

7.EQUILIBRIUM

Single Correct Answer Type

1.	A solution which is 10^{-3} M each in Mn ²⁺ , Fe ²⁺ , Zn ²⁺ and Hg ²⁺ is treated with 10^{-16} M sulphide ion. If K_{cp} of MnS, FeS, ZnS and HgS are 10^{-15} .				
	10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first?				
	a) FeS	b) MgS	c) HøS	d) ZnS	
2.	Which of the following sa	lts will not undergo hydrol	vsis in water?		
	a) Sodium sulphate		b) Ammonium sulphate		
	c) Aluminium sulphate		d) All the salts will hydro	lyse	
3.	$K_{\rm sp}$ of Mg(OH) ₂ is 4.0 × 1	0^{-6} . At what minimum pH,	, Mg ²⁺ ions starts precipita	ting 0.01 MgCl	
	a) $2 + \log 2$	b) 2 – log 2	c) $12 + \log 2$	d) 12 – log 2	
4.	For the reversible reactio	n	, ,		
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3$	(g)			
	at 500°C, the value of k	T_p is 1.44 $ imes 10^{-5}$ when t	he partial pressure is me	asured in atmosphere. The	
	corresponding value of K	$_c$ with concentration in mal	l L ⁻¹ is		
	a) 1.44×10^{-5}	h) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$	c) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$	d) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$	
	$(0.082 \times 500)^{-2}$	$(8.314 \times 773)^{-2}$	$(0.082 \times 773)^2$	$(0.082 \times 773)^{-2}$	
5.	For the system $A(g) + 2B$	(g) $\rightleftharpoons C(g)$ the equilibrium	concentration is		
	$A = 0.06 \text{ mol } L^{-1}; B = 0$).12 mol L ⁻¹			
	$C = 0.216 \text{ mol } L^{-1} \text{ The } K$	f_{eq} for the reaction is			
	a) 250	b) 416	c) 4×10^{-3}	d) 125	
6.	The pH of a dilute solutio acetate will cause pH to	n of acetic acid was found t	to be 4.3. The addition of a	small crystal of sodium	
	a) Becomes less than 4.3		b) Become more than 4.3		
	c) Remain equal to 4.3		d) Unpredictable		
7.	The pH of a solution of w	eak base at neutralization v	with strong acid is 8. <i>K_b</i> for	the base is	
	a) 1.0×10^{-4}	b) 1.0×10^{-6}	c) 1.0×10^{-8}	d) None of there	
8.	Auto-ionisation of liquid	NH ₃ is			
	$2\mathrm{NH}_3 \rightleftharpoons \mathrm{NH}_4^{\oplus} + \mathrm{NH}_2^{\oplus}$				
	With $K_{NH_3} = [NH_4^{\oplus}][NH_4^{\oplus}]$	$[\oplus]_2^{\oplus}] = 10^{-30} \text{ at } -50^{\circ}\text{C}$			
	Number of amide ions (N	H_2^{\ominus}), present per mm ³ of	pure liquid NH ₃ is		
	a) 602	b) 301	c) 200	d) 100	
9.	1 mol of N_2 is mixed with	h 3 mol of H_2 in a litre con	ntainer. If 50% of N_2 is con	verted into ammonia by the	
	reaction $N_2(g) + 3H_2(g)$	\rightleftharpoons 2NH ₃ (g), then the total n	number of		
	moles of gas at the equilibra 1.5	b) 4 F	a) 2.0	d) (0	
10	a) 1.5 nH signifies:	DJ 4.5	CJ 5.0	u) 0.0	
10.	a) Puissance de hydroger	1	b) $-\log[H^{\oplus}]$		
	c) All the above	L.	d) $14 - nOH$		
11.	The nK_{π} of acetyl salicylic	r acid (aspirin) is 3.5. The p	H of gastric juice in humar	stomach is about 2-3 and	
	the pH in the same intest	ne is about 8. Aspirin will h)e		
	a) Unionized in the small	intestine and in the stomad	ch		
	b) Completely ionsed in t	he small intestine and in th	e stomach		
	c) Ionized in the stomach	and almost unionized in th	ne small intestine		
	d) Ionized in small intestine and almost unionized in the stomach				

12.	Passing H ₂ S gas into a mixture of Mn ² , Ni ² , Cu ² and Hg ² ions in an acidified aqueous solution			ed aqueous solution	
	precipitates				
4.0	a) CuS and HgS	b) MnS and CuS	c) MnS and NiS	d) NIS and HgS	
13.	In the formation of nitric	acid, N_2 and O_2 are made	to combine. Thus, $N_2 + O_2$	\Rightarrow 2NO + Heat which of the	
	following condition will f	avour the formation of NO?			
	a) Low temperature	b) High temperature	c) Freezing point	d) All are favourable	
14.	The decomposition of N_2O 0.2 mol of N_2O_4 and 2 × 2	$_4$ to NO ₂ is carried out at 280 10^{-3} mol of NO ₂ are presen	0°C in chloroform. When eq t in a 2L solution. The equil	uilibrium is reached, ibrium constant for the	
	reaction				
	$N_2O_4 \rightleftharpoons 2NO_2$ is				
	a) 1×10^{-2}	b) 2×10^{-3}	c) 1×10^{-5}	d) 2×10^{-5}	
15.	Solubility of salt A ₂ B ₃ is 1	$1 imes 10^{-4}$, its solubility prod	luct is		
	a) 1.08 × 10 ²⁰	b) 1.08 × 10 ¹⁸	c) 2.6×10^{-18}	d) 1.08×10^{-18}	
16.	In 1L saturated solution	n of AgCl [K _{sp} (AgCl)1.6 1	0 ¹⁰], 0.1 mole of CuCl [<i>K</i>	$_{sp}(CuCl)1.0\ 10^6$] is added.	
	The resultant concentra	ation of Ag in the solution	n is 1.6 10 ^x . The value of	x'x' is	
	a) 3	b) 5	c) 7	d) 9	
17.	The conjugate acid of NH	θis	,		
	a) NH-	b) NH-OH	c) NH [⊕]	d) N-H.	
18	In alkaline solution the f	ollowing equilibrium exist	cj mi ₄	u) 112114	
10.	$2 S^{2-} \pm S \rightarrow S^{2-}$ equilib	onowing equilibrium exist			
	a. $5 + 5 \rightarrow 5_2$ equilibrium of $2^- + 5 \rightarrow 5_2$ equilibrium of 2^- eq	wive constant K_1			
	$0.S_2^- + 5 \rightarrow S_3^- \text{ equilib}$	$\frac{11}{11}$			
	K_1 and K_2 have values 12	and 11, respectively?			
	$S_3^2 \rightarrow S^2 + 2S$. What is	equilibrium constant for the	ereaction	J) 0 010	
10	d) 132 If ammonia is added to p	$DJ 7.58 \times 10^{-5}$	CJ 1.09	u) 0.918 adu procent will docroace	
19.	The species is	are water, the concentratio	ii oi a chemical species all e	eauy present win decrease.	
	$a) \circ \Theta$	b) $\hat{\Theta}_{aaa}$	a) II Off	4) H O	
20	a) U_2	O) OH	сј п ₃ 0°	u) 11 ₂ 0	
20.	The equilibrium constant	For a reaction $ a ^2 + 200$	70.17		
	$A + B \rightleftharpoons C + D \text{ is } 1.0 \times D$	10^{-2} at 298 and 1s 2.0 at 3.	/3K		
	a) Evothermic	h) Endothermic	and D IS	d) Nono	
21	When 0.2 M colution of a	DJ EIIUOUIEIIIIC	b 0.2 M NoOLL in E00 mL of	u) None	
21.	when 0.2 M solution of acetic acid is neutralized with 0.2 M NaOH in 500 mL of water, the pH of the resulting solution will be $[nK]$ of acetic acid = 4.74]				
	a) 12 67	h) 7 87	ا د) 8.87	d) 7	
22	For the reaction $N_{a}O_{4}(g)$	$\Rightarrow 2NO_{2}(\sigma)$ the value of K.	is 1.7 × 10 ³ at 500 K and	1.7×10^4 at 600 K Which	
	of the following is /are correct?				
	a) The proportions of NO	, in the equilibrium mixtur	e is increased by decrease	in pressure	
	b) The standard enthalpy	change for the forward read	tion is negative	in pressure	
	-)				
	c) Units of K_p are atm ⁻¹				
	d) At 500 K the degree of	dissociation of N_2O_4 decre	ases by 50% by increasing	the pressure by 100%	
23.	If pK_b for fluoride ion at 2	25°C is 10.83, the ionization	i constant of hydrofluoric a	acid in water at this	
	temperature is			J) F 20 10= ²	
24	a) $1./4 \times 10^{\circ}$	$UJ 3.52 \times 10^{-5}$	$CJ 0.75 \times 10^{\circ}$	$u_{\rm J} 5.38 \times 10^{-4}$	
<u> </u>	Solubility product cons	tant $[\Lambda_{sp}]$ of saits of type	$M_3 X$ at te	emperature <i>i</i> are	
	$4.0 \times 10^{-8}, 3.2 \times 10^{-14}$	and 2.7×10^{-15} respecti	vely. Solubilities (mol, di	m^{-3}) of the salts at	
	temperature 'T' are in t	he order			
	a) $MX > MX_2 > M_3X$	b) $M_3 X > M X_2 > M X$	c) $MX_2 > M_3X > MX$	d) $MX > M_3X > MX_2$	

25.	Which of the following rep	presents the conjugate pair	r of NH ₃ ?	
	a) $\rm NH_2^{\Theta}$	b) NH₄ [⊕]	c) Both (a) and (b)	d) N ³⁻
26.	In the dissociation of PCl_5 $PCl_5(g) \rightarrow PCl_5(g) + Cl_5(g)$	as		
	If the degree of dissociation $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-$	α at equilibrium press	sure <i>P</i> , then the equilibriun	n constant for the reaction
	is			
	a) $K_p = \frac{\alpha^2}{1 + \alpha^2 P}$	b) $K_p = \frac{\alpha^2 P^2}{1 - \alpha^2}$	c) $K_p = \frac{P^2}{1-\alpha^2}$	d) $K_p = \frac{\alpha^2 P}{1 - \alpha^2}$
27.	0.1 mole of CH_3NH_2 (K_b	$f = 5 \times 10^{-4}$) is mixed w	rith 0.08 mole of HCl dilu	ted to 1 L. What will be
	the H ⁺ concentration in	the solution?		
	a) 8×10^{-2} M	b) 8×10^{-11} M	c) 1.6×10^{-11} M	d) 8×10^{-5} M
28.	The number of S^{2-} ions p	resent in 1 L of 0.1 M H ₂ S	$K_{a(H_{2}S)} = 10^{-21}$ solution	having $[H^{\oplus}] = 0.1 \text{ M}$ is:
	a) 6.023×10^3	b) 6.023×10^4	c) 6.023×10^5	d) 6.023 $\times 10^{6}$
29.	In decinormal solution. CH	H_2COOH acid is ionized to t	the extent of $1.3\% = 0.11$.	what is the pH of the
	solution?	-3		P
	a) 3.89	b) 2.89	c) 4.89	d) Unpredictable
30.	The gatric juice in our stor	mach contains enough HCl	to make the hydrogen ion	concentration about
	$0.01 \text{ mol } L^{-1}$. The pH of ga	astric juice is		
	a) 0.01	b) 1	c) 2	d) 14
31.	HX is a weak acid ($K_a =$	= 10 ⁻⁵). It forms a salt N	aX (0.1 M on reacting wi	th caustic soda. The
	degree of hydrolysis of	NaX is		
	a) 0.01%	b) 0.0001 %	c) 0.1 %	d) 0.5 %
32.	Phenolphthalein does not	act as an indicator for the	titration between	-
	a) HCl and NH ₄ OH	b) Ca(OH) ₂ and HCl	c) NaOH and H ₂ SO ₄	d) KOH and CH ₃ COOH
33.	Which of the following sal	t is basic?		
	a) HOCl	b) NaOCl	c) NaHSO ₄	d) NH ₄ NO ₃
34.	The solubility products of	$Al(OH)_3$ and $Zn(OH)_2$ are	$\sqrt[3]{8.5 \times 10^{-23}}$ and 1.8×10^{-23}) ^{–14} , respectively. If NH ₄ OH
	is added to a solution cont	taining Al ³⁺ and Zn ²⁺ ions	s, then substance precipitat	ed first is
	a) Al(OH) ₃	b) Zn(OH) ₂	c) Both (a) and (b)	d) None of these
35.	Which of the following me	etal sulphides has maximu	m solubility in water?	
	a) CdS ($K_{\rm sp} = 36 \times 10^{-30}$)		
	b) FeS ($K_{\rm sp} = 11 \times 10^{-20}$))		
	c) HgS ($K_{\rm sp} = 32 \times 10^{-54}$)		
	d) ZnS ($K_{sp} = 11 \times 10^{-22}$)		
36.	Consider the reaction			
	$A(g) + B(g) \rightleftharpoons C(g) + D(g)$	(g)		
	Which occurs in one step T	he specific rate constant ar	e 0.25 and 5000 for the forv	ward and reverse reaction,
	respectively. The equilibri	ium constant is		
	a) 2.0 $\times 10^{-4}$	b) 4.0 $\times 10^2$	c) 5.0 $\times 10^{-5}$	d) 2.5 $\times 10^{-6}$
37.	Given the equilibrium con	stants	.))
	$HgCl^{\oplus} + Cl^{\ominus} \rightarrow HgCl_2, k$	$X_1 = 3 \times 10^6$		
	$u_{\alpha}c_{1} + c_{1}\Theta + u_{\alpha}c_{1}\Theta + c_{1}\Theta$	Z = 90		
	$\operatorname{HgU}_2 + \operatorname{U}^{\circ} \rightarrow \operatorname{HgU}_3, r$	$\Lambda_2 = 0.9$		
	The equilibrium constant	for the disproportionation	i equilibrium	
	$2 \text{HgCl}_2 \rightarrow \text{HgCl}^{\oplus} + \text{HgCl}_3$	[∪] is		
	a) -3.3×10^5	b) 3×10^{-5}	c) 3.3×10^5	d) 3×10^{-6}
38.	If the equilibrium constant	t of BOH ⇐ B [⊕] + ^Θ H at 2	25° C is 2.5×10^{-6} then equ	uilibrium constant for
	$BOH + H^{\oplus} \rightleftharpoons B^{\oplus} + H_2Oa$	at the same temperature is	20 G 13 2.3 × 10 , then eqt	

	a) 4.0×10^{-9}			
	b) 4.0×10^{5}			
	c) $2.5 \times 10^{\circ}$			
•	d) 2.5×10^{-6}			
39.	If equal volumes of BaCl	$_2$ and NaF solutions are mix	ked, which of these combination	ation will not give a
	precipitate? (K _{sp} of BaF	$_2 = 1.7 \times 10^{-7}$		
	a) 10^{-3} BaCl ₂ and 2 × 1	0^{-2} M NaF	b) 10^{-3} M BaCl ₂ and 1.5	$\times 10^{-2}$ M NaF
	c) 1.5×10^{-2} BaCl ₂ and	10 ⁻² M NaF	d) 2×10^{-2} M BaCl ₂ and	12×10^{-2} M NaF
40.	Which of the following w	vill not change the concentra	ition of ammonia in the equ	illibrium
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3$	$_{\rm g}({\rm g}); \ \Delta H = -x \ {\rm kJ}$		
	a) Increase of pressure		b) Increase of temperatu	ire
	c) Decrease of volume		d) Addition of catalyst	_
41.	At certain temperature 5	50% of HI is dissociated into	H_2 and I_2 , the equilibrium	constant is
40	a) 1.0	b) 3.0	c) 0.5	d) 0.25
42.	The pH of a solution is 5	.00. To this solution, sufficiently 0.000	ent acid is added to lower t	the pH to 2.00. The
	corresponding increase	In H_30^{\oplus} ion concentration	IS	
40	a) 1000 times	b) 2.5 times	c) 100 times	d) 5 times
43.	I wo buffer solutions, A	and B each made with acethic B and B each made with acethic B	c acid and sodium acetate (lifter in their pH by one unit,
	A flas salt: $actu = x$: y, B a) 10 000	$\max \operatorname{salt}: \operatorname{aclu} = y: x. \amalg x >$	y, then the value of x : y is	d) 2 10
1.1.	aj 10,000	UJ 3.17	CJ 0.01 ⊖	u) 2.10
77.	If the dissociation consta	ant of NH ₄ OH is 1.8×10^{-5} ,	, the concentration of OH i	ons, in mol
	L^{-1} of 0.1 M NH ₄ OH is			
	a) 1.8×10^{-6}	b) 1.34×10^{-3}	c) 4.20×10^{-2}	d) 5.0×10^{-2}
45.	Pure ammonia is placed	in a vessel at a temperatur	re where its dissociation co	Solution (α) is appreciable. At
	equilibrium,	anificantly with processo		
	a) K_p does not change si			
	b) a does not change wh	in pressure		
	c) The concentration o	of NH ₃ does not change wi	th pressure	
	d) The concentration o	f hydrogen is less than tha	at of nitrogen	
46.	Which one of the followi	ing is acid salt?		
	a) Na ₂ S	b) Na ₂ SO ₄	c) NaHSO ₃	d) Na ₂ SO ₂
47.	Methyl orange gives red	colour in		
	a) KOH solution	b) HCl solution	c) Na_2CO_3 solution	d) NaCl solution
48.	A certain weak acid has	a dissociation constant of 1	$.0 \times 10^{-4}$. The equilibrium	constant for its reaction
	with a strong base is		\rightarrow 10 10	
10	a) 1.0×10^{-4}	b) 1.0×10^{-10}	c) 1.0×10^{-10}	d) 1.0×10^{-14}
49.	For the reaction			
	$U(g) + H_2U(g) \rightleftharpoons U_2(g)$	$(g) + H_2(g)$		11
	at a given temperature	e, the equilibrium amount	of $U_2(g)$ can be increase	a by
	a) Adding a suitable cata	alyst		
	c) Decreasing the volum	a of the container		
	d) Increasing the amount	f = 0 the container		
50	Which of the following s	alts will not change the nH	of nure water on dissociati	on?
50.	a) KCl	h) AlCl _a	c) Na ₂ CO ₂	d) Al _a (SO ₄) _a
51.	$K_{\rm cn}$ of Mg(OH), is 1 x 10	0 ⁻¹² .0.01 M MgCl ₂ will he r	precipitating at the limiting	20H:
511	a) 8	h) 9	c) 10	d) 12
52	<i>K</i> _{an} for lead indate [Ph(I	$(0_2)_2$ is 3.2 x 10^{-14} at a oix	ven temperature. The solub	nility in mol L ⁻¹ will he
52.	a) 2.0×10^{-5}	h) $(3.2 \times 10^{-7})^{1/2}$	c) (3.8×10^{-7})	d) 4.0×10^{-6}
	uj 4.0 A 10			

- 53. The equilibrium constants K_{p_1} and K_{p_2} for the reactions $A \rightleftharpoons 2B$ and $P \rightleftharpoons Q + R$, respectively, are in the ratio of 2:3. If the degree of dissociation of A and P are equal, the ratio of the total pressure at equilibrium is,
 - a) 1: 36 b) 1: 9 c) 1: 6 d) 1: 4 The rU of an equation of $P_{2}(OU)$ is 10. If the K of $P_{2}(OU)$ is 1 × 10⁻⁹ then the series
- 54. The pH of an aqueous solution of $Ba(OH)_2$ is 10. If the K_{sp} of $Ba(OH)_2$ is 1×10^{-9} , then the concentration of Ba^{2+} ions in the solution in mol L⁻¹ is
 - a) 1×10^{-2} b) 1×10^{-4} c) 1×10^{-1} d) 1×10^{-5}
- 55. In which of the following solvents will AgBr has highest solubility?d) 10^{-3} M NaBrb) 10^{-3} M NH₄OHc) Pure waterd) 10^{-3} M HBr
- 56. The p K_a of acetyl salicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about 2-3 and the pH in the small intestine is about 8. Aspirin will be
 - a) Unionised in the small intestine and in the stomach
 - b) Completely ionized in the small intestine and in the stomach
 - c) Ionized in the stomach and almost unionized in the small intestine
 - d) Ionized in the small intestine and almost unionized in the stomach
- 57. A mixture of weak acid is 0.1 M in HCOOH($K_a = 1.8 \times 10^{-4}$) and 0.1 M in HOCN ($K_a = 3.1 \times 10^{-4}$). Hence, $[H_30^{\oplus}]$ is
 - a) 7.0×10^{-3} M b) 4.1×10^{-4} M c) 0.20 M d) 4.1×10^{-3} M
- 58. A constant temperature, the equilibrium constant (K_p) for the decomposition reaction $N_2O_4 \rightleftharpoons 2NO_2$ is expressed by $K_p = (4x^2p)/(1 x^2)$, where p = pressure and x = extent of decomposition. Which one of the following statements is true?
 - a) K_p increases with increase in p
 - b) K_p increases with increase in x
 - c) K_p increases with decrease in x
 - d) K_p remains constant with change in p and x
- 59. Which one of the following is true for any diprotic acid, H_2X ?

a) $K_{a_2} > K_{a_1}$ b) $K_{a_1} > K_{a_2}$ c) $K_{a_2} = \frac{1}{K_{a_1}}$ d) $K_{a_2} = K_{a_1}$

- 60. Which of the following will have the largest pH? a) M/10 HCl b) M/100 HCl c) M/10 NaOH d) M/100 NaOH 61. Fear or excitement, generally cause on to breathe rapidly and it results in the decrease of CO_2 concentration in blood. In what way will it change the pH of blood d) pH will adust to 7 b) pH will decrease c) No change a) pH will increase 62. The pH of an acid buffer can be raised by 2 units by a) Increasing the concentration of both weak acid and salt by two moles b) Increasing the concentration of both the acid and salt by 10 times c) Diluting the solution by 10 times d) Increasing the concentration of the salt by 10 times and decreasing concentration of the acid by 10 time 63. An acid-base indicator has a $K_a = 3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then b) pH is 5.00 when indicator is 75% blue a) pH is 4.05 when indicator is 75% red
 - c) Both (a) and (b) are correct d) None of these

64. The dissociation constant of a substituted benzoic acid at 25° C is 1.0×10^{-4} . The pH of 0.01 M solution of its sodium salt is

- a) 3 b) 7 c) 8 d) 6
- 65. In which of the following reaction, the yield of the products does not increase by increase in the pressure? a) $N_2(g) + O_2(g) = 2NO(g)$ b) $2SO_2(g) + O_2(g) = 2SO_3(g)$

	c) $N_2(g) + 3H_2(g) = 2NH_3(g)$	d) $PCl_3(g) + Cl_2(g)$	$) = PCl_5(g)$
66.	The value of K_{sp} is HgCl ₂ at room temper	erature is 4.0×10^{-15} . The conce	ntration of Cl^{\ominus} ion in its aqueous
	solution at saturation point is		
	a) 1×10^{-5} b) 2×10^{-5}	c) 2×10^{-15}	d) 8×10^{-15}
67.	Which buffer solution out of the following	ng will have $pH > 7?$	
	a) CH ₃ COOH + CH ₃ COONa	b) HCOOH + HCOO	ОК
	c) CH ₃ COONH ₄	d) $NH_4OH + NH_4C$	1
68.	Assuming H_2SO_4 to be completely ioniz	ed the pH of a 0.05 M aqueous so	lution of sulphuric acid is
	approximately		
	a) 0.01 b) 0.005	c) 2	d) 1
69.	In the third group of qualitative analysis	s, the precipatitating reagent is N	H_4CI/NH_4OH . The function of
	$NH_4 U $ is to		
	a) find ease the ionization of NH_0H_0		
	c) Convert the ions of group third into t	heir respective chlorides	
	d) Stabilise the hydroxides of group III of	cations	
70.	Of the given anions, the strongest Brons	sted base is	
	a) ClO^{\ominus} b) ClO_{a}^{\ominus}	c) ClO₂⊖	d) Cl0,⊖
71.	, <u>/</u>		y 4
	A solution containing NH_4Cl and NH_4OH	H has $[OH] = 10^{\circ} mol L^{-1}$, which of	of the following hydroxides would
	be precipitated when this solution in ad	ded in equal volume to a solution	n containing 0.1 M of metal ions
	a) Mg(OH) ₂ , ($K_{\rm SP} = 3 \times 10^{-11}$)	b) $Fe(Oh)_2 (K_{sp} =$	8×10^{-16})
	c) $Cd(OH)_2(K_{sp} = 8 \times 10^{-6})$	d) AgOH ($K_{\rm sp} = 5$	$\times 10^{-3}$)
72.	When the reaction. $2NO_2(g) \rightleftharpoons N_2O_4(g)$	reaches equilibrium at 298 K. Th	e partial pressure of $\rm NO_2$ and $\rm N_2O_4$
	are 0.2 KPa and 0.4 KPa, respectively. W	/hat is the equilibrium constant <i>K</i>	X_p of the above reaction at 298 K?
	a) 0.1 b) 0.5	c) 1.0	d) 10
73.	For a reaction $A(g) \rightleftharpoons B(g) + C(g)$. K_p a	at 400°C is $1.5 imes 10^{-4}$ and K_p at 6	500° C is 6 × 10^{-3} . Which
	statement is incorrect?		
	a) The reaction is exothermic		
	b) Increase in temperature increases the	formation of B	
	c) Increase in pressure increases the for	rmation of A	
	d) Decrease in temperature and increase	in pressure shift the equilibrium t	owards left
74.	Which of the following solutions will ha	ve pH = 10 at 298 K?	
	a) 1×10^{-10} M HCl solution	b) 1×10^{-4} M NaC)H solution
	c) 1×10^{-10} M NaOH solution	d) Both (a) and (b))
75.	pOH of water is 7.0 at 298 K. If water is	heated to 350 K, which of the fol	lowing should be true?
	a) pOH will decrease		
	b) pOH will increase		
	c) pOH will remain seven	9	
	d) Concentration of H^{\oplus} ions will increase	se but that of ${}^{ar{ ext{OH}}}$ will decrease	
76.	A certain weak acid has a dissociation c	onstant of $1.0 imes10^{-4}$. The equili	brium constant for its reaction
	with a strong base is		
	a) 10×10^{-4} b) 10×10^{-1}	^o c) 1.0×10^{10}	d) 1.0×10^{14}
77.	Which of the following factors will favor	ur the reverse reaction in a chem	ical equilibrium?
	a) Increase in concentration of one of th	le reactants	
	b) Increase in concentration of one of th	le products	
	c) Removal of one of the products regul	arly	
	d) None of these		

78.	Which of the following	nixture solution has pH \approx	1.0?	
	a) 100 mL M/10 HCl +	100 mL M/10 NaOH		
	b) 55 mL M/10 HCl + 4	5 mL M/10 NaOH		
	c) 10 mL M/10 HCl + 9	0 mL M/10 NaOH		
=0	d) 75 mL M/5 HCI + 25	mL M/5 NaOH		
79.	K_a for the reaction:			
	$Fe^{3+}(aq) + H_2O(l) \rightleftharpoons Fe^{3+}(aq)$	$(0H)^{2+}(aq) + H_3 0^{\oplus}(aq) i$	s 6.5 \times 10 ⁻³ , what is the m	naximum pH value which
	could be used so that at	least 80% of the total iron	(III) in a dilute solution ex	ists as Fe ³⁺
~~	a) 2.0	b) ~ 2.4	c) ~ 2.8	d) ~ 1.6
80.	How many grams of National 0.20 g L^{-1}	DH must be dissolved in 1 I b) 0.40 g L ⁻¹	L^{-1} of the solution to give i	t a pH value of 12? d) 1.2 g L^{-1}
81.	$CaCO_2(s) \rightleftharpoons CaO(s) + CaO(s)$	$O_2(g)$ in closed container a	t equilibrium. What would	be the effect of addition of
01.	$CaCO_2$ on the equilibriu	m concentration of CO_2		
	a) Increases	b) Decreases	c) Data is not sufficient	d) Remains unaffected
82.	In Haber process, 30 L o	of dihydrogen and 30 L of d	initrogen were taken for r	eaction which vielded only
0	50% of the expected pro	oduct. What will be the com	position of gaseous mixtu	re under the aforesaid
	condition in the end?			
	a) 10 L NH ₂ , 25 L N ₂ , 15	LH ₂	b) 20 L NH ₂ , 20 L N ₂ , 2() L H ₂
	c) 20 L NH ₂ , 25 L N ₂ , 15	L H ₂	d) 20 L NH ₂ , 10 L N ₂ , 30) L H ₂
83.	At what pH will a 10^{-3}	M solution of indicator with	$K_{h} = 10^{-10}$ changes colo	ur?
	a) 10	b) 4.0	c) 3	d) 7
84.	The equilibrium constant	nt of a reaction is 300, if the	e volume of the reaction fla	isk is tripled, the equilibrium
	constant will be			
	a) 100	b) 300	c) 250	d) 150
85.	For a reaction: $H_2(g)$ +	$I_2(g) \rightleftharpoons 2HI(g)$ at certain	temperature, the value of e	quilibrium constant is 50. If the
	volume of the vessel is r	educed to half of its origina	Il volume, the value of new	equilibrium constant will be
	a) 25	b) 50	c) 100	d) Unpredictable
86.	The solubility products	of MA, MB, MC, and MD are	1.8×10^{-10} , 4×10^{-8} and	1.6×10^{-5} respectively. If a
	0.01 M solution of MX is	added dropwise to a mixtu	are containing A^{\ominus} , B^{\ominus} , C^{\ominus}	and D^{\ominus} ions, then the one to
	be precipitated first wil	l be		
	a) MA	b) MB	c) MC	d) MD
87.	The K_a values of CaCO ₃	and CaC_2O_4 in water are 4.	7×1^{-9} and 1.3×10^{-9} , re	spectively, at 25°C. If a
	mixture of two is washe	ed with H_2^0 , what is Ca^{2+} ic	on concentration in water?	
	a) 7.746 × 10 ⁻⁵	b) 5.831×10^{-5}	c) 6.856×10^{-5}	d) 3.606×10^{-5}
88.	At a certain temperatur	e the value of pK_w is 13.4 a	nd the measured pH of sol	n is 7. The solution is
	a) Acidic	b) Basic	c) Neutral	d) Unpredictable
89.	If H^{\oplus} ion concentration	of a solution is increased b	y 10 times, its pH will	
	a) Increase by 1	b) Remains unchanged	c) Decreases by 1	d) Increase by 10
90.	The vapour density of a	mixture consisting of NO ₂	and N_2O_4 is 38.3 at 275 K.	The
	number of moles of NO ₂	in the mixture:		
	a) 0.2	b) 0.4	c) 0.8	d) 1.6
91.	One mole of SO_3 was pl	aced in a litre reaction flas	k at a given temperature v	when the reaction equilibrium
	was established in the r	eaction	0 1	Ĩ
	$2SO_2 \rightleftharpoons 2SO_2 + O_2$, the	vessel was found to contai	n 0.6 mol of SO ₂ . The value	e of the equilibrium constant is
	a) 0.36	h) 0 675	c) 0.45	d) 0.54
92	The nH of 10^{-5} M HCl s	olution if 1 ml of it is diluted	d to 1000 ml is:	u) 0.5 I
14.	a) 5	h) 8	c) 7 02	d) 6 98
93	For the reaction $N_{a}O_{a}$	$\sigma = 2NO_{2}(\sigma)$ the degree σ	of dissociation at equilibrium	n is 0.2 at 1 atm nressure The
20.	equilibrium constant K	will be	- abootation at equilibriu	and the product the
	a) 1/2	h) 1/4	c) 1/6	d) 1/8
	uj 1/2		cj 1/0	uj 1/0

94.	. Some chemist at ISRO wished to prepared a saturated solution of a silver compound and they wanted it to			
	have the highest concentration of silver ion possible. Which of the following compounds would they use			
$K_{\rm sp} ({\rm AgCl}) = 1.8 \times 10^{-10}, K_{sp} ({\rm AgBr}) = 5.0 \times 10^{-13},$				
	$K_{\rm sp}({\rm Ag_2CrO_4}) = 2.4 \times 10^{-10}$	$\sqrt{12}$ [Use $\sqrt[3]{0.6} = 0.84$]		
	a) AgCl	b) AgBr	c) Ag ₂ CrO ₄	d) All of these
95.	A salt X is dissolved in wa	ater having $pH = 7$. The res	sulting solution has a pH m	ore than 7. The salt is made
	by neutralization of			
	a) A strong acid and stron	ng base	b) A strong acid and stro	ng weak base
	c) A weak acid and weak	base	d) A weak acid and stron	ig base
96.	Three sparingly soluble s	alts M_2X , MX, and MX_3 hav	ve the same solubility produ	uct. Their solubilities will be
	in the order			
	a) $MX_3 > MX > M_2X$	b) $MX_3 > M_2X > MX$	c) $MX > MX_3 > M_2X$	d) $MX > M_2X > MX_3$
97.	For a sparingly soluble sa	It $A_p B_q$, the relationship o	f its solubility product (L_S)	with its solubility (S) is
	a) $L_S = S^{p+q} p^p q^q$		b) $L_S = S^{p+q} p^q q^p$	
	c) $L_S = S^{pq} p^p q^q$		d) $L_S = S^{pq} (pq)^{(p+q)}$	
98.	Let the solubilities of AgO	Cl in H_2O , and 0.01 M CaCl ₂	, 0.01 M NaCl, and 0.05 M A	AgNO ₃ be
	S_1, S_2, S_3, S_4 , respectively.	What is the correct relation	onship between these quan	tities
	a) $S_2 > S_2 > S_3 > S_4$	b) $S_1 > S_2 = S_3 > S_4$	c) $S_1 > S_3 > S_2 > S_4$	d) $S_4 > S_2 > S_3 > S_1$
99.	At 90°C, pure water has [$\mathrm{H_3O^{\oplus}}]$ as 10^{-6} mol L ⁻¹ . W	That is the value of K_w at 90	°C?
	a) 10 ⁻⁶	b) 10 ⁻¹²	c) 10 ⁻¹⁴	d) 10 ⁻⁸
100.	. What concentration of (CO ₂ be in equilibrium wit	h 0.025 M CO at 120°C for	the reaction
	$FeO(s) + CO(g) \rightleftharpoons Fe(s)$	$+ CO_2(g)$		
	If the value of $K_c = 5.0$?			
	a) 0.125 M	b) 0.0125 M	c) 1.25 M	d) 12.5 M
101.	In a chemical reaction			
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$, at equ	ulibrium point		
	a) Equal volumes of N_2 as	nd H ₂ are reacting		
	b) Equal masses of N ₂ an	d H ₂ , are reacting		
	c) The reaction has stopp	oed		
	d) The same amount of a	mmonia is formed as is de	composed into N_2 and H_2	
102.	. In the gaseous equilibriu	m		
	$A + 2B \rightleftharpoons C$ + Heat, the f	orward reaction is favoure	d:	
	a) Low P, High T	b) Low P, Low T	c) High <i>P</i> , Low <i>T</i>	d) High <i>P,</i> High <i>T</i>
103.	. The equilibrium constant	in a reversible reaction at a	given temperature which	
	a) Depends on initial con	centration, of the reactant	S	
	b) Depends on the concer	ntration of the products at	equilibrium	
	c) Does not depend on th	e initial concentration	-	
	d) It is not characteristic	of the reaction		
104	$2 \int dt dt^2 M dt^2$	(K = 1)	· 10-12 · · 2500) · · · · · ·	$1 + \frac{2}{10}$ M HCl $\frac{1}{10}$
101.	$\sim 2.5 \text{ mL of } \frac{-}{5} \text{ M weak mc}$	$moaclaic base (K_b = 1 \times$	(10 ⁻¹² at 25°C) is titrate	d with $\frac{1}{15}$ M HCI in water
	at 25°C. The concentrat	tion of H ⁺ at equivalence	e point is	
	$(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ})$	°C)		
	a) $3.7 \times 10^{-13} \text{ M}$	b) 3.2 × 10 ⁻⁷ M	c) 3.2 × 10 ⁻² M	d) 2.7×10^{-2} M
105.	One mole of $N_2O_4(g)$ at 3	00 K is kept in a closed co	ntainer under 1 atm. It is h	eated to 600 K when 20% by
	mass of $N_2O_4(g)$ decomp	ooses to NO ₂ (g). The result	tant pressure is	
	a) 1.2 atm	b) 2.4 atm	c) 2.0 atm	d) 1.0 atm
106.	. The equilibrium constant	K for the reaction 2HI(g)	\Rightarrow H ₂ (g) + I ₂ (g) at room	temperature is 2.85 and that
	at 698 K is 1.4×10^{-2} . T	his implies		
	a) HI is exothermic com	bound	b) HI is very stable at ro	om temperature
	· , · · · · · · · · · · · · · · · · · ·			

c) HI is relatively less sta	able than H_2 and I_2	d) HI is resonance stabili	sed
107. When equal volumes of t	the following solutions are r	nixed, the precipitation of A	AgCl ($K_{\rm sp} = 1.8 \times 10^{-10}$)
will occur only with			
a) 10^{-4} M (Ag \oplus) and 10	$^{-4}$ M (Cl $^{\Theta}$)	b) 10^{-5} M (Ag $^{\oplus}$) and 10^{-5}	⁻⁵ M (Cl [⊖])
c) 10^{-6} M (Ag $^{\oplus}$) and 10	⁻⁶ M (Cl [⊖])	d) 10^{-10} M (Ag $^{\oplus}$) and 10	$^{-10}$ M (Cl $^{\ominus}$)
108. Which of the following so	olutions will have pH close t	to 1.0?	
a) 100 mL of (M/10) HC	l + 100 mL of (M/10) NaOH	ł	
b) 55 mL of (M/10) HCl	+ 45 mL of (M/10) NaOH		
c) 10 mL of (M/10) HCl	+ 90 mL of (M/10) NaOH		
d) 75 mL of (M/5) HCl +	25 mL of (M/5) NaOH		
109. Which one of the following	ng salts when dissolves in w	vater hydrolyse?	
a) NaCl	b) NH ₄ Cl	c) KCl	d) Na_2SO_4
110. Which of the following is	a Lewis base?		
a) H ₂ 0	b) Cl⊖	c) BF ₃	d) NH ₃
111. When two reactants A an	d B are mixed to give produ	cts C and D, the reaction	
quotient <i>Q</i> at the initial s	tages of the action		
a) Is zero		b) Decreases with time	
c) Is independent of time	е	d) Increases with time	
112. Amongst the following	, the total number of com	pounds whose aqueous s	solution turns red litmus
paper blue is	,, ,		
$KCN K_2SO_4$ (N	$(H_{4})_{2}C_{2}O_{4}$ NaCl		
$Zn(NO_2)_2$ Fe(1, K)	$\Omega_{2} = \frac{114}{2} \Omega_{2} = $		
LiCN	11141103		
	h) 2	c) 2	d) (
a) 1 112 Which of the following of	0) Z	0 5	u) 4
	b) NoNO		4) K 80
114 The solubility of AgI in N	of indivog	t in nure water because:	$U_1 K_2 S O_4$
a) Agl forms complex wi	th NoI	t in pure water because.	
h) Of common ion effect	ui ivai		
c) Solubility product of A	AgI is less than that of NaI		
d) The temperature of th	e solution decreases		
115. When two reactants A a	nd B are mixed to give pro	oducts C and D, the reaction	n quotient (0) at the initial
stages of the reaction	nu b ure ninteu to give pro	fuces of and b, the reaction	in quotient (Q) at the initial
a) Is zero		b) Decreases with time	
c) Is independent of time	e	d) Increases with time	
116. Among the following hyd	roxides. the one which has	the lowest value of K_{cn} at c	ordinary temperature
(about 25°C) is	,	spini	J J F F
a) $Mg(OH)_2$	b) $Ca(OH)_{2}$	c) $Ba(OH)_{2}$	d) $Be(OH)_{2}$
117 An aqueous solution of H	ICL is 10 ⁻⁹ M HCL The pH of	the solution should be	
a) 9	b) Between 6 and 7	c) 7	d) Unpredictable
118. Which of the following si	ill suppress the ionization o	f acetic acid in aqueous solu	ition?
a) NaCl	b) HCl	c) KCl	d) Upredicatble
119. 1 mol of $XY(g)$ and 0.2 m	nol of $Y(g)$ are mixed in 1 I	vessel. At equilibrium. 0.6	f mol of $Y(g)$ is present. The
value of <i>K</i> for the reactio	n	1 ,	
$XY(g) \rightleftharpoons X(g) + Y(g)$ is			
a) $0.04 \text{ mol } 1^{-1}$	b) 0.06 mol 1^{-1}	c) $0.26 \text{ mol } 1^{-1}$	d) 0.40 mol 1^{-1}
a) 0.04 III01 L $$	ој 0.00 ШОГ L -	CJ 0.30 III0I L	uj 0.40 11101 L
$3X(a) + V(a) \rightarrow X_{1}V(a)$	L		
the amount of $X_2 Y$ at equ	ilibrium is affected by		
the amount of my rate equ	moriani is anececa by		

a) Temperature and	pressure	b) Temperature only	
c) Pressure only		d) Temperature, pressure, and catalyst	
121. At 90°C, pure water l	$\max [H_3 0^{\oplus}] = 10^{-6.7} \mod L^{-1}.$	What is the value of K_w a	at 90°C?
a) 10 ⁻⁶	b) 10 ⁻¹²	c) 10 ^{-13.4}	d) 10 ^{-6.7}
122. Of the given anions, t	he strongest Bronsted base is		
a) ClO⊖	b) ClO_2^{\ominus}	c) Cl0₃⊖	d) ClO₄⊖
123. The equilibrium cons	stant for the reaction $w + x \neq x$	y + z is 9. If one mole	of each of <i>w</i> and <i>x</i> are mixed
and there is no chang	ge in volume, the number of m	oles of y for formed is	
a) 0.10	b) 0.50	c) 0.75	d) 0.54
124. A 0.1 molar solution	of weak base BOH is 1% disso	ciated. If 0.2 mol of BCl i	s added in 1 L solution of BOH.
The degree of dissoc	iation of BOH will become		
a) 0.02			
b) 0.005			
c) 5×10^{-5}			
d) 2×10^{-3}			
125. What would be the s	olubility of silver chloride in 0	.10 M NaCl solution?	
$K_{\rm sp}$ for AgCl = 1.20 >	$\times 10^{-10}$		
a) 0.1 M	b) 1.2×10^{-6} M	c) 1.2 × 10 ⁻⁹ M	d) 1.2×10^{-10} M
126. Which one of followi	ng will have the largest pH?		
a) Solution containin	1×10^{-2} mol of K ₂ SO ₄ L ⁻¹		
b) Pure water			
c) Solution containin	1.0×10^{-2} mol of HCl L ⁻¹		
d) Solution containin	1×10^{-2} mol of NH ₄ OH L ⁻¹		
127. 20 cm ³ of x M solution	on of HCl is exactly neutralized	l by 40 cm ³ of 0.05 M Na	OH solution, the pH of HCl
solution is			
a) 1.0	b) 2	c) 1.5	d) 2.5
128. 4 moles of <i>A</i> are mixe	d with 4 moles of <i>B</i> , when 2 mo	oles of C are formed at equ	uilibrium according to the
reaction $A + B \rightleftharpoons C$	+ D		
The value of equilibr	ium constant is		
a) 4	b) 1	c) 1/2	d) 1/4
129. The p K_b of CN Θ is 4.	7. The pH of solution prepared	d by mixing 2.5 mol of KO	CN of 2.5 mol of HCN in water
and making the total	volume upto 500 mL is		
a) 10.3	b) 9.3	c) 8.3	d) 4.7
130. XY_2 dissociates XY_2	(g) $\rightleftharpoons XY$ (g) + Y(g). When t	he initial pressure of XY_2	is 600 mm Hg, the total
equilibrium pressure	is 800 mm Hg. Calculate K for	the reaction. Assuming	that the volume of the system
remains unchanged	b) 100 0	a) 166.6	4) 400 0
aj 50.0	DJ 100.0	$C_{\rm J}$ 100.0	uj 400.0
151. A monoprotic acid (r	h) 3		d) 2
132 4 mol of carbon dias	UJS	cj 10 col under conditions whi	ch produced at equilibrium 25%
dissociation into carbo	on monovide and ovvgen The n	umber of moles	en produced at equilibrium 23%
of carbon monoxide	produced	uniber of moles	
a) 0.5	b) 1.0	c) 2.0	d) 4.0
400.00 J (M/40.00 G			
133. 20 mL of M/10 CH_3C	OUH solution is titrated with	M/10 NaOH solution. Aft	ter addition of 16 mL solution of
NaUH. what is the pr	For the solution $(pK_a = 4.47)$.) 475	
aj 5.05	DJ 4.15	CJ 4./5	aj 5.35
154. A solution with $pH =$	L is more actuic then one wit	$ha ph = 6 by a factor of a^{-1}$	d) 10 ⁴
aj 4 125 What are the units in	UJ 14 which the colubility product	$U_{J} + U_{U}$	uj 10 od2
155. what are the units in a^{2} mol dm^{-3}	h) mal ² dm ⁻⁶	or $\operatorname{Ca}_3(\operatorname{PO}_4J_2)$ is expressed	d mol ⁵ dm ⁻¹⁵
aj 1101 U111 -			

136	.36. Inert gas has been added to the following equilibrium system at constant volume $SO_2(g) + 1/2O_2(g) \rightleftharpoons SO_3(g)$				
	To which direction will the equilibrium shift?				
	a) Forward	b) Backward	c) No effect	d) Unpredictable	
137.	The best indicator for the	detection of end point in ti	itration of a weak acid and	a strong base is	
	a) Methyl orange (3 to 4)	1		0	
	b) Methyl red (5 to 6)				
	c) Bromothymol blue (6 t	o 7.5)			
	d) Phenolphthalein (8 to 9	9.6)			
138	In the problem number 21	, the number of mole of N_2O	P_4 in 100 g of the mixture is	:	
	a) 0.43	b) 0.86	c) 0.57	d) 0.2	
139	. Which of the following car	n act both as a Bronsted ac	id and a Bronsted base?		
	a) 0_2^{\ominus}	b) HCl	c) HSO₄⊖	d) Na_2CO_3	
140	For the reactions $X \rightleftharpoons 2Y$	and $Z \rightleftharpoons P + 0$ occurring	two different pressure		
	P_1 and P_2 , respectively. The	ne ratio of the two pressu	res is 1:3. What will be th	he ratio of equilibrium	
	constant, if the degree of	dissociation of X and Z are	e equal	1	
	a) 1:36	b) 1:12	c) 1:9	d) 2:3	
141	. An acid HA is 40% dissoci	ated in an aqueous solutio	n. The hydronium ion conc	entration of its 0.2 M	
	solution would be	-	-		
	a) 0.08 M	b) 0.4 M	c) 0.2 M	d) None	
142	A solution of 0.1 M NaZ ha	as $pH = 8.90$. The K_a of HZ	is		
	a) 6.3×10^{-11}	b) 6.3×10^{-10}	c) 1.6×10^{-5}	d) 1.6×10^{-6}	
143	. The equilibrium constan	nt <i>K</i> for the reaction: 2H	$I(g) \rightleftharpoons H_2(g) + I_2(g)$ at roo	om temp is 2.85 and that at	
	698 K is 1.4 \times 10 ⁻² . This is	mplies that the forward read	ction is		
	a) Exothermic	b) Endothermic	c) Exergonic	d) Unpredictable	
144	pH of a solution made by	mixing 50 mL of 0.2 M NH ₄	Cl and 75 mL of 0.1 M NaO	H is $[pK_a]$ of $NH_3(aq) =$	
	$4.74.\log 3 = 0.47$]				
	a) 7.02	b) 13.0	c) 7.02	d) 9.73	
145	A certain buffer solution of	contains equal concentration	on of X^{Θ} and HX. The K_b fo	or X^{\ominus} is 10^{-10} . The pH of the	
	buffer is				
	a) 4	b) 7	c) 10	d) 14	
146	A solution of CaF ₂ is found	d to contain 4×10^{-4} M of	F^{\ominus} ions. K_{sp} of CaF_2 is		
	a) 3.2×10^{-11}	b) 0.8×10^{-11}	c) 6.4×10^{-11}	d) 32×10^{-11}	
147	. The solubility of solid silv	er chromate, AgCrO ₄ , is de	termined in three solvents	$K_{\rm sp} \text{ of } {\rm AgCrO}_4 = 9 \times 10^{-12}$	
	I. pure water II. 0.1 M	1 AgNO ₃			
	III. 0.1 M Na ₂ CrO ₄				
	Predict the relative solubi	ility of Ag ₂ CrO ₄ in the three	e solvents		
	a) $I = II = III$	b) I < II < III	c) $II = III < I$	d) II < III < I	
148	Which of the following sal	lts undergoes anionic hydr	olysis?		
	a) CuSO4	b) NH ₄ Cl	c) FeCl ₃	d) Na ₂ CO ₃	
149	For the reaction, $H_2(g) +$	$I_2(g) \rightleftharpoons 2HI(g)$, the equilib	brium constant K_p changes	with	
	a) Total pressure		b) Catalyst		
	c) The amounts of H_2 and	I ₂ present	d) Temperature		
150	Which of the following is	mot soluble?			
150	a) Bi ₂ S ₂ $(K = 1 \times 10^{-70})$		b) MnS $(K = 7 \times 10^{-16})$)	
	a) $C_{\rm LS} (K = 0 \times 10^{-37})$	J	d) $\Lambda \sigma S (V - 6 \times 10^{-51})$		
1 - 4	$c_{J} \cos(n_{sp} = 0 \times 10^{-67})$		$u_J Ag_2 S (\Lambda_{sp} = 0 \times 10^{-51})$) :	
151.	At equilibrium $x + y \rightleftharpoons z$ 3-L vessel. Among the give	en values of reaction coeffi	cient Q, given at three diffe	m a rent instants, which value	

refers to system at equilibrium?

