right)} + \beta^{3}\frac{1}{1+\cos\left(\tan^{-1}\frac{\beta}{\alpha}\right)}$$

$$= \alpha^{3}\frac{1}{1-\cos\left(\cos^{-1}\left(\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}\right)\right)} + \beta^{3}\frac{1}{1+\cos\left(\cos^{-1}\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}\right)}$$

$$= \alpha^{3}\frac{1}{1-\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}} + \beta^{3}\frac{1}{1+\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}}$$

$$= \sqrt{\alpha^{2}} + \beta^{2}\left(\frac{\alpha^{3}}{\sqrt{\alpha^{2}+\beta^{2}}-\beta} + \frac{\beta^{3}}{\sqrt{\alpha^{2}+\beta^{2}}+\alpha}\right)$$

$$= \sqrt{\alpha^{2}} + \beta^{2}\left(\alpha^{3}\frac{\left(\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right)}{\alpha^{2}} + \beta^{3}\frac{\left(\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right)}{\beta^{2}}\right)$$

$$= \sqrt{\alpha^{2}} + \beta^{2}\left[\alpha\left(\sqrt{\alpha^{2}+\beta^{2}}+\beta\right) + \beta\left(\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right)\right]$$

$$= \sqrt{\alpha^{2}} + \beta^{2}\left(\alpha+\beta\right)\sqrt{\alpha^{2}+\beta^{2}}-\alpha\right)$$

 $= (\alpha + \beta)(\alpha^2 + \beta^2)$

94 (c) We have $(\sin^{-1} x)^3 + (\cos^{-1} x)^3 = (\sin^{-1} x + \cos^{-1} x)^3 - 3\sin^{-1} \cos^{-1} x \sin^{-1} x + \cos^{-1} x$

$$= \frac{\pi^3}{8} - 3(\sin^{-1}x\cos^{-1}x)\frac{\pi}{2}$$

$$= \frac{\pi^3}{8} - \frac{3\pi}{2}\sin^{-1}x\left(\frac{\pi}{2} - \sin^{-1}x\right)$$

$$= \frac{\pi^3}{8} - \frac{3\pi^2}{4}\sin^{-1}x + \frac{3\pi}{2}(\sin^{-1}x)^2$$

$$= \frac{\pi^3}{8} + \frac{3\pi}{2}\left[(\sin^{-1}x)^2 - \frac{\pi}{2}\sin^{-1}x\right]$$

$$= \frac{\pi^3}{8} + \frac{3\pi}{2}\left[\left(\sin^{-1}x - \frac{\pi}{4}\right)^2\right] - \frac{3\pi^3}{32}$$

$$= \frac{\pi^3}{32} + \frac{3\pi}{2}\left(\sin^{-1}x - \frac{\pi}{4}\right)^2$$
So, the least value is $\frac{\pi^3}{32}$ when $\left(\sin^{-1}x - \frac{\pi}{4}\right) = 0$
And the greatest value occurs when $\left(\sin^{-1}x - \frac{\pi}{4}\right) = 0$

 $\pi 42 = -\pi 2 - \pi 42 = 9\pi 216$

Therefore, the greatest value is $\frac{\pi^3}{32} + \frac{9\pi^2}{16} \times \frac{3\pi}{2} = \frac{7\pi^3}{8}$

95 (c)
Here
$$|\cos x| = \sin^{-1}(\sin x)$$

From the graph, number of solutions is 2

96 **(a)**

$$2\cos^{-1}x = \cot^{-1}\left(\frac{2x^2 - 1}{2x\sqrt{1 - x^2}}\right)$$

Put $x = \cos \theta$: LHS = 2 θ ; $0 \le \theta \le \pi$ and $-1 \le x \le 1$ (i)

R. H. S. = $\cot^{-1}\left(\frac{\cos 2\theta}{2\cos \theta |\sin \theta|}\right) = \cot^{-1}(\cot 2\theta) =$ 2θ if $0 < 2\theta < \pi$ (ii

From Eqs. (i) and (ii), we get $0 < \theta < \pi/2$

$$\therefore x \in (0, 1)$$

97 (b)

 $\tan^{-1}\frac{b+a}{b-a} - \tan^{-1}\frac{a}{b} = \tan^{-1}\frac{\frac{b+a}{b-a} - \frac{a}{b}}{1 + \frac{b+a}{b-a}\frac{a}{b}}$ $= \tan^{-1}\frac{b^2 + ab - ab + a^2}{b^2 - ab + ab + a^2} = \tan^{-1}\frac{a^2 + b^2}{a^2 + b^2}$ $=\tan^{-1}1=\frac{\pi}{\Lambda}$

Therefore, the required value = $\sec\left(\frac{\pi}{4}\right) = \sqrt{2}$

 $\sin^{-1} x - \cos^{-1} x = \sin^{1}(3x - 2)$ $\Rightarrow \frac{\pi}{2} - \cos^{-1} x - \cos^{-1} x = \frac{\pi}{2} - \cos^{-1}(3x - 2)$ $\Rightarrow 2\cos^{-1} x = \cos^{-1}(3x - 2)$. Also $x \in [-1, 1]$ $\Rightarrow \cos^{-1}(2x^2 - 1) = \cos^{-1}(3x - 2)$ and (3x - 2) $2 \in -1, 1, \text{ i.e., } -1 \leq 3x - 2 \leq 1$ $\Rightarrow 2x^2 - 1 = 3x - 2$; hence, $x \in \left[\frac{1}{3}, 1\right]$ $\Rightarrow 2x^2 - 3x + 1 = 0 \Rightarrow x = 1 \text{ or } \frac{1}{2}$

99 (c)

$$\sqrt{1 + x^{2}} [\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^{2} - 1]^{1/2}$$

$$= \sqrt{1 + x^{2}} \left[\left\{x \cos\left(\cos^{-1} \frac{x}{\sqrt{1 + x^{2}}}\right) + \sin\left(\sin^{-1} \frac{1}{\sqrt{1 + x^{2}}}\right) \right\}^{2} - 1 \right]^{1/2}$$

$$= \sqrt{1 + x^{2}} \left[\left\{x \cdot \frac{x}{\sqrt{1 + x^{2}}} + \frac{1}{\sqrt{1 + x^{2}}} \right\}^{2} - 1 \right]^{1/2}$$

$$= \sqrt{1 + x^{2}} [1 + x^{2} - 1]^{1/2}$$

$$= x\sqrt{1 + x^{2}}$$

$$D (b)$$

$$2 \cos^{-1} x - \pi x - \frac{\pi}{2} = 0 \Rightarrow \cos^{-1} x - \frac{\pi x}{2} + \frac{\pi}{2}$$

100

$$\cos^{-1} x - \pi x - \frac{\pi}{2} = 0 \Rightarrow \cos^{-1} x = \frac{\pi x}{3} + \frac{\pi}{6}$$

101 (c)

$$x = \tan^{-1} 3 \Rightarrow \tan x = 3$$

$$\tan(x + y) = 33$$

$$\Rightarrow \frac{\tan x + \tan y}{1 - \tan x \tan y} = 33$$

$$\Rightarrow \frac{3 + \tan y}{1 - 3 \tan y} = 33$$

$$\Rightarrow 3 + \tan y = 33 - 99 \tan y$$

$$\Rightarrow 100 \tan y = 30$$

$$\Rightarrow \tan y = 0.3 \Rightarrow y = \tan^{-1}(0.3)$$

102 (a,c,d) The given equation holds, if $x^2 + x + 1 = \lambda x + 1$ And $-1 \le x^2 + x + 1 \le 1$ $\Rightarrow x(x+1-\lambda) = 0 \text{ and } -1 \le x \le 0$ $\Rightarrow x = 0 \text{ or } \lambda - 1 \text{ and } -1 \le x \le 0$ $\therefore x = 0$ is one solution and for another different solution $-1 \le \lambda - 1 < 0.$ $\Rightarrow 0 \leq \lambda < 1$, so only integral value λ can have is 0.

