

11.DUAL NATURE OF RADIATION AND MATTER

Single Correct Answer Type

 The potential difference applied to an X-ray tube is V. The ratio of the de Broglie wavelength of electron to the minimum wavelength of X-ray is directly proportional to

a) V b)
$$\sqrt{V}$$
 c) $V^{3/2}$ d) $V^{7/2}$

2. Two identical photocathodes receive light of frequencies f_1 and f_2 . If the velocities of the photoelectrons (of mass m) coming out are v_1 and v_2 , respectively, then

a)
$$v_1 - v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]^{1/2}$$
 b) $v_1^2 - v_2^2 = \frac{2n}{m}(f_1 - f_2)$
c) $v_1 + v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]^{1/2}$ d) $v_1^2 + v_2^2 = \frac{2h}{m}(f_1 - f_2)$
3. Light of wavelength λ from a small 0.5 mW He-Ne laser source, used in the school laboratory, shines from a spacecraft of mass 1000 kg. Estimate the time needed for the spacecraft to reach a velocity of 1.0 km s⁻¹ from rest. The momentum *p* of a photon of wavelength λ is given by $p = h/\lambda$, where *h* is Plank's constant a) $(6 \times 10^{18} \text{ b}) 3 \times 10^{17} \text{ c}) 6 \times 10^{17} \text{ d}) 2 \times 10^{15}$
4. The potential difference applied to an *X*-ray tube is increased. As a result, in the emitted radiation a) The intensity increases b) The minimum wavelength increases c) The binding energy of the innermost electron in tungsten is 40 keV to produce characteristic *X*-rays using a tungsten target in an *X*-rays tube the potential difference *V* between the cathode and the anti-cathode should be a) $V < 40 \text{ kV}$ b) $V \le 40 \text{ kV}$ c) $V > 40 \text{ kV}$ d) $V > / < 40 \text{ kV}$
6. If a surface ahs work function of 3.00 eV , the longest wavelength of light which will cause the emission of electrons is a) $4.8 \times 10^{-7} \text{ m}$ b) $5.99 \times 10^{-7} \text{ m}$ c) $4.13 \times 10^{-7} \text{ m}$ d) $6.84 \times 10^{-7} \text{ m}$
7. A particle of mass 'm' is projected from ground with velocity 'u' making angle '0' with the vertical. The de Broglie wavelength of the particle at the highest point is a) ∞ b) $h/mu \sin \theta$ c) $h/mu \cos \theta$ d) h/mu
8. The radius of second orbit of an electron in hydrogen atom is 2.116 Å. The de Broglie wavelength associated with high $\lambda = 480 \text{ nm}$ gives out electrons with maximum velocity $v \text{ m/s}$, the cut off wavelength being 600 nm. The same surface would release electrons with maximum velocity $2v \text{ m/s}$ if it is irradiated by light of wavelength associated with meas must be a subscheded by a light thread of length ℓ . A short pulse of laser falls on the mirror with energy *E*. Then, which of the following statement

Mirror

- a) If the pulse falls normally on the mirror, it deflects by $\theta = 2E/(mc\sqrt{2g\ell})$
- b) If the pulse falls normally on the mirror, it deflects by $\theta = 2E/(mc\sqrt{2g})$
- c) Impulse in thread depends on angle at which the pulse falls on the mirror
- d) None of the above
- 11. A cesium photocell, with a steady potential difference of 60 V across it, is illuminated by a small bright

light placed 1 m away. When the same light is placed 2 m away, the electrons crossing the photocell

- a) Each carry one-quarter of their previous momentum
- b) Each carry one-quarter of their previous energy
- c) Are one-quarter as numerous
- d) Are half as numerous
- 12. Given that a photon of light of wavelength 10,000 Å has an energy equal to 1.23 eV. When light of wavelength 5000 Å and intensity I_0 falls on a photoelectric cell, the saturation current is 0.40×10^{-6} A and the stopping potential is 1.36 V, if the intensity of light is made $4I_0$, then the saturation current will become
 - a) 0.40 × 1 μA
 - b) 0.40 × 2 μA
 - c) $0.40 \times 4 \ \mu A$
 - d) 0.40 × 8 μA
- 13. All electrons ejected from a surface by incident light of wavelength 200 nm can be stopped before travelling 1 m in the direction of a uniform electric field of 4 NC⁻¹. The work function of the surface is a) 4 eV
 b) 6.2 eV
 c) 2 eV
 d) 2.2 eV
- 14. How many photons of a radiation of wavelength λ = 5 × 10⁻⁷ m must fall per second on a blackened plate in order to produce a force of 6.62 × 10⁻⁵ N?
 a) 3 × 10¹⁹
 b) 5 × 10²²
 c) 2 × 10²²
 d) 1.67 × 10¹⁸
- 15. An α-particle and a proton are fired through the same magnetic fired which is perpendicular to their velocity vectors. The α-partcle and the proton move such that radius of curvature of their paths is same. Find the ratio of their de Broglie wavelengths

 a) 2:3
 b) 3:4
 c) 5:7
 d) 1:2
- 16. The threshold frequency for certain metal is v_0 . When light of frequency $2v_0$ is incident on it, the maximum velocity of photoelectrons is $4 \times 10^6 \text{ ms}^{-1}$. If the frequency of incident radiation is increased to $5v_0$, then the maximum velocity of photoelectrons will be a) $4/5 \times 10^6 \text{ ms}^{-1}$ b) $2 \times 10^6 \text{ ms}^{-1}$ c) $8 \times 10^6 \text{ ms}^{-1}$ d) $2 \times 10^7 \text{ ms}^{-1}$
- 17. The human eye is most sensitive to green light of wavelength 505 nm. Experiments have found that when people are kept in a dark room until their eyes adapt to the darkness, a single photon of green light will trigger receptor cells in the rods of the retina. The velocity of typical bacterium of mass 9.5 × 10⁻¹² g, if it had absorbed all energy of photon, is nearly

a)
$$10^{-6} \text{ ms}^{-1}$$
 b) 10^{-8} ms^{-1} c) 10^{-10} ms^{-1} d) 10^{-13} ms^{-1}

18. Electrons traveling at a velocity of $2.4 \times 10^6 \text{ ms}^{-1}$ enter a region of crossed electric and magnetic fileds shown in Figure. If the electric field is 3.0×10^6 Vm and the flux density of the magnetic field is 1.5 T, the electrons upon entering the region of the crossed fields will

- a) Continue to travel undeflected in their original direction
- b) Be deflected upward in the plane of the diagram
- c) Be deflected downward on the plane of the diagram
- d) None of the above
- 19. *X*-rays are produced in *X*-ray tube operating at a given accelerating voltage. The wavelength of the continuous *X*-rays has values from

	a) 0 to ∞	b) λ_{\min} to ∞ , where λ_{\min}	> 0
	c) 0 to $\lambda_{\rm max}$, where $\lambda_{\rm max} < \infty$	d) λ_{\min} to λ_{\max} , where 0	
20.	The energy of a photon is equal to the kinetic energy	of a photon. The energy o	f a the photon is <i>E</i> . Let λ_1 be
	the de-Broglie wavelength of the photon and λ_2 be	the wavelength of the phot	on. The ratio $\frac{\lambda_1}{\lambda_2}$
	proportional to		2
	a) E^0 b) $E^{1/2}$	c) <i>E</i> ⁻¹	d) <i>E</i> ⁻²
21.	The <i>X</i> -ray beam coming from an <i>X</i> -ray tube will be		
	a) Monochromatic		
	b) Having all wavelengths smaller than a certain ma	ximum wavelength	
	c) Having all wavelengths larger than a certain mini	mum wavelength	
	d) Having all wavelengths lying between a minimum	۱ and a maximum wavelen	gth
22.	Representing the stopping potential <i>V</i> along <i>y</i> -axis a	and $(1/\lambda)$ along <i>x</i> -axis for a	a given photocathode, the
	curve is a straight line, the intercept on the <i>y</i> -axis is	=	
	a) $+W/e$ b) $-W/e$	c) –We	d) <i>e/W</i>
23.	Light of wavelength λ strikes a photoelectric surface		
	to be increased to exactly twice its original value, the		•
24	a) $\lambda' < \lambda/2$ b) $\lambda' > \lambda/2$	c) $\lambda > \lambda' > \lambda/2$	d) $\lambda' = \lambda/2$
24.	Five volt of stopping potential is needed for the photo-	toelectrons emitted out of a	a surface of work function
	2.2 eV by the radiation of wavelength a) 1719 Å b) 3444 Å	c) 861 Å	d) 3000 Å
25	The minimum orbital angular momentum of the elec	•	,
23.	a) h b) $h/2$	c) $h/2\pi$	d) h/λ
26	The de Broglie wavelength of a thermal neutron at 9	, ,	, ,
20.	a) $\lambda/2$ b) $\lambda/\sqrt{2}$	c) $\lambda\sqrt{2}$	d) 2λ
27.	Representing the stopping potential V along y-axis a	,	,
	curve is a straight line, the slope of which is equal to		0 · · · · · · · · · · · · · · · · · · ·
	a) <i>e/hc</i> b) <i>hc/e</i>	c) ec/h	d) he/c
28.	Photoelectric work function of a metal is 1 eV. Light	of wavelength $\lambda = 3000 \text{ Å}$	falls on it. The
	photoelectrons come out with velocity		
	a) 10 ms ⁻¹ b) 10 ³ ms ⁻¹	c) 10 ⁴ ms ⁻¹	d) 10 ⁶ ms ⁻¹
29.	The work function of a metal is W and λ is the wave	length of the incident radia	tion. There is no emission
	of photoelectrons when		
		c) $\lambda < hc/W$	d) $\lambda \leq hc/W$
30.	When a metallic surface is illuminated by a light of f		
	energy 0.5 eV is emitted. When the same surface is i		10^{14} Hz,
	photoelectron of maximum energy 2 eV is emitted.		
21	a) 0.5 eV b) 2.85 eV The frequency and the intensity of a beam of light fa	c) 2.5 eV	d) 3.5 eV
31.	increased by a factor of two. This will	ling on the surface of a ph	
	a) Increase the maximum kinetic energy, the photoe	lectrons, as well as photoe	lectric current by a factor of
	2		lectric current by a factor of
	b) Increase the maximum kinetic energy of the phot	oelectron and would increa	ase the photoelectric
	current by a factor of 2		
	c) Increase the maximum kinetic energy of the phot	oelectrons by a factor of 2 a	and will have no effect on
	the magnitude of the photoelectric current produ	-	
	d) Not produce any effect on the kinetic energy of th	e emitted electrons but wi	ll increase the photoelectric
	current by a factor of 2		
32.	Light from a hydrogen discharge tube is incident on	-	
	of the cathode surface is 4.2 eV. In other to reduce the	a photocurrent to zero th	a voltage of the anode

of the cathode surface is 4.2 eV. In other to reduce the photocurrent to zero, the voltage of the anode relative to the cathode must be made

33.				μm. Assuming it to be 25% yellow light it emits per second	
	is	8	, i i i i i i i i i i i i i i i i i i i		
	a) 62×10^{20}	b) 3 × 10 ¹⁹	c) 1.5×10^{20}	d) 6×10^{18}	
34.	wavelength 5000 Å		hotoelectric cell, the satura	o 1.23 eV. When light of tion current is 0.40×10^{-6} A and ne same potential, the emitted	
	-	e KE equal to 1.36 eV			
	b) All have the aver	age KE equal to (1.36/2) eV	I		
	-	imum KE equal to 1.36 eV			
	-	mum KE equal to 1.36 eV			
35.				etic energies from zero to 2.6 eV.	
		ergy of the incident photon			
	a) 1.6 eV	b) From 1.6 eV to 6.	,	d) More than 6.8 eV	
36.			e incident wavelength is λ . T	o increase the KE of the electron	
		wavelength must be			
0.7	a) 2λ	b) $\lambda/2$,	d) $(hc\lambda)/(E\lambda + hc)$	
37.			-	al surface. Photoelectrons are	
				r to distance $d/2$, the rate and	
	a) $2n$ and $2E$	bhotoelecton become nearly b) 4 <i>n</i> and 4 <i>E</i>	c) 4 <i>n</i> and <i>E</i>	d) <i>n</i> and 4 <i>E</i>	
38	,	0.6 μm from a sodium lam		2	
50.		-		elength 0.04 µm from a mercury	
				ectron volts] of the photocell	
	a) 0.75 eV	b) 1.5 eV	c) 3 eV	d) 2.5 eV	
39.	What is the energy	of a proton possessing wav	elength 0.4 Å?		
	a) 0.51 eV	b) 1.51 eV	c) 10.51 eV	d) 100.51 eV	
40.	Ultraviolet light of v	vavelength 300 nm and inte	ensity 1.0 Wm ⁻² falls on the	e surface of a photosensitive	
	=	cent of the incident photon			
	-	tted per second from an are		-	
	a) $9.61 \times 10^{14} \text{ s}^{-1}$		c) $1.51 \times 10^{12} \text{ s}^{-1}$		
41.	plate B , $\lambda_A = 2\lambda_B$. T following is true?	he maximum KE of the pho	toelectrons are K_A and K_B ,	λ_A falls on plate <i>A</i> and λ_B falls on respectively. Which one of the	
		b) $K_A = 2K_B$			
42.	=			work function of sodium is 2.46	
		n, mark out the correct stat			
	a) The maximum kinetic energy of the ejected photoelectrons is 1.68 eV				
	b) The cut-off wavelength for sodium is 505 nm				
	c) The minimum photon energy of incident light for photoelectric effect to take place is 2.46 eV				
43	d) All of the above The ratio of momenta of an electron and an α -particle which are accelerated from rest by a potential				
45.	The ratio of momenta of an electron and an α -particle which are accelerated from rest by a potential difference of 100 V is				
	a) 1		c) $\sqrt{m_e/m_\alpha}$	d) $\sqrt{m/2m}$	
1 .1	-	•		• • • • • • • • • • • • • • • • • • • •	
тт.	Upto what potential V can a zinc ball (work function 3.74 eV) removed from other bodies be charged by irradiating it with light of $\lambda = 200$ nm?				
	a) 2.5 V	b) 1.8 V	c) 2.2 V	d) 3 V	
	-		-	-	

c) -17.8 V d) +9.4 V

a) –4.2 V

b) -9.4 V

45.	If λ_0 stands for mid-wave nearest to	elength in the visible region	, the de Broglie wavelength	n for 100 V electrons is
	a) λ ₀ /5	b) λ ₀ /50	c) $\lambda_0 / 500$	d) $\lambda_0 / 5000$
46.	The de Broglie waveleng	th of neutrons in thermal e	quilibrium is (Given $m_n = 1$	1.6×10^{-27} kg)
	a) 30.8/√ <i>T</i> Å	b) 3.08/√ <i>T</i> Å		d) 0.0308/√ <i>T</i> Å
47.	The kinetic energy of a pa	article is equal to the energ	y of a photon. The particle	moves at 5% of the speed of
	light. The ratio of the pho	ton wavelength to the de B	Broglie wavelength of the pa	article is [No need to use
	relative formula for the p	article]		-
	a) 40	b) 4	c) 2	d) 80
48.	The shortest wavelength	of X-rays emitted from an	X-ray tube depends on the	
	a) Current in the tube		b) Voltage applied to the	tube
	c) Nature of gas in the tu	be	d) Atomic number of targ	get material
49.	A material particle with a	rest mass m_0 is moving w	ith a velocity of light <i>c</i> . The	n, the wavelength of the de
	Broglie wave associated	with it is		
	a) $(h/m_0 c)$	b) Zero	c) ∞	d) $(m_0 c/h)$
50.	Work function of nickel is	s 5.01 eV. When ultraviolet	radiation of wavelength 20)0 Å is incident on it,
			elocity of emitted electrons	
	a) $3 \times 10^8 \text{ ms}^{-1}$		c) $10.36 \times 10^5 \text{ ms}^{-1}$	-
51.	•		0 nm. The material is irradi	
	-		the emitted photoelectric is	
	a) 2 eV	b) 1 eV	c) 0.5 eV	d) None of these
52.	_		placed at a distance ℓ . The s	
			s given off as light, the num	ber of photons entering the
	sensor if the wavelength	0		
-			c) $N = P\lambda d^2 t / 4hc\ell^2$	
53.			tes a sphere with ideal miri	
	sphere is $R = 5.0$ cm. Fro	om the standpoint of photor	n theory, find the force that	light exerts on the sphere
	$\left(\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
	✓ ←			
	a) 0.8 μN	b) 0.2 μN	c) 0.5 μN	d) 1.2 μN
54.			atom as a consequence of	the emission of photon. The
	KE gained by helium ator			
	a) 0.05 eV	b) 1.05 eV	c) 2.05 eV	d) 3.05 eV
55.		-		th a radiation having a set of
			um and same energy. The r	ate at which photons fall on
	the ball is <i>n</i> . The linear ac		$(1) = h / (2) \setminus (1)$	
FC	a) $m\lambda/nh$	b) $nh/m\lambda$	c) $nh/(2\pi)(m\lambda)$	d) $2pm\lambda/nh$
56.	•	•		naximum kinetic energy of
		-		irface, a (negative) stopping
	-	e applied to the collector c	athode to reduce the photo	electric current to zero.
	Then, the ratio h/e is a) 6.6 × 10 ⁻¹⁵ Js C ⁻¹	b) 4.12×10^{-15} to c^{-1}	c) 6.6×10^{-34} Js C ⁻¹	d) 4.12×10^{-34} is c^{-1}
57				
57.			$L = 11$ is λ . Find the atom	ic number for an atom that
	emits K_{α} radiation with v a) Z = 6	b) $Z = 4$	c) Z =11	d) Z = 44
ςρ	,		c) Z = 11 naximum velocity of electro	,
50.		ted with ultraviolet radiation	=	
	a) $4.4 \times 10^5 \text{ ms}^{-1}$	b) $8.8 \times 10^7 \text{ ms}^{-1}$	c) $8.8 \times 10^5 \text{ ms}^{-1}$	d) $4.4 \times 10^7 \text{ ms}^{-1}$

- 59. The kinetic energy of most energetic electrons emitted from a metallic surface is doubled when the wavelength λ of the incident radiation is changed from 400 nm to 310 nm. The work function of the metal is
 - a) 0.9 eV b) 1.7 eV c) 2.2 eV d) 3.1 eV

60. The KE of the photoelectrons is *E* when the incident wavelength is $\lambda/2$. The KE becomes 2*E* when the incident wavelength is $\lambda/3$. The work function of the metal is a) hc/λ b) $2hc/\lambda$ c) $3hc/\lambda$ d) $hc/3\lambda$

61. Which curve shows the relationship between the energy E and the wavelength λ of a photon of electromagnetic radiation?

62. A particle of mass *M* at rest decays into two masses m_1 and m_2 with non-zero velocities. The ratio λ_1/λ_2 of de Broglie wavelengths of the particles is

a)
$$m_2/m_1$$
 b) m_1/m_2 c) $\sqrt{m_1}/\sqrt{m_2}$ d) 1:1

63. An image of the Sun is formed by a lens, of focal length of 30 cm, on the metal surface of a photoelectric cell and a photoelectric current *I* is produced. The lens forming the image is then replaced by another of the same diameter but of focal length 15 cm. the photoelectric current in this case is

a)
$$\frac{I}{2}$$
 b) *I* c) 2*I* d) 4*I*

64. Which one of the following statement is wronge in the context of X-rays generated from X-ray tube? a) Wavelength of characteristic X-rays decreases when the atomic number of the target increases

- b) Cut-off wavelength of the continuous X-rays depends on the atomic number of the target
- c) Intensity of the characteristic X-rays depends on the electrical power given to the X-ray tube
- d) Cut-off wavelength of the continuous X-rays depends on the energy of the electrons in X-ray tube
- 65. When a centimeter thick surface is illuminated with light of wavelength λ , the stopping potential is *V*. When the same surface is illuminated by light of wavelength 2λ , the stopping potential is V/3. Threshold wavelength for the metallic surface is

a)
$$4\lambda/3$$
 b) 4λ c) 6λ d) $8\lambda/3$

66. An electron beam accelerated from rest through a potential difference of 5000 V in vacuum is allowed to impinge on a surface normally. The incident current is 50 µA and if the electrons come to rest on striking the surface the force on it is

c) 1.6×10^{-8} N a) 1.1924×10^{-8} N b) 2.1×10^{-8} N 67. A proton when accelerated through a potential difference of V volt has a wavelength λ associated with it.

- An α -particle in order to have the same λ must be accelerated through a potential difference of a) V volt d) (*V*/8) volt b) 4V volt c) 2V volt 68. In above question the energy of the characteristic *X*-rays given out is
- a) Less than 40 keV b) More than 40 *keV* c) Equal to 40 *keV* d) \geq 40 keV 69. The frequency of incident light falling on a photosensitive metal plate is doubled, the KE of the emitted

photoelectrons is a) Double the earlier value b) Unchanged

c) More than doubled d) Less than doubled

70. The wavelength of *K*_a *X*-rays produced by an *X*-ray tube is 0.76 Å. The atomic number of the anode material of the tube is

a) 20 b) 60 c) 40 d) 80 71. What is the wavelength of a photon of energy 1eV?

a) 12.4×10^3 Å b) 2.4×10^3 Å c) 0.4×10^2 Å

72. An electron is accelerated through a potential difference of *V* volt. If has a wavelength λ associated with it.

d) 1.6×10^{-6} N

d) 1000 Å

Through what potential difference an electron must be accelerated so that its de Broglie wavelength is the same as that of a proton? Take mass of proton to be 1837 times larger than the mass of electron b) 1837 V volt c) V/1837 volt d) $\sqrt{1837}$ V volt a) V volt

- 73. An electron and a photon posses the same de Broglie wavelength. If E_e and E_{ph} are, respectively, if the velocity of electron is 25% of the velocity of photon, then E_e/E_{ph} equals
 - a) 1:2 b) 1:4 c) 1:8 d) 1:16
- 74. Lights of two different frequencies whose photons have energies 1 and 2.5 eV, respectively, successively illuminate a metal whose work function is 0.5 eV. The ratio of the maximum speeds of the emitted electrons will be
 - a) 1:5 b) 1:4 c) 1:2 d) 1:1
- 75. A point source causes photoelectric effect from a small metal place. Which of the curves in Figure may represent the saturation photo-current as a function of the distance between the source and the metal?

b) B c) C d) D 76. Light of intensity *I* is incident perpendicularly on a perfectly reflecting plate of area *A* kept in a gravity-free space. If the photons strike the plate symmetrically and initially the spring was at its natural length, find the maximum compression in the springs

c) 3*Ia*/*Kc*

d) 4*Ia*/3*Kc*

77. In a series of photoelectric emission experiments on a certain metal surface, possible relationships between the following quantities were investigated: threshold frequency f_0 , frequency of incident light f, light intensity P, photocurrent I, maximum kinetic energy of photoelectrons T_{max}. Two of these quantities, when plotted as a graph as a graph of *y* agianst *x*, give a straight line through the origin Which of the following correctly identifies x and y with the photoelectric quantities?