a) 10 b) 15	c) 10.67	d) 12
152. Buffer solutions can be prepared from mixtures of		
a) HCl and NaCl	b) NaH ₂ PO ₄ and Na ₂ HP	204
c) $CH_3COOH + NaCl$	d) $NH_4OH + NH_3$	
153. The equilibrium constant for a reaction $A + 2B \rightleftharpoons T$	2 <i>C</i> is 40. The equilibrium c	onstant for reaction
$C \rightleftharpoons B + 1/2 A$ is		
a) $1/40$ b) $(1/40)^{1/2}$	c) $(1/40)^2$	d) 40
154. A saturated solution of Ag_2SO_4 is 2.5×10^{-2} M. Th	e value of its solubility pro	duct is
a) 62.5×10^{-6} b) 6.25×10^{-4}	c) 15.625 × 10 ⁻¹⁰	d) 3.125×10^{-6}
155. M_2SO_4 (M ^{\oplus} is a monovalent metal ion) has a K_{sp} o	f 3.2×10^{-5} at 298 K. The	maximum concentration of
SO_4^{2-} ion that could be attained in a saturated solu	tion of this solid at 298 K i	S
a) 3×10^{-3} M b) 7×10^{-2} M	c) 2.89 $\times 10^{-4}$ M	d) 2×10^{-2} M
156. The compound that is not a Lewis acid is	.,	
a) BF_2 b) $AlCl_2$	c) BeCl ₂	d) SnCl₄
157. The pH value of 0.001 M aqueous solution of NaCl i	is	
a) 7 b) 4	c) 11	d) Unpredictable
158. A definite volume of a N/20 CH ₂ COOH (pK _a = 4.74	47) is titrated with a stro	ng base (NaOH). It is found
that 80 equal sized drops of NaOH, added from a by	urette effects the complete	neutralization. Find the pH.
when the acid soln is neutralized to the extent of 2	0%	r ,
a) 4.14 b) 9.86	c) 5.34	d) 8.68
159. CaCO ₂ and BaCO ₂ have solubility product values 1	$\times 10^{-8}$ and 5 $\times 10^{-9}$. resp	ectively. If water is shaken up
with both solids till equilibrium is reached, the con	centration of CO_2^{2-} ion is	
a) 1.5×10^{-8} b) 1.225×10^{-4}	c) 2.25×1^{-9}	d) None of theses
160. For the reaction	•) =.=• · · =	
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$		
The equilibrium constant K_n changes with		
a) Total pressure	h) Catalyst	
c) The amounts of H_{a} and I_{a} present	d) Temperature	
161 One of the following is a Bronsted acid but not a Br	consted hase	
a) H ₂ S b) H ₂ O	c) HCO Θ	d) NH-
162 When equal volumes of the following solution are v	c_{3}	$V_{1} = 1.0 \times 10^{-10}$ will
102. When equal volumes of the following solution are i	linxed, precipitation of Age	$(K_{sp} - 1.6 \times 10^{\circ})$ will
occur only with $10-4$ M (Cl Θ)		
a) 10 $\frac{1}{M}$ (Ag $^{\oplus}$) and 10 $\frac{1}{M}$ (Cl $^{\ominus}$)	b) 10 3 M(Ag $^{\odot}$) and 10	M(U)
c) 10^{-5} M(Ag \oplus) and 10^{-6} M (Cl \ominus)	d) 10^{-4} M(Ag \oplus) and 10) ⁻¹⁰ M (Cl⊖)
163. pH of an aqueous solution of 0.6 M NH_3 and 0.4 M I	$NH_4Cl is 9.4 (pK_b = 4.74).$	The new pH when 0.1
M Ca(OH) ₂ solution is added to it		
a) 9.86 b) 10.14	c) 10.2	d) 10.86
164. 20 mL of 0.1 N HCl is mixed with 20 mL of 0.1 N KC)H. The pH of the solution v	would be
a) 0 b) 7	c) 2	d) 9
165. An aqueous solution of aluminium sulphate would	show	
a) Acidic	b) Neutral	
c) Basic	d) Both acidic and basic	creaction
166. The active mass of 64 g of HI in a 2-L flask would b	e	N 0 05
a) 2 b) 1	c) 5	d) 0.25
167. The pH of a 0.1 M solution of NH_4OH (having disso	ciation constant $K_b = 1.0$	$\times 10^{-5}$) is equal to
a) 10 b) 6	c) 11	d) 12
168. Which of the following is not a Lewis base?	、	
a) CN [⊖] b) ROH	c) NH ₃	d) AlCl ₃
169. The following graph represents the titration of pH	vs volume	

	pH (
	2		
	60 100 Volume of NaOH		
	a) A diprotic acid		
	b) Two monoprotic acids with the same K_a but different times the same K_a but different times the same time time time time time times the same time time time time time time time ti	ferent concentrations	
	c) Two monoprotic acids with different K_a but the	same concentration	
	d) Two monoprotic acids with different K_a and different K_a	ferent concentrations	
170.	. A solution has pOH equal to 13 at 298 K. The soluti	ion will be	
	a) Highly acidic b) Highly basic	c) Moderately basic	d) Unpredictable
171.	. An aqueous solution of metal chloride $MCl_2(0.05 \text{ M})$	1) is saturated with H ₂ S	(0.1 M). The minimum pH at
	which metal sulphide will be precipitated is $W_{1} = M_{2}^{2} + M_{2}^{2} + M_{3}^{2} + M_{4}^{2} + M_{5}^{2} +$	10-14	
	$[K_{sp} MS = 5 \times 10^{-21}, K_1 (H_2S) = 10^{-7}, K_2(H_2S) =$	10 14	
4 50	a) 3.25 b) 2.50	c) 1.50	d) 1.25
172.	. The equilibrium constant K_p for a homogeneous gas	seous reaction is 10^{-6} . T	he standard Gibbs free energy
	change ΔG^{\ominus} for the reaction (using $R = 2 \operatorname{cal} K^{-1}$	1 mol ⁻¹) is	
	a) 10.98 kcal b) – 1.8 kcal	c) – 4.1454 kcal	d) +4.1454 kcal
173.	. When 2 mol of HCl is added to 1 L of an acidic buff	er, its pH changes from	3.4 to 2.9. The buffer capacity of
	the buffer solution is		
1 7 4	a) 2 b) 0	c) 4	d) 8
1/4.	. 8 mol of a gas AB_3 are introduced into a 1.0 dm ³ ve	essel. It dissociates as	
	$2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$		
	At equilibrium, 2 mol of A_2 is found to be present.	The equilibrium constan	nt for the reaction is
	a) $2 \mod^2 L^{-2}$ b) $3 \mod^2 L^{-2}$	c) 27 mol ² L ⁻²	d) 36 mol ² L^{-2}
175.	. The best indicator for the detection of the end poir	nt in the titration of a we	eak acid and a strong base is
	a) Methyl orange (pH range 3 to 4)	b) Methyl red (pH ra	inge 4 to 6)
170	c) Thymol blue (pH range 8 to 3)	d) Phenolphthalein (pH range 8 to 10)
176.	An example of a reversible reaction is $2 \operatorname{Pb}(NO_{1})$ (2a) $\pm 2 \operatorname{Nal}(2a) \rightarrow \operatorname{Pb}(S) \pm 2 \operatorname{NaNO}(2a)$	(20)	
	a) $FU(NO_3)_2(aq) + 2Nal(aq) \rightarrow FU_2(s) + 2NaNO_3$ b) $AgNO_2(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_2(aq)$	g(aq)	
	c) $2Na(s) + H_2O(l) \rightarrow 2NaOH(a_0) + H_2(g)$		
	d) $\text{KNO}_2(\text{ag}) + \text{NaCl}(\text{ag}) \rightarrow \text{KCl}(\text{ag}) + \text{NaNO}_2(\text{ag})$		
177.	Which of the following is the strongest acid?		
	a) $ClO_3(OH)$ b) $ClO_2(OH)$	c) SO(OH) ₂	d) $SO_2(OH)_2$
178.	. The ionization constant of an acid base indicator (a	a warak acid) is 1.0×10	D^{-6} . The ionized form of the
	indicator is red and unionized form is blue. The pH	I change required to alte	er the colour of indicator from
	80% red is		
	a) 0.80 b) 1.20	c) 1.40	d) 2.00
179.	. The pH of 0.1 M solution of the following salts incr	eases in the order	
	a) NaCl $< NH_4$ Cl $< NaCN < HCl$	b) HCI $< NH_4$ Cl $< N$	aCl < NaCN
	c) NaCN $< NH_4$ Cl $< NaCl < HCl$	d) HCI < NaCl < Na	$nCN < NH_4Cl$
180.	. What is the solubility of $PbSO_4$ in 0.01 M Na_2SO_4 s	olution if $K_{\rm sp}$ for PbSO ₄	$= 1.25 \times 10^{-9}$?
101	a) 1.25×10^{-7} mol L ⁻¹ b) 1.25×10^{-9} mol L ⁻¹	c) 1.25×10^{-10} mol	L^{-1} d) 0.10 mol L^{-1}
181.	$\operatorname{Ag}^{-} + \operatorname{NH}_{3} \rightleftharpoons [\operatorname{Ag}(\operatorname{NH}_{3})]^{+}; K_{1} = 3.5 \times 10^{-3}$		
	$[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+;$		
	$K_2 = 1.7 \times 10^{-3}$		

Then the formation constant of $[Ag(NH_3)_2]^+$ is a) 6.08×10^{-6} b) 6.08×10^{6} c) 6.08×10^{-9} d) None of these 182. Which one is not an acid salt? a) NaH_2PO_4 b) NaH_2PO_2 d) All of the above are acid salts c) NaH₂PO₃ 183. For the equilibrium system $2HX(g) \rightleftharpoons H_2(g) + X_2(g)$ the equilibrium constant is 1.0×10^{-5} . What is the concentration of HX if the equilibrium concentration of H_2 and X_2 are 1.2×10^{-3} M, and 1.2×10^{-4} M respectively? a) 12×10^{-4} M c) 12×10^{-2} M b) 12×10^{-3} M d) 12×10^{-1} M 184. Conjugate base of ${\rm \overset{\circ}OH}$ is b) H₃0⊕ d) 0^{2-} a) H_2O c) H⊕ 185. The solubility of CO_2 in water increases with a) Increase in temperature b) Reduction of gas pressure c) Increase in gas pressure d) Increase in volume 186. Out of the following the compound whose water solution has the highest pH is a) NaCl c) NH₄Cl b) Na_2CO_3 d) NaHCO₃ 187. If $K_{sp}(PbSO_4) = 1.8 \times 10^{-8}$ and $K_a(HSO_4^{\ominus}) = 1.0 \times 10^{-2}$ the equilibrium constant for the reaction $PbSO_4(s) + H^{\bigoplus}(aq) \rightleftharpoons HSO_4^{\ominus}(aq) + Pb^{2+}(aq)$ is c) 2.8×10^{-10} a) 1.8×10^{-6} b) 1.8×10^{-10} d) 1.0×10^{-2} 188. The aqueous solution of AlCl₃ is acidic due to a) Cation hydrolysis b) Anion hydrolysis c) Hydrolysis of both anion and cation d) Dissociation 189. When solid KCl is added to a saturated solution of AgCl in H_2O a) Nothing happens b) Solubility of AgCl decreases c) Solubility of AgCl increases d) Solubility product of AgCl increases 190. When 20 mL of M/20 NaOH is added to 10 mL of M/10 HCl, the resulting solution will a) Turn blue litmus red b) Turn phenolphthalein solution pink c) Turns methyl orange red d) Will have no effect on either red or blue litmus 191. When 0.002 mol of acid is added to 250 mL of a buffer solution, pH decreases by 0.02 units. The buffer capacity of the system is a) 0.1 b) 0.2 c) 0.3 d) 0.4 ^{192.} For the indicator the ratio $\frac{[Ind^{\ominus}]}{[HIn]}$ is 7.0 at pH of 4.3. K_{eq} for the indicator ius c) 3.5×10^{-2} a) 3.5×10^{-4} b) 3.5×10^{-5} d) 3.5×10^{-3} 193. For a hypothetical reaction of the kind $AB_2(g) + \frac{1}{2} B_2(g) \rightleftharpoons AB_3(g); \Delta H = -x \text{ kJ}$ More AB_3 could be produced at equilibrium by a) Using a catalyst b) Removing some of B_2 c) Increasing the temperature d) increasing the pressure 194. The equilibrium constant for a reaction $N_2(g) + O_2(g) = 2NO(g)$ is 4×10^{-4} at 2000 K. In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is b) 4 $\times 10^{-4}$ c) 40 $\times 10^{-2}$ a) 40×10^{-4} d) Incomplete data 195. The pH of solution 7.00. To this solution, sufficient base is added to increase the pH to 12.0. The increase in $\overset{\circ}{\mathrm{OH}}$ ion concentration is

	a) 5 times	b) 1000 times	c) 10 ⁵ times	d) 4 times
196.	A solution contains 10 m	L of 0.1 N NaOH and 10 mL	of 0.05 Na ₂ SO ₄ . pH of this s	solution is
	a) 7	b) Less than 7	c) Greater than 7	d) Zero
197.	0.1 M solution of which o	f the substances will behave	e basic?	
	a) Sodium borate	b) Ammonium ditoride	c) Calcium nitrate	d) Sodium sulphate
198.	. In a chemical reaction, eq	uilibrium is said to have bee	en established when the	
	a) Concentration of reacta	nts and products are equal		
	b) Opposing reaction cease	ses		
	c) Velocities of opposing r	eaction become equal		
	d) Temperature of oppos	ing reaction are equal		
199	The nink colour of nheno	Inhthalein in alkaline mediu	im is due to	
177.		b) Positive ions	c) Negative ion	d) Neutral form
	a) OH ions			
200.	A certain buffer solution	contains equal concentratio	on of and X^{\ominus} and HX. The <i>R</i>	f_b for X ^{\ominus} is 10 ⁻¹⁰ . The pH of
	the buffer is			
	a) 4	b) 7	c) 10	d) 14
201.	100 mL of a buffer solution	on contains 1.0 M each of w	eak acid HA and salt NaA. F	low many gram of NaOH
	should be added to the bu	ifter so that it pH will be 6?		
	$(K_a \text{ of HA} = 10^{-3})$			
202	a) 0.328	b) 0458	$\begin{array}{c} \text{CJ} 4.19 \\ \text{K} \\ \text{C} \\ C$	d) None
202.	. At constant temperature,	the equilibrium constant (I	(K_p) for the decomposition (K_p)	reaction
	$N_2O_4 \rightleftharpoons 2NO_2$			
	is expressed by $K_p = 4x^2$	$p^2 p/(1-x^2)$, where $p = pre$	ssure $x = extent of decompositions for the second second$	position. Which of the
	following statements is tr	rue?		
	a) K_p increases with incr	ease in p	b) K_p increases with increases	ease in <i>x</i>
	c) K_p increases with decr	ease in <i>x</i>	d) K_p remains constant w	with change in p and x
203.	A weak acid HX has the d	issociation constant $1 \times 10^{\circ}$	⁻⁵ M. It forms a salt NaX on	reaction with alkali. The
	percentage hydrolysis of	0.1 M solutions of NaX is		
	a) 0.0001%	b) 0.01%	c) 0.1%	d) 0.15%
204.	K_1 and K_2 are equilibriu	m constants for reaction (i) and (ii)	
	$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$)(i)		
	$NO(g) \rightleftharpoons 1/2N_2(g) + 1/2N_2(g$	20 ₂ (g)(ii)		
	Then,	2		
	a) $K_1 = (1/K_2)^2$	b) $K_1 = K_2^2$	c) $K_1 = 1/K_2$	d) $K_1 = (K_2)^{\circ}$
205.	Which of the following w	hen mixed, will give a soluti	ion with $pH > 7$	
	a) 0.1 M HCI + 0.2 M NaC			
	b) 100 mL of 0.2 M H_2 SO	$_{4}$ + 100 mL of 0.3 M NaOH	r	
	c) 100 mL of 0.1 M HC ₂ H	$_{3}\text{O}_{2}$ + 100 mL of 0.1 M KOH		
200	d) 25 mLof 0.1 HNO ₃ + 2	5 mL of 0.1 M NH_3		
206.	An actule buffer solution	can be prepared by mixing	the solution of	
	a) Soulum acetate and ac	elic aciu		
	c) Sulphuric acid and cod	ium sulphato		
	d) Sodium chlorido and s	adium hydrovida		
207	The pH of 10^{-8} M colution	n of HCl in water is		
207.		h = 8	c) Between 7 and 8	d) Between 6 and 7
20Q	a) o The system $P(I_{-}(\sigma) \rightarrow T)$	$U_{J} = U_{J}$	ujlibrium If the equilibrium	a concentration of PCL (g) is
200.	doubled the concentration	$1 \cup 3(g) + \cup 2(g)$ attains equation of $C_{1}(g)$ would become	Innormani, ir uie equilior lull	$1 \text{ concentration of } f \text{ Cl}_3(g)$ is
	a) 1/4 its original value		h) 1/2 its original value	
	c) Twice its original value		d) Unpredictable	
	-,			

209.	A solution is saturated with concentration of F^{\ominus} in the	h respect to $SrCO_3$ and SrF solution would be	T_2 . The $[CO_3^{2-}]$ was found to	be 1.2×10^{-3} M. The
	Given $K_{\rm sp}$ of SrCO ₃ = 7.0 ×	$\times 10^{-10} M^2$, $K_{\rm sp}$ of SrF ₂ = 2	$7.9 \times 10^{-10} M^3$	_
	a) 1.3 × 10 ⁻³ M	b) 2.6×10^{-2} M	c) 3.7×10^{-2} M	d) 5.8×10^{-7} M
210.	The precipitate of $CaF_2(K_s)$	$_{\rm p} = 1.7 \times 10^{-10}$) is obtain	ed when equal volumes of	the following are mixed
	a) 10^{-4} M Ca ²⁺ + 10^{-4} M I	θ	b) 10 ⁻² M Ca ²⁺ + 10 ⁻³ M	F^{\ominus}
	c) 10^{-5} M Ca ²⁺ + 10^{-3} M I	ĘΘ	d) 10^{-3} M Ca ²⁺ + 10^{-5} M	F^{\ominus}
211.	For $N_2 + 3H_2 \rightleftharpoons 2NH_3 + H_3$	eat		
	a) $K_n = K_c$	b) $K_p = K_c RT$	c) $K_n = K_c (RT)^{-2}$	d) $K_n = K_c (RT)^{-1}$
212.	According to le-Chatelier's	principle, adding heat to a	solid and liquid in equilibri	um will cause the
	a) Amount of solid to decre		b) Amount of liquid to dec	rease
	c) Temperature to rise		d) Temperature to fall	ci cusc
213	For the chemical reaction		a) remperature to fair	
215.	$2V(q) + V(q) \rightarrow V V(q)$			
	$5\lambda(g) + I(g) = \lambda_3 I(g)$			
	The amount of $X_3 Y$ at equi	librium is affected by		
	a) Temperature and press	ure	b) Temperature only	
	c) Pressure only		d) Temperature, pressure	, and catalyst
		Multiple Correct	Answers Type	
214	The nH of 0.1 M solution of	f the following salts increa	ses in the order	
217.	a) NaCl \leq NH.Cl \leq NaCN	< HCl	b) HCl $< NH_{c}Cl < NaCl <$	< NaCN
	a) NaCI $< NH_4$ CI $< NaCI$	< HCl	d) $HC < NaCl < NaCN <$	
215	Which statements in part()	~ 1101		× 111401
215.	a) Compared to a strong a	vid a woak acid titration w	with baco starts at a highor	nU
	a) Compared to a strong by	lu, a, weak actu titration v	ands at a lower nH	pn
	c) In both (a) and (b) titra	tion curve is chortened at	each and	
	d) For titration of a weak a	cid and a weak base the n	each enu early vertical portion of th	e curve would be
	insufficient for an effect	ive titration	early vertical portion of th	e cui ve would be
216	Which of the following salt	's solutions is /are acidic?		
210.	a) NaOCI	b) NH NO	c) NoHSO	d) FoCl
217	Eor the reaction	b) M114103	c) Na11503	u) 10013
217.	$PC_{-}(\sigma) \rightarrow PC_{-}(\sigma) \pm C_{-}(\sigma)$)		
	The forward reaction at co) netant tomporature is favo	ured by	
	a) Introducing an inort gas	at constant volume	Jureu by	
	a) Introducing all mert gas	at constant volume		
	c) Introducing childrine gas	s at constant prossure		
	d) Increasing the volume of	f the container		
210	The Ostwald's dilution law			
210.	a) Is valid for weak alaster	Into discognistion		
	a) is valid for weak electro	nyte uissociation	or bacac	
	a) Eaila completely where a	unization constant of actors	our bases	
	d) None of the choice	ipplied to strong electrolyt	es	
	uj none of the above			

219. Which of the following statement(s) is/are wrong?

a) pH of the human blood is 7.2 and it is alkaline

b) pH of buffers in stomach is acidic range

c) pH of buffers in intestine is in alkaline range

d) pH of $\rm H_2O$ is 6.5 at 60°C and thus, acidic

220. Which of the following will change if a 0.1 M solution of a weak acid is diluted to 0.01 M at constant

temperature?

- a) *K*_a
- b) pH
- c) H⁺ ion concentration
- d) Ionization percentage
- 221. A solution of 0.01 M Fe²⁺ in a saturated H₂S solution and (i) 0.2 M of H^{\oplus} (ii) 0.001 M of H^{\oplus}. ($K_1 \times K_2$ of H₂S = 10⁻²¹, K_{sp} FeS = 3.7 × 10⁻¹⁹)
 - Which of the following statement is/are correct
 - a) FeS will precipitate in solution (i)
 - b) FeS will not precipitate in solution (i)
 - c) FeS will precipitate in solution (ii)
 - d) FeS will not precipitate in solution (ii)
- 222. Which among the following qualifies as a Lewis acid?

a) NaF	b) NaCl	c) BF ₃	d) MgCl ₂
223. Which of the foll	owing will qualify as Lewis	base?	
a) BCl ₃	b) CH₄	c) PH ₃	d) NH ₃

- 224. An acid is a substance which:
- a) Accepts a lone pair of electron (Lewis concept)
 - b) Donates a proton (Lowry and Bronsted concept)
 - c) Acts as an acid only in presence of base
 - d) None of the above
- 225. Which of the following are true for an acid-base titration?
 - a) Indicators catalyst the acid-base reactions by relasing or accepting H^{\oplus} ions
 - b) Indicators do not significantly affect the pH of the solution to which they are added
 - c) Acid-base reactions do not occur in the absence of indicators
 - d) Indicators have different colours in dissociated and undissociated forms
- 226. Which of the following statements is/are true?
 - a) The solubility product is the product of concentration of ions of an electrolyte each raised to the power of its coefficient in the balanced chemical equation in a saturated solution
 - b) The solubility product of an electrolyte is a function of temperature
 - Cations of group III are precipitated as their hydroxides by NH_4OH in the presence of NH_4Cl because the solubility products of these hydroxides are low
 - d) The ionic product changes with the concentration of an electrolyte
- 227. Chemical equilibrium for a reversible change means for :
 - a) The forward reaction proceeds as fast as the backward reaction, i.e., velocity of opposing reaction are equal
 - b) No change in conc. of reaction species with time
 - c) Dynamic equilibrium
 - d) None of the above
- 228. Which of the following is/are not correct?
 - a) K_w is always constant and equal to 10^{-14}
 - b) $pH + pOH = pK_w$ at all temperatures
 - c) Salts of weak acid ad weak base do not undergo hydrolysis
 - d) Addition of sodium acetate to acetic acid increases the pH of acetic acid
- 229. A process will be irreversible when one or more of the product separate out as :
 - a) Insoluble
 - b) Volatile species
 - c) Solid
 - d) None of these

230. A reaction mixture containing 0.050 atm N_2 , 3.0 atm H_2 , and 0.050 atm NH_3 is heated to 450°C. The value

of K_p is 4.28×10^{-5} atm⁻² $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ The correct statement (s) is/are a) Reaction goes towards the left b) Reaction goes towards the right d) Ammonia gas decomposes into H₂ and N₂ c) N₂ and H₂ combine to form ammonia 231. The phenomenon of interaction of anions and cations furnished by a electrolyte with the H⁺ and OH⁻ ions of water to produce acidic nature or alkaline nature is known as hydrolysis. In hydrolysis: a) The pH may be either increase or decrease b) All the salts (except those made up with strong anion and cation) undergo hydrolysis c) The variation of pH depends upon the nature of salt as well as on the temperature d) None of these 232. The rate of disappearance of A at two temperature is given by $A \rightleftharpoons B$ i) $\frac{-d[A]}{dt} = 2 \times 10^{-2} [A] - 4 \times 10^{-3} [B]$ at 300 K ii) $\frac{-d[A]}{dt} = 4 \times 10^{-2} [A] - 16 \times 10^{-4} [B]$ at 400 K From the given values of heat of reaction which are incorrect d) 1.68 $\times 10^{-2}$ kcal a) 3.86 kcal b) 6.93 kcal c) 1.68 kcal 233. Which of the following is/are example(s) of autoprotolysis? a) $NH_3 + NH_3 \rightleftharpoons NH_4^+ + NH_2^$ b) $CH_3OH + CH_3OH \rightleftharpoons CH_3OH_2^+ + CH_3O^$ c) $HCOOH + HCOOH \rightleftharpoons HCOOH_2^+ + HCOO^$ d) HCl + HF \rightleftharpoons H₂Cl⁻ + F⁻ 234. An acid-base indicator has $K_a = 3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then: a) pH is 4.04 when indicator is 75% red b) pH is 5.00 when indicator is 75% blue c) pH is 5.00 when indicator is 75% red d) pH is 4.05 when indicator is 75% blue 235. A buffer solution can be prepared from a mixture of a) Ammonia and ammonium chloride in water b) Sodium acetate and acetic acid in water c) Sodium acetate and hydrochloric acid in water d) Ammonia and sodium hydroxide in water 236. For which of the following reactions at equilibrium at constant temperature, doubling the volume will cause a shift to the right? b) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ a) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ c) $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$ d) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ 237. Which of the following is/are soft acid(s)? d) Hg^{2+} a) Cu+ c) Na⁺ b) NO_{2}^{-} 238. Which of the following is/are buffer solution(s)? a) 10 mL 0.1 *M* HCl + 20 mL 0.2 *M* NaCN b) NH₄Cl + NH₄OH c) NaOH + Na_2SO_4 d) Borax + boric acid 239. In qualitative analysis of acid radicals, it is necessary to prepare sodium carbonate extract for the test of: a) CH₃COO⁻ b) $NO_3^$ c) NO_2 d) Cl-240. $N_2O_2 \rightleftharpoons 2NO, K_1;$ $\left(\frac{1}{2}\right)N_2 + \left(\frac{1}{2}\right)O_2 \rightleftharpoons NO, K_2;$ $2NO \rightleftharpoons N_2 + O_2; K_3;$ $NO \rightleftharpoons \left(\frac{1}{2}\right) N_2 + \left(\frac{1}{2}\right) O_2; K_4$

Correct relation(s) between K_1, K_2, K_3 , and K_4 is/are

a)
$$K_1 \times K_3 = 1$$
 b) $\sqrt{K_1} \times K_4 = 1$ c) $\sqrt{K_3} \times K_2 = 1$ d) None

241. Consider the reaction, $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g) +$ Heat. Under what conditions shift is underterminable?

- a) Increase in temperature and decrease in volume
- b) Addition of O₂ and decrease in volume
- c) Addition of CO and increase in temperature at constant volume
- d) Addition of CO and removal of CO₂ at constant volume
- 242. Which of the following will not affect the value of equilibrium constant of a reaction?
 - a) Change in the concentration of the reactants
 - b) Change in temperature
 - c) Change in pressure
 - d) Addition of catalyst
- 243. Which is/are conjugate acid-base pair(s)?
 - a) HNO_2 , NO_2^-
 - b) H₃O⁺, OH⁻
 - c) CH₃NH⁺₃, CH₃NH₂
 - d) H₂S, S²⁻
- 244. 138 g of N₂O₄(g) is placed in 8.2 L container at 300 K. The equilibrium vapour density of mixture was found to be 30.67. Then (R = 0.082 L atm mol⁻¹K⁻¹)
 - a) Total pressure at equilibrium = 6.75 atm
 - b) Degree of dissociation of $N_2O_5 = 0.25$
 - c) The density of equilibrium mixture = 16.83 g/L
 - d) K_p of $N_2O_4 \rightleftharpoons 2NO_2(g)$ will be 9 atm
- 245. A reaction $S_8(g) \rightleftharpoons 4S_2(g)$ is carried out by taking 2 mol of $S_8(g)$ and 0.2 mol of $S_2(g)$ is a reaction vessel of 1 L. Which one is not correct if $K_c = 6.30 \times 10^{-6}$
 - a) Reaction quotient is 8×10^{-4} b) Reaction proceeds in backward direction
 - c) Reaction proceed is forward direction d) $K_p = 2.55 \text{ atm}^3$
- 246. When NaNO₃ is heated in a closed vessel, oxygen is liberated and NaNO₃ is left behind. At equilibrium,
 - a) Addition of NaNO₂ favours reverse reaction
 - b) Addition of NaNO₃ favours forward reaction
 - c) Increasing the temperature favours forward reaction
 - d) Increasing the pressure favours reverse reaction
- 247. Hg₂CrO₄ just begins to precipitate when equal volumes of 4×10^{-4} M Hg₂(NO₃)₂ and 2×10^{-5} M K₂CrO₄ are combined. What is the approximate K_{sp} value of Hg₂CrO₄?

a)
$$1 \times 10^{-18} \text{ mol } L^{-1}$$
 b) $8 \times 10^{-9} \text{ mol } L^{-1}$ c) $2 \times 10^{-9} \text{ mol } L^{-1}$ d) $4 \times 10^{-9} \text{ mol } L^{-1}$

248. The degree of hydrolysis for a salt of strong acid and weak base

- a) Is independent of dilution
- b) Increases with dilution
- c) Increases with decreases in K_b of the bases
- d) Decreases with decrease in temperature
- 249. The pH of solution(s) is/are defined as the:
 - a) Negative logarithm of the magnitude of hydrogen ion concentration
 - b) Logarithm of reciprocal of magnitude of hydrogen ion concentration
 - c) Negative power raison 10 in order to express [H⁺] ion concentration
 - d) None of these
- 250. For which of the following is K_p less than K_c ?

a)
$$N_2O_4 \rightleftharpoons 2NO_2$$

- b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$
- c) $2SO_2 + O_2 \rightleftharpoons 2SO_3$

d) $CO + H_2O \rightleftharpoons CO_2 + H_2$

- 251. Which of the following statements(s) is (are) correct?
 - a) The pH of 1.0×10^{-8} M solution of HCl is 8
 - b) The conjugate base of $H_2PO_4^{\ominus}$ is HPO_4^{2-}
 - c) Autoprotolysis constant of water increases with temperature
 - d) When a solution of weak monoprotic acid is titrated against a strong base, at half-neutralisation, point $pH = (1/2)pK_a$
- 252. The pH of a buffer solution containing equimolar concentrations of sodium acetate and acetic acid is equal to:
- a) K_a of CH_3COOH b) pK_a of CH_3COOH c) 14 d) $\log K_a$ of CH_3COOH 253. The dissociation reaction, $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ is endothermic. Which of the following changes will
 - shift the equilibrium to the right?
 - a) Increasing the temperature
 - b) Compressing the gaseous mixture
 - c) Increasing the volume of the gaseous mixture
 - d) Adding $Cl_2(g)$ to the equilibrium mixture at a constant volume

254. An acid-base indicator has $K_a = 10^{-5}$. The acid form of the indicator is red and basic form is blue. Which of the following is/are correct?

- a) At pH = 4.52, solution is red
- c) At pH = 6, solution is 75% red
- 255. The degree of dissociation of an electrolyte:
 - a) Depends on the nature of solute and solvent
 - b) Increase with increase in dilution
 - c) Increase with increase in temperature
 - d) None of the above

256. Which of the following statements is/are true about reaction quotient *Q*?

- a) $Q \geq K_c$
- b) Q always increases, if reaction proceeds in forward direction
- c) $Q = K_c = 1$, at equilibrium
- d) $Q = K_c$, at equilibrium
- 257. Which of the following statements is/are correct?
 - a) A buffer solution contains a weak acid and its conjugate base
 - b) A buffer solution shows little change in pH on the addition of a small amount of acid or base
 - c) A buffer solution can be prepared by mixing a solution of ammonium acetate and acetic acid
 - d) The addition of solid potassium cyanide to water increases the pH of water
- 258. Which of the following statements is/are correct?
 - a) Arrhenius acids are also Bronsted acids but all Arrhenius bases are not Bronsted bases
 - b) All Bronsted bases are also Lewis bases
 - c) All Bronsted acids are also Lewis acids
 - d) A strong acid has a weak conjugate base but a strong base has a strong conjugate acid
- 259. The reaction which proceeds in the backward direction is
 - a) $\operatorname{Fe}_3O_4 + 6\operatorname{HCl} = 2\operatorname{FeCl}_3 + 3\operatorname{H}_2O$ b) $\operatorname{NH}_3 + \operatorname{H}_2O + \operatorname{NaCl} = \operatorname{NH}_4\operatorname{Cl} + \operatorname{NaOH}$
 - c) $SnCl_4 + Hg_2Cl_2 = SnCl_2 + 2HgCl_2$
- d) $2CuI + I_2 + 4K^{\oplus} = 2Cu^{2+} + 4KI$
- 260. When two reactants A and B are mixed to give products C and D, the reaction quotient Q, at the initial stages of the reaction
 - a) Is zero
 - c) Is independent of time

- b) Decreases with time
- d) Increases with time
- 261. Which of the following is/are correct?
 - a) $H_2S + H_2O \rightleftharpoons H_3O^+ + HS^-$; K_c is acidity constant of H_2S
 - b) AgCl + 2NH₃ \Rightarrow Ag(NH₃)₂ Cl; K_c is Stability constant for Ag(NH₃)₂Cl

- b) At pH = 5.47, solution is blue
- d) At pH = 8, solution is 75% blue

c) $H_2 0 \rightleftharpoons H^+ + 0H^-$; K_c is equilibrium constant for dissociation of water

d) $RNH_2 + H_2O \rightleftharpoons RNH_3^+ + OH^-$; K_c is basicity constant for RNH_2

262. For which of the following reactions is $K_p = K_c$?

a)
$$N_2 + O_2 \rightleftharpoons 2NO$$
 b) $C(s) + CO_2 \rightleftharpoons 2CO$ c) $\begin{array}{c} CO + H_2O(v) \rightleftharpoons CO_2 \\ + H_2 \end{array}$ d) $2HI \rightleftharpoons H_2 + I_2$

263. For given two equilibria attained in a container which arc correct if degree of dissociation of A and A' are α and α'

$$\begin{aligned} A(s) &\rightleftharpoons 2B(g) + C(g); \ K_{p_1} = 8 \times 10^{-2} \\ A'(s) &\rightleftharpoons 2B(g) + D(g); \ K_{p_2} = 2 \times 10^{-2} \\ a) \frac{K_{p_1}}{K_{p_2}} &= \left[\frac{(3\alpha' + 2\alpha)}{(3\alpha + 2\alpha')}\right]^3 \times \frac{\alpha}{\alpha'} \\ b) \ P'_C/P'_D = 4 \\ c) \ P'_B &= 2P'_C + 2P'_D \\ d) \ \alpha > \alpha' \end{aligned}$$

264. A buffer solution can be prepared from a mixture of:

a) CH_3COOH and CH_3COONa in water

b) CH₃COONa and HCl in water

c) NH₃ and NH₄Cl in water

d) NH₃ and NaOH in water

265. How will the lowering of temperature affect the chemical equilibrium in the system

 $2NO + O_2 \rightleftharpoons 2NO_2, \Delta H < 0$

a) Relative concentration of products and reactants does not change

b) Relative concentration of products and reactants change

c) Equilibrium is shifted to the left

d) Equilibrium is shifted to the right

266. Which of the following do not change the value of *K* for a reaction?

- a) Addition of catalyst b) Increase in temperature
- c) Increase in pressure d) Removal of one of the products

267. The relationship between K_p and K_c is correctly shown as :

a)
$$K_c = K_p (RT)^{\Delta n}$$

b)
$$K_P = K_c (RT)^{-\Delta n}$$

c)
$$K_p = K_c (RT)^{\Delta n}$$

d)
$$K_c = K_p (RT)^{-\Delta n}$$

268. For the reaction

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

at a given temperature, the equilibrium amount of $CO_2(g)$ can be increased by

a) Adding a suitable catalyst

b) Adding an inert gas

c) Decreasing the volume of the container

- d) Increasing the amount of CO(g)
- 269. pH of following solution is not affected by dilution

a) $0.01 \text{ M CH}_3\text{COONH}_4$ b) $0.01 \text{ M NaH}_2\text{PO}_4$ c) 0.01 M NaCl d) 0.01 M NaHCO_3

- 270. When $NaNO_3$ is heated in a closed vessel oxygen is liberated and $NaNO_2$ is left behind. At equilibrium, which are correct
 - a) Addition of NaNO₂ favours reverse reaction
 - b) Addition of NaNO₃ favours forward reaction
 - c) Increasing temperature favours forward reaction
 - d) Increasing pressure favours reverse reaction
- 271. Which of the following is/are correct order(s) for acidic strength?

a) HI > HBr > HCl > HF b) HOF > HOCl > HOBr > HOI c) BF₃ < BCl₃ < BBr₃ d) $CH_4 > C_2H_6 > C_2H_2$ > H₂O 272. A solution is found to contain $[Cl^{\ominus}] = 1.5 \times 10^{-1} \text{ M}; [Br^{\ominus}] = 5.0 \times 10^{-4} \text{ M}; [CrO_4^{2-}] = 1.9 \times 10^{-2} \text{ M}$ A solution of AgNO₃ (100% dissociated) is added to the above solution drop by drop. Which silver salt will precipitate first? Given: $K_{sp}(AgCl) = 1.5 \times 10^{-10}$, $K_{sp}(AgBr)$ $= 5.0 \times 10^{-11}$, $K_{sp}(Ag_2CrO_4) = 1.9 \times 10^{-12}$ a) AgCl b) AgBr c) Ag_2CrO_4 d) AgCl and AgBr togethers 273. 10 mL of N/20 NaOH solution is mixed with 20 mL of N/20 HCl solution. The resulting solution will: a) Turn phenolphthalein solution pink b) Turn blue litmus red c) Turn methyl orange red d) $[H^+] > [OH^-]$ 274. The incorrect statement(s) is/are: a) CH₃COOH is a weak acid b) NH₄Cl gives an alkaline solution in water c) CH₃COONa gives an acidic solution in water d) NH₄OH is a strong base 275. The pressure *P* and volume *V* of an ideal gas both increase in a process : a) Such a process is not possible b) The work done by the system is positive c) The temperature of the system must increase d) Heat supplied to gas is equal to the change in internal energy 276. Which of the following statement(s) is/are correct? a) Weak electrolytes are 100% dissociated at infinite dilution b) $C_2H_5^-$ is conjugate base of C_2H_6 c) Boric acid although an acid but it does not donate a proton in water d) Hydration energy is maximum for H⁺ ions 277. Which of the following reactions is/are irreversible? a) $2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$ b) $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$ c) $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ d) $\text{KNO}_3(aq) + \text{NaCl}(aq) \rightarrow \text{KCl}(aq) + \text{NaNO}_3(aq)$ 278. Which of the following facts is/are correct? a) $CaOCl_2 - A$ mixed salt b) NaHCO₃—An acidic salt c) MgOHCl— A basic salt d) $K_2[Al_2(SO_4)_4] \cdot 24H_2O - A$ complex salt 279. For the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3 + 21.9$ Kcal, the value of the equilibrium constant will not be affected when: a) The volume of the reaction vessel is changed b) The total pressure of the system varies c) The temperature of the system is changed d) The initial concentrations of nitrogen and hydrogen are changed 280. The pH values of aqueous solutions of which of the following compounds does not change on dilution? c) HCOONa a) PhCOONH₄ b) NH₄CN d) NH₄Cl 281. Which of the following statements is/are correct in the context of buffer mixtures?

- a) It contains a weak acid and its conjugate base
- b) It contains a weak base and its conjugate acid

c) The pH of the buffer solution does not change much on the addition of a small amount of acid or base d) The pH of acidic buffer mixture is less than 7

- 282. For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the equilibrium can be shifted in favour of product by
 - a) Increasing the $[H_2]$ b) Increasing the pressure c) Increasing the [I₂]
 - d) By using the catalyst
- 283. In which of the following equilibrium reactions, would the equilibrium shift to the left on increasing the pressure?

b) $H_2 + I_2 \rightleftharpoons 2HI$ c) $2O_3(g) \rightleftharpoons 3O_2$ d) $N_2O_4(g) \rightleftharpoons 2NO_2$ a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$

284. The equilibrium constant of the reactions; $SO_2 + (1/2)O_2 \rightleftharpoons SO_3$ and $2SO_2 + O_2 \rightleftharpoons 2SO_3$ are K_1 and K_2 respectively. The relationship between K_1 and K_2 is/are :

a)
$$K_1 = K_2$$
 b) $K_2 = K_1^2$ c) $K_1 = \sqrt{K_2}$ d) $K_2 = \sqrt{K_1}$

285. A solution is prepared by dissolving 1.5 g of a monoacidic base into 1.5 kg of water at 300 K, which showed a depression in freezing point by 0.165°C. When 0.496 g of the same base titrated, after dissolution, requires 40 mL of semimolar H_2SO_4 solution. If K_f of water is 1.86 K kg mol⁻¹, then select the correct statements (s) out of the following (assuming molarity = molality):

a) The pH of the solution of weak base is 12.9

- b) The ionization constant of the base is 8×10^{-3}
- c) The osmotic pressure of the aqueous solution of base is 21.67 atm
- d) The base is 10% ionized in aqueous solution
- 286. Which of the following statements is/are incorrect in respect of strong acid/strong base titrations?
 - a) Phenolphthalein is used as an indicator
 - b) Methyl orange is used as an indicator
 - c) Methyl red has $pK_a = 6$

d) The pH range for litmus colour change is 3.0 - 4.5. Therefore, it can be used as an indicator

287. The following reaction attains equilibrium at high temperature

 $N_2(g) + 2H_2O(g) + heat \rightleftharpoons 2NO(g) + 2H_2(g)$

The yield of NO is affected by

- a) Compressing of reaction mixture
- b) Increasing the nitrogen concentration

c) Decreasing the hydrogen concentration

- d) None of the above
- 288. An acid-base indicator ($K_a = 3.0 \times 10^{-5}$) has acid form red and basic form blue. Which is/are correct statement(s)?
 - a) 75% red form will exist at pH = 4.05
 - b) 75% blue form will exist at pH = 5.0
 - c) Indicator will show a change in colour at pH = 4.53
 - d) Indicator will show a change in colour at pH = 5.47

289. Aqueous solution of HNO₃, KOH, CH₃COOH, and CH₃COONa of identical concentrations are provided. The pair(s) of solutions which form a buffer upon mixing is (are):

- a) HNO₃ and CH₃COOH
- b) KOH and CH₃COONa
- c) HNO₃ and CH₃COONa
- d) CH₃COOH and CH₃COONa
- 290. In H₃PO₄ which of the following is true?

a) $K_a = K_{a1} \times K_{a2} \times K_{a3}$ b) $K_{a1} < K_{a2} < K_{a3}$ c) $K_{a1} > K_{a2} > K_{a3}$ d) $K_{a1} = K_{a2} = K_{a3}$ 291. The equilibrium constant for the reaction, $A(g) + B(g) \rightleftharpoons 2C(g)$ is 3×10^{-4} at 500K. In the presence of a catalyst the equilibrium is attained 10 times faster. The equilibrium constant in the presence of a catalyst at 500 K has the value :

- a) 3 $\times 10^{-4}$
- b) 30 $\times 10^{-4}$
- c) 3×10^{-3}
- d) 0.3 $\times 10^{-3}$

292. Excess of $Ag_2SO_4(s)$, $BaSO_4(s)$, and $Ba_3(PO_4)_2(s)$ are simultaneously in equilibrium with distilled water. Which of the following is (are) true? Assume no hydrolysis of dissolved ions

a) $[Ag^{\oplus}] + 2[Ba^{2+}] = 2[SO_4^{2-}] + 3[PO_4^{3-}]$

- b) $2[Ag^{\oplus}] + 4[Ba^{2+}] = 2[SO_4^{2-}] + 2[PO_4^{3-}]$
- c) $2[Ag^{\oplus}] + 3[Ba^{2+}] = 2[SO_4^{2}] + 2[PO_4^{3-}]$

d) $[Ag^{\oplus}] + [Ba^{2+}] = [SO_4^{2-}] + [PO_4^{3-}]$

293. The pH of which solution(s) do/does not change with dilution?

- a) 1M CH₃COONH₄
- b) $CH_3COONa + CH_3COOH$ (Both 1 *M* each)
- c) CH₃COOH + CH₃COONH₄ (Both 1 *M* each)
- d) 1 M CH₃COONa

294. For which of the following reactions is $K_p = K_c$?

- a) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- b) $2N_2O_4(g) \rightleftharpoons 2NO_2(g)$
- c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- d) $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$

295. Consider the equilibrium equation; $CH_3COOH + HF \rightleftharpoons CH_3COOH_2^+ + F^-$

Which of the following statements is/are incorrect?

