Single Correct Answer Type

1. Benzyl chloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}\right)$ can be prepared from toluene by chlorination with:
a) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
b) SOCl_{2}
c) Cl_{2}
d) NaOCl
2. The decreasing leaving group order (fugacity order) of the following compounds is: i. $\mathrm{H}_{2} \mathrm{Oiii} . \mathrm{H}_{2} \mathrm{Siii} . \mathrm{H}_{2}$ Seiv. $\mathrm{H}_{2} \mathrm{Te}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (i) $>$ (ii) $>$ (iv)
d) (iv) $>$ (ii) $>$ (i) $>$ (iii)
3. Which is least reactive towards nucleophilic substitution $\left(\mathrm{SN}^{2}\right)$?
a) $\sim \mathrm{Cl}$
b) $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}$
c) PhCl
d) $\mathrm{MeCH}(\mathrm{Cl}) \mathrm{Me}$
4. Which of the following will give SN^{2} mechanism?
a)

b)

c)

d)

5. In the given sequence of reactions, predict (X)
(X) $\underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{KOH}}(\mathrm{Y}) \xrightarrow[433 \mathrm{~K}]{\mathrm{Al}_{2} \mathrm{O}_{3}}(\mathrm{Z}) \xrightarrow{[\mathrm{O]}} 2 \mathrm{~mol} \mathrm{CH} 3 \mathrm{COOH}$
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{I}) \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{3}$
d) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
6. The decreasing basic order of the following is :
i. $\mathrm{F}_{3} \mathrm{CSO}_{3}{ }^{\text {iii. }} \mathrm{Cl}_{3} \mathrm{C}-\mathrm{COO}^{\ominus}$
iii. $\mathrm{PhSO}_{3}^{\ominus} \mathrm{iv} . \mathrm{MeSO}_{3}^{\ominus}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (iv) $>$ (iii) $>$ (i)
d) (iv) $>$ (ii) $>$ (i) $>$ (iii)
7. The decreasing leaving group order of the following is:
i. F^{\ominus} ii. Cl^{\ominus} iii. Br^{\ominus} iv. I^{\ominus}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
8. The decreasing nucleophilic order of the following compounds is:
i.F $\ominus_{\text {ii. }} \mathrm{Cl} \ominus_{\text {iii. }} \mathrm{Br}^{-} \ominus_{\mathrm{iv.I}}{ }^{\ominus}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
9. Which of the following has the highest dipole moment?
a)

b)

c)

d)

10. Benzonitrile on reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, followed by hydrolysis, gives
a)

b)

c)

d)

11. Isopropyl alcohol is heated with a suspension of bleaching powder $\left(\mathrm{CaOCl}_{2}\right)$ with water. The products are:
a) Ethane and propane
b) Ethyne and ethene
c) Trichloromethane and sodium acetate
d) Carbon tetrachloride
12. The product formed by the reaction between $2,2,2$-trichloroethanal and chlorobenzene in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a) Chloretone
b) DDT
c) Chlorobenzaldichloride
d) Benzene sulphonic acid
13. Propyl lithium reacts with ethene to give a compound (A), which on reaction with methanal followed by acidic hydrolysis gives compound (B). The compound (B) is:
a) Heptan-1-ol
b) Heptan-2-ol
c) Hexan-1-ol
d) Hexan-2-ol
14. Ethylmercaptan is prepared by the reaction of the following, followed by hydrolysis
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{SO}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{S}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{CS}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{H}_{2} \mathrm{~S}$
15. The reaction of t-butyl bromide with sodium methoxide mainly produces:
a) Isobutane
b) Isobutylene
c) t-Butyl methyl ether
d) Sodium tert-butoxide
16. An ethereal solution of 4-nitrochlorobenzene is treated with metallic sodium. The product formed is:
a) Aminobenzene
b) 4,4-Dinitrodiphenyl
c) p-Chloroaniline
d) Benzene diazonium chloride
17. Which is the most effective ion in anSN ${ }^{2}$ displacement on methyl bromide?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\ominus}$
b) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{\ominus}$
d) $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$
18. The decreasing basic order of the following compounds is: i. NH_{3} ii. PH_{3} iii. AsH_{3} iv. SbH_{3}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
19. Which of the following 3° alcohols does propyl ester give during reaction with EtMgBr ?
a)

b)

c)

d)

20. Chlorination of methane proceeds by:
a) Electrophilic substitution
b) Nucleophilic substitution
c) Free radical mechanism
d) None of these
21. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \underset{625 \mathrm{~K} \text { and } 300 \mathrm{~atm}}{\mathrm{NaOH} \text { (aq.) }} \ldots$ The product can be:
a) Benzal
b) Sodium benzoate
c) Benzol
d) Sodium phenate
22. In order to prepare fluorobenzene from benzene diazonium chloride, which of the following reagents is used?
a) Fluorine
b) HF
c) Hydrofluorosilicic Acid
d) Fluoroboric acid
23. Which of the following mentioned positions in the given compound is more reactive towards electrophilic substitutions?

a) 3
b) 2
c) 5
d) 6
24. Under the influence of air and light, chloroform decomposes into:
a) CCl_{4}
b)

c) COCl_{2}
d) $\mathrm{CCl}_{3} \mathrm{CHO}$
25. Which one of the following compounds gives $\mathrm{SN}^{1}, \mathrm{SN}^{2}$, and $\mathrm{SN}^{2 \prime}$ mechanisms?
a) Me
b) Me Br
c) Ph Br
d) Cl
26. Coupling reaction between $R M g X$ and $R^{\prime} X$ takes place to give $R-R^{\prime}$ in the presence of which of the following reagents?
a) $R^{\prime}-O T s$
b) CoCl_{2}
c) MnCl_{2}
d) All
27. Which of the following reactions is not stereospecific?
a) SN^{2}
b) Addition of Br_{2} to ethylene in CCl_{4}
c) Electrophilic substitution
d) Glycol formation from alkenes with alkaline KMnO_{4}
28. In order to get ethanethiol from bromoethane, the reagent used is:
a) Sodium bisulphide
b) Sodium sulphide
c) Potassium thiocyanate
d) Potassium sulphide
29. Propane is not formed when $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBr}$ is treated with
a) H_{2}
b) Phenol
c) Ethanoic acid
d) 2-Butyne
30. n-Propyl bromide on treatment with ethanolic potassiumhydroxide produces:
a) Propane
b) Propene
c) Propyne
d) Propanol
31. In the following reaction:

By which mechanism does the reaction proceed?
a) E1
b) E2
c) E 1 cB
d) β-Elimination
32. The final product (X) in the following reaction is:

Acetanilide

$$
\xrightarrow[\text { Steam, }]{\mathrm{H}_{2} \mathrm{SO}_{4}} ? \xrightarrow{\stackrel{\ominus}{\mathrm{O}}}(\mathrm{X})
$$

a) 2-Nitroaniline
b) 3-Nitroaniline
c) 4-Nitroaniline
d) Sulphanilic acid
33. Chlorination of toluene in the presence of light and heat followed by the treatment with aqueous NaOH gives:
a) o-Cresol
b) p-Cresol
c) 2,4-Dihydroxy toluene
d) Benzoic acid
34. The decreasing order of aromaticity of the following is
I. BenzeneII. Naphthalene III. Anthracene
a) (I) $>$ (II) $>$ (III)
b) (III) $>$ (II) $>$ (I)
c) (II) $>$ (I) $>$ (III)
d) (II) $>$ (III) $>$ (I)
35. Which of the following is the most stable species?
a)

b)

c)

d)

36. The decreasing leaving group order of the following compounds is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
ii. $\stackrel{\ominus}{\mathrm{NH}_{2}}$
iii. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
iv. F^{\ominus}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
37. In the following reaction, the final product can be prepared by two paths (I) and (II).

Which of the following statements is correct?

a) Path (I) is feasible
b) Path (II) is feasible
c) Both paths are feasible
d) Neither of the two paths is feasible
38. For the preparation of chloroethane,
a) HCl gas is passed through ethanol
b) Ethanol is treated with thionyl chloride in the presence of dimethyl amine or pyridine
c) Ethyl sulphide is treated with hydrogen chloride
d) Any of the above methods can be employed
39.

Which of the following statements is wrong about the reaction?
a) At lower temperature, the reaction is kinetically controlled and o / p directive effects of the (Me) group operate
b) At a higher temperature, the reaction is thermodynamically controlled, and longer reaction times are employed for equilibrium to be reached. The most stable form of m-toluene sulphonic acid is obtained
c) $(\mathrm{Me}-)$ group is activated by +I effect, and $o-, p$-directing
d) ($\mathrm{Me}-$) group is deactivating by hyperconjugation and is m-directing
40. Which is most reactive towards Br_{2} in the presence of FeBr_{3} ?
a) Anisole
b) Benzene
c) Bromobenzene
d) Nitrobenzene
41. Which of the following deactivates the aromatic nucleus?
a) $-\mathrm{CH}_{3}$
b) -Br
c) $-\mathrm{NH}_{2}$
d) $-\mathrm{NR}_{2}$
42. 1-Chorobutane on reaction with alcoholic potash gives:
a) 1-Butene
b) 1-Butanol
c) 2-Butene
d) 2-Butanol
43.

(A) would be:
a)

b)

c)

d)

44. The yield of chlorobenzene obtained by reaction of phenols with PCl_{5} is less due to the formation of:
a) o-Chlorophenol
b) p-Chlorophenol
c) Phosphorus oxychloride
d) Triphenyl phosphate
45. Ullmann reaction involves the use of the following reactants:
a) Iodobenzene and sodium
b) Benzene and copper
c) Iodobenzene and copper powder
d) Benzene diazonium chloride and $\mathrm{Cu} / \mathrm{HCl}$
46. The decreasing fugacity order of the following is:
i. $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{NMe}_{2}$ ii. $\mathrm{MeNH}-\mathrm{NHMe}$
iii. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \mathrm{iv} . \mathrm{NH}_{3}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iv) $>$ (iii) $>$ (i) $>$ (ii)
d) (iii) $>$ (iv) $>$ (ii) $>$ (i)
47.

In the reaction $\mathrm{CH}_{3} \mathrm{C} \equiv \stackrel{\ominus}{\mathrm{C}} \stackrel{\oplus}{\mathrm{N}} \mathrm{a}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}_{\text {the product formed is : }}$
a) 4-Methyl-2-pentyne only
b) Propyne
c) Propyne and propylene
d) Mixture of propene, propyne, and 4-methyl-2- pentyne
48. The decreasing nucleophilic order of the following compounds is:
i. $\mathrm{H}_{2} \mathrm{Oii} . \mathrm{H}_{2}$ Siii. H_{2} Seiv. $\mathrm{H}_{2} \mathrm{Te}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (i) $>$ (ii) $>$ (iv)
d) (iv) $>$ (ii) $>$ (i) $>$ (iii)
49. Which of the following sequences would yield m-nitro chlorobenzene (Z) from benzene?
a) Benzene $\xrightarrow{\mathrm{Cl}_{2} / \mathrm{FeCl}_{3}}(\mathrm{X}) \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}}(\mathrm{Z})$
b) Benzene $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HNO}_{3}}(\mathrm{Z})$
c) Benzene $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HNO}_{3}}(\mathrm{X}) \xrightarrow{\mathrm{FeCl}_{3} / \mathrm{Cl}_{2}}(\mathrm{Z})$
d) All of these above will produce (Z)
50. Pick up the correct statement about alkyl halides
a) They are associated with each other by H-bonds
b) They dissolve in water quickly
c) They dissolve easily in organic solvents
d) They do not contain any polar bonds in their molecules
51.

by which of the following mechanisms does the reaction proceed?
a) SN^{1}
b) SN^{2}
c) SN^{i}
d) E2
52. Identify (C) in the following series
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I} \xrightarrow{\mathrm{KOH} \text { (alc.) }}(\mathrm{A}) \xrightarrow[\Delta]{\mathrm{NBS}}(\mathrm{B}) \xrightarrow{\mathrm{KCN} \text { (aq.) }}(\mathrm{C})$
a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CN}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CN}$
c) $\mathrm{Br}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}$
d)

53.
When $\mathrm{Me}^{\mathrm{Me}}>-\mathrm{MgBr}$
a)

)

b)

 is treated with
 Me followed by hydrolysis, the product is
c)

d) None of these
54. The reaction conditions leading to the best yield of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ are:
a) $\mathrm{C}_{2} \mathrm{H}_{6}$ (Excess) $+\mathrm{Cl}_{2} \xrightarrow{\text { U.v.llght }}$
b) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2}$ (Excess) $\xrightarrow[\text { Room temp }]{\text { Dark }}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2}$ (Excess) $\xrightarrow{\text { U.V.llght }}$
d) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \xrightarrow{\text { U.V.llght }}$
55.
 , product (P) will be:
a)

b)

c)

d)

56. Which of the following halides can yield ethane and also methane in a single step?
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
b) $\mathrm{CH}_{3} \mathrm{I}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$
d) None
57.

By which mechanism does the above reaction proceed?
a) E1
b) E2
c) E 1 cB
d) γ-Elimination
58. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{\mathrm{Ni}-\mathrm{Al} / \mathrm{NaOH}}(\mathrm{A})$. In this reaction, (A) is:
a) Phenol
b) Sodium phenoxide
c) Benzol
d) Benzene
59. Which of the following on reaction with chloroform will give chloretone?
a) HNO_{3}
b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=0$
c) Chloral
d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
60.

(A) would be:
a)

b)

c)

d)

61. Which of the following aromatic compounds is least reactive towards electrophilic substitutions?
a)

b)

c)

d)

62. The decreasing order of dipole moment of the following is:
I. $\mathrm{CH}_{3} \mathrm{ClII} . \mathrm{CH}_{3}$ BrIII. $\mathrm{CH}_{3} \mathrm{~F}$
a) (I) $>$ (II) $>$ (III)
b) (I) $>$ (III) $>$ (II)
c) (II) $>$ (I) $>$ (III)
d) (II) $>$ (III) $>$ (I)
63. Which of the following represents Westrosol?
a) CHCl_{3}
b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
c) $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
d) $\mathrm{CCl}_{2}=\mathrm{CHCl}$
64. The reaction involving the treatment of benzene diazonium chloride with copper powder and HCl is termed as:
a) Sandmeyer's reaction
b) Gattermann's reaction
c) Ullmann's reaction
d) Kolbe's reaction
65.

In the reaction
 will be:
a)

b)

c) Both (a) and (b)
d)

66. The decreasing leaving group order of the following compounds is :
i. $\mathrm{F}_{3} \mathrm{CSO}_{3}^{\ominus} \mathrm{ii} . \mathrm{Cl}_{3} \mathrm{C}-\mathrm{COO}^{\ominus}$
iii. $\mathrm{PhSO}_{3}^{\ominus} \mathrm{iv} . \mathrm{MeSO}_{3}^{\ominus}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (i) $>$ (ii) $>$ (iv)
d) (i) $>$ (iii) $>$ (iv) $>$ (ii)
67.

When methyl orthoformate is treated with
 MgBr followed by hydrolysis, the product is:
a)

b)

c)

d)

68. The decreasing nucleophilic order of the following compounds is :
i. $\mathrm{F}_{3} \mathrm{CSO}_{3}^{\ominus}{\mathrm{ii} . \mathrm{Cl}_{3} \mathrm{C}-\mathrm{COO}^{\ominus}}^{\ominus}$
iii. $\mathrm{PhSO}_{3}^{\ominus} \mathrm{iv} . \mathrm{MeSO}_{3}^{\ominus}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (iv) $>$ (iii) $>$ (i)
d) (iv) $>$ (ii) $>$ (i) $>$ (iii)
69. The decreasing leaving group order of the following compounds is:
i. NH_{3} ii. PH_{3} iii. $\mathrm{AsH}_{3} \mathrm{iv} . \mathrm{SbH}_{3}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
70. When bromoethane is treated with potassium sulphide, the main product formed is:
a) Ethanethiol
b) Ethanol
c) Mustard gas
d) Thioethyl ethane
71. Which of the following most readily undergoes nucleophilic substitution?
a) $\mathrm{CH}_{2}=\mathrm{CHCl}$
b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCl}$
c) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{Cl})=\mathrm{CH}_{2}$
d) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$
72.

Which of the following statements is correct about the above reaction?
a) The reaction proceeds by α-elimination viathe formation of a carbene as an intermediate
b) The reaction proceeds by α-elimination viathe formation of a carbanion as an intermediate
c) The reaction proceeds by E1 mechanism
d) The reaction proceeds E1cB mechanism
73.
$\mathrm{Ph}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\mathrm{SOCl}_{2}}$
Specific rotation $=+50^{\circ}$

which of the following acts as a leaving group?
a) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
b) Cl^{\ominus}
c) SO_{2}
d)

74. Consider the following halogen-containing compounds;
I.CHCl 3
II. CCl_{4}
III. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
IV. $\mathrm{CH}_{3} \mathrm{Cl}$

a) (II),(V)
b) (II)
c) (III),(IV)
d) (I),(IV)
75. Neopentyl chloride on reaction with ethanolic KOH is likely to:
a) Neopentyl alcohol
b) Pentylene
c) 2-Methyl-2-butene
d) Undergo no reaction
76.
 is treated with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, followed by hydrolysis, the product is:
a)

b)

c)

d)

77. Reactivity of MeMgBr with the following in the decreasing order is:

a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (i) $>$ (ii) $>$ (iii)
c) (i) $>$ (iii) $>$ (ii) $>$ (iv)
d) (iv) $>$ (ii) $>$ (iii) $>$ (i)
78. Ethyl ester reacts with PrMgBr to give 2° alcohol. The alcohol is:
a)

b)

c) $\mathrm{Me} \overbrace{\mathrm{OH}} \mathrm{Me}$
d)

79. Which of the following reagents will be able to distinguish between allyl bromide and n-propyl bromide?
a) Aqueous AgNO_{3}
b) $\mathrm{NaOH}, \mathrm{AgNO}_{3}$
c) Alk. KMnO_{4}
d) Tollens reagent
80. Which of the following is most easily cleaved by HBr
a)

b)

c)

d)

81. Decreasing nucleophilic order of the following is:
i. $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{NMe}_{2}$ ii. $\mathrm{MeNH}-\mathrm{NHMe}$
iii. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$ iv. NH_{3}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iv) $>$ (iii) $>$ (i) $>$ (ii)
d) (iii) $>$ (iv) $>$ (ii) $>$ (i)
82. The decreasing basic order of the following is:
i. $\mathrm{PhSO}_{3}^{\ominus} \quad$ ii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{\ominus}$ iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{\ominus}$ iv. $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$
Θ
v. OH
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (iii) $>$ (ii) $>$ (i)
d) (i) $>$ (ii) $>$ (iii) $>$ (v) $>$ (iv)
83. Gammexane is the name given to:
a) $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$
b) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
c) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$
d) Diphenyltrichloroethane
84. Which of the following substrates will give racemised product?
a)

b)

c)

d)

85.

a)

b)

c)

d)

86. How many structures of F is possible?

a) 2
b) 5
c) 6
d) 3
87. The decreasing nucleophilic order of the following compounds is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} \quad$ ii. $\stackrel{\ominus}{\mathrm{O}} \quad$ iii. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ iv. $\mathrm{H}_{2} \mathrm{O}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (ii) $>$ (i) $>$ (iv)
d) (iii) $>$ (ii) $>$ (iv) $>$ (i)
88. HBr reacts with $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OCH}_{3}$ under anhydrous conditions at room temperature to give:
a) $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{Br}$
b) $\mathrm{BrCH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
d) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Br})-\mathrm{OCH}_{3}$
89. Which of the following is the most stable arenonium or benzenium ion?
a)

b)

c)

d)

90. The final product (C) in the following reactions is:

a)

b)

c)

d)

91. The decreasing order of the rate of nitration of the following compounds is

I. Benzene II. $\mathrm{C}_{6} \mathrm{D}_{6}$

III. NitrobenzeneIV.Chlorobenzene
a) (I) $>$ (II) $>$ (III) $>$ (IV)
b) (I) $>$ (II) $>$ (IV) $>$ (III)
c) (I) $=$ (II) $>$ (IV) $>$ (III)
d) (I) $=$ (II) $>$ (III) $>$ (IV)
92. Which of the following halides is capable of exhibiting enantiomerism?
a) Ethyl chloride
b) Isopropyl bromide
c) sec-Butyl iodide
d) tert-Butyl chloride
93. The reaction between chloral and chlorobenzene in $\mathrm{H}_{2} \mathrm{SO}_{4}$ yields:
a) Chloretone
b) p, p-Dichlorodiphenyl trichloroethane
c) o-Chlorobenzaldichloride
d) Chloralphenylchloride
94. The compound that will react most readily with NaOH to form methanol is:
a) $\left(\mathrm{CH}_{3}\right)_{4} \stackrel{\oplus}{\mathrm{~N}} \mathrm{I}^{\ominus}$
b) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S}^{\oplus} \mathrm{I}^{\ominus}$
d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$
95. Which of the following ketonic compound is the least stable?
a)

b)

c)

d)

96. Bottles containing PhI and $\mathrm{PhCH}_{2} \mathrm{I}$ lost their original labels. They were labelled as (A) and (B) for testing. (A) and (B) were separately taken in test tubes and boiled with NaOH solutions. The end solution in each tube was made acidic with dilute HNO_{3} and some AgNO_{3} solution was added. Substance (B) gave a yellow precipitate. Which of the following statements is true for this experiment?
a) Addition of HNO_{3} was unnecessary
b) (A)was PhI
c) (A) was $\mathrm{PhCH}_{2} \mathrm{I}$
d) (B) was PhI
97. Which of the following reacting substances will not liberate ethyne gas?
a) $\mathrm{CH}_{3} \mathrm{Cl}$ and Ag
b) CaC_{2} andH $\mathrm{H}_{2} \mathrm{O}$
c) CHI_{3} and Ag
d) CHCl_{3} and Ag
98. The decreasing basic order of the following is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
ii. $\stackrel{\ominus}{\mathrm{NH}_{2}}$
iii. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
iv. F^{\ominus}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
99. Ethanol $\xrightarrow{\mathrm{P}_{4} / \mathrm{I}_{2}}(\mathrm{X}) \xrightarrow[\text { (ii) } \mathrm{HBr}]{\text { (i) } \mathrm{KOH} \text { (alc.) }}(\mathrm{Y})$ In this sequence of reactions, (Y) is:
a) Ethene
b) Bromoethane
c) Ethanol
d) None
100.

