

4.DETERMINANTS

Single Correct Answer Type

1. If
$$D_{k} = \begin{bmatrix} 1 \\ 2k \\ 2k \\ 2k \\ 1 \end{bmatrix} = \begin{bmatrix} n \\ n^{2} + n + 1 \\ n^{2} + n \\ n^{2} + n + 1 \end{bmatrix} and \sum_{k=0}^{n} D_{k} = 56$$
, then *n* equals
a) 4 b) 6 c) 8 d) None of these
1. If $A_{1}, B_{1}, C_{1}, \dots$ are, respectively, the cofactors of the elements $a_{1}, b_{1}, c_{1}, \dots$ of the determinant $\Delta = \begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{bmatrix}$, $\Delta \neq 0$, then the value of $\begin{bmatrix} B_{2} & C_{2} \\ B_{3} & C_{3} \end{bmatrix}$ is equal to
a) $a_{1}^{2}\Delta$ b) $a_{1}\Delta$ c) $a_{1}\Delta^{2}$ d) $a_{1}^{2}\Delta^{2}$
3. Let $f(x) = \begin{bmatrix} 2\cos^{2}x & \sin^{2}x & -\sin x \\ \sin^{2}x & 2\sin^{2}x & \cos x \\ \sin x & -\cos x & 0 \end{bmatrix}$. Then the value of $\int_{0}^{\pi/2} [f(x) + f'(x)]dx$ is
a) n b) $n/2$ c) 2π d) $3\pi/2$
4. The number of distinct real root of $\begin{bmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x \\ \cos x & \sin x \end{bmatrix} = 0$ in the interval $-\pi/4 \le x \le \pi/4$ is
a) 0 b) 2 c) 1 d) 3
5. If $\begin{bmatrix} x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \end{bmatrix} = (x-y)(y-z)(z-x)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{x}\right)$ then *n* equals
a) 1 b) -1 c) 2 d) -2
6. Given $a = x/(y - z)$, $b = y/(z - x)$ and $c = z/(x - y)$, where x, y and z are not all zero, then the value of $ab + bc + ca$ is
a) 0 b) 1 c) -1 d) None of these
7. If $\omega (\neq 1)$ is a cube root of unity, then value of the determinant $\begin{vmatrix} 1 & -i & -i & -i \\ -i & -i + \omega - 1 & -1 \end{vmatrix}$ is $a^{2} - 1 \\ a^{2} - 1 \\ b - 1 & c \end{pmatrix}$ is equal to
a) 1 b) -1 c) $2ero$ d) None of these
10. The parameter, on which the value of the determinant $\begin{vmatrix} 1 & -a & a^{2} \\ -1 & -i & -i + \omega - 1 \\ cx = a & a + b \\ b + c & c + a \\ b & b + c \\ b & c & c \\ c & a \\ c & a & b \\ c & a & a & b \\ b + c & c + a \\ b & b & c \\ b & c & c \\ c & a \\ c & a & b \\ c & a & a^{2} \\ c & a \\ c & b \\ c & c & a \\ c & a & a^{2} \\ c & a \\ c & b \\ c & a \\ c & a & a^{2} \\ c & a \\ c & b \\ c & a \\ c & a & a^{2} \\ c & a \\ c & a \\ c & a & a^{2} \\ c & a \\ c & b \\ c & c \\ c \\ c & c \\ c$

a) $\begin{vmatrix} bx + ay & cx + by \\ b'x + a'y & c'x + b'y \end{vmatrix}$ c) $\begin{vmatrix} bx + cy & ax + by \\ b'x + c'y & a'x + b'y \end{vmatrix}$ If $z = \begin{vmatrix} -5 & 3 + 4i & 5 - 7i \\ 3 - 4i & 6 & 8 + 7i \\ 5 - 7i & 0 & 7i & 0 \end{vmatrix}$, then z is b) $\begin{vmatrix} ax + by & bx + cy \\ a'x + b'y & b'x + c'y \end{vmatrix}$ d) $\begin{vmatrix} ax + by & bx + cy \\ a'x + b'y & b'x + c'y \end{vmatrix}$ 13. $|5+7i \ 8-7i$ 9 a) Purely real b) Purely imaginary c) a + ib, where $a \neq 0, b \neq 0$ d) a + ib, where b = 4If a, b and c are non-zero real numbers, then $\Delta = \begin{vmatrix} b^2 c^2 & ab & b+c \\ c^2 a^2 & ca & c+a \\ a^2 b^2 & ab & a+b \end{vmatrix}$ is equal to 14. a) *abc* b) $a^2b^2c^2$ c) bc + ca + abd) None of these 15. b) —9 c) 3 a) () d) None of these 16. Let $\vec{a}_r = x_r \hat{\iota} + y_r \hat{j} + z_r \hat{k}$, r = 1, 2, 3 be three mutually perpendicular unit vectors, then the value of $x_1 \ x_2 \ x_3$ y_1 y_2 y_3 is equal to $|z_1 \ z_2 \ z_3|$ a) Zero d) None of these b) ±1 The value of the determinant $\begin{vmatrix} {}^{n}C_{r-1} & {}^{n}C_{r} & (r+1) {}^{n+2}C_{r+1} \\ {}^{n}C_{r} & {}^{n}C_{r+1} & (r+2) {}^{n+2}C_{r+2} \\ 2 & {}^{n}C_{r+2} & (r+3) {}^{n+2}C_{r+3} \end{vmatrix}$ is 17. a) $n^2 + n - 1$ c) $^{n+3}C_{r+3}$ d) ${}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r+1}$ ιαβ βγ γα 18. If α , β , γ are the roots of $px^3 + qx^2 + r = 0$, then the value of the determinant $\beta \gamma \quad \gamma \alpha \quad \alpha \beta$ $\gamma \alpha \alpha \beta \beta \gamma$ c) 0 d) *r* a) p b) q If w is a complex cube root of unity, then value of $\Delta = \begin{vmatrix} a_1 + b_1 w & a_1 w^2 + b_1 & c_1 + b_1 \overline{w} \\ a_2 + b_2 w & a_2 w^2 + b_2 & c_2 + b_2 \overline{w} \\ a_3 + b_3 w & a_3 w^2 + b_3 & c_3 + b_3 \overline{w} \end{vmatrix}$ is 19. a) 0 d) None of these b) -1 c) 2 20. If *x*, *y*, *z* are in A.P., then the value of the determinant $|a+2 \ a+3 \ a+2x|$ a + 3 a + 4 a + 2y is $|a+4 \ a+5 \ a+2z|$ a) 1 b) 0 c) 2a d) a If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A^3| = 125$, then the value of α is c) ±3 b) ±2 d) ±5 a) ±1 Value of $\begin{vmatrix} x + y & z & z \\ x & y + z & x \\ y & y & z + x \end{vmatrix}$, where *x*, *y*, *z* are non-zero real numbers, is equal to 22. c) 3xyza) xyzb) 2xyzd) 4xyz|x m n 1|23. Roots of the equation $\begin{bmatrix} a & x & n & 1 \\ a & b & x & 1 \end{bmatrix}$ = 0 area b c 1 b) Independent of *a*, *b* and *c* a) Independent of *m* and *n* c) Depend on *m*, *n* and *a*, *b*, *c* d) Independent of *m*, *n* and *a*, *b*, *c*

If $f(x) = a + bx + cx^2$ and α, β, γ are the roots of the equation $x^3 = 1$, then $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$ is equal to 24. a) $f(\alpha) + f(\beta) + f(\gamma)$ b) $f(\alpha)f(\beta) + f(\beta)f(\gamma) + f(\gamma)f(\alpha)$ c) $f(\alpha)f(\beta)f(\gamma)$ d) $-f(\alpha)f(\beta)f(\gamma)$ 25. ax + bIf a > 0 and discriminant of $ax^2 + 2bx + c$ is negative, then Δ *b* С bx + c is $|ax+b \quad bx+c|$ 0 b) $(ac - b)^2(ax^2 + 2bx + c)$ a) +ve c) –ve d) 0 If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2 x & (1 + b^2) x & (1 + c^2) x \\ (1 + a^2) x & 1 + b^2 x & (1 + c^2) x \\ (1 + a^2) x & (1 + b^2) x & 1 + c^2 x \end{vmatrix}$, then f(x) is a polynomial of degree 26. a) 0 b) 1 c) 2 d) 3 27. If *a*, *b*, *c* are non-zero real numbers and if the equations (a - 1)x = y + z, (b - 1)y = z + x, (c - 1)z = z + zx + y have a non-trivial solution, then ab + bc + ca equals a) a + b + cb) abc d) None of these c) 1 b-c c+bа 28. If $\begin{vmatrix} a + c & b & c - a \\ a - b & a + b & c \end{vmatrix} = 0$, then the line ax + by + c = 0 passes through the fixed point which is $|a-b \quad a+b|$ a) (1, 2) c) (-2, 1) b) (1, 1) d) (1, 0) The value of determinant $\begin{vmatrix} bc - a^2 & ac - b^2 & ab - c^2 \\ ac - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ac - b^2 \end{vmatrix}$ is 29. a) Always positive b) Always negative c) Always zero d) Cannot say anything If $f(x) = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} = 0$, then 30. a) f'(x) = 0 and f''(x) = 0 has one common root b) f(x) = 0 and f'(x) = 0 has one common root d) None of these c) Sum of roots of f(x) = 0 is -3aIf $f'(x) = \begin{vmatrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx+2n & mx+2n+p & mx+2n-p \end{vmatrix}$, then y = f(x) represents 31. a) A straight line parallel to *x*-axis b) A straight line parallel to y-axis c) Parabola d) A straight line with negative slope If $p\lambda^4 + q\lambda^3 + r\lambda^2 + s\lambda + t = \begin{vmatrix} \lambda^2 + 3\lambda & \lambda - 1 & \lambda + 3 \\ \lambda^2 + 1 & 2 - \lambda & \lambda - 3 \\ \lambda^2 - 3 & \lambda + 4 & 3\lambda \end{vmatrix}$, then *p* is equal to a) -5 32. a) –5 c) −3 Let $a, b, c \in R$ such that no two of them are equal and satisfy $\begin{vmatrix} 2a & b & c \\ b & c & 2a \\ c & 2a & b \end{vmatrix} = 0$, then equation 33. $24ax^2 + 4bx + c = 0$ has b) At least one root in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ a) At least one root in [0, 1] c) At least one root in [-1, 0]d) At least two roots in [0, 2] 34. Consider the set *A* of all determinants of order 3 with entries 0 or 1 only. Let *B* be the subset of *A* consisting of all determinants with values -1. Then a) C is empty b) *B* has as many elements as *C* c) $A = B \cup C$ d) B has twice as many elements as elements as C If $x \neq y \neq z$ and $\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$, then the value of xyz is 35.

	a) 1	b) 2	c) -1	d) –2
36.	If $l_1^2 + m_1^2 + n_1^2 = 1$, etc an	ad $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$), etc, and $\Delta = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_2 & m_2 & n_2 \end{vmatrix}$, then
07	a) $ \Delta = 3$	b) $ \Delta = 2$	c) $ \Delta = 1$	d) Δ= 0
37.	Which of the following is r	not the root of the equation	$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix} = 0?$	
	a) 2	b) 0	c) 1	d) -3
38.	If $x \neq 0, y \neq 0, z \neq 0$ and	$\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix}$	$= 0, \text{ then } x^{-1} + y^{-1} + z^{-1}$	is equal to
	a) —1	b) -2	c) -3	d) None of these
39.	$If \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a - b)$	(b-c)(c-a)(a+b+c),	where <i>a</i> , <i>b</i> , <i>c</i> are all differe	nt, then the determinant
	$ \begin{vmatrix} (x-a)^2 & (x-a)^2 \\ (x-b)(x-c) & (x-c)(a-b)(a-c) \end{vmatrix} $	b) ² $(x-c)^{2}$ x-a) $(x-a)(c-b)$ va	anishes when	
	a) $a + b + c = 0$	b) $x = \frac{1}{3}(a+b+c)$	c) $x = \frac{1}{2}(a+b+c)$	d) $x = a + b + c$
40.	If the system of equations possible values of <i>k</i> are	x - ky - z = 0, kx - y - z	z = 0, x + y - z = 0 has a r	non-zero solution then the
	a) -1, 2	b) 1, 2	c) 0, 1	d) —1, 1
41.	Value of $\begin{vmatrix} 1 + x_1 & 1 + x_1 x \\ 1 + x_2 & 1 + x_2 x \\ 1 + x_3 & 1 + x_3 x \end{vmatrix}$	$\begin{vmatrix} 1 + x_1 x^2 \\ 1 + x_2 x^2 \\ 1 + x_3 x^2 \end{vmatrix}$ depends upon	`	
12	a) x only The set of equations $\frac{\partial x}{\partial x}$	b) x_1 only $y + (\cos \theta) = 0.3x + y + 0.3x$	c) x_2 only $2\pi = 0$ (cos θ) $x + y + 2\pi$	d) None of these $x = 0.0 \le \theta \le 2\pi$ has non
42.	trivial solution(s)	$y + (\cos \theta)z = 0, 5x + y +$	$-22 = 0, (\cos 0)x + y + 22$	$5 = 0, 0 \le 0 < 2\pi$, has non-
	a) For non value of λ and ℓ	9	b) For all values of λ and θ)
	c) For all values of λ and c	only two values of θ	d) For only one value of λ	and all values of $ heta$
43.	Let $x < 1$, then value of $\begin{vmatrix} x \\ 2 \end{vmatrix}$	$\begin{vmatrix} 2 + 2 & 2x + 1 & 1 \\ x + 1 & x + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix}$ is		
	a) Non-negative	b) Non-positive	c) Negative	d) Positive
44.	Let $\begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} = Ax^4 + E$	$Bx^3 + Cx^2 + Dx + E$. Then	the value of $5A + 4B + 3C$	+ 2D + E is equal to
	a) Zero	b) -16	c) 16	d) —11
45.	The value of the determin	ant $\Delta = \begin{vmatrix} 1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2 \end{vmatrix}$ is eq	ual to	
	a) 1	b) 0	c) 2	d) 3
46.	Let $\{D_1, D_2, D_3, \dots, D_n\}$ be t	he set of third-order deter	minants that can be made v	with the distinct non-zero
	real numbers a_1, a_2, \cdots, a_9	. Then		d) None of these
	a) $\sum_{i=1}^{n} D_i = 1$	$b)\sum_{i=1}^{}D_i=0$	c) $D_i = D_j, \forall i, j$	uj none ol these
47.	If α , β , γ are the angles of a	a triangle and the system o	fequations	
	$\cos(\alpha - \beta) x + \cos(\beta - \gamma)$	$y + \cos(\gamma - \alpha)z = 0$		
	$\cos(\alpha + \beta) x + \cos(\beta + \gamma)$ $\sin(\alpha + \beta) x + \sin(\beta + \alpha)$	$y + \cos(\gamma + \alpha)z = 0$ $y + \sin(\gamma + \alpha)z = 0$		
	$\sin(\alpha + p)x + \sin(p + p)$	$y + \sin(\gamma + \alpha)z = 0$		

Has non-trivial solutions, then triangle is necessarily

48	a) Equilateral If $c < 1$ and the system of	b) Isosceles equations $x + y - 1 = 0$ 2	c) Right angled 2x - y - c = 0 and $hx + 3h$	d) Acute angled y - c = 0 is consistent
10.	then the possible real valu	es of <i>b</i> are		y c ons consistent,
	a) $b \in \left(-3, \frac{3}{4}\right)$	b) $b \in \left(-\frac{3}{2}, 4\right)$	c) $b \in \left(-\frac{3}{4}, 3\right)$	d) None of these
49.	Let <i>a</i> , <i>b</i> , <i>c</i> be the real number	oers. Then following syster	n of equation in <i>x</i> , <i>y</i> and <i>z</i> ,	$\frac{x^2}{x^2} + \frac{y^2}{x^2} - \frac{z^2}{x^2} = 1, \ \frac{x^2}{x^2} - \frac{y^2}{x^2} + \frac{y^2}{x^$
	$\frac{z^2}{z} - 1 - \frac{x^2}{z} + \frac{y^2}{z} + \frac{z^2}{z} - 1$	has		$a^2 b^2 c^2 a^2 b^2$
	c^2 , $a^2 b^2 c^2$, a) No solution	114.5	b) Unique solution	
	c) Many solutions		d) Finitely many solutions	5
50.		2 - 1		
	The value of $\begin{vmatrix} 3 + 2\sqrt{2} \\ 3 - 2\sqrt{2} \end{vmatrix}$	$+ 2\sqrt{2}$ 1 is equal to $- 2\sqrt{2}$ 1	_	
- 4	a) Zero	b) $-16\sqrt{2}$	c) $-8\sqrt{2}$	d) None of these
51.	The value of $\sum_{r=2}^{n} (-2)^{r}$	$\begin{array}{cccc} -2 & c_{r-2} & n-2 & c_{r-1} & n-2 & c_{r} \\ -3 & 1 & 1 & 1 \\ 2 & -1 & 0 \end{array}$	(n > 2) is	
	a) $2n - 1 + (-1)^n$	b) $2n + 1 + (-1)^{n-1}$	c) $2n - 3 + (-1)^n$	d) None of these
52.		$\begin{bmatrix} 1 & 1 & 1 \\ m_{q} & m+1 & q & m+2 \\ q & m+1 & q & m+2 \\ m_{q} & m+1 & $		
	The value of the determination	ant $\begin{bmatrix} mC_1 & m^{+1}C_1 & m^{+2}C \\ mC & m^{+1}C & m^{+2}C \end{bmatrix}$	1 is equal to	
	a) 1	$ c_2 c_2 c_2$	2 	d) None of these
53.	u) 1	0) 1	$ x^3 + 1 + x^2y + x $	$\frac{1}{z}$
	The number of positive int	egral solutions of the equa	ation xy^2 $y^3 + 1$ y	z = 11 is
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ 1
54	a) 0 In triangle <i>ABC</i> if	b) 3	c) 6	d) 12
54.		1		
	$\cot\frac{A}{2}$ $\cot\frac{B}{2}$	$\cot \frac{c}{2} = 0$, then	n the triangle must be	
	$\tan\frac{B}{2} + \tan\frac{C}{2} \tan\frac{C}{2} + \tan$	$\frac{A}{2}$ $\tan \frac{A}{2} + \tan \frac{B}{2}$	0	
	a) Equilateral	b) Isosceles	c) Obtuse angled	d) None of these
55.		x x+1		
	If $f(x) = \begin{vmatrix} 2x \\ 3x(x-1) \end{vmatrix} x(x)$	(x - 1) $(x + 1)(x - 1)(x - 2)$ $(x + 1)x(x + 1)$	$\begin{bmatrix} x \\ -1 \end{bmatrix}$ then f (500) is equal	to
	a) 0	b) 1	c) 500	d) –500
56.	If $a_1b_1c_1$, $a_2b_2c_2$ and $a_3b_3c_3$	c_3 are 3-digit even natural	numbers and	
	$A = \begin{bmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_1 \end{bmatrix}$ then A is			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	a) Divisible by 2 but not no	ecessarily by 4	b) Divisible by 4 but not n	ecessarily by 8
	c) Divisible by 8		d) None of these	
57.	The system of equations $\alpha x = y = \overline{\alpha} = 1$			
	ax - y - z = a - 1 $x - ay - z = a - 1$			
	$x - y - \alpha z = \alpha - 1$			
	Has no solution if α is			
	a) Either –2 or 1	b) -2	c) 1	d) Not –2
58.	<i>a</i> , <i>b</i> , <i>c</i> are distinct real num	thers, not equal to one. If a	x + y + z = 0, x + by + z	= 0 and $x + y + cz = 0$
	nave a non-trivial solution	, then the value of $\frac{1}{1-a} + \frac{1}{1-a}$	$\frac{1}{-b} + \frac{1}{1-c}$ is equal to	
	a) —1	b) 1	c) Zero	d) None of these

59.	If $\begin{vmatrix} b^2 + c^2 & ab \\ ab & c^2 + a^2 \end{vmatrix}$	$\begin{vmatrix} ac \\ bc \end{vmatrix} = ka^2b^2c^2$, then the	value of <i>k</i> is	
	a) 2 ca cb a^2	$+ b^2$ b) 4	c) 0	d) None of these
60.	$\Delta_{1} = \begin{vmatrix} y^{5}z^{6}(z^{3} - y^{3}) & x^{4} \\ y^{2}z^{3}(y^{6} - z^{6}) & xz \\ y^{2}z^{3}(z^{3} - y^{3}) & xz \end{vmatrix}$	$z^{6}(x^{3} - z^{3}) x^{4}y^{5}(y^{3} - x)^{3}z^{3}(z^{6} - x^{6}) xy^{2}(x^{6} - y^{6})^{3}z^{3}(x^{3} - z^{3}) xy^{2}(y^{3} - x^{3})^{3}z^{3}(x^{3} - z^{3}) xy^{2}(x^{3} - x^{3})^{3}z^{3}(x^{3} - z^{3}) xy^{3}(x^{3} - x^{3})^{3}z^{3}(x^{3} - z^{3}) xy^{3}(x^{3} - x^{3})^{3}z^{3}(x^{3} - x^{3}) xy^{3}(x^{3} - x^{3})^{3}z^{3}(x^{3} - x^{3})$	³) ⁵) and $\Delta_2 = \begin{vmatrix} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{vmatrix}$	Then $\Delta_1 \Delta_2$ is equal to
	a) Δ_2^3	b) Δ_2^2	c) Δ_2^4	d) None of these
61.	If <i>a</i> , <i>b</i> , <i>c</i> are different , the	In the value of x satisfying	$\begin{vmatrix} 0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0 \end{vmatrix} =$	= 0 is
62.	a) <i>c</i>	b) c $ 2r - 1 m_0$	c) b C_r 1	d) 0
	Let <i>m</i> be a positive intege	er and $\Delta_r = \begin{vmatrix} m^2 - 1 & 2^3 \\ \sin^2(m^2) & \sin^2 \end{vmatrix}$	$\begin{vmatrix} m & m \\ m & m+1 \\ (m) & \sin^2(m+1) \end{vmatrix} (0 \le r)$	$\leq m$)
	Then the value of $\sum_{r=0}^{m} \Delta_r$	is given by b) $m^2 - 1$	c) 2 ^m	d) $2^m \sin^2(2^m)$
63.	1 x	x^2	CJ 2	
	For the equation $\begin{vmatrix} x^2 & 1 \\ x & x^2 \end{vmatrix}$	$\begin{vmatrix} x \\ 1 \end{vmatrix} = 0$		
	a) There are exactly two (distinct roots	b) There is one pair of equ	ation real roots
64.	If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. with co	frequal roots ommon ratio r_1 and α , β , γ a	re in G.P. with common rat	io r_2 , and equations
	$ax + \alpha y + z = 0, bx + \beta y$	$y + z = 0$, $cx + \gamma y + z = 0$ h	nave only zero solution, the	en which of the following is
	not true?	b) $r \neq 1$	c) $r + r$	d) None of these
65.	a) $I_1 \neq 1$	$ (a_1 - b_1)^2 (a_1 - b_2)^2 $	$(a_1 - b_3)^2 (a_1 - b_4)^2$	uj none or mese
	The value of the determin	$ \begin{array}{c} \text{nant} \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 \end{array} $	$(a_2 - b_3)^2 (a_2 - b_4)^2$ $(a_2 - b_2)^2 (a_2 - b_4)^2$	is
		$(a_4 - b_1)^2 (a_4 - b_2)^2$	$(a_4 - b_3)^2 (a_4 - b_4)^2$	
	a) Dependent on a_i , $i = 1$, 2, 3, 4 - 1, 2, 2, 4	b) Dependent on b_i , $i = 1$,	2, 3, 4
66	c) Dependent on a_{ij}, b_i, l	= 1, 2, 3, 4	$a_{j} 0$ $2iA \rho - iC \rho - iB_{j}$	
00.	If A, B, C are angles of a tr	Tiangle, then the value of $\begin{bmatrix} e \\ e \end{bmatrix}$	$ \begin{array}{c} -iC & e^{2iB} & e^{-iA} \\ -iB & e^{-iA} & e^{2iC} \end{array} $ is	
	a) 1	b) —1	c) -2	d) -4
67.	$ If \begin{vmatrix} 0i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + i $	<i>iy</i> , then		
(0)	a) $x = 3, y = 1$	b) $x = 1, y = 3$	c) $x = 0, y = 3$	d) $x = 0, y = 0$
68.	If p, q, r are in A.P., then the	he value of determinant	$\begin{array}{ccc} + a^{2n+1} + 2p & b^2 + 2^{n+2} \\ 2^n + p & 2^{n+1} + \\ a^2 + 2^n + p & h^2 + 2^{n+1} \end{array}$	$\begin{array}{c} + 3q c^2 + p \\ q 2q \\ + 2q c^2 - r \end{array}$ is
	a) 1	b) 0	c) $a^2b^2c^2 - 2^n$	d) $(a^2 + b^2 + c^2) - 2^n q$
69.	If $p + q + r = 0 = a + b$	+ <i>c</i> , then the value of the de	terminant	
	pa qb rc qc ra pb is rb pc qa			
	a) 0	b) <i>pa</i> + <i>qb</i> + <i>rc</i>	c) 1	d) None of these
70.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , and <i>f</i> are in (G.P., then the value of $\begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix}$	$\begin{pmatrix} d^2 & x \\ e^2 & y \\ f^2 & z \end{pmatrix}$ depends on	
	a) <i>x</i> and <i>y</i>	ار	b) x and z	

