Single Correct Answer Type

1. The solutions of $(x+y+1) d y=d x$ is
a) $x+y+2=C e^{y}$
b) $x+y+4=C \log y$
c) $\log (x+y+2)=C y$
d) $\log (x+y+2)=C-y$
2. The solution of the differential equation $y^{\prime} y^{\prime \prime \prime}=3\left(y^{\prime \prime}\right)^{2}$ is
a) $x=A_{1} y^{2}+A_{2} y+A_{3}$
b) $x=A_{1} y+A_{2}$
c) $x=A_{1} y^{2}+A_{2} y$
d) None of these
3. An integrating factor of the differential equation $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$ is
a) $\log x$
b) x
c) e^{x}
d) $\frac{1}{x}$
4. The solution of the differential equation
$x^{2} \frac{d y}{d x} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1$, where $y \rightarrow-1$ as $x \rightarrow \infty$ is
a) $y=\sin \frac{1}{x}-\cos \frac{1}{x}$
b) $y=\frac{x+1}{x \sin \frac{1}{x}}$
c) $y=\cos \frac{1}{x}+\sin \frac{1}{x}$
d) $y=\frac{x+1}{x \cos 1 / x}$
5. Tangent to a curve intercepts the y-axis at a point P. A line perpendicular to this tangent through P passes through another point $(1,0)$. The differential equation of the curve is
a) $y \frac{d y}{d x}-x\left(\frac{d y}{d x}\right)^{2}=1$
b) $\frac{x d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
c) $y \frac{d x}{d y}+x=1$
d) None of these
6. The solution of the differential equation $y\left(2 x^{4}+y\right) \frac{d y}{d x}=\left(1-4 x y^{2}\right) x^{2}$ is given by
a) $3\left(x^{2} y\right)^{2}+y^{3}-x^{3}=c$
b) $x y^{2}+\frac{y^{3}}{3}-\frac{x^{3}}{3}+c=0$
c) $\frac{2}{5} y x^{5}+\frac{y^{3}}{3}=\frac{x^{3}}{3}-\frac{4 x y^{3}}{3}+c$
d) None of these
7. The integrating factor of the differential equation $\frac{d y}{d x}\left(x \log _{e} x\right)+y=2 \log _{e} x$ is given by
a) x
b) e^{x}
c) $\log _{e} x$
d) $\log _{e}\left(\log _{e} x\right)$
8. The solution of the differential equation $(x \cot y+\log \cos x) d y+(\log \sin y-y \tan x) d x=0$
a) $(\sin x)^{y}(\cos y)^{x}=c$
b) $(\sin y)^{x}(\cos x)^{y}=c$
c) $(\sin x)^{x}(\cos y)^{y}=c$
d) None of these
9. The differential equation whose general solution is given by, $y=\left(c_{1} \cos \left(x+c_{2}\right)-\left(c_{3} e^{\left(-x+c_{4}\right)}\right)+\right.$ $\left(c_{3} \sin x\right)$, where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are arbitrary constants, is
a) $\frac{d^{4} y}{d x^{4}}-\frac{d^{2} y}{d x^{2}}+y=0$
b) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$
c) $\frac{d^{5} y}{d x^{5}}+y=0$
d) $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0$
10. A differential equation associated to the primitive $y=a+b e^{5 x}+c e^{-7 x}$ is (where y_{n} is nth derivative w.r.t. x)

Where y_{n} represents nth order derivative
a) $y_{3}+2 y_{2}-y_{1}=0$
b) $4 y_{3}+5 y_{2}-20 y_{1}=0$
c) $y_{3}+2 y_{2}-35 y_{1}=0$
d) None of these
11. The curve satisfying the equation $\frac{d y}{d x}=\frac{y\left(x+y^{3}\right)}{x\left(y^{3}-x\right)}$ and passing through the point $(4,-2)$ is
a) $y^{2}=-2 x$
b) $y=-2 x$
c) $y^{3}=-2 x$
d) None of these
12. The solution of the equation $\log (d y / d x)=a x+b y$ is
a) $\frac{e^{b y}}{b}=\frac{e^{a x}}{a}+c$
b) $\frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+c$
c) $\frac{e^{-b y}}{a}=\frac{e^{a x}}{b}+c$
d) None of these
13. The solution of the differential equation $y^{\prime \prime \prime}-8 y^{\prime \prime}=0$ where $y(0)=\frac{1}{8}, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$ is
a) $y=\frac{1}{8}\left(\frac{e^{8 x}}{8}+x-\frac{7}{9}\right)$
b) $y=\frac{1}{8}\left(\frac{e^{8 x}}{8}+x+\frac{7}{8}\right)$
c) $y=\frac{1}{8}\left(\frac{e^{8 x}}{8}-x+\frac{7}{8}\right)$
d) None of these
14. The general solution of the differential equation $\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}$ is
a) $\log \tan \left(\frac{y}{2}\right)=c-2 \sin x$
b) $\log \tan \left(\frac{y}{2}\right)=c-2 \sin \left(\frac{x}{2}\right)$
c) $\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=c-2 \sin x$
d) $\log \tan \left(\frac{y}{4}+\frac{\pi}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
15. The curve, with the property that the projection of the ordinate on the normal is constant and has a length equal to a is
a) $a \ln \left(\sqrt{y^{2}-a^{2}}+y\right)=x+c$
b) $x+\sqrt{a^{2}-y^{2}}=c$
c) $(y-a)^{2}=c x$
d) $a y=\tan ^{-1}(x+c)$
16. The degree of the differential equation satisfying $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ is
a) 1
b) 2
c) 3
d) None of these
17. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ equals
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $-\frac{1}{3}$
d) 1
18. The solution of the differential equation
$2 x^{2} y \frac{d y}{d x}=\tan \left(x^{2} y^{2}\right)-2 x y^{2}$, given $y(1)=\sqrt{\frac{\pi}{2}}$, is
a) $\sin x^{2} y^{2}=e^{x-1}$
b) $\sin \left(x^{2} y^{2}\right)=x$
c) $\cos x^{2} y^{2}+x=0$
d) $\sin \left(x^{2} y^{2}\right)=e e^{x}$
19. A normal at any point (x, y) to the curve $y=f(x)$ cuts a triangle of unit area with the axis, the differential equation of the curve is
a) $y^{2}-x^{2}\left(\frac{d y}{d x}\right)^{2}=4 \frac{d y}{d x}$
b) $x^{2}-y^{2}\left(\frac{d y}{d x}\right)^{2}=\frac{d y}{d x}$
c) $x+y \frac{d y}{d x}=y$
d) None of these
20. Solution of $\frac{d y}{d x}+2 x y=y$ is
a) $y=c e^{x-x^{2}}$
b) $y=c e^{x^{2}-x}$
c) $y=c e^{x}$
d) $y=c e^{-x^{2}}$
21. An object falling from rest in air is subject not only to the gravitational force but also to air resistance. Assume that the air resistance is proportional to the velocity with constant of proportionality as $k>0$, and acts in a direction opposite to motion $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$. Then velocity cannot exceed
a) $9.8 / \mathrm{k} \mathrm{m} / \mathrm{s}$
b) $98 / \mathrm{k} \mathrm{m} / \mathrm{s}$
c) $\frac{k}{9.8} \mathrm{~m} / \mathrm{s}$
d) None of these
22. The family of curves represented by $\frac{d y}{d x}=\frac{x^{2}+x+1}{y^{2}+y+1}$ and $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$
a) Touch each other
b) Are orthogonal
c) Are one and the same
d) None of these
23. The solution of differential equation $y y^{\prime}=x\left(\frac{y^{2}}{x^{2}}+\frac{f\left(y^{2} / x^{2}\right)}{f^{\prime}\left(y^{2} / x^{2}\right)}\right)$ is
a) $f\left(y^{2} / x^{2}\right)=c x^{2}$
b) $x^{2} f\left(y^{2} / x^{2}\right)=c^{2} y^{2}$
c) $x^{2} f\left(y^{2} / x^{2}\right)=c$
d) $f\left(y^{2} x^{2}\right)=c y / x$
24. A normal at $P(x, y)$ on a curve meets the x-axis at Q and N is the foot of the ordinate at P. If $N Q=\frac{x\left(1+y^{2}\right)}{1+x^{2}}$, then the equation of curve given that it passes through the point $(3,1)$ is
a) $x^{2}-y^{2}=8$
b) $x^{2}+2 y^{2}=11$
c) $x^{2}-5 y^{2}=4$
d) None of these
25. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}=\sin 3 x+e^{x}+x^{2}$ when $y_{1}(0)=1$ and $y(0)=0$ is
a) $\frac{-\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x-1$
b) $\frac{-\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x$
c) $\frac{-\cos 3 x}{3}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x+1$
d) None of these
26. The solution of $x^{2} \frac{d y}{d x}-x y=1+\cos \frac{y}{x}$ is
a) $\tan \left(\frac{y}{2 x}\right)=c-\frac{1}{2 x^{2}}$
b) $\tan \frac{y}{x}=c+\frac{1}{x}$
c) $\cos \left(\frac{y}{x}\right)=1+\frac{c}{x}$
d) $x^{2}=\left(c+x^{2}\right) \tan \frac{y}{x}$
27. The solution of $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$ is
a) $\log x=\log (x-y)+\frac{y}{x}+c$
b) $\log x=2 \log (x-y)+\frac{y}{x}+c$
c) $\log x=\log (x-y)+\frac{x}{y}+c$
d) None of these
28. If $y+x \frac{d y}{d x}=x \frac{\phi(x y)}{\phi^{\prime}(x y)}$, then $\phi(x y)$ is equal to
a) $k e^{x^{2} / 2}$
b) $k e^{y^{2} / 2}$
c) $k e^{x y / 2}$
d) $k e^{x y}$
29. Differential equation of the family of circles touching the line $y=2$ at $(0,2)$ is
a) $x^{2}+(y-2)^{2}+\frac{d y}{d x}(y-2)=0$
b) $x^{2}+(y-2)\left(2-2 x \frac{d x}{d y}-y\right)=0$
c) $x^{2}+(y-2)^{2}+\left(\frac{d x}{d y}+y-2\right)(y-2)=0$
d) None of these
30. The solution of the differential equation $x\left(x^{2}+1\right)(d y / d x)=y\left(1-x^{2}\right)+x^{3} \log x$ is
a) $y\left(x^{2}+1\right) / x=\frac{1}{4} x^{2} \log x+\frac{1}{2} x^{2}+c$
b) $y^{2}\left(x^{2}-1\right) / x=\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}+c$
c) $y\left(x^{2}+1\right) / x=\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}+c$
d) None of these
31. The x-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point $(1,1)$ is
a) $y e^{x / y}=e$
b) $x e^{x / y}=e$
c) $x e^{y / x}=e$
d) $y e^{y / x}=e$
32. Integrating factor of differential equation
$\cos x \frac{d y}{d x}+y \sin x=1$ is
a) $\cos x$
b) $\tan x$
c) $\sec x$
d) $\sin x$
33. The solution of $\frac{d y}{d x}=\frac{x^{2}+y^{2}+1}{2 x y}$ satisfying $y(1)=1$ is given by
a) A system of parabolas
b) A system of circles
c) $y^{2}=x(1+x)-1$
d) $(x-2)^{2}+(y-3)^{2}=5$
34. Which of the following is not the differential equation of family of curves whose tangent form an angle of $\pi / 4$ with the hyperbola $x y=c^{2}$?
a) $\frac{d y}{d x}=\frac{x-y}{x+y}$
b) $\frac{d y}{d x}=\frac{x}{x-y}$
c) $\frac{d y}{d x}=\frac{x+y}{y-x}$
d) None of these
35. The population of a country increases at a rate proportional to the number of inhabitants. f is the population which doubles in 30 years, then the population will triple in approximately
a) 30 years
b) 45 years
c) 48 years
d) 54 years
36. The general solution of the equation $\frac{d y}{d x}=1+x y$ is
a) $y=c e^{-x^{2} / 2}$
b) $y=c e^{x^{2} / 2}$
c) $y=(x+c), e^{-x^{2} / 2}$
d) None of these
37. The form of the differential equation of the central conics $a x^{2}+b y^{2}=1$ is
a) $x=y \frac{d y}{d x}$
b) $x+y \frac{d y}{d x}=0$
c) $x\left(\frac{d y}{d x}\right)^{2}+x y \frac{d^{2} y}{d x^{2}}=y \frac{d y}{d x}$
d) None of these
38. A curve passing through $(2,3)$ and satisfying the differential equation
$\int_{0}^{x} t y(t) d t=x^{2} y(x),(x>0)$ is
a) $x^{2}+y^{2}=13$
b) $y^{2}=\frac{9}{2} x$
c) $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$
d) $x y=6$
39. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\frac{1}{2}$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
40. Solution of the differential equation $(y+x \sqrt{x y}(x+y)) d x+(y \sqrt{x y}(x+y)-x) d y=0$ is
a) $\frac{x^{2}+y^{2}}{2}+\tan ^{-1} \sqrt{\frac{y}{x}}=c$
b) $\frac{x^{2}+y^{2}}{2}+2 \tan ^{-1} \sqrt{\frac{x}{y}}=c$
d) None of these
c) $\frac{x^{2}+y^{2}}{2}+2 \cot ^{-1} \sqrt{\frac{x}{y}}=c$
41. The solution of differential equation $x^{2}=1+\left(\frac{x}{y}\right)^{-1} \frac{d y}{d x}+\frac{\left(\frac{x}{y}\right)^{-2}\left(\frac{d y}{d x}\right)^{2}}{2!}+\frac{\left(\frac{x}{y}\right)^{-3}\left(\frac{d y}{d x}\right)^{3}}{3!}+\cdots$ is
a) $y^{2}=x^{2}\left(\ln x^{2}-1\right)+c$
b) $y=x^{2}(\ln x-1)+c$
c) $y^{2}=x(\ln x-1)+c$
d) $y=x^{2} e^{x^{2}}+c$
42. The solution of the differential equation
$\frac{x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots}{1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots}=\frac{d x-d y}{d x+d y}$ is
a) $2 y e^{2 x}=C e^{2 x}+1$
b) $2 y e^{2 x}=C e^{2 x}-1$
c) $y e^{2 x}=C e^{2 x}+2$
d) None of these
43. A curve is such that the mid point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line $y=x$. If the curve passes through $(1,0)$, then the curve is
a) $2 y=x^{2}-x$
b) $y=x^{2}-x$
c) $y=x-x^{2}$
d) $y=2\left(x-x^{2}\right)$
44. If $y=\frac{x}{\log |c x|}$ (where c is an arbitrary constant) is the general solution of the differential equation $d y / d x=y / x+\phi(x / y)$ then the function $\phi(x / y)$ is
a) x^{2} / y^{2}
b) $-x^{2} / y^{2}$
c) y^{2} / x^{2}
d) $-y^{2} / x^{2}$
45. The solution of $y e^{-x / y} d x-\left(x e^{(-x / y)}+y^{3}\right)=d y=0$ is
a) $e^{-x / y}+y^{2}=C$
b) $x e^{-x / y}+y=C$
c) $2 e^{-x / y}+y^{2}=C$
d) $e^{-x / y}+2 y^{2}=C$
46. Solution of differential equation $d y-\sin x \sin y d x=0$ is
a) $e^{\cos x} \tan \frac{y}{2}=c$
b) $e^{\cos x} \tan y=c$
c) $\cos x \tan y=c$
d) $\cos x \sin y=c$
47. The differential equation whose solution is $A x^{2}+B y^{2}=1$, where A and B are arbitrary constants, is of
a) Second order and second degree
b) First order and second degree
c) First order and first degree
d) Second order and first degree
48. The solution of the differential equation $\left(e^{x^{2}}+e^{y^{2}}\right) y \frac{d y}{d x}+e^{x^{2}}\left(x y^{2}-x\right)=0$ is
a) $e^{x^{2}}\left(y^{2}-1\right)+e^{y^{2}}=C$
b) $e^{y^{2}}\left(x^{2}-1\right)+e^{x^{2}}=C$
c) $e^{y^{2}}\left(y^{2}-1\right)+e^{x^{2}}=C$
d) $e^{x^{2}}(y-1)+e^{y^{2}}=C$
49. The solution of the differential equation $\frac{d y}{d x}=\frac{3 x^{2} y^{4}+2 x y}{x^{2}-2 x^{3} y^{3}}$ is
a) $\frac{y^{2}}{x}-x^{3} y^{2}=c$
b) $\frac{x^{2}}{y^{2}}+x^{3} y^{3}=c$
c) $\frac{x^{2}}{y}+x^{3} y^{2}=c$
d) $\frac{x^{2}}{3 y}-2 x^{3} y^{2}=c$
50. If $=\left(e^{y}-x\right)^{-1}$, where $y(0)=0$, then y is expressed explicitly as
a) $\frac{1}{2} \ln \left(1+x^{2}\right)$
b) $\ln \left(1+x^{2}\right)$
c) $\ln \left(x+\sqrt{1+x^{2}}\right)$
d) $\ln \left(x+\sqrt{1-x^{2}}\right)$
51. The differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$, where A and B are arbitrary constants, is
a) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
b) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0$
c) $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y=0$
d) $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+2 y=0$
52. The solution of the equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$ is
a) $y \sin y=x^{2} \log x+\frac{x^{2}}{2}+c$
b) $y \cos y=x^{2}(\log x+1)+c$
c) $y \cos y=x^{2} \log x+\frac{x^{2}}{1}+c$
d) $y \sin y=x^{2} \log x+c$
53. Solution of the equation $\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x,|x|<\frac{\pi}{4}$, when $y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}$ is
a) $y=\tan 2 x \cos ^{2} x$
b) $y=\cot 2 x \cos ^{2} x$
c) $y=\frac{1}{2} \tan 2 x \cos ^{2} x$
d) $y=\frac{1}{2} \cot 2 x \cos ^{2} x$
54. The solution of the differential equation $x=1+x y \frac{d y}{d x}+\frac{x^{2} y^{2}}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{x^{3} y^{3}}{3!}\left(\frac{d y}{d x}\right)^{3}+\ldots$ is
a) $y=\ln (x)+c$
b) $y^{2}=(\ln x)^{2}+c$
c) $y=\log x+x y$
d) $x y=x^{y}+c$
55. The function $f(\theta)=\frac{d}{d \theta} \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}$ satisfies the differential equation
a) $\frac{d f(\theta)}{d \theta}+2 f(\theta) \cot \theta=0$
b) $\frac{d f}{d \theta}-2 f(\theta) \cot \theta=0$
c) $\frac{d f}{d \theta}+2 f(\theta)=0$
d) $\frac{d f}{d \theta}-2 f(\theta)=0$
56. The solution to the differential equation $y \log y+x y^{\prime}=0$, where $y(1)=e$, is
a) $x(\log y)=1$
b) $x y(\log y)=1$
c) $(\log y)^{2}=2$
d) $\log y+\left(\frac{x^{2}}{2}\right) y=1$
57. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with
a) Variable radii and a fixed centre $t(0,1)$
b) Variable radii and a fixed centre at $(0,-1)$
c) Fixed radius 1 and variable centres along the x-axis
d) Fixed radius 1 and variable centres along the y-axis
58. The solution of the differential equation
$\left\{1+x \sqrt{\left(x^{2}+y^{2}\right)}\right\} d x+\left\{\sqrt{\left(x^{2}+y^{2}\right)}-1\right\} y d y=0$ is equal to
a) $x^{2}+\frac{y^{2}}{2}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=c$
b) $x-\frac{y^{3}}{3}+\frac{1}{2}\left(x^{2}+y^{2}\right)^{1 / 2}=c$
c) $x-\frac{y^{2}}{2}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=c$
d) None of these
59. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is
a) $\log \frac{x}{y}=c y$
b) $\log \frac{y}{x}=c y$
c) $\log \frac{x}{y}=c x$
d) None of these
60. If integrating factor of
$x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-a x^{3}\right) d x=0$ is $e^{\int p d x}$, then P is equal to
a) $\frac{2 x^{2}-a x^{3}}{x\left(1-x^{2}\right)}$
b) $2 x^{3}-1$
c) $\frac{2 x^{2}-a}{a x^{2}}$
d) $\frac{2 x^{2}-1}{x\left(1-x^{2}\right)}$
61. The solution of the equation
$\left(x^{2} y+x^{2}\right) d x+y^{2}(x-1) d y=0$ is given by
a) $x^{2}+y^{2}+2(x-y)+2 \ln \frac{(x-1)(y+1)}{c}=0$
b) $x^{2}+y^{2}+2(x-y)+\ln \frac{(x-1)(y+1)}{c}=0$
c) $x^{2}+y^{2}+2(x-y)-2 \ln \frac{(x-1)(y+1)}{c}=0$
d) None of these
62. A function $y=f(x)$ satisfies $(x+1) f^{\prime \prime}(x)-2\left(x^{2}+x\right) f(x)=\frac{e^{x^{2}}}{(x+1)}, \forall x>-1$

