

6.GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Single Correct Answer Type

1. The fact that impurities are more soluble in the molten state than in the solid state of the metal is used in

	a) Liquation process		
	b) Distillation		
	c) Fractional crystallization		
	d) Polling		
2.	Oxides of the various metals are converted into me	etal by heating but not in	
	a) Ag_2O b) CuO	c) HgO	d) All are correct
3.	Roasting is carried out in a/an furnace		
	a) Blast b) Reverberatory	c) Muffle	d) Electric
4.	Hall's process is used for purification of		
	a) White bauxite b) Red bauxite	c) Iron aluminate	d) Silicates
5.	H_3PO_4 can be neutralized by NaOH, Ca(OH) ₂ and	Al(OH) ₃ .1equivalent of H	H ₃ PO ₄ will require mole of each
	in the ratio		
	a) 1 : 1 : 1 b) 1 : 0.5 : 0.33	c) 1 : 2 : 3	d) 2 : 3 : 6
6.	The slag obtained during the extraction of copper	from copper pyrites is co	mposed of
	a) Cu_2S b) $CuSiO_3$	c) FeSiO ₃	d) SiO ₂
7.	The chemical process in the production of steel fro	om haematite ore involve	S
	a) Reduction	b) Oxidation	
	c) Reduction followed by oxidation	d) Oxidation followed	l by reduction
8.	Calamine is		
	a) ZnSO ₄ b) ZnO	c) $Zn(NO_3)_2$	d) ZnCO ₃
9.	Consider the following redox reactions, $xMnO_4^- + y$	$yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+}$	$+2yCO_2 + \frac{z}{2}H_2O$
	The values of x , y and z in the reaction are, respect	tivelv	- 2 -
	a) 5, 2 and 16 b) 2, 5 and 8	c) 2.5 and 16	d) 5. 2 and 8
10.	When Br_{a} is passed into hot aqueous solution of N	$a_2(0)$	aj 0, 2 ana 0
101	a) Br^- is formed by reduction	b) BrO ₂ is formed by	oxidation
	c) CO_2 is evolved	d) All of the above are	e correct
11.	Pig tin is obtained by		
	a) Liquation process		
	b) Zone refining		
	c) Polling		
	d) Vapour phase refining		
12.	In the leaching of Ag_2S with NaCN, a stream of air	is also passed. It is becau	se of
	Reversible nature of reaction between Ag_2S and		
	a) NaCN	b) To oxide Na ₂ S form	ned into $Na_2S_2O_3$ and sulphur
	c) Both (a) and (b)	d) None of the above	
13.	Blister Cu is about	.,	
	a) 60% Cu b) 90% Cu	c) 98% Cu	d) 100% Cu
14.	Select the correct statement(s) about differentiation	on floatation	- ,
	a) It is used to concentrate mixture of sulphides at	different stages	
	b) Zinc sulphate is used to depress zinc sulphide at	nd PbS forms froth	
	c) Copper sulphate is used to activate depressed 1	ead sulphide and O_2 is bl	own to make froth
	d) All of the above are correct statements	r	
15.	Select some statements about metallurgical extrac	tion of Al	
-	I. Cryolite and fluorspar are added to molten alum	ina	

	II. Aqueous solution of	Al ³⁺ salts cannot be taken a	as electrolyte	
	III. Molten $AlCl_3$ can be	e taken instead by molten a	lumina	
	IV. Hall's process is add	pted for the beneficiation of	of low grade red beauxite	
	Select the correct state	ments		
	a) All except III	b) All except II	c) I and II only	d) I and IV only
16.	Cementite is			
	a) Predominant conten	t of cement	b) A mineral of calcium	
	c) A carbide of iron in s	steel	d) None of the above	
17.	In the Pidgeon process	, Mg is produced by		
	a) Electrolysis of fused	MgCl ₂		
	b) Reducing calcined d	olomite with ferrosilicon at	high temperature under pre	essure
	c) Both (a) and (b)			
	d) None of the above			
18.	Which process is NOT i	nvolved in extraction of Zn	?	
	a) Roasting	b) Smelting	c) Refining	d) Polling
19.	In the oxidation of Fe_2	$(C_2O_4)_3$ byMnO ₄ ⁻ /H ⁺ which	species does not appear in fi	inal ionic reaction?
	a) Ferric	b) Oxalate	c) Permanganate	d) All of these
20.	Roasted copper pyrites	s on smelting with sand pro	duces	
	a) FeSiO ₃ as fusible slag	g and Cu ₂ S matte		
	b) CaSiO ₃ as infusible s	lag and Cu ₂ O matte		
	c) $Ca_3(PO_4)_2$ as fusible	slag and Cu ₂ S matte		
	d) $Fe_3(PO_4)_2$ as infusib	le slag and Cu ₂ S matte		
21.	Which of the following	metal is obtained by leachi	ng process using a solution o	of NaCN and then
	precipitating the metal	by addition of zinc dust?		
	a) Copper	b) Silver	c) Nickel	d) Iron
22.	Which of the following	is used as a foaming agent	in froth floatation process?	
	a) Pine oil	b) Sodium cyanide	c) Copper sulphate	d) Potassium cyanide
23.	Which of the following	is a carbonate ore?		
	a) Pyrolusite	b) Malachite	c) Diaspore	d) Cassiterite
24.	In blast furnace, the hig	shest temperature is in	zone	
	a) Reduction	b) Slag	c) Fusion	d) Combustion
25.	Consider the following	statements.		
	Roasting is carried out	to		
	I. convert sulphide to o	xide and sulphate		
	II. remove water of hyc	Iration		
	III. melt the ore			
	IV. remove arsenic and	sulphur impurities		
	Of these statements			
	a) I, II and III are corre	ct	b) I and IV are correct	
26	c) I, II and IV are correct		d) II, III and IV are correc	ct
26.	when $FeCr_2O_4$ (chrom	ite) is reduced with C in an	electric-arc furnace	
	a) Cr and Fe_2O_3 are for	mea	b) Fe and Cr_2O_3 are form	ied
27	c) Fe and Cr (ferrochro	ome) are formed	a) FecrO ₄ is formed	
27.	In the following reaction	on, consider the following st	catements	
	$2Cr(OH)_3 + 3H_2O_2 + 4$	$OH \rightarrow 2CrO_4^2 + 8H_2O$		
	I. I nere is colour chang	ge from green precipitate to	yellow coloured solution	
	II Oxidation number of	Unchanges from $+3$ to $+6$	t- 1	
	III. Uxidation number of	or U in H_2U_2 changes fro -2	t0 - 1	
	Select the correct state	ments(s)	a) II anl	d) I and III
	ajioniy	b) I and II	cj ii only	a) I and III

28.	Of	the followin	g acids, th	e one that is st	rongest is			
	a)	HBrO ₄		b) HOCl		c) HNO ₂	d) H ₃ PO ₃
29.	Со	mposition o	f azurite n	nineral is				
	a)	CuCO ₃ CuO		b) Cu(HCO ₃	$_{2}.Cu(OH)_{2}$	c) Cu(OH) ₂ .2CuCO	D_3 d) CuCO ₃ . 2Cu(OH) ₂
30.	Ma	agistral is the	e burnt py	rites containin	ıg			
	a)	Sulphates of	f iron and	copper		b) Sulphates and o	xides of ir	on and copper
	c)	Oxides of iro	on and cop	oper		d) Sulphides of silv	ver and lea	nd
31.	Fre	oth floatatio	n process	is used for the	concentratio	n of		
~ ~	a)	Oxide ores		b) Sulphide	ores	c) Chloride ores	d) Amalgams
32.	Fo	r the electro	lytic refin	ing of aluminit	im, the three	fused layers consist	of	
	B	ottom M	liddle l	Jpper				
	a)	Cathode	Crvolite	Anode of				
	uj	of pure	and	Al and Cu				
		Al	fluorsp	alloy				
			ar					
	b)	Cathode	Bauxite	Anode of				
		of Al and	and	pure Al				
	c)	Anode of	Cryolite	Cathode of				
	-)	impure	and	pure Al				
		Al	barium	-				
	15		fluoride					
	d)	Anode of	Bauxite,	Cathode of				
		allov	and	pure Ai				
		unoy	fluorsp					
			ar					
33.	So	me of the co	mmon ste	ps involved in	the metallurg	gical operations are		
	I. r	efining	,					
	II.	dressing of t	the ore	1				
	III.	. conversion	of the ore	into its oxides	or other desi	red compounds		
	CII a)		KKEUI OI		lese steps are		4.	
34	aj Ca	iii, ii, i rhon reducti	ion cannot	bj 1, 11, 111 be applied for	r the extractio	C_{J} II, III, I on of Al from Al ₂ O ₂	u _. This is has	y II, I, III and on the followed facts
51.	Fac	ct I The tem	nerature i	requirement is	verv high ah	ni ol minoli m203.	11113 13 Das	ice on the followed facts
	Fa	ct II Based o	n Ellingha	in diagram	very mgn ub			
	Fa	ct III Al obta	ained in th	e vapour state	is difficult to	handle		
	Fa	ct IV Al gets	converted	$d \text{ into } Al_2C_3$ (ca	arbide)			
	Sel	lect the corr	ect fats		·			
	a)	All except I		b) All except	t II	c) All except III	d) All are correct facts
35.	Ele	ectrometallu	rgy is use	d for m	etals			
	a)	Transition		b) Most read	ctive	c) Noble	d) Soft
36.	In	which of the	following	, transformatio	on, oxygen is i	not the reducing age	nt?	
	a)	$Ag_2 0 \rightarrow 2Ag$	$g + \frac{1}{2}O_2$			b) $4NH_3 + 3O_2 \rightarrow$	$2N_2 + 6H_2$	20
	c)	$2F_2 + 2H_2O$	$\rightarrow 4$ HF +	02		d) $2AgNO_3 + H_2O_2$	$_2 \rightarrow 2Ag +$	$2HNO_3 + O_2$
37.	In	order to sep	arate two	sulphide ores	by froth float	ation process,	-	
	a)	Proportion	of oil to wa	ater is adjusted	d			
	b)	Depressants	s are adde	d				
	c)	Collectors a	re added					
	d)	Either (A) o	r (B)					
38.	Be	ssemer conv	verter is us	sed for the pre	paration of			

	a) Steel	b) Wrought iron	c) Pig iron	d) Cast iron
39.	Consider the following spe	cies.		
	1. $CaOCl_2$;			
	2. $Na_2S_2O_3;$			
	3. Pb ₃ 0 ₄ ,			
	$4. Na_2S_4O_6$			
	Select the species with diffe	erent oxidation states of t	he same element	
	a) I, II	b) I, II, III	c) II, III, IV	d) I, II, III, IV
40.	Pyrometallurgical method	used for the extraction of	copper from sulphide ore	
	a) Is a dry method			
	b) Involves concentration b	by leaching the sulphide o	re with dil. H ₂ SO ₄	
	c) Involves concentration of	of the sulphide ore by frot	h flotation process	
	d) Statement given in (b) is	s incorrect		
41.	Chemical leaching is useful	in the concentration of		
	a) Copper pyrites	b) Bauxite	c) Galena	d) Cassiterite
42.	Which is NOT the method of	of chromatography?		
	a) Paper chromatography			
	b) Gas chromatography			
	c) Thin layer chromatogra	phy		
	d) Vapour chromatography	7		
43.	In zone refining, pure meta	ll is obtained at the	-	
	a) Right end, if zone is trav	elling from left to right		
	b) Left end, if zone is travel	lling from left to right		
	c) Left end, if zone is travel	lling from right to left		
	d) Centre, if zone is travelli	ng from any side		
44.	Al_2O_3 can be converted to a	anhydrous AlCl ₃ by heatir	ıg	
	a) Al_2O_3 with HCl gas			
	b) Al_2O_3 with NaCl in solid	state		
	c) A mixture of Al_2O_3 and C	carbon in dry Cl ₂ gas		
4 5	d) AI_2U_3 with CI_2 gas			lew wette ef
45.	H_2U_2 oxidizes MnU ₂ to Mn	O_4 in basic medium. H_2O_4	$_2$ and MnO ₂ react in the mo	d 2 . 2
10	a) 1 : 1 Equivalent weight of MaQ	D / Z = 1	$C \int Z : 3$	a) 3 : 2
46.	Equivalent weight of MnO_2	in the following reaction	1S(Mn = 55)	
	$M\Pi^{-1} \rightarrow M\Pi^{-1} + M\Pi U_2$	h) 07	a) EE	d) 171
17	aj 43.5 If the impurity of silice in h	UJ 07 Juvito is comparativolu m	CJ 55	uj 1/4
47.	a) Hall's method	b) Brower's method	c) Serpeck's process	d) Pattinson's process
48	Which of the following is n	of the hy-product obtained	d in the extraction of conne	ar?
40.	a) SO, which is further use	d in the manufacture of H	SO, by the contact proces	c
	h) Gold silver and platinup	n obtained as anode mud	2504 by the contact proces	3
	c) $FeSO_{\ell}$ which is used to r	prenare green vitriol		
	d) FeSiO ₂ obtained as slag	used in road making		
49	Electrolytic reduction of all	umina to aluminium by H	all-Heroult process is carrie	ed out
17.	a) In the presence of NaCl			
	b) In the presence of fluori	te		
	c) In the presence of cryoli	te which forms a melt wit	h lower melting temperatu	re
	d) In the presence of cryoli	te which forms a melt wit	h higher melting temperatu	ire
50.	Which one is used for the n	nanufacture of iron?	one month to a point of the second to a point of the second terms of ter	-
	a) Cryolite	b) Bauxite	c) Haematite	d) Chalcopyrites
		-	-	- 17

	a) 3	b) 5	c) 7	d) 8
52.	The purest form of iron is			
	a) Pig iron	b) Wrought iron	c) Steel	d) Both (A) and (C)
53.	Gallium arsenide is purifi	ed by		
	a) Froth floatation proces	SS		
	b) Van Arkel method			
	c) Zone – refining method	ł		
	d) Electrolytic method			
54.	The complex $[Fe(H_2O)_5N]$	0] ²⁺ is formed in the ring t	test for nitrate ion (NO_3) w	when freshly prepared FeSO ₄
	solution is added to agu	eous solution of NO_3^- follo	owed by the addition of c	onc. H_2SO_4 . This complex is
	formed by charge transfe	r in which	5	
	a) Fe^{2+} changes to $Fe^{3+}a$	nd NO ⁺ changes to NO		
	b) Fe^{2+} changes to Fe^{3+} and	d NOchanges to NO ⁺		
	c) Fe^{2+} changes to Fe^{+} and	l NOchanges to NO ⁺		
	d) No charge transfer tak	es place		
55.	Which is intramolecular of	ixidation reduction reactio	n?	
	a) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + 0$	$Cr_2O_3 + H_2O_3$	b) NH ₄ NO ₃ \rightarrow N ₂ O + 2H ₂	0
	c) $2KClO_3 \rightarrow 2KCl + 3O_2$		d) All of the above	
56.	Which metal is found in fi	ree state?	,	
	a) Iron	b) Platinum	c) Aluminium	d) Sodium
57.	In aluminothermic proces	ss, Al acts as a		2
	a) Flux	b) Oxidizing agent	c) Reducing agent	d) Solder
58.	The element which could	be extracted by electrolyti	c reduction of its oxide diss	solved in a high
	temperature melt is			-
	a) Sodium	b) Magnesium	c) Fluorine	d) Aluminium
59.	Which of the following do	es not contain Mg?		
	a) Magnetite	b) Magnesite	c) Asbestos	d) Carnallite
60.	For the temperature at w	hich $C \rightarrow CO$ line lie below	the metal oxide line in the l	Ellingham diagram,
	can be used to reduce the	metal oxide		
	a) Carbon	b) Carbon monoxide	c) Carbon dioxide	d) All of these
61.	In electrorefining of copp	er, some gold is deposited	as	
	a) Cathode	b) Electrode	c) Cathode mud	d) Anode mud
62.	Purification of aluminium	done by electrolytic refini	ng is known as	
	a) Serpeck's	b) Hall's	c) Baeyer's	d) Hoop's
63.	Electro refining is used for	or refining of		
	a) Cu	b) Fe	c) Pb	d) Al
64.	Which statement is CORR	ECT?		
	a) Gangues are carefully of	chosen to combine with the	e slag present in the ore to p	produce easily fusible flux
	to carry away the impu	irities		
	b) Slags are carefully chose	sen to combine with the flu	x present in the ore to proc	duce easily fusible gangue
	to carry away the impu	irities		
	c) Gangues are carefully of	chosen to combine with the	e flux present in the ore to p	produce easily fusible slag
	to carry away the impu	irities		
	d) Fluxes are carefully ch	osen to combine with the g	angue present in the ore to	produce easily fusible slag
	to carry away the impl	irities		
65.	Softened lead is desilveris	sed by		
~	a) Park's method	bj Pattinson' method	cj Both (a) and (b)	a) None of the above
66.	Une way to test for the pr	resence of sugars (say in ur	ine sample) is to treat the s	sample with silver ions in
	aqueous ammonia (Toller	n s test), with glucose, reac	tion is	
	$L_6H_{12}U_6(aq) + 2Ag'(aq)$)+20H (aq)→		

In this reaction a) Glucose is oxidized b) Silver ion is reduced c) A silver-mirror is formed d) All of the above are correct 67. Which does not represent correct method? a) TiCl₂ + 2Mg \rightarrow Ti + 2MgCl₂: Kroll b) Ni(CO)₄ \rightarrow Ni + 4CO: Mond c) $Ag_2CO_3 \rightarrow 2Ag + CO_2 + \frac{1}{2}O_2$: van-Arkel d) $ZrI_4 \rightarrow Zr + 2I_2$: van-Arkel 68. Cl_2 changes to Cl^- and ClO^- in cold NaOH.Equivalent weight of Cl_2 will be c) $\frac{M}{3}$ d) $\frac{2M}{2}$ b) $\frac{M}{2}$ a) *M* 69. Consider the following reactions, I. $Fe^{2+} + MnO_4^- + H^+ \rightarrow$ II. $H_2O_2 + MnO_4^- + H^+ \rightarrow$ III. $SO_3^{2-} + MnO_4^- + H^+ \rightarrow$ MnO_4^- is the oxidant in a) I only b) I and II c) I, II and III d) II only 70. During the electrolysis of carnallite, MgCl₂ is decomposed and not KCl. This is because of a) Lower decomposition voltage of MgCl₂ than that of KCl b) Reverse reaction $MgCl_3 + 2K \rightarrow Mg + 2KCl$ if KCl is decomposed under other experimental condition c) Both (a) and (b) d) None of the above 71. The most important method of making steel is a) BOP process b) BOD process c) Pudding process d) Smelting 72. Which ore contains both iron and copper? a) Cuprite b) Copper glance c) Chalcopyrite d) Malachite 73. Flux is used to remove ____ a) Acidic impurities b) Basic impurities c) All impurities from ores d) Both (A) and (B) 74. 0.05 mole of Ca(OH)₂ can neutralize H₂SO₄. This H₂SO₄ can be neutralized by a) 0.05 mol of NaOH b) 0.10 mol of NaOH c) 0.05 mol of $POH(OH)_2$ d) None is correct 75. Lead pencil contains a) Graphite b) Softened lead c) Galena d) Anglesite 76. Which one of the following elements constitutes a major impurity in pig iron? d) Graphite a) Silicon b) Oxygen c) Sulphur 77. In metallurgy, flux is a substance used to convert _____ a) Infusible impurities to fusible material b) Soluble impurities to insoluble impurities c) Fusible impurities to infusible material d) Mineral into silicate 78. CO in passing over heated nickel gives _____ a) NiCO₃ b) Ni(CO)₄ c) $CO_2 + H_2$ d) $CO + H_2$ 79. In the following unbalanced redox reaction, $Cu_3P + Cr_2O_7^{2-} \rightarrow Cu^{2+} + H_3PO_4 + Cr^{3+}$ equivalent weight of H₃PO₄ is a) $\frac{M}{3}$ b) $\frac{M}{6}$ c) $\frac{M}{7}$ d) $\frac{M}{R}$ 80. Select the correct statement in the following reaction $NH_4NO_2 \rightarrow N_2 + 2H_2O$ a) Oxidation number of N has changed from -2 to +2

	b) Oxidation number of N in NH $_4^+$ changed from -3 to 0 and that in NO $_2^-$ changed from $+3$ to 0				
	c) Oxidation number of N in NH ⁺ ₄ changed from +1 to 0 and that in NO ⁻ ₂ changed from -1 to 0				
	d) No change				
81.	Which of the ore dressing	g process requires finest siz	ze of ore?		
	a) Froth floatation				
	b) Wilfley's table method	l			
	c) Magnetic separation				
	d) Leaching				
82.	Oxidation numbers of Cl	atoms in CaOCl ₂ (bleaching	g powder) are		
	CI*				
	Ca				
	**				
	a) Zero on each		b) -1 on Cl [*] and $+1$ on Cl [*]		
	c) $+1$ on Cl [*] and -1 on Cl	**	d) 1 on each		
83.	Plots of ΔG° against temp	oerature (in Kelvin) are call	led		
	a) Ellingham diagrams				
	b) Free energy curves				
	c) Temperature curves				
	d) Energy profile diagram	ns			
84.	Reduction of a metal oxid	le by excess carbon at high	temperature is a method	for the commercial	
	preparation of some met	als. This method can be suc	ccessfully applied in the ca	se of	
	a) BeO and Al ₂ O ₃	b) ZnO and Fe_2O_3	c) CaO and Cr_2O_3	d) BaO and U ₃ O ₈	
85.	In the Ellingham diagram	n, graph for the formation o	of CO ₂		
	a) Is a straight line with t	the negative slope			
	b) Is a straight line with t	the positive slope			
	c) Is a straight line almost	st parallel to temperature a	ixis		
	d) Is a curved line with s	udden change in the slope			
86.	During electrolytic refini	ng of zinc, anode and catho	de used are made up of	respectively	
	a) Aluminium and lead	b) Lead and aluminium	c) Lead and graphite	d) Aluminium and	
				graphite	
87.	One mole of ferrous oxal	ate is oxidized by <i>x</i> mole of	$f MnO_4^-$ in acidic medium.	x is	
	a) 0.6	b) 0.1	c) 0.3	d) 1.0	
88.	The ore carnallite is repr	esented by structure			
	a) Na ₂ Al ₂ O ₃	b) Na ₃ AlF ₆	c) KClMgCl ₂ · $6H_2O$	d) Fe ₃ 0 ₄	
89.	Which ore contains both	iron and copper?			
	a) Cuprite	b) Chalcocite	c) Chalcopyrite	d) Malachite	
90.	The method of zone refin	ing of metals is based on th	he principal of		
	a) Greater noble charact	er of the solid metal than t	hat of the impurity		
	b) Greater solubility of th	ie impurity in the molten s	tate than in the solid		
	c) Greater mobility of the	e pure metal than that of in	npurity		
	d) Higher melting point of	of the impurity than that of	the pure metal		
91.	Bessemerisation is carrie	ed out for			
	I: Fe, II: Cu, III: Al,	IV: Ag			
	a) I, II	b) II, III	c) III, IV	d) I, III	
92.	For the reduction of oxid	es of chromium, carbon car	n be used as reducing agen	t but this is not observed in	
	practice because				
	a) High temperatures are	e required			
	b) Chromium forms corr	esponding carbide under tl	he reaction conditions		
	c) Chromium forms corr	esponding carbonates unde	er the reaction conditions		
	d) Both (A) and (B)				

93.	During electrolytic refining of copper	, some metals present as impurity settle as	'anode mud'. These are
-----	--	---	------------------------

a) Sn and Ag b) Pb and Zn c) Ag and Au d) Fe and Ni 94. Which ore contain both iron and copper? b) Chalococite a) Cuprite c) Chalcopyrite d) malachite 95. Which of the following elements is present as the impurity to the maximum extent in pig iron? a) Phosphorus b) Manganese c) Carbon d) Silicon 96. Which one of the following statements is correct? In the metallurgy of sodium by electrolysis, excess of calcium chloride is mixed with sodium chloride to a) Make the latter a good conductor b) Make the latter soft c) Generate more energy for the electrolytic cell d) Assist liquefication of the latter at a much lower temperature 97. Which of the following pairs of metals is purified by van Arkel method? a) Ni and Fe b) Ga and In c) Zr and Ti d) Ag and Au 98. Purification of silicon element used in semiconductors is done by ____ a) Zone refining b) Chromatography c) Froth floatation d) Electrolysis 99. The smelting of iron in the blast furnace involves all the following process EXCEPT _ b) Reduction c) Decomposition a) Oxidation d) Sublimation 100. Bauxite ore is concentrated by _____ a) Froth flotation b) Electromagnetic separation c) Chemical separation d) Hydraulic separation 101. In order to refine "blister copper" it is melted in a furnace and is stirred with green logs of wood. The purpose is _ a) To expel the dissolved gases in blister copper b) To bring the impurities to surface and oxidize them c) To increase the carbon content of copper d) To reduce the metallic oxide impurities with hydrocarbon gases liberated from the wood 102. Zinc spelter contains _____ of zinc a) 95% to 99% b) 97% to 98% c) 99% to 100% d) 95% to 97% 103. Which step is not involved in hydrometallurgical process? a) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$ b) $CuFeS_2 + 2H_2SO_4 \rightarrow CuSO_4 + FeSO_4 + 2H_2S$ c) $CuSO_4 + Fe \rightarrow FeSO_4 + Cu$ d) $CuCO_3 + H_2SO_4 \rightarrow CuSO_4 + H_2O + CO_2$ 104. In smelting of iron, which of the following reactions takes place in blast furnace at $400^{\circ}\text{C} - 600^{\circ}\text{C}$? a) Ca0 + SiO₂ \rightarrow CaSiO₃ b) $2\text{FeS} + 30_2 \rightarrow 2\text{Fe} + \text{SO}_2$ c) FeO + SiO₂ \rightarrow FeSiO₃ d) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 105. Four metals and their methods of refinement are given (i) Ni, Cu, Zr, Ga (ii) Electrolysis, van-Arkel process, Zone refining, Mond's process Choose the right method for each a) Ni: Electrolysis, Cu: van-Arkel process, Zr: Zone refining, Ga: Mond's process b) Ni: Mond's process, Cu: Electrolysis, Zr: van-Arkel process, Ga: Zone refining c) Ni: Mond's process, Cu: van-Arkel process, Zr: Zone refining, Ga: Electrolysis d) Ni: Electrolysis, Cu: Zone refining, Zr: van Arkel process, Ga: Mond's process 106. Select the incorrect statement

