Single Correct Answer Type

1. If $D_{k}=\left|\begin{array}{ccc}1 & n & n \\ 2 k & n^{2}+n+1 & n^{2}+n \\ 2 k-1 & n^{2} & n^{2}+n+1\end{array}\right|$ and $\sum_{k=0}^{n} D_{k}=56$, then n equals
a) 4
b) 6
c) 8
d) None of these
2. If $A_{1}, B_{1}, C_{1}, \ldots$ are, respectively, the cofactors of the elements $a_{1}, b_{1}, c_{1}, \ldots$ of the determinant $\Delta=$ $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta \neq 0$, then the value of $\left|\begin{array}{ll}B_{2} & C_{2} \\ B_{3} & C_{3}\end{array}\right|$ is equal to
a) $a_{1}^{2} \Delta$
b) $a_{1} \Delta$
c) $a_{1} \Delta^{2}$
d) $a_{1}^{2} \Delta^{2}$
3.

Let $f(x)=\left|\begin{array}{ccc}2 \cos ^{2} x & \sin 2 x & -\sin x \\ \sin 2 x & 2 \sin ^{2} x & \cos x \\ \sin x & -\cos x & 0\end{array}\right|$. Then the value of $\int_{0}^{\pi / 2}\left[f(x)+f^{\prime}(x)\right] d x$ is
a) π
b) $\pi / 2$
c) 2π
d) $3 \pi / 2$
4.

The number of distinct real root of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval $-\pi / 4 \leq x \leq \pi / 4$ is
a) 0
b) 2
c) 1
d) 3
5.

If $\left|\begin{array}{lll}x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3}\end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$ then n equals
a) 1
b) -1
c) 2
d) -2
6. Given $a=x /(y-z), b=y /(z-x)$ and $c=z /(x-y)$, where x, y and z are not all zero, then the value of $a b+b c+c a$ is
a) 0
b) 1
c) -1
d) None of these
7.

If $\omega(\neq 1)$ is a cube root of unity, then value of the determinant $\left|\begin{array}{ccc}1 & 1+i+\omega^{2} & \omega^{2} \\ 1-i & -1 & \omega^{2}-1 \\ -i & -i+\omega-1 & -1\end{array}\right|$ is
a) 0
b) 1
c) i
d) ω
8. If $\left|\begin{array}{lll}b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$, then the value of k is
a) 1
b) 2
c) 3
d) 4
9.
$f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$. The value of $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ is equal to
a) 1
b) -1
c) Zero
d) None of these
10.

The parameter, on which the value of the determinant $\left|\begin{array}{ccc}1 & a & a^{2} \\ \cos (p-d) x & \cos p x & \cos (p+d) x \\ \sin (p-d) x & \sin p x & \sin (p+d) x\end{array}\right|$ does not depend, is
a) a
b) p
c) d
d) x
11. If $\Delta=\left|\begin{array}{cccc}3 & 4 & 5 & x \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0\end{array}\right|=0$, then
a) x, y, z are in A.P.
b) x, y, z are in G.P.
c) x, y, z are in H.P.
d) None of these
12. The determinant $\left|\begin{array}{ccc}y^{2} & -x y & x^{2} \\ a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right|$ is equal to
a) $\left|\begin{array}{cc}b x+a y & c x+b y \\ b^{\prime} x+a^{\prime} y & c^{\prime} x+b^{\prime} y\end{array}\right|$
b) $\left|\begin{array}{cc}a x+b y & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} x+c^{\prime} y\end{array}\right|$
c) $\left|\begin{array}{cc}b x+c y & a x+b y \\ b^{\prime} x+c^{\prime} y & a^{\prime} x+b^{\prime} y\end{array}\right|$
d) $\left|\begin{array}{cc}a x+b y & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} x+c^{\prime} y\end{array}\right|$
13. If $z=\left|\begin{array}{ccc}-5 & 3+4 i & 5-7 i \\ 3-4 i & 6 & 8+7 i \\ 5+7 i & 8-7 i & 9\end{array}\right|$, then z is
a) Purely real
b) Purely imaginary
c) $a+i b$, where $a \neq 0, b \neq 0$
d) $a+i b$, where $b=4$
14. If a, b and c are non-zero real numbers, then $\Delta=\left|\begin{array}{lll}b^{2} c^{2} & a b & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$ is equal to
a) $a b c$
b) $a^{2} b^{2} c^{2}$
c) $b c+c a+a b$
d) None of these
15.

If $\left|\begin{array}{lll}x & 3 & 6 \\ 3 & 6 & x \\ 6 & x & 3\end{array}\right|=\left|\begin{array}{ccc}2 & x & 7 \\ x & 7 & 2 \\ 7 & 2 & x\end{array}\right|=\left|\begin{array}{ccc}4 & 5 & x \\ 5 & x & 4 \\ x & 4 & 5\end{array}\right|=0$, then ' x ' is equal to
a) 0
b) -9
c) 3
d) None of these
16. Let $\vec{a}_{r}=x_{r} \hat{\imath}+y_{r} \hat{\jmath}+z_{r} \hat{k}, r=1,2,3$ be three mutually perpendicular unit vectors, then the value of $\left|\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right|$ is equal to
a) Zero
b) ± 1
c) ± 2
d) None of these
17.

The value of the determinant $\left|\begin{array}{ccc}{ }^{n} C_{r-1} & { }^{n} C_{r} & (r+1)^{n+2} C_{r+1} \\ { }^{n} C_{r} & { }^{n} C_{r+1} & (r+2)^{n+2} C_{r+2} \\ 2 & { }^{n} C_{r+2} & (r+3)^{n+2} C_{r+3}\end{array}\right|$ is
a) $n^{2}+n-1$
b) 0
c) ${ }^{n+3} C_{r+3}$
d) ${ }^{n} C_{r-1}+{ }^{n} C_{r}+{ }^{n} C_{r+1}$
18. If α, β, γ are the roots of $p x^{3}+q x^{2}+r=0$, then the value of the determinant $\left|\begin{array}{lll}\alpha \beta & \beta \gamma & \gamma \alpha \\ \beta \gamma & \gamma \alpha & \alpha \beta \\ \gamma \alpha & \alpha \beta & \beta \gamma\end{array}\right|$
a) p
b) q
c) 0
d) r
19.

If w is a complex cube root of unity, then value of $\Delta=\left|\begin{array}{lll}a_{1}+b_{1} w & a_{1} w^{2}+b_{1} & c_{1}+b_{1} \bar{w} \\ a_{2}+b_{2} w & a_{2} w^{2}+b_{2} & c_{2}+b_{2} \bar{w} \\ a_{3}+b_{3} w & a_{3} w^{2}+b_{3} & c_{3}+b_{3} \bar{w}\end{array}\right|$ is
a) 0
b) -1
c) 2
d) None of these
20. If x, y, z are in A.P., then the value of the determinant
$\left|\begin{array}{lll}a+2 & a+3 & a+2 x \\ a+3 & a+4 & a+2 y \\ a+4 & a+5 & a+2 z\end{array}\right|$ is
a) 1
b) 0
c) $2 a$
d) a
21. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then the value of α is
a) ± 1
b) ± 2
c) ± 3
d) ± 5
22.

Value of $\left|\begin{array}{ccc}x+y & z & z \\ x & y+z & x \\ y & y & z+x\end{array}\right|$, where x, y, z are non-zero real numbers, is equal to
a) $x y z$
b) $2 x y z$
c) $3 x y z$
d) $4 x y z$
23. Roots of the equation $\left|\begin{array}{llll}x & m & n & 1 \\ a & x & n & 1 \\ a & b & x & 1 \\ a & b & c & 1\end{array}\right|=0$ are
a) Independent of m and n
b) Independent of a, b and c
c) Depend on m, n and a, b, c
d) Independent of m, n and a, b, c
24.

If $f(x)=a+b x+c x^{2}$ and α, β, γ are the roots of the equation $x^{3}=1$, then $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is equal to
a) $f(\alpha)+f(\beta)+f(\gamma)$
b) $f(\alpha) f(\beta)+f(\beta) f(\gamma)+f(\gamma) f(\alpha)$
c) $f(\alpha) f(\beta) f(\gamma)$
d) $-f(\alpha) f(\beta) f(\gamma)$
25.

If $a>0$ and discriminant of $a x^{2}+2 b x+c$ is negative, then $\Delta\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ a x+b & b x+c & 0\end{array}\right|$ is
a) +ve
b) $(a c-b)^{2}\left(a x^{2}+2 b x+c\right)$
c) -ve
d) 0
26.

If $a^{2}+b^{2}+c^{2}=-2$ and $f(x)=\left|\begin{array}{ccc}1+a^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & 1+b^{2} x & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & \left(1+b^{2}\right) x & 1+c^{2} x\end{array}\right|$, then $f(x)$ is a polynomial of degree
a) 0
b) 1
c) 2
d) 3
27. If a, b, c are non-zero real numbers and if the equations $(a-1) x=y+z,(b-1) y=z+x,(c-1) z=$ $x+y$ have a non-trivial solution, then $a b+b c+c a$ equals
a) $a+b+c$
b) $a b c$
c) 1
d) None of these
28.

If $\left|\begin{array}{ccc}a & b-c & c+b \\ a+c & b & c-a \\ a-b & a+b & c\end{array}\right|=0$, then the line $a x+b y+c=0$ passes through the fixed point which is
a) $(1,2)$
b) $(1,1)$
c) $(-2,1)$
d) $(1,0)$
29.

The value of determinant $\left|\begin{array}{lll}b c-a^{2} & a c-b^{2} & a b-c^{2} \\ a c-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & a c-b^{2}\end{array}\right|$ is
a) Always positive
b) Always negative
c) Always zero
d) Cannot say anything
30.

If $f(x)=\left|\begin{array}{lll}x & a & a \\ a & x & a \\ a & a & x\end{array}\right|=0$, then
a) $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$ has one common root
b) $f(x)=0$ and $f^{\prime}(x)=0$ has one common root
c) Sum of roots of $f(x)=0$ is $-3 a$
d) None of these
31.

If $f^{\prime}(x)=\left|\begin{array}{ccc}m x & m x-p & m x+p \\ n & n+p & n-p \\ m x+2 n & m x+2 n+p & m x+2 n-p\end{array}\right|$, then $y=f(x)$ represents
a) A straight line parallel to x-axis
b) A straight line parallel to y-axis
c) Parabola
d) A straight line with negative slope
32.

If $p \lambda^{4}+q \lambda^{3}+r \lambda^{2}+s \lambda+t=\left|\begin{array}{ccc}\lambda^{2}+3 \lambda & \lambda-1 & \lambda+3 \\ \lambda^{2}+1 & 2-\lambda & \lambda-3 \\ \lambda^{2}-3 & \lambda+4 & 3 \lambda\end{array}\right|$, then p is equal to
a) -5
b) -4
c) -3
d) -2
33. Let $a, b, c \in R$ such that no two of them are equal and satisfy $\left|\begin{array}{ccc}2 a & b & c \\ b & c & 2 a \\ c & 2 a & b\end{array}\right|=0$, then equation $24 a x^{2}+4 b x+c=0$ has
a) At least one root in $[0,1]$
b) At least one root in $\left[-\frac{1}{2}, \frac{1}{2}\right]$
c) At least one root in $[-1,0]$
d) At least two roots in $[0,2]$
34. Consider the set A of all determinants of order 3 with entries 0 or 1 only. Let B be the subset of A consisting of all determinants with values -1 . Then
a) C is empty
b) B has as many elements as C
c) $A=B \cup C$
d) B has twice as many elements as elements as C
35.

If $x \neq y \neq z$ and $\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$, then the value of $x y z$ is
a) 1
b) 2
c) -1
d) -2
36. If $l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$, etc and $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$, etc, and $\Delta=\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|$, then
a) $|\Delta|=3$
b) $|\Delta|=2$
c) $|\Delta|=1$
d) $\Delta=0$
37. Which of the following is not the root of the equation $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$?
a) 2
b) 0
c) 1
d) -3
38. If $x \neq 0, y \neq 0, z \neq 0$ and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1+y & 1+2 y & 1 \\ 1+z & 1+z & 1+3 z\end{array}\right|=0$, then $x^{-1}+y^{-1}+z^{-1}$ is equal to
a) -1
b) -2
c) -3
d) None of these
39.

If $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$, where a, b, c are all different, then the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ (x-a)^{2} & (x-b)^{2} & (x-c)^{2} \\ (x-b)(x-c) & (x-c)(x-a) & (x-a)(c-b)\end{array}\right|$ vanishes when
a) $a+b+c=0$
b) $x=\frac{1}{3}(a+b+c)$
c) $x=\frac{1}{2}(a+b+c)$
d) $x=a+b+c$
40. If the system of equations $x-k y-z=0, k x-y-z=0, x+y-z=0$ has a non-zero solution then the possible values of k are
a) $-1,2$
b) 1,2
c) 0,1
d) $-1,1$
41.

Value of $\left|\begin{array}{lll}1+x_{1} & 1+x_{1} x & 1+x_{1} x^{2} \\ 1+x_{2} & 1+x_{2} x & 1+x_{2} x^{2} \\ 1+x_{3} & 1+x_{3} x & 1+x_{3} x^{2}\end{array}\right|$ depends upon
a) x only
b) x_{1} only
c) x_{2} only
d) None of these
42. The set of equations $\lambda x-y+(\cos \theta) z=0,3 x+y+2 z=0,(\cos \theta) x+y+2 z=0,0 \leq \theta<2 \pi$, has nontrivial solution(s)
a) For non value of λ and θ
b) For all values of λ and θ
c) For all values of λ and only two values of θ
d) For only one value of λ and all values of θ
43.

Let $x<1$, then value of $\left|\begin{array}{ccc}x^{2}+2 & 2 x+1 & 1 \\ 2 x+1 & x+2 & 1 \\ 3 & 3 & 1\end{array}\right|$ is
a) Non-negative
b) Non-positive
c) Negative
d) Positive
44.

Let $\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|=A x^{4}+B x^{3}+C x^{2}+D x+E$. Then the value of $5 A+4 B+3 C+2 D+E$ is equal to
a) Zero
b) -16
c) 16
d) -11
45.

The value of the determinant $\Delta=\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|$ is equal to
a) 1
b) 0
c) 2
d) 3
46. Let $\left\{D_{1}, D_{2}, D_{3}, \cdots, D_{n}\right\}$ be the set of third-order determinants that can be made with the distinct non-zero real numbers $a_{1}, a_{2}, \cdots, a_{9}$. Then
a) $\sum_{i=1}^{n} D_{i}=1$
b) $\sum_{i=1}^{n} D_{i}=0$
c) $D_{i}=D_{j}, \forall i, j$
d) None of these
47. If α, β, γ are the angles of a triangle and the system of equations
$\cos (\alpha-\beta) x+\cos (\beta-\gamma) y+\cos (\gamma-\alpha) z=0$
$\cos (\alpha+\beta) x+\cos (\beta+\gamma) y+\cos (\gamma+\alpha) z=0$
$\sin (\alpha+\beta) x+\sin (\beta+\gamma) y+\sin (\gamma+\alpha) z=0$
Has non-trivial solutions, then triangle is necessarily
a) Equilateral
b) Isosceles
c) Right angled
d) Acute angled
48. If $c<1$ and the system of equations $x+y-1=0,2 x-y-c=0$ and $b x+3 b y-c=0$ is consistent, then the possible real values of b are
a) $b \in\left(-3, \frac{3}{4}\right)$
b) $b \in\left(-\frac{3}{2}, 4\right)$
c) $b \in\left(-\frac{3}{4}, 3\right)$
d) None of these
49. Let a, b, c be the real numbers. Then following system of equation in x, y and $z, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+$ $\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, has
a) No solution
b) Unique solution
c) Many solutions
d) Finitely many solutions
50. The value of $\left|\begin{array}{ccc}-1 & 2 & 1 \\ 3+2 \sqrt{2} & 2+2 \sqrt{2} & 1 \\ 3-2 \sqrt{2} & 2-2 \sqrt{2} & 1\end{array}\right|$ is equal to
a) Zero
b) $-16 \sqrt{2}$
c) $-8 \sqrt{2}$
d) None of these
51.

The value of $\sum_{r=2}^{n}(-2)^{r}\left|\begin{array}{ccc}n-2 \\ C_{r-2} & { }^{n-2} C_{r-1} & { }^{n-2} C_{r} \\ -3 & 1 & 1 \\ 2 & -1 & 0\end{array}\right|(n>2)$ is
a) $2 n-1+(-1)^{n}$
b) $2 n+1+(-1)^{n-1}$
c) $2 n-3+(-1)^{n}$
d) None of these
52.

The value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ { }^{m} C_{1} & { }^{m+1} C_{1} & { }^{m+2} C_{1} \\ { }^{m} C_{2} & { }^{m+1} C_{2} & { }^{m+2} C_{2}\end{array}\right|$ is equal to
a) 1
b) -1
c) 0
d) None of these
53.

The number of positive integral solutions of the equation $\left|\begin{array}{ccc}x^{3}+1 & x^{2} y & x^{2} z \\ x y^{2} & y^{3}+1 & y^{2} z \\ x z^{2} & y z^{2} & z^{3}+1\end{array}\right|=11$ is
a) 0
b) 3
c) 6
d) 12
54. In triangle $A B C$, if $\left|\begin{array}{ccc}1 & 1 & 1 \\ \cot \frac{A}{2} & \cot \frac{B}{2} & \cot \frac{C}{2} \\ \tan \frac{B}{2}+\tan \frac{C}{2} & \tan \frac{C}{2}+\tan \frac{A}{2} & \tan \frac{A}{2}+\tan \frac{B}{2}\end{array}\right|=0$, then the triangle must be
a) Equilateral
b) Isosceles
c) Obtuse angled
d) None of these
55.

If $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|$ then $f(500)$ is equal to
a) 0
b) 1
c) 500
d) -500
56. If $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}$ and $a_{3} b_{3} c_{3}$ are 3-digit even natural numbers and $\Delta=\left|\begin{array}{lll}c_{1} & a_{1} & b_{1} \\ c_{2} & a_{2} & b_{2} \\ c_{3} & a_{3} & b_{3}\end{array}\right|$, then Δ is
a) Divisible by 2 but not necessarily by 4
b) Divisible by 4 but not necessarily by 8
c) Divisible by 8
d) None of these
57. The system of equations
$a x-y-z=\alpha-1$
$x-\alpha y-z=\alpha-1$
$x-y-\alpha z=\alpha-1$
Has no solution if α is
a) Either -2 or 1
b) -2
c) 1
d) Not -2
58. a, b, c are distinct real numbers, not equal to one. If $a x+y+z=0, x+b y+z=0$ and $x+y+c z=0$ have a non-trivial solution, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is equal to
a) -1
b) 1
c) Zero
d) None of these
59. If $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|=k a^{2} b^{2} c^{2}$, then the value of k is
a) 2
b) 4
c) 0
d) None of these
60. $\Delta_{1}=\left|\begin{array}{ccc}y^{5} z^{6}\left(z^{3}-y^{3}\right) & x^{4} z^{6}\left(x^{3}-z^{3}\right) & x^{4} y^{5}\left(y^{3}-x^{3}\right) \\ y^{2} z^{3}\left(y^{6}-z^{6}\right) & x z^{3}\left(z^{6}-x^{6}\right) & x y^{2}\left(x^{6}-y^{6}\right) \\ y^{2} z^{3}\left(z^{3}-y^{3}\right) & x z^{3}\left(x^{3}-z^{3}\right) & x y^{2}\left(y^{3}-x^{3}\right)\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ccc}x & y^{2} & z^{3} \\ x^{4} & y^{5} & z^{6} \\ x^{7} & y^{8} & z^{9}\end{array}\right|$. Then $\Delta_{1} \Delta_{2}$ is equal to
a) Δ_{2}^{3}
b) Δ_{2}^{2}
c) Δ_{2}^{4}
d) None of these
61.

If a, b, c are different, then the value of x satisfying $\left|\begin{array}{ccc}0 & x^{2}-a & x^{3}-b \\ x^{2}+a & 0 & x^{2}+c \\ x^{4}+b & x-c & 0\end{array}\right|=0$ is
a) c
b) c
c) b
d) 0
62.

Let m be a positive integer and $\Delta_{r}=\left|\begin{array}{ccc}2 r-1 & { }^{m} C_{r} & 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2}\left(m^{2}\right) & \sin ^{2}(m) & \sin ^{2}(m+1)\end{array}\right|(0 \leq r \leq m)$
Then the value of $\sum_{r=0}^{m} \Delta_{r}$ is given by
a) 0
b) $m^{2}-1$
c) 2^{m}
d) $2^{m} \sin ^{2}\left(2^{m}\right)$
63.

For the equation $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=0$
a) There are exactly two distinct roots
b) There is one pair of equation real roots
c) There are three pairs of equal roots
d) Modulus of each root is 2
64. If a, b, c are in G.P. with common ratio r_{1} and α, β, γ are in G.P. with common ratio r_{2}, and equations $a x+\alpha y+z=0, b x+\beta y+z=0, c x+\gamma y+z=0$ have only zero solution, then which of the following is not true?
a) $r_{1} \neq 1$
b) $r_{2} \neq 1$
c) $r_{1} \neq r_{2}$
d) None of these
65.

The value of the determinant $\left|\begin{array}{llll}\left(a_{1}-b_{1}\right)^{2} & \left(a_{1}-b_{2}\right)^{2} & \left(a_{1}-b_{3}\right)^{2} & \left(a_{1}-b_{4}\right)^{2} \\ \left(a_{2}-b_{1}\right)^{2} & \left(a_{2}-b_{2}\right)^{2} & \left(a_{2}-b_{3}\right)^{2} & \left(a_{2}-b_{4}\right)^{2} \\ \left(a_{3}-b_{1}\right)^{2} & \left(a_{3}-b_{2}\right)^{2} & \left(a_{3}-b_{3}\right)^{2} & \left(a_{3}-b_{4}\right)^{2} \\ \left(a_{4}-b_{1}\right)^{2} & \left(a_{4}-b_{2}\right)^{2} & \left(a_{4}-b_{3}\right)^{2} & \left(a_{4}-b_{4}\right)^{2}\end{array}\right|$ is
a) Dependant on $a_{i}, i=1,2,3,4$
b) Dependant on $b_{i}, i=1,2,3,4$
c) Dependant on $a_{i j}, b_{i}, i=1,2,3,4$
d) 0
66.

If A, B, C are angles of a triangle, then the value of $\left|\begin{array}{lll}2 i A & e^{-i C} & e^{-i B} \\ e^{-i C} & e^{2 i B} & e^{-i A} \\ e^{-i B} & e^{-i A} & e^{2 i C}\end{array}\right|$ is
a) 1
b) -1
c) -2
d) -4
67. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then
a) $x=3, y=1$
b) $x=1, y=3$
c) $x=0, y=3$
d) $x=0, y=0$
68. If p, q, r are in A.P., then the value of determinant $\left|\begin{array}{ccc}a^{2}+a^{2 n+1}+2 p & b^{2}+2^{n+2}+3 q & c^{2}+p \\ 2^{n}+p & 2^{n+1}+q & 2 q \\ a^{2}+2^{n}+p & b^{2}+2^{n+1}+2 q & c^{2}-r\end{array}\right|$ is
a) 1
b) 0
c) $a^{2} b^{2} c^{2}-2^{n}$
d) $\left(a^{2}+b^{2}+c^{2}\right)-2^{n} q$
69. If $p+q+r=0=a+b+c$, then the value of the determinant
$\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|$ is
a) 0
b) $p a+q b+r c$
c) 1
d) None of these
70. If a, b, c, d, e, and f are in G.P., then the value of $\left|\begin{array}{lll}a^{2} & d^{2} & x \\ b^{2} & e^{2} & y \\ c^{2} & f^{2} & z\end{array}\right|$ depends on
a) x and y
b) x and z
c) y and z
d) Independent of x, y and z
71. If a, b, c are non-zeros, then the system of equations $(\alpha+a) x+\alpha y+\alpha z=0, \alpha x+(\alpha+b) y+\alpha z=$ $0, \alpha x+\alpha y+(\alpha+c) z=0$ has a non-trivial solution if
a) $\alpha^{-1}=-\left(a^{-1}+b^{-1}+c^{-1}\right)$
b) $\alpha^{-1}=a+b+c$
c) $\alpha+a+b+c=1$
d) None of these
72. If $a=\cos \theta+i \sin \theta, b=\cos 2 \theta-i \sin 2 \theta, c=\cos 3 \theta+i \sin 3 \theta$ and if $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$, then
a) $\theta=2 k \pi, k \in Z$
b) $\theta=(2 k+1) \pi, k \in Z$
c) $\theta=(4 k+1) \pi, k \in Z$
d) None of these
73.

