Single Correct Answer Type

1. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If $K_{\text {sp }}$ of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are 10^{-15}, $10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first?
a) FeS
b) MgS
c) HgS
d) ZnS
2. Which of the following salts will not undergo hydrolysis in water?
a) Sodium sulphate
b) Ammonium sulphate
c) Aluminium sulphate
d) All the salts will hydrolyse
3. $K_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 4.0×10^{-6}. At what minimum $\mathrm{pH}, \mathrm{Mg}^{2+}$ ions starts precipitating 0.01 MgCl
a) $2+\log 2$
b) $2-\log 2$
c) $12+\log 2$
d) $12-\log 2$
4. For the reversible reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in mal L^{-1} is
a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
b) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
c) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{2}}$
d) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
5. For the system $A(\mathrm{~g})+2 B(\mathrm{~g}) \rightleftharpoons C(\mathrm{~g})$ the equilibrium concentration is
$A=0.06 \mathrm{~mol} \mathrm{~L}^{-1} ; B=0.12 \mathrm{~mol} \mathrm{~L}^{-1}$
$C=0.216 \mathrm{~mol} \mathrm{~L}^{-1}$ The $K_{\text {eq }}$ for the reaction is
a) 250
b) 416
c) 4×10^{-3}
d) 125
6. The pH of a dilute solution of acetic acid was found to be 4.3. The addition of a small crystal of sodium acetate will cause pH to
a) Becomes less than 4.3
b) Become more than 4.3
c) Remain equal to 4.3
d) Unpredictable
7. The pH of a solution of weak base at neutralization with strong acid is $8 . K_{b}$ for the base is
a) 1.0×10^{-4}
b) 1.0×10^{-6}
c) 1.0×10^{-8}
d) None of there
8. Auto-ionisation of liquid NH_{3} is
$2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}{ }^{\oplus}+\mathrm{NH}_{2}{ }^{\oplus}$
With $\mathrm{KH}_{3}=\left[\mathrm{NH}_{4}^{\oplus}\right]\left[\mathrm{NH}_{2}{ }^{\oplus}\right]=10^{-30}$ at $-50^{\circ} \mathrm{C}$
Number of amide ions $\left(\mathrm{NH}_{2}{ }^{\ominus}\right)$, present per mm^{3} of pure liquid NH_{3} is
a) 602
b) 301
c) 200
d) 100
9. 1 mol of N_{2} is mixed with 3 mol of H_{2} in a litre container. If 50% of N_{2} is converted into ammonia by the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, then the total number of moles of gas at the equilibrium are
a) 1.5
b) 4.5
c) 3.0
d) 6.0
10. pH signifies:
a) Puissance de hydrogen
b) $-\log \left[\mathrm{H}^{\oplus}\right]$
c) All the above
d) $14-\mathrm{pOH}$
11. The $\mathrm{p} K_{a}$ of acetyl salicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about 2-3 and the pH in the same intestine is about 8 . Aspirin will be
a) Unionized in the small intestine and in the stomach
b) Completely ionsed in the small intestine and in the stomach
c) Ionized in the stomach and almost unionized in the small intestine
d) Ionized in small intestine and almost unionized in the stomach
12. Passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a mixture of $\mathrm{Mn}^{2}, \mathrm{Ni}^{2}, \mathrm{Cu}^{2}$ and Hg^{2} ions in an acidified aqueous solution precipitates
a) CuS and HgS
b) MnS and CuS
c) MnS and NiS
d) NiS and HgS
13. In the formation of nitric acid, N_{2} and O_{2} are made to combine. Thus, $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+$ Heat which of the following condition will favour the formation of NO?
a) Low temperature
b) High temperature
c) Freezing point
d) All are favourable
14. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} is carried out at $280^{\circ} \mathrm{C}$ in chloroform. When equilibrium is reached, 0.2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $2 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{NO}_{2}$ are present in a 2 L solution. The equilibrium constant for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is
a) 1×10^{-2}
b) 2×10^{-3}
c) 1×10^{-5}
d) 2×10^{-5}
15. Solubility of salt $\mathrm{A}_{2} \mathrm{~B}_{3}$ is 1×10^{-4}, its solubility product is
a) 1.08×10^{20}
b) 1.08×10^{18}
c) 2.6×10^{-18}
d) 1.08×10^{-18}
16. In 1 L saturated solution of $\mathrm{AgCl}\left[K_{\text {sp }}(\mathrm{AgCl}) 1.610^{10}\right], 0.1$ mole of $\mathrm{CuCl}\left[K_{\mathrm{sp}}(\mathrm{CuCl}) 1.010^{6}\right]$ is added. The resultant concentration of Ag in the solution is 1.610^{x}. The value of ' x^{\prime} is
a) 3
b) 5
c) 7
d) 9
17. The conjugate acid of $\mathrm{NH}_{2}{ }^{\ominus}$ is
a) NH_{3}
b) $\mathrm{NH}_{2} \mathrm{OH}$
c) $\mathrm{NH}_{4}{ }^{\oplus}$
d) $\mathrm{N}_{2} \mathrm{H}_{4}$
18. In alkaline solution, the following equilibrium exist
a. $\mathrm{S}^{2-}+\mathrm{S} \rightarrow \mathrm{S}_{2}{ }^{2-}$ equilibrium constant K_{1}
b. $\mathrm{S}_{2}{ }^{2-}+\mathrm{S} \rightarrow \mathrm{S}_{3}{ }^{2-}$ equilibrium constant K_{2}
K_{1} and K_{2} have values 12 and 11 , respectively?
$\mathrm{S}_{3}{ }^{2-} \rightarrow \mathrm{S}^{2-}+2$. What is equilibrium constant for the reaction
a) 132
b) 7.58×10^{-3}
c) 1.09
d) 0.918
19. If ammonia is added to pure water, the concentration of a chemical species already present will decrease. The species is
a) $\mathrm{O}_{2}{ }^{\ominus}$
b) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
c) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
d) $\mathrm{H}_{2} \mathrm{O}$
20. The equilibrium constant for a reaction
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ is 1.0×10^{-2} at 298 and is 2.0 at 373 K
The chemical process resulting in the formation of C and D is
a) Exothermic
b) Endothermic
c) Unpredictable
d) None
21. When 0.2 M solution of acetic acid is neutralized with 0.2 M NaOH in 500 mL of water, the pH of the resulting solution will be: [$\mathrm{p} K_{a}$ of acetic acid $=4.74$]
a) 12.67
b) 7.87
c) 8.87
d) 7
22. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, the value of K_{p} is 1.7×10^{3} at 500 K and 1.7×10^{4} at 600 K . Which of the following is/are correct?
a) The proportions of NO_{2} in the equilibrium mixture is increased by decrease in pressure
b) The standard enthalpy change for the forward reaction is negative
c) Units of K_{p} are atm ${ }^{-1}$
d) At 500 K the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ decreases by 50% by increasing the pressure by 100%
23. If $\mathrm{p} K_{b}$ for fluoride ion at $25^{\circ} \mathrm{C}$ is 10.83 , the ionization constant of hydrofluoric acid in water at this temperature is
a) 1.74×10^{-5}
b) 3.52×10^{-3}
c) 6.75×10^{-4}
d) 5.38×10^{-2}
24. Solubility product constant [$K_{s p}$] of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature ' T ' are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively. Solubilities $\left(\mathrm{mol}, \mathrm{dm}^{-3}\right)$ of the salts at temperature ' T ' are in the order
a) $M X>M X_{2}>M_{3} X$
b) $M_{3} X>M X_{2}>M X$
c) $M X_{2}>M_{3} X>M X$
d) $M X>M_{3} X>M X_{2}$
25. Which of the following represents the conjugate pair of NH_{3} ?
a) $\mathrm{NH}_{2}{ }^{\ominus}$
b) $\mathrm{NH}_{4}{ }^{\oplus}$
c) Both (a) and (b)
d) N^{3-}
26. In the dissociation of PCl_{5} as
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the degree of dissociation is α at equilibrium pressure P, then the equilibrium constant for the reaction is
a) $K_{p}=\frac{\alpha^{2}}{1+\alpha^{2} P}$
b) $K_{p}=\frac{\alpha^{2} P^{2}}{1-\alpha^{2}}$
c) $K_{p}=\frac{P^{2}}{1-\alpha^{2}}$
d) $K_{p}=\frac{\alpha^{2} P}{1-\alpha^{2}}$
27. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl diluted to 1 L . What will be the H^{+}concentration in the solution?
a) $8 \times 10^{-2} \mathrm{M}$
b) $8 \times 10^{-11} \mathrm{M}$
c) $1.6 \times 10^{-11} \mathrm{M}$
d) $8 \times 10^{-5} \mathrm{M}$
28. The number of S^{2-} ions present in 1 L of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}\left[K_{a\left(\mathrm{H}_{2} \mathrm{~S}\right)}=10^{-21}\right]$ solution having $\left[\mathrm{H}^{\oplus}\right]=0.1 \mathrm{M}$ is:
a) 6.023×10^{3}
b) 6.023×10^{4}
c) 6.023×10^{5}
d) 6.023×10^{6}
29. In decinormal solution, $\mathrm{CH}_{3} \mathrm{COOH}$ acid is ionized to the extent of $1.3 \%=0.11$, what is the pH of the solution?
a) 3.89
b) 2.89
c) 4.89
d) Unpredictable
30. The gatric juice in our stomach contains enough HCl to make the hydrogen ion concentration about $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$. The pH of gastric juice is
a) 0.01
b) 1
c) 2
d) 14
31. $\mathrm{H} X$ is a weak acid $\left(K_{a}=10^{-5}\right)$. It forms a salt $\mathrm{Na} X(0.1 \mathrm{M}$ on reacting with caustic soda. The degree of hydrolysis of $\mathrm{Na} X$ is
a) 0.01%
b) 0.0001%
c) 0.1%
d) 0.5%
32. Phenolphthalein does not act as an indicator for the titration between
a) HCl and $\mathrm{NH}_{4} \mathrm{OH}$
b) $\mathrm{Ca}(\mathrm{OH})_{2}$ and HCl
c) NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) KOH and $\mathrm{CH}_{3} \mathrm{COOH}$
33. Which of the following salt is basic?
a) HOCl
b) NaOCl
c) NaHSO_{4}
d) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
34. The solubility products of $\mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{Zn}(\mathrm{OH})_{2}$ are $\sqrt[3]{8.5 \times 10^{-23}}$ and 1.8×10^{-14}, respectively. If $\mathrm{NH}_{4} \mathrm{OH}$ is added to a solution containing Al^{3+} and Zn^{2+} ions, then substance precipitated first is
a) $\mathrm{Al}(\mathrm{OH})_{3}$
b) $\mathrm{Zn}(\mathrm{OH})_{2}$
c) Both (a) and (b)
d) None of these
35. Which of the following metal sulphides has maximum solubility in water?
a) $\mathrm{CdS}\left(K_{\mathrm{sp}}=36 \times 10^{-30}\right)$
b) $\mathrm{FeS}\left(K_{\mathrm{sp}}=11 \times 10^{-20}\right)$
c) $\operatorname{HgS}\left(K_{\mathrm{sp}}=32 \times 10^{-54}\right)$
d) $\mathrm{ZnS}\left(K_{\mathrm{sp}}=11 \times 10^{-22}\right)$
36. Consider the reaction
$A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons C(\mathrm{~g})+D(\mathrm{~g})$
Which occurs in one step The specific rate constant are 0.25 and 5000 for the forward and reverse reaction, respectively. The equilibrium constant is
a) 2.0×10^{-4}
b) 4.0×10^{2}
c) 5.0×10^{-5}
d) 2.5×10^{-6}
37. Given the equilibrium constants
$\mathrm{HgCl}^{\oplus}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{2}, K_{1}=3 \times 10^{6}$
$\mathrm{HgCl}_{2}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{3}^{\ominus}, K_{2}=8.9$
The equilibrium constant for the disproportionation equilibrium
$2 \mathrm{HgCl}_{2} \rightarrow \mathrm{HgCl}^{\oplus}+\mathrm{HgCl}_{3}^{\ominus}$ is
a) -3.3×10^{5}
b) 3×10^{-5}
c) 3.3×10^{5}
d) 3×10^{-6}
38. If the equilibrium constant of $\mathrm{BOH} \rightleftharpoons \mathrm{B}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ at $25^{\circ} \mathrm{C}$ is 2.5×10^{-6}, then equilibrium constant for $\mathrm{BOH}+\mathrm{H}^{\oplus} \rightleftharpoons \mathrm{B}^{\oplus}+\mathrm{H}_{2} \mathrm{O}$ at the same temperature is
a) 4.0×10^{-9}
b) 4.0×10^{5}
c) 2.5×10^{8}
d) 2.5×10^{-6}
39. If equal volumes of BaCl_{2} and NaF solutions are mixed, which of these combination will not give a precipitate? $\left(K_{\text {sp }}\right.$ of $\left.\mathrm{BaF}_{2}=1.7 \times 10^{-7}\right)$
a) $10^{-3} \mathrm{BaCl}_{2}$ and $2 \times 10^{-2} \mathrm{M} \mathrm{NaF}$
b) $10^{-3} \mathrm{M} \mathrm{BaCl}_{2}$ and $1.5 \times 10^{-2} \mathrm{M} \mathrm{NaF}$
c) $1.5 \times 10^{-2} \mathrm{BaCl}_{2}$ and $10^{-2} \mathrm{M} \mathrm{NaF}$
d) $2 \times 10^{-2} \mathrm{M} \mathrm{BaCl}_{2}$ and $2 \times 10^{-2} \mathrm{M} \mathrm{NaF}$
40. Which of the following will not change the concentration of ammonia in the equilibrium
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H=-x \mathrm{~kJ}$
a) Increase of pressure
b) Increase of temperature
c) Decrease of volume
d) Addition of catalyst
41. At certain temperature 50% of HI is dissociated into H_{2} and I_{2}, the equilibrium constant is
a) 1.0
b) 3.0
c) 0.5
d) 0.25
42. The pH of a solution is 5.00 . To this solution, sufficient acid is added to lower the pH to 2.00 . The corresponding increase in $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ ion concentration is
a) 1000 times
b) 2.5 times
c) 100 times
d) 5 times
43. Two buffer solutions, A and B each made with acetic acid and sodium acetate differ in their pH by one unit, A has salt: acid $=x: y$, B has salt : acid $=y: x$. If $x>y$, then the value of $x: y$ is
a) 10,000
b) 3.17
c) 6.61
d) 2.10
44. If the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}, the concentration of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ions, in mol L^{-1} of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ is
a) 1.8×10^{-6}
b) 1.34×10^{-3}
c) 4.20×10^{-2}
d) 5.0×10^{-2}
45. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium,
a) K_{p} does not change significantly with pressure
b) α does not change with pressure
c) The concentration of NH_{3} does not change with pressure
d) The concentration of hydrogen is less than that of nitrogen
46. Which one of the following is acid salt?
a) $\mathrm{Na}_{2} \mathrm{~S}$
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c) NaHSO_{3}
d) $\mathrm{Na}_{2} \mathrm{SO}_{2}$
47. Methyl orange gives red colour in
a) KOH solution
b) HCl solution
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
d) NaCl solution
48. A certain weak acid has a dissociation constant of 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is
a) 1.0×10^{-4}
b) 1.0×10^{-10}
c) 1.0×10^{-10}
d) 1.0×10^{-14}
49. For the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
a) Adding a suitable catalyst
b) Adding an inert gas
c) Decreasing the volume of the container
d) Increasing the amount of $\mathrm{CO}(\mathrm{g})$
50. Which of the following salts will not change the pH of pure water on dissociation?
a) KCl
b) AlCl_{3}
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
51. $K_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12}, 0.01 \mathrm{M} \mathrm{MgCl}_{2}$ will be precipitating at the limiting pH :
a) 8
b) 9
c) 10
d) 12
52. $\quad K_{\text {sp }}$ for lead iodate $\left[\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\right]$ is 3.2×10^{-14} at a given temperature. The solubility in mol L^{-1} will be
a) 2.0×10^{-5}
b) $\left(3.2 \times 10^{-7}\right)^{1 / 2}$
c) $\left(3.8 \times 10^{-7}\right)$
d) 4.0×10^{-6}
53. The equilibrium constants $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $\mathrm{A} \rightleftharpoons 2 \mathrm{~B}$ and $\mathrm{P} \rightleftharpoons \mathrm{Q}+\mathrm{R}$, respectively, are in the ratio of $2: 3$. If the degree of dissociation of A and P are equal, the ratio of the total pressure at equilibrium is,
a) $1: 36$
b) $1: 9$
c) $1: 6$
d) 1: 4
54. The pH of an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 10 . If the $K_{\text {sp }}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 1×10^{-9}, then the concentration of Ba^{2+} ions in the solution in mol^{-1} is
a) 1×10^{-2}
b) 1×10^{-4}
c) 1×10^{-1}
d) 1×10^{-5}
55. In which of the following solvents will AgBr has highest solubility?
a) $10^{-3} \mathrm{M} \mathrm{NaBr}$
b) $10^{-3} \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
c) Pure water
d) $10^{-3} \mathrm{M} \mathrm{HBr}$
56. The $\mathrm{p} K_{a}$ of acetyl salicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 8 . Aspirin will be
a) Unionised in the small intestine and in the stomach
b) Completely ionized in the small intestine and in the stomach
c) Ionized in the stomach and almost unionized in the small intestine
d) Ionized in the small intestine and almost unionized in the stomach
57. A mixture of weak acid is 0.1 M in $\mathrm{HCOOH}\left(K_{a}=1.8 \times 10^{-4}\right)$ and 0.1 M in $\mathrm{HOCN}\left(K_{a}=3.1 \times 10^{-4}\right)$. Hence, $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ is
a) $7.0 \times 10^{-3} \mathrm{M}$
b) $4.1 \times 10^{-4} \mathrm{M}$
c) 0.20 M
d) $4.1 \times 10^{-3} \mathrm{M}$
58. A constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is expressed by $K_{p}=\left(4 x^{2} p\right) /\left(1-x^{2}\right)$, where $p=$ pressure and $x=$ extent of decomposition. Which one of the following statements is true?
a) K_{p} increases with increase in p
b) K_{p} increases with increase in x
c) K_{p} increases with decrease in x
d) K_{p} remains constant with change in p and x
59. Which one of the following is true for any diprotic acid, $\mathrm{H}_{2} \mathrm{X}$?
a) $K_{a_{2}}>K_{a_{1}}$
b) $K_{a_{1}}>K_{a_{2}}$
c) $K_{a_{2}}=\frac{1}{K_{a_{1}}}$
d) $K_{a_{2}}=K_{a_{1}}$
60. Which of the following will have the largest pH ?
a) $\mathrm{M} / 10 \mathrm{HCl}$
b) $\mathrm{M} / 100 \mathrm{HCl}$
c) $\mathrm{M} / 10 \mathrm{NaOH}$
d) $\mathrm{M} / 100 \mathrm{NaOH}$
61. Fear or excitement, generally cause on to breathe rapidly and it results in the decrease of CO_{2} concentration in blood. In what way will it change the pH of blood
a) pH will increase
b) pH will decrease
c) No change
d) pH will adust to 7
62. The pH of an acid buffer can be raised by 2 units by
a) Increasing the concentration of both weak acid and salt by two moles
b) Increasing the concentration of both the acid and salt by 10 times
c) Diluting the solution by 10 times
d) Increasing the concentration of the salt by 10 times and decreasing concentration of the acid by 10 time
63. An acid-base indicator has a $K_{a}=3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then
a) pH is 4.05 when indicator is 75% red
b) pH is 5.00 when indicator is 75% blue
c) Both (a) and (b) are correct
d) None of these
64. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of 0.01 M solution of its sodium salt is
a) 3
b) 7
c) 8
d) 6
65. In which of the following reaction, the yield of the products does not increase by increase in the pressure?
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{g})$
b) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{PCl}_{5}(\mathrm{~g})$
66. The value of K_{sp} is HgCl_{2} at room temperature is 4.0×10^{-15}. The concentration of Cl^{\ominus} ion in its aqueous solution at saturation point is
a) 1×10^{-5}
b) 2×10^{-5}
c) 2×10^{-15}
d) 8×10^{-15}
67. Which buffer solution out of the following will have $\mathrm{pH}>7$?
a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
b) $\mathrm{HCOOH}+\mathrm{HCOOK}$
c) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
68. Assuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ to be completely ionized the pH of a 0.05 M aqueous solution of sulphuric acid is approximately
a) 0.01
b) 0.005
c) 2
d) 1
69. In the third group of qualitative analysis, the precipatitating reagent is $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$. The function of $\mathrm{NH}_{4} \mathrm{Cl}$ is to
a) Increase the ionization of $\mathrm{NH}_{4} \mathrm{OH}$
b) Suppress the ionization of $\mathrm{NH}_{4} \mathrm{OH}$
c) Convert the ions of group third into their respective chlorides
d) Stabilise the hydroxides of group III cations
70. Of the given anions, the strongest Bronsted base is
a) ClO^{\ominus}
b) $\mathrm{ClO}_{2}{ }^{\ominus}$
c) $\mathrm{ClO}_{3}{ }^{\ominus}$
d) $\mathrm{ClO}_{4}{ }^{\ominus}$
71. A solution containing $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ has $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$, which of the following hydroxides would be precipitated when this solution in added in equal volume to a solution containing 0.1 M of metal ions
a) $\operatorname{Mg}(\mathrm{OH})_{2},\left(K_{\mathrm{SP}}=3 \times 10^{-11}\right)$
b) $\mathrm{Fe}(\mathrm{Oh})_{2}\left(K_{\text {sp }}=8 \times 10^{-16}\right)$
c) $\mathrm{Cd}(\mathrm{OH})_{2}\left(K_{\mathrm{sp}}=8 \times 10^{-6}\right)$
d) $\mathrm{AgOH}\left(K_{\text {sp }}=5 \times 10^{-3}\right)$
72. When the reaction. $2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ reaches equilibrium at 298 K . The partial pressure of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are 0.2 KPa and 0.4 KPa , respectively. What is the equilibrium constant K_{p} of the above reaction at 298 K ?
a) 0.1
b) 0.5
c) 1.0
d) 10
73. For a reaction $A(\mathrm{~g}) \rightleftharpoons B(\mathrm{~g})+C(\mathrm{~g}) . K_{p}$ at $400^{\circ} \mathrm{C}$ is 1.5×10^{-4} and K_{p} at $600^{\circ} \mathrm{C}$ is 6×10^{-3}. Which statement is incorrect?
a) The reaction is exothermic
b) Increase in temperature increases the formation of B
c) Increase in pressure increases the formation of A
d) Decrease in temperature and increase in pressure shift the equilibrium towards left
74. Which of the following solutions will have $\mathrm{pH}=10$ at 298 K ?
a) $1 \times 10^{-10} \mathrm{M} \mathrm{HCl}$ solution
b) $1 \times 10^{-4} \mathrm{M} \mathrm{NaOH}$ solution
c) $1 \times 10^{-10} \mathrm{M} \mathrm{NaOH}$ solution
d) Both (a) and (b)
75. pOH of water is 7.0 at 298 K . If water is heated to 350 K , which of the following should be true?
a) pOH will decrease
b) pOH will increase
c) pOH will remain seven
d) Concentration of H^{\oplus} ions will increase but that of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ will decrease
76. A certain weak acid has a dissociation constant of 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is
a) 10×10^{-4}
b) 10×10^{-10}
c) 1.0×10^{10}
d) 1.0×10^{14}
77. Which of the following factors will favour the reverse reaction in a chemical equilibrium?
a) Increase in concentration of one of the reactants
b) Increase in concentration of one of the products
c) Removal of one of the products regularly
d) None of these
78. Which of the following mixture solution has $\mathrm{pH} \approx 1.0$?
a) $100 \mathrm{~mL} \mathrm{M} / 10 \mathrm{HCl}+100 \mathrm{~mL} \mathrm{M} / 10 \mathrm{NaOH}$
b) $55 \mathrm{~mL} \mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{~mL} \mathrm{M} / 10 \mathrm{NaOH}$
c) $10 \mathrm{~mL} \mathrm{M} / 10 \mathrm{HCl}+90 \mathrm{~mL} \mathrm{M} / 10 \mathrm{NaOH}$
d) $75 \mathrm{~mL} \mathrm{M} / 5 \mathrm{HCl}+25 \mathrm{~mL} \mathrm{M} / 5 \mathrm{NaOH}$
79. K_{a} for the reaction:
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Fe}(\mathrm{OH})^{2+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{\oplus}(\mathrm{aq})$ is 6.5×10^{-3}, what is the maximum pH value which could be used so that at least 80% of the total iron (III) in a dilute solution exists as Fe^{3+}
a) 2.0
b) ~ 2.4
c) ~ 2.8
d) ~ 1.6
80. How many grams of NaOH must be dissolved in $1 \mathrm{~L}^{-1}$ of the solution to give it a pH value of 12 ?
a) $0.20 \mathrm{~g} \mathrm{~L}^{-1}$
b) $0.40 \mathrm{~g} \mathrm{~L}^{-1}$
c) $0.10 \mathrm{~g} \mathrm{~L}^{-1}$
d) $1.2 \mathrm{~g} \mathrm{~L}^{-1}$
81. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ in closed container at equilibrium. What would be the effect of addition of CaCO_{3} on the equilibrium concentration of CO_{2}
a) Increases
b) Decreases
c) Data is not sufficient
d) Remains unaffected
82. In Haber process, 30 L of dihydrogen and 30 L of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end?
a) $10 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} \mathrm{~N}_{2}, 15 \mathrm{~L} \mathrm{H}_{2}$
b) $20 \mathrm{~L} \mathrm{NH}_{3}, 20 \mathrm{~L} \mathrm{~N}_{2}, 20 \mathrm{~L} \mathrm{H}_{2}$
c) $20 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} \mathrm{~N}_{2}, 15 \mathrm{~L} \mathrm{H}_{2}$
d) $20 \mathrm{~L} \mathrm{NH}_{3}, 10 \mathrm{~L} \mathrm{~N}_{2}, 30 \mathrm{~L} \mathrm{H}_{2}$
83. At what pH will a $10^{-3} \mathrm{M}$ solution of indicator with $K_{b}=10^{-10}$ changes colour?
a) 10
b) 4.0
c) 3
d) 7
84. The equilibrium constant of a reaction is 300 , if the volume of the reaction flask is tripled, the equilibrium constant will be
a) 100
b) 300
c) 250
d) 150
85. For a reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at certain temperature, the value of equilibrium constant is 50 . If the volume of the vessel is reduced to half of its original volume, the value of new equilibrium constant will be
a) 25
b) 50
c) 100
d) Unpredictable
86. The solubility products of MA, MB, MC, and MD are $1.8 \times 10^{-10}, 4 \times 10^{-8}$ and 6×10^{-5} respectively. If a 0.01 M solution of MX is added dropwise to a mixture containing $A^{\ominus}, B^{\ominus}, C^{\ominus}$ and D^{\ominus} ions, then the one to be precipitated first will be
a) MA
b) MB
c) MC
d) MD
87. The K_{a} values of CaCO_{3} and $\mathrm{CaC}_{2} \mathrm{O}_{4}$ in water are 4.7×1^{-9} and 1.3×10^{-9}, respectively, at $25^{\circ} \mathrm{C}$. If a mixture of two is washed with $\mathrm{H}_{2} \mathrm{O}$, what is Ca^{2+} ion concentration in water?
a) 7.746×10^{-5}
b) 5.831×10^{-5}
c) 6.856×10^{-5}
d) 3.606×10^{-5}
88. At a certain temperature the value of $\mathrm{p} K_{w}$ is 13.4 and the measured pH of soln is 7 . The solution is
a) Acidic
b) Basic
c) Neutral
d) Unpredictable
89. If H^{\oplus} ion concentration of a solution is increased by 10 times, its pH will
a) Increase by 1
b) Remains unchanged
c) Decreases by 1
d) Increase by 10
90. The vapour density of a mixture consisting of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at 275 K . The number of moles of NO_{2} in the mixture:
a) 0.2
b) 0.4
c) 0.8
d) 1.6
91. One mole of SO_{3} was placed in a litre reaction flask at a given temperature when the reaction equilibrium was established in the reaction
$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$, the vessel was found to contain 0.6 mol of SO_{2}. The value of the equilibrium constant is
a) 0.36
b) 0.675
c) 0.45
d) 0.54
92. The pH of $10^{-5} \mathrm{M} \mathrm{HCl}$ solution if 1 ml of it is diluted to 1000 ml is:
a) 5
b) 8
c) 7.02
d) 6.98
93. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant K_{p} will be
a) $1 / 2$
b) $1 / 4$
c) $1 / 6$
d) $1 / 8$
94. Some chemist at ISRO wished to prepared a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds would they use? $K_{\text {sp }}(\mathrm{AgCl})=1.8 \times 10^{-10}, K_{s p}(\mathrm{AgBr})=5.0 \times 10^{-13}$, $K_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=2.4 \times 10^{-12}$ [Use $\left.\sqrt[3]{0.6}=0.84\right]$
a) AgCl
b) AgBr
c) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
d) All of these
95. A salt X is dissolved in water having $\mathrm{pH}=7$. The resulting solution has a pH more than 7 . The salt is made by neutralization of
a) A strong acid and strong base
b) A strong acid and strong weak base
c) A weak acid and weak base
d) A weak acid and strong base
96. Three sparingly soluble salts $M_{2} X, M X$, and $M X_{3}$ have the same solubility product. Their solubilities will be in the order
a) $\mathrm{MX}_{3}>M X>\mathrm{M}_{2} \mathrm{X}$
b) $\mathrm{MX}_{3}>\mathrm{M}_{2} \mathrm{X}>M X$
c) $\mathrm{MX}>M \mathrm{X}_{3}>\mathrm{M}_{2} \mathrm{X}$
d) $\mathrm{MX}>\mathrm{M}_{2} \mathrm{X}>\mathrm{MX}_{3}$
97. For a sparingly soluble salt $A_{p} B_{q}$, the relationship of its solubility product $\left(L_{S}\right)$ with its solubility (S) is
a) $L_{S}=S^{p+q} p^{p} q^{q}$
b) $L_{S}=S^{p+q} p^{q} q^{p}$
c) $L_{S}=S^{p q} p^{p} q^{q}$
d) $L_{S}=S^{p q}(p q)^{(p+q)}$
98. Let the solubilities of AgCl in $\mathrm{H}_{2} \mathrm{O}$, and $0.01 \mathrm{M} \mathrm{CaCl}_{2}, 0.01 \mathrm{M} \mathrm{NaCl}$, and $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ be $S_{1}, S_{2}, S_{3}, S_{4}$, respectively. What is the correct relationship between these quantities
a) $S_{2}>S_{2}>S_{3}>S_{4}$
b) $S_{1}>S_{2}=S_{3}>S_{4}$
c) $S_{1}>S_{3}>S_{2}>S_{4}$
d) $S_{4}>S_{2}>S_{3}>S_{1}$
99. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ as $10^{-6} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. What is the value of K_{w} at $90^{\circ} \mathrm{C}$?
a) 10^{-6}
b) 10^{-12}
c) 10^{-14}
d) 10^{-8}
100. What concentration of CO_{2} be in equilibrium with 0.025 M CO at $120^{\circ} \mathrm{C}$ for the reaction $\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
If the value of $K_{c}=5.0$?
a) 0.125 M
b) 0.0125 M
c) 1.25 M
d) 12.5 M
101. In a chemical reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$, at equilibrium point
a) Equal volumes of N_{2} and H_{2} are reacting
b) Equal masses of N_{2} and H_{2}, are reacting
c) The reaction has stopped
d) The same amount of ammonia is formed as is decomposed into N_{2} and H_{2}
102. In the gaseous equilibrium
$A+2 B \rightleftharpoons C+$ Heat, the forward reaction is favoured:
a) Low P, High T
b) Low P, Low T
c) $\operatorname{High} P$, Low T
d) $\operatorname{High} P$, $\operatorname{High} T$
103. The equilibrium constant in a reversible reaction at a given temperature which
a) Depends on initial concentration, of the reactants
b) Depends on the concentration of the products at equilibrium
c) Does not depend on the initial concentration
d) It is not characteristic of the reaction
104. 2.5 mL of $\frac{2}{5} \mathrm{M}$ weak monoacidic base ($K_{b}=1 \times 10^{-12}$ at $25^{\circ} \mathrm{C}$) is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is
$\left(K_{w}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
a) $3.7 \times 10^{-13} \mathrm{M}$
b) $3.2 \times 10^{-7} \mathrm{M}$
c) $3.2 \times 10^{-2} \mathrm{M}$
d) $2.7 \times 10^{-2} \mathrm{M}$
105. One mole of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 300 K is kept in a closed container under 1 atm. It is heated to 600 K when 20% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure is
a) 1.2 atm
b) 2.4 atm
c) 2.0 atm
d) 1.0 atm
106. The equilibrium constant K for the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ at room temperature is 2.85 and that at 698 K is 1.4×10^{-2}. This implies
a) HI is exothermic compound
b) HI is very stable at room temperature
c) HI is relatively less stable than H_{2} and I_{2}
d) HI is resonance stabilised
107. When equal volumes of the following solutions are mixed, the precipitation of $\mathrm{AgCl}\left(K_{\text {sp }}=1.8 \times 10^{-10}\right)$ will occur only with
a) $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-4} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
b) $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
c) $10^{-6} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
d) $10^{-10} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-10} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
108. Which of the following solutions will have pH close to 1.0 ?
a) 100 mL of $(\mathrm{M} / 10) \mathrm{HCl}+100 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
b) 55 mL of $(\mathrm{M} / 10) \mathrm{HCl}+45 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
c) 10 mL of $(\mathrm{M} / 10) \mathrm{HCl}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
d) 75 mL of (M/5) $\mathrm{HCl}+25 \mathrm{~mL}$ of (M/5) NaOH
109. Which one of the following salts when dissolves in water hydrolyse?
a) NaCl
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) KCl
d) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
110. Which of the following is a Lewis base?
a) $\mathrm{H}_{2} \mathrm{O}$
b) Cl^{\ominus}
c) BF_{3}
d) NH_{3}
111. When two reactants A and B are mixed to give products C and D, the reaction quotient Q at the initial stages of the action
a) Is zero
b) Decreases with time
c) Is independent of time
d) Increases with time
112. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is
$\mathrm{KCN} \quad \mathrm{K}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCl}$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN
a) 1
b) 2
c) 3
d) 4
113. Which of the following salt undergoes hydrolysis?
a) $\mathrm{CH}_{3} \mathrm{COOK}$
b) NaNO_{3}
c) KCl
d) $\mathrm{K}_{2} \mathrm{SO}_{4}$
114. The solubility of AgI in NaI solutions is less than that in pure water because:
a) AgI forms complex with NaI
b) Of common ion effect
c) Solubility product of AgI is less than that of NaI
d) The temperature of the solution decreases
115. When two reactants A and B are mixed to give products C and D, the reaction quotient (Q) at the initial stages of the reaction
a) Is zero
b) Decreases with time
c) Is independent of time
d) Increases with time
116. Among the following hydroxides, the one which has the lowest value of $K_{\text {sp }}$ at ordinary temperature (about $25^{\circ} \mathrm{C}$) is
a) $\mathrm{Mg}(\mathrm{OH})_{2}$
b) $\mathrm{Ca}(\mathrm{OH})_{2}$
c) $\mathrm{Ba}(\mathrm{OH})_{2}$
d) $\mathrm{Be}(\mathrm{OH})_{2}$
117. An aqueous solution of HCl is $10^{-9} \mathrm{M} \mathrm{HCl}$. The pH of the solution should be
a) 9
b) Between 6 and 7
c) 7
d) Unpredictable
118. Which of the following sill suppress the ionization of acetic acid in aqueous solution?
a) NaCl
b) HCl
c) KCl
d) Upredicatble
119.1 mol of $X Y(\mathrm{~g})$ and 0.2 mol of $Y(\mathrm{~g})$ are mixed in 1 L vessel. At equilibrium, 0.6 mol of $Y(\mathrm{~g})$ is present. The value of K for the reaction
$X Y(\mathrm{~g}) \rightleftharpoons X(\mathrm{~g})+Y(\mathrm{~g})$ is
a) $0.04 \mathrm{~mol} \mathrm{~L}^{-1}$
b) $0.06 \mathrm{~mol} \mathrm{~L}^{-1}$
c) $0.36 \mathrm{~mol} \mathrm{~L}^{-1}$
d) $0.40 \mathrm{~mol} \mathrm{~L}^{-1}$
119. For the chemical reaction
$3 \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \rightleftharpoons \mathrm{X}_{3} \mathrm{Y}(\mathrm{g})$,
the amount of $\mathrm{X}_{3} \mathrm{Y}$ at equilibrium is affected by
a) Temperature and pressure
b) Temperature only
c) Pressure only
d) Temperature, pressure, and catalyst
120. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-6.7} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the value of K_{w} at $90^{\circ} \mathrm{C}$?
a) 10^{-6}
b) 10^{-12}
c) $10^{-13.4}$
d) $10^{-6.7}$
121. Of the given anions, the strongest Bronsted base is
a) ClO^{\ominus}
b) $\mathrm{ClO}_{2}{ }^{\ominus}$
c) $\mathrm{ClO}_{3}{ }^{\ominus}$
d) $\mathrm{ClO}_{4}{ }^{\ominus}$
122. The equilibrium constant for the reaction $w+x \rightleftharpoons y+z$ is 9 . If one mole of each of w and x are mixed and there is no change in volume, the number of moles of y for formed is
a) 0.10
b) 0.50
c) 0.75
d) 0.54
123. A 0.1 molar solution of weak base BOH is 1% dissociated. If 0.2 mol of BCl is added in 1 L solution of BOH . The degree of dissociation of BOH will become
a) 0.02
b) 0.005
c) 5×10^{-5}
d) 2×10^{-3}
124. What would be the solubility of silver chloride in 0.10 M NaCl solution?
$K_{\text {sp }}$ for $\mathrm{AgCl}=1.20 \times 10^{-10}$
a) 0.1 M
b) $1.2 \times 10^{-6} \mathrm{M}$
c) $1.2 \times 10^{-9} \mathrm{M}$
d) $1.2 \times 10^{-10} \mathrm{M}$
125. Which one of following will have the largest pH ?
a) Solution containing $1 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{~L}^{-1}$
b) Pure water
c) Solution containing $1.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{HCl} \mathrm{L}^{-1}$
d) Solution containing $1 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{NH}_{4} \mathrm{OH} \mathrm{L}^{-1}$
126. $20 \mathrm{~cm}^{3}$ of $x \mathrm{M}$ solution of HCl is exactly neutralized by $40 \mathrm{~cm}^{3}$ of 0.05 M NaOH solution, the pH of HCl solution is
a) 1.0
b) 2
c) 1.5
d) 2.5
127. 4 moles of A are mixed with 4 moles of B, when 2 moles of C are formed at equilibrium according to the reaction $A+B \rightleftharpoons C+D$
The value of equilibrium constant is
a) 4
b) 1
c) $1 / 2$
d) $1 / 4$
128. The $\mathrm{p} K_{b}$ of CN^{\ominus} is 4.7. The pH of solution prepared by mixing 2.5 mol of KCN of 2.5 mol of HCN in water and making the total volume upto 500 mL is
a) 10.3
b) 9.3
c) 8.3
d) 4.7
129. $X Y_{2}$ dissociates $X Y_{2}(\mathrm{~g}) \rightleftharpoons X Y(\mathrm{~g})+Y(\mathrm{~g})$. When the initial pressure of $X Y_{2}$ is 600 mm Hg , the total equilibrium pressure is 800 mm Hg . Calculate K for the reaction. Assuming that the volume of the system remains unchanged
a) 50.0
b) 100.0
c) 166.6
d) 400.0
130. A monoprotic acid (HA) is 1% ionized in its aqueous solution of 0.1 M strength. Its pOH will be
a) 11
b) 3
c) 10
d) 2
132.4 mol of carbon dioxide was heated in $1 \mathrm{dm}^{3}$ vessel under conditions which produced at equilibrium 25% dissociation into carbon monoxide and oxygen. The number of moles of carbon monoxide produced
a) 0.5
b) 1.0
c) 2.0
d) 4.0
131. 20 mL of $\mathrm{M} / 10 \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated with $\mathrm{M} / 10 \mathrm{NaOH}$ solution. After addition of 16 mL solution of NaOH . What is the pH of the solution ($\mathrm{p} K_{a}=4.47$)
a) 5.05
b) 4.15
c) 4.75
d) 5.35
132. A solution with $\mathrm{pH}=2$ is more acidic then one with a $\mathrm{pH}=6$ by a factor of
a) 4
b) 12
c) 400
d) 10^{4}
133. What are the units in which the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is expressed?
a) $\mathrm{mol} \mathrm{dm}^{-3}$
b) $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
c) $\mathrm{mol}^{3} \mathrm{dm}^{-9}$
d) $\mathrm{mol}^{5} \mathrm{dm}^{-15}$
134. Inert gas has been added to the following equilibrium system at constant volume
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
To which direction will the equilibrium shift?
a) Forward
b) Backward
c) No effect
d) Unpredictable
135. The best indicator for the detection of end point in titration of a weak acid and a strong base is
a) Methyl orange (3 to 4)
b) Methyl red (5 to 6)
c) Bromothymol blue (6 to 7.5)
d) Phenolphthalein (8 to 9.6)
136. In the problem number 21, the number of mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ in 100 g of the mixture is:
a) 0.43
b) 0.86
c) 0.57
d) 0.2
137. Which of the following can act both as a Bronsted acid and a Bronsted base?
a) $\mathrm{O}_{2}{ }^{\ominus}$
b) HCl
c) $\mathrm{HSO}_{4}^{\ominus}$
d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
138. For the reactions $\mathrm{X} \rightleftharpoons 2 \mathrm{Y}$ and $\mathrm{Z} \rightleftharpoons \mathrm{P}+\mathrm{Q}$ occurring two different pressure P_{1} and P_{2}, respectively. The ratio of the two pressures is $1: 3$. What will be the ratio of equilibrium constant, if the degree of dissociation of X and Z are equal
a) $1: 36$
b) $1: 12$
c) $1: 9$
d) 2:3
139. An acid HA is 40% dissociated in an aqueous solution. The hydronium ion concentration of its 0.2 M solution would be
a) 0.08 M
b) 0.4 M
c) 0.2 M
d) None
140. A solution of 0.1 M NaZ has $\mathrm{pH}=8.90$. The K_{a} of HZ is
a) 6.3×10^{-11}
b) 6.3×10^{-10}
c) 1.6×10^{-5}
d) 1.6×10^{-6}
141. The equilibrium constant K for the reaction: $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ at room temp is 2.85 and that at 698 K is 1.4×10^{-2}. This implies that the forward reaction is
a) Exothermic
b) Endothermic
c) Exergonic
d) Unpredictable
142. pH of a solution made by mixing 50 mL of $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and 75 mL of 0.1 M NaOH is $\left[\mathrm{p} K_{a}\right.$] of $\mathrm{NH}_{3}(\mathrm{aq})=$ $4.74 . \log 3=0.47]$
a) 7.02
b) 13.0
c) 7.02
d) 9.73
143. A certain buffer solution contains equal concentration of X^{\ominus} and $H X$. The K_{b} for X^{\ominus} is 10^{-10}. The pH of the buffer is
a) 4
b) 7
c) 10
d) 14
144. A solution of CaF_{2} is found to contain $4 \times 10^{-4} \mathrm{M}$ of F^{\ominus} ions. $K_{\text {sp }}$ of CaF_{2} is
a) 3.2×10^{-11}
b) 0.8×10^{-11}
c) 6.4×10^{-11}
d) 32×10^{-11}
145. The solubility of solid silver chromate, AgCrO_{4}, is determined in three solvents $K_{\text {sp }}$ of $\mathrm{AgCrO}_{4}=9 \times 10^{-12}$ I. pure water II. $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
III. $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$

Predict the relative solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in the three solvents
a) $\mathrm{I}=\mathrm{II}=\mathrm{III}$
b) I $<$ II $<$ III
c) II $=$ III $<$ I
d) II $<$ III $<$ I
148. Which of the following salts undergoes anionic hydrolysis?
a) CuSO_{4}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) FeCl_{3}
d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
149. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the equilibrium constant K_{p} changes with
a) Total pressure
b) Catalyst
c) The amounts of H_{2} and I_{2} present
d) Temperature
150. Which of the following is mot soluble?
a) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(K_{\text {sp }}=1 \times 10^{-70}\right)$
b) $\operatorname{MnS}\left(K_{\text {sp }}=7 \times 10^{-16}\right)$
c) $\operatorname{CuS}\left(K_{\text {sp }}=8 \times 10^{-37}\right)$
d) $\mathrm{Ag}_{2} \mathrm{~S}\left(K_{\text {sp }}=6 \times 10^{-51}\right)$
151. At equilibrium $X+Y \rightleftharpoons 3 Z .1 \mathrm{~mol}$ of $X, 2 \mathrm{~mol}$ of Y and 4 mol of Z are contained in a 3-L vessel. Among the given values of reaction coefficient Q, given at three different instants, which value refers to system at equilibrium?
a) 10
b) 15
c) 10.67
d) 12
152. Buffer solutions can be prepared from mixtures of
a) HCl and NaCl
b) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$
d) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{3}$
153. The equilibrium constant for a reaction $A+2 B \rightleftharpoons 2 C$ is 40 . The equilibrium constant for reaction $C \rightleftharpoons B+1 / 2 A$ is
a) $1 / 40$
b) $(1 / 40)^{1 / 2}$
c) $(1 / 40)^{2}$
d) 40
154. A saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is $2.5 \times 10^{-2} \mathrm{M}$. The value of its solubility product is
a) 62.5×10^{-6}
b) 6.25×10^{-4}
c) 15.625×10^{-10}
d) 3.125×10^{-6}
155. $\mathrm{M}_{2} \mathrm{SO}_{4}\left(\mathrm{M}^{\oplus}\right.$ is a monovalent metal ion) has a $K_{\text {sp }}$ of 3.2×10^{-5} at 298 K . The maximum concentration of $\mathrm{SO}_{4}{ }^{2-}$ ion that could be attained in a saturated solution of this solid at 298 K is
a) $3 \times 10^{-3} \mathrm{M}$
b) $7 \times 10^{-2} \mathrm{M}$
c) $2.89 \times 10^{-4} \mathrm{M}$
d) $2 \times 10^{-2} \mathrm{M}$
156. The compound that is not a Lewis acid is
a) BF_{3}
b) AlCl_{3}
c) BeCl_{2}
d) SnCl_{4}
157. The pH value of 0.001 M aqueous solution of NaCl is
a) 7
b) 4
c) 11
d) Unpredictable
158. A definite volume of a $\mathrm{N} / 20 \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{p} K_{a}=4.7447\right)$ is titrated with a strong base (NaOH). It is found that 80 equal sized drops of NaOH , added from a burette effects the complete neutralization. Find the pH , when the acid soln is neutralized to the extent of 20%
a) 4.14
b) 9.86
c) 5.34
d) 8.68
159. CaCO_{3} and BaCO_{3} have solubility product values 1×10^{-8} and 5×10^{-9}, respectively. If water is shaken up with both solids till equilibrium is reached, the concentration of $\mathrm{CO}_{3}{ }^{2-}$ ion is
a) 1.5×10^{-8}
b) 1.225×10^{-4}
c) 2.25×1^{-9}
d) None of theses
160. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
The equilibrium constant K_{p} changes with
a) Total pressure
b) Catalyst
c) The amounts of H_{2} and I_{2} present
d) Temperature
161. One of the following is a Bronsted acid but not a Bronsted base:
a) $\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{HCO}_{3}{ }^{\ominus}$
d) NH_{3}
162. When equal volumes of the following solution are mixed, precipitation of $\mathrm{AgCl}\left(K_{\mathrm{sp}}=1.8 \times 10^{-10}\right)$ will occur only with
a) $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-4} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
b) $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
c) $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
d) $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-10} \mathrm{M}\left(\mathrm{Cl}^{\ominus}\right)$
163. pH of an aqueous solution of $0.6 \mathrm{M} \mathrm{NH}_{3}$ and $0.4 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ is $9.4\left(\mathrm{p} K_{b}=4.74\right)$. The new pH when 0.1 $\mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution is added to it
a) 9.86
b) 10.14
c) 10.2
d) 10.86
164. 20 mL of 0.1 N HCl is mixed with 20 mL of 0.1 N KOH . The pH of the solution would be
a) 0
b) 7
c) 2
d) 9
165. An aqueous solution of aluminium sulphate would show
a) Acidic
b) Neutral
c) Basic
d) Both acidic and basic reaction
166. The active mass of 64 g of HI in a 2-L flask would be
a) 2
b) 1
c) 5
d) 0.25
167. The pH of a 0.1 M solution of $\mathrm{NH}_{4} \mathrm{OH}$ (having dissociation constant $K_{b}=1.0 \times 10^{-5}$) is equal to
a) 10
b) 6
c) 11
d) 12
168. Which of the following is not a Lewis base?
a) CN^{\ominus}
b) ROH
c) NH_{3}
d) AlCl_{3}
169. The following graph represents the titration of pH vs volume

a) A diprotic acid
b) Two monoprotic acids with the same K_{a} but different concentrations
c) Two monoprotic acids with different K_{a} but the same concentration
d) Two monoprotic acids with different K_{a} and different concentrations
170. A solution has pOH equal to 13 at 298 K . The solution will be
a) Highly acidic
b) Highly basic
c) Moderately basic
d) Unpredictable
171. An aqueous solution of metal chloride $\mathrm{MCl}_{2}(0.05 \mathrm{M})$ is saturated with $\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})$. The minimum pH at which metal sulphide will be precipitated is
$\left[K_{\text {sp }}\right.$ MS $=5 \times 10^{-21}, K_{1}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-7}, K_{2}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-14}$
a) 3.25
b) 2.50
c) 1.50
d) 1.25
172. The equilibrium constant K_{p} for a homogeneous gaseous reaction is 10^{-8}. The standard Gibbs free energy change ΔG^{\ominus} for the reaction (using $R=2 \mathrm{cal} K^{-1} \mathrm{~mol}^{-1}$) is
a) 10.98 kcal
b) -1.8 kcal
c) -4.1454 kcal
d) +4.1454 kcal
173. When 2 mol of HCl is added to 1 L of an acidic buffer, its pH changes from 3.4 to 2.9. The buffer capacity of the buffer solution is
a) 2
b) 0
c) 4
d) 8
174. 8 mol of a gas $A B_{3}$ are introduced into a $1.0 \mathrm{dm}^{3}$ vessel. It dissociates as
$2 A B_{3}(\mathrm{~g}) \rightleftharpoons A_{2}(\mathrm{~g})+3 B_{2}(\mathrm{~g})$
At equilibrium, 2 mol of A_{2} is found to be present. The equilibrium constant for the reaction is
a) $2 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
b) $3 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
c) $27 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
d) $36 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
175. The best indicator for the detection of the end point in the titration of a weak acid and a strong base is
a) Methyl orange (pH range 3 to 4)
b) Methyl red (pH range 4 to 6)
c) Thymol blue (pH range 8 to 3)
d) Phenolphthalein (pH range 8 to 10)
176. An example of a reversible reaction is
a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
b) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq})$
c) $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
d) $\mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{NaNO}_{3}(\mathrm{aq})$
177. Which of the following is the strongest acid?
a) $\mathrm{ClO}_{3}(\mathrm{OH})$
b) $\mathrm{ClO}_{2}(\mathrm{OH})$
c) $\mathrm{SO}(\mathrm{OH})_{2}$
d) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
178. The ionization constant of an acid base indicator (a warak acid) is 1.0×10^{-6}. The ionized form of the indicator is red and unionized form is blue. The pH change required to alter the colour of indicator from 80% red is
a) 0.80
b) 1.20
c) 1.40
d) 2.00
179. The pH of 0.1 M solution of the following salts increases in the order
a) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCI}$
b) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
c) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCI}$
d) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
180. What is the solubility of PbSO_{4} in $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution if $K_{\text {sp }}$ for $\mathrm{PbSO}_{4}=1.25 \times 10^{-9}$?
a) $1.25 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
b) $1.25 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
c) $1.25 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
d) $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$
181. $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+} ; K_{1}=3.5 \times 10^{-3}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$;
$K_{2}=1.7 \times 10^{-3}$