Page 8

a) When the lead-silver alloy is rich in silver, lead is removed by the cupellation process b) When the lead-silver alloy is rich in lead, lead is removed by Parke's r Pattinson's process c) Zinc forms an alloy with lead from which lead is separated d) Zinc forms an alloy with silver, from which zinc is separated by distillation 107. Purest form of iron is a) Cast iron b) Wrought iron c) Pig iron d) None of these 108. A drunken person was asked to blow a glass tube packed with acidified potassium dichromate. The change in colour of the material from orange to green confirmed the drinking of alcohol. It is due to I. The oxidation of alcohol with the reduction of dichromate to chromium (III) II. Complex formation of alcohol and dichromate III. Change in the coordination number of chromium Which of the statements given above is/are correct? a) I only b) II only c) III only d) II and III 109. When KCN is added to CuSO₄ solution there is formation of the stable water soluble complex. This complex is b) $K_3[Cu(CN)_4]$ c) $K_2[Cu(CN)_4]$ a) $K_4[Cu(CN)_6]$ d) $K[Cu(CN)_3]$ 110. Mg can be obtained a) By heating $MgCl_2$ (anhydrous) with Na in the atmosphere of coal gas b) By electrolysis of fused carnallite c) By both the methods d) By none of the above methods 111. Which has the maximum number of equivalent per mole of the oxidant? a) $Zn(s) + VO^{2+}(aq) \rightarrow Zn^{2+}(aq) + V^{3+}(aq)$ b) $Ag(s) + NO_3^-(aq) \rightarrow Ag^+(aq) + NO_2(g)$ c) Mg(s) + VO₄³⁻(aq) \rightarrow Mg²⁺(aq) + V²⁺(aq) d) $I^{-}(aq) + IO_{3}^{-}(aq) \rightarrow I_{3}^{-}(aq)$ 112. Producer gas is a mixture of _____ a) $CO + N_2$ b) $CO + H_2$ c) $CH_4 + CO_2$ d) $CO + CO_2$ 113. Which of the following reaction is involved in the Hall's method of purification of bauxite? a) Al_2O_3 . $2H_2O + 2NaOH \rightarrow 2NaAlO_2 + 3H_2O$ b) Al_2O_3 . $2H_2O + Na_2CO_3 \rightarrow 2NaAlO_2 + 2H_2O + CO_2$ c) Al_2O_3 $2H_2O + 3C + N_2 \rightarrow 2AlN + 3CO + 2H_2O$ d) $2Al_2O_3 + 6F_2 \rightarrow 4AlF_3 + 3O_2$ 114. During electrolytic refining of blister copper, _____ a) Copper ions from the anode goes into the electrolyte b) Copper ions from the cathode goes into the electrolyte c) Copper ions from the electrolyte gets deposited on the anode d) Both (B) and (C) 115. Bauxite has the formula _____ b) Al_2O_3 . $2H_2O_3$ d) Al₂O₃. 2SiO₂. 2H₂O a) Na_3AlF_6 c) FeCO₃ 116. In the reaction, 4 moles of electrons are transferred to 1 mole of HNO₃. The possible product obtained due to reduction a) 0.4 mole of N₂ b) 0.5 mole of N_2O c) 1 mole of NO_2 d) 1 mole of NH₃ 117. Which method of purification is represented by following equations? $\begin{array}{c} Zr+2I_2 \xrightarrow[2075]{875 \text{ K}} ZrL_4 \\ ZrI_4 \xrightarrow[-]{2075 \text{ K}} ZrI_4 \xrightarrow[-]{2075 \text{ K}} Zr+2I_2 \end{array}$ b) Van Arkel c) Polling a) Zone refining d) Liquation 118. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen? a) HNO_3 , NO, NH_4Cl , N_2 b) HNO_3 , NO, N_2 , NH_4Cl c) HNO_3 , NH_4Cl , NO, N_2 d) NO, HNO₃, NH₄Cl, N₂

119. O_3 is estimated by I⁻ in iodometric method. Balanced reaction is a) $2H^+ + O_3 + 2I^- \rightarrow I_2 + O_2 + H_2O$ b) $2I^- + O_3 + H_2O \rightarrow I_2 + O_2 + 2OH^$ c) Both (a) and (b) d) None of the above 120. Zinc blende ore can be concentrated by _____ a) Gravity separation b) Electromagnetic separation c) Froth floatation process d) All of these 121. Froth floatation method is successful in separating impurities from ores because a) The pure ore is lighter than water containing additives like pine oil, fatty acid, etc b) The pure ore is soluble in water containing additives like pine oil, fatty acid, etc c) The impurities are soluble in water containing additives like pine oil, fatty acid, etc d) The pure ore is not as easily wetted by water as by pine oil, fatty acid, etc 122. Which is not the disproportionation reaction? a) $3H_3PO_2 \rightarrow 2H_3PO_3 + PH_3$ b) HCHO + OH⁻ \rightarrow HCOO⁻ + CH₃OH c) $NH_4NO_3 \rightarrow N_2O + 2H_2O$ d) $3Cl_2 + 60H^- \rightarrow 5Cl^- + ClO_3^- + 3H_2O$ 123. Oxidation number of Cr is +5in a) K_3 CrO₈ b) $(NH_3)_3CrO_4$ c) K₂CrO₄ d) $[Cr(NH_3)_5(H_2O)]Cl_3$ 124. In the reaction, $Cu + H_2SO_4 \rightarrow CuSO_4 + H_2O + SO_2$ b) SO_4^{2-} is the oxidizing agent a) H⁺ is the oxidizing agent c) Both (a) and (b) correct d) None of the above is correct 125. Oxidation states of the metal in the minerals given are Haematite Magnesite a) II, III III b) II, III Π c) II II, III d) III II, III 126. In bessemerization, the sulphide of copper is reduced by _____ a) Reduction by carbon b) Electrolysis c) Auto reduction d) Cyanide process 127. Silica is added to roasted copper ore during smelting in order to remove _____ a) Cuprous sulphide b) Cuprous oxide c) Ferrous oxide d) Ferrous sulphide 128. Refining of silver is done by c) Cupellation d) Van-Arkel method a) Liquation b) Poling 129. The process of calcination is carried out in case of _____ a) Hydroxide ores only b) Carbonate ores and sulphide ores c) Hydroxide and carbonate ores d) Hydroxide and sulphide ores 130. The method of zone refining of metals is based on the principle of a) Greater noble character of the solid metal than that of the impurity b) Greater solubility of the impurity in the molten state than in the solid c) Greater mobility of the pure metal than that of impurity d) Higher melting point of the impurity than that of the pure metal 131. In the extraction of metals from their oxides by reduction process, the choice of reducing agent and the temperature that has to be maintained is decided based on the thermodynamic property called ____ a) Change in enthalpy d) All of these b) Entropy c) Free energy 132. Froth floatation process used for the concentration of sulphide ore

- a) Is based on the difference in wettability of different minerals
- b) Uses sodium ethyl xanthate, C_2H_5 OCS₂Na as collector
- c) Uses NaCN as depressant in the mixture of ZnS and PbS when ZnS forms soluble complex and PbS form froth
- d) All of the above are correct

133. Which combination appears odd *w*.*r*.*t*.oxidation number per atom of the underlined?

- a) H_2SO_5 , $H_2S_2O_8$, $K_2Cr_2O_7$
- c) Both (a) and (b)

b) CrO_5 , CrO_4^{2-} , SO_4^{2-} d) None of the above

- 134. During the process of polling, ____
 - a) Metals are oxidised to their corresponding carbonates
 - b) Metals are oxidised to their corresponding oxides
 - c) Metals are oxidised to their corresponding nitrates
 - d) Metal oxides are reduced to metals
- 135. CuS is dissolved in dil. HNO_3 . Balanced equation with correct products is
 - a) $CuS + 2H^+ + 3NO_3^- \rightarrow Cu(NO_3)_2 + H_2S + H_2O + NO_2$
 - b) $3CuS + 8H^+ + 8NO_3^- \rightarrow 3Cu(NO_3)_2 + 3S + 4H_2O + 2NO_3$
 - c) $CuS + 4NO_3^- \rightarrow Cu(NO_3)_2 + H_2S + H_2O$
 - d) None of the above is correct
- 136. In an experiment, 20 g of vanadium (V) oxide (molar mass = 182) was reduced by excess of zinc dust in acidic solution to vanadium (II) ions. The required number of moles of iodine to reoxidise vanadium (II) to VO^{2+} is
 - a) 0.22 b) 0.11 c) 0.30 d) 0.23

137. Oxidation number of Cr in the following compounds are *x*, *y*, *z* and *w* respectively

 $K[CrO(O_2)(OH)], K_3[Cr(O_2)_4], (NH_3)_3[Cr(O_2)_2],$ Y Х Z CrO_2Cl_2 W These values are a) 6, 13, 5,6 b) 4, 4, 4, 6 c) 4, 5, 4, 6 d) 4, 5, 6, 6 138. The electrolytic method of reduction its employed for the extraction of metals that are _____ a) Strongly electronegative b) Strongly electropositive c) Transition metals d) Non – metals 139. Example of autoreduction is a) $2\text{FeS} + 30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2$ b) FeO + SiO₂ \rightarrow FeSiO₃ c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ d) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ 140. 0.05 mole of $Ca(OH)_2$ can neutralize H_2SO_4 . This H_2SO_4 can be neutralized by a) 0.05 mole of NaOH b) 0.10 mole of NaOH d) None of the above is correct c) 0.05 mole of $POH(OH)_2$

- 141. The role of calcination in metallurgical operations is to _____
 - a) Remove moisture
 - b) Decompose carbonate
 - c) Drive off organic matter
 - d) All of these
- 142. In the Hoop's process for refining of aluminium, the fused materials form three different layers and they remain separated during electrolysis also. This is because _____
 - a) The upper layer is kept attracted by the cathode and the lower layer is kept attracted by the anode

b) There is special arrangement in the cell to keep the	he layers separate	
c) The 3 layers have different densities		
d) The 3 layers are maintained at different tempera	tures	
143. Consider the following unbalanced reactions		
I. $Zn + dil. H_2SO_4 \rightarrow ZnSO_4 + H_2$		
II. $Zn + conc. H_2SO_4 \rightarrow ZnSO_4 + SO_2 + H_2O$		
III. $\text{Zn} + \text{HNO}_3 \rightarrow \text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + \text{H}_2\text{O}$		
Oxidation number of hydrogen changes in		
a) I, II, III b) I, II	c) II, III	d) I
144. The methods chiefly used for the extraction of lead a	and tin from their ores are	respectively
a) Self reduction and carbon reduction	b) Self reduction and elec	trolytic reduction
c) Carbon reduction and self reduction	d) Cyanide process and c	arbon reduction
145. During electrolysis of copper sulphate, copper ions	move towards	
a) Anode b) Cathode	c) Both electrodes	d) Does not move
146. When a metal is to be extracted from its ore, if the g	angue associated with the o	ore is silica, then
a) An acidic flux is needed		
b) A basic flux is needed		
c) Both acidic and basic flux are needed		
d) Neither of them is needed		
147. In which case oxidation number of Cr has been affect	cted?	
a) $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$		
b) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$		
c) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O_3$		
d) $CrO_2Cl_2 + 2OH^- \rightarrow CrO_4^{2-} + 2HCl$		
148. Tin and lead can be refined by		
a) Distillation b) Liquation	c) Levigation	d) Leaching
149. Before introducing Feo in blast furnace, it is convert	ed to Fe ₂ O ₃ by roasting so	that
a) It may not be removed as slag with silica		
b) It may not be evaporated in the furnace		
c) Presence of it may increase the melting point of c	harge	
d) It may not decompose completely	0	
150. Which of the following metals are found in native st	ate?	
Ag, Pt, C, Si, N, O, Mg, Na, Pb		
a) Ag, Pt, C, N, O b) Ag, Pt, Mg	c) Ag, Pt, Pb, Mg	d) Ag, Pt
151. Bauxite is an oxide ore of	, , , , , ,	
a) Barium b) Boron	c) Bismuth	d) Aluminium
152. A metal which is refined by polling is	-)	-)
a) Sodium b) Blister copper	c) Zinc	d) Silver
153. In the following redox reaction.		-) - · · ·
$5Fe^{2+} + MnO_4^- + 8H^+ \rightleftharpoons Mn^{2+} + 5Fe^{3+} + 4H_2O_4^-$		
Given $Fe^{3+} + e^- \rightarrow Fe^{2+} E_1^\circ$		
$MnO_{-}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{0}O_{-}F_{0}^{\circ}$		
Potential at the equivalence point is		
a) $F = (F^{\circ} + F^{\circ}) = 0.08 \text{ pH}$		
$E^{\circ} + E^{\circ}$		
b) $E = \frac{E_1 + 5E_2}{6} - 0.08 \text{ pH}$		
c) $E = (E_1^{\circ} - E_2^{\circ}) - 0.08 \text{ pH}$		
d) $E = \frac{E_1 - 5E_2}{6} + 0.08 \text{ pH}$		
154. Alumina is		

	a) $Al(OH)_3$ b) $AlCl_3$	c) AIN	d) Al_2O_3		
155	In $[Cr(O_2)(NH_3)_4(H_2O)]Cl_2$ oxidation number of Cr	is $+3$, then 0_2 will be in the	form		
	a) Dioxo b) Peroxo	c) Superoxo	d) Oxo		
156	Strongest conjugate base is				
	a) ClO^- b) ClO_2^-	c) ClO_{3}^{-}	d) ClO_4^-		
157	The dissolve argentite ore which of the following is u	used			
	a) Na $[Ag(CN)_2]$ b) NaCN	c) NaCl	d) HCl		
158	Equivalent weight of H_3PO_2 in a reaction is found to	be half of its molecular we	ight. It can be due to its		
	a) Reaction of its two H ⁺ ions	b) Oxidation to H_3PO_3			
	c) Both (a) and (b)	d) None of the above			
159.	Oxidation number of P in $Ba(H_2PO_2)_2$ is	,			
	a) $+ 3$ b) $+ 2$	c) + 1	d) — 1		
160	For the extraction of chromium from Cr^2O_3 , the prod	cess adopted is proce	ess		
	a) Carbon reduction b) Alumino thermite	c) Electrolytic	d) Chromium thermite		
161	In the extraction of nickel by Mond's process, the me	etal is obtained by	·) · · · · · · · ·		
-	a) Electrochemical reduction	b) Thermal decompositio	n		
	c) Chemical reduction by aluminium	d) Reduction by carbon			
162	Which one of the following is not a method of concer	ntration of metals?			
101	a) Gravity separation	b) Froth floatation proces	S		
	c) Electromagnetic separation	d) Smelting			
163	The vertical retort is made up of hricks	ajomornig			
100	a) Silicon hydride b) Silicon carbide	c) Zinc carbide	d) Zinc hydride		
164	For a titration of 100 cm ³ of 0.1 M (0.1 mol L^{-1})Sn ²⁺	$to Sn^{4+}$ 50 cm ³ of 0 40 M (e^{4+} solution was required		
101	The oxidation state of cerium in the reduction product is				
	a + 1 $b + 2$	c) + 3	d) ()		
165	Consider a titration of notassium dichromate solution	on with acidified Mohr's sal	t solution using		
105	diphenylamine as indicator. The number of moles of	f Mohr's salt required per r	nole of dichromate is		
	a) 3 b) 4	c) 5	d) 6		
166	Extraction of silver from its sulphide ore is carried h	v cvanide process. This pro	ocess is also called		
	a) Linz-Donawitz (LD) process	b) Van-Arkel process			
	c) Hall's process	d) Mac-Arthur Forrest pr	ocess		
167	1 mole of FeC ₂ O ₄ is oxidized by x moles of $Cr_2O_2^{2-}$ in	acidic medium, x is			
207	a) 3 b) 1.5	c) 0.5	d) 1.0		
168	Naturally occurring substances from which a metal	can be profitably (or econo	mically) extracted are		
200	called				
	a) Minerals b) Ores	c) Gangue	d) Salts		
169					
	Prussian blue has two types of iron with oxidation n	umber as shown : Fe[Fe(C)	^{N)} 6 ^{].} What is the net charge		
	on Prussian blue?				
	a) -1 b) +1	c) 0	d) —2		
170	Which of the following is used in van Arkel method?				
	a) CaF ₂ b) NaCN	c) I ₂	d) CO		
171	Liquation process for refining of crude metal is used	when			
	a) Impurity has higher melting point than metal				
	b) Impurity has low melting point than metal				
	c) Metals have low boiling point				
	d) Impurities have low boiling point				
172	All ores are minerals, while all minerals are not ores	because			
	a) The metal can't be extracted economically from a	ll the minerals			
	b) Minerals are complex compounds				
	c) The minerals are obtained from mines				

	d) All of these			
173.	The most abundant ore o	of Zn is		
	a) Zinc blende	b) Calamine	c) Zincite	d) Willemite
174.	Blister copper is			
	a) Impure copper			
	b) Obtained in self-reduc	tion process during bessem	nerisation	
	c) Both (a) and (b) are c	orrect		
	d) None of the above is c	orrect		
175.	In hydrometallurgy of co	pper, iron scrap is used inst	tead of zinc scarp because _	
	a) Cost of zinc scrap is co	omparatively higher than th	e iron scrap	
	b) Zinc scrap is not easily	v available	-	
	c) Handling of zinc scrap	is dangerous		
	d) Both (B) and (C)	0		
176.	Which of the following or	re is concentrated by both, i	magnetic and gravimetric s	eparation?
	a) Dolomite	b) Tinstone	c) Galena	d) Bauxite
177.	An example of halide ore	is		-
	a) Galena	b) Bauxite	c) Copper glance	d) Cryolite
178.	Which of the following or	res does NOT represent the	ore of iron?	, , , , , , , , , , , , , , , , , , ,
	a) Haematite	b) Magnetite	c) Cassiterite	d) Limonite
179.	Diaspore is	<i>,</i>		,
	a) Al_2O_3	b) Na_3AlF_6	c) Al_2O_3 . H_2O	d) Al ₂ O ₃ . 2H ₂ O
180.	is added as flux in t	he extraction of iron		
	a) Silica	b) Feldspar	c) Limestone	d) Alumina
181.	Which method of purifica	ation is represented by the	equation?	2
	500 K 1675 K	т; , 2I	•	
	$11 + 21_2 \longrightarrow 111_4 \longrightarrow$	$11 \pm 21_2$		
	a) Liquation	h) Dolling	a) Van Arkal	d) Chromotography
102	a) Liquation $C_{\pi} O^{2-} + 2I^{-} + 14II^{+}$	$U = 2C_{m}^{3+} + 7U_{m}^{3+}$	cj vali Arker	u) chi omatography
102.	$U_2U_7 + 2I + I4\Pi^* \rightarrow$ Which are not in holon so	$I_2 + 2UI^2 + 7\Pi_2 U$		
	which are not in balance $1 + 1 + 2 = 1 + 2$		b) C_{2} , O_{2}^{2} = and C_{2}^{3} =	
	a) H^2 and $H_2 U$		b) $Cr_2 O_7$ and Cr^{3+}	
100	c) I and I_2		d) All the above are balan	iced
183.	In extraction of copper, v	ve use	a) Cilean ann an ta mar ide	
104	a) copper giance	D) Malachite	c) silver argentocyanide	d) copper pyrites
104.	$Ag_2S + NaCN + ZII \rightarrow Ag$		··· ··· · · · · · · · · · · · · · · ·	
	a) Darlyo's mothod	n of Ag by complex formatio	b) Mag Arthur Format m	it is called
	a) Parke's method		d) Hall's mothed	etilou
105	C) Serpeck method	EALCE2	d) Hall's method	
105.	which of the following is	FALSE?	and the clament to be num	fied differ only elightly in
	a) Column chromatograp	bing is used when impurities	and the element to be pur	med differ only slightly in
	their chemical property	ties		
	b) Gold is extracted by cy	anide process		
	c) Calcination of an ore r	equires excess of air		
100	a) Mona's process is vap	our phase refining techniqu	le	
186.	which of the following is	NUT an ore?	a). 7in a blan da	d) Dig inon
107	a) Bauxite	b) Malachite	cj Zinc blende	d) Pig Iron
18/.	williey s table method fo	r the concentration of an of	re can be used when	-
	a) Gangue particles are h	eavier than the ore particle	25	
	b) Ore particles are heav	ier than the gangue particle	25	
	c) Ure particles are mag	ietic in nature		
	u) Gangue particles are n	nagnetic in nature		

188. Flux is used to remove

a) Basic impurities

b) Acidic impurities

c) All types of impurities d) Acidic and basic both impurities

189. Which one of the following reactions is an example for calcination process?

- a) $2Ag + 2HCl + 0 \rightleftharpoons 2AgCl + H_2O$
- b) $2Zn + O_2 \rightleftharpoons 2ZnO$
- c) $2ZnS + 3O_2 \rightleftharpoons 2ZnO + 2SO_2$

d)
$$MgCO_3 \rightleftharpoons MgO + CO_2$$

190. Match the method of concentration of the ore in Column I with the ore in Column II and select the correct alternate

	Column I	Column II
А.	Magnetic	Ag ₂ S
	separation	
В.	Froth floatation	FeCr ₂ O ₄
С.	Gravity	$Al_2(SiO_3)_3$
	separation	
0 1		

Codes

a) 1 c) 3

A B C

2	3	b) 2	1	3
1	2	d) 2	3	1

191. Oxidation states of sulphur atoms in $S_4 O_6^{2-}$ from left to right respectively are

0	0
Θ	
čo−s−s-	-S-S-O
l	l
0	0

	a) +6, 0, 0, +6	b) +3, +1, +1, +3	c) +5, 0, 0, +5	d) +4, +1, +1, +4
192	. Alumino thermite process	s is used for the extraction o	of metals. whose oxides are	

- a) Fusible
- b) Not easily reduced by carbon
- c) Not easily reduced by hydrogen
- d) Strongly basic
- 193. In the following reaction, $VO_3^{2-} + MnO_4^{-} \rightarrow Mn^{2+} + VO_4^{3-}$ 1 mole of VO_3^{2-} is oxidized by MnO_4^{-} usinga) 0.2 molb) 0.4 molc) 0.8 mold) 1.0 mol
- 194. Photographic paper is developed with alkaline hydroquinone

$$2AgBr(s) + 2OH^{-}(aq) + \bigcirc OH^{-}(aq) + OH^{-$$

Select the correct statement

- a) Hydroquinone is the oxidant
- c) Br⁻ is the oxidant

b) Ag⁺ is the oxidantd) Ag⁺ is the reductant

195. The reaction,

 $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr (\Delta G^\circ = -421 \text{ kJ})$ is thermodynamically feasible as a apparent from the Gibbs energy value. But it does not take place at room temperature, because

- a) At room temperature activation energy required for the reduction is not attained
- b) Reaction is exothermic
- c) Reaction is endothermic
- d) Reverse reaction is spontaneous

196	Blister copper is			
	a) 99% pure copper			
	b) 99.95% pure copper			
	c) 99.99% pure copper			
	d) 99.95 – 99.99% pure c	opper		
197.	When a manganeous salt	is fused with a mixture of	KNO_3 and solid NaOH, cha	nge in oxidation number of
	Mn is			
100	a) 2	b) 6	c) 8	d) 4
198	Silver may be obtained by			
	a) Reduction of Ag_2S by ((2n + HCI)		
	b) Melting Ag_2 S with Nac	l N than hu adding sin a naur	lan	
	c) Ag_2S treated with Nac	h then by adding zinc powe	ier	
100	Which of the following pr	II 2115	o motallurgy of magnocium	.7
199	a) Eucod calt electrolycic	ocesses is used in extractiv	b) Solf roduction	12
	c) Aqueous solution elect	rolucie	d) Thermite reduction	
200	Consider the following m	atallurgical processes	u) mermite reduction	
200	L Heating impure metal w	with CO and distilling the re-	sulting volatile carbonyl (h	n 43° and finally
	decomposing at 150° to 2	200° C to get the pure metal	Sulting volatile carboliyi (b	.p. +5 C) and many
	II Heating the sulphide o	re in air until a part is conv	erted to oxide and then fur	ther heating in the absence
	of air to let the oxide read	t with unchanged sulphide		ther heating in the absence
	III. Electrolysing the molt	en electrolyte containing a	pproximately equal amoun	ts of the metal chloride and
	$CaCl_{2}$ to obtain the metal		pprominion, equal amount	
	The processes used for ol	otaining sodium, nickel and	copper are respectively	
	a) I. II and III	b) II. III and I	c) III. I and II	d) II. I and III
201	Extraction of zinc from zi	nc blende is achieved by	-) ,	
	a) Electrolytic reduction	, , , , , , , , , , , , , , , , , , ,		
	b) Roasting followed by r	eduction with carbon		
	c) Roasting followed by r	eduction with another met	al	
	d) Roasting followed by s	elf-reduction		
202	A process of extracting m	etals from aqueous solution	ns of their salts using suital	ole reducing agents is called
	a) Pyrometallurgy	b) Hydrometallurgy	c) Electrometallurgy	d) Catalytic reduction
203	A sandy, earthy and other	r unwanted impurities pres	ent in the ore are called	
	a) Slag	b) Mineral	c) Gangue	d) Flux
204	In metallurgical processe	s, the flux used for removin	g basic impurities is	_
	a) Silica	b) Sodium chloride	c) Limestone	d) Sodium carbonate
205	Self reduction of the sulp	hide ore takes place during		
	a) Roasting	b) Smelting	c) Calcinations	d) Cupellation
206	Froth floatation is a proce	ess of		
	a) Oxidation	b) Reduction	c) Refining	d) Concentration
207	Which is not the correct s	statement?		
	a) Cassiterite, chromite a	nd pitchblende are concent	rated by hydraulic washing	g (Tabling)
	b) Pure Al_2O_3 is obtained	from the bauxite ore by lea	ching in the Baeyer's proc	ess
	c) Sulphide ore is concen	trated by calcination metho	od	
	d) Roasting can convert s	ulphide into oxide or sulph	ate and part of sulphide ma	y also act as a reducing
	agent			
208	Which of the following is	NOT an alkaline flux?		
	a) CaCO ₃	b) CaO	c) SiO ₂	d) All of these
209	Which mineral has been i	named incorrectly?		
	a) Bauxite : $Al_2O_3 \cdot 2H$	H ₂ 0	b) Corundum : Al ₂ O ₃	

d) Feldspar : $Be_3Al_2Si_6O_{18}$

- 210. Pig iron _____
 - a) Is the iron containing the carbon and other impurities
 - b) Is a pure form of iron
 - c) Is similar to wrought iron
 - d) Is similar to steel
- 211. Which of the following processes is related with the removal of sulphur by heating in the air?a) Smeltingb) Calcinationc) Annealingd) Roasting
- 212. The process of heating and suddenly cooling of steel is known as
- a) Tempering
 b) Annealing
 c) Hardening
 d) Quenching
 213. The following reactions take place in the blast furnace in the preparation of impure iron. Identify the reaction pertaining to the formation of slag

a) $Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 2Fe_{(l)} + 3CO_{2(g)}$

b)
$$CaCO_{3(s)} + CaO_{(s)} + CO_{2(g)}$$

- c) $CaO_{(s)} + SiO_{2(s)} \rightarrow CaSiO_{3(s)}$
- d) $2C_{(s)} + O_{2(g)} \rightarrow 2CO_{(g)}$
- 214. NaCN is sometimes added in the froth floatation process as a depressant when ZnS and PbS minerals are expected because
 - a) Pb(CN)₂ is precipitated while no effect as ZnS
 - b) ZnS form soluble complex Na₂[Zn(CN)₄] while PbS forms froth
 - c) PbS forms soluble complex Na₂[Pb(CN)₄] while ZnS forms froth
 - d) NaCN is never added in froth floatation process

215. If $OX_1 + ae^- \rightleftharpoons Red_1, E_1^\circ$

$OX_2 + be^-$	\rightleftharpoons Red ₂ , E_2°
---------------	---

Then potential at the equivalence point is

a)
$$E = \frac{aE_1^{\circ} + bE_2^{\circ}}{(a+b)}$$
 b) $E = \frac{aE_1^{\circ} - bE_2^{\circ}}{(a+b)}$ c) $E = \frac{bE_2^{\circ} - aE_1^{\circ}}{(a+b)}$ d) $E = \frac{aE_1^{\circ} - bE_2^{\circ}}{(a-b)}$

c) Double salt

d) Sulphate

216. Corundum is..... mineral of Al

- a) Silicate b) Oxide
- 217. Main function of roasting is _____
 - a) To remove volatile substances
 - b) Oxidation
 - c) Reduction
 - d) Slag formation

218. Roasting of concentrated zinc sulphide ore is completed at the temperature of 1200 K to _____

- a) Ensure complete decomposition of ZnSO₄ to ZnO
- b) Ensure complete melting of zinc
- c) Ensure evaporation of the volatile impurities
- d) All of these
- 219. In the metallurgy of iron, when limestone is added to the blast furnace, the calcium ion ends up in _____
- a) Slagb) Ganguec) Metallic Cad) Calcium carbonate220. Inert atmosphere of argon is used during zone refining to prevent _____a) Thermal decomposition of the metala) Thermal decomposition of the metal
 - b) Thermal reduction of the metal
 - c) Oxidation of the metal
 - d) Corrosion of the metal

