Single Correct Answer Type

1. $\int_{0}^{\infty} \frac{x d x}{(1+x)\left(1+x^{2}\right)}$ is equal to
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) π
d) None of these
2. $\int x \sin x \sec ^{3} x d x$ is equal to
a) $\frac{1}{2}\left[\sec ^{2} x-\tan x\right]+c$
b) $\frac{1}{2}\left[x \sec ^{2} x-\tan x\right]+c$
c) $\frac{1}{2}\left[x \sec ^{2} x+\tan x\right]+c$
d) $\frac{1}{2}\left[\sec ^{2} x+\tan x\right]+c$
3. The value of $\int_{-2}^{0}\left[x^{3}+3 x^{2}+3 x+3+(x+1) \cos (x+1)\right] d x$ is
a) 0
b) 3
c) 4
d) 1
4. $\int \sqrt{e^{x}-1} d x$ is equal to
a) $2\left[\sqrt{e^{x}-1}-\tan ^{-1} \sqrt{e^{x}-1}\right]+c$
b) $\sqrt{e^{x}-1}-\tan ^{-1} \sqrt{e^{x}-1}+c$
c) $\sqrt{e^{x}-1}+\tan ^{-1} \sqrt{e^{x}-1}+c$
d) $2\left[\sqrt{e^{x}-1}+\tan ^{-1} \sqrt{e^{x}-1}\right]+c$
5. $\int e^{x} \frac{\left(x^{2}+1\right)}{(x+1)^{2}} d x$ is equal to
a) $\left(\frac{x-1}{x+1}\right) e^{x}+c$
b) $e^{x}\left(\frac{x+1}{x-1}\right)+c$
c) $e^{x}(x+1)(x-1)+c$
d) None of these
6. $\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}$ is equal to
a) 2
b) -2
c) $1 / 2$
d) $-1 / 2$
7. The value of the definite integral $\int_{2}^{4}(x(3-x)(4+x)(6-x)(10-x)+\sin x) d x$ equals
a) $\cos 2+\cos 4$
b) $\cos 2-\cos 4$
c) $\sin 2+\sin 4$
d) $\sin 2-\sin 4$
8. If $I=\int e^{-x} \log \left(e^{x}+1\right) d x$, then I equals
a) $x+\left(e^{-x}+1\right) \log \left(e^{x}+1\right)+C$
b) $x+\left(e^{x}+1\right) \log \left(e^{x}+1\right)+C$
c) $x-\left(e^{-x}+1\right) \log \left(e^{x}+1\right)+C$
d) None of these
9. If $f(x)$ is monotonic differentiable function on $[a, b]$, then $\int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1} x(d x)=$
a) $b f(a)-a f(b)$
b) $b f(b)-a f(a)$
c) $f(a)+f(b)$
d) Cannot be found
10. If $I_{m, n}=\int \cos ^{m} x \sin n x d x$, then $7 I_{4,3}-4 I_{3,2}$ is equal to
a) constant
b) $-\cos ^{2} x+C$
c) $-\cos ^{4} x \cos 3 x+C$
d) $\cos 7 x-\cos 4 x+C$
11. If $I=\int_{-20 \pi}^{20 \pi}|\sin x|[\sin x] d x$ (where [.] denotes the greatest integer function), then the value of I is
a) -40
b) 40
c) 20
d) -20
12. If $I=\int(\sqrt{\cot x}-\sqrt{\tan x}) d x$, then Iequals
a) $\sqrt{2} \log (\sqrt{\tan x}-\sqrt{\cot x})+C$
b) $\sqrt{2} \log |\sin x+\cos x+\sqrt{\sin 2 x}|+C$
c) $\sqrt{2} \log |\sin x-\cos x+\sqrt{2} \sin x \cos x|+C$
d) $\sqrt{2} \log |\sin (x+\pi / 4)+\sqrt{2} \sin x \cos x|+C$
13. The value of the definite integral $\int_{0}^{\pi / 2} \sqrt{\tan x} d x$ is
a) $\sqrt{2} \pi$
b) $\frac{\pi}{\sqrt{2}}$
c) $2 \sqrt{2} \pi$
d) $\frac{\pi}{2 \sqrt{2}}$
14.

Let $f(x)=\frac{x}{\left(1+x^{n}\right)^{1 / n}}$ for $n \geq 2$ and $\mathrm{g}(x)=($ fofo \ldots of $)(x)$.

$$
g(x)=\underbrace{(f \circ f o \ldots o f)}_{n \text { times }}(x) \text {. }
$$

a) $\frac{1}{n(n-1)}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+c$
b) $\frac{1}{n-1}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+c$
c) $\frac{1}{n(n+1)}\left(1+n x^{n}\right)^{1+\frac{1}{n}}+c$
d) $\frac{1}{n+1}\left(1+n x^{n}\right)^{1+\frac{1}{n}}+c$
15. If $\lambda=\int_{0}^{1} \frac{e^{t}}{1+t}$, then $\int_{0}^{1} e^{t} \log _{e}(1+t) d t$ is equal to
a) 2λ
b) $e \log _{e} 2-\lambda$
c) λ
d) $e \log _{e} 2+\lambda$
16. $\int \frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}} d x, \alpha \neq n \pi, n \in Z$ is equal to
a) $-2 \operatorname{cosec} \alpha(\cos \alpha-\tan x \sin \alpha)^{1 / 2}+C$
b) $-2(\cos \alpha+\cot x \sin \alpha)^{1 / 2}+C$
c) $-2 \operatorname{cosec} \alpha(\cos \alpha+\cot x \sin \alpha)^{1 / 2}+C$
d) $-2 \operatorname{cosec} \alpha(\sin \alpha+\cot x \cos \alpha)^{1 / 2}+C$
17. $\int \frac{\sin 2 x}{\sin 5 x \sin 3 x} d x$ is equal to
a) $\log \sin 3 x-\log \sin 5 x+c$
b) $\frac{1}{3} \log \sin 3 x+\frac{1}{5} \log \sin 5 x+c$
c) $\frac{1}{3} \log \sin 3 x-\frac{1}{5} \log \sin 5 x+c$
d) $3 \log \sin 3 x-5 \log \sin 5 x+c$
18. $\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x$ is equal to
a) $\cot ^{-1}\left(\tan ^{2} x\right)+c$
b) $\tan ^{-1}\left(\tan ^{2} x\right)+c$
c) $\cot ^{-1}\left(\cot ^{2} x\right)+c$
d) $\tan ^{-1}\left(\cot ^{2} x\right)+c$
19. $\int \frac{3+2 \cos x}{(2+3 \cos x)^{2}} d x$ is equal to
a) $\left(\frac{\sin x}{3 \cos x+2}\right)+c$
b) $\left(\frac{2 \cos x}{3 \sin x+2}\right)+c$
c) $\left(\frac{2 \cos x}{3 \cos x+2}\right)+c$
d) $\left(\frac{2 \sin x}{3 \sin x+2}\right)+c$
20. Let f be a non-negative function defined on the interval $[0,1]$. If $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq$ 1 and $f(0)=0$, then
a) $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
b) $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
c) $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
d) $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
21. If $\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x=\lambda \int_{0}^{1} \tan ^{-1} x d x$, then λ is equal to
a) 1
b) 2
c) 3
d) 4
22. If $\alpha, \beta(\beta>\alpha)$ are the roots of $\mathrm{g}(x)=a x^{2}+b x+c=0$ and $f(x)$ is an even function, then $\int_{\alpha}^{\beta} \frac{\left.e^{f(\mathrm{~g}(x)} x-\alpha\right)}{d x} e^{f\left(\frac{\mathrm{~g}(x)}{x-\alpha}\right)}+e^{f\left(\frac{\mathrm{~g} x)}{x-\beta}\right)}$ is equal to
а) $\left|\frac{b}{2 a}\right|$
b) $\frac{\sqrt{b^{2}-4 a c}}{|2 a|}$
c) $\left|\frac{b}{a}\right|$
d) None of these
23. $\int_{\sin \theta}^{\cos \theta} f(x \tan \theta) d x\left(\right.$ where $\left.\theta \neq \frac{n \pi}{2}, n \in I\right)$ is equal to
a) $-\cos \theta \int_{1}^{\tan \theta} f(x \sin \theta) d x$
b) $-\tan \theta \int_{\cos \theta}^{\sin \theta} f(x) d x$
c) $\sin \theta \int_{1}^{\tan \theta} f(x \cos \theta) d x$
d) $\frac{1}{\tan \theta} \int_{\sin \theta}^{\sin \theta \tan \theta} f(x) d x$
24. The range of the function $f(x)=\int_{-1}^{1} \frac{\sin x d t}{\left(1-2 t \cos x+t^{2}\right)}$ is
a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
b) $[0, \pi]$
c) $\{0, \pi\}$
d) $\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$
25. If $x=\int_{c}^{\sin t} \sin ^{-1} z d z, y=\int_{k}^{\sqrt{t} \sin z^{2}} \frac{z}{} d z$, then $\frac{d y}{d x}$ is equal to
a) $\frac{\tan t}{2 t}$
b) $\frac{\tan t}{t^{2}}$
c) $\frac{\tan t}{2 t^{2}}$
d) $\frac{\tan t^{2}}{2 t^{2}}$
26. $f(x)$ is a continuous function for all real values of x and satisfies $\int_{n}^{n+1} f(x) d x=\frac{n^{2}}{2} \forall n \in I$, then $\int_{-3}^{5} f(|x|) d x$ is equal to
a) $19 / 2$
b) $35 / 2$
c) $17 / 2$
d) None of these
27. If $I=\int \sqrt{\frac{5-x}{2+x}} d x$, then I equals
a) $\sqrt{x+2} \sqrt{5-x}+3 \sin ^{-1} \sqrt{\frac{x+2}{3}}+C$
b) $\sqrt{x+2} \sqrt{5-x}+7 \sin ^{-1} \sqrt{\frac{x+2}{7}}+C$
c) $\sqrt{x+2} \sqrt{5-x}+5 \sin ^{-1} \sqrt{\frac{x+2}{5}}+C$
d) None of these
28. Given $I_{m}=\int_{1}^{e}(\log x)^{m} d x$. If $\frac{I_{m}}{K}+\frac{I_{m-2}}{L}=e$, then the values of K and L are
a) $\frac{1}{1-m}, \frac{1}{m}$
b) $(1-m), \frac{1}{m}$
c) $\frac{1}{1-m}, \frac{m(m-2)}{m-1}$
d) $\frac{m}{m-1}, m-2$
29. Let $f(x)=\int_{2}^{x} \frac{d t}{\sqrt{1+t^{4}}}$ and g be the inverse of f. Then the value of $\mathrm{g}^{\prime}(0)$ is
a) 1
b) 17
c) $\sqrt{17}$
d) None of these
30. The value of $\int_{1}^{a}[x] f^{\prime}(x) d x$, where $a>1$, where $[x]$ denotes the greatest integer not exceeding x is
a) $a f(a)-\{f(1)+f(2)+\cdots+f([a])\}$
b) $[a] f(a)-\{f(1)+f(2)+\cdots+f([a])\}$
c) $[a] f([a])-\{f(1)+f(2)+\cdots+f A\}$
d) $a f([a])-\{f(1)+f(2)+\cdots+f A\}$
31. The primitive of the function $x|\cos x|$ when $\frac{\pi}{2}<x<\pi$ is given by
a) $\cos x+x \sin x+C$
b) $-\cos x-x \sin x+C$
c) $x \sin x-x \cos x+C$
d) None of these $+C$
32. Let $\mathrm{g}(x)=\int_{0}^{x} f(t) d t$, where f is such that $\frac{1}{2} \leq f(t) \leq 1$, for $t \in[0,1]$ and $0 \leq f(t) \leq \frac{1}{2}$, for $t \in[1,2]$. Then $\mathrm{g}(2)$ satisfies the inequality
a) $-\frac{3}{2} \leq \mathrm{g}(2)<\frac{1}{2}$
b) $\frac{1}{2} \leq \mathrm{g}(2) \leq \frac{3}{2}$
c) $\frac{3}{2}<g(2) \leq \frac{5}{2}$
d) $2<$ g(2) <4
33. Let $f: R \rightarrow R$ be a continuous function and $f(x)=f(2 x)$ is true $\forall x \in R$. If $f(1)=3$, then the value of $\int_{-1}^{1} f(f(x)) d x$ is equal to
a) 6
b) 0
c) $3 f(3)$
d) $2 f(0)$
34. The value of the definite integral $\int_{0}^{\sqrt{\ln \left(\frac{\pi}{2}\right)}} \cos \left(e^{x^{2}}\right) 2 x e^{x^{2}} d x$ is
a) 1
b) $1+(\sin 1)$
c) $1-(\sin 1)$
d) $(\sin 1)-1$
35. If $\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}=-[f(x)]^{1 / n}+c$, then $f(x)$ is
a) $\left(1+x^{n}\right)$
b) $1+x^{-n}$
c) $x^{n}+x^{-n}$
d) None of these
36. The value of $\int_{a}^{b}(x-a)^{3}(b-x)^{4} d x$ is
a) $\frac{(b-a)^{4}}{6^{4}}$
b) $\frac{(b-a)^{8}}{280}$
c) $\frac{(b-a)^{7}}{7^{3}}$
d) None of these
37. If $f(\pi)=2$ and $\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x=5$, then $f(0)$ is equal to (it is given that $f(x)$ is continuous in $[0, \pi]$)
a) 7
b) 3
c) 5
d) 1
38. If $f(x)=\left\{\begin{array}{ll}e^{\cos x} \sin x, & \text { for }|x| \leq 2 \\ 2, & \text { otherwise }\end{array}\right.$, then $\int_{-2}^{3} f(x) d x$ is equal to
a) 0
b) 1
c) 2
d) 3
39. If $x f(x)=3 f^{2}(x)+2$, then $\int \frac{2 x^{2}-12 x f(x)+f(x)}{(6 f(x)-x)\left(x^{2}-f(x)\right)^{2}} d x$ equals
a) $\frac{1}{x^{2}-f(x)}+c$
b) $\frac{1}{x^{2}+f(x)}+c$
c) $\frac{1}{x-f(x)}+c$
d) $\frac{1}{x+f(x)}+c$
40. The value of the definite integral $\int_{0}^{\pi / 2} \frac{\sin 5 x}{\sin x} d x$ is
a) 0
b) $\frac{\pi}{2}$
c) π
d) 2π
41. If $\int f(x) \sin x \cos x d x=\frac{1}{2\left(b^{2}-a^{2}\right)} \ln f(x)+c$, then $f(x)$ is equal to
a) $\frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}$
b) $\frac{1}{a^{2} \sin ^{2} x-b^{2} \cos ^{2} x}$
c) $\frac{1}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
d) $\frac{1}{a^{2} \cos ^{2} x-b^{2} \sin ^{2} x}$
42. If $I_{1}=\int_{0}^{\pi / 2} \frac{\cos ^{2} x}{1+\cos ^{2} x} d x, I_{2}=\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{1+\sin ^{2} x} d x, I_{3}=\int_{0}^{\pi / 2} \frac{1+2 \cos ^{2} x \sin ^{2} x}{4+2 \cos ^{2} x \sin ^{2} x} d x$, then
a) $I_{1}=I_{2}>I_{3}$
b) $I_{3}>I_{1}=I_{2}$
c) $I_{1}=I_{2}=I_{3}$
d) None of these
43. If $S=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \frac{1}{3}+\left(\frac{1}{2}\right)^{3} \frac{1}{4}+\left(\frac{1}{2}\right)^{4} \frac{1}{5}+\ldots$, then
a) $S=\operatorname{In} 8-2$
b) $S=\operatorname{In} \frac{4}{e}$
c) $S=\operatorname{In} 4+1$
d) None of these
44. If $\int_{-1}^{4} f(x) d x=4$ and $\int_{2}^{4}(3-f(x)) d x=7$, then the value of $\int_{2}^{-1} f(x) d x$ is
a) 2
b) -3
c) -5
d) None of these
45. The value of $\int_{1 / e}^{\tan x} \frac{t d t}{1+t^{2}}+\int_{1 / e}^{\cot x} \frac{d t}{t\left(1+t^{2}\right)}$, where $x \in\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$, is equal to
a) 0
b) 2
c) 1
d) None of these
46. The number of possible continuous $f(x)$ defined in $[0,1]$ for which
$I_{1}=\int_{0}^{1} f(x) d x=1, I_{2}=\int_{0}^{1} x f(x) d x=a, I_{3}=\int_{0}^{1} x^{2} f(x) d x=a^{2}$, is/are
a) 1
b) ∞
c) 2
d) 0
47. If $\int_{1}^{2} e^{x^{2}} d x=a$, then $\int_{e}^{e^{4}} \sqrt{\operatorname{In} x} d x$ is equal to
a) $2 e^{4}-2 e-a$
b) $2 e^{4}-e-a$
c) $2 e^{4}-e-2 a$
d) $e^{4}-e-a$
48. $\int \frac{\ln (\tan x)}{\sin x \cos x} d x$ is equal to
a) $\frac{1}{2} \ln (\tan x)+c$
b) $\frac{1}{2} \ln \left(\tan ^{2} x\right)+c$
c) $\frac{1}{2}(\ln (\tan x))^{2}+c$
d) None of these
49. Let f be integrable over $[0, a]$ for any real value of a. If $I_{1}=\int_{0}^{\pi / 2} \cos \theta f\left(\sin \theta+\cos ^{2} \theta\right) d \theta$ and $I_{2}=\int_{0}^{\pi / 2} \sin 2 \theta f\left(\sin \theta+\cos ^{2} \theta\right) d \theta$, then
a) $I_{1}=-2 I_{2}$
b) $I_{1}=I_{2}$
c) $2 I_{1}=I_{2}$
d) $I_{1}=-I_{2}$
50. The value of the integral $\int_{0}^{\log 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x$ is
a) $3+2 \pi$
b) $4-\pi$
c) $2+\pi$
d) None of these
51. $\int_{2-a}^{2+a} f(x) d x$ is equal to (where $f(2-\alpha)=f(2+\alpha) \forall \alpha \in R$)
a) $2 \int_{2}^{2+a} f(x) d x$
b) $2 \int_{0}^{a} f(x) d x$
c) $2 \int_{2}^{2} f(x) d x$
d) None of these
52. $\int_{-1}^{2}\left[\frac{[x]}{1+x^{2}}\right] d x$, where [.] denotes the greatest integer function, is equal to
a) -2
b) -1
c) Zero
d) None of these
53. If $f(x)=\cos \left(\tan ^{-1} x\right)$, then the value of the integral $\int_{0}^{1} x f^{\prime \prime}(x) d x$ is
a) $\frac{3-\sqrt{2}}{2}$
b) $\frac{3+\sqrt{2}}{2}$
c) 1
d) $1-\frac{3}{2 \sqrt{2}}$
54. If $I(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, then $(m, n \in 1, m, n \geq 0)$
a) $I(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m-n}} d x$
b) $I(m, n)=\int_{0}^{\infty} \frac{x^{m}}{(1+x)^{m+n}} d x$
c) $I(m, n)=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
d) $I(m, n)=\int_{0}^{\infty} \frac{x^{n}}{(1+x)^{m+n}} d x$
55. If $\int_{0}^{t} \frac{b x \cos 4 x-a \sin 4 x}{x^{2}} d x=\frac{a \sin 4 t}{t}-1$, where $0<t<\frac{\pi}{4}$, then the values of a, b are equal to
a) $\frac{1}{4}, 1$
b) $-1,4$
c) 2,2
d) 2,4
56. $\int e^{x^{4}}\left(x+x^{3}+2 x^{5}\right) e^{x^{2}} d x$ is equal to
a) $\frac{1}{2} x e^{x^{2}} e^{x^{4}}+c$
b) $\frac{1}{2} x^{2} e^{x^{4}}+c$
c) $\frac{1}{2} e^{x^{2}} e^{x^{4}}+c$
d) $\frac{1}{2} x^{2} e^{x^{2}} e^{x^{4}}+c$
57. $\int \sqrt{x}\left(1+x^{1 / 3}\right)^{4} d x$ is equal to
a) $2\left\{x^{2 / 3}+\frac{4}{11} x^{11 / 6}+\frac{6}{13} x^{13 / 6}+\frac{4}{15} x^{5 / 2}\right.$
b) $6\left\{x^{2 / 3}-\frac{4}{11} x^{11 / 6}+\frac{6}{13} x^{13 / 6}-\frac{4}{15} x^{5 / 2}\right.$

$$
\left.+\frac{1}{17} x^{17 / 6}\right\}+c
$$

$$
\left.+\frac{1}{17} x^{17 / 6}\right\}+c
$$

c) $6\left\{x^{2 / 3}+\frac{4}{11} x^{11 / 6}+\frac{6}{13} x^{13 / 6}+\frac{4}{15} x^{5 / 2}\right.$
d) None of these

$$
\left.+\frac{1}{17} x^{17 / 6}\right\}+c
$$

58. If $\int \frac{1}{x \sqrt{1-x^{3}}} d x=a \log \left|\frac{\sqrt{1-x^{3}}-1}{\sqrt{1-x^{3}}+1}\right|+b$,then a is equal to
a) $1 / 3$
b) $2 / 3$
c) $-1 / 3$
d) $-2 / 3$
59. If $f^{\prime}(x)=f(x)+\int_{0}^{1} f(x) d x$, given $f(0)=1$, then the value of $f\left(\log _{e} 2\right)$ is
a) $\frac{1}{3+e}$
b) $\frac{5-e}{3-e}$
c) $\frac{2+e}{e-2}$
d) None of these
60. The solution for x of the equation $\int_{\sqrt{2}}^{x} \frac{d t}{t \sqrt{t^{2}-1}}=\frac{\pi}{2}$ is
a) π
b) $\frac{\sqrt{3}}{2}$
c) $2 \sqrt{2}$
d) None of these
61. If $f(x)=1+\frac{1}{x} \int_{1}^{x} f(t) d t$, then the value of $f\left(e^{-1}\right)$ is
a) 1
b) 0
c) -1
d) None of these
62. The value of $\int_{1}^{e} \frac{1+x^{2} \operatorname{In} x}{x+x^{2} \operatorname{In} x} d x$ is
a) e
b) $\operatorname{In}(1+e)$
c) $e+\operatorname{In}(1+e)$
d) $e-\operatorname{In}(1+e)$
63. $f(x)>0 \forall x \in R$ and is bounded. If $\lim _{n \rightarrow \infty}\left[\int_{0}^{a} \frac{f(x) d x}{f(x)+f(a-x)}+a \int_{a}^{2 a} \frac{f(x) d x}{f(x)+f(3 a-x)}+a^{2} \int_{2 a}^{3 a} \frac{f(x) d x}{f(x)+f(5 a-x)}+\right.$ $\ldots+a n-1(n-1) a n a f x d x f x+f[2 n-1 a-x]=7 / 5$
(where $a<1$), then a is equal to
a) $\frac{2}{7}$
b) $\frac{1}{7}$
c) $\frac{14}{19}$
d) $\frac{9}{14}$
64. Let f be a positive function. Let $I_{1}=\int_{1-k}^{k} x f[x(1-x)] d x, I_{2}=\int_{1-k}^{k} f[x(1-x)] d x$, where $2 k-1>0$. Then $\frac{I_{1}}{I_{2}}$ is
a) 2
b) k
c) $\frac{1}{2}$
d) 1
65. $\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$ is equal to
a) $x \tan ^{-1} x-\ln \left|\sec \left(\tan ^{-1} x\right)\right|+c$
b) $x \tan ^{-1} x+\ln \left|\sec \left(\tan ^{-1} x\right)\right|+c$
c) $x \tan ^{-1} x-\ln \left|\cos \left(\tan ^{-1} x\right)\right|+c$
d) None of these
66. If $I(m, n)=\int_{0}^{1} t^{m}(1+t)^{n} d t$, then the expression for $I(m, n)$ in terms of $I(m+1, n+1)$ is
a) $\frac{2^{n}}{m+1}-\frac{n}{m+1}(m+1, n-1)$
b) $\frac{n}{m+1} I(m+1, n-1)$
c) $\frac{2^{n}}{m+1}+\frac{n}{m+1} I(m+1, n-1)$
d) $\frac{m}{m+1} I(m+1, n-1)$
67. If $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)\left(x^{2}+c^{2}\right)}=\frac{\pi}{2(a+b)(b+c)(c+a)}$, then the value of $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}$ is
a) $\frac{\pi}{60}$
b) $\frac{\pi}{20}$
c) $\frac{\pi}{40}$
d) $\frac{\pi}{80}$
68. Given a function $f:[0,4] \rightarrow \mathrm{R}$ is differentiable, then for some $\alpha, \beta \in(0,2), \int_{0}^{4} f(t) d t$ equals to
a) $f\left(\alpha^{2}\right)+f\left(\beta^{2}\right)$
b) $2 \alpha f\left(\alpha^{2}\right)+2 \beta f\left(\beta^{2}\right)$
c) $\alpha f\left(b^{2}\right)+\beta f\left(\alpha^{2}\right)$
d) $f(\alpha) f(\beta)[f(\alpha)+f(\beta)]$
69. $\int \sqrt{\frac{\cos x-\cos ^{3} x}{1-\cos ^{3} x}} d x$ is equal to
a) $\frac{2}{3} \sin ^{-1}\left(\cos ^{3 / 2} x\right)+C$
b) $\frac{3}{2} \sin ^{-1}\left(\cos ^{3 / 2} x\right)+C$
c) $\frac{2}{3} \cos ^{-1}\left(\cos ^{3 / 2} x\right)+C$
d) None of these
70. The function f and g are positive and continuous. If f is increasing and g is decreasing, then $\int_{0}^{1} f(x)[\mathrm{g}(x)-$ $\mathrm{g}(1-x)] d x$
a) Is always non-positive
b) Is always non-negative
c) Can take positive and negative values
d) None of these
71. If $\int_{\sin x}^{1} t^{2} f(t) d t=1-\sin x, \forall x \in[0, \pi / 2]$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is
a) 3
b) $\sqrt{3}$
c) $\frac{1}{3}$
d) None of these
72. If $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, then $\int_{0}^{\infty} \frac{\sin ^{3} x}{x} d x$ is equal to
a) $\pi / 2$
b) $\pi / 4$
c) $\pi / 6$
d) $3 \pi / 2$
73. Let $f: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ be continuous functions. Then the value of the integral $\int_{-\pi / 2}^{\pi / 2}[f(x)+f(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] d x$ is
a) π
b) 1
c) -1
d) 0
74. If $S_{n}=\left[\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\cdots+\frac{1}{n+\sqrt{n^{2}}}\right]$, then $\lim _{n \rightarrow \infty} S_{n}$ is equal to
a) $\log 2$
b) $\log 4$
c) $\log 8$
d) None of these
75. $\int_{0}^{\infty} \frac{\sin ^{2} x}{x} d x$ must be same as
a) $\int_{0}^{\infty} \frac{\sin x}{x} d x$
b) $\left(\int_{0}^{\infty} \frac{\sin x}{x} d x\right)^{2}$
c) $\int_{0}^{\infty} \frac{\cos ^{2} x}{x^{2}} d x$
d) None of these
76. If $\int \frac{d x}{\sqrt{\sin ^{3} x \sin ^{5} x}}=a \sqrt{\cot x}+b \sqrt{\tan ^{3} x}+c$, then
a) $a=-1, b=1 / 3$
b) $a=-3, b=2 / 3$
c) $a=-2, b=4 / 3$
d) None of these
77. If $l^{r}(x)$ means $\log \log \log \ldots x$, the log being repeated r times then $\int\left[x l(x) l^{2}(x) l^{3}(x) \ldots l^{r}(x)\right]^{-1} d x$ is equal to
a) $l^{r+1}(x)+C$
b) $\frac{r^{r+1}(x)}{x+1}+C$
c) $l^{r}(x)+C$
d) None of these
78. Let a, b, c be non-zero real numbers such that
$\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
Then, the quadratic equation $a x^{2}+b x+c=0$ has
a) No root in $(0,2)$
b) At least one root in $(0,2)$
c) A double root in $(0,2)$
d) Two imaginary roots
79. If $A=\int_{0}^{1} x^{50}(2-x)^{50} d x ; B=\int_{0}^{1} x^{50}(1-x)^{50} d x$, which of the following is true?
a) $A=2^{50} B$
b) $A=2^{-50} B$
c) $A=2^{100} B$
d) $A=2^{-100} B$
80. $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\cos x} d x$ is
a) $\frac{\pi^{2}}{4}$
b) $\frac{\pi^{2}}{2}$
c) $\frac{3 \pi^{2}}{2}$
d) $\frac{\pi^{2}}{3}$
81. $\int_{0}^{\infty} \frac{d x}{\left[x+\sqrt{x^{2}+1}\right]^{3}}$ is equal to
a) $\frac{3}{8}$
b) $\frac{1}{8}$
c) $-\frac{3}{8}$
d) None of these
82. If $I_{n}=\int_{0}^{\pi} e^{x}(\sin x)^{n} d x$, then $\frac{I_{3}}{I_{1}}$ is equal to
a) $3 / 5$
b) $1 / 5$
c) 1
d) $2 / 5$
83. $\int \frac{\sqrt{x-1}}{x \sqrt{x+1}} d x$ is equal to
a) $\ln \left|x-\sqrt{x^{2}-1}\right|-\tan ^{-1} x+c$
b) $\ln \left|x+\sqrt{x^{2}-1}\right|-\tan ^{-1} x+c$
c) $\ln \left|x-\sqrt{x^{2}-1}\right|-\sec ^{-1} x+c$
d) $\ln \left|x+\sqrt{x^{2}-1}\right|-\sec ^{-1} x+c$
84. If $f(x)$ and $\mathrm{g}(x)$ are continuous functions, the
$\int_{\operatorname{In} \lambda}^{\operatorname{In} 1 / \lambda} \frac{f\left(x^{2} / 4\right)[f(x)-f(-x)]}{\mathrm{g}\left(x^{2} / 4\right)[\mathrm{g}(x)+\mathrm{g}(-x)]} d x$ is
a) Dependent on λ
b) A non-zero constant
c) Zero
d) None of these
85. $\int \frac{\operatorname{cosec}^{2} x-2005}{\cos ^{2005} x} d x$ is equal to
a) $\frac{\cot x}{(\cos x)^{2005}}+c$
b) $\frac{\tan x}{(\cos x)^{2005}}+c$
c) $\frac{-\tan x}{(\cos x)^{2005}}+c$
d) None of these
86. If $\mathrm{g}(x)=\int_{0}^{x} \cos ^{4} t d t$, then $\mathrm{g}(x+\pi)$ equals
a) $\mathrm{g}(x)+\mathrm{g}(\pi)$
b) $\mathrm{g}(x)-\mathrm{g}(\pi)$
c) $g(x) g(\pi)$
d) $\frac{g(x)}{g(\pi)}$
87. Let $f(x)=\min (\{x\},\{-x\}) \forall x \in R$, where $\left\}\right.$ denotes the fractional part of x, then $\int_{-100}^{100} f(x) d x$ is equal to
a) 50
b) 100
c) 200
d) None of these
88. If $f(x)$ is differentiable and $\int_{0}^{t^{2}} x f(x) d x=\frac{2}{5} t^{5}$, then $f\left(\frac{4}{25}\right)$ equals
a) $\frac{2}{5}$
b) $-\frac{5}{2}$
c) 1
d) $\frac{5}{2}$
89. $\int x\left(\frac{\ln a^{a^{x / 2}}}{3 a^{5 x / 2} b^{3 x}}+\frac{\ln b^{x}}{2 a^{2 x} b^{4 x}}\right) d x$ (where $a, b \in R^{+}$) is equal to
a) $\frac{1}{6 \ln a^{2} b^{3}} a^{2 x} b^{3 x} \ln \frac{a^{2 x} b^{3 x}}{e}+k$
b) $\frac{1}{6 \ln a^{2} b^{3}} \frac{1}{a^{2 x} b^{3 x}} \ln \frac{1}{e a^{2 x} b^{3 x}}+k$
c) $\frac{1}{6 \ln a^{2} b^{3}} \frac{1}{a^{2 x} b^{3 x}} \ln \left(a^{2 x} b^{3 x}\right)+k$
d) $-\frac{1}{6 \ln a^{2} b^{3}} \frac{1}{a^{2 x} b^{3 x}} \ln \left(a^{2 x} b^{3 x}\right)+k$
90. $\int_{1}^{4}\{x-0,4\} d x$ equals (where $\{x\}$ is a fractional part of x)
a) 13
b) 6.3
c) 1.5
d) 7.5
91. $\int_{-\pi / 3}^{0}\left[\cot ^{-1}\left(\frac{2}{2 \cos x-1}\right)+\cot ^{-1}\left(\cos x-\frac{1}{2}\right)\right] d x$ is equal to
a) $\frac{\pi^{2}}{6}$
b) $\frac{\pi^{2}}{3}$
c) $\frac{\pi^{2}}{8}$
d) $\frac{3 \pi^{2}}{8}$
92. If $I_{1}=\int_{-100}^{101} \frac{d x}{\left(5+2 x-2 x^{2}\right)\left(1+e^{2-4 x}\right)}$ and $I_{2}=\int_{-100}^{101} \frac{d x}{5+2 x-2 x^{2}}$, then $\frac{I_{1}}{I_{2}}$ is
a) 2
b) $\frac{1}{2}$
c) 1
d) $-\frac{1}{2}$
93. The value of $\int_{0}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \left(\frac{x}{2}\right)} d x$ is, $n \in I, n \geq 0$
a) $\frac{\pi}{2}$
b) 0
c) π
d) 2π
94. If $I=\int \frac{d x}{\left(a^{2}-b^{2} x^{2}\right)^{3 / 2}}$, then I equals
a) $\frac{x}{\sqrt{a^{2}-b^{2} x^{2}}}+C$
b) $\frac{x}{a^{2} \sqrt{a^{2}-b^{2} x^{2}}}+C$
c) $\frac{a x}{\sqrt{a^{2}-b^{2} x^{2}}}+C$
d) None of these
95. $\int_{3}^{10}[\log (x)] d x$ is equal to (where [.] represents the greatest integer function)
a) 9
b) $16-e$
c) 10
d) $10+e$
96. The value of the integral $\int_{0}^{1 / \sqrt{3}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}$ must be
a) $\frac{\pi}{2 \sqrt{2}}$
b) $\frac{\pi}{4 \sqrt{2}}$
c) $\frac{\pi}{8 \sqrt{2}}$
d) None of these
97. The value of the integral $\int \frac{\cos ^{3} x+\cos ^{5} x}{\sin ^{2} x+\sin ^{4} x} d x$ is
a) $\sin x-6 \tan ^{-1}(\sin x)+C$
b) $\sin x-2(\sin x)^{-1}+C$
c) $\sin x-2(\sin x)^{-1}-6 \tan ^{-1}(\sin x)+C$
d) $\sin x-2(\sin x)^{-1}+5 \tan ^{-1}(\sin x)+C$
98. If $f(x)$ satisfies the condition of Rolle's theorem in [1, 2], then $\int_{1}^{2} f^{\prime}(x) d x$ is equal to
a) 1
b) 3
c) 0
d) None of these
99. If $y^{r}=\frac{n!^{n+r-1} c_{r-1}}{r^{n}}$, where $n=k r$ (k is constant), then $\lim _{r \rightarrow \infty} y$ is equal to
a) $(k-1) \log _{e}(1+k)-k$
b) $(k+1) \log _{e}(k-1)+k$
c) $(k+1) \log _{e}(k-1)-k$
d) $(k-1) \log _{e}(k-1)+k$
100. The value of $\int_{0}^{2 \pi}[2 \sin x] d x$, where [.] represents the greatest integral function, is
a) $\frac{-5 \pi}{3}$
b) $-\pi$
c) $\frac{5 \pi}{3}$
d) -2π
101. $\int_{-3}^{3} x^{8}\left\{x^{11}\right\} d x$ is equal to (where $\{$.$\} is the fractional part of x$)
a) 3^{8}
b) 3^{7}
c) 3^{9}
d) None of these
102. $\int_{-\pi / 2}^{\pi / 2} \frac{e^{|\sin x|} \cos x}{\left(1+e^{\tan x}\right)} d x$ is equal to
a) $e+1$
b) $1-e$
c) $e-1$
d) None of these
103. If $\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}=[f(x)]^{1 / n}+C$, then $f(x)$ is
a) $\left(1+x^{n}\right)$
b) $1+x^{-n}$
c) $x^{n}+x^{-n}$
d) None of these
104. $\int_{0}^{x} \frac{2^{t}}{2^{[t]}} d t$, where [.] denotes the greatest integer function, and $x \in R^{+}$, is equal to
a) $\frac{1}{\operatorname{In} 2}\left([x]+2^{\{x\}}-1\right)$
b) $\frac{1}{\operatorname{In} 2}\left([x]+2^{\{x\}}\right)$
c) $\frac{1}{\operatorname{In} 2}\left([x]-2^{\{x\}}\right)$
d) $\frac{1}{\operatorname{In} 2}\left([x]+2^{\{x\}}+1\right)$
105. If $f(x)=\int_{0}^{\pi} \frac{t \sin t d t}{\sqrt{1+\tan ^{2} x \sin ^{2} t}}$ for $0<x<\frac{\pi}{2}$, then
a) $f\left(0^{+}\right)=-\pi$
b) $f\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8}$
c) f is continuous and differentiable in $\left(0, \frac{\pi}{2}\right)$
d) f is continuous but not differentiable in $\left(0, \frac{\pi}{2}\right)$
106. $\int_{0}^{\infty}\left(\frac{\pi}{1+\pi^{2} x^{2}}-\frac{1}{1+x^{2}}\right) \log x d x$ is equal to
a) $-\frac{\pi}{2} \operatorname{In} \pi$
b) 0
c) $\frac{\pi}{2} \operatorname{In} 2$
d) None of these
107. $\int \frac{\sec x d x}{\sqrt{\sin (2 x+A)+\sin A}}$ is equal to
a) $\frac{\sec A}{\sqrt{2}} \sqrt{\tan x \cos A-\sin A}+c$
b) $\sqrt{2} \sec A \sqrt{\tan x \cos A-\sin A}+c$
c) $\sqrt{2} \sec A \sqrt{\tan x \cos A+\sin A}+c$
d) None of these
108. The value of the integral $\int_{0}^{1} \frac{d x}{x^{2}+2 x \cos \alpha+1}$ is equal to
a) $\sin \alpha$
b) $\alpha \sin \alpha$
c) $\frac{\alpha}{2 \sin \alpha}$
d) $\frac{\alpha}{2} \sin \alpha$
109. The value of $\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}$ is
a) 0
b) 1
c) $\pi / 2$
d) $\pi / 4$
110. $f(x)$ is a continuous function for all real values of x and satisfies $\int_{0}^{x} f(t) d t=\int_{x}^{1} t^{2} f(t) d t+\frac{x^{16}}{8}+\frac{x^{6}}{3}+a$, then the value of a is equal to
a) $-\frac{1}{24}$
b) $\frac{17}{168}$
c) $\frac{1}{7}$
d) $-\frac{167}{840}$
111. $\int \frac{d x}{x\left(x^{n}+1\right)}$ is equal to
a) $\frac{1}{n} \log \left(\frac{x^{n}}{x^{n}+1}\right)+c$
b) $\frac{1}{n} \log \left(\frac{x^{n}+1}{x^{n}}\right)+c$
c) $\log \left(\frac{x^{n}}{x^{n}+1}\right)+c$
d) None of these
112. $\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=a x+b \ln \left(4 e^{x}+5 e^{-x}\right)+C$, then
а) $a=-\frac{1}{8}, b=\frac{7}{8}$
b) $a=\frac{1}{8}, b=\frac{7}{8}$
c) $a=-\frac{1}{8}, b=-\frac{7}{8}$
d) $a=\frac{1}{8}, b=-\frac{7}{8}$
113. If $A=\int_{0}^{\pi} \frac{\cos x}{(x+2)^{2}} d x$, then $\int_{0}^{/ 2} \frac{\sin 2 x}{x+1} d x$ is equal to
a) $\frac{1}{2}+\frac{1}{\pi+2}-A$
b) $\frac{1}{\pi+2}-A$
c) $1+\frac{1}{\pi+2}-A$
d) $A-\frac{1}{2}-\frac{1}{\pi+2}$
114. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is
a) $1 / 2$
b) 0
c) 1
d) $-1 / 2$
115. $\int e^{x}\left(\frac{2 \tan x}{1+\tan x}+\cot ^{2}\left(x+\frac{\pi}{4}\right)\right) d x$ is equal to
a) $e^{x} \tan \left(\frac{\pi}{4}-x\right)+c$
b) $e^{x} \tan \left(x-\frac{\pi}{4}\right)+c$
c) $e^{x} \tan \left(\frac{3 \pi}{4}-x\right)+c$
d) None of these
116. The value of $\int_{0}^{x}[\cos t] d t, x \in\left[(4 n+1) \frac{\pi}{2},(4 n+3) \frac{\pi}{2}\right]$ and $n \in N$ is equal to (where [.] represents greatest integer function
a) $\frac{\pi}{2}(2 n-1)-2 x$
b) $\frac{\pi}{2}(2 n-1)+x$
c) $\frac{\pi}{2}(2 n+1)-x$
d) $\frac{\pi}{2}(2 n+1)+x$
117. Which of the following is incorrect?
a) $\int_{a+c}^{b+c} f(x) d x=\int_{a}^{b} f(x+c) d x$
b) $\int_{a c}^{b c} f(x) d x=c \int_{a}^{b} f(c x) d x$
c) $\int_{-a}^{a} f(x) d x=\frac{1}{2} \int_{-a}^{a}(f(x)+f(-x) d x$
d) None of these
118. For any integer n, the integral $\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x$ has the value
a) π
b) 1
c) 0
d) None of these
119. If $f(y)=e^{y}, \mathrm{~g}(y)=y, y>0$ and $F(t)=\int_{0}^{t} f(t-y) g(y) d t$, then
a) $F(t)=e^{t}-(1+t)$
b) $F(t)=t e^{t}$
c) $F(t)=t e^{-t}$
d) $F(t)=1-e^{t}(1+t)$
120. If for a real number $y,[y]$ is the greatest integral function less than or equal to y, then the value of the integral $\int_{\pi / 2}^{3 \pi / 2}[2 \sin x] d x$ is
a) $-\pi$
b) 0
c) $-\pi / 2$
d) $\pi / 2$
121. $I_{1}=\int_{0}^{\frac{\pi}{2}} \operatorname{In}(\sin x) d x, I_{2}=\int_{-\pi / 4}^{\pi / 4} \operatorname{In}(\sin x+\cos x) d x$, then
a) $I_{1}=2 I_{2}$
b) $I_{2}=2 I_{1}$
c) $I_{1}=4 I_{2}$
d) $I_{2}=4 I_{1}$
122. The equation of the curve is $y=f(x)$. The tangents at $[1, f(1)],[2, f(2)]$ and $[3, f(3)]$ make angle $\frac{\pi}{6}, \frac{\pi}{3}$ and $\frac{\pi}{4}$, respectively, with the positive direction of x-axis, then the value of $\int_{2}^{3} f^{\prime}(x) f^{\prime \prime}(x) d x+\int_{1}^{3} f^{\prime \prime}(x) d x$ is equal to
a) $-1 / \sqrt{3}$
b) $1 / \sqrt{3}$
c) 0
d) None of these
123. f is an odd function. It is also known that $f(x)$ is continuous for all values of x and is periodic with period 2 If $g(x)=\int_{0}^{x} f(t) d t$, then
a) $\mathrm{g}(x)$ is odd
b) $\mathrm{g}(n)=0, n \in N$
c) $g(2 n)=0, n \in N$
d) $g(x)$ is non-periodic
124. For $x \in R$ and a continuous function f, let $I_{1}=\int_{\sin ^{2} t}^{1+\cos ^{2} t} x f\{x(2-x)\} d x$ and $I_{2}=\int_{\sin ^{2} t}^{1+\cos ^{2} t} f\{x(2-x)\} d x$. Then $\frac{I_{1}}{I_{2}}$ is
a) -1
b) 1
c) 2
d) 3
125. Let $\int e^{x}\left\{f(x)-f^{\prime}(x)\right\} d x=\phi(x)$. Then $\int e^{x} f(x) d x$ is
a) $\phi(x)=e^{x} f(x)$
b) $\phi(x)-e^{x} f(x)$
c) $\frac{1}{2}\left\{\phi(x)+e^{x} f(x)\right\}$
d) $\frac{1}{2}\left\{\phi(x)+e^{x} f^{\prime}(x)\right\}$
126. $I_{1}=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x, I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d x$,
$I_{3}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} x d x, I_{4}=\int_{0}^{1}\left(\frac{1}{x}-1\right) d x$, then
a) $I_{2}=I_{3}=I_{4}=0, I_{1} \neq 0$
b) $I_{1}=I_{2}=I_{3}=0, I_{4} \neq 0$
c) $I_{1}=I_{3}=I_{4}=0, I_{2} \neq 0$
d) $I_{1}=I_{2}=I_{3}=0, I_{4} \neq 0$
127. $\int \frac{2 \sin x}{(3+\sin 2 x)} d x$ is equal to
a) $\frac{1}{2} \ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)+c$
b) $\frac{1}{2} \ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|-\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)+c$
c) $\frac{1}{4} \ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)+c$
d) None of these
128. If $f^{\prime}(x)=\frac{1}{-x+\sqrt{x^{2}+1}}$ and $f(0)=-\frac{1+\sqrt{2}}{2}$, then $f(1)$, is equal to
a) $-\log (\sqrt{2}+1)$
b) 1
c) $1+\sqrt{2}$
d) None of these
129. The value of the integral $\int_{0}^{1} e^{x^{2}} d x$ lies in the interval
a) $(0,1)$
b) $(-1,0)$
c) $(1, e)$
d) None of these
130. If $f(x)$ is continuous for all real values of x, then $\sum_{r=1}^{n} \int_{0}^{1} f(r-1+x) d x$ is equal to
a) $\int_{0}^{n} f(x) d x$
b) $\int_{0}^{1} f(x) d x$
c) $n \int_{0}^{1} f(x) d x$
d) $(n-1) \int_{0}^{1} f(x) d x$
131. $\int \sqrt{1+\sin x} d x$ is equal to
a) $-2 \sqrt{1-\sin x}+C$
b) $\sin (x / 2)+\cos (x / 2)+C$
c) $\cos (x / 2)-\sin (x / 2)+C$
d) $2 \sqrt{1-\sin x}+C$
132. $\int \frac{x^{3} d x}{\sqrt{1+x^{2}}}$ is equal to
a) $\frac{1}{3} \sqrt{1+x^{2}}\left(2+x^{2}\right)+C$
b) $\frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-1\right)+C$
c) $\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C$
d) $\frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-2\right)+C$
133. If $I=\int \frac{d x}{x^{3} \sqrt{x^{2}-1}}$, then Iequals
a) $\frac{1}{2}\left(\frac{\sqrt{x^{2}-1}}{x^{3}}+\tan ^{-1} \sqrt{x^{2}-1}\right)+C$
b) $\frac{1}{2}\left(\frac{\sqrt{x^{2}-1}}{x^{2}}+x \tan ^{-1} \sqrt{x^{2}-1}\right)+C$
c) $\frac{1}{2}\left(\frac{\sqrt{x^{2}-1}}{x}+\tan ^{-1} \sqrt{x^{2}-1}\right)+C$
d) $\frac{1}{2}\left(\frac{\sqrt{x^{2}-1}}{x^{2}}+\tan ^{-1} \sqrt{x^{2}-1}\right)+C$
134. $\int_{0}^{1} \frac{\tan ^{-1} x}{x} d x$ is equal to
a) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} d x$
b) $\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x} d x$
c) $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} d x$
d) $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x} d x$
135. Let $I=\int \frac{e^{x}}{e^{4 x}+e^{2 x}+1} d x, J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x$. Then, for an arbitrary constant c, the value of $J-I$ equals a) $\frac{1}{2} \log \left|\frac{e^{4 x}-e^{2 x}+1}{e^{4 x}+e^{2 x}+1}\right|+c$
b) $\frac{1}{2} \log \left|\frac{e^{2 x}+e^{x}+1}{e^{2 x}-e^{x}+1}\right|+c$
c) $\frac{1}{2} \log \left|\frac{e^{2 x}-e^{x}+1}{e^{2 x}+e^{x}+1}\right|+c$
d) $\frac{1}{2} \log \left|\frac{e^{4 x}+e^{2 x}+1}{e^{4 x}-e^{2 x}+1}\right|+c$
136. The value of $\int \frac{\left(a x^{2}-b\right) d x}{x \sqrt{c^{2} x^{2}-\left(a x^{2}+b\right)^{2}}}$ is equal to
a) $\frac{1}{c} \sin ^{-1}\left(a x+\frac{b}{x}\right)+k$
b) $c \sin ^{-1}\left(a+\frac{b}{x}\right)+c$
c) $\sin ^{-1}\left(\frac{a x+\frac{b}{x}}{c}\right)+k$
d) None of these
137. $\int 4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2} d x$ is equal to
a) $\cos x+\frac{1}{2} \cos 2 x-\frac{1}{3} \cos 3 x+C$
b) $\cos x-\frac{1}{2} \cos 2 x-\frac{1}{3} \cos 3 x+C$
c) $\cos x+\frac{1}{2} \cos 2 x+\frac{1}{3} \cos 3 x+C$
d) $\cos x-\frac{1}{2} \cos 2 x+\frac{1}{3} \cos 3 x+C$
138. The value of $\int_{0}^{1}\left(\prod_{r=1}^{n}(x+r)\right)\left(\sum_{k=1}^{n} \frac{1}{x+k}\right) d x$ equals
a) n
b) $n!$
c) $(n+1)$!
d) $n \cdot n$!
139. Suppose that $F(x)$ is an anti-derivative of $f(x)=\frac{\sin x}{x}$, where $x>0$, then $\int_{1}^{3} \frac{\sin 2 x}{x} d x$ can be expressed as
a) $F(6)-F(2)$
b) $\frac{1}{2}(F(6)-F(2))$
c) $\frac{1}{2}(F(3)-F(1))$
d) $2(F(6)-F(2))$
140. If $y=\int \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}}$ and $y=0$ when $x=0$, find the value of y when $x=1$ is
a) $\frac{1}{\sqrt{2}}$
b) $\sqrt{2}$
c) $2 \sqrt{2}$
d) None of these
141. If the function $f:[0,8] \rightarrow R$ is differentiable, then for $0<a, b<2, \int_{0}^{8} f(t) d t$ is equal to
a) $3\left[\alpha^{3} f\left(\alpha^{2}\right)+\beta^{2} f\left(\beta^{2}\right)\right]$
b) $3\left[\alpha^{3} f(\alpha)+\beta^{3} f(\beta)\right]$
c) $3\left[\alpha^{2} f\left(\alpha^{3}\right)+\beta^{2} f\left(\beta^{3}\right)\right]$
d) $3\left[\alpha^{2} f\left(\alpha^{2}\right)+\beta^{2} f\left(\beta^{2}\right)\right]$
142. If $I_{k}=\int_{1}^{e}(\operatorname{In} x)^{k} d x$ (where $k \in I^{+}$), then I_{4} equals
a) $9 e-24$
b) $12-2 e$
c) $24-9 e$
d) $6 e-12$
143. $\int\left(\frac{x+2}{x+4}\right)^{2} e^{x} d x$ is equal to
a) $e^{x}\left(\frac{x}{x+4}\right)+c$
b) $e^{x}\left(\frac{x+2}{x+4}\right)+c$
c) $e^{x}\left(\frac{x-2}{x+4}\right)+c$
d) $\left(\frac{2 x e^{2}}{x+4}\right)+c$
144. $\int \frac{\ln \left(\frac{x-1}{x+1}\right)}{x^{2}-1} d x$ is equal to
a) $\frac{1}{2}\left(\ln \left(\frac{x-1}{x+1}\right)\right)^{2}+C$
b) $\frac{1}{2}\left(\ln \left(\frac{x+1}{x-1}\right)\right)^{2}+C$
c) $\frac{1}{4}\left(\ln \left(\frac{x-1}{x+1}\right)\right)^{2}+C$
d) $\frac{1}{4}\left(\ln \left(\frac{x+1}{x-1}\right)\right)$
145. If $f(x)=\int_{-1}^{x}|t| d t$, then for any $x \geq 0, f(x)$ equals
a) $\frac{1}{2}\left(1-x^{2}\right)$
b) $\frac{1}{2} x^{2}$
c) $\frac{1}{2}\left(1+x^{2}\right)$
d) None of these
146. If $\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \ln \left(1+x^{2}\right)+b \tan ^{-1} x \frac{1}{5} \operatorname{In}|x+2|+C$, then
a) $a=-\frac{1}{10}, b=-\frac{2}{5}$
b) $a=\frac{1}{10}, b=-\frac{2}{5}$
c) $a=-\frac{1}{10}, b=\frac{2}{5}$
d) $a=\frac{1}{10}, b=\frac{2}{5}$
147. If $f(x)=\frac{e^{x}}{1+e^{x}}, I_{1}=\int_{f(-a)}^{f(a)} x \mathrm{~g}(x(1-x)) d x$ and $I_{2}=\int_{f(-a)}^{f(a)} \mathrm{g}(x(1-x)) d x$, then the value of $\frac{I_{2}}{I_{1}}$ is
a) -1
b) -2
c) 2
d) 1
148. The value of the integral $\int_{e^{-1}}^{e^{2}}\left|\frac{\log _{e} x}{x}\right| d x$ is
a) $3 / 2$
b) $5 / 2$
c) 3
d) 5
149. The value of the integral $\int_{-\pi}^{\pi} \sin m x \sin n x d x$ for $m \neq n(m, n \in 1)$ is
a) 0
b) π
c) $\pi / 2$
d) 2π
150. Given $\int_{0}^{\pi / 2} \frac{d x}{1+\sin x+\cos x}=\log 2$, then the value of the definite integral $\int_{\pi}^{\pi / 2} \frac{\sin x}{1+\sin x+\cos x} d x$ is equal to
a) $\frac{1}{2} \log 2$
b) $\frac{\pi}{2}-\log 2$
c) $\frac{\pi}{4}-\frac{1}{2} \log 2$
d) $\frac{\pi}{2}+\log 2$
151. $\int_{0}^{\pi} x \sin ^{4} x d x$ is equal to
a) $\frac{3 \pi}{16}$
b) $\frac{3 \pi^{2}}{16}$
c) $\frac{16 \pi}{3}$
d) $\frac{16 \pi^{2}}{3}$
152. The value of $\int_{-2}^{1}\left[x\left[1+\cos \left(\frac{\pi x}{2}\right)\right]+1\right] d x$, where [.] denotes the greatest integer function, is
a) 1
b) $1 / 2$
c) 2
d) None of these
153. Let $f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)}$ and $f(0)=0$, then the value of $f(1)$ be
a) $\log (1+\sqrt{2})$
b) $\log (1+\sqrt{2})-\frac{\pi}{4}$
c) $\log (1+\sqrt{2})+\frac{\pi}{2}$
d) None of these
154. The value of $\int_{1}^{\frac{1+\sqrt{5}}{2}} \frac{x^{2}+1}{x^{4}-x^{2}+1} \log \left(1+x-\frac{1}{x}\right) d x$ is
a) $\frac{\pi}{8} \log _{e} 2$
b) $\frac{\pi}{2} \log _{e} 2$
c) $-\frac{\pi}{2} \log _{e} 2$
d) None of these
155. $4 \int \frac{\sqrt{a^{6}+x^{8}}}{x} d x$ is equal to
a) $\sqrt{a^{6}+x^{8}}+\frac{a^{3}}{2} \ln \left|\frac{\sqrt{a^{6}+x^{8}}+a^{3}}{\sqrt{a^{6}+x^{8}}-a^{3}}\right|+c$
b) $a^{6} \ln \left|\frac{\sqrt{a^{6}+x^{8}}-a^{3}}{\sqrt{a^{6}+x^{8}}+a^{3}}\right|+c$
c) $\sqrt{a^{6}+x^{8}}+\frac{a^{3}}{2} \ln \left|\frac{\sqrt{a^{6}+x^{8}}-a^{3}}{\sqrt{a^{6}+x^{8}}+a^{3}}\right|+c$
d) $a^{6} \ln \left|\frac{\sqrt{a^{6}+x^{8}}+a^{3}}{\sqrt{a^{6}+x^{8}}-a^{3}}\right|+c$
156. The value of integral $\int e^{x}\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{1-2 x^{2}}{\sqrt{\left(1+x^{2}\right)^{5}}}\right) d x$ is equal to
a) $e^{x}\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}}\right)+c$
b) $e^{x}\left(\frac{1}{\sqrt{1+x^{2}}}-\frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}}\right)+c$
c) $e^{x}\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{x}{\sqrt{\left(1+x^{2}\right)^{5}}}\right)+c$
d) None of these
157. IfI $=\int \frac{\sin 2 x}{(3+4 \cos x)^{3}} d x$, then I equals
a) $\frac{3 \cos x+8}{(3+4 \cos x)^{2}}+C$
b) $\frac{3+8 \cos x}{16(3+4 \cos x)^{2}}+C$
c) $\frac{3+\cos x}{(3+4 \cos x)^{2}}+C$
d) $\frac{3-8 \cos x}{16(3+4 \cos x)^{2}}+C$
158. If $\int x^{5}\left(1+x^{3}\right)^{2 / 3} d x=A\left(1+x^{3}\right)^{8 / 3}+B\left(1+x^{3}\right)^{5 / 3}+c$, then
a) $A=\frac{1}{4}, B=\frac{1}{5}$
b) $A=\frac{1}{8}, B=-\frac{1}{5}$
c) $A=-\frac{1}{8}, B=\frac{1}{5}$
d) None of these
159. If $\int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x=a \ln |x|+b \ln \left|x^{7}+1\right|+c$, then
a) $a=1, b=\frac{2}{7}$
b) $a=-1, b=\frac{2}{7}$
c) $a=1, b=-\frac{2}{7}$
d) $a=-1, b=-\frac{2}{7}$
160. If $\int x e^{x} \cos x d x=a e^{x}(b(1-x) \sin x+c x \cos x)+d$, then
a) $a=1, b=1, c=-1$
b) $a=\frac{1}{2}, b=-1, c=1$
c) $a=1, b=-1, c=1$
d) $a=\frac{1}{2}, b=1, c=-1$
161. The value of the integral $\int_{-3 \pi / 4}^{5 \pi / 4} \frac{(\sin x+\cos x)}{e^{x-\pi / 4}+1} d x$ is
a) 0
b) 1
c) 2
d) None of these
162.