c) y and zd) Independent of x, y and z71. If *a*, *b*, *c* are non-zeros, then the system of equations $(\alpha + a)x + \alpha y + \alpha z = 0$, $\alpha x + (\alpha + b)y + \alpha z = 0$ 0, $\alpha x + \alpha y + (\alpha + c)z = 0$ has a non-trivial solution if a) $\alpha^{-1} = -(a^{-1} + b^{-1} + c^{-1})$ b) $\alpha^{-1} = a + b + c$ c) $\alpha + a + b + c = 1$ d) None of these If $a = \cos \theta + i \sin \theta$, $b = \cos 2\theta - i \sin 2\theta$, $c = \cos 3\theta + i \sin 3\theta$ and if $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$, then 72. a) $\theta = 2k\pi, k \in Z$ b) $\theta = (2k+1)\pi, k \in Z$ c) $\theta = (4k+1)\pi, k \in Z$ d) None of these If $\begin{vmatrix} x^n & x^{n+2} & x^{2n} \\ 1 & x^a & a \\ x^{n+5} & x^{a+6} & x^{2n+5} \end{vmatrix} = 0, \forall x \in R$, where $n \in N$, then value of 'a' is 73. a) n c) *n* + 1 d) None of these If $a_1, a_2, ..., a_n, ...$ from a G.P. and $a_i > 0$, for all $i \ge 1$, then $\begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}$ is equal to a) 0 b) 1 c) 2 d) 3 74. The value of $\begin{vmatrix} yz & zx & xy \\ p & 2q & 3r \\ 1 & 1 & 1 \end{vmatrix}$, where x, y, z are, respectively, pth, (2q)th and (3r)th terms of an H.P., is 75. d) None of these a) –1 c) 1 If $y = \sin mx$, then the value of the determinant $\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix}$, where $y_n = \frac{d^n y}{dx^n}$, is a) m^9 b) m^2 c) m^3 c 76. d) None of these Suppose $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D' = \begin{vmatrix} a_1 + pb_1 & b_1 + qc_1 & c_1 + ra_1 \\ a_2 + pb_2 & b_2 + qc_2 & c_2 + ra_2 \\ a_3 + pb_3 & b_3 + qc_3 & c_3 + ra_3 \end{vmatrix}$. Then 77. a) D' = Db) D' = D(1 - pqr)c) D' = D(1 + p + q + r)d) D' = D(1 + pqr)The value of the determinant $\begin{vmatrix} ka & k^2 + a^2 & 1 \\ kb & k^2 + b^2 & 1 \\ kc & k^2 + c^2 & 1 \end{vmatrix}$ is 78. b) k $abc(a^2 + b^2 + c^2)$ a) k(a+b)(b+c)(c+a)d) k(a + b - c)(b + c - a)(c + a - b)c) k(a-b)(b-c)(c-a)79. If *a*, *b*, *c* are positive and are the p^{th} , q^{th} and r^{th} terms, respectively, of a G.P., then $\Delta = \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix}$ is a) 0 b) $\log(abc)$ c) -(p+q+r) d) None of p'-c' c' -a' a'-b' $= m \begin{vmatrix} a & b & c \\ a' & b' & c' \\ b''-c'' & c''-a'' & a''-b'' \end{vmatrix} = m \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}$, then the value of m is $a \ge 0$ d) None of these 80. d) 1 a) () If x, y, z are different from zero and $\Delta = \begin{vmatrix} a & b-y & c-z \\ a-x & b & c-z \\ a-x & b-y & c \end{vmatrix} = 0$, then the value of the expression 81. $\frac{a}{x} + \frac{b}{y} + \frac{c}{z}$ is a) 0 b) -1 c) 1 If $\Delta_1 = \begin{vmatrix} x & b & b \\ a & x & b \\ a & a & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & b \\ a & x \end{vmatrix}$ are the given determinants, then d) 2 82. b) $\frac{d}{dx}(\Delta_1) = 3\Delta_2$ c) $\frac{d}{dx}(\Delta_1) = 3(\Delta_2)^2$ d) $\Delta_1 = 3{\Delta_2}^{3/2}$ a) $\Delta_1 = 3(\Delta_2)^2$ 83. If a determinant of order 3×3 is formed by using the numbers 1 or -1, then the minimum value of the

determinant is a) –2 b) -4 c) 0 d) -8 84. If the system of linear equations x + y + z = 6, x + 2y + 3z = 14 and $2x + 5y + \lambda z = \mu(\lambda, \mu \in R)$ has a unique solution, then b) $\lambda = 8, \mu \neq 36$ c) $\lambda = 8, \mu = 36$ a) $\lambda \neq 8$ d) None of these 85. If $(x_1 - x_2)^2 + (y_1 - y_2)^2 = a^2$ $(x_2 - x_3)^2 + (y_2 - y_3)^2 = b^2$ $(x_3 - x_1)^2 + (y_3 - y_1)^2 = c^2$ and $k \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = (a + b + c)(b + c - a)(c + a - b) \times (a + b - c)$, then the value of k is b) 2 a) 1 c) 4 d) None of these 86. If [] denotes the greatest integer less than or equal to the real number under consideration, and $-1 \le x < 0, 0 \le y < 1, 1 \le z < 2$, then the value of the determinant [x] + 1[y] [z][y] + 1 [z] is [x][y][z] + 1[x] a) [x]b) [y]c) [z]d) None of these 87. If $pqr \neq 0$ and the system of equations (p+a)x + by + cz = 0ax + (q+b)y + cz = 0ax + by + (r + c)z = 0Has a non-trivial solution, then value of $\frac{a}{p} + \frac{b}{q} + \frac{c}{r}$ is c) 1 d) 2 a) –1 b) 0 a) -1 b) 0 c) 1 d) 2 When the determinant $\begin{vmatrix} \cos 2x & \sin^2 x & \cos 4x \\ \sin^2 x & \cos 2x & \cos^2 x \\ \cos 4x & \cos^2 x & \cos 2x \end{vmatrix}$ is expanded in powers of sin *x*, then the constant term in 88. that expression is a) 1 b) 0 c) −1 d) 2 If the value of the determinant $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \end{vmatrix}$ is positive, then (a, b, c > 0)89. 1 1 c a) abc > 1b) abc > -8c) abc < -8d) abc > -2lf $\begin{vmatrix} a^2 + \lambda^2 & ab + c\lambda & ca - b\lambda \\ ab - c\lambda & b^2 + \lambda^2 & bc + a\lambda \\ ca + b\lambda & bc - a\lambda & c^2 + \lambda^2 \end{vmatrix} \begin{vmatrix} \lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda \end{vmatrix} = (1 + a^2 + b^2 + c^2)^3$, then the value of λ is 90. b) 27 a) 8 c) 1 d) −1 The determinant $\begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0$ if 91. a) *x*, *y*, *z* are in A.P. b) x, y, z are in G.P. c) x, y, z are in H.P. d) xy, yz, zx are in A.P. 92. The value of the determinant of n^{th} order, being given by a) $(x-1)^{n-1}(x+n-1)$ b) $(x-1)^n(x+n-1)$ c) $(1-x)^{-1}(x+n-1)$ d) None of these If a + b + c = 0, one root of $\begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0$ is 93. c) $x = a^2 + b^2 + c^2$ d) x = 0a) *x* = 1 b) x = 2

Multiple Correct Answers Type

The determinant $\Delta = \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix}$ is equal to zero, if 94. b) *a*, *b*, *c* are in GP a) a, b, c are in AP d) α is the root of $ax^2 + 2bx + c = 0$ c) a, b, c are in HP If $\Delta = \begin{vmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta\\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta\\ -\sin\theta\sin\phi & \sin\theta\cos\phi & 0 \end{vmatrix}$ then 95. d) $\frac{d\Delta}{d\theta}\Big|_{0} = 0$ a) Δ is independent of θ b) Δ is independent of ϕ c) Δ is a constant If $f(x) = \begin{vmatrix} 3 & 3x & 3x^2 + 2a^2 \\ 3x & 3x^2 + 2a^2 & 3x^3 + 6a^2x \\ 3x^2 + 2a^2 & 3x^3 + 6a^2x & 3x^4 + 12a^2x^2 + 2a^4 \end{vmatrix}$, then 96. b) y = f(x) is a straight line parallel to x-axis c) $\int_{0}^{2} f(x) dx = 32a^4$ d) None of these If $f(\theta) = \begin{vmatrix} \sin^2 A & \cot A & 1 \\ \sin^2 B & \cos B & 1 \\ \sin^2 C & \cos C & 1 \end{vmatrix}$, then 97. a) $\tan A + \tan B +$ b) cot A cot B cot C c) $\sin^2 A + \sin^2 B + \sin^2 c$ The determinant $\Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix}$ is divisible by b) x^2 c) x^3 98. a) x b) x^2 c) x^3 d) None of these Let $f(x) = \begin{vmatrix} n & n+1 & n+2 \\ nP_n & n+1P_{n+1} & n+2P_{n+2} \\ nC_n & n+1C_{n+1} & n+2C_{n+2} \end{vmatrix}$, where the symbols have their usual meanings. The f(x) is 99. divisible by a) $n^2 + n + 1$ The determinant $\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0$, if a) $n^2 + n + 1$ d) None of the above c) n! 100. α is a root of the d) equation $ax^2 + bx + bx$ c) *a*, *b*, *c* are in H.P. a) *a*, *b*, *c* are in A.P. b) *a*, *b*, *c* are in G.P. c = 0101. The determinant $\Delta = \begin{vmatrix} a^2 + x^2 & ab & ac \\ ab & b^2 + x^2 & bc \\ ac & bc & c^2 + x^2 \end{vmatrix}$ is divisible by a) x b) x^2 c) x^3 102. If $g(x) = \begin{vmatrix} a^{-x} & e^{x \log_e a} & x^2 \\ a^{-3x} & e^{3x \log_e a} & x^4 \\ a^{-5x} & e^{5x \log_e a} & 1 \end{vmatrix}$, then d) x^4 a) Graphs of g(x) is symmetrical about origin b) Graphs of g(x) is symmetrical about Y-axis c) $\left. \frac{d^4 g(x)}{dx^4} \right|_{x=0} = 0$ d) $f(x) = g(x) \times \log(\frac{a-x}{a+x})$ is an odd function 103. If $g(x) = \frac{f(x)}{(x-a)(x-b)(x-c)}$, where f(x) is a polynomial of degree <3, then a) $\int g(x)dx = \begin{vmatrix} 1 & a & f(a)\log|x-a| \\ 1 & b & f(b)\log|x-b| \\ 1 & c & f(c)\log|x-c| \end{vmatrix} \div \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} b) \frac{dg(x)}{dx} = \begin{vmatrix} 1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2} \end{vmatrix} \div \begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix}$

$$c) \frac{dg(x)}{dx} = \begin{vmatrix} 1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2} \end{vmatrix} + \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} d \end{pmatrix} \int_{1}^{g(x)} dx = \begin{vmatrix} 1 & a & f(a) \log |x-a| \\ 1 & b & f(b) \log |x-b| \\ 1 & c & f(c) \log |x-c| \end{vmatrix} + \begin{vmatrix} a^{2} & a & 1 \\ c & f(c) \log |x-c| \end{vmatrix} + \begin{vmatrix} a^{2} & a & 1 \\ c & f(c) \log |x-c| \end{vmatrix} + k$$
104. Eliminating *a*, *b*, *c* from $x = \frac{a}{b-x}$, $y = \frac{b}{c-a}$, $z = \frac{c}{a-b}$ we get

a) $\begin{vmatrix} 1 & x-x \\ 1 & -y \\ 1 & -y \end{vmatrix} = 0$ b) $\begin{vmatrix} 1 & 1 & x \\ 1 & 1 & -y \end{vmatrix} = 0$ c) $\begin{vmatrix} 1 & -x & x \\ y & 1 & -y \\ z & 1 & -y \end{vmatrix} = 0$ d) None of these

a) $\begin{vmatrix} 0 \cos(\theta + \phi) - \sin(\theta + \phi) \cos(\phi) \\ \sin(\theta - \cos(\phi) & \sin(\phi) \\ \sin(\theta - \cos(\phi) & \cos(\phi) \\ \sin(\theta - \cos(\phi) & \sin(\phi) \\ \sin(\theta - \cos(\phi) & \cos(\phi) \\ \sin(\theta - \cos(\phi) & \sin(\phi) \\ \sin(\theta - \cos$

a) f(300, 200) = f(400, 200)b) f(200, 400) = f(200, 600)c) f(100, 200) = f(200, 200)d) None of these C) f(100, 200) = f(200, 200)The roots of the equation $\begin{vmatrix} x C_r & n-1 C_r & n-1 C_{r-1} \\ x+1 C_r & n C_r & n C_{r-1} \\ x+2 C_r & n+1 C_r & n+1 C_{r-1} \end{vmatrix} = 0$ are 115. d) x = n - 2c) x = n - 1b) x = n + 1a) x = n $\Delta = \begin{vmatrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{vmatrix}$ is independent of 116. c) *c*,*d*,*e* d) None of these a) a b) *b* If $\Delta(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = ax^3 + bx^2 + cx + d$, then 117. a) a = 3b) b = 0c) c = 0d) None of these Let $f(n) = \begin{bmatrix} n & n+1 & n+2 \\ {}^{n}P_{n} & {}^{n+1}P_{n+1} & {}^{n+2}P_{n+2} \\ {}^{n}C_{n} & {}^{n+1}C_{n+1} & {}^{n+2}C_{n+2} \end{bmatrix}$ where the symbols have their usual meanings. Then f(n) is 118. divisible by a) $n^2 + n + 1$ b) (n + 1)!d) None of these c) n!

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 119 to 118. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

119

Statement 1:
If
$$bc + qr = ca + rp = ab + pq = -1$$
, then $\begin{vmatrix} ap & a & p \\ bq & b & q \\ cr & c & r \end{vmatrix} = 0$ ($abc, pqr \neq 0$)
Statement 2: If system of equations $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_3x + b_3y + c_3 = 0$ has
non-trivial solutions, $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$

120 Consider the system of equation x + y + z = 6, x + 2y + 3z = 10 and $x + 2y + \lambda z = \mu$

Statement 1: If the system has infinite number of solutions, then $\mu = 10$

Statement 2:
The determinant
$$\begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu \end{vmatrix} = 0$$
 for $\mu = 10$

121

Statement 1: If *A*, *B* and *C* are the angles of a triangle and

 $\begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix}$

= 0, then triangle may not be equilateral

Statement 2: If any two rows of a determinant are the same, then the value of that determinant is zero

122 Let *x*, *y*, *z* are three integers lying between 1 and 9 such that *x*51, *y*41 and *z*31 are three digit numbers

The value of the det	terminant $x51$	v41	z31	is zero
	x	у У	z	

Statement 2: The value of a determinant is zero, if the entries in any two rows (or columns) of the determinant are correspondingly proportional

123

124

Statement 1: If *a*, *b*, *c* are even natural numbers, then $\Delta = \begin{vmatrix} a - 1 & a & a + 1 \\ b - 1 & b & b + 1 \\ c - 1 & c & c + 1 \end{vmatrix}$ is an even natural number.

Statement 2: Sum and product of two even natural numbers is also an even natural number.

125

Consider the determinant $f(x) = \begin{vmatrix} 0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0 \end{vmatrix}$ Statement 1: f(x) = 0 has one root x = 0

Statement 2: The value of skew-symmetric determinant of odd-order is always zero

126

Statement 1:	If the system of equations $\lambda x + (b - a)y + (c - a)z = 0$, $(a - b)x + \lambda y + (c - b)z = 0$
	and $(a - c)x + (b - c)y + \lambda z = 0$ has a non-trivial solution, then the value of λ is 0
Statement 2:	The value of skew-symmetric matrix of order 3 is zero

127

Statement 1: $\Delta = \begin{vmatrix} my + nz & mq + nr & mb + nc \\ kz - mx & kr - mp & kc - ma \\ -nx - ky & -np - kq & -na - kb \end{vmatrix}$ is equal to 0

Statement 2: The value of skew-symmetric matrix of order 3 is zero

128 Consider the system of the equations kx + y + z = 1, x + ky + z = k and $x + y + kz = k^2$

Statement 1: System of equations has infinite solutions when k = 1

Statement 2:
If the determinant
$$\begin{vmatrix} 1 & 1 & 1 \\ k & k & 1 \\ k^2 & 1 & k \end{vmatrix} = 0$$
, then $k = -1$

129

Statement 1: If
$$\Delta(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix}$$
,
then $\Delta'(x) \neq \begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1'(x) & g_2'(x) \end{vmatrix}$

130

Statement

2:
$$\frac{d}{dx} \{f(x)g(x)\} \neq \frac{d}{dx}f(x)\frac{d}{dx}$$

 $\overline{dx} \{f(x)g(x)\} \neq \overline{dx} f(x) \overline{dx} g(x)$ Consider the determinant $\Delta = \begin{vmatrix} a_1 + b_1 x^2 & a_1 x^2 + b_1 & c_1 \\ a_2 + b_2 x^2 & a_2 x^2 + b_2 & c_2 \\ a_3 + b_3 x^2 & a_3 x^2 + b_3 & c_3 \end{vmatrix} = 0$, where $a_i, b_i, c_i \in R(i = 1, 2, 3)$ and $x \in R$

Statement 1: The values of *x* satisfying $\Delta = 0$ are x = 1, -1

If $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$, then $\Delta = 0$ **Statement 2:**

131

Statement 1: If $f(x) = \begin{vmatrix} (1+x)^{21} & (1+x)^{22} & (1+x)^{23} \\ (1+x)^{31} & (1+x)^{32} & (1+x)^{33} \\ (1+x)^{41} & (1+x)^{42} & (1+x)^{43} \end{vmatrix}$ then coefficient of x in f(x) is zero.

Statement 2: If $F(x) = A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n$, then $A_1 = F'(0)$, where dash denotes the differential coefficient.

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.

132.

Column-I

Column- II

(A)
$$\begin{vmatrix} 1/c & 1/c & -(a+b)/(p) & \text{Independent of } a \\ -(b+c)/a^2 & 1/a & 1/a \\ -b(b+c)/a^2c & (a+2b+c)/ac & -b(a+b)/ \\ \text{is} \\ (B) \quad \begin{vmatrix} \sin a \cos b & \sin a \sin b & \cos a \\ \cos a \cos b & \cos a \sin b & -\sin a \\ -\sin a \sin b & \sin a \cos b & 0 \end{vmatrix} \text{ is } (q) & \text{Independent of } b \\ (C) \quad \begin{vmatrix} \frac{1}{\sin a \cos b} & \frac{1}{\sin a \sin b} & \frac{1}{\cos a} \\ \frac{-\cos a}{\sin^2 a \cos b} & \frac{-\cos a}{\sin^2 a \sin b} & \frac{\sin a}{\cos^2 a} \\ \frac{\sin b}{\sin a \cos^2 b} & \frac{-\cos b}{\sin a \sin^2 b} & 0 \end{vmatrix} \text{ is } (r) & \text{Independent on } a \text{ h} \\ (D) & \text{If } a \text{ h} \text{ and } c \text{ are the sides of a triangle and } A B (c) & \text{Dependent on } a \text{ h} \\ \end{cases}$$

(D) If *a*, *b*, and *c* are the sides of a triangle and *A*, *B* (s) Dependent on *a*, *b* and *C* are the angles opposite to *a*, *b*, and *c*, respectively, then

 $\Delta = \begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix}$ $b \sin A \quad c \sin A$

CODES:

	Α	В	С	D
a)	р	r	r	q
b)	S	р	r	S
c)	S	р	q	S

d) p,q,r q s p, q, r

133.

Column-I

Column- II

(A)	Coefficient of <i>x</i> in	(p)	10
	$f(x) = \begin{vmatrix} x & (a + \sin x)^3 & \cos x \\ 1 & \log(1 + x) & 2 \\ 2 & 1 & \cos^2 x \end{vmatrix}$		
(B)	$\begin{vmatrix} x^2 & 1 + x^2 & 0 \\ 1 & 3\cos\theta & 1 \\ 1 & 3\cos\theta & 1 \\ 1 & 3\cos\theta & 1 \\ $	(q)	0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(C)	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. and	(r)	-12
	$f(x) = \begin{vmatrix} x+a & x^2+1 & 1 \\ x+b & 2x^2-1 & 1 \\ x+c & 3x^2-2 & 1 \end{vmatrix}$		
(D)	If $\begin{vmatrix} x & 2 & x \\ 1 & x & 6 \\ x & x & x+1 \end{vmatrix} = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_3 x^3 +$	(s)	-2
	$a_1 x + a_0$,		
	then a_0 is		

CODES:

	Α	В	С	D
a)	r	S	r	r
b)	р	q	р	р
c)	S	р	S	S
d)	q	r	q	q

134.

