

10.HALOALKANES AND HALOARENES

Single Correct Answer Type

15.	The reaction of <i>t</i> -butyl bromide with sodium methoxide mainly produces:					
	a) Isobutane		b) Isobutylene			
	c) <i>t</i> -Butyl methyl ether		d) Sodium <i>tert</i> -butoxide	2		
16.	An ethereal solution of 4-nitrochlorobenzene is treated with metallic sodium. The product formed is:					
	a) Aminobenzene		b) 4,4-Dinitrodiphenyl	•		
	c) <i>p</i> -Chloroaniline		d) Benzene diazonium d	hloride		
17.	Which is the most effective	e ion in anSN ² displaceme	nt on methyl bromide?			
	 с µ 0⊖ 	ы Ө	с) с н оӨ	d) си соо Θ		
10	$a_{j} c_{2} c_{15} c_{2} c_{15} c_{2} c_{15} c_{1$	OF CH	0 061150	4) 6113600		
18.	The decreasing basic orde	er of the following compou	inds is:			
	1.NH ₃ 11.PH ₃ 111.ASH ₃ 1V.SDF	\mathbf{H}_3				
10	a) $(1) > (11) > (11) > (11)$	b) $(1V) > (11) > (11) > (1)$	c) $(11)>(1)>(11)>(10)$	d) $(11)>(1)>(11)>(11)$		
19.	Which of the following 3° alcohols does propyl ester give during reaction with EtMgBr?					
	ງ Me、 ↓ _Me	ы Me. 🖌 🔿	o Me. ↓	a) \downarrow		
	a) V V Me	Me Me	Me Me	Me ^l Me ^l Me		
20.	Chlorination of methane p	proceeds by:				
	a) Electrophilic substituti	ion	b) Nucleophilic substitut	tion		
	c) Free radical mechanis	sm	d) None of these			
21.	NaOH(aq.)	'he weedwet een he	,			
	$C_6H_5CI \xrightarrow{\qquad} \dots I$ 625 K and 300atm	ne product can be:				
	a) Benzal	b) Sodium benzoate	c) Benzol	d) Sodium phenate		
22.	In order to prepare fluo	probenzene from benzen	e diazonium chloride, whic	h of the following reagents is		
	used?					
	a) Fluorine		b) HF			
	c) Hydrofluorosilicic Aci	d	d) Fluoroboric acid			
23.	Which of the following men	ntioned positions in the giv	en compound is more rea	ctive towards electrophilic		
	substitutions?					
	4					
	5					
	$\widetilde{7}$ N_1					
	Ĥ					
	a) 3	b) 2	c) 5	d) 6		
24.	Under the influence of a	Under the influence of air and light, chloroform decomposes into:				
	a) (()	OH い 」	പ്ററ്റി	4) CCI_CHO		
	a) CCI ₄	$^{\text{UJ}}$ (CH ₃) ₂ $\overset{-}{\text{CCl}}$ ₃	C_{1} C_{1} C_{1}	0) 00130110		
25.	Which one of the following compounds gives SN ¹ , SN ² , and SN ² ' mechanisms?					
	a) Me	b) Me Br	c) $Ph \land Br$	d) CI		
26	Counling reaction between l	RMgX and R'X takes place to	give $R - R'$ in the presence of	f which of the following		
20.	reagents?	in grand in the test place to	Sive it it in the presence of	i winen of the following		
	a) $R' = 0Ts$	h) CoCla	c) MnCla	d) All		
27	Which of the following re:	actions is not stereospecif	ic?			
27.	a) SN^2					
	a) Addition of Br. to ethylene in CCL.					
	$D_{\rm F}$ relation of $D_{\rm F}$ to emploit in $G_{\rm F}$					
	c) Electrophilic substitution					
20	a) Glycol formation from	i aikenes with alkaline K	MINU ₄			
28.	In order to get ethanethi	ioi from bromoethane, th	e reagent used is:			
	a) Dotagoium this group	to	D) Souraill Sulpillae			
20	cj Potassium thiocyana		aj Potassium suipnide			
29.	Propane is not formed when U_3H_7 MgBr is treated with					

	a) H ₂	b) Phenol	c) Ethanoic acid	d) 2-Butyne
30. 31.	<i>n</i> -Propyl bromide on treat a) Propane In the following reaction:	b) Propene	c) Propyne	d) Propanol
	$O_2N - O_2N - CH_2 - CH_2 - CH_2$	$F \xrightarrow{\text{EtO}^{\Theta}/\text{EtOD}} -CD = CH_2$		
	By which mechanism doe	es the reaction proceed?		
32.	a) E1 The final product (X) in the NHCOCH ₃	b) E2 following reaction is:	c) E1cB	d) β-Elimination
	$\underbrace{(i) \text{ Conc. } H_2 \text{SO}_4}_{\text{Acetanilide}}$	$? \xrightarrow{\text{Conc. HNO}_3} ? \xrightarrow{\text{Conc. HNO}_3} ?$		
		$\frac{H_2SO_4}{Steam}$? $\xrightarrow{\Theta}$ (X)		
	a) 2-Nitroaniline	b) 3-Nitroaniline	c) 4-Nitroaniline	d) Sulphanilic acid
33.	Chlorination of toluene in t a) <i>o</i> -Cresol	the presence of light and hea b) <i>p</i> -Cresol	t followed by the treatment c) 2,4-Dihydroxy toluene	with aqueous NaOH gives: d) Benzoic acid
34.	The decreasing order of a I. BenzeneII. Naphthalene	romaticity of the following III. Anthracene	is	
35.	a) (I) >(II) > (III) Which of the following is	b) (III) >(II) > (I) the most stable species?	c) $(II) > (I) > (III)$	d) (II) > (III) > (I)
	a) 🕒	b) - CH ₂	c) 🔘	d) 🕞
36.	The decreasing leaving group Θ Θ Θ i. CH ₃ ii. NH ₂ iii. OF	p order of the following compo H iv. F ^O	unds is:	
37.	a) (i)>(ii)>(iii)>(iv) In the following reaction Which of the following sta	b) (iv)>(iii)>(ii)>(i) a, the final product can be atements is correct?	c) (ii)>(i)>(iii)>(iv) prepared by two paths (I) a	d) (ii)>(i)>(iv)>(iii) nd (II).
	$ \begin{array}{c} $	$ \begin{array}{c} (i) CO_2 \\ (ii) H_3O \\ \end{array} $		
	Path (II) NaCN H_30^{\oplus} CN	Эн		
	a) Path (I) is feasible			
	b) Path (II) is feasible c) Both paths are feasible			
	d) Neither of the two path	ns is feasible		
38.	For the preparation of ch	lloroethane,		
	a) HCl gas is passed throu	ıgh ethanol		

- b) Ethanol is treated with thionyl chloride in the presence of dimethyl amine or pyridinec) Ethyl sulphide is treated with hydrogen chloride
- d) Any of the above methods can be employed

Which of the following statements is wrong about the reaction?

- At lower temperature, the reaction is kinetically controlled and o/p directive effects of the (Me) group a) operate
- At a higher temperature, the reaction is thermodynamically controlled, and longer reaction times are b) employed for equilibrium to be reached. The second s
- employed for equilibrium to be reached. The most stable form of m-toluene sulphonic acid is obtained
- c) (Me–)group is activated by +I effect, and *o*-, *p*-directing
- d) (Me-) group is deactivating by hyperconjugation and is *m*-directing
- 40. Which is most reactive towards Br₂ in the presence of FeBr₃?

	a) Anisole	b) Benzene	c) Bromobenzene	d) Nitrobenzene
41.	Which of the following deactivates the aromatic nucleus?			

- a) CH₃ b) –Br c) $-NH_2$ d) $-NR_2$ 42. 1-Chorobutane on reaction with alcoholic potash gives:
- b) 1-Butanol c) 2-Butene d) 2-Butanol a) 1-Butene ≏ 43

3.
$$(\bigcirc -(\bigcirc) \xrightarrow{\mathsf{NO}_2 \operatorname{ClO}_4^{\Theta}} (A)$$

(A) would be:

The yield of chlorobenzene obtained by reaction of phenols with PCl₅ is less due to the formation of: 44. a) o-Chlorophenol b) p-Chlorophenol

c) Phosphorus oxychloride

45. Ullmann reaction involves the use of the following reactants:

- a) Iodobenzene and sodium
- c) Iodobenzene and copper powder
- 46. The decreasing fugacity order of the following is:

- a) (i)>(ii)>(iii)>(iv)
- b) (iv)>(iii)>(ii)>(i)
- c) (iv)>(iii)>(i)>(ii)
- d) (iii)>(iv)>(ii)>(i)

In the reaction $CH_3C \stackrel{\Theta}{=} \stackrel{\otimes}{C} \stackrel{\otimes}{N} a + (CH_3)_2 CHCl_{\text{the product formed is}}$ 47. a) 4-Methyl -2-pentyne only

- d) Triphenyl phosphate
- b) Benzene and copper
- d) Benzene diazonium chloride and Cu/HCl

- c) Propyne and propylene
- d) Mixture of propene, propyne, and 4-methyl-2- pentyne
- 48. The decreasing nucleophilic order of the following compounds is: $i.H_2Oii.H_2Siii.H_2Seiv.H_2Te$
 - a) (i) > (ii) > (iii) > (iv) b) (iv) > (iii) > (i) > (i) c) (iii) > (iv) > (iv)
- 49. Which of the following sequences would yield *m*-nitro chlorobenzene (Z) from benzene?

a) Benzene
$$\xrightarrow{Cl_2/FeCl_3}(X) \xrightarrow{HNO_3}_{H_2SO_4}(Z)$$

c) Benzene $\xrightarrow{H_2SO_4/HNO_3}(X) \xrightarrow{FeCl_3/Cl_2}(Z)$

b) Benzene $\xrightarrow{H_2SO_4/HNO_3}$ (Z)

- d) All of these above will produce (Z)
- 50. Pick up the correct statement about alkyl halides
 - a) They are associated with each other by H-bonds
 - b) They dissolve in water quickly
 - c) They dissolve easily in organic solvents
 - d) They do not contain any polar bonds in their molecules

51. Ph—CH(OH)CH₃
$$\xrightarrow{\text{SOCl}_2}$$

Specific rotation = +50°

by which of the following mechanisms does the reaction proceed? a) SN¹ c) SNⁱ b) SN^2 d) E2 52. Identify (C) in the following series $C_3H_7I \xrightarrow{\text{KOH(alc.)}} (A) \xrightarrow{\text{NBS}} (B) \xrightarrow{\text{KCN(aq.)}} (C)$ d) $CH_2 = CH - CHCN$ b) $CH_2 = CH - CH_2CN$ c) Br - CH = CH - CNa) $(CH_3)_2CH - CN$ 53. When Me MgBr Me Me Me Me followed by hydrolysis, the product is b) Me Me c) Me OH a) Me Me Me Me Me OH Me d) None of these 54. The reaction conditions leading to the best yield of C_2H_5Cl are: b) $C_2H_6 + Cl_2(Excess) \xrightarrow[Room temp]{Dark}$ a) C_2H_6 (Excess) + $Cl_2 \xrightarrow{U.V.llght}$ c) $C_2H_6 + Cl_2$ (Excess) $\frac{U.V.ll_8}{....}$ d) $C_2H_6 + Cl_2 \xrightarrow{U.V.llght}$ $\frac{(i) CHClBrI}{(ii) t-BuO^{\Theta}}$ (P) , product (P) will be: 55. H_2N In the reaction H_2N b) d) a) 56. Which of the following halides can yield ethane and also methane in a single step? a) C_2H_5Br b) CH₃I c) $(CH_3)_2 CHBr$ d) None $Me \xrightarrow{\text{Br}} CD_3 \xrightarrow{\text{Alc.}} CH_2 = CH - CD_3$ (Major product) 57. By which mechanism does the above reaction proceed? a) E1 b) E2 d) γ -Elimination c) E1cB

58.
$$c_{g}H_{g}$$
Cl ^{N=A/VMOT} (A). In this reaction, (A) is:
a) Phenol b) Sodium phenoxide c) Benzol d) Benzene
59. Which of the following on reaction with chloroform will give chloretone?
a) HNO₃ b) (CH₃)₂ C = 0 c) Chloral d) (CH₃)₂CHCHO
60. H_{g} Me
b) $(GH_{3})_{2}$ C = 0 c) Chloral d) (CH₃)₂CHCHO
61. Which of the following aromatic compounds is least reactive towards electrophilic substitutions?
a) (A) would be:
a) (A) would be:
b) H_{g} Me
b) H_{g} Me
c) (A) (A) (A) (A) (A) (A)
61. Which of the following aromatic compounds is least reactive towards electrophilic substitutions?
a) (A) $($

a) Ethanethiol b) Ethanol c) Mustard gas 71. Which of the following most readily undergoes nucleophilic substitution? b) $CH_3CH = CHCl$

a) $CH_2 = CHCl$ c) $H_2C = CHC(Cl) = CH_2$ d) $CH_2 = CHCH_2Cl$ $\begin{array}{c} \mathsf{Ph} & \stackrel{\Theta}{\longrightarrow} \\ \mathsf{Ph}$

72.

Which of the following statements is correct about the above reaction?

- a) The reaction proceeds by α -elimination *via* the formation of a carbene as an intermediate
- b) The reaction proceeds by α -elimination *via* the formation of a carbanion as an intermediate
- c) The reaction proceeds by E1 mechanism
- d) The reaction proceeds E1cB mechanism

73. Ph—CH(OH)CH₃ Specific rotation = $+50^{\circ}$

which of the following acts as a leaving group?

a)
$$_{OH}^{\Theta}$$
 b) Cl^{Θ} c) SO_2

74. Consider the following halogen-containing compounds;

I.CHCl₃ II.
$$CCl_4$$
 III. CH_2Cl_2
IV. CH_3Cl V. $Cl \longrightarrow Cl$

IV.

80

75. N to: a) Neopentyl alcohol b) Pentylene c) 2-Methyl -2-butene d) Undergo no reaction 76.

is treated with C₂H₅MgBr,followed by hydrolysis, the product is: When

а) СООН

b) O OH Me c) COOH d) OH OH d) OH

d) (iv)>(ii)>(iii)>(i)

d $O = s - O^{\Theta}$

d) (I),(IV)

77. Reactivity of MeMgBr with the following in the decreasing order is:

i. Me Me ii. Ph Me iii.Ph Ph iv.Ph Me

c) (i)>(iii)>(ii)>(iv) b) (iv)>(i)>(ii)>(iii) a) (i)>(ii)>(iii)>(iv)

79. Which of the following reagents will be able to distinguish between allyl bromide and *n*-propyl bromide?

a)

81. Decreasing nucleophilic order of the following is:

Me Me Me Me. Me a) b) c) 91. The decreasing order of the rate of nitration of the following compounds is I. Benzene II. C₆D₆ III. NitrobenzeneIV.Chlorobenzene a) (I) > (II) > (III) > (IV)b) (I) >(II) > (IV) > (III) c) (I) = (II) > (IV) > (III)d) (I) = (II) > (III) > (IV)92. Which of the following halides is capable of exhibiting enantiomerism? a) Ethyl chloride b) Isopropyl bromide c) sec-Butyl iodide d) tert-Butyl chloride 93. The reaction between chloral and chlorobenzene in H_2SO_4 yields: a) Chloretone b) p, p-Dichlorodiphenyl trichloroethane c) o-Chlorobenzaldichloride d) Chloralphenylchloride 94. The compound that will react most readily with NaOH to form methanol is: a) _{(CH₃)₄ [⊕]_{N I}Θ} c) (CH₃)₃S⊕I⊖ b) CH₂OCH₂ d) (CH₃)₃CI 95. Which of the following ketonic compound is the least stable? c) d) a 96. Bottles containing PhI and PhCH₂I lost their original labels. They were labelled as (A) and (B) for testing. (A) and (B) were separately taken in test tubes and boiled with NaOH solutions. The end solution in each tube was made acidic with dilute HNO₃ and some AgNO₃ solution was added. Substance (B) gave a yellow precipitate. Which of the following statements is true for this experiment? a) Addition of HNO₃was unnecessary b) (A)was PhI c) (A)was PhCH₂I d) (B) was PhI 97. Which of the following reacting substances will not liberate ethyne gas? a) CH₃Cl and Ag b) CaC₂andH₂O c) CHI₃ and Ag d) CHCl₃and Ag 98. The decreasing basic order of the following is: ⊖ iii. OH iv F^{Θ} i. CH₃ ii. NH₂ a) (i)>(ii)>(iii)>(iv) b) (iv)>(iii)>(ii)>(i) c) (ii)>(i)>(iii)>(iv) d) (ii)>(i)>(iv)>(iii) Ethanol $\xrightarrow{P_4/I_2}$ (X) $\xrightarrow{(i)KOH(alc.)}_{(ii)HBr}$ (Y)In this sequence of reactions, (Y) is: 99. b) Bromoethane c) Ethanol a) Ethene d) None 100. (A)Compounds (B) and (C), respectively, are: Me and Me _{and} b) a) Me NH_2

$$c_{1} \\ (c_{1} \\ (c_{1} \\ (c_{2} \\ (c_{3} \\ (c_{4} \\ (c$$

a) MeNH₂ and EtCHO b) EtNH₂ and MeCHO c) MeNH₂ and EtCOOH d) EtNH₂ and MeCOOH 108. Consider the following reactions:

a) Me MgCl b) C) C)
114.
$$COCI (i) (Me) CuLi (ii) H_3O^+ A. CH_2Cl$$

The Product A is:
a) Me Me DH Me C) Me Me Me C) Me

Me

Interpret</th

123. Which of the following compounds is the most reactive towards electrophilic substitution reaction?

124. Lindane can be obtained by the reaction of benzene with:

a)
$$CH_3Cl/Anhy. AlCl_3$$
 b) $Cl_2/Sunlight$ c) $C_2H_5I/Anhy. AlCl_3$ d) $CH_3COCl/AlCl_3$

125. The experimentally determined rate equation for the alkaline hydrolysis of RBr is given by:

Rate = $K[RBr] \stackrel{\Theta}{|OH|}$

Which of the following statements is inconsistent with these observations?