Let $x=f^{\prime \prime}(t) \cos t+f^{\prime}(t) \sin t$ and $y=-f^{\prime \prime}(t) \sin t+f^{\prime}(t) \cos t$. Then $\int\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right]^{1 / 2} d t$ equals
a) $f^{\prime}(t)+f^{\prime \prime}(t)+c$
b) $f^{\prime \prime}(t)+f^{\prime \prime \prime}(t)+c$
c) $f(t)+f^{\prime \prime}(t)+c$
d) $f^{\prime}(t)-f^{\prime \prime}(t)+c$
163. $\int \frac{p x^{p+2 q-1}-q x^{q-1}}{x^{2 p+2 q}+2 x^{p+q}+1} d x$ is equal to
a) $-\frac{x^{p}}{x^{p+q}+1}+C$
b) $\frac{x^{q}}{x^{p+q}+1}+C$
c) $-\frac{x^{q}}{x^{p+q}+1}+C$
d) $\frac{x^{p}}{x^{p+q}+1}+C$
164. If $f(x)=\int_{0}^{1} \frac{d t}{1+|x-t|}$, then $f^{\prime}\left(\frac{1}{2}\right)$ is equal to
a) 0
b) $\frac{1}{2}$
c) 1
d) None of these
165. If $I=\int \frac{d x}{\sec x+\operatorname{cosec} x}$, then I equals
a) $\frac{1}{2}\left(\cos x+\sin x-\frac{1}{\sqrt{2}} \log (\operatorname{cosec} x-\cos x)\right)+C$
b) $\frac{1}{2}\left(\sin x-\cos x-\frac{1}{\sqrt{2}} \log |\operatorname{cosec} x+\cot x|\right)+C$
c) $\frac{1}{\sqrt{2}}\left(\sin x+\cos x+\frac{1}{2} \log (\operatorname{cosec} x-\cos x)\right)+C$
d) $\frac{1}{2}[\sin x-\cos x]-\frac{1}{\sqrt{2}} \log |\operatorname{cosec}(x+\pi / 4)-\cot (x+\pi / 4)|+C$
166. If $\mathrm{g}(x)=\int_{0}^{x}(|\sin t|+|\cos t|) d t$, then $\mathrm{g}\left(x+\frac{\pi n}{2}\right)$ is equal to, where $n \in N$
a) $g(x)+g(\pi)$
b) $g(x)+g\left(\frac{n \pi}{2}\right)$
c) $g(x)+g\left(\frac{\pi}{2}\right)$
d) None of these
167. $f(x)=\int_{1}^{x} \frac{e^{t}}{t} d t$, where $x \in R^{+}$. Then the complete set of values of x for which $f(x) \leq \operatorname{In} x$ is
a) $(0,1]$
b) $[1, \infty)$
c) $(0, \infty)$
d) None of these
168. The value of $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x$, where $a>0$, is
a) π
b) $a \pi$
c) $\pi / 2$
d) 2π
169. $\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$ is equal to
a) π
b) π^{2}
c) 0
d) None of these
170. $\int_{0}^{x}|\sin t| d t$, where $x \in(2 n \pi,(2 n+1) \pi)$, where $n \in N$, is equal to
a) $4 n-\cos x$
b) $4 n-\sin x$
c) $4 n+1-\cos x$
d) $4 n-1-\cos x$
171. If $\int_{0}^{f(x)} t^{2} d t=x \cos \pi x$, then $f^{\prime}(9)$ is
a) $-\frac{1}{9}$
b) $-\frac{1}{3}$
c) $\frac{1}{3}$
d) Non-existent
172. $\int_{0}^{\pi / 2}|\sin x-\cos x| d x$ is equal to
a) 0
b) $2(\sqrt{2}-1)$
c) $\sqrt{2}-1$
d) $2(\sqrt{2}+1)$
173. Let $I_{1}=\int_{-2}^{2} \frac{x^{6}+3 x^{5}+7 x^{4}}{x^{4}+2} d x$ and $I_{2}=\int_{-3}^{1} \frac{2(x+1)^{2}+11(x+1)+14}{(x+1)^{4}+2} d x$, then the value of $I_{1}+I_{2}$ is
a) 8
b) $200 / 3$
c) $100 / 3$
d) None of these
174. $\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x$ is equal to
a) $\frac{1}{2} \sin 2 x+C$
b) $-\frac{1}{2} \sin 2 x+C$
c) $-\frac{1}{2} \sin x+C$
d) $-\sin ^{2} x+C$
175. $\int \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x$ is equal to
a) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x^{3}}+C$
b) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x}+C$
c) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x^{2}}+C$
d) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{2 x^{2}}+C$
176. If $I_{n}=\int(\ln x)^{n} d x$, then $I_{n}+I_{n-1}$
a) $\frac{(\operatorname{In} x)^{n}}{x}+C$
b) $x(\operatorname{In} x)^{n-1}+C$
c) $x(\operatorname{In} x)^{n}+C$
d) None of these
177. $\int \frac{\cos 4 x-1}{\cot x-\tan x} d x$ is equal to
a) $\frac{1}{2} \ln |\sec 2 x|-\frac{1}{4} \cos ^{2} 2 x+c$
b) $\frac{1}{2} \ln |\sec 2 x|+\frac{1}{4} \cos ^{2} x+c$
c) $\frac{1}{2} \ln |\cos 2 x|-\frac{1}{4} \cos ^{2} 2 x+c$
d) $\frac{1}{2} \ln |\cos 2 x|+\frac{1}{4} \cos ^{2} x+c$
178. If $\int \frac{\cos 4 x+1}{\cot x-\tan x} d x=A \cos 4 x+B$, then
a) $A=-1 / 2$
b) $A=-1 / 8$
c) $A=-1 / 4$
d) None of these
179. $\int_{-1}^{1 / 2} \frac{e^{x}\left(2-x^{2}\right) d x}{(1-x) \sqrt{1-x^{2}}}$ is equal to
a) $\frac{\sqrt{e}}{2}(\sqrt{3}+1)$
b) $\frac{\sqrt{3 e}}{2}$
c) $\sqrt{3 e}$
d) $\sqrt{\frac{e}{3}}$
180. $\int_{0}^{a} \frac{d x}{x+\sqrt{a^{2}-x^{2}}}$ is
a) $\frac{a^{2}}{4}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) π
181. $\int e^{\tan x}(\sec x-\sin x) d x$, is equal to
a) $e^{\tan x} \cos x+C$
b) $e^{\tan x} \sin x+C$
c) $-e^{\tan x} \cos x+C$
d) $e^{\tan x} \sec x+C$
182. The value of the expression $\frac{\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x}{\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x}$ is equal to
a) $\frac{a^{2}}{6}$
b) $\frac{3 a^{2}}{2}$
c) $\frac{3 a^{2}}{4}$
d) $\frac{a^{2}}{2}$
183. Given that f satisfies $|f(u)-f| v|\leq|u-v|$ for u and v in $[a, b]$, then $| \int_{a}^{b} f(x) d x-(b-a) f(a) \mid \leq$
a) $\frac{(b-a)}{2}$
b) $\frac{(b-a)^{2}}{2}$
c) $(b-a)^{2}$
d) None of these
184. The value of $\int_{1}^{e}\left(\frac{\tan ^{-1} x}{x}+\frac{\log x}{1+x^{2}}\right) d x$ is
a) $\tan e$
b) $\tan ^{-1} e$
c) $\tan ^{-1}(1 / e)$
d) None of these
185. The value of $\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{\sqrt{n}}{\sqrt{r}(3 \sqrt{r}+4 \sqrt{n})^{2}}$ is equal to
a) $\frac{1}{35}$
b) $\frac{1}{14}$
c) $\frac{1}{10}$
d) $\frac{1}{5}$
186. The value of $\lim _{n \rightarrow \infty}\left[\tan \frac{\pi}{2 n} \tan \frac{2 \pi}{2 n} \cdots \tan \frac{n \pi}{2 n}\right]^{1 / n}$ is
a) e
b) e^{2}
c) 1
d) e^{3}
187. If $I=\int \frac{d x}{\left(2 a x+x^{2}\right)^{3 / 2}}$, then I is equal to
a) $-\frac{x+a}{\sqrt{2 a x+x^{2}}}+c$
b) $-\frac{1}{a} \frac{x+a}{\sqrt{2 a x+x^{2}}}+c$
c) $-\frac{1}{a^{2}} \frac{x+a}{\sqrt{2 a x+x^{2}}}+c$
d) $-\frac{1}{a^{3}} \frac{x+a}{\sqrt{2 a x+x^{3}}}+c$
188. $\int \frac{x^{9} d x}{\left(4 x^{2}+1\right)^{6}}$ is equal to
a) $\frac{1}{5 x}\left(4+\frac{1}{x^{2}}\right)^{-5}+c$
b) $\frac{1}{5}\left(4+\frac{1}{x^{2}}\right)^{-5}+c$
c) $\frac{1}{10}\left(1+4 x^{2}\right)^{-5}+c$
d) $\frac{1}{10}\left(4+\frac{1}{x^{2}}\right)^{-5}+c$
189. If $\int x \log (1+1 / x) d x=f(x) \log (x+1)+\mathrm{g}(x) x^{2}+A x+C$, then
a) $f(x)=\frac{1}{2} x^{2}$
b) $g(x)=\log x$
c) $A=1$
d) None of these
190. If $P(x)$ is a polynomial of the least degree that has a maximum equal to 6 at $x=1$, and a minimum equal to 2 at $x=3$, then $\int_{0}^{1} P(x) d x$ equals
a) $\frac{17}{4}$
b) $\frac{13}{4}$
c) $\frac{19}{4}$
d) $\frac{5}{4}$
191. If $\int \frac{3 \sin x+2 \cos x}{3 \cos x+2 \sin x} d x=a x+b \ln |2 \sin x+3 \cos x|+C$, then
a) $a=-\frac{12}{13}, b=\frac{15}{39}$
b) $a=-\frac{7}{13}, b=\frac{6}{13}$
c) $a=\frac{12}{13}, b=-\frac{15}{39}$
d) $a=-\frac{7}{13}, b=-\frac{6}{13}$
192. If $\int_{0}^{1} e^{x^{2}}(x-\alpha) d x=0$, then
a) $1<\alpha<2$
b) $\alpha<0$
c) $0<\alpha<1$
d) $\alpha=0$
193. The value of the integral $\int_{-1}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) d x$ is equal to
a) π
b) 2π
c) 4π
d) None of these
194. The value of the integral $\int \frac{(1-\cos \theta)^{2 / 7}}{(1+\cos \theta)^{9 / 7}} d \theta$ is
a) $\frac{7}{11}\left(\tan \frac{\theta}{2}\right)^{\frac{11}{7}}+C$
b) $\frac{7}{11}\left(\cos \frac{\theta}{2}\right)^{\frac{11}{7}}+C$
c) $\frac{7}{11}\left(\sin \frac{\theta}{2}\right)^{\frac{11}{7}}+C$
d) None of these
195. If $f(x)=\cos x-\int_{0}^{x}(x-t) f(t) d t$, then $f^{\prime \prime}(x)+f(x)$ is equal to
a) $-\cos x$
b) $-\sin x$
c) $\int_{0}^{x}(x-t) f(t) d t$
d) 0
196. If $\int_{\cos x}^{1} t^{2} f(t) d t=1-\cos x \forall x \in\left(0, \frac{\pi}{2}\right)$, then the value of $\left[f\left(\frac{\sqrt{3}}{4}\right)\right]$ is ([.] denotes the greatest integer function)
a) 4
b) 5
c) 6
d) -7
197. $\int \frac{d x}{(1+\sqrt{x}) \sqrt{\left(x-x^{2}\right)}}$ is equal to
a) $\frac{1+\sqrt{x}}{(1-x)^{2}}+c$
b) $\frac{1+\sqrt{x}}{(1+x)^{2}}+c$
c) $\frac{1-\sqrt{x}}{(1-x)^{2}}+c$
d) $\frac{2(\sqrt{x}-1)}{\sqrt{(1-x)}}+c$
198. The value of $\int \frac{\left(x^{2}-1\right) d x}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}}$ is
a) $2 \sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}+c$
b) $2 \sqrt{2+\frac{2}{x^{2}}+\frac{1}{x^{4}}}+c$
c) $\frac{1}{2} \sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}+c$
d) None of the above
199. If $\int \sqrt{1+\sin x} f(x) d x=\frac{2}{3}(1+\sin x)^{3 / 2}+c$, then $f(x)$ equals
a) $\cos x$
b) $\sin x$
c) $\tan x$
d) 1
200. $\int e^{\tan ^{-1} x}\left(1+x+x^{2}\right) d\left(\cot ^{-1} x\right)$ is equal to
a) $-e^{\tan ^{-1} x}+c$
b) $e^{\tan ^{-1} x}+c$
c) $-x e^{\tan ^{-1} x}+c$
d) $x e^{\tan ^{-1} x}+c$
201. If $\int_{-\pi / 4}^{3 \pi / 4} \frac{e^{\pi / 4} d x}{\left(e^{x}+e^{\pi / 4}\right)(\sin x+\cos x)}=k \int_{-\pi / 2}^{\pi / 2} \sec x d x$, then the value of k is
a) $\frac{1}{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\frac{1}{2 \sqrt{2}}$
d) $-\frac{1}{\sqrt{2}}$
202. $\int \frac{x+2}{\left(x^{2}+3 x+3\right) \sqrt{x+1}} d x$ is equal to
a) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3(x+1)}}\right)$
b) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3(x+1)}}\right)$
c) $\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{x+1}}\right)$
d) None of these
203. The value of the definite integral $\int_{0}^{1}\left(1+e^{-x^{2}}\right) d x$ is
a) -1
b) 2
c) $1+e^{-1}$
d) None of these
204. Let f be a real-valued function defined on the interval $(-1,1)$ such that $e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} d t$, for all $x \in(-1,1)$ and let f^{-1} be the inverse function of f. Then, $\left(f^{-1}\right)^{\prime}(2)$ is equal to
a) 1
b) $\frac{1}{3}$
c) $\frac{1}{2}$
d) $\frac{1}{e}$
205. If $\int x \frac{\ln \left(x+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}} d x=a \sqrt{1+x^{2}} \ln \left(x+\sqrt{1+x^{2}}\right)+b x+c$, then
a) $a=1, b=-1$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=-1, b=-1$
206. Let $I_{1}=\int_{0}^{1} \frac{e^{x} d x}{1+x}$ and $I_{2}=\int_{0}^{1} \frac{x^{2} d x}{e^{x^{3}\left(2-x^{3}\right)}}$, then $\frac{I_{1}}{I_{2}}$ is equal to
a) $3 / e$
b) $e / 3$
c) $3 e$
d) $1 / 3 e$
207. If $\int_{0}^{1} \frac{\sin t}{1+t} d t=\alpha$, then the value of the integral $\int_{4 \pi-2}^{4 \pi} \frac{\sin \frac{t}{2}}{4 \pi+2-1} d t$ is
a) 2α
b) -2α
c) α
d) $-\alpha$
208. If $a>0$ and $A=\int_{0}^{a} \cos ^{-1} x d x$, then $\int_{-a}^{a}\left(\cos ^{-1} x-\sin ^{-1} \sqrt{1-x^{2}}\right) d x=\pi a-\lambda A$, then λ is
a) 0
b) 2
c) 3
d) None of these
209. $\int_{0}^{4} \frac{\left(y^{2}-4 y+5\right) \sin (y-2) d y}{\left[2 y^{2}-8 y+11\right]}$ is equal to
a) 0
b) 2
c) -2
d) None of these
210. The value of the integral $\int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x$ is
a) 0
b) $\log 7$
c) $5 \log 13$
d) None of these
211. $\int_{0}^{x}[\sin t] d t$, where $x \in(2 n \pi,(2 n+1) \pi), n \in N$ and [.] denotes the greatest integer function, is equal to
a) $-n \pi$
b) $-(n+1) \pi$
c) $-2 n \pi$
d) $-(2 n+1) \pi$
212. A function f is continuous for all x (and not every where zero) such that $f^{2}(x)=\int_{0}^{x} f(t) \frac{\cos t}{2+\sin t} d t$, then $f(x)$ is
a) $\frac{1}{2} \operatorname{In}\left(\frac{x+\cos x}{2}\right) ; x \neq 0$
b) $\frac{1}{2} \operatorname{In}\left(\frac{3}{x+\cos x}\right) ; x \neq 0$
c) $\frac{1}{2} \operatorname{In}\left(\frac{2+\sin x}{2}\right) ; x \neq n \pi, n \in I$
d) $\frac{\cos x+\sin x}{2+\sin x} ; x \neq n \pi+\frac{3 \pi}{4}, n \in I$
213. The value of the integral $\int\left(x^{2}+x\right)\left(x^{-8}+2 x^{-9}\right)^{1 / 10} d x$ is
a) $\frac{5}{11}\left(x^{2}+2 x\right)^{11 / 10}+c$
b) $\frac{5}{6}(x+1)^{11 / 10}+c$
c) $\frac{6}{7}(x+1)^{11 / 10}+c$
d) None of these
214. If $\int \frac{d x}{\cos ^{3} x \sqrt{\sin 2 x}}=a\left(\tan ^{2} x+b\right) \sqrt{\tan x}+c$, then
a) $a=\frac{\sqrt{2}}{5}, b=\frac{1}{\sqrt{5}}$
b) $a=\frac{\sqrt{2}}{5}, b=5$
c) $a=\frac{\sqrt{2}}{5}, b=-\frac{1}{\sqrt{5}}$
d) $a=\frac{\sqrt{2}}{5}, b=\sqrt{5}$
215. $\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]$ is equal to
a) $e^{\sin ^{2} y}$
b) $\sin 2 y e^{\sin ^{2} y}$
c) 0
d) None of these
216. If $f(x)=A \sin \left(\frac{\pi x}{2}\right)+B, f^{\prime}\left(\frac{1}{2}\right)=\sqrt{2}$ and $\int_{0}^{1} f(x) d x=\frac{2 A}{\pi}$, then constants A and B are
a) $\frac{\pi}{2}$ and $\frac{\pi}{2}$
b) $\frac{2}{\pi}$ and $\frac{3}{\pi}$
c) 0 and $\frac{-4}{\pi}$
d) $\frac{4}{\pi}$ and 0
217. The value of the integral $\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$ is
a) $\pi / 4$
b) $\pi / 2$
c) π
d) None of these

Multiple Correct Answers Type

218. If $f(2-x)=f(2+x)$ and $f(4-x)=f(4+x)$ for all x and $f(x)$ is a function for which $\int_{0}^{2} f(x) d x=5$, then $\int_{0}^{50} f(x) d x$ is equal to
a) 125
b) $\int_{-4}^{46} f(x) d x$
c) $\int_{1}^{51} f(x) d x$
d) $\int_{2}^{52} f(x) d x$
219. If $\int\left(\cos ^{-1} x+\cos ^{-1} \sqrt{\left(1-x^{2}\right)}\right) d x=A x+f(x) \sin ^{-1} x-2 \sqrt{\left(1-x^{2}\right)}+c, \forall x \in[-1,0)$, then
a) $f(x)=x$
b) $f(x)=-2 x$
c) $A=\frac{\pi}{4}$
d) $A=\frac{\pi}{2}$
220. If $I_{n}=\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{n}}$, where $n \in N$, which of the following statements hold good?
a) $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$
b) $I_{2}=\frac{\pi}{8}+\frac{1}{4}$
c) $I_{2}=\frac{\pi}{8}-\frac{1}{4}$
d) $I_{3}=\frac{3 \pi}{32}+\frac{1}{4}$
221. The value of $\int_{0}^{1} \frac{2 x^{2}+3 x+3}{(x+1)\left(x^{2}+2 x+2\right)} d x$ is
a) $\frac{\pi}{4}+2 \log 2-\tan ^{-1} 2$
b) $\frac{\pi}{4}+2 \log 2-\tan ^{-1} \frac{1}{3}$
c) $2 \log 2-\cot ^{-1} 3$
d) $-\frac{\pi}{4}+\log 4-\cot ^{-1} 2$
222. If $\int \sin x d(\sec x)=f(x)-\mathrm{g}(x)+c$, then
a) $f(x)=\sec x$
b) $f(x)=\tan x$
c) $g(x)=2 x$
d) $g(x)=x$
223. If $\int \frac{x^{2}-x+1}{\left(x^{2}+1\right)^{\frac{3}{2}}} e^{x} d x=e^{x} f(x)+c$, then
a) $f(x)$ is an even function
b) $f(x)$ is a bounded function
c) The range of $f(x)$ is $(0,1]$
d) $f(x)$ has two points of extrema
224. $\int \frac{x^{2}+\cos ^{2} x}{x^{2}+1} \operatorname{cosec}^{2} x d x$ is equal to
a) $\cot x-\cot ^{-1} x+c$
b) $c-\cot x+\cot ^{-1} x$
c) $-\tan ^{-1} x-\frac{\operatorname{cosec} x}{\sec x}+c$
d) $-e^{\log \tan ^{-1} x}-\cot x+c$
225. $\int \sqrt{1+\operatorname{cosec} x} d x$ equals
a) $2 \sin ^{-1} \sqrt{\sin x}+c$
b) $\sqrt{2} \cos ^{-1} \sqrt{\cos x}+c$
c) $c-2 \sin ^{-1}(1-2 \sin x)$
d) $\cos ^{-1}(1-2 \sin x)+c$
226. The value of $\int_{0}^{1} e^{x^{2}-x} d x$ is
a) <1
b) >1
c) $>e^{-\frac{1}{4}}$
d) $<e^{-\frac{1}{4}}$
227. If $\mathrm{g}(x)=\int_{0}^{x} 2|t| d t$,then
a) $\mathrm{g}(x)=x|x|$
b) $\mathrm{g}(x)$ is monotonic
c) $g(x)$ is differentiable at $x=0$
d) $\mathrm{g}^{\prime}(x)$ is differentiable at $x=0$
228. If $\int \frac{x^{4}+1}{x^{6}+1} d x=\tan ^{-1} f(x)-\frac{2}{3} \tan ^{-1} \operatorname{g}(x)+C$, then
a) Both $f(x)$ and $g(x)$ are odd functions
b) $f(x)$ is monotonic function
c) $f(x)=\mathrm{g}(x)$ has no real roots
d) $\int \frac{f(x)}{g(x)} d x=-\frac{1}{x}+\frac{3}{x^{3}}+c$
229. If $f(x)$ is integrable over $[1,2]$, then $\int_{1}^{2} f(x) d x$ is equal to
a) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)$
b) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=n+1}^{2 n} f\left(\frac{r}{n}\right)$
c) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r+n}{n}\right)$
d) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{2 n} f\left(\frac{r}{n}\right)$
230. The value of $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$ is
a) Same as that of $\int_{0}^{\infty} \frac{x^{2}+1 d x}{1+x^{4}}$
b) $\frac{\pi}{2 \sqrt{2}}$
c) Same as that of $\int_{0}^{\infty} \frac{x^{2} d x}{1+x^{4}}$
d) $\frac{\pi}{\sqrt{2}}$
231. If $\int \frac{e^{x-1}}{\left(x^{2}-5 x+4\right)} 2 x d x=A F(x-1)+B F(x-4)+C$ and $F(x)=\int \frac{e^{x}}{x} d x$, then
a) $A=-2 / 3$
b) $B=(4 / 3) e^{3}$
c) $A=2 / 3$
d) $B=(8 / 3) e^{3}$
232. Let $f(x)=-[x]$, for every real number x, where $[x]$ is the integral part of x. Then $\int_{-1}^{1} f(x) d x$ is
a) 1
b) 2
c) 0
d) $1 / 2$
233. If $\int \sqrt{\operatorname{cosec} x+1} d x=k$ fog $(x)+c$, where k is a real constant, then
a) $k=-2, f(x)=\cot ^{-1} x, g(x)=\sqrt{\operatorname{cosec} x-1}$
b) $k=-2, f(x)=\tan ^{-1} x, \mathrm{~g}(x)=\sqrt{\operatorname{cosec} x-1}$
c) $k=2, f(x)=\tan ^{-1} x, \mathrm{~g}(x)=\frac{\cot x}{\sqrt{\operatorname{cosec} x-1}}$
d) $k=2, f(x)=\cot ^{-1} x, g(x)=\frac{\cot x}{\sqrt{\operatorname{cosec} x+1}}$
234. If $\int_{0}^{x} f(t)=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is
a) $1 / 2$
b) 0
c) 1
d) $-1 / 2$
235. If $\int \sin ^{-1} x \cos ^{-1} x d x=f^{-1}(x)\left[A x-x f^{-1}(x)-2 \sqrt{1-x^{2}}\right]+2 x+C$, then
a) $f(x)=\sin x$
b) $f(x)=\cos x$
c) $A=\frac{\pi}{4}$
d) $A=\frac{\pi}{2}$
236. IfI $=\int \frac{\sin x+\sin ^{3} x}{\cos 2 x} d x=P \cos x+Q \log |f(x)|+R$, then
a) $P=1 / 2, Q=-\frac{3}{4 \sqrt{2}}$
b) $P=1 / 4, Q=-\frac{1}{\sqrt{2}}$
c) $f(x)=\frac{\sqrt{2} \cos x+1}{\sqrt{2} \cos x-1}$
d) $f(x)=\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}$
237. Let $f(a)>0$ and let $f(x)$ be a non-decreasing continuous function in $[a, b]$, then $\frac{1}{b-a} \int_{a}^{b} f(x) d x$ has the
a) Maximum value $f(b)$
b) Minimum value $f(a)$
c) Maximum value $b f(b)$
d) Minimum value $\frac{f(a)}{b-a}$
238. If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$ ($n>1$ and is an integer), then
a) $I_{n}+I_{n-2}=\frac{1}{n+1}$
b) $I_{n}+I_{n-2}=\frac{1}{n-1}$
c) $I_{2}+I_{4}, I_{4}+I_{6}, \ldots$, are in H.P.
d) $\frac{1}{2(n+1)}<I_{n}<\frac{1}{2(n-1)}$
239. Let $f:[1, \infty] \rightarrow R$ and $f(x)=x \int_{1}^{x} \frac{e^{t}}{t} d t-e^{x}$, then
a) $f(x)$ is an increasing function
b) $\lim _{x \rightarrow \infty} f(x) \rightarrow \infty$
c) $f^{\prime}(x)$ has a maxima at $x=e$
d) $f(x)$ is a decreasing function
240. The values of a for which the integral $\int_{0}^{2}|x-a| d x \geq 1$ is satisfied are
a) $[2, \infty)$
b) $(-\infty, 0]$
c) $(0,2)$
d) None of these
241. If $A_{n}=\int_{0}^{\pi / 2} \frac{\sin (2 n-1) x}{\sin x} d x ; B_{n}=\int_{0}^{\pi / 2}\left(\frac{\sin n x}{\sin x}\right)^{2} d x$, for $n \in N$, then
a) $A_{n+1}=A_{n}$
b) $B_{n+1}=B_{n}$
c) $A_{n+1}-A_{n}=B_{n+1}$
d) $B_{n+1}-B_{n}=A_{n+1}$
242. A function $f(x)$ which satisfies the relation $f(x)=e^{x}+\int_{0}^{1} e^{x} f(t) d t$, then
a) $f(0)<0$
b) $f(x)$ is a decreasing function
c) $f(x)$ is an increasing function
d) $\int_{0}^{1} f(x) d x>0$
243. If $\int \frac{\cos 4 x+1}{\cot x-\tan x} d x=A f(x)+B$, then
a) $A=-\frac{1}{8}$
b) $B=\frac{1}{2}$
c) $f(x)$ has fundamental period $\frac{\pi}{2}$
d) $f(x)$ is an odd function
244. If the primitive of $\sin (\log x)$ is $f(x)\{\sin g(x)-\cos h(x)\}+c$ (c being the constant of integration), then
a) $\lim _{x \rightarrow 2} f(x)=1$
b) $\lim _{x \rightarrow 1} \frac{\mathrm{~g}(x)}{h(x)}=1$
c) $\mathrm{g}\left(e^{3}\right)=3$
d) $h\left(e^{5}\right)=5$
245. If $\int_{a}^{b}|\sin x| d x=8$ and $\int_{0}^{a+b}|\cos x| d x=9$, then
a) $a+b=\frac{9 \pi}{2}$
b) $|a-b|=4 \pi$
c) $\frac{a}{b}=15$
d) $\int_{a}^{b} \sec ^{2} x d x=0$
246. Let $I=\int_{1}^{3} \sqrt{3+x^{3}} d x$, then the values of I will lie in the interval
a) $[4,6]$
b) $[1,3]$
c) $[4,2 \sqrt{30}]$
d) $[\sqrt{15}, \sqrt{30}]$
247. $\int \frac{d x}{x^{2}+a x+1}=f(\mathrm{~g}(x))+c$, then
a) $f(x)$ is inverse trigonomeric function for $|a|>2$
b) $f(x)$ is logarithmic function for $|a|<2$
c) $\mathrm{g}(x)$ quadratic function for $|a|>2$
d) $\mathrm{g}(x)$ is rational function for $|a|<2$
248. If $\int x^{2} e^{-2 x} d x=e^{-2 x}\left(a x^{2}+b x+c\right)+d$, then
a) $a=1$
b) $b=2$
c) $c=\frac{1}{2}$
d) $d \in R$
249. If $l=\int \sec ^{2} c \operatorname{cosec}^{4} x d x=A \cot ^{3} x+B \tan x+C \cot x+D$, then
a) $A=-\frac{1}{3}$
b) $B=2$
c) $C=-2$
d) None of these
250. Let $f(x)=\int_{1}^{x} \frac{3^{t}}{1+t^{2}} d t$, where $x>0$, then
a) For $0<\alpha<\beta, f(\alpha)<f(\beta)$
b) For $0<\alpha<\beta, f(\alpha)>f(\beta)$
c) $f(x)+\pi / 4<\tan ^{-1} x, \forall x \geq 1$
d) $f(x)+\pi / 4>\tan ^{-1} x, \forall x \geq 1$
251. If $f(x)=\int \frac{x^{8}+4}{x^{4}-2 x^{2}+2} d x$ and $f(0)=0$, then
a) $f(x)$ is an odd function
b) $f(x)$ has range R
c) $f(x)$ has at least one real root
d) $f(x)$ is a monotonic function
252. A curve $\mathrm{g}(x)=\int x^{27}\left(1+x+x^{2}\right)^{6}\left(6 x^{2}+5 x+4\right) d x$ is passing through origin, then
a) $g(1)=\frac{3^{7}}{7}$
b) $\mathrm{g}(1)=\frac{2^{7}}{7}$
c) $g(-1)=\frac{1}{7}$
d) $g(-1)=\frac{3^{7}}{14}$
253. If $f(x)=\int_{0}^{x}|t-1| d t$, where $0 \leq x \leq 2$, then
a) Range of $f(x)$ is $[0,1]$
b) $f(x)$ is differentiable at $x=1$
c) $f(x)=\cos ^{-1} x$ has two real roots
d) $f^{\prime}(1 / 2)=1 / 2$
254. Which of the following statement(s) is/are true?
a) If function $y=f(x)$ is continuous at $x=c$ such that $f(c) \neq 0$, then $f(x) f(c)>0 \forall x \in(c-h, c+h)$ where h is sufficiently small positive quantity
b) $\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{In}\left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right)=1+2 \operatorname{In} 2$
c) Let f be a continuous and non-negative function defined on $[a, b]$.If $\int_{a}^{b} f(x) d x=0$, then $f(x)=0 \forall x \in$ $[a, b]$
d) Let f be a continuous function defined on $[a, b]$ such that $\int_{a}^{b} f(x) d x=0$, then there exists at least one $c \in(a, b)$ for which $f(c)=0$
255. A primitive of $\sin 6 x$ is
a) $\frac{1}{3}\left(\sin ^{6} x-\sin ^{3} x\right)+c$
b) $-\frac{1}{3} \cos ^{2} 3 x+c$
c) $\frac{1}{3} \sin ^{2} 3 x+c$
d) $\frac{1}{3} \sin \left(3 x+\frac{\pi}{7}\right) \sin \left(3 x-\frac{\pi}{7}\right)+c$
256. The point of extremum of $\int_{0}^{x^{2}}\left(\frac{t^{2}-5 t+4}{2+e^{t}}\right) d t$ are
a) $x=-2$
b) $x=1$
c) $x=0$
d) $x=-1$
257. If $f(x)=\int_{a}^{x}[f(x)]^{-1} d x$ and $\int_{a}^{1}[f(x)]^{-1} d x=\sqrt{2}$, then
a) $f(2)=2$
b) $f^{\prime}(2)=1 / 2$
c) $f^{-1}(2)=2$
d) $\int_{0}^{1} f(x) d x=\sqrt{2}$
258. If $f(x)=\int_{0}^{x}(\cos (\sin t)+\cos (\cos t)) d t$, then $f(x+\pi)$ is
a) $f(x)+f(\pi)$
b) $f(x)+2 f(\pi)$
c) $f(x)+f\left(\frac{\pi}{2}\right)$
d) $f(x)+2 f\left(\frac{\pi}{2}\right)$
259. If $\int \frac{3 x+4}{x^{3}-2 x-4} d x=\log |x-2|+k \log f(x)+c$, then
a) $f(x)=\left|x^{2}+2 x+2\right|$
b) $f(x)=x^{2}+2 x+2$
c) $k=\frac{1}{4}$
d) $k=-\frac{1}{2}$
260. The value of α, which satisfy $\int_{\pi / 2}^{\alpha} \sin x d x=\sin 2 \alpha(\alpha \in[0,2 \pi])$ are equal to
a) $\pi / 2$
b) $3 \pi / 2$
c) $7 \pi / 6$
d) $11 \pi / 6$
261. If $f(x)=\lim _{n \rightarrow \infty} e^{x \tan (1 / n) \log (1 / n)}$ and $\int \frac{f(x)}{\sqrt[3]{\left.\sqrt\left[\sin ^{11} x \cos x\right)\right]{ }} d x=\mathrm{g}(x)+c \text {, then }, ~(x)}$
a) $g\left(\frac{\pi}{4}\right)=\frac{3}{2}$
b) $\mathrm{g}(x)$ is continuous for all x
c) $g\left(\frac{\pi}{4}\right)=-\frac{15}{8}$
d) $g(x)$ is non-differentiable at infinitely many points
262. $\int_{0}^{x}\left\{\int_{0}^{u} f(t) d t\right\} d u$ is equal to
а) $\int_{0}^{x}(x-u) f(u) d u$
b) $\int_{0}^{x} u f(x-u) d u$
c) $x \int_{0}^{x} f(u) d u$
d) $x \int_{0}^{x} u f(u-x) d u$
263. If $\int_{a}^{b} \frac{f(x)}{f(a)+f(a+b-x)} d x=10$, then
a) $b=22, a=2$
b) $b=15, a=-5$
c) $b=10, a=-10$
d) $b=10, a=-2$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 264 to 263 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

264
Statement 1: $\int_{0}^{\pi / 2}\left(\sin ^{6} x+\cos ^{6} x\right) d x$ lie in the interval $\left(\frac{\pi}{8}, \frac{\pi}{2}\right)$
Statement 2: $\quad \sin ^{6} x+\cos ^{6} x$ is periodic with period $\pi / 2$
265
Statement 1: $\int_{\pi / 2}^{3 \pi / 2}[2 \sin x] d x=0$, where [•] denotes the greatest integer function
Statement 2: $2 \sin x$ is a decreasing function in $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
266
Statement 1: If $f(x)$ is continuous on $[a, b]$, then there exists a point $c \in(a, b)$ such that $\int_{a}^{b} f(x) d x=$ $f c b-a$
Statement 2: For $a<b$, if m and M are, respectively, the smallest and greatest values of $f(x)$ on $[a, b]$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq(b-a) M$

Statement 1: $\quad f(x)$ is symmetrical about $x=2$, then $\int_{2-a}^{2+a} f(x) d x$ is equal to $2 \int_{2}^{2+a} f(x) d x$
Statement 2: If $f(x)$ is symmetrical about $x=b$, then $f(b-\alpha)=f(b+\alpha) \forall(\alpha \in R)$
268 Let f be a polynomial function of degree n
Statement 1: There exist a number $x \in[a, b]$ such that $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$
Statement 2: $f(x)$ is a continuous function

Statement 1: $\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi} \sin x \cos ^{2} x d x$

Statement 2: $\int_{a}^{b} x f(x) d x=\frac{a+b}{2} \int_{a}^{b} f(x) d x$

Statement 1: $\int e^{x^{2}} d x=e^{x^{2}}+c$
Statement 2: $\int e^{x^{2}} d x=e^{x}+c$
271
Statement 1: A polynomial of least degree that has a maximum equal to 6 at $x=1$ minimum equal to 2 at $x=3$ is $x^{3}-6 x^{2}+9 x+2$
Statement 2: The polynomial is everywhere differentiable and the points of extremum can only be roots of derivative

Statement 1: The value of $\int_{-4}^{-5} \sin \left(x^{2}-3\right) d x+\int_{-2}^{-1} \sin \left(x^{2}+12 x+33\right)$ is zero
Statement 2: $\quad \int_{-a}^{a} f(x) d x=0$ if $f(x)$ is an odd function
273
Statement 1: $\quad \int_{0}^{2 \pi} \sin ^{3} x d x=0$
Statement 2: $\sin ^{3} x$ is an odd function
274
Statement 1: $\int \frac{d x}{e^{x}+e^{-x}+2}=-\frac{1}{e^{x}+1}+c$
Statement 2: $\int \frac{d(f(x))}{(f(x))^{2}}=-\frac{1}{f(x)}+c$
275 Consider $I_{1}=\int_{0}^{\pi / 4} e^{x^{2}} d x, I_{2}=\int_{0}^{\pi / 4} e^{x} d x, I_{3}=\int_{0}^{\pi / 4} e^{x^{2}} \cos x d x, I_{4}=\int_{0}^{\pi / 4} e^{x^{2}} \sin x d x$,
Statement 1: $I_{2}>I_{1}>I_{3}>I_{4}$
Statement 2: For $x \in(0,1), x>x^{2}$ and $\sin x>\cos x$
276
Statement 1: If $I_{n}=\int \cot ^{n} x d x$, then $5\left(I_{6}+I_{4}\right)=-\cot ^{5} x$
Statement 2: If $I_{n}=\int \cot ^{n} x d x$, then $I_{n}=\frac{\cot ^{n-1}}{n}-I_{n-2}$, where $n \geq 2$
277
Statement 1: $\int \frac{(2-2 x)}{\sqrt{\left(4+2 x-x^{2}\right)}} d x=2 \sqrt{\left(4+2 x-x^{2}\right)}+\sin ^{-1}\left(\frac{x-1}{\sqrt{5}}\right)+c$
Statement 2: $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{x}{2} \sqrt{\left(a^{2}-x^{2}\right)}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)$

Statement 1: $\int_{a}^{x} f(t) d t$ is an even function if $f(x)$ is an odd function
Statement 2: $\quad \int_{a}^{x} f(t) d t$ is an odd function if $f(x)$ is an even function

Statement 1: The value of $\int_{0}^{2 \pi} \cos ^{99} x d x$ is 0
Statement 2: $\quad \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$, if $f(2 a-x)=f(x)$

Statement 1: The function $F(x)=\int \sin ^{2} x d x$ satisfies $F(x+\pi)=F(x), \forall x \in R$
Statement 2: $\sin ^{2}(x+\pi)=\sin ^{2} x$

Statement 1: $\int \frac{\left\{f(x) \phi^{\prime}(x)-f^{\prime}(x) \phi(x)\right\}}{f(x) \phi(x)}\{\log \phi(x)-\log f(x)\} d x=\frac{1}{2}\left\{\log \frac{\phi(x)}{f(x)}\right\}^{2}+c$
Statement 2: $\quad \int(h(x))^{n} h^{\prime}(x) d x=\frac{(h(x))^{n+1}}{n+1}+c$

Statement 1: If $\int_{0}^{1} e^{\sin x} d x=\lambda$, then $\int_{0}^{200} e^{\sin x} d x=200 \lambda$
Statement 2: $\quad \int_{0}^{n a} f(x) d x=n \int_{0}^{a} f(x) d x, n \in I$ and $f(a+x)=f(x)$

Statement 1: $\int_{0}^{\pi} \sqrt{1-\sin ^{2} x} d x=0$
Statement 2: $\int_{0}^{\pi} \cos x d x=0$

Statement 1:

$$
\int \frac{d x}{x^{3} \sqrt{1+x^{4}}}=\frac{1}{2} \sqrt{1+\frac{1}{x^{4}}}+C
$$

Statement 2: For integrations by parts we have to follow ILATE rule

Statement 1: For $-1<a<4, \int \frac{d x}{x^{2}+2(a-1) x+a+5}=\lambda \log |\lg (x)|+c$, where λ and c are constants
Statement 2: For $-1<a<4, \frac{1}{x^{2}+2(a-1) x+a+5}$ is a continuous function

Statement 1: $\quad \int_{0}^{x}|\sin t| d t$, for $x \in[0,2 \pi]$ is a non-differentiable function
Statement 2: $|\sin t|$ is non-differentiable at $x=\pi$

Statement 1: The value of $\int_{0}^{\pi / 4} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$
Statement 2: The value of $\int_{0}^{\pi / 2} \log \sin \theta d \theta=-\pi \log 2$

Statement 1: The value of $\int_{0}^{1} \tan ^{-1} \frac{2 x-1}{\left(1+x-x^{2}\right)} d x=0$
Statement 2: $\quad \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
289 Let $f(x)$ is continuous and positive for $x \in[a, b], \mathrm{g}(x)$ is continuous for $x \in[a, b]$ and $\int_{a}^{b} \lg (x) \mid d x>$ $|\operatorname{abg} x d x|$, then
Statement 1: The value of $\int_{a}^{b} f(x) g(x) d x$ can be zero
Statement 2: Equation $g(x)=0$ has at least one root for $x \in(a, b)$

Statement 1: $\int e^{x} \sin x d x=\frac{e^{x}}{2}(\sin x-\cos x)+c$
Statement 2: $\quad \int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+c$

Statement 1: Let m be any integer. Then the value of $I_{m}=\int_{0}^{\pi} \frac{\sin 2 m x}{\sin x} d x$ is zero
Statement 2: $I_{1}=I_{2}=I_{3}=\cdots=I_{m}$
292 Let $F(x)$ be an indefinite integral of $\sin ^{2} x$.
Statement 1: The function $F(x)$ satisfies $F(x+\pi)=F(x)$ for all real x
Statement 2: $\quad \sin ^{2}(x+\pi)=\sin ^{2} x$ for all real x
293
Statement 1: On the interval $\left[\frac{5 \pi}{4}, \frac{4 \pi}{3}\right]$, the least value of the function $f(x)=\int_{5 \pi / 4}^{x}(3 \sin t+4 \cos t) d t$ is 0
Statement 2: If $f(x)$ is a decreasing function on the interval $[a, b]$, then the least value of $f(x)$ is $f(b)$ 294

Statement 1: If $\int \frac{1}{f(x)} d x=2 \log |f(x)|+c$, then $f(x)=\frac{x}{2}$
Statement 2: When $f(x)=\frac{x}{2}$, then

$$
\int \frac{1}{f(x)} d x=\int \frac{2}{x} d x=2 \log |x|+c
$$

Statement 1: $\quad \int_{0}^{6}\{x+5\}^{2} d x=41$, where $\{\cdot\}$ denotes the fractional part function
Statement 2: $\{x+5\}$ is a periodic function

Statement 1: $\int \tan 5 x \tan 3 x \tan 2 x d x=\frac{\log |\sec 5 x|}{5}-\frac{\log |\sec 3 x|}{3}-\frac{\log |\sec 2 x|}{2}+c$
Statement 2: $\tan 5 x-\tan 3 x-\tan 2 x=\tan 5 x \tan 3 x \tan 2 x$

Statement 1: $\int \frac{\sin x d x}{x}(x>0)$ cannot be evaluated
Statement 2: Only differentiable functions can be integrated
298 If $n>1$, then
Statement 1: $\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\int_{0}^{1} \frac{d x}{\left(1-x^{n}\right)^{1 / n}}$
Statement 2: $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$

Statement 1: The value of $\int_{0}^{\pi} \sin ^{100} x \cos ^{99} x d x$ is zero
Statement 2: $\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x$ and for odd function $\int_{-a}^{a} f(x) d x=0$

Statement 1: $\int \frac{x e^{x}}{(x+1)^{2}} d x=\frac{e^{x}}{x+1}+c$
Statement 2: $\int e^{x}\left(f(x)+f^{\prime}(x) d x=e^{x} f(x)+c\right.$
301 Consider the function $f(x)$ satisfying the relation $f(x+1)+f(x+7)=0, \forall x \in R$,
Statement 1: The possible least value of t for which $\int_{a}^{a+t} f(x) d x$ is independent of a is 12
Statement 2: $f(x)$ is a periodic function

Statement 1: The value of the integral $\int_{0}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \frac{x}{2}} d x(n \in N)$ is π
Statement 2: $\int_{0}^{\pi} \sin m x d x=0(m \in N)$

Statement 1: $\int_{0}^{2} f(x) d x=\frac{4(\sqrt{2}-1)}{3}$,
Where $f(x)=\left\{\begin{array}{l}x^{2}, \text { for } 0 \leq x<1 \\ \sqrt{x}, \text { for } 1 \leq x \leq 2\end{array}\right.$
Statement 2: $f(x)$ is continuous in $[0,2]$

Statement 1: If the primitive of $f(x)=\pi \sin \pi x+2 x-4$ has the value 3 for $x=1$, then there are exactly two values of x for which primitive of $f(x)$ vanishes
Statement 2: $\quad \cos \pi x$ has period 2

Statement 1: $\quad \int_{-\pi / 2}^{\pi / 2}|\sin x| d x=2$
Statement 2: $\quad \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $c \in(a, b)$

Statement 1: If $y(x-y)^{2}=x$, then $\int \frac{d x}{(x-3 y)}=\frac{1}{2} \log \left\{(x-y)^{2}-1\right\}$
Statement 2: $\int \frac{d x}{(x-3 y)}=\log (x-3 y)+c$
307 Observe the following statements
Then, which of the following is true?
Statement 1: $\int\left(\frac{x^{2}-1}{x^{2}}\right) e^{\frac{x^{2}+1}{x}}, d x=e^{\frac{x^{2}+1}{x}}+c$
Statement 2: $\int f^{\prime}(x) e^{f(x)} d x=f(x)+c$
308
Statement 1: $\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x<\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$
Statement 2: $\quad \int_{a}^{b} f(x) d x<\int_{a}^{b} \mathrm{~g}(x) d x, \forall f(x) \geq \mathrm{g}(x)$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II. 309.