If $\left|\begin{array}{ccc}x^{n} & x^{n+2} & x^{2 n} \\ 1 & x^{a} & a \\ x^{n+5} & x^{a+6} & x^{2 n+5}\end{array}\right|=0, \forall x \in R$, where $n \in N$, then value of ' a ' is
a) n
b) $n-1$
c) $n+1$
d) None of these
74. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ from a G.P. and $a_{i}>0$, for all $i \geq 1$, then $\left|\begin{array}{cll}\log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8}\end{array}\right|$ is equal to
a) 0
b) 1
c) 2
d) 3
75. The value of $\left|\begin{array}{ccc}y z & z x & x y \\ p & 2 q & 3 r \\ 1 & 1 & 1\end{array}\right|$, where x, y, z are, respectively, $p^{\text {th }},(2 q)^{\text {th }}$ and $(3 r)^{\text {th }}$ terms of an H.P., is
a) -1
b) 0
c) 1
d) None of these
76. If $y=\sin m x$, then the value of the determinant $\left|\begin{array}{lll}y & y_{1} & y_{2} \\ y_{3} & y_{4} & y_{5} \\ y_{6} & y_{7} & y_{8}\end{array}\right|$, where $y_{n}=\frac{d^{n} y}{d x^{n}}$, is
a) m^{9}
b) m^{2}
c) m^{3}
d) None of these
77. Suppose $D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and $D^{\prime}=\left|\begin{array}{lll}a_{1}+p b_{1} & b_{1}+q c_{1} & c_{1}+r a_{1} \\ a_{2}+p b_{2} & b_{2}+q c_{2} & c_{2}+r a_{2} \\ a_{3}+p b_{3} & b_{3}+q c_{3} & c_{3}+r a_{3}\end{array}\right|$. Then
a) $D^{\prime}=D$
b) $D^{\prime}=D(1-p q r)$
c) $D^{\prime}=D(1+p+q+r)$
d) $D^{\prime}=D(1+p q r)$
78. The value of the determinant $\left|\begin{array}{lll}k a & k^{2}+a^{2} & 1 \\ k b & k^{2}+b^{2} & 1 \\ k c & k^{2}+c^{2} & 1\end{array}\right|$ is
a) $k(a+b)(b+c)(c+a)$
b) $k a b c\left(a^{2}+b^{2}+c^{2}\right)$
c) $k(a-b)(b-c)(c-a)$
d) $k(a+b-c)(b+c-a)(c+a-b)$
79.

If a, b, c are positive and are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms, respectively, of a G.P., then $\Delta=\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|$ is
a) 0
b) $\log (a b c)$
c) $-(p+q+r)$
d) None of these
80. If the determinant $\left|\begin{array}{ccc}b-c & c-a & a-b \\ b^{\prime}-c^{\prime} & c^{\prime}-a^{\prime} & a^{\prime}-b^{\prime} \\ b^{\prime \prime}-c^{\prime \prime} & c^{\prime \prime}-a^{\prime \prime} & a^{\prime \prime}-b^{\prime \prime}\end{array}\right|=m\left|\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}\end{array}\right|$, then the value of m is
a) 0
b) 2
c) -1
d) 1
81. If x, y, z are different from zero and $\Delta=\left|\begin{array}{ccc}a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c\end{array}\right|=0$, then the value of the expression $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}$ is
a) 0
b) -1
c) 1
d) 2
82. If $\Delta_{1}=\left|\begin{array}{lll}x & b & b \\ a & x & b \\ a & a & x\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ll}x & b \\ a & x\end{array}\right|$ are the given determinants, then
a) $\Delta_{1}=3\left(\Delta_{2}\right)^{2}$
b) $\frac{d}{d x}\left(\Delta_{1}\right)=3 \Delta_{2}$
c) $\frac{d}{d x}\left(\Delta_{1}\right)=3\left(\Delta_{2}\right)^{2}$
d) $\Delta_{1}=3 \Delta_{2}^{3 / 2}$
83. If a determinant of order 3×3 is formed by using the numbers 1 or -1 , then the minimum value of the
determinant is
a) -2
b) -4
c) 0
d) -8
84. If the system of linear equations $x+y+z=6, x+2 y+3 z=14$ and $2 x+5 y+\lambda z=\mu(\lambda, \mu \in R)$ has a unique solution, then
a) $\lambda \neq 8$
b) $\lambda=8, \mu \neq 36$
c) $\lambda=8, \mu=36$
d) None of these
85. If $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=a^{2}$
$\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=b^{2}$
$\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}=c^{2}$ and $k\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=(a+b+c)(b+c-a)(c+a-b) \times(a+b-c)$, then the value of k is
a) 1
b) 2
c) 4
d) None of these
86. If [] denotes the greatest integer less than or equal to the real number under consideration, and $-1 \leq x<0,0 \leq y<1,1 \leq z<2$, then the value of the determinant
$\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$ is
a) $[x]$
b) $[y]$
c) $[z]$
d) None of these
87. If $p q r \neq 0$ and the system of equations
$(p+a) x+b y+c z=0$
$a x+(q+b) y+c z=0$
$a x+b y+(r+c) z=0$
Has a non-trivial solution, then value of $\frac{a}{p}+\frac{b}{q}+\frac{c}{r}$ is
a) -1
b) 0
c) 1
d) 2
88. When the determinant $\left|\begin{array}{lll}\cos 2 x & \sin ^{2} x & \cos 4 x \\ \sin ^{2} x & \cos 2 x & \cos ^{2} x \\ \cos 4 x & \cos ^{2} x & \cos 2 x\end{array}\right|$ is expanded in powers of $\sin x$, then the constant term in that expression is
a) 1
b) 0
c) -1
d) 2
89. If the value of the determinant $\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|$ is positive, then $(a, b, c>0)$
a) $a b c>1$
b) $a b c>-8$
c) $a b c<-8$
d) $a b c>-2$
90. If $\left|\begin{array}{lll}a^{2}+\lambda^{2} & a b+c \lambda & c a-b \lambda \\ a b-c \lambda & b^{2}+\lambda^{2} & b c+a \lambda \\ c a+b \lambda & b c-a \lambda & c^{2}+\lambda^{2}\end{array}\right|\left|\begin{array}{ccc}\lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda\end{array}\right|=\left(1+a^{2}+b^{2}+c^{2}\right)^{3}$, then the value of λ is
a) 8
b) 27
c) 1
d) -1
91.

The determinant $\left|\begin{array}{ccc}x p+y & x & y \\ y p+z & y & z \\ 0 & x p+y & y p+z\end{array}\right|=0$ if
a) x, y, z are in A.P.
b) x, y, z are in G.P.
c) x, y, z are in H.P.
d) $x y, y z, z x$ are in A.P.
92. The value of the determinant of $n^{\text {th }}$ order, being given by
$\left|\begin{array}{cccc}x & 1 & 1 & \cdots \\ 1 & x & 1 & \cdots \\ 1 & 1 & x & \cdots \\ \cdots & \cdots & \cdots & \cdots\end{array}\right|$ is
a) $(x-1)^{n-1}(x+n-1)$
b) $(x-1)^{n}(x+n-1)$
c) $(1-x)^{-1}(x+n-1)$
d) None of these
93.

If $a+b+c=0$, one root of $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$ is
a) $x=1$
b) $x=2$
c) $x=a^{2}+b^{2}+c^{2}$
d) $x=0$

Multiple Correct Answers Type

94.

The determinant $\Delta=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|$ is equal to zero, if
a) a, b, c are in AP
b) a, b, c are in GP
c) a, b, c are in HP
d) α is the root of $a x^{2}+2 b x+c=0$
95.

If $\Delta=\left|\begin{array}{ccc}\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0\end{array}\right|$ then
a) Δ is independent of θ
b) Δ is independent of ϕ
c) Δ is a constant
d) $\left.\frac{d \Delta}{d \theta}\right]_{\theta=\pi / 2}=0$
96.

If $f(x)=\left|\begin{array}{ccc}3 & 3 x & 3 x^{2}+2 a^{2} \\ 3 x & 3 x^{2}+2 a^{2} & 3 x^{3}+6 a^{2} x \\ 3 x^{2}+2 a^{2} & 3 x^{3}+6 a^{2} x & 3 x^{4}+12 a^{2} x^{2}+2 a^{4}\end{array}\right|$, then
a) $f^{\prime}(x)=0$
b) $y=f(x)$ is a straight line parallel to x-axis
c) $\int_{0}^{2} f(x) d x=32 a^{4}$
d) None of these
97.

If $f(\theta)=\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cos B & 1 \\ \sin ^{2} C & \cos C & 1\end{array}\right|$, then
a) $\tan A+\tan B+c$
b) $\cot A \cot B \cot C$
c) $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
d) 0
98.

The determinant $\Delta=\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$ is divisible by
a) x
b) x^{2}
c) x^{3}
d) None of these
99.

Let $f(x)=\left|\begin{array}{ccc}n & n+1 & n+2 \\ { }^{n} P_{n} & { }^{n+1} P_{n+1} & { }^{n+2} P_{n+2} \\ { }^{n} C_{n} & { }^{n+1} C_{n+1} & { }^{n+2} C_{n+2}\end{array}\right|$, where the symbols have their usual meanings. The $f(x)$ is divisible by
a) $n^{2}+n+1$
b) $(n+1)$!
c) n !
d) None of the above
100.

The determinant $\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0$, if
α is a root of the
a) a, b, c are in A.P.
b) a, b, c are in G.P.
c) a, b, c are in H.P.
d) equation $a x^{2}+b x+$ $c=0$
101. The determinant $\Delta=\left|\begin{array}{ccc}a^{2}+x^{2} & a b & a c \\ a b & b^{2}+x^{2} & b c \\ a c & b c & c^{2}+x^{2}\end{array}\right|$ is divisible by
a) x
b) x^{2}
c) x^{3}
d) x^{4}
102.

If $\mathrm{g}(x)=\left|\begin{array}{ccc}a^{-x} & e^{x \log _{e} a} & x^{2} \\ a^{-3 x} & e^{3 x \log _{e} a} & x^{4} \\ a^{-5 x} & e^{5 x \log _{e} a} & 1\end{array}\right|$, then
a) Graphs of $\mathrm{g}(x)$ is symmetrical about origin
b) Graphs of $\mathrm{g}(x)$ is symmetrical about Y-axis
c) $\left.\frac{d^{4} g(x)}{d x^{4}}\right|_{x=0}=0$
d) $f(x)=\mathrm{g}(x) \times \log \left(\frac{a-x}{a+x}\right)$ is an odd function
103. If $\mathrm{g}(x)=\frac{f(x)}{(x-a)(x-b)(x-c)}$, where $f(x)$ is a polynomial of degree <3, then
a) $\int \mathrm{g}(x) d x=\left|\begin{array}{lll}1 & a & f(a) \log |x-a| \\ 1 & b & f(b) \log |x-b| \\ 1 & c & f(c) \log |x-c|\end{array}\right| \div\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$ b) $\frac{d g(x)}{d x}=\left|\begin{array}{lll}1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1\end{array}\right|$
c) $\frac{d g(x)}{d x}=\left|\begin{array}{lll}1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
$\int \mathrm{g}(x) d x=\left|\begin{array}{lll}1 & a & f(a) \log |x-a| \\ 1 & b & f(b) \log |x-b| \\ 1 & c & f(c) \log |x-c|\end{array}\right|$ $\div\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1\end{array}\right|+k$
104. Eliminating a, b, c from $x=\frac{a}{b-c}, y=\frac{b}{c-a}, z=\frac{c}{a-b}$, we get
а) $\left|\begin{array}{lll}1 & x- & x \\ 1 & -y & y \\ 1 & -z & z\end{array}\right|=0$
b) $\left|\begin{array}{ccc}1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1\end{array}\right|=0$
c) $\left|\begin{array}{ccc}1 & -x & x \\ y & 1 & -y \\ -z & z & 1\end{array}\right|=0$
d) None of these
105.

If determinant $\left|\begin{array}{ccc}\cos (\theta+\phi) & -\sin (\theta+\phi) & \cos 2 \phi \\ \sin \theta & \cos \theta & \sin \phi \\ -\cos \theta & \sin \theta & \cos \phi\end{array}\right|$ is
a) Positive
b) Independent of θ
c) Independent of ϕ
d) None of these
106. If $A+B+C=\pi, e^{i \theta}+\cos \theta+\sin \theta$ and $z=\left|\begin{array}{lll}e^{2 i A} & e^{-i C} & e^{-i B} \\ e^{-i C} & e^{2 i B} & e^{-i A} \\ e^{-e B} & e^{-i A} & 2^{2 i C}\end{array}\right|$ then
a) $\operatorname{Re}(z)=4$
b) $\operatorname{Im}(z)=0$
c) $\operatorname{Re}(z)=-4$
d) $\operatorname{Im}(z)=-1$
107.

If $f(\theta)=\left|\begin{array}{ccc}\sin \theta & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & \cos \theta \\ \cos \theta & \sin \theta & \sin \theta\end{array}\right|$, then
a) $f(\theta)=0$ has exactly 2 real solutions in $[0, \pi]$
b) $f(\theta)=0$ has exactly 3 real solutions in $[0, \pi]$
c) Range of function $\frac{f(\theta)}{1-\sin 2 \theta}$ is $[-\sqrt{2}, \sqrt{2}]$
d) Range of function $\frac{f(\theta)}{\sin 2 \theta-1}$ is $[-3,3]$
108. If $\left|\begin{array}{lll}y z-x^{2} & z x-y^{2} & x y-z^{2} \\ x z-y^{2} & x y-z^{2} & y z-x^{2} \\ x y-z^{2} & y z-x^{2} & z x-y^{2}\end{array}\right|=\left|\begin{array}{ccc}r^{2} & u^{2} & u^{2} \\ u^{2} & r^{2} & u^{2} \\ u^{2} & u^{2} & r^{2}\end{array}\right|$, then
a) $r^{2}=x+y+z$
b) $r^{2}=x^{2}+y^{2}+z^{2}$
c) $u^{2}=y z+z x+x y$
d) $u^{2}=x y z$
109.

If a, b, c are non-zero real numbers such that $\left|\begin{array}{lll}b c & c a & a b \\ c a & a b & b c \\ a b & b c & c a\end{array}\right|=0$, then
a) $\frac{1}{a}+\frac{1}{b \omega}+\frac{1}{c \omega^{2}}=0$
b) $\frac{1}{a}+\frac{1}{b \omega^{2}}+\frac{1}{c \omega}=0$
c) $\frac{1}{a \omega}+\frac{1}{b \omega^{2}}+\frac{1}{c}=0$
d) None of these
110. If $f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|$, then $f(2 x)-f(x)$ is divisible by
a) x
b) a
c) $2 a+3 x$
d) x^{2}
111. The values of $k \in R$ for which the system of equations $x+k y+3 z=0, k x+2 y+2 z=0,2 x+3 y+4 z=$ 0 admits of non-trivial solution is
a) 2
b) $5 / 2$
c) 3
d) $5 / 4$
112. If $\Delta=\left|\begin{array}{ccc}-x & a & b \\ b & -x & a \\ a & b & -x\end{array}\right|$, then a factor of Δ is
a) $a+b+x$
b) $x^{2}-(a-b) x+a^{2}+b^{2}+a b$
c) $x^{2}+(a+b) x+a^{2}+b^{2}-a b$
d) $a+b-x$
113. Which of the following has/have value equal to zero?
a) $\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|$
b) $\left|\begin{array}{lll}1 / a & a^{2} & b c \\ 1 / b & b^{2} & a c \\ 1 / c & c^{2} & a b\end{array}\right|$
c) $\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$
d) $\left|\begin{array}{lll}2 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|$
114. If $\phi(\alpha, \beta)=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$, then
a) $f(300,200)=f(400,200)$
b) $f(200,400)=f(200,600)$
c) $f(100,200)=f(200,200)$
d) None of these
115.

The roots of the equation $\left\lvert\, \begin{array}{ccc}{ }^{x} C_{r} & { }^{n-1} C_{r} & { }^{n-1} C_{r-1} \\ x+1 & C_{r} & { }^{n} C_{r}\end{array}{ }^{n} C_{r-1}\right., 0$ are
a) $x=n$
b) $x=n+1$
c) $x=n-1$
d) $x=n-2$
116. $\Delta=\left|\begin{array}{lll}1 & 1+a c & 1+b c \\ 1 & 1+a d & 1+b d \\ 1 & 1+a e & 1+b e\end{array}\right|$ is independent of
a) a
b) b
c) c, d, e
d) None of these
117. If $\Delta(x)=\left|\begin{array}{ccc}x^{2}+4 x-3 & 2 x+4 & 13 \\ 2 x^{2}+5 x-9 & 4 x+5 & 26 \\ 8 x^{2}-6 x+1 & 16 x-6 & 104\end{array}\right|=a x^{3}+b x^{2}+c x+d$, then
a) $a=3$
b) $b=0$
c) $c=0$
d) None of these
118.

Let $f(n)=\left|\begin{array}{ccc}n & n+1 & n+2 \\ { }^{n} P_{n} & n+1 P_{n+1} & { }^{n+2} P_{n+2} \\ { }^{n} C_{n} & { }^{n+1} C_{n+1} & { }^{n+2} C_{n+2}\end{array}\right|$ where the symbols have their usual meanings. Then $f(n)$ is divisible by
a) $n^{2}+n+1$
b) $(n+1)$!
c) n !
d) None of these

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 119 to 118. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

119
Statement 1:

$$
\text { If } b c+q r=c a+r p=a b+p q=-1 \text {, then }\left|\begin{array}{lll}
a p & a & p \\
b q & b & q \\
c r & c & r
\end{array}\right|=0 \quad(a b c, p q r \neq 0)
$$

Statement 2: If system of equations $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{3} x+b_{3} y+c_{3}=0$ has non-trivial solutions, $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$
120 Consider the system of equation $x+y+z=6, x+2 y+3 z=10$ and $x+2 y+\lambda z=\mu$
Statement 1: If the system has infinite number of solutions, then $\mu=10$
Statement 2:

$$
\text { The determinant }\left|\begin{array}{llc}
1 & 1 & 6 \\
1 & 2 & 10 \\
1 & 2 & \mu
\end{array}\right|=0 \text { for } \mu=10
$$

Statement 1: If A, B and C are the angles of a triangle and

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1+\sin A & 1+\sin B & 1+\sin C \\
\sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C
\end{array}\right|
$$

$=0$, then triangle may not be equilateral
Statement 2: If any two rows of a determinant are the same, then the value of that determinant is zero
122 Let x, y, z are three integers lying between 1 and 9 such that $x 51, y 41$ and $z 31$ are three digit numbers
Statement 1:
The value of the determinant $\left|\begin{array}{ccc}5 & 4 & 3 \\ x 51 & y 41 & z 31 \\ x & y & z\end{array}\right|$ is zero
Statement 2: The value of a determinant is zero, if the entries in any two rows (or columns) of the determinant are correspondingly proportional

Statement 1:
$\left|\begin{array}{ccc}\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\ \sin (\theta+\alpha) & \sin (\theta+\beta) & \sin (\theta+\gamma) \\ \sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)\end{array}\right|$
is independent of θ.
Statement 2: If $f(\theta)=c$, then $f(\theta)$ is independent of θ.

Statement 1: If a, b, c are even natural numbers, then $\Delta=\left|\begin{array}{lll}a-1 & a & a+1 \\ b-1 & b & b+1 \\ c-1 & c & c+1\end{array}\right|$ is an even natural number.
Statement 2: Sum and product of two even natural numbers is also an even natural number.
125
Consider the determinant $f(x)=\left|\begin{array}{ccc}0 & x^{2}-a & x^{3}-b \\ x^{2}+a & 0 & x^{2}+c \\ x^{4}+b & x-c & 0\end{array}\right|$
Statement 1: $f(x)=0$ has one root $x=0$
Statement 2: The value of skew-symmetric determinant of odd-order is always zero

Statement 1: If the system of equations $\lambda x+(b-a) y+(c-a) z=0,(a-b) x+\lambda y+(c-b) z=0$ and $(a-c) x+(b-c) y+\lambda z=0$ has a non-trivial solution, then the value of λ is 0
Statement 2: The value of skew-symmetric matrix of order 3 is zero
127
Statement 1:

$$
\Delta=\left|\begin{array}{ccc}
m y+n z & m q+n r & m b+n c \\
k z-m x & k r-m p & k c-m a \\
-n x-k y & -n p-k q & -n a-k b
\end{array}\right| \text { is equal to } 0
$$

Statement 2: The value of skew-symmetric matrix of order 3 is zero
128 Consider the system of the equations $k x+y+z=1, x+k y+z=k$ and $x+y+k z=k^{2}$
Statement 1: System of equations has infinite solutions when $k=1$
Statement 2:

$$
\text { If the determinant }\left|\begin{array}{lll}
1 & 1 & 1 \\
k & k & 1 \\
k^{2} & 1 & k
\end{array}\right|=0 \text {, then } k=-1
$$

Statement 1:

$$
\begin{aligned}
& \text { If } \Delta(x)=\left|\begin{array}{ll}
f_{1}(x) & f_{2}(x) \\
\mathrm{g}_{1}(x) & \mathrm{g}_{2}(x)
\end{array}\right|, \\
& \text { then } \Delta^{\prime}(x) \neq\left|\begin{array}{ll}
f_{1}^{\prime}(x) & f_{2}{ }^{\prime}(x) \\
\mathrm{g}_{1}(x) & \mathrm{g}_{2}{ }^{\prime}(x)
\end{array}\right|
\end{aligned}
$$

Statement 2: $\quad \frac{d}{d x}\{f(x) \mathrm{g}(x)\} \neq \frac{d}{d x} f(x) \frac{d}{d x} \mathrm{~g}(x)$
130
Consider the determinant $\Delta=\left|\begin{array}{lll}a_{1}+b_{1} x^{2} & a_{1} x^{2}+b_{1} & c_{1} \\ a_{2}+b_{2} x^{2} & a_{2} x^{2}+b_{2} & c_{2} \\ a_{3}+b_{3} x^{2} & a_{3} x^{2}+b_{3} & c_{3}\end{array}\right|=0$, where $a_{i}, b_{i}, c_{i} \in R(i=1,2,3)$ and $x \in R$
Statement 1: The values of x satisfying $\Delta=0$ are $x=1,-1$
Statement 2:

$$
\text { If }\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0 \text {, then } \Delta=0
$$

Statement 1:

$$
\text { If } f(x)=\left|\begin{array}{lll}
(1+x)^{21} & (1+x)^{22} & (1+x)^{23} \\
(1+x)^{31} & (1+x)^{32} & (1+x)^{33} \\
(1+x)^{41} & (1+x)^{42} & (1+x)^{43}
\end{array}\right| \text { then coefficient of } x \text { in } f(x) \text { is zero. }
$$

Statement 2: If $F(x)=A_{0}+A_{1} x+A_{2} x^{2}+\ldots+A_{n} x^{n}$, then $A_{1}=F^{\prime}(0)$, where dash denotes the differential coefficient.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
132.

Column-I

Column- II

(A) $\begin{array}{cccc}1 / c & 1 / c & -(a+b) /(\mathrm{p}) & \text { Independent of } a \\ -(b+c) / a^{2} & 1 / a & 1 / a & \\ -b(b+c) / a^{2} c & (a+2 b+c) / a c & -b(a+b) /\end{array}$
is
(B) $\left|\begin{array}{ccc}\sin a \cos b & \sin a \sin b & \cos a \\ \cos a \cos b & \cos a \sin b & -\sin a \\ -\sin a \sin b & \sin a \cos b & 0\end{array}\right|$ is
(q) Independent of b
(C)
$\left|\begin{array}{lll}\frac{1}{\sin a \cos b} & \frac{1}{\sin a \sin b} & \frac{1}{\cos a} \\ \frac{-\cos a}{\sin ^{2} a \cos b} & \frac{-\cos a}{\sin ^{2} a \sin b} & \frac{\sin a}{\cos ^{2} a} \\ \frac{\sin b}{\sin a \cos ^{2} b} & \frac{-\cos b}{\sin a \sin ^{2} b} & 0\end{array}\right|$ is
(r) Independent of c
(D) If a, b, and c are the sides of a triangle and A, B (s) Dependent on a, b and C are the angles opposite to a, b, and c,
respectively, then

$$
\Delta=\left|\begin{array}{ccc}
a^{2} & b \sin A & c \sin A \\
b \sin A & 1 & \cos A \\
c \sin A & \cos A & 1
\end{array}\right|
$$

CODES :

A
B
C
D
a) $\begin{array}{llll}\mathrm{p} & \mathrm{r} & \mathrm{r} & \mathrm{q}\end{array}$
$\begin{array}{lllll}\text { b) } & \mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{s} \\ \text { c) } & \mathrm{s} & \mathrm{p} & \mathrm{q} & \mathrm{s}\end{array}$
d) $\mathrm{p}, \mathrm{q}, \mathrm{r} \quad \mathrm{q} \quad \mathrm{s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}$
133.