Then the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is
a) 6.08×10^{-6}
b) 6.08×10^{6}
c) 6.08×10^{-9}
d) None of these
182. Which one is not an acid salt?
a) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
b) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
c) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
d) All of the above are acid salts
183. For the equilibrium system

$$
2 \mathrm{HX}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{X}_{2}(\mathrm{~g})
$$

the equilibrium constant is 1.0×10^{-5}. What is the concentration of HX if the equilibrium concentration of H_{2} and X_{2} are $1.2 \times 10^{-3} \mathrm{M}$, and $1.2 \times 10^{-4} \mathrm{M}$ respectively?
a) $12 \times 10^{-4} \mathrm{M}$
b) $12 \times 10^{-3} \mathrm{M}$
c) $12 \times 10^{-2} \mathrm{M}$
d) $12 \times 10^{-1} \mathrm{M}$
184. Conjugate base of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
c) H^{\oplus}
d) O^{2-}
185. The solubility of CO_{2} in water increases with
a) Increase in temperature
b) Reduction of gas pressure
c) Increase in gas pressure
d) Increase in volume
186. Out of the following the compound whose water solution has the highest pH is
a) NaCl
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
c) $\mathrm{NH}_{4} \mathrm{Cl}$
d) NaHCO_{3}
187. If $K_{\text {sp }}\left(\mathrm{PbSO}_{4}\right)=1.8 \times 10^{-8}$ and $K_{a}\left(\mathrm{HSO}_{4}{ }^{\ominus}\right)=1.0 \times 10^{-2}$ the equilibrium constant for the reaction $\mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}^{\oplus}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{4}{ }^{\ominus}(\mathrm{aq})+\mathrm{Pb}^{2+}(\mathrm{aq})$ is
a) 1.8×10^{-6}
b) 1.8×10^{-10}
c) 2.8×10^{-10}
d) 1.0×10^{-2}
188. The aqueous solution of AlCl_{3} is acidic due to
a) Cation hydrolysis
b) Anion hydrolysis
c) Hydrolysis of both anion and cation
d) Dissociation
189. When solid KCl is added to a saturated solution of AgCl in $\mathrm{H}_{2} \mathrm{O}$
a) Nothing happens
b) Solubility of AgCl decreases
c) Solubility of AgCl increases
d) Solubility product of AgCl increases
190. When 20 mL of $\mathrm{M} / 20 \mathrm{NaOH}$ is added to 10 mL of $\mathrm{M} / 10 \mathrm{HCl}$, the resulting solution will
a) Turn blue litmus red
b) Turn phenolphthalein solution pink
c) Turns methyl orange red
d) Will have no effect on either red or blue litmus
191. When 0.002 mol of acid is added to 250 mL of a buffer solution, pH decreases by 0.02 units. The buffer capacity of the system is
a) 0.1
b) 0.2
c) 0.3
d) 0.4
192. For the indicator the ratio $\frac{[\text { Ind } \Theta]}{[\mathrm{HIn}]}$ is 7.0 at pH of 4.3 . $K_{\text {eq }}$ for the indicator ius
a) 3.5×10^{-4}
b) 3.5×10^{-5}
c) 3.5×10^{-2}
d) 3.5×10^{-3}
193. For a hypothetical reaction of the kind
$A B_{2}(\mathrm{~g})+\frac{1}{2} B_{2}(\mathrm{~g}) \rightleftharpoons A B_{3}(\mathrm{~g}) ; \Delta H=-x \mathrm{~kJ}$
More $A B_{3}$ could be produced at equilibrium by
a) Using a catalyst
b) Removing some of B_{2}
c) Increasing the temperature
d) increasing the pressure
194. The equilibrium constant for a reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{g})$ is 4×10^{-4} at 2000 K . In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
a) 40×10^{-4}
b) 4×10^{-4}
c) 40×10^{-2}
d) Incomplete data
195. The pH of solution 7.00. To this solution, sufficient base is added to increase the pH to 12.0. The increase in $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ion concentration is
a) 5 times
b) 1000 times
c) 10^{5} times
d) 4 times
196. A solution contains 10 mL of 0.1 N NaOH and 10 mL of $0.05 \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{pH}$ of this solution is
a) 7
b) Less than 7
c) Greater than 7
d) Zero
197. 0.1 M solution of which of the substances will behave basic?
a) Sodium borate
b) Ammonium ditoride
c) Calcium nitrate
d) Sodium sulphate
198. In a chemical reaction, equilibrium is said to have been established when the
a) Concentration of reactants and products are equal
b) Opposing reaction ceases
c) Velocities of opposing reaction become equal
d) Temperature of opposing reaction are equal
199. The pink colour of phenolphthalein in alkaline medium is due to
a) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ions
b) Positive ions
c) Negative ion
d) Neutral form
200. A certain buffer solution contains equal concentration of and X^{\ominus} and HX . The K_{b} for X^{\ominus} is 10^{-10}. The pH of the buffer is
a) 4
b) 7
c) 10
d) 14
201. 100 mL of a buffer solution contains 1.0 M each of weak acid HA and salt NaA . How many gram of NaOH should be added to the buffer so that it pH will be 6 ?
(K_{a} of $\mathrm{HA}=10^{-5}$)
a) 0.328
b) 0458
c) 4.19
d) None
202. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
is expressed by $K_{p}=4 x^{2} p /\left(1-x^{2}\right)$, where $p=$ pressure $x=$ extent of decomposition. Which of the following statements is true?
a) K_{p} increases with increase in p
b) K_{p} increases with increase in x
c) K_{p} increases with decrease in x
d) K_{p} remains constant with change in p and x
203. A weak acid HX has the dissociation constant $1 \times 10^{-5} \mathrm{M}$. It forms a salt NaX on reaction with alkali. The percentage hydrolysis of 0.1 M solutions of NaX is
a) 0.0001%
b) 0.01%
c) 0.1%
d) 0.15%
204. K_{1} and K_{2} are equilibrium constants for reaction (i) and (ii)
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) \quad$... i$)$
$\mathrm{NO}(\mathrm{g}) \rightleftharpoons 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \ldots(\mathrm{ii})$
Then,
a) $K_{1}=\left(1 / K_{2}\right)^{2}$
b) $K_{1}=K_{2}{ }^{2}$
c) $K_{1}=1 / K_{2}$
d) $K_{1}=\left(K_{2}\right)^{\circ}$
205. Which of the following when mixed, will give a solution with $\mathrm{pH}>7$
a) $0.1 \mathrm{M} \mathrm{HCl}+0.2 \mathrm{M} \mathrm{NaCl}$
b) 100 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+100 \mathrm{~mL}$ of 0.3 M NaOH
c) 100 mL of $0.1 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+100 \mathrm{~mL}$ of 0.1 M KOH
d) 25 mLof $0.1 \mathrm{HNO}_{3}+25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NH}_{3}$
206. An acidic buffer solution can be prepared by mixing the solution of
a) Sodium acetate and acetic acid
b) Ammonium chloride and ammonium hydroxide
c) Sulphuric acid and sodium sulphate
d) Sodium chloride and sodium hydroxide
207. The pH of $10^{-8} \mathrm{M}$ solution of HCl in water is
a) 8
b) -8
c) Between 7 and 8
d) Between 6 and 7
208. The system $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ attains equilibrium. If the equilibrium concentration of $\mathrm{PCl}_{3}(\mathrm{~g})$ is doubled, the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ would become
a) $1 / 4$ its original value
b) $1 / 2$ its original value
c) Twice its original value
d) Unpredictable
209. A solution is saturated with respect to SrCO_{3} and SrF_{2}. The $\left[\mathrm{CO}_{3}^{2-}\right]$ was found to be $1.2 \times 10^{-3} \mathrm{M}$. The concentration of F^{\ominus} in the solution would be Given $K_{\text {sp }}$ of $\mathrm{SrCO}_{3}=7.0 \times 10^{-10} \mathrm{M}^{2}, K_{\text {sp }}$ of $\mathrm{SrF}_{2}=7.9 \times 10^{-10} \mathrm{M}^{3}$
a) $1.3 \times 10^{-3} \mathrm{M}$
b) $2.6 \times 10^{-2} \mathrm{M}$
c) $3.7 \times 10^{-2} \mathrm{M}$
d) $5.8 \times 10^{-7} \mathrm{M}$
210. The precipitate of $\mathrm{CaF}_{2}\left(K_{\text {sp }}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
a) $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{\ominus}$
b) $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{\ominus}$
c) $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{\ominus}$
d) $10^{-3} \mathrm{M} \mathrm{Ca}^{2+}+10^{-5} \mathrm{M} \mathrm{F}^{\ominus}$
211. For $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ Heat
a) $K_{p}=K_{c}$
b) $K_{p}=K_{c} R T$
c) $K_{p}=K_{c}(R T)^{-2}$
d) $K_{p}=K_{c}(R T)^{-1}$
212. According to le-Chatelier's principle, adding heat to a solid and liquid in equilibrium will cause the
a) Amount of solid to decrease
b) Amount of liquid to decrease
c) Temperature to rise
d) Temperature to fall
213. For the chemical reaction
$3 X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons X_{3} Y(\mathrm{~g})$
The amount of $X_{3} Y$ at equilibrium is affected by
a) Temperature and pressure
b) Temperature only
c) Pressure only
d) Temperature, pressure, and catalyst

Multiple Correct Answers Type

214. The pH of 0.1 M solution of the following salts increases in the order
a) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
b) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
c) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
d) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
215. Which statements in part(c)
a) Compared to a strong acid, a, weak acid titration with base starts at a higher pH
b) Compared to a strong base, a weak base titration ends at a lower pH
c) In both (a) and (b) titration curve is shortened at each end
d) For titration of a weak acid and a weak base, the nearly vertical portion of the curve would be insufficient for an effective titration
216. Which of the following salt's solutions is/are acidic?
a) NaOCl
b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) NaHSO_{3}
d) FeCl_{3}
217. For the reaction
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
The forward reaction at constant temperature is favoured by
a) Introducing an inert gas at constant volume
b) Introducing chlorine gas at constant volume
c) Introducing an inert gas at constant pressure
d) Increasing the volume of the container
218. The Ostwald's dilution law:
a) Is valid for weak electrolyte dissociation
b) Is useful in calculating ionization constant of acids or bases
c) Fails completely when applied to strong electrolytes
d) None of the above
219. Which of the following statement(s) is/are wrong?
a) pH of the human blood is 7.2 and it is alkaline
b) pH of buffers in stomach is acidic range
c) pH of buffers in intestine is in alkaline range
d) pH of $\mathrm{H}_{2} \mathrm{O}$ is 6.5 at $60^{\circ} \mathrm{C}$ and thus, acidic
220. Which of the following will change if a 0.1 M solution of a weak acid is diluted to 0.01 M at constant
temperature?
a) K_{a}
b) pH
c) H^{+}ion concentration
d) Ionization percentage
221. A solution of $0.01 \mathrm{M} \mathrm{Fe}^{2+}$ in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution and (i) 0.2 M of H^{\oplus} (ii) $0.001 \mathrm{M} \mathrm{of} \mathrm{H}^{\oplus}$. ($K_{1} \times K_{2}$ of $\mathrm{H}_{2} \mathrm{~S}=10^{-21}, K_{\mathrm{sp}} \mathrm{FeS}=3.7 \times 10^{-19}$)
Which of the following statement is/are correct
a) FeS will precipitate in solution (i)
b) FeS will not precipitate in solution (i)
c) FeS will precipitate in solution (ii)
d) FeS will not precipitate in solution (ii)
222. Which among the following qualifies as a Lewis acid?
a) NaF
b) NaCl
c) BF_{3}
d) MgCl_{2}
223. Which of the following will qualify as Lewis base?
a) BCl_{3}
b) CH_{4}
c) PH_{3}
d) NH_{3}
224. An acid is a substance which:
a) Accepts a lone pair of electron (Lewis concept)
b) Donates a proton (Lowry and Bronsted concept)
c) Acts as an acid only in presence of base
d) None of the above
225. Which of the following are true for an acid-base titration?
a) Indicators catalyst the acid-base reactions by relasing or accepting H^{\oplus} ions
b) Indicators do not significantly affect the pH of the solution to which they are added
c) Acid-base reactions do not occur in the absence of indicators
d) Indicators have different colours in dissociated and undissociated forms
226. Which of the following statements is/are true?
a) The solubility product is the product of concentration of ions of an electrolyte each raised to the power of its coefficient in the balanced chemical equation in a saturated solution
b) The solubility product of an electrolyte is a function of temperature Cations of group III are precipitated as their hydroxides by $\mathrm{NH}_{4} \mathrm{OH}$ in the presence of $\mathrm{NH}_{4} \mathrm{Cl}$ because the
c) solubility products of these hydroxides are low
d) The ionic product changes with the concentration of an electrolyte
227. Chemical equilibrium for a reversible change means for :
a) The forward reaction proceeds as fast as the backward reaction, i.e., velocity of opposing reaction are equal
b) No change in conc. of reaction species with time
c) Dynamic equilibrium
d) None of the above
228. Which of the following is/are not correct?
a) K_{w} is always constant and equal to 10^{-14}
b) $\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{w}$ at all temperatures
c) Salts of weak acid ad weak base do not undergo hydrolysis
d) Addition of sodium acetate to acetic acid increases the pH of acetic acid
229. A process will be irreversible when one or more of the product separate out as :
a) Insoluble
b) Volatile species
c) Solid
d) None of these
230. A reaction mixture containing 0.050 atm $\mathrm{N}_{2}, 3.0$ atm H_{2}, and 0.050 atm NH_{3} is heated to $450^{\circ} \mathrm{C}$. The value
of K_{p} is $4.28 \times 10^{-5} \mathrm{~atm}^{-2}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
The correct statement (s) is/are
a) Reaction goes towards the left
b) Reaction goes towards the right
c) N_{2} and H_{2} combine to form ammonia
d) Ammonia gas decomposes into H_{2} and N_{2}
231. The phenomenon of interaction of anions and cations furnished by a electrolyte with the H^{+}and OH^{-}ions of water to produce acidic nature or alkaline nature is known as hydrolysis. In hydrolysis:
a) The pH may be either increase or decrease
b) All the salts (except those made up with strong anion and cation) undergo hydrolysis
c) The variation of pH depends upon the nature of salt as well as on the temperature
d) None of these
232. The rate of disappearance of A at two temperature is given by $\mathrm{A} \rightleftharpoons \mathrm{B}$
i) $\frac{-d[\mathrm{~A}]}{d t}=2 \times 10^{-2}[\mathrm{~A}]-4 \times 10^{-3}[\mathrm{~B}]$ at 300 K
ii) $\frac{-d[A]}{d t}=4 \times 10^{-2}[\mathrm{~A}]-16 \times 10^{-4}[\mathrm{~B}]$ at 400 K

From the given values of heat of reaction which are incorrect
a) 3.86 kcal
b) 6.93 kcal
c) 1.68 kcal
d) $1.68 \times 10^{-2} \mathrm{kcal}$
233. Which of the following is/are example(s) of autoprotolysis?
a) $\mathrm{NH}_{3}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}$
b) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{CH}_{3} \mathrm{O}^{-}$
c) $\mathrm{HCOOH}+\mathrm{HCOOH} \rightleftharpoons \mathrm{HCOOH}_{2}^{+}+\mathrm{HCOO}^{-}$
d) $\mathrm{HCl}+\mathrm{HF} \rightleftharpoons \mathrm{H}_{2} \mathrm{Cl}^{-}+\mathrm{F}^{-}$
234. An acid-base indicator has $K_{a}=3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then:
a) pH is 4.04 when indicator is 75% red
b) pH is 5.00 when indicator is 75% blue
c) pH is 5.00 when indicator is 75% red
d) pH is 4.05 when indicator is 75% blue
235. A buffer solution can be prepared from a mixture of
a) Ammonia and ammonium chloride in water
b) Sodium acetate and acetic acid in water
c) Sodium acetate and hydrochloric acid in water
d) Ammonia and sodium hydroxide in water
236. For which of the following reactions at equilibrium at constant temperature, doubling the volume will cause a shift to the right?
a) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
b) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
c) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
237. Which of the following is/are soft acid(s)?
a) Cu^{+}
b) NO_{2}^{-}
c) Na^{+}
d) Hg^{2+}
238. Which of the following is/are buffer solution(s)?
a) $10 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HCl}+20 \mathrm{~mL} 0.2 \mathrm{M} \mathrm{NaCN}$
b) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
c) $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
d) Borax + boric acid
239. In qualitative analysis of acid radicals, it is necessary to prepare sodium carbonate extract for the test of:
a) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
b) NO_{3}^{-}
c) NO_{2}^{-}
d) Cl^{-}
240. $\mathrm{N}_{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}, K_{1}$;
$\left(\frac{1}{2}\right) \mathrm{N}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}, \mathrm{K}_{2} ;$
$2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2} ; K_{3} ;$
$\mathrm{NO} \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{N}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2} ; K_{4}$

Correct relation(s) between K_{1}, K_{2}, K_{3}, and K_{4} is/are
a) $K_{1} \times K_{3}=1$
b) $\sqrt{K_{1}} \times K_{4}=1$
c) $\sqrt{K_{3}} \times K_{2}=1$
d) None
241. Consider the reaction, $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})+$ Heat. Under what conditions shift is underterminable?
a) Increase in temperature and decrease in volume
b) Addition of O_{2} and decrease in volume
c) Addition of CO and increase in temperature at constant volume
d) Addition of CO and removal of CO_{2} at constant volume
242. Which of the following will not affect the value of equilibrium constant of a reaction?
a) Change in the concentration of the reactants
b) Change in temperature
c) Change in pressure
d) Addition of catalyst
243. Which is/are conjugate acid-base pair(s)?
a) $\mathrm{HNO}_{2}, \mathrm{NO}_{2}^{-}$
b) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
d) $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~S}^{2-}$
244. 138 g of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is placed in 8.2 L container at 300 K . The equilibrium vapour density of mixture was

a) Total pressure at equilibrium $=6.75 \mathrm{~atm}$
b) Degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{5}=0.25$
c) The density of equilibrium mixture $=16.83 \mathrm{~g} / \mathrm{L}$
d) K_{p} of $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ will be 9 atm
245. A reaction $\mathrm{S}_{8}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{~S}_{2}(\mathrm{~g})$ is carried out by taking 2 mol of $\mathrm{S}_{8}(\mathrm{~g})$ and 0.2 mol of $\mathrm{S}_{2}(\mathrm{~g})$ is a reaction vessel of 1 L . Which one is not correct if $K_{c}=6.30 \times 10^{-6}$
a) Reaction quotient is 8×10^{-4}
b) Reaction proceeds in backward direction
c) Reaction proceed is forward direction
d) $K_{p}=2.55 \mathrm{~atm}^{3}$
246. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and NaNO_{3} is left behind. At equilibrium,
a) Addition of NaNO_{2} favours reverse reaction
b) Addition of NaNO_{3} favours forward reaction
c) Increasing the temperature favours forward reaction
d) Increasing the pressure favours reverse reaction
247. $\mathrm{Hg}_{2} \mathrm{CrO}_{4}$ just begins to precipitate when equal volumes of $4 \times 10^{-4} \mathrm{M} \mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $2 \times 10^{-5} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ are combined. What is the approximate $K_{\text {sp }}$ value of $\mathrm{Hg}_{2} \mathrm{CrO}_{4}$?
a) $1 \times 10^{-18} \mathrm{~mol} \mathrm{~L}^{-1}$
b) $8 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
c) $2 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
d) $4 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
248. The degree of hydrolysis for a salt of strong acid and weak base
a) Is independent of dilution
b) Increases with dilution
c) Increases with decreases in K_{b} of the bases
d) Decreases with decrease in temperature
249. The pH of solution(s) is/are defined as the:
a) Negative logarithm of the magnitude of hydrogen ion concentration
b) Logarithm of reciprocal of magnitude of hydrogen ion concentration
c) Negative power raison 10 in order to express $\left[\mathrm{H}^{+}\right]$ion concentration
d) None of these
250. For which of the following is K_{p} less than K_{c} ?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
c) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
d) $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
251. Which of the following statements(s) is (are) correct?
a) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
b) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$ is $\mathrm{HPO}_{4}{ }^{2-}$
c) Autoprotolysis constant of water increases with temperature
d) When a solution of weak monoprotic acid is titrated against a strong base, at half-neutralisation, point d) $\mathrm{pH}=(1 / 2) \mathrm{p} K_{a}$
252. The pH of a buffer solution containing equimolar concentrations of sodium acetate and acetic acid is equal to:
a) K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{p} K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$
c) 14
d) $\log K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$
253. The dissociation reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is endothermic. Which of the following changes will shift the equilibrium to the right?
a) Increasing the temperature
b) Compressing the gaseous mixture
c) Increasing the volume of the gaseous mixture
d) Adding $\mathrm{Cl}_{2}(\mathrm{~g})$ to the equilibrium mixture at a constant volume
254. An acid-base indicator has $K_{a}=10^{-5}$. The acid form of the indicator is red and basic form is blue. Which of the following is/are correct?
a) At $\mathrm{pH}=4.52$, solution is red
b) At $\mathrm{pH}=5.47$, solution is blue
c) At $\mathrm{pH}=6$, solution is 75% red
d) At $\mathrm{pH}=8$, solution is 75% blue
255. The degree of dissociation of an electrolyte:
a) Depends on the nature of solute and solvent
b) Increase with increase in dilution
c) Increase with increase in temperature
d) None of the above
256. Which of the following statements is/are true about reaction quotient Q ?
a) $Q \gtrless K_{c}$
b) Q always increases, if reaction proceeds in forward direction
c) $Q=K_{c}=1$, at equilibrium
d) $Q=K_{c}$, at equilibrium
257. Which of the following statements is/are correct?
a) A buffer solution contains a weak acid and its conjugate base
b) A buffer solution shows little change in pH on the addition of a small amount of acid or base
c) A buffer solution can be prepared by mixing a solution of ammonium acetate and acetic acid
d) The addition of solid potassium cyanide to water increases the pH of water
258. Which of the following statements is/are correct?
a) Arrhenius acids are also Bronsted acids but all Arrhenius bases are not Bronsted bases
b) All Bronsted bases are also Lewis bases
c) All Bronsted acids are also Lewis acids
d) A strong acid has a weak conjugate base but a strong base has a strong conjugate acid
259. The reaction which proceeds in the backward direction is
a) $\mathrm{Fe}_{3} \mathrm{O}_{4}+6 \mathrm{HCl}=2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}=\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
c) $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}=\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
d) $2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{\oplus}=2 \mathrm{Cu}^{2+}+4 \mathrm{KI}$
260. When two reactants A and B are mixed to give products C and D, the reaction quotient Q , at the initial stages of the reaction
a) Is zero
b) Decreases with time
c) Is independent of time
d) Increases with time
261. Which of the following is/are correct?
a) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-} ; \quad \mathrm{K}_{\mathrm{c}}$ is acidity constant of $\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} ; \quad \mathrm{K}_{\mathrm{c}}$ is Stability constant for $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
c) $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} ; \quad \mathrm{K}_{\mathrm{c}}$ is equilibrium constant for dissociation of water
d) $R \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons R \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} ; \quad \mathrm{K}_{\mathrm{c}}$ is basicity constant for $R \mathrm{NH}_{2}$
262. For which of the following reactions is $K_{p}=K_{c}$?
a) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
b) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}$
c) $\begin{aligned} & \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}(v) \rightleftharpoons \mathrm{CO}_{2} \\ &+\mathrm{H}_{2}\end{aligned}$
d) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
263. For given two equilibria attained in a container which arc correct if degree of dissociation of A and A^{\prime} are α and α^{\prime}
$\mathrm{A}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g}) ; K_{p_{1}}=8 \times 10^{-2}$
$\mathrm{A}^{\prime}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{D}(\mathrm{g}) ; K_{p_{2}}=2 \times 10^{-2}$
a) $\frac{K_{p_{1}}}{K_{p_{2}}}=\left[\frac{\left(3 \alpha^{\prime}+2 \alpha\right)}{\left(3 \alpha+2 \alpha^{\prime}\right)}\right]^{3} \times \frac{\alpha}{\alpha^{\prime}}$
b) $P_{C}^{\prime} / P_{D}^{\prime}=4$
c) $P_{B}^{\prime}=2 P_{C}^{\prime}+2 P_{D}^{\prime}$
d) $\alpha>\alpha^{\prime}$
264. A buffer solution can be prepared from a mixture of:
a) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ in water
b) $\mathrm{CH}_{3} \mathrm{COONa}$ and HCl in water
c) NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ in water
d) NH_{3} and NaOH in water
265. How will the lowering of temperature affect the chemical equilibrium in the system
$2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}, \Delta H<0$
a) Relative concentration of products and reactants does not change
b) Relative concentration of products and reactants change
c) Equilibrium is shifted to the left
d) Equilibrium is shifted to the right
266. Which of the following do not change the value of K for a reaction?
a) Addition of catalyst
b) Increase in temperature
c) Increase in pressure
d) Removal of one of the products
267. The relationship between K_{p} and K_{c} is correctly shown as :
a) $K_{c}=K_{p}(R T)^{\Delta n}$
b) $K_{P}=K_{c}(R T)^{-\Delta n}$
c) $K_{p}=K_{c}(R T)^{\Delta n}$
d) $K_{c}=K_{p}(R T)^{-\Delta n}$
268. For the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
a) Adding a suitable catalyst
b) Adding an inert gas
c) Decreasing the volume of the container
d) Increasing the amount of $\mathrm{CO}(\mathrm{g})$
269. pH of following solution is not affected by dilution
a) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
b) $0.01 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
c) 0.01 M NaCl
d) 0.01 M NaHCO 3
270. When NaNO_{3} is heated in a closed vessel oxygen is liberated and NaNO_{2} is left behind. At equilibrium, which are correct
a) Addition of NaNO_{2} favours reverse reaction
b) Addition of NaNO_{3} favours forward reaction
c) Increasing temperature favours forward reaction
d) Increasing pressure favours reverse reaction
271. Which of the following is/are correct order(s) for acidic strength?
a) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$ b) $\begin{array}{r}\mathrm{HOF}>\mathrm{HOCl}>\mathrm{HOBr} \\ >\mathrm{HOI}\end{array}$ c) $\begin{aligned} \mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3} \\ <\mathrm{BI}_{3}\end{aligned}$
d)
$\begin{aligned} \mathrm{CH}_{4}>\mathrm{C}_{2} \mathrm{H}_{6}> & \mathrm{C}_{2} \mathrm{H}_{2} \\ & >\mathrm{H}_{2} \mathrm{O}\end{aligned}$
272. A solution is found to contain $\left[\mathrm{Cl}^{\ominus}\right]=1.5 \times 10^{-1} \mathrm{M} ;\left[\mathrm{Br}^{\ominus}\right]=5.0 \times 10^{-4} \mathrm{M} ;\left[\mathrm{CrO}_{4}{ }^{2-}\right]=1.9 \times 10^{-2} \mathrm{M}$

A solution of AgNO_{3} (100\% dissociated) is added to the above solution drop by drop. Which silver salt will precipitate first?
Given: $K_{\text {sp }}(\mathrm{AgCl})=1.5 \times 10^{-10}, K_{\mathrm{sp}}(\mathrm{AgBr})$
$=5.0 \times 10^{-11}, K_{\mathrm{sp}}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.9 \times 10^{-12}$
a) AgCl
b) AgBr
c) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
d) AgCl and AgBr togethers
273. 10 mL of $N / 20 \mathrm{NaOH}$ solution is mixed with 20 mL of $N / 20 \mathrm{HCl}$ solution. The resulting solution will:
a) Turn phenolphthalein solution pink
b) Turn blue litmus red
c) Turn methyl orange red
d) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
274. The incorrect statement(s) is/are:
a) $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid
b) $\mathrm{NH}_{4} \mathrm{Cl}$ gives an alkaline solution in water
c) $\mathrm{CH}_{3} \mathrm{COONa}$ gives an acidic solution in water
d) $\mathrm{NH}_{4} \mathrm{OH}$ is a strong base
275. The pressure P and volume V of an ideal gas both increase in a process :
a) Such a process is not possible
b) The work done by the system is positive
c) The temperature of the system must increase
d) Heat supplied to gas is equal to the change in internal energy
276. Which of the following statement(s) is/are correct?
a) Weak electrolytes are 100% dissociated at infinite dilution
b) $\mathrm{C}_{2} \mathrm{H}_{5}^{-}$is conjugate base of $\mathrm{C}_{2} \mathrm{H}_{6}$
c) Boric acid although an acid but it does not donate a proton in water
d) Hydration energy is maximum for H^{+}ions
277. Which of the following reactions is/are irreversible?
a) $2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(\mathrm{~g})$
b) $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(\mathrm{~g})$
c) $\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$
d) $\mathrm{KNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow \mathrm{KCl}(a q)+\mathrm{NaNO}_{3}(a q)$
278. Which of the following facts is/are correct?
a) $\mathrm{CaOCl}_{2}-\mathrm{A}$ mixed salt
b) $\mathrm{NaHCO}_{3}-\mathrm{An}$ acidic salt
c) $\mathrm{MgOHCl}-\mathrm{A}$ basic salt
d) $\mathrm{K}_{2}\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{4}\right] \cdot 24 \mathrm{H}_{2} \mathrm{O}-\mathrm{A}$ complex salt
279. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+21.9 \mathrm{Kcal}$, the value of the equilibrium constant will not be affected when :
a) The volume of the reaction vessel is changed
b) The total pressure of the system varies
c) The temperature of the system is changed
d) The initial concentrations of nitrogen and hydrogen are changed
280. The pH values of aqueous solutions of which of the following compounds does not change on dilution?
a) $\mathrm{PhCOONH}_{4}$
b) $\mathrm{NH}_{4} \mathrm{CN}$
c) HCOONa
d) $\mathrm{NH}_{4} \mathrm{Cl}$
281. Which of the following statements is/are correct in the context of buffer mixtures?
a) It contains a weak acid and its conjugate base
b) It contains a weak base and its conjugate acid
c) The pH of the buffer solution does not change much on the addition of a small amount of acid or base
d) The pH of acidic buffer mixture is less than 7
282. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the equilibrium can be shifted in favour of product by
a) Increasing the $\left[\mathrm{H}_{2}\right]$
b) Increasing the pressure
c) Increasing the $\left[\mathrm{I}_{2}\right]$
d) By using the catalyst
283. In which of the following equilibrium reactions, would the equilibrium shift to the left on increasing the pressure?
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
b) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
c) $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}$
d) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}$
284. The equilibrium constant of the reactions; $\mathrm{SO}_{2}+(1 / 2) \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$ and $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$ are K_{1} and K_{2} respectively. The relationship between K_{1} and K_{2} is/are :
a) $K_{1}=K_{2}$
b) $K_{2}=K_{1}^{2}$
c) $K_{1}=\sqrt{K_{2}}$
d) $K_{2}=\sqrt{K_{1}}$
285. A solution is prepared by dissolving 1.5 g of a monoacidic base into 1.5 kg of water at 300 K , which showed a depression in freezing point by $0.165^{\circ} \mathrm{C}$. When 0.496 g of the same base titrated, after dissolution, requires 40 mL of semimolar $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. If K_{f} of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, then select the correct statements (s) out of the following (assuming molarity = molality):
a) The pH of the solution of weak base is 12.9
b) The ionization constant of the base is 8×10^{-3}
c) The osmotic pressure of the aqueous solution of base is 21.67 atm
d) The base is 10% ionized in aqueous solution
286. Which of the following statements is/are incorrect in respect of strong acid/strong base titrations?
a) Phenolphthalein is used as an indicator
b) Methyl orange is used as an indicator
c) Methyl red has $\mathrm{p} K_{a}=6$
d) The pH range for litmus colour change is $3.0-4.5$. Therefore, it can be used as an indicator
287. The following reaction attains equilibrium at high temperature
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat $\rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
The yield of NO is affected by
a) Compressing of reaction mixture
b) Increasing the nitrogen concentration
c) Decreasing the hydrogen concentration
d) None of the above
288. An acid-base indicator $\left(K_{a}=3.0 \times 10^{-5}\right)$ has acid form red and basic form blue. Which is/are correct statement(s)?
a) 75% red form will exist at $\mathrm{pH}=4.05$
b) 75% blue form will exist at $\mathrm{pH}=5.0$
c) Indicator will show a change in colour at $\mathrm{pH}=4.53$
d) Indicator will show a change in colour at $\mathrm{pH}=5.47$
289. Aqueous solution of $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair(s) of solutions which form a buffer upon mixing is (are):
a) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
b) KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
c) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
290. In $\mathrm{H}_{3} \mathrm{PO}_{4}$ which of the following is true?
a) $K_{a}=K_{a 1} \times K_{a 2} \times K_{a 3}$
b) $K_{a 1}<K_{a 2}<K_{a 3}$
c) $K_{a 1}>K_{a 2}>K_{a 3}$
d) $K_{a 1}=K_{a 2}=K_{a 3}$
291. The equilibrium constant for the reaction, $A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons 2 C(\mathrm{~g})$ is 3×10^{-4} at 500 K . In the presence of a catalyst the equilibrium is attained 10 times faster. The equilibrium constant in the presence of a catalyst at 500 K has the value :
a) 3×10^{-4}
b) 30×10^{-4}
c) 3×10^{-3}
d) 0.3×10^{-3}
292. Excess of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}), \mathrm{BaSO}_{4}(\mathrm{~s})$, and $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ are simultaneously in equilibrium with distilled water. Which of the following is (are) true? Assume no hydrolysis of dissolved ions
a) $\left[\mathrm{Ag}^{\oplus}\right]+2\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$
b) $2\left[\mathrm{Ag}^{\oplus}\right]+4\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}{ }^{2-}\right]+2\left[\mathrm{PO}_{4}{ }^{3-}\right]$
c) $2\left[\mathrm{Ag}^{\oplus}\right]+3\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}{ }^{2}\right]+2\left[\mathrm{PO}_{4}{ }^{3-}\right]$
d) $\left[\mathrm{Ag}^{\oplus}\right]+\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{PO}_{4}{ }^{3-}\right]$
293. The pH of which solution(s) do/does not change with dilution?
a) $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
b) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}$ (Both 1 M each)
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$ (Both 1 M each)
d) $1 \mathrm{MCH} \mathrm{COONa}_{3}$
294. For which of the following reactions is $K_{p}=K_{c}$?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
b) $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
295. Consider the equilibrium equation; $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HF} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{F}^{-}$

Which of the following statements is/are incorrect?
a) F^{-}is the conjugate base of HF
b) F^{-}is the conjugate base of $\mathrm{CH}_{3} \mathrm{COOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$is the conjugate acid of $\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$ is the conjugate acid of $\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}$
296. Which of the following statements is/are correct regarding Lewis acids?
a) Molecules having a central atom with an incomplete octer in it can act as Lewis acids
b) Molecules in which atoms of dissimilar electronegativity are joined by multiple bonds can act as Lewis acids
c) $\mathrm{SiF}_{4}, \mathrm{PF}_{5}$ and FeCl_{3} are Lewis acids
d) Neutral species having at least one pair of electrons can act Lewis acids
297. If salt of weak acid or base is added to a solution of its acid or base respectively, the:
a) Dissociation of acid or base is diminished
b) The pH of the solution in case of acid increases and in case of base decreases
c) Mixing of two leads for common ion effect
d) None of the above
298. At constant temperature, the equilibrium constant (K_{p}) for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is expressed by
$K_{p}=\left(4 x^{2} P\right) /\left(1-x^{2}\right)$, where $P=$ pressure and $x=$ extent of decomposition. Which one of the following statements is false?
a) K_{p} increases with increase of P
b) K_{p} increases with increases of x
c) K_{p} increases with decrease of x
d) K_{p} remains constant with change in P and x
299. Which of the following is (are) correct for buffer solution?
a) Acidic buffer will be effective within in the pH range ($\mathrm{p} K_{a} \pm 1$)
b) Basic buffer will be effective within the pH range ($\mathrm{p} K_{w}-\mathrm{p} K_{b} \pm 1$)
c) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaH}_{2} \mathrm{PO}_{4}$ is not a buffer solution
d) Buffers behave most effectively when the [Salt]/[Acid] ratio equal to 1
300. The oxy-acid of anhydride $\mathrm{P}_{2} \mathrm{O}_{5}$:
a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{H}_{3} \mathrm{PO}_{3}$
c) HPO_{3}
d) None of these
301. Which is/are general property of acids?
a) They turn litmus red
b) They react with alkalies
c) They burn the skin
d) They contain H atom replaceable with metal
302. Which of the following will favour the formation of NH_{3} by Haber's process?
a) Increase in temperature
b) Increase in pressure
c) Addition of catalyst
d) Addition of promoter
303. For a series of indicators, the colours and pH range over which colour change takes place are as follows

Indicator	Colour change over pH range
U	Yellow to blue pH 0.0 to 1.6
V	Red to yellow pH 2.8 to 4.1
W	Red to yellow pH 4.2 to 5.8
X	Yellow to blue pH 6.0 to 7.7
Y	Colourless to red pH 8.2 to

Which of the following statements is correct?
a) Indicator V could be used to find the equivalence point for 0.01 M acetic acid and 0.1 M ammonium
${ }^{\text {a) }}$ hydroxide (ammonia solution) titration
b) Indicator Y colud be used to distinguish between 0.1 M HCl and 0.001 M NaOH solutions in water
c) Indicator X could be used to distinguish between solution of ammonium chloride and sodium acetate
d) Indicator W could be suitable for use in determining the concentration of acetic acid in vinegar by base d) titration
304. Which of the following is/are correct order(s) for acidic strength?
a) $\mathrm{Fe}^{2+}<\mathrm{Fe}^{3+}$
b) $\mathrm{K}^{+}<\mathrm{Na}^{+}<\mathrm{Li}^{+}$
c) $\mathrm{Li}^{+}<\mathrm{Be}^{2+}<\mathrm{B}^{3+}$
d) $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
305. Active mass is given as :
a) $a=f . C_{M}$
b) $a=r . C_{m}$
c) Amount of a substance per unit volume
d) Number of mole per 100 litre
306. Le-Chatelier's principle is :
a) If a system in equilibrium is subjected to a change of concentration, pressure or temperature, the equilibrium shifts in the direction that tends to a null the effect of change
b) Applicable to all types of dynamic equilibrium
c) Given to study the effect of state variables on the equilibrium
d) None of the above
307. Which of the following equilibrium reactions would be affected by change in pressure?
a) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
d) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$
308. Consider the following equilibrium in a closed container:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements, holds false regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α)?
a) neither K_{p} nor α changes
b) Both K_{p} and α change
c) K_{p} changes but α does not change
d) K_{p} does not change but α changes
309. A chemical reaction, $A \rightarrow B$ is said to be in equilibrium when :
a) 50% of the conversion has taken place
b) Only 10% conversion of A to B has taken place
c) The rate of transformation of A to B is just equal to the rate of transformation of B to A in the system
d) There is no change in the concentration of either A or B
310. Which of the following statements about a weak acid strong base titration is/are correct?