78. In the experiment on photoelectric effect, the graph between $E_{K(max)}$ and v is found to be a straight line as shown in Figure

The threshold frequency and the Planck's constant according to this graph are

- a) $3.33 \times 10^{18} \text{ s}^{-1}$, $6 \times 10^{-34} \text{ J} \text{s}$ b) $6 \times 10^{18} \text{ s}^{-1}$, $6 \times 10^{-34} \text{ J} - \text{s}$
- c) $2.66 \times 10^{18} \text{ s}^{-1}$, $4 \times 10^{-34} \text{ J} \text{s}$ d) $4 \times 10^{18} \text{ s}^{-1}$, $3 \times 10^{-34} \text{ J} \text{s}$
- 79. Which of the following graphs correctly represents the variation of particle momentum with associated de Broglie wavelength?

80. If a photocell is illuminated with a radiation of 1240 Å, then stopping potential is found to be 8 V. The work function of the emitter and the threshold wavelength are a) 1 eV, 5200 Å b) 2 eV, 6200 Å c) 3 eV, 7200 Å d) 4 eV, 4200 Å 81. When a certain metallic surface is illuminated with monochromatic light of wavelength λ , the stopping potential for photoelectric current is 3V₀ and when same surface is illuminated with light of wavelength 2λ , the same stopping potential is V_0 . The threshold wavelength of this surface for photoelectric effect is a) 6λ b) $4\lambda/3$ c) 4λ d) 8λ 82. A photosensitive material is at 9 m to the left of the origin and the source of light is at 7 m to the right of the origin along *x*-axis. The photosensitive material and the source of light start from rest and move, respectively, with $8\hat{t}$ ms⁻¹ and $4\hat{t}$ ms⁻¹. The ratio of intensities at t = 0 to t = 3 as received by the photosensitive material is a) 16:1 b) 1:16 c) 2:7 d) 7:2 83. 10^{-3} W of 5000 Å light is directed on a photoelectric cell. If the current in the cell is 0.16 μ A, the percentage of incident photons which produce photoelectrons, is b) 0.04% a) 40% c) 20% d) 10% 84. The K_a X-ray emission line of tungsten occurs at $\lambda = 0.021 nm$. The energy difference between K and L levels in this atom is about c) 59 KeV a) 0.51 *MeV* b) 1.2 *MeV* d) 13.6 eV 85. In a photocell, with excitation wavelength λ , the faster electron has speed v. If the excitation wavelength is changed to $3\lambda/4$, the speed of the fastest electron will be b) $v(4/3)^{1/2}$ a) $v(3/4)^{1/2}$ d) Greater than $v(4/3)^{1/2}$ c) Less than $v(4/3)^{1/2}$ 86. The work function of a substance is 4.0 *eV*. The longest wavelength of light that can cause photoelectron emission from this substance is approximately a) 540 nm b) 400 nm c) 310 nm d) 220 nm 87. An electron is accelerated through a potential difference of 200 V. If e/m for the electron be 1.6×10^{11} coulomb kg⁻¹, then the velocity acquired by the electron will be a) $8 \times 10^6 \text{ ms}^{-1}$ b) $8 \times 10^{5} \text{ ms}^{-1}$ c) $5.9 \times 10^6 \text{ ms}^{-1}$ d) $5.9 \times 10^5 \text{ ms}^{-1}$ 88. Silver has a work function of 4.7 eV. When ultraviolet light of wavelength 100 mm is incident upon it, a potential of 7.7 V is required to stop the photoelectrons from reaching the collector plate. How much potential will be required to stop the photoelectrons when light of wavelength 200 mm is incident upon silver? a) 1.5 V b) 3.85 V c) 2.35 V d) 15.4 V 89. Given that a photon of light of wavelength 10,000 Å has an energy equal to 1.23 eV. When light of wavelength 5000 Å and intensity I_0 falls on a photoelectric cell, the saturation current is 0.40×10^{-6} A and the stopping potential is 1.36 V; then the work function is a) 0.43 eV b) 1.10 eV c) 1.36 eV d) 2.47 eV 90. If the short wavelength limit of the continuous spectrum coming out of a Coolidge tube is 10 Å, then the de Broglie wavelength of the electrons reaching the target metal in the Coolidge tube is approximately

91.	a) 0.3 Å If stopping potentials cor	b) 3 Å	c) 30 Å s 4000 Å and 4500 Å are 1	d) 10 Å 3 V and 0.9 V, respectively,
, 1,	then the work function o		5 1000 Manu 1500 Marc 1.	s v and 0.9 v, respectively,
	a) 0.3 eV	b) 1.3 eV	c) 2.3 eV	d) 5 eV
92.	wavelength 5000 Å and i	ght of wavelength 10, 000 Å intensity I ₀ falls on a photoe 1.36 V, if the wavelength is	electric cell, the saturation	current is 0.40×10^{-6} A and
93.			· · ·	of 100 V. After this, their de-
	Broglie wavelengths are	λ_lpha and λ_p respectively. The	e ratio $\frac{p}{\lambda_{\alpha}}$, to the nearest int	eger, is
	a) 3	b) 4	c) 2	d) 4.5
94.		n posses the same de Brogli		
		photon while <i>v</i> and <i>c</i> are the		-
05	a) v/c	b) v/2c	c) v/3c	d) <i>v</i> /4 <i>c</i>
95.	-	ate sodium and copper surf d. The stopping potential is		ments and stopping
	a) Equal in both cases	b) Greater for sodium	,	d) Infinite in both cases
96.				$ imes 10^{-18}$ W to the retina. The
		econd falling on the eye is r		ΝF
07	a) 5×10^9	b) 5000 ensity $I = 0.20 \text{ W cm}^{-2}$ falls	c) 50	d) 5
97.		idence is 45°. In terms of co		
	a) 1.2 N cm ^{-2}		c) 2.6 N cm ^{-2}	d) 0.5 N cm ⁻²
98.	,	f electrons emitted from a r	-	-
	velocity if the frequency	of incident light is increase	d by a factor of 4?	
	a) 2 <i>v</i>	b) > $2v$	c) < 2 <i>v</i>	d) Between $2v$ and $4v$
99.	The work functions for the	ungsten and sodium are 4.5	6 eV and 2.3 eV, respectivel	y. If the threshold
		is 5460 Å, the value of λ fo		0
	a) 5893 Å	b) 10683 Å	c) 2791 Å	d) 528 Å
100	a) 5893 Å . In an experiment on the Which graph best repres		c) 2791 Å cuated photocell with a pur minimum potential differe	re metal cathode is used.
	a) 5893 Å . In an experiment on the Which graph best represt current from flowing, where $y = f$	b) 10683 Å photoelectric effect, an evac ents the variation of <i>V</i> , the	c) 2791 Å cuated photocell with a pur minimum potential differe incident light, is varied? c) $\int_{O}^{Y} \int_{O}^{f} f$	re metal cathode is used. nce needed to prevent d) $\int_{O}^{Y} \int_{O} \int_{O} \int_{O} f$

- are illuminated with appropriate radiations so as to cause photoemission. Then
- a) The threshold frequency for sodium will be less than that for aluminium
- b) The threshold frequency of sodium will be more than that of aluminium
- c) Both sodium and aluminium will have same threshold frequency
- d) None of the above
- 102. With respect to Electromagnetic Theory of Light, the photoelectric effect is best explained by statement

- a) Light waves carry energy and when light is incident on the metallic surface, the energy absorbed by the metal may somehow concentrate on individual electrons and reappear as their kinetic energy when ejected
- b) Particles of light (photons) collide with the metal and the electrons take this energy and may eject
- c) When light waves fall on a metallic surface, the stability of atoms is disturbed and the electrons come out to make the system stable
- d) None of the above
- 103. In a photoelectric effect, electrons are emitted
 - a) With a maximum velocity proportional to the frequency of the incident radiation
 - b) At a rate that is independent of the intensity of the incident radiation
 - c) Only if the frequency of the incident radiation is above a certain threshold value
 - d) Only if the temperature of the emitter is high
- 104. A metal surface is illuminated by a light of given intensity and frequency to cause photoemission. If the intensity of illumination is reduced to one-fourth of its original value, then the maximum KE of emitted photoelectrons will become
 - a) (1/16)th of original value

- b) Unchanged
- c) Twice the original value d) Four times the original value
- 105. The figure shows variation of photocurrent with anode potential for a photo-sensitive surface for three different radiations. Let I_a , I_b and I_c be the intensities and v_a , v_b and v_c be the frequencies for the curves a, b and c respectively. Then

a) $v_a = v_b and I_a \neq I_b$ b) $v_a = v_c$ and $I_a = I_c$ c) $v_a = v_b$ and $I_a = I_b$ d) $v_b = v_c$ and $I_b = I_c$ 106. The work function of a metallic surface is 5.01 eV. The photoelectrons are emitted when light of wavelength 2000 Å falls on it. The potential difference applied to stop the fastest photoelectrons is $[h = 4.14 \times 10^{-15} \text{ eVs}]$

107. Out of a photon and an electron, the equation E = pc, is valid for

a) Both
b) Neither
c) Photon only
d) Electron only
108. In a photoelectric emission, electrons are ejected from metals *X* and *Y* by light of frequency *f*. The potential difference *V* required to stop the electrons is measured for various frequencies. If *Y* has a greater work function than *X*, which graph illustrates the expected results?

109. In the previous question, if the intensity of light is made $4I_0$, then the stopping potential will becomea) 1.36 × 1 Vb) 1.36 × 2 Vc) 1.36 × 3 Vd) 1.36 × 4 V110. An electron and a photon, each has a wavelength of 1.2 Å. What is the ratio of their energies?a) 1:10b) 1: 10^2 c) 1: 10^3 d) 1: 10^4 111. How many photons are emitted per second by a 5 mW laser source operating at 632.8 nm?a) 1.6×10^{16} b) 1.6×10^{13} c) 1.6×10^{10} d) 1.6×10^3

112. The energy of a photon is equal to the kinetic energy of a proton. The energy of photon is *E*. Let λ_1 be the

de Broglie wavelength of the proton and λ_2 be the wavelength of the photon. Then, λ_1/λ_2 is proportional to

- a) E^0 b) $E^{1/2}$ c) E^{-1} d) E^{-2}
- 113. Find the ratio of de Broglie wavelength of a proton and an α -particle which have been accelerated through same potential difference

d) 2:1

a)
$$2\sqrt{2}$$
: 1 b) 3:2 c) $3\sqrt{2}$: 1

114. Let *p* and *E* denote the linear momentum and energy, respectively, of a photon. If the wavelength is decreased

a) Both p and E increase	b) <i>p</i> increases and <i>E</i> decreases
c) <i>p</i> decreases and <i>E</i> increases	d) Both <i>p</i> and <i>E</i> decrease

115. In a photoelectric cell, the wavelength of incident light is changed from 4000 Å to 3600 Å. The change in stopping potential will be

116. A nozzle throws a stream of gas against a wall with a velocity *v* much larger than the thermal agitation of the molecules. The wall deflects the molecules without changing the magnitude of their velocity. Also, assume that the force exerted on the wall by the molecules is perpendicular to the wall. (This is not strictly true for a rough wall). Find the force exerted on the wall

a) $Anmv^2 \cos^2 \theta$ b) $2Anmv^2 \cos^2 \theta$ c) $2Anmv^2 \sin^2 \theta$ d) $Anmv^2 \cos \theta$ 117. If 5% of the energy supplied to a bulb is irradiated as visible light, how many quanta are emitted per second by a 100 W lamp? Assume wavelength of visible light as 5.6×10^{-5} cm a) 1.4×10^{19} b) 3×10^3 c) 1.4×10^{-19} d) 3×10^4

118. A particle of mass 3m at rest decays into two particles of masses m and 2m having non-zero velocities. The ratio of the de Broglie wavelengths of the particles (λ_1/λ_2) is a) 1/2 b) 1/4 c) 2 d) None of these

- 119. What is the de Broglie wavelength of the wave associated with an electron that has been accelerated through a potential difference of 50.0 V?
- a) 2.7×10^{-10} b) 1.74×10^{-10} c) 3.6×10^{-9} d) 4.9×10^{-11} 120. The eye can detect 5×10^4 photons (m²s)⁻¹ of green light ($\lambda = 5000$ Å), while ear can detect 10^{-13} W m⁻². As a power detector, which is more sensitive and by what factor?
 - a) Eye is more sensitive and by a factor of 5.00
 - b) Ear is more sensitive by a factor of 5.00
 - c) Both are equally sensitive
 - d) Eye is more sensitive by a factor of 10^{-1}
- 121. A 60 W bulb is placed at a distance of 4 m from you. The bulb is emitting light of wavelength 600 nm uniformly in all directions. In 0.1 s, how many photons enter your eye if the pupil of the eye is having a diameter of 2 mm? [Take hc = 1240 eV-nm]

a)
$$2.84 \times 10^{12}$$
 b) 2.84×10^{11} c) 9.37×10^{11} d) 6.48×10^{11}

122. A photon has same wavelength as the de Broglie wavelength of electrons. Given C = speed of light, v = speed of electron. Which of the following relation is correct? [Here E_e = kinetic energy of electron, E_{ph} = energy of photon, P_e =mometum of electron and P_{ph} =momentum of photon]

a)
$$E_e/E_{ph} = 2C/v$$
 b) $E_e/E_{ph} = v/2C$ c) $P_e/P_{ph} = 2C/v$ d) $P_e/P_{ph} = C/v$
123. In the previous question, the work function is
a) 0.212 eV b) 0.313 eV c) 0.414 eV d) 0.515 eV

124. A particle of mass 10^{-31} kg is moving with a velocity equal to 10^5 ms⁻¹. The wavelength of the particle is equal to

a)

0 b)
$$6.6 \times 10^{-8}$$
 m c) 0.66 m d) 1.5×10^{7} m

125. A photoelectric cell is connected to a source of variable potential difference, connected across it and the photoelectric current resulting (μA) is plotted against the applied potential difference (V). The graph in the broken line represents one for a given frequency and intensity of the incident radiation. If the frequency is increased and the intensity is reduced, which of the following graphs of unbroken line represents the new situation?

a) A

126. Two electrons are moving with same speed v. One electron enters a region of uniform electric filed while the other enters a region of uniform magnetic field, then after some time de Broglie wavelengths of two are λ_1 and λ_2 , respectively. Now,

c) C

a)
$$\lambda_1 = \lambda_2$$

c)
$$\lambda_1 < \lambda_2$$

- b) $\lambda_1 > \lambda_2$
- d) λ_1 can be greater than or less than l_2

d) D

- 127. The photoelectric threshold of a certain metal is 3000 Å. If the radiation of 2000 Å is incident on the metal b) Positrons will be emitted a) Electrons will be emitted
 - c) Protons will be emitted

- d) Electrons will not be emitted
- 128. Photoelectric effect experiments are performed using three different metal plates *p*,*q* and *r* having work functions $\phi_p = 2.0 \text{ eV}$, $\phi_q = 2.5 \text{ eV}$ and $\phi_r 3.0 \text{ eV}$, respectively

A light beam containing wavelengths of 550 nm, 450 nm and 350 nm with equal intensities illuminates each of the plates. The correct *I*-*V* graph for the experiment is

129. Two identical non-relativistic particles A and B move at right angles to each other, processing de Broglie wavelength λ_1 and λ_2 , respectively. The de Broglie wavelength of each particle in their centre of mass frame of reference is

a)
$$\lambda_1 + \lambda_2$$
 b) $2\lambda_1\lambda_2 / \left(\sqrt{\lambda_1^2 + \lambda_2^2}\right)$ c) $\lambda_1\lambda_2 / (\sqrt{|\lambda_1^2 + \lambda_2^2|})$ d) $(\lambda_1 + \lambda_2)/2$

- 130. If the intensity of radiation incident on a photocell be increased four times, then number of photoelectrons and energy of photoelectrons emitted respectively become
 - a) Four times, doubled

b) Doubled, remains unchanged

c) Remains unchanged, doubled

- d) For times, remains unchanged
- 131. Threshold frequency for a certain metal is v_0 . When light of frequency $2v_0$ is incident on it, the maximum velocity of photoelectrons is 4×10^8 cms⁻¹. If frequency of incident radiation is increased to $5v_0$, then the maximum velocity of photoelectrons, in cm s^{-1} , will be 8(

a)
$$(4/5) \times 10^8$$
 b) 2×10^8 c) 8×10^8 d) 20×10^8

- 132. For the structural analysis of crystals, X-rays are used because
 - a) X-rays have wavelength of the order of interatomic spacing
 - b) X-rays are highly penetrating radiations

- c) Wavelength of *X*-rays is of the order of nuclear size
- d) X-rays are coherent radiations
- 133. If λ_1 and λ_2 denote the wavelengths of de Broglie waves for electrons in the first and second Bohr orbits in a hydrogen atom, then λ_1/λ_2 is equal to
 - a) 2/1 b) 1/2 c) 1/4 d) 4/1
- 134. Electrons with de-Broglie wavelength λ fall on the target in an X-ray tube. The cut-off wavelength of the emitted X-rays is

a)
$$\lambda_0 = \frac{2mc\lambda^2}{h}$$
 b) $\lambda_0 = \frac{2h}{mc}$ c) $\lambda_0 = \frac{2m^2c^2\lambda^2}{h^2}$ d) $\lambda_0 = \lambda$

135. Figure shows the plot of the stopping potential versus the frequency of the light used in an experiment on photoelectric effect. The ratio h/e is

a) 10^{-15} V s⁻¹⁵ V s b) 2×10^{-15} V s c) 3×10^{-15} V s d) 4.14×10^{-15} V s 136. An electron of mass m_e and a proton of mass m_p are accelerated through the same potential difference. The ratio of the de Broglie wavelength associated with an electron to that associated with proton is

a) 1
b)
$$m_{\rm p}/m_{\rm e}$$
 c) $m_{\rm e}/m_{\rm p}$ d) $\sqrt{m_{p}/m_{e}}$

137. The resolving power of an electron microscope operated at 16 kV is *R*. The resolving power of the electron microscope when operated at 4 kV is

138. The light sensitive compound on most photographic films is silver bromide AgBr. A film is exposed when the light energy absorbed dissociates this molecule into its atoms. The energy of dissociates of AgBr is 10⁵ J mol⁻¹. For a photon that is just able to dissociate a molecule of AgBr, the photon energy is

a) 1.04 eV
b) 2.08 eV
c) 3.12 eV
d) 4.16 eV

139. A metal surface in an evacuated tube is illuminated with monochromatic light causing the emission of photoelectrons which are collected at an adjacent electrode. For a given intensity of light, the way in which the photocurrent *I* depends in the potential difference *V* between the electrodes is shown by approximate graph in Figure

If the experiment were repeated with light of twice the intensity but the same wavelength, which of the graphs below would best represent the new relation between *I* and *V*? (In these graphs, the result of the original experiment is indicated by a broken line)

Multiple Correct Answers Type

140. A particle of mass M at rest decays into two particles of masses m_1 and m_2 having non-zero velocities. The ratio of the de Broglie wavelengths of the particles λ_1/λ_2 is b) m_2/m_1

a) m_1/m_2

c) 1.0

d) $\sqrt{m_2} / \sqrt{m_1}$

141. The graph between $1/\lambda$ and stopping potential (*V*) of three metals having work functions ϕ_1, ϕ_2 and ϕ_3 in an experiment of photo-electric effect is plotted as shown in the figure. Which of the following statement(s) is/are correct? [Here λ is the wavelength of the incident ray]

a) Ratio of work functions $\phi_1 : \phi_2 : \phi_3 = 1 : 2 : 4$

b) Ratio of work functions $\phi_1 : \phi_2 : \phi_3 = 4 : 2 : 1$

- c) $tan \theta$ is directly proportional to hc/e, where h Plank's constant and c is the speed of light
- d) The violet colour light can eject photoelectrons from metals 2 and 3
- 142. A collimated beam of light of flux density 3 k Wm⁻² is incident normally on a 100 mm² completely absorbing screen. If P is the pressure exerted on the screen and Δp is the momentum transferred to the screen during a 1000 s interval, then

b) $P = 10^{-4} \text{ Nm}^{-2}$ c) $\Delta p = 10^{-4} \text{ Kgms}^{-1}$ d) $\Delta p = 10^{-5} \text{ Kgms}^{-1}$ a) $P = 10^{-3} \text{ Nm}^{-2}$

143. When a point light source of power W emitting monochromatic light of wavelength λ is kept at a distance *a* from a photo-sensitive surface of work function ϕ and area *S*, we will have

a) Number of photons striking the surface per unit time as $W \lambda S/4 \pi h c a^2$

- b) The maximum energy of the emitted photoelectrons as $(1/\lambda)(hc \lambda\phi)$
- c) The stopping potential needed to stop the most energetic emitted photoelectrons as $(e/\lambda)(hc \lambda\phi)$
- d) Photo-emission only if λ lies in the range $0 \le \lambda \le (hc/\phi)$
- 144. Threshold wavelength of certain metal is λ_0 . A radiation of wavelength $\lambda < \lambda_0$ is incident on the plate. Then, choose the correct statement from the following
 - a) Initially, electrons will come out from the plate
 - b) The ejected electrons experience retarding force due to development of positive charges on the plate
 - c) After some time, ejection of electrons stops
 - d) None of the above
- 145. When photons of energy 4.25 eV strike the surface of metal *A*, the ejected photoelectrons have maximum kinetic energy T_A and de Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal *B* by photons of energy 4.70 eV is $T_B = (T_A - 1.50)$ eV. If the de Broglie wavelength of these photoelectrons is $\lambda_B = 2\lambda_A$, then

a) The work function of A is 2.25 eV

c)
$$T_A = 2.00 \text{ eV}$$

b) The work function of *B* is 4.20 ev

$$T_A = 2.00 \text{ eV}$$

- d) $T_B = 2.75 \text{ eV}$
- 146. Electric conduction takes place in a discharge tube due to movement of

b) Negative ions a) Positive ions

c) Electrons

d) Photons

- 147. A point source of light is taken away from the experimental setup of photoelectric effect. For this situation, mark out the correct statement(s)
 - a) Saturation photocurrent decreases
 - b) Saturation photocurrent increases
 - c) Stopping potential remains the same
 - d) Stopping potential increases

148. In a photoelectric experiment, the wavelength of the incident light is decreased from 6000 Å and 4000 Å.

While the intensity of radiations remains the same

a) The cut-off potential will decrease

- b) The cut-off potential will increase
- c) The photoelectric current will increase
- d) The kinetic energy of the emitted electrons will increase

149. In Thomson's experiment, if the velocity of electron is greater than the ratio of electric field (E) and magnetic field (ie, v > E/B), then

- a) The electron will reach the undeflected spot
- b) The electron will not reach the undeflected spot
- c) The electron will move to a spot above the undeflected position
- d) The electron will move to a spot below the undeflected position
- 150. When a monochromatic point source of light is at a distance of 0.2 m from a photoelectric cell, the cut-off voltage and the saturation current are, respectively, 0.6 V and 18.0 mA. If the same source is placed 0.6 m away from the photoelectric cell, then
 - a) The stopping potential will be 0.2 V
 - b) The stopping potential will be 0.6 V
 - c) The saturation current will be 6.0 mA
 - d) The saturation current will be 2.0 mA