Column-I

(A) Coefficient of x in
$f(x)=\left|\begin{array}{ccc}x & (a+\sin x)^{3} & \cos x \\ 1 & \log (1+x) & 2 \\ x^{2} & 1+x^{2} & 0\end{array}\right|$
(B) Value of $\left|\begin{array}{ccc}1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1\end{array}\right|$ is
(C) If a, b, c are in A.P. and
$f(x)=\left|\begin{array}{ccc}x+a & x^{2}+1 & 1 \\ x+b & 2 x^{2}-1 & 1 \\ x+c & 3 x^{2}-2 & 1\end{array}\right|$
(D)
If $\left|\begin{array}{ccc}x & 2 & x \\ 1 & x & 6 \\ x & x & x+1\end{array}\right|=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+$
$a_{1} x+a_{0}$,
then a_{0} is

CODES :

	A	B	C	D
a)	r	s	r	r
b)	p	q	p	p
c)	s	p	s	s
d)	q	r	q	q

134.

Column-I

Column- II
(A) The value of the determinant
$\left|\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right|$ is
(B) If one of the roots of the equation
(q) -6
$\left|\begin{array}{ccc}7 & 6 & x^{2}-13 \\ 2 & x^{2}-13 & 2 \\ x^{2}-13 & 3 & 7\end{array}\right|=0$ is $x+2$,
then
sum of the all other five roots is
(C) The value of
$\left|\begin{array}{ccc}\sqrt{6} & 2 i & 3+\sqrt{6} \\ \sqrt{12} & \sqrt{3}+\sqrt{8} i & 3 \sqrt{2}+\sqrt{6} i \\ \sqrt{18} & \sqrt{2}+\sqrt{12} i & \sqrt{27}+2 i\end{array}\right|$ is
(D) If $f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$
then $f(\pi / 3)$
(p) 10
(q) 0
(r) -12
(s) -2
(p) 1
(r) 2
(s) -2

CODES :

	A	B	C	D
a)	r	s	s	q
b)	s	r	q, r	p
c)	p	s	q	r
d)	q	p	r	s

135. Match the following elements of $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 4 & 2 \\ 3 & -4 & 6\end{array}\right]$ with their cofactors and choose the correct answer.

Column-I

Column- II

(A) -1
(1) -2
(B) 1
(2) 32
(C) 3
(3) 4
(D) 6
(4) 6
(5) -6

CODES :

	A	B	C	D
a)	2	4	1	3
b)	2	4	3	1
c)	4	2	1	3
d)	4	1	2	3

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 136 to -136
Let p be an odd prime number and T_{p} be the following set of
2×2 matrices
$T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right] ; a, b, c \in\{0,1,2, \ldots, p-1\}\right\}$
136. The number of A in T_{p} such that A is either symmetric or skew-symmetric or both, and $\operatorname{det}(A)$ is divisible by p is
a) $(p-1)^{2}$
b) $2(p-1)$
c) $(p-1)^{2}+1$
d) $2 p-1$

Let $\Delta \neq 0$ and Δ^{c} denotes the determinant of cofactors, then $\Delta^{c}=\Delta^{n-1}$, where $n(>0)$ is the order of Δ. on the basis of above information, answer the following questions.
137.

If a, b, c are the roots of the equation $x^{3}-p x^{2}+r=0$, then the value of $\left|\begin{array}{lll}b c-a^{2} & c a-b^{2} & a b-c^{2} \\ c a-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & c a-b^{2}\end{array}\right|$ is
a) p^{2}
b) p^{4}
c) p^{6}
d) p^{9}

Paragraph for Question Nos. 138 to - 138
$f(x)=\left|\begin{array}{ccc}x+c_{1} & x+a & x+a \\ x+b & x+c_{2} & x+a \\ x+b & x+b & x+c_{3}\end{array}\right|$ and $g(x)=\left(c_{1}-x\right)\left(c_{2}-x\right)\left(c_{3}-x\right)$
138. Coefficient of x in $f(x)$ is
a) $\frac{g(a)-f(b)}{b-a}$
b) $\frac{g(-a)-g(-b)}{b-a}$
c) $\frac{\mathrm{g}(a)-\mathrm{g}(b)}{b-a}$
d) None of these

Paragraph for Question Nos. 139 to - 139

Consider the function $f(x)=\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$
139. Which of the following is true?
a) $f(x)=0$ and $f^{\prime}(x)=0$ have one positive common root
b) $f(x)=0$ and $f^{\prime}(x)=0$ have one negative common root
c) $f(x)=0$ and $f^{\prime}(x)=0$ have no common root
d) None of these

Paragraph for Question Nos. 140 to - 140

Given that the system of equations $x=c y+b z, y=a z+c x, z=b x+a y$ has non-zero solutions and at least one of the a, b, c is a proper fraction
140. $a^{2}+b^{2}+c^{2}$ is
a) >2
b) >3
c) <3
d) <2

Paragraph for Question Nos. 141 to - 141

Consider the system of equations
$x+y+z=6$
$x+2 y+3 z=10$
$x+2 y+\lambda z=\mu$
141. The system has unique solution if
a) $\lambda \neq 3$
b) $\lambda=3, \mu=10$
c) $\lambda=3, \mu \neq 10$
d) None of these

Paragraph for Question Nos. 142 to - 142

Let α, β be the roots of the equation $a x^{2}+b x+c=0$. Let $S_{n}=\alpha^{n}+\beta^{n}$
For $n \geq 1$ and $\Delta=\left|\begin{array}{ccc}3 & 1+S_{1} & 1+S_{2} \\ 1+S_{1} & 1+S_{2} & 1+S_{3} \\ 1+S_{2} & 1+S_{3} & 1+S_{4}\end{array}\right|$
142. If $\Delta<0$, then the equation $a x^{2}+b x+c=0$ has
a) Positive real roots
b) Negative real roots
c) Equal roots
d) Imaginary roots

Paragraph for Question Nos. 143 to - 143

Let $\Delta=\left|\begin{array}{ccc}-b c & b^{2}+b c & c^{2}+b c \\ a^{2}+a c & -a c & c^{2}+a c \\ a^{2}+a b & b^{2}+a b & -a b\end{array}\right|$ and the equation $p x^{3}+q x^{2}+r x+s=0$ has roots a, b, c where $a, b, c \in R^{+}$
143. The value of Δ is
a) r^{2} / p^{2}
b) r^{3} / p^{3}
c) $-s / p$
d) None of these

Paragraph for Question Nos. 144 to - 144

Consider the polynomial function $f(x)=\left|\begin{array}{ccc}(1+x)^{a} & (1+2 x)^{b} & 1 \\ 1 & (1+x)^{a} & (1+2 x)^{b} \\ (1+2 x)^{b} & 1 & (1+x)^{a}\end{array}\right|$, a, b, being positive integers
144. The constant term in $f(x)$ is
a) 2
b) 1
c) -1
d) 0

Paragraph for Question Nos. 145 to - 145

If $x>m, y>n, z>r(x, y, z>0)$ such that $\left|\begin{array}{lll}x & n & r \\ m & y & r \\ m & n & z\end{array}\right|=0$
145. The value of $\frac{x}{x-m}+\frac{y}{y-n}+\frac{z}{z-r}$ is
a) 1
b) -1
c) 2
d) -2

Paragraph for Question Nos. 146 to - 146

Suppose $f(x)$ is a function satisfying the following conditions:

1. $f(0)=2, f(1)=1$,
2. $\quad f$ has a minimum value at $x=5 / 2$
3. \quad For all $x, f^{\prime}(x)=\left|\begin{array}{ccc}2 a x & 2 a x-1 & 2 a x+b+1 \\ b & b+1 & -1 \\ 2(a x+b) & 2 a x+2 b+1 & 2 a x+b\end{array}\right|$
4. The value of $f(2)$ is
a) $1 / 4$
b) $1 / 2$
c) -1
d) 3

Integer Answer Type

147. If $\Delta=\left|\begin{array}{ccc}1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1\end{array}\right|$, then the value of $\left(\Delta_{\max }\right) / 2$ is
148. If $\left|\begin{array}{lll}n^{n} & x^{n+2} & x^{n+4} \\ y^{n} & y^{n+2} & y^{n+4} \\ z^{n} & z^{n+2} & z^{n+4}\end{array}\right|=\left(\frac{1}{y^{2}}-\frac{1}{x^{2}}\right)\left(\frac{1}{z^{2}}-\frac{1}{y^{2}}\right)\left(\frac{1}{x^{2}}-\frac{1}{z^{2}}\right)$ then $-n$ is
149. Absolute value of sum of roots of the equation $\left|\begin{array}{ccc}x+2 & 2 x+3 & 3 x+4 \\ 2 x+3 & 3 x+4 & 4 x+5 \\ 3 x+5 & 5 x+8 & 10 x+17\end{array}\right|=0$ is
150. The value of $|\alpha|$ for which the system of equation
$\alpha x+y+z=\alpha-1$
$x+\alpha y+z=\alpha-1$
$x+y+\alpha z=\alpha-1$
Has no solution, is
151. If $a_{1}, a_{2}, a_{3}, 5,4, a_{6}, a_{7}, a_{8}, a_{9}$ are in H.P., and $D=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ 5 & 4 & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ then the value of [D]is (where [] represents the greatest integer function)
152. Sum of values of p for which, the equations: $x+y+z=1 ; x+2 y+4 z=p$ and $x+4 y+10 z=p^{2}$ have a solution is
153. Let α, β, γ are the real roots of the equation $x^{3}+a x^{2}+b x+c=0(a, b, c \in R$ and $a \neq 0)$. If the system of equations (in u, v and w) given by
$\alpha u+\beta v+\gamma w=0$
$\beta u+\gamma v+\alpha w=0$
$\gamma u+\alpha v+\beta w=0$
has non-trivial solutions, then the value of a^{2} / b is
154. Let $D_{1}=\left|\begin{array}{lll}a & b & a+b \\ c & d & c+d \\ a & b & a-b\end{array}\right|$ and $D_{2}=\left|\begin{array}{lll}a & c & a+c \\ b & d & b+d \\ a & c & a+b+c\end{array}\right|$ then the value of $\left|\frac{D_{1}}{D_{2}}\right|$ is where $b \neq 0$ and $a d \neq b c$,
155. If $\left(1+a x+b x^{2}\right)^{4}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{8} x^{8}$, where $a, b, a_{0}, a_{1}, \ldots, a_{8} \in R$ such that $a_{0}+a_{1}+a_{2} \neq 0$ and $\left|\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{1} & a_{2} & a_{0} \\ a_{2} & a_{0} & a_{1}\end{array}\right|=0$ then the value of $5 \frac{a}{b}$ is
156. If $a_{1}, a_{2}, a_{3}, \ldots, a_{12}$ are in A.P. and $\Delta_{1}=\left|\begin{array}{lll}a_{1} a_{5} & a_{1} & a_{2} \\ a_{2} a_{6} & a_{2} & a_{3} \\ a_{3} a_{7} & a_{3} & a_{4}\end{array}\right| \Delta_{3}=\left|\begin{array}{lll}a_{2} a_{10} & a_{2} & a_{3} \\ a_{3} a_{11} & a_{3} & a_{4} \\ a_{3} a_{12} & a_{4} & a_{5}\end{array}\right|$ then $\Delta_{2}: \Delta_{2}=$
157.

The value of $\left|\begin{array}{ccc}2 x_{1} y_{1} & x_{1} y_{2}+x_{2} y_{1} & x_{1} y_{3}+x_{3} y_{1} \\ x_{1} y_{2}+x_{2} y_{1} & 2 x_{2} y_{2} & x_{2} y_{3}+x_{3} y_{2} \\ x_{1} y_{3}+x_{3} y_{1} & x_{2} y_{3}+x_{3} y_{2} & 2 x_{3} y_{3}\end{array}\right|$ is
158. If $\left|\begin{array}{ccc}(\beta+\gamma-\alpha-\delta)^{4} & (\beta+\gamma-\alpha-\delta)^{2} & 1 \\ (\gamma+\alpha-\beta-\delta)^{4} & (\gamma+\alpha-\beta-\delta)^{2} & 1 \\ (\alpha+\beta-\gamma-\delta)^{4} & (\alpha+\beta-\gamma-\delta)^{2} & 1\end{array}\right|=-k(\alpha-\beta)(\alpha-\gamma)(\alpha-\delta)(\beta-\gamma)(\beta-\delta)(\gamma-\delta)$, then the value of $(k)^{1 / 2}$ is
159. Three distinct points $P\left(3 u^{2}, 2 u^{3}\right) ; Q\left(3 v^{2}, 2 v^{2}\right)$ and $R\left(3 w^{2}, 2 w^{2}\right)$ are collinear then $u v+v w+w u$ is equal to
160. Given $A=\left|\begin{array}{ccc}a & b & 2 c \\ d & e & 2 f \\ l & m & 2 n\end{array}\right|, B=\left|\begin{array}{ccc}f & 2 d & e \\ 2 n & 4 l & 2 m \\ c & 2 a & b\end{array}\right|$, then the value of B / A is
161. $\left\lvert\, \begin{array}{lll}x & x+y & x+y+z\end{array}\right.$

If $\left|\begin{array}{ccc}2 x & 3 x+2 y & 4 x+3 y+2 z \\ 3 x & 6 x+3 y & 10 x+6 y+3 z\end{array}\right|=64$, then the real value of x is

: HINTS AND SOLUTIONS :

1 (d)
$\sum_{k=1}^{n} D_{k}=56$
$\Rightarrow\left|\begin{array}{ccc}\sum_{k=1}^{n} 1 & n & n \\ \sum_{k=1}^{n} 2 k & n^{2}+n+1 & n^{2}+n \\ \sum_{k=1}^{n}(2 k-1) & n^{2} & n^{2}+n+1\end{array}\right|=56$
$\Rightarrow\left|\begin{array}{ccc}n & n & n \\ n(n+1) & n^{2}+n+1 & n^{2}+n \\ n^{2} & n^{2} & n^{2}+n+1\end{array}\right|=56$
Applying $C_{3} \rightarrow C_{3}-C_{1}$ and $C_{2} \rightarrow C_{2}-C_{1}$, we get $\left|\begin{array}{ccc}n & 0 & 0 \\ n(n+1) & 1 & 0 \\ n^{2} & 0 & n+1\end{array}\right|=56 \Rightarrow n(n+1)=56 \Rightarrow n$ $=7$
2 (b)

$$
\begin{aligned}
& B_{2}=a_{1} c_{3}-a_{3} c_{1}, C_{2}=-\left(a_{1} b_{3}-a_{3} b_{1}\right) \\
& B_{3}=-\left(a_{1} c_{2}-a_{2} c_{1}\right), C_{3}=a_{1} b_{2}-a_{2} b_{1} \\
& \therefore\left|\begin{array}{cc}
B_{2} & C_{2} \\
B_{3} & C_{2}
\end{array}\right|=\left|\begin{array}{cc}
a_{1} c_{3}-a_{3} c_{1} & -a_{1} b_{3}+a_{3} b_{1} \\
-a_{1} c_{2}+a_{2} c_{1} & a_{1} b_{2}-a_{2} b_{1}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a_{1} c_{3} & -a_{1} b_{3} \\
-a_{1} c_{2} & a_{1} b_{2}
\end{array}\right|+\left|\begin{array}{cc}
a_{1} c_{3} & a_{3} b_{1} \\
-a_{1} c_{2} & -a_{2} b_{1}
\end{array}\right| \\
& +\left|\begin{array}{cc}
-a_{3} c_{1} & -a_{1} b_{3} \\
a_{2} c_{1} & a_{1} b_{2}
\end{array}\right| \\
& \quad+\left|\begin{array}{cc}
-a_{3} c_{1} & a_{3} b_{1} \\
a_{2} c_{1} & -a_{2} b_{1}
\end{array}\right| \\
& =a_{1}^{2}\left|\begin{array}{cc}
c_{3} & -b_{3} \\
-c_{2} & b_{2}
\end{array}\right|+a_{1} b_{1}\left|\begin{array}{cc}
c_{3} & a_{3} \\
-c_{2} & -a_{2}
\end{array}\right| \\
& \quad+a_{1} c_{1}\left|\begin{array}{cc}
-a_{3} & -b_{3} \\
a_{2} & b_{2}
\end{array}\right| \\
& =a_{1}\left\{\left.\begin{array}{ll}
a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right) \\
\left.+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)\right\} \\
a_{3} & a_{3}
\end{array} \right\rvert\,\right. \\
& =a_{1}\left|\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & c_{1} \\
a_{3} & b_{3} \\
c_{2}
\end{array}\right|=a_{1} \Delta
\end{aligned}
$$

3 (a)
Applying $C_{1} \rightarrow C_{1}-2 \sin x C_{3}$ and $C_{2} \rightarrow C_{2}+$ $2 \cos x C_{3}$, we get
$f(x)=\left|\begin{array}{ccc}2 & 0 & -\sin x \\ 0 & 2 & \cos x \\ \sin x & -\cos x & 0\end{array}\right|$
$=2 \cos ^{2} x+2 \sin ^{2} x=2$
$\therefore f^{\prime}(x)=0$
$\therefore \int_{0}^{\pi / 2}\left[f(x)+f^{\prime}(x)\right]=d x=\int_{0}^{\pi / 2} 2 d x=\pi$
4 (c)
Using $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$,
$\Delta=\left|\begin{array}{lll}\sin x+2 \cos x & \cos x & \cos x \\ \sin x+2 \cos x & \sin x & \cos x \\ \sin x+2 \cos x & \cos x & \sin x\end{array}\right|$
$=(\sin x+2 \cos x)\left|\begin{array}{lll}1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get Δ
$=(\sin x$
$+2 \cos x)\left|\begin{array}{ccc}1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x\end{array}\right|$
$=(\sin x+2 \cos x)(\sin x-\cos x)^{2}+$
Thus, $\Delta=0 \Rightarrow \tan x=-2$ or $\tan x=1$
As $-\pi / 4 \leq x \leq \pi / 4$, we get $-1 \leq \tan x \leq 1$
$\therefore \tan x=1 \Rightarrow x=\pi / 4$
$5 \quad$ (b)
The degree of the determinant is $n+(n+2)+$ $(n+3)=3 n+5$ and the degree of the expression on R.H.S. is 2
$\therefore 3 n+5=2 \Rightarrow n=-1$
(c)
$a=x /(y-z) \Rightarrow x-a y+a z=0$
$c=z /(x-y) \Rightarrow-c x+x y+z=0$
Since x, y, z are not all zero, the above system has a non-trivial solution. So,
$\Delta=\left|\begin{array}{ccc}1 & -a & a \\ b & 1 & -b \\ -c & c & 1\end{array}\right|=0$
$\therefore 1+a b+b c+c a=0$
(b)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
0 & 1+\omega+\omega^{2} & 0 \\
1-i & -1 & \omega^{2}-1 \\
-i & -1+\omega-1 & -1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
0 & 0 & 0 \\
1-i & -1 & \omega^{2}-1 \\
-1 & -i+\omega-1 & -1
\end{array}\right|\left[\because 1+\omega+\omega^{2}\right. \\
& =0]
\end{aligned}
$$

(Operating $R_{1} \rightarrow R_{1}-R_{2}+R_{3}$)
8 (b)
We have,
$\left|\begin{array}{lll}b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
$\Rightarrow\left|\begin{array}{lll}2(a+b+c) & c+a & a+b \\ 2(a+b+c) & b+c & c+a \\ 2(a+b+c) & a+b & b+c\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+\left(C_{2}+C_{3}\right)$ on L.H.S.]
$\Rightarrow 2\left|\begin{array}{lll}a+b+c & -b & -c \\ a+b+c & -a & -b \\ a+b+c & -c & -a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
[Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$ on
L.H.S.]
$\Rightarrow\left|\begin{array}{lll}a & -b & -c \\ c & -a & -b \\ b & -c & -a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ on L.H.S.]
$\Rightarrow 2\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|=k\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$
$\therefore k=2$
9 (c)
$f^{\prime}(x)=\left|\begin{array}{ccc}-\sin x & 1 & 0 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|+\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \cos x & 2 x & 2 \\ \tan x & x & 1\end{array}\right|$

$$
+\left|\begin{array}{ccc}
\cos x & x & 1 \\
2 \sin x & x^{2} & 2 x \\
\sec ^{2} x & 1 & 0
\end{array}\right|
$$

$\Rightarrow f^{\prime}(0)=\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right|+\left|\begin{array}{lll}1 & 0 & 1 \\ 2 & 0 & 2 \\ 0 & 0 & 1\end{array}\right|+\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right|=$ 0

Now, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} f^{\prime}(x)[$ as $f(0)=0]$
$=f^{\prime}(0)=0$
10 (b)
Let, $\Delta=\left|\begin{array}{ccc}1 & a & a^{2} \\ \cos (p-d) x & \cos p x & \cos (p+d) x \\ \sin (p-d) x & \sin p x & \sin (p+d) x\end{array}\right|$
Expanding along first row, we have
$1[\cos p x \sin (p+d) x-\cos (p+d) x \sin p x]$
$-a[\cos (p-d) x \sin (p+d) x$

$$
-\cos (p+d) x \sin (p-d) x]
$$

$+a^{2}[\cos (p-d) x \sin p x-\cos p x \sin (p-d) x]$
$=\sin d x-a \sin 2 d x+a^{2} \sin d x$
Which is independent of p
11 (a)
Applying $R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}$, we get
$\Delta=\left|\begin{array}{cccc}0 & 0 & 0 & x+z-2 y \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0\end{array}\right|$
$=-(x+z-2 y)\left|\begin{array}{lll}4 & 5 & 6 \\ 5 & 6 & 7 \\ x & y & z\end{array}\right| \quad$ [Expanding along
$\left.R_{1}\right]$
$=-(x+z-2 y)\left|\begin{array}{ccc}0 & -1 & 6 \\ 0 & -1 & 7 \\ x-2 y+z & y-z & z\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+C_{3}-2 C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$]
$=-(x+z-2 y)^{2}\left|\begin{array}{ll}-1 & 6 \\ -1 & 7\end{array}\right|$
$=(x-2 y+z)^{2}$
Hence $\Delta=0 \Rightarrow x, y, z$ are in A.P.
12 (d)
Let, $\Delta=\left|\begin{array}{ccc}y^{2} & -x y & x^{2} \\ a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right|$
Then,
$\Delta=\frac{1}{x y}\left|\begin{array}{ccc}x y^{2} & -x y & x^{2} y \\ a x & b & c y \\ a^{\prime} x & b^{\prime} & c^{\prime} y\end{array}\right| \quad\left[\right.$ Applying $C_{1} \rightarrow$
$\left.x C_{1}, C_{3} \rightarrow y C_{3}\right]$
$=\frac{1}{x y}\left|\begin{array}{ccc}0 & -x y & 0 \\ a x+b y & b & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} & b^{\prime} x+c^{\prime} y\end{array}\right|$
[Applying $C_{1} \rightarrow C_{1}+y C_{2}, C_{3} \rightarrow C_{3}+x C_{2}$]
$=\frac{1}{x y} x y\left|\begin{array}{cc}a x+b y & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} x+c^{\prime} y\end{array}\right| \quad$ [Expanding along R_{1}]
$=\left|\begin{array}{cc}a x+b y & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} x+c^{\prime} y\end{array}\right|$
13
(b)
$z=\left|\begin{array}{ccc}-5 & 3+4 i & 5-7 i \\ 3-4 i & 6 & 8+7 i \\ 5+7 i & 8-7 i & 9\end{array}\right|$
$\Rightarrow \bar{z}=\left|\begin{array}{ccc}-5 & 3+4 i & 5+7 i \\ 3+4 i & 6 & 8-7 i \\ 5-7 i & 8+7 i & 9\end{array}\right|$

$$
=\left|\begin{array}{ccc}
-5 & 3+4 i & 5-7 i \\
3-4 i & 6 & 8+7 i \\
5+7 i & 8-7 i & 9
\end{array}\right|=z
$$