Compounds (B) and (C), respectively, are:
a)

b)

c)

d)

101.

1. MeMgBr
2. EtMgBr
3. $\mathrm{Me}_{2} \mathrm{CH}-\mathrm{MeBr}$
4. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{MgBr}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (i) $>$ (ii) $>$ (iv) $>$ (iii)
d) (iv) $>$ (ii) $>$ (iii) $>$ (i)
5.

$\mathrm{Ph}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\mathrm{SOCl}_{2}}$
Specific rotation $=+50^{\circ}$

the reaction is carried out in the presence of pyridine. Which of the following mechanisms does it follow?
a) SN^{1}
b) SN^{2}
c) SN^{i}
d) E2
103. Nitration of xylene gives only one mono-nitro derivative. Which xylene is it?
a) ortho
b) meta
c) para
d) Both oand p
104. Propane dithioic acid is prepared by the reaction of the following, followed by hydrolysis:
a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBr}+\mathrm{CS}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{CS}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MGBr}+\mathrm{SO}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{SO}_{2}$
105. The decreasing basic order of the following is:
$\begin{array}{lllll}\text { i. } \stackrel{\ominus}{\mathrm{C}} & \text { ii. } \stackrel{\ominus}{\mathrm{O}} \mathrm{H} & \text { iii. } \stackrel{\ominus}{\mathrm{O}} \mathrm{Me} & \text { iv. } \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} & \text { v. } \mathrm{H}^{\ominus}\end{array}$
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (ii) $>$ (iii) $>$ (i)
d) (i) $>$ (ii) $>$ (iii) $>$ (v) $>$ (iv)
106.

(D) would be:
a)

b)

c)

d)

107. Acetoisonitrile on reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, followed by hydrolysis, gives compound (A), which on further hydrolysis gives (B) and (C).(B) and (C) are:
a) MeNH_{2} and EtCHO
b) EtNH_{2} and MeCHO
c) MeNH_{2} and EtCOOH
d) EtNH_{2} and MeCOOH
108. Consider the following reactions:

Arrange the following reactions in the decreasing order, of greater proportion of inverted product and select the correct answer
a) (I) $>$ (II) $>$ (III) $>$ (IV)
b) (II) $>$ (I) $>$ (III) $>$ (IV)
c) (III) $>$ (II) $>$ (I) $>$ (IV)
d) (IV) $>$ (III) $>$ (II) $>$ (I)
109. Reactivity of HCHO with the following G.R. in the decreasing order is:

1. PhMgBr
2. $\mathrm{PhCH}_{2} \mathrm{MgBr}$
iii. MgBr iv. MgBr
a) (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv)
c) (iii) $>$ (ii) $>$ (i) $>$ (iv)
d) (ii) $>$ (iii) $>$ (i) $>$ (iv)
3. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl} \xrightarrow{\mathrm{KOH} \text { (alc.) }}(\mathrm{A}) \xrightarrow[770 \mathrm{~K}]{\mathrm{Cl}_{2}(\mathrm{~g})}(\mathrm{X}) .(\mathrm{X})$ can be:
a) Vinyl chloride
b) Allyl chloride
c) Ethyl chloride
d) Ethyl iodide
4. The formation of an optically active compound from a chiral molecule is called:
a) Asymmetric synthesis
b) Resolution
c) Walden inversion
d) Epimerisation
5. Which of the following is called Westron?
a) $\mathrm{CH}_{3} \mathrm{Cl}$
b) CHCl_{3}
c) $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
d) $\mathrm{CCl}_{2}=\mathrm{CHCl}$
6.

a)

b)

c)

d)

114.

The Product A is:
a)

b)

c)

d)

115. The most reactive compound for electrophilic nitration will be:
a) Toluene
b) Benzoic acid
c) Nitrobenzene
d) Benzene
116. The decreasing order of ArSN reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\ominus} / \mathrm{EtOH}$ is:
I.

II.

III.

IV.

a) (I) $>$ (II) $>$ (III) $>$ (IV)
b) (IV) $>$ (III) $>$ (II) $>$ (I)
c) (III) $>$ (IV) $>$ (II) $>$ (I)
d) (IV) $>$ (III) $>$ (I) $>$ (II)
117. Give the decreasing order of K_{a} value of the following compounds
I.

II.

III.

IV.

a) (I) $>$ (IV) $>$ (III) $>$ (II)
b) (II) $>$ (III) $>$ (IV) $>$ (I)
c) (I) $>$ (III) $>$ (II) $>$ (IV)
d) (I) $>$ (IV) $>$ (II) $>$ (III)
118. Alcohol is not formed when RMgX is treated with
a) Ethanoyl chloride
b) O_{2}
c) Oxirane
d) Methyl orthoformate
119.

a)

b)

c)

d) None of these
120.

a)

b)

c)

d) Both (a) and (b)
121. Among the following compounds, the strongest acid is:
a) $\mathrm{HC} \equiv \mathrm{CH}$
b) $\mathrm{C}_{6} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) $\mathrm{CH}_{3} \mathrm{OH}$
122. For the reaction:

what is product (A)?
a)

b)

c)

d)

123. Which of the following compounds is the most reactive towards electrophilic substitution reaction?
a)

b)

c)

d)

124. Lindane can be obtained by the reaction of benzene with:
a) $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{Anhy}$. AlCl_{3}
b) Cl_{2} /Sunlight
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} / \mathrm{Anhy}$. AlCl_{3}
d) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$
125. The experimentally determined rate equation for the alkaline hydrolysis of RBr is given by:

Which of the following statements is inconsistent with these observations?
a) The reaction is first order with respect to RBr
b) The reaction is second order overall
c) The reaction process is false
d) The rate-determining step is bimolecular
126. When phenol is treated with excess bromine water, it gives:
a) m-Bromophenol
b) o - and p-bromophenol
c) 2,4-Dibromophenol
d) 2,4,6-Tribromophenol
127. The following compound on hydrolysis in aqueous acetone will give

a) Mixture of (K) and (L)
b) Mixture of (K) and (M)
c) Only (M)
d) Only (K)
128. $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Cl})-\mathrm{C}_{2} \mathrm{H}_{5} \xrightarrow{\text { Alc. } \mathrm{KOH}} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$. The above reaction proceeds viaE1cB mechanism. Which of the following statements is true about E 1 cB mechanism?
a) It is second order and bimolecular
b) It is first order and unimolecular
c) It is first order and bimolecular
d) It is second order and unimolecular
129. The reaction of toluene with chlorine in the presence of ferric chloride gives predominantly:
a) Benzoyl chloride
b) m-Chlorotoluene
c) Benzyl chloride
d) o - and p-Chlorotoluene
130.

a)

b)

c)

d) None of these
131. Which of the following is a geminaldihalide?
a) Ethylene dibromide
b) Propylidene chloride
c) Isopropyl bromide
d) None of the above
132. Which of the following is the correct order of the rate of reaction of $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{C}_{6} \mathrm{~T}_{6}$, towards nitration?
a) $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}>\mathrm{C}_{6} \mathrm{~T}_{6}$
b) $\mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{C}_{6} \mathrm{D}_{6}=\mathrm{C}_{6} \mathrm{~T}_{6}$
c) $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}=\mathrm{C}_{6} \mathrm{~T}_{6}$
d) $\mathrm{C}_{6} \mathrm{~T}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}>\mathrm{C}_{6} \mathrm{H}_{6}$
133. The end product (C) of the following sequence of reaction is:
$\mathrm{CH} \equiv \mathrm{CH}+\operatorname{MeMgBr}(1 \mathrm{~mol}) \longrightarrow(A) \xrightarrow[(\mathrm{ii}) \mathrm{H}_{3} \mathrm{O}^{\oplus}]{(\mathrm{i}) \mathrm{CO}_{2}}$
$(\mathrm{B}) \xrightarrow{\mathrm{HgSo}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}}(\mathrm{C})$
a)

b)

c)

d)

134. Iodoform can be prepared from:
a) Isoamyl alcohol
b) α-Phenyl ethanol
c) Isobutyl alcohol
d) β-Phenyl ethanol
135. Chlorobenzene can be prepared by reacting aniline with:
a) Hydrochloric acid
b) Cuprous chloride
c) Chlorine in the presence of anhydrous aluminiumchloride
d) Nitrous acid followed by heating with cuprous chloride
136. The order of reactivities of the following alkyl halides for an SN^{2} reaction is:
a) $\mathrm{RF}>R C I>R B r>R I$
b) RF $>R B r>R C I>R I$
c) $\mathrm{RCI}>R B r>R F>R I$
d) RI $>R B r>R C I>R F$
137. Give the major product of the following reaction

a)

b)

c)

d)

138.

(D) (Major)

Compound(D) is:
a)

b)

c)

d)

139. Reactivity of PhMgBr with the following in the decreasing order is:
i. PhCHO

iii. $\mathrm{O}_{\mathrm{Me}}^{\mathrm{O}}-\mathrm{CHO}$ iv. $\mathrm{Me}_{\mathrm{O}}^{\mathrm{O}}-\mathrm{CHO}$
a) (i) $>$ (iv) $>$ (ii) $>$ (iii)
b) (iii) $>$ (ii) $>$ (iv) $>$ (i)
c) (i) $>$ (iii) $>$ (ii) $>$ (iv)
d) (i) $>$ (ii) $>$ (iii) $>$ (iv)
140. Which of the following alkyl halides undergoes SN^{1} reaction the fastest?
a) Methyl chloride
b) Ethyl chloride
c) Isobutyl chloride
d) tert-Butyl chloride
141. What is the end product (D) of the following reaction?

(B) $\xrightarrow[\text { (ii) Base }]{\text { (i) NBS }}(\mathrm{C}) \xrightarrow{\mathrm{CHBr}_{3}+t-\mathrm{BuO}^{\ominus}}(\mathrm{D})$
a)

b)

c)

d)

142. The decreasing nucleophilic order of the following compounds is:
i. $\mathrm{PhSO}_{3}^{\ominus} \quad$ ii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{\ominus}$ iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{\ominus}$ iv. $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$
v. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (iii) $>$ (ii) $>$ (i)
d) (i) $>$ (ii) $>$ (iii) $>$ (v) $>$ (iv)
143. Choose the incorrect reaction
a) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+2 \mathrm{Na} \xrightarrow{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}} \mathrm{C}_{4} \mathrm{H}_{10}+2 \mathrm{NaI}$
b) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Zn} \xrightarrow{\text { EtOH }}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}+\mathrm{Br}_{2}$
c) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~S}+2 \mathrm{NaI}$
d) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{NaI} \xrightarrow{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}+\mathrm{NaBr}$
144. Which of the following represents Freon?
a) Acetylene tetrachloride
b) Trichloroethylene
c) Dichlorodifluoromethane
d) Ethylene dichloride
145. What happens when CCl_{4} is treated with AgNO_{3} solution?
a) NO_{2} in evolved
b) A white precipitate ofAgCl is formed
c) CCl_{4} will dissolves in AgNO_{3} solution
d) NO reaction
146. A solution of (+)-2-chloro-2-phenylethane in toluene racemises slowly in the presence of a small amount of SbCl_{5} due to the formation of:
a) Carbanion
b) Carbene
c) Free radical
d) Carbocation
147. Isopentane on monochlorination gives \qquad isomers and out of them \qquad are optically active
a) 3,1
b) 4,2
c) 3,2
d) 4,1
148. Which of the following has the highest boiling point?
a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
b) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$
c) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{CH})_{3} \mathrm{CH}_{2} \mathrm{Cl}$
d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$
149. The decreasing fugacity order of the following compounds is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$
ii. ${ }^{\ominus} \mathrm{O}$
iii. $\stackrel{\ominus}{\mathrm{O}} \stackrel{\ominus}{\text { Me }}$
iv. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
v. H^{\ominus}
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (iii) $>$ (ii) $)>$ (i)
d) (i) $>$ (iii) $>$ (ii) $>$ (v) $>$ (iv)
150. When ethyl ethanoate is treated with excess of MeMgBr , followed by hydrolysis, the product is:
a)

b)

c)

d)

151. The decreasing basic order of the following is:
i.F ${ }_{\text {ii. }} \mathrm{Cl} \ominus_{\text {iii. } B r} \ominus_{\text {iv. }}{ }^{\ominus}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
152.
$(\mathrm{A})+\mathrm{MeMgBr} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{Me}^{\sim} \mathrm{OH}$. Hence
$\mathrm{CH} \equiv \mathrm{CH} \xrightarrow[\text { (ii) } \mathrm{A}]{\text { (i) } 1 \mathrm{~mol} \text { of }\left(\mathrm{NaNH}_{2}+\text { liq. } \mathrm{NH}_{3}\right)}(\mathrm{C})$.
The product (C) is:
a)

b)

c)

d)

153. A halide with formula $\mathrm{C}_{6} \mathrm{H}_{13}$ Brgave two isomeric alkenes (A) and (B) with formula $\mathrm{C}_{6} \mathrm{H}_{12}$. On reductive ozonolysis of a mixture of (A) and (B), the following compounds were obtained: $\mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$. The halide is:
a) 2-Bromohexane
b) 3-Bromo-2-methylpentane
c) 2,2-Dimethyl-1-bromohexane
d) Unpredictable
154. 1-Ethyl-2-methyl oxirane when treated with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, followed by hydrolysis gives:
a)

b)

c)

d)

155.
 would be:
a)

b)

c)

d)

156.

a)

b)

c)

d) All
157. The decreasing basic order of the following is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} \quad$ ii. $\stackrel{\ominus}{\mathrm{H}} \quad$ iii. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ iv. $\mathrm{H}_{2} \mathrm{O}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (ii) $>$ (i) $>$ (iv)
d) (iii) $>$ (ii) $>$ (iv) $>$ (i)
158.

(A) and (B) are:
a) A and $\mathrm{B} \Rightarrow \mathrm{N} \equiv \mathrm{C}$
b) A and $\mathrm{B} \Rightarrow \mathrm{N} \equiv \mathrm{C}$

c)

d) $\mathrm{B} \Rightarrow \mathrm{Me}_{\mathrm{O}}^{\mathrm{Me}}$
159. A solution of (+)-2-chloro-2-phenylethanein toluene racemises slowly in the presence of a small amount of SbCl_{5}, due to the formation of:
a) Carbanion
b) Carbene
c) Free-radical
d) Carbocation
160. Give the increasing order of $\mathrm{p} K_{\mathrm{a}}$ value of the following compounds?
I. $\mathrm{C}_{9} \mathrm{H}_{10}$

III.

a) (I) $<$ (III) $<$ (II)
b) (I) $<$ (II) $<$ (III)
c) (II) $<$ (III) $<$ (I)
d) (III) $<$ (II) $<$ (I)
161. Which of the following undergoes nitration most readily?
a) Toluene
b) Styrene
c) Chlorobenzene
d) Phenol
162.

(A) would be
a)

b)

c)

d)

163.

By which mechanism does the above reaction proceed?
a) α-Elimination
b) β-Elimination
c) γ-Elimination
d) δ-Elimination
164.

The above conversion can be carried out by which process
a) i. $\mathrm{HBr}+$ peroxide ii. $\mathrm{Me}_{3} \mathrm{CO}^{\ominus} \Delta$ iii. $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$
b) i. $\mathrm{HBrii} . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\ominus}, \Delta$ iii. $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$
c) i. $\mathrm{HIii} . \mathrm{MeO}^{\ominus}, \Delta$ iii. $\mathrm{O}_{3} / \mathrm{Zn}$-acid
d) $\mathrm{HCl}+$ peroxide
165.

(A) would be:
a)

b)

c)

d)

166. Slow oxidation of chloroform in air leads to the formation of:
a) Formyl chloride
b) Formic acid
c) COCl_{2}
d) Trichloro acetic acid
167. The major product of the following reaction is

a)

b)

c)

d)

168. Which of the following in not aromatic in nature?
a)

b)

c)

d)

169.

Specific rotation $=+50^{\circ}$

which of the following acts as a nucleophile?
a) Cl^{\ominus}
b) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
c) SO_{2}
d) None
170. Propylsulphinic acid is prepared by the reaction of the following, followed by hydrolysis:
a) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBr}+\mathrm{SO}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{SO}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBr}+\mathrm{SO}_{3}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{SO}_{3}$
171. $\mathrm{MeMgBr}+\xrightarrow{\text { H }} \xrightarrow{\mathrm{O}_{3} \mathrm{O}^{\oplus}}$ Product. The product is :
a)

b) MO
c)

d) None is correct
172. Which of the following halides will be most reactive in SN^{2} reaction and SN^{1} reaction, respectively?

a) (I),(II)
b) (II),(I)
c) (I),(III)
d) (III),(I)
173. The number of isomers for the compounds with molecular formulaC ${ }_{2} \mathrm{BrClFI}$ is
a) 3
b) 4
c) 5
d) 6
174. The decreasing basic order of the following is:
i. $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{NMe}_{2}$ ii. $\mathrm{MeNH}-\mathrm{NHMe}$
iii. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$ iv. NH_{3}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iv) $>$ (iii) $>$ (i) $>$ (ii)
d) (iii) $>$ (iv) $>$ (ii) $>$ (i)
175. Which of the following is most reactive for SN^{2} reaction?
a)

b)

c)

d)

176. Phenyl isocyanide + Benzyl magnesium bromide $\xrightarrow[2 \cdot \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { 1.Ether } \Delta}(A)$. The compound (A) is:
a)

b)

c) $\mathrm{Ph} \mathrm{N}=\mathrm{CH}-\mathrm{Ph}$
d) $\mathrm{Ph}-\mathrm{N}=\mathrm{CH} \xrightarrow{\mathrm{Ph}}$
177. When ethanamide is treated with EtMgBr, followed by hydrolysis, the product is:
a)

b)

c)

d)

178. Which of the following ether will always give SN^{2} mechanism in acidic as well as basic conditions?
a) $\mathrm{Me}^{-\mathrm{O}}{ }_{\mathrm{Me}}$
b) $\mathrm{Ph}^{-\mathrm{O}}{ }_{\mathrm{Me}}$
c) \prod_{0}
d) All
179. The structure of the major product formed in the following reaction is:

a)

b)

c)

d)

180. Out of monochloro, monobromo, and monoiododerivatives of ethane, the most reactive compound towards nucleophilic substitutions will be:
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
d) All are equally reactive
181. (X) on treatment with sodium hydroxide followed by the addition of silver nitrate gives white precipitate at room temperature which is soluble in $\mathrm{NH}_{4} \mathrm{OH}$. (X) can be:
a) Chlorobenzene
b) Ethyl bromide
c) Benzyl chloride
d) Vinyl chloride
182. Which of the following compounds will give curdy precipitate with AgNO_{3} solution?
a)

b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
c)

d)

183. The correct decreasing order of SN^{1} reactivity of the following is:
I. $\mathrm{PhCH}_{2} \mathrm{XII} . \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}$
III.Me ${ }_{2}$ CHXIV. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{X}$
a) (I) $>$ (II) $>$ (III) $>$ (IV)
b) (IV) $>$ (III) $>$ (II) $>$ (I)
c) (II) $>$ (I) $>$ (III) $>$ (IV)
d) (IV) $>$ (III) $>$ (I) $>$ (II)
184.

Product (C) is:
a)

b)

c)

185.

The major product (A) and reaction R are:
a)

b)
 Addition-elimination reaction
c)

d)

186. If the following, four groups are m-directing when present on a benzene ring. The one which is not metadirecting is:
a) -COOH
b) $-\mathrm{NO}_{2}$
c) -CHO
d) $-\mathrm{NH}_{2}$
187. When iodoform is heated with silver powder, the gaseous product formed is:
a) Ethene
b) Ethyne
c) Ethane
d) Silver iodate
188. A reaction involving an aromatic nucleus is usually initiated by:
a) Free radicals
b) Molecules possessing a lone pair of electrons
c) Nucleophiles
d) Electrophiles
189.

(A) is:
a)

b)

c)

d)

190. The compound that is most reactive towards electrophilic nitration is:
a) Toluene
b) Benzene
c) Benzoic acid
d) Nitrobenzene
191. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHI} \xrightarrow[\text { EtOH }]{\mathrm{KOH}}(\mathrm{A}) \xrightarrow[475 \mathrm{~K}]{\mathrm{SO}_{2} \mathrm{Cl}_{2}}(\mathrm{~B})$ Compound (B) in the sequence is:
a) Dimethyl sulphate
b) 1,2-Dichloro ethane
c) 3-Chloro propene
d) 1-Chloro-2-iodopropane
192. How many chiral carbon atoms are present in $2,3,4$ - trichloropentane?
a) 3
b) 2
c) 1
d) 4
193. When ethane nitrile is treated with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$, followed by hydrolysis, the product is:
a)

b)

c)

d)

194. Alkyl halides can be obtained by all methods except:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HX} / \mathrm{ZnCl}_{2}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} \frac{\mathrm{SO}_{2} \mathrm{Cl}_{2}}{475 \mathrm{~K}}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaCl}$
d) $\mathrm{CH}_{3} \mathrm{COOAg}+\mathrm{Br}_{2} / \mathrm{CCl}_{4}$
195.