221. Of the following substances the one which does NOT contain oxygen is _____

- a) Bauxite b) Epsom salt c) Cryolite d) Dolomite
- 222. 0.05 equivalent of H_3PO_4 is neutralized by a) 0.05 equivalent of NaOH
- b) 0.05 mol of $Al(OH)_3$

c) Both (a) and (b) correct	d) None of the above is	correct		
223. Which has the least number of equivalent per n	223. Which has the least number of equivalent per mole of the reactant?			
a) MnO ₄ changes to MnO ₂				
b) MnO_4^- changes to Mn^{2+}				
c) MnO_4^- changes to MnO_4^{2-}				
d) MnO_4^- changes to Mn_2O_3				
224. Calcium is obtained by the				
a) Roasting of limestone				
b) Electrolysis of solution of calcium chloride in	n H ₂ O			
c) Electrolysis of molten anhydrous calcium ch	loride			
d) Reduction of calcium chloride with carbon				
225. Zone refining is a method to obtain				
a) Very high temperature				
b) Ultra pure Al				
c) Ultra pure metals				
d) Ultra pure oxides				
226. Selection of temperature to carry out a reduction	on process depends so as to m	ake		
a) ΔG negative b) ΔG positive	c) ΔH negative	d) ΔH positive		
227. Iron obtained from blast furnace is				
a) Wrought iron b) Cast iron	c) Pig iron	d) Steel		
228. Which of the following have been arranged in the	he decreasing order of oxidati	on number of sulphur?		
a) $S_2 O_6^{2-} > S_2 O_7^{2-} > S_2 O_3^{2-} > S_8$				
b) $H_2SO_4 > SO_2 > H_2S > H_2S_2O_8$				
c) $SO_2^{2+} > SO_4^{2-} > SO_3^{2-} > HSO_4^{-}$				
d) $H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$				
229. NH_3 is oxidized to NO by O_2 (air) in basic media	um. Number of equivalent of I	NH_3 oxidized by 1 mole of O_2		
229. NH_3 is oxidized to NO by O_2 (air) in basic media is	um. Number of equivalent of l	$\rm NH_3$ oxidized by 1 mole of $\rm O_2$		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 	um. Number of equivalent of l	$\rm NH_3$ oxidized by 1 mole of $\rm O_2$ d) 7		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smelting 	um. Number of equivalent of c) 6 ng process	NH ₃ oxidized by 1 mole of O ₂ d) 7		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smelting a) Zn b) Al 	um. Number of equivalent of c) 6 ng process c) Pb	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the order 	um. Number of equivalent of c) 6 ng process c) Pb e porous?	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe		
 229. NH₃ is oxidized to NO by O₂ (air) in basic mediansis a) 4 b) 5 230. The metal which cannot be extracted by smelting a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 	um. Number of equivalent of c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic medians a) 4 b) 5 230. The metal which cannot be extracted by smelting a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means 	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic mediansis a) 4 b) 5 230. The metal which cannot be extracted by smelting a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead meansing a) Melting pure lead at high temperature 	um. Number of equivalent of c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the ore a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present 	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy 	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic mediansis a) 4 b) 5 230. The metal which cannot be extracted by smeltina) Zn b) Al 231. Which of the following processes makes the oreal Distillation b) Reduction 232. Softening of lead meansisa) Melting pure lead at high temperature b) Removal of impurities, except silver, presenting of lead alloying the following pure lead at lead alloying the following pure lead 	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is 	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these		
 229. NH₃ is oxidized to NO by O₂ (air) in basic mediansis a) 4 b) 5 230. The metal which cannot be extracted by smelting a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination	NH ₃ oxidized by 1 mole of O ₂ d) 7 d) Fe d) All of these d) Fe		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead c) Al argentite ore, the oxidizing an	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe d) Fe 		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead c) Al argentite ore, the oxidizing an	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe d) Fe nd reducing agents used are 		
229. NH_3 is oxidized to NO by O_2 (air) in basic mediaisa) 4b) 5230. The metal which cannot be extracted by smeltina) Znb) Al231. Which of the following processes makes the orea) Distillationb) Reduction232. Softening of lead meansa) Melting pure lead at high temperatureb) Removal of impurities, except silver, presentc) Formation of lead alloyd) Formation of 100% pure lead233. The most abundant metal in the earth's crust isa) Nab) Mg234. In the cyanide extraction process of silver from respectivelya) O_2 and COb) O_2 and Zn	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead c) Al argentite ore, the oxidizing an c) HNO ₃ and Zn dust	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO 		
229. NH_3 is oxidized to NO by O_2 (air) in basic mediaisa) 4b) 5230. The metal which cannot be extracted by smeltina) Znb) Al231. Which of the following processes makes the orda) Distillationb) Reduction232. Softening of lead meansa) Melting pure lead at high temperatureb) Removal of impurities, except silver, presentc) Formation of lead alloyd) Formation of 100% pure lead233. The most abundant metal in the earth's crust isa) Nab) Mg234. In the cyanide extraction process of silver from respectivelya) O_2 and COb) O_2 and Zn235. Sapphire is a valuable precious stone containing	um. Number of equivalent of l c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead c) Al argentite ore, the oxidizing an c) HNO ₃ and Zn dust g	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO 		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the oremany of lead means a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, presented of the follow pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O₂ and CO b) O₂ and Zn 235. Sapphire is a valuable precious stone containing a) Cu b) Zn	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead () Al argentite ore, the oxidizing an c) HNO ₃ and Zn dust g c) Al	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO d) Mg 		
229. NH_3 is oxidized to NO by O_2 (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the ore a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O_2 and CO b) O_2 and Zn 235. Sapphire is a valuable precious stone containin a) Cu b) Zn 236. Select the correct statement	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead 	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO d) Mg 		
229. NH_3 is oxidized to NO by O_2 (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the ord a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O_2 and CO b) O_2 and Zn 235. Sapphire is a valuable precious stone containin a) Cu b) Zn 236. Select the correct statement a) In the decomposition of an oxide, into oxygen	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination in commercial lead () Al argentite ore, the oxidizing an c) HNO ₃ and Zn dust g c) Al and gaseous metal, entropy	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO d) Mg 		
 229. NH₃ is oxidized to NO by O₂ (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltine a) Zn b) Al 231. Which of the following processes makes the order a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O₂ and CO b) O₂ and Zn 235. Sapphire is a valuable precious stone containing a) Cu b) Zn 236. Select the correct statement a) In the decomposition of an oxide, into oxyget b) Decomposition of an oxide is an endothermited 	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead 	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) Fe nd reducing agents used are d) HNO₃ and CO d) Mg 		
229. NH ₃ is oxidized to NO by O_2 (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the ore a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O_2 and CO b) O_2 and Zn 235. Sapphire is a valuable precious stone containin a) Cu b) Zn 236. Select the correct statement a) In the decomposition of an oxide, into oxygen b) Decomposition of an oxide is an endothermid c) To make ΔG° negative, temperature should by	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination c in commercial lead c) Al argentite ore, the oxidizing an c) HNO ₃ and Zn dust g c) Al n and gaseous metal, entropy to c change be high enough so that T ΔS° >	 NH₃ oxidized by 1 mole of O₂ d) 7 d) Fe d) All of these d) All of these d) HNO₃ and CO d) Mg increases ΔH° 		
229. NH ₃ is oxidized to NO by O_2 (air) in basic media is a) 4 b) 5 230. The metal which cannot be extracted by smeltin a) Zn b) Al 231. Which of the following processes makes the ore a) Distillation b) Reduction 232. Softening of lead means a) Melting pure lead at high temperature b) Removal of impurities, except silver, present c) Formation of lead alloy d) Formation of 100% pure lead 233. The most abundant metal in the earth's crust is a) Na b) Mg 234. In the cyanide extraction process of silver from respectively a) O_2 and CO b) O_2 and Zn 235. Sapphire is a valuable precious stone containin a) Cu b) Zn 236. Select the correct statement a) In the decomposition of an oxide, into oxyget b) Decomposition of an oxide is an endothermic c) To make ΔG° negative, temperature should by d) All of the above are correct statements	um. Number of equivalent of 1 c) 6 ng process c) Pb e porous? c) Calcination : in commercial lead 	NH ₃ oxidized by 1 mole of O_2 d) 7 d) Fe d) All of these d) All of these d) HNO ₃ and CO d) Mg increases ΔH°		

a) Consists of impurities only b) Contains more impurity than the original metal c) Contains the purified metal only d) Moves to either side 238. Which of the following ore does NOT show the correct formula? b) Zinc blende - ZnS a) Cuprite - Cu₂O c) Magnesite - Fe_3O_4 d) Siderite - FeCO₃ 239. Which of the following statement is incorrect? a) Pure aluminium oxide is obtained by heating aluminium hydroxide b) Cryolite lowers down the melting point of bauxite in electrolytic cell for extraction of aluminium c) Carbonate ores are converted into oxides by roasting ore in air d) Mercury cannot be produced by roasting the cinnabar ore in air 240. Equivalent weight of HCHO in the following reaction $2HCHO + OH^- \rightarrow HCOO^- + A$ is 30. A can be a) HCOOH b) CH₃OH c) $(CH_3)_2CHOH$ d) CH₃CH₂OH 241. Cu⁺² ions are more stable than Cu⁺ ions because Cu⁺² ions _____ as compared to Cu⁺ ions a) Have higher charge b) Have smaller ionic size c) Undergo extensive hydration d) All of these 242. In the following half-reaction in basic medium $Bi^{3+}(aq) \rightarrow BiO_3^-(aq)$ One mole of Bi³⁺ is equivalent to a) 1 b) 2 c) 3 d) 4 243. Extraction of gold and silver involves leaching the metal with CN⁻ ion. The metal is recovered by a) Displacement of metal by some other metal from b) Roasting of metal complex the complex c) Calcination followed by roasting d) Thermal decomposition of metal complex 244. Cassiterite is an ore of a) Mn b) Ni c) Sb d) Sn 245. The chemical process in the production of steel from haematite ore involves a) Reduction b) Oxidation c) Reduction followed by oxidation d) Oxidation followed by reduction 246. Which represent correct matching of metals with their minerals? Mg Na Cu Al a) Chloride chloride sulphide silicate b) Carbonate chloride sulphide oxide c) Carbonate carbonate oxide sulphide oxide phosphate d) Oxide chloride 247. In the following redox reaction, $\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} + \operatorname{Cr}^{3+} 1$ mole of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ oxidises a) 1 mole of Fe^{2+} b) 3 moles of Fe²⁺ c) 4 moles of Fe^{2+} d) 6 moles of Fe^{2+} 248. Si of high purity to be used in semiconductor can be prepared by the following methods I. $SiO_2 + 2C \rightarrow Si + 2CO$ II. Si + $2Cl_2 \rightarrow SiCl_4$ $SiCl_4 + 2Mg \rightarrow Si + 2MgCl_2$ Better method is a) I b) II c) Both (a) and (b) d) None of these 249. Self-reduction of CuS to Cu can be carried out in a) Bessemer converter b) Pierce-Smith converter c) Both (a) and (b) d) None of these

250.	If the following is balanced reaction $40_2^{x^-} + 2H_2O \rightarrow 4OH^- + 3O_2$				
	Then x is and O_2^{x-} is				
	a) -1 and species is superoxide	b) -2 and species is perox	xide		
	c) –4 and species is oxide	d) -1 and species is perox	xide		
251.	Which of the following is INCORRECT regarding mod	lern vertical process?			
	a) It is a commercial, economical and continuous pro	cess			
	b) It has roll discharge mechanism				
	c) It involves oxidation at high temperature of about	1673 K			
	d) The heating jacket is heated by burning producer	gas			
252.	Which of the following is a disproportionation reaction	on?			
	$CaCO_3 + 2H^+ \rightarrow Ca^{2+}$	$C_{r} \cap 2^{-} + 2 \cap 4^{-}$	$Cu_2O + 2H^+ \rightarrow Cu$		
	a) $+ H_2 O b) \xrightarrow{2CIO_4} + 2H$	c) $\frac{C_2 O_7}{2} + 20 H$	d) $+ Cu^{2+}$		
	$+ CO_2 \rightarrow CI_2O_7 + H_2O$	$\rightarrow 2 \text{ Cl} 0_4 + \text{H}_2 0$	$+ H_2 0$		
253.	Which is the chloride ore of Mg?				
	a) Kieserite b) Carnallite	c) Epsomite	d) Dolomite		
254.	Auto-reduction process is used in the extraction of				
	a) Cu b) Zn	c) Al	d) Fe		
255.	The common method for the extraction of metals from	m oxide ores involves			
	a) Reduction with carbon				
	b) Reduction with aluminium				
	c) Reduction with hydrogen				
	d) Electrolytic method				
256.	Which of the following metal is purified by Mond car	bonyl method?			
	a) Zr b) Ti	c) Ge	d) Ni		
257.	Smelting is done in furnace				
	a) Blast b) Muffle	c) Open – hearth	d) Electric		
258.	58. The froth floatation process is applied for sulphide ores and sodium ethyl xanthate acts as a collector of				
	sulphide ore. In this process				
	a) The hydrophobic end prefers to stay in air and the hydrophilic end prefers to stay in water				
	b) The hydrophobic end prefers to stay in water and	the hydrophilic end prefers	s to stay in air		
	c) Both ends prefer to stay in water				
250	d) Both ends prefer to stay in air	.1 1	1		
259.	SnO_2 is reduced to metallic Sn on smelting oxide with	h anthracite, limestone and	sand		
	In this, function of sand is	h) It som over havis immun	ition o olon		
	a) Both as in (a) and (b)	d) None of the above	ities a slag		
260	C) Doull as III (a) allu (b) The substance used in the thermite process for reduc	uj None of the above			
200.	a) Aluminium b) Thorium	c) Hostod Pt gaugo	d) Carbon		
261	a) Aluminium b) Thorium	c) nealed Pl gauge	u) Carbon		
201.	a) Ri b) Co	c) Ni	d) All of these		
262	Cryolite is		uj Ali ol tilese		
202.	a) Sodium heyachloro aluminate (III)				
	h) Sodium hexabromo aluminate (III)				
	c) Sodium hexafluoro aluminate (III)				
	d) Sodium hexaindo aluminate (III)				
263	Purification of aluminium by electrolytic refining is k	mown as			
200.	a) Hall's process b) Baever' process	c) Hoop's process	d) Serpeck' process		
264	If CO ₂ is passed into waste water containing CrO^{2-} (s	vellow) then solution turns	a, berpeen process		
_ 01	a) Green due to the formation of Cr^{3+}	b) Blue due to the formation	on of CrOr		
		Sy Brac and to the formati	0		

c) Orange due to the formation of $Cr_2O_7^{2-}$ d) Black due to the formation of Cr_2O_3 265. Splitting of silver is a) Reduction of ammoniacal silver nitrate solution by tartarate b) Extraction of silver from its ore Ag₂S, by hydrometallurgy c) Making of silver amalgam during filling of teeth d) Cooling of molten, silver with the evolution of oxygen causing violent spurting 266. During polling, heat of molten metal makes the green logs of wood to liberate _ b) Carbon dioxide d) Hydrocarbon gases a) Sulphur dioxide c) Carbon monoxide 267. Thomas slag is a) $Ca_3(PO_4)_2 \cdot 2H_2O$ b) $Ca_3(PO_4)_2 \cdot CaSiO_3$ c) MgSiO₃ d) $CaSiO_3$ 268. Roasting involves _____ a) Only volatilization of volatile impurities b) Volatilization of volatile impurities and decomposition of the ore c) Volatilization of volatile impurities and decomposition and oxidation of the ore d) Oxidation and reduction of the ore and slag formation 269. The chief impurity present in red bauxite is _ b) Fe_2O_3 c) K_2SO_4 d) NaF a) Si 0_2 270. NaHC₂O₄ is neutralized by NaOH and can also be oxidized by KMnO₄ (in acidic medium). Equivalent weight is related to molecular weight (M) of NaHC₂O₄ in these two reactions as c) $\frac{M}{2}$, M d) $M, \frac{M}{2}$ b) 2*M*, 2*M* a) *M*, *M* 271. 1.575 g of a dibasic acid required 0.025 equivalent of NaOH.Hence, molar mass of dibasic acid (mol⁻¹) is b) 25 g c) 63 g d) 126 g a) 15.75 g 272. Depressant used in separation of PbS and ZnS in froth floatation process is _____ d) Na_2SO_4 a) CuSO₄ b) NaCN c) KCN 273. Which method is not correct given for the refining of crude metals? a) **Distillation** zinc and mercury b) Liquation tin c) Van-Arkel Zirconium d) Mond process lead 274. Which impurity is NOT present is zinc spelter? a) Copper b) Cadmium d) Lead c) Iron 275. NaCl and CaCl₂ are also added to fused MgCl₂ in the electrolysis of MgCl₂ since a) Melting point is decreased and conductivity is increased b) Melting point is increased and conductivity is decreased c) Melting point and conductivity both are decreased d) Melting point and conductivity both are increased 276. Which of the following is not an iron ore? a) Caniterite b) Magnetite c) Limonite d) Copper pyrite 277. Difference in density is the basis of _____ a) Ultrafiltration b) Molecular sieving c) Gravity separation d) Molecular attraction 278. Copper matter is converted into blister copper by taking it into a silica lined convertor. Blistered appearance is due to which reaction? a) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ b) $Cu_2 O + C \rightarrow 2Cu + CO$ d) $Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$ c) $2Cu_2O + Cu_2S \rightarrow 6Cu + CO$ 279. Among the following statements, the incorrect one is a) Zinc blende and iron pyrites are sulphides b) Calamine and siderite are carbonates c) Malachite and chalcocite are the copper ore d) Argentite and cuprite are oxides 280. When PbS(s) is treated with warm dilute HNO_3 , the products most likely will be d) PbO_2 , SO_4^{2-} , N_2 a) Pb^{2+} , S, NO_2 b) Pb²⁺, S, NO c) PbO, S, NO 281. Briquettes used in modern vertical retort process are made up of _____

a) ZnSO ₄		
b) ZnO(40%) + coke/charcoal (60%)		
c) ZnS(40%) + coke/charcoal (60%)		
d) ZnS		
282. In the cup and cone arrangement of blast furnace, th	e cone enables	
a) Introduction of pre-heated air into the furnace		
b) Prevention of loss of gases		
c) Uniform distribution of charge		
d) All of these		
283. Which is not the correct process-mineral matching in	n metallurgical extraction?	
a) Leaching : Ag b) Zone-refining : Sn	c) Liquation : Sn	d) Van-Arkel : Zr
284. Which of the following is required during electrolytic	c refining?	
a) Electrolytic bath containing soluble salt of same n	netal	
b) Impure metal as cathode		
c) Strip of pure metal as anode		
d) All of these		
285. In the following redox reactions, NH_3 appears eith	ner in reactant or product.	. In which case equivalent
weight of NH_3 is maximum?	-	-
a) $N_2 + 3H_2 \rightarrow 2NH_3$	b) =4NH ₃ + 50 ₂ \rightarrow 4NO -	+ 6H ₂ 0
c) $2NH_3 + 2Na \rightarrow 2NaNH_2 + H_2$	d) Equal in all the above c	ases
286. FeS ₂ is		
a) Magnetite b) Pyrite	c) Limonite	d) Haematite
287. Extraction of zinc from zinc blende is achieved by		
a) Electrolytic reduction		
b) Roasting followed by reduction with carbon		
c) Roasting followed by reduction with another meta	als	
d) Roasting followed by self – reduction		
288. Name the metal that is purified by placing the impur	e metal on sloping hearth c	of a reverberatory furnace
and heating that above its melting point in absence of	of air	
a) Mercury b) Gallium	c) Zirconium	d) Copper
289. The mixture of $Na_3AlF_6 + CaF_2$ is mixed in electroly	tic reduction of alumina	
a) To make alumina soluble		
b) To decrease the electrical conductivity and increa	se the melting point	
c) To increase the electrical conductivity and decrea	se the melting point	
d) To avoid evaporation		
290. Ores like magnetite or cassiterite are concentrated b	у	
a) Froth – floatation		
b) Magnetic separation		
c) Gravity separation		
d) Electrostatic separation		
291. Metal can be obtained by the carbon reduction meth	od	
$ZnO + C \rightarrow Zn + CO$		
Which of the following curves can be taken that the r	metal obtained is in vapour	state by this method?
$M \rightarrow MO$	C-> Co	
$C \rightarrow CO$	$A C^{0} \longrightarrow MO$	
$20^{40^{\circ}}$	h	
aj		
$T \rightarrow$	$T \rightarrow$	

$$\int_{1}^{M \to MO} \int_{1}^{M \to MO} \int_{$$

	a) Presence of peroxy gro	oup	b) Presence of superoxo	group
	c) Presence of neutral O ₂		d) Presence of ozone	
306	. Malachite is an ore of			
	a) Silver	b) Mercury	c) Magnesium	d) Copper
307	. The minimum voltage rec	quired to electrolyse alumin	na in the Hall-Heroult proc	ess is
	Given, $\Delta G_f^{\circ}(\mathrm{Al}_2\mathrm{O}_3) = -15$	520 kJ mol ⁻¹		
	$\Delta G_f^{\circ}(\mathrm{CO}_2) = -394 \text{ kJ mol}$	-1		
	a) 1.575 V	b) 1.60 V	c) 1.312 V	d) –2.62 V
308	. Hydro – metallurgical pro	ocess of extraction of metal	s is based on	
	a) Complex formation	b) Hydrolysis	c) Dehydration	d) Dehydrogenation
309	$^{\circ}$ 6CO ₂ + 12H ₂ O $-$ Sun light	$\rightarrow C_6 H_{12} O_6 + 6 O_2 + 6 H_2 O_1$	Equivalent weights of CO_2	and $C_6H_{12}O_6$ respectively
	ale a) 11 7 5	b) 44 180	c) 22 15	d) 44, 90
310	Ry annealing steel	5) 11, 100	cj 22, 15	uj 11, 50
510	a) Becomes soft		h) Becomes liquid	
	c) Becomes hard and brit	tle	d) Is covered with a thin	film of Fe ₂ O4
311	$N_{a} + 3H_{a} \rightarrow 2NH_{a}$ In this	reaction equivalent weigh	t of Nais	11111 01 1 0304
511	a) 4.67	h) 28	c) 14	d) 2.33
312	. Select the correct stateme	ent	0) 11	a) <u>1</u> .00
011	a) Based on reactivity ser	ries. occurrence of certain e	elements takes place in nat	ive state
	b) Due to basic nature of	oxides of alkaline earth ele	ments, they combine with	atmospheric acidic oxides
	giving salts			•
	c) Both (a) and (b) are co	orrect		
	d) None of the above is co	orrect		
313	. Which of the following ch	anges required a reducing	agent?	
	a) $Cr0_4^{2-} \rightarrow Cr_20_7^{2-}$	b) $BrO_3^- \rightarrow BrO^-$	c) $H_3AsO_3 \rightarrow HAsO_4^{2-}$	d) $Al(OH)_3 \rightarrow Al(OH)_4^-$
314	. Tempering of steel			
	a) Is the heating the steel	to appropriate temperatur	re and then cooling it rapid	ly
	b) Increases mechanical s	strength		
	c) Changes ratio of carbo	n in cementite		
	d) All of the above			
315	. The INCORRECT stateme	nt among the following is _		
	a) In calcination, ore deco	omposes to form metal oxic	de	
	b) Zirconium is refined by	y van Arkel method		
	c) The sulphide ore galen	a is concentrated by froth	floatation	
	d) In the metallurgy of iro	on, the flux used is SiO ₂		
316	. Aluminium is extracted fr	com alumina (Al_2O_3) by ele	ectrolysis of a molten mixtu	ire of
	a) $Al_2O_3 + HF + NaAlF_4$			
	b) $Al_2O_3 + CaF_2 + NaAlF_2$	4		
	c) $AI_2O_3 + Na_3AIF_6 + Call$	F ₂		
045	d) $AI_2O_3 + KF + Na_3AIF_6$.1 . 11.1
317	. I mole of N_2H_4 loses 10 r	noles of electrons to form a	a new compound Y Assumi	ng that all the nitrogen
	appear in the new compo	und, what is the oxidation	state of nitrogen in Y? (no	change in the oxidation
	state of H)			
210	$a_j = 1$	UJ = 3	CJ + 3	uj + 5
318	a) Nickel forms Ni(CO)	ig statements is not correct		
	a) NICKEI IOI IIIS $NI(CO)_4$ b) All the transition meta	le form monomotallie cerb	onvle	
	c) Ni((Ω) is volatile and	decomposes into Ni and Ci	011915	
	cj m(coj4 is volatile allu	accomposes into manu C	0	

d) Transition metals form complexes

319.	CO			
	Bauxite $\xrightarrow{+C}$ AlN $\xrightarrow{H_2O}$	$Al(OH)_3 \xrightarrow{\Delta} Al_2O_3$		
	N_2			
	This flow-sheet is for			
	a) Baever's process	b) Serpeck's process	c) Hall's process	d) Kroll' process
320	Consider the following sta	atements	ej nun e procese	aj non process
020.	I Pig iron is malleable and	l ductile		
	II Pig iron can be melted t	to produce cast iron of desi	ired shanes	
	III Wrought iron is obtain	ed by heating nig iron with	h iron ovide in a furnace	
	Which of the statement(s)) given above is /are correc		
	a) Lonly	b) Land II	c) II and III	d) III only
221	a) I ully The chemical composition	of 'clog' formed during the	cj il allu ill o smolting process in the ex	traction of conner is
521.	$\frac{1}{2} \int \frac{\partial u}{\partial x} = \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} = \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}{\partial x} + \frac{1}{2} \int \frac{\partial u}$	b) Easto	a) CuEaS	d) Cu S + EqO
222	a) $Uu_2 U + res$	DJ $FeSID_3$	c) cures ₂	$u_1 cu_2 s + reo$
322.	Purpose of smelting of an	b) To us due a it	а) Та на на село село с ело на село село село село село село село село	۰ ما) Ta alatain an allan
	a) to oxidise it	b) to reduce it	impurities	e d) To obtain an alloy
323.	Baeyer's process is used f	or the purification of bauxi	ite containing as in	npurity
	a) SiO ₂	b) CaCO ₃	c) Fe_2O_3	d) ZnO
324.	Iron exhibits property of f	ferromagnetism		
	a) Above 1800 K	b) At 1800 K	c) Below 1042 K	d) Above 1042 K
325.	$Ag_2S + NaCN \rightarrow (A)$			
	$(A) + \operatorname{Zn} \to (B)$			
	(B) is a metal. Hence, (A)	and (B) are		
	a) $Na_2[Zn(CN)_4]$, Zn	b) Na[Ag(CN) ₂], Ag	c) Na ₂ [Ag(CN) ₄], Ag	d) Na ₃ [Ag(CN) ₄], Ag
326.	Which of the following mi	nerals does NOT contain co	opper?	
	a) Malachite	b) Cuprite	c) Azurite	d) Corundum
327.	Refractory materials are g	generally used in furnaces l	because	
	a) They posses great strue	ctural strength		
	b) They can withstand hig	h temperature		
	c) They are chemically ine	ert		
	d) They do not require rep	placement		
328.	Iron ore is concentrated b	W		
	a) Froth floatation	b) Electrolysis	c) Roasting	d) Magnetic treatment
329.	Which of the following is s	slag?	, 0	, .
	a) CaO	b) CaSO ₄	c) CaSiO ₃	d) SiO_2
330.	In the equation, $4M + 8CN$	$\sqrt{1^{-}+2H_2O}+O_2 \rightarrow 4[M(CN)]$	$\left[1\right]_{2}^{-}$ + 40H ⁻ . the metal M	is
	a) Copper	b) Iron	c) Gold	d) Zinc
331.	A newly discovered metal	'M' was found to have its a	graph of formation of oxide	above the graph line of
001	silver, in the Ellingham di	agram, this indicates that	5. up	
	a) Metal 'M' can be easily	decomposed at moderate t	 emperature	
	h) Metal 'M' can be reduce	ed using silver	, emperature	
	c) Silver can be reduced u	ising metal 'M'		
	d) Both (A) and (B)	ising metal in		
222	In cvanide method silver	metal is obtained as 2K[Ag	$\mathfrak{g}(\mathbb{C}\mathbb{N})_{*}] + 7\mathfrak{n} \to K_{*}[7\mathfrak{n}(\mathbb{C}\mathbb{N})]$	1 + 2Ag in this
552.	a) Ag has been ovidized a	nd 7n has been reduced		4] 2Ag in tins
	b) Ag has been reduced as	nd Zn has been reduced		
	a) Poth the metals have b	an avidized		
	d) Doth the metals have b	een vaduaad		
222	In the following and and	een reuuceu		
333.	In the following redox real $7\pi(x) + NO^{-1}(x) + M^{+1}(x)$	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}$	$\sqrt{2\pi}$	
	$Ln(s) + NU_3(aq) + H^+(a)$	$q \rightarrow 2n^{-1}(aq) + NH_4^+(aq)$) $2n(s)$ and $NO_3(aq)$ respe	ectively are