151. The shortest wavelength of *X*-rays emitted from an *X*-ray tube depends on

a) The current in the tube

c) The nature of the gas in tube

b) The voltage applied to the tube

d) The atomic number of the target material

152. An *X*-ray tube is operating at 50 kV and 20 mA. The target material of the tube has a mass of 1.0 kg and specific heat 495 kg^{-1} °C⁻¹. One percent of the supplied electric power is converted into *X*-rays and the entire remaining energy goes into heating the target. Then

- a) A suitable target material must have a high melting temperature
- b) A suitable target material must have low thermal conductivity
- c) The average trate of rise of temperature of target would be $2^{\circ}C/s$
- d) The minimum wavelength of the *X*-rays emitted is about $0.25 \times 10^{-10} m$
- 153. When photons of energy hc/λ fall on a metal surface, photoelectrons are ejected from it. If the work function of the surface is hv_0 , then
 - a) Maximum kinetic energy of the electron is $[(hc/\lambda) hv_0]$
 - b) Maximum kinetic energy of the photoelectron is equal to (hc/λ)
 - c) Minimum KE of the photoelectron is zero
 - d) Minimum kinetic energy of the photoelectron is equal to hc/λ

154. The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV fall on it is 4 eV. The stopping potential in volts is

a) 2

c) 6

d) 10

155. Photoelectric effect supports the quantum nature of light because

b) 4

- a) There is a minimum frequency of light below which no photoelectrons are emitted
- b) The maximum KE of photoelectrons depends only on the frequency of light and not on its intensity
- c) Even when the metal surface is faintly illuminated by light of wavelength less than the threshold wavelength, the photoelectrons leave the surface immediately
- d) Electric charge of photoelectrons is quantized
- 156. The maximum kinetic energy of the emitted photoelectrons against frequency v of incident radiation is plotted as shown in Figure. This graph help us in determining the following physical quantities

max v - $E_{\rm K}$

- a) Work function of the cathode-metal
- b) Threshold frequency

c) Planck's constant

d) Change on an electron

157. The maximum KE of photoelectrons ejected from a photometer when it is irradiated of wavelength 400 nm is 1 eV. If the threshold energy of the surface is 0.9 eV

- a) The maximum KE of photoelectrons when it is irradiated with 500 nm photons will be 0.42 eV
- b) The maximum KE in case (a) will be 1.425 eV
- c) The longest wavelength which will eject the photoelectrons from the surface is nearly 650 nm
- d) Maximum KE will increases if the intensity of radiation is increased
- 158. The potential difference applied to a *X*-ray tube is increased. As a result, in the emitted radiation
 - a) The intensity wavelength increases
 - b) The minimum wavelength increases
 - c) The intensity remains unchanged
 - d) The minimum wavelength decreases
- 159. When barium is irradiated by a light of $\lambda = 4000$ Å, all the photoelectrons emitted are bent in a circle of radius 50 cm by a magnetic field of flux density 5.26×10^{-6} T acting perpendicular to plane of emission of photoelectrons. Then,
 - a) The kinetic energy of fastest photoelectron is 0.6 eV
 - b) Work function of the metal is 2.5 eV
 - c) The maximum velocity of photoelectron is $0.46 \times 10^{6} \text{ ms}^{-1}$
 - d) The stopping potential for photoelectric effect is 0.6 V $\,$
- 160. When photons of energy 4.25 eV strike the surface of a metal, the ejected photoelectrons have a maximum kinetic energy E_A eV and de-Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal *B* by photons of energy 4.70 eV is $E_B = (E_A 1.50)$ eV. If the de-Broglie wavelength of these photoelectrons is $\lambda_B = 2\lambda_A$, then
 - a) The work function of *A* is 2.25 eV b) The work function of *B* is 4.20 eV

c)
$$E_4 = 2.0 \text{ eV}$$

- 161. Photoelectric effect supports quantum nature of light because
 - a) There is a minimum frequency of light below which no photoelectrons are emitted
 - b) The maximum kinetic energy of photoelectrons depends only on the frequency of light and not on its intensity

d) $E_B = 2.75 \text{ eV}$

- c) Even when the metal surface is faintly illuminated, the photoelectrons leave the surface immediately
- d) Electric charge of the photoelectrons is quantized
- 162. The threshold wavelength for photoelectric emission from a material is 5200 Å. Photoelectrons will be emitted when this material is illuminated with monochromatic radiation from a
- a) 50 W infrared lamp b) 1 W infrared lamp c) 50 W ultraviolet lamp d) 1 W ultraviolet lamp 163. A laser used to weld detached retinas emits light with a wavelength of 652 nm in pulses that are 20.0 ms in
 - duration. The average power during each is 0.6 W. Then,
 - a) The energy of each photon is 3.048×10^{-19} J
 - b) The energy content in each pulse is 12 mJ
 - c) The number of photons in each pulse is nearly 4×10^{15}
 - d) The energy of each photon is nearly 1.9 eV
- 164. In a photoelectric effect experiment, the maximum kinetic energy of the ejected photoelectrons is measured for various wavelengths of the incident light. Figure shows a graph of this maximum kinetic energy K_{max} as a function of the wavelength λ of the light falling on the surface of the metal. Which of the following statement/s is/are correct?

- a) Threshold frequency for the metal is 1.2×10^{15} m
- b) Work function of the metal is 4.968 eV
- c) Maximum kinetic energy of photoelectrons corresponding to light of wavelength 100 nm is nearly 7.4 eV
- d) Photoelectric effect takes place with red light
- 165. When photon of energy 4.0 eV strikes the surface of a metal *A*, the ejected photoelectrons have maximum kinetic energy T_A eV and de-Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal *B* by photon of energy 4.50 eV is $T_B = (T_A 150)$ eV. If the de-Broglie wavelength of these photoelectrons $\lambda_B = 2\lambda_A$, then
 - a) The work function of *A* is 1.50 eV b) The work function of *B* is 4.0 eV

c)
$$T_A = 2.00 \text{ eV}$$

- d) All of the above
- 166. When photon of energy 4.25 *eV* strike the surface of a metal *A*, the ejected photoelectrons have maximum kinetic energy $T_A eV$ and de-Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal *B* by photon of energy 4.70 *eV* is $T_B = (T_A 1.50)eV$. If the de-Broglie wavelength of these photoelectrons is $\lambda_B = 2\lambda_A$, then
 - a) The work function of A is 2.25 eVb) The work function of B is 4.20 eVc) $T_A = 2.00 eV$ d) $T_B = 2.75 eV$
- 167. The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately
 - a) 540 nm b) 400 nm c) 310 nm d) 220 nm

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 168 to 167. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

168

- **Statement 1:** In photoelectric effect, on increasing the intensity of light, both the number of electrons emitted and kinetic energy of each of them get increased but photoelectric current remains unchanged
- **Statement 2:** The photoelectric current depends only on wavelength of light

169

Statement 1: *X*-rays are used for studying the structure of crystals

Statement 2: The distance between the atoms of crystals is of the order of wavelength of *X*-rays

170

- Statement 1:
 Through light of a single frequency (monochromatic light) is incident on a metal, the energies of emitted photoelectrons are different
- **Statement 2:** The energy of electrons just after they absorb photons incident on the metal surface may be lost in collision with other atoms in the metal before the electron is ejected out of the metal

171

- Statement 1: The relative velocity of two photons travelling in opposite direction is the velocity of light.
 Statement 2: The rest mess of photon is zero.
- **Statement 2:** The rest mass of photon is zero.

172

- **Statement 1:** Soft and hard *X*-rays differ in frequency as well as velocity
- **Statement 2:** The penetrating power of hard *X*-rays is more than the penetrating power of soft *X*-rays

173

- Statement 1: The photoelectrons produced by a monochromatic light beam incident on a metal surface have a spread in their kinetic energies
 Statement 2: The photoelectrons produced by a monochromatic light beam incident on a metal surface have a spread in their kinetic energies
- **Statement 2:** The work function of the metal varies as a function of depth from the surface

174

Statement 1:	If the frequency of the light incident on a metal surface is doubled, the maximum kinetic
	energy of emitted photoelectron also gets doubled.
Statement 2:	Kinetic energy of practice is proportional to frequency.

175

Statement 1:	If the accelerating potential in an X-ray tube is increased, the
	wavelengths of the characteristic X-rays do not change.
Statement 2:	When an electron beam strikes the target in an X-ray tube, part of the kinetic energy is
	converted into X-ray energy.

176

- **Statement 1:** *X*-rays cannot be diffracted by means of grating
- Statement 2: Xrays do not obey Bragg's law

177

- **Statement 1:** A tube light emits white light.
- **Statement 2:** Emission of light in a tube takes place on a very high temperature.

178

	Statement 1:	X-rays travel with the speed of light
	Statement 2:	X-rays are electromagnetic rays
179		
	Statement 1:	The energy (<i>E</i>) and momentum (<i>p</i>) of a photon are related by $p = E/c$
	Statement 2:	The photon behaves like a particle
180		
	Statement 1:	When the speed of an electron increases its specific charge decreases
	Statement 2:	Specific charge is the ratio of the charge to mass
181		
	Statement 1:	Photoelectric effect demonstrates the particle nature of light.
	Statement 2:	The number of photoelectrons is proportional to the frequency of light.
182		
	Statement 1:	An electron is not deflected on passing through certain region of space. This observation
	Statement 2:	confirms that there is no magnetic field in that region The deflection of electron depend on angle between velocity of electron and direction of
183		magnetic field
100	6 1 1 4	In whate emissive cell in out goe is used
	Statement 1:	IN DNOLOEMISSIVE CEILINECL 98S IS USED
		In photoemissive cell inert gas is used Inert gas in the photoemissive cell gives greater current
184		Inert gas in the photoemissive cell gives greater current
184	Statement 2:	Inert gas in the photoemissive cell gives greater current
184	Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom.
	Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current
184 185	Statement 2: Statement 1: Statement 2:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson.
	Statement 2: Statement 1: Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect
185	Statement 2: Statement 1: Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson.
	Statement 2: Statement 1: Statement 2: Statement 1: Statement 2:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect <i>X</i> -rays are electromagnetic waves
185	Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect <i>X</i> -rays are electromagnetic waves In the process of photoelectric emission, all the emitted photoelectrons have the same kinetic energy
185 186	Statement 2: Statement 1: Statement 2: Statement 1: Statement 2:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect <i>X</i> -rays are electromagnetic waves In the process of photoelectric emission, all the emitted photoelectrons have the same
185	Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect <i>X</i> -rays are electromagnetic waves In the process of photoelectric emission, all the emitted photoelectrons have the same kinetic energy The photon transfer its whole energy to the electron of the atom in photoelectric effect
185 186	Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	Inert gas in the photoemissive cell gives greater current Photoelectric effect can take place only with an electron bound in the atom. Electron is a fermion whereas proton is a boson. The phenomenon of <i>X</i> -ray production is basically inverse of photoelectric effect <i>X</i> -rays are electromagnetic waves In the process of photoelectric emission, all the emitted photoelectrons have the same kinetic energy

100		
	Statement 1:	Electric conduction in gases is possible at normal pressure
	Statement 2:	The electric conduction in gases depends only upon the potential difference between the
189		electrodes
	Statement 1:	An electric field is preferred in comparison to magnetic field for detecting the electron
	Statement 2:	beam in a television picture tube Electric field requires low voltage
190		Licet le field requires four voltage
170		
	Statement 1:	Davisson-Germer experiment established the wave nature of electrons
		If electrons have wave nature, they can interfere and show diffraction
191		
	Statement 1:	If the accelerating potential of an electron is doubled then its velocity becomes 1.4 times.
	Statement 2:	It will move on a circular path with same velocity.
192		
	Statement 1:	Stopping potential is a measure of KE of photoelectron.
	Statement 2:	$W = eV_s = \frac{1}{2} mv^2 = KE$
193		³ 2
	Statement 1:	The de-Broglie wavelength of a molecule varies inversely as the square root of temperature.
	Statement 2:	The root mean square velocity of the molecule depends on the temperature.
194		
	Statement 1:	A photon has no rest mass, yet it carries definite momentum.
	Statement 2:	Momentum of photon is due to energy hence its equivalent mass.
195		
	Statement 1:	The de Broglie wavelength of a molecule (in a sample of ideal gas) varies inversely as the
	Statement 2:	square root of absolute temperature The de Broglie wavelength of a molecule (in a sample of ideal gas) depends on temperature
196		
	Statement 1:	The specific charge of positive rays is not universal constant
	Statement 2:	The mass of ions varies with speed
197		
	Statement 1:	A metallic surface is irradiated by a monochromatic light of frequency $v > v_0$ (the
		threshold frequency). The maximum kinetic energy and the stepping notential are

P a g e **| 20**

threshold frequency). The maximum kinetic energy and the stopping potential are

188

	Statement 2:	K_{\max} and V_0 respectively. If the frequency incident on the surface is doubled, both the K_{\max} and V_0 are also doubled The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light
198		
	Statement 1:	Work function of copper is greater than the work function of sodium, but both have same value of threshold frequency and threshold wavelength.
	Statement 2:	The frequency is inversely proportional to wavelength.
199		
	Statement 1:	In Millikan's experiment for the determination of charge on an electron, oil drops of any size can be used
	Statement 2:	Millikan's experiment determines the charge on electron, by simply measuring the terminal velocity
200		
	Statement 1:	Photocells are used in cinematography.
	Statement 2:	A photocell converts electrical energy into light energy
201		
	Statement 1:	Light is produced in gases in the process of electric discharge through them at high
	Statement 2:	pressure At high pressure electrons of gaseous atoms collide and reach and excited state
202	A proton and a	n electron both have energy 50 eV
202	-	n electron both have energy 50 eV Both have different wavelengths
202	Statement 1:	
202 203	Statement 1:	Both have different wavelengths
	Statement 1:	Both have different wavelengths
	Statement 1: Statement 2:	Both have different wavelengths Wavelength depends on energy and not on mass
	Statement 1: Statement 2: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant
203	Statement 1: Statement 2: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant
203	Statement 1: Statement 2: Statement 1: Statement 2:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays
203	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays Separation of isotope is possible because of the difference in electron numbers of isotope
203 204	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays Separation of isotope is possible because of the difference in electron numbers of isotope
203 204	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays Separation of isotope is possible because of the difference in electron numbers of isotope Isotope of an element can be separated by using a mass spectrometer
203 204	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays Separation of isotope is possible because of the difference in electron numbers of isotope Isotope of an element can be separated by using a mass spectrometer The threshold frequency of photoelectric effect supports the particle nature of sunlight If frequency of incident light is less than the threshold frequency, electrons are not
203 204 205	Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 2: Statement 1: Statement 1: Statement 1:	Both have different wavelengths Wavelength depends on energy and not on mass The specific charge for positive rays is a characteristic constant The specific charge depends on charge and mass of positive ions present in positive rays Separation of isotope is possible because of the difference in electron numbers of isotope Isotope of an element can be separated by using a mass spectrometer The threshold frequency of photoelectric effect supports the particle nature of sunlight If frequency of incident light is less than the threshold frequency, electrons are not

	Statement 1:	Standard optical diffraction can not be used for discriminating between different <i>X</i> -ray wavelengths
	Statement 2:	-
208		
	Statement 1:	X-rays can penetrate through the flesh but not through the bones
	Statement 2:	The penetrating power of X-rays depends on voltage
209		
	Statement 1:	Kinetic energy of photo electrons emitted by a photosensitive surface depends upon the intensity of incident photon
	Statement 2:	The ejection of electrons from metallic surface is possible with frequency of incident photon below the threshold frequency
210		
	Statement 1:	The graph of stopping potential (V_s) versus frequency (v) of incident radiation is a straight line nor passing through the origin.
	Statement 2:	According to Einstein's photoelectric equation the slope of the graph between V_s and v is $\frac{h}{e}$
211		
	Statement 1:	When ultraviolet light is incident on a photocell, its stopping potential is V_0 and the maximum kinetic energy of the photoelectrons is K_{max} . When the ultraviolet light is replaced by V mays both V_0 and K_0 increases
	Statement 2:	by X-rays, both V_0 and K_{max} increase. Photoelectrons are emitted with speeds ranging from zero to a maximum value because of the range of frequencies present in the incident light.
212		
	Statement 1:	Intensity of X-rays can be controlled by adjusting the filament current and voltage
	Statement 2:	The intensity of <i>X</i> -rays does not depend on number of <i>X</i> -ray photons emitted per second from the target
213		
	Statement 1:	Mass of moving photon varies inversely as the wavelength
	Statement 2:	Energy of the particle = Mass \times (Speed of light) ²
214		
	Statement 1:	The cathode of a photoelectric cell is changed such that the work function changes from W_1 to W_2 ($W_2 > W_1$). If current before and after change are I_1 and I_2 all other conditions
	Statement 2:	remaining unchanged (assuming $hv > W_2$) then $I_1 < I_2$. In above case $I_1 = I_2$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be

matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

215. Some laws/processes are given in Column I. Match these with the physical phenomena given in Column II

215.	Som	e laws/pr	ocesses ai	re given ir	n Column I. Match t	hese	with the physical phenomena given in Column II	
	Column-I					Column- II		
1	(A)	Transition between two atomic energy levels			mic energy levels	(p)	Characteristic X-rays	
	(B)	Electron emission from a material			aterial	(q)	Photoelectric effect	
	(C)	Moseley	s law			(r)	Hydrogen spectrum	
	(D) COD	electrons	-	energy int	to kinetic energy of	f (s)	β-decay	
	COD		P	C	D			
		Α	В	С	D			
	a)	P,r	q,s	р	q			
]	b)	q,s	p,r	q	р			
	c)	р	q,s	p,r	q			
	d)	q	р	q,s	p,r			
	216. Related to photoelectric effect, in Column I, some pl these changes are given. Match the entries of colum Column-I			=	-			
1	(A)	Intensity	of incide	nt light ch	anges	(p)	K_{\max} of emitted photoelectrons changes	
1	(B)	Frequence	cy of incid	ent light o	changes	(q)	Stopping potential changes	
1	(C)	Target m	aterial ch	anges		(r)	Saturation current changes	
1	(D)	Potential collector		e betweer	n the emitter and	(s)	Time delay in emission of photoelectrons changes	
	CODES :							
		Α	В	С	D			
:	a)	q	r	S	р			
1	b)	r	S	р	q			
	c)	r	p,q	p,q	S			
	d)	р	q	r	S			
217.	In Co			-	given and in Colum		he information about the photons are mentioned.	

Match the entries of Column I with the entries of Column II

Column-I

- (A) A bichromatic light source
- **(B)** A point source of white light emitting light uniformly in all directions

Column- II

- (p) Few photons have same energy and momenta
- (q) Few photons have different energy and different momenta

- **(C)** A point source of monochromatic light emitting light uniformly in all directions
- (D) Laser light source

CODES:

	Α	В	С	D
a)	P,q,r,s	p,q,r,s	p,r	р
b)	p,q,r,s	p,r	р	p,q,r,s
c)	p,s	r,s	p,q	q,r
d)	r,s	p,q	q,r	p,s

- (r) Few photons have same energy and different momenta
- (s) Few photons have different energy and same momenta

218. With respect to photoelectric effect experiment, match the entries of Column I with the entries of Column II

	Column-I		Column- II
(A)	If f (frequency) is increased keeping I (intensity) and ϕ (work function) constant	(p)	Stopping potential increases
(B)	If <i>I</i> is increased keeping <i>f</i> and ϕ constant	(q)	Saturation photocurrent increases
(C)	If the distance between anode and cathode increase	(r)	Maximum KE of the photoelectrons increases
(D)	If ϕ is decreased keeping f and I constnat	(s)	Stopping potential remains the same
COD			

CODES:

	Α	В	С	D
a)	P,r	q,s	S	p,r
b)	q,s	S	p,r	p,r
c)	p,q	r,s	r,s	q,s
d)	r,s	r,s	q,s	p,q

219. In the shown experimental setup to study photoelectric effect, two conducting electrodes in an evacuated glass-tube as shown. A parallel beam of monochromatic light falls on photosensitive electrode. The emf of battery shown is high enough such that all photoelectrons ejected from left electrode will reach the right electrode. Under initial conditions, photoelectrons are emitted. As charges are made in each situation of Column I. Match the statement in Column I with results in Column II

Column-I

Column- II

- (A) If frequency of incident light is increased keeping its intensity constant
- (p) Magnitude of stopping potential will increase

- **(B)** If frequency of incident light is increased and its intensity is decreased
- **(C)** If work function of photon sensitive electrode is increased
- (D) If intensity of incident light is increased keeping its frequency constant

CODES :

	Α	В	С	D
a)	P,q	r,s	p,s	q,r
b)	r,s	p,s	q,r	p,q
c)	p,r	q	S	p,r
d)	p,r	p,r	q	S

- (q) Current through the circuit may stop
- (r) Maximum kinetic energy of ejected photoelectrons will increase
- (s) Saturation current will increase

220. In a photoelectric experimental arrangement, light of frequency f is incident on a metal target whose work function is $\phi = hf/3$ as shown. In Column I, KE of photoelectron is mentioned at various locations/instants and in Column II, the corresponding values. Match the entries of Column I with the entries of Column II

Column-I

Column- II

- (A) Maximum KE of photoelectrons just after (p) Zero emission from target (B) KE of photoelectrons just after emission from (q) hf/3target **(C)** KE of photoelectron when they are halfway (r) hf/2between the target and collector **(D)** KE of photoelectrons as they reach the (s) 2hf/3 collector **CODES**: С Α В D a) P,q,r,s S q,r,s p,r,s b) S p,q,r,s q,r,s p,r,s
- c) q,r,s p,r,s s p,q,r,s
 d) p,r,s s p,q,r,s q,r,s

Linked Comprehension Type

This section contain(s) 27 paragraph(s) and based upon each paragraph, multiple choice questions have to be

answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 221 to -221**

According to Einstein, when a photon or light of frequency v or wavelength λ is incident o photosensitive metal surface of work function ϕ_0 , where $\phi_0 < hv$ (here h is Planck's constant), then the emission of photoelectrons takes place. The maximum kinetic energy of the emitted photoelectrons is given by $K_{\text{max}} = hv - \phi_0$. If the frequency of the incident light is v_0 (called threshold frequency), the photoelectrons are emitted from metal without any kinetic energy. So $hv_0 = \phi_0$

221. Stopping potential of emitted photoelectron is given by

a) $\frac{hv - \phi_0}{e}$ b) $hv - \phi_0$ c) $\frac{hv}{e}$ d) $\frac{\phi_0 + hv}{e}$

Paragraph for Question Nos. 222 to - 222

According to de-Broglie, a moving material particle exhibits dual nature (*ie*, a particle as well as a wave). He also predicted that a wave is associated with every moving material particle (which controls the particle) called matter wave and its wavelength is called de-Broglie wavelength given by

 $\lambda = h/mv$

Where h is Planck's constant, m is the mass of the particle moving with velocity v.

The existence of matter waves was firstly experimentally verified by Davisson and Germer using slow moving electrons which were accelerated with moderate accelerating potential.