If $f(0)=5$, then $f(x)$ is
a) $\left(\frac{3 x+5}{x+1}\right) e^{x^{2}}$
b) $\left(\frac{6 x+5}{x+1}\right) e^{x^{2}}$
c) $\left(\frac{6 x+5}{(x+1)^{2}}\right) e^{x^{2}}$
d) $\left(\frac{5-6 x}{x+1}\right) e^{x^{2}}$
63. The curve for which the normal at any point (x, y) and the line joining the origin to that point form an isosceles triangle with the x-axis as base is
a) An ellipse
b) A rectangular hyperbola
c) A circle
d) None of these
64. Orthogonal trajectories of family of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, where a is any arbitrary constant, is
a) $x^{2 / 3}-y^{2 / 3}=c$
b) $x^{4 / 3}-y^{4 / 3}=c$
c) $x^{4 / 3}-y^{4 / 3}=c$
d) $x^{1 / 3}-y^{1 / 3}=c$
65. The slope of the tangent at (x, y) to a curve passing through a point $(2,1)$ is $\frac{x^{2}+y^{2}}{2 x y}$, then the equation of the curve is
a) $2\left(x^{2}-y^{2}\right)=3 x$
b) $2\left(x^{2}-y^{2}\right)=6 y$
c) $x\left(x^{2}-y^{2}\right)=6$
d) $x\left(x^{2}+y^{2}\right)=10$
66. The normal to a curve at $P(x, y)$ meets the x-axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a
a) Parabola
b) Circle
c) Hyperbola
d) Ellipse
67. The solution of $(y+x+5) d y=(y-x+1) d x$ is
a) $\log \left((y+3)^{2}+(x+2)^{2}\right)+\tan ^{-1} \frac{y+3}{y+2}+C$
b) $\log \left((y+3)^{2}+(x-2)^{2}\right)+\tan ^{-1} \frac{y-3}{x-2}=C$
c) $\log \left((y+3)^{2}+(x+2)^{2}\right)+2 \tan ^{-1} \frac{y+3}{x+2}+C$
d) $\log \left((y+3)^{2}+(x+2)^{2}\right)-2 \tan ^{-1} \frac{y+3}{x+2}+C$
68. The differential equation of the curve for which the initial ordinate of any tangent is equal to the corresponding subnormal
a) Is linear
b) Is homogenous of second degree
c) Has separable variables
d) Is of second order
69. If $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}, y(1)=1$, then one of the values of x_{0} satisfying $y\left(x_{0}\right)=e$ is given by
a) $e \sqrt{2}$
b) $e \sqrt{3}$
c) $e \sqrt{5}$
d) $e / \sqrt{2}$
70. The equation of the curves through the point $(1,0)$ and whose slope is $\frac{y-1}{x^{2}+x}$ is
a) $(y-1)(x+1)+2 x=0$
b) $2 x(y-1)+x+1=0$
c) $x(y-1)(x+1)+2=0$
d) None of these
71. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y(\pi / 2)$ equals
a) $1 / 3$
b) $2 / 3$
c) $-1 / 3$
d) 1
72. The slope of the tangent at (x, y) to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is given by $\frac{y}{x}=\cos ^{2}\left(\frac{y}{x}\right)$, then the equation of the curve is
a) $y=\tan ^{-1}\left(\log \left(\frac{e}{x}\right)\right)$
b) $y=x \tan ^{-1}\left(\log \left(\frac{x}{e}\right)\right)$
c) $y=x \tan ^{-1}\left(\log \left(\frac{e}{x}\right)\right)$
d) None of these
73. The differential equation of all non-horizontal lines in a plane is
a) $\frac{d^{2} y}{d x^{2}}$
b) $\frac{d^{2} x}{d y^{2}}=0$
c) $\frac{d y}{d x}=0$
d) $\frac{d x}{d y}=0$
74. The equation of a curve passing through $(2,7 / 2)$ and having gradient $1-\frac{1}{x^{2}}$ at (x, y) is
a) $y=x^{2}+x+1$
b) $x y=x^{2}+x+1$
c) $x y=x+1$
d) None of these
75. The differential equation of the curve $\frac{x}{c-1}+\frac{y}{c+1}=1$ is given by
a) $\left(\frac{d y}{d x}-1\right)\left(y+x \frac{d y}{d x}\right)=2 \frac{d y}{d x}$
b) $\left(\frac{d y}{d x}+1\right)\left(y-x \frac{d y}{d x}\right)=\frac{d y}{d x}$
c) $\left(\frac{d y}{d x}+1\right)\left(y-x \frac{d y}{d x}\right)=2 \frac{d y}{d x}$
d) None of these
76. Solution of the differential equation
$\left\{\frac{1}{x}-\frac{y^{2}}{(x-y)^{2}}\right\} d x+\left\{\frac{x^{2}}{(x-y)^{2}}-\frac{1}{y}\right\} d y=0$ is
a) $\ln \left|\frac{x}{y}\right|+\frac{x y}{x-y}=c$
b) $\frac{x y}{x-y}=c e^{x / y}$
c) $\ln |x y|=c+\frac{x y}{x-y}$
d) None of these
77. The solution of the equation $d y / d x=\cos (x-y)$ is
a) $y+\cot \left(\frac{x-y}{2}\right)=C$
b) $x+\cot \left(\frac{x-y}{2}\right)=C$
c) $x+\tan \left(\frac{x-y}{2}\right)=C$
d) None of these
78. Differential equation of the family of curves $v=A / r+B$, where A and B are arbitrary constant, is
a) $\frac{d^{2} v}{d r^{2}}+\frac{1}{r} \frac{d v}{d r}=0$
b) $\frac{d^{2} v}{d r^{2}}-\frac{2}{r} \frac{d v}{d r}=0$
c) $\frac{d^{2} v}{d r^{2}}+\frac{2}{r} \frac{d v}{d r}=0$
d) None of these
79. Number of values of $m \in N$ for which $y=e^{m x}$ is a solution of the differential equation $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+$ $12 y=0$
a) 0
b) 1
c) 2
d) More than 2
80. The differential equation of all circles which pass through the origin and whose centres lie on the y-axis is
a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
b) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0$
c) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-x y=0$
d) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+x y=0$
81. The differential equation for the family of curve $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is
a) $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
b) $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
c) $\left(x^{2}-y^{2}\right) y^{\prime \prime}=2 x y$
d) $\left(x^{2}-y^{2}\right) y^{\prime \prime}=2 x y$
82. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$ then $y(1)$ is equal to
a) $-\frac{1}{2}$
b) $e+\frac{1}{2}$
c) $e-\frac{1}{2}$
d) $\frac{1}{2}$
83. The solution of $\frac{d v}{d t}+\frac{k}{m} v=-\mathrm{g}$ is
a) $v=c e^{-\frac{k}{m} t}-\frac{m g}{k}$
b) $v=c-\frac{m g}{k} e^{-\frac{k}{m} t}$
c) $v e^{-\frac{k}{m} t}=c-\frac{m g}{k}$
d) $v e^{\frac{k}{m} t}=c-\frac{m g}{k}$
84. The equation of a curve passing through $(1,0)$ for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equals twice the square of the radius vector of the point P, is
a) $x^{2}+y^{2}=x^{4}$
b) $x^{2}+y^{2}=2 x^{4}$
c) $x^{2}+y^{2}-4 x^{4}$
d) None of these
85. The solution of the differential equation $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$ is
a) $\frac{x}{y^{2}}=y+c$
b) $\frac{x}{y}=y^{2}+c$
c) $\frac{x^{2}}{y}=y^{2}+c$
d) $\frac{y}{x}=x^{2}+c$
86. The solution of the differential equation
$\frac{d y}{d x}=\frac{1}{x y\left[x^{2} \sin y^{2}+1\right]}$ is
a) $x^{2}\left(\cos y^{2}-\sin y^{2}-2 C e^{-y^{2}}\right)=2$
b) $y^{2}\left(\cos x^{2}-\sin y^{2}-2 C e^{-y^{2}}\right)=2$
c) $x^{2}\left(\cos y^{2}-\sin y^{2}-e^{-y^{2}}\right)=4 C$
d) None of these
87. The solution of differential equation $\left(2 y+x y^{3}\right) d x+\left(x+x^{2} y^{2}\right) d y=0$ is
a) $x^{2} y+\frac{x^{3} y^{3}}{3}=c$
b) $x y^{2}+\frac{x^{3} y^{3}}{3}=c$
c) $x^{2} y+\frac{x^{4} y^{4}}{4}=c$
d) None of these
88. Spherical rain drop evaporates at a rate proportional to its surface area. The differential equation corresponding to the rate of change of the radius of the rain drop if the constant of proportionality is $K>0$ is
a) $\frac{d r}{d t}+K=0$
b) $\frac{d r}{d t}-K=0$
c) $\frac{d r}{d t}=K r$
d) None of these
89. Water is drained from a vertical cylindrical tank by opening a valve at the base of the tank. It is known that the rate at which the water level drops is proportional to the square root of water depth y, where the constant of proportionality $k>0$ depends on the acceleration due to gravity and the geometry of the hole. If t is measured in minutes and $k=\frac{1}{15}$, then the time to drain the tank if the water is 4 m deep to start with is
a) 30 min
b) 45 min
c) 60 min
d) 80 min
90. The solution of differential equation
$\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=\frac{x \cos ^{2}\left(x^{2}+y^{2}\right)}{y^{3}}$ is
a) $\tan \left(x^{2}+y^{2}\right)=\frac{x^{2}}{y^{2}}+c$
b) $\cot \left(x^{2}+y^{2}\right)=\frac{x^{2}}{y^{2}}+c$
c) $\tan \left(x^{2}+y^{2}\right)=\frac{y^{2}}{x^{2}}+c$
d) $\cot \left(x^{2}+y^{2}\right)=\frac{y^{2}}{x^{2}}+c$
91. The differential equation of all parabolas each of which has a latus rectum $4 a$ and whose axis are parallel to the x-axis is
a) Of order 1 and degree 2
b) Of order 2 and degree 3
c) Of order 2 and degree 1
d) Of order 2 and degree 2
92. The equation of the curve which is such that the portion of the axis of x cut off between the origin and tangent at any point is proportional to the ordinate of that point is
(b is a constant of proportionality)
a) $x=y(a-b \log x)$
b) $\log x=b y^{2}+a$
c) $x^{2}=y(a-b \log y)$
d) None of these
93. The differential equation of all parabolas whose axis are parallel to the y-axis is
a) $\frac{d^{3} y}{d x^{3}}=0$
b) $\frac{d^{2} x}{d y^{2}}=C$
c) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} x}{d y^{2}}=0$
d) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=C$
94. The general solution of the differential equation, $y^{\prime}+y \phi^{\prime}(x)-\phi(x) . \phi^{\prime}(x)=0$, where $\phi(x)$ is a known function, is
a) $y=c e^{-\phi(x)}+\phi(x)-1$
b) $y=c e^{+\phi(x)}+\phi(x)-1$
c) $y=c e^{-\phi(x)}-\phi(x)+1$
d) $y=c e^{-\phi(x)}+\phi(x)+1$

Multiple Correct Answers Type

95. Which one of the following function(s) is/are homogeneous?
a) $f(x, y)=\frac{x-y}{x^{2}+y^{2}}$
b) $f(x, y)=x^{\frac{1}{3}} y^{-\frac{2}{3}} \tan ^{-1} \frac{x}{y}$
c) $f(x, y)=x\left(\ln \sqrt{x^{2}+y^{2}}-\ln y\right)+y e^{x / y}$
d) $f(x, y)=x\left[\ln \frac{2 x^{2}+y^{2}}{x}-\ln (x+y)\right]+y^{2} \tan \frac{x+2 y}{3 x-y}$
96. The curve $y=f(x)$ is such that the area of the trapezium formed by the coordinate axes, ordinate of an arbitrary point and the tangent at this point equals half the square of its abscissa. The equation of the curve can be
a) $y=c x^{2} \pm x$
b) $y=c x^{2} \pm 1$
c) $y=c x \pm x^{2}$
d) $y=c x^{2} \pm x \pm 1$
97. The solution of the differential equation

$$
\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0 \text { is }
$$

a) $y=2$
b) $y=2 x$
c) $y=2 x-4$
d) $y=2 x^{2}-4$
98. $y=a e^{-1 / x}+b$ is a solution of $\frac{d y}{d x}=\frac{y}{x^{2}}$, then
a) $a \in R$
b) $b=0$
c) $b=1$
d) a takes finite number of values
99. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where c is a positive parameter, is of
a) Order 1
b) Order 2
c) Degree 3
d) Degree 4
100. The equation of the curve satisfying the differential equation $y_{2}\left(x^{2}+1\right)=2 x y_{1}$ passing through the point $(0,1)$ and having slope of tangent at $x=0$ as 3 (where y_{2} and y_{1}) represents 2 nd and 1 st order derivative), then
a) $y=f(x)$ is a strictly increasing function
b) $y=f(x)$ is a non-monotonic function
c) $y=f(x)$ has three distinct real roots
d) $y=f(x)$ has only one negative root
101. The equation of the curve satisfying the differential equation $y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}-x=0$ can be a
a) Circle
b) Straight line
c) Parabola
d) Ellipse
102. The tangent at any point P on $y=f(x)$ meets x-axis and y-axis at A and B respectively. If $P A: P B=2: 1$, then the equation of the curve, is
a) $|x| y=c$
b) $x^{2}|y|=c$
c) $|x| y^{2}=c$
d) $\begin{aligned} & y^{2} c|x| \\ & \text { (where } c \text { is arbitrary constant) }\end{aligned}$
103. The curves for which the length of the normal is equal to the length of the radius vector is/are
a) Circles
b) Rectangular hyperbola
c) Ellipse
d) Straight lines
104. The solution of $\frac{d y}{d x}=\frac{a x+h}{b y+k}$ represents a parabola if
a) $a=-2, b=0$
b) $a=-2, b=2$
c) $a=0, b=2$
d) $a=0, b=0$
105. A curve $y=f(x)$ passes through the point $P(1,1)$. The normal to the curve at P is a $(y-1)+(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is
a) $y=e^{K(x-1)}$
b) $y=e^{K e}$
c) $y=e^{K(x-2)}$
d) None of these
106. The solution of the differential equation $\left(x^{2} y^{2}-1\right) d y+2 x y^{3} d x=0$ is
a) $1+x^{2} y^{2}=c x$
b) $1+x^{2} y^{2}=c y$
c) $y=0$
d) $y=-\frac{1}{x^{2}}$
107. For the differential equation whose solution is $(x-h)^{2}+(y-k)^{2}=a^{2}$ (a is a constant), is
a) Order is 2
b) Order is 3
c) Degree is 2
d) Degree is 3
108. If $f(x), g(x)$ be twice differential functions on [0, 2] satisfying $f^{\prime \prime}(x)=g^{\prime \prime}(x), f^{\prime}(1)=2 g^{\prime}(1)=4$ and $f(2)=3 g(2)=9$, then
a) $f(4)-g(4)=10$
b) $|f(x)-\mathrm{g}(x)|<2 \Rightarrow-2<x<0$
c) $f(2)=g(2) \Rightarrow x=-1$
d) $f(x)-\mathrm{g}(x)=2 x$ has real root
109. Identify the statement(s) which is/are true
a) $f(x, y)=e^{y / x}+\tan \frac{y}{x}$ is a homogeneous of degree zero
b) $x \ln \frac{y}{x} d x+\frac{y^{2}}{x} \sin ^{-1} \frac{y}{x} d y=0$ is a homogeneous differential equation
c) $f(x, y)=x^{2}+\sin x \cos y$ is a not homogeneous
d) $\left(x^{2}+y^{2}\right) d x-\left(x y^{2}-y^{3}\right) d y=0$ is a homogeneous differential equation
110. In which of the following differential equation degree is not defined?
a) $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x \log \frac{d^{2} y}{d x^{2}}$
b) $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$
c) $x=\sin \left(\frac{d y}{d x}-2 y\right),|x|<1$
d) $x-2 y=\log \left(\frac{d y}{d x}\right)$
111. The solution of $\frac{d y}{d x}=\frac{a x+h h h h h h}{b y+k}$ represents a parabola when
a) $a=0, b \neq 0$
b) $a \neq 0, b \neq 0$
c) $b=0, a \neq 0$
d) $a=0, b \in R$
112. The solution of $\left(\frac{x d x+y d y}{x d y-y d x}\right)=\sqrt{\left(\frac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}\right)}$ is
a) $\sqrt{\left(x^{2}+y^{2}\right)}=a \sin \left\{\left(\tan ^{-1} y / x\right)+\right.$ constant $\}$
b) $\sqrt{\left(x^{2}+y^{2}\right)}=a \cos \left\{\left(\tan ^{-1} y / x\right)+\right.$ constant $\}$
c) $\sqrt{\left(x^{2}+y^{2}\right)}=a\left\{\tan \left(\sin ^{-1} y / x+\right.\right.$ constant $\}$
d) $y=x \tan \left\{\right.$ constant $\left.+\sin ^{-1} \frac{1}{a} \sqrt{\sqrt{\left(x^{2}+y^{2}\right)}}\right\}$
113. The solution of $\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{1-x^{2}-y^{2}}{x^{2}+y^{2}}}$ is
a) $\sqrt{x^{2}+y^{2}}=\sin \left\{\tan ^{-1}(y / x)+C\right\}$
b) $\sqrt{x^{2}+y^{2}}=\cos \left\{\tan ^{-1}(y / x)+C\right\}$
c) $\sqrt{x^{2}+y^{2}}=\left(\tan \left(\sin ^{-1} y / x\right)+C\right)$
d) $y=x \tan \left(c+\sin ^{-1} \sqrt{x^{2}+y^{2}}\right)$
114. The graph of the function $y=f(x)$ passing through the point $(0,1)$ and satisfying the differential equation $\frac{d y}{d x}+y \cos x=\cos x$ is such that
a) It is a constant function
b) It is periodic
c) It is neither an ever nor an odd function
d) It is continuous and differentiable for all x
115. Which of the following equation(s) is/are linear?
a) $\frac{d y}{d x}+\frac{y}{x}=\log x$
b) $y\left(\frac{d y}{d x}\right)+4 x=0$
c) $\left(2 x+y^{3}\right)\left(\frac{d y}{d x}\right)=3 y$
d) None of these
116. For equation of the curve whose subnormal is constant, then
a) Its eccentricity is 1
b) Its eccentricity is $\sqrt{2}$
c) Its axis is the x-axis
d) Its axis is the y-axis
117. The order of the differential equation whose general solution is given by $y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-$ $C_{4} e^{x+C_{5}}$, where $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, are arbitrary constants, is
a) 5
b) 4
c) 3
d) 2
118. The solution of $\left(\frac{d y}{d x}\right)^{2}+2 y \cot x \frac{d y}{d x}=y^{2}$ is
a) $x=2 \sin ^{-1} \sqrt{\left(\frac{c}{2 y}\right)}$
b) $x=2 \cos ^{-1} \sqrt{\left(\frac{c}{2 y}\right)}$
c) $y=\frac{c}{1-\cos x}$
d) $y-\frac{c}{1+\cos x}=0$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 119 to 118. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: The value of $y(2)$, if y satisfies $x^{2} \frac{d y}{d x}+x y=\sin x, y(1)=2$ is $\frac{1}{2} \int_{1}^{2} \frac{\sin t}{t} d t$.