Column-I

(A) The value of the determinant (p) 1 $\begin{vmatrix} x + 2 & x + 3 & x + 5 \\ x + 4 & x + 6 & x + 9 \\ x + 8 & x + 11 & x + 15 \end{vmatrix}$ (B) If one of the roots of the equation (q) -6 $\begin{vmatrix} 7 & 6 & x^2 - 13 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = 0 \text{ is } x + 2,$ then sum of the all other five roots is (C) The value of (r) 2 $\begin{vmatrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{18} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{vmatrix}$ (D) If $f(\theta) = \begin{vmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{vmatrix}$ (s) -2 then $f(\pi/3)$ Column- II

	COD	ES :				
		Α	В	С	D	
	a)	r	S	S	q	
	b)	S	r	q,r	р	
	c)	р	S	q	r	
	d)	q	р	r	S	
135.	Mato	h the fo	llowing elemo	ents of $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$	-1 4 -4	0 2 with their cofactors and choose the correct answer.
			Colu	umn-I		Column- II
	(A)	-1				(1) -2
	(B)	1				(2) 32
	(C)	3				(3) 4
	(D)	6				(4) 6
						(5) -6
	COD	ES :				
		Α	В	С	D	
	a)	2	4	1	3	
	b)	2	4	3	1	
	c)	4	2	1	3	

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 136 to -136

Let p be an odd prime number and T_p be the following set of

2

1

3

 2×2 matrices

d)

4

$$T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix}; a, b, c \in \{0, 1, 2, \dots, p-1\} \right\}$$

136. The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det(A) is divisible

by p is

a) $(p-1)^2$ b) 2(p-1) c) $(p-1)^2 + 1$ d) 2p-1

Paragraph for Question Nos. 137 to - 137

Let $\Delta \neq 0$ and Δ^c denotes the determinant of cofactors, then $\Delta^c = \Delta^{n-1}$, where n(>0) is the order of Δ . on the basis of above information, answer the following questions.

137. If *a*, *b*, *c* are the roots of the equation $x^3 - px^2 + r = 0$, then the value of $\begin{vmatrix} bc - a^2 & ca - b^2 & ab - c^2 \\ ca - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ca - b^2 \end{vmatrix}$ is a) p^2 b) p^4 c) p^6 d) p^9

Paragraph for Question Nos. 138 to - 138

 $f(x) = \begin{vmatrix} x + c_1 & x + a & x + a \\ x + b & x + c_2 & x + a \\ x + b & x + b & x + c_3 \end{vmatrix} \text{ and } g(x) = (c_1 - x)(c_2 - x)(c_3 - x)$

138. Coefficient of x in f(x) is

a)
$$\frac{g(a) - f(b)}{b - a}$$
 b) $\frac{g(-a) - g(-b)}{b - a}$ c) $\frac{g(a) - g(b)}{b - a}$ d) None of these

Paragraph for Question Nos. 139 to - 139

Consider the function $f(x) = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix}$

139. Which of the following is true?

a) f(x) = 0 and f'(x) = 0 have one positive common root

b) f(x) = 0 and f'(x) = 0 have one negative common root

c) f(x) = 0 and f'(x) = 0 have no common root

d) None of these

Paragraph for Question Nos. 140 to - 140

Given that the system of equations x = cy + bz, y = az + cx, z = bx + ay has non-zero solutions and at least one of the *a*, *b*, *c* is a proper fraction

140. $a^2 + b^2 + c^2$ is a) >2 b) >3 c) <3 d) <2

Paragraph for Question Nos. 141 to - 141

Consider the system of equations x + y + z = 6 x + 2y + 3z = 10 $x + 2y + \lambda z = \mu$

141. The system has unique solution if							
a) <i>λ</i> ≠ 3	b) $\lambda = 3, \mu = 10$	c) $\lambda = 3, \mu \neq 10$	d) None of these				

Paragraph for Question Nos. 142 to - 142

Let α, β be the roots of the equation $ax^2 + bx + c = 0$. Let $S_n = \alpha^n + \beta^n$ For $n \ge 1$ and $\Delta = \begin{vmatrix} 3 & 1+S_1 & 1+S_2 \\ 1+S_1 & 1+S_2 & 1+S_3 \\ 1+S_2 & 1+S_3 & 1+S_4 \end{vmatrix}$

142. If
$$\Delta < 0$$
, then the equation $ax^2 + bx + c = 0$ has
a) Positive real roots b) Negative real roots c) Equal roots d) Imaginary roots

Paragraph for Question Nos. 143 to - 143

Let $\Delta = \begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix}$ and the equation $px^3 + qx^2 + rx + s = 0$ has roots a, b, c where $a, b, c \in \mathbb{R}^+$

143. The value of
$$\Delta$$
 is
a) r^2/p^2 b) r^3/p^3 c) $-s/p$ d) None of these

Paragraph for Question Nos. 144 to - 144

Consider the polynomial function $f(x) = \begin{vmatrix} (1+x)^a & (1+2x)^b & 1 \\ 1 & (1+x)^a & (1+2x)^b \\ (1+2x)^b & 1 & (1+x)^a \end{vmatrix}$, *a*, *b*, being positive integers

144. The constant te	f(x) is		
a) 2	b) 1	c) —1	d) 0

Paragraph for Question Nos. 145 to - 145

If x > m, y > n, z > r(x, y, z > 0) such that $\begin{vmatrix} x & n & r \\ m & y & r \\ m & n & z \end{vmatrix} = 0$

145. The value of $\frac{x}{x-m} + \frac{y}{y-n} + \frac{z}{z-r}$ is a) 1 b) -1 c) 2 d) -2

Paragraph for Question Nos. 146 to - 146

Suppose f(x) is a function satisfying the following conditions:

1.
$$f(0) = 2, f(1) = 1,$$

2. f has a minimum value at $x = 5/2$
3. For all $x, f'(x) = \begin{vmatrix} 2ax & 2ax - 1 & 2ax + b + 1 \\ b & b + 1 & -1 \\ 2(ax + b) & 2ax + 2b + 1 & 2ax + b \end{vmatrix}$

146. The value of $f(2)$ is			
a) 1/4	b) 1/2	c) -1	d) 3

Integer Answer Type

147. If $\Delta = \begin{vmatrix} 1 & 3\cos\theta & 1\\ \sin\theta & 1 & 3\cos\theta\\ 1 & \sin\theta & 1 \end{vmatrix}$, then the value of $(\Delta_{\max})/2$ is 148. If $\begin{vmatrix} x^n & x^{n+2} & x^{n+4}\\ y^n & y^{n+2} & y^{n+4}\\ z^n & z^{n+2} & z^{n+4} \end{vmatrix} = \left(\frac{1}{y^2} - \frac{1}{x^2}\right) \left(\frac{1}{z^2} - \frac{1}{y^2}\right) \left(\frac{1}{x^2} - \frac{1}{z^2}\right)$ then -n is Absolute value of sum of roots of the equation $\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix} = 0$ is 149. 150. The value of $|\alpha|$ for which the system of equation $\alpha x + y + z = \alpha - 1$ $x + \alpha y + z = \alpha - 1$ $x + y + \alpha z = \alpha - 1$ Has no solution, is If $a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9$ are in H.P., and $D = \begin{vmatrix} a_1 & a_2 & a_3 \\ 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$ then the value of [D]is (where [] 151. represents the greatest integer function) 152. Sum of values of p for which, the equations: x + y + z = 1; x + 2y + 4z = p and $x + 4y + 10z = p^2$ have a solution is 153. Let α, β, γ are the real roots of the equation $x^3 + ax^2 + bx + c = 0$ ($a, b, c \in R$ and $a \neq 0$). If the system of equations (in *u*, *v* and *w*) given by $\alpha u + \beta v + \gamma w = 0$ $\beta u + \gamma v + \alpha w = 0$ $\gamma u + \alpha v + \beta w = 0$ has non-trivial solutions, then the value of a^2/b is 154. Let $D_1 = \begin{vmatrix} a & b & a+b \\ c & d & c+d \\ a & b & a-b \end{vmatrix}$ and $D_2 = \begin{vmatrix} a & c & a+c \\ b & d & b+d \\ a & c & a+b+c \end{vmatrix}$ then the value of $\left| \frac{D_1}{D_2} \right|$ is where $b \neq 0$ and $ad \neq bc$, 155. If $(1 + ax + bx^2)^4 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$, where $a, b, a_0, a_1, \dots, a_8 \in R$ such that $a_0 + a_1 + a_2 \neq 0$ and $\begin{vmatrix} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_0 \\ a_2 & a_0 & a_1 \end{vmatrix} = 0$ then the value of $5\frac{a}{b}$ is $|a_1a_5|$ $\begin{bmatrix} |a_2 \ a_0 \ a_1| \end{bmatrix} = \begin{bmatrix} a_1a_5 \ a_1 \ a_2\\ a_2a_6 \ a_2 \ a_3\\ a_3a_7 \ a_3 \ a_4 \end{bmatrix} \Delta_3 = \begin{bmatrix} a_2a_{10} \ a_2 \ a_3\\ a_3a_{11} \ a_3 \ a_4\\ a_3a_{12} \ a_4 \ a_5 \end{bmatrix} \text{ then } \Delta_2: \Delta_2 = \begin{bmatrix} 157. \\ x_1y_2 + x_2y_1 \ x_1y_2 + x_2y_1 \ x_1y_3 + x_3y_1\\ x_1y_2 + x_2y_1 \ 2x_2y_2 \ x_2y_3 + x_3y_2\\ x_1y_3 + x_3y_1 \ x_2y_3 + x_3y_2 \ 2x_3y_3 \end{bmatrix} \text{ is}$ $158. \begin{bmatrix} (\beta + \gamma - \alpha - \delta)^4 \ (\beta + \gamma - \alpha - \delta)^2 \ 1\\ (\gamma + \alpha - \beta - \delta)^4 \ (\gamma + \alpha - \beta - \delta)^2 \ 1\\ (\alpha + \beta - \gamma - \delta)^4 \ (\alpha + \beta - \gamma - \delta)^2 \ 1 \end{bmatrix} = -k(\alpha - \beta)(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)(\gamma - \delta), \text{ then the the the set } (1)^{1/2}$ value of $(k)^{1/2}$ is 159. Three distinct points $P(3u^2, 2u^3)$; $Q(3v^2, 2v^2)$ and $R(3w^2, 2w^2)$ are collinear then uv + vw + wu is equal

to

160.
Given
$$A = \begin{vmatrix} a & b & 2c \\ d & e & 2f \\ l & m & 2n \end{vmatrix}$$
, $B = \begin{vmatrix} f & 2d & e \\ 2n & 4l & 2m \\ c & 2a & b \end{vmatrix}$, then the value of B/A is
161.
If $\begin{vmatrix} x & x+y & x+y+z \\ 2x & 3x+2y & 4x+3y+2z \\ 3x & 6x+3y & 10x+6y+3z \end{vmatrix} = 64$, then the real value of x is

4.DETERMINANTS

1) d 2) b 3) a 4) c 13) 0 14) 2 15)	
د- و <i>و ا</i> د د .	4
5) b 6) c 7) b 8) b	
9) c 10) b 11) a 12) d	
13) b 14) d 15) b 16) b	
17) b 18) c 19) a 20) b	
21) c 22) d 23) a 24) d	
25) c 26) c 27) b 28) b	
29) a 30) b 31) b 32) b	
33) a 34) b 35) c 36) c	
37) b 38) c 39) b 40) d	
41) d 42) a 43) c 44) d	
45) b 46) b 47) b 48) c	
49) b 50) b 51) a 52) a	
53) b 54) b 55) a 56) a	
57) b 58) b 59) b 60) a	
61) d 62) a 63) c 64) c	
65) d 66) d 67) d 68) b	
69) a 70) d 71) a 72) a	
73) b 74) a 75) b 76) d	
77) d 78) c 79) a 80) a	
81) d 82) b 83) b 84) a	
85) c 86) c 87) a 88) c	
89) b 90) c 91) b 92) a	
93) d 1) b,d 2) b,d 3)	
a,b 4) d	
5) a,b 6) a,c 7) d 8)	
a,b,c,d	
9 J A,C IUJ A,D IIJ D,C 12 J	
$a_{,0}$	
13j U,C 14j A,C 15j D,C 16j	
a,U,C 17) a.h.c. 19) a.h. 10) a.d. 20)	
1/j a, U, L I I J a, U I I J C, U 2 U J a h c	
$a_{\mu}u_{\mu}u_{\mu}u_{\mu}u_{\mu}u_{\mu}u_{\mu}u_{\mu}u$	
Δ1 a, Δ2 a, Δ3 a, υ, Δ4 j h c	
25 ac 1) a 2) h 3) a	
4) d	
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
9) a 10) b 11) d 12) b	
13) a 1) d 2) c 3) h	
4) c	
1) d 2) c 3) c 4) d	
5) c 6) a 7) d 8) a	
9) d 10) c 11) b 1) 5	
2) 4 3) 4 4) 2	
5) 2 6) 3 7) 3 8) 2	
9) 8 10) 1 11) 0 12) 8	

4.DETERMINANTS

4

5

6

7

8

$$\begin{array}{l} \mathbf{1} \quad (\mathbf{d}) \\ \sum_{k=1}^{n} D_{k} = 56 \\ \Rightarrow \left| \begin{array}{c} \sum_{k=1}^{n} 1 & n & n \\ \sum_{k=1}^{n} 2k & n^{2} + n + 1 & n^{2} + n \\ \sum_{k=1}^{n} (2k-1) & n^{2} & n^{2} + n + 1 \\ \Rightarrow \left| \begin{array}{c} n & n & n \\ n(n+1) & n^{2} + n + 1 & n^{2} + n \\ n^{2} & n^{2} & n^{2} + n + 1 \\ \end{array} \right| = 56 \\ n(n+1) & 1 & 0 \\ n^{2} & 0 & n + 1 \\ \end{array} \right| = 56 \Rightarrow n(n+1) = 56 \Rightarrow n \\ n^{2} & 0 & n + 1 \\ \end{array} \right| = 56 \Rightarrow n(n+1) = 56 \Rightarrow n \\ n^{2} & 0 & n + 1 \\ \end{array} = 7 \\ \begin{array}{c} \mathbf{2} \quad (\mathbf{b}) \\ B_{2} = a_{1}c_{3} - a_{3}c_{1}, C_{2} = -(a_{1}b_{3} - a_{3}b_{1}) \\ B_{3} = -(a_{1}c_{2} - a_{2}c_{1}), C_{3} = a_{1}b_{2} - a_{2}b_{1} \\ \vdots & \left| \begin{array}{c} B_{2} & C_{2} \\ B_{3} & C_{2} \right| = \left| \begin{array}{c} a_{1}c_{3} - a_{3}c_{1} & -a_{1}b_{3} + a_{3}b_{1} \\ B_{3} = -(a_{1}c_{2} - a_{2}c_{1}), C_{3} = a_{1}b_{2} - a_{2}b_{1} \\ \vdots & \left| \begin{array}{c} B_{3} & C_{2} \\ B_{3} & C_{2} \right| = \left| \begin{array}{c} a_{1}c_{3} - a_{3}c_{1} & -a_{1}b_{3} + a_{3}b_{1} \\ a_{2}c_{1} & -a_{2}b_{1} \\ \end{array} \right| \\ \end{array} + \left| \begin{array}{c} -a_{3}c_{1} & a_{3}b_{1} \\ a_{2}c_{1} & -a_{2}b_{1} \\ \end{array} \right| \\ = \left| \begin{array}{c} a_{1}c_{3} & -b_{3} \\ a_{2}c_{3} & -b_{3} \\ -c_{2} & b_{2} \\ \end{array} \right| + a_{1}b_{1} \left| \begin{array}{c} c_{3} & -b_{3} \\ a_{2} & b_{2} \\ -c_{2} & b_{2} \\ \end{array} \right| + a_{1}b_{1} \left| \begin{array}{c} c_{3} & -b_{3} \\ a_{2} & b_{2} \\ -a_{2} & -a_{2} \\ \end{array} \right| \\ = a_{1}\left| \begin{array}{c} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \\ \end{array} \right| \\ = a_{1}\left| \begin{array}{c} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \\ \end{array} \right| \\ = a_{1}\left| \begin{array}{c} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \\ \end{array} \right| \\ = a_{1}\left| \begin{array}{c} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \\ \end{array} \right| \\ = 2 \cos^{2} x + 2 \sin^{2} x = 2 \end{array} \right|$$

 $\therefore f'(x) = 0$

: HINTS AND SOLUTIONS : $\therefore \int_0^{\pi/2} [f(x) + f'(x)] = dx = \int_0^{\pi/2} 2dx = \pi$ (c) Using $C_1 \rightarrow C_1 + C_2 + C_3$, $|\sin x + 2\cos x \cos x \cos x|$ $\Delta = |\sin x + 2\cos x - \sin x - \cos x|$ $|\sin x + 2\cos x \cos x \sin x|$ $= (\sin x + 2\cos x) \begin{vmatrix} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \end{vmatrix}$ $|1 \cos x \sin x|$ Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get Δ $= (\sin x)$ |1 $\cos x$ $\cos x$ $+ 2\cos x$ $0 \sin x - \cos x$ 0 10 0 $\sin x - \cos x$ $= (\sin x + 2\cos x)(\sin x - \cos x)^2 +$ Thus, $\Delta = 0 \Rightarrow \tan x = -2$ or $\tan x = 1$ As $-\pi/4 \le x \le \pi/4$, we get $-1 \le \tan x \le 1$ $\therefore \tan x = 1 \Rightarrow x = \pi/4$ **(b)** The degree of the determinant is n + (n + 2) + (n + 2)(n + 3) = 3n + 5 and the degree of the expression on R.H.S. is 2 $\therefore 3n + 5 = 2 \Rightarrow n = -1$ (c) $a = x/(y-z) \Rightarrow x - ay + az = 0 \quad (1)$ $b = y/(z - x) \Rightarrow bx + y - bz = 0 \quad (2)$ $c = z/(x - y) \Rightarrow -cx + xy + z = 0 \quad (3)$ Since *x*, *y*, *z* are not all zero, the above system has a non-trivial solution. So, |1 -aа 1 $\Delta = | b \rangle$ -b| = 0|-c c|1 $\therefore 1 + ab + bc + ca = 0$ **(b)** $\begin{vmatrix} 0 & 1 + \omega + \omega^2 & 0 \\ 1 - i & -1 & \omega^2 - 1 \\ -i & -1 + \omega - 1 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 \\ 1 - i & -1 & \omega^2 - 1 \\ -1 & -i + \omega - 1 & -1 \end{vmatrix} \quad [\because 1 + \omega + \omega^2]$ = 01(Operating $R_1 \rightarrow R_1 - R_2 + R_3$) **(b)** We have, $\begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix} = k \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$

$$\Rightarrow \begin{vmatrix} 2(a+b+c) & c+a & a+b \\ 2(a+b+c) & b+c & c+a \\ 2(a+b+c) & a+b & b+c \end{vmatrix} = k \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
[Applying $C_1 \to C_1 + (C_2 + C_3)$ on L.H.S.]

$$\Rightarrow 2 \begin{vmatrix} a+b+c & -a & -b \\ a+b+c & -a & -b \\ a+b+c & -c & -a \end{vmatrix} = k \begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$$
[Applying $C_2 \to C_2 - C_1, C_3 \to C_3 - C_1$ on
L.H.S.]

$$\Rightarrow \begin{vmatrix} a & -b & -c \\ c & -a & -b \\ b & -c & -a \end{vmatrix} = k \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
[Applying $C_1 \to C_1 + C_2 + C_3$ on L.H.S.]

$$\Rightarrow 2 \begin{vmatrix} a & b & c \\ b & -c & -a \end{vmatrix} = k \begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$$
[Applying $C_1 \to C_1 + C_2 + C_3$ on L.H.S.]

$$\Rightarrow 2 \begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix} = k \begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$$

$$\therefore k = 2$$
9 (c)

$$f'(x) = \begin{vmatrix} -\sin x & 1 & 0 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix} + \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \sec^2 x & 1 & 0 \end{vmatrix}$$

$$\Rightarrow f'(0) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 2 & 0 & 2\end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\Rightarrow f'(0) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 2 & 0 & 2\end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$Applying C_1 \to C_1 + C_2 + C_3 = C_1$$

$$\Rightarrow C = \begin{vmatrix} 1 & a & b & c \\ \cos(x & x & 1 \\ 2\sin x & x^2 & 2x \end{vmatrix}$$

$$= \begin{vmatrix} c \cos x & x & 1 \\ 2\sin x & x^2 & 2x \end{vmatrix}$$

$$= \begin{vmatrix} c \cos x & x & 1 \\ 2\sin x & x^2 & 2x \end{vmatrix}$$

$$= \begin{vmatrix} c \cos x & x & 1 \\ 2 \sin x & x^2 & 2x \end{vmatrix}$$

$$= \begin{vmatrix} c \cos x & x & 1 \\ 2 \sin x & x^2 & 2x \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 1\end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 1\end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$= f'(0) = 0$$
10 (b)

$$Let \Delta = \begin{vmatrix} 1 & a & a^2 \\ \cos(p - d)x & \sin px & \cos(p + d)x \\ \sin(p - d)x \end{vmatrix}$$

$$= cos(p - d)x \sin(p + d)x \\ - cos(p + d)x \sin(p - d)x \end{vmatrix}$$

$$= cos(p - d)x \sin(p + d)x \\ - cos(p + d)x \sin(p - d)x \end{vmatrix}$$

$$= sin dx - a sin 2dx + a^2 sin dx$$

$$Which is independent of p$$
11 (a)

$$Applying R_1 \to R_1 + R_3 - 2R_2, we get$$

$$= \begin{vmatrix} 0 & 0 & 0 & x + z - 2y \\ 5 & 6 & 7 \\ x & y & z & 0 \end{vmatrix}$$

$$= -(x + z - 2y) \begin{vmatrix} 4 & 5 & 6 & 7 \\ x & y & z & 0 \end{vmatrix}$$

$$= -(x + z - 2y) \begin{vmatrix} 4 & 5 & 6 & 7 \\ x & y & z & z \end{vmatrix}$$
[Expanding along

$$R_1 \end{vmatrix}$$

$$= -(x + z - 2y) \begin{vmatrix} 4 & 5 & 6 & 7 \\ x & y & z & z \end{vmatrix}$$

[Applying $C_1 \rightarrow C_1 + C_3 - 2C_2$ and $C_2 \rightarrow C_2 - C_3$] $= -(x+z-2y)^2 \begin{vmatrix} -1 & 6 \\ -1 & 7 \end{vmatrix}$ $=(x-2y+z)^{2}$ Hence $\Delta = 0 \Rightarrow x, y, z$ are in A.P. 12 (d) Let, $\Delta = \begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix}$ Then, $\Delta = \frac{1}{xy} \begin{vmatrix} xy^2 & -xy & x^2y \\ ax & b & cy \\ a'x & b' & c'y \end{vmatrix} \quad [\text{Applying } C_1 \rightarrow$ $\begin{aligned} xC_1, C_3 &\to yC_3 \end{bmatrix} \\ &= \frac{1}{xy} \begin{vmatrix} 0 & -xy & 0 \\ ax + by & b & bx + cy \\ a'x + b'y & b' & b'x + c'y \end{vmatrix}$ [Applying $C_1 \rightarrow C_1 + yC_2, C_3 \rightarrow C_3 + xC_2$] $= \frac{1}{xy} xy \begin{vmatrix} ax + by & bx + cy \\ a'x + b'y & b'x + c'y \end{vmatrix}$ [Expanding along R_1] $= \begin{vmatrix} ax + by & bx + cy \\ a'x + b'y & b'x + c'y \end{vmatrix}$ 13 **(b)** $z = \begin{vmatrix} -5 & 3+4i & 5-7i \\ 3-4i & 6 & 8+7i \\ 5+7i & 8-7i & 9 \end{vmatrix}$ $\Rightarrow \bar{z} = \begin{vmatrix} -5 & 3+4i & 5+7i \\ 3+4i & 6 & 8-7i \\ 5-7i & 8+7i & 9 \end{vmatrix}$ $= \begin{vmatrix} -5 & 3+4i & 5-7i \\ 3-4i & 6 & 8+7i \\ 5+7i & 8-7i & 9 \end{vmatrix} = z$ (Taking transpose) $\Rightarrow z$ is purely real 14 **(d)** Applying $R_1 \rightarrow aR_1, R_2 \rightarrow bR_2$ and $R_3 \rightarrow cR_3$, we get $\Delta = \frac{1}{abc} \begin{vmatrix} ab^2c^2 & abc & ab + ac \\ a^2bc^2 & abc & bc + ab \\ a^2b^2c & abc & ac + bc \end{vmatrix}$ $= \frac{a^2b^2c^2}{abc} \begin{vmatrix} bc & 1 & ab + ac \\ ac & 1 & bc + ab \\ ab & 1 & ac + bc \end{vmatrix}$ Applying $C_3 \rightarrow C_3 + C_1$ and taking (bc + ca + ab)common, we get $\Delta = abc(bc + ca + ab) \begin{vmatrix} bc & 1 & 1 \\ ac & 1 & 1 \\ ab & 1 & 1 \end{vmatrix} = 0$ [:: C_2 and C_3 are identical] 15 **(b)** In each determinant applying $R_1 \rightarrow R_1 + R_2 + R_3$ and then taking out (x + 9) common, we get