- a) F^- is the conjugate base of HF
- b) F^- is the conjugate base of CH_3COOH
- c) $CH_3COOH_2^+$ is the conjugate acid of CH_3COOH
- d) CH_3COOH is the conjugate acid of $CH_3COOH_2^+$

296. Which of the following statements is/are correct regarding Lewis acids?

- a) Molecules having a central atom with an incomplete octer in it can act as Lewis acids
- b) Molecules in which atoms of dissimilar electronegativity are joined by multiple bonds can act as Lewis acids
- c) SiF₄, PF₅ and FeCl₃ are Lewis acids
- d) Neutral species having at least one pair of electrons can act Lewis acids
- 297. If salt of weak acid or base is added to a solution of its acid or base respectively, the:
 - a) Dissociation of acid or base is diminished
 - b) The pH of the solution in case of acid increases and in case of base decreases
 - c) Mixing of two leads for common ion effect
 - d) None of the above

298. At constant temperature, the equilibrium constant (K_p) for the decomposition reaction

 $N_2O_4 \rightleftharpoons 2NO_2$ is expressed by

 $K_p = (4x^2P)/(1-x^2)$, where P = pressure and x = extent of decomposition. Which one of the following statements is false?

a) K_p increases with increase of P

- b) K_p increases with increases of x
- c) K_p increases with decrease of x
- d) K_p remains constant with change in P and x

299. Which of the following is (are) correct for buffer solution?

- a) Acidic buffer will be effective within in the pH range ($pK_a \pm 1$)
- b) Basic buffer will be effective within the pH range $(pK_w pK_b \pm 1)$

c) $H_3PO_4 + NaH_2PO_4$ is not a buffer solution

d) Buffers behave most effectively when the [Salt]/[Acid] ratio equal to 1

300. The oxy-acid of anhydride P_2O_5 :

a) H_3PO_4 b) H_3PO_3 c) HPO_3 d) None of these

301. Which is/are general property of acids?a) They turn litmus red

- b) They react with alkalies
- c) They burn the skin
- d) They contain H atom replaceable with metal

302. Which of the following will favour the formation of NH_3 by Haber's process?

a) Increase in temperature

b) Increase in pressure

c) Addition of catalyst

d) Addition of promoter

303. For a series of indicators, the colours and pH range over which colour change takes place are as follows

Indicator	Colour change over pH range
U	Yellow to blue pH 0.0 to 1.6
V	Red to yellow pH 2.8 to 4.1
W	Red to yellow pH 4.2 to 5.8
X	Yellow to blue pH 6.0 to 7.7
Y	Colourless to red pH 8.2 to
	10.0

Which of the following statements is correct?

Indicator V could be used to find the equivalence point for 0.01 M acetic acid and 0.1 M ammonium

- a) hydroxide (ammonia solution) titration
- b) Indicator Y colud be used to distinguish between 0.1 M HCl and 0.001 M NaOH solutions in water

c) Indicator *X* could be used to distinguish between solution of ammonium chloride and sodium acetate

d) Indicator W could be suitable for use in determining the concentration of acetic acid in vinegar by base titration

304. Which of the following is/are correct order(s) for acidic strength?

- a) $Fe^{2+} < Fe^{3+}$
- b) $K^+ < Na^+ < Li^+$
- c) $Li^+ < Be^{2+} < B^{3+}$
- d) $CH_3OH > C_2H_5OH > C_3H_7OH$
- 305. Active mass is given as :
 - a) $a = f \cdot C_M$

b)
$$a = r.C_m$$

- c) Amount of a substance per unit volume
- d) Number of mole per 100 litre

306. Le-Chatelier's principle is :

- a) If a system in equilibrium is subjected to a change of concentration, pressure or temperature, the equilibrium shifts in the direction that tends to a null the effect of change
- b) Applicable to all types of dynamic equilibrium
- c) Given to study the effect of state variables on the equilibrium
- d) None of the above

307. Which of the following equilibrium reactions would be affected by change in pressure?

a) $N_2 + O_2 \rightleftharpoons 2NO$

b)
$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

c)
$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

d)
$$H_2 + Cl_2 \rightleftharpoons 2HCl$$

308. Consider the following equilibrium in a closed container:

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements, holds false regarding the equilibrium constant (K_p) and degree of dissociation (α)?

- a) neither K_p nor α changes
- b) Both K_p and α change

c) K_p changes but α does not change

d) K_p does not change but α changes

309. A chemical reaction, $A \rightarrow B$ is said to be in equilibrium when :

- a) 50% of the conversion has taken place
- b) Only 10% conversion of *A* to *B* has taken place
- c) The rate of transformation of *A* to *B* is just equal to the rate of transformation of *B* to *A* in the system
- d) There is no change in the concentration of either *A* or *B*
- 310. Which of the following statements about a weak acid strong base titration is/are correct?
 - a) The pH after the equivalence point of the weak acid strong base titration is determined by using the K_b expression for the conjugate base
 - b) A buffer solution of weak acid and its conjugate base is formed before the equivalence is reached
 - c) The pH at the equivalence point of a weak monoprotic acid strong base titration is equal to the pH at the equivalence point of a strong acid-strong base titration
 - d) The increases in pH in the region near the equivalence point of a weak acid strong base titration is greater than the pH change in the same region of a strong acid strong base titration
- 311. In which of the following reactions would the yield of the products be increased by the application of high pressure?
 - a) $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$
 - b) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - c) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - d) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
- 312. Which is/are correct?
 - a) 2.303 log $K = -\Delta H^{\Theta}/RT + \Delta S^{\Theta}/R$

b)
$$\Delta G^{\ominus} = -2.303 RT \log K$$

c) -2.303 log
$$K = -\Delta H^{\ominus}/RT^2 + \Delta S^{\ominus}/R$$

d) 2.303 log $K = (1/RT)(\Delta H^{\ominus} + \Delta S^{\ominus})$

313. The equilibrium constant(s) K_p for the reaction, $2A(g) + B(g) \rightleftharpoons 3C + D$ is/are given as (at equilibrium) :

a)
$$\log_e \frac{K_{p_2}}{K_{p_1}} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

b) $K_p = \frac{(P_C)^3 \times (P_D)}{(P_A)^2 \times (P_B)}$
c) $K_p = \frac{(\text{mole of } C)^3 \times (\text{mole of } D)}{(\text{mole of } A)^2 (\text{mole of } B)} \times \left[\frac{P}{\Sigma \text{ mole}}\right]^1$
d) $\left[\frac{d}{dT} \log_e K\right] = -\frac{\Delta H}{RT^2}$

314. Which of the following is/are correct?

- a) SiCl₄-Lewis acid b) CN⁻-Lewis base
- 315. Choose the correct statement:
 - a) pH of acidic buffer solution decreases if more salt is added
 - b) pH of acidic solution increases if more salt is added
 - c) pH of basic buffer decreases if more salt is added
 - d) pH of basic buffer increases if more salt is added

316. Which of the following is/are correct order(s) for basic strength?

a) NaOH > NH_4OH > H_2O

b) $NH_3 > N_2H_4 > NH_2OH$

c)
$$NH_3 > H_2O > HF$$

- d) $OH^- < C_2H^- < NH_2^- < C_2H_3^- < C_2H_5^-$
- 317. Which of the following is (are) correct when 0.1 L of 0.0015 M MgCl₂ and 0.1 L of 0.025 M NaF are mixed together?

 $(K_{\rm sp} \text{ of } MgF_2 = 3.7 \times 10^{-8})$

- a) MgF_2 remains in solution
- c) MgCl₂ precipitates out
- 318. For the chemical reaction

b) MgF₂ precipitates out

c) BF₃-Lewis acid

d) Cl^{\ominus} ions remain in solution

d) CH₃OH-Bronsted acid

 $3X(g) + Y(g) \rightleftharpoons X_3Y(g)$ the amount of X_3Y at equilibrium is not affected by a) Temperature and pressure b) Temperature only c) Pressure only d) Temperature, pressure, and catalyst 319. For the gas phase reaction, $2SO_2 + O_2 \Rightarrow 2SO_3$; $\Delta H = -x$, carried out in a vessel, the equilibrium concentration of SO₂ can be increased by : a) Increasing the b) Decreasing the c) Removing some oxygend) None of the above pressure temperature 320. 0.1 mol of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mol of HCl and diluted to 1 L. Which statement is correct? a) The concentration of H^{\oplus} ion is 8 × 10⁻¹¹ M b) The concentration of ${\rm H}^\oplus$ ion is $8\times 10^{-5}~{\rm M}$ c) The pH of solution is 9.8 d) The pOH of solution is 10.2 321. $CHCl_3$ does not give white ppt. with AgNO₃ because it: a) Is a covalent compound b) Does not give Cl⁻ ions in solution c) Is not dissociated in water d) None of the above 322. 2 mole each of A and B were taken in a container and the following reaction took place, $2A(g) + B(g) \rightleftharpoons$ 2C(g) + 2D(g) when the system attained equilibrium : c) [A] = [B]d) [D] = [C]b) [A] < [B]a) [A] > [B]323. When NH₄Cl is added to a solution of NH₄OH, the: a) Concentration of OH⁻ decreases b) Dissociation of NH₄OH decreases c) Concentration of NH⁺₄ increases d) Concentration of OH⁻ increases 324. Which statements is/are correct? a) 0.1 M NH₃ solution will precipitate $Fe(OH)_2$ from a 0.1 M solution Fe^{2+} b) 0.1 M NH $_3$ solution will not precipitate Mg(OH) $_2$ from a solution which is 0.2 M in $^{
m NH}_4$ and 0.1 M in Mg²⁺ c) 0.1 M NH₃ solution will not precipitate AgOH from a solution which is 0.01 M in Ag $^{\oplus}$ d) Will precipitate is/are correct? 325. Which statement(s) is/are correct? a) pH of $10^{-6}M$ NaOH is 8 b) pH of 10⁻⁶*M* HCl is 6.98 c) Aqueous solution of FeCl₃ is acidic d) If $[Ba^{2+}][F^{-}]^2 > K_{sp}$; BaF₂ will be precipitated 326. van't Hoff equation is b) d/dT (ln K) = $+\Delta H/RT^2$ a) $(d/dT) \ln K = -\Delta H/RT^2$ d) K = Ae^{$-\Delta H/RT$} c) $(d/dT)\ln K = -\Delta H/RT$ 327. The theory of electrolytic dissociation suggests that: a) The electrolytes on dissolution in water split up in two types of charged particles, *i.e.*, cation and anions b) The dissociation being a reversible process in nature c) The properties of electrolytes in solutions are the properties of ions furnished by them d) None of the above 328. In a reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) + x kJ$ The ideal conditions for the dissociation of PCl₅ is a) More [PCl₅], low pressure b) More [PCl₅], low temperature c) More [PCl₅], high pressure d) More [PCl₅], high temperature 329. NH₃ is taken in a container at a certain temperature. If its dissociation constant (K_p) has an appreciable

value, at equilibrium :

- a) The concentration of ammonia changes with pressure
- b) The concentration of N_2 is less than that of H_2
- c) $\boldsymbol{\alpha}$ does not change with pressure
- d) K_p does not change with pressure

330. What is general criteria of choosing a suitable indicator for a given titration?

- a) The indicator should have a broad pH range
- b) pH at the end point of titration should be close to neutral point of indicator
- c) The indicator should have neutral point at pH = 7
- d) The indicator must show a sharp colour change near the equivalence point of titration point
- 331. Which of the following solution will have pH = 13?
 - a) 2 g NaOH in 500 mL solution b) 100 mL solution of 0.05 M Ca(OH)₂
 - c) 100 mL solution of 0.1 N Ca(OH)₂ d) 4 g NaOH in 500 mL solution

332. A solution containing a mixture of 0.05 M NaCl and 0.05 M Nal is taken. (K_{sp} of AgCl = 10^{-10} and K_{sp} of

AgI = 4×10^{-16}). When AgNO₃ is added to such a solution:

- a) The concentration of Ag $^\oplus$ required to precipitate Cl $^{\ominus}$ is 2 × 10⁻⁹ mol L⁻¹
- b) The concentration of Ag $^{\oplus}$ required to precipitate I $^{\ominus}$ is 8 × 10⁻¹⁵ mol L⁻¹
- c) AgCl and AgI will be precipitate together
- d) First AgI will be precipitated
- 333. Which of the following reactions at equilibrium in the gaseous phase would be affected by an increase in pressure?

a)
$$N_2 O_4 \rightleftharpoons 2NO_2$$
 b) $CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$ c) $N_2 + O_2 \rightleftharpoons 2NO$ d) $2NO_2 \rightleftharpoons 2NO + O_2$

- 334. The decomposition of N₂O₄ to NO₂ was carried out in choloroform at 280°C. At equilibrium, 0.2 mole of N₂O₄ and 2 × 10⁻³ mole of NO₂ were present in 2L of solution. The equilibrium constant(s) for the reaction N₂O₄ \rightleftharpoons 2NO₂ is/are :
 - a) 0.01 \times 10⁻³
 - b) 2.0 \times 10⁻³
 - c) 2.0 \times 10⁻⁵
 - d) 1.0 \times 10⁻⁵
- 335. Which is/are correct for a reversible reaction?
 - a) The reaction is never completed
 - b) The reactants are present in the initial stage but after that reactants and products are always present in the reaction mixture.
 - c) At equilibrium only products are present
 - d) When the gaseous phase reaction is carried out in closed space, it attains equilibrium state after suitable time
- 336. For the gas phase reaction

$$C_2H_4 + H_2 \rightleftharpoons C_2H_6 \ (\Delta H = -32.7 \text{ kcal})$$

carried out in a vessel, the equilibrium concentration of C₂H₄ can be increased by

- a) Increasing the temperature b) Decreasing the pressure
- c) Removing some H₂

d) Adding some C_2H_6

337. For the equilibrium at 298 K; $N_2O_4(g) \rightleftharpoons 2NO_2(g)$;

 $G_{N_2O_4}^{\ominus} = 100 \text{ kJ mol}^{-1}$ and $G_{NO_2}^{\ominus} = 50 \text{ kJ mol}^{-1}$. If 5 mol of N_2O_4 and 2 moles of NO_2 are taken initially in one litre container than which statement are correct

- a) Reaction proceeds in forward direction
- b) $K_c = 1$
- c) $\Delta G = -0.55 \text{ KJ}, \Delta G^{\ominus} = 0$
- d) At equilibrium $[N_2O_4] = 4.84$ M and $[NO_2] = 0.212$ M
- 338. H₂O acts as Bronsted acid in the following:

a) $H_2O + H_2O = H_3O^+ + OH^-$

b) $NH_3 + H_2O = NH_4^+ + OH^-$

c) $CaO + H_2O = Ca(OH)_2$

d) $Cu^{2+} + 4H_2O = Cu(H_2O)_4^{2+}$

339. A buffer solution can be prepared by mixing solutions of:

a) Sodium chloride and sodium hydroxide

b) Ammonium hydroxide and ammonium chloride

c) Formic acid and sodium formate

d) Boric acid and borax

340. Aqueous solutions of HNO₃, CH₃COOH, and CH₃COOK of identical concentrations are given. The pair(s) of the solution which may form a buffer upon mixing is(are):

b) HNO_3 and CH_3COOK d) $HNO_3 + CH_3COOH$

- a) NaOH and CH₃COOH
- c) CH₃COOH and CH₃COOK

341. Which is/are not acidic salt(s)?

a) NaHS

- b) NaHF₂
- c) Na₂HPO₃
- d) NaH_2PO_2

342. Nitrogen combines with oxygen to form nitric oxide,

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \Delta H = 90 \text{kJ mol}^{-1}$

The decomposition of NO is not favoured by:

a) Decrease of temperature

- b) Increase of temperature
- c) Increase in the concentration of nitric oxide
- d) Decrease of pressure

343. Which of the following is/are correct order(s) in terms of increasing pH?

a) NaOH > CH_3 COONa > $NaCl > NH_4$ Cl

- b) $NH_4Cl > NaCl > CH_3COONa > NaOH$
- c) NaOH > $NaHCO_3 > KCl > (NH_4)_2SO_4$
- d) $CH_3COOH > CH_3COONa > NH_4Cl$

344. The equilibrium constant for the reaction, $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ is:

- a) $K_c = [CO_2]$
- b) $K_c = [CaO][CO_2]/[CaCO_3]$
- c) $K_c = [CaCO_3]/[CaO][CO_2]$
- d) $K_p = P_{CO_2}$
- 345. Which of the following salt solution has pH < 7?

a) NH₄F

b)
$$Cr(NO_3)_3$$

c)
$$[(CH_3)_3 \overset{\oplus}{N}H]Cl^{\Theta}$$

d) CaI_2

346. A buffer solution can be prepared from a mixture of

- a) Sodium acetate and acetic acid in water
- b) Sodium acetate and hydrochloric acid in water
- c) Ammonia and ammonium chloride in water
- d) Ammonia and sodium hydroxide in water
- 347. Which statement(s) about solubility product is/are correct?
 - a) It is the product of ionic concentrations of a soluble salt in its saturated solution at a certain temperature
 - b) If may be used to calculate solubility of substance
 - c) If the product of ionic concentration of the ions present in a solution exceeds its solubility product, the compound is precipitated out
 - d) None of the above
- 348. Which of the following represents hydrolysis?

a)
$$\overset{\oplus}{\mathrm{NH}}_4 + 2\mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{NH}_4\mathrm{OH} + \mathrm{H}_3\mathrm{O}^{\oplus}$$

c) $HCO_3^{\Theta} + H_2O \Longrightarrow H_2CO_3 + \overset{\Theta}{OH}$

b)
$$\overset{\oplus}{\mathrm{NH}}_4 + \mathrm{H}_2\mathrm{O} \iff \mathrm{NH}_3 + \mathrm{H}_3\mathrm{O}^{\oplus}$$

d) $HCO_3^{\ominus} + H_2O \rightleftharpoons CO_3^{2-} + H_3O^{\oplus}$

349. Which of the following statement(s) is/are correct?

- a) The pH of $1.0 \times 10^{-8}M$ solution of HCl is 8
- b) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- c) Autoprotolysis constant of water increases with temperature
- d) When a solution of a weak monoprotic acid is titrated against a strong base, at half-neutralization point $pH = (1/2) pK_a$

350. The degree of dissociation ' α ' of PCl₅ is/are given by :

a)
$$\sqrt{\frac{K_p}{K_p + p}}$$

b) $\sqrt{K_c.V(1 - a)}$
c) $\frac{\text{Exp. mol. wt. - Cal. mol. wt.}}{Cal. mol. wt.}$
d) None of the above
351. $\text{H}_3\text{PO}_4 \rightleftharpoons \text{H}^{\oplus} + \text{H}_2\text{PO}_4^{\oplus}$; K_a ;:
 $\text{H}_2\text{PO}_4^{\ominus} \rightleftharpoons \text{H}^{\oplus} + \text{H}_2\text{PO}_4^{\oplus}$; K_a ;:
 $\text{HPO}_4^{2-} \rightleftharpoons \text{H}^{\oplus} + \text{PO}_4^{3-}$; K_a ;:
 $\text{Mark out the incorrect statements:}$
a) $K_{a_1} > K_{a_2} > K_{a_3}$
b) $\text{pH}(\text{H}_2\text{PO}_4^{\ominus}) = \frac{pK_{a_1} + pK_{a_2}}{2}$
c) Both H_3PO_4 and $\text{H}_2\text{PO}_4^{\ominus}$ are more acidic than $\text{HPO}_4^{2^-}$
d) Only $\text{HPO}_4^{2^-}$ is amphiprotic anion in the solution
352. Select the species which can act as an acid and base:
a) $\text{SO}_4^2 - \text{ b) } \text{HS}^-$ c) HCO_3^- d) HSO_4^-
353. A base is a substance which:
a) Donates a lone pair of electron (Lewis concept)
b) Accepts a proton
c) Acts as a base only in presence of a acid
d) None of the above
354. Which of the following is/are correct order(s) for acidic strength?
a) $\text{H}_3\text{PO}_3 > \text{H}_3\text{PO}_4$
b) $\text{HNO}_2 > H/NO_3$
c) $\text{H}_2\text{O}_3 > \text{H}_3\text{PO}_4$
b) $\text{HNO}_2 > H/NO_3$
c) $\text{H}_2\text{O}_3 > \text{H}_3\text{PO}_4$
b) $\text{HN}_2 > HSO_4$
d) $\text{ROH} > \text{H}_2O$
355. For the reaction, $\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g)$, which is the correct representation?
a) $K_p = (p_{CO_2})$ b) $K_p = K_c(RT)$ c) $K_p = (CO_2)/1$ d) None
356. In a reaction $A_2(g) + 4B_2(g) \Rightarrow 2AB_4(g), \Delta H < 0$. The formation of AB_4 is not favoured by
a) Low temperature and high pressure
c) Low temperature and high pressure
d) High temperature and high pressure
357. Which of the following reactions will not be affected by increasing the pressure?
a) $\text{PCI}_5(g) \approx \text{PCI}_5(g) + (CI_2(g))$ b) $N_2(g) + O_2(g) \approx 2NO(g)$
c) $(2aCO_3(s) \approx 2aO(s) + CO_2(g)$ b) $N_2(g) + O_2(g) \approx 2NO(g)$
c) $(2aCO_3(s) \approx 2aO(s) + CO_2(g)$ b) $N_2(g) + O_2(g) \approx 2NO(g)$
358. Unit of equilibrium constant is:
a) (mol L⁻¹)¹⁻ⁿ b) (mol L⁻¹)^{Δn} c) (atm)^{Δn} d) All

359. At the end point, there is a sharp change of colour in the indicator. This happens because the

a) pH a end point changes sharply

- b) Structure of the indicator changes
- c) Colour of indicator is adsorbed by water
- d) Dissociation constant of acids and base differ by 10
- 360. Strong electrolyte(s) is/are those which:
 - a) Do not dissolve readily in water
 - b) Conduct electricity in molten state
 - c) Dissociate completely into ions at all concentrations
 - d) Dissociate into ions at high dilution

a) $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$

361. For which of the following reaction, $K_p \neq K_c$?

b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

c)
$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$
 d) $2N_2O_4(g) \rightleftharpoons 2NO_2(g)$

362. Which of the following statements about reaction quotient, *Q* is/are correct?

a) At time proceeds, Q either decreases or increases

b)
$$Q \geq K_p$$

- c) Q = 1 at equilibrium
- d) $Q = K_p$ at equilibrium

363. Reaction between barium chloride and sodium sulphate goes to completion because :

- a) Barium sulphate is almost insoluble
 - b) The reaction is reversible
- c) The solubility of barium chloride decreases

b) Mg^{2+}

- d) The reaction is irreversible
- 364. Which of the following is/are Lewis acid(s)?

Ċ

d) Ag⁺

365. The contents of equilibrium mixture of each set given below are transferred to another flask having volume twice to the original flask. In which set equilibrium will be affected.

a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$

b) $N_2 + O_2 \rightleftharpoons 2NO$

c)
$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

d)
$$SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$$

366. Which are true for the reaction: $A_2 \rightleftharpoons 2C + D$?

- a) If $\Delta H = 0$; K_p and increases with temperature and dissociation temperature
- b) If $\Delta H = +$ ve, K_p increases with temperature and dissociation of A₂ increases
- c) If $\Delta H = -\text{ve}$; K_p decreases with temperature and dissociation of A₂ decreases

d)
$$K_p = 4\alpha^3 \left[\frac{P}{1+2\alpha}\right]^2$$

367. A strong electrolyte in aqueous solution exhibits:

a) Almost completely dissociated

b) Hydration

- c) Partial dissociation
- d) None of the above

368. Which are correct for the following reaction?

$$\frac{[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_3\operatorname{OH}]^+}{A} + \frac{[\operatorname{Al}(\operatorname{H}_2\operatorname{O})_6]^{3+}}{B} \longrightarrow \frac{[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4]^{2+}}{C} + \frac{[\operatorname{Al}(\operatorname{H}_2\operatorname{O})_5\operatorname{OH}]^{2+}}{D}$$

- a) *A* is base and *B* is acid
- b) *C* is conjugate acid of *A*
- c) *B* is conjugate acid of *D*
- d) *B* is conjugate base of *D*
- 369. Which of the following acids form more than one kind of salts?

a) H ₃ BO ₃	b) HF	c) HI	d) H ₃ PO ₂
-----------------------------------	-------	-------	-----------------------------------

370. Which of the following is/are acidic salt(s)? a) NaHSO₄ b) NaHS

- a) Sodium acetate and acetic acid in water
 - b) Sodium acetate and HCl in water
 - c) Ammonia and ammonium chloride in water
 - d) Ammonia and sodium hydroxide in water
- 372. Which of the following statements is/are wrong?
 - a) At equilibrium concentrations of reactants and products become constant because the reaction stops

c) NaHSO₃

- b) Addition of catalyst speeds up the forward reaction more than the backward reaction
- c) Equilibrium constant of an exothermic reaction decreases with increase of temperature
- d) K_p is always greater than K_c
- 373. When HCl is passed through a saturated solution of common salt, pure NaCl is precipitated because:
 - a) HCl is higly soluble in water
 - b) The ionic product $[Na^{\oplus}][Cl^{\ominus}]$ exceed its solubility product (K_{sp})
 - c) The K_{sp} of NaCl is lowered by the presence of Cl^{\ominus} ions
 - d) HCl causes precipitation
- 374. Which of the following statements is/are correct?
 - a) NH₄OH is a weak base
 - b) NH₄Cl forms an acidic solution in water
 - c) CH₃COOH is a weak acid
 - d) CH₃COONa forms an acidic solution in water
- 375. Which of the following is/are hard acid(s)?
 - a) Ag⁺ b) F⁻

c) Zn²⁺

```
d) NO_{3}^{-}
```

d) Na₂HPO₃

376. When weak base solution (50 mL of 0.1 N NH₄OH) is titrated with strong acid (0.1 N HCl), the pH of the solution initially decreases fast and then decreases slowly till near the equivalence point (as shown in figure). Which of the following is/are correct?

The slow decrease of pH is due to the formation of an acidic buffer solution after the addition of some a) HCI

- b) The slope of shown graph will be minimum when 25 mL of 0.1 N HCl is added
- c) The slow decrease of pH is due to fast of basic buffer solution

^{d)} The initial fast decrease in pH is due to fast consumption of $\stackrel{
m OH}{
m OH}$ ions by HCl

377. The equilibrium $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is attained at 25°C in a closed container and an inert gas, helium, is introduced. Which of the following statements

is/are correct

a) The concentrations of SO₂, Cl₂, and SO₂Cl₂ change

- b) More chlorine is formed
- c) The concentrations of SO₂ is reduced
- d) All are incorrect

378. Which of the following behave as Bronsted acids as well as Bronsted bases? b) HS⁻ a) H_2O c) H_2SO_4 d) HCO_3^- 379. In the dissociation of 2HI \Rightarrow H₂ + I₂, the degree of dissociation will be affected by the : a) Addition of inert gas b) Addition of either H_2 or I_2 c) Increase of temperature d) Increase of pressure 380. Select the incorrect statements: a) K_p or K_c are dimensionless if pressure or concentrations are expressed in standard state The numerical value of K_p changes with experimental conditions, i.e., P, T, and C at which equilibrium is attained c) Active mass of reactant = concentration of reactant d) Dissolution of NH₃ in water increases with increasing pressure 381. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, which of the following factors will have no effect on the value of equilibrium constant? a) Temperature b) Initial concentration of N₂O₄ c) Pressure of catalyst d) Pressure 382. For the reaction, $2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$ the equilibrium constant is 1.0×10^{-5} . What is the concentration of HCl if the equilibrium concentrations of H₂ and Cl₂ are 1.2 \times 10⁻⁸ M and 1.2 \times 10^{-9} *M* respectively? a) 1.2 \times 10⁻³ M b) $1.2 \times 10^{-7} M$ c) $1.2 \times 10^{-4} M$ d) 1.2 \times 10⁻⁶ M 383. Solubility of NH₃ in water is increased by : a) Increasing pressure b) Decreasing temperature c) Decreasing pressure d) Adding more water 384. For which reaction(s) given fact(s) is/are correct? a) $\begin{array}{l} H_2S + H_2O \rightleftharpoons H_3O^+ + HS^- \\ K_c \end{array}$ is ionization constant of acid b) $\frac{H_2O + H_2O}{K_c} \rightleftharpoons H_3O^+ + OH^ K_c$ is ionic product of water $CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^$ c) K_c is ionization constant of base $Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$ d) K_c is stability constant of complex 385. Consider the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$; $\Delta H = -17.7$ kcal The concentration of NH₃ will increase by : a) Decreasing the temperature of the system b) Increasing the pressure of the system c) Decreasing the volume of the reaction vessel d) Increasing the temperature of the system 386. A 1 L solution of pH = 1, is diluted up to 10 times. What volume of a solution with pH = 2 is to be added in diluted solution so that pH does not change? a) 10 L b) 100 L c) 1 L d) 25 L 387. To which of the solution, addition of water would not effect the pH? a) 100 mL of 0.2 M CH₃COOH + 100 mL of 0.1 M NaOH b) 100 mL of 0.2 M CH₃COOH + 100 mL of 0.2 M NaOH

- c) 200 mL of 0.2 M $CH_3COOH + 100$ mL of 0.1 M NaOH
- d) 100 mL of 0.2 M CH₃COOH + 200 mL of 0.2 M NaOH
- 388. Which of the following statements is/are correct?
 - a) The pH of 1.0×10^{-8} M solution of HCl is 8
 - b) The conjugate base of $H_2PO_4^{\ominus}$ is HPO_4^{2-}
 - c) The autoprotolysis constant of water increases with temperature
 - d) When a solution of a weak monoprotic acid is treated against a strong base, at half-neutralisation point, $pH = (1/2)pK_a$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 389 to 388. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

389

	Statement 1:	The dissociation constants of polyprotic acid are in the order $K_1 > K_2 > K_3$
	Statement 2:	The [H ⁺] furnished in first step of dissociation exerts common ion effect to reduce the second dissociation so on
390		
	Statement 1:	When a catalyst is added to a reaction mixture in equilibrium the amount of the products increases
	Statement 2:	The forward reaction becomes faster on adding the catalyst
391		
	Statement 1:	When a soda water bottle is opened, the gas fizzes out.
	Statement 2:	Sealed soda water bottle contains CO_2 gas dissolved at high pressure. On releasing seal, the pressure decreases and CO_2 comes out.
392		
	Statement 1:	In the titration of Na_2CO_3 with HCl using methyl orange indicator, the volume of the acid required at the equivalence point is twice that of the acid required using phenolphthalein as indicator
	Statement 2:	Two moles of HCl are required for the complete neutralization of one mole of Na_2CO_3
393		
	Statement 1:	An aqueous solution of ammonium acetate acts as a buffer solution
204	Statement 2:	A buffer solution reacts with small quantities of hydrogen or hydroxyl ions and keeps the pH almost same
いアチ		

Statement 1: The equilibrium constant may show higher or lower values with increase in temperature.

Statement 2: The change depends on the heat of reaction at equilibrium.

395

Statement 1:	The equil	ibrium	cons	tant K _c	or l	K _p has	the unit	t (mol litre	$^{-1})^{\Delta n}$	or $(atm)^{\Delta}$	ⁿ respectiv	zely.
	(T)			C								

Statement 2: The numerical value of $K_C = K_p$ at $\Delta n = 0$.

396

Statement 1:	$\rm H_{3}BO_{3}$ in water behaves as monobasic acid
Statement 2:	The ionisation reaction is: $0H_3BO_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$

397

Statement 1:	Greater the value of K , more is the fraction of initial concentration of reactants
	converted to products at equilibrium
Statement 2:	The value of <i>K</i> depends on the initial concentration of reactants

398

Statement 1:	In dilute benzene solutions, equimolar addition of R ₃ N and HCl produce a substance with
	a dipole moment. In the same solvent, equimolar addition of R ₃ N and SO ₃ produce a
	substance having an almost identical dipole moment
Statement 2:	Both HCl and SO ₃ are Lewis acids and can react with the amine base to form polar

substances which undergo ionic dissociation in a solvent sufficiently more polar than benzene

399

- **Statement 1:** Snow does not melt easily at mountains.
- Statement 2: A decrease in pressure leads to an increase in freezing point.

400

- Statement 1: Due to common ion effect, the solubility of HgI₂ is expected to be less in an aqueous solution of KI than in water. But HgI₂ dissolves in an aqueous solution of KI of form a clear solution
- **Statement 2:** I^{\ominus} ion is highly polarisable

401

- **Statement 1:** pH value of HCN solution decreases when NaCN is added to it
- **Statement 2:** NaCN provides a common ion CN^{\ominus} to HCN

402

- **Statement 1:** The pH of NH₄OH remains unchanged on addition of NH₄Cl
- **Statement 2:** Addition of NH₄Cl suppresses the dissociation of NH₄OH due to common ion effect

403

	Statement 1:	In water orthoboric acid behaves as a weak monobasic acid
	Statement 2:	In water orthoboric acid behaves as a proton donor
404		
	Statement 1:	H_2SO_4 acts as a basic in the presence of $HClO_4$
	Statement 2:	Perchloric acid is stronger acid than H_2SO_4
405		
	Statement 1:	HNO_3 is stronger acid than HNO_2
	Statement 2:	In HNO ₃ there are two <i>N</i> to O bonds where as in HNO ₂ there is only one
406		
	Statement 1:	Ice
	Statement 2:	Increase of pressure pushes the equilibrium towards the side in which umber of gaseous
407		mole decrease
	Statement 1:	On mixing equal volumes of 1 M HCl and 2 M $\rm CH_3COONa$, an acidic buffer solution is
	Statement 2:	formed The resultant mixture contains CH ₃ COOH and CH ₃ COONa which are parts of acidic buffer
408		
100		
100	Statement 1:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7
100	Statement 1:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 \oplus
100	Statement 1: Statement 2:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of $\stackrel{\textcircled{O}}{NH_4}$ ion decreases ionization of NH ₄ OH, thus $\stackrel{\textcircled{O}}{[OH]}$ decreases and also pH decreases
409	Statement 1: Statement 2:	On addition of NH_4Cl to NH_4OH , pH decreases but remains greater than 7 Addition of $^{\bigoplus}NH_4$ ion decreases ionization of NH_4OH , thus $^{\bigoplus}OH]$ decreases and also pH decreases
409	Statement 1: Statement 2: Statement 1:	On addition of NH₄Cl to NH₄OH, pH decreases but remains greater than 7 Addition of [⊕] NH₄ ion decreases ionization of NH₄OH, thus [⊕] OH] decreases and also pH decreases A catalyst does not influences the values of equilibrium constant
409	Statement 1: Statement 2: Statement 1: Statement 2:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of $\overset{\textcircled{W}}{MH_4}$ ion decreases ionization of NH ₄ OH, thus $\overset{\textcircled{O}}{OH}$ decreases and also pH decreases A catalyst does not influences the values of equilibrium constant Catalyst influences the rate of both forward and backward reactions equally
409	Statement 1: Statement 2: Statement 1: Statement 2:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of [*] ^{NH4} ion decreases ionization of NH ₄ OH, thus ^O ^O H ¹ decreases and also pH decreases A catalyst does not influences the values of equilibrium constant Catalyst influences the rate of both forward and backward reactions equally
409	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of [*]
409 410	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of ${}^{\textcircled{M}}$ H ₄ ion decreases ionization of NH ₄ OH, thus $[{}^{\textcircled{O}}$ H] decreases and also pH decreases A catalyst does not influences the values of equilibrium constant Catalyst influences the rate of both forward and backward reactions equally A certain reaction is catalysed by acids and the catalytic activity of 0.1 M solutions of the acids in water decreases in the order, HCl, HCOOH, and CH ₃ COOH. The same reaction takes place in anhydrous NH ₃ , but the three acids have same catalytic effect in 0,1 M solution The order of catalytic activity in water is the same as the order of acidity. In anhydrous NH ₃ all the three acids are strong
409 410 411	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 2:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of ^(*) H ₄ ion decreases ionization of NH ₄ OH, thus ^(*) OH decreases and also pH decreases A catalyst does not influences the values of equilibrium constant Catalyst influences the rate of both forward and backward reactions equally A certain reaction is catalysed by acids and the catalytic activity of 0.1 M solutions of the acids in water decreases in the order, HCl, HCOOH, and CH ₃ COOH. The same reaction takes place in anhydrous NH ₃ , but the three acids have same catalytic effect in 0,1 M solution The order of catalytic activity in water is the same as the order of acidity. In anhydrous NH ₃ all the three acids are strong
409 410 411	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1: Statement 1:	On addition of NH ₄ Cl to NH ₄ OH, pH decreases but remains greater than 7 Addition of $\overset{\oplus}{NH_4}$ ion decreases ionization of NH ₄ OH, thus $\overset{\oplus}{[OH]}$ decreases and also pH decreases A catalyst does not influences the values of equilibrium constant Catalyst influences the rate of both forward and backward reactions equally A certain reaction is catalysed by acids and the catalytic activity of 0.1 M solutions of the acids in water decreases in the order, HCl, HCOOH, and CH ₃ COOH. The same reaction takes place in anhydrous NH ₃ , but the three acids have same catalytic effect in 0,1 M solution The order of catalytic activity in water is the same as the order of acidity. In anhydrous NH ₃ all the three acids are strong Addition of Ag^{\oplus} ions to a mixture of aqueous NaCl and NaBr solution will first precipitate AgBr rather than AgCl

412
	Statement 1:	The value of <i>K</i> for a reaction may increase or decrease with increase in temperature
	Statement 2:	With increase in temperature, the extent of reaction increases
413		
115	_	
	Statement 1:	For the reaction $H_2 + I_2 \rightleftharpoons 2HI_k K_n = K_c$
	Statement 2:	In this reaction, the sum of stoichiometric coefficient of reactants is equal to the sum of
111		stoichiometrie coefficients of products
414		
	Statement 1:	The dissociation of PCl_5 decreases on increasing pressure.
	Statement 2:	An increase in pressure favours the forward reaction.
415		
	Statement 1:	A catalyst does not influence equilibrium constant of reaction but it simply helps in
	Statement 2.	attaining the equilibrium earlier.
	Statement 2:	A catalyst increase both the rate of forward reaction and backward reaction.
416		
	Statement 1:	Water boils at higher temperature in pressure cooker.
	Statement 2:	Increase in pressure leads to an increase in boiling point.
417		
	Statement 1:	NaCl solution can be purified by passage of hydrogen chloride through brine.
	Statement 2:	This type of purification is based on Le- Chatelier principle .
418		
	Statement 1:	For gaseous reaction when $\Delta n = 0$, $K_P = K_c$, Δn =change n the number fo gas moles.
	Statement 2:	For gaseous reaction $K_p = K_c (RT) \Delta n$
419		
	Statement 1:	K_p can be equal to or less than or even greater than the value of K_c
	Statement 2:	$K_n = K_c (RT)^{\Delta n}$
		Relation between K_p and K_c depends on the change in the number of moles
420		of gaseous reactants and products
420	6	
	Statement 1:	The pH of an aqueous solution of CH_3COOH remains unchanged on the addition of CH_3COONa
	Statement 2:	The ionization of CH_3COOH is suppressed by the addition of CH_3COONa
421		

Statement 1: pH of a neutral solution is always 7

Statement 2: pH of a solution does not depend upon temperature

422 **Statement 1:** For N₂(g) + 3H₂(g) \rightleftharpoons 2NH₃(g), the equilibrium constant is *K* The for $\frac{1}{2}$ N₂(g) + $\frac{3}{2}$ H₂(g) \rightleftharpoons NH₃(g), the equilibrium constant will be \sqrt{K} **Statement 2:** If concentrations are changed to half, the equilibrium constants will be halved 423

- **Statement 1:** The solubility of gases always increases with increase in pressure.
- **Statement 2:** High pressure favours the change where volume decreases.

424

- **Statement 1:** On opening a sealed soda bottle dissolved CO₂ escapes
- **Statement 2:** Gas escapes to reach the new equilibrium condition of lower pressure.

425

- **Statement 1:** The pH of pure water is less than 7 at 60°C
- **Statement 2:** As the temperature increases, pure water becomes slightly acidic

426

Statement 1: Solution of AlCl₃ in water is neutral

Statement 2: $[Al(H_2O)_6]^{3+}$ is formed

427

Statement 1: Solubility of AgCl is less in 0.1 *M* NaCl than in waterStatement 2: In presence of NaCl, the solubility of AgCl is lowered on account of common ion effect

428

Statement 1:	Adding	inert	gas	to	dissociation	equilibrium	of	N_2O_4	at	constant	pressure	and
	tempera	ature ir	ıcrea	ses	the dissociation	on						
Statement 2:	Molar co	oncent	ratio	n of	the reactants	and products	dec	reases				

429

Statement 1:	If a solution with $pH = 2$ is diluted to double the volume, the pH of the solution will fall to
	1
Statement 2:	pH is inversely proportional to the volume of the solution

430

Statement 1:	For $PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, if more Cl_2 is added the equilibrium will shift in backward direction. Hence, equilibrium constant will decrease
Statement 2:	Addition of inert gas to the equilibrium mixture at constant volume does not alter the equilibrium

	Statement 1:	pH of HCl solution is less than that of acetic acid of the some concentration
	Statement 2:	In equimolar solution, the number of titrable protons present in HCl is less than that present in acetic acid
432	2	
	Statement 1:	When small amount of acid or base is added to pure water, its pH undergoes a change
	Statement 2:	Addition of an acid or a base increases the degree of ionization of water
433	}	
	Statement 1:	Equilibrium constant of a reaction increases if temperature is increased
	Statement 2:	The forward reaction becomes faster with increase of temperature
434	ł	
	Statement 1:	When a solution of CH_3COOH in water is shaken with charcoal, pH of the solution will get
	Statement 2:	decreased The degree of ionization of CH ₂ COOH increases
435		
	Statement 1:	All Arrhenius acids are also Bronsted acids
	Statement 2:	All Bronsted bases are also Lewis bases
436)	
	Statement 1:	If HCl gas is passed through saturated NaCl solution, solid NaCl starts separating out
	Statement 2:	HCl decreases the solubility product of NaCl
437	,	
	Statement 1:	Methyl red has $K_a = 10^{-5}$ and the acid form, HIn is red and its conjugate base Ind ^{\ominus} is
	Statement 2.	yellow
	Statement 2:	$pH = 3 5 7$ $\frac{[Ind^{\Theta}]}{[Ind^{\Theta}]} = 10^{-2} 1 10^{2}$
		$\frac{1}{[HIn]} = 10 1 10$
438	}	colour – Reu Orange Tenow
	Statement 1:	Cl ⁻ is weak base than $C_2H_5O^-$
	Statement 2:	Stronger is acid, weaker is its conjugate base
439)	
	Statement 1:	A is very dilute acidic solution of Cd ²⁺ and Ni ²⁺ gives yellow precipitate of CdS on passing
	Statement 2:	hydrogen sulphide Solubility product of CdS is more than that of NiS
440)	
	Statement 1.	S reacts with SO $^{2-}$ and forms S O $^{2-}$
	Statement 1:	31 calls with 30_3 and 101 ms 3_20_3

	Statement 2:	S is electron deficient and acts an acid and $\mathrm{SO_3^{2-}}$ is a base in terms of Lewis acid theory
441		
	Statement 1:	The equilibrium constant is fixed and characteristic for any given chemical reaction at a
	Statement 2:	specified temperature The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants
442		
	Statement 1:	pH of water increases with an increase in temperature
	Statement 2:	K_w or water increases with increase in temperature
443		
	Statement 1:	Buffer system of carbonic acid and sodium bicarbonate is used for the precipitation of hydroxides of third group elements
	Statement 2:	It maintains the pH to a constant value, about 7.4
444		
	Statement 1:	The active mass of pure solid and pure liquid is taken unity
	Statement 2:	The active mass of pure solids and liquids depends on the density and molecular mass. The density and molecular of a mass of pure liquids and solids are constant
445		
	Statement 1:	Methyl orange is used as indicator in Na_2CO_3 titrating against HCl solution
	Statement 2:	The pH range of methyl orange is 3.1 to 4.5
446		
	Statement 1:	pH of 10^{-8} M HCl is not equal to 8
	Statement 2:	HCl does not dissociate property in very dilute solution
447		
	Statement 1:	The pH of a buffer solution containing equal moles of acetic acid and sodium acetate is $4.8 (nK)$ of acetic acid is 4.8)
	Statement 2:	The ionic product of water at 25°C is 10^{-14} mol ² L ⁻² . The correct answer is
448		
	Statement 1:	Catalyst affects the final state of the equilibrium.
	Statement 2:	It enables the system to attain a new equilibrium state by complexing with the reagents.
449		
	Statement 1:	$CO + NaOH \xrightarrow{\text{High } P} HCOONa$
	Statement 2:	CO although being neutral can acts as acid in the given reaction

450

	Statement 1:	$\Delta G = \Delta G^0 + 2.303 RT \log Q$ where Q is reaction quotient.
	Statement 2:	Q may be greater or lesser than K_c or equal to K_c .
451		
	Statement 1:	Sb^{3+} is not precipitated as sulphide when $\mathrm{H}_2\mathrm{S}$ (g) is passed in alkaline solution
	Statement 2:	[S ^{2–}] ion in basic medium is inadequate for precipitation
452		
	Statement 1:	A solution of FeCl ₃ in water produce brown precipitate on standing
	Statement 2:	Hydrolysis of FeCl ₃ takes place in water
453		
	Statement 1:	pH of a buffer changes with temperature
	Statement 2:	Ionic product of water (K_w) changes with temperature
454		
	Statement 1:	pK_a of a weak acid becomes equal to the pH of the solution at the mid-point of titration
	Statement 2:	The molar concentration of the proton donor and proton acceptor becomes equal at the mid-point
455		-
	Statement 1:	Hydrolysis of salt is an exothermic phenomenon
	Statement 2:	It involves breaking up of water molecule to produce acid and base respectively
456		
	Statement 1:	Addition of an inert gas to the equilibrium mixture has no effects on the states of
	Statement 2:	The addition of inert gas at constant volume will not alter the concentration of the reactants as well as products of a reaction mixture.
457		
	Statement 1:	Both reactions are Lewis acid-base reactions? i. $NH_3 + BF_3 \rightarrow H_3N: BF_3$
	Statement 2:	ii. Mg + S \rightarrow Mg ²⁺ + S ²⁻ Lewis acid-base reaction involve the donation of lone pair electros from base to acid. This
150		donation results in a coordinate bond
430	Ch	\mathbf{F} where \mathbf{N} (a) is 20 (b) a 200 (c) a 200 (c) \mathbf{U} (c) \mathbf{U} (c) \mathbf{U} (c) \mathbf{U} (c) \mathbf{U}
	Statement 1:	For the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Unit of $K_c L^2$ mol ⁻²
	Statement 2:	For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Equilibrium constant $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$
459		
	Statement 1:	pH of acidic solution is always below 7 at 25°C

Page | 41

Statement 2: At 25°C, the pH of 10^{-8} M HCl is 8

460

Statement 1: All strong acid in water show almost same acidic nature

Statement 2: This is due to levelling effect of water on account of its high dielectric constant and strong proton accepting tendency

461

Statement 1:	A change of pressure has no effect in case of the equilibrium,
	$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
Statement 2:	The reaction,
	$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is highly exothermic reaction

Statement 1: The solubility of a gas in water decreases with rise in temperature.

Statement 2: Rise in temperature increases the kinetic energy of gaseous molecules dissolved in water.

463

462

Statement 1:	Addition of an inert gas at constant pressure to dissociation equilibrium of $PCl_5 \rightleftharpoons$
	$PCl_3 + Cl_2$ favours forward reaction.
Statement 2:	$K_c = \frac{\alpha^2}{V(1-\alpha)}$ for the dissociation equilibrium of PCl ₅ where α is degree of dissociation of
	PCl ₅ .

464

Statement 1:	0.1 M NaCN + $0.05 M$ HCl solution on mixing in equal volume from a buffer solution
Statement 2:	The solution after mixing contains a weak acid and its conjugate base and thus act as

465

Statement 1: Dry HCl shall not act as an acid

Statement 2: For the acidic or basic properties, the presence of water is absolutely necessary

466

- **Statement 1:** CCl₄, C₆H₆ and liquid SO₂ are aprotic solvents
- **Statement 2:** Aprotic solvents do not influence the acidic or basic nature of solute

467

Statement 1: The aqueous solution of CH₃COONa is alkaline in nature.

Statement 2: Acetate ion undergoes anionic hydrolysis.

468

- **Statement 1:** Solubility of BaSO₄ in 0.1 M Na₂SO₄ is 10^{-9} M, hence its K_{sp} is 10^{-18}
- **Statement 2:** Because for $BaSO_4$, $K_{sp} = S^2$

469

Statement 1: Heat given out during neutralisation of NaOH and HF is -13.7 kcal/eq.