Statement 2: The solution of linear equation $\frac{d y}{d x}+P y=Q$ can be obtained by multiplying with the factor $e \int P d x$

Statement 1: Degree of the differential equation $2 x-3 y+2=\log \left(\frac{d y}{d x}\right)$ is not defined
Statement 2: In the given differential equation, the power of highest order derivative when expressed as the polynomials of derivatives is called degree

Statement 1: The differential equation of all circles in a plane must be of order 3
Statement 2: There is only one circle passing through three non -collinear points
122
Statement 1: Order of the differential equation whose solutions is $y=c_{1} e^{x+c_{2}}+c_{3} e^{x+c_{4}}$ is 4 .
Statement 2: Order of the differential equation is equal to the number of independent arbitrary constant mentioned in the solution of differential equation.
123
Statement 1: The elimination of four arbitrary constants in $y=\left(c_{1}+c_{2}+c_{3} e^{c_{4}}\right) x$ results into a differential equation of the first order $x \frac{d y}{d x}=y$.
Statement 2: Elimination of n arbitrary constants requires in general, a differential equation of the nth order.
124
Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$ satisfy $y(2)=\frac{2}{\sqrt{3}}$
Statement 1: $\quad y(x)=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$
Statement 2: $\quad y(x)$ is given by $\frac{1}{y}=\frac{2 \sqrt{3}}{x}-\sqrt{1-\frac{1}{x^{2}}}$

Statement 1: The differential equation of the family of curves represented by $y=A e^{x}$ is given by $\frac{d y}{d x}=y$
Statement 2: $\frac{d y}{d x}=y$ is valid for every member of the given family

Statement 1: The differential equation of the form $y f(x y) d x+x \phi(x y) d y=0$ can be converted to homogeneous forms by substitution $x y=v$
Statement 2: All differential equation of first order and first degree become homogeneous, if we put $y=v x$

Statement 1: The differential equation of all circles in a plane must be of order 3.
Statement 2: If three point are non-collinear, then only one circle always passing through these points.

Statement 1: The equation of curve passing through $(3,9)$ which satisfies differential equation $\frac{d y}{d x}=x+\frac{1}{x^{2}}$ is $6 x y=3 x^{3}+29 x-6$

Statement 2: The solution of differential equation $\left(\frac{d y}{d x}\right)^{2}-\left(\frac{d y}{d x}\right)\left(e^{x}+e^{-x}\right)+1=0$ is $y=c_{1} e^{x}+$ $c_{2} e^{-x}$.

Statement 1: The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=\ln \left(\frac{d^{2} y}{d x^{2}}\right)$ is 2.
Statement 2: The degree of a differential equation which can be written as polynomial in the derivatives is the degree of the derivatives of the highest order occurring in it.

Statement 1: The order of the differential equation whose general solution is $y=c_{1} \cos 2 x+$ $c 2 \sin 2 x+c 3 \cos 2 x+c 4 e 2 x+c 5 e 2 x+c 6$ is 3
Statement 2: Total number of arbitrary parameters in the given general solution in the statement (1) is 3

131
Statement 1: Order of a differential equation represents number of arbitrary constants in the general solution
Statement 2: Degree of a differential equation represents number of family of curves

Statement 1: $y=a \sin x+b \cos x$ is a general solution of $y^{\prime \prime}+y=0$.
Statement 2: $y=a \sin x+b \cos x$ is a trigonometric function.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
133.

Column-I

(A) Order 1
(B) Order 2
(C) Degree 1
(D) Degree 3

CODES :

	A	B	C	D
a)	Q, s	p	p	$\mathrm{q}, \mathrm{r}, \mathrm{S}$
b)	p	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p	q, s
c)	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	p	q, s	p

d) $p \quad q, s \quad q, r, s \quad p$
134.

Column-I

Column- II
(A) If the function $y=e^{4 x}+2 e^{-x}$ is a solution of
(p) 3
the differential equation $\frac{\frac{d^{3} y}{d x^{3}}-13 \frac{d y}{d x}}{y}=K$, then the value of $K / 3$ is
(B) Number of straight lines which satisfy the
(q) 4
differential equation $\frac{d y}{d x}+x\left(\frac{d y}{d x}\right)^{2}-y=0$ is
(C) If real value of m for which the substitution,
$y=u^{m}$ will transform the differential
equation, $2 x^{4} y \frac{d y}{d x}+y^{4}=4 x^{6}$ into a
homogeneous equation, then the value of $2 m$
is
(D) If the solution of differential equation
(s) 1
$x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=12 y$ is $y=A x^{m}+B x^{-n}$, then $|m+n|$ is
CODES :
A
B
C
D
a) r
p
s \quad q
b) $\begin{array}{llll}\mathrm{q} & \mathrm{r} & \mathrm{p} & \mathrm{s}\end{array}$
c) $\begin{array}{llll}\mathrm{p} & \mathrm{s} & \mathrm{q} & \mathrm{r}\end{array}$
d) \quad s \quad q \quad r \quad p

Linked Comprehension Type

This section contain(s) 10 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 135 to -135

Newton's law of cooling states that rate at which a substance cools in moving air is proportional to the difference between the temperatures of the substance and that of the air. If the temperature of the air is 290 K . We can write as $\frac{d T}{d t}=-k(T-290), k>0$ constants, where T is temperature of substance. on the basis of above information, anseer the following questions:
135. The substance cools from 370 K to 330 K in 10 min , then
a) $T=290+160 e^{-k t}$
b) $T=290+80 e^{-k t}$
c) $T=290+40 e^{-k t}$
d) $T=290+20 e^{-k t}$

Paragraph for Question Nos. 136 to - 136

A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionally constant $=k>0$). Suppose that $r(t)$ is the radius of liquid cone at time t.
on the basis of above information, anseer the following questions :
136. The time after which the cone is empty, is
a) $\frac{H}{2 k}$
b) $\frac{H}{k}$
c) $\frac{H}{3 k}$
d) $\frac{2 H}{k}$

Paragraph for Question Nos. 137 to - 137

Let $f(x)$ be a non-positive continuous function and $F(x)=\int_{0}^{x} f(t) d t \forall x \geq 0$ and $f(x) \geq c F(x)$ where $c>0$ and let $\mathrm{g}:[0, \infty) \rightarrow R$ be a function such that $\frac{d \mathrm{~g}(x)}{d x}<\mathrm{g}(x) \forall x>0$ and $\mathrm{g}(0)=0$
137. The total number of root(s) of the equation $f(x)=\mathrm{g}(x)$ is/are
a) ∞
b) 1
c) 2
d) 0

Paragraph for Question Nos. 138 to - 138

The differential equation $y=p x+f(p)$,
Where $p=\frac{d y}{d x}$, is known as Clairout's Equation. To solve equation (1), differentiate it with respect to x, which gives either
$\frac{d p}{d x}=0 \Rightarrow p=c$
Or $x+f^{\prime \prime}(p)=0$

Note:

a. If p is eliminated between equation (1)and
(2), the solution obtained is ageneral solution
of equation (1),
b. If p is eliminated between equation (1) and
(3), then solution obtained doesnot contain
any arbitrary constant and is not particular
solution of equation(1).This solution is called
singular solution of equation (1)
138. Which of the following is true about solutions of differential equation $y=x y^{\prime \prime}+\sqrt{1+y^{\prime 2}}$?
a) The general solution of equation is family of parabolas
b) The general solution of equation is family of circles
c) The singular solution of equation is circle
d) The singular solution of equation is ellipse

Paragraph for Question Nos. 139 to - 139

For certain curves $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$
139. Number of critical point for $y=f(x)$ for $x \in[0,2]$
a) 0
b) 1
c) 2
d) 3

Paragraph for Question Nos. 140 to - 140

A certain radioactive material is known to decay at a rate proportional to the amount present. Initially there is 50 kg of the material present and after two hours it is observed that the material has lost 10 percent of its original mass. Based on these data answer the following questions
140. The expression for the mass of the material remaining at any time t
a) $N=50 e^{-(1 / 2)(\ln 0.9) t}$
b) $50 e^{-(1 / 4)(\ln 9) t}$
c) $N=50 e^{(\ln 0.9) t}$
d) None of these

Paragraph for Question Nos. 141 to - 141

Consider a tank which initially holds $V_{0} \mathrm{ltr}$. of brine that contains $a \mathrm{lbof}$ salt. Another brine solution, containing $b \mathrm{lb}$ of salt/ltr., is poured into the tank at the rate of $e \mathrm{ltr} . / \mathrm{min}$ while, simultaneously, the well-stirred solution leaves the tank at the rate of $f \mathrm{ltr} . / \mathrm{min}$. The problem is to find the amount of salt in the tank at any time t Let Q denote the amount of salt in the tank at any time. The time rate of change of $Q, d Q / d t$, equals the rate at which salt enters the tank minus the rate at which salt leaves the tank. Salt enters the tank at the rate of $b e \mathrm{lb} / \mathrm{min}$. To determine the rate at which salt leaves the tank, we first calculate the volume of brine in the tank at any time t, which is the initial volume V_{0} plus the volume of brine added et minus the volume of brine removed $f t$. Thus, the volume of brine at any time is
$V_{0}+e t-f t \quad$ (a)
The concentration of salt in the tank at any time is $Q /\left(V_{0}+e t-f t\right)$, from which it follows that salt leaves the tank at the rate of $f\left(\frac{Q}{V_{0}+e t-f t}\right) \mathrm{lb} / \mathrm{min}$
Thus, $\frac{d Q}{d t}=b e-f\left(\frac{Q}{V_{0}+e t-f t}\right)$
Or $\frac{d Q}{d t}+\frac{f}{V_{0}+e t-f t} Q=b e$
141. A tank initially holds 100 ltr . Of a brine solution containing 20 lb of salt. At $t=0$, fresh water is poured into the tank at the rate of $5 \mathrm{ltr} . / \mathrm{min}$, while the well-stirred mixture leaves the tank at the same rate. Then the amount of salt in the tank after 20 min
a) $20 / e$
b) $10 / e$
c) $40 / e^{2}$
d) $5 / e$

Integer Answer Type

142. The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point contact. Also curve passes through the point $(1,1)$. Then the length of intercept of the curve on the x axis is
143. If $x \frac{d y}{d x}=x^{2}+y-2, y(1)=1$, then $y(2)$ equals
144. The curve passing through the point $(1,1)$ satisfies the differential equation $\frac{d y}{d x}+\frac{\sqrt{\left(x^{2}-1\right)\left(y^{2}-1\right)}}{x y}=0$. If the curve passes through the point $(\sqrt{2}, k)$ then the value of $[k]$ is (where $[\cdot]$ represents greatest integer function)
145. If the solution of the differential equation $\frac{d y}{d x}=\frac{1}{x \cos y+\sin 2 y}$ is $x=c e^{\sin y}-k(1+\sin y)$, then the value of k is
146. Tangent is drawn at the point $\left(x_{i}, y_{i}\right)$ on the curve $y=f(x)$, which intersects the x-axis at $\left(x_{i+1}, 0\right)$. Now, again a tangent is drawn at $\left(x_{i+1}, y_{i+1}\right)$ on the curve which intersect the x-axis at $\left(\mathrm{x}_{\mathrm{i}+2}, 0\right)$ and the process is repeated n times, i.e., $i=1,2,3, \ldots, n$. If $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ form an arithmetic progression with common
difference equal to $\log _{2} e$ and curve passes through (0,2). Now if curve passes through the point $(-2, k)$, then the value of k is
147. If the solution of the differential equation $\frac{d y}{d x}-y=1-e^{-x}$ and $y(0)=y_{0}$ has a finite value, when $x \rightarrow \infty$, then the value of $\left|2 / y_{0}\right|$ is
148. If $y=y(x)$ and it follows the relation $4 x e^{x y}=y+5 \sin ^{2} x$, then $y^{\prime}(0)$ is equal to
149. Let $y=y(t)$ be a solution to the differential equation $y^{\prime}+2 t y=t^{2}$, then $16 \lim _{t \rightarrow \infty} \frac{y}{t}$ is
150. If the eccentricity of the curve for which tangent at point P intersects the y-axis at M such that the point of tangency is equidistant from M and the origin is e, then the value of $5 e^{2}$ is
151. If the independent variable x is changed to y, then the differential equation $x \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}-\frac{d y}{d x}=0$ is changed to $x \frac{d^{2} x}{d y^{2}}+\left(\frac{d x}{d y}\right)^{2}=k$ where k equals
152. If the dependent variable y is changed to ' z ' by the substitution $y=\tan z$ and the differential equation $\frac{d^{2} y}{d x^{2}}=1+\frac{2(1+y)}{1+y^{2}}\left(\frac{d y}{d x}\right)^{2}$ is changed to $\frac{d^{2} z}{d x^{2}}=\cos ^{2} z+k\left(\frac{d z}{d x}\right)^{2}$, then the value of k equals

: ANSWER KEY :

1)	a	2)	a	3)	b	4)	a
5)	a	6)	a	7)	c	8)	b
9)	b	10)	C	11)	C	12)	b
13)	c	14)	b	15)	a	16)	a
17)	a	18)	d	19)	d	20)	a
21)	a	22)	b	23)	a	24)	c
25)	a	26)	a	27)	b	28)	a
29)	d	30)	c	31)	a	32)	c
33)	C	34)	b	35)	C	36)	d
37)	c	38)	d	39)	a	40)	b
41)	a	42)	b	43)	c	44)	d
45)	c	46)	a	47)	d	48)	a
49)	c	50)	c	51)	a	52)	d
53)	c	54)	b	55)	a	56)	a
57)	c	58)	c	59)	d	60)	d
61)	a	62)	b	63)	b	64)	b
65)	a	66)	c	67)	c	68)	a
69)	b	70)	a	71)	a	72)	c
73)	b	74)	b	75)	C	76)	a
77)	b	78)	c	79)	c	80)	a
81)	c	82)	a	83)	a	84)	a
85)	b	86)	a	87)	a	88)	a
89)	c	90)	a	91)	c	92)	a
93)	a	94)	a	1)	a,b,c	2)	
	a,b	3)	c	4)	a,b		
5)	a,c	6)	a,d	7)	a,b	8)	
	c,d						
9)	a,b	10)	a,c	11)	a	12)	b
13)	a,c	14)	a,b,c	15)	a,b,c	16)	
	a,b						
17)	a,c	18)	a,d	19)	a,d	20)	
	a,b,						
21)	a,c	22)	b	23)	C	24)	
	a,b,c						
1)	d	2)	d	3)	a	4)	d
5)	a	6)	c	7)	a	8)	d
9)	a	10)	b	11)	d	12)	a
13)	b	14)	b	1)	a	2)	b
	1)	b	2)	b	3)	b	
	4)	c					
5)	c	6)	a	7)	a	1)	2
	2)	2	3)	3	4)	2	
5)	8	6)	4	7)	4	8)	8
9)	5	10)	1	11)	2		

: HINTS AND SOLUTIONS :

1 (a)
Putting $x+y+1=u$, we have $d u=d x+d y$ and the given equations reduces to
$u(d u-d x)=d x$
$\Rightarrow \frac{u d u}{u+1}=d x$
$\Rightarrow u-\log (u+1)=x+C$
$\Rightarrow \log (x+y+2)=y+C$
$\Rightarrow x+y+2=C e^{y}$
2 (a)
$y^{\prime} y^{\prime \prime \prime}=3\left(y^{\prime \prime}\right)^{2}$
$\Rightarrow \int \frac{y^{\prime \prime \prime}}{y^{\prime \prime}} d x=3 \int \frac{y^{\prime \prime}}{y_{1}^{\prime}} d x$
$\Rightarrow \ln y^{\prime \prime}=3 \ln y^{\prime}+\ln c$
$\Rightarrow y^{\prime \prime}=c\left(y^{\prime}\right)^{3}$
$\Rightarrow \int \frac{y^{\prime \prime}}{\left(y^{\prime}\right)^{2}} d x=\int c y^{\prime} d x$
$\Rightarrow-\frac{1}{y^{\prime}}=c y+d$
$\Rightarrow-d x=(c y+d) d y$
$\Rightarrow-x=\frac{c y^{2}}{2}+d y+e$
3 (b)
Given, $\frac{d y}{d x}=-\frac{1+y+x^{2} y}{x+x^{3}}$
$\Rightarrow \quad \frac{d y}{d x}+\frac{y}{x}=-\frac{1}{x\left(1+x^{2}\right)}$
$\therefore \quad I F=e^{\int \frac{1}{x} d x}=x$
4 (a)
$x^{2} \frac{d y}{d x} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x^{2}} \tan \frac{1}{x}=-\sec \frac{1}{x} \frac{1}{x^{2}}$ (linear)
I. F. $=e^{\int \frac{1}{x^{2}} \tan \frac{1}{x} d x}=\sec \frac{1}{x}$
\Rightarrow solution is $y \sec \frac{1}{x}=-\int \sec ^{2}\left(\frac{1}{x}\right) \frac{1}{x^{2}} d x=$ $\tan 1 x+c$

Given $y \rightarrow-1, x \rightarrow \infty \Rightarrow c=-1$
Hence equation of curve is $y=\sin \frac{1}{x}-\cos \frac{1}{x}$

5 (a)

The equation of the tangent at the point $R(x, f(x))$ is $Y-f(x)=f^{\prime}(x)(X-x)$
The coordinates of the point P are $(0, f(x)-$ $\left.x f^{\prime}(x)\right)$
The slope of the perpendicular line through P is $\frac{f(x)-x f^{\prime}(x)}{-1}=-\frac{1}{f^{\prime}(x)}$
$\Rightarrow f(x) f^{\prime}(x)-x\left(f^{\prime}(x)\right)^{2}=1$
$\Rightarrow \frac{y d y}{d x}-x\left(\frac{d y}{d x}\right)^{2}=1$ which is the required
differential equation to the curve at $y=f(x)$
$6 \quad$ (a)
$y\left(2 x^{4}+y\right) \frac{d y}{d x}=\left(1-4 x y^{2}\right) x^{2}$
$\Rightarrow 2 x^{4} y d y+y^{2} d y+4 x^{3} y^{2} d x-x^{2} d x=0$
$\Rightarrow 2 x^{2} y\left(x^{2} d y+2 x y d x\right)+y^{2} d y-x^{2} d x=0$
$2 x^{2} y d\left(x^{2} y\right)+y^{2} d y-x^{2} d x=0$
Integrating, we get $\left(x^{2} y\right)^{2}+\frac{y^{3}}{3}-\frac{x^{3}}{3}=c$
Or $3\left(x^{2} y\right)^{2}+y^{3}-x^{3}=c$
$7 \quad$ (c)
$\because \frac{d y}{d x}+\frac{y}{x \log _{e} x}=\frac{2}{x}$
\therefore I. F. $=e^{\int \frac{1}{x \log _{e} x} d x}$
$=e^{\log _{e} \log _{e} x}$
$=\log _{e} x$
8 (b)
$(x \cot y+\log \cos x) d y+(\log \sin y-y \tan x) d x$

$$
=0
$$

$\Rightarrow(x \cot y d y+\log \sin y d x)$

$$
+(\log \cos x d y-y \tan x d x)=0
$$

$\Rightarrow \int d(x \log \sin y)+\int d(y \log \cos x)=0$
$\Rightarrow x \log \sin y+y \log \cos x=\log c$
$\Rightarrow(\sin y)^{x}(\cos x)^{y}=c$
(b)

$$
\begin{align*}
& y=c_{1} \cos \left(x+c_{2}\right)-\left(c_{3} e^{-x+c_{4}}\right)+\left(c_{5} \sin x\right) \\
& \Rightarrow y=c_{1}\left(\cos x \cos c_{2}-\sin x \sin c_{2}\right)-\left(c_{3} e^{c_{4}} e^{-x}\right) \\
& +\left(c_{5} \sin x\right) \\
& \Rightarrow y=\left(c_{1} \cos c_{2}\right) \cos x-\left(c_{1} \sin c_{2}-c_{5}\right) \sin x \\
& -\left(c_{3} e^{c_{4}}\right) e^{-x} \tag{1}
\end{align*}
$$

$\Rightarrow y=l \cos x+m \sin x-n e^{-x}$
Where l, m, n are arbitrary constant

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}=-l \sin x+m \cos x+n e^{-x} \tag{2}\\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=-l \cos x-m \sin x-n e^{-x} \tag{3}\\
& \Rightarrow \frac{d^{3} y}{d x^{2}}=l \sin x-m \cos x+n e^{-x} \tag{4}
\end{align*}
$$