 $x + 9 = 0 \implies x = -9$

16 **(b)**

$$\Delta = \begin{vmatrix} x_{1} & x_{2} & x_{3} \\ | y_{1} & y_{2} & y_{3} \\ | z_{1} & z_{2} & z_{3} \\ | x_{1} & y_{1} & z_{1} \\ | x_{2} & y_{2} & z_{2} \\ | x_{3} & y_{3} & z_{3} \\ | x_{1}^{2} + y_{1}^{2} + z_{1}^{2} & x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} & x_{1}x_{2} \\ | x_{1}x_{2} + y_{2}y_{1} + z_{2}z_{1} & x_{2}^{2} + y_{2}^{2} + z_{2}^{2} & x_{2}x_{2} \\ | x_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{2} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{1} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{1} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{1} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{1} + y_{2}y_{1} + z_{3}z_{1} & x_{2}x_{3} + y_{2}y_{3} + z_{2}z_{3} \\ | z_{1}x_{1} + z_{1}y_{2} + z_{1}z_{1} & x_{1}y_{2} + z_{1}z_{1} \\ | z_{1}x_{1} + z_{1}x_{1} + z_{1}x_{2} + z_{1}x_{2} + z_{1}z_{1} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2} & z_{1}x_{2} \\ | z_{1}x_{1} + z_{1}x_{1} + z_{1}x_{2} + z_{1}x_{2} + z_{1}z_{1} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2} & z_{1}x_{2} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2} & z_{1}x_{2} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2} & z_{1}x_{2} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2}x_{1} + z_{1}x_{2} \\ | z_{1}x_{1} + z_{1}x_{2} + z_{2}x_{2} + z_{2}x_{2} \\ | z_{1}x_{2} + z_{2}$$

 $|a+4 \ a+5 \ a+2z|$

 $\begin{vmatrix} 0 & 0 & 2(x+z-2y) \\ a+3 & a+4 & a+2y \\ a+4 & a+5 & a+2z \end{vmatrix}$ $[Applying R_1 \rightarrow R_1 + R_3 - 2R_2]$ 0 0 0 $\begin{vmatrix} a+3 & a+4 & a+2y \end{vmatrix}$ [: x + z - 2y = 0] $|a+4 \ a+5 \ a+2z|$ = 021 (c) $\therefore |A^3| = |A|^3 = 125$ $\Rightarrow \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix} = 5$ $\Rightarrow \alpha^2 - 4 = 5 \Rightarrow \alpha = \pm 3$ 22 (d) Applying $R_1 \rightarrow R_1 - (R_2 + R_3)$, we get Applying $R_1 \to R_1 - (R_2 + R_3)$, we get $D = \begin{vmatrix} 0 & -2y & -2x \\ x & y + z & x \\ y & y & z + x \end{vmatrix}$ $= 2 \begin{vmatrix} 0 & -y & -x \\ x & y + z & x \\ y & y & z + x \end{vmatrix}$ $= 2 \begin{vmatrix} 0 & -y & -x \\ x & y + z & x \\ y & y & z + x \end{vmatrix}$ $= 2 \begin{vmatrix} 0 & -y & -x \\ x & z & 0 \\ y & 0 & z \end{vmatrix} (R_2 \to R_2 + R_1 \text{ and}$ $R_3 \rightarrow R_3 + R_1$) = 4xyz3 (a) |x m n 1| $\begin{vmatrix} a & x & n & 1 \\ a & b & x & 1 \end{vmatrix} = 0 \quad [R_1 \to R_1 - R_2, R_2 \to R_2 - R_2]$ a b c 1 $R_3, R_3 \to R_3 - R_4]$ $\begin{array}{c} x_{3}, x_{3} \rightarrow x_{3} - x_{4} \end{bmatrix} \\ \Rightarrow \begin{vmatrix} x - a & m - x & 0 & 0 \\ 0 & x - b & n - x & 0 \\ 0 & 0 & x - c & a \\ a & b & c & 1 \\ \end{vmatrix} = 0 \\ \Rightarrow \begin{vmatrix} x - a & m - x & 0 \\ 0 & x - b & n - x \\ 0 & 0 & x - c \\ \end{vmatrix} = 0 \\ \Rightarrow (x - a) \begin{vmatrix} (x - b) & n - x \\ 0 & (x - c) \end{vmatrix} = 0$ $\Rightarrow (x-a)(x-b)(x-c) = 0 \Rightarrow$ roots are independent of *m*, *n* 4 (d) $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix} = -(a^3 + b^3 + c^3 - 3abc)$ $= -(a+b+c)(a+b\omega^2+c\omega)(a+b\omega+c\omega^2)$ (where ω is cube roots of unity) $= -f(\alpha)f(\beta)f(\gamma)$ [:: $\alpha = 1, \beta = \omega, \gamma = \omega^2$] 25 **(c)** Here a > 0 and $4b^2 - 4ac < 0$, i.e., $ac - b^2 > 0$ $\therefore ax^2 + 2bx + c > 0, \forall x \in R$ Now,

$$\Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ 0 & 0 & -(ax^{2} + 2bx + c) \end{vmatrix}$$
[Operating $R_{3} \to R_{3} - xR_{1} - R_{2}$]
= $-(ax^{2} + 2bx + c)(ac - b^{2})$
= $-(+ve)(+ve) = -ve$
26 (C)
Operating $C_{1} \to C_{1} + C_{2} + C_{3}$, we get
$$f(x) = \begin{vmatrix} 1 + 2x + (a^{2} + b^{2} + c^{2})x & (1 + b^{2})x & (1 + c^{2})x \\ 1 + 2x + (a^{2} + b^{2} + c^{2})x & (1 + b^{2})x & (1 + c^{2})x \\ 1 + 2x + (a^{2} + b^{2} + c^{2})x & (1 + b^{2})x & 1 + c^{2}x \end{vmatrix}$$

$$= \begin{vmatrix} 1 & (1 + b^{2})x & (1 + c^{2})x \\ 1 & 1 + b^{2}x & (1 + c^{2})x \\ 1 + 2x + (a^{2} + b^{2} + c^{2})x & (1 + b^{2})x & 1 + c^{2}x \end{vmatrix}$$

$$= \begin{vmatrix} 1 & (1 + b^{2})x & (1 + c^{2})x \\ 1 & (1 + b^{2})x & (1 + c^{2})x \\ 1 & (1 + b^{2})x & (1 + c^{2})x \end{vmatrix}$$

$$= \begin{vmatrix} 1 & (1 + b^{2})x & (1 + c^{2})x \\ 0 & 1 - x & 0 \\ 0 & 0 & 1 + x \end{vmatrix}$$
[Operating $R_{2} \to R_{2} - R_{1}$ and $R_{3} \to R_{3} - R_{1}$]
$$= (1)[(1 - x)^{2} - 0]$$

$$= (1 - x)^{2}$$
Which is a polynomial of degree 2
27 (b)
For non-trivial solution
$$\begin{vmatrix} a - 1 & -1 & 0 \\ 1 & 1 & -(c - 1) \end{vmatrix} = 0$$

$$\Rightarrow (a - 1)(bc - c - b) + 1(-c - b) = 0$$

$$\Rightarrow abc - ac - ab - bc + b + c - c - b = 0$$

$$\Rightarrow ab + bc + ac = abc$$
28 (b)
Applying $C_{1} \to aC_{1}$ and then $C_{1} \to C_{1} + bC_{2} + cC_{3}$, and taking $(a^{2} + b^{2} + c^{2})$ common from C_{1} , we get
$$\Delta = \frac{(a^{2} + b^{2} + c^{2})}{a} \begin{vmatrix} 1 & b - c & c + b \\ 0 & c - a - b \end{vmatrix}$$

$$= \frac{(a^{2} + b^{2} + c^{2})}{a} (-bc + a^{2} + ab + ac + bc)$$
(expanding along C_{1})
$$= (a^{2} + b^{2} + c^{2})(a + b + c)$$
Hence, $\Delta = 0 \Rightarrow a + b + c = 0$
Therefore, line $ax + by + c = 0$ passes through the fixed point (1, 1)
29 (a)
Determinant formed by the cofactors of
$$\begin{vmatrix} a & b & c & a \end{vmatrix}$$
is β

lc a bl

 $\begin{vmatrix} bc - a^{2} & ac - b^{2} & ab - c^{2} \\ ac - b^{2} & ab - c^{2} & bc - a^{2} \\ ab - c^{2} & bc - a^{2} & ac - b^{2} \end{vmatrix}$ $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}^2$ c a b 30 **(b)** Applying $C_1 \to C_1 + C_2 + C_3$, we get $\Delta = \begin{vmatrix} x + 2a & a & a \\ x + 2a & x & a \\ x + 2a & a & x \end{vmatrix} = (x + 2a) \begin{vmatrix} 1 & a & a \\ 1 & x & a \\ 1 & a & x \end{vmatrix}$ Applying $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$, we get $\Delta = (x + 2a) \begin{vmatrix} 0 & a - x & a \\ 0 & x - a & a - x \\ 1 & a & x \end{vmatrix}$ $= (x - a)^2 (x + 2a)$ 31 **(b)** $R_3 \rightarrow R_3 - 2R_2$, hence two identical rows $\Rightarrow f(x) = \text{constant}$ 32 **(b)** We divide L.H.S. by λ^4 and C_1 by λ^2 , C_2 by λ and C_3 by λ on the R.H.S. to obtain $p + q\left(\frac{1}{\lambda}\right) + r\left(\frac{1}{\lambda}\right)^2 + s\left(\frac{1}{\lambda}\right)^3 + t\left(\frac{1}{\lambda}\right)^4$ $= \begin{vmatrix} 1+3/\lambda & 1-1/\lambda & 1+3/\lambda \\ 1+1/\lambda^2 & 2/\lambda-1 & 1-3/\lambda \\ 1-3/\lambda^2 & 1+4/\lambda & 3 \end{vmatrix}$ Taking limit as $\lambda \to \infty$, we get $p = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = -4$ [Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$] 33 (a) Given determinant, $2a(bc - 4a^2) + b(2ac - b^2) + c(2ab - c^2) = 0$ $\Rightarrow 6abc - 8a^3 - b^3 - c^3 = 0$ $\Rightarrow (2a + b + c)[(2a - b)^{2} + (b - c)^{2} + (c - 2a)^{2}]$ = 0 $\Rightarrow 2a + b + c = 0$ (:: $b \neq c$) Let $f(x) = 8ax^3 + 2bx^2 + cx$ f(0) = 0 $f\left(\frac{1}{2}\right) = a + \frac{b}{2} + \frac{c}{2} = \frac{2a+b+c}{2} = 0$ So, f(x) satisfies the Roll's theorem and hence, f'(x) = 0 has at least one root in $\left[0, \frac{1}{2}\right]$ 34 **(b)** For every 'det. with 1' ($\in B$) we can find a det. with value -1 by changing the sign of one entry of '1'. Hence there are equal number of elements in B and C. Therefore, (b) is the correct option

```
35 (c)
```

Since each element of C_1 is the sum of two elements, putting the determinant as sum of two determinants, we get

$$\Delta = \begin{vmatrix} x^3 & x^2 & x \\ y^3 & y^2 & y \\ z^3 & z^2 & z \end{vmatrix} + \begin{vmatrix} 1 & x^2 & x \\ 1 & y^2 & y \\ z^2 & z & 1 \\ z^2 & z & 1 \end{vmatrix} + \begin{vmatrix} 1 & x^2 & x \\ 1 & y^2 & y \\ 1 & z^2 & z \end{vmatrix}$$

$$= -(xyz + 1) \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$

$$= -(xyz + 1)(x - y)(y - z)(z - x)(x + y + z)$$
Since $\Delta = 0, x, y, z$ all are distinct, we have
 $xyz + 1 = 0$ or $xyz = -1$
36 (c)
We have,

$$\Delta^2 = \Delta \Delta = \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix}$$

$$= \begin{vmatrix} l^2 + m_1^2 + m_1^2 + n_1 n_2 & l_1 l_2 + m_1 m_2 + n_1 n_2 & l_1 l_1 \\ l_1 l_2 + m_1 m_2 + n_1 n_2 & l_2^2 + m_2^2 + n_2^2 & l_2 l_1 \\ l_1 l_3 + m_1 m_3 + n_1 n_3 & l_2 l_3 + m_2 m_3 + n_2 n_3 \\ = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} 1 \Rightarrow \Delta = \pm 1 \Rightarrow |\Delta| = 1$$
37 (b)
Operating $R_1 \rightarrow R_1 - R_2$, gives

$$\Delta = \begin{vmatrix} x - 2 & 3(x - 2) & -(x - 2) \\ 2 & -3x & x - 3 \\ -3 & 2x & x + 2 \end{vmatrix}$$

$$= (x - 2) \begin{vmatrix} 1 & 3 & -1 \\ 2 & -3x & x - 3 \\ -3 & 2x & x + 2 \end{vmatrix}$$

$$= (x - 2) \begin{vmatrix} 1 & 3 & -1 \\ 0 & -3(x + 2) & x - 1 \\ R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 + 3R_1 \end{bmatrix}$$

$$= (x - 2) [-(3x + 6)(x - 1) - (x - 1)(2x + 9)]$$

$$= -(x - 2)(x - 1)(5x + 15)$$
Therefore, $\Delta = 0$ gives $x = 2, 1, -3$
38 (c)

$$\begin{vmatrix} 1 + x & 1 & 1 \\ 1 + y & 1 + 2y & 1 \\ 1 + z & 1 + z & 3 + 3z \end{vmatrix}$$

$$= xyz \begin{vmatrix} 1 + \frac{1}{x} & \frac{1}{x} & \frac{1}{x} \\ 1 + \frac{1}{y} & 2 + \frac{1}{y} & \frac{1}{y} \end{vmatrix}$$

 $1 + \frac{1}{z}$ $1 + \frac{1}{z}$ $3 + \frac{1}{z}$

 $= xyz\left(3 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \begin{vmatrix} 1 & 1 & 1 & 1\\ 1 + \frac{1}{y} & 2 + \frac{1}{y} & \frac{1}{y}\\ 1 + \frac{1}{z} & 1 + \frac{1}{z} & 3 + \frac{1}{z} \end{vmatrix}$ $= xyz\left(3 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \begin{vmatrix} 1 & 0 & 0\\ 1 + \frac{1}{y} & 1 & -1\\ 1 + \frac{1}{z} & 0 & 2 \end{vmatrix}$ $= 2xyz\left(3 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$ Hence, the given equation gives $x^{-1} + y^{-1} + y^{-1}$ $z^{-1} = -3$ 39 **(b)** We have, $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)$ (c-a)(a+b+c) (1) Also, $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$ = $abc \begin{vmatrix} \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ 1 & 1 & 1 \\ a^2 & b^2 & c^2 \end{vmatrix}$ (taking *a*, *b*, *c* common from R_1, R_2, R_3) $\begin{vmatrix} bc & ac & ab \\ 1 & 1 & 1 \\ a^2 & b^2 & c^2 \end{vmatrix}$ (Multiplying R_1 by abc) $= \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ bc & ac & ab \end{vmatrix}$ Then, $D = \begin{vmatrix} 1 & 1 & 1 \\ (x-a)^2 & (x-b)^2 & (x-c)^2 \\ (x-b)(x-c) & (x-c)(x-a) & (x-a)(x-b) \end{vmatrix}$ = (a - b)(b - c)(c - a)(3x - a - b - c)Now given that a, b, c are all different, then D = 0 $\therefore x = \frac{1}{3}(a+b+c)$ 40 (d) For the given homogeneous system of equations to have non-zero solution, determinant of coefficient matrix should be zero, i.e., |1 - k - 1| $\begin{vmatrix} 1 & -k & -1 \\ k & -1 & -1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1+1) + k(-k+1) - (k+1)$ = 0 $\Rightarrow 2 - k^{2} + k - k - 1 = 0$ $\Rightarrow k^{2} = 1$ $\Rightarrow k = \pm 1$

$$\begin{vmatrix} 1 + x_{1} & 1 + x_{1}x & 1 + x_{1}x^{2} \\ 1 + x_{2} & 1 + x_{2}x & 1 + x_{2}x^{2} \\ 1 + x_{3} & 1 + x_{3}x & 1 + x_{3}x^{2} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & x_{1} & 0 \\ 1 & x_{2} & 0 \\ 1 & x_{3} & 0 \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & x^{2} & 0 \\ 1 & x^{2} & 0 \end{vmatrix}$$

$$= 0$$
42 (a)

$$D = \cos \theta - \cos^{2} + 6 > 0. \text{ Since } D > 0 \text{ only trivial solution is possible}$$
43 (c)
Applying $R_{1} \rightarrow R_{1} - R_{2}$ and $R_{2} \rightarrow R_{2} - R_{3}$ reduce the determinant to

$$\begin{vmatrix} x^{2} - 2x + 1 & x - 1 & 0 \\ 2x - 2 & x - 1 & 0 \\ 3 & 3 & 1 \end{vmatrix}$$

$$= (x - 1)^{3} - 2(x - 1)^{2} = (x - 1)^{2}(x - 1 - 2) = (x - 1)^{2}(x - 3),$$
Which is clearly negative for $x < 1$
44 (d)
Let the given determinant be equal to $\Delta(x)$. Then, $5A + 4B + 3C + 2D + E = \Delta(1) + \Delta'(1)$
Now, $\Delta(1) = 0$ as R_{2} and R_{3} are identical
 $\Delta'(x) = \begin{vmatrix} 1 & 0 & 1 \\ x & x & 6 \end{vmatrix} + \begin{vmatrix} x & 2 & x \\ x & x & 6 \end{vmatrix} + \begin{vmatrix} x & 2 & x \\ x & x & 6 \end{vmatrix} + \begin{vmatrix} x & 2 & x \\ x & x & 6 \end{vmatrix}$

$$\Delta'(1) = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{vmatrix}$$

$$= -17 + (12 + 1 - 1 - 6) = -11$$
45 (b)
 $A_{2} = \begin{vmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 & 49 \end{vmatrix}$
 R_{3})
 R_{3}

$$A_{3} = \begin{vmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 5 & 7 & 9 & 11 \\ 15 & 21 & 27 & 33 \\ = 3 \begin{vmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 5 & 7 & 9 & 11 \\ 15 & 7 & 9 & 11 \end{vmatrix} = 0 \quad (R_{4} \rightarrow R_{4} - R_{3})$$
46 (b)
The total number of third-order determinants is even and in which there are $9!/2$ pairs of determinants which are obtained by changing two consecutive rows, So $\sum_{i=1}^{n} D_{i} = 0$

47 **(b)**

Let, $\Delta = \begin{vmatrix} \cos(\alpha - \beta) & \cos(\beta - \gamma) & \cos(\gamma - \alpha) \\ \cos(\alpha + \beta) & \cos(\beta + \gamma) & \cos(\gamma + \alpha) \\ \sin(\alpha + \beta) & \sin(\beta + \gamma) & \sin(\gamma + \alpha) \end{vmatrix}$ It is clear that either $\alpha = \beta$ or $\beta = \gamma$ or $\gamma = \alpha$ is sufficient to make $\Delta = 0$. It is not necessary that triangle is equilateral. Also, isosceles triangle can be obtuse one 48 **(c)** The given system is consistent $\therefore \Delta = \begin{vmatrix} 1 & 1 & -1 \\ 2 & -1 & -c \\ -b & 3b & -c \end{vmatrix} = 0$ $\Rightarrow c + bc - 6b + b + 2c + 3bc = 0$ $\Rightarrow 3c + 4bc - 5b = 0$ $\Rightarrow c = \frac{5b}{4b+3}$ Now, *c* < 1 $\Rightarrow \frac{5b}{4b+3} < 1$ $\Rightarrow \frac{5b}{4b+3} - 1 < 0$ $\Rightarrow \frac{b-3}{4b+3} < 0$ $\Rightarrow b \in \left(-\frac{3}{4},3\right)$ 49 **(b)** Let $\frac{x^2}{a^2} = X$, $\frac{y^2}{b^2} = Y$, $\frac{z^2}{c^2} = Z$ Then the given system of equations is X + Y - Z = 1X - Y + Z = 1-X + Y + Z = 1Coefficient determinant is $A = \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix}$ = 1(-1-1) - 1(1+1) - 1(1-1) $= -4 \neq 0$ Hence, the given system of equation has unique solutions 50 **(b)** Applying $R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3$, we get $\Delta = \begin{vmatrix} -4 - 2\sqrt{2} & -2\sqrt{2} & 0 \\ 4\sqrt{2} & 4\sqrt{2} & 0 \\ 3 - 2\sqrt{2} & 2 - 2\sqrt{2} & 1 \end{vmatrix}$ $= 1\left(-\left(4+2\sqrt{2}\right)\right)4\sqrt{2}+2\sqrt{2}\times4\sqrt{2}$ $= -16\sqrt{2}$ 51 (a) Applying $C_1 \to C_1 + 2C_2 + C_3$, we get $S = \sum_{r=2}^{n} (-2)^r \begin{vmatrix} {}^{n}C_r & {}^{n-2}C_{r-1} & {}^{n-2}C_r \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{vmatrix}$

$$\begin{aligned} &= \sum_{r=2}^{n} (-2)^{r} {}^{n}C_{r} \\ &= \sum_{r=0}^{n} (-2)^{r} {}^{n}C_{r} - ({}^{n}C_{0} - 2 {}^{n}C_{1}) \\ &= (1 - 2)^{n} - (1 - 2n) = 2n - 1 + (-1)^{n} \end{aligned}$$
52 (a)
$$\begin{aligned} &= \begin{vmatrix} 1 & 1 & 1 & 1 \\ m_{C_{1}} & m^{+1}C_{1} & m^{+2}C_{1} \\ m_{C_{2}} & m^{+1}C_{2} & m^{+2}C_{2} \end{vmatrix} \\ &= \begin{vmatrix} 1 & 1 & 1 & 0 \\ m_{C_{1}} & m^{+1}C_{1} & m^{+1}C_{0} \\ m_{C_{2}} & m^{+1}C_{2} & m^{+1}C_{1} \\ m_{C_{2}} & m^{+1}C_{2} & m^{+1}C_{1} \end{vmatrix} \left[Applying \\ C_{3} \to C_{3} - C_{2} \end{vmatrix} \\ &= \begin{vmatrix} 1 & 1 & 0 \\ m_{C_{1}} & m_{C_{0}} + m_{C_{1}} & m^{+1}C_{0} \\ m_{C_{2}} & m_{C_{1}} + m^{+1}C_{1} \\ &= \begin{vmatrix} 1 & 1 & 0 \\ m_{C_{2}} & m_{C_{1}} + m^{+1}C_{1} \\ m_{C_{2}} & m_{C_{1}} + m^{+1}C_{1} \\ m_{C_{2}} & m_{C_{1}} + m^{+1}C_{1} \\ m_{C_{2}} & m^{+1}C_{1} - m^{+1}C_{0} m_{C_{1}} \\ &= m + 1 - m \\ &= 1 \\ \end{aligned}$$
53 (b)
$$\begin{vmatrix} x^{3} + 1 & x^{2}y & x^{2}z \\ xy^{2} & y^{3} + 1 & y^{2}z \\ xz^{2} & yz^{2} & z^{3} + 1 \end{vmatrix} = 11 \\ Multiplying R_{1} by x, R_{2} by y \text{ and } R_{3} by z, we get \\ \frac{1}{xxz} \begin{vmatrix} x^{4} + x & x^{3}y & x^{3}z \\ xy^{3} & y^{3} + 1 & y^{3}z \\ xz^{3} & yz^{3} & z^{4} + 1 \end{vmatrix} = 11 \\ Taking x, y, z \text{ common from } C_{1}, C_{2}, C_{3}, \\ respectively, we get \\ \begin{vmatrix} x^{3} + 1 & x^{3} & x^{3} \\ y^{3} & y^{3} + 1 & y^{3} \\ z^{3} & z^{3} & z^{3} + 1 \end{vmatrix} = 11 \\ Using C_{2} \to C_{2} - C_{1} \text{ and } C_{3} \to C_{3} - C_{1}, \text{ we get} \\ (x^{3} + y^{3} + z^{3} + 1) \begin{vmatrix} y^{3} & y^{3} + 1 & y^{3} \\ z^{3} & 0 & 1 \end{vmatrix} = 11 \\ \text{Hence, } x^{3} + y^{3} + z^{3} = 10 \\ \text{Therefore, the ordered triplets are } (2, 1, 1), (1, 2 \\ 1), (1, 1, 2) \end{aligned}$$