Statement 1: Solubility of AgCl is more in conc. HCl than in water

Statement 2: F⁻ ion is more easily hydrated and thus heat of neutralisation of HF and NaOH is more

470

	Statement 2:	AgCl form a complex with conc. HCl and thus solubility of AgCl increases in conc. HCl
471		
4/1		
	Statement 1:	The dissociation constant of water at 60°C is 10^{-13}
	Statement 2:	The pH of water is 6.5 and that it behaves as acid at 60°C
472		
	Statement 1:	On cooling in a freezing mixture, colour of the mixture turns to pink from deep blue for a reaction
	Statement 2:	$\begin{array}{ll} \text{Co}(\text{H}_2\text{O})_6 \ ^{2+}(\text{aq}) + 4\text{Cl} \ominus (\text{aq}) \rightleftharpoons \text{Co}\text{Cl}_4 \ ^{2-}(\text{aq}) + 6\text{H}_2\text{O}(l) \\ \text{(Pink)} & \text{(Blue)} \\ \end{array}$ The reaction is endothermic in forward reaction, so on cooling the reaction, deep blue colour appears
473		
	Statement 1:	The amino acid glycine predominantly exists in the form of ${}^{\oplus}\mathrm{NH_3CH_2COOH}^{\Theta}$
	Statement 2:	The conjugate acid of glycine is $\rm NH_2CH_2COO^{\ominus}$
474		
	Statement 1:	The synthesis of NH_3 in Haber's process needs 500°C and 200 atm pressure inspite of the fact that reaction is favoured at high <i>P</i> and low <i>T</i> according to Le-Chatelier's principle.
	Statement 2:	The high temperature is required to attain higher energy of activation for the reaction because bond energy of N_2 and H_2 are high.
475		
	Statement 1:	A solution contains 0.1 M each of Pb ²⁺ , Zn ²⁺ , Ni ²⁺ ions. If H_2S is passed into this solution at 25°C
	Statement 2:	Pb ²⁺ , Ni ²⁺ , Zn ²⁺ will get precipitated simultaneously Pb^{2+} and Zn^{2+} will get precipitated if the solution contains 0.1 M HCl $[K_1 H_2 S = 10^{-7}, K_2 H_2 S = 10^{-14}, K_{sp} PbS = 3 \times 10^{-29}. K_{sp} NiS = 3 \times 10^{-19}. K_{sp} Zn S \setminus 10^{-251}$
476		10]
170	Statement 1:	In the acid-base titration involving a strong base and a weak acid, methyl orange can be
	Statement 2:	used as an indicator Methyl orange changes its colour in pH range 3 to 5
477		
.,,		

Statement 1: Salting out action of sodium soap in presence of NaCl is based on common ion effect

	Statement 2:	Salting out action of soap is based on the fact that as the concentration of Na ⁺ increases, the <i>R</i> COONa shows precipitation because $[RCOO^-][Na^+] > K_{sp}$
478		
	Statement 1:	In acidic medium, Zn^{2+} is not precipitated by S^{2-} ions
	Statement 2:	Common ion effect reduces the concentration of S^{2-} ions to the minimum level
479		
	Statement 1:	For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.
	Statement 2:	At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.
480		
	Statement 1:	The acidic nature of some cations is: $Al^{3+} > Be^{2+} > Na^+ > K^+$
	Statement 2:	More is the effective nuclear charge on cation more is its acidic nature
481		
	Statement 1:	Addition of neon to $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ equilibrium at constant volume does not affect this equilibrium
	Statement 2:	Active masses of reactants and products do not change when volume remains constant
482		
	Statement 1:	The reaction, $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ is favoured in the forward direction with increase of pressure
	Statement 2:	The reaction is exothermic
483		
	Statement 1:	Increase of temperature favour the formation of $\rm NH_3$ by Haber's process
	Statement 2:	Increase of pressure and addition of catalyst favour the formation of $\rm NH_3$
484		
	Statement 1:	Acidic nature of boron trihalides is in the order: $BF_a \leq BCl_a \leq BBr_a \leq BL_a$
	Statement 2:	Basic nature of nitrogen trihalides is in the order: $NF_3 > NCl_3 > NBr_3 > NI_3$
485		
	Statement 1:	The value of <i>K</i> gives us a relative idea about the extent to which a reaction proceeds
	Statement 2:	The value of <i>K</i> is independent of the stochiometry of reactants and products at the point of equilibrium
486		
	Statement 1:	Effect of temperature on K_c and K_p depends on enthalpy change.
	Statement 2:	Increase in temperature shifts the equilibrium in exothermic direction and decrease in temperature shifts the equilibrium position in endothermic direction.

487

Statement 1: Solubility of AgCN in acidic solutions is greater than in pure water

Statement 2: Solubility equilibrium of AgCN is shifted in forward direction due to the formation of HCN

488

	Statement 1:	On cooling in a freezing mixture, colour of the mixture turns to pink from deep blue for a reaction. $CO(H_2O)^{2+}_{c}(aq) + 4Cl^{-}(aq) \Rightarrow COCl^{2-}_{c}(aq) + 6H_2O(I)$
	Statement 2:	Reaction is endothermic, so on cooling the reaction moves to backward direction.
489		
	Statement 1:	The value of <i>K</i> increases with increase in temperature in case of endothermic reaction
	Statement 2:	The increase in temperature shifts the equilibrium in the backward direction in case of exothermic reaction
490		
	Statement 1:	The pH of human blood at body temperature is found to be 6.9
	Statement 2:	Blood is alkaline in nature
491		
	Statement 1:	K_p is always greater than K_c
	Statement 2:	The effect of pressure is greater on the rate of reaction than the effect of concentration
492		
	Statement 1:	There is very little difference is acid strength of $\rm H_3PO_4, H_3PO_3$ and $\rm H_3PO_2$
	Statement 2:	The hydrogens in these acids are not all bonded to oxygens. The electronegativities of P and H are almost the same
493		
	Statement 1:	$Na_2S_2O_3$ is a salt of unstable acid
	Statement 2:	$H_2S_2O_3$ is a polyprotic acid
494		
	Statement 1:	The melting point of solid (except ice) increases with increase in pressure.
	Statement 2:	An increase in pressure favours the change where volume decreases.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

495.

Column-I

(A)	0.1 M KCN						
(B)	0.1 M Ph $\stackrel{\oplus}{\mathrm{NH}}_3$ Cl $\stackrel{\Theta}{=}$						
(C)	0.1 M KCl						
(D)	$0.1 \text{ M CH}_3 \text{COONH}_4$						
CODES :							
	Α	В	С	D			
a)	q	r	р	p,s			
b)	r	р	p,s	q			
c)	p,s	q	r	р			

(p) 7
(q)
$$6.5 + \frac{1}{2}pK_a$$

(r) $7.5 - \frac{1}{2}pK_b$
(s) $7.5 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$

496.

d)

р

Column-I

q

r

(A) Solubility of AgCl in 0.1 M HCl

p,s

- **(B)** Solubility of Ni(OH)₂ in 0.1 M NaOH
- (C) Solubility of $Ni(OH)_2$ in $NiCl_2$
- **(D)** Solubility of $Al(OH)_3$ in 0.1 M NaOH
- (E) Solubility of AgCN in a buffer solution of pH = 3

	Α	В	С	D	Ε
a)	р	q	r	S	t
b)	r	S	t	р	t
c)	q	р	S	r	t
d)	t	r	р	q	t
e)	S	t	q	t	t

497.

Column-I

- (A) NH_4Cl in water
- **(B)** CH₃COONa in water

Column- II

(p)
$$\frac{K_{\rm sp}}{(0.1)^2}$$
(q)
$$K_{\rm sp}$$

$$(q) \frac{sp}{0.1}$$

(r) K_{sp}

(1)
$$\frac{1.5p}{(0.1)^3}$$

(s) $(K_{\rm sp})^{1/2}$

$$\begin{pmatrix} n_{sp} \\ \hline 4 \times 0.1 \end{pmatrix}$$
(t) [(H[⊕])

(t)
$$\left[K_{\rm sp}\left(1+\frac{{\rm H}^{\oplus}}{K_a}\right)\right]^{1/2}$$

- (p) Neutral solution which does not undergo hydrolysis
- (q) Cationic hydrolysis

(C) NH_4CN in water

(D) NaCl in water

CODES:

	Α	В	С	D
a)	q	r	S	р
b)	r	q	р	S
c)	S	р	r	q
d)	р	S	q	r

498.

Column-I

- (A) Acidic salt
- (B) Basic salt
- (C) Acidic buffer
- (D) Basic buffer
- CODES :

	Α	В	С	D
a)	q	r	р	S
b)	r	S	q	р
c)	S	р	r	q
d)	р	q	S	r

499.

Column-I

1
1

- **(B)** BF₃
- (C) N_{H₃}

(D) [⊖]_{OH}

CODES :

	Α	В	С	D
a)	R,s	р	q,s	q,s

(r) Anionic hydrolysis

(s) Both cationic and anionic hydrolysis

Column- II

(p)
$$pH = \frac{1}{2}(pK_w - pK_b - \log C)$$

(q)
$$pH = \frac{1}{2}(pK_w + pK_b + \log C)$$

(r)
$$OW = K_b + \log C$$

[Salt]

$$pOH = pK_b + \log \frac{c}{[Base]}$$

(s)
$$pH = pK_a + \log \frac{[Salt]}{[Base]}$$

- (p) Lewis acid
- (q) Lewis base
- (r) Bronsted acid
- (s) Bronsted base

b)	р	r,s	q,s	q,s
c)	q,s	q,s	р	q
d)	r	р	r,s	q,s

500.

Column-I

- (A) 0.1 M $CH_3COOH (pK_a = 4.74) + 0.1 M CH_3COONa$ (B) 0.1 M CH₃COOH + 0.01 M HCl
- (C) 0.1 MCH₃COOH ($pK_a = 4.74$)+ 0.1 M NH₄OH($pK_b = 4.74$)
- (D) 300 mL of 0.1 M CH₃COO Na + 100 mL of 0.1 M HCl

CODES :

	Α	В	С	D
a)	q	S	r	р
b)	р	r	S	q
c)	r	р	q	S
d)	S	q	р	r

Column- II

- (p) Acidic buffer at its maximum capacity
- (q) Buffer solution
- (r) pH < 7 at 25°C
- (s) $pH = 7 at 25^{\circ}C$

501.

Column-I

D

- (A) Reaction is reversed
- **(B)** Reaction is divided by 2
- (C) Reaction is multiplied by 2

CODES :

	Α	В	С	
a)	р	q	r	
b)	r	р	b	
c)	q	r	р	
d)	b	q	r	

502.

Column-I

(A) Hydrolysis of ethyl acetate in basic solution

Column- II

- (p) $(K)^{1/2}$
- (q) K^2
- (r) 1/*K*

Column- II

(p) Second-order reaction

- (B) Hydrolysis of ethyl acetate in acidic solution
- **(C)** The limits of pH values of a buffer solution

(D) The buffer capacity of a solution is maximum when the concentration of salt to the acid isCODES :

	Α	В	С	D
a)	r	S	р	q
b)	S	р	q	r
c)	р	q	r	S
d)	q	r	S	р

503.

Column-I

(A)
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

- **(B)** $NH_4Cl(g) \rightleftharpoons NH_3(g) + HCl(g)$
- (C) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- **(D)** $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

CODES:

	Α	В	С	D
a)	P,r	q	S	p,r
b)	q,	S	p,r	p,r
c)	p,r	p,r	q	S
d)	p,r	q	S	p,r

504.

Column-I

- (A) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
- **(B)** $\text{NH}_4\text{Cl}(g) \rightleftharpoons \text{NH}_3(g) + \text{HCl}(g)$
- (C) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- **(D)** $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

CODES :

	Α	В	С	D
a)	P,r	q	S	p,r

- (q) First-order reaction
- (r) $pK_a \neq 1$
- (s) Equal

Column- II

- (p) $mol L^{-1}$
- (q) Unitless
- (r) atm
- (s) atm^{-2}

- (p) $mol L^{-1}$
- (q) Unitless
- (r) atm
- (s) atm^{-2}

b)	q,	S	p,r	p,r
c)	p,r	p,r	q	S
d)	p,r	q	S	p,r

505.

Column-I

(A)	$\ln K = 2 - \frac{1000}{T}$	(1)	8, 2
(B)	$\ln K = \frac{1}{2} - \frac{500}{T}$	(2)	4, 2

(C)
$$\ln K = 4 - \frac{1000}{T}$$

(D)
$$\ln K = 3 - \frac{4000}{T}$$

CODES:

	Α	В	С	D
a)	3	4	2	1
b)	2	3	1	4
c)	1	4	2	3
d)	4	3	1	2

Column- II

Column- II

(3) 1,1

(4) 6,8

506. 100 mL of 0.01 M $\rm H_2S$ solution is taken to which the following quantities of 1.0 M NaOH have been added. K_1 (H₂S) = 10⁻⁷, K_2 (H₂S) = 10⁻¹⁴. Match the following

		Column-I		
(A)	0.5 mL		(p)	7.0
(B)	0.5 mL		(q)	4.5
(C)	1.0 mL		(r)	9.5
(D)	1.5 mL		(s)	11.7
			(t)	12.0

CODES:

	Α	В	С	D
a)	р	r,t	S	р
b)	q	р	r,t	S
c)	р	q	S	r,t
d)	r,t	S	q	р

507.

Column-I

(A)	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$		
(B)	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$		
(C)	$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$		
(D)	$\operatorname{NH}_4 \operatorname{Cl}(g) \rightleftharpoons \operatorname{NH}_3(g) + \operatorname{HCl}(g)$		
CODES :			

	Α	В	С	D
a)	S	r	р	q
b)	r	q	r	S
c)	р	r	S	q
d)	q	S	r	р

(p) $K_p = K_c(RT)$ (q) $K_p = K_c(RT)^2$ (r) $K_p = K_c(RT)^{-2}$

(s)
$$K_p = K_c$$

508.

Column-I

- (A) $Li_3Na_3 (AlF_6)_2$ (p) $108x^5$

 (B) Zirconium phosphate
 (q) $2916x^8$

 (C) Bismuth (III) sulphide
 (r) $27x^4$

 (D) Aluminium hydroxide
 (s) $4x^3$

 (E) Calcium fluoride
 (t) $6912x^7$

 CODES :
 (p) $108x^5$
- А В С D Ε a) q t р r S b) t S S q р c) р q r S S d) r р S t S e) S r t S q
- 509.

Column-I

- $(A) \quad Q = K$
- $(B) \quad Q < K$
- (C) Q < K
- **(D)** K >>> 1

Column- II

- (p) Reaction is nearer to completion
- (q) Reaction is not at equilibrium
- (r) Reaction is fast in forward direction
- (s) Reaction at equilibrium

CODES :

	Α	В	С	D
a)	S	q,r	q,t	р
b)	q,r	q,t	р	S
c)	р	q,t	S	q,r
d)	q,t	S	р	q,r

510.

Column-I

(A) Q = K(B) Q < K(C) Q < K(D) K >>> 1

CODES:

	Α	В	С	D
a)	S	q,r	q,t	р
b)	q,r	q,t	р	S
c)	р	q,t	S	q,r
d)	q,t	S	р	q,r

511.

Column-I

- (A) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- **(B)** $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
- (C) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- **(D)** $PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

CODES:

	Α	В	С	D
a)	P,r	p,r	q	S
b)	p,r	q	S	p,r

Column- II

- (p) Reaction is nearer to completion
- (q) Reaction is not at equilibrium
- (r) Reaction is fast in forward direction
- (s) Reaction at equilibrium
- (t) Reaction proceeds in backward direction

- (p) Unaffected by inert gas addition
- (q) Forward shift by rise in pressure and backward shirt by inert gas addition
- (r) Unaffected by increase in pressure
- (s) Backward shift by rise in pressure and forward shift by inert gas addition

c)	S	p,r	p,r	q
D.				

d) q, s p,r p	q,	S	p,r	р,
----------------------	----	---	-----	----

512.

Column-I

Column- II

(A)	Ratio of solubility of a salt MCN in a buffer of	(p)	4
	pH = 3. ($K_a = 10^{-3}/3$) and solubility in H ₂ O is		

- **(B)** Raito of solubility of a salt MCN in a buffer of (q) 2 pH = 4, ($K_a = 10^{-4}/7$) and solubility in H₂O is
- (C) Ratio of solubility of a salt MCN in a buffer of (r) 8 $pH = 5 (K_a = 10^{-5}/8)$ and solubility in H₂O is
- (D) Ratio of solubility of AgCl in 0.1 M HCl and 0.3 (s) 3 M AgNO₃
- (E) Ratio of solubility of Al(OH)₃ in 0.1 M HCl and (t) 0.2 M NaOH

CODES:

	Α	В	С	D	Ε
a)	р	q	r	S	q
b)	r	S	q	р	q
c)	q	р	S	q	q
d)	S	r	р	q	q

513.

Column-I

- (A) Dissociation of $N_2O_4(g)$ $N_2O_4(g) \rightleftharpoons 2NO_2(g);$ $\Delta \mathbb{P} = + 57.0 \text{ kJ}$
- (B) Oxidation of $NH_3(g)$ $4NH_3(g) + 5O_2(g) \rightleftharpoons$ $4NO(g) + 6H_2O(g)$ $\Delta \mathbb{Z} = -900.0 \text{ kJ}$
- (C) Oxidation of nitrogen $N_2(g) + O_2(g) \rightleftharpoons 2NO(g);$ $\Delta \mathbb{Z} = +180.0 \text{ kJ}$
- (D) Formation of NO₂(g) NO₂ + O₃ (g) \rightleftharpoons NO₂(g) +O₂(g); $\Delta H = -200$ kJ CODES :

	Α	В	С	D
a)	P,r	q,r,s	р	S

- (p) Increases with temperature
- (q) Decreases with pressure
- (r) Increases with addition of inert gas at constant pressure
- (s) Decreases with temperature

b)	q,r,s	р	S	p,r
c)	S	p,r	p,r	q,r,s
d)	р	S	q,r,s	p,r

514.

Column-I

(A)
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- **(B)** $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g);$ $\Delta H = - \text{ve}$
- (C) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g);$ $\Delta H = +ve$
- **(D)** $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g);$ $\Delta H = + ve$

CODES :

	Α	В	С	D
a)	P,r	p,s	p,r	q,r
b)	q,r	p,r	p,s	p,s
c)	p,s	p,s	q,r	p,r
d)	p,s	q,r	p,s	p,r

515.

Column-I

- (A) 10^{-2} M (NH₄)₂ SO₄ solution
- **(B)** 10^{-2} M HCl solution
- (C) 10^{-2} M NH₃ solution
- **(D)** 10^{-2} MCH₃COONH₄ solution

CODES:

	Α	В	С	D
a)	S,t	r	p,q	p,t
b)	p,t	s,t	r	p,q
c)	s,t	p,q	p,t	r
d)	r	p,t	s,t	p,q

516.

Column-I

Column- II

- (p) Forward shift by rise in pressure
- (q) Unaffected by change in pressure
- (r) Forward shift by rise in temperature
- (s) Forward shift by lowering the temperature

Column- II

- (p) Cationic hydrolysis
- (q) Anionic hydrolysis
- (r) pH chages by one unit when diluted to onetenth of its concentration
- (s) $pH > 7 at 25^{\circ}C$

D

q,r

q,r

p,s

D

q,r

q,r

- (p) Temperature is increasing
- (q) Temperature is constant
- (r) Volume is constant
- (s) Pressure is increasing

Column- II

- (p) Temperature is increasing
- (q) Temperature is constant
- (r) Volume is constant
- (s) Pressure is increasing

517.

c)	p,s	q,r	p,r,s	p,r,s
d)	p,s	p,r,s	q,r	p,s

518.

Column-I

(A)
$$2X_{(g)} \rightleftharpoons 3Y_{(g)} + Z_{(g)}$$

(B)
$$4X_{(g)} \rightleftharpoons Y_{(g)} + Z_{(g)}$$

(C)
$$2X_{(g)} \rightleftharpoons Y_{(g)} + 2Z_{(g)}$$

(D)
$$3X_{(g)} \rightleftharpoons Y_{(g)} + Z_{(g)}$$

CODES :

	Α	В	С	D
a)	4	3	2	1
b)	3	1	4	2
c)	1	2	3	4
d)	2	4	1	3

Column- II

Column- II

(1)

$$\alpha = \sqrt{\frac{K_c}{V} \times 3}$$
(2)

$$\alpha = [2K_cV]^{1/3}$$
(3)

$$\alpha = \frac{4}{V} \sqrt{K_c}$$
(4)

$$\alpha = \left[\frac{16V^2K_c}{27}\right]^{1/4}$$

519. 50.0 mL of 0.01 M CH₂COOH solution is taken to which the following quantities of 0.01 M NaOH have been added. Match the followings

		C	olumn-l					
(A)	25.0 mL					(p)	5.34	
(B)	40.0 mL					(q)	11.96	
(C)	50.0 mL					(r)	4.74	
(D)	60.0 mL					(s)	12.22	
(E)	70.0 mL					(t)	8.72	
COD	ES :							
	Α	В	С	D	Ε			
a)	r	q	t	q	S			
b)	р	q	r	S	S			
c)	t	S	р	q	S			
d)	q	r	S	р	S			
e)	S	р	q	r	S			

520. 1.0 L of 0.01 M $\rm NH_3$ solution is taken to which the following quantities of 1.0 M HCl is added.

$(pK_b(NH_3).74)$. Match the following Column-I

(A)	2.0 mL	(p)	11.0
(B)	5.0 mL	(q)	4.14
(C)	10.0 mL	(r)	4.74
(D)	11.0 mL	(s)	8.37

CODES:

	Α	В	С	D
a)	р	q	r	S
b)	S	р	r	q
c)	q	r	S	р
d)	r	S	р	q

521.

Column-I

D

- (A) $N_2O_4(g) \rightleftharpoons 2NO_2$
- **(B)** $H_2 + I_2 \rightleftharpoons 2HI$
- (C) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

CODES:

	Α	В	С	
a)	R,s	q	р	
b)	q	р	r,s	
c)	р	r,s	q	
d)	q	p,q	r,s	

522.

Column-I

- (A) $N_2O_4(g) \rightleftharpoons 2NO_2$
- **(B)** $H_2 + I_2 \rightleftharpoons 2HI$
- (C) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Column- II

- .14 .74
- (s) 8.37

Column- II

- (p) $K_p = K_c$
- (q) *K* increase with increase increase temperature
- (r) On increasing pressure reaction favour to product side
- (s) $K_c > K_p$

- (p) $K_p = K_c$
- (q) *K* increase with increase increase temperature
- (r) On increasing pressure reaction favour to product side
- (s) $K_c > K_p$

CODES :

	Α	В	С	
a)	R,s	q	р	
b)	q	р	r,s	
c)	р	r,s	q	
d)	q	p,q	r,s	

523.

Column-I

Column- II

(A)	Addition of inert gas at constant pressure shifts the equilibrium in					$\Delta V \neq 0, \Delta n > 0$
(B)	Addition of inert gas at constant pressure has					$\Delta V eq 0, \Delta n < 0$
(C)	$K_p = K_c$				(r)	$\Delta V = 0$
(D) COD	 Addition of inert gas shift the equilibrium in forward direction at constant <i>p</i> ODES - 					$\Delta n = 0$
	Α	В	С	D		
a)	r	S	q	р		
b)	р	r	S	q		
c)	S	q	р	r		
d)	q	р	r	S		

D

524.

Column-I

- (A) NaOH + HCl
- **(B)** $H_2SO_4 + NH_4OH$
- (C) $CH_3COOH + NH_4OH$
- **(D)** $KOH + H_2SO_4$

CODES:

	Α	В	С	D
a)	r	q	p,q,s	p,s
b)	p,s	r	q	p,q,s

- (p) Phenolphthalein
- (q) Phenol red
- (r) Bromocresol green
- (s) Methyl orange

C)	p,q,s	p,s	r	q

d) q p,q,s p,s

Linked Comprehension Type

This section contain(s) 57 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 525 to -525

During thermal dissociation, with increase in the number of molecules, the volume increases and in consequence, the density decrease. As the temperature rises, more and more dissociation takes place, and when practically complete dissociation occurs the density reaches its lowest limit

The fraction of the total number of molecules which suffers dissociation is called the degree of dissociation. Gas density measurements can be used to determine the degree of dissociation. Let us take by general case where one molecule of a substance A splits into 'n' molecule of B on heating

 $An(g) \rightleftharpoons nB(g)$ 0 t = 0а (a - x) nx at t_{eq} Degree of dissociation $\alpha = \frac{x}{a}$ or $x = a\alpha$ Total number of moles = $a - a\alpha + na\alpha$ $= a[1 + (n - 1)\alpha]$ Observed molecular weight of the mixture $M = \frac{MA_n}{a[1+(n-1)\alpha]}$

525. The K_p for the reaction $N_2O_4 \rightleftharpoons 2NO_2$ is 640 mm at 775 K. The percentage dissociation of N_2O_4 at equilibrium pressure of 160 mm is a) 70% b) 30% c) 80% d) 60%

Paragraph for Question Nos. 526 to - 526

The rate of the reaction is directly proportional to the product of the active masses of the reactants raised to the suitable powers, at a given temperature

 $aA + bB + cC \rightarrow$ Product Rate = $k[a]^a[B]^b[C]^c$

If the reaction is written in reversed direction

$$k_b = \frac{1}{k_f}$$

For gaseous reaction, equilibrium constant, can also be expressed in terms of partial pressure Equilibrium constant, K_c for

$$aA + bB \rightleftharpoons cC + dD$$
 is
 $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$
and $K_p = \frac{p_c^c p_D^d}{p_A^a p_B^b}$
 K_p and K_c are related with each other as $K_p = K_c(RT)^{\Delta ng}$

526. Calculate the partial pressure of carbon monoxide from the following data

$CaCO_3(s) \xleftarrow{\Delta} CaO(s) + CaO(s)$	CO_2 ↑; $K_p = 8 \times 10^{-2}$		
$CO_2(g) + C(s) \rightleftharpoons 2CO(g);$	$K_p = 2$		
a) 0.2 atm	b) 0.6 atm	c) 0.8 atm	d) 0.4 atm

Paragraph for Question Nos. 527 to - 527

Radiochemical methods can be used to determine solubility product estimation. The measurement of radioactivity can be used to find the concentration in a solubility equilibrium giving a fair idea about various equilibrium concentrations. In an experiment, 50.00 mL of a 0.010 M AgNO₃ solution containing a silver isotope with a radioactivity of 75000 counts per min mL were mixed with 100 mL of a 0.03 M NaIO₃ solution. The mixed solution was diluted to 500 mL and filtered to remove all the AgIO₃ precipitate leaving behind a radioactive solution. Molar mass of AgIO₃ = 285 g/mol

527. The % of unprecip	oitated silver ions is		
a) 0.25%	b) 0.66%	c) 0.43%	d) 0.57%

Paragraph for Question Nos. 528 to - 528

Acidity or alkalinity of a solution depends upon the concentration of hydrogen ions relative to that of hydroxyl ions. In any aqueous solution, both hydrogen and hydroxyl ions coexist in accordance with equation $H_2 O \rightleftharpoons H^+ + OH^-$. The product of hydrogen and hydroxyl ion concentrations is given by equation $K_w = K_i [H_2 O] = [H^+][OH^-]$

The value of the product depends only on the temperature and not on the individual ionic concentrations. If concentration of hydrogen ions exceeds that of the hydroxyl ions, the solution is said to be acidic and *vice versa* for basic,

For neutral solution, $[H^+] = [OH^-] = \sqrt{K_w}$ For acidic solution, $[H^+] > [OH^-]$ or $[H^+] > \sqrt{K_w}$ For basic solution, $[H^+] < [OH^-]$ or $[H^+] < \sqrt{K_w}$

528	0n	adding	few	drons	of H ₂ SO ₄	to water
520.	on	auumg	10.00	urops	01112504	to water

- a) [OH⁻] will increase
- c) Ionic product will increase

b) [OH⁻] will decreased) Ionic product will decrease

Paragraph for Question Nos. 529 to - 529

Physical and chemical equilibrium can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium we have a principle named Le Chatelier's principle. According to this principle, even if we make some changes in equilibrium, then also the system even re-establishes the equilibrium by undoing the effect

529. Consider the following equilibrium:

 $2NO_2 \rightleftharpoons 2; \Delta H = -ve,$

- If O_2 is added and volume of the reaction vessel is reduced, the equilibrium
- a) Shifts in the product side
- c) Cannot be predicted

- b) Shifts in the reactant side
- d) Remains unchanged

Paragraph for Question Nos. 530 to - 530

Consider the chemical reaction:

Ni²⁺ (aq) + 6NH₃(aq) \rightleftharpoons [Ni(NH₃)₆]² (aq) (Green solution) (Blue solution) When H[⊕](aq) is added, the colour green is favoured. Use one or more of the following interpretations to answer the questions: i. Some unreacted Ni²⁺(aq) is present in the solution at equilibrium ii. Some unreacted NH₃(aq) is present in the solution at equilibrium iii. The colour change indicates new equilibrium conditions with reduced [Ni(NH₃)₆]²⁺(aq)

iv. The colour change indicates new equilibrium conditions with increased $[Ni(NH_3)_6]^{2+}(aq)$

530. The deepening	of blue colour on dissolving more	Ni(NO ₃) ₂ supports inter	rpretation(s)
a) i only	b) i and iv only	c) ii and iv only	d) i and ii only

Paragraph for Question Nos. 531 to - 531

One mole of NH₄HS(s) was allowed to decompose in a 1-L container at 200°C. It decomposes reversibly to NH₃(g) and H₂S(g). NH₃(g) further undergoes decomposition to form N₂(g) and H₂(g). Finally, when equilibrium was set up, the ratio between the number of moles of NH₃(g) and H₂(g) was found to be 3 NH₄HS(s) \rightleftharpoons NH₃(g) + H₂S(g); $K_c = 8.91 \times 10^{-2} \text{ M}^2$ 2NH₃(g) \rightleftharpoons N₂(g) + 3H₂(g); $K_c = 3 \times 10^{-4} \text{ M}^2$ Answer the following:

531. What is the mole fraction of hydrogen gas in the equilibrium mixture in the gas phase?a) 1/4b) 3/4c) 1/8d) 4

Paragraph for Question Nos. 532 to - 532

The percentage of ammonia produced from nitrogen and hydrogen under certain conditions of temperature and pressure is given in the graph

Use the graph answering the following questions:

532. What happens to the percentage of ammonia produced when the temperature is increaseda) The % is decreasedb) The % is increasedc) No effectd) Cannot be predicted

Paragraph for Question Nos. 533 to - 533

The synthesis of ammonia is given as: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H^{\ominus} = -92.6 \text{ kJ mol}^{-1}$ given $K_c = 1.2$ and temperature $(T) = 375^{\circ}C$ Answer the followings:

533. The expression of equilibrium constant is

a) $K_c = \frac{[N_2][H_2]^3}{[NH_3]^2}$ b) $K_c = \frac{[N_2][H_2]}{[NH_3]}$ c) $K_c = \frac{[NH_3]}{[N_2][H_2]^3}$ d) $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$

Paragraph for Question Nos. 534 to - 534

Phosphorous pentachloride when heated in a sealed tube at 700 K it undergoes decomposition as $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g), K_p = 38$ atm Vapour density of the mixture is 74.25 Answer the following questions:

534. The reaction is

a) Endothermic	b) Exothermic
c) May be endothermic or exothermic	d) Unpredictable

Paragraph for Question Nos. 535 to - 535

Decomposition of ammonium chloride is an endothermic reaction. The equilibrium may be represented as: $NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$

A 6.250 g sample of NH_4Cl is placed in an evaculated 4.0 L container at 27°C. After equilibrium the total pressure inside the container is 0.820 bar and some solid remains in the container. Answer the followings

535. The value of K_p for	or the reaction at 300 K is		
a) 16.2	b) 0.168	c) 1.68	d) 32.4

Paragraph for Question Nos. 536 to - 536

 K_p and K_c are inter related as

$$K_n = K_c (RT)^{\Delta n}$$

Answer the ^following questions:

536. Which of the following have $K_p = K_c$? a) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ c) $2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$

b) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ d) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

Paragraph for Question Nos. 537 to - 537

The relation between K_p and K_c is $K_p = K_c (RT)^{\Delta n}$ unit of $K_p = (atm)^{\Delta n}$; unit of $K_c = (mol L^{-1})^{\Delta n}$ Answer the following:

537. Consider the following reactions:

i. $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g); K_1$ ii. $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g); K_2$ iii. $CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g); K_3$ Which of the following is correct? a) $K_3 = K_1/K_2$ b) $K_3 = K_1^2/K_2^3$ c) $K_3 = K_1 \times K_2$ d) $K_3 = K_1\sqrt{K_2}$

Paragraph for Question Nos. 538 to - 538

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta H^{\ominus} = -22.4 \text{ kJ}$ The pressure inside the chamber is 100 atm and temperature at 300 K Answer the following questions:

538. If K_p for the given reaction is 1.44×10^{-5} , then the value of K_c will be:

a)
$$\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}} \text{ mol } \text{L}^{-1}$$

b) $\frac{1.44 \times 10^{-5}}{(8.314 \times 200)^{-2}} \text{ mol } \text{L}^{-1}$
c) $\frac{1.44 \times 10^{-5}}{(0.082 \times 700)^2} \text{ mol } \text{L}^{-1}$
d) $\frac{1.44 \times 10^{-5}}{(0.082 \times 300)^{-2}} \text{ mol } \text{L}^{-1}$

Paragraph for Question Nos. 539 to - 539

Mass action ratio or reaction quotient Q for a reaction can be calculated using the law of mass action $A(g) + B(g) \rightleftharpoons C(g) + D(g)$ [C][D]

$$Q = \frac{[0][D]}{[A][B]}$$

The value of Q decides whether the reaction is at equilibrium or not

At equilibrium, Q = K

For an equilibrium process, $Q \neq K$

when Q > K, reaction will favour backward direction and when Q < K, it will favour forward direction Answer the following questions:

539. The reaction quotient Q for:

 $\begin{array}{l} O_2(g) + 2H_2(g) \rightleftharpoons 2H_2O(g) \\ \text{is given by } Q = \frac{[H_2O]^2}{[O_2][H_2]^2}. \\ \text{The reaction will proceed in backward direction, when} \\ \text{a) } Q = K_c \qquad \qquad \text{b) } Q < K_c \qquad \qquad \text{c) } Q < K_c \qquad \qquad \text{d) } Q = 0 \end{array}$

Paragraph for Question Nos. 540 to - 540

Dehydration of salts is an important class of heterogeneous reactions. The salt hydrates during dehydration often dissociate in steps to form a number of intermediate hydrates according to the prevailing pressure of moisture in contact with the solid hydrates. Thus, copper sulphate pentahydrate on dissociation yields trihydrates, monohydrates and then the anhydrous salt in the above order as follows:

540. The equilibrium constant K_p for the equilibrium between pentahydrate and trihydrate is:a) 7.8b) 60.84c) 31.36d) 5.6

Paragraph for Question Nos. 541 to - 541

X, *Y* and *Z* react in the 1:1:1 stoichiometric ratio.

The concentration of *X*, *Y* and *Z* we are found to vary with time as shown in the figure below:

541. Which of the following equilibrium reaction represents the correct variation of concentration with time?

a) $X(g) + Y(g) \rightleftharpoons Z(g)$	b) $X(g) + Y(s) \rightleftharpoons Z(g)$
c) $Z(g) + Y(g) \rightleftharpoons X(g)$	d) $Z(g) + X(g) \rightleftharpoons Y(g)$

Paragraph for Question Nos. 542 to - 542

Two solids *X* and *Y* dissociate into gaseous products at a certain temperature as follows:

i. $X(s) \rightleftharpoons A(g) + C(g)$ and ii. $Y(s) \rightleftharpoons B(g) + C(g)$ At a given temperature, pressure over excess solid 'X' is 40 mm of Hg and total pressure over solid 'Y(s)' is 60 mm of Hg Now, answer the following questions:

542. Ratio of K_p for reaction (i) to that of reaction (ii), is:a) 4:9b) 2:3c) 4:9d) 2:1

Paragraph for Question Nos. 543 to - 543

Pb(IO₃)₂ is a sparingly soluble salt ($K_{sp} = 2.6 \times 10^{-13}$). To 35 mL of 0.15 M Pb(NO₃)₂ solution, 15 mL of 0.8 M

 KIO_3 solution is added, and a precipitate of $Pb(IO_3)_2$ is formed

543. Which is the limiting reactant of the reaction that takes place in the solution?

a) $Pb(IO_3)_2$	b) $Pb(NO_3)_2$	c) KIO ₃	d) Both (a) and (c)
-----------------	-----------------	---------------------	---------------------

Paragraph for Question Nos. 544 to - 544

Acid-base indicator such as methyl orange, phenolphthalein, and bromothymol blue are substances which change colour according to the hydrogen ion concentration of the solution to which they are added Most indicators are weak acids (or more rarely weak base) in which the undissociated and dissociated forms have different and distinct colours. If methyl orange is used as the example and the un-dissociated form is written as *HMO*, then dissociation occurs as shown below:

 $\begin{array}{ccc} HMO & \longrightarrow & H^{\textcircled{\tiny{}}\oplus} & + & MO^{\textcircled{\tiny{}\oplus}}\\ Reaction: & & Colourless & yellow \end{array}$

The indicator should have a sharp colour change with the equivalence point of the titration. Usually the colour change of the indicator occurs over a range of about two pH units. It should be noted that the eye cannot detect the exact end point of the titration. The pK_a of the indicator should be near the pH of the solution at the equivalence point

544. Which of the following situation exists at the equivalence point of a titration?

a) $[H^{\oplus}] = 10^{-7} M$ b) $[H^{\oplus}] = [\overset{\Theta}{O}H]$ c) $[\overset{\Theta}{O}H] = 10^{-7} M$ d) $\frac{[H^{\oplus}]}{\overset{\Theta}{O}H} = 10^{-14}$

Paragraph for Question Nos. 545 to - 545

Acidic solution is defined as a solution whose $[H^{\oplus}] > [OH]$. Base solution has $[OH] > [H^{\oplus}] >$. During acid-base titration, pH of the mixture will change depending on the amount base added. The variation is shown in the form of graph by making plot between pH vs volume of base added. These graphs are known as titration curves 100 mL of 0.1 M H₃A ($K_{a1} = 10^{-3}$, $K_{a2} = 10^{-5}$, $K_{a3} = 10^{-7}$) is titrated against 0.1 M NaOH. The titration curve is as follows

5

45. What is the pH at point .	A?		
a) 3	b) 4	c) 5	d) 6

Paragraph for Question Nos. 546 to - 546

In qualitative analysis, cations of group II as well as group IV both are precipitated in the form of sulphides. Due to low value of K_{sp} of group II sulphides, group reagent is H_2S in the presence of dil. HCl, and due to high value of K_{sp} of group IV sulphides, group reagent is H_2S in the presence of NH₄OH and NH₄Cl. In a solution containing

0.1 M each of Sn²⁺, Cd²⁺, and Ni²⁺ ions, H₂S gas is passed K_{sp} of SnS = 8 × 10⁻²⁹, K_{sp} of CdS = 1 5 10⁻²⁸, K_{sp} of NiS = 3 × 10⁻²¹, K_1 of H₂S = 1 × 10⁻⁷, K_2 of H₂S = 1 × 10⁻¹⁴

546. If H₂S is passed into the above mixture in the presence of HCl, which ion will be precipitated first?

- a) SnS
- c) NiS d) SnS and CdS (both together)

Paragraph for Question Nos. 547 to - 547

The degree of dissociation of weak electrolyte is inversely proportional to the square root of concentration. It is called Ostwald's dilution law

b) CdS

 $\alpha = \sqrt{\frac{K_a}{c}} \text{ As the temperature increases, degree of dissociation will increase}$ $\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}} \text{ if concentration is same}$ $\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{c_2}{c_1}} \text{ if acid is same}$

547. 0.01 M CH3COOOH has 4.24% degree of dissociation, the degree of dissociation of 0.1 M CH3COOH will bea) 1.33%b) 4.24%c) 5.24%d) 0.33%

Paragraph for Question Nos. 548 to - 548

The following solutions are mixed: 500 mL of 0.01 M AgNO₃ the 500 mL solution that was both 0.01 M in NaCl and 0.01 M in NaBr. Given K_{sp} AgCl = 10^{-10} , K_{sp} AgBr = 5×10^{-13}

548. Calculate the $[Cl^{\ominus}]$ in	the equilibrium solution		
a) 5 × 10 ⁻⁵ M	b) 2.5 × 10 ⁻⁵ M	c) 5×10^{-3} M	d) 2.5×10^{-3} M

Paragraph for Question Nos. 549 to - 549

When 1.5 mol of $CuCl_2 \cdot 2H_2O$ is dissolved in enough water to make 1.0 L of solution Given: $K_f CuCl^{\oplus} = 1.0$ (K_f is the formation constant of $CuCl^{\oplus}$)

549. $[Cu^{2+}]$ in solution is			
a) 1.0 M	b) 0.5 M	c) 2.0 M	d) None

Paragraph for Question Nos. 550 to - 550

Acid rain takes place due to combination of acidic oxides with water and it is an environmental concern all over the world. Assuming rain water is uncountaminated with HNO_3 or H_2SO_4 and is in equilibrium with 1.25×10^{-4} atm CO_2 . The Henry's law constant (K_H) is 1.25×10^6 torr. K_{a_1} of $H_2CO_3 = 4.3 \times 10^{-7}$ Given: $K_f CuCl^{\oplus} = 1.0$ (K_f is formation constant of CuCl $^{\oplus}$)

550. What is the pH of	natural rain water?		
a) 5.64	b) 7.00	c) 5.87	d) 7.40

Paragraph for Question Nos. 551 to - 551

In atmosphere, SO_2 and NO are oxidized to SO_3 and NO_2 , respectively, which react with water to give H_2SO_4 and HNO_3 . The resultant solution is called acid rain. SO_2 dissolves in water to form diprotic acid

 $SO_2(g) + H_2O(l) \iff HSO_3^{\ominus} + H^{\oplus}; K_{a1} = 10^{-2}$ $HSO_3^{\ominus} \iff SO_3^{2-} + H^{\oplus}; K_{a2}$ and for equilibrium, $SO_2(aq) + H_2O(l) \iff SO_3^{2-}(aq) + 2H^{\oplus}(aq)$ $K_a = K_{a1} \times K_{a2} = 10^{-9}$ at 300K

551. Which of the following reagents will give white precipitate with the aqueous solution of sulphurous acid?a) BaCl2b) HClc) NaCld) KCl

Paragraph for Question Nos. 552 to - 552

In acid-base titration react rapidly to neutralize each other. Equivalence point is a point at which the acid and the base (or oxidizing agent and reducing agent) have been added in equivalent quantities. The end point is the point at which the titration stops. Since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as possible. The indicator must change colour at a pH close to that of a solution of the salt of the acid and base. Significantly, the pH changes most rapidly near the equivalence point. The exact shape of a titration curve depends on K_a and K_b of acid and base

552. The following curve represents titration curve of *HCl* against KOH. The pH at equivalent point is Examine the titration curve below and answer the question

Paragraph for Question Nos. 553 to - 553

10 mole of NH₃ is heated at 15 atm form 27°C to 347°C assuming volume constant. The pressure at equilibrium is found to be 50 atm. The equilibrium constant for dissociation of NH₃ : $2NH_3 \rightleftharpoons N_2 + 3H_2$; $\Delta H = 91.94 \text{ kJ}$

Can be written as
$$K_p = \frac{P_{N_2} \times (P_{H_2})^3}{(P_{NH_3})^2} (atm)^2$$

553. The degree of dissociation of NH_3 is :a) 61.3%b) 20%c) 48%d) None of these

Paragraph for Question Nos. 554 to - 554

The dissolution of ammonia gas in water does not obey Henry's law. On dissolving, a major portion of ammonia, molecules unite with H_2O to form NH_4OH molecules. NH_4OH again dissociate into NH_4^+ and OH^- ions. In solution therefore, we have NH_3 molecules, NH_4OH molecules and NH_4^+ ions and the following equilibrium exist:

NH₃(g) (pressure *p* and concentration *C*) initially \rightleftharpoons NH₃(*l*) + H₂O \rightleftharpoons NH₄OH \rightleftharpoons NH₄⁺ + OH⁻ Let *C*₁ mol/L of NH₃ pass in solution state a part of which on dissolution in water forms *C*₂ mol/L of NH₄OH. The solution contains *C*₃ mol/L of NH₄⁺ ions

554. Total concentration of ammonia, which can be determined by volumetric analysis is equal to:

a) $C_1 + C_2$	b) $C_1 + C_2 + C_3$	c) $C_1 + C_3$	d) $C_2 + C_3$
----------------	----------------------	----------------	----------------

Integer Answer Type

555. How many of the combinations of reactants will react until more than 98% of the limiting quantity is used up?

a. $CH_3COOH + H_2O$	b. $CH_3COO^{\ominus} + H_2O$	c. $CH_3COO^{\ominus} + H_3O^{\oplus}$
d. CH ₃ COOH + KOH	e. CH ₃ COOK + HCl(aq)	f. $HCl(g) + H_2O$
g. $Cl^{\ominus} + H_3 0^{\oplus}$	h. Cl $^{\ominus}$ + H ₂ O	i. $\overset{\circledast}{\mathrm{NH}}_4 + \mathrm{KOH}$
j. $NH_4 + OH$	k. NH ₃ + H ₂ O	l. NH ₃ + H ₃ 0 $⊕$
$m. NH_3 + HCl(aq)$	n. K [⊕] + OH	

556. One litre of 1 *M* solution of an acid H*A*($K_a = 10^{-4}$ at 25°C) has pH = 2. It is diluted by water so that new pH becomes double. The solution was diluted 5 × 10^{*a*} mL. The value of *a* is...

557. How many of the following are strong electrolysis?

a. NH ₃	b. NH ₄ Cl	с. СН ₃ СООН	d. CH ₃ COONa
e. HCl	f. NaCl		

- 558. For the reaction $A + B \rightleftharpoons C$, the rate constants for the forward and the reverse reactions are 4×10^2 and 2×10^2 respectively. The value of equilibrium constant *K* for the reaction would bea) 1b) 2c) 3d) 4
- 559. What is the % dissociation of H_2S , if one mole of H_2S is introduced in 1 litre vessel at 1000 K, if K_c for the reaction :

 $2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$ is 4×10^{-6}

- 560. How many of the following combinations of reactants will react less than 2% of theoretically possible extent?
 - a. $CH_3COOH + H_2O$ b. $CH_3COO^{\ominus} + H_2O$ c. $CH_3COO^{\ominus} + H_3O^{\oplus}$

	d. $CH_3COOH + KOH$	H e	e. $CH_3COOK + HCl(aq)$	f. $HCl(g) + H_2O$	
	g. $Cl^{\ominus} + H_3 O^{\oplus}$]	h. Cl $^{\ominus}$ + H ₂ O	i. NH ₄ + KOH	
	\tilde{J} . $\tilde{NH}_4 + \tilde{OH}$]	k. NH ₃ + H ₂ O	l. NH ₃ + H ₃ 0 $⊕$	
	m. $NH_3 + HCl(aq)$		n. K [⊕] + OH		
561	. How many in a. NI	H ₄ Cl	b. NaOH	с. HC ₂ H ₃ O ₂	d. NaCl
	e. NH ₃ + NH ₄ Cl	f. NH ₃	g. HCl	h. HClO ₄	
	i. (NH ₄) ₂ SO ₄	j. K ₂ SC) ₄		
	are basic?				
F (D)	100 1 60 00 14	1			

562. 100 mL of 0.20 M weak acid HA is completely neutralised by 0.20 M NaOH. K_b for A^- is 10^{-3} , the pOH at the equivalence point is...

563. If $K_p = K_c \times [RT]^{\Delta n}$, for the reaction $2CO_2(g) + 2CaCO_3(s) \rightleftharpoons 2CaC_2(s) + 5O_2(g)$; Δn is equal to

- 564. Calculate the pH at equilibrium point when a solution of 10^{-6} M CH₃COOH is titrated with a solution of 10^{-6} M NaOH. K_a for acid 2 × 10^{-5} (p K_a = 4.7) (Answer given in whole number)
- 565. An aqueous solution of 0.24 *M* aniline ($K_b = 4.166 \times 10^{-10}$) is mixed with NaOH solution to maintain anilinium ion concentration to $1 \times 10^{-8} M$. The pOH of NaOH solution used was ...