(Taking transpose)
$\Rightarrow z$ is purely real
14 (d)
Applying $R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}$ and $R_{3} \rightarrow c R_{3}$, we get
$\Delta=\frac{1}{a b c}\left|\begin{array}{lll}a b^{2} c^{2} & a b c & a b+a c \\ a^{2} b c^{2} & a b c & b c+a b \\ a^{2} b^{2} c & a b c & a c+b c\end{array}\right|$
$=\frac{a^{2} b^{2} c^{2}}{a b c}\left|\begin{array}{lll}b c & 1 & a b+a c \\ a c & 1 & b c+a b \\ a b & 1 & a c+b c\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}+C_{1}$ and taking $(b c+c a+a b)$ common, we get
$\Delta=a b c(b c+c a+a b)\left|\begin{array}{lll}b c & 1 & 1 \\ a c & 1 & 1 \\ a b & 1 & 1\end{array}\right|=0$
[$\because C_{2}$ and C_{3} are identical]
15 (b)
In each determinant applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ and then taking out $(x+9)$ common, we get $x+9=0 \Rightarrow x=-9$
$\Delta=\left|\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right|=\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|$
$\Delta^{2}=\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}x_{1}^{2}+y_{1}^{2}+z_{1}^{2} & x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} & x_{1} x \\ x_{1} x_{2}+y_{2} y_{1}+z_{2} z_{1} & x_{2}^{2}+y_{2}^{2}+z_{2}^{2} & x_{2} x \\ x_{3} x_{1}+y_{3} y_{1}+z_{3} z_{1} & x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3} & \end{array}\right|$
$=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=1 \Rightarrow \Delta= \pm 1$
17 (b)
$\Delta=\left|\begin{array}{ccc}{ }^{n} C_{r-1} & { }^{n} C_{r} & (r+1)^{n+2} C_{r+1} \\ { }^{n} C_{r} & { }^{n} C_{r+1} & (r+2)^{n+2} C_{r+2} \\ { }^{n} C_{r+1} & { }^{n} C_{r+2} & (r+3){ }^{n+2} C_{r+3}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}$ and using ${ }^{n} C_{r}=$
$\frac{n}{r}{ }^{n-1} C_{r-1}$ in C_{3}, we get
$\Delta=\left|\begin{array}{ccc}{ }^{n+1} C_{r} & { }^{n} C_{r} & (n+2)^{n+1} C_{r} \\ { }^{n+1} C_{r+1} & { }^{n} C_{r+1} & (n+2)^{n+1} C_{r+1} \\ { }^{n+1} C_{r+2} & { }^{n} C_{r+2} & (n+2){ }^{n+1} C_{r+2}\end{array}\right|$
$=(n+2)\left|\begin{array}{ccc}{ }^{n+1} C_{r} & { }^{n} C_{r} & { }^{n+1} C_{r} \\ { }^{n+1} C_{r+1} & { }^{n} C_{r+1} & { }^{n+1} C_{r+1} \\ { }^{n+1} C_{r+2} & { }^{n} C_{r+2} & { }^{n+1} C_{r+2}\end{array}\right|$
$=0\left(\right.$ as C_{1} and C_{3} are identical)
18 (c)
Operation $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ gives $(\alpha \beta+\beta \gamma+$ $\gamma \alpha$
$\left|\begin{array}{lll}1 & \beta \gamma & \gamma \alpha \\ 1 & \gamma \alpha & \alpha \beta \\ 1 & \alpha \beta & \beta \gamma\end{array}\right|$
From the given equation, $\alpha \beta+\beta \gamma+\gamma \alpha=0$. So the value of determinant is 0
19 (a)
$\Delta=\left|\begin{array}{lll}a_{1}+b_{1} w & a_{1} w^{2}+b_{1} & c_{1}+b_{1} \bar{w} \\ a_{2}+b_{2} w & a_{2} w^{2}+b_{2} & c_{2}+b_{2} \bar{w} \\ a_{3}+b_{3} w & a_{3} w^{2}+b_{3} & c_{3}+b_{3} \bar{w}\end{array}\right|$
Operating $C_{2} \rightarrow w C_{2}$, we have
$\Delta=\frac{1}{w}\left|\begin{array}{lll}a_{1}+b_{1} w & a_{1} w^{3}+b_{1} w & c_{1}+b_{1} \bar{w} \\ a_{2}+b_{2} w & a_{2} w^{3}+b_{2} w & c_{2}+b_{2} \bar{w} \\ a_{3}+b_{3} w & a_{3} w^{3}+b_{3} w & c_{3}+b_{3} \bar{w}\end{array}\right|$
$=\frac{1}{w}\left|\begin{array}{lll}a_{1}+b_{1} w & a_{1}+b_{1} w & c_{1}+b_{1} \bar{w} \\ a_{2}+b_{2} w & a_{2}+b_{2} w & c_{2}+b_{2} \bar{w} \\ a_{3}+b_{3} w & a_{3}+b_{3} w & c_{3}+b_{3} \bar{w}\end{array}\right|$
$\left(\because \omega^{3}\right.$ $=1)$
$=0$
20
(b)

Since x, y, z are in A.P., therefore, $x+z-2 y=0$.
Now,
$\left|\begin{array}{lll}a+2 & a+3 & a+2 x \\ a+3 & a+4 & a+2 y \\ a+4 & a+5 & a+2 z\end{array}\right|=$
$\left|\begin{array}{ccc}0 & 0 & 2(x+z-2 y) \\ a+3 & a+4 & a+2 y \\ a+4 & a+5 & a+2 z\end{array}\right|$
[Applying $R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}$]
$\left|\begin{array}{ccc}0 & 0 & 0 \\ a+3 & a+4 & a+2 y \\ a+4 & a+5 & a+2 z\end{array}\right| \quad[\because x+z-2 y=0]$
$=0$
(c)
$\because\left|A^{3}\right|=|A|^{3}=125$
$\Rightarrow\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]=5$
$\Rightarrow \alpha^{2}-4=5 \Rightarrow \alpha= \pm 3$
22 (d)
Applying $R_{1} \rightarrow R_{1}-\left(R_{2}+R_{3}\right)$, we get
$D=\left|\begin{array}{ccc}0 & -2 y & -2 x \\ x & y+z & x \\ y & y & z+x\end{array}\right|$
$=2\left|\begin{array}{ccc}0 & -y & -x \\ x & y+z & x \\ y & y & z+x\end{array}\right|$
$=2\left|\begin{array}{ccc}0 & -y & -x \\ x & z & 0 \\ y & 0 & z\end{array}\right| \quad\left(R_{2} \rightarrow R_{2}+R_{1}\right.$ and
$\left.R_{3} \rightarrow R_{3}+R_{1}\right)$
$=4 x y z$
23 (a)
$\left|\begin{array}{llll}x & m & n & 1 \\ a & x & n & 1 \\ a & b & x & 1 \\ a & b & c & 1\end{array}\right|=0 \quad\left[R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-\right.$
$\left.R_{3}, R_{3} \rightarrow R_{3}-R_{4}\right]$
$\Rightarrow\left|\begin{array}{cccc}x-a & m-x & 0 & 0 \\ 0 & x-b & n-x & 0 \\ 0 & 0 & x-c & a \\ a & b & c & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-a & m-x & 0 \\ 0 & x-b & n-x \\ 0 & 0 & x-c\end{array}\right|=0$
$\Rightarrow(x-a)\left|\begin{array}{cc}(x-b) & n-x \\ 0 & (x-c)\end{array}\right|=0$
$\Rightarrow(x-a)(x-b)(x-c)=0 \Rightarrow$ roots are
independent of m, n
24 (d)
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$
$=-(a+b+c)\left(a+b \omega^{2}+c \omega\right)\left(a+b \omega+c \omega^{2}\right)$
(where ω is cube roots of unity)
$=-f(\alpha) f(\beta) f(\gamma) \quad\left[\because \alpha=1, \beta=\omega, \gamma=\omega^{2}\right]$
25 (c)
Here $a>0$ and $4 b^{2}-4 a c<0$, i.e., $a c-b^{2}>0$
$\therefore a x^{2}+2 b x+c>0, \forall x \in R$
Now,
$\Delta=\left|\begin{array}{ccc}a & b & a x+b \\ b & c & b x+c \\ 0 & 0 & -\left(a x^{2}+2 b x+c\right)\end{array}\right|$
[Operating $R_{3} \rightarrow R_{3}-x R_{1}-R_{2}$]
$=-\left(a x^{2}+2 b x+c\right)\left(a c-b^{2}\right)$
$=-(+v e)(+v e)=-v e$
26 (c)
Operating $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$f(x)=\left|\begin{array}{ccc}1+2 x+\left(a^{2}+b^{2}+c^{2}\right) x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ 1+2 x+\left(a^{2}+b^{2}+c^{2}\right) x & 1+b^{2} x & \left(1+c^{2}\right) x \\ 1+2 x+\left(a^{2}+b^{2}+c^{2}\right) x & \left(1+b^{2}\right) x & 1+c^{2} x\end{array}\right|$
$=\left|\begin{array}{ccc}1 & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ 1 & 1+b^{2} x & \left(1+c^{2}\right) x \\ 1 & \left(1+b^{2}\right) x & 1+c^{2} x\end{array}\right| \quad\left[\because a^{2}+b^{2}+c^{2}=-2\right]$
$=\left|\begin{array}{ccc}1 & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ 0 & 1-x & 0 \\ 0 & 0 & 1+x\end{array}\right|$
[Operating $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$]
$=(1)\left[(1-x)^{2}-0\right]$
$=(1-x)^{2}$
Which is a polynomial of degree 2
(b)

For non-trivial solution
$\left|\begin{array}{ccc}a-1 & -1 & -1 \\ 1 & -(b-1) & 1 \\ 1 & 1 & -(c-1)\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a-1 & -1 & 0 \\ 1 & -(b-1) & b \\ 1 & 1 & -c\end{array}\right|=0$
$\Rightarrow(a-1)(b c-c-b)+1(-c-b)=0$
$\Rightarrow a b c-a c-a b-b c+b+c-c-b=0$
$\Rightarrow a b+b c+a c=a b c$
28
(b)

Applying $C_{1} \rightarrow a C_{1}$ and then $C_{1} \rightarrow C_{1}+b C_{2}+c C_{3}$, and taking $\left(a^{2}+b^{2}+c^{2}\right)$ common from C_{1}, we
get
$\Delta=\frac{\left(a^{2}+b^{2}+c^{2}\right)}{a}\left|\begin{array}{ccc}1 & b-c & c+b \\ 1 & b & c-a \\ 1 & b+a & c\end{array}\right|$
$=\frac{\left(a^{2}+b^{2}+c^{2}\right)}{a}\left|\begin{array}{ccc}1 & b-c & c+b \\ 0 & c & -a-b \\ 0 & a+c & -b\end{array}\right|$
$\left(R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}\right)$
$=\frac{\left(a^{2}+b^{2}+c^{2}\right)}{a}\left(-b c+a^{2}+a b+a c+b c\right)$
(expanding along C_{1})
$=\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)$
Hence, $\Delta=0 \Rightarrow a+b+c=0$
Therefore, line $a x+b y+c=0$ passes through the fixed point $(1,1)$
29 (a)
Determinant formed by the cofactors of
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is
$\left|\begin{array}{lll}b c-a^{2} & a c-b^{2} & a b-c^{2} \\ a c-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & a c-b^{2}\end{array}\right|$
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|^{2}$
(b)

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\Delta=\left|\begin{array}{lll}x+2 a & a & a \\ x+2 a & x & a \\ x+2 a & a & x\end{array}\right|=(x+2 a)\left|\begin{array}{ccc}1 & a & a \\ 1 & x & a \\ 1 & a & x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$, we get

$$
\begin{aligned}
\Delta=(x+2 a) & \left|\begin{array}{ccc}
0 & a-x & a \\
0 & x-a & a-x \\
1 & a & x
\end{array}\right| \\
& =(x-a)^{2}(x+2 a)
\end{aligned}
$$

31 (b)
$R_{3} \rightarrow R_{3}-2 R_{2}$, hence two identical rows $\Rightarrow f(x)=$ constant
(b)

We divide L.H.S. by λ^{4} and C_{1} by λ^{2}, C_{2} by λ and C_{3} by λ on the R.H.S. to obtain
$p+q\left(\frac{1}{\lambda}\right)+r\left(\frac{1}{\lambda}\right)^{2}+s\left(\frac{1}{\lambda}\right)^{3}+t\left(\frac{1}{\lambda}\right)^{4}$
$=\left|\begin{array}{ccc}1+3 / \lambda & 1-1 / \lambda & 1+3 / \lambda \\ 1+1 / \lambda^{2} & 2 / \lambda-1 & 1-3 / \lambda \\ 1-3 / \lambda^{2} & 1+4 / \lambda & 3\end{array}\right|$
Taking limit as $\lambda \rightarrow \infty$, we get
$p=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 2\end{array}\right|=-4$
[Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$]
(a)

Given determinant,
$2 a\left(b c-4 a^{2}\right)+b\left(2 a c-b^{2}\right)+c\left(2 a b-c^{2}\right)=0$
$\Rightarrow 6 a b c-8 a^{3}-b^{3}-c^{3}=0$
$\Rightarrow(2 a+b+c)\left[(2 a-b)^{2}+(b-c)^{2}+(c-2 a)^{2}\right]$
$=0$
$\Rightarrow 2 a+b+c=0 \quad(\because b \neq c)$
Let $f(x)=8 a x^{3}+2 b x^{2}+c x$
$f(0)=0$
$f\left(\frac{1}{2}\right)=a+\frac{b}{2}+\frac{c}{2}=\frac{2 a+b+c}{2}=0$
So, $f(x)$ satisfies the Roll's theorem and hence,
$f^{\prime}(x)=0$ has at least one root in $\left[0, \frac{1}{2}\right]$
(b)

For every 'det. with 1 ' $(\in B)$ we can find a det.
with value -1 by changing the sign of one entry of ' 1 '. Hence there are equal number of elements in B and C.
Therefore, (b) is the correct option
(c)

Since each element of C_{1} is the sum of two elements, putting the determinant as sum of two determinants, we get
$\Delta=\left|\begin{array}{lll}x^{3} & x^{2} & x \\ y^{3} & y^{2} & y \\ z^{3} & z^{2} & z\end{array}\right|+\left|\begin{array}{ccc}1 & x^{2} & x \\ 1 & y^{2} & y \\ 1 & z^{2} & z\end{array}\right|$
$=x y z\left|\begin{array}{lll}x^{2} & x & 1 \\ y^{2} & y & 1 \\ z^{2} & z & 1\end{array}\right|+\left|\begin{array}{ccc}1 & x^{2} & x \\ 1 & y^{2} & y \\ 1 & z^{2} & z\end{array}\right|$
$=-(x y z+1)\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$
$=-(x y z+1)(x-y)(y-z)(z-x)(x+y+z)$
Since $\Delta=0, x, y, z$ all are distinct, we have
$x y z+1=0$ or $x y z=-1$
36 (c)
We have,
$\Delta^{2}=\Delta \Delta=\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|$
$=\left\lvert\, \begin{array}{cc}l_{1}^{2}+m_{1}^{2}+n_{1}^{2} & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\ l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & l_{2}^{2}+m_{2}^{2}+n_{2}^{2} \\ l_{1} l_{3}+m_{1} m_{3}+n_{1} n_{3} & l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}\end{array}\right.$
$=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right| 1 \Rightarrow \Delta= \pm 1 \Rightarrow|\Delta|=1$
37
(b)

Operating $R_{1} \rightarrow R_{1}-R_{2}$, gives
$\Delta=\left|\begin{array}{ccc}x-2 & 3(x-2) & -(x-2) \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|$
$=(x-2)\left|\begin{array}{ccc}1 & 3 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|$
$=(x-2)\left|\begin{array}{ccc}1 & 3 & -1 \\ 0 & -3(x+2) & x-1 \\ 0 & 2 x+9 & x-1\end{array}\right|$

$$
\left[R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}+3 R_{1}\right]
$$

$=(x-2)\{-(3 x+6)(x-1)-(x-1)(2 x+9)\}$
$=-(x-2)(x-1)(5 x+15)$
Therefore, $\Delta=0$ gives $x=2,1,-3$
38 (c)
$\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1+y & 1+2 y & 1 \\ 1+z & 1+z & 3+3 z\end{array}\right|$
$=x y z\left|\begin{array}{ccc}1+\frac{1}{x} & \frac{1}{x} & \frac{1}{x} \\ 1+\frac{1}{y} & 2+\frac{1}{y} & \frac{1}{y} \\ 1+\frac{1}{z} & 1+\frac{1}{z} & 3+\frac{1}{z}\end{array}\right|$
$=x y z\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\frac{1}{y} & 2+\frac{1}{y} & \frac{1}{y} \\ 1+\frac{1}{z} & 1+\frac{1}{z} & 3+\frac{1}{z}\end{array}\right|$
$=x y z\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left|\begin{array}{ccc}1 & 0 & 0 \\ 1+\frac{1}{y} & 1 & -1 \\ 1+\frac{1}{z} & 0 & 2\end{array}\right|$
$=2 x y z\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
Hence, the given equation gives $x^{-1}+y^{-1}+$ $z^{-1}=-3$
(b)

We have,
$\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)$
$(c-a)(a+b+c)$
Also,
$\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$
$=a b c\left|\begin{array}{ccc}\frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ 1 & 1 & 1 \\ a^{2} & b^{2} & c^{2}\end{array}\right|$ (taking a, b, c common from
R_{1}, R_{2}, R_{3})
$=\left|\begin{array}{ccc}b c & a c & a b \\ 1 & 1 & 1 \\ a^{2} & b^{2} & c^{2}\end{array}\right| \quad\left(\right.$ Multiplying R_{1} by $\left.a b c\right)$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ a^{2} & b^{2} & c^{2} \\ b c & a c & a b\end{array}\right|$
Then,
$D=\left|\begin{array}{ccc}1 & 1 & 1 \\ (x-a)^{2} & (x-b)^{2} & (x-c)^{2} \\ (x-b)(x-c) & (x-c)(x-a) & (x-a)(x-b)\end{array}\right|$
$=(a-b)(b-c)(c-a)(3 x-a-b-c)$
Now given that a, b, c are all different, then $D=0$
$\therefore x=\frac{1}{3}(a+b+c)$
40 (d)
For the given homogeneous system of equations to have non-zero solution, determinant of coefficient matrix should be zero, i.e.,
$\left|\begin{array}{ccc}1 & -k & -1 \\ k & -1 & -1 \\ 1 & 1 & -1\end{array}\right|=1(1+1)+k(-k+1)-(k+1)$
$=0$
$\Rightarrow 2-k^{2}+k-k-1=0$
$\Rightarrow k^{2}=1$
$\Rightarrow k= \pm 1$
$\left|\begin{array}{lll}1+x_{1} & 1+x_{1} x & 1+x_{1} x^{2} \\ 1+x_{2} & 1+x_{2} x & 1+x_{2} x^{2} \\ 1+x_{3} & 1+x_{3} x & 1+x_{3} x^{2}\end{array}\right|$
$=\left|\begin{array}{lll}1 & x_{1} & 0 \\ 1 & x_{2} & 0 \\ 1 & x_{3} & 0\end{array}\right|\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & x & 0 \\ 1 & x^{2} & 0\end{array}\right|$
$=0$
42 (a)
$D=\cos \theta-\cos ^{2} .+6>0$. Since $D>0$ only trivial solution is possible
43 (c)
Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ reduce the determinant to
$\left|\begin{array}{ccc}x^{2}-2 x+1 & x-1 & 0 \\ 2 x-2 & x-1 & 0 \\ 3 & 3 & 1\end{array}\right|$
$=(x-1)^{3}-2(x-1)^{2}=(x-1)^{2}(x-1-2)=$ $(x-1)^{2}(x-3)$,
Which is clearly negative for $x<1$
(d)

Let the given determinant be equal to $\Delta(x)$. Then,
$5 A+4 B+3 C+2 D+E=\Delta(1)+\Delta^{\prime}(1)$
Now, $\Delta(1)=0$ as R_{2} and R_{3} are identical
$\Delta^{\prime}(x)=\left|\begin{array}{ccc}1 & 0 & 1 \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|+\left|\begin{array}{ccc}x & 2 & x \\ 2 x & 1 & 0 \\ x & x & 6\end{array}\right|+\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ 1 & 1 & 0\end{array}\right|$
$\Delta^{\prime}(1)=\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 6\end{array}\right|+\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 6 \\ 1 & 1 & 0\end{array}\right|$

$$
=-17+(12+1-1-6)=-11
$$

45 (b)
$\Delta=\left|\begin{array}{cccc}1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 \\ 16 & 25 & 36 & 49\end{array}\right| \quad\left(R_{3} \rightarrow R_{3}-R_{2}, R_{4} \rightarrow R_{4}-\right.$
R_{3})
$=\left|\begin{array}{cccc}1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 5 & 7 & 9 & 11 \\ 15 & 21 & 27 & 33\end{array}\right|$
$=3\left|\begin{array}{cccc}1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 5 & 7 & 9 & 11 \\ 5 & 7 & 9 & 11\end{array}\right|=0 \quad\left(R_{4} \rightarrow R_{4}-R_{3}\right)$
(b)

The total number of third-order determinants is 9 ! Since the number of determinants is even and in which there are 9!/2 pairs of determinants which are obtained by changing two consecutive rows,
So $\sum_{i=1}^{n} D_{i}=0$
(b)

Let, $\Delta=\left|\begin{array}{lll}\cos (\alpha-\beta) & \cos (\beta-\gamma) & \cos (\gamma-\alpha) \\ \cos (\alpha+\beta) & \cos (\beta+\gamma) & \cos (\gamma+\alpha) \\ \sin (\alpha+\beta) & \sin (\beta+\gamma) & \sin (\gamma+\alpha)\end{array}\right|$
It is clear that either $\alpha=\beta$ or $\beta=\gamma$ or $\gamma=\alpha$ is
sufficient to make $\Delta=0$. It is not necessary that triangle is equilateral. Also, isosceles triangle can be obtuse one
(c)

The given system is consistent
$\therefore \Delta=\left|\begin{array}{ccc}1 & 1 & -1 \\ 2 & -1 & -c \\ -b & 3 b & -c\end{array}\right|=0$
$\Rightarrow c+b c-6 b+b+2 c+3 b c=0$
$\Rightarrow 3 c+4 b c-5 b=0$
$\Rightarrow c=\frac{5 b}{4 b+3}$
Now,
$c<1$
$\Rightarrow \frac{5 b}{4 b+3}<1$
$\Rightarrow \frac{5 b}{4 b+3}-1<0$
$\Rightarrow \frac{b-3}{4 b+3}<0$
$\Rightarrow b \in\left(-\frac{3}{4}, 3\right)$
49 (b)
Let $\frac{x^{2}}{a^{2}}=X, \frac{y^{2}}{b^{2}}=Y, \frac{z^{2}}{c^{2}}=Z$
Then the given system of equations is
$X+Y-Z=1$
$X-Y+Z=1$
$-X+Y+Z=1$
Coefficient determinant is
$A=\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right|$
$=1(-1-1)-1(1+1)-1(1-1)$
$=-4 \neq 0$
Hence, the given system of equation has unique solutions

50
(b)

Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$, we get
$\Delta=\left|\begin{array}{ccc}-4-2 \sqrt{2} & -2 \sqrt{2} & 0 \\ 4 \sqrt{2} & 4 \sqrt{2} & 0 \\ 3-2 \sqrt{2} & 2-2 \sqrt{2} & 1\end{array}\right|$
$=1(-(4+2 \sqrt{2})) 4 \sqrt{2}+2 \sqrt{2} \times 4 \sqrt{2}$
$=-16 \sqrt{2}$
51 (a)
Applying $C_{1} \rightarrow C_{1}+2 C_{2}+C_{3}$, we get
$S=\sum_{r=2}^{n}(-2)^{r}\left|\begin{array}{ccc}{ }^{n} C_{r} & { }^{n-2} C_{r-1} & { }^{n-2} C_{r} \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right|$
$=\sum_{r=2}^{n}(-2)^{r^{n}} C_{r}$
$=\sum_{r=0}^{n}(-2)^{r}{ }^{n} C_{r}-\left({ }^{n} C_{0}-2{ }^{n} C_{1}\right)$
$=(1-2)^{n}-(1-2 n)=2 n-1+(-1)^{n}$
52 (a)
$\left|\begin{array}{ccc}1 & 1 & 1 \\ { }^{m} C_{1} & { }^{m+1} C_{1} & { }^{m+2} C_{1} \\ { }^{m} C_{2} & { }^{m+1} C_{2} & { }^{m+2} C_{2}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ { }^{m} C_{1} & { }^{m+1} C_{1} & { }^{m+1} C_{0}+{ }^{m+1} C_{1} \\ { }^{m} C_{2} & { }^{m+1} C_{2} & { }^{m+1} C_{1}+{ }^{m+1} C_{2}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 0 \\ { }^{m} C_{1} & { }^{m+1} C_{1} & { }^{m+1} C_{0} \\ { }^{m} C_{2} & { }^{m+1} C_{2} & { }^{m+1} C_{1}\end{array}\right|$ [Applying
$\left.C_{3} \rightarrow C_{3}-C_{2}\right]$
$=\left|\begin{array}{ccc}1 & 1 & 0 \\ { }^{m} C_{1} & { }^{m} C_{0}+{ }^{m} C_{1} & { }^{m+1} C_{0} \\ { }^{m} C_{2} & { }^{m} C_{1}+{ }^{m} C_{2} & { }^{m+1} C_{1}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 0 \\ { }^{m} C_{1} & { }^{m} C_{0} & { }^{m+1} C_{0} \\ { }^{m} C_{2} & { }^{m} C_{1} & { }^{m+1} C_{1}\end{array}\right| \quad\left[\right.$ Applying $C_{2} \rightarrow C_{2}-$
$\left.C_{1}\right]$
$={ }^{m} C_{0}{ }^{m+1} C_{1}-{ }^{m+1} C_{0}{ }^{m} C_{1}$
$=m+1-m$
$=1$
53 (b)
$\left|\begin{array}{ccc}x^{3}+1 & x^{2} y & x^{2} z \\ x y^{2} & y^{3}+1 & y^{2} z \\ x z^{2} & y z^{2} & z^{3}+1\end{array}\right|=11$
Multiplying R_{1} by x, R_{2} by y and R_{3} by z, we get
$\frac{1}{x y z}\left|\begin{array}{ccc}x^{4}+x & x^{3} y & x^{3} z \\ x y^{3} & y^{4}+1 & y^{3} z \\ x z^{3} & y z^{3} & z^{4}+1\end{array}\right|=11$
Taking x, y, z common from C_{1}, C_{2}, C_{3},
respectively, we get
$\left|\begin{array}{ccc}x^{3}+1 & x^{3} & x^{3} \\ y^{3} & y^{3}+1 & y^{3} \\ z^{3} & z^{3} & z^{3}+1\end{array}\right|=11$
Using $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we have
$\left(x^{3}+y^{3}+z^{3}+1\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ y^{3} & y^{3}+1 & y^{3} \\ z^{3} & z^{3} & z^{3}+1\end{array}\right|=11$
Using $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get
$\left(x^{3}+y^{3}+z^{3}+1\right)\left|\begin{array}{ccc}1 & 0 & 0 \\ y^{3} & 1 & 0 \\ z^{3} & 0 & 1\end{array}\right|=11$
Hence, $x^{3}+y^{3}+z^{3}=10$
Therefore, the ordered triplets are (2, 1, 1,), (1, 2, 1,), (1, 1, 2)