(b)
Applying
$$C_1 \rightarrow C_1 - C_2$$
, $C_2 \rightarrow C_2 - C_3$, we get

$$\Delta = \begin{vmatrix} cot \frac{A}{2} - cot \frac{B}{2} & cot \frac{B}{2} - cot \frac{C}{2} & cot \frac{C}{2} \\ tan \frac{B}{2} - tan \frac{A}{2} & tan \frac{C}{2} - tan \frac{B}{2} & tan \frac{A}{2} + tan \frac{B}{2} \end{vmatrix}$$

$$= \begin{vmatrix} cot \frac{A}{2} - cot \frac{B}{2} & cot \frac{B}{2} - cot \frac{C}{2} & cot \frac{C}{2} \\ cot \frac{A}{2} - cot \frac{B}{2} & cot \frac{B}{2} - cot \frac{C}{2} & tan \frac{A}{2} + tan \frac{B}{2} \end{vmatrix}$$

$$= \left(cot \frac{A}{2} - cot \frac{B}{2} \right) \left(cot \frac{B}{2} - cot \frac{C}{2} \\ tan \frac{A}{2} - cot \frac{B}{2} \right) \left(cot \frac{B}{2} - cot \frac{C}{2} \\ tan \frac{A}{2} - cot \frac{B}{2} \right) \left(cot \frac{B}{2} - cot \frac{C}{2} \right)$$

$$\times \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & cot \frac{C}{2} \\ tan \frac{A}{2} tan \frac{B}{2} & tan \frac{B}{2} tan \frac{C}{2} & tan \frac{A}{2} tan \frac{B}{2} \end{vmatrix}$$

$$= \left(cot \frac{A}{2} - cot \frac{B}{2} \right) \left(cot \frac{B}{2} - cot \frac{C}{2} \right) \left(tan \frac{C}{2} \\ - tan \frac{A}{2} \right) tan \frac{B}{2}$$
Since $\Delta = 0$, therefore

$$cot \frac{A}{2} = cot \frac{B}{2} \text{ or } cot \frac{B}{2} = cot \frac{C}{2} \text{ or } tan \frac{A}{2} = tan \frac{C}{2}$$
Hence, the triangle is definitely isosceles
(a)
Taking x common from R_2 and $x(x - 1)$ common from R_3 , we get

$$f(x) = x^2(x - 1) \begin{vmatrix} 1 & x & x + 1 \\ 2 & x - 1 & x + 1 \\ 3 & x - 2 & x + 1 \end{vmatrix}$$
Applying $C_3 \rightarrow C_3 - C_2$, we get

$$f(x) = x^2(x - 1) \begin{vmatrix} 1 & x & x + 1 \\ 2 & x - 1 & 2 \\ 3 & x - 2 & 3 \end{vmatrix} = 0$$
Thus, $f(500) = 0$
(a)
As $a_1b_1c_1, a_2b_2c_2$ and $a_3b_3c_3$ are even natural numbers, each of c_1, c_2, c_3 is divisible by 2. Let $c_i = 2k_i$ for $i = 1, 2, 3$. Thus,

$$\Delta = 2 \begin{vmatrix} k_1 & a_1 & b_1 \\ k_2 & a_2 & b_2 \\ k_3 & a_3 & b_3 \end{vmatrix} = 2m$$
Where *m* is some natural number. Thus, Δ is divisible by 2. That Δ may not be divisible by 4 can be seen by taking the three numbers as 112, 122 and 134. Note that

$$\Delta = \begin{vmatrix} 2 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 1 & 2 \\ 4 & 1 & 3 \end{vmatrix} = 2$$

Which is divisible by 2 but not by 4

(b)

For no solution or infinitely many solutions

 $\begin{vmatrix} \alpha & -1 & -1 \\ 1 & -\alpha & -1 \\ 1 & 1 & -\alpha \end{vmatrix} = 0$ $\Rightarrow \alpha(\alpha^2 - 1) - 1(\alpha - 1) + 1(1 - \alpha) = 0$ $\Rightarrow \alpha(\alpha^2 - 1) - 2\alpha + 2 = 0$ $\Rightarrow \alpha(\alpha - 1)(\alpha + 1) - 2(\alpha - 1) = 0$ $\Rightarrow (\alpha - 1)(\alpha^2 + \alpha - 2) = 0$ $\Rightarrow (\alpha - 1)^2(\alpha + 2) = 0$ $\Rightarrow (\alpha - 1)^2(\alpha + 2) = 0$ $\Rightarrow \alpha = 1, 1, -2$ But for $\alpha = 1$, there are infinite solutions. When $\alpha = -2$, we have -2x - y - z = -3 x + 2y - z = -3 x - y + 2z = -3Adding, we get 0 = -9, which is not true. Hence there is no solution **(b)**

58 **(b)**

Since the system has non-trivial solution, $\therefore \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$ Applying $R_1 \to R_1 - R_2, R_2 \to R_2 - R_3$, we get $\Delta = \begin{vmatrix} a - 1 & 1 - b & 0 \\ 0 & b - 1 & 1 - c \\ 1 & 1 & c \end{vmatrix} = 0$ $\Rightarrow c(1-a)(1-b) + (1-b)(1-c)$ -(1-c)(a-1) = 0Dividing throughout by (1 - a)(1 - b)(1 - c), we get $\frac{c}{1-c} + \frac{1}{1-c} + \frac{1}{1-b} = 0$ $\Rightarrow -1 + \frac{1}{1-c} + \frac{1}{1-b} + \frac{1}{1-a} = 0$ $\Rightarrow \frac{1}{1-c} + \frac{1}{1-a} + \frac{1}{1-b} = 1$ 59 (b) $\Delta = \begin{vmatrix} b^{2} + c^{2} & ab & ac \\ ab & c^{2} + a^{2} & bc \\ ca & cb & a^{2} + b^{2} \end{vmatrix}$ Applying $R_{1} \to aR_{1}, R_{2} \to bR_{2}, R_{3} \to cR_{3}$, we get $\Delta = \frac{1}{abc} \times \begin{vmatrix} b^{2} + c^{2} & a^{2}b & a^{2}c \\ ab^{2} & b(c^{2} + a^{2}) & cb^{2} \\ ac^{2} & bc^{2} & c(a^{2} + b^{2}) \end{vmatrix}$ Now, applying $C_1 \rightarrow \frac{1}{a}C_1, C_2 \rightarrow \frac{1}{b}C_2, C_3 \rightarrow \frac{1}{c}C_3$, we $\Delta = \frac{abc}{abc} \begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$ $= \begin{vmatrix} 0 & -2c^2 & -2b^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix} \quad [R_1 \to R_1 - R_2 - R_3]$

 $= 2 \begin{vmatrix} 0 & -c^2 & -b^2 \\ b^2 & a^2 & 0 \\ c^2 & 0 & a^2 \end{vmatrix}$ (Taking 2 common from R_1 and applying $R_2 \rightarrow R_2 + R_1$ and $R_3 \rightarrow R_3 + R_1$) Evaluating along R_1 , we get $\Delta = 2[c^2(a^2b^2) - b^2(-a^2c^2)]$ $= 4a^2b^2c^2$ Hence, k = 4

60 **(a)**

The given determinant Δ_1 is obtained by corresponding co-factors of determinant Δ_2 ; hence $\Delta_1 = \Delta_2^2$. Now $\Delta_1 \Delta_2 = \Delta_2^2 \Delta_2 = \Delta_2^3$

61 **(d)**

Since for x = 0, the determinant reduces to the determinant of a skew-symmetric matrix of odd order which is always zero, hence x = 0 is the solution of the given equation

62 **(a)**

Using the sum property, we get

$$\sum_{r=0}^{m} \Delta_r = \begin{vmatrix} \sum_{r=0}^{m} (2r-1) & \sum_{r=0}^{m} {}^{m}C_r & \sum_{r=0}^{m} 1 \\ m^2 - 1 & 2^m & m+1 \\ \sin^2(m^2) & \sin^2(m) & \sin^2(m+1) \end{vmatrix}$$

But $\sum_{r=0}^{m} (2r-1) = \frac{1}{2}(m+1)(2m-1-1) = m^2 - 1,$
 $\sum_{r=0}^{m} {}^{m}C_r = 2^m \text{ and } \sum_{r=0}^{m} 1 = m+1.$ Therefore,
 $\sum_{r=0}^{m} \Delta_r = \begin{vmatrix} m^2 - 1 & 2^m & m+1 \\ m^2 - 1 & 2^m & m+1 \\ \sin^2(m^2) & \sin^2(m) & \sin^2(m+1) \end{vmatrix} = 0$
(c)
 $\Delta = (1+x+x^2) \begin{vmatrix} 1 & 1 & 1 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1+x+x^2)(x+1)^2$
Therefore, $\Delta = 0$ has roots $1, 1, \omega, \omega, \omega^2, \omega^2$

64 **(c)**

63

As a, b, c are in G.P. with common ration r_1 and α, β, γ are in G.P. having common ratio

 $r_2, a \neq 0, \alpha \neq 0, b = ar_1, c = ar_1^2, \beta = ar_2, \gamma = ar_2^2$ Also the system of equation has only zero (trivial) solution

$$\begin{split} \Delta &= \begin{vmatrix} a & \alpha & 1 \\ b & \beta & 1 \\ c & \gamma & 1 \end{vmatrix} \neq 0 \\ \Rightarrow a\alpha \begin{vmatrix} 1 & 1 & 1 \\ r_1 & r_2 & 1 \\ r_1^2 & r_2^2 & 1 \end{vmatrix} \neq 0 \\ \Rightarrow a\alpha(r_1 - 1)(r_2 - 1)(r_1 - r_2) \neq 0 \\ \Rightarrow r_1 \neq 1, r_2 \neq 1 \text{ and } r_1 \neq r_2 \end{split}$$

65 **(d)** The given determinant, on simplification, gives $\Delta_{1} = \begin{vmatrix} a_{1}^{2} & -2a_{1} & 1 & 0 \\ a_{2}^{2} & -2a_{2} & 1 & 0 \\ a_{3}^{2} & -2a_{3} & 1 & 0 \\ a_{4}^{2} & --2a_{4} & 1 & 0 \end{vmatrix} \times \begin{vmatrix} 1 & b_{1} & b_{1}^{2} & 0 \\ 1 & b_{2} & b_{2}^{2} & 0 \\ 1 & b_{3} & b_{3}^{2} & 0 \\ 1 & b_{4} & b_{4}^{2} & 0 \end{vmatrix}$ $= 0 \times 0 = 0$ 66 **(d)** Since $A + B + C = \pi$ and $e^{i\pi} = \cos \pi + \pi$ $i \sin \pi = -1$ $e^{i(B+C)} = e^{i(\pi-A)} = -e^{iA}$ and $e^{-i(B+C)} = -e^{iA}$ By taking e^{iA} , e^{iB} , e^{iC} common from R_1 , R_2 and R_3 , respectively, We have $\Delta = - \begin{vmatrix} e^{iA} & e^{-i(A+C)} & e^{-i(A+B)} \\ e^{-i(B+C)} & e^{iB} & e^{-i(A+B)} \\ e^{-i(B+C)} & e^{-i(A+C)} & e^{iC} \end{vmatrix}$ $= - \begin{vmatrix} e^{iA} & -e^{iB} & -e^{iC} \\ -e^{iA} & e^{iB} & -e^{iC} \\ -e^{iA} & e^{iB} & e^{iC} \end{vmatrix}$ By taking e^{iA} , e^{iB} , e^{iC} common from C_1 , C_2 and C_3 , respectively, We have $\Delta = \begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{vmatrix} = -4$ 67 **(d)** $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy \text{ (given)}$ $\Rightarrow -3i \begin{vmatrix} 6i & 1 & 1 \\ 4 & -1 & -1 \\ 20 & i & i \end{vmatrix} = x + iy$ $\Rightarrow x + iy = 0 + i0$ $\Rightarrow x = y = 0$ 68 **(b)** The given determinant is $\begin{bmatrix} 2^{n+1} - 2^n + p & 2^{n+2} - 2^{n+1} + q & p+r \\ 2^n + p & 2^{n+1} & p+r \\ a^2 + 2^n + p & b^2 + 2^n + 2q & c^2 - r \end{bmatrix}$ (Using $R_1 \rightarrow R_1 - R_3$ and 2q = p + r) $\begin{bmatrix} 2^n(2-1) + p & 2^{n+1}(2-1) + q & p+r \end{bmatrix}$ $\begin{bmatrix} 2^{n} + p & 2^{n+1} + q & p + r \\ a^{2} + 2^{n} + p & b^{2} + 2^{n+1} + 2q & c^{2} - r \end{bmatrix}$ $= \begin{bmatrix} 2^{n} + p & 2^{n+1} + q & p+r \\ 2^{n} + p & 2^{n+1} + q & p+r \\ a^{2} + 2^{n} + p & b^{2} + 2^{n+1} + 2q & c^{2} - r \end{bmatrix} = 0$ ($: R_1 \equiv R_2$ 69 (a) pa qb rc qc ra pb lrb pc qal

 $= pqr(a^{3} + b^{3} + c^{3} - 3abc) - abc(p^{3} + q^{3} + r^{3})$ -3pqr) $= pqr(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$ $-abc(p+q+r)(p^{2}+q^{2}+r^{2}-pq-qr-pr)$ = 070 (d) Since *a*, *b*, *c*, *d*, *e*, *f* are in G.P. and if *r* is the common ratio of the G.P., then b = ar $c = ar^2$ $d = ar^3$ $e = ar^4$ $f = ar^5$ Therefore, given determinant is $\begin{vmatrix} a^2 & a^2 r^6 & x \\ a^2 r^2 & a^2 r^8 & y \\ a^2 r^4 & a^2 r^{10} & z \end{vmatrix}$ $=a^{2}a^{2}r^{6} = \begin{vmatrix} 1 & 1 & x \\ r^{2} & r^{2} & y \\ r^{4} & r^{4} & z \end{vmatrix}$ $= a^4 r^6(0) = 0$ [:: C_1, C_2 , are identical] 71 (a) The given system of equations will have a nontrivial solution if $\begin{vmatrix} \alpha + a & \alpha & \alpha \\ \alpha & \alpha + b & \alpha \\ \alpha & \alpha & \alpha + c \end{vmatrix} = 0$ Operating $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get $\begin{vmatrix} a + a & a & a \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0$ $\Rightarrow \alpha ab + c(\alpha b + ab + a\alpha) = 0$ $\Rightarrow \alpha(bc + ca + ab) + abc = 0$ $\Rightarrow \frac{1}{a} = -\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \quad (\because a, b, c \neq 0)$ 72 (a) $\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ $= (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$ $=\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$ $\Rightarrow a + b + c = 0$ or a = b = cIf a + b + c = 0, we have $\cos\theta + \cos 2\theta + \cos 3\theta = 0$ and $\sin \theta - \theta$ $\sin 2\theta + \sin 3\theta = 0$ $\Rightarrow \cos 2\theta (2\cos\theta + 1) = 0$ and $\sin 2\theta (1 - 1)$ $2\cos\theta = 0$ (i) Which is not possible as $\cos 2\theta = 0$ gives $\sin 2\theta \neq 0$, $\cos \theta \neq 1/2$. And $\cos \theta = -1/2$ gives $\sin 2\theta \neq 0$, $\cos \theta \neq 1/2$. Therefore, Eq. (i) does

not hold simultaneously

$$\therefore a + b + c \neq 0$$

 $\therefore a = b = c$

or $e^{i\theta} = e^{-2i\theta} = e^{3i\theta}$

Which is satisfied only by $e^{i\theta} = 1$ i.e., $\cos \theta = 1, \sin \theta = 0$ so $\theta = 2k\pi, k \in \mathbb{Z}$

73 **(b)**

Taking x^5 common from last row, we get $x^5 \begin{vmatrix} x^n & x^{n+2} & x^{2n} \\ 1 & x^a & a \\ x^n & x^{a+1} & x^{2n} \end{vmatrix} = 0, \forall x \in R$ $\Rightarrow a + 1 = n + 2 \Rightarrow a = n + 1$ (as it will make first and third row is identical)

74 **(a)**

We have,

 $a_{n+1}^2 = a_n a_{n+2}$ $\Rightarrow 2 \log a_{n+1} = \log a_n + \log a_{n+2}$ Similarly, $2 \log a_{n+4} = \log a_{n+3} + \log a_{n+5}$ $2 \log a_{n+7} = \log a_{n+6} + \log a_{n+8}$ Substituting these values in second column of determinant, we get

$$\Delta = \frac{1}{2} \begin{vmatrix} \log a_n & \log a_n + \log a_{n+2} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+3} + \log a_{n+5} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+6} + \log a_{n+8} & \log a_{n+8} \end{vmatrix}$$
$$= \frac{1}{2}(0) = 0 \quad [\text{Using } C_2 \to C_2 - C_1 - C_3]$$

75 **(b)**

Let *a* be the first term and *d* be the common difference of corresponding A.P. Then $\frac{14}{16} = \frac{1}{16} \frac{1}{16} = \frac{1}{16} \frac{1}{16}$

$$\Delta = xyz \begin{vmatrix} 1/x & 1/y & 1/z \\ p & 2q & 3r \\ 1 & 1 & 1 \end{vmatrix}$$

= $xyz \begin{vmatrix} a + (p-1)d & a + (2q-1)d & a + (3r-1)d \\ p & 2q & 3r \\ 1 & 1 & 1 \end{vmatrix}$
Applying $R_1 \to R_1 - aR_3, R_2 \to R_2 - R_3$ and then
taking d common from R_1 , we get
$$\Delta = xyzd \begin{vmatrix} (p-1) & (2q-1) & (3r-1) \\ (p-1) & (2q-1) & (3r-1) \\ 1 & 1 & 1 \end{vmatrix} = 0$$

76 **(d)** We have $y = \sin mx$, therefore $y_1 = m \cos mx$, $y_2 = -m^2 \sin mx$, etc *y*₁ *y*₂ | y $\therefore \Delta = \begin{vmatrix} y_3 & y_4 & y_5 \end{vmatrix}$ $|y_6 \ y_7 \ y_8|$ $\begin{array}{rcl}
\sin mx & m\cos mx \\
-m^3\cos mx & m^4\sin mx
\end{array}$ $-m^2 \sin mx$ $m^5 \cos mx$ $m^8 \sin mx$ $-m^6 \sin mx -m^7 \cos mx$ sin *mx* cos mx $-\sin mx$ $= m^{12} \left| -\cos mx \right|$ $\cos mx \mid = 0$ sin *mx* $|-\sin mx| - \cos mx$ sin mx 77 (d) $|a_1 + pb_1 \quad b_1 + qc_1 \quad c_1 + ra_1|$ $D' = \begin{vmatrix} a_2 + pb_2 & b_2 + qc_2 & c_2 + ra_2 \\ a_3 + pb_3 & b_3 + qc_3 & c_3 + ra_3 \end{vmatrix}$ $= \begin{vmatrix} a_1 & b_1 + qc_1 & c_1 + ra_1 \\ a_2 & b_2 + qc_2 & c_2 + ra_2 \\ a_3 & b_3 + qc_3 & c_3 + ra_3 \end{vmatrix}$ $+ \begin{vmatrix} pb_1 & b_1 + qc_1 & c_1 + ra_1 \\ pb_2 & b_2 + qc_2 & c_2 + ra_2 \\ pb_3 & b_3 + qc_3 & c_3 + ra_3 \end{vmatrix}$ In the first determinant, apply $C_3 \rightarrow C_3 - rC_1$ and then $C_2 \rightarrow C_2 - qC_3$ In second determinant take p common from C_1 and then apply $C_2 \rightarrow C_2 - C_1$. Then take *q* common from C_2 and then apply $C_3 \rightarrow C_3 - C_2$. Finally taking *r* common from C_3 , we have ultimately D' = (1 + pqr)D78 (c) We have,

$$\begin{vmatrix} ka & k^2 + a^2 & 1 \\ kb & k^2 + b^2 & 1 \\ kc & k^2 + c^2 & 1 \end{vmatrix} = \begin{vmatrix} ka & k^2 & 1 \\ kb & k^2 & 1 \\ kc & k^2 & 1 \end{vmatrix} + \begin{vmatrix} ka & a^2 & 1 \\ kb & b^2 & 1 \\ kc & c^2 & 1 \end{vmatrix}$$
$$= 0 + k \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix}$$
$$= k(a - b)(b - c)(c - a)$$

Let first term of G.P. is *A* and common ration is *R*. Then,

$$\begin{aligned} a &= AR^{p-1} \Rightarrow \log a = \log A + (p-1) \log R, \text{etc} \\ \Rightarrow \begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = \begin{vmatrix} \log A + (p-1) \log R & p & 1 \\ \log A + (q-1) \log R & q & 1 \\ \log A + (r-1) \log R & r & 1 \end{vmatrix} \\ = \begin{vmatrix} (p-1) \log R & p & 1 \\ (q-1) \log R & q & 1 \\ (r-1) \log R & r & 1 \end{vmatrix} \quad \begin{bmatrix} C_1 \to C_1 - (\log A)C_3 \end{bmatrix} \\ = \log R \begin{vmatrix} (p-1) & p & 1 \\ (q-1) & q & 1 \\ (r-1) & r & 1 \end{vmatrix} \\ = \log R \begin{vmatrix} p & p & 1 \\ q & q & 1 \\ r & r & 1 \end{vmatrix} \quad (C_1 \to C_1 + C_3) \end{aligned}$$