Column-I

Column- II
(A) If $f(x)$ is an integrable function for
$x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and
$I_{1}=\int_{\pi / 6}^{\pi / 3} \sec ^{2} \theta f(2 \sin 2 \theta) d \theta$ and
$I_{2}=\int_{\pi / 6}^{\pi / 3} \operatorname{cosec}^{2} \theta f(2 \sin 2 \theta) d \theta$, then I_{1} / I_{2}
(B) If $f(x+1)=f(3+x)$ for $\forall x$, and the value of (q) 1
$\int_{a}^{a+b} f(x) d x$ is independent of a then the value
of b can be
(C) The value of $\int_{1}^{4} \frac{\tan ^{-1}\left[x^{2}\right]}{\tan ^{-1}\left[x^{2}\right]+\tan ^{-1}\left[25+x^{2}-10 x\right]}$
(where [.] denotes the greatest integer function) is
(D) If $I=\int_{0}^{2} \sqrt{x+\sqrt{x+\sqrt{x+\cdots \infty}}} d x$
(where $x>0$), then $[I]$ is equal to (where [.] denotes the greatest integer function)

CODES :

A
B

C

D

a) $\quad Q$
r,s
p
p
b) r
r
p
q
c) $\begin{array}{llll}\mathrm{s} & \mathrm{p} & \mathrm{q} & \mathrm{s}\end{array}$
d) p
q
s
r
310.

Column-I

Column- II
(A) $\lim _{n \rightarrow \infty}\left[\int_{0}^{2} \frac{\left(1+\frac{t}{n+1}\right)^{n}}{n+1} d t\right]$ is equal to
(p) $e-\frac{1}{2} e^{2}-\frac{3}{2}$
(B) Let $f(x)$ be a function satisfying $f^{\prime}(x)=f(x)$
(q) e^{2}
with $f(0)=1$ and g be the function satisfying
$f(x)+\mathrm{g}(x)=x^{2}$, then the value of the
integral
$\int_{0}^{1} f(x) \mathrm{g}(x) d x$ is
(C) $\int_{0}^{1} e^{e x}\left(1+x e^{x}\right) d x$ is equal to
(r) $e^{2}-1$
(D) $\lim _{k \rightarrow 0} \frac{1}{k} \int_{0}^{k}(1+\sin 2 x)^{\frac{1}{x}} d x$ is equal to
(s) e^{e}

CODES :

	A	B	C	D
a)	P	r	q	s
b)	r	p	s	q
c)	s	q	r	p
d)	q	s	p	r

311. If []] denotes the greatest integer function, then match the following columns:

Column-I

Column- II
(A) $\int_{-1}^{1}[x+[x+[x]]] d x$
(p) 3
(B) $\int_{2}^{5}([x]+[-x]) d x$
(q) 5
(C) $\int_{-1}^{3} \sin (x-[x]) d x$
(r) 4
(D) $25 \int_{0}^{\pi / 4}\left(\tan ^{6}(x-[x])+\tan ^{4}(x-[x])\right) d x$
(s) -3

CODES :
A
B
C
D
a) S
s
r
q
b) \quad q
p
s
r
c) p
q
r
s
d) r
s
q $\quad \mathrm{p}$
312.
(A) $\int \frac{x^{2}-x+1}{x^{3}-4 x^{2}+4 x} d x$
(p) $\log |x|$
(B) $\int \frac{x^{2}-1}{x(x-2)^{3}} d x$
(q) $\quad \log |x-2|$
(C) $\int \frac{x^{3}+1}{x(x-2)^{2}} d x$
(D) $\int \frac{x^{5}+1}{x(x-2)^{3}} d x$

CODES :
A B \quad C \quad D
a) $P \mathrm{P}, \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}$
b) $r, s \quad p, q, r, s \quad p, q, r \quad r, s$
c) $\quad \mathrm{p}, \mathrm{q}, \mathrm{r} \quad \mathrm{p}, \mathrm{q}, \mathrm{r} \quad \mathrm{pq}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
d) $\quad \mathrm{p}, \mathrm{q} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$
313.

Column-I
Column- II
(A) If $I=\int_{-2}^{2}\left(\alpha x^{3}+\beta x+\gamma\right) d x$, then I is
(B) Let α, β be the distinct positive roots of the equation $\tan x=2 x$, then $\gamma \int_{0}^{1}(\sin \alpha x \sin \beta x) d x($ where $\gamma \neq 0)$ is
(C) If $(x+\alpha)+f(x)=0$, where $\alpha>0$, then $\int_{\beta}^{\beta+2 \gamma \alpha} f(x) d x$, where $\gamma \in N$, is
(D) $\gamma \int_{0}^{\alpha}[\sin x] d x$ is, where $\gamma \neq 0$, $\alpha \in[(2 \beta+1) \pi,(2 \beta+2) \pi] n \in N$, and where [.] denotes the greatest integer function

CODES:

A
B
C
D
a) p, q
$\mathrm{p}, \mathrm{q}, \mathrm{r}$
q, s
s
b) s
p, q
$\mathrm{p}, \mathrm{q}, \mathrm{r}$
q, s
c) $\mathrm{p}, \mathrm{q}, \mathrm{r}$
s p, q
q, s
d) q, s
p, q
s
$\mathrm{p}, \mathrm{q}, \mathrm{r}$
314.
(A) If $\int \frac{2^{x}}{\sqrt{1-4^{x}}} d x=k \sin ^{-1}(f(x))+C$, then k is
(p) 0 greater than
(B) If $\int \frac{(\sqrt{x})^{5}}{(\sqrt{x})^{7}+x^{6}} d x=a \ln \frac{x^{k}}{x^{k}+1}+c$, then $a k$ is less than
(C) $\int \frac{x^{4}+1}{x\left(x^{2}+1\right)^{2}} d x=k \ln |x| \frac{m}{1+x^{2}}+n$, where n is the constant of integration, then $m k$ is grater than
(D) $\int \frac{d x}{5+4 \cos x}=k \tan ^{-1}\left(m \tan \frac{x}{2}\right)+C$, then k / m is
(s) 4 greater than
CODES :
A
B
C
D
a) $P, q \quad r, s \quad p \quad p, q$
b) $\quad \mathrm{r}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{p}, \mathrm{q} \quad \mathrm{s}$
c) $\begin{array}{lll}\mathrm{p} & \mathrm{p}, \mathrm{q} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{q}\end{array}$
d) \quad q \quad p $\quad q \quad r, s$
315.

Column-I

Column- II
(A) $\int \frac{e^{2 x}-1}{e^{2 x}+1} d x$ is equal to
(B) $\int \frac{1}{\left(e^{x}+e^{-x}\right)} d x$ is equal to
(C) $\int \frac{e^{-x}}{1+e^{x}} d x$ is equal to
(D) $\int \frac{1}{\sqrt{1-e^{2 x}}} d x$ is equal to
(p) $x-\log \left[1+\sqrt{1-e^{2 x}}\right]+c$
(q) $\log \left(e^{x}+1\right)-x-e^{-x}+c$
(r) $\log \left(e^{2 x}+1\right)-x+c$

CODES :
A
B
C
D
a) s
$r \quad p$
p \quad q
b) r
s
$\mathrm{q} \quad \mathrm{p}$
c) $\quad \mathrm{p}$
$\mathrm{q} \quad \mathrm{r}$
s
d) $\begin{array}{lllll}\text { q } & p & s & r\end{array}$

Linked Comprehension Type

This section contain(s) 22 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 316 to -316
Let $f(x)$ be a continuous function defined on the closed interval $[a, b]$, then $\lim _{n \rightarrow \infty} \sum_{r=0}^{n-1} \frac{1}{n} f\left(\frac{r}{n}\right)=\int_{0}^{1} f(x) d x$
316. The value of $\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{1}{n+1}+\frac{2}{n+2}+\ldots+\frac{3 n}{4 n}\right\}$ is
a) $5-2 \operatorname{In} 2$
b) $4-2 \operatorname{In} 2$
c) $3-2 \operatorname{In} 2$
d) $2-2 \operatorname{In} 2$

Paragraph for Question Nos. 317 to - 317

If m and M are the smallest and greatest values of a function $f(x)$ defined on an interval $[a, b]$, then answer the following questions
317. If $a \leq \int_{0}^{1} e^{x^{2}} d x \leq b$ then
a) $a=0, b=1$
b) $a=e, b=1$
c) $a=2, b=1$
d) $a=1, b=e$

Paragraph for Question Nos. 318 to - 318

If $f(x)$ and $\mathrm{g}(x)$ be two functions, such that $f(a)=\mathrm{g}(a)=0$ and f and g are both differentiable at everywhere in some neighbourhood of point a except possibly ' a '.
Then $\lim _{x \rightarrow a} \frac{f(x)}{\mathrm{g}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{\mathrm{g}^{\prime}(x)}$ provided $f^{\prime}(a)$ and $\mathrm{g}^{\prime}(a)$ are not both zero
318. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{3}}$ is
a) 0
b) $2 / 9$
c) $1 / 3$
d) $2 / 3$

Paragraph for Question Nos. 319 to - 319

Repeated application of integration by parts gives us, the reduction formula if the integrand is dependent of $n, n \in N$.
On the basis of above information, answer the following question :
319.

If $I_{n}=\int \tan ^{n} x d x$ and $I_{n}=-\frac{\tan ^{n-1} x}{(n-1)}+\lambda I_{n-2}$, then λ is equal to
a) $\frac{1}{(n-1)}$
b) $\frac{1}{(n-2)}$
c) $\frac{1}{n}$
d) None of these

Paragraph for Question Nos. 320 to - 320

If the integrand is a rational function of x and fractional powers of a linear fractional function of the form $\frac{a x+b}{c x+d}$, then rationalization of the integral is affected by the substitution $\frac{a x+b}{c x+d}=t^{m}$, where m is LCM of fractional powers of $\frac{a x+b}{c x+d}$.
on the basis of above information, answer the following questions :
320.

If $I=\int \frac{d x}{\sqrt[4]{(x-1)^{3}(x+2)^{5}}}=A \sqrt[4]{\frac{x-1}{x+2}}+c$, then A is equal to
a) $1 / 3$
b) $2 / 3$
c) $3 / 4$
d) $4 / 3$

Paragraph for Question Nos. 321 to - 321

$y=f(x)$ is a polynomial function passing through point $(0,1)$ and which increases in the intervals $(1,2)$ and
$(3, \infty)$ and decreases in the interval $(-\infty, 1)$ and $(2,3)$
321. If $f(1)=-8$, then the value of $f(2)$ is
a) $1-3$
b) -6
c) -20
d) -7

Paragraph for Question Nos. 322 to - 322

If A is square matrix and e^{A} if defined as $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots=\frac{1}{2}\left[\begin{array}{cc}f x & \mathrm{~g}(x) \\ \mathrm{g}(x) & f(x)\end{array}\right]$, where $A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$ and $0<x<1, I$ is an identify matrix
322. $\int \frac{\mathrm{g}(x)}{f(x)} d x$ is equal to
a) $\log \left(e^{x}+e^{-x}\right)+c$
b) $\log \left|e^{x}-e^{-x}\right|+c$
c) $\log \left|e^{x}-1\right|+c$
d) None of these

Paragraph for Question Nos. 323 to - 323

Euler's substitution

Integrals of the form $\int R\left(x, \sqrt{a x^{2}+b x+c}\right) d x$ are calculated with the aid of one of the three Euler substitutions

1. $\sqrt{a x^{2}+b x+c}=t \pm x \sqrt{a}$ if $a>0$;
2. $\sqrt{a x^{2}+b x+c}=t x \pm \sqrt{c}$ if $c>0$;
3. $\sqrt{a x^{2}+b x+c}=(x-a) t$ if $a x^{2}+b x+c=a(x-a)(x-b)$ i.e., if α is a real root of $a x^{2}+b x+c=0$
4. Which of the following functions does not appear in the primitive of $\frac{1}{1+\sqrt{x^{2}+2 x+2}}$ if t is a function of x ?
a) $\log _{e}|t+1|$
b) $\log _{e}|t+2|$
c) $\frac{1}{t+2}$
d) None of these

Paragraph for Question Nos. 324 to - 324
$y=f(x)$ satisfies the relation $\int_{2}^{x} f(t) d t=\frac{x^{2}}{2}+\int_{x}^{2} t^{2} f(t) d t$
324. The range of $y=f(x)$ is
a) $[0, \infty)$
b) R
c) $[-\infty, 0)$
d) $\left[-\frac{1}{2}, \frac{1}{2}\right]$

Paragraph for Question Nos. 325 to - 325

Let $f: R \rightarrow R$ be a differentiable function such that
$f(x)=x^{2}+\int_{0}^{x} e^{-1} f(x-t) d t$
325. $f(x)$ increases for
a) $x>1$
b) $x<-2$
c) $x>2$
d) None of these

Paragraph for Question Nos. 326 to - 326

$f(x)$ satisfies the relation $f(x)-\lambda \int_{0}^{\pi / 2} \sin x \cos t f(t) d t=\sin x$
326. If $\lambda>2$, then $f(x)$ decreases in which of the following interval?
a) $(0, \pi)$
b) $(\pi / 2,3 \pi / 2)$
c) $(-\pi / 2, \pi / 2)$
d) None of these

Paragraph for Question Nos. 327 to - 327

Let $f(x)$ and $\phi(x)$ are two continuous functions on R satisfying $\phi(x)=\int_{a}^{x} f(t) d t, a \neq 0$ and another continuous function $\mathrm{g}(x)$ satisfying $\mathrm{g}(x+\alpha)+\mathrm{g}(x)=0 \forall x \in R, \alpha>0$ and $\int_{h}^{2 k} \mathrm{~g}(t) d t$ is independent of b
327. If $f(x)$ is an odd function, then
a) $\phi(x)$ is also an odd function
b) $\phi(x)$ is an even function
c) $\phi(x)$ is neither as even nor an odd function
d) For $\phi(x)$ to be an even function, it must satisfy $\int_{0}^{a} f(x) d x=0$

Paragraph for Question Nos. 328 to - 328

Evaluating integrals Dependent on a Parameter

Differentiate I with respect to the parameter within the sign of integrals taking variable of the integrand as constant. Now, evaluate the integral so obtained as a function of the parameter and then integrate the result to get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I
328. The value of $\int_{0}^{1} \frac{x^{a}-1}{\log x} d x$ is
a) $\log (a-1)$
b) $\log (a+1)$
c) $a \log (a+1)$
d) None of these

Paragraph for Question Nos. 329 to - 329

$f(x)=\sin x+\int_{-\pi / 2}^{\pi / 2}(\sin x+t \cos x) f(t) d t$
329. The range of $f(x)$ is
a) $\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$
b) $\left[-\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3}\right]$
c) $\left[-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right]$
d) None of these

Integer Answer Type

330. Let $f(x)=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{3}}}$ and $\mathrm{g}(x)$ be the inverse of $f(x)$, then the value of $4 \frac{\mathrm{~g}^{\prime \prime}(x)}{(\mathrm{g}(x))^{2}}$ is 331. If $I_{n}=\int_{0}^{1}\left(1-x^{5}\right)^{n} d x$, then $\frac{55}{7} \frac{I_{10}}{I_{11}}$ is equal to
331. The value of $\int_{0}^{\frac{3 \pi}{2}} \frac{\left|\tan ^{-1} \tan x\right|-\left|\sin ^{-1} \sin x\right|}{\left|\tan ^{-1} \tan x\right|+\left|\sin ^{-1} \sin x\right|} d x$ is equal to
332. If $\int \frac{2 \cos x-\sin x+\lambda}{\cos x+\sin x-2} d x=A \ln |\cos x+\sin x-2|+B x+C$. Then the value of $A+B+|\lambda|$ is
333. If the value of the definite integral $\int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}}{x^{2}-x+1} d x=\frac{\pi^{2}}{\sqrt{n}}$ (where $n \in N$), then the value of $n / 27$ is
334. If $\int x^{2} \cdot e^{-2 x} d x=e^{-2 x}\left(a x^{2}+b x+c\right)+d$, then the value of $|a / b c|$ is
335. If $\int_{0}^{\infty} x^{2 n+1} \cdot e^{-x^{2} d x}=360$, then the value of n is
336. The value of the definite integral $\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}} d x$ equals
337. Let $f:[0, \infty] \rightarrow R$ be a continuous strictly increasing function, such that $f^{3}(x)=\int_{0}^{x} t \cdot f^{2}(t) d t$ for every $x \geq 0$, then value of $f(6)$ is
338. If f is continuous function and
$F(x)=\int_{0}^{x}\left((2 t+3) \cdot \int_{t}^{2} f(u) d u\right) d t$, then $\left|F^{\prime \prime}(2) / f(2)\right|$ is equal to
339. If $F(x)=\frac{1}{x^{2}} \int_{4}^{x}\left[4 t^{2}-2 F^{\prime}(t)\right] d t$, then $\left(9 F^{\prime}(4)\right) / 4$ is
340. $\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \int_{0}^{2} x^{n} d x$ equals
341. A continuous real function f satisfies $f(2 x)=3 f(x) \forall x \in R$. If $\int_{0}^{1} f(x) d x=1$, then the value of definite integral $\int_{1}^{2} f(x) d x$ is
342. The value of $2^{2010} \frac{\int_{0}^{1} x^{1004}(1-x)^{1004} d x}{\int_{0}^{1} x^{1004}\left(1-x^{2010}\right)^{1004} d x}$ is
343. Let $f(x)=\int x^{\sin x}(1+x \cos x \cdot \ln x+\sin x) d x$ and $f\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}$, then the value of $|\cos (f(\pi))|$ is
344. If the value of $\operatorname{Lim}_{n \rightarrow \infty}\left(n^{-3 / 2}\right) \cdot \sum_{j=1}^{6 n} \sqrt{j}$ is equal to \sqrt{N}, then the value of $N / 12$ is
345. If the value of the definite integral $\int_{0}^{1}{ }^{207} C_{7} x^{200} \cdot(1-x)^{7} d x$ is equal to $\frac{1}{k}$ where $k \in N$, then the value of $k / 26$ is
346. Let $g(x)=\int \frac{1+2 \cos x}{(\cos x+2)^{2}} d x$ and $g(0)=0$, then the value of $8 g(\pi / 2)$ is
347. Let $J=\int_{-5}^{-4}\left(3-x^{2}\right) \tan \left(3-x^{2}\right) d x$ and $K=\int_{-2}^{-1}\left(6-6 x+x^{2}\right) \tan \left(6 x-x^{2}-6\right) d x$, then $(J+K)$ equals
348. If $f(x)=\int \frac{3 x^{2}+1}{\left(x^{2}-1\right)^{3}} d x$ and $f(0)=0$, then the value of $|2 / f(2)|$ is
349. Let $f(x)=x^{3}-\frac{3 x^{2}}{2}+x+\frac{1}{4}$. Then the value of $\left(\int_{1 / 4}^{3 / 4} f(f(x)) d x\right)^{-1}$ is
350. Let $f(x)$ is a derivable function satisfying $f(x)=\int_{0}^{x} e^{t} \sin (x-t) d \operatorname{tand} g(x)=f^{\prime \prime}(x)-f(x)$, then the possible integers in the range of $\mathrm{g}(x)$ is
351. Let $\mathrm{g}(x)$ be differentiable on R and $\int_{\sin t}^{1} x^{2} \mathrm{~g}(x) d x=(1-\sin t)$, where $t \in\left(0, \frac{\pi}{2}\right)$. Then the value of $g\left(\frac{1}{\sqrt{2}}\right)$ is
352. If $\int_{0}^{100} f(x) d x=7$, then $\sum_{r=1}^{100}\left(\int_{0}^{1} f(r-1+x) d x\right)=$
353. Consider the polynomial $f(x)=a x^{2}+b x+c$. If $f(0)=0, f(2)=2$, then the minimum value of $\int_{0}^{2}\left|f^{\prime}(x)\right| d x$ is
354. If $f(x)=\sqrt{x}, g(x)=e^{x}-1$, and $\int f o g(x) d x=A f o g(x)+B \tan ^{-1}(f o g(x))+C$, then $A+B$ is equal to 356. Let $k(x)=\int \frac{\left(x^{2}+1\right) d x}{\sqrt[3]{x^{3}+3 x+6}}$ and $k(-1)=\frac{1}{\sqrt[3]{2}}$, then the value of $k(-2)$ is
355. If $f(x)=x+\int_{0}^{1} t(x+t) f(t) d t$, then the value of $\frac{23}{2} f(0)$ is equal to
356. If $\int\left[\left(\frac{x}{e}\right)^{x}+\left(\frac{e}{x}\right)^{x}\right] \ln x d x=A\left(\frac{e}{x}\right)^{x}+B\left(\frac{e}{x}\right)^{x}+C$, then the value of $A+B$ is
357. If $I=\int_{0}^{3 \pi / 5}((1+x) \sin x+(1-x) \cos x) d x$, then the value of $(\sqrt{2}-1) I$ is
358. Consider a real valued continuous function f such that $f(x)=\sin x+\int_{-\pi / 2}^{\pi / 2}(\sin x+t f(t)) d t$. If M and m are maximum and minimum value of the function f, then the value of M / m is
359. If $U_{n}=\int_{0}^{1} x^{n}(2-x)^{n} d x$ and $V_{n}=\int_{0}^{1} x^{n}(1-x)^{n} d x n \in N$, and if $\frac{V_{n}}{U_{n}}=1024$, then the value of n is

: ANSWER KEY :

1)	a	2)	b	3)	c	4)	a	189)	d	190)	c	191)	c	192)	c
5)	a	6)	a	7)	b	8)	c	193)	a	194)	a	195)	a	196)	b
9)	b	10)	c	11)	a	12)	b	197)	d	198)	c	199)	a	200)	c
13)	b	14)	a	15)	b	16)	c	201)	c	202)	b	203)	d	204)	b
17)	c	18)	b	19)	a	20)	c	205)	a	206)	c	207)	d	208)	b
21)	b	22)	b	23)	a	24)	d	209)	a	210)	a	211)	a	212)	c
25)	c	26)	b	27)	b	28)	b	213)	a	214)	b	215)	a	216)	d
29)	c	30)	b	31)	b	32)	b	217)	a	1)	a,b,d	2)	b,d	3)	
33)	a	34)	c	35)	b	36)	b		a,b,d	4)	a,c,d				
37)	b	38)	c	39)	a	40)	b	5)	b,d	6)	a,b,c	7)	b,c,d	8)	
41)	a	42)	c	43)	b	44)	c		a,d						
45)	c	46)	d	47)	b	48)	c	9)	a,c	10)	a,b,c	11)	a,c,d	12)	
49)	b	50)	b	51)	a	52)	b		b,c						
53)	d	54)	c	55)	a	56)	d	13)	b,c	14)	a,d	15)	a	16)	
57)	c	58)	a	59)	b	60)	d		b,d						
61)	b	62)	d	63)	c	64)	c	17)	a	18)	a,d	19)	a,c	20)	
65)	d	66)	a	67)	a	68)	b		a,b						
69)	c	70)	a	71)	a	72)	b	21)	b,c,d	22)	a,b	23)	a,b,c	24)	
73)	d	74)	b	75)	a	76)	d		a,d						
77)	a	78)	b	79)	c	80)	a	25)	a,b	26)	a,c	27)	a,b,c,d		
81)	a	82)	a	83)	d	84)	c		a,b,d						
85)	d	86)	a	87)	a	88)	a	29)	c	30)	a,b,d	31)	a,c,d	32)	
89)	b	90)	c	91)	a	92)	b		a,c						
93)	c	94)	b	95)	a	96)	b	33)	a,d	34)	a,b,c,d	35)	a,c	36)	
97)	c	98)	c	99)	a	100)	b		a,b,d						
101)	b	102)	c	103)	b	104)	a	37)	a,c,d	38)	b,c,d	39)	a,b,c,d		
105)	c	106)	a	107)	c	108)	c		a,b,c						
109)	d	110)	d	111)	a	112)	a	41)	a,d	42)	a,b,d	43)	a,b,c,d	44)	
113)	a	114)	a	115)	b	116)	c		c,d						
117)	d	118)	c	119)	a	120)	c	45)	a,b	46)	a,b,c	1)	b	2)	d
121)	a	122)	a	123)	c	124)	b		3)	a	4)	a			
125)	c	126)	c	127)	c	128)	d	5)	a	6)	c	7)	d	8)	a
129)	c	130)	a	131)	a	132)	d	9)	b	10)	b	11)	a	12)	c
133)	d	134)	d	135)	c	136)	c	13)	c	14)	c	15)	c	16)	b
137)	b	138)	d	139)	a	140)	a	17)	a	18)	a	19)	d	20)	d
141)	c	142)	a	143)	a	144)	c	21)	b	22)	d	23)	d	24)	c
145)	c	146)	c	147)	c	148)	b	25)	a	26)	a	27)	a	28)	a
149)	a	150)	c	151)	b	152)	c	29)	d	30)	d	31)	a	32)	d
153)	b	154)	a	155)	c	156)	a	33)	a	34)	b	35)	b	36)	
157)	b	158)	b	159)	c	160)	b	37)	a	38)	a	39)	c	40)	d
161)	a	162)	c	163)	c	164)	a	41)	b	42)	b	43)	c	44)	c
165)	d	166)	b	167)	a	168)	c	45)	b	1)	a	2)	b	3)	a
169)	b	170)	c	171)	a	172)	b		4)	c					
173)	c	174)	b	175)	d	176)	c	5)	a	6)	a	7)	b	1)	c
177)	c	178)	b	179)	c	180)	c		2)	d	3)	d	4)	d	
181)	c	182)	d	183)	b	184)	b	5)	d	6)	d	7)	a	8)	d
185)	c	186)	c	187)	c	188)	d	9)	d	10)	b	11)	c	12)	b

13)	b	14)	b	1)	6	2)	8
	3)	0	4)	3			
5)	4	6)	4	7)	6	8)	2
9)	6	10)	7	11)	8	12)	2
13)	5	14)	4	15)	1	16)	8
17)	8	18)	4	19)	0	20)	9
21)	4	22)	3	23)	2	24)	7
25)	2	26)	0	27)	2	28)	9
29)	0	30)	2	31)	3	32)	5

: HINTS AND SOLUTIONS :

1 (a)
Put $x=\tan \theta \therefore d x=\sec ^{2} \theta d \theta$
When $x=\infty, \tan \theta=\infty, \therefore \theta=\pi / 2$
$\therefore I=\int_{0}^{\pi / 2} \frac{\tan \theta \sec ^{2} \theta}{(1+\tan \theta)\left(\sec ^{2} \theta\right)} d \theta$
Now changing equation (1) into $\sin \theta$ and $\cos \theta$
$\therefore I=\int_{0}^{\pi / 2} \frac{\sin \theta d \theta}{\cos \theta+\sin \theta}=\frac{\pi}{4}$
2 (b)
$\int x \sin x \sec ^{3} x d x$
$=\int x \sin x \frac{1}{\cos ^{3} x} d x$
$=\int x \tan x \sec ^{2} x d x$
$=x \int \sec x(\sec x \tan x) d x$
$-\int[\sec x(\sec x \tan x) d x] d x+C$
$=x \frac{\sec ^{2} x}{2}-\int \frac{\sec ^{2} x}{2} d x+C$
$=x \frac{\sec ^{2} x}{2}-\frac{\tan x}{2}+C$
3
$I=\int_{-2}^{0}\left[x^{3}+3 x^{2}+3 x+3\right.$

$$
+(x+1) \cos (x+1)] d x
$$

$=\int_{-2}^{0}\left[(x+1)^{3}+2+(x+1) \cos (x+1)\right] d x$
Put, $x+1=t \Rightarrow d x=d t$
$\therefore I=\int_{-1}^{1} t^{3} d t+2 \int_{-1}^{1} d t+\int_{-1}^{1} t \cos t d t$
$=0+2[1-(-1)]+0$
$\Rightarrow I=4\left[\begin{array}{c}\because t^{3} \text { and } t \cos t \text { are odd functions. } \\ \therefore \int_{-1}^{1} t^{3} d t=\int_{1}^{1} t \cos t d t=0\end{array}\right]$
4 (a)
$I=\int \sqrt{e^{x}-1} d x$
Let $e^{x}-1=t^{2} \Rightarrow e^{x} d x=2 t d t \Rightarrow d x=\frac{2 t}{t^{2}+1} d t$
$\Rightarrow I=\int t \frac{2 t}{t^{2}+1} d t=\int \frac{2 t^{2}}{t^{2}+1} d t$
$=\int \frac{2\left(t^{2}+1\right)-2}{t^{2}+1} d t=\int 2 d t-\int \frac{2 d t}{t^{2}+1}$
$=2 t-2 \tan ^{-1} t+C$
$=2 \sqrt{e^{x}-1}-2 \tan ^{-1} \sqrt{e^{x}-1}+C$
$\int \frac{e^{x}\left(x^{2}+1\right)}{(x+1)^{2}} d x$
$=\int \frac{e^{x}\left(x^{2}-1+2\right)}{(x+1)^{2}} d x$
$=\int e^{x}\left[\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right] d x$
$=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$, where $f(x)=\frac{x-1}{x+1}$ and $f^{\prime}(x)=\frac{2}{(x+1)^{2}}$
$=e^{x}\left(\frac{x-1}{x+1}\right)+C$
(a)
$I=\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}(1)$
$=\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos (\pi-x)}$
[Using the property $\int_{a}^{b} f(x) d x$

$$
\begin{equation*}
\left.=\int_{a}^{b}(f(a+b-x)) d x\right] \tag{2}
\end{equation*}
$$

$=\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{1-\cos x}$
Adding (1) and (2), we get
$2 I=\int_{\pi / 4}^{3 \pi / 4}\left(\frac{1}{1+\cos x}+\frac{1}{1-\cos x}\right) d x$
$=\int_{\pi / 4}^{3 \pi / 4} 2 \operatorname{cosec}^{2} x d x$
$=2(-\cot x)_{\pi / 4}^{3 \pi / 4}$
$=-2[\cot 3 \pi / 4-\cot \pi / 4]$
$=-2(-1-1)=4$
$\Rightarrow I=2$
$7 \quad$ (b)
$I=\int_{2}^{4}(x(3-x)(4+x)(6-x)(10-x)+$ $\sin x) d x)(1)$

$$
\begin{gathered}
=\int_{2}^{4}((6-x)(3-(6-x))(4+(6-x))(6-(6 \\
-x))(10-(6-x)) \\
+\sin (6-x)) d x \\
=\int_{2}^{4}((6-x)(x-3)(10-x) x(4+x)+
\end{gathered}
$$

$\sin 6-x d x$ (2)

Adding equations (1) and (2), we get
$2 I=\int_{2}^{4}(\sin x+\sin (6-x)) d x$
$=(-\cos x+\cos (6-x))_{2}^{4}$
$=-\cos 4+\cos 2+\cos 2-\cos 4$
$=2(\cos 2-\cos 4)$
$\Rightarrow I=\cos 2-\cos 4$
8 (c)
$I=-e^{-x} \log \left(e^{x}+1\right)+\int \frac{e^{-x} e^{x}}{e^{x}+1} d x$
$=-e^{-x} \log \left(e^{x}+1\right)+\int \frac{e^{-x}}{e^{-x}+1} d x$
$=-e^{-x} \log \left(e^{x}+1\right)-\log \left(e^{-x}+1\right)+C$
$=-e^{-x} \log \left(e^{x}+1\right)-\log \left(1+e^{x}\right)+x+C$
$=-\left(e^{-x}+1\right) \log \left(e^{x}+1\right)+x+C$
9 (b)
$\int_{a}^{b} f(x) d x=[x f(x)]_{a}^{b}-\int_{a}^{b} x f^{\prime}(x) d x(1)$
Now, put $f(x)=t \therefore x=f^{-1}(t)$
and $f^{\prime}(x) d x=d t$ and adjust the limits
Therefore, $\int_{a}^{b} f(x) d x=[b f(b)-a f(a)]-$
$f(a) f(b) f-1 t d t$ by (1)
$\therefore \int_{a}^{b} f(x)+\int_{f(a)}^{f(b)} f^{-1}(x) d x=b f(b)-a f(a)$
10 (c)
$I_{4,3}=\int \cos ^{4} x \sin 3 x d x$
Integrating by parts, we have
$I_{4,3}=-\frac{\cos 3 x \cos ^{4} x}{3}-\frac{4}{3} \int \cos ^{3} x \sin x \cos 3 x d x$
But $\sin x \cos 3 x=-\sin 2 x+\sin 3 x \cos x$, so
$I_{4,3}=-\frac{\cos x \cos ^{4} x}{3}$

$$
\begin{aligned}
& +\frac{4}{3} \int \cos ^{3} x \sin 2 x d x \\
& -\frac{4}{3} \int \cos ^{4} x \sin 3 x d x+C
\end{aligned}
$$

$=-\frac{\cos 3 x \cos ^{4} x}{3}+\frac{4}{3} I_{3,2}-\frac{4}{3} I_{4,3}+C$
Therefore, $\frac{7}{3} I_{4,3}-\frac{4}{3} I_{3,2}=-\frac{\cos 3 x \cos ^{3} x}{3}+C$
Or $7 I_{4,3}-4 I_{3,2}=-\cos 3 x \cos ^{4} x+C$
11 (a)

$$
\begin{aligned}
& \int_{-20 \pi}^{20 \pi}|\sin x|[\sin x] d x \\
= & \int_{0}^{20 \pi}|\sin x|([\sin x]+[-\sin x]) d x
\end{aligned}
$$

$=-20 \int_{0}^{\pi}(\sin x) d x=-20(-\cos x)_{0}^{\pi}=20(-2)$

$$
=-40
$$

12 (b)
$I=\int \frac{\cos x-\sin x}{\sqrt{\cos x \sin x}} d x$
Putsin $x+\cos x=t$, so that $2 \sin x \cos x=t^{2}-1$
$\therefore I=\sqrt{2} \int \frac{d t}{\sqrt{t^{2}-1}}$

$$
=\sqrt{2} \log \left|t+\sqrt{t^{2}-1}\right|+c
$$

$=\sqrt{2} \log |\sin x+\cos x+\sqrt{\sin 2 x}|+C$
13 (b)
$I=\int_{0}^{\pi / 2} \sqrt{\tan x} d x$
$\Rightarrow I=\int_{0}^{\pi / 2} \sqrt{\cot x} d x$
Adding equations (1) and (2), we get
$2 I=\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) d x$
$=\sqrt{2} \int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
$=\sqrt{2} \int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1-(\sin x-\cos x)^{2}}} d x$
$=\sqrt{2} \int_{-1}^{1} \frac{d t}{\sqrt{1-t^{2}}}($ where $\sin x-\cos x=t)$
$=2 \sqrt{2} \int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\sqrt{2} \pi$
$\Rightarrow I=\frac{\pi}{\sqrt{2}}$
14 (a)
Here, $f f(x)=\frac{f(x)}{\left[1+f(x)^{n}\right]^{1 / n}}=\frac{x}{\left(1+2 x^{n}\right)^{1 / n}}$
and $f f f(x)=\frac{x}{\left(1+3 x^{n}\right)^{1 / n}}$
$\quad g(x)=\underbrace{(f o f o \ldots . o f)}_{n \text { times }}(x)$.
$\therefore \quad=\frac{x}{\left(1+n x^{n}\right)^{1 / n}}$
Let $I=\int x^{n-2} \mathrm{~g}(x) d x=\int \frac{x^{n-1} d x}{\left(1+n x^{n}\right)^{1 / n}}$
$=\frac{1}{n^{2}} \int \frac{n^{2} x^{n-1} d x}{\left(1+n x^{n}\right)^{1 / n}}$
$=\frac{1}{n^{2}} \int \frac{\frac{d}{d x}\left(1+n x^{n}\right)}{\left(1+n x^{n}\right)^{1 / n}} d x$
$\therefore I=\frac{1}{n(n-1)}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+c$
15
(b)

Given $\lambda=\int_{0}^{1} \frac{e^{t}}{1+t} d t$

$$
\begin{aligned}
\int_{0}^{1} e^{t} \log _{e}(1+t) & d t \\
& =\left[\log _{e}(1+t) e^{t}\right]_{0}^{1} \\
& -\int_{0}^{1} \frac{e^{t}}{1+t}=e \log _{e} 2-\lambda
\end{aligned}
$$

16 (c)
$\sin ^{3} x \sin (x+\alpha)$
$=\sin ^{3} x(\sin x \cos \alpha+\cos x \sin \alpha)$
$=\sin ^{4} x(\cos \alpha+\cot x \sin \alpha)$
$I=\int \frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}} d x$
$=\int \frac{1}{\sin ^{2} x \sqrt{\cos \alpha+\cot x \sin \alpha}} d x$
$=\int \frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \alpha+\cot x \sin \alpha}} d x$
Putting
$\cos \alpha+\cot x \sin \alpha=t$ and $-\operatorname{cosec}^{2} x \sin \alpha d x=d t$, we have
$I=\int-\frac{1}{\sin \alpha \sqrt{t}} d t=-\frac{1}{\sin \alpha} \int t^{-1 / 2} d t$
$=\frac{1}{\sin \alpha}\left(\frac{t^{1 / 2}}{1 / 2}\right)+C$
$\Rightarrow I=-2 \operatorname{cosec} \alpha \sqrt{t}+C$
$=-2 \operatorname{cosec} \alpha(\cos \alpha+\cot x \sin \alpha)^{1 / 2}+C$
17 (c)
$\int \frac{\sin 2 x}{\sin 5 x \sin 3 x} d x$
$=\int \frac{\sin (5 x-3 x)}{\sin 5 x \sin 3 x}$
$=\int \frac{\sin 5 x \cos 3 x-\cos 5 x \sin 3 x}{\sin 5 x \sin 3 x} d x$
$=\frac{1}{3} \log \sin 3 x-\frac{1}{5} \log \sin 5 x+C$
18 (b)
$I=\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x$
$=\int \frac{2 \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$
$=\int \frac{2 \tan x \sec ^{2} x}{1+\tan ^{4} x} d x$
Let $\tan ^{2} x=t \Rightarrow 2 \tan x \sec ^{2} x d x=d t$
$\Rightarrow I=\int \frac{d t}{1+t^{2}}=\tan ^{-1}+C=\tan ^{-1}\left(\tan ^{2} x\right)+C$
19 (a)
Let $I=\int \frac{3+2 \cos x}{(2+3 \cos x)^{2}} d x$, Multiplying N^{r} and D^{r} by $\operatorname{cosec}^{2} x$, we get
$\Rightarrow I=\int \frac{\left(3 \operatorname{cosec}^{2} x+2 \cot x \operatorname{cosec} x\right)}{(2 \operatorname{cosec} x+\cot x)^{2}} d x$
$=-\int \frac{-3 \operatorname{cosec}^{2} x-2 \cot x \operatorname{cosec} x}{(2 \operatorname{cosec} x+3 \cot x)^{2}} d x$
$=\frac{1}{2 \operatorname{cosec} x+3 \cot x}+C=\left(\frac{\sin x}{2+3 \cos x}\right)+C$
20 (c)
Given, $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq$ 1
Applying Leibnitz theorem, we get
$\sqrt{1-\left(f^{\prime}(x)\right)^{2}}=f(x)$
$\Rightarrow 1-\left(f^{\prime}(x)\right)^{2}=f^{2}(x)$
$\Rightarrow\left(f^{\prime}(x)\right)^{2}=1-f^{2}(x)$
$\Rightarrow f^{\prime}(x)= \pm \sqrt{1-f^{2}(x)}$
$\Rightarrow \frac{d y}{d x}= \pm \sqrt{1-y^{2}}$, where $y=f(x)$
$\Rightarrow \frac{d y}{\sqrt{1-y^{2}}}= \pm d x$
On integrating both sides, we get
$\sin ^{-1}(y)= \pm x+C$
$\because f(0)=0 \Rightarrow C=0$
$\therefore y= \pm \sin x$
$y=\sin x=f(x)$ given $f(x) \geq 0$ for $x \in[0,1]$
It is known that $\sin x<x, \forall x \in R^{+}$
$\therefore \sin \left(\frac{1}{2}\right)<\frac{1}{2} \Rightarrow f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $\sin \left(\frac{1}{3}\right)<\frac{1}{3}$
$\Rightarrow f\left(\frac{1}{3}\right)<\frac{1}{3}$
21 (b)
$\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$
$=\int_{0}^{1} \tan ^{-1}\left(\frac{1}{1-x+x^{2}}\right) d x$
$=\int_{0}^{1} \tan ^{-1}\left(\frac{x+(1-x)}{1-x(1-x)}\right) d x$
$=\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}(1-x) d x$
$=\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \tan ^{-1}[1-(1-x)] d x$
$=2 \int_{0}^{1} \tan ^{-1} x d x \Rightarrow \lambda=2$
22
(b)
$2 I=\int_{\alpha}^{\beta} \frac{e^{f\left(\frac{\mathrm{~g}(x)}{x-\alpha}\right)} d x}{e^{f\left(\frac{\mathrm{~g}(x)}{x-\alpha}\right)}+e^{f\left(\frac{\mathrm{~g}(x)}{x-\beta}\right)}}$

$$
+\int_{\alpha}^{\beta} \frac{e^{f\left(\frac{\mathrm{~g}(\alpha+\beta-x)}{\beta-x}\right)} d x}{e^{f\left(\frac{\mathrm{~g}(\alpha+\beta-x)}{\beta-x}\right)}+e^{f\left(\frac{\mathrm{~g}(\alpha+\beta-x)}{\alpha-x}\right)}}
$$

$\Rightarrow I=\frac{1}{2}(\beta-\alpha)=\frac{\sqrt{b^{2}-4 a c}}{2 a}$
$(\because f(x)$ is even function $\Rightarrow \alpha+\beta=0)$
23 (a)
Putting $x \tan \theta=z \sin \theta \Rightarrow d x=\cos \theta d z$
$\Rightarrow I=\cos \theta \int_{\tan \theta}^{1} f(z \sin \theta) d z$
$=-\cos \theta \int_{1}^{\tan \theta} f(x \sin \theta) d x$
24 (d)
We have $f(x)=\int_{-1}^{1} \frac{\sin x d t}{\sin ^{2} x+(t-\cos x)^{2}}$
$=\left.\frac{\sin x}{\sin x} \tan ^{-1}\left(\frac{t-\cos x}{\sin x}\right)\right|_{-1} ^{1}$
$=\tan ^{-1}\left(\frac{1-\cos x}{\sin x}\right)-\tan ^{-1}\left(\frac{-1-\cos x}{\sin x}\right)$
$=\tan ^{-1}(\tan x / 2)+\tan ^{-1}(\cot x / 2)$
Now, we know that $\tan ^{-1} x+\tan ^{-1} \frac{1}{x}=$ $\pi 2, x>0-\pi 2, \quad x<0$
$\Rightarrow \tan ^{-1}\left(\tan \frac{x}{2}\right)$

$$
+\tan ^{-1}\left(\frac{1}{\tan \frac{x}{2}}\right)=\left\{\begin{array}{l}
\frac{\pi}{2}, \tan \frac{x}{2}>0 \\
-\frac{\pi}{2}, \tan \frac{x}{2}<0
\end{array}\right.
$$

Hence, range of $f(x)$ is $\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$
25 (c)
$\frac{d x}{d t}=\sin ^{-1}(\sin t) \cos t=t \cos t$
and $\frac{d y}{d t}=\frac{\sin t}{\sqrt{t}} \cdot \frac{1}{2 \sqrt{t}}=\frac{\sin t}{2 t} \Rightarrow \frac{d y}{d x}=\frac{\sin t}{2 t . t \cos t}=\frac{\tan t}{2 t^{2}}$
26

$$
\begin{aligned}
& \int_{-3}^{5} f(|x|) d x=\int_{-3}^{3} f(|x|) d x+\int_{3}^{5} f(|x|) d x \\
& =2 \int_{0}^{3} f(x) d x+\int_{3}^{5} f(x) d x
\end{aligned}
$$

$=2\left(\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x\right)$

$$
+\left(\int_{3}^{4} f(x) d x+\int_{4}^{5} f(x) d x\right)
$$

$=2\left(0+\frac{1}{2}+\frac{2^{2}}{2}\right)+\left(\frac{9}{2}+\frac{16}{2}\right)=\frac{35}{2}$
(b)

Put $2+x=t^{2}$, so that $d x=2 t d t$ and
$I=\int \frac{\sqrt{7-t^{2}}}{t}(2 t) d t 2 \int \sqrt{7-t^{2}} d t$
$=t \sqrt{7-t^{2}}+7 \sin ^{-1}\left(\frac{t}{\sqrt{7}}\right)+C$
$=\sqrt{x+2} \sqrt{5-x}+7 \sin ^{-1}\left(\frac{\sqrt{x+2}}{\sqrt{7}}\right)+C$
28
(b)
$I_{m}=\int_{1}^{e}(\log x)^{m} d x$
$I_{m}=\left[x(\log x)^{m}\right]_{1}^{e}-\int_{1}^{e} x \frac{m(\log x)^{m-1}}{x} d x$
(integrating by parts)
$\Rightarrow I_{m}=e-m \int_{1}^{e}(\log x)^{m-1} d x=e-m I_{m-1}(1)$
Replacing m by $m-1$
$I_{m-1}=e-(m-1) I_{m-2}(2)$
From equations (1) and (2), we have
$I_{m}=e-m\left[e-(m-1) I_{m-2}\right]$
$\Rightarrow I_{m}-m(m-1) I_{m-1}=e(1-m)$
$\Rightarrow \frac{I_{m}}{1-m}+m I_{m-2}=e$
$\Rightarrow K=1-m$ and $L=\frac{1}{m}$
(c)
$f(x)=\int_{2}^{x} \frac{d t}{\sqrt{1+t^{4}}}$
$\Rightarrow f^{\prime}(x)=\frac{1}{\sqrt{1+x^{4}}}=\frac{d y}{d x}$
Now $\mathrm{g}^{\prime}(x)=\frac{d x}{d y}=\sqrt{1+x^{4}}$
When $y=0$, i.e., $\int_{2}^{x} \frac{d t}{\sqrt{1+t^{4}}}=0$ then $x=2$