a) Oxidant, reductant 334. Aluminium is produc	b) Reductant, oxidant ed on a large scale by electro	c) Both oxidant lysis of alumina, dissolve	d) Bothe reductant d in fused cryolite and a little
fluorspar. These two	electrolytes, cryolite and fluc	orspar are respectively	
a) Na_3AIF_6 and CaF_2	b) AlF ₃ and KF	c) AI_2O_3 and KCI	a) KCI. MgCI ₂ . $6H_2O$ and Mg
335. Which of the following	lg is not an ore?		
a) Malachite	D) Calamine	c) satellite	a) cerussite
330. III electrolysis of AI_2	J_3 by Hall-Herouit process	in managan ita alastriaal as	and unativity
a) Cryonte Na ₃ [Ar ₆] b) Al is obtained at α	Towers the m.p. of AI_2O_3 and AI_3O_3	nodo	Juductivity
c) Poth (a) and (b) a	CO_2 at a	noue	
d) None of the above	is correct		
227 In Hall Heroult's prov	rese products liberated at an	ade and cathode are	
a) Ovygen and alumi	nium respectively	Sue allu catiloue al e	
h) Carbon monoxide	and aluminium respectively		
c) Carbon dioxide an	d aluminium respectively		
d) All of these	a aranininani respectively		
338 Van Arkel method of	nurification of metals involve	es converting the metal to	a compound
a) Volatile stable	purification of metals myory	is converting the metal to	
b) Volatile unstable			
c) Non – volatile stat	le		
d) Non – volatile uns	table		
339. In Hall and Heroult's	process, the molten electroly	te is covered with the lay	er of powdered coke, which
helps to	1 , 5	5	1 ,
a) Prevent oxidation			
b) Prevent reduction			
c) Prevent loss of hea	at due to radiation		
d) Both (A) and (C)			
340. Specific gravity of sla	g is		
a) Always higher tha	n molten metal		
b) Always less than n	nolten metal		
c) Same as molten m	etal		
d) Varies according t	o molten metal		
341. A flux is often added	to remove impurities from ar	i ore in a blast furnace. In	the reaction, $CaO + SiO_2 \rightarrow$
CaSiO ₃ the slag and t	he flux are respectively	1	
a) CaSiO ₃ and SiO ₃	b) CaSiO ₃ and CaO	c) CaO and SiO ₂	d) SiO ₂ and CaSiO ₃
342. The silver is extracte	d by Parke's process. The bas	is of this method is	
 a) Silver is immiscibl 	e in molten Zn		
b) Ag is miscible in N	aCN		
c) Ag is more miscibl	e in molten zinc than in molt	en Pb	
d) Ag is more miscibl	e in molten Pb in comparison	to molten zinc	
343. Heating of pyrites in	air for oxidation of sulphur is	called	
a) Roasting	b) Calcination	c) Smelting	d) Slagging
344. Which of the followin	ig is the example of a disprop	ortionation reaction?	
a) $LaU_3 \rightarrow LaU + U_3$	J_2		
b) $2HUUU_2 \rightarrow UU + U$	$u^2 + 4CI + 2H^2$		
$CJ PUI_5 \rightarrow PUI_3 + UI_2$	- 211 0		
a) $2H_2S + 5U_2 \rightarrow 3S$	+ 2H ₂ U	idia immunitiaa in matallu	
345. WINCH OF THE FOLLOWIN	ig nuxes is used to remove ac	a) Sodium ablasida	d) Sodium carbonata
aj silica 346 Which of the followir	UJ LIIIIESLUIIE	a during metallurgical on	uj sourum car borrate
o to, which of the followin		5 au m5 metanu gicai 0p	erations for getting the initial

oxide? a) Zincite b) Zinc blende c) Malachite d) Limonite 347. Blast furnace is employed in the smelting of oxide ore with coke and flux in the metallurgy of a) Iron b) Copper c) Aluminium d) Both (A) and (B) 348. Corundum is an ore of b) Boron a) Copper c) Aluminium d) Sodium 349. In column chromatography, the mixture whose different components are to be separated is dissolved in a) Stationary phase b) Mobile phase c) Eluents d) Alumina 350. In the process of extraction of gold, Roasted gold ore $+CN^- + H_2O \xrightarrow{O_2} [X] + OH^ [X] + \operatorname{Zn} \rightarrow [Y] + \operatorname{Au}$ Identify the complexes [X] and [Y] a) $X = [Au(CN)_2^-], Y = [Zn(CN)_4]^{2-1}$ b) $X = [Au(CN)_4]^{3-}, Y = [Zn(CN)_4]^{2-}$ c) $X = [Au(CN)_2]^-, Y = [Zn(CN)_6]^{4-1}$ d) $X = [Au(CN)_4]^-, Y = [Zn(CN)_4]^{2-}$ 351. Which reaction is suitably matched? a) $\begin{array}{c} CHO \\ I \\ CHO \end{array}^+ OH^- \longrightarrow \begin{array}{c} CH_2OH \\ COO^- \\ COO^- \end{array}$ (Crossed Cannizzaro reaction) b) $3H_3PO_2 \rightarrow 2H_3PO_3 + PH_3$ (Disproportionation reaction) $\begin{array}{c} \mathsf{CHO} & \mathsf{COO}^- & \mathsf{CH}_2\mathsf{OH} \\ \mathsf{I} & \mathsf{H} & \mathsf{OH}^- \longrightarrow \begin{array}{c} \mathsf{I} & \mathsf{I} \\ \mathsf{COO}^- & \mathsf{COO}^- \end{array} \\ \\ \mathsf{COO}^- & \mathsf{COO}^- \end{array}$ (Intramolecular Cannizzaro) d) $MnO_2 \xrightarrow{OH^-} MnO_4^- + Mn^{2+}$ (Redox) 352. Manufacture of cast iron is done in _____ a) Blast furnace b) Bessemer converter c) Reverberatory furnace d) Modern vertical retort 353. Zone refining is used for the purification of _____ b) Au c) Ge d) Ag a) Cu 354. Froth floatation process is based on _____ ore particles a) Wetting properties of b) Specific gravity of c) Magnetic properties of d) Electrical properties of 355. When alloy of silver and lead is rich in silver a) Cupellation process is used b) Parke's method is used c) Pattinson's method is used d) Any of the above methods can be used 356. Extraction of zinc from zinc blende is achieved by a) Electrolytic reduction b) Roasting followed by reduction with carbon c) Roasting followed by reduction with another metal d) Roasting followed by self-reduction 357. Which of the following is a carbonate ore? a) Pyrolusite b) Malachite d) Cassiterite c) Diaspore 358. Which one of the following is a mineral of iron? a) Malachite b) Cassiterite c) Pyrolusite d) Magnetite 359. Calcination is the process of heating the ore _ a) In a blast furnace b) In absence of air c) In excess of air d) In excess of carbon

360. Out of the following reactions which does not	indicate slag formation?	
a) $Fe_2O_3 + P_2O_5 \rightarrow 2FePO_4$	b) PbO + SiO ₂ \rightarrow PbSiO ₃	
c) $3MgO + P_2O_5 \rightarrow Mg_3(PO_4)_2$	d) None of the above	
$^{361.}$ AgCl + Na ₂ CO ₂ \rightarrow Ag ₂ CO ₂ $\stackrel{\Delta}{\rightarrow}$ X, X is		
a) Ag ₂ O and CO ₂ b) Ag ₂ O ₂ and CO ₂	c) Ag ₂ O ₂ and CO ₂	d) No effect
362. Formation of metallic copper from the sulphic	de ore in the normal thermo-met	allurgical process essentially
involves which one of the following reaction?		and grow proceed essentially
	3	
a) $CuS + \frac{3}{2}O_2 \rightarrow CuO + SO_2$	b) $CuS + \frac{1}{2}O_2 \rightarrow CuO + S$	502
2 2 2	$2CuO + CuS \rightarrow 3Cu +$	SO ₂
	$Cus \pm \frac{3}{2} O \rightarrow CuO \pm S$	20
c) $CuS + 20_{2} \rightarrow CuSO_{4}$	$\frac{2}{2} \neq \frac{2}{2}$	
	$^{cr}CuSO_4 + CuS \rightarrow 2Cu + CU$	- 2SO ₂
	$CuO + CO \rightarrow Cu + CO_2$	2
363. Main ore of aluminium is		
a) Bauxite b) Corundum	c) Cryolite	d) Magnetite
364. When MnO_4^- and I^- react in a strongly basic s	olution, the products will most li	kely be
a) Mn and I_2 b) Mn O_4^{2-} , IO_3^{-}	c) MnO_2, O_2, IO^-	d) Mn^{2+} , I_2
365. Chromatography is based on the principle of s	selective	
a) Absorption b) Adsorption	c) Wettability	d) Evaporation
366. The process used for purification $Al_2O_3 \cdot 2H_2O_3$	U is	
a) Magnetic separation b) Froth floatation	c) Leaching	d) Liquation
367. Oxidation state of P in $H_4P_2O_5$, $H_4P_2O_6$ and H_4	$_{1}P_{2}O_{7}$ are respectively	
a) $+3, +4, +5$ b) $+3, +5, +4$	c) +5, +3, +4	d) +5, +4, +3
368. A sulphur containing species that cannot be a 260^{-2}	educing agent is	1) c ² =
a) SO_2 b) SO_3^2	c) H_2SO_4	d) S ²
369. 1 reduces IO_3 to I_2 and itself oxidized to I_2 in	acidic medium. Final reaction is	
a) $I + IO_3 + 6H^2 \rightarrow I_2 + 3H_2O$	b) $I + IO_3 \rightarrow I_2 + O_3$	
C) 51 + 10 ₃ + 6H ² \rightarrow 31 ₂ + 3H ₂ O	d) None of the above	
3/0. Which has the maximum oxidation number of	r the underlined atom in the folio	wing?
a) $\underline{Mn}0_{4}$ b) $\underline{Cr}0_{5}$	$C = \frac{C - C_2 C_2}{C - C_2}$	d) Equal
371. The concentrated ore containing trace elemer	nts can be best purified by	-
a) Electrolytic refining		
b) vapour phase renning		
d) Chromatography		
372 Equivalent weights of KMnO in acidic medi	um concentrated alkaline mediu	im and dilute basic medium
$372.$ Equivalent weights on M_{4} in acture metric	- h -	in and unute basic medium
respectively are $\frac{1}{5}$, $\frac{1}{1}$, $\frac{3}{3}$. Reduced products cal	n be	
a) MnO_2 , MnO_4^{2-} , Mn^{2+} b) MnO_2 , Mn^{2+} , Mn^{2+}	10_4^{2-} c) Mn ²⁺ , MnO ₄ ²⁻ , MnO ₂	d) Mn^{2+} , MnO_2 , MnO_4^{2-}
373. Ore dressing is the process, in which		
a) Ore size is reduced to required size		
b) Drying of ore takes place		
c) Removal of gangue material takes place		
d) Treating the ore with alkalies		
3/4. In alumino – thermite process, aluminium is u	ised as a/an	
a) Oxidizing agent b) Flux	c) Reducing agent	d) Solder
3/5. Leaching is a process in which of ore	is carried out	d) Ouidation
a) Keduction b) Concentration	cj ketining	a) Oxidation
3/0. Which is NUT the mineral of iron?	a) Usamatita	d) Limonita
a) Dolonnite D) Magnetite	cj naematite	u) Linionite

377. The reduction of an oxide by aluminium is called a) Ellingham process b) Goldschmidt's aluminothermite process c) Kroll's process d) Van-Arkel process 378. Flux is used to remove a) Silica b) Metal oxide c) Silica and metal oxide d) Impurities from ore 379. The substance which is mixed with the ore for removal of impurities is termed as c) Flux d) Catalyst a) Slag b) Gangue II III 380. Turbunbull's blue has two types of iron with oxidation number as shown $\ddot{Fe}[Fe(CN)_6]$ What is the net charge on Turbunbull's blue? d) −2 c) 0 a) –1 b) +1 381. Match Column I with Column II and select the correct answer using the codes gives below the Columns Column I Column II Van-Arkel Manufacture of A. method caustic soda Solvay Purification of B. process titanium C. Manufacture of Cupellation Na_2CO_3 Purification of D. Poling copper Refining of silver Codes A B C D a) 2 1 3 4 b) 4 3 2 5 c) 2 3 5 d) 5 1 3 4 4 382. High quantity of heat is produced in the formation of Al₂O₃. This property is used for _____ a) Oxidation b) Roasting c) Calcination d) Thermite welding 383. Black tin is a) An alloy of Sn b) An allotrope of Sn c) 60-70 per cent SnO₂ d) 100 per cent SnO_2 384. Which of the following reactions does NOT occur in blast furnace? a) Combustion of coke with oxygen from the hot air b) Conversion of ferrous oxide into ferric oxide c) Reduction of ferric oxide to iron d) Formation of slag by reaction between limestone and impurities like alumina, silica, etc 385. Sulphide ores are common for the metals c) Ag, Mg, Pb a) Ag, Cu, Pb b) Ag, Cu, Sn d) Al, Cu, Pb 386. Metallurgy is the process of _____ a) Concentrating the ore b) Roasting the ore c) Extracting the metal from the ore d) Adding carbon to the ore in blast furnace 387. In metallurgy of iron, charge introduced in the blast furnace consists of _____ a) Roasted ore, silica and calcium hydroxide b) Roasted ore, coke and calcium hydroxide c) Roasted ore, coke and calcium carbonate d) Roasted ore, coke and calcium silicate 388. When a sulphide ore is roasted, the product obtained is usually a/an _____ c) Oxide a) Metal b) Sulphite d) Nitride 389. Sodium is made by the electrolysis of molten mixture of about 40% NaCl and 60% CaCl₂ because

	a) CaCl ₂ helps in conduct	ion of electricity		
	b) Ca ²⁺ can reduce NaCl t	o Na		
	c) Ca ²⁺ can displace Na fr	rom NaCl		
	d) This mixture has a low	er melting point than NaCl		
390	There are following extra	ction process of silver but i	not	
	a) As a side product in ele	ectrolytic refining of coppe	r	
	b) Parke's process in which	ch Zn is used to extract silv	er by solvent extraction fro	om molten lead
	c) By reaction of silver su	lphide with KCN and then a	reaction of soluble complex	x with Zn
	d) By heating Na[Ag(CN);	2		
391.	Wolframite ore is separat	ed from tin stone ore by th	e process of	
	a) Roasting	b) Electromagnetic	c) Smelting	d) Calcination
392.	Main process for extractin	ng nickel in the pure form u	ises which one of the follov	ving?
	a) Vapour phase refining		b) Zone refining	
	c) Electrolysis		d) Solvent extraction	
393.	Refining of tin cannot be o	done by		
	a) Cupellation	b) Liquation	c) Poling	d) Electrorefining
394	When molten copper is co	ooled slowly, blister copper	r is obtained because	gas comes out
	a) Sulphur dioxide	b) Carbon dioxide	c) Carbon monoxide	d) Oxygen
395.	In balancing the half-reac	tion		
	$CN^- \rightarrow CNO^-$ (skeletal)			
	The number of electrons	that must be added is		
	a) 0	b) 1 on the right	c) 1 on the left	d) 2 on the right
396	In the Baeyer's process			
	Al_2O_3 goes into solutio	n as soluble $Al(OH)_4^-$ while	e other basic oxides as TiO_2	and Fe ₂ O ₃ remain
	insoluble			
	b) Al ₂ O ₃ changes to AlN v	vhich in turn decomposed l	by H ₂ O	
	c) Al_2O_3 changes to $Al_2(O_3)$	$(0_3)_3$ which changes to AlC	l ₃	
	d) None of the above is co	orrect		
397.	Which of the following me	etal is exclusively found in	free state?	
	a) Copper	b) Gold	c) Silver	d) Mercury
398	Calamine is			
	a) ZnS	b) PbCO ₃	c) ZnCO ₃	d) MgCO ₃
399.	Out of Cu_2S , HgS, Ag ₂ S and	d ZnS, roasting will conver	t the minerals into metal in	case of
	a) Cu ₂ S, ZnS	b) HgS, ZnS	c) Cu ₂ S, Ag ₂ S	d) HgS, Ag ₂ S
400	During roasting of concer	itrated zinc sulphide ore, w	which of the following gets f	ormed?
	a) ZnCO ₃	b) ZnO	c) ZnSO ₄	d) Both (B) and (C)
401	1 mole of MnO_4^- will oxidi	ize <i>x</i> moles of ferric oxalate	e in acidic medium, x is	
	a) $\frac{5}{-}$	b) $\frac{6}{-}$	c) 5	d) 6
	6	5		
402	In the Ellingham diagram	, sudden change in the grap	oh indicates	
	a) Phase change from soli	id to vapour stage		
	b) Phase change from soli	id to liquid stage		
	c) Phase change from liqu	lid to vapour stage		
400	d) Either (B) or (C)		$(24)^2 - (44)^2 + ($, , , ,.
403	In the following reaction,	$Zn + 2OH^{-} + 2H_2O \rightarrow Zn($	$(OH)_4^2 + H_2$ species which	has been reduced is
40.4	aj Zn	DJ UH	$CJ H_2 U$	a) None of these
404.	In the above reaction of q	uestion (75), one equivale	nt of $H_2S(g)$ will reduce	
405	a) 1 mole of SU_2	DJ U.5 mole of SO_2	cj 0.25 mole of SO_2	a) 2 moles of SO_2
405.	I ne process of purificatio	on of metals is represented	by the following scheme	
	$Ti + 2I_2 \xrightarrow{230} TiI_4 \xrightarrow{1400} TiI_4$	$\Gamma i + I_2$		

	Ĩ	oure		
	a) Cupellation	b) Poling	c) Electrolytic refining	d) Van-Arkel method
406	. Forth floatation process f	or the concentration of ore	s is an illustration of the pr	actical application of
	a) Adsorption	b) Absorption	c) Coagulation	d) Sedimentation
407	. Mac Arthur process is use	ed for the extraction of	2	-
-	a) Al	b) Ag	c) Cu	d) Zn
408	For the formation of meta	ol oxide AG° increases with	the temperature	
100	a) Increase in	b) Decrease in	c) Constant	d) None of these
100	Dailway rofining is used f	or refining of	cj constant	uj None of these
409	a) Tomporing	b) Appeoling	a) Chanan diaing	d) Case hardoning
410		by Annearing		u) case nar dennig
410	. In the metallurgy of Iron,	when $CaCO_3$ is added to be	last furnace, calcium ion ap	pears as
	a) CaO	b) Metallic Ca	c) Gangue	d) Slag
411	. Poling process			
	a) Reduced SnO ₂ to Sn			
	b) Oxidses impurities like	iron and removes as scum	l	
	c) Uses green poles			
	d) Involves all of the above	re		
412	. Chalcopyrites is an ore of			
	a) Gallium	b) Copper	c) Calcium	d) Magnesium
413	. Formation of $Ni(CO)_4$ and	l subsequent its decomposi	ition into Ni and CO (recycl	ed) makes the basis of
	Mond's process			, ,
	$T_1 \to T_2 \to T_2$			
	$NI + 4CO \rightarrow NI(CO)_4 \rightarrow NI$	400		
	T_1 and T_2 are			
	a) 100°C, 50°C	b) 50°C, 100°C	c) 50°C,230°C	d) 230°C, 50°C
414	. Select the incorrect reduc	tion process		
	a) $2[Ag(CN)_2]^- + Zn \rightarrow [Z]$	$Zn(CN)_4]^{2-} + 2Ag$	b) $CuO + H_2 \rightarrow Cu + H_2O$	
	c) $ZnO + H_2 \rightarrow Zn + H_2O$		d) MgO + C \rightarrow Mg + CO	
415	. What is the molecular sta	te of sulphur as reactant in	, sulphur + $120H^- \rightarrow 4S^{2-}$	$+ 2S_2O_3^{2-} + 3H_2O?$
	a) S_8^{2-}	b) 2S ₄ ²⁻	c) S ₈	d) S ₈
416	. In the following redox rea	action,		
	$Cu(OH)_{2}(s) + N_{2}H_{4}(aq)$	$\rightarrow Cu(s) + N_2(g)$		
	Number of moles of Cu(O	$(H)_{2}$ reduced by 1 mole of N	J₂H₄ is	
	a) 1	b) 2	2 4 F	d) 4
417	Inner layer of blast furnad	re is made of		u) I
11/	a) Granhite bricks	h) Silica bricks	c) Fire – clay bricks	d) Basic bricks
118	Out of following redox re-	octions	cj inc elay bricks	uj basie brieks
710				
	I. $NH_4NO_3 \longrightarrow N_2O + 2I_3$	H ₂ 0		
	II. NH ₄ NO ₂ $\xrightarrow{\Delta}$ N ₂ + 2H	-0		
		20		
	III. $PCl_5 \longrightarrow PCl_3 + Cl_2$			
	Disproportionation is not	shown in		
	a) I, II	b) II, III	c) I, III	d) I, II and III
419	. In order to bring initial ch	nemical change in the ore, t	he process of heating of ore	e below its melting point in
	the presence of excess of	air is known as		
	a) Reduction	b) Smelting	c) Calcination	d) Roasting
420	. In the following reaction	(unbalanced), equivalent w	veight of As ₂ S ₃ is related to	molecular weight <i>M</i> by
	$As_2S_3 + H^+ + NO_2^- \rightarrow NO_2^-$	$+ H_2 0 + As 0_4^{3-} + S 0_4^{2-}$		
	χ <i>Μ</i>	, M	M	, M
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{28}$	d) $\frac{1}{24}$
	-	•		

421. Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of a) Nitrogen b) Oxygen c) Carbon dioxide d) argon 422. Which of the following ore is best concentrated by froth-floatation method? a) Galena b) Cassiterite c) Magnetite d) Malachite 423. Extraction for zinc from zinc blende is achived by a) Electrolytic reduction b) Roasting following by reduction with carbon c) Roasting followed by reduction with another metal d) Roasting followed by self-reduction 424. Calcination is the process of heating the ore a) In inert gas b) In the presence of air c) In the absence of air d) In the presence of CaO and MgO 425. Annealing of steel is the process of heating steel a) To a bright red hot and then cooling it slowly b) To a bright red hot and then cooling it suddenly c) To a temperature much below redness and cooling it slowly d) None of the above 426. Bleaching powder (CaOCl₂) has two types of chlorine atoms with oxidation number of +1 and -1. It can be represented as b) $Ca^{2+}(ClO_{3}^{-})Cl^{-}$ a) $Ca^{2+}(ClO_{2}^{-})Cl^{-}$ c) $Ca^{2+}(Cl0^{+})Cl^{-}$ d) $Ca^{2+}(Cl0^{-})Cl^{-}$ 427. Which of the following processes is used in extractive metallurgy of magnesium? a) Fused salt electrolysis b) Self reduction c) Aqueous solution electrolysis d) Thermite reduction 428. A reaction showing slag formation is _____ a) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$ b) $ZnCO_3 \rightarrow ZnO + CO_2$ c) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ d) FeO + SiO₂ \rightarrow FeSiO₃ 429. Extraction of Al from bauxite is carried out by various stages in Hall' process which involves I. Removal of sand and heavier impurities by gravity separation method II. Removal of magnetic impurities by magnetic separator III. Fusing the concentrated finely divided ore with Na₂CO₃ and CaCO₃ and then extracting with H₂O IV. Ignition at 1100°C V. Passing CO₂ Correct order of these steps are a) I, II, III, V, IV b) II, I, III, V, IV c) V, IV, III, I, II d) I, III, V, IV, II 430. The hardest naturally occurring substance is b) Graphite d) Astatine a) Iron c) Diamond 431. Colemanite is a) $Ca[B_3O_4(OH_2)] \cdot 2H_2O$ b) $Ca_2B_6O_{11} \cdot 5H_2O$ c) $Ca(OH)_2$ d) $Na_2B_4O_7 \cdot 2H_2O$ 432. Which of the following statement is NOT correct? a) All ores are minerals b) All minerals are ores c) All ores contain gangue d) A metal may occur in several minerals 433. Heating mixture of Cu₂O and Cu₂S will give _____ a) $Cu + SO_3$ b) $Cu + SO_2$ c) Cu_2SO_3 d) CuO + CuS434. Ellingham diagram represents a) Change of ΔG with temperature b) Change of ΔH with temperature

	c) Change of ΔG with pressure							
	d) Change of $(\Delta G - T\Delta S)$	with temperature						
435.	How is ore of aluminium of	concentrated?						
	a) By roasting	b) By leaching	c) By froth floatation	d) By using Wilfley table				
436.	CN ⁻ solution is used in ex	traction of which metal?						
	a) Ag	b) Ti	c) Zn	d) Sn				
437.	is necessary to obt	tain purest form of copper	metal					
	a) Carbon reduction	b) Hydrogen reduction	c) Electrolytic process	d) Thermite process				
438.	Sulphur atoms are of two	environments in $S_4 O_6^{2-}$, di	fference in oxidation states	of two types of sulphur is				
	a) 5	b) 6	c) 7	d) 10				
439.	Galena is an ore of							
	a) Pb	b) Hg	c) Sn	d) Zn				
440.	For the reaction between	MnO_4^- and $C_2O_4^{2-}$ in basic	solution, the unbalanced eq	uation is				
	$MnO_4^- + C_2O_4^{2-} \rightarrow MnO_2(3)$	$s) + CO_3^{2-}$						
	In a balanced equation, th	e number of OH ⁻ ions is						
	a) 0	b) 4 on the right	c) 4 on the left	d) 2 on the left				
441.	-	CO	Laver X	-				
	(A = Dh) allow melt and zin	$\frac{10}{10}$	\rightarrow Layer Y					
	(Ag + PD) alloy	\rightarrow (Ag + PD + ZII) meit						
	Select the correct stateme	ent(s) based on the above s	scheme					
	a) Larger X contains zinc	and silver						
	b) Larger Y contains lead	and silver but amount of s	ilver in this layer is smaller	than in the layer X				
	c) <i>X</i> and <i>Y</i> are immiscible	layers						
	d) All of the above are cor	rect statements						
442.	Values of <i>p</i> , <i>q</i> , <i>r</i> , <i>s</i> and <i>t</i> ar	e in the following redox re	action					
	$pBr_2 + qOH^- \rightarrow rBr^- + s$	$BrO_3^- + tH_2O$						
	pqrst							
	a) 3 6 1 5 3	b) 3 6 5 3 1	c) 3 6 5 1 3	d) 3 5 1 6 3				
443.	Which is the sulphate ore	of Mg?						
	a) Dolomite	b) Carnallite	c) Magnesite	d) Kieserite				
444.	For the formation of carbo	on dioxide, ∆G°						
	a) Increases with the incr	ease in temperature						
	b) Decreases with the dec	rease in temperature						
	c) Does not vary much wi	th the temperature						
	d) None of these							
445.	Liquation process is carrie	ed out using						
	a) Blast furnace							
	b) Hydraulic classifier							
	c) Reverberatory furnace							
	d) Wilfley's washing table	2						
446.	In the extraction of chlori	ne by electrolysis of brine						
	a) Oxidation of Cl^- ion to	chlorine gas occurs at cath	ode					
	b) Reduction of Cl ⁻ ion to	chlorine gas occurs at ano	de					
	c) For overall reaction ΔG	° has a negative value						
	d) A displacement reactio	n takes place						
447.	On igniting Fe ₂ O ₃ at 1400	°C, the product obtained is	5					
	a) Fe ₂ O ₃ melt	b) FeO	c) Fe ₃ 0 ₄	d) Metallic iron				
448.	Extraction of gold (Au) in	volves the formation of co	mplex ions 'X' and 'Y'					
	Gold ore \longrightarrow HO ⁻ +	$-'X' \xrightarrow{Zn} 'Y' + Au$						
	CN ⁻ ,H ₂ 0,0 ₂							
	X and Y are respectively _							

a) $[Au(CN)_2]^-$ and $[Zn(CN)_4]^{2-}$ b) $[Au(CN)_4]^{3-}$ and $[Zn(CN)_4]^{2-}$ c) $[Au(CN)_3]^-$ and $[Zn(CN)_6]^{4-}$ d) $[Au(CN)_4]^-$ and $[Zn(CN)_3]^-$ 449. Extraction of aluminium from aluminium oxide (Al_2O_3) is best done by a) Electrolytic reduction of Al_2O_3 b) Reduction of Al_2O_3 with carbon c) Reduction of Al₂O₃ with sodium d) Reduction of Al₂O₃ with CO 450. A green colour product is formed when acidified $K_2Cr_2O_7$ reacts with a) Fe²⁺ c) SO_3^{2-} b) SO_2 d) All of these