103 (a,b,c)

The solution of $y = \sqrt{y}$ is y = 0 or y = 1if $\sin^{-1} |\sin x| = 1$ $\Rightarrow x = 1 \text{ or } \pi - 1$ [in the interval $(0, \pi)$] But $y = \sin^{-1} |\sin x|$ is periodic with period π , so $x = n\pi + 1 \text{ or } n\pi - 1$ Again, if $\sin^{-1} |\sin x| = 0$ $\Rightarrow x = n\pi$ 104 (a,b)

We know that

if
$$|x| \le 1$$
, then $2 \tan^{-1} x = \sin^{-1} \left(\frac{2x}{1+x^2}\right)$
if $x > 1, 2 \tan^{-1} x = \pi - \sin^{-1} \frac{2x}{1+x^2}$

if
$$x < -1$$
, $2 \tan^{-1} x = -\pi - \sin^{-1} \frac{2x}{1+x^2}$

Hence, the required values are x < -1 or x > 1

105 (a,d)

We have, $\tan^{-1} x + \cot^{-1} x + \sin^{1} x = \frac{\pi}{2} + \sin^{-1} x \dots (i)$ Since, $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$ $\Rightarrow 0 \le \frac{\pi}{2} + \sin^{-1} x \le \pi$ $\Rightarrow 0 \le \tan^{-1} x + \cot^{-1} x + \sin^{-1} x \le \pi$ [from Eq.(i)] $\therefore a = 0$ and $b = \pi$ 106 (a, b) a. $\cos(\tan^{-1}(\tan(4 - \pi))) = \cos(4 - \pi) = \cos(\pi - 4) = -\cos 4 > 0$

b. $\sin(\cot^{-1}(\cot(4 - \pi))) = \sin(4 - \pi) = -\sin 4 > 0$ (as $\sin 4 < 0$)

c. $\tan(\cos^{-1}(\cos(2\pi - 5))) = \tan(2\pi - 5) = -\tan 5 > 0$ (as $\tan 5 < 0$)

d. $\cot(\sin^{-1}(\sin(\pi - 4))) = \cot(\pi - 4) = -\cot 4 < 0$

107 (a,c)

Given equation is $x^2 + 2x \sin(\cos^{-1} y) + 1 = 0$. Since x is real, $D \ge 0$

- $\therefore 4(\sin(\cos^{-1} y))^2 4 \ge 0$ $\Rightarrow (\sin(\cos^{-1} y))^2 \ge 1$
- $\Rightarrow \sin(\cos^{-1} y) = \pm 1$
- π

 $\Rightarrow \cos^{-1} y = \pm \frac{\pi}{2} \Rightarrow y = 0$

Putting value of *y* in the original equation, we have $x^2 + 2x + 1 = 0 \Rightarrow x = -1$

Hence, the equation has only one solution

108 (a,d)

For the given equation $0 \le x, y \le 1$

Also,
$$\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$$

 $\Rightarrow \sin^{-1} x = \cos^{-1} y = \sin^{-1} \sqrt{1 - y^2}$
 $\Rightarrow x = \sqrt{1 - y^2} \Rightarrow x^2 + y^2 = 1$ (i)
Again, $\sin 2x = \cos 2y$

 $\Rightarrow \cos\left(\frac{\pi}{2} - 2x\right) = \cos 2y$ $\Rightarrow \frac{\pi}{2} - 2x = 2n\pi \pm 2y, \text{ where } n \in I$ $\Rightarrow x \pm y = \frac{\pi}{4} - n\pi \quad \text{(ii)}$

From Eqs. (i) and (ii), we get

$$x = \frac{\pi}{8} + \sqrt{\frac{1}{2} - \frac{\pi^2}{64}}$$
 and $y = \sqrt{\frac{1}{2} - \frac{\pi^2}{64}} - \frac{\pi}{8}$

109 (a,b,d)

$$2 \cot^{-1} 7 = 2 \tan^{-1} \left(\frac{1}{7}\right)$$

= $\cos^{-1} \left(\frac{1-\frac{1}{49}}{1+\frac{1}{49}}\right) = \cos^{-1} \frac{24}{25}$
Now ,2 $\cot^{-1} 7 + \cos^{-1} \frac{3}{5}$
= $\cos^{-1} \frac{24}{25} + \cos^{-1} \frac{3}{5}$
= $\cos^{-1} \left(\frac{24}{25} \cdot \frac{3}{5} - \frac{7}{25} \cdot \frac{4}{5}\right) = \cos^{-1} \frac{44}{125}$
Since, $\frac{44}{125} > 0$
 $\therefore 0 < \cos^{-1} \frac{44}{125} < \frac{\pi}{2}$
Let $\cos^{-1} \frac{44}{125} = 0$, then $\cos \theta = \frac{44}{125}$
 $\therefore \cos c \theta = \frac{125}{117}$ or $\theta = \csc^{-1} \frac{125}{117}$
Also, $\cot \theta = \frac{44}{117}$
 $\therefore \theta = \cot^{-1} \frac{44}{117}$
110 **(a,c,d)**
The given equation holds, if
 $x^2 + x + 1 = \lambda x + 1$
And $-1 \le x^2 + x + 1 \le 1$
 $\Rightarrow x(x + 1 - \lambda) = 0$ and $-1 \le x \le 0$
 $\Rightarrow x = 0$ or $\lambda - 1$ and $-1 \le x \le 0$
 $\therefore x = 0$ is one solution and for another different
solution
 $-1 \le \lambda - 1 < 0$.
 $\Rightarrow 0 \le \lambda < 1$, so only integral value λ can have is
0.
111 **(b,c,d)**
 $6x^2 + 11x + 3 = 0$
 $\Rightarrow (2x + 3)(3x + 1) = 0$
 $\Rightarrow x = -3/2 - 1/3$

For x = -3/2, $\cos^{-1} x$ is not defined as domain of $\cos^{-1} x$ is [-1, 1] and for x = -1/3, $\csc^{-1} x$ is

not defined as domain of $\csc^{-1}x$ is R - (-1, 1). However, $\cot^{-1}x$ is defined for both of these values as domain of $\cot^{-1}x$ is R

112 (a,d)

We have, $\tan^{-1} x + \cot^{-1} x + \sin^{1} x = \frac{\pi}{2} + \sin^{-1} x \dots (i)$ Since, $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$ $\Rightarrow 0 \le \frac{\pi}{2} + \sin^{-1} x \le \pi$ $\Rightarrow 0 \le \tan^{-1} x + \cot^{-1} x + \sin^{-1} x \le \pi$ [from Eq.(i)] $\therefore a = 0$ and $b = \pi$ 113 (a,d) Let $f(x) = (\sin^{-1} x)^2 + (\cos^{-1} x)^2$ $= (\sin^{-1}x + \cos^{-1}x)^2 - 2\sin^{-1}x\cos^{-1}x$ $=\frac{\pi^2}{4}-2\sin^{-1}x\left[\frac{\pi}{2}-\sin^{-1}x\right]$ $=\frac{\pi^2}{4} - \pi \sin^{-1} x + 2(\sin^{-1} x)^2$ $= 2 \left| (\sin^{-1} x)^2 - \frac{\pi}{2} \sin^{-1} x + \frac{\pi^2}{8} \right|$ $= 2\left(\sin^{-1}x - \frac{\pi}{4}\right)^2 + 2\left[\frac{\pi^2}{16}\right]$ Now, $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$ $\Rightarrow -\frac{3\pi}{\Lambda} \le \sin^{-1}x - \frac{\pi}{\Lambda} \le \frac{\pi}{\Lambda}$ $\Rightarrow 0 \le \left(\sin^{-1} x - \frac{\pi}{4}\right)^2 \le \frac{9\pi^2}{16}$ $\Rightarrow 0 \le 2\left(\sin^{-1}x - \frac{\pi}{\lambda}\right)^2 \le \frac{9\pi^2}{2}$ $\Rightarrow \frac{\pi^2}{9} \le \left(\sin^{-1}x - \frac{\pi}{4}\right)^2 + \frac{\pi^2}{9} \le \frac{5\pi^2}{4}$

114 **(b)**

 $f(x) = \sin^{-1} |\sin kx| + \cos^{-1} (\cos kx)$ Let $g(x) = \sin^{-1} |\sin x| + \cos^{-1} (\cos x)$ $g(x) \begin{cases} 2x, & 0 \le x \le \frac{\pi}{2} \\ \pi, & \frac{\pi}{2} < x < \frac{3\pi}{2} \\ 4\pi - 2x, & \frac{3\pi}{2} < x \le 2\pi \end{cases}$ g(x) is periodic with period 2π and is constant in the continuous interval

$$\left[2n\pi+\frac{\pi}{2},2n\pi+\frac{3\pi}{2}\right]$$

(where $n \in I$) and f(x) = g(kx)

So, f(x) is constant in the interval $\left[\frac{2n\pi}{k} + \frac{\pi}{2k}, \frac{2n\pi}{k} + 3\pi 2k\right]$

$$\Rightarrow \frac{\pi}{4} = \frac{3\pi}{2k} - \frac{\pi}{2k} \Rightarrow \frac{\pi}{k} = \frac{\pi}{4} \Rightarrow k = 4$$

115 (c,d) $xy < 0 \Rightarrow x + \frac{1}{x} \ge 2, y + \frac{1}{y} \le -2$

or
$$x + \frac{1}{x} \le -2, y + \frac{1}{y} \ge 2$$

 $x + \frac{1}{x} \ge 2 \Rightarrow \sec^{-1}\left(x + \frac{1}{x}\right) \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right)$
 $y + \frac{1}{y} \le -2 \Rightarrow \sec^{-1}\left(y + \frac{1}{y}\right) \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right] \Rightarrow z$
 $\in \left(\frac{5\pi}{6}, \frac{7\pi}{6}\right)$