- a) The reaction is first order with respect to RBr
- c) The reaction process is false

- b) The reaction is second order overall
- d) The rate-determining step is bimolecular 126. When phenol is treated with excess bromine water, it gives:
 - a) m-Bromophenol
 - c) 2,4-Dibromophenol

- b) o- and p-bromophenol d) 2,4,6-Tribromophenol
- 127. The following compound on hydrolysis in aqueous acetone will give

a) Mixture of (K) and (L)

c) Only (*M*)

b) Mixture of (*K*) and (*M*) d) Only (*K*)

^{128.} $CH_3 - CH(Cl) - C_2H_5 \xrightarrow{Alc.KOH} CH_3 - CH = CH - CH_3$. The above reaction proceeds *via*E1cB mechanism. Which of the following statements is true about E1cB mechanism?

- b) It is first order and unimolecular a) It is second order and bimolecular
- d) It is second order and unimolecular c) It is first order and bimolecular

129. The reaction of toluene with chlorine in the presence of ferric chloride gives predominantly:

a) Benzoyl chloride

c) Benzyl chloride

b) *m*-Chlorotoluene d) *o*- and *p*-Chlorotoluene

130. CH₂Br

$$\bigcup_{\substack{\mathsf{CI}}} \frac{\mathsf{Mg}}{\mathsf{ether}} \mathsf{A}.(\mathsf{A}) \text{ is:}$$

C)

d)

Br

1

139. Reactivity of PhMgBr with the following in the decreasing order is:
i. PhCHO
ii. Me-O-CHO
iii. O-CHO
iv. O-CHO
Me
a) (i)>(iv)>(ii)>(iii)>(ii)>(iv)>(i)
c) (i)>(iii)>(iv)
d) (i)>(ii)>(iii)>(iv)
140. Which of the following alkyl halides undergoes SN¹ reaction the fastest?
a) Methyl chloride
b) Ethyl chloride
c) Isobutyl chloride
d) *tert*-Butyl chloride
141. What is the end product (D) of the following reaction?

$$OH_{+H}^{\oplus}$$
 (A) $(i) BH_3, THF/H_2OOH_{+H}^{\odot}$ (B)
(B) $(ii) NBS_{(iii)} Base}$ (C) $CHBr_3 + t - BuO_{-}^{\odot}$ (D)
a) OH_{+H}^{\oplus} (C) $CHBr_3 + t - BuO_{-}^{\odot}$ (D)
a) OH_{+H}^{\oplus} (B) OH_{+H}^{\oplus} (D)
Br
b) OH_{+H}^{\oplus} (C) $OH_{+H}^{-H} OH_{+H}^{OH}$ (D)

142. The decreasing nucleophilic order of the following compounds is:

i. $PhSO_3^{\Theta}$ ii. $C_2H_5SO_3^{\Theta}$ iii. $C_2H_5COO^{\Theta}$ iv. $\stackrel{\Theta}{CN}$ ⊖ v. OH a) (v)>(iv)>(iii)>(ii)>(i) b) (i)>(ii)>(iii)>(iv)>(v) c) (iv)>(v)>(iii)>(ii)>(i) d) (i)>(ii)>(iii)>(v)>(iv) 143. Choose the incorrect reaction b) $2C_2H_5Br + Zn \xrightarrow{EtOH} (C_2H_5)_2 Zn + Br_2$ a) $2C_2H_5I + 2Na \xrightarrow{(C_2H_5)_2O} C_4H_{10} + 2NaI$ d) $2C_2H_5Br + NaI \xrightarrow{(CH_3)_2C=0} C_2H_2I + NaBr$ c) $2C_2H_5I + Na_2S \rightarrow (C_2H_5)_2S + 2NaI$ 144. Which of the following represents Freon? a) Acetylene tetrachloride b) Trichloroethylene c) Dichlorodifluoromethane d) Ethylene dichloride 145. What happens when CCl₄ is treated with AgNO₃ solution? a) NO₂in evolved b) A white precipitate of AgCl is formed c) CCl₄ will dissolves in AgNO₃ solution d) NO reaction

157. The decreasing basic order of the following is:

Page | 18

III.Me₂CHXIV.C₂H₅X

a) (I)>(II)>(III)>(IV) b) (IV)>(III)>(I) 184. Br	c) (II)>(I)>(III)>(IV)	d) (IV)>(III)>(I)>(II)
$(A) (B) + CH_3 - Br \xrightarrow{AlCl_3} (C)$ $(A) (B) \xrightarrow{as solvent} (C)$		
Br L Br	CH3	d) None
a) () b) ()	c)	
CH ₃	\bigcirc	
185. OCH ₃		
$\underbrace{\text{NaNH}_2}_{\text{Liq. NH}_3}(A)$		
The major product (A)and reaction R are: OCH ₂	OCH	
a) H_2 Cine substitution	b) NH ₂ Addition-eli	mination reaction
OCH_3 C) NH_2	d $($ NH_2	
SN ¹ reaction	SN ² react	ion
186. Of the following, four groups are <i>m</i> -directing when	n present on a benzene ring	. The one which is not <i>meta</i>
a) $-COOH$ b) $-NO_2$	c) —CHO	d) $-NH_2$
187. When iodoform is heated with silver powder, the a) Ethene b) Ethyne	gaseous product formed is: c) Ethane	d) Silver iodate
188. A reaction involving an aromatic nucleus is usually i	initiated by:	
a) Free radicals c) Nucleophiles	 b) Molecules possessing a d) Electrophiles 	a lone pair of electrons
189. O O U \downarrow		
$H_2N^{\prime} \longrightarrow O^{\prime} Me \frac{(i) MeMgBA}{(ii) H_3O^{\oplus}} A.$		
(A) is:		
a) NH_2 Me b) NH_2 Me	c) Me Me	d) Me Me
190. The compound that is most reactive towards electrop	hilic nitration is:	ME
a) Toluene b) Benzene	c) Benzoic acid	d) Nitrobenzene
$\xrightarrow{\text{EtoH}} (A) \xrightarrow{\xrightarrow{\text{EtoH}}} (B) \text{Compound (B) in th}$	le sequence is:	
c) 3-Chloro propene	d) 1-Chloro-2-iodopropar	10
192. How many chiral carbon atoms are present in 2,3,4-	trichloropentane?	
a) 3 b) 2 193. When ethane nitrile is treated with C_2H_5MgBr , follow	cJ 1 wed by hydrolysis, the prod	a) 4 luct is:
		d) Me
	OH ^{Me}	0 0

194. Alkyl halides can be obtained by all methods except:

a)
$$CH_3CH_2OH + HX/ZnCl_2$$

b) $CH_2 = CH - CH_3 \frac{SU_2CH_2}{4775K}$
c) $C_2H_2OH + NaCl$
d) $CH_3COOAg + Br_2/CCl_4$
195.
 $\int_{C=CH}^{C=CH} \frac{2 \mod of MeMgBr}{2 \mod of MeMgBr}$
 $HSO_{H}Me$
b) $\int_{C}^{M_2OH}Me$
c) $\int_{OH}^{OH}Me$
d) $\int_{OH}^{O}\int_{OH}^{OH}Me$
e) $\int_{OH}^{M_2OH}Me$
c) $\int_{OH}^{OH}Me$
d) $\int_{OH}^{O}\int_{OH}^{M_2OH}Me$
i) $\int_{OH}^{M_2OH}Me$
ii) $\int_{OH}^{M_2OH}Me$
ii) $\int_{OH}^{M_2OH}Me$
iii) $\int_{OH}^{M_2OH}Me$
iiii) $\int_{OH}^{M_2OH}Me$
iii) $\int_{OH}^{M_$

205. Vinyl chloride and ethyl chloride can be distinguished by:

a)
$$SOCl_2$$
; H_2O b) SO_2Cl_2 : alc. KOH c) Cl_2/hv ; H_2O d) $SOCl_2$; alc. KOH

208. Carbylamine test is performed in alcoholic KOH by heating a mixture of:

a) Chloroform and silver powder

b) Trihalogenated methane and a primary amine

c) An alkyl halide and a primary amine

d) An alkyl cyanide and a primary amine

209. Which of the following is the correct order of stability of the given compounds?

$$I. \bigoplus II. \bigoplus III. \bigoplus$$

a) (I)>(II)>(III) b) (III)>(I) c) (II)>(II) d) (II)>(II)>(I)

210. CH_3 -Br Nu^{Θ} \longrightarrow CH_3 -Nu + Br^{Θ} The decreasing order of the rate of the above reaction with nucleophile

$$(Nu^{\ominus})$$
 (A) to (D) is:
 $Nu^{\Theta} \Longrightarrow$

$$[(A) PhO^{\Theta}(B) ACO^{\Theta}(C) \stackrel{\Theta}{OH} (D) CH_3O^{\Theta}]$$

a) (D)>(C)>(A)>(B)b) (D)>(C)>(B)>(A) c) (C)>(D)>(A)>(B) d) (B)>(D)>(C)>(A) 211. Raschig's process is employed for the commercial preparation of:

a) Ethyl chloride b) Grignard's reagent c) Chlorobenzene d) Ethanol 212. Which of the following on reaction with acetylene (CH \equiv CH) produce gas(es)?

I. K in liquid NH₃ II. NH_2

a) (I),(II),and(III) b) (I),(II),and(IV) c) (II),(III) and (IV) d) (I),(III), and (IV) 213. Propyl ester reacts with isopropyl magnesium bromide to give 2° alcohol

Me Me Me/ The ester is: Me

c) Equimolar mixture of (a) and (b)

d) (iv)>(ii)>(i)>(iii)

d)

d)

d) 5

216. The decreasing basic order of the following compounds is:

 $i.H_2Oii.H_2Siii.H_2Seiv.H_2Te$ a) (i)>(ii)>(iii)>(iv) b) (iv)>(iii)>(i) c) (iii)>(i)>(ii)>(iv) 217. Which of the following is anti-aromatic in nature?

218. In which case will SE not be in *m*-position?

219. Propane on dichlorination gives.....isomers and out of themare optically activea) 4, 1b) 3, 1c) 4,2d) 3,2

220. Which of the following is not an example of Sandmeyer's reaction?

a) $C_6H_5 \overset{+}{N_2}Cl^{-} \xrightarrow{CuCl} C_6H_5Cl$ b) $C_6H_5 \overset{+}{N_2}Cl^{-} \xrightarrow{CuBr} C_6H_5Br$ c) $C_6H_5 \overset{+}{N_2}Cl^{-} \xrightarrow{CuCN} C_6H_5CN$ d) $C_6H_5 \overset{+}{N_2}Cl^{-} \xrightarrow{KCN} C_6H_5I$

221. In the following reactions:

I. Ph Me
$$\frac{\text{Alc.}}{\text{KOH}}$$
 Ph + HBr

c)

C)

Br
$$Alc.$$
 Ph CD + DD

II. Ph
$$CD_3 \xrightarrow{AIC.} Ph CD_2 + DBr$$

the rate of reaction of (I) is faster than that of (II). By which mechanism do both the reactions proceed?a) E1b) E2c) E1cBd) α -Elimination

^{222.} Me
$$\xrightarrow{H^{\oplus}}$$
 (

(X) $\xrightarrow{Br_2}$ five compounds with formulaC₄H₈Br₂. How many structures of (X) are

a) 2 b) 3 c) 4

223. The decreasing nucleophilic order of the following compounds is:

$$\begin{array}{c} \stackrel{\Theta}{\text{i. CH}_{3}} & \stackrel{\Theta}{\text{ii. NH}_{2}} & \stackrel{\Theta}{\text{iii. OH}} & \text{iv. F}^{\Theta} \\ a) (i) > (ii) > (iii) > (iv) \\ b) (iv) > (iii) > (ii) > (i) \\ c) (ii) > (i) > (iii) > (iv) \\ d) (ii) > (i) > (iv) > (iii) \\ 224. C_{2}H_{5}I \xrightarrow{\text{AgNO}_{2}}(X). \text{ Here } (X) \text{ is:} \\ (\text{Major product}) \\ a) \stackrel{O}{C_{2}H_{5}} \xrightarrow{\text{N}} O \qquad b) C_{2}H_{5} - O - N = O \qquad c) C_{2}H_{5} - N = O \end{array}$$
 d) All of the above

225. Product on monobromination of this compound is

$$a) \stackrel{H_{0}CO}{H_{0}} \stackrel{Me}{\longrightarrow} \stackrel{Me}{\longrightarrow$$

c) p-Bromophenol d) 2,4,6-Tribromophenol 245. Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to: b) Resonance stabilisation a) The formation of less stable carbonium ion d) Inductive effect c) Larger carbon-halogen bond 246. The chemical reaction $(CH_3)_3CBr \xrightarrow[-H_20,-KBr]{KOH(alc.)} (CH_3)_3C = CH_2$ is an example of: a) Nucleophilic substitution b) Electrophilic substitution c) Free radical substitution d) β-Elimination 247. In the reaction of *p*-chlorotoluene with KNH_2 in liquid NH_3 , the major product is: a) o-Toluidine b) *m*-Toluidine c) p-Toluidine d) p-Chloroaniline 248. The chemistry of benzene is characterised by which of the following types of reaction? c) Polymerisation b) Elimination a) Addition d) Substitution 249. In the following reactions: I. Ph $Br \xrightarrow{Alc.} Ph$ $\xrightarrow{Br} \xrightarrow{Alc.} Ph$ II.Ph the rate of reaction of (I) and (II) are same. Bothreactionsproceed by which mechanism a) E1 b) E2 c) E1cB d) Anti-elimination 250. In the reaction ⊖ OH Thyroxine, a thyroid hormone that helps to regulate metabolic rate Thyroxine, a thyroid hormone thathelps to regulate metabolic rate Thyroxine is:

251. 1, 2-Dibromopropane on treatment with X moles of NaNH₂ followed by treatment with C₂H₅Br gives a

pentyne. The value of Xis: d) 4 a) 1 b) 2 c) 3 252. $(CH_3)_2CHCl + NaI \rightarrow (CH_3)_2CHI + NaCl The above reaction is known as:$ a) Perkin's reaction b) Finkelstein's reaction d) Sabatier and Senderan's reaction c) Fitting reaction 253. Reactivity of EtMgBr with the following in the decreasing order is: 1. **HCHO** 2. **MeCHO** 3. MeCOMe 4. $CI_3C - CHO$ a) (i)>(ii)>(iii)>(iv) b) (iv)>(iii)>(ii)>(i) c) (iv)>(i)>(ii)>(iii) d) (iii)>(ii)>(i)>(iv) 254. OH Et/. The ester is: Methyl ester reacts withEtMgBr to give 3°alcohol b) Methyl butanoate a) Methyl propanoate c) Methyl ethanoate d) Methyl formate 255. Fire extinguisher pyrene is: b) CCl₄ c) CHCl₃ d) H_2CO_3 a) CO_2 256. The decreasing nucleophilic order t the following compounds is: i. CN ii. OH iii. OMe iv. CH₃ vHΘ a) (v) > (iv) > (iii) > (ii) > (i)b) (i)>(ii)>(iii)>(iv)>(v) c) (iv)>(v)>(ii)>(iii)>(i) d) (i)>(ii)>(iii)>(v)>(iv) 257. The optical isomers which are not mirror images of each other are called: a) Enantiomers b) Mesomers d) Metamers c) Diastereomers 258. The decreasing fugacity order of the following compounds is: ⊖ ii.OH iii. $CH_{3}COO^{\Theta}$ iv. $H_{2}O$ i. CH₃ b) (iv) > (iii) > (ii) > (i)c) (iii)>(ii)>(iv) a) (i)>(ii)>(iii)>(iv) d) (iii)>(ii)>(iv)>(i) 259. On mixing a certain alkane with chlorine and irradiating it with ultraviolet light, it forms only one monochloroalkane. a) Propane b) Pentane c) Iso-pentane d) Neo-pentane 260. In order to convert aniline into chlorobenzene, the reagents needed are: b) NaNO₂/HCl and CuCl c) Cl_2/CCl_4 d) $Cl_2/AICl_3$ a) CuCl 261. The distillation of bleaching powder and acetone gives: b) Chloral a) $CHCl_3$ c) CH₃Cl d) CCl_4 262. Which of the following cannot be used for the preparation of iodoform? d) Acetaldehyde b) Methanol a) Acetone c) Ethanol 263. The compound (A) in the previous question is further hydrolysed in dilute acidic medium to give compounds (B) and (C). The compounds (B) and (C) are: a) $phNH_2$ and PhCH = 0b) $PhCH_2NH_2$ and PhCH = 0d) $PhCH_2NH_2$ and $PhCH_2CH = 0$ c) $PhNH_2$ and $PhCH_2CH = 0$

264. In the following reaction, which of the following steps is wrong?

Multiple Correct Answers Type

266. Consider the following reactions:

I.
$$C_2H_5 - I + NH_3 \longrightarrow C_2H_5 \overset{\Theta}{NH_3} + I^{\Theta}$$

II. $C_2H_5 - I + \overset{\Theta}{PH_3} \longrightarrow C_2H_5 \overset{\Theta}{PH_3} + I^{\Theta}$
III. $C_2H_5 - I + EtO^{\Theta} \longrightarrow C_2H_5 - OEt + I^{\Theta}$
IV. $Me - \overset{\Theta}{S} - Me_2 + \overset{\Theta}{OH} \longrightarrow Me - OH + Me_2S$

A

In which of the above reactions does the rate of SN² reaction decrease with an increase in solvent polarity? a) (I) b) (II) c) (III) d) (IV)

267. Toluene when treated with Br₂/Fe gives *p*-bromotoluene as the major product because the (CH₃) group:

a) is *para*-directing

- b) is *meta*-directing
- c) activates the ring by hyperconjugation
- d) deactivates the ring

268. Consider the following compound

Which of the following statements are correct?