2 mol of MeMgBr
$\xrightarrow{\mid \mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}}(\mathrm{~A}) \xrightarrow{/ \mathrm{H}_{3} \mathrm{O}^{\oplus}}$ (B) (B) is:
a)

b)

c)

d)

196. The decreasing order of the rate of bromination of the following compounds is:
I. $\mathrm{Ph} \mathrm{NM} \mathrm{e}_{3}$
II. $\mathrm{Ph} \mathrm{CH}_{2} \stackrel{\oplus}{\mathrm{~N}} \mathrm{e}_{3}$
III.PhMe IV. PhNMe_{2}
a) (I) $>$ (II) $>$ (III) $>$ (IV)
b) (IV) $>$ (III) $>$ (II) $>$ (I)
c) (III) $>$ (IV) $>$ (I) $>$ (II)
d) (III) $>$ (IV) $>$ (II) $>$ (I)
197. Which of the following halides has the least dipole moment?
a) 1,2-Dichlorobenzene
b) Dichloromethane
c) Trichloromethane
d) Ethyl chloride
198. Reactivity of PrMgBr with the following in the decreasing order is:
i. Alcoholii. Aldehyde
iii. Ketoneiv. Ester
a) (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv)
c) (ii) $>$ (iii) $>$ (i) $>$ (iv)
d) (iv) $>$ (i) $>$ (iii) $>$ (ii)
199.

a) $\mathrm{BrMg} \sim \mathrm{MgBr}$
b) $\mathrm{BrMg} \sim \mathrm{Br}$
c) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
d) All
200. Which of the following species will be least stable?
a)

b)

c)

d)

201. The decreasing order of SN^{2} reactivity of alkoxide nucleophiles:
i. $\mathrm{Me}_{3} \mathrm{CO}^{\ominus}$ ii. MeO^{\ominus} iii. $\mathrm{MeCH}_{2} \mathrm{O}^{\ominus}$

a) (i) $>$ (iv) $>$ (v) $>$ (iii) $>$ (ii)
b) (ii) $>$ (iii) $>$ (v) $>$ (iv) $>$ (i)
c) (i) $>$ (v) $>$ (iv) $>$ (iii) $>$ (ii)
d) (ii) $>$ (iii) $>$ (iv) $>$ (v) $>$ (i)
202. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{MgCl}$ on reaction with $\mathrm{D}_{2} \mathrm{O}$ Porduces:
a) $\mathrm{Me}_{3} \mathrm{CD}$
b) $\mathrm{Me}_{3} \mathrm{COD}$
c) $(\mathrm{CD})_{3} \mathrm{CD}$
d) $(\mathrm{CD})_{3} \mathrm{COD}$
203. A compound A of formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ on reaction with alkali can give B of formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ or C of formula $\mathrm{C}_{3} \mathrm{H}_{4}$. B on oxidation gave a compound of the formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$. C with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ containing $\mathrm{H}_{\mathrm{g}}{ }^{2+}$ ion gave D of formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, which with bromine and NaOH gave the sodium salt of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. Then A is:
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCl}_{2}$
b) $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}_{3}$
c) $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
d) $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{Cl}$
204. Ethanoicpropanoic anhydride on reaction with excess of MeMgBr gives the major product
a)

b)

c)

d)

205. Vinyl chloride and ethyl chloride can be distinguished by:
a) Lucas reagent
b) $\mathrm{KOH}, \mathrm{AgNO}_{3}$
c) AgCl
d) $\mathrm{HCl} / \mathrm{AgCl}$
206.

$\xrightarrow{\mathrm{Mg} / \text { ether }}(\mathrm{C}) \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{HCHO}}(\mathrm{D})$.
(D) is
a)

b)

c)

d)

207. Which of the following sequence of reaction (reagents) can be used for the conversion of $\mathrm{PhCH}_{2} \mathrm{CH}_{3}$ into $\mathrm{PhCH}=\mathrm{CH}_{2}$?
a) $\mathrm{SOCl}_{2} ; \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$: alc. KOH
c) $\mathrm{Cl}_{2} / h v ; \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{SOCl}_{2} ;$ alc. KOH
208. Carbylamine test is performed in alcoholic KOH by heating a mixture of:
a) Chloroform and silver powder
b) Trihalogenated methane and a primary amine
c) An alkyl halide and a primary amine
d) An alkyl cyanide and a primary amine
209. Which of the following is the correct order of stability of the given compounds?
I. \oplus
II. O
III. Θ
a) (I) $>$ (II) $>$ (III)
b) (III) $>$ (II) $>$ (I)
c) (II) $>$ (I) $>$ (III)
d) (II) $>$ (III) $>$ (I)
210. $\mathrm{CH}_{3}-\mathrm{Br} \mathrm{Nu}{ }^{\ominus} \longrightarrow \mathrm{CH}_{3}-\mathrm{Nu}+\mathrm{Br}^{\ominus}$ The decreasing order of the rate of the above reaction with nucleophile $\left(\mathrm{Nu}^{\ominus}\right)$ (A) to (D) is:
$\mathrm{Nu}^{\ominus} \Rightarrow$
$\left[(\mathrm{A}) \mathrm{PhO}^{\ominus}(\mathrm{B}) \mathrm{ACO}^{\ominus}(\mathrm{C}) \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(\mathrm{D}) \mathrm{CH}_{3} \mathrm{O}^{\ominus}\right]$
a) (D) $>$ (C) $>$ (A) $>$ (B)
b) (D) $>$ (C) $>$ (B) $>$ (A)
c) $(\mathrm{C})>(\mathrm{D})>(\mathrm{A})>(\mathrm{B})$
d) (B) $>$ (D) $>$ (C) $>$ (A)
211. Raschig's process is employed for the commercial preparation of:
a) Ethyl chloride
b) Grignard's reagent
c) Chlorobenzene
d) Ethanol
212. Which of the following on reaction with acetylene ($\mathrm{CH} \equiv \mathrm{CH}$) produce gas(es)?
I. K in liquid NH_{3}
II. $\stackrel{\ominus}{\mathrm{NH}_{2}}$
III. $\stackrel{\ominus}{\mathrm{C}}_{3} \quad$ IV. $\stackrel{\ominus}{\mathrm{O}}$
a) (I),(II),and(III)
b) (I),(II),and(IV)
c) (II),(III) and (IV)
d) (I),(III), and (IV)
213. Propyl ester reacts with isopropyl magnesium bromide to give 2° alcohol

a) Propyl methanoate
b) Isopropyl formate
c) Propyl ethanoate
d) Isopropyl ethanoate
214. Which of the following compounds will show faster ArSN^{2} reaction?
a)

b)

c)

d)

215.

In the reaction $\mathrm{Ph} \xrightarrow{\mathrm{Br} \xrightarrow{\mathrm{HOH}}[\mathrm{X}],[\mathrm{X}] \text { will be: }}$
a)

b)

c) Equimolar mixture of (a) and (b)
d) Ph
216. The decreasing basic order of the following compounds is:
i. H_{2} Oii. H_{2} Siii. H_{2} Seiv. $\mathrm{H}_{2} \mathrm{Te}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (i) $>$ (ii) $>$ (iv)
d) (iv) $>$ (ii) $>$ (i) $>$ (iii)
217. Which of the following is anti-aromatic in nature?
a)

b)

c)

d)

218. In which case will SE not be in m-position?
a)

b)

c)

d)

219. Propane on dichlorination gives \qquad isomers and out of them \qquad ...are optically active
a) 4,1
b) 3,1
c) 4,2
d) 3,2
220. Which of the following is not an example of Sandmeyer's reaction?
a) $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}_{2}} \mathrm{Cl}^{-} \xrightarrow{\mathrm{CuCl}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}}_{2} \mathrm{Cl}^{-} \xrightarrow{\mathrm{CuBr}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}_{2}} \mathrm{Cl}^{-} \xrightarrow{\mathrm{CuCN}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}_{2}} \mathrm{Cl}^{-} \xrightarrow[\text { KI }]{\mathrm{KCN}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$
221. In the following reactions:

the rate of reaction of (I) is faster than that of (II). By which mechanism do both the reactions proceed?
a) E1
b) E2
c) E 1 cB
d) α-Elimination
222.
 five compounds with formulaC $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$. How many structures of (X) are possible?
a) 2
b) 3
c) 4
d) 5
223. The decreasing nucleophilic order of the following compounds is:
i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
ii. $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$
iii. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
iv. F^{\ominus}
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
224. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} \xrightarrow{\mathrm{AgNO}_{2}}(\mathrm{X})$. Here (X) is:
(Major product)
a) $\mathrm{C}_{2} \mathrm{H}_{5}-\stackrel{\mathrm{O}}{\mathrm{N}} \longrightarrow \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
c) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{N}=0$
d) All of the above
225. Product on monobromination of this compound is

a)

b)

c)

d)

226. Methyl oxirane on reaction with $\mathrm{CH}_{3} \mathrm{MgBr}$, followed by hydrolysis, gives alcohol. By which of the following mechanisms does the reaction proceed?
a) SN^{1}
b) SN^{2}
c) SN^{i}
d) SE
227. Which of the following is soluble in water?
a) CS_{2}
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) CCl_{4}
d) CHCl_{3}
228. In the following reaction:

By which mechanism does the reaction proceed?
a) E1
b) E2
c) E 1 cB
d) α-Elimination
229. A suspension of CaOCl_{2} in water is heated with ethanol. The product formed is:
a) Ethylene
b) Ethanol
c) Trichloromethane
d) Chloroethane
230. Fluorobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\right)$ can be synthesised in the laboratory:
a) By heating phenol with HF and KF
b) From aniline by diazotization followed by heating the diazonium salt with HBF_{4}
c) By Direct Fluorination of benzene with F_{2} gas
d) By reacting PhBr with NaF solution
231. Which will react faster with NBS?
a) $\mathrm{C}_{6} \mathrm{H}_{6}$
b) CH_{4}
c) Toluene
d) Cyclopropane
232. In the following reaction, which of the following steps is wrong?

a) Step 1
b) Step 2
c) Step 3
d) None
233.

The major product is:
a)

b)

c)

d)

234.
 and $[\mathrm{Y}]$ are:
a)

b)

c)
 in both cases
d)

$$
=+50^{\circ}
$$

235.

What is the specific rotation of the product?
a) $+50^{\circ}$
b) $+60^{\circ}$
c) -60°
d) Zero
236. The decreasing nucleophilic order of the following compounds is: i. NH_{3} ii. PH_{3} iii. $\mathrm{AsH}_{3} \mathrm{iv} . \mathrm{SbH}_{3}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (ii) $>$ (i) $>$ (iii) $>$ (iv)
d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
237. Which of the following is the correct order of the rate of reaction of $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{C}_{6} \mathrm{~T}_{6}$ towards sulphonation?
a) Same rates of reaction of $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{C}_{6} \mathrm{~T}_{6}$
b) $\mathrm{C}_{6} \mathrm{~T}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}>\mathrm{C}_{6} \mathrm{H}_{6}$
c) $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}>\mathrm{C}_{6} \mathrm{~T}_{6}$
d) $\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{6} \mathrm{D}_{6}=\mathrm{C}_{6} \mathrm{~T}_{6}$
238. A sample of chloroform which is used by doctors as an anaesthetic is generally tested by:
a) AgNO_{3} (aq.)
b) Fehling's solution
c) AgNO_{3} (aq.) after boiling with KOH
d) Any of the above
239. The energy of activation is lowest for which reaction?
a) $\mathrm{RCH}_{2} \stackrel{\oplus}{\mathrm{OH}_{2}} \longrightarrow \mathrm{R} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
b) $\mathrm{R}_{2} \mathrm{CHO}_{\mathrm{O}}^{\mathrm{H}}{ }_{2} \longrightarrow \mathrm{R}_{2} \stackrel{\oplus}{\mathrm{C}}{ }^{\mathrm{H}}$
c) $\mathrm{R}_{3} \mathrm{C}-\stackrel{\oplus}{\mathrm{O}^{\mathrm{H}}} \longrightarrow \mathrm{R}_{3} \mathrm{C}^{\oplus}$
d) All have the same energy of activation
240. Which of the following compounds will undergo Friedel-Crafts alkylation with faster rate?
a)

b)

c)

d)

241. What is the end product of the reaction?

a)

b)

c)

d)

242. When di-isopropyl cadmium is treated with ethanoyl chloride, the product is:
a)

b)

c)

d)

243. The decreasing fugacity order of the following compounds is:
i. $\mathrm{PhSO}_{3}^{\ominus}$
ii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{\ominus}$ iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{\ominus}$
iv. $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$
v. OH
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (iii) $>$ (ii) $>$ (i)
d) (i) $>$ (ii) $>$ (iii) $>$ (v) $>$ (iv)
244. Phenol reacts with bromine in carbon disulphide at low temperature to give:
a) m-Bromophenol
b) o - and p-Bromophenol
c) p-Bromophenol
d) 2,4,6-Tribromophenol
245. Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to:
a) The formation of less stable carbonium ion
b) Resonance stabilisation
c) Larger carbon-halogen bond
d) Inductive ettect
246. The chemical reaction
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \xrightarrow[-\mathrm{H}_{2} \mathrm{O},-\mathrm{KBr}]{\mathrm{KOH}(\mathrm{alc} \text {.) }}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}=\mathrm{CH}_{2}$ is an example of:
a) Nucleophilic substitution
b) Electrophilic substitution
c) Free radical substitution
d) β-Elimination
247. In the reaction of p-chlorotoluene with KNH_{2} in liquid NH_{3}, the major product is:
a) o-Toluidine
b) m-Toluidine
c) p-Toluidine
d) p-Chloroaniline
248. The chemistry of benzene is characterised by which of the following types of reaction?
a) Addition
b) Elimination
c) Polymerisation
d) Substitution
249. In the following reactions:

the rate of reaction of (I) and (II) are same. Bothreactionsproceed by which mechanism
a) E1
b) E2
c) E 1 cB
d) Anti-elimination
250. In the reaction

Thyroxine, a thyroid hormone that
helps to regulate metabolic rate
Thyroxine, a thyroid hormone thathelps to regulate metabolic rate
Thyroxine is:
a)

b)

c)

d)

251. 1, 2-Dibromopropane on treatment with X moles of NaNH_{2} followed by treatment with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ gives a
pentyne. The value of X is:
a) 1
b) 2
c) 3
d) 4
252. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}+\mathrm{NaI} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHI}+\mathrm{NaCl}$ The above reaction is known as:
a) Perkin's reaction
b) Finkelstein's reaction
c) Fitting reaction
d) Sabatier and Senderan's reaction
253. Reactivity of EtMgBr with the following in the decreasing order is:

1. HCHO
2. MeCHO
3. MeCOMe
4. $\mathrm{CI}_{3} \mathrm{C}-\mathrm{CHO}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iv) $>$ (i) $>$ (ii) $>$ (iii)
d) (iii) $>$ (ii) $>$ (i) $>$ (iv)
5.

Methyl ester reacts withEtMgBr to give 3° alcohol

a) Methyl propanoate
b) Methyl butanoate
c) Methyl ethanoate
d) Methyl formate
255. Fire extinguisher pyrene is:
a) CO_{2}
b) CCl_{4}
c) CHCl_{3}
d) $\mathrm{H}_{2} \mathrm{CO}_{3}$
256. The decreasing nucleophilic order t the following compounds is:
$\begin{array}{lllll}\text { i. } \stackrel{\ominus}{\mathrm{C}} & \text { ii. } \stackrel{\ominus}{\mathrm{O}} \mathrm{H} & \text { iii. } \stackrel{\ominus}{\mathrm{O}} \mathrm{Me} & \text { iv. } \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} & \text { v. } \mathrm{H}^{\ominus}\end{array}$
a) (v) $>$ (iv) $>$ (iii) $>$ (ii) $>$ (i)
b) (i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)
c) (iv) $>$ (v) $>$ (ii) $>$ (iii) $>$ (i)
d) (i) $>$ (ii) $>$ (iii) $>$ (v) $>$ (iv)
257. The optical isomers which are not mirror images of each other are called:
a) Enantiomers
b) Mesomers
c) Diastereomers
d) Metamers
258. The decreasing fugacity order of the following compounds is: i. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} \quad$ ii. $\stackrel{\ominus}{\mathrm{O}} \quad$ iii. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ iv. $\mathrm{H}_{2} \mathrm{O}$
a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
c) (iii) $>$ (ii) $>$ (i) $>$ (iv)
d) (iii) $>$ (ii) $>$ (iv) $>$ (i)
259. On mixing a certain alkane with chlorine and irradiating it with ultraviolet light, it forms only one monochloroalkane.
a) Propane
b) Pentane
c) Iso-pentane
d) Neo-pentane
260. In order to convert aniline into chlorobenzene, the reagents needed are:
a) CuCl
b) $\mathrm{NaNO}_{2} / \mathrm{HCl}$ and CuCl
c) $\mathrm{Cl}_{2} / \mathrm{CCl}_{4}$
d) $\mathrm{Cl}_{2} / \mathrm{AICl}_{3}$
261. The distillation of bleaching powder and acetone gives:
a) CHCl_{3}
b) Chloral
c) $\mathrm{CH}_{3} \mathrm{Cl}$
d) CCl_{4}
262. Which of the following cannot be used for the preparation of iodoform?
a) Acetone
b) Methanol
c) Ethanol
d) Acetaldehyde
263. The compound (A) in the previous question is further hydrolysed in dilute acidic medium to give compounds (B) and (C). The compounds (B) and (C) are:
a) phNH_{2} and $\mathrm{PhCH}=0$
b) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ and $\mathrm{PhCH}=\mathrm{O}$
c) PhNH_{2} and $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{O}$
d) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ and $\mathrm{PhCH}_{2} \mathrm{CH}=0$
264. In the following reaction, which of the following steps is wrong?

a) Step 1
b) Step 2
c) Step 3
d) None
265. The process of converting one enantiomer of an optically active compound into racemic mixture is called:
a) Resolution
b) Inversion
c) Epimerisation
d) Racemisation

Multiple Correct Answers Type

266. Consider the following reactions:
I. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\mathrm{NH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{NH}_{3}}+\mathrm{I}{ }^{\ominus}$
II. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\stackrel{\ddot{\mathrm{P}} \mathrm{H}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{P}} \mathrm{H}_{3}+\mathrm{I}}{ }{ }^{\ominus}$
III. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\mathrm{EtO}^{\ominus} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OEt}+\mathrm{I}^{\ominus}$
IV. $\mathrm{Me}-\stackrel{\oplus}{\mathrm{S}}-\mathrm{Me}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{Me}-\mathrm{OH}+\mathrm{Me}_{2} \mathrm{~S}$

In which of the above reactions does the rate of SN^{2} reaction decrease with an increase in solvent polarity?
a) (I)
b) (II)
c) (III)
d) (IV)
267. Toluene when treated with $\mathrm{Br}_{2} / \mathrm{Fe}$ gives p-bromotoluene as the major product because the $\left(\mathrm{CH}_{3}\right)$ group:
a) is para-directing
b) is meta-directing
c) activates the ring by hyperconjugation
d) deactivates the ring
268. Consider the following compound

Which of the following statements are correct?
a) Loss of Br (a) atom in dehydrobromination reaction results in the formation of the most reactive double bond towards hydrogenation reaction
b) Removal of Br (c) atom results in the formation of the most stable carbocation
c) The above compound contains five asymmetric C atoms
d) The above compound does not show geometrical isomers
269. Among the following, which is/are correct?
a) Both cyclopentadienyl anion and benzene are aromatic and have the same stability
b) Benzene is aromatic and more stable than cyclopentadienyl anion and it is non-aromatic
c) Both cyclopentadienyl anion and benzene are aromatic but benzene is more stable than cyclopentadienyl anion
d) Cyclopentadienyl anion is more stable than benzene though both are aromatic
270.

Which of the following statements is/are correct for the above reactions?
(B) and (D) are respectively
a) $\left(\mathrm{Me} \sim_{\text {(I) }} \mathrm{NO}_{2}\right)$
and $\left(\mathrm{Me} \xrightarrow[\text { (II) }]{\sim} \sim_{\mathrm{NO}}^{2}\right)$
c) (B) is (I) and D is (IV)
(B) and (D) are respectively
b) $\left(\mathrm{Me}_{\text {(III) }} \mathrm{ONO}\right)$ and $(\mathrm{Me} \underset{\text { (IV) }}{\mathrm{ONO}})$
d) (B) is (III) and D is (II)
271.

A 3° alcohol $\mathrm{Me}^{\mathrm{Me}}$ can be obtained by the reaction of ketone (di-isopropyl ketone) and
a) Isopropyl magnesium bromide
b) Isopropyl lithium
c) Di-isopropyl cadmium
d) Di-isopropyl zinc
272.
 $\xrightarrow[\text { SN }^{1}]{\mathrm{MeONa} / \mathrm{MeOH}}$ Product

Which of the following statements are correct?
a) The product is
 (I)
b) The product is
 (II)
c)

The product is a mixture of
(II) +

d) Product (II) is formed by 1, $2-\mathrm{Me}$ shift and product (III) is formed by $1,2-\mathrm{H}^{\ominus}$ shift with ring expansion
273. Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to
a) The formation of less stable carbonium ion
b) Resonance stabilisation
c) Longer carbon-halogen bond
d) The inductive effect
274. Which of the following statements are correct about Friedel-Crafts reaction?
a) It is an aromatic electrophilic substitution reaction
b) The reaction intermediate is an \bar{e}-deficient species
c) The reaction involves alkylation and acylation
d) A Lewis acid is used as a catalyst
275. Consider the following reactions

II. $\mathrm{CH}_{3} \stackrel{*}{\mathrm{O}} \mathrm{H}$ H) $+\underset{\text { (G) }}{\mathrm{CH}_{3} \mathrm{COCl}} \longrightarrow \downarrow$

(H)

The products (D), (E), (I), and (J) are respectively
(D)
(E)
(I)
(J)
a) $\mathrm{CH}_{3} \mathrm{OH} \mathrm{PhSO}_{2} \stackrel{*}{\mathrm{O}} \mathrm{Na} \mathrm{CH}_{3} \stackrel{*}{\mathrm{O}} \mathrm{CH}_{3} \mathrm{COONa}$
b) $\mathrm{CH}_{3} \stackrel{*}{\mathrm{OH}} \mathrm{PhSO}_{2} \mathrm{ONa} \mathrm{CH}_{3} \mathrm{OH} \mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}$
c) $\mathrm{CH}_{3} \stackrel{*}{\mathrm{O}} \mathrm{H}^{2} \mathrm{PhSO}_{2} \mathrm{ONaCH} \mathrm{CH}_{3} \stackrel{*}{\mathrm{OH}} \mathrm{CH}_{3} \mathrm{COONa}$
d) $\mathrm{CH}_{3} \mathrm{OH} \quad \mathrm{PhSO}_{2} \stackrel{*}{\mathrm{O}} \mathrm{Na} \mathrm{CH}_{3} \mathrm{OH} \mathrm{CH}_{3} \mathrm{COO} \stackrel{*}{\mathrm{Na}}$
276. The compounds used as refrigerant are:
a) NH_{3}
b) CCl_{4}
c) CF_{4}
d) $\mathrm{CF}_{2} \mathrm{Cl}_{2}$
277.