116 **(a,c)**

The given relation is possible when $a - \frac{a^2}{3} + \frac{a^3}{9} + \cdots = 1 + b + b^2 + \cdots$ Also, $-1 \le a - \frac{a^2}{3} + \frac{a^3}{9} + \cdots \le 1$ and $-1 \le 1 + b + b^2 + \cdots \le 1$ $\Rightarrow |b| < 1 \Rightarrow |a| < 3$ and $\frac{a}{1 + \frac{a}{3}} = \frac{1}{1 - b}$ $\Rightarrow \frac{3a}{a+3} = \frac{1}{1-b}$, there are infinitely many solutions $\Rightarrow 3a - 3ab = a + 3 \Rightarrow 2a - 3ab = 3$ $\Rightarrow b = \frac{2a - 3}{3a}$ and $a = \frac{3}{2 - 3b}$ 117 (a,b,c) (a) $\sin(\tan^{-1}3 + \tan^{-1}\frac{1}{3}) = \sin\frac{\pi}{2} = 1$ (b) $\cos(\frac{\pi}{2} - \sin^{-1}\frac{3}{4}) = \cos(\cos^{-1}\frac{3}{4}) = \frac{3}{4}$ (c) $\sin(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8})$

Let $\sin^{-1}\frac{\sqrt{63}}{8} = \theta$ $\Rightarrow \sin \theta = \frac{\sqrt{63}}{8} \Rightarrow \cos \theta = \frac{1}{8}$ We have $\cos \frac{\theta}{2} = \sqrt{\frac{1+\cos \theta}{2}} = \frac{3}{4}$ $\Rightarrow \sin\frac{\theta}{4} = \sqrt{\frac{1 - \cos\frac{\theta}{2}}{2}} = \frac{1}{2\sqrt{2}}$ Now, $\log_2 \sin\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right) = \log_2 \frac{1}{2\sqrt{2}} = -\frac{3}{2}$ (d) $\cos^{-1}\frac{\sqrt{5}}{3} = \theta \Rightarrow \cos\theta = \frac{\sqrt{5}}{3}$ $\therefore \tan \frac{\theta}{2} = \frac{3-\sqrt{5}}{2}$ which is irrational 118 (a,b,c) **a.** $\cos(\tan^{-1}(\tan(4-\pi))) = \cos(4-\pi) =$ $\cos(\pi - 4) = -\cos 4 > 0$ **b**. $\sin(\cot^{-1}(\cot(4-\pi))) = \sin(4-\pi) =$ $-\sin 4 > 0$ (as $\sin 4 < 0$) c. $\tan(\cos^{-1}(\cos(2\pi - 5))) = \tan(2\pi - 5) =$ $-\tan 5 > 0$ (as $\tan 5 < 0$) **d.** $\cot(\sin^{-1}(\sin(\pi - 4))) = \cot(\pi - 4) =$ $-\cot 4 < 0$ 119 (a,b,d) $\tan^{-1}(x-1) + \tan^{-1}(x) + \tan^{-1}(x+1)$ $= \tan^{-1} 3x$ \Rightarrow tan⁻¹(x - 1) + tan⁻¹(x) $= \tan^{-1} 3x - \tan^{-1}(x+1)$ $\Rightarrow \tan^{-1}\left[\frac{(x-1)+x}{1-(x-1)(x)}\right] = \tan^{-1}\left[\frac{3x-(x+1)}{1+3x(x+1)}\right]$ $\Rightarrow \frac{2x-1}{1-x^2+x} = \frac{2x-1}{1+3x^2+3x}$ $\Rightarrow (1 - x^2 + x)(2x - 1)$ $=(1+3x^{2}+3x)(2x-1)$ $\Rightarrow x = 0, \pm \frac{1}{2}$

120 (a,c)
We have

$$\cot^{-1}\left(\frac{n^2-10n+21.6}{\pi}\right) > \frac{\pi}{6}$$

 $\Rightarrow \frac{n^2-10n+21.6}{\pi}$
 $< \cot\frac{\pi}{6} (as \cot x \text{ is decreasing for } 0 < x < \pi))$
 $\Rightarrow n^2 - 10n + 21.6 < \pi\sqrt{3}$
 $\Rightarrow n^2 - 10n + 25 + 21.6 - 25 < \pi\sqrt{3}$
 $\Rightarrow (n-5)^2 < \pi\sqrt{3} + 3.4$
 $\Rightarrow -\sqrt{\sqrt{3}\pi + 3.4} < n - 5 < \sqrt{\sqrt{3}\pi + 3.4}$ (i)
Since $\sqrt{3\pi} = 5.5$ nearly, $\sqrt{\sqrt{3}\pi + 3.4} < \sqrt{8.9} < 2.9$
 $\Rightarrow 2.1 < n < 7.9$
 $\therefore n = 3, 4, 5, 6, 7$ {as $n \in N$ }
121 (a,b,c)
If we put $x = \tan \theta$, then given equality becomes
 $\tan^{-1} y = 4\theta$
 $\Rightarrow y = \tan 4\theta = \frac{2\tan 2\theta}{1 - \tan^2 2\theta}$
 $= \frac{2\left[\frac{2\tan \theta}{1 - \tan^2 \theta}\right]^2}{1 - \left(\frac{2\tan \theta}{1 - \tan^2 \theta}\right)^2}$
 $= \frac{2 \times 2x(1 - x^2)}{(1 - x^2)^2 - 4x^2} = \frac{4x(1 - x^2)}{1 - 6x^2 + x^4}$
So that y is infinite, if $x^4 - 6x^2 + 1 = 0$
 $\Rightarrow x^2 = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}$
122 (b,c,d)
 $\cos\left(-\frac{14\pi}{5}\right) = \cos\frac{14\pi}{5} = \cos\frac{4\pi}{5}$
Hence, $\cos\frac{1}{2}\cos^{-1}\left(\cos\frac{4\pi}{5}\right) = \cos\frac{2\pi}{5}$
123 (a,b,c)
The solution of $y = \sqrt{y}$ is $y = 0$ or $y = 1$
if $\sin^{-1} |\sin x| = 1$
 $\Rightarrow x = 1$ or $\pi - 1$ [in the interval $(0,\pi)$]
But $y = \sin^{-1} |\sin x|$ is periodic with period π , so

 $x = n\pi + 1 \text{ or } n\pi - 1$ Again, if sin⁻¹ | sin x | = 0

$\Rightarrow x = n\pi$ 124 (a,b) $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ $\Rightarrow \sin^{-1} + \sin^{-1} y + \sin^{-1} z = \pi/2$ $\Rightarrow \cos^{-1} x + \cos^{-1} y = \cos^{-1}(-z)$ $\Rightarrow xy - \sqrt{1 - x^2}\sqrt{1 - y^2} = -z$

125 (a,c)

Domain of $f(x) = \log_e \cos^{-1} x$ is $x \in [-1, 1)$

 $\Rightarrow x^2 + v^2 + z^2 + 2xvz = 1$

 $\therefore [\alpha] = -1 \text{ or } 0$

126 **(b)**

We know that $\sin^{-1} x$ is defined for $x \in [-1, 1]$ and $\sec^{-1} x$ is defined for $x \in (-\infty, -1] \cup [1, \infty)$

Hence, the given function is defined for $x \in \{-1, 1\}$

Therefore, $f(1) = \pi/2$, $f(-1) = \pi/2$

127 (a,b,c,d)

Since $|\tan^{-1} x| = \begin{cases} \tan^{-1} x, & \text{if } x \ge 0\\ -\tan^{-1} x, & \text{if } x < 0 \end{cases}$ $\Rightarrow |\tan^{-1} x| = \tan^{-1} |x| \forall x \in R$

 $\Rightarrow \tan|\tan^{-1}x| = \tan\tan^{-1}|x| = |x|$

Also $|\cot^{-1} x| = \cot^{-1} x$; $\forall x \in R$

 $\Rightarrow \cot |\cot^{-1} x| = x, \forall x \in R$

 $\tan^{-1}|\tan x| = \begin{cases} x, & \text{if } \tan x > 0\\ -x, & \text{if } \tan x < 0 \end{cases}$ $\sin|\sin^{-1} x| = \begin{cases} x, & x \in [0, 1]\\ -x, & x \in [-1, 0) \end{cases}$

128 (a,d) Case 1: If $0 \le x \le \frac{1}{2}$, then

$$\cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right)$$

= $\cos^{-1}\left(x\frac{1}{2} + \sqrt{1 - x^2}\frac{\sqrt{3}}{2}\right)$
= $\cos^{-1}x - \cos^{-1}\frac{1}{2}$