- a) Loss of Br (a) atom in dehydrobromination reaction results in the formation of the most reactive double bond towards hydrogenation reaction
- b) Removal of Br (c) atom results in the formation of the most stable carbocation
- c) The above compound contains five asymmetric C atoms
- d) The above compound does not show geometrical isomers
- 269. Among the following, which is/are correct?
 - a) Both cyclopentadienyl anion and benzene are aromatic and have the same stability
 - b) Benzene is aromatic and more stable than cyclopentadienyl anion and it is non-aromatic
 - c) Both cyclopentadienyl anion and benzene are aromatic but benzene is more stable than cyclopentadienyl anion
 - d) Cyclopentadienyl anion is more stable than benzene though both are aromatic

270. i. Me
$$(A)$$
 Cl $\xrightarrow{\text{NaNO}_2}$ (B)

ii. Me
$$\bigcirc Cl \xrightarrow{NaNO_2} Cl \xrightarrow{EtOH} (D)$$

Which of the following statements is/are correct for the above reactions?

due to

- a) The formation of less stable carbonium ion
- b) Resonance stabilisation

c) Longer carbon-halogen bond

- d) The inductive effect
- 274. Which of the following statements are correct about Friedel–Crafts reaction?
 - a) It is an aromatic electrophilic substitution reaction
 - b) The reaction intermediate is an \overline{e} deficient species
 - c) The reaction involves alkylation and acylation
 - d) A Lewis acid is used as a catalyst
- 275. Consider the following reactions

I. CH₃
$$\overset{\circ}{O}$$
 H + PhSO₂Cl
(A) (B)
 $CH_3 - \overset{\circ}{O} - SO_2Ph \xrightarrow{OH} (D) + (E)$
II. CH₃ $\overset{\circ}{O}$ H + CH₃COCl
(F) (G)
 $CH_3 - \overset{\circ}{O} - \overset{O}{C} - CH_3 \xrightarrow{OH} (I) + (J)$
(H)
The products (D), (E), (I), and (J) are respectively
(D) (E) (I) (J)
a) CH₃OH PhSO₂ONa CH₃ $\overset{\circ}{O}$ H CH₃COONa
c) CH₃OH PhSO₂ONa CH₃ $\overset{\circ}{O}$ H CH₃COONa
276. The compounds used as refrigerant are:
a) NH₃ b) CCl₄

- b) CH₃OH PhSO₂ONa CH₃OH CH₃COONa
- d) CH₃OH PhSO₂ONa CH₃OH CH₃COONa
- c) CF_4 d) CF_2Cl_2

277. F

$$D$$

 (A)
 $NaNH_2$
 $NaNH_3$
Products

Which of the following statements are correct for the above reaction? The product is a mixture of

b) The product (II) is a cine-substitution product

c) The reaction proceeds *via*benzene intermediate

d) The reaction is ArSN (addition-elimination)

278. Hexan-3-one can be obtained by the reaction of EtMgBr and

b) Propanamide a) Butanamide c) Butane nitrile d) Propane nitrile

b) Have $(4n + 2) \pi$ -electrons

d) Be cyclic

279. An aromatic molecule will:

a) Have $4n\pi$ -electrons

c) Be planar

^{280.} Me
$$(A)$$
 Cl $(CN)^{\Theta}$

Which of the following statements are correct?

a) Formation of (I) and (II) proceeds *via*SN¹ mechanism

- b) Formation of (I) and (II) proceeds via SN² mechanism
- c) Formation of (III) proceeds via SN² mechanism
- d) Formation of (IV) proceeds viaSN² mechanism with allylic rearrangement and is called SN²-prime (SN²) mechanism

281. EtNH₂ + MeMgI $\xrightarrow{\text{Heated at high temp}}$ GAS (A) The volume of gas (A) obtained at S.T.P. when 0.45 gm of EtNH₂reacts with MeMgI is

a) 224 ml b) 22.4 ml c) 448 ml d) 44.8 ml 282. $\frac{1 \text{ mol of}}{PhMgBr} (A) \frac{1 \text{ mol of}}{PhMgBr} (B)$ Cľ $\frac{1 \text{ mol of}}{PhM_{\sigma}Br} (C) \xrightarrow{H_3O^{\oplus}} (D)$

Which of the following statements is/are correct?

a)

b)

First mole of G.R. reacts at (-OH) group and the product (A) is andphenol

> ,OMgBr product (B) is CI ÓMaBr

product (A) is CI

Second mole of G.R. reacts with keto group and the product (B) is

and phenol.

ÓMaBr

OMgBr product (B) is ÓMgBr

Second mole of G.R. reacts with acid chloride group and the product (B) is

d) Compound (D) is

283. Which content(s) of middle oil separate on cooling?

b) Phenol a) Naphthalene d) Pyridine c) Benzene 284. In Dow's process for the manufacture of phenol, PhCl is fused with NaOH at elevated temperature under nressure

$$\frac{\text{NaOH}}{\text{623 K 300 atm}} \text{[Intermediate]} \xrightarrow{\text{H}_2\text{O}} \text{Phenol} + (\text{B} + \text{C})$$
(A) Side product

Which of the following statements are correct:

- a) Phenol is formed viathe formation of benzyne intermediate
- b) *p*-Phenyl phenol is also formed as a by-product
- c) Diphenylether is also formed as a by-product
- d) Biphenylene is also formed as a by-product

285. Which of the statements is/are correct?

- a) In Reformatsky reaction, α-bromo ester reacts with aldehyde or ketone in the presence of Mg to give β -hydroxy ester
- In Reformatsky reaction, α -bromo ester reacts with aldehyde or ketone in the presence of Zn to give β b) hydroxy ester
- Citric acid is prepared by the reaction of α -bromoethyl acetate and ethyl oxaloacetate in the c) presence of Zn followed by hydrolysis
- Citric acid is prepared by the fermentation of molasses in the presence of
- d) Aspergilluswentienzymes
- 286. Which of the following side chain reaction/s can be used to reduce the activity of strongly activating groups such as (-OH) or $(-NH_2)$

a) Benzoylation b) Acet
287. i. Me Cl
$$\frac{NaNO_2}{EtOH}$$
 (B)

c) Tosylation

d) Sulphonation

(A)
ii. Me
$$O$$
 $Cl \xrightarrow{NaNO_2}_{EtOH}$ (D)

Which statement is/are correct?

- a) Both reactions (i) and (ii) proceed via SN² mechanism
- b) Both reactions (i) and (ii) proceed *via* SN¹ mechanism
- c) Reaction (i) proceeds $viaSN^1$ and reaction (ii) $viaSN^2$ mechanism

b) Acetylation

d) Reaction (i) proceeds via SN^2 and reaction (ii) via SN^1 mechanism

288. The products of reaction of alcoholic silver nitrite with ethyl bromide are:

a) Ethane b) Ethene c) Nitroethane d) Ethyl alcohol

289. Which of the following halides does not form G.R. when treated with magnesium in the presence of ether?

- а) ^{Br}⁄____н
- b) HO

c) $O_2N \rightarrow O$ Br

- 290. Acetophenone can be obtained by the reaction of PhMgBr and a) Ethane nitrile
 - b) Ethanamide
- c) Ethanoyl chloride
- d) Methanamide

291. Which of the following reaction(s) is/are neither stereospecific nor stereoselective? a) SN¹ b) SN² c) E2 d) E1cB

Which of the following statements are correct?

a) (I) and (II) are aromatic and have equal basic strength

b) (I) is aromatic, (II) is anti-aromatic, but (II) is a stronger base than (I)

c) The basicity order of above compounds is (IV) > (III) > (II) > (I)

d) The conjugate acid of (IV) is more stabilised than the conjugate acid of (II)

293. The decreasing order of pK_a value of the following is:

294. In which of the following reactions is the correct major product formed?

c) When (II) is protonated in the presence of a strong acid, protonation occurs at C-2

d) All the nitrogen present in (I), (II), and (III) are sp^2 -hybridised

296. Which of the following halides forms G.R. when treated with magnesium in the presence of ether?

a) PhBr b) Br c) Br d) H₂N-O-Br 297. Which of the following reaction(s) is/are non-stereospecific but stereoselective? a) SN¹ b) E1 c) E2 d) E1cB

298. Which of the following are the best methods for the preparation of n-propyl benzene (A)?

a)
$$\bigcirc$$
 + Me $\overset{CI}{\longrightarrow}$ + AlCl₃ \longrightarrow (A) b) \bigcirc + Me $\overset{OH}{\longrightarrow}$ + BF₃ \longrightarrow (A)

$$() + Me + (C_{1} + AlC_{1} \rightarrow ?) \\ () + Me + (C_{1} + AlE_{1} \rightarrow ?) \\ (A) \\ (A$$

(R)-Me
$$(A)$$
 (A) (A) (A) (A) (A) (B) (C) (C) (C) (C) (C) (C)

Direct conversion is not feasible since Cl cannot be replaced by Br in one step In which of the following steps does the inversion occur?

a) Step 1 b) Step 2 c) Step 3

301. Which of the following statements are correct about the following reactions?

(C) Reaction 2 dil. NaOH OCOR (+) form of (A) (B)

- a) Reaction 1 proceeds by SN^2 and reaction 2 by SN^1 mechanism
- b) Reaction 1 proceeds by SN^1 and reaction 2 by SN^2 mechanism
- c) The products (B) and (C) are, respectively

d) None

$$\begin{array}{c} \begin{array}{c} OH\\ (B) \Rightarrow (\cdot) Ph-CH-CH-CH=CH-Me\\ (C) \Rightarrow (\frac{1}{2}) Ph-CH=CH-CH-Me\\ OH\\ \end{array}$$

$$\begin{array}{c} (C) \Rightarrow (\frac{1}{2}) Ph-CH=CH-CH=CH-Me\\ (B) \Rightarrow (\cdot) Ph-CH-CH=CH-Me\\ \end{array}$$

$$\begin{array}{c} (C) \Rightarrow (\frac{1}{2}) Ph-CH-CH-CH=CH-Me\\ \end{array}$$

$$\begin{array}{c} (C) \Rightarrow (\frac{1}{2}) Ph-CH-CH-CH=CH-Me\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-CH-CH=CH-OH\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-CH-CH-CH=CH-OH\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-CH-CH-CH-OH\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-CH-CH-OH\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-CH-OH\\ \end{array}$$

$$\begin{array}{c} (D) Ph-CH-OH\\ \end{array}$$

$$\begin{array}{c$$

echanism but more reactive by SN¹mechanism ment

r? 3

$$H \xrightarrow{\text{Br}} Br \xrightarrow{\text{Step 1}} MeCH(N_3)COOH \xrightarrow{\text{Step 2}} H_2/Ni$$

$$Me \qquad (B)$$

$$D-2-Bromopropanoic \qquad (A) \qquad \underbrace{\text{Step 3}}_{NaOH} MeCH(OH)COOH \qquad (D) \qquad MeCH(NH_2)COOH \qquad (C)$$

b) Step 2 c) Step 3 d) None

a) Step 1 304. Which combination of reactants will not give species (I)shown as a reactive intermediate? Θ

306. Which of the following are the best methods for the preparation of cumene (A)?

(Ċ)

a)
$$\bigcirc$$
 + Me $\overset{CI}{\longrightarrow}$ + AlCl₃ \longrightarrow (A)
b) \bigcirc + $\overset{Me}{\longrightarrow}$ -CI + AlCl₃ \longrightarrow (A)

(D) MeCH(NH₂)COOH

Page | 34

c)
$$\bigcirc$$
 + $\stackrel{\text{Me}}{\underset{\text{Me}}{\longrightarrow}}$ \rightarrow OH + BF₃ \longrightarrow (A)
d) \bigcirc + $\stackrel{\text{Me}}{\underset{\text{Me}}{\longrightarrow}}$ = $\stackrel{\text{H}_3\text{PO}_4}{\longrightarrow}$ (A)

307. Consider the following reactions:

1.
$$Me_3C - Br \xrightarrow[SN^1]{H_2O + NaBr} Product$$

2. $Ph_3C - Br \xrightarrow[SN^1]{H_2O + NaBr} Products$

Which of the following statements are correct about the above reactions?

- a) The products in reactions (I) and (II) are mixture of $(Me_3 OH + Me_3Br)$ and $(Ph_3C OH + Ph_3C Br)$.respectively
- b) The product in (I) is $(Me_3C OH)$ and in (II) is $(Ph_3C OH + Ph_3C Br)$
- c) The product in (I) is $(Me_3C OH + Me_3C Br)$ and in (II) is $(Ph_3C OH)$
- d) Ph_3C^{\oplus} is more stable than Me_3C^{\oplus}

c) Rate of SN² reaction of (I) > (II)

- 308. Which of the following statements are correct about the reactivities of (I) *n*-propyl chloride and (II) allyl chloride
 - a) Rate of SN¹ reaction of (I) > (II)
- b) Rate of SN¹ reaction of (II) >(I)
 d) Rate of SN² reaction of (II) > (I)
- 309. Both *t*-butyl and $(-SO_3H)$ groups are used as a blocking group in certain synthesis of organic compounds. Which of the following statements are correct?
 - a) *t*-Butyl group is easily introduced by any of the variations of the Friedel–Crafts alkylation reaction *t*-Butyl group can be introduced by using:

 $I.Me_3C - Cl + AlCl_3$

b) II. Me₃C – OH + BF₃

III.
$$\frac{Me}{Me} > = + HF$$

c) t-Butyl group can be easily removed under acidic conditions because of the stability of *tert*-butyl cations

d) t-Butyl group has advantage over a ($-SO_3H$) group as a blocking group, because t-butyl group activates the ring to further SE reaction

310. Which of the following syntheses could not be done without involving blocking position on the ring?

- 311. When benzene sulphonic acid and *p*-nitrophenol are treated with NaHCO₃, the gases released, respectively, are:
- a) SO_2 , NO_2 b) SO_2 , NO c) SO_2 , CO_2 d) CO_2 , CO_2 312. In the following reactions:

Which of the following statements are correct about the above reactions?

(B) and (D) are the same product

d) The above reaction is called ipso substitution

- 313. Which of the following reaction(s) is/are stereospecific but non-stereoselective?a) SN²b) E1c) E2d) E1cB
- 314. Energy diagram of SN¹ and SN² reactions. The order of hydrolysis of RX by SN¹ is $3^{\circ} > 2^{\circ} 1^{\circ}$ RX and by SN² path is $1^{\circ} > 2^{\circ} > 3^{\circ}$ RX

Progress of reaction

Which of the following statements are correct for the above energy diagrams of SN^1 and SN^2 reactions? a) (I) is Fig. (a) and (IV) in Fig. (b) represent SN^1 reaction

b) (II) in Fig. (a) and (III) in Fig. (b) represent SN² reaction

c) Fig. (a) and Fig. (b) are the energy diagrams for 1° RX and 3° RX, respectively

d) Fig. (a) and Fig (b) are the energy diagram for 3°RX and 1° RX, respectively

315. Which are the sources of phenol?

a) Cumene

- b) Hydrolysis of benzene diazonium salt
- d) Reaction of diazonium salt with H₃PO₂

316. Sulphanilic acid at pH = 2 and 12 exists as..... and migrates towards, respectively

(I)
$$H_3N \longrightarrow SO_3H$$
 cathode
a)

c) Middle oil of coal tar distillation

(II)
$$H_2N - O^{\Theta} SO_3^{\Theta}$$
 anode

b) (II) anode and (I) cathode

- c) At both pH, only (I) and migrates towards the cathode
- d) At both pH, only (II) and migrates towards the anode
- 317. Which of the reagents is the most suitable for the following reaction?
MeMgBr + (A) \rightarrow Me \rightarrow Me \rightarrow Me d) <u>KAN</u>NHa a) Me – C \equiv N b) 318. Which of the following statements are correct a) $\stackrel{\Theta}{OH}_{is}$ weaker nucleophile than H₂O b) $R - \overset{\cdots}{S}H$ is a stronger nucleophile than $R - \overset{\cdots}{O}H$ in polar protic solvent such as ethanol c) $\ddot{N}H_3$ is a weaker nucleophile than $H_2\ddot{N}-\ddot{O}H$ (I) is a stronger nucleophile than $(C_2H_5)_3N$ (II) 319. Which of the following would give benzene when reacted with PhMgBr? a) Me OEt c) Methyl amine b) H_2 d) NH₃ 320. Which of the following will give Hofmann alkene? a) Me $N_{Me} \xrightarrow{F_3C-CO_3H}$ b) Me $Me_3C - O^{\Theta}$ Me-N-Me c) Me $\xrightarrow{C_2H_5O}{\Delta}$ $(Me_3C + CMe_3)$ can be obtained by the reaction of di-*t*-butyl ketone and by *t*-Butyl magnesium bromide 321. b) *t*-Butyl magnesium bromide a) Isopropyl magnesium bromide d) MeMgBr c) EtMgBr 322. Me (A) $Cl \xrightarrow{CN}{\Theta}$ Select the correct statement a) The product is Me CN (I) b) The product is Me NC (II) The product is Mixture of me c) Me CN (III) Me (IV) d) The product is a mixture of (I) and (II) 323. Which of the following statements are correct about E1cB reaction? a) It proceeds *via*the formation of a carbanion intermediate b) Strong EWG and poor leaving groups favour the reaction c) It is a unimolecular reaction with second order kinetics

When D is incorporated in the starting material by the solvent EtOD and the reaction is interrupted d) before completion, no D is found either in the substrate or in the product

324. The name of the compound

a) Dibenzocyclobutadiene

c) Biphenylene

325. Consider the following reactions:

is :

I.
$$CH_3CH_2I \xrightarrow{EtO}{E2} CH_2 = CH_2 + EtOH + I^{\Theta}$$

II. $D_3C - CH_2I \xrightarrow{EtO}{E2} D_2C = CH_2 + EtOD + I^{\Theta}$
III. $Me_3C - I \xrightarrow{EtO}{SN^1 \text{ and } E1} Me_3C - OEt + Substitution$

IV.(CD₃)₃C—I
$$\xrightarrow{\text{EtO}^{\Theta}}$$
 (CD₃)₃C—OEt +
D₂C

Which of the following statement(s) is/are correct?

- Reactions (I) and (II) show primary kinetic isotope effect, whereas reactions (III) and (IV) show 2°kinetic a) isotope effect
- b) Reactions (I) and (II) show 2° kinetic isotope effect, whereas reactions (III) and (IV) show 1° kinetic isotope effect
- c) All reactions show 1° kinetic isotope effect
- d) All reactions show 2°kinetic isotope effect

326.