From equation (1) + (3), $\frac{d^{2} y}{d x^{2}}+y=-2 n e^{-x}$
From equation (2) $+(4), \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}=2 n e^{-x}$
From equation (5) + (6), we get $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+$ $y=0$
10 (c)
Differentiating the given equation successively,
we get
$y_{1}=5 b e^{5 x}-7 c e^{-7 x}$
$y_{2}=25 b e^{5 x}+49 c e^{-7 x}$
$y_{3}=125 \mathrm{~b} e^{5 x}-343 c e^{-7 x}$
Multiplying equation (1) by 7 and then adding to equation (2), we get $y_{2}+7 y_{1}=60$ be $^{5 x}$
Multiplying equation (1) by 5 and then
subtracting it from equation (2),
We get $y_{2}-5 y_{1}=84 c e^{-7 x}$
Putting the values of b and c, obtained from equation (4) and (5), respectively, in equation
(1), we get
$y_{3}+2 y_{2}-35 y_{1}=0$
11 (c)
$\left(x y^{3}-x^{2}\right) d y-\left(x y+y^{4}\right) d x=0$
$\Rightarrow y^{3}(x d y-y d x)-x(x d y+y d x)=0$
$\Rightarrow x^{2} y^{3} \frac{(x d y-y d x)}{x^{2}}-x(x d y+y d x)=0$
$\Rightarrow x^{2} y^{3} d\left(\frac{y}{x}\right)-x d(x y)=0$
\Rightarrow Dividing by $x^{3} y^{2}$, we get
$\Rightarrow \frac{y}{x} d\left(\frac{y}{x}\right)-\frac{d(x y)}{x^{2} y^{2}}=0$
Now integrating $\frac{1}{2}\left(\frac{y}{x}\right)^{2}+\frac{1}{x y}=c$
It passes through the point $(4,-2)$
$\Rightarrow \frac{1}{8}-\frac{1}{8}=c \Rightarrow c=0$
$\therefore y^{3}=-2 x$
12 (b)
$\frac{d y}{d x}=e^{a x+b y}=e^{a x} e^{b y}$
Or $e^{-b y} d y=e^{a x} d x$
$\therefore-\frac{1}{b} e^{-b y}=\frac{1}{a} e^{a x}+c$
13 (c)
$\frac{y^{\prime \prime \prime}}{y^{\prime \prime}}=8 \Rightarrow \log y^{\prime \prime}=8 x+c$
When $x=0, y^{\prime \prime}=1$ and $\log 1=0 \therefore c=0$
$\therefore y^{\prime \prime}=e^{8 x}$. Integrating again
$y^{\prime}=\frac{e^{8 x}}{8}+\lambda$ when $x=0, y^{\prime}(0)=0$
$\therefore \lambda=-1 / 8$
$\therefore y^{\prime}=\frac{e^{8 x}}{8}-\frac{1}{8}$. Integrate again
$y=\frac{e^{8 x}}{64}-\frac{x}{8}+k$
Also when $x=0, y=\frac{1}{8} \therefore k=\frac{7}{64}$
$\therefore y=\frac{1}{8}\left(\frac{e^{8 x}}{8}-x+\frac{7}{8}\right)$

We have $\frac{d y}{d x}=\sin \frac{x-y}{2}-\sin \frac{x+y}{2}$
$=-2 \cos \frac{x}{2} \sin \frac{y}{2}$
$\Rightarrow \log \tan \frac{y}{4}=-\frac{\sin \frac{x}{2}}{\frac{1}{2}}+c$
$\Rightarrow \log \tan \left(\frac{y}{4}\right)=c-2 \sin \frac{x}{2}$
15 (a)

Ordinate $=P M$. Let $P \equiv(x, y)$
Projection of ordinate on normal $=P N$
$\therefore P N=P M \cos \theta=a$ (given)
$\therefore \frac{y}{\sqrt{1+\tan ^{2} \theta}}=a$
$\Rightarrow y=a \sqrt{1+\left(y_{1}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{y^{2}-a^{2}}}{a}$
$\Rightarrow \int \frac{a d y}{\sqrt{y^{2}-a^{2}}}=\int d x$
$\Rightarrow a \ln \left|y+\sqrt{y^{2}-a^{2}}\right|=x+c$
16 (a)
Putting $x=\sin A$ and $y=\sin B$ in the given
relation, we get $\cos A+\cos B=a(\sin A-\sin B)$
$\Rightarrow A-B=2 \cot ^{-1} a$
$\Rightarrow \sin ^{-1} x-\sin ^{-1} y=2 \cot ^{-1} a$
Differentiatingw.r.t. x, we get
$\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0$
Clearly, it is a differential equation of degree one
17 (a)
Given, $\frac{d y}{y+1}=\frac{-\cos x}{2+\sin x} d x$
$\Rightarrow \quad \int \frac{d y}{y+1}=-\frac{\int \cos x}{2+\sin x} d x$
$\Rightarrow \quad \log (y+1)=-\log (2+\sin x)+\log c$
When $\quad x=0, y=1$
$\Rightarrow \quad c=4$
$\therefore \quad y+1=\frac{4}{2+\sin x}$
At $x=\frac{\pi}{2}, \quad y+1=\frac{4}{2+1}$
$\Rightarrow \quad y=\frac{1}{3}$
18 (d)
$2 x^{2} y \frac{d y}{d x}=\tan \left(x^{2} y^{2}\right)-2 x y^{2}$
$\Rightarrow x^{2} 2 y \frac{d y}{d x}+y^{2} 2 x=\tan \left(x^{2} y^{2}\right)$
$\Rightarrow \frac{d}{d x}\left(x^{2} y^{2}\right)=\tan \left(x^{2} y^{2}\right)$
$\Rightarrow \int \cot \left(x^{2} y^{2}\right) d\left(x^{2} y^{2}\right)=\int d x$
$\Rightarrow \log \left(\sin \left(x^{2} y^{2}\right)\right)=x+c$
When $x=1, y=\sqrt{\frac{\pi}{2}} \Rightarrow c=-1$
\Rightarrow Equation of curve is $x=\log \sin \left(x^{2} y^{2}\right)+1$
$\Rightarrow \log \sin \left(x^{2} y^{2}\right)=x+1$
$\Rightarrow \sin \left(x^{2} y^{2}\right)=e^{x+1}$
19 (d)
Equation of normal at point p is $Y-y=\frac{d x}{d y}(X-$ x)

Area of $\triangle O A B$ is $1 \Rightarrow \frac{1}{2}\left(y \frac{d y}{d x}+x\right)\left(x \frac{d x}{d y}+y\right)=1$
$\Rightarrow\left(y \frac{d y}{d x}+x\right)\left(y \frac{d y}{d x}+x\right)=2 \frac{d y}{d x}$
$\Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}+2(x y-1) \frac{d y}{d x}+x^{2}=0$
20 (a)
$\frac{d y}{d x}+2 x y=y$
$\Rightarrow \frac{d y}{d x}=y(1-2 x)$
$\Rightarrow \frac{d y}{y}=(1-2 x) d x$
$\Rightarrow \log y=x-x^{2}+c_{1}$
$\Rightarrow y=e^{x-x^{2}} e^{c_{1}}=c e^{x-x^{2}}$ where $c=e^{c_{1}}$
$\Rightarrow y=c e^{x-x^{2}}$ is the required solution
21 (a)
Let $V(t)$ be the velocity of the object at time t
Given $\frac{d V}{d t}=9.8-k V \Rightarrow \frac{d V}{9.8-k V}=d t$

Integrating, we get $\log (9.8-k V)=-k t+\log C$
$\Rightarrow 9.8-k V=C e^{-k t}$
But $V(0)=0 \Rightarrow C=9.8$
Thus, $9.8-k V=9.8 e^{-k t}$
$\Rightarrow k V=9.8\left(1-e^{-k t}\right)$
$\Rightarrow V(t)=\frac{9.8}{k}\left(1-e^{-k t}\right)<\frac{9.8}{k}$
For all t. Hence, $V(t)$ cannot exceed $\frac{9.8}{k} \mathrm{~m} / \mathrm{s}$
22 (b)
For the family of curves represented by the first differential equation the slope of the tangent at any point is given by
$\left(\frac{d y}{d x}\right)_{c_{1}}=\frac{x^{2}+x+1}{y^{2}+y+1}$
For the family of curves represented by the
second differential the slope of the tangent at any point is given by
$\left(\frac{d y}{d x}\right)_{c_{2}}=\frac{y^{2}+y+1}{x^{2}+x+1}$
Clearly, $\left(\frac{d y}{d x}\right)_{c_{1}} \times\left(\frac{d y}{d x}\right)_{c_{2}}=-1$
Hence, the two curves are orthogonal

The given equation can be written as
$\frac{y}{x} \frac{d y}{d x}=\left\{\frac{y^{2}}{x^{2}}+\frac{f\left(y^{2} / x^{2}\right)}{f^{\prime}\left(y^{2} / x^{2}\right)}\right\}$
Above equation is a homogeneous equation putting $y=v x$, we get
$v\left[v+x \frac{d v}{d x}\right]=v^{2}+\frac{f\left(v^{2}\right)}{f^{\prime}\left(v^{2}\right)}$
$\Rightarrow v x \frac{d v}{d x}=\frac{f\left(v^{2}\right)}{f^{\prime}(v)}$ variable separable
$\Rightarrow \frac{2 v f^{\prime}\left(v^{2}\right)}{f\left(v^{2}\right)} d v=2 \frac{d v}{x}$
Now integrating both sides, we get $\log f\left(v^{2}\right)=\log x^{2}+\log c \quad[\log c=$ constant $]$
Or $\log f\left(v^{2}\right)=\log c x^{2}$
Or $f\left(v^{2}\right)=c x^{2}$
Or $f\left(y^{2} / x^{2}\right)=c x^{2}$
24 (c)
Equation of normal at point $P(x, y), Y-y=$
$-\frac{d y}{d x}(X-x)$

$N Q=y \frac{d y}{d x}=\frac{x\left(1+y^{2}\right)}{1+x^{2}}$
$\Rightarrow \frac{x d x}{1+x^{2}}=\frac{y d y}{1+y^{2}}$
$\Rightarrow \ln \left(1+x^{2}\right)=\ln \left(1+y^{2}\right)+\ln c$
$\Rightarrow 1+y^{2}=\frac{1+x^{2}}{c}$
It passes through $(3,1) \Rightarrow 1+1=\frac{1+(3)^{2}}{6} \Rightarrow c=5$
\Rightarrow curve is $5+5 y^{2}=1+x^{2}$ or $x^{2}-5 y^{2}=4$
25 (a)
Integrating the given differential equation, we have
$\frac{d y}{d x}=\frac{-\cos 3 x}{3}+e^{x}+\frac{x^{3}}{3}+C_{1}$
But $y_{1}(0)=1$
So $1=\left(-\frac{1}{3}\right)+1+C_{1} \Rightarrow C_{1}=1 / 3$
Again integrating, we get
$y=\frac{-\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x+C_{2}$
But $y(0)=0$ so $0=0+1+C_{2} \Rightarrow C_{2}=-1$
Thus $y=\frac{-\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x-1$
26 (a)
$x^{2} \frac{d y}{d x}-x y=1+\cos \frac{y}{x}$
$\Rightarrow \frac{x(x d y-y d x)}{d x}=1+\cos \frac{y}{x}$
$\Rightarrow \frac{\frac{x d y-y d x}{x^{2}}}{1+\cos \frac{y}{x}}=\int \frac{d x}{x^{3}}$
$\Rightarrow \int \frac{d\left(\frac{y}{x}\right)}{1+\cos \frac{y}{x}}=\int \frac{d x}{x^{3}}$
$\Rightarrow \frac{1}{2} \int \frac{d\left(\frac{y}{x}\right)}{\cos ^{2} \frac{y}{2 x}}=\int \frac{d x}{x^{3}}$
$\Rightarrow \frac{1}{2} \int \sec ^{2} \frac{y}{2 x} \cdot d\left(\frac{y}{x}\right)=\int \frac{d x}{x^{3}}$
$\Rightarrow \frac{1}{2} \cdot \frac{\tan \frac{y}{2 x}}{\frac{1}{2}}=\frac{x^{-2}}{-2}+c$
$\Rightarrow \tan \frac{y}{2 x}+\frac{1}{2 x^{2}}=c$
27
(b)
$\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x \Rightarrow \frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$
Let $\frac{y}{x}=v \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
\therefore equation reduces to
$x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v$
$=\frac{1+v^{2}-v-v^{2}}{1+v}$
$=\frac{1-v}{1+v}$
$\Rightarrow \int \frac{1+v}{1-v} d v=\int \frac{d x}{x}$
$\Rightarrow-\int\left(1-\frac{2}{1-v}\right) d v=\int \frac{d x}{x}$
$\Rightarrow-v-2 \log (1-v)=\log x+\log c$
$\Rightarrow-\frac{y}{x}-2 \log \left(\frac{x-y}{x}\right)=\log x+\log c$
$\Rightarrow \frac{-y}{x}-2 \log (x-y)=2 \log x=\log x+\log c$
$\Rightarrow \log x=2 \log (x-y)+\frac{y}{x}+k$ where $k=\log c$
28 (a)
Put $x y=v \therefore y+x \frac{d y}{d x}=\frac{d v}{d x}$
$\Rightarrow \frac{d v}{d x}=x \frac{\phi(v)}{\phi^{\prime}(v)}$
$\therefore \frac{\phi^{\prime}(v)}{\phi(v)} d v=x d x$. Integrating, we get
$\log \phi(v)=\frac{x^{2}}{2}+\log k$
$\Rightarrow \log \frac{\phi(v)}{k}=\frac{x^{2}}{2}$
or $\phi(v)=k e^{x^{2} / 2} \Rightarrow \phi(x y)=k e^{x^{2} / 2}$
(d)

Equation of circle will be $x^{2}+(y-2)^{2}+$
$\lambda(y-2)=0$
Differentiating, we get $2 x+2(y-2) \frac{d y}{d x}+\lambda \frac{d y}{d x}=$ 0
\therefore the equation is $x^{2}+(y-2)^{2}-(y-2)\left(2 x \frac{d x}{d y}+\right.$ $2 y-4=0$

30 (c)
The given equation can be rewritten as
$\frac{d y}{d x}+\frac{x^{2}-1}{x\left(x^{2}+1\right)} y=\frac{x^{2} \log x}{\left(x^{2}+1\right)}$
Which is linear. Also
$P=\frac{x^{2}-1}{x\left(x^{2}+1\right)}$ and $Q=\frac{x^{2} \log x}{\left(x^{2}+1\right)}$
$\int P d x=\int\left[\frac{2 x}{x^{2}+1}-\frac{1}{x}\right] d x$
[resolving into partial fractions]
$=\log \left(x^{2}+1\right)-\log x$
\therefore I. F. $=e^{\log \left[\left(x^{2}+1\right) / x\right]}=\frac{x^{2}+1}{x}$
Hence the required solution of equation (1) is
$\frac{y\left(x^{2}+1\right)}{x}=\int \frac{\left(x^{2}+1\right)}{x} \frac{x^{2} \log x}{\left(x^{2}+1\right)} d x+c$
$=\int x \log x d x+c$
$=\frac{1}{2} x^{2} \log x-\int \frac{1}{x} \frac{x^{2}}{2} d x+c$
$\therefore y\left(x^{2}+1\right) / x=\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}+c$
31 (a)
Equations of tangent is $Y-y=\frac{d y}{d x}(X-x)$
For X-intercept $Y=0 \Rightarrow X=x-y \frac{d x}{d y}$
According to question $x-y \frac{d x}{d y}=y$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x-y}$
Putting $y=v x$, we get
$\Rightarrow v+x \frac{d v}{d x}=\frac{v}{1-v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v}{1-v}-v=\frac{v-v+v^{2}}{1-v}$
$\Rightarrow \int \frac{1-v}{v^{2}} d v=\int \frac{d x}{x}$
$\Rightarrow-\frac{1}{v}-\log v=\log x+c$
$\Rightarrow-\frac{x}{y}-\log \frac{y}{x}=\log x+c$
$\Rightarrow-\frac{x}{y}=\log y+c$
Given when $x=1, y=1 \Rightarrow c=-1$
Hence equation of curve is $1-\frac{x}{y}=\log y$
$\Rightarrow y=e e^{-x / y} \Rightarrow e^{x / y}=\frac{e}{y}$
$\Rightarrow y e^{x / y}=e$
32 (c)
$\cos x \frac{d y}{d x}+y \sin x=1$
$\Rightarrow \frac{d y}{d x}+y \frac{\sin x}{\cos x}=\sec x$
$\therefore \int P d x=\int \frac{\sin x}{\cos x} d x$
$=-\log \cos x$
$=\log \sec x$
\therefore I.F. $=e^{\int P d x}=e^{\log \sec x}=\sec x$
33 (c)
Rewriting the given equation as
$2 x y \frac{d y}{d x}-y^{2}=1+x^{2}$
$\Rightarrow 2 y \frac{d y}{d x}-\frac{1}{x} y^{2}=\frac{1}{x}+x$
Putting $y^{2}=u$, we have
$\frac{d u}{d x}-\frac{1}{x} u=\frac{1}{x}+x$
I. F. $=e^{-\int \frac{1}{x} d x}=\frac{1}{x}$
\therefore solution is $u \frac{1}{x}=\int\left(\frac{1}{x^{2}}+1\right) d x=-\frac{1}{x}+x+C$
$\Rightarrow y^{2}=\left(x^{2}-1\right)+C x$
Since $y(1)=1$ so $C=1$
Hence $y^{2}=x(1+x)-1$ which represents a
system of hyperbola
34 (b)
$x y=C$
$\Rightarrow x \frac{d y}{d x}+y=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}=m_{1}$
By condition,
$\tan \frac{\pi}{4}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$1=\left|\frac{-\frac{y}{x}-m_{2}}{1-\frac{y}{x} m_{2}}\right|$
$\Rightarrow \frac{y}{x}+m_{2}=1-\frac{y}{x} m_{2}$ or $\frac{y}{x} m_{2}-1$
$\Rightarrow m_{2}=\frac{1-\frac{y}{x}}{1+\frac{y}{x}}$ orm $_{2}=\frac{\frac{y}{x}+1}{\frac{y}{x}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{x-y}{x+y}$ or $\frac{d y}{d x}=\frac{x+y}{y-x}$
$35 \quad$ (c)
Let population $=x$, at time t years. Given $\frac{d x}{d t} \propto x$
$\Rightarrow \frac{d x}{d t}=k x$ where k is a constant of
proportionality
Or $\frac{d x}{x}=k d t$. Integrating, we get $\ln x=k t+\ln c$
$\Rightarrow \frac{x}{c}=e^{k t}$ or $x=c e^{k t}$
If initially, i.e., when time $t=0, x=x_{0}$
then $x_{0}=c e^{0}=c$
$\Rightarrow x=x_{0} e^{k t}$
Given $x=2 x_{0}$ when $t=30$ then $2 x_{0}=x_{0} e^{30 k} \Rightarrow$ $2=e^{30 k}$
$\therefore \ln 2=30 k$ (1)
To find t, when t triples, $x=3 x_{0} \therefore 3 x_{0}=$
$x_{0} e^{k t} \Rightarrow 3=e^{k t}$
$\therefore \ln 3=k t(2)$
Dividing equation (2) by (1) then $\frac{t}{30}=\frac{\ln 3}{\ln 2}$ or
$t=30 \times \frac{\ln 3}{\ln 2}=30 \times 1.5849=48$ years (approx)
36 (d)
$\frac{d y}{d x}=1+x y$
$\Rightarrow \frac{d y}{d x}-x y=1$
I. F. $=e^{\int-x d x}=e^{-x^{2} / 2}$

Hence solution is $y . e^{-x^{2} / 2}=\int e^{-x^{2} / 2} d x+c$ $\int e^{-x^{2} / 2} d x$ is not further integrable
37
(c)
$a x^{2}+b y^{2}=1$
Differentiating w.r.t. x, we get
$2 a x+2 b y y_{1}=0$
$\Rightarrow a x+b y y_{1}=0 \Rightarrow \frac{-a}{b}=\frac{y y_{1}}{x}$
Again differentiating w.r.t. x, we get
$\Rightarrow a+b y_{1}^{2}+b y y_{2}=0 \Rightarrow \frac{-a}{b}=y_{1}^{2}+y y_{1}$
From equation (1) and (2), we get
$\frac{y y_{1}}{x}=y_{1}^{2}+y y_{2}$
$\Rightarrow y y_{1}=x y_{1}^{2}+x y y_{2}$
38 (d)
$\int_{0}^{x} t y(t) d t=x^{2} y(x)$
Differentiating w.r.t. x, we get
$x y(x)=x^{2} y^{\prime}(x)+2 x y(x)$
$\Rightarrow x y(x)+x^{2} y^{\prime}(x)=0$
$\Rightarrow x \frac{d y}{d x}+y=0$
$\Rightarrow \log y+\log x=\log c$
$\Rightarrow x y=c$
39 (a)
Given, $\quad \frac{d y}{d t}-\left(\frac{1}{1+t}\right) y=\frac{1}{(1+t)}$ and $y(0)=-1$
$\therefore \quad I F=e^{\int-\left(\frac{t}{1+t}\right) d t}=e^{-\int\left(1-\frac{1}{1+t}\right) d t}$

$$
e^{-t+\log (1+t)}=e^{-t}(1+t)
$$

\therefore Required solution is,

$$
\begin{aligned}
y e^{-t}(1+t) & =\int \frac{1}{1+t} e^{-t}(1+t) d t+c \\
& =\int e^{-t} d t+c
\end{aligned}
$$