Case 2: If $\frac{1}{2} \le x \le 1$, then

$$\cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right) = \cos^{-1}\frac{1}{2} - \cos^{-1}x$$

129 **(b,c)** $1 < \frac{\pi}{2} < \frac{\pi}{2}$

$$1 \le \frac{\pi}{\cos^{-1} x} < \infty \Rightarrow 2 \le 2^{\frac{\pi}{\cos^{-1} x}} < \infty$$

Hence, 2 should lie between or on the roots of $t^2 - \left(a + \frac{1}{2}\right)t - a^2 = 0$ where $t = 2^{\pi/\cos^{-1}y}$ $\Rightarrow f(2) \le 0 \Rightarrow a^2 + 2a - 3 \ge 0 \Rightarrow a$ $\in (-\infty, -3] \cup [1, \infty)$

$$2 \cot^{-1} 7 = 2 \tan^{-1} \left(\frac{1}{7}\right)$$

= $\cos^{-1} \left(\frac{1 - \frac{1}{49}}{1 + \frac{1}{49}}\right) = \cos^{-1} \frac{24}{25}$
Now ,2 $\cot^{-1} 7 + \cos^{-1} \frac{3}{5}$
= $\cos^{-1} \frac{24}{25} + \cos^{-1} \frac{3}{5}$
= $\cos^{-1} \left(\frac{24}{25} \cdot \frac{3}{5} - \frac{7}{25} \cdot \frac{4}{5}\right) = \cos^{-1} \frac{44}{125}$
Since, $\frac{44}{125} > 0$
 $\therefore 0 < \cos^{-1} \frac{44}{125} < \frac{\pi}{2}$
Let $\cos^{-1} \frac{44}{125} = \theta$, then $\cos \theta = \frac{44}{125}$
 $\therefore \csc \theta = \frac{125}{117}$ or $\theta = \csc^{-1} \frac{125}{117}$
Also, $\cot \theta = \frac{44}{117}$
 $\therefore \theta = \cot^{-1} \frac{44}{117}$

131 (a,b,d)

Let t_r denote the *r*th term of the series 3, 7, 13, 21, ... and $S = 3 + 7 + 13 + 21 + \dots + t_n$ $\frac{-S = 3 + 7 + 13 + \dots + t_{n-1} + t_n}{0 = 3 + 4 + 6 + 8 + \dots + 2n - t_n}$ $\Rightarrow t_n = 3 + 4 + 6 + \dots + 2n = 1 + 2 \times \frac{1}{2}n(n+1)$ $= n^2 + n + 1$ Let $T_r = \cot^{-1}(r^2 + r + 1) = \tan^{-1}\left(\frac{1}{r^2 + r + 1}\right) =$ $\tan^{-1}\left(\frac{r+1-r}{1+r(r+1)}\right) = \tan^{-1}(r+1) - \tan^{-1}r$

Thus, the sum of the first *n* terms of the given series is

$$\sum_{r=1}^{n} [\tan^{-1}(r+1) - \tan^{-1}r]$$

= $\tan^{-1}(n+1) - \tan^{-1}(1)$
= $\tan^{-1}\left[\frac{n+1-n}{1+1(n+1)}\right] = \tan^{-1}\left(\frac{n}{n+2}\right)$
= $\tan^{-1}\left(\frac{1}{1+\frac{2}{n}}\right)$
 $\Rightarrow S_{\infty} = \lim_{n \to \infty} \tan^{-1}\left(\frac{1}{1+\frac{2}{n}}\right) = \frac{\pi}{4}, S_{10} = \tan^{-1}\frac{10}{12}$
= $\tan^{-1}\frac{5}{6}$
 $S_{6} = \tan^{-1}\frac{3}{4} = \sin^{-1}\frac{3}{5}$
 $S_{20} = \tan^{-1}\frac{10}{11} = \cot^{-1}1.1$

132 (a,b,c)

13

13

If we put $x = \tan \theta$, then given equality becomes $\tan^{-1} v = 4\theta$

$$\Rightarrow y = \tan 4\theta = \frac{2\tan 2\theta}{1 - \tan^2 2\theta}$$

$$= \frac{2\left[\frac{2\tan \theta}{1 - \tan^2 \theta}\right]}{1 - \left(\frac{2\tan \theta}{1 - \tan^2 \theta}\right)^2}$$

$$= \frac{2 \times 2x(1 - x^2)}{(1 - x^2)^2 - 4x^2} = \frac{4x(1 - x^2)}{1 - 6x^2 + x^4}$$
So that y is infinite, if $x^4 - 6x^2 + 1 = 0$

$$\Rightarrow x^2 = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}$$
3 (a,c,d)
$$(\sin^{-1}x + \sin^{-1}w)(\sin^{-1}y + \sin^{-1}z) = \pi^2$$

$$\Rightarrow \sin^{-1}x + \sin^{-1}w = \sin^{-1}y + \sin^{-1}z = \pi$$
or $\sin^{-1}x + \sin^{-1}w = \sin^{-1}y + \sin^{-1}z = -\pi$

$$\Rightarrow x = y = z = w = 1 \text{ or } x = y = z = w = -1$$

Hence, the maximum value of $\begin{vmatrix} x^{N_1} & y^{N_2} \\ z^{N_3} & w^{N_4} \end{vmatrix} =$ $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$ and minimum value $\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -2$

Also, there are 16 different determinants as each place value is either 1 or -1

134 **(a,b,c)**
Let
$$\tan^{-1}(-2) = \theta \Rightarrow \tan \theta = -2 \Rightarrow \theta = (-\pi/2, 0)$$

 $\Rightarrow 2\theta = (-\pi, 0)$
 $\cos(-2\theta) = \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = -\frac{3}{5}$
 $\Rightarrow -2\theta = \cos^{-1}\left(\frac{-3}{5}\right) = \pi - \cos^{-1}\frac{3}{5}$
 $\Rightarrow 2\theta = -\pi + \cos^{-1}\frac{3}{5} = -\pi + \tan^{-1}\frac{4}{3}$
 $= -\pi + \cot^{-1}\frac{3}{4}$
 $= -\pi + \frac{\pi}{2} - \tan^{-1}\frac{3}{4} = -\frac{\pi}{2} - \tan^{-1}\frac{3}{4}$
 $= -\frac{\pi}{2} + \tan^{-1}\left(-\frac{3}{4}\right)$
135 **(d)**

$$\tan\left[\cos^{-1}\left(\frac{1}{\sqrt{82}}\right) - \sin^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$$

= $\tan(\tan^{-1}9 - \tan^{-1}5)$
= $\tan \tan^{-1}\left(\frac{9-5}{1+9\times 5}\right) = \frac{2}{23}$
In statement II, put $\cot^{-1}x = y \Rightarrow x = \cot y$
LHS= $(\cot y \cos y + \sin y)^2$
= $\frac{(\cos^2 y + \sin^2 y)^2}{\sin^2 y}$
= $1 + \cot^2 y = 1 + x^2$
= $1 + \frac{1}{50} = \frac{51}{50} \left(\because x = \frac{1}{5\sqrt{2}}\right)$

136 (a)

Statement II is true.

Given, $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6} \dots (i)$

And from statement II

 $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \dots (ii)$

Adding Eqs. (i) and (ii), we get

 $2\sin^{-1} x = \frac{2\pi}{3}$ $\Rightarrow \sin^{-1} x = \frac{\pi}{3}$ $\Rightarrow x = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$

 \therefore Given equation has unique solution.

 \Rightarrow Statement I is true.

137 **(d)**

$$\sin^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{2}{3}\right)$$
$$-\tan^{-1}7 - \cot^{-1}7 - \cot^{-1}\left(\frac{1}{7}\right)$$
$$= \frac{\pi}{2} - \frac{\pi}{2} - \cot^{-1}\left(\frac{1}{7}\right) = -\tan^{-1}7$$

138 (a)

$$\therefore AM \ge GM$$

$$\therefore \frac{\cos^{-1} x + (\sin^{-1} y)^2}{2} \ge \sqrt{(\cos^{-1} x)(\sin^{-1} y)^2}$$

$$\Rightarrow \frac{p\pi^2}{8} \ge \frac{\pi^2}{4}$$

$$\Rightarrow P \ge 2$$

Thus , we conclude that the only value of p that satisfies all conditions is p = 2.