54 (b)
Applying $C_{1} \rightarrow C_{1}-C_{2}, C_{2} \rightarrow C_{2}-C_{3}$, we get
$\Delta=\left|\begin{array}{ccc}0 & \frac{A}{0} \frac{B}{2}-\cot \frac{B}{2} & \cot \frac{B}{2}-\cot \frac{C}{2} \\ \cot & \cot \frac{C}{2} \\ \tan \frac{B}{2}-\tan \frac{A}{2} & \tan \frac{C}{2}-\tan \frac{B}{2} & \tan \frac{A}{2}+\tan \frac{B}{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 0 & 1 \\ \cot \frac{A}{2}-\cot \frac{B}{2} & \cot \frac{B}{2}-\cot \frac{C}{2} & \cot \frac{C}{2} \\ \frac{\cot \frac{A}{2}-\cot \frac{B}{2}}{\cot \frac{A}{2} \cot \frac{B}{2}} & \frac{\cot \frac{B}{2}-\cot \frac{C}{2}}{\cot \frac{B}{2} \cot \frac{C}{2}} & \tan \frac{A}{2}+\tan \frac{B}{2}\end{array}\right|$
$=\left(\cot \frac{A}{2}-\cot \frac{B}{2}\right)\left(\cot \frac{B}{2}-\cot \frac{C}{2}\right)$
$\times\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 & \cot \frac{C}{2} \\ \tan \frac{A}{2} \tan \frac{B}{2} & \tan \frac{B}{2} \tan \frac{C}{2} & \tan \frac{A}{2} \tan \frac{B}{2}\end{array}\right|$
$=\left(\cot \frac{A}{2}-\cot \frac{B}{2}\right)\left(\cot \frac{B}{2}-\cot \frac{C}{2}\right)\left(\tan \frac{C}{2}\right.$
$\left.-\tan \frac{A}{2}\right) \tan \frac{B}{2}$
Since $\Delta=0$, therefore
$\cot \frac{A}{2}=\cot \frac{B}{2}$ or $\cot \frac{B}{2}=\cot \frac{C}{2}$ or $\tan \frac{A}{2}=\tan \frac{C}{2}$
Hence, the triangle is definitely isosceles
(a)

Taking x common from R_{2} and $x(x-1)$ common from R_{3}, we get
$f(x)=x^{2}(x-1)\left|\begin{array}{ccc}1 & x & x+1 \\ 2 & x-1 & x+1 \\ 3 & x-2 & x+1\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-C_{2}$, we get
$f(x)=x^{2}(x-1)\left|\begin{array}{ccc}1 & x & 1 \\ 2 & x-1 & 2 \\ 3 & x-2 & 3\end{array}\right|=0$
Thus, $f(500)=0$
56 (a)
As $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}$ and $a_{3} b_{3} c_{3}$ are even natural numbers, each of c_{1}, c_{2}, c_{3} is divisible by 2 . Let $c_{i}=2 k_{i}$ for $i=1,2,3$. Thus,
$\Delta=2\left|\begin{array}{lll}k_{1} & a_{1} & b_{1} \\ k_{2} & a_{2} & b_{2} \\ k_{3} & a_{3} & b_{3}\end{array}\right|=2 m$
Where m is some natural number. Thus, Δ is divisible by 2 . That Δ may not be divisible by 4 can be seen by taking the three numbers as 112,122 and 134. Note that
$\Delta=\left|\begin{array}{lll}2 & 1 & 1 \\ 2 & 1 & 2 \\ 4 & 1 & 3\end{array}\right|=2$
Which is divisible by 2 but not by 4
57 (b)

For no solution or infinitely many solutions
$\left|\begin{array}{ccc}\alpha & -1 & -1 \\ 1 & -\alpha & -1 \\ 1 & 1 & -\alpha\end{array}\right|=0$
$\Rightarrow \alpha\left(\alpha^{2}-1\right)-1(\alpha-1)+1(1-\alpha)=0$
$\Rightarrow \alpha\left(\alpha^{2}-1\right)-2 \alpha+2=0$
$\Rightarrow \alpha(\alpha-1)(\alpha+1)-2(\alpha-1)=0$
$\Rightarrow(\alpha-1)\left(\alpha^{2}+\alpha-2\right)=0$
$\Rightarrow(\alpha-1)(\alpha+2)(\alpha-1)=0$
$\Rightarrow(\alpha-1)^{2}(\alpha+2)=0$
$\Rightarrow \alpha=1,1,-2$
But for $\alpha=1$, there are infinite solutions. When $\alpha=-2$, we have
$-2 x-y-z=-3$
$x+2 y-z=-3$
$x-y+2 z=-3$
Adding, we get $0=-9$, which is not true. Hence there is no solution
(b)

Since the system has non-trivial solution,
$\therefore\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$, we get
$\Delta=\left|\begin{array}{ccc}a-1 & 1-b & 0 \\ 0 & b-1 & 1-c \\ 1 & 1 & c\end{array}\right|=0$
$\Rightarrow c(1-a)(1-b)+(1-b)(1-c)$

$$
-(1-c)(a-1)=0
$$

Dividing throughout by $(1-a)(1-b)(1-c)$, we get
$\frac{c}{1-c}+\frac{1}{1-c}+\frac{1}{1-b}=0$
$\Rightarrow-1+\frac{1}{1-c}+\frac{1}{1-b}+\frac{1}{1-a}=0$
$\Rightarrow \frac{1}{1-c}+\frac{1}{1-a}+\frac{1}{1-b}=1$
59
(b)
$\Delta=\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|$
Applying $R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow c R_{3}$, we get
$\Delta=\frac{1}{a b c} \times\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} b & a^{2} c \\ a b^{2} & b\left(c^{2}+a^{2}\right) & c b^{2} \\ a c^{2} & b c^{2} & c\left(a^{2}+b^{2}\right)\end{array}\right|$
Now, applying $C_{1} \rightarrow \frac{1}{a} C_{1}, C_{2} \rightarrow \frac{1}{b} C_{2}, C_{3} \rightarrow \frac{1}{c} C_{3}$, we get
$\Delta=\frac{a b c}{a b c}\left|\begin{array}{ccc}b^{2}+c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & -2 c^{2} & -2 b^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2}\end{array}\right| \quad\left[R_{1} \rightarrow R_{1}-R_{2}-R_{3}\right]$
$=2\left|\begin{array}{ccc}0 & -c^{2} & -b^{2} \\ b^{2} & a^{2} & 0 \\ c^{2} & 0 & a^{2}\end{array}\right|$
(Taking 2 common from R_{1} and applying $R_{2} \rightarrow R_{2}+R_{1}$ and $R_{3} \rightarrow R_{3}+R_{1}$)
Evaluating along R_{1}, we get
$\Delta=2\left[c^{2}\left(a^{2} b^{2}\right)-b^{2}\left(-a^{2} c^{2}\right)\right]$
$=4 a^{2} b^{2} c^{2}$
Hence, $k=4$
60 (a)
The given determinant Δ_{1} is obtained by corresponding co-factors of determinant Δ_{2}; hence $\Delta_{1}=\Delta_{2}^{2}$. Now $\Delta_{1} \Delta_{2}=\Delta_{2}^{2} \Delta_{2}=\Delta_{2}^{3}$
61 (d)
Since for $x=0$, the determinant reduces to the determinant of a skew-symmetric matrix of odd order which is always zero, hence $x=0$ is the solution of the given equation
62 (a)
Using the sum property, we get
$\sum_{r=0}^{m} \Delta_{r}=\left|\begin{array}{ccc}\sum_{r=0}^{m}(2 r-1) & \sum_{r=0}^{m}{ }^{m} C_{r} & \sum_{r=0}^{m} 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2}\left(m^{2}\right) & \sin ^{2}(m) & \sin ^{2}(m+1)\end{array}\right|$
But $\sum_{r=0}^{m}(2 r-1)=\frac{1}{2}(m+1)(2 m-1-1)=$ $m^{2}-1$,
$\sum_{r=0}^{m}{ }^{m} C_{r}=2^{m}$ and $\sum_{r=0}^{m} 1=m+1$. Therefore,
$\sum_{r=0}^{m} \Delta_{r}=\left|\begin{array}{ccc}m^{2}-1 & 2^{m} & m+1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2}\left(m^{2}\right) & \sin ^{2}(m) & \sin ^{2}(m+1)\end{array}\right|=0$
(c)

$$
\begin{aligned}
\Delta=\left(1+x+x^{2}\right) & \left|\begin{array}{ccc}
1 & 1 & 1 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right| \\
& =\left(1+x+x^{2}\right)(x+1)^{2}
\end{aligned}
$$

Therefore, $\Delta=0$ has roots $1,1, \omega, \omega, \omega^{2}, \omega^{2}$
(c)

As a, b, c are in G.P. with common ration r_{1} and α, β, γ are in G.P. having common ratio
$r_{2}, a \neq 0, \alpha \neq 0, b=a r_{1}, c=a r_{1}^{2}, \beta=a r_{2}, \gamma=a r_{2}^{2}$
Also the system of equation has only zero (trivial) solution
$\Delta=\left|\begin{array}{lll}a & \alpha & 1 \\ b & \beta & 1 \\ c & \gamma & 1\end{array}\right| \neq 0$
$\Rightarrow a \alpha\left|\begin{array}{ccc}1 & 1 & 1 \\ r_{1} & r_{2} & 1 \\ r_{1}^{2} & r_{2}^{2} & 1\end{array}\right| \neq 0$
$\Rightarrow a \alpha\left(r_{1}-1\right)\left(r_{2}-1\right)\left(r_{1}-r_{2}\right) \neq 0$
$\Rightarrow r_{1} \neq 1, r_{2} \neq 1$ and $r_{1} \neq r_{2}$

65 (d)
The given determinant, on simplification, gives
$\Delta_{1}=\left|\begin{array}{cccc}a_{1}^{2} & -2 a_{1} & 1 & 0 \\ a_{2}^{2} & -2 a_{2} & 1 & 0 \\ a_{3}^{2} & -2 a_{3} & 1 & 0 \\ a_{4}^{2} & --2 a_{4} & 1 & 0\end{array}\right| \times\left|\begin{array}{cccc}1 & b_{1} & b_{1}^{2} & 0 \\ 1 & b_{2} & b_{2}^{2} & 0 \\ 1 & b_{3} & b_{3}^{2} & 0 \\ 1 & b_{4} & b_{4}^{2} & 0\end{array}\right|$ $=0 \times 0=0$
66 (d)
Since $A+B+C=\pi$ and $e^{i \pi}=\cos \pi+$
$i \sin \pi=-1$,
$e^{i(B+C)}=e^{i(\pi-A)}=-e^{i A}$ and $e^{-i(B+C)}=-e^{i A}$
By taking $e^{i A}, e^{i B}, e^{i C}$ common from R_{1}, R_{2} and R_{3}, respectively,
We have
$\Delta=-\left|\begin{array}{ccc}e^{i A} & e^{-i(A+C)} & e^{-i(A+B)} \\ e^{-i(B+C)} & e^{i B} & e^{-i(A+B)} \\ e^{-i(B+C)} & e^{-i(A+C)} & e^{i C}\end{array}\right|$
$=-\left|\begin{array}{ccc}e^{i A} & -e^{i B} & -e^{i C} \\ -e^{i A} & e^{i B} & -e^{i C} \\ -e^{i A} & -e^{i B} & e^{i C}\end{array}\right|$
By taking $e^{i A}, e^{i B}, e^{i C}$ common from C_{1}, C_{2} and C_{3}, respectively,
We have
$\Delta=\left|\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right|=-4$
67 (d)
$\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$ (given)
$\Rightarrow-3 i\left|\begin{array}{ccc}6 i & 1 & 1 \\ 4 & -1 & -1 \\ 20 & i & i\end{array}\right|=x+i y$
$\Rightarrow x+i y=0+i 0$
$\Rightarrow x=y=0$
68 (b)
The given determinant is
$\left[\begin{array}{ccc}2^{n+1}-2^{n}+p & 2^{n+2}-2^{n+1}+q & p+r \\ 2^{n}+p & 2^{n+1} & p+r \\ a^{2}+2^{n}+p & b^{2}+2^{n}+2 q & c^{2}-r\end{array}\right]$
(Using $R_{1} \rightarrow R_{1}-R_{3}$ and $2 q=p+r$)
$\left[\begin{array}{ccc}2^{n}(2-1)+p & 2^{n+1}(2-1)+q & p+r \\ 2^{n}+p & 2^{n+1}+q & p+r \\ a^{2}+2^{n}+p & b^{2}+2^{n+1}+2 q & c^{2}-r\end{array}\right]$
$=\left[\begin{array}{ccc}2^{n}+p & 2^{n+1}+q & p+r \\ 2^{n}+p & 2^{n+1}+q & p+r \\ a^{2}+2^{n}+p & b^{2}+2^{n+1}+2 q & c^{2}-r\end{array}\right]=0($
69 (a)
$\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|$
$=p q r\left(a^{3}+b^{3}+c^{3}-3 a b c\right)-a b c\left(p^{3}+q^{3}+r^{3}\right.$

$$
-3 p q r)
$$

$=p q r(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$-a b c(p+q+r)\left(p^{2}+q^{2}+r^{2}-p q-q r-p r\right)$
$=0$
70
(d)

Since a, b, c, d, e, f are in G.P. and if r is the
common ratio of the G.P., then
$b=a r$
$c=a r^{2}$
$d=a r^{3}$
$e=a r^{4}$
$f=a r^{5}$
Therefore, given determinant is
$\left|\begin{array}{ccc}a^{2} & a^{2} r^{6} & x \\ a^{2} r^{2} & a^{2} r^{8} & y \\ a^{2} r^{4} & a^{2} r^{10} & z\end{array}\right|$
$=a^{2} a^{2} r^{6}=\left|\begin{array}{ccc}1 & 1 & x \\ r^{2} & r^{2} & y \\ r^{4} & r^{4} & z\end{array}\right|$
$=a^{4} r^{6}(0)=0 \quad\left[\because C_{1}, C_{2}\right.$, are identical $]$
$71 \quad$ (a)
The given system of equations will have a nontrivial solution if
$\left|\begin{array}{ccc}\alpha+a & \alpha & \alpha \\ \alpha & \alpha+b & \alpha \\ \alpha & \alpha & \alpha+c\end{array}\right|=0$
Operating $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$\left|\begin{array}{ccc}\alpha+a & \alpha & \alpha \\ -a & b & 0 \\ -a & 0 & c\end{array}\right|=0$
$\Rightarrow \alpha a b+c(\alpha b+a b+a \alpha)=0$

$$
\Rightarrow \alpha(b c+c a+a b)+a b c=0
$$

$\Rightarrow \frac{1}{\alpha}=-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \quad(\because a, b, c \neq 0)$
72 (a)
$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$

$$
=0
$$

$\Rightarrow a+b+c=0$ or $a=b=c$
If $a+b+c=0$, we have
$\cos \theta+\cos 2 \theta+\cos 3 \theta=0$ and $\sin \theta-$
$\sin 2 \theta+\sin 3 \theta=0$
$\Rightarrow \cos 2 \theta(2 \cos \theta+1)=0$ and $\sin 2 \theta(1-$ $2 \cos \theta)=0 \quad$ (i)
Which is not possible as $\cos 2 \theta=0$ gives
$\sin 2 \theta \neq 0, \cos \theta \neq 1 / 2$. And $\cos \theta=-1 / 2$ gives $\sin 2 \theta \neq 0, \cos \theta \neq 1 / 2$. Therefore, Eq. (i) does not hold simultaneously
$\therefore a+b+c \neq 0$
$\therefore a=b=c$
or $e^{i \theta}=e^{-2 i \theta}=e^{3 i \theta}$
Which is satisfied only by $e^{i \theta}=1$ i.e.,
$\cos \theta=1, \sin \theta=0$ so $\theta=2 k \pi, k \in Z$

73 (b)
Taking x^{5} common from last row, we get
$x^{5}\left|\begin{array}{ccc}x^{n} & x^{n+2} & x^{2 n} \\ 1 & x^{a} & a \\ x^{n} & x^{a+1} & x^{2 n}\end{array}\right|=0, \forall x \in R$
$\Rightarrow a+1=n+2 \Rightarrow a=n+1$
(as it will make first and third row is identical)
74 (a)
We have,
$a_{n+1}^{2}=a_{n} a_{n+2}$
$\Rightarrow 2 \log a_{n+1}=\log a_{n}+\log a_{n+2}$
Similarly,
$2 \log a_{n+4}=\log a_{n+3}+\log a_{n+5}$
$2 \log a_{n+7}=\log a_{n+6}+\log a_{n+8}$
Substituting these values in second column of determinant, we get
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}\log a_{n} & \log a_{n}+\log a_{n+2} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+3}+\log a_{n+5} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+6}+\log a_{n+8} & \log a_{n+8}\end{array}\right|$
$=\frac{1}{2}(0)=0 \quad\left[\mathrm{U} \operatorname{sing} C_{2} \rightarrow C_{2}-C_{1}-C_{3}\right]$
(b)

Let a be the first term and d be the common
difference of corresponding A.P. Then
$\Delta=x y z\left|\begin{array}{ccc}1 / x & 1 / y & 1 / z \\ p & 2 q & 3 r \\ 1 & 1 & 1\end{array}\right|$
$=x y z\left|\begin{array}{ccc}a+(p-1) d & a+(2 q-1) d & a+(3 r-1) d \\ p & 2 q & 3 r \\ 1 & 1 & 1\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-a R_{3}, R_{2} \rightarrow R_{2}-R_{3}$ and then taking d common from R_{1}, we get
$\Delta=x y z d\left|\begin{array}{ccc}(p-1) & (2 q-1) & (3 r-1) \\ (p-1) & (2 q-1) & (3 r-1) \\ 1 & 1 & 1\end{array}\right|=0$

76 (d)
We have $y=\sin m x$, therefore
$y_{1}=m \cos m x, y_{2}=-m^{2} \sin m x$, etc
$\therefore \Delta=\left|\begin{array}{lll}y & y_{1} & y_{2} \\ y_{3} & y_{4} & y_{5} \\ y_{6} & y_{7} & y_{8}\end{array}\right|$
$=\left|\begin{array}{ccc}\sin m x & m \cos m x & -m^{2} \sin m x \\ -m^{3} \cos m x & m^{4} \sin m x & m^{5} \cos m x \\ -m^{6} \sin m x & -m^{7} \cos m x & m^{8} \sin m x\end{array}\right|$
$=m^{12}\left|\begin{array}{ccc}\sin m x & \cos m x & -\sin m x \\ -\cos m x & \sin m x & \cos m x \\ -\sin m x & -\cos m x & \sin m x\end{array}\right|=0$
(d)
$D^{\prime}=\left|\begin{array}{lll}a_{1}+p b_{1} & b_{1}+q c_{1} & c_{1}+r a_{1} \\ a_{2}+p b_{2} & b_{2}+q c_{2} & c_{2}+r a_{2} \\ a_{3}+p b_{3} & b_{3}+q c_{3} & c_{3}+r a_{3}\end{array}\right|$
$=\left|\begin{array}{lll}a_{1} & b_{1}+q c_{1} & c_{1}+r a_{1} \\ a_{2} & b_{2}+q c_{2} & c_{2}+r a_{2} \\ a_{3} & b_{3}+q c_{3} & c_{3}+r a_{3}\end{array}\right|$

$$
+\left|\begin{array}{lll}
p b_{1} & b_{1}+q c_{1} & c_{1}+r a_{1} \\
p b_{2} & b_{2}+q c_{2} & c_{2}+r a_{2} \\
p b_{3} & b_{3}+q c_{3} & c_{3}+r a_{3}
\end{array}\right|
$$

In the first determinant, apply $C_{3} \rightarrow C_{3}-r C_{1}$ and then $C_{2} \rightarrow C_{2}-q C_{3}$
In second determinant take p common from C_{1} and then apply $C_{2} \rightarrow C_{2}-C_{1}$. Then take q common from C_{2} and then apply $C_{3} \rightarrow C_{3}-C_{2}$.
Finally taking r common from C_{3}, we have ultimately $D^{\prime}=(1+p q r) D$
(c)

We have,

$$
\begin{aligned}
& \left|\begin{array}{lll}
k a & k^{2}+a^{2} & 1 \\
k b & k^{2}+b^{2} & 1 \\
k c & k^{2}+c^{2} & 1
\end{array}\right|=\left|\begin{array}{lll}
k a & k^{2} & 1 \\
k b & k^{2} & 1 \\
k c & k^{2} & 1
\end{array}\right|+\left|\begin{array}{lll}
k a & a^{2} & 1 \\
k b & b^{2} & 1 \\
k c & c^{2} & 1
\end{array}\right| \\
& =0+k\left|\begin{array}{lll}
a & a^{2} & 1 \\
b & b^{2} & 1 \\
c & c^{2} & 1
\end{array}\right| \\
& =k(a-b)(b-c)(c-a)
\end{aligned}
$$

(a)

Let first term of G.P. is A and common ration is R. Then,
$a=A R^{p-1} \Rightarrow \log a=\log A+(p-1) \log R$, etc
$\Rightarrow\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|=\left|\begin{array}{lll}\log A+(p-1) \log R & p & 1 \\ \log A+(q-1) \log R & q & 1 \\ \log A+(r-1) \log R & r & 1\end{array}\right|$
$=\left|\begin{array}{lll}(p-1) \log R & p & 1 \\ (q-1) \log R & q & 1 \\ (r-1) \log R & r & 1\end{array}\right| \quad\left[C_{1} \rightarrow C_{1}-(\log A) C_{3}\right]$
$=\log R\left|\begin{array}{lll}(p-1) & p & 1 \\ (q-1) & q & 1 \\ (r-1) & r & 1\end{array}\right|$
$=\log R\left|\begin{array}{lll}p & p & 1 \\ q & q & 1 \\ r & r & 1\end{array}\right| \quad\left(C_{1} \rightarrow C_{1}+C_{3}\right)$
$=0$
80 (a)
Operating $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$ on the L.H.S. we get
$\Delta=\left|\begin{array}{ccc}0 & c-a & a-b \\ 0 & c^{\prime}-a^{\prime} & a^{\prime}-b^{\prime} \\ 0 & c^{\prime \prime}-a^{\prime \prime} & a^{\prime \prime}-b^{\prime \prime}\end{array}\right|=m\left|\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}\end{array}\right|$
$\Rightarrow m=0$
81 (d)
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get
$\Delta=\left|\begin{array}{ccc}a & b-y & c-z \\ -x & y & 0 \\ -x & 0 & z\end{array}\right|=0$
Expanding along C_{3}, we get
$(c-z)\left|\begin{array}{ll}-x & y \\ -x & 0\end{array}\right|+z\left|\begin{array}{cc}a & b-y \\ -x & y\end{array}\right|=0$
$\Rightarrow(c-z)(x y)+z(a y+b x-x y)=0$
$\Rightarrow c x y-x y z+a y z+b x z-x y z=0$
$\Rightarrow a y z+b z x+c x y=2 x y z$
$\Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
82 (b)
$\Delta_{1}=x\left(x^{2}-a b\right)-b(a x-a b)+b\left(a^{2}-a x\right)$
$=x^{3}-3 a b x+a b^{2}+a^{2} b$
$\frac{d}{d x}\left(\Delta_{1}\right)=3 x^{2}-3 a b=3\left(x^{2}-a b\right)=3 \Delta_{2}$
83
(b)