The pH after the equivalence point of the weak acid strong base titration is determined by using the K_{b}
a) expression for the conjugate base
b) A buffer solution of weak acid and its conjugate base is formed before the equivalence is reached
c) The pH at the equivalence point of a weak monoprotic acid strong base titration is equal to the pH at the equivalence point of a strong acid-strong base titration
d) The increases in pH in the region near the equivalence point of a weak acid strong base titration is greater than the pH change in the same region of a strong acid strong base titration
311. In which of the following reactions would the yield of the products be increased by the application of high pressure?
a) $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
312. Which is/are correct?
a) $2.303 \log K=-\Delta H^{\ominus} / R T+\Delta S^{\ominus} / R$
b) $\Delta G^{\ominus}=-2.303 R T \log K$
c) $-2.303 \operatorname{Iog} K=-\Delta H^{\ominus} / R T^{2}+\Delta S^{\ominus} / R$
d) $2.303 \log K=(1 / R T)\left(\Delta H^{\ominus}+\Delta S^{\ominus}\right)$
313. The equilibrium constant(s) K_{p} for the reaction, $2 A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons 3 C+D$ is/are given as (at equilibrium) :
a) $\log _{e} \frac{K_{p_{2}}}{K_{p_{1}}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$
b) $K_{p}=\frac{\left(P_{C}\right)^{3} \times\left(P_{D}\right)}{\left(P_{A}\right)^{2} \times\left(P_{B}\right)}$
c) $K_{p}=\frac{(\text { mole of } C)^{3} \times(\text { mole of } D)}{(\text { mole of } A)^{2}(\text { mole of } B)} \times\left[\frac{P}{\sum \text { mole }}\right]^{1}$
d) $\left[\frac{d}{d T} \log _{e} K\right]=-\frac{\Delta H}{R T^{2}}$
314. Which of the following is/are correct?
a) SiCl_{4}-Lewis acid
b) CN^{-}-Lewis base
c) BF_{3}-Lewis acid
d) $\mathrm{CH}_{3} \mathrm{OH}$-Bronsted acid
315. Choose the correct statement:
a) pH of acidic buffer solution decreases if more salt is added
b) pH of acidic solution increases if more salt is added
c) pH of basic buffer decreases if more salt is added
d) pH of basic buffer increases if more salt is added
316. Which of the following is/are correct order(s) for basic strength?
a) $\mathrm{NaOH}>\mathrm{NH}_{4} \mathrm{OH}>\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{NH}_{3}>\mathrm{N}_{2} \mathrm{H}_{4}>\mathrm{NH}_{2} \mathrm{OH}$
c) $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>H F$
d) $\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{H}^{-}<\mathrm{NH}_{2}^{-}<\mathrm{C}_{2} \mathrm{H}_{3}^{-}<\mathrm{C}_{2} \mathrm{H}_{5}^{-}$
317. Which of the following is (are) correct when 0.1 L of $0.0015 \mathrm{M} \mathrm{MgCl}_{2}$ and 0.1 L of 0.025 M NaF are mixed together?
$\left(K_{\text {sp }}\right.$ of $\left.\mathrm{MgF}_{2}=3.7 \times 10^{-8}\right)$
a) MgF_{2} remains in solution
b) MgF_{2} precipitates out
c) MgCl_{2} precipitates out
d) Cl^{\ominus} ions remain in solution
318. For the chemical reaction
$3 \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \rightleftharpoons \mathrm{X}_{3} \mathrm{Y}(\mathrm{g})$
the amount of $X_{3} Y$ at equilibrium is not affected by
a) Temperature and pressure
b) Temperature only
c) Pressure only
d) Temperature, pressure, and catalyst
319. For the gas phase reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} ; \Delta \mathrm{H}=-x$, carried out in a vessel, the equilibrium concentration of SO_{2} can be increased by :
a) Increasing the temperature
b) Decreasing the pressure
c) Removing some oxygen d) None of the above
320. 0.1 mol of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mol of HCl and diluted to 1 L . Which statement is correct?
a) The concentration of H^{\oplus} ion is $8 \times 10^{-11} \mathrm{M}$
b) The concentration of H^{\oplus} ion is $8 \times 10^{-5} \mathrm{M}$
c) The pH of solution is 9.8
d) The pOH of solution is 10.2
321. CHCl_{3} does not give white ppt. with AgNO_{3} because it:
a) Is a covalent compound
b) Does not give Cl^{-}ions in solution
c) Is not dissociated in water
d) None of the above
322. 2 mole each of A and B were taken in a container and the following reaction took place, $2 A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons$ $2 C(\mathrm{~g})+2 D(\mathrm{~g})$ when the system attained equilibrium :
a) $[A]>[B]$
b) $[A]<[B]$
c) $[A]=[B]$
d) $[D]=[C]$
323. When $\mathrm{NH}_{4} \mathrm{Cl}$ is added to a solution of $\mathrm{NH}_{4} \mathrm{OH}$, the:
a) Concentration of OH^{-}decreases
b) Dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ decreases
c) Concentration of NH_{4}^{+}increases
d) Concentration of OH^{-}increases
324. Which statements is/are correct?
a) $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution will precipitate $\mathrm{Fe}(\mathrm{OH})_{2}$ from a 0.1 M solution Fe^{2+}
b) $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution will not precipitate $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution which is 0.2 M in $\stackrel{\oplus}{\mathrm{NH}_{4}}$ and 0.1 M in Mg^{2+}
c) $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution will not precipitate AgOH from a solution which is 0.01 M in Ag^{\oplus}
d) Will precipitate is/are correct?
325. Which statement(s) is/are correct?
a) pH of $10^{-6} \mathrm{M} \mathrm{NaOH}$ is 8
b) pH of $10^{-6} \mathrm{M} \mathrm{HCl}$ is 6.98
c) Aqueous solution of FeCl_{3} is acidic
d) If $\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}>K_{s p} ; \mathrm{BaF}_{2}$ will be precipitated
326. van't Hoff equation is
a) $(d / d T) \ln K=-\Delta H / R T^{2}$
b) $\mathrm{d} / \mathrm{dT}(\ln \mathrm{K})=+\Delta \mathrm{H} / \mathrm{RT}^{2}$
c) $(\mathrm{d} / \mathrm{dT}) \ln \mathrm{K}=-\Delta \mathrm{H} / \mathrm{RT}$
d) $K=A e^{-\Delta H / R T}$
327. The theory of electrolytic dissociation suggests that:
a) The electrolytes on dissolution in water split up in two types of charged particles, i.e., cation and anions
b) The dissociation being a reversible process in nature
c) The properties of electrolytes in solutions are the properties of ions furnished by them
d) None of the above
328. In a reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})+x \mathrm{~kJ}$

The ideal conditions for the dissociation of PCl_{5} is
a) More $\left[\mathrm{PCl}_{5}\right]$, low pressure
b) More $\left[\mathrm{PCl}_{5}\right]$, low temperature
c) More $\left[\mathrm{PCl}_{5}\right]$, high pressure
d) More $\left[\mathrm{PCl}_{5}\right]$, high temperature
329. NH_{3} is taken in a container at a certain temperature. If its dissociation constant $\left(K_{p}\right)$ has an appreciable
value, at equilibrium :
a) The concentration of ammonia changes with pressure
b) The concentration of N_{2} is less than that of H_{2}
c) α does not change with pressure
d) K_{p} does not change with pressure
330. What is general criteria of choosing a suitable indicator for a given titration?
a) The indicator should have a broad pH range
b) pH at the end point of titration should be close to neutral point of indicator
c) The indicator should have neutral point at $\mathrm{pH}=7$
d) The indicator must show a sharp colour change near the equivalence point of titration point
331. Which of the following solution will have $\mathrm{pH}=13$?
a) 2 g NaOH in 500 mL solution
b) 100 mL solution of $0.05 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
c) 100 mL solution of $0.1 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$
d) 4 g NaOH in 500 mL solution
332. A solution containing a mixture of 0.05 M NaCl and 0.05 M Nal is taken. $\left(K_{\text {sp }}\right.$ of $\mathrm{AgCl}=10^{-10}$ and $K_{\text {sp }}$ of
$\mathrm{AgI}=4 \times 10^{-16}$). When AgNO_{3} is added to such a solution:
a) The concentration of Ag^{\oplus} required to precipitate Cl^{\ominus} is $2 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
b) The concentration of Ag^{\oplus} required to precipitate I^{\ominus} is $8 \times 10^{-15} \mathrm{~mol} \mathrm{~L}^{-1}$
c) AgCl and AgI will be precipitate together
d) First AgI will be precipitated
333. Which of the following reactions at equilibrium in the gaseous phase would be affected by an increase in pressure?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}$
c) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
d) $2 \mathrm{NO}_{2} \rightleftharpoons 2 \mathrm{NO}+\mathrm{O}_{2}$
334. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} was carried out in choloroform at $280^{\circ} \mathrm{C}$. At equilibrium, 0.2 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mole of NO_{2} were present in 2 L of solution. The equilibrium constant(s) for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is/are :
a) 0.01×10^{-3}
b) 2.0×10^{-3}
c) 2.0×10^{-5}
d) 1.0×10^{-5}
335. Which is/are correct for a reversible reaction?
a) The reaction is never completed
b) The reactants are present in the initial stage but after that reactants and products are always present in the reaction mixture.
c) At equilibrium only products are present
d) When the gaseous phase reaction is carried out in closed space, it attains equilibrium state after suitable time
336. For the gas phase reaction
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\Delta H=-32.7 \mathrm{kcal})$
carried out in a vessel, the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{4}$ can be increased by
a) Increasing the temperature
b) Decreasing the pressure
c) Removing some H_{2}
d) Adding some $\mathrm{C}_{2} \mathrm{H}_{6}$
337. For the equilibrium at $298 \mathrm{~K} ; \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$; $\mathrm{G}^{\ominus}{ }_{\mathrm{N}_{2} \mathrm{O}_{4}}=100 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{G}^{\ominus}{ }_{\mathrm{NO}_{2}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If 5 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2 moles of NO_{2} are taken initially in one litre container than which statement are correct
a) Reaction proceeds in forward direction
b) $K_{c}=1$
c) $\Delta G=-0.55 \mathrm{KJ}, \Delta G^{\ominus}=0$
d) At equilibrium $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.84 \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=0.212 \mathrm{M}$
338. $\mathrm{H}_{2} \mathrm{O}$ acts as Bronsted acid in the following:
a) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
b) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
c) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Ca}(\mathrm{OH})_{2}$
d) $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O}=\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}$
339. A buffer solution can be prepared by mixing solutions of:
a) Sodium chloride and sodium hydroxide
b) Ammonium hydroxide and ammonium chloride
c) Formic acid and sodium formate
d) Boric acid and borax
340. Aqueous solutions of $\mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COOK}$ of identical concentrations are given. The pair(s) of the solution which may form a buffer upon mixing is(are):
a) NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
b) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOK}$
c) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOK}$
d) $\mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$
341. Which is/are not acidic salt(s)?
a) NaHS
b) NaHF_{2}
c) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
d) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
342. Nitrogen combines with oxygen to form nitric oxide,
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) ; \Delta H=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The decomposition of NO is not favoured by:
a) Decrease of temperature
b) Increase of temperature
c) Increase in the concentration of nitric oxide
d) Decrease of pressure
343. Which of the following is/are correct order(s) in terms of increasing pH ?
a) $\mathrm{NaOH}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NaCl}>\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCl}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NaOH}$
c) $\mathrm{NaOH}>\mathrm{NaHCO}_{3}>\mathrm{KCl}>\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
d) $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NH}_{4} \mathrm{Cl}$
344. The equilibrium constant for the reaction, $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ is:
a) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$
b) $\mathrm{K}_{\mathrm{c}}=[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right] /\left[\mathrm{CaCO}_{3}\right]$
c) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CaCO}_{3}\right] /[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]$
d) $\mathrm{K}_{\mathrm{p}}=P_{\mathrm{CO}_{2}}$
345. Which of the following salt solution has $\mathrm{pH}<7$?
a) $\mathrm{NH}_{4} \mathrm{~F}$
b) $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
c) $\left[\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}\right] \mathrm{Cl}^{\ominus}$
d) CaI_{2}
346. A buffer solution can be prepared from a mixture of
a) Sodium acetate and acetic acid in water
b) Sodium acetate and hydrochloric acid in water
c) Ammonia and ammonium chloride in water
d) Ammonia and sodium hydroxide in water
347. Which statement(s) about solubility product is/are correct?
a) It is the product of ionic concentrations of a soluble salt in its saturated solution at a certain temperature
b) If may be used to calculate solubility of substance
c) If the product of ionic concentration of the ions present in a solution exceeds its solubility product, the compound is precipitated out
d) None of the above
348. Which of the following represents hydrolysis?
a) $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
b) $\stackrel{\oplus}{\mathrm{N}_{4}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
c) $\mathrm{HCO}_{3}{ }^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
d) $\mathrm{HCO}_{3}{ }^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
349. Which of the following statement(s) is/are correct?
a) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
b) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
c) Autoprotolysis constant of water increases with temperature
d) When a solution of a weak monoprotic acid is titrated against a strong base, at half-neutralization point $\mathrm{pH}=(1 / 2) \mathrm{p} K_{a}$
350. The degree of dissociation ' α ' of PCl_{5} is/are given by :
a) $\sqrt{\frac{K_{p}}{K_{p}+p}}$
b) $\sqrt{K_{c} . V(1-\alpha)}$
c) $\frac{\text { Exp. mol. wt. -Cal. mol. wt. }}{\text { Cal. mol wt }}$
d) None of the above
351. $\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\oplus}$; $K_{a_{1}}$:
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{HPO}_{4}{ }^{2-} ; K_{a_{2}}$:
$\mathrm{HPO}_{4}{ }^{2-} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{PO}_{4}{ }^{3-} ; \quad K_{a_{3}}:$
Mark out the incorrect statements:
a) $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
b) $\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{\ominus}\right)=\frac{\mathrm{p} K_{a_{1}}+\mathrm{p} K_{a_{2}}}{2}$
c) Both $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$ are more acidic than $\mathrm{HPO}_{4}{ }^{2-}$
d) Only HPO_{4}^{2-} is amphiprotic anion in the solution
352. Select the species which can act as an acid and base:
a) SO_{4}^{2-}
b) HS^{-}
c) HCO_{3}^{-}
d) HSO_{4}^{-}
353. A base is a substance which:
a) Donates a lone pair of electron (Lewis concept)
b) Accepts a proton
c) Acts as a base only in presence of a acid
d) None of the above
354. Which of the following is/are correct order(s) for acidic strength?
a) $\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}$
b) $\mathrm{HNO}_{2}>\mathrm{HNO}_{3}$
c) $\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}$
d) $\mathrm{ROH}>\mathrm{H}_{2} \mathrm{O}$
355. For the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, which is the correct representation?
a) $K_{p}=\left(p_{\mathrm{CO}_{2}}\right)$
b) $K_{p}=K_{c}(R T)$
c) $K_{p}=\left(\mathrm{CO}_{2}\right) / 1$
d) None
356. In a reaction $\mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}_{4}(\mathrm{~g}), \Delta H<0$. The formation of AB_{4} is not favoured by
a) Low temperature and high pressure
b) High temperature and low pressure
c) Low temperature and low pressure
d) High temperature and high pressure
357. Which of the following reactions will not be affected by increasing the pressure?
a) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
c) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
358. Unit of equilibrium constant is:
a) $\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{1-n}$
b) $\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{\Delta n}$
c) $(\mathrm{atm})^{\Delta n}$
d) All
359. At the end point, there is a sharp change of colour in the indicator. This happens because the
a) pH a end point changes sharply
b) Structure of the indicator changes
c) Colour of indicator is adsorbed by water
d) Dissociation constant of acids and base differ by 10
360. Strong electrolyte(s) is/are those which:
a) Do not dissolve readily in water
b) Conduct electricity in molten state
c) Dissociate completely into ions at all concentrations
d) Dissociate into ions at high dilution
361. For which of the following reaction, $K_{p} \neq K_{c}$?
a) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b) $\mathrm{N}_{2}($ g $)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
d) $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
362. Which of the following statements about reaction quotient, Q is/are correct?
a) At time proceeds, Q either decreases or increases
b) $Q \gtrless K_{p}$
c) $Q=1$ at equilibrium
d) $Q=K_{p}$ at equilibrium
363. Reaction between barium chloride and sodium sulphate goes to completion because:
a) Barium sulphate is almost insoluble
b) The reaction is reversible
c) The solubility of barium chloride decreases
d) The reaction is irreversible
364. Which of the following is/are Lewis acid(s)?
a) NH_{3}
b) Mg^{2+}
c) AlCl_{3}
d) Ag^{+}
365. The contents of equilibrium mixture of each set given below are transferred to another flask having volume twice to the original flask. In which set equilibrium will be affected.
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
d) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$
366. Which are true for the reaction: $\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{C}+\mathrm{D}$?
a) If $\Delta H=0 ; K_{p}$ and increases with temperature and dissociation temperature
b) If $\Delta H=+\mathrm{ve}, K_{p}$ increases with temperature and dissociation of A_{2} increases
c) If $\Delta H=-\mathrm{ve}$; K_{p} decreases with temperature and dissociation of A_{2} decreases
d) $K_{p}=4 \alpha^{3}\left[\frac{P}{1+2 \alpha}\right]^{2}$
367. A strong electrolyte in aqueous solution exhibits:
a) Almost completely dissociated
b) Hydration
c) Partial dissociation
d) None of the above
368. Which are correct for the following reaction?
$\begin{array}{cc}{\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}\right]^{+}} \\ A\end{array}+\begin{gathered}{\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}} \\ B\end{gathered} \rightarrow \begin{array}{cc}{\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}}\end{array}+\begin{gathered}{\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}} \\ D\end{gathered}$
a) A is base and B is acid
b) C is conjugate acid of A
c) B is conjugate acid of D
d) B is conjugate base of D
369. Which of the following acids form more than one kind of salts?
a) $\mathrm{H}_{3} \mathrm{BO}_{3}$
b) HF
c) HI
d) $\mathrm{H}_{3} \mathrm{PO}_{2}$
370. Which of the following is/are acidic salt(s)?
a) NaHSO_{4}
b) NaHS
c) NaHSO_{3}
d) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
371. A buffer solution can be prepared from a mixture of
a) Sodium acetate and acetic acid in water
b) Sodium acetate and HCl in water
c) Ammonia and ammonium chloride in water
d) Ammonia and sodium hydroxide in water
372. Which of the following statements is/are wrong?
a) At equilibrium concentrations of reactants and products become constant because the reaction stops
b) Addition of catalyst speeds up the forward reaction more than the backward reaction
c) Equilibrium constant of an exothermic reaction decreases with increase of temperature
d) K_{p} is always greater than K_{c}
373. When HCl is passed through a saturated solution of common salt, pure NaCl is precipitated because:
a) HCl is higly soluble in water
b) The ionic product $\left[\mathrm{Na}^{\oplus}\right]\left[\mathrm{Cl}^{\ominus}\right]$ exceed its solubility product $\left(K_{\text {sp }}\right)$
c) The $K_{\text {sp }}$ of NaCl is lowered by the presence of Cl^{\ominus} ions
d) HCl causes precipitation
374. Which of the following statements is/are correct?
a) $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base
b) $\mathrm{NH}_{4} \mathrm{Cl}$ forms an acidic solution in water
c) $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid
d) $\mathrm{CH}_{3} \mathrm{COONa}$ forms an acidic solution in water
375. Which of the following is/are hard acid(s)?
a) Ag^{+}
b) F^{-}
c) Zn^{2+}
d) NO_{3}^{-}
376. When weak base solution (50 mL of $0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$) is titrated with strong acid (0.1 N HCl), the pH of the solution initially decreases fast and then decreases slowly till near the equivalence point (as shown in figure). Which of the following is/are correct?

a) The slow decrease of pH is due to the formation of an acidic buffer solution after the addition of some
a) HCl
b) The slope of shown graph will be minimum when 25 mL of 0.1 N HCl is added
c) The slow decrease of pH is due to fast of basic buffer solution
d) The initial fast decrease in pH is due to fast consumption of ${ }^{\mathrm{O}} \mathrm{H}$ ions by HCl
377. The equilibrium $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium, is introduced. Which of the following statements
is/are correct
a) The concentrations of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$, and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change
b) More chlorine is formed
c) The concentrations of SO_{2} is reduced
d) All are incorrect
378. Which of the following behave as Bronsted acids as well as Bronsted bases?
a) $\mathrm{H}_{2} \mathrm{O}$
b) HS^{-}
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) HCO_{3}^{-}
379. In the dissociation of $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$, the degree of dissociation will be affected by the :
a) Addition of inert gas
b) Addition of either H_{2} or I_{2}
c) Increase of temperature
d) Increase of pressure
380. Select the incorrect statements:
a) K_{p} or K_{c} are dimensionless if pressure or concentrations are expressed in standard state

The numerical value of K_{p} changes with experimental conditions, i.e., P, T, and C at which equilibrium is
b) attained
c) Active mass of reactant = concentration of reactant
d) Dissolution of NH_{3} in water increases with increasing pressure
381. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, which of the following factors will have no effect on the value of equilibrium constant?
a) Temperature
b) Initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$
c) Pressure of catalyst
d) Pressure
382. For the reaction, $2 \mathrm{HCl}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ the equilibrium constant is 1.0×10^{-5}. What is the concentration of HCl if the equilibrium concentrations of H_{2} and Cl_{2} are $1.2 \times 10^{-8} \mathrm{M}$ and $1.2 \times$ $10^{-9} \mathrm{M}$ respectively?
a) $1.2 \times 10^{-3} \mathrm{M}$
b) $1.2 \times 10^{-7} \mathrm{M}$
c) $1.2 \times 10^{-4} \mathrm{M}$
d) $1.2 \times 10^{-6} \mathrm{M}$
383. Solubility of NH_{3} in water is increased by :
a) Increasing pressure
b) Decreasing temperature
c) Decreasing pressure
d) Adding more water
384. For which reaction(s) given fact(s) is/are correct?
a) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}$
a) K_{c} is ionization constant of acid
b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
K_{c} is ionic product of water
c) $\begin{aligned} & \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\ & K_{c} \text { is ionization constant of base }\end{aligned}$
d) $\begin{aligned} & \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} \\ & K_{c} \text { is stability constant of complex }\end{aligned}$
385. Consider the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H=-17.7 \mathrm{kcal}$

The concentration of NH_{3} will increase by :
a) Decreasing the temperature of the system
b) Increasing the pressure of the system
c) Decreasing the volume of the reaction vessel
d) Increasing the temperature of the system
386. A 1 L solution of $\mathrm{pH}=1$, is diluted up to 10 times. What volume of a solution with $\mathrm{pH}=2$ is to be added in diluted solution so that pH does not change?
a) 10 L
b) 100 L
c) 1 L
d) 25 L
387. To which of the solution, addition of water would not effect the pH ?
a) 100 mL of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
b) 100 mL of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.2 M NaOH
c) 200 mL of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
d) 100 mL of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+200 \mathrm{~mL}$ of 0.2 M NaOH
388. Which of the following statements is/are correct?
a) The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
b) The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$ is $\mathrm{HPO}_{4}{ }^{2-}$
c) The autoprotolysis constant of water increases with temperature
d) When a solution of a weak monoprotic acid is treated against a strong base, at half-neutralisation point, $\mathrm{pH}=(1 / 2) \mathrm{p} K_{a}$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 389 to 388 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

389
Statement 1: The dissociation constants of polyprotic acid are in the order $K_{1}>K_{2}>K_{3}$
Statement 2: The $\left[\mathrm{H}^{+}\right]$furnished in first step of dissociation exerts common ion effect to reduce the second dissociation so on

Statement 1: When a catalyst is added to a reaction mixture in equilibrium the amount of the products increases
Statement 2: The forward reaction becomes faster on adding the catalyst
391

Statement 1: When a soda water bottle is opened, the gas fizzes out.
Statement 2: Sealed soda water bottle contains CO_{2} gas dissolved at high pressure. On releasing seal, the pressure decreases and CO_{2} comes out.

Statement 1: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of the acid required at the equivalence point is twice that of the acid required using phenolphthalein as indicator
Statement 2: Two moles of HCl are required for the complete neutralization of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Statement 1: An aqueous solution of ammonium acetate acts as a buffer solution

Statement 2: A buffer solution reacts with small quantities of hydrogen or hydroxyl ions and keeps the pH almost same

Statement 1: The equilibrium constant may show higher or lower values with increase in temperature.
Statement 2: The change depends on the heat of reaction at equilibrium.

Statement 1: The equilibrium constant K_{c} or K_{p} has the unit (mol litre $\left.{ }^{-1}\right)^{\Delta n}$ or (atm) ${ }^{\Delta n}$ respectively.
Statement 2: The numerical value of $K_{C}=K_{p}$ at $\Delta n=0$.

Statement 1: $\mathrm{H}_{3} \mathrm{BO}_{3}$ in water behaves as monobasic acid
Statement 2: The ionisation reaction is:

$$
0 \mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}
$$

Statement 1: Greater the value of K, more is the fraction of initial concentration of reactants converted to products at equilibrium
Statement 2: The value of K depends on the initial concentration of reactants

Statement 1: In dilute benzene solutions, equimolar addition of $\mathrm{R}_{3} \mathrm{~N}$ and HCl produce a substance with a dipole moment. In the same solvent, equimolar addition of $\mathrm{R}_{3} \mathrm{~N}$ and SO_{3} produce a substance having an almost identical dipole moment
Statement 2: Both HCl and SO_{3} are Lewis acids and can react with the amine base to form polar substances which undergo ionic dissociation in a solvent sufficiently more polar than benzene
Moreover, $(\mathrm{N}-\mathrm{S})$ bond is a more polar

Statement 1: Snow does not melt easily at mountains.
Statement 2: A decrease in pressure leads to an increase in freezing point.

Statement 1: Due to common ion effect, the solubility of HgI_{2} is expected to be less in an aqueous solution of KI than in water. But HgI_{2} dissolves in an aqueous solution of KI of form a clear solution
Statement 2: I^{\ominus} ion is highly polarisable

Statement 1: pH value of HCN solution decreases when NaCN is added to it
Statement 2: NaCN provides a common ion CN^{\ominus} to HCN

Statement 1: The pH of $\mathrm{NH}_{4} \mathrm{OH}$ remains unchanged on addition of $\mathrm{NH}_{4} \mathrm{Cl}$
Statement 2: Addition of $\mathrm{NH}_{4} \mathrm{Cl}$ suppresses the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ due to common ion effect

Statement 1: In water orthoboric acid behaves as a weak monobasic acid
Statement 2: In water orthoboric acid behaves as a proton donor

Statement 1: $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$ acts as a basic in the presence of HClO_{4}
Statement 2: Perchloric acid is stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$

Statement 1: $\quad \mathrm{HNO}_{3}$ is stronger acid than HNO_{2}
Statement 2: In HNO_{3} there are two N to O bonds where as in HNO_{2} there is only one

Statement 1: Ice \rightleftharpoons Water, if pressure is applied water will evaporate
Statement 2: Increase of pressure pushes the equilibrium towards the side in which umber of gaseous mole decrease
407
Statement 1: On mixing equal volumes of 1 M HCl and $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$, an acidic buffer solution is formed
Statement 2: The resultant mixture contains $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ which are parts of acidic buffer

Statement 1: On addition of $\mathrm{NH}_{4} \mathrm{Cl}$ to $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{pH}$ decreases but remains greater than 7
Statement 2:
Addition of ${ }^{\stackrel{\oplus}{\mathrm{N}}} \mathrm{H}_{4}$ ion decreases ionization of $\mathrm{NH}_{4} \mathrm{OH}$, thus $[\stackrel{\ominus}{\mathrm{OH}]}$ decreases and also pH decreases
409
Statement 1: A catalyst does not influences the values of equilibrium constant
Statement 2: Catalyst influences the rate of both forward and backward reactions equally

Statement 1: A certain reaction is catalysed by acids and the catalytic activity of 0.1 M solutions of the acids in water decreases in the order, $\mathrm{HCl}, \mathrm{HCOOH}$, and $\mathrm{CH}_{3} \mathrm{COOH}$. The same reaction takes place in anhydrous NH_{3}, but the three acids have same catalytic effect in $0,1 \mathrm{M}$ solution
Statement 2: The order of catalytic activity in water is the same as the order of acidity. In anhydrous NH_{3} all the three acids are strong

Statement 1: Addition of Ag^{\oplus} ions to a mixture of aqueous NaCl and NaBr solution will first precipitate AgBr rather than AgCl
Statement 2: $\quad K_{\text {sp }} \mathrm{AgCl}<K_{\text {sp }}$ of AgBr

Statement 1: The value of K for a reaction may increase or decrease with increase in temperature depending upon whether the reaction is exothermic or endothermic
Statement 2: With increase in temperature, the extent of reaction increases
413
Statement 1: For the reaction
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}, K_{p}=K_{c}$
Statement 2: In this reaction, the sum of stoichiometric coefficient of reactants is equal to the sum of stoichiometrie coefficients of products

Statement 1: The dissociation of PCl_{5} decreases on increasing pressure.
Statement 2: An increase in pressure favours the forward reaction.

Statement 1: A catalyst does not influence equilibrium constant of reaction but it simply helps in attaining the equilibrium earlier.
Statement 2: A catalyst increase both the rate of forward reaction and backward reaction.

Statement 1: Water boils at higher temperature in pressure cooker.
Statement 2: Increase in pressure leads to an increase in boiling point.
417
Statement 1: $\quad \mathrm{NaCl}$ solution can be purified by passage of hydrogen chloride through brine.
Statement 2: This type of purification is based on Le-Chatelier principle .
418
Statement 1: For gaseous reaction when $\Delta n=0, K_{P}=K_{c}, \Delta n=$ change n the number fo gas moles.
Statement 2: For gaseous reaction $K_{p}=K_{c}(R T) \Delta n$

Statement 1: K_{p} can be equal to or less than or even greater than the value of K_{c}
Statement 2: $\quad K_{p}=K_{c}(R T)^{\Delta n}$
Relation between K_{p} and K_{c} depends on the change in the number of moles of gaseous reactants and products

Statement 1: The pH of an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ remains unchanged on the addition of $\mathrm{CH}_{3} \mathrm{COONa}$
Statement 2: The ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ is suppressed by the addition of $\mathrm{CH}_{3} \mathrm{COONa}$

Statement 1: pH of a neutral solution is always 7

Statement 2: pH of a solution does not depend upon temperature

Statement 1: For $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, the equilibrium constant is K The for $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})$, the equilibrium constant will be \sqrt{K}
Statement 2: If concentrations are changed to half, the equilibrium constants will be halved 423

Statement 1: The solubility of gases always increases with increase in pressure.
Statement 2: High pressure favours the change where volume decreases.
424
Statement 1: On opening a sealed soda bottle dissolved CO_{2} escapes
Statement 2: Gas escapes to reach the new equilibrium condition of lower pressure.

Statement 1: The pH of pure water is less than 7 at $60^{\circ} \mathrm{C}$
Statement 2: As the temperature increases, pure water becomes slightly acidic

Statement 1: Solution of AlCl_{3} in water is neutral
Statement 2: $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is formed

Statement 1: Solubility of AgCl is less in 0.1 M NaCl than in water
Statement 2: In presence of NaCl , the solubility of AgCl is lowered on account of common ion effect

Statement 1: Adding inert gas to dissociation equilibrium of $\mathrm{N}_{2} \mathrm{O}_{4}$ at constant pressure and temperature increases the dissociation
Statement 2: Molar concentration of the reactants and products decreases

Statement 1: If a solution with $\mathrm{pH}=2$ is diluted to double the volume, the pH of the solution will fall to 1
Statement 2: pH is inversely proportional to the volume of the solution

Statement 1: \quad For $\mathrm{PCl}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, if more Cl_{2} is added the equilibrium will shift in backward direction. Hence, equilibrium constant will decrease
Statement 2: Addition of inert gas to the equilibrium mixture at constant volume does not alter the equilibrium

Statement 1: pH of HCl solution is less than that of acetic acid of the some concentration
Statement 2: In equimolar solution, the number of titrable protons present in HCl is less than that present in acetic acid

Statement 1: When small amount of acid or base is added to pure water, its pH undergoes a change
Statement 2: Addition of an acid or a base increases the degree of ionization of water 433

Statement 1: Equilibrium constant of a reaction increases if temperature is increased
Statement 2: The forward reaction becomes faster with increase of temperature

Statement 1: When a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ in water is shaken with charcoal, pH of the solution will get decreased
Statement 2: The degree of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ increases

Statement 1: All Arrhenius acids are also Bronsted acids
Statement 2: All Bronsted bases are also Lewis bases

Statement 1: If HCl gas is passed through saturated NaCl solution, solid NaCl starts separating out
Statement 2: HCl decreases the solubility product of NaCl

Statement 1: Methyl red has $K_{a}=10^{-5}$ and the acid form, HIn is red and its conjugate base Ind ${ }^{\ominus}$ is yellow
Statement 2: $\mathrm{pH}=3 \quad 5 \quad 7$
$\frac{\left[\mathrm{Ind}^{\ominus}\right]}{[\mathrm{HIn}]}=10^{-2} \quad 1 \quad 10^{2}$
Colour $=$ Red Orange Yellow

Statement 1: Cl^{-}is weak base than $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
Statement 2: Stronger is acid, weaker is its conjugate base

Statement 1: A is very dilute acidic solution of Cd^{2+} and Ni^{2+} gives yellow precipitate of CdS on passing hydrogen sulphide
Statement 2: Solubility product of CdS is more than that of NiS

Statement 1: $\quad \mathrm{S}$ reacts with $\mathrm{SO}_{3}{ }^{2-}$ and forms $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

Statement 2: S is electron deficient and acts an acid and $\mathrm{SO}_{3}{ }^{2-}$ is a base in terms of Lewis acid theory

Statement 1: The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature
Statement 2: The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants

Statement 1: pH of water increases with an increase in temperature
Statement 2: K_{w} or water increases with increase in temperature

Statement 1: Buffer system of carbonic acid and sodium bicarbonate is used for the precipitation of hydroxides of third group elements
Statement 2: It maintains the pH to a constant value, about 7.4

Statement 1: The active mass of pure solid and pure liquid is taken unity
Statement 2: The active mass of pure solids and liquids depends on the density and molecular mass. The density and molecular of a mass of pure liquids and solids are constant

Statement 1: Methyl orange is used as indicator in $\mathrm{Na}_{2} \mathrm{CO}_{3}$ titrating against HCl solution
Statement 2: The pH range of methyl orange is 3.1 to 4.5
446
Statement 1: pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ is not equal to 8
Statement 2: HCl does not dissociate property in very dilute solution

Statement 1: The pH of a buffer solution containing equal moles of acetic acid and sodium acetate is 4.8 ($\mathrm{p} K_{a}$ of acetic acid is 4.8)
Statement 2: The ionic product of water at $25^{\circ} \mathrm{C}$ is $10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$. The correct answer is

Statement 1: Catalyst affects the final state of the equilibrium.
Statement 2: It enables the system to attain a new equilibrium state by complexing with the reagents.

Statement 1:

$$
\mathrm{CO}+\mathrm{NaOH} \underset{\mathrm{High} T}{\underset{\mathrm{High} P}{\longrightarrow}} \mathrm{HCOONa}
$$

Statement 2: CO although being neutral can acts as acid in the given reaction

Statement 1: $\quad \Delta G=\Delta G^{0}+2.303 R T \log Q$ where Q is reaction quotient.
Statement 2: Q may be greater or lesser than K_{c} or equal to K_{C}.

Statement 1: $\quad \mathrm{Sb}^{3+}$ is not precipitated as sulphide when $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is passed in alkaline solution
Statement 2: $\left[\mathrm{S}^{2-}\right]$ ion in basic medium is inadequate for precipitation

Statement 1: A solution ofFeCl ${ }_{3}$ in water produce brown precipitate on standing
Statement 2: Hydrolysis of FeCl_{3} takes place in water
453
Statement 1: pH of a buffer changes with temperature
Statement 2: Ionic product of water (K_{w}) changes with temperature

Statement 1: $\mathrm{p} K_{a}$ of a weak acid becomes equal to the pH of the solution at the mid-point of titration
Statement 2: The molar concentration of the proton donor and proton acceptor becomes equal at the mid-point

Statement 1: Hydrolysis of salt is an exothermic phenomenon
Statement 2: It involves breaking up of water molecule to produce acid and base respectively

Statement 1: Addition of an inert gas to the equilibrium mixture has no effects on the states of equilibrium at constant volume or at constant pressure.
Statement 2: The addition of inert gas at constant volume will not alter the concentration of the reactants as well as products of a reaction mixture.

Statement 1: Both reactions are Lewis acid-base reactions?
i. $\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N}: \mathrm{BF}_{3}$
ii. $\mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{Mg}^{2+}+\mathrm{S}^{2-}$

Statement 2: Lewis acid-base reaction involve the donation of lone pair electros from base to acid. This donation results in a coordinate bond

Statement 1: For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ Unit of $K_{c} L^{2} \mathrm{~mol}^{-2}$
Statement 2: For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ Equilibrium constant $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

Statement 1: pH of acidic solution is always below 7 at $25^{\circ} \mathrm{C}$

Statement 2: At $25^{\circ} \mathrm{C}$, the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ is 8

Statement 1: All strong acid in water show almost same acidic nature
Statement 2: This is due to levelling effect of water on account of its high dielectric constant and strong proton accepting tendency

Statement 1: A change of pressure has no effect in case of the equilibrium, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
Statement 2: The reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ is highly exothermic reaction

Statement 1: The solubility of a gas in water decreases with rise in temperature.
Statement 2: Rise in temperature increases the kinetic energy of gaseous molecules dissolved in water.

Statement 1: Addition of an inert gas at constant pressure to dissociation equilibrium of $\mathrm{PCl}_{5} \rightleftharpoons$ $\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ favours forward reaction.
Statement 2: $\quad K_{c}=\frac{\alpha^{2}}{V(1-\alpha)}$ for the dissociation equilibrium of PCl_{5} where α is degree of dissociation of PCl_{5}.
464
Statement 1: $\quad 0.1 \mathrm{M} \mathrm{NaCN}+0.05 \mathrm{M} \mathrm{HCl}$ solution on mixing in equal volume from a buffer solution
Statement 2: The solution after mixing contains a weak acid and its conjugate base and thus act as buffer

Statement 1: Dry HCl shall not act as an acid
Statement 2: For the acidic or basic properties, the presence of water is absolutely necessary

Statement 1: $\quad \mathrm{CCl}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$ and liquid SO_{2} are aprotic solvents
Statement 2: Aprotic solvents do not influence the acidic or basic nature of solute

Statement 1: The aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ is alkaline in nature.
Statement 2: Acetate ion undergoes anionic hydrolysis.
468
Statement 1: Solubility of BaSO_{4} in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is $10^{-9} \mathrm{M}$, hence its $K_{\text {sp }}$ is 10^{-18}
Statement 2: Because for $\mathrm{BaSO}_{4}, K_{\text {sp }}=S^{2}$

Statement 1: Heat given out during neutralisation of NaOH and HF is $-13.7 \mathrm{kcal} / \mathrm{eq}$.
Statement 2: F^{-}ion is more easily hydrated and thus heat of neutralisation of HF and NaOH is more 470

Statement 1: Solubility of AgCl is more in conc. HCl than in water
Statement 2: AgCl form a complex with conc. HCl and thus solubility of AgCl increases in conc. HCl

Statement 1: The dissociation constant of water at $60^{\circ} \mathrm{C}$ is 10^{-13}
Statement 2: The pH of water is 6.5 and that it behaves as acid at $60^{\circ} \mathrm{C}$

Statement 1: On cooling in a freezing mixture, colour of the mixture turns to pink from deep blue for a reaction
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})+4 \mathrm{Cl}{ }^{\ominus}(\mathrm{aq}) \rightleftharpoons \mathrm{CoCl}_{4}{ }^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(Pink)
(Blue)
Statement 2: The reaction is endothermic in forward reaction, so on cooling the reaction, deep blue colour appears

Statement 1: The amino acid glycine predominantly exists in the form of ${ }^{\oplus} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}^{\ominus}$
Statement 2: The conjugate acid of glycine is $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{\ominus}$

Statement 1: The synthesis of NH_{3} in Haber's process needs $500^{\circ} \mathrm{C}$ and 200 atm pressure inspite of the fact that reaction is favoured at high P and low T according to Le-Chatelier's principle.
Statement 2: The high temperature is required to attain higher energy of activation for the reaction because bond energy of N_{2} and H_{2} are high.

Statement 1: A solution contains 0.1 M each of $\mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ni}^{2+}$ ions. If $\mathrm{H}_{2} \mathrm{~S}$ is passed into this solution at $25^{\circ} \mathrm{C}$
$\mathrm{Pb}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}$ will get precipitated simultaneously
Statement 2: Pb^{2+} and Zn^{2+} will get precipitated if the solution contains 0.1 M HCl $\left[K_{1} \mathrm{H}_{2} \mathrm{~S}=10^{-7}, K_{2} \mathrm{H}_{2} \mathrm{~S}=10^{-14}, K_{\text {sp }} \mathrm{PbS}=3 \times 10^{-29} . K_{\text {sp }} \mathrm{NiS}=3 \times 10^{-19} . K_{\text {sp }} \mathrm{Zn} \mathrm{S} \backslash\right.$ 10^{-25}]
476
Statement 1: In the acid-base titration involving a strong base and a weak acid, methyl orange can be used as an indicator
Statement 2: Methyl orange changes its colour in pH range 3 to 5

Statement 1: Salting out action of sodium soap in presence of NaCl is based on common ion effect

Statement 2: Salting out action of soap is based on the fact that as the concentration of Na^{+}increases, the $R \mathrm{COONa}$ shows precipitation because $\left[R \mathrm{COO}^{-}\right]\left[\mathrm{Na}^{+}\right]>K_{s p}$

Statement 1: In acidic medium, Zn^{2+} is not precipitated by S^{2-} ions
Statement 2: Common ion effect reduces the concentration of S^{2-} ions to the minimum level

Statement 1: For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.
Statement 2: At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.

Statement 1: The acidic nature of some cations is:

$$
\mathrm{Al}^{3+}>\mathrm{Be}^{2+}>\mathrm{Na}^{+}>\mathrm{K}^{+}
$$

Statement 2: More is the effective nuclear charge on cation more is its acidic nature

Statement 1: Addition of neon to $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ equilibrium at constant volume does not affect this equilibrium
Statement 2: Active masses of reactants and products do not change when volume remains constant

Statement 1: The reaction, $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is favoured in the forward direction with increase of pressure
Statement 2: The reaction is exothermic

483
Statement 1: Increase of temperature favour the formation of NH_{3} by Haber's process
Statement 2: Increase of pressure and addition of catalyst favour the formation of NH_{3}

Statement 1: Acidic nature of boron trihalides is in the order:

$$
\mathrm{BF}_{3}<B C l_{3}<B B \mathrm{r}_{3}<B \mathrm{I}_{3}
$$

Statement 2: Basic nature of nitrogen trihalides is in the order:

$$
\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}
$$

Statement 1: The value of K gives us a relative idea about the extent to which a reaction proceeds
Statement 2: The value of K is independent of the stochiometry of reactants and products at the point of equilibrium

Statement 1: Effect of temperature on K_{c} and K_{p} depends on enthalpy change.
Statement 2: Increase in temperature shifts the equilibrium in exothermic direction and decrease in temperature shifts the equilibrium position in endothermic direction.

Statement 1: Solubility of AgCN in acidic solutions is greater than in pure water
Statement 2: Solubility equilibrium of AgCN is shifted in forward direction due to the formation of HCN 488

Statement 1: On cooling in a freezing mixture, colour of the mixture turns to pink from deep blue for a reaction. $\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{COCl}_{4}^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Statement 2: Reaction is endothermic, so on cooling the reaction moves to backward direction.

Statement 1: The value of K increases with increase in temperature in case of endothermic reaction
Statement 2: The increase in temperature shifts the equilibrium in the backward direction in case of exothermic reaction

Statement 1: The pH of human blood at body temperature is found to be 6.9
Statement 2: Blood is alkaline in nature
491
Statement 1: $\quad K_{p}$ is always greater than K_{c}
Statement 2: The effect of pressure is greater on the rate of reaction than the effect of concentration

Statement 1: There is very little difference is acid strength of $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
Statement 2: The hydrogens in these acids are not all bonded to oxygens. The electronegativities of P and H are almost the same

Statement 1: $\quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is a salt of unstable acid
Statement 2: $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is a polyprotic acid
494
Statement 1: The melting point of solid (except ice) increases with increase in pressure.
Statement 2: An increase in pressure favours the change where volume decreases.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II. 495.
(A) 0.1 M KCN
(B) $\left.0.1 \mathrm{M} \mathrm{Ph} \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}\right] \mathrm{Cl}^{\ominus}$
(C) 0.1 M KCl
(D) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ $\left(K_{a}=K_{b}\right)$
CODES:
A
B
C
D
a) $\quad \mathrm{q} \quad \mathrm{r} \quad \mathrm{p} \quad \mathrm{p}, \mathrm{s}$
b) r
p p,s
q
c) p, s
q
r
p
d) p
p,s
(p) 7
(q) $6.5+\frac{1}{2} \mathrm{p} K_{a}$
(r) $7.5-\frac{1}{2} \mathrm{p} K_{b}$
(s) $7.5+\frac{1}{2} \mathrm{p} K_{a}-\frac{1}{2} \mathrm{p} K_{b}$
496.

Column-I
Column- II
(A) Solubility of AgCl in 0.1 M HCl
(B) Solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 M NaOH
(C) Solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in NiCl_{2}
(D) Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in 0.1 M NaOH
(E) Solubility of AgCN in a buffer solution of $\mathrm{pH}=3$

CODES :

	A	B	C	D	E
a)	p	q	r	s	t
b)	r	s	t	p	t
c)	q	p	s	r	t
d)	t	r	p	q	t
e)	s	t	q	t	t

497.

Column-I

(A) $\mathrm{NH}_{4} \mathrm{Cl}$ in water
(B) $\mathrm{CH}_{3} \mathrm{COONa}$ in water

Column- II

(p) Neutral solution which does not undergo hydrolysis
(q) Cationic hydrolysis
(C) $\mathrm{NH}_{4} \mathrm{CN}$ in water
(r) Anionic hydrolysis
(D) NaCl in water
(s) Both cationic and anionic hydrolysis

CODES :
A
B
C
D
a) $\quad \mathrm{q}$
r
s
p
b) r
q
p
s
c) s
p
r
q
d) p
s
q
r
498.

Column-I

Column- II

(A) Acidic salt
(B) Basic salt
(C) Acidic buffer
(D) Basic buffer

CODES :

	A	B	C	D
a)	q	r	p	s
b)	r	s	q	p
c)	s	p	r	q
d)	p	q	s	r

499.

Column- II

(A) $\mathrm{HSO}_{4}{ }^{\ominus}$
(B) BF_{3}
(C) $\ddot{\mathrm{N}} \mathrm{H}_{3}$
(D) $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$

CODES:
A
B
C
D
a) $\quad \mathrm{R}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{q}, \mathrm{s} \quad \mathrm{q}, \mathrm{s}$
b) $\quad \mathrm{p} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{q}, \mathrm{s} \quad \mathrm{q}, \mathrm{s}$
c) $\begin{array}{llll}\mathrm{q}, \mathrm{s} & \mathrm{q}, \mathrm{s} & \mathrm{p} & \mathrm{q}\end{array}$
d) $\begin{array}{llll}r & p & r, s & q, S\end{array}$
500.

Column-I

Column- II

(A) 0.1 M
$\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{p} K_{a}=4.74\right)+0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
(B) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.01 \mathrm{M} \mathrm{HCl}$
(C) $0.1 \mathrm{MCH}_{3} \mathrm{COOH}\left(\mathrm{p} K_{a}=4.74\right)+$ $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{p} K_{b}=4.74\right)$
(D) 300 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}+100 \mathrm{~mL}$ of 0.1 M HCl

CODES :

	A	B	C	D
a)	q	s	r	p
b)	p	r	s	q
c)	r	p	q	s
d)	s	q	p	r

501.

Column- II

(p) $(K)^{1 / 2}$
(B) Reaction is divided by 2
(q) K^{2}
(r) $1 / K$

CODES:
A
B
C
D
a) p
q
r
b) r
p
b
c) $\begin{array}{lll}\text { q } & \text { r } & \text { p }\end{array}$
d) $\quad \mathrm{b} \quad \mathrm{q} \quad \mathrm{r}$
502.

Column-I
Column- II
(A) Hydrolysis of ethyl acetate in basic solution
(p) Second-order reaction
(B) Hydrolysis of ethyl acetate in acidic solution
(C) The limits of pH values of a buffer solution
(q) First-order reaction
(r) $\mathrm{p} K_{a} \neq 1$
(D) The buffer capacity of a solution is maximum when the concentration of salt to the acid is CODES :

	A	B	C	D
a)	r	s	p	q
b)	s	p	q	r
c)	p	q	r	s
d)	q	r	s	p

503.

Column-I

Column- II

(A) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(p) $\mathrm{mol} \mathrm{L}^{-1}$
(B) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
(q) Unitless
(C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(r) atm
(D) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(s) atm^{-2}

CODES :

	A	B	C	D
a)	P, r	q	s	p, r
b)	q,	s	p, r	p, r
c)	p, r	p, r	q	s
d)	p, r	q	s	p, r

504.

Column-I
Column- II
(A) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(p) $\mathrm{mol} \mathrm{L}^{-1}$
(B) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
(q) Unitless
(C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(r) atm
(D) $\mathrm{N}_{2}($ g $)+3 \mathrm{H}_{2}($ g $) \rightleftharpoons 2 \mathrm{NH}_{3}($ g $)$
(s) atm^{-2}

CODES :
A
B
C
D
a) $\quad \mathrm{P}, \mathrm{r}$
q
S
p,r
b) $\quad q, \quad s \quad p, r \quad p, r$
c) p, r
p,r
q
S
d) p, r
q
s
p,r
505.

Column-I

Column- II

(A) $\ln K=2-\frac{1000}{T}$
(1) 8,2
(B) $\ln K=\frac{1}{2}-\frac{500}{T}$
(2) 4,2
(C) $\ln K=4-\frac{1000}{T}$
(3) 1,1
(D) $\ln K=3-\frac{4000}{T}$
(4) 6,8

CODES :

	A	B	C	D
a)	3	4	2	1
b)	2	3	1	4
c)	1	4	2	3
d)	4	3	1	2

506. 100 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution is taken to which the following quantities of 1.0 M NaOH have been added. $K_{1}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-7}, K_{2}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-14}$. Match the following

Column- II

(A) 0.5 mL
(p) 7.0
(B) 0.5 mL
(q) 4.5
(C) 1.0 mL
(r) 9.5
(D) 1.5 mL
(s) 11.7
(t) 12.0

CODES :

	A	B	C	D
a)	p	r, t	s	p
b)	q	p	r, t	s
c)	p	q	s	r, t
d)	r, t	s	q	p

507.

(A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(p) $K_{p}=K_{c}(R T)$
(B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(q) $K_{p}=K_{c}(R T)^{2}$
(C) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(r) $K_{p}=K_{c}(R T)^{-2}$
(D) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
(s) $K_{p}=K_{c}$

CODES :

	A	B	C	D
a)	S	r	p	q
b)	r	q	r	s
c)	p	r	s	q
d)	q	s	r	p

508.

Column-I

Column- II
(A) $\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}$
(B) Zirconium phosphate
(C) Bismuth (III) sulphide
(p) $108 x^{5}$
(q) $2916 x^{8}$
(r) $27 x^{4}$
(D) Aluminium hydroxide
(s) $4 x^{3}$
(E) Calcium fluoride
(t) $6912 x^{7}$

CODES :

	A	B	C	D	E
a)	q	t	p	r	s
b)	t	s	q	p	s
c)	p	q	r	s	s
d)	r	p	s	t	s
e)	s	r	t	q	s

509.

Column-I
Column- II
(A) $Q=K$
(B) $Q<K$
(C) $Q<K$
(D) $K \ggg 1$
(p) Reaction is nearer to completion
(q) Reaction is not at equilibrium
(r) Reaction is fast in forward direction
(s) Reaction at equilibrium

CODES :

	A	B	C	D
a)	s	q, r	q, t	p
b)	q, r	q, t	p	s
c)	p	q, t	s	q, r
d)	q, t	s	p	q, r

510.

Column-I

(A) $Q=K$
(B) $Q<K$
(C) $Q<K$
(D) $K \ggg 1$

CODES :

	A	B	C	D
a)	s	q, r	q, t	p
b)	q, r	q, t	p	s
c)	p	q, t	s	q, r
d)	q, t	s	p	q, r

511.

Column-I

(A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(B) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(D) $\mathrm{PCl}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

CODES :

	A	B	C	D
a)	P, r	p, r	q	s
b)	p, r	q	s	p, r

c)	s	p, r	p, r	q
d)	q,	s	p, r	p, r

512.

Column-I

Column- II
(A) Ratio of solubility of a salt MCN in a buffer of
(p) 4
$\mathrm{pH}=3 .\left(K_{a}=10^{-3} / 3\right)$ and solubility in $\mathrm{H}_{2} \mathrm{O}$ is
(B) Raito of solubility of a salt MCN in a buffer of $\mathrm{pH}=4,\left(K_{a}=10^{-4} / 7\right)$ and solubility in $\mathrm{H}_{2} \mathrm{O}$
is
(C) Ratio of solubility of a salt MCN in a buffer of
(r) 8
$p H=5\left(K_{a}=10^{-5} / 8\right)$ and solubility in $\mathrm{H}_{2} \mathrm{O}$ is
(D) Ratio of solubility of AgCl in 0.1 M HCl and 0.3
(s) 3 M AgNO 3
(E) Ratio of solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in 0.1 M HCl and 0.2 M NaOH

CODES :

	A	B	C	D	E
a)	p	q	r	s	q
b)	r	s	q	p	q
c)	q	p	s	q	q
d)	s	r	p	q	q

513.

Column-I

(A) Dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ;$
Δ 回 $=+57.0 \mathrm{~kJ}$
(B) Oxidation of $\mathrm{NH}_{3}(\mathrm{~g})$
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons$
$4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Δ ? $=-900.0 \mathrm{~kJ}$
(C) Oxidation of nitrogen
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) ;$
Δ ? $=+180.0 \mathrm{~kJ}$
(D) Formation of $\mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{NO}_{2}+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$
$+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta H=-200 \mathrm{~kJ}$

CODES :

A
B
C
D
a) $\quad \mathrm{P}, \mathrm{r} \quad \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{s}$

Column- II

(p) Increases with temperature
(q) Decreases with pressure
(r) Increases with addition of inert gas at constant pressure
(s) Decreases with temperature
b) $\quad \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{p} \quad \mathrm{s} \quad \mathrm{p}, \mathrm{r}$
c) $\quad \mathrm{s} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{q}, \mathrm{r}, \mathrm{s}$
d) $\quad \mathrm{p} \quad \mathrm{s} \quad \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{r}$
514.