A 3°alcohol \land FII / can be obtained by the reaction of PhMgBr and

 $\rangle = CD_2$

a) Ethyl carbonate b) Benzophenone c) Ethyl benzoate d) Benzamide $\frac{1. \text{ Mg/ether}}{(A)}$ 327. HQ 2.MeCOMe 3. H₃O[€] (A).The compound (A) is: Me d) None of these b) a) ·ОН c) Me

328. Consider the following reactions:

I. Me₃C—F
$$\xrightarrow{H_2O/H^{\oplus}}$$
 Me₃C—OH
II. Me₃C—F \xrightarrow{OH} Me₃C—OH
III. Me₃C—CI \xrightarrow{OH} Me₃C—OH
IV. Me₃C—CI \xrightarrow{OH} Me₃C—OH
IV. Me₃C—CI \xrightarrow{OH} Me₃C—OH
Me $\xrightarrow{H_2O/H^{\oplus}}$ Me₃C—OH
IV. Me₃C—CI \xrightarrow{OH} Me₃C—OH
Me Me₃C—CI $\xrightarrow{H_2O/H^{\oplus}}$ Me₃C—OH

- b) Reaction (II) is faster than (I)
- d) Reaction (IV) is faster than (III)
- d) Reaction (III) is faster (

b) Dibenzcyclobutane

d) Dibenzocyclobutene

 $Me \underbrace{(A)}_{(A)} Me \xrightarrow{EtONa/EtOH}_{Path (I)} Products (Major)$ $\underbrace{EtOH}_{Path (II)} Products (Major)$

Which statement(s) is/are wrong.

a) The product by path (I) is $Me - CH = CH_2$ (I)

- b) The product by path (II) is Me CH (OEt)Me (II)
- c) The products are mixture of (I) and (II) by both paths

d) Path I proceeds *via*E2 mechanism, while path II proceeds *via*SN¹ mechanism

330. The coupling between C_2H_5MgBr and MeBr gives propane in the presence of:

a) MeOTs b) EtOTs c) AgBr d) CuCl₂ 331. Which of the following reactions would give caproic acid?

a)
$$n - C_5 H_{11} Br \xrightarrow{(i)Mg/ether}{(ii)CO_2}$$

b) $n - C_5 H_{11} Li \xrightarrow{(i)CO_2}{(ii)H_3 O}$
c) $n - C_4 H_9 Br \xrightarrow{(i)Mg/ether}{(ii)CO_2}$
 $(iii) H_3 O^{\oplus}$
d) $n - C_5 H_{11} MgBr + (CN)_2 \xrightarrow{(i) \Delta}{(ii)H_3 O^{\oplus}}$

332. The name of the compound

a) Indane b) Benzocyclopentene c) Benzcyclopentane d) Benzocyclopentane 333. The first steps of SN¹ and SN² reactions are, respectively

a) Both exothermic

b) Both endothermic

c) Endothermic and exothermic

d) Exothermic and endothermic

334. Consider the following reactions:

$$I.C_{2}H_{5} - I + NH_{3} \longrightarrow C_{2}H_{5} \overset{\bigoplus}{NH_{3}} + I^{\Theta}$$

$$II.C_{2}H_{5} - I + \overset{\bigoplus}{PH_{3}} \longrightarrow C_{2}H_{5} \overset{\bigoplus}{PH_{3}} + I^{\Theta}$$

$$III.C_{2}H_{5} - I + EtO^{\Theta} \longrightarrow C_{2}H_{5} - OEt + I^{\Theta}$$

$$IV. Me - \overset{\bigoplus}{S} - Me_{2} + \overset{\Theta}{OH} \longrightarrow Me - OH + Me_{2}S$$

In which of the above reactions does the rate of SN² reaction increase with an increase in solvent polarity? a) (I) b) (II) c) (III) d) (IV)

335. Which of the following reactions would give pentan-2-ol?

a)
$$\bigvee^{\text{Me}} \underbrace{(i) \text{ EtMgBr}}_{(ii) \text{ H}_3\text{O}^{\oplus}} \underbrace{(i) \text{ EtMgBr}}_{(ii) \text{ H}_3\text{O}^{\oplus}}$$

c) $Me^{\bigwedge} \underbrace{(i) Mg/\text{ether}}_{(ii) \text{ O}_2} \underbrace{(ii) \text{ H}_3\text{O}^{\oplus}}$
Consider the following reactions:
 $Me^{\bigwedge} \underbrace{(i) Mg/\text{ether}}_{\text{H}_3\text{O}^{\oplus}}$
 $Me^{\bigwedge} \underbrace{(i) Mg/\text{ether}}_{\text{H}_3\text{O}^{\oplus}}$
 $Me^{\bigwedge} \underbrace{(i) Mg/\text{ether}}_{\text{H}_3\text{O}^{\oplus}}$

336.

I. Me₃C-CI
$$\xrightarrow{\Theta}$$
 Me₃C-OH
II. F₃C-CH-CI $\xrightarrow{\Theta}$ F₃C-CH-OH
Me Me
III. Me₃C - CI $\xrightarrow{90\%D_2O+10\%}$ ether
Me₃C - OD

IV. Me₃C - Cl $\xrightarrow{90\%H_2O+10\%}$ ether Me₃C - OH

Which of the following statements are correct?

- a) Reaction (I) is faster than (II)
- c) Reaction (III) is faster than (IV)

b) Reaction (II) is faster than (I)

d) Reaction (IV) is faster than (III)

337.

 β -Elimination or anti-elimination reaction is carried out with base ${}^{(B\overset{\varTheta}{\Theta})}\!as$ shown below:

$$B^{\Theta} \xrightarrow[H_2C]{CH_2} \xrightarrow[H_2CH_2]{CH_2} \xrightarrow$$

The following bases are used

$$\begin{array}{ccc} \stackrel{\Theta}{\text{II. RO}} & \text{II. RO}^{\Theta} \\ \text{III. RCOO}^{\Theta} & \stackrel{\Theta}{\text{IV. CN}} \\ \text{V. NO}_{3}^{\Theta} \end{array}$$

The decreasing order of reactivity for the above elimination is:

 $\begin{array}{ll} a) & (II) > (I) > (IV) > (III) > (V) \\ c) & (II) > (II) > (IV) > (V) \\ \end{array} \\ \begin{array}{ll} b) & (V) > (III) > (IV) > (I) \\ d) & (I) > (III) > (IV) > (V) \\ \end{array}$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 338 to 337. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

338

- **Statement 1:** 2-Bromobutane on reaction with sodium ethoxide in ethanol gives 1-butene as a major product
- Statement 2: 1-Butene is more stable than 2-butene

339

- **Statement 1:** Hydroxy ketones are not directly used in Grignard reaction
- Statement 2: Grignard reagents react with hydroxyl group

340

- **Statement 1:** Benzyl bromide when kept in acetone and H₂Oproduces benzyl alcohol
- **Statement 2:** The reaction follows SN²mechanism

341

Statement 1: Benzonitrileis prepared by the reaction of chlorobenzene with potassium cyanide

342	Statement 2:	Cyanide (CN) is a strong nucleophile
	Statement 1:	PhBr is less reactive than C_2H_5B rtowards SN reactions
	Statement 2:	The forces of attraction between RX and $\rm H_2O$ molecules are weaker than those present between the molecules of RX and water molecules separately
343		
	Statement 1:	In comparision to C_2H_5Br , it is difficult to carry out SN reaction on vinyl bromide
	Statement 2:	Vinyl group is electron donating
344		
	Statement 1:	SN^1 reaction is carried out in the presence of a polar protic solvent
	Statement 2:	A polar protic solvent increases the stability of carbocation due to solvation
345		
	Statement 1:	Reaction between (Me ₃ CONa) (sodium <i>tert</i> -butoxide) and ethyliodide (C_2H_5I) does not
	Statement 2:	Sodium <i>tert</i> -butoxide is a very strong base but is not a nucleophile
346		
	Statement 1:	<i>tert</i> -Butyl bromide (Me ₃ C – Br) and sodium ethoxide (NaOEt) will react to form only ether
	Statement 2:	Ethers are prepared from sodium alkoxide and alkyl halide
347		
	Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent
	Statement 1: Statement 2:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen
348	Statement 1: Statement 2:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen
348	Statement 1: Statement 2: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease
348	Statement 1: Statement 2: Statement 1: Statement 2:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character
348 349	Statement 1: Statement 2: Statement 1: Statement 2:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character
348 349	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character MeMgBr should be prepared under perfectly anhydrous conditions
348 349	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character MeMgBr should be prepared under perfectly anhydrous conditions Grignard reagent reacts with water
348 349 350	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character MeMgBr should be prepared under perfectly anhydrous conditions Grignard reagent reacts with water
348 349 350	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character MeMgBr should be prepared under perfectly anhydrous conditions Grignard reagent reacts with water
348 349 350	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1: Statement 1:	SN ² reaction is carried out in the presence of polar aprotic solvent Polar aprotic solvents do not contain acidic hydrogen Aryl halides undergo nucleophilic substitution with ease The carbon-halogen bond in aryl halides has partial double bond character MeMgBr should be prepared under perfectly anhydrous conditions Grignard reagent reacts with water The presence of nitro group facilitates nucleophilic substitution reaction in aryl halide The intermediate carbanion is stabilised due to the presence of the nitro group

Statement 1: *t*-Butyl bromide on reaction with sodium metal in dry ether gives 2,2,3,3-tetramethyl butane

Statement 2: *t*-Alkyl halides readily undergo Wurtz reaction

352

Statement 1:Me \bigcirc \bigcirc Cl reacts faster with H20 than Me \bigcirc ClStatement 2:The carbocation of Me \bigcirc Cl is more stable than the carbocation of Me \bigcirc Cl

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

353.

Column-I									
(A)	Propane	nitrile +	(p)	Me Me					
	MeMgBr	$2.H_20$					OH		
(B)	Propano	yl chloride	ġ			(q)			
	$+ Me_2Cc$	$1 \xrightarrow{-}$					Me Me		
(C)	Propano	yl chloride	e +			(r)	Me		
	2MeMgE	$ \begin{array}{c} 1.\text{THF}, \Delta \\ \hline \\ 2.\text{H}_3 0^{\oplus} \end{array} $					0		
(D)	Ethyl etł	nanoate +				(s)	ОН		
	2MeMgE	$\operatorname{Br} \xrightarrow{1.\operatorname{THF}, \Delta}{2.\operatorname{H}_3 O^{\oplus}}$					Me Me		
(E)	Propyl n	nethanoate	e+			(t)			
	2MeMgE	$\operatorname{Br} \xrightarrow{1.1 \operatorname{HF}, \Delta}{2.\operatorname{H}_2 \operatorname{O}^+}$							
COD	ES :	-							
	Α	В	С	D	Ε				
a)	R	r	р	q	S				
b)	S	r	t	р	S				
c)	р	q	r	S	S				
d)	t	р	q	S	S				

354.

(A)

Column-I

 $\frac{\text{(i) } \text{H}_2\text{C}=\text{CBr}_2/\Delta}{\text{(ii) } \text{Aq. NaOH}}$

Column- II

(p) Birch reduction

(r) (4+2) Addition reaction

(s) MeOH

CODES:

	Α	В	С	D
a)	t	q,r	q,t	p,qs
b)	p,q,s	q,t	t	q,r
c)	q,r	t	p,q,s	q,t
d)	q,t	p,q,s	q,r	t

355.

Column-I

- $(A) \quad C_6 H_4 Cl_2$
- **(B)** C_6H_4ClBr
- (C) $C_6H_3Cl_3$
- **(D)** $C_6H_3Cl_2Br$
- **(E)** C₆H₃ClBrI

CODES:

	Α	В	С	D	Ε
a)	q	р	r	S	t
b)	r	r	r	q	t
c)	S	q	t	р	t
d)	р	S	q	r	t

- (p) 10 (q) 6
- (r) 3
- (s)
- (t)

Column-I

a)	q	р	S	r
b)	S	q	r	р
c)	r	S	р	q
d)	р	r	q	S

357.

Column-I

D

- (B) $C_6H_6 + I_2 \rightarrow$ Brown $\stackrel{\Delta}{\longrightarrow} C_6H_6 + I_2$ (Purple)coloured Compound
- (C) $C_6H_6 \xrightarrow{\text{Sulphonation}} C_6H_5SO_3H$ $C_6D_6 \xrightarrow{\text{Sulphonation}} C_6D_5SO_3H$ (D) Nitration
- **(D)** $C_6H_6 \xrightarrow{\text{Nitration}} C_6H_5 \text{NO}_2$ $C_6D_6 \xrightarrow{\text{Nitration}} C_6D_5 - \text{NO}_2$

Column- II

- (p) Dewar's Parallel formula
- (q) Ladenburg's prism formula
- (r) Armstrong and Baeyer's centric formula
- (s) Clauss diagonal formula

- (p) Proves the existence of π- complex (charge- transfer complex)
- (q) Proves the existence of σ -complex in SE reaction
- (r) Does not show1° kinetic isotopeeffect
- (s) Shows 1° kinetic isotope effect
- (t) Shows slightly2° kinetic isotope

CODES :

	Α	В	С	D
a)	q	р	s,t	r,t
b)	р	r,t	q	s,t
c)	s,t	q	r,t	р
d)	r,t	s,t	р	q

358.

Column-I

(A) $\int_{\mathsf{Br}} \frac{\mathsf{Mg}, \triangle}{\mathsf{ether}}$ MeC $\xrightarrow{\text{H}_3\text{O}^{\textcircled{\oplus}}}\text{Product}$ **(B)** Mg,∆ Br ether Mé $\xrightarrow{\text{H}_3\text{O}^{\textcircled{}}} \text{Product}$ $\frac{Me}{Mg, \Delta}$ (C) Β̈́r MeC H_3O^{\oplus} Product Me $\underline{Mg, \Delta}$ ether (D) Βr Me $\xrightarrow{H_3O^{\textcircled{\bullet}}} Product$ **(E)** Ме $\int_{\mathsf{Br}} \frac{\mathrm{Mg}, \Delta}{\mathrm{ether}}$ MeO H₃O[⊕] Product **CODES**: A B С D a) R р q t b) t S r q c) р q d r

E

S

S

S

S

effect

359. Match the following. The correct match is

р

d)

q

Column-I

q

S

Column- II

(A)	C ₂ H ₅ Cl, r	noist Ag ₂	(1)	CH ₃ CH ₂ ONO		
(B)	C ₂ H ₅ Cl, a	queous e	thanolic A	AgCN	(2)	C_2H_4
(C)	C ₂ H ₅ Cl, a	queous e	thanolic A	gNO ₂	(3)	CH ₃ CH ₂ OH
(D)	C ₂ H ₅ Cl, e	thanolic I	КОН		(4)	CH ₃ CH ₂ NC
					(5)	C_2H_6
COD	ES:					
	Α	В	С	D		
a)	F	2	4	1		

aj	5	3	4	1
b)	1	2	3	4
c)	3	4	1	2
d)	4	1	2	5

360.

Column-I

(A)		4				(p)	02
		ИgBr					
	Rea	$\xrightarrow{\text{gent A}}$ Ferr	rocene				
(B)	2PhMgB	$r \frac{(i)\text{Reagent}}{(ii)\text{H}_{2}\text{O}^{+}}$	$\stackrel{tA}{\rightarrow}$ 2PhOH			(q)	FeCl ₂
(C)	PhMgBr	(i)Reagent A	$A \text{ at} = 70^{\circ}C$ $\rightarrow 0^{\oplus}$ P	hCOOH		(r)	Me ₂ Zn
(D)	Me Br Me Me	$\frac{\text{Reagent A}}{\text{(ii) H}_3\text{O}^{\textcircled{\bullet}}}$	>			(s)	CoCl ₂
		Neopenta	ine				
(E)	C ₂ H ₅ Mg	Br <u>Reagent</u>	A → Butane			(t)	Et – 01
COL	DES :	-					
	Α	В	C	D	Е		
a)	Q	р	р	r	s,t		
b)	р	q	r	S	s,t		
c)	t	р	q	S	s,t		
d)	q	S	r	р	s,t		
361.							

Column- II

Column- II

OTs Column-I (A) Reactant + $CS_2 \xrightarrow{\text{Ether}} Propane dithioic acid$ (p) EtOH

Page | 46

(B)	Reactant + SO ₃ $\xrightarrow{\text{Ether}}$ Propyl sulphonic acid						
(C)	Reactan	$t + S \xrightarrow{\text{Ether}}_{\Delta} E_1$	thyl merca	aptan			
(D)	$\xrightarrow{\text{MeMgBr}}_{\Delta}$	Reactant + CH ₂ = 0 + HCl →? $\xrightarrow{\text{MeMgBr}}$ Ethyl ethane					
(E)	Enol For	m of EAA	$+ \text{GR} \rightarrow 7$	Гoluene			
COD	DES :						
	Α	В	С	D	Ε		
a)	Р	q	r	S	t		
b)	S	r	S	р	t		
c)	t	q	d	r	t		
d)	q	р	d	r	t		

362.

Column-I (A) (p) 2 H₂C² CH₂ C_6H_5Br Mono-substituted product **(B)** (q) 3 C_6H_5Br Mono-substituted product (C) (r) 1 CH_2 C_6H_5Br Mono-substituted product (D) (s) C₆H₅Br Mono-substituted product **CODES**: В С D A a) р q r S b) r S р q c) q S r р d) r р q r

Column- II

(q) Ph MgBr

PrMgBr

EtMgBr

(r)

(s)

(t)

Column-I

- (A) $\bigoplus_{\text{Prismane } C_6H_5Br} K_{\text{Mono-substituted product}}$
- **(B)** Prismane $\rightarrow C_6H_4Br_2$ Disubstituted products
- (C) Prismane $\rightarrow C_6H_4BrCl$ Disubstituted products
- (D) Benzene $\rightarrow C_6H_4Br_2$ Disubstituted products (E) Benzene $\rightarrow C_6H_4BrCl$
- Disubstituted products

CODES :

	Α	В	С	D	Ε
a)	р	r	S	q	r
b)	S	р	q	r	r
c)	r	S	р	q	r
d)	q	р	r	r	r

Column- II

- (p) Three isomers, one isomer is chiral
- (q) Three isomers, two isomers are chiral
- (r) Three isomers, all are chiral
- (s) One isomer
- (t)

364.

Column-I

CODES:

A B C D E

a)	S	t	q	р	r
b)	q	р	S	r	r
c)	р	q	r	S	r
d)	t	р	q	S	r

365.

Column-I

(s) ArSN (elimination- addition) reaction

CODES:

	Α	В	С	
a)	P,q,s	p,q,r,s	q,r,s	
b)	q,r,s	p,q,s	p,q,r,s	
c)	p,q,r,s	q,rs	p,q,s	
d)	r,s	p,r	q,s	

366.