Then
$$\cos^{-1} x = (\sin^{-1} y)^2$$

 $\Rightarrow (\cos^{-1} x)^2 = \frac{\pi^4}{16}$
 $\Rightarrow \cos^{-1} x = \pm \frac{\pi^2}{4}$
 $\Rightarrow x = \cos\left(\pm \frac{\pi^2}{4}\right)$
 $\therefore x = \cos\left(\frac{\pi^2}{4}\right)$
Also, $(\sin^{-1} y)^4 = \frac{\pi^4}{16}$
 $\Rightarrow \sin^{-1} y = \pm \frac{\pi}{2}$
 $\therefore y = \sin\left(\pm \frac{\pi}{2}\right) = \pm 1$
139 (a)
 $\therefore AM \ge GM$
 $\therefore \frac{\cos^{-1} x + (\sin^{-1} y)^2}{2} \ge \sqrt{(\cos^{-1} x)(\sin^{-1} y)^2}$
 $\Rightarrow \frac{p\pi^2}{8} \ge \frac{\pi^2}{4}$
 $\Rightarrow P \ge 2$
Thus, we conclude that the only value of a that

Thus , we conclude that the only value of p that satisfies all conditions is p = 2.

Then
$$\cos^{-1} x = (\sin^{-1} y)^2$$

 $\Rightarrow (\cos^{-1} x)^2 = \frac{\pi^4}{16}$
 $\Rightarrow \cos^{-1} x = \pm \frac{\pi^2}{4}$

$$\Rightarrow x = \cos\left(\pm\frac{\pi^2}{4}\right)$$
$$\therefore x = \cos\left(\frac{\pi^2}{4}\right)$$
Also, $(\sin^{-1}y)^4 = \frac{\pi^4}{16}$
$$\Rightarrow \sin^{-1}y = \pm\frac{\pi}{2}$$
$$\therefore y = \sin\left(\pm\frac{\pi}{2}\right) = \pm 1$$

141 (a)

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right) = \frac{\pi}{4}$$
$$= \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y - x}{x + y}\right) = \frac{\pi}{4}$$

Both statement I and statement II are true and statement II is correct explanation of statement I.

142 **(d)**

Obviously, statement 2 is correct, but when $x \in [-1, 1]$ we have $\tan^{-1} x \in [-\pi/4, \pi/4]$.

It implies that $\frac{\pi}{2}$ + tan⁻¹ $x \in [\pi/4, 3\pi/4]$

Hence, statement 2 is true but statement 1 is false

143 (a)

$$\sin^{-1} x = \tan^{-1} \frac{x}{\sqrt{1 - x^2}} > \tan^{-1} x$$
$$> \tan^{-1} y \quad \left[\because x > y, \frac{x}{\sqrt{1 - x^2}} > x \right]$$

Therefore, statement 2 is true

Now,
$$e < \pi \Rightarrow \frac{1}{\sqrt{e}} > \frac{1}{\sqrt{\pi}}$$

By statement 2, we have

$$\sin^{-1}\left(\frac{1}{\sqrt{e}}\right) > \tan^{-1}\left(\frac{1}{\sqrt{e}}\right) > \tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$$

Therefore, statement 1 is true

144 **(c)**

 $\csc^{-1}x > \sec^{-1}x$

$$\Rightarrow \csc^{-1} x > \frac{\pi}{2} - \csc^{-1} x$$

$$\Rightarrow \csc^{-1} x > \frac{\pi}{4}$$
$$\Rightarrow 1 \le x < \sqrt{2} \text{ and } \left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) \in \left[1, \sqrt{2}\right)$$

But statement 2 is false

145 (d)
If
$$x < 0$$
, $\tan^{-1}\left(\frac{1}{x}\right) = -\pi + \cot^{-1} x$
 $\tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} x - \pi + \cot^{-1} x$
 $= -\pi + \frac{\pi}{2} = -\frac{\pi}{2}$

Statement I is false but statement II is true

146 (d)
If
$$x < 0$$
, $\tan^{-1}\left(\frac{1}{x}\right) = -\pi + \cot^{-1} x$
 $\tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} x - \pi + \cot^{-1} x$
 $= -\pi + \frac{\pi}{2} = -\frac{\pi}{2}$

Statement I is false but statement II is true

147 (a)

Statement 2 is correct, from which we can say $\cot^{-1} x + \cos^{-1} 2x = -\pi$ is not possible. Hence, both the statements are correct and statement 2 is the correct explanation of statement 1

148 (a)

$$\therefore \sin^{-1} 2x + \sin^{-1} 3x = \frac{\pi}{3}$$

$$\Rightarrow \frac{\pi}{2} - \cos^{-1} 2x + \frac{\pi}{2} - \cos^{-1} 3x = \frac{\pi}{3}$$

$$\Rightarrow \cos^{-1} 2x + \cos^{-1} 3x = \frac{2\pi}{3}$$

$$\Rightarrow \cos^{-1} \{6x^2 - \sqrt{1 - (2x)^2}\sqrt{1 - (3x)^2}\} = \frac{2\pi}{3}$$

$$\Rightarrow 6x^2 - \sqrt{(1 - 13x^3 + 36x^4)} = -\frac{1}{2}$$

$$\Rightarrow \left(6x^2 + \frac{1}{2}\right)^2 = 1 - 13x^2 + 36x^4$$

$$\Rightarrow 19x^2 = \frac{3}{4}$$

$$\Rightarrow x = \pm \sqrt{\frac{3}{76}}$$

But sum of two negative number cannot be $\frac{\pi}{2}$.

$$\therefore x = \sqrt{\frac{3}{76}}$$
 is the only solution

149 (d)

$$\sin^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{2}{3}\right) - \tan^{-1}7 - \cot^{-1}7 - \cot^{-1}\left(\frac{1}{7}\right)$$

$$\pi \quad \pi \qquad (1)$$

 $=\frac{\pi}{2} - \frac{\pi}{2} - \cot^{-1} \left(\frac{1}{7}\right) = -\tan^{-1} 7$

150 (a)

For x > 0, y > 0,

$$\tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y-x}{y+x}\right) \quad (i)$$

$$= \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{1-\frac{x}{y}}{1+\frac{x}{y}}\right)$$

$$= \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}1 - \tan^{-1}\frac{x}{y}$$

$$= \frac{\pi}{4}$$

Now, in Eq. (i), putting $\frac{x}{y} = \frac{3}{4}$, we get

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$$

Hence, both the statements are correct and statement 2 is the correct explanation of statement 1

151 **(d)**

 $30 - 9\pi \in [0, \pi]$ is true but it is not principal value of $\cos^{-1}(\cos 30)$ as $\cos^{-1}(\cos 30) = \cos^{-1}(\cos(9\pi + (30 - 9\pi))) = \cos^{-1}(-\cos(30 - 9\pi = \pi - 30 - 9\pi = 10\pi - 30))$

Hence, statement 2 is true but statement 1 is false

152 **(a)**

Statement II is true.

Given,
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6} \dots (i)$$

And from statement II

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
 ... (ii)

Adding Eqs. (i) and (ii), we get

$$2\sin^{-1} x = \frac{2\pi}{3}$$
$$\Rightarrow \sin^{-1} x = \frac{\pi}{3}$$
$$\Rightarrow x = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

 \div Given equation has unique solution.

 \Rightarrow Statement I is true.

153 **(d)**

Since , p, q > 0 therefore pq > 0

And
$$\tan^{-1}\left(\frac{p-q}{1+pq}\right) = \tan^{-1}p - \tan^{-1}q \dots (i)$$

Since, qr > -1

:
$$\tan^{-1}\left(\frac{q-r}{1+qr}\right) = \tan^{-1}q - \tan^{-1}r \dots (ii)$$

And since pr < -1 and r < 0

$$\therefore \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi + \tan^{-1}r - \tan^{-1}p \dots \text{(iii)}$$

On adding Eqs. (i), (ii) and (iii), we get

$$\tan^{-1}\left(\frac{p-q}{1+pq}\right) + \tan^{-1}\left(\frac{q-r}{1+qr}\right)$$
$$+ \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi$$

154 **(d)**

Since , p, q > 0 therefore pq > 0

And
$$\tan^{-1}\left(\frac{p-q}{1+pq}\right) = \tan^{-1}p - \tan^{-1}q \dots (i)$$

Since, qr > -1

:
$$\tan^{-1}\left(\frac{q-r}{1+qr}\right) = \tan^{-1}q - \tan^{-1}r \dots (ii)$$

And since pr < -1 and r < 0

$$\therefore \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi + \tan^{-1}r - \tan^{-1}p \dots \text{(iii)}$$

On adding Eqs. (i), (ii) and (iii), we get

$$\tan^{-1}\left(\frac{p-q}{1+pq}\right) + \tan^{-1}\left(\frac{q-r}{1+qr}\right)$$
$$+ \tan^{-1}\left(\frac{r-p}{1+rp}\right) = \pi$$

155 (a)

$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \pi - 2\tan^{-1}x, x \ge 1$$
$$\Rightarrow f'(x) = -\frac{2}{1+x^2} \Rightarrow f'(2) = -\frac{2}{5}$$

Thus statement 1 is true, statement 2 is true and statement 2 is the correct explanation of statement 1

156 (d)

$$\tan\left[\cos^{-1}\left(\frac{1}{\sqrt{82}}\right) - \sin^{-1}\left(\frac{5}{\sqrt{26}}\right)\right]$$

= $\tan(\tan^{-1}9 - \tan^{-1}5)$
= $\tan\tan^{-1}\left(\frac{9-5}{1+9\times 5}\right) = \frac{2}{23}$
In statement II, put $\cot^{-1}x = y \Rightarrow x = \cot y$
LHS= $(\cot y \cos y + \sin y)^2$
 $= \frac{(\cos^2 y + \sin^2 y)^2}{\sin^2 y}$
= $1 + \cot^2 y = 1 + x^2$
 $= 1 + \frac{1}{50} = \frac{51}{50} \left(\because x = \frac{1}{5\sqrt{2}}\right)$
157 (a)

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right) = \frac{\pi}{4}$$
$$= \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y - x}{x + y}\right) = \frac{\pi}{4}$$

Both statement I and statement II are true and statement II is correct explanation of statement I.