Column-I
(A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(B) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$; $\Delta H=-\mathrm{ve}$
(C) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$; $\Delta H=+\mathrm{ve}$
(D) $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$; $\Delta H=+\mathrm{ve}$
CODES :

	A	B	C	D
a)	P, r	p, s	p, r	q, r
b)	q, r	p, r	p, s	p, s
c)	p, s	p, s	q, r	p, r
d)	p, s	q, r	p, s	p, r

515.

Column-I

(A) $10^{-2} \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution
(B) $10^{-2} \mathrm{M} \mathrm{HCl}$ solution
(C) $10^{-2} \mathrm{M} \mathrm{NH}_{3}$ solution
(D) $10^{-2} \mathrm{MCH}_{3} \mathrm{COONH}_{4}$ solution

CODES :

	A	B	C	D
a)	S, t	r	p, q	p, t
b)	p, t	s, t	r	p, q
c)	s, t	p, q	p, t	r
d)	r	p, t	s, t	p, q

516.

(A) $P_{\uparrow} \xrightarrow{A} V$
(B)

(C)

(D)

CODES :

	A	B	C	D
a)	Q, r	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	p, s	q, r
b)	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	p, s	p, s	q, r
c)	p, s	q, r	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	$\mathrm{p}, \mathrm{r}, \mathrm{s}$
d)	p, s	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	q, r	p, s

517.

(p) Temperature is increasing
(q) Temperature is constant
(r) Volume is constant
(s) Pressure is increasing

Column-I

Column- II

(A)

(B)

(C)

(D)

CODES :

	A	B	C	D
a)	Q, r	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	p, s	q, r
b)	$\mathrm{p}, \mathrm{r}, \mathrm{s}$	p, s	p, s	q, r

c) $\quad \mathrm{p}, \mathrm{s} \quad \mathrm{q}, \mathrm{r} \quad \mathrm{p}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{r}, \mathrm{s}$
d) $\quad \mathrm{p}, \mathrm{s} \quad \mathrm{p}, \mathrm{r}, \mathrm{s} \quad \mathrm{q}, \mathrm{r} \quad \mathrm{p}, \mathrm{s}$
518.

Column-I

Column- II
(A) $2 X_{(\mathrm{g})} \rightleftharpoons 3 Y_{(\mathrm{g})}+Z_{(\mathrm{g})}$
(1) $\alpha=\sqrt{\frac{K_{c}}{V} \times 3}$
(B) $4 X_{(\mathrm{g})} \rightleftharpoons Y_{(\mathrm{g})}+Z_{(\mathrm{g})}$
(2) $\alpha=\left[2 K_{c} V\right]^{1 / 3}$
(C) $2 X_{(\mathrm{g})} \rightleftharpoons Y_{(\mathrm{g})}+2 Z_{(\mathrm{g})}$
(3) $\alpha=\frac{4}{V} \sqrt{K_{c}}$
(D) $3 X_{(\mathrm{g})} \rightleftharpoons Y_{(\mathrm{g})}+Z_{(\mathrm{g})}$
(4) $\alpha=\left[\frac{16 V^{2} K_{c}}{27}\right]^{1 / 4}$

CODES :

	A	B	C	D
a)	4	3	2	1
b)	3	1	4	2
c)	1	2	3	4
d)	2	4	1	3

519. 50.0 mL of $0.01 \mathrm{M} \mathrm{CH}_{2} \mathrm{COOH}$ solution is taken to which the following quantities of 0.01 M NaOH have been added. Match the followings

Column-I

(A) 25.0 mL
(p) 5.34
(B) 40.0 mL
(q) 11.96
(C) 50.0 mL
(r) 4.74
(D) 60.0 mL
(s) 12.22
(E) 70.0 mL
(t) 8.72

CODES :

	A	B	C	D	E
a)	r	q	t	q	s
b)	p	q	r	s	s
c)	t	s	p	q	s
d)	q	r	s	p	s
e)	s	p	q	r	s

520. 1.0 L of $0.01 \mathrm{M} \mathrm{NH}_{3}$ solution is taken to which the following quantities of 1.0 M HCl is added.

Column- II

(A) 2.0 mL
(p) 11.0
(B) 5.0 mL
(q) 4.14
(C) 10.0 mL
(r) 4.74
(D) 11.0 mL
(s) 8.37

CODES :

	A	B	C	D
a)	p	q	r	s
b)	s	p	r	q
c)	q	r	s	p
d)	r	s	p	q

521.

Column-I

Column- II
(A) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}$
(B) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
(C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(p) $K_{p}=K_{c}$
(q) K increase with increase increase temperature
(r) On increasing pressure reaction favour to product side
(s) $K_{c}>K_{p}$

CODES :

	A	B	C
a)	R, s	q	p
b)	q	p	r, S
c)	p	r, s	q
d)	q	p, q	r, s

522.

Column-I

(A) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}$
(p) $K_{p}=K_{c}$
(B) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
(C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(q) K increase with increase increase temperature
(r) On increasing pressure reaction favour to product side
(s) $K_{c}>K_{p}$

CODES :

	A	B	C
a)	R, s	q	p
b)	q	p	r, s
c)	p	r, s	q
d)	q	p, q	r, s

523.

Column-I

Column- II
(A) Addition of inert gas at constant pressure
(p) $\Delta V \neq 0, \Delta n>0$ shifts the equilibrium in backward direction
(B) Addition of inert gas at constant pressure has
(q) $\Delta V \neq 0, \Delta n<0$ no effect on equilibrium
(C) $K_{p}=K_{c}$
(r) $\Delta V=0$
(D) Addition of inert gas shift the equilibrium in
(s) $\Delta n=0$ forward direction at constant p

CODES :

	A	B	C	D
a)	r	s	q	p
b)	p	r	s	q
c)	s	q	p	r
d)	q	p	r	s

524.

Column-I

Column- II
(A) $\mathrm{NaOH}+\mathrm{HCl}$
(p) Phenolphthalein
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{4} \mathrm{OH}$
(q) Phenol red
(C) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$
(r) Bromocresol green
(D) $\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(s) Methyl orange

CODES :

	A	B	C	D
a)	r	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p, s
b)	p, s	r	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$

c)	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p, s	r	q
d)	q	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	p, s	r

Linked Comprehension Type

This section contain(s) 57 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 525 to -525

During thermal dissociation, with increase in the number of molecules, the volume increases and in consequence, the density decrease. As the temperature rises, more and more dissociation takes place, and when practically complete dissociation occurs the density reaches its lowest limit
The fraction of the total number of molecules which suffers dissociation is called the degree of dissociation. Gas density measurements can be used to determine the degree of dissociation. Let us take by general case where one molecule of a substance A splits into ' n ' molecule of B on heating
$A n(\mathrm{~g}) \rightleftharpoons n B(\mathrm{~g})$
$a \quad 0 \quad t=0$
$(a-x) n x \quad$ at t_{eq}
Degree of dissociation $\alpha=\frac{x}{a}$ or $x=a \alpha$
Total number of moles $=a-a \alpha+n a \alpha$
$=a[1+(n-1) \alpha]$
Observed molecular weight of the mixture
$M=\frac{M A_{n}}{a[1+(n-1) \alpha]}$
525. The K_{p} for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is 640 mm at 775 K . The percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm is
a) 70%
b) 30%
c) 80%
d) 60%

Paragraph for Question Nos. 526 to - 526

The rate of the reaction is directly proportional to the product of the active masses of the reactants raised to the suitable powers, at a given temperature
$a A+b B+c C \rightarrow$ Product
Rate $=k[a]^{a}[B]^{b}[C]^{c}$
If the reaction is written in reversed direction
$k_{b}=\frac{1}{k_{f}}$
For gaseous reaction, equilibrium constant, can also be expressed in terms of partial pressure
Equilibrium constant, K_{c} for
$a A+b B \rightleftharpoons c C+d D$ is
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
and $K_{p}=\frac{p_{C}^{c} p_{D}^{d}}{p_{A}^{a} p_{B}^{b}}$
K_{p} and K_{c} are related with each other as $K_{p}=K_{c}(R T)^{\Delta n g}$
526. Calculate the partial pressure of carbon monoxide from the following data
$\mathrm{CaCO}_{3}(\mathrm{~s}) \stackrel{\Delta}{\rightleftharpoons} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2} \uparrow ; K_{p}=8 \times 10^{-2}$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) ; K_{p}=2$
a) 0.2 atm
b) 0.6 atm
c) 0.8 atm
d) 0.4 atm

Paragraph for Question Nos. 527 to - 527

Radiochemical methods can be used to determine solubility product estimation. The measurement of radioactivity can be used to find the concentration in a solubility equilibrium giving a fair idea about various equilibrium concentrations. In an experiment, 50.00 mL of a $0.010 \mathrm{M} \mathrm{AgNO}_{3}$ solution containing a silver isotope with a radioactivity of 75000 counts per min mL were mixed with 100 mL of a $0.03 \mathrm{M} \mathrm{NaIO}_{3}$ solution. The mixed solution was diluted to 500 mL and filtered to remove all the AgIO_{3} precipitate leaving behind a radioactive solution. Molar mass of $\mathrm{AgIO}_{3}=285 \mathrm{~g} / \mathrm{mol}$
527. The \% of unprecipitated silver ions is
a) 0.25%
b) 0.66%
c) 0.43%
d) 0.57%

Paragraph for Question Nos. 528 to - 528

Acidity or alkalinity of a solution depends upon the concentration of hydrogen ions relative to that of hydroxyl ions. In any aqueous solution, both hydrogen and hydroxyl ions coexist in accordance with equation $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$. The product of hydrogen and hydroxyl ion concentrations is given by equation $K_{w}=K_{i}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
The value of the product depends only on the temperature and not on the individual ionic concentrations. If concentration of hydrogen ions exceeds that of the hydroxyl ions, the solution is said to be acidic and vice versa for basic,
For neutral solution, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}$
For acidic solution, $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}^{+}\right]>\sqrt{K_{w}}$
For basic solution, $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}^{+}\right]<\sqrt{K_{w}}$
528. On adding few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to water
a) $\left[\mathrm{OH}^{-}\right]$will increase
b) $\left[\mathrm{OH}^{-}\right]$will decrease
c) Ionic product will increase
d) Ionic product will decrease

Paragraph for Question Nos. 529 to - 529

Physical and chemical equilibrium can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium we have a principle named Le Chatelier's principle. According to this principle, even if we make some changes in equilibrium, then also the system even re-establishes the equilibrium by undoing the effect
529. Consider the following equilibrium:
$2 \mathrm{NO}_{2} \rightleftharpoons 2 ; \Delta H=-\mathrm{ve}$,
If O_{2} is added and volume of the reaction vessel is reduced, the equilibrium
a) Shifts in the product side
b) Shifts in the reactant side
c) Cannot be predicted
d) Remains unchanged

Paragraph for Question Nos. 530 to - 530

Consider the chemical reaction:
$\mathrm{Ni}^{2+}(\mathrm{aq})+6 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2}(\mathrm{aq})$
(Green solution) (Blue solution)
When $\mathrm{H}^{\oplus}(\mathrm{aq})$ is added, the colour green is favoured. Use one or more of the following interpretations to answer the questions:
i. Some unreacted Ni^{2+} (aq) is present in the solution at equilibrium
ii. Some unreacted $\mathrm{NH}_{3}(\mathrm{aq})$ is present in the solution at equilibrium
iii. The colour change indicates new equilibrium conditions with reduced
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(\mathrm{aq})$
iv. The colour change indicates new equilibrium conditions with increased
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}(\mathrm{aq})$
530. The deepening of blue colour on dissolving more $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ supports interpretation(s)
a) i only
b) i and iv only
c) ii and iv only
d) i and ii only

Paragraph for Question Nos. 531 to - 531

One mole of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ was allowed to decompose in a 1-L container at $200^{\circ} \mathrm{C}$. It decomposes reversibly to $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) . \mathrm{NH}_{3}(\mathrm{~g})$ further undergoes decomposition to form $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$. Finally, when equilibrium was set up, the ratio between the number of moles of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ was found to be 3
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ; K_{c}=8.91 \times 10^{-2} \mathrm{M}^{2}$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; K_{c}=3 \times 10^{-4} \mathrm{M}^{2}$
Answer the following:
531. What is the mole fraction of hydrogen gas in the equilibrium mixture in the gas phase?
a) $1 / 4$
b) $3 / 4$
c) $1 / 8$
d) 4

Paragraph for Question Nos. 532 to - 532

The percentage of ammonia produced from nitrogen and hydrogen under certain conditions of temperature and pressure is given in the graph

Use the graph answering the following questions:
532. What happens to the percentage of ammonia produced when the temperature is increased
a) The \% is decreased
b) The \% is increased
c) No effect
d) Cannot be predicted

Paragraph for Question Nos. 533 to - 533

The synthesis of ammonia is given as:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H^{\ominus}=-92.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ given $K_{c}=1.2$ and temperature $(T)=375^{\circ} \mathrm{C}$ Answer the followings:
533. The expression of equilibrium constant is
a) $K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}$
b) $K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{NH}_{3}\right]}$
c) $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
d) $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

Paragraph for Question Nos. 534 to - 534

Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=38 \mathrm{~atm}$
Vapour density of the mixture is 74.25
Answer the following questions:
534. The reaction is
a) Endothermic
b) Exothermic
c) May be endothermic or exothermic
d) Unpredictable

Paragraph for Question Nos. 535 to - 535

Decomposition of ammonium chloride is an endothermic reaction. The equilibrium may be represented as:
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
A 6.250 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ is placed in an evaculated 4.0 L container at $27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820 bar and some solid remains in the container. Answer the followings
535. The value of K_{p} for the reaction at 300 K is
a) 16.2
b) 0.168
c) 1.68
d) 32.4

Paragraph for Question Nos. 536 to - 536

K_{p} and K_{c} are inter related as
$K_{p}=K_{c}(R T)^{\Delta n}$
Answer the following questions:
536. Which of the following have $K_{p}=K_{c}$?
a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
c) $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$
d) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

The relation between K_{p} and K_{c} is $K_{p}=K_{c}(R T)^{\Delta n}$ unit of $K_{p}=(\mathrm{atm})^{\Delta n}$; unit of $K_{c}=\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{\Delta n}$ Answer the following:
537. Consider the following reactions:
i. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; K_{1}$
ii. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; K_{2}$
iii. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; K_{3}$

Which of the following is correct?
a) $K_{3}=K_{1} / K_{2}$
b) $K_{3}=K_{1}{ }^{2} / K_{2}{ }^{3}$
c) $K_{3}=K_{1} \times K_{2}$
d) $K_{3}=K_{1} \sqrt{K_{2}}$

Paragraph for Question Nos. 538 to - 538

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H^{\ominus}=-22.4 \mathrm{~kJ}$
The pressure inside the chamber is 100 atm and temperature at 300 K Answer the following questions:
538. If K_{p} for the given reaction is 1.44×10^{-5}, then the value of K_{c} will be:
a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}} \mathrm{~mol} \mathrm{~L}^{-1}$
b) $\frac{1.44 \times 10^{-5}}{(8.314 \times 200)^{-2}} \mathrm{~mol} \mathrm{~L}^{-1}$
c) $\frac{1.44 \times 10^{-5}}{(0.082 \times 700)^{2}} \mathrm{~mol} \mathrm{~L}^{-1}$
d) $\frac{1.44 \times 10^{-5}}{(0.082 \times 300)^{-2}} \mathrm{~mol} \mathrm{~L}^{-1}$

Paragraph for Question Nos. 539 to - 539

Mass action ratio or reaction quotient Q for a reaction can be calculated using the law of mass action
$A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons C(\mathrm{~g})+D(\mathrm{~g})$
$Q=\frac{[C][D]}{[A][B]}$
The value of Q decides whether the reaction is at equilibrium or not
At equilibrium, $Q=K$
For an equilibrium process, $Q \neq K$
when $Q>K$, reaction will favour backward direction and when $Q<K$, it will favour forward direction Answer the following questions:
539. The reaction quotient Q for:
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is given by $Q=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$. The reaction will proceed in backward direction, when
a) $Q=K_{c}$
b) $\mathrm{Q}<\mathrm{K}_{\mathrm{c}}$
c) $\mathrm{Q}<\mathrm{K}_{\text {c }}$
d) $Q=0$

Paragraph for Question Nos. 540 to - 540

Dehydration of salts is an important class of heterogeneous reactions. The salt hydrates during dehydration often dissociate in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus, copper sulphate pentahydrate on dissociation yields trihydrates, monohydrates and then the anhydrous salt in the above order as follows:

540. The equilibrium constant K_{p} for the equilibrium between pentahydrate and trihydrate is:
a) 7.8
b) 60.84
c) 31.36
d) 5.6

Paragraph for Question Nos. 541 to - 541

X, Y and Z react in the 1:1:1 stoichiometric ratio.
The concentration of X, Y and Z we are found to vary with time as shown in the figure below:

541. Which of the following equilibrium reaction represents the correct variation of concentration with time?
a) $X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons Z(\mathrm{~g})$
b) $X(\mathrm{~g})+Y(\mathrm{~s}) \rightleftharpoons Z(\mathrm{~g})$
c) $Z(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons X(\mathrm{~g})$
d) $Z(\mathrm{~g})+X(\mathrm{~g}) \rightleftharpoons Y(\mathrm{~g})$

Paragraph for Question Nos. 542 to - 542

Two solids X and Y dissociate into gaseous products at a certain temperature as follows:
i. $X(\mathrm{~s}) \rightleftharpoons A(\mathrm{~g})+C(\mathrm{~g})$ and
ii. $Y(\mathrm{~s}) \rightleftharpoons B(\mathrm{~g})+C(\mathrm{~g})$

At a given temperature, pressure over excess solid ' X ' is 40 mm of Hg and total pressure over solid ' $Y(\mathrm{~s})^{\prime}$ is 60 mm of Hg
Now, answer the following questions:
542. Ratio of K_{p} for reaction (i) to that of reaction (ii), is:
a) $4: 9$
b) $2: 3$
c) $4: 9$
d) $2: 1$

Paragraph for Question Nos. 543 to - 543

$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is a sparingly soluble salt $\left(K_{\text {sp }}=2.6 \times 10^{-13}\right)$. To 35 mL of $0.15 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution, 15 mL of 0.8 M
KIO_{3} solution is added, and a precipitate of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is formed
543. Which is the limiting reactant of the reaction that takes place in the solution?
a) $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$
b) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
c) KIO_{3}
d) Both (a) and (c)

Paragraph for Question Nos. 544 to - 544

Acid-base indicator such as methyl orange, phenolphthalein, and bromothymol blue are substances which change colour according to the hydrogen ion concentration of the solution to which they are added Most indicators are weak acids (or more rarely weak base) in which the undissociated and dissociated forms have different and distinct colours. If methyl orange is used as the example and the un-dissociated form is written as $H M O$, then dissociation occurs as shown below:
Reaction: $\stackrel{\mathrm{HMO}}{\text { Red }} \rightleftharpoons \underset{\text { Colourless }}{\mathrm{H}^{\oplus}}+\underset{\text { yellow }}{\mathrm{MO}^{\ominus}}$
The indicator should have a sharp colour change with the equivalence point of the titration. Usually the colour change of the indicator occurs over a range of about two pH units. It should be noted that the eye cannot detect the exact end point of the titration. The $\mathrm{p} K_{a}$ of the indicator should be near the pH of the solution at the equivalence point
544. Which of the following situation exists at the equivalence point of a titration?
a) $\left[\mathrm{H}^{\oplus}\right]=10^{-7} \mathrm{M}$
b) $\left.\left[\mathrm{H}^{\oplus}\right]=\stackrel{\ominus}{\mathrm{O}} \mathrm{H}\right]$
c) $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-7} \mathrm{M}$
d) $\frac{\left[\mathrm{H}^{\oplus}\right]}{[\ominus}=10^{-14}$

Paragraph for Question Nos. 545 to - 545

Acidic solution is defined as a solution whose $\left[\mathrm{H}^{\oplus}\right]>[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$. Base solution has $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]>\left[\mathrm{H}^{\oplus}\right]$. During acid-base titration, pH of the mixture will change depending on the amount base added. The variation is shown in the form of graph by making plot between pH vs volume of base added. These graphs are known as titration curves 100 mL of $0.1 \mathrm{M} \mathrm{H}_{3} A\left(K_{a 1}=10^{-3}, K_{a 2}=10^{-5}, K_{a 3}=10^{-7}\right)$ is titrated against 0.1 M NaOH . The titration curve is as follows

545. What is the pH at point A ?
a) 3
b) 4
c) 5
d) 6

Paragraph for Question Nos. 546 to - 546

In qualitative analysis, cations of group II as well as group IV both are precipitated in the form of sulphides. Due to low value of $K_{\text {sp }}$ of group II sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of dil. HCl , and due to high value of $K_{s p}$ of group IV sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$. In a solution containing
0.1 M each of $\mathrm{Sn}^{2+}, \mathrm{Cd}^{2+}$, and Ni^{2+} ions, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed
$K_{\text {sp }}$ of $\mathrm{SnS}=8 \times 10^{-29}, K_{\text {sp }}$ of CdS $=1510^{-28}, K_{\text {sp }}$ of NiS $=3 \times 10^{-21}, K_{1}$ of $\mathrm{H}_{2} \mathrm{~S}=1 \times 10^{-7}, K_{2}$ of $\mathrm{H}_{2} \mathrm{~S}=1 \times 10^{-14}$
546. If $\mathrm{H}_{2} \mathrm{~S}$ is passed into the above mixture in the presence of HCl , which ion will be precipitated first?
a) SnS
b) CdS
c) NiS
d) SnS and CdS (both together)

Paragraph for Question Nos. 547 to - 547

The degree of dissociation of weak electrolyte is inversely proportional to the square root of concentration. It is called Ostwald's dilution law
$\alpha=\sqrt{\frac{K_{a}}{c}}$ As the temperature increases, degree of dissociation will increase
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{K_{a_{1}}}{K_{a_{2}}}}$ if concentration is same
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{c_{2}}{c_{1}}}$ if acid is same
547. $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOOH}$ has 4.24% degree of dissociation, the degree of dissociation of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ will be
a) 1.33%
b) 4.24%
c) 5.24%
d) 0.33%

Paragraph for Question Nos. 548 to - 548

The following solutions are mixed: 500 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ the 500 mL solution that was both 0.01 M in NaCl and 0.01 M in NaBr . Given $K_{\text {sp }} \mathrm{AgCl}=10^{-10}, K_{\text {sp }} \mathrm{AgBr}=5 \times 10^{-13}$
548. Calculate the $[\mathrm{Cl} \ominus]$ in the equilibrium solution
a) $5 \times 10^{-5} \mathrm{M}$
b) $2.5 \times 10^{-5} \mathrm{M}$
c) $5 \times 10^{-3} \mathrm{M}$
d) $2.5 \times 10^{-3} \mathrm{M}$

Paragraph for Question Nos. 549 to - 549

When 1.5 mol of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is dissolved in enough water to make 1.0 L of solution
Given: $K_{f} \mathrm{CuCl}^{\oplus}=1.0\left(K_{f}\right.$ is the formation constant of $\left.\mathrm{CuCl}^{\oplus}\right)$
549. $\left[\mathrm{Cu}^{2+}\right]$ in solution is
a) 1.0 M
b) 0.5 M
c) 2.0 M
d) None

Paragraph for Question Nos. 550 to - 550

Acid rain takes place due to combination of acidic oxides with water and it is an environmental concern all over the world. Assuming rain water is uncountaminated with HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ and is in equilibrium with $1.25 \times 10^{-4} \mathrm{~atm} \mathrm{CO}_{2}$. The Henry's law constant $\left(K_{H}\right)$ is 1.25×10^{6} torr. $K_{a_{1}}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.3 \times 10^{-7}$ Given: $K_{f} \mathrm{CuCl}^{\oplus}=1.0\left(K_{f}\right.$ is formation constant of CuCl^{\oplus})
550. What is the pH of natural rain water?
a) 5.64
b) 7.00
c) 5.87
d) 7.40

Paragraph for Question Nos. 551 to - 551

In atmosphere, SO_{2} and NO are oxidized to SO_{3} and NO_{2}, respectively, which react with water to give $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. The resultant solution is called acid rain. SO_{2} dissolves in water to form diprotic acid

$$
\begin{aligned}
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(l) & \rightleftharpoons \mathrm{HSO}_{3}^{\ominus}+\mathrm{H}^{\oplus} ; K_{a 1}=10^{-2} \\
\mathrm{HSO}_{3}^{\ominus} & \rightleftharpoons \mathrm{SO}_{3}^{2-}+\mathrm{H}^{\oplus} ; K_{a 2}
\end{aligned}
$$

and for equilibrium,

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{SO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{\oplus}(\mathrm{aq}) \\
& K_{a}=K_{a 1} \times K_{a 2}=10^{-9} \text { at } 300 \mathrm{~K}
\end{aligned}
$$

551. Which of the following reagents will give white precipitate with the aqueous solution of sulphurous acid?
a) BaCl_{2}
b) HCl
c) NaCl
d) KCl

Paragraph for Question Nos. 552 to - 552

In acid-base titration react rapidly to neutralize each other. Equivalence point is a point at which the acid and the base (or oxidizing agent and reducing agent) have been added in equivalent quantities. The end point is the point at which the titration stops. Since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as possible. The indicator must change colour at a pH close to that of a solution of the salt of the acid and base. Significantly, the pH changes most rapidly near the equivalence point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base

552. The following curve represents titration curve of HCl against KOH . The pH at equivalent point is Examine the titration curve below and answer the question

a) 3
b) 6
c) 7
d) 8

Paragraph for Question Nos. 553 to - 553

10 mole of NH_{3} is heated at 15 atm form $27^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The pressure at equilibrium is found to be 50 atm . The equilibrium constant for dissociation of $\mathrm{NH}_{3}: 2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2} ; \Delta \mathrm{H}=91.94 \mathrm{~kJ}$ Can be written as $K_{p}=\frac{P_{\mathrm{N}_{2}} \times\left(P_{\mathrm{H}_{2}}\right)^{3}}{\left(P_{\mathrm{NH}_{3}}\right)^{2}}(\mathrm{~atm})^{2}$
553. The degree of dissociation of NH_{3} is :
a) 61.3%
b) 20%
c) 48%
d) None of these

Paragraph for Question Nos. 554 to - 554

The dissolution of ammonia gas in water does not obey Henry's law. On dissolving, a major portion of ammonia, molecules unite with $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{NH}_{4} \mathrm{OH}$ molecules. $\mathrm{NH}_{4} \mathrm{OH}$ again dissociate into NH_{4}^{+}and OH^{-}ions. In solution therefore, we have NH_{3} molecules, $\mathrm{NH}_{4} \mathrm{OH}$ molecules and NH_{4}^{+}ions and the following equilibrium exist:
$\mathrm{NH}_{3}(\mathrm{~g})$ (pressure p and concentration C) initially $\rightleftharpoons \mathrm{NH}_{3}(l)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Let $C_{1} \mathrm{~mol} / \mathrm{L}$ of NH_{3} pass in solution state a part of which on dissolution in water forms $C_{2} \mathrm{~mol} / \mathrm{L}$ of $\mathrm{NH}_{4} \mathrm{OH}$.
The solution contains $C_{3} \mathrm{~mol} / \mathrm{L}$ of NH_{4}^{+}ions
554. Total concentration of ammonia, which can be determined by volumetric analysis is equal to:
a) $C_{1}+C_{2}$
b) $C_{1}+C_{2}+C_{3}$
c) $C_{1}+C_{3}$
d) $C_{2}+C_{3}$

Integer Answer Type

555. How many of the combinations of reactants will react until more than 98% of the limiting quantity is used up?
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
d. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH}$
e. $\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{HCl}(\mathrm{aq})$
f. $\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}$
g. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
h. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
i. $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+\mathrm{KOH}$
j. $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
k. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
l. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
m. $\mathrm{NH}_{3}+\mathrm{HCl}(\mathrm{aq})$
n. $\mathrm{K}^{\oplus}+\mathrm{OH}$
556. One litre of 1 M solution of an acid $\mathrm{H} A\left(K_{a}=10^{-4}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ has $\mathrm{pH}=2$. It is diluted by water so that new pH becomes double. The solution was diluted $5 \times 10^{a} \mathrm{~mL}$. The value of a is...
557. How many of the following are strong electrolysis?
a. NH_{3}
b. $\mathrm{NH}_{4} \mathrm{Cl}$
c. $\mathrm{CH}_{3} \mathrm{COOH}$
d. $\mathrm{CH}_{3} \mathrm{COONa}$
e. HCl
f. NaCl
558. For the reaction $A+B \rightleftharpoons C$, the rate constants for the forward and the reverse reactions are $4 \times$ 10^{2} and 2×10^{2} respectively. The value of equilibrium constant K for the reaction would be
a) 1
b) 2
c) 3
d) 4
559. What is the $\%$ dissociation of $\mathrm{H}_{2} \mathrm{~S}$, if one mole of $\mathrm{H}_{2} \mathrm{~S}$ is introduced in 1 litre vessel at 1000 K , if K_{c} for the reaction : $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$ is 4×10^{-6}
560 . How many of the following combinations of reactants will react less than 2% of theoretically possible extent?
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
d. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH}$
e. $\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{HCl}(\mathrm{aq})$
f. $\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}$
g. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
h. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
i. $\stackrel{\stackrel{ }{\mathrm{N}}}{\mathrm{H}} 4+\mathrm{KOH}$
j. $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
k. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
l. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
m. $\mathrm{NH}_{3}+\mathrm{HCl}(\mathrm{aq})$
n. $\mathrm{K}^{\oplus}+\mathrm{OH}$
560. How many in a. $\mathrm{NH}_{4} \mathrm{Cl}$
b. NaOH
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. NaCl
e. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl} \quad$ f. NH_{3}
g. HCl
h. HClO_{4}
i. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad$ j. $\mathrm{K}_{2} \mathrm{SO}_{4}$
are basic?
561. 100 mL of 0.20 M weak acid $\mathrm{H} A$ is completely neutralised by 0.20 M NaOH . K_{b} for A^{-}is 10^{-3}, the pOH at the equivalence point is...
562. If $K_{p}=K_{c} \times[R T]^{\Delta n}$, for the reaction $2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{CaCO}_{3}(s) \rightleftharpoons 2 \mathrm{CaC}_{2}(s)+5 \mathrm{O}_{2}(\mathrm{~g}) ; \Delta n$ is equal to
563. Calculate the pH at equilibrium point when a solution of $10^{-6} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is titrated with a solution of $10^{-6} \mathrm{M} \mathrm{NaOH} . K_{a}$ for acid $2 \times 10^{-5}\left(\mathrm{p} K_{a}=4.7\right)$ (Answer given in whole number)
564. An aqueous solution of 0.24 M aniline $\left(K_{b}=4.166 \times 10^{-10}\right)$ is mixed with NaOH solution to maintain anilinium ion concentration to $1 \times 10^{-8} M$. The pOH of NaOH solution used was ...
565. How many of the following salts:
i. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
ii. $\mathrm{PhCOONH}_{4}$
iii. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
iv. $\mathrm{NH}_{4} \mathrm{Cl}$
v. MgS
vi. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
vii. KCl
a) Hydrolyse more in water at $25^{\circ} \mathrm{C}$
b) Do not hydrolyse
c) Both cation and anion hydrolyse to the same extent
d) Both cation and anion hydrolyse to different extent
566. 10 mL of $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is completely neutralised by 0.125 M solution of NH_{3}. The pH of the solution at the equivalence point is..., if K_{b} for $\mathrm{NH}_{3}=10^{-5}$
567. Conjugate base of a weak acid has $K_{b}=10^{-9}$. The equilibrium constant for the reaction of acid with strong base is...
568. The rate of disappearance of A in the reaction at equilibrium $A \rightleftharpoons B$ is given by $-\frac{d[A]}{d t}=2 \times 10^{-2}[A]-4 \times 10^{-3}[B]$ at 300 K .
The equilibrium constant K_{c} is \qquad
569. For a reversible reaction $A \rightleftharpoons B, \log _{10} K=1.737-\frac{2500}{T}$ (in litre atm unit). The standard entropy, change to the colsest value in cal K^{-1} is. \qquad
570. A certain buffer solution equals concentration of X^{-}and $\mathrm{H} X, K_{b}$ for X^{-}is 10^{-10}. The pH of buffer is...
571. K of pure water is 10^{-12} at $60^{\circ} \mathrm{C}$. The pH of pure water at $60^{\circ} \mathrm{C}$ is...
572. Given below are two reversible reactions :
$A+B \rightleftharpoons Z ; K_{c_{1}}=24$
$2 B+C \rightleftharpoons 2 Y ; K_{c_{2}}=16$
The equilibrium constant K_{c} for the reaction,
$A+Y \rightleftharpoons Z+\frac{C}{2}$ is \qquad
573. The equilibrium constant of a strong acid ($\mathrm{H} A$) with weak base $B O H$ is 10^{11}. The pH of 0.10 M solution of $B A$ is...
574. For a reversible reaction $\frac{K_{p}}{K_{c}}=(R T)^{\Delta n}$ at 300 K . If $K_{p} / K_{c}=14941.5$ (in litre atm unit) for a given reaction then Δn for the reaction is(given $\log K_{p} / K_{c}=4.17$ and $\log 24.93=1.39$).
575. In a reaction at equilibrium ' x ' moles of the reactant, A decompose to give 1 mole each of B and C. The experimental studies suggest that the decomposition of A at equilibrium is independent of initial concentration of A. Calculate ' x '.
576. The plot of $\ln K v s . \frac{1}{T}$ shows an intercept of $\ln a=4$. The change in standard entropy for the reaction at
equilibrium is \qquad ..cal
577. In the reaction $A+B \rightleftharpoons A B$, if the concentration of A and B is increased by factor of 2 , it will cause the equilibrium concentration of $A B$ to change to
a) Two times to original value
b) Three times to original value
c) Same
d) Zero
578. How many of the following 0.1 M solutions are acidic?
a. $\mathrm{NH}_{4} \mathrm{Cl}$
b. NaOH
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. NaCl
e. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$
f. NH_{3}
g. HCl
h. HClO_{4}
i. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad$ j. $\mathrm{K}_{2} \mathrm{SO}_{4}$
579. Negative slope of the line drawn as $\operatorname{In} K_{c}$ vs. $\frac{1}{T}$ for a given reaction is -1 . The heat of reaction is \qquad
580. A reaction attains equilibrium, when the free energy change is
a) 1
b) 2
c) 3
d) 0
581. For a homogeneous chemical reaction, $K_{p}=K_{c}$ when
a) $\Delta n=0$
b) $\Delta n=1$
c) $\Delta n=2$
d) $\Delta n=\infty$
582. How many in a. $\mathrm{NH}_{4} \mathrm{Cl}$
b. NaOH
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. NaCl
e. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$
f. NH_{3}
g. HCl
h. HClO_{4}
i. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad$ j. $\mathrm{K}_{2} \mathrm{SO}_{4}$
are neutral?
583. The equilibrium moles obtained during experiment for the given reaction in 1 litre vessel are shown below the reactants and products.
$2 A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons 3 C(\mathrm{~g})+3 D$
$\begin{array}{llllll}\text { Mole at equilibrium } & 8 & 16 & 4 & 4\end{array}$
If reaction in forward direction is to be made, the initial conc. of reactants and products should be such that reaction Quotient should be less than \qquad
584. What is the sum of magic numbers of all solutions given below: (Integer value is between 50 and 60)
(Magic number of a solution $=\mathrm{pH}$ of solution \times Weight factor)

	Solution	Weight factor
I	0.1 M HCN $\left(K_{a}=10^{-10}\right)$	2
II	$0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ $+0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ $\left(K_{a}=10^{-5}\right)$	1
III	0.1 M HCl	3
IV	$0.01 \mathrm{M} \mathrm{HH}_{4} \mathrm{OH}\left(K_{b}\right.$ $\left.=10^{-5}\right)$	2
V	0.01 M NaOH	0.5
VI	$10 \mathrm{~mL} \mathrm{of} 0.01 \mathrm{M}^{\mathrm{CH}} \mathrm{COOH}+10 \mathrm{~mL}^{\text {of } 0.1 \mathrm{M} \mathrm{NH}} 44 \mathrm{OH}$	1

586. Two weak acids $\mathrm{H} A$ and $\mathrm{H} B$ have same pH when their concentration ratio is $3: 1$. The ratio of the dissociation constants of $\mathrm{H} B$ and $\mathrm{H} A$ is...
587. At equilibrium, the value of equilibrium constant K is
a) 1
b) 2
c) 3
d) 0
588. $K_{s p}$ of $M(\mathrm{OH})_{2}$ is 5×10^{-16} at $25^{\circ} \mathrm{C}$. The pH of its saturated solution at $25^{\circ} \mathrm{C}$ is...
589. If ΔG° for a reaction is -8290.8 cal . The K_{c} for the reaction 300 K is 10^{n}. The value of n is:
590. How many of the following cations belong to group IIA, III, IV, and V only in qualitative salt analysis? $\mathrm{Sn}^{2+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cr}^{3+}, \mathrm{As}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Sb}^{3+}$
591. The equilibrium constant for the reactions $A+B \rightleftharpoons A B$ is 0.5 at 200 K . The equilibrium constant for the reaction $A B \rightleftharpoons A+B$ would be
a) 1
b) 2
c) 3
d) 4
592. One mole of ethanol is treated with one mole of ethanoic acid at $25^{\circ} \mathrm{C}$. Half of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be
a) 1
b) 2
c) 3
d) 4
593. $K_{S p}$ of SrF_{2} is 1×10^{-10}. The solubility of SrF_{2} in 0.1 M NaF is $1 \times 10^{-a} \mathrm{M}$. The value of a is...

: ANSWER KEY :

1)	c	2)	a	3)	c	4) d	189)	b	190)	d	191)	d	192)
5)	a	6)	b	7)	b	8) a	193)	d	194)	b	195)	c	196)
9)	c	10)	a	11)	d	12) a	197)	a	198)	c	199)	c	200)
13)	b	14)	c	15)	d	16) c	201)	a	202)	d	203)	b	204)
17)	a	18)	b	19)	C	20) b	205)	c	206)	a	207)	d	208)
21)	c	22)	a	23)	c	24) d	209)	c	210)	b	211)	c	212)
25)	c	26)	d	27)	b	28) c	213)	a	1)	c	2)	a,b,c,d	3)
29)	b	30)	C	31)	a	32) a		b,d	4)	c,d,e			
33)	b	34)	a	35)	b	36) c	5)	a,b,c	6)	a,b,c	7)	b,c,d	8)
37)	d	38)	C	39)	c	40) d		b,c					
41)	d	42)	a	43)	b	44) b	9)	c,d	10)	c,d	11)	a,b,c	12)
45)	a	46)	c	47)	b	48) c		b,d					
49)	d	50)	a	51)	b	52) a	13)	a,b,c	14)	a, b, c	15)	a,c	16)
53)	c	54)	C	55)	b	56) d		$\mathrm{a}, \mathrm{b}, \mathrm{c}$					
57)	a	58)	d	59)	b	60) c	17)	a,d	18)	a,b,c	19)	b,c,d	20)
61)	c	62)	d	63)	c	64) c		a,b,c					
65)	a	66)	b	67)	d	68) d	21)	a,b	22)	a,b	23)	a,b	24)
69)	b	70)	a	71)	b	72) \mathbf{e}		a,c,d					
73)	a	74)	b	75)	a	76) c	25)	a,b,d	26)	a,b	27)	a,b,c	28)
77)	b	78)	d	79)	d	80) b		a,c					
81)	d	82)	a	83)	b	84) b	29)	a,b,d	30)	a,c	31)	a,c,d	32)
85)	b	86)	a	87)	a	88) b		a,b,d					
89)	C	90)	b	91)	b	92) d	33)	c,d	34)	b	35)	b,c,d	36)
93)	c	94)	c	95)	d	96) b		a,b,c					
97)	a	98)	c	99)	b	100) a	37)	b, c	38)	b,c	39)	b,e	40)
101)	d	102)	c	103)	c	104) d		a, c					
105)	b	106)	c	107)	a	108) d	41)	a,b	42)	a,b,c	43)	a, d	44)
109)	b	110)	c	111)	d	112) c		a,b,c,d					
113)	a	114)	b	115)	d	116) d	45)	a,b	46)	b,c,d	47)	a	48)
117)	b	118)	b	119)	d	120) a		a, b, c,					
121)	C	122)	a	123)	C	124) c	49)	a, c, d	50)	a,b,c,d	51)	a,b,c	52)
125)	c	126)	d	127)	a	128) b		b,d					
129)	b	130)	b	131)	a	132) b	53)	a,c,d	54)	c, d	55)	d	56)
133)	d	134)	d	135)	d	136) c		a,b,d					
137)	a	138)	b	139)	C	140) b	57)	c,d	58)	a,b,c	59)	d	60)
141)	a	142)	c	143)	a	144) d		b,c,d					
145)	a	146)	a	147)	d	148) d	61)	b,c,d	62)	b, c	63)	a,b,c,d	64)
149)	d	150)	b	151)	C	152) b		$\mathrm{a}, \mathrm{b}, \mathrm{c}$					
153)	b	154)	a	155)	d	156) d	65)	a,b,c	66)	a, b, d	67)	a,b	68)
157)	a	158)	a	159)	b	160) d		a,b,c					
161)	a	162)	a	163)	a	164) b	69)	a,b	70)	c, d	71)	b, c	72)
165)	a	166)	d	167)	C	168) d		a,b,c,d					
169)	d	170)	a	171)	C	172) a	73)	c,d	74)	a,b,c	75)	a,b,c	76)
173)	c	174)	c	175)	d	176) d		c,d					
177)	a	178)	b	179)	b	180) a	77)	a,c	78)	a, d	79)	a	80)
181)	a	182)	d	183)	C	184) d		a,b,c					
185)	c	186)	b	187)	a	188) a	81)	a, d	82)	b, c, d	83)	a,b,c	84)

	a,b,c							25)	a	26)	a	27)	c	28)	c
85)	a,c,d	86)	a,b,d	87)	a,c	88)		29)	C	30)	a	31)	a	32)	d
	a,b,d							33)	e	34)	c	35)	C	36)	a
89)	b,c,d	90)	c	91)	a,b,c,d	92)		37)	a	38)	d	39)	a	40)	a
	a, b							41)	e	42)	c	43)	C	44)	C
93)	a, b, c	94)	b, c	95)	b,c,d	96)		45)	a	46)	d	47)	a	48)	C
	c, d							49)	a	50)	C	51)	c	52)	a
97)	a,b	98)	a, c, d	99)	a,b	100)		53)	a	54)	d	55)	d	56)	a
	a,b, c,							57)	a	58)	c	59)	b	60)	d
101)	a,b,c,d	102)	b,c	103)	a,b,c,d	104)		61)	c	62)	d	63)	C	64)	a
	b,d							65)	a	66)	b	67)	b	68)	a
105)	b,c,d	106)	$\mathrm{a}, \mathrm{b}, \mathrm{c}$	107)	a,c	108)		69)	d	70)	a	71)	C	72)	c
	a,b,c							73)	C	74)	c	75)	C	76)	C
109)	b, d	110)	a,b	111)	a,b,c	112)		77)	a	78)	C	79)	a	80)	d
	b,c,d							81)	b	82)	C	83)	a	84)	a
113)	b,d	114)	a,b,c	115)	a,b	116)		85)	C	86)	c	87)	a	88)	e
	a, d							89)	b	90)	a	91)	b	92)	c
117)	b,d	118)	a,b,c	119)	a,b,d	120)		93)	a	94)	b	95)	d	96)	a
	$\mathrm{a}, \mathrm{b}, \mathrm{d}$							97)	c	98)	c	99)	a	100)	a
121)	a, d	122)	a, b, d	123)	a,b,c,d	124)		101)	d	102)	d	103)	e	104)	a
	a,b,c,d							105)	b	106)	C	1)	a	2)	C
125)	a,b	126)	b,c,d	127)	a,b,c	128)			3)	a	4)	d			
	c,d							5)	a	6)	b	7)	b	8)	C
129)	a, c	130)	a,c	131)	a, d	132)		9)	C	10)	c	11)	b	12)	b
	a,b,c							13)	a	14)	a	15)	a	16)	a
133)	a,c	134)	a,b,c	135)	a,c	136)		17)	a	18)	c	19)	a	20)	c
	b,c							21)	b	22)	d	23)	d	24)	a
137)	a, b, c	138)	b,d	139)	b,c,d	140)		25)	a	26)	c	27)	b	28)	b
	a,b,c							29)	b	30)	b	1)	a	2)	d
141)	a,d	142)	a,b,c	143)	b,c,d	144)			3)	b	4)	b			
	b,d							5)	a	6)	b	7)	b	8)	a
145)	b,c	146)	a,b	147)	b,c	148)		9)	b	10)	a	11)	b	12)	
	a,b,d								a,b						
149)	a, b, d	150)	a, d	151)	b,c,d	152)		13)	a	14)	d	15)	c	16)	b
	a, c, d							17)	c	18)	a	19)	b	20)	b
153)	a,b,c,d	154)	a,b	155)	a,b,c	156)		21)	b	22)	C	23)	a	24)	C
	a,b							25)	a	26)	C	27)	a	28)	C
157)	a,b,c	158)	a,c	159)	a,b,d	160)		29)	a	30)	b	1)	8	2)	6
	a,b,d								3)	4	4)	b			
161)	a,b,c	162)	a,c	163)	b,c,d	164)	d	5)	2	6)	6	7)	2	8)	2
165)	a,b,d	166)	b, c	167)	b,c,d	168)		9)	3	10)	7	11)	2	12)	
	b,c,d														
169)	b, d	170)	$\mathrm{a}, \mathrm{b}, \mathrm{d}$	171)	$\mathrm{a}, \mathrm{c}, \mathrm{d}$	172)		13)	5	14)	9	15)	5	16)	8
	a, b, c							17)	4	18)	6	19)	6	20)	6
173)	a,b,c,d	174)	a,c	175)	b,c	1)	c	21)	3	22)	2	23)	8	24)	a
	2)	c	3)	c	4)	b		25)	5	26)	2	27)	d	28)	a
5)	b	6)	C	7)	d	8)	c	29)	3	30)	4	31)	54	32)	3
9)	c	10)	a	11)	C	12)	b	33)	a	34)	9	35)	6	36)	4
13)	d	14)	b	15)	a	16)	a	37)	b	38)	a	39)	8		
17)	a	18)	d	19)	a	20)	c								
21)	a	22)	a	23)	c	24)	b								

: HINTS AND SOLUTIONS :

1 (c)
On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which $K_{\text {sp }}$ is lower. In these electrolytes $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and $\mathrm{HgS}, \mathrm{HgS}$ is precipitated firstly.
2 (a)
Salt of S_{A} / S_{B} do not undergo hydrolysis. So
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a salt of S_{A} / S_{B}
3 (c)
Precipitation starts when $Q_{s p}=K_{s p}$
$K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right][\stackrel{\ominus}{\mathrm{O}}]^{2}$
$\therefore \stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\left(\frac{4 \times 10^{-6}}{0.01}\right)^{1 / 2}=2 \times 10^{-2}$
$\mathrm{pOH}=-\log 2+2$
$\mathrm{pH}=14-\log 2+2=12+\log 2$
4 (d)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta n_{\mathrm{g}}=2-4=-2$
$K_{p}=K_{c}(R T)^{\Delta n}$
or $1.44 \times 10^{-5}=K_{c} \times(0.0821 \times 773)^{-2}$
or $K_{C}=\frac{1.4 \times 10^{-5}}{(0.0821 \times 773)^{-2}}$
5 (a)

$$
A(\mathrm{~g})+2 B(\mathrm{~g}) \rightleftharpoons C(\mathrm{~g})
$$

At eq. $0.06 \mathrm{M} \quad 0.12 \mathrm{M} \quad 0.216 \mathrm{M}$
$K=\frac{[\mathrm{C}]}{\left[\mathrm{B}^{2}\right][\mathrm{A}]}=\frac{0.216}{0.12 \times 0.12 \times 0.06}=250$
6 (b)
$\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}$
$\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{Na}^{\oplus}$
Due to common ion $\left(\mathrm{CH}_{3} \mathrm{COO}^{\ominus}\right)$, the suppression of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ takes place, so the concentration of H^{\oplus} decreases, so pH increases. So pH must be more than 4.3
7 (b)
At half neutralization,
$\left[\mathrm{B}^{\oplus}\right]=[\mathrm{BOH}] ;[$ Salt $]=[$ base $]$
$\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{\left[\mathrm{B}^{\oplus}\right]}{[\mathrm{BOH}]}$
$\mathrm{pOH}=\mathrm{p} K_{b},(\mathrm{pH}=8, \mathrm{pOH}=6)$
$\therefore \mathrm{p} K_{b}=6, K_{b}=1 \times 10^{-6}$
(a)
$2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}{ }^{\oplus}+\mathrm{NH}_{2}{ }^{\ominus}$
$\left[\mathrm{NH}_{4}{ }^{\oplus}\right]=\left[\mathrm{NH}_{2}{ }^{\ominus}\right]=\sqrt{K_{\mathrm{NH}_{3}}}=10^{-15} \mathrm{M}$
$1 \mathrm{dm}^{3}$ of solution contains 10^{-15} moles $=6.02 \times$ $10^{23} \times 10^{-15}$ molecules of $\mathrm{NH}_{2}{ }^{\ominus}$
$1 \mathrm{~mm}^{3}$ of solution contains $6.02 \times 10^{23} \times 10^{-15} \times$ 10^{-6}
$602 \mathrm{NH}_{2}{ }^{\ominus}$ ions
(c)