$\Rightarrow y e^{-1}(1+t)=-e^{-1}+c$
Since, $y(0)=-1$
$\Rightarrow \quad c=0$
$\therefore \quad y=-\frac{1}{(1+t)}$
$\Rightarrow \quad y(1)=-\frac{1}{2}$
40 (b)
The given equation is written as $y d x-x d y+$ $x \sqrt{x y}$
$(x+y) d x+y \sqrt{x y}(x+y) d y=0$
$\Rightarrow y d x-x d y+(x+y) \sqrt{x y}(x d x+y d y)=0$
$\Rightarrow \frac{y d x-x d y}{y^{2}}+\left(\frac{x}{y}+1\right) \sqrt{\frac{x}{y}}\left(d\left(\frac{x^{2}+y^{2}}{2}\right)\right)=0$
$d\left(\frac{x^{2}+y^{2}}{2}\right)+\frac{d\left(\frac{x}{y}\right)}{\left(\frac{x}{y}+1\right) \sqrt{\frac{x}{y}}}=0$
$\Rightarrow \frac{x^{2}+y^{2}}{2}+2 \tan ^{-1} \sqrt{\frac{x}{y}}=c$
41 (a)
$x^{2}=e^{\left(\frac{x}{y}\right)^{-1}\left(\frac{d y}{d x}\right)}$
$\Rightarrow x^{2}=e^{\left(\frac{x}{y}\right)\left(\frac{d y}{d x}\right)}$
$\Rightarrow \ln x^{2}=\frac{y}{x} \frac{d y}{d x}$
$\Rightarrow \int x \ln x^{2} d x=\int y d y$
Putting $x^{2}=t$, we get $2 x d x=d t$
$\Rightarrow \frac{1}{2} \int \ln t d t=\frac{y^{2}}{2}$
$\Rightarrow c+t \ln t-t=y^{2}$
$\Rightarrow y^{2}=x^{2} \ln x^{2}-x^{2}+c$
42
(b)

Applying componendo and divedendo
We get $\frac{d y}{d x}=\frac{e^{-x}}{e^{x}}=e^{-2 x}$
$\Rightarrow 2 y=-e^{-2 x}+C$
$\Rightarrow 2 y e^{2 x}=C e^{2 x}-1$
43 (c)
The point on y-axis is $\left(0, y-x \frac{d y}{d x}\right)$
According to given condition,
$\frac{x}{2}=y-\frac{x}{2} \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=2 \frac{y}{x}-1$
Putting $\frac{y}{x}=v$, we get $x \frac{d v}{d x}=v-1$
$\Rightarrow \ln \left|\frac{y}{x}-1\right|=\ln |x|+c$
$\Rightarrow 1-\frac{y}{x}=x[$ as $y(1)=0]$
(d)
$\log c+\log |x|=\frac{x}{y}$
Differentiating w.r.t. $x, \frac{1}{x}=\frac{y-x \frac{d y}{d x}}{y^{2}}$
$\Rightarrow \frac{y^{2}}{x}=y-x \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}-\frac{y^{2}}{x^{2}}$
$\Rightarrow \phi\left(\frac{x}{y}\right)=-\frac{y^{2}}{x^{2}}$
45
(c)
$y e^{-x / y} d x-\left(x e^{(-x / y)}+y^{3}\right) d y=0$
$\Rightarrow(y d x-x d y) e^{-x / y}-y^{3} d y=0$
$\Rightarrow \frac{y d x-x d y}{y^{2}} e^{-x / y}-y^{3}=y d y$
$\Rightarrow d(x / y) e^{-x / y}=y d y$
$\Rightarrow-e^{-x / y}=\frac{y^{2}}{2}+C$
$\Rightarrow 2 e^{-x / y}+y^{2}=C$
(a)
$d y-\sin x \sin y d x=0$
$\Rightarrow d y=\sin x \sin y d x$
$\Rightarrow \int \operatorname{cosec} y d y=\int \sin x d x$
$\Rightarrow \log \tan \frac{y}{2}=-\cos x+\log c$
$\Rightarrow \log \frac{\tan \frac{y}{2}}{c}=-\cos x$
$\Rightarrow \frac{\tan \frac{y}{2}}{c}=e^{-\cos x}$
$\Rightarrow e^{\cos x} \tan \frac{y}{2}=c$
47 (d)
$A x^{2}+B y^{2}=1$
Differentiating w. r.t. x, we get
$2 A x+2 B y \frac{d y}{d x}=0 \Rightarrow A x+B y \frac{d y}{d x}=0$
Again diff. $A+B y \frac{d^{2} y}{d x^{2}}+B\left(\frac{d y}{d x}\right)^{2}=0$
From equations (2) and (3), we get
$x\left[-B y \frac{d^{2} y}{d x^{2}}-B\left(\frac{d y}{d x}\right)^{2}\right]+B y \frac{d y}{d x}=0$
$\Rightarrow x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$
\therefore order $=2$ and degree $=1$
48 (a)
$y^{2}=t ; 2 y \frac{d y}{d x}=\frac{d t}{d x}$; hence the differential equation becomes
$\left(e^{x^{2}}+e^{t}\right) \frac{d t}{d x}+2 e^{x^{2}}(x t-x)=0$
$e^{x^{2}}+e^{t}+2 e^{x^{2}} x(t-1) \frac{d x}{d t}=0$
Put $e^{x^{2}}=z ; e^{x^{2}} 2 x \frac{d x}{d t}=\frac{d z}{d t}$
$\Rightarrow z+e^{t}+\frac{d z}{d t}(t-1)=0$
$\Rightarrow \frac{d z}{d t}+\frac{z}{(t-1)}=-\frac{e^{t}}{(t-1)} ;$ I. F.

$$
=\int_{e}^{\frac{d t}{t-1}}=e^{\ln (t-1)}=t-1
$$

$\Rightarrow z(t-1)=-\int\left(e^{t}\right) d t$
$\Rightarrow z(t-1)=-e^{t}+C$
$\Rightarrow e^{x^{2}}\left(y^{2}-1\right)=-e^{y^{2}}+C$
$\Rightarrow e^{x^{2}}\left(y^{2}-1\right)+e^{y^{2}}=C$
49 (c)
Re-write the D.E. as
$\left(2 x y d x-x^{2} d y\right)+y^{2}\left(3 x^{2} y^{2} d x+2 x^{3} y d y\right)=0$
Dividing by y^{2}, we get
$\frac{y 2 x d x-x^{2} d y}{y^{2}}+y^{2} 3 x^{2} d x+x^{3} 2 y d y=0$
Or $d\left(\frac{x^{2}}{y}\right)+d\left(x^{3} y^{2}\right)=0$
Integrating, we get the solution
$\frac{x^{2}}{y}+x^{3} y^{2}=c$
$50 \quad$ (c)
We have $\frac{d y}{d x}=\left(e^{y}-x\right)^{-1} \Rightarrow \frac{d x}{d y}=e^{y}-x$
$\Rightarrow \frac{d x}{d y}+x=e^{y}$;
So I.F. $=e^{\int d y}=e^{y}$
\therefore General solution is given by $x e^{y}=\frac{1}{2} e^{2 y}+C$
$\Rightarrow x=\frac{e^{y}}{2}+C e^{-y}$
As $y(0)=0$, so $C=\frac{-1}{2}$
$\therefore x=\frac{e^{y}}{2}-\frac{1}{2} e^{-y}$
$\Rightarrow e^{y}-e^{-y}=2 x$
$\Rightarrow e^{2} y-2 x e^{y}-1=0$
$\Rightarrow 2 e^{y}=2 x \pm \sqrt{4 x^{2}+4}$
But $e^{y}=x-\sqrt{x^{2}+1}$ (Rejected)
Hence $y=\ln \left(x+\sqrt{x^{2}+1}\right)$
51 (a)
$y=e^{x}(A \cos x+B \sin x)$
$\frac{d y}{d x}=e^{x}[-A \sin x+B \cos x]+e^{x}[A \cos x$
$+B \sin x]$
$\frac{d y}{d x}=e^{x}[-A \sin x+B \cos x]+y$
Again differentiating w.r.t. x, we get
$\frac{d^{2} y}{d x^{2}}=e^{x}[-A \sin x+B \cos x]$
$+e^{x}[-A \cos x-B \sin x]+\frac{d y}{d x}$
$\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}-y\right)-y+\frac{d y}{d x} \quad[\operatorname{using}(1)]$
$\frac{d^{2} y}{d x}-2 \frac{d y}{d x}+2 y=0$
52 (d)
$(y \cos y+\sin y) d y=(2 x \log x+x) d x$
$y \sin y-\int \sin y d y+\int \sin y d x$
$=x^{2} \log x-\int x^{2} \frac{1}{x} d x+\int x d x+c$
$\therefore y \sin y=x^{2} \log x+c$
53 (c)
The given differential equation can be written as $\frac{d y}{a s}-\frac{\tan 2 x}{\cos ^{2} x} y=\cos ^{2} x$ which is linear differential equation of first order
$\int P d x=\int \frac{-\sin 2 x}{\cos 2 x \cos ^{2} x} d x$
$=-\int \frac{2 \sin 2 x d x}{\cos 2 x(1+\cos 2 x)}$
$=\int \frac{d t}{t(1+t)}$
$=\int\left(\frac{1}{t}-\frac{1}{1+t}\right) d t$
$=\log \frac{t}{1+t}$ where $t=\cos 2 x$
$=\log \frac{\cos 2 x}{1+\cos 2 x}\left[\because-\frac{\pi}{2}<2 x<\frac{\pi}{2}\right]$
$\therefore e^{\int P d x}=e^{\log \frac{\cos 2 x}{1+\cos 2 x}}$
$=\frac{\cos 2 x}{1+\cos 2 x}=\frac{\cos 2 x}{2 \cos ^{2} x}$
\therefore the solution is,
$y \frac{\cos 2 x}{1 \cos ^{2} x}=\int \frac{\cos ^{2} x \cos 2 x}{2 \cos ^{2} x} d x+C$
$=\frac{1}{4} \sin 2 x+C$
When $x=\frac{\pi}{6}, y=\frac{3 \sqrt{3}}{8}$
$\therefore \frac{3 \sqrt{3}}{8} \frac{4}{2 \times 2 \times 3}=\frac{1}{4} \frac{\sqrt{3}}{2}+C \Rightarrow C=0$
$\therefore y=\frac{1}{2} \tan 2 x \cos ^{2} x$
54 (b)
The given equation is reduced to $x=e^{x y(d y / d x)}$
$\Rightarrow \log x=x y \frac{d y}{d x}$
$\Rightarrow \int y d y=\int \frac{1}{x} \log x d x$
$\Rightarrow \frac{y^{2}}{2}=\frac{(\log x)^{2}}{2}+C^{\prime}$
55 (a)
We have
$f(\theta)=\frac{d}{d \theta} \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}=\frac{1}{1-\cos ^{2} \theta}=\operatorname{cosec}^{2} \theta$
[using Leibnitz's Rule]
$\Rightarrow \frac{d f(\theta)}{d \theta}=-2 \operatorname{cosec}^{2} \theta \cot \theta$
$\Rightarrow \frac{d f(\theta)}{d \theta}+2 f(\theta) \cot \theta=0 \quad\left[\because f(\theta)=\operatorname{cosec}^{2} \theta\right]$
56 (a)
$x \frac{d y}{d x}+y(\log y)=0$
$\Rightarrow \int \frac{d x}{x}+\int \frac{d y}{y(\log y)}=c$
$\Rightarrow \log x+\log (\log y)=\log c$
$\Rightarrow x \log y=c$
$y(1)=e \Rightarrow c=1$
Hence, the equation of the curve is $x \log y=1$
57 (c)
Given, $\quad \frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$
$\Rightarrow \quad \int \frac{y}{\sqrt{1-y^{2}}} d y=\int d x$
$\Rightarrow \quad-\sqrt{1-y^{2}}=x+c$
$\Rightarrow \quad(x+c)^{2}+y^{2}=1$
\therefore Centre $(-c, 0)$, radius $=1$
(c)
$\left\{1+x \sqrt{\left(x^{2}+y^{2}\right)}\right\} d x+\left\{\sqrt{\left(x^{2}+y^{2}\right)}-1\right\} y d y$ $=0$
$\Rightarrow d x-y d y+\sqrt{\left(x^{2}+y^{2}\right)}(x d x+y d y)=0$
$\Rightarrow d x-y d y+\frac{1}{2} \sqrt{\left(x^{2}+y^{2}\right)} d\left(x^{2}+y^{2}\right)=0$
Integrating, we have
$x-\frac{y^{2}}{2}+\frac{1}{2} \int \sqrt{t} d t=c,\left\{t=\sqrt{\left(x^{2}+y^{2}\right)}\right\}$
Or $x-\frac{y^{2}}{2}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=c$
59 (d)
$\frac{d y}{d x}=\frac{y}{x}\left[\log \frac{y}{x}+1\right]$
Put $y=v x$
$v+x \frac{d y}{d x}=v \log v+v$
$\therefore \frac{d v}{v \log v}=\frac{d x}{x}$
$\therefore \log (\log v)=\log x+\log c=\log c x$
$\therefore \log \frac{y}{x}=c x$
60 (d)
$x\left(1-x^{2}\right) d y+\left(2 x^{2} y-a x^{3}\right) d x=0$
$\Rightarrow x\left(1-x^{2}\right) \frac{d y}{d x}+2 x^{2} y-y-a x^{3}=0$
$\Rightarrow x\left(1-x^{2}\right) \frac{d y}{d x}+y\left(2 x^{2}-1\right)=a x^{3}$
$\Rightarrow \frac{d y}{d x}+\frac{2 x^{2}-1}{x\left(1-x^{2}\right)} y=\frac{a x^{3}}{x\left(1-x^{2}\right)}$
Which is of the form $\frac{d y}{d x}+P y=Q$
Its integrating factor is $e^{\int P d x}$
Here $P=\frac{2 x^{2}-1}{x\left(1-x^{2}\right)}$
61 (a)
$x^{2}(y+1) d x+y^{2}(x-1) d y=0$
$\Rightarrow \frac{x^{2} d x}{x-1}=-\frac{y^{2} d y}{y+1}$
$\Rightarrow \int\left[x+1+\frac{1}{x-1}\right] a x=-\int\left[y-1+\frac{1}{y+1}\right] d y$
$\Rightarrow \frac{x^{2}}{2}+x+\ln (x-1)$ $=-\left[\frac{y^{2}}{2}-y+\ln (y+1)\right]+\ln c$
$\Rightarrow \frac{x^{2}+y^{2}}{2}+(x-y)+\ln \left(\frac{(x-1)(y+1)}{c}\right)=0$
62 (b)
$f^{\prime \prime}(x)-\frac{2 x(x+1)}{x+1} f(x)=\frac{e^{x^{2}}}{(x+1)^{2}}$
I. F. $=e^{\int-2 x d x}=e^{-x^{2}}$
\therefore solution is $f(x) e^{-x^{2}}=\int \frac{d x}{(x+1)^{2}}+C$
$\Rightarrow f(x) e^{-x^{2}}=-\frac{1}{x+1}+C$
Given $f(0)=5 \Rightarrow C=6$
$\therefore f(x)=\left(\frac{6 x+5}{x+1}\right) e^{x^{2}}$
63 (b)
It is given that the triangle $O P G$ is an isosceles triangle

Therefore, $O M=M G=$ sub-normal
$\Rightarrow x=y \frac{d y}{d x} \Rightarrow x d x=y d x$
On integration, we get $x^{2}-y^{2}=C$, which is a rectangular hyperbola
64
(b)
$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
$\Rightarrow \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}$
Replacing $\frac{d y}{d x}$ by $-\frac{d x}{d y}$
$\Rightarrow \frac{d x}{d y}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}$
$\Rightarrow \int x^{1 / 3} d x=\int y^{1 / 3} d y$
$\Rightarrow x^{4 / 3}-y^{4 / 3}=c$
65 (a)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
Put $y=v x \therefore \frac{d y}{d x}=v+x \frac{d v}{d x}$
\therefore equation (1) transforms to
$v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 x v x}=\frac{1+v^{2}}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v=\frac{1-v^{2}}{2 v}$
$\Rightarrow \frac{2 v d v}{1-v^{2}}=\frac{d x}{x}$
$\Rightarrow \log x+\log \left(1-v^{2}\right)=\log C$
$\Rightarrow x\left(1-v^{2}\right)=C$
$\Rightarrow x\left(1-\frac{y^{2}}{x^{2}}\right)=C$
$\Rightarrow x^{2}-y^{2}=C x$
It passes through $(2,1)$
$\therefore 4-1=2 C \Rightarrow C=\frac{3}{2}$
$\therefore x^{2}-y^{2}=\frac{3}{2} x \Rightarrow 2\left(x^{2}-y^{2}\right)=3 x$
66 (c)
Slope of tangent $=\frac{d y}{d x}$
\therefore slope of normal $=-\frac{d x}{d y}$
\therefore the equation of normal is;
$Y-y=-\frac{d x}{d y}(X-x)$
This meets x-axis $(y=0)$, where
$-y=-\frac{d x}{d y}(X-x) \Rightarrow X=x+y \frac{d y}{d x}$
$\therefore G$ is $\left(x+y \frac{d y}{d x}, 0\right)$
$\therefore O G=2 x \Rightarrow x+y \frac{d y}{d x}=2 x$
$\Rightarrow y \frac{d y}{d x}=x \Rightarrow y d y=x d x$
Integrating, we get $\frac{y^{2}}{2}=\frac{x^{2}}{2}+\frac{c}{2}$
$\Rightarrow y^{2}-x^{2}=c$, which is a hyperbola
67 (c)
The intersection of $y-x+1=0$ and
$y+x+5=0$ is $(-2,-3)$. Put $x=X-2, y=Y-$ 3

The given equation reduces to $\frac{d Y}{d X}=\frac{Y-X}{Y+X}$
Putting $Y=v X$, we get
$X \frac{d v}{d X}=-\frac{v^{2}+1}{v+1}$
$\Rightarrow\left(-\frac{v}{v^{2}+1}-\frac{1}{v^{2}+1}\right) d v=\frac{d X}{X}$
$\Rightarrow-\frac{1}{2} \log \left(v^{2}+1\right)-2 \tan ^{-1} v=\log |X|+$ constant
$\Rightarrow \log \left(Y^{2}+X^{2}\right)+2 \tan ^{-1} \frac{Y}{X}=$ constant
$\Rightarrow \log \left((y+3)^{2}+(x+2)^{2}\right)+2 \tan ^{-1} \frac{y+3}{x+2}=C$
68 (a)
If $y=f(x)$ is the curve,
$Y-y=\frac{d y}{d x}(X-x)$ is the equation of the tangent at (x, y)
Putting $X=0$, the initial ordinate of the tangent is therefore $y=x f^{\prime}(x)$
The subnormal at this point is given by $y \frac{d y}{d x}$, so we have $y \frac{d y}{d x}=y-x \frac{d y}{d x} \Rightarrow \frac{y}{x+y}=\frac{d y}{d x}$
This is a homogeneous equation and, by rewriting it as $\frac{d x}{d y}=\frac{x+y}{y}=\frac{x}{y}+1 \Rightarrow \frac{d x}{d y}-\frac{x}{y}=1$ we see that it is also a linear equation
69 (b)