566. How many of the following salts:

- ii. PhCOONH₄ i. $NH_4C_2H_3O_2$ iii. $NaC_2H_3O_2$ iv. NH_4Cl vii. KCl
- v. MgS vi. Na_2SO_4
- a) Hydrolyse more in water at 25°C
- b) Do not hydrolyse
- c) Both cation and anion hydrolyse to the same extent
- d) Both cation and anion hydrolyse to different extent
- 567. 10 mL of 0.25 M H₂SO₄ is completely neutralised by 0.125 M solution of NH₃. The pH of the solution at the equivalence point is..., if K_b for NH₃ = 10⁻⁵
- 568. Conjugate base of a weak acid has $K_b = 10^{-9}$. The equilibrium constant for the reaction of acid with strong base is ...
- 569. The rate of disappearance of *A* in the reaction at equilibrium $A \rightleftharpoons B$ is given by

 $-\frac{d[A]}{dt} = 2 \times 10^{-2} [A] - 4 \times 10^{-3} [B]$ at 300 K.

The equilibrium constant *K_c* is

- 570. For a reversible reaction $A \rightleftharpoons B$, $\log_{10} K = 1.737 \frac{2500}{T}$ (in litre atm unit). The standard entropy, change to the colsest value in cal K^{-1} is.....
- 571. A certain buffer solution equals concentration of X^- and HX, K_b for X^- is 10^{-10} . The pH of buffer is...
- 572. *K* of pure water is 10^{-12} at 60°C. The pH of pure water at 60°C is...
- 573. Given below are two reversible reactions :

$$A + B \rightleftharpoons Z$$
; $K_{c_1} = 24$
 $2B + C \rightleftharpoons 2Y$; $K_{c_2} = 16$
The equilibrium constant K_c for the reaction,

 $A + Y \rightleftharpoons Z + \frac{c}{2}$ is

- 574. The equilibrium constant of a strong acid (HA) with weak base BOH is 10¹¹. The pH of 0.10 M solution of BA is...
- 575. For a reversible reaction $\frac{K_p}{K_c} = (RT)^{\Delta n}$ at 300 K. If $K_p / K_c = 14941.5$ (in litre atm unit) for a given reaction then Δn for the reaction is(given log $K_p / K_c = 4.17$ and log 24.93 = 1.39).
- 576. In a reaction at equilibrium 'x' moles of the reactant, A decompose to give 1 mole each of B and C. The experimental studies suggest that the decomposition of A at equilibrium is independent of initial concentration of A. Calculate 'x'.
- 577. The plot of $\ln K vs.\frac{1}{r}$ shows an intercept of $\ln a = 4$. The change in standard entropy for the reaction at

equilibrium iscal

578. In the reaction $A + B \rightleftharpoons AB$, if the concentration of A and B is increased by a factor of 2, it will cause the equilibrium concentration of *AB* to change to a) Two times to original value b) Three times to original value d) Zero c) Same 579. How many of the following 0.1 M solutions are acidic? a. NH₄Cl b. NaOH c. $HC_2H_3O_2$ d. NaCl e. $NH_3 + NH_4Cl$ f. NH_3 g. HCl h. HClO₄ i. $(NH_4)_2SO_4$ j. K₂SO₄ 580. Negative slope of the line drawn as In K_c vs. $\frac{1}{r}$ for a given reaction is -1. The heat of reaction iscal. 581. A reaction attains equilibrium, when the free energy change is a) 1 b) 2 d) 0 c) 3 582. For a homogeneous chemical reaction, $K_p = K_c$ when d) $\Delta n = \infty$ a) $\Delta n = 0$ b) $\Delta n = 1$ c) $\Delta n = 2$ 583. How many in a. NH₄Cl b. NaOH c. $HC_2H_3O_2$ d. NaCl $e. NH_3 + NH_4Cl$ f. NH₃ g. HCl h. HClO₄ i. $(NH_4)_2SO_4$ j. K₂SO₄ are neutral? 584. The equilibrium moles obtained during experiment for the given reaction in 1 litre vessel are shown below the reactants and products. $2A(g) + B(g) \rightleftharpoons 3C(g) + 3D$ Mole at equilibrium 16 4 8 4 If reaction in forward direction is to be made, the initial conc. of reactants and products should be such

that reaction Quotient should be less than

585. What is the sum of magic numbers of all solutions given below: (Integer value is between 50 and 60) (Magic number of a solution = pH of solution × Weight factor)

(· c)	I
	Solution	Weight factor
Ι	0.1 M HCN	2
	$(K_a = 10^{-10})$	
Π	0.1M CH ₃ COOH	1
	+ 0.1M CH ₃ COONa	
	$(K_a = 10^{-5})$	
III	0.1 M HCl	3
IV	0.01 M NH ₄ OH (<i>K</i> _b	2
	$=10^{-5}$)	
V	0.01 M NaOH	0.5
VI	10 mL of 0.01 M	1
	CH ₃ COOH + 10 mL	
	of 0.1 M NH ₄ OH	
m	1 1 1 1 1 4 1 4	

586. Two weak acids H*A* and H*B* have same pH when their concentration ratio is 3 : 1. The ratio of the dissociation constants of H*B* and H*A* is...

c) 3

c) 3

587. At equilibrium, the value of equilibrium constant *K* is

b) 2

d) 0

d) 4

- 588. K_{sp} of $M(OH)_2$ is 5 × 10⁻¹⁶ at 25°C. The pH of its saturated solution at 25°C is...
- 589. If ΔG° for a reaction is 8290.8 cal. The K_c for the reaction 300 K is 10^n . The value of n is:
- 590. How many of the following cations belong to group IIA, III, IV, and V only in qualitative salt analysis? Sn²⁺, Hg₂²⁺, Pb²⁺, Zn²⁺, Cu²⁺, Cr³⁺, As³⁺, Mg²⁺, Sb³⁺
- 591. The equilibrium constant for the reactions

 $A + B \rightleftharpoons AB$ is 0.5 at 200 K. The equilibrium constant for the reaction $AB \rightleftharpoons A + B$ would be

a) 1 b) 2

a) 1

- 592. One mole of ethanol is treated with one mole of ethanoic acid at 25°C. Half of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be a) 1 b) 2 c) 3 d) 4 593. K_{sp} of SrF₂ is 1×10^{-10} . The solubility of SrF₂ in 0.1 *M* NaF is $1 \times 10^{-a}M$. The value of *a* is...

7.EQUILIBRIUM

: ANSWER KEY :															
1)	С	2)	а	3)	С	4)	d	189)	b	190)	d	191)	d	192)	а
5)	а	6)	b	7)	b	8)	a	193)	d	194)	b	195)	с	196)	С
9)	С	10)	а	11)	d	12)	a	197)	а	198)	с	199)	с	200)	a
13)	b	14)	С	15)	d	16)	С	201)	а	202)	d	203)	b	204)	a
17)	а	18)	b	19)	С	20)	b	205)	С	206)	а	207)	d	208)	d
21)	С	22)	а	23)	С	24)	d	209)	с	210)	b	211)	с	212)	a
25)	С	26)	d	27)	b	28)	С	213)	а	1)	с	2)	a,b,c,d	3)	
29)	b	30)	С	31)	а	32)	a	_	b,d	4)	c,d,e	2		2	
33)	b	34)	а	35)	b	36)	С	5)	a,b,c	6)	a,b,c	7)	b,c,d	8)	
37)	d	38)	С	39)	С	40)	d	_	b,c						
41)	d	42)	а	43)	b	44)	b	9)	c,d	10)	c,d	11)	a,b,c	12)	
45)	а	46)	С	47)	b	48)	С		b,d						
49)	d	50)	а	51)	b	52)	a	13)	a,b,c	14)	a, b, c	15)	a,c	16)	
53)	С	54)	С	55)	b	56)	d		a, b, c						
57)	а	58)	d	59)	b	60)	С	17)	a,d	18)	a,b,c	19)	b,c,d	20)	
61)	С	62)	d	63)	С	64)	С		a,b,c						
65)	а	66)	b	67)	d	68)	d	21)	a,b	22)	a,b	23)	a,b	24)	
69)	b	70)	а	71)	b	72)	e		a,c,d						
73)	а	74)	b	75)	а	76)	С	25)	a,b,d	26)	a,b	27)	a,b,c	28)	
77)	b	78)	d	79)	d	80)	b		a,c						
81)	d	82)	а	83)	b	84)	b	29)	a,b,d	30)	a,c	31)	a,c,d	32)	
85)	b	86)	а	87)	а	88)	b		a,b,d						
89)	С	90)	b	91)	b	92)	d	33)	c,d	34)	b	35)	b,c,d	36)	
93)	С	94)	С	95)	d	96)	b		a,b,c						
97)	а	98)	С	99)	b	100)	a	37)	b, c	38)	b,c	39)	b,e	40)	
101)	d	102)	С	103)	С	104)	d		a, c						
105)	b	106)	С	107)	а	108)	d	41)	a,b	42)	a,b,c	43)	a, d	44)	
109)	b	110)	С	111)	d	112)	С		a,b,c,d						
113)	а	114)	b	115)	d	116)	d	45)	a,b	46)	b,c,d	47)	а	48)	
117)	b	118)	b	119)	d	120)	a		a, b, c,	d					
121)	С	122)	а	123)	С	124)	С	49)	a, c, d	50)	a,b,c,d	51)	a,b,c	52)	
125)	С	126)	d	127)	a	128)	b		b,d		_				
129)	b	130)	b	131)	a	132)	b	53)	a,c,d	54)	c, d	55)	d	56)	
133)	d	134)	d	135)	d	136)	C		a,b,d			-		<i>(</i> 0)	
137)	а	138)	b	139)	С	140)	b	57)	c,d	58)	a,b,c	59)	d	60)	
141)	а	142)	С	143)	a	144)	d		b,c,d	(0)	,	(0)		<i>(</i> 1)	
145)	a	146)	a	147)	a	148)	a	61)	b,c,a	62)	b, c	63J	a,b,c,d	64J	
149)	d	150)	b	151)	C	152)	b		a, b, c	(α)				(0)	
153)	b	154)	а	155)	a	156)	a	65)	a,b,c	66)	a, b, d	67)	a,b	68J	
157J	a	158)	a	159)	D	16UJ	a L	60)	a,D,C	70)	a d	71)	ha	70)	
101J	a	102J	a J	103J	a	104J	ם ג	09]	a,D	70)	c, a	/1J	D, C	723	
105J	а л	100J	a	107J	C	108J	a	72)	a,D,C,A	74)	a h a	マビノ	a h a	76)	
109J 179)	u	174)	d	1/1) 175)	С Л	1/4j 176)	d A	/3]	c,u c d	/4J	a,D,C	/əJ	a,D,C	70J	
177)	ť	1/4J 170)	U h	1/5J 170)	u L	1/0J 100)	u	77)	c,u	70)	ad	70)	2	0 0)	
1//J	d 2	1/0J 102)	u K	1/9J 102)	U C	10UJ 1QA)	d d	//J	a,C a h c	/ 0J	a, u	/9]	d	003	
101J	d C	104J 104)	u h	103J 107)	ι n	104J 100)	u	Q1)	a,u,t a d	Q7)	had	Q2)	aha	Q1)	
102]	C	100]	IJ	10/J	d	100]	d	01)	a, u	04J	D , C, U	osj	a,D,C	04J	
	a,b,c							25)	а	26)	a	27)	с	28)	С
------------	------------------	------------	--------------	------------	----------	------------	--------	------------	------------------	------------	------------	------------	---------------------	------------	--------
85)	a,c,d	86)	a,b,d	87)	a,c	88)		29)	с	30)	а	31)	а	32)	d
	a,b,d							33)	e	34)	с	35)	с	36)	а
89)	b,c,d	90)	с	91)	a,b,c,d	92)		37)	а	38)	d	39)	а	40)	a
-	a, b	-		-		-		41)	e	42)	с	43)	с	44)	С
93)	a, b, c	94)	b, c	95)	b,c,d	96)		45)	а	46)	d	47)	а	48)	С
2	c, d	2		2		2		49)	а	50)	с	51)	с	52)	a
97)	a,b	98)	a, c, d	99)	a,b	100)		53)	а	54)	d	55)	d	56)	a
2	a, b, c,	d		2		-		57)	а	58)	с	59)	b	60)	d
101)	a,b,c,d	102)	b.c	103)	a,b,c,d	104)		61)	с	62)	d	63)	с	64)	а
,	b.d	,		,		,		65)	а	66)	b	67)	b	68)	а
105)	b.c.d	106)	a, b, c	107)	a,c	108)		69)	d	70)	а	71)	с	72)	с
,	a,b,c	,		,		,		73)	с	74)	с	75)	с	76)	с
109)	b. d	110)	a.b	111)	a.b.c	112)		77)	а	78)	с	79)	а	80)	d
,	b.c.d	,	,	,	,,-	,		81)	b	82)	c	83)	a	84)	a
113)	b.d	114)	a.b.c	115)	a.b	116)		85)	C	86)	c	87)	а	88)	e
	a. d	,						89)	b	90)	a	91)	- b	92)	c
117)	h.d	118)	a.b.c	119)	a.b.d	120)		93)	a	94)	u b	95)	d	96)	a
	a h d	110)	ujbje		ujbju			97)	c	98)	c c	99)	a	100)	a
121)	a, d	122)	a. h. d	123)	a.b.c.d	124)		101)	d	102)	d	103)	e	104)	a
;	a.b.c.d	,	u, b, u	120)	u)5)0ju			105)	u b	106)	c	1)	a	2)	c
125)	a,b,c,u a.b	126)	b.c.d	127)	a.b.c	128)		100)	3)	<u>а</u>	4)	-) d	u	_,	Ũ
120)	c.d	120)	b)e)u		u)0)0	120)		5)	a a	6)	b	- 7)	b	8)	С
129)	a. c	130)	ac	131)	a d	132)		9)	c	e) 10)	c c	11)	b	12)	h
	a.h.c	100)	uje	101)	u) u	10-)		13)	a	14)	a	15)	a	16)	a
133)	a,s,e a.c	134)	ahc	135)	ac	136)		17)	a	18)	c	19)	a	20)	c
100)	h.c	101)	ujbje	100)	uje	100)		21)	u b	22)	d	23)	d	24)	a
137)	a, h, c	138)	h.d	139)	h.c.d	140)		25)	a	26)	c	27)	u h	28)	h
1075	ahc	100)	bju	107)	bjeju	110)		29)	u h	30)	e h	1)	a	2)	d
141)	a d	142)	ahc	143)	h c d	144)			3)	h	4)	-) h	u	-)	u
111)	h d	112)	ajbje	1155	bjeju	111)		5)	3) a	6)	h	5 7)	h	8)	а
145)	b,u h c	146)	a h	147)	hc	148)		9)	a h	10)	a	7) 11)	b h	12)	a
1155	ahd	110)	ajb	11/)	bje	110)		2)	ah	10)	u	11)	U	12)	
149)	a,b,u ahd	150)	a d	151)	h c d	152)		13)	а, Б а	14)	d	15)	C	16)	h
1175	a, b, a a c d	150)	u, u	191)	bjeju	152)		17)	u C	18)	u a	19)	c h	20)	h
153)	ahcd	154)	a h	155)	ahc	156)		21)	t h	22)	a c	23)	a	20)	C
100)	a h	101)	ujb	100)	ujbje	100)		25)	a	26)	c c	27)	a	28)	c
157)	a,b ahc	158)	ac	159)	a h d	160)		29)	a	30)	c h	1)	8	20,	6
1575	a,b,c a h d	150)	ajc	157)	a,D,u	100)		27)	a 3)	30) 4	4)	h	0	2)	U
161)	a, b, u a h c	162)	a (163)	h c d	164)	d	5)	3) 2		+) 6	5 7)	2	8)	2
165)	a,b,c a h d	166)	h c	167)	b,c,d	168)	u	9)	2	10)	7	7) 11)	2	12)	-
100)	h c d	100)	b , c	1075	bjeju	100)		2)	3711	10)	,	11)	-	12)	
169)	b,c,u h d	170)	a h d	171)	b a c	172)		13)	5,2,1,1	14)	9	15)	5	16)	ß
107)	o,u ahc	170)	a, b, u	1/1)	a, c, u	172)		13) 17)	J 4	19)	6	10)	5	20)	6
173)	a, b, c	174)	2.0	175)	hc	1)	c	17) 21)	т 2	10j 22)	2	17) 22)	0 Q	20)	0 1
1755	a, D, C, u 2)	1/4j c	a,c 2)	175)	1) 1)	1) h	ι	21J 25)	5	26)	2	23)	d d	24J 28)	a n
E)	2j h	(6)	3) c	נ 7)	4) d	0) U	6	23)	ე ე	20)	2 1	27J	u 54	20J 22)	а 2
5) 0)	U C	0) 10)	เ ว	7) 11)	u c	0J 12)	ι h	49J 221	Э	30J 341	т 0	32) 21)	5 4 6	34J 36)	Л
2) 12)	с d	10J 14)	a h	11) 15)	ι 2	14J 16)	U	33J 271	a h	28J 24J	2	20J 22J	0 Q	305	4
13J 17)	u	14J 10)	u d	10)	a	10J 201	d	373	U	30J	a	375	U		
1/J 21)	a	10J 22)	u	12) 72)	d C	20J 24)	C L								
41J	d	22J	d	23J	ι	24J	U								

7.EQUILIBRIUM

: HINTS AND SOLUTIONS :

9

11

1 (c)

On the basis of precipitation concept an electrolyte will be precipitated firstly whose ionic product is exceeded to its solubility product. In similar ionic conc. of cations, an electrolyte is precipitated firstly for which $K_{sp}|_8$ is lower. In these electrolytes MnS, FeS, ZnS and HgS, HgS is precipitated firstly.

2 (a)

Salt of S_A/S_B do not undergo hydrolysis. So Na_2SO_4 is a salt of S_A/S_B

3 (c)

Precipitation starts when $Q_{sp} = K_{sp}$

$$K_{\rm sp} = [{\rm Ca}^{2+}] [{\rm OH}]^2$$

$$: [OH] = \left(\frac{4 \times 10^{-6}}{0.01}\right)^{1/2} = 2 \times 10^{-2}$$

pOH = $-\log 2 + 2$
pH = $14 - \log 2 + 2 = 12 + \log 2$
(d)

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta n_{\rm g} = 2 - 4 = -2$

$$K_p = K_c (RT)^{\Delta n}$$

or $1.44 \times 10^{-5} = K_c \times (0.0821 \times 773)^{-2}$

or
$$K_c = \frac{1.44 \times 10^{-5}}{(0.0821 \times 773)^{-2}}$$

5 (a)

$$A(g) + 2B(g) \rightleftharpoons C(g)$$

At eq. 0.06M 0.12 M 0.216M
$$K = \frac{[C]}{[B^2][A]} = \frac{0.216}{0.12 \times 0.12 \times 0.06} = 250$$

6 (b)

> $CH_3COOH \longrightarrow CH_3COO^{\Theta} + H^{\oplus}$ $CH_3COONa \longrightarrow CH_3COO^{\Theta} + Na^{\oplus}$

Due to common ion (CH₃COO $^{\ominus}$), the suppression of ionization of CH₃COOH takes place, so the concentration of H^{\oplus} decreases, so pH increases. So pH must be more than 4.3

7 **(b)**

At half neutralization,

 $[B^{\oplus}] = [BOH]; [Salt] = [base]$ $pOH = pK_b + \log \frac{[B^{\textcircled{e}}]}{[BOH]}$ $pOH = pK_b$, (pH = 8, pOH = 6) $\therefore pK_{h} = 6, K_{h} = 1 \times 10^{-6}$ (a) $2NH_3 \rightleftharpoons NH_4^{\oplus} + NH_2^{\Theta}$ $[\mathrm{NH}_4^{\oplus}] = [\mathrm{NH}_2^{\Theta}] = \sqrt{K_{\mathrm{NH}_2}} = 10^{-15} \mathrm{M}$ 1 dm^3 of solution contains 10^{-15} moles = $6.02 \times$ $10^{23} \times 10^{-15}$ molecules of NH₂ $^{\ominus}$ 1 mm 3 of solution contains 6.02 \times 10 23 \times 10 $^{-15}$ \times 10^{-6} $602 \text{ NH}_2^{\ominus}$ ions (c) $\alpha = 50\% = \frac{50}{100} = 0.5$ $N_2 + 3H_2 \rightleftharpoons 2NH_3$ Initial 1 3 Final $1 - \alpha \quad 3 - 3\alpha$ 2α Total moles = $1 - \alpha + 3 - 3\alpha + 2\alpha$ $= 4 - 2\alpha$ $= 4 - 2 \times 0.5 = 3$ 10 (a) pH stands for Fench word puissance de hydrogen which means power of hydrogen ions (d) OCOCH₃ (Acetyl salicylic acid) (Aspirin) соон Aspirin is a weak acid ad its ionization is suppressed due to common ion effect in acidic medium, i.e., in stomach. Therefore, aspirin is unionized in stomach whereas in small intestine its pH is basic. So the ionization of aspirin increases, that is why it is completely ionized in small intestine

Base in intenstine (NaOH) \longrightarrow Na^{\oplus} + $\overset{\Theta}{O}$ H

 $H^{\textcircled{\oplus}} \text{ and } \overset{\Theta}{OH}$ combines and aspirin forms sodium salt

Therefore, ionization of aspirin increases

12 **(a)**

In acidic medium, H₂S is very feebly ionised giving very small concentration of sulphide ion for precipitation. Therefore, the most insoluble salts CuS and HgS are precipitated only.

13 **(b)**

 $N_2 + O_2 \rightleftharpoons 2NO$ – Heat

The above equation shows that the reaction is endothermic. Endothermic reactions are forward in forward direction at high temperature

14 **(c)**

 $N_{2}O_{4} \rightleftharpoons 2NO_{2}$ Initial 1 0 Final 1 - x 2x 1 - x = 0.2 mol $2x = 2 \times 10^{-3} \text{ mol}$ $[N_{2}O_{4}] = \frac{0.2}{2} = 0.1M [NO_{2}] = \frac{2 \times 10^{-3}}{2}$ $= 10^{-3}M$ $K = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{(10^{-3})^{2}}{0.1} = 10^{-5}$

15 **(d)**

 $A_2B_3 \rightleftharpoons 2A^{3+} + 3B^{2-}$ $K_{\rm sp} = (2S)^2(3S)^3 = 108S^5 = 108 \times (10^{-4})^5$ $= 108 \times 10^{-20} = 1.08 \times 10^{-20} = 1.08 \times 10^{-18}$ (c)

16 **(c)**

It is a case of simultaneous solubility of salts with a common ion. Here solubility product of CuCl is much greater than that of AgCl, it can be assumed that Cl⁻ in solution comes mainly from CuCl.

⇒
$$[Cl^{-}] = \sqrt{K_{sp}(CuCl)} = 10^{-3} \text{ M}$$

Now for AgCl : $K_{sp} = 1.6 \times 10^{-10}$
 $= [Ag^{+}][Cl^{-}]$
 $= [Ag^{+}] \times 10^{-3}$
 $\Rightarrow [Ag^{+}] = 1.6 \times 10^{-7}$
18 **(b)**
i. S²⁻ + S → S₂²⁻ ...k₁
ii. S₂²⁻ + S → S₂²⁻ ...k₂

The equation constant for the reaction,

iii. $S_3^{2-} \rightarrow S^{2-} + 2S$,

Since eq. (iii) is obtained by reversing and adding equations (i) and (ii)

$$\begin{split} \mathrm{NH}_3 + \mathrm{H}_2\mathrm{O} &\longrightarrow \mathrm{NH}_4^{\oplus} + \overset{\Theta}{\mathrm{OH}} \\ \mathrm{H}_2\mathrm{O} + \mathrm{H}_2\mathrm{O} &\longrightarrow \mathrm{H}_3\mathrm{O}^{\oplus} + \overset{\Theta}{\mathrm{OH}} \end{split}$$

Due to common ion $[OH^{\ominus}]$, the self ionization of H_2O is suppressed so the concentration of H_3O^{\oplus} is decreased

20 **(b)**

Since *K* increases on increasing temperature, so the reaction will go forward by increasing temperature and hence is endothermic

21 **(c)**

 $CH_3COOH + NaOH → CH_3COONa + H_2O$ ⇒ At equivalence point, a salt of weak acid, strong base is formed

$$\Rightarrow pH = 7 + \frac{1}{2}(pK_a + \log C)$$

Here $C = \text{concentration of salt} = \frac{0.2 \times 500}{500 + 500} = 0.1 \text{ M}$ [Check that 500 mL of CH₃COOH is also required]

$$\Rightarrow$$
 pH = 7 + $\frac{1}{2}$ (4.74 + log 0.1) = 8.87

22 **(a)**

 $\Delta n = 2 - 1 = 1$

a. That is, with the decrease of pressure, reaction shifts towards right, i.e. proportions of NO_2 increases. Statement (a) is correct

b. Value of *K* increase with increase of temperature and hence reaction is endothermic i.e., $\Delta H = +ve$

Hence statement (b) is incorrect

c.
$$K_p = \frac{[p_{NO_2}]^2}{[p_{N_2O_4}]} = \frac{atm^2}{atm} = atm$$

Hence statement (c) is incorrect
d. $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
Initial 1 atm 0
At eq. $1 - \alpha$ 2α
 $K_p = \frac{(2\alpha)^2}{1 - \alpha} = 1.7 \times 10^3$ at 500 K
[$(1 - \alpha \approx 1)$, since α is small]
 $4\alpha^2 = 1.7 \times 10^3$

$$\alpha_1 = \sqrt{\frac{1.7 \times 10^3}{4}}$$

 $\alpha = 0.206 \times 10^2$

When the pressure was 1 atm, now let it be 2 atm (100% increase)

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ Initial 2 0 At eq. 2 - α 2 α $K_p = \frac{(2\alpha)^2}{2 - \alpha} = 1.7 \times 10^3$ at 500 K [(2 - $\alpha \approx 2$), since α is small]

$$\alpha_{2} = \sqrt{\frac{1.7 \times 10^{3}}{2}}$$
$$\frac{\alpha_{2}}{\alpha_{1}} = \sqrt{\frac{1.7 \times 10^{3} \times 4}{2 \times 1.7 \times 10^{3}}} = \sqrt{2} = 1.4$$

∴ When the pressure is increased 100% the decrease in α is 1.4 times which is not 50%. Hence statement is wrong e. K_p at 600 K = 1.78 × 10⁴ N₂O₄(g) \rightleftharpoons 2NO₂(g) $\Delta n = 2 - 1 = 1$ Since by decrease of pressure reaction goes forward, i.e., more of N₂O₄ will dissociate. It means by decreasing pressure dissociation of N₂O₄ increases.

Hence, the statement is wrong

23 (c)

The dissociation constant of weak acid and its conjugate base are related by an expression $pK_a + pK_a - pK_w$ i.e., $pK_a + 10.83 = 14$ or $pK_a = 14 - 10.83 = 3.17$ or K_a = antilog (-3.17) = 6.76 × 10⁻⁴

24 (d)

Salt	Solubility	Solubility
	product	
MX	$S_1^2 = 4.0 \times$	$S_1 = 2 \times$
	10^{-8}	10^{-4}
MX_2	$4S_2^3 = 3.2 \times$	$S_2 = 2 \times$
	10^{-14}	10^{-5}
M_3X	$27S_3^4 = 2.7 \times$	$S_3 = 1 \times$
	10^{-15}	10^{-4}

Thus, solubility order= $MX > M_3X > MX_2$ 26 (d)

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

Initial 1 0 0
Final 1-
$$\alpha$$
 α α
Partial pressure $=\frac{1-\alpha}{1+\alpha}P$ $\frac{\alpha}{1+\alpha}\cdot P$ $\frac{\alpha}{1+\alpha}\cdot P$
Total mole= $1-\alpha+\alpha+\alpha=1+\alpha$
 $K_p = \frac{\frac{\alpha}{1+\alpha}P\cdot\frac{\alpha}{1+\alpha}\cdot P}{\frac{1-\alpha}{1+\alpha}P} = \frac{\alpha^2 P}{1-\alpha^2}$

27 **(b)**

 CH_3NH_2 (base) on reaction with HCl (acid) to give a salt of weak base and strong acid as $CH_3NH_3^+Cl^-$

 $CH_3NH_2 + HCl \rightarrow CH_3NH_3^+Cl^-$

At=0 0.1 mol 0.8 mol 0.08 mol After reaction (0.1-0.08)=0.02 mol So, it acts as basic buffer solution due to presence of base and salt in solution of 1 L. $pOH = -\log_{10} K_b + \log_{10} \frac{[salt]}{[base]}$ $pOH = -\log_{10} K_b + \log_{10} \frac{[CH_3NH_3^+Cl^-]}{[CH_3NH_2]}$ $= -\log_{10} 5 \times 10^{-4} + \log_{10} \frac{[0.08]}{[0.02]}$ $= -\log_{10} 5 + 4\log_{10} 10 +$ $\log_{10} \frac{[0.08]}{[0.02]}$ = -0.699 + 4 + 0.602 = 3.903pH = 14 - pOH= 14 - 3.903 $= 10.097 = -\log_{10}[\mathrm{H}^+]$ $[H^+] = 8.0 \times 10^{-11}$... 28 (c) $H_2S \iff 2H^{\oplus} + S^2$ $\therefore K_a = \frac{[\mathrm{H}^{\textcircled{\bullet}}]^2 [\mathrm{S}^{2-}]}{[\mathrm{H}_2 \mathrm{S}]}$ $10^{-21} = \frac{0.1 \times 0.1 \times [S^{2-}]}{0.1}$ $\therefore [S^{2-}] = 10^{-20} M = 10^{-20} \times 6.023 \times 10^{23}$ $= 6.023 \times 10^3$ ions 29 (b) $CH_3COOH + H_2O \Longrightarrow CH_3COO^{\Theta} + H_3O^{\oplus}$ Initial 1 0 0 Final $C(1-\alpha)$ Сα Сα C = Decinormal = 0.1 N $\alpha = 1.3\% = \frac{1.3}{100} = 1.3 \times 10^{-2}$ $[H_30^{\oplus}] = C\alpha = 0.1 \times 1.3 \times 10^{-2} = 1.3 \times 10^{-3}$ $pH = -\log(1.3 \times 10^{-3}) = -\log 1.3 - \log 10^{-3}$ = -0.11 + 3 = 2.8930 (c) $[H_3O^{\oplus}] = 0.01 = 10^{-2} M$ $pH = -\log(10^{-2}) = 2$ 31 (a) $aX + H_2 0 \rightleftharpoons NaOH + HX$ In it HX is weak acid, so NaX is a salt of weak acid and strong base. :. Hydrolysis constant of NaX

$$K_h = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{10^{-5}} = 1 \times 10^{-9}$$

For this type of salt

$$K_h = \frac{h^2}{V} = Ch^2$$

h = degree of hydrolysis

$$1 \times 10^{-9} = 0.1 \times h$$

∴ or

$$h^{2} = \frac{1 \times 10^{-9}}{0.1} = 1 \times 10^{-8}$$
$$h = 1 \times 10^{-4}$$

∴ % of degree of hydrolysis on NaX salt
=
$$1 \times 10^{-4} \times 100 = 1 \times 10^{-2} = 0.01\%$$

32 **(a)**

With weak base and strong acid, phenolphthalein does not act an indicator

33 **(b)**

a. HOCl, it is S_A . So it is acidic

b. NaOCl, it is salt of NaOH + HOCl (Salt of S_B/W_A) \therefore It is basic

c. NaHSO₄ (Salt of S_A/S_B NaOH + H₂SO₄), it is neutral

d. NH_4NO_3 (Salt of $W_B/S_A NH_3 + HNO_3$), it is acidic

34 **(a)**

 $(Assume [Al^{3+}] = [Zn^{2+}])$

The compound which have less K_{sp} value will be precipitated first. Since the K_{sp} of Al(OH)₃ is less than K_{sp} of Zn(OH)₂, So former is precipitated

Note: In such questions no need to

calculating the exact value only approximation is required

$$\stackrel{\Theta}{[OH]}_{\min} \text{ for } Al^{3+} = \left(\frac{K_{sp} \text{ of } Al(OH)_3}{[Al^{3+}]} \right)^{1/3}$$

$$\stackrel{\Theta}{[OH]}_{\min} \text{ for } Zn^{2+} = \left(\frac{K_{sp} \text{ of } Zn(OH)_2}{[Zn^{2+}]} \right)^{1/2}$$

35 **(b)**

Higher the K_{sp} , more soluble is that compound in H₂O

 $\therefore K_{\rm sp}$ of FeS (11 × 10⁻²⁰) is highest

So it is more soluble and has maximum solubility in $\mathrm{H}_{2}\mathrm{O}$

36 **(c)**

$$K = \frac{R_f}{R_b} = \frac{0.25}{5000} = 5.0 \times 10^{-5}$$

a. $HgCl^{\oplus} + Cl^{\ominus} \rightarrow HgCl_2 \dots K_1$ b. $HgCl_2 + Cl^{\ominus} \rightarrow HgCl_3^{\ominus} \dots K_2$ The eq. constant (k) for the reaction, $2HgCl_2 \rightarrow HgCl^{\oplus} + HgCl_3^{\ominus}$ Can be obtained by reversing equation (a) and adding to equation (b)

$$K = \frac{1}{K_{1}} \times K_{2} = \frac{K_{2}}{K_{1}} = \frac{8.9}{3 \times 10^{6}} \approx 3 \times 10^{-6}$$
38 (c)
BOH $\implies B^{\oplus} + \cancel{O}H \ (K_{b} = 2.5 \times 10^{-6})$
 $H^{\oplus} + \cancel{O}H \implies H_{2}O \ \left(K = \frac{1}{K_{w}}\right)$
BOH + H^{\oplus} \implies B^{\oplus} + H_{2}O \ K' = ?
 $\therefore K' = K_{b} \times \frac{1}{K_{w}} = \frac{2.5 \times 10^{-6}}{10^{-14}} = 2.5 \times 10^{8}$
39 (c)

When equal volumes of BaCl₂ and NaF solutions are mixed. (volume becomes double and concentration is halved)

$$[Ba^{2+}] = \frac{10^{-3}}{2}, [F^{\Theta}] = \frac{2 \times 10^{-2}}{2} = 10^{-2}$$

a. Q_{sp} of $BaF_2 = [Ba^{2+}] [F^{\Theta}]^2$
 $= (0.5 \times 10^{-3})(10^{-2})^2 = 5 \times 10^{-6}$
 $Q_{sp} > K_{sp} (6 \times 10^{-6} > 1.710^{-7})$ will be precipitated.

$$[\mathrm{Ba}^{2^+}] = \frac{10^{-3}}{2}, [\mathrm{F}^{\Theta}] = \frac{1.5 \times 10^{-2}}{2}$$

b. Q_{sp} of $BaF_2 = [Ba^{2+}] [F^{\Theta}]^2 =$ $(0.5 \times 10^{-2})(0.75 \times 10^{-2})^2$ $Q_{sp} > K_{sp}$. Hence precipitation occurs $[Ba^{2+}] = \frac{1.5 \times 10^{-3}}{2}, [F^{\Theta}] = \frac{10^{-2}}{2},$ c. Q_{sp} of $BaF_2 = [Ba^{2+}] [F^{\Theta}]^2 =$ $\left(\frac{1.5 \times 10^{-3}}{2}\right) \left(\frac{10^{-2}}{2}\right)^2$

 $\begin{pmatrix} 2 \\ -2 \\ -2 \\ -7 \\ -7 \\ Q_{sp} < K_{sp}(0.187 \times 10^{-7} < 1.7 \times 10^{-7}) \\ \text{So solution in (c) will not precipitate out} \\ \text{d.} [\text{Ba}^{2+}] = \frac{2 \times 10^{-2}}{-7} = 10^{-2} \text{ M}$

$$[F^{\ominus}] = \frac{2 \times 10^{-2}}{2} = 10^{-2} M$$

 $Q_{\rm sp} \operatorname{BaF}_2 = (10^{-2})(10^{-2}) = 10^{-6}$ $\therefore Q_{\rm sp} < K_{\rm sp}$. Hence precipitation occurs

40 **(d)**

Effect of catalyst is only to alter the speed of the reaction, it does not effect the equilibrium constant and concentration of reactant or product

41 **(d)**

$$\alpha = 50\% = \frac{50}{100} = 0.5$$

2HI \rightleftharpoons H₂ + I₂
Initial 2 0 0
Final (2 - 2 α) α α

 $K = \frac{\alpha^2}{(2 - 2\alpha)^2} = \frac{0.5 \times 0.5}{(2 - 2 \times 0.5)^2} = 0.25$ 42 (a) pH = 5.0, pOH = 11 $pH_1 = 5.0, [H_3O^{\oplus}] = 10^{-5} M.$ New $pH_2 = 2.0$, $[H_3O^{\oplus}] = 10^{-2}$ M. Increase in concentration of [H₃O⊕] $=\frac{10^{-2}}{10^{-5}}=10^3=1000$ times 43 (b) Buffer (A): $pH_1 = pK_a + \log\left(\frac{x}{y}\right)$... (i) Buffer (B): $pH_2 = pK_a + \log\left(\frac{x}{y}\right)$... (ii) Since x > y $\therefore pH_1 - pH_2 = 1 = \log \frac{x}{v} - \log \frac{y}{x}$ $\therefore 1 = 2 \log \frac{x}{v}$ $\log \frac{x}{v} = \frac{1}{2} = 0.5$ $\frac{x}{y} = \text{Antilog}(0.5) = 3.17$ 44 **(b)** NH_4OH is W_B $\therefore \stackrel{\Theta}{[OH]} = C \alpha = \sqrt{K_h \times c} = \sqrt{1.8 \times 10^{-5} \times 0.1}$ $= 1.34 \times 10^{-3} \text{ M}$ 45 (a) The equilibrium constant does not change at all with changes in concentrations, volume, pressure, presence of catalyst, etc. It changes only with changes in temperature of the system. For endothermic reaction, the value of *K* increases with increase in temperature and vice versa. For exothermic reaction, the value of *K* decreases with increase in temperature and vice versa 46 (c) Salt of S_B/W_A are called acid salt Na_2S , Na_2SO_4 , Na_2SO_4 are salts of S_A/S_B . But NaHSO₃ is salt of W_A/W_B 47 **(b)** Methyl orange gives red colour in acidic solution and yellow in basic solution 48 (c) HA: $K_a = 10^{-4}$ $HA + NaOH \rightleftharpoons NaA + H_2O$ Clearly, the reverse reaction is the hydrolysis reaction

$$\Rightarrow K_{\text{Required}} = \frac{1}{K_h} = \frac{K_a}{K_w} = \frac{10^{-4}}{10^{-14}} = 10^{-10}$$

Since the given equilibrium involves $\Delta n_g = 0$, there will be no effect of adding an insert gas and decreasing the volume of the container. A catalyst can help in achieving the equilibrium rapidly without affecting the equilibrium amounts of the species involved in the reaction

Only increasing the amount of a reactant can shift the equilibrium amount of a product

50 **(a)**

Salt of S_A/S_B do not hydrolysis in H₂O. So pH does not change on adding KCl to H₂O

51 **(b)**

$$Mg(OH)_2 \longrightarrow Mg^{2+} + 2OH \\ S 2S$$

Let S_1 is the solubility in 0.01 M MgCl₂ (common ion Mg²⁺) \therefore [Mg²⁺] = (S₁ + 0.01) \approx 0.01

$$\begin{bmatrix} OH \end{bmatrix} = 2S_1 \\ K_{sp} = (0.01)(2S_1)^2 \\ S_1 = \left(\frac{K_{sp}}{4 \times 0.01}\right)^{1/2} = \left(\frac{10^{-12}}{4 \times 10^{-2}}\right)^{1/2} \\ = 0.5 \times 10^{-5} \text{ M}$$

$$\therefore \begin{bmatrix} \Theta \\ OH \end{bmatrix} = 2S_1 = 2 \times 0.5 \times 10^{-5} = 10^{-5} \text{ M}$$

pOH = 5, pH = 14 - 5 = 9

рон 52 **(а)**

53

$$[Pb(IO_3)_2] \rightleftharpoons Pb^{2+} + 2IO_3^{\ominus}$$

$$K_{\rm sp} = 4S^3$$
$$S = \sqrt[3]{\frac{K_{\rm sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-14}}{4}} = 2 \times 10^{-5} \,\mathrm{M}$$

(c) For $A \rightleftharpoons 2B$ Initial 1 At Equilibrium $1 - \alpha$

Initial 1 0 At Equilibrium $1 - \alpha 2\alpha$ Total moles $= 1 - \alpha + 2\alpha = 1 + \alpha$ $\therefore P_A = (\text{mole fraction of } A) \times \text{Initial pressure}$ $= \left(\frac{1-\alpha}{1+\alpha}\right)P_1$ Similarly $P_B = \left(\frac{2\alpha}{1+\alpha}\right)P$ $\therefore K_{p_1} = \frac{(P_B)^2}{(P_A)} = \frac{\left[\left(\frac{2\alpha}{1+\alpha}\right)P_1\right]^2}{\left(\frac{1-\alpha}{1+\alpha}\right)P_1} = \frac{4\alpha^2 P_1}{(1-\alpha^2)}$ For $P \rightleftharpoons Q + R$ Initial $1 \quad 0 \quad 0$

At Equilibrium
$$1 - \alpha \quad \alpha \quad \alpha$$

Total moles $= 1 - \alpha + \alpha + \alpha = 1 + \alpha$
 $\therefore P_p = \left(\frac{1 - \alpha}{1 + \alpha}\right)P_2; P_Q = \left(\frac{\alpha}{1 + \alpha}\right)P_2;$
 $P_R = \left(\frac{\alpha}{1 + \alpha}\right)P_2$
 $K_{p_2} = \frac{P_R \times P_Q}{P_P} = \frac{\left(\frac{\alpha}{1 + \alpha}\right)P_2 \times \left(\frac{\alpha}{1 + \alpha}\right)P_2}{\left(\frac{1 - \alpha}{1 + \alpha}\right)P_2}$
 $= \frac{\alpha^2 P_2}{(1 - \alpha^2)}$
 $\therefore \frac{K_{p_1}}{K_{p_2}} = \frac{2}{3} (\text{given}) = \frac{4\alpha^2 P_1}{(1 - \alpha^2)} \times \left(\frac{1 - \alpha^2}{\alpha^2}\right) = \frac{4P_1}{P_2}$
 $\therefore \frac{P_1}{P_2} = \frac{1}{6}$

54 **(c)**

pH = 10, pOH = 4, [
$$\overset{\Theta}{O}$$
H] = 10⁻⁴ M.
Ba(OH)₂ → Ba²⁺ + 2 $\overset{\Theta}{O}$ H
[$\overset{\Theta}{O}$ H] = 10⁻⁴.
(Since total concentration of $\overset{\Theta}{O}$ H = 10
 $\therefore K_{sp} = [Ba^{2+}][\overset{\Theta}{O}$ H]²
10⁻⁹ = x × (10⁻⁴)²

 $AgBr \longrightarrow Ag^{\oplus} + Br^{\Theta}$ a. NaBr $\longrightarrow Na^{+} + Br^{\Theta}$

 $\therefore x = 10^{-1} = [Ba^{2+}]$

Due to common ion effect of Br^{Θ} , solubility of AgBr will be less

⁻⁴)

$$NH_4OH \longrightarrow NH_4^{\oplus} + \stackrel{\odot}{OH}$$

b. $Ag^{\oplus} + \stackrel{\odot}{OH} \longrightarrow AgOH \stackrel{\odot}{OH}$

^{OH} combines with Ag^{\oplus} ions to give AgOH. So according to Le Chatelier's principle, reaction will proceed in forward direction and hence solubility of AgBr in H₂O will increase

c. Solubility of AgBr in H₂O will remain unaffected (here $\stackrel{\Theta}{OH}$ from water is very less i.e., $\stackrel{\Theta}{[OH]} = 10^{-7}$) d. HBr $\longrightarrow H^{\oplus} + Br^{\Theta}$

So again due to common ion effect of Br^{\ominus} , solubility of AgBr will decrease

Use:
$$[H^{\oplus}]_{mix} = \sqrt{EK_{ai}C_i}$$

= $\sqrt{1.8 \times 10^{-4} \times 0.1 + 3.1 \times 10^{-4} \times 0.1}$
= $\sqrt{4.9 \times 10^{-5}}$ M = 7 × 10⁻³ M

59 **(b)**

Factual statement

60 **(c)**

Largest pH, will be of the most basic solution, so $\frac{M}{10}$ NaOH, will have largest pH

61 **(c)**

Decrease or increase in the concentration of $\rm CO_2$ does not effect pH

$$pH_1 = pK_a + \log\left(\frac{\text{Salt}}{\text{Acid}}\right)$$

$$pH_1 = pK_a + \log\left(\frac{x_1}{y_1}\right)$$

$$pH_2 = pK_2 + \log\left(\frac{x_2}{y_2}\right)$$

$$pH_2 - pH_1 = \log\frac{x_2}{y_2} - \log\frac{x_1}{y_1}$$

$$2 = \log\left(\frac{x_2/y_2}{x_1/y_1}\right)$$

$$\therefore \frac{x_2/y_2}{x_1/y_1} = 10^2 = 100$$

This is only possible, if the concentration of salt is increased by 10 times and the concentration of acid is decreased by 10 times

63 **(c)**

HIn
$$\underset{\text{Red}}{\overset{\text{K}_{\text{Ind}}}{\overset{\text{Ho}}{\longrightarrow}}} H^{\oplus} + \text{Ind}^{\Theta}}$$

Use: $pH = pK_{\text{Ind}} + \log \frac{[\text{Ind}^{\Theta}]}{[\text{HIn}]}$;
 $pK_{\text{Ind}} = -\log(3 \times 10^{-5}) = 4.52$
 $75\% \text{ Red} \Rightarrow \frac{[\text{HIn}]}{[\text{Ind}^{\Theta}]} = \frac{3}{1}$
 $\Rightarrow pH = pK_{\text{Ind}} + \log \frac{1}{3} = 4.05$
 $75\% \text{ Blue} \Rightarrow \frac{[\text{HIn}]}{[\text{Ind}^{\Theta}]} = \frac{1}{3}$
 $\Rightarrow pH = pK_{\text{Ind}} + \log \frac{3}{1} = 5.00$

64 **(c)**

The hydrolysis reaction of conjugate base of acid is

$$A^{-}(aq) + H_2 O \rightarrow HO^{-} + HA$$

 $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$

Since, degree of hydrolysis is negligible;

$$[OH^{-}] = \sqrt{K_h C} = 10^{-6} \cdot p[OH] = 6$$

pH=14-6=8

65 **(a)**

and

In which $\Delta n = 0$ i. $\Delta n = 2 - (1 + 1) = 0$

ii.
$$\Delta n = 2 - (2 + 1) = -1$$

iii. $\Delta n = 2 - (1 + 3) = -2$
iv. $\Delta n = 1 - (1 + 1) = -1$
66 **(b)**
HgCl₂ \rightleftharpoons Hg²⁺ + 2Cl ^{\ominus}
 $2S$ $2S$
 $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-15}}{4}} = 10^{-5}$
 $\therefore 2S = 2 \times 10^{-5} = [Cl \ominus]$
67 **(d)**
a. Acidic buffer, and have pH < 7
b. Also acidic buffer, pH < 7
c. Salt of W_A/W_B , pH = 7
d. Basic buffer, and pH > 7
68 **(d)**
 $0.05 M_{H_2SO_4} = 2 \times 0.05 N_{H_2SO_4} = 0.1 N$
 $\therefore [H_3O^{\oplus}] = [0.1] = 10^{-1}$
 $-\log [H_3O^{\oplus}] = -\log [10^{-1}] = 1$
pH = 1

69 **(b)**

Due to common ion (NH_4^{\oplus}) , from NH₄Cl, it suppresses the ionization of NH₄OH, so as to give

less concentration, of $\overset{\bullet}{OH}$ ions, so that only the hydroxides of III group can precipitate, not the hydroxides of higher group, since K_{sp} of the hydroxides of III group is lower than the K_{sp} of the hydroxides of higher group

70 **(a)**

In oxy acids of halogens, the higher the oxidation state of the halogen, the stronger the acid The order of acidic strength is

 $HClO_4 > HClO_3 > HClO_2 > HClO_2$

The order basic strength is

 $\mathrm{ClO_4}^{\Theta} < \mathrm{ClO_3}^{\Theta} < \mathrm{ClO_2}^{\Theta} < \mathrm{ClO}^{\Theta}$