Total moles $=1-\alpha+3-3 \alpha+2 \alpha$
$=4-2 \alpha$
$=4-2 \times 0.5=3$
(a)
pH stands for Fench word puissance de hydrogen which means power of hydrogen ions
11 (d)

Aspirin is a weak acid ad its ionization is suppressed due to common ion effect in acidic medium, i.e., in stomach. Therefore, aspirin is unionized in stomach whereas in small intestine its pH is basic. So the ionization of aspirin increases, that is why it is completely ionized in small intestine

Base in intenstine $(\mathrm{NaOH}) \longrightarrow \mathrm{Na}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
H^{\oplus} and $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ combines and aspirin forms sodium salt
Therefore, ionization of aspirin increases

12 (a)
In acidic medium, $\mathrm{H}_{2} \mathrm{~S}$ is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.
13 (b)
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}-$ Heat
The above equation shows that the reaction is endothermic. Endothermic reactions are forward in forward direction at high temperature
14 (c)

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

Initial $1 \quad 0$
Final $1-x \quad 2 x$
$1-x=0.2 \mathrm{~mol} \quad 2 x=2 \times 10^{-3} \mathrm{~mol}$
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\frac{0.2}{2}=0.1 \mathrm{M}\left[\mathrm{NO}_{2}\right]=\frac{2 \times 10^{-3}}{2}$

$$
=10^{-3} \mathrm{M}
$$

$K=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(10^{-3}\right)^{2}}{0.1}=10^{-5}$
15 (d)
$\mathrm{A}_{2} \mathrm{~B}_{3} \rightleftharpoons 2 \mathrm{~A}^{3+}+3 \mathrm{~B}^{2-}$
$K_{\text {sp }}=(2 S)^{2}(3 S)^{3}=108 S^{5}=108 \times\left(10^{-4}\right)^{5}$
$=108 \times 10^{-20}=1.08 \times 10^{-20}=1.08 \times 10^{-18}$
16 (c)
It is a case of simultaneous solubility of salts with a common ion. Here solubility product of CuCl is much greater than that of AgCl , it can be assumed that Cl^{-}in solution comes mainly from CuCl .
$\Rightarrow \quad\left[\mathrm{Cl}^{-}\right]=\sqrt{K_{\mathrm{sp}}(\mathrm{CuCl})}=10^{-3} \mathrm{M}$
Now for $\mathrm{AgCl}: K_{\text {sp }}=1.6 \times 10^{-10}$

$$
\begin{aligned}
& =\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& =\left[\mathrm{Ag}^{+}\right] \times 10^{-3}
\end{aligned}
$$

$\Rightarrow \quad\left[\mathrm{Ag}^{+}\right]=1.6 \times 10^{-7}$
18 (b)
i. $\mathrm{S}^{2-}+\mathrm{S} \rightarrow \mathrm{S}_{2}{ }^{2-} \ldots k_{1}$
ii. $\mathrm{S}_{2}{ }^{2-}+\mathrm{S} \rightarrow \mathrm{S}_{3}{ }^{2-} \quad \ldots k_{2}$

The equation constant for the reaction,
iii. $S_{3}{ }^{2-} \rightarrow S^{2-}+2 S$,

Since eq. (iii) is obtained by reversing and adding equations (i) and (ii)
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}{ }^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
Due to common ion $\left[\mathrm{OH}^{\ominus}\right.$], the self ionization of $\mathrm{H}_{2} \mathrm{O}$ is suppressed so the concentration of $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ is decreased
20 (b)
Since K increases on increasing temperature, so the reaction will go forward by increasing temperature and hence is endothermic
21 (c)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
\Rightarrow At equivalence point, a salt of weak acid, strong base is formed
$\Rightarrow \mathrm{pH}=7+\frac{1}{2}\left(\mathrm{p} K_{a}+\log C\right)$
Here $C=$ concentration of salt $=\frac{0.2 \times 500}{500+500}=0.1 \mathrm{M}$ [Check that 500 mL of $\mathrm{CH}_{3} \mathrm{COOH}$ is also required]
$\Rightarrow \mathrm{pH}=7+\frac{1}{2}(4.74+\log 0.1)=8.87$
22 (a)
$\Delta n=2-1=1$
a. That is, with the decrease of pressure, reaction shifts towards right, i.e. proportions of NO_{2}
increases. Statement (a) is correct
b. Value of K increase with increase of temperature and hence reaction is endothermic i.e., $\Delta H=+$ ve

Hence statement (b) is incorrect
c. $K_{p}=\frac{\left[p_{\mathrm{NO}_{2}}\right]^{2}}{\left[p_{\mathrm{N}_{2} \mathrm{O}_{4}}\right]}=\frac{\mathrm{atm}^{2}}{\mathrm{~atm}}=\mathrm{atm}$

Hence statement (c) is incorrect
d. $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

Initial $1 \mathrm{~atm} \quad 0$
At eq. $1-\alpha \quad 2 \alpha$
$K_{p}=\frac{(2 \alpha)^{2}}{1-\alpha}=1.7 \times 10^{3}$ at 500 K
[($1-\alpha \approx 1$), since α is small]
$4 \alpha^{2}=1.7 \times 10^{3}$
$\alpha_{1}=\sqrt{\frac{1.7 \times 10^{3}}{4}}$
$\alpha=0.206 \times 10^{2}$
When the pressure was 1 atm , now let it be 2 atm (100% increase)

| $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ | | |
| :--- | :---: | :---: |$\rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

$K_{p}=\frac{(2 \alpha)^{2}}{2-\alpha}=1.7 \times 10^{3}$ at 500 K
[(2- $\alpha \approx 2)$, since α is small]
$\alpha_{2}=\sqrt{\frac{1.7 \times 10^{3}}{2}}$
$\frac{\alpha_{2}}{\alpha_{1}}=\sqrt{\frac{1.7 \times 10^{3} \times 4}{2 \times 1.7 \times 10^{3}}}=\sqrt{2}=1.4$
\therefore When the pressure is increased 100% the decrease in α is 1.4 times which is
not 50%. Hence statement is wrong
e. K_{p} at $600 \mathrm{~K}=1.78 \times 10^{4}$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta n=2-1=1$
Since by decrease of pressure reaction goes forward, i.e., more of $\mathrm{N}_{2} \mathrm{O}_{4}$ will dissociate. It means by decreasing pressure dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ increases.
Hence, the statement is wrong
23 (c)
The dissociation constant of weak acid and its conjugate base are related by an expression
$\mathrm{p} K_{a}+\mathrm{p} K_{a}-\mathrm{p} K_{w}$
i.e., $\mathrm{p} K_{a}+10.83=14$
or $\mathrm{p} K_{a}=14-10.83=3.17$
or $K_{a}=\operatorname{antilog}(-3.17)=6.76 \times 10^{-4}$
24 (d)

Salt	Solubility product	Solubility
$M X$	$S_{1}^{2}=4.0 \times$ 10^{-8}	$S_{1}=2 \times$ 10^{-4}
$M X_{2}$	$4 S_{2}^{3}=3.2 \times$ 10^{-14}	$S_{2}=2 \times$ 10^{-5}
$M_{3} X$	$27 S_{3}^{4}=2.7 \times$	$S_{3}=1 \times$
	10^{-15}	10^{-4}

Thus, solubility order $=M X>M_{3} X>M X_{2}$
26
(d)

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

$\begin{array}{lccc}\text { Initial } & 1 & 0 & 0 \\ \text { Final } & 1-\alpha & \alpha & \alpha\end{array}$
$\underset{\text { pressure }}{\text { Partial }}=\frac{1-\alpha}{1+\alpha} P \frac{\alpha}{1+\alpha} \cdot P \frac{\alpha}{1+\alpha} \cdot P$
Total mole $=1-\alpha+\alpha+\alpha=1+\alpha$
$K_{p}=\frac{\frac{\alpha}{1+\alpha} P \cdot \frac{\alpha}{1+\alpha} \cdot P}{\frac{1-\alpha}{1+\alpha} P}=\frac{\alpha^{2} P}{1-\alpha^{2}}$
27
(b)
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (base) on reaction with HCl (acid) to give a salt of weak base and strong acid as $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}
$$

At=0 $\quad 0.1 \mathrm{~mol} \quad 0.8 \mathrm{~mol} \quad 0.08 \mathrm{~mol}$ After reaction (0.1-0.08)

$$
=0.02 \mathrm{~mol}
$$

So, it acts as basic buffer solution due to presence of base and salt in solution of 1 L .

$$
\begin{aligned}
\mathrm{pOH} & =-\log _{10} K_{b}+\log _{10} \frac{[\text { salt }]}{[\text { base }]} \\
\mathrm{pOH} & =-\log _{10} K_{b}+\log _{10} \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]} \\
& =-\log _{10} 5 \times 10^{-4}+\log _{10} \frac{[0.08]}{[0.02]} \\
& =-\log _{10} 5+4 \log _{10} 10+
\end{aligned}
$$

$\log _{10} \frac{[0.08]}{[0.02]}$

$$
=-0.699+4+0.602=3.903
$$

$$
\mathrm{pH}=14-\mathrm{pOH}
$$

$$
=14-3.903
$$

$$
=10.097=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=8.0 \times 10^{-11}$
28
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{\oplus}+\mathrm{S}^{2-}$
$\therefore K_{a}=\frac{\left[\mathrm{H}^{\oplus}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$10^{-21}=\frac{0.1 \times 0.1 \times\left[\mathrm{S}^{2-}\right]}{0.1}$
$\therefore\left[S^{2-}\right]=10^{-20} M=10^{-20} \times 6.023 \times 10^{23}$
$=6.023 \times 10^{3}$ ions
29 (b)

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus}
$$

Initial $1 \quad 0 \quad 0$
Final $C(1-\alpha) \quad C \alpha \quad C \alpha$
$C=$ Decinormal $=0.1 \mathrm{~N}$
$\alpha=1.3 \%=\frac{1.3}{100}=1.3 \times 10^{-2}$
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=C \alpha=0.1 \times 1.3 \times 10^{-2}=1.3 \times 10^{-3}$
$\mathrm{pH}=-\log \left(1.3 \times 10^{-3}\right)=-\log 1.3-\log 10^{-3}$
$=-0.11+3=2.89$
30 (c)
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=0.01=10^{-2} \mathrm{M}$
$\mathrm{pH}=-\log \left(10^{-2}\right)=2$
31
(a)
$a X+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NaOH}+\mathrm{HX}$
In it $\mathrm{H} X$ is weak acid, so $\mathrm{Na} X$ is a salt of weak acid and strong base.
$\therefore \quad$ Hydrolysis constant of $\mathrm{Na} X$

$$
K_{h}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{10^{-5}}=1 \times 10^{-9}
$$

For this type of salt

$$
K_{h}=\frac{h^{2}}{V}=C h^{2}
$$

$$
h=\text { degree of hydrolysis }
$$

$\therefore \quad 1 \times 10^{-9}=0.1 \times h^{2}$
or

$$
\begin{aligned}
h^{2} & =\frac{1 \times 10^{-9}}{0.1}=1 \times 10^{-8} \\
h & =1 \times 10^{-4}
\end{aligned}
$$

$\therefore \%$ of degree of hydrolysis on NaX salt

$$
=1 \times 10^{-4} \times 100=1 \times 10^{-2}=0.01 \%
$$

32 (a)
With weak base and strong acid, phenolphthalein does not act an indicator
33 (b)
a. HOCl , it is S_{A}. So it is acidic
b. NaOCl , it is salt of $\mathrm{NaOH}+\mathrm{HOCl}\left(\right.$ Salt of $\left.S_{B} / W_{A}\right)$
\therefore It is basic
c. NaHSO_{4} (Salt of $S_{A} / S_{B} \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}$), it is neutral
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ (Salt of $W_{B} / S_{A} \mathrm{NH}_{3}+\mathrm{HNO}_{3}$), it is acidic
34 (a)
(Assume $\left[\mathrm{Al}^{3+}\right]=\left[\mathrm{Zn}^{2+}\right]$)
The compound which have less $K_{s p}$ value will be precipitated first. Since the $K_{\text {sp }}$ of $\mathrm{Al}(\mathrm{OH})_{3}$ is less than $K_{\text {sp }}$ of $\mathrm{Zn}(\mathrm{OH})_{2}$, So former is precipitated
Note: In such questions no need to calculating the exact value only approximation is required
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]_{\min }$ for $\mathrm{Al}^{3+}=\left(\frac{K_{\text {sp }} \text { of } \mathrm{Al}(\mathrm{OH})_{3}}{\left[\mathrm{Al}^{3+}\right]}\right)^{1 / 3}$
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]_{\text {min }}$ for $\mathrm{Zn}^{2+}=\left(\frac{K_{\text {sp }} \text { of } \mathrm{Zn}(\mathrm{OH})_{2}}{\left[\mathrm{Zn}^{2+}\right]}\right)^{1 / 2}$
35 (b)
Higher the $K_{\text {sp }}$, more soluble is that compound in $\mathrm{H}_{2} \mathrm{O}$
$\therefore K_{\text {sp }}$ of $\mathrm{FeS}\left(11 \times 10^{-20}\right)$ is highest
So it is more soluble and has maximum solubility in $\mathrm{H}_{2} \mathrm{O}$
36 (c)
$K=\frac{R_{f}}{R_{b}}=\frac{0.25}{5000}=5.0 \times 10^{-5}$
37 (d)
a. $\mathrm{HgCl}^{\oplus}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{2} \quad \ldots K_{1}$
b. $\mathrm{HgCl}_{2}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{HgCl}_{3}^{\ominus} \quad \ldots K_{2}$

The eq. constant (k) for the reaction,
$2 \mathrm{HgCl}_{2} \rightarrow \mathrm{HgCl}^{\oplus}+\mathrm{HgCl}_{3}{ }^{\ominus}$
Can be obtained by reversing equation (a) and adding to equation (b)
$K=\frac{1}{K_{1}} \times K_{2}=\frac{K_{2}}{K_{1}}=\frac{8.9}{3 \times 10^{6}} \approx 3 \times 10^{-6}$
(c)
$\mathrm{BOH} \rightleftharpoons \mathrm{B}^{\oplus}+\stackrel{\ominus}{\varnothing} \mathrm{H}\left(K_{b}=2.5 \times 10^{-6}\right)$
$\mathrm{H}^{\oplus}+\stackrel{\ominus}{\varnothing} \mathrm{H} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}\left(K=\frac{1}{K_{w}}\right)$
$\overline{\mathrm{BOH}+\mathrm{H}^{\oplus} \rightleftharpoons \mathrm{B}^{\oplus}+\mathrm{H}_{2} \mathrm{O} \mathrm{K}}{ }^{\prime}=?$
$\therefore K^{\prime}=K_{b} \times \frac{1}{K_{w}}=\frac{2.5 \times 10^{-6}}{10^{-14}}=2.5 \times 10^{8}$
(c)

When equal volumes of BaCl_{2} and NaF solutions are mixed. (volume becomes double and concentration is halved)

$$
\left[\mathrm{Ba}^{2+}\right]=\frac{10^{-3}}{2},\left[\mathrm{~F}^{\Theta}\right]=\frac{2 \times 10^{-2}}{2}=10^{-2}
$$

a. $Q_{\text {sp }}$ of $\mathrm{BaF}_{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{\ominus}\right]^{2}$
$=\left(0.5 \times 10^{-3}\right)\left(10^{-2}\right)^{2}=5 \times 10^{-6}$
$Q_{s p}>K_{s p}\left(6 \times 10^{-6}>1.710^{-7}\right)$ will be precipitated.

$$
\left[\mathrm{Ba}^{2+}\right]=\frac{10^{-3}}{2},\left[\mathrm{~F}^{\ominus}\right]=\frac{1.5 \times 10^{-2}}{2}
$$

b. $Q_{\text {sp }}$ of $\mathrm{BaF}_{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{\ominus}\right]^{2}=$
$\left(0.5 \times 10^{-2}\right)\left(0.75 \times 10^{-2}\right)^{2}$
$Q_{\mathrm{sp}}>K_{\mathrm{sp}}$. Hence precipitation occurs

$$
\left[\mathrm{Ba}^{2+}\right]=\frac{1.5 \times 10^{-3}}{2},\left[\mathrm{~F}^{\Theta}\right]=\frac{10^{-2}}{2}
$$

c. Q_{sp} of $\mathrm{BaF}_{2}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{\ominus}\right]^{2}=$
$\left(\frac{1.5 \times 10^{-3}}{2}\right)\left(\frac{10^{-2}}{2}\right)^{2}$
$=0.187 \times 10^{-7}$
$Q_{\mathrm{sp}}<K_{\mathrm{sp}}\left(0.187 \times 10^{-7}<1.7 \times 10^{-7}\right)$
So solution in (c) will not precipitate out
d. $\left[\mathrm{Ba}^{2+}\right]=\frac{2 \times 10^{-2}}{2}=10^{-2} \mathrm{M}$
$\left[\mathrm{F}^{\ominus}\right]=\frac{2 \times 10^{-2}}{2}=10^{-2} \mathrm{M}$
$Q_{\mathrm{sp}} \mathrm{BaF}_{2}=\left(10^{-2}\right)\left(10^{-2}\right)=10^{-6}$
$\therefore Q_{\mathrm{sp}}<K_{\mathrm{sp}}$. Hence precipitation occurs
40 (d)
Effect of catalyst is only to alter the speed of the reaction, it does not effect the equilibrium constant and concentration of reactant or product
41 (d)
$\alpha=50 \%=\frac{50}{100}=0.5$

$$
2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}
$$

Initial 2000
Final $(2-2 \alpha) \alpha \quad \alpha$
$K=\frac{\alpha^{2}}{(2-2 \alpha)^{2}}=\frac{0.5 \times 0.5}{(2-2 \times 0.5)^{2}}=0.25$
42 (a)
$\mathrm{pH}=5.0, \mathrm{pOH}=11$
$\mathrm{pH}_{1}=5.0,\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-5} \mathrm{M}$.
New $\mathrm{pH}_{2}=2.0,\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-2} \mathrm{M}$.
Increase in concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$
$=\frac{10^{-2}}{10^{-5}}=10^{3}=1000$ times
43 (b)
Buffer (A):
$\mathrm{pH}_{1}=\mathrm{p} K_{a}+\log \left(\frac{x}{y}\right)$
Buffer (B):
$\mathrm{pH}_{2}=\mathrm{p} K_{a}+\log \left(\frac{x}{y}\right)$
Since $x>y$
$\therefore \mathrm{pH}_{1}-\mathrm{pH}_{2}=1=\log \frac{x}{y}-\log \frac{y}{x}$
$\therefore 1=2 \log \frac{x}{y}$
$\log \frac{x}{y}=\frac{1}{2}=0.5$
$\frac{x}{y}=\operatorname{Antilog}(0.5)=3.17$
44
(b)
$\mathrm{NH}_{4} \mathrm{OH}$ is W_{B}
$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\mathrm{C} \alpha=\sqrt{K_{b} \times c}=\sqrt{1.8 \times 10^{-5} \times 0.1}$
$=1.34 \times 10^{-3} \mathrm{M}$
45 (a)
The equilibrium constant does not change at all with changes in concentrations, volume, pressure, presence of catalyst, etc. It changes only with changes in temperature of the system. For endothermic reaction, the value of K increases with increase in temperature and vice versa. For exothermic reaction, the value of K decreases with increase in temperature and vice versa

46 (c)
Salt of S_{B} / W_{A} are called acid salt
$\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ are salts of S_{A} / S_{B}. But NaHSO_{3} is salt of W_{A} / W_{B}
(b)

Methyl orange gives red colour in acidic solution and yellow in basic solution
48 (c)
HA: $K_{a}=10^{-4}$
$\mathrm{HA}+\mathrm{NaOH} \rightleftharpoons \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$
Clearly, the reverse reaction is the hydrolysis reaction
$\Rightarrow K_{\text {Required }}=\frac{1}{K_{h}}=\frac{K_{a}}{K_{w}}=\frac{10^{-4}}{10^{-14}}=10^{-10}$
(d)

Since the given equilibrium involves $\Delta n_{g}=0$, there will be no effect of adding an insert gas and decreasing the volume of the container. A catalyst can help in achieving the equilibrium rapidly without affecting the equilibrium amounts of the species involved in the reaction
Only increasing the amount of a reactant can shift the equilibrium amount of a product
(a)

Salt of S_{A} / S_{B} do not hydrolysis in $\mathrm{H}_{2} \mathrm{O}$. So pH does not change on adding KCl to $\mathrm{H}_{2} \mathrm{O}$
51 (b)
$\operatorname{Mg}(\mathrm{OH})_{2} \longrightarrow \underset{\mathrm{~S}}{\mathrm{Mg}^{2+}+\underset{2 \mathrm{~S}}{2} \mathrm{H} \mathrm{H}}$
Let S_{1} is the solubility in $0.01 \mathrm{M} \mathrm{MgCl}_{2}$ (common ion Mg^{2+})
$\therefore\left[\mathrm{Mg}^{2+}\right]=\left(\mathrm{S}_{1}+0.01\right) \approx 0.01$
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=2 \mathrm{~S}_{1}$
$K_{\mathrm{sp}}=(0.01)\left(2 \mathrm{~S}_{1}\right)^{2}$
$S_{1}=\left(\frac{K_{s p}}{4 \times 0.01}\right)^{1 / 2}=\left(\frac{10^{-12}}{4 \times 10^{-2}}\right)^{1 / 2}$

$$
=0.5 \times 10^{-5} \mathrm{M}
$$

$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=2 \mathrm{~S}_{1}=2 \times 0.5 \times 10^{-5}=10^{-5} \mathrm{M}$
$\mathrm{pOH}=5, \mathrm{pH}=14-5=9$
52 (a)

$$
\begin{aligned}
& {\left[\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\right] \rightleftharpoons \mathrm{Pb}^{2+}+2 \mathrm{IO}_{3}^{\ominus}} \\
& K_{\text {sp }}=4 S^{3} \\
& S=\sqrt[3]{\frac{K_{s p}}{4}}=\sqrt[3]{\frac{3.2 \times 10^{-14}}{4}}=2 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

53 (c)
For $\quad A \rightleftharpoons 2 \mathrm{~B}$
Initial 10
At Equilibrium $1-\alpha \quad 2 \alpha$
Total moles $=1-\alpha+2 \alpha=1+\alpha$
$\therefore P_{A}=($ mole fraction of $A) \times$ Initial pressure
$=\left(\frac{1-\alpha}{1+\alpha}\right) P_{1}$
Similarly $P_{B}=\left(\frac{2 \alpha}{1+\alpha}\right) P$
$\therefore K_{p_{1}}=\frac{\left(P_{B}\right)^{2}}{\left(P_{A}\right)}=\frac{\left[\left(\frac{2 \alpha}{1+\alpha}\right) P_{1}\right]^{2}}{\left(\frac{1-\alpha}{1+\alpha}\right) P_{1}}=\frac{4 \alpha^{2} P_{1}}{\left(1-\alpha^{2}\right)}$
For
Initial

$$
\mathrm{P} \rightleftharpoons \mathrm{Q}+\mathrm{R}
$$ 100

At Equilibrium $1-\alpha \quad \alpha \quad \alpha$
Total moles $=1-\alpha+\alpha+\alpha=1+\alpha$
$\therefore P_{p}=\left(\frac{1-\alpha}{1+\alpha}\right) P_{2} ; P_{Q}=\left(\frac{\alpha}{1+\alpha}\right) P_{2}$;
$P_{R}=\left(\frac{\alpha}{1+\alpha}\right) P_{2}$
$K_{p_{2}}=\frac{P_{R} \times P_{Q}}{P_{P}}=\frac{\left(\frac{\alpha}{1+\alpha}\right) P_{2} \times\left(\frac{\alpha}{1+\alpha}\right) P_{2}}{\left(\frac{1-\alpha}{1+\alpha}\right) P_{2}}$
$=\frac{\alpha^{2} P_{2}}{\left(1-\alpha^{2}\right)}$
$\therefore \frac{K_{p_{1}}}{K_{p_{2}}}=\frac{2}{3}($ given $)=\frac{4 \not \mathscr{L}^{2} P_{1}}{\left(1-\sqrt{a^{2}}\right)} \times\left(\frac{1 / \sqrt{a^{2}}}{\not \mathscr{L}^{2} P_{2}}\right)=\frac{4 P_{1}}{P_{2}}$
$\therefore \frac{P_{1}}{P_{2}}=\frac{1}{6}$
54 (c)
$\mathrm{pH}=10, \mathrm{pOH}=4,[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-4} \mathrm{M}$.
$\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ba}^{2+}+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-4}$.
(Since total concentration of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}=10^{-4}$)
$\therefore K_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]^{2}$
$10^{-9}=x \times\left(10^{-4}\right)^{2}$
$\therefore x=10^{-1}=\left[\mathrm{Ba}^{2+}\right]$
55 (b)
$\mathrm{AgBr} \longrightarrow \mathrm{Ag}^{\oplus}+\mathrm{Br}^{\ominus}$
a. $\mathrm{NaBr} \longrightarrow \mathrm{Na}^{+}+\mathrm{Br}^{\ominus}$

Due to common ion effect of Br^{\ominus}, solubility of AgBr will be less

$$
\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4}{ }^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}
$$

b. $\mathrm{Ag}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{AgOH}$
$\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ combines with Ag^{\oplus} ions to give AgOH . So according to Le Chatelier's principle, reaction will proceed in forward direction and hence solubility of AgBr in $\mathrm{H}_{2} \mathrm{O}$ will increase
c. Solubility of AgBr in $\mathrm{H}_{2} \mathrm{O}$ will remain unaffected (here ${ }^{\stackrel{\ominus}{\mathrm{O}}} \mathrm{H}$ from water is very less i.e., $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-7}$)
d. $\mathrm{HBr} \longrightarrow \mathrm{H}^{\oplus}+\mathrm{Br}^{\ominus}$

So again due to common ion effect of Br^{\ominus},
solubility of AgBr will decrease
57 (a)
Use: $\left[\mathrm{H}^{\oplus}\right]_{\text {mix }}=\sqrt{E K_{a i} C_{i}}$
$=\sqrt{1.8 \times 10^{-4} \times 0.1+3.1 \times 10^{-4} \times 0.1}$
$=\sqrt{4.9 \times 10^{-5}} \mathrm{M}=7 \times 10^{-3} \mathrm{M}$

59 (b)
Factual statement
60 (c)
Largest pH , will be of the most basic solution, so $\frac{M}{10} \mathrm{NaOH}$, will have largest pH
(c)

Decrease or increase in the concentration of CO_{2} does not effect pH
62
(d)
$\mathrm{pH}_{1}=\mathrm{p} K_{a}+\log \left(\frac{\text { Salt }}{\text { Acid }}\right)$
$\mathrm{pH}_{1}=\mathrm{p} K_{a}+\log \left(\frac{x_{1}}{y_{1}}\right)$
$\mathrm{pH}_{2}=\mathrm{p} K_{2}+\log \left(\frac{x_{2}}{y_{2}}\right)$
$\mathrm{pH}_{2}-\mathrm{pH}_{1}=\log \frac{x_{2}}{y_{2}}-\log \frac{x_{1}}{y_{1}}$
$2=\log \left(\frac{x_{2} / y_{2}}{x_{1} / y_{1}}\right)$
$\therefore \frac{x_{2} / y_{2}}{x_{1} / y_{1}}=10^{2}=100$
This is only possible, if the concentration of salt is increased by 10 times and the concentration of acid is decreased by 10 times
63 (c)
$\mathrm{HIn} \stackrel{\mathrm{K}_{\text {Ind }}}{\rightleftharpoons} \mathrm{H}^{\oplus}+$ Ind $^{\ominus}$
Red Blue
Use: $\mathrm{pH}=\mathrm{p} K_{\text {Ind }}+\log \frac{\left.\text { Ind }^{\ominus}\right]}{[\mathrm{HIn}]}$;
$\mathrm{p} K_{\text {Ind }}=-\log \left(3 \times 10^{-5}\right)=4.52$
$75 \% \operatorname{Red} \Rightarrow \frac{[\mathrm{HIn}]}{\left[\operatorname{Ind}^{\ominus}\right]}=\frac{3}{1}$
$\Rightarrow \mathrm{pH}=p K_{\text {Ind }}+\log \frac{1}{3}=4.05$
75% Blue $\Rightarrow \frac{[\mathrm{HIn}]}{\left[\mathrm{Ind}^{\ominus}\right]}=\frac{1}{3}$
$\Rightarrow \mathrm{pH}=\mathrm{p} K_{\text {Ind }}+\log \frac{3}{1}=5.00$
64 (c)
The hydrolysis reaction of conjugate base of acid is

$$
\begin{aligned}
& A^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HO}^{-}+\mathrm{H} A \\
& \quad K_{h}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{10^{-4}}=10^{-10}
\end{aligned}
$$

Since, degree of hydrolysis is negligible;

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{K_{h} C}=10^{-6} \cdot p[\mathrm{OH}]=6
$$

and

$$
\mathrm{pH}=14-6=8
$$

65 (a)
In which $\Delta n=0$
i. $\Delta n=2-(1+1)=0$
ii. $\Delta n=2-(2+1)=-1$
iii. $\Delta n=2-(1+3)=-2$
iv. $\Delta n=1-(1+1)=-1$

66 (b)
$\mathrm{HgCl}_{2} \rightleftharpoons \mathrm{Hg}^{2+}+2 \mathrm{Cl}^{\ominus}$
$S=\sqrt[3]{\frac{K_{\mathrm{sp}}}{4}}=\sqrt[3]{\frac{4 \times 10^{-15}}{4}}=10^{-5}$
$\therefore 2 S=2 \times 10^{-5}=\left[\mathrm{Cl}^{\ominus}\right]$
67 (d)
a. Acidic buffer, and have $\mathrm{pH}<7$
b. Also acidic buffer, $\mathrm{pH}<7$
c. Salt of $W_{A} / W_{B}, \mathrm{pH}=7$
d. Basic buffer, and $\mathrm{pH}>7$

68 (d)
$0.05 \mathrm{M}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=2 \times 0.05 \mathrm{~N}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=0.1 \mathrm{~N}$
$\therefore\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=[0.1]=10^{-1}$
$-\log \left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=-\log \left[10^{-1}\right]=1$
$\mathrm{pH}=1$
69
(b)

Due to common ion $\left(\mathrm{NH}_{4}{ }^{\oplus}\right)$, from $\mathrm{NH}_{4} \mathrm{Cl}$, it suppresses the ionization of $\mathrm{NH}_{4} \mathrm{OH}$, so as to give less concentration, of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ions, so that only the hydroxides of III group can precipitate, not the hydroxides of higher group, since $K_{\text {sp }}$ of the hydroxides of III group is lower than the $K_{\text {sp }}$ of the hydroxides of higher group
70 (a)
In oxy acids of halogens, the higher the oxidation state of the halogen, the stronger the acid
The order of acidic strength is
$\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HCIO}$
The order basic strength is
$\mathrm{ClO}_{4}{ }^{\ominus}<\mathrm{ClO}_{3}{ }^{\ominus}<\mathrm{ClO}_{2}{ }^{\ominus}<\mathrm{ClO}^{\ominus}$
The stronger the acid, the weaker the conjugate base and vice versa

71 (b)
When equal volumes of $\left(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\right)$ and metal ions are mixed (volume becomes double and concentration is halved)
$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\frac{10^{6}}{2},\left[\mathrm{M}^{+n}\right]=\frac{0.1}{2}$
$Q_{\text {sp }}$ (or IP) of metal hydroxides of $M(O H)_{2}$ type
$=\left[\mathrm{M}^{+n}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]^{2}$
$=\left(\frac{0.1}{2}\right)\left(\frac{10^{-6}}{2}\right)^{2}=\frac{1}{8} \times 10^{-13}$
$=0.125 \times 10^{-13}=12.5 \times 10^{-11}$
$\therefore Q_{\mathrm{sp}}>K_{\mathrm{sp}}$ of $\mathrm{Mg}(\mathrm{OH})_{2}\left(12.5 \times 10^{-11}>3 \times\right.$
10-11
And $Q_{\text {sp }}>K_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{2}\left(12.5 \times 10^{-11}>8 \times\right.$ 10^{-16})
So both can be precipitated. Since the $K_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{2}$ is less than Ksp of $\mathrm{Mg}(\mathrm{OH})_{2}$, so $\mathrm{Fe}(\mathrm{OH})_{2}$ will be precipitated first
Similarly, $Q_{\text {sp }}$ (or IP) of metal hydroxides of M(OH) type
$=\left[\mathrm{M}^{+1}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\left(\frac{0.1}{2}\right)\left(\frac{10^{-6}}{2}\right)$
$=0.25 \times 10^{-7}$
$\therefore Q_{\mathrm{sp}}<K_{\mathrm{sp}}$ of $\mathrm{AgOH}\left(0.25 \times 10^{-7}<5 \times 10^{-3}\right)$
It can not be precipitated out. Hence $\mathrm{Fe}(\mathrm{OH})_{2}$ will be precipitated
72 (e)

$$
2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}
$$

At equilibrium $0.2 \mathrm{kPa} \quad 0.4 \mathrm{kPa}$
$K_{p}=\frac{\left[p_{\mathrm{N}_{2} \mathrm{O}_{4}}\right]}{\left[p_{\mathrm{NO}_{2}}\right]^{2}}=\frac{0.4}{0.2 \times 0.2}=10$
73 (a)
$A(\mathrm{~g}) \rightleftharpoons B(\mathrm{~g})+C(\mathrm{~g})$
a. With increase of temperature K_{p} increases, i.e; with increase of temperature, the reaction is favoured in forward direction and hence reaction is endothermic. Thus statement (a) is incorrect
b. Increase of temperature favours forward reaction and hence the formation of B
increases. Correct statement
c. $\Delta n=1+1-1=1$
$\Delta n=+$ ve, i.e., with the increase of pressure, reaction is favoured backward
direction and hence the formation of $A(\mathrm{~g})$
increases. Correct statement
d. As from the above statement in (i) and (iii), the reaction is favoured backward with decrease of
temperature and increase of pressure. Correct statement
74 (b)
a. $10^{-10} \mathrm{M} \mathrm{HCl}$, since $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]<10^{-6} \mathrm{M}$, so pH is less than 7 because of the acidic solution
b. $10^{-4} \mathrm{M} \mathrm{NaOH}$, since
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=10^{-4} \mathrm{M}, \mathrm{pOH}=4, \mathrm{pH}=10$
c. $10^{-10} \mathrm{M} \mathrm{NaOH}$, Since $\left.\stackrel{\ominus}{\mathrm{O}} \mathrm{O}\right]<10^{-6} \mathrm{M}$, pH is slightly more than 7, because of the basic solution
75 (a)
On heating $\mathrm{H}_{2} \mathrm{O}$ at 350 K , the self ionization of $\mathrm{H}_{2} \mathrm{O}$, increases
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
So the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ and $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$ both increases, so the pH increases or pOH decreases
76 (c)
For the weak acid HA,
$K_{a}=\frac{\left[\mathrm{X}^{\oplus}\right] \times\left[\mathrm{A}^{\ominus}\right]}{[\mathrm{HA}]}$
Reaction of weak acid with strong base.
$\mathrm{HA}+\mathrm{OH}^{\ominus} \rightleftharpoons \mathrm{A}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
$K=\frac{\left[\mathrm{A}^{\ominus}\right]}{[\mathrm{HA}] \times[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]}$
Dividing (1) by (2), we get
$\frac{K_{a}}{K}=\left[\mathrm{H}^{\oplus}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=K_{w}$
77 (b)
$A+B \rightleftharpoons C+D$
According to Le Chatelier's principle, as the concentration of the products are increased, the reaction proceeds in the backward direction
78 (d)
a. $\mathrm{HCl}=100 \times \frac{1}{10}=10 \mathrm{mEq}$
$\mathrm{NaOH}=100 \times \frac{1}{10}=10 \mathrm{mEq}$
Salt of $\mathrm{S}_{\mathrm{A}} / \mathrm{S}_{\mathrm{B}}$ is formed, $\mathrm{pH}=7$
b. $\mathrm{HCl}=55 \times \frac{1}{10}=5.5 \mathrm{mEq}$
$\mathrm{NaOH}=45 \times \frac{1}{10}=4.5 \mathrm{mEq}$
1.0 mEq of HCl is left. So pH will be in acidic range but not equal to one, since concentration of HCl is very low
c. $\mathrm{HCl}=10 \times \frac{1}{10}=1 \mathrm{mEq}$
$\mathrm{NaOH}=90 \times \frac{1}{10}=9 \mathrm{mEq}$
8 mEq of NaOH is left and $\mathrm{pH}>7$
d. $\mathrm{HCl}=75 \times \frac{1}{5}=15 \mathrm{mEq}$
$\mathrm{NaOH}=25 \times \frac{1}{5}=5 \mathrm{mEq}$
$15-5=10 \mathrm{mEq}$ of HCl is left
$\therefore[\mathrm{HCl}]=\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=\frac{10 \mathrm{mEq}}{(75+25) \mathrm{mL}}=\frac{10}{100}=0.1 \mathrm{M}$
$\mathrm{pH}=-\log \left(10^{-1}\right)=1$
79
(d)
$\begin{array}{ccc}\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \mathrm{Fe}(\mathrm{OH})^{2+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{\oplus}(\mathrm{aq}) \\ 1 & 0 & 0 \\ C(1-\alpha) & C \alpha & C \alpha\end{array}$
$\left(1-\alpha=\frac{80}{100}=0.8, \alpha=0.2\right)$
$K_{a}=\frac{C \alpha}{1-\alpha}$
$6.5 \times 10^{-3}=\frac{C \times(0.2)^{2}}{0.8} . \therefore C=13.0 \times 10^{-2}$
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=\mathrm{C} \alpha=13.0 \times 10^{-2} \times 0.2=26 \times 10^{-3}$
$\mathrm{pH}=-\log \left(26 \times 10^{-3}\right)=-1.415+3=1.585$

$$
=1.6
$$

81 (d)
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$K_{c}=P_{\mathrm{CO}_{2}}$, therefore, K_{c} only depends upon
concentration of CO_{2} as long as temperature remains constants and both CaCO_{3} (s) and CaO (s) are present
82 (a)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\begin{array}{llll}
30 & 30 & 0 & \text { initially }
\end{array}
$$

$(30-x)(30-x) 2 x$ at equilibrium
$2 x=10 \quad \therefore x=\frac{10}{2}=5$
$\mathrm{N}_{2}=30-5=25 \mathrm{~L}$
$\mathrm{H}_{2}=30-3 \times 5=15 \mathrm{~L}$
$\mathrm{NH}_{3}=2 \times 5=10 \mathrm{~L}$
83 (b)
An acid base indicator changes its colour when $\mathrm{pH}=\mathrm{p} K_{a}$ or $\mathrm{pOH}=\mathrm{p} K_{b}$
$\therefore K_{b}=10^{-10}, \mathrm{p} K_{b}=10$
$\therefore \mathrm{pOH}=10, \mathrm{pH}=14-10=4$
$\mathrm{pH}=4$
(b)

The equilibrium constant depends only upon temperature
(b)

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}
$$

$\begin{array}{llll}\text { Initial } & 1 & 1 & 0\end{array}$
Final $\frac{1-\alpha}{v} \frac{1-\alpha}{v} \quad \frac{2 \alpha}{v}$
Since $\Delta n=0 \quad[2-(1+1)]$
$\therefore K$ does not depend on volume

So on reducing volume to half K does not change $\therefore K=50$
86 (a)
Since all compounds (MA, MB, MC, and MD) are uni-univalent type. All will have the same formula of solubility in $\mathrm{H}_{2} \mathrm{O}$ (i. e., $\sqrt{K_{\text {sp }}}$). Same concentration of common ion $\left(\mathrm{M}^{\oplus}\right)$ is added, so solubilities of all will be suppressed
Hence, the compound with least $K_{\text {sp }}$ value will be precipitated, i.e., MA with $K_{s p}=1.8 \times 10^{-10}$
87 (a)
Since $K_{\text {sp }}$ of CaCO_{3} and $\mathrm{CaC}_{2} \mathrm{O}_{4}$ are very close, so concentration of any species cannot be neglected Let the solubilities of CaCO_{3} and $\mathrm{CaC}_{2} \mathrm{CO}_{4}$ are x and $y \mathrm{M}$
$\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{CaC}_{2} \mathrm{O}_{4} \rightleftharpoons \stackrel{x}{\mathrm{Ca}^{2+}}+\stackrel{x}{\mathrm{CO}_{3}{ }^{2-}}$

$$
y \quad y
$$

Total $\left[\mathrm{Ca}^{2+}\right]=x+y$
$K_{\text {sp }}$ of $\mathrm{CaCO}_{3}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=(x+y) x$
K_{sp} of $\mathrm{CaC}_{2} \mathrm{O}_{4}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=(x+y) y$
$\therefore x(x+y)=1.3 \times 10^{-9}$
$y(x+y)=1.3 \times 10^{-9}$
$\frac{x}{y}=\frac{4.7 \times 10^{-9}}{1.3 \times 10^{-9}}$
$\therefore x=3.615 y$
Substituting the value of x in equation (i) or (ii)
$3.615 y(3.615 y+y)=4.7 \times 10^{-9}$
$3.615 \times 4.615 y^{2}=4.7 \times 10^{-9}$
$\therefore y=\left(\frac{4.7 \times 10^{-9}}{16.68}\right)^{1 / 2}=1.67 \times 10^{-5} \mathrm{M}$
$x=6.03 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{Ca}^{2+}\right]=x+y=\left(6.03 \times 10^{-5}+1.67 \times 10^{-5}\right)$
$=7.707 \times 10^{-5} \mathrm{M}$
88 (b)
$\mathrm{p} K_{w}=13.4$
If we calculate the pH of $\mathrm{H}_{2} \mathrm{O}$ from the above value, it come to be 6.7. (Since conc. Of H^{\oplus} and $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is equal). So new scale is made from 0 to 13.4

So, at $\mathrm{pH}=7$, Solution is basic
89 (c)
Let the initial concentration of $\mathrm{H}^{\oplus}=10^{-1} \mathrm{M}$ $\mathrm{pH}=1$
the new concentration of H^{\oplus}, is 10 times the initial concentration of $\mathrm{H}^{\oplus}=10 \times 10^{-1} \mathrm{M} 10^{\circ}=$ 1
$\mathrm{pH}_{2}=-\log (1)=0$
The change in $\mathrm{pH}=\mathrm{pH}_{1}-\mathrm{pH}_{2}=1.0=0$
Change in pH is one and it decreases from 1 to zero
90 (b)
$\alpha=\frac{D-d}{d}$
$D=$ Vapour density before dissociation
$d=$ Vapour density after dissociation
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
Vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ before dissociation
(D) $=\frac{14 \times 2+16 \times 4}{2}=\frac{92}{2}=46$

Vapour density after dissociation (d) $=38.3$
$\therefore \alpha=\frac{46-38.3}{38.3}=0.2$
$\begin{array}{lcc} & \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \\ \text { Initial } & 1 & 0 \\ \text { At equilibrium } & 1-\alpha & 2 \alpha\end{array}$
Number of moles of NO_{2} at eq. $=2 \alpha=2 \times 0.2=$ 0.4

91 (b)

$$
2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}
$$

$\begin{array}{llll}\text { Initial } & 1 & 0 & 0\end{array}$
At equilibrium $1-2 x \quad 2 x \quad x$
$\therefore 2 x=0.6, \therefore x=0.3$
$\left[\mathrm{SO}_{3}\right]=1-2 x=1-0.6=0.4$
$\left[\mathrm{SO}_{2}\right]=2 x=0.6$
$\left[\mathrm{O}_{2}\right]=x=0.3$
$K=\frac{x \times(2 x)^{2}}{(1-2 x)^{2}}=\frac{0.3 \times 0.6 \times 0.6}{0.4 \times 0.4}=0.675$
92 (d)
$M_{1} V_{2}=M_{2} V_{2}$
$10^{-5} \times 1=M_{2} \times 1000$
$M_{2}=10^{-8}$
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-8} \mathrm{M}$
Since the $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]<10^{-6}$
So $\mathrm{pH} \approx 6.98$
93 (c)

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

Initial 10
Final $1-\alpha \quad 2 \alpha$
[Total moles $=1-\alpha+2 \alpha=1+\alpha]$
Partial pressure $\frac{1-\alpha}{1+\alpha} \times P \frac{2 \alpha}{1+\alpha} \times P$
Given, $\alpha=0.2, P=1$
Partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}=\frac{1-0.2}{1+0.2} \times 1=\frac{0.8}{1.2}=\frac{2}{3}$
$p_{\mathrm{NO}_{2}}=\frac{2 \times 0.2}{1+0.2} \times 1=\frac{0.4}{1.2}=\frac{1}{3}$
$K_{p}=\frac{\left[p_{\mathrm{NO}_{2}}\right]^{2}}{\left[p_{\mathrm{N}_{2} \mathrm{O}_{4}}\right]}=\frac{1 \times 1 \times 3}{3 \times 3 \times 2}=\frac{1}{6}$
94 (c)
Find the $\left[\mathrm{Ag}^{\oplus}\right]$ in all the saturated solutions
$\left[\mathrm{Ag}^{\oplus}\right]_{\text {in } \mathrm{AgCl}}=\sqrt{K_{\text {sp }} \mathrm{AgCl}}=\sqrt{1.8 \times 10^{-10}} \mathrm{M}$;
$\left[\mathrm{Ag}^{\oplus}\right]_{\text {in } \mathrm{AgBr}}=\sqrt{K_{\text {sp }} \mathrm{AgBr}}=\sqrt{5.0 \times 10^{-13}} \mathrm{M}$
$\left[\mathrm{Ag}^{\oplus}\right]_{\text {in } \mathrm{Ag}_{2} \mathrm{CrO}_{4}}=2 \sqrt[3]{\frac{K_{\text {sp }} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{4}}$
$=2 \sqrt[3]{\frac{2.4 \times 10^{-12}}{4}} \mathrm{M}$
$\Rightarrow\left[\mathrm{Ag}^{\oplus}\right]$ is maximum in saturated solution of
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
95 (d)
Salt of W_{A} / S_{B} hydrolyse and the solution is basic, i.e., $\mathrm{pH}>7$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$
96 (b)
$\mathrm{M}_{2} \mathrm{X}$: Solubility of $\mathrm{M}_{2} \mathrm{X}=\sqrt[3]{\frac{K_{\mathrm{sp}\left(\mathrm{M}_{2} \mathrm{X}\right)}}{4}}$
MX: Solubility of MX $=\sqrt{K_{\text {sp(MX) }}}$
MX_{3} : Solubility of $\mathrm{MX}_{3}=\sqrt[4]{\frac{K_{\mathrm{sp}\left(\mathrm{MX}_{3}\right)}}{27}}$
Clearly, solubility is maximum for MX_{3} and then $\mathrm{M}_{2} \mathrm{X}$
97 (a)
Let the solubility by S
$\begin{aligned} \mathrm{A}_{p} \mathrm{~B}_{q} \rightleftharpoons & \mathrm{pA}^{\oplus}+\mathrm{qB}^{\ominus} \\ & p S \quad q S\end{aligned}$
$K_{\mathrm{sp}}=\left[\mathrm{A}^{\oplus}\right]^{p} \times\left[\mathrm{B}^{\ominus}\right]^{q}$
$=[p S]^{p} \times[q S]^{q}$
$=p^{p} \times q^{q} \times S^{p+q}$
98
(c)
i. $\mathrm{AgCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ag}^{\oplus}(\mathrm{aq})+\mathrm{Cl}^{\ominus}(\mathrm{aq}) \quad \ldots S_{1}$
ii. AgCl in $0.01 \mathrm{M} \mathrm{CaCl}_{2}, \quad \ldots S_{2}$

Concentration of $\mathrm{Cl}^{\ominus}=2 \times 0.01=0.02 \mathrm{M}$
iii. AgCl in $0.01 \mathrm{M} \mathrm{NaCl} \quad \ldots S_{3}$