222. An electron is accelerated under a potential difference of 64 V, the de-Broglie wavelength associated with					
electron is (use charge of electron 1.6×10^{-19} C, mass of electron 9.1×10^{-31} kg; $h = 6.623 \times 10^{-34}$ J-s).					
a) 1.53 Å	b) 2.53 Å	c) 3.35 Å	d) 4.54 Å		

Paragraph for Question Nos. 223 to - 223

Photoelectric threshold of silver is $\lambda = 3800$ Å. Ultraviolet light of $\lambda = 2600$ Å is incident on silver surface. (Mass of the electron 9.11×10^{-31} kg)

223. Calculate the value of work function in eV							
a) 1.77	b) 3.27	c) 5.69	d) 2.32				

Paragraph for Question Nos. 224 to - 224

A 100 W point source emits monochromatic light of wavelength 6000 Å

224. Calculate the total nu	umber of photons emitte	d by the source per second	
a) 5×10^{20}	b) 8×10^{20}	c) 6×10^{21}	d) 3×10^{20}

Paragraph for Question Nos. 225 to - 225

A metallic surface is illuminated alternatively with lights of wavelength 3000 Å and 6000 Å. It is observed that the maximum speeds of the photoelectrons under these illuminations are in the ratio 3:1

225. The work function	of the metal is		
a) 1.45 eV	b) 2.26 eV	c) 1.23 eV	d) 3.4 eV

Paragraph for Question Nos. 226 to - 226

A helium-neon laser has a power output of 1 mW of light of wavelength 632.8 nm

226. Calculate the energy of each photon in electron volt					
a) 2.5	b) 1.96	c) 0.53	d) 3.3		

Paragraph for Question Nos. 227 to - 227

Photoelectrons are ejected from a surface when light of wavelength $\lambda_1 = 550$ nm is incident on it. The stopping potential for such electrons is $\lambda_{s1} = 0.19$ V. Suppose that radiation of wavelength $\lambda_2 = 190$ nm is incident on the surface

227. Calculate the stopping potential V_{s2}						
a) 4.47	b) 3.16	c) 2.76	d) 5.28			

Paragraph for Question Nos. 228 to - 228

In a photoelectric effect experiment, a metallic surface of work function 2.2 eV is illuminated with a light of wavelength 400 nm. Assume that an electron makes two collisions before being emitted and in each collision 10% additional energy is lost

228. Find the kinetic energy of this electron as it comes out of the metal					
a) 0.46 eV	b) 0.31 eV	c) 0.23 eV	d) None of these		

Paragraph for Question Nos. 229 to - 229

In a photoelectric setup, a point source of light of power 3.2×10^{-3} W emits monoenergetic photons of energy of energy 5.0 eV. The source is located at a distance of 0.8 m from the center of a stationary metallic sphere of work function 3.0 eV and of radius 8.0×10^{-3} m. The efficiency of photoelectron emission is 1 for every 10^{6} incident photons. Assume that the sphere is isolated and initially neutral and that photoelectrons are instantaneously swept away after emission

229. Calculate the n	umber of photoelectrons emit	ted per second	
a) 10 ³	b) 10 ⁴	c) 5×10^4	d) 10 ⁵

Paragraph for Question Nos. 230 to - 230

The incident intensity of a horizontal surface at sea level from sun is about 1 kW $\rm m^{-2}$

230. Assuming that 50 per cent of this intensity is reflected and 50 per cent is absorbed, determined the radiation pressure on this horizontal surface (in pascals)

	a) 8.2×10^{-2}	b) 5×10^{-6}	c) 3×10^{-5}	d) 6 × 10 ⁻
--	-------------------------	-----------------------	-----------------------	------------------------

Paragraph for Question Nos. 231 to - 231

Light of intensity *I* falls along the axis on a perfectly reflecting right circular cone having semi-vertical angle θ and base radius *R*. If *E* is the energy of one photon and *c* is the speed of light, then find

231. The number of pho	tons hitting the cone per se	econd	
a) $\pi R^2 I / 2E$	b) $2\pi R^2 I/E$	c) $\pi R^2 I / 4E$	d) $\pi R^2 I/E$

Paragraph for Question Nos. 232 to - 232

An experimental setup of verification of photoelectric effect is shown in figure. The voltage across the electrodes is measured with the help of an ideal voltmeter, and which can be varied by moving jockey 'J' on the potentiometer wire. The battery used in potentiometer circuit is of 20 V and its internal resistance is 2 Ω . The resistance of 100 cm long potentiometer wire is 8 Ω

The photocurrent is measured with the help of an ideal ammeter. Two plates of potassium oxide of area 50 cm² at separation 0.5 mm are used in the vacuum tube. Photocurrent in the circuit is very small, so we can treat the potentiometer circuit as an independent circuit

	1	2	3	4	5	6
Light	Violet	Blue	Green	Yellow	Ora	Red
					nge	
λ in	40	45	50	55	60	65
Å	00	00	00	000	00	00
	—	—	—	—	—	—
	50	50	55	60	65	70
	00	00	00	00	00	00

The wavelength of various colours is as follows:

232. Calculate the number of electrons that appear on the surface of the cathode plate, when the jockey is connected at the end '*P*' of the potentiometer wire. Assume that no radiation is falling on the plates a) 8.85 × 10⁶ b) 11.0625 × 10⁹ c) 8.85 × 10⁹ d) 0

Paragraph for Question Nos. 233 to - 233

Light having photon energy hv is incident on a metallic plate having work function ϕ to eject the electrons. The most energetic electrons are then allowed to enter in a region of uniform magnetic field B as shown in figure. The electrons are projected in X - Z plane making an angle θ with X-axis and magnetic field is $\vec{B} = B_0 \hat{i}$ along X-

Maximum pitch of the helix described by an electron is found to be p. Take mass of electron as m and charge as q

Based on above information, answer the following questions:

233. The correct relation between p and B_0 is

a)
$$qpB_0 = 2\pi \cos\theta \sqrt{2(hv - \phi)m}$$

b) $qpB_0 = 2\pi \cos\theta \sqrt{\frac{2(hv - \phi)m}{m}}$
c) $pqB_0 = 2\pi \sqrt{2(hv - \phi)m}$
d) $p = \frac{2\pi}{qB_0} \sqrt{hv - \phi}$

Paragraph for Question Nos. 234 to - 234

When light of sufficiently high frequency is incident on a metallic surface, electrons are emitted from the metallic surface. This phenomenon is called photoelectric emission. Kinetic energy of the emitted photoelectrons depends on the wavelength of incident light and is independent of the intensity of light. Number of emitted photoelectrons depends on intensity. $(hv - \phi)$ is the maximum kinetic energy of emitted photoelectrons (where ϕ is the work function of metallic surface). Reverse effect of photo emission produces X-ray, X-ray is not deflected by electric and magnetic fields, wavelength of a continuous X-ray depends on potential difference across the tube. Wavelength of characteristic X-ray depends on the atomic number

234. If frequency $(v > v_0)$ of incident light becomes *n* times the initial frequency (v), then KE of the emitted photoelectrons becomes $(v_0$ threshold frequency)

- a) *n* times of the initial kinetic energy
- b) More than *n* times of the initial kinetic energy
- c) Less than *n* times of the initial kinetic energy
- d) Kinetic energy of the emitted photoelectrons remains unchanged

Paragraph for Question Nos. 235 to - 235

The energy received from the Sun by earth and surrounding atmosphere is 2 cal $cm^{-2} min^{-1}$ on a surface normal to the rays of sun

235. What is total energy received, in joule, by the Earth and its atmosphere

a) 10.645 × 10 ¹⁸ J min ⁻¹	b) 10.645×10^{15} J min ⁻¹
c) $8.645 \times 10^{17} \text{ J min}^{-1}$	d) 9.645 $\times 10^{14}$ J min ⁻¹

Paragraph for Question Nos. 236 to - 236

When a high frequency electromagnetic radiation is incident on a metallic surface, electrons are emitted from

the surface. Energy of emitted photoelectrons depends only on the frequency of incident electromagnetic radiation and number of emitted electrons depends only on the intensity of incident light Einstein photoelectric equation $[K_{\text{max}} = hv - \phi]$ correctly explains the PE, where v =frequency of incident light and ϕ =work function

236. Light of wavelength 3300 is incident on two metals *A* and *B*, whose work functions are 4 eV and 2 eV, respectively. Then

- a) A will emit photoelectrons but B will not
- b) *B* will emit photoelectrons, but *A* will not
- c) Both *A* and *B* will not emit photoelectrons
- d) Neither A nor B will emit photoelectrons

Paragraph for Question Nos. 237 to - 237

A Cs plate is irradiated with a light of wavelength $\lambda = hc/\phi$, ϕ being the work function of the plate, h the Planck's constant, and c the velocity of light in vacuum. Assume all the photoelectrons are moving perpendicular to the plate towards a YDSE setup when accelerated through a potential difference V. Take charge on a proton= e and mass of an electron = m

Read the paragraph carefully and answer the following questions:

237. The fringe width	due to the electron beam is		
a) $\lambda D/d$	b) λD/2d	c) $hD/(d\sqrt{2emV})$	d) None of these

Paragraph for Question Nos. 238 to - 238

A pushed dye laser emits light of wavelength 585 nm. Because this wavelength is strongly absorbed by the haemo- globin in the blood, the method is especially effective for removing various types of blemishes due to blood. To get a reasonable estimate of the power required for such laser surgery, we can model the blood as having the same specific heat and heat of vaporization as water $[S = 4.2 \times 10^3 \text{ J } (\text{kg K})^{-1}, L = 2.25 \times 10^6 \text{ J kg}]$

238. Suppose that each	h pulse must remove 2 μg o	f blood by evaporating it s	tarting at 30°C. The energy that
each pulse must o	leliver to the blemish is nea	arly	
a) 5.1 J	b) 5.1 mJ	c) 5.1 µJ	d) 5.1 kJ

Paragraph for Question Nos. 239 to - 239

Wave property of electrons implies that they will show diffraction effects. Davisson and Germer demonstrated this by diffracting electrons from crystals. The law governing the diffraction from a crystal is obtained by requiring that electron waves reflected from the planes of atoms in a crystal interfere constructively (see figure)

239. If a strong diffraction peak is observed when electrons are incident at an angle 'i' from the normal to the crystal planes with distance 'd' between them (see figure), de Broglie wavelength λ_{dB} of electrons can be calculated by the relationship (*n* is an integer)

a) $2d \cos i = n\lambda_{dB}$ b) $2d \sin i = n\lambda_{dB}$ c) $d \cos i = n\lambda_{dB}$ d) $d \sin i = n\lambda_{dB}$

Paragraph for Question Nos. 240 to - 240

A dense collection of equal number of electrons and positive ions is called neutral plasma. Certain solids containing fixed positive ions surrounded by free electrons can be treated as neutral plasma. Let 'N' be the number density of free electrons, each of mass 'm'. When the electrons are subjected to an electric field, they are displaced relatively away from the heavy positive ions. If the electric filed becomes zero, the electrons begin to oscillate about the positive ions with a natural angular frequency ' ω'_p , which is called the plasma frequency. To sustain the oscillations, a time varying electric fields need to be applied that has an angular frequency ω , where a part of the energy is absorbed and a part of it is reflected. As ω approaches ω_p all the free electrons are set to resonance together and all the energy is reflected. This is the explanation of high reflectivity of metals

240. Taking the electronic charge as e' and the permittivity as ϵ_0' , use dimensional analysis to determine the correct expression for ω_p

a)
$$\sqrt{\frac{Ne}{m\epsilon_0}}$$
 b) $\sqrt{\frac{m\epsilon_0}{Ne}}$ c) $\sqrt{\frac{Ne^2}{m\epsilon_0}}$ d) $\sqrt{\frac{m\epsilon_0}{Ne^2}}$

Integer Answer Type

241. A totally reflecting, small plane mirror placed horizontally faces a parallel beam of light as shown in the figure. The mass of the mirror is 20 g. Assume that there is no absorption in the lens and that 30% of the light emitted by the source goes through the lens. Find the power (in $\times 10^8$ W) of the source needed to support the weight of the mirror. Take g = 10 m/s²

- 242. A monochromatic sources of light operating at 200 W emits 4×10^{20} photons per second. Find the wavelength of the light (in $\times 10^{-7}$ m)
- 243. A silver sphere of radius 1 *cm* and work function 4.7 *eV* is suspended from an insulating thread in freespace. It is under continuous illumination of 200 *nm* wavelength light. As photoelectrons are emitted, the sphere gets charged and acquires a potential. The maximum number of photoelectrons emitted from the sphere is $A \times 10^{z}$ (where 1 < A < 10). The value of 'Z' is

- 244. A silver ball of radius 4.8 cm is suspended by a thread in a vacuum chamber. Ultraviolet light of wavelength 200 nm is incident on the ball for some time during which a total light energy of 1.0×10^{-7} J falls on the surface. Assuming that on the average, one photon out of ten thousand photons is able to eject a photoelectron, find the electric potential (in $\times 10^{1}$ V) at the surface of the ball assuming zero potential at infinity
- 245. The de Broglie wavelength of an electron moving with a velocity of $1.5 \times 10^8 \text{ ms}^{-1}$ is equal to that of a photon. Find the ratio of the kinetic energy of the photon to that of the electron
- 246. A proton is fired from very far away towards a nucleus with charge Q = 120 e, where e is the electronic charge. It makes a closest approach of 10 fm to the nucleus. The de Broglie wavelength (in units of fm) of the proton at its start is :

(take the proton mass, $m_p = (5/3) \times 10^{-27} kg$:

$$h/e = 4.2 \times 10^{-15} J. s/C; \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 m/F; 1fm = 10^{-15} m)$$

- 247. A parallel beam of monochromatic light of wavelength 663 nm is incident on a totally reflecting plane mirror. The angle of incidence is 60° and the number of photons striking the mirror per second is 1.0×10^{19} . Calculate the force exerted by light beam on the mirror. (in 10^{-8} N)
- 248. The radius of an α -particle moving in a circle in a constant magnetic field is half of the radius of an electron moving in circular path in the same filed. The de Broglie wavelength of α -particle is n times that of the electron. Find n (an integer)
- 249. In the arrangement shown in the figure, y = 1.0 mm, d = 0.24 mm and D = 1.2 m. The work function of the material of the emitter is 2.2 eV. Find the stopping potential *V* needed to stop the photocurrent (in $\times 10^{1}$ V)

250. An element of atomic number 9 emits K_{α} X-ray of wavelength λ . Find the atomic number of the element which emits K_{α} X-ray of wavelength 4λ

11.DUAL NATURE OF RADIATION AND MATTER

						: ANS	W	ER K	SEY :					
1)	b	2)	b	3)	С	4)	d		2)	a,c	3)	b,d	4)	a,b,d
5)	С	6)	С	7)	b	8)	а	5)	a,b	6)	a,b,c	7)	a,b,c	8)
9)	d	10)	С	11)	С	12)	С		a,c					
13)	d	14)	b	15)	d	16)	С	9)	b,d	10)	b,d	11)	b,d	12)
17)	d	18)	С	19)	b	20)	b		b,d					
21)	С	22)	b	23)	С	24)	а	13)	a,c,d	14)	a,c	15)	b	16)
25)	С	26)	С	27)	b	28)	d		a,b,c					
29)	а	30)	С	31)	b	32)	b	17)	a,b,c	18)	a,c	19)	c,d	20)
33)	С	34)	С	35)	С	36)	С		a,b,c,	d				
37)	С	38)	b	39)	а	40)	С	21)	a,b,c	22)	a,b,c	23)	c,d	24)
41)	С	42)	d	43)	d	44)	а		a,b,c,	d				
45)	d	46)	а	47)	а	48)	b	25)	a,b,c	26)	b,c	27)	a,b,c	28)
49)	b	50)	b	51)	d	52)	а	1)	d	2)	а	3)	а	4)
53)	а	54)	С	55)	b	56)	b	5)	е	6)	С	7)	d	8)
57)	а	58)	С	59)	С	60)	а	9)	С	10)	С	11)	а	12)
61)	d	62)	d	63)	b	64)	b	13)	b	14)	С	15)	е	16)
65)	b	66)	а	67)	d	68)	а	17)	С	18)	b	19)	e	20)
69)	С	70)	С	71)	а	72)	С	21)	d	22)	d	23)	а	24)
73)	С	74)	С	75)	d	76)	d	25)	С	26)	b	27)	а	28)
77)	С	78)	а	79)	d	80)	b	29)	b	30)	d	31)	d	32)
81)	С	82)	b	83)	b	84)	С	33)	b	34)	d	35)	С	36)
85)	d	86)	С	87)	а	88)	а	37)	e	38)	b	39)	b	40)
89)	b	90)	а	91)	С	92)	d	41)	b	42)	d	43)	а	44)
93)	а	94)	b	95)	b	96)	d	45)	С	46)	b	47)	d	1)
97)	d	98)	b	99)	С	100)	b		2)	С	3)	а	4)	а
101)	а	102)	а	103)	С	104)	b	5)	d	6)	b	1)	а	2)
105)	а	106)	а	107)	С	108)	а		3)	b	4)	d		
109)	а	110)	b	111)	а	112)	b	5)	С	6)	b	7)	а	8)
113)	а	114)	а	115)	С	116)	а	9)	d	10)	b	11)	d	12)
117)	а	118)	d	119)	b	120)	а	13)	а	14)	b	15)	а	16)
121)	b	122)	b	123)	С	124)	b	17)	С	18)	b	19)	а	20)
125)	d	126)	d	127)	а	128)	а	1)	1	2)	4	3)	7	4)
129)	b	130)	d	131)	С	132)	а	5)	4	6)	7	7)	1	8)
133)	b	134)	а	135)	d	136)	d	9)	9	10)	5			

: HINTS AND SOLUTIONS :

1 **(b)**

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$\frac{hc}{\lambda_{\min}} = eV$$

$$\lambda \times \frac{hc}{\lambda_{\min}} = \frac{h}{\sqrt{2meV}} eV \text{ or } \frac{\lambda}{\lambda_{\min}} \propto \sqrt{V}$$
2 **(b)**

$$hv_1 - hv_0 = \frac{1}{2}mv_1^2$$

$$hv_2 - hv_0 = \frac{1}{2}mv_2^2$$

$$\therefore h(v_1 - v_2) = \frac{1}{2}m(v_1^2 - v_2^2) \quad [\because v_1 = f_1 \text{ and } v_2$$

$$= f_2]$$

$$\therefore v_1^2 - v_2^2 = \frac{2h}{m}(f_1 - f_2)$$

3 (c)

Photons have momentum $(p = h/\lambda)$ which they carry away; the spacecraft will acquire momentum in the opposite direction according to law of conservation of momentum No. of photons per second from laser = nThen, from energy considerations,

 $0.5 \times 10^{-3} = nh\left(\frac{c}{\lambda}\right)$ $n = (0.5 \times 10^{-3})\lambda/(ch)$ Rate of change of momentum of spacecraft

$$= np = n\frac{h}{\lambda} = (0.5 \times 10^{-3})\frac{\lambda}{ch} \left(\frac{h}{\lambda}\right) = \frac{0.5 \times 10^{-3}}{c}$$

From Newton's second law, $\frac{nh}{\lambda} = ma$

$$1000a = \frac{0.5 \times 10^{-3}}{3.00 \times 10^8} = \frac{1}{6} \times 10^{-11}$$
$$t = \frac{v}{a} = \frac{1000}{\left(\frac{1}{1000}\right) \times \frac{1}{6} \times 10^{-11}} \text{ s} = 6 \times 10^{17} \text{ s}$$

4 **(d**)

 $\lambda_{\min} = \frac{hc}{eV} \text{ or } \lambda_{\min} \propto \frac{1}{V} \text{ On increasing potential,}$ $\lambda_{\min} \text{ decreases}$

5 **(c)**

Applied voltage must be greater than binding enegy

6 **(c)**

$$\frac{hc}{\lambda_{\text{max}}} = 3 \times 1.6 \times 10^{-19} \text{ J}$$

$$\Rightarrow \lambda_{\text{max}} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3 \times 1.6 \times 10^{-19}}$$
or $\lambda_{\text{max}} = 4.125 \times 10^{-7} \text{ m}$

7 (b) Velocity at highest point = $u \sin \theta$ $\therefore \ \lambda_D = \frac{h}{mu\sin\theta}$ (since θ is angle w.r.t. vertical) 8 (a) $mvr = n\frac{h}{2\pi}$ $=2\left(\frac{h}{2\pi}\right)$ (n=2)or $mvr = \frac{h}{\pi}$ $\therefore \lambda = \frac{h}{mv}$ = de Broglie wavelength 9 (d) By photoelectric equation $=\frac{1}{2}mv^2 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$ where λ is the wavelength of incident radiation and λ_0 is the threshold wavelength $\frac{1}{2}m(2\nu)^2 = hc\left(\frac{1}{\lambda'} - \frac{1}{\lambda_0}\right)$ Solving for λ' , we get $\lambda' = 300$ nm 10 (c) Consider energy conservation and concept of impulse 11 (c) $I \propto 1/d^2$ When source is placed 2 m away, then I' = (I/4). The number of electrons emitted \propto intensity. Hence, the number of emitted electrons is reduced to one-fourth 12 (c) When intensity is increased from I_0 to $4I_0$. i.e., four times, then the saturation current increases by a factor of 4, i.e., the saturation current becomes $= 4 \times (0.40 \times 10^{-6}) A$ 13 (d) The electrons ejected with maximum speed V_{max} are stopped by electric field E = 4N/C after travelling a distance d = 1 m $\frac{1}{2}mv_{\max}^2 = eEd = 4 \text{ eV}$ The energy of incident photon $=\frac{1240}{200} = 6.2 \text{ eV}$ From equation of photon electric effect $\frac{1}{2}mv_{\max}^2 = hv - \phi_0$

 $\therefore \phi_0 = 6.2 - 4 = 2.2 \text{ eV}$

14

(b)

The momentum of photon $= h/\lambda$ If *n* is the number of photons falling per second on the plate, then total momentum per second of the incident photons is

 $P = n \times \frac{h}{\lambda}$

Since the plate is blackened, all photons are absorbed by it

$$\frac{\Delta P}{\Delta t} = n \frac{h}{\lambda}$$

Since $F = \frac{\Delta P}{\Delta t} = n \frac{h}{\lambda}$
 $\therefore n = \frac{F\lambda}{h}$
 $n = \frac{6.62 \times 10^{-5} \times 5 \times 10^{-7}}{6.62 \times 10^{-34}} = 5 \times 10^{22}$

Magnetic force experienced by a charged particle in a magnetic field is given by

 $F_B = q\vec{v} \times \vec{B} = qvB \sin \theta$ In our case, $F_B = qvB$ [as $\theta = 90^\circ$] Hence, $Bqv = \frac{mv^2}{r} \Rightarrow mv = qBr$ The de Broglie wavelength, $a = \frac{h}{r} = \frac{h}{r}$

$$\lambda = \frac{1}{mv} = \frac{1}{qBr}$$

$$\frac{\lambda_{\alpha-\text{particle}}}{\lambda_{\text{proton}}} = \frac{q_p r_p}{q_\alpha r_\alpha}$$
Since $\frac{r_\alpha}{r_p} = 1$ and $\frac{q_\alpha}{q_p} = 2$

$$\Rightarrow \frac{\lambda_\alpha}{\lambda_p} = \frac{1}{2}$$

In the first case,

$$\frac{1}{2}mv_{\text{max}}^2 = 2hv_0 - hv_0 = hv_0$$

In the second case,
$$\frac{1}{2}mv_{\text{max}}^2 = 5hv_0 - hv_0 = 4hv_0$$

Clearly, v_{max} is doubled

17 **(d)**

Momentum of photon of green light, $p = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34}}{505 \times 10^{-9}} \, 1.3 \times 10^{-27} \, \text{kg ms}^{-1}$ Velocity of bacterium, $v = \frac{p}{m} = \frac{1.3 \times 10^{-27}}{9.5 \times 10^{-15}}$ = 1.368 × 10⁻¹³ ms⁻¹ (c)