= 080 (a) Operating $C_1 \rightarrow C_1 + C_2 + C_3$ on the L.H.S. we get $\Delta = \begin{vmatrix} 0 & c - a & a - b \\ 0 & c' - a' & a' - b' \\ 0 & c'' - a'' & a'' - b'' \end{vmatrix} = m \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}$ $\Rightarrow m = 0$ 81 (d) Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$, we get $\Delta = \begin{vmatrix} a & b - y & c - z \\ -x & y & 0 \\ -x & 0 & z \end{vmatrix} = 0$ Expanding along C_3 , we get $(c-z)\begin{vmatrix} -x & y \\ -x & 0 \end{vmatrix} + z \begin{vmatrix} a & b-y \\ -x & y \end{vmatrix} = 0$ $\Rightarrow (c-z)(xy) + z(ay + bx - xy) = 0$ $\Rightarrow cxy - xyz + ayz + bxz - xyz = 0$ $\Rightarrow ayz + bzx + cxy = 2xyz$ $\Rightarrow \frac{a}{r} + \frac{b}{v} + \frac{c}{z} = 2$ 82 **(b)** $\Delta_1 = x(x^2 - ab) - b(ax - ab) + b(a^2 - ax)$ $= x^3 - 3abx + ab^2 + a^2b$ $\frac{d}{dx}(\Delta_1) = 3x^2 - 3ab = 3(x^2 - ab) = 3\Delta_2$ 83 (b) Let $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ Applying $C_2 \to C_2 - \frac{a_{12}}{a_{11}}C_1, C_3 \to C_3 - \frac{a_{13}}{a_{11}}C_1$, we get $D = \begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & \left(a_{22} - \frac{a_{12}}{a_{11}} \times a_{21} \right) & \left(a_{23} - \frac{a_{13}}{a_{11}} \times a_{21} \right) \\ a_{31} & \left(a_{32} - \frac{a_{12}}{a_{11}} \times a_{31} \right) & \left(a_{32} - \frac{a_{13}}{a_{11}} \times a_{31} \right) \end{vmatrix}$ Which has minimum value of -84 (a) The given system of linear equations has a unique solution if 1 1 $1 \ 2 \ 3 \neq 0$ 2 5 i.e., if $\lambda - 8 \neq 0$ or $\lambda = 8$ 85 (C) Consider the triangle with vertices $B(x_1, y_1), C(x_2, y_2)$ and $A(x_3, y_3)$, and AB =c, BC = a and AC = b. Then area of triangle is $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \sqrt{s(s-a)(s-b)(s-c)} \text{ where }$ 2s = a + b + cSquaring and simplifying, we get

 $4\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = (a+b+c)(b+c-a)(c+a-b)(c+$ ba+b-c Hence, k = 486 (c) $\therefore -1 \le x < 0$ $\therefore [x] = -1$ $0 \leq y < 1$ $\therefore [y] = 0$ $1 \leq z < 2$ $\therefore [z] = 1$ Hence, the given determinant is $\begin{vmatrix} -1 & 1 & 1 \\ -1 & 0 & 2 \end{vmatrix} = 1 = [z]$ 87 (a) $\Delta = \begin{vmatrix} p+a & b & c \\ a & q+b & x \\ a & b & r+c \end{vmatrix} = 0$ Applying $R_1 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$, we get $\begin{vmatrix} p+a & b & c \\ -p & q & 0 \\ -q & 0 & r \end{vmatrix} = 0$ $\Rightarrow pqc + [q(p+a) + bp]r = 0$ Dividing by pqr, we obtain $\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = -1$ 88 (c) f(x) $= \begin{vmatrix} 1 - 2\sin^2 x & \sin^2 x \\ \sin^2 x & 1 - 2\sin^2 x \\ 1 - 8\sin^2 x(1 - \sin^2 x) & 1 - \sin^2 x \end{vmatrix}$ $1 - 8 \, si$ 1 1 The required constant term is $f(0) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 1(0-1) = -1$ 89 (b) We have, $\Delta = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = abc - (a + b + c) + 2$ $\therefore \Delta > 0 \Rightarrow abc + 2 > a + b + c$ $\Rightarrow abc + 2 > 3(abc)^{1/3}$ [:: A. M. > G. M. \Rightarrow *a+b+c3>abc13* $\Rightarrow x^3 + 2 > 3x$, where $x = (abc)^{1/3}$ $\Rightarrow x^{3} - 3x + 2 > 0 \Rightarrow (x - 1)^{2}(x + 2) > 0$ $\Rightarrow x + 2 > 0 \Rightarrow x > -2 \Rightarrow (abc)^{1/3} > -2 \Rightarrow abc$ > -8

90 (c)

We observe that the elements in the pre-factor are the cofactor of the corresponding elements of the post-factor. Hence,

 $\begin{vmatrix} \lambda & c & -b \\ -c & \lambda & a \\ \lambda & z & z \end{vmatrix}^{3} = [\lambda(\lambda^{2} + a^{2} + b^{2} + c^{2})]^{3}$ $=(1 + a^2 + b^2 + c^2)^3$ $\Rightarrow \lambda = 1$ Alternative solution: Writing a = 0, b = 0, c = 0 on both sides, we get $\lambda^6 \lambda^3 = 1 \Rightarrow \lambda = 1$ 91 **(b)** Given, $\begin{vmatrix} xp+y & x & y \\ yp+z & y & z \\ 0 & xp+y & yp+z \end{vmatrix} = 0$ Operating $C_1 \to C_1 - pC_2 - C_3$, we get $\begin{vmatrix} 0 & x & y \\ 0 & y & z \\ -(xp^2 + 2py + z) & xp + y & yp + z \end{vmatrix} = 0$ $\Rightarrow (xz - y^2)(xp^2 + 2py + z) = 0$ $\Rightarrow xz - y^2 = 0$ $\Rightarrow v^2 = xz$ Hence, x, y, z are in G.P. 92 (a) We have, $\begin{bmatrix}
x & 1 & 1 \\
1 & x & 1 & \cdots \\
1 & 1 & x & \cdots \\
\dots & \dots & \dots & \dots
\end{bmatrix}$ $= \begin{vmatrix} x & 1 & 1 & \cdots \\ (1-x) & (x-1) & 0 & \cdots \\ (1-x) & 0 & (x-1) & \cdots \\ \cdots & \cdots & \cdots \end{vmatrix}$ [Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1, \dots, R_n \rightarrow R_n$ $R_n - R_1$] $= x(x-1)^{n-1} + |(x-1)^{n-1} + (x-1)^{n-1} + \dots +$ $(x-1)^{n-1}(n-1)$ times [Expanding along R_1] $= x(x-1)^{n-1} + (n-1)(x-1)^{n-1}$ $= (x-1)^{n-1}(x+n-1)$ 93 (d) Operating $C_1 \rightarrow C_1 + C_2 + C_3$, we get $(a+b+c-x) \begin{vmatrix} 1 & c & b \\ 1 & b-x & a \\ 1 & a & c-x \end{vmatrix} = 0$ $\therefore x = a + b + c = 0$ 94 (b,d) Since, given that b $a\alpha + b$ a b b c а $\Delta =$ $b\alpha + c$ $a\alpha + b \quad b\alpha + c$ 0 Applying $R_3 \rightarrow R_3 - (\alpha R_1 + R_2)$, we get $\Delta = \begin{vmatrix} a & b & & a\alpha + b \\ b & c & & b\alpha + c \end{vmatrix}$ $\begin{bmatrix} 0 & 0 & -(a\alpha^2 + 2b\alpha + c) \end{bmatrix}$ $\Rightarrow \Delta = (b^2 - ac)(a\alpha^2 + 2b\alpha + c) = 0$

 $\Rightarrow b^2 = ac \text{ or } a\alpha^2 + 2b\alpha + c = 0$ \Rightarrow *a*, *b*, *c* are in GP or α is the root of the equation $ax^2 + 2bx + c = 0.$ 95 (b,d) Applying $C_1 \rightarrow C_1 - (\cot \phi)C_2$, we get $\begin{vmatrix} 0 & \sin\theta\sin\phi & \cos\theta \\ 0 & \cos\theta\sin\phi & -\sin\theta \\ -\sin\theta\sin\phi & \sin\theta\cos\phi & 0 \end{vmatrix}$ $\Delta = I$ $= -\frac{\sin\theta}{\sin\theta} [-\sin\phi\sin^2\theta - \cos^2\theta\sin\phi]$ [expanding along C_1] $= \sin \theta$ Which is independent of ϕ . Also, $\frac{d\Delta}{d\theta} = \cos\theta \Rightarrow \frac{d\Delta}{d\theta}\Big|_{\theta=\pi/2} = \cos(\pi/2) = 0$ 96 (a,b) Applying $C_3 \to C_3 - xC_2, C_2 \to C_2 - xC_1$, we obtain $\Delta(x) = \begin{vmatrix} 3 & 0 & 2a^2 \\ 3x & 2a^2 & 4a^2x \\ 3x^2 + 2a^2 & 4a^2x & 6a^2x^2 + 2a^2 \end{vmatrix}$ Applying $C_3 \to C_3 - xC_2$, we get $\Delta(x) = 4a^4 \begin{vmatrix} 3 & 0 & 1 \\ 3x & 1 & x \\ 3x^2 + 2a^2 & 2x & x^2 + 2a^2 \end{vmatrix}$ Applying $C_3 \to C_3 - xC_2$, we get Applying $C_1 \rightarrow C_1 - 3C_3$, we get $\Delta(x) = 4a^4 \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & x \\ -4a^2 & 2x & x^2 + 2a^2 \end{vmatrix} = 16a^6$ 97 (d) Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get $\Delta = \begin{vmatrix} \sin A & \sin C & \sin A \\ \sin(B+A)\sin(B-A) & \frac{\sin(A-B)}{\sin A\sin B} & 0 \\ \sin(C+A)\sin(C-A) & \frac{\sin(A-C)}{\sin A\sin C} & 0 \end{vmatrix}$ $\left[\because \cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \sin \beta}\right]$ Expanding along C_3 , we get $\Delta = \frac{\sin(A-B)\sin(A-C)}{\sin A} \left[-\frac{\sin(B+A)}{\sin C} \right]$ $+\frac{\sin(C+A)}{\sin B}$ $=\frac{\sin(A-B)\sin(A-C)}{\sin A}\Big[-\frac{\sin(\pi-C)}{\sin C}\Big]$ $+\frac{\sin(\pi-B)}{\sin B}$ $=\frac{\sin(A-B)\sin(A-C)}{\sin A}\left[-\frac{\sin C}{\sin C}+\frac{\sin B}{\sin B}\right]=0$ 98 (a,b) $\Delta = \frac{1}{a} \begin{vmatrix} a^3 + ax & ab & ac \\ a^2b & b^2 + x & bc \\ a^2c & bc & c^2 + x \end{vmatrix}$ Applying $C_1 \rightarrow C_1 + bC_2 + cC_3$ and taking $a^2 + b^2 + c^2 + x$ common, we get

 $\Delta = \frac{1}{a}(a^{2} + b^{2} + c^{2} + x) \begin{vmatrix} a & ab & ac \\ b & b^{2} + x & bc \\ c & bc & c^{2} + x \end{vmatrix}$ Applying $C_2 \rightarrow C_2 - bC_1$ and $C_3 \rightarrow C_3 - cC_1$ $\Delta = \frac{1}{a}(a^2 + b^2 + c^2 + x) \begin{vmatrix} a & 0 & 0 \\ b & x & 0 \\ c & 0 & y \end{vmatrix}$ $=\frac{1}{a}(a^{2}+b^{2}+c^{2}+x)(ax^{2})$ $= x^{2}(a^{2} + b^{2} + c^{2} + x)$ Thus Δ is divisible by *x* and x^2 99 (a,c) $: f(x) = \begin{vmatrix} n & n+1 & n+2 \\ {}^{n}P_{n} & {}^{n+1}P_{n+1} & {}^{n+2}P_{n+2} \\ {}^{n}C_{n} & {}^{n+1}C_{n+1} & {}^{n+2}C_{n+2} \end{vmatrix}$ $= \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1 \end{vmatrix} \quad (: {}^{n}P_{n} = n!, {}^{n}C_{n} = 1$ Applying $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_1$ Then, $f(x) = \begin{vmatrix} n & 1 & 2 \\ n! & n \cdot n! & (n^2 + 3n + 1)n! \\ 1 & 0 & 0 \end{vmatrix}$ $= \begin{vmatrix} 1 & 2 \\ n \cdot n! & (n^2 + 3n + 1)n! \end{vmatrix} = n! (n^2 + n + 1)$ 100 (d) 4. Multiplying C_1 by a, C_2 by b and C_3 by c, we obtain $\Delta = \frac{1}{abc} \begin{vmatrix} \frac{a}{c} & \frac{b}{c} & -\frac{a+b}{c} \\ -\frac{b+c}{c} & \frac{b}{a} & \frac{c}{a} \\ -\frac{b(b+c)}{c} & \frac{b(a+2b+c)}{ac} & -\frac{b(a+b)}{ac} \end{vmatrix}$ Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we get $\Delta = \frac{1}{abc} \begin{vmatrix} 0 & \frac{b}{c} & -\frac{a+c}{c} \\ 0 & \frac{b}{a} & \frac{c}{a} \\ 0 & \frac{b(a+2b+c)}{a} & -\frac{b(a+b)}{a} \end{vmatrix}$ This shows that Δ is independent of *a*, *b* and *c* Applying $C_1 \rightarrow C_1 - (\cot b)C_2$, we get 5. $\Delta = \begin{vmatrix} 0 & \sin a \sin b & \cos a \\ 0 & \cos a \sin b & -\sin a \\ -\sin a / \sin b & \sin a \cos b & 0 \end{vmatrix}$ $= -\frac{\sin a}{\sin b} [-\sin b \sin^2 a - \cos^2 a \sin b]$ [Expanding along C_1]

 $= \sin a$

6. Taking $1/\sin a \cos b$, $1/\sin a \sin b$, $1/\cos a \cos b$, $1/\sin a \sin b$, $1/\cos a \cos b$, $1/\sin a \sin b$, $1/\cos a \cos b$, $1/\sin a \sin b$, $1/\cos a \cos b$, $1/\sin a \sin b$, $1/\cos a$

$$\Delta = \frac{1}{\sin^2 a \cos a \sin b \cos b} \Delta_1$$
Where $\Delta_2 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -\cot a & -\cot a & \tan a \\ \tan b & -\cot b & 0 \end{vmatrix}$

$$= \begin{vmatrix} 0 & 1 & 1 & 1 \\ 0 & -\cot a & \tan a \\ 1/\sin b \cos b & -\cot b & 0 \end{vmatrix}$$
Applying $C_1 \rightarrow C_1 - C_2$, we get
$$\Delta = \frac{1}{\sin b \cos b} [\tan a + \cot a]$$

$$= \frac{1}{\sin a \cos a \sin b \cos b}$$
7.
$$\begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a \sin B & a \sin C \\ a \sin B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \sin B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \sin B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \sin B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \cos B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \cos B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$

$$= a^2 \begin{vmatrix} \cos B & \cos C \\ \sin B & 1 & \cos A \\ \sin C & \cos A & -\sin B \sin C \\ \sin C & \cos A & -\sin B \sin C \\ \sin C & \cos A & -\sin B \sin C \\ \sin C & \cos A & -\sin B \sin C \\ -\sin C & \cos A & -\sin B \sin C \\ = a^2 [\cos^2 B \cos^2 C - (\cos A - \sin B \sin C)^2]$$

$$= a^2 [\cos^2 B \cos^2 C - (\cos (B + C) + \sin B \sin C)^2]$$

$$= a^2 [\cos^2 B \cos^2 C - \cos^2 B \cos^2 C]$$

$$= 0$$

101 **(a,b,c,d)** Let $a \neq 0$, then on applying $C_1 \rightarrow aC_1$, we get $\Delta = \frac{1}{a} \begin{vmatrix} a^3 + ax^2 & ab & ac \\ a^2b & b^2 + x^2 & bc \\ a^2c & bc & c^2 + x^2 \end{vmatrix}$ Applying $C_1 \rightarrow C_1 + bC_2 + cC_3$

$$\begin{split} \Delta &= \frac{1}{a} \begin{vmatrix} a(a^2 + b^2 + c^2 + x^2) & ab & ac \\ b(a^2 + b^2 + c^2 + x^2) & b^2 + x^2 & bc \\ c(a^2 + b^2 + c^2 + x^2) & bc & c^2 + x^2 \end{vmatrix} \\ \Delta &= \frac{1}{a} (a^2 + b^2 + c^2 + x^2) \begin{vmatrix} a & ab & ac \\ b & b^2 + x^2 & bc \\ c & bc & c^2 + x^2 \end{vmatrix} \\ Applying C_2 &\to C_2 - bC_1, C_3 \to C_3 - cC_1 \\ \Delta &= \frac{1}{a} (a^2 + b^2 + c^2 + x^2) \begin{vmatrix} a & 0 & 0 \\ b & x^2 & 0 \\ c & 0 & x^2 \end{vmatrix} \\ \therefore \Delta = (a^2 + b^2 + c^2 + x^2) x^4 \quad (\because a \neq 0) \\ Now, if a = 0, then \Delta = 0 \\ Also, it can be easily seen that \Delta is divisible by \\ x, x^2, x^3 and x^4. \end{split}$$
102 (a,c)
$$g(x) &= \begin{vmatrix} a^{-x} & e^{\log_e a^{3x}} & x^2 \\ a^{-3x} & e^{\log_e a^{5x}} & 1 \\ a^{-5x} & e^{\log_e a^{5x}} & 1 \\ a^{-5x} & a^{5x} & 1 \end{vmatrix} \\ &= \begin{vmatrix} a^{-x} & a^x & x^2 \\ a^{-3x} & a^{3x} & x^4 \\ a^{-5x} & a^{5x} & 1 \end{vmatrix}$$

$$p(-x) = \begin{vmatrix} a^{-x} & a^x & x^2 \\ a^{-3x} & a^{3x} & x^4 \\ a^{-5x} & a^{5x} & 1 \end{vmatrix}$$
[interchanging 1st and 2nd columns]
$$&= -g(x) \\ \Rightarrow g(x) + g(-x) = 0 \\ \Rightarrow g(x) \text{ is an odd function} \\ \text{Hence, the graph is symmetrical about origin.} \\ Also, g_4(x) \text{ is an odd function [where g_4(x) is fourth derivative of g(x)]. Hence, \\ g_4(x) = -g_4(-x) \\ \Rightarrow g_4(0) = -g_4(0) \end{aligned}$$

$$\Rightarrow g_4(0) = -g_4(0)$$
$$\Rightarrow g_4(0) = 0$$

103 **(a,b)**

By partial fractions, we have

$$g(x) = \frac{f(a)}{(x-a)(a-b)(a-c)} + \frac{f(b)}{(b-a)(x-b)(b-c)} + \frac{f(c)}{(c-a)(c-b)(x-c)}$$
$$\Rightarrow g(x) = \frac{1}{(a-b)(b-c)(c-a)} \times \left[\frac{f(a)(c-b)}{(x-a)} + \frac{f(b)(a-b)}{(x-b)} + \frac{f(c)(b-a)}{(x-c)}\right]$$

$$\Rightarrow g(x) = \begin{vmatrix} 1 & a & f(a)/(x-a) \\ 1 & b & f(b)/(x-b) \\ 1 & c & f(c)/(x-c) \end{vmatrix} \div \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix}$$

$$\Rightarrow \int g(x)dx = \begin{vmatrix} 1 & a & f(a)\log|x-a| \\ 1 & b & f(b)\log|x-b| \\ 1 & c & f(c)\log|x-c| \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} + k$$
and
$$\frac{dg(x)}{dx} = \begin{vmatrix} 1 & a & -f(a)(x-a)^{-2} \\ 1 & b & -f(b)(x-b)^{-2} \\ 1 & c & -f(c)(x-c)^{-2} \end{vmatrix} \div \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a & f(a)(x-a)^{-2} \\ 1 & b & f(b)(x-b)^{-2} \\ 1 & c & f(c)(x-c)^{-2} \end{vmatrix} \div \begin{vmatrix} a^{2} & a & 1 \\ b^{2} & b & 1 \\ c^{2} & c & 1 \end{vmatrix}$$
104 (b,c)
$$\therefore x = \frac{a}{b-c}, y = \frac{b}{c-a}, z = \frac{c}{a-b}$$
or $-a + bx - cx = 0, -ay - b + cy = 0, az - bz - c = 0$
Now, on eliminating $a, b, c,$ we get
$$\begin{vmatrix} -1 & x & -x \\ -y & -1 & y \\ -z & z & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{vmatrix} = 0$$
Also, on applying $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$, we get
$$\begin{vmatrix} 1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1 \end{vmatrix} = 0$$
105 (a,b)
Applying $R_{1} \rightarrow R_{1} + \sin \phi(R_{2}) + \cos \phi(R_{3}),$

$$f(x) = \Delta = \begin{vmatrix} 0 & 0 & \cos 2\phi + 1 \\ \sin \theta & \cos \theta & \sin \phi \\ -\cos \phi & \sin \theta & \cos \phi \end{vmatrix} = (\cos 2\phi + 1)(\sin^{2}\theta + \cos^{2}\theta)$$

$$= (\cos 2\phi + 1)(\sin^{2}\theta + \cos^{2}\theta)$$

$$= (1 + \cos 2\phi)$$
Hence, Δ is independent of θ

106 (b,c)