Concentration of $\mathrm{Cl}^{\ominus}=0.01 \mathrm{M}$
iv. AgCl is $0.05 \mathrm{M}, \mathrm{AgNO}_{3}, \quad \ldots S_{4}$

Concentration of $\mathrm{Ag}^{\oplus}=0.05$
Since both Cl^{\ominus} ion and Ag^{\oplus} ions acts as common ion. So larger the concentration of Ag^{\oplus} or Cl^{\ominus} ions, more is the suppression of ionization of AgCl and hence less will be solubility of AgCl
\therefore Solubility order
$S_{1}>S_{3}>S_{2}>S_{4}$
99 (b)
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-6}=[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$
Because in pure water, $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$
$=10^{-6} \times 10^{-6}$
$=10^{-12}$
100 (a)

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

At eq. $\quad 0.025 \quad-\quad x$
solid solid
$K_{c}=\left[\frac{\mathrm{CO}_{2}(\mathrm{~g})}{\mathrm{CO}(\mathrm{g})}\right]=\frac{x}{0.025}=5.0($ Given $)$
$\therefore \mathrm{x}=0.125 \mathrm{M}$
$\left[\mathrm{CO}_{2}\right]=0.125 \mathrm{M}$
101 (d)
At equilibrium, amount of NH_{3} formed is equal to the amount of NH_{3} decomposed into H_{2} and N_{2}
(c)
$A+2 B \rightleftharpoons C+$ Heat
The equation shows, that it is exothermic
reaction. Since the heat is released in the reaction, so the reaction is favoured in forward direction at low temperature
$\Delta n=1-(2+1)=-2$
Since the number of moles decreases, \therefore the forward reaction is favoured at high pressure
103 (c)
K does not depend on initial concentration of R or P
104
(d)

Weak monoacidic base e.g., BOH is
neutralised as follows

$$
\mathrm{BOH}+\mathrm{HCl} \rightarrow \mathrm{BCl}+\mathrm{H}_{2} \mathrm{O}
$$

At equivalence point all $B O H$ gets converted into salt and remember! The concentration of H^{+}(or pH of solution) is due to hydrolysis of resultant salt (BCl , cationic, hydrolysis here)

$$
\begin{array}{cc}
\mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH} \\
C(1-h) & +\quad \mathrm{H}^{+} \\
C h & C h
\end{array}
$$

Volume of HCl used up

$$
V_{a}=\frac{N_{b} V_{b}}{N_{a}}=\frac{2.5 \times 2 \times 15}{2 \times 5}=7.5 \mathrm{~mL}
$$

Concentration of salt

$$
\begin{aligned}
{[\mathrm{BCl}] } & =\frac{\text { conc.of base }}{\text { total volume }}=\frac{2 \times 2.5}{5(7.5+2.5)}=\frac{1}{10}=0.1 \\
K_{h} & =\frac{C h^{2}}{1-h}=\frac{K_{w}}{K_{b}}
\end{aligned}
$$

(h should be estimated whether that can be neglected or not)
on calculating $h=0.27$ (significant, not negligible)

$$
\left[\mathrm{H}^{+}\right]=\mathrm{Ch}=0.1 \times 0.27=2.7 \times 10^{-2} \mathrm{M}
$$

105 (b)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
1
$(1-0.2)$
0
$(1-2 \times 0.2=0.4$
Total pressure $=1.2$
As the temperature is doubled, the pressure becomes double. Therefore, the total final pressure is $1.2 \times 2=2.4 \mathrm{~atm}$
106 (c)
With increase in temperature, K value decreases, which means that at high temperature the reaction proceeds in backward direction or proceeds forward at room temperature. In another words, at room temperature, HI dissociates or HI is less stable than H_{2} and I_{2}
109 (b)
Only salts of S_{A} / S_{B} do not hydrolyse while all other salts hydrolyse
$\mathrm{NaCl}, \mathrm{KCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ are salts of S_{A} / S_{B}, so do not hydrolyse but $\mathrm{NH}_{4} \mathrm{Cl}_{3}$ is salt of W_{A} / S_{B} and hydrolyses
110 (c)
Lewis acid is that which is e^{-}deficient and can accept lone pair of e^{-}s. So BF_{3} can accept a lone pair of $\mathrm{e}^{-} \mathrm{s}$
111 (d)
For the reaction $A+B \rightarrow C+D$, the reaction quotient is defined as
$Q=\frac{[C][D]}{[A][B]}$
In the initial stages of the reaction, the
concentrations of C and D increase while those of A and B decrease. Hence, the value of Q increases with time
112 (c)
The aqueous solution of $\mathrm{KCN}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and LiCN turn red litmus blue because of alkaline nature.
The anionic hydrolysis turns the solution alkaline.
113 (a)

Similarly like in problem 102 (above), $\mathrm{NaNO}_{3}, \mathrm{KCl}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$ are salts of S_{A} / S_{B} and do not hydrolyse. But $\mathrm{CH}_{3} \mathrm{COOK}$ is a salt of W_{A} / W_{B} and hydrolyses
114 (b)
Factual statement
115 (d)
Reaction quotient is equal to the ratio of the concentrations of products to the ratio of the concentrations of the reactants at any stage of the reaction, each concentration term being raised to the power of its stoichiometric coefficient. In the beginning of the reaction, $Q=0$
As the reaction proceeds in the forward direction, Q starts increasing
At chemical equilibrium, $Q=K$
116 (d)
$\mathrm{Ba}(\mathrm{OH})_{2}>\mathrm{Ca}(\mathrm{OH})_{2}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{Be}(\mathrm{OH})_{2}$
In alkaline earth metal hydroxides, the solubility increases down the group
117 (b)
$\mathrm{H}_{3} \mathrm{O}^{\oplus}=10^{-9} \mathrm{M}$
Since the concentration of $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ is $<10^{-6} \mathrm{M}$. So concentration of $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ is calculated from ionization of water and its common effect, so the value will lie between 6 and 7
118 (b)
$\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}$
Only the HCl provides common ion H^{\oplus} and so it will suppress the ionization of acetic acid
119 (d)
$\begin{array}{cccc} & \mathrm{XY}(\mathrm{g}) & \rightleftharpoons \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \\ \text { Initial } & 1 & 0 & 0.2\end{array}$
At eq. $1-x \quad x \quad 0.2+x$
At eq. $[\mathrm{X}]=0.2+x=0.6$
$\therefore x=0.4 \mathrm{~mol}=\frac{0.4}{1}=0.4 \mathrm{M}$
$[\mathrm{XY}]=1-0.4 \mathrm{~mol}=0.6 \mathrm{~mol}=\frac{0.6}{1}=0.6 \mathrm{M}$
$[\mathrm{X}]=x=0.4=\frac{0.4}{1}=0.4 \mathrm{M}$
$K=\frac{[\mathrm{X}][\mathrm{Y}]}{[\mathrm{XY}]}=\frac{0.4 \times 0.6}{0.6}=0.4 \mathrm{~mol} \mathrm{~L}^{-1}$
120 (a)
Equilibrium is affected by changes in concentrations, temperature, pressure, and volume. It is not affected by the presence of a catalyst. The presence of a catalyst just helps to achieve the equilibrium at a different pace. It does not affect the amount of a reactant or a product at equilibrium

121 (c)
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$
$=10^{-6.7} \times 10^{-6.7}=10^{-13.4}$
122 (a)
Stronger is the acid, weak is the conjugate base and vice versa
Base Acid
$\mathrm{ClO}^{\ominus} \mathrm{HClO}$
$\mathrm{ClO}_{2}{ }^{\ominus} \quad \mathrm{HClO}_{2}$
$\mathrm{ClO}_{3}{ }^{\ominus} \quad \mathrm{HClO}_{3}$
$\mathrm{ClO}_{4}{ }^{\ominus} \quad \mathrm{HClO}_{4}$
Acidic order: $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$
Conjugate base order: $\mathrm{ClO}_{4}{ }^{\ominus}<\mathrm{ClO}_{3}{ }^{\ominus}<\mathrm{ClO}_{2}{ }^{\ominus}<\mathrm{ClO}^{\ominus}$
\therefore Strongest base $=\mathrm{ClO}^{\ominus}$
123 (c)
$\mathrm{W}+\mathrm{X} \rightleftharpoons \mathrm{Y}+\mathrm{Z}, \mathrm{K}=9$
$\begin{array}{lllll}\text { Initial } & 1 & 1 & 0 & 0\end{array}$
At eq. $1-x \quad 1-x \quad x \quad x$
$K=9=\frac{x^{2}}{(1-x)^{2}}$
$\therefore x=0.75$
Moles of $y=x=0.75$
124 (c)
$\alpha=\frac{1}{100}=10^{-2}$
$\mathrm{BOH} \rightleftharpoons \mathrm{B}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
$K_{b}=\frac{C \alpha^{2}}{1-\alpha} \approx C \alpha^{2}=0.1 \times\left(10^{-2}\right)^{2}=10^{-5}$
When 0.2 mol of BCl is added, due to common ion effect of $\mathrm{B}^{\oplus}\left(\mathrm{BCl} \rightleftharpoons \mathrm{B}^{\oplus}+\mathrm{Cl}^{\ominus}\right)$, suppression of ionization of $B O H$ occurs, and α becomes α^{\prime}
$\therefore \alpha^{\prime}=\frac{K_{b}}{M}(\mathrm{M}=$ molarity of common ion added $)$
$=\frac{10^{-5}}{0.2}=5 \times 10^{-5} \mathrm{M}$
125 (c)
$\mathrm{AgCl} \rightleftharpoons \underset{x}{\mathrm{Ag}^{\oplus}}+\underset{x}{\mathrm{Cl}^{\ominus}}$
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{\oplus}+\mathrm{Cl}^{\ominus}$
$\begin{array}{llll}\text { Initial } & 0.1 & 0 & 0\end{array}$
$\begin{array}{llll}\text { Final } & 0 & 0.1 & 0.1\end{array}$
(NaCl is a salt of S_{A} / S_{B}, which is completely ionised)
$\therefore \mathrm{Cl}^{\ominus}=(x+0.1) \approx 0.1$ (Since x is very small)
$\therefore K_{\mathrm{sp}}=\left[\mathrm{Ag}^{\oplus}\right]\left[\mathrm{Cl}^{\ominus}\right]$
$1.2 \times 10^{-10}=x \times 0.1$
$x=\frac{1.2 \times 10^{-10}}{0.1}=1.2 \times 10^{-9} \mathrm{M}$
i. $\mathrm{K}_{2} \mathrm{SO}_{4}$ is salt of S_{A} / S_{B} and do not hydrolyse so $\mathrm{pH}=7$
ii. pH of pure $\mathrm{H}_{2} \mathrm{O}=7$
iii. pH of 10^{-2} mols of HCl per litre $=2$
iv. pH of weak bae $\mathrm{NH}_{4} \mathrm{OH}$ will be more than 7

127 (a)
$N_{1} V_{1}(\mathrm{HCl})=N_{2} V_{2}(\mathrm{NaOH})$
$x \times 20=40 \times 0.05$
$x=0.1$
$\therefore \mathrm{M}$ of $\mathrm{HCl}=0.1$
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=0.1=10^{-1}$
$\mathrm{pH}=1$
128 (b)

$$
A+B \rightleftharpoons C+D
$$

$\begin{array}{lllll}\text { Initial } 4 & 4 & 0 & 0\end{array}$
Final $4-x \quad 4-x \quad x \quad x$

$$
x=2
$$

$\therefore[A]=4-2=2, \quad[B]=4-2=2$
$[C]=2, \quad[D]=2$
$K=\frac{[C][D]}{[A][B]}=\frac{2 \times 2}{2 \times 2}=1$
129 (b)
If forms basic buffer
$\mathrm{pOH}=\mathrm{p} K_{b}+\log \left(\frac{2.5 / 500}{2.5 / 500}\right)=4.7$
$\mathrm{pH}=14-4.7=9.3$
130 (b)

$$
\mathrm{XY}_{2} \rightleftharpoons \mathrm{XY}+\mathrm{Y}
$$

Initial $\begin{array}{lll}P & 0 & 0\end{array}$
Final $P-x \quad x \quad x$
Initial $P=600 \mathrm{~mm} \mathrm{Hg}$, Final $P=800 \mathrm{~mm} \mathrm{Hg}$ Total moles \propto final P
$\therefore P-x+x+x \propto 800$
$600-x+x+x \propto 800$
$x=200 \mathrm{~mm} \mathrm{Hg}$
$K=\frac{x \times x}{P-x}=\frac{200 \times 200}{400}=100 \mathrm{Hg}$
131 (a)

	$\mathrm{HA}+$	$\mathrm{H}_{2} \mathrm{O}$	$\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{A}^{\ominus}$
Initial	1	0	0
Final $C(1-\alpha)$		$C \alpha$	$C \alpha$

$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=\mathrm{C} \alpha=0.1 \times 0.01=10^{-3}$
$\mathrm{pH}=3, \mathrm{pOH}=11$
132 (b)

$$
\mathrm{CO}_{2} \rightleftharpoons \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}
$$

$\begin{array}{llll}\text { Initial } 1 & 0 & 0\end{array}$
Final $1-\alpha \quad \alpha \quad \alpha / 2$
Final $4(1-\alpha) 4 \alpha \quad \alpha / 2 \times 4$
$\alpha=0.25 \%=0.25$

Number of moles of $\mathrm{CO}=4 \alpha=4 \times 0.25=1$
133 (d)
mEq of $\mathrm{CH}_{3} \mathrm{COOH}=20 \times \frac{1}{10}=2$
mEq of $\mathrm{NaOH}=16 \times \frac{1}{10}=1.6$
So 1.6 mEq of NaOH reacts with 1.6 mEq of $\mathrm{CH}_{3} \mathrm{COOH}$ to form 1.6 mEq of salt $\mathrm{CH}_{3} \mathrm{COONa}$ and $(2-1.6=0.4 \mathrm{mEq})$ of $W_{A}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is left and an acidic buffer is formed. So to calculate pH , buffer equation is used
$\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\text { Salt }}{\text { Acid }}\right)=4.74+\log \left(\frac{1.6}{0.4}\right)$
$=4.74+2 \log 2$
$=4.74+2 \times 0.3010=5.35$
134 (d)
$\mathrm{pH}=2, \therefore\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-2} \mathrm{M}$
$\mathrm{pH}=6, \therefore\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-6} \mathrm{M}$
$\therefore \frac{10^{-2}}{10^{-6}}=10^{-4}$
135 (d)
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \rightleftharpoons 3 \mathrm{Ca}^{2+}+3 \mathrm{PO}_{4}{ }^{3-}$
$3 x \quad 3 x$
$K_{\text {sp }}=(3 x)^{3}(2 x)^{2}=108 x^{5}$
\therefore Unit of $K_{\text {sp }}$ is (concentration) ${ }^{5}=$
$\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{5}=\mathrm{mol}^{5} \mathrm{dm}^{-15}=\mathrm{mol}^{5} \mathrm{dm}^{-15}$
136 (c)
Since there is no effect on the equilibrium by adding inert gas at constant volume
138 (b)

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

At equilibrium $1-\alpha \quad 2 \alpha$
Number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}=1-\alpha=1-0.2=0.8$
Weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ in mixture
$=$ moles of $\mathrm{N}_{2} \mathrm{O}_{4} \times M w$ of $\mathrm{N}_{2} \mathrm{O}_{4}=0.8 \times 92=$ 73.6 g

Weight of NO_{2} in mixture $=$ moles of $\mathrm{NO}_{2} \times M w$ of NO_{2}
$=0.4 \times 46=18.4 \mathrm{~g}$
Total weight $=73.6+18.4=92.0 \mathrm{~g}$
In 92 g of mixture, number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}=0.8$
In 100 g of mixture; number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}$
$=\frac{0.8 \times 100}{92}=0.86$
139 (c)
Bronsted acid and base is that which can donate and accept H^{\oplus} ions. So $\mathrm{HSO}_{4}{ }^{\ominus}$ can accept and donate H^{\oplus} ions
140 (b)
For reactions $\quad X \rightleftharpoons 2 Y$
Initial

At Equilibrium $1-\alpha \quad 2 \alpha$
Total moles $=1-\alpha+2 \alpha=1+\alpha$
$P_{X}=\left(\frac{1-\alpha}{1+\alpha}\right) P_{1} ; P_{Y}=\left(\frac{2 \alpha}{1+\alpha}\right) P_{1}$
$\therefore K_{p_{1}}=\frac{\left(P_{Y}\right)^{2}}{P_{X}}=\frac{\left[\left(\frac{2 \alpha}{1+\alpha}\right) P_{1}\right]^{2}}{\left(\frac{1-\alpha}{1+\alpha}\right) P_{1}}=\frac{4 \alpha^{2} P_{1}}{\left(1-\alpha^{2}\right)}$
Similarly for $\quad \mathrm{X} \rightleftharpoons \mathrm{P}+\mathrm{Q}$
$\begin{array}{llll}\text { Initial } & 1 & 0 & 0\end{array}$
At Equilibrium $1-\alpha \quad 2 \alpha \quad \alpha$
Total moles $=1-\alpha+\alpha+\alpha=1+\alpha$
$P_{Z}=\left(\frac{1-\alpha}{1+\alpha}\right) P_{2} ; P_{Q}=\left(\frac{\alpha}{1+\alpha}\right) P_{2}$;
$P_{P}=\left(\frac{\alpha}{1+\alpha}\right) P_{2}$
$\therefore K_{p_{2}}=\frac{P_{P} \times P_{Q}}{P_{Z}}=\frac{\left(\frac{\alpha}{1+\alpha}\right) P_{2} \times\left(\frac{\alpha}{1+\alpha}\right) P_{2}}{\left(\frac{1-\alpha}{1+\alpha}\right) P_{2}}$
$=\frac{\alpha^{2} P_{2}}{\left(1-\alpha^{2}\right)}$
Dividing equation (i) and (ii), we get,
$\frac{K_{p_{1}}}{K_{p_{2}}}=\frac{4 \alpha^{2} P_{1}}{\left(1-\alpha^{2}\right)} \times\left(\frac{1-\alpha^{2}}{\alpha^{2} P_{2}}\right)=\frac{4 P_{1}}{P_{2}}$
$\Rightarrow \frac{4 P_{1}}{P_{2}}=\frac{1}{3}$ (given)
$\therefore \frac{P_{1}}{P_{2}}=\frac{1}{12}$
141 (a)

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{A}^{\ominus}
$$

$\begin{array}{lllll}\text { Initial } 1 & 0 & 0 & 0\end{array}$
Final $C(1-\alpha) \quad C \alpha \quad C \alpha$
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=C \alpha\left(\alpha=\frac{40}{100}=0.4\right)$
$=0.2 \times 0.4 \quad(C=0.2 \mathrm{M})$
$=0.08$
142 (c)
NaZ is salt of W_{A} / S_{B}
$\therefore \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$
$8.9 \times 2=14+\mathrm{p} K_{a}+\log 0.1$
$17.8=14+\mathrm{p} K_{a}-1$
$\mathrm{p} K_{a}=4.8$,
$K_{a}=$ Antilog $(-4.8)=$ Antilog $(-4-0.8+1-1)$
$=\operatorname{Antilog}(\overline{5} .2)=1.585 \times 10^{-5} \approx 1.6 \times 10^{-5}$
143 (a)
With the increase of temperature, k value decreases, so the forward reaction decreases with increase of temperature. This implies that reaction will proceed in forward direction with decrease of temperature, i.e., heat is liberated and hence forward reaction is exothermic
(d)

$$
\mathrm{NH}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{NaCl}
$$

mmol $50 \times 0.2 \quad 75 \times 0.1$

$$
=10=7.5
$$

mmol 10-7.5 -

$$
=2.5
$$

\Rightarrow This will result in a basic buffer
$\Rightarrow \mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
$=4.74+\log \frac{2.5}{2.5}=4.27$
$\Rightarrow \mathrm{pH}=14-4.27=9.73$
146 (a)
$\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{\ominus}$
$x \quad 2 x$
Total concentration of $\left[\mathrm{F}^{\ominus}\right]=4 \times 10^{-4} \mathrm{M}$
$\therefore 2 x=4 \times 10^{-4}$
$x=2 \times 10^{-4}$
$\therefore K_{\text {sp }}=4 x^{3}=4 \times\left(2 \times 10^{-4}\right)^{3}=3.2 \times 10^{-11}$
147 (d)
i. $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{\oplus}+\mathrm{CrO}_{4}{ }^{2-}\left(\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$
$2 S \quad S$
$4 S^{3}=K_{\mathrm{sp}} ;$
$S_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{K_{\mathrm{sp}}}{4}\right)^{1 / 3}=\left(\frac{9 \times 10^{-12}}{4}\right)^{1 / 3}$
$=(2.25)^{1 / 3} \times 10^{-4} \mathrm{M}$
ii. On adding $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
$\left(\mathrm{AgNO}_{3} \longrightarrow \mathrm{Ag}^{\oplus}+\mathrm{NO}_{3}\right)$

$$
0.1 \mathrm{M} 0.1 \mathrm{M}
$$

Due to common ion $\left(\mathrm{Ag}^{\oplus}\right)$, the solubility of
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is suppressed
Total $\left[\mathrm{Ag}^{\oplus}\right]=(2 \mathrm{~S}+0.1) \approx 0.1$
Let the solubility is S_{1}
$\therefore S_{1}=\frac{K_{\text {sp }}}{\left[\mathrm{Ag}^{\oplus}\right]^{2} \text { externally added }}$
$=\frac{9 \times 10^{-12}}{0.1 \times 0.1}=9 \times 10^{-10} \mathrm{M}$
iii. On adding $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$

$$
\begin{array}{r}
\left(\mathrm{Na}_{2} \mathrm{CrO}_{4} \longrightarrow \underset{2}{2 \times 0.1 \mathrm{M}}{ }^{\oplus}+\mathrm{CrO}_{4}^{2-}\right) \\
2.1 \mathrm{M}
\end{array}
$$

Again due to common ion $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$, the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is suppressed
Let the solubility is S_{2}
Total $\left[\mathrm{CrO}_{4}^{2-}\right]=(S+0.1) \approx 0.1$
$\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{\oplus}+\mathrm{CrO}_{4}{ }^{2-}$ $2 S_{2} \quad\left(S_{2}+0.1\right) \approx 0.1$
$K_{\text {sp }}=\left[2 S_{2}\right]^{2}[0.1]$
$\therefore S-2=\left(\frac{K_{\mathrm{sp}}}{4 \times 0.1}\right)^{1 / 2}=\left(\frac{9 \times 10^{-12}}{4 \times 0.1}\right)^{1 / 2}$
$=22.5 \times 10^{-6}=2.25 \times 10^{-7}$
Hence, the solubility order is II $<$ III $<$ I
Note: In such problems, instead of solving
the exact value, try to get the approximate
data to check the comparative solubilities)
148 (d)
Anionic hydrolysis is carried by salt of W_{A} / S_{B}, e.g., $\mathrm{Na}_{2} \mathrm{CO}_{3}$
150 (b)
Most soluble compound is that which have
highest $K_{\text {sp }}$ value. $K_{\text {sp }}$ of $\operatorname{MnS}\left(7 \times 10^{-6}\right)$ is highest
151 (c)
Volume $=3 \mathrm{~L}$

$$
X+Y \rightleftharpoons 3 Z
$$

At eq. $\frac{1}{3} \quad \frac{2}{3} \quad \frac{4}{3}$
$K=\frac{[Z]^{3}}{[X][Y]}=\frac{\left(\frac{4}{3}\right)^{3}}{\left[\frac{2}{3}\right]\left[\frac{1}{3}\right]}=10.67$
a. $Q=10, \quad \therefore Q<K$

The reaction proceed forward direction to attain the equilibrium value of K
b. $Q=15, \quad \therefore Q<K$

The reaction proceed backward direction to attain the equilibrium value of $K(10.67)$
c. $Q=10.67, \quad \therefore Q=K$

The system is at equilibrium
152 (b)
Buffer solution is a mixture of
$W_{A}+$ salt of W_{A} / S_{B}
Or a mixture of $W_{B}+$ Salt of W_{B} / S_{A}
So $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ is a buffer
a. $[\mathrm{HCl}+\mathrm{NaCl}$,
$S_{A}+$ Salt of S_{A} / S_{B} (not buffer)
b. $\left[\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}\right] \quad W_{A}+$ Salt of W_{A} / W_{B} (it is a buffer)
c. $\left[\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}\right] \quad W_{A}+$ Salt of S_{A} / S_{B} (not buffer)
d. $\left[\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{3}\right] \quad W_{B}+W_{B}$ (not buffer)

153 (b)
$A+2 B \rightleftharpoons 2 C, \quad \ldots$ (i) $K=40$
and for $C \rightleftharpoons B+\frac{1}{2} A, \quad \ldots$ (i) $K_{1}=$?
$K=\frac{1}{\sqrt{K}}=\frac{1}{(40)^{1 / 2}}$
Since equation (2) is obtained by reversing and dividing by 2 , the equation (1)
$\mathrm{Ag}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{\oplus}+\mathrm{SO}_{4}{ }^{2-}$

$$
2 x \quad x
$$

$K_{\text {sp }}=4 x^{3}=4 \times\left(2.5 \times 10^{-2}\right)^{3}=62.5 \times 10^{-6}$
155 (d)
$\mathrm{M}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{M}^{\oplus}+\mathrm{SO}_{4}{ }^{2-}$ $2 S \quad S$
$K_{\mathrm{sp}}=(2 S)^{2}(S)=4 S^{3}$
$\therefore S=\sqrt[3]{\frac{K_{\mathrm{sp}}}{4}}=\sqrt[3]{\frac{3.2 \times 10^{-5}}{4}}=2 \times 10^{-2} \mathrm{M}$
156 (d)
Only in SnCl_{4}, the octet of the central atom is complete
157 (a)
NaCl is salt of S_{A} / S_{B}. So it is neutral and $\mathrm{pH}=7$
158 (a)
$W_{A}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is titrated with $S_{B}(\mathrm{NaOH})$ and 20% of the W_{A} is neutralized, so 20% of the salt of $W_{A} / S_{B}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ is formed and 80% of the $W_{A}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is left. So an acidic buffer if formed
$\therefore[$ Acid $]=80 ;[$ Salt $]=20$
$\mathrm{pH}=\mathrm{p} K_{a}+\log \left[\frac{\text { Salt }}{\text { Acid }}\right]$
$4.7447+\log \left[\frac{\text { Salt }}{\text { Acid }}\right]$
$=4.7447+\log \frac{1}{4}$
$=4.7447-2 \log 2=4.7447-2 \times 0.3010=4.14$

Since $K_{\text {sp }}$ of CaCO_{3} and BaCO_{3} are very close. So concentration of any species cannot be neglected. Let the solubility of CaCO_{3} and BaCO_{3} are x and y M
$\therefore \mathrm{CaCO}_{3} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{BaCO}_{3} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$y \quad y$
Total $\left[\mathrm{CO}_{3}{ }^{2-}\right]=(x+y)$
$\therefore K_{\text {sp }}$ of $\mathrm{CaCO}_{3}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2+}\right]=x(x+y)$
K_{sp} of $\mathrm{BaCO}_{3}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=y(x+y)$
$\therefore x(x+y)=10^{-8}$
$y(x+y)=5 \times 10^{-9}$
$\frac{5 \times 10^{-9}}{10^{-8}}=\frac{y(x+y)}{x(x+y)}$
$\therefore \frac{y}{x}=5 \times 10^{-1}$
$y=0.5 x$
Substitute the value of y in (i) or (ii)
$x(x+0.5 x)=10^{-8}$
$x=0.8 \times 10^{-4}$
$y=0.5 \times 0.8 \times 10^{-4}$
$\therefore\left[\mathrm{Ca}^{2+}\right]=x=0.8 \times 10^{-4}$
$\therefore\left[\mathrm{Ba}^{2+}\right]=y=0.4 \times 10^{-4}$
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=(x+y)=1.2 \times 10^{-4}$
160 (d)
The equilibrium constant does not change at all with changes in concentrations, volume, pressure, presence of catalyst, etc. It changes only with changes in temperature of the system. For endothermic reaction, the value of K increases with increase in temperature and vice versa. For exothermic reaction, the value of K decreases with increase in temperature and vice versa

161 (a)

Bronsted acid is which gives H^{\oplus} ions and Bronsted base is which accepts H^{\oplus} ion
So H_{2} S gives H^{\oplus} ions but cannot accept H^{\oplus}. While other $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{2}{ }^{\ominus}, \mathrm{NH}_{3}$ can give and accept H^{\oplus} ions
162 (a)
Since equal volumes are added

1. \quad Ionic product $=\frac{10^{-4}}{2} \times \frac{10^{-4}}{2}=\frac{10^{-8}}{4}$
2. Ionic product $=\frac{10^{-5}}{2} \times \frac{10^{-5}}{2}=\frac{10^{-10}}{4}$
3. Ionic product $=\frac{10^{-5}}{2} \times \frac{10^{-6}}{2}=\frac{10^{-11}}{4}$
4. \quad Ionic product $=\frac{10^{-10}}{2} \times \frac{10^{-10}}{2}=\frac{10^{-20}}{4}$

Only in (a) Ionic product $\left(\frac{10^{-8}}{4}\right)>K_{\text {sp }}(1.8 \times$ 10^{-10})

So precipitate will take place only with (a)

163 (a)

Since $\mathrm{Ca}(\mathrm{OH})_{2}$ is completely ionized $\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
Initial 0.1
$0 \quad 0$
Final $0 \quad 0.1 \quad 2 \times 0.1=0.2 \mathrm{M}$

BBB Rule: On adding base, to the basic buffer, concentration of base increases and salt decreases \therefore New concentration of base and salt are:
[Base $]=\left[\mathrm{NH}_{3}\right]=0.6+0.2=0.8 \mathrm{M}$
$[$ Salt $]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=0.4+0.2=0.2 \mathrm{M}$
$\therefore \mathrm{pOH}=\mathrm{p} K_{b}+\log \left[\frac{\text { Salt }}{\text { Base }}\right]$
$\mathrm{pOH}=4.74+\log \left(\frac{0.2}{0.8}\right)$
$=4.74-2 \log 2=4.74-2 \times 0.30=4.14$
$\mathrm{pH}=14-4.14=9.86$
164 (b)
$\mathrm{HCl}=20 \times 0.1=2 \mathrm{mEq}$
$\mathrm{KOH}=20 \times 0.1=2 \mathrm{mEq}$
2 mEq HCl combines with 2 mEq of KOH and forms KCl , a salt of S_{A} / S_{B} which do not hydrolyses and gives neutral solution with $\mathrm{pH}=7$
165 (a)
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is a salt of $\frac{W_{B}}{S_{A}}$. $\left[\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}\right]$. It hydrolyses and gives acidic solution
166 (d)
Active mass $=$ Concentration $=\mathrm{mol} \mathrm{L}^{-1}$
$[\mathrm{HI}]=\frac{64}{128 \times 2}=0.25 \mathrm{M}$
167 (c)
$K_{b}=10^{-5}, \mathrm{p} K_{b}=5$
$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\mathrm{C} \alpha$
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\sqrt{K_{b} \times C}$
$\mathrm{pOH}=\frac{1}{2}\left(\mathrm{p} K_{b}-\log C\right)$
$=\frac{1}{2}(5-\log 0.1)=\frac{1}{2}(5+1)=3$
$\mathrm{pH}=14-\mathrm{pOH}=14-3=11$
168 (d)
Lewis base is that which can donate a lone pair of $\mathrm{e}^{-} \mathrm{s}$. All except AlCl_{3} have lone pair of $\mathrm{e}^{-} \mathrm{s}$ and can donate. So AlCl_{3} is not a lewis base
169 (d)
Factual statement
170 (a)
$\mathrm{pOH}=13, \mathrm{pH}=14-13=1$
Hence, solution is highly acidic
171 (c)
$K_{\mathrm{sp}} \mathrm{MS}=\left[\mathrm{M}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$5 \times 10^{-21}=(0.05)\left[\mathrm{S}^{2-}\right]$
For precipitation $\mathrm{Q}_{\mathrm{sp}}=K_{\mathrm{sp}}$
$\therefore\left[\mathrm{S}^{2-}\right]=\frac{5 \times 10^{-21}}{5 \times 10^{-2}}=10^{-19}$
For $\mathrm{H}_{2} \mathrm{~S}$:
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{HS}^{\ominus}\left(K_{1}\right)$
$\mathrm{HS}^{\ominus} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{S}^{2-}\left(K_{2}\right)$
$K_{1} \times K_{2}=\frac{\left[\mathrm{H}^{\oplus}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\mathrm{H}_{2} \mathrm{~S}}$
$10^{-7} \times 10^{-14}=\frac{\left[\mathrm{H}^{\oplus}\right]^{2}\left[10^{-19}\right]}{0.1}$
$\left[\mathrm{H}^{\oplus}\right]^{2}=10^{3}, \Rightarrow[$ Taking negative logaritham
both sides]
$-2 \log \left[H^{\oplus}\right]=3$
$\mathrm{pH}=\frac{3}{2}=1.5$
172 (a)
$\Delta G^{\ominus}=-2.303 R T \log K$
$=-2.303 \times 2 \times 298 \log 10^{-8}$
$=-2.303 \times 2 \times 298 \times-8 \mathrm{cal}$
$=10980 \mathrm{cal}=10.98 \mathrm{kcal}$
173 (c)
Buffer capacity
$=\frac{\text { Number of mols/litre of acid or base added }}{\text { change in } \mathrm{pH} \text { or } \mathrm{pOH}}$
$=\frac{2}{3.4-2.9}=\frac{2}{0.5}=4$
174 (c)

$$
2 A B_{3}(\mathrm{~g}) \rightleftharpoons A_{2}(\mathrm{~g})+3 B_{2}(\mathrm{~g})
$$

$\begin{array}{cccc}\text { Initial } 8 & 0 & 0\end{array}$
At eq. $\frac{8-2 x}{1} \quad \frac{x}{1} \quad \frac{3 x}{1}$
Since volume $=1 \mathrm{dm}^{3}=1 \mathrm{~L}$
At eq. $\left[A_{2}\right]=2 \mathrm{~mol}=x$
$\therefore\left[A B_{3}\right]=8-2 \times 2=4 \mathrm{M}$
$\left[A_{2}\right]=2 \mathrm{M}$
$\left[B_{2}\right]=3 \times 2=6 \mathrm{M}$
$K=\frac{\left[B_{2}\right]^{3}\left[A_{2}\right]}{\left[A B_{3}\right]^{2}}=\frac{6 \times 6 \times 6 \times 2}{4 \times 4}=27 \mathrm{~mol}^{-2} \mathrm{~L}^{-2}$
175 (d)
Indicator used for the titration of $W A$ and $S B$ is phenolphthaleim. Since the pH range near the end point is 8 to 10
(d)

The reactions (a) and (b) are precipitation reactions, they are not reversible. Reaction (d) is an ion- exchange reaction. Hence, it is a reversible
reaction.
$\mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{NaNO}_{3}(\mathrm{aq})$
177 (a)
$\mathrm{ClO}_{3}(\mathrm{OH})$ or HClO_{4} is the strongest acid
In oxy acids of halogens, the higher the oxidation state of the halogen, the stronger the acid
$\mathrm{HIn} \rightleftharpoons \mathrm{H}^{\oplus}+\operatorname{Ind}^{\ominus}$;
$\mathrm{pH}=\mathrm{p} K_{\text {Ind }}+\log \frac{\left[\text { Ind }{ }^{\ominus}\right]}{[\mathrm{HIn}]}$
$\mathrm{pH}_{1}=p K_{\text {Ind }}+\log \frac{20}{80}=\mathrm{p} K_{\text {Ind }}-2 \log 2$
$\mathrm{pH}_{2}=\mathrm{p} K_{\text {Ind }}+\log \frac{80}{20}=\mathrm{p} K_{\text {Ind }}+2 \log 2$
$\Delta(\mathrm{pH})=\mathrm{pH}_{2}-\mathrm{pH}_{1}=4 \log 2=4 \times 0.3=1.2$
180 (a)
$\begin{gathered}\mathrm{PbSO}_{4}\end{gathered} \stackrel{\mathrm{~Pb}^{2+}}{ }+\mathrm{SO}_{4}{ }^{2-}$

$$
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{\oplus}+\mathrm{SO}_{4}^{2-}
$$

Initial $0.01 \quad 0 \quad 0$
$\begin{array}{llll}\text { Final } & 0 & 2 \times 0.01 & 0.01\end{array}$
(Since $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is salt of S_{A} / S_{B} it is completely ionised)
$\therefore \mathrm{SO}_{4}{ }^{2-}=(x+0.01)=0.01$ (Since x is very small)
$\therefore K_{\text {sp }}$ of $\mathrm{PbSO}_{4}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$
$1.25 \times 10^{-9}=x \times 0.01$
$\therefore x=\frac{1.25 \times 10^{-9}}{0.01}=1.25 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
181 (a)
(i) $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}$;
$K_{1}=3.5 \times 10^{-3}$
(ii) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$;
$K_{2}=1.7 \times 10^{-3}$
On the basis of above reaction,

$$
\begin{align*}
& K_{1}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]} \tag{i}\\
& \quad K_{2}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}\left[\mathrm{NH}_{3}\right]} \tag{ii}
\end{align*}
$$

For the formation of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

Formation constant (K)

$$
\begin{equation*}
=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}} \tag{iii}
\end{equation*}
$$

From Eqs. (i) and (ii)

$$
\begin{aligned}
K & =K_{1} \times K_{2} \\
& =3.5 \times 10^{-3} \times 1.7 \times 10^{-3} \\
& =5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}
\end{aligned}
$$

(d)

Salt of S_{B} / W_{A} are called acid salts
a. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (Salt of $\left.\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4}\right)\left(S_{B} / W_{A}\right)$
b. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (Salt of $\left.\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{2}\right)\left(S_{B} / W_{A}\right)$
c. $\mathrm{NaH}_{2} \mathrm{PO}_{3}\left(\right.$ Salt of $\left.\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{3}\right)\left(S_{B} / W_{A}\right)$
all are acid salts
183 (c)

$$
2 \mathrm{HX} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g}) \quad+\mathrm{X}_{2}(\mathrm{~g})
$$

At equilibrium? $1.2 \times 10^{-3} \mathrm{M} 1.2 \times 10^{-4} \mathrm{M}$
$K=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{X}_{2}\right]}{[\mathrm{HX}]^{2}}$
$10^{-5}=\frac{1.2 \times 10^{-3} \times 1.2 \times 10^{-4}}{[\mathrm{HX}]^{2}}$
$[\mathrm{HX}]=\sqrt{\frac{1.2 \times 1.2 \times 10^{-7}}{10^{-5}}}$
$=1.2 \times 10^{-1}$
$=12 \times 10^{-2} \mathrm{M}$
184 (d)
Conjugate base $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ is O^{2-}
$\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{O}^{2-}+\mathrm{H}^{\oplus}$
186 (b)
Highest pH will be of the salt of $W_{A} / S_{B}(\mathrm{pH}>7)$
a. NaCl (salt of $S_{A} / S_{B} \mathrm{pH}=7$)
b. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (salt of $W_{A} / S_{B} \mathrm{pH}>7$)
c. $\mathrm{NH}_{4} \mathrm{Cl}$ (salt of $S_{A} / W_{B}, \mathrm{pH}<7$)
d. $\mathrm{NaHCO}_{3}\left(\right.$ Salt of $\left.W_{A} / S_{B}, \mathrm{pH}>7\right)$
but (b) and (d) are both salt of $\mathrm{W}_{\mathrm{A}} / S_{B}$, but the concentration of salt in (b) is more, so pH is more $\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$
187 (a)
$\mathrm{PbSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})\left(K_{\mathrm{sp}}\right)$
$\mathrm{HSO}_{4}{ }^{\ominus}(\mathrm{s}) \rightleftharpoons \mathrm{H}^{\oplus}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \quad\left(K_{a}\right)$
Subtracting equation (ii) from (i), then
$\mathrm{PbSO}_{4}+\mathrm{H}^{\oplus}(\mathrm{aq}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{HSO}_{4}{ }^{\ominus}(\mathrm{aq})\left(K_{\mathrm{eq}}\right)$
$\therefore K_{\mathrm{eq}}=\frac{K_{\mathrm{sp}}}{K_{a}}=\frac{1.8 \times 10^{-8}}{1.0 \times 10^{-2}}=1.8 \times 10^{-6}$
188 (a)
Salt W_{B} / S_{A} hydrlyses and is called cation hydrolysis
189 (b)
$\mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{\oplus}+\mathrm{Cl}^{\ominus}$
$\mathrm{KCl} \longrightarrow \mathrm{K}^{\oplus}+\mathrm{Cl}^{\ominus}$
Due to common ion effect of Cl^{\ominus}, the suppression
of ionization of AgCl , takes place and solubility of AgCl decreases
190 (d)
mEq of $\mathrm{NaOH}=20 \times \frac{1}{20}=1$
mEq of $\mathrm{HCl}=10 \times \frac{1}{10}=1$
So, salt of $S_{A} / S_{B}(\mathrm{NaCl})$ will be formed which do not hydrolyse and $\mathrm{pH}=7$. So at $\mathrm{pH}=7$, litmus has no effect. Since, blue litmus turns red a acidic solution, and red litmus turns blue, a basic solution
i. phenolphthalein solution turns pink a basic solution of $\mathrm{pH}>7$
ii. Methyl orange turns red a acidic solution of pH >7
191 (d)
Buffer capacity
Number of moles per litre of acid
$=\frac{\text { or base added }}{\text { Change in } \mathrm{pH} \text { or } \mathrm{pOH}}$
[Acid] $=\frac{0.002 \times 1000}{250}=0.008 \mathrm{M}$
Buffer capacity $=\frac{0.008}{0.02}=0.4$
192 (a)
$\mathrm{pH}=\mathrm{p} K_{a}+\log \left[\frac{\text { Salt }}{\text { Acid }}\right]$
$\mathrm{pH}=\mathrm{p} K_{a}+\log \left[\frac{\mathrm{In}^{\ominus}}{\mathrm{HIn}}\right]$
$4.3=\mathrm{p} K_{a}+\log 7$
$\mathrm{p} K_{a}=4.3-\log 7$
$\mathrm{p} K_{a}=4.3-0.845=3.455$
$K_{a}=$ Antilog $(-3.455)=(-3-4.55+1-1)$
$=\overline{4}-545=3.5 \times 10^{-4}$
193 (d)
Since the number of moles decreases. So reaction is favoured forward by increasing pressure
$\Delta n=1-\left(1+\frac{1}{2}\right)=-\frac{1}{2}$
194 (b)
Catalyst does not change the extent of reaction, and hence does not alter the value of K
196 (c)
$\mathrm{NaOH}=10 \times 0.1=1 \mathrm{mEq}$
$\mathrm{Na}_{2} \mathrm{SO}_{4}=10 \times 0.1=2 \mathrm{mEq}$
But pH of solution is due to only strong base,
NaOH and will be greater than 7 . Salt of S_{A} / S_{B}, has no effect on pH , since its pH is 7
197 (a)
Salt of S_{B} / W_{A} will be basic
a. Sodium borate, salt of $S_{B} / W_{A}\left(\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{BO}_{3}\right)$.