18 **(c)**

The ratio of electric force to magnetic force is: $\frac{F_e}{F_B} = \frac{qE}{qvB} = \frac{3 \times 10^6}{2.4 \times 10^6 \times 1.5} = \frac{5}{6}$ Now, magnetic force on beta particles acts downward, whereas electric force acts upward and both are in the plane of diagram. But since magnetic force is larger, so beta particles are deflected downward

(b)

$$\frac{\lambda_1}{\lambda_2} = \frac{h}{\frac{\sqrt{2mE}}{\frac{hc}{E}}}$$
 or $\frac{\lambda_1}{\lambda_2} \propto E^{1/2}$

22 **(b)**

20

The maximum KE of the photoelectron is given by

 $\left(\frac{1}{2}mv^2\right)_{\max} = hv - W$ Now, $v = \frac{c}{\lambda}$ and $\left(\frac{1}{2}mv^2\right) = eV$ $\therefore eV = \frac{hc}{\lambda} - W$ or $V = \left(\frac{hc}{e}\right)\frac{1}{\lambda} - \frac{W}{e}$ Since *V* is represented along *y*-axis and $(1/\lambda)$ along *x*-axis, the above equation represents a straight line Slope of straight line = hc/eIntercept of straight line = -(W/e)23 (c) $\frac{hc}{\lambda} = E + \phi_0$ $\frac{hc}{\lambda'} = 2E + \phi_0$ Dividing, we get $\frac{\lambda'}{\lambda} = \left(\frac{E + \phi_0}{2E + \phi_0}\right)$ or $\frac{\lambda'}{\lambda} < 1$ $\therefore \lambda' < \lambda \text{ or } \lambda > \lambda'$ Also, $\frac{\lambda'}{\lambda} = \frac{1}{2} \left[\frac{E + \phi_0}{E + \frac{\phi_0}{E}} \right]$ or $\frac{\lambda'}{\lambda} > \frac{1}{2}$ or $\lambda' > \frac{\lambda}{2}$ (ii) It follows from Eqs. (i) and (ii) that $\lambda > \lambda' > \frac{\lambda}{2}$ 24 (a) hv = 5 eV + 2.2 eV = 7.2 eV $7.2 = \frac{12375}{\lambda(\inf \text{ in } \text{ Å})}$ or λ (in Å) = $\frac{12375}{7.2} \approx 1719$ 25 (c) Orbital angular momentum = $\frac{nh}{2\pi}$ for H-atom Therefore, minimum value of $L = h/2\pi$ (for n = 1) 26 (c) $\lambda \propto \frac{1}{V}$ and $V \propto \sqrt{T}$ 27 (b) The maximum KE of the photoelectron is given by $\left(\frac{1}{2}mv^2\right)_{\rm max} = hv - W$

Now, $v = \frac{c}{\lambda}$ and $\left(\frac{1}{2}mv^2\right) = eV$ $\therefore eV = \frac{hc}{\lambda} - W$ or $V = \left(\frac{hc}{e}\right)\frac{1}{\lambda} - \frac{W}{e}$ Slope of straight line = hc/eIntercept of straight line = -(W/e)28 (d) $\frac{1}{2}mv_{\max}^2 = \frac{hc}{\lambda} - \phi_0$ $\frac{1}{2}mv_{\max}^2 = \frac{12375 \text{ eV}}{3000} - 1 \text{ eV}$ $\frac{1}{2}mv_{\rm max}^2 = 3.125 \times 1.6 \times 10^{-19}$ $v_{\text{max}} = \sqrt{\frac{2 \times 3.125 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}} \approx 10^6 \text{ ms}^{-1}$ 29 (a) $\frac{hc}{\lambda} < W$ (for no emission) $\Rightarrow \lambda > \frac{hc}{W}$ 30 (c) $8 \times 10^{14} h = \phi_0 + 0.5$ $12 \times 10^{14} h = \phi_0 + 2$ Dividing, we get $\frac{12}{8} = \frac{\phi_0 + 2}{\phi_0 + 0.5}$ $\frac{3}{2} = \frac{\phi_0 + 2}{\phi_0 + 0.5}$ $3\phi_0 + 1.5 = 2\phi_0 + 4$ or $\phi_0 = 2.5 \, \text{eV}$ 31 **(b)** $\left(\frac{1}{2}mv^2\right)_{\max} = hv - W$ When v is doubled (W remians same), $\left(\frac{1}{2}mv^2\right)_{\max}$ i.e., (KE) is increased. The photoelectric current is $\begin{vmatrix} 40 \\ 40 \end{vmatrix}$ directly proportional to the intensity of incident light 32 **(b)** H discharge tube means max. hv = 13.6 eV. Work function = 4.2 V. So, (13.6 - 4.2)V = 9.4 V. So, required voltage is -9.4 V 33 (c) Effective power = $\frac{25}{100} \times 200$ W = 50 WNow, $50 = nhv = \frac{nhc}{\lambda}$ $n = \frac{50\lambda}{hc}$ $n = \frac{50 \times 0.6 \times 10^{-6}}{6.6 \times 10^{-34} \times 3 \times 10^8} = 1.5 \times 10^{20}$ 34 (c) $V_{\rm s} = 1.36 \, {\rm V}$ $\therefore eV_s = 1.36 \text{ eV}$

Or $\frac{1}{2}m(v_{\text{max}})^2 = 1.36 \text{ eV}$ i.e., variation electrons have KE between zero and 1.36 eV 35 (c) According to Einstein's equation, $E = W_0 + KE$ $W_{0\text{max}} = 4.2 \text{ eV}$ KE = 2.6 eV $\therefore E_{\min} = W_{0\max} + KE = (4.2 + 2.6)eV = 6.8 eV$ 36 (c) $E = \frac{hc}{\lambda} - \phi_0$ $2E = \frac{hc}{\lambda'} - \phi_0$ Solving $\lambda' = \frac{hc\lambda}{F\lambda + hc}$ 37 (c) Kinetic energy is same, that settles for (c) Intensity 4-fold, so n 4-fold 38 (b) $E - W_0 = \frac{1}{2}mv^2 = eV_s$ Or $\frac{hc}{\lambda} - W_0 = eV_s$ Hence, $\frac{hc}{0.6 \times 10^{-6}} - W_0 = e(0.5)$ (i) and $\frac{hc}{0.4 \times 10^{-6}} - W_0 = e(1.5)$ (ii) Solving, we get $W_0 = 1.5 \text{ eV}$ 39 (a) $\lambda = \frac{0.286}{\sqrt{E}(\text{in eV})} \text{\AA}$ $\sqrt{E}(\text{in eV}) = \frac{0.286}{0.4} \approx 0.707 \approx \frac{1}{\sqrt{2}}$ $\therefore E(\text{in eV}) = 0.51$ $n = \frac{\text{power}}{hc/\lambda} = \frac{300 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^8}$ $= 1.5 \times 10^{18} \text{ m}^{-2} \text{ s}^{-1} = 1.5 \times 10^{14} \text{ cm}^{-2} \text{ s}^{-1}$ As only 1 percent of photons cause emission of photoelectrons, number of photo electrons is $n_e = 1.5 \times 10^{12} \text{ s}^{-1}$ 41 (c) $K_A = \frac{hc}{\lambda_A} - \phi_0; \quad k_B = \frac{hc}{\lambda_B} - \phi_0$ But $\lambda_A = 2\lambda_B$, therefore $\therefore K_A = \frac{hc}{2\lambda_B} - \phi_0$ $K_A = \frac{1}{2}[K_B + \phi_0] - \phi_0$ or $K_A = \frac{K_B}{2} - \frac{\phi_0}{2}$ $\therefore K_A < \frac{K_B}{2}$

2 **(d)**

$$K_{\max} = hv - \phi$$

$$= \left(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{0.3 \times 10^{-6} \times 1.6 \times 10^{-19}} - 2.46\right) eV$$

$$= 1.68 eV$$
Cut-off wavelength, $\lambda_0 = \frac{hc}{\phi} = 505 \text{ nm}$

The minimum energy required to eject the photoelectrons is equal to work function

43 (d)

4

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$p = \sqrt{2meV}$$

$$\frac{P_e}{P_\alpha} = \sqrt{\frac{2m_e eV}{2m_\alpha(2e)V}}$$

$$\frac{p_e}{p_\alpha} = \sqrt{\frac{m_e}{2m_\alpha}}$$

44 **(a)**

45

When the positive potential of the ball is enough to hold back the most energetic photoelectron, the ball will not emit photoelectrons

$$\frac{hc}{\lambda} - \phi = Ve$$

$$V = \frac{\frac{hc}{\lambda} - \phi}{e}$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{200 \times 10^{-9} \times 1.6 \times 10^{-19}} - 3.74$$

$$= 6.216 - 3.74 = 2.5 \text{ V}$$
(d)

Order of magnitude calculation is enough $(2m_e eV)^{1/2} = (2 \times 9 \times 10^{-31} \times 100 \times 1.6 \times 10^{-19})^{1/2}$ $\approx 5 \times 10^{-24} \text{ Kg ms}^{-1}$ and $h \approx 6 \times 10^{-34} \text{ Js}$ So, $\lambda \approx 10^{-10} \text{ m}$ Mid-wavelength in visible region is $\lambda_0 \approx 5000 \times 10^{-10} \text{ m}$ Thus, $\lambda = \lambda_0 / 5000$ (a)

46 (a)

$$\lambda = \frac{h}{\sqrt{2mkT}}$$

$$= \frac{6.62 \times 10^{-34}}{\sqrt{2 \times 1.67 \times 10^{-27} \times 1.38 \times 10^{-23}T}} \text{ m}$$

$$= \frac{6.62 \times 10^{-34}}{2.15 \times 10^{-25} \sqrt{T}} \text{ m} = \frac{3.079}{\sqrt{T}} \times 10^{-9} \text{ m}$$

$$\frac{30.79}{\sqrt{T}} \text{ Å} \approx \frac{30.8}{\sqrt{T}} \text{ Å}$$
47 (a)

Let *m* be the mass of particle

 $\frac{mv^2}{2} = \frac{hc}{\lambda_{\text{photon}}}$, where symbols have their usual

meanings

$$\frac{p^2}{2m} = \frac{hc}{\lambda_{\text{photon}}}$$
and $p = \frac{h}{\lambda_{\text{particle}}} \Rightarrow \frac{h^2}{2m\lambda_{\text{particle}}^2} = \frac{hc}{\lambda_{\text{photon}}}$

$$\Rightarrow \frac{\lambda_{\text{photon}}}{\lambda_{\text{particle}}} = \frac{2mc}{h} \times \lambda_{\text{particle}} = \frac{2mc}{h} \times \frac{h}{mv}$$

$$= \frac{2c}{0.05c} = 40$$
48 **(b)**
 $\lambda_{\min} = \frac{hc}{ev}$ where h, c and e are constants. Hence
 $\lambda_{\min} \propto \frac{1}{v}$

49 **(b)**

We know that mass m in motion and the rest mass m_0 is related through the equation

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

As $v = c, m = \frac{m_0}{\sqrt{1 - 1}} = \frac{m_0}{0} = \infty$

 \div de Broglie wavelength is

$$\lambda = \frac{h}{mv} = \frac{h}{(\infty)(c)} = 0$$

50 **(b)**

Energy corresponding to $2000\text{\AA} = 12375/$ 2000 eV = 6.2 eVMaximum kinetic energy is (6.2 - 5.01)eV = 1.19 eV Now, $\frac{1}{2} \times 9.1 \times 10^{-31} \times v_{\text{max}}^2$ $= 1.19 \times 1.6 \times 10^{-19}$ or $v_{\text{max}}^2 = \frac{1.19 \times 1.6 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}$ or $v_{\text{max}}^2 = 0.418 \times 10^{12} = 41.8 \times 10^{10}$ or $v_{\text{max}} = 6.46 \times 10^5 \text{ ms}^{-1}$ 51 **(d)** Work function $W_0 = \frac{hc}{\lambda_0}$ $\Rightarrow W_0 = \frac{2 \times 10^{-25}}{2 \times 10^{-7}} = 10^{-18} \,\mathrm{J}$ $=\frac{10^{-18}}{1.6\times10^{-19}} \text{ eV} = 6.25 \text{ eV}$ Energy of incident radiation is $E = \frac{hc}{\lambda} = 31.25 \text{ eV}$: KE of photoelectrons = $E - W_0 = 25 \text{ eV}$ 52 (a) $E = \frac{hc}{\lambda}$ Number of photons emitted is

$$\frac{Pt}{\left(\frac{hc}{\lambda}\right)} = n_0$$
$$n_0 = \frac{P\lambda t}{hc}$$

Since the radiation is spherically symmetric, so total number of photons entering the sensor is n_0 times the ratio of aperture area to the area of a sphere of radius ℓ

$$N = n_0 \frac{\pi (2d)^2}{4\pi \ell^2} = \frac{P\lambda t}{hc} \frac{d^2}{\ell^2}$$

53 (a)

Imagine the sphere to be made of thin circular rings of radius r, thickness ds = R dq and subtending an angle θ at the center Momentum per second of incident photons

$$\left(\frac{dP}{dt}\right)_{\rm incident} = \frac{I}{c} dA \cos^2 \theta$$

Since surface of mirror is considered to be ideal 5 i.e., reflection coefficient is unity, photons suffer momentum change in normal direction only

$$\left(\frac{dP}{dt}\right)_{\rm incident} = \frac{2I}{c} dA \cos^2 \theta$$

$$dF_n = \left(\frac{dP}{dt}\right)_{\text{incident}} = +\frac{2I}{c}dA\cos^2\theta$$

This force may be resolved into horizontal and vertical components. The vertical component $dF_n \sin \theta$ is cancelled because every element on 5 the upper half has a symmetrically placed element in the lower half. So, resultant force on the ball,

$$F = \int df_n \cos \theta = \int \frac{2I}{c} dA \cos^3 \theta$$
$$dA = (2\pi R \sin \theta) R d\theta$$
$$F = \int_0^{\pi/2} 4\pi \frac{1}{c} R^2 \cos^3 \theta \sin \theta \, d\theta$$
$$= \frac{4\pi R^2 I}{c} \int_0^{\pi/2} \cos^3 \theta \sin \theta \, d\theta = \frac{\pi R^2 I}{c}$$

On subtracting values, we get $F = 0.8 \,\mu\text{N}$

54 (c)

$$E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$$

= $\frac{(6.62 \times 10^{-34})^2}{2 \times 4 \times 1.67 \times 10^{-27} \times (0.1 \times 10^{-10})^2} \times \frac{1}{1.6 \times 10^{-19}} \text{ eV}$
= $\frac{43.82 \times 10^{-68}}{21.376 \times 10^{-68}} = 2.05 \text{ eV}$

55 **(b)**

Momentum imparted per unit time = np $\Rightarrow F =$

$$\therefore \text{ Acceleration} = \frac{nn}{m\lambda}$$
56 **(b)**
 $h(v_1 - v_2) = e(V_1 - V_2)$
 $\frac{h}{e} = \frac{1}{c} \frac{(V_1 - V_2)}{(\frac{1}{\lambda_1} - \frac{1}{\lambda_2})} = \frac{10^{-9}}{3 \times 10^8} \left(\frac{4.6 - 0.08}{\frac{1}{185} - \frac{1}{546}}\right)$
 $= \frac{4.42 \times 185 \times 546 \times 10^{-17}}{361 \times 31}$
 $= 4.12 \times 10^{-15} \text{ Js C}^{-1}$
57 **(a)**
 $\frac{1}{\lambda} \propto (Z - 1)^2$
 $\therefore \quad \frac{\lambda_1}{\lambda_2} = \left(\frac{Z_2 - 1}{Z_1 - 1}\right)^2$
Solving this we get, $Z_2 = 6$
58 **(c)**
Let us calculate energy corresponding to
 $0.2 \times 10^{-6} \text{ m or } 0.2 \times 10^{-6} \times 10^{10} \text{ Å}$
or $2000 \text{ Å} = \frac{12375}{2000} = 6.1875 \text{ eV}$
 $\frac{1}{2}mv_{\text{max}}^2 = (6.1875 - 4)\text{ eV}$
or $mv_{\text{max}}^2 = 0.769 \times 10^{12} = 0.876 \times 10^6$
 $= 8.76 \times 10^5 \text{ ms}^{-1}$
59 **(c)**
 $E_k = \frac{12375}{3100} - \phi = 3.1 - \phi_0$
 $2E_k = \frac{12375}{3100} - \phi = 3.99 - \phi_0$
or $\phi_0 = 6.2 - 3.99 = 2.21 \text{ eV}$
60 **(a)**
 $E = \frac{hc}{\lambda/2} - \phi_0$
 $2E = \frac{hc}{\lambda/3} - \phi_0$
or $2\left(\frac{2hc}{\lambda} - \phi_0\right) = \frac{3hc}{\lambda} - \phi_0$
or $\frac{4hc}{\lambda} - 2\phi_0 = \frac{3hc}{\lambda} - \phi_0$ or $\phi_0 = \frac{hc}{\lambda}$
61 **(d)**
Each photon has associated with it an energy
wave given by
 $E = hf = \frac{hc}{\lambda}$
and graph of E vs, λ is a hyperbola
Thus, $E \propto \frac{1}{\lambda}$
62 **(d)**

nh

$$\lambda = \frac{h}{mv}$$

Here, $0 \times M = m_1 v_1 + m_2 v_2$
Clearly, $m_1 v_1 = -m_2 v_2$
In magnitude,
 $mv = \text{constant}$
 $\therefore \frac{\lambda_1}{\lambda_2} = \frac{1}{1}$

In both the cases, the intensity is same

64 **(b)**

Cut-off wavelength depends on the applied voltage not on the atomic number of the target. Characteristic wavelengths depends on the atomic number of target.

$$eV = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right) \quad (i)$$

$$\frac{eV}{3} = hc \left(\frac{1}{2\lambda} - \frac{1}{\lambda_0}\right) \quad (ii)$$

Dividing Eq. (i) and (ii), we get $\lambda_0 = 4\lambda$

(a)
Energy
$$= \frac{1}{2}mv^2 = 5000 \text{ eV}$$

 $= 5000 \times 1.6 \times 10^{-19} \text{ J}$
 $mv = \sqrt{2 \times 5000 \times (1.6 \times 10^{-19})m}$
 $= 4 \times 10^{-8} \times \sqrt{m}$
Number of electrons striking per second is
 $n = \frac{q}{e} = \frac{It}{e} = \frac{50 \times 10^{-6} \times 1}{1.6 \times 10^{-19}} = 31.25 \times 10^{13}$
Force = change of momentum per second
 $= n(mv) = 31.25 \times 10^{13} \times 4 \times 10^{-8} \sqrt{m}$
 $= 125 \times 10^5 \sqrt{9.1 \times 10^{-31}}$
 $= 1.1924 \times 10^{-8} \text{ N}$
(d)

67

$$\lambda_{P} = \lambda_{\alpha}$$

or $\frac{h}{\sqrt{2m_{p}Q_{p}V}} = \frac{h}{\sqrt{2m_{\alpha}Q_{\alpha}V_{\alpha}}}$
 $\therefore m_{p}Q_{p}V_{p} = m_{\alpha}Q_{\alpha}V_{\alpha}$
 $\therefore V_{\alpha} = \left(\frac{m_{p}}{m_{\alpha}}\right)\left(\frac{Q_{p}}{Q_{\alpha}}\right)V = \left(\frac{1}{4}\right)\left(\frac{1}{2}\right)V = \frac{V}{8}$

69 **(c)**

Let $hv_0 - W_0 = K$ (i) If frequency is doubled, let kinetic energy of photoelectrons be *K*₁ $2hv_0 - W_0 = K_1$ (ii) $\Rightarrow 2(hv - W_0) + W_0 = K_1$ $\Rightarrow 2K + W_0 = K_1$ i.e., kinetic energy is more than doubled 70 **(c)**

The wavelength of *X*-ray lines is given by Rydberg

Formula
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For K_{α} line, $n_1 = 1$ and $n_2 = 2$
 $\therefore \frac{1}{\lambda} = RZ^2 \left(\frac{3}{4}\right) \Rightarrow Z = \left(\frac{4}{3R\lambda}\right)^{1/2}$
 $= \left[\frac{4}{3(1.097 \times 10^7 m^{-1})(0.76 \times 10^{-10}m)}\right]^{1/2}$
 $= 39.99 \approx 40$
71 (a)
 $\lambda = \frac{hc}{E} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1 \times 1.6 \times 10^{-19}} \times 10^{10} Å$
 $= 12.375 \times 10^3 Å$
72 (c)
 $\lambda = \frac{h}{\sqrt{2mqV}}$
 $mV = \text{constant}$
 $1837 V' = 1 \times V$
or $V' = \frac{V}{1837}$ volt
73 (c)
 $\frac{E_e}{E_{\text{ph}}} = \frac{\frac{c}{4}}{2c} = \frac{1}{8}$
74 (c)
If *E* is the energy of incident photon and W the
work function, then $E - W_0$ = available energy
 $E - W_0 = \frac{1}{2}mv^2$
or $v = \sqrt{\frac{2(E-W_0)}{m}}$
 $\therefore \frac{v_1}{v_2} = \sqrt{\frac{1-0.5}{2.5-0.5}} = \sqrt{\frac{0.5}{2}} = \frac{1}{2}$
75 (d)
Saturation current is inversely proportional to the
square of distance of cathode from point source
76 (d)
 $\frac{2IA}{c} = F$ and (K_{eq}) parallel = $3K$
 $\Delta X = \frac{2F}{3K} = \frac{4IA}{3Kc}$
77 (c)
Photocurrent *I*

The rate of emission of photoelectrons (i.e., photocurrent) depends linearly on the rate of incident photons