The stronger the acid, the weaker the conjugate base and vice versa

71 **(b)**

When equal volumes of $(NH_4Cl + NH_4OH)$ and metal ions are mixed (volume becomes double and concentration is halved)

$$\therefore \begin{bmatrix} \Theta \\ OH \end{bmatrix} = \frac{10^6}{2}, \begin{bmatrix} M^{+n} \end{bmatrix} = \frac{0.1}{2}$$

 $Q_{\rm sp}$ (or IP) of metal hydroxides of $M(OH)_2$ type

$$= [M^{+n}] [\overset{\Theta}{O}H]^{2}$$

$$= \left(\frac{0.1}{2}\right) \left(\frac{10^{-6}}{2}\right)^{2} = \frac{1}{8} \times 10^{-13}$$

$$= 0.125 \times 10^{-13} = 12.5 \times 10^{-11}$$

$$\therefore Q_{sp} > K_{sp} \text{ of } Mg(OH)_{2} (12.5 \times 10^{-11} > 3 \times 10^{-11})$$
And $Q_{sp} > K_{sp} \text{ of } Fe(OH)_{2} (12.5 \times 10^{-11} > 8 \times 10^{-16})$
So both can be precipitated. Since the K_{sp} of

Fe(OH)₂ is less than Ksp of Mg(OH)₂, so Fe(OH)₂ will be precipitated first Similarly, Q_{sp} (or IP) of metal hydroxides of

M(OH) type

=
$$[M^{+1}] [OH] = \left(\frac{0.1}{2}\right) \left(\frac{10^{-6}}{2}\right)$$

= 0.25×10^{-7} $\therefore Q_{sp} < K_{sp}$ of AgOH ($0.25 \times 10^{-7} < 5 \times 10^{-3}$) It can not be precipitated out. Hence Fe(OH)₂ will be precipitated

72 **(e)**

 $2NO_2 \rightleftharpoons N_2O_4$ At equilibrium 0.2 kPa 0.4 kPa

$$K_p = \frac{\left[p_{N_2O_4}\right]}{\left[p_{NO_2}\right]^2} = \frac{0.4}{0.2 \times 0.2} = 10$$

73 **(a)**

 $A(g) \rightleftharpoons B(g) + C(g)$ a. With increase of temperature K_p increases, i.e; with increase of temperature, the reaction is favoured in forward direction and hence reaction is endothermic. Thus statement (a) is incorrect b. Increase of temperature favours forward reaction and hence the formation of B increases. Correct statement c. $\Delta n = 1 + 1 - 1 = 1$ $\Delta n = +$ ve, i.e., with the increase of pressure, reaction is favoured backward direction and hence the formation of A(g)increases. Correct statement d. As from the above statement in (i) and (iii), the reaction is favoured backward with decrease of

temperature and increase of pressure. Correct statement

74 **(b)**

a. 10^{-10} M HCl, since $[H_3 0^{\oplus}] < 10^{-6}$ M, so pH is less than 7 because of the acidic solution b. 10⁻⁴ M NaOH, since $[OH] = 10^{-4} M, pOH = 4, pH = 10$ c. 10^{-10} M NaOH, Since $[OH] < 10^{-6}$ M, pH is slightly more than 7, because of the basic solution 75 (a) On heating H₂O at 350 K, the self ionization of

H₂O, increases Θ

$$H_2O + H_2O \Longrightarrow H_3O^{\oplus} + OH$$

So the concentration of $[H_3O^{\oplus}]$ and $[\stackrel{\Theta}{OH}]$ both increases, so the pH increases or pOH decreases

76 (c)

For the weak acid HA,

$$K_a = \frac{[X^{\textcircled{Θ}}] \times [A^{\textcircled{Θ}}]}{[HA]}$$

Reaction of weak acid with strong base.

$$HA + OH^{\Theta} \iff A^{\Theta} + H_2O$$
$$K = \frac{[A^{\Theta}]}{[HA] \times [OH]}$$

Dividing (1) by (2), we get

$$\frac{K_a}{K} = [H^{\oplus}] [\overset{\Theta}{OH}] = K_{\nu}$$

77 **(b)**

 $A + B \rightleftharpoons C + D$

According to Le Chatelier's principle, as the concentration of the products are increased, the reaction proceeds in the backward direction

78 (d)

a. HCl =
$$100 \times \frac{1}{10} = 10$$
 mEq
NaOH = $100 \times \frac{1}{10} = 10$ mEq
Salt of S_A/S_B is formed, pH = 7
b. HCl = $55 \times \frac{1}{10} = 5.5$ mEq
NaOH = $45 \times \frac{1}{10} = 4.5$ mEq
1.0 mEq of HCl is left. So pH will be in acidic range
but not equal to one, since concentration of HCl is
very low
c. HCl = $10 \times \frac{1}{10} = 1$ mEq
NaOH = $90 \times \frac{1}{10} = 9$ mEq

8 mEq of NaOH is left and pH > 7

d. HCl = $75 \times \frac{1}{5} = 15$ mEq NaOH = $25 \times \frac{1}{5} = 5$ mEq 15 - 5 = 10 mEq of HCl is left ∴ [HCl] = $[H_3 O^{\oplus}] = \frac{10 \text{ mEq}}{(75 + 25)\text{mL}} = \frac{10}{100} = 0.1 \text{ M}$ $pH = -\log(10^{-1}) = 1$ 79 (d) $Fe^{3+}(aq) + H_2O(l) \iff Fe(OH)^{2+}(aq) + H_3O^{\textcircled{a}}(aq)$ 1 0 Λ Сα $C(1-\alpha)$ Сα $(1 - \alpha = \frac{80}{100} = 0.8, \alpha = 0.2)$ $K_a = \frac{C\alpha}{1-\alpha}$ $6.5 \times 10^{-3} = \frac{C \times (0.2)^2}{0.8}$. $\therefore C = 13.0 \times 10^{-2}$ $[H_30^{\oplus}] = C\alpha = 13.0 \times 10^{-2} \times 0.2 = 26 \times 10^{-3}$ $pH = -\log(26 \times 10^{-3}) = -1.415 + 3 = 1.585$ = 1.681 (d) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ $K_c = P_{CO_2}$, therefore, K_c only depends upon concentration of CO_2 as long as temperature remains constants and both $CaCO_3(s)$ and CaO(s)are present 82 **(a)** $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 30 30 0 initially (30-x)(30-x) 2x at equilibrium 2x = 10 $\therefore x = \frac{10}{2} = 5$ $N_2 = 30 - 5 = 25 L$ $H_2 = 30 - 3 \times 5 = 15L$ $NH_3 = 2 \times 5 = 10L$ 83 **(b)** An acid base indicator changes its colour when $pH = pK_a \text{ or } pOH = pK_b$ $\therefore K_b = 10^{-10}, pK_b = 10$ \therefore pOH = 10, pH = 14 - 10 = 4 pH = 484 (b) The equilibrium constant depends only upon temperature 85 **(b)** $H_2 + I_2 \rightleftharpoons 2HI$ Initial 1 1 Final $\frac{1-\alpha}{v} \frac{1-\alpha}{v} \frac{2\alpha}{v}$ 2α

Since $\Delta n = 0 [2 - (1 + 1)]$ \therefore K does not depend on volume So on reducing volume to half *K* does not change $\therefore K = 50$

(a)
Since all compounds (MA, MB, MC, and MD) are
uni-univalent type. All will have the same formula
of solubility in H₂O (i. e.,
$$\sqrt{K_{sp}}$$
). Same
concentration of common ion (M ^{\oplus}) is added, so
solubilities of all will be suppressed
Hence, the compound with least K_{sp} value will be
precipitated, i.e., MA with $K_{sp} = 1.8 \times 10^{-10}$

87 (a)

86

Since K_{sp} of CaCO₃ and CaC₂O₄ are very close, so concentration of any species cannot be neglected Let the solubilities of $CaCO_3$ and CaC_2CO_4 are x and y M $CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$ x x x $CaC_2O_4 \rightleftharpoons Ca^{2+} + CO_3^{2-}$ Total $[Ca^{2+}] = x + v$ K_{sp} of CaCO₃ = [Ca²⁺][CO₃²⁻] = (x + y)x K_{sp} of CaC₂O₄ = [Ca²⁺][C₂O₄²⁻] = (x + y)y $\therefore x(x + y) = 1.3 \times 10^{-9}$...(i) $y(x + y) = 1.3 \times 10^{-9}$...(ii)

$$y(x + y) = 1.3 \times 10$$

 $x = 4.7 \times 10^{-9}$

 $\frac{x}{y} = \frac{4.7 \times 10^{-9}}{1.3 \times 10^{-9}}$

 $\therefore x = 3.615y$

Substituting the value of *x* in equation (i) or (ii)
3.615
$$y$$
(3.615 y + y) = 4.7 × 10⁻⁹

 $3.615 \times 4.615y^2 = 4.7 \times 10^{-9}$

$$\therefore y = \left(\frac{4.7 \times 10^{-9}}{16.68}\right)^{1/2} = 1.67 \times 10^{-5} \text{ M}$$
$$x = 6.03 \times 10^{-5} \text{ M}$$
$$[\text{Ca}^{2+}] = x + y = (6.03 \times 10^{-5} + 1.67 \times 10^{-5})$$
$$= 7.707 \times 10^{-5} \text{ M}$$

88 **(b)**

89

 $pK_w = 13.4$ If we calculate the pH of H_2O from the above value, it come to be 6.7. (Since conc. Of H^{\oplus} and ${\stackrel{\scriptscriptstyle \Theta}{^{\rm OH}}}$ is equal). So new scale is made from 0 to 13.4 Basic Acidic 1 pH = 7 13.4Neutral So, at pH = 7, Solution is basic (c) Let the initial concentration of $H^{\oplus} = 10^{-1}M$ pH = 1

the new concentration of H^{\oplus} , is 10 times the initial concentration of $H^{\oplus} = 10 \times 10^{-1} \text{ M} 10^{\circ} =$ 1 $\mathrm{pH}_2 = -\log(1) = 0$ The change in $pH = pH_1 - pH_2 = 1.0 = 0$ Change in pH is one and it decreases from 1 to zero 90 (b) $\alpha = \frac{D-d}{d}$ D = Vapour density before dissociation d = Vapour density after dissociation $N_2O_4 \rightleftharpoons 2NO_2$ Vapour density of N2O4 before dissociation (D) = $\frac{14 \times 2 + 16 \times 4}{2} = \frac{92}{2} = 46$ Vapour density after dissociation (d) = 38.3 $\therefore \alpha = \frac{46 - 38.3}{38.3} = 0.2$ $\begin{array}{c} N_2O_4 \rightleftharpoons 2NO_2 \\ 1 & 0 \end{array}$ Initial At equilibrium $1 - \alpha 2\alpha$ Number of moles of NO₂ at eq. = $2\alpha = 2 \times 0.2 =$ 0.4 91 **(b)** $2SO_3 \rightleftharpoons 2SO_2 + O_2$ 1 Initial 0 At equilibrium 1 - 2x = 2xx $\therefore 2x = 0.6, \therefore x = 0.3$ $[SO_3] = 1 - 2x = 1 - 0.6 = 0.4$ $[SO_2] = 2x = 0.6$ $[0_2] = x = 0.3$ $K = \frac{x \times (2x)^2}{(1-2x)^2} = \frac{0.3 \times 0.6 \times 0.6}{0.4 \times 0.4} = 0.675$ 92 (d) $M_1 V_2 = M_2 V_2$ $10^{-5} \times 1 = M_2 \times 1000$ $M_2 = 10^{-8}$ $[H_3O^{\oplus}] = 10^{-8} M$ Since the $[H_3O^{\oplus}] < 10^{-6}$ So pH ≈ 6.98 93 (c) $N_2O_4 \rightleftharpoons 2NO_2$ Initial 1 0 Final $1 - \alpha$ 2α [Total moles = $1 - \alpha + 2\alpha = 1 + \alpha$] Partial pressure $\frac{1-\alpha}{1+\alpha} \times P$ $\frac{2\alpha}{1+\alpha} \times P$ Given, $\alpha = 0.2$, P = 1Partial pressure of N₂O₄ = $\frac{1-0.2}{1+0.2} \times 1 = \frac{0.8}{1.2} = \frac{2}{3}$

$$p_{\text{NO}_2} = \frac{2 \times 0.2}{1 + 0.2} \times 1 = \frac{0.4}{1.2} = \frac{1}{3}$$
$$K_p = \frac{\left[p_{\text{NO}_2}\right]^2}{\left[p_{\text{N}_2\text{O}_4}\right]} = \frac{1 \times 1 \times 3}{3 \times 3 \times 2} = \frac{1}{6}$$

94 **(c)**

Find the $[Ag^{\oplus}]$ in all the saturated solutions $[Ag^{\oplus}]_{in AgCl} = \sqrt{K_{sp} AgCl} = \sqrt{1.8 \times 10^{-10}} \text{ M};$ $[Ag^{\oplus}]_{in AgBr} = \sqrt{K_{sp} AgBr} = \sqrt{5.0 \times 10^{-13}} \text{ M}$ $[Ag^{\oplus}]_{in Ag_2CrO_4} = 2\sqrt[3]{\frac{K_{sp} Ag_2CrO_4}{4}}$ $= 2\sqrt[3]{\frac{2.4 \times 10^{-12}}{4}} \text{ M}$

 \Rightarrow [Ag^{\oplus}] is maximum in saturated solution of Ag₂CrO₄

95 **(d)**

Salt of W_A/S_B hydrolyse and the solution is basic, i.e., pH > 7

$$pH = \frac{1}{2}(pK_w + pK_a + \log C)$$

96 **(b)**

M₂X: Solubility of M₂X = $\sqrt[3]{\frac{K_{sp(M_2X)}}{4}}$ MX: Solubility of MX = $\sqrt{K_{sp(MX)}}$ MX₃: Solubility of MX₃ = $\sqrt[4]{\frac{K_{sp(MX_3)}}{27}}$ Clearly, solubility is maximum for MX₃ and then M₂X

97 **(a)**

Let the solubility by S $A_{p}B_{q} \xrightarrow{} pA^{\oplus} + qB^{\ominus}$ $pS \quad qS$ $K_{sp} = [A^{\oplus}]^{p} \times [B^{\ominus}]^{q}$ $= [pS]^{p} \times [qS]^{q}$ $= p^{p} \times q^{q} \times S^{p+q}$ 98 (c)

i. $\operatorname{AgCl} + \operatorname{H_2O} \longrightarrow \operatorname{Ag}^{\oplus}(\operatorname{aq}) + \operatorname{Cl}^{\ominus}(\operatorname{aq}) \dots S_1$ ii. AgCl in 0.01 M $\operatorname{CaCl}_2, \dots S_2$ Concentration of $\operatorname{Cl}^{\ominus} = 2 \times 0.01 = 0.02$ M iii. AgCl in 0.01 M NaCl $\dots S_3$ Concentration of $\operatorname{Cl}^{\ominus} = 0.01$ M iv. AgCl is 0.05 M, $\operatorname{AgNO}_3, \dots S_4$ Concentration of $\operatorname{Ag}^{\oplus} = 0.05$ Since both $\operatorname{Cl}^{\ominus}$ ion and $\operatorname{Ag}^{\oplus}$ ions acts as common ion. So larger the concentration of $\operatorname{Ag}^{\oplus}$ or $\operatorname{Cl}^{\ominus}$ ions, more is the suppression of ionization of AgCl and hence less will be solubility of AgCl

∴ Solubility order $S_1 > S_3 > S_2 > S_4$ 99 **(b)** $[H_3O^{\textcircled{e}}] = 10^{-6} = [\overset{\textcircled{o}}{O}H]$ Because in pure water, $[H_3O^{\textcircled{O}}] = [\overset{\ominus}{O}H]$ $K_w = [H_3O^{\textcircled{o}}] = [\overset{\Theta}{OH}]$ $= 10^{-6} \times 10^{-6}$ $= 10^{-12}$ 100 (a) $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$ At eq. – 0.025 х solid solid $K_c = \left[\frac{CO_2(g)}{CO(g)}\right] = \frac{x}{0.025} = 5.0$ (Given) ∴ x = 0.125 M $[CO_2] = 0.125 \text{ M}$ 101 (d) At equilibrium, amount of NH₃ formed is equal to the amount of $\rm NH_3$ decomposed into $\rm H_2$ and $\rm N_2$ 102 (c) $A + 2B \rightleftharpoons C + \text{Heat}$

The equation shows, that it is exothermic reaction. Since the heat is released in the reaction, so the reaction is favoured in forward direction at low temperature

$$\Delta n = 1 - (2 + 1) = -2$$

Since the number of moles decreases, \therefore the forward reaction is favoured at high pressure

103 **(c)**

K does not depend on initial concentration of *R* or *P*

104 **(d)**

Weak monoacidic base *e.g., BOH* is neutralised as follows

 $BOH + HCl \rightarrow BCl + H_2O$

At equivalence point all *B*OH gets converted into salt and remember! The concentration of H⁺ (or pH of solution) is due to hydrolysis of resultant salt (BCl, cationic, hydrolysis here)

B⁺ + H₂O ⇒ BOH + H⁺ C(1-h) Ch Ch Volume of HCl used up $V_a = \frac{N_b V_b}{N_a} = \frac{2.5 \times 2 \times 15}{2 \times 5} = 7.5$ mL Concentration of salt

 $[BCl] = \frac{\text{conc.of base}}{\text{total volume}} = \frac{2 \times 2.5}{5(7.5 + 2.5)} = \frac{1}{10} = 0.1$ $K_h = \frac{Ch^2}{1-h} = \frac{K_W}{K_h}$ hydrolyses (h should be estimated whether that can be 114 **(b)** neglected or not) on calculating h=0.27 (significant, not 115 (d) negligible) $[H^+] = Ch = 0.1 \times 0.27 = 2.7 \times 10^{-2} M$ 105 **(b)** $N_2O_4 \rightleftharpoons 2NO_2$ 1 (1-0.2) 2 × 0.2 = 0.4 Total pressure = 1.2As the temperature is doubled, the pressure becomes double. Therefore, the total final pressure is $1.2 \times 2 = 2.4$ atm 116 (d) 106 (c) With increase in temperature, *K* value decreases, which means that at high temperature the reaction proceeds in backward direction or 117 (b) proceeds forward at room temperature. In another words, at room temperature, HI dissociates or HI is less stable than H₂ and I₂ 109 **(b)** Only salts of S_A/S_B do not hydrolyse while all other salts hydrolyse 118 (b) NaCl, KCl, Na₂SO₄ are salts of S_A/S_B , so do not hydrolyse but NH_4Cl_3 is salt of W_A/S_B and hydrolyses 110 (c) 119 (d) Lewis acid is that which is e⁻ deficient and can accept lone pair of e⁻ s. So BF₃ can accept a lone Initial pair of e⁻s 111 (d) For the reaction $A + B \rightarrow C + D$, the reaction quotient is defined as $Q = \frac{[C][D]}{[A][B]}$ In the initial stages of the reaction, the concentrations of C and D increase while those of A and B decrease. Hence, the value of Q increases with time 120 (a) 112 (c) The aqueous solution of KCN, K₂CO₃ and LiCN turn red litmus blue because of alkaline nature. The anionic hydrolysis turns the solution alkaline. 113 (a)

Similarly like in problem 102(above), NaNO₃, KCl and K_2SO_4 are salts of S_A/S_B and do not hydrolyse. But CH_3COOK is a salt of W_A/W_B and Factual statement Reaction quotient is equal to the ratio of the concentrations of products to the ratio of the concentrations of the reactants at any stage of the reaction, each concentration term being raised to the power of its stoichiometric coefficient. In the beginning of the reaction, Q = 0As the reaction proceeds in the forward direction, *Q* starts increasing At chemical equilibrium, Q = K $Ba(OH)_2 > Ca(OH)_2 > Mg(OH)_2 > Be(OH)_2$ In alkaline earth metal hydroxides, the solubility increases down the group $H_3 0^{\oplus} = 10^{-9} M$ Since the concentration of $H_3 O^{\oplus}$ is $< 10^{-6}$ M. So concentration of H_30^{\oplus} is calculated from ionization of water and its common effect, so the value will lie between 6 and 7 $CH_3COOH \rightarrow CH_3COO^{\ominus} + H^{\oplus}$ Only the HCl provides common ion H^{\oplus} and so it will suppress the ionization of acetic acid $XY(g) \rightleftharpoons X(g) + Y(g)$ 1 Δ

At eq.
$$1 - x$$
 x $0.2 + x$
At eq. $[X] = 0.2 + x = 0.6$
 $\therefore x = 0.4 \text{ mol} = \frac{0.4}{1} = 0.4 \text{ M}$
 $[XY] = 1 - 0.4 \text{ mol} = 0.6 \text{ mol} = \frac{0.6}{1} = 0.6 \text{ M}$
 $[X] = x = 0.4 = \frac{0.4}{1} = 0.4 \text{ M}$
 $K = \frac{[X][Y]}{[XY]} = \frac{0.4 \times 0.6}{0.6} = 0.4 \text{ mol } \text{L}^{-1}$

Equilibrium is affected by changes in concentrations, temperature, pressure, and volume. It is not affected by the presence of a catalyst. The presence of a catalyst just helps to achieve the equilibrium at a different pace. It does not affect the amount of a reactant or a product at equilibrium 121 (c) $K_w = [H_3O^{\textcircled{o}}][\overset{\Theta}{O}H]$ $= 10^{-6.7} \times 10^{-6.7} = 10^{-13.4}$ 122 (a) Stronger is the acid, weak is the conjugate base and vice versa Base Acid Cl0⊖ HClO ClO_2^{\ominus} HClO_2 ClO_3^{\ominus} HClO₃ ClO₄⊖ HClO₄ Acidic order: $HClO_4 > HClO_3 > HClO_2 > HClO$ Conjugate base order: $\text{ClO}_4^{\Theta} < \text{ClO}_3^{\Theta} < \text{ClO}_2^{\Theta} < \text{ClO}^{\Theta}$:. Strongest base = ClO^{Θ} 123 (c) $W + X \rightleftharpoons Y + Z, K = 9$ Initial 1 1 0 At eq. 1 - x 1 - x x $K = 9 = \frac{x^2}{(1 - x)^2}$ $\therefore x = 0.75$ Moles of y = x = 0.75124 (c) $\alpha = \frac{1}{100} = 10^{-2}$ $BOH \Longrightarrow B^{\oplus} + \overset{\Theta}{OH}$ $K_b = \frac{C\alpha^2}{1-\alpha} \approx C\alpha^2 = 0.1 \times (10^{-2})^2 = 10^{-5}$ When 0.2 mol of BCl is added, due to common ion effect of $B^{\oplus}(BCl \Longrightarrow B^{\oplus} + Cl^{\Theta})$, suppression of ionization of *BOH* occurs, and α becomes α' $\therefore \alpha' = \frac{K_b}{M}$ (M = molarity of common ion added) $=\frac{10^{-5}}{0.2}=5\times10^{-5}$ M 125 (c) $\begin{array}{c} \operatorname{AgCl} \longleftrightarrow \operatorname{Ag}^{\oplus} + \operatorname{Cl}^{\Theta} \\ x & x \\ \operatorname{NaCl} \longrightarrow \operatorname{Na}^{\oplus} + \operatorname{Cl}^{\Theta} \end{array}$ 0 Initial 0.1 Final 0 0.1 0.1 (NaCl is a salt of S_A/S_B , which is completely ionised) : $Cl^{\Theta} = (x + 0.1) \approx 0.1$ (Since x is very small) $\therefore K_{sp} = [Ag^{\oplus}][Cl^{\Theta}]$ $1.2 \times 10^{-10} = x \times 0.1$ $x = \frac{1.2 \times 10^{-10}}{0.1} = 1.2 \times 10^{-9} \,\mathrm{M}$

126 (d) i. K_2SO_4 is salt of S_A/S_B and do not hydrolyse so pH = 7ii. pH of pure $H_2O = 7$ iii. pH of 10^{-2} mols of HCl per litre = 2 iv. pH of weak bae NH₄OH will be more than 7 127 (a) N_1V_1 (HCl) = N_2V_2 (NaOH) $x \times 20 = 40 \times 0.05$ x = 0.1 \therefore M of HCl = 0.1 $[H_3 0^{\oplus}] = 0.1 = 10^{-1}$ pH = 1128 **(b)** $A + B \rightleftharpoons C + D$ Initial 4 4 0 0 Final $4 - x \quad 4 - x \quad x \quad x$ x = 2 \therefore [A] = 4 - 2 = 2, [B] = 4 - 2 = 2 [C] = 2, [D] = 2 $K = \frac{[C][D]}{[A][B]} = \frac{2 \times 2}{2 \times 2} = 1$ 129 **(b)** If forms basic buffer $\text{pOH} = \text{p}K_b + \log\left(\frac{2.5/500}{2.5/500}\right) = 4.7$ pH = 14 - 4.7 = 9.3130 **(b)** $XY_2 \rightleftharpoons XY + Y$ Initial P 0 0 Final P - x = xx Initial P = 600 mm Hg, Final P = 800 mm HgTotal moles \propto final *P* $\therefore P - x + x + x \propto 800$ $600 - x + x + x \propto 800$ x = 200 mm Hg $K = \frac{x \times x}{P - x} = \frac{200 \times 200}{400} = 100 \text{ Hg}$ 131 (a) $HA + H_2 0 \rightleftharpoons H_3 0^{\oplus} + A^{\ominus}$ Initial 1 0 0 0 Final $C(1-\alpha)$ $C\alpha$ Сα $[H_3 0^{\oplus}] = C\alpha = 0.1 \times 0.01 = 10^{-3}$ pH = 3, pOH = 11132 (b) $CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$ Initial 1 0 Final $1 - \alpha \quad \alpha$ $\alpha/2$ Final $4(1-\alpha)$ 4α $\alpha/2 \times 4$ $\alpha = 0.25\% = 0.25$

Number of moles of $CO = 4\alpha = 4 \times 0.25 = 1$ 133 (d) mEq of CH₃COOH = $20 \times \frac{1}{10} = 2$ mEq of NaOH = $16 \times \frac{1}{10} = 1.6$ So 1.6 mEq of NaOH reacts with 1.6 mEq of CH₃COOH to form 1.6 mEq of salt CH₃COONa and (2 - 1.6 = 0.4 mEq) of $W_A(CH_3COOH)$ is left and an acidic buffer is formed. So to calculate pH, buffer equation is used $pH = pK_a + \log\left(\frac{\text{Salt}}{\text{Acid}}\right) = 4.74 + \log\left(\frac{1.6}{0.4}\right)$ $= 4.74 + 2 \log 2$ $= 4.74 + 2 \times 0.3010 = 5.35$ 134 (d) pH = 2, : $[H_3O^{\oplus}] = 10^{-2} M$ pH = 6, $\therefore [H_3O^{\oplus}] = 10^{-6} M$ $\therefore \frac{10^{-2}}{10^{-6}} = 10^{-4}$ 135 (d) $Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 3PO_4^{3-}$ $K_{\rm sp} = (3x)^3 (2x)^2 = 108x^5$: Unit of K_{sp} is (concentration)⁵ = $(mol dm^{-3})^5 = mol^5 dm^{-15} = mol^5 dm^{-15}$ 136 (c) Since there is no effect on the equilibrium by adding inert gas at constant volume 138 **(b)** $N_2O_4 \rightleftharpoons 2NO_2$ At equilibrium $1 - \alpha$ 2α Number of moles of $N_2O_4 = 1 - \alpha = 1 - 0.2 = 0.8$ Weight of N_2O_4 in mixture = moles of $N_2O_4 \times Mw$ of $N_2O_4 = 0.8 \times 92 =$ 73.6 g Weight of NO₂ in mixture = moles of NO₂ \times *Mw* of NO_2 $= 0.4 \times 46 = 18.4 \text{ g}$ Total weight = 73.6 + 18.4 = 92.0 g In 92 g of mixture, number of moles of $N_2O_4 = 0.8$ In 100 g of mixture; number of moles of N_2O_4 $=\frac{0.8 \times 100}{92} = 0.86$ 139 (c) Bronsted acid and base is that which can donate and accept H^{\oplus} ions. So HSO_4^{\ominus} can accept and donate H^{\bigoplus} ions 140 **(b)** For reactions $X \rightleftharpoons 2Y$ Initial 1 0

At Equilibrium $1-\alpha$ 2α Total moles = $1 - \alpha + 2\alpha = 1 + \alpha$ $P_X = \left(\frac{1-\alpha}{1+\alpha}\right)P_1$; $P_Y = \left(\frac{2\alpha}{1+\alpha}\right)P_1$ $\therefore K_{p_1} = \frac{(P_Y)^2}{P_X} = \frac{\left[\left(\frac{2\alpha}{1+\alpha}\right)P_1\right]^2}{\left(\frac{1-\alpha}{1+\alpha}\right)P_1} = \frac{4\alpha^2 P_1}{(1-\alpha^2)}$(i) Similarly for $X \rightleftharpoons P + Q$ 1 0 0 Initial At Equilibrium $1 - \alpha = 2\alpha$ α Total moles = $1 - \alpha + \alpha + \alpha = 1 + \alpha$ $P_Z = \left(\frac{1-\alpha}{1+\alpha}\right)P_2$; $P_Q = \left(\frac{\alpha}{1+\alpha}\right)P_2$; $P_P = \left(\frac{\alpha}{1+\alpha}\right) P_2$ $\therefore K_{p_2} = \frac{P_P \times P_Q}{P_Z} = \frac{\left(\frac{\alpha}{1+\alpha}\right)P_2 \times \left(\frac{\alpha}{1+\alpha}\right)P_2}{\left(\frac{1-\alpha}{1+\alpha}\right)P_2}$ $=\frac{\alpha^2 P_2}{(1-\alpha^2)}$... (ii) Dividing equation (i) and (ii), we get, $\frac{K_{p_1}}{K_{p_1}} = \frac{4\alpha^2 P_1}{(1-\alpha^2)} \times \left(\frac{1-\alpha^2}{\alpha^2 P_2}\right) = \frac{4P_1}{P_2}$ $\Rightarrow \frac{4P_1}{P_1} = \frac{1}{3}$ (given) $\therefore \frac{P_1}{P_2} = \frac{1}{12}$ 141 (a) $HA + H_2 0 \rightleftharpoons H_3 0^{\oplus} + A^{\ominus}$ 0 Initial 1 0 Final $C(1-\alpha)$ Сα Сα $\left[\mathrm{H}_{3}\mathrm{O}^{\oplus}\right] = C\alpha \,\left(\alpha = \frac{40}{100} = 0.4\right)$ $= 0.2 \times 0.4$ (C = 0.2 M) = 0.08142 (c) NaZ is salt of W_A/S_B $\therefore \mathrm{pH} = \frac{1}{2} (\mathrm{p}K_w + \mathrm{p}K_a + \log C)$ $8.9 \times 2 = 14 + pK_a + \log 0.1$ $17.8 = 14 + pK_a - 1$ $pK_a = 4.8$, $K_a = \text{Antilog}(-4.8) = \text{Antilog}(-4 - 0.8 + 1 - 1)$ = Antilog $(\overline{5}, 2)$ = 1.585 × 10⁻⁵ ≈ 1.6 × 10⁻⁵ 143 (a) With the increase of temperature, k value decreases, so the forward reaction decreases with increase of temperature. This implies that reaction will proceed in forward direction with decrease of temperature, i.e., heat is liberated and hence forward reaction is exothermic

144 (d)

 $NH_4 + NaOH \rightarrow NH_4OH + NaCl$ mmol 50×0.2 75×0.1 = 10 = 7.5mmol 10 – 7.5 – 7.5 = 2.5 \Rightarrow This will result in a basic buffer \Rightarrow pOH = pK_b + log $\frac{[Salt]}{[Base]}$ $= 4.74 + \log \frac{2.5}{2.5} = 4.27$ \Rightarrow pH = 14 - 4.27 = 9.73 146 (a) $CaF_2 \iff Ca^{2+} + 2F^{\Theta}$ 2xTotal concentration of $[F^{\Theta}] = 4 \times 10^{-4} M$ $\therefore 2x = 4 \times 10^{-4}$ $x = 2 \times 10^{-4}$ $\therefore K_{\rm sp} = 4x^3 = 4 \times (2 \times 10^{-4})^3 = 3.2 \times 10^{-11}$ 147 (d) i. $Ag_2CrO_4 \implies 2Ag^{\oplus} + CrO_4^{2-}$ (in H₂O) 2*S* S $4S^{3} = K_{sn};$ $S_{\rm H_2O} = \left(\frac{K_{\rm sp}}{4}\right)^{1/3} = \left(\frac{9 \times 10^{-12}}{4}\right)^{1/3}$ $= (2.25)^{1/3} \times 10^{-4} \text{ M}$ ii. On adding 0.1 M AgNO₃ $(AgNO_3 \longrightarrow Ag^{\oplus} + NO_3)$ 0.1 M 0.1 M Due to common ion (Ag^{\oplus}) , the solubility of Ag₂CrO₄ is suppressed Total $[Ag^{\oplus}] = (2S + 0.1) \approx 0.1$ Let the solubility is S_1 $S_1 = \frac{K_{\rm sp}}{[{\rm Ag}^{\oplus}]^2 \text{ externally added}}$ $=\frac{9\times10^{-12}}{0.1\times0.1}=9\times10^{-10} \text{ M}$ iii. On adding 0.1 M Na₂CrO₄ $(Na_2CrO_4 \longrightarrow 2Na^{\oplus} + CrO_4^{2-})$ 2×0.1 M 0.1 M Again due to common ion (CrO_4^{2-}) , the solubility of Ag₂CrO₄ is suppressed Let the solubility is S_2 Total $[CrO_4^{2-}] = (S + 0.1) \approx 0.1$ $Ag_2CrO_4 \implies 2Ag^{\oplus} + CrO_4^{2-}$ $2S_2$ $(S_2 + 0.1) \approx 0.1$ $K_{\rm sp} = [2S_2]^2 [0.1]$

 $\therefore S - 2 = \left(\frac{K_{\rm sp}}{4 \times 0.1}\right)^{1/2} = \left(\frac{9 \times 10^{-12}}{4 \times 0.1}\right)^{1/2}$ $= 22.5 \times 10^{-6} = 2.25 \times 10^{-7}$ Hence, the solubility order is II < III < I**Note**: *In such problems, instead of solving* the exact value, try to get the approximate data to check the comparative solubilities) 148 (d) Anionic hydrolysis is carried by salt of W_A/S_B , e.g., Na_2CO_3 150 **(b)** Most soluble compound is that which have highest K_{sp} value. K_{sp} of MnS(7 × 10⁻⁶) is highest 151 (c) Volume = 3 L $X + Y \rightleftharpoons 3Z$ At eq. $\frac{1}{3}$ $\frac{2}{3}$ $\frac{4}{3}$ $K = \frac{[Z]^3}{[X][Y]} = \frac{\left(\frac{4}{3}\right)^3}{\left[\frac{2}{2}\right]\left[\frac{1}{2}\right]} = 10.67$ a. Q = 10, $\therefore Q < K$ The reaction proceed forward direction to attain the equilibrium value of K b. Q = 15, $\therefore Q < K$ The reaction proceed backward direction to attain the equilibrium value of K(10.67)c. $Q = 10.67, \quad \therefore \ Q = K$ The system is at equilibrium 152 **(b)** Buffer solution is a mixture of W_A + salt of W_A/S_B Or a mixture of W_B + Salt of W_B/S_A So $(NaH_2PO_4 + Na_2HPO_4)$ is a buffer a. [HCl + NaCl,] S_A + Salt of S_A/S_B (not buffer) b. $[NaH_2PO_4 + Na_2HPO_4]$ W_A + Salt of W_A/W_B (it is a buffer) c. $[CH_3COOH + NaCl]$ W_A + Salt of S_A/S_B (not buffer) d. $[NH_4OH + NH_3]$ $W_B + W_B$ (not buffer) 153 **(b)** $A + 2B \rightleftharpoons 2C$, ...(i) K = 40and for $C \rightleftharpoons B + \frac{1}{2}A$, ... (i) $K_1 = ?$ $K = \frac{1}{\sqrt{K}} = \frac{1}{(40)^{1/2}}$ Since equation (2) is obtained by reversing and dividing by 2, the equation (1)

154 **(a)**

Ag₂SO₄ ⇒ 2Ag[⊕] + SO₄²⁻
2x x
K_{sp} = 4x³ = 4 × (2.5 × 10⁻²)³ = 62.5 × 10⁻⁶
155 (d)
M₂SO₄ ≈ 2M[⊕] + SO₄²⁻
2S S
K_{sp} = (2S)²(S) = 4S³
∴ S =
$$\sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-5}}{4}} = 2 × 10^{-2} M$$

156 (d)

Only in $SnCl_4$, the octet of the central atom is complete

157 (a)

NaCl is salt of S_A/S_B . So it is neutral and pH = 7 (a)

158 **(a)**

 W_A (CH₃COOH) is titrated with S_B (NaOH) and 20% of the W_A is neutralized, so 20% of the salt of W_A/S_B (CH₃COONa) is formed and 80% of the W_A (CH₃COOH) is left. So an acidic buffer if formed

$$\therefore [Acid] = 80; [Salt] = 20$$

pH = pK_a + log $\left[\frac{Salt}{Acid}\right]$
4.7447 + log $\left[\frac{Salt}{Acid}\right]$
= 4.7447 + log $\frac{1}{4}$
= 4.7447 - 2 log 2 = 4.7447 - 2 × 0.3010 = 4.14

159 (b)

Since K_{sp} of CaCO₃ and BaCO₃ are very close. So concentration of any species cannot be neglected. Let the solubility of CaCO₃ and BaCO₃ are x and yM

$$\therefore \operatorname{CaCO}_3 \rightleftharpoons \operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-}$$

$$x \quad x$$

$$\operatorname{BaCO}_3 \rightleftharpoons \operatorname{Ba}^{2+} + \operatorname{CO}_3^{2-}$$

$$y \quad y$$

$$\operatorname{Total} [\operatorname{CO}_3^{2-}] = (x+y)$$

$$\therefore K_{\rm sp} \text{ of } \operatorname{CaCO}_3 = [\operatorname{Ca}^{2+}][\operatorname{CO}_3^{2+}] = x(x+y)$$

$$K_{\rm sp} \text{ of } \operatorname{BaCO}_3 = [\operatorname{Ba}^{2+}][\operatorname{CO}_3^{2-}] = y(x+y)$$

$$\therefore x(x+y) = 10^{-8} \quad \dots(i)$$

$$y(x+y) = 5 \times 10^{-9} \quad \dots(ii)$$

$$\frac{5 \times 10^{-9}}{10^{-8}} = \frac{y(x+y)}{x(x+y)}$$

$$\therefore \frac{y}{x} = 5 \times 10^{-1}$$

$$y = 0.5x$$
Substitute the value of y in (i) or (ii)

$$x(x+0.5x) = 10^{-8}$$

 $x = 0.8 \times 10^{-4}$ $y = 0.5 \times 0.8 \times 10^{-4}$ $\therefore [Ca^{2+}] = x = 0.8 \times 10^{-4}$ $\therefore [Ba^{2+}] = y = 0.4 \times 10^{-4}$ $[CO_3^{2-}] = (x + y) = 1.2 \times 10^{-4}$

160 **(d)**

The equilibrium constant does not change at all with changes in concentrations, volume, pressure, presence of catalyst, etc. It changes only with changes in temperature of the system. For endothermic reaction, the value of *K* increases with increase in temperature and vice versa. For exothermic reaction, the value of *K* decreases with increase in temperature and vice versa

161 **(a)**

Bronsted acid is which gives H^{\oplus} ions and Bronsted base is which accepts H^{\oplus} ion So H_2S gives H^{\oplus} ions but cannot accept H^{\oplus} . While other H_2O , HCO_2^{\ominus} , NH_3 can give and accept H^{\oplus} ions

162 (a)

Since equal volumes are added

1. Ionic product = $\frac{10^{-4}}{2} \times \frac{10^{-4}}{2} = \frac{10^{-8}}{4}$

2. Ionic product
$$=$$
 $\frac{10^{-5}}{2} \times \frac{10^{-5}}{2} = \frac{10^{-10}}{4}$

3. Ionic product
$$=$$
 $\frac{10^{-5}}{2} \times \frac{10^{-6}}{2} = \frac{10^{-11}}{4}$

4. Ionic product = $\frac{10^{-10}}{2} \times \frac{10^{-10}}{2} = \frac{10^{-20}}{4}$

Only in (a) Ionic product $\left(\frac{10^{-8}}{4}\right) > K_{sp}$ (1.8 × 10⁻¹⁰)

So precipitate will take place only with (a)

163 (a)

Since Ca(OH)₂ is completely ionized

 $Ca(OH)_{2} \longrightarrow Ca^{2+} + 2 \stackrel{\Theta}{OH}$ Initial 0.1 0 0 Final 0 0.1 $2 \times 0.1 = 0.2M$ **BBB Rule**: On adding base, to the basic buffer, concentration of base increases and salt decreases \therefore New concentration of base and salt are: [Base] = [NH_{3}] = 0.6 + 0.2 = 0.8 M [Salt] = [NH_{4}Cl] = 0.4 + 0.2 = 0.2 M \therefore pOH = p K_{b} + log $\left[\frac{Salt}{Base}\right]$ pOH = 4.74 + log $\left(\frac{0.2}{0.8}\right)$

 $= 4.74 - 2 \log 2 = 4.74 - 2 \times 0.30 = 4.14$ pH = 14 - 4.14 = 9.86164 **(b)** $HCl = 20 \times 0.1 = 2 mEq$ $KOH = 20 \times 0.1 = 2 mEq$ 2 mEq HCl combines with 2 mEq of KOH and forms KCl, a salt of S_A/S_B which do not hydrolyses and gives neutral solution with pH = 7165 (a) $Al_2(SO_4)_3$ is a salt of $\frac{W_B}{S_4}$. [Al(OH)₃ + H₂SO₄]. It hydrolyses and gives acidic solution 166 (d) Active mass = Concentration = mol L^{-1} $[HI] = \frac{64}{128 \times 2} = 0.25 \text{ M}$ 167 (c) $K_b = 10^{-5}, pK_b = 5$ $: [OH] = C\alpha$ $[\overset{\Theta}{\mathrm{OH}}] = \sqrt{K_b \times C}$ $pOH = \frac{1}{2}(pK_b - \log C)$ $=\frac{1}{2}(5 - \log 0.1) = \frac{1}{2}(5 + 1) = 3$ pH = 14 - pOH = 14 - 3 = 11168 (d) Lewis base is that which can donate a lone pair of e⁻s. All except AlCl₃ have lone pair of e⁻s and can donate. So AlCl₃ is not a lewis base 169 (d) Factual statement 170 (a) pOH = 13, pH = 14 - 13 = 1Hence, solution is highly acidic 171 (c) $K_{\rm sn}MS = [M^{2+}][S^{2-}]$ $5 \times 10^{-21} = (0.05)[S^{2-}]$ For precipitation $Q_{sp} = K_{sp}$ $\therefore [S^{2-}] = \frac{5 \times 10^{-21}}{5 \times 10^{-2}} = 10^{-19}$ For H₂S:

 $H_2S \iff H^{\oplus} + HS^{\Theta}(K_1)$ $\mathrm{HS}^{\Theta} \longleftrightarrow \mathrm{H}^{\oplus} + \mathrm{S}^{2-}(K_2)$ $K_1 \times K_2 = \frac{[\mathrm{H}^{\textcircled{\bullet}}]^2 [\mathrm{S}^{2^-}]}{\mathrm{H}_2 \mathrm{S}}$ $10^{-7} \times 10^{-14} = \frac{[\text{H}^{\textcircled{0}}]^2 [10^{-19}]}{0.1}$ $[H^{\oplus}]^2 = 10^3$, \implies [Taking negative logaritham] both sides] $-2 \log [H^{\oplus}] = 3$ $pH = \frac{3}{2} = 1.5$ 172 (a) $\Delta G^{\ominus} = -2.303 RT \log K$ $= -2.303 \times 2 \times 298 \log 10^{-8}$ $= -2.303 \times 2 \times 298 \times -8$ cal = 10980 cal = 10.98 kcal 173 (c) **Buffer capacity** Number of mols/litre of acid or base added change in pH or pOH $=\frac{2}{34-29}=\frac{2}{05}=4$ 174 (c) $2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$ Initial 8 0 0 At eq. $\frac{8-2x}{1}$ $\frac{x}{1}$ $\frac{3x}{1}$ Since volume = $1 \text{ dm}^3 = 1 \text{ L}$ At eq. $[A_2] = 2 \mod x$ $\therefore [AB_3] = 8 - 2 \times 2 = 4M$ $[A_2] = 2 M$ $[B_2] = 3 \times 2 = 6 \text{ M}$ $K = \frac{[B_2]^3[A_2]}{[AB_2]^2} = \frac{6 \times 6 \times 6 \times 2}{4 \times 4} = 27 \text{ mol}^{-2} \text{ L}^{-2}$ 175 (d) Indicator used for the titration of WA and SB is phenolphthaleim. Since the pH range near the end point is 8 to 10

176 (d)

The reactions (a) and (b) are precipitation reactions, they are not reversible. Reaction (d) is an ion- exchange reaction. Hence, it is a reversible reaction.