It gives basic solution
b. $\mathrm{NH}_{4} \mathrm{Cl}$, salt of W_{B} / S_{A}, $\left(\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}\right)$. It hydrolyses and gives acidic solution
c. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, salt of W_{B} / S_{A}
$\left[\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HNO}_{3}\right]$, and gives acidic solution
d. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, salt of S_{A} / S_{B}, which do not hydrolyses, gives neutral solution with $\mathrm{pH}=7$
198 (c)
Rate of forward reaction $=$ Rate of backward reaction i.e., when $R_{f}=R_{b}$, equilibrium is established

Structure of phenolphthalein in acidic and basic medium

200 (a)
$K_{a} \times K_{b}=10^{-14}$ for a pair of conjugate acid base
K_{b} for $X^{\ominus}=10^{-10}$
K_{a} for $\mathrm{HX}=10^{-4}, \mathrm{p} K_{a}=4$
$\mathrm{pH}=p K_{a}+\log \frac{\left[\mathrm{X}^{\ominus}\right]}{[\mathrm{HX}]}$
$=\mathrm{p} K_{a}=4$
201 (a)
For acidic buffer, $\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{0.1}{0.1}$
$\mathrm{pH}=\mathrm{p} K_{a}=-\log \left(10^{-5}\right)=5$
Rule: ABA (In acidic buffer (A), on addition of $S_{B}(\mathrm{~B})$, the concentration of $W_{A}(\mathrm{~A})$ decreases and that of salt increases)
Let $x \mathrm{M}$ of NaOH is added
$\mathrm{pH}_{\text {new }}=5+\log \left(\frac{0.1+x}{0.1-x}\right)$
$6-5=\log \left(\frac{0.1+x}{0.1-x}\right)$
$\left(\frac{0.1+x}{0.1-x}\right)=\operatorname{Antilog}(1)=10$
Solve for x :
$x=0.082 \mathrm{M}=\frac{0.082}{1000} \times 100$
$=0.0082 \mathrm{~mol}(100 \mathrm{~mL})^{-1}$
$=0.0082 \times 40 \mathrm{~g}(100 \mathrm{~mL})^{-1}$
$=0.328 \mathrm{~g}$
202 (d)
The equilibrium constant does not change at all with changes in concentrations, volume, pressure and presence of catalyst. It changes only with changes in temperature of the system

For endothermic reaction, the value of K increases with increase in temperature and vice versa

For exothermic reaction, the value of K decreases with increase in temperature and vice versa

203 (b)

NaX : Salt of weak acid, strong base
$\Rightarrow \alpha=\sqrt{\frac{K_{h}}{C}}=\sqrt{\frac{K_{w}}{K_{a} \cdot C}}=\sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}}=10^{-4}$
\Rightarrow \% hydrolysis $=0.01 \%$
(Check that approximation is valid)
204 (a)
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
$\mathrm{NO} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2}$
Equation (ii) is obtained by reversing equation (i) and dividing by 2
$\therefore K_{2}=\frac{1}{\left(K_{1}\right)^{1 / 2}}$
$\Rightarrow\left(K_{2}\right)^{2}=\frac{1}{K_{1}}$
$\Rightarrow K_{1}=\frac{1}{\left(K_{2}\right)^{2}}=\left(\frac{1}{K_{2}}\right)^{2}$
205 (c)
a. It is a mixture of $S_{A}+$ salt of S_{A} / S_{B}. So pH is due to S_{A} and is less than 7
b. mEq of $\mathrm{H}_{2} \mathrm{SO}_{4}=100 \times 0.2 \times 2=40$
mEq of $\mathrm{NaOH}=100 \times 0.3=30$
So 30 mEq of NaOH will react with 30 mEq of
$\mathrm{H}_{2} \mathrm{SO}_{4}$
So 10 mEq of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (strong acid will be left)
So pH will be less than 7
c. mEq of $\mathrm{CH}_{3} \mathrm{COOH}=100 \times 0.1=10$
mEq of $\mathrm{KOH}=100 \times 0.1=10$
So 10 mEq of $W_{A}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ will react with
10 mEq of $\mathrm{KOH}\left(S_{B}\right)$ to give 10 mEq of salt $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$. It is a salt of W_{A} / W_{B}
So its pH will be greater than 7
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$
d. mEq of $\mathrm{HNO}_{3}=2.5 \times 0.1=2.5$
mEq of $\mathrm{NH}_{3}=2.5 \times 0.1=2.5$
So 2.5 mEq of HNO_{3} will react with 2.5 mEq of
NH_{3} to give 2.5 mEq of $\mathrm{NH}_{4} \mathrm{NO}_{3}$, which is a salt of W_{B} / W_{A}, and its pH is always less than 7
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right)$
206 (a)
Acidic buffer is a mixture of a weak acid and its salt with a strong base in solution
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}$
$\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{Na}^{\oplus}$
Adding acid: When a small amount of acid is added, H^{\oplus} ions combine with acetate ions to form the weak electrolyte acetic acid than does not dissociate, so the pH does not change
Adding base: When a small amount of base is added, $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ions combine with H^{\oplus} ions to form the weak electrolyte water than does not dissociate, so the pH does not change
$10^{-8} \mathrm{M} \mathrm{HCl}$
At such a low concentration the contribution of
$\left[\mathrm{H}^{\oplus}\right]$ from water cannot be neglected, which is 10^{-7}
In such cases, the pH of the acid can be calculated to be slightly less than 7
208 (d)
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
If the concentration of PCl_{3} is doubled, it only predicts, that reaction will proceed backward. (LeChatlier's principle). So the concentration of Cl_{2} is unpredictable

209 (c)
The two $K_{\text {sp }}$ values do not differ very much. So it is a case of simultaneous equilibria, where the concentration of any species can not be neglected

$$
\begin{aligned}
& \frac{\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{F}^{\ominus}\right]^{2}}{\left[\mathrm{Sr}^{2-}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}=\frac{K_{\mathrm{sp}} \mathrm{SrF}_{2}}{K_{\mathrm{sp}} \mathrm{SrCO}_{3}}=\frac{7.9 \times 10^{-10}}{7.0 \times 10^{-10}}=1.128 \\
& \therefore\left[\mathrm{~F}^{\Theta}\right]^{2}=1.28 \times\left[\mathrm{CO}_{3}{ }^{2-}\right]=1.128 \times 1.2 \times 10^{-3} \\
& =13.5 \times 10^{-14} \\
& \therefore\left[\mathrm{~F}^{\Theta}\right]=\left(13.5 \times 10^{-4}\right)^{1 / 2} \\
& =3.674 \times 10^{-2} \approx 3.7 \times 10^{-2} \mathrm{M} \text {. }
\end{aligned}
$$

$K_{\mathrm{sp}}=1.7 \times 10^{-10}$
After mixing equal volumes, we get
$\left[\mathrm{Ca}^{2+}\right]=\frac{10^{-2}}{2}=0.005=5 \times 10^{-3}$
$\left[\mathrm{F}^{\ominus}\right]=\frac{10^{-3}}{2}=0.0005=5 \times 10^{-4}$
For CaF_{2},
Ionic product $=\left[\mathrm{Ca}^{2+}\right] \times[\mathrm{F} \ominus]^{2}$
$=\left[5 \times 10^{-3}\right] \times\left[5 \times 10^{-4}\right]^{2}$
$=125 \times 10^{-11}$
$=1.25 \times 10^{-9}$
Since ionic product is greater than solubility product, precipitation occurs
211 (c)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ Heat
$\Delta n=2-(1+3)=-2$
$\therefore K_{p}=K_{c}(R T)^{-2}$
212 (a)
As the temperature is increased, solubility of solid in liquid increases and hence equilibrium shifts to the right and hence the amount of solid decreases Solid $+\mathrm{aq} \rightarrow$ Solution
213 (a)
The given reaction will be exothermic in nature due to the formation of three $X-Y$ bonds from the gaseous atoms. The reaction is also accompanied with the decrease in gaseous species. Hence, the reaction will be affected by both temperature and pressure. The use of catalyst does not affect the equilibrium concentration of the species in the chemical reaction
214 (c)
The characteristics of the given solutions are:
NaCl Neutral solution (Salt of S_{A} / S_{B})
$\mathrm{NH}_{4} \mathrm{Cl}$ Slightly acidic due to the reaction (Salt of W_{B} / S_{A})
$\mathrm{NH}_{4}{ }^{\oplus}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{\oplus}$
NaCN Slightly alkaline due to the reaction (Salt of $\left.S_{B} / W_{A}\right)$
$\mathrm{CN}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}$
HCl highly acidic
The pH of the solution will follow the order highly acidic $<$ slightly acidic $<$ neutral $<$ slightly alkaline.
i.e., $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$

215 (a,b,c,d)
All factual statements
217 (c,d,e)

At constant volume, There is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n=0$, there is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n \neq 0$, the equilibrium shifts in the direction of more number of moles. Addition of the reactant favours forward reaction. Increasing the volume means decreasing the pressure, which shifts the reaction in the direction of more number of gaseous moles

221 (b,c)
$K_{1} K_{2}=\frac{\left[\mathrm{H}^{\oplus}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=10^{-21}$
Note: Saturated $\mathrm{H}_{2} \mathrm{~S}$ means $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$
i. $\frac{(0.2)^{2} /\left[\mathrm{S}^{2-}\right]}{0.1}=10^{-21}$
$\therefore\left[\mathrm{S}^{2-}\right]=\frac{10^{-22}}{0.04}=2.5 \times 10^{-21}$
$K_{\text {sp }}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{S}^{2-}\right]=3.7 \times 10^{-19}$
Since $(0.01)\left(2.5 \times 10^{-21}\right)<3.7 \times 10^{-19}$
$F e S$ will not precipitate
ii. $\frac{(0.001)^{2} /\left[\mathrm{S}^{2-}\right]}{0.1}=10^{-21},\left[\mathrm{~S}^{-2}\right]=10^{-16}$

Since $(0.1)\left(10^{-16}\right)<3.7 \times 10^{-19}$
FeS will precipitate
225 (b,d)
a. Wrong statement
b. Correct: Indicator are weak acid or base and are added is small amount. So they do not affect the pH of the solution
c. Wrong: They occur even in the absence of indicators
d. Correct: Factual statement

228 (a,c)
K_{w} changes with temperature and salts of strong acid and strong base do not undergo hydrolysis
230 (a,d)
Reaction quotient $=\frac{p_{\mathrm{NH}_{3}}^{2}}{p_{\mathrm{N}_{2}} \cdot p_{\mathrm{H}_{2}}^{3}}=\frac{(0.05 \mathrm{~atm})^{2}}{(0.05 \mathrm{~atm})(3.0 \mathrm{~atm})^{3}}$
$=1.85 \times 10^{-3} \mathrm{~atm}^{-2}$
The value of K_{p} is $4.28 \times 10^{-5} \mathrm{~atm}^{-2}$. The
numerical value of Q_{p} is more than that of K_{p}. The reaction goes towards the left the thus, ammonia decomposes into H_{2} and N_{2}

232 (b,c,d)
$K_{1}=\frac{K_{f}}{K_{b}}=\frac{2 \times 10^{-2}}{4 \times 10^{-3}}=5$ at 300 K
$K_{2}=\frac{K_{f}}{K_{b}}=\frac{4 \times 10^{-2}}{16 \times 10^{-4}}=25$ at 400 K
$\therefore 2.303 \log \frac{25}{5}=\frac{\Delta H}{2} \times\left[\frac{400-300}{400 \times 300}\right]$
Or $\Delta H=3.86 \mathrm{kcal}$
234 (a,b)
$\mathrm{p} K_{a}=-\log \left(3 \times 10^{-5}\right)=-0.48+5=4.52$
$\mathrm{H}_{\text {Ind }} \rightleftharpoons \operatorname{Ind}^{\ominus}+\mathrm{H}^{\oplus}$
(Red) (Blue)
(i) $75 \% \quad 25 \%$
(ii) $25 \% \quad 75 \%$
(i) $\mathrm{pH}=4.52+\log \left(\frac{25}{75}\right)$
$=4.52+\log \frac{1}{3}=4.52-0.48=4.04$
(ii) $\mathrm{pH}=4.52+\log \left(\frac{75}{25}\right)$
$=4.52+0.48=5.0$
235 (a,b)
A buffer can be obtained with the following combinations
(i)A weak base + its salt with a strong acid
(ii)A weak acid + its salt with a strong base

241 (a,c)
Le-Chatelier's principle is not quantitative if both stress would cause the same direction of shift, the shift is determinable. If the two stresses would cause shifts in opposite directions, no deduction is possible
244 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
$a \quad 0$ initial
$a(1-\alpha)$ 2acat equilibrium
Vapour density $=\frac{46}{1+\alpha}: 30.67$
So, $(1+\alpha)=\frac{46}{30.67}=1.5$ or $\alpha=50 \%$
Total pressure $=\frac{1.5 \times 1.5 \times 0.082 \times 300}{8.2}=6.75 \mathrm{~atm}$
So, $K_{p}=\frac{4 \alpha^{2}}{1-\alpha^{2}}=9 \mathrm{~atm}$
Density of mixture $=\frac{138}{8.2} \mathrm{~g} / \mathrm{L}=16.83 \mathrm{~g} / \mathrm{L}$
245 (a,b,d)
$Q=\frac{\left[S_{2}\right]^{4}}{\left[S_{8}\right]}=\frac{(0.2)^{4}}{(2)}=8 \times 10^{-4} ; K_{c}=6.3 \times 10^{-6}$

$$
\begin{aligned}
\therefore K_{p}=K_{c} \times & (R T)^{\Delta n} \\
& =6.3 \times 10^{-6} \times(0.0821 \times 900)^{3} \\
& =2.55
\end{aligned}
$$

Thus, reaction proceed in backward direction since $Q>K_{c}$

246 (c,d)
$2 \mathrm{NaNO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NaNO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta H=$ positive, endothermic
Addition of solids does not affect the equilibrium. Endothermic reaction is favoured by increase in temperature

Increased pressure shifts the equilibrium in the direction of less gaseous moles

247 (b)
$\mathrm{Hg}_{2} \mathrm{CrO}_{4} \rightleftharpoons \mathrm{Hg}_{2}{ }^{2+}+\mathrm{CrO}_{4}{ }^{2-}$
$\left[\mathrm{Hg}_{2}{ }^{2+}\right]=4 \times 10^{-4} \mathrm{M},\left[\mathrm{CrO}_{4}{ }^{2-}\right]=2 \times 10^{-5}$
$K_{\text {sp }}=\left(4 \times 10^{-4}\right)\left(2 \times 10^{-5}\right)=8 \times 10^{-9}$
248 (b,c,d)
Salt of S_{A} and $W_{B}: h=\sqrt{\frac{K_{h}}{C}}=\sqrt{\frac{K_{w}}{K_{b} \cdot C}}$
$\Rightarrow h$ increases as ' C ' decreases [on dilution]
As T increases, K_{h} increases $\Rightarrow h$ increases
As T decreases, K_{h} decreases $\Rightarrow h$ decreases
As strength of base decreases (i.e., K_{b} decreases)
$\Rightarrow h$ increases
Note:Both K_{w} and K_{b} increase with increase in temperature but K_{w} will increase sharply but K_{w} will increase sharply as compared to K_{w} So K_{b} increases with increase in temperature

Self-explanatory
254 (a,b)
$\mathrm{HIn} \rightleftharpoons \operatorname{Ind}^{\ominus}+\mathrm{H}^{\oplus}\left(p K_{a}=5\right)$
Red Blue
a. when $\mathrm{pH}<\mathrm{p} K_{a}(4.52<5)$, colour of acid form, i.e, red predominates
b. when $\mathrm{pH}>\mathrm{p} K_{a}(5.47>5)$, colour of basic form, i.e, blue predominates
c. $75 \% \mathrm{red} \Rightarrow\left[\frac{\mathrm{In} \ominus}{\mathrm{HIn}}\right]=\frac{0.75}{0.25}$
$\Rightarrow \mathrm{pH}=5+\log 3=5+0.48=5.48$ (Hence (c) is wrong)
(d) is also wrong statement

263 (a,b,c,d)
$\mathrm{A}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

$$
\begin{aligned}
& 2 \alpha+2 \alpha^{\prime} \alpha \\
& \mathrm{A}^{\prime}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~B}+\mathrm{D} \\
& 2 \alpha^{\prime}+2 \alpha \quad \alpha^{\prime} \\
& K_{p_{1}}=\left(2 \alpha+2 \alpha^{\prime}\right)^{2} \times \alpha \times\left[\frac{P}{\left(3 \alpha+2 \alpha^{\prime}\right)}\right]^{3} \\
& K_{p_{2}}=\left(2 \alpha+2 \alpha^{\prime}\right)^{2} \times \alpha^{\prime} \times\left[\frac{P}{\left(3 \alpha^{\prime}+2 \alpha\right)}\right]^{3} \\
& \frac{K_{p_{1}}}{K_{p_{2}}}=\frac{\left[3 \alpha^{\prime}+2 \alpha\right]^{3}}{[3 \alpha+2 \alpha]^{3}} \times \frac{\alpha}{\alpha_{1}} \\
& \text { Also, } K_{p_{1}}=\left(P_{B}^{\prime}\right)^{2} \times P_{C}^{\prime} \\
& K_{p_{2}}=\left(P_{B}^{\prime}\right)^{2} \times P_{p}^{\prime} \\
& \text { Or } \frac{P_{c}^{\prime}}{P_{D}^{\prime}}=\frac{K_{p_{1}}}{K_{p_{2}}}=\frac{8 \times 10^{-2}}{2 \times 10^{-2}}=4 \\
& \text { Also, } P_{B}^{\prime}=2 \times\left(P_{c}^{\prime}+P_{D}^{\prime}\right) \\
& K_{p_{1}}>K_{p_{2}} \therefore \alpha>\alpha_{1}
\end{aligned}
$$

265 (b,d)
Since $\Delta H<0$ i. e., $\Delta H<-$ ve,
Reaction is exothermic, so lowering of temperature will shift equilibrium towards right. Statement (d) is correct and also the concentration of reactants decreases and products increases. So statement (b) is also correct
268 (d)
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
At constant volume, there is no effect of addition of inert gas to a reaction in equilibrium
At constant pressure, for the reactions for which $\Delta n=0$, there is no effect of addition of inert gas to a reaction in equilibrium. The presence of a catalyst just helps to achieve the equilibrium at a different pace. It does not affect the amount of a reactant or a product at equilibrium
Only if the reactant concentration is increased, the equilibrium shifts forward and the product concentration is increased
269 (a,b,d)
In aqueous solution, a salt of weak acid and a weak base acts as a buffer solution. The pH of a buffer solution do not change on dilution. Thus, pH of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ will not change on dilution. HCO_{3}^{-}fromNaHCO 3 and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$from $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ are amphiprotic anions. The pH of
solution containing amphiprotic anions do not change on dilution

For precipitation, $\left[\mathrm{Ag}^{\oplus}\right]$ ion should be minimum in the solution
For $\mathrm{AgCl}: \quad\left[\mathrm{Ag}^{\oplus}\right]_{\min }=\frac{K_{\text {sp }} \mathrm{AgCl}}{\left[\mathrm{Cl}{ }^{\ominus}\right]}=\frac{1.5 \times 10^{-10}}{1.5 \times 10^{-1}}$

$$
=10^{-9} \mathrm{M}
$$

For $\mathrm{AgBr}:\left[\mathrm{Ag}^{\oplus}\right]_{\text {min }}=\frac{K_{\text {sp }} \mathrm{AgBr}}{\left[\mathrm{Br}^{\ominus}\right]}=\frac{5.0 \times 10^{-13}}{5.0 \times 10^{-4}}$

$$
=10^{-9} \mathrm{M}
$$

For $\mathrm{Ag}_{2} \mathrm{CrO}_{4}:\left[\mathrm{Ag}^{\oplus}\right]_{\text {min }}$
$=\left(\frac{K_{\mathrm{sp} \mathrm{Ag}_{2} \mathrm{CrO}_{4}}}{\left[\mathrm{CrO}_{4}{ }^{2}\right]}\right)^{\frac{1}{2}}=\left(\frac{1.9 \times 10^{-12}}{1.9 \times 10^{-2}}\right)=10^{-5} \mathrm{M}$
Therefore, $\left[\mathrm{Ag}^{\oplus}\right]$ min in solution is in AgCl and AgBr , so both will be precipitated

Either buffer to salt of W_{A} / W_{B} solutions pH values does not change on dilution
Since in buffer, on dilution both the concentration of W_{A} or W_{B} and their conjugate ions change, but their ratio remains same
Hydrolysis of salts of W_{A} / W_{B} are independent on the concentration, so their pH values also does not change on dilution
282 (a,b)
Increasing the concentration of reactants favours the product formation

285 (a,b,c,d)

Calculate of molecular weight of BOH :
Eq of base $=\mathrm{Eq}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used
$\frac{0.496 \mathrm{~g}}{M w \text { of base }} \times 1=40 \times 10^{-3} \times \frac{1}{2} \times 2(n$ factor $)$
$\therefore M w$ of $\mathrm{BOH}=12.4 \mathrm{~g} \mathrm{~mol}^{-1}$
Now: $\Delta_{f} T=i K_{f} m$
$0.165=i \times 1.86 \times \frac{1.5}{12.4} \times \frac{1000}{150}$
$=i \times 1.86 \times 0.8($ So $m=0.8)$
$\therefore i=\frac{0.165 \times 12.4}{1.86}=1.1$
For weak base: $1+\alpha=1.1, \Rightarrow \alpha=0.1=10 \%$
(Answer d)
Thus, $\left.{ }^{\circ} \mathrm{O} \mathrm{H}\right]=C \alpha=0.8 \times 0.1=8 \times 10^{-2}$,
$\therefore \mathrm{pOH}=1.1, \mathrm{pH}=12.9$ (Answer a)
So, $K_{b}=C \alpha^{2}=0.8 \times(0.1)^{2}=8 \times 10^{-3}$, (Answer b)

Also; $\pi=i M R T$
$=1.1 \times 0.8 \times 0.0821 \times 300$
$=21.67$ atm (Answer c)
287 (a,b,c)
As concentration of reactant is increased at equilibrium, reaction will go in the forward direction. Because of endothermic nature it is also favoured by increase in temperature
290 (a,c)
For any polyprotic acid: $K_{a_{1}}>K_{a_{2}}>\ldots$ and so on
292 (a)
i. $\mathrm{Ag}_{2} \mathrm{SO}_{4} \rightleftharpoons \underset{2 x}{2 \mathrm{Ag}^{\oplus}}+\underset{x}{\mathrm{SO}_{4}{ }^{2-}}$
ii. $\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
$\begin{gathered}y \\ \text { iii. } \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\end{gathered} \stackrel{y}{3 \mathrm{Ba}^{2+}}+\underset{3 z}{2 \mathrm{PO}_{4}{ }^{3-}}$
$\therefore\left[\mathrm{Ag}^{\oplus}\right]=2 x,\left[\mathrm{SO}_{4}{ }^{2-}\right]=x+y,\left[\mathrm{Ba}^{2+}\right]=x+3 z ;$ $\left[\mathrm{PO}_{4}{ }^{3-}\right]=2 z$
Direct method: By electroneutrality
[Total positive charge $=$ Total negative charge
Total charge $=$ Charge on the ion \times Concentration
iv. $1 \times\left[\mathrm{Ag}^{\oplus}\right]+2\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$

Alternatively: Substituting the concentration of each ion in (iv)
$2 x+2(x+3 z)=2(x+y)+3(2 z)$
Dividing by $2: x+(x+3 z)=(x+y)+\frac{3}{2}(2 z)$
$\frac{\left[\mathrm{Ag}^{\oplus}\right]}{2}+\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\frac{3}{2}\left[\mathrm{PO}_{4}{ }^{3-}\right]$
or
$\left[\mathrm{Ag}^{\oplus}\right]+2\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$
Hence answer is (a)
298 (a,c,d)
K_{p} depends upon temperature only
299 (a,b,d)
For acidic buffer, buffer capacity is maximum at $\mathrm{pH}=\mathrm{p} K_{a}$ and for basic buffer, it is maximum at $\mathrm{pH}=\mathrm{p} K_{w}-\mathrm{p} K_{b}$. Buffer is always effective withn a pH range of 1 with respect to the pH at maximum buffer capacity $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$ is a buffer solution
303 (c)
a. For the titration of W_{A} and W_{B}, there is no sharp change in the pH value near the end point
(pH varies between 6.0 and 8.0)
So indicator V can not be used. But indicator X can be used
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \Rightarrow \mathrm{pH}=7$

$$
\text { b. } \begin{gathered}
0.1 \mathrm{M} \mathrm{NaOH} \Rightarrow \mathrm{pH}=13 \\
0.001 \mathrm{M} \mathrm{NaOH} \Rightarrow \mathrm{pH}=11
\end{gathered}
$$

Y cannot be used. Choose an indicator which has different colour for $\mathrm{pH}=13$ and 11
c. X can be used since it will give different colour in both the solutions. $\mathrm{NH}_{4} \mathrm{Cl}$ (Salt of W_{B} / S_{A}
$\mathrm{pH}<7$) and $\mathrm{CH}_{3} \mathrm{COONa}$ (salt of $W_{A} / W_{B} \mathrm{pH}<7$)
d. Y will be suitable indicator not W
$\mathrm{CH}_{3} \mathrm{COOH}+$ Base $\Rightarrow \mathrm{pH}>7$
310 (a,b)
Factual statements
312 (a,b)
$\Delta G^{\ominus}=-n R T$ In K and $2.303 \log \mathrm{~K}$

$$
=\frac{-\Delta H^{\ominus}}{R T}+\frac{\Delta S^{\ominus}}{R}
$$

315 (b,c)
Acidic buffer: $\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$ If more salt is added, pH increases
Basic buffer: $\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { Salt }]}{[\text { Base }]}$ If more salt is added, $\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { Salt }]}{[\text { Base }]}$ If more salt is added, pOH increases or pH decreases
317 (b,d)
$\mathrm{MgCl}_{2}+\mathrm{NaF}$ [After dilution]
$7.5 \times 10^{-4} \mathrm{M} 1.25 \times 10^{-2} \mathrm{M}$
I.P. of $\mathrm{MgF}_{2}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{F}^{\ominus}\right]^{2}$
$=\left(7.5 \times 10^{-4}\right)\left(1.25 \times 10^{-2}\right)^{2}>K_{\mathrm{sp}\left(\mathrm{MgF}_{2}\right)}$
$\Rightarrow \mathrm{MgF}_{2}$ will get precipitated and Cl^{\ominus} ions will remain in solution
320 (a,c)

$\begin{array}{lll}\text { Initial } 0.1 & 0.08\end{array}$
moles
Final $(0.1-0.08)(0.008-0.008) 0.008$

$$
=0.02 \quad=0
$$

Since W_{B} is left, so it forms basic buffer solution

$$
\begin{aligned}
& {[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=K_{b} \frac{[\text { Base }]}{[\text { Salt }]}=5 \times 10^{-4} \times \frac{0.02}{0.08}} \\
& \quad=1.25 \times 10^{-4} \\
& {\left[\mathrm{H}^{\oplus}\right] \frac{K_{w}}{\ominus}-\frac{10^{-14}}{1.25 \times 10^{-4}}=8 \times 10^{-11} \mathrm{M}} \\
& \mathrm{pH}=-\log \left(8 \times 10^{-11}\right) \\
& =-\log 2^{4}+11 \\
& =-0.3 \times 4+11=9.8 \\
& \mathrm{pOH}=14-9.8=4.2
\end{aligned}
$$

326 (b,d)

The van't Hoff equation is $K=A e^{-\Delta H / R T}$
or $\frac{\mathrm{d} \ln \mathrm{k}}{\partial \mathrm{T}}=\frac{\Delta \mathrm{H}}{\mathrm{RT}^{2}}$
328 (a,b)
As the reaction is exothermic, low temperature will favour dissociation. Moreover, as $n_{p}>n_{r}$, low pressure favours dissociation
330 (b,d)
a. Wrong: Indicator should have a small transition range
b. Correct: pH at equivalence point $=\mathrm{pH}_{\text {Ind }}$
c. Wrong: pH at equivalence point and at the end point may be different
d. Correct: Factual statement

331 (a,b,c)
a. $M=\frac{W_{2} \times 1000}{M w_{2} \times V_{\text {sol }}(\text { in } m L)}=\frac{2 \times 1000}{40 \times 500}=0.1 \mathrm{M}$
$\therefore[\mathrm{NaOH}]=[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=0.1=10^{-1} \mathrm{M}$
$\mathrm{pOH}=1, \mathrm{pH}=3$
b. $0.05 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}=2 \times 0.05 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$
$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=2 \times 0.05=0.1=10^{-1} \mathrm{M}$
$\mathrm{pOH}=1, \mathrm{pH}=13$
c. 100 mL of $0.1 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$,
$\therefore[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=0.1 \mathrm{~N}=10^{-1} \mathrm{M}$
$\mathrm{pOH}=1 \mathrm{pH}=13$
d. $M=\frac{4 \times 1000}{40 \times 500}=\frac{1}{5}=0.2 \mathrm{M}$
$[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=0.2 \mathrm{M}$
$\mathrm{pOH}=-\log [0.2]=-\log 2+\log 10$ $=-0.3010+1$
$=-0.699$
$\mathrm{pH}=14-0.699=13.301$
So the answer (a), (b), and (c) are correct
332 ($\mathbf{a}, \mathbf{b}, \mathrm{d}$)
$\mathrm{NaCl}+\mathrm{NaI}$
0.05 M $\quad 0.05 \mathrm{M}$

When AgNO_{3} is added, find the minimum concentration of Ag^{\oplus} required to start precipitation
$\left[\mathrm{Ag}^{\oplus}\right]_{\mathrm{AgCl}}=\frac{K_{\text {sp }(\mathrm{NaCl})}}{\left[\mathrm{Cl}^{\ominus}\right]}=\frac{10^{-10}}{0.05}=2 \times 10^{-9} \mathrm{M}$
$\left[\mathrm{Ag}^{\oplus}\right]_{\mathrm{AgI}}=\frac{K_{\mathrm{sp}(\mathrm{AgI})}}{\left[\mathrm{I}^{\ominus}\right]}=\frac{4 \times 10^{-16}}{0.05}=8 \times 10^{-15} \mathrm{M}$
Since, there is a very high difference between the minimum concentration of Ag^{\oplus}, precipitation is selective and AgI will precipitate first

Applying Le Chatelier's principle, when the temperature is increased, the equilibrium shifts in the direction of the endothermic reaction. When the pressure is increased, the equilibrium shifts in the direction of less number of moles. The removal of a reactant and addition of a product shift the equilibrium in the backward direction

337 (a,b,c,d)

$\Delta G=\Delta G^{\ominus}+2.303 R T \log Q$
$\Delta G=2 \times G_{\mathrm{NO}_{2}}^{\oplus}-G^{\ominus}{ }_{\mathrm{N}_{2} \mathrm{O}_{4}}=2 \times 50-100=0$
$\therefore \Delta G=0+2.303 \times 8.314 \times 10^{-3} \times 298 \log \frac{22}{5}$
$=0-0.55 \mathrm{~kJ}$
$\therefore \Delta G=-0.55 \mathrm{~kJ}$, i.e., reaction proceed in forward direction

Also $\Delta G^{\oplus}=0=2.303 R T \log K \quad \therefore K=1$
Now, $\mathrm{N}_{2} \mathrm{O}_{4}=2 \mathrm{NO}_{2}$

$$
\begin{gathered}
\quad 5 \\
5-x \quad 2+2 x \\
\therefore K_{p}=\frac{\left(P_{\mathrm{NO}_{2}}\right)}{\left(\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}\right)}=1=\frac{(2+2 x)^{2}}{5-x} \text { or } x=0.106
\end{gathered}
$$

340 (a,b,c)

Since concentration are identical
If V_{1} is the volume of $\mathrm{CH}_{3} \mathrm{COOH}$ and V_{2} is the volume of NaOH
a. $\left.\begin{array}{cc}\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \\ V_{1} & V_{2}\end{array}\right]$ Buffer is formed if $V_{1}>V_{2}$ $M_{1} \approx M_{2}$
mmol of $\mathrm{CH}_{3} \mathrm{COOH}\left(M_{1} V_{1}\right)>\mathrm{mmol}$ of $\mathrm{NaOH}\left(M_{2} V_{2}\right)$. So W_{A} is left and buffer is formed

Buffer is formed $V_{1}>V_{2}$
mmol of salt $\left(\mathrm{CH}_{3} \mathrm{COOK}\right)>m m o l$ of HNO_{3}. Some salt is hydrolysed to give $\mathrm{CH}_{3} \mathrm{COOH}$ and some salt $\mathrm{CH}_{3} \mathrm{COOK}$ is left to give buffer solution. KNO_{3} is completely ionized
c. $\left.\begin{array}{cc}\mathrm{CH}_{3} \mathrm{COOH} \\ V_{1} & \mathrm{CH}_{3} \mathrm{COOK} \\ V_{2}\end{array}\right]$

Forms always a buffer. Mixture of W_{A} and salt of
W_{A} / S_{B}
d. $\left.\mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{COOH}\right]$ It is a mixture of S_{A} and W_{A}

345 (a,b,c)
Salt of W_{B} / S_{A} have $\mathrm{pH}>7$
Note: Salt of $\frac{W_{A}}{W_{B}}$ have $p H<7$ if
acidic part is stronger i.e., if $p K_{b}>p K_{a}$
a. $\mathrm{NH}_{4} \mathrm{~F} \equiv \mathrm{NH}_{3}+\mathrm{HF} \quad\left(K_{a}>K_{b}\right.$ or $\left.p K_{b}>\mathrm{p} K_{a}\right)$
$W_{B} \quad W_{A} \quad(\mathrm{pH}<7)$
b. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \equiv \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{HNO}_{3}[\mathrm{pH}<7]$
$W_{B} \quad S_{A}$
$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right] \mathrm{Cl} \equiv\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H} \stackrel{\ominus}{\mathrm{O}} \mathrm{H}+\mathrm{HCl} \quad(\mathrm{pH}>7)$

$$
W_{B} \quad S_{A}
$$

c.
d. $\mathrm{CaI}_{2} \equiv \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HI}(\mathrm{pH}=7)$

346 (a,c)
A buffer solution is obtained by mixing a weak acid/base with salt of its conjugate base/acid
351 (b,d)
a. Statement (a) is correct
K_{a} values decreases successively, since it is difficult to remove H^{\oplus} ion from an anion than a neutral compound. Similarly, it is difficult to remove H^{\oplus} ion from dianion than and anion Hence $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
b. Statement (b) is incorrect
$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{K a_{1}}{\rightleftharpoons} \mathrm{H}^{\oplus}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$
$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{ }{\ominus} \stackrel{K a_{2}}{\rightleftharpoons} \mathrm{H}^{\oplus}+\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}\right)=\frac{\mathrm{p} K a_{1}+\mathrm{p} K a_{2}}{2}$
This is valid only when $\mathrm{H}_{3} \mathrm{PO}_{4}$ during titration is completely converted to $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus}$
$\mathrm{HPO}_{4}{ }^{2-} \stackrel{K a_{3}}{\rightleftharpoons} \mathrm{H}^{\oplus}+\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{pH}\left(\mathrm{HPO}_{4}{ }^{2-}\right)=\frac{\mathrm{p} K_{a_{2}}+\mathrm{p} K_{a_{3}}}{2}$
This is again valid when starting with $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}$ and is completely converted to $\mathrm{HPO}_{4}{ }^{2-}$
c. Statement (c) is correct

From the K_{a} values, it is evident that both $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}{ }^{\ominus}$ are more acidic than $\mathrm{HPO}_{4}{ }^{2-}$
d. Statement (d) is incorrect

Both $\mathrm{H}_{2} \mathrm{PO}_{4}^{\ominus}$ and HPO_{4}^{2-} are amphiprotic anion in the solution
$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{+\mathrm{H}^{\oplus}}{\longleftrightarrow} \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus} \xrightarrow{-\mathrm{H}^{\oplus}} \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{\oplus}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{\ominus} \stackrel{+\mathrm{H}^{\oplus}}{\longleftrightarrow} \mathrm{HPO}_{4}{ }^{2-} \xrightarrow{-\mathrm{H}^{\oplus}} \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}^{\oplus}$
355 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
$K_{p}=K_{c}(R T)^{\Delta n}$

357 (b,d)
a. $\Delta n=1+1-1=1$
b. $\Delta n=2-(1+1)=0$
c. $\Delta n=1-0=1$
d. $\Delta n=1+1-(1+1)=0$
Δn is zero in (b) and (d), so (b) and (d) are not effected by pressure
359 (a,b)
a. Correct: At the point, $\left[\mathrm{H}^{\oplus}\right]$ becomes small and to change it, small amount of $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$ is required. When $\left[\mathrm{H}^{\oplus}\right]$ change from $10^{-6} \mathrm{M}$ to $10^{-7} \mathrm{M}, \mathrm{pH}$ change is one, but the volume of NaOH required for this change is very small. So, the curve changes sharply
b. Correct: Quinoid structure is obtained
(c) and (d) are wrong statements

361 ($\mathbf{a}, \mathbf{b}, \mathbf{d}$)
$K_{p}=K_{c}(R T)^{\Delta n}$, when $\Delta n \neq 0, K_{p} \neq K_{c}$
366 (a,b,c,d)

$$
\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{C}+\mathrm{D}
$$

$\begin{array}{llll}\text { Initial } & 1 & 0 & 0\end{array}$
At equilibrium $1-\alpha \quad 2 \alpha \quad \alpha$
$K_{p}=(2 \alpha)^{2} \alpha \times\left[\frac{P}{\Delta n}\right]^{2}=\frac{4 \alpha^{3} P^{2}}{(1+2 \alpha)^{2}}$
Use $\quad 2.303 \log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$ for effect temperature on K

371 (a,c)
a. $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{COOH}$ (Acidic buffer, mixture of salt of W_{A} / S_{B} and W_{A})
b. It is not buffer. [Mixture of salt of W_{A} / S_{B} and S_{A}]
c. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$ (Basic buffer, mixture of W_{B} and
salt of W_{B} / S_{A})
d. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{OH}$ (not buffer, mixture of W_{B})

373 (a,b,d)
Factual statements
376 (b,c,d)
(a) is wrong

For reaction of S_{A} with W_{B}, basic buffer is formed β is maximum. When $\mathrm{pOH}=\mathrm{p} K_{b}$
At 50% neutralization (24 mL of 0.1 N HCl)
Slope of the given graph will be least and the
buffer will have maximum buffer capacity
377 (d)
At constant volume, there is no effect of addition
of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n=0$. There is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n \neq 0$, the equilibrium shifts in the direction of more number of moles

386 (a,b,c,d)
After dilution $\left[\mathrm{H}^{+}\right]=10^{-2}$
$\mathrm{pH}=2$
Let $V \mathrm{~L}$ solution of $\mathrm{pH}=2$ is added in original solution so that pH remains fixed
$\therefore\left[\mathrm{H}^{+}\right]=\frac{10^{-2} x+V \times 10^{-2}}{10+V}=10^{-2}$
This result is independent of volume taken
387 (a,c)
Addition of $\mathrm{H}_{2} \mathrm{O}$ will not change pH only for buffer solution. (Buffer is formed if W_{A} or W_{B} is left after neutralization)
a. Acid buffer: $\mathrm{CH}_{3} \mathrm{COOH}=100 \times 0.2=20 \mathrm{mmol}$ $\mathrm{NaOH}=100 \times 0.1=10 \mathrm{mmol}$
10 mmoles of $\mathrm{CH}_{3} \mathrm{COOH}$ will react with 10 mmol of NaOH to form 10 mmol of $\mathrm{CH}_{3} \mathrm{COONa}$ and 10 mmol of $\mathrm{CH}_{3} \mathrm{COOH}$ is left
b. mmol of $\mathrm{CH}_{3} \mathrm{COOH}=100 \times 0.2=20$
mmol of $\mathrm{NaOH}=100 \times 0.2=20$
(Salt of W_{A} / W_{B} is formed)
c. mmol of $\mathrm{CH}_{3} \mathrm{COOH}=200 \times 0.2=40$
mmol of $\mathrm{NaOH}=100 \times 0.1=10$
mmol of $\mathrm{CH}_{3} \mathrm{COOH}$ left $=40-10=30$
mmol of $\mathrm{CH}_{3} \mathrm{COONa}$ formed $=10$
(Buffer is Formed)
d. mmol of $\mathrm{CH}_{3} \mathrm{COOH}=100 \times 0.2=20$
mmol of $\mathrm{NaOH}=200 \times 0.2=40$
mmol of NaOH left $=40-20=20$
S_{B} is left
388 (b,c)
a. The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is not 8 , it is less than 7
b. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\ominus} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{\oplus}$
c. Autoprotolysis constant of water or ionic
product of water increases with increase in temperature
d. When a solution of a weak monoprotic acid is treated against a strong base, at halfneutralisation point $\mathrm{pH}=\mathrm{p} K_{a}$
389 (c)
Explanation is correct reason for statement
390 (c)
Catalyst increases forward as well as backward reaction

391 (c)
Explanation is correct reason for statement.
392 (b)
Both (A) and (R) are correct but (R) is not the correct explanation of (A)

Correct R : $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with HCl upto the stage of NaHCO_{3} in the presence of phenolphthalein
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}$
393 (b)
(A) is correct because aqueous solution of salt of W_{A} and W_{B} acts as buffer
(R) is correct. Buffer resist the change in pH on addition of small amount of S_{A} or S_{B}

But it is not the correct explanant of (A)

394 (c)
$2.303 \log \frac{K_{c_{2}}}{K_{c_{1}}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$; if $\Delta H=-\mathrm{ve}, K_{c_{2}}<K_{c_{1}}$

$$
\text { if } \Delta H=+\mathrm{ve}, K_{c_{2}}>K_{c_{1}}
$$

395 (d)
$\Delta n=0$

$$
\therefore K_{p}=K_{c}
$$

Explanation is correct reason for statement

397 (c)

K depends only upon temperature

398 (a)
Both (A) and (R) are correct and (R) is the correct explanation of (A)

Sulphur can expand its electron complement in the valence shell to exceed the octet. In any case, S , expands its number of valence electrons by attaching to the lone pair on the N and $(\mathrm{N}-\mathrm{S})$ bond is more polar bond due to the big difference in EN between N and S

In this case H of the HCl attaches to the lone pair on the N . Here Cl is connected to N by a hydrogen bond

399 (c)

Ice \rightleftharpoons water, increase in pressure leads to melting of ice as it favours the change showing decrease in volume.
400 (b)
$\mathrm{HgI}_{2}+\mathrm{KI} \rightarrow \mathrm{K}_{2}\left[\mathrm{HgI}_{4}\right]$ (A) is true
(R) is also true since I^{\ominus} ion is large sized and therefore is highly polarisable. But (R) is not the correct explanation of (A)

401 (d)
(A) is wrong because addition of NaCN to HCN , due to common ion $\left(\mathrm{CN}^{\ominus}\right)$, the degree of dissociation of HCN is suppressed and hence less $\left[\mathrm{H}^{\oplus}\right]$ and increase in pH . (R) is correct

402 (b)
The dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ is suppressed in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ and thus pH of $\mathrm{NH}_{4} \mathrm{OH}$ decreases

403 (a)
$B(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$
404 (a)
Both (A) and (R) are correct and (R) is the correct explanation of (A)

406 (d)
Increase in pressure favours melting of ice into water because at higher pressure melting point of ice is lowered

407 (a)
(A) is true:
$\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$

$$
\begin{array}{lll}
1 \mathrm{M} & 2 \mathrm{M} & 1 \mathrm{M}
\end{array}
$$

$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]_{\text {left }}=2-1=1 \mathrm{M}$
So solution contains $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$, an acidic buffer forms
(R) is true
408 (c)
Both (A) and (R) are true. A basic buffer is formed whose pH is always >7

409 (a)
Catalyst only increases the rate of reaction
410 (a)
Both (A) and (R) are correct and (R) is correct explanation of (A)

411 (c)
(A) is correct but (R) is false

Correct (R): $K_{\text {sp }}$ of $\mathrm{AgCl}>K_{\text {sp }}$ of AgBr compounds with lower $K_{\text {sp }}$ is precipitated first. Also, for precipitation $Q_{\text {sp }}$ should be greater than $K_{\text {sp }}$

414 (a)
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$\begin{array}{ccc}(1-\alpha) & { }_{\alpha}^{0} & { }_{\alpha}^{0}\end{array}$
$K_{p}=\left[\frac{\alpha^{2}}{1-\alpha}\right]\left[\frac{P}{1+\alpha}\right]^{1}$
An increase in pressure will decrease α, to have K_{p} constant and thus backward reaction occurs.

Explanation is correct reason for statement.
Boiling of a liquid occurs when its vapour pressure becomes equal to atmospheric pressure.

This is based on common ion effect
$\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\mathrm{HCl} \leftrightharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}$
Concentration of Cl^{-}ions increases due to ionization of HCl which increases the ionic product $\left[\mathrm{Na}^{+}\right]\left[\mathrm{Cl}^{-}\right]$. This results in the precipitation of pure NaCl .

418 (a)
According to formula $K_{P}=K_{C}(R T)^{\Delta n}$
$\Delta \mathrm{n}=0$
$K_{P}=K_{c}(R T)^{0}$
$\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}$
419 (a)
$K_{p}=K_{c}(R T)^{\Delta n}$
When $\Delta n>1, \quad K_{p}>K_{c}$
When $\Delta n<1, \quad K_{p}<K_{c}$
When $\Delta n=0, \quad K_{p}=K_{c}$
420 (d)
(A) is wrong. It forms acidic buffer and this pH changes
(R) is correct. Due to common ion $\left(\mathrm{CH}_{3} \mathrm{COO}^{\ominus}\right)$, ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ is supressed

421 (e)
Both (A) and (R) are wrong
Since it depends on temperature
423 (c)
Gas + solvent \rightleftharpoons solution; Increase in pressure leads to the change showing decrease in volume.
424 (a)
According to Henry's law, "the mass of gas dissolved in a given mass of a solvent at any temperature is directly proportional to the pressure of the gas above the solvent."

425 (a)

The scale of pH (0 to 14 at $25^{\circ} \mathrm{C}$) changes to (0 to less than 14) as the temperature rises because K_{w} of water increases with temperature. Note that $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and thus water remains neutral

426 (d)
(A) It is acidic (salt of W_{B} / S_{A}). So wrong
(R) is correct
$\left[\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
427 (a)
The equilibrium $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$

$$
K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

If [Cl^{-}] increases, the equilibrium is shifted in the backward direction, i.e., solubility of AgCl decreases in presence of NaCl . Note this is Le Chatelier's principle application to solubility product. In common ion effect, there must be a weak electrolyte
(A) $\left[\mathrm{H}^{\oplus}\right]=\frac{10^{-2}}{2} \mathrm{pH}=2.3 \operatorname{not} \mathrm{pH}=1$
(R) is wrong
430 (c)
Addition of inert gas shifts the equilibrium to backward direction

431 (c)
(A) is correct because HCl is a strong electrolyte resulting in higher ${ }^{\left[\mathrm{H}^{\oplus}\right]}$ (and less pH) then acetic acid. (R) is wrong, HCl will produce more protons than acetic acid at same concentration

432 (c)
(A) is correct
(R) is wrong
Correct (R): Addition of acid or base increase the $\left[\mathrm{H}^{\oplus}\right]$ or $[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$ and thus pH changes

433 (a)
Forward reaction increase with temperature only for endothermic reaction, while for exothermic it is reverse

434 (d)
(A) is false. H^{\oplus} ion from $\mathrm{CH}_{3} \mathrm{COOH}$ are adsorbed on characoal thus decrease $\left[\mathrm{H}^{\oplus}\right.$] and hence pH is increased

435 (a)

All Bronsted bases are not Lewis bases
436 (c)
(A) is correct. Due to common ion $\left(\mathrm{Cl}^{\ominus}\right)$ effect, the suppression of ionization of NaCl occurs and NaCl starts precipitating
(R) is wrong. Correct (R) as in (A)

438 (c)

Explanation is correct reason for statement
439 (c)
(A) is true
(R) is false: Correct reason: $K_{\text {sp }}$ of $\mathrm{CdS}<K_{\text {sp }} \mathrm{NiS}$.

Since compound with lower $K_{\text {sp }}$ is precipitated first

440 (a)
Both (A) and (R) is correct and (R) is correct explanation of (A)

(Acid) (Base)

441 (a)
Equilibrium constant depends only upon temperature
442 (d)
(A) is wrong. Dissociation of water is an endothermic reaction, so increasing T will increase $\left[\mathrm{H}^{\oplus}\right]$ and hence decrease in pH
(R) is correct
443 (d)
In biological systems buffer system of carbonic acid and sodium bicarbonate is found in our blood. It maintains the pH of blood to a constant value of about 7.4

445 (a)

The pH of the solution at the neutralisation point region is about 3.5 to 7 and methyl orange gives its colour change between pH 3.1 to 4.4

446 (c)
Correct (R): In such very dilute solutions both source of H^{\oplus} ions from HCl and $\mathrm{H}_{2} \mathrm{O}$ must be considered and due to common ion (H^{\oplus})
supression of ionization occurs

447 (b)

Both Assertion and Reason are true statement but Reason is not the correct explanation of Assertion. pH of a buffer solution is given by Henderson-Haselbalch equation.

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]} \\
\therefore \quad \mathrm{pH} & =\mathrm{p} K_{a}(\text { when }[\text { salt }]=[\text { acid }])
\end{aligned}
$$

CO is acid, NaOH is base and salt formed is HCOONa

450 (d)
$Q<K_{c}$ forward reaction
$Q>K_{c}$ backward reaction
$Q=K_{c}$ if $\Delta G=0$
451 (c)
(A) is correct but (R) is false

Correct (R): Sb^{3+} is precipitated in group II B by $\mathrm{H}_{2} \mathrm{~S}$ in acidic medium (dil HCl). In acidic medium [S^{2-}] decreases so that the radicals of group IV are not precipitated. Since the $K_{\text {sp }}$ of the sulphides of II group is less than the $K_{\text {sp }}$ of the sulphides of IV group

452 (a)
Aqueous solution of FeCl_{3} on standing produce brown ppt. Due to hydrolysis, it produces ppt of $\mathrm{Fe}(\mathrm{OH})_{3}$ which is of brown colour. Hence, both are correct and reason is a correct explanation

453 (a)
Both factual statements

454 (b)
(A) is correct. At midpoint of titration of weak acid, $[$ salt $]=[$ Acid $]$ and therefore $\mathrm{pH}=\mathrm{p} K_{a}$
(R) is correct but not the reason of (A)
455 (b)
Breaking up of bonds is endothermic
456 (a)
If volume is not constant the addition of inert gas affect the equilibrium constant. Both at constant volume, the addition of inert gas has no effect on the state of equilibrium.

457 (d)
(A) only reaction (i) is Lewis acid-base reaction, hence (A) is wrong
(R) is correct
458 (a)
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{mol}^{2} \times \mathrm{L} \times \mathrm{L}^{3}}{\mathrm{~L}^{2} \times \mathrm{mol} \times \mathrm{mol}^{3}}$
$=\mathrm{L}^{2} \mathrm{~mol}^{-2}$
459 (c)
(A) is correct

Since K_{w} at $25^{\circ} \mathrm{C}=10^{-14}$
So pH of acidic solution <7 at $25^{\circ} \mathrm{C}$
(R) is wrong. pH of $10^{-8} \mathrm{M} \mathrm{HCl}=6.98$

460 (c)
Explanation is correct reason for statement

462 (c)

Explanation is correct reason for statement.
463 (c)
Inert gas addition at constant pressure leads to an increase in volume. To have K_{c} constant ' α ' must decrease.
464 (c)
$\begin{array}{cccc}\mathrm{NaCN}+\mathrm{HCl} & \longrightarrow \mathrm{NaCl}+\mathrm{HCN} \\ 0.1 & 0.05 & 0 & 0 \\ 0.05 & 0 & 0.05 & 0.05\end{array}$
The solution contains a weak acid HCN and its salt NaCN and thus acts as buffer

465 (a)
HCl is regarded as an acid only when dissolved in water and not in any other solvent

466 (c)
Explanation is correct reason for statement
467 (a)
$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
The above process takes place in following steps
$\mathrm{CH}_{3} \mathrm{COONa} \stackrel{\text { Ionisation }}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
in aqueous solution Strong base
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
Acetate ion undergoes anionic hydrolysis and
the resulting solution is slightly basic due to excess of OH^{-}ions. Hence, both Assertion and Reason are true and Reason is the correct explanation of Assertion.
468 (d)
$\mathrm{BaSO}_{4}(s) \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}$
$s \quad s+0.1$
$K_{\mathrm{sp}}=(s)(s+0.1)$
$s<10^{-9}$
469 (b)
Heat of neutralisation of HF and NaOH is $-16.4 \mathrm{kcal} / \mathrm{eq}$. due to extensive hydration of F^{-}of NaF on account of its smaller size

470 (c)
Explanation is correct reason for statement
471 (a)
$K_{w}=10^{-13}$ at $60^{\circ} \mathrm{C} \therefore \mathrm{pH}=6.5$; but water is neutral because pH scale contracts to 0 to 13

472 (a)
Assume, (a) is true, hence reaction must be endothermic

473 (c)
(A) is correct. It exists as Zwitter ion
(R) is wrong. The conjugate acid is $\stackrel{\oplus}{N} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

474 (c)
Explanation is correct reason for statement.
475 (a)
Here $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ is passed into the solution directly. Selectively precipitation of $\mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}$ and Ni^{2+} is not possible, as the ionic product of their respective sulphides is more than their $K_{\text {sp }}$ values and S^{2-} ion is not added slowly or dropwise

If $\mathrm{H}_{2} \mathrm{~S}$ is passed into the solution containing only $\mathrm{H}_{2} \mathrm{O}$, then
$\left[\mathrm{S}^{2-}\right]=K_{2}$ of $\mathrm{H}_{2} \mathrm{~S}=10^{-14} \mathrm{M}$
But in 0.1 M HCl solution
$K_{1} \times K_{2}=\frac{\left[\mathrm{H}^{\oplus}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\mathrm{H}_{2} \mathrm{~S}}$
$10^{-7} \times 10^{-14}=\frac{(0.1)\left[S^{2-}\right]}{0.1} \quad \therefore\left[\mathrm{~S}^{2-}\right]=10^{-20} \mathrm{M}$
$\therefore Q_{\text {sp }}$ of PbS and $Z n S\left(0.1 \times 10^{-20}\right)>K_{\text {sp }}$ of PbS
and ZnS (Hence both precipitate) $Q_{\text {sp }}$ of
$\mathrm{NiS}\left(10^{-21}\right)<K_{\text {sp }}$ of NiS (Hence do not precipitate)

476 (e)
Both (A) and (R) are false

Correct (A): For titration of S_{B} / W_{A} (pH change near the end point $8-10$), phenolphthalein or thymol blue are used

Correct (R) methyl orange changes colour in pH range (3 to 4.5)

477 (b)
$R \mathrm{COONa} \rightarrow R \mathrm{COO}^{-}+\mathrm{Na}^{+}$; In presence of $\mathrm{NaCl},\left[\mathrm{Na}^{+}\right]$increases and $\left[R \mathrm{COO}^{-}\right]\left[\mathrm{Na}^{+}\right]$exceeds than $K_{s p}$ of $R \mathrm{COONa}$

478 (a)

Both (A) and (R) are correct and (R) is the correct of explanation of $(\mathrm{A}) . \mathrm{Zn}^{2+}$ is precipitated as ZnS in basic medium

479 (b)
$\Delta G^{\circ} \neq 0$ at equilibrium
$\Delta G=0$ at equilibrium
480 (c)
Explanation is correct reason for statement
481 (a)
The state of equilibrium is not affected by the addition of noble gases, at constant volume

482 (b)
According to Le-Chatelier's principle with increase of pressure, equilibrium shifts in that direction in which lesser number of gaseous moles are produced

483 (d)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ Heat
This reaction is favoured by decrease of temperature, increase of pressure, addition of catalyst and promoter

484 (a)
Statement is correct due to back bonding in boron. In nitrogen halides the order is $\mathrm{NF}_{3}<\mathrm{NCl}_{3}<\mathrm{NBr}_{3}<\mathrm{NI}_{3}$. On account of decreasing electronegativity to halogens. In NF_{3}, the lone pair is not released easily, due to more + ve charge on N

485 (c)
The value of K depends on the stoichiometry of reactants and products at the point of equilibrium. For example if the reaction is multiplied by 2 , the equilibrium constant is squared

486 (c)
According to Le-chateliers principle endothermic reaction favours increase in in temperature.
However exothermic reaction favour decrease in temperature.