Multiple Correct Answers Type

451. Out of
$$H_2SO_4$$
, $H_2S_2O_8$, H_2SO_5 , $H_2S_2O_3$ and $H_2S_2O_7$

1. (II) (III) (IV)

b) Peroxy linkage is in I, II and III

c) Peroxy linkage is in II and III

d) Oxidation number of sulphur is -2 in I and V

452. Consider the following reaction, $Br_2 + OH^- \rightarrow BrO_3^- + Br^- + H_2O(unbalanced)$

(V)

Select the correct statement.

a) Equivalent weight of Br_2 when it is reduced to Br^- is 80

b) Equivalent weight of Br_2 when it is oxidized to BrO_3^- is 96

c) Net equivalent weight of Br₂ is 96

d) It is a disproportionation reaction

453. One mole of ferric oxalate is titrated with acidified potassium permanganate solution. In this

a) 3 moles of potassium permanganate are required

b) 1.2 moles of potassium permanganate are required

c) Oxalate ion is oxidized to carbon dioxide

d) Ferric ion is oxidized to ferrate (VI) ion

454. Boron can be obtained by various methods but not by

a) Thermal decomposition of B_2H_6

b) Pyrolysis of BI₃ (van-Arkel)

c) Reducing BCl₃ with H₂

d) Electrolysis of fused BCl₃

455. The carbon-based reduction method is not used for the extraction of

a) Tin from SnO₂

b) Iron from Fe_2O_3

```
c) Aluminium from Al_2O_3
```

```
d) Magnesium from MgCO_3 - CaCO_3
```

456. In the following cases, equivalent weight of the underlined may be equal to molecular weight a) $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$

b) $2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$

c)
$$\overline{P_4} + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

d) $\underline{H_2SO_4} + NaOH \rightarrow NaHSO_4 + H_2O$

457. Consider the following steps

 $\operatorname{CuS} \xrightarrow{\operatorname{roast in air}} (A) \xrightarrow{\operatorname{roast without air}} (B)$

Which are the correct statements

a) It is self-reduction

It involves disproportionation b)

 $Cu_2S \rightarrow Cu + CuS$

c) (A) is a mixture of CuO and CuS and (B) is a mixture of Cu and SO_2

d) (A) is a mixture of Cu and SO_2 and B is $CuSO_4$
--

- 458. Extraction of metal from the ore cassiterite involves
 - a) Carbon reduction of an oxide ore
 - c) Removal of copper impurity
- 459. Following is/are disproportionation reaction(s).
 - a) $2CCl_3CHO + NaOH \rightarrow CCl_3COONa + CCl_3CH_2OH$
 - b) $NH_4NO_3 \rightarrow N_2O + 2H_2O$
 - c) $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$
 - d) $5Cl_2 + 60H^- \rightarrow ClO_3^- + 5Cl^- + 3H_2O$

b) Self-reduction of a sulphide ore

d) Disproportionation reaction; -3 and +1

- d) Removal of iron impurity
- 460. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type; the oxidation states of phosphorus in phosphine and the other product are respectively
 a) Redox reaction; -3 and -5
 b) Redox reaction; 3 and +5
 - c) Disproportionation reaction; -3 and +5
- 461. 0.1 mole of NaHC₂O₄ is
 - a) Neutralized by 0.1mole of NaOH
 - b) Neutralized by 0.05mole of Ca(OH)₂
 - c) Oxidized by 0.04 mole of $KMnO_4$ in acidic medium
 - d) Oxidized by 0.02 mole of $K_2 MnO_4$ in basic medium
- 462. Which of the following represent redox reactions?
 - a) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$
 - b) $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$

c)
$$2MnO_4^- + 3Mn^{2+} + 4OH^- \rightarrow 5MnO_2 + 2H_2O_2$$

- d) $2Cu^+ \rightarrow Cu + Cu^{2+}$
- 463. All the following species are strong oxidizing agents
 - I. $S_2O_8^{2-}$; II. $Cr_2O_7^{2-}$ III. MnO_4^{-}

Their strength as oxidizing agents in acidic solution is such that

- a) I > II > III b) III > II > I c) I > III > II d) III > II > II464. Select the correct statements, Equivalent weight of KMnO₄ (molar mass = *M*) is
- a) $\frac{M}{r}$ in acidic medium
- c) *M* in strongly alkaline medium

465. Intramolecular redox reactions are

a) Sodium

a) $PCl_5 \rightarrow PCl_3 + Cl_2$ b) $2KClO_3 \rightarrow 2KCl + 3O_2$ c) $\stackrel{CHO}{\vdash} + OH^- \longrightarrow \stackrel{COO^-}{\vdash} CH_2OH$ d) $NH_4NO_2 \rightarrow N_22H_2O$

466. Metals found in free as well as combined states are

```
c) Silver d) Copper
```

b) $\frac{M}{3}$ in dilute basic medium

d) $\frac{M}{2}$ in acidic, basic and neutral media

467. Which is/are intramolecular diproportionation reaction(s)?

a) $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$ c) $\stackrel{CHO}{\vdash} + OH^- \xrightarrow{COO^-}_{CH_2OH}$ b) $3H_3PO_2 \xrightarrow{\Delta} 2H_3PO_3 + PH_3$ d) $2CH_3CHO \xrightarrow{Al(OC_2H_5)_3} CH_3COOC_2H_5$

468. Following reaction(s) is/are not involved in thermite process

b) Gold

- a) $3Mn_3O_4 + 8Al \rightarrow 9Mn + 4Al_2O_3$ b) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr_2O_3 + 2Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr_2O_3 + 2Cr_2O_3$
- c) $2Fe + Al_2O_3 \rightarrow 2Al + Fe_2O_3$ d) $B_2O_3 + 2Al \rightarrow 2B + Al_2O_3$

469. Select the correct statements(s).

a) Equivalent weight of $Ca(HC_2O_4)_2$ is $\frac{M}{2}$ when it is a reducing agent

- b) Equivalent weight of $Ca(HC_2O_4)_2$ is *M* when it behaves as an acid
- c) $Ca(HC_2O_4)_2$ can be estimated by MnO_4^-/H^+

d) $Ca(HC_2O_4)_2$ can be estimated by an acid 470. Which of the following are disproportionation reactions?

	$Al(OC_2H_5)_3$		
	2 СНО	b) μ μ ρ Δ μ ρ ρ	
	$\langle \bigcirc -\text{COOCH}_2 - \langle \bigcirc \rangle$	$0) 4H_3PO_3 \longrightarrow 3H_3PO_4 -$	FPH ₃
		Δ	
	c) $NH_4NO_3 \longrightarrow N_2O + 2H_2O$	d) $PCl_5 \longrightarrow PCl_3 + Cl_2$	
471	. Roasting is carried out to		
	a) Convert sulphide to oxide and sulphate	b) Remove water of hydr	ation
	c) Melt the ore	d) Remove arsenic and su	ulphur impurities
472	. 0.1 mole of MnO_4^- (in acidic medium) can oxidize		
	a) 0.5 mol of Fe ²⁺ b) 0.25 mol of $C_2 O_4^{2-}$	c) 0.6 mol of Cr ₂ 0 ^{2–}	d) 0.166 mol of FeC ₂ O ₄
473	. By which of the following processes, the ore is made	e porous?	
	a) Roasting b) Calcinations	c) Reduction	d) Distillation
474	. Following method is not used for extraction of Al		
	a) Van-Arkel b) Serpeck	c) Bayer	d) Hall-Heroult
475	. Consider the following reaction,		
	$\begin{array}{c} CHO & COO^- \\ I & + OH^- \longrightarrow I \end{array}$		
	сно сн ₂ он		
	a) It is a disproportionation reaction		
	b) It is intramolecular redox reaction		
	c) OH [–] is a reducing as well as oxidizing agent		
	d) CHO		
	^L HO is a reducing as well as oxidizing agent		
476	. The process by which higher earthy particles are free	ee from the heavier particle	s using water are
	a) Leaching b) Levigation	c) Hydraulic washing	d) Gravity separation
477	. Consider the following reaction, $H_3PO_4 + Ca(OH)_2$	\rightarrow CaHPO ₄ + 2H ₂ O and sele	ect the true statements
	a) Equivalent weight of H_3PO_4 is 49	· -	
	b) Resulting mixture is neutralized by 1 mole of KOI	Н	
	c) CaHPO ₄ is an acid salt		
	d) 1 mole of H_3PO_4 can be completely neutralized b	y 1.5 moles of Ca(OH) ₂	
478	. The extraction of metals from oxide ores involves		
	a) Reduction with carbon	b) Reduction with alumir	nium
	c) Electrolytic reduction	d) Reduction with CO	
479	. Of the following reduction processes, correct proces	sses are	
	a) $Fe_2O_3 + C \rightarrow Fe$ b) $ZnO + C \rightarrow Zn$	c) $Ca_3(PO_4)_2 + C \rightarrow P$	d) $PbO + C \rightarrow Pb$
480	. Carbon cannot be used in the reduction of Al_2O_3 be	cause	
	a) It is an expensive proposition		
	b) The enthalpy of formation of CO_2 is more than th	at of Al ₂ O ₃	
	c) Pure carbon is not easily available		
	d) The enthalpy of formation of Al_2O_3 is too high		
481	. Out of FeO_4^{2-} , $FeCl_3$, $FeCl_2$ and Fe,		
	a) Best reducing agent is Fe	b) Best oxidizing agent is	FeO ₄ ²⁻
	c) Best oxidizing agent is FeCl ₃	d) Best reducing agent is	FeO_4^{2-}
482	. If Cl_2 is passed into hot NaOH solution, oxidation nu	mber of chlorine changes f	rom
	a) 0 to +5 b) 0 to -1	c) 0 to +1	d) 0 to +7
483	. The role of CaF_2 which is added in the electrolytic re	eduction of alumina dissolv	ed in fused cryolite is/are
	a) To make the fused conducting mixture		5 1
	b) To act as a catalyst		
	c) To lower the temperature of the melt		

d) To decrease the oxidation of carbon at the anode

484. In which of the following isolations to reducing agent is required?

- a) Iron from haematite
- c) Mercury from cinnabar

- b) Aluminium from bauxite
- d) Zinc from zinc blende

485. In the following reaction, $3\mathrm{H_3PO_2} \rightarrow \mathrm{H_3PO_3} + \mathrm{PH_3}$

- a) H₃PO₂undergoes disproportionation reaction
- b) Equivalent weight of H_3PO_2 is 22
- c) Equivalent weight of H_3PO_2 is 49.5
- d) NaH₂PO₂ is an acid salt

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 486 to 485. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

486

Statement 2: Gold dissolves in aqua-regia

487

	Statement 1.	The reduction of a motal avida is again if the motal formed is in liquid state at the
	Statement 1:	tomporature of reduction
188	Statement 2:	The value of entropy change of the reduction process is more on positive side when the metal formed is in liquid state
400		
	Statement 1:	Forth-floatation process is used to Concentrate sulphide ores
	Statement 2:	There is no difference in the wettability of different minerals
489		
	Statement 1:	In the Hoop's process of purification of aluminium, the fused materials remains in three different layers. These layers remain intact even in electrolytic reduction
	Statement 2:	All the layers have different densities
490		
	Statement 1:	Alkaline earth metals are not easy to produce by chemical reduction
	Statement 2:	Their aqueous solutions can not be used for displacing one metal by another

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

491. Match the method in Column I with related reaction in Column II

Column-I

Column- II

(A)	Mond's pr	ocess			(1)	$Cr_2O_3 + 2Al \rightarrow$	$Al_2O_3 + 2Cr$	
(B)	Van-Arke	l-de-Boei	r process			(2)	$TiCl_4 + Mg \frac{100}{}$	$\xrightarrow{0-1150^{\circ}C} Ti + 2MgCl_2$
(C)	Thermite	process			(3)	$Ni(CO)_4 \xrightarrow{230^{\circ}C} N$	Ni + 4CO	
(D)	Kroll proc	cess			(4)	$2CuO + CuS \rightarrow$	$3Cu + SO_2$	
(E)	Self reduc	tion			(5)	$\operatorname{Zrl}_4 \xrightarrow{\Delta} \operatorname{Zr} + 2l_2$	2	
COD	DES :							
	Α	В	С	D				
a)	1 2 3 4 5 3 5 1 2 5							
b)								
c)	4	1	2	3	5			
d)	2	4	5	1	5			
492. Mate	ch the extra	action pr	ocess in C	olumn I w	vith metals	s in C	olumn II	
		C	olumn-I					Column- II
(A)	Self reduction						Zirconium	
(B)	Carbon reduction						Silver	
(C)	Complex	formatio	n and disp	lacement	(3)	Copper		
(D)	Decompo	sition of	iodide			(4)	Boron	
COD	DES :							

	Α	В	С	D
a)	4	2	1	3
b)	2	1	3	4
c)	1	3	4	2
d)	3	4	2	1

493. Match the compounds (in Column I) with their applications/colours (in Column II)

Column-I

Column- II

(B) (PbCO₃)₂, Pb(OH)₂

- **(C)** Ca₂PbO₄
- **(D)** PbCrO₄
- CODES :

d)

4

1

	Α	В	С	D
a)	4	1	2	3
b)	2	3	4	1
c)	3	2	1	4
d)	1	4	3	2

- (1) White lead
- (2) Rust proofing sheets
- (3) Road signs and markings
- (4) Red lead

494. Match the reactions taking place in blast furnace (in Column I) with temperature-range of operations (in Column II)

		Column- II						
	(A)							
	(B)	$C + CO_2$	\rightarrow CO			(2)	900°C	
(C) $C + H_2 O \rightarrow CO + H_2$							600°C	
	(D)	CaO + Si	1100°C					
	COD	ES :						
		Α	В	С	D			
	a)	3	2	1	4			
	b)	2	4	3	1			
	c)	1	3	4	2			

495. Match the different compounds of Mn (in Column I) with oxidation number (in Column II)

3

	Column-I		
(A)	MnO ₃ HSO ₄	(1)	+4
(B)	K ₂ MnO ₄	(2)	+7
(C)	MnO ₂	(3)	+6
(D)	Mn ₂ O ₃	(4)	+2
(E)	$Mn(HCO_3)_2$	(5)	+3
COD	DES :		

2

Column- II

	Α	В	С	D	Ε
a)	2	3	1	5	4
b)	2	1	3	5	4
c)	3	2	4	5	4
d)	1	4	2	3	4

496. Match the compounds (in Column I) with the matter (in Column II).

Column-I

Column- II

(A) H₂S₂O₈ (1) Peroxy linkage **(B)** CrO₅ (2) Oxidation number of the underlined atom 8 (C) H₂SO₅ (3) H_2O_2 is the hydrolysis product **(D)** K₂CrO₄ (4) Caro's acid **(E)** (NH₃)₃CrO₄ (5) Marshall's acid **CODES**: В С Α D 1,2,3,5 2 1 1,2 a) b) 2 1 1,2,3,5 1,2 c) 1,2,3,5 1,2 1,2,3 1

1

497.

d)

1,2

Column-I

1,2,3,5

1,2,3

	٨	D	C	D		
COD	ES :					
(D)	$\mathrm{CrO}_2^{2+} \rightarrow$	CrO_{4}^{2-}			(4)	3
(C)	$H_2O_2 \rightarrow 0$	D_2			(3)	0
(B)	$Cr^{3+} \rightarrow C$	r0 ₅			(2)	8
(A)	$Cl^- \rightarrow Clo$	D_4^-			(1)	2

	Α	В	C	D
a)	1	2	3	4
b)	2	4	1	3
c)	3	4	1	2
d)	2	1	3	4

Column- II

Page | 40

•	-	•-	-		
ch ores in	Column I	with meta	als in Columr	n II	
	Co	olumn-I			Column- II
Carnallit	e			(1)	Zinc
Calamine	e			(2)	Titanium
Ilmenit				(3)	Magnesium
Chalcopy	/rite			(4)	Copper
DES :					
Α	В	C	D		
3	1	2	4		
1	2	4	3		
2	3	1	4		
4	1	3	2		
ch process	s (in Colun	nn I) with	electrolytes	in Column	II)
	Co	olumn-I			Column- II
Downs c	ell			(1)	Fused MgCl ₂
Dow sea	-water pro	ocess		(2)	Fused $(Al_2O_3 + Na_2AlF_6)$
Hall-Her	oult			(3)	Fused KHF ₂
Moissan				(4)	Fused (40% NaCl + 60% CaCl ₂)

498. Match List I with List II and select the correct answer using the codes given below the list

(p) Bauxite

(q) Cerussite

(r) van-Arkel method

(s) Zone refining

		Colu	mn-I	
(A)	Ti			
(B)	Si			
(C)	Al			
(D)	Pb			
COD	ES :			
	Α	В	С	D
a)	b	а	С	d
b)	b	с	а	b
c)	С	а	b	d
d)	С	d	а	b

499. Mate

- (A)
- **(B)**
- (C)
- (D)

COD

(A)

(B)

(C)

(D)

	Α	В	С	D
a)	3	1	2	4
b)	1	2	4	3
c)	2	3	1	4
d)	4	1	3	2

500. Mate

Column- II

CODES:

	Α	В	С	D
a)	2	3	1	4
b)	1	2	3	4
c)	4	1	2	3
d)	3	2	4	1

Linked Comprehension Type

This section contain(s) 18 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 501 to -501**

Metallurgy is the process of extraction of metals form the substances in which these are found in nature. It involves a series of process like ore dressing, conversion of concentrated ore to oxide, reduction and refining of metal

In one of the refining processes, the molten impure metal is stirred with green logs of wood. These wood release some gases by which the impurities are reduced and thus, removed

501.	The metal	which is	ourified b	ov the r	nethod	discussed	above is
001	The metal	in mon io j	parmear	<i>y</i>	neenoa	albeabbea	

a) Sodium	b) Copper	c) Iron	d) Manganese
-----------	-----------	---------	--------------

Paragraph for Question Nos. 502 to - 502

Metallic gold is frequency found in aluminosilicate rocks and it is finely dispersed among other minerals. It may be extracted by treating the crushed rock with aerated sodium cyanide solution. During this process, metallic gold is slowly converted to $[Au(CN)_2]^-$, which is soluble in water. After equilibrium has been reached, the aqueous phase is pumped off and the metallic gold is recovered from it by reaching the gold complex with zinc, which is converted to $[Zn(CN)_4]^{2-}$. Gold in nature is frequency alloyed with silver which is also oxidized by aerated sodium cyanide solution

502. The precipitating age	nt used in the hydrometal	llurgy of silver and gold is	
a) Mercury	b) Magnesium	c) Aluminium	d) Zinc

Paragraph for Question Nos. 503 to - 503

Following passage describes extraction of zinc from zinc sulphide. Answer the questions at the end of it The chief ore of zinc is the sulphide, ZnS. The ore is concentrated by floatation process and then heated in air, which convert the ZnS to ZnO

 $\begin{array}{l} 2\text{ZnS} + 3\text{O}_2 \xrightarrow{90.6\%} 2\text{ZnO} + 2\text{SO}_2 \quad ...(i) \\ \text{The ZnO is then treated with dilute } \text{H}_2\text{SO}_4 \\ \text{ZnO} + \text{H}_2\text{SO}_4 \xrightarrow{100\%} \text{ZnSO}_4 + \text{H}_2\text{O} \quad ...(ii) \\ \text{To produce } \text{ZnSO}_4(\text{aq.}) \text{ which produces } \text{Zn metal on electrolysis} \\ 2\text{ZnSO}_4 + 2\text{H}_2\text{O} \xrightarrow{98.2\%} 2\text{Zn} + 2\text{H}_2\text{SO}_4 + \text{O}_2 \quad ...(ii) \end{array}$

503.	What mass of Zn will be ol	otained from an ore contain	ning 225 kg of ZnS? Efficien	cies of the process have
	been indicated above the a	arrow mark. ($Zn = 65, S =$	32,0 = 16, H = 1)	
	a) 134 kg	b) 112 kg	c) 102 kg	d) 130 kg

Paragraph for Question Nos. 504 to - 504

Questions given below are based on the following sequence of reactions At high temperature carbon reacts with water to produce a mixture of carbon monoxide, CO and hydrogen, H₂ $C + H_2O \xrightarrow{\text{red heat}} CO + H_2$ CO is separated from H_2 and then used to separate nickel from cobalt by forming a volatile compound, nickel tetracarbonyl, Ni(CO₄) Ni + 4CO \rightarrow Ni(CO)₄

504. How many moles	of Ni(CO) ₄ could be obtain	ed from the CO produced b	by the reaction of 75.0 g of a	carbon?
Assume 100% re	action and 100% recovery i	in both steps		
a) 6.25	b) 1.563	c) 3.125	d) 25.0	

Paragraph for Question Nos. 505 to - 505

FeCr₂O₄ (chromite) is a good source of chromium and its compounds like Na₂CrO₄, Na₂Cr₂O₇ Questions are based on the following reactions $P: FeCr_2O_4 + NaOH + air \rightarrow A + Fe_2O_3$ $Q: A + B \rightarrow Na_2Cr_2O_7$ $R: Na_2Cr_2O_7 + X \xrightarrow{\Delta} Cr_2O_3$ $S: Cr_2O_3 + Y \rightarrow Cr$

505. Compound (<i>A</i>) and (<i>B</i>)	are		
a) Na ₂ CrO ₄ , H ₂ SO ₄	b) Na ₂ Cr ₂ O ₇ , HCl	c) Na_2CrO_5 , H_2SO_4	d) $Na_4[Fe(OH)_6]$, H_2SO_4

Paragraph for Question Nos. 506 to - 507

Copper is the most noble of the first row transition metals and occurs in small deposits in several countries. Ores of copper include chalcanthite ($CuSO_4 \cdot 5H_2O$), atacamite ($Cu_2Cl(OH)_3$), cuprite (Cu_2O), copper glance (Cu_2S) and malachite ($Cu_2(OH_2CO_3)$). However, 80% of the world copper production comes from the ore chalcopyrite ($CuFeS_2$). The extraction of copper from chalcopyrite involves partia roasting, removal of iron and self-reduction

506. Partial roasting of cha	lcopyrite produces		
a) Cu ₂ S and FeO	b) Cu ₂ O and FeO	c) CuS and Fe_2O_3	d) Cu_2O and Fe_2O_3

Paragraph for Question Nos. 507 to - 508

Read the following cyclic process of recovery of copper from a copper wire and answer the questions at the end of it

The following "cycle of copper" experiment is performed in some general chemistry laboratories. The series of

reactions starts with copper and ends with metallic copper. The steps are as follows: (1) A piece of copper wire of known mass is allowed to react with concentrated nitric acid [the products are copper (II) nitrate, nitrogen dioxide, and water]. (2) The copper (II) nitrate is treated with a sodium hydroxide solution to form copper (II) hydroxide precipitate. (3) On heating copper (II) hydroxide decomposes to yield copper (II) oxide. (4) The copper (II) oxide is reacted with concentrated sulphuric acid to yield copper (II) sulphate. (5) Copper (II) sulphate is treated with an excess of zinc metal to form metallic copper. (6) The remaining zinc metal is removed by treatment with hydrochloric acid and metallic copper is filtered, dried, and weighted

507. Assuming that a student started with 65.6 g of copper, calculate the theoretical yield of copper sulphatea) 165 gb) 82.4 gc) 90 gd) 100.2 g

Paragraph for Question Nos. 508 to - 509

Questions given below are based on the given diagram for extractive metallurgy

The points noted by arrows are the melting and boiling points of the metals zinc and magnesium. ΔG° as a function of temperature for some reactions of extractive metallurgy

508. At what approximate temperature, zinc and carbon have equal affinity for oxygen?a) 1000°Cb) 1500°Cc) 500°Cd) 1200°C

Paragraph for Question Nos. 509 to - 510

The Ellingham diagram for a number of metallic sulphides is reproduced below

Answer the questions given

509. Formation of which of the sulphides is most spontaneous?a) HgSb) Bi2S3c) PbSd) CS2

Paragraph for Question Nos. 510 to - 511

From the following flow-sheet for the extraction of pure metal, answer the questions at the end of it

Paragraph for Question Nos. 511 to - 512

Given flow-sheet is for the extraction of copper. Based on this, answer the questions given at the end

511. Froth-floatation process can be made more effective by

- a) Use of pine oil which produces stable froth
- b) Use of sodium ethyl xanthate as a collector that coats the particles of ore
- c) Both (a) and (b)
- d) None of the above

Paragraph for Question Nos. 512 to - 513

Following few lines are based on the household bleach. Answer the questions at the end of it Aqueous solution of sodium hypochlorite (NaOCl) is a household bleach and is a strong oxidizing agent that reacts with chromite ion $[Cr(OH)_4^-]$ in basic solution to yield chromate (CrO_4^{2-}) and chloride ion

- 512. Select the correct statements(s)
 - a) OCl⁻ has been oxidized and $Cr(OH)_4^-$ has been reduced
 - b) OCl⁻has been reduced and Cr(OH)⁻₄has been oxidized
 - c) It is simply a neutralization reaction
 - d) It is simply a displacement reaction

Paragraph for Question Nos. 513 to - 514

Following experiment is given to determine the oxidation state of vanadium and different stages When ammonium vanadate is heated with oxalic acid solution, a compound Z is formed. A sample of Z was titrated with KMnO₄ solution is hot acidic solution. The resulting liquid was reduced with SO₂, the excess SO_2 boiled off, and the liquid again titrated with KMnO₄. The ratio of the volumes of KMnO₄ used in the two titrations was $5 : 1 \text{ KMnO}_4$ oxidizes all oxidation state of vanadium to vanadium (+V) and SO_2 reduces vanadium (+V) to vanadium (+IV) Read the above experiment and answer the following questions

513. What is the oxid	lation state of vanadium in t	he compound Z?	
a) +2	b) +1	c) 0	d) —1

Paragraph for Question Nos. 514 to - 515

Read the following experimental facts and answer the questions at the end of it "KMnO₄ and $K_2Cr_2O_7$ are widely used as volumetric reagents for analytical estimation of iron, hydrogen peroxide, iodide, ozone, sulphite, nitrite, etc. Reaction is carried out in acidic medium"

514. Equivalents of MnO_4^-	and $Cr_2O_7^{2-}$ per mo	ole of the ion in acidic medium a	re in the ratio of
a) 1:1	b) 1 : 5	c) 6:1	d) 5 : 6

Paragraph for Question Nos. 515 to - 515

Consider the following Redox Predominance Diagram for iron in different oxidation state

Oxidation	Half-reaction	E°/V
state		
+6	$FeO_4^{2-} + 8H^+$	+2.20 V
	+ 3e ⁻	
	\Rightarrow Fe ³⁺ + 4H ₂ O	
+3	$Fe^{3+} + e^{-}$	+0.77 V
	\rightarrow Fe ²⁺	
+2	$Fe^{2+} + 2e^{-}$	-0.44 V
	≓ Fe	

Answer the following questions

515. Select the best oxi	dizing and reducing agent		
a) Fe, Fe ²⁺	b) FeO ₄ ^{2–} , Fe ³⁺	c) FeO_4^{2-} , Fe^{2+}	d) FeO ₄ ^{2–} , Fe

Paragraph for Question Nos. 516 to - 516

Every disproportionation reaction is a redox reaction but every redox reaction may not be disproportionation. Disproportionation reaction may be intramolecular if same species is oxidized and reduced Based on the above statement answer the following questions

516. A : $2C_6H_5CHO + KOH \rightarrow C_6H_5COOK + C_6H_5CH_2OH$ B : $3Cl_2 + 6KOH \rightarrow 5KCl + KClO_3 + 3H_2O$ Select the correct statement a) Bothe are correct statement b) Both are disproportionation reactions c) *A* is a disproportionation and *B* is a redox reaction

d) *A* is a redox reaction, *B* is a disproportionation reaction

Integer Answer Type

- 517. What is the oxidation number of Cr in $(NH_3)_3Cr(O_2)_2$?
- 518. Al_2O_3 is converted to AlN on heating with carbon in the atmosphere of N_2 . How much carbon is required to convert 23 g of Al_2O_3 into AlN?
- 519. Which of the following behave as oxidizing agent as well as reducing agent? HNO₂, H₃PO₂, H₂O₂, N₂H₄, HNO₃, MnO₂
- 520. Total number of atoms in one unit of chalcopyrites are.....
- 521. Al(OH)₃ is soluble in alkaline solution of pH 8.3010. Thus, [NaOH] = $y \times 10^{-6}$ what is the value of y?
- 522. $S_2O_3^{2-}$ has two types of sulphur. What is the difference in oxidation states of two types of sulphur?
- 523. In oxysalt of Mn,equivalent mass is one-fifth of ionic mass of oxysalt. What is the oxidation number of Mn in oxysalt?
- 524. For the following reaction, $N_2 + 3H_2 \rightarrow 2NH_3$ equivalent mass of $N_2 = \frac{\text{molar mass of } N_2}{x}$ what is the value of x?
- 525. One unit formula of azurite contains..... copper atoms
- 526. In the following reaction slag $CaSiO_3$ is formed

 $Ca_3(PO_4)_2 + C + SiO_2 \rightarrow P_4 + CaSiO_3 + CO$

If one mole of P₄ is formed, then CaSiO₃ formed is..... moles

- 527. The difference in the oxidation numbers of the two types of sulphur atoms in $Na_2S_4O_6$ is
- 528. Difference in oxidation number of two Cl atoms in bleaching powder is *x*. What is the value of *x*?
- 529. How many moles of KMnO₄ are required to oxidize 10 moles of iron (II) sulphate (IV) in acidic medium?
- 530. What is the maximum oxidation state of nitrogen in its compounds?
- 531. How many of the following underlined atoms have oxidation number of (+6)?