Column-I

D

Linked Comprehension Type

This section contain(s) 32 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 367 to -367**

$$Me \xrightarrow{4 3}_{2} CHO \xrightarrow{\text{LiAlH}_{4}} (B) \xrightarrow{\text{HBr}} (C)$$
(A)
5-Methylhex-3-yn-1-al
(F) $\overbrace{(ii) D_{2}O}^{(i) 2Li}$
(ii) Mg/ether
(iii) SO_{3}
(iii) H_{3}O^{\textcircled{e}}
(E)

367. The structure of product (B) is:

Paragraph for Question Nos. 368 to - 368

368. The structure of product (B) is:

Paragraph for Question Nos. 369 to - 369

369. The structure of product (B) is:

Paragraph for Question Nos. 370 to - 370

370. The structure of product (B) is:

Paragraph for Question Nos. 371 to - 371

371. The structure of product (A) is: а

) Isopropyl lithium b)	Propyl lithium
------------------------	----------------

Me Мe c) Mé Ъ

d) Hexane

Paragraph for Question Nos. 372 to - 372

372. The compound (B) is:

$$Et-N-CH=O$$

 $a) \downarrow$
 Pr
 $b) Et-N = CH-Br$
 $c) HOH HOH HO
 $Et-N-CH-Pr$
 $d) Et-N-C-Pr$$

Paragraph for Question Nos. 373 to - 373

373. Compound (A) is:

Paragraph for Question Nos. 374 to - 374

374. Compound (A) on reaction with $NH_2NH_2 + OH$ is:

Paragraph for Question Nos. 375 to - 375

- 375. All the reactions (i) to (v) are examples of:
 - a) Wurtz reaction
 - b) Wurtz-Fittig reaction
 - c) Ullmann reaction
 - d) Frankland reaction

Paragraph for Question Nos. 376 to - 376

Compound (A), an alkane with molecular formula (C_5H_{10}) , exists in various structures and stereoisomers. On monochlorination and dichlorination, it again shows various structures and stereoisomers

376. The number of cyclic structures including stereoisomers for (A) is:

Paragraph for Question Nos. 377 to - 377

377. Compound (B) is:

Paragraph for Question Nos. 378 to - 378

378. Compound (A) is: a) Ethylbenzene

b) *p*-Xylene

c) *m*-Xylene

d) o-Xylene

Paragraph for Question Nos. 379 to - 379

379. Compound (B) is:

a) $n - Bu - C \equiv N$ b) $n - Bu - N \equiv C$ c) Both d) None

Paragraph for Question Nos. 380 to - 380

I. Bul $\xrightarrow{\text{AgNO}_2}$ (B) $\xrightarrow{\text{NaNO}_2 + \text{HCl}}$ (C) $\xrightarrow{\overset{\Theta}{OH}}$ Blood red colouration

II. Me
$$(E)$$
 (E) (E)

 380. Compound (B) is:
 a) $Bu - NO_2$ b) Bu - O - N = O c) Both
 d) None

Paragraph for Question Nos. 381 to - 381

SN reaction is given by these compounds, which have a nucleophilic group and a good leaving EWG. It should be stable after leaving with bonding pair of \overline{e} 's and it should have high polarisability

Nucleophilic aliphatic substitution reaction is mainly of two types SN^1 and SN^2 . SN_1 mechanism is a two-step process. Reaction velocity of SN^1 depends only on the concentration of the substrate. It proceeds *via* the formation of carbocation, optically active substrate gives \oplus and \ominus forms of the product

In most of the cases, the product usually consists of 5 - 20% inverted and (95 - 80%) racemised species. The more stable is the carbocation, the greater is the proportion of racemisation. In solvolysis reaction, the more nucleophilic is the solvent, the greater is the proportion of inversion

381. Which of the following will give SN reaction?

a) R - Br b) $R - N_3$ c) $R - OH_2$ d) All

Paragraph for Question Nos. 382 to - 382

SN reaction is given by these compounds, which have a nucleophilic group and a good leaving EWG. It should be stable after leaving with bonding pair of \overline{e} 's and it should have high polarisability

Nucleophilic aliphatic substitution reaction is mainly of two types SN^1 and SN^2 . SN_1 mechanism is a two-step process. Reaction velocity of SN^1 depends only on the concentration of the substrate. It proceeds *via* the formation of carbocation, optically active substrate gives \oplus and \ominus forms of the product

In most of the cases, the product usually consists of 5 - 20% inverted and (95 - 80%) racemised species. The more stable is the carbocation, the greater is the proportion of racemisation. In solvolysis reaction, the more nucleophilic is the solvent, the greater is the proportion of inversion

382. Which of the following will give SN² mechanism?

b) // Br

a) MeBr

leBr

c) ph Br

d) All

Paragraph for Question Nos. 383 to - 383

Isopropyl bromide was treated separately with sodium t-butoxide and sodium ethoxide under two different conditions

Reaction I:

Treatment of isopropyl bromide with (Me₃CONa) at 40°C gave almost exclusively compound (A) (C_3H_6) **Reaction II:**

Treatment of (*i*-PrBr) with NaOC₂H₅ at 30°C yielded compound (A) (C₃H₆). Along with a small amount of an ether (B) (C₅H₁₂O)

Compound (A) was readily oxidised by a neutral solution of cold dil. KMnO₄ to give a brown precipitate

383. The formations of (A) and (B) are best explained by:

<u>-</u>)	SN ² reaction and E2	hì	E2 reaction and SN ²	പ	E1 reaction and SN ¹	4)	E2 reaction and SN ¹
aj	reaction, respectively	IJ	reaction, respectively	C	reaction, respectively	u _.	⁾ reaction, respectively

10.HALOALKANES AND HALOARENES

: ANSWER KEY :																
	1)	С	2)	b	3)	С	4)	b	189)	d	190)	а	191)	С	192)	b
	5)	а	6)	с	7)	b	8)	b	193)	d	194)	с	195)	b	196)	b
	9)	d	10)	а	11)	с	12)	b	197)	с	198)	b	199)	с	200)	d
	13)	с	14)	b	15)	b	16)	b	201)	b	202)	а	203)	а	204)	a
	17)	а	18)	а	19)	а	20)	с	205)	b	206)	а	207)	b	208)	b
	21)	d	22)	d	23)	а	24)	с	209)	а	210)	с	211)	с	212)	a
	25)	а	26)	d	27)	с	28)	a	213)	а	214)	а	215)	с	216)	а
	29)	d	30)	b	31)	с	32)	a	217)	b	218)	с	219)	а	220)	d
	33)	d	34)	а	35)	a	36)	b	221)	b	222)	b	223)	a	224)	а
	37)	а	38)	b	39)	d	40)	a	225)	b	226)	b	227)	b	228)	b
	41)	b	42)	а	43)	а	44)	d	229)	С	230)	b	231)	С	232)	b
	45)	С	46)	b	47)	d	48)	b	233)	С	234)	b	235)	b	236)	b
	49)	с	50)	с	51)	с	52)	b	237)	С	238)	а	239)	с	240)	b
	53)	b	54)	а	55)	d	56)	b	241)	b	242)	b	243)	b	244)	b
	57)	b	58)	d	59)	b	60)	а	245)	b	246)	d	247)	b	248)	d
	61)	а	62)	b	63)	d	64)	b	249)	a	250)	b	251)	С	252)	b
	65)	С	66)	d	67)	С	68)	С	253)	С	254)	b	255)	b	256)	С
	69)	b	70)	d	71)	d	72)	а	257)	С	258)	b	259)	d	260)	b
	73)	С	74)	а	75)	d	76)	С	261)	а	262)	b	263)	С	264)	С
	77)	b	78)	b	79)	С	80)	a	265)	d	1)	c,d	2)	a,c	3)	
	81)	а	82)	а	83)	С	84)	a		a,b,c	4)	С				
	85)	С	86)	d	87)	а	88)	d	5)	С	6)	b	7)	b,c,d	8)	
	89)	b	90)	b	91)	C	92)	C		b,e				_		
	93)	b	94)	а	95)	d	96)	b	9)	a,c,d	10)	а	11)	a,d	12)	
	97)	а	98) 192)	a	99)	b	100)	C		a,b,c						
	101)	а	102)	b	103)	С	104)	b	13)	a,c	14)	b,c,d	15)	c,d	16)	С
	105)	C	106)	a L	107)	a	108)	a	17)	D	18)	а	19)	a,b,c	20)	
	109)	a L	110)	b	111)	a	112)	С	24)	b,c,a	222		222		24)	
	113J	D	114J 110)	C d	115)	a d	110)	C	21)	a, D, C	22)	a	23)	c,e	24)	
	11/J 121)	a d	110J 122)	u d	119J 122)	u	120J 124)	C h	25)	a,D,C,u	26)		27)	c d	201	h
	121J 125)	u c	122)	u d	123J 127)	d a	124J 129)	d d	25J 20)	a,u a h c	20)	a acd	27J	c,u ahc	20J 22)	U h
	123)	t d	120)	u a	127)	a h	120)	u h	29)	a, D, C c d	30)	a,c,u a h	31)	a, D, C	36)	U
	133)	u a	130)	a h	131)	d	136)	d	555	c,u a c	54)	a,D	555	a,c	30)	
	137)	u h	138)	C	139)	a	140)	d	37)	h,c.d	38)	ac	39)	ahc	40)	
	141)	a	142)	a	143)	u b	144)	c	0/)	b,c)u h.d	50)	uje	575	ujbje	10)	
	145)	d	146)	d	147)	b	148)	b	41)	b.c.d	42)	b.d	43)	b.d	44)	
	149)	d	150)	а	151)	a	152)	a	,	a.b.c.d	,	,	,	-,	,	
	153)	b	154)	a	155)	b	156)	С	45)	с, <i>_</i> , <i>_</i> , <i>_</i> , <i>_</i> ,	46)	d	47)	a.b	48)	d
	, 157)	а	158)	d	159)	d	160)	а	ý 49)	a,b,c	50)	a,b,c	51)	a	52)	с
	161)	d	162)	а	163)	с	164)	b	53)	b,c,d	54)	a,b,c,d	55)	a,b,c	56)	
	165)	с	166)	с	167)	а	168)	b	-	a,b,c	2		2		2	
	169)	а	170)	а	171)	С	172)	с	57)	С	58)	a,b,c	59)	a,b,c	60)	a
	173)	d	174)	a	175)	d	176)	d	61)	a,b,c	62)	d	63)	a,d	64)	С
	177)	b	178)	d	179)	d	180)	с	65)	a,c,d	66)	a,d	67)	a,b,c	68)	С
	181)	С	182)	d	183)	d	184)	С	69)	a,b	70)	a,b,c,d	71)	b,d	72)	а
	185)	а	186)	d	187)	b	188)	d	1)	d	2)	а	3)	b	4)	d

5)	b	6)	с	7)	d	8)	a
9)	b	10)	b	11)	d	12)	a
13)	а	14)	d	15)	d	1)	a
	2)	С	3)	b	4)	а	
5)	а	6)	а	7)	С	8)	а
9)	b	10)	d	11)	b	12)	b
13)	a	14)	С	1)	С	2)	С
	3)	b	4)	С			
5)	а	6)	b	7)	а	8)	С
9)	С	10)	С	11)	b	12)	d
13)	а	14)	а	15)	d	16)	d
17)	b						

: HINTS AND SOLUTIONS :

2 **(b)**

Weaker the base, stronger is the leaving group **Fugacity**: $H_2Te > H_2Se > H_2S > H_2O$

3 (c) Aryl halides are least reactive due to resonance

4 **(b)**

EWG in benzyl halides favours SN^2 , but EDG favours SN^1

6 **(c)**

Stronger the acid, weaker the C_B

- 1. Sulphonic acids are stronger than carboxylic acids
- 2. Aromatic sulphonic acids are stronger than aliphatic sulphonic acids
- 3. More the number of EWG, stronger is the acid

Acidic:

 $F_3CSO_3H > PhSO_3H > MeSO_3H > Cl_3CCOOH$

Basic:

 $F_3CSO_3^{\Theta} < PhSO_3^{\Theta} < MeSO_3^{\Theta} < Cl_3CCO \overset{\Theta}{O}$

7 **(b)**

Weaker the base or stronger the acid, stronger is the leaving group $I^{\ominus} > Br^{\ominus} > Cl^{\ominus} > F^{\ominus}$

8 **(b)**

Since nucleophilic centre is different and they belong to the same group, so basic character and nucleophilicity are reversed $I^{\odot} > Br^{\odot} > Cl^{\odot} > F^{\odot}$

14 **(b)**

 $C_2H_5MgBr + S \xrightarrow[H_3O^{\oplus}]{} C_2H_5 - SH$

16 **(b)**

Strongly EWG $(-NO_2)$ group facilitates the reaction

17 (a)

More the nucleophilic character, more is the

SN²reaction. Basicity and nucleophilicity are same when the nucleophilic centres are same

Acidic order: HNO_3 > CH_3COOH > C_6H_5OH > H_2O > C_2H_5OH

Basic and nucleophilic order:

$$\mathrm{NO}_{3}^{\Theta} < \mathrm{CH}_{3}\mathrm{COO}^{\Theta} < \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}^{\Theta} < \overset{\Theta}{\mathrm{OH}} < \mathrm{C}_{2}\mathrm{H}_{5}\overset{\Theta}{\mathrm{O}}$$

Therefore, $C_2H_5O^{\ominus}$ is the most effective nucleophile among the given nucleophiles

18 **(a)**

The basic character of hydride of 15 group decreases down the periodic table because size increases down the group and LPe density decreases

 $\rm NH_3 > PH_3 > AsH_3 > SbH_3$

O H An ester of the type (R-C-OPr) reacts with G.R. to give 3° alcohol, with two R' groups obtained from G.R. (EtMgBr)(R = Et-). The 3° alcohol must contain at least two (Et-) groups. (a) contains three (Et-) groups, two (Et -) groups are obtained from G.R. and one (Et -) group is obtained from ester

So, the alcohol is (a) and the ester is

$$\begin{pmatrix} O \\ \parallel \\ Et - C - O - Pr \end{pmatrix}$$
 (propyl propanoate).

20 (c)

Self-explanatory

23 **(a)**

Due to resonance, C - 3 acquires a negative charge and SE reaction at C - 3 takes place

25 **(a)**

Allyl halides undergo SN^1 , SN^2 and $SN^{2'}$

27 (c) SN^2 is stored

SN² is stereospecific and stereoselective

Addition of Br_2 is stereospecific, i.e., antiaddition of two Br atoms SE reaction is not stereospecific

Hydroxylation is stereospecific, syn-addition of two (-OH) groups

29 **(d)**

 $H \rightarrow (\widehat{H})$, PhO (\widehat{H}) , and Me $-COO(\widehat{H})$ contain active H atom. C₃H₇MgBrreacts with them to give

propane gas. Butyne-2 (Me= –Me) does not have active H atom and hence does not react with G.R

30 **(b)**

 $CH_3CH_2CH_2Br \xrightarrow{\text{Ethanolic KOH}} CH_3CH$ $= CH_2 + KBr + H_2O$ *n*-Propyl bromide Propene

34 **(a)**

R.E. of benzene, naphthalene, and

anthracene, respectively, are 151, 255, and 351 kJ mol^{-1}

R.E./ring of naphthalene (two rings) = 255/2

 $= 127.5 \text{ kJ mol}^{-1}$

R.E./ring of anthracene (three rings) = 351/3

 $= 117 \text{ kJ mol}^{-1}$

On the basis of R.E./ring, R.E. of benzene > of napthalene> of anthracene

Hence, more stable the ring (more R.E./ring), more is the aromatic character

35 **(a)**

(a) \Rightarrow Aromatic (most stable)

- $(b) \Rightarrow Non-aromatic$
- (c) ⇒Non-aromatic
- $(d) \Rightarrow Anti-aromatic$

36 **(b)**

Weaker the base or stronger the acid, stronger is the leaving group

$$F^{\Theta} > \stackrel{\Theta}{OH} > \stackrel{\Theta}{NH}_2 > \stackrel{\Theta}{CH}_3$$

37 **(a)**

Since the reactant is a 3°alkyl halide, so in the presence of NaCN, it will follow E2 path rather thanSN², so path (II) is not feasible

The possible product by path (II) is:

(b) $C_2H_5OH \xrightarrow{SOCl_2} C_2H_5Cl + SO_2 + HCl$ a. HCl bond is strong, no reaction c. HCl bond is strong, no reaction

- 39 (d)All the statements are self-explanatory40 (a)
 - **(a)** More the EDG, more reactive is the SE

In anisole,
$$(-\dot{OCH}_3)_{is} \overline{e}$$
 donating by resonance

SE order: (a) > (b) > (c) > (d)

41 **(b)**

38

Halogens are called deactivating group due to -Ieffect, but *o*- and *p*-directing by +R effect

42 **(a)**

Me Cl
$$\xrightarrow{Alc.}_{KOH}$$
 Me 1° RX E_2 1-Butene

1°RX undergoes E2 elimination with alc. KOH in which no rearrangement takes place.

43 **(a)**

SE reaction takes place in central ring because it is attached to \overline{e} - donating (by resonance) (activating) two Ph-rings

Moreover, in $NO_2^{\bigoplus}ClO_4^{\ominus}$, NO_2^{\oplus} is an electrophile

44 **(d)**

The (-OH) group of phenol, unlike that of alcohol, is difficult to replace by ahalogen,e.g., halogen acids have no action, and PX₃yields only phosphorous esters. Phenol reacts with PCl₅ or PBr₅, when the (-OH) group of phenol is replaced by a halogen atom. The yield of chloro or bromo benzene is small, the main product is triphenyl phosphate

 $(PhO)_3P = 0 \text{ or } Ph_3PO_4$

Phenol further reacts with POCl₃ to give Ph₃PO₄

45 (c)

Statement (c) is Ullmann reaction $2ArI + Cu \rightarrow Ar - Ar + CuI_2$

46 **(b)**

Basicity and fugacuty are reversed More N atom and more alky group (+I effect), more basic:(i) > (*ii*) > (*iii*) > (*iv*)

48 **(b)**

Basicity and nucleophilicity orders are reversed. Have different nucleophilic centre and belong to the same group

Nucleophilicity: $H_2Te > H_2Se > H_2S > H_2O$

49 (c)

a.
$$C_6H_6 \xrightarrow{Cl_2/FeCl_3} C_6H_5 - Cl \xrightarrow{Nit.} O_{NO_2}^{+ ortho}$$

(o-, p-directing)
(X) NO_2
b. (Z) $\Rightarrow C_6H_5SO_3H$

54 (a)

$$C_2H_6(Excess) + Cl_2 \xrightarrow{U.V.light} C_2H_5Cl + HCl$$

55 (d)

Reaction takes place by carbene mechanism followed by ring expansion

Carbene adds to (=) bond of five membered ring and simultaneously changes $(-NH_2)$ group in sixmembered ring to $(-N \equiv C)_{(isocyanide group)}$ (carbylamine reaction)

Chloretone is used as a hypnotic

$$\begin{array}{c} Me \\ = O + HCCI_{3} \\ Me \\ Acetone \end{array} \xrightarrow{OH^{\Theta}} \begin{array}{c} Me \\ 3 \\ Me \\ OH \\ Chloretone \\ 1,1,1-Trichloro- \\ 2-methyl propan-2-ol \end{array}$$

60 (a)

58

59

It is Birch reduction to give isolated double bond attached to the (Me) group

61 (a)

Pyridine is least reactive towards SE because pyridine is resonance stabilised as shown

Because of withdrawal of*e*'s from the ring by N atom the ring is deactivated, thereby resembling the benzene ring in nitrobenzene. So, it is least reactive towarde SE reaction

(b) and (d) are resonance structures so SE reaction takes place easily

SE reaction in pyrrole,thiophene and furan takes place at C-2 or C-5 positions because there are three resonating structures when E^{\oplus} attacks at C-2 or C-5 and two resonating structures when E^{\oplus} attacks at C-3

63 **(d)**

When westronvapours are passed over heat BaCl₂or lime westrosol (trichloro ethylene) is obtained

 $Cl_2CH - CHCl_2 \xrightarrow{BaCl_2} Cl_2C = CHCl$ (Westrosol)

64 **(b)**

The Statement is self-explanatory

65 **(c)**

Both (a) and (b)

66 **(d)**

Nucleophilicity and leaving group are reversed **Fugacity**:(i) > (ii) > (iv) > (ii)

68 **(c)**

Same nucleophilic centre, basicity and nucleophilicity are same Nucleophilicity: $Cl_3CCOO^{\bigcirc} > MeSO_3^{\bigcirc} > PhSO_3^{\bigcirc} > F_3CSO_3^{\bigcirc}$

69 **(b)**

71

Weaker the base or stronger the acid, stronger is the leaving group

 $SbH_3 > AsH_3 > PH_3 > NH_3$ (d) (d) is allyl chloride, so most reactive, others are vinyl and aryl chloride

74 **(a)**

In (II) and (IV), the dipole vectors are cancelled, so there is zero dipole moment

75 **(d)**

The statement is self-explanatory

77 **(b)**

The order of reactivity of G.R. with different functional groups is aliphatic aldehyde > aromatic > aldehyde >aliphatic ketone > aromatic ketone. Also, EWG favours NA reaction **iv**.is aliphatic ketone with—I effect of Ph group.