Light intensity P

78 (a) $K_{\max} = hv - W$ ω is the intercept on *y*-axis and *h* is the slope $\therefore h = \frac{2.4 \times 10^{-15}}{4 \times 10^{18}} = 6 \times 10^{-34} \text{ Js}$ $W = 2 \times 10^{-15}$ I $\Rightarrow hv_0 = 2 \times 10^{-15}$ Or $v_0 = 3.33 \times 10^{18}$ 79 (d) $\lambda = \frac{h}{n} \Rightarrow \lambda \propto \frac{1}{n}$ So, graph between λ and p is a rectangle hyperbola 80 **(b)** W = hv - eV, hv = energy of incident photonHere $hv = \frac{12400}{1240}$ eV = 10 eV : W = 10 - 8 = 2 eVSo, λ =Threshold wavelngth $=\frac{12400}{2eV}$ Å = 6200 Å 81 (C) Using photoelectric equation, $hv - hv_0 = \frac{1}{2}mv^2 = eV_{\rm s}$ or $\left(\frac{hc}{\lambda} - \frac{hc}{\lambda_s}\right) = eV_s$ For the first case, $\frac{hc}{\lambda} - \frac{hc}{\lambda_0} = e(3V_0)$ (i) For the second case, $\frac{hc}{2\lambda} - \frac{hc}{\lambda_0} = e(V_0)$ (ii) Solving $\lambda_0 = 4\lambda$ 82 (b) The separation between source and photosensitive material at t = 0 is 16 m. Therefore, intensity received by photosensitive material at t = 0 is $I_0 = P/(4\pi \times 16^2)$, where *P* is the power of source of light At t = 3 s, the source is at (15, 0) and detector is at (19, 0), so the separation between them is 4 m $I_2 = \frac{P}{4\pi \times 4^2}$ So, $\frac{I_1}{I_2} = \frac{1}{16}$ 83 (b) Number of photons falling per second: $N_p = \frac{10^{-3}}{\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{6.6 \times 10^{-34} \times 3 \times 10^8}} = 2.5 \times 10^{15}$ Let N_e is the number of photoelectrons emitted

per second

 $\therefore I = \frac{q}{t} = \frac{N_e e}{1} \implies N_e = \frac{I}{e} = \frac{0.16 \times 10^{-6}}{1.6 \times 10^{-19}} = 10^{12}$ Percentage of photons producing photoelectrons $=\frac{N_e}{N_p} \times 100 = \frac{10^{12}}{2.5 \times 10^{15}} \times 100 = 0.04\%$ 84 (c) $E_K - E_L = \frac{hc}{\lambda} = \frac{(6.6 \times 10^{-34})(3 \times 10^8)}{(0.021 \times 10^{-9})(1.6 \times 10^{-19})} eV$ = 59 KeV85 (d) $\frac{1}{2}mv^2 = \frac{hc}{\lambda} - W_0 \quad (i)$ Let the speed of the fastest electron be V_1 when excitation wavelength is changed to $3\lambda/4$ $\therefore \frac{1}{2}mv_1^2 = \frac{4hc}{3\lambda} - W_0$ $\Rightarrow \frac{1}{2}mv_1^2 = \frac{4}{2}\left(\frac{hc}{1} - W_0\right) + \frac{W_0}{2}$ $\Rightarrow \frac{1}{2}mv_1^2 = \frac{4}{3}\left(\frac{1}{2}mv^2\right) + \frac{W_0}{3}$ [using Eq. (i)] $\Rightarrow v_1^2 = \frac{4v^2}{3} + \frac{2W_0}{3m}$ $\therefore v_1 > \left| \frac{4}{3} v \right|$ 86 (c) $\lambda_0 = \frac{hc}{W_0} = \frac{12400}{4} = 3100\text{\AA} = 310 \text{ nm}$ 87 (a) $\frac{1}{2}mv^2 = eV$ or $v = \sqrt{\frac{2eV}{m}}$ $=\sqrt{2 \times 1.6 \times 10^{11} \times 200} \text{ ms}^{-1} = 8 \times 10^{6} \text{ ms}^{-1}$ 88 (a) $\lambda_1 = \frac{12375}{E_1(eV)} \text{ Å} = 1000 \text{ Å}$ $\therefore E_1 = 12.375 \text{ eV}$ Similarly, $\frac{12375}{\lambda(\text{Å})}$ eV = $\frac{12375}{2000}$ = 6.1875eV Now, $E_1 - W_0 = eV_s$ and $E_2 - W_0 = eV_S$ Hence, $12.375 - W_0 = 7.7 \text{ eV}$ and $6.1875 - W_0 = eV_s'$ Solving, we get $V_s' = 1.5$ V 89 **(b)** Since $E \propto \frac{1}{2}$, so energy corresponding to 5000 Å is $E = 2.46 \, \text{eV}$ Now, $hv - W = eV_s$ or 2.46 eV - W = 1.36 eVW = (2.46 - 1.36) eV = 1.1 eV90 (a) We have KE = $\frac{P^2}{2m_c} = \frac{hc}{\lambda_{min}}$

$$P = \sqrt{\frac{2hcm_e}{\lambda_{\min}}}$$
Also, $\lambda_{de Broglie} = \frac{h}{p} = \sqrt{\frac{h\lambda_{\min}}{2m_ec}}$
For $\lambda_{\min} = 10$ Å,
 $\lambda_{de Broglie} \cong 0.3$ Å
91 (c)
 $eV_s = \frac{hc}{\lambda} - \phi_0$ or $eV_s + \phi_0 = \frac{hc}{\lambda}$
or $\lambda = \frac{hc}{ev_{s^+}\phi_0}$
 $\Rightarrow \frac{\lambda_2}{\lambda_1} = \frac{eV_{s_1} + \phi_0}{eV_{s_2} + \phi_0}$
or $\frac{4500}{4000} = \frac{1.3 + \phi_0}{0.9 + \phi_0}$
Or $\phi_0 = 851.3 - 9 \times 0.9$
Solving $\phi_0 = (10.4 - 8.1) = 2.3 \text{ eV}$
92 (d)
Let energy corresponding to wavelength of
 4000 Å be E
Then,
 $\frac{E}{E'} = \frac{\lambda'}{\lambda}$ or $\frac{E}{1.23} = \frac{10.000}{4000}$
 $\therefore E = 1.23 \times 2.5 = 3.075 \text{ eV}$
But $hv - hv_0 = \text{eV}_s$
or $3.075 \text{ eV} - 1.1 \text{ eV} = eV_s$
 $\therefore V_s = 1.975 \text{ V}$
93 (a)
 $\lambda = \frac{h}{p} = \frac{\lambda}{\sqrt{2qVm}}$ or $\lambda \propto \frac{1}{\sqrt{qm}}$
 $\frac{\lambda_p}{\lambda_{\infty}} = \sqrt{\frac{q_e}{m_p} \cdot \frac{m_e}{m_p}} = \sqrt{\frac{(2)(4)}{(1)(1)}} = 2.828$
The nearest integer is 3.
94 (b)
 $\lambda = \frac{h}{\sqrt{2mE_e}} = \frac{hc}{E_{ph}}$ or $2mE_e = \frac{E_{ph}^2}{c^2}$
But $E_e = \frac{1}{2}mv^2$ or $m = \frac{2E_e}{v^2}$
 $\therefore 2 \left[\frac{2E_e}{v^2}\right] E_e = \frac{E_{ph}^2}{c^2}$
or $\frac{4E_e^2}{v^2} = \frac{E_{ph}^2}{c^2}$ or $\frac{E_e^2}{E_{ph}^2} = \frac{v^2}{4c^2}$
or $\frac{E_e}{E_{ph}} = \frac{v}{2c}$
95 (b)
Sodium has low work function. So. maximus

Sodium has low work function. So, maximum kinetic energy is more in the case of sodium. Thus, stopping potential is more for sodium

96 **(d)**

$$n = \frac{W}{hc} = \frac{1.7 \times 10^{-18} \times 6000 \times 10^{-10}}{6.6 \times 10^{-34} \times 3 \times 10^8}$$
$$= \frac{10^{-24}}{2 \times 10^{-25}} \approx 5$$

97 **(d)**

Momentum corresponding to incident protons normal to the surface

$$\left(\frac{dP}{dt}\right)_{\rm incident} = \frac{l}{c} dA \cos^2 \theta$$

Since reflection coefficient is ρ , so the momentum of the reflected photons per second normal to surface,

$$\left(\frac{dP}{dt}\right)_{\text{refelcted}} = -\frac{I}{c} dA\rho \cos^2 \theta$$

Hence, rate of change of momentum of the photons,

$$\left(\frac{dP}{dt}\right)_{\text{photons}} = -\frac{I}{c}dA(\rho+1)\cos^2\theta$$

From Newton's third law,

$$\left.\frac{dP}{dt}\right)_{\text{surface}} = -\frac{l}{c}dA(\rho+1)\cos^2\theta$$

Hence, pressure exerted on surface,

$$P = \frac{dF}{dA} = \frac{1}{c}dA \left(\rho + 1\right)\cos^2\theta$$

On substituting values, we get $P = 0.5 \text{ N cm}^{-2}$

98 **(b)**

$$\frac{1}{2}mv^{2} = hv - \phi_{0}$$

$$\frac{1}{2}mv'^{2} = 4hv - \phi_{0}$$

$$\frac{v'^{2}}{v^{2}} = \frac{4hv - \phi_{0}}{hv - \phi_{0}}$$
Or $\frac{v'^{2}}{v'} = \frac{4[hv - \phi] + 3\phi_{0}}{hv + \phi_{0}}$
Clearly, $v' > 2v$
99 (c)
$$\phi = hv_{0} = \frac{hc}{\lambda_{0}}$$

$$\phi_{0}\lambda_{0} = \text{constnat}$$

$$4.5 \times \lambda = 2.3 \times 5460$$

or
$$\lambda = \frac{1000100}{4.5} \text{ A}$$

= 2790.7 Å \approx 2791

100 **(b)**

By Einstein's particle (photon) theory, the maximum kinetic energy E_{max} of the emitted electrons from the cathode is proportional to the frequency f of the light. This is expressed in the Einstein's photoelectric equation below

 hf_0

Å

Where *h* is the Planck's constant, ϕ_0 is the work function of the metal and is related to the threshold frequency f_0 by $\phi_0 = hf_0$. It is the minimum amount of work or energy necessary to take a free electron out of the metal against the attractive forces of surrounding positive ions At a particular negative potential difference *V* applied to the anode *A*, the current becomes zero. This is value of the negative potential difference which just stops the electrons with maximum energy from reaching *A*. *V* is called the stopping potential. Therefore,

 $eV = E_{\max} \quad \text{(ii)}$ From Eqs. (i) and (ii), we have $eV = E_{\max} = h(f - f_0)$ $V = \frac{h}{e}(f - f_0) \text{ or } y = \frac{h}{e}(x - x_0)$

The variation of *V* (or *y*) is thus a straight line of gradient h/e, when it is plotted against *f* (or *x*) at f_0 . It is best represented in graph b

101 (a)

As work function $W = hv_0$, where v_0 is the threshold frequency Greater the work function, greater is the threshold frequency. Therefore, the threshold

frequency of sodium will be lesser than that for aluminium

102 (a)

Option (a) correctly explains the photoelectric effect on the basis of electromagnetic theory. Its correct explanation is given by Quantum theory of light'

103 (c)

$$KE_{max} = hv - \phi$$

$$\Rightarrow \frac{1}{2}mv_{max}^2 = hv - \phi$$

$$\Rightarrow v_{max} = \sqrt{\frac{2(hv - \phi)}{m}}$$

Hence, (a) is incorrect

Since n = (IA/hv), therefore rate of emission of electrons is proportional to the intensity (I) $KE_{max} = hv - \phi$ Hence, (c) is true

104 **(b)**

Maximum KE depends on the frequency of incident radiation, not on intensity

105 **(a)**

Saturation current is proportional to intensity while stopping potential increases with increase in frequency. Hence,

$$v_a = v_b$$
 while $I_a < I_b$

106 **(a)**

$$eV = hv - \phi_0$$

$$ev = \left(\frac{12375}{2000} - 5.01\right) eV$$

$$V = (6.1875 - 5.01) V = 1.18 V \approx 1.2 V$$

107 **(c)**

Energy is given by

$$E = \frac{m_0 c^2}{\sqrt{1 - (v^2/c^2)}}$$

or $E^2 = \frac{m^2 o^2}{c^2 - v^2}$
Momentum *p* is given by
$$p = \frac{m_0 v}{\sqrt{1(v^2/c^2)}}$$

or $p^2 c^2 = \frac{m_0^2 c^4 v^2}{c^2 - v^2}$
 $\therefore E^2 - p^2 c^2 = m_0^2 c^4$ or $E^2 = p^2 c^2 + m_0^2 c^4$
For photon, rest mass
 $m_0 = 0$, so $E = pc$
For electron, $m_0 \neq 0$, so $E \neq pc$

108 (a)

V versus f has a constant slope of h/e, so both lines must be parallel

Also, work function is equal to intercept on *f*-axis 109 **(a)**

Change in intensity from I_0 to $4I_0$ does not affect the stopping potential

110 **(b)**

$$\frac{E_{e}}{E_{ph}} = \frac{\frac{h^{2}}{2m\lambda^{2}}}{\frac{hc}{\lambda}} = \frac{h^{2}}{2m\lambda^{2}} \times \frac{\lambda}{hc} = \frac{h}{2m\lambda c}$$

$$= \frac{6.6 \times 10^{-34}}{2 \times 9.1 \times 10^{-31} \times 1.2 \times 10^{-10} \times 3 \times 10^{8}}$$

$$= \frac{1}{100}$$
111 (a)

$$E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{632.8 \times 10^{-9}} \text{ J}$$
Number of photons per second $n = \frac{P}{E}$

$$\Rightarrow n = \frac{5 \times 10^{-3}}{3.14 \times 10^{-19}} = 1.6 \times 10^{16}$$
112 (b)

$$\lambda_{1} = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$

$$\lambda_{2} = \frac{hc}{E}$$
So, $\frac{\lambda_{1}}{\lambda_{2}} \propto \frac{E}{\sqrt{E}} = E^{1/2}$

113 (a)

Kinetic energy gained by a change *q* after being accelerated through a potential difference *V* volt

$$qV = \frac{1}{2}mv^{2}$$
$$v = \sqrt{\frac{2qV}{m}}$$
$$mv = \sqrt{2mqV}$$

De Broglie wavelength = $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$

$$\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{m_{\alpha}q_{\alpha}v_{\alpha}}{m_pq_pV_p}}$$

Putting $V_{\alpha} = V_p, \frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{4\times 2}{1\times 1}} = 2\sqrt{2}$

114 (a)

 $p = \frac{h}{\lambda}$ Also, $E = \frac{hc}{\lambda}$

So, if λ is decreased, both p and E increase

115 **(c)**

 $eV_{s} = hv - \phi_{0}$ $eV_{s}' = hv' - \phi_{0}$ $e(V_{s}' - V_{s}) = hv' - hv = \left(\frac{12375}{3600} - \frac{12375}{4000}\right)$ $\therefore V_{s}' - V_{s} = 3.44 - 3.09 = 0.35 \text{ V}$

116 **(a)**

Since the molecules rebounded from the wall, the component of velocity perpendicular to the wall is reversed, while its velocity parallel to the wall does not change. The change in velocity of molecules is parallel to normal *N*. The magnitude of change is

After
$$v$$

 θ
Before v
 $|\Delta v| = 2v \cos \theta$

 $|\Delta \vec{v}| = 2\nu \cos \theta$

The change in momentum of a molecule is $|\Delta \vec{p}| = m |\Delta \vec{v}| = 2mv \cos \theta$ In the direction of normal *N*. Let *n* be the number of molecules per unit volume. The number of molecules arriving at an area *A* of the wall per unit time is the number in a slanted cylinder whose length is equal to the velocity *v* and whose cross section is *A* cos θ

Number of molecules = $n(Av \cos \theta)$ Each molecule suffers a change of momentum

Each molecule suffers a change of moment $2mv\cos\theta$

Change of momentum of a stream of gas in a direction perpendicular to the wall is equal to $(nAv\cos\theta) \times (2mv\cos\theta) = 2A nmv^2\cos^2\theta$ Hence, force exerted on stream of gas by the wall, $F = 2Anmv^2\cos^2\theta$

This is also the force exerted by gas molecules on the wall

Pressure = $\frac{\text{Normal force}}{\text{Area}} = \frac{F}{A}$ = $2nmv^2 \cos^2 \theta$

Remark: For oblique incidence, the change in momentum of the radiation per unit volume at the perfectly reflecting surface is $2p \cos \theta$ and the corresponding radiation pressure is

$$P_{\rm rad} = 2pc\cos^2\theta = 2E\cos^2\theta$$

117 (a)

Energy radiated as visible light is

$$\frac{5}{100} \times 100 = 5 \text{ J/s}$$

Let *n* be the number of photons emitted per second. Then,

$$\frac{nhv}{\lambda} = 5$$

$$\therefore n = \frac{5\lambda}{hc} = \frac{5 \times 5.6 \times 10^{-7}}{(6.62 \times 10^{-34})(3 \times 10^8)}$$

$$= 1.4 \times 10^{19}$$

118 (d)

From conservation of linear momentum, both the particles will have equal and opposite momentum. The de Broglie wavelength is given by

$$\lambda = \frac{h}{p} \Rightarrow \lambda_1 / \lambda_2 = 1$$

119 **(b)**

The gain of kinetic energy by an electron is eV

$$\frac{1}{2}mv^{2} = eV$$

$$v = \sqrt{\frac{2eV}{m}} = \sqrt{\frac{2(1.60 \times 10^{-19})(50)}{(9.11 \times 10^{-31})}}$$

$$= 4.19 \times 10^{6} \text{ ms}^{-1}$$

Thus, the electron's de Broglie wavelength is

$$h = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{(9.11 \times 10^{-31})(4.19 \times 19^6)}$$
$$= 1.74 \times 10^{-10} \text{ m}$$

120 (a)

Energy received by the eye,

$$E = \frac{nhc}{\lambda}$$

= $\frac{5 \times 10^4 \times 6.6 \times 10^{-34} \times 3 \times 10^8}{5000 \times 10^{-10}}$
= $0.2 \times 10^{-13} \text{ Wm}^{-2}$

So, eye is more sensitive by a factor of $\frac{1}{0.200} = 5.00$

121 **(b)**

The intensity of light at the location of your eye is P = 60

 $I = \frac{P}{4\pi r^2} = \frac{60}{4\pi \times 4^2} \text{ Wm}^{-2}$ The energy entering into your eye per second is $P_1 = I \times \frac{\pi d^2}{4}$

Where *d* is the diameter of pupil

$$P_1 = \frac{60}{4\pi \times 4^2} \times \frac{\pi \times (2 \times 10^{-3})}{4}$$

= 9.375 × 10⁻⁷ Js⁻¹

Let *n* be the number of photons entering into the eye per second, then

$$P_1 = n \times \frac{hc}{\lambda}$$

_ 1

$$9.375 \times 10^{-7} = n \times \frac{1240 \times 1.6 \times 10^{-19}}{600}$$

 $n = 2.84 \times 10^{12} \text{ photons s}^{-1}$

So, the number of photons entering the eye in 0.1 s = $0.1 n = 2.84 \times 10^{11}$

122 **(b)**

$$\lambda_{\rm ph} = \lambda_{\rm e}$$

$$\frac{h}{p_{\rm ph}} = \frac{h}{p_{\rm e}}$$

$$\frac{E_{\rm ph}}{C} = \frac{2E_{\rm e}}{v}$$

$$\frac{E_{\rm e}}{E_{\rm ph}} = \frac{v}{2C}$$
123 (c)
$$\phi_0 = hv_0$$
or $\phi_0 = e \times 4.14 \times 10^{-15} \times 1 \times 10^{14}$

$$= 0.414 \text{ eV}$$

$$A = \frac{h}{p} \Rightarrow \lambda = \frac{6.6 \times 10^{-34}}{10^{-31} \times 10^5}$$
$$A = 6.6 \times 10^{-8}$$

125 (d)

Intensity reduced therefore saturation current reduced. Frequency increased, therefore stopping potential increased 126 **(d)**

Speed of electron which enters into electric filed may increase or decrease while for 2nd electron, it remains constant

So, from
$$\lambda = \frac{h}{mv'}$$

 $\lambda_1 > \lambda_2 \text{ or } \lambda_1 < \lambda_2$

127 **(a)**

The photoelectrons will be emitted because wavelength of incident radiation is less than threshold wavelength ($\lambda < \lambda_0$)

$$K_p = E_p - \phi_p = \frac{1240}{550} - 2.0 = 0.2545 \text{ eV}$$

$$K_q = E_q - \phi_q = \frac{1240}{450} - 2.5 = 0.255 \text{ eV}$$

$$K_r = E_r - \phi_r = \frac{1240}{350} - 3.0 = 0.543 \text{ eV}$$

In the above equation *K* represents maximum kinetic energy of photoelectrons and *E*, the energy of incident right.

From the above values we can see that stopping potential,

 $|V_r| > |V_q| > |V_p|$

Further, their intensities are equal, but energy of individual photon r is maximum. Hence, number of photons incident (per unit area per unit time) of r can be assumed to be least. Hence, saturation current of r should be minimum.

Keeping these points in mind no option seems to be correct. The correct graph is shown below

∴ No choice is correct.

129 **(b)**

Let *m* be the mass of each particle, then

 $\lambda_1 = (h/mv_1)$ and $\lambda_2 = (h/mv_2)$, where v_1 and v_2 arte the velocities of two particles as shown in the figure

$$\vec{v}_{2} |_{B} \downarrow_{A} \rightarrow v_{1}$$

$$\vec{v}_{CM} = \frac{m\vec{v}_{1} + m\vec{v}_{2}}{2m} = \frac{\vec{v}_{1} + \vec{v}_{2}}{2}$$

Velocity of A w.r.t. C frame is,

$$\vec{v}_{1c} = \vec{v}_1 - \vec{v}_{CM} = \frac{\vec{v}_1 - \vec{v}_2}{2}$$
$$|\vec{v}_{1c}| = \frac{\sqrt{\vec{v}_1 - \vec{v}_2}}{2} = |\vec{v}_{2c}|$$
So, required wavelength is
$$\lambda = \frac{h}{m|\vec{v}_{1c}|} = \frac{h}{m} \times \frac{2}{\frac{h}{m}\sqrt{\frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2}}}$$
$$\lambda = \frac{2\lambda_1\lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$

Since the number of photoelectrons emitted is directly proportional to the intensity of incident radiation, the number of photoelectrons emitted becomes four times.

The energy of photoelectrons does not change with the intensity light

131 (c)

Einstein's equation for photoelectric effect is $hv - hv_0 = \frac{1}{2}mv_{\max}^2$ When $v = 2v_0$, $v_{max} = 4 \times 10^8 \text{ cms}^{-1}$ $2hv_0 - hv_0 = (1/2)m(4\times 10^8)^2$ $hv_0 = \frac{1}{2}m(4 \times 10^8)^2$ (i) When $v = 5v_0$, $v_{max} = v'$ (ii) Dividing Eq. (ii) by Eq. (i), we get $v' = 8 \times 10^8 \text{ cms}^{-1}$

132 (a)

Interatomic spacing in a crystal acts as a diffraction grating

133 **(b)**

Energy of electron in n^{th} orbit, $E_n = -\frac{13.6}{n^2} \text{eV}$ For first Bohr orbit, n = 1 $E_1 = -13.6 \text{ eV}$ For second Bohr orbit, n = 2

$$E_2 = -\frac{13.6}{4} \text{ eV or } \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$$
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{1}{4}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{1}{2}$$

134 (a)

Momentum of striking electrons $p = \frac{h}{\lambda}$

: Kinetic energy of striking electrons

$$K = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$$

This is also, maximum energy of X-ray photons. $\frac{hc}{\lambda_0} = \frac{h^2}{2m\lambda^2}$

Therefore.