158 **(b)**

We know that $\tan^{-1} x$ and $\cot^{-1} x$ have domain R, also $\tan x$ and $\cot x$ are unbounded functions. On the other hand, $\sec x$ is an unbounded function, but its range is R - (-1, 1), and not R

159 **(a)**

$$\sin^{-1} 2x + \sin^{-1} 3x = \frac{\pi}{3}$$

$$\Rightarrow \frac{\pi}{2} - \cos^{-1} 2x + \frac{\pi}{2} - \cos^{-1} 3x = \frac{\pi}{3}$$
$$\Rightarrow \cos^{-1} 2x + \cos^{-1} 3x = \frac{2\pi}{3}$$
$$\Rightarrow \cos^{-1} \{6x^2 - \sqrt{1 - (2x)^2}\sqrt{1 - (3x)^2}\} = \frac{2\pi}{3}$$
$$\Rightarrow 6x^2 - \sqrt{(1 - 13x^3 + 36x^4)} = -\frac{1}{2}$$
$$\Rightarrow \left(6x^2 + \frac{1}{2}\right)^2 = 1 - 13x^2 + 36x^4$$
$$\Rightarrow 19x^2 = \frac{3}{4}$$
$$\Rightarrow x = \pm \sqrt{\frac{3}{76}}$$

But sum of two negative number cannot be $\frac{\pi}{3}$.

$$\therefore x = \sqrt{\frac{3}{76}}$$
 is the only solution

160 (b)
a.
$$(\sin^{-1} x)^2 + (\sin^{-1} y)^2 = \frac{\pi^2}{2}$$

 $\Rightarrow (\sin^{-1} x)^2 = (\sin^{-1} y)^2 = \frac{\pi^2}{4}$
 $\Rightarrow \sin^{-1} x = \pm \frac{\pi}{2}, \sin^{-1} y = \pm \frac{\pi}{2}$
 $\Rightarrow x = \pm 1 \text{ and } y = \pm 1$
 $\Rightarrow x^3 + y^3 = -2, 0, 2$
b. $(\cos^{-1} x)^2 + (\cos^{-1} y)^2 = 2\pi^2$
 $\Rightarrow (\cos^{-1} x)^2 = (\cos^{-1} y)^2 = \pi$
 $\Rightarrow x = y = -1$
 $\Rightarrow x^5 + y^5 = -2$
c. $(\sin^{-1} x)^2 (\cos^{-1} y)^2 = \frac{\pi^4}{4}$
 $\Rightarrow (\sin^{-1} x)^2 = \frac{\pi^2}{4} \text{ and } (\cos^{-1} y)^2 = \pi^2$
 $\Rightarrow (\sin^{-1} x) = \pm \frac{\pi}{2} \text{ and } (\cos^{-1} y) = \pi$
 $\Rightarrow x = \pm 1 \text{ and } y = -1$
 $\Rightarrow -|x - y| = 0, 2$

d.
$$|\sin^{-1} x - \sin^{-1} y| = \pi$$

 $\Rightarrow \sin^{-1} x = -\frac{\pi}{2}$ and $\sin^{-1} y = \frac{\pi}{2}$
or $\sin^{-1} x = \frac{\pi}{2}$ and $\sin^{-1} y = -\frac{\pi}{2}$
 $\Rightarrow x^{y} = 1^{-(1)}$ or $(-1)^{1} = 1$ or -1
161 (d)
a. $f(x) = \sin^{-1} x + \cos^{-1} x + \cot^{-1} x$
 $= \frac{\pi}{2} + \cot^{-1} x, x \in [-1, 1]$
For $x \in [-1, 1]$, $\cot^{-1} x \in [\frac{\pi}{4}, \frac{3\pi}{4}] \Rightarrow \frac{\pi}{2} + \cot^{-1} x \in [\frac{3\pi}{4}, \frac{5\pi}{4}]$
b. $f(x) = \cot^{-1} x + \tan^{-1} x + \csc^{-1} x$
 $= \frac{\pi}{2} + \csc^{-1} x$, where $x \in (-\infty, -1] \cup [1, \infty)$
Now $\csc^{-1} x \in [-\frac{\pi}{2}, 0] \cup (0, \frac{\pi}{2}] \Rightarrow \frac{\pi}{2} + \cos^{-1} x \in [\frac{\pi}{2}, \frac{\pi}{2}]$
c. $f(x) = \cot^{-1} x + \tan^{-1} x + \cos^{-1} x$
 $= \frac{\pi}{2} + \cos^{-1} x$, where $x \in [-1, 1] \Rightarrow \frac{\pi}{2} + \cos^{-1} x \in [\frac{\pi}{2}, \frac{3\pi}{2}]$
d. $\sec^{-1} x + \csc^{-1} x + \sin^{-1} x$, where $x \in \{-1, 1\}$
 $= \frac{\pi}{2} + \sin^{-1} x$, where $x \in \{-1, 1\}$
Hence, $f(x) \in \{0, \pi\}$
162 (a)
a. $\sin^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4} = \cot^{-1} \frac{4}{3}$
and $\tan^{-1} \frac{12}{5} + \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{63}{16} = \pi + \tan^{-1} \frac{48+15}{20-36} + \tan^{-1} \frac{63}{16} = \pi + \tan^{-1} \frac{48+15}{20-36} + \tan^{-1} \frac{63}{16} = \pi$
 $c. A = \tan^{-1} \frac{63}{16} + \tan^{-1} \frac{63}{16} = \pi$
 $c. A = \tan^{-1} \frac{2\sqrt{3}}{2\lambda - x}$ and $B = \tan^{-1} (\frac{2x - \lambda}{\lambda\sqrt{3}})$
Now, $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
 $= \frac{\frac{x\sqrt{3}}{2\lambda - x} - \frac{2x - \lambda}{\lambda\sqrt{3}}}{\sqrt{3}[\lambda(2\lambda - x) + x(2x - \lambda)]}$

$$= \frac{1}{\sqrt{3}} \left[\frac{2x^2 - 2\lambda x + 2\lambda^2}{2x^2 - 2\lambda x + 2\lambda^2} \right] = \frac{1}{\sqrt{3}} = \tan 30^{\circ}$$

$$\therefore A - B = 30^{\circ}$$

$$d. \tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{1}{3} = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\frac{1}{3}}{1-\frac{1}{9}} = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\frac{1}{3}}{1-\frac{1}{9}} = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\frac{1}{3}}{1-\frac{1}{9}} = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\frac{1}{3}}{1-\frac{1}{7}\frac{3}{4}} = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\frac{1}{3}}{1-\frac{1}{7}\frac{3}{7}} = \tan^{-1}1 = \pi/4$$

163 (b)

$$\int y = \sin^{-1}x + \frac{1}{7} + \frac{1$$

c.
$$\cos^{-1}(4x^3 - 3x) = 3\sin^{-1}x$$

 $0 \le \cos^{-1}(3x - 4x^3) \le \pi$
 $\Rightarrow 0 \le 3\sin^{-1}x \le \pi$
 $\Rightarrow 0 \le \sin^{-1}x \le \pi/3$
 $\Rightarrow 0 \le x \le (\sqrt{3}/2)$
d. $\sin^{-1}(3x - 4x^3) = 3\cos^{-1}x$
 $(-\pi/2) \le \sin^{-1}(3x - 4x^3) \le (\pi/2)$
 $\Rightarrow (-\pi/2) \le 3\cos^{-1}x \le (\pi/2)$
 $\Rightarrow (-\pi/6) \le \cos^{-1}x \le (\pi/6)$
 $\Rightarrow 0 \le x \le (\sqrt{3}/2)$

166 **(a)**

$$\lim_{n \to \infty} \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r-1}}{1+2^{2r-1}} \right)$$