(A)

Which of the following statements are correct for the above reaction?
The product is a mixture of
a)

b) The product (II) is a cine-substitution product
c) The reaction proceeds viabenzene intermediate
d) The reaction is ArSN (addition-elimination)
278. Hexan-3-one can be obtained by the reaction of EtMgBr and
a) Butanamide
b) Propanamide
c) Butane nitrile
d) Propane nitrile
279. An aromatic molecule will:
a) Have $4 n \pi$-electrons
b) Have $(4 n+2) \pi$-electrons
c) Be planar
d) Be cyclic
280.

Which of the following statements are correct?
a) Formation of (I) and (II) proceeds viaSN ${ }^{1}$ mechanism
b) Formation of (I) and (II) proceeds via SN^{2} mechanism
c) Formation of (III) proceeds via SN^{2} mechanism
d) Formation of (IV) proceeds viaSN ${ }^{2}$ mechanism with allylic rearrangement and is called SN^{2}-prime (SN^{2}) mechanism
281.
$\mathrm{EtNH}_{2}+\mathrm{MeMgI} \xrightarrow[\text { in the prosence of pyridine }]{\text { Heated at high temp }} \mathrm{GAS}(\mathrm{A})$ The volume of gas (A) obtained at S.T.P. when 0.45 gm of EtNH_{2} reacts with MeMgI is
a) 224 ml
b) 22.4 ml
c) 448 ml
d) 44.8 ml
282.

Which of the following statements is/are correct?
a)

First mole of G.R. reacts at $(-\mathrm{OH})$ group and the product (A) is
 andphenol
b)

Second mole of G.R. reacts with keto group and the product (B) is

c)
product (B) is

Second mole of G.R. reacts with acid chloride group and the product (B) is

d) Compound (D) is

283. Which content(s) of middle oil separate on cooling?
a) Naphthalene
b) Phenol
c) Benzene
d) Pyridine
284. In Dow's process for the manufacture of phenol, PhCl is fused with NaOH at elevated temperature under pressure
$\mathrm{PhCl} \xrightarrow[623 \mathrm{~K} 300 \mathrm{~atm}]{\mathrm{NaOH}}[$ Intermediate $] \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$ Phenol $+(B+C)$

> (A) Side product

Which of the following statements are correct:
a) Phenol is formed viathe formation of benzyne intermediate
b) p-Phenyl phenol is also formed as a by-product
c) Diphenylether is also formed as a by-product
d) Biphenylene is also formed as a by-product
285. Which of the statements is/are correct?
a) In Reformatsky reaction, α-bromo ester reacts with aldehyde or ketone in the presence of Mg to give β hydroxy ester
b) In Reformatsky reaction, α-bromo ester reacts with aldehyde or ketone in the presence of Zn to give β hydroxy ester
c) Citric acid is prepared by the reaction of α-bromoethyl acetate and ethyl oxaloacetate in the
c) presence of Zn followed by hydrolysis
d) Citric acid is prepared by the fermentation of molasses in the presence of
d) Aspergilluswentienzymes
286. Which of the following side chain reaction/s can be used to reduce the activity of strongly activating groups such as $(-\mathrm{OH})$ or $\left(-\mathrm{NH}_{2}\right)$
a) Benzoylation
b) Acetylation
c) Tosylation
d) Sulphonation
287.

(A)

Which statement is/are correct?
a) Both reactions (i) and (ii) proceed via SN^{2} mechanism
b) Both reactions (i) and (ii) proceed via SN^{1} mechanism
c) Reaction (i) proceeds viaSN ${ }^{1}$ and reaction (ii) via SN^{2} mechanism
d) Reaction (i) proceeds via SN^{2} and reaction (ii) via SN^{1} mechanism
288. The products of reaction of alcoholic silver nitrite with ethyl bromide are:
a) Ethane
b) Ethene
c) Nitroethane
d) Ethyl alcohol
289. Which of the following halides does not form G.R. when treated with magnesium in the presence of ether?
a) $\mathrm{Br} \simeq \equiv-\mathrm{H}$
b) $\mathrm{HO} \sim \mathrm{Br}$
c) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}-\mathrm{Br}$
d) $\mathrm{HOOC}-\mathrm{Br}$
290. Acetophenone can be obtained by the reaction of PhMgBr and
a) Ethane nitrile
b) Ethanamide
c) Ethanoyl chloride
d) Methanamide
291. Which of the following reaction(s) is/are neither stereospecific nor stereoselective?
a) SN^{1}
b) SN^{2}
c) E2
d) E 1 cB
292.

(I)

(II)

(III)

(IV)

Which of the following statements are correct?
a) (I) and (II) are aromatic and have equal basic strength
b) (I) is aromatic, (II) is anti-aromatic, but (II) is a stronger base than (I)
c) The basicity order of above compounds is (IV) $>$ (III) $>$ (II) $>$ (I)
d) The conjugate acid of (IV) is more stabilised than the conjugate acid of (II)
293. The decreasing order of $\mathrm{p} K_{\mathrm{a}}$ value of the following is:
(I) $\mathrm{CH} \equiv \mathrm{CH}$
(II)
(III)

a) (III) $>$ (I) $>$ (II)
b) (II) $>$ (I) $>$ (III)
c) (I) $>$ (III) $>$ (II)
d) $($ I $)>$ (II $)=$ (III)
294. In which of the following reactions is the correct major product formed?
a)

b)

c)

d)

295.

Which of the following statements are true?
a) (I) and (III) are modest Bronsted bases, whereas (II) is not
b) In (III), N^{a} in more basic than N^{b}
c) When (II) is protonated in the presence of a strong acid, protonation occurs at C-2
d) All the nitrogen present in (I), (II), and (III) are $s p^{2}$ - hybridised
296. Which of the following halides forms G.R. when treated with magnesium in the presence of ether?
a) PhBr
b)
$\sim \mathrm{Br}$
c) Br
d) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{O}-\mathrm{Br}$
297. Which of the following reaction(s) is/are non-stereospecific but stereoselective?
a) SN^{1}
b) E1
c) E2
d) E 1 cB
298. Which of the following are the best methods for the preparation of n-propyl benzene (A)?
a)

b)
 $+\mathrm{Me} \longrightarrow(\mathrm{A})$
c)

$\xrightarrow{\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}}(\mathrm{A})$
d)

$\xrightarrow{\mathrm{NH}_{2} \mathrm{NH}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}}(\mathrm{A})$
299.

The products (I) and (II) are:
(I) is 2-methyl cyclohexanone
a)

b)
(II) is a mixture of cyclohexanone

(I)In l-methoxy cyclohexene
c)

(II) is t-butoxy cyclohexene
d)

300. In the conversion of optically active (R) form of 2 -chlorobutane to (R) form of 2-bromobutane, the following sequence of reactions is carried out

Direct conversion is not feasible since Cl cannot be replaced by Br in one step In which of the following steps does the inversion occur?
a) Step 1
b) Step 2
c) Step 3
d) None
301. Which of the following statements are correct about the following reactions?

a) Reaction 1 proceeds by SN^{2} and reaction 2 by SN^{1} mechanism
b) Reaction 1 proceeds by SN^{1} and reaction 2 by SN^{2} mechanism
c) The products (B) and (C) are, respectively

d) The products (B) and (C) are, respectively
(B) \Rightarrow

(C) $\Rightarrow(\pm) \mathrm{Ph}-\underset{\mathrm{O}}{\mathrm{OH}} \underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}=\mathrm{CH}-\mathrm{Me}$
302.

(A)

Which of the following statements are correct?
a)

The product is

(I) (major)
b) The product is a mixture of (I) and $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{Me}$ (II) (major)
c) Allyl chloride is reactive both by SN^{1} and SN^{2} mechanism but more reactive by SN^{1} mechanism
d) Formation of (II) takes place by an allylic rearrangement
303. In which of the following steps does inversion occur?

D-2-Bromopropanoic
(A)

a) Step 1
b) Step 2
c) Step 3
d) None
304. Which combination of reactants will not give species (I)shown as a reactive intermediate?

a)

b)

c)

d)

305. Which of the following reactions are both stereospecific and stereoselective?
a) SN^{1}
b) SN^{2}
c) E1
d) E 2
306. Which of the following are the best methods for the preparation of cumene (A)?
a)

b)
 $+\underset{\mathrm{Me}}{\mathrm{Me}}>\mathrm{Cl}$ $+\mathrm{AlCl}_{3} \longrightarrow(\mathrm{~A})$
(D)
c)

d)

307. Consider the following reactions:

1. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Br} \xrightarrow[\mathrm{SN}^{1}]{\mathrm{H}_{2} \mathrm{O}+\mathrm{NaBr}}$ Product
2. $\mathrm{Ph}_{3} \mathrm{C}-\mathrm{Br} \xrightarrow[\mathrm{SN}^{1}]{\mathrm{H}_{2} \mathrm{O}+\mathrm{NaBr}}$ Products

Which of the following statements are correct about the above reactions?
a) The products in reactions (I) and (II) are mixture of $\left(\mathrm{Me}_{3}-\mathrm{OH}+\mathrm{Me}_{3} \mathrm{Br}\right)$ and $\left(\mathrm{Ph}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{Ph}_{3} \mathrm{C}-\right.$
a) Br),respectively
b) The product in (I) is $\left(\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}\right)$ and in (II) is $\left(\mathrm{Ph}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{Ph}_{3} \mathrm{C}-\mathrm{Br}\right)$
c) The product in (I) is $\left(\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{Br}\right)$ and in (II) is $\left(\mathrm{Ph}_{3} \mathrm{C}-\mathrm{OH}\right)$
d) $\mathrm{Ph}_{3} \mathrm{C}^{\oplus}$ is more stable than $\mathrm{Me}_{3} \mathrm{C}^{\oplus}$
308. Which of the following statements are correct about the reactivities of (I) n-propyl chloride and (II) allyl chloride
a) Rate of SN^{1} reaction of (I) $>$ (II)
b) Rate of SN^{1} reaction of (II) $>$ (I)
c) Rate of SN^{2} reaction of (I) $>$ (II)
d) Rate of SN^{2} reaction of (II) $>$ (I)
309. Both t-butyl and $\left(-\mathrm{SO}_{3} \mathrm{H}\right)$ groups are used as a blocking group in certain synthesis of organic compounds. Which of the following statements are correct?
a) t-Butyl group is easily introduced by any of the variations of the Friedel-Crafts alkylation reaction t-Butyl group can be introduced by using:

$$
\text { I. } \mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{AlCl}_{3}
$$

b) II. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{BF}_{3}$

c) t-Butyl group can be easily removed under acidic conditions because of the stability of tert-butyl cations
d) t-Butyl group has advantage over a $\left(-\mathrm{SO}_{3} \mathrm{H}\right)$ group as a blocking group, because t-butyl group activates the ring to further SE reaction
310. Which of the following syntheses could not be done without involving blocking position on the ring?
a)

b)

c)

d)

311. When benzene sulphonic acid and p-nitrophenol are treated with NaHCO_{3}, the gases released, respectively, are:
a) $\mathrm{SO}_{2}, \mathrm{NO}_{2}$
b) $\mathrm{SO}_{2}, \mathrm{NO}$
c) $\mathrm{SO}_{2}, \mathrm{CO}_{2}$
d) $\mathrm{CO}_{2}, \mathrm{CO}_{2}$
312. In the following reactions:

Which of the following statements are correct about the above reactions?
(B) and (D) are the same product
a)

b)

d) The above reaction is called ipso substitution
c)

313. Which of the following reaction(s) is/are stereospecific but non-stereoselective?
a) SN^{2}
b) E1
c) E 2
d) E 1 cB
314. Energy diagram of $S N^{1}$ and $S N^{2}$ reactions. The order of hydrolysis of $R X$ by SN^{1} is $3^{\circ}>2^{\circ} 1^{\circ} \mathrm{RX}$ and by SN^{2} path is $1^{\circ}>2^{\circ}>3^{\circ} \mathrm{RX}$

Fig. (a)

$$
\xrightarrow{\text { Progress of reaction }}
$$

Fig. (b)

Which of the following statements are correct for the above energy diagrams of SN^{1} and SN^{2} reactions?
a) (I) is Fig. (a) and (IV) in Fig. (b) represent SN 1 reaction
b) (II) in Fig. (a) and (III) in Fig. (b) represent SN 2 reaction
c) Fig. (a) and Fig. (b) are the energy diagrams for $1^{\circ} \mathrm{RX}$ and $3^{\circ} \mathrm{RX}$, respectively
d) Fig. (a) and Fig (b) are the energy diagram for $3^{\circ} \mathrm{RX}$ and $1^{\circ} \mathrm{RX}$, respectively
315. Which are the sources of phenol?
a) Cumene
b) Hydrolysis of benzene diazonium salt
c) Middle oil of coal tar distillation
d) Reaction of diazonium salt with $\mathrm{H}_{3} \mathrm{PO}_{2}$
316. Sulphanilic acid at $\mathrm{pH}=2$ and 12 exists as. \qquad andmigrates towards, \qquad respectively

a)

b) (II) anode and (I) cathode
c) At both pH , only (I) and migrates towards the cathode
d) At both pH , only (II) and migrates towards the anode
317. Which of the reagents is the most suitable for the following reaction?

a) $\mathrm{Me}-\mathrm{C} \equiv \mathrm{N}$
b)

c)

d)

318. Which of the following statements are correct
a) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is weaker nucleophile than $\mathrm{H}_{2} \mathrm{O}$
b) $R-\ddot{S} H$ is a stronger nucleophile than $R-\ddot{O} H$ in polar protic solvent such as ethanol
c) $\ddot{\mathrm{N}} \mathrm{H}_{3}$ is a weaker nucleophile than $\mathrm{H}_{2} \ddot{\mathrm{~N}}-\ddot{\mathrm{O}} \mathrm{H}$
d)

(I) is a stronger nucleophile than $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \ddot{\mathrm{~N}}$ (II)
(II)
319. Which of the following would give benzene when reacted with PhMgBr ?
a)

b) H_{2}
c) Methyl amine
d) NH_{3}
320. Which of the following will give Hofmann alkene?
a)

b)

c)

d)

321.

a) Isopropyl magnesium bromide
b) t-Butyl magnesium bromide
c) EtMgBr
d) MeMgBr
322.

a) The product is Me
b) The product is Me (II) The product is Mixture of me
c)

d) The product is a mixture of (I) and (II)
323. Which of the following statements are correct about E1cB reaction?
a) It proceeds viathe formation of a carbanion intermediate
b) Strong EWG and poor leaving groups favour the reaction
c) It is a unimolecular reaction with second order kinetics
d) When D is incorporated in the starting material by the solvent EtOD and the reaction is interrupted
d) before completion, no D is found either in the substrate or in the product
324. The name of the compound

a) Dibenzocyclobutadiene
b) Dibenzcyclobutane
c) Biphenylene
d) Dibenzocyclobutene
325. Consider the following reactions:

II. $\mathrm{D}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{I} \xrightarrow[\mathrm{E} 2]{\mathrm{EtO}}{ }^{\ominus} \mathrm{D}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{EtOD}+1^{\ominus}$
III. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{I} \frac{\mathrm{EtO}^{\ominus}}{\mathrm{SN}^{1} \text { and E1 }} \underset{\text { Substitution }}{\mathrm{Me}} \mathrm{Se}_{3} \mathrm{C}-\mathrm{OEt}+$

Elimination

Which of the following statement(s) is/are correct?
a) Reactions (I) and (II) show primary kinetic isotope effect, whereas reactions (III) and (IV) show 2° kinetic isotope effect
b) Reactions (I) and (II) show 2° kinetic isotope effect, whereas reactions (III) and (IV) show 1° kinetic isotope effect
c) All reactions show 1° kinetic isotope effect
d) All reactions show 2° kinetic isotope effect
326.

a) Ethyl carbonate
b) Benzophenone
c) Ethyl benzoate
d) Benzamide
327. HO

(A).The compound (A) is:
a)

b)

c)

d) None of these
328. Consider the following reactions:

II. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{F} \xrightarrow[\ominus]{\stackrel{\ominus}{\mathrm{OH}}} \mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$
III. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl} \xrightarrow{\mathrm{OH}} \mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$

Which of the following statements are correct?
a) Reaction (I) is faster than (II)
b) Reaction (II) is faster than (I)
c) Reaction (III) is faster than (IV)
d) Reaction (IV) is faster than (III)
329. Consider the following reactions.

Which statement(s) is/are wrong.
a) The product by path (I) is $\mathrm{Me}-\mathrm{CH}=\mathrm{CH}_{2}$ (I)
b) The product by path (II) is $\mathrm{Me}-\mathrm{CH}$ (OEt) Me (II)
c) The products are mixture of (I) and (II) by both paths
d) Path I proceeds viaE2 mechanism, while path II proceeds viaSN ${ }^{1}$ mechanism
330. The coupling betweenC $2_{2} \mathrm{H}_{5} \mathrm{MgBr}$ and MeBr gives propane in the presence of:
a) MeOTs
b) EtOTs
c) AgBr
d) CuCl_{2}
331. Which of the following reactions would give caproic acid?
a) $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br} \xrightarrow[(\mathrm{ii}) \mathrm{CO}_{2}]{(\mathrm{i}) \mathrm{Mg} / \text { ether }}$
b) $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Li} \underset{\left(\text { ii) } \mathrm{H}_{3} \mathrm{O}\right.}{(\mathrm{i}) \mathrm{CO}_{2}}$
c) $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br} \xrightarrow[\text { (ii) } \mathrm{CO}_{2}]{\text { (i) } \mathrm{Mg} / \text { ether }}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
d) $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{MgBr}+(\mathrm{CN})_{2} \xrightarrow\left[\left(\text { (i) } \mathrm{H}_{3} \mathrm{O}^{\oplus}\right]{\text { (i) } \Delta}\right.$
332. The name of the compound

a) Indane
b) Benzocyclopentene
c) Benzcyclopentane
d) Benzocyclopentane
333. The first steps of SN^{1} and SN^{2} reactions are, respectively
a) Both exothermic
b) Both endothermic
c) Endothermic and exothermic
d) Exothermic and endothermic
334. Consider the following reactions:
I. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\mathrm{NH}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{NH}_{3}}+\mathrm{I}^{\ominus}$
II. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\ddot{\mathrm{P}} \mathrm{H}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{P}_{3}}+\mathrm{I}^{\ominus}$
III. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\mathrm{EtO}^{\ominus} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OEt}+\mathrm{I}^{\ominus}$
IV. $\mathrm{Me}-\stackrel{\oplus}{\mathrm{S}}-\mathrm{Me}_{2}+\stackrel{\ominus}{\mathrm{O}} \longrightarrow \mathrm{Me}-\mathrm{OH}+\mathrm{Me}_{2} \mathrm{~S}$

In which of the above reactions does the rate of SN^{2} reaction increase with an increase in solvent polarity?
a) (I)
b) (II)
c) (III)
d) (IV)
335. Which of the following reactions would give pentan-2-ol?
a)

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{EtMgBr}} \xrightarrow[\text { (i)EtMgBr }]{ }$
$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O} \text { © }]{\longrightarrow}$
b)

c)

(iii) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
d) $\mathrm{MeCHO} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { PrMgBr/ether }}$
336. Consider the following reactions:

III. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl} \xrightarrow{90 \% \mathrm{D}_{2} \mathrm{O}+10 \% \text { ether }} \mathrm{Me}_{3} \mathrm{C}-\mathrm{OD}$
IV. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl} \xrightarrow{90 \% \mathrm{H}_{2} \mathrm{O}+10 \% \text { ether }} \mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$

Which of the following statements are correct?
a) Reaction (I) is faster than (II)
b) Reaction (II) is faster than (I)
c) Reaction (III) is faster than (IV)
d) Reaction (IV) is faster than (III)
337.
β-Elimination or anti-elimination reaction is carried out with base $\left(\mathrm{B}^{\ddot{\theta}}\right)$ as shown below:

The following bases are used
I. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}^{-}$
II. RO^{\ominus}
III. RCOO^{\ominus}
IV. $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$
V. $\mathrm{NO}_{3}{ }^{\ominus}$

The decreasing order of reactivity for the above elimination is:
a) (II) $>$ (I) $>$ (IV) $>$ (III) $>$ (V)
b) (V) $>$ (III) $>$ (IV) $>$ (I) $>$ (II)
c) (II) $>$ (I) $>$ (III) $>$ (IV) $>$ (V)
d) (I) $>$ (II) $>$ (III) $>$ (IV) $>$ (V)

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 338 to 337. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: 2-Bromobutane on reaction with sodium ethoxide in ethanol gives 1-butene as a major product
Statement 2: 1-Butene is more stable than 2-butene

Statement 1: Hydroxy ketones are not directly used in Grignard reaction
Statement 2: Grignard reagents react with hydroxyl group

Statement 1: Benzyl bromide when kept in acetone and H_{2} Oproduces benzyl alcohol
Statement 2: The reaction follows SN^{2} mechanism

Statement 1: Benzonitrileis prepared by the reaction of chlorobenzene with potassium cyanide

Statement 2: Cyanide $(\stackrel{\ominus}{\mathrm{C}} \mathrm{N})$ is a strong nucleophile

Statement 1: PhBr is less reactive than $\mathrm{C}_{2} \mathrm{H}_{5}$ Brtowards SN reactions
Statement 2: The forces of attraction between RX and $\mathrm{H}_{2} \mathrm{O}$ molecules are weaker than those present between the molecules of RX and water molecules separately

Statement 1: In comparision to $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, it is difficult to carry out SN reaction on vinyl bromide
Statement 2: Vinyl group is electron donating
344
Statement 1: SN^{1} reaction is carried out in the presence of a polar protic solvent
Statement 2: A polar protic solvent increases the stability of carbocation due to solvation

Statement 1: Reaction between $\left(\mathrm{Me}_{3} \mathrm{CONa}\right)$ (sodium tert-butoxide) and ethyliodide $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}\right)$ does not produce an ether
Statement 2: Sodium tert-butoxide is a very strong base but is not a nucleophile

Statement 1: tert-Butyl bromide $\left(\mathrm{Me}_{3} \mathrm{C}-\mathrm{Br}\right)$ and sodium ethoxide (NaOEt) will react to form only ether
Statement 2: Ethers are prepared from sodium alkoxide and alkyl halide

Statement 1: SN^{2} reaction is carried out in the presence of polar aprotic solvent
Statement 2: Polar aprotic solvents do not contain acidic hydrogen

Statement 1: Aryl halides undergo nucleophilic substitution with ease
Statement 2: The carbon-halogen bond in aryl halides has partial double bond character

Statement 1: MeMgBr should be prepared under perfectly anhydrous conditions
Statement 2: Grignard reagent reacts with water

Statement 1: The presence of nitro group facilitates nucleophilic substitution reaction in aryl halide
Statement 2: The intermediate carbanion is stabilised due to the presence of the nitro group

Statement 1: $\quad t$-Butyl bromide on reaction with sodium metal in dry ether gives 2,2,3,3tetramethyl butane
Statement 2: t-Alkyl halides readily undergo Wurtz reaction
352
Statement 1:

Statement 2: The carbocation of $\mathrm{Me} \widehat{\widehat{\mathrm{Cl}} \text { is more stable than the carbocation of }}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.
353.