 $\Rightarrow \frac{1}{a} + \frac{1}{b\omega} + \frac{1}{c\omega^2} = 0, \frac{1}{a} + \frac{1}{b\omega^2} + \frac{1}{c\omega}$ $=0, \frac{1}{a\omega} + \frac{1}{b\omega^2} + \frac{1}{c} = 0$ 110 (a,b,c) Applying $R_3 \rightarrow R_3 - xR_2$ and $R_2 \rightarrow R_2 - xR_1$, we get $f(x) = \begin{vmatrix} a & -1 & 0 \\ 0 & a+x & -1 \\ 0 & 0 & a+x \end{vmatrix} = a(a+x)^2$ Hence. $f(2x) - f(x) = a[(a + 2x)^2 - (a + x)^2]$ = a(a + 2x - a - x)(a + 2x + a)(+x) = ax(2a + 3x)111 (a,b) $\begin{vmatrix} 1 & k & 3 \\ k & 2 & 2 \\ 2 & 3 & 4 \end{vmatrix} = 0$ $\Rightarrow 8 + 4k + 9k - 12 - 4k^2 - 6 = 0$ $\Rightarrow 4k^2 - 13k + 10 = 0$ $\Rightarrow 4k^2 - 8k - 5k + 10 = 0$ $\Rightarrow (2k-5)(k-2) = 0$ $\Rightarrow k = 5/2, 2$ 112 (c,d) Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we get $\Delta = \begin{vmatrix} a+b-x & a & b \\ a+b-x & -x & a \\ a+b-x & b & -x \end{vmatrix}$ $= (a + b - x) \begin{vmatrix} 1 & a & b \\ 1 & -x & a \\ 1 & b & -x \end{vmatrix}$ $= (a + b - x) \begin{vmatrix} 1 & a & b \\ 0 & -x - a & a - b \\ 0 & b - a & -x - b \end{vmatrix}$ [Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$] $= (a + b - x)[(x + a)(x + b) + (a - b)^{2}]$ [expanding along C_1] $= (a + b - x)[x^{2} + (a + b)x + a^{2} + b^{2} - ab]$ 113 (a,b,c) $\begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \end{vmatrix} = \begin{vmatrix} 8 & 2 & 7 \\ 4 & 1 & -2 \\ 4 & 1 & -2 \end{vmatrix} \quad [R_3 \to R_3 - R_2 \text{ and } R_2]$ = 0 $\begin{vmatrix} 1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} 1 & a^3 & abc \\ 1 & b^3 & abc \\ 1 & c^3 & abc \end{vmatrix}$ $[R_1 \rightarrow aR_1, R_2 \rightarrow bR_2, R_3 \rightarrow bR_3]$ $= \frac{abc}{abc} \begin{vmatrix} 1 & a^3 & 1 \\ 1 & b^3 & 1 \\ 1 & c^3 & 1 \end{vmatrix}$ [taking *abc* common from *C*₃] = 0

$$\begin{vmatrix} a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b \end{vmatrix}$$

$$= \begin{vmatrix} a + b & 2a + b & 3a + b \\ a & a & a \\ 2a & 2a & 2a \end{vmatrix}$$

$$[R_{3} \rightarrow R_{3} - R_{2}, R_{2} \rightarrow R_{2} - R_{1}]$$

$$= 0$$

$$\begin{vmatrix} 2 & 43 & 6 \\ 7 & 35 & 4 \\ 0 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2 \end{vmatrix} = [C_{2} \rightarrow C_{2} - 7C_{3}]$$

$$= \begin{vmatrix} 1 & 1 & 6 \\ 0 & 7 & 4 \\ 0 & 3 & 2 \end{vmatrix} = [C_{1} \rightarrow C_{1} - C_{2}]$$

$$= 2$$
114 (a,c)
$$\begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1 + \sin \beta - \cos \beta \end{vmatrix}$$

$$[Applying R_{3} \rightarrow R_{3} - R_{1}(\cos \beta) + R_{2}(\sin \beta)]$$

$$= (1 + \sin \beta - \cos \beta)(\cos^{2} \alpha + \sin^{2} \alpha) = 1 + \sin \beta - \cos \beta \pmod{n}$$

$$isin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1 + \sin \beta - \cos \beta + R_{2}(\sin \beta) = (1 + \sin \beta - \cos \beta)(\cos^{2} \alpha + \sin^{2} \alpha) = 1 + \sin \beta - \cos \beta \pmod{n}$$

$$isin \beta - \cos \beta \pmod{n}$$

$$isin \alpha + i + C_{r} - nC_{r} - nC_{r} + nC_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - nC_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+1}C_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+1}C_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+1}C_{r} - n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+1}C_{r} = n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+1}C_{r} = n^{+1}C_{r} = 0 \quad (i)$$

$$x^{+1}C_{r} - n^{+$$

118 (a,c) $f(n) = \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1 \end{vmatrix}$ $= \begin{vmatrix} n & 1 & 1 \\ n! & nn! & (n+1)(n+1)! \\ 1 & 0 & 0 \end{vmatrix}$ [Applying $C_3 \to C_3 - C_2$ and $C_2 \to C_2 - C_1$] $= (n+1)(n+1)! - nn! = n! [(n+1)^2 - n]$ $= n! (n^2 + n + 1)$ Thus, f(n) is divisible by n! and $n^2 + n + 1$ 119 (a) We are given that 1 + bc + qr = 0 (i) 1 + ca + pr = 0 (ii)

The determinant in the question involves a column consisting the elements *ap*, *bq* and *cr*. So multiplying (i), (ii) and (iii) by *ap*, *bq* and *cr*, respectively, we get

ap + abcp + apqr = 0 (iv) bq + abcq + bpqr = 0 (v) cq + abcr + cpqr = 0 (vi)

1 + ab + pq = 0 (iii)

Since *abc* and *pqr* occur in all the three equations, putting abc = x, pqr = y, we get the system

$$ap + px + ay = 0$$

$$bq + qx + by = 0$$
 (vii)

$$cr + rx + cy = 0$$

System (vii) must have a common solution (i.e., system is consistent). So,

$$\begin{vmatrix} ap & p & a \\ bq & q & b \\ cr & r & c \end{vmatrix} = 0$$
$$\Rightarrow \begin{vmatrix} ap & a & p \\ bq & b & q \\ cr & c & r \end{vmatrix} = 0$$

120 **(b)**
Let
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix} = 0 \Rightarrow \lambda = 3.$$
 Now,
 $\Delta_1 = \begin{vmatrix} 6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda \end{vmatrix}$
 $= \begin{vmatrix} 6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda \end{vmatrix}$
 $\Delta_2 = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & \lambda \end{vmatrix} = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & 3 \end{vmatrix} = 20 - 2\mu$
 $\Delta_3 = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu \end{vmatrix} = \mu - 10$

Clearly, for $\mu = 10$, all of $\Delta_1, \Delta_2, \Delta_3$ are zero

121 (a)

 $\begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix} = 0 (1)$

Then A = B or B = C or C = A, for which any two rows are same.

For (1) to hold it is not necessary that all the three rows are same or A = B = C

122 (d)

$$\therefore \Delta = \begin{vmatrix} 5 & 4 & 3 \\ x51 & y41 & z31 \\ x & y & z \end{vmatrix}$$
$$= \begin{vmatrix} 5 & 4 & 3 \\ 100x + 51 & 100y + 41 & 100z + 31 \\ x & y & z \end{vmatrix}$$
$$= \begin{vmatrix} 5 & 4 & 3 \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix}$$
$$(R_2 = R_2 - 100R_3 - 10R_1)$$

Which is zero provided *x*, *y*, *z* are in AP.

123 (a)

Let
$$f(\theta) = \begin{vmatrix} \cos(\theta + \alpha) & \cos(\theta + \beta) & \cos(\theta + \gamma) \\ \sin(\theta + \alpha) & \sin(\theta + \beta) & \sin(\theta + \gamma) \\ \sin(\beta - \gamma) & \sin(\gamma - \alpha) & \sin(\alpha - \beta) \end{vmatrix}$$

 \therefore
 $f'(\theta) =$

 $\begin{array}{c|c} -\sin(\theta + \alpha) & -\sin(\theta + \beta) & -\sin(\theta + \gamma) \\ \sin(\theta + \alpha) & \sin(\theta + \beta) & \sin(\theta + \gamma) \\ \sin(\beta - \gamma) & \sin(\gamma - \alpha) & \sin(\alpha - \beta) \end{array} +$ $\cos(\theta + \alpha) \cos(\theta + \beta) \cos(\theta + \gamma)$ $\begin{vmatrix} \cos(\theta + \alpha) & \cos(\theta + \beta) & \cos(\theta + \gamma) \\ \sin(\beta - \gamma) & \sin(\gamma - \alpha) & \sin(\alpha - \beta) \end{vmatrix} +$ $|\cos(\theta + \alpha) \cos(\theta + \beta) \cos(\theta + \gamma)|$ $\sin(\theta + \alpha) \quad \sin(\theta + \beta) \quad \sin(\theta + \gamma)$ 0 0 = 0 + 0 + 0 = 0 $\Rightarrow f'(\theta) = 0 \Rightarrow f(\theta) = c$ 124 (d) $\Delta = \begin{vmatrix} a - 1 & a & a + 1 \\ b - 1 & b & b + 1 \\ c - 1 & c & c + 1 \end{vmatrix} = \begin{vmatrix} 0 & a & a + 1 \\ 0 & b & b + 1 \\ 0 & c & c + 1 \end{vmatrix}$ $(C_1 \to C_1 + C_3 - 2C_2)$ $\therefore \Delta = 0$, which is not a natural number. 125 (a) For x = 0, the determinant reduces to the determinant of a skew-symmetric matrix of odd order which is always zero. Hence, x = 0 is the solution of the given equation 126 (a) As the given system of equations has non-trivial solutions, hence $\begin{vmatrix} \lambda & b-a & c-a \\ a-b & \lambda & c-b \\ a-c & b-c & \lambda \end{vmatrix} = 0$

When $\lambda = 0$, then the determinant becomes skewsymmetric of odd order, which is equal to zero. Thus, $\lambda = 0$

127 **(a)**

$$\Delta = \begin{vmatrix} x & y & z \\ p & q & r \\ a & b & c \end{vmatrix} \begin{vmatrix} 0 & m & n \\ -m & 0 & k \\ -n & -k & 0 \end{vmatrix}$$
 where
$$\begin{vmatrix} 0 & m & n \\ -m & 0 & k \\ -n & -k & 0 \end{vmatrix}$$
 is skew symmetric
$$\therefore \Delta = 0$$

128 **(b)** The system of equations $kx + y + z = 1, x + ky + z = k, x + y + kz = k^2$ is inconsistent if $\Delta = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix} = 0 \text{ and one of } \Delta_1, \Delta_2, \Delta_3 \text{ is non-}$ zero where

$$\Delta_{1} = \begin{vmatrix} 1 & 1 & 1 \\ k & k & 1 \\ k^{2} & 1 & k \end{vmatrix}, \Delta_{2} = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & k^{2} & k \end{vmatrix} \Delta_{3}$$
$$= \begin{vmatrix} k & 1 & 1 \\ 1 & k & k \\ 1 & 1 & k^{2} \end{vmatrix}$$

We have, $\Delta = (k + 2)(k - 1)^2$, $\Delta_1 = -(k + 1k-12)$,

$$\Delta_2 = -k(k-1)^2, \Delta_3 = (k+1)^2(k-1)^2$$

The determinant give in statement 2 is $\Delta_1 = 0$, for which k = 1 or k = -1

k = 1 makes all the determinants zero. But for k = -1, all the determinants are not zero

Hence, both statements are true but statement 2 is not correct explanation of statement 1

129 **(d)**

$$\begin{aligned}
&: \frac{d}{dx} f(x)g(x) = f(x) \frac{d}{dx} g(x) + g(x) \frac{d}{dx} f(x) \\
&\Rightarrow \frac{d}{dx} f(x)g(x) \neq \frac{d}{dx} f(x) \frac{d}{dx} g(x) \\
&\text{Given, } \Delta(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix} \\
&= f_1(x)g_2(x) - f_2(x)g_1(x) \\
&: \frac{d}{dx} \{\Delta(x)\} = \{f_1'(x)g_2(x) + g_2'(x)f_1(x)\} \\
&- \{f_2(x)g_1'(x) + g_1(x) f_2'(x)\} \\
&\Delta'(x) = \begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) \\ g_1'(x) & g_2'(x) \end{vmatrix} \\
&\neq \begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1'(x) & g_2'(x) \end{vmatrix} \\
&\text{130 (b)} \\
&\Delta = \Delta_1 \Delta_2 \text{ where } \Delta_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} \text{ and}
\end{aligned}$$

$$\Delta = \Delta_1 \Delta_2 \text{ where } \Delta_1 = \begin{vmatrix} u_2 & u_2 & v_2 \\ u_3 & b_3 & c_3 \end{vmatrix}$$
$$\Delta_2 = \begin{vmatrix} 1 & x^2 & 0 \\ x^2 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Hence, both the statements are true but statement 2 is not correct explanation of statement 1

131 **(a)**

Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots$

$$\therefore f'(x) = 0 + a_1 + 2a_2x + \dots$$
or $f'(0) = a_1$

$$\therefore a_1 = \begin{vmatrix} 21 & 22 & 23 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 31 & 32 & 33 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 41 & 42 & 43 \end{vmatrix}$$

$$= 0 + 0 + 0 = 0$$

132 **(d)**

8. Multiplying C_1 by a, C_2 by b and C_3 by c, we obtain

$$\Delta = \frac{1}{abc} \begin{vmatrix} \frac{a}{c} & \frac{b}{c} & -\frac{a+b}{c} \\ -\frac{b+c}{c} & \frac{b}{a} & \frac{c}{a} \\ -\frac{b(b+c)}{ac} & \frac{b(a+2b+c)}{ac} & -\frac{b(a+b)}{ac} \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we get

$$\Delta = \frac{1}{abc} \begin{vmatrix} 0 & \frac{b}{c} & -\frac{a+b}{c} \\ 0 & \frac{b}{a} & \frac{c}{a} \\ 0 & \frac{b(a+2b+c)}{ac} & -\frac{b(a+b)}{ac} \end{vmatrix}$$

This shows that Δ is independent of a, b and c

9. Applying
$$C_1 \rightarrow C_1 - (\cot b)C_2$$
, we get

$$\Delta = \begin{vmatrix} 0 & \sin a \sin b & \cos a \\ 0 & \cos a \sin b & -\sin a \\ -\sin a / \sin b & \sin a \cos b & 0 \end{vmatrix}$$

 $= -\frac{\sin a}{\sin b} [-\sin b \sin^2 a - \cos^2 a \sin b] \text{ [Expanding along } C_1 \text{]}$

 $= \sin a$

10. Taking $1/\sin a \cos b$, $1/\sin a \sin b$, $1/\cos a \cos b$, $1/\sin c \sin b$, $1/\cos a \cos b$, $1/\cos c \sin b$, $1/\cos a \cos b$, $1/\cos a \sin b$, $1/\cos a$

$$\Delta = \frac{1}{\sin^2 a \cos a \sin b \cos b} \Delta_1$$
Where $\Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ -\cot a & -\cot a & \tan a \\ \tan b & -\cot b & 0 \end{vmatrix}$

$$= \begin{vmatrix} 0 & 1 & 1 \\ 0 & -\cot a & \tan a \\ 1/\sin b \cos b & -\cot b & 0 \end{vmatrix}$$
Applying $C_1 \rightarrow C_1 - C_2$, we get
$$\Delta = \frac{1}{\sin b \cos b} [\tan a + \cot a]$$

$$= \frac{1}{\sin a \cos a \sin b \cos b}$$

11. $\begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix}$

$$= \begin{vmatrix} a^{2} & a \sin B & a \sin C \\ a \sin B & 1 & \cos A \\ a \sin C & \cos A & 1 \end{vmatrix}$$
$$= a^{2} \begin{vmatrix} 1 & \sin B & \sin C \\ \sin B & 1 & \cos A \\ \sin C & \cos A & 1 \end{vmatrix}$$
$$= a^{2} \begin{vmatrix} 10 & 0 \\ \sin B & 1 - \sin^{2} B & \cos A - \sin B \sin C \\ \sin C & \cos A - \sin B & \sin C & 1 - \sin^{2} C \end{vmatrix}$$
$$[Applying C_{2} \rightarrow C_{2} - (\sin B)C_{1} \text{ and } C_{3} \rightarrow C_{3} - (\sin C)C_{1}]$$
$$= a^{2} [\cos^{2} B \cos^{2} C - (\cos A - \sin B \sin C)^{2}]$$
$$= a^{2} [\cos^{2} B \cos^{2} C - (\cos (B + C) + \sin B \sin C)^{2}]$$
$$= a^{2} [\cos^{2} B \cos^{2} C - (\cos^{2} B \cos^{2} C)]$$
$$= 0$$

133 (c) 1. Coefficient of x in f(x) is coefficient of x in $\begin{vmatrix} x & 1 & 1 \\ 1 & x & 2 \\ x^2 & 1 & 0 \end{vmatrix}$

Therefore, coefficient of x is -2

2. Let
$$D = \begin{vmatrix} 1 & 3\cos\theta & 1\\ \sin\theta & 1 & 3\cos\theta \\ 1 & \sin\theta & 1 \end{vmatrix}$$

$$= (3\cos\theta - \sin\theta)^{2}$$

$$\Delta_{\max} = 10$$
3. $f'(x) = 0$

$$\Rightarrow f'(0) = 0$$
4. $a_{0} = \begin{vmatrix} 0 & 2 & 0\\ 1 & 0 & 6\\ 0 & 0 & 1 \end{vmatrix} = -2(1) = -2$
(b)
1. The given determinant is
$$\Delta = \begin{vmatrix} x+2 & x+3 & x+5\\ x+4 & x+6 & x+9\\ x+8 & x+11 & x+15 \end{vmatrix}$$
Applying $R_{2} \rightarrow R_{2} - R_{1}$ and $R_{3} \rightarrow R_{3} - R_{2}$, we have
$$\Delta = \begin{vmatrix} x+2 & x+3 & x+5\\ 2 & 3 & 4\\ 4 & 5 & 6 \end{vmatrix}$$

134

 $= 2 \begin{vmatrix} x & x & x+1 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{vmatrix}$ [Applying $R_1 \to R_1 - R_2$ and $R_3 \to R_3 - R_2$] $= 2 \begin{vmatrix} x & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$ [Applying $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_2$] = -2 [Expanding along R_3] 2. $\begin{vmatrix} 7 & 6 & x^2 - 13 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix}$

Let $x^2 - 13 = t$. Then

 $t^3 - 67t + 126 = 0$

 $\Rightarrow t = -9, 2, 7 \Rightarrow x = \pm 2, \pm \sqrt{20}, \pm \sqrt{15}$

Hence sum of other five roots is 2

3.
$$\Delta = \begin{vmatrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{18} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{vmatrix}$$

Taking $\sqrt{6}$ common from C_1 , we get

 $\Delta = \sqrt{6} \begin{vmatrix} 1 & 2i & 3 + \sqrt{6} \\ \sqrt{2} & \sqrt{3} + 2\sqrt{2}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{3} & \sqrt{2} + 2\sqrt{3}i & 3\sqrt{3} + 2i \end{vmatrix}$

Applying $R_2 \rightarrow R_2 - \sqrt{2}R_1$ and $R_3 \rightarrow R_3\sqrt{3}R_1$, we get

$$\Delta = \sqrt{6} \begin{vmatrix} 1 & 2i & 3 + \sqrt{6} \\ 0 & \sqrt{3} & \sqrt{6i} - 2\sqrt{3} \\ 0 & \sqrt{2} & 2i - 3\sqrt{2} \end{vmatrix}$$
$$= \sqrt{6} \begin{vmatrix} \sqrt{3} & \sqrt{6i} - 2\sqrt{3} \\ \sqrt{2} & 2i - 3\sqrt{2} \end{vmatrix}$$
$$= \sqrt{6} \begin{vmatrix} \sqrt{3} & -2\sqrt{3} \\ \sqrt{2} & -3\sqrt{2} \end{vmatrix} \text{ [Applying } C_2 \to C_2 - \sqrt{2}iC_1]$$
$$= \sqrt{6}(-3\sqrt{6} + 2\sqrt{6})$$

= -6, which is an integer

4. $f(\theta) = \begin{vmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{vmatrix}$

Applying $R_1 \rightarrow R_1 + (\sin \theta)R_3$ and $R_2 \rightarrow R_2 - (\cos \theta)R_3$, we get

$$f(\theta) = \begin{vmatrix} 1 & 0 & -\sin\theta \\ 0 & 1 & \cos\theta \\ \sin\theta & -\cos\theta & 0 \end{vmatrix}$$

135 (c) Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 4 & 2 \\ 3 & -4 & 6 \end{bmatrix}$ Cofactor of $(-1) = -\begin{vmatrix} 0 & 2 \\ 3 & 6 \end{vmatrix} = 6$ Cofactor of $(1) = \begin{vmatrix} 4 & 2 \\ -4 & 6 \end{vmatrix} = 24 + 8 = 32$ Cofactor of $(3) = \begin{vmatrix} -1 & 0 \\ 4 & 2 \end{vmatrix} = -2 - 0 = -2$ Cofactor of $(6) = \begin{vmatrix} 1 & -1 \\ 0 & 4 \end{vmatrix} = 4$

136 (d)

Given, $A = \begin{bmatrix} a & b \\ c & a \end{bmatrix}$, a, b, c $\in \{0, 1, 2, \dots, p-1\}$ If *A* is skew-symmetric matrix, then a = 0, b = -c $\therefore |A| = -b^2.$ Thus, *p* divides |A| only when b = 0Again, if *A* is symmetric matrix, then b = c and $|A| = a^2 - b^2$ Thus, *p* divides |A| if either *p* divides (a - b) or *p* divides (a + b). p divides (a - b), *p* divides (a - b), only when a = b*ie*, $a = b \in \{0, 1, 2, \dots, (p-1)\}$ *ie*, *p* choices *p* divides (a + b). \Rightarrow *p* choices, including *a* = *b* = 0 included in (i) : Total number of choices are (p + p - 1) = 2p - 11 137 (c) $\therefore a + b + c = p, ab + bc + ca = 0$ $\therefore a^{2} + b^{2} + c^{2} = (a + b + c)^{2} - 2(ab + bc + ca)$ $= p^2 - 0 = p^2$ = pIf $\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ $\therefore \Delta^{2} = \begin{vmatrix} bc - a^{2} & ca - b^{2} & ab - c^{2} \\ ca - b^{2} & ab - c^{2} & bc - a^{2} \\ ab - c^{2} & bc - a^{2} & ca - b^{2} \end{vmatrix} = \Delta^{3-1}$ $=\Delta^2 = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2$ $= \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \times \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ $= \begin{vmatrix} a^{2} + b^{2} + c^{2} & ab + bc + ca \\ ab + bc + ca & a^{2} + b^{2} + c^{2} & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & a^{2} + b^{2} + c^{2} \end{vmatrix}$

 $=\sin^2\theta + \cos^2\theta = 1$

$$= \begin{vmatrix} p^2 & 0 & 0 \\ 0 & p^2 & 0 \\ 0 & 0 & p^2 \end{vmatrix} = p^6$$

138 **(c)**

In given determinant applying $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_2$, we get $f(x) = \begin{vmatrix} x + c_1 & a - c_1 & 0 \\ x + b & c_2 - b & a - c_2 \\ x + b & 0 & c_3 - b \end{vmatrix}$ $= x \begin{vmatrix} 1 & a - c_1 & 0 \\ 1 & c_2 - b & a - c_2 \\ 1 & 0 & c_3 - b \end{vmatrix} + \begin{vmatrix} c_1 & a - c_1 & 0 \\ b & c_2 - b & a - c_2 \\ b & 0 & c_3 - b \end{vmatrix}$ So, f(x) is linear. Let f(x) = Px + Q. Then f(-a) = -aP + Q, f(-b) = -bP + QThen, $f(0) = 0 \times P + Q \Rightarrow Q = \frac{bf(-a) - af(-b)}{(b-a)}$ (1) Also, $f(-a) = \begin{vmatrix} c_1 - a & 0 & 0 \\ b - a & c_2 - a & 0 \\ b - a & b - a & c_3 - a \end{vmatrix}$ $= (c_1 - a)(c_1 - a)(c_3 - a)$ Similarly, $f(-b) = (c_1 - b)(c_2 - b)(c_3 - x)$ $g(x) = (c_1 - x)(c_2 - x)(c_3 - x) \Rightarrow g(a) = f(-a)$ and g(b) = f(-b)Now from (1), we get

$$f(0) = \frac{bg(a) - ag(b)}{(b-a)}$$

139 (d)

 $\Delta = \frac{1}{a} \begin{vmatrix} a^3 + ax & ab & ac \\ a^2b & b^2 + x & bc \\ a^2c & bc & c^2 + x \end{vmatrix}$ Applying $C_1 \rightarrow C_1 + bC_2 + cC_3$ and taking $a^2 + b^2 + c^2 + x$ common, we get $\Delta = \frac{1}{a} (a^2 + b^2 + c^2 + x) \begin{vmatrix} a & ab & ac \\ b & b^2 + x & bc \\ c & bc & c^2 + x \end{vmatrix}$ Applying $C_2 \rightarrow C_2 + bC_1$ and $C_3 \rightarrow C_3 + cC_1$, we get $\Delta = \frac{1}{a} (a^2 + b^2 + c^2 + x) \begin{vmatrix} a & 0 & 0 \\ b & x & 0 \\ c & 0 & x \end{vmatrix}$ $= \frac{1}{a} (a^2 + b^2 + c^2 + x) (ax^2)$ $= x^2 (a^2 + b^2 + c^2 + x)$ Thus Δ is divisible by x and x^2 . Also, graph of f(x) is $a^2 + b^2 + c^2 + x = a^2 + b^2 + c^2 + x = a^2 + b^2 + c^2 + a^2 + a^2$

