

5.CONTINUITY AND DIFFERENTIABILITY

Single Correct Answer Type

1. Which of the following functions is non-differentiable?
a)
$$f(x) = (e^x - 1)|e^{2x} - 1| \ln R$$

b) $f(x) = \frac{x^2 - 1}{x^2 + 1} \ln R$
 $f(x) = \begin{cases} ||x - 3| - 1|, x < 3 \\ \frac{3}{3}(x) - 2, x \ge 3 \end{cases}$ at $x = 3$
Where [] represents the greatest integer function
d) $f(x) = 3(x - 2)^{1/3} + 3 \ln R$
2. Given that $\prod_{n=1}^{n} \cos \frac{x}{2n} = \frac{\sin x}{2^n \sin(\frac{\pi}{2n})}$ and
 $f(x) = \begin{cases} \lim_{n \to \infty} \sum_{n=1}^{n} \frac{1}{2^n} \tan(\frac{x}{2n}), x \in (0, \pi) - \{\frac{\pi}{2}\} \\ \frac{2}{\pi}, x = \frac{\pi}{2} \end{cases}$
Then which one of the following is true?
a) $f(x)$ has non-removable discontinuity of finite type at $x = \frac{\pi}{2}$
c) $f(x)$ has non-removable discontinuity of finite type at $x = \frac{\pi}{2}$
c) $f(x)$ has non-removable discontinuity of infinite type at $x = \frac{\pi}{2}$
c) $f(x)$ has non-removable discontinuity of infinite type at $x = \frac{\pi}{2}$
d) $f(x)$ has non-removable discontinuity of infinite type at $x = \frac{\pi}{2}$
d) $f(x)$ has non-removable discontinuity of infinite type at $x = \frac{\pi}{2}$
d) $f(x)$ is continuous at $x = -2$ and $at x = -2$
d) $f(x)$ is continuous at $x = -2$ and $at x = -2$
d) $f(x)$ is continuous at $x = -2$ and $at x = -2$
d) $f(x)$ is discontinuous at $x = -2$ and $at x = -2$
d) $f(x)$ is discontinuous at $x = -2$ and $at x = -2$
d) $f(x)$ is discontinuous at $x = -2$ and $at x = -2$
d) $f(x)$ is discontinuous at $x = -2$ and $at x = -2$
d) $f(x)$ is discontinuous at $x = -2$ and $at x = -2$
d) $f(x) = 10 infinite discontinuity d) No discontinuity at $x = 0$
5. $f(x) = \lim_{n \to \infty} \sin^{2n}(nx) + [x + \frac{1}{2}]$, where [.] denotes the greatest integer function is
a) Continuous at $x = 1$ and $x = 3/2$
d) Discontinuous at $x = 1$ and $x = 3/2$
d) Discontinuous at $x = 1$ and $x = 3/2$
d) Discontinuous at $x = 1$ and $x = 3/2$
f(x) $= \left\{ \log_{(xx-x)}(x^2 - 2x + 5), \frac{3}{4} < x < 1$ and $x > 1$
 $f(x) = \left\{ \log_{(xx-x)}(x^2 - 2x + 5), \frac{3}{4} < x < 1$ and $x > 1$
 $f(x) = \left\{ \log_{(xx-x)}(x^2 - 2x + 5), \frac{3}{4} < x < 1$ and $x > 1$
 $f(x) = \left\{ \log_{(xx-x)}(x^2 - 2x + 5), \frac{3}{4} < x < 1$ and $x > 1$
 $f(x) = \left\{ \log_{(xx-x)}(x^2 - 2x$$