487 (a)
$\mathrm{AgCN}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{\oplus}+\mathrm{CN}^{\ominus}$
$\mathrm{CN}^{\ominus}+\mathrm{H}^{\oplus} \longrightarrow \mathrm{HCN}$
As CN^{\ominus} ions are consumed by H^{\oplus} ions to form a W_{A}, HCN, more AgCN is dissolved

488 (a)
$\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ (pink) while CoCl_{4}^{2-} (blue); so on cooling because of Le-Chatelier's principle the reaction tries to overcome the effect the temperature.

489 (d)
In endothermic reaction, on increasing the temperature, reaction shifts to forward direction

490 (d)
Blood is alkaline and at body temperature $\left(98^{\circ} \mathrm{F}\right)$ scale of pH lies between 0 to 13.6

491 (e)
K_{p} can be greater, less or equal to K_{c}
492 (a)
Both (A) and (R) are correct and (R) is the correct explanation of (A). Structure are:

$\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
$\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$

(Tribasic acid) (Dibasic acid) (Monobasic acid)
(In all the three acids, number of terminal oxygen atoms is one)

493 (b)
(A) is correct. Salt of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaOH} . \mathrm{H}_{2} \mathrm{SO}_{3}$ is unstable acid
(R) is correct but not the correct explanation of
(A)

494 (c)
Solid \rightleftharpoons Liquid $V_{L}>V_{S}$; Ice \rightleftharpoons water, increase in pressure leads to melting of ice as it favours the change showing decrease in volume.
495 (a)
$(\mathbf{a} \rightarrow \mathbf{q})$ Salt of $W_{A} / S_{B} \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$ $=\frac{1}{2}\left(14+\mathrm{p} K_{a}+\log 10^{-1}\right)$
$=6.5+\frac{1}{2} \mathrm{p} K_{a}$
$(\mathbf{b} \rightarrow \mathbf{r})$ Salt of $W_{B} / S_{A}, \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{a}-\log C\right)$ $=\frac{1}{2}\left(14-\mathrm{p} K_{b}-\log 10^{-1}\right)$
$=7.5-\frac{1}{2} \mathrm{p} K_{a}$
$(\mathbf{c} \rightarrow \mathbf{p})$ Salt of S_{A} / S_{B}, (do not hydrolyse), $\mathrm{pH}=7$
$(\mathbf{d} \rightarrow \mathbf{p}, \mathbf{s})$ salt of W_{A} / W_{B}
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}-\mathrm{p} K_{b}\right)$
$=7+\frac{1}{2} \mathrm{p} K_{a}-\frac{1}{2} \mathrm{p} K_{b}=7$ since $\left(\mathrm{p} K_{a}=\mathrm{p} K_{b}\right)$
497 (a)
$(\mathbf{a} \rightarrow \mathbf{q}) \mathrm{NH}_{4} \mathrm{Cl}$: only $\stackrel{\oplus}{\mathrm{NH}_{4}}$ will get hydrolysed $(\mathbf{b} \rightarrow \mathbf{r}) \mathrm{CH}_{3} \mathrm{COONa}$: only $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ will get hydrolysed
$(\mathbf{c} \rightarrow \mathbf{s}) \mathrm{NH}_{4} \mathrm{CN}$: Both $\stackrel{\oplus}{N} \mathrm{H}_{4}$ and CN^{\ominus} will get hydrolysed
$(\mathbf{d} \rightarrow \mathbf{p}) \mathrm{NaCl}$: Neither Na^{\oplus} and Cl^{\ominus} will get hydrolysed
498 (d)
$(\mathbf{a} \rightarrow \mathbf{p})$ Acidic salt: aqueous solution of salt is acidic
$(\mathrm{pH}<7) \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right)$
$(b \rightarrow q)$ Basic salt: Aqueous solution of salt is basic
$(\mathrm{pH}>7) \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{b}+\log C\right)$
$(\mathbf{c} \rightarrow \mathbf{s})$ Acidic buffer: $\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$(\mathrm{d} \rightarrow \mathbf{r})$ Basic buffer: $\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
499 (a)

$$
\mathrm{HSO}_{4}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{SO}_{4}^{2-}
$$

(Bronsted acid)
$(a \rightarrow r, s)$
$\mathrm{HSO}_{4}{ }^{\ominus}+\mathrm{H}^{\oplus} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ (Bronsted base)
$(\mathrm{b} \rightarrow \mathrm{p}) \mathrm{BF}_{3}\left(e^{-}\right.$deficient and hence Lewis acid)
$(c \rightarrow q, s) H_{3} N$: (It can donate lone pair of electrons and acts as Lewis base)
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ (Accepts H^{\oplus}
and acts as Bronsted base)
$(\mathrm{d} \rightarrow \mathrm{q}, \mathrm{s}) \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ (It is bronsted base by accepting ${ }^{\oplus}$) It can donate lone pair of electrons and acts as Lewis base also
500 (b)
$(\mathbf{a} \rightarrow \mathbf{p})$ Acidic buffer (mixture of $W_{A}+$ salt of $\left.W_{A} / S_{B}\right)$
$\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\text { Salt }}{\text { Acid }}\right)$
$=4.74+\log \left(\frac{0.1}{0.1}\right)=4.74$
Thus, it is acidic buffer at maximum buffer capacity. Because buffer limits are $\mathrm{pH} \pm 1$. When $\mathrm{pH}=\mathrm{p} K_{a}$, it is a buffer at maximum buffer capacity
$(\mathbf{b} \rightarrow \mathbf{r})$ It is mixture of W_{A} and S_{A}. So pH of 0.1 M HCl will predominate and $\mathrm{pH}>7$
$(\mathbf{c} \rightarrow \mathbf{s})$ It will forms salt of W_{A} / W_{B}. Since
$\mathrm{p} K_{a}=\mathrm{p} K_{b}$, Thus $\mathrm{pH}=7 .\left(\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\right.\right.$ $\mathrm{p} K b$
$(\mathbf{d} \rightarrow \mathbf{q}) \mathrm{mmol}$ of $\mathrm{CH}_{3} \mathrm{COONa}=300 \times 0.1=30$
mmol of $\mathrm{HCl}=100 \times 0.1=10$

$$
\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightarrow \quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}
$$

Initial 30 mmo 10 mmol
$0 \quad 0$
Final $(30-10)=20(10-10)=0 \quad 10-$
501 (b)
$(\mathbf{a} \rightarrow \mathbf{r}) \mathrm{A} \xrightarrow{K_{1}} \mathrm{~B}$ for reverse reaction $\mathrm{B} \xrightarrow{K} \mathrm{~A}$;
$K=\frac{1}{K_{1}}$
$(\mathbf{b} \rightarrow \mathbf{p}) K=(\mathrm{K})^{1 / 2}$
$(\mathbf{c} \rightarrow \mathbf{b}) K=K^{2}$

502 (c)
All factual statements
503 (c)
For $A+B \rightleftharpoons[A B]$
Hint: $K_{c}=\frac{[A][B]}{[A B]}=\frac{\left[\mathrm{mol} \mathrm{L}^{-1}\right]\left[\mathrm{mot} L^{-1}\right]}{\left[\text { mot } L^{-1}\right]}=\left[\mathrm{mol} \mathrm{L}^{-1}\right]$
Use above expression for all equation
504 (c)
For $A+B \rightleftharpoons[A B]$
Hint: $K_{c}=\frac{[A][B]}{[A B]}=\frac{\left[\mathrm{mol} \mathrm{L}^{-1}\right]\left[\mathrm{mot} L^{-1}\right]}{\left[\text { mot } L^{-1}\right]}=\left[\mathrm{mol} \mathrm{L}^{-1}\right]$
Use above expression for all equation
506 (b)

	V_{NaOH}	mmol $\mathrm{H}_{2} \mathrm{~S}$ in exces s	mmol $\mathrm{HS} \ominus$ prod uced	mmol S^{-2} prod uced	pH
a.	0.001	1.00	0.00	-	4.5
b.	0.5	0.5	0.5	-	7.0
c.	1.0	0.0	1.0	0.0	9.5 and 12.0
d.	1.5	-	0.5	0.5	11.7

$\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HS}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$;
$\Rightarrow K_{1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]\left[\mathrm{HS}^{\ominus}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=10^{-7}$
$\mathrm{HS}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{S}^{2-}$
$\Rightarrow K_{2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{\ominus}\right]}=10^{-14}$
The total volume of the titration mixture will change only slightly. Titrations (a) and (b) is calculated directly from the K_{1} value of $\mathrm{H}_{2} \mathrm{~S}$ $(\mathrm{a} \rightarrow \mathrm{q}) \frac{x \times x}{0.01}=10^{-7}$ so $x=\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=3.1 \times 10^{-5}$ and pH
$=4.5$
$(\mathrm{b} \rightarrow \mathrm{p}) \frac{x(0.5)}{0.5}=10^{-7}$, so $\mathrm{pH}=7.0$
$(c \rightarrow r, t)$
i. Point (c) is the first equivalence point the same solution as 1.0 mol of NaHS in 101.0 mL . The HS^{\ominus}
can react in water to ionize is either of the two ways:
$\mathrm{HS}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{S}^{2-}\left(K_{2}=10^{-14}\right)$
$\mathrm{HS}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{\ominus}{\mathrm{O}} \mathrm{H}+\mathrm{H}_{2} \mathrm{~S}$
$K_{h}=\frac{K_{w}}{K_{1}}=\frac{10^{-14}}{10^{-7}}=10^{-7}$
Equation (ii) will predominate, therefore ignore equation (i)
Hence, this case becomes the hydrolysis of salt of W_{A} / W_{B}. Considering K_{1} of $\mathrm{H}_{2} \mathrm{~S}$. $\left(\mathrm{p} K_{a} \mathrm{H}_{2} \mathrm{~S}=7\right)$
$\therefore \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{1}+\log C\right)$
$=\frac{1}{2}\left(14+7+\log \frac{1}{101}\right)$
$=\frac{1}{2}\left(14+7+\log 10^{-2}\right)$
$=\frac{1}{2}(14+7-2)=9.5$
ii. With HS^{\ominus} hydrolyzing much more than ionizing to yield $\mathrm{H}_{3} \mathrm{O}^{\oplus}$, it might be well to calculate the hydrolysis of S^{2-} at the second equivalence point
$\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HS}^{\ominus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}, K_{h}=\frac{K_{w}}{K_{2}}=\frac{10^{-14}}{10^{-14}}=1$
$\therefore \frac{x^{2}}{0.01-x}=1$ or $x^{2}+x-0.01=0$
$\frac{-1+\sqrt{1+0.04}}{2}=1 \times 10^{-2} \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ thus $\mathrm{pOH}=2, \mathrm{pH}=$ 12.0

The extra ${ }^{\circ}{ }^{\circ} \mathrm{H}$ ions added after the first equivalence point have not been neutralized by the very weak HS^{\ominus} ion, ion, i.e., titration is some what like that of weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
$(\mathrm{d} \rightarrow \mathrm{s})$ When 1.5 mL of NaOH added: (Total volume $=100+1.5=101.5 \approx 100 \mathrm{~mL}$)
$\left[\mathrm{S}^{2-}\right]_{\text {initial }}=\frac{0.5}{100}=0.5 \times 10^{-2}$ or 5×10^{-3}
$\left|\mathrm{HS}^{\ominus}\right|_{\text {initial }}=\frac{0.5}{100}=0.5 \times 10^{-3}$

$$
\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HS}^{\ominus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}
$$

Initial $5 \times 10^{-3}-5 \times 10^{-3} \quad 0$
At equilibrium $\left(5 \times 10^{-3}-x\right)-\left(5 \times 10^{-3}+\right.$ $x x$
$K_{h}=\frac{K_{w}}{K_{2}}=\frac{10^{-14}}{10^{-14}}=1$
$\therefore K_{h}=\frac{\left.\left[\mathrm{HS}^{\ominus}\right]^{[\stackrel{\ominus}{\mathrm{O}}]}\right]}{\left[\mathrm{S}^{2-}\right]}$
$1=\frac{\left(5 \times 10^{-3}+x\right) x}{\left(5 \times 10^{-3}-x\right)}$.Thus $\left.x=5 \times 10^{-3}=\stackrel{\ominus}{\mathrm{O}} \mathrm{H}\right]$
$\mathrm{pOH}=2.3$ and $\mathrm{pH}=11.7$
Graphical representation

507 (a)
$(\mathbf{a} \rightarrow \mathbf{s}) K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=(2-2)=0$
$\therefore K_{p}=K_{c}$
$(\mathbf{b} \rightarrow \mathbf{r}) K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=(2-4)=-2$
$\therefore K_{p}=K_{c}(R T)^{-2}$
$(\mathbf{c} \rightarrow \mathbf{p}) K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=2-1=1$
$\therefore K_{p}=K_{c}(R T)$
$(\mathbf{d} \rightarrow \mathbf{q}) K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=2-0=2$
$\therefore K_{p}=K_{c}(R T)^{2}$

508 (a)

$K_{s p}=3^{3} 3^{3} 2^{2} x^{8}=2916 x^{8}$
$(\mathrm{b} \rightarrow \mathrm{t}) \mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4} \rightleftharpoons \underset{3 \mathrm{Zr}^{+4}}{ }+\underset{4}{4 \mathrm{PO}_{4}^{3-}}{ }_{4}{ }^{3-}$
$K_{\mathrm{sp}}=3^{3} 4^{4} x^{7}=6912 x^{7}$
$(\mathrm{c} \rightarrow \mathrm{p}) \mathrm{Bi}_{2} \mathrm{~S}_{3} \rightleftharpoons 2 \mathrm{Bi}^{3+}+3 \mathrm{~S}^{2-}$

$$
2 x \quad 3 x
$$

$K_{s p}=2^{2} 3^{3} x^{5}=108 x^{5}$
$\begin{array}{ll} \\ (\mathrm{d} \rightarrow \mathrm{r})\end{array} \mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}^{3+}+3 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
$K_{\text {sp }}=1^{1} 3^{3} x^{4}=27 x^{4}$
$(\mathrm{e} \rightarrow \mathrm{s}) \mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{3+}+2 \mathrm{~F}^{-}$
$K_{\mathrm{sp}}=1^{2} 2^{3} x^{3}=4 x^{3}$
509 (a)
$(\mathbf{a} \rightarrow \mathbf{s})$ At equilibrium $Q=K$
($\mathbf{b} \rightarrow \mathbf{q}, \mathbf{r}$) When $Q<K$, reaction proceeds in forward direction
($\mathbf{c} \rightarrow \mathbf{q}, \mathbf{t}$) When $Q>K$, reaction proceeds in backward direction
$(\mathbf{d} \rightarrow \mathbf{p})$ When $K \gg 1$, reaction is about to complete

510 (a)
$(\mathbf{a} \rightarrow \mathbf{s})$ At equilibrium $Q=K$
($\mathbf{b} \rightarrow \mathbf{q}, \mathbf{r}$) When $Q<K$, reaction proceeds in forward direction
($\mathbf{c} \rightarrow \mathbf{q}, \mathbf{t}$) When $Q>K$, reaction proceeds in backward direction
$(\mathbf{d} \rightarrow \mathbf{p})$ When $K \gg 1$, reaction is about to complete

511 (a)
According to le-chatelier principle, on increasing the pressure the reaction shift in the direction which have lesser number of molecules

512 (c)
$(\boldsymbol{a} \rightarrow \mathbf{q}) S$ in buffer $=\left[K_{\mathrm{sp}}\left(1+\frac{\mathrm{H}^{\oplus}}{K_{a}}\right)\right]^{1 / 2}$
S in $\mathrm{H}_{2} \mathrm{O}=\sqrt{K_{s p}}$
S in buffer
S in $\mathrm{H}_{2} \mathrm{O}$
$\frac{\sqrt{K_{\mathrm{sp}}}\left(1+\frac{\mathrm{H}^{\oplus}}{K_{a}}\right)^{1 / 2}}{\sqrt{K_{\mathrm{sp}}}}=\left(1+\frac{10^{-3}}{10^{-3} / 3}\right)^{1 / 2}=2$
$(\boldsymbol{b} \rightarrow \mathbf{p}) \frac{S \text { in buffer }}{S \text { in } \mathrm{H}_{2} \mathrm{O}}$
$=\left(1+\frac{\mathrm{H}^{\oplus}}{K_{a}}\right)^{1 / 2}=\left(1+\frac{10^{-4}}{10^{-4} / 7}\right)^{1 / 2}=4$
$(\boldsymbol{c} \rightarrow \mathbf{p}) \frac{S \text { in buffer }}{S \text { in } \mathrm{H}_{2} \mathrm{O}}$
$=\left(1+\frac{\mathrm{H}^{\oplus}}{K_{a}}\right)^{1 / 2}=\left(1+\frac{10^{-5}}{10^{-5} / 8}\right)^{1 / 2}=3$
$(\boldsymbol{d} \rightarrow \mathbf{q}) \mathrm{S}$ in $0.1 \mathrm{M} \mathrm{HCl}=\frac{K_{\mathrm{sp}}}{0.1}$
S in $0.02 \mathrm{M} \mathrm{AgNO}_{3}=\frac{K_{\text {sp }}}{0.2}$
$\frac{S \text { in } \mathrm{HCl}}{S \text { in } \mathrm{AgNO}_{3}}=\frac{K_{\mathrm{sp}} \times 0.2}{0.1 \times K_{\mathrm{sp}}}=2$
$(\mathbf{e} \rightarrow \mathbf{r}) \mathrm{S}$ in $0.1 \mathrm{M} \mathrm{HCl}=\frac{K_{\mathrm{sp}}}{(0.1)^{3}}$
S in $0.2 \mathrm{M} \mathrm{NaOH}=\frac{K_{\mathrm{sp}}}{(0.2)^{3}}$
$\frac{S \text { in } 0.1 \mathrm{MHCl}}{S \text { in } 0.2 \mathrm{M} \mathrm{NaOH}}=\frac{K_{\text {sp }} \times(0.2)^{3}}{(0.1)^{3} \times K_{\text {sp }}}=8$
513 (a)
($\mathbf{a} \rightarrow \mathbf{p}, \mathbf{r}$) It is endothermic reaction hence on increasing temperature reaction proceed in
forward direction. On addition of inert gas, at constant pressure also favour product side according to le-Chatelier principle
($\mathbf{b} \rightarrow \mathbf{q}, \mathbf{r}, \mathbf{s}$) It is exothermic reaction hence on increasing temperature reaction proceed in backward direction
$(\mathbf{c} \rightarrow \mathbf{p})$ Endothermic reaction therefore on increasing temperature reaction proceed in product side
$(\mathbf{d} \rightarrow \mathbf{s})$ Exothermic reaction therefore on increasing temperature reaction proceed in backward side
514 (c)
According to Le Chatelier principle endothermic reaction proceed in forward direction on increasing temperature while the exothermic reaction proceed in backward direction on increasing temperature
515 (b)
$(\mathbf{a} \rightarrow \mathbf{p}, \mathbf{t})$ Only $\stackrel{\oplus}{\mathrm{NH}_{4}}$ will get hydrolysed (cation hydrolysis) $\mathrm{pH}<7$
519 (a)

	V_{NaOH} mL	$V_{\text {total }}$ mL	mmol of CH_{3} COOH in exce ss	mmol of salt $\left(\mathrm{CH}_{3}\right.$ COO^{\ominus} prod uced	mmol of \ominus OH in exce ss	Type

$(\mathrm{a} \rightarrow \mathrm{r}) \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$4.74+\log \left(\frac{2.5 / 75}{2.5 / 75}\right)=4.74$
$(\mathrm{a} \rightarrow \mathrm{r}) \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$4.74+\log \left(\frac{2.5 / 75}{2.5 / 75}\right)=4.74$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right)$
$(\mathbf{b} \rightarrow \mathbf{s}, \mathbf{t})$ It is a $S_{A} \cdot \mathrm{pH}=2$, New conc $=\frac{10^{-2}}{10}=$ $10^{-3}, \mathrm{pH}=3$
$(\mathrm{c} \rightarrow \mathbf{r})$ It is a W_{B}, so $\mathrm{pH}>7$
$(\mathbf{d} \rightarrow \mathbf{p}, \mathbf{q})$ Salt of W_{A} / W_{B} both $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ and $\stackrel{\oplus}{\stackrel{\mathrm{N}}{4}}{ }_{4}$ will hydrolysed so both cationic and anionic hydrolysis
$(\mathbf{b} \rightarrow \mathbf{q}) \mathrm{pH}=p K_{a}+\log \left(\frac{4.0 / 90}{2.5 / 90}\right)=4.74+0.6=5.34$
$(\mathrm{c} \rightarrow \mathrm{t}) \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)$
$\frac{1}{2}\left(14+4.74+\log \frac{5}{100}\right)=8.72$
$(\mathbf{d} \rightarrow \mathbf{q}){\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\frac{1.0 \mathrm{mmol}}{110 \mathrm{~mL}}=9.1 \times 10^{-3} \mathrm{M}}^{[1}$
$\mathrm{pOH}=2.04, \mathrm{pH}=11.96$
$(\mathrm{e} \rightarrow \mathrm{s})$

$$
[\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]=\frac{2.0 \mathrm{mmol}}{120 \mathrm{~mL}}=1.7 \times 10^{-2} \mathrm{M}
$$

$\mathrm{pOH}=1.78, \mathrm{pH}=12.22$
520 (c)
$(a \rightarrow q)$ Basic buffer is formed
mmol of HCl added $=2.0 \times 1 L=2$
mmol of $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$ formed $=2$
mmol of NH_{3} left
$\left(1 \times 0.01 \times 10^{3}=10\right)=10-2=8$
$\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{\stackrel{\oplus}{\left.\mathrm{NH}_{4}\right]}}{\left[\mathrm{NH}_{3}\right]}$
$=4.74+\log \frac{2}{8}=4.14$
$(\mathrm{b} \rightarrow \mathrm{r}) \frac{\stackrel{\oplus}{\left.\mathrm{NH}_{4}\right]}}{\left[\mathrm{NH}_{3}\right]}=\left(\frac{5}{5}\right)=1.0$
$\mathrm{pOH}=4.74$
$(\mathrm{c} \rightarrow \mathrm{s})$ In (c) salt of W_{B} / S_{A} is formed
$\left(V_{\text {total }}=1 L+5 \mathrm{~mL} \approx 1 \mathrm{~L}\right)$
$\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{0.01}{0.01 \mathrm{~L}} \approx 0.01 \mathrm{M}$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right)$
$=\frac{1}{2}\left(14-4.74-\log 10^{-2}\right)=5.63$
$\mathrm{pOH}=14-5.63=8.37$
$(\mathrm{d} \rightarrow \mathrm{p})$ When 11.0 mL of HCl is added, all the NH_{3} is neutralized and 1.0 mmol of HCl is in exess. pH is determined by 1.0 mmol of $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ in 1.01 L
$\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=\frac{1 \times 10^{-3} \mathrm{~mol}}{1.01 \mathrm{~L}} \approx 10^{-3}$,
$\mathrm{pH}=3$, and $\mathrm{pOH}=11$
521 (b)
$(c \rightarrow r, s)$
$K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=2-4=-2$
$\therefore K_{p}=K_{c}(R T)^{-2}$ or $K_{c}>K_{p}$
522 (b)
$(c \rightarrow r, s)$
$K_{p}=K_{c}(R T)^{\Delta n} ; \Delta n=2-4=-2$
$\therefore K_{p}=K_{c}(R T)^{-2}$ or $K_{c}>K_{p}$
523 (b)
$(\mathbf{a} \rightarrow \mathbf{p}) \quad \Delta n=n_{P}-n_{R}>0$; the number of molecules in product side are higher than reactant side hence according to Le-Chatelier principle on increasing the pres equilibrium shift to lesser number of molecules side
$(\mathbf{b} \rightarrow \mathbf{r})$ When there is no change in volume $(\Delta V=0)$ then addition of inert gas does not change the equilibrium
$(\mathbf{c} \rightarrow \mathbf{s}) K_{p}=K_{c}(R T)^{\Delta n}$, when $\Delta n=0$
$\therefore K_{p}=K_{c}(R T)^{\circ}$ or $K_{p}=K_{c}$
$(\mathrm{d} \rightarrow \mathrm{q})$
525 (a)
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
100 initial
$1-x \quad 2 x$ at equilibrium
Total no. of moles $=1-x+2 x=1+x$
$K_{p}=\frac{4 x^{2}}{(1-x)} \times\left[\frac{p}{1+x}\right]^{\Delta n_{\mathrm{g}}}$
$640=\frac{4 x^{2}}{(1-x)} \cdot \frac{160}{(1+x)}$
$x=0.707$ or 70.7%
526 (d)
$\mathrm{CaCO}_{3}(\mathrm{~s}) \stackrel{\Delta}{\rightleftharpoons} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad K_{p_{1}}=8 \times 10^{-2}$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g}) \quad K_{p_{2}}=2$
$K_{p}{ }^{\prime \prime \prime \prime}=K_{p_{1}} \times K_{p_{2}}$
$=8 \times 10^{-2} \times 2=16 \times 10^{-2}$
$K_{p}^{\prime \prime \prime \prime}=\left(p_{\mathrm{CO}}(\mathrm{g})\right)^{2}$

$$
=0.4 \mathrm{~atm}
$$

527 (b)
$\%$ of unprecipitated $\mathrm{Ag}^{+}=\frac{\text { unprecipitated } \mathrm{Ag}^{+}}{\text {total } \mathrm{Ag}^{+} \text {taken }} \times 100$
$=\frac{1-\left(\frac{149}{150}\right)}{1} \times 100$
$=0.666 \%$
(b)

On adding $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\left[\mathrm{H}^{+}\right]$increases. Therefore, to keep K_{w} constant, $\left[\mathrm{OH}^{-}\right]$decreases
529 (a)
Shifts in the product side
530 (b)
Addition of Ni^{2+} causing more blue colour means reaction moving in the forward direction
$\Rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ has increased and NH_{3} (unreacted) was present initially
531 (b)
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ;$
27×10^{-2}
$K_{c}=27 \times 10^{-2} X=8.91 \times 10^{-2}$
$X=\frac{8.91 \times 10^{-2}}{2.7 \times 10^{-1}}=3.3 \times 10^{-1}$
Number of mol of $\mathrm{NH}_{3}=0.27$
$\mathrm{H}_{2} \mathrm{~S}=0.33$
$\mathrm{N}_{2}=0.03$
$\mathrm{H}_{2}=0.09$
$X_{\mathrm{H}_{2}}=\frac{0.09}{0.72}=\frac{1}{8}$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$3 a \quad \frac{1}{3} a \quad a$
$K_{c}=\frac{(a / 3) a^{3}}{(3 a)^{2}}=\frac{a^{4}}{3} \times \frac{1}{9 a^{2}}$
$\frac{a^{2}}{27}=3 \times 10^{-4}$
$\therefore a^{2}=81 \times 10^{-4}$
$a=9 \times 10^{-2}$
533 (b)
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
535 (b)
$P_{\mathrm{NH}_{3}}=P_{\mathrm{HCl}}=\frac{0.820}{2}$ bar
$\therefore K_{p}=P_{\mathrm{NH}_{3}} \times P_{\mathrm{HCl}}=0.41 \times 0.41=0.168$
536 (a,b)
$K_{p}=K_{c}(R T)^{\Delta n}$

537 (a)
$K_{3}=K_{1} \times K_{2}$
538 (d)
$K_{p}=K_{c}(R T)^{\Delta n}=K_{c}(R T)^{(2-4)}$
$=K_{c}(R T)^{-2}=\frac{K_{c}}{[(0.082) \times(300)]^{2}}$
539 (c)
When $Q>K$, the reaction proceeds in backward direction

540 (b)
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$p_{\mathrm{H}_{2} \mathrm{O}}=7.8 \mathrm{~mm}$
$\Rightarrow K_{p}=\left(p_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}=(7.8)^{2}=60.84$
541 (c)
The concentration of [Y]
is constant $\Rightarrow y$ must be solid. The concentration of X decreases white the concentration of Z increases

Therefore X must be reactant and Z must be product
\therefore (c)
542 (a)
$X(\mathrm{~s}) \rightleftharpoons A(\mathrm{~g})+C(\mathrm{~g}) ;$
$20 \mathrm{~mm} \quad 20 \mathrm{~mm}$
$K_{P_{1}}=20 \times 20=400 \mathrm{~mm}^{2}$
and
$Y(\mathrm{~s}) \rightleftharpoons B(\mathrm{~g})+C(\mathrm{~g}) ;$
$30 \mathrm{~mm} \quad 30 \mathrm{~mm}$
$K_{p_{2}}=30 \times 30=900 \mathrm{~mm}^{2}$
$\therefore \frac{K_{p_{1}}}{K_{p_{2}}}=\frac{4}{9}$
Hence, (a) is the correct answer
543 (b)
$2 \mathrm{KIO}_{3}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}+2 \mathrm{KNO}_{3}$
$0.8 \times 15 \quad 35 \times 0.15$
$=12=5.25$
544 (b)
(a) and (c) are not true since at equivalence point, they represent neutral solution
(d) is clearly wrong, since, $K_{w}=\left[\mathrm{H}^{\oplus}\right][\stackrel{\ominus}{\mathrm{O}} \mathrm{H}]$
(b) is correct

545 (b)
Since $K_{a_{1}}$ and $K_{a_{2}}$ are high values therefore point
A, $K_{a_{1}}$ and $K_{a_{2}}$ are considered
$\mathrm{H}_{3} \mathrm{~A} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{H}_{2} \mathrm{~A}^{\ominus}$
$\mathrm{H}_{2} \mathrm{~A}^{\ominus} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{HA}^{2-}$
$K_{a_{1}}+K_{a_{2}}=\frac{\left[\mathrm{H}^{\oplus}\right]\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{3} \mathrm{~A}\right]}\left[\begin{array}{c}\text { At equivalence point } \\ {\left[\mathrm{HA}^{2-}\right]=\left[\mathrm{H}_{3} \mathrm{~A}\right]}\end{array}\right]$
$-\log K_{a_{1}}-\log K_{a_{2}}=-2 \log \left[\mathrm{H}^{\oplus}\right]$
$p K_{a_{1}}+p K_{a_{2}}=2 \mathrm{pH}$
$\therefore \mathrm{pH}=\frac{p K_{a_{1}}+p K_{a_{2}}}{2}=\frac{3+5}{2}=4$
546 (c)
$\left[\mathrm{S}^{2-}\right]_{\min }$ for $\mathrm{SnS}=\frac{K_{\mathrm{sp}}(\mathrm{SnS})}{\left[\mathrm{Sn}^{2+}\right]}$;
$\left[\mathrm{S}^{2-}\right]_{\min }$ for $\mathrm{CdS}=\frac{K_{\mathrm{sp}}(\mathrm{CdS})}{\left[\mathrm{Cd}^{2+}\right]}$;
$\left[\mathrm{S}^{2-}\right]_{\min }$ for $\mathrm{NiS}=\frac{K_{\mathrm{sp}}(\mathrm{NiS})}{\left[\mathrm{Sn}^{2+}\right]}$;
and $K_{\text {sp }}(\mathrm{NiS})<K_{\text {sp }}(\mathrm{SnS})<K_{\mathrm{sp}}(\mathrm{CdS})$
\therefore NiS will precipitate first
547 (a)
Use: $\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{C_{2}}{C_{1}}} \Rightarrow \frac{4.24}{\alpha_{2}}=\sqrt{\frac{0.1}{0.01}}$
$\Rightarrow \alpha_{2}=\frac{4.24}{\sqrt{10}} \%=1.33 \%$
548 (c)
i. On dilution (equal volume) and if there were no precipitation. $\left[\mathrm{NO}_{3}^{\ominus}\right]=\left[\mathrm{Ag}^{\oplus}\right]=\left[\mathrm{Cl}{ }^{\ominus}\right]=\left[\mathrm{Br}^{\ominus}\right]=$ $\frac{0.01}{2}=0.005 \mathrm{M}=5.0 \times 10^{-3} \mathrm{M}$
AgBr is the more soluble salt (less Ksp means more soluble) and would take precedence in the precipitating reaction
ii. Assume AgCl does not precipitate. In this case Ag^{\oplus} and Br^{\ominus} would be removed by precipitation and the concentration of these two ions in solution would remain equal to each other
iii. $\left[\mathrm{Ag}^{\oplus}\right]=\left[\mathrm{Br}^{\ominus}\right]=\sqrt{K_{\mathrm{sp}} \mathrm{AgBr}}=\left(5.0 \times 10^{-13}\right)^{\frac{1}{2}}$ $=7.1 \times 10^{-7} \mathrm{M}$
iv. $Q_{\text {sp }}$ or I.P. of $\mathrm{AgCl}=\left[\mathrm{Ag}^{\oplus}\right]\left[\mathrm{Cl}^{\ominus}\right]$
$=\left(7.1 \times 10^{-7}\right)\left(5.0 \times 10^{-3} \mathrm{M}\right)=3.5 \times 10^{-9}$
$Q_{\text {sp }}$ of $\mathrm{AgCl}>K_{\text {sp }}$ of $\mathrm{AgCl},(\therefore$ Some AgCl most also precipitate)
Hence the assumption in (ii) is wrong
v. Since both holides precipitate, it is a case of simultaneous solubilities
vi. By electroneutrality

$$
\begin{gather*}
{\left[\mathrm{Na}^{\oplus}\right]+\left[\mathrm{Ag}^{\oplus}\right]=\left[\mathrm{Cl}^{\ominus}\right]+\left[\mathrm{Br}^{\ominus}\right]+\left[\mathrm{NO}_{3}{ }^{\ominus}\right]} \\
0.01+\left[\mathrm{Ag}^{\oplus}\right]=\left[\mathrm{Cl}^{\ominus}\right]+\left[\mathrm{Br}^{\ominus}\right]+0.005 \\
\text { or }\left[\mathrm{Cl}^{\ominus}\right]+\left[\mathrm{Br}^{\ominus}\right]-\left[\mathrm{Ag}^{\oplus}\right]=0.005 \tag{1}\\
\text { vii. }\left[\mathrm{Ag}^{\oplus}\right]\left[\mathrm{Cl}^{\Theta}\right]=10^{-10} \tag{2}\\
{\left[\mathrm{Ag}^{\oplus}\right]\left[\mathrm{Br}^{\Theta}\right]=5 \times 10^{-13}} \tag{3}
\end{gather*}
$$

viii. Divide (2) by (3), $\frac{\left[\mathrm{Cl}^{\ominus}\right]}{\left[\mathrm{Br}^{\ominus}\right]}=200$

This shows Br^{\ominus} plays a significant role in the total
anion concentration of the solution
ix. Moreover, $\left[\mathrm{Ag}^{\oplus}\right]$ must be negligible in (1) because of insolubility of two silver salts
\mathbf{x}. Therefore assume in (1) that $\left[\mathrm{Cl}^{\ominus}\right]=0.005=$ 5×10^{-3}
$\left[\mathrm{Cl}^{\ominus}\right]=5 \times 10^{-3}$
xi. From (2)
$\left[\mathrm{Ag}^{\oplus}\right]=\frac{10^{-10}}{\left[\mathrm{Cl}^{\ominus}\right]}=\frac{10^{-10}}{0.005}=2.0 \times 10^{-8}$
549 (a)
$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Cl}^{\ominus}+2 \mathrm{H}_{2} \mathrm{O}$

Initial mol $1.5 \quad 2 \times 1.5=(3.0) \quad 0$
At equilibrium 1.5-x $3.0-x \quad x$
$K_{f}=\frac{\left[\mathrm{CuCl}^{\oplus}\right]}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{Cl}^{\ominus}\right]}=1.0$
$\Rightarrow \frac{x}{(1.5-x)(3.0-x)}=1.0$
$\Rightarrow x=4.5-4.5 x+x^{2}$
$\Rightarrow x^{2}-5.5 x+4.5=0$
$x=\frac{5.5 \pm \sqrt{(5.5)^{2}-4(4.5)}}{2}, x=1.0$ or 4.5
$\left[\mathrm{Cu}^{2+}\right]=0.5 \mathrm{M}$
550 (c)
By Henry's law
$p_{\mathrm{CO}_{2}}=x_{\mathrm{CO}_{2}} \mathrm{~K}_{\mathrm{H}}$
$\left(1.25 \times 10^{-4} \mathrm{~atm}\right) \times 760$
$x_{\mathrm{CO}_{2}}=\frac{p \mathrm{CO}_{2}}{K_{\mathrm{H}}}=\frac{\text { torr }}{1.25 \times 10^{6} \text { torr }}$
$=0.76 \times 10^{-7}=\frac{n_{\mathrm{CO}_{2}}}{n \text { Total }}$
$x_{\mathrm{H}_{2} \mathrm{O}}=\left(1-0.76 \times 10^{-7}\right) \approx 1=\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n \text { Total }}$
$\therefore \frac{\frac{n_{\mathrm{CO}_{2}}}{n} \text { Total }}{\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n} \text { Total }}=\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}}=\frac{0.76 \times 10^{-7}}{1}$
$\approx 0.76 \times 10^{-7}$
Molality of CO_{2} solution
$=\frac{x_{\mathrm{CO}_{2}} \times 1000}{x_{\mathrm{H}_{2} \mathrm{O}} \times \mathrm{M}_{w} \mathrm{H}_{2} \mathrm{O}}=\frac{n_{\mathrm{CO}_{2}} \times 1000}{n_{\mathrm{H}_{2} \mathrm{O}} \times \mathrm{M}_{w \mathrm{H}_{2} \mathrm{O}}}$
$=\frac{0.76 \times 10^{-7} \times 1000}{18}$
$=4.22 \times 10^{-6} \mathrm{~m} \approx 4.22 \times 10^{-6} \mathrm{M}$
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{HCO}_{3}^{\ominus}$
$K=\frac{\left[\mathrm{H}^{\oplus}\right]\left[\mathrm{HCO}_{3}^{\ominus}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \approx \frac{\left[\mathrm{H}^{\oplus}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$\therefore\left[\mathrm{H}^{\oplus}\right]=\sqrt{K_{a}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$=\sqrt{4.3 \times 10^{-7} \times 4.22 \times 10^{-6}}$
$=\sqrt{1.814} \times 10^{-6}$
$1.345 \times 10^{-6} \mathrm{M}$
$\mathrm{pH}=5.87$
551 (a)
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{BaSO}_{3}+2 \mathrm{HCl}$
552 (c)
pH of titration of strong acid with strong base is 7
553 (a)
$\begin{array}{lrrr}2 \mathrm{NH}_{3} & \mathrm{~N}_{2} & +3 \mathrm{H}_{2} & \\ (10-2 x) & 0 & 0 & \text { at } 300 \mathrm{~K} \\ \text { at } 620 \mathrm{~K}\end{array}$
Pressure increase due to increases in temperature as well as due to increase in moles
Initially $P \propto T$
$\therefore \quad 15 \propto 300$ $P \propto 620$
$\therefore \quad P=\frac{620}{300} \times 15=31 \mathrm{~atm}$ of 10 mole of NH_{3} at $620 \mathrm{~K}^{2}$ Now NH_{3} is dissociated to attain
50 atm at 620 K .
Thus, $P \propto n$ or $10 \propto 31$

$$
10+2 x \propto 50
$$

$\therefore \quad 2 x=6.13$
$\therefore \quad \alpha=\frac{2 x}{10} \times 100=\frac{6.13 \times 100}{10}=61.3 \%$
554 (b)
The intermediate solution of acid will react with all the NH_{3} present in solution
555 (8)
c. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}(>$ 98\%)
5. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+$ $\mathrm{H}_{2} \mathrm{O}$ (> 98\%)

557 (4)
(b), (d), (e), and (f)

All salts (b, d and f), soluble hydroxides and the acid (e) are strong electrolysis
558 (b)
We know that $K=\frac{K_{f}}{K_{b}}$
$\therefore K=\frac{4 \times 10^{2}}{2 \times 10^{2}}=2$
560 (6)
(a), (b), (g), (h) and (k)
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{CH}_{3} \mathrm{COO}^{\ominus}(<$ 2\% W_{A}
b. $\mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}(<2 \%)$

Salt of W_{A}
g. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{3} \mathrm{O}^{\oplus} \rightarrow$ No reaction
h. $\mathrm{Cl}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Noreaction
k. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
n. $\mathrm{K}^{\oplus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \longrightarrow$ No reaxction

561 (2)
Neutral $\left[\mathrm{NaCl}\right.$ and $\left.\mathrm{K}_{2} \mathrm{SO}_{4}\right]$ and salts of S_{A} / S_{B}
564 (7)
Salt of $W_{A} / S_{B}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ is formed
It we calculate pH by using hydrolysis formula for salt of W_{A} / W_{B}
$\left.\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log C\right)\right]$ Salts of S_{A}
$[$ [Salt $]=\frac{10^{-6}}{2}\binom{$ Volume is }{ doubled }$]$
$=\frac{1}{2}\left(14+4.7+\log \frac{10^{-6}}{2}\right)$
$=\frac{1}{2}(18.7-6-0.3)=6.2$
But pH of salt of W_{A} / S_{B} is always >7
So for such dilute solutions of $\mathrm{CH}_{3} \mathrm{COOH}$ and
NaOH . Contribution of $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ ions from $\mathrm{H}_{2} \mathrm{O}$ must be considered
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
$\quad 10^{-6} \mathrm{M} \times V \quad 10^{-6} \mathrm{M} \times V \quad 10^{-6} \mathrm{M} \times V$
$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=\frac{10^{-6} \mathrm{M} \times V}{2 \mathrm{~V}}=0.5 \times 10^{-6}$
$=5 \times 10^{-7}<10^{-6} \mathrm{M}$
$\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \left\lvert\,=\left(\frac{k_{w} \times C}{K_{a}}\right)^{\frac{1}{2}}=\left(\frac{10^{-4} \times 5 \times 10^{-7}}{2 \times 10^{-5}}\right)^{\frac{1}{2}}\right.$
$=(2.5)^{\frac{1}{2}} \times 10^{-8} \mathrm{M}=1.58 \times 10^{-8} \mathrm{M}<10^{-6} \mathrm{M}$
Total $|\stackrel{\ominus}{\mathrm{O}} \mathrm{H}|=\left[1.58 \times 10^{-8}+10^{-7}\left(\right.\right.$ From H2 $\left.\left._{2} \mathrm{O}\right)\right]$
$=10^{-7}\left(1.58 \times 10^{-1}+1\right)=1.158 \times 10^{-7}$
$\mathrm{pOH}=-\log \left(1.158 \times 10^{-7}\right)=6.93$
$\mathrm{pH}=14-6.93=7.07 \approx 7$
566 (3,2,1,1)
a. (3)

Salt of W_{A} / W_{B} and W_{B} / S_{A} hydrolyses more in water
III. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (salt of W_{A} / S_{B}) $\rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{\ominus}$
IV. $\mathrm{NH}_{4} \mathrm{Cl}$ (salt of $\left.W_{B} / S_{A}\right) \longrightarrow \stackrel{\ominus}{\mathrm{NH}_{4}}$
V. MgS (salt of $\left.W_{A} / S_{B}\right) \rightarrow \mathrm{S}^{2-}$
b. (2)

Salt of S_{A} / S_{B} do not hydrolyse
VI. $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad$ VIII. KCl
c. (1)

Salt of $W_{A} / S_{B}\left(\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ with same value of K_{a} and K_{b}, both hydrolyse to the same extent. (K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=K_{b}$ of NH_{3})
d. (1)
II. Salt of W_{A} / W_{B} with different K_{a} and K_{b}, both hydrolyse to the same extent. ($\mathrm{PhCOONH}_{4}$ have different K_{a} and K_{b})
578 (a)
For $A+B \rightleftharpoons A B$
$K=\frac{[A B]}{[A][B]}$
When $2 A+2 B \rightleftharpoons 2 A B$
$K=2 A B$

579 (5)
Acidic
$\left[\mathrm{HClO}_{4}, \mathrm{HCl}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \frac{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \text { and } \mathrm{NH}_{4} \mathrm{Cl}}{\text { Both salt of } \frac{\mathrm{W}_{\mathrm{B}}}{\mathrm{S}_{\mathrm{A}}}}\right]$
(Five compounds)
581 (d)
0 At equilibrium $\Delta G=0$
582 (a)
$K_{p}=K_{c}(R T)^{\Delta n}$
When $\Delta n=0$
$K_{p}=K_{c}$
583 (3)
Basic $\left[\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}\right.$ (basic buffer), $\left.\mathrm{NH}_{3}, \mathrm{NaOH}\right]$
The basic buffer is less basic than NH_{3} alone
because the $\stackrel{\oplus}{N} H_{4}$ suppresses the ionization of NH_{3} in the buffer
585 (54)
I. HCN is $W_{A} ; \mathrm{pH}_{\mathrm{W}_{\mathrm{A}}}=\frac{1}{2}\left(\mathrm{p} K_{a}-\log C\right)$
$=\frac{1}{2}\left(10-\log 10^{-1}\right)=5.5$
II. Acidic buffer: $\mathrm{pH}_{\text {acidic Buffer }}=\mathrm{p} K_{a}+\log \frac{0.1}{0.1}=5$
III. HCl is $S_{A}: \mathrm{pH}=-\log (0.1)=1$
IV. $\mathrm{NH}_{4} \mathrm{OH}$ is $W_{B}: \mathrm{pOH}_{W_{B}}=\frac{1}{2}\left(\mathrm{p} K_{a}-\log C\right)$
$=\frac{1}{2}(5+1)=3$
$\mathrm{pH}=14-3=11$
V . NaOH is $S_{B}: \mathrm{pOH}=-\log (0.01)=2$,
$\mathrm{pH}=14-2=12$
VI: Salt of $W_{A} / W_{B}: \mathrm{pH}=7$
\therefore Magic number $=5.5 \times 2+5 \times 1+1 \times 3+11 \times$
$2+12 \times 0.5+7 \times 1=54$
587 (a)
At equilibrium $\Delta G=0$
$\Delta G=-n R T \ln K$
$0=-n R T \ln K$

Or $K=1$
590 (4)
II A group: $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}$
III group: Cr^{3+}
IV group: Zn^{2+}
591 (b)
For $A+B \rightleftharpoons A B ; K=0.5$
For $A B \rightleftharpoons A+B ; K^{\prime}=$?
$\therefore K^{\prime}=\frac{1}{K}=\frac{1}{0.5}=2$
592 (a)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
$\begin{array}{lllll}\text { Initial } & 1 & 1 & 0 & 0\end{array}$
At equ. $1-\frac{1}{2} \quad 1-\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2}$
$K=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}}=1$