Let $D=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-\frac{a_{12}}{a_{11}} C_{1}, C_{3} \rightarrow C_{3}-\frac{a_{13}}{a_{11}} C_{1}$, we get
$D=\left|\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & \left(a_{22}-\frac{a_{12}}{a_{11}} \times a_{21}\right) & \left(a_{23}-\frac{a_{13}}{a_{11}} \times a_{21}\right) \\ a_{31} & \left(a_{32}-\frac{a_{12}}{a_{11}} \times a_{31}\right) & \left(a_{32}-\frac{a_{13}}{a_{11}} \times a_{31}\right)\end{array}\right|$
Which has minimum value of -4
84 (a)
The given system of linear equations has a unique solution if
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 5 & \lambda\end{array}\right| \neq 0$
i.e., if $\lambda-8 \neq 0$ or $\lambda=8$

85 (c)
Consider the triangle with vertices
$B\left(x_{1}, y_{1}\right), C\left(x_{2}, y_{2}\right)$ and $A\left(x_{3}, y_{3}\right)$, and $A B=$
$c, B C=a$ and $A C=b$. Then area of triangle is
$\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\sqrt{s(s-a)(s-b)(s-c)}$ where
$2 s=a+b+c$
Squaring and simplifying, we get
$4\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=(a+b+c)(b+c-a)(c+a-$
$b a+b-c$
Hence, $k=4$
86 (c)
$\because-1 \leq x<0 \quad \therefore[x]=-1$
$0 \leq y<1 \quad \therefore[y]=0$
$1 \leq z<2 \quad \therefore[z]=1$
Hence, the given determinant is
$\left|\begin{array}{ccc}0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2\end{array}\right|=1=[z]$
87 (a)
$\Delta=\left|\begin{array}{ccc}p+a & b & c \\ a & q+b & x \\ a & b & r+c\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get
$\left|\begin{array}{ccc}p+a & b & c \\ -p & q & 0 \\ -q & 0 & r\end{array}\right|=0$
$\Rightarrow p q c+[q(p+a)+b p] r=0$
Dividing by $p q r$, we obtain
$\frac{a}{p}+\frac{b}{q}+\frac{c}{r}=-1$
88

(c)

$f(x)$
$=\left\lvert\, \begin{array}{ccr}1-2 \sin ^{2} x & \sin ^{2} x & 1-8 \text { si } \\ \sin ^{2} x & 1-2 \sin ^{2} x & 1 \\ 1-8 \sin ^{2} x\left(1-\sin ^{2} x\right) & 1-\sin ^{2} x & 1\end{array}\right.$
The required constant term is
$f(0)=\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|=1(0-1)=-1$
(b)

We have,
$\Delta=\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|=a b c-(a+b+c)+2$
$\therefore \Delta>0 \Rightarrow a b c+2>a+b+c$
$\Rightarrow a b c+2>3(a b c)^{1 / 3}[\because$ A. M. $>$ G. M. \Rightarrow
$a+b+c 3>a b c 13$
$\Rightarrow x^{3}+2>3 x$, where $x=(a b c)^{1 / 3}$
$\Rightarrow x^{3}-3 x+2>0 \Rightarrow(x-1)^{2}(x+2)>0$
$\Rightarrow x+2>0 \Rightarrow x>-2 \Rightarrow(a b c)^{1 / 3}>-2 \Rightarrow a b c$

$$
>-8
$$

90 (c)
We observe that the elements in the pre-factor are the cofactor of the corresponding elements of the post-factor. Hence,

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda & c & -b \\
-c & \lambda & a \\
b & -a & \lambda
\end{array}\right|^{3} & =\left[\lambda\left(\lambda^{2}+a^{2}+b^{2}+c^{2}\right)\right]^{3} \\
& =\left(1+a^{2}+b^{2}+c^{2}\right)^{3} \\
\Rightarrow \lambda=1 &
\end{aligned}
$$

Alternative solution:

Writing $a=0, b=0, c=0$ on both sides, we get $\lambda^{6} \lambda^{3}=1 \Rightarrow \lambda=1$
91 (b)
Given,
$\left|\begin{array}{ccc}x p+y & x & y \\ y p+z & y & z \\ 0 & x p+y & y p+z\end{array}\right|=0$
Operating $C_{1} \rightarrow C_{1}-p C_{2}-C_{3}$, we get
$\left|\begin{array}{ccc}0 & x & y \\ 0 & y & z \\ -\left(x p^{2}+2 p y+z\right) & x p+y & y p+z\end{array}\right|=0$
$\Rightarrow\left(x z-y^{2}\right)\left(x p^{2}+2 p y+z\right)=0$
$\Rightarrow x z-y^{2}=0$
$\Rightarrow y^{2}=x z$
Hence, x, y, z are in G.P.
92 (a)
We have,
$\left|\begin{array}{cccc}x & 1 & 1 & \cdots \\ 1 & x & 1 & \ldots \\ 1 & 1 & x & \cdots \\ \ldots & \cdots & \ldots & \ldots\end{array}\right|$
$=\left|\begin{array}{cccc}x & 1 & 1 & \cdots \\ (1-x) & (x-1) & 0 & \cdots \\ (1-x) & 0 & (x-1) & \cdots \\ \ldots & \cdots & \ldots & \cdots\end{array}\right|$
[Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}, \ldots, R_{n} \rightarrow$
$\left.R_{n}-R_{1}\right]$
$=x(x-1)^{n-1}+\mid(x-1)^{n-1}+(x-1)^{n-1}+\cdots+$
$(x-1)^{n-1}(n-1)$ times
[Expanding along R_{1}]
$=x(x-1)^{n-1}+(n-1)(x-1)^{n-1}$
$=(x-1)^{n-1}(x+n-1)$
93 (d)
Operating $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$(a+b+c-x)\left|\begin{array}{ccc}1 & c & b \\ 1 & b-x & a \\ 1 & a & c-x\end{array}\right|=0$
$\therefore x=a+b+c=0$
(b,d)
Since, given that
$\Delta=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-\left(\alpha R_{1}+R_{2}\right)$, we get
$\Delta=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ 0 & 0 & -\left(a \alpha^{2}+2 b \alpha+c\right)\end{array}\right|$
$\Rightarrow \Delta=\left(b^{2}-a c\right)\left(a \alpha^{2}+2 b \alpha+c\right)=0$
$\Rightarrow b^{2}=a c$ or $a \alpha^{2}+2 b \alpha+c=0$
$\Rightarrow a, b, c$ are in GP or α is the root of the equation $a x^{2}+2 b x+c=0$.

Applying $C_{1} \rightarrow C_{1}-(\cot \phi) C_{2}$, we get
$\Delta=\left|\begin{array}{ccc}0 & \sin \theta \sin \phi & \cos \theta \\ 0 & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0\end{array}\right|$
$=-\frac{\sin \theta}{\sin \theta}\left[-\sin \phi \sin ^{2} \theta-\cos ^{2} \theta \sin \phi\right]$
[expanding along C_{1}]
$=\sin \theta$
Which is independent of ϕ. Also,
$\left.\frac{d \Delta}{d \theta}=\cos \theta \Rightarrow \frac{d \Delta}{d \theta}\right]_{\theta=\pi / 2}=\cos (\pi / 2)=0$
96
(a,b)
Applying $C_{3} \rightarrow C_{3}-x C_{2}, C_{2} \rightarrow C_{2}-x C_{1}$, we obtain
$\Delta(x)=\left|\begin{array}{ccc}3 & 0 & 2 a^{2} \\ 3 x & 2 a^{2} & 4 a^{2} x \\ 3 x^{2}+2 a^{2} & 4 a^{2} x & 6 a^{2} x^{2}+2 a^{2}\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}-x C_{2}$, we get
$\Delta(x)=4 a^{4}\left|\begin{array}{ccc}3 & 0 & 1 \\ 3 x & 1 & x \\ 3 x^{2}+2 a^{2} & 2 x & x^{2}+2 a^{2}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-3 C_{3}$, we get
$\Delta(x)=4 a^{4}\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & x \\ -4 a^{2} & 2 x & x^{2}+2 a^{2}\end{array}\right|=16 a^{6}$
97 (d)
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$\Delta=\left|\begin{array}{ccc}\sin ^{2} A & \cot A & 1 \\ \sin (B+A) \sin (B-A) & \frac{\sin (A-B)}{\sin A \sin B} & 0 \\ \sin (C+A) \sin (C-A) & \frac{\sin (A-C)}{\sin A \sin C} & 0\end{array}\right|$
$\left[\because \cot \alpha-\cot \beta=\frac{\sin (\beta-\alpha)}{\sin \alpha \sin \beta}\right]$
Expanding along C_{3}, we get

$$
\begin{aligned}
& \Delta=\frac{\sin (A-B) \sin (A-C)}{\sin A}\left[-\frac{\sin (B+A)}{\sin C}\right. \\
& \left.\quad+\frac{\sin (C+A)}{\sin B}\right] \\
& =\frac{\sin (A-B) \sin (A-C)}{\sin A}\left[-\frac{\sin (\pi-C)}{\sin C}\right. \\
& \left.\quad+\frac{\sin (\pi-B)}{\sin B}\right] \\
& =
\end{aligned}
$$

(a,b)
$\Delta=\frac{1}{a}\left|\begin{array}{ccc}a^{3}+a x & a b & a c \\ a^{2} b & b^{2}+x & b c \\ a^{2} c & b c & c^{2}+x\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+b C_{2}+c C_{3}$ and taking
$a^{2}+b^{2}+c^{2}+x$ common, we get
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}a & a b & a c \\ b & b^{2}+x & b c \\ c & b c & c^{2}+x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-b C_{1}$ and $C_{3} \rightarrow C_{3}-c C_{1}$, we get
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{lll}a & 0 & 0 \\ b & x & 0 \\ c & 0 & x\end{array}\right|$
$=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left(a x^{2}\right)$

$$
=x^{2}\left(a^{2}+b^{2}+c^{2}+x\right)
$$

Thus Δ is divisible by x and x^{2}
99 (a,c)
$\because f(x)=\left|\begin{array}{ccc}n & n+1 & n+2 \\ { }^{n} P_{n} & { }^{n+1} P_{n+1} & { }^{n+2} P_{n+2} \\ { }^{n} C_{n} & { }^{n+1} C_{n+1} & { }^{n+2} C_{n+2}\end{array}\right|$
$=\left|\begin{array}{ccc}n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1\end{array}\right| \quad\left(\because{ }^{n} P_{n}=n!,{ }^{n} C_{n}=\right.$
1)

Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
Then, $f(x)=\left|\begin{array}{ccc}n & 1 & 2 \\ n! & n \cdot n! & \left(n^{2}+3 n+1\right) n! \\ 1 & 0 & 0\end{array}\right|$
$=\left|\begin{array}{cc}1 & 2 \\ n \cdot n! & \left(n^{2}+3 n+1\right) n!\end{array}\right|=n!\left(n^{2}+n+1\right)$
100 (d)
4. Multiplying C_{1} by a, C_{2} by b and C_{3} by c, we obtain
$\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}\frac{a}{c} & \frac{b}{c} & -\frac{a+b}{c} \\ -\frac{b+c}{c} & \frac{b}{a} & \frac{c}{a} \\ -\frac{b(b+c)}{a c} & \frac{b(a+2 b+c)}{a c} & -\frac{b(a+b)}{a c}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}0 & \frac{b}{c} & -\frac{a+b}{c} \\ 0 & \frac{b}{a} & \frac{c}{a} \\ 0 & \frac{b(a+2 b+c)}{a c} & -\frac{b(a+b)}{a c}\end{array}\right|$
This shows that Δ is independent of a, b and c
5. Applying $C_{1} \rightarrow C_{1}-(\cot b) C_{2}$, we get
$\Delta=\left|\begin{array}{ccc}0 & \sin a \sin b & \cos a \\ 0 & \cos a \sin b & -\sin a \\ -\sin a / \sin b & \sin a \cos b & 0\end{array}\right|$
$=-\frac{\sin a}{\sin b}\left[-\sin b \sin ^{2} a-\cos ^{2} a \sin b\right]$ [Expanding along C_{1}]
$=\sin a$
6. Taking $1 / \sin a \cos b, 1 / \sin a \sin b, 1 / \cos a$ common from C_{1}, C_{2}, C_{3}, respectively, we get
$\Delta=\frac{1}{\sin ^{2} a \cos a \sin b \cos b} \Delta_{1}$
Where $\Delta_{2}=\left|\begin{array}{ccc}1 & 1 & 1 \\ -\cot a & -\cot a & \tan a \\ \tan b & -\cot b & 0\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & -\cot a & \tan a \\ 1 / \sin b \cos b & -\cot b & 0\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{2}$, we get
$\Delta=\frac{1}{\sin b \cos b}[\tan a+\cot a]$
$=\frac{1}{\sin a \cos a \sin b \cos b}$
7. $\quad\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1\end{array}\right|$
$=\left|\begin{array}{ccc}a^{2} & a \sin B & a \sin C \\ a \sin B & 1 & \cos A \\ a \sin C & \cos A & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{ccc}1 & \sin B & \sin C \\ \sin B & 1 & \cos A \\ \sin C & \cos A & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{c}100 \\ \sin B 1-\sin ^{2} B \cos A-\sin B \sin C \\ \sin C \\ \cos A-\sin B \sin C \\ 1-\sin ^{2} C\end{array}\right|$
[Applying $C_{2} \rightarrow C_{2}-(\sin B) C_{1}$ and $C_{3} \rightarrow C_{3}-$ $\left.(\sin C) C_{1}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-(\cos A-\sin B \sin C)^{2}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-(\cos (B+C)+\sin B \sin C)^{2}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-\cos ^{2} B \cos ^{2} C\right]$
$=0$

101 (a,b,c,d)

Let $a \neq 0$, then on applying $C_{1} \rightarrow a C_{1}$, we get
$\Delta=\frac{1}{a}\left|\begin{array}{ccc}a^{3}+a x^{2} & a b & a c \\ a^{2} b & b^{2}+x^{2} & b c \\ a^{2} c & b c & c^{2}+x^{2}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+b C_{2}+c C_{3}$
$\Delta=\frac{1}{a}\left|\begin{array}{ccc}a\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & a b & a c \\ b\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & b^{2}+x^{2} & b c \\ c\left(a^{2}+b^{2}+c^{2}+x^{2}\right) & b c & c^{2}+x^{2}\end{array}\right|$
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x^{2}\right)\left|\begin{array}{ccc}a & a b & a c \\ b & b^{2}+x^{2} & b c \\ c & b c & c^{2}+x^{2}\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-b C_{1}, C_{3} \rightarrow C_{3}-c C_{1}$
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x^{2}\right)\left|\begin{array}{ccc}a & 0 & 0 \\ b & x^{2} & 0 \\ c & 0 & x^{2}\end{array}\right|$
$\therefore \Delta=\left(a^{2}+b^{2}+c^{2}+x^{2}\right) x^{4} \quad(\because a \neq 0)$
Now, if $a=0$, then $\Delta=0$
Also, it can be easily seen that Δ is divisible by x, x^{2}, x^{3} and x^{4}.
102 (a,c)

$$
\begin{aligned}
& \mathrm{g}(x)=\left|\begin{array}{ccc}
a^{-x} & e^{\log _{e} a^{x}} & x^{2} \\
a^{-3 x} & e^{\log _{e} a^{3 x}} & x^{4} \\
a^{-5 x} & e^{\log _{e} a^{5 x}} & 1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a^{-x} & a^{x} & x^{2} \\
a^{-3 x} & a^{3 x} & x^{4} \\
a^{-5 x} & a^{5 x} & 1
\end{array}\right|\left(e^{\log a^{x}=a^{x}}\right) \\
& \Rightarrow g(-x)=\left|\begin{array}{ccc}
a^{x} & a^{-x} & x^{2} \\
a^{3 x} & a^{3 x} & x^{4} \\
a^{5 x} & a^{-5 x} & 1
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
a^{-x} & a^{x} & x^{2} \\
a^{-3 x} & a^{3 x} & x^{4} \\
a^{-5 x} & a^{5 x} & 1
\end{array}\right|
\end{aligned}
$$

[interchanging $1^{\text {st }}$ and $2^{\text {nd }}$ columns]
$=-\mathrm{g}(x)$
$\Rightarrow \mathrm{g}(x)+\mathrm{g}(-x)=0$
$\Rightarrow \mathrm{g}(x)$ is an odd function
Hence, the graph is symmetrical about origin.
Also, $\mathrm{g}_{4}(x)$ is an odd function [where $\mathrm{g}_{4}(x)$ is fourth derivative of $\mathrm{g}(x)]$. Hence,
$\mathrm{g}_{4}(x)=-\mathrm{g}_{4}(-x)$
$\Rightarrow g_{4}(0)=-g_{4}(0)$
$\Rightarrow g_{4}(0)=0$
103 (a,b)
By partial fractions, we have

$$
\begin{aligned}
& \mathrm{g}(x)=\frac{f(a)}{(x-a)(a-b)(a-c)} \\
& \quad+\frac{f(b)}{(b-a)(x-b)(b-c)} \\
& \quad+\frac{f(c)}{(c-a)(c-b)(x-c)} \\
& \Rightarrow \mathrm{g}(x)=\frac{1}{(a-b)(b-c)(c-a)} \\
& \quad \times\left[\frac{f(a)(c-b)}{(x-a)}+\frac{f(b)(a-b)}{(x-b)}\right. \\
& \\
& \left.\quad+\frac{f(c)(b-a)}{(x-c)}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathrm{g}(x)= & \left|\begin{array}{lll}
1 & a & f(a) /(x-a) \\
1 & b & f(b) /(x-b) \\
1 & c & f(c) /(x-c)
\end{array}\right| \div\left|\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \\
\Rightarrow \int \mathrm{g}(x) d x= & \left|\begin{array}{lll}
1 & a & f(a) \log |x-a| \\
1 & b & f(b) \log |x-b| \\
1 & c & f(c) \log |x-c|
\end{array}\right| \\
& \div\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|+k
\end{aligned}
$$

and
$\frac{d \mathrm{~g}(x)}{d x}=\left|\begin{array}{lll}1 & a & -f(a)(x-a)^{-2} \\ 1 & b & -f(b)(x-b)^{-2} \\ 1 & c & -f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
$=\left|\begin{array}{lll}1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2}\end{array}\right| \div\left|\begin{array}{lll}a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1\end{array}\right|$
104 (b,c)
$\because x=\frac{a}{b-c}, y=\frac{b}{c-a}, z=\frac{c}{a-b}$
or $-a+b x-c x=0,-a y-b+c y=0, a z-$
$b z-c=0$
Now, on eliminating a, b, c, we get
$\left|\begin{array}{ccc}-1 & x & -x \\ -y & -1 & y \\ z & -z & -1\end{array}\right|=0$
$\Rightarrow(-1)^{3}\left|\begin{array}{ccc}1 & -x & x \\ y & 1 & -y \\ -z & z & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}1 & -x & x \\ y & 1 & -y \\ -z & z & 1\end{array}\right|=0$
Also, on applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\left|\begin{array}{ccc}1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1\end{array}\right|=0$
105 (a,b)
Applying $R_{1} \rightarrow R_{1}+\sin \phi\left(R_{2}\right)+\cos \phi\left(R_{3}\right)$,
$f(x)=\Delta=\left|\begin{array}{ccc}0 & 0 & \cos 2 \phi+1 \\ \sin \theta & \cos \theta & \sin \phi \\ -\cos \phi & \sin \theta & \cos \phi\end{array}\right|$
$=(\cos 2 \phi+1)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=(1+\cos 2 \phi)$
Hence, Δ is independent of θ

106 (b,c)
$z=e^{i A} e^{i B} e^{i C}\left|\begin{array}{ccc}e^{i A} & e^{-i(C+A)} & e^{-i(B+A)} \\ e^{-i(C+B)} & e^{i B} & e^{-i(A+B)} \\ e^{-e(B+C)} & e^{-i(A+C)} & e^{i C}\end{array}\right|$
$\Rightarrow z=-\left|\begin{array}{ccc}e^{i A} & -e^{i B} & -e^{i C} \\ -e^{i A} & e^{i B} & -e^{i C} \\ -e^{i A} & -e^{i B} & e^{i C}\end{array}\right|$
$\left(\because e^{i(A+B+C)}=e^{i \pi}=\cos \pi+i \sin \pi=-1\right)$
Applying $R_{1} \rightarrow R_{1}+R_{3}, R_{2} \rightarrow R_{2}+R_{3}$
$\Rightarrow z=-\left|\begin{array}{ccc}0 & -2 e^{i B} & 0 \\ -2 e^{i A} & 0 & 0 \\ -e^{i A} & -e^{i B} & e^{i C}\end{array}\right|$
$\Rightarrow z=2 e^{i B}\left\{2 e^{i(A+C)}\right\}$
$\Rightarrow z=4 e^{i(A+B+C)}=4 e^{i \pi}=-4$
107 (a,c)
$f(\theta)=\sin ^{3} \theta+\cos ^{3} \theta-\cos \theta \sin \theta(\sin \theta+\cos \theta)$
$=(\sin \theta+\cos \theta)^{3}-4 \sin \theta \cos \theta(\sin \theta+\cos \theta)$
$=(\sin \theta+\cos \theta)[1-\sin 2 \theta]$
Now, $f(\theta)=0$
$\Rightarrow \tan \theta=-1$ or $\sin 2 \theta=1$
$\Rightarrow f(\theta)=0$ has 2 real solutions in $[0, \pi]$
Also, $\frac{f(\theta)}{1-\sin 2 \theta}=\sin \theta+\cos \theta \in[-\sqrt{2}, \sqrt{2}]$
108 (b,c)
In the left-hand determinant, each element is the cofactor of the elements of the determinant
$\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|=\Delta^{*}$ (say)
Hence,
$\Delta^{* 2}=\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|$
$=\left|\begin{array}{ccc}x^{2}+y^{2}+z^{2} & x y+y z+z x & x z+y x+z y \\ \Sigma x y & \Sigma x^{2} & \Sigma x y \\ \Sigma x y & \Sigma x y & \Sigma x^{2}\end{array}\right|$
$=\left|\begin{array}{lll}r^{2} & u^{2} & u^{2} \\ u^{2} & r^{2} & u^{2} \\ u^{2} & u^{2} & r^{2}\end{array}\right| \quad\left[\right.$ Since $x^{2}+y^{2}+z^{2}=r^{2}, x y+$
$\left.y z+z x=u^{2}\right]$
109 (a,b,c)
We have,
$\left|\begin{array}{lll}b c & c a & a b \\ c a & a b & b c \\ a b & b c & c a\end{array}\right|=0$
$\Rightarrow(a b)^{3}+(b c)^{3}+(c a)^{3}-3(a b)(b c)(c a)=0$
$\Rightarrow\left(a b+b c \omega^{2}+c a \omega\right)\left(a b \omega+b c \omega^{2}+c a\right)\left(a b \omega^{2}\right.$

$$
+b c \omega+c a)=0
$$

$\Rightarrow a b+b c \omega^{2}+c a \omega=0, a b \omega+b c \omega^{2}+c a$

$$
=0, a b \omega^{2}+b c \omega+c a=0
$$

$\Rightarrow \frac{1}{c \omega^{2}}+\frac{1}{a}+\frac{1}{b \omega}=0, \frac{1}{c \omega}+\frac{1}{a}+\frac{1}{b \omega^{2}}$

$$
=0, \frac{1}{c}+\frac{1}{a \omega}+\frac{1}{b \omega^{2}}=0
$$

$\Rightarrow \frac{1}{a}+\frac{1}{b \omega}+\frac{1}{c \omega^{2}}=0, \frac{1}{a}+\frac{1}{b \omega^{2}}+\frac{1}{c \omega}$

$$
=0, \frac{1}{a \omega}+\frac{1}{b \omega^{2}}+\frac{1}{c}=0
$$

110 (a,b,c)

Applying $R_{3} \rightarrow R_{3}-x R_{2}$ and $R_{2} \rightarrow R_{2}-x R_{1}$, we get
$f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ 0 & a+x & -1 \\ 0 & 0 & a+x\end{array}\right|=a(a+x)^{2}$
Hence,

$$
\begin{aligned}
f(2 x)-f(x) & =a\left[(a+2 x)^{2}-(a+x)^{2}\right] \\
& =a(a+2 x-a-x)(a+2 x+a \\
& +x)=a x(2 a+3 x)
\end{aligned}
$$