Hence, $\mathrm{g}^{\prime}(0)=\sqrt{1+16}=\sqrt{17}$
30 (b)
Let $I=\int_{1}^{a}[x] f^{\prime}(x) d x, a>1$

Let $a=k+h$, where $[a]=k$, and $0 \leq h<1$
$\therefore \int_{1}^{a}[x] f^{\prime}(x) d x=\int_{1}^{2} 1 f^{\prime}(x) d x+\int_{2}^{3} 2 f^{\prime}(x) d x$
$+\cdots+\int_{k-1}^{k}(k-1) f^{\prime}(x) d x+\int_{k}^{k+h} k f^{\prime}(x) d x$
$=[f(2)-f(1)]+2[f(3)-f(2)]+\cdots$

$$
\begin{aligned}
& +(k-1)[f(k)-f(k-1)] \\
& +k[f(k+h)-f(k)]
\end{aligned}
$$

$=-f(1)-f(2)-f(3) \cdots-f(k)+k f(k+h)$
$=[a] f(a)-[f(1)+f(2)+\cdots+f([a])]$
31 (b)
$f(x)=x|\cos x|, \frac{\pi}{2}<x<\pi=-x \cos x$, because $\cos x$ is negative in $\left(\frac{\pi}{2}, \pi\right)$
\therefore the required primitive function $=\int-x \cos x d x$ Now, use integration by parts
32 (b)
$\mathrm{g}(x)=\int_{0}^{x} f(t) d t$,
$\Rightarrow f(2)=\int_{0}^{2} f(t)=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t$
Now, $\frac{1}{2} \leq f(t) \leq 1$ for $t \in[0,1]$
$\Rightarrow \int_{0}^{1} \frac{1}{2} d t \leq \int_{0}^{1} f(t) d t \leq \int_{0}^{1} 1 d t$
$\Rightarrow \frac{1}{2} \leq \int_{0}^{1} f(t) d t \leq 1$
Again, $0 \leq f(t) \leq \frac{1}{2}$ for $t \in[1,2]$
$\Rightarrow \int_{1}^{2} 0 d t \leq \int_{1}^{2} f(t) \leq \int_{1}^{2} \frac{1}{2} d t$
$\Rightarrow 0 \leq \int_{1}^{2} f(t) d t \leq \frac{1}{2}$
From equations (1) and (2), we get
$\frac{1}{2} \leq \int_{0}^{1} f(t)+\int_{1}^{2} f(t) d t \leq \frac{3}{2}$
$\Rightarrow \frac{1}{2} \leq \mathrm{g}(2) \leq \frac{3}{2}$
33
(a)
$f(2 x)=f(x)=f\left(\frac{x}{2}\right)=f\left(\frac{x}{2^{2}}\right)=\cdots=f\left(\frac{x}{2^{n}}\right)$
So, when $n \rightarrow \infty \Rightarrow f(2 x)=f(0)(f(x)$ is continuous)
i.e., $f(x)$ is a constant function
$\Rightarrow f(x)=f(1)=3, \int_{-1}^{1} f(f(x)) d x=\int_{-1}^{1} 3 d x=6$
$34 \quad$ (c)
$I=\int_{0}^{\sqrt{\operatorname{In}\left(\frac{\pi}{2}\right)}} \cos \left(e^{x^{2}}\right) 2 x e^{x^{2}} d x$
Put $e^{x^{2}}=t \Rightarrow e^{x^{2}} 2 x d x=d t$
$\Rightarrow I=\int_{1}^{\pi / 2} \cos t d t=[\sin t]_{1}^{\pi / 2}=1-(\sin 1)$
35 (b)
We have $\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}$
$=\int \frac{d x}{x^{2} x^{n-1}\left(1+\frac{1}{x^{n}}\right)^{(n-1) / n}}$
$=\int \frac{d x}{x^{n+1}\left(1+x^{-n}\right)^{(n-1) / n}}$
Put $1+x^{-n}=t$
$\therefore-n x^{-n-1} d x=d t \Rightarrow \frac{d x}{x^{n+1}}=-\frac{d t}{n}$
$\Rightarrow \int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}=-\frac{1}{n} \int \frac{d t}{t^{(n-1) / n}}$
$=-\frac{1}{n} \int t^{1 / n-1} d t=-\frac{1}{n} \frac{t^{1 / n-1+1}}{1 / n-1+1}+C$
$=-t^{1 / n}+C=-\left(1+x^{-n}\right)^{1 / n}+C$
36 (b)
Put $x=a \cos ^{2} \theta+b \sin ^{2} \theta, \Rightarrow d x=2(b-$ $a \sin \theta \cos \theta d \theta$, then

$$
\begin{aligned}
& \int_{a}^{b}(x-a)^{3}(b-x)^{4} d x \\
& =2(b-a) \int_{0}^{\pi / 2}\left(a \cos ^{2} \theta+b \sin ^{2} \theta-a\right)^{3}(b
\end{aligned}
$$

$$
-a \cos ^{2} \theta
$$

$$
\left.-b \sin ^{2} \theta\right)^{4} \sin \theta \cos \theta d \theta
$$

$$
=2(b-a)^{8} \int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{9} \theta d \theta
$$

$$
=2(b-a)^{8} \int_{0}^{\pi / 2} \sin ^{7} \theta\left(1-\sin ^{2} \theta\right)^{4} \cos \theta d \theta
$$

$$
=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-x^{2}\right)^{4} d x
$$

$$
=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-x^{2}\right)^{4} d x
$$

$$
=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-4 x^{2}+6 x^{4}-4 x^{6}+x^{8}\right) d x
$$

$$
=2(b-a)^{8}\left[\frac{1}{8}-\frac{4}{10}+\frac{6}{12}-\frac{4}{14}+\frac{1}{16}\right]=\frac{(b-a)^{8}}{280}
$$

(b)
$\int_{0}^{\pi}\left[f(x)+f^{\prime \prime}(x)\right] \sin x d x$
$=\int_{0}^{\pi} f(x) \sin x d x+\int_{0}^{\pi} f^{\prime \prime}(x) \sin x d x$
$=(f(x)(-\cos x))_{0}^{\pi}+\int_{0}^{\pi} f^{\prime}(x) \cos x d x$

$$
+\left.\sin x f^{\prime}(x)\right|_{0} ^{\pi}-\int_{0}^{\pi} \cos x f^{\prime}(x) d x
$$

$=f(\pi)+f(0)=5$ (given)
$\Rightarrow f(0)=5-f(\pi)=5-2=3$
If $f(x)= \begin{cases}e^{\cos x} \sin x & \text { for }|x| \leq 2 \\ 2 & \text { otherwise }\end{cases}$
$\Rightarrow \int_{-2}^{3} f(x) d x=\int_{-2}^{2} f(x) d x+\int_{2}^{3} f(x) d x$
$=\int_{-2}^{2} e^{\cos x} \sin x d x+\int_{2}^{3} 2 d x=0+2[x]_{2}^{3}=2$
$\left[\because e^{\cos x} \sin x\right.$ is an odd function]
39
(a)
$f^{\prime}(x)=\frac{f(x)}{6 f(x)-x}$
Now $I=\int \frac{2 x(x-6 f(x))+f(x)}{(6 f(x)-x)\left(x^{2}-f(x)\right)^{2}} d x$
$\Rightarrow I=-\int \frac{2 x-f^{\prime}(x)}{\left(x^{2}-f(x)\right)^{2}} d x=\frac{1}{x^{2}-f(x)}+C$
(b)
$\sin n x-\sin (n-2) x=2 \cos (n-1) x \sin x$
$\Rightarrow \int \frac{\sin n x}{\sin x} d x=\int 2 \cos (n-1) d x$

$$
+\int \frac{\sin (n-2) x}{\sin x} d x
$$

$\therefore \int_{0}^{\pi / 2} \frac{\sin 5 x}{\sin x} d x=\int_{0}^{\pi / 2} 2 \cos 4 x d x+\int_{0}^{\pi / 2} \frac{\sin 3 x}{\sin x} d x$
$=0+\int_{0}^{\pi / 2} \frac{\sin 3 x}{\sin x} d x=\int_{0}^{\pi / 2} d x=\frac{\pi}{2}$
41 (a)
Differentiating, we get
$\frac{f^{\prime}(x)}{f(x)^{2}}=2\left(b^{2}-a^{2}\right) \sin x \cos x$
Integrating both sides w.r.t. x
$\Rightarrow-\frac{1}{f(x)}=-b^{2} \cos ^{2} x-a^{2} \sin ^{2} x$
$\Rightarrow f(x)=\frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}$
$I_{1}=\int_{0}^{\pi / 2} \frac{\cos ^{2} x}{1+\cos ^{2} x} d x$
$=\int_{0}^{\pi / 2} \frac{\cos ^{2}(\pi / 2-x)}{1+\cos ^{2}(\pi / 2-x)} d x$
$=\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{1+\sin ^{2} x} d x=I_{2}$
Also $I_{1}+I_{2}=\int_{0}^{\pi / 2}\left(\frac{\sin ^{2} x}{1+\sin ^{2} x}+\frac{\cos ^{2} x}{1+\cos ^{2} x}\right) d x$
$=\int_{0}^{\pi / 2} \frac{\sin ^{2} x+\sin ^{2} x \cos ^{2} x+\cos ^{2} x+}{\sin ^{2} x \cos ^{2} x} \begin{aligned} & 1+\sin ^{2} x+\cos ^{2} x+\sin ^{2} x \cos ^{2} x\end{aligned} x$
$=\int \frac{1+2 \sin ^{2} \cos ^{2} x}{2+\sin ^{2} x \cos ^{2} x} d x=2 I_{3}$
$2 I_{1}=2 I_{3} \Rightarrow I_{1}=I_{3} \Rightarrow I_{1}=I_{2}=I_{3}$
43
(b)

Let $S^{\prime}=1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$
Integrating w.r.t. x, we get $\left|\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)\right|_{0}^{1 / 2}$
$=-|\operatorname{In}(1-x)|_{0}^{1 / 2}$
$\Rightarrow \frac{1}{2}+\frac{1}{2}(S)=\operatorname{In} 2 \Rightarrow S=\operatorname{In} \frac{4}{e}$
(c)

We have $\int_{2}^{4}(3-f(x)) d x=7$
$\Rightarrow 6-\int_{2}^{4} f(x) d x=7 \Rightarrow \int_{2}^{4} f(x) d x=-1$
Now,
$\int_{2}^{-1} f(x) d x=-\int_{-1}^{2} f(x) d x$ $=-\left[\int_{-1}^{4} f(x) d x+\int_{4}^{2} f(x) d x\right]$
$=-\left[\int_{-1}^{4} f(x) d x-\int_{2}^{4} f(x) d x\right]=-[4+1]=-5$
(c)
$f(x)=\int_{\frac{1}{e}}^{\tan x} \frac{t d t}{\left(1+t^{2}\right)}+\int_{\frac{1}{e}}^{\cot x} \frac{d t}{t\left(1+t^{2}\right)}$
$\Rightarrow f^{\prime}(x)=\frac{\tan x}{1+\tan ^{2} x} \sec ^{2} x$

$$
+\frac{1}{\cot x\left(1+\cot ^{2} x\right)}\left(-\operatorname{cosec}^{2} x\right)
$$

$=\tan x-\tan x=0$
$\Rightarrow f(x)$ is a constant function
$f\left(\frac{\pi}{4}\right)=\int_{\frac{1}{e}}^{1} \frac{t d t}{\left(1+t^{2}\right)}+\int_{\frac{1}{e}}^{1} \frac{d t}{t\left(1+t^{2}\right)}$
$=\int_{\frac{1}{e}}^{1} \frac{1}{t} d t=\left.\operatorname{In} t\right|_{1 / e} ^{1}=1$
(d)

Since $a^{2} I_{1}-2 a I_{2}+I_{3}=0$
$\Rightarrow \int_{0}^{1}(a-x)^{2} f(x) d x=0$
Hence, no such positive function $f(x)$
47 (b)
$I_{1}=\int_{e}^{e^{4}} \sqrt{\operatorname{In} x} d x$, putting $t=\sqrt{\operatorname{In} x}$, i.e.,
$d t=\frac{d x}{2 x \sqrt{\operatorname{In} x}}$
$\Rightarrow d x=2 t e^{t^{2}} d t$
$\Rightarrow \int_{\mathrm{e}}^{\mathrm{e}^{4}} \sqrt{\operatorname{In} x} d x$
$=\int_{1}^{2} 2 t^{2} e^{t^{2}} d t$
$=\left.t e^{t^{2}}\right|_{1} ^{2}-\int_{1}^{2} e^{t^{2}} d t=2 e^{4}-e-a$
48 (c)
$I=\int \frac{\ln (\tan x)}{\sin x \cos x} d x$, let $t=\ln (\tan x)$
$\Rightarrow \frac{d t}{d x}=\frac{\sec ^{2} x}{\tan x}$
$\Rightarrow d t=\frac{d x}{\sin x \cos x}$
$\Rightarrow I=\int t d t=\frac{1}{2} t^{2}+C=\frac{1}{2}(\ln (\tan x))^{2}+C$
49 (b)
$I_{1}-I_{2}=\int_{0}^{\pi / 2}(\cos \theta-\sin 2 \theta) f\left(\sin \theta+\cos ^{2} \theta\right) d \theta$
Put $t=\sin \theta+\cos ^{2} \theta \Rightarrow d t=(\cos \theta-$
$\sin 2 \theta) d \theta$
$\Rightarrow I_{1}-I_{2}=\int_{1}^{1} f(t) d t=0$
50 (b)
Putting $e^{x}-1=t^{2}$ in the given integral, we have
$\int_{0}^{\log 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x=2 \int_{0}^{2} \frac{t^{2}}{t^{2}+4} d t$

$$
=2\left(\int_{0}^{2} 1 d t-4 \int_{0}^{2} \frac{d t}{t^{2}+4}\right)
$$

$=2\left[\left(t-2 \tan ^{-1}\left(\frac{t}{2}\right)\right)_{0}^{2}\right]$
$=2[(2-2 \times \pi / 4)]=4-\pi$
51 (a)
$f(2-\alpha)=f(2+\alpha)$
\Rightarrow function is symmetric about the line $x=2$

$$
\int_{2-a}^{2+a} f(x) d x=2 \int_{2}^{2+a} f(x) d x
$$

$[x]=0, \forall x \in[0,1)$
For $x \in[1,2),[x]=1$
$\Rightarrow \frac{[x]}{1+x^{2}}=\frac{1}{1+x^{2}}<1, \forall x \in[1,2) \Rightarrow\left[\frac{[x]}{1+x^{2}}\right]$

$$
=0
$$

For $x \in[-1,0),[x]=-1 \Rightarrow \frac{[x]}{1+x^{2}}=-\frac{1}{1+x^{2}}$
Clearly, $2 \geq 1+x^{2}>1, \forall x \in[-1,0)$
$\Rightarrow \frac{1}{2} \leq \frac{1}{1+x^{2}}<1 \Rightarrow-\frac{1}{2} \geq-\frac{1}{1+x^{2}}>-1$
$\Rightarrow\left[\frac{[x]}{1+x^{2}}\right]=-1 \forall x \in[-1,0)$
Thus, the given integral $=-\int_{-1}^{0} d x=-1$
53 (d)
$f(x)=\cos \left(\tan ^{-1} x\right)$
$\Rightarrow f^{\prime}(x)=-\frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}}$
$\Rightarrow I=\int_{0}^{1} x f^{\prime \prime}(x) d x$
$=\left[x f^{\prime}(x)\right]_{0}^{1}-\int_{0}^{1} f^{\prime}(x) d x$ (Integrating by parts)
$=\left[f^{\prime}(1)\right]-[f(x)]_{0}^{1}$
$=f^{\prime}(1)-f(1)+f(0)$
Now $f(0)=1 ; f^{\prime}(1)=-\frac{1}{2 \sqrt{2}} ; f(1)=\frac{1}{\sqrt{2}}$
$\Rightarrow I=1-\frac{3}{2 \sqrt{2}}$
$54 \quad$ (c)
Putting $x=\frac{1}{1+y}, d x=-\frac{1}{(1+y)^{2}} d y$,
We get $I_{(m, n)}=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
$=\int_{\infty}^{0} \frac{1}{(1+y)^{m-1}}\left(1-\frac{1}{1+y}\right)^{n-1} \frac{(-1)}{(1+y)^{2}} d y$
$=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
Since, $I(m, n)=I(n, m)$
Therefore, $I(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=$ $\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
55
(a)
$I=b \int_{0}^{t} \frac{1}{x} \cos 4 x d x-a \int_{0}^{t} \frac{1}{x^{2}} \sin 4 x d x$
$=b I_{1}-a I_{2}$
$I_{2}=\int_{0}^{t} \frac{1}{x^{2}} \sin 4 x d x$
$=\left\{\left[-\frac{1}{x} \sin 4 x\right]_{0}^{t}+4 \int_{0}^{t} \frac{\cos 4 x}{x} d x\right\}$
$=\left[-\frac{\sin 4 t}{t}+4+4 I_{1}\right],\left\{\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=4\right\}$
$\therefore I=b I_{1}-a\left\{-\frac{\sin 4 t}{t}+4+4 I_{1}\right\}$
$=(b-4 a) \int_{0}^{t} \frac{1}{x} \cos 4 x d x+\frac{a \sin 4 t}{t}-4 a$
$=\frac{a \sin 4 t}{t}-1$
Therefore, $(b-4 a) \int_{0}^{t} \frac{1}{x} \cos 4 x d x=4 a-1$
L.H.S. is a function of t, whereas R.H.S. is a
constant. Hence, we must have $b-4 a=0$ and
$4 a-1=0$
$\therefore a=\frac{1}{4}, b=1$
56 (d)
Putting $x^{2}=t$,
$I=\frac{1}{2} \int e^{t^{2}}\left(1+t+2 t^{2}\right) e^{t} d t$
$=\frac{1}{2} \int e^{t}\left[t e^{t^{2}}+\left(e^{t^{2}}+2 t^{2} e^{t^{2}}\right)\right] d t$
$=\frac{1}{2} \int e^{t}\left[f(t)+f^{\prime}(t)\right] d t=\frac{1}{2} e^{t}\left(t e^{t^{2}}\right)+C$ where
$t=x^{2}$
57 (c)
Let $x=t^{6} \Rightarrow d x=6 t^{5} d t$
$\Rightarrow I=\int t^{3}\left(1+t^{2}\right)^{4} 6 t^{5} d t$
$\Rightarrow I=6 \int t^{8}\left(1+4 t^{2}+6 t^{4}+4 t^{6}+t^{8}\right) d t$
$=6 \int\left(t^{8}+4 t^{10}+6 t^{12}+4 t^{14}+t^{16}\right) d t$
$=6\left\{\frac{t^{9}}{9}+\frac{4 t^{11}}{11}+\frac{6 t^{13}}{13}+\frac{4 t^{15}}{15}+\frac{t^{17}}{17}\right\}+C$
$=6\left\{x^{2 / 3}+\frac{4}{11} x^{11 / 6}+\frac{6}{13} x^{13 / 6}+\frac{4}{15} x^{5 / 2}\right.$

$$
\left.+\frac{1}{17} x^{17 / 6}\right\}+C
$$

58 (a)
Putting $1-x^{3}=y^{2},-3 x^{2} d x=2 y d y$, we get
$\int \frac{1}{x \sqrt{1-x^{3}}} d x$
$=-\frac{2}{3} \int \frac{1}{1-y^{2}} d y$
$=\frac{1}{3} \log \left|\frac{y-1}{y+1}\right|+C$
$=\frac{1}{3} \log \left|\frac{\sqrt{1-x^{3}}-1}{\sqrt{1-x^{3}}+1}\right|+C \Rightarrow a=\frac{1}{3}$
59
(b)

Differentiating, we get $f^{\prime \prime}(x)=f^{\prime}(x)$
$\Rightarrow \int \frac{d f^{\prime}(x)}{f^{\prime}(x)}=\int d x \Rightarrow \operatorname{In} f^{\prime}(x)=x+c \Rightarrow f^{\prime}(x)=$ Aex (1)
$\Rightarrow \int f^{\prime}(x) d x=\int A e^{x} d x \Rightarrow f(x)=A e^{x}+B$
Now, $f(0)=1 \Rightarrow A+B=1$
$\therefore f^{\prime}(x)=f(x)+\int_{0}^{1}\left(A e^{x}+1-A\right) d x$
$A e^{x}=\left(A e^{x}+1-A\right)+\left|A e^{x}+(1-A) x\right|_{0}^{1}$
$\Rightarrow 1-A+(A e+1-A-A)=0$
$\Rightarrow A(e-3)=-2$
$\Rightarrow A=\frac{2}{3-e}$ and $B=1-\frac{2}{3-e}=\frac{1-e}{3-e}$
$\Rightarrow f\left(\log _{e} 2\right)=\frac{4}{3-e}+\frac{1-e}{3-e}=\frac{5-e}{3-e}$
60 (d)
$\int_{\sqrt{2}}^{x} \frac{d t}{t \sqrt{t^{2}-1}}=\frac{\pi}{2}$
$\Rightarrow\left[\sec ^{-1} t\right]_{\sqrt{2}}^{x}=\frac{\pi}{2}$
$\Rightarrow \sec ^{-1} x-\sec ^{-1} \sqrt{2}=\frac{\pi}{2}$
$\Rightarrow \sec ^{-1} x-\frac{\pi}{4}=\frac{\pi}{2}$
$\Rightarrow \sec ^{-1} x=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}, \Rightarrow x=-\sqrt{2}$
61 (b)
Given $x f(x)=x+\int_{1}^{x} f(t) d t$
$f(x)+x f^{\prime}(x)=1+f(x)$
$\Rightarrow f(x)=\log |x|+c$
$f(1)=1 \Rightarrow f(x)=\log |x|+1$
$\Rightarrow f\left(e^{-1}\right)=0$
62 (d)
$I=\int_{1}^{e}\left(\frac{1}{x}+1\right) d x-\int_{1}^{e} \frac{1+\operatorname{In} x}{1+x \operatorname{In} x} d x$
$=[\operatorname{In} x+x]_{1}^{e}-[\operatorname{In}(1+x \operatorname{In} x)]_{1}^{e}$
$=e-\operatorname{In}(1+e)$
63 (c)
$\int_{0}^{a} \frac{f(x)}{f(x)+f(a-x)}=\frac{a}{2}$
$\Rightarrow \lim _{n \rightarrow \infty}\left[\frac{a}{2}+\frac{a^{2}}{2}+\frac{a^{3}}{2}+\cdots+\frac{a^{n}}{2}\right]=\frac{7}{5}$
$\Rightarrow \frac{a}{1-a}=\frac{14}{5}$
$\Rightarrow 5 a=14-14 a$
$\Rightarrow a=\frac{14}{19}$
(c)

Given f is a positive function, and
$I_{1}=\int_{1-k}^{k} x f(x(1-x)) d x$
$I_{2}=\int_{1-k}^{k} f[x(1-x)] d x$

Now, $I_{1}=\int_{1-k}^{k} f[x(1-x)] d x$
$=\int_{1-k}^{k}(1-x) f[(1-x) x] d x(2)$
[Using the property $\int_{a}^{b} f(x) d x$

$$
\left.=\int_{a}^{b} f(a+b-x) d x\right]
$$

Adding equations (1) and (2), we get
$2 I_{1}=\int_{1-k}^{k} f[x(1-x)] d x=I_{2} \Rightarrow \frac{I_{1}}{I_{2}}=\frac{1}{2}$
65 (d)
$I=\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$, let $x=\tan \theta$
$\Rightarrow d x=\sec ^{2} \theta d \theta$
$\Rightarrow I=\int \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta$
$=2 \int \theta \sec ^{2} \theta d \theta$
$=2(\theta \tan \theta-\ln |\sec \theta|)+C$
$=2\left(x \tan ^{-1} x-\ln \left|\sec \left(\tan ^{-1} x\right)\right|\right)+C$
66
(a)

Here, $I(m, n)=\int_{0}^{1} t^{m}(1+t)^{n} d t$
$\Rightarrow I(m, n)=\left\{(1+t)^{n} \cdot \frac{t^{m+1}}{m+1}\right\}_{0}^{1}$

$$
-\int_{0}^{1} n(1+t)^{n-1} \cdot \frac{t^{m+1}}{m+1} d t
$$

$$
=\frac{2^{n}}{m+1}-\frac{n}{m+1} \int_{0}^{1}(1+t)^{n-1} \cdot t^{m+1} d t
$$

$\therefore I(m, n)=\frac{2^{n}}{m+1}-\frac{n}{m+1} . I(m+1, n-1)$
(a)

Putting $a=2, b=3, c=0$, we get

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\frac{\pi}{2(2+3)(3+0)(0+2)} \\
=\frac{\pi}{60}
\end{gathered}
$$

68
(b)
$I=\int_{0}^{4} f(t) d t$, put $t=x^{2}$
$\Rightarrow d t=2 x d x$, then
$I=2 \int_{0}^{2} x f\left(x^{2}\right) d x$
From Lagrange's Mean Value Theorem
$\frac{\int_{0}^{2} 2 x f\left(x^{2}\right) d x-\int_{0}^{0} 2 x f\left(x^{2}\right) d x}{2-0}=2 y f\left(y^{2}\right)$ for some $y \in(0,2)$
$\Rightarrow \int_{0}^{2} 2 x f\left(x^{2}\right) d x=2 \times 2 y f\left(y^{2}\right)$
$=\left\{\frac{2 \alpha f\left(\alpha^{2}\right)+2 \beta f\left(\beta^{2}\right)}{2}\right\}$
(where $0<\beta<y<\alpha<2$, and using intermediate Mean Value Theorem)
$69 \quad$ (c)
$\int \sqrt{\frac{\cos x-\cos ^{3} x}{1-\cos ^{3} x}} d x=\int \sqrt{\frac{\cos x}{1-\cos ^{3} x}} \sin x d x$
$=\int \sqrt{\frac{t}{1-t^{3}}} d t=-\int \frac{\sqrt{t}}{\sqrt{1-\left(t^{3 / 2}\right)^{2}}} d t$, where $t=\cos x$
$=-\frac{2}{3} \int \frac{\frac{3}{2} \sqrt{t}}{\sqrt{1-\left(t^{3 / 2}\right)^{2}}} d t=\frac{2}{3} \cos ^{-1}\left(t^{3 / 2}\right)+C$
70 (a)
$I=\int_{0}^{1} f(x)[\mathrm{g}(x)-\mathrm{g}(1-x)] d x$
$=-\int_{0}^{1} f(1-x)[\mathrm{g}(x)-\mathrm{g}(1-x)] d x$
$\Rightarrow 2 I=\int_{0}^{1}[f(x)-f(1-x)][\mathrm{g}(x)-\mathrm{g}(1-x)] d x$

$$
\leq 0
$$

$71 \quad$ (a)
Given, $\int_{\sin x}^{1} t^{2} f(t) d t=1-\sin x$
Now, $\frac{d}{d x} \int_{\sin x}^{1} t^{2} f(t) d t=\frac{d}{d x}(1-\sin x)$
$\Rightarrow\left[1^{2} f(1)\right] \cdot(0)-\left(\sin ^{2} x\right) \cdot f(\sin x) \cdot \cos x=$
$-\cos x$
[by Leibnitz formula]
\Rightarrow Put $\sin x=1 / \sqrt{3}$
$\therefore f\left(\frac{1}{\sqrt{3}}\right)=(\sqrt{3})^{2}=3$
72 (b)
$\sin ^{3} x=\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x$
$\Rightarrow \int_{0}^{\infty} \frac{\sin ^{3} x}{x} d x$
$=\frac{3}{4} \int_{0}^{\infty} \frac{\sin x}{x} d x-\frac{1}{4} \int_{0}^{\infty} \frac{\sin 3 x}{x} d x$
$=\frac{3}{4} \int_{0}^{\infty} \frac{\sin x}{x} d x-\frac{1}{4} \int_{0}^{\infty} \frac{\sin u}{x} d u(u=3 x)$
$=\frac{3}{4} \frac{\pi}{2}-\frac{1}{4} \frac{\pi}{2}=\frac{\pi}{4}$
73 (d)
Since $h(x)=(f(x)+f(-x))(g(x)-g(-x))$
$\Rightarrow h(-x)=(f(-x)+f(x))(\mathrm{g}(-x)-\mathrm{g}(x))$
$\Rightarrow h(-x)=-h(x)$
$\therefore h(x)$ is odd function,
$\Rightarrow \int_{-\pi / 2}^{\pi / 2}(f(x)+f(-x))(\mathrm{g}(x)-\mathrm{g}(-x)) d x=0$
74
(b)
$\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\cdots\right.$

$$
\left.+\frac{1}{n+\sqrt{n^{2}}}\right]
$$

$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{\frac{1}{n}+\frac{1}{\sqrt{n}}}+\frac{1}{\frac{2}{n}+\sqrt{\frac{2}{n}}}+\cdots+\frac{1}{\frac{n}{n}+\sqrt{\frac{n}{n}}}\right]$
$=\int_{0}^{1} \frac{d x}{\sqrt{x}(\sqrt{x}+1)}$
Put $\sqrt{x}=z, \therefore \frac{1}{2 \sqrt{x}} d x=d z$
$\Rightarrow \lim _{n \rightarrow \infty} S_{n}=\int_{0}^{1} \frac{2 d z}{z+1}=2|\log (z+1)|_{0}^{1}$
$=2(\log 2-\log 1)$
$=2 \log 2=\log 4$
75 (a)
On integrating by parts taking $\sin ^{2} x$ as first function and $\frac{1}{x^{2}}$ as second function, we get
$\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\left|\sin ^{2} x\left(-\frac{1}{x}\right)\right|_{0}^{\infty}$

$$
-\int_{0}^{\infty} 2 \sin x \cos x\left(-\frac{1}{x}\right) d x
$$

Now, $\lim _{x \rightarrow \infty} \sin ^{2} x\left(-\frac{1}{x}\right)=0$, and
$\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow \infty}(\sin x) \frac{\sin x}{x}=0$
Thus, $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=0+\int_{0}^{\infty} \frac{\sin 2 x}{x} d x$
Now, put $2 x=t$, then $d x=d t / 2$
$\int_{0}^{\infty} \frac{\sin 2 x}{x} d x=\int_{0}^{\infty} \frac{\sin t}{t / 2} \frac{d t}{2}=\int_{0}^{\infty} \frac{\sin t}{t} d t$

$$
=\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

76 (d)
$I=\int \frac{d x}{\sqrt{\sin ^{3} x \cos ^{5} x}}$
$=\int \frac{d x}{\sqrt{\frac{\sin ^{3} x}{\cos ^{3} x} \cos ^{8} x}}$
$=\int \frac{\sec ^{4} x}{\sqrt{\tan ^{3} x}} d x$
$=\int \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x}{\sqrt{\tan ^{3} x}} d x$
Let $t=\tan x \Rightarrow d t=\sec ^{2} x d x$
$\Rightarrow I=\int \frac{1+t^{2}}{t^{3 / 2}} d t$
$=\int\left(t^{-3 / 2}+t^{1 / 2}\right) d t$
$=-2 t^{-\frac{1}{2}}+\frac{2}{3} t^{3 / 2}+C$
$=-2 \sqrt{\cot x}+\frac{2}{3} \sqrt{\tan ^{3} x}+C$
$\Rightarrow a=-2, b=\frac{2}{3}$
(a)

Putting,
$l^{r+1}(x)=\operatorname{tand} \frac{1}{x l(x) l^{2}(x) \ldots l^{r}(x)} d x=d t$, we get
$\int \frac{1}{x l^{2}(x) l^{3}(x) \ldots l^{r}(x)}=\int 1 d t=t+C=I^{r+1}(x)$

$$
+C
$$

78 (b)
Let $f(x)=\int\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
$\therefore f^{\prime}(x)=\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right)$
From the given conditions
$f(1)-f(0)=0 \Rightarrow f(0)=f(1)$
and $f(2)-f(0)=0 \Rightarrow f(0)=f(2)(3)$
From equations (2) and (3), we get $f(0)=$
$f(1)=f(2)$
By Rolle's theorem for $\boldsymbol{f}(\boldsymbol{x})$ in $[0,1]: f^{\prime}(\alpha)=0$, at least one α such that $0<\alpha<1$
By Rolle's theorem for $\boldsymbol{f}(\boldsymbol{x})$ in $[1,2]: f^{\prime}(\beta)=0$, at least one β such that $1<\beta<2$
Now, from equation (1), $f^{\prime}(\alpha)=0$
$\Rightarrow\left(1+\cos ^{8} \alpha\right)\left(a \alpha^{2}+b \alpha+c\right)=0 \quad($

$$
\left.\because 1+\cos ^{8} \alpha \neq 0\right)
$$

$\Rightarrow a \alpha^{2}+b \alpha+c=0$
i.e., α is a root of the equation $a x^{2}+b x+c=0$

Similarly, β is a root of the equation $a x^{2}+b x+$ $c=0$
But equation $a x^{2}+b x+c=0$ being a quadratic equation cannot have more than two roots
Hence, equation $a x^{2}+b x+c=0$ has one root α between 0 and 1 , and other root β between 1 and 2
79 (c)
Given $A=\int_{0}^{1} x^{50}(2-x)^{50} d x ; B=\int_{0}^{1} x^{50}(1-$ $x 50 d x$
In A, put $x=2 t \Rightarrow d x=2 d t$
$\Rightarrow A=2 \int_{0}^{1 / 2} 2^{50} \cdot t^{50} 2^{50}(1-t)^{50} d t(1)$
Now, $B=2 \int_{0}^{1 / 2} x^{50}(1-x)^{50} d x$ (2)
$\left[\operatorname{using} \int_{0}^{2 a} f(x) d x\right.$

$$
\left.=2 \int_{0}^{a} f(x) d x \text { if } f(2 a-x)=f(x)\right]
$$

From equations (1) and (2), we get
$A=2^{100} B$
80 (a)
Let $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\cos x} d x(1)$
$=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\cos (\pi-x)} d x$
$=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\cos x} d x$
Adding equations (1) and (2) gives
$2 I=\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\cos x} d x$
$=\pi \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\cos x} d x=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$
Put $\cos x=z$, therefore $-\sin x d x=d z$
When $x=0, z=1, x=\pi, z=-1$
$\therefore 2 I=\pi \int_{1}^{-1} \frac{-d z}{1+z^{2}}=\pi \int_{-1}^{1} \frac{d z}{1+z^{2}}$
$=\pi\left|\tan ^{-1} z\right|^{1}-1$
$=\pi\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right]$
$=\pi\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\frac{2 \pi^{2}}{4}$
$\Rightarrow I=\frac{\pi^{2}}{4}$
81 (a)
Putting $x=\tan \theta$, we get
$\int_{0}^{\pi / 2} \frac{d x}{\left[x+\sqrt{x^{2}+1}\right]^{3}}=\int_{0}^{\infty} \frac{\sec ^{2} \theta d \theta}{(\tan \theta+\sec \theta)^{3}}$
$=\int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)^{3}} d \theta$
$=\left[-\frac{1}{2(1+\sin \theta)^{2}}\right]_{0}^{\pi / 2}=-\frac{1}{8}+\frac{1}{2}=\frac{3}{8}$
82 (a)
$I_{3}=\int_{0}^{\pi} e^{x}(\sin x)^{3} d x$
$=\left.e^{x}(\sin x)^{3}\right|_{0} ^{\pi}-3 \int_{0}^{\pi}(\sin x)^{2} \cos x e^{x} d x$
$=0-\left.3(\sin x)^{2} \cos x e^{x}\right|_{0} ^{\pi}$
$+3 \int_{0}^{\pi}\left(2 \sin x \cos x \cos x-\sin x \sin ^{2} x\right) e^{x} d x$
$=0+6 \int_{0}^{\pi} \sin x \cos ^{2} x e^{x} d x-3 \int_{0}^{\pi} \sin ^{3} x e^{x} d x$
$=6 \int_{0}^{\pi} \sin x\left(1-\sin ^{2} x\right) e^{x} d x-3 \int_{0}^{\pi} \sin ^{3} x e^{x} d x$
$=6 \int_{0}^{\pi} \sin x e^{x} d x-9 \int_{0}^{\pi} \sin x^{3} e^{x} d x$
$=6 I_{1}-9 I_{3}$
$\Rightarrow 10 I_{3}=6 I_{1}$
$\Rightarrow \frac{I_{3}}{I_{1}}=\frac{3}{5}$
83 (d)
$I=\int \frac{\sqrt{x-1}}{x \sqrt{x+1}} d x$
$=\int \frac{x-1}{x \sqrt{x^{2}-1}} d x$
$=\int \frac{d x}{\sqrt{x^{2}-1}}-\int \frac{d x}{x \sqrt{x^{2}-1}}$
$=\ln \left|x+\sqrt{x^{2}+1}\right|-\sec ^{-1} x+c$
$84 \quad$ (c)

$$
\begin{aligned}
& I=\int_{\log \lambda}^{\log \frac{1}{\lambda}} \frac{f\left(x^{2} / 4\right)[f(x)-f(-x)]}{g\left(x^{2} / 4\right)[g(x)+g(-x)]} d x \\
& =\int_{\log \lambda}^{-\log \lambda} \frac{f\left(x^{2} / 4\right)[f(x)-f(-x)]}{g\left(x^{2} / 4\right)[g(x)+g(-x)]}=0
\end{aligned}
$$

(as function inside the integration is odd)
85 (d)

$$
\int \frac{\operatorname{cosec}^{2} x-2005}{\cos ^{2005} x} d x
$$

$$
=\int(\cos x)^{-2005} \operatorname{cosec}^{2} x d x-2005 \int \frac{d x}{\cos ^{2005} x}
$$

$$
=(\cos x)^{-2005}(-\cot x)
$$

$$
-\int(-2005)(\cos x)^{-2006}(-\sin x)(-\cot x) d x
$$

$$
-2005 \int \frac{d x}{\cos ^{2005} x}
$$

$$
=-\frac{\cot x}{(\cos x)^{2005}}+C
$$

86 (a)
$\mathrm{g}(x)=\int_{0}^{x} \cos ^{4} t d t$
$\Rightarrow \mathrm{g}(x+\pi)=\int_{0}^{x+\pi} \cos ^{4} t d t$
$=\int_{0}^{x} \cos ^{4} t d t+\int_{x}^{x+\pi} \cos ^{4} t d t$
$=g(x)+\int_{0}^{\pi} \cos ^{4} t d t\left[\because\right.$ period of $\cos ^{4} t$ is $\left.\pi\right]$ $=g(x)+g(\pi)$
87 (a)

The graph with solid line is the graph of $f(x)=\{x\}$ and the graph with dotted lines is the graph of $f(x)=\{-x\}$. Now the graph of min $(\{x\},\{-x\})$ is the graph with dark solid lines $\int_{-100}^{100} f(x) d x=$ area of 200 triangles shown as solid dark lines in the diagram $=200 \frac{1}{2}(1)\left(\frac{1}{2}\right)=$ 50
88 (a)
Here, $\int_{0}^{t^{2}}\{x f(x)\} d x=\frac{2}{5} t^{5}$
(Using Newton Leibnitz formula): differentiating both sides, we get
$t^{2}\left\{f\left(t^{2}\right)\right\} \cdot\left\{\frac{d}{d t}\left(t^{2}\right)\right\}-0 . f(0)\left\{\frac{d}{d t}(0)\right\}=2 t^{4}$
$\Rightarrow t^{2} f\left(t^{2}\right) .2 t=2 t^{4}$
$\Rightarrow f\left(t^{2}\right)=t$
$\therefore f\left(\frac{4}{25}\right)= \pm \frac{2}{5}$
$\left[\right.$ putting $\left.t= \pm \frac{2}{5}\right]$
$\Rightarrow f\left(\frac{4}{25}\right)=\frac{2}{5} \quad$ [neglecting negative]
89

$$
\begin{array}{r}
I=\int \lambda\left(\frac{\ln a^{a^{x / 2}}}{3 a^{5 x / 2} b^{3 x}}+\frac{\ln b^{b^{x}}}{2 a^{2 x} b^{4 x}}\right) d x \\
=\int \frac{\ln a^{2 x} b^{3 x}}{6 a^{2 x} b^{3 x}} d x
\end{array}
$$

Let $a^{2 x} b^{3 x}=t$,then $t \ln a^{2} b^{3} d x=d t$
$\Rightarrow I=\int \frac{1}{6 \ln a^{2} b^{3}} \frac{\ln t}{t^{2}} d t$
$=\frac{1}{6 \ln a^{2} b^{3}}\left(\frac{-\ln t}{t}-\int \frac{-1}{t^{2}} d t\right)$
$=-\frac{1}{6 \ln a^{2} b^{3}}\left(\frac{\ln e t}{t}\right)+k$
$=-\frac{1}{6 \ln a^{2} b^{3}}\left(\frac{\ln a^{2 x} b^{3 x} e}{a^{2 x} b^{3 x}}\right)+k$
90 (c)
Put $x-0.4=t \Rightarrow \int_{0.6}^{3.6}\{t\} d t=\int_{0.6}^{0.6+3}\{t\} d t$
$=3 \int_{0}^{1}(t-[t]) d t=3\left(\frac{t^{2}}{2}\right)_{0}^{1}=\frac{3}{2}=1.5$
91
1 (a)

For $x \in\left(-\frac{\pi}{3}, 0\right), 2 \cos x-1>0$
$\Rightarrow I=\int_{-\pi / 3}^{0} \frac{\pi}{2} d x=\frac{\pi^{2}}{6}$
92
(b)
$I_{1}=\int_{-100}^{101} \frac{d x}{\left(5+2 x-2 x^{2}\right)\left(1+e^{2-4 x}\right)}$
$=\int_{-100}^{101} \frac{d x}{\left(5+2(1-x)-2(1-x)^{2}\right)}$

$$
\left(1+e^{2-4(1-x)}\right)
$$

$=2 I_{1}=\int_{-100}^{101} \frac{d x}{5+2 x-2 x^{2}}=I_{2}$
$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{1}{2}$
(c)

We have $I_{n+1}-I_{\mathrm{n}}=2 \int_{0}^{\pi} \cos (n+1) x d x=0$
$\therefore I_{n+1}=I_{n} \Rightarrow I_{n+1}=I_{n}=\cdots=I_{0} \Rightarrow I_{n}=\pi$ for all $n \geq 0$
94 (b)
Write $I=\int \frac{d x}{x^{3}\left(a^{2} / x^{2}-b^{2}\right)^{3 / 2}}$
and put $a^{2} / x^{2}=t+b^{2}$, so that $\left(-2 a^{2} / x^{3}\right) d x=$ $d t$

$$
\begin{aligned}
& \therefore I=\int \frac{\left(-1 / 2 a^{2}\right) d t}{t^{3 / 2}} \\
& =-\frac{1}{2 a^{2}} \int t^{-3 / 2} d t=\frac{1}{a^{2} \sqrt{t}}+C \\
& =\frac{1}{a^{2}\left(a^{2} / x^{2}-b^{2}\right)^{1 / 2}}+C \\
& =\frac{x}{a^{2}\left(a^{2}-b^{2} x^{2}\right)^{1 / 2}}+C
\end{aligned}
$$

95 (a)
When $e \leq[x] \leq e^{2} \quad 1<\log [x]<2$
When $e^{2} \leq[x] \leq e^{3} 2<\log [x]<3$
$\therefore \int_{3}^{8} 1 d x+\int_{8}^{10} 2 d x=9$
(b)

On putting $x=\sin \theta$, we get $d x=\cos \theta d \theta$
Integral (without limits) $=\int \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right)(\cos \theta)}$
$=\int \frac{d \theta}{1+\sin ^{2} \theta}=\int \frac{\operatorname{cosec}^{2} \theta d \theta}{2+\cot ^{2} \theta}$
$=\int \frac{-d t}{2+t^{2}}$ where $t=\cot \theta$
$=-\frac{1}{\sqrt{2}} \tan ^{-1} \frac{t}{\sqrt{2}}=-\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\cot \theta}{\sqrt{2}}$
$=-\frac{1}{\sqrt{2}} \tan ^{-1} \frac{1}{\sqrt{2}}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$
\Rightarrow Definite integral $=-\frac{1}{\sqrt{2}} \tan ^{-1} 1+\frac{1}{\sqrt{2}} \tan ^{-1} \infty$
$=-\frac{\pi}{4 \sqrt{2}}+\frac{\pi}{2 \sqrt{2}}=\frac{\pi}{4 \sqrt{2}}$
97 (c)
Let
$I=\int \frac{\cos ^{3}+\cos ^{5} x}{\sin ^{2} x+\sin ^{4} x} d x$
$=\int \frac{\left(\cos ^{2} x+\cos ^{4} x\right) \cos x}{\sin ^{2} x\left(1+\sin ^{2} x\right)} d x$
$=\int \frac{\left[1-\sin ^{2} x+\left(1-\sin ^{2} x\right)^{2}\right] \cos x}{\sin ^{2} x\left(1+\sin ^{2} x\right)} d x$
$=\int \frac{\left(2-3 \sin ^{2} x+\sin ^{4} x\right) \cos x}{\sin ^{2} x\left(1+\sin ^{2} x\right)} d x$
Put $\sin x=t \Rightarrow \cos x d x=d t$
$\Rightarrow I=\int \frac{2-3 t^{2}+t^{4}}{t^{4}+t^{2}} d t$
$=\int\left(1+\frac{2}{t^{2}}-\frac{6}{t^{2}+1}\right) d t$
$=t-\frac{2}{t}-6 \tan ^{-1}(t)+C$
$=\sin x-2(\sin x)^{-1}-6 \tan ^{-1}(\sin x)+C$
98 (c)
As $f(x)$ satisfies the conditions of Rolle's theorem in $[1,2], f(x)$ is continuous in the interval and $f(1)=f(2)$
Therefore, $\int_{1}^{2} f^{\prime}(x) d x=[f(x)]_{1}^{2}=f(2)-f(1)=$ 0

99 (a)
$y^{r}=\left(1+\frac{1}{r}\right)\left(1+\frac{2}{r}\right)\left(1+\frac{3}{r}\right) \ldots\left(1+\frac{n-1}{r}\right)$
$\Rightarrow \log y=\frac{1}{r} \sum_{p=1}^{n-1} \log \left(1+\frac{p}{r}\right)$
$\Rightarrow \lim _{n \rightarrow \infty} y=\lim _{r \rightarrow \infty} y$

$$
\begin{aligned}
& =\int_{0}^{k} \log (1+x) d x \\
& =(k-1) \log _{e}(1+k)-k
\end{aligned}
$$

100 (b)
$I=\int_{\pi}^{2 \pi}[2 \sin x] d x$

From the graph in figure
$\therefore I=\int_{\pi / 6}^{5 \pi / 6} 1 d x+\int_{\pi}^{7 \pi / 6}-1 d x+\int_{7 \pi / 6}^{11 \pi / 6}-2 d x$

$$
+\int_{11 \pi / 6}^{2 \pi}-1 d x
$$

$=\left(\frac{5 \pi}{6}-\frac{\pi}{6}\right)+\left(-\frac{7 \pi}{6}+\pi\right)+2\left(-\frac{11 \pi}{6}+\frac{7 \pi}{6}\right)$

$$
+\left(-2 \pi+\frac{11 \pi}{6}\right)
$$

$=\frac{2 \pi}{3}-\frac{\pi}{6}-\frac{8 \pi}{6}-\frac{\pi}{6}=-\pi$
101 (b)
$I=\int_{-3}^{3} x^{8}\left\{x^{11}\right\} d x(1)$
Replacing x by $-x$, we have $I=\int_{-3}^{3} x^{8}\left\{-x^{11}\right\} d x$ (2)