 $KNO_3(aq) + NaCl(aq) \rightarrow KCl(aq) + NaNO_3(aq)$ 177 **(a)**

 $ClO_3(OH)$ or $HClO_4$ is the strongest acid In oxy acids of halogens, the higher the oxidation state of the halogen, the stronger the acid

178 **(b)**

HIn \Longrightarrow H^{\oplus}+ Ind $^{\Theta}$; $pH = pK_{Ind} + \log \frac{[Ind^{\Theta}]}{[HIn]}$ $pH_1 = pK_{Ind} + \log \frac{20}{80} = pK_{Ind} - 2\log 2$ $pH_2 = pK_{Ind} + \log \frac{80}{20} = pK_{Ind} + 2\log 2$ $\Delta(pH) = pH_2 - pH_1 = 4\log 2 = 4 \times 0.3 = 1.2$ 180 (a) $PbSO_4 \rightleftharpoons Pb^{2+} + SO_4^{2-}$ $Na_2SO_4 \rightarrow 2Na^{\oplus} + SO_4^{2-}$ Initial 0.01 Final 0 2×0.01 0.01 (Since Na₂SO₄ is salt of S_A/S_B it is completely ionised) \therefore SO₄²⁻ = (x + 0.01) = 0.01 (Since x is very small) $\therefore K_{sp} \text{ of } PbSO_4 = [Pb^{2+}][SO_4^{2-}]$ $1.25 \times 10^{-9} = x \times 0.01$ $\therefore x = \frac{1.25 \times 10^{-9}}{0.01} = 1.25 \times 10^{-7} \text{ mol } \text{L}^{-1}$ 181 (a) $(i)Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+;$ $K_1 = 3.5 \times 10^{-3}$ (ii) $[Ag(NH_3)]^+ + NH_3 \rightarrow [Ag(NH_3)_2]^+;$ $K_2 = 1.7 \times 10^{-3}$ On the basis of above reaction, $K_1 = \frac{[Ag(NH_3)]^+}{[Ag^+][NH_2]}$...(i) $K_2 = \frac{[\text{Ag}(\text{NH}_3)_2]^+}{[\text{Ag}(\text{NH}_3)]^+[\text{NH}_3]}$...(ii) For the formation of $[Ag(NH_3)_2]^+$ $Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$ Formation constant (*K*) $=\frac{[Ag(NH_3)_2]^+}{[Ag^+][NH_3]^2}$...(iii) From Eqs. (i) and (ii) $K = K_1 \times K_2$ $= 3.5 \times 10^{-3} \times 1.7 \times 10^{-3}$ $= 5.95 \times 10^{-6} \approx 6.08 \times 10^{-6}$ 182 (d) Salt of S_B/W_A are called acid salts

a. NaH₂PO₄ (Salt of NaOH + H₃PO₄) (S_B/W_A) b. NaH₂PO₄ (Salt of NaOH + H₃PO₂) (S_B/W_A) c. NaH₂PO₃ (Salt of NaOH + H₃PO₃) (S_B/W_A) all are acid salts

183 **(c)**

$$2HX \rightleftharpoons H_2(g) + X_2(g)$$

At equilibrium ? 1.2 \times 10⁻³ M 1.2 \times 10⁻⁴ M

$$K = \frac{[H_2][X_2]}{[HX]^2}$$

$$10^{-5} = \frac{1.2 \times 10^{-3} \times 1.2 \times 10^{-4}}{[HX]^2}$$

$$[HX] = \sqrt{\frac{1.2 \times 1.2 \times 10^{-7}}{10^{-5}}}$$

$$= 1.2 \times 10^{-1}$$

$$= 12 \times 10^{-2} M$$

184 (d)

Conjugate base $\stackrel{\bullet}{O}H$ is O^{2-} $\stackrel{\bullet}{O}H \longrightarrow O^{2-} + H^{\oplus}$

186 **(b)**

Highest pH will be of the salt of W_A/S_B (pH > 7) **a**. NaCl (salt of S_A/S_B pH = 7) **b**. Na₂CO₃ (salt of W_A/S_B pH > 7) **c**. NH₄Cl (salt of S_A/W_B , pH < 7) d. NaHCO₃ (Salt of W_A/S_B , pH > 7) but (b) and (d) are both salt of W_A/S_B , but the concentration of salt in (b) is more, so pH is more $pH = \frac{1}{2}(pK_w + pK_a + \log C)$ 187 (a) $PbSO_4(s) \rightleftharpoons Pb^{+2}(aq) + SO_4^{2-}(aq) (K_{sn}) \dots (i)$ $HSO_4^{\Theta}(s) \longrightarrow H^{\oplus}(aq) + SO_4^{2-}(aq) (K_a) \dots (ii)$ Subtracting equation (ii) from (i), then $PbSO_4 + H^{\oplus}(aq) \Longrightarrow Pb^{2+}(aq) + HSO_4^{\Theta}(aq) (K_{eq})$ $\therefore K_{eq} = \frac{K_{sp}}{K_c} = \frac{1.8 \times 10^{-8}}{1.0 \times 10^{-2}} = 1.8 \times 10^{-6}$ 188 (a) Salt W_B/S_A hydrlyses and is called cation hydrolysis 189 (b)

$$AgCl \Longrightarrow Ag^{\oplus} + Cl^{\Theta}$$

 $KCl \longrightarrow K^{\oplus} + Cl^{\Theta}$

Due to common ion effect of Cl^{\ominus} , the suppression

of ionization of AgCl, takes place and solubility of AgCl decreases

190 **(d)**

mEq of NaOH = $20 \times \frac{1}{20} = 1$ mEq of HCl = $10 \times \frac{1}{10} = 1$

So, salt of S_A/S_B (NaCl) will be formed which do not hydrolyse and pH = 7. So at pH = 7, litmus has no effect. Since, blue litmus turns red a acidic solution, and red litmus turns blue, a basic solution

i. phenolphthalein solution turns pink a basic solution of pH > 7

ii. Methyl orange turns red a acidic solution of pH > 7

191 **(d)**

Buffer capacity

Number of moles per litre of acid

$$= \frac{\text{or base added}}{\text{Change in pH or pOH}}$$
$$[Acid] = \frac{0.002 \times 1000}{250} = 0.008 \text{ M}$$
Buffer capacity = $\frac{0.008}{0.02} = 0.4$

192 (a)

$$pH = pK_a + \log \left[\frac{\text{Salt}}{\text{Acid}}\right]$$

$$pH = pK_a + \log \left[\frac{\text{In}^{\ominus}}{\text{HIn}}\right]$$

$$4.3 = pK_a + \log 7$$

$$pK_a = 4.3 - \log 7$$

$$pK_a = 4.3 - 0.845 = 3.455$$

$$K_a = \text{Antilog} (-3.455) = (-3 - 4.55 + 1 - 1)$$

$$= \overline{4} - 545 = 3.5 \times 10^{-4}$$

193 (d)

Since the number of moles decreases. So reaction is favoured forward by increasing pressure

$$\Delta n = 1 - \left(1 + \frac{1}{2}\right) = -\frac{1}{2}$$

194 **(b)**

Catalyst does not change the extent of reaction, and hence does not alter the value of *K*

196 **(c)**

NaOH = $10 \times 0.1 = 1$ mEq Na₂SO₄ = $10 \times 0.1 = 2$ mEq But pH of solution is due to only strong base, NaOH and will be greater than 7. Salt of S_A/S_B , has no effect on pH, since its pH is 7

197 (a)

Salt of S_B/W_A will be basic a. Sodium borate, salt of S_B/W_A (NaOH + H₃BO₃). It gives basic solution b. NH₄Cl, salt of W_B/S_A , (NH₄OH + HCl). It hydrolyses and gives acidic solution c. Ca(NO₃)₂, salt of W_B/S_A [Ca(OH)₂ + HNO₃], and gives acidic solution d. Na₂SO₄, salt of S_A/S_B , which do not hydrolyses, gives neutral solution with pH = 7

198 **(c)**

Rate of forward reaction = Rate of backward reaction i.e., when $R_f = R_b$, equilibrium is established

199 **(c)**

Structure of phenolphthalein in acidic and basic medium

(Pink in basic)

200 **(a)**

 $K_a \times K_b = 10^{-14}$ for a pair of conjugate acid base K_h for $X^{\ominus} = 10^{-10}$ K_a for HX = 10⁻⁴, p $K_a = 4$ $pH = pK_a + \log \frac{[X^{\Theta}]}{[HX]}$ $= pK_a = 4$ 201 (a) For acidic buffer, pH = $pK_a + \log \frac{0.1}{0.1}$ $pH = pK_a = -\log(10^{-5}) = 5$ Rule: ABA (In acidic buffer (A), on addition of $S_B(B)$, the concentration of $W_A(A)$ decreases and that of salt increases) Let x M of NaOH is added $pH_{new} = 5 + \log\left(\frac{0.1 + x}{0.1 - x}\right)$ $6 - 5 = \log\left(\frac{0.1 + x}{0.1 - x}\right)$ $\left(\frac{0.1+x}{0.1-x}\right) = \operatorname{Antilog}(1) = 10$ Solve for *x*: $x = 0.082 \text{ M} = \frac{0.082}{1000} \times 100$ $= 0.0082 \text{ mol} (100 \text{ mL})^{-1}$ $= 0.0082 \times 40 \text{ g} (100 \text{ mL})^{-1}$

= 0.328 g

202 **(d)**

The equilibrium constant does not change at all with changes in concentrations, volume, pressure and presence of catalyst. It changes only with changes in temperature of the system

For endothermic reaction, the value of *K* increases with increase in temperature and vice versa

For exothermic reaction, the value of *K* decreases with increase in temperature and vice versa

203 **(b)**

NaX: Salt of weak acid, strong base

$$\Rightarrow \alpha = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{K_w}{K_a.C}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 0.1}} = 10^{-4}$$

 \Rightarrow % hydrolysis = 0.01%

(Check that approximation is valid)

204 **(a)**

 $N_2 + O_2 \rightleftharpoons 2NO \dots (i)$

$$NO \Rightarrow \frac{1}{2}N_2 + \frac{1}{2}O_2 ... (ii)$$

Equation (ii) is obtained by reversing equation (i) and dividing by 2

$$\therefore K_2 = \frac{1}{(K_1)^{1/2}}$$
$$\Rightarrow (K_2)^2 = \frac{1}{K_1}$$
$$\Rightarrow K_1 = \frac{1}{(K_2)^2} = \left(\frac{1}{K_2}\right)^2$$

205 **(c)**

a. It is a mixture of S_A + salt of S_A/S_B . So pH is due to S_A and is less than 7 b. mEq of H₂SO₄ = 100 × 0.2 × 2 = 40 mEq of NaOH = 100 × 0.3 = 30 So 30 mEq of NaOH will react with 30 mEq of H₂SO₄ So 10 mEq of H₂SO₄ (strong acid will be left) So pH will be less than 7 c. mEq of CH₃COOH = 100 × 0.1 = 10 mEq of KOH = 100 × 0.1 = 10 So 10 mEq of W_A (CH₃COOH) will react with 10 mEq of KOH (S_B) to give 10 mEq of salt (CH₃COONa). It is a salt of W_A/W_B So its pH will be greater than 7 $pH = \frac{1}{2} (pK_w + pK_a + \log C)$ d. mEq of HNO₃ = 2.5 × 0.1 = 2.5 mEq of NH₃ = 2.5 × 0.1 = 2.5 So 2.5 mEq of HNO₃ will react with 2.5 mEq of NH₃ to give 2.5 mEq of NH₄NO₃, which is a salt of W_B/W_A , and its pH is always less than 7

$$pH = \frac{1}{2}(pK_w - pK_b - \log C)$$

206 (a)

Acidic buffer is a mixture of a weak acid and its salt with a strong base in solution

$$CH_{3}COOH \rightleftharpoons CH_{3}COO^{\Theta} + H^{\oplus}$$

 $CH_3COONa \longrightarrow CH_3COO^{\Theta} + Na^{\oplus}$

Adding acid: When a small amount of acid is added, H[⊕] ions combine with acetate ions to form the weak electrolyte acetic acid than does not dissociate, so the pH does not change Adding base: When a small amount of base is

added, $\overset{\Theta}{OH}$ ions combine with H^{\oplus} ions to form the weak electrolyte water than does not dissociate,

so the pH does not change 207 (d)

10⁻⁸M HCl

At such a low concentration the contribution of

 $[\mathrm{H}^{\textcircled{\oplus}}]$ from water cannot be neglected, which is 10^{-7}

In such cases, the pH of the acid can be calculated to be slightly less than 7

208 **(d)**

 $PCl_5 \rightleftharpoons PCl_3 + Cl_2$

If the concentration of PCl_3 is doubled, it only predicts, that reaction will proceed backward. (Le-Chatlier's principle). So the concentration of Cl_2 is unpredictable

209 (c)

The two K_{sp} values do not differ very much. So it is a case of simultaneous equilibria, where the concentration of any species can not be neglected

$$\frac{[Sr^{2r}] [F^{\Theta}]^{2}}{[Sr^{2r}] [CO_{3}^{2-}]} = \frac{K_{sp} SrF_{2}}{K_{sp} SrCO_{3}} = \frac{7.9 \times 10^{-10}}{7.0 \times 10^{-10}} = 1.128$$

$$\therefore [F^{\Theta}]^{2} = 1.28 \times [CO_{3}^{2-}] = 1.128 \times 1.2 \times 10^{-3}$$

$$= 13.5 \times 10^{-14}$$

$$\therefore [F^{\Theta}] = (13.5 \times 10^{-4})^{1/2}$$

$$= 3.674 \times 10^{-2} \approx 3.7 \times 10^{-2} M.$$

210 **(b)**

 $K_{\rm sp} = 1.7 \times 10^{-10}$ After mixing equal volumes, we get $[\mathrm{Ca}^{2+}] = \frac{10^{-2}}{2} = 0.005 = 5 \times 10^{-3}$ $\left[F^{\ominus}\right] = \frac{10^{-3}}{2} = 0.0005 = 5 \times 10^{-4}$ For CaF_2 , Ionic product = $[Ca^{2+}] \times [F^{\ominus}]^2$ $= [5 \times 10^{-3}] \times [5 \times 10^{-4}]^2$ $= 125 \times 10^{-11}$ $= 1.25 \times 10^{-9}$ Since ionic product is greater than solubility product, precipitation occurs 211 (c)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 + Heat$ $\Delta n = 2 - (1 + 3) = -2$ $\therefore K_p = K_c (RT)^{-2}$

212 (a)

As the temperature is increased, solubility of solid in liquid increases and hence equilibrium shifts to the right and hence the amount of solid decreases Solid + aq \rightarrow Solution

213 (a)

The given reaction will be exothermic in nature due to the formation of three X - Y bonds from the gaseous atoms. The reaction is also accompanied with the decrease in gaseous species. Hence, the reaction will be affected by both temperature and pressure. The use of catalyst does not affect the equilibrium concentration of the species in the chemical reaction

214 (c)

The characteristics of the given solutions are: NaCl Neutral solution (Salt of S_A/S_B)

NH₄Cl Slightly acidic due to the reaction (Salt of W_B/S_A)

 $NH_4^{\oplus} + H_2O \Longrightarrow NH_4OH + H^{\oplus}$

NaCN Slightly alkaline due to the reaction (Salt of S_B/W_A)

 $CN^{\Theta} + H_2O \iff HCN + OH$

HCl highly acidic

The pH of the solution will follow the order highly acidic < slightly acidic < neutral < slightly alkaline.

i.e., $HCl < NH_4Cl < NaCl < NaCN$

215 (a,b,c,d)

217 (c,d,e)

At constant volume, There is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n = 0$, there is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n \neq 0$, the equilibrium shifts in the direction of more number of moles. Addition of the reactant favours forward reaction. Increasing the volume means decreasing the pressure, which shifts the reaction in the direction of more number of gaseous moles

221 (b,c)

 $K_1 K_2 = \frac{[\mathrm{H}^{\oplus}]^2 [\mathrm{S}^{2-}]}{[\mathrm{H}_2 \mathrm{S}]} = 10^{-21}$ **Note**: Saturated H_2S means 0.01 M H_2S i. $\frac{(0.2)^2/[S^{2-}]}{0.1} = 10^{-21}$ $\therefore [S^{2-}] = \frac{10^{-22}}{0.04} = 2.5 \times 10^{-21}$ $K_{\rm sp} = [{\rm Fe}^{2+}][{\rm S}^{2-}] = 3.7 \times 10^{-19}$ Since $(0.01)(2.5 \times 10^{-21}) < 3.7 \times 10^{-19}$ FeS will not precipitate ii. $\frac{(0.001)^2/[S^{2-}]}{0.1} = 10^{-21}$, $[S^{-2}] = 10^{-16}$ Since $(0.1)(10^{-16}) < 3.7 \times 10^{-19}$ FeS will precipitate

225 (b,d)

a. Wrong statement

b. Correct: Indicator are weak acid or base and are added is small amount. So they do not affect the pH of the solution

c. Wrong: They occur even in the absence of indicators

d. Correct: Factual statement

228 (a,c)

 K_w changes with temperature and salts of strong acid and strong base do not undergo hydrolysis 230 (a,d)

Reaction quotient =
$$\frac{p_{\rm NH_3}^2}{m_{\rm H} + m_3^2} = \frac{1}{(0.025)}$$

 $= 1.85 \times 10^{-3} \text{ atm}^{-2}$

The value of K_p is 4.28×10^{-5} atm⁻². The

numerical value of Q_p is more than that of K_p . The reaction goes towards the left the thus, ammonia decomposes into H₂ and N₂

232 **(b,c,d)**

$$K_1 = \frac{K_f}{K_b} = \frac{2 \times 10^{-2}}{4 \times 10^{-3}} = 5 \text{ at } 300 \text{ K}$$

 $K_2 = \frac{K_f}{K_b} = \frac{4 \times 10^{-2}}{16 \times 10^{-4}} = 25 \text{ at } 400 \text{ K}$
 $\therefore 2.303 \log \frac{25}{5} = \frac{\Delta H}{2} \times \left[\frac{400 - 300}{400 \times 300}\right]$

 $Or \Delta H = 3.86$ kcal

234 (a,b)

 $pK_a = -\log(3 \times 10^{-5}) = -0.48 + 5 = 4.52$ $H_{Ind} \iff Ind^{\Theta} + H^{\oplus}$ (Blue) (Red) (i) 75% 25% 75% (ii) 25% (i) pH = $4.52 + \log\left(\frac{25}{75}\right)$ $= 4.52 + \log \frac{1}{3} = 4.52 - 0.48 = 4.04$ (ii) pH = $4.52 + \log\left(\frac{75}{25}\right)$ = 4.52 + 0.48 = 5.0

235 (a,b)

A buffer can be obtained with the following combinations

(i)A weak base + its salt with a strong acid (ii)A weak acid + its salt with a strong base

241 (a,c)

Le-Chatelier's principle is not quantitative if both stress would cause the same direction of shift, the shift is determinable. If the two stresses would cause shifts in opposite directions, no deduction is possible

244 (a,c,d)

 $N_2O_4 \rightleftharpoons 2NO_2$ 0 initial а $a(1-\alpha)$ 2 $a\alpha$ at equilibrium Vapour density = $\frac{46}{1+\alpha}$: 30.67 So, $(1 + \alpha) = \frac{46}{30.67} = 1.5$ or $\alpha = 50\%$ Total pressure = $\frac{1.5 \times 1.5 \times 0.082 \times 300}{8.2}$ = 6.75 atm So, $K_p = \frac{4\alpha^2}{1-\alpha^2} = 9$ atm Density of mixture = $\frac{138}{82}$ g/L = 16.83 g/L

$$Q = \frac{[S_2]^4}{[S_8]} = \frac{(0.2)^4}{(2)} = 8 \times 10^{-4}; K_c = 6.3 \times 10^{-6}$$

 $\therefore K_p = K_c \times (RT)^{\Delta n}$ $= 6.3 \times 10^{-6} \times (0.0821 \times 900)^3$ = 2.55

Thus, reaction proceed in backward direction since $Q > K_c$

246 (c,d)

 $2NaNO_3(g) \rightleftharpoons 2NaNO_2(g) + O_2(g)$

 $\Delta H = \text{positive}$, endothermic

Addition of solids does not affect the equilibrium. Endothermic reaction is favoured by increase in temperature

Increased pressure shifts the equilibrium in the direction of less gaseous moles

247 (b)

 $Hg_2CrO_4 \rightleftharpoons Hg_2^{2+} + CrO_4^{2-}$ $[Hg_2^{2^+}] = 4 \times 10^{-4} M$, $[CrO_4^{2^-}] = 2 \times 10^{-5}$ $K_{\rm sp} = (4 \times 10^{-4})(2 \times 10^{-5}) = 8 \times 10^{-9}$

248 (b,c,d)

Salt of S_A and W_B : $h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{K_w}{K_h \cdot C}}$

 \Rightarrow h increases as 'C' decreases [on dilution] As *T* increases, K_h increases \Rightarrow *h* increases As T decreases, K_h decreases $\Rightarrow h$ decreases As strength of base decreases (i.e., K_b decreases) \Rightarrow *h* increases

Note:Both K_w and K_b increase with increase in temperature but K_w will increase sharply but K_w will increase sharply as compared to K_w So K_b increases with increase in temperature

251 (b,c)

Self-explanatory

Blue

254 (a,b)

C.

HIn
$$\iff$$
 Ind ^{Θ} + H ^{\oplus} ($pK_a = 5$)
Red Blue

a. when pH < p K_a (4.52 < 5), colour of acid form, i.e, red predominates

b. when pH > p K_a (5.47 > 5), colour of basic form, i.e, blue predominates

75% red
$$\Longrightarrow \left[\frac{\text{In}^{\Theta}}{\text{HIn}}\right] = \frac{0.75}{0.25}$$

 \Rightarrow pH = 5 + log 3 = 5 + 0.48 = 5.48 (Hence (c) is wrong) (d) is also wrong statement 263 (a,b,c,d)

 $A(s) \rightleftharpoons 2B(g) + C(g)$

$$2\alpha + 2\alpha' \quad \alpha$$

$$A'(s) \rightleftharpoons 2B + D$$

$$2\alpha' + 2\alpha \quad \alpha'$$

$$K_{p_1} = (2\alpha + 2\alpha')^2 \times \alpha \times \left[\frac{P}{(3\alpha + 2\alpha)}\right]$$

$$K_{p_2} = (2\alpha + 2\alpha')^2 \times \alpha' \times \left[\frac{P}{(3\alpha' + 2\alpha)}\right]$$

$$\frac{K_{p_1}}{K_{p_2}} = \frac{[3\alpha' + 2\alpha]^3}{[3\alpha + 2\alpha]^3} \times \frac{\alpha}{\alpha_1}$$
Also, $K_{p_1} = (P'_B)^2 \times P'_C$

$$K_{p_2} = (P'_B)^2 \times P'_D$$
Or $\frac{P'_C}{P'_D} = \frac{K_{p_1}}{K_{p_2}} = \frac{8 \times 10^{-2}}{2 \times 10^{-2}} = 4$
Also, $P'_B = 2 \times (P'_C + P'_D)$

$$K_{p_1} > K_{p_2} \quad \therefore \quad \alpha > \alpha_1$$

265 **(b,d)**

Since $\Delta H < 0$ i. e., $\Delta H < -ve$, Reaction is exothermic, so lowering of temperature will shift equilibrium towards right. Statement (d) is correct and also the concentration of reactants decreases and products increases. So statement (b) is also correct

268 (d)

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

At constant volume, there is no effect of addition of inert gas to a reaction in equilibrium

At constant pressure, for the reactions for which $\Delta n = 0$, there is no effect of addition of inert gas to a reaction in equilibrium. The presence of a catalyst just helps to achieve the equilibrium at a different pace. It does not affect the amount of a reactant or a product at equilibrium

Only if the reactant concentration is increased, the equilibrium shifts forward and the product concentration is increased

269 **(a,b,d)**

In aqueous solution, a salt of weak acid and a weak base acts as a buffer solution. The pH of a buffer solution do not change on dilution. Thus, pH of $0.01 \text{ M CH}_3\text{COONH}_4$ will not change on dilution. HCO₃ fromNaHCO₃ and H₂PO₄ from NaH₂PO₄ are amphiprotic anions. The pH of solution containing amphiprotic anions do not change on dilution

272 **(d)**

For precipitation, $[Ag^{\textcircled{B}}]$ ion should be minimum in the solution

For AgCl:
$$[Ag^{\oplus}]_{\min} = \frac{K_{sp} AgCl}{[Cl^{\Theta}]} = \frac{1.5 \times 10^{-10}}{1.5 \times 10^{-1}}$$

= 10⁻⁹M
For AgBr: $[Ag^{\oplus}]_{\min} = \frac{K_{sp} AgBr}{[Pr^{\Theta}]} = \frac{5.0 \times 10^{-13}}{5.0 \times 10^{-4}}$

$$[Br] = 10^{-9} M$$

For Ag_2CrO_4 : $[Ag^{\textcircled{e}}]_{min}$

$$= \left(\frac{K_{\rm sp} A g_2 Cr O_4}{[Cr O_4^2]}\right)^{\frac{1}{2}} = \left(\frac{1.9 \times 10^{-12}}{1.9 \times 10^{-2}}\right) = 10^{-5} \,\mathrm{M}$$

Therefore, $[Ag^{\oplus}]$ min in solution is in AgCl and AgBr, so both will be precipitated

280 (a,b)

Either buffer to salt of W_A/W_B solutions pH values does not change on dilution

Since in buffer, on dilution both the concentration of W_A or W_B and their conjugate ions change, but their ratio remains same

Hydrolysis of salts of W_A/W_B are independent on the concentration, so their pH values also does not change on dilution

282 (a,b)

Increasing the concentration of reactants favours the product formation

285 (a,b,c,d)

Calculate of molecular weight of BOH: Eq of base = Eq of H₂SO₄ used $\frac{0.496 \text{ g}}{Mw \text{ of base}} \times 1 = 40 \times 10^{-3} \times \frac{1}{2} \times 2(n \text{ factor})$ $\therefore Mw \text{ of BOH} = 12.4 \text{ g mol}^{-1}$ Now: $\Delta_f T = iK_f m$ $0.165 = i \times 1.86 \times \frac{1.5}{12.4} \times \frac{1000}{150}$ $= i \times 1.86 \times 0.8 \text{ (So } m = 0.8)$ $\therefore i = \frac{0.165 \times 12.4}{1.86} = 1.1$ For weak base: $1 + \alpha = 1.1$, $\Rightarrow \alpha = 0.1 = 10\%$ (Answer d) Thus, $\begin{bmatrix} \Theta H \end{bmatrix} = C\alpha = 0.8 \times 0.1 = 8 \times 10^{-2}$, $\therefore \text{ pOH} = 1.1, \text{ pH} = 12.9$ (Answer a) So, $K_b = C\alpha^2 = 0.8 \times (0.1)^2 = 8 \times 10^{-3}$, (Answer b) Also; $\pi = iMRT$ $= 1.1 \times 0.8 \times 0.0821 \times 300$

= 21.67 atm (Answer c)

287 (a,b,c)

As concentration of reactant is increased at equilibrium, reaction will go in the forward direction. Because of endothermic nature it is also favoured by increase in temperature

290 **(a,c)**

For any polyprotic acid: $K_{a_1} > K_{a_2} > ...$ and so on

292 **(a)**

i.
$$\operatorname{Ag}_2\operatorname{SO}_4 \rightleftharpoons 2\operatorname{Ag}^{\oplus} + \operatorname{SO}_4^{2^-}$$

 $2x \qquad x$
ii. $\operatorname{BaSO}_4 \rightleftharpoons \operatorname{Ba}^{2^+} + \operatorname{SO}_4^{2^-}$
 $y \qquad y$
iii. $\operatorname{Ba}_3(\operatorname{PO}_4)_2 \rightleftharpoons 3\operatorname{Ba}^{2^+} + 2\operatorname{PO}_4^{3^-}$
 $3z \qquad 2z$
 $\therefore [\operatorname{Ag}^{\oplus}] = 2x, [\operatorname{SO}_4^{2^-}] = x + y, [\operatorname{Ba}^{2^+}] = x + 3z;$
 $[\operatorname{PO}_4^{3^-}] = 2z$

Direct method: By electroneutrality

 $\begin{bmatrix} Total positive charge = Total negative charge \\ Total charge = Charge on the ion \times Concentration \end{bmatrix}$

iv.
$$1 \times [Ag^{\oplus}] + 2[Ba^{2+}] = 2[SO_4^{2-}] + 3[PO_4^{3-}]$$

Alternatively: Substituting the concentration of each ion in (iv) 2x + 2(x + 3z) = 2(x + y) + 3(2z)Dividing by 2: $x + (x + 3z) = (x + y) + \frac{3}{2}(2z)$ $\frac{[Ag^{\oplus}]}{2} + [Ba^{2+}] = [SO_4^{2-}] + \frac{3}{2}[PO_4^{3-}]$ or $[Ag^{\oplus}] + 2[Ba^{2+}] = 2[SO_4^{2-}] + 3[PO_4^{3-}]$ Hence answer is (a) 298 **(a,c,d)**

 K_p depends upon temperature only

299 **(a,b,d)**

For acidic buffer, buffer capacity is maximum at $pH = pK_a$ and for basic buffer, it is maximum at $pH = pK_w - pK_b$. Buffer is always effective withn a pH range of 1 with respect to the pH at maximum buffer capacity

 $H_3PO_4 + H_2PO_4^{\ominus}$ is a buffer solution

303 **(c)**

a. For the titration of W_A and W_B , there is no sharp change in the pH value near the end point (pH varies between 6.0 and 8.0) So indicator V can not be used. But indicator X can be used $CH_3COOH + NH_4OH \Rightarrow pH = 7$ **b.** 0.1 M NaOH ⇒ pH = 13 **b.** 0.001 M NaOH ⇒ pH = 11] *Y* cannot be used. Choose an indicator which has different colour for pH = 13 and 11 **c.** *X* can be used since it will give different colour in both the solutions. NH₄Cl (Salt of W_B/S_A pH < 7) and CH₃COONa (salt of W_A/W_B pH < 7) **d.** *Y* will be suitable indicator not W CH₃COOH + Base ⇒ pH > 7

310 **(a,b)**

312

Factual statements

(a,b)

$$\Delta G^{\ominus} = -nRT \text{ In K and } 2.303 \log \text{ K}$$

$$= \frac{-\Delta H^{\ominus}}{RT} + \frac{\Delta S^{\ominus}}{R}$$

315 **(b,c)**

Acidic buffer: pH = pK_a + log $\frac{[Salt]}{[Acid]}$ If more salt is added, pH increases Basic buffer: pOH = pK_b + log $\frac{[Salt]}{[Base]}$ If more salt is added, pOH = pK_b + log $\frac{[Salt]}{[Base]}$ If more salt is added, pOH increases or pH decreases 317 **(b,d)** MgCl₂ + NaF [After dilution] 7.5 × 10⁻⁴M 1.25 × 10⁻² M I.P. of MgF₂ = [Mg²⁺][F^{\ominus}]² = (7.5 × 10⁻⁴)(1.25 × 10⁻²)² > K_{sp(MgF₂)}

⇒ MgF₂ will get precipitated and Cl^{\ominus} ions will remain in solution

320 **(a,c)**

$$CH_3NH_2 + HCl \longrightarrow CH_3 \overset{\textcircled{}}{NH}_3 + Cl^{\Theta}$$

Initial 0.1 0.08 moles Final (0.1 - 0.08) (0.008 - 0.008) 0.008= 0.02 = 0

Since W_B is left, so it forms basic buffer solution

$$\begin{bmatrix} \Theta \\ OH \end{bmatrix} = K_b \frac{[Base]}{[Salt]} = 5 \times 10^{-4} \times \frac{0.02}{0.08}$$

$$= 1.25 \times 10^{-4}$$

$$[H^{\oplus}] \frac{K_w}{\Theta} = \frac{10^{-14}}{1.25 \times 10^{-4}} = 8 \times 10^{-11} M$$

$$pH = -\log(8 \times 10^{-11})$$

$$= -\log 2^4 + 11$$

$$= -0.3 \times 4 + 11 = 9.8$$

$$pOH = 14 - 9.8 = 4.2$$

$$326 (b,d)$$

The van't Hoff equation is $K = Ae^{-\Delta H/RT}$

or
$$\frac{d \ln k}{\partial T} = \frac{\Delta H}{RT^2}$$

328 **(a,b)**

As the reaction is exothermic, low temperature will favour dissociation. Moreover, as $n_p > n_r$, low pressure favours dissociation

330 **(b,d)**

a. Wrong: Indicator should have a small transition range
b. Correct: pH at equivalence point = pH_{Ind}
c. Wrong: pH at equivalence point and at the end point may be different
d. Correct: Factual statement

331 (a,b,c)

a. $M = \frac{W_2 \times 1000}{MW_2 \times V_{sol}(in \ mL)} = \frac{2 \times 1000}{40 \times 500} = 0.1 \text{ M}$: $[NaOH] = [OH] = 0.1 = 10^{-1} M$ pOH = 1, pH = 3**b**. 0.05 M Ca(OH)₂ = 2×0.05 N Ca(OH)₂ Θ [OH] = 2×0.05 = 0.1 = 10⁻¹M pOH = 1, pH = 13**c**. 100 mL of 0.1 N Ca(OH)₂, : $[OH] = 0.1 \text{ N} = 10^{-1} \text{ M}$ pOH = 1 pH = 13 **d**. M = $\frac{4 \times 1000}{40 \times 500} = \frac{1}{5} = 0.2 M$ [OH] = 0.2 M $pOH = -\log[0.2] = -\log 2 + \log 10$ = -0.3010 + 1= -0.699pH = 14 - 0.699 = 13.301So the answer (a), (b), and (c) are correct 332 (a,b,d) NaCl + NaI

0.05 M 0.05 M When AgNO₃ is added, find the minimum concentration of Ag $^{\oplus}$ required to start precipitation

$$[Ag^{\oplus}]_{AgCl} = \frac{K_{sp (NaCl)}}{[Cl^{\Theta}]} = \frac{10^{-10}}{0.05} = 2 \times 10^{-9} \text{ M}$$
$$[Ag^{\oplus}]_{Agl} = \frac{K_{sp (Agl)}}{[I^{\Theta}]} = \frac{4 \times 10^{-16}}{0.05} = 8 \times 10^{-15} \text{ M}$$

Since, there is a very high difference between the minimum concentration of Ag^{\oplus} , precipitation is selective and AgI will precipitate first

336 (a,b,c,d)

Applying Le Chatelier's principle, when the temperature is increased, the equilibrium shifts in the direction of the endothermic reaction. When the pressure is increased, the equilibrium shifts in the direction of less number of moles. The removal of a reactant and addition of a product shift the equilibrium in the backward direction

337 (a,b,c,d)

 $\Delta G = \Delta G^{\ominus} + 2.303 RT \log Q$

$$\Delta G = 2 \times G_{\text{NO}_2}^{\oplus} - G_{\text{N}_2\text{O}_4}^{\ominus} = 2 \times 50 - 100 = 0$$

$$\therefore \Delta G = 0 + 2.303 \times 8.314 \times 10^{-3} \times 298 \log \frac{22}{5}$$

$$= 0 - 0.55 \text{ kJ}$$

 $\div \Delta G = -0.55$ kJ, i.e., reaction proceed in forward direction

Also
$$\Delta G^{\oplus} = 0 = 2.303 \ RT \log K \quad \therefore K = 1$$

Now,
$$N_2O_4 = 2NO_2$$

5

 $5 - x \qquad 2 + 2x$

2

$$\therefore K_p = \frac{(P_{\text{NO}_2})}{(P_{\text{N}_2\text{O}_4})} = 1 = \frac{(2+2x)^2}{5-x} \text{ or } x = 0.106$$

340 **(a,b,c)**

Since concentration are identical If V_1 is the volume of CH₃COOH and V_2 is the volume of NaOH a. $\frac{CH_3COOH + NaOH}{V_1} V_2$ Buffer is formed if $V_1 > V_2$ M_1 \approx M_{2} mmol of $CH_3COOH(M_1V_1) > mmol of$ NaOH (M_2V_2) . So W_A is left and buffer is formed b. $CH_3COOK + HNO_3 \rightarrow CH_3COOH + KNO_3$ V_1 M_1 $\approx M_2$ Buffer is formed $V_1 > V_2$ mmol of salt (CH_3COOK) > mmol of HNO_3 . Some salt is hydrolysed to give CH₃COOH and some salt CH₃COOK is left to give buffer solution. KNO₃ is completely ionized $CH_3COOH + CH_3COOK$ V_2 Forms always a buffer. Mixture of W_A and salt of W_A/S_B

d. HNO₃ + CH₃COOH] It is a mixture of S_A and W_A

345 (a,b,c) Salt of W_B/S_A have pH > 7 Note: Salt of $\frac{W_A}{W_B}$ have pH < 7 if acidic part is stronger i.e., if $pK_b > pK_a$ a. NH₄F \equiv NH₃ + HF ($K_a > K_b$ or $pK_b > pK_a$) $W_B W_A$ (pH < 7) b. Cr(NO₃)₃ \equiv Cr(OH)₃ + HNO₃ [pH < 7] $W_B S_A$ [(CH₃)₃NH]Cl \equiv (CH₃)₃ NH OH + HCl (pH > 7) c. $W_B S_A$ d. CaI₂ \equiv Ca(OH)₂ + HI(pH = 7) $S_B S_A$

346 (a,c)

A buffer solution is obtained by mixing a weak acid/base with salt of its conjugate base/acid

351 **(b,d)**

355

a. Statement (a) is correct

 K_a values decreases successively, since it is difficult to remove H^{\oplus} ion from an anion than a neutral compound. Similarly, it is difficult to remove H^{\oplus} ion from dianion than and anion Hence $K_{a_1} > K_{a_2} > K_{a_3}$

b. Statement (b) is incorrect

$$H_{3}PO_{4} \xleftarrow{Ka_{1}} H^{\oplus} + H_{2}PO_{4}^{\Theta}$$
$$H_{3}PO_{4}^{\Theta} \xleftarrow{Ka_{2}} H^{\oplus} + HPO_{4}^{2-}$$
$$pH(H_{2}PO_{4}^{\Theta}) = \frac{pKa_{1} + pKa_{2}}{2}$$

This is valid only when $\rm H_3PO_4$ during titration is completely converted to $\rm {}^{H_2PO_4}^{\Theta}$

$$HPO_{4}^{2-} \xleftarrow{Ka_{3}}_{\longrightarrow} H^{\oplus} + PO_{4}^{3-}$$

$$pH(HPO_{4}^{2-}) = \frac{pK_{a_{2}} + pK_{a_{3}}}{2}$$
This is again valid when starting with H₂PO₄²⁻
and is completely converted to HPO₄²⁻
c. Statement (c) is correct
From the K_a values, it is evident that both H₃PO₄
and H₃PO₄ ^{\ominus} are more acidic than HPO₄²⁻
d. Statement (d) is incorrect
Both H₂PO₄ ^{\ominus} and HPO₄²⁻ are amphiprotic anion in
the solution
H₃PO₄ $\xleftarrow{+H^{\oplus}}$ H₂PO₄ ^{\ominus} $\xrightarrow{-H^{\oplus}}$ HPO₄²⁻ + H ^{\oplus}
H₂PO₄ ^{\ominus} $\xleftarrow{+H^{\oplus}}$ HPO₄²⁻ $\xrightarrow{-H^{\oplus}}$ PO₄³⁻ + H ^{\oplus}
(a,b,c)
 $K_{p} = K_{c}(RT)^{\Delta n}$

357 (b,d) a. $\Delta n = 1 + 1 - 1 = 1$ $b. \Delta n = 2 - (1 + 1) = 0$ c. $\Delta n = 1 - 0 = 1$ d. $\Delta n = 1 + 1 - (1 + 1) = 0$ Δn is zero in (b) and (d), so (b) and (d) are not effected by pressure 359 (a,b) a. Correct: At the point, $[H^{\oplus}]$ becomes small and to change it, small amount of $\overset{\Theta}{[OH]}$ is required. When $[H^{\oplus}]$ change from 10^{-6} M to 10^{-7} M, pH change is one, but the volume of NaOH required for this change is very small. So, the curve changes sharply b. Correct: Quinoid structure is obtained (c) and (d) are wrong statements 361 (a,b,d) $K_p = K_c (RT)^{\Delta n}$, when $\Delta n \neq 0$, $K_p \neq K_c$ 366 (a,b,c,d) $A_2 \rightleftharpoons 2C + D$ 1 0 0 Initial At equilibrium $1 - \alpha = 2\alpha$ $K_p = (2\alpha)^2 \alpha \times \left[\frac{P}{\Lambda n}\right]^2 = \frac{4\alpha^3 P^2}{(1+2\alpha)^2}$ 2.303 log $\frac{K_2}{K_1} = \frac{\Delta H}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$ Use for effect temperature on K 371 (a,c) a. CH₃COONa + CH₃COOH (Acidic buffer, mixture of salt of W_A/S_B and W_A) b. It is not buffer. [Mixture of salt of W_A/S_B and S_A] c. $NH_3 + NH_4Cl$ (Basic buffer, mixture of W_B and salt of W_B/S_A) d. $NH_3 + NH_4OH$ (not buffer, mixture of W_B) 373 (a,b,d) Factual statements 376 (b,c,d) (a) is wrong For reaction of S_A with W_B , basic buffer is formed β is maximum. When pOH = p K_h At 50% neutralization (24 mL of 0.1 N HCl) Slope of the given graph will be least and the buffer will have maximum buffer capacity 377 (d) At constant volume, there is no effect of addition

of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n = 0$. There is no effect of addition of inert gas to a reaction in equilibrium. At constant pressure, for the reactions for which $\Delta n \neq 0$, the equilibrium shifts in the direction of more 389 (c) number of moles

386 (a,b,c,d)

After dilution $[H^+] = 10^{-2}$ pH = 2

Let *V* L solution of pH=2 is added in original solution so that pH remains fixed

$$\therefore [\mathrm{H}^+] = \frac{10^{-2}x + V \times 10^{-2}}{10 + V} = 10^{-2}$$

This result is independent of volume taken

387 (a,c)

Addition of H₂O will not change pH only for buffer solution. (Buffer is formed if W_A or W_B is left after neutralization) a. Acid buffer: $CH_3COOH = 100 \times 0.2 = 20$ mmol $NaOH = 100 \times 0.1 = 10 \text{ mmol}$ 10 mmoles of CH₃COOH will react with 10 mmol of NaOH to form 10 mmol of CH₃COONa and 10 mmol of CH₃COOH is left b. mmol of $CH_3COOH = 100 \times 0.2 = 20$ mmol of NaOH = $100 \times 0.2 = 20$ (Salt of W_A/W_B is formed) c. mmol of $CH_3COOH = 200 \times 0.2 = 40$ mmol of NaOH = $100 \times 0.1 = 10$ mmol of CH_3COOH left = 40 - 10 = 30mmol of CH_3COONa formed = 10 (Buffer is Formed) d. mmol of $CH_3COOH = 100 \times 0.2 = 20$ mmol of NaOH = $200 \times 0.2 = 40$ mmol of NaOH left = 40 - 20 = 20 S_B is left

388 (b,c)

a. The pH of 1.0×10^{-8} M solution of HCl is not 8, it is less than 7

h
$$H_2PO_4^{\Theta} \iff HPO_4^{2-} + H^{\Theta}$$

c. Autoprotolysis constant of water or ionic

394 (c)

2.303 log
$$\frac{K_{c_2}}{K_{c_1}} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$
; if $\Delta H = -\text{ve}, K_{c_2} < K_{c_1}$
if $\Delta H = +\text{ve}, K_{c_2} > K_{c_1}$

395 (d)

 $\Delta n = 0$ $\therefore K_p = K_c$ Explanation is correct reason for statement

397 (c) K depends only upon temperature

product of water increases with increase in temperature

d. When a solution of a weak monoprotic acid is treated against a strong base, at halfneutralisation point $pH = pK_a$

Explanation is correct reason for statement

390 (c)

Catalyst increases forward as well as backward reaction

391 (c)

Explanation is correct reason for statement.

392 (b)

Both (A) and (R) are correct but (R) is not the correct explanation of (A)

Correct R: Na₂CO₃ reacts with HCl upto the stage of NaHCO₃ in the presence of phenolphthalein

 $Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$

393 (b)

(A) is correct because aqueous solution of salt of W_A and W_B acts as buffer

(R) is correct. Buffer resist the change in pH on addition of small amount of S_A or S_B

But it is not the correct explanant of (A)

396 (c)

398 (a)

Both (A) and (R) are correct and (R) is the correct explanation of (A)

Sulphur can expand its electron complement in the valence shell to exceed the octet. In any case, S, expands its number of valence electrons by attaching to the lone pair on the N and (N - S)bond is more polar bond due to the big difference in EN between N and S

$$R_3N:+H-\dot{C}I: \longrightarrow R_3N-H-\dot{C}I:$$

In this case H of the HCl attaches to the lone pair on the N. Here Cl is connected to N by a hydrogen bond

399 (c)

Ice \rightleftharpoons water, increase in pressure leads to melting of ice as it favours the change showing decrease in volume.

400 **(b)**

 $HgI_2 + KI \rightarrow K_2[HgI_4]$ (A) is true

(R) is also true since I^{\ominus} ion is large sized and therefore is highly polarisable. But (R) is not the correct explanation of (A)

401 (d)

(A) is wrong because addition of NaCN to HCN, due to common ion (CN^{Θ}) , the degree of dissociation of HCN is suppressed and hence less $[H^{\oplus}]$ and increase in pH. (R) is correct

402 **(b)**

The dissociation of NH_4OH is suppressed in presence of NH_4Cl and thus pH of NH_4OH decreases

403 **(a)**

 $B(OH)_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$

404 **(a)**

Both (A) and (R) are correct and (R) is the correct explanation of (A)

$$\begin{array}{c} H_2SO_4 + HClO_4 \longrightarrow ClO_4^{\ominus} + H_3SO_4^{\oplus} \\ Base \quad Acid \quad C_B \quad C_A \end{array}$$

406 **(d)**

Increase in pressure favours melting of ice into water because at higher pressure melting point of ice is lowered

407 **(a)**

(A) is true:

 $HCl + CH_3COONa \rightarrow CH_3COOH + NaCl$

1 M 2 M 1 M

 $[CH_3COONa]_{left} = 2 - 1 = 1 M$

So solution contains $\rm CH_3COOH$ and $\rm CH_3COONa$, an acidic buffer forms

(R) is true

408 **(c)**

Both (A) and (R) are true. A basic buffer is formed whose pH is always > 7

409 **(a)**

Catalyst only increases the rate of reaction

410 **(a)**

Both (A) and (R) are correct and (R) is correct explanation of (A)

411 **(c)**

(A) is correct but (R) is false

Correct (R): K_{sp} of AgCl > K_{sp} of AgBr compounds with lower K_{sp} is precipitated first. Also, for precipitation Q_{sp} should be greater than K_{sp}

414 **(a)**

$$PCl_{5} \rightleftharpoons PCl_{3} + Cl_{2}$$

$$\begin{pmatrix} 1 \\ 1-\alpha \end{pmatrix} \qquad 0 \\ \alpha \qquad \alpha \end{pmatrix}$$

$$K_{p} = \left[\frac{\alpha^{2}}{1-\alpha}\right] \left[\frac{P}{1+\alpha}\right]^{1}$$

An increase in pressure will decrease α , to have K_p constant and thus backward reaction occurs.

415 **(c)**

Explanation is correct reason for statement.

416 **(c)**

Boiling of a liquid occurs when its vapour pressure becomes equal to atmospheric pressure. 417 **(c)**

This is based on common ion effect

 $NaCl \rightleftharpoons Na^+ + Cl^-$

 $HCl \rightleftharpoons H^+ + Cl^-$

Concentration of Cl⁻ ions increases due to ionization of HCl which increases the ionic product[Na⁺][Cl⁻]. This results in the precipitation of pure NaCl.

418 **(a)**

According to formula $K_P = K_C (RT)^{\Delta n}$

 $\Delta n = 0$

 $K_P = K_c (RT)^0$

 $K_P = K_C$

419 **(a)**

 $K_p = K_c \ (RT)^{\Delta n}$

When $\Delta n > 1$, $K_p > K_c$

When $\Delta n < 1$, $K_p < K_c$

When $\Delta n = 0$, $K_p = K_c$

420 **(d)**

(A) is wrong. It forms acidic buffer and this pH changes

(R) is correct. Due to common ion (CH_3COO^{\ominus}) , ionization of CH_3COOH is supressed

421 **(e)**

Both (A) and (R) are wrong

Since it depends on temperature

423 **(c)**

Gas + solvent \rightleftharpoons solution; Increase in pressure leads to the change showing decrease in volume.

424 **(a)**

According to Henry's law, "the mass of gas dissolved in a given mass of a solvent at any temperature is directly proportional to the pressure of the gas above the solvent."