Given, $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$
Put $y=v x$
$\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{x^{2} v}{x^{2}\left(1+v^{2}\right)}$
$\Rightarrow \quad \int \frac{1+v^{2}}{v^{3}} d v=-\int \frac{d x}{x}$
$\Rightarrow \quad-\frac{1}{2 v^{2}}+\log v=-\log x+\log c$
$\Rightarrow \quad-\frac{1}{2} \cdot \frac{x^{2}}{y^{2}}+\log |y|=\log c$
$\therefore \quad y(1)=1,-\frac{1}{2}=\log c$
$\therefore \quad-\frac{1}{2} \cdot \frac{x^{2}}{y^{2}}+\log |y|=-\frac{1}{2}$
$\Rightarrow \quad \log _{e}|y|+\frac{1}{2}=\frac{x^{2}}{2 y^{2}}$
Again, when $x=x_{0}, y=e$

$$
1+\frac{1}{2}=\frac{x_{0}^{2}}{2 e^{2}} \Rightarrow x_{0}=\sqrt{3} e
$$

70 (a)
slope $=\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{y-1}{x^{2}+x}$
$\Rightarrow \frac{d y}{y-1}=\frac{d x}{x^{2}+x}$
$\Rightarrow \int \frac{1}{y-1} d y=\int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x+C$
$\Rightarrow \frac{(y-1)(x+1)}{x}=k$
Putting $x=1, y=0$, we get $k=-2$
The equation is $(y-1)(x+1)+2 x=0$
71 (a)
$\frac{1}{y+1} d y=-\frac{\cos x}{2+\sin x} d x$
Integrating, we get
$\log (y+1)+\log k+\log (2+\sin x)=0$
$\therefore k(y+1)(2+\sin x)=1$ when $x=0, y=1$
where k is constant
$\therefore 4 k=1$ or $k=1 / 4$
$\therefore(y+1)(2+\sin x)=4$
Now put $x=\pi / 2 \therefore(y+1) 3=4$
$\therefore y=\frac{1}{3}$
72 (c)
We have, $\frac{d y}{d x}=\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$
Putting $y=v x$, so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get
$v+x \frac{d v}{d x}=v-\cos ^{2} v$
$\Rightarrow \frac{d v}{\cos ^{2} v}=-\frac{d x}{x}$
$\Rightarrow \sec ^{2} u d u=-\frac{1}{x} d x$

On integration, we get
$\tan u=-\log x+\log C$
$\Rightarrow \tan \left(\frac{y}{x}\right)=-\log x+\log C$
This passes through $(1, \pi / 4)$, therefore $1=\log C$
So, $\tan \left(\frac{y}{x}\right)=-\log x+1$
$\Rightarrow \tan \left(\frac{y}{x}\right)=-\log x+\log e$
$\Rightarrow y=x \tan ^{-1}\left(\log \left(\frac{e}{x}\right)\right)$
73 (b)
The general equation of all non-horizontal lines in $x y$-plane is $a x+b y=1$, where $a \neq 0$
Now, $a x+b y=1$
$\Rightarrow a \frac{d x}{d y}+b=0 \quad$ [Diff. w.r.t. y]
$\Rightarrow a \frac{d^{2} x}{d y^{2}}=0 \quad$ [Diff. w.r.t. y]
$\Rightarrow \frac{d^{2} x}{d y^{2}}=0 \quad[\because a \neq 0]$
Hence, the required differential equation is
$\frac{d^{2} x}{d y^{2}}=0$
74 (b)
We have, $\frac{d y}{d x}=1-\frac{1}{x^{2}} \Rightarrow y=x+\frac{1}{x}+C$
This passes through $(2,7 / 2)$
Therefore, $\frac{7}{2}=2+\frac{1}{2}+C \Rightarrow C=1$
Thus the equation of the curve is
$y=x+\frac{1}{x}+1 \Rightarrow x y=x^{2}+x+1$
75 (c)
$\frac{x}{c-1}+\frac{y}{c+1}=1$
$\Rightarrow \frac{x}{c-1}+\frac{y^{\prime}}{c+1}=0$
$\Rightarrow \frac{y^{\prime}}{1}=\frac{c+1}{1-c}$
$\Rightarrow \frac{y^{\prime}-1}{y+1}=c$
Put value of c in equation (1)
$\Rightarrow \frac{x}{\frac{y^{\prime}-1}{y^{\prime}+1}-1}+\frac{y}{\frac{y^{\prime}-1}{y^{\prime}+1}+1}=1$
$\Rightarrow \frac{x\left(y^{\prime}+1\right)}{-2}+\frac{y\left(y^{\prime}+1\right)}{2 y^{\prime}}=1$
$\Rightarrow \frac{\left(y^{\prime}+1\right)}{2}\left(\frac{y}{y^{\prime}}-x\right)=1$
$\Rightarrow\left(1+\frac{d y}{d x}\right)\left(y-x \frac{d y}{d x}\right)=2 \frac{d y}{d x}$

76 (a)
$\left\{\frac{1}{x}-\frac{y^{2}}{(x-y)^{2}}\right\} d x+\left\{\frac{x^{2}}{(x-y)^{2}}-\frac{1}{y}\right\} d y=0$
$\Rightarrow\left(\frac{d x}{x}-\frac{d y}{y}\right)+\left(\frac{x^{2} d y-y^{2} d x}{(x-y)^{2}}\right)=0$
$\Rightarrow\left(\frac{d x}{x}-\frac{d y}{y}\right)+\left(\frac{d y / y^{2}-d x / x^{2}}{(1 / y=1 / x)^{2}}\right)=0$
Integrating, we get $\ln |x|-\ln |y|-\frac{1}{(1 / x-1 / y)}=c$
$\Rightarrow \ln \left|\frac{x}{y}\right|+\frac{x y}{x-y}=c$
77 (b)
Putting $u=x-y$, we get $d u / d x=1-d y / d x$.
The given equation can be written as
$1-d u / d x=\cos u$
$\Rightarrow(1-\cos u)=d u / d x$
$\Rightarrow \int \frac{d u}{1-\cos u}=\int d x+C$
$\Rightarrow \frac{1}{2} \int \operatorname{cosec}^{2}(u / 2) d u=\int d x+C$
$\Rightarrow x+\cot (u / 2)=c$
$\Rightarrow x+\cot \frac{x-y}{2}=C$
78 (c)
$v=\frac{A}{r}+B$
$\frac{d v}{d r}=\frac{A}{r^{2}}(2)$
$\frac{d^{2} v}{d r^{2}}=\frac{2 A}{r^{3}}(3)$
Eliminating A between equations (2) and (3), we get
$r \frac{d^{2} v}{d r^{2}}=\frac{2 A}{r^{2}}=2\left(-\frac{d v}{d r}\right)$
$\therefore \frac{d^{2} v}{d r^{2}}+\frac{2}{r} \frac{d v}{d r}=0$
79 (c)
$y=e^{m x}$ satisfies $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+12 y=0$
Then $e^{m x}\left(m^{3}-3 m^{2}-4 m+12\right)=0$
$\Rightarrow m= \pm 2,3$
$m \in N$ hence $m \in\{2,3\}$
80 (a)
If $(0, k)$ be the centre on y-axis then its radius will be k as it passes through origin. Hence its equation is
$x^{2}+(y-k)^{2}=k^{2}$
Or $x^{2}+y^{2}=2 k y$
$\therefore 2 x+2 y \frac{d y}{d x}=2 k \frac{d y}{d x}$
$=\frac{x^{2}+y^{2}}{y} \frac{d y}{d x} \quad[\mathrm{by}$ (1)]
$\therefore 2 x y=\left(x^{2}+y^{2}-2 y^{2}\right) \frac{d y}{d x}$

Or $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
81 (c)
The given family of curve is $x^{2}+y^{2}-2 a y=0$
(1)

Differentiating w.r.t. x, we get $2 x+2 y \frac{d y}{d x}-$
$2 a \frac{d y}{d x}=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-\frac{x^{2}+y^{2}}{y} \frac{d y}{d x}=0 \quad$ [Using equation
(1)]
$\Rightarrow 2 x y+\left(2 y^{2}-x^{2}-y^{2}\right) y^{\prime}=0$
$\Rightarrow\left(y^{2}-x^{2}\right) y^{\prime \prime}+2 x y=0$
$\Rightarrow\left(x^{2}-y^{2}\right) y^{\prime \prime}=2 x y$
82 (a)
Given, $\frac{d y}{d t}-\left(\frac{1}{1+t}\right) y=\frac{1}{(1+t)}$ and $y(0)=-1$
$\therefore \quad \mathrm{IF}=e^{\int-\left(\frac{t}{1+t}\right) d t}=e^{-\int\left(1-\frac{1}{1+t}\right) d t}$

$$
=e^{-t+\log (1+t)}=e^{-t}(1+t)
$$

\therefore Required solution is

$$
\begin{aligned}
y e^{-t}(1+t) & =\int \frac{1}{1+t} e^{-t}(1+t) d t+c \\
& =\int e^{-t} d t+c \\
\Rightarrow \quad y e^{-t}(1+t) & =-e^{-t}+c
\end{aligned}
$$

Since, $\quad y(0)=-1$
$\Rightarrow \quad c=0$
$\therefore \quad y=-\frac{1}{(1+t)}$
$\Rightarrow \quad y(1)=-\frac{1}{2}$
83 (a)
$\frac{d v}{d t}+\frac{k}{m} v=-\mathrm{g}$
$\Rightarrow \frac{d v}{d t}=-\frac{k}{m}\left(v+\frac{m \mathrm{~g}}{k}\right)$
$\Rightarrow \frac{d v}{v+m \mathrm{~g} / k}=-\frac{k}{m} d t$
$\Rightarrow \log \left(v+\frac{m g}{k}\right)=-\frac{k}{m} t+\log c$
$\Rightarrow v+\frac{m \mathrm{~g}}{k}=c e^{-k / m t}$
$\Rightarrow v=c e^{-\frac{k}{m} t}-\frac{m g}{k}$
$84 \quad$ (a)
Tangent at point P is $Y-y=-\frac{1}{m}(X-x)$
where $m=\frac{d y}{d x}$
Let $Y=0 \Rightarrow X=m y+x$

According to questions, $x(m y+x)=2\left(x^{2}+y^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+2 y^{2}}{x y}$ (homogeneous)
Putting $y=v x$, we get
$\Rightarrow v+x \frac{d v}{d x}=\frac{1+2 v^{2}}{v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+2 v^{2}}{v}-v=\frac{1+v^{2}}{v}$
$\Rightarrow \int \frac{v d v}{1+v^{2}}=\int \frac{d x}{x}$
$\Rightarrow \frac{1}{2} \log \left(1+v^{2}\right)=\log x+\log c, c>0$
$\Rightarrow x^{2}+y^{2}=c x^{4}$
Also it passes through $(1,0)$ then $c=1$
85 (b)
$\frac{d x}{d y}=\frac{x+2 y^{3}}{y}$
$\Rightarrow \frac{d x}{d y}-\frac{1}{y} x=2 y^{2}$ which is linear
I. F. $=e^{\int-\frac{1}{y} d y}=e^{-\log y}=\frac{1}{y}$
\therefore solution is $\frac{1}{y} x=\int \frac{1}{y} 2 y^{2} d y=y^{2}+c$
$\Rightarrow \frac{x}{y}=y^{2}+c$
86 (a)
$\frac{d y}{d x}=\frac{1}{x y\left[x^{2} \sin y^{2}+1\right]}$
$\Rightarrow \frac{d x}{d y}=x y\left[x^{2} \sin y^{2}+1\right]$
$\Rightarrow \frac{1}{x^{3}} \frac{d x}{d y}-\frac{1}{x^{2}} y=y \sin y^{2}$
Putting $-1 / x^{2}=u$, the least equation can be
written as $\frac{d u}{d y}+2 u y=2 y \sin y^{2}$
I.F. $=e^{y^{2}}$
\therefore solution is $u e^{y^{2}}=\int 2 y \sin y^{2} e^{y^{2}} d y+C$
$=\int(\sin t) e^{t} d t+C$
$=\frac{1}{2} e^{y^{2}}\left(\sin y^{2}-\cos y^{2}\right)+c^{\prime}$
$\Rightarrow 2 u=\left(\sin y^{2}-\cos y^{2}\right)+2 C e^{-y^{2}}$
$\Rightarrow 2=x^{2}\left[\cos y^{2}-\sin y^{2}-2 C e^{-y^{2}}\right]$
87 (a)
$\left(2 y+x y^{3}\right) d x+\left(x+x^{2} y^{2}\right) d y=0$
$\Rightarrow(2 y d x+x d y)+\left(x y^{3} d x+x^{2} y^{2} d y\right)=0$

Multiplying by x, we get
$\left(2 x y d x+x^{2} d y\right)+\left(x^{2} y^{3} d x+x^{3} y^{2} d y\right)=0$
$\Rightarrow d\left(x^{2} y\right)+\frac{1}{3} d\left(x^{3} y^{3}\right)=0$
Integrating, we get $x^{2} y+\frac{x^{3} y^{3}}{3}=c$
88 (a)
$\frac{d V}{d t}=-k 4 \pi r^{2}$
But $V=\frac{4}{3} \pi r^{3}$
$\Rightarrow \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$
Hence, $\frac{d r}{d t}=-K$
89 (c)
According to the question
$\frac{d y}{d t}=-k \sqrt{y}$
$\Rightarrow \int_{4}^{0} \frac{d y}{\sqrt{y}}=-k \int_{0}^{t} d t$
$\left.\Rightarrow 2 \sqrt{y}\right|_{4} ^{0}=-k t=-\frac{t}{15}$
$\Rightarrow 0-4=-\frac{t}{15}$
$t=60 \mathrm{~min}$
90 (a)
The given equation can be written as
$\frac{x d x+y d y}{(y d x-x d y) / y^{2}}=y^{2} \frac{x}{y^{3}} \cos ^{2}\left(x^{2}+y^{2}\right)$
$\Rightarrow \frac{x d x+y d y}{\cos ^{2}\left(x^{2}+y^{2}\right)}=\frac{x}{y}\left(\frac{y d x-x d y}{y^{2}}\right)$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(x^{2}+y^{2}\right) d\left(x^{2}+y^{2}\right)=\frac{x}{y} d\left(\frac{x}{y}\right)$
On integrating, we get
$\frac{1}{2} \tan \left(x^{2}+y^{2}\right)=\frac{1}{2}\left(\frac{x}{y}\right)^{2}+\frac{c}{2}$
Or $\tan \left(x^{2}+y^{2}\right)=\frac{x^{2}}{y^{2}}+c$
91 (c)
Equation to the family of parabolas is
$(y-k)^{2}=4 a(x-h)$
$2(y-k)=\frac{d y}{d x}=4 a($ diff. w.r.t. $x)$
$\Rightarrow(y-k) \frac{d y}{d x}=2 a$
$\Rightarrow(y-k) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0($ diff. w.r.t. $x)$
$\Rightarrow 2 a \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}=0$ (substituting $y-k$ from equation (1))
Hence the order is 2 and the degree is 1
92 (a)
Let the equation of the curve be $y=f(x)$

It is given that $O T \propto y$
$\Rightarrow O T=b y$
$\Rightarrow O M-T M=b y$
$\Rightarrow x-\frac{y}{d y / d x}=b y[\because T M=$ Length of the subtangent]
$\Rightarrow x-y \frac{d x}{d y}=b y$
$\Rightarrow \frac{d x}{d y}-\frac{x}{y}=-b$
It is linear differential equation
Its solution is $\frac{x}{y}=-b \log y+a$
$\Rightarrow x=y(a-b \log y)$
93 (a)
The equation of a member of the family of parabolas having axis parallel to y-axis is $y=A x^{2}+B x+C$
Where A, B and C are arbitrary constants
Differentiating equation (1) w. r.t., we get
$\frac{d y}{d x}=2 A x+B$
Which on again differentiating w.r.t. x gives $\frac{d^{2} y}{d x^{2}}=2 A$
Differentiating (3) w. r.t. x, we get $\frac{d^{3} y}{d x^{3}}=0$
94 (a)
$\frac{d y}{d x}+y \phi^{\prime \prime}(x)=\phi(x){\phi^{\prime}}^{\prime}(x)$
I. F. $=e^{\int \phi^{\prime}(x) d x}=e^{\phi(x)}$

Hence, the solution is
$y e^{\phi(x)}=\int e^{\phi(x)} \phi(x) \phi^{\prime}(x) d x$
$=\int e^{t} t d t$,where $\phi(x)=t$
$=t e^{t}-e^{t}+c$
$=\phi(x) e^{\phi(x)}-e^{\phi(x)}+c$
$\therefore y=c e^{-\phi(x)}+\phi(x)-1$
95 (a,b,c)
a. $f(\lambda x, \lambda y)=\frac{\lambda(x-y)}{\lambda^{2}\left(x^{2}+y^{2}\right)}=\lambda^{-1} f(x, y)$
\Rightarrow homogeneous of degree (-1)
b. $f(\lambda x, \lambda y)=(\lambda x)^{1 / 3}(\lambda y)^{-2 / 3} \tan ^{-1} \frac{x}{y}$
$\lambda^{-1 / 3} x^{1 / 3} y^{-2 / 3} \tan ^{-1} \frac{x}{y}$
$=\lambda^{-\frac{1}{3}} f(x, y)$
\Rightarrow homogeneous
c. $f(\lambda x, \lambda y)=\lambda x\left(\ln \sqrt{\lambda^{2}\left(x^{2}+y^{2}\right)}-\ln \lambda y\right)+$ $\lambda y e^{x / y}$
$=\lambda x\left[\ln \left(\frac{\lambda \sqrt{\left(x^{2}+y^{2}\right)}}{\lambda y}\right)\right]+\lambda y e^{x / y}$
$=\lambda\left[x\left(\ln \sqrt{x^{2}+y^{2}}-\ln y\right)+y e^{x / y}\right]$
$=\lambda f(x, y)$
\Rightarrow homogeneous
d. $f(\lambda x, \lambda y)=\lambda x\left[\ln \frac{2 \lambda^{2} x^{2}+\lambda^{2} y^{2}}{\lambda x \lambda(x+y)}\right]+\lambda^{2} x^{2} \tan \frac{x+2 y}{3 x-y}$
$=\lambda x\left[\ln \frac{2 x^{2}+y^{2}}{x(x+y)}\right]+\lambda^{2} x^{2} \tan \frac{x+2 y}{3 x-y}$
\Rightarrow non homogeneous

96 (a,b)
Let $P(x, y)$ be any point on the curve. Length of intercept on y-axis by any tangent at $P(x, y)$
$=O T=y-x \frac{d y}{d x}$

\therefore Area of trapezium OMPTO $=\frac{1}{2}(P M+O T) O M$
$=\frac{1}{2}\left(y+y-x \frac{d y}{d x}\right) \times x$
$=\frac{1}{2}\left(2 y-x \frac{d y}{d x}\right) x$
Given, area of trapezium OMPTO $=\frac{1}{2} x^{2}$
$\Rightarrow \frac{1}{2}\left(2 y-x \frac{d y}{d x}\right) x= \pm \frac{1}{2} x^{2}$
$\Rightarrow 2 y-x \frac{d y}{d x}= \pm x$
or $\frac{d y}{d x}-\frac{2 y}{x}= \pm 1$
Which is linear differential equation
An IF $=e^{\int-2 / x d x}=e^{-2 \operatorname{In} x}=\frac{1}{x^{2}}$
\therefore The solution is $\frac{y}{x^{2}}=\int \pm \frac{1}{x^{2}} d x+c= \pm \frac{1}{x}+c$
$\Rightarrow y= \pm x+c x^{2}$
$\Rightarrow y=c x^{2} \pm x$
97 (c)
$\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$
By verification we find that the choice (c), i.e., $y=2 x-4$ satisfies the given differential
equation
Alternate
$\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$
$\Rightarrow \frac{d y}{d x}=\frac{x \pm \sqrt{x^{2}-4 y}}{2}$ (1)
Let $x^{2}-4 y=t^{2}$
$\Rightarrow 2 x-4 \frac{d y}{d x}=2 t \frac{d t}{d x}$
$\Rightarrow x-2 \frac{d y}{d x}=t \frac{d t}{d x}$
Then equation (1) changes to $x-t \frac{d t}{d x}=x \pm t$
$\Rightarrow \frac{d t}{d x}= \pm 1$ or $t=0$
$\Rightarrow t= \pm x+c$ or $x^{2}=4 y$
$\Rightarrow x^{2}-4 y=x^{2} \pm 2 c x+c^{2}$
$\Rightarrow-4 y= \pm 2 c x+c^{2}$
For $c=4$
$4 y= \pm 8 x-16$ or $y=2 x-4$

98 (a,b)
$\frac{d y}{d x}=\frac{y}{x^{2}} \Rightarrow \frac{d y}{y}=\frac{d x}{x^{2}} \Rightarrow \ln y=-\frac{1}{x}+\ln c \Rightarrow \frac{y}{c}=e^{\frac{1}{x}}$
$\Rightarrow y=c e^{\frac{1}{x}}$
Comparing with $y=a e^{-1 / x}+b, a \in R, b=0$
99 (a,c)
$y^{2}=2 c(x+\sqrt{c})$
Differentiating w.r.t. x, we get
$2 y y^{\prime}=2 c \Rightarrow c=y y^{\prime}$
Eliminating c, we get
$y^{2}=2 y y_{1}\left(x+\sqrt{y y_{1}}\right)$ or $\left(y^{2}-2 x y y_{1}\right)^{2}=4 y^{3} y_{1}^{3}$
It involves only first order derivative, its order is
1 but its degree is 3 as y_{1}^{3} is there
100 (a,d)
The given differential equation is
$y_{2}\left(x^{2}+1\right)=2 x y_{1} \Rightarrow \frac{y_{2}}{y_{1}}=\frac{2 x}{x^{2}+1}$
Integrating both sides, we get
$\log y_{1}=\log \left(x^{2}+1\right)+\log C$
$\Rightarrow y_{1}=C\left(x^{2}+1\right)$ (1)
It is given that $y_{1}=3$ at $x=0$
Putting $x=0, y_{1}=3$ in equation (1), we get $3=C$
Substituting the value of C in (1), we obtain
$y_{1}=3\left(x^{2}+1\right)$ (2)
Integrating both sides w.r.t to x, we get
$y=x^{3}+3 x+C_{2}$
This passes through the point $(0,1)$. Therefore, $1=C_{2}$
Hence, the required equation of the curve is $y=x^{3}+3 x+1$
Obviously it is strictly increasing from equation (2)

Also $f(0)=1>0$, then the only root is negative
101 (a,b)
$y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}-x=0$
$\Rightarrow \frac{d y}{d x}=\frac{(y-x) \pm \sqrt{(x-y)^{2}+4 x y}}{2 y}$
$\Rightarrow \frac{d y}{d x}=1$ which gives straight line
Or $\frac{d y}{d x}=-\frac{x}{y}$ which gives circle
102 (c,d)
The equation of tangent at (x, y) is
$Y-y=\frac{d y}{d x}(X-x)$
Points A and B are respectively $\left(x-y \frac{d x}{d y}, 0\right)$
and $\left(0, y-x \frac{d y}{d x}\right)$.