=
$$\lim_{n \to \infty} \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r}-2^{r-1}}{1+2^{r}\cdot2^{r-1}} \right)$$

=
$$\lim_{n \to \infty} \sum_{r=1}^{n} \{ \tan^{-1}(2^{r}) - \tan^{-1}(2^{r-1}) \}$$

=
$$\lim_{n \to \infty} (\tan^{-1}2^{n} - \tan^{-1}2^{0})$$

=
$$\tan^{-1}2^{\infty} - \tan^{-1}1$$

=
$$\tan^{-1}\infty - \tan^{-1}1 = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

167 **(a)**

Since,
$$f(x) = 0 \Rightarrow \sin\{\cot^{-1}(x+1)\} =$$

 $\cos^{10}(\tan - 1x)$
 $\Rightarrow \sin \sin^{-1} \frac{1}{\sqrt{1 + (x+1)^2}} = \cos \cos^{-1} \frac{1}{\sqrt{1 + x^2}}$
 $\Rightarrow \frac{1}{\sqrt{1 + (x+1)^2}} = \frac{1}{\sqrt{1 + x^2}}$
 $\Rightarrow 1 + x^2 = 2 + x^2 + 2x$
 $\Rightarrow x = -\frac{1}{2}$

168 **(a)**

n

$$\lim_{n \to \infty} \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r-1}}{1+2^{2r-1}} \right)$$

=
$$\lim_{n \to \infty} \sum_{r=1}^{n} \tan^{-1} \left(\frac{2^{r}-2^{r-1}}{1+2^{r}\cdot2^{r-1}} \right)$$

=
$$\lim_{n \to \infty} \sum_{r=1}^{n} \{ \tan^{-1}(2^{r}) - \tan^{-1}(2^{r-1}) \}$$

=
$$\lim_{n \to \infty} (\tan^{-1}2^{n} - \tan^{-1}2^{0})$$

=
$$\tan^{-1}2^{\infty} - \tan^{-1}1$$

=
$$\tan^{-1}\infty - \tan^{-1}1 = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

169 (a)
Since, $f(x) = 0 \Rightarrow \sin\{\cot^{-1}(x+1)\} = 1$

Since,
$$f(x)$$
 =

Since, f(x) = 0 $\cos \frac{1}{2} (\tan -1x)$

$$\Rightarrow \sin \sin^{-1} \frac{1}{\sqrt{1 + (x+1)^2}} = \cos \cos^{-1} \frac{1}{\sqrt{1+x^2}}$$
$$\Rightarrow \frac{1}{\sqrt{1 + (x+1)^2}} = \frac{1}{\sqrt{1+x^2}}$$
$$\Rightarrow 1 + x^2 = 2 + x^2 + 2x$$
$$\Rightarrow x = -\frac{1}{2}$$
170 (d)
$$\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
$$\cos^{-1} y \in [0, \pi]$$
$$\sec^{-1} z \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$$
$$\Rightarrow \sin^{-1} x + \cos^{-1} y + \sec^{-1} z$$
$$\leq \frac{\pi}{2} + \pi + \pi = \frac{5\pi}{2}$$
Also, $t^2 - \sqrt{2\pi} t + 3\pi$

$$= t^{2} - 2\sqrt{\frac{\pi}{2}} t + \frac{\pi}{2} - \frac{\pi}{2} + 3\pi = \left(t - \sqrt{\frac{\pi}{2}}\right)^{2} + \frac{5\pi}{2}$$
$$\geq \frac{5\pi}{2}$$

The given inequation exists if equality holds, i.e.,

L. H. S. = R. H. S. =
$$\frac{5\pi}{2}$$

 $\Rightarrow x = 1, y = -1, z = -1 \text{ and } t = \sqrt{\frac{\pi}{2}} \Rightarrow$
 $\cos^{-1}(\cos 5t^2) = \cos^{-1}\left(\cos\left(\frac{5\pi}{2}\right)\right) = \frac{\pi}{2}$
 $\cos^{-1}(\min\{x, y, z\}) = \cos^{-1}(-1) = \pi$

171 **(b)**

Given $ax + b(\sec(\tan^{-1} x)) = c$ and $ay + b(\sec(\tan^{-1} y)) = c$

Let $\tan^{-1} x = \alpha$ and $\tan^{-1} y = \beta$, then the given relations are

 $a \tan \alpha + b \sec \alpha = c$ and $a \tan \beta + b \sec \beta = c$

From these two relations, we can conclude that equation $a \tan \theta + b \sec \theta = c$ has roots α and β

- $a \tan \theta + b \sec \theta = c$
- $\Rightarrow b \sec \theta = c a \tan \theta$

 $\Rightarrow b^2 \sec^2 \theta = c^2 - 2 ac \tan \theta + a^2 \tan^2 \theta$

 $\Rightarrow b^2 + b^2 \tan^2 \theta = c^2 - 2 ac \tan \theta + a^2 \tan^2 \theta$

 $\Rightarrow (a^2 - b^2) \tan^2 \theta - 2 ac \tan \theta + c^2 - b^2 = 0$

Therefore, sum of the roots, $\tan \alpha + \tan \beta = x + y = \frac{2 ac}{a^2 - b^2}$

and the product of roots, $\tan \alpha \tan \beta = xy = \frac{c^2 - b^2}{a^2 - b^2}$

and
$$\frac{x+y}{1-xy} = \frac{\frac{2ac}{a^2-b^2}}{1-\frac{c^2-b^2}{a^2-b^2}} = \frac{2ac}{a^2-c^2}$$

172 **(b)** Let $\cos^{-1} x = a \Rightarrow a \in [0, \pi]$ and $\sin^{-1} y = b \Rightarrow b \in [-\pi/2, \pi/2]$ We have $a + b^2 = \frac{p\pi^2}{4}$ (i) and $ab^2 = \frac{\pi^4}{16}$ (ii) Since $b^2 \in [0, \pi^2/4]$, we get $a + b^2 \in [0, \pi + \pi^2/4]$ So, from Eq.(i) we get $0 \le \frac{p\pi^2}{4} \le \pi + \frac{\pi^2}{4}$ i. e., $0 \le p \le \frac{4}{\pi} + 1$

п

Since $p \in Z$, so p = 0, 1 or 2

Substituting the value of b^2 from Eq. (i) in Eq. (ii), we get

$$a\left(\frac{p\pi^2}{4} - a\right) = \frac{\pi^2}{16} \Rightarrow 16a^2 - 4p \ \pi^2 a + \pi^4$$

= 0 (iii)

Since $a \in R \Rightarrow D \ge 0$

i. e.,
$$16p^2\pi^4 - 64\pi^4 \ge 0 \Rightarrow p^2 \ge 4 \Rightarrow p \ge 2 \Rightarrow p$$

= 2

Substituting p = 2 in Eq. (iii), we get

$$16a^2 - 8\pi^2 a + \pi^4 = 0$$

$$\Rightarrow (4a - \pi^2)^2 = 0 \Rightarrow a = \frac{\pi^2}{4} = \cos^{-1} x \Rightarrow x$$
$$= \cos \frac{\pi^2}{4}$$

From Eq.(ii), we get $\frac{\pi^2}{4} b^2 = \frac{\pi^4}{16} \Rightarrow b = \pm \frac{\pi}{2} = \sin^{-1} y \Rightarrow y = \pm 1$

173 (c)

Let $\cos^{-1} x = \theta \Rightarrow x = \cos \theta$, where $\theta \in [0, \pi]$