Column-I

Column- II

(A) Propane nitrile +
$\mathrm{MeMgBr} \xrightarrow[2 . \mathrm{H}_{2} \mathrm{O}]{\text { 1.THF, } \Delta}$
(B) Propanoyl chloride
$+\mathrm{Me}_{2} \mathrm{Cd} \xrightarrow{\Delta}$
(C) Propanoyl chloride +
$2 \mathrm{MeMgBr} \underset{2 . \mathrm{H}_{3} \mathrm{O}^{\oplus}}{\text { 1.THF, } \Delta}$
(D) Ethyl ethanoate +
$2 \mathrm{MeMgBr} \xrightarrow[2 . \mathrm{H}_{3} \mathrm{O} \oplus]{\text { 1.THF, }}$
(E) Propyl methanoate+
$2 \mathrm{MeMgBr} \xrightarrow[2 . \mathrm{H}_{2} \mathrm{O}^{+}]{\text {1.THF, }}$
CODES :

	A	B	C	D	E
a)	R	r	p	q	s
b)	s	r	t	p	s
c)	p	q	r	s	s
d)	t	p	q	s	s

354.

Column-I

Column- II

(A)

$$
\xrightarrow[\text { (ii) Aq. } \mathrm{NaOH}]{\text { (i) } \mathrm{H}_{2} \mathrm{C}=\mathrm{CBr}_{2} / \Delta}
$$

(p)

(q)

(r)

(s)

(B)
 $\xrightarrow[\text { (ii) } \mathrm{PCC}]{\text { (i) } \mathrm{Aq} \mathrm{NaOH}}$
(C)
$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{Li} / \text { Liq. } \mathrm{NH}_{3}}$
(D)

(q)

(r) $(4+2)$
Addition reaction
(s) MeOH
(t)

CODES :

	A	B	C	D
a)	t	q, r	q, t	p, qs
b)	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	q, t	t	q, r
c)	q, r	t	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	q, t
d)	q, t	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	q, r	t

355.

Column-I

Column- II
(A) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$
(B) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClBr}$
(q) 6
(C) $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$
(D) $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{Br}$
(r) 3
(s)
(E) $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClBrI}$

CODES :

	A	B	C	D	E
a)	q	p	r	s	t
b)	r	r	r	q	t
c)	s	q	t	p	t
d)	p	s	q	r	t

Column-I

(A)

(B)

or

(C)

(D)

CODES:

A
B
C
D
a) q
p
s
r
b) s
q r
p
c) $\begin{array}{lllll}\mathrm{r} & \mathrm{s} & \mathrm{p} & \mathrm{q}\end{array}$
d) $\begin{array}{llll}\mathrm{p} & \mathrm{r} & \mathrm{q} & \mathrm{s}\end{array}$
357.

Column-I

Column- II

(A) $\underset{\text { (Excess) }}{\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{MeCC}^{\mathrm{AlCl}_{3}}}$

(B) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{I}_{2} \rightarrow$

Brown
$\xrightarrow{\Delta} \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{I}_{2}$
(Purple)coloured
Compound
(C) $\mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow{\text { Sulphonation }}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$
$\mathrm{C}_{6} \mathrm{D}_{6} \xrightarrow{\text { Sulphonation }}$
$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{SO}_{3} \mathrm{H}$
(D) $\mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow{\text { Nitration }}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
$\mathrm{C}_{6} \mathrm{D}_{6} \xrightarrow{\text { Nitration }}$
$\mathrm{C}_{6} \mathrm{D}_{5}-\mathrm{NO}_{2}$

Column- II

(p) Dewar's Parallel formula
(q) Ladenburg's prism formula
(r) Armstrong and Baeyer's centric formula
(s) Clauss diagonal formula
(p) Proves the existence of π-complex (charge- transfer complex)
(q) Proves the existence of σ-complex in SE reaction
(r) Does not show 1° kinetic isotope effect
(s) Shows 1° kinetic isotope effect
(t) Shows slightly2 ${ }^{\circ}$ kinetic isotope

CODES :

	A	B	C	D
a)	q	p	s, t	r, t
b)	p	r, t	q	s, t
c)	s, t	q	r, t	p
d)	r, t	s, t	p	q

358.

Column-I
(A)

(B)

$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}}$ Product
(C)

(D)

(E)

$$
\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}} \text { Product }
$$

CODES :

	A	B	C	D	E
a)	R	p	q	t	s
b)	s	t	r	q	s
c)	p	r	q	d	s
d)	q	p	q	s	s

359. Match the following. The correct match is
(A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, moist $\mathrm{Ag}_{2} \mathrm{O}$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, aqueous ethanolic AgCN
(C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, aqueous ethanolic AgNO_{2}
(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, ethanolic KOH
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONO}$
(2) $\mathrm{C}_{2} \mathrm{H}_{4}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$
(5) $\mathrm{C}_{2} \mathrm{H}_{6}$

CODES :

	A	B	C	D
a)	5	3	4	1
b)	1	2	3	4
c)	3	4	1	2
d)	4	1	2	5

360.

Column-I

Column- II
(A)

$$
\xrightarrow[\Delta]{\text { Reagent A }} \text { Ferrocene }
$$

(B) $2 \mathrm{PhMgBr} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i)Reagent }} 2 \mathrm{PhOH}$
(q) FeCl_{2}
(C) $\mathrm{PhMgBr} \xrightarrow[\text { (ii) } \mathrm{H}_{3} 0^{\oplus}]{\text { (i) } \mathrm{Reagent} \mathrm{at}-70^{\circ} \mathrm{C}} \mathrm{PhCOOH}$
(r) $\mathrm{Me}_{2} \mathrm{Zn}$
(D) $\underset{\mathrm{Me}}{\mathrm{Me}} X_{\mathrm{Me}}^{\mathrm{Br}} \underset{\underset{\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}}{\text { Reagent }}}{\longrightarrow}$

Neopentane
(E) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr} \xrightarrow[\Delta]{\text { Reagent } A}$ Butane
(t) $\mathrm{Et}-\mathrm{OTs}$

CODES:

	A	B	C	D	E
a)	Q	p	p	r	s, t
b)	p	q	r	s	s, t
c)	t	p	q	s	s, t
d)	q	s	r	p	s, t

361.

Column-I

(A) Reactant $+\mathrm{CS}_{2} \xrightarrow[\Delta]{\text { Ether }}$ Propane dithioic acid
(p) EtOH
(B) Reactant $+\mathrm{SO}_{3} \xrightarrow[\Delta]{\text { Ether }}$ Propyl sulphonic acid
(C) Reactant $+\mathrm{S} \xrightarrow[\Delta]{\text { Ether }}$ Ethyl mercaptan
(D) Reactant $+\mathrm{CH}_{2}=\mathrm{O}+\mathrm{HCl} \rightarrow$?
$\xrightarrow[\Delta]{\mathrm{MeMgBr}}$ Ethyl ethane
(E) Enol Form of EAA $+\mathrm{GR} \rightarrow$ Toluene
(q) Ph MgBr
(r) PrMgBr
(s) EtMgBr
(t)

CODES :

	A	B	C	D	E
a)	P	q	r	s	t
b)	s	r	s	p	t
c)	t	q	d	r	t
d)	q	p	d	r	t

362.

(A)

(p) 2
(q) 3
(r) 1
(s)
(D)

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
Mono-substituted product

CODES :

	A	B	C	D
a)	p	q	r	s
b)	s	r	p	q
c)	q	s	r	p
d)	r	p	q	r

363.

Column-I

Column- II

(A)

(B) Prismane $\rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$ Disubstituted products
(C) Prismane $\rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrCl}$

Disubstituted products
(D) Benzene $\rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$

Disubstituted products
(E) Benzene $\rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrCl}$

Disubstituted products
CODES :

	A	B	C	D	E
a)	p	r	s	q	r
b)	s	p	q	r	r
c)	r	s	p	q	r
d)	q	p	r	r	r

364.

(p) Three isomers, one isomer is chiral
(q) Three isomers, two isomers are chiral
(r) Three isomers, all are chiral
(s) One isomer
(t)

Column-I

Column- II
(A)
 $\xrightarrow[\text { 2. } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { 1. } \mathrm{THF}, \triangle}$
(B)

$$
\xrightarrow[\text { 2. } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { 俍 }}
$$

(C)

$\xrightarrow[\substack{\mathrm{Me} \\ \mathrm{Me}}]{\mathrm{Me}}>\mathrm{MgBr} \xrightarrow[\text { 2. } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { 1. Ether } \triangle}$
(D)

$\mathrm{Me} \underset{\mathrm{Me}}{\underset{\mathrm{Me}}{ } \mathrm{Li} \xrightarrow[\text { 2. } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{1 . \Delta}}$

CODES :

A
B
C
D
E
a) S t
t q
p
r
b) \quad q
p
S
r r
c) $\quad \mathrm{p}$
q
r
s
r
d) t
p
q
S
r
365.

Column-I

Column- II

(B)

(C)

CODES :

A
B
C
D
a) $P, q, s \quad p, q, r, s \quad q, r, s$
b) q,r,s p,q,s p,q,r,s
c) $p, q, r, s \quad q, r s \quad p, q, s$
d) $r, s \quad p, r \quad q, s$
366.

Column-I

(A)

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{EtMgBr} / \text { ether }}$
(B)

(C)

$\xrightarrow{\mathrm{EtO}^{\ominus} / \mathrm{EtOH}}$

Column- II

(p)

and SN^{2}
(q)

and SN^{2}
(r)

and SN^{2}
(D)

(s)

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{MeMgBr} \text { ether }}$
(t)

CODES :

A
B
C
D
a) $\begin{array}{llll}\mathrm{P} & \mathrm{q} & \mathrm{r} & \mathrm{s}\end{array}$
b) $\begin{array}{lllll}\text { b } & p & q & s\end{array}$
c) $\begin{array}{lllll}\mathrm{r} & \mathrm{s} & \mathrm{q} & \mathrm{p}\end{array}$
d) \quad s \quad t \quad q \quad p

Linked Comprehension Type

This section contain(s) 32 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 367 to -367

$\xrightarrow[\substack{\text { (ii) } \mathrm{SO}_{3} \\ \text { (iii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}}]{\text { (i) } \mathrm{Mg} / \text { ether }} \underset{\substack{\text { (D) } \\ \downarrow \\ \downarrow \\+\mathrm{h} v}}{\text { (D) }}$
(E)
367. The structure of product (B) is:
a)

b)

c)

d)

Paragraph for Question Nos. 368 to - 368

368. The structure of product (B) is:
a)
b)

c)
d)

Paragraph for Question Nos. 369 to - 369

369. The structure of product (B) is:
a) $\mathrm{Me}=-\mathrm{Cl}$
b)

c)

d)

Paragraph for Question Nos. 370 to - 370

370 . The structure of product (B) is:
a)

b)

c)

d)

Paragraph for Question Nos. 371 to - 371

371. The structure of product (A) is:
a) Isopropyl lithium
b) Propyl lithium
c)

d) Hexane

Paragraph for Question Nos. 372 to - 372

372. The compound (B) is:
a) $\begin{gathered}\mathrm{Et}-\mathrm{N}-\mathrm{CH}=\mathrm{O} \\ \mathrm{Pr}\end{gathered}$
b) $\mathrm{Et}-\mathrm{N}=\mathrm{CH}-\mathrm{Br}$
c)

d)

Paragraph for Question Nos. 373 to - 373

373. Compound (A) is:
a)

b)

c)

d)

374.

Compound (A) on reaction with $\mathrm{NH}_{2} \mathrm{NH}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is:
a)

b)

c)

d)

Paragraph for Question Nos. 375 to - 375

i.

${ }^{\mathrm{COOH}}$
ii.

iii.

(V)
v.

375. All the reactions (i) to (v) are examples of:
a) Wurtz reaction
b) Wurtz- Fittig reaction
c) Ullmann reaction
d) Frankland reaction

Paragraph for Question Nos. 376 to - 376

Compound (A), an alkane with molecular formula ($\mathrm{C}_{5} \mathrm{H}_{10}$), exists in various structures and stereoisomers. On monochlorination and dichlorination, it again shows various structures and stereoisomers
376. The number of cyclic structures including stereoisomers for (A) is:
a) 5
b) 6
c) 7
d) 8

Paragraph for Question Nos. 377 to - 377

377. Compound (B) is:
a)

b)

c)

d)

Paragraph for Question Nos. 378 to - 378

378. Compound (A) is:
a) Ethylbenzene
b) p-Xylene
c) m-Xylene
d) o-Xylene

Paragraph for Question Nos. 379 to - 379

379. Compound (B) is:
a) $n-\mathrm{Bu}-\mathrm{C} \equiv \mathrm{N}$
b) $n-\mathrm{Bu}-\stackrel{\oplus}{\mathrm{N}} \equiv \stackrel{\ominus}{\mathrm{C}}$
c) Both
d) None

(D)
380. Compound (B) is:
a) $\mathrm{Bu}-\mathrm{NO}_{2}$
b) $\mathrm{Bu}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
c) Both
d) None

Paragraph for Question Nos. 381 to - 381

SN reaction is given by these compounds, which have a nucleophilic group and a good leaving EWG. It should be stable after leaving with bonding pair of \bar{e} 's and it should have high polarisability Nucleophilic aliphatic substitution reaction is mainly of two types SN^{1} and SN^{2}. SN_{1} mechanism is a two-step process. Reaction velocity of SN^{1} depends only on the concentration of the substrate. It proceeds viathe formation of carbocation, optically active substrate gives \oplus and Θ forms of the product
In most of the cases, the product usually consists of $5-20 \%$ inverted and ($95-80 \%$) racemised species. The more stable is the carbocation, the greater is the proportion of racemisation. In solvolysis reaction, the more nucleophilic is the solvent, the greater is the proportion of inversion
381. Which of the following will give SN reaction?
a) $\mathrm{R}-\mathrm{Br}$
b) $\mathrm{R}-\mathrm{N}_{3}$
c) $\mathrm{R}-\stackrel{\oplus}{\circ} \mathrm{H}_{2}$
d) All

Paragraph for Question Nos. 382 to - 382

SN reaction is given by these compounds, which have a nucleophilic group and a good leaving EWG. It should be stable after leaving with bonding pair of \bar{e} 's and it should have high polarisability Nucleophilic aliphatic substitution reaction is mainly of two types SN^{1} and $\mathrm{SN}^{2} . \mathrm{SN}_{1}$ mechanism is a two-step process. Reaction velocity of SN^{1} depends only on the concentration of the substrate. It proceeds viathe formation of carbocation, optically active substrate gives \oplus and Θ forms of the product
In most of the cases, the product usually consists of $5-20 \%$ inverted and ($95-80 \%$) racemised species. The more stable is the carbocation, the greater is the proportion of racemisation. In solvolysis reaction, the more nucleophilic is the solvent, the greater is the proportion of inversion
382. Which of the following will give SN^{2} mechanism?
a) MeBr
b) $\sim^{B r}$
c) Ph Br
d) All

Paragraph for Question Nos. 383 to - 383

Isopropyl bromide was treated separately with sodium t-butoxide and sodium ethoxide under two different conditions

Reaction I:

Treatment of isopropyl bromide with ($\mathrm{Me}_{3} \mathrm{CONa}$) at $40^{\circ} \mathrm{Cgave}$ almost exclusively compound (A) $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$

Reaction II:

Treatment of $(i-\mathrm{PrBr})$ with $\mathrm{NaOC}_{2} \mathrm{H}_{5}$ at $30^{\circ} \mathrm{C}$ yielded compound (A) $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$. Along with a small amount of an ether (B) $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$

Compound (A) was readily oxidised by a neutral solution of cold dil. KMnO_{4} to give a brown precipitate
383. The formations of (A) and (B) are best explained by:
a) SN^{2} reaction and E2 a) reaction, respectively
b) $\begin{aligned} & \mathrm{E} 2 \text { reaction and } \mathrm{SN}^{2} \\ & \text { reaction, respectively }\end{aligned}$
c) $\begin{aligned} & \text { E1 reaction and } \mathrm{SN}^{1} \\ & \text { reaction, respectively }\end{aligned}$
d)
E2 reaction and SN ${ }^{1}$
d) reaction, respectively

: ANSWER KEY:

1)	c	2)	b	3)	c	4)	b	189)	d	190)	a	191)	c	192)
5)	a	6)	c	7)	b	8)	b	193)	d	194)	c	195)	b	196)
9)	d	10)	a	11)	c	12)	b	197)	c	198)	b	199)	c	200)
13)	c	14)	b	15)	b	16)	b	201)	b	202)	a	203)	a	204)
17)	a	18)	a	19)	a	20)	c	205)	b	206)	a	207)	b	208)
21)	d	22)	d	23)	a	24)	c	209)	a	210)	c	211)	c	212)
25)	a	26)	d	27)	c	28)	a	213)	a	214)	a	215)	c	216)
29)	d	30)	b	31)	c	32)	a	217)	b	218)	c	219)	a	220)
33)	d	34)	a	35)	a	36)	b	221)	b	222)	b	223)	a	224)
37)	a	38)	b	39)	d	40)	a	225)	b	226)	b	227)	b	228)
41)	b	42)	a	43)	a	44)	d	229)	c	230)	b	231)	c	232)
45)	c	46)	b	47)	d	48)	b	233)	c	234)	b	235)	b	236)
49)	c	50)	c	51)	c	52)	b	237)	c	238)	a	239)	c	240)
53)	b	54)	a	55)	d	56)	b	241)	b	242)	b	243)	b	244)
57)	b	58)	d	59)	b	60)	a	245)	b	246)	d	247)	b	248)
61)	a	62)	b	63)	d	64)	b	249)	a	250)	b	251)	c	252)
65)	c	66)	d	67)	c	68)	c	253)	c	254)	b	255)	b	256)
69)	b	70)	d	71)	d	72)	a	257)	c	258)	b	259)	d	260)
73)	c	74)	a	75)	d	76)	c	261)	a	262)	b	263)	c	264)
77)	b	78)	b	79)	c	80)	a	265)	d	1)	c,d	2)	a,c	3)
81)	a	82)	a	83)	c	84)	a		a,b,c	4)	c			
85)	c	86)	d	87)	a	88)	d	5)	c	6)	b	7)	b,c,d	8)
89)	b	90)	b	91)	c	92)	c		b,e					
93)	b	94)	a	95)	d	96)	b	9)	a,c,d	10)	a	11)	a,d	12)
97)	a	98)	a	99)	b	100)	c		a,b,c					
101)	a	102)	b	103)	c	104)	b	13)	a,c	14)	b,c,d	15)	c,d	16)
105)	c	106)	d	107)	a	108)	d	17)	b	18)	a	19)	a,b,c	20)
109)	d	110)	b	111)	a	112)	c		b,c,d					
113)	b	114)	c	115)	a	116)	c	21)	a,b,c	22)	d	23)	c,e	24)
117)	a	118)	d	119)	d	120)	c		a,b,c,d					
121)	d	122)	d	123)	a	124)	b	25)	a,b	26)	a	27)	c,d	28)
125)	c	126)	d	127)	a	128)	d	29)	a,b,c	30)	a,c,d	31)	a,b,c	32)
129)	d	130)	a	131)	b	132)	b	33)	c,d	34)	a,b	35)	a,c	36)
133)	a	134)	b	135)	d	136)	d		a,c					
137)	b	138)	c	139)	a	140)	d	37)	b,c,d	38)	a,c	39)	a,b,c	40)
141)	a	142)	a	143)	b	144)	c		b,d					
145)	d	146)	d	147)	b	148)	b	41)	b,c,d	42)	b,d	43)	b,d	44)
149)	d	150)	a	151)	a	152)	a		a,b,c,d					
153)	b	154)	a	155)	b	156)	c	45)	c	46)	d	47)	a,b	48)
157)	a	158)	d	159)	d	160)	a	49)	a,b,c	50)	a,b,c	51)	a	52)
161)	d	162)	a	163)	c	164)	b	53)	b,c,d	54)	a,b,c,d	55)	a,b,c	56)
165)	c	166)	c	167)	a	168)	b		a,b,c					
169)	a	170)	a	171)	c	172)	c	57)	c	58)	a,b,c	59)	a,b,c	60)
173)	d	174)	a	175)	d	176)	d	61)	a,b,c	62)	d	63)	a,d	64)
177)	b	178)	d	179)	d	180)	c	65)	a,c,d	66)	a,d	67)	a,b,c	68)
181)	c	182)	d	183)	d	184)	c	69)	a,b	70)	a,b,c,d	71)	b,d	72)
185)	a	186)	d	187)	b	188)	d	1)	d	2)	a	3)	b	4)