111 (a,b)
$\left|\begin{array}{lll}1 & k & 3 \\ k & 2 & 2 \\ 2 & 3 & 4\end{array}\right|=0$
$\Rightarrow 8+4 k+9 k-12-4 k^{2}-6=0$
$\Rightarrow 4 k^{2}-13 k+10=0$
$\Rightarrow 4 k^{2}-8 k-5 k+10=0$
$\Rightarrow(2 k-5)(k-2)=0$
$\Rightarrow k=5 / 2,2$

112 (c,d)

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\Delta=\left|\begin{array}{ccc}a+b-x & a & b \\ a+b-x & -x & a \\ a+b-x & b & -x\end{array}\right|$

$$
=(a+b-x)\left|\begin{array}{ccc}
1 & a & b \\
1 & -x & a \\
1 & b & -x
\end{array}\right|
$$

$=(a+b-x)\left|\begin{array}{ccc}1 & a & b \\ 0 & -x-a & a-b \\ 0 & b-a & -x-b\end{array}\right|$
[Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$]
$=(a+b-x)\left[(x+a)(x+b)+(a-b)^{2}\right]$
[expanding along C_{1}]
$=(a+b-x)\left[x^{2}+(a+b) x+a^{2}+b^{2}-a b\right]$
113 (a,b,c)
$\left|\begin{array}{ccc}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{array}\right|=\left|\begin{array}{ccc}8 & 2 & 7 \\ 4 & 1 & -2 \\ 4 & 1 & -2\end{array}\right| \quad\left[R_{3} \rightarrow R_{3}-R_{2}\right.$ and R_{2}

$$
\left.\rightarrow R_{2}-R_{1}\right]
$$

$=0$
$\left|\begin{array}{lll}1 / a & a^{2} & b c \\ 1 / b & b^{2} & a c \\ 1 / c & c^{2} & a b\end{array}\right|=\frac{1}{a b c}\left|\begin{array}{lll}1 & a^{3} & a b c \\ 1 & b^{3} & a b c \\ 1 & c^{3} & a b c\end{array}\right|$
$\left[R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow b R_{3}\right.$]
$=\frac{a b c}{a b c}\left|\begin{array}{lll}1 & a^{3} & 1 \\ 1 & b^{3} & 1 \\ 1 & c^{3} & 1\end{array}\right| \quad$ [taking $a b c$ common from C_{3}]
$=0$
$\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ 2 a+b & 3 a+b & 4 a+b \\ 4 a+b & 5 a+b & 6 a+b\end{array}\right|$ $=\left|\begin{array}{ccc}a+b & 2 a+b & 3 a+b \\ a & a & a \\ 2 a & 2 a & 2 a\end{array}\right|$
$\left[R_{3} \rightarrow R_{3}-R_{2}, R_{2} \rightarrow R_{2}-R_{1}\right]$
$=0$
$\left|\begin{array}{lll}2 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{array}\right|=\left|\begin{array}{lll}2 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2\end{array}\right| \quad\left[C_{2} \rightarrow C_{2}-7 C_{3}\right]$
$=\left|\begin{array}{lll}1 & 1 & 6 \\ 0 & 7 & 4 \\ 0 & 3 & 2\end{array}\right| \quad\left[C_{1} \rightarrow C_{1}-C_{2}\right]$
$=2$
114 (a,c)
$\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha-\beta) & 1\end{array}\right|$
$=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1+\sin \beta-\cos \beta\end{array}\right|$
[Applying $R_{3} \rightarrow R_{3}-R_{1}(\cos \beta)+R_{2}(\sin \beta)$] $=(1+\sin \beta-\cos \beta)\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=1+$ $\sin \beta-\cos \beta$ which is independent of α
115 (a,c)

$$
\left|\begin{array}{ccc}
{ }^{x} C_{r} & { }^{n-1} C_{r} & { }^{n} C_{r} \tag{i}\\
{ }^{x+1} C_{r} & { }^{n} C_{r} & { }^{n+1} C_{r} \\
{ }^{x+2} C_{r} & { }^{n+1} C_{r} & { }^{n+2} C_{r}
\end{array}\right|=0
$$

$\Rightarrow\left|\begin{array}{ccc}\frac{x!}{r!(x-r)!} & \frac{(n-1)!}{r!(n-r-1)!} & \frac{n!}{r!(n-r)!} \\ \frac{(x+1)!}{r!(x+1-r)!} & \frac{n!}{r!(n-r)!} & \frac{(n+1)!}{r!(n-r+1)!} \\ \frac{(x+2)!}{r!(x+2-r)!} & \frac{(n+1)!}{r!(n+1-r)!} & \frac{(n+2)!}{r!(n-r+2)!}\end{array}\right|=0$
Taking $\frac{x!}{r!(x+2-r)!}$ common from C_{1}, we have quadratic equation in x
Now in (i), if we put $x=n-1, C_{1}$ and C_{2} are the same, hence $x=n-1$ is one root of the equation If we put $x=n$, then C_{1} and C_{3} are same. Hence, $x=n$ is the other root
116 (a,b,c)
Operating $C_{1} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$, we get $\Delta=\left|\begin{array}{lll}1 & a c & b c \\ 1 & a d & b d \\ 1 & a e & b e\end{array}\right|=a b\left|\begin{array}{lll}1 & c & c \\ 1 & d & d \\ 1 & e & e\end{array}\right| a b(0)=0$
117
(b,c)
$\Delta^{\prime}(x)=\left|\begin{array}{ccc}2 x+4 & 2 x+4 & 13 \\ 4 x+5 & 4 x+5 & 26 \\ 16 x-6 & 16 x-6 & 104\end{array}\right|$ $+\left|\begin{array}{ccc}x^{2}+4 x-3 & 2 & 13 \\ 2 x^{2}+5 x-9 & 4 & 26 \\ 8 x^{2}-6 x+1 & 16 & 104\end{array}\right|$
$=0+2 \times 13 \times(0)=0$
$\Rightarrow \Delta(x)=$ constant $\Rightarrow a=0, b=0, c=0$

118 (a,c)
$f(n)=\left|\begin{array}{ccc}n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1\end{array}\right|$
$=\left|\begin{array}{ccc}n & 1 & 1 \\ n! & n n! & (n+1)(n+1)! \\ 1 & 0 & 0\end{array}\right|$
[Applying $C_{3} \rightarrow C_{3}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{1}$] $=(n+1)(n+1)!-n n!=n!\left[(n+1)^{2}-n\right]$

$$
=n!\left(n^{2}+n+1\right)
$$

Thus, $f(n)$ is divisible by $n!$ and $n^{2}+n+1$
119 (a)
We are given that
$1+b c+q r=0 \quad$ (i)
$1+c a+p r=0$
$1+a b+p q=0$
The determinant in the question involves a column consisting the elements $a p, b q$ and $c r$. So multiplying (i), (ii) and (iii) by $a p, b q$ and $c r$, respectively, we get
$a p+a b c p+a p q r=0$ (iv)
$b q+a b c q+b p q r=0 \quad(\mathrm{v})$
$c q+a b c r+c p q r=0$
Since $a b c$ and $p q r$ occur in all the three equations, putting $a b c=x, p q r=y$, we get the system
$a p+p x+a y=0$
$b q+q x+b y=0 \quad$ (vii)
$c r+r x+c y=0$
System (vii) must have a common solution (i.e., system is consistent). So,

$$
\begin{aligned}
& \left|\begin{array}{lll}
a p & p & a \\
b q & q & b \\
c r & r & c
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{lll}
a p & a & p \\
b q & b & q \\
c r & c & r
\end{array}\right|=0
\end{aligned}
$$

120 (b)
Let $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right|=0 \Rightarrow \lambda=3$. Now,
$\Delta_{1}=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda\end{array}\right|$
$=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & 3\end{array}\right|=\mu-10$
$\Delta_{2}=\left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & \lambda\end{array}\right|=\left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & 3\end{array}\right|=20-2 \mu$
$\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu\end{array}\right|=\mu-10$
Clearly, for $\mu=10$, all of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are zero
121 (a)
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|=$ 0 (1)

Then $A=B$ or $B=C$ or $C=A$, for which any two rows are same.

For (1) to hold it is not necessary that all the three rows are same or $A=B=C$

122
(d)
$\because \Delta=\left|\begin{array}{ccc}5 & 4 & 3 \\ x 51 & y 41 & z 31 \\ x & y & z\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
5 & 4 & 3 \\
100 x+51 & 100 y+41 & 100 z+31 \\
x & y & z
\end{array}\right| \\
& =\left|\begin{array}{lll}
5 & 4 & 3 \\
1 & 1 & 1 \\
x & y & z
\end{array}\right| \quad\left(R_{2}=R_{2}-100 R_{3}-10 R_{1}\right)
\end{aligned}
$$

Which is zero provided x, y, z are in AP.
123 (a)
Let $f(\theta)=\left|\begin{array}{lll}\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\ \sin (\theta+\alpha) & \sin (\theta+\beta) & \sin (\theta+\gamma) \\ \sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)\end{array}\right|$ \therefore
$f^{\prime}(\theta)=$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
-\sin (\theta+\alpha) & -\sin (\theta+\beta) & -\sin (\theta+\gamma) \\
\sin (\theta+\alpha) & \sin (\theta+\beta) & \sin (\theta+\gamma) \\
\sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)
\end{array}\right|+ \\
& \left|\begin{array}{ccc}
\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\
\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\
\sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)
\end{array}\right|+ \\
& \left|\begin{array}{ccc}
\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\
\sin (\theta+\alpha) & \sin (\theta+\beta) & \sin (\theta+\gamma) \\
0 & 0 & 0
\end{array}\right| \\
& =0+0+0=0 \\
& \Rightarrow f^{\prime}(\theta)=0 \Rightarrow f(\theta)=\mathrm{c}
\end{aligned}
$$

124 (d)
$\Delta=\left|\begin{array}{lll}a-1 & a & a+1 \\ b-1 & b & b+1 \\ c-1 & c & c+1\end{array}\right|=\left|\begin{array}{lll}0 & a & a+1 \\ 0 & b & b+1 \\ 0 & c & c+1\end{array}\right|$
$\left(C_{1} \rightarrow C_{1}+C_{3}-2 C_{2}\right)$
$\therefore \Delta=0$, which is not a natural number.

125 (a)

For $x=0$, the determinant reduces to the determinant of a skew-symmetric matrix of odd order which is always zero. Hence, $x=0$ is the solution of the given equation

126 (a)
As the given system of equations has non-trivial solutions, hence
$\left|\begin{array}{ccc}\lambda & b-a & c-a \\ a-b & \lambda & c-b \\ a-c & b-c & \lambda\end{array}\right|=0$
When $\lambda=0$, then the determinant becomes skewsymmetric of odd order, which is equal to zero.
Thus, $\lambda=0$

127 (a)
$\Delta=\left|\begin{array}{lll}x & y & z \\ p & q & r \\ a & b & c\end{array}\right|\left|\begin{array}{ccc}0 & m & n \\ -m & 0 & k \\ -n & -k & 0\end{array}\right|$ where $\left|\begin{array}{ccc}0 & m & n \\ -m & 0 & k \\ -n & -k & 0\end{array}\right|$ is skew symmetric
$\therefore \Delta=0$
128 (b)
The system of equations $k x+y+z=1, x+k y+$ $z=k, x+y+k z=k^{2}$ is inconsistent if
$\Delta=\left|\begin{array}{lll}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right|=0$ and one of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ is non-
zero where

$$
\begin{gathered}
\Delta_{1}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
k & k & 1 \\
k^{2} & 1 & k
\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}
k & 1 & 1 \\
1 & k & 1 \\
1 & k^{2} & k
\end{array}\right| \Delta_{3} \\
\\
=\left|\begin{array}{ccc}
k & 1 & 1 \\
1 & k & k \\
1 & 1 & k^{2}
\end{array}\right|
\end{gathered}
$$

We have, $\Delta=(k+2)(k-1)^{2}, \Delta_{1}=-(k+$ $1 k-12$,
$\Delta_{2}=-k(k-1)^{2}, \Delta_{3}=(k+1)^{2}(k-1)^{2}$
The determinant give in statement 2 is $\Delta_{1}=0$, for which $k=1$ or $k=-1$
$k=1$ makes all the determinants zero. But for $k=-1$, all the determinants are not zero

Hence, both statements are true but statement 2 is not correct explanation of statement 1

129 (d)
$\because \frac{d}{d x} f(x) \mathrm{g}(x)=f(x) \frac{d}{d x} \mathrm{~g}(x)+\mathrm{g}(x) \frac{d}{d x} f(x)$
$\Rightarrow \frac{d}{d x} f(x) \mathrm{g}(x) \neq \frac{d}{d x} f(x) \frac{d}{d x} \mathrm{~g}(x)$
Given, $\Delta(x)=\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ \mathrm{g}_{1}(x) & \mathrm{g}_{2}(x)\end{array}\right|$
$=f_{1}(x) g_{2}(x)-f_{2}(x) g_{1}(x)$
$\therefore \frac{d}{d x}\{\Delta(x)\}=\left\{f_{1}^{\prime}(x) \mathrm{g}_{2}(x)+\mathrm{g}_{2}{ }^{\prime}(x) f_{1}(x)\right\}$ $-\left\{f_{2}(x) \mathrm{g}_{1}{ }^{\prime}(x)+\mathrm{g}_{1}(x) f_{2}^{\prime}(x)\right\}$
$\Delta^{\prime}(x)=\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ \mathrm{g}_{1}(x) & \mathrm{g}_{2}(x)\end{array}\right|+\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ \mathrm{g}_{1}(x) & \mathrm{g}_{2}{ }^{\prime}(x)\end{array}\right|$ $\neq\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ \mathrm{g}_{1}^{\prime}(x) & \mathrm{g}_{2}^{\prime}(x)\end{array}\right|$

130 (b)
$\Delta=\Delta_{1} \Delta_{2}$ where $\Delta_{1}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and
$\Delta_{2}=\left|\begin{array}{ccc}1 & x^{2} & 0 \\ x^{2} & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
Hence, both the statements are true but statement 2 is not correct explanation of statement 1

131 (a)
Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$
$\therefore f^{\prime}(x)=0+a_{1}+2 a_{2} x+\ldots$
or $f^{\prime}(0)=a_{1}$
$\therefore a_{1}=\left|\begin{array}{ccc}21 & 22 & 23 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ 31 & 32 & 33 \\ 1 & 1 & 1\end{array}\right|$

$$
+\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
41 & 42 & 43
\end{array}\right|
$$

$=0+0+0=0$

132
(d)
8. Multiplying C_{1} by a, C_{2} by b and C_{3} by c, we obtain
$\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}\frac{a}{c} & \frac{b}{c} & -\frac{a+b}{c} \\ -\frac{b+c}{c} & \frac{b}{a} & \frac{c}{a} \\ -\frac{b(b+c)}{a c} & \frac{b(a+2 b+c)}{a c} & -\frac{b(a+b)}{a c}\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}0 & \frac{b}{c} & -\frac{a+b}{c} \\ 0 & \frac{b}{a} & \frac{c}{a} \\ 0 & \frac{b(a+2 b+c)}{a c} & -\frac{b(a+b)}{a c}\end{array}\right|$
This shows that Δ is independent of a, b and c
9. Applying $C_{1} \rightarrow C_{1}-(\cot b) C_{2}$, we get
$\Delta=\left|\begin{array}{ccc}0 & \sin a \sin b & \cos a \\ 0 & \cos a \sin b & -\sin a \\ -\sin a / \sin b & \sin a \cos b & 0\end{array}\right|$
$=-\frac{\sin a}{\sin b}\left[-\sin b \sin ^{2} a-\cos ^{2} a \sin b\right]$ [Expanding along C_{1}]
$=\sin a$
10. Taking $1 / \sin a \cos b, 1 / \sin a \sin b, 1 / \cos a$ common from C_{1}, C_{2}, C_{3}, respectively, we get
$\Delta=\frac{1}{\sin ^{2} a \cos a \sin b \cos b} \Delta_{1}$
Where $\Delta_{2}=\left|\begin{array}{ccc}1 & 1 & 1 \\ -\cot a & -\cot a & \tan a \\ \tan b & -\cot b & 0\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & -\cot a & \tan a \\ 1 / \sin b \cos b & -\cot b & 0\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{2}$, we get
$\Delta=\frac{1}{\sin b \cos b}[\tan a+\cot a]$
$=\frac{1}{\sin a \cos a \sin b \cos b}$
11. $\left|\begin{array}{ccc}a^{2} & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1\end{array}\right|$
$=\left|\begin{array}{ccc}a^{2} & a \sin B & a \sin C \\ a \sin B & 1 & \cos A \\ a \sin C & \cos A & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{ccc}1 & \sin B & \sin C \\ \sin B & 1 & \cos A \\ \sin C & \cos A & 1\end{array}\right|$
$=a^{2}\left|\begin{array}{c}100 \\ \sin B 1-\sin ^{2} B \cos A-\sin B \sin C \\ \sin C \cos A-\sin B \sin C 1-\sin ^{2} C\end{array}\right|$
[Applying $C_{2} \rightarrow C_{2}-(\sin B) C_{1}$ and $C_{3} \rightarrow C_{3}-$ $\left.(\sin C) C_{1}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-(\cos A-\sin B \sin C)^{2}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-(\cos (B+C)+\sin B \sin C)^{2}\right]$
$=a^{2}\left[\cos ^{2} B \cos ^{2} C-\cos ^{2} B \cos ^{2} C\right]$
$=0$
133 (c)

1. Coefficient of x in $f(x)$ is coefficient of x in $\left|\begin{array}{lll}x & 1 & 1 \\ 1 & x & 2 \\ x^{2} & 1 & 0\end{array}\right|$

Therefore, coefficient of x is -2
2. Let $D=\left|\begin{array}{ccc}1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1\end{array}\right|$
$=(3 \cos \theta-\sin \theta)^{2}$
$\Delta_{\text {max }}=10$
3. $f^{\prime}(x)=0$
$\Rightarrow f^{\prime}(0)=0$
4. $\quad a_{0}=\left|\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 6 \\ 0 & 0 & 1\end{array}\right|=-2(1)=-2$

134 (b)

1. The given determinant is

$$
\Delta=\left|\begin{array}{ccc}
x+2 & x+3 & x+5 \\
x+4 & x+6 & x+9 \\
x+8 & x+11 & x+15
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{2}$, we have
$\Delta=\left|\begin{array}{ccc}x+2 & x+3 & x+5 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{array}\right|$
$=2\left|\begin{array}{ccc}x & x & x+1 \\ 2 & 3 & 4 \\ 1 & 1 & 1\end{array}\right| \quad$ [Applying $R_{1} \rightarrow R_{1}-R_{2}$ and
$\left.R_{3} \rightarrow R_{3}-R_{2}\right]$
$=2\left|\begin{array}{lll}x & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right| \quad$ [Applying $C_{2} \rightarrow C_{2}-C_{1}$ and
$\left.C_{3} \rightarrow C_{3}-C_{2}\right]$
$=-2 \quad$ [Expanding along $\left.R_{3}\right]$
2. $\quad\left|\begin{array}{ccc}7 & 6 & x^{2}-13 \\ 2 & x^{2}-13 & 2 \\ x^{2}-13 & 3 & 7\end{array}\right|$

Let $x^{2}-13=t$. Then
$t^{3}-67 t+126=0$
$\Rightarrow t=-9,2,7 \Rightarrow x= \pm 2, \pm \sqrt{20}, \pm \sqrt{15}$
Hence sum of other five roots is 2
3. $\Delta=\left|\begin{array}{ccc}\sqrt{6} & 2 i & 3+\sqrt{6} \\ \sqrt{12} & \sqrt{3}+\sqrt{8} i & 3 \sqrt{2}+\sqrt{6} i \\ \sqrt{18} & \sqrt{2}+\sqrt{12} i & \sqrt{27}+2 i\end{array}\right|$

Taking $\sqrt{6}$ common from C_{1}, we get
$\Delta=\sqrt{6}\left|\begin{array}{ccc}1 & 2 i & 3+\sqrt{6} \\ \sqrt{2} & \sqrt{3}+2 \sqrt{2} i & 3 \sqrt{2}+\sqrt{6} i \\ \sqrt{3} & \sqrt{2}+2 \sqrt{3} i & 3 \sqrt{3}+2 i\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-\sqrt{2} R_{1}$ and $R_{3} \rightarrow R_{3} \sqrt{3} R_{1}$, we get
$\Delta=\sqrt{6}\left|\begin{array}{ccc}1 & 2 i & 3+\sqrt{6} \\ 0 & \sqrt{3} & \sqrt{6} i-2 \sqrt{3} \\ 0 & \sqrt{2} & 2 i-3 \sqrt{2}\end{array}\right|$
$=\sqrt{6}\left|\begin{array}{cc}\sqrt{3} & \sqrt{6 i}-2 \sqrt{3} \\ \sqrt{2} & 2 i-3 \sqrt{2}\end{array}\right|$
$=\sqrt{6}\left|\begin{array}{ll}\sqrt{3} & -2 \sqrt{3} \\ \sqrt{2} & -3 \sqrt{2}\end{array}\right|\left[\right.$ Applying $\left.C_{2} \rightarrow C_{2}-\sqrt{2} i C_{1}\right]$
$=\sqrt{6}(-3 \sqrt{6}+2 \sqrt{6})$
$=-6$, which is an integer
4. $\quad f(\theta)=\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+(\sin \theta) R_{3}$ and $R_{2} \rightarrow R_{2}-$ $(\cos \theta) R_{3}$, we get
$f(\theta)=\left|\begin{array}{ccc}1 & 0 & -\sin \theta \\ 0 & 1 & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$
$=\sin ^{2} \theta+\cos ^{2} \theta=1$
$=\left|\begin{array}{ccc}p^{2} & 0 & 0 \\ 0 & p^{2} & 0 \\ 0 & 0 & p^{2}\end{array}\right|=p^{6}$
138 (c)
In given determinant applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{2}$, we get
$f(x)=\left|\begin{array}{ccc}x+c_{1} & a-c_{1} & 0 \\ x+b & c_{2}-b & a-c_{2} \\ x+b & 0 & c_{3}-b\end{array}\right|$
$=x\left|\begin{array}{ccc}1 & a-c_{1} & 0 \\ 1 & c_{2}-b & a-c_{2} \\ 1 & 0 & c_{3}-b\end{array}\right|+\left|\begin{array}{ccc}c_{1} & a-c_{1} & 0 \\ b & c_{2}-b & a-c_{2} \\ b & 0 & c_{3}-b\end{array}\right|$
So, $f(x)$ is linear. Let $f(x)=P x+Q$. Then
$f(-a)=-a P+Q, f(-b)=-b P+Q$
Then, $f(0)=0 \times P+Q \Rightarrow Q=\frac{b f(-a)-a f(-b)}{(b-a)}$
Also,
$f(-a)=\left|\begin{array}{ccc}c_{1}-a & 0 & 0 \\ b-a & c_{2}-a & 0 \\ b-a & b-a & c_{3}-a\end{array}\right|$
$=\left(c_{1}-a\right)\left(c_{1}-a\right)\left(c_{3}-a\right)$
Similarly,
$f(-b)=\left(c_{1}-b\right)\left(c_{2}-b\right)\left(c_{3}-x\right)$
$\mathrm{g}(x)=\left(c_{1}-x\right)\left(c_{2}-x\right)\left(c_{3}-x\right) \Rightarrow \mathrm{g}(a)=f(-a)$ and $\mathrm{g}(b)=f(-b)$
Now from (1), we get
$f(0)=\frac{b g(a)-a \mathrm{~g}(b)}{(b-a)}$
139 (d)
$\Delta=\frac{1}{a}\left|\begin{array}{ccc}a^{3}+a x & a b & a c \\ a^{2} b & b^{2}+x & b c \\ a^{2} c & b c & c^{2}+x\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+b C_{2}+c C_{3}$ and taking
$a^{2}+b^{2}+c^{2}+x$ common, we get
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}a & a b & a c \\ b & b^{2}+x & b c \\ c & b c & c^{2}+x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}+b C_{1}$ and $C_{3} \rightarrow C_{3}+c C_{1}$, we get
$\Delta=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{lll}a & 0 & 0 \\ b & x & 0 \\ c & 0 & x\end{array}\right|$
$=\frac{1}{a}\left(a^{2}+b^{2}+c^{2}+x\right)\left(a x^{2}\right)$
$=x^{2}\left(a^{2}+b^{2}+c^{2}+x\right)$
Thus Δ is divisible by x and x^{2}. Also, graph of $f(x)$ is

(c)