 \ddot{O} (+R effect is not possible since the double bond of benzene ring is not in conjugation with (C=O) group. So, (iv) is the most reactive ketone

Hence, the order is iv > i > ii > iii

78 **(b)**

 $\begin{pmatrix} O \\ \parallel \\ H-C-OEt \end{pmatrix}$ reacts with G.R. to give 2° alcohol with two R' groups obtained from the G.R. (PrMgBr)(R = Pr-). The 2° alcohol must contain two propyl groups. Hence, the 2° alcohol is (b)

79 **(c)**

$$H^{H} \xrightarrow{\text{Br}} \frac{\text{Alk.}}{\text{KMnO}_4} \xrightarrow{\text{OH}} \text{Br}$$

Allyl bromide

$$Me \xrightarrow{\text{Br}} Br \xrightarrow{\text{Alk.}} No \text{ reaction}$$

a.Aq.AgNO₃ will give test for Br^{\ominus} by both b. G.R will react with both

d.Tollens reagent will not react with both

80 **(a)**

More strained the ring, more easily it is cleaved. Three-membered ring is highly strained

81 **(a)**

Basic and nucleophilic orders are same More N atom and more alky group (+I effect), more basic:(i) > (*ii*) > (*iii*) > (*iv*)

82 **(a)**

Acidic: $PhSO_3H > C_2H_5SO_3H > C_2H_5COOH > HCN > H_2O$

Basic: $PhSO_3^{\Theta} < C_2H_5SO_3^{\Theta} < C_2H_5COO^{\Theta} < \overset{\Theta}{CN} < \overset{\Theta}{OH}$

84 (a)

(a) is only an optically active product which will give racemic products. Others are not optically active

85 **(c)**

86

Reactant contains active H atom; therefore, it would not produce G.R.

In [F] order of quantity of alkene 2 > 1 > 3These on addition with Br_2/CCl_4 to give their addition products which have C_4H_6 Br_2 as molecular formula.

87 **(**

Compared to the others, ^{ČH₃}has different nucleophilic centre; however, it belongs to the same period. Basicity and nucleophilicity order are same

89 **(b)**

91 (c)

In (b), positive charge is more stabilised due to+leffect of (Me) group

Rate is faster when the substituent activates the ring (+ I or/and + R, o/p) and the rate is slower when the substituent deactivates the ring (-I, -R; m). Halogen deactivates the ring (-I, +R, -I > +R) but the orientation is o/p

Rate of $C_6H_6 = C_6D_6$, since no kinetic isotope effect is observed when H is replaced by D

Hence, the order is as given in (c). (I) = (II) > (IV) > (III)

$$CH_3CH_2 \overset{\bigotimes}{CH} CH_3$$

sec-Butyl iodide

Contains asymmetric C atom while others do not have

94 **(a)**

EN of N > S

Positive charge on N will make (Me) group more \overline{e} deficient than positive charge on S. Therefore, (a) will undergo SN² reaction more rapidly than (c).

$$\overset{\circledast}{\operatorname{Na}} \operatorname{OH}^{\Theta} + \overset{\textnormal{e}}{\operatorname{Me}} - \overset{\textnormal{e}}{\smile} \operatorname{Me}_{3} \overset{\textnormal{e}}{\operatorname{I}} \xrightarrow{\operatorname{e}}$$

$$MeOH + Me_3N + NaI$$

96 **(b)**

Aryl halide due to resonance does not give test for halide ion, whereas benzyl halides give due to the formation of benzyl C^{\oplus} which gives benzyl alcohol and I^{\ominus}

Ph I + Aq. NOH \rightarrow No reaction PhCH₂I + Aq. NaOH \rightarrow PhCH₂OH + I^{Θ}

97 **(a)**

No reaction

$$CaC_2 + 2H_2O \rightarrow HC \equiv CH + Ca(OH)_2$$

c.
$$HC[I_3 + 6Ag + I_3]CH \rightarrow HC \equiv CH + 6AgI$$

d. $HC[CI_3 + 6Ag + CI_3]CH \rightarrow$
 $HC \equiv CH + 6AgCI$

98 **(a)**

Stronger the acid weaker is its C_B **Acidic** : HF > H₂O > NH₃ > CH₄ Basic: F^{Θ} < $\stackrel{\Theta}{OH}$ < $\stackrel{\Theta}{NH_2}$ < $\stackrel{\Theta}{CH_3}$

101 **(a)**

Since the G.R. reacts by SN² mechanism, the 112 (c) reactivity order of SN^2 reaction is 1° RMgX > $CH \equiv CH + 2Cl_2 \xrightarrow{CCl_4} Cl_2CH - CHCl_2$ 2° RMgX > 3° RMgX. Hence, the answer is (a) 103 (c) *p*-Isomer gives only one product on SE reaction (OMP = 231)Westron is used as an industrial solvent for 105 (c) rubber.fats and varnished. It has some insecticidal Acidic :HCN > MeOH > $H_2O > H_2 > CH_4$ action $\overset{\Theta}{\mathrm{CN}} < \mathrm{MeO}^{\Theta} < \mathrm{OH}^{\Theta} < \mathrm{H}^{\Theta} < \overset{\Theta}{\mathrm{CH}}_{3}$ 115 (a) Basic More the EDG, more reactive is the SE reaction. *Note*: MeOHis a stronger acid than H₂O, whereas Order of SE = (a) > (d) > (b) > (c)otheralcoholsare weakerthan $H_2 O$ 116 (c) 106 (d) More the EWG, more is the reactivity for NHAc ArSNreaction $-SO_3H$ (more resonance structure) $> -NO_2 > Cl > Me$ (EDG) Therefore, (III) > (IV) > (II) > (I)NHAc 117 (a) $(B) \rightrightarrows$ (C) \Rightarrow Alkaline hydrolysis of B, NH_2 $(D) \Rightarrow Peracid oxidises(-NH_2) to (-NO_2) group$ NO_2 108 (d) Inverted product means SN² SN² reaction is faster in more polar protic solvent with neutral nucleophile $(H_2 0)$ 109 (d) The reactivity order of G.R. with HCHO is: Benzyl > Allyl > Ph-> VinylHence, the answer is (d) 110 **(b)** $(A) \Rightarrow CH_3 - CH = CH_2$ $(X) \Rightarrow$ Allylic chlorination $Cl - CH_2 - CH = CH_2$ Allyl chloride 111 (a) 118 (d) Self-explanatory

Aromatic (6 \bar{e} 's system in conjugation) Anti-aromatic (4 \bar{e} 's system in conjugation) Anti-aromatic (8 \bar{e} 's system in conjugation) Non-aromatic (4 \bar{e} 's system but not in conjugation) Therefore, the order of acidic character: Aromatic > Non-aromatic > Anti-aromatic But anti-aromaticity of (III) is more than (II) since(III) is more resonance stabilised than (II)

Westron or 1,1,2,2-Tetrachloro

Acetylene tetrachloride

ethane or

Therefore, the order of decreasing acidic

character or K_a value is (I) > (IV) > (III) > (II)

Here ,(a),(b) and (c) would produce alcohol, but

(d) would produce aldehyde with G.R

- 119 **(d)**
- Aryl halide with EWG does not form G.R. 120 **(c)**

 α , β -unsaturated ketone with G.R. gives predominantly 1, 4-addition product

121 **(d)**

Order of acidic strength is:

 $CH_3OH > HC \equiv CH > C_6H_6 > C_2H_6$ Although all are neutral towards litmus paper

123 **(a)**

It is more reactive towards SE reactions, due to hyperconjugation

125 **(c)**

The reaction is wrong because alkaline hydrolysis of RX does not take place

127 **(a)**

The product (*K*) is formed through simple substitution while major product (*L*) is formed through H⁻ shift *via* $S_N 1$ reaction and methoxy group stabilizes the carbocation intermediate of product (*L*).

130 **(a)**

RBris more reactive than ArCl. So, the answer is (a)

132 **(b)**

Sulphonation is reversible process and shows 1° kinetic isotope effect, whereas other SE reactions (i.e., nitration halogenations, etc) do not show 1°kinetic isotope effect

133 **(a)**

 $H - \equiv -H + MeMgBr \rightarrow H - \equiv -MgBr + CH_4$

 I^{\ominus} is a better nucleophile and a better leaving group. Leaving group order: $I^{\ominus} > Br^{\ominus} > Cl^{\ominus} > F^{\ominus}$

139 **(a)**

EDG (Me group) at o-, m- and p-positions: At *ortho*- position, ED power of (Me-) group is more than p and m (due to +I effect and hyperconjugation effect). ED power of (Me-) group at p-position is slightly less than the Me group at *ortho*-position (due to less +I effect, but equal hyperconjugative effect). So the order of ED power of (Me-) group is o > p > m-. NA is favoured by less-substituted EDG or moresubstituted EWG. So, the order of reactivity of PhMgBr with aromatic aldehyde is

or (i > *iv* > *ii* > *iii*)

140 **(d)**

Forms $(Me_3C^{\oplus})3^{\circ}C^{\oplus}$. So SN¹ is fastest

142 **(a)**

Nucleophilic centre on $\stackrel{\Theta}{C}$ N is different from others, but belongs to the same period. Basic and nucleophilic orders are same

 $\begin{array}{l} \textbf{Acidic:} \ PhSO_3H > C_2H_5SO_3H > C_2H_5COOH > \\ HCN > H_2O \end{array}$

Basic: $PhSO_3^{\Theta} < C_2H_5SO_3^{\Theta} < C_2H_5COO^{\Theta} < C_N^{\Theta} < O_H^{\Theta}$

143 **(b)**

2. Frankland reaction, product would be butane, so wrong

3.
$$S^{2} \xrightarrow{CH_{3}} H_{2} \xrightarrow{SN^{2}} (C_{2}H_{5})_{2}S;$$
 correct

4. Finkelstein reaction, correct

 $RBr + NaI \rightarrow RI + NaBr$

144 **(c)**

Chlorofluoro carbons are called Freon.CCl₂ F_2 (Freon -12)

145 **(d)**

 CCl_4is a covalent compound, so it does not react with AgNO_3

148 **(b)**

More the number of C atoms (high molecular mass) and straight chain (large surface are), higher the boiling points

149 **(d)**

Basicity and fugacity reversed. Acidic :HCN > MeOH > $H_2O > H_2 > CH_4$ $\Theta \qquad \Theta \qquad \Theta \qquad \Theta$

Basic:
$$\overrightarrow{CN} < MeO^{\heartsuit} < OH^{\heartsuit} < H^{\heartsuit} < \overrightarrow{CH}_3$$

Note: MeOHis a stronger acid than $\rm H_2O$, whereas otheral coholsare weakerthan $\rm H_2O$

151 **(a)**

Stronger the acid, weaker is its C_B **Acidic**: HI > HBr > HCl > HF **Basic**: I^{\ominus} < Br^{\ominus} < Cl^{\ominus} < F^{\ominus}

152 **(a)**

(B) is a 1° alcohol with three C atoms.HCHOwithMeMgBr would give 1° alcohol with two C atoms. Therefore, (A) may be oxirane

$$H = -H \frac{\text{NaNH}_2 + \text{liq. NH}_3}{1 \text{ Mole}}$$

$$H-C \equiv CNa \xrightarrow[(A)]{} H^{4}$$

153 **(b)**

Alkene has six C atoms. Combine two products of ozonolysis containing three C atoms each

i. CH₃CH₂CH=
$$O$$
 O =C-CH₃
(3C -) CH_3
(3C -) $CH_$

ii. Combine two products of ozonolysis containing four C and two C atoms to get another alkene

^{1.} Wurtz reaction; product is butane, correct

$$CH_{3}CH \Rightarrow O O = CH - CH_{3}$$

$$U = CH_{3}CH - CH_{3}$$

$$CH_{3} - CH = CH - CH_{3}$$

$$CH_{3} - CH = CH - CH_{3}$$

$$Alkene (B)$$

Alkene (B) $\xrightarrow{\text{HBr}}$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$$

Br

Alkene (A) and (B) $\frac{Alc.}{KOH}$ 3-Bromo -2- methyl pentane

155 **(b)**

Allylicbromination

156 (c)

It would give cyclopropane

160 (a)

(I)
$$C_9 H_{10} \xrightarrow{-H^{\oplus}} C_9 H_9^{\ominus}$$
 (Aromatic)
(I) $C_9 H_{10} \xrightarrow{-H^{\oplus}} C_9 H_9^{\ominus}$ (Aromatic)
[See Illustration 11.6 (27).]

Acidic character: (I)>(III)>(II) pK_a order: (I)<(III)<(II)

161 (d)

More the EDG, more is the SE reaction

(-OH) group is more ED than other groups. SE order is: (d) > (a) > (b) > (c)

162 (a)

Cl (a) is more reactive towards ArSN reaction because two EWGs are at *o*- and *p*-positions w.r.t. Cl (a). Hence,

165 (c)

1, 4-Addition, followed by tautomerism

167 (a)

PhS⁻ is a strong nucleophile and dimethyl formamide (DMF) is a highly polar aprotic solvent. Condition indicates that nucleophilic substitution (S_N2) takes place at 2° benzylic place, stereochemically, it involves inversion of configuration.

168 **(b)**

(a) \Rightarrow Aromatic

(b) \Rightarrow Non-aromatic, although $10\pi \overline{e}$'s system

 $(c) \Rightarrow Aromatic$

(d) ⇒Aromatic

171 (c)

 α , β - Unsaturated aldehyde gives 1, 4-addition product with G.R.

(I) ⇒ 1°allylic halide and less steric hindrance, hence SN² (III) ⇒ 3°allylic halide, most stable carbonium ionand hence SN¹ 174 (a) More N atom and more alky group (+I effect), more basic:(i) > (ii) > (iii) > (iv) 175 (d) S is less EN and, therefore, more reactive towards SN² 178 (d) All 179 (d) RCl (alkyl halide) is more reactive than (Ar – I) (arylhalide)

180 **(c)**

172 (c)

(C–I) is a weak bond and I^{\ominus} is a better leaving group

181 **(c)**

 $PhCH_2Cl$ formsstablePhCH₂^{\oplus} (benzyl C^{\oplus})ion. So the reaction is feasible

182 (d)

a. It is aryl halide, stabilised by resonance

b. Vinyl chloride is also stabilised by resonance

$$CH_2 = CH \rightarrow :CI: \longleftrightarrow CH_2 - CH = CI:$$

c.Vinyl system as in (B)

d.

l

$$\underbrace{\overset{\mathsf{Cl}}{\frown}}_{(\operatorname{Aromatic})} + \operatorname{Cl}^{\Theta} \xrightarrow{\operatorname{AgNO}_{3}} \operatorname{AgCl}$$

183 **(d)**

SN¹reactivity order is: Benzyl>Allyl>2° > 1°halide

185 **(a)**

It is an example of ArSN (elimination-addition) reaction *via*benzyne intermediate

186 **(d)**

 $(-NH_2)$ group (EDG) is o, p-directing, while others (EWG) are m-directing

188 (d)

Self -explanatory

Amide with G.R. gives ketone, with one R(i.e., Me group) from G.R., and anhydride with G.R. gives 3° alcohol, with two R(i.e., Me group) from G.R.

190 **(a)**

+I effect of $(-CH_3)$ group increases the electron density on the benzene ring, hence it is most reactive towards electrophilic nitration

192 **(b)**

2,3,4-Trichloropentane

C-2 and C-4 are asymmetric C atoms, but C-3 is not, because two groups on C-3 marked

194 **(c)**

The statement is self-explanatory

196 **(b)**

Stronger the activating substituent (i.e., EDG), faster is the rate of SE (bromination) reaction.Order of \overline{e} -donating substituent:

$$-\dot{N}Me_2 > -Me > -CH_2 \overset{\textcircled{e}}{N}Me_3 > -\overset{\textcircled{e}}{N}Me_3$$

(Deactivating)

Hence, the rate of bromination: (IV) > (III) > (II) > (II) > (I)

CI a.

 $(\theta = 60^\circ), CH_2Cl_2, CHCl_3, C_2H_5Cl$ µorder is: (a) > (d) > (b) > (c) 199 (c)

Two-C-atom dihalide with Mg gives alkene, while three-C-atoms dihalide with Mg gives cyclopropane

$$Br - CH_2 - CH_2 - Br \xrightarrow{Mg}_{Ether} CH_2 = CH_2 + MgBr$$

203 (a)

 $C_{3}H_{6}Cl_{2} - \underbrace{KOH \leftarrow C_{3}H_{6}O \atop (B)}_{KOH(alc.)} C_{3}H_{4} \text{ Or}$

$$CH_{3}C \equiv CH \xrightarrow{H_{2}O}_{H^{+},Hg^{2+}} CH_{3}COCH_{3} \xrightarrow{Br_{2}}_{+NaOH} CHBr_{3} + CH_{3}COONa$$

Since, *B* and *D* are different thus, *B* is CH_3CH_2CHO and so *A* is $CH_3CH_2CHCl_2$.