 $\cos^{-1}(4x^3 - 3x) = \cos^{-1}(4\cos^3\theta - 3\cos\theta)$ $= \cos^{-1}(\cos 3\theta) = \cos^{-1}(\cos \alpha)$

where $\alpha = 3\theta \in [0, 3\pi]$

Refer the graph of $y = \cos^{-1}(\cos \alpha)$, $\alpha \in [0, 3\pi]$

$$\therefore a = 0$$

$$\therefore x = \sin^{-1} 1 + \cos^{-1} 1 - \tan^{-1} 1 = \frac{\pi}{4}$$

$$\Rightarrow \sec^2 x = 2$$

175 (3)

$$\sin^{-1}\left(x^{2} - \frac{x^{4}}{3} + \frac{x^{6}}{9} - \cdots\right) + \cos^{-1}\left(x^{4} - \frac{x^{8}}{3} + \frac{x^{12}}{9} \cdots\right) = \frac{\pi}{2}$$

$$\Rightarrow \left(x^{2} - \frac{x^{4}}{3} + \frac{x^{6}}{9} \cdots\right) = \left(x^{4} - \frac{x^{8}}{3} + \frac{x^{12}}{9} \cdots\right)$$

$$\Rightarrow \frac{x^{2}}{1 + \frac{x^{2}}{3}} = \frac{x^{4}}{1 + \frac{x^{4}}{3}}$$

$$\Rightarrow \frac{3}{3 + x^{2}} = \frac{3x^{2}}{3 + x^{4}} \text{ or } x = 0$$

$$\Rightarrow 9 + 3x^{4} = 9x^{2} + 3x^{4} \text{ or } x = 0$$

$$\Rightarrow x^{2} = 1 \Rightarrow x = 0, 1 \text{ or } -1$$

Therefore, the number of values is equal to 3

176 (9)

$$\tan^{-1}\left(x + \frac{3}{x}\right) - \tan^{-1}\left(x - \frac{3}{x}\right) = \tan^{-1}\frac{6}{x}$$

$$\Rightarrow \tan^{-1}\left(\frac{\left(x + \frac{3}{x}\right) - \left(x - \frac{3}{x}\right)}{1 + \left(x + \frac{3}{x}\right)\left(x - \frac{3}{x}\right)}\right) = \tan^{-1}\frac{6}{x}$$

$$\Rightarrow x^{2} - \frac{9}{x^{2}} = 0 \Rightarrow x^{4} = 9$$

177 (3)

$$\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi$$

$$\Rightarrow \cos^{-1}(2x) + \cos^{-1}(3x) = \pi - \cos^{-1}(x)$$

$$= \cos^{-1}(-x)$$

$$\Rightarrow \cos^{-1}\left[(2x)(3x) - \sqrt{1 - 4x^2}\sqrt{1 - 9x^2}\right]$$

$$= \cos^{-1}(-x)$$

$$\Rightarrow 6x^2 - \sqrt{1 - 4x^2}\sqrt{1 - 9x^2} = -x$$

$$\Rightarrow (6x^2 + x)^2 = (1 - 4x^2)(1 - 9x^2)$$

$$\Rightarrow x^2 + 12x^3 = 1 - 13x^2$$

$$\Rightarrow 12x^3 + 14x^2 - 1 = 0$$

⇒
$$a = 12; b = 14; c = 0$$

⇒ $b - a - c = 14 - 12 + 1 = 3$

178 **(1)**

We have $g(x) = \sin^{-1}(\cos x) = \frac{\pi}{2} - \cos^{-1}(\cos x)$

Both the curves bound the regions of same area in $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right], \left[\frac{9\pi}{4}, \frac{15\pi}{4}\right]$ and so on

Therefore, the required are = area of shaded square = $\frac{9\pi^2}{8} = \frac{a\pi^2}{b}$ $\therefore a = 9$ and $b = 8 \Rightarrow a - b = 1$

179 **(9)**

 $1 + \sin(\cos^{-1} x) + \sin^2(\cos^{-1} x) + \dots = 2$

$$\Rightarrow \frac{1}{1 - \sin(\cos^{-1} x)} = 2$$

$$\Rightarrow \frac{1}{2} = 1 - \sin(\cos^{-1} x)$$

$$\Rightarrow \sin(\cos^{-1} x) = \frac{1}{2} \Rightarrow \cos^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \frac{\sqrt{3}}{2} \Rightarrow 12x^{2} = 9$$

180 **(1)**

 $\tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x)$

$$\Rightarrow \tan^{-1}(3x) - \tan^{-1}(2x) \\= \tan^{-1}(7x) - \tan^{-1}(5x)$$
$$\Rightarrow \tan^{-1}\left(\frac{3x - 2x}{1 + 6x^2}\right) = \tan^{-1}\left(\frac{7x - 5x}{1 + 35x^2}\right)$$
$$\Rightarrow \frac{x}{1 + 6x^2} = \frac{2x}{1 + 35x^2}$$
$$\Rightarrow x = 0 \text{ or } 1 + 35x^2 = 2 + 12x^2$$
$$\Rightarrow x = 0 \text{ or } x = \frac{1}{\sqrt{23}} \text{ or } -\frac{1}{\sqrt{23}}$$

181 (5)

$$(\cot^{-1} x)(\tan^{-1} x) + (2 - \frac{\pi}{2})\cot^{-1} x - 3\tan^{-1} x - 3(2 - \frac{\pi}{2}) > 0$$

$$\Rightarrow \cot^{-1} x > 0$$

$$\Rightarrow (\cot^{-1} x - 3)(2 - \cot^{-1} x) > 0$$

$$\Rightarrow (\cot^{-1} x - 3)(\cot^{-1} x - 2) < 0$$

$$\Rightarrow 2 < \cot^{-1} x < 3$$

$$\Rightarrow \cot 3 < x < \cot 2 \text{ [as } \cot^{-1} x \text{ is a decreasing function]}$$

$$\Rightarrow \text{Hence, } x \in (\cot 3, \cot 2)$$

$$\Rightarrow \cot^{-1} a + \cot^{-1} b = \cot^{-1}(\cot 3) + \cot^{-1}(\cot 2)$$

$$= 5$$
182 (6)
Let $\tan^{-1} u = \alpha \Rightarrow \tan \alpha = u$
 $\tan^{-1} v = \beta \Rightarrow \tan \beta = v$
 $\tan^{-1} w = \gamma \Rightarrow \tan \gamma = w$
 $\tan(\alpha + \beta + \gamma) = \frac{s_1 - s_3}{1 - s_2} = \frac{0 - (-11)}{1 - (-10)} = \frac{11}{11} = 1$
 $\therefore \alpha + \beta + \gamma = \tan^{-1}(1) = \frac{\pi}{4}$
 $\Rightarrow 3 \csc^{2}(\tan^{-1} u + \tan^{-1} v + \tan^{-1} w) = 6$
183 (4)
 $f(x) = \sin^{-1} x + 2\tan^{-1} x + (x + 2)^{2} - 3$
Domain of $f(x)$ is $[-1, 1]$
Also $f(x)$ is an increasing function in the domain
 $\therefore p = f_{\min}(x) = f(-1) = -\frac{\pi}{2} + 2(\frac{-\pi}{4}) + 1 - 3$
 $= -\pi - 2$
and $q = f_{\max}(x) = f(1) = \frac{\pi}{2} + 2(\frac{\pi}{4}) + 9 - 6 = \pi + 6$
Therefore, the range of $f(x)$ is $[-\pi - 2, \pi + 6]$

184 **(7)**
$$f(x) = \sqrt{3\cos^{-1}(4x) - \pi}$$
 is defined

Hence, (p+q) = 4

If $\cos^{-1} 4x \ge \frac{\pi}{3} \Rightarrow 4x \le \frac{1}{2} \Rightarrow x \le \frac{1}{8}$ (i) Also, $-1 \le 4x \le 1 \Rightarrow \frac{-1}{4} \le x \le \frac{1}{4}$ (ii) Therefore, from Eqs. (i) and (ii), we have domain: $x \in \left[\frac{-1}{4}, \frac{1}{8}\right]$ $\Rightarrow 4a + 64b = 7$

185 **(3)**

We must have $x(x + 3) \ge 0$

 $\Rightarrow x \ge 0 \text{ or } x \le -3$ (i) Also, $-1 \le x^2 + 3x + 1 \le 1$ $\Rightarrow x(x+3) \le 0 \Rightarrow -3 \le x \le 0$ (ii)

From Eqs. (i) and (ii), we get $x = \{0, -3\}$

Hence, required sum is 3

186 **(6)**

$$T_n = \tan^{-1} \left(\frac{n+1-1}{1+(n+1)1} \right)$$

= $\tan^{-1}(n+1) - \tan^{-1}(n)$
Hence, $S_n = \tan^{-1}(n+1) - \tan^{-1} 1$
= $\tan^{-1} \left(\frac{n+1-1}{1+(n+1)\cdot 1} \right) = \left(\tan^{-1} \frac{n}{n+2} \right)$
= $\frac{1}{2} \cos^{-1} \left(\frac{24}{145} \right)$
 $\Rightarrow 2 \left(\tan^{-1} \frac{n}{n+2} \right) = \cos^{-1} \left(\frac{24}{145} \right)$

$$\Rightarrow \cos^{-1}\left(\frac{2(n+1)}{n^2+2n+2}\right) = \cos^{-1}\left(\frac{24}{145}\right)$$
$$\Rightarrow \left(\frac{2(n+1)}{n^2+2n+2}\right) = \left(\frac{24}{145}\right)$$
$$\Rightarrow 12(n+1)^2 - 145(n+1) + 12 = 0$$
$$\Rightarrow ((n+1) - 12)(12(n+1) - 1) = 0$$
$$\Rightarrow n+1 = 12 \Rightarrow n = 11$$

187 (1)

Given expression is defined only for x = 1 and -1

∴
$$f(1) = 1$$
 and $f(-1) = (1 + \pi)(1 + \pi) = (1 + \pi)^2$

Hence, the least value is 1