The system of equations
$-x+c y+b z=0$
$c x-y+a z=0$
$b x+a y-z=0$
Has a non-zero solution if
$\Delta=\left|\begin{array}{ccc}-1 & c & b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b c-1=0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b c=1$
Then clearly the system has infinitely many solutions. From (1) and (2), we have
$\frac{x}{a c+b}=\frac{y}{b c+a}=\frac{z}{1-c^{2}}$
$\therefore \frac{x^{2}}{(a c+b)^{2}}=\frac{y^{2}}{(b c+a)^{2}}=\frac{z^{2}}{\left(1-c^{2}\right)^{2}}$
or $\frac{x^{2}}{\left(1-a^{2}\right)\left(1-c^{2}\right)}=\frac{y^{2}}{\left(1-b^{2}\right)\left(1-c^{2}\right)}=\frac{z^{2}}{\left(1-c^{2}\right)^{2}} \quad[$ from (4)]
or $\frac{x^{2}}{1-a^{2}}=\frac{y^{2}}{1-b^{2}}=\frac{z^{2}}{1-c^{2}}$
From (5), we see that $1-a^{2}, 1-b^{2}, 1-c^{2}$ are all positive or all negative. Given that one of a, b, c is proper fraction, so
$1-a^{2}>0,1-b^{2}>0,1-c^{2}>0$, which gives
$a^{2}+b^{2}+c^{2}<3$
Using (4) and (6), we get
$1<3+2 a b c$
or $a b c>-1$
141 (a)
$\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right|=2 \lambda+3+2-2-\lambda-6=\lambda-3$
$\Delta_{1}=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda\end{array}\right|$
$=12 \lambda+3 \mu+20-2 \mu-10 \lambda-36$
$=2 \lambda+\mu-16$
$\Delta_{2}=\left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & \lambda\end{array}\right|=10 \lambda+18+\mu-10-3 \mu-6 \lambda$
$=4 \lambda-2 \mu+8$
$\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu\end{array}\right|=2 \mu+10+12-12-\mu-20$
$=\mu-10$
Thus the system has unique solutions if $\Delta \neq 0$ or $\lambda \neq 3$ and the system has infinite solutions if $\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$ or $\lambda=3$ and $\mu=10$. System has no solution if $\Delta=0$ and at least one of
$\Delta_{1}, \Delta_{2}, \Delta_{3}$ is non-zero or $\lambda=3$ and $\mu \neq 10$
142
(d)
$\Delta=\left|\begin{array}{ccc}1+1+1 & 1+\alpha+\beta & 1+\alpha^{2}+\beta^{2} \\ 1+\alpha+\beta & 1+\alpha^{2}+\beta^{2} & 1+\alpha^{3}+\beta^{3} \\ 1+\alpha^{2}+\beta^{2} & 1+\alpha^{3}+\beta^{3} & 1+\alpha^{4}+\beta^{4}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2}\end{array}\right| \times\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2}\end{array}\right|$ [multiplying row
by row]
$=D^{2}$ (say)
Now,
$D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2}\end{array}\right|$
$=(1-\alpha)(\alpha-\beta)(\beta-1)$
$=(\beta-\alpha)[\alpha \beta-\alpha-\beta+1]$
$=(\beta-\alpha)\left(\frac{c}{a}+\frac{b}{a}+1\right)=\frac{(\beta-\alpha)}{a}(a+b+c)$
$\therefore \Delta=D^{2}=\frac{(\beta-\alpha)^{2}}{a^{2}}(a+b+c)^{2}$
$=\frac{1}{a^{2}}(a+b+c)^{2}\left[\frac{b^{2}}{a^{2}}-4 \frac{c}{a}\right]$
$=\frac{1}{a^{4}}(a+b+c)^{2}\left(b^{2}-4 a c\right)$
If $\Delta<0$, i.e., $b^{2}-4 a c<0$, then roots are
imaginary
If one root is $1+\sqrt{2}$ and since coefficients are real, the other root is $1-\sqrt{2}$. Hence the equation is $x^{2}-2 x-1=0$. Then the value of Δ is
$(1-2-1)^{2}(4-4(1)(-1))=32$
If $\Delta>0$, i.e., $b^{2}-4 a c>0$, then roots are real and distinct but nothing can be said about $f(1)$
143 (a)
Multiplying R_{1}, R_{1}, R_{3} by a, b, c, respectively, and then taking a, b, c common from C_{1}, C_{2} and C_{3}, we get
$\Delta=\left|\begin{array}{ccc}-b c & a b+a c & a c+a b \\ a b+b c & -a c & b c+a b \\ a c+b c & b c+a c & -a b\end{array}\right|$
Now, using $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, and then taking $(a b+b c+c a)$ common from C_{2} and C_{3}, we get
$\Delta=\left|\begin{array}{ccc}-b c & 1 & 1 \\ a b+b c & -1 & 0 \\ a c+b c & 0 & -1\end{array}\right| \times(a b+b c+c a)^{2}$
Now, applying $R_{2} \rightarrow R_{2}-R_{1}$, we get
$\Delta=\left|\begin{array}{ccc}-b c & 1 & 1 \\ a b & 0 & 1 \\ a c+b c & 0 & -1\end{array}\right|(a b+b c+c a)^{2}$
Expanding along C_{2}, we get
$\Delta=(a b+b c+c a)^{2}[a c+b c+a b]$
$=(a b+b c+c a)^{3}$
$=(r / p)^{3}=r^{3} / p^{3}$
Now given a, b, c are all positive, then
AM. \geq G.M.
$\Rightarrow \frac{a b+b c+a c}{3} \geq(a b \times b c \times a c)^{1 / 3}$
$\Rightarrow(a b+b c+a c)^{3} \geq 27 a^{2} b^{2} c^{2}$
$\Rightarrow(a b+b c+a c)^{3} \geq 27\left(s^{2} / p^{2}\right)$
If $\Delta=27$, then $a b+b c+c a=3$, and given that $a^{2}+b^{2}+c^{2}=3$, from $(a+b+c)^{2}=a^{2}+b^{2}+$ $c^{2}+2(a b+b c+c a)$,
we have $a+b+c= \pm 3$
$\Rightarrow a+b+c=3$ (since all roots are positive)
$\Rightarrow 3 p+q=0$
(d)

Let,
$\left|\begin{array}{ccc}(1+x)^{a} & (1+2 x)^{b} & 1 \\ 1 & (1+x)^{a} & (1+2 x)^{b} \\ (1+2 x)^{b} & 1 & (1+x)^{a}\end{array}\right|=A+B x+$
$C x^{2}+\ldots$
Putting $x=0$, we get
$A=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=0$
Now differentiating both sides with respect to x and putting $x=0$, we get
$B=\left|\begin{array}{ccc}a & 2 b & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & a & 2 b \\ 1 & 1 & 1\end{array}\right|+\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 b & 0 & a\end{array}\right|=0$
Hence coefficient of x is 0 . Since $f(x)=0$ and $f^{\prime}(0)=0, x=0$ is a repeating root of the equation $f(x)=0$

145 (c)
$\left|\begin{array}{lll}x & n & r \\ m & y & r \\ m & n & z\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$, we get $\left|\begin{array}{ccc}x-m & n-y & 0 \\ 0 & y-n & r-z \\ m & n & z\end{array}\right|=0$
$\Rightarrow(x-m)(y-n) z+(n-y)(r-z) m$

$$
-n(r-z)(x-m)=0
$$

Dividing by $(x-m)(y-n)(z-r)$, we have
$\frac{z}{z-r}+\frac{m}{x-m}+\frac{n}{y-n}=0$
$\Rightarrow \frac{z}{z-r}+\frac{m}{x-m}+\frac{n}{y-n}=0$
$\Rightarrow \frac{z}{z-r}+\frac{m}{x-m}+1+\frac{n}{y-n}+1=2$
$\Rightarrow \frac{z}{z-r}+\frac{x}{x-m}+\frac{y}{y-n}=2$
$\Rightarrow \frac{z}{z-r}-1+\frac{x}{x-m}-1+\frac{y}{y-n}-1=-1$
$\Rightarrow \frac{m}{x-m}+\frac{n}{y-n}+\frac{r}{z-r}=-1$
Now, A.M. \geq G.M.
$\Rightarrow \frac{\frac{z}{z-r}+\frac{x}{x-m}+\frac{y}{y-n}}{3}$

$$
\geq\left(\frac{z}{(z-r)} \frac{x}{(x-m)} \frac{y}{(y-n)}\right)^{1 / 3}
$$

$\Rightarrow \frac{z}{z-r} \frac{x}{x-m} \frac{y}{y-n} \leq \frac{8}{27}$
146 (b)
$f^{\prime}(x)=\left|\begin{array}{ccc}2 a x & 2 a x-1 & 2 a x+b+1 \\ b & b+1 & -1 \\ 2(a x+b) & 2 a x+2 b+1 & 2 a x+b\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}-C_{3}, C_{2} \rightarrow C_{2}-C_{3}$
$f^{\prime}(x)=\left|\begin{array}{ccc}-(b+1) & -(b+2) & 2 a x+b+1 \\ (b+1) & (b+2) & -1 \\ b & b+1 & 2 a x+b\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$, we get
$f^{\prime}(x)=\left|\begin{array}{ccc}0 & 0 & 2 a x+b \\ b+1 & b+2 & -1 \\ -1 & -1 & 2 a x+b+1\end{array}\right|$
$=(2 a c+b)[-b-1+b+2]$
$\therefore f^{\prime}(x)=2 a x+b$
$\therefore f(x)=a x^{2}+b x+c$
$f(0)=2 \Rightarrow c=2$
$f(1)=1 \Rightarrow a+b+2=1 \Rightarrow a+b=-1$
$f^{\prime}(5 / 2)=0 \Rightarrow 5 a+b=0$
$\Rightarrow a=1 / 4, b=-5 / 4$
Hence, $f(x)=\frac{1}{4} x^{2}-\frac{5}{4} x+2$
Clearly, discriminant (D) of the equation $f(x)=0$ is less than 0 . Hence, $f(x)=0$ has imaginary roots. Also, $f(2)=1 / 2$. and minimum value of
$f(x)$ is
$\frac{\frac{25}{16}-4 \frac{1}{4}(2)}{4 \frac{1}{4}}=\frac{7}{16}$
Hence, range of the $f(x)$ is $\left[\frac{7}{16}, \infty\right)$
147 (5)
$\Delta=\left|\begin{array}{ccc}1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-R_{1}$
$=\left|\begin{array}{ccc}1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 0 & \sin \theta-3 \cos \theta & 0\end{array}\right|$
$=-(\sin \theta-3 \cos \theta)(3 \cos \theta-\sin \theta)$
$=(3 \cos \theta-\sin \theta)^{2}$
Now, $-\sqrt{9+1} \leq 3 \cos \theta-\sin \theta \leq \sqrt{9+1}$
$\Rightarrow(3 \cos \theta-\sin \theta)^{2} \leq 10.1$
$\Rightarrow \Delta_{\max }=10$
148 (4)
$\Delta=(x y z)^{n}\left|\begin{array}{lll}1 & x^{2} & x^{4} \\ 1 & y^{2} & y^{4} \\ 1 & z^{2} & z^{4}\end{array}\right|$
$=(x y z)^{n}\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)$
Clearly when
$n=-4, \Delta=\left(\frac{1}{y^{2}}-\frac{1}{x^{2}}\right)\left(\frac{1}{z^{2}}-\frac{1}{y^{2}}\right)\left(\frac{1}{x^{2}}-\frac{1}{z^{2}}\right)$
149 (4)
$\Delta=\left|\begin{array}{ccc}x+2 & 2 x+3 & 3 x+4 \\ 2 x+3 & 3 x+4 & 4 x+5 \\ 3 x+5 & 5 x+8 & 10 x+17\end{array}\right|=0$
Applying $R_{3} \rightarrow R_{3}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{1}$
$\Delta=\left|\begin{array}{ccc}x+2 & 2 x+3 & 3 x+4 \\ x+1 & x+1 & x+1 \\ x+2 & 2(x+2) & 6(x+2)\end{array}\right|=0$
$\therefore \Delta=(x+1)(x+2)\left|\begin{array}{ccc}x+2 & 2 x+3 & 3 x+4 \\ 1 & 1 & 1 \\ 1 & 2 & 6\end{array}\right|$
$=0$
$\therefore \quad \Delta=(x+1)(x+2)[(x+2) \cdot 4-(2 x+3) .5$

$$
+(3 x+4) .1]=0
$$

$\Delta=(x+1)(x+2)(-3 x-3)=0$
or $(x+1)^{2}(x+2)=0$
$\therefore x=-1,-1,-2$
150 (2)
System of equations
$\Rightarrow \alpha x+y+z=\alpha-1$
$x+y+\alpha z=\alpha-1$
Since system has no solution.
Therefore, (1) $\Delta=0$ and (2) $\alpha-1 \neq 0$
$\left|\begin{array}{ccc}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0, \alpha \neq 1$
$R_{1} \rightarrow R_{1}-R_{3}, R_{2} \rightarrow R_{2} \rightarrow R_{3}$
$\left|\begin{array}{ccc}\alpha-1 & 0 & 1-\alpha \\ 0 & \alpha-1 & 1-\alpha \\ 1 & 1 & \alpha\end{array}\right|=0$
$\Rightarrow(\alpha-1)[\alpha(\alpha-1)-(1-\alpha)]$

$$
+(1-\alpha)[-(\alpha-1)]=0
$$

$\Rightarrow(\alpha-1)[\alpha(\alpha-1)+(\alpha-1)]+(\alpha-1)^{2}=0$
$\Rightarrow(\alpha-1)^{2}[(\alpha+1)+1]=0$
$\Rightarrow \alpha=1,1,-2 \Rightarrow \alpha=1,-2$
Since system has no solution, $\alpha \neq 1$
$\therefore \alpha=-2$
151 (2)
We have $D=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ 5 & 4 & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$
Since $a_{n}=\frac{20}{n}$; $d=\frac{1}{20}$
Hence, $D=\left|\begin{array}{lll}20 & \frac{20}{2} & \frac{20}{3} \\ \frac{20}{4} & \frac{20}{5} & \frac{20}{6} \\ \frac{20}{7} & \frac{20}{8} & \frac{20}{9}\end{array}\right|=\frac{(20)^{3}}{4 \times 7}\left|\begin{array}{lll}1 & \frac{1}{2} & \frac{1}{3} \\ 1 & \frac{4}{5} & \frac{2}{3} \\ 1 & \frac{7}{8} & \frac{7}{9}\end{array}\right|$
$R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$
$=\frac{(20)^{3}}{4 \times 7}\left|\begin{array}{ccc}0 & \frac{-3}{10} & \frac{-1}{3} \\ 0 & \frac{-3}{40} & \frac{-1}{9} \\ 1 & \frac{7}{8} & \frac{7}{9}\end{array}\right|=\frac{50}{21}$
$\Rightarrow[D]=2$
152
(3)
$x+y+z=1$
$x+2 y+4 z=p$
$x+4 y+10 z=p^{2}(3)$
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10\end{array}\right|$
$R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$
$=\left|\begin{array}{ccc}0 & -1 & -3 \\ 0 & -2 & -6 \\ 1 & 4 & 10\end{array}\right|=0$
Since $\Delta=0$, solution is not unique solution.
The system will have infinite solutions if
$\Delta_{1}=0, \Delta_{2}=0, \Delta_{3}=0$
$\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ p & 2 & 4 \\ p^{2} & 4 & 10\end{array}\right|=0$
$C_{3} \rightarrow C_{3}-C_{2}$
$\Delta_{1}=\left|\begin{array}{lll}1 & 1 & 0 \\ p & 2 & 2 \\ p^{2} & 4 & 6\end{array}\right|=0$
$\Rightarrow 1(12-8)-1\left(6 p-2 p^{2}\right)=0$
$\Rightarrow 4-6 p+2 p^{2}=0$
$\Rightarrow 2\left(p^{2}-3 p+2\right)=0$
$\Rightarrow p^{2}-3 p+2=0$
$\Rightarrow p=1$ or 2
Also for these values of $p, \Delta_{2}, \Delta_{3}=0$
153 (3)
Equation $x^{3}+a x^{2}+b x+c=0$ has roots α, β, γ
$\therefore \alpha+\beta+\gamma=-a$
$\alpha \beta+\beta \gamma+\gamma \alpha=b$
Since the given system of equations has non-
trivial solutions, so
$\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=0$
$\Rightarrow \alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=0$
$\Rightarrow(\alpha+\beta+\gamma)\left[\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right]$
$=0$
$\Rightarrow(\alpha+\beta+\gamma)\left[(\alpha+\beta+\gamma)^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right]$
$=0$
$\Rightarrow-a\left[a^{2}-3 b\right]=0 \Rightarrow a^{2} / b=3$
154 (2)
Using $C_{3} \rightarrow C_{3}-\left(C_{1}+C_{2}\right)$ in D_{1} and D_{2}, we have
$\therefore \frac{D_{1}}{D_{2}}=\frac{-2 b(a d-b c)}{b(a d-b c)}=-2$
155 (8
Putting $x=0, a_{0}=1$
$\left(1+a x+b x^{2}\right)^{4}$

$$
\begin{aligned}
& =\left(1+a x+b x^{2}\right)(1+a x \\
& \left.+b x^{2}\right)\left(1+a x+b x^{2}\right)(1+a x \\
& \left.+b x^{2}\right)
\end{aligned}
$$

Clearly $a_{0}=1, a_{1}=$ coefficient of $x=a+a+a+$ $a=4 a$
$a_{2}=$ coefficient of $x^{2}=4 b+6 a^{2}$
Now $\Delta=-\left(a_{0}^{3}+a_{1}^{3}+a_{2}^{3}-3 a_{0} a_{1} a_{2}\right)$
$\because a_{0}+a_{1}+a_{2} \neq 0$
$\therefore a_{0}=a_{1}=a_{2}$
$1=4 a=6 a^{2}+4 b \Rightarrow a=\frac{1}{4}, b=\frac{5}{32}$
156 (1)
$\Delta_{1}=\left|\begin{array}{lll}a_{1}^{2}+4 a_{1} d & a_{1} & d \\ a_{2}^{2}+4 a_{2} d & a_{2} & d \\ a_{3}^{2}+4 a_{3} d & a_{3} & d\end{array}\right|,\left[C_{3} \rightarrow C_{3}-C_{2}\right]$
Where d is the common difference of A.P.
$=d\left|\begin{array}{lll}a_{1}^{2} & a_{1} & 1 \\ a_{2}^{2} & a_{2} & 1 \\ a_{3}^{2} & a_{3} & 1\end{array}\right|+4 d\left|\begin{array}{lll}a_{1} & a_{1} & d \\ a_{2} & a_{2} & d \\ a_{3} & a_{3} & d\end{array}\right|$
$=d\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{3}-a_{1}\right)=-2 d^{4}$
Similarly, $\Delta_{2}=-2 d^{4}$
157 (0)

$$
\Delta=\left|\begin{array}{lll}
x_{1} & y_{1} & 0 \\
x_{2} & y_{2} & 0 \\
x_{3} & y_{3} & 0
\end{array}\right|\left|\begin{array}{lll}
y_{1} & x_{1} & 0 \\
y_{2} & x_{2} & 0 \\
y_{3} & x_{3} & 0
\end{array}\right|=0.0=0
$$

158 (8)

Let $D=\left|\begin{array}{lll}(\beta+\gamma-\alpha-\delta)^{4} & (\beta+\gamma-\alpha-\delta)^{2} & 1 \\ (\gamma+\alpha-\beta-\delta)^{4} & (\gamma+\alpha-\beta-\delta)^{2} & 1 \\ (\alpha+\beta-\gamma-\delta)^{4} & (\alpha+\beta-\gamma-\delta)^{2} & 1\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{3}, R_{2} \rightarrow R_{2}-R_{3}$
$=\left\lvert\, \begin{gathered}(\beta+\gamma-\alpha-\delta)^{4}-(\alpha+\beta-\gamma-\delta)^{4} \\ (\gamma+\delta-\beta-\delta)^{4}-(\alpha+\beta-\gamma-\delta)^{4} \\ (\alpha+\beta-\gamma-\delta)^{4}\end{gathered}\right.$
$\begin{array}{cc}(\beta+\gamma-\alpha-\delta)^{2}-(\alpha+\beta-\gamma-\delta)^{2} & 0 \\ (\gamma+\alpha-\beta-\delta)^{2}-(\alpha+\beta-\gamma-\delta)^{2} & 0 \\ (\alpha+\beta-\gamma-\delta)^{2} & 1\end{array}$
$=4(\beta-\delta)(\gamma-\alpha) \cdot 4(\alpha-\delta)(\gamma-\beta)$
$\times \left\lvert\, \begin{gathered}(\beta+\gamma-\alpha-\delta)^{2}+(\alpha+\beta-\gamma-\delta)^{2} \\ (\gamma+\alpha-\beta-\delta)^{2}+(\alpha+\beta-\gamma-\delta)^{2} \\ (\alpha+\beta-\gamma-\delta)^{4}\end{gathered}\right.$
$(\alpha+\beta-$
Apply $R_{1} \rightarrow R_{1}-R_{2}$
$=16(\beta-\delta)(\gamma-\alpha)(\alpha-\delta) \cdot 4(\gamma-\delta)(\beta-\alpha)$
$\left|\begin{array}{cc}1 & 0 \\ (\gamma+\alpha-\beta-\delta)^{2}+(\alpha+\beta-\gamma-\delta)^{2} & 1 \\ (\alpha+\beta-\gamma-\delta)^{4} & (\alpha+\beta-\gamma\end{array}\right|$
$=-64(\alpha-\beta)(\alpha-\gamma)(\alpha-\delta)(\beta-\gamma)(\beta-\delta)(\gamma$ $-\delta)$
159 (0)
$\left|\begin{array}{lll}3 u^{2} & 2 u^{3} & 1 \\ 3 v^{2} & 2 v^{3} & 1 \\ 3 w^{2} & 2 w^{3} & 1\end{array}\right|=0$
$R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$
$\Rightarrow\left|\begin{array}{ccc}u^{2}-v^{2} & u^{3}-v^{3} & 0 \\ v^{2}-w^{2} & v^{3}-w^{3} & 0 \\ w^{2} & w^{3} & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}u+v & u^{2}+v^{2}+v u & 0 \\ v+w & v^{2}+w^{2}+v w & 0 \\ w^{2} & w^{3} & 1\end{array}\right|=0$
$R_{1} \rightarrow R_{1}-R_{2}$
$\Rightarrow\left|\begin{array}{ccc}u-w & \left(u^{2}-w^{2}\right)+v(u-w) & 0 \\ v+w & v^{2}+w^{2}+v w & 0 \\ w^{2} & w^{3} & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}1 & u+w+v & 0 \\ v+w & v^{2}+w^{2}+v w & 0 \\ w^{2} & w^{3} & 1\end{array}\right|=0$
$\Rightarrow\left(v^{2}+w^{2}+v w\right)-(v+w)[(v+w)+u]=0$
$\Rightarrow v^{2}+w^{2}+v w-(v+w)^{2}-u(v+w)=0$
$\Rightarrow u v+v w+w u=0$
160 (2)
$B=2.2\left|\begin{array}{lcc}f & d & e \\ n & l & m \\ c & a & b\end{array}\right|$
[Taking 2 common from R_{2} and C_{2}]
$=2\left|\begin{array}{ccc}2 f & d & e \\ 2 n & l & m \\ 2 c & a & b\end{array}\right|$
$=2\left|\begin{array}{ccc}2 c & a & b \\ 2 f & d & e \\ 2 n & l & m\end{array}\right|$
[$R_{3} \leftrightarrow R_{2}$, then $R_{2} \leftrightarrow R_{1}$]
$=2\left|\begin{array}{lll}a & b & 2 c \\ d & e & 2 f \\ l & m & 2 n\end{array}\right|=2 A$
[$C_{1} \leftrightarrow C_{2}$ and then $C_{2} \leftrightarrow C_{3}$]
161 (4)

$$
\begin{aligned}
& \Delta=x\left|\begin{array}{ccc}
1 & x+y & x+y+z \\
2 & 3 x+2 y & 4 x+3 y+2 z \\
3 & 6 x+3 y & 10 x+6 y+3 z
\end{array}\right| \\
& =x^{2}\left|\begin{array}{ccc}
1 & 1 & x+y \\
2 & 3 & 4 x+3 y \\
3 & 6 & 10 x+6 y
\end{array}\right|\left|\begin{array}{cc}
C_{3} \rightarrow C_{3}-z C_{1} \\
C_{2} \rightarrow C_{2}-y C_{1}
\end{array}\right| \\
& =x^{3}\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
3 & 6 & 10
\end{array}\right|\left[C_{3} \rightarrow C_{3}-y C_{2}\right] \\
& =x^{3}(6-8+3)=64 \\
& =x^{3}(6-8+3)=64 \\
& \Rightarrow x^{3}=64 \Rightarrow x=4
\end{aligned}
$$