Now, $\frac{P A}{P B}=\frac{2}{1}$
$\Rightarrow(P A)^{2}=4(P B)^{2}$
$\Rightarrow\left(y \frac{d x}{d y}\right)^{2}+y^{2}=4\left[x^{2}+x^{2}\left(\frac{d y}{d x}\right)^{2}\right]$
$\Rightarrow 4 x^{2}\left(\frac{d y}{d x}\right)^{4}+\left(4 x^{2}-y^{2}\right)\left(\frac{d y}{d x}\right)^{2}-y^{2}=0$
$\Rightarrow\left(\frac{d y}{d x}\right)^{2}$
$=\frac{\left(y^{2}-4 x^{2}\right) \pm \sqrt{\left(4 x^{2}-y^{2}\right)^{2}+16 x^{2} y^{2}}}{8 x^{2}}$
$=\frac{\left(y^{2}-4 x^{2}\right) \pm\left(4 x^{2}+y^{2}\right)}{8 x^{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right)^{2}=\frac{y^{2}}{4 x^{2}}$ or $\left(\frac{d y}{d x}\right)^{2}=-1$
$\Rightarrow \frac{d y}{d x}= \pm \frac{y}{2 x}$
$\Rightarrow 2 \operatorname{In}|y|= \pm \operatorname{In}|x|+c$
$\Rightarrow \operatorname{In} \frac{y^{2}}{|x|}=\operatorname{In} c$
or $\operatorname{In} y^{2}|x|=\operatorname{In} c$
$\Rightarrow y^{2}=c_{1}|x|$ or $y^{2}|x|=c_{2}$
103 (a,b)
We have length of the normal=radius vector
$\Rightarrow y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{x^{2}+y^{2}}$
$\Rightarrow y^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=x^{2}+y^{2}$
$\Rightarrow y^{2}\left(\frac{d y}{d x}\right)^{2}=x^{2}$
$\Rightarrow x= \pm y \frac{d y}{d x}$
$\Rightarrow x=y \frac{d y}{d x}$ or $x=-y \frac{d y}{d x}$
$\Rightarrow x d x-y d y=0$ or $x d x+y d y=0$
$\Rightarrow x^{2}-y^{2}=c_{1}$ or $x^{2}+y^{2}=c_{2}$
Clearly, $x^{2}+y^{2}=c_{2}$ represents a rectangular hyperbola and $x^{2}+y^{2}=c_{2}$ represents circles
104 (a,c)
We have, $\int(b y+k) d y=\int(a x+h) d x$
or $\frac{b y^{2}}{2}+k y=\frac{a x^{2}}{2}+h x+c$
Clearly, for $a=-2, b=0$
and for $a=0, b=2$
It represents a parabola $\left(\because y=a x^{2}+b x+c\right)$ and $x=a y^{2}+b y+c$ represents a parabola.)
105 (a)
Slope of the normal at $(1,1)=-\frac{1}{a}$
Slope of tangent at $(1,1)=a$
i. e., $\left(\frac{d y}{d x}\right)_{(1,1)}=a$

Since $\frac{d y}{d x}$ is proportional to y,
$\therefore \frac{d y}{d x}=K y$
$\Rightarrow \frac{d y}{y}=K d x$
$\Rightarrow \log y=K x+C$
$\Rightarrow y=e^{K x+C}=A e^{K x}$ where $A=e^{c}$
It passes through $(1,1)$
$\therefore 1=A e^{K} \quad \therefore A=e^{-K}$
$\therefore y=e^{-K} e^{K x}=e^{K(x-1)}$
106 (b)
$\left(x^{2} y^{2}-1\right) d y+2 x y^{3} d x=0$
$\Rightarrow x^{2} y^{2} d y+2 x y^{3} d x=d y$
$\Rightarrow x^{2} d y+2 x y d x=\frac{d y}{y^{2}}$
$\Rightarrow \int d\left(x^{2} y\right)=\int \frac{d y}{y^{2}}+c$
$\Rightarrow x^{2} y=\frac{y^{-1}}{-1}+c$
$\Rightarrow x^{2} y^{2}=-1+c y$
i. e., $1+x^{2} y^{2}=c y$

107 (a,c)
We have $(x-h)^{2}+(y-k)^{2}=a^{2}$
Differentiating w.r.t. x, we get
$2(x-h)+2(y-k) \frac{d y}{d x}=0$
$\Rightarrow(x-h)+(y-k) \frac{d y}{d x}=0$
Differentiating w.r.t. x, we get
$1+\left(\frac{d y}{d x}\right)^{2}+(y-k) \frac{d^{2} y}{d x^{2}}=0$
From equation (3), $y-k=-\left(\frac{1+p^{2}}{q}\right)$, where $p=\frac{d y}{d x}$,
$q=\frac{d^{2} y}{d x^{2}}$
Putting the value of $y-k$ in equation (2), we get
$x-h=\frac{\left(1+p^{2}\right) p}{q}$
Substituting the values of $x-h$ and $y-k$ in equation (1),
We get

$$
\begin{gathered}
\left(\frac{1+p^{2}}{q}\right)^{2}\left(1+p^{2}\right)=a^{2} \Rightarrow\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3} \\
=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
\end{gathered}
$$

Which is the required differential equation
108 (a,b,c)
We have $f^{\prime \prime}(x)=\mathrm{g}^{\prime \prime}(x)$. On integration, we get
$f^{\prime}(x)=\mathrm{g}^{\prime}(x)+C$
Putting $x=1$, we get
$f^{\prime}(1)=\mathrm{g}^{\prime}(1)+C \Rightarrow 4=2+C \Rightarrow C=2$
$\therefore f^{\prime}(x)=\mathrm{g}^{\prime}(x)+2$
Integrating w.r.t. x, we get $f(x)=\mathrm{g}(x)+2 x+c_{1}$ (2)

Putting $x=2$, we get
$f(2)=\mathrm{g}(2)+4+c_{1} \Rightarrow 9=3+4+c_{1} \Rightarrow c_{1}=2$
$\therefore f(x)=\mathrm{g}(x)+2 x+2$. Putting $x=4$, we get
$f(4)-\mathrm{g}(4)=10$
$|f(x)-\mathrm{g}(x)|<2 \Rightarrow|2 x+2|<2 \Rightarrow|x+1|<1$

$$
\Rightarrow-2<x<0
$$

Also $f(2)=\mathrm{g}(2) \Rightarrow x=-1$
$f(x)-\mathrm{g}(x)=2 x$ has no solution
110 (a,b)
$x=\sin \left(\frac{d y}{d x}-2 y\right) \Rightarrow \frac{d y}{d x}-2 y=\sin ^{-1} x$
$x-2 y=\log \left(\frac{d y}{d x}\right) \Rightarrow \frac{d y}{d x}=e^{x-2 y}$
111 (a,c)
$\frac{d y}{d x}=\frac{a x+h}{b y+k} \Rightarrow(b y+k) d y=(a x+h) d x$
$\Rightarrow b \frac{y^{2}}{2}+k y=\frac{a}{2} x^{2}+h x+C$
For this to represent a parabola, one of the two
terms x^{2} or y^{2} is zero
Therefore, either $a=0, b \neq 0$ or $a \neq 0, b=0$
112 (a,d)
Taking $x=r \cos \theta$ and $y=r \sin \theta$, so that
$x^{2}+y^{2}=r^{2}$ and $\frac{y}{x}=\tan \theta$,
We have $x d x+y d y=r d r$ and $x d y-y d x=x^{2} \sec ^{2} \theta d \theta=r^{2} d \theta$
The given equation can be transformed into
$\frac{r d r}{r^{2} d \theta} \sqrt{\left(\frac{a^{2}-r^{2}}{r^{2}}\right)}$
$\Rightarrow \frac{d r}{d \theta}=\sqrt{\left(a^{2}-r^{2}\right)}$
$\Rightarrow \frac{d r}{\sqrt{\left(a^{2}-r^{2}\right)}}=d \theta$
Integrating both sides, then we get
$\sin ^{-1}\left(\frac{r}{a}\right)=\theta+c$
$\Rightarrow \sin ^{-1}\left(\frac{\sqrt{\left(x^{2}+y^{2)}\right.}}{a}\right)=\tan ^{-1}\left(\frac{y}{x}\right)+c$
$\Rightarrow \sqrt{\left(x^{2}+y^{2}\right)}=a \sin \left\{\tan ^{-1}(y / x)+c\right\}$
$\Rightarrow \sqrt{\left(x^{2}+y^{2}\right)}=a \sin \left\{\tan ^{-1}(y / x)+\right.$ constant $\}$
Also, from Eq. (i),
$\tan ^{-1}\left(\frac{y}{x}\right)=\left\{\sin ^{-1}\left(\frac{\sqrt{\left(x^{2}+y^{2}\right)}}{a}\right)-c\right\}$
$\Rightarrow y=x \tan \left\{\sin ^{-1}\left(\frac{\sqrt{\left(x^{2}+y^{2}\right)}}{a}\right)-c\right\}$
$=x \tan \left\{\sin ^{-1}\left(\frac{\sqrt{\left(x^{2}+y^{2}\right)}}{a}\right)+\right.$ constant $\}$
113 (a,d)
The D.E. can be re-written as
$\frac{x d x+y d y}{\sqrt{1-\left(x^{2}+y^{2}\right)}}=\frac{x d y-y d x}{\sqrt{x^{2}+y^{2}}}$
Since $d \tan ^{-1}(y / x)=\frac{x d y-y d x}{x^{2}+y^{2}}$, and $d\left(x^{2}+y^{2}\right)=$ $2(x d x+y d y)$
\therefore we have $\frac{\frac{1}{2} d\left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}} \sqrt{1-\left(x^{2}+y^{2}\right)}}=\frac{x d y-y d x}{x^{2}+y^{2}}=$ $d\left\{\tan ^{-1}(y / x)\right\}$
Put $x^{2}+y^{2}=t^{2}$ in the L.H.S and get
$\frac{t d t}{t \sqrt{1-t^{2}}}=d\left\{\tan ^{-1}(y / x)\right.$
Integrating both sides, we get
$\sin ^{-1} t=\tan ^{-1}(y / x)+c$
i. e, $\sin ^{-1} \sqrt{\left(x^{2}+y^{2}\right)}=\tan ^{-1}(y / x)+c$

114 (a,b,d)
$\frac{d y}{d x}+y \cos x=\cos x$ (linear)
I. F. $=e^{\int \cos x d x}=e^{\sin x}$
\therefore solution is $y e^{\sin x}=\int e^{\sin x} \cos x d x=e^{\sin x}+c$
When $x=0, y=1$ then $c=0$
$\Rightarrow y=1$. Hence options (a), (b),(d) are true
115 (a,c)
Obviously (a) is linear D.E. with $P=\frac{1}{x}$ and
$Q=\log x y\left(\frac{d y}{d x}\right)+4 x=0 \Rightarrow \frac{d y}{d x}+\frac{4 x}{y}=0$
Hence not linear
$\left(2 x+y^{3}\right)\left(\frac{d y}{d x}\right)=3 y$
$\Rightarrow \frac{d x}{d y}=\frac{2 x}{3 y}+\frac{y^{2}}{3}$
$\Rightarrow \frac{d x}{d y}-\frac{2 x}{3 y}=\frac{y^{2}}{3}$ which is linear with $P=\frac{2}{3 y}$ and $Q=\frac{y^{2}}{3}$
116 (b)
We have $y \frac{d y}{d x}=k$ (constant)
$\Rightarrow y d y=k d x \Rightarrow \frac{y^{2}}{2}=k x+C \Rightarrow y^{2}=2 k x+2 C$
$\Rightarrow y^{2}=2 a x+b$, where $a=k, b=2 C$
117 (c)
$y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{x+C_{5}}$
$=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{C_{5}} e^{x}$
$=A \cos \left(x+C_{3}\right)-B e^{x}\left[\right.$ Taking $C_{1}+C_{2}=$
$\left.A, C_{4} e^{C_{5}}=B\right]$
Thus, there are actually three arbitrary constants and hence this differential equation should be of order 3

118 (a,b,c,d)

$\because \frac{d y}{d x}=\frac{-2 y \cot x \pm \sqrt{\left(4 y^{2} \cot ^{2} x+4 y^{2}\right)}}{2}$
$=y(-\cot x \pm \operatorname{cosec} x)$
$\therefore \frac{d y}{d x}=(-\cot x+\operatorname{cosec} x)$
\Rightarrow In $y=-$ In $\sin x+\operatorname{In} \tan \frac{x}{2}+\operatorname{In} c$
$\Rightarrow y=\frac{c \tan \frac{x}{2}}{\sin x}=\frac{c}{2 \cos ^{2} \frac{x}{2}}$
$=\frac{c}{1+\cos x}$
On solving, $\frac{d y}{y}=-(\cot x+\operatorname{cosec} x) d x$, we get
$=y=\frac{c}{1-\cos x}$
$\Rightarrow x=2 \sin ^{-1} \sqrt{\frac{c}{2 y}}$
Also from Eq. (i),
$x=2 \cos ^{-1} \sqrt{\left(\frac{c}{2 y}\right)}$
119 (d)
Given, $\frac{d y}{d x}+\frac{1}{x} y=\frac{\sin x}{x^{2}}$
$\therefore \mathrm{IF}=e^{\int_{\frac{1}{x}} d x}=x$
\therefore Solution is $x y=\int_{0}^{x} \frac{\sin t}{t} d t+c$
On putting $x=1,2$ respectively, we get
$c=2-\int_{0}^{1} \frac{\sin t}{t} d t$
$\Rightarrow y=\frac{1}{x} \int_{0}^{x} \frac{\sin t}{t} d t+\frac{c}{x}$
$=\frac{1}{x} \int_{0}^{x} \frac{\sin t}{t} d t+\frac{2}{x}-\frac{1}{x} \int_{0}^{1} \frac{\sin t}{t} d t$
$=\frac{2}{x}+\frac{1}{x} \int_{1}^{x} \frac{\sin t}{t} d t$
$\Rightarrow y(z)=1+\frac{1}{2} \int_{1}^{2} \frac{\sin t}{t} d t$

120 (d)

Statement 2 is obviously true. But statement 1 is
false as $2 x-3 y+2=\log \left(\frac{d y}{d x}\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)=e^{2 x-3 y+2}$ which has degree 1

(a)

The equation of circle contains. There independent constants if it passes through three non-collinear points, therefore statement 1 is true and follows from statement 2

122
(d)
$\because y=\left(c_{1} e^{c_{2}}+c_{3} e^{c_{4}}\right) e^{x}=c e^{x} \quad$ (say)
$\frac{d y}{d x}=c e^{x}=y$
\therefore Order is 1 .
123 (a)
Let $c_{1}+c_{2}+c_{3} e^{c_{4}}=A$ constant
Then, $y=A x$
$\Rightarrow \frac{d y}{d x}=A$
$\Rightarrow y=x \frac{d y}{d x}$
$\Rightarrow x \frac{d y}{d x}=y$
124 (c)
Given, $\frac{d y}{d x}=\frac{y \sqrt{y^{2}-1}}{x \sqrt{x^{2}-1}}$
$\Rightarrow \int \frac{d y}{y \sqrt{y^{2}-1}}=\int \frac{d x}{x \sqrt{x^{2}-1}}$
$\Rightarrow \sec ^{-1} y=\sec ^{-1} x+c$
At $x=2, y=\frac{2}{\sqrt{3}}$
$\Rightarrow \frac{\pi}{6}=\frac{\pi}{3}+c$
$\Rightarrow c=-\frac{\pi}{6}$
Now, $y=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$
$=\cos \left(\cos ^{-1} \frac{1}{x}-\cos ^{-1} \frac{\sqrt{3}}{2}\right)$
$=\cos \left[\cos ^{-1}\left(\frac{\sqrt{3}}{2 x}+\sqrt{1-\frac{1}{x^{2}}} \cdot \sqrt{1-\frac{3}{4}}\right)\right]$
$\Rightarrow \frac{1}{y}=\frac{\sqrt{3}}{2 x}+\frac{1}{2} \sqrt{1-\frac{1}{x^{2}}}$

125 (a)
$y=A e^{x}$
On differentiating, we get $\frac{d y}{d x}=A e^{x}$
126 (d)
$\because x y=v$
$\therefore x \frac{d y}{d x}+y=\frac{d v}{d x}$
Then, the given equation reduces to
$\frac{v}{x} f(v)+x \phi(v)\left(\frac{1}{x}\left(\frac{d v}{d x}-y\right)\right)=0$
$\Rightarrow \frac{v}{x} f(v)+\phi(v) \frac{d v}{d x}-y \phi(v)=0$
$\Rightarrow\left\{\frac{v(f(v)-\phi(v))}{x}\right\}+\phi(v) \frac{d v}{d x}=0$
$\Rightarrow \frac{d x}{x}+\frac{\phi(v) d v}{v(f(v))-\phi(v)}=0$
Which is variable seperable form.
127 (a)
Let $x^{2}+y^{2}+2 \mathrm{~g} x+2 f y+c=0$
Here, in this equation, there are three constants.
\therefore Order $=3$
\because Circle passes through three non-collinear points, then we get three constants g, t, c.

128 (b)

From Statement II
Differential equation can be written as
$\left(\frac{d y}{d x}-e^{x}\right)\left(\frac{d y}{d x}-e^{-x}\right)=0$
$\Rightarrow \frac{d y}{d x}=e^{x}$ or $\frac{d y}{d x}=e^{-x}$
$\Rightarrow \int d y=\int e^{x} d x$ or $\int d y=\int e^{-x} d x$
$\Rightarrow y=e^{x}+c_{1}$ or $y=-e^{-x}+c_{2}$
$\Rightarrow y=c_{1} e^{x}+c_{2} e^{-x}$ will satisfy the above equation.