425 **(a)**

The scale of pH (0 to 14 at 25°C) changes to (0 to less than 14) as the temperature rises because K_w of water increases with temperature. Note that $[H^+] = [OH^-]$ and thus water remains neutral

426 (d)

(A) It is acidic (salt of W_B/S_A). So wrong

(R) is correct

 $[\mathrm{A}(\mathrm{H}_{2}\mathrm{O})_{6}]^{3+} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons [\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}]^{2+} + \mathrm{H}_{3}\mathrm{O}^{\textcircled{\bullet}}$

427 **(a)**

The equilibrium $AgCl(s) \rightleftharpoons Ag^+ + Cl^-$

$$K_{sp} = [Ag^+][Cl^-]$$

If [Cl⁻] increases, the equilibrium is shifted in the backward direction, *i. e.*, solubility of AgCl decreases in presence of NaCl. Note this is Le Chatelier's principle application to solubility product. In common ion effect, there must be a weak electrolyte

429 **(e)**

(A)
$$[H^{\oplus}] = \frac{10^{-2}}{2} \text{ pH} = 2.3 \text{ not pH} = 1$$

(R) is wrong

430 **(c)**

Addition of inert gas shifts the equilibrium to backward direction

431 **(c)**

(A) is correct because HCl is a strong electrolyte resulting in higher $[H^{\oplus}]$ (and less pH) then acetic acid. (R) is wrong, HCl will produce more protons than acetic acid at same concentration

432 **(c)**

(A) is correct

(R) is wrong

Correct (R): Addition of acid or base increase the $[H^{\oplus}]$ or [OH] and thus pH changes

433 **(a)**

Forward reaction increase with temperature only for endothermic reaction, while for exothermic it is reverse

434 **(d)**

(A) is false. H^{\oplus} ion from CH_3COOH are adsorbed on characoal thus decrease $[H^{\oplus}]$ and hence pH is increased

435 **(a)**

All Bronsted bases are not Lewis bases

436 **(c)**

(A) is correct. Due to common ion (Cl^{\ominus}) effect, the suppression of ionization of NaCl occurs and NaCl starts precipitating

(R) is wrong. Correct (R) as in (A)

438 **(c)**

Explanation is correct reason for statement

439 **(c)**

(A) is true

(R) is false: Correct reason: K_{sp} of CdS $< K_{sp}$ NiS. Since compound with lower K_{sp} is precipitated first

440 **(a)**

Both (A) and (R) is correct and (R) is correct explanation of (A)

441 **(a)**

Equilibrium constant depends only upon temperature

442 **(d)**

(A) is wrong. Dissociation of water is an endothermic reaction, so increasing T will increase $[H^{\oplus}]$ and hence decrease in pH

(R) is correct

443 **(d)**

In biological systems buffer system of carbonic acid and sodium bicarbonate is found in our blood. It maintains the pH of blood to a constant value of about 7.4

445 **(a)**

The pH of the solution at the neutralisation point region is about 3.5 to 7 and methyl orange gives its colour change between pH 3.1 to 4.4

446 **(c)**

Correct (R): In such very dilute solutions both source of H^{\oplus} ions from HCl and H_2O must be considered and due to common ion (H^{\oplus}) supression of ionization occurs

447 **(b)**

Both Assertion and Reason are true statement but Reason is not the correct explanation of Assertion. pH of a buffer solution is given by Henderson-Haselbalch equation.

$$pH = pK_a + \log\frac{[\text{salt}]}{[\text{acid}]}$$

 $\therefore \qquad \text{pH} = \text{p}K_a \text{ (when [salt]=[acid])}$

449 **(c)**

CO is acid, NaOH is base and salt formed is HCOONa

450 **(d)**

 $Q < K_c$ forward reaction

 $Q > K_c$ backward reaction

$Q = K_c \text{ if } \Delta G = 0$

451 **(c)**

(A) is correct but (R) is false

Correct (R): Sb³⁺ is precipitated in group II B by H_2S in acidic medium (dil HCl). In acidic medium $[S^{2-}]$ decreases so that the radicals of group IV are not precipitated. Since the K_{sp} of the sulphides of II group is less than the K_{sp} of the sulphides of IV group

452 **(a)**

Aqueous solution of $FeCl_3$ on standing produce brown ppt. Due to hydrolysis, it produces ppt of $Fe(OH)_3$ which is of brown colour. Hence, both are correct and reason is a correct explanation

453 **(a)**

Both factual statements

454 **(b)**

(A) is correct. At midpoint of titration of weak acid, [salt] = [Acid] and therefore $pH = pK_a$

(R) is correct but not the reason of (A)

455 **(b)**

Breaking up of bonds is endothermic

456 **(a)**

If volume is not constant the addition of inert gas affect the equilibrium constant. Both at constant volume, the addition of inert gas has no effect on the state of equilibrium.

457 **(d)**

(A) only reaction (i) is Lewis acid-base reaction, hence (A) is wrong

(R) is correct

 $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$

$$K_{c} = \frac{mol^{2} \times L \times L^{3}}{L^{2} \times mol \times mol^{3}}$$

 $= L^2 \text{ mol}^{-2}$

459 **(c)**

(A) is correct

Since K_w at 25°C = 10⁻¹⁴

So pH of acidic solution < 7 at 25°C

(R) is wrong. pH of 10^{-8} M HCl = 6.98

460 (c)

Explanation is correct reason for statement

462 **(c)**

Explanation is correct reason for statement.

463 **(c)**

Inert gas addition at constant pressure leads to an increase in volume. To have K_c constant ' α ' must decrease.

464 **(c)**

 $NaCN + HCl \rightarrow NaCl + HCN$ $0.1 \quad 0.05 \quad 0 \quad 0$ $0.05 \quad 0 \quad 0.05 \quad 0.05$

The solution contains a weak acid HCN and its salt NaCN and thus acts as buffer

465 **(a)**

HCl is regarded as an acid only when dissolved in water and not in any other solvent

466 **(c)**

Explanation is correct reason for statement

467 (a)

 $CH_3COONa + H_2O \rightarrow CH_3COOH + NaOH$ The above process takes place in following steps

 CH_3COONa $\underbrace{Ionisation}_{in aqueous solution}$ $CH_3COO^- + Na^+$

 $CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^-$ Acetate ion undergoes anionic hydrolysis and the resulting solution is slightly basic due to excess of OH⁻ ions. Hence, both Assertion and Reason are true and Reason is the correct explanation of Assertion.

468 **(d)**

 $BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$ $s \qquad s + 0.1$ $K_{sp} = (s)(s + 0.1)$ $s < 10^{-9}$

469 **(b)**

Heat of neutralisation of HF and NaOH is -16.4 kcal/eq. due to extensive hydration of F⁻ of NaF on account of its smaller size

470 **(c)**

Explanation is correct reason for statement

471 **(a)**

 $K_w = 10^{-13}$ at 60°C \therefore pH = 6.5; but water is neutral because pH scale contracts to 0 to 13

472 **(a)**

Assume, (a) is true, hence reaction must be endothermic

473 **(c)**

(A) is correct. It exists as Zwitter ion

(R) is wrong. The conjugate acid is $\overset{\oplus}{\mathrm{NH}_2\mathrm{CH}_2\mathrm{COOH}}$

474 **(c)**

Explanation is correct reason for statement.

475 **(a)**

Here 0.1 M H₂S is passed into the solution directly. Selectively precipitation of Pb²⁺, Zn²⁺ and Ni²⁺ is not possible, as the ionic product of their respective sulphides is more than their K_{sp} values and S²⁻ ion is not added slowly or dropwise

If $\rm H_2S$ is passed into the solution containing only $\rm H_2O,$ then

 $[S^{2-}] = K_2 \text{ of } H_2 S = 10^{-14} \text{ M}$

But in 0.1 M HCl solution

$$K_1 \times K_2 = \frac{[\mathrm{H}^{\oplus}]^2 [\mathrm{S}^{2^-}]}{\mathrm{H}_2 \mathrm{S}}$$
$$10^{-7} \times 10^{-14} = \frac{(0.1)[\mathrm{S}^{2^-}]}{0.1} \quad \therefore [\mathrm{S}^{2^-}] = 10^{-20} \mathrm{M}$$

∴ $Q_{\rm sp}$ of PbS and $ZnS(0.1 \times 10^{-20}) > K_{\rm sp}$ of PbS and ZnS (Hence both precipitate) $Q_{\rm sp}$ of NiS(10^{-21}) < $K_{\rm sp}$ of NiS (Hence do not precipitate)

476 **(e)**

Both (A) and (R) are false

Correct (A): For titration of S_B/W_A (pH change near the end point 8 – 10), phenolphthalein or thymol blue are used

Correct (R) methyl orange changes colour in pH range (3 to 4.5)

477 **(b)**

 $RCOONa \rightarrow RCOO^- + Na^+$; In presence of NaCl, [Na⁺] increases and [$RCOO^-$][Na⁺] exceeds than K_{sp} of RCOONa

478 **(a)**

Both (A) and (R) are correct and (R) is the correct of explanation of (A). Zn^{2+} is precipitated as ZnS in basic medium

479 **(b)**

 $\Delta G^{\circ} \neq 0$ at equilibrium

 $\Delta G = 0$ at equilibrium

480 **(c)**

Explanation is correct reason for statement

481 **(a)**

The state of equilibrium is not affected by the addition of noble gases, at constant volume

482 **(b)**

According to Le-Chatelier's principle with increase of pressure, equilibrium shifts in that direction in which lesser number of gaseous moles are produced

483 **(d)**

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 + Heat$

This reaction is favoured by decrease of temperature, increase of pressure, addition of catalyst and promoter

484 **(a)**

Statement is correct due to back bonding in boron. In nitrogen halides the order is $NF_3 < NCl_3 < NBr_3 < NI_3$. On account of decreasing electronegativity to halogens. In NF₃, the lone pair is not released easily, due to more +ve charge on N

485 **(c)**

The value of *K* depends on the stoichiometry of reactants and products at the point of equilibrium. For example if the reaction is multiplied by 2, the equilibrium constant is squared

486 **(c)**

According to Le-chateliers principle endothermic reaction favours increase in in temperature . However exothermic reaction favour decrease in temperature.

487 **(a)**

 $AgCN(s) \Longrightarrow Ag^{\oplus} + CN^{\Theta}$

 $\mathrm{CN}^{\Theta} + \mathrm{H}^{\oplus} \longrightarrow \mathrm{HCN}$

As CN^{Θ} ions are consumed by H^{\oplus} ions to form a W_A , HCN, more AgCN is dissolved

488 **(a)**

 $CO(H_2O)_6^{2+}$ (pink) while $CoCl_4^{2-}$ (blue); so on cooling because of Le-Chatelier's principle the reaction tries to overcome the effect the temperature.

489 **(d)**

In endothermic reaction, on increasing the temperature, reaction shifts to forward direction

490 **(d)**

Blood is alkaline and at body temperature (98°F) scale of pH lies between 0 to 13.6

491 **(e)**

 K_p can be greater, less or equal to K_c

492 **(a)**

Both (A) and (R) are correct and (R) is the correct explanation of (A). Structure are:

(In all the three acids, number of terminal oxygen atoms is one)

493 **(b)**

(A) is correct. Salt of $H_2S_2O_3$ and NaOH. H_2SO_3 is unstable acid

(R) is correct but not the correct explanation of (A)

494 (c)

Solid \rightleftharpoons Liquid $V_L > V_S$; Ice \rightleftharpoons water, increase in pressure leads to melting of ice as it favours the change showing decrease in volume.

495 (a)

$$(\mathbf{a} \rightarrow \mathbf{q}) \text{ Salt of } W_A/S_B \text{ pH} = \frac{1}{2}(pK_w + pK_a + \log C)$$

$$= \frac{1}{2}(14 + pK_a + \log 10^{-1})$$

$$= 6.5 + \frac{1}{2}pK_a$$

$$(\mathbf{b} \rightarrow \mathbf{r}) \text{ Salt of } W_B/S_A, \text{ pH} = \frac{1}{2}(pK_w - pK_a - \log C)$$

$$= \frac{1}{2}(14 - pK_b - \log 10^{-1})$$

$$= 7.5 - \frac{1}{2}pK_a$$

$$(\mathbf{c} \rightarrow \mathbf{p}) \text{ Salt of } S_A/S_B, \text{ (do not hydrolyse), pH} = 7$$

$$(\mathbf{d} \rightarrow \mathbf{p}, \mathbf{s}) \text{ salt of } W_A/W_B$$

$$pH = \frac{1}{2}(pK_w + pK_a - pK_b)$$

$$= 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b = 7 \text{ since } (pK_a = pK_b)$$
497 (a)
$$(\mathbf{a} \rightarrow \mathbf{q})\text{NH}_4\text{Cl: only} \overset{\text{w}}{\text{NH}_4} \text{ will get hydrolysed}$$

$$(\mathbf{b} \rightarrow \mathbf{r}) \text{ CH}_3\text{COONa: only CH}_3\text{COO}^{\ominus} \text{ will get hydrolysed}$$

 $(\mathbf{c}\rightarrow\mathbf{s})$ NH₄CN: Both ^{NH₄} and CN[⊖] will get hydrolysed $(\mathbf{d}\rightarrow\mathbf{p})$ NaCl: Neither Na[⊕] and Cl[⊖] will get hydrolysed

498 (d)

 $(\mathbf{a} \rightarrow \mathbf{p})$ Acidic salt: aqueous solution of salt is acidic

$$(pH < 7)pH = \frac{1}{2}(pK_w - pK_b - \log C)$$

(**b** \rightarrow **q**) Basic salt: Aqueous solution of salt is basic

 $(pH > 7)pH = \frac{1}{2}(pK_w + pK_b + \log C)$ $(\mathbf{c} \rightarrow \mathbf{s}) \text{ Acidic buffer: } pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$ $(\mathbf{d} \rightarrow \mathbf{r}) \text{ Basic buffer: } pOH = pK_b + \log \frac{[\text{Salt}]}{[\text{Base}]}$ 499 (a)

 $HSO_{4}^{\Theta} + H_{2}O \longrightarrow H_{3}O^{\oplus} + SO_{4}^{2-}$ (Bronsted acid) $(a \rightarrow r,s) \xrightarrow{\Theta} HSO_{4}^{\Theta} + H^{\oplus} \longrightarrow H_{2}SO_{4} \text{ (Bronsted base)}$ $(b \rightarrow p) BF_{3} (e^{-} \text{ deficient and hence Lewis acid)}$ $(c \rightarrow q,s) H_{3}N: \text{ (It can donate lone pair of electrons and acts as Lewis base)}$

 $NH_3 + H_2O \longrightarrow NH_4 + OH (Accepts H^{\textcircled{B}})$ and acts as Bronsted base)

 $(d \rightarrow q,s)$ OH (It is bronsted base by accepting $^{\oplus}$) It can donate lone pair of electrons and acts as Lewis base also

500 **(b)**

 $(\mathbf{a} \rightarrow \mathbf{p})$ Acidic buffer (mixture of W_A + salt of W_A/S_B)

$$pH = pK_a + \log\left(\frac{\text{Salt}}{\text{Acid}}\right)$$
$$= 4.74 + \log\left(\frac{0.1}{0.1}\right) = 4.74$$

Thus, it is acidic buffer at maximum buffer capacity. Because buffer limits are pH \pm 1. When $pH = pK_a$, it is a buffer at maximum buffer capacity $(\mathbf{b} \rightarrow \mathbf{r})$ It is mixture of W_A and S_A . So pH of 0.1 M HCl will predominate and pH > 7 $(\mathbf{c} \rightarrow \mathbf{s})$ It will forms salt of W_A/W_B . Since $pK_a = pK_b$, Thus $pH = 7.(pH = \frac{1}{2}(pK_w + pK_a + pK_b))$ p*Kb* $(\mathbf{d} \rightarrow \mathbf{q}) \text{ mmol of CH}_3 \text{COONa} = 300 \times 0.1 = 30$ mmol of $HCl = 100 \times 0.1 = 10$ $CH_3COONa + HCl \rightarrow$ CH₃COOH + NaCl Initial 30 mmo10 mmol 0 0 Final (30 - 10) = 20 (10 - 10) = 0 10 -501 **(b)**

 $(\mathbf{a} \rightarrow \mathbf{r}) \ \mathbf{A} \xrightarrow{K_1} \mathbf{B}$ for reverse reaction $\mathbf{B} \xrightarrow{K} \mathbf{A}$;

$$K = \frac{1}{K_1}$$

(**b** \rightarrow **p**) $K = (K)^{1/2}$
(**c** \rightarrow **b**) $K = K^2$

502 (c)

All factual statements

503 (c)

For $A + B \rightleftharpoons [AB]$

$$K_{c} = \frac{[A] [B]}{[AB]} = \frac{[\text{mol } L^{-1}] [\text{mol } L^{-1}]}{[\text{mol } L^{-1}]} = [\text{mol } L^{-1}]$$
Hint:

Use above expression for all equation

504 **(c)**

For $A + B \rightleftharpoons [AB]$

$$K_{c} = \frac{[A] [B]}{[AB]} = \frac{[\text{mol } L^{-1}] [\text{mol } L^{-1}]}{[\text{mol } L^{-1}]} = [\text{mol } L^{-1}]$$
Hint:

Use above expression for all equation

506 **(b)**

	$V_{\rm NaOH}$	mmol	mmol	mmol	рН
		H ₂ S	HS⊖	S ⁻²	
		in	prod	prod	
		exces	uced	uced	
		S			
a.	0.001	1.00	0.00	_	4.5
b.	0.5	0.5	0.5	-	7.0
C.	1.0	0.0	1.0	0.0	9.5
					and
					12.0
d.	1.5	-	0.5	0.5	11.7

$$H_{2}S + H_{2}O \rightarrow HS^{\ominus} + H_{2}O;$$

$$\Rightarrow K_{1} = \frac{[H_{3}O^{\oplus}][HS^{\ominus}]}{[H_{2}S]} = 10^{-7}$$

$$HS^{\ominus} + H_{2}O \rightarrow H_{3}O^{\oplus} + S^{2-}$$

$$\Rightarrow K_{2} = \frac{[H_{3}O^{\oplus}][S^{2-}]}{[HS^{\ominus}]} = 10^{-14}$$

The total volume of the titration mixture will change only slightly. Titrations (a) and (b) is calculated directly from the K_1 value of H_2S $(a \rightarrow q) \frac{x \times x}{0.01} = 10^{-7}$ so $x = [H_3O^{\oplus}] = 3.1 \times 10^{-5}$ and pH = 4.5 $(b \rightarrow p) \frac{x(0.5)}{0.5} = 10^{-7}$, so pH = 7.0 $(c \rightarrow r,t)$

i. Point (c) is the first equivalence point the same solution as 1.0 mol of NaHS in 101.0 mL. The HS $^{\ominus}$ can react in water to ionize is either of the two ways:

$$HS^{\Theta} + H_2O \longrightarrow H_3O^{\oplus} + S^{2-} (K_2 = 10^{-14}) \dots (i)$$
$$HS^{\Theta} + H_2O \longrightarrow OH + H_2S \qquad \dots (ii)$$

 $K_h = \frac{K_w}{K_1} = \frac{10^{-14}}{10^{-7}} = 10^{-7}$

Equation (ii) will predominate, therefore ignore equation (i)

Hence, this case becomes the hydrolysis of salt of W_A/W_B . Considering K_1 of H₂S. (p K_a H₂S = 7)

$$\therefore pH = \frac{1}{2}(pK_w + pK_1 + \log C)$$

= $\frac{1}{2}(14 + 7 + \log \frac{1}{101})$
= $\frac{1}{2}(14 + 7 + \log 10^{-2})$
= $\frac{1}{2}(14 + 7 - 2) = 9.5$

ii. With HS^{Θ} hydrolyzing much more than ionizing to yield H_3O^{\oplus} , it might be well to calculate the hydrolysis of S^{2-} at the second equivalence point

$$S^{2-} + H_2O \longrightarrow HS^{\Theta} + \overset{\Theta}{O}H, K_h = \frac{K_w}{K_2} = \frac{10^{-14}}{10^{-14}} = 1$$

$$\therefore \frac{x^2}{0.01 - x} = 1 \text{ or } x^2 + x - 0.01 = 0$$

$$\frac{-1 + \sqrt{1 + 0.04}}{2} = 1 \times 10^{-2} \overset{\Theta}{O}H \text{ thus } pOH = 2, pH = 12.0$$

The extra $\overset{\Theta}{OH}$ ions added after the first equivalence point have not been neutralized by the very weak HS^{Θ} ion, ion, i.e., titration is some what like that of weak acid (CH_3COOH) $(d\rightarrow s)$ When 1.5 mL of NaOH added: (Total volume = $100 + 1.5 = 101.5 \approx 100 \text{ mL}$) $[S^{2-}]_{\text{initial}} = \frac{0.5}{100} = 0.5 \times 10^{-2} \text{ or } 5 \times 10^{-3}$ $[\text{HS}^{\Theta}]_{\text{initial}} = \frac{0.5}{100} = 0.5 \times 10^{-3}$ $S^{2-} + H_2O \longrightarrow HS^{\Theta} + \overset{\Theta}{OH}$ 5×10^{-3} - 5×10^{-3} Initial At equilibrium $(5 \times 10^{-3} - x) - (5 \times 10^{-3} + x)$ x x $K_h = \frac{K_w}{K_2} = \frac{10^{-14}}{10^{-14}} = 1$ $\therefore K_h = \frac{[\text{HS}^{\ominus}]^{[OH]}}{[\text{S}^{2-1}]}$ $1 = \frac{(5 \times 10^{-3} + x) x}{(5 \times 10^{-3} - x)} \text{ . Thus } x = 5 \times 10^{-3} = [\overset{\Theta}{\text{OH}}]$ pOH = 2.3 and pH = 11.7Graphical representation

$$(d \rightarrow r) \qquad x \\ K_{sp} = 1^{1}3^{3}x^{4} = 27x^{4} \\ (e \rightarrow s) CaF_{2} \rightleftharpoons Ca^{3+} + 2F^{-} \\ x \qquad 3x \\ K_{sp} = 1^{2}2^{3}x^{3} = 4x^{3}$$

509 (a)

(**a**→**s**) At equilibrium Q = K

 $(\mathbf{b} \rightarrow \mathbf{q}, \mathbf{r})$ When Q < K, reaction proceeds in 513 forward direction

 $(\mathbf{c} \rightarrow \mathbf{q}, \mathbf{t})$ When Q > K, reaction proceeds in backward direction

 $(\mathbf{d} \rightarrow \mathbf{p})$ When K >> 1, reaction is about to complete

510 (a)

 $(\mathbf{a} \rightarrow \mathbf{s})$ At equilibrium Q = K

 $(\mathbf{b} \rightarrow \mathbf{q}, \mathbf{r})$ When Q < K, reaction proceeds in forward direction

 $(\mathbf{c} \rightarrow \mathbf{q}, \mathbf{t})$ When Q > K, reaction proceeds in backward direction

 $(\mathbf{d} \rightarrow \mathbf{p})$ When K >> 1, reaction is about to complete

511 (a)

According to le-chatelier principle, on increasing the pressure the reaction shift in the direction which have lesser number of molecules

512 **(c)**

$$(a \to q) S \text{ in buffer} = \left[K_{\text{sp}}\left(1 + \frac{H^{\oplus}}{K_a}\right)\right]^{1/2}$$

$$S \text{ in H}_2 0 = \sqrt{K_{\text{sp}}}$$

$$\frac{S \text{ in buffer}}{S \text{ in H}_2 0}$$

$$\frac{\sqrt{K_{\text{sp}}}\left(1 + \frac{H^{\oplus}}{K_a}\right)^{1/2}}{\sqrt{K_{\text{sp}}}} = \left(1 + \frac{10^{-3}}{10^{-3}/3}\right)^{1/2} = 2$$

$$(b \to p) \frac{S \text{ in buffer}}{S \text{ in H}_2 0}$$

$$= \left(1 + \frac{H^{\oplus}}{K_a}\right)^{1/2} = \left(1 + \frac{10^{-4}}{10^{-4}/7}\right)^{1/2} = 4$$

$$(c \to p) \frac{S \text{ in buffer}}{S \text{ in H}_2 0}$$

$$= \left(1 + \frac{H^{\oplus}}{K_a}\right)^{1/2} = \left(1 + \frac{10^{-5}}{10^{-5}/8}\right)^{1/2} = 3$$

$$(d \to q) \text{ S in 0.1 M HCl} = \frac{K_{\text{sp}}}{0.1}$$

$$S \text{ in 0.02 M AgNO_3} = \frac{K_{\text{sp}}}{0.2}$$

$$\frac{S \text{ in HCl}}{S \text{ in AgNO_3}} = \frac{K_{\text{sp}} \times 0.2}{0.1 \times K_{\text{sp}}} = 2$$

$$(e \to r) \text{ S in 0.1 M HCl} = \frac{K_{\text{sp}}}{(0.2)^3}$$

$$S \text{ in 0.2 M NaOH} = \frac{K_{\text{sp}} \times (0.2)^3}{(0.1)^3 \times K_{\text{sp}}} = 8$$

$$F(a)$$

 $(\mathbf{a} \rightarrow \mathbf{p}, \mathbf{r})$ It is endothermic reaction hence on increasing temperature reaction proceed in

forward direction. On addition of inert gas, at constant pressure also favour product side according to le-Chatelier principle

 $(\mathbf{b} \rightarrow \mathbf{q,r,s})$ It is exothermic reaction hence on increasing temperature reaction proceed in backward direction

 $(\mathbf{c} \rightarrow \mathbf{p})$ Endothermic reaction therefore on increasing temperature reaction proceed in product side

 $(\mathbf{d} \rightarrow \mathbf{s})$ Exothermic reaction therefore on increasing temperature reaction proceed in backward side

514 **(c)**

According to Le Chatelier principle endothermic reaction proceed in forward direction on increasing temperature while the exothermic reaction proceed in backward direction on increasing temperature

515 **(b)**

 $(a\rightarrow p,t)$ Only ^w_{NH₄} will get hydrolysed (cation hydrolysis) pH < 7

519 **(a)**

	V _{NaOH} mL	V _{total} mL	mmol of CH ₃ COOH in exce ss	$\begin{array}{c} \text{mmol} \\ \text{of} \\ \text{salt} \\ (\text{CH}_3 \\ \text{COO}^{\ominus} \\ \text{prod} \\ \text{uced} \end{array}$	mmol of OH in exce ss	Туре
a.	25.0	25+ 50= 75	2.5	2.5		Acidic buffer
b.	40.0	40+ 50= 90	1.0	4.0	Ι	Acidic buffer
C.	50.0	50+ 50= 100	0.00	5.0	Ι	Salt of W_A/W_B
d.	60.0	60+ 50= 110	_	5.0	1.0	S _B
e.	70.0	70+ 50= 120	_	5.0	2.0	S _B

(**a**→**r**) p*H* = p*K_a* + log
$$\frac{\text{[Salt]}}{\text{[Acid]}}$$

4.74 + log $\left(\frac{2.5/75}{2.5/75}\right)$ = 4.74

pH = $\frac{1}{2}$ (p K_w − p K_b − log C) (**b**→**s**,**t**) It is a S_A . pH = 2, New conc = $\frac{10^{-2}}{10}$ = 10^{-3} , pH = 3 (**c**→**r**) It is a W_B , so pH > 7

 $(\mathbf{d}$ → \mathbf{p} , \mathbf{q}) Salt of W_A/W_B both CH_3COO^{\ominus} and NH_4 will hydrolysed so both cationic and anionic hydrolysis
(b→**q**) pH = $pK_a + \log\left(\frac{4.0/90}{2.5/90}\right) = 4.74 + 0.6 = 5.34$ $(\mathbf{c} \rightarrow \mathbf{t}) \text{ pH} = \frac{1}{2} (pK_w + pK_a + \log C)$ $\frac{1}{2}\left(14 + 4.74 + \log\frac{5}{100}\right) = 8.72$ $(\mathbf{d} \rightarrow \mathbf{q}) \stackrel{\Theta}{[OH]} = \frac{1.0 \text{ mmol}}{110 \text{ mL}} = 9.1 \times 10^{-3} \text{ M}$ pOH = 2.04, pH = 11.96 $\begin{bmatrix} \Theta \\ OH \end{bmatrix} = \frac{2.0 \text{ mmol}}{120 \text{ mL}} = 1.7 \times 10^{-2} \text{ M}$ $(e \rightarrow s)$ pOH = 1.78, pH = 12.22520 (c) $(a \rightarrow q)$ Basic buffer is formed mmol of HCl added = $2.0 \times 1L = 2$ mmol of NH_4 formed =2 mmol of NH₃ left $(1 \times 0.01 \times 10^3 = 10) = 10 - 2 = 8$ $pOH = pK_b + \log \frac{\bigoplus}{[NH_4]}$ $=4.74+\log{\frac{2}{8}}=4.14$ $(b \rightarrow r) \frac{\overset{\textcircled{}}{[NH_4]}}{[NH_3]} = \left(\frac{5}{5}\right) = 1.0$ pOH = 4.74 $(c \rightarrow s) \ln (c)$ salt of W_B / S_A is formed $(V_{\text{total}} = 1 L + 5 \text{ mL} \approx 1 \text{ L})$ $[NH_4Cl] = \frac{0.01}{0.01 L} \approx 0.01 M$ $pH = \frac{1}{2}(pK_w - pK_b - \log C)$ $=\frac{1}{2}(14-4.74-\log 10^{-2})=5.63$ pOH = 14 - 5.63 = 8.37 $(d\rightarrow p)$ When 11.0 mL of HCl is added, all the NH₃ is neutralized and 1.0 mmol of HCl is in exess. pH is determined by 1.0 mmol of H_30^{\oplus} in 1.01 L $[\mathrm{H}_{3}\mathrm{O}^{\textcircled{\bullet}}] = \frac{1 \times 10^{-3} \text{ mol}}{1.01 \mathrm{L}} \approx 10^{-3} ,$ pH = 3, and pOH = 11521 (b) $(c \rightarrow r, s)$ $K_p = K_c (RT)^{\Delta n}; \Delta n = 2 - 4 = -2$ $\therefore K_p = K_c (RT)^{-2}$ or $K_c > K_p$ 522 (b) $(c \rightarrow r, s)$ $K_n = K_c (RT)^{\Delta n}; \Delta n = 2 - 4 = -2$

:
$$K_p = K_c (RT)^{-2}$$
 or $K_c > K_p$
523 **(b)**

 $(\mathbf{a} \rightarrow \mathbf{p})$ $\Delta n = n_P - n_R > 0$; the number of molecules in product side are higher than reactant side hence according to Le-Chatelier principle on increasing the pres equilibrium shift to lesser number of molecules side

 $(\mathbf{b} \rightarrow \mathbf{r})$ When there is no change in volume $(\Delta V = 0)$ then addition of inert gas does not change the equilibrium

$$(c→s)Kp = Kc(RT)Δn, when Δn = 0$$

∴ K_p = K_c(RT)° or K_p = K_c
(**d**→**q**)
525 (**a**)
N₂O₄ ≈ 2NO₂
1 0 initial
1-x 2x at equilibrium
Total no. of moles = 1 - x + 2x = 1 + x
K_p = $\frac{4x^2}{(1-x)} \times \left[\frac{p}{1+x}\right]^{\Delta n_g}$
640 = $\frac{4x^2}{(1-x)} \cdot \frac{160}{(1+x)}$
x = 0.707 or 70.7%
526 (**d**)
CaCO₃(s) $\stackrel{\Delta}{\longrightarrow}$ CaO(s) + CO₂(g) K_{p1} = 8 × 10⁻²
CO₂(g) + C(s) → 2CO(g) K_{p2} = 2
K_p^{''''} = K_{p1} × K_{p2}
= 8 × 10⁻² × 2 = 16 × 10⁻²
K_p^{''''} = (p_{CO}(g))²
p_{CO} = $\sqrt{K_p^{''''}} = \sqrt{16 × 10^{-2}} = 4 × 10^{-1}$
= 0.4 atm

527 **(b)**

% of unprecipitatedAg⁺ = $\frac{\text{unprecipitated Ag}^+}{\text{total Ag}^+ \text{taken}} \times 100$ $=\frac{1-\left(\frac{149}{150}\right)}{1}\times 100$ = 0.666%528 (b) On adding H_2SO_4 , $[H^+]$ increases. Therefore, to keep K_w constant, [OH⁻] decreases 529 (a) Shifts in the product side 530 **(b)** Addition of Ni²⁺ causing more blue colour means reaction moving in the forward direction $\Rightarrow [Ni(NH_3)_6]^{2+}$ has increased and NH₂ (unreacted) was present initially 531 (b) $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g);$ 27×10^{-2} $K_c = 27 \times 10^{-2} X = 8.91 \times 10^{-2}$ $X = \frac{8.91 \times 10^{-2}}{2.7 \times 10^{-1}} = 3.3 \times 10^{-1}$ Number of mol of $NH_3 = 0.27$ $H_2S = 0.33$ $N_2 = 0.03$ $H_2 = 0.09$ $X_{\rm H_2} = \frac{0.09}{0.72} = \frac{1}{8}$ $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$ $\frac{1}{3}a$ 3а $K_c = \frac{(a/3)a^3}{(3a)^2} = \frac{a^4}{3} \times \frac{1}{9a^2}$ $\frac{a^2}{27} = 3 \times 10^{-4}$ $\therefore a^2 = 81 \times 10^{-4}$ $a = 9 \times 10^{-2}$ 533 **(b)** $K_c = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3}$ 535 **(b)** $P_{\rm NH_3} = P_{\rm HCl} = \frac{0.820}{2}$ bar $\therefore K_p = P_{\rm NH_3} \times P_{\rm HCl} = 0.41 \times 0.41 = 0.168$ 536 (a,b) $K_n = K_c (RT)^{\Delta n}$ 537 (a) $K_3 = K_1 \times K_2$ 538 (d) $K_n = K_c (RT)^{\Delta n} = K_c (RT)^{(2-4)}$

$$= K_c (RT)^{-2} = \frac{K_c}{[(0.082) \times (300)]^2}$$

539 **(c)**

When Q > K, the reaction proceeds in backward direction

540 **(b)**

CuSO₄ · 5H₂0 ≈ CuSO₄ · 3H₂0 + 2H₂O(g) $p_{H_20} = 7.8 \text{ mm}$ ⇒ $K_p = (p_{H_20})^2 = (7.8)^2 = 60.84$

541 **(c)**

The concentration of [Y]

is constant \Rightarrow *y* must be solid. The concentration of *X* decreases white the concentration of *Z* increases

Therefore *X* must be reactant and *Z* must be product

$$\therefore (c)$$
542 (a)

$$X(s) \rightleftharpoons A(g) + C(g);$$

$$20 \text{ mm} 20 \text{ mm}$$

$$K_{P_1} = 20 \times 20 = 400 \text{ mm}^2$$
and

$$Y(s) \rightleftharpoons B(g) + C(g);$$

$$30 \text{ mm} 30 \text{ mm}$$

$$K_{p_2} = 30 \times 30 = 900 \text{ mm}^2$$

$$\therefore \frac{K_{p_1}}{K_{p_2}} = \frac{4}{9}$$
Hence, (a) is the correct answer
543 (b)

$$2\text{KIO}_3 + \text{Pb}(\text{NO}_3)_2 \rightarrow \text{Pb}(\text{IO}_3)_2 + 2\text{KNO}_3$$

$$0.8 \times 15 \quad 35 \times 0.15$$

= 5.25

544 **(b)**

= 12

(a) and (c) are not true since at equivalence point, they represent neutral solution

(d) is clearly wrong, since, $K_w = [H^{\oplus}] [\overset{\odot}{O}H]$ (b) is correct 545 **(b)** Since K_{a_1} and K_{a_2} are high values therefore point A, K_{a_1} and K_{a_2} are considered $H_3A \rightleftharpoons H^{\oplus} + H_2A^{\ominus}$ $H_2A^{\ominus} \rightleftharpoons H^{\oplus} + HA^{2-}$ $K_{a_1} + K_{a_2} = \frac{[H^{\oplus}][HA^{2-}]}{[H_3A]} [At equivalence point]$ $-\log K_{a_1} - \log K_{a_2} = -2\log[H^{\oplus}]$ $pK_{a_1} + pK_{a_2} = 2pH$

$$\therefore \text{ pH} = \frac{pK_{a_1} + pK_{a_2}}{2} = \frac{3+5}{2} = 4$$

$$[S^{2-}]_{\min} \text{ for } SnS = \frac{K_{sp}(SnS)}{[Sn^{2+}]};$$

$$[S^{2-}]_{\min} \text{ for } CdS = \frac{K_{sp}(CdS)}{[Cd^{2+}]};$$

$$[S^{2-}]_{\min} \text{ for } NiS = \frac{K_{sp}(NiS)}{[Sn^{2+}]};$$

and $K_{sp}(NiS) < K_{sp}(SnS) < K_{sp}(CdS)$
 $\therefore \text{ NiS will precipitate first}$

547 (a)

Use:
$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{C_2}{C_1}} \Rightarrow \frac{4.24}{\alpha_2} = \sqrt{\frac{0.1}{0.01}}$$

 $\Rightarrow \alpha_2 = \frac{4.24}{\sqrt{10}}\% = 1.33\%$

548 (c)

i. On dilution (equal volume) and if there were no precipitation. $[NO_3^{\ominus}] = [Ag^{\oplus}] = [Cl^{\ominus}] = [Br^{\ominus}] = \frac{0.01}{2} = 0.005 \text{ M} = 5.0 \times 10^{-3} \text{ M}$

AgBr is the more soluble salt (less Ksp means more soluble) and would take precedence in the precipitating reaction

ii. Assume AgCl does not precipitate. In this case Ag^{\oplus} and Br^{\ominus} would be removed by precipitation and the concentration of these two ions in solution would remain equal to each other

iii.
$$[Ag^{\oplus}] = [Br^{\ominus}] = \sqrt{K_{sp} AgBr} = (5.0 \times 10^{-13})^{\frac{1}{2}}$$

= 7.1 × 10⁻⁷ M
iv. Q_{sp} or I.P. of AgCl = $[Ag^{\oplus}][Cl^{\ominus}]$
= (7.1 × 10⁻⁷)(5.0 × 10⁻³M) = 3.5 × 10⁻⁹
 Q_{sp} of AgCl > K_{sp} of AgCl, (\therefore Some AgCl most also precipitate)

Hence the assumption in (ii) is wrong v. Since both holides precipitate, it is a case of simultaneous solubilities

vi. By electroneutrality

$$[\mathrm{Na}^{\oplus}] + [\mathrm{Ag}^{\oplus}] = [\mathrm{Cl}^{\Theta}] + [\mathrm{Br}^{\Theta}] + [\mathrm{NO}_{3}^{\Theta}]$$

$$0.01 + [Ag^{\oplus}] = [Cl^{\Theta}] + [Br^{\Theta}] + 0.005$$

or
$$[Cl^{\Theta}] + [Br^{\Theta}] - [Ag^{\oplus}] = 0.005$$
 ...(1)

vii. $[Ag^{\oplus}] [Cl^{\Theta}] = 10^{-10}$...(2)

$$[Ag^{\oplus}] [Br^{\Theta}] = 5 \times 10^{-13}$$
 ...(3)

viii. Divide (2) by (3), $\frac{[Cl^{\Theta}]}{[Br^{\Theta}]} = 200$

This shows $\operatorname{Br}^{\ominus}$ plays a significant role in the total

anion concentration of the solution

ix. Moreover, $[Ag^{\oplus}]$ must be negligible in (1) because of insolubility of two silver salts

x. Therefore assume in (1) that $[Cl^{\ominus}] = 0.005 = 5 \times 10^{-3}$

$$[\mathrm{Cl}^{\ominus}] = 5 \times 10^{-3}$$

xi. From (2)

$$[Ag^{\oplus}] = \frac{10^{-10}}{[Cl^{\Theta}]} = \frac{10^{-10}}{0.005} = 2.0 \times 10^{-8}$$

549 (a)

$$CuCl_{2}.2H_{2}O \rightarrow Cu^{2+} + 2Cl^{\oplus} + 2H_{2}O \\Cu^{2+} + Cl^{\oplus} \rightarrow CuCl^{\oplus}$$

Initial mol 1.5 $2 \times 1.5 = (3.0)$ 0
At equilibrium $1.5 - x - 3.0 - x - x - x$

$$K_{f} = \frac{[CuCl^{\oplus}]}{[Cu^{2+}][Cl^{\oplus}]} = 1.0$$

 $\Rightarrow \frac{x}{(1.5 - x)(3.0 - x)} = 1.0$
 $\Rightarrow x = 4.5 - 4.5x + x^{2}$
 $\Rightarrow x^{2} - 5.5x + 4.5 = 0$
 $x = \frac{5.5 \pm \sqrt{(5.5)^{2} - 4(4.5)}}{2}, x = 1.0 \text{ or } 4.5$
 $[Cu^{2+}] = 0.5 \text{ M}$
550 (c)
By Henry's law
 $p_{CO_{2}} = x_{CO_{2}} \text{ K}_{H}$
 $x_{CO_{2}} = \frac{pCO_{2}}{K_{H}} = \frac{(1.25 \times 10^{-4} \text{ atm}) \times 760}{1.25 \times 10^{6} \text{ torr}}$
 $= 0.76 \times 10^{-7} = \frac{n_{CO_{2}}}{n \text{ Total}}$
 $x_{H_{2}O} = (1 - 0.76 \times 10^{-7}) \approx 1 = \frac{n_{H_{2}O}}{n \text{ Total}}$
 $\approx 0.76 \times 10^{-7}$
Molality of CO₂ solution
 $= \frac{x_{CO_{2}} \times 1000}{x_{H_{2}O} \times M_{w}H_{2}O} = \frac{n_{CO_{2}} \times 1000}{n_{H_{2}O} \times M_{w}H_{2}O}$
 $= \frac{0.76 \times 10^{-7} \times 1000}{18}$
 $= 4.22 \times 10^{-6}m \approx 4.22 \times 10^{-6} \text{ M}$
 $H_{2}CO_{3} \Rightarrow H^{\oplus} + HCO_{3}^{\oplus}$
 $K = \frac{[H^{\oplus}][HCO_{3}^{\oplus}]}{[H_{2}CO_{3}]} \approx \frac{[H^{\oplus}]^{2}}{[H_{2}CO_{3}]}$

 $\therefore [\mathrm{H}^{\oplus}] = \sqrt{K_a [\mathrm{H}_2 \mathrm{CO}_3]}$ $=\sqrt{4.3 \times 10^{-7} \times 4.22 \times 10^{-6}}$ $=\sqrt{1.814} \times 10^{-6}$ $1.345 \times 10^{-6} \text{ M}$ pH = 5.87551 (a) $BaCl_2 + H_2SO_3 \rightarrow BaSO_3 + 2HCl$ 561 (2) 552 (c) pH of titration of strong acid with strong base is 7 564 (7) 553 (a) $2NH_3 \rightleftharpoons N_2 + 3H_2$ $\begin{array}{ccccccc} 10 & 0 & 0 & at 300 \, \mathrm{K} \\ (10-2x) & x & 3x & at 620 \, \mathrm{K} \end{array}$ Pressure increase due to increases in temperature as well as due to increase in moles Initially $P \propto T$ 15 ∝ 300 :. $P \propto 620$:. $P = \frac{620}{300} \times 15 = 31$ atm of 10 mole of NH₃ at 620 K Now NH₃ is dissociated to attain 50 atm at 620 K. Thus, $P \propto n$ or $10 \propto 31$ $10 + 2x \propto 50$ 2x = 6.13:. $\alpha = \frac{2x}{10} \times 100 = \frac{6.13 \times 100}{10} = 61.3\%$ *.*.. 554 (b) The intermediate solution of acid will react with all the NH₃ present in solution 555 **(8)** c. $CH_3COO^{\ominus} + H_3O^{\oplus} \rightarrow CH_3COOH + H_2O$ (> 98%) $CH_3COO^{\ominus} + H_3O^{\oplus} \rightarrow CH_3COOH +$ 5. $H_20 (> 98\%)$ 557 **(4)** (b), (d), (e), and (f) All salts (b, d and f), soluble hydroxides and the acid (e) are strong electrolysis a. (3) 558 (b) We know that $K = \frac{K_f}{K_h}$ water $\therefore K = \frac{4 \times 10^2}{2 \times 10^2} = 2$ 560 **(6)** b. (2) (a), (b), (g), (h) and (k) a. $CH_3COOH + H_2O \rightarrow H_3O^{\oplus} + CH3COO^{\ominus}(<$ 2% c. (1)

 W_A

b. $CH_3COO^{\Theta} + H_2O \longrightarrow CH_3COOH + \overset{\Theta}{OH} (< 2\%)$ Salt of W_A g. Cl \ominus + H₃O \oplus \rightarrow No reaction h. $Cl^{\ominus} + H_2O \rightarrow Noreaction$ k. $NH_3 + H_2O \longrightarrow NH_4 + OH$ n. $K^{\oplus} + \overset{\circ}{O}H \longrightarrow$ No reaxction Neutral [NaCl and K_2SO_4] and salts of S_A/S_B Salt of W_A/S_B (CH₃COONa) is formed It we calculate pH by using hydrolysis formula for salt of W_A/W_B $pH = \frac{1}{2}(pK_w + pK_a + \log C)$ Salts of S_A $\left[[Salt] = \frac{10^{-6}}{2} \binom{Volume \text{ is}}{doubled} \right]$ $=\frac{1}{2}\left(14+4.7+\log\frac{10^{-6}}{2}\right)$ $=\frac{1}{2}(18.7-6-0.3)=6.2$ But pH of salt of W_A/S_B is always > 7 So for such dilute solutions of CH₃COOH and NaOH. Contribution of $\overset{\circ}{OH}$ ions from H₂O must be considered $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$ $10^{-6} M \times V \quad 10^{-6} M \times V \quad 10^{-6} M \times V$ $[CH_3COONa] = \frac{10^{-6}M \times V}{2V} = 0.5 \times 10^{-6}$ $= 5 \times 10^{-7} < 10^{-6}$ M $\begin{bmatrix} \Theta \\ OH \end{bmatrix} = \left(\frac{k_W \times C}{K_0}\right)^{\frac{1}{2}} = \left(\frac{10^{-4} \times 5 \times 10^{-7}}{2 \times 10^{-5}}\right)^{\frac{1}{2}}$ $= (2.5)^{\frac{1}{2}} \times 10^{-8} \text{M} = 1.58 \times 10^{-8} \text{M} < 10^{-6} \text{M}$ Total $[OH] = [1.58 \times 10^{-8} + 10^{-7} (From H_2O)]$ $= 10^{-7} (1.58 \times 10^{-1} + 1) = 1.158 \times 10^{-7}$ $pOH = -\log(1.158 \times 10^{-7}) = 6.93$ $pH = 14 - 6.93 = 7.07 \approx 7$ 566 **(3,2,1,1)** Salt of W_A/W_B and W_B/S_A hydrolyses more in III. NaC₂H₃O₂ (salt of W_A/S_B) \rightarrow C₂H₃O₂ \ominus IV. NH₄Cl (salt of W_B/S_A) \longrightarrow NH₄ V. MgS (salt of W_A/S_B) \rightarrow S²⁻ Salt of S_A/S_B do not hydrolyse VI. Na₂SO₄ VIII. KCl

Page | 112

Salt of W_A/S_B (NH₄C₂H₃O₂) with same value of K_a and K_b , both hydrolyse to the same extent. (K_a of CH₃COOH = K_b of NH₃) d. (1) II. Salt of W_A/W_B with different K_a and K_b , both hydrolyse to the same extent. (PhCOONH₄ have different K_a and K_b)

578 (a)

For $A + B \rightleftharpoons AB$

$$K = \frac{[AB]}{[A][B]}$$

When $2A + 2B \rightleftharpoons 2AB$

K = 2AB

579 **(5)**

Acidic

 $\left[\text{HClO}_4, \text{HCl}, \text{HC}_2\text{H}_3\text{O}_2, \frac{(\text{NH}_4)_2\text{SO}_4 \text{ and } \text{NH}_4\text{Cl}}{\text{Both salt of } \frac{\text{W}_B}{\text{S}_A}} \right]$ (Five compounds)

581 (d)

0 At equilibrium $\Delta G = 0$

582 (a)

 $K_p = K_c (RT)^{\Delta n}$

When $\Delta n = 0$

$$K_p = K_c$$

583 **(3)**

Basic [NH₃ + NH₄Cl (basic buffer), NH₃, NaOH] The basic buffer is less basic than NH₃ alone because the $\stackrel{\circ}{N}$ H₄ suppresses the ionization of NH₃ in the buffer

585 **(54)**

I. HCN is
$$W_A$$
; $pH_{W_A} = \frac{1}{2}(pK_a - \log C)$
 $= \frac{1}{2}(10 - \log 10^{-1}) = 5.5$
II. Acidic buffer: $pH_{acidic Buffer} = pK_a + \log \frac{0.1}{0.1} = 5$
III. *HCl* is S_A : $pH = -\log(0.1) = 1$
IV. NH₄OH is W_B : $pOH_{W_B} = \frac{1}{2}(pK_a - \log C)$
 $= \frac{1}{2}(5 + 1) = 3$

pH = 14 - 3 = 11V. NaOH is S_B : pOH = $-\log(0.01) = 2$, pH = 14 - 2 = 12VI: Salt of W_A/W_B : pH = 7 $\therefore \text{ Magic number} = 5.5 \times 2 + 5 \times 1 + 1 \times 3 + 11 \times 3 +$ $2 + 12 \times 0.5 + 7 \times 1 = 54$ 587 (a) At equilibrium $\Delta G = 0$ $\Delta G = -nRT \ln K$ $0 = -nRT \ln K$ $\operatorname{Or} K = 1$ 590 (4) II A group: Pb²⁺, Cu²⁺ III group: Cr³⁺ IV group: Zn²⁺ 591 (b) For $A + B \rightleftharpoons AB$; K = 0.5For $AB \rightleftharpoons A + B$; K' = ? $\therefore K' = \frac{1}{K} = \frac{1}{0.5} = 2$ 592 (a) $C_2H_5OH + CH_3COOH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ Initial 1 1 0 0 At equ. $1 - \frac{1}{2}$ $1 - \frac{1}{2}$ $\frac{1}{2}$ $K = \frac{[CH_3COOC_2H_5][H_2O]}{[C_2H_5OH][CH_3COOH]} = \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}} = 1$