	a) 1 b) 2	c) 3	d) None of these				
9.	The set of all points, where $f(x) = \sqrt[3]{x^2 x } - x - 1$	is not differentiable, is					
	a) $\{0\}$ b) $\{-1, 0, 1\}$	c) {0,1}	d) None of these				
10.	For a real number y, let $[y]$ denotes the greatest inte	eger less than or equal to y .	Then the function				
	$f(x) = \frac{\tan(\pi [x-\pi])}{1}$ is						
	$f(x) = \frac{1}{1+[x]^2}$ 13						
	a) Discontinuous at some x						
	b) continuous at all x, but the derivative $f'(x)$ does not exist for some x						
	c) $f'(x)$ exists for all x, but the derivative $f'(x_0)$ doe	es not exist second for some	e x				
11	d) $f'(x)$ exists for all x						
11.	$f(x) = [x^2] - \{x\}^2$, where [.] and {.} denote the greater of t	itest integer function and ti	në fractional part,				
	respectively, is a) Continuous at $x = 1$ 1	b) Continuous at $\kappa = -11$	but not at $\kappa = 1$				
	a) Continuous at $x = 1, -1$	d) Discontinuous at $x = -1$	and $x = -1$				
12	If $f(x) = \cos \pi (x + x)$ (where [] denotes the arc	u) Discontinuous at $x = 1$	anu $x = -1$				
12.	a) Continuous at $r = 1/2$	b) Continuous at $x = 0$					
	c) Differentiable in $(-1, 0)$	d) Differentiable in $(0, 1)$					
13.	$\int \sin x dx = 0$						
	If $f(x) = \{\cos x - x - 1 , x \ge 0 \text{ then } g(x) = f(x) \}$	is non-differentiable for					
	a) No value of <i>x</i>	b) Exactly one value of <i>x</i>					
	c) Exactly three values of <i>x</i>	d) None of these					
14.	If $f(x) = \begin{cases} e^{-1/x^2}, x > 0\\ 0, x \le 0 \end{cases}$, then $f(x)$ is						
	a) Differentiable at $x = 0$	b) Continuous but not diff	ferentiable at $x = 0$				
	c) Discontinuous at $x = 0$	d) None of these					
15.	The function $f(x) = [x]^2 - [x^2]$ (where [y] is the group	eatest integer less than or e	equal to y), is discontinuous				
	at		14				
	a) All integers	b) All integers except 0 ar	10 1				
10	c) All integers except 0 If $f(u) = arr(ain^2 u + ain u + 1)$ has smatthe forward	d) All integers except 1					
10.	If $f(x) = \operatorname{sgn}(\operatorname{sm}^2 x - \operatorname{sm} x - 1)$ has exactly four points.	ints of discontinuity for $x \in$	$(0, n\pi), \pi \in \mathbb{N}$, then				
	a) Minimum value of n is 5	d) None of those	0				
17	If $f(2 + r) = f(-r)$ for all $r \in R$ then differentiability	ity at $r = 4$ implies different	ntiahility at				
17.	a) $r = 1$ b) $r = -1$	r = -2	d) Cannot say anything				
18	The left-hand derivatives of $f(x) = [x] \sin(\pi x)$ at x	= k k an integer is	u) cannot say anything				
10.	a) $(-1)^k (k-1)\pi$ b) $(-1)^{k-1} (k-1)\pi$	c) $(-1)^k k\pi$	d) $(-1)^{k-1}k\pi$				
19.	Which of the following is true about						
	$((x-2))(x^2-1)$						
	$\int \frac{1}{ x-2 } \left(\frac{1}{ x^2+1 }\right), x \neq 2$						
	$f(x) = \begin{cases} 1 & 1 \\ 3 & 1 \end{cases}$						
	$\left(\frac{1}{5}\right)$; $x = 2$						
	a) $f(x)$ is continuous at $x = 2$						
	b) $f(x)$ has removable discontinuity at $x = 2$						
	c) $f(x)$ has non-removable discontinuity at $x = 2$						
	d) Discontinuity at $x = 2$ can be removed by redefine	ing function at $x = 2$					
20.	$f(x) = [\sin x] + [\cos x], x \in [0, 2\pi]$, where [.] denote	es the greatest integer funct	tion. The total number of				
	points, where $f(x)$ is non-differentiable, is equal to						
. ·	a) 2 b) 3	c) 5	d) 4				
21.	Let $f(x) = x - 1 $, then points where $f(x)$ is not d	itterentiable, is/(are)	1) 4				
	a) 0, ±1 b) ±1	cj U	a) 1				