The system of equations $-x + cy + bz = 0 \quad (1)$ $cx - y + az = 0 \quad (2)$ $bx + ay - z = 0 \quad (3)$ Has a non-zero solution if $\Delta = \begin{vmatrix} -1 & c & b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2abc - 1 = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2abc = 1 \quad (4)$ Then clearly the system has infinitely many solutions. From (1) and (2), we have $\frac{x}{ac+b} = \frac{y}{bc+a} = \frac{z}{1-c^2}$ $\therefore \frac{x^2}{(ac+b)^2} = \frac{y^2}{(bc+a)^2} = \frac{z^2}{(1-c^2)^2}$ or $\frac{x^2}{(1-a^2)(1-c^2)} = \frac{y^2}{(1-b^2)(1-c^2)} = \frac{z^2}{(1-c^2)^2}$ [from (4)] or $\frac{x^2}{1-a^2} = \frac{y^2}{1-b^2} = \frac{z^2}{1-c^2}$ (5) From (5), we see that $1 - a^2$, $1 - b^2$, $1 - c^2$ are all positive or all negative. Given that one of *a*, *b*, *c* is proper fraction, so $1 - a^2 > 0, 1 - b^2 > 0, 1 - c^2 > 0$, which gives $a^2 + b^2 + c^2 < 3$ (6) Using (4) and (6), we get 1 < 3 + 2abcor abc > -1 (7) 141 (a) $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix} = 2\lambda + 3 + 2 - 2 - \lambda - 6 = \lambda - 3$ $\Delta_1 = \begin{bmatrix} 6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda \end{bmatrix}$ $= 12\lambda + 3\mu + 20 - 2\mu - 10\lambda - 36$ $= 2\lambda + \mu - 16$ $\Delta_2 = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & \lambda \end{vmatrix} = 10\lambda + 18 + \mu - 10 - 3\mu - 6\lambda$ $=4\lambda - 2\mu + 8$ $\Delta_3 = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu \end{vmatrix} = 2\mu + 10 + 12 - 12 - \mu - 20$ $= \mu - 10$ Thus the system has unique solutions if $\Delta \neq 0$ or $\lambda \neq 3$ and the system has infinite solutions if $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$ or $\lambda = 3$ and $\mu = 10$. System has no solution if $\Delta = 0$ and at least one of $\Delta_1, \Delta_2, \Delta_3$ is non-zero or $\lambda = 3$ and $\mu \neq 10$ 142 (d) $\Delta = \begin{vmatrix} 1+1+1 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\ 1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\ 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4 \end{vmatrix}$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix} \times \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix}$$
[multiplying row
by row]
$$= D^2 \text{ (say)}$$
Now,
$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix}$$
$$= (1 - \alpha)(\alpha - \beta)(\beta - 1)$$
$$= (\beta - \alpha)[\alpha\beta - \alpha - \beta + 1]$$
$$= (\beta - \alpha)[\alpha\beta - \alpha - \beta + 1]$$
$$= (\beta - \alpha)[\alpha\beta - \alpha - \beta + 1]$$
$$= (\beta - \alpha)[\alpha\beta - \alpha - \beta + 1]$$
$$= (\beta - \alpha)[\alpha\beta - \alpha - \beta + 1]$$
$$= \frac{(\beta - \alpha)^2}{a^2}(a + b + c)^2$$
$$= \frac{1}{a^2}(a + b + c)^2 \left[\frac{b^2}{a^2} - 4\frac{c}{a}\right]$$
$$= \frac{1}{a^4}(a + b + c)^2(b^2 - 4ac)$$
If $\Delta < 0$, i.e., $b^2 - 4ac < 0$, then roots are imaginary

If one root is $1 + \sqrt{2}$ and since coefficients are real, the other root is $1 - \sqrt{2}$. Hence the equation is $x^2 - 2x - 1 = 0$. Then the value of Δ is $(1 - 2 - 1)^2 (4 - 4(1)(-1)) = 32$ If $\Delta > 0$, i.e., $b^2 - 4ac > 0$, then roots are real and distinct but nothing can be said about f(1)

143 (a)

Multiplying R_1 , R_1 , R_3 by a, b, c, respectively, and then taking a, b, c common from C_1 , C_2 and C_3 , we get

 $\Delta = \begin{vmatrix} -bc & ab + ac & ac + ab \\ ab + bc & -ac & bc + ab \\ ac + bc & bc + ac & -ab \end{vmatrix}$ Now, using $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, and then taking (ab + bc + ca) common from C_2 and C_3 , we get $\Delta = \begin{vmatrix} -bc & 1 & 1 \\ ab + bc & -1 & 0 \\ ac + bc & 0 & -1 \end{vmatrix} \times (ab + bc + ca)^2$ Now, applying $R_2 \rightarrow R_2 - R_1$, we get $\Delta = \begin{vmatrix} -bc & 1 & 1 \\ ab & 0 & 1 \\ ac + bc & 0 & -1 \end{vmatrix} (ab + bc + ca)^2$ Expanding along C_2 , we get $\Delta = (ab + bc + ca)^2 [ac + bc + ab]$ $= (ab + bc + ca)^3$ $= (r/p)^3 = r^3/p^3$ Now given a, b, c are all positive, then AM. $\geq G.M.$ $\Rightarrow \frac{ab + bc + ac}{3} \geq (ab \times bc \times ac)^{1/3}$

 $\Rightarrow (ab + bc + ac)^3 \ge 27a^2b^2c^2$ $\Rightarrow (ab + bc + ac)^3 \ge 27(s^2/p^2)$ If $\Delta = 27$, then ab + bc + ca = 3, and given that $a^{2} + b^{2} + c^{2} = 3$, from $(a + b + c)^{2} = a^{2} + b^{2} + c^{2}$ $c^{2} + 2(ab + bc + ca),$ we have $a + b + c = \pm 3$ \Rightarrow *a* + *b* + *c* = 3 (since all roots are positive) $\Rightarrow 3p + q = 0$ 144 (d) Let, $Cx^{2}+...$ Putting x = 0, we get $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$ Now differentiating both sides with respect to xand putting x = 0, we get $B = \begin{vmatrix} a & 2b & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 0 & a & 2b \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2b & 0 & a \end{vmatrix} = 0$ Hence coefficient of x is 0. Since f(x) = 0 and f'(0) = 0, x = 0 is a repeating root of the equation f(x) = 0

145 (c) $\begin{vmatrix} x & n & r \\ m & y & r \end{vmatrix} = 0$ Applying $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$, we get $\begin{vmatrix} x - m & n - y & 0 \\ 0 & y - n & r - z \\ m & n & z \end{vmatrix} = 0$ $\Rightarrow (x-m)(y-n)z + (n-y)(r-z)m$ -n(r-z)(x-m) = 0Dividing by (x - m)(y - n)(z - r), we have $\frac{z}{z-r} + \frac{m}{x-m} + \frac{n}{v-n} = 0$ $\Rightarrow \frac{z}{z-r} + \frac{m}{x-m} + \frac{n}{y-n} = 0$ $\Rightarrow \frac{z}{z-r} + \frac{m}{x-m} + 1 + \frac{n}{v-n} + 1 = 2$ $\Rightarrow \frac{z}{z-r} + \frac{x}{x-m} + \frac{y}{y-n} = 2$ $\Rightarrow \frac{z}{z-r} - 1 + \frac{x}{x-m} - 1 + \frac{y}{y-n} - 1 = -1$ $\Rightarrow \frac{m}{r-m} + \frac{n}{v-n} + \frac{r}{z-r} = -1$ Now, A.M. \geq G.M. $\Rightarrow \frac{\frac{z}{z-r} + \frac{x}{x-m} + \frac{y}{y-n}}{2}$ $\geq \left(\frac{z}{(z-r)}\frac{x}{(x-m)}\frac{y}{(v-n)}\right)^{1/3}$ $\Rightarrow \frac{z}{z-r} \frac{x}{x-m} \frac{y}{v-n} \le \frac{8}{27}$ 146 (b) $f'(x) = \begin{vmatrix} 2ax & 2ax - 1 & 2ax + b + 1 \\ b & b + 1 & -1 \\ 2(ax + b) & 2ax + 2b + 1 & 2ax + b \end{vmatrix}$ Applying $C_1 \to C_1 - C_3, C_2 \to C_2 - C_3$ $f'(x) = \begin{vmatrix} -(b+1) & -(b+2) & 2ax + b + 1 \\ (b+1) & (b+2) & -1 \\ b & b+1 & 2ax + b \end{vmatrix}$ Applying $R_1 \to R_1 + R_2$ and $R_3 \to R_3 - R_2$, we get $f'(x) = \begin{vmatrix} 0 & 0 & 2ax + b \\ b+1 & b+2 & -1 \\ -1 & -1 & 2ax + b + 1 \end{vmatrix}$ = (2ac + b)[-b - 1 + b + 2] $\therefore f'(x) = 2ax + b$ $\therefore f(x) = ax^2 + bx + c$ $f(0) = 2 \Rightarrow c = 2$ $f(1) = 1 \Rightarrow a + b + 2 = 1 \Rightarrow a + b = -1$ $f'(5/2) = 0 \Rightarrow 5a + b = 0$ $\Rightarrow a = 1/4, b = -5/4$ Hence, $f(x) = \frac{1}{4}x^2 - \frac{5}{4}x + 2$ Clearly, discriminant (*D*) of the equation f(x) = 0is less than 0. Hence, f(x) = 0 has imaginary roots. Also, f(2) = 1/2. and minimum value of

f(x) is $\frac{\frac{25}{16} - 4\frac{1}{4}(2)}{4\frac{1}{4}} = \frac{7}{16}$ Hence, range of the f(x) is $\left|\frac{7}{16},\infty\right)$ 147 (5) $\begin{array}{ccc} 3\cos\theta & 1 \\ 1 & 3\cos\theta \\ \sin\theta & 1 \end{array}$ 1 $\Delta = |\sin \theta|$ | 1 Applying $R_3 \rightarrow R_3 - R_1$ $=\begin{vmatrix} 1\\\sin\theta \end{vmatrix}$ $3\cos\theta$ $\frac{1}{3\cos\theta}$ $\begin{array}{c|c} \sin\theta & 1\\ 0 & \sin\theta - 3\cos\theta \end{array}$ $= -(\sin\theta - 3\cos\theta)(3\cos\theta - \sin\theta)$ $=(3\cos\theta-\sin\theta)^2$ Now, $-\sqrt{9+1} \le 3\cos\theta - \sin\theta \le \sqrt{9+1}$ $\Rightarrow (3\cos\theta - \sin\theta)^2 \le 10.1$ $\Rightarrow \Delta_{\text{max}} = 10$ 148 (4) $\Delta = (xyz)^n \begin{vmatrix} 1 & x^2 & x^4 \\ 1 & y^2 & y^4 \\ 1 & z^2 & z^4 \end{vmatrix}$ $= (xyz)^n(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)$ Clearly when $n = -4, \Delta = \left(\frac{1}{v^2} - \frac{1}{v^2}\right) \left(\frac{1}{z^2} - \frac{1}{v^2}\right) \left(\frac{1}{z^2} - \frac{1}{z^2}\right)$ 149 (4) $\Delta = \begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix} = 0$ Applying $R_3 \to R_3 - R_2$ and $R_2 \to R_2 - R_1$ $\Delta = \begin{vmatrix} x + 2 & 2x + 3 & 3x + 4 \\ x + 1 & x + 1 & x + 1 \end{vmatrix} = 0$ $\begin{vmatrix} x+2 & 2(x+2) & 6(x+2) \end{vmatrix}$ $\therefore \Delta = (x+1)(x+2) \begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 1 & 1 & 1 \\ 1 & 2 & 6 \end{vmatrix}$ ∴ $\Delta = (x + 1)(x + 2)[(x + 2).4 - (2x + 3).5]$ +(3x+4).1]=0 $\Delta = (x+1)(x+2)(-3x-3) = 0$ or $(x+1)^2(x+2) = 0$ $\therefore x = -1, -1, -2$ 150 (2) System of equations $\Rightarrow \alpha x + y + z = \alpha - 1 \quad (1)$ $x + \alpha y + z = \alpha - 1$ (2) $x + y + \alpha z = \alpha - 1$ (3)Since system has no solution. Therefore, (1) $\Delta = 0$ and (2) $\alpha - 1 \neq 0$ 1 α $\begin{vmatrix} 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} = 0, \alpha \neq 1$ 1 1

$$R_{1} \rightarrow R_{1} - R_{3}, R_{2} \rightarrow R_{2} \rightarrow R_{3}$$

$$\begin{vmatrix} \alpha - 1 & 0 & 1 - \alpha \\ 0 & \alpha - 1 & 1 & \alpha \end{vmatrix} = 0$$

$$\Rightarrow (\alpha - 1)[\alpha(\alpha - 1) - (1 - \alpha)] + (1 - \alpha)[-(\alpha - 1)] = 0$$

$$\Rightarrow (\alpha - 1)[\alpha(\alpha - 1) + (\alpha - 1)] + (\alpha - 1)^{2} = 0$$

$$\Rightarrow (\alpha - 1)^{2}[(\alpha + 1) + 1] = 0$$

$$\Rightarrow \alpha = 1, 1, -2 \Rightarrow \alpha = 1, -2$$
Since system has no solution, $\alpha \neq 1$

$$\therefore \alpha = -2$$
151 (2)
We have $D = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ 5 & 4 & a_{6} \\ a_{7} & a_{8} & a_{9} \end{vmatrix}$
Since $a_{n} = \frac{20}{n}; d = \frac{1}{20}$
Hence, $D = \begin{vmatrix} 20 & 22 & 20 \\ \frac{20}{2} & 20 & \frac{20}{5} \\ \frac{20}{6} & \frac{20}{5} & \frac{20}{6} \\ \frac{20}{7} & \frac{20}{7} & \frac{20}{7} \\ 1 & \frac{7}{8} & \frac{7}{9} \end{vmatrix}$

$$R_{1} \rightarrow R_{1} - R_{2} \text{ and } R_{2} \rightarrow R_{2} - R_{3}$$

$$= \frac{(20)^{3}}{4 \times 7} \begin{vmatrix} 0 & \frac{-3}{10} & \frac{-1}{3} \\ 0 & \frac{-3}{10} & \frac{-1}{3} \\ 0 & \frac{-3}{10} & \frac{-1}{3} \\ \frac{-3}{7} & \frac{7}{9} \\ \frac{7}{7} & \frac{7}{9} \\ \frac{7}{7} & \frac{7}{9} \\ \frac{7}{7} & \frac{7}{9} \\ \frac{7}{1} & \frac{7}{8} & \frac{7}{9} \\ \frac{7}{1} & \frac{7}{1} & \frac{7}{1} \\ \frac{7}{1} & \frac{7}{1} \\ \frac{7}{1} & \frac{7}{1} & \frac{7}{1} \\ \frac{7}{1} \\ \frac{7}{1} & \frac{7}{1} \\ \frac{7}{1} \\ \frac{7}{1} \\ \frac{7}{1}$$

 $\Rightarrow p^2 - 3p + 2 = 0$

 $\Rightarrow p = 1 \text{ or } 2$ Also for these values of p, Δ_2 , $\Delta_3 = 0$ 153 **(3)** Equation $x^3 + ax^2 + bx + c = 0$ has roots α, β, γ $\therefore \alpha + \beta + \gamma = -\alpha$ $\alpha\beta + \beta\gamma + \gamma\alpha = b$ Since the given system of equations has nontrivial solutions, so ια β γ $\begin{vmatrix} \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = 0$ $\Rightarrow \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = 0$ $\Rightarrow (\alpha + \beta + \gamma)[\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha]$ = 0 $\Rightarrow (\alpha + \beta + \gamma) [(\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)]$ $\Rightarrow -a[a^2 - 3b] = 0 \Rightarrow a^2/b = 3$ 154 (2) Using $C_3 \rightarrow C_3 - (C_1 + C_2)$ in D_1 and D_2 , we have $\therefore \frac{D_1}{D_2} = \frac{-2b(ad - bc)}{b(ad - bc)} = -2$ 155 (8) Putting $x = 0, a_0 = 1$ $(1 + ax + bx^2)^4$ $= (1 + ax + bx^2)(1 + ax)$ $(+ bx^{2})(1 + ax + bx^{2})(1 + ax)(1 + ax)($ $+ bx^{2}$) Clearly $a_0 = 1$, $a_1 = \text{coefficient of } x = a + a + a + a$ a = 4a $a_2 = \text{coefficient of } x^2 = 4b + 6a^2$ Now $\Delta = -(a_0^3 + a_1^3 + a_2^3 - 3a_0a_1a_2)$ $\because a_0 + a_1 + a_2 \neq 0$ $\therefore a_0 = a_1 = a_2$ $1 = 4a = 6a^2 + 4b \Rightarrow a = \frac{1}{4}, b = \frac{5}{32}$ 156 (1) $\Delta_{1} = \begin{vmatrix} a_{1}^{2} + 4a_{1}d & a_{1} & d \\ a_{2}^{2} + 4a_{2}d & a_{2} & d \\ a_{3}^{2} + 4a_{3}d & a_{3} & d \end{vmatrix}, [C_{3} \rightarrow C_{3} - C_{2}]$ Where *d* is the common difference of A.P. $= d \begin{vmatrix} a_1^2 & a_1 & 1 \\ a_2^2 & a_2 & 1 \\ a_2^2 & a_2 & 1 \end{vmatrix} + 4d \begin{vmatrix} a_1 & a_1 & d \\ a_2 & a_2 & d \\ a_3 & a_3 & d \end{vmatrix}$ $= d(a_1 - a_2)(a_2 - a_3)(a_3 - a_1) = -2d^4$ Similarly, $\Delta_2 = -2d^4$ 157 (0) $\Delta = \begin{vmatrix} x_1 & y_1 & 0 \\ x_2 & y_2 & 0 \\ x_2 & y_2 & 0 \end{vmatrix} \begin{vmatrix} y_1 & x_1 & 0 \\ y_2 & x_2 & 0 \\ y_2 & x_2 & 0 \end{vmatrix} = 0.0 = 0$ 158 (8)

 $|(\beta + \gamma - \alpha - \delta)^4 \quad (\beta + \gamma - \alpha - \delta)^2$ 1 Let $D = \begin{bmatrix} (\gamma + \alpha - \beta - \delta)^4 & (\gamma + \alpha - \beta - \delta)^2 \\ (\alpha + \beta - \gamma - \delta)^4 & (\alpha + \beta - \gamma - \delta)^2 \end{bmatrix}$ 1 1 Applying $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 - R_3$ $|(\beta + \gamma - \alpha - \delta)^4 - (\alpha + \beta - \gamma - \delta)^4|$ $= \begin{vmatrix} (\gamma + \delta - \beta - \delta)^4 - (\alpha + \beta - \gamma - \delta)^4 \\ (\alpha + \beta - \gamma - \delta)^4 \end{vmatrix}$ $(\beta + \gamma - \alpha - \delta)^2 - (\alpha + \beta - \gamma - \delta)^2$ 0 $(\gamma + \alpha - \beta - \delta)^2 - (\alpha + \beta - \gamma - \delta)^2$ 0 $(\alpha + \beta - \gamma - \delta)^2$ 1 $= 4(\beta - \delta)(\gamma - \alpha) \cdot 4(\alpha - \delta)(\gamma - \beta)$ $|(\beta + \gamma - \alpha - \delta)^2 + (\alpha + \beta - \gamma - \delta)^2|$ $\times \left[(\gamma + \alpha - \beta - \delta)^2 + (\alpha + \beta - \gamma - \delta)^2 \right]$ $(\alpha + \beta - \gamma - \delta)^4$ $(\alpha + \beta -$ Apply $R_1 \rightarrow R_1 - R_2$ $= 16(\beta - \delta)(\gamma - \alpha)(\alpha - \delta) \cdot 4(\gamma - \delta)(\beta - \alpha)$ 0 $(\gamma + \alpha - \beta - \delta)^2 + (\alpha + \beta - \gamma - \delta)^2$ 1 $(\alpha + \beta - \gamma - \delta)^4$ $(\alpha + \beta - \gamma)$ $= -64(\alpha - \beta)(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)(\gamma)$ $-\delta$ 159 (0) $3u^2$ 2u³ $\begin{vmatrix} 3w^2 & 2w^3 & 1 \\ 3w^2 & 2w^3 & 1 \\ 3w^2 & 2w^3 & 1 \end{vmatrix} = 0$ $R_1 \rightarrow R_1 - R_2$ and $R_2 \rightarrow R_2 - R_3$ $\Rightarrow \begin{vmatrix} u^2 - v^2 & u^3 - v^3 & 0 \\ v^2 - w^2 & v^3 - w^3 & 0 \\ w^2 & w^3 & 1 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} u + v & u^2 + v^2 + vu & 0 \\ v + w & v^2 + w^2 + vw & 0 \\ w^2 & w^3 & 1 \end{vmatrix} = 0$ $R_1 \to R_1 - R_2$ $|u - w| (u^2 - w^2) + v(u - w)$ $v^2 + w^2 + vw$ $\begin{vmatrix} 0 \\ 1 \end{vmatrix} = 0$ $\Rightarrow |v+w|$ $|w^2$ 1 u + w + v01 $\Rightarrow \begin{vmatrix} v+w & v^2+w^2+vw & 0\\ w^2 & w^3 & 1 \end{vmatrix} = 0$ $\Rightarrow (v^{2} + w^{2} + vw) - (v + w)[(v + w) + u] = 0$ $\Rightarrow v^{2} + w^{2} + vw - (v + w)^{2} - u(v + w) = 0$ $\Rightarrow uv + vw + wu = 0$ 160 (2) B = 2.2 | n | l | mlc a bl

[Taking 2 common from R_2 and C_2]

 $=2\begin{vmatrix} 2n & l & m \end{vmatrix}$ $|2c \ a \ b|$ $|2c \ a \ b|$ $= 2 \begin{vmatrix} 2f & d \end{vmatrix} e$ |2n l m| $[R_3 \leftrightarrow R_2, \text{ then } R_2 \leftrightarrow R_1]$ a b 2c = 2 |d e 2f| = 2Al m 2n $[C_1 \leftrightarrow C_2 \text{ and then } C_2 \leftrightarrow C_3]$ 161 **(4)** 1 x + yx + y + z $\Delta = x \begin{bmatrix} 2 & 3x + 2y & 4x + 3y + 2z \end{bmatrix}$ $\begin{vmatrix} 3 & 6x + 3y & 10x + 6y + 3z \end{vmatrix}$ $= x^{2} \begin{vmatrix} 1 & 1 & x+y \\ 2 & 3 & 4x+3y \\ 3 & 6 & 10x+6y \end{vmatrix} \begin{vmatrix} C_{3} \to C_{3} - zC_{1} \\ C_{2} \to C_{2} - yC_{1} \end{vmatrix}$ $= x^{3} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{vmatrix} [C_{3} \to C_{3} - yC_{2}]$ 6 10 $= x^3(6 - 8 + 3) = 64$ $= x^3(6 - 8 + 3) = 64$ $\Rightarrow x^3 = 64 \Rightarrow x = 4$

DCAM classes Dynamic Classes for Academic Mastery