5)	b	6)	c	7)	d	8)	a
9)	b	10)	b	11)	d	12)	a
13)	a	14)	d	15)	d	1)	a
	2)	c	3)	b	4)	a	
5)	a	6)	a	7)	c	8)	a
9)	b	10)	d	11)	b	12)	b
13)	a	14)	c	1)	c	2)	c
	3)	b	4)	c			
5)	a	6)	b	7)	a	8)	c
9)	c	10)	c	11)	b	12)	d
13)	a	$14)$	a	15)	d	16)	d
17)	b						

: HINTS AND SOLUTIONS :

2 (b)
Weaker the base, stronger is the leaving group
Fugacity: $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
3 (c)
Aryl halides are least reactive due to resonance
4 (b)
EWG in benzyl halides favoursSN ${ }^{2}$, but EDG favours SN^{1}
$6 \quad$ (c)
Stronger the acid, weaker the C_{B}

1. Sulphonic acids are stronger than carboxylic acids
2. Aromatic sulphonic acids are stronger than aliphatic sulphonic acids
3. More the number of EWG, stronger is the acid

Acidic:

$\mathrm{F}_{3} \mathrm{CSO}_{3} \mathrm{H}>\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{MeSO}_{3} \mathrm{H}>\mathrm{Cl}_{3} \mathrm{CCOOH}$
Basic:
$\mathrm{F}_{3} \mathrm{CSO}_{3}{ }^{\ominus}<\mathrm{PhSO}_{3}^{\ominus}<\mathrm{MeSO}_{3}^{\ominus}<\mathrm{Cl}_{3} \mathrm{CCO} \stackrel{\ominus}{\mathrm{O}}$
$7 \quad$ (b)
Weaker the base or stronger the acid, stronger is the leaving group
$\mathrm{I}^{\ominus}>\mathrm{Br}^{\ominus}>\mathrm{Cl}^{\ominus}>\mathrm{F}^{\ominus}$
8 (b)
Since nucleophilic centre is different and they belong to the same group, so basic character and nucleophilicity are reversed
$\mathrm{I}^{\ominus}>\mathrm{Br}^{\ominus}>\mathrm{Cl}^{\ominus}>\mathrm{F}^{\ominus}$
14
(b)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{S} \underset{\mathrm{H}_{3} \mathrm{O}^{\oplus}}{\longrightarrow} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{SH}$
16 (b)

Strongly EWG $\left(-\mathrm{NO}_{2}\right)$ group facilitates the reaction
17 (a)
More the nucleophilic character, more is the
SN^{2} reaction. Basicity and nucleophilicity are same when the nucleophilic centres are same

Acidic order: $\mathrm{HNO}_{3}>\quad \mathrm{CH}_{3} \mathrm{COOH} \quad>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ $>\mathrm{H}_{2} \mathrm{O}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Basic and nucleophilic order:

$$
\mathrm{NO}_{3}^{\ominus}<\mathrm{CH}_{3} \mathrm{COO}^{\ominus}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{\ominus}<\stackrel{\ominus}{\mathrm{O}}<\mathrm{C}_{2} \mathrm{H}_{5} \stackrel{\ominus}{\mathrm{O}}
$$

Therefore, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$is the most effective nucleophile among the given nucleophiles
(a)

The basic character of hydride of 15 group decreases down the periodic table because size increases down the group and LP \bar{e} density decreases
$\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
19 (a)

An ester of the type $(\mathrm{R}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O} \operatorname{Pr})$ reacts with G.R. to give 3° alcohol, with two R' groups obtained from G.R. $(\mathrm{EtMgBr})(\mathrm{R}=\mathrm{Et}-)$. The 3° alcohol must contain at least two (Et-) groups. (a) contains three (Et-) groups, two (Et -) groups are obtained from G.R. and one ($\mathrm{Et}-$) group is obtained from ester
So, the alcohol is (a) and the ester is

(c)

Self-explanatory
(a)

Due to resonance, $\mathrm{C}-3$ acquires a negative charge and SE reaction at $\mathrm{C}-3$ takes place

25 (a)
Allyl halides undergo $\mathrm{SN}^{1}, \mathrm{SN}^{2}$ and $\mathrm{SN}^{2^{\prime}}$
27 (c)
SN^{2} is stereospecific and stereoselective
Addition of Br_{2} is stereospecific, i.e., antiaddition of two Br atoms

SE reaction is not stereospecific
Hydroxylation is stereospecific, syn-addition of two (-OH) groups

29 (d)

H atom. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBrreacts}$ with them to give propane gas. Butyne-2 ($\mathrm{Me}-\equiv-\mathrm{Me}$) does not have active H atom and hence does not react with G.R

30

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\text { Ethanolic } \mathrm{KOH}} \mathrm{CH}_{3} \mathrm{CH} \\
=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O} \\
n \text {-Propyl bromide } \quad \text { Propene }
\end{gathered}
$$

34 (a)
R.E. of benzene, naphthalene, and anthracene,respectively, are 151, 255, and 351 kJ mol^{-1}
R.E./ring of naphthalene (two rings) $=255 / 2$
$=127.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
R.E./ring of anthracene (three rings) $=351 / 3$
$=117 \mathrm{~kJ} \mathrm{~mol}^{-1}$
On the basis of R.E./ring, R.E. of benzene $>$ of napthalene $>$ of anthracene

Hence, more stable the ring (more R.E./ring), more is the aromatic character

35 (a)
(a) \Rightarrow Aromatic (most stable)
(b) \Rightarrow Non-aromatic
(c) \Rightarrow Non-aromatic
(d) \Rightarrow Anti-aromatic

36 (b)
Weaker the base or stronger the acid, stronger is the leaving group
$\mathrm{F}^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}>\stackrel{\ominus}{\mathrm{C}^{\mathrm{H}}}{ }_{3}$
37 (a)
Since the reactant is a 3° alkyl halide, so in the presence of NaCN , it will follow E2 path rather thanSN ${ }^{2}$, so path (II) is not feasible

The possible product by path (II) is:

(b)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{SO}_{2}+\mathrm{HCl}$
a. HCl bond is strong, no reaction
c. HCl bond is strong, no reaction
(d)

All the statements are self-explanatory
40 (a)
More the EDG, more reactive is the SE

In anisole, $\left(-\ddot{\mathrm{O}} \mathrm{CH}_{3}\right)_{\text {is }} \bar{e}$ donating by resonance
SE order: $(\mathrm{a})>(\mathrm{b})>(\mathrm{c})>(\mathrm{d})$
41 (b)
Halogens are called deactivating group due to - Ieffect, but o - and p-directing by +R effect

42 (a)

$1^{\circ} \mathrm{RX}$ undergoes E2 elimination with alc. KOH in which no rearrangement takes place.
43 (a)
SE reaction takes place in central ring because it is attached to \bar{e}-donating (by resonance) (activating) two Ph-rings
Moreover, in $\mathrm{NO}_{2}^{\oplus} \mathrm{ClO}_{4}^{\ominus}, \mathrm{NO}_{2}^{\oplus}$ is an electrophile (d)

The $(-\mathrm{OH})$ group of phenol, unlike that of alcohol, is difficult to replace by ahalogen,e.g., halogen acids have no action, and PX_{3} yields only phosphorous esters. Phenol reacts with PCl_{5} or PBr_{5}, when the $(-\mathrm{OH})$ group of phenol is replaced by a halogen atom. The yield of chloro or bromo benzene is small, the main product is triphenyl phosphate
$(\mathrm{PhO})_{3} \mathrm{P}=0$ or $\mathrm{Ph}_{3} \mathrm{PO}_{4}$

Small yield
Phenol further reacts with POCl_{3} to give $\mathrm{Ph}_{3} \mathrm{PO}_{4}$

45 (c)
Statement (c)is Ullmann reaction
$2 \mathrm{ArI}+\mathrm{Cu} \rightarrow \mathrm{Ar}-\mathrm{Ar}+\mathrm{CuI}_{2}$
46 (b)
Basicity and fugacuty are reversed
More N atom and more alky group (+I effect), more basic:(i) $>$ (ii) $>$ (iii) $>$ (iv)
48
(b)

Basicity and nucleophilicity orders are reversed.
Have different nucleophilic centre and belong to the same group
Nucleophilicity: $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
(c)

$\left(-\mathrm{NO}_{2}\right)$ group is m-directing

b. $(\mathrm{Z}) \Rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$

54 (a)
$\mathrm{C}_{2} \mathrm{H}_{6}$ (Excess) $+\mathrm{Cl}_{2} \xrightarrow{\text { U.V.light }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$
55
(d)

Reaction takes place by carbene mechanism followed by ring expansion

Carbene adds to ($=$) bond of five membered ring and simultaneously changes $\left(-\mathrm{NH}_{2}\right)$ group in six-
membered ring to $(-\stackrel{\oplus}{\mathrm{N}} \equiv \stackrel{\ominus}{\mathrm{C}})$ (isocyanide group) (carbylamine reaction)

(Numbering in accordance with problem)

58 (d)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{[\mathrm{H}]} \mathrm{C}_{6} \mathrm{H}_{6}$
59 (b)
Chloretone is used as a hypnotic

60 (a)
It is Birch reduction to give isolated double bond attached to the (Me) group

61 (a)
Pyridine is least reactive towards SE because pyridine is resonance stabilised as shown

Because of withdrawal ofe's from the ring by N atom the ring is deactivated, thereby resembling the benzene ring in nitrobenzene. So, it is least reactive towarde SE reaction
(b) and (d) are resonance structures so SE reaction takes place easily

SE reaction in pyrrole,thiophene and furan takes place at C-2 or C-5 positions because there are three resonating structures when E^{\oplus} attacks at C 2 or C-5 and two resonating structures when E^{\oplus} attacks at C-3

63 (d)
When westronvapours are passed over heat BaCl_{2} or lime westrosol (trichloro ethylene) is obtained
$\mathrm{Cl}_{2} \mathrm{CH}-\mathrm{CHCl}_{2} \underset{\mathrm{BaCl}_{2}}{ } \mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCl}$ (Westrosol)
64 (b)
The Statement is self-explanatory
65 (c)
Both (a) and (b)

(a)

66 (d)
Nucleophilicityand leaving group are reversed
Fugacity:(i) $>$ (iii) $>$ (iv) $>$ (ii)
(c)

Same nucleophilic centre, basicity and
nucleophilicity are same
Nucleophilicity:
$\mathrm{Cl}_{3} \mathrm{CCOO}^{\ominus}>\mathrm{MeSO}_{3}^{\ominus}>\mathrm{PhSO}_{3}^{\ominus}>\mathrm{F}_{3} \mathrm{CSO}_{3}^{\ominus}$
69 (b)
Weaker the base or stronger the acid, stronger is the leaving group
$\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
71 (d)
(d) is allyl chloride, so most reactive, others are vinyl and aryl chloride
(a)

In (II) and (IV), the dipole vectors are cancelled, so there is zero dipole moment
(d)

The statement is self-explanatory
(b)

The order of reactivity of G.R. with different functional groups is aliphatic aldehyde $>$ aromatic $>$ aldehyde $>$ aliphatic ketone $>$ aromatic ketone. Also, EWG favours NA reaction iv.is aliphatic ketone with-I effect of Ph group.

$(+R$ effect is not possible since
the double bond of benzene ring is not in conjugation with $(\mathrm{C}=0)$ group. So, (iv) is the most reactive ketone
Hence, the order is iv $>i>i i>i i i$
(b)

Ester of the type
 to give 2° alcohol with two R' groups obtained from the G.R. $(\mathrm{PrMgBr})(\mathrm{R}=\mathrm{Pr}-)$. The 2° alcohol must contain two propyl groups. Hence, the 2° alcohol is (b)
$79 \quad$ (c)

Allyl bromide

Propyl bromide
a.Aq. AgNO_{3} will give test for Br^{\ominus} by both
b. G.R will react with both
d.Tollens reagent will not react with both

80 (a)
More strained the ring, more easily it is cleaved.
Three-membered ring is highly strained
81 (a)
Basic and nucleophilic orders are same
More N atom and more alky group (+I effect), more basic:(i) $>$ (ii) $>$ (iii) $>$ (iv)
82 (a)
Acidic: $\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}>$ $\mathrm{HCN}>\mathrm{H}_{2} \mathrm{O}$

Basic: $\mathrm{PhSO}_{3}^{\ominus}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{\ominus}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{\ominus}<\stackrel{\ominus}{\mathrm{C}} \mathrm{N}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
84 (a)
(a) is only an optically active product which will give racemic products. Others are not optically active
(c)

Reactant contains active H atom; therefore, it would not produce G.R.

86
(d)

trans-butene-2
(2)
major

(3)

In [F] order of quantity of alkene $2>1>3$
These on addition with $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ to give their addition products which have $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{2}$ as molecular formula.

(3)

(4) $\mathrm{BrH}_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{2}$
(5) $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$

87 (a)
Compared to the others, ${\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} \text { has different }}$ nucleophilic centre; however, it belongs to the same period. Basicity and nucleophilicity order are same
$\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\mathrm{CH}_{3} \mathrm{COO}^{\ominus}>\mathrm{H}_{2} \mathrm{O}$
89 (b)
In (b), positive charge is more stabilised due to+Ieffect of (Me) group

Rate is faster when the substituent activates the ring (+I or/and $+\mathrm{R}, o / p$) and the rate is slower when the substituent deactivates the ring $(-\mathrm{I},-\mathrm{R} ; m)$. Halogen deactivates the ring $(-\mathrm{I},+\mathrm{R},-\mathrm{I}>+\mathrm{R})$ but the orientation is o / p

Rate of $\mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{C}_{6} \mathrm{D}_{6}$, since no kinetic isotope effect is observed when H is replaced by D

Hence, the order is as given in (c). (I) $=(\mathrm{II})>$ (IV) $>$ (III)

92 (c)

sec-Butyl iodide
Contains asymmetric C atom while others do not have
94 (a)
EN of $N>S$
Positive charge on N will make (Me) group more \bar{e} deficient than positive charge on S. Therefore, (a) will undergo SN^{2} reaction more rapidly than (c).

(b)

Aryl halide due to resonance does not give test for halide ion, whereas benzyl halides give due to the formation of benzyl C^{\oplus} which gives benzyl alcohol and I^{\ominus}
$\mathrm{Ph} \mathrm{I}+$ Aq. $\mathrm{NOH} \rightarrow$ No reaction
$\mathrm{PhCH}_{2} \mathrm{I}+$ Aq. $\mathrm{NaOH} \longrightarrow \mathrm{PhCH}_{2} \mathrm{OH}+\mathrm{I}^{\ominus}$

97 (a)
No reaction

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HC} \equiv \mathrm{CH}+\mathrm{Ca}(\mathrm{OH})_{2}
$$

c. $\mathrm{HC} \mathrm{I}_{3}+6 \mathrm{Ag}+\mathrm{I}_{3 \mathrm{j}}^{\mathrm{j}} \mathrm{CH} \rightarrow \mathrm{HC} \equiv \mathrm{CH}+6 \mathrm{AgI}$
d. $\mathrm{HC} \mathrm{Cl}_{3}+6 \mathrm{~A} \mathrm{~g}+\mathrm{Cl} \mathrm{Cl}_{3} \mathrm{CH} \rightarrow$

$$
\mathrm{HC} \equiv \mathrm{CH}+6 \mathrm{AgCl}
$$

98 (a)
Stronger the acid weaker is its C_{B}
Acidic: $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$
Basic: $\mathrm{F}^{\ominus}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}<\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}<\stackrel{\ominus}{\mathrm{C}}{ }_{3}$
101 (a)

Since the G.R. reacts by SN^{2} mechanism, the reactivity order of SN^{2} reaction is $1^{\circ} \mathrm{RMgX}>$ $2^{\circ} \mathrm{RMgX}>3^{\circ} \mathrm{RMgX}$. Hence, the answer is (a)
103 (c) p-Isomer gives only one product on SE reaction $(\mathrm{OMP}=231)$
105 (c)
Acidic : $\mathrm{HCN}>\mathrm{MeOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
Basic: $\stackrel{\ominus}{\mathrm{C}}<\mathrm{MeO}^{\ominus}<\mathrm{OH}^{\ominus}<\mathrm{H}^{\ominus}<\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
Note: MeOHis a stronger acid than $\mathrm{H}_{2} \mathrm{O}$, whereas otheralcoholsare weakerthan $\mathrm{H}_{2} \mathrm{O}$
106 (d)

$(\mathrm{B}) \Rightarrow$ C
(C) \Rightarrow Alkaline hydrolysis of B,

(D) \Rightarrow Peracid oxidises $\left(-\mathrm{NH}_{2}\right)$ to $\left(-\mathrm{NO}_{2}\right)$ group

108 (d)
Inverted product means SN^{2}
SN^{2} reaction is faster in more polar protic solvent with neutral nucleophile $\left(\mathrm{H}_{2} \mathrm{O}\right)$
109 (d)
The reactivity order of G.R. with HCHO is:
Benzyl > Allyl > Ph $->$ Vinyl
Hence, the answer is (d)
110 (b)
(A) $\Rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
$(X) \Rightarrow$ Allylic chlorination
$\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
Allyl chloride
111 (a)
Self-explanatory

112 (c)

1,1,2,2-Tetrachloro ethane or
Acetylene tetrachloride
Westron is used as an industrial solvent for rubber,fats and varnished. It has some insecticidal action

115 (a)
More the EDG, more reactive is the SE reaction.
Order of SE $=(a)>(d)>(b)>(c)$
116 (c)
More the EWG, more is the reactivity for
ArSNreaction
$-\mathrm{SO}_{3} \mathrm{H}$ (more resonance structure)
$>-\mathrm{NO}_{2}>\mathrm{Cl}>\mathrm{Me}($ EDG)
Therefore, (III) $>$ (IV) $>$ (II) $>$ (I)
117 (a)
(I)

($6{ }^{-1}$'s system in conjugation)

Anti-aromatic (4 è's system in conjugation)

Therefore, the order of acidic character:

Aromatic $>$ Non-aromatic $>$ Anti-aromatic
But anti-aromaticity of (III) is more than (II) since(III) is more resonance stabilised than (II)

Therefore, the order of decreasing acidic character or K_{a} value is (I) $>$ (IV) $>$ (III) $>$ (II)

118 (d)
Here ,(a),(b) and (c) would produce alcohol, but
(d) would produce aldehyde with G.R

119 (d)
Aryl halide with EWG does not form G.R.
120 (c)
α, β-unsaturated ketone with G.R. gives predominantly 1,4 -addition product

121 (d)
Order of acidic strength is:
$\mathrm{CH}_{3} \mathrm{OH}>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{C}_{6} \mathrm{H}_{6}>\mathrm{C}_{2} \mathrm{H}_{6}$ Although all are neutral towards litmus paper
123 (a)
It is more reactive towards SE reactions, due to hyperconjugation

125 (c)
The reaction is wrong because alkaline hydrolysis of RX does not take place
127 (a)
The product (K) is formed through simple substitution while major product (L) is formed through H^{-}shift via $\mathrm{S}_{\mathrm{N}} 1$ reaction and methoxy group stabilizes the carbocation intermediate of product (L).

130 (a)
RBris more reactive than ArCl . So, the answer is
(a)

132 (b)
Sulphonation is reversible process and shows 1° kinetic isotope effect, whereas other SE reactions (i.e., nitration halogenations, etc) do not show 1° kinetic isotope effect
133 (a)
$\mathrm{H}-\equiv-\mathrm{H}+\mathrm{MeMgBr} \rightarrow \mathrm{H}-\equiv-\mathrm{MgBr}+\mathrm{CH}_{4}$

Alcohol containing $\left(\begin{array}{c}\mathrm{CH}_{3}-\mathrm{CH}- \\ 1 \\ \mathrm{OH}\end{array}\right)$ aldehyde containing three α - H atoms ($\mathrm{CH}_{3}-\mathrm{CHO}$); and ketone containing three $\alpha-\mathrm{H}$ atoms
 gives iodoform test

So does not give iodoform
(Amyl \Rightarrow Five C atoms)
b.