Adding equations (1) and (2), we get
$2 I=\int_{-3}^{3} x^{8}\left(\left\{x^{11}\right\}+\left\{-x^{11}\right\}\right) d x$

$$
=2 \int_{0}^{3} x^{8} d x=2\left(\frac{x^{9}}{9}\right)_{0}^{3}=2.3^{7}
$$

$\Rightarrow I=3^{7}[\operatorname{as}\{x\}+\{-x\}=1$ for x is not an integer]
102
(c)
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{\left(1+e^{\tan x}\right)} d x$
$=\int_{0}^{\frac{\pi}{2}}\left(\frac{e^{|\sin x|} \cos x}{1+e^{\tan x}}+\frac{e^{|\sin x|} \cos x}{1+e^{-\tan x}}\right) d x$
$=\int_{0}^{2} e^{|\sin x|} \cos x d x$
$=\int_{0}^{\frac{\pi}{2}} e^{\sin x} \cos x d x$
$=\left.e^{\sin x}\right|_{0} ^{\frac{\pi}{2}}=e-1$
103 (b)
We have $\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}$
$=\int \frac{d x}{x^{2} x^{n-1}\left(1+\frac{1}{x^{n}}\right)^{(n-1) / n}}$
$=\int \frac{d x}{x^{n+1}\left(1+x^{-n}\right)^{(n-1) / n}}$
Put $1+x^{-n}=t \therefore-n x^{-n-1} d x=d t \Rightarrow \frac{d x}{x^{n+1}}=$ $-\frac{d t}{n}$
$\Rightarrow \int \frac{d x}{x^{2}\left(x^{n}+1\right)^{(n-1) / n}}=-\frac{1}{n} \int \frac{d t}{t^{(n-1) / n}}$
$=-\frac{1}{n} \int t^{-1+\frac{1}{n}} d t=\frac{-1}{n} \cdot \frac{t^{1 / n}}{1 / n}+C$
$=-t^{1 / n}+C$
104 (a)
Let $n \leq x<n+1$ where $n \in I$
$I=\int_{0}^{x} \frac{2^{t}}{2^{[t]}} d t=\int_{0}^{n} 2^{\{t\}} d t+\int_{0}^{x} 2^{\{t\}} d t$
$=n \int_{0}^{1} 2^{\{t\}} d t+\int_{n}^{x} 2^{\{t\}} d t$
$=n \int_{0}^{1} 2^{t} d t+\int_{n}^{x} 2^{t-n} d t$
$=\left.n \frac{2^{t}}{\operatorname{In} 2}\right|_{0} ^{1}+\left.\frac{1}{2^{n}} \frac{2^{t}}{\operatorname{In} 2}\right|_{n} ^{x}$
$=\frac{n}{\operatorname{In} 2}(2-1)+\frac{1}{2^{n} \operatorname{In} 2}\left(2^{x}-2^{n}\right)$
$=\frac{n}{\operatorname{In} 2}+\frac{1}{\operatorname{In} 2}\left(2^{x-n}-1\right)$
$=\frac{[x]+2^{\{x\}}-1}{\operatorname{In} 2}$
105 (c)
$f(x)=\int_{0}^{\pi} \frac{t \sin t}{\sqrt{1+\tan ^{2} x \sin ^{2} t}} d t(1)$
Replacing t by $\pi-t$ and then adding $f(x)$ with equation (1)
$f(x)=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin t}{\sqrt{1+\tan ^{2} x \sin ^{2} t}} d t$
$=\pi \int_{0}^{\pi / 2} \frac{\sin t}{\sqrt{1+\tan ^{2} x\left(1-\cos ^{2} t\right)}} d t$
$=\pi \int_{0}^{\pi / 2} \frac{\sin t}{\sqrt{\sec ^{2} x-\tan ^{2} x \cos ^{2} t}} d t$
Let $y=\cos t$
$\therefore d y=-\sin t d t$
$\Rightarrow f(x)=\pi \int_{0}^{1} \frac{d y}{\sqrt{\sec ^{2} x-\left(\tan ^{2} x\right) y^{2}}}$
$=\frac{\pi}{\tan x} \int_{0}^{1} \frac{d y}{\sqrt{\operatorname{cosec}^{2} x-y^{2}}}$
$=\frac{\pi}{\tan x}\left\{\sin ^{-1} \frac{y}{\operatorname{cosec} x}\right\}_{0}^{1}$
$=\frac{\pi}{\tan x} \sin ^{-1}(\sin x)=\frac{\pi x}{\tan x}$
106 (a)
$\int_{0}^{\infty}\left(\frac{\pi}{1+\pi^{2} x^{2}}-\frac{1}{1+x^{2}}\right) \log x d x$
$=\int_{0}^{\infty} \frac{\log \left(\frac{y}{\pi}\right) d y}{1+y^{2}}-\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x$
$=-\int_{0}^{\infty} \frac{\log \pi}{1+y^{2}} d y=-\frac{\pi}{2} \operatorname{In} \pi$
107 (c)
$I=\int \frac{\sec x d x}{\sqrt{2 \sin (x+A) \cos x}}$
$=\int \frac{\sec ^{2} x d x}{\sqrt{\frac{2 \sin (x+A)}{\cos x}}}$
$=\frac{1}{\sqrt{2}} \int \frac{\sec ^{2} x d x}{\sqrt{\tan x \cos A+\sin A}}$
$=\frac{\sec A}{\sqrt{2}} \int \frac{2 p d p}{p}$
$\left(\tan x \cos A+\sin A=p^{2}\right.$, then $\cos A \sec ^{2} x d x=$
2pdp)
$I=\sqrt{2} \sec A \int d p$

$$
=\sqrt{2} \sec A \sqrt{\tan x \cos A+\sin A}+C
$$

108
(c)

Given integral
$=\int_{0}^{1} \frac{d x}{(x+\cos \alpha)^{2}+\left(1-\cos ^{2} \alpha\right)}$
$=\int_{0}^{1} \frac{d x}{(x+\cos \alpha)^{2}+\sin ^{2} \alpha}$
$=\frac{1}{\sin \alpha}\left|\tan ^{-1} \frac{x+\cos \alpha}{\sin \alpha}\right|_{0}^{1}$
$=\frac{1}{\sin \alpha}\left[\tan ^{-1} \frac{1+\cos \alpha}{\sin \alpha}-\tan ^{-1} \frac{\cos \alpha}{\sin \alpha}\right]$
$=\frac{1}{\sin \alpha}\left[\tan ^{-1} \cot \frac{\alpha}{2}-\tan ^{-1}(\cot \alpha)\right]$
$=\frac{1}{\sin \alpha}\left[\tan ^{-1} \tan \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)-\tan ^{-1} \tan \left(\frac{\pi}{2}-\alpha\right)\right]$
$=\frac{1}{\sin \alpha}\left[\left(\frac{\pi}{2}-\frac{\alpha}{2}\right)-\left(\frac{\pi}{2}-\alpha\right)\right]=\frac{\alpha}{2 \sin \alpha}$
109 (d)
Let $I=\int_{0}^{\pi / 2} \frac{d x}{1+\tan ^{3} x}$
$=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$=\int_{0}^{\pi / 2} \frac{\cos ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x$
$=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\cos ^{3} x+\sin ^{3} x} d x$
Adding equation (1) and (2), we get
$2 I=\int_{0}^{\pi / 2} 1 d x$
$\Rightarrow I=\frac{\pi}{4}$
110 (d)
$\int_{0}^{x} f(t) d t=\int_{x}^{1} t^{2} f(t) d t+\frac{x^{16}}{8}+\frac{x^{6}}{3}+a(1)$
For $x=1, \int_{0}^{1} f(t) d t=0+\frac{1}{8}+\frac{1}{3}+a=\frac{11}{24}+a$
Differentiating both sides of equation (1) w.r.t. x we get,
$f(x)=0-x^{2} f(x)+2 x^{15}+2 x^{5}$
$\Rightarrow f(x)=\frac{2\left(x^{15}+x^{5}\right)}{1+x^{2}}$
$\Rightarrow 2 \int_{0}^{1} \frac{x^{15}+x^{5}}{1+x^{2}} d x=\frac{11}{24}+a$
$\Rightarrow 2 \int_{0}^{1}\left(x^{13}-x^{11}+x^{9}-x^{7}+x^{5}\right) d x=\frac{11}{24}+a$
$\Rightarrow 2\left(\frac{1}{14}-\frac{1}{12}+\frac{1}{10}-\frac{1}{8}+\frac{1}{6}\right)=\frac{11}{24}+a$
$\Rightarrow a=-\frac{167}{840}$
111 (a)
$I=\int \frac{d x}{x\left(x^{n}+1\right)}=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x$
Putting $x^{n}=t$ so that $n x^{n-1} d x=d t$
$\Rightarrow x^{n-1} d x=\frac{1}{n} d t$
$\therefore I=\int \frac{\frac{1}{n} d t}{t(t+1)}=\frac{1}{n} \int\left(\frac{1}{t}-\frac{1}{t+1}\right) d t$
$=\frac{1}{n}(\log t-\log (t+1))+C$
$=\frac{1}{n} \log \left(\frac{x^{n}}{x^{n}+1}\right)+C$
112 (a)
$\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=a x+b \ln \left(4 e^{x}+5 e^{-x}\right)+C$
Differentiating both sides, we get
$\frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=a+b \frac{\left(4 e^{x}-5 e^{-x}\right)}{4 e^{x}+5 e^{-x}}$
$\Rightarrow 3 e^{x}-5 e^{-x}=a\left(4 e^{x}-5 e^{-x}\right)+b\left(4 e^{x}-5 e^{-x}\right)$
Comparing the coefficient of like terms on both sides, we get
$3=4(a+b),-5=5 a-5 b \Rightarrow a=-\frac{1}{8}, b=\frac{7}{8}$
113 (a)
$I=\int_{0}^{\pi / 2} \frac{\sin 2 x}{x+1} d x$. Put $x=y / 2$
$\Rightarrow I=\int_{0}^{\pi} \frac{\sin y}{y+2} d y$
$=\left(\frac{-\cos y}{y+2}\right)_{0}^{\pi}-\int_{0}^{\pi} \frac{\cos y}{(y+2)^{2}} d y$ (integrating by parts)
$\Rightarrow I=\frac{1}{\pi+2}+\frac{1}{2}-A$
114 (a)
$\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$
$\Rightarrow \frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right)=\frac{d}{d x}\left(x+\int_{x}^{1} t f(t) d t\right)$
$\Rightarrow f(x)=1+0-x f(x) \quad$ [using Leibnitz's Rule]
$\Rightarrow f(x)=1-x f(x)$
$\Rightarrow f(x)=\frac{1}{x+1} \Rightarrow f(1)=\frac{1}{2}$
115 (b)
$\int e^{x}\left(\frac{2 \tan x}{1+\tan x}+\tan ^{2}\left(x-\frac{\pi}{4}\right)\right) d x$
$=\int e^{x}\left(\tan \left(x-\frac{\pi}{4}\right)+\sec ^{2}\left(x-\frac{\pi}{4}\right)\right) d x$
$=e^{x} \tan \left(x-\frac{\pi}{4}\right)+C$
116 (c)
$I=\int_{0}^{x}[\cos t] d t=\int_{0}^{2 n \pi}[\cos t] d t+\int_{2 n \pi}^{x}[\cos t] d t$
$\begin{aligned}=n \int_{0}^{2 \pi}[\cos t] d t & +\int_{2 n \pi}^{2 n \pi+\pi / 2}[\cos t] d t \\ & +\int_{2 n \pi+\frac{\pi}{2}}^{x}[\cos t] d t\end{aligned}$
$=-n \pi+0+(x-(2 n \pi+\pi / 2))(-1)$

$$
=-n \pi+2 n \pi+\pi / 2-x
$$

$=(2 n+1) \pi / 2-x$

117 (d)
$I=\int_{a+c}^{b+c} f(x) d x$, putting $x=t+c$
$\Rightarrow d x=d t$, we get $I=\int_{a}^{b} f(t+c) d t=$
$a b f x+c d x$
$I=\int_{a c}^{b c} f(x) d x$
Putting $x=t c \Rightarrow d x=c d t$,
We get $I=c \int_{a}^{b} f(c t) d t=c \int_{a}^{b} f(c x) d x$
$f(x)=\frac{1}{2}(f(x)+f(-x)+f(x)-f(-x))$
$\Rightarrow \int_{-a}^{a} f(x) d x$
$=\frac{1}{2} \int_{-a}^{a}(f(x)+f(-x)+f(x)-f(-x)) d x$
$=\frac{1}{2} \int_{-a}^{a}(f(x)+f(-x)) d x$

$$
+\frac{1}{2} \int_{-a}^{a}(f(x)-f(-x)) d x
$$

$=\frac{1}{2} \int_{-a}^{a}(f(x)+f(-x)) d x$
As $f(x)+f(-x)$ is even and $f(x)-f(-x)$ is odd 118 (c)
$I=\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x, n \in Z$
$=\int_{0}^{\pi} e^{\cos ^{2}(\pi-x)} \cos ^{3}[(2 n+1)(\pi-x)] d x$
$\left[\operatorname{Using} \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]$
$=\int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}[(2 n+1) \pi-(2 n+1) x] d x$
$=-\int_{0}^{\pi}-e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x$
$=-I$
$\Rightarrow I=0$
119 (a)
We have $f(y)=e^{y}, \mathrm{~g}(y)=y: y>0$
$F(t)=\int_{0}^{1} f(t-y) \mathrm{g}(y) d y$
$=\int_{0}^{t} e^{t-y} y d y$
$=e^{t} \int_{0}^{t} e^{-y} y d y$
$=e^{t}\left(\left[-y e^{-y}\right]_{0}^{t}+\int_{0}^{t} e^{-y} d y\right)$
$=e^{t}\left(-t e^{-t}-\left[e^{-y}\right]_{0}^{t}\right)$
$=e^{t}\left(-t e^{-t}-e^{-t}+1\right)$
$=e^{t}-(1+t)$

we have
$3 \pi / 4$
$\int_{\pi / 2}[2 \sin x] d x$
$=\int_{\pi / 2}^{5 \pi / 6} 1 d x+\int_{\pi}^{7 \pi / 6}-1 d x+\int_{7 \pi / 6}^{3 \pi / 2}-2 d x$
$=\left[\frac{5 \pi}{6}-\frac{\pi}{2}\right]-\left[\frac{7 \pi}{6}-\pi\right]-2\left[\frac{3 \pi}{2}-\frac{7 \pi}{6}\right]$
$=\frac{-\pi}{2}$
121 (a)
$I_{2}=\int_{-\pi / 4}^{\pi / 4} \operatorname{In}(\sin x+\cos x) d x$
$=\int_{0}^{\pi / 4} \operatorname{In}(\sin x$

$$
\begin{aligned}
& +\cos x)+\operatorname{In}(\sin (-x) \\
& +\cos (-x))) d x
\end{aligned}
$$

$\left.=\int_{0}^{\pi / 4} \operatorname{In}(\sin x+\cos x)+\operatorname{In}(\cos x+\sin x)\right) d x$
$=\int_{0}^{\pi / 4} \operatorname{In}\left(\cos ^{2} x-\sin ^{2} x\right) d x$
$=\int_{0}^{\pi / 4} \operatorname{In}(\cos 2 x) d x$
Putting $2 x=t$, i.e., $\frac{d t}{2}=d x$, we get
$I_{2}=\frac{1}{2} \int_{0}^{\pi / 2} \operatorname{In}(\cos t) d t$

$$
=\frac{1}{2} \int_{0}^{\pi / 2} \operatorname{In}\left(\cos \left(\frac{\pi}{2}-t\right)\right) d t
$$

$$
=\frac{1}{2} \int_{0}^{\pi / 2} \operatorname{In}(\sin t) d t=\frac{1}{2} I_{1} \Rightarrow I_{1}=2 I_{2}
$$

122 (a)
Given $f^{\prime}(1)=\tan \pi / 6, f^{\prime}(2)=\tan \pi / 3, f^{\prime}(3)=$ $\tan \pi / 4$
Now, $\int_{2}^{3} f^{\prime}(x) f^{\prime \prime}(x) d x+\int_{1}^{3} f^{\prime \prime}(x) d x$
$=\left[\frac{\left(f^{\prime}(x)\right)^{2}}{2}\right]_{2}^{3}+\left[f^{\prime}(x)\right]_{1}^{3}$
$=\frac{\left(f^{\prime}(3)\right)^{2}-\left(f^{\prime}(2)\right)^{2}}{2}+f^{\prime}(3)-f^{\prime}(1)$
$=\frac{(1)^{2}-(\sqrt{3})^{2}}{2}+\left(1-\frac{1}{\sqrt{3}}\right)$
$=\frac{1-3}{2}+1-\frac{1}{\sqrt{3}}=\frac{-1}{\sqrt{3}}$
123 (c)
$\mathrm{g}(x)=\int_{0}^{x} f(t) d t$
$\mathrm{g}(-x)=\int_{0}^{-x} f(t) d t=-\int_{0}^{x} f(-t) d t$

$$
=\int_{0}^{x} f(t) d t \text { as } f(-t)=-f(t)
$$

$\Rightarrow \mathrm{g}(-x)=\mathrm{g}(x)$, thus $\mathrm{g}(x)$ is even
Also, $g(x+2)=\int_{0}^{x+2} f(t) d t$
$=\int_{0}^{2} f(t) d t+\int_{2}^{2+x} f(t) d t$
$=\mathrm{g}(2)+\int_{0}^{x} f(t+2) d t$
$=\mathrm{g}(2)+\int_{0}^{x} f(t) d t$
$=\mathrm{g}(2)+\mathrm{g}(x)$
Now, $g(2)=\int_{0}^{2} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t$
$=\int_{0}^{1} f(t) d t+\int_{-1}^{0} f(t+2) d t$
$=\int_{0}^{1} f(t) d t+\int_{-1}^{0} f(t) d t$
$=\int_{-1}^{1} f(t) d t=0$ as $f(t)$ is odd
$\Rightarrow g(2)=0 \Rightarrow g(x+2)=g(x) \Rightarrow g(x)$ is periodic with period 2
$\Rightarrow g(4)=0 \Rightarrow f(6)=0, g(2 n)=0, n \in N$

124 (b)

$$
\begin{aligned}
& I_{1}=\int_{\sin ^{2} t}^{1+\cos ^{2} t} x f(x(2-x)) d x \\
& =\int_{\sin ^{2} t}^{1+\cos ^{2} t}(2-x) f(x(2-x)) d x=2 I_{2}-I_{1}
\end{aligned}
$$

$\Rightarrow 2 I_{1}=2 I_{2} \Rightarrow \frac{I_{1}}{I_{2}}=1$
125 (c)
Here, $\int e^{x}\left\{f(x)-f^{\prime}(x)\right\} d x=\phi(x)$
and $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)$
On adding, we get $2 \int e^{x} f(x) d x=\phi(x)+e^{x} f(x)$
126 (c)
$I_{1}=\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
$=\int_{0}^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x$
$\pi / 2$
$=\int_{0}^{\pi} \frac{\cos x-\sin x}{1+\sin x \cos x} d x=-I_{1}$
$\Rightarrow I_{1}=0$
$I_{3}=0$ as $\sin ^{3} x$ is odd
$I_{4}=\int_{0}^{1} \operatorname{In}\left(\frac{1-x}{x}\right) d x$
$=\int_{0}^{1} \operatorname{In}\left(\frac{1-(1-x)}{1-x}\right) d x$
$=\int_{0}^{1} \operatorname{In} \frac{x}{1-x} d x=-I_{4}$
$\Rightarrow I_{4}=0$
$I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d x=2 \int_{0}^{\pi} \cos ^{6} x d x \neq 0$
127 (c)
$I=\frac{2 \sin x}{(3+\sin 2 x)} d x$
$=\int \frac{\sin x+\cos x+\sin x-\cos x}{(3+\sin 2 x)}$
$=\int \frac{\sin x+\cos x}{3+\sin 2 x} d x-\int \frac{-\sin x+\cos x}{(3+\sin 2 x)} d x$
Putting $t_{1}=\sin x-\cos x$ in I_{1} and $t_{2}=$
$\sin x+\cos x$ in I_{2}, we get
$I=\int \frac{d t_{1}}{\left[3+\left(1-t_{1}^{2}\right)\right]}-\int \frac{d t_{2}}{\left[3+\left(t_{2}^{2}-1\right)\right]}$
$=\int \frac{d t_{1}}{4-t_{1}^{2}}-\int \frac{d t_{2}}{2+t_{2}^{2}}$
$=\frac{1}{4} \ln \left|\frac{2+t_{1}}{2-t_{1}}\right|-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{t_{2}}{\sqrt{2}}\right)+C$
$=\frac{1}{4} \ln \left|\frac{2+\sin x-\cos x}{2-\sin x+\cos x}\right|$

$$
-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)+C
$$

(d)

By rationalizing the integrand, the given integral
can be written as
$f(x)=\int\left(x+\sqrt{x^{2}+1}\right) d x$
$=\frac{x^{2}}{2}+\frac{x}{2} \sqrt{x^{2}+1}+\frac{1}{2} \log \left|x+\sqrt{x^{2}+1}\right|+C$
Putting $x=0$, we have $f(0)=C$ so $C=-1 / 2-$ $1 / \sqrt{2}$
and $f(1)=\frac{1}{2}+\frac{1}{2} \sqrt{2}+\frac{1}{2} \log |1+\sqrt{2}|+\left(-\frac{1}{2}-\frac{1}{\sqrt{2}}\right)$
$=\frac{1}{2} \log (1+\sqrt{2})=-\log (\sqrt{2}-1)$
129 (c)
Since $e^{x^{2}}$ is an increasing function on $(0,1)$, therefore $m=e^{0}=1, M=e^{1}=e(m$ and M are minimum and maximum values of $f(x)=e^{x^{2}}$ in the interval $(0,1)$)
$\Rightarrow 1<e^{x^{2}}<e$, for all $x \in(0,1)$
$\Rightarrow 1(1-0)<\int_{0}^{1} e^{x^{2}} d x<e(1-0)$
$\Rightarrow 1<\int_{0}^{1} e^{x^{2}} d x<e$
130 (a)

$$
\begin{aligned}
\sum_{r=1}^{n} \int_{0}^{1} f(r-1 & +x) d x \\
= & \int_{0}^{1} f(x) d x+ \\
& +\int_{0}^{1} f(1+x) d x \\
& +\int_{0}^{1} f(2+x) d x+\cdots \\
=\int_{0}^{1} f(x) d x+ & \int_{1}^{2} f(x) d x \\
& +\int_{2}^{3} f(x) d x+\int_{r-1}^{2} f(x) d x+\cdots \\
& +\int_{n-1}^{1} f(x) d x=\int_{0}^{n} f(x) d x
\end{aligned}
$$

131 (a)
$I=\int \frac{\sqrt{1+\sin x} \sqrt{1-\sin x}}{\sqrt{1-\sin x}} d x$
$=\int \frac{\cos x}{\sqrt{1-\sin x}} d x=-2 \sqrt{1-\sin x}+C$
132

$$
\begin{aligned}
& I=\int \frac{x^{3} d x}{\sqrt{1+x^{2}}}=\int \frac{x \times x^{2} d x}{\sqrt{1+x^{2}}}, \text { let } t=\sqrt{1+x^{2}} \\
& \Rightarrow \frac{d t}{d x}=\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

$\Rightarrow I=\int\left(t^{2}-1\right) d t$
$=\frac{t^{3}}{3}-t+C=\frac{t}{3}\left(t^{2}-3\right)+C$
$=\frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-2\right)+C$
$I=\int \frac{x d x}{x^{4} \sqrt{x^{2}-1}}$
Let $x^{2}-1=t^{2} \Rightarrow 2 x d x=2 t d t$
$\Rightarrow I=\int \frac{t}{\left(t^{2}+1\right)^{2} t} d t=\int \frac{d t}{\left(t^{2}+1\right)^{2}}$
But $\tan ^{-1} t=\int \frac{d t}{t^{2}+1}=\int 1 \cdot \frac{1}{t^{2}+1} d t$
$=\frac{t}{t^{2}+1}+\int t \frac{2 t}{\left(t^{2}+1\right)^{2}} d t$
$=\frac{t}{t^{2}+1}+2 \int \frac{t^{2}+1-1}{\left(t^{2}+1\right)^{2}} d t$
$=\frac{t}{t^{2}+1}+2 \tan ^{-1} t-2 I$
$\therefore I=\frac{1}{2} \frac{t}{t^{2}+1}+\frac{1}{2} \tan ^{-1} t+C$
$=\frac{1}{2}\left(\frac{\sqrt{x^{2}-1}}{x^{2}}+\tan ^{-1} \sqrt{x^{2}-1}\right)+C$
134 (d)
$I=\int_{0}^{1} \frac{\tan ^{-1} x}{x} d x$
Putting $x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta$
$\Rightarrow I=\int_{0}^{\pi / 4} \frac{\theta}{\tan \theta} \sec ^{2} \theta d \theta$
$=\int_{0}^{\pi / 4} \frac{2 \theta}{\sin 2 \theta} d \theta$
Putting $2 \theta=t$, i.e., $2 d \theta=d t$,
We get $I=\frac{1}{2} \int_{0}^{\pi / 2} \frac{t}{\sin t} d t$
$=\frac{1}{2} \int_{0}^{\pi / 2} \frac{x}{\sin x} d x$
135 (c)
Since, $J=\int \frac{e^{3 x}}{1+e^{2 x}+e^{4 x}} d x$
$\therefore \quad J-I=\int \frac{\left(e^{3 x}-e^{x}\right)}{1+e^{2 x}+e^{4 x}} d x$
$=\int \frac{\left(u^{2}-1\right)}{1+u^{2}+u^{4}} d u \quad\left[u=e^{x}\right]$
$=\int \frac{\left(1-\frac{1}{u^{2}}\right)}{1+\frac{1}{u^{2}}+u^{2}} d u=\int \frac{\left(1-\frac{1}{u^{2}}\right)}{\left(u+\frac{1}{u}\right)^{2}-1} d u$
$=\int \frac{d t}{t^{2}-1} \quad\left[\right.$ put $\left.u+\frac{1}{u}=t \Rightarrow\left(1-\frac{1}{u^{2}}\right) d u=d t\right]$
$=\frac{1}{2} \log \left|\frac{t-1}{t+1}\right|+c=\frac{1}{2} \log \left|\frac{u^{2}-u+1}{u^{2}+u+1}\right|+c$
$=\frac{1}{2} \log \left|\frac{e^{2 x}-e^{x}+1}{e^{2 x}+e^{x}+1}\right|+c$
136 (c)
Let $I=\int \frac{\left(a x^{2}-b\right) d x}{x \sqrt{c^{2} x^{2}-\left(a x^{2}+b\right)^{2}}}$

$$
\begin{gathered}
=\int \frac{\left(a-\frac{b}{x^{2}}\right) d x}{\sqrt{c^{2}-\left(a x+\frac{b}{x}\right)^{2}}},\left\{\begin{array}{c}
\text { put } a x+\frac{b}{x}=t \\
\therefore\left(a-\frac{b}{x^{2}}\right) d x=d t
\end{array}\right. \\
=\int \frac{d t}{\sqrt{c^{2}-t^{2}}}=\sin ^{-1}\left(\frac{t}{c}\right)+k \\
=\sin ^{-1}\left(\frac{a x+\frac{b}{x}}{c}\right)+C
\end{gathered}
$$

137 (b)
$I=\int 4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2} d x$
$=\int 2 \sin x(\cos 2 x+\cos x) d x$
$=\int(\sin 3 x-\sin x+\sin 2 x) d x$
$=\cos x-\frac{1}{3} \cos 3 x-\frac{1}{2} \cos 2 x+C$
138 (d)
The given integrand is a perfect differential coeff. of
$\prod_{r=1}^{n}(x+r)$
$\Rightarrow I=\left[\prod_{r=1}^{n}(x+r)\right]_{0}^{1}=(n+1)!-n!=n \cdot n!$
139 (a)
Let $I=\int_{1}^{3} \frac{\sin 2 x}{x} d x$
Put $2 x=t, \Rightarrow d x=\frac{d t}{2}$
$\Rightarrow I=\frac{2}{2} \int_{2}^{6} \frac{\sin t}{t} d t=\int_{2}^{6} \frac{\sin t}{t} d t$
But given $\int \frac{\sin x}{x} d x=F(x)$
$\Rightarrow \int_{2}^{6} \frac{\sin t}{t} d t=F(6)-F(2)$

140 (a)
Let $x=\tan \theta$,then $d x=\sec ^{2} \theta d \theta$
Now $y=\int \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}}=\int \frac{\sec ^{2} \theta}{\left(1+\tan ^{2} \theta\right)^{\frac{3}{2}}} d \theta$
$=\int \frac{\sec ^{2} \theta}{\left(\sec ^{2} \theta\right)^{\frac{3}{2}}} d \theta$
$=\int \frac{\sec ^{2} \theta}{\sec ^{3} \theta} d \theta=\int \frac{d \theta}{\sec \theta}=\int \cos \theta d \theta$
Hence, $y=\sin \theta+c=\frac{x}{\sqrt{1+x^{2}}}+c$
$\left[\because \tan \theta=x=\frac{x}{1} \therefore \sin \theta=\frac{x}{\sqrt{1^{2}+x^{2}}}\right]$
Given when $x=0, y=0 \Rightarrow$ from equation (1), $0=0+c$
$\Rightarrow c=0$
\Rightarrow from equation (1), $y=\frac{x}{\sqrt{1+x^{2}}}$
\Rightarrow when $x=1, y=\frac{1}{\sqrt{2}}$
141 (c)
Let $g(x)=\int_{0}^{x^{3}} f(t) d t$
Now $\int_{0}^{8} f(t) d t=\mathrm{g}(2)=\frac{\mathrm{g}(2)-\mathrm{g}(1)}{2-1}+\frac{\mathrm{g}(1)-\mathrm{g}(0)}{1-0}$
$=\mathrm{g}^{\prime}(\alpha)+\mathrm{g}^{\prime}(\beta)$
$=3\left[\alpha^{2} f\left(\alpha^{3}\right)+\beta^{2} f\left(\beta^{3}\right)\right]$
142 (a)
$I_{k}=\int_{1}^{e}(\operatorname{In} x)^{k} d x=\left|x(\operatorname{In} x)^{k}\right|_{1}^{e}-k \int_{1}^{e}(\operatorname{In} x)^{k-1} d x$
$\Rightarrow I_{k}=e-k I_{k-1}$
$\Rightarrow I_{4}=e-4 I_{3}$
$=e-4\left[e-3\left(e-2 I_{1}\right)\right]$
$=9 e-24\left(\because I_{1}=1\right)$
143 (a)
$I=\int\left(\frac{x+2}{x+4}\right)^{2} e^{x} d x=\int e^{x}\left[\frac{x^{2}+4 x+4}{(x+4)^{2}}\right] d x$
$\Rightarrow I=\int e^{x}\left[\frac{x(x+4)}{(x+4)^{2}}+\frac{4}{(x+4)^{2}}\right] d x$
$=\int e^{x}\left[\frac{x}{x+4}+\frac{4}{(x+4)^{2}}\right] d x$
$=e^{x}\left(\frac{x}{x+4}\right)+C$
144 (c)
$I=\int \frac{\ln \left(\frac{x-1}{x+1}\right)}{x^{2}-1} d x$, let $t=\ln \left(\frac{x-1}{x+1}\right)$
$\Rightarrow \frac{d t}{d x}=\frac{x+1}{x-1}\left\{\frac{x+1-(x-1)}{(x+1)^{2}}\right\}=\frac{2}{\left(x^{2}-1\right)}$
$\Rightarrow \frac{d x}{x^{2}-1}=\frac{d t}{2}$
$\Rightarrow I=\frac{1}{2} \int t d t=\frac{1}{4} t^{2}+C=\frac{1}{4}\left(\ln \left(\frac{x-1}{x+1}\right)\right)^{2}+C$
145 (c)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\int_{-1}^{x}-t d t \quad-1 \leq x \leq 0 \\
\int_{-1}^{0}-t d t+\int_{0}^{x} t d t \quad x \geq 0
\end{array}\right. \\
& =\left\{\begin{aligned}
\frac{1}{2}\left(1-x^{2}\right), & -1 \leq x \leq 0 \\
\frac{1}{2}\left(1+x^{2}\right), & x \geq 0
\end{aligned}\right.
\end{aligned}
$$

146 (c)

$$
\begin{aligned}
& \int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \ln \left(1+x^{2}\right) \\
& +b \tan ^{-1} x+\frac{1}{5} \ln |x+2|+C
\end{aligned}
$$

Differentiating both sides, we get
$\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{2 a x}{\left(1+x^{2}\right)}+\frac{b}{\left(1+x^{2}\right)}+\frac{1}{5(x+2)}$
$\Rightarrow \frac{1}{(x+2)\left(x^{2}+1\right)}$

$$
=\frac{(x+2)(5 b+10 a x)+1+x^{2}}{5\left(1+x^{2}\right)(x+2)}
$$

$\Rightarrow 5=\left(1+x^{2}\right)+5(b+2 a x)(x+2)$
Comparing the like powers of x on both sides, we get
$1+10 a=0, b+4 a=0,10 b+1=5$
$\Rightarrow a=-\frac{1}{10}, b=\frac{2}{5}$
147 (c)
$f(x)=\frac{e^{x}}{1+e^{x}} \therefore f(a)=\frac{e^{a}}{1+e^{a}}$ and $f(-a)=\frac{e^{-a}}{1+e^{-a}}$
$=\frac{e^{-a}}{1+\frac{1}{e^{a}}}=\frac{1}{1+e^{a}}$
$\Rightarrow f(a)+f(-a)=\frac{e^{a}+1}{1+e^{a}}=1$
Let $f(-a)=\alpha \quad \therefore f(a)=1-a$
Now, $I_{1}=\int_{\alpha}^{1-\alpha} x \mathrm{~g}(x(1-x)) d x$
$=\int_{\alpha}^{1-\alpha}(1-x) \operatorname{g}((1-x)(1-(1-x)) d x$
$=\int_{\alpha}^{1-\alpha}(1-x) \operatorname{g}(x(1-x)) d x$
$\therefore 2 I_{1}=\int_{\alpha}^{1-\alpha} \mathrm{g}(x(1-x)) d x=I_{2} \therefore \frac{I_{2}}{I_{1}}=2$
(b)

Let $I=\int_{e^{-1}}^{e^{2}}\left|\frac{\log _{e} x}{x}\right| d x$
For $\frac{1}{e}<x<1, \log _{e} x<0$, hence $\frac{\log _{e} x}{x}<0$
For $1<x<e^{2}, \log x>0$, hence $\frac{\log _{e} x}{x}>0$
$\therefore I=\int_{1 / e}^{1}-\frac{\log _{e} x}{x} d x+\int_{1}^{2} \frac{\log _{e} x}{x} d x$
$=-\frac{1}{2}\left[\left(\log _{e} x\right)^{2}\right]_{1 / e}^{1}+\frac{1}{2}\left[\left(\log _{e} x\right)^{2}\right]_{1}^{e^{2}}$
$=-\frac{1}{2}\left[0-(-1)^{2}\right]+\frac{1}{2}\left[(2)^{2}-0\right]$
$=\frac{1}{2}+2=\frac{5}{2}$
149 (a)
$\int_{-\pi}^{\pi} \sin n x \sin m x d x$
$=\int_{0}^{\pi} 2 \sin m x \sin n x d x$
$=\int_{0}^{\pi}(\cos (m-n) x-\cos (m+n) x] d x$
$=\left|\frac{\sin (m-n) x}{m-n}-\frac{\sin (m+n) x}{m+n}\right|_{0}^{\pi}=0$
(c)
$I=\int_{0}^{\pi / 2} \frac{\sin x d x}{1+\sin x+\cos x}$
$=\int_{0}^{\pi / 2} \frac{\cos x d x}{1+\sin x+\cos x}$
$\Rightarrow 2 I=\int_{0}^{\pi / 2} \frac{\sin x+\cos x+1-1}{\sin x+\cos x+1} d x$
$\Rightarrow 2 I=\frac{\pi}{2}-\log 2$
$\Rightarrow I=\frac{\pi}{4}-\frac{1}{2} \log 2$
151 (b)
Let $I=\int_{0}^{\pi} x \sin ^{4} x d x \ldots$ (i)
$I=\int_{0}^{\pi}(\pi-x) \sin ^{4} x d x$
On adding Eqs. (i) and (ii), we get
$2 I=\pi \int_{0}^{\pi} \sin ^{4} x d x$
$=2 \pi \int_{0}^{\pi / 2} \sin ^{4} x d x$
$=2 \pi \cdot \frac{4-1}{4} \cdot \frac{4-3}{4-2} \cdot \frac{\pi}{2}$
$=2 \pi \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\frac{3 \pi^{2}}{8}$
$\Rightarrow I=\frac{3 \pi^{2}}{16}$
152
(c)

From graph, $\int_{-2}^{1}\left[x\left[1+\cos \frac{\pi x}{2}\right]+1\right] d x$
$=\int_{-2}^{-1}[x[1+(-1)]+1] d x+\int_{-1}^{1}[x[1+0]+1] d x$
$=(x)_{-2}^{-1}+\int_{-1}^{1}[x+1] d x$

$$
\begin{aligned}
& =(-1-(-2))+\int_{-1}^{0} 0 d x \\
& +\int_{0}^{1} 1 d x=2
\end{aligned}
$$

153 (b)
$f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)}$
Let $x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta=\left(1+x^{2}\right) d \theta$
$\Rightarrow f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)}$
$=\int \frac{\tan ^{2} \theta \sec ^{2} \theta d \theta}{\sec ^{2} \theta(1+\sec \theta)}$
$=\int \frac{\tan ^{2} \theta d \theta}{1+\sec \theta}$
$=\int \frac{\sin ^{2} \theta d \theta}{\cos \theta(1+\cos \theta)}$
$=\int \frac{1-\cos ^{2} \theta d \theta}{\cos \theta(1+\cos \theta)}$
$=\int \frac{(1-\cos \theta) d \theta}{\cos \theta}$
$=\int \sec \theta d \theta-\int d \theta$
$=\log \left(x+\sqrt{1+x^{2}}\right)-\tan ^{-1} x+C$
Given $f(0)=0$
$\Rightarrow 0=\log 1-0+C$
$\Rightarrow C=0$
$\Rightarrow f(1)=\log (1+\sqrt{1+1})-\tan ^{-1}(1)$
$=\log (1+\sqrt{2})-\frac{\pi}{4}$
154 (a)
$\int_{1}^{\frac{1+\sqrt{5}}{2}} \frac{1+\frac{1}{x^{2}}}{x^{2}-1+\frac{1}{x^{2}}} \log \left(1+x-\frac{1}{x}\right) d x$
$=\int_{1}^{\frac{1+\sqrt{5}}{2}} \frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+1} \log \left(1+x-\frac{1}{x}\right) d x$
Put $x-\frac{1}{x}=t \therefore\left(1+\frac{1}{x^{2}}\right) d x=d t$
If $x=1, t=0$, and $x=\frac{\sqrt{5}+1}{2}, t=1$
$\Rightarrow I=\int_{0}^{1} \frac{\operatorname{In}(1+t) d t}{1+t^{2}}$ Put $t=\tan \theta \therefore d t=\sec ^{2} \theta d \theta$
$I=\int_{0}^{\pi / 4} \operatorname{In}(1+\tan \theta) d \theta=\frac{\pi}{8} \log _{e} 2$
155
(c)

Putting $a^{6}+x^{8}=t^{2}$, we get
$\Rightarrow I=\int \frac{t^{2}}{t^{2}-a^{6}} d t=t+\frac{a^{3}}{2} \ln \left|\frac{t-a^{3}}{t+a^{3}}\right|+C$
156 (a)

$$
\begin{aligned}
\int e^{x}\left(\frac{1}{\sqrt{1+x^{2}}}\right. & -\frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}}+\frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}} \\
& \left.+\frac{1-2 x^{2}}{\sqrt{\left(1+x^{2}\right)^{5}}}\right) \\
=e^{x} \frac{1}{\sqrt{1+x^{2}}} & +e^{x} \frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}} \\
& =e^{x\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{x}{\sqrt{\left(1+x^{2}\right)^{3}}}\right)+C}
\end{aligned}
$$

Using $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x$, we get $=e^{x} f(x)+c$
157 (b)
$I=\int \frac{\sin 2 x}{(3+4 \cos x)^{3}} d x$
and put $3+4 \cos x=t$, so that $-4 \sin x d x=d t$
$I=\frac{-1}{8} \int \frac{(t-3)}{t^{3}} d t=\frac{1}{8}\left(\frac{1}{t}-\frac{3}{2} \frac{1}{t^{2}}\right)+C$
$=\frac{2 t-3}{16 t^{2}}=\frac{8 \cos x+3}{16(3+4 \cos x)^{2}}+C$
158 (b)
Here, $\int x^{5}\left(1+x^{3}\right)^{2 / 3} d x$
Let $1+x^{3}=t^{2}$ and $3 x^{2} d x=2 t d t$
$\therefore \int x^{5}\left(1+x^{3}\right)^{2 / 3} d x$
$=\int x^{3}\left(1+x^{3}\right)^{2 / 3} x^{2} d x$
$=\int\left(t^{2}-1\right)\left(t^{2}\right)^{2 / 3} x^{2} d x$
$=\frac{2}{3} \int\left(t^{2}-1\right) t^{7 / 3} d t$
$=\frac{2}{3} \int\left(t^{13 / 3}-t^{7 / 3}\right) d t$
$=\frac{2}{3}\left\{\frac{3}{16} t^{16 / 3}-\frac{3}{10} t^{10 / 3}\right\}+C$
$=\frac{1}{8}\left(1+x^{3}\right)^{8 / 3}-\frac{1}{5}\left(1+x^{3}\right)^{5 / 3}+C$
159 (c)
$I=\int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x=a \ln |x|+b \ln \left|1+x^{7}\right|+C$
Diff. both sides, we get $\frac{1-x^{7}}{x\left(1+x^{7}\right)}=\frac{a}{x}+b \frac{7 x^{6}}{1+x^{7}}$
$\Rightarrow 1-x^{7}=a\left(1+x^{7}\right)+7 b x^{7}$
$\Rightarrow a=1, a+7 b=-1$
$\Rightarrow b=-2 / 7$
160 (b)
$I=\int x e^{x} \cos x d x$
$=x e^{x} \sin x-x e^{x}(-\cos x)$

$$
\begin{aligned}
& -\int\left(x e^{x}+e^{x}\right) \cos x d x \\
& -\int e^{x} \sin x d x
\end{aligned}
$$

$=x e^{x} \sin x+x e^{x} \cos x$

$$
\begin{aligned}
& -\int x e^{x} \cos x d x \\
& -\int e^{x}(\cos x+\sin x) d x
\end{aligned}
$$

$\Rightarrow 2 I=x e^{x}(\sin x+\cos x)-e^{x} \sin x+d$
$\Rightarrow 2 I=e^{x}((x-1) \sin x+x \cos x)+d$
$\Rightarrow I=\frac{1}{2} e^{x}((x-1) \sin x+x \cos x)+d$
$\Rightarrow a=\frac{1}{2}, b=-1, c=1$
161 (a)
Let $I=\int_{-3 \pi / 4}^{5 \pi / 4} \frac{(\sin x+\cos x)}{e^{x-\pi / 4}+1} d x$
$\Rightarrow I=\int_{-3 \pi / 4}^{5 \pi / 4} \frac{\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)}{e^{x-\pi / 4}+1} d x$
Putting $x-\frac{\pi}{4}=t \Rightarrow d x=d t$
$\Rightarrow I=\int_{-\pi}^{\pi} \frac{\sqrt{2} \cos t}{e^{t}+1} d t(1)$
Replacing t by $\pi+(-\pi)-t$ or $-t$, we get
$I=\int_{-\pi}^{\pi} \frac{\sqrt{2} \cos (-t)}{e^{-t}+1} d t=\int_{-\pi}^{\pi} \frac{e^{t} \sqrt{2} \cos t}{e^{t}+1} d t(2)$
Adding equation (1) and (2), we get
$2 I=\sqrt{2} \int_{-\pi}^{\pi} \cos t d t \Rightarrow I=0$

162 (c)
$\frac{d x}{d t}=f^{\prime \prime \prime}(t) \cos t-f^{\prime \prime}(t) \sin t$
$+f^{\prime \prime}(t) \sin t+f^{\prime}(t) \cos t$
$=\left[f^{\prime \prime \prime}(t)+f^{\prime}(t)\right] \cos t$
$\frac{d y}{d t}=-f^{\prime \prime \prime}(t) \sin t$
$-f^{\prime \prime}(t) \cos t$
$+f^{\prime \prime}(t) \cos t-f^{\prime}(t) \sin t$
$=-\left[f^{\prime \prime \prime}(t)+f^{\prime}(t)\right] \sin t$
$\Rightarrow\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right]^{1 / 2}$
$=\left[\left(f^{\prime \prime \prime}(t)+f^{\prime}(t)\right)^{2}\left(\cos ^{2} t+\sin ^{2} t\right)\right]^{1 / 2}$
$=f^{\prime \prime \prime}(t)+f^{\prime}(t)$
$\Rightarrow \int\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right]^{1 / 2} d t=f^{\prime \prime}(t)+f(t)+C$
163 (c)
$\int \frac{p x^{p+2 q-1}-q x^{q-1}}{\left(x^{p+q}+1\right)^{2}} d x$
$=\int \frac{p x^{p-1}-q x^{-q-1}}{\left(x^{p}+x^{-q}\right)^{2}} d x$
(Dividing N^{r} and D^{r} by $x^{2 q}$)

$$
\begin{gathered}
=\int \frac{d t}{t^{2}}=-\frac{1}{t}+ \\
C=-\frac{1}{x^{p}+x^{-q}}+C \\
=-\frac{x^{q}}{x^{p+q}+1}+C
\end{gathered}
$$

164 (a)
$f(x)=\int_{0}^{1} \frac{d t}{1+|x-t|}=\int_{0}^{x} \frac{d t}{1+x-1}+\int_{x}^{1} \frac{d t}{1-x+t}$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+x-x}-\frac{1}{1-x+x}=0$
165 (d)
$I=\int \frac{\sin x \cos x}{\sin x+\cos x} d x$
$=\frac{1}{2} \int \frac{(\sin x+\cos x)^{2}-1}{\sin x+\cos x} d x$
$=\frac{1}{2} \int\left[\sin x+\cos x-\frac{1}{\sqrt{2} \sin (x+\pi / 4)}\right] d x$
$=\frac{1}{2}[\sin x+\cos x]$

$$
\begin{aligned}
& \left.-\frac{1}{2 \sqrt{2}} \log \right\rvert\, \operatorname{cosec}(x+\pi / 4) \\
& -\cot (x+\pi / 4) \mid+C
\end{aligned}
$$

166 (b)

$$
\mathrm{g}\left(x+\frac{\pi n}{2}\right)=\int_{0}^{x+\frac{n \pi}{2}}(|\sin t|+|\cos t|) d t
$$

$=\int_{0}^{x}(|\sin t|+|\cos t|) d t$

$$
+\int_{x}^{x+\frac{n \pi}{2}}(|\sin t|+|\cos t|) d t
$$

$=\mathrm{g}(x)+\int_{0}^{\frac{n \pi}{2}}(|\sin t|+|\cos t|) d t(\operatorname{as}|\sin t|+$ $/ \cos t /$ has a period $\pi / 2$)
$=\mathrm{g}(x)+\mathrm{g}\left(\frac{n \pi}{2}\right)$
167 (a)
$f(x)=\int_{1}^{x} \frac{e^{t}}{t} d t \Rightarrow f(1)=0$ and $f^{\prime}(x)=\frac{e^{x}}{x}$
Let $g(x)=f(x)-\operatorname{In}(x), x \in R^{+}$
$\Rightarrow \mathrm{g}^{\prime}(x)=f^{\prime}(x)-\frac{1}{x}=\frac{e^{x}-1}{x}>0 \forall x \in R^{+}$
$\Rightarrow \mathrm{g}(x)$ is increasing for $x \in R^{+}$,
$\mathrm{g}(1)=f(1)-\operatorname{In} 1=0-0=0$
$\Rightarrow \mathrm{g}(x)>0 \forall x>1$ and $\mathrm{g}(x) \leq 0 \forall x \in(0,1]$
$\Rightarrow \operatorname{In} x \geq f(x) \forall x \in(0,1]$
168 (c)
$I=\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x$
$=\int_{-\pi}^{\pi} \frac{\cos ^{2}(0-x)}{1+a^{(0-x)}} d x$
[Using the property $\int_{a}^{b} f(x) d x$

$$
\begin{equation*}
\left.=\int_{a}^{b}(f(a+b-x)) d x\right] \tag{2}
\end{equation*}
$$

$\Rightarrow I=\int_{-\pi}^{\pi} \frac{a^{x} \cos ^{2} x}{1+a^{x}} d x$
Adding equations (1) and (2), we get
$2 I=\int_{-\pi}^{\pi} \cos ^{2} x d x$
$=2 \int_{0}^{\pi} \cos ^{2} x d x$
$=4 \int_{0}^{\pi / 2} \cos ^{2} x d x$
$\left[\because \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x\right.$ if $\left.f(2 a-x)=f(x)\right]$
$=4 \int_{0}^{\pi / 2} \sin ^{2} x d x$