Or
$$\lambda_0 = \frac{2m\lambda^2 c}{h}$$

135 (d)
 $eV_s = hv - \phi_0$
 $V_s = \frac{h}{e}v - \frac{\phi_0}{e}$
Now, $\frac{h}{e} = \text{slope} = \frac{1.656}{4 \times 10^{14}} = 0.414 \times 10^{-14} \text{ Vs}$
 $= 4.14 \times 10^{-15} \text{ Vs}$

136 (d)

If *q* is the charge on the particle and *V* the potential difference through which it is accelerated, then

$$qV = \frac{1}{2}mv^{2}$$

or $mv = \sqrt{2mqV}$
de Broglie's wavelength,
$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$$
$$\therefore \frac{\lambda_{e}}{\lambda_{p}} = \sqrt{\frac{m_{p}}{m_{e}}}$$

137 (b)

Resolving power is proportional to inverse of wavelength,

i.e.,
$$R \propto \frac{1}{\lambda}$$

and $\lambda \propto \frac{1}{p}$
So, $R \propto p = \sqrt{2mE}$
So, $R \propto \sqrt{E}$
 $\frac{R'}{R} = \sqrt{\frac{4kV}{16kV}} = \frac{1}{2}$
 $R' = \frac{R}{2}$
(a)

Energy of dissociation, $E_s = 10^5 \text{ J mol}^{-1}$

Photon energy, $E_p = \frac{E_S}{N_a} = \frac{10^5}{6.02 \times 10^{23}}$ $= 1.66 \times 10^{-19}$ J = 1.04 eV

139 (b)

138

On increasing intensity, only saturation current increases, whereas retarding potential remains the same because wavelength of light is unchanged

140 (c)

Applying conservation of linear momentum: Initial momentum = Final momentum $0 = m_1 v_1 - m_2 v_2 \Rightarrow m_1 v_1 = m_2 v_2$

Now
$$\frac{\lambda_1}{\lambda_2} = \frac{h/m_1v_1}{h/m_2v_2} = 1$$

 $\frac{hc}{\lambda} - \phi = eV$ $V = \frac{hc}{e\lambda} - \frac{\phi}{e}$ For plate 1: Plate 2 Plate 3 $\frac{\phi_1}{hc} = 0.001$ $\frac{\phi_2}{hc} = 0.002$ $\frac{\phi_3}{hc} = 0.004$ $\phi_1: \phi_2: \phi_3 = 1: 2: 4$ For plate 2, threshold wavelength $\lambda = \frac{hc}{\phi_2} = \frac{hc}{0.002hc} = \frac{1000}{2} = 500 \ nm$ For plate 3, threshold wavelength $\lambda = \frac{hc}{\phi_3} = \frac{hc}{0.004hc} = \frac{1000}{4} = 250 \ nm$ Since violet colour light λ is 400 *nm*, so $\lambda_{violet} <$ $\lambda_{threshold}$ for plate 2 So, violet colour light will eject photo-electrons from plate 2 and not plate 3)

Since
$$P = \frac{T}{c} = 10^4 \text{ Nm}^{-2}$$

 $P = \frac{E}{A} = \frac{1}{A} \frac{\Delta p}{\Delta t}$
 $\Delta p = P A \Delta t = 10^{-5} \text{ kgms}^{-1}$

143 (a,b,d)

The energy of each photon is hc/λ , so that the number of photons released per unit time is $W/(hc/\lambda)$. These photons are spread out in all directions over an area $4\pi a^2$, so that the 'share' of an area *S* is a fraction $S/4\pi a^2$ of the total number of photons emitted

The maximum energy of emitted photoelectrons is

$$E_{\max} = hc - \phi = \frac{hc}{\lambda} - \phi = \frac{1}{\lambda}(hc - \lambda\phi)$$

The stopping potential is given by

 $eV_S = E_{\max}$ Hence, $V_s = \frac{E_{\text{max}}}{e} = \frac{1}{e\lambda}(hc - \lambda\phi)$

Hence, choice (c) is incorrect

For photoemission to be possible, we have $hc \ge \phi$ Hence, $\frac{hc}{\lambda} \ge \phi$ or $\lambda \le \frac{hc}{\phi}$

Thus, the permitted range of values of λ is

$$0 \le \lambda \le \frac{hc}{\phi}$$

Hence, the correct choices are (a), (b), and (d) 144 (a,b)

For photoemission, $\lambda < \lambda_0$

145 (a,b,c)

For metal A: $4.25 = W_A + T_A$ Also, $T_A = \frac{1}{2}mv_A^2 = \frac{1}{2}\frac{m^2v_A^2}{m} = \frac{p_A^2}{2m}\frac{h^2}{2m\lambda^2}$ (ii)

$$\begin{bmatrix} \because \lambda = \frac{h}{p} \end{bmatrix}$$

For metal *B*: 4.7 = $(T_A - 1.5) + W_B$ (iii)
Also, $T_B = \frac{h^2}{2m\lambda_B^2} \times \frac{2m\lambda_A^2}{h^2} = \frac{\lambda_A^2}{\lambda_B^2}$
$$\Rightarrow \frac{T_A - 1.5}{T_A} = \frac{\lambda_A^2}{2\lambda_A^2} = \frac{\lambda_A^2}{4\lambda_A^2} = \frac{1}{4} \quad [\because \lambda_B = 2\lambda_A \text{ given}]$$
$$\Rightarrow 4T_A - 6 = T_A \quad \Rightarrow \quad T_A = 2\text{eV}$$

146 (a,b,c)

In a discharge tube electric conduction takes place due to movement of positive ions, negative ions and electrons

147 (a,c)

As the source is taken away, the intensity of light reaching the target decreases, and hence the photocurrent decreases

But as motion of the source does not affect frequency of light, the stopping potential given by $V_0 = (hv/e) - (\phi/e)$ remains the same

148 (b,d)

$$eV_0 = E_K^{\max} = \frac{hc}{\lambda} - W$$

149 (b,d)

As v > E/B, so force on electron due to electric field is greater than that due to magnetic field. Due to which the electron will not reach to the undeflected spot on screen but gets deviated in the direction opposite to that of electric field and meets the screen to a spot below the undeflected position

150 (b,d)

Since the stopping potential depends on the frequency and not on the intensity and the source is same, the stopping potential remains unaffected. The saturation current depends on the intensity of incident light on the cathode of the photocell which in turn depends on the distance of the source from cathode. The intensity of light is inversely proportional to the square of the distance between the light source and photocell Intensity $I \propto 1/r^2$ and saturation current $\propto I$ (Intensity)

$$\Rightarrow \text{Saturation current} \propto \frac{1}{r^2}$$

$$\Rightarrow \frac{(\text{Saturation current})_{\text{final}}}{(\text{Saturation current})_{\text{initial}}} = \frac{r_{\text{initial}}^2}{r_{\text{final}}^2}$$

$$\Rightarrow (\text{Saturation current})_{\text{final}} = \frac{0.2 \times 0.2}{0.6 \times 0.6} \times 18$$

$$= 2 \text{ mA}$$

151 (b,d)

Electrons are accelerated through a potential

difference.

Hence, depend on voltage applied to tube. Also, characteristics *X*-rays depend on target material atomic number

$$\sqrt{f} = \sqrt{\frac{c}{\lambda}} = a(Z - b)$$

Hence, option (b) and (d) are correct

152 **(a,c,d)**

 $P = VI = 50 \times 10^{3} \times 20 \times 10^{-3} = 1000 W$ Power converted into heat = 990 W $ms\Delta T = 990 \Rightarrow \Delta T = 2^{\circ}C/sec$ Now $\frac{hc}{\lambda_{\min}} = eV \Rightarrow \lambda_{\min} = \frac{hc}{eV} = 0.248 \times 10^{-10} m$

153 **(a,c)**

Use Einstein's photoelectric equation

154 **(b)**

Stopping potential is the negative potential applied to stop the electrons having maximum kinetic energy. Therefore, stopping potential will be 4 V

155 **(a,b,c)**

Existence of cut-off frequency and photoemission takes place even when intensity is low

156 **(a,b,c)**

Intercept of straight line on negative energy axis given the value of work function of the cathode metal. The point where the straight line cuts the frequency axis gives the value of threshold frequency while the slope of straight line provides the value of Plank's constant

157 **(a,c)**

$$E_{\max} = 1 \text{eV} = \frac{hv}{\lambda} - \phi_0 = \frac{hc}{400 \times 10^{-9}} - \phi_0$$

As, $\phi_0 = 1.9 \text{ eV}$,
Hence, $hc = 400 \times 10^{-9} \times (1 + 1.9)$
 $\therefore E_{\max} = \frac{400 \times 10^{-9} \times 2.9}{500 \times 10^{-9}} \text{ eV} - 1.9 \text{ eV}$
 $= 2.32 \text{ eV} = 1.9 \text{ eV} = 0.42 \text{ eV}$
 $\lambda_{\max} = \frac{hc}{\phi_0} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.9 \times 1.6 \times 10^{-19}}$
 $= 650 \times 10^{-9} \text{ m} = 650 \text{ nm}$

158 **(c,d)**

If 'V' increases then $\lambda_{cut-off}$ will decreases. The no. of electrons striking the target metal, determines the intensity of emitted radiation Hence, option (c) and (d) are correct

159 (a,b,c,d) $\frac{1}{2}mv_{\max}^2 = v - W$ Due to magnetic field, $\frac{mv_{\max}^2}{r} = Bev_{\max}$ $\Rightarrow v_{\max} = \frac{Ber}{m}$ $=\frac{5.26\times10^{-6}\times1.6\times10^{-19}\times0.5}{9.1\times10^{-31}}$ $= 0.46 \times 10^{6} \text{ ms}^{-1}$ $(\text{KE})_{\text{max}} = \frac{1}{2}mv_{\text{max}}^2 = \frac{Bev_{\text{max}}r}{2}$ $=\frac{5.26 \times 10^{-6} \times 1.6 \times 10^{-19} \times 0.46 \times 10^{6} \times 0.5}{2}$ $= 0.973 \times 10^{-19} \text{ J} = 0.6 \text{ eV}$ Energy of proton, $E = \frac{hc}{\lambda} = \frac{1240 \text{ eVnm}}{400 \text{ nm}} = 3.1 \text{ eV}$ Work function, W = 3.1 eV - 0.6 eV = 2.5 eV $(\text{KE})_{\text{max}} = eV_0 \implies V_0 = 0.6 \text{ V}$ 160 (a,b,c) As, $\lambda = \frac{h}{\sqrt{2mE}}$; so $\frac{\lambda_B}{\lambda_A} = \sqrt{\frac{E_A}{E_B}}$ or $2 = \sqrt{\frac{E_A}{E_B}}$ or $E_A = 4E_B$ or $\frac{E_A}{A} = E_A - 1.5$ or $E_A = 2.0$ eV $\phi_A = 4.25 - 2.00 = 2.25 \text{eV};$ $\phi_B = 4.70 - 0.50 = 4.20$ eV.

161 **(a,b,c)**

Standard result

162 **(c,d)**

The threshold wavelength is 5200 Å. For ejection of electrons, the wavelength of the light should be less than 5200 Å so that frequency increases and hence the energy of incident photon increases. UV light has less wavelength than 5200 Å

163 **(a,b,c,d)**

164

Energy of photon,
$$E_0 = \frac{hc}{\lambda}$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{652 \times 10^{-9}}$$

$$= 3.048 \times 10^{-19} \text{ J} = 1.905 \text{ eV}$$
Energy content in each pulse is
 $0.6 \text{ W} \times 20 \times 10^{-3} \text{ s}$
 $E_p = 12 \times 10^{-3} \text{ J} = 12 \text{ mJ}$
The number of photons in each pulse is
 $\frac{E_p}{E_o} = \frac{12 \times 10^{-3}}{3.048 \times 10^{-19}}$
 $= 3.9 \times 10^{16} \approx 4 \times 10^{16}$
(a,b,c)
Cut-off wavelength, $\lambda_0 = 250 \text{ nm}$

$$v_{0} = \frac{c}{\lambda_{0}} = \frac{3 \times 10^{8}}{250 \times 10^{-9}} \text{ Hz} = 1.2 \times 10^{15} \text{ Hz}$$
Work function of the metal,

$$W = \frac{hc}{\lambda_{0}} = \frac{1242 \text{ eV nm}}{250} = 4.968 \text{ eV}$$

$$\frac{hc}{\lambda} = \frac{hc}{\lambda_{0}} + K_{\text{max}}$$

$$K_{\text{max}} = \frac{1242 \text{ eV nm}}{100 \text{ nm}} - 4.968 \text{ eV}$$

$$= 7.432 \text{ eV} \approx 7.4 \text{ eV}$$
Photoelectric effect takes place only for light of wavelength less than 250 nm, whereas $\lambda_{\text{red}} \approx 700$ nm
165 **(b,c)**

$$E = \phi_{0}(\text{KE})_{\text{max}} \therefore 4 = \phi_{A} + T_{A} \dots(i)$$
and $4.5 = \phi_{B} + (T_{A} - 1.5)$
or $6 = \phi_{B} + T_{A} \dots(ii)$
From Eqs.(i) and (ii), $\phi_{B} - \phi_{A} = 2 \dots(iii)$
According to de-Broglie hypothesis
 $\lambda_{A} = \frac{h}{mv} = \frac{h}{\sqrt{2mT_{A}}} \text{ and } \lambda_{B} = \frac{h}{\sqrt{2mT_{B}}}$
 $\therefore \frac{\lambda_{A}}{\lambda_{B}} = \sqrt{\frac{T_{B}}{T_{A}}} = \sqrt{\frac{T_{A} - 1.5}{T_{A}}} = \left(1 - \frac{1.5}{T_{A}}\right)^{1/2}$
 $\left(\frac{1}{2}\right)^{2} = 1 - \frac{1.5}{T_{A}}$
On solving $T_{A} = 2.0 \text{ eV}$
 $\therefore \phi_{A} = 4 - T_{A} = 4 - 2 = 2.0 \text{ eV}$
 $\therefore \phi_{A} = 4 - T_{A} = 6 - 2 = 4.0 \text{ eV}$
166 **(a,b,c)**
 $K_{max} = E - W_{0}$
 $\therefore T_{A} = 4.25 - (W_{0})_{A} \dots(i)$
 $T_{B} = (T_{A} - 1.5) = 4.70 - (W_{0})_{B} \dots(i)$
Equation (i) and (ii) gives $(W_{0})_{B} - (W_{0})_{A} = 1.95 \text{ eV}$
De-Broglie wavelength $\lambda = \frac{h}{\sqrt{2mK}} \Rightarrow \lambda \propto \frac{1}{\sqrt{K}}$
 $\Rightarrow \frac{\lambda_{B}}{\lambda_{A}} = \sqrt{\frac{K_{A}}{K_{B}}} \Rightarrow 2 = \sqrt{\frac{T_{A}}{T_{A} - 1.5}} \Rightarrow T_{A} = 2eV$
From equation (i) and (ii)
 $W_{A} = 2.25 \text{ eV}$ and $W_{B} = 4.20 \text{ eV}$
167 **(c)**
 $\lambda_{\min} = \frac{hc}{\omega} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4(1.6 \times 10^{-19})}$
 $= 310 \times 10^{-9} \text{ m}$
168 **(d)**

On increasing the intensity of incident light, the current in photoelectric cell will increase. The energy of the photons (hv) will, however not increase with increase in intensity, and hence the kinetic energy of the emitted electrons will not

increase

169 **(a)**

The distance between the atoms of crystals is of the order of wavelength of *X*-rays. When they fall on a crystal, they are diffracted. The diffraction pattern is helpful in the study of crystal structure

170 **(a)**

Energy of photoelectrons emitted is different because after absorbing the photons, electrons within metals collide with other atoms before being ejected out of metal. Hence, Statement II is correct explanation of Statement I

171 **(b)**

Velocity of first photon = u = c

Velocity of second photon = v = -c

Now, relative velocity of first photon with respect to second photon

$$= \frac{u-v}{1-\frac{uv}{c^2}} = \frac{c-(-c)}{1-\frac{(c)(-c)}{c^2}}$$
$$= \frac{2c}{1+\frac{c^2}{c^2}}$$
$$= \frac{2c}{1+1}$$
$$= \frac{2c}{2} = c$$

Also the rest mass of photon is zero.

172 **(e)**

Soft and hard *X*-rays differ only in frequency. But both types of *X*-rays travel with speed of light

173 **(c)**

 $KE_{\max} = hv = \phi$

 $0 \le KE_{Photoelectrons} \le KE_{max}$, Also ϕ of material is constant

174 **(d)**

Einstein's photoelectric equation is given by

$$E_k = \frac{1}{2}mv^2 - hv - \phi \qquad \dots \dots (i)$$

(Where v is frequency and ϕ is work function) When frequency is doubled than Eq. (i) becomes

E'
$$_{k}$$
=2hv- ϕ
E' $_{k}$ = hv = , hv - ϕ =(E $_{k}$ + ϕ) + E_k

 $=2E_k = \phi$

Therefore, from Eq.(ii) it is quite clear than kinetic energy of emitted photoelectron will be more than two times.

175 **(b)**

Cut-off wavelength depends on the accelerating voltage, not the characteristic X-rays. Further approximately 2% kinetic energy of the electrons is utilised in producing X-rays. Rest 98% is lost in heat.

176 **(c)**

Wavelength of X-ray is very small (\approx Å). Hence they are not diffracted by means of ordinary grating. X-rays follows the Bragg's law

177 **(c)**

A tube light is a gas discharge tube which can emit light of different colours. This colour mainly depends upon the nature of the gas inside the tube and the nature of the glass. The light emitted is due to fluorescence emission of light when argon is filled in tube. It takes place at low pressure but not at high temperature.

178 **(a)**

X-rays lie in electromagnetic spectrum

179 **(a)**

Momentum of a photon is given by $p = \frac{h}{\lambda}$

Also the photon is a form of energy packets behaves as a particle having energy $E = \frac{hc}{\lambda}$. So $p = \frac{E}{c}$

180 **(b)**

Charge does not change with speed but mass varies with the speed as per relation $m = \frac{m_0}{\sqrt{m_0}}$

Hence specific charge e/m decreases with increase in speed

181 **(c)**

Photoelectric effect is based upon quantum theory of light or particle nature of light.

The number of photoelectrons emitted is

proportional to intensity of incident light. It does not depend on frequency of light.

182 **(e)**

If electron is moving parallel to the magnetic field, then the electron is not deflected *i.e.*, if electron is not deflected we cannot be sure that there is no magnetic field in that region

183 **(a)**

The photoemissive cell may be evacuated contain an inert gas at low pressure. An inert gas in the cell gives greater current but causes a time lag in the response of the cell to very rapid changes of radiation which may make it unsuitable for some purpose

184 **(c)**

The photoelectric effect is the emission of electrons (called photoelectrons) when light strikes a metal surface. Hence photoelectric effect can take place only with an electron bound in the atom. Electron is a lepton whereas proton is fermion.

185 **(b)**

In photoelectric effect, the photon falling on some matter is absorbed by the matter and its energy is transferred to an electron of the matter. In *X*-ray production, photons are produced which get energy from energetic electrons ionizing the inner shells of the target which in turn cause a cascade of emission lines

186 **(e)**

Only the photoelectrons emitted from the surface of the metal have maximum kinetic energy. Those emitted from inside the metal loses part of their energy in collision with the other atoms inside the metal

187 **(e)**

Higher the wavelength of *X*-ray, lesser is the frequency and penetration power

188 **(d)**

At normal pressure positive ions and electrons liberated by ionisation of gas atoms, due to cosmic rays are very small in number and they collide constantly with the gas atoms which are present in large numbers, and hence are unable to move a long distance under the electric field and soon get recombined *i. e.*, flow of ions in the gas does not take place

189 (d)

If electric field is used for detecting the electron beam, then very high voltage will have to be applied or very long tube will have to be taken

191 **(c)**

If *V* is the accelerating potential and v is the velocity of electron, then

 $eV = \frac{1}{2}mv^{2}$ $v \propto \sqrt{V}$ $\frac{v_{1}}{v_{2}} = \sqrt{\frac{V_{1}}{V_{2}}}$ $V_{1} = V, V_{2} = 2V, v_{1} = v, v_{2} = ?$

Here,

$$\frac{v_1}{v_2} = \sqrt{\frac{v}{2v}} = \frac{1}{\sqrt{2}}$$
$$v_2 = \sqrt{2}v$$
$$v_2 = 1.4v$$

Reason is false statement, as conditions must be discussed for electron to move on circular path.

192 **(c)**

It is fact that, greater is KE of photoelectron, greater is the potential required to stop it. Hence, stopping potential is a measure of KE of photoelectron. It can be understood from the relation $eV_s = KE$

or $V_s = \text{KE}(\text{in eV})$

193 **(b)**

de-Broglie wavelength associated with gas molecules varies as

$$\lambda \propto \frac{1}{\sqrt{T}}$$

Also root mean square velocity of gas molecules is

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

194 **(a)**

Equivalent mass of photon (m) is given by

$$E = mc^2 = hv \Rightarrow m = \frac{hv}{c^2}$$

Therefore, momentum of photon

$$= mc = \frac{hv}{c^2} \times c = \frac{hv}{c}$$

Thus, photon possessed momentum due to its equivalent mass even its rest mass is zero.

195 **(b)**

de Broglie wavelength associated with a gas molecule varies as, $\lambda \propto 1/\sqrt{T}$

196 **(b)**

The specific charge (e/m) of the positive rays is not universal constant because theses rays may consist of ions of different elements

197 **(d)**

$$hv = hv_0 + k_{\max} \Rightarrow k_{\max} = hv - hv_0$$

198 **(d)**

When work function of copper is greater than the work function of sodium, then

$$\phi_{Cu} > \phi_{Na}$$

 $(hv_0)_{Cu} > (hv_0)_{Na}$...(i)

But we know that $v_0 = \frac{c}{\lambda_0}$

Hence Eq.(i) becomes

$$\left(\frac{hc}{\lambda_0}\right)_{\rm cu} > \left(\frac{hc}{\lambda_0}\right)_{\rm Na}$$

 $(\lambda_0)_{Na} > (\lambda_0)_{Cu}$

199 **(e)**

In Milkan's experiment oil drops should be of microscope sizes. If much bigger oil drops are used, then a very high electric field will be required to balance it which is not possible to achieve practically

Further, the apparent weight of the liquid $\frac{4}{3}\pi a^3 g \left(\rho_{\text{liquid}} - \sigma_{\text{air}}\right) = 6\pi a \eta v$

If *a* is large, *v* will be large and the experimental errors will be high

200 **(b)**

It is true that photocells are utilised to reproduce

sound in cinematography and also in camera and television for scanning ad telecasting the scene. Now, the photocell is such a device in which light energy is converted into electrical energy.

201 **(d)**

Light is produced in gases in the process of electric discharge at low pressure. When accelerated electrons collide with atoms of the gas, atoms get excited. The excited atoms return to their normal state and in this process light radiations are emitted

202 **(c)**

$$\lambda = \frac{h}{\sqrt{2mE}}$$

203 **(b)**

Specific charge of a positive ion corresponding to one gas is fixed but it is different for different gases

204 **(e)**

The atomic number (number of electrons or protons) remains same in isotope. Isotope of an element can be separated on account of their different atomic weight by using mass spectrograph

205 **(b)**

There is no emission of photoelectrons till the frequency of incident light is less than a minimum frequency, however intense light it may be. In photoelectric effect, it is a single particle collision. Intensity is $hv \times N$, where hv is the individual energy of the photon and N is the total number of photons. In the wave theory, the intensity is proportional, not only to v^2 but also to the amplitude squared. For the same frequency, increase in intensity only increase the number of photons (in the quantum theory of Einstein)

206 **(b)**

Work function is the minium energy required to eject the photoelectron from photosensitive metal. Hence, for metal to be photosensitive, the work function should be small work function= $hf_{0'}$ where fo is threshold frequency.