- 532. Among the following, the number of elements showing only one non-zero oxidation state is O, Cl, F, N, P, Sn, Tl, Na, Ti.
- 533. How many of the following underlined atoms have different oxidation number? H₂S₂O₃, H₂S₄O₆, CaOCl₂, CrO₅, CrO₃, [Fe₂(CN)₆]⁻, CrO₂Cl₂
- 534. One unit of corundum has.....oxygen atoms
- 535. 2.68×10^{-3} moles of A^{n+} is oxidised to AO_3^- by 1.61×10^{-3} moles of MnO_4^- which is reduced to Mn^{2+} in acidic medium. What is the value of x?
- 536. Mineral $CuFeS_2$ is 50% pure
- 537. In the following half-reaction $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ molar mass of $Cr_2O_7^{2-} = x \times equivalent$ mass. What is the value of x?
- 538. When one mole of Ag_2CO_3 is strongly heated, residue is....mole(s)
- 539. In the ring test of NO_3^- , following complex appears as ring $[Fe(H_2O)_5NO]^{2+}$. What is the oxidation state of Fe?
- 540. E_{red}° values are

How many of the metals can displace Cu from CuSO₄ solution?

- 541. Epsomite is MgSO₄ · xH₂O, where y =.....
- 542. Phosphate rock is represented as $Pb_{10}(PO_4)_x Cl_2$ what is the value of *x*?
- 543. How many of the following ores can be enriched by FFP?

Dolomite, cerussite, argentite, pyrites, anhydrite, cinnabar, chalcopyrite, galena, greenockite, chalcocite

- 544. How many of the following species have more than one oxidation state (except zero)? Cu, Zn, Cr, Mn, Cl, O, P, Sn, Al, Tl
- 545. If reduction of Cu²⁺ by Al is possible then E_{cell}° will be volt $3Cu^{2+} + 2Al \rightarrow 2Al^{3+} + 3Cu$
- 546. Bauxite is $Al_2O_3 \cdot xH_2O$, where $x = \dots$
- 547. How many peroxy linkages are present in CrO_5 ?
- 548. Gold is found to be 37.5% pure. What is its grading in terms of carrat?
- 549. What is the basicity of oxyacid of phosphorus with oxidation number +5?
- 550. In the electrolysis of AgNO₃ solution, 97.2 g of Ag is deposited on passing current for 9650 s. What is the value of current in amperes?

6.GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

1) c 2) b 3) b 4) b 189) d 190) b 191) c 192) b 5) b 6) c 7) d 83 d 193) a 194) b 191) a 196) a 200) a 205) b 206) d 207) c 208) c 204) a 210) a 210) a 210) a 210) a 223) c 224) b 231) c 223) c 224) b 330) b 35) b 36) b 231) c 233) b 231) c 223) b 231) c 234) b 331) b 35)							: ANS	W	ER K	EY						
5) b 6) c 7) d 8) d 193 a 194 b 195 a 196 a 9) a 100 d 111 a 122 c 197 d 198 c 199 a 200 c 203 c 2040 a 171 b 180 d 199 a 201 b 221 b 221 b 221 c 213 c 214 b 215 c 260 c 277 b 288 a 213 c 214 b 235 c 2241 c 2233 c 2241 c 2233 c 2341 b 233 c 2341 b 233 c 2341 b 233 c 2341 c 2333 c 2341 c 233 c 2341 c 2333	1)	С	2)	b	3)	b	4)	b	189)	d	190)	b	191)	С	192)	b
9) a 10) d 11) a 12) c 197) d 198) c 199) a 2000 c 13) c 144 d 155 a 201 b 202 b 203 b 204 d 205 b 206 d 207 c 208 c 214 b 215 c 206 d 207 c 224 d 207 c 217 a 218 a 219 a 213 c 214 b 215 c 226 a 227 c 228 a 211 d 221 d 233 c 234 b 231 c 236 b 237 b 233 c 236 d 246 b 247 d 248 b 237 b 2433 a 251 d 246 247 <t< td=""><td>5)</td><td>b</td><td>6)</td><td>С</td><td>7)</td><td>d</td><td>8)</td><td>d</td><td>, 193)</td><td>а</td><td>194)</td><td>b</td><td>195)</td><td>а</td><td>196)</td><td>а</td></t<>	5)	b	6)	С	7)	d	8)	d	, 193)	а	194)	b	195)	а	196)	а
13) c 14) d 15) a 16) c 201) b 2021 b 2031 c 2044 a 17) b 18) d 19) a 2001 a 2010 a 2111 d 2121 d 2131 d 2141 d 2141 d 2141 d 2141<	9)	а	10)	d	11)	а	12)	С	197)	d	198)	С	199)	а	200)	С
17) b 18) d 19) a 20) a 205) b 206) c 208) c 208) c 208) c 209 d 210 a 211) b 2210 a 2115 c 2115 a 2115 a 2115 a 2115 a 2115 a 2118 a 2119 a 2220 c 2231 c 2243 a 2203 a 2230 b 2231 c 2243 a 2331 c 2331 c </td <td>13)</td> <td>с</td> <td>14)</td> <td>d</td> <td>15)</td> <td>а</td> <td>16)</td> <td>С</td> <td>201)</td> <td>b</td> <td>202)</td> <td>b</td> <td>203)</td> <td>С</td> <td>204)</td> <td>a</td>	13)	с	14)	d	15)	а	16)	С	201)	b	202)	b	203)	С	204)	a
21) b 22) a 23) b 24) d 209) c 210) a 211) d 212) d 25) c 260 c 277) b 218) a 219) a 210) a 210) c 2120) c 2230) d 2330) d 2440) d 2440) <td>17)</td> <td>b</td> <td>18)</td> <td>d</td> <td>19)</td> <td>а</td> <td>20)</td> <td>а</td> <td>205)</td> <td>b</td> <td>206)</td> <td>d</td> <td>207)</td> <td>С</td> <td>208)</td> <td>С</td>	17)	b	18)	d	19)	а	20)	а	205)	b	206)	d	207)	С	208)	С
25) c 26) c 27) b 280 a 213 c 214 b 215 a 216 b 29) c 30) c 310 b 211 c 2120 c 2220 c 2220 c 2220 c 2220 c 2220 c 2220 c 2230 b 2330 b 2330 b 2330 c 2340 d 2440 d 2440 d 2440 d 2440 d 2440	21)	b	22)	а	23)	b	24)	d	209)	d	210)	а	211)	d	212)	d
29) c 30) b 31) b 32) c 217) a 218) a 219) a 220) c 33) c 34) b 35) b 36) b 211) c 2223 c 2243 c 2244 c 37) d 463 a 439 b 430 b 440 c 2230 c 2244 b 2330 c 2344 b 2351 c 2340 b 2331 c 2340 b	25)	с	26)	С	27)	b	28)	а	213)	С	214)	b	215)	а	216)	b
33) c 34) b 35) b 36) b 221) c 222, a 223, c 224, c 37) d 38) a 39) d 40) d 225) c 226, a 223, c 233, c 243, a 244, d 243, a 244, d 243, a 244, d 243, a 244, d 243, a 244, a 243, a 244, a 243	29)	С	30)	b	31)	b	32)	С	217)	а	218)	а	219)	а	220)	С
37) d 38) a 39) d 40) d 225) c 226) a 227) c 228) d 41) b 42) d 43) b 44) c 229) a 230) b 231) c 232) b 45) d 46) b 47) c 53) c 54) c 55) d 55) b 237) b 238) c 239) c 240) b 57) c 58) d 57) a 660 a 670 c 680 a 2450 d 2460 b 2471 d 2481 b 61) d 621 d 631 a 641 2450 d 2460 a 2551 a 2561 d 2641 a 2651 d 2661 a 2671 d 2771 d 2771 d 2771 d 2771 d 2771	33)	С	34)	b	35)	b	36)	b	221)	С	222)	а	223)	С	224)	С
41) b 42) d 43) b 44) c 229) a 230) b 231) c 232) b 45) d 46) b 477) c 480 c 233) c 234) b 235) c 236) d 47) c 550 c 551 d 560 b 2411 d 2420 b 2431 a 2440 d 57) c 581 d 599 a 600 a 2451 d 2461 b 2431 a 2448 b 61) d 620 d 677 a 780 b 771 c 780 a 760 d 2610 a 2620 d 2671 a 2660 d 2711 d 2721 b 2711 d 2721 b 2711 d 2711 d 2712 b 271 d 2711 d 2710 d 2	37)	d	38)	а	39)	d	40)	d	225)	С	226)	а	227)	С	228)	d
45) d 46) b 47) c 48) c 233) c 234) b 235) c 236) d 49) c 50) c 51) d 52) b 237) b 238) c 239) c 240) b 53) c 54) c 55) d 56) 241) d 242) b 243) a 244) d 57) c 58) d 59) a 600 a 245) d 2431 a 244) d 247) d 2480 b 247) d 2480 b 250) a 258) a 255) a 256) d 266) d 277) a 780 b 79) d 80) b 260) d 271) d 271) d 271) d 271) d 271) d 280) b 280) b 280) b 280) b	41)	b	42)	d	43)	b	44)	С	229)	а	230)	b	231)	С	232)	b
49) c 50) c 51) d 52) b 237) b 238) c 239) c 2400 b 531 c 541 c 555) d 560 b 2411 d 2420 b 2431 a 2441 d 571 c 581 d 590 a 600 a 2451 c 2430 a 2551 a 2560 d 2671 a 2560 a 2571 a	45)	d	46)	b	47)	С	48)	С	233)	С	234)	b	235)	С	236)	d
53) c 54) c 55) d 56) b 241) d 242) b 243) a 244) d 57) c 58) d 59) a 60) a 245) d 246) b 247) d 248) b 61) d 62) d 63) a 64) d 249) c 250) a 251) c 256) d 265) a 255) a 256) d 66) d 77) c 66) d 77) a 780 b 79) d 80) b 260) b 2700 d 267) b 2700 d 267) b 2700 d 277) d 280 b 280 b 273) d 2747) d 277) d 280 b 280 b 280 c 2700 d 280 b 280 b 280 c 280 c 280 <td>49)</td> <td>С</td> <td>50)</td> <td>С</td> <td>51)</td> <td>d</td> <td>52)</td> <td>b</td> <td>237)</td> <td>b</td> <td>238)</td> <td>С</td> <td>239)</td> <td>С</td> <td>240)</td> <td>b</td>	49)	С	50)	С	51)	d	52)	b	237)	b	238)	С	239)	С	240)	b
57) c 58) d 59) a 60) a 245) d 246) b 247) d 248) b 61) d 62) d 63) a 64) d 249) c 250) a 251) c 252) d 65) c 660 d 671 c 680 a 253) b 258) a 250) c 260) a 73) d 74) b 75) a 760 d 261) a 262) c 263) a 264) c 77) a 78) b 791 d 800 b 270) d 2771 d 2773) d 2774) a 275) a 276) a 89) c 900 b 910 a 920 d 2700 b 281) b 284) a 97) c 980 a 999 d 10	53)	С	54)	С	55)	d	56)	b	241)	d	242)	b	243)	а	244)	d
61) d 62) d 63) a 64) d 249) c 250) a 251) c 252) d 65) c 66) d 677) c 680 a 253) b 254) a 255) a 256) d 256) a 261) a 262) c 263) a 264) c 268) c 268) a 277) d 277) d 280 b 281) b 282) c 283) b 284) a 266) a 286) b 287) b 288) a 290) b 291) b 2922) a 101) d 102)<	57)	С	58)	d	59)	а	60)	а	245)	d	246)	b	247)	d	248)	b
65) c 66) d 67) c 68) a 253) b 254) a 255) a 256) d 69) c 70) c 71) c 72) c 257) a 258) a 259) c 260) a 259) c 260) a 266) d 267) b 266) d 267) b 266) d 267) d 271) d 268) c 266) d 267) d 277) d 271) d 272) b 268) c 269) b 270) d 271) d 272) b 280) b 290) a 280) a 290) a 200) d 210) b 210) b 210) </td <td>61)</td> <td>d</td> <td>62)</td> <td>d</td> <td>63)</td> <td>а</td> <td>64)</td> <td>d</td> <td>249)</td> <td>С</td> <td>250)</td> <td>а</td> <td>251)</td> <td>С</td> <td>252)</td> <td>d</td>	61)	d	62)	d	63)	а	64)	d	249)	С	250)	а	251)	С	252)	d
69) c 70) c 71) c 72) c 257) a 258) a 259) c 260) a 73) d 74) b 75) a 76) d 261) a 262) c 263) a 264) c 77) a 78) b 79) d 80) b 265) d 260 d 267) b 267) d 271) d 272) b 85) c 86) b 877) a 888) c 273) d 274) a 275) a 276) a 89) c 90) b 911 a 92) d 277) c 278) c 283) b 284) a 97) c 98) a 999 d 1000 c 280) c 290) b 291) b 2920 a 3000 d 1101 d 1120 <t< td=""><td>65)</td><td>С</td><td>66)</td><td>d</td><td>67)</td><td>С</td><td>68)</td><td>а</td><td>253)</td><td>b</td><td>254)</td><td>а</td><td>255)</td><td>а</td><td>256)</td><td>d</td></t<>	65)	С	66)	d	67)	С	68)	а	253)	b	254)	а	255)	а	256)	d
73)d74)b75)a76)d261)a262)c263)a264)c77)a78)b79)d80)b265)d266)d267)b268)c81)a82)b83)a84)b269)b2701d271)d272)b85)c86)b871a88)c273)d274)a275)a276)a89)c90)b911a92)d277)c278)c279)d280)b93)c94)c95)c96)a281b282)c283)b284a97)c98)a99)d1000c285)c286)b287)b288)a101)d102)b103)a104)d289)c290)b291)b292)a109)b1100c111)d112)a297)c298)a300]d304)a113)b114)a115)b116)b301)c302)c303)a314)a312)c123)d124)c123)a124)b309a	69)	С	70)	С	71)	С	72)	С	257)	а	258)	а	259)	С	260)	а
77) a 78) b 79) d 80) b 265) d 266) d 267) b 268) c 81) a 82) b 83) a 84) b 269) b 270) d 271) d 272) b 85) c 86) b 877) a 880) c 273) d 2770) d 2775) a 276) a 89) c 900) b 911 a 920) d 2771 c 278) c 279) d 280) b 291) b 280) c 290) b 291) b 280) a 290) a 290) a 290) a 300) a 300, a 300, a 300, <td>73)</td> <td>d</td> <td>74)</td> <td>b</td> <td>75)</td> <td>а</td> <td>76)</td> <td>d</td> <td>261)</td> <td>а</td> <td>262)</td> <td>С</td> <td>263)</td> <td>а</td> <td>264)</td> <td>С</td>	73)	d	74)	b	75)	а	76)	d	261)	а	262)	С	263)	а	264)	С
81) a 82) b 83) a 84) b 269) b 270) d 271) d 272) b 85) c 86) b 877) a 888) c 273) d 274) a 275) a 276) a 89) c 90) b 911) a 922) d 2771 c 2781 c 2781 b 2820 c 2831 b 2844 a 971 c 981 a 999) d 1000 c 2851 c 2860 b 2871 b 2848 a 1011 d 102 b 1031 a 1040 d 2891 c 2901 b 2921 a 2920 a 1019 b 1060 c 1071 b 108 a 2911 b 2920 a 3000 d 1113 b 1110 c 1200 3011 c <td>77)</td> <td>а</td> <td>78)</td> <td>b</td> <td>79)</td> <td>d</td> <td>80)</td> <td>b</td> <td>265)</td> <td>d</td> <td>266)</td> <td>d</td> <td>267)</td> <td>b</td> <td>268)</td> <td>С</td>	77)	а	78)	b	79)	d	80)	b	265)	d	266)	d	267)	b	268)	С
85) c 86) b 87) a 88) c 273) d 274) a 275) a 276) a 89) c 90) b 91) a 92) d 277) c 278) c 279) d 280) b 93) c 94) c 95) c 96) a 281) b 278) c 278) b 276) a 280) b 276) a 280) b 280 c 280) b 281 b 286) b 280 b 280) b 280 b 280) b 281 b 280 b 281 b 280 a 290 a 300 d 300 d 300 a 300 a 300<	81)	а	82)	b	83)	а	84)	b	269)	b	270)	d	271)	d	272)	b
89) c 90) b 91) a 92) d 277) c 278) c 279) d 280) b 93) c 94) c 95) c 96) a 281) b 282) c 283) b 283) a 97) c 98) a 99) d 1000) c 285) c 286) b 287) b 283) a 101 d 102) b 103) a 104) d 289) c 280) b 291) b 280) a 105) b 106) c 107) b 108) a 293) b 294) a 299) a 300) d 100 a 130) b 130) a 300) d 301) c 302) c 303) a 304) a 311) a 312) c 303) a 304) a 3110) a	85)	С	86)	b	87)	а	88)	С	273)	d	274)	а	275)	а	276)	a
93) c 94) c 95) c 96) a 281) b 282) c 283) b 284) a 97) c 98) a 99) d 100) c 285) c 286) b 287) b 288) a 101) d 102) b 103) a 104) d 289) c 286) b 287) b 288) a 105) b 106) c 107) b 108) a 293) b 294) a 295) b 292) a 109) b 110) c 117) b 118) b 119) c 120) d 305) a 306) d 307) b 308) a 314) a 3112) c 312) c 313) a 314) b 316) a 312) c 320) b 323) c 324) c 326) a	89)	С	90)	b	91)	а	92)	d	277)	С	278)	С	279)	d	280)	b
97) c 98) a 99) d 100) c 285) c 286) b 287) b 288) a 101) d 102) b 103) a 104) d 289) c 290) b 291) b 292) a 105) b 106) c 107) b 108) a 293) b 294) a 295) b 292) a 109) b 110) c 111) d 1122) a 297) c 298) a 299) a 300) d 117) b 118) b 119) c 120) d 305) a 306) d 307) b 311) a 312) c 313) b 314) b 315) d 316) c 313) b 319) b 320) b 323) c 323) c 324) c 324) c 324) <	93)	С	94)	С	95)	С	96)	а	281)	b	282)	С	283)	b	284)	a
101) d 102) b 103) a 104) d 289) c 290) b 291) b 292) a 105) b 106) c 107) b 108) a 293) b 294) a 295) b 296) c 109) b 110) c 111) d 112) a 297) c 298) a 299) a 300) d 113) b 114) a 115) b 116) b 301) c 302) c 303) a 304) a 117) b 118) b 119) c 120) d 305) a 306) d 307) b 308) a 304) a 311) a 312) c 303 a 311) a 312) c 303) a 311) a 312) c 303 a 312) c 323) a 312) <	97)	С	98)	a	99)	d	100)	С	285)	С	286)	b	287)	b	288)	а
105b 106 c 107 b 108 a 293 b 294 a 295 b 296 c 109 b 110 c 111 d 112 a 297 c 298 a 299 a 300 d 113 b 114 a 115 b 116 b 301 c 302 c 303 a 304 a 117 b 118 b 119 c 120 d 305 a 306 d 307 b 308 a 121 d 122 c 123 a 124 b 309 a 310 a 311 a 312 c 125 d 126 c 127 c 128 c 313 b 314 b 315 d 316 c 129 c 130 b 131 c 132 d 317 c 318 b 319 b 320 b 133 d 134 d 135 b 136 a 321 b 322 b 323 c 324 c 137 c 138 b 139 d 140 b 325 b 326 d 327 b 328 d 141 d 142 c 143 d 144 a 329 c 330 c 331 d 344 b 145 b <td>101)</td> <td>d</td> <td>102)</td> <td>b</td> <td>103)</td> <td>a</td> <td>104)</td> <td>d</td> <td>289)</td> <td>C</td> <td>290)</td> <td>b</td> <td>291)</td> <td>b</td> <td>292)</td> <td>a</td>	101)	d	102)	b	103)	a	104)	d	289)	C	290)	b	291)	b	292)	a
109) b 110) c 111) d 112) a 297) c 298) a 299) a 300) d 113) b 114) a 115) b 116) b 301) c 302) c 303) a 304) a 117) b 118) b 119) c 120) d 305) a 306) d 307) b 308) a 125) d 126) c 127) c 128) c 313) b 314) b 315) d 316) c 129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 140) b 325) b 326) d 327) b 328) d 141) d 142) c 143) d 144) a 329)	105)	b	106)	С	107)	b	108)	а	293)	b	294)	а	295)	b	296)	C
113) b 114) a 115) b 116) b 301) c 302) c 303) a 304) a 117) b 118) b 119) c 120) d 305) a 306) d 307) b 308) a 121) d 122) c 123) a 124) b 309) a 310) a 311) a 312) c 125) d 126) c 127) c 128) c 313) b 314) b 315) d 316) c 129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 144) a 329) c 330) c 331) d 332) b 324) a 335) c 336) c 336) c 336) c	109)	b	110)	С	111)	d	112)	a	297)	С	298)	а	299)	а	300)	d
117) b 118) b 119) c 120) d 305) a 306) d 307) b 308) a 121) d 122) c 123) a 124) b 309) a 310) a 311) a 312) c 125) d 126) c 127) c 128) c 313) b 314) b 315) d 316) c 129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 135) b 136) a 321) b 322) b 323) c 324) c 137) c 138) b 139) d 140) b 322) b 323) c 324) c 324) d 332) b 1411 d 142) c 143)	113)	b	114)	a	115)	b	116)	b	301)	С	302)	C	303)	a	304)	a
121) d 122) c 123) a 124) b 309) a 310) a 311) a 312) c 125) d 126) c 127) c 128) c 313) b 314) b 315) d 316) c 129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 135) b 136) a 321) b 322) b 323) c 324) c 137) c 138) b 139) d 140) b 325) b 326) d 327) b 328) d 141) d 142) c 143) d 144) a 329) c 330) c 331) d 332) b 144) a 150) d 151, d 152)	117)	b	118)	b	119)	С	120)	d	305)	а	306)	d	307)	b	308)	a
125) d 126) c 127) c 128) c 313) b 314) b 315) d 316) c 129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 135) b 136) a 321) b 322) b 323) c 324) c 137) c 138) b 139) d 140) b 325) b 326) d 327) b 328) d 141) d 142) c 143) d 144) a 329) c 330) c 331) d 332) b 144) a 147) c 148) b 333) b 334) a 335) c 336) c 336) c 336) c 336) c 346) b 340 b <	121)	d	122)	С	123)	а	124)	b	309)	a	310)	a L	311)	a	312)	С
129) c 130) b 131) c 132) d 317) c 318) b 319) b 320) b 133) d 134) d 135) b 136) a 321) b 322) b 323) c 324) c 137) c 138) b 139) d 140) b 325) b 326) d 327) b 328) d 141) d 1422 c 143) d 144) a 329) c 330) c 331) d 332) b 144) a 150) d 151) d 152) b 337) d 338) a 339) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160)	125)	a	126)	C	127)	С	128)	C	313)	D	314)	D	315)	a L	316)	C
133) u 134) u 135) v 136) a 321) v 322) v 323) c 324) v 137) c 138) b 139) d 140) b 325) b 326) d 327) b 328) d 141) d 142) c 143) d 144) a 329) c 330) c 331) d 332) b 145) b 146) b 147) c 148) b 333) b 334) a 335) c 336) c 337) d 338) a 339) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160) b 345) b 346) b 347) d 348) c </td <td>129)</td> <td>C d</td> <td>130)</td> <td>D</td> <td>131) 125)</td> <td>C h</td> <td>132)</td> <td>a</td> <td>317)</td> <td>C</td> <td>318)</td> <td>D h</td> <td>319)</td> <td>D</td> <td>320)</td> <td>D</td>	129)	C d	130)	D	131) 125)	C h	132)	a	317)	C	318)	D h	319)	D	320)	D
137) c 138) u 140) b 323) b 326) u 327) b 328) u 141) d 142) c 143) d 144) a 329) c 330) c 331) d 332) b 145) b 146) b 147) c 148) b 333) b 334) a 335) c 336) c 149) a 150) d 151) d 152) b 337) d 338) a 339) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160) b 345) b 346) b 347) d 348) c 161) b 162) d 163) b 164) c 349)	1335	u	134)	u h	135)	U d	130)	d h	321J 225)	U h	344J 226)	U d	323J	C h	324J 220)	C d
141) u 142) c 143) u 144) a 329) c 330) c 331) u 332) b 145) b 146) b 147) c 148) b 333) b 334) a 335) c 336) c 149) a 150) d 151) d 152) b 337) d 338) a 339) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160) b 345) b 346) b 347) d 348) c 161) b 162) d 163) b 164) c 349) b 350) a 351) b 352) a 165) d 166) d 167) c 168)	137	C d	130J 142)	U C	139)	u d	140J 144	U D	323J 220)	D	320J 220)	u	347J 221)	U d	340J 222)	u h
143) b 147) c 146) b 333) b 334) a 333) c 336) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160) b 345) b 346) b 347) d 348) c 161) b 162) d 163) b 164) c 349) b 350) a 351) b 352) a 165) d 166) d 167) c 168) b 353) c 354) a 355) a 356)	141)	u h	142)	L h	143)	u	144)	d h	349J 222)	L h	224)	ι ο	331J 225)	u	334J 226)	U C
149) a 150) d 151) d 152) b 357) d 353) a 359) d 340) b 153) b 154) d 155) c 156) a 341) b 342) c 343) a 344) b 157) b 158) a 159) c 160) b 345) b 346) b 347) d 348) c 161) b 162) d 163) b 164) c 349) b 350) a 351) b 352) a 165) d 166) d 167) c 168) b 353) c 354) a 355) a 356) b 165) d 166) d 167) c 168) b 353) c 354) a 355) a 356) b 169) a 170) c 171) a 172)	143)	2	150)	d d	151)	L d	152)	b b	333)	d	338)	a n	330)	L d	340)	L h
155) b 154) d 155) c 156) d 541) b 541) c 346) b 350) a 351) b 352) a 356) b 360) a 355) a 356) b 360) d 173) a 174) c 175) a 176) b 361) <	149)	a h	150)	u d	151)	u c	152)	D a	337)	u h	330)	a C	339)	u a	340)	h
157) b 150) a 157) c 160) b 343) b 340) b 340) c 350) a 351) b 352) a 350) a 351) b 352) a 356) b 360) d 160) a 357) b 356) b 360) d 173) a 174) c 175) a 176) b 361) b 362) b 363) a 364) b 177) d 178) c 179) <	155)	h	159)	u a	155)	c	160)	u h	345)	h	346)	с h	343)	d d	344)	C C
161) 162) 163) 163) 161) 161) 163) 163) 161) 163)	161)	h	162)	d d	163)	с h	164)	C	349)	h	350)	a	347)	u h	352)	с а
169) a 170) c 171) a 172) a 357) b 358) d 359) b 360) d 169) a 170) c 171) a 172) a 357) b 358) d 359) b 360) d 173) a 174) c 175) a 176) b 361) b 362) b 363) a 364) b 177) d 178) c 179) c 180) c 365) b 366) c 367) a 368) c 181) c 182) c 183) d 184) b 369) c 370) d 371) d 372) c 185) c 186) d 187) b 188) d 373) c 374) c 375) b 376) a	165)	d	166)	d	167)	c	168)	h	353)	C	354)	a	355)	a	356)	h
173) a 174) c 175) a 176) b 361) b 362) b 363) a 364) b 177) d 178) c 179) c 180) c 365) b 366) c 367) a 368) c 181) c 182) c 183) d 184) b 369) c 370) d 371) d 372) c 185) c 186) d 187) b 188) d 373) c 374) c 375) b 376) a	1691	a	170)	c	171)	a	172)	a	357)	b	358)	d	359)	b	360)	d
177) d 178) c 179) c 180) c 365) b 366) c 367) a 368) c 181) c 182) c 183) d 184) b 369) c 370) d 371) d 372) c 185) c 186) d 187) b 188) d 373) c 374) c 375) b 376) a	173)	а	174)	C	175)	а	176)	b	361)	b	362)	b	363)	a	364)	b
181) c 182) c 183) d 184) b 369) c 370) d 371) d 372) c 185) c 186) d 187) b 188) d 373) c 374) c 375) b 376) a	177)	d	178)	C	179)	С	180)	c	365)	b	366)	c	367)	a	368)	c
185) c 186) d 187) b 188) d 373) c 374) c 375) b 376) a	181)	C	182)	C	183)	d	184)	b	369)	c	370)	d	371)	d	372)	C
	, 185)	с	, 186)	d	, 187)	b	188)	d	373)	С	374)	с	375)	b	376)	а