Adding equations (3) and (4), we get
$4 I=4 \int_{0}^{\pi / 2} 1 d x$
$\Rightarrow I=\pi / 2$
169 (b)
$I=0+2 \int_{0}^{\pi} \frac{2 x \sin x}{1+\cos ^{2} x}$ $=4 \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=4 \frac{\pi^{2}}{4}=\pi^{2}$
170 (c)
$\int_{0}^{x}|\sin t| d t=\int_{0}^{2 n \pi}|\sin t| d t+\int_{2 n \pi}^{x}|\sin t| d t$
$=2 n \int_{0}^{\pi}|\sin t| d t+\int_{2 n \pi}^{x} \sin t d t$ (as x lies in either $1^{\text {st }}$ or $2^{\text {nd }}$ quadrant)
$=2 n(-\cos t)_{0}^{\pi}+(-\cos t)_{2 n \pi}^{x}=4 n-\cos x+1$
171 (a)
$\int_{0}^{f(x)} t^{2} d t=x \cos \pi x$
$\left.\Rightarrow \frac{t^{3}}{3}\right|_{0} ^{f(x)}=x \cos \pi x$
$\Rightarrow[f(x)]^{3}=3 x \cos \pi x$
$\Rightarrow[f(9)]^{3}=-27$
$\Rightarrow f(9)=-3$
Also, differentiating equation (1) w.r.t. x, we get
$[f(x)]^{2} f^{\prime}(x)=\cos \pi x-x \pi \sin \pi x$
$\Rightarrow[f(9)]^{2} f^{\prime}(9)=-1$
$\Rightarrow f^{\prime}(9)=-\frac{1}{(f(9))^{2}}=-\frac{1}{9}$
172 (b)

$$
\begin{aligned}
& \int_{0}^{\pi / 2}|\sin x-\cos x| d x \\
& =\int_{0}^{\pi / 4}-(\sin x-\cos x) d x \\
& \quad+\int_{\pi / 4}^{\pi / 2}(\sin x-\cos x) d x
\end{aligned}
$$

$$
=|\cos x+\sin x|_{0}^{\pi / 4}+|-\cos x-\sin x|_{\pi / 4}^{\pi / 2}
$$

$$
=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1-0\right)+\left(-0-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)
$$

$$
=\frac{4}{\sqrt{2}}-2=2 \sqrt{2}-2=2(\sqrt{2}-1)
$$

173 (c)
In I_{2}, Put $x+1=t$, then
$I_{2}=\int_{-2}^{2} \frac{2 t^{2}+11 t+14}{t^{4}+2} d t$

$$
=\int_{-2}^{2} \frac{2 x^{2}+11 x+14}{x^{4}+2} d x
$$

$\therefore I_{1}+I_{2}$
$=\int_{-2}^{2} \frac{x^{6}+3 x^{5}+7 x^{4}+2 x^{2}+11 x+14}{x^{4}+2} d x$
$=\int_{-2}^{2} \frac{\left(x^{2}+3 x+7\right)\left(x^{4}+2\right)+5 x}{x^{4}+2} d x$
$=\int_{-2}^{2}\left(x^{2}+3 x+7\right) d x+5 \int_{-2}^{2} \frac{x}{x^{4}+2} d x$
$=2 \int_{0}^{2}\left(x^{2}+7\right) d x=\frac{100}{3}$
(The other integrals are zero, being integrals of odd functions)
174 (b)
$\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x$
$=\int \frac{\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{4} x+\cos ^{4} x\right)}{1-2 \sin ^{2} x \cos ^{2} x}$
$=\int-\cos 2 x d x=-\frac{1}{2} \sin 2 x+C$
175 (d)
$I=\int \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x$
$=\frac{1}{4} \int \frac{\frac{4}{x^{3}}-\frac{4}{x^{5}}}{\sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}} d x$
\Rightarrow Put2 $-\frac{2}{x^{2}}+\frac{1}{x^{4}}=t \Rightarrow\left(\frac{4}{x^{3}}-\frac{4}{x^{3}}\right) d x=d t$
$\Rightarrow I=\frac{1}{4} \int \frac{d t}{\sqrt{t}}=\frac{2 \sqrt{t}}{4}+C$
$=\frac{\sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}}{2}+C$
$=\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{2 x^{2}}+C$
176 (c)
$I_{n}=x(\ln x)^{n}-\int \frac{x(n)(\ln x)^{n-1}}{x} d x$
$=x(\ln x)^{n}-n I_{(n-1)}$
$\Rightarrow I_{n}+n I_{n-1}=x(\ln x)^{n}$
177 (c)
$I=\int \frac{\cos 4 x-1}{\cot x-\tan x} d x$
$=\int \frac{-2 \sin ^{2} 2 x(\sin x \cos x)}{\left(\cos ^{2} x-\sin ^{2} x\right)} d x$
$=-\int \frac{\sin ^{2} 2 x \sin 2 x}{\cos 2 x} x$
$=\int \frac{\left(\cos ^{2} 2 x-1\right) \sin 2 x}{\cos 2 x} d x$
Let $t=\cos 2 x \Rightarrow d t=-2 \sin 2 x d x$
$\Rightarrow I=\frac{1}{2} \int \frac{\left(1-t^{2}\right)}{t} d t=\frac{1}{2} \ln |t|-\frac{t^{2}}{4}+C$
$=\frac{1}{2} \ln |\cos 2 x|-\frac{1}{4} \cos ^{2} 2 x+c$
178 (b)
$\int \frac{\cos 4 x+1}{\cot x-\tan x} d x$
$=\int \frac{2 \cos ^{2} 2 x}{\cos ^{2} x-\sin ^{2} x} \sin x \cos x d x$
$=\int \cos 2 x \sin 2 x d x$
$=\frac{1}{4} \int \sin 4 x d x=-\frac{1}{8} \cos 4 x+C$
179 (c)
$\int_{-1}^{1 / 2} \frac{e^{x}\left(2-x^{2}\right) d x}{(1-x) \sqrt{1-x^{2}}}$
$=\int_{-1}^{1 / 2} \frac{e^{x}\left(1-x^{2}+1\right)}{(1-x) \sqrt{1-x^{2}}}$
$=\int_{-1}^{1 / 2} e^{x}\left[\sqrt{\frac{1+x}{1-x}}+\frac{1}{(1-x) \sqrt{1-x^{2}}}\right] d x$
$=\left.e^{x} \sqrt{\frac{1+x}{1-x}}\right|_{-1} ^{1 / 2}$
$=\sqrt{3 e}$
180 (c)
Put $x=a \sin \theta \therefore d x=a \cos \theta d \theta$
When $x=0, \theta=0 ; x=a, \theta=\frac{\pi}{2}$
\therefore given integral $I=\int_{0}^{\pi / 2} \frac{a \cos \theta d \theta}{a \sin \theta+a \cos \theta}$
$=\int_{0}^{\pi / 2} \frac{\cos \theta d \theta}{\sin \theta+\cos \theta}$
Also, $I=\int_{0}^{\pi / 2} \frac{\cos \left(\frac{\pi}{2}-\theta\right) d \theta}{\sin \left(\frac{\pi}{2}-\theta\right)+\cos \left(\frac{\pi}{2}-\theta\right)}$
$=\int_{0}^{\pi / 2} \frac{\sin \theta d \theta}{\cos \theta+\sin \theta}$
$\therefore 2 I=\int_{0}^{\pi / 2} \frac{\cos \theta+\sin \theta}{\cos \theta+\sin \theta} d \theta=\int_{0}^{\pi / 2} d \theta=\frac{\pi}{2}$
$\therefore I=\frac{\pi}{4}$
181 (c)
$I=\int e^{\tan x}(\sin x-\sec x) d x$
$=\int \sin x e^{\tan x} d x-\int \sec x e^{\tan x} d x$
$=-e^{\tan x} \cos x$

$$
\begin{aligned}
& +\int \cos x e^{\tan x} \sec ^{2} x d x \\
& -\int \sec x e^{\tan x} d x
\end{aligned}
$$

$=-\cos x e^{\tan x}+C$
182 (d)
$\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$
$=\left[\frac{-x^{3}\left(a^{2}-x^{2}\right)^{3 / 2}}{3}\right]_{0}^{a}+a^{2} \cdot \frac{3}{6} \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x$
(Integrating by parts with x^{3} as first function and $x \sqrt{a^{2}-x^{2}}$ as second function)
$=\frac{a^{2}}{2} \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x$
$\Rightarrow \frac{\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x}{\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x}=\frac{a^{2}}{2}$
183 (b)

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-(b-a) f(a)\right| \\
& =\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} f(a) d x\right| \\
& =\left|\int_{a}^{b}(f(x)-f(a)) d x\right| \\
& \leq \int_{a}^{b}|f(x)-f(a)| d x \\
& \leq \int_{a}^{b}|x-a| d x=\int_{a}^{b}(x-a) d x=\frac{(b-a)^{2}}{2}
\end{aligned}
$$

184 (b)

$$
\begin{aligned}
& \int_{1}^{e}\left(\frac{\tan ^{-1} x}{x}+\frac{\log x}{1+x^{2}}\right) d x \\
& =\int_{1}^{e} \frac{\tan ^{-1} x}{x} d x+\int_{1}^{e} \frac{\log x}{1+x^{2}} d x \\
& =\int_{1}^{e} \frac{\tan ^{-1} x}{x} d x+\left(\log x \tan ^{-1} x\right)_{1}^{e}-\int_{1}^{e} \frac{\tan ^{-1} x}{x} d x \\
& =\tan ^{-1} e
\end{aligned}
$$

185 (c)
$\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{\sqrt{n}}{\sqrt{r}(3 \sqrt{r}+4 \sqrt{n})^{2}}$
$T_{r}=\frac{1}{\sqrt{\frac{r}{n}} n\left(3 \sqrt{\frac{r}{n}}+4\right)^{2}}$
$\Rightarrow S=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1}^{4 n} \frac{1}{\left(3 \sqrt{\frac{r}{n}}+4\right)^{2} \sqrt{\frac{r}{n}}}$
$=\int_{0}^{4} \frac{d x}{\sqrt{x}(3 \sqrt{x}+4)^{2}}$
Put $3 \sqrt{x}+4=t \Rightarrow \frac{3}{2} \frac{1}{\sqrt{x}} d x=d t$
$=\frac{2}{3} \int_{4}^{10} \frac{d t}{t^{2}}=\frac{2}{3}\left[\frac{1}{t}\right]_{10}^{4}=\frac{1}{10}$
(c)

Let $A=\lim _{n \rightarrow \infty}\left[\tan \frac{\pi}{2 n} \tan \frac{2 \pi}{2 n} \cdots \tan \frac{n \pi}{2 n}\right]^{1 / n}$
$\therefore \log A=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\log \tan \frac{\pi}{2 n}\right.$ $\left.+\log \tan \frac{2 \pi}{2 n}+\cdots+\log \tan \frac{n \pi}{2 n}\right]$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} \log \tan \frac{\pi r}{2 n}=\int_{0}^{1} \log \tan \left(\frac{\pi}{2} x\right) d x$
$=\frac{2}{\pi} \int_{0}^{\pi / 2} \log \tan y d y$
$\left[\right.$ Putting $\left.\frac{1}{2} \pi x=y \therefore d x=(2 / \pi) d y\right]$
Now let $I=\int_{0}^{\pi / 2} \log \tan y d y$
$I=\int_{0}^{\pi / 2} \log \tan \left(\frac{1}{2} \pi-y\right) d y$ (by property IV)
$=\int_{0}^{\pi / 2} \log \cot y d y$
$=-\int_{0}^{\pi / 2} \log \tan y d y=-I$
or $I+I=0$ or $2 I=0$ or $I=0$
\therefore from equation (1), $\log A=0 \therefore A=e^{0}=1$
187 (c)
Write $2 a x+x^{2}=(x+a)^{2}-a^{2}$, and put
$x+a=a \sec \theta$,
So that $d x=a \sec \theta \tan \theta d \theta$
$\therefore I=\int \frac{a \sec \theta \tan \theta}{a^{3} \tan ^{3} \theta} d \theta$
$=\frac{1}{a^{2}} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta$
$=-\frac{1}{a^{2} \sin \theta}+C$
$=-\frac{1}{a^{2}} \frac{\sec \theta}{\tan \theta}+C=-\frac{1}{a^{2}} \frac{x+a}{\sqrt{2 a x+x^{2}}}+C$
188 (d)
$I=\int \frac{x^{9} d x}{\left(4 x^{2}+4\right)^{6}}$

$$
\begin{aligned}
& \int \frac{d x}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}} \\
& =-\frac{1}{2} \int \frac{d\left(4+\frac{1}{x^{2}}\right)}{\left(4+\frac{1}{x^{2}}\right)^{6}} \\
& =-\frac{1}{2} \frac{\left(4+\frac{1}{x^{2}}\right)^{-5}}{-5}+C=\frac{1}{10}\left(4+\frac{1}{x^{2}}\right)^{-5}+C
\end{aligned}
$$

189 (d)

$$
\begin{aligned}
& \int x \log \left(1+\frac{1}{x}\right) d x \\
& =\int x \log (x+1) d x-\int x \log x d x \\
& =\frac{x^{2}}{2} \log (x+1)-\frac{1}{2} \int \frac{x^{2}}{x+1} d x \\
& -\frac{x^{2}}{2} \log x+\frac{1}{2} \int \frac{x^{2}}{x} d x \\
& =\frac{x^{2}}{2} \log (x+1)-\frac{1}{2} \int\left(x-1+\frac{1}{x+1}\right) d x \\
& -\frac{x^{2}}{2} \log x+\frac{1}{4} x^{2} \\
& =\frac{x^{2}}{2} \log (x+1) \\
& -\frac{x^{2}}{2} \log x-\frac{1}{2}\left(\frac{x^{2}}{2}-x\right) \\
& -\frac{1}{2} \log (x+1)+\frac{1}{4} x^{2}+C \\
& =\frac{x^{2}}{2} \log (x+1) \\
& -\frac{x^{2}}{2} \log x-\frac{1}{2} \log (x+1)+\frac{1}{2} x+C
\end{aligned}
$$

Hence, $f(x)=\frac{x^{2}}{2}-\frac{1}{2}, \mathrm{~g}(x)=-\frac{1}{2} \log x$ and $A=\frac{1}{2}$
190 (c)
The polynomial function is differentiable everywhere. Therefore, the points of extremum can only be the roots of the derivative. Further, the derivative of a polynomial is a polynomial. The polynomial of the least degree with roots $x=1$ and $x=3$ has the form $a(x-1)(x-3)$
Hence, $P^{\prime}(x)=a(x-1)(x-3)$
Since at $x=1$, we must have $P(1)=6$, we have
$P(x)=\int_{1}^{x} P^{\prime}(x) d x+6$

$$
=a \int_{1}^{x}\left(x^{2}-4 x+3\right) d x+6
$$

$=a\left(\frac{x^{3}}{3}-2 x^{2}+3 x-\frac{4}{3}\right)+6$
Also, $P(3)=2$ so $a=3$. Hence, $P(x)=x^{3}-$ $6 x^{2}+9 x+2$
Thus, $\int_{0}^{1} P(x) d x=\frac{1}{4}-2+\frac{9}{2}+2=\frac{19}{4}$

191 (c)
Differentiating both sides, we get
$\frac{3 \sin x+2 \cos x}{3 \cos x+2 \sin x}=a+\frac{b(2 \cos x-3 \sin x)}{(2 \cos x+3 \cos x)}$
$=\frac{\sin x(2 a-3 b)+\cos x(3 a+2 b)}{(3 \cos x+2 \sin x)}$
Comparing like terms on both sides, we get
$3=2 a-3 b, 2=3 a+2 b \Rightarrow a=\frac{12}{13}, b=-\frac{15}{39}$
192 (c)
We have $\int_{0}^{1} e^{x^{2}}(x-\alpha) d x=0$
$\Rightarrow \int_{0}^{1} e^{x^{2}} x d x=\int_{0}^{1} e^{x^{2}} \alpha d x$
$\Rightarrow \frac{1}{2} \int_{0}^{1} e^{x} d t=\alpha \int_{0}^{1} e^{x^{2}} d x$, where $t=x^{2}$
$\Rightarrow \frac{1}{2}(e-1)=\alpha \int_{0}^{1} e^{x^{2}} d x(1)$
Since, $e^{x^{2}}$ is an increasing function for $0 \leq x \leq 1$, therefore,
$1 \leq e^{x^{2}} \leq e$ when $0 \leq x \leq 1$
$\Rightarrow 1(1-0) \leq \int_{0}^{1} e^{x^{2}} d x \leq e(1-0)$
$\Rightarrow 1 \leq \int_{0}^{1} e^{x^{2}} d x \leq \mathrm{e}(2)$
From equations (1) and (2), we find that L.H.S. of equation (1) is positive and $\int_{0}^{1} e^{x^{2}} d x$ lies
between 1 and e. Therefore, α is a positive real number.
Now, from equation (1), $\alpha=\frac{\frac{1}{2}(e-1)}{\int_{0}^{1} e^{x^{2}} d x}$
The denominator of equation (3) is greater than unity and the numerator lies between 0 and 1 .
Therefore, $0<\alpha<1$
193 (a)

$$
\begin{aligned}
& \int_{-1}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) d x \\
& =\int_{-1}^{0}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) d x \\
& +\int_{0}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}\right. \\
& \left.\quad+\tan ^{-1} \frac{x^{2}+1}{x}\right) d x \\
& =\int_{-1}^{0}-\frac{\pi}{2} d x+\int_{0}^{3} \frac{\pi}{2} d x \\
& =\left[-\frac{\pi}{2} x\right]_{-1}^{0}+\left[\frac{\pi}{2} x\right]_{0}^{3} \\
& =\pi
\end{aligned}
$$

194 (a)
Let $I=\int \frac{(1-\cos \theta)^{2 / 7}}{(1+\cos \theta)^{9 / 7}} d \theta$
$I=\int \frac{\left(2 \sin ^{2} \theta / 2\right)^{2 / 7}}{\left(2 \cos ^{2} \theta / 2\right)^{9 / 2}} d \theta=\frac{1}{2} \int \frac{(\sin \theta / 2)^{4 / 7}}{(\cos \theta / 2)^{18 / 7}} d \theta$
Put $\frac{\theta}{2}=t \therefore \frac{d \theta}{2}=d t$
$\Rightarrow I=\int \frac{(\sin t)^{4 / 7}}{(\cos t)^{18 / 7}} d t \quad($ Herem $+n=-2)$
$=\int(\tan t)^{4 / 7} \sec ^{2} t d t$
Put $\tan t=u \therefore \sec ^{2} t d t=d u$
$\Rightarrow I=\int u^{4 / 7} d u=\frac{u^{11 / 7}}{11 / 7}+c=\frac{7}{11}(\tan t)^{11 / 7}+C$
$=\frac{7}{11}\left(\tan \frac{\theta}{2}\right)^{11 / 7}+C$
195 (a)
$f(x)=\cos x-\int_{0}^{x}(x-t) f(t) d t$
$\Rightarrow f(x)=\cos x-x \int_{0}^{x} f(t) d t+\int_{0}^{x} t f(t) d t$
$\Rightarrow f^{\prime}(x)=-\sin x-x f(x)-\int_{0}^{x} f(t) d x+x f(x)$
$\Rightarrow f^{\prime}(x)=-\sin x-\int_{0}^{x} f(t) d t$
$\Rightarrow f^{\prime \prime}(x)=-\cos x-f(x)$
$\Rightarrow f^{\prime \prime}(x)+f(x)=-\cos x$
196
(b)
$\int_{\cos x}^{1} t^{2} f(t) d t=1-\cos x$
Differentiating both sides w.r.t. x
$\frac{d}{d x} \int_{\cos x}^{1} t^{2} f(t) d t=\frac{d}{d x}(1-\cos x)$
$\Rightarrow-\cos ^{2} x f(\cos x)(-\sin x)=\sin x$
$\Rightarrow \cos ^{2} x f(\cos x) \sin x=\sin x$
$\Rightarrow f(\cos x)=\frac{1}{\cos ^{2} x}$
Now $f\left(\frac{\sqrt{3}}{4}\right)$ is attained when $\cos x=\frac{\sqrt{3}}{4}$
$f\left(\frac{\sqrt{3}}{4}\right)=\frac{16}{3}=5.33$
$\left[f\left(\frac{\sqrt{3}}{4}\right)\right]=5$
197 (d)
Let $I=\int \frac{d x}{(1+\sqrt{x}) \sqrt{\left(x-x^{2}\right)}}$
If $\sqrt{x}=\sin p$, then $\frac{1}{2 \sqrt{x}} d x=\cos p d p$
$I=\int \frac{2 \sin p \cos p d p}{(1+\sin p) \sin p \cos p}$

$$
\begin{aligned}
& =2 \int \frac{d p}{(1+\sin p)} \\
& =2 \int \frac{(1-\sin p) d p}{\cos ^{2} p} \\
& =2\left\{\int \sec ^{2} p d p-\int(\tan p \sec p) d p\right\} \\
& =2(\tan p-\sec p)+C \\
& =2\left(\sqrt{\frac{x}{(1-x)}}-\frac{1}{\sqrt{(1-x)}}\right)+C \\
& =\frac{2(\sqrt{x}-1)}{\sqrt{(1-x)}}+C
\end{aligned}
$$

198 (c)
Let $I=\int \frac{\left(x^{2}-1\right) d x}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}}$
On dividing Nr and Dr by x^{5}, we get
$I=\int \frac{\left(\frac{1}{x^{3}}-\frac{1}{x^{5}}\right) d x}{\sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}}$
Put $2-\frac{2}{x^{2}}+\frac{1}{x^{4}}=t \quad \Rightarrow \quad\left(\frac{4}{x^{3}}-\frac{4}{x^{5}}\right) d x=d t$
$\therefore I=\frac{1}{4} \int \frac{d t}{\sqrt{t}}=\frac{1}{2} \sqrt{t}+c=\frac{1}{2} \sqrt{2-\frac{2}{x^{2}}+\frac{1}{x^{4}}}+c$

199 (a)

Differentiating both sides, we get
$\sqrt{1+\sin x} f(x)=\frac{2}{3} \frac{3}{2}(1+\sin x)^{1 / 2} \cos x$
$\Rightarrow f(x)=\cos x$
200 (c)
$I=\int e^{\tan ^{-1} x}\left(1+x+x^{2}\right)\left(-\left(\frac{1}{1+x^{2}}\right) d x\right)$
$=-\int e^{\tan ^{-1} x}\left(1+\frac{x}{1+x^{2}}\right) d x$
$=-\int e^{\tan ^{-1} x} d x-\int x \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$
$=-\int e^{\tan ^{-1} x} d x-x e^{\tan ^{-1} x}+\int e^{\tan ^{-1} x} d x+C$
$=-x e^{\tan ^{-1} x}+C$
201 (c)
$I=\int_{-\pi / 4}^{3 \pi / 4} \frac{d x}{\sqrt{2}\left(e^{x-\pi / 4}+1\right) \cos \left(x-\frac{\pi}{4}\right)}$
Putting $x-\frac{\pi}{4}=t$, we get
$\Rightarrow I=\frac{1}{\sqrt{2}} \int_{-\pi / 2}^{\pi / 2} \frac{d t}{\left(e^{t}+1\right) \cos t}$
$=\frac{1}{\sqrt{2}} \int_{-\pi / 2}^{\pi / 2} \frac{e^{t} d t}{\left(e^{t}+1\right) \cos t}$
Adding, we get $2 I=\frac{1}{\sqrt{2}} \int_{-\pi / 2}^{\pi / 2} \sec t d t$
$\therefore I=\frac{1}{2 \sqrt{2}} \int_{-\pi / 2}^{\pi / 2} \sec x d x \quad \therefore k=\frac{1}{2 \sqrt{2}}$
202 (b)
Let $I=\int \frac{x+2}{\left(x^{2}+3 x+3\right) \sqrt{x+1}} d x$
Putting $x+1=t^{2}, d x=2 t d t$, we get
$I=2 \int \frac{t^{2}+1}{t^{4}+t^{2}+1} d t$
$=2 \int \frac{1+(1 / t)^{2}}{\left(t-\frac{1}{t}\right)^{2}+3}$
$=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{3}}\right)+C$
$=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3(x+1)}}\right)+C$
203 (d)
$\int_{0}^{1}\left(1+e^{-x^{2}}\right) d x$
$=\int_{0}^{1}\left(1+1-\frac{x^{2}}{1!}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots \infty\right) d x$
$=\left[2 x-\frac{x^{3}}{3.1!}+\frac{x^{5}}{5.2!}-\frac{x^{7}}{7.3!}+\cdots \infty\right]_{0}^{1}$
$=\left[2-\frac{1}{3.1!}+\frac{1}{5.2!}-\frac{1}{7.3!}+\cdots \infty\right]$
Clearly 'd' is the correct alternative 204
(b)

We have,
$e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} d t, x \in(-1,1)$
On differentiating w.r.t x, we get
$e^{-x}\left(f^{\prime}(x)-f(x)\right)=\sqrt{x^{4}+1}$
$\Rightarrow f^{\prime}(x)=f(x)+\sqrt{x^{4}+1} e^{x}$
$\because f^{-1}$ is the inverse of f
$\therefore f^{-1}(f(x))=x$
$\Rightarrow f^{-1^{\prime}}(f(x)) f^{\prime}(x)=1$
$\Rightarrow f^{-1^{\prime}}(f(x))=\frac{1}{f^{\prime}(x)}$
$\Rightarrow f^{-1^{\prime}}(f(x))=\frac{1}{f(x)+\sqrt{x^{4}+1} e^{x}}$
As $x=0, f(x)=2$
and $f^{-1}(2)=\frac{1}{2+1}=\frac{1}{3}$
205 (a)
$I=\int x \frac{\ln \left(x+\sqrt{x^{2}+1}\right)}{\sqrt{x^{2}+1}} d x$, let $t=\sqrt{x^{2}+1}$
$\Rightarrow \frac{d t}{d x}=\frac{x}{\sqrt{x^{2}+1}}$
$\Rightarrow I=\int \ln \left(t+\sqrt{t^{2}-1}\right) d t$
$=\ln \left(t+\sqrt{t^{2}-1}\right) t-\int \frac{1+\frac{t}{\sqrt{t^{2}-1}}}{t+\sqrt{t^{2}-1}} t d t$
$=t \ln \left(t+\sqrt{t^{2}-1}\right)-\frac{1}{2} \int \frac{2 t}{\sqrt{t^{2}-1}} d t$
$=t \ln \left(t+\sqrt{t^{2}-1}\right)-\sqrt{t^{2}-1}+C$
$=\sqrt{1+x^{2}} \ln \left(x+\sqrt{1+x^{2}}\right)-x+C$
$\Rightarrow a=1, b=-1$
$I_{1}=\int_{0}^{1} \frac{e^{x} d x}{1+x}, I_{2}=\int_{0}^{1} \frac{x^{2} d x}{e^{x^{3}}\left(2-x^{3}\right)}$
In I_{2}, put $1-x^{3}=t$
$\Rightarrow I_{2}=\frac{1}{3} \int_{1}^{0} \frac{-d t}{e^{1-t}(1+t)}$
$=\frac{1}{3 e} \int_{0}^{1} \frac{e^{t} d t}{1+t}=\frac{1}{3 e} I_{1}$
$\Rightarrow \frac{I_{1}}{I_{2}}=3 e$
207
$I=\int_{4 \pi-2}^{4 \pi} \frac{\sin \frac{t}{2}}{4 \pi+2-t} d t=\frac{1}{2} \int_{4 \pi-2}^{4 \pi} \frac{\sin \frac{t}{2}}{1+\left(2 \pi-\frac{t}{2}\right)} d t$
Put $2 \pi-\frac{t}{2}=z$
$\therefore-\frac{1}{2} d t=d z$, i. e., $d t=-2 d z$
When $t=4 \pi-2, z=2 \pi-2 \pi+1=1$
When $t=4 \pi, z=2 \pi-2 \pi=0$

$$
\begin{aligned}
& \Rightarrow I=\frac{1}{2} \int_{1}^{0} \frac{\sin (2 \pi-z)(-2 d z)}{1+z} \\
& =\int_{0}^{1} \frac{-\sin z d z}{z+1}=-\int \frac{\sin t}{1+t} d t=-\alpha
\end{aligned}
$$

208 (b)

$$
\begin{aligned}
& I=\int_{-a}^{a}\left(\cos ^{-1} x-\sin ^{-1} \sqrt{1-x^{2}}\right) d x \\
& =\int_{-a}^{0} \cos ^{-1} x d x+A-2 \int_{0}^{a} \sin ^{-1} \sqrt{1-x^{2}} d x \\
& =\int_{0}^{a}\left(\pi-\cos ^{-1} x\right) d x+A-2 A \\
& =a \pi-2 A \Rightarrow \lambda=2
\end{aligned}
$$

209 (a)
$I=\int_{0}^{4} \frac{\left(y^{2}-4 y+5\right) \sin (y-2)}{\left(2 y^{2}-8 y+1\right)} d y$, put $y-2=z$
$\Rightarrow I=\int_{-2}^{2} \frac{z^{2}+1}{2 z^{2}-7} \sin (z) d z=0$
210 (a)
$I=\int_{0}^{\infty} \frac{x \log x d x}{\left(1+x^{2}\right)^{2}}$
Let $x=\frac{1}{t}$
$\Rightarrow I=\int_{\infty}^{0} \frac{\left(\frac{1}{t}\right) \log \left(\frac{1}{t}\right)\left(-\frac{1}{t^{2}}\right) d t}{\left(1+\frac{1}{t^{2}}\right)^{2}}$
$=-\int_{0}^{\infty} \frac{t \log t}{\left(1+t^{2}\right)^{2}} d t=-I$
$\Rightarrow I=0$
211 (a)
$I=\int_{0}^{x}[\sin t] d t=\int_{0}^{2 n \pi}[\sin t] d t+\int_{2 n \pi}^{x}[\sin t] d t$
$=n \int_{0}^{2 \pi}[\sin t] d t+\int_{2 n \pi}^{x}[\sin t] d t(\operatorname{as}[\sin x]$ is
periodic with period 2π)
$=-n \pi+0=-n \pi$
212 (c)
$f^{2}(x)=\int_{0}^{x} f(t) \frac{\cos t}{2+\sin t} d t$
$\Rightarrow 2 f(x) f^{\prime}(x)=f(x) \frac{\cos x}{2+\sin x}$
(differentiating
w.r.t. x using Leibnitz rule)
$\Rightarrow 2 f^{\prime}(x)=\frac{\cos x}{2+\sin x}$ as $f(x)$ is not zero
everywhere]
$\Rightarrow 2 \int f^{\prime}(x) d x=\int \frac{\cos x}{2+\sin x} d x$
$\Rightarrow 2 f(x)=\log _{e}(2+\sin x)+\log C$
Put $x=0$ we have $2 f(0)=\log 2+\log C$, or
$\log C=-\log 2$
$\Rightarrow f(x)=\frac{1}{2} \operatorname{In}\left(\frac{2+\sin x}{2}\right) ; x \neq n \pi, n \in I$
213 (a)
Given that $I=\int\left(x^{2}+x\right)\left(x^{-8}+2 x^{-9}\right)^{1 / 10} d x$
or $I=\int(x+1)\left(x^{2}+2 x\right)^{1 / 10} d x$
Now put $x^{2}+2 x=t \Rightarrow(x+1) d x=\frac{d t}{2}$
$\Rightarrow I=\int t^{1 / 10} \frac{d t}{2}=\frac{1}{2} \times \frac{10}{11} t^{11 / 10}=\frac{5}{11} t^{11 / 10}+C$
$=\frac{5}{11}\left(x^{2}+2 x\right)^{11 / 10}+C$
214 (b)
$I=\int \frac{d x}{\cos ^{3} x \sqrt{\sin 2 x}}$
$=\int \frac{d x}{\cos ^{3} x \sqrt{\frac{2 \sin x \cos x}{\cos ^{2} x} \cos ^{2} x}}$
$=\int \frac{\sec ^{4} d x}{\sqrt{2 \tan x}}=\frac{1}{\sqrt{2}} \int \frac{\sec ^{2} x\left(1+\tan ^{2} x\right)}{\sqrt{\tan x}} d x$
Let $t=\sqrt{\tan x}$
$\Rightarrow d t=\frac{\sec ^{2} x d x}{2 \sqrt{\tan x}}$
$\Rightarrow I=\frac{2}{\sqrt{2}} \int\left(1+t^{4}\right) d t$
$=\sqrt{2}\left(t+\frac{t^{5}}{5}\right)+C$
$=\frac{\sqrt{2}}{5} t\left(t^{4}+5\right)+C=\frac{\sqrt{2}}{5} \sqrt{\tan x}\left(\tan ^{2} x+5\right)+C$
$\Rightarrow a=\frac{\sqrt{2}}{5}, b=5$
215 (a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t\right. & \left.+\int_{a}^{x+y} e^{\sin ^{2} t} d t\right] \\
& =\lim _{x \rightarrow 0} \frac{1}{x} \int_{y}^{x+y} e^{\sin ^{2} t} d t\left(\frac{0}{0} \text { form }\right)
\end{aligned}
$$

Apply L'Hospital Rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{e^{\sin ^{2}(x+y)}\left(1+\frac{d y}{d x}\right)-e^{\sin ^{2} y} \frac{d y}{d x}}{1} \\
& =e^{\sin ^{2} y}\left[1+\frac{d y}{d x}-\frac{d y}{d x}\right]=e^{\sin ^{2} y}
\end{aligned}
$$

$f(x)=A \sin (\pi x / 2)+B$
$\Rightarrow f^{\prime}(x)=\frac{A \pi}{2} \cos \left(\frac{\pi x}{2}\right)$
$\Rightarrow f^{\prime}\left(\frac{1}{2}\right)=\frac{A \pi}{2} \cos \frac{\pi}{4}=\sqrt{2}$ (given)
$\Rightarrow A=4 / \pi$
Also, given $\int_{0}^{1} f(x) d x=\frac{2 A}{\pi}$
$\Rightarrow \int_{0}^{1}\left[A \sin \left(\frac{\pi x}{2}\right)+B\right] d x=\frac{2 A}{\pi}$
$\Rightarrow\left|-\frac{2 A}{\pi} \cos \left(\frac{\pi x}{2}\right)+B x\right|_{0}^{1}=\frac{2 A}{\pi}$
$\Rightarrow B+\frac{2 A}{\pi}=\frac{2 A}{\pi} \Rightarrow B=0$
217 (a)
$I=\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x+\sqrt{\tan x}}} d x$
$\Rightarrow I=\int_{0}^{\pi / 2} \frac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} d x$
$\left[U \operatorname{sing} \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]$
Adding equation (1) and (2), we get $2 I=$
$\int_{0}^{\pi / 2} 1 d x$
$\Rightarrow I=\pi / 4$

218 (a,b,d)
$f(2-x)=f(2+x), f(4-x)=f(4+x)$
$\Rightarrow f(4+x)=f(4-x)=f(2+2-x)$

$$
=f(2-(2-x))=f(x)
$$

$\Rightarrow 4$ is a period of $f(x)$
$\int_{0}^{50} f(x) d x=\int_{0}^{48} f(x) d x+\int_{48}^{50} f(x) d x$
$=12 \int_{0}^{4} f(x) d x+\int_{0}^{2} f(x) d x$
(in second integral replacing x by $x+48$ and then using $f(x)=f(x+48))$
$=12\left(\int_{0}^{2} f(x) d x+\int_{0}^{2} f(4-x) d x\right)+5$
$=12\left(\int_{0}^{2} f(x) d x+\int_{0}^{2} f(4+x) d x\right)+5$
$=24 \int_{0}^{2} f(x) d x+5=125$
$\int_{-4}^{46} f(x) d x=\int_{-4}^{-2} f(x) d x+\int_{-2}^{-2+48} f(x) d x$
$=\int_{0}^{2} f(x+4) d x+12 \int_{0}^{4} f(x) d x$
$=\int_{0}^{2} f(x) d x+24 \int_{0}^{2} f(x) d x$
$=125$
Also $\int_{2}^{52} f(x) d x=\int_{2}^{4} f(x) d x+\int_{4}^{4+48} f(x) d x$
$=\int_{0}^{2} f(4-x) d x+12 \int_{0}^{4} f(x) d x$
$=\int_{0}^{2} f(4+x) d x+24 \int_{0}^{2} f(x) d x$
$=\int_{0}^{2} f(x) d x+24 \int_{0}^{2} f(x) d x$
$=125$
$\int_{1}^{51} f(x) d x=\int_{1}^{3} f(x) d x+\int_{3}^{3+48} f(x) d x$
$=\int_{1}^{3} f(x) d x+12 \int_{0}^{4} f(x) d x$
$=\int_{0}^{2} f(x+1) d x+24 \int_{0}^{2} f(x) d x$

219 (b,d)
$\because x \in[-1,0)$ or $-1 \leq x<0$
For $-1 \leq x<0$
$\cos ^{-1} \sqrt{\left(1-x^{2}\right)}=-\sin ^{-1} x$
$\therefore \int\left\{\cos ^{-1} x+\cos ^{-1} \sqrt{1-x^{2}}\right\} d x$
$=\int\left(\cos ^{-1} x-\sin ^{-1} x\right) d x$
$=\int\left(\frac{\pi}{2}-2 \sin ^{-1} x\right) d x$
$=\frac{\pi}{2} x-2\left\{\sin ^{-1} x \cdot x-\int \frac{x}{\sqrt{1-x^{2}}} d x\right\}$
$=\frac{\pi}{2} x-2 x \sin ^{-1} x+2\left\{-\sqrt{\left(1-x^{2}\right)}\right\}+c$
On comparing, we get
$A=\frac{\pi}{2}, f(x)=-2 x$

220 (a,b,d)

$I_{n}=\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{n}}=\int_{0}^{1}\left(1+x^{2}\right)^{-n} d x$
$=\left.\frac{x}{\left(1+x^{2}\right)^{n}}\right|_{0} ^{1}-\int_{0}^{1}(-n)\left(1+x^{2}\right)^{-n-1} 2 x \times x d x$
$=\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{x^{2} d x}{\left(1+x^{2}\right)^{n+1}}$
$=\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{1+x^{2}-1}{\left(1+x^{2}\right)^{n+1}} d x$
$=\frac{1}{2^{n}}+2 n I_{n}-2 n I_{n+1}$
$\Rightarrow 2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$
$\Rightarrow 2 I_{2}=\frac{1}{2}+I_{1}=\frac{1}{2}+\left.\tan ^{-1} x\right|_{0} ^{1}$
$\Rightarrow I_{2}=\frac{1}{4}+\frac{\pi}{8}$
Also $4 I_{3}=2^{-2}+3 I_{2}$
$=\frac{1}{4}+3\left(\frac{1}{4}+\frac{\pi}{8}\right)=\frac{1}{4}+\frac{3 \pi}{32}$
221 (a,c,d)
$I=\int_{0}^{1} \frac{2 x^{2}+3 x+3}{(x+1)\left(x^{2}+2 x+2\right)}$
$=\int_{0}^{1} \frac{2\left(x^{2}+2 x+2\right)-(x+1)}{(x+1)\left(x^{2}+2 x+2\right)} d x$
$=\int_{0}^{1}\left(\frac{2}{x+1}-\frac{1}{x^{2}+2 x+2}\right) d x$
$=\left[2 \log (x+1)-\tan ^{-1}(x+1)\right]_{0}^{1}$
$=2 \log 2-\tan ^{-1} 2+\tan ^{-1} 1$
$=2 \log 2-\tan ^{-1} 2+\frac{\pi}{4}$
$=\log 4-\left(\frac{\pi}{2}-\cot ^{-1} 2\right)+\frac{\pi}{4}$
$=-\frac{\pi}{4}+\log 4+\cot ^{-1} 2$
From equation (1), $I=2 \log 2-\tan ^{-1}\left(\frac{2-1}{1+2 \times 1}\right)$
$=2 \log 2-\tan ^{-1} \frac{1}{3}$
$=2 \log 2-\cot ^{-1} 3$
222 (b,d)
$\int \sin x d(\sec x)$
$=\int \sin x \frac{d(\sec x)}{d x} d x=\int \sin x \sec x \tan x d x$
$=\int \tan ^{2} x d x=\int\left(\sec ^{2} x-1\right) d x=\tan x-x+C$
$\Rightarrow f(x)=\tan x, \mathrm{~g}(x)=x$
223 (a,b,c)
$I=\int \frac{x^{2}-x+1}{\left(x^{2}+1\right)^{3 / 2}} e^{x} d x$
$=\int e^{x}\left[\frac{x^{2}+1}{\left(x^{2}+1\right)^{3 / 2}}-\frac{x}{\left(x^{2}+1\right)^{3 / 2}}\right] d x$
$=\int e^{x}\left[\frac{1}{\sqrt{x^{2}+1}}+\left\{\frac{-x}{\left(x^{2}+1\right)^{3 / 2}}\right\}\right] d x$
$=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$, where $f(x)=\frac{1}{\sqrt{x^{2}+1}}$
$=e^{x} f(x)+c=\frac{e^{x}}{\sqrt{x^{2}+1}}+c$
The graph of $f(x)$ is given in Fig 7.1

From the graph, $f(x)$ is even, bounded function and has the range $(0,1]$

224 (b,c,d)

$I=\int \frac{x^{2}+\cos ^{2} x}{x^{2}+1} \operatorname{cosec}^{2} x d x$
$=\int \frac{x^{2}+1+\cos ^{2} x-1}{x^{2}+1} \operatorname{cosec}^{2} x d x$
$=\int\left(1-\frac{\sin ^{2} x}{x^{2}+1}\right) \operatorname{cosec}^{2} x d x$
$=\int\left(\operatorname{cosec}^{2} x-\frac{1}{x^{2}+1}\right) d x$
$=-\cot x-\tan ^{-1} x+C$
$=-\cot x+\cot ^{-1} x-\frac{\pi}{2}+C$
$=-\cot x+\cot ^{-1} x+C$

$$
\begin{aligned}
& I=\int \frac{\sqrt{(1+\sin x)(1-\sin x)}}{\sqrt{\sin x(1-\sin x)}} d x \\
& =\int \frac{\cos x}{\sqrt{\sin x(1-\sin x)}} d x \\
& =\int \frac{\cos x}{\sqrt{\frac{1}{4}-\left(\frac{1}{2}-\sin x\right)^{2}}} d x \\
& =\int \frac{-d t}{\sqrt{\left(\frac{1}{2}\right)^{2}-t}\left(\text { Putting } \frac{1}{2}-\sin x=t\right)} \\
& =-\sin ^{-1}\left(\frac{t}{1 / 2}\right)+C=-\sin ^{-1}(1-2 \sin x)+C \\
& =\cos ^{-1}(1-2 \sin x)+C-\frac{\pi}{2} \\
& =\cos ^{-1}(1-2 \sin x)+C \\
& =\cos ^{-1}\left(1-2(\sqrt{\sin x})^{2}\right)+C \\
& =\cos ^{-1}(1-2 \sin t)+C \quad(\text { Putting } \sqrt{\sin x} \\
& =\cos ^{-1}(\cos 2 t)+C \\
& =2 t+C \quad(\because \sqrt{\sin x}>0 \Rightarrow \sin t>0 \Rightarrow t \\
& =2 \sin ^{-1}(\sqrt{\sin x)+C} \\
& \text { (a,c) } \\
& \int_{0}^{1} e^{x^{2}-x} d x \\
& 0
\end{aligned}
$$

226 (a,c)

For $x \in(0,1), x^{2}-x \in(-1 / 4,0)$
$\Rightarrow e^{-1 / 4}<e^{x^{2}-x}<e^{0}$
$\Rightarrow e^{-\frac{1}{4}}<\int_{0}^{1} e^{x^{2}-x} d x<1$
227 (a,b,c)
$\mathrm{g}(x)=\int_{0}^{x} 2|t| d t$
$=\left\{\begin{array}{l}\int_{0}^{x}-2 t d t, x<0 \\ \int_{0}^{x} 2 t d t, x \geq 0\end{array}\right.$
$=\left\{\begin{array}{l}{\left[-t^{2}\right]_{0}^{x}, \quad x<0} \\ {\left[t^{2}\right]_{0}^{x}, \quad x \geq 0}\end{array}\right.$
$=\left\{\begin{array}{l}-x^{2}, x<0 \\ x^{2}, x \geq 0\end{array}\right.$
$=x|x|$
Clearly, continuous and differentiable at $x=0$
Also, $\mathrm{g}^{\prime}(x)=\left\{\begin{array}{c}-2 x, x<0 \\ 2 x, x>0\end{array}\right.$ which is non-
differentiable at $x=0$
228 (a,c,d)
$I=\int \frac{\left(x^{4}+1\right)}{\left(x^{6}+1\right)} d t$
$=\int \frac{\left(x^{2}+1\right)^{2}-2 x^{2}}{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)} d x$
$=\int \frac{\left(x^{2}+1\right) d x}{\left(x^{4}-x^{2}+1\right)}-2 \int \frac{x^{2} d x}{\left(x^{6}+1\right)}$
$=\int \frac{\left(1+\frac{1}{x^{2}}\right) d x}{\left(x^{2}-1+\frac{1}{x^{2}}\right)}-2 \frac{x^{2} d x}{\left(x^{3}\right)^{2}+1}$
In the first integral, put $x-\frac{1}{x}=t$
$\therefore\left(1+\frac{1}{x^{2}}\right) d x=d t$
and in the second integral put $x^{3}=u$
$\therefore x^{2} d x=\frac{d u}{3}$
then $I=\int \frac{d t}{1+t^{2}}-\frac{2}{3} \int \frac{d u}{1+u^{2}}$
$=\tan ^{-1} t-\frac{2}{3} \tan ^{-1} u+C$
$=\tan ^{-1}\left(x-\frac{1}{x}\right)-\frac{2}{3} \tan ^{-1}\left(x^{3}\right)+C$
Here, $f(x)=x-\frac{1}{2}$ and $g(x)=x^{3}$
Both the function are one-one
Also $f^{\prime}(x)=1+\frac{1}{x^{2}} \neq 0$. Hence, $f(x)$ is monotonic
Also $\int \frac{f(x)}{\mathrm{g}(x)} d x=\int \frac{x-\frac{1}{x}}{x^{3}} d x=\int\left(\frac{1}{x^{2}}-\frac{1}{x^{4}}\right) d x$
$=-\frac{1}{x}+\frac{3}{x^{3}}+C$
229 (b,c)
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=n+1}^{2 n} f\left(\frac{r}{n}\right)=\int_{1}^{2} f(x) d x$
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{2 n} f\left(\frac{r+n}{n}\right)=\int_{0}^{1} f(1+x) d x$
$=\int_{1}^{2} f(t) d t=\int_{1}^{2} f(x) d x$
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)=\int_{0}^{1} f(x) d x$
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{2 n} f\left(\frac{r}{n}\right)=\int_{0}^{2} f(x) d x$
230 (b,c)
$I=\int_{0}^{\infty} \frac{d x}{1+x^{4}}$
$=\int_{0}^{\infty} \frac{x^{2}+1-x^{2}}{1+x^{4}} d x$
$=\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x+\int_{0}^{\infty} \frac{1-x^{2}}{1+x^{4}} d x=I_{1}+I_{2}$
$I_{2}=\int_{0}^{\infty} \frac{\frac{1}{x^{2}}-1}{\frac{1}{x^{2}}+x^{2}} d x$
Put $x+\frac{1}{x}=y$
$\Rightarrow I_{2}=\int_{\infty}^{\infty} \frac{-1}{y^{2}-2} d y=0$
$\Rightarrow I=\int_{0}^{\infty} \frac{d x}{1+x^{4}}=\int_{0}^{\infty} \frac{x^{2} d x}{1+x^{4}}$
Adding equations (1) and (2), we get
$\Rightarrow 2 I=\int_{0}^{\infty} \frac{1+x^{2} d x}{1+x^{4}}=\int_{0}^{\infty} \frac{\frac{1}{x^{2}}+1}{\frac{1}{x^{2}}+x^{2}} d x$, put $x-\frac{1}{x}=y$
$\Rightarrow 2 I=\int_{-\infty}^{\infty} \frac{d y}{y^{2}+2}=\left[\frac{1}{\sqrt{2}} \tan ^{-1} \frac{y}{\sqrt{2}}\right]_{-\infty}^{\infty}=\frac{\pi}{\sqrt{2}}$
$\Rightarrow I=\frac{\pi}{2 \sqrt{2}}$
231 (a,d)
$\frac{2 x}{(x-1)(x-4)}=\frac{C}{x-1}+\frac{D}{x-4}$
$2 x=C(x-4)+D(x-1)$
$\therefore C=-2 / 3, D=8 / 3$
$\therefore \int \frac{e^{x-1}}{(x-1)(x-4)} 2 x d x$

$$
=\int e^{x-1}\left(\frac{-2 / 3}{x-1}+\frac{8 / 3}{x-4}\right) d x
$$

$=-\frac{2}{3} F(x-1)+\frac{8}{3} e^{3} F(x-4)+C$
$\therefore A=-2 / 3, B=8 / 3 e^{3}$
232 (a)
$\int_{-1}^{1} f(x) d x=\int_{-1}^{1}(x-[x]) d x$
$=\int_{-1}^{1} x d x-\int_{-1}^{1}[x] d x$
$=0-\int_{-1}^{1}[x] d x$
[$\because x$ is an odd function]
$=-\int_{-1}^{0}(-1) d x-\int_{0}^{1} 0 d x$
$=1$
233 (b,d)
$I=\int \sqrt{\operatorname{cosec} x+1} d x=\int \frac{\cot x}{\sqrt{\operatorname{cosec} x-1}} d x$
Put $\operatorname{cosec} x-1=t^{2} \Rightarrow-\operatorname{cosec} x \cot x d x=2 t d t$
$\Rightarrow I=-\int \frac{-\cot x \operatorname{cosec} x}{\operatorname{cosec} x \sqrt{\operatorname{cosec} x-1}} d x=-\int \frac{2 d t}{1+t^{2}}$
$=-2 \tan ^{-1} t+c=-2 \tan ^{-1} \sqrt{\operatorname{cosec} x-1}+C$
$=-2\left[\frac{\pi}{2}-\cot ^{-1} \sqrt{\operatorname{cosec} x-1}\right]+C$
$=2 \cot ^{-1} \sqrt{\operatorname{cosec} x-1}+C$
$=2 \cot ^{-1} \frac{\cot x}{\sqrt{\operatorname{cosec} x+1}}+C$
234 (a)
$\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$
Differentiating both sides w.r.t. x, we get
$f(x)=1+0-x f(x)$
$\Rightarrow(x+1) f(x)=1$
$\Rightarrow f(x)=\frac{1}{x+1}$
$\Rightarrow f(1)=\frac{1}{2}$
235 (a,d)
$\int \sin ^{-1} x \cos ^{-1} x d x$

$$
=\int\left[\frac{\pi}{2} \sin ^{-1} x-\left(\sin ^{-1} x\right)^{2}\right] d x
$$

$=\frac{\pi}{2}\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right)$
$-\left(x\left(\sin ^{-1} x\right)^{2}\right.$
$\left.+\sin ^{-1} x \sqrt{1-x^{2}}-x\right)+C$
(intergrating by parts)

$$
\begin{gathered}
=\sin ^{-1} x\left[\frac{\pi}{2} x-x \sin ^{-1} x-2 \sqrt{1-x^{2}}\right] \\
+\frac{\pi}{2} \sqrt{1-x^{2}}+2 x+C
\end{gathered}
$$