(It contains

c.
 gives iodoform)

136 (d)
The order of reactivity of alkyl halides in SN^{1} or SN^{2} reaction is:
$(\mathrm{R}-\mathrm{I})>(\mathrm{R}-\mathrm{Br})>(\mathrm{R}-\mathrm{Cl})>(\mathrm{R}-\mathrm{F})$
I^{\ominus} is a better nucleophile and a better leaving group. Leaving group order: $\mathrm{I}^{\ominus}>\mathrm{Br}^{\ominus}>\mathrm{Cl}^{\ominus}>$ F^{\ominus}
139 (a)
EDG (Me group) at $o-, m-$ and p-positions: At ortho- position, ED power of $(\mathrm{Me}-)$ group is more than p and m (due to +I effect and hyperconjugation effect). ED power of ($\mathrm{Me}-$) group at p-position is slightly less than the Me group at ortho-position (due to less +I effect, but equal hyperconjugative effect). So the order of ED power of ($\mathrm{Me}-$) group is $o>p>m$-. NA is favoured by less-substituted EDG or moresubstituted EWG. So, the order of reactivity of PhMgBr with aromatic aldehyde is

or $(\mathrm{i}>i v>i i>i i i)$
140 (d)
Forms $\left(\mathrm{Me}_{3} \mathrm{C}^{\oplus}\right) 3^{\circ} \mathrm{C}^{\oplus}$. So SN^{1} is fastest
142 (a)
Nucleophilic centre on $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}$ is different from others, but belongs to the same period. Basic and nucleophilic orders are same
Acidic: $\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}>$ $\mathrm{HCN}>\mathrm{H}_{2} \mathrm{O}$
Basic: $\mathrm{PhSO}_{3}^{\ominus}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3}^{\ominus}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{\ominus}<\stackrel{\ominus}{\mathrm{C}} \mathrm{N}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
143 (b)

1. Wurtz reaction; product is butane, correct
2. Frankland reaction, product would be butane, so wrong
3.

4. Finkelstein reaction, correct
$\mathrm{RBr}+\mathrm{NaI} \longrightarrow \mathrm{RI}+\mathrm{NaBr}$
144 (c)
Chlorofluoro carbons are called Freon. $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ (Freon-12)
145 (d)
CCl_{4} is a covalent compound, so it does not react with AgNO_{3}

148 (b)
More the number of C atoms (high molecular mass) and straight chain (large surface are), higher the boiling points
149 (d)
Basicity and fugacity reversed.
Acidic $: \mathrm{HCN}>\mathrm{MeOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
Basic: $\stackrel{\ominus}{\mathrm{C}}<\mathrm{MeO}^{\ominus}<\mathrm{OH}^{\ominus}<\mathrm{H}^{\ominus}<\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
Note: MeOHis a stronger acid than $\mathrm{H}_{2} \mathrm{O}$, whereas otheralcoholsare weakerthan $\mathrm{H}_{2} \mathrm{O}$
151 (a)
Stronger the acid, weaker is its C_{B}
Acidic: $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
Basic: $\mathrm{I}^{\ominus}<\mathrm{Br}^{\ominus}<\mathrm{Cl}^{\ominus}<\mathrm{F}^{\ominus}$
152 (a)
(B) is a 1° alcohol with three C atoms.

HCHO withMeMgBr would give 1° alcohol with two C atoms. Therefore, (A) may be oxirane

153 (b)
Alkene has six C atoms. Combine two products of ozonolysis containing three C atoms each

ii. Combine two products of ozonolysis containing four C and two C atoms to get another alkene

Alkene (B) $\xrightarrow{\mathrm{HBr}}$

Alkene (A) and (B) $\underset{\mathrm{KOH}}{\stackrel{\text { Alc. }}{\overleftarrow{O H}} \text { 3-Bromo-2-methyl }}$ pentane

155
(b)

Allylicbromination

156 (c)
It would give cyclopropane
160 (a)
(I) $\mathrm{C}_{9} \mathrm{H}_{10} \xrightarrow{-\mathrm{H}^{\oplus}} \mathrm{C}_{9} \mathrm{H}_{9}^{\ddot{\Theta}}$ (Aromatic)
(I) $\mathrm{C}_{9} \mathrm{H}_{10} \xrightarrow{-\mathrm{H}^{\oplus}} \mathrm{C}_{9} \mathrm{H}_{9} \ddot{\theta}$ (Aromatic)
[See Illustration 11.6 (27).]
(II)

(Anti-aromatic)
(III)

Acidic character: (I) $>$ (III) $>$ (II)
$\mathrm{p} K_{\mathrm{a}}$ order: (I)<(III)<(II)
161 (d)
More the EDG, more is the SE reaction
$(-\mathrm{OH})$ group is more ED than other groups.
SE order is: $(\mathrm{d})>(\mathrm{a})>(\mathrm{b})>(\mathrm{c})$

162 (a)

Cl (a) is more reactive towards ArSN reaction becausetwo EWGs are at o - and p-positions w.r.t. Cl (a). Hence,
the product is

165 (c)
1, 4-Addition, followed by tautomerism

167 (a)
PhS^{-}is a strong nucleophile and dimethyl formamide (DMF) is a highly polar aprotic solvent. Condition indicates that nucleophilic substitution $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ takes place at 2° benzylic place, stereochemically, it involves inversion of configuration.

168 (b)
(a) \Rightarrow Aromatic
(b) \Rightarrow Non-aromatic, although $10 \pi \bar{e}$'s system
(c) \Rightarrow Aromatic
(d) \Rightarrow Aromatic

171 (c)

α, β - Unsaturated aldehyde gives 1,4 -addition product with G.R.

172 (c)
(I) $\Rightarrow 1^{\circ}$ allylic halide and less steric hindrance, hence SN^{2}
(III) $\Rightarrow 3^{\circ}$ allylic halide, most stable carbonium ionand hence SN^{1}

174 (a)
More N atom and more alky group (+I effect), more basic:(i) $>($ ii) $>(i i i)>(i v)$
175 (d)
S is less EN and, therefore, more reactive towards SN^{2}
178 (d)
All
179 (d)
RCl (alkyl halide) is more reactive than ($\mathrm{Ar}-\mathrm{I}$) (arylhalide)

180 (c)
$(\mathrm{C}-\mathrm{I})$ is a weak bond and I^{\ominus} is a better leaving group
181 (c)
$\mathrm{PhCH}_{2} \mathrm{Cl}$ formsstablePhCH ${ }_{2}^{\oplus}$ (benzyl C^{\oplus})ion. So the reaction is feasible
182 (d)
a. It is aryl halide, stabilised by resonance
b. Vinyl chloride is also stabilised by resonance

c.Vinyl system as in (B)
d.

183 (d)
SN^{1} reactivity order is:
Benzyl $>$ Allyl $>2^{\circ}>1^{\circ}$ halide
185 (a)
It is an example of ArSN (elimination-addition)
reaction viabenzyne intermediate

186 (d)
$\left(-\mathrm{NH}_{2}\right)$ group (EDG) is o, p-directing, while others (EWG) are m-directing

Self -explanatory
189 (d)

Amide with G.R. gives ketone, with one R(i.e., Me group) from G.R., and anhydride with G.R. gives 3° alcohol, with two R(i.e., Me group) from G.R.
190 (a)
+I effect of $\left(-\mathrm{CH}_{3}\right)$ group increases the electron density on the benzene ring, hence it is most reactive towards electrophilic nitration
192 (b)

2,3,4-Trichloropentane
$\mathrm{C}-2$ and $\mathrm{C}-4$ are asymmetric C atoms, but
$\mathrm{C}-3$ is not, because two groups on $\mathrm{C}-3$ marked

194 (c)
The statement is self-explanatory
196 (b)
Stronger the activating substituent (i.e., EDG), faster is the rate of SE (bromination) reaction.Order of \bar{e}-donating substituent:

Hence, the rate of bromination: (IV) $>$ (III) $>$ (II) $>$ (I)

197 (c)

$\left(\theta=60^{\circ}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
μ order is: (a) $>$ (d) $>$ (b) $>$ (c)

199 (c)
Two-C-atom dihalide with Mg gives alkene, while three-C-atoms dihalide with Mg gives cyclopropane
$\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[\text { Ether }]{\mathrm{Mg}} \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{MgBr}$
203 (a)

Since, B and D are different thus, B is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and so A is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCl}_{2}$.
204 (a)

Nucleophile $\left(\mathrm{Me}^{\ddot{\theta}}\right)_{\text {attacks }}$ the $(\mathrm{C}=0)$ group attached to the less-substituted EDG (Me group) because nucleophilic addition (NA) is favoured by EWG or less-substituted EDG

(b)

Lucas reagent will not react both, since it is a test to distinguish between $1^{\circ}, 2^{\circ}$ and 3° alcohols

c. AgCl will not react with both
$\mathrm{HCl} / \mathrm{AgCl}$ will not react with both
208 (b)
Carbylamine test is given by 1° amine with CHCl_{3} $+\mathrm{KOH}$

It gives an offensive smell of isocyanide
Mechanism proceeds viacarbene
(: CCl_{2}) or (: CX_{2}) or (: CXX^{1})
($\mathrm{XX}^{1} \Rightarrow$ Two different halogens)
209 (a)
(I) \Rightarrow Aromatic $6 \pi \bar{e}$'s system in conjugation

(II) \Rightarrow Non-aromatic, $8 \pi \bar{e}$'s system but ring is not planar, so not anti-aromatic but non-aromatic
(III) \Rightarrow Anti-aromatic $8 \pi \bar{e}$'s in conjugation

Stability order: Aromatic > Non-aromatic > Antiaromatic
(I) $>$ (II) $>$ (III)

210 (c)
Acidic character:
$\mathrm{ACOH}>\mathrm{PhOH}>\mathrm{MeOH}>\mathrm{H}_{2} \mathrm{O}$
$\mathbf{p} \boldsymbol{K}_{4}$ value: 4.759 .915 .515 .74
Basic and nucleophilic characters are same because of same nucleophilic centre
Nucleophilic order:
$\mathrm{AcO}^{\ominus}<\mathrm{PhO}^{\ominus}<\mathrm{MeO}^{\ominus}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
(B) $<$ (A) $<$ (D) $<$ (C)

212 (a)

1. $\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[\text { Birch red }]{\mathrm{K} \text { in liq. } \mathrm{NH}_{3}} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ (Gas)

$$
[\mathrm{C} \equiv \mathrm{C} \Rightarrow(\mathrm{C}=\mathrm{C})]
$$

II. $\mathrm{HC} \equiv \mathrm{CH}+\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2} \rightarrow \mathrm{HC} \equiv \mathrm{C}^{\ominus}+\mathrm{NH}_{3}$ (Gas)
III. $\mathrm{HC} \equiv \mathrm{CH}+\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3} \rightarrow \mathrm{HC} \equiv \mathrm{C}^{\ominus}+\mathrm{CH}_{4}$ (Gas)
$\mathrm{IV} . \mathrm{HC} \equiv \mathrm{CH}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{HC} \equiv \mathrm{C}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$ (liquid)
213 (a)
2° alcohol is obtained from the ester of the type
 group $\binom{\mathrm{Me}}{\mathrm{Me}}_{\text {obtained from the G.R. }}$

So, the ester is

214 (a)
ArSN^{2} reactions are favoured by strong EWG,-I
effect of F is highest (more EN of F)

215 (c)
[Both (a) and (b)]

216 (a)
The basic character of hydrides of 16 group decreases down the group. Size increases down the group and LP \bar{e} density decreases
Basic: $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
217 (b)
(a) \Rightarrow Non-aromatic,
(b) \Rightarrow Anti-aromatic ($4 \pi \bar{e}$'s, conjugation)

(c) \Rightarrow Non-aromatic ($4 \pi \bar{e}$'s not in resonance)
(d) $\Rightarrow[10]$-Annulene, non-aromatic.

So (b) is anti-aromatic
218 (c)
a. $\binom{\mathrm{O}}{-\stackrel{\|}{\mathrm{C}}-}$ group, b. $\left(\begin{array}{c}\left.\stackrel{\oplus}{\mathrm{N}} \mathrm{Me}_{3}\right)\end{array}\right.$
c.It is weakly deactivation but o, p-director d. $\left(-\mathrm{CF}_{3}\right)$ group; (a) (b) and (d) are m-director

220 (d)
(d) is not Sandmeyer's reaction

223 (a)
Since the nucleophilic centre is different but they belong to the same period, so the basic and nucleophilic characters are same. Basicity and nucleophilicity:

Stronger the acid weaker is its C_{B}
Acidic: $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$
Basic: $\mathrm{F}^{\ominus}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}<\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}<\stackrel{\ominus}{\mathrm{C}}_{3}$

$$
\mathrm{C}_{\mathrm{H}}^{3}-\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\mathrm{F}^{\ominus}
$$

RX with AgNO_{2} gives nitroalkane
225 (b)

major product
It is electrophilic substitution, so electrophile must be attacked on o / p-position due to higher electron density on this position. In this ring, the attached -NH- group will have high electron density due to resonance and ortho position is blocked, so electrophile is attached on para position.
226
(b)
SN^{2} mechanism
227 (b)
Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ forms hydrogen bonding with water.Hence, it is soluble in water
230 (b)
The statement is self-explanatory
231 (c)
Toluene has an allylic group
232 (b)
Step 2 is wrong because Friedel-Crafts reaction will not take place in the presence of \bar{e} withdrawing, m-directing $\left(-\mathrm{NO}_{2}\right)$ group

233 (c)

NA reaction takes place from the side contaning less-substituted EDG or more-substituted EWG

234 (b)
In basic medium, SN^{2} and in acidic medium, SN^{1}.

235 (b)

It is an example of SN^{1} reaction in which retention takes place. So, if reactant-specific rotation is positive, it should be positive for the product also, but of different value since the reactant and product are different

(b)

Since nucleophilic centre is different and belongs to the same group, so basic character and nucleophilicity are reversed $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
237 (c)
Sulphonation is reversible process and shows 1° kinetic isotope effect, whereas other SE reactions (i.e., nitration halogenations, etc) do not show 1° kinetic isotope effect
239 (c)
$3^{\circ} \mathrm{C}^{\oplus}$ is more stable and hence has less $E_{\text {activation }}$
240 (b)
More the EDG, faster is the SE reaction or F.C. reaction

But ED power of ($-\mathrm{NH}_{2}$) (by resonance) is greater than $\left(-\mathrm{CH}_{3}\right)$ (by hyperconjugation). But aniline does not undergo F.C. reaction

Therefore, in (a), three H.C. structures.
In (c), one H.C. structure
In (d), $\left(-\mathrm{NO}_{2}\right)$, EWG, F.C. reaction does not take place

So in (b), F.C. reaction is fastest
241 (b)
Selective reduction by $\mathrm{NH}_{4} \mathrm{HS}$ [only one $\left(-\mathrm{NO}_{2}\right)$ is reduced to $\left(\mathrm{NH}_{2}\right)$]

243 (b)
Fugacity and basic orders are reversed
(i) $>$ (ii) $>$ (iii) $>$ (iv) $>$ (v)

245 (b)
Self-explanatory
246 (d)
E1 and E2 are both called β-elimination because β H (most acidic) is removed by base.But E 2 is also called anti-or trans-elimination
248 (d)
SE reaction is a characteristic of an aromatic compound

(b)

SE reaction takes place orthoto (-OH) group, not
orthoto $(-\ddot{̣}--)_{\text {group. Since }}$ it is deactivated by the strong \bar{e}-withdrawing group

$$
\left(-\mathrm{COO}^{\ominus} \text { and } \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}\right)_{\text {in }} \text { another ring }
$$

(c)

Hence $3 \mathrm{molNaNH}_{2}$ is used

Finkelstein reaction
RCl or $\mathrm{R}-\mathrm{Br} \xrightarrow{\mathrm{Nal}} \mathrm{R}-\mathrm{I}$
253 (c)
EWG favours NA reaction and aldehyde is more reactive than ketone in (iv). More reactive due to the -I effect of three Cl atoms
So, the order is: $\mathrm{Cl}_{3} \mathrm{C}-\mathrm{CHO}>\mathrm{HCHO}>\mathrm{MeCHO}>$ MeCOMe
254 (b)
3° alcohol is
 with two (Et) group obtained from G.R. Therefore, ($\mathrm{Pr}-$) group has come from the user

So, the ester is
 butanoate). Hence, the answer is (b)
255 (b)
Self explanatory
256 (c)
Different nucleohiliccentres in $\stackrel{\ominus}{\mathrm{C}} \mathrm{N}, \mathrm{H}^{\ominus}, \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$, butall belong to the same period.
Basic and uncleophilic orders are same.
Acidic: $\mathrm{HCN}>\mathrm{MeOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
Basic: $\stackrel{\ominus}{\mathrm{C}}<\mathrm{MeO}^{\ominus}<\mathrm{OH}^{\ominus}<\mathrm{H}^{\ominus}<\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
Note: MeOHis a stronger acid than $\mathrm{H}_{2} \mathrm{O}$, whereas otheralcoholsare weakerthan $\mathrm{H}_{2} \mathrm{O}$
257 (c)
Self-explanatory
258 (b)

Fugacity and basicity orders are reversed
$\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{COO}^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
259 (d)
Neo-pentane gives only one monochloro derivative.

260 (b)
Diazotisation, followed by Sandmeyer reaction

262 (b)
The statement is self-explanatory
264 (c)
Step 3 is wrong. The last step will first brominate the double bond. The product will be:

265 (d)
Self-explanatory
266 (c,d)
If the reactant and/or nucleophile are charged, increasing the polarity of the solvent stabilises any charged ground state species and decreases the rate of SN^{2} reaction with an increase in the polarity of the solvent
267 (a,c)

The $\left(-\mathrm{CH}_{3}\right)$ group is able to activate the benzene ring by hyperconjugation. So, $\left(-\mathrm{CH}_{3}\right)$ group shows o / p-directing influence on the benzene ring

268 (a,b,c)

a.Loss of $\mathrm{Br}(\mathrm{a})$ would give less-substituted alkene (more reactive, less stable)
b.Removal of $\mathrm{Br}(\mathrm{c})$ would give more stable 2° allylicC ${ }^{\oplus}$
c.

C^{\oplus} Statements (a), (b), and (c) are correct
d.Statement (d) is wrong, since the compound shows G.I.

269 (c)
 is stable (aromatic) but only in comparison with the rest of the family of anions. But this is not as stable as benzene (as it is neutral molecule in which all of carbon's valencies are satisfied)
Rule: Uncharged state is more stable than charged state
271 (b)
R^{\ominus} in RLi is more nucleophilic than in $\mathrm{R}^{\prime} \mathrm{MgX}$, or $\mathrm{R}_{2}^{\prime} \mathrm{Cd}$, or $\mathrm{R}_{2}^{\prime} \mathrm{Zn}$ and, therefore, is sufficiently reactive to overcome the steric hindrance

273 (b,e)
Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to the following reasons:
i. Resonance stabilisation
ii. $s p^{2}$-hybridised carbon attached to the halogen

274 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)

Statement (b) is wrong because the intermediate is σ-complex which is a positive -charge complex,
not \bar{e}-deficient species

275 (a)

(D) (E)

In (I), (C O O) bond breaks to give (D) and (E)
In (II), ($\mathrm{O}-\mathrm{C}$) bond breaks to give (I) and (J)

276 (a,d)

NH_{3} and dichlorodifluoro methane are used as refrigerants

277 (a,b,c)

Product (II) is cine substitution and product (III) is direct substitution.Reaction is ArSN (elimination-addition) reaction
278 (a,c)

Both butanamide $R \quad$ and butane nitrile

would give hexan-3-one with

with Et MgBr .

whilepropanamide

andpropanenitrile

would give petan-3-one

279 (b,c,d)

An aromatic molecule will have:
b. $(4 n+2) \pi$-electrons (by Huckel's rule),
c. Planar structure (due to resonance),
and
d. Cyclic structure (due to the presence of $s p^{2}$ hybrid carbon atoms)

281 (c)
Only one hydrogen atom in $1^{\circ} \mathrm{RNH}_{2}$ reactes at room temperature. In the presence of pyridine, both H atoms in $1^{\circ} \mathrm{RNH}_{2}$ react
$\mathrm{RNH} \cdots \mathrm{CH}_{4}(\mathrm{~g}) \uparrow+\mathrm{MNHMg}, \mathrm{Mg} \mathrm{I} \rightarrow$

One mole of EtNH_{2} reacts with 2 mol of MeMgI to give 2 mol of $\mathrm{CH}_{4}(\mathrm{~g})$. Molecular mass ofEtNH H_{2} is 45 gm
Therefore, 45 gm of EtNH_{2} gives 2×22.4 litres of CH_{4} at S. T. P.
0.45 gm of EtNH_{2} gives $\frac{2 \times 22.4 \times 0.45}{45}=0.448$ litres $=448 \mathrm{ml}$

282 (b)
The order of reactivity of functional group with G.R. is Alcohol>Aldehyde>

0
 II

Ketone
$>$ R $-\mathrm{C}-\mathrm{X}>$ Ester $>$ Anhydride $>$ Amide $>-\mathrm{CH}_{2} \mathrm{X}$
a. First mole of PhMgBr reacts at the active H atom of alcohol to give

(benzene), not phenol. Hence, wrong statement
b. Second mole of PhMgBr reacts at ketone group and gives the required product. Hence, correct statement
c. It is a wrong statement
d. Compound (D) is wrong, because acid halide with G.R. gives 3° alcohol. Hence, compound D would be

286 (a,b,c)
Statements are self-explanatory
288 (c,e)

The main product of this reaction is nitroethane but ethyl nitrite is also formed as a side product along with silver bromide
289 (a,b,c,d)

c. EWG ($-\mathrm{NO}_{2}$ group) in the benzene ring oxidizes the G.R.
d.

290 (a,b)

c. Acid chloride with G.R. would give 3° alcohol

d. Methanamide would give benzaldehyde with G.R.

291 (a)

In SN^{1}, the attack by the $\mathrm{Nu}^{\ddot{ }}$ is not specific (attack on the carbonium ion from front as well as back) and the products are mixtures of enantiomers thus neither stereospecific nor stereoselective

292 (c,d)

In (IV), the lone pair \bar{e} 's of two N makes it more basic and does not delocalise in the benzene ring

In (III), no delocalisation of NH_{2}, L.P. of \bar{e} 's
In (II), no delocalisation of LP of \bar{e} 's
In (I), delocalisation of LP of \bar{e} 'S on N , viaresonance

Hence, the order of basic character is: (IV) > (III)
$>$ (II) $>$ (I)
293 (b)

Stabler the C_{B}, stronger is the acidic strength (lower $\mathrm{p} K_{\mathrm{a}}$)
Therefore, the decreasing $\mathrm{p} K_{\mathrm{a}}$ value: (II) $>$ (I) $>$ (III)
294 (a,b,c)
Product (d) is wrong, Br_{2} in non-polar solvent and gives o - and p-products
295 (a,c,d)
I.