From Statement I

$\int d y=\int\left(x+\frac{1}{x^{2}}\right) d x$
$\Rightarrow y=\frac{x^{2}}{2}-\frac{1}{x}+c$
It is passes through $(3,9)$.
$\therefore 9=\frac{9}{2}-\frac{1}{3}+c$
$\Rightarrow c=9-\frac{9}{2}+\frac{1}{3}=\frac{29}{6}$
$\therefore y=\frac{x^{2}}{2}-\frac{1}{x}+\frac{29}{6}$
$\Rightarrow 6 x y=3 x^{3}+29 x-6$
129 (d)
\because The given equation cannot be written as a polynomial in all the differentials.
\because Degree of the equation is not defined.
130 (a)

$$
\left.\begin{array}{l}
\begin{array}{rl}
y=c_{1} \cos 2 x & +c_{2} \sin ^{2} x+c_{3} \cos ^{2} x+c_{4} e^{2 x} \\
& +c_{5} e^{2 x+c_{6}}
\end{array} \\
=c_{1} \cos 2 x+ \\
+c_{2}\left(\frac{1-\cos 2 x}{2}\right)+c_{3}\left(\frac{\cos 2 x+1}{2}\right) \\
\\
\quad+c_{4} e^{2 x}+c_{5} e^{c_{6}} e^{2 x}
\end{array}\right)
$$

\Rightarrow Total number of independent parameters in the given general solution is 3

Hence statement 1 is true, also statement 2 is true which explains statement 1

131 (b)
Statement 1 is obviously true
Even statement 2 is also obviously true but it does not explain statement 1

132 (b)
$\because y=a \sin x+b \cos x$
$\therefore y^{\prime}=a \cos x-b \sin x$
$\Rightarrow y^{\prime \prime}=-a \sin x-b \cos x=-y$ [from Eq. (i)]
$\Rightarrow y^{\prime \prime}+y=0$

133 (a)

Equation of the required parabola is of the form $y^{2}=4 a(x-h)$. Differentiating, we have
$2 y \frac{d y}{d x}=4 a \Rightarrow y \frac{d y}{d x}=2 a \Rightarrow\left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}=0$
The degree of this differential equation is 1 and the order is 2
b. we have $y=a(x+a)^{2}$
$\Rightarrow \frac{d y}{d x}=2 a(x+a)$
Dividing equations (1) by (2), we get $\frac{y}{\frac{d y}{d x}}=\frac{x+a}{2}$
$\Rightarrow x+a=\frac{2 y}{y_{1}}$, where $y_{1}=\frac{d y}{d x}$
Substituting $a=\frac{2 y}{y_{1}}-x$ in equation (1)
We get $y=\left(\frac{2 y}{y_{1}}-x\right)\left(\frac{2 y}{y_{1}}\right)^{2} \Rightarrow y_{1}{ }^{3} y=4(2 y-$ $x y 1 y 2$
Clearly, it is a differential equation of degree 3
c. The given equation is $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$

Cubing, we get $\left(1+3 \frac{d y}{d x}\right)^{2}=64\left(\frac{d^{3} y}{d x^{2}}\right)^{3}$
Hence order $=$ degree $=3$
d. We have $y^{2}=2 c(x+\sqrt{c})(1)$

Diff. w.r.t. x, we get $2 y \frac{d y}{d x}=2 c$
$\Rightarrow c=y \frac{d y}{d x}$
Putting in equation (1), we get $y^{2}=2\left(y \frac{d y}{d x}\right) x+$ $2\left(y \frac{d y}{d x}\right)^{3 / 2}$
$\Rightarrow\left(y^{2}-2 x y \frac{d y}{d x}\right)^{2}=4 y^{3}\left(\frac{d y}{d x}\right)^{3}$
Its order is 1 and degree is 3
134 (b)
a. $\quad y=e^{4 x}+2 e^{-x} ; y_{1}=4 e^{4 x}-2 e^{-x} ; y_{2}=$ $16 e^{4 x}+2 e^{-x} ; y_{3}=64 e^{4 x}-2 e^{-x}$

Now, $\quad y_{3}-13 y_{1}=\left(64 e^{4 x}-2 e^{-x}\right)-13\left(4 e^{4 x}-\right.$ $2 e-x=12 e 4 x+24 e-x$
$y_{3}-13 y=12\left(e^{4 x}+2 e^{-x}\right)=12 y$
$\therefore K=12$ and $K / 3=4$
b. Since equation is 2 degree, two linew are possible
c. $y=u^{m} \Rightarrow \frac{d y}{d x}=m u^{m-1} \frac{d u}{d x}$

Substituting the value of y and $\frac{d y}{d x}$ in $2 x^{4} y \frac{d y}{d x}+$ $y^{4}=4 x^{6}$

We have $2 x^{4} u^{m} m u^{m-1} \frac{d u}{d x}=4 x^{6}$
$\Rightarrow \frac{d u}{d x}=\frac{4 x^{6}-u^{4 m}}{2 m x^{4} u^{2 m-1}}$
For homogeneous $4 m=6 \Rightarrow m=\frac{3}{2}$
and $2 m-1=2 \Rightarrow m=\frac{3}{2}$
d. $y=A x^{m}+B x^{-n}$
$\Rightarrow \frac{d y}{d x}=A m x^{m-1}-n B x^{-n-1}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=A m(m-1) x^{m-2}+n(n+1) B x^{-n-2}$
Putting these values in $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=12 y$
We have $=m(m+1) A x^{m}+n(n-1) B x^{-n}=$ $12\left(A x^{m}+B x^{-n}\right)$
$\Rightarrow m(m+1)=12$ or $n(n-1)=12$
$\Rightarrow m=3,-4$ or $n=4,-3$

135 (b)

$\because \frac{d T}{d t}=-k(T-290)$
$\Rightarrow \frac{d T}{(T-290)}=-k d t$
$\Rightarrow \log (T-290)=-k t+c$
Initially, $T=370 \mathrm{~K}$ and $t=0$, then $\log (80)=c$
From Eq. (i),
$\log (T-290)=-k t+\log 80$
$\log \left(\frac{T-290}{80}\right)=-k t$
$\Rightarrow \frac{T-290}{80}=e^{-k t}$
$\Rightarrow T=290+80 e^{-k t}$
137 (b)
$f(x) \leq 0$ and $F^{\prime}(x)=f(x)$
$\Rightarrow f(x) \geq c F(x)$
$\Rightarrow F^{\prime}(x)-c F(x) \geq 0$
$\Rightarrow e^{-c x} F^{\prime}(x)-c e^{-c x} F(x) \geq 0$
$\Rightarrow \frac{d}{d x}\left(e^{-c x} F(x)\right) \geq 0$
$\Rightarrow e^{-c x} F(x)$ is an increasing function
$\Rightarrow e^{-c x} F(x) \geq e^{-c(0)} F(0)$
$\Rightarrow e^{-c x} F(x) \geq 0$
$\Rightarrow F(x) \geq 0$
$\Rightarrow f(x) \geq 0$ (as $f(x) \geq c F(x)$ and c is positive)
$\Rightarrow f(x)=0$
Also $\left(\frac{d \mathrm{~g}(x)}{d x}\right)<\mathrm{g}(x) \forall x>0$
$\Rightarrow e^{-x} \frac{d(\mathrm{~g}(x))}{d x}-e^{-x} \mathrm{~g}(x)<0$
$\Rightarrow \frac{d}{d x}\left(e^{-x} \mathrm{~g}(x)\right)<0$
$\Rightarrow e^{-x} \mathrm{~g}(x)$ is a decreasing function
$\Rightarrow e^{-x} \mathrm{~g}(x)<e^{-(0)} \mathrm{g}(0)$
$\Rightarrow \mathrm{g}(x)<0($ as $\mathrm{g}(0)=0)$
Thus $f(x)=\mathrm{g}(x)$ has one solution $x=0$
138 (c)
Given equation can be rewritten as
$y=x p+\sqrt{\left(1+p^{2}\right)}, p=\frac{d y}{d x}(1)$
Differentiating w.r.t. x, we get
$p=p+x \frac{d p}{d x}+\frac{1}{2 \sqrt{1+p^{2}}} 2 p \frac{d p}{d x}$
$\Rightarrow \frac{d p}{d x}=0$ or $\frac{p}{\sqrt{1+p^{2}}}=-x$
$\Rightarrow p=c$ or $p=\frac{x}{\sqrt{1-x^{2}}}$
$\Rightarrow y=c x+\sqrt{\left(1+c^{2}\right)}$ gives the general solution and $x^{2}+y^{2}=1$
As singular solution
139 (c)
Integrating $\frac{d^{2} y}{d x^{2}}=6 x-4$, we get $\frac{d y}{d x}=3 x^{2}-4 x+$ A
When $x=1, \frac{d y}{d x}=0$ so that $A=1$. Hence
$\frac{d y}{d x}=3 x^{2}-4 x+1$
Integrating, we get $y=x^{3}-2 x^{2}+x+B$
When $x=1, y=5$, so that $B=5$
Thus, we have $y=x^{2}-2 x^{2}+x+5$
From equation (1), we get the critical points
$x=1 / 3, x=1$
At the critical point $x=\frac{1}{3}, \frac{d^{2} y}{d x^{2}}$ is -ve
Therefore, at $x=1 / 3, y$ has a local maximum
At $x=1, \frac{d^{2} y}{d x^{2}}$ is +ve
Therefore, at $x=1 y$ has a local minimum
Also $f(1)=5, f\left(\frac{1}{3}\right)=\frac{139}{27}, f(0)=5, f(2)=7$
Hence the global maximum value $=7$
And the global minimum value $=5$
140 (a)
Let N denote the amount of material present at time t. Then,
$\frac{d N}{d t}-k N=0$

This differential equation is separable and linear, its solution is $N=c e^{k t}$
At $t=0$, we are given that $N=50$. Therefore, from equation (1), $50=c e^{k(0)}$, or $c=0$
Thus, $N=50 e^{k t}$
At $t=2,10$ percent of the original mass of
50 mg or 5 mg , has decayed
Hence, at $t=2, N=50-5=45$
Substituting these values into equation (2) and solving for k, we have $45=50 e^{k t}$ or $k=\frac{1}{2} \log \frac{45}{50}$ Substituting this value into (2), we obtain the amount of mass present at any time t as
$N=50 e^{-(1 / 20)(\ln 0.9) t}$
Where t is measured in hours
141 (a)
Here, $V_{0}=100, a=20, b=0$, and $e=f=5$.
Hence
$\frac{d Q}{d t}+\frac{1}{20} Q=0$
The solution of this linear equation is $Q=c e^{-t / 20}$
(1)

At $t=0$, we are given that $Q=a=20$
Substituting these values into equation (1), we find that $c=20$, so that equation (1) can be rewritten as $Q=20 e^{-t / 20}$
For $t=20, Q=20 / e$

(2)

Equation of tangent is $X \frac{d y}{d x}-y-Y \frac{d y}{d x}+y=0$ perpendicular distance from origin is

$\therefore \perp$ from $(0,0)=x$
$\left|\frac{0-0-x \frac{d y}{d x}+y}{\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}}\right|=x$
$\therefore\left|\frac{x \frac{d y}{d x}-y}{\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}}\right|=x \Rightarrow\left(x \frac{d y}{d x}-y\right)^{2}$
$=x^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)$
$\Rightarrow x^{2}\left(\frac{d y}{d x}\right)^{2}+y^{2}-2 x y \frac{d y}{d x}=x^{2}+x^{2}\left(\frac{d y}{d x}\right)^{2}$
$\Rightarrow \frac{y^{2}-x^{2}}{2 x y}=\frac{d y}{d x}$
(1) (Homogeneous)

Put $y=v x$ in (1)
$v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}$
$\int \frac{2 v}{v^{2}+1} d v=-\int \frac{d x}{x}$
$\ln \left(v^{2}+1\right)=-\ln x+\ell n c$
$v^{2}+1=\frac{c}{x}$
$\frac{y^{2}+x^{2}}{x^{2}}=\frac{c}{x} \Rightarrow y^{2}+x^{2}=c x$
Passes through (1,1), then $c=2$
$x^{2}+y^{2}-2 x=0$
For intercept of curve on x-axis, put $y=0$
We have $x^{2}-2 x=0$ or $x=0,2$
Hence length of intercept is 2
143 (2)
Given $\frac{d y}{d x}-\frac{1}{x} y=\left(x-\frac{2}{x}\right)$
I. F. $=e^{-\int \frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}$

Now general solution is given by $\frac{y}{x}=\int(x-$ $2 x 1 x d x$
$\Rightarrow \frac{y}{x}=x+\frac{2}{x}+C$
As $y(1)=1 \Rightarrow C=-2$
$\therefore \frac{y}{x}=x+\frac{2}{x}-2 \Rightarrow y=x^{2}-2 x+2$
Hence $y(2)=(2)^{2}-2(2)+2=2$
144 (3)
$\frac{d y}{d x}=-\frac{\sqrt{\left(x^{2}-1\right)\left(y^{2}-1\right)}}{x y}$
$\int \frac{y}{\sqrt{y^{2}-1}} d y=-\int \frac{\sqrt{x^{2}-1}}{x} d x$
Let $y^{2}-1=t^{2} \Rightarrow 2 y d y=2 t d t$
$\therefore \int \frac{t}{t} d t=-\int \frac{x^{2}-1}{x \sqrt{x^{2}-1}} d x$
$\therefore t=-\int \frac{x}{\sqrt{x^{2}-1}} d x+\int \frac{1}{x \sqrt{x^{2}-1}} d x$
$\therefore \sqrt{y^{2}-1}=-\sqrt{x^{2}-1}+\sec ^{-1} x+c$
Curve passes through the point $(1,1)$ then the value of $c=0$
Hence the curve is $\sqrt{y^{2}-1}=-\sqrt{x^{2}-1}+\sec ^{-1} \mathrm{x}$
145 (2)
$\frac{d y}{d x}=\frac{1}{x \cos y+2 \sin y \cos y}$
$\therefore \frac{d x}{d y}=x \cos y+2 \sin y \cos y$
$\therefore \frac{d x}{d y}+(-\cos y) x=2 \sin y \cos y$
\therefore L.F. $=e^{-\int \cos y d x} e=e^{-\sin y}$
\therefore The solution is
$x \cdot e^{-\sin y}=2 \int e^{-\sin y} \cdot \sin y \cos y d y$
$=-2 \sin y e^{-\sin y}-2 \int\left(-e^{-\sin y}\right) \cos y d x$
$=-2 \sin y e^{-\sin y}+2 \int-e^{-\sin y} \cos y d y$
$=-2 \sin y e^{-\sin y}-2 e^{-\sin y}+c$
i. e. $x=-2 \sin y-2+c e^{\sin y}$

$$
=c e^{\sin y}-2(1+\sin y)
$$

$\therefore k=2$
146 (8)
Equation of tangent at $P\left(x_{1}, y_{1}\right)$ of $y=f(x)$
$y-y_{1}=\frac{d y}{d x}\left(x-x_{1}\right)$
This tangent cuts the x-axis so
$x_{2}=x_{1}-\frac{y_{1}}{\left(\frac{d y}{d x}\right)}$
$\because x_{1}, x_{2}, x_{3} \ldots x_{n}$ are in AP
$x_{2}-x_{1}=-\frac{y_{1}}{\frac{d y}{d x}}=\log _{z} e$ given
$-y=\log _{z} e \frac{d y}{d x}$
$\frac{d y}{y} \log _{z} e=-d x \quad$ Integrating both sides
$\log _{e} y=-x \log _{z} e+c$
$y=k e^{-x \log _{e} 2}$
$\because y=f(x)$ passes through $(0,2)$
$\Rightarrow k=2$
$\therefore y=2 \cdot e^{-x \log _{e} 2}$
$\therefore y=2^{1-x}$
(4)
$\frac{d y}{d x}-y=1-e^{-x}$
$P=-1 Q=1-e^{-x}$
I. F. $=e^{\int P d x}=e^{\int-1 d x}=e^{-x}$
$\therefore y \cdot e^{-x}=\int e^{-x}\left(1-e^{-x}\right) d x+C$
$y e^{-x}=-e^{-x}+\frac{1}{2} e^{-2 x}+C$
$y=-1+\frac{1}{2} e^{-x}+C e^{x}$
$\because x=0 \quad y=y_{0}$
So $C=y_{0}+\frac{1}{2}$
$y=-1+\frac{1}{2} e^{-x}+\left(y_{0}+1 / 2\right) e^{x}$
$x \rightarrow \infty y \rightarrow$ finite value so $y_{0}+1 / 2=0$
$y_{0}=-1 / 2$
148 (4)

We have $4 x e^{x y}=y+5 \sin ^{2} x$ (1)
Put $x=0$, in equation (1), we get $y=0$
Therefore, $(0,0)$ lies on the curve
Now on differentiating equation (1) w. r.t. x, we get
$4 e^{x y}+4 e^{x y}\left(x \frac{d y}{d x}+y\right)=\frac{d y}{d x}+10 \sin x \cos x$
$\Rightarrow y^{\prime}(0)=4$
149 (8)
$\frac{d y}{d t}+2 t y=t^{2}$
I.F. $=e^{t^{2}}$
\therefore Solution is $y \cdot e^{t^{2}}=\int t^{2} e^{t^{2}} d t=\int t e^{t^{2}} d t$
$\therefore y \cdot e^{t^{2}}=t \cdot \frac{e^{t^{2}}}{2}-\frac{1}{2} \int e^{t^{2}} d t+C$
$y=\frac{t}{2}-e^{-t^{2}} \int \frac{e^{t^{2}}}{2} d t+C e^{-t^{2}}$
$\lim _{t \rightarrow \infty} \frac{y}{t}=\frac{1}{2}-\lim _{t \rightarrow \infty} \frac{\int \frac{e^{t^{2}}}{2}}{t e^{t^{2}}}=\frac{1}{2}$
150 (5)

$\therefore O P=O M$
$y-x \frac{d y}{d x}=\sqrt{x^{2}+y^{2}}$
$\frac{d y}{d x}=\frac{y-\sqrt{x^{2}+y^{2}}}{x}$
$\therefore \frac{d y}{d x}=\frac{y}{x}-\sqrt{1+\left(\frac{y}{x}\right)^{2}}$
Put $\frac{y}{x}=v \Rightarrow y=v x \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=v-\sqrt{1+v^{2}}$
$\therefore \log \left(v+\sqrt{1+v^{2}}\right)=\log \frac{c}{x}$
$\therefore v+\sqrt{1+v^{2}}=\frac{c}{x}$
$\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}=\frac{c}{x}$
$y+\sqrt{x^{2}+y^{2}}=c$
Hence curve is parabola, which has eccentricity 1
$\frac{d y}{d x}=\frac{1}{d x / d y} ; \frac{d^{2} y}{d x^{2}}=\frac{d}{d y}\left(\frac{1}{d x / d y}\right) \cdot \frac{d y}{d x}$

$$
=-\frac{1}{(d x / d y)^{3}} \frac{d^{2} x}{d y^{2}}
$$

Hence $x \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}-\frac{d y}{d x}=0$
Becomes $-x \cdot \frac{1}{(d x / d y)^{3}} \frac{d^{2} x}{d y^{2}}+\frac{1}{(d x / d y)^{3}}-\frac{1}{d x / d y}=0$
Or $x \frac{d^{2} x}{d y^{2}}-1+\left(\frac{d x}{d y}\right)^{2}=0 \Rightarrow x \frac{d^{2} x}{d y}+\left(\frac{d x}{d y}\right)^{2}=1$;
$\therefore k=1$

152 (2)

Given $y=\tan z$
$\frac{d y}{d x}=\sec ^{2} z \cdot \frac{d z}{d x}$
Now $\frac{d^{2} y}{d x^{2}}=\sec ^{2} z \cdot \frac{d^{2} x}{d x^{2}}+\frac{d z}{d x} \cdot \frac{d}{d x}\left(\sec ^{2} z\right)$ [using product rule]
$=\sec ^{2} z \cdot \frac{d^{2} z}{d x^{2}}+\frac{d z}{d x} \cdot \frac{d}{d z}\left(\sec ^{2} z\right) \frac{d z}{d x}$
$\frac{d^{2} y}{d x^{2}}=\sec ^{2} z \cdot \frac{d^{2} z}{d x^{2}}+\left(\frac{d z}{d x}\right)^{2} \cdot 2 \sec ^{2} z \cdot \tan z$
Now $1+\frac{2(1+y)}{1+y^{2}}\left(\frac{d y}{d x}\right)^{2}$
$=1+\frac{2(1+\tan z)}{\sec ^{2} z} \cdot \sec ^{4} z \cdot\left(\frac{d z}{d x}\right)^{2}$
$=1+2(1+\tan z) \cdot \sec ^{2} z \cdot\left(\frac{d z}{d x}\right)^{2}$
$=1+2 \sec ^{2} z\left(\frac{d z}{d x}\right)^{2}+2 \tan z \cdot \sec ^{2} z\left(\frac{d z}{d x}\right)^{2}$
From (2) and (3), we have RHS of (2) = RHS of (3)
$\sec ^{2} z \cdot \frac{d^{2} z}{d x^{2}}=1+2 \sec ^{2} z\left(\frac{d z}{d x}\right)^{2}$
$\Rightarrow \frac{d^{2} z}{d x^{2}}=\cos ^{2} z+2\left(\frac{d z}{d x}\right)^{2}$
$\Rightarrow k=2$