377)	b	378)	d	379)	с	380)	a	33)	3	34)	9
381)	с	382)	d	383)	с	384)	b				
385)	а	386)	с	387)	с	388)	С				
389)	d	390)	d	391)	b	392)	a				
393)	а	394)	a	395)	d	396)	а				
397)	b	398)	с	399)	d	400)	d				
401)	а	402)	d	403)	b	404)	С				
405)	d	406)	а	407)	b	408)	a				
409)	d	410)	d	411)	d	412)	b				
413)	С	414)	С	415)	С	416)	b				
417)	С	418)	d	419)	d	420)	С				
421)	b	422)	а	423)	b	424)	С				
425)	а	426)	d	427)	а	428)	d				
429)	b	430)	С	431)	b	432)	b				
433)	b	434)	а	435)	b	436)	а				
437)	С	438)	а	439)	а	440)	С				
441)	d	442)	С	443)	d	444)	С				
445)	С	446)	С	447)	d	448)	а				
449)	а	450)	d	1)	a,c	2)					
	a,c,d	3)	b,c	4)	d						
5)	c,d	6)	a,b,d	7)	a,c,d	8)					
	a,d										
9)	a,d	10)	b	11)	a,b,c	12)					
	c,d										
13)	С	14)	a,b,c	15)	a,b,c,d	16)					
	b, c										
17)	С	18)	С	19)	a,b,c	20)					
	a,b										
21)	a,c,d	22)	a,b,d	23)	a, b	24)	a				
25)	b,d	26)	b,c,d	27)	a,b,c,d	28)					
	a,b,c,d		_		_						
29)	a,b,c,d	30)	d	31)	a,b	32)					
	a,b						_				
33)	a, c	34)	C	35)	a,c	1)	b				
	2)	a	3)	b	4)	a					
5)	b	1)	b	2)	d	3)	a				
	4)	b		-							
5)	а	6) 1 (1)	С	7)	b	8)	d				
9)	a	10)	c	1)	b	2)	d				
	3)	a	4)	b T							
5)	а	6J	b	7)	а	8)	a				
9 <u>)</u>	С	10)	a	11)	C	12)	b				
13)	C	14)	a	15)	a	16)	a				
1) =>	4	2)	9	3)	4	4)	4				
5)	2	6J	8	7)	7	8J	6				
9J 10)	3 (10)	6 F	11) 15)	5	12)	2				
13J 17)	0 F	14J 10)	5 ว	15J 10)	/ ว	10J 20)	2 1				
1/J 21)	Б	10J 22)	ა ი	72) 72]	۲ ۲	20J 24)	۲ ۲				
21J 25)	07	22J	4	23J 27)	1 7	24J 20)	4				
25J 20)	/	20J	ย ว	2/J 21)	/ ว	28J 22)	ъ В В				
29J	2	30)	2	31J	2	34J	9	1			

: HINTS AND SOLUTIONS :

1 (c)

The fact that impurities are more soluble in the molten state than in the solid state of the metal is used in zone refining. Zone refining is also called fractional crystallization

2 **(b)**

Oxides of the metal are converted into metal if they are above Hg in activity series Cu, Hg, Ag

 $Ag_2 0 \xrightarrow{\Delta} Ag$

HgO $\xrightarrow{\Delta}$ Hg

 $CuO \xrightarrow{\Delta} No$ effect

5 **(b)**

 H_3PO_4 (1 equivalent) \equiv 1 equivalent NaOH

 $\equiv 1 \text{ equivalent Ca(OH)}_2$

 \equiv 1 equivalent Al(OH)₃

In terms of moles

1 equivalent NaOH \equiv 1 mol NaOH

1 equivalent $Ca(OH)_2 = 0.5 \text{ mol } Ca(OH)_2$

1 equivalent
$$Al(OH)_3 \equiv \frac{1}{3} \mod Al(OH)_3$$

Thus, molar ratio is $1:\frac{1}{2}:\frac{1}{3}$

10 (d)

 $Na_2CO_3 + H_2O \rightarrow 2NaOH + H_2CO_3$

$$H_2CO_3 \rightarrow H_2O + CO_2$$

 $6NaOH + Br_2 \rightarrow 5NaBr + NaBrO_3 + 3H_2O$

By reduction by oxidation

11 (a)

Liquation process is the refining method used to obtain pure tin metal. The pure tin metal obtained by this method is called pig tin

13 (c)

After bessemerisation of the concentrated ore, Cu obtained is 98% pure, it is called blister Cu

15 (a)

I. CaF₂ (fluorspar) and Na₃AlF₆ (cryolite) reduce melting point of the mixture CaF₂ improves electrical conductivity of the melting as compared 26 to molten Al_2O_3

II. Aqueous solution of Al³⁺ cannot be taken since H₂ gas is formed in preference to Al III. Molten AlCl₃ being covalent is poor conductor. It sublimes at melting point. Hence, cannot be taken IV. Hall's process is adopted for the extraction of Al from bauxite Thus, III incorrect

 $3Fe + C \rightarrow Fe_3C(s)$

Cementite

19 **(a)** $Fe_2(C_2O_4)_3 \rightleftharpoons 2Fe^{3+} + C_2O_4^{2-}$

 MnO_4^- is reduced to $Mn^{2+}C_2O_4^{2-}$ is oxidized to CO_2

 Fe^{3+} is not affected, hence does not appear in net ionic reaction

20 (a)

During smelting of roasted copper pyrites, ferrous oxide is produced which combines with silica (flux) to form fusible slag $FeO + SiO_2 \rightarrow FeSiO_3$ Ferrous Silica Ferrous silicate (Flux) (Fusible slag) Oxide The molten material obtained after roasting and smelting of copper ore from the blast furnace consists of sulphides of Cu⁺, Fe⁺², coke and sand which is called matte

22 (a)

When oil, water and air are mixed up, they produce froth. Hence, pine oil is used as foaming agent

23 (b)

Pyrolusite $- MnO_2$

Malachite $- CuCO_3.Cu(OH)_2$

Diaspore – Al_2O_3 . H_2O

Cassiterite - SnO₂

Hence, malachite is the only carbonate ore in the given options

24 (d)

Combustion zone	2000 K
Fusion zone	1500 K
Slag zone	1500 K
Reduction zone	900 K
()	

(C)

 $FeO \cdot CrO_3 + C \rightarrow \underbrace{Fe + Cr}_{terrochrome} + CO$

(+3)

 $2Cr(OH)_3 + 3H_2O_2 + 4OH^- \rightarrow 2CrO_4^{2-} + 8H_2O$

↑

1

(-2)

↑ ↑

- (-1) + 6
- (green ppt) I: True II: True

III. False as 0.N. of 0 in H_2O_2 changes from (-1) to (-2)

28 **(a)**

Strongest acid is that which has maximum value of O.N. of the central atom

 $HBrO_4O.N. \text{ of } Br = +7$

HOClO.N. of Cl = +1

 $HNO_2O.N. \text{ of } N = +3$

 $H_3PO_3O.N. \text{ of } P = +3$

33 **(c)**

The various steps involved in the extraction of pure metals from their ores are as follows: i. Concentration of an ore/ore benefaction/ore dressing

ii. Extraction of crude metal from concentratedore (either by conversion of ores into oxides orother desired compounds or by reduction of ores)iii. Purification or refining of the metal

36 **(b)**

 $\rm NH_3$ is oxidized to $\rm N_2$ by $\rm O_2.~$ Thus, $\rm O_2$ is the oxidizing agent

In (a), (c) and (d), oxygen is a reducing agent

37 **(d)**

In order to separate two sulphide ores by froth floatation process, proportion of oil to water is adjusted or certain depressant like NaCN is added

41 **(b)**

$$Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]$$

Soluble

(a) and (c) are sulphides ores and concentrated

- by froth-floatation process
- (d) is concentrated by magnetic separator

4 (c)
Al₂O₃ + C
$$\frac{Cl_2}{\Delta}$$
 AlCl₃ + CO \uparrow

4

(d)
$$H_2O_2 + MnO_2 \rightarrow MnO_4^- + 2H_2O_4^-$$

Balancing of O.N.

$$3\mathrm{H}_2\mathrm{O}_2 + 2\mathrm{MnO}_2 \rightarrow \mathrm{MnO}_4^- + 6\mathrm{H}_2\mathrm{O}$$

Thus, H_2O_2 : $MnO_2 = 3 : 2$

46 **(b)**

Mn³⁺disproportionates to Mn²⁺and Mn O₂

Thus, equivalent mass of $Mn^{3+} = \frac{2 \text{ units of } Mn^{3+}}{2}$

$$=\frac{M}{1}=55$$

48 **(c)**

(a) SO_2 is formed during roasting and autoreduction

$$SO_2 \rightarrow SO_3 \xrightarrow{H_2O} H_2SO_4$$

Thus, correct

(b) Gold, silver and platinum are recovered from anode mud of electrolytic refining thus, correct
(c) FeSO₄ is never formed thus is not the by-product

(d) FeSO₄ (slag) is also formed

51 **(d)**

 $\text{KCl} \rightarrow \text{KClO}_4$

 \uparrow \uparrow

-1 + 7

Change = 7 - (-1) = 8

52 **(b)**

Wrought iron contains least percentage of carbon < 0.2% and is the purest form of iron

53 (c)

Zone refining is employed for preparing extremely pure metals especially metalloids for the preparation of semiconductors. Gallium arsenide is a semiconductor and hence zone refining is used for its purification

54 **(c)**

 $Fe^{2+} + e^- \rightarrow Fe^+$

 $NO \rightarrow NO^+ + e^-$

Based on magnetic properties of the complex, it is found that iron has three unpaired electrons thus it is as Fe^+ formed by reduction of Fe^{2+} by NO which is oxidized to NO⁺

55 **(d)**

(a) Oxidation of Reduction of

N from Cr from

 $-3 (in NH_4^+) + 6(in Cr_2 O_7^{2-})$

- To 0 (in N₂) to +3 (in Cr₂O₃)
- (b) N from N from
- -3 (in NH₄⁺) + 5 (in NO₃⁻)
- To $+1(in N_2 0)$ to $+1(in N_2 0)$
- (c) 0 from Cl from

$$-2$$
 (in ClO₃⁻) + 5 (in ClO₃⁻)

To 0 (in 0_2) to -1 (in Cl⁻)

All redox reactions occur within molecule hence all are intramolecular redox reactions

56 **(b)**

Noble metals like gold, platinum, etc., being unreactive, are found in free state

57 **(c)**

 $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$

- 58 **(d)**
- $Al_2O_3 \rightarrow Al$

59 **(a)**

Magnetite is Fe_3O_4

60 **(a)**

From Ellingham diagram, it can be deduced that any metal can reduce the oxide of other metal which appears above it in the diagram

62 **(d)**

Purification of aluminium done by electrolytic refining is known as Hoop's process. Serpeck's

process, Hall's process and Baeyer's process are the processes used for leaching of alumina from bauxite

It is called silver-mirror test for reducing sugar

 $\mathrm{C_5H_{11}O_5CHO} \rightarrow \mathrm{C_5H_{11}O_5} \cdot \mathrm{COOH}$

Glucose gluconic acid

 $Ag^+ \rightarrow Ag$

Silver mirror

Thus, (a), (b), (c) true

 $Cl_2 + OH^- \rightarrow Cl^- + Cl0^-$

 $\frac{1}{2}$ Cl₂ \rightarrow Cl⁻ reduction

0 -1 change = 1

Equivalent mass of Cl_2 in reduction half-reaction

$$= \frac{1/2 \operatorname{Cl}_2}{1} = \frac{M}{2}$$
$$\frac{1}{2}\operatorname{Cl}_2 \to \operatorname{ClO}^- \text{ oxidation}$$
$$0 \quad +1 \quad \text{change} = 1$$

Equivalent mass of Cl₂ in oxidation half-reaction

$$=\frac{\frac{1}{2}Cl_2}{1}=\frac{M}{2}$$

Thus, equivalent mass in overall reaction $= \frac{M}{2} + \frac{M}{2} = M$

69 **(c)**

 MnO_4^- oxidizes $Fe^{2+} \rightarrow Fe^{3+}$

$$\mathrm{H_2O_2} \to \mathrm{H_2O}$$

$$\mathrm{SO}_3^{2-} \rightarrow \mathrm{SO}_4^{2-}$$

72 **(c)**

Among cuprite $[Cu_2O]$, Copper glance $[Cu_2S]$, chalcopyrite $[CuFeS_2]$ and malachite $[Cu(OH)_2. CuCO_3]$, only chalcopyrite is an ore which contains both Fe and Cu

73 **(d)**

Depending on the nature of impurities present in the ore, flux of suitable choice is used for their removal

e.g. When acidic impurities are present basic flux is used and vice-versa

74 **(b)**

 $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O_4$

1mol 1 mol

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

1 mol 2mol

Thus, 0.05 mol Ca(OH)₂ \equiv 0.05 mol H₂SO₄

 $\equiv 0.10 \text{ mol NaOH}$

78 **(b)**

Ni + 4CO $\xrightarrow{330-350 \text{ K}}$ Ni(CO)₄ Volatile

Nickel when heated with carbon monoxide forms nickel tetra carbonyl complex which is highly volatile

79 **(d)**

 $\mathrm{Cu_3P} \to \mathrm{H_3PO_4}$

↑ ↑

-3 + 5

Change in oxidation number = 8 units of phosphorus

 \therefore Equivalent weight of H₃PO₄ = $\frac{M}{8}$

80 **(b)**

 NH_4^+ ; x + 4 = +1

x = -3

 NO_2^- ; x - 4 = -1

$$N_2; x = 0$$

 $\mathrm{NH_4^+} + \mathrm{NO_2^-} \rightarrow \mathrm{N_2}$

$$NH_4^+ + NO_2^- \longrightarrow N_2$$

81 (a)

In froth floatation, finely divided ore is used. In Wilfley's table method and magnetic separation method powdered ore is whereas in leaching process the ore is converted into soluble compound

82 **(b)**

(b) Ca^{2+} CIO-CIO-CIO-, x = -1CIO-, CIO^{-} , x - 2 = -1

87 **(a)**

 $MnO_{4}^{-} + 5Fe^{2+} \xrightarrow{H^{+}} 5Fe^{3+} + Mn^{2+}$ $2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} \xrightarrow{H^{+}} 10CO_{2} + 2Mn^{2+}$ $Net: 3MnO_{4}^{-} + 5FeC_{2}O_{4} \xrightarrow{H^{+}} 5Fe^{3+} + 3Mn^{2+} + 10CO_{2}$

x = +1

Both Fe²⁺ and $C_2O_4^{2-}$ are oxidized by MnO_4^{-}

$$5\text{FeC}_2\text{O}_4 = 3\text{MnO}_4^-$$

$$1\text{FeC}_2\text{O}_4 = \frac{3}{5}\text{MnO}_4^- = 0.6 \text{ mol}$$

89 (c)

93

CuFeS₂

(c) Pyrolusite – MnO₂

Malachite – $CuCO_3$. $Cu(OH)_2$

Diaspore – Al_2O_3 . H_2O

Cassiterite $-SnO_2$ Hence, malachite is the only carbonate ore in the given options

94 **(c)**

Among cuprite $[Cu_2O]$, chalcocite $[Cu_2S]$, chalcopyrite $[CuFeS_2]$ and malachite $[Cu(OH)_2$. CuCO₃]; only chalcopyrite is an ore which contains both Fe and Cu

99 **(d)**

During the smelting of iron in blast furnace all the processes viz., oxidation (coke burns to give carbon monoxide), reduction (oxide ore is reduced to metal) and decomposition (limestone which acts as a flux, first gets decomposed to CaO and CO_2). However, it does not involve process of sublimation

100 **(c)**

Chemical separation or Leaching

In this powdered ore is treated with a suitable reagent which can dissolve the ore but not the impurities

111	(d)					
		Reaction	Chang	Numb	er of equivalent]
			e in			
			0.N.			-
	(a)	$VO^{2+}(aq) \rightarrow V^{3+}(aq)$	1 unit		1	
		x - 2 = +2 + 5 $x - \pm 4$				
	(b)	$NO_2^-(ag) \rightarrow NO_2(g)$	1 unit		1	-
	(2)	$\uparrow \qquad \uparrow$			-	
		+5 + 4				
	(c)	$VO_4^{3-}(aq) \rightarrow V^{2+}(aq)$	3 units		3	
		↑ ↑				
		+5 + 2				-
	(d)	$IO_3^-(aq) \to I_3^-(aq)$				
			16	16		
		$+5 -\frac{1}{3}$	$\frac{10}{3}$	$\frac{10}{3}$		
116	(b)	5	5	5	1	1
	HNO	$_{\rm s} + 4e^- \rightarrow \text{product has 0.N.}$	= 1			
					x - 8 = -3	
	1					
	. =				x = +5	
	+5				124 (b)	
	In N	0 oxidation number of 1	N = +1 T	us 05		-2^{-} -2^{+} + 50
	mole	of $N_{\rm p}$ Oare formed by reduc	$r_{100} = 1111$	mole of	(b) Cu + Sc	$J_4^2 \longrightarrow Cu^2 + SO_2$
	HNO.	by 4 moles of electrons			0 +	+2 $+4$
	mog	by 4 moles of cleet ons				oxidation
118	(b)					11 602-
	HNO ₃	$_{3} = +5$			Cu is oxidiz	ea by $50\frac{1}{4}$
					125 (d)	
	NO =	+2				

 $N_{2} = 0$

 $NH_{4}^{+} = -3$

119 (c)

 O_3 can be estimated iodometrically in acidic and basic medium both

 l^- is oxidized to l_2

122 **(c)**

In NH_4NO_3 , there are two different N-atoms (NH_4^+, NO_3^-) with different oxidation numbers, thus reaction is not disproportionation

123 **(a)**

 $K_3 \mbox{Cr} O_8$ has $[\mbox{Cr} (O_2)_4]^{3-}$ with four peroxy linkage

 $\therefore [Cr(0_2)_4]^{3-1}$

Auto reduction: Reduction of an oxide ore of a metal by its own sulphide

 $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$

Fe₂O₃, Fe₃O₄

126 (c)

(d) H₂SO₅ (preoxy sulphuric acid)
$$H - \underbrace{O}_{\text{peroxy}} \xrightarrow{O}_{\text{peroxy}} O - H$$

H₂S₂O₈ (peroxy disulphuric acid) $H - O - \underbrace{S}_{\text{o}} - O - H$
 $H - O - \underbrace{S}_{\text{o}} - O - O - \underbrace{S}_{\text{o}} - O - H$

All of the above have 0.N. = 6 in sulphur, peroxy linkage (-0 - 0 -) has -1 0.N. for oxygen, CrO_5 has two peroxy linkage, thus 0.N. of Cr = +6

105 **(b)**

Ni – Mond's process; Cu – Electrolysis

Zr – van-Arkel process; Ga – Zone refining

reduction in a convertor

Sulphide ore is roasted by oxide ore and also reduction takes place 140 **(b)** $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O_4$ 0.05 mol Thus, 1 mol Ca(OH)₂ \equiv 1 mol H₂SO₄ Hence, 0.05 mol Ca(OH)₂ \equiv 0.05 mol H₂SO₄ $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ 0.05 0.10 mol 143 (d) (I) $Zn + 2H^+ \rightarrow H_2$ changes +1 0 (II) $\operatorname{Zn} + \operatorname{H}^+ + \operatorname{SO}_4^{2-} \rightarrow \operatorname{Zn}^{2+} + \operatorname{SO}_2 + \operatorname{H}_2\operatorname{Ono}$ change ↑ 1 +1+1(III) $\operatorname{Zn} + \operatorname{H}^+ + \operatorname{NO}_3^- \rightarrow \operatorname{Zn}^{2+} + \operatorname{NH}_4^+ + \operatorname{H}_2\operatorname{O}$ no change ↑ ↑ 1 +1+1+1Thus, in (I) only 144 (a) $PbS + O_2 \xrightarrow{\Delta} PbO + PbSO_4 + SO_2$ $PbS + 2PbO \xrightarrow{\Delta} Pb + SO_2$ $SnO_2 + C \xrightarrow{\Delta} Sn + CO$ 147 (c) $(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3$ 1 1 +6 +3 148 (b) Tin (melting point: 504.8 K) and lead (melting point: 600.4 K) have lower melting point as compared to the melting point of impurities present in their respective ores. Hence, liquation process is used 153 (b) $\Delta G^{\circ}(\text{net}) = \Delta G_1^{\circ} + \Delta G_2^{\circ}$

$$-6FE_3^{c} = -FE_1^{c} - 5E_2^{c}$$

$$\therefore E_3^{c} = \frac{E_1^{c} + 5E_2^{c}}{6}$$
Except H⁺ all other species = 1 M
$$\therefore E = E_3^{c} - \frac{0.0591}{6} \log \left(\frac{1}{H^+}\right)^{0}$$

$$= \frac{E_1^{c} + 5E_2^{c}}{6} - \frac{0.0591}{6} \times 8 \log \left(\frac{1}{H^+}\right)^{0}$$

$$= \frac{E_1^{c} + 5E_2^{c}}{6} - \frac{0.0591}{6} \times 8 \log \left(\frac{1}{H^+}\right)^{0}$$

$$= \frac{E_1^{c} + 5E_2^{c}}{6} - \frac{0.0591}{6} \times 8 \log \left(\frac{1}{H^+}\right)^{0}$$

$$= \frac{E_1^{c} + 5E_2^{c}}{6} - \frac{0.08 \text{ pH}}{1}$$
155 (c)
(cf (C₀)(NH₃)₄(H₂O))Cl₂
1 1 1 1 1 1 1
+ 3 + x + 0 + 0 - 2 = 0

$$\therefore x = -1$$
Thus, (O₂) exists as O₂ (superoxide ion)
156 (a)
If acid is weak, its conjugate base is strong.
Greater the O.N. of Cl. stronger the acid and thus
weaker the conjugate base
HClO HClO₂HClO₃HClO₄
O.N. of Cl + 1 + 3 + 5 + 7
Acid strength \longrightarrow
Conjugate base ClO⁻ ClO₂⁻ ClO₃⁻ ClO₃⁻ HAH⁺ + 3
 \oplus Conjugate base ClO⁻ ClO₂⁻ ClO₃⁻ ClO₃⁻ HAH⁺ + 6e⁻ 3 Cr²⁺ + 7H₂O
157 (b)
Ag₂S + NaCN + O₂ \rightarrow Na[Ag(CN)₂]
158 (a)
H₃PO₂ = HPO₂⁻ + 2H⁺
But H₃PO₂ is a monobasic acid, hence, false
(b) H₃ PO₂ \rightarrow H₃PO₃
 \uparrow ↑ ↑
O.N. +1 + 3
 \therefore Equivalent weight $= \frac{M}{2}$
159 (c)

Thus, total $Cr_2O_7^2$ required $= \frac{1}{6} + \frac{1}{3} = \frac{1}{2} = 0.5$ mol

169 **(a)**

Fe^{III}[Fe^{II}(CN)₆

 \uparrow \uparrow \uparrow

+3 + 2 - 6 = -1

170 **(c)**

In van Arkel method, the impure metal is heated in a vessel with little iodine to form iodide of metal which is covalent and volatile

171 **(a)**

Liquation process for refining of crude metal is used when the metal has lower melting point and impurity has higher melting point

178 **(c)**

Cassiterite (SnO₂), Magnetite (Fe₃O₄), Haematite (Fe₂O₃), Limonite (Fe₂O₃. 3H₂O)

180 **(c)**

Impurities of SiO_2 (acidic) is present in the iron ore, so basic flux limestone (CaCO₃) is added during the extraction of iron

182 **(c)**

 $Cr_2O_7^{2-} + 6l^- + 14H^+ \rightarrow 3l_2 + 2Cr^{3+} + 7H_2O$

 l^- and l_2 are not balanced

183 **(d)**

Copper pyrite CuFeS₂ (Chalopyrite)

185 **(c)**

Calcination of an ore requires absence of air or a limited supply of air

186 **(d)**

```
Pig iron is the most impure form of iron and
contains highest proportion of carbon (2.5 - 4\%)
while the rest in the options are ores
Malachite \rightarrow Cu(OH)<sub>2</sub>. CuCO<sub>3</sub>
Zinc blende \rightarrow ZnS
Bauxite \rightarrow Al<sub>2</sub>O<sub>3</sub>. 2H<sub>2</sub>O
```

189 **(d)**

Calcination process involves decomposition of carbonate ores to their respective metal oxides and carbon dioxide. Hence, the reaction D is an example of calcination process

192 **(b)**

Oxides of some metals are difficult to reduce by carbon. In such cases, alumino thermite process is used. Alumino thermite process involves reduction of oxides such as Fe_2O_3 , Mn_3O_4 , Cr_2O_3 , etc., to metals with aluminium $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr; \Delta H = -ve$ 193 (a)

(a)
$$\operatorname{VO_3^{2-} + MnO_4^-} \longrightarrow \operatorname{Mn^{2+} + VO_4^{3-}} \xrightarrow{+4} +7 \xrightarrow{+2} +5 \xrightarrow{+5} \underbrace{5 \text{ unit}}_{1 \text{ unit}} \xrightarrow{1}$$

Thus, $5VO_3^{2-} + MnO_4^{-} \rightarrow Mn^{2+} + 5VO_4^{3-}$

 $5 \mod VO_3^{2-} \equiv 1 \mod MnO_4^{-1}$

 $1 \text{ mol VO}_3^{2-} \equiv 0.2 \text{ mol MnO}_4^-$

194 **(b)**

Ag⁺ is reduced hence, it is oxidant. Hydroquinone is oxidized hence, it is reductant

196 **(a)**

Blister copper is 99% pure copper and mainly contains impurities of Ag and Au. It is further refined to 99.99% purity by carrying out electrolysis

197 **(d)**

(d)
$$\operatorname{Mn}^{2+} + \operatorname{NO}_{3^{-}} + \operatorname{OH}^{-} \rightarrow \operatorname{MnO}_{4^{2^{-}}} + \operatorname{NO}_{4^{2^{-}}} + \operatorname{NO}_{4^{2^{-}}}$$

Change = 6 - 2 = 4

200 **(c)**

I: Mond's process for Ni II: Self-reduction process for Cu III. Electrolysis of fused NaCl for Na Thus, III – Na, I – Ni, II – Cu

201 **(b)**

 $ZnS \xrightarrow{\Delta} ZnC \xrightarrow{C} Zn$

204 **(a)**

Silica is an acidic flux used to remove basic impurities

207 **(c)**

Sulphide ore is concentrated by froth-floatation process

208 **(c)**

 SiO_2 is an acidic flux

209 (d)