204 (a)

$$Me \xrightarrow{(i) (Me) MgBr/\Delta} Me \xrightarrow{(i) (Me) MgBr/\Delta} Me \xrightarrow{(i) Me} Me$$

Nucleophile (Me^{Θ}) attacks the (C = 0) group attached to the less-substituted EDG (Me group) because nucleophilic addition (NA) is favoured by EWG or less-substituted EDG

205 **(b)**

Lucas reagent will not react both, since it is a test to distinguish between 1°, 2° and 3° alcohols

b. CH₂=CH-CI
$$\xrightarrow{\text{KOH}}$$
 CH₂=CH-OH + Cl ^{Θ}
C₂H₅-CI $\xrightarrow{\text{KOH}}$ C₂H₅OH + Cl ^{Θ}
AgCl $\xrightarrow{\text{AgNO}_3}$
White ppt.

c.AgCl will not react with both

HCl/AgCl will not react with both

208 **(b)**

Carbylamine test is given by 1° amine with $CHCl_3 + KOH$

 $RNH_2 + CHCl_3 + KOH \longrightarrow RN \equiv C$ Isocyanide

It gives an offensive smell of isocyanide

Mechanism proceeds viacarbene

 $(: CCl_2)$ or $(: CX_2)$ or $(: CXX^1)$

 $(XX^1 \Rightarrow Two different halogens)$

209 (a)

(I) \Rightarrow Aromatic $6\pi \overline{e}$'s system in conjugation

(II) \Rightarrow Non-aromatic, $8\pi \overline{e}$'s system but ring is not planar, so not anti-aromatic but non-aromatic

(III) \Rightarrow Anti-aromatic $8\pi \overline{e}$'s in conjugation

Stability order: Aromatic > Non-aromatic > Antiaromatic

(I)>(II)>(III)

210 (c) Acidic character:

> ACOH > PhOH > MeOH > H_2O **pK₄ value**: 4.75 9.9 15.5 15.74 Basic and nucleophilic characters are same because of same nucleophilic centre **Nucleophilic order:**

$$AcO^{\Theta} < PhO^{\Theta} < MeO^{\Theta} < \overset{\Theta}{OH}$$

(B)<(A)<(D)<(C)

212 **(a)**

1.
$$HC \equiv CH \xrightarrow{K \text{ in liq.NH}_3}_{\text{Birch red}} H_2C = CH_2(Gas)$$

$$[C \equiv C \Rightarrow (C = C)]$$

II. HC=CH +
$$\stackrel{\Theta}{\mathsf{NH}_2} \longrightarrow$$
 HC=C ^{Θ} + NH₃ (Gas)
III. HC=CH + $\stackrel{\Theta}{\mathsf{CH}_3} \longrightarrow$ HC=C ^{Θ} + CH₄ (Gas)
IV. HC=CH + $\stackrel{\Theta}{\mathsf{OH}} \longrightarrow$ HC=C ^{Θ} + H₂O (liquid)

213 (a)
2° alcohol is obtained from the ester of the type

$$\begin{pmatrix} O \\ H \end{pmatrix}$$
 with two R groups, i.e., isopropyl
group $\begin{pmatrix} Me \\ Me \end{pmatrix}$ obtained from the G.R.
So, the ester is $\begin{pmatrix} O \\ H \end{pmatrix}$ (Propyl methanoate)
214 (a)
ArSN² reactions are favoured by strong EWG, -I

effect of F is highest (more EN of F)

215 (c)

[Both (a) and (b)]

216 **(a)**

The basic character of hydrides of 16 group decreases down the group. Size increases down the group and LP \overline{e} density decreases **Basic**: H₂O > H₂S > H₂Se > H₂Te

217 **(b)**

(a) \Rightarrow Non-aromatic,

(b) \Rightarrow Anti-aromatic ($4\pi \overline{e}$'s, conjugation)

(c) \Rightarrow Non-aromatic ($4\pi \overline{e}$'s not in resonance)

(d) \Rightarrow [10]-Annulene, non-aromatic.

So (b) is anti-aromatic

218 **(c)**

a.
$$\begin{pmatrix} \mathsf{O} \\ \mathsf{II} \\ -\mathsf{C}- \end{pmatrix}$$
 group, b. $\begin{pmatrix} \oplus \\ -\mathsf{N} \\ \mathsf{Me}_3 \end{pmatrix}$

c.It is weakly deactivation but *o*, *p*-director **d**.(-CF₃) group; (a) (b) and (d) are *m*-director

220 (d)

(d) is not Sandmeyer's reaction

223 **(a)**

Since the nucleophilic centre is different but they belong to the same period, so the basic and nucleophilic characters are same. Basicity and nucleophilicity :

 $\begin{array}{l} \text{Stronger the acid weaker is its } C_{B} \\ \text{Acidic}: HF > H_{2}O > NH_{3} > CH_{4} \\ \text{Basic}: F^{\Theta} < \stackrel{\Theta}{OH} < \stackrel{\Theta}{NH_{2}} < \stackrel{\Theta}{CH_{3}} \end{array}$

 $\overset{\Theta}{\operatorname{CH}}_3 > \overset{\Theta}{\operatorname{NH}}_2 > \overset{\Theta}{\operatorname{OH}} > F^{\Theta}$

RX with AgNO₂ gives nitroalkane 225 **(b)**

It is electrophilic substitution, so electrophile must be attacked on *o/p*-position due to higher electron density on this position. In this ring, the attached –NH- group will have high electron density due to resonance and *ortho* position is blocked, so electrophile is attached on *para* position.

226 **(b)**

SN² mechanism

227 **(b)**

Ethanol (C_2H_5OH) forms hydrogen bonding with water. Hence, it is soluble in water

230 **(b)**

The statement is self-explanatory

231 **(c)**

Toluene has an allylic group

232 **(b)**

Step 2 is wrong because Friedel-Crafts reaction will not take place in the presence of \overline{e} withdrawing, *m*-directing ($-NO_2$) group

233 **(c)**

NA reaction takes place from the side contaning less-substituted EDG or more-substituted EWG

$$C_2H_5MgBr + Me$$

(Excess) Me HO H

$$HO$$
 HO HO O H_5C_2 H_5C_2 Me

234 **(b)**

In basic medium, SN^2 and in acidic medium, SN^1 .

235 **(b)**

It is an example of SN¹ reaction in which retention takes place. So, if reactant-specific rotation is positive, it should be positive for the product also, but of different value since the reactant and product are different

224 **(a)**

236 (b) Since nucleophilic centre is different and belongs to the same group, so basic character and nucleophilicity are reversed $SbH_3 > AsH_3 > PH_3 > NH_3$ 237 (c) Sulphonation is reversible process and shows 1° kinetic isotope effect, whereas other SE reactions (i.e., nitration halogenations, etc) do not show 1°kinetic isotope effect 239 (c) 3° C[⊕] is more stable and hence has less $E_{activation}$ 240 **(b)** More the EDG, faster is the SE reaction or F.C. reaction But ED power of $(-NH_2)$ (by resonance) is greater than $(-CH_3)$ (by hyperconjugation). But aniline does not undergo F.C. reaction Therefore, in (a), three H.C. structures. In (c), one H.C. structure In (d), $(-NO_2)$, EWG, F.C. reaction does not take place So in (b), F.C. reaction is fastest 241 **(b)** Selective reduction by NH_4HS [only one ($-NO_2$) is reduced to (NH₂)] $NaNO_2 + HC$ 243 (b) Fugacity and basic orders are reversed (i)>(ii)>(iii)>(iv)>(v)245 (b) Self-explanatory 246 (d) E1 and E2 are both called β -elimination because β -H (most acidic) is removed by base.But E2 is also called anti-or trans-elimination 248 (d) SE reaction is a characteristic of an aromatic compound 250 **(b)** SE reaction takes place *ortho* to (-OH) group, not

orthoto $(-\dot{\Omega})$ group. Since it is deactivated by the strong \overline{e} -withdrawing group

$$\left(-\text{COO}^{\varTheta} \text{ and } \overset{\circledast}{NH_3}\right)_{in}$$
 another ring

$$Me \xrightarrow{\text{NaNH}_2} \text{Br} + 2NaNH_2 \xrightarrow{-2HBr}$$

$$NaNH_2 Me - C \equiv CH + 2NaBr + 2NH_3$$

$$Me - C \equiv C^{\Theta} Na^{\Theta} + NH_3 \xrightarrow{C_2H_5Br}$$

$$Me-C \equiv C-C_2H_5 + NaBle$$

252 **(b)**

Finkelstein reaction

$$\operatorname{RCl} \operatorname{or} R - \operatorname{Br} \xrightarrow{\operatorname{Nal}} R - I$$

253 (c)

EWG favours NA reaction and aldehyde is more reactive than ketone in (iv). More reactive due to the -I effect of three Cl atoms So, the order is: $Cl_3C - CHO > HCHO > MeCHO >$ MeCOMe

254 **(b)**

3°alcohol is $\ Pr /$, with two (Et) group obtained from G.R. Therefore, (Pr–) group has come from the user

So, the ester is
$$\begin{pmatrix} 3 & O \\ Me & 2 & 1 \end{pmatrix}$$
 (methyl

butanoate). Hence, the answer is (b)

255 **(b)**

Self explanatory

256 **(c)**

Different nucleohiliccentres in $\stackrel{\Theta}{CN}$, H^{Θ} , $\stackrel{\Theta}{CH}_{3}$, butall belong to the same period.

Basic and uncleophilic orders are same.

 $\textbf{Acidic:} HCN > MeOH > H_2O > H_2 > CH_4$

Basic:
$$\overset{\Theta}{\text{CN}} < \text{MeO}^{\Theta} < \text{OH}^{\Theta} < \overset{\Theta}{\text{CH}_3}$$

Note: MeOHis a stronger acid than H₂O, whereas otheralcoholsare weakerthanH₂O

257 **(c)**

Self-explanatory

258 **(b)**

Fugacity and basicity orders are reversed

$$H_2O > CH_3COO^{\Theta} > OH^{\Theta} > OH^{\Theta} > OH^{\Theta}_{2}$$

259 (d)

Neo-pentane gives only one monochloro derivative.

260 **(b)**

Diazotisation, followed by Sandmeyer reaction $PhNH_2 \xrightarrow{NaNO_2/HCl} Ph-N=N-Cl \xrightarrow{CuCl/HCl} Ph-Cl$

262 **(b)**

The statement is self-explanatory

264 **(c)**

Step 3 is wrong. The last step will first brominate the double bond. The product will be:

265 **(d)**

Self-explanatory

266 **(c,d)**

If the reactant and/or nucleophile are charged, increasing the polarity of the solvent stabilises any charged ground state species and decreases the rate of SN^2 reaction with an increase in the polarity of the solvent

267 (a,c)

The $(-CH_3)$ group is able to activate the benzene ring by hyperconjugation. So, $(-CH_3)$ group shows o/p-directing influence on the benzene ring

268 (a,b,c)

a.Loss of Br (a) would give less-substituted alkene (more reactive, less stable)

b.Removal of Br (c) would give more stable 2° allylicC^{\oplus}

 C^{\oplus} Statements (a), (b), and (c) are correct

d.Statement (d) is wrong, since the compound shows G.I.

269 **(c)**

is stable (aromatic) but only in comparison with the rest of the family of anions. But this is not as stable as benzene (as it is neutral molecule in which all of carbon''s valencies are satisfied) **Rule**: Uncharged state is more stable than charged state

271 **(b)**

 R^{\ominus} in RLi is more nucleophilic than in R'MgX, or R'_2 Cd, or R'_2 Zn and, therefore, is sufficiently reactive to overcome the steric hindrance

273 (b,e)

Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to the following reasons:

i. Resonance stabilisation

274 (a,c,d)

Statement (b) is wrong because the intermediate is σ -complex which is a positive -charge complex,

In (I), (C - 0) bond breaks to give (D) and (E)

In (II), (0 - C) bond breaks to give (I) and (J)

276 (a,d)

NH₃ and dichlorodifluoro methane are used as refrigerants

277 (a,b,c)

Product (II) is cine substitution and product (III) is direct substitution.Reaction is ArSN (elimination-addition) reaction

278 (a,c)

1 R'

ſ

279 (b,c,d)

An aromatic molecule will have: **b**. $(4n + 2)\pi$ -electrons (by Huckel's rule), c. Planar structure (due to resonance), and

d. Cyclic structure (due to the presence of sp^2 hybrid carbon atoms)

281 (c)

Only one hydrogen atom in 1° RNH₂ reactes at room temperature. In the presence of pyridine, both H atoms in 1° RNH₂ react

RNH
$$(H + Me)$$
 Mg I \longrightarrow CH₄ (g) + RNHMgI
 \downarrow MeMgI
CH₄ (g) + R-N $\begin{pmatrix}$ MgI
MgI

One mole of EtNH₂ reacts with 2 mol of MeMgI to give 2 mol of $CH_4(g)$. Molecular mass of $EtNH_2$ is 45 gm

Therefore, 45 gm of $EtNH_2$ gives 2 × 22.4 litres of CH₄at S. T. P.

0.45 gm of EtNH₂gives $\frac{2 \times 22.4 \times 0.45}{45} = 0.448$ litres = 448 ml

The order of reactivity of functional group with G.R. is Alcohol>Aldehyde>

Ketone >R - C - X>Ester>Anhydride>Amide>-CH₂X **a**. First mole of PhMgBr reacts at the active H atom of alcohol to give

(benzene), not phenol. Hence, wrong statement

b. Second mole of PhMgBr reacts at ketone group and gives the required product. Hence, correct statement

c. It is a wrong statement

d. Compound (D) is wrong, because acid halide with G.R. gives 3° alcohol. Hence, compound D would be

Statements are self-explanatory 288 (c,e)

$$C_2H_5Br \xrightarrow{AgNO_2 (alc.)} C_2H_5 \longrightarrow 0$$

Nitroethane
(Main product)

+
$$C_2H_5$$
-O-N=O
Ethyl nitrite

The main product of this reaction is nitroethane but ethyl nitrite is also formed as a side product along with silver bromide

289 (a,b,c,d)

c. EWG ($-NO_2$ group) in the benzene ring oxidizes the G.R.

b. Me⁻¹ NH + PhMgBr
$$\begin{bmatrix} 2.H_3O\\O\\O\\Me^{-1} \end{bmatrix}$$

C. Me⁻ 1 Cl + PhMgBr
$$\frac{1 - 2 \operatorname{H}_3 O^{\oplus}}{2 \operatorname{H}_3 O^{\oplus}}$$
 Me⁻ | Ph
Ethanoyl chloride

d. Methanamide would give benzaldehyde with G.R.

$$\begin{array}{c} O \\ H & \mathsf{NH}_2 + \mathsf{PhMgBr} \\ \hline 1. \ \mathrm{Ether}, \Delta \\ 2. \mathrm{H}_3 O^{\textcircled{\bullet}} \end{array} \xrightarrow{\begin{array}{c} O \\ H \\ \end{array}} \begin{array}{c} O \\ H \\ \mathsf{Ph} \\ \mathsf{Benzaldehyde} \end{array}$$

291 (a)

In SN¹, the attack by the Nu^Ö is not specific (attack on the carbonium ion from front as well as back) and the products are mixtures of enantiomers thus neither stereospecific nor stereoselective

292 (c,d)

In (IV), the lone pair \overline{e} 's of two N makes it more basic and does not delocalise in the benzene ring

In (III), no delocalisation of $\ddot{N}H_2$, L.P. of \overline{e} 's

In (II), no delocalisation of LP of \overline{e} 's

In (I), delocalisation of LP of \overline{e} 's on N, *via*resonance

Hence, the order of basic character is: (IV) > (III)

293 **(b)** $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow HC \equiv C^{\Theta} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Aromatic on sp C atom stability (I) (II)

Stabler the C_B , stronger is the acidic strength (lower pK_a)

Therefore, the decreasing pK_a value: (II) > (I) >(II)

294 (a,b,c)

Product (d) is wrong, Br_2 in non-polar solvent and gives *o*- and *p*-products

295 (a,c,d)

But (II) in not protonated. Hence statement (a) is true

Hence, Statement (b) is wrong

298 (c,d)

(a) Products would be:

Due to stabilization of carbonium ion

b. Same explanation as in (a), the product would be a mixture of (I) and (II)

Statement (c): $2 \bigvee_{i=1}^{3} \underbrace{H^{\oplus}}_{N_{1}} \underbrace{H^{\oplus}}_{H}$

Statement (c) is true Statement (d): Due to resonance, all N in (I), (II), and (III) are sp^2 -hybridised and hence true

296 **(a,b,c)**

Since the $(-NH_2)$ group present in the benzene ring has active H atom, (d) does not form G.R.

297 **(b)**

In E1, first ionisation of RX takes place and then abstraction of β -H atom by base takes place. The carbonium can rearrange and abstraction of H atom by base can be different. So the reaction is not stereospecific but stereospecific because of the formation of only one product

So, statements (c) and (d) are correct

299 (a,b)

The lithium enolate bases from cyclohexanone react with alkyl halides in different ways

300 **(a,c)**

If a bond at the asymmetric C atom is broken, SN^2 reaction occurs and inversion takes place In step 1, (C - Cl) bond is broken to (C - OH), hence inversion occurs (----) In step 2, (C - O)bond is not broken but (O - H) bond is broken to give (-O - Ts). Hence, no inversion occurs In step 3, (C - O) bond is broken, i.e.,

$$C \stackrel{+}{\to} OTs \rightarrow C - Br$$
 and hence inversion Occurs

Reaction:

303 (a,c)

In step 1, (C – Br) bond is broken to (C – N₃). Hence, inversion occurs (---)

In step2,
$$(C-N=N=N)$$
 bond is not broken. So no

inversion In step3,(C - Br)bhjond is broken to (C - OH)

bond hence, inversion occurs

304 (a,b,c)

- 1. SE reaction by (NO_2) species (I) is not formed. So(a) is a correct statement
- 2. SE reaction by Br^{\oplus} , $(-NO_2)$ is *m*-directing, Br^{\oplus} will attack at *m*-position.Species (I) is not formed.So (b) is a correct statement
- SE reaction by Br[⊕], (−OH) group is *o* and *p*-directing (class−OHdecides orientation)*p*-position is blocked.Species

(I) in not formed. So (c) is a correct statement

- 4. ArSNreaction (addition –elimination) reaction by $\stackrel{\otimes}{OH}$ nucleophile.Species (I) is formed
- 5. So (d) is an incorrect statements

305 (b,d) 306 (b,c,d)

(a) Products would be:

Due to stabilization of carbonium ion

b. Same explanation as in (a), the product would be a mixture of (I) and (II)

 SN^2 and E2 are both stereospecific because the attack from the back by Nu^{\ominus} in SN^2 and attack by base E2 (at β -H atom) are specific. Both of them form exclusively only one product

ortho-product exclusively, p-position has to be blocked first, and then Br introduced in orthoposition, followed by the removal of group from *p*-position

311 (d)

 $PhSO_{3}H + NaHCO_{3} \rightarrow PhSO_{3}Na + CO_{2} +$ $H_2O. p-O_2N - C_6H_4 - OH + NaHCO_3$ $\rightarrow p - NO_2 - C_6H_4 - ONa + CO_2 + H_2O$

313 (d)

In E1cB, the first step is the abstraction of β -H 318 (**b**,**c**,**d**) atom to give carbanion is specific, but they form a mixture of possible pairs of enantiomers or a mixture of possible diastereomers

314 (a,b,c)

SN¹has two steps and has two transition state intermediate carbocations. In the first, higher T.S. (C – X) bond stretches ($R_3C^{+\delta}$X^{- δ})

In the second, lower T.S. bond formation between carbocation intermediate and a nucleophile takes place

 $(R_3C^{+\delta}....N_u)$.