$\therefore f^{-1}(x)=\sin ^{-1} x, f(x)=\sin x$
236 (a,c)
Let $\cos x=t, \Rightarrow \cos x=t \Rightarrow \cos 2 x=2 t^{2}-1$ and $d t=-\sin x d x$. Thus
$I=\int \frac{t^{2}-2}{2 t^{2}-1} d t=\frac{1}{2} \int \frac{2 t^{2}-4}{2 t^{2}-1} d t$
$=\frac{1}{2} \int d t-\frac{3}{2} \int \frac{d t}{2 t^{2}-1}$
$=\frac{1}{2} t-\frac{3}{2 \sqrt{2}} \times \frac{1}{2} \log \left|\frac{\sqrt{2} t-1}{\sqrt{2} t+1}\right|+C$
$=\frac{1}{2} \cos x-\frac{3}{4 \sqrt{2}} \times \log \left|\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}\right|+C$
So, $P=1 / 2, Q=-\frac{3}{4 \sqrt{2}}, f(x)=\frac{\sqrt{2} \cos x-1}{\sqrt{2} \cos x+1}$
or $P=1 / 2, Q=\frac{3}{4 \sqrt{2}}, f(x)=\frac{\sqrt{2} \cos x+1}{\sqrt{2} \cos x-1}$
237 (a,b)
Here, $f^{\prime}(x) \geq 0$ in $[a, b]$. So, $f(x)$ is monotonically increasing.
Hence, $f(a) \leq f(x) \leq f(b)$
$\therefore \int_{a}^{b} f(a) d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(b) d x$
$\Rightarrow f(a) \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(b)(b-a)$
$\therefore f(a) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq f(b)$
238 (b,c,d)
$I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$
$=\int_{0}^{\pi / 4} \tan ^{n-2} x \tan ^{2} x d x$
$=\int_{0}^{\pi / 4} \sec ^{2} x \tan ^{n-2} x d x-\int_{0}^{\pi / 4} \tan ^{n-2} x d x$
$=\int_{0}^{1} t^{n-2} d t-I_{n-2}$ where $t=\tan x$
$I_{n}+I_{n-2}=\left(\frac{t^{n-1}}{n-1}\right)_{0}^{1}$
$\Rightarrow I_{n}+I_{n-2}=\frac{1}{n-1}$
$\Rightarrow I_{2}+I_{4}, I_{4}+I_{6}$, ...are in H.P.
For $0<x<\pi / 4$, we have $0<\tan ^{n} x<\tan ^{n-2} x$
So that $0<I_{n}<I_{n-2} \Rightarrow I_{n}+I_{n+2}<2 I_{n}<I_{n}+$ I_{n-2}
$\Rightarrow \frac{1}{n+1}<2 I_{n}<\frac{1}{n-1} \Rightarrow \frac{1}{2(n+1)}<I_{n}$

$$
<\frac{1}{2(n-1)}
$$

239 (a,b)
$f(x)=x \int_{1}^{x} \frac{e^{t}}{t} d t-e^{x}$
$\Rightarrow f^{\prime}(x)=x \frac{e^{x}}{x}+\int_{1}^{x} \frac{e^{t}}{t} d t-e^{x}$
$\Rightarrow f^{\prime(x)}=\int_{1}^{x} \frac{e^{t}}{t} d t>0[\because x \in(1, \infty)]$
$\Rightarrow f(x)$ is an increasing function

240 (a,b,c)

For $a \leq 0$,
Given equation becomes
$\int_{0}^{2}(x-a) d x \geq 1 \Rightarrow a \leq \frac{1}{2} \Rightarrow a \leq 0$
For $0<a<2$,
$\int_{0}^{2}|x-a| d x \geq 1$

$$
\begin{gathered}
\Rightarrow \int_{0}^{a}(a-x) d x+\int_{a}^{2}(x-a) d x \geq 1 \\
\Rightarrow \frac{a^{2}}{2}+2-2 a+\frac{a^{2}}{2} \geq 1 \Rightarrow a^{2}-2 a+1 \geq 0 \\
\Rightarrow(a-1)^{2} \geq 0
\end{gathered}
$$

For $a \geq 2$,
$\int_{0}^{2}|x-a| d x \geq 1$

$$
\Rightarrow \int_{0}^{2}(a-x) d x \geq 1 \Rightarrow 2 a-2 \geq 1
$$

$$
\Rightarrow a \geq \frac{3}{2}
$$

$\Rightarrow a \geq 2$
241 (\mathbf{a}, \mathbf{d})

$$
\begin{aligned}
& A_{n+1}-A_{n} \\
& =\int_{0}^{\pi / 2} \frac{\sin (2 n+1) x-\sin (2 n-1) x}{\sin x} \\
& =\int_{0}^{\pi / 2} 2 \cos 2 n x d x=0 \\
& \Rightarrow A_{n+1}=A_{n} \\
& B_{n+1}-B_{n} \\
& =\int_{0}^{\pi / 2} \frac{\sin ^{2}(n+1) x-\sin ^{2} n x}{\sin ^{2} x} d x \\
& =\int_{0}^{\pi / 2} \frac{\sin (2 n+1) x}{\sin x} d x \\
& =A_{n+1}
\end{aligned}
$$

242
(a,b)
$f(x)=e^{x}+\int_{0}^{1} e^{x} f(t) d t=e^{x}+k e^{x}$ where
$k=\int_{0}^{1} f(t) d t$
$\therefore k=\int_{0}^{1}\left(e^{t}+k e^{t}\right) d t=e+k e-1-k$
$\therefore k=\frac{e-1}{2-e^{\prime}}$, thus $f(x)=e^{x}\left(1+\frac{e-1}{2-e}\right)=\frac{e^{x}}{2-e}$
Obviously, $f(0)=\frac{1}{2-e}<0$
Also, $f^{\prime}(x)=\frac{e^{x}}{2-e}<0$ for $\forall x \in R$
Hence, $f(x)$ is a decreasing function
Also, $\int_{0}^{1} f(x) d x$
$=\int_{0}^{1} \frac{e^{x}}{2-e} d x$
$=\left[\frac{e^{x}}{2-e}\right]_{0}^{1}$
$=\frac{e-1}{2-e}<0$
243 (a,c)
$\int \frac{\cos ^{2} 2 x \sin 2 x d x}{\cos 2 x}$

$$
=\frac{1}{2} \int \sin 4 x d x=-\frac{1}{8} \cos 4 x+B
$$

244 (a,b,c,d)

Let $I=\int \sin (\log x) d x$
Put $\log x=t$
$\therefore x=e^{t}$
$\Rightarrow d x=e^{t} d t$
Then, $I=\int e^{t} \sin t d t$
$=\frac{e^{t}}{2}(\sin t-\cos t)+c$
$=\frac{x}{2}\{\sin (\log x)-\cos (\log x)\}+c$
On comparing, we get
$f(x)=\frac{x}{2}, \mathrm{~g}(x)=\log x, h(x)=\log x$
Option (a) $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x}{2}=\frac{2}{2}=1$
Option (b) $\lim _{x \rightarrow 1} \frac{\mathrm{~g}(x)}{h(x)}=\lim _{x \rightarrow 1} \frac{\log x}{\log x}=1$
Option (c) $\mathrm{g}\left(e^{3}\right)=\log e^{3}=3 \log e=3$
Option (d) $h\left(e^{5}\right)=\log e^{5}=5 \log e=5$
245 (a,b,d)
We know $\int_{a}^{b}|\sin x| d x$ represents the area under the curve from $x=a$ to $x=b$. We also know that area from $x=a$ to $x=a+\pi$ is 2
$\therefore \int_{\mathrm{a}}^{\mathrm{b}}|\sin x| d x=8 \Rightarrow b-a=\frac{8 \pi}{2}$
Similarly, $\int_{0}^{a+b}|\cos x| d x=9 \Rightarrow a+b-0=$ $9 \pi 2(2)$

From (1) and (2), $a=\frac{\pi}{4}$ and $b=\frac{17 \pi}{4}$
$\Rightarrow|a+b|=\frac{9 \pi}{2},|a-b|=4 \pi, \frac{a}{b}=17$ and
$\int_{a}^{b} \sec ^{2} x d x=[\tan x]_{\pi / 4}^{17 \pi / 4}=0$
246 (c)
Let $f(x)=\sqrt{3+x^{3}}$
Clearly, $f(x)$ is increasing in $[1,3]$
\Rightarrow The least value of the function, $m=f(1)=$ $\sqrt{3+1^{3}}=2$
and the greatest value of the function,
$M=f(3)=\sqrt{3+3^{3}}$
$=\sqrt{30}$
Therefore, $(3-1) 2 \leq \int_{1}^{3} \sqrt{3+x^{3}} d x \leq$
$(3-1) \sqrt{30}$
Here, $4 \leq \int_{1}^{3} \sqrt{3+x^{3}} d x \leq 2 \sqrt{30}$
247 (a,b,d)
$\int \frac{d x}{x^{2}+a x+1}=\int \frac{d x}{\left(x+\frac{a}{2}\right)^{2}+\left(1-\frac{a^{2}}{4}\right)}$
248 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
$\int x^{2} e^{-2 x} d x=e^{-2 x}\left(a x^{2}+b x+c\right)+d$
Differentiating both sides, we get
$x^{2} e^{-2 x}=e^{-2 x}(2 a x+b)$ $+\left(a x^{2}+b x+c\right)\left(-2 e^{-2 x}\right)$
$=e^{-2 x}\left(-2 a x^{2}+2(a-b) x+b-2 c\right)$
$\Rightarrow a=1,2(a-b)=0, b-2 c=0$
$\Rightarrow b=1, c=\frac{1}{2}$
249 (a,c)
$I=\int \sec ^{2} x \operatorname{cosec}^{4} x d x$
$=\int \frac{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}}{\cos ^{2} x \sin ^{4} x} d x$
$=\int \frac{\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x}{\cos ^{2} x \sin ^{4} x}$
$=\int\left(\sec ^{2} x+2 \operatorname{cosec}^{2} x+\frac{\cos ^{2} x}{\sin ^{4} x}\right) d x$
$=\tan x-2 \cot x+\int \cot ^{2} x \operatorname{cosec}^{2} x d x$
$=\tan x-2 \cot x-\frac{\cot ^{3} x}{3}+D$
250 (a,d)
$f^{\prime}(x)=\frac{3^{x}}{1+x^{2}}>0 \forall x>0 \Rightarrow f^{\prime}(x)=\frac{3^{x}}{1+x^{2}}$

$$
>\frac{1}{1+x^{2}}, \forall x \geq 1
$$

$\Rightarrow \int_{1}^{x} f^{\prime}(x) d x>\int_{1}^{x} \frac{1}{1+x^{2}} d x$
$\Rightarrow f(x)>\tan ^{-1} x$
$-\tan ^{-1} 1 \Rightarrow f(x)+\pi / 4$
$>\tan ^{-1} x$
251 (a,b,c,d)
$\int \frac{\left(x^{8}+4+4 x^{4}\right)-4 x^{4}}{x^{4}-2 x^{2}+2} d x$
$=\int \frac{\left(x^{4}+2\right)^{2}-\left(2 x^{2}\right)^{2}}{\left(x^{4}-2 x^{2}+2\right)} d x$
$=\int \frac{\left(x^{4}+2-2 x^{2}\right)\left(x^{4}+2+2 x^{2}\right)}{\left(x^{4}-2 x^{2}+2\right)} d x$
$=\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+2 x+C$
252 (a,c)
$\mathrm{g}(x)=\int x^{27}\left(1+x+x^{2}\right)^{6}\left(6 x^{2}+5 x+4\right) d x$
$=\int\left(x^{4}+x^{5}+x^{6}\right)^{6}\left(6 x^{5}+5 x^{4}+4 x^{3}\right) d x$
let $x^{6}+x^{5}+x^{4}=t \Rightarrow\left(6 x^{5}+5 x^{4}+4 x^{3}\right) d x=d t$
$\therefore \mathrm{g}(x)=\int t^{6} d t=\frac{t^{7}}{7}+C$

$$
=\frac{1}{7}\left(x^{4}+x^{5}+x^{6}\right)^{7}+C
$$

$\mathrm{g}(0)=0 \Rightarrow x=0 \Rightarrow \mathrm{~g}(1)=\frac{3^{7}}{7} \operatorname{alsog}(-1)=\frac{1}{7}$

253 (a,b,d)

Given that $f(x)=\int_{0}^{x}|t-1| d t$
$\Rightarrow f(x)=\int_{0}^{x}(1-t) d t, 0 \leq x \leq 1$
$=x-\frac{x^{2}}{2}$
Also $f(x)=\int_{0}^{1}(1-t) d t+\int_{1}^{x}(t-1) d t$, where
$1 \leq x \leq 2$
$=\frac{1}{2}+\frac{x^{2}}{2}-x+\frac{1}{2}=\frac{x^{2}}{2}-x+1$
Thus, $f(x)=\left\{\begin{array}{l}x-\frac{x^{2}}{2}, 0 \leq x \leq 1 \\ \frac{x^{2}}{2}-x+1,1<x \leq 2\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{l}1-x, 0 \leq x<1 \\ x-1,1<x<2\end{array}\right.$
Thus, $f(x)$ is continuous as well as differentiable at $x=1$. Also, $f(x)=\cos ^{-1} x$ has one real root, draw the graph and verify
For range of $\boldsymbol{f}(\boldsymbol{x})$:
$f(x)=\int_{0}^{x}|t-1| d t$ is the value of area bounded by the curve $y=|t-1|$ and x-axis between the $\operatorname{limits} t=0$ and $t=x$
Obviously, minimum area is obtained when $t=0$ and $t=x$ coincide or $x=0$
Maximum value of area occurs when $t=2$,
Hence $f(2)=$ area of shaded region $=1$

254 (a,c,d)
The expression $f(x) f(c) \forall x \in(c-h, c+h)$
where $h \rightarrow 0^{+}$is equivalent to $\operatorname{Lim}_{x \rightarrow 0} f(x) f(c)$
which equals to $(f(c))^{2}$ because $f(x)$ is continuous

Therefore, $f(x) f(c)>0 \forall x \in(c-h, c+h)$ where $h \rightarrow 0^{+}$
a. We have $I=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{In}\left[\left(1+\frac{1}{n}\right)(1+\right.$ $2 n \cdots 1+n n$
$=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{In} \prod_{k=1}^{n}\left(1+\frac{k}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{In}\left(1+\frac{k}{n}\right)$
$=\int_{1}^{2} \operatorname{In} x d x=[x(\operatorname{In} x-1)]_{1}^{2}=-1+2 \operatorname{In} 2$
c. Given $f(x) \geq 0 \Rightarrow \int_{a}^{b} f(x) d x \geq 0$

But given $\int_{a}^{b} f(x) d x=0$, so this can be true only when $f(x)=0$
d. $\int_{a}^{b} f(x) d x=0 \Rightarrow y=f(x)$ cuts x axis at least once
So, there exists at least one $c \in(a, b)$ for which $f(c)=0$
255 (b,c,d)
$\int \sin 6 x d x=-\frac{1}{6} \cos 6 x+c$

$$
=-\frac{1}{6}\left(1-2 \sin ^{2} 3 x\right)+c
$$

$=-\frac{1}{6}+\frac{1}{3} \sin ^{2} 3 x+c=\frac{1}{3} \sin ^{2} 3 x+d$
$=-\frac{1}{6} \cos 6 x+c$
$=-\frac{1}{6}\left(2 \cos ^{2} 3 x-1\right)+c$
$=-\frac{1}{3} \cos ^{2} 3 x+c$
Also, derivative of $\frac{1}{3} \sin \left(3 x+\frac{\pi}{7}\right) \sin \left(3 x-\frac{\pi}{7}\right)$ is $\sin 6 x$.
256 (a,b,c,d)
Let $f(x)=\int_{0}^{x^{2}}\left(\frac{t^{2}-5 t+4}{2+e^{t}}\right) d t$
$\therefore f^{\prime}(x)=\left(\frac{x^{4}-5 x^{2}+4}{2+e^{x^{2}}}\right) \times 2 x$
For extremum $f^{\prime}(x)=0$
$\therefore x=0, \pm 1, \pm 2$
257 (a,b,c)
$f(x)=\int_{a}^{x} \frac{1}{f(x)} d x \Rightarrow f^{\prime}(x)=\frac{1}{f(x)} \cdot 1-0$

$$
\Rightarrow f(x) f^{\prime}(x)=1
$$

$\Rightarrow \int f(x) f^{\prime}(x) d x=\int 1 d x$
$\Rightarrow \frac{1}{2}[f(x)]^{2}=x+c$

Now given that $\int_{a}^{1}[f(x)]^{-1} d x=\sqrt{2} \Rightarrow f(1)=$ $\sqrt{2}$
\Rightarrow From (1), $\frac{1}{2}[f(1)]^{2}=1+c \Rightarrow c=0$
$\Rightarrow f(x)= \pm \sqrt{2 x}$
But $f(1)=\sqrt{2} \Rightarrow f(x)=\sqrt{2 x} \Rightarrow f(2)=2$
Also, $f^{\prime}(x)=\frac{1}{\sqrt{2 x}} \Rightarrow f^{\prime}(2)=1 / 2$
$\int_{0}^{1} f(x) d x=\int_{0}^{1} \sqrt{2 x d x}=\left[\frac{(2 x)^{3 / 2}}{3}\right]_{0}^{1}=\frac{(2)^{3 / 2}}{3}$
Also, $f^{-1}(x)=\frac{x^{2}}{2} \Rightarrow f^{-1}(2)=2$
258 (a,d)
$f(x+\pi)=\int_{0}^{x+\pi}(\cos (\sin t)+\cos (\cos t)) d t$
$=\int_{0}^{\pi}(\cos (\sin t)+\cos (\cos t)) d t$

$$
+\int_{0}^{x+\pi}(\cos (\sin t)+\cos (\cos t)) d t
$$

$=f(\pi)+\int_{0}^{x}(\cos (\sin t)+\cos (\cos t)) d t$
$(\because$ for $g(x)=\cos (\sin x)+\cos (\cos x), f(x+\pi)=$
$f(x))$
$=f(\pi)+f(x)$
$=f(\pi)+2 f\left(\frac{\pi}{2}\right)(\because g(x)$ has period $\pi / 2)$
259 (a,b,d)
$\frac{3 x+4}{x^{3}-2 x-4}=\frac{3 x+4}{(x-2)\left(x^{2}+2 x+2\right)}$
$=\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+2}$
$\Rightarrow 3 x+4=A\left(x^{2}+2 x+2\right)+(B x+C)(x-2)$
$\therefore A+B=0$
$2 A-2 B+C=3$
$2 A-2 C=4$
$\Rightarrow A=1, B=C=-1$
$\therefore \int \frac{3 x+4}{x^{3}-2 x-4} d x$

$$
=\int \frac{d x}{x-2}-\frac{1}{2} \int \frac{2 x+2}{x^{2}+2 x+2} d x
$$

$=\log _{e}|x-2|-\frac{1}{2} \log \left|x^{2}+2 x+2\right|+c$
$\Rightarrow k=-\frac{1}{2}$ and $f(x)=\left|x^{2}+2 x+2\right|$
260 (a,b,c,d)
$\because \int_{\pi / 2}^{\alpha} \sin x d x=\sin 2 \alpha$
$\Rightarrow-[\cos x]_{\pi / 2}^{\alpha}=\sin 2 \alpha$
$\Rightarrow-(\cos \alpha-0)=\sin 2 \alpha$
$\Rightarrow \cos \alpha(2 \sin \alpha+1)=0$
$\therefore \cos \alpha=0$ and $\sin \alpha=-\frac{1}{2}$
$\therefore \alpha=\frac{\pi}{2}, \frac{3 \pi}{2}$ and $\alpha=\pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}$
$\therefore \alpha=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
261 (c,d)
$\lim _{n \rightarrow \infty} \tan (1 / n) \log (1 / n)$
$=\lim _{n \rightarrow \infty} \frac{\tan (1 / n)}{(1 / n)} \cdot \frac{\log (1 / n)}{n}$
$=-\lim _{n \rightarrow \infty} \frac{\tan (1 / n)}{(1 / n)} \cdot \frac{\log (n)}{n}$
$=-1 \lim _{n \rightarrow \infty} \frac{1 / n}{1}$
$=0$
Then, $f(x)=e^{o}=1$
$\therefore \int \frac{f(x)}{\sqrt[3]{\left(\sin ^{11} x \cos x\right)}} d x=\int \frac{1}{\sin ^{11 / 3} x \cos ^{1 / 3} x} d x$
$=\int \sin ^{-11 / 3} x \cdot \cos ^{-1 / 3} x d x$
$=\int(\tan x)^{-11 / 3} \cos ^{-4} x d x$
$=\int(\tan x)^{-11 / 3} \cdot \sec ^{4} x d x$
$=\int(\tan x)^{-11 / 3} \cdot\left(1+\tan ^{2} x\right) \cdot \sec ^{2} x d x$
$=\frac{(\tan x)^{\frac{-11}{3}+1}}{\left(\frac{-11}{3}+1\right)}+\frac{(\tan x)^{-2 / 3}}{(-2 / 3)}+c$
$=-\frac{3}{8}(\tan x)^{-8 / 3}-\frac{3}{2}(\tan x)^{-2 / 3}+c$
$\therefore \mathrm{g}(x)=-\frac{3}{8}(\tan x)^{-8 / 3}-\frac{3}{2}(\tan x)^{-2 / 3}$
$\therefore \mathrm{g}(\pi / 4)=-\frac{3}{8}-\frac{3}{2}=-\frac{15}{8}$
and $\mathrm{g}(x)$ is non-differentiable at $\tan x=0$
Or $x=n \pi, n \in I$
262 (a,b)
L.H.S. $=\int_{0}^{x}\left\{\int_{0}^{u} f(t) d t\right\} d u$

Integrating by parts choose ' 1 ' as the second function
$=\left\{u \int_{0}^{u} f(t) d t\right\}_{0}^{x}-\int_{0}^{x} f(u) u d u$
$=x \int_{0}^{x} f(t) d t-\int_{0}^{x} f(u) u d u$
$=x \int_{0}^{x} f(u) d u-\int_{0}^{x} f(u) u d u$

$$
=-\int_{0}^{x} f(u)(x-u) d u
$$

= R.H.S.
263 (a,b,c)
Let $I=\int_{a}^{b} \frac{f(x)}{f(x)+f(a+b-x)} d x$ (1)
$=\int_{a}^{b} \frac{f(a+b-x)}{f(a+b-x)+f(x)} d x$ (2)
Adding equations (1) and (2), we get
$\Rightarrow 2 I=\int_{a}^{b} 1 d x=b-a$
$\Rightarrow I=\left(\frac{b-a}{2}\right)=10$ (given)
$\therefore b-a=20$
264 (b)
$\because \sin ^{6} x+\cos ^{6} x=\left(\sin ^{2} x\right)^{3}+\left(\cos ^{2} x\right)^{3}$
$=\left(\sin ^{2} x+\cos ^{2} x\right)^{3}$
$-3 \sin ^{2} x \cos ^{2} x\left(\sin ^{2} x+\cos ^{2} x\right)$
$=1-3 \sin ^{2} x \cos ^{2} x$
$=1-\frac{3}{4} \sin ^{2} 2 x \quad\left(\because\right.$ period $\left.\frac{\pi}{2}\right)$
\therefore Least and greatest value of $\sin ^{6} x+$ $\cos 6 x$ are 14 and 1

Hence, $\left(\frac{\pi}{2}-0\right) \times \frac{1}{4}<\int_{0}^{\pi / 2}\left(\sin ^{6} x+\cos ^{6} x\right) d x<$ $\pi 2-0 \times 1$

$$
\Rightarrow \frac{\pi}{8}<\int_{0}^{\pi / 2}\left(\sin ^{6} x+\cos ^{6} x\right) d x<\frac{\pi}{2}
$$

265 (d)
$\because \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}[2 \sin x] d x=\int_{\frac{\pi}{2}}^{\frac{5 \pi}{6}}[2 \sin x] d x+\int_{\frac{5 \pi}{6}}^{\pi}[2 \sin x] d x$
$+\int_{\pi}^{7 \pi / 6}[2 \sin x] d x+\int_{\pi / 2}^{3 \pi / 2}[2 \sin x] d x$
$=\int_{\pi / 2}^{5 \pi / 6} 1 \cdot d x+0-\int_{\pi}^{7 \pi / 6} 1 \cdot d x-2 \int_{7 \pi / 6}^{3 \pi / 2} 1 \cdot d x$
$=\frac{\pi}{3}-\frac{\pi}{6}-\frac{2 \pi}{3}$
$=-\frac{\pi}{2}\left[\begin{array}{c}\because 2 \sin x \text { is decreasing function in } \\ \left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)\end{array}\right]$

266 (a)
For $a<b$. If m and M are the smallest and greatest values of $f(x)$ on $[a, b]$

Then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq(b-a) M$
or $m \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq M$
Since $f(x)$ is continuous on $[a, b]$, it takes on all intermediate values between m and M

Therefore, some values $f(c)(a \leq f(c) \leq b)$, we will have $\frac{1}{(b-a)} \int_{a}^{b} f(x) d x=f(c)$ or $\int_{a}^{b} f(x) d x=$ $f c(b-a)$

Hence, both the statements are true and statement 2 is a correct explanation of statement 1

267 (a)
Statement 2 is a fundamental concept, also we have $f(2-a)=f(2+a)$

$$
\int_{2-a}^{2+a} f(x) d x=2 \int_{2}^{2+a} f(x) d x
$$

268 (a)
Let $\mathrm{g}(x)=\int_{a}^{x} f(t) d t-\int_{x}^{b} f(t) d t$, where $x \in[a, b]$ We have $\mathrm{g}(a)=-\int_{a}^{b} f(t) d t$ and $\mathrm{g}(b)=\int_{a}^{b} f(t) d t$ $\Rightarrow \mathrm{g}(a) \mathrm{g}(b)=-\left(\int_{a}^{b} f(t) d t\right)^{2} \leq 0$

Clearly, $\mathrm{g}(x)$ is continuous in $[a, b]$ and $\mathrm{g}(a) \mathrm{g}(b) \leq 0$

It implies that $\mathrm{g}(x)$ will becomes zero at least once in $[a, b]$. Hence, $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$ for at least one value of $x \in[a, b]$

Hence, both the statements are true and statement 2 is a correct explanation of statement 1

269 (c)
$\int_{a}^{b} x f(x) d x=\int_{a}^{b}(a+b-x) f(a+b-x) d x$

$$
\begin{aligned}
&=(a+b) \int_{a}^{b} f(a+b-x) d x \\
& \quad-\int_{a}^{b} x f(a+b-x) d x
\end{aligned}
$$

Therefore, statement 2 is true only when $f(a+b-x)=f(x)$ which holds in statement 1

Therefore, statement 2 is false and statement 1 is true

270 (d)
$\int e^{x^{2}} d x$ cannot be expressed in terms of elementary function, then integral is known as inexpressible or that is " cannot be found ".

271 (a)
Let $p^{\prime}(x)=a(x-1)(x-3)$
$\Rightarrow p(x)=\int_{1}^{x} a\left(x^{2}-4 x+3\right) d x+c$
$\Rightarrow p(x)=a\left[\frac{x^{3}}{3}-2 x^{2}+3 x\right]_{1}^{x}+60 \quad[\because p(1)=6]$
$\Rightarrow p(x)=a\left(\frac{x^{3}}{3}-2 x^{2}+3 x-\frac{4}{3}\right)+6$
Since, $p(3)=2$, then $a=3$
$\therefore p(x)=x^{3}-6 x^{2}+9 x+2$
Statement II is also true and it is a correct explanation for Statement I

272 (b)

$$
\begin{aligned}
& I=\int_{-4}^{-5} \sin \left(x^{2}-3\right) d x \\
&+\int_{-2}^{-1} \sin \left(x^{2}+12 x+33\right) d x \\
&=I_{1}+I_{2}
\end{aligned}
$$

$$
I_{2}=\int_{-2}^{-1} \sin \left(x^{2}+12 x+33\right) d x
$$

$$
=\int_{-2}^{-1} \sin \left((x+6)^{2}-3\right) d x
$$

Put $x+6=-y$
$\Rightarrow I_{2}=-\int_{-4}^{-5} \sin \left(y^{2}-3\right) d y=-I_{1}$
$\Rightarrow I_{1}+I_{2}=0 \Rightarrow I=0$
273 (b)
$\because I=\int_{0}^{2 \pi} \sin ^{3} x d x=\int_{0}^{2 \pi}\left(1-\cos ^{2} x\right) \sin x d x$
Put $\cos x=t \Rightarrow \sin x d x=-d t$
Then, $1=\int_{1}^{1}\left(1-t^{2}\right)(-d t)=0$
274 (a)
Statement II is true.
Now, $\int \frac{d x}{e^{x}+e^{-x}+2}=\int \frac{e^{x} d x}{\left(e^{x}+1\right)^{2}}$
$=\int \frac{d\left(e^{x}+1\right)}{\left(e^{x}+1\right)^{2}}$
$=-\frac{1}{e^{x}+1}+c \quad($ By using statement II)
275 (c)
$x>x^{2}, \forall x \in\left(0, \frac{\pi}{4}\right) \Rightarrow e^{x}>e^{x^{2}} \forall x \in\left(0, \frac{\pi}{4}\right)$
$\cos x>\sin x \forall \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow e^{x^{2}} \cos x>e^{x^{2}} \sin x$
$\Rightarrow e^{x}>e^{x^{2}}>e^{x^{2}} \cos x>e^{x^{2}} \sin x \forall x \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow I_{2}>I_{1}>I_{3}>I_{4}$
276 (c)
Given, $I_{n}=\int \cot ^{n} x d x=\int \cot ^{n-2} x\left(\operatorname{cosec}^{2} x-\right.$
$1 d x$
$=\int \cot ^{n-2} x \operatorname{cosec}^{2} x d x-I_{n-2}$
$=-\frac{\cot ^{n-1} x}{n-1}-I_{n-2}$
Put $n=6,5\left(I_{6}+I_{4}\right)=-\cot ^{5} x$
277 (c)
Let $I=\int \frac{(2-2 x)}{\sqrt{\left(4+2 x-x^{2}\right)}} d x+\int \frac{d x}{\sqrt{\left(4+2 x-x^{2}\right)}}$
$=2 \sqrt{4+2 x-x^{2}}+\int \frac{d x}{\sqrt{5-(x-1)^{2}}}$
$=2 \sqrt{4+2 x-x^{2}}+\sin ^{-1}\left(\frac{x-1}{\sqrt{5}}\right)+c$

278 (c)

Statement 1 is true as it is a fundamental property.

Let $g(x)=\int_{a}^{x} f(t) d t$
If $f(x)$ is an even function
Then $\mathrm{g}(-x)=\int_{a}^{-x} f(t) d t$
$=-\int_{-a}^{x} f(-y) d y$
$=-\int_{-a}^{x} f(y) d y$
$=-\int_{-a}^{a} f(y) d y-\int_{a}^{x} f(y) d y$
$\neq-\mathrm{g}(x)$
Hence, statement 2 is false

Let $I=\int_{0}^{2 \pi} \cos ^{99} x d x$

Then,
$I=2 \int_{0}^{\pi} \cos ^{99} x d x\left[\because \cos ^{99}(2 \pi-x)=\cos ^{99} x\right]$
Now, $\int_{0}^{\pi} \cos ^{99} x d x=0\left[\because \cos ^{99}(\pi-x)=\right.$ $-\cos 99 x]$

$$
\Rightarrow I=2 \times 0=0
$$

280 (a)

$$
\begin{aligned}
& F(x+\pi)=\int \sin ^{2}(x+\pi) d x \\
& =\int \sin ^{2} x d x \quad\left[\because \sin ^{2}(\pi+x)=\sin ^{2} x\right] \\
& =F(x)
\end{aligned}
$$

281 (a)

$$
\begin{gathered}
I=\int \frac{\left\{f(x) \phi^{\prime}(x)-f^{\prime}(x) \phi(x)\right\}}{f(x) \phi(x)}\{\log \phi(x) \\
-\log f(x)\} d x
\end{gathered}
$$

$=\int \log \frac{\phi x}{f(x)} d\left\{\log \frac{\phi(x)}{f(x)}\right\}=\frac{1}{2}\left\{\log \frac{\phi(x)}{f(x)}\right\}^{2}+c$

282 (d)
\because Period of $e^{\sin x}$ is 2π
$\therefore \int_{0}^{200} e^{\sin x} d x \neq 200 \lambda$
283 (d)
$\int_{0}^{\pi} \sqrt{1-\sin ^{2} x} d x$
$=\int_{0}^{\pi}|\cos x| d x$
$=\int_{0}^{\pi / 2} \cos x d x+\int_{\pi / 2}^{\pi}-\cos x d x$
$=1+1=2$
Hence, statement 1 is false. However, statement 2 is true

284 (b)
$I=\int \frac{d x}{x^{3} \sqrt{1+x^{4}}}=\int \frac{d x}{x^{5} \sqrt{\frac{1}{x^{4}}+1}}$
Let $\frac{1}{x^{4}}+1=t \Rightarrow d t=\frac{-4}{x^{5}} d x$
$\Rightarrow I=-\frac{1}{4} \int \frac{d t}{\sqrt{t}}=-\frac{1}{2} \sqrt{t}=-\frac{1}{2} \sqrt{1+\frac{1}{x^{4}}}+C$
Thus, both the statements are true but statement 2 is not a correct explanation of statement 1

285 (d)
For $x^{2}+2(a-1) x+a+5=0$
If $D<0 \Rightarrow 4(a-1)^{2}-4(a+5)<0$
$\Rightarrow a^{2}-3 a-4<0$ or $(a-4)(a+1)<0$ or
$-1<a<4$

Thus for these value of $a, x^{2}+2(a-1) x+a+5$ cannot be factorized, hence
$\int \frac{d x}{x^{2}+2(a-1) x+a+5}=\lambda \tan ^{-1}|\lg (x)|+c$

Obviously, $|\sin t|$ is non-differentiable at $x=\pi$
But
$\int_{0}^{x}|\sin t| d t=$
$0 x \sin t, 0 \leq x<\pi 0 \pi \sin t d t+\pi x-\sin t d t, \pi \leq x \leq 2 \pi$
$=\left\{\begin{array}{l}-\cos x+1,0 \leq x<\pi \\ 3+\cos x \pi \leq x \leq 2 \pi\end{array}\right.$
Which is continuous as well as differentiable at $x=\pi$

Hence, statement 1 is false

287 (c)

Both the statements are true independently, but statement 2 is not a correct explanation of statement 1

288 (a)
$I=\int_{0}^{1} \tan ^{-1} \frac{2(1-x)-1}{1+(1-x)-(1-x)^{2}} d x$
$=\int_{0}^{1} \tan ^{-1} \frac{1-2 x}{1+x-x^{2}} d x$
$=-I$
$\Rightarrow I=0$

289 (a)
Given that $\int_{a}^{b} \lg (x)\left|d x>\left|\int_{a}^{b} g(x) d x\right| \Rightarrow y=\mathrm{g}(x)\right.$ cuts the graph at least once, then $y=f(x) \mathrm{g}(x)$ changes sign at least once in (a, b), hence $\int_{a}^{b} f(x) g(x) d x$ can be zero

290 (a)

$$
\begin{aligned}
& \int e^{x} \sin x d x \\
& =\frac{1}{2} \int e^{x}(\sin x+\cos x+\sin x-\cos x) d x \\
& =\frac{1}{2}\left(\int e^{x}(\sin x+\cos x) d x\right. \\
& \left.\quad-\int e^{x}(\cos x-\sin x) d x\right)
\end{aligned}
$$

$=\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+c$
$=\frac{1}{2} e^{x}(\sin x-\cos x)+c$
291 (a)
Let $I_{m}=\int_{0}^{\pi} \frac{\sin 2 m x}{\sin x} d x$, Then,
$I_{m}-I_{m-1}=\int_{0}^{\pi} \frac{\sin 2 m x-\sin 2(m-1) x}{\sin x} d x$
$=\int_{0}^{\pi} 2 \cos (2 m-1) x d x$
$=\frac{2}{2 m-1}[\sin (2 m-1) x]_{0}^{\pi}=0$
$I_{m}=I_{m-1}$ for all $m \in N$
$\Rightarrow I_{m}=I_{m-1}=I_{m-2}=\ldots=I_{1}$
But, $I_{1}=\int_{0}^{\pi} \frac{\sin 2 x}{\sin x} d x=2 \int_{0}^{\pi} \cos x d x=0$
$\therefore \quad I_{m}=0$ for all $m \in N$
292 (d)
$F(x)=\int \sin ^{2} x d x=\int \frac{1-\cos 2 x}{2} d x$
$\Rightarrow F(x)=\frac{1}{4}(2 x-\sin 2 x)+c$
Since, $\quad F(x+\pi) \neq F(x)$
Hence, statement I is false.
But statement II is true as $\sin ^{2} x$ is possible with period π.
293 (d)
$f(x)=\int_{5 \pi / 4}^{x}(3 \sin t+4 \cos t) d t$
$\Rightarrow f^{\prime}(x)=3 \sin x+4 \cos x, x \in\left[\frac{5 \pi}{4}, \frac{4 \pi}{3}\right]$
These values of x are in third quadrant where both $\sin x$ and $\cos x$ are negative

Then, $f^{\prime}(x)<0$ for $x \in\left[\frac{5 \pi}{4}, \frac{4 \pi}{3}\right]$
Hence, $f(x)$ is decreasing for these values of x
Then, the least value of function occurs at $x=\frac{4 \pi}{3}$

$$
\begin{array}{r}
\Rightarrow f_{\min }=\int_{5 \pi / 4}^{4 \pi / 3}(3 \sin t+4 \cos t) d t \\
=\frac{3}{2}+\frac{1}{\sqrt{2}}-2 \sqrt{3}
\end{array}
$$

294 (a)

$$
\because \int \frac{1}{f(x)} d x=2 \log |f(x)|+c
$$

On differentiating both sides w.r.t. x, then
$\frac{1}{f(x)}=\frac{2}{f(x)} f^{\prime}(x)$
or $f^{\prime}(x)=\frac{1}{2}$
$\therefore f(x)=\frac{x}{2}+c$
If $f(0)=0$, then $f(x)=\frac{x}{2}$

295 (d)
$\because \int_{0}^{6}\{x+5\}^{2} d x=\int_{0}^{5}\{x+6\}^{2} d x$
$=\int_{0}^{5}\{x\}^{2} d x=5 \int_{0}^{1}\{x\}^{2} d x \quad(\because\{\cdot\}$ is periodic with period 1)
$=5 \int_{0}^{1} x^{2} d x=\frac{5}{3}$
296 (a)
$\because 5 x=3 x+2 x$
$\Rightarrow \tan 5 x=\frac{\tan 3 x+\tan 2 x}{1-\tan 3 x \tan 2 x}$
$\therefore \tan 5 x-\tan 3 x-\tan 2 x=\tan 5 x \tan 3 x \tan 2 x$

297 (b)

$\int \frac{\sin x d x}{x}$ cannot be evaluated as there does not exist any method for evaluating this (integration by parts also does not works);however, $\frac{\sin x}{x}(x>$ 0) is a differentiable function. Hence, both the statements are true but statement 2 is not a correct explanation of statement 1

298 (b)
In LHS, put $x^{n}=\tan ^{2} \theta$
$\Rightarrow n x^{n-1} d x=2 \tan \theta \sec ^{2} \theta d \theta$
$\therefore \int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{2}{n} \int_{0}^{\pi / 2} \tan ^{1-2+2 / n} \theta d \theta$
$=\frac{2}{n} \int_{0}^{\pi / 2} \tan ^{(2 / n)-1} \theta d \theta$
In RHS, put $x^{n}=\sin ^{2} \theta$
$\Rightarrow n x^{n-1} d x=2 \sin \theta \cos \theta d \theta$
$\therefore \int_{0}^{1} \frac{d x}{\left(1-x^{n}\right)^{1 / n}}$

$$
=\frac{2}{n} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos ^{2 / n} \theta} \sin ^{\frac{2}{n}-1} \theta \cos \theta d \theta
$$

$=\frac{2}{n} \int_{0}^{\pi / 2} \tan ^{(2 / n)-1 \theta} d \theta$
Hence, option (b) is correct

299 (a)

To prove $\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x$
Put $z=x-c$, then $d z=d x$
When $x=a+c, z=a$ and when $x=b+c, z=b$
$\therefore \int_{a+c}^{b+c} f(x-c) d x=\int_{a}^{b} f(z) d z=\int_{a}^{b} f(x) d x$
Thus, statement 2 is true
$\int_{a}^{b} f(x) d x=\int_{a+c}^{b+c} f(x-c) d x$
Putting $f(x)=\sin ^{100} x \cos ^{99} x, a=0, b=\pi$ and $c=-\frac{\pi}{2}$, we get
$\int_{0}^{\pi} \sin ^{100} x \cos ^{99} x d x$
$=\int_{-\pi / 2}^{\pi / 2} \sin ^{100}\left(x+\frac{\pi}{2}\right) \cos ^{99}\left(x+\frac{\pi}{2}\right) d x$
$=-\int_{-\pi / 2}^{\pi / 2} \cos ^{100} x \sin ^{99} x d x$
$=0\left[\because \cos ^{100} x \sin ^{99} x\right.$ is an odd function $]$
300 (a)

Statement II is true.

Now, $\int \frac{x e^{x}}{(x+1)^{2}} d x=\int \frac{(x+1-1) e^{x}}{(x+1)^{2}} d x$
$\int e^{x}\left\{\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right\} d x=\frac{e^{x}}{x+1}+c$
(By using statement II)
301 (a)
Given $f(x+1)+f(x+7)=0, \forall x \in R$
Replace x by $x-1$, we have $f(x)+f(x+6)=0$

Now, replace x by $x+6$, we have $f(x+6)+$ $f(x+12)=0$ (2)

From equations (1) and (2), we have
$f(x)=f(x+12)$
Hence, $f(x)$ is periodic with period 12
$\Rightarrow \int_{a}^{a+1} f(x) d x$ is independent of a if t is positive integral multiple of 12 then possible value of t is 12

302 (c)
$\because \sin \frac{x}{2}[1+2(\cos x$ $+\cos 2 x+\cos 3 x+\ldots+\cos n x)]$
$=\sin \left(n+\frac{1}{2}\right) x$
$\therefore \int_{0}^{\pi \sin \left(n+\frac{1}{2}\right) x} \frac{\sin \frac{x}{2}}{} d x$
$=\int_{0}^{\pi} d x+2\left[\int_{0}^{\pi} \cos d x\right.$

$$
\left.+\int_{0}^{\pi} \cos 2 x d x+\ldots+\int_{0}^{\pi} \cos n x d x\right]
$$

$=\pi+2(0+0+\ldots+0)$
$=\pi$
\Rightarrow Statement I is true.
$\because \int_{0}^{\pi} \sin m x d x=-\frac{1}{m}[\cos m x]_{0}^{\pi}$
$=-\frac{1}{m}(\cos m \pi-1)$
$=-\frac{1}{m}\left[(-1)^{m}-1\right]$
$\neq 0$ when m is odd

303 (d)
$\because f(x)$ is continuous in $[0,2]$

$\therefore \int_{0}^{2} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x$
$=\int_{0}^{1} x^{2} d x+\int_{1}^{2} \sqrt{x} d x$
$=\frac{1}{3}+\frac{2}{3}\left(2^{3 / 2}-1\right)$
$=\frac{1}{3}+\frac{4 \sqrt{2}}{3}-\frac{2}{3}$
$=\left(\frac{4 \sqrt{2}-1}{3}\right)$

304 (b)
$f(x)=\pi \sin \pi x+2 x-4$
$\Rightarrow \mathrm{g}(x)=\int(\pi \sin \pi x+2 x-4) d x$

$$
=-\cos \pi x+x^{2}-4 x+c
$$

Also $f(1)=3 \Rightarrow 1+1-4+c=3 \Rightarrow c=0$
$\Rightarrow \mathrm{g}(x)=-\cos \pi x+x^{2}-4 x$

Hence, both the statements are true but statement 2 is not a correct explanation of statement 1
$\because|\sin x|$ is an even function.
$\therefore \int_{-\pi / 2}^{\pi / 2}|\sin x| d x=2 \int_{0}^{\pi / 2}|\sin x| d x$
$=2 \int_{0}^{\pi / 2} \sin x d x$
$=-2(\cos x)_{0}^{\pi / 2}=-2(0-1)=2$

306 (c)
Let $P=\int \frac{d x}{(x-3 y)}=\frac{1}{2} \log \left\{(x-y)^{2}-1\right\}$
$\because P=\int \frac{d x}{(x-3 y)}$
$\Rightarrow \frac{d P}{d x}=\frac{1}{(x-3 y)}$
Also, $P=\frac{1}{2} \log \left\{(x-y)^{2}-1\right\}$
$\therefore \frac{d P}{d x}=\frac{2(x-y)\left(1-\frac{d y}{d x}\right)}{2\left\{(x-y)^{2}-1\right\}}=\frac{(x-y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}-1}$
Given, $y(x-y)^{2}=x$
$\Rightarrow \log y+2 \log (x-y)=\log x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}+\frac{2}{(x-y)}\left(1-\frac{d y}{d x}\right)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}\left(\frac{1}{y}-\frac{2}{x-y}\right)=\frac{1}{x}-\frac{2}{x-y}=\frac{x-y-2 y}{x(x-y)}$
$\Rightarrow \frac{d y}{d x}\left(\frac{x-3 y}{y(x-y)}\right)=-\frac{(x+y)}{x(x-y)}$
$\Rightarrow \frac{d y}{d x}=-\frac{y(x+y)}{x(x-3 y)}$
Now, from Eq. (ii),
$\frac{d P}{d x}=\frac{(x-y)\left\{1+\frac{y(x+y)}{x(x-3 y)}\right\}}{(x-y)^{2}-1}$
$=\frac{(x-y)\left\{\frac{x^{2}-2 x y+y^{2}}{x(x-3 y)}\right\}}{\left(\frac{x}{y}-1\right)}$
$=\frac{y(x-y)^{2}}{x(x-3 y)}=\frac{1}{x-3 y}$
\therefore It is true from Eq. (i).
$\therefore \int \frac{d x}{x-3 y}=\frac{1}{2} \log \left\{\{x-y)^{2}-1\right\}$
$\because y$ is variable.
$\therefore \int \frac{d x}{x-2 y} \neq \log (x-3 y)$
307 (c)

1. Let $I=\int\left(\frac{x^{2}-1}{x^{2}}\right) e^{\left(\frac{x^{2}+1}{x}\right)} d x=$

$$
\int\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)} d x
$$

put $x+\frac{1}{x}=t \Rightarrow\left(1-\frac{1}{x^{2}}\right) d x=d t$
$\therefore I=\int e^{t} d t=e^{t}+c=e^{\frac{x^{2}+1}{x}}+c$
(R) Let $I=\int f^{\prime}(x) e^{f(x)} d x$

Put $f(x)=t \Rightarrow f^{\prime}(x) d x=d t$
$\therefore I=\int e^{t} d t=e^{f(x)}+c$

Thus, A is true but R is false
308 (b)
For $0<x<1$, then
$x>x^{2}$
$\Rightarrow-x<-x^{2}$
$\Rightarrow e^{-x}<e^{-x^{2}}$
$\Rightarrow \int_{0}^{1} e^{-x} \cos ^{2} x d x<\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$
If $f(x) \geq \mathrm{g}(x)$, then
$\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$

309 (a)
a. $I_{1}=\int_{\pi / 6}^{\pi / 3} \sec ^{2} \theta f(2 \sin 2 \theta) d \theta$

Applying property $\int_{a}^{b} f(a+b-x) d x=$ $a b f x d x$
$I_{1}=\int_{\pi / 6}^{\pi / 3} \sec ^{2}\left(\frac{\pi}{2}-\theta\right) f\left(2 \sin 2\left(\frac{\pi}{2}-\theta\right)\right) d \theta$
$I_{1}=\int_{\pi / 6}^{\pi / 3} \operatorname{cosec}^{2} \theta f(2 \sin 2 \theta) d \theta=I_{2}$
b. $f(x+1)=f(x+3) \Rightarrow f(x)=f(x+2)$
$\Rightarrow f(x)$ is periodic with period 2
Then $\int_{a}^{a+b} f(x) d x$ is independent of a, for which b is multiple of 2
$\Rightarrow b=2,4,6 \ldots$
c. Let $I=\int_{1}^{4} \frac{\tan ^{-1}\left[x^{2}\right]}{\tan ^{-1}\left[x^{2}\right]+\tan ^{-1}\left[25+x^{2}-10 x\right]}$

Applying $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$, we get
$I=\int_{1}^{4} \frac{\tan \left[(5-x)^{2}\right]}{\tan ^{-1}\left[(5-x)^{2}\right]+\tan ^{-1}\left[x^{2}\right]} d x(2)$
Adding equations (1) and (2), we get
$2 I=\int_{1}^{4} d x \Rightarrow 2 I=3 \Rightarrow I=3 / 2$
d. Let $y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}=\sqrt{x+y}$
$\Rightarrow y^{2}-y-x=0$
$\Rightarrow y=\frac{1 \pm \sqrt{1+4 x}}{2.1}$
$\Rightarrow y=\frac{1+\sqrt{1+4 x}}{2} \quad(\because y>1)$
$\Rightarrow I=\int_{0}^{2} \frac{1+\sqrt{1+4 x}}{2} d x=\left[\frac{x}{2}+\frac{(1+4 x)^{3 / 2}}{\frac{3}{2} \cdot 2 \cdot 4}\right]_{0}^{2}$
$=\left[\left(1+\frac{27}{12}\right)-\left(0+\frac{1}{12}\right)\right]=1+\frac{26}{12}=\frac{19}{6}$
$\Rightarrow[I]=3$
310 (b)
a. $\lim _{n \rightarrow \infty}\left[\frac{\int_{0}^{2}\left(1+\frac{t}{n+1}\right)^{n} d t}{n+1}\right]$
$=\lim _{n \rightarrow \infty}\left[\left(1+\frac{t}{n+1}\right)^{n+1}\right]_{0}^{2}$
$=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n+1}\right)^{n+1}-1$
$=e^{2}-1$
b. $f^{\prime}(x)=f(x) \Rightarrow f(x)=C e^{x}$ and since $f(0)=1$
$\therefore 1=f(0)=C$
$\therefore f(x)=e^{x}$ and hence $g(x)=x^{2}-e^{x}$
Thus, $\int_{0}^{1} f(x) \mathrm{g}(x) d x$
$=\int_{0}^{1}\left(x^{2} e^{x}-e^{2 x}\right) d x=\left.x^{2} e^{x}\right|_{0} ^{1}$
$-2 \int_{0}^{1} x e^{x} d x-\left.\frac{e^{2 x}}{2}\right|_{0} ^{1}$
$=(e-0)-\left.2 x e^{x}\right|_{0} ^{1}++\left.2 e^{x}\right|_{0} ^{1}-\frac{1}{2}\left(e^{2}-1\right)$
$=(e-0)-2 e+2 e-2-\frac{1}{2}\left(e^{2}-1\right)$
$=e-\frac{1}{2} e^{2}-\frac{3}{2}$
c. $I=\int_{0}^{1} e^{e^{x}}\left(1+x e^{x}\right) d x$