Be₃Al₂Si₆O₁₈ is beryl

215 **(a)**

At the equivalent point, all species are in unit concentration and

 $\Delta G^{\circ}(\text{net}) = \Delta G_1^{\circ} + \Delta G_2^{\circ}$

Total electrons exchanged = (a + b)

$$\therefore \Delta G^{\circ} = -nFE^{\circ}$$
$$-(a+b)nFE_{3}^{\circ} = -aFE_{1}^{\circ} - bFE_{2}^{\circ}$$
$$\therefore E_{3}^{\circ} = \frac{aE_{1}^{\circ} + bE_{2}^{\circ}}{a+b}$$

216 **(b)**

 Al_2O_3

218 (a)

In the roasting process of zinc ore, zinc sulphate may get formed as follows:

 $ZnS + O_2 \xrightarrow{\Delta} ZnSO_4$ In order to decompose this $ZnSO_4$, care is taken to complete the roasting at 1200 K

 $2\text{ZnSO}_4 \xrightarrow{1200 \text{ K}} 2\text{ZnO} + 2\text{SO}_2 + \text{O}_2 \uparrow$

219 (a)

In the extraction of iron, limestone is used as a flux. Calcium oxide obtained by the decomposition of limestone combines with silica impurity to give calcium silicate which is a slag $CaO_{+} = SiO_{2} \rightarrow CaSiO_{2}$

000 1	5102	005103
Calcium	Silica	Calcium silicate
Oxide		(Slag)

221 **(c)**

Bauxite $-Al_2O_3$. $2H_2O$ Epsom salt $-MgSO_4$. $7H_2O$ Cryolite $-Na_3AlF_6$ Dolomite $-MgCO_3$, $CaCO_3$

222 **(a)**

1 equivalent of an acid \equiv 1 equivalent of a base

0.05 equivalent of $H_3PO_4 \equiv 0.05$ equivalent of NaOH (or any base)

227 **(c)**

Pig iron: 95% Fe 4% C and varying quantities of other impurities

0

242 **(b)**

228 (d)

 $S_4 O_6^{2-} S_2 O_7^{2-} S_2 O_3^{2-} S_8$ +5 +6 +4

 $H_2SO_4SO_2H_2S$ $H_2S_2O_8$

+6 +4 -2 +6

SO₂²⁺SO₄²⁻SO₃²⁻HSO₄⁻

+6 +6 +4 +6

 $H_2SO_5H_2SO_3S_2Cl_2H_2S$ +6 +4 +2 -2229 **(a)** $4\mathrm{NH}_3 + 5\mathrm{O}_2 \rightarrow 4\mathrm{NO} + 6\mathrm{H}_2\mathrm{O}$ ↑ 1 -3 +21 mole O_2 oxidises = $\frac{4}{5}$ mol of NH₃ $=\frac{4}{5} \times 5$ equivalent of NH₃ = 4235 (c) Sapphire (blue colour) contains Al_2O_3 , Fe_2O_3 and Tio₂ 236 (d) (a) $\operatorname{ZnO}(s) \xrightarrow{\Delta} \operatorname{Zn}(s) + O_2(g)$ Due to the formation of gaseous products $\Delta S > 0$ (b) It absorbs heat thus $\Delta H > 0$ (c) $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ If $T\Delta S^{\circ} > \Delta H^{\circ}$ Then, $\Delta G^{\circ} < 0$ 238 (c) Magnesite is MgCO₃ 239 (c) $CaCO_3 \xrightarrow{\text{calcination}} CaO + CO_2$ 240 (b) $HCHO + OH^- \rightarrow HCOO^- + (A)$ ↑ ↑ 0 +2HCHO $\xrightarrow{\text{Oxidn}}$ HCOO⁻ Equivalent mass of HCHO = $\frac{M}{2} = \frac{30}{2} = 15$ HCHO $\xrightarrow{\text{Redn}} A$ Equivalent mass of HCHO = 30 - 15 = 15In reduction part equivalent mass is also 15 This is only when change in O.N. = 2 units Thus, CH₃OH

	$Bi^{3+} \rightarrow BiO_3^-$	252	(d)
	+3 +5		$Cu_2O \rightarrow Cu + Cu^{2+}$
	Change in oxidation number = 2 units		$\uparrow \uparrow \uparrow$
	Thus, number of equivalents in one mole $\mathrm{Bi}^{3+}=2$		+1 0 $+2$
243	(a) $2[M(CN)_2]^- + Zn \rightarrow (Zn(CN)_4^{2-}) + M(M = Au \text{ or } Ag)$ (d)	253 256	 (b) Carnallite: MgCl₂ · KCl · 6H₂O (d) Zr and Ti are refined by van Arkel method, Ge is
244	$SnO_2 - Cassiterite$		refined by zone refining and Ni is refined by Mond
247	(d) $Cr_2O_7^{2-} + Fe^{2+} \rightarrow Fe^{3+} + Cr^{3+}$		In this process, nickel is heated in a stream of carbon monoxide forming a volatile complex.
	Balance $Cr : Cr_2 O_7^{2-} \rightarrow 2Cr^{3+}$		nickel tetracarbonyl Ni $\pm 4CO = \frac{330-350 \text{ K}}{1000 \text{ K}}$ Ni(CO)
	0.N. of two +12 +6		(Impure) Ni(CO) ₄ (Volatile)
	Cr-atoms		The nickel carbonyl complex is subjected to
	Change in O.N.] 6 units		higher temperature so that it is decomposed
	$Fe^{2+} \rightarrow Fe^{3+}$		giving the pure metal $N_{i}(CO) \xrightarrow{450-470 \text{ K}} N_{i} + 4CO$
	0.N. of Fe] +2 +3		Nickel (Pure) Carbonyl
	Change in O.N.] 1 unit		complex
	By cross-multiplication	258	(a) Ethyl part is hydrophobic and it prefers to stay in
	$Cr_2O_7^{2-} + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+}$		air. Xanthate part is hydrophilic and it prefers to
	$1 \text{ mol } \operatorname{Cr}_2 \operatorname{O}_7^{2-} = 6 \text{ mol } \operatorname{Fe}^{2+}$		
248 250	 (b) Method II is better than I as I emits CO which causes pollution (a) 	261	hydrophobic hydrophilic (a) Metals like bismuth (m.p. of Bi: 544.3 K), lead
	Thus, $4x = -4$		(m.p. of Pb: 600.4 K), mercury (m.p. of Hg: 234.6 K), etc. are separated from their crude form by
	$\therefore x = -1$	264	liquation (c)
	Thus, O_2^{x-} is O_2^- (Superoxide ion)		$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons 2H^+$
251	(c)		$2CrO_4^{2-} + 2H^+ \rightarrow H_2O + Cr_2O_7^{2-}$
	Modern vertical process is used carry out smelting (i.e., it involves reduction)		Yellow orange
	$ZnO + C \xrightarrow{\Delta}_{1673 \text{ K}} Zn + CO$	270	(d) NaHC ₂ O ₄ + NaOH \rightarrow Na ₂ C ₂ O ₄ + H ₂ O
	Zinc Zinc		
	Oxide (Spelter)		NaHC ₂ O ₄ behaves as an acid and $1H^{+} \equiv 1 \text{ OH}^{-}$
			Thus, equivalent weight of $NaHC_2O_4 = M$

 $5 \text{ HC}_2\text{O}_4^- + 2\text{MnO}_4^- \rightarrow 2\text{Mn}^{2+} + 10\text{CO}_2$

 $HC_2O_4^-$ is oxidized to CO_2 and thus change in oxidation number = +2 units

Equivalent mass $=\frac{M}{2}$

271 **(d)**

0.025 equivalent of NaOH $\equiv 1.575$ g acid

1 equivalent of NaOH \equiv 63 g acid

Molar mass of acid = basicity ×equivalent mass

 $= 126 \text{ g mol}^{-1}$

273 **(d)**

Mond's process is for Ni

274 **(a)**

Zinc spelter contains cadmium, lead and iron as impurities

277 **(c)**

Levigation or gravity separation is used when the ore particles are heavier than the earthy or rocky gangue particles

278 (c)

Copper obtained has blistered appearance due to evolution of SO_2 thus, called blister copper

279 **(d)**

Argentite – Ag_2S , Cuprite – Cu_2O

280 **(b)**

 $PbS + HNO_3 \rightarrow Pb(NO_3)_2 + S + NO + H_2O$

282 **(c)**

In the blast furnace, cone enables the uniform distribution of charge and cup prevents the loss of gases. Introduction of pre-heated air into the furnace is done through tuyers

284 **(a)**

In electrolytic refining, anode is made up of impure metal and cathode is made up of strip of the same metal in the pure form. Anode and cathode are suspended in a suitable electrolytic bath containing soluble salt of the same metal

285 **(c)**

(a) $3H_2 \equiv 2NH_3$

$$1 \text{ H} \equiv \frac{\text{NH}_3}{3}$$

 \therefore Equivalent weight of NH₃ = $\frac{M}{3}$

(b)
$$4NH_3 \equiv 50_2$$

 $\equiv 10(0)$ atoms taking weight as 16 $\equiv 20(0)$ atoms taking weight as 8

Thus, $1(0) \equiv \frac{1}{5} \text{NH}_3$

 \therefore Equivalent weight of NH₃ = $\frac{M}{5}$

(c)
$$2NH_3 \equiv H_2$$

$$\therefore 1 \text{ H} \equiv 1 \text{ NH}_3$$

Equivalent weight of $NH_3 = M$

288 **(a)**

Metals like bismuth (m.p. of Bi: 544.3 K), lead (m.p. of Pb: 600.4 K), mercury (m.p. of Hg: 234.6 K), etc., are separated from their crude form by liquation (i.e., by placing the impure metal on sloping hearth of a reverberatory furnace and heating that above its melting point in absence of air)

290 **(b)**

Magnetite (Fe_3O_4) and cassiterite (containing wolframite which is a magnetic component) are concentrated by magnetic separation process

292 **(a)** MnO₂HSO₄

$$\uparrow \uparrow \uparrow$$

$$v = 6 = 1 = 0$$

x = +7

293 **(b)** $0 \leftarrow (-2)$ || H - C - H $\uparrow \uparrow \uparrow$ +1x + 1Thus, x = 0 $0 \leftarrow (-2)$ || H - C - 0 - H $\uparrow \uparrow \uparrow$ $+1 \times (-2) + 1$ Thus, x = +2

295 **(b)**

PbS changes to PbO which is further reduced to Pb by PbS itself in self reduction process

298 **(a)**

During smelting of copper pyrites, the roasted ore is mixed with powdered coke and sand (charge) and it is then heated strongly in the blast furnace

304 **(a)**

 $2\mathrm{H}_2\mathrm{S}(g) + \mathrm{SO}_2(g) \to \mathrm{3S}(s) + 2\mathrm{H}_2\mathrm{O}(l)$

 $\uparrow \quad \uparrow \quad \uparrow \\ -2 \quad +4 \qquad 0$

Change in oxidation number = 4 units

Thus, number of equivalent of $SO_2 = 4$

306 (d)

Cu(OH)₂ · CuCO₃ – Malachite (green) 307 **(b)** $2Al_2O_3(s) + 3C \rightarrow 4Al(s) + 3CO_2$ $\Delta G^\circ = 3\Delta G^\circ_f(CO_2) - 2\Delta G^\circ(Al_2O_3)$ $= -3 \times 394 - 2(-1520)$ = -1182 + 3040 = +1858 kJ $\Delta G^\circ = -nFE^\circ$ $1858 \times 1000 = -12 \times 96500 \times E^\circ$ $\therefore E^\circ = -1.60 \text{ V}$ Thus, voltage requires = 1.60 V 309 **(a)**

 $6\text{CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{Sun light}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$ $+ 6\text{H}_2\text{O}$ $6CO_2 \equiv C_6H_{12}O_6 \equiv 6O_2 \equiv 192 \text{ g}(0)$ Thus, 8 g (0) $\equiv \frac{6 \times 44 \times 8}{192}$ CO₂ = 11 g CO₂ $\equiv \frac{180 \times 8}{102} \text{g} \text{C}_6 \text{H}_{12} \text{O}_6$ $= 7.5 \text{ g} \text{ C}_6 \text{H}_{12} \text{O}_6$ 311 (a) $N_2 \equiv 3H_2 \equiv 6H$ $1 \text{ H} \equiv \frac{\text{N}_2}{6} = \frac{28}{6}$ = 4.67313 (b) (a, d) no change (b) reduction, (c) oxidation 315 (d) In metallurgy of iron, the flux used is $CaCO_3$ 317 (c) $N_2H_4 \rightarrow N_2(---) + 10e^-$ 1 ↑ O.N. two N-atoms of = -4 O.N. of two N-atoms in oxidizing species = -4 + 10 = +6Thus, oxidation state of N in new compound = +3322 (b) Smelting is a process of reducing metal oxide to metal by means of coke or CO e.g. $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 325 **(b)** $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$ $Na[Ag(CN)_2] + Zn \rightarrow Ag$ 326 (d) Corundum (Al_2O_3) is a mineral of aluminium whereas malachite (Cu(OH)₂. CuCO₃), cuprite (Cu_2O) and azurite $(Cu(OH)_2, 2CuCO_3)$ are minerals of copper

327 **(b)**

Refractory materials are the substances which can 346 (b) withstand very high temperature without melting or becoming soft

331 (d)

From Ellingham diagram, it can be deduced that any metal can reduce the oxide of other metal which appears above it in the diagram. Also the graph of formation of silver oxide is at the upper part of diagram indicating positive ΔG° value and possible decomposition at moderate temperature. Thus, if the newly discovered metal 'M' is found to have its graph of formation of oxide above the graph line of silver, then it can be reduced by silver and also it can be easily decomposed at moderate temperature

333 (b)

 $Zn \rightarrow Zn^{2+}$

Zn is oxidized hence, it is a reducing agent (reductant)

- $NO_3^- \rightarrow NH_4^+$
 - +5 3

 NO_3^- is reduced hence, it is oxidizing agent (oxidant)

340 **(b)**

Slag is a light material and forms separate layer above molten metal

344 **(b)**

-2-2-2ſ ſ (a) $Ca CO_3 \rightarrow CaO + CO_2$ $\uparrow \uparrow \uparrow$ 1 +2+4+2+4

No change

(b) $2HCuCl_2 \rightarrow Cu + Cu^{2+} + 4Cl^- + 2H^+$

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ 1 1

 $+1 + 1 - 1 \quad 0 \quad +2 \quad -1$ +1

Thus, Cu⁺ disproportionate to Cu and Cu²⁺

345 **(b)**

Limestone is a flux used to remove acidic impurities in metallurgical process

Roasting is a process used to convert sulphide ores into their corresponding oxides. Among the given options, only zinc blende is the sulphide ore. So, zinc blende is subjected to roasting

348 (c)

Corundum (Al_2O_3) is an ore of Al

349 (b)

In column chromatography, the mixture whose different components are to be separated is dissolved in suitable liquid or gaseous solvent (called moving/mobile phase) and then it is moved through the stationary phase [alumina (Al_2O_3) or silica (SiO_2)] and eluted out using eluents

351 (b)

(a) Intramolecular Cannizzaro

(b) Disproportionation thus, true

362 (b)

Self-reduction process taking in a Bessemer converter. Copper obtained is 98% and is called blister copper

364 (b)

 MnO_4^- oxidizes I⁻ to IO_3^- in strongly basic medium and itself reduced to MnO_4^{2-}

$$MnO_{4}^{-} + I^{-} \rightarrow IO_{3}^{-} + MnO_{4}^{2-}$$

$$(+7)(-1) + 5$$
 green

+6

367 (a)

 $H_4P_2O_5$ 4 + 2x - 10 = 0 x = 3 $H_4P_2O_6$ 4 + 2x - 12 = 0 x = +4 $H_4P_2O_7$ 4 + 2x - 14 = 0 x = +5

368 (c)

If the species is a reducing agent, it means it can be oxidized easily thus it should have an O.N. less than maximum values of O.N

0.N

$$\begin{array}{ccc} SO_2 & 4 \\ SO_3^{2^-} & 4 \\ SO_4^{2^-} & 6 \\ S^2 & -2 \end{array} \\ SO_2, SO_3^{2^-} \text{ and } S^{2^-} \text{ can be reducing agent} \\ SO_4^{2^-} \text{ can't be.} \end{array}$$

379 (c)

$$1 \rightarrow \frac{1}{2}l_2 + e^{-1} \times 5$$

$$lO_3^- \rightarrow \frac{1}{2}l_2 \text{ balance } 0$$

$$6H^+ + lO_3^- + 5e^- \rightarrow \frac{1}{2}l_2 + 3H_20 \text{ by } H_20 \text{ and } H \text{ by}$$

$$H^+$$

 $5l^{-} + lO_{3}^{-} + 6H^{+} \rightarrow 3l_{2} + 3H_{2}O$

370 (d)

(a) $\underline{Mn}O_4^{2-} x = 6$ (b) $\underline{Cr}O_5 \quad x = 6$ (c) $\underline{Cr}O_2\underline{Cl}_2 x = 6$

372 (c)

Change Equiv. mass

$$MnO_{4}^{-} \rightarrow Mn^{2+} 5 \qquad \frac{M}{5}$$

$$+7 \quad +2$$

$$MnO_{4}^{-} \rightarrow MnO_{4}^{2-} 1 \qquad M$$

$$+7 \quad +6$$

$$MnO_{4}^{-} \rightarrow MnO_{2} \qquad 3 \qquad \frac{M}{3}$$

$$+7 \quad +4$$

374 (c)

Aluminium is strongly electropositive metal and can reduce oxides like Cr_2O_3 , Mn_3O_4 , etc., which are not easily reduced by carbon or carbon monoxide. The process is called alumino-thermite process

376 (a)

Dolomite (MgCO₃. CaCO₃) is the mineral of magnesium whereas magnetite (Fe₃O₄), haematite (Fe₂O₃) and limonite (2Fe₂O₃. $3H_2O$) are the minerals of iron

Flux is added during smelting. It combines with infusible gangue in the ore to form a fusible mass known as slag $Flux + Gangue \rightarrow Slag$ 380 (a) Fe[Fe(CN)₆] +2 + 3 - 6 = -1384 (b) Conversion of ferrous oxide (FeO) to ferric oxide (Fe_2O_3) occurs during roasting and not during extraction of iron in blast furnace 390 (d) $Na[Ag(CN)_2] \xrightarrow{\Delta} No$ effect 391 (b) It is magnetic in nature 392 (a) Ni + CO → Ni(CO)₄ $\xrightarrow{\Delta}$ Ni + 4CO ↑ Vapour 394 (a) After bessemerization, as the molten copper solidifies, SO₂ (sulphur dioxide) escapes and leaves blisters on the surface. The solid metal thus obtained is called as blister copper 395 (d) $CN^- \rightarrow CNO^-$ 0.N. of nitrogen 4 + x = -1 4 + x - 2 = -1x = -5 x = -3CN⁻ is thus oxidized. Thus, two electrons are lost 397 (b) Gold is a native element. It is unreactive and found in the free state whereas metals like copper, silver and mercury occur partly in free state 399 (d) $HgS \xrightarrow{\Delta} HgO \xrightarrow{\Delta} Hg$ $Ag_2S \xrightarrow{\Delta} Ag_2O \rightarrow Ag$

 $\operatorname{ZnS} + \operatorname{O}_2 \xrightarrow{\Delta} \operatorname{ZnSO}_4$ 412 (b) 401 (a) CuFeS₂ – Chalcopyrite MnO_4^- will only oxidize oxalate ($C_2O_4^{2-}$), ferric is 414 (c) already in oxidized state 415 (c) $2MnO_{4}^{-} + 5C_{2}O_{4}^{-} \rightarrow 10CO_{2} + 2MnO_{4}^{-}$ Let sulphur be as $(S_n)^x$ $\operatorname{Fe}_{2}(\operatorname{C}_{2}\operatorname{O}_{4})_{3} \rightleftharpoons 2\operatorname{Fe}^{3+} + 3\operatorname{C}_{2}\operatorname{O}_{4}^{2-}$ X = charge \therefore 2 moles of MnO₄⁻ oxidises = 5 moles of C₂O₄²⁻ 1 mole of MnO₄⁻ oxidises = $\frac{5}{2}$ mol of C₂O₄²⁻ $=\frac{5}{6} \text{ mol of Fe}_2(C_2O_4)_3$ $\therefore x = 0$ 403 **(b)** $0H^- \rightarrow H_2$ \therefore S = 8 \uparrow \uparrow \uparrow Thus, (S_8) -2 + 10416 **(b)** Thus, OH⁻ is reduced to H₂ ↑ H₂Schanges to S - 4 0 +2Thus, change in oxidation number = 2 units Thus, one equivalents $H_2S = 2$ 418 (d) $2H_2S + SO_2 \rightarrow 3S + 2H_2O$ 2 mol 1 mol 3 mol 4 equivalent 1 mol 1 equivalent of H_2 Swill reduce 0.25 mole of SO₂ For the formation of metal oxide, ΔG° increases with the increase in temperature (II) $NH_4^+ + NO_2^- \rightarrow N_2$ $2M_{(s)} + O_{2(g)} \rightarrow 2MO_{(s)}$ Here, $\Delta G = \Delta H - T \Delta S$ ↑ 1 ↑ $\Delta H = -ve$ (since all combustion reactions are -3 + 3 0 exothermic) $\Delta S = -ve$ (gaseous reactant converted into solid

400 (d)

of zinc sulphate (ZnSO₄) may also get formed $3\text{Zns} + 30_2 \xrightarrow{1200 \text{ K}} 2\text{ZnO} + \text{SO}_{2(g)} \uparrow$

During roasting of concentrated zinc sulphide

(ZnS) ore at about 1200 K and in the presence of

excess of air, zinc oxide (ZnO) and some amount

404 (c)

408 (a)

Page | 65

product i.e., $O_{2(g)}$ converted to $MO_{(s)}$) At low temperature ΔG may be negative but it becomes positive with the increase in temperature 410 (d) $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ $CaO + P_2O_5 \rightarrow Ca_3(PO_4)_2$ ZnO is reduced by carbon n = number of sulphur atoms $(S_n)^x + 120H^- \rightarrow 4S^{2-} + 2S_2O_3^{2-} + 3H_2O_3^{2-}$ Charge-balanced : x + (-12) = -8 - 4Sulphur-balanced x = 4 + 4 $2Cu^{2+} + N_2H_4 \rightarrow Cu + N_2 + 4H^+$ 1 0 \therefore Thus, 1 mole N₂H₄ \equiv 2 mol Cu²⁺

> It is a redox but not disproportionation since, different N-species are involved

Same as (I)

(III) $PCl_5 \rightarrow PCl_3 + Cl_2$

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

+5 - 1 + 3 - 1 0

 P^{5+} is reduced to P^{3+}

 Cl^{-} is oxidized to Cl_2

Thus, different species are involved. Thus, it is also not a disproportionation reaction

420 (c)

 $As_2S_3 \rightarrow AsO_4^{3-} + 3SO_4^{3-}$ 0.N. 2As = +6 2 × 5 3 × 6

3S = -6 = 10 = 18

Net = 0 Total = 28 Net change = 28

Thus, equivalent mass of $As_2S_3 = \frac{M}{28}$

421 **(b)**

A water soluble complex of silver with a dilute aqueous solution of NaCN is sodium argentocyanide, in the cyanide process, the native from is crushed and treated with 0.1-0.2% solution of NaCN and aerated $4Ag + 8NaCN + 2H_2O + O_2$ $\rightarrow 4Na[Ag(CN)_2] + 4NaOH$ Argentocyanide is soluble metal is recovered from the complex by reduction with zinc 422 (a) Galena is PbS (a sulphide ore). Cassiterite is SnO₂ (oxide ore). Magnetite is Fe₃O₄ (Oxide ore) and Malachite is Cu(OH)₂. CuCO₃ (Carbonate ore). The froth floatation process is used to concentrate sulphide ores, based on preferential wetting

423 **(b)**

Zinc blende is roasted and then treated with coke for the reduction

properties with frothing agent and water

 $3ZnS + 3O_0 \xrightarrow{\Delta} 2ZnO + 2SO_2 \uparrow$ $ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$

424 **(c)**

 $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$

 $Ca^{2+}(ClO^{-})(Cl^{-})$

429 (b) II. Magnetic impurities should be separated before gravity separation as it involves H₂O 433 (b) Auto reduction: Reduction of an oxide ore of a metal by its own sulphide $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ 440 (c) $2MnO_4^- + 3C_2O_4^{2-} + 4OH^ \rightarrow 2MnO_2 + 6CO_3^{2-} + 2H_2O$ 442 (c) $3Br_2 + 6OH \rightarrow 5Br^- + BrO_3^- + 3H_2O \uparrow$ 1 1 1 **↑** 1 q r s t р Br₂ disproportionates to Br⁻ and BrO₃⁻ when treated with hot alkali solution $\frac{1}{2}B_2 + e^- \rightarrow Br^-] \times 5$ $\frac{1}{2}Br_2 + 60H \rightarrow Br_3^- + 3H_2O + 5e^ 3 Br_2 + 60H \rightarrow 5Br^- + BrO_3^- + 3H_2O_3^-$ 443 (d) Kieserite: $MgSO_4 \cdot 7H_2O$ 444 (c) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ Here, $\Delta G = \Delta H - T\Delta S$ (i) For this reaction, ΔH is –ve and $\Delta S \approx 0$ \therefore T Δ S in equation (i) becomes zero, thus Δ G does not vary much with the temperature 446 (c) $NaCl(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$ Oxidation at anode $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$ Reduction at cathode $2Na^+(aq) + 2e^- \rightarrow 2Na$ $2Na + 2H_2O \rightarrow 2NaOH + H_2$ Thus, (a) is incorrect (b) is incorrect only (c) is correct since $\Delta G^{\circ} < 0$ implies reaction is spontaneous 447

 $Fe_2O_3 \xrightarrow{\text{through different stages}} Fe$

448 (a)

$$4Au_{(s)} + 8CN_{(aq)}^{-} + 2H_2O_{(aq)} + O_2$$

$$\rightarrow 4[Au(CN)_2]_{(aq)}^{-} + 40H_{(aq)}^{-}$$

$$'X'$$

$$2[Au(CN)_2]_{(aq)}^{-} + Zn_{(s)} \rightarrow [Zn(CN)_4]^{2-} + 2Au_{(s)}$$

'Y'

Hall's process

450 (d)

 $\operatorname{Cr}_2 \operatorname{O}_7^{2-} \to \operatorname{Cr}^{3+}$

Green

 $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + \mathrm{e}^{-}$

$$SO_2 \\ SO_3^{2-} \longrightarrow SO_4^{2-} + 2e$$

 $\text{Fe}^{2+}\text{SO}_2/\text{SO}_3^{2-}$ reduce $\text{Cr}_2\text{O}_7^{2-}/\text{H}^+$ to Cr^{3+} (green)

466 **(b, c)**

Gold and silver occurs in free as well as in combined states in nature

473 **(a, b)**

Both roasting and calcinations make the ore porous

476 **(b,c,d)**

Gravity separation levigation or hydraulic washing separate lighter gangue particles from the heavier ore particles using the steam of water

478 (a,b,c,d)

All the given processes are used to reduce metal oxides into their respective metals

483 (a, c)

The fluorspar is an ionic compound. It ionises to give ions and thus, increases the number of ions in the electrolyte and as impurity decreases the melting point of Al_2O_3

486 **(b)**

Being less reactive, gold occurs in native state. All metals including gold dissolve in aqua-regia

488 **(b)**

Forth-flotation process is used to concentrate sulphide ores. This process is based upon the wettability of differen minerals

489 **(a)**

Upper most layer of pure molten aluminium, middle layer of molten fluorides of Na^+ , Ba^{2+} and Al^{3+} and lower layer of molten impure aluminium have different densities

490 **(b)**

Alkaline earth metals are strong reducing agents so they cann't be produced by reduction method. Aqueous solution of alkaline earth metals cann't be used for displacing one metal by another

498 **(d)**

Ti- van-Arkel method Si- Zone refining method Al- Bauxite (Al₂O₃) Pb- Cerussite (PbCO₃)

501 **(b)**

$$Cu(NO_3)_2 + 2NaOH \rightarrow Cu(OH)_2 \downarrow 2NaNO_3$$

$$\downarrow \Delta$$

CuO + H₂O
black ppt

502 (d)

 $Zn + 2K[Ag(CN)_2] \rightarrow K_2[Zn(CH)_4] + 2Ag ↓$ $Zn + 2K[Ag(CN)_2] \rightarrow K_2[Zn(CH)_4] + 2Au ↓$

DCAM classes Dynamic Classes for Academic Mastery