But (II) in not protonated. Hence statement (a) is true

Hence, Statement (b) is wrong
298 (c,d)
(a) Products would be:

Due to stabilization of carbonium ion

b. Same explanation as in (a), the product would be a mixture of (I) and (II)

So, statements (c) and (d) are correct

299 (a,b)
The lithium enolate bases from cyclohexanone react with alkyl halides in different ways

300 (a,c)
If a bond at the asymmetric C atom is broken, SN^{2} reaction occurs and inversion takes place In step $1,(\mathrm{C}-\mathrm{Cl})$ bond is broken to $(\mathrm{C}-\mathrm{OH})$, hence inversion occurs (\longrightarrow)
In step $2,(C-0)$ bond is not broken but $(0-H)$ bond is broken to give $(-0-T s)$.
Hence, no inversion occurs
In step 3, ($\mathrm{C}-\mathrm{O}$) bond is broken, i.e.,
$\mathrm{C} O \mathrm{OTs} \rightarrow \mathrm{C}-\mathrm{Br}$ and hence inversion Occurs
Reaction:

302 (b,c,d)

Statements (b), (c) and (d) are correct

In step $1,(\mathrm{C}-\mathrm{Br})$ bond is broken to $\left(\mathrm{C}-\mathrm{N}_{3}\right)$.
Hence, inversion occurs \longmapsto)
In step2,
 inversion
In step3,($\mathrm{C}-\mathrm{Br}$)bhjond is broken to $(\mathrm{C}-\mathrm{OH})$
bond hence, inversion occurs

304 (a,b,c)

1. SE reaction by $\left(\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2}\right)$ species (I) is not formed. So(a) is a correct statement
2. \quad SE reaction by $\mathrm{Br}^{\oplus},\left(-\mathrm{NO}_{2}\right)$ is m directing, Br^{\oplus} will attack at m position.Species (I) is not formed.So (b) is a correct statement
3. SE reaction by $\mathrm{Br}^{\oplus},(-\mathrm{OH})$ group is o - and p-directing (class-OHdecides orientation) p-position is blocked.Species
(I) in not formed. So (c) is a correct statement
4. ArSNreaction (addition -elimination) reaction by $\stackrel{\ominus}{\mathrm{O}}$ H nucleophile.Species (I) is formed
5. So (d) is an incorrect statements

305 (b,d)
306 (b,c,d)
(a) Products would be:

(I) (Major) (II)

Due to stabilization of carbonium ion

b. Same explanation as in (a), the product would be a mixture of (I) and (II)

Products would be a mixture of (I) and (b),(c), (d) would produce stable

would yield 100\% of cumene

308 (b,d)
Allyl chloride is much more reactive than $n-\mathrm{PrCl}$ although it is $1^{\circ} \mathrm{RX}$, due to resonance stabilisation

(Stabilized by extended π-bonding)
Allyl chloride is reactive by both SN^{1} and SN^{2}
SN^{2} and E2 are both stereospecific because the attack from the back by Nu^{\ominus} in SN^{2} and attack by base E2 (at β-H atom) are specific. Both of them form exclusively only one product

ortho-product exclusively, p-position has to be blocked first, and then Br introduced in orthoposition, followed by the removal of group from p-position

311 (d)
$\mathrm{PhSO}_{3} \mathrm{H}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{PhSO}_{3} \mathrm{Na}+\mathrm{CO}_{2}+$
$\mathrm{H}_{2} \mathrm{O} . p-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}+\mathrm{NaHCO}_{3}$
$\rightarrow p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{ONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
313 (d)
In E 1 cB , the first step is the abstraction of $\beta-\mathrm{H}$ atom to give carbanion is specific, but they form a mixture of possible pairs of enantiomers or a mixture of possible diastereomers

314 (a,b,c)

SN ${ }^{1}$ has two steps and has two transition stateintermediatecarbocations. In the first, higher T.S. $(\mathrm{C}-\mathrm{X})$ bond stretches $\left(\mathrm{R}_{3} \mathrm{C}^{+\delta} \ldots . . . \mathrm{X}^{-\delta}\right)$

In the second, lower T.S. bond formation between carbocation intermediate and a nucleophile takes place
$\left(\mathrm{R}_{3} \mathrm{C}^{+\delta} \ldots . . \mathrm{Nu}\right)$.
So in Figs. (a) and (b), (I) and (IV) represent SN ${ }^{1}$ reactions, respectively
SN^{2} has one step, has one T.S., and no intermediate

So in Figs. (a) and (b), (II) and (III) represent SN^{2} reactions, respectively

The hydrolysis of RX by SN^{1} path is $3^{\circ}>2^{\circ}>1^{\circ}$ and by SN^{2} path is $1^{\circ}>2^{\circ}>3^{\circ}$

Therefore, Fig. (a) represents hydrolysis of $1^{\circ} \mathrm{RX}$, since SN^{2} path is of lower energy

Figure. (b) represents hydrolysis of $3^{\circ} \mathrm{RX}$, since
SN^{1} path is of lower energy
So statements (a), (b), and (c) are correct
315 (a,b,c)
Statements a, b and c are correct but (d) is wrong because reaction (d) gives benzene
316 (a)
At $\mathrm{pH}=2$ (acidic condition)
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3} \mathrm{H} \xrightarrow{\mathrm{H}^{\oplus}} \stackrel{+}{\mathrm{NH}_{3}}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$ and will
migrate tocathode
At $\mathrm{pH}=12$ (basic condition)
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3} \mathrm{H} \xrightarrow{\stackrel{\ominus}{\mathrm{O}} \mathrm{H}} \mathrm{H}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}^{\ominus}$ and will migrate to anode
317 (c)
Both (a) and (d) give ketone $\left(\mathrm{Me}^{\text {II }} \mathrm{Me}\right)$ with G.R.(MeMgBr), whereas both esters (b) and (c) give the required 3° alcohol. However, (-0 Ts) is a better leaving group than -OMe
318 (b,c,d)
a. Stronger the base stronger is the nucleophile therefore $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is a stronger nucleohile than $\mathrm{H}_{2} \mathrm{O}$.Statement (a) is wrong
b. RSH is a stronger acid than ROH (except $\mathrm{MeOH}) . \mathrm{RS}^{\ominus}$ is a weaker base and weaker nucleophile (stronger the acid, weaker is its conjugate base)
Therefore RS^{\ominus} should be a weaker
uncleophilethan RO^{\ominus}. But in polar protic solvent such as ethanol, RSH is less solvated than ROH (due to H-bonding)
Therefore, RS^{\ominus} is a stronger uncleophile than
RO^{\ominus} statement (b) is correct
c. $\mathrm{H}_{2} \ddot{\mathrm{~N}}-\ddot{\mathrm{O}} \mathrm{H}$ is a stronger base and hence a stronger nucleophile than NH_{3}. Statement (c) is correct
d. In (I), all β-C are tied up with a C atom, while in (II), the substituents bonded to N atom are almost free to rotate and causesteric hindrance during approach of LP \bar{e} 's to the attacking site

In other words, $\mathrm{LP} \bar{e}^{\prime}$ s on N in (I) are easily available but in (II) they are stericallyhindered

Thus, (I) is a stronger base and hence a stronger nucleophile than (II)

Statement (d) is correct

319 (a,b,c,d)

All of them contain active H atom and give benzene with PhMgBr
320 (a,b,c)
Hofmann elimination gives less-substituted alkene

1. Cope reaction

b.In case of bulky base, Hofmann alkene is formed

c.In case of RF (poor leaving group), whether the base is bulky or non-bulky,Hofmann alkene is

d.

(Hofmann alkene)
(I) is more stable due to extended conjugation with
(=) bond of Ph-ring
321 (a,b,c)
Due to the steric hindrance of t-butyl group in ketone and G.R. containing bulky group or G.R. with $\beta-H$, the reaction fails, (i.e., 3° alcohol is not obtained). But a hydride ion $\left(\mathrm{H}^{\ominus}\right)$ transfer from the β-position of RMgX to $(\mathrm{C}=0)$ group takes place through a cyclic transition state to give 2° alcohol and alkene
Therefore, MeMgBr or $\mathrm{PhMgBrwithout} \mathrm{a} \beta-\mathrm{H}$ cannot act as a reducing agent and fail to react with di-t-butyl ketone.
(a),(b) and (c) react with di-t-butyl ketone to give 2° alcohol and alkene

(a,b,c)

Statements (a), (b), and (c) are the characteristics of E1cB reaction. Statement (d) is wrong since in E1cB reaction, deuterated product is obtained

325 (a)

i. (I) and (II) are E2 reactions in which the R.D.S. is breaking of $(\mathrm{C}-\mathrm{H})$ or $(\mathrm{C}-\mathrm{D})$ bond. Thus E2 elimination of (I) is faster than that of (II) since $(\mathrm{C}-\mathrm{H})$ bond is weaker than $(\mathrm{C}-\mathrm{D})$ bond. Hence,
(I) and (II) show 1° kinetic isotope effect
ii. (III) and (IV) are either El or SN^{1} reactions, which involve the formation of same intermediate $\mathrm{Me}_{3} \mathrm{C}^{\oplus}$ or $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{C}^{\oplus}$ in the R.D.S. This step does not involve any ($\mathrm{C}-\mathrm{H}$) or ($\mathrm{C}-\mathrm{D}$) bond breaking, so H / D effect is not 1° but rather a small 2° isotope effect, where $K_{\mathrm{H}} / K_{\mathrm{D}}=$ 0.7/1.5

Reaction (III) is faster than (IV) since $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{C}^{\oplus}$ is not as stable as $\mathrm{Me}_{3} \mathrm{C}^{\oplus}$ because CD_{3} is not as good an \bar{e}-donator asCH ${ }_{3}$. Moreover, ($\mathrm{C}-\mathrm{D}$) is not a good hyperconjugative participant as ($\mathrm{C}-\mathrm{H}$)

A 3° alcohol containing three identical alkyl groups (the values of R are obtained from G.R.) may be prepared by the reaction between 3 mol of G.R. (PhMgBr) with 1 mol of ethyl carbonate

But benzamide gives ketone:

327 (d)
Aryl halide containing reactive substituent (e.g., $-\mathrm{COOH},-\mathrm{OH},-\mathrm{NH}_{2},-\mathrm{SO}_{3} \mathrm{H}$, and $-\mathrm{NO}_{2}$) in the benzene ring cannot be used since G.R. obtained will at once react with the reactive group present in another molecule. Hence, no reaction will take place

328 (a,d)
i. Although F^{\ominus} is a poor leaving group, in acidic condition, F forms H -bonding and its departure is easier. So in acidic medium, reaction (I) is solvolysed faster than (II)

This is an example of electrophilic catalysis
ii.The formation of Me from (IV) reducessome of thesteric hindrance or crowding in reactant in (IV), induced by the two (Me) groups and the $t-\mathrm{Bu}$ on the $\alpha-\mathrm{C}$ atom. This is an example of steric acceleration

Moreover, carbocation is further stabilised by +I effect of two (Me) groups and t-Bu groups

So reaction (IV) is faster than (III)
329 (c)

Statement (c) is wrong

i.In path (I), $E t O{ }^{\text {is }}$ a strong base and with $2^{\circ} \mathrm{RX}$ groups. The E2 product predominates over the SN^{2} product to give $\left(\mathrm{Me}-\mathrm{CH}=\mathrm{CH}_{2}\right)$
ii. In path (II), EtOH is a weak base, but a better nucleophile, so SN^{1} reaction is favoured to give MeCH (OEt) Me

331 (a,d)

The IUPAC name of caproic acid is hexanoic acid (6-C-atom acid). So, G.R. must contain 5-C-atom alkyl group
a. $n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br} \xrightarrow{\text { Me/ether }} n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ $\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}]{ }$ (i) $\mathrm{CO}_{2}{ }^{(} n-\mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{COOH}$
b.

c. Gives pentanoic acid
d.

333 (c)
In SN^{2}, there is only one step, and it is exothermic.But in SN^{1} there are two steps first step; is endothermic and second step is exothermic

$\frac{\text { Progress of the reaction }}{\text { Lower energy path for } \mathrm{SN}^{2}}$ for $1^{\circ} \mathrm{RX}$

334 (a,b)
If the reactant and/or nucleophile are neutral, T.S. is stabilised; rate of SN^{2} reaction increases with the increase in polarity of the solvent
335 (a,b,c,d)
a. Nucleophile $E t^{\ominus}$ (from EtMgBr) attacks at less-
substituted C atom by SN^{2} mechanism to give pentan-2-ol

b. Nucleophile Me^{\ominus} (from MeMgBr) attacks at less-substituted C atom by SN^{2} mechanism to give pentan-2-ol

c.

d.

336 (b,d)
i. In (II) $\quad \underset{F}{\mathrm{~F}}$ carbocation is destabilisedbystronger-I effect of three F atoms, and thus solvolysis of (II) is slower than that of (I)
ii.D-bonds are not as stabilising as H -bonds. So reaction (IV) is faster than (III)

337 (a)
The reagent should be a strong Bronsted base
Acidic order: $\mathrm{HNO}_{3}>\mathrm{RCOOH}>\mathrm{HCN}>\mathrm{H}_{2} \mathrm{O}>$ ROH
Basic order: $\mathrm{NO}_{3}{ }^{\ominus}<\mathrm{RCOO}^{\ominus}<\mathrm{CN}^{\ominus}<\stackrel{\ominus}{\mathrm{O}} \mathrm{H}<\mathrm{RO}^{\ominus}$
(V) $>$ (III) $<$ (IV) $<$ (I) $<$ (II)

Decreasing order of basicities and hence β -
elimination is (II) $>$ (I) $>$ (IV) $>$ (III) $>$ (V)

338 (d)
Correct Assertion:
It gives but-2-ene

Correct reason :

But-2-ene is more stable than but-1-ene
340 (b)
Correct reason:
Benzyl halide undergoes hydrolysis by SN ${ }^{1}$ mechanism

341 (d)
Aryl halides do not undergo nucleophilic substitution reaction under ordinary conditions, thus benzonitrile is not prepared by the reaction of chlorobenzene with KCN

Cyanide (CN^{-}) is a strong nucleophile
Hence, statement 1 is incorrect, but statement 1 is correct

342 (b)
Correct explanation :
Due to resonance ($\mathrm{C}-\mathrm{Br}$) bond in PhBr is a little stronger than $(\mathrm{C}-\mathrm{Br})$ bond in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$

343 (c)
Correct reason :
($\mathrm{C}-\mathrm{X}$) bond has some double bond character
345 (a)
It produces alkene
348 (d)
Aryl halides do not undergo nucleophilic substitution reaction under ordinary conditions. Thus, statement 1 is incorrect. In aryl halides, the carbon-halogen bond has a partial double bond character, so it becomes shorter and stronger and cannot be easily replaced by a nucleophile.
Statement 1 is false but statement 2 is true
351 (d)
Correct assertion:
t-BuBron reaction with Na metal gives n-butane and isobutene.

352 (d)

Reaction (ii) is faster than (i). Hence, the assertion is false because -I power of 0 atom destabilises the $\left(\sim^{+}\right)_{\text {ion }}$

But reason (R) is true

($\mathrm{a} \rightarrow \mathrm{r}$)

(b \rightarrow r)

$(c \rightarrow p)$

$(d \rightarrow q)$

$(\mathrm{e} \rightarrow \mathrm{s})$

358 (a)
$(\mathbf{a} \rightarrow \mathbf{r})$ All are examples of intramolecular G.R. reaction. Reactant is the G.R. of an ester. It will give a 2° alcohol

(r)
$(\mathbf{b} \rightarrow \mathbf{p})$ Reactant is the G.R. of ketone. It will give a
3° alcohol

(p)
$(\mathbf{c} \rightarrow \mathbf{q})$ Reactant is the G.R. of ester. It will give a 2° alcohol

$(\mathbf{d} \rightarrow \mathrm{t})$ Reactant is the G.R. of ketone. It will given 3° alcohol

(q)
$(\mathbf{e} \rightarrow \mathbf{s})$ Reactant is the G.R. of ester. It will give a 2° alcohol

359 (c)

Reactants	Products
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, moist $\mathrm{Ag}_{2} \mathrm{O}$	(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, aqueous ethanolic AgCN	(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$
$\mathrm{C} . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, aqueous ethanolic AgNO	(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONO}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, , ethanolic KOH	(ii) $\mathrm{C}_{2} \mathrm{H}_{4}$

360 (a)
$(a \rightarrow q)$

(q)

Ferrocene

$(c \rightarrow p)$

$(\mathrm{d} \rightarrow \mathrm{r})$

$(e \rightarrow s, t)$

361 (b)
$(\mathbf{a} \rightarrow \mathbf{s})$ Write the structure of propane dithioic acid diagram. The structure of G.R. would be EtMgBr

($\mathbf{b} \rightarrow \mathbf{r}$) Write the structure of propyl sulphonicacid $\left(\begin{array}{c}\substack{\mathrm{O} \\ \mathrm{II} \\ \mathrm{Sr} \\-\mathrm{II} \\ \mathrm{O}} \\ \\ \mathrm{OH}\end{array}\right)$. The structure of G.R. would be PrMgBR

$(\mathbf{c} \rightarrow \mathbf{s})$ Write the structure of ethyl mercaptan $(E t-S H)$. The structure of G.R. would be EtMgBR

$(\mathbf{d} \rightarrow \mathbf{p})$ It is a method of preparation of ether

$(\mathbf{d} \rightarrow \mathbf{p})$

364
(b)
$(a \rightarrow q)$

(q)
$(\mathrm{b} \rightarrow \mathrm{p})$

$(\mathrm{c} \rightarrow \mathrm{s})$

366 (c)
$(\mathrm{a} \rightarrow \mathrm{r})$

$(b \rightarrow s)$

$(c \rightarrow q)$

(q)
$(\mathrm{d} \rightarrow \mathrm{p})$

367 (c)
LiAlH_{4} reduces $(\mathrm{C} \equiv \mathrm{C})$ to ($\mathrm{C} \equiv \mathrm{C}$) bond in anti manner to give trans-alkene and also reduces (CHO) group to $\left(-\mathrm{CH}_{2} \mathrm{OH}\right)$ group. Hence, the answer is (c)
369 (b)
With t-butoxychloride, allylic or propargylic chlorination takes place

370 (c)
The order of reactivity of G.R. with different compounds is Alcohol> Aldehyde> Ketone >0 II
$\mathrm{R}-\mathrm{C}-\mathrm{X}>$ Ester $>$ Anhydride $>$ Arnide $>-\mathrm{CH}_{2} \mathrm{X}$ So the first mole of G.R. will react with alcohols.
($\mathrm{ROH}+\mathrm{RMgX} \rightarrow \mathrm{Rh}+\mathrm{ROMgX}$), Hence, answer is (c)

372 (b)
In an isocyanide, first an electrophile and then a nucleophile is added at the same Catom of
$(-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{\mathrm{C}})$ group to form a species which usually undergoes further transformations

373 (a)
i. Proceed reverse from (E) to (D), (E) is obtained by the 1,4 -addition of Br_{2} on (D). (D) must be a conjugated diene
(D)

ii.(D) is obtained from (A), and (A) to (D) is elimination reaction by bulky base to give lesssubstituted alkene (Hofmann elimination). So (A) is:

Reaction can be summarised as

(c)

If at least three of the $2,2^{\prime}, 6$, and 6^{\prime} are occupied by sufficiently large groups, free rotation about the single bond joining the two phenyl groups is no longer possible, provided each ring has no vertical plane of symmetry. This restricted rotation gives rise to optical activity due to molecule being asymmetrical as a whole. Hence, 6-nitrobiphenyl-2-2' dicarboxylic acid (a) and 6, 6'- diamino-2, 2'- dimethyl biphenyl (b) have been resolved. If the substituent groups are large enough, then only two groups in the o - and o^{\prime} positions will cause restricted rotation, e.g., biphenyl-2, 2'- disulphonic acid (c) has been shown to be optically active So, (a), (b), and (c) are resolvable The cause of restricted rotation is mainly due to steric effects of the groups in the o - and o^{\prime} positions (not at m and m^{\prime}, p and p^{\prime}) this type of stereoisomerism arising from restricted rotation about a single bond and where the stereoisomers can be isolated is called atropisomerism and the isomers are called atropisomers All examples are Ullmann reaction
376 (c)
Since compound (A) has 1 D.U. and is an alkane, so if should be cyclic. The number of cyclic isomers of (A) is five

 One isomer Answer to Q. No. 24(a)		Three isomers Answer to Q. No. 26(b)	Four isomer Answer to Q. No. 27(c)	

Total number of cyclic structures including stereoisomesrs for $(A)=7$
378 (d)
D. $\mathrm{U} . \operatorname{in}(\mathrm{A})=\frac{\left(2 n_{\mathrm{C}}+2\right)-n_{\mathrm{H}}}{2}=\frac{(8 \times 2+2)-10}{2}=4^{\circ}$

4D.U. and $\mathrm{C}: \mathrm{H} \approx 1: 1$ suggest that (A) contains benzene ring with two extra C atoms [i.e.two (Me) groups]. Since compound (A) is steam volatile and on nitration gives two nitro-derivatives, so (A) is ortho-xylene

RX in (I) gives $\mathrm{R}-\mathrm{NO}_{2}$, while in (II) it gives

I. (A) $\xrightarrow[\mathrm{AgNO}_{2}]{ } \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{C}: \mathrm{C}_{2}-\mathrm{NO}_{2}$

Nitrolic acid

All, (a) $\Rightarrow 1^{\circ} \mathrm{RX},(\mathrm{b}) \Rightarrow$ Allyl halide, (c) \Rightarrow Benzyl halide