So in Figs. (a) and (b), (I) and (IV) represent SN¹ reactions, respectively

SN² has one step, has one T.S., and no intermediate

So in Figs. (a) and (b), (II) and (III) represent SN²reactions, respectively

The hydrolysis of RX by SN^1 path is $3^\circ > 2^\circ > 1^\circ$ and by SN² path is $1^{\circ}>2^{\circ}>3^{\circ}$

Therefore, Fig. (a) represents hydrolysis of 1°RX, since SN² path is of lower energy

Figure (b) represents hydrolysis of 3°RX, since SN¹path is of lower energy

So statements (a), (b), and (c) are correct

315 (a,b,c)

Statements a, b and c are correct but (d) is wrong because reaction (d) gives benzene

316 (a)

At pH = 2(acidic condition) - - A

$$H_2N-C_6H_4-SO_3H \xrightarrow{H^{\oplus}} NH_3 - C_6H_4SO_3H$$
 and will

migrate tocathode At pH = 12 (basic condition)

$$H_2N-C_6H_4-SO_3H \xrightarrow{\Theta} H_2N-C_6H_4SO_3^{\Theta}$$
 and will

migrate to anode

317 (c)

`Me) with Both (a) and (d) give ketone Me^{-1} G.R.(MeMgBr), whereas both esters (b) and (c) give the required 3° alcohol. However, (-OTs) is a better leaving group than -OMe

a. Stronger the base stronger is the nucleophile

therefore OH is a stronger nucleohile than $H_2O.Statement(a)$ is wrong

b. RSH is a stronger acid than ROH (except MeOH). RS $^{\ominus}$ is a weaker base and weaker nucleophile (stronger the acid, weaker is its conjugate base)

Therefore RS^{\ominus} should be a weaker uncleophilethan RO^{\ominus} . But in polar protic solvent such as ethanol, RSH is less solvated than ROH (due to H-bonding)

Therefore, RS^{Θ} is a stronger uncleophile than RO^{\ominus} statement (b) is correct

c. $H_2\ddot{N}$ – $\ddot{O}H$ is a stronger base and hence a stronger nucleophile than NH_3 . Statement (c) is correct

d. In (I), all β -C are tied up with a C atom, while in (II), the substituents bonded to N atom are almost free to rotate and causesteric hindrance during approach of $LP\overline{e}$'s to the attacking site

In other words, LP \overline{e} 's on N in (I) are easily available but in (II) they are sterically hindered

Thus, (I) is a stronger base and hence a stronger nucleophile than (II)

Statement (d) is correct

319 (a,b,c,d)

All of them contain active H atom and give benzene with PhMgBr

320 (a,b,c)

Hofmann elimination gives less-substituted alkene

1. **Cope reaction**

b.In case of bulky base, Hofmann alkene is formed (Me

c.In case of RF (poor leaving group), whether the base is bulky or non-bulky,Hofmann alkene is

formed. (Me

d.

(I) is more stable due to extended conjugation with (=) bond of Ph-ring

321 (a,b,c)

Due to the steric hindrance of *t*-butyl group in ketone and G.R. containing bulky group or G.R. with β -H, the reaction fails, (i.e., 3° alcohol is not obtained). But a hydride ion (H^{\ominus}) transfer from the β -position of RMgX to (C = 0) group takes place through a cyclic transition state to give 2° alcohol and alkene

Therefore, MeMgBr or PhMgBrwithout a β -H cannot act as a reducing agent and fail to react with di-*t*-butyl ketone.

(a),(b) and (c) react with di-*t*-butyl ketone to give 2° alcohol and alkene

323 (a,b,c)

Statements (a), (b), and (c) are the characteristics of E1cB reaction. Statement (d) is wrong since in E1cB reaction, deuterated product is obtained

325 (a)

i. (I) and (II) are E2 reactions in which the R.D.S. is breaking of (C - H) or (C - D) bond. Thus E2 elimination of (I) is faster than that of (II) since (C - H) bond is weaker than (C - D) bond. Hence, (I) and (II) show 1°kinetic isotope effect

ii. (III) and (IV) are either El or SN¹ reactions, which involve the formation of same intermediate Me₃C^{\oplus} or (CD₃)₃C^{\oplus} in the R.D.S. This step does not involve any (C – H) or (C – D) bond breaking, so H/D effect is not 1°but rather a small 2°isotope effect, where $K_{\rm H}/K_{\rm D}$ = 0.7/1.5

Reaction (III) is faster than (IV) since $(CD_3)_3C^{\oplus}$ is not as stable as Me_3C^{\oplus} because CD_3 is not as good an \overline{e} -donator as CH_3 . Moreover, (C - D) is not a good hyperconjugative participant as (C - H)

326 **(a,b,c)**

A 3° alcohol containing three identical alkyl groups (the values of R are obtained from G.R.) may be prepared by the reaction between 3 mol of G.R. (PhMgBr) with 1 mol of ethyl carbonate a. PhMgBr + $(C_2H_5O)_2C = \vec{O}$

b. Ph
$$\stackrel{\parallel}{\longrightarrow}$$
 Ph + PhMgBr
O
c. Ph $\stackrel{\parallel}{\longrightarrow}$ OEt + PhMgBr $\int \frac{1. \text{ Ether}, \Delta}{2. \text{ H}_3 \text{ O}^{\textcircled{\baselineskip}}} Ph \stackrel{OH}{\xrightarrow{\baselineskip}} Ph$

But benzamide gives ketone:

$$\begin{array}{c} O \\ \blacksquare \\ Ph \end{array} H_2 + PhMgBr \xrightarrow{1. Ether, \Delta} Ph \qquad O \\ 2.H_3O^{\textcircled{\oplus}} Ph \qquad (Ketone) \end{array}$$

327 (d)

Aryl halide containing reactive substituent (e.g., -COOH, -OH, $-NH_2$, $-SO_3H$, and $-NO_2$) in the benzene ring cannot be used since G.R. obtained will at once react with the reactive group present in another molecule. Hence, no reaction will take place

328 (a,d)

i. Although F^{\ominus} is a poor leaving group, in acidic condition, F forms H-bonding and its departure is easier. So in acidic medium, reaction (I) is solvolysed faster than (II)

This is an example of electrophilic catalysis

ii.The formation of Me from (IV) reducessome of thesteric hindrance or

crowding in reactant in (IV), induced by the two (Me) groups and the *t*-Bu on the α -C atom. This is an example of steric acceleration

Moreover, carbocation is further stabilised by +I effect of two (Me) groups and *t*-Bu groups

So reaction (IV) is faster than (III)

329 (c)

Statement (c) is wrong

i.In path (I), EtO^{\ominus} is a strong base and with 2°RX groups. The E2 product predominates over the SN²product to give (Me – CH = CH₂)

ii. In path (II), EtOH is a weak base, but a better nucleophile, so SN^1 reaction is favoured to give MeCH(OEt)Me

331 (a,d)

The IUPAC name of caproic acid is hexanoic acid (6-C-atom acid). So, G.R. must contain 5-C-atom alkyl group

a.
$$n - C_5 H_{11} Br \xrightarrow{Me/ether} n - C_5 H_{11} Br$$

$$\xrightarrow{(i)CO_2 \\ (ii)H_3O^{\oplus}} n - C_5 H_{11} - COOH$$

b.

$$n-C_5H_{11}Li \xrightarrow{(i) CO_2}{(ii) H_3O^{\oplus}} n-C_5H_{11} C_5H_{11}$$

c. Gives pentanoic acid

d.

$$n-C_{5}H_{11}Mg Br + (CN)_{2} \underbrace{(i)}_{A} \xrightarrow{(i)}_{A} \xrightarrow$$

333 **(c)**

In SN², there is only one step, and it is exothermic.But in SN¹ there are two steps first step; is endothermic and second step is exothermic

334 (a,b)

If the reactant and/or nucleophile are neutral, T.S. is stabilised; rate of SN²reaction increases with the increase in polarity of the solvent

335 (a,b,c,d)

a. Nucleophile Et^{Θ} (from EtMgBr) attacks at less-

substituted C atom by SN² mechanism to give pentan-2-ol

b.Nucleophile Me^{\ominus} (from MeMgBr) attacks at less-substituted C atom by SN^2 mechanism to give pentan-2-ol

C.

336 (b,d)

i. In (II) \ F / carbocation is destabilisedbystronger—I effect of three F atoms, and thus solvolysis of (II) is slower than that of (I)

ii.D-bonds are not as stabilising as H-bonds. So reaction (IV) is faster than (III)

337 **(a)**

The reagent should be a strong Bronsted base **Acidic order**:HNO₃ > *RCOOH* > *HCN* > H₂O > *ROH*

Basic order: $^{NO_3^{\Theta} < RCOO^{\Theta} < CN \xrightarrow{\Theta} OH^{\Theta} < RO^{\Theta}}$ (V) > (III) < (IV) < (I) < (II) Decreasing order of basicities and hence β elimination is (II)>(I)>(IV)> (III) >(V) 338 (d)

Correct Assertion:

It gives but-2-ene

Correct reason :

But-2-ene is more stable than but-1-ene

340 **(b)**

Correct reason:

Benzyl halide undergoes hydrolysis by SN¹mechanism

341 **(d)**

Aryl halides do not undergo nucleophilic substitution reaction under ordinary conditions, thus benzonitrile is not prepared by the reaction of chlorobenzene with KCN

Cyanide (CN⁻) is a strong nucleophile

Hence, statement 1 is incorrect, but statement 1 is correct

342 **(b)**

Correct explanation :

Due to resonance (C - Br) bond in PhBr is a little stronger than (C - Br) bond in C_2H_5 Br

343 **(c)**

Correct reason :

(C - X) bond has some double bond character

345 **(a)**

It produces alkene

348 **(d)**

Aryl halides do not undergo nucleophilic substitution reaction under ordinary conditions. Thus, statement 1 is incorrect. In aryl halides, the carbon-halogen bond has a partial double bond character, so it becomes shorter and stronger and cannot be easily replaced by a nucleophile. Statement 1 is false but statement 2 is true

351 **(d)**

Correct assertion:

t-BuBron reaction with Na metal gives n-butane and isobutene.

352 **(d)**

ii. Me^{-O} Cl
$$\stackrel{\text{OH}_2}{\longrightarrow}$$
 Me^{-O} OH + HCl

Reaction (ii) is faster than (i). Hence, the assertion is false because -I power of O atom

destabilises the (o) ion

But reason (R) is true

 $(b \rightarrow p)$ Reactant is the G.R. of ketone. It will give a

3° alcohol

 $(\textbf{c}{\rightarrow}\textbf{q})$ Reactant is the G.R. of ester. It will give a 2° alcohol

 $(\mathbf{d} \rightarrow \mathbf{t})$ Reactant is the G.R. of ketone. It will given 3° alcohol

 $(\mathbf{e} \rightarrow \mathbf{s})$ Reactant is the G.R. of ester. It will give a 2° alcohol

359 (c)

Reactants	Products
A. C_2H_5Cl , moist Ag_2O	(iii)CH ₃ CH ₂ OH
B. C ₂ H ₅ Cl , aqueous	(iv)CH ₃ CH ₂ NC
ethanolic AgCN	
C. C ₂ H ₅ Cl , aqueous	(i) $CH_3 CH_2 ONO$
ethanolic AgNO ₂	
D. C ₂ H ₅ Cl , ethanolic	(ii) C_2H_4
КОН	

 $(\mathsf{a} \to \mathsf{q})$

PhMgBr + O₂
$$\rightarrow$$
 Ph-O-O-MgBr \xrightarrow{PhMgBr}
(p) BrMg Ph \downarrow
2PhOH + MgBr(OH) \leftarrow H OH MgBr

$$(c \rightarrow p)$$

$$Ph-O \stackrel{\downarrow}{\to} O - MgBr \frac{H_3O^{\oplus}}{at-70^{\circ}C} > PhOOH + MgBr (OH)$$

$$(d \rightarrow r)$$

$$\begin{array}{ccc} Me & Me \\ \hline & & \\ Me & \\ Me & (r) & Me \end{array} \\ \begin{array}{c} Me \\ Me \end{array} \\ \hline Me & \\ Me \end{array}$$

$$(e \rightarrow s, t)$$

$$2C_{2}H_{5}MgBr + CoCl_{2} \xrightarrow{(s)} 2MgBrCl + C_{2}H_{5} - CO - C_{2}H_{5}$$

$$\downarrow C_{2}H_{5} - C_{2}H_{5} + CO$$
Butane

 $(\mathbf{a} \rightarrow \mathbf{s})$ Write the structure of propane dithioic acid diagram. The structure of G.R. would be EtMgBr

$$\begin{pmatrix} S \\ 3 \\ Et \end{pmatrix} \\ \begin{pmatrix} S \\ SH \end{pmatrix} \\ \begin{pmatrix} S \\ Et \end{pmatrix} \\ \begin{pmatrix} S \\ B \end{pmatrix} \\ \begin{pmatrix} S \\ S \end{pmatrix} \\ \begin{pmatrix} S \\ S \\ S \end{pmatrix} \\ \begin{pmatrix} S \\ S \\ S \end{pmatrix} \\ \begin{pmatrix} S \\ S \\ S \\ S \end{pmatrix} \\ Et \end{pmatrix} \\ Et \end{pmatrix} \\ Et$$

 $(\mathbf{b} \rightarrow \mathbf{r})$ Write the structure of propyl sulphonicacid $\begin{pmatrix} O \\ B \\ P\mathbf{r} - \mathbf{S} \\ O \end{pmatrix}$. The structure of G.R. would be PrMgBR

Et

 $(b \to p)$

 $(\mathbf{c} \rightarrow \mathbf{s})$ Write the structure of ethyl mercaptan(Et - SH). The structure of G.R. would be EtMgBR

$$\underbrace{(\widehat{Et})}_{R} MgBr + S \xrightarrow{H_3O^{\bigoplus}} Et - SH$$

 $(\mathbf{d} \rightarrow \mathbf{p})$ It is a method of preparation of ether

367 **(c)**

LiAIH₄reduces(C \equiv C) to (C \equiv C) bond in anti manner to give *trans*-alkene and also reduces (CHO) group to (-CH₂OH) group. Hence, the answer is (c)

369 **(b)**

With *t*-butoxychloride, allylic or propargylic chlorination takes place

370 **(c)**

The order of reactivity of G.R. with different compounds is Alcohol> Aldehyde> Ketone>0 ||

 $R - C - X > Ester > Anhydride > Arnide > -CH_2X$ So the first mole of G.R. will react with alcohols. (ROH + RMgX \rightarrow Rh + ROMgX), Hence, answer is (c)

372 **(b)**

In an isocyanide, first an electrophile and then a nucleophile is added at the same Catom of

 $\left(- \overset{\oplus}{N \equiv \overset{\ominus}{C}} \right)$ group to form a species which usually undergoes further transformations

373 (a)

i. Proceed reverse from (E) to (D), (E) is obtained by the 1,4-addition of Br_2 on (D). (D) must be a conjugated diene

$$(D) \Longrightarrow \bigcup$$

ii.(D) is obtained from (A), and (A) to (D) is elimination reaction by bulky base to give lesssubstituted alkene (Hofmann elimination). So (A) is:

If at least three of the 2, 2', 6, and 6' are occupied by sufficiently large groups, free rotation about the single bond joining the two phenyl groups is no longer possible, provided each ring has no vertical plane of symmetry. This restricted rotation gives rise to optical activity due to molecule being asymmetrical as a whole. Hence, 6-nitrobiphenyl-2-2' dicarboxylic acid (a) and 6, 6'- diamino-2, 2'- dimethyl biphenyl (b) have been resolved. If the substituent groups are large enough, then only two groups in the o- and o'positions will cause restricted rotation, e.g., biphenyl-2, 2'- disulphonic acid (c) has been shown to be optically active So, (a), (b), and (c) are resolvable The cause of restricted rotation is mainly due to steric effects of the groups in the *o*- and *o*'positions (not at m and m', p and p') this type of stereoisomerism arising from restricted rotation about a single bond and where the stereoisomers can be isolated is called **atropisomerism** and the isomers are called atropisomers All examples are Ullmann reaction

376 (c)

Since compound (A) has 1 D.U. and is an alkane, so if should be cyclic. The number of cyclic isomers of (A) is five

Total number of cyclic structures including stereoisomesrs for (A) = 7 378 **(d)**

D. U. in (A) =
$$\frac{(2n_{\rm C}+2) - n_{\rm H}}{2} = \frac{(8 \times 2 + 2) - 10}{2} = 4^{\circ}$$

4D.U. and C: $H \approx 1:1$ suggest that (A) contains benzene ring with two extra C atoms [i.e.,two (Me) groups]. Since compound (A) is steam volatile and on nitration gives two nitro-derivatives, so (A) is *ortho*-xylene

- 381 **(d)**
- All 382 **(d)**

All, (a) \Rightarrow 1° RX, (b) \Rightarrow Allyl halide, (c) \Rightarrow Benzyl halide

DCAM classes Dynamic Classes for Academic Mastery