Let $e^{x}=t$
$\Rightarrow \int_{1}^{e} e^{t}(1+t \log t) \frac{d t}{t}$
$=\int_{1}^{e} e^{t}\left(\frac{1}{t}+\log t\right) d t$
$=\left[e^{t} \log t\right]_{1}^{e}$
$=e^{e}$
d. $L=\lim _{k \rightarrow 0} \frac{\int_{0}^{k}(1+\sin 2 x)^{\frac{1}{x}} d x}{k}\left(\right.$ form $\left.\frac{0}{0}\right)$
$\Rightarrow L=\lim _{k \rightarrow 0}(1+\sin 2 k)^{\frac{1}{k}}$
$=e^{\lim _{k \rightarrow 0} \frac{1}{k}(\sin 2 k)}=e^{2}$
311 (a)
a. $\int_{-1}^{1}[x+[x+[x]]] d x$ (use property $[x+n]=[x]+n$ if n is integer)
$=\int_{-1}^{1} 3[x] d x=3 \int_{-1}^{1}[x] d x=3 \int_{0}^{1}([x]+[-x]) d x$
$=-3(\operatorname{as}[x]+[-x]=-1)$
b. $\int_{2}^{5}([x]+[-x]) d x=\int_{2}^{5}-1 d x=-3$
$\operatorname{cosgn}(x-[x])=\left\{\begin{array}{l}1, \text { if } x \text { is not an integer } \\ 0, \text { if } x \text { is an integer }\end{array}\right.$
Hence, $\int_{-1}^{3} \operatorname{sgn}(x-[x]) d x=4(1-0)=4$
d. Let $I=25 \int_{0}^{\pi / 4}\left(\tan ^{6}(x-[x])+\tan ^{4}(x-\right.$ x)) $d x$
$\left\{\because 0<x \leq \frac{\pi}{4} \Rightarrow[x]=0\right\}$
$\therefore I=25 \int_{0}^{\pi / 4}\left(\tan ^{6} x+\tan ^{4} x\right) d x$
$=25 \int_{0}^{\pi / 4} \tan ^{4} x\left(\tan ^{2} x+1\right) d x$
$=25 \int_{0}^{\pi / 4} \tan ^{4} x \sec ^{2} x d x$
$=25\left(\frac{\tan ^{5} x}{5}\right)_{0}^{\pi / 4}$
$=25 \times \frac{1}{5}=5$
312 (c)
a. $\int \frac{x^{2}-x+1}{x^{3}-4 x^{2}+4 x} d x=\int\left[\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}\right] d x$
b. $\int \frac{x^{2}-1}{x(x-2)^{3}} d x=\int\left[\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}+\frac{D}{(x-2)^{3}}\right] d x$
c. $\int \frac{x^{3}+1}{x(x-2)^{2}} d x=\int\left[\left(\frac{x^{3}-1}{x(x-2)^{2}}-1\right)+1\right] d x$
$=\int\left[\left(\frac{x^{3}+1-x(x-2)^{2}}{x(x-2)^{2}}\right)+1\right] d x$
$=\int\left[\left(\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}\right)+1\right] d x$
d. $\int \frac{x^{5}+1}{x(x-2)^{3}} d x=\int\left[x+k+\frac{\mathrm{g}(x)}{x(x-2)^{3}}\right] d x$,

Where k is constant $a \neq 0$ and $\mathrm{g}(x)$ is a polynomial of degree less than 4

313 (a)

a. $I=\int_{-2}^{2}\left(\alpha x^{3}+\beta x+\gamma\right) d x$
$\alpha x^{3}+\beta x$ is an odd function
$I=0+2 \int_{0}^{2} \gamma d x=2.2 \gamma=4 \gamma$
b. $I=\frac{1}{2} \int_{0}^{1} 2 \sin \alpha x \sin \beta x d x$
$=\frac{1}{2} \int_{0}^{1}(\cos (\alpha-\beta) x-\cos (\alpha+\beta) x) d x$
$=\frac{1}{2}\left[\frac{\sin (\alpha-\beta) x}{\alpha-\beta}-\frac{\sin (\alpha+\beta) x}{\alpha+\beta}\right]_{0}^{1}$
$=\frac{1}{2}\left[\frac{\sin (\alpha-\beta)}{\alpha-\beta}-\frac{\sin (\alpha+\beta)}{\alpha+\beta}\right]$
Also, $2 \alpha=\tan \alpha$ and $2 \beta=\tan \beta$
$\Rightarrow 2(\alpha-\beta)=\tan \alpha-\tan \beta$ and $2(\alpha+\beta)=$
$\tan \alpha+\tan \beta$
$2(\alpha-\beta)=\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta}$ and $2(\alpha+\beta)=\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta}$
Substituting these values, we get,
$I=(\cos \alpha \cos \beta)-(\cos \alpha \cos \beta)=0$
c. $f(x+\alpha)+f(x)=0$
$\Rightarrow f(x+2 \alpha)+f(x+\alpha)=0$
$\Rightarrow f(x+2 \alpha)=f(x)$
$\Rightarrow f(x)$ is periodic with period 2α
$\Rightarrow \int_{\beta}^{\beta+2 \gamma \alpha}\left(\alpha x^{3}+\beta x+\gamma\right) d x=\gamma \int_{0}^{2 \alpha} f(x) d x$
d. Let $I=\int_{0}^{\alpha}[\sin x] d x, \alpha \in[(2 \beta+1) \pi,(2 \beta+$ $2 \pi, \beta \in N$,
[where [•] denotes the greatest integer function]
$I=\int_{0}^{2 \beta \pi}[\sin x] d x+\int_{2 \beta \pi}^{(2 \beta+1) \pi}[\sin x] d x$

$$
+\int_{(2 \beta+1) \pi}^{\alpha}[\sin x] d x
$$

$=\beta \int_{0}^{2 \pi}[\sin x] d x+0+\int_{(2 \beta+1) \pi}^{\alpha}(-1) d x$
$=-\beta \pi+(2 \beta+1) \pi-\alpha$
$=(\beta+1) \pi-\alpha$
$\Rightarrow \gamma \int_{0}^{\alpha}[\sin x] d x$ depends on α, β and γ
314 (a)
a. Let $I=\int \frac{2^{x}}{\sqrt{1-4^{x}}} d x=\frac{1}{\log 2} \int \frac{1}{\sqrt{1-t^{2}}} d t$

Putting $2^{x}=t, 2^{x} \log 2 d x=d t$
$I=\frac{1}{\log 2} \sin ^{-1}\left(\frac{t}{1}\right)+C=\frac{1}{\log 2} \sin ^{-1}\left(2^{x}\right)+C$
$\therefore K=\frac{1}{\log 2}$
b. $\int \frac{d x}{(\sqrt{x})^{2}+(\sqrt{x})^{7}}=\int \frac{d x}{(\sqrt{x})^{7}\left(1+\frac{1}{(\sqrt{x})^{5}}\right)}$
$\operatorname{Put} \frac{1}{(\sqrt{x})^{5}}=y, \frac{d y}{d x}=-\frac{5}{2(\sqrt{x})^{7}}$
$\therefore I=\int \frac{-2 d y}{5(1+y)}=-\frac{2}{5} \ln |1+y|+C$

$$
=\frac{2}{5} \ln \left(\frac{1}{1+\frac{1}{(\sqrt{x})^{5}}}\right)
$$

$\Rightarrow a=\frac{2}{5}, k=\frac{5}{2}$
c.Add and subtract $2 x^{2}$ in the numerator, then $k=1$ and $m=1$
$\mathrm{d} . I=\int \frac{d x}{5+4 \cos x}$
$=\int \frac{d x}{5\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right)+4\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}$
$=\int \frac{d x}{9 \cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}}=\int \frac{\sec ^{2} \frac{x}{2}}{9+\tan ^{2} \frac{x}{2}} d x$
Let $t=\tan \frac{x}{2} \Rightarrow 2 d t=\sec ^{2} \frac{x}{2} d x$
$\Rightarrow I=\int \frac{2 d t}{9+t^{2}}=\frac{2}{3} \tan ^{-1}\left(\frac{t}{3}\right)+C$
$=\frac{2}{3} \tan ^{-1}\left(\frac{\tan \left(\frac{x}{2}\right)}{3}\right)+C$
$\Rightarrow k=\frac{2}{3}, m=\frac{1}{3}$
315 (b)
a. $\int \frac{e^{2 x}-1}{e^{2 x}+1} d x$
$=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
$=\int \frac{\left(e^{x}+e^{-x}\right)^{\prime}}{e^{x}+e^{-x}} d x$
$=\log \left(e^{x}+e^{-x}\right)$
$=\log \left(e^{2 x}+1\right)-x+C$
b. $I=\int \frac{1}{\left(e^{x}+e^{-x}\right)^{2}} d x=\int \frac{e^{2 x}}{\left(e^{2 x}+1\right)^{2}} d x$

Put $e^{2 x}+1=t \Rightarrow 2 e^{2 x} d x=d t$, we get
$\Rightarrow I=\frac{1}{2} \int \frac{1}{t^{2}} d t=-\frac{1}{2} \frac{1}{t}+C=-\frac{1}{2\left(e^{2 x}+1\right)}+C$
c. $I=\int \frac{e^{-x}}{1+e^{x}} d x=\int \frac{e^{-x} e^{-x}}{e^{-x}+1} d x$

Put $e^{-x}+1=t \Rightarrow-e^{-x} d x=d t$
$\Rightarrow I=-\int \frac{(t-1)}{t} d t=\int\left(\frac{1}{t}-1\right) d t$
$=\log t-t+C$
$=\log \left(e^{-x}+1\right)-\left(e^{-x}+1\right)+C$
$=\log \left(e^{x}+1\right)-x-e^{-x}-1+C$
$=\log \left(e^{x}+1\right)-x-e^{-x}+C$
$\mathrm{d} . I=\int \frac{1}{\sqrt{1-e^{2 x}}} d x=\int \frac{e^{-x}}{\sqrt{e^{-2 x}-1}} d x$
Put $e^{-x}=t \Rightarrow-e^{-x} d x=d t$,
$\Rightarrow I=-\int \frac{1}{\sqrt{t^{2}-1}} d t$
$=-\log \left[t+\sqrt{t^{2}-1}\right]+C$
$=-\log \left[e^{-x}+\sqrt{e^{-2 x}-1}\right]+C$
$=-\log \left[\frac{1}{e^{x}}+\frac{\sqrt{1-e^{2 x}}}{e^{x}}\right]+C$
$=-\log \left[1+\sqrt{1-e^{2 x}}\right]+\log e^{x}+C$
$=x-\log \left[1+\sqrt{1-e^{2 x}}\right]+C$
316 (c)
$\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{1}{n+1}+\frac{2}{n+2}+\ldots+\frac{3 n}{n+3 n}\right\}$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{3 n} \frac{1}{n}\left(\frac{r}{n+r}\right)=\int_{0}^{3} \frac{x}{1+x} d x$
$=\int_{0}^{3}\left(1-\frac{1}{1+x}\right) d x$
$=[x-\operatorname{In}(1+x)]_{0}^{3}=3-\operatorname{In} 4$
$=3-2 \operatorname{In} 2$

317 (d)
For $0 \leq x \leq 1$, we have
$0 \leq x^{2} \leq 1$
$\Rightarrow e^{0} \leq e^{x^{2}} \leq e^{1}$
$\Rightarrow 1 \leq e^{x^{2}} \leq e$
$\therefore m=1, M=e$
$\Rightarrow 1 \cdot(1-0) \leq \int_{0}^{1} e^{x^{2}} d x \leq e \cdot(1-0)$
$\Rightarrow 1 \leq \int_{0}^{1} e^{x^{2}} d x \leq e$
318 (d)
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{3}} \quad\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow 0} \frac{\sin x \cdot 2 x}{3 x^{2}}$
$=\frac{2}{3} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{2}{3} \cdot 1=\frac{2}{3}$
319 (d)
$\because I_{n}=\int \tan ^{n-2} x \cdot\left(\sec ^{2} x-1\right) d x$
$=\frac{\tan ^{n-1} x}{(n-1)}-I_{n-2}$
$\because \lambda=-1$
320 (d)
Given, $I=\int \frac{d x}{(x-1)^{2} \sqrt[4]{\left(\frac{x+2}{x-1}\right)^{5}}}$
Put $\frac{x+2}{x-1}=t \Rightarrow \frac{-3}{(x-1)^{2}} d x=d t$
$\therefore I=-\frac{1}{3} \int \frac{d t}{x^{5 / 4}}=\frac{4}{3}\left[\frac{1}{t^{-1 / 4}}\right]+c=\frac{4}{3}\left[\sqrt[4]{\frac{x-1}{x+2}}\right]+c$
$\therefore A=\frac{4}{3}$
321 (d)
From the given data, we can conclude that $\frac{d y}{d x}=$
0 , at $x=1,2,3$
Hence, $f^{\prime}(x)=a(x-1)(x-2)(x-3), a>0$
$\Rightarrow f(x)=\int a\left(x^{3}-6 x^{2}+11 x-6\right) d x$
$=a \int\left(x^{3}-6 x^{2}+11 x-6\right) d x$
$=a\left(\frac{x^{4}}{4}-2 x^{3}+\frac{11 x^{2}}{2}+6 x\right)+C$
Also $f(0)=1 \Rightarrow c=1$
$\Rightarrow f(x)=a\left(\frac{x^{4}}{4}-2 x^{3}+\frac{11 x^{2}}{2}-6 x\right)+1$
$f(1)=a\left(-\frac{9}{4}\right)+1, f(2)=-2 a+1$,
$f(3)=a\left(-\frac{9}{4}\right)+1$
\Rightarrow The graph is symmetrical about line $x=2$ and the range is $[f(1), \infty)$ or $[f(3), \infty)]$
$f(1)=-8 \Rightarrow a=4($ from (2))
$\Rightarrow f(2)=-7$
322 (a)

$$
\begin{gathered}
A=\left[\begin{array}{ll}
x & x \\
x & x
\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{ll}
2 x^{2} & 2 x^{2} \\
2 x^{2} & 2 x^{2}
\end{array}\right], A^{3} \\
=\left[\begin{array}{ll}
2^{2} x^{3} & 2^{2} x^{3} \\
2^{2} x^{3} & 2^{2} x^{3}
\end{array}\right]
\end{gathered}
$$

and so on
Then $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots+$
$=\left[\begin{array}{c}1+x+\frac{2 x^{2}}{2!} x+\frac{2 x^{2}}{2!}+ \\ +\frac{2^{2} x^{3}}{3!}+\cdots \frac{2^{2} x^{3}}{3!}+\cdots \\ x+\frac{2 x^{2}}{2!}+1+x+\frac{2 x^{2}}{2!} \\ \frac{2^{2} x^{3}}{3!}+\cdots+\frac{2^{2} x^{3}}{3!}+\cdots\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{2}\left(\begin{array}{c}1+2 x \\ +\frac{2^{2} x^{2}}{2!}+ \\ \frac{2^{3} x^{3}}{3!}+\cdots\end{array}\right)+\frac{1}{2} & \frac{1}{2}\binom{1+2 x+}{\frac{2^{2} x^{2}}{2!}+\cdots}-\frac{1}{2} \\ \frac{1}{2}\left(\begin{array}{c}1+2 x \\ +\frac{2^{2} x^{2}}{2!} \\ +\frac{2^{3} x^{3}}{3!}+\cdots\end{array}\right)-\frac{1}{2} & \frac{1}{2}\binom{1+2 x+}{\frac{2^{2} x^{2}}{2!}+\cdots}+\frac{1}{2}\end{array}\right]$
$=\frac{1}{2}\left[\begin{array}{ll}e^{2 x}+1 & e^{2 x}-1 \\ e^{2 x}-1 & e^{2 x}+1\end{array}\right]$
$\Rightarrow f(x)=e^{2 x}+1 \operatorname{andg}(x)=e^{2 x}-1$
$\int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
$=\log \left|e^{x}-e^{-x}\right|+C$
323 (d)
Here $a=1>0$; therefore we make the
substitution $\sqrt{x^{2}+2 x+2}=t-x$. Squaring both
sides of this equality and reducing the similar terms, we get
$2 x+2 t x=t^{2}-2 \Rightarrow x$
$=\frac{t^{2}-2}{2(1+t)} \Rightarrow d x=\frac{t^{2}+2 t+2}{2(1+t)^{2}} d t ;$
$1+\sqrt{x^{2}+2 x+2}$
$=1+t-\frac{t^{2}-2}{2(1+t)}=\frac{t^{2}+4 t+4}{2(1+t)}$
Substituting into the integral, we get

$$
\begin{aligned}
\left.I=\int \frac{2(1+t)\left(t^{2}+2 t+2\right)}{\left(t^{2}+4 t\right.}+4\right) 2(1+t)^{2}
\end{aligned} t t .
$$

Now let us expand the obtained proper rational fraction into partial fractions:
$\frac{t^{2}+2 t+2}{(t+1)(t+2)^{3}}=\frac{A}{t+1}+\frac{B}{t+2}+\frac{D}{(t+2)^{2}}$
$\int_{2}^{x} f(t) d t=\frac{x^{2}}{2}+\int_{x}^{2} t^{2} f(t) d t$
Differentiating w.r.t. x, we get

$f(x)=x+\left(-x^{2} f(x)\right)$
$\Rightarrow f(x)\left[1+x^{2}\right]=x$
$\Rightarrow y=f(x)=\frac{x}{1+x^{2}}$
$\Rightarrow y x^{2}-x+y=0$
Since x is real, $D \geq 0$
$\Rightarrow 1-4 y^{2} \geq 0$
$\Rightarrow y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Also, $f(x)$ is an odd function, hence $\int_{-2}^{2} f(x) d x=$ 0
$f^{\prime}(x)=\frac{1+x^{2}-2 x^{2}}{1+x^{2}}=\frac{1-x^{2}}{1+x^{2}} \geq 0$
$\Rightarrow x^{2}-1 \leq 0$
$\Rightarrow x \in[-1,1]$
325 (b)
$f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t(1)$
$=x^{2}+\int_{0}^{x} e^{-(x-t)} f(x-(x-t)) d t$
$\left[\operatorname{Using} \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right]$
$x^{2}+e^{-x} \int_{0}^{x} e^{t} f(t) d t$
Differentiating w.r.t. x, we get
$\Rightarrow f^{\prime}(x)=2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+e^{-x} e^{x} f(x)$
$=2 x-e^{-x} \int_{0}^{x} e^{t} f(t) d t+f(x)$
$\Rightarrow f^{\prime}(x)=2 x+x^{2} \quad[$ using equation (2)]
$\Rightarrow f(x)=\frac{x^{3}}{3}+x^{2}+c$

Also $f(0)=0[$ from equation (1)]
$\Rightarrow f(x)=\frac{x^{3}}{3}+x^{2}$
$\Rightarrow f^{\prime}(x)=x^{2}+2 x$
$\Rightarrow f^{\prime}(x)=0$ has real roots, hence $f(x)$ is nonmonotonic. Hence $f(x)$ is many-one, but range is R, hence surjective
$\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(\frac{x^{3}}{3}+x^{2}\right) d x$
$=\left[\frac{x^{4}}{12}+\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{12}+\frac{1}{3}=\frac{5}{12}$
(c)
$f(x)-\lambda \int_{0}^{\pi / 2} \sin x \cot t f(t) d t=\sin x$
$\Rightarrow f(x)-\lambda \sin x \int_{0}^{\pi / 2} \cos t f(t) d t=\sin x$
$\Rightarrow f(x)-A \sin x=\sin x$ or
$f(x)=(A+1) \sin x$, where
$A=\lambda \int_{0}^{\pi / 2} \cos t f(t) d t$
$\Rightarrow A=\lambda \int_{0}^{\pi / 2} \cos t(A+1) \sin t d t$
$=\frac{\lambda(A+1)}{2} \int_{0}^{\pi / 2} \sin 2 t d t$
$=\frac{\lambda(A+1)}{2}\left[\frac{-\cos 2 t}{2}\right]_{0}^{\pi / 2}$
$=\frac{\lambda(A+1)}{2}$
$\Rightarrow A=\frac{\lambda}{2-\lambda}$
$\Rightarrow f(x)=\left(\frac{\lambda}{2-\lambda}+1\right) \sin x$
$\Rightarrow f(x)=\left(\frac{2}{2-\lambda}\right) \sin x$
$\left(\frac{2}{2-\lambda}\right) \sin x=2$
$\Rightarrow \sin x=(2-\lambda)$
$\Rightarrow|2-\lambda| \leq 1$
$\Rightarrow-1 \leq \lambda-2 \leq 1$
$\Rightarrow 1 \leq \lambda \leq 3$
$\pi / 2$
$\int_{0} f(x) d x=3$
$\Rightarrow \int_{0}^{\pi / 2} \frac{2}{2-\lambda} \sin x d x=3$
$\Rightarrow-\left[\frac{2}{2-\lambda} \cos x\right]_{0}^{\pi / 2}=3$
$\Rightarrow \frac{2}{2-\lambda}=3$
$\Rightarrow \lambda=4 / 3$
(b)
$f(x)$ is an odd function $\Rightarrow f(x)=-f(-x)$
$\phi(-x)=\int_{a}^{-x} f(t) d t$, put $t=-y$
$\Rightarrow \phi(-x)=\int_{-a}^{x} f(-t)(-d t)$

$$
=\int_{-a}^{x} f(t) d t=\int_{-a}^{a} f(t) d t
$$

$+\int_{a}^{x} f(t) d t=0+\int_{a}^{x} f(t) d t=\phi(x)$
(b)

Let $I(a)=\int_{0}^{1} \frac{x^{a}-1}{\log x} d x$
Differentiating w.r.t. a keeping x as constant
$\therefore \frac{d I(a)}{d a}=\int_{0}^{1} \frac{d}{d a}\left(\frac{x^{a}-1}{\log x}\right) d x$
$=\int_{0}^{1} \frac{x^{a} \log x}{\log x} d x$
$=\int_{0}^{1} x^{a} d x$
$=\left.\frac{x^{a+1}}{a+1}\right|_{0} ^{1}$
$=\frac{1}{(a+1)}$
Integrating both sides w.r.t. a, we get
$I(a)=\log (a+1)+c$
For $a=0, I(0)=\log 1+c[$ from equation (1)]
$0=0+c$
$\therefore I=\log (a+1)$
(b)
$f(x)=\sin x+\sin x \int_{-\pi / 2}^{\pi / 2} f(t) d t$

$$
+\cos x \int_{-\pi / 2}^{\pi / 2} t f(t) d t
$$

$=\sin x\left(1+\int_{-\pi / 2}^{\pi / 2} f(t) d t\right)+\cos x \int_{-\pi / 2}^{\pi / 2} t f(t) d t$
$=A \sin x+B \cos x$
Thus, $A=1+\int_{-\pi / 2}^{\pi / 2} f(t) d t$
$=1+\int_{-\pi / 2}^{\pi / 2}(A \sin t+B \cos t) d t$
$=1+2 B \int_{0}^{\pi / 2} \cos t d t$
$\Rightarrow A=1+2 B$ (1)
$B=\int_{-\pi / 2}^{\pi / 2} t f(t) d t$
$=\int_{-\pi / 2}^{\pi / 2} t(A \sin t+B \cot t) d t$
$=2 A \int_{0}^{\pi / 2} t \sin t d t$
$=2 A[-t \cos t+\sin t]_{0}^{\pi / 2}$
$\Rightarrow B=2 A(2)$
From equations (1) and (2), we get
$A=-1 / 3, B=-2 / 3$
$\Rightarrow f(x)=-\frac{1}{3}(\sin x+2 \cos x)$
Thus, the range of $f(x)$ is $\left[-\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3}\right]$
$f(x)=-\frac{1}{3}(\sin x+2 \cos x)$
$=-\frac{\sqrt{5}}{3} \sin \left(x+\tan ^{-1} 2\right)$
$=-\frac{\sqrt{5}}{3} \cos \left(x-\tan ^{-1} \frac{1}{2}\right)$
$f(x)$ is invertible if $-\frac{\pi}{2} \leq x+\tan ^{-1} 2 \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{2}-\tan ^{-1} 2 \leq x \leq \frac{\pi}{2}-\tan ^{-1} 2$
or $0 \leq x-\tan ^{-1} \frac{1}{2} \leq \pi$
$\Rightarrow \tan ^{-1} \frac{1}{2} \leq x \leq \pi+\tan ^{-1} \frac{1}{2}$
or $\pi \leq x-\tan ^{-1} \frac{1}{2} \leq 2 \pi$
$\Rightarrow x \in\left[\pi+\cot ^{-1} 2,2 \pi+\cot ^{-1} 2\right]$
$\int_{0}^{\pi / 2} f(x) d x=-\frac{1}{3} \int_{0}^{\pi / 2}(\sin x+2 \cos x) d x$
$=-\frac{1}{3}[-\cos x+2 \sin x]_{0}^{\pi / 2}$
$=-1$
330 (6)
$y=f(x) \Rightarrow x=f^{-1}(y) \Rightarrow x=\mathrm{g}(y)$
Given $y=f(x)=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{3}}}$
$\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{3}}} \Rightarrow \frac{d x}{d y}=\sqrt{1+x^{3}}$
$\mathrm{g}^{\prime}(y)=\sqrt{1+\mathrm{g}^{3}(y)}$
$\mathrm{g}^{\prime \prime}(y)=\frac{3 \mathrm{~g}^{2}(y) \mathrm{g}^{\prime}(y)}{2 \sqrt{1+\mathrm{g}^{3}(y)}}$
$\Rightarrow 2 \mathrm{~g}^{\prime \prime}(y)=3 \mathrm{~g}^{2}(y) \frac{\mathrm{g}^{\prime}(y)}{\sqrt{1+\mathrm{g}^{3}(y)}}$
$=3 \mathrm{~g}^{2}(y) \frac{\sqrt{1+\mathrm{g}^{3}(y)}}{\sqrt{1+\mathrm{g}^{3}(y)}}=3 \mathrm{~g}^{2}(y)$
$\Rightarrow 2 \mathrm{~g}^{\prime \prime}(y)=3 \mathrm{~g}^{2}(y)$
331 (8)
$I_{11}=\int_{0}^{1} \underbrace{\left(1-x^{5}\right)^{11}}_{\mathrm{I}} \cdot \underbrace{4}_{\text {II }} d x$
$\left.=\left(1-x^{5}\right)^{11} \cdot x\right]_{0}^{1}+11 \int_{0}^{1}\left(1-x^{5}\right)^{10} 5 x^{4} \cdot x d x$
$=0-55 \int_{0}^{1}\left(1-x^{5}\right)^{10}\left(1-x^{5}-1\right) d x$
$=-55 \int_{0}^{1}\left(1-x^{5}\right)^{11} d x+55 I_{10}$
$\Rightarrow 56 I_{11}=55 I_{10}$
$\Rightarrow \frac{I_{10}}{I_{11}}=\frac{56}{55}$
332 (0)
\because Integrand is discontinuous at $\frac{\pi}{2}$, then
$\int_{0}^{\pi / 2} 0 \cdot d x+\int_{\pi / 2}^{3 \pi / 2} 0 \cdot d x=0$
$\because 0<x<\frac{\pi}{2},\left|\tan ^{-1} \tan x\right|=\left|\sin ^{-1} \sin x\right|$ and
$\frac{\pi}{2}<x<\frac{3 \pi}{2},\left|\tan ^{-1} \tan x\right|=\left|\sin ^{-1} \sin x\right|$
333 (3)
$\frac{d}{d x}(A \ln |\cos x+\sin x-2|+B x+C)$
$=A \frac{\cos x-\sin x}{\cos x+\sin x-2}+B$
$=\frac{A \cos x-A \sin x+B \cos x+B \sin x-2 B}{\cos x+\sin x-2}$
$\therefore 2=A+B,-1=-A+B, \lambda=-2 B$
$\therefore A=3 / 2, B=1 / 2, \lambda=-1$
$\Rightarrow A+B+|\lambda|=3$

334 (4)
$I=\int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}}{x^{2}-x+1} d x(1)$
$I=\int_{0}^{1} \frac{\sin ^{-1} \sqrt{1-x}}{x^{2}-x+1} d x=\int_{0}^{1} \frac{\cos ^{-1} \sqrt{x}}{x^{2}-x+1} d x(2)$
On adding equations (1) and (2), we get
$2 I=\int_{0}^{1} \frac{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}{x^{2}-x+1} d x$
$=\frac{\pi}{2} \int_{0}^{1} \frac{d x}{x^{2}-x+1} d x$
$=\frac{\pi}{2} \int_{0}^{1} \frac{d x}{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
$2 I=\frac{\pi}{2} \frac{1}{\left(\frac{\sqrt{3}}{2}\right)}\left[\tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)\right]_{0}^{1}=\frac{\pi^{2}}{3 \sqrt{3}}$
Hence, $I=\frac{\pi^{2}}{6 \sqrt{3}}=\frac{\pi^{2}}{\sqrt{108}} \equiv \frac{\pi^{2}}{\sqrt{n}}$
335 (4)
$\int x^{2} \cdot e^{-2 x} d x=e^{-2 x}\left(a x^{2}+b x+c\right)+d$
Differentiating both sides, we get
$x^{2} \cdot e^{-2 x}=e^{-2 x}(2 a x+b)$ $+\left(a x^{2}+b x+c\right)\left(-2 e^{-2 x}\right)$
$=e^{-2 x}\left(-2 a x^{2}+2(a-b) x+b-2 c\right)$
$\Rightarrow a=-\frac{1}{2}, 2(a-b)=0, b-2 c=0$
$\Rightarrow a=-\frac{1}{2}, b=-\frac{1}{2}, c=-\frac{1}{4}$
336
(6)
$I=\int_{0}^{\infty}\left(x^{2}\right)^{n} \cdot x e^{-x^{2}} d x$
Put $x^{2}=t \Rightarrow x d x=d t / 2$
$\Rightarrow I=\frac{1}{2} \int_{0}^{\infty} t^{n} e^{-t} d t$
$\left.=\frac{1}{2}\left[-t^{n} e^{-t}\right]_{0}^{\infty}+n \int_{0}^{\infty} t^{n-1} e^{-t} d t\right]$
$=\frac{1}{2}\left[0+n \int_{0}^{\infty} t^{n-1} e^{-t} d t\right]$
$\Rightarrow I=\frac{n!}{2}=360$
$\Rightarrow n=6$
337
(2)
$I=\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{\left(x^{2}+1\right)^{2}-\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x$

$$
=\int_{\sqrt{2}-1}^{\sqrt{2}+1}\left(1-\frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}\right) d x
$$

$=2-\underbrace{\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x}_{\mathrm{I}_{1}}$
$I_{1}=\int_{1 / a}^{a} \frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x$ where $(a=\sqrt{2}+1)$;
Put $x=\frac{1}{t} \Rightarrow d x=-\frac{1}{t^{2}} d t$
$=\int_{a}^{1 / a} \frac{\frac{1}{t^{2}}-1}{\left(\frac{1}{t^{2}}+1\right)^{2}} \cdot\left(-\frac{1}{t^{2}}\right) d t=-\int_{a}^{1 / a} \frac{\left(1-t^{2}\right) t^{4}}{t^{4}\left(1+t^{2}\right)^{2}} d t$
$=-\int_{a}^{1 / a} \frac{\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} d t=\int_{a}^{1 / a} \frac{t^{2}-1}{\left(t^{2}+1\right)^{2}} d t$
$=-\int_{1 / a}^{a} \frac{t^{2}-1}{\left(t^{2}+1\right)^{2}} d t=-I_{1}$
$\Rightarrow 2 I_{1}=0$
$\Rightarrow I_{1}=0$
$\Rightarrow I=2$
338 (6)
Given $f^{3}(x)=\int_{0}^{x} t \cdot f^{2}(t) d t$
Differentiating, $3 f^{2}(x) f^{\prime}(x)=x f^{2}(x)$
$f(x) \neq 0 \therefore f^{\prime}(x)=\frac{x}{3} ; \therefore f(x)=\frac{x^{2}}{6}+C$
But $f(0)=0 \Rightarrow C=0$
$f(6)=6$
339 (7)
$F^{\prime}(x)=(2 x+3) \int_{x}^{2} f(u) d u$
$\therefore F^{\prime \prime}(x)=-(2 x+3) f(x)+\left(\int_{x}^{2} f(u) d u\right) \cdot 2$
$F^{\prime \prime}(2)=-7 f(2)+0$
340 (8)
$\frac{d}{d x} \int_{4}^{x}\left[4 t^{2}-2 F^{\prime}(t)\right] d t=\left[4 x^{2}-2 F^{\prime}(x)\right] \cdot 1-0$
$\Rightarrow F^{\prime}(x)=\frac{1}{x^{2}}\left[4 x^{2}-2 F^{\prime}(x)\right]$
$+\frac{-2}{x^{3}} \int_{4}^{x}\left[4 t^{2}-2 F^{\prime}(t)\right] d t$
$\Rightarrow F^{\prime}(4)=\frac{1}{16}\left[64-2 F^{\prime}(4)\right]-\frac{1}{32} \int_{4}^{4} \mathrm{~g}(x) d x$
$\Rightarrow\left(1+\frac{1}{8}\right) F^{\prime}(4)=4$
$\Rightarrow F^{\prime}(4)=\frac{32}{9}$
341 (2)
$\left.\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \cdot \frac{x^{n+1}}{n+1}\right]_{0}^{2}$
$=\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \cdot \frac{2^{n+1}}{n+1}$
$=\lim _{n \rightarrow 0} \frac{2}{1+(1 / n)}=2$
342 (5)
We have $f(2 x)=3 f(x)$ (1)
and $\int_{0}^{1} f(x) d x=1$
From equations (1) and (2), $\frac{1}{3} \int_{0}^{1} f(2 x) d x=1$
Put $2 x=t, \frac{1}{6} \int_{0}^{2} f(t) d t=1$
$\Rightarrow \int_{0}^{2} f(t) d t=6$
$\Rightarrow \int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t=6$
Hence, $\int_{1}^{2} f(t) d t=6-\int_{0}^{1} f(t) d t=6-1=5$
(4)
$I_{1}=\int_{0}^{1} x^{1004}(1-x)^{1004} d x$
$=2 \int_{0}^{1 / 2} x^{1004}(1-x)^{1004} d x(1)$
And $I_{2}=\int_{0}^{1} x^{1004}\left(1-x^{2010}\right)^{1004} d x$
Put $x^{1005}=t \Rightarrow 1005 x^{1004} d x=d t$
$\Rightarrow I_{2}=\frac{1}{1005} \int_{0}^{1}\left(1-t^{2}\right)^{1004} d t$
$=\frac{1}{1005} \int_{0}^{1}(t(2-t))^{1004} d t$
$=\frac{1}{1005} \int_{0}^{1} t^{1004}(2-t)^{2004} d t$
Now put $t=2 y \Rightarrow d t=2 d y$
$\Rightarrow I_{2}=\frac{1}{1005} \int_{0}^{1 / 2}(2 y)^{1004}(2-2 y)^{1004} d t$
$=\frac{1}{1005} 2 \cdot 2^{1004} \cdot 2^{1004} \int_{0}^{1 / 2} y^{1004}(1-y)^{1004} d y$
$=\frac{1}{1005} 2^{2009} \int_{0}^{1 / 2} y^{1004}(1-y)^{1004} d y$
$=\frac{1}{1005} 2^{2008} I_{1}$
$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{1005}{2^{2008}}$
$\Rightarrow \frac{2^{2010}}{1005} \frac{I_{1}}{I_{2}}=4$
344 (1
$f(x)=\int x^{\sin x}(1+x \cos \cdot \ln x+\sin x) d x$
If $F(x)=x^{\sin x}=e^{\sin x \ln x}$
$\therefore f(x)=\int\left(F(x)+x F^{\prime}(x)\right)=x F(x)+C$
$f(x)=x \cdot x^{\sin x}+C$
$f\left(\frac{\pi}{2}\right)=\frac{\pi}{2} \cdot \frac{\pi}{2}+C \Rightarrow C=0$
$\therefore f(x)=x(x)^{\sin x} ; f(\pi)=\pi(\pi)^{0}=\pi$
345 (8)

$$
\begin{aligned}
& I=\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{6 n}}{n \sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{6 n} \sqrt{\frac{r}{n}}=\int_{0}^{6} \sqrt{x} d x=\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{6}=\frac{2}{3} \cdot 6 \sqrt{6} \\
& =\sqrt{96}
\end{aligned}
$$

(8)

Let $I=\int_{0}^{1}{ }^{207} C_{7} \cdot \underbrace{x^{200}}_{I I} \cdot \underbrace{(1-x)^{7}}_{I} d x$
$I={ }^{207} C_{7}[\left.\underbrace{(1-x)^{7} \cdot \frac{x^{201}}{201}}_{\text {zero }}\right|_{0} ^{1}$

$$
\left.+\frac{2}{201} \int_{0}^{1}(1-x)^{6} \cdot x^{201} d x\right]
$$

$={ }^{207} C_{7} \cdot \frac{7}{201} \int_{0}^{1}(1-x)^{6} \cdot x^{201} d x$
Integrating by parts again 6 more times
$={ }^{207} C_{7} \cdot \frac{7!}{201.202 .203 .204 .205 .206 .207} \int_{0}^{1} x^{207} d x$
$=\frac{(207)!}{7!(200)!} \cdot \frac{7!}{201.202 \cdots 207} \cdot \frac{1}{208}$
$=\frac{(207)!}{(207)!7!} \cdot \frac{7!}{208}=\frac{1}{208}=\frac{1}{k} \Rightarrow k=208$
347 (4)
$g(x)=\int \frac{\cos x(\cos x+2)+\sin ^{2} x}{(\cos x+2)^{2}} d x$

$$
\begin{aligned}
& =\int \underbrace{\cos x}_{\mathrm{II}} \cdot \underbrace{\frac{1}{(\cos x+2)}}_{\mathrm{I}} d x+\int \frac{\sin ^{2} x}{\cos x+2} d x \\
& =\frac{1}{\cos x+2} \cdot \sin x-\int \frac{\sin ^{2} x}{(\cos x+2)^{2}} d x \\
& \quad+\int \frac{\sin ^{2} x}{(\cos x+2)^{2}} d x \\
& \therefore \mathrm{~g}(x)=\frac{\sin x}{\cos x+2}+C \\
& \mathrm{~g}(0)=0 \Rightarrow C=0 \\
& \therefore \mathrm{~g}(x)=\frac{\sin x}{\cos x+2} \Rightarrow \mathrm{~g}\left(\frac{\pi}{2}\right)=\frac{1}{2}
\end{aligned}
$$

348 (0)
We have $J=\int_{-5}^{-4}\left(3-x^{2}\right) \tan \left(3-x^{2}\right) d x$
Put $(x+5)=t$, we get
$J=\int_{0}^{1}\left(3-(t-5)^{2}\right) \tan \left(3-(t-5)^{2}\right) d t$
$=\int_{0}^{1}\left(-22+10 t-t^{2}\right) \tan \left(-22+10 t-t^{2}\right) d t$
Now, $K=\int_{-2}^{-1}\left(6-6 x+x^{2}\right) \tan \left(6 x-x^{2}-6\right) d x$ Put $(x+2)=z$, we get
$K=\int_{0}^{1}(6-6(z-2)$

$$
\begin{aligned}
& \left.+(z-2)^{2}\right) \tan (6(z-2) \\
& \left.-(z-2)^{2}-6\right) d z
\end{aligned}
$$

$=\int_{0}^{1}\left(22-10 z+z^{2}\right) \tan \left(-22+10 z-z^{2}\right) d z$
Hence, $(J+K)=0$
349 (9)

$$
\begin{aligned}
& f(x)=\int \frac{3 x^{2}+1}{\left(x^{2}-1\right)^{3}} d x \\
& =\int \frac{-\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{3}} d x+\int \frac{4 x^{2}}{\left(x^{2}-1\right)^{3}} d x \\
& =\int\left[\frac{-1}{\left(x^{2}-1\right)^{2}}+x \cdot \frac{4 x}{\left(x^{2}-1\right)^{3}}\right] d x \\
& =-\int \frac{d x}{\left(x^{2}-1\right)^{2}}+x \int \frac{4 x d x}{\left(x^{2}-1\right)^{3}} \\
& \quad-\int\left((x)^{\prime} \int \frac{4 x}{\left(x^{2}-1\right)^{3}} d x\right) d x \\
& =x\left(\frac{-1}{\left(x^{2}-1\right)^{2}}\right)+C \\
& =-\frac{x}{\left(x^{2}-1\right)^{2}}+C \\
& f(0)=0 \Rightarrow C=0 \\
& \Rightarrow f(x)=-\frac{x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

Now $f(2)=-\frac{2}{9}$

350 (4)
Given $f(x)=x^{3}-\frac{3 x^{2}}{2}+x+\frac{1}{4}=\frac{1}{4}\left(4 x^{3}-6 x^{2}+\right.$ $4 x+1)$
$=\frac{1}{4}\left(4 x^{3}-6 x^{2}+4 x-1+2\right)$
$f(x)=\frac{1}{4}\left[x^{4}-(1-x)^{4}\right]+\frac{2}{4}$
$\therefore f(1-x)=\frac{1}{4}\left[(1-x)^{4}-x^{4}\right]+\frac{2}{4}$
$\therefore f(x)+f(1-x)=\frac{2}{4}+\frac{2}{4}=1(1)$
Replacing x by $f(x)$ we have
$f[f(x)]+f[1-f(x)]=1$
Now $I=\int_{1 / 4}^{3 / 4} f(f(x)) d x(3)$
Also $I=\int_{1 / 4}^{3 / 4} f(f(1-x)) d x=\int_{1 / 4}^{3 / 4} f(1-$
$f x d x(4)$
\{using (1) \}
Adding (3) and (4),
$2 I=\int_{1 / 4}^{3 / 4}[f(f(x))+f(1-f(x))] d x=\int_{1 / 4}^{3 / 4} d x$
$\Rightarrow 2 I=\frac{1}{2} \Rightarrow I=\frac{1}{4}$
$\therefore I=\frac{1}{4}$
$\therefore I^{-1}=4$
351 (3)
$f(x) \int_{0}^{x} e^{t} \sin (x-t) d t$
$=\int_{0}^{x} e^{x-t} \sin (x-(x-t)) d t$
$=e^{x} \int_{0}^{x} e^{-t} \sin t d t$
$\Rightarrow f^{\prime}(x)=e^{x} e^{-x} \sin x+e^{x} \int_{0}^{x} e^{-t} \sin t d t$
$=\sin x+e^{x} \int_{0}^{x} e^{-t} \sin t d t$
$\Rightarrow f^{\prime \prime}(x)=\cos x+e^{x} e^{-x} \sin x+e^{x} \int_{0}^{x} e^{-t} \sin t d t$
$=\cos x+\sin x+f(x)$
$\Rightarrow f^{\prime \prime}(x)-f(x)=\cos x+\sin x$
Range of $g(x)=f^{\prime \prime}(x)-f(x)$ is $[-\sqrt{2}, \sqrt{2}]$
Number of integers in the range is 3
352 (2)
We have $\int_{\sin t}^{1} x^{2} g(x) d x=(1-\sin t)(1)$

Differentiating both the sides of (1) with respect to ' t ', we get
$0-\left(\sin ^{2} t\right) \mathrm{g}(\sin t)(\cos t)=-\cos t$
$\Rightarrow \mathrm{g}(\sin t)=\frac{1}{\sin ^{2} t}$
Putting $t=\frac{\pi}{4}$ in (2),
We getg $\left(\frac{1}{\sqrt{2}}\right)=2$
353 (7)
$\sum_{r=1}^{100}\left(\int_{0}^{1} f(r-1+x) d x\right)$
$=\int_{0}^{1} f(x) d x+\int_{0}^{1} f(1+x) d x$

$$
+\int_{0}^{1} f(2+x) d x+\cdots
$$

$$
+\int_{0}^{1} f(99+x) d x
$$

$=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x$
$+\int_{2}^{3} f(x) d x+\cdots+\int_{99}^{100} f(x) d x$
$=\int_{0}^{100} f(x) d x=7$
354 (2)
$\int_{0}^{2}\left|f^{\prime}(x)\right| d x \geq\left|\int_{0}^{2} f^{\prime}(x) d x\right|$
$\Rightarrow \int_{0}^{2}\left|f^{\prime}(x)\right| d x \geq f(2) \mid=2$
355 (0)
$f o g(x)=\sqrt{e^{x}-1}$
$\therefore I=\int \sqrt{e^{x}-1} d x$
$=\int \frac{2 t^{2}}{t^{2}+1} d t\left\{\right.$ where $\left.\sqrt{e^{x}-1}=t\right\}$
$=2 t-2 \tan ^{-1} t+C$
$=2 \sqrt{e^{x}-1}-2 \tan ^{-1}\left(\sqrt{e^{x}-1}\right)+C$
$=2 f o g(x)-2 \tan ^{-1}(f o g(x))+C$
$\therefore A+B=2+(-2)=0$

356 (2)
$k(x)=\int \frac{\left(x^{2}+1\right) d x}{\left(x^{3}+3 x+6\right)^{1 / 3}}$
Put $x^{3}+3 x+6=t^{3} \Rightarrow 3\left(x^{2}+1\right) d x=3 t^{2} d t$
$k(x)=\int \frac{t^{2} d t}{t}=\frac{t^{2}}{2}+C$
$k(x)=\frac{1}{2}\left(x^{3}+3 x+6\right)^{2 / 3}+C$
$k(-1)=\frac{1}{2}(2)^{2 / 3}+C \Rightarrow C=0$
$\therefore k(x)=\frac{1}{2}\left(x^{3}+3 x+6\right)^{2 / 3} ; f(-2)=\frac{1}{2}(-8)^{2 / 3}$
$=\frac{1}{2}\left[(-2)^{3}\right]^{2 / 3}=2$
357
$f(x)=x+x \int_{0}^{1} t f(t) d t+\int_{0}^{1} t^{2} f(t) d t$
$\therefore f(x)=x(1+A)+B$; where $A=\int_{0}^{1} t f(t) d t$ and $B=\int_{0}^{1} t^{2} f(t) d t$
Now, $A=\int_{0}^{1} t[t(1+A)+B] d t=\left.\frac{t^{3}}{3}(1+A)\right|_{0} ^{1}+$ B2t201
$\Rightarrow A=\frac{1+A}{3}+\frac{B}{2}$
$\Rightarrow 4 A-3 B=2$
Again $B=\int_{0}^{1} t^{2}[t(1+A)+B] d t=\frac{t^{4}(1+A)}{4}+$
Bt3301
$=\frac{1+A}{4}+\frac{B}{3}$
$\Rightarrow 8 B-3 A=3$
Solving equations (1) and (2) we have B $=\frac{18}{23}=f(0)$

358 (0)
$\int\left[\left(\frac{x}{e}\right)^{x}+\left(\frac{e}{x}\right)^{x}\right] \ln x d x$
$\operatorname{Put}\left(\frac{x}{e}\right)^{x}=t$
Or $x \ln \left(\frac{x}{e}\right)=\ln t$
$\therefore\left(x \cdot \frac{1}{x / e} \cdot \frac{1}{e}+\ln \left(\frac{x}{e}\right)\right) d x=\frac{1}{t} d t$
$\therefore(1+\ln x-\ln e) d x=\frac{1}{t} d t$
$\therefore(\ln e+\ln x-\ln e) d x=\frac{1}{t} d t$
$\therefore(\ln x) d x=\frac{1}{t} d t$
Or $I=\int\left(1+\frac{1}{t}\right) \frac{1}{t} d t=\int 1 \cdot d t+\int \frac{1}{t^{2}} d t$
$=t-\frac{1}{t}+C$
Or $I=\left(\frac{x}{e}\right)^{x}-\left(\frac{e}{x}\right)^{x}+C$
359
(2)

$$
\begin{aligned}
I= & \int_{0}^{3 \pi / 4}(\sin x+\cos x) d x \\
& +\int_{0}^{3 \pi / 4} \underbrace{x}_{\mathrm{I}} \underbrace{(\sin x-\cos x)}_{\mathrm{II}} d x
\end{aligned}
$$

$$
\begin{gathered}
=\int_{0}^{3 \pi / 4}(\sin x+\cos x) d x+\underbrace{\left.x(-\cos x-\sin x)\right|_{0} ^{3 \pi / 4}}_{\text {zero }} \\
+\int_{0}^{3 \pi / 4}(\sin x+\cos x) d x
\end{gathered}
$$

$$
=2 \int_{0}^{3 \pi / 4}(\sin x+\cos x) d x=2(\sqrt{2}+1)
$$

360 (3)
We have $f(x)=\sin x+\int_{-\pi / 2}^{\pi / 2}(\sin x+t f(t)) d t=$ $\sin x+\pi \sin x+-\pi / 2 \pi / 2 t$ ftd t
$\therefore f(x)=(\pi+1) \sin x+A(1)$

Now, $A=\int_{-\pi / 2}^{\pi / 2} t((\pi+1) \sin t+A) d t=$ $2 \pi+10 \pi / 2 t \sin t d t$ IIIBy part
$\Rightarrow A=2(\pi+1)$
Hence, $f(x)=(\pi+1) \sin x+2(\pi+1)$
Therefore, $f_{\text {max }}=3(\pi+1)=M$
and $f_{\text {min }}=(\pi+1)=m$
$\Rightarrow \frac{M}{m}=3$

Given $U_{n}=\int_{0}^{1} x^{n} \cdot(2-x)^{n} d x ; V_{n}=\int_{0}^{1} x^{n} \cdot(1-$ $x n d x$
In U_{n} put $x=2 t \Rightarrow d x=2 d t$
$\therefore U_{n}=2 \int_{0}^{1 / 2} 2^{n} \cdot t^{n} 2^{n}(1-t)^{n} d t$
Now $V_{n}=2 \int_{0}^{1 / 2} x^{n}(1-x)^{n} d x(2)$
From equations (1) and (2) we get $U_{n}=2^{2 n} \cdot V_{n}$