208 **(b)**

The penetrating power of *X*-rays depends upon the voltage applied across the tube producing *X*rays. *X*-rays can pass through matter of lighter elecments such as flesh (which is composed of oxygen, hydrogen and carbon) but cannot pass through substances made of heavier elements like bones (which are made of phosphorus and calcium)

209 **(d)**

According to Einstein's equation $KE = hv - hv_0$; *i. e.*, *KE* depends upon the frequency. Photoelectrons are emitted only if incident frequency is more than threshold frequency

210 **(a)**

Einstein's photoelectric equation is

$$\frac{1}{2}mv^{2} = eV_{s} = hv - \phi_{0}$$

or $V_{s} = \frac{hv}{e} - \frac{\phi_{0}}{e}$

This is the equation of a straight line, hence the graph between v and V_s is a straight line which is not passing through origin. Also, from the resulting equation. Slope of the graph is h/e, where h is Planck's constant.

211 **(c)**

Since the frequency of ultraviolet light is less than the frequency of X-rays, the energy of each incident photon will be more for X-rays

$$KE_{photoelectron} = hv - \phi$$

Stopping potential is to stop the fastest photoelectron

$$V_0 = \frac{hv}{e} - \frac{\Phi}{e}$$

So, KE_{max} and V_0 both increases.

But KE ranges from zero to KE_{max} because of loss of energy due to subsequent collisions before getting ejected and not due to range of frequencies in the incident light.

212 **(c)**

Intensity of *X*-rays (I) is proportional to the filament current and also to the square of the voltage. It is well known that intensity of *X*-rays depends on the number of photons emitted per second from target

213 **(b)**

Mass of moving photon $m = \frac{hv}{c^2} = \frac{h}{c\lambda}$ and $E = mc^2$

214 **(d)**

The work function has no effect on photoelectric current so long as $hv > W_2$. The photoelectric current is proportional to the intensity of incident light. Since, there is no change in intensity of light. Hence, $I_1 = I_2$

Therefore, reason is true but assertion is false

216 **(c)**

- If intensity changes, then number of photons/time incident on the metal surface change and hence number of photoelectrons liberated change, so saturation photocurrent changes. Stopping potential and KE_{max} will remain the same
- 2. From $eV_0 = hf \phi$ and $K_{\text{max}} = hf \phi$

If f changes, then V_0 and K_{\max} change

3. From
$$eV_0 = hf - \phi$$
 and $K_{\max} = hf - \phi$

If target material changes, then ϕ changes, then V_0 and K_{\max} change

4. If we change the potential difference between emitter and collector, then time taken for electrons to eject changes

217 **(a)**

- Bichromatic light source is having two wavelengths and hence from energy point of view, two types of photons are possible. As light propagates in different directions, the photon can have different or same momenta depending upon the magnitude and direction of photon motion
- 2. Same reasoning as for (a)
- 3. For a monochromatic light source, all photons have same energy but momenta can be different due to different directions
- 4. Laser is a very narrow beam of monochromatic light, so all photons have nearly same energy and momenta

218 **(a)**

1.

From $eV_0 = hf - \phi$ and $K_{\max} = hf - \phi$

If f increases keeping ϕ constnat, then V_0 and K_{\max} increase

- If *I* increases, more photons/time are incident on the metal surface and more photoelectrons would be liberated. Hence, saturation photocurrent increases. Stopping potential and KE_{max} will remain the same
- 3. If separation between cathode and anode is increased, then there is no effect on V_0, K_{max} or current
- 4. If ϕ decraeses keeping f and I constant, then V_0 and K_{max} increase

219 **(d)**

Consider two equations

$$eV_{\rm s} = \frac{1}{2}mv_{\rm max}^2 - hf - \phi_0$$
 (i)

No. of photoelectrons ejected per second \propto intensity (ii)

- 1. As frequency is increased keeping intensity constant, $V_{\rm S}$ will increase and hence, $1/2m(v_{\rm max}^2)$ will increase
- 2. As frequency is increased and intensity is decreased, $V_{\rm S}$ will increase and hence $1/2m(v_{\rm max}^2)$ will increase and saturation current will decrease
- 3. It work function is increased, photoemission may stop
- 4. If intensity is increased, then saturation current will increase

220 **(b)**

a. Maximum kinetic energy of ejected electron is given by Einstein's photoelectric equation $K_{\text{max}} = hf - (hf/3) = 2hf/3$. As no potential difference is applied across target and collector and vacuum is there in the tube, so this maximum KE remains same at all locations

b, **c** and **d**. Kinetic energy of ejected photoelectrons can be anything from 0 to K_{max} (as found for a). It remains the same at all locations (reasoning is same as for above)

221 **(a)**

Maximum kinetic energy $K_{\text{max}} = hv - \phi_0 = eV$

$$\therefore V = \frac{hv - \Phi_0}{e}$$
222 (a)

$$\lambda = \frac{12.27\text{ Å}}{\sqrt{V}} = \frac{12.27}{\sqrt{64}} = 1.534 \text{ Å}$$
223 (b)

$$\lambda_0 = 3800 \text{ Å}$$

$$W = hf_0 = h\frac{c}{\lambda_0} = \frac{6.633 \times 10^{-34} \times 3 \times 10^8}{3800 \times 10^{-10}}$$

$$= 5.23 \times 10^{-19}\text{J} = 3.27 \text{ eV}$$
Incident wavelength $\lambda = 2600 \text{ Å}$
 $f = \text{Incident frequency} = \frac{3 \times 10^8}{2600 \times 10^{-10}} \text{ Hz}$
Then,

$$KE_{\text{max}} = hf - W_0$$

$$hf = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2600 \times 10^{-10}}$$

$$= 7.65 \times 10^{-19} \text{ J} = 4.78 \text{ eV}$$

$$KE_{\text{max}} = hf - W_0 = 4.78 \text{ eV} - 3.27 \text{ eV} = 1.51 \text{ eV}$$

$$KE_{\text{max}} = \frac{1}{2}mv_{\text{max}}^2$$

$$v_{\text{max}} = \sqrt{\frac{2KE_{\text{max}}}{m}}$$

224 (d)

Energy of a photon of wavelength λ , $E = hv = (hc/\lambda)$ $E = \frac{(6.6 \times 10^{-34}) \times (3 \times 10^8)}{6000 \times 10^{-10}}$ $= 3.3 \times 10^{-19}$ J So, if *n* is the number of photons emitted per second, $nE = \frac{\text{energy}}{\text{second}} = \text{power}(P)$ Hence, $n = \frac{P}{E} = \frac{100}{3.3 \times 10^{-19}}$ $\approx 3 \times 10^{20}$, photons s⁻¹ 225 (c)

From Einstein's photoelectric effect equation,

$$\frac{hc}{\lambda} = \phi_0 + \frac{1}{2}mv^2$$
For $\lambda_1 = 3000$ Å,

$$\frac{hc}{3000 \times 10^{-10}} = \phi_0 + \frac{1}{2}m(3v)^2$$
 (i)
For $\lambda_1 = 6000$ Å,

$$\frac{hc}{6000 \times 10^{-10}} = \phi_0 + \frac{1}{2}mv^2$$
 (ii)
Now, on multiplying Eq. (ii) by 9 and subtracting
Eq. (i). from it, we get

$$8\phi_0 = 9 \frac{hc}{6000 \times 10^{-10}} - \frac{hx}{3000 \times 10^{-10}}$$
Subtracting the values, we get

$$\phi_0 = 1.23 \text{ eV}$$
Maximum speed of the photoelectrons will be for

the incident light of wavelength $\lambda = 3000$ Å. From Eq. (i)

$$\frac{1}{2}m(3v)^{2} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{3000 \times 10^{-10}} - 2.896$$
$$= 3.724 \times 10^{-19}$$
$$\therefore 3v = v_{\max} \left(\frac{2 \times 3.724 \times 10^{-19}}{9.1 \times 10^{-31}}\right)^{1/2}$$
$$= 9 \times 10^{5} \text{ ms}^{-1}$$

226 **(b)**

The energy of each photon is E = hv

Since the wavelength and frequency are related to the speed of light by

$$c = v\lambda$$

$$E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{632.8 \times 10^{-9}}$$

$$= 3.14 \times 10^{-19} \text{J}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$E = \frac{3.14 \times 10^{-19}}{1.602 \times 10^{-19}} = 1.96 \text{ eV}$$

The number of photons emitted per second is equal to the energy emitted by the laser each second divided by the energy of one photon

$$N = \frac{1.00 \times 10^{-3}}{3.14 \times 10^{-19}} = 3.18 \times 10^{15} \text{ photons s}^{-1}$$

$$hc = (6.626 \times 10^{-34})(3 \times 10^8)$$

$$= 1.99 \times 10^{-25} \text{ Jm} = 1.24 \times 10^3 \text{ eV nm}$$

If a light of wavelength λ nm is incident, energy of photon, in eV, is

$$E = \frac{1.24 \times 10^3}{2}$$

227 (a)

From Einstein's relation,

λ

$$eV_{s} = hv - W$$

As work function is a constant for a surface,
$$e(V_{s_{2}} - V_{s_{1}}) = h(v_{2} - v_{1})$$

$$V_{s_{2}} = V_{s_{1}} + \frac{h}{e}(v_{2} - v_{1})$$

$$= V_{s_{1}} + \frac{hc}{e}\left(\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}\right)$$

$$= 0.19 + 1240\left(\frac{1}{190} - \frac{1}{550}\right) = 4.47 \text{ V}$$

$$W = \frac{hc}{\lambda_{1}} - eV_{s_{1}} = \frac{1240}{550} - 0.19 = 2.07 \text{ eV}$$

$$hv_{\rm c} = W$$

 $v_{\rm e} = \frac{W}{h} = \frac{(2.07)(1.602 \times 10^{-19})}{6.626 \times 10^{-34}} \approx 500 \times 10^{12} \,{\rm Hz}$

228 **(d)**

Energy of photon, $E = \frac{hc}{\lambda}$ $=\frac{1.24\times10^3}{400}=3.1\,\mathrm{eV}$ Remaining energy = 3.1 - 0.31 = 2.79 eVEnergy lost in first collision is $(3.1) \times \left(\frac{10}{100}\right) = 0.31 \text{ eV}$ Remaining energy is 3.1 - 0.31 = 2.79 eVEnergy lost in second collision is $(2.79) \times \left(\frac{10}{100}\right) = 0.279 \text{ eV}$ Total energy lost in two collisions is (0.31) + (0.279)eV = 0.589 eVSo, from conservation of energy, we have $\frac{hc}{\lambda} = \phi + KE_{max}$ +energy lost in two collision $3.1 = 2.2 + KE_{max} + 0.589$ $KE_{max} = 0.31 \text{ eV}$ Total energy after second collision is (2.79 - 0.279) = 2.511 eVEnergy lost in third collision is $2.511 \times \frac{10}{100} = 0.2511 \text{ eV}$ Reaming energy = (2.511 - 0.2155)= 2.2599 eVEnergy lost in fourth collision $= \left(2.2599 \times \frac{10}{100}\right) = 0.2259 \text{ eV}$ Remaining energy = (2.2599 - 0.2259) = 2.034eV After the fourth collision, the electron does not have enough energy to overcome the work function, so it cannot come out 229 (d) If *P* is the power of point source of light, the intensity at a distance r is $I = \frac{P}{4\pi r^2}$ The energy intercepted by the metallic sphere is $E = \text{intensity} \times \text{projected area of sphere} = \frac{P}{4\pi r^2} \times$ πR^2 If *e* is the energy of the single photon and η the

efficiency of the photon to liberate an electron, the number of ejected electrons is

$$\eta \frac{PR^2}{4r^2e}$$

= $\frac{(10^{-6})(3.2 \times 10^{-3})(8 \times 10^{-3})^2}{4 \times (0.8)^2 \times (5 \times 1.6 \times 10^{-19})}$
= 10^5 electron/s⁻¹

The emission of electrons from a metallic sphere

leaves it positively charged. As the potential of the charged sphere begins to rise, it attracts emitted electrons. The emission of electrons will stop when the kinetic energy of the electrons is neutralised by the retarding potential of the sphere. So, we have

$$eV = KE_{max}$$

 $V = \left(\frac{KE_{max}}{e}\right)$

From Einstein's photoelectric equation, $KE_{max} = hv - \phi = (5 - 3) = 2 \text{ eV}$ The potential of a charged sphere is

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{R} = \frac{1}{4\pi\varepsilon_0} \left(\frac{ne}{R}\right)$$
$$\frac{1}{4\pi\varepsilon_0} \left(\frac{ne}{R}\right) = 2$$
$$n = \frac{4\pi\varepsilon_0 2R}{e}$$
$$= \frac{2 \times 8 \times 10^{-3}}{9 \times 10^9 \times 1.6 \times 10^{-19}} = 1.11 \times 10^{-19}$$

The photoelectric effect will stop when 1.11×10^7 electrons have been emitted The time taken by it to emit 1.11×10^7 electrons, $t = \frac{1.11 \times 10^7}{10^5} = 111s = 1.85$ min

 0^{7}

230 **(b)**

Pressure exerted by absorbed light $=\frac{1}{2}\left(\frac{s}{c}\right)$ Pressure exerted by reflected light $=\frac{1}{2}\left(\frac{2s}{c}\right)$ Total radiation pressure on the surface is

$$P_{\rm rad} = \frac{\frac{3}{2}S}{c} = \frac{1.5 \times 10^3}{3 \times 10^8} = 5 \times 10^{-6} \, \text{Pa}$$
$$\frac{P_{\rm rad}}{P_0} = \frac{5 \times 10^{-6}}{1 \times 10^5} = 5 \times 10^{-11}$$

231 (d)

Power of light received by the cone = $I(\pi R^2)$ Let number of photons hitting the cone per second is *n*

Then, $nE = I\pi R^2 \Rightarrow n = \pi R^2 I/E$ By symmetry, the net force on the cone will be vertically downward Force due to one photon:

 $f = 2\frac{h}{\lambda}\sin\theta$

232

This force is perpendicular to the surface of cone. Hence, net force on the cone will be

$$F = nf \sin \theta = n \left(2\frac{h}{\lambda} \sin \theta \right) \sin \theta$$
$$= \frac{\pi R^2 I}{c} (1 - \cos 2\theta)$$
(c)

$$Q = CV \Rightarrow ne = \frac{\varepsilon_0 A}{d} V$$
$$n = \frac{2.85 \times 10^{-12} \times 10}{0.5 \times 10^{-3} \times 1.6 \times 10^{-19}} \times 16$$
$$n = 8.85 \times 10^9$$

233 **(a)**

234

235

236

At any time *t* the location of electrons is shown as *P*. In two dimensional view of electron in *YZ*-plane, the situation is more clear

$$v = \sqrt{\frac{2KE}{m}} = \sqrt{\frac{2(hv - \phi)}{m}}$$

$$p = v \cos \theta \frac{2\pi m}{qB_0}$$

$$pqB_0 = 2\pi \cos \theta m \sqrt{\frac{2(hv - \phi)}{m}}$$

$$= 2\pi \cos \theta = \sqrt{2m(hv - \phi)}$$

$$V = \sqrt{p}$$

$$V = \sqrt{p}$$

$$X = v \cos \theta \times t$$

$$Y = \sqrt{p} = \sqrt{2} \sqrt{p} = \sqrt{2}$$

The energy of the incident photon is

$$E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3300 \times 10^{-10}}$$

= 3.75 eV
A will not emit photoelectrons because

A will not emit photoelectrons because energy of incident photon is less than work function of *A*

$$\frac{1}{2}mv^{2} = ev$$

$$v = \sqrt{\frac{2ev}{n}}$$

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2me}}$$

 $\lambda = \frac{1}{mv} = \frac{1}{\sqrt{2mev}}$
Fringe width $B = \frac{\lambda D}{d}$

$$=\frac{hD}{d\sqrt{2mev}}$$

238 **(b)**

Energy required,

 $E = ms\Delta\theta + mL$ = 2 × 10⁻⁹ × 4.2 × 10³ × 70 + 2 × 10⁻⁹ × 2.25 × 10⁶ = 5.088 × 10⁻³ J = 3.18 × 10¹⁶ eV

239 (a)

Using $2d \sin \theta = n\lambda$; where $\theta = (90 - i)$ $\Rightarrow 2d \sin(90 - i) = n\lambda \Rightarrow 2d \cos i = n\lambda$

240 (c)

$$\left[\sqrt{\frac{Ne^2}{m\epsilon_0}}\right] = \sqrt{\frac{\frac{1}{L^3} \times Q^2}{M \times \frac{Q^2}{L^2 \times F}}} = \frac{1}{T}$$

So, only (c) is dimensionally correct

241 **(1)**

Let *n* photons (each of frequency *f*) per second are emitted from source. Then power of source is P = nhf

But only 30% of the photons go towards mirrors Then force exerted on mirror is

$$F = 2\left[\frac{30}{100}n\right]\frac{h}{\lambda} = \frac{3}{5}\frac{nhf}{c} = \frac{3}{5}\frac{P}{c}$$

and this force should be equal to weight of mirror, so

$$\frac{3P}{5c} = 20 \times 10^{-3} \text{ g}$$

$$\Rightarrow P = \frac{5 \times 3 \times 10^8 \times 20 \times 10^{-3} \times 10}{3} = 10^8 \text{ W}$$

242 (4) The energy of each photon $=\frac{200 \text{ J/s}}{4 \times 10^{20} \text{/s}} = 5 \times$ 10⁻¹⁹ J Wavelength = $\lambda = \frac{hc}{E}$ $=\frac{(6.63 \times 10^{-34} \text{J} - \text{s}) \times (3 \times 10^8 \text{ m/s})}{(5 \times 10^{-19} \text{ J})}$ $= 4.0 \times 10^{-7} \text{ m}$ 243 (7) $\frac{hc}{\lambda} = \phi + eV$ $\frac{1240(eV)(nm)}{200(nm)} = 4.7(eV) + eV$ $\frac{1240}{200}e = 4.7e + eV$ $6.2 - 4.7 = V \quad \therefore V = 1.5 \ volt$ $\frac{1}{4\pi\varepsilon_0}\frac{Q}{R} = 1.5$ $(9 \times 10^9) \frac{Ne}{1} = 1.5$ $9 \times 10^{11} Ne = 1.5$ $N = \frac{1.5}{9 \times 10^{11} \times 1.6 \times 10^{-19}} = \frac{15}{16} \times \frac{1}{9} \times 10^{8}$ $=\frac{5}{3\times16}\times10^8=\frac{50}{48}\times10^7$ $\therefore Z = 7$ 244 (3) Given $\lambda \times 200 \text{ nm} = 2 \times 10^{-7} \text{ m}$ Energy of one photon is $\frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2 \times 10^{-7}} = 9.945 \times 10^{-19}$ Number of photons is $\frac{1 \times 10^{-7}}{9.945 \times 10^{-19}} = 1 \times 10^{11}$ Hence, number of photoelectrons emitted is $\frac{1 \times 10^{11}}{10^4} = 1 \times 10^7$ Net amount of +ve change 'q' developed due to the outgoing electrons= $1 \times 10^7 \times 1.6 \times 10^{-19} =$ $1.6 \times 10^{-12} \text{ C}$ Now potential developed at the centre as well as at the surface due to these charges is $\frac{Kq}{r} = \frac{9 \times 10^9 \times 1.6 \times 10^{-12}}{4.8 \times 10^{-2}} = 3 \times 10^{-1} \,\mathrm{V}$

Speed of photon (*c*) = $3 \times 10^8 \text{ ms}^{-1}$. Let λ be the wavelength of the photon. The de Broglie wavelength of the electron is h/mvGiven $\lambda = \frac{h}{mv}$. Now

$$\frac{\text{K. E. of photon}}{\text{K. E. of electron}} = \frac{hf}{(1/2)mv^2} = \frac{2hc}{mv^2\lambda} = \frac{2c}{v}$$

$$\left(\because \lambda = \frac{h}{mv} \right)$$

$$= \frac{2 \times 3 \times 10^8}{1.5 \times 10^8} = 4$$
246 (7)
$$\begin{array}{c} +120 \ e \ r = 10 \ fm \ +e \ (9 \times 10^9)(120e)(e) \ = p^2 \ 2m \ \lambda = \frac{h}{p} \ \because p^2 = \frac{h^2}{\lambda^2}$$

$$2\left(\frac{5}{3} \times 10^{-27}\right) 10^{15}(9 \times 10^9)(12)e^2 = \frac{h^2}{\lambda^2}$$

$$(120)(3)10^{-27+15+9} \ \lambda^2 = (4.2)^2 \times 10^{-30} \ \lambda^2 = \frac{4.2 \times 4.2 \times 10^{-30}}{360 \times 10^{-3}} = \frac{42 \times 42}{360} \times 10^{-29} \ = 7^2 \times 10^{-30} \Rightarrow \lambda = 7 \times 10^{-15}m = 7 \ fm$$
247 (1)
$$\lambda = 663 \times 10^{-9} \text{m}, \theta = 60^\circ, n = 1.0 \times 10^{19} \ P = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{6.63 \times 10^{-9}} = 10^{-27} \ \text{Force exerted on the wall is} \ n \times 2 \times P \cos \theta = 2 \times 1 \times 10^{19} \times 10^{-27} \times \frac{1}{2} \ = 1 \times 10^{-8} \ \text{N}$$
248 (1)
$$r \propto \frac{P}{q} \left(\text{since}, r = \frac{P}{Bq} \right) \ \text{Where } P = \text{momentum, Given } r_a = \frac{1}{2}r_e \ \frac{P_a}{B2e} = \frac{1}{2} \left(\frac{P_e}{Be}\right) \ \text{or} \ P_a = P_e \ \lambda \propto \frac{1}{P} \left(\text{since}, \lambda = \frac{h}{p} \right)$$

So, $\lambda \alpha = \lambda_e$ or n = 1249 (9) Given: Fringe width, $y = 1.0 \text{ mm} \times 2 = 2.0 \text{ mm}$ $d = 0.24 \text{ mm}, W_0 = 2.2 \text{ eV}, D = 1.2 \text{ m}$ $y = \frac{\lambda D}{d} \text{ or } \lambda = \frac{yd}{D}$ $= \frac{2 \times 10^{-3} \times 0.24 \times 10^{-3}}{1.2} = 4 \times 10^{-7} \text{ m}$ $E = \frac{hc}{\lambda} = \frac{4.14 \times 10^{-15} \times 3 \times 10^8}{4 \times 10^{-7}} = 3.105 \text{ eV}$ Stopping potential $eV_0 = 3.105 - 2.2 = 0.905 \text{ eV}$ $V_0 = \frac{0.905}{1.6 \times 10^{-19}} \times 1.6 \times 10^{-19} \text{ V} = 0.905 \text{ V}$ 250 (5) For K_{α} X-ray, $(Z - 1)^2 \lambda = \text{constant. Hence},$ $(9 - 1)^2 \lambda = (Z - 1)^2 (4\lambda)$ $(Z - 1)^2 = \frac{64}{4} = 16$ Z - 1 = 4 or Z = 5