22. The number of values of $x \in [0, 2]$ at which $f(x) = \left|x - \frac{1}{2}\right| + |x - 1| + \tan x$ is not differentiable at a) 0 c) 3 d) None of these 23. If $f(x) = \begin{cases} x - 1, \ x < 0 \\ x^2 - 2x, \ x > 0 \end{cases}$ then a) f(|x|) is discontinuous at x = 0b) f(|x|) is differentiable at x = 0c) |f(x)| is non-differentiable at x = 0, 2d) |f(x)| is continuous at x = 024. The function defined by $f(x) = (-1)^{[x^3]}$ ([.] denotes the greatest integer function) satisfies a) Discontinuous for $x = n^{1/3}$, where *n* is any integer b) f(3/2) = 1c) f'(x) = 1 for -1 < x < 1d) None of these 25. Given that f(x) = xg(x)/|x|, g(0) = g'(0) = 0 and f(x) is continuous at x = 0. Then the value of f'(0)a) Does not exist b) Is −1 c) Is 1 d) Is 0 26. The number of points, where the function $f(x) = \max(|\tan x|, \cos |x|)$ is non-differentiable in the interval $(-\pi,\pi)$, is a) 4 d) 2 27. If $f(x) = \begin{cases} 2x - [x] + x \sin(x - [x]); x \neq 0 \\ 0; & x = 0 \end{cases}$, where [.] denotes the greatest integer function, then *n* cannot be a) 4 b) 2 d) 6 c) 5 28. Let $f: R \to R$ be given by f(x) = 5x, if $x \in Q$ and $f(x) = x^2 + 6$ if $x \in R \sim Q$, then a) f is continuous at x = 2 and x = 3c) f is continuous at x = 2 but not at x = 3d) f is continuous at x = 3 but not at x = 2^{29.} If $f(x) = \frac{x - e^x + \cos 2x}{x^2}$, $x \neq 0$, is continuous at x = 0, then Where [x] and $\{x\}$ denote the greatest integer and fractional part function, respectively a) f(0) = 5/2c) $\{f(0)\} = -0.5$ d) $[f(0)]{f(0)} = -1.5$ b) [f(0)] = -2Let f(x) be a function for all $x \in R$ and f'(0) = 1. Then $g(x) = f(|x|) - \sqrt{\frac{1 - \cos 2x}{2}}$, at x = 030. a) Is differentiable at x = 0 and its value is 1 b) Is differentiable at x = 0 and its value is 0 c) Is non-differentiable at x = 0 as its graph has sharp turn at x = 0d) Is non-differentiable at x = 0 as its graph has vertical tangent at x = 031. If $f(x) = \begin{cases} x^a \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous but non-differentiable at x = 0, then a) $a \in (-1, 0)$ c) $a \in (0, 1]$ b) $a \in (0, 2]$ d) $a \in [1, 2)$ 32. Let $f(x) = \begin{cases} \sin 2x, 0, x \le \pi/6 \\ ax + b, \pi/6 < x < 1 \end{cases}$. If f(x) and f'(x) are continuous, then a) $a = 1, b = \frac{1}{\sqrt{2}} + \frac{\pi}{6}$ b) $a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$ c) $a = 1, b = \frac{\sqrt{3}}{2} - \frac{\pi}{6}$ d) None of these $f(x) = \begin{cases} 3 - \left[\cot^{-1} \frac{2x^3 - 3}{x^2} \right] & \text{if } x > 0 \\ \{x^2\} \cos(e^{1/x}), & \text{if } x < 0 \end{cases} \text{ is continuous at } x = 0, \text{ then the value of } f(0), (\text{where } [x] \text{ and } \{x\} = 0 \end{cases}$ 33. denotes the greatest integer and fractional part functions, respectively) d) None of these a) 0 b) 1 c) −1 The number of points of non-differentiability for $f(x) = \max\{||x| - 1|, 1/2|\}$ is 34. c) 2 d) 5 a) 4 35. If $f(x) = \begin{cases} x^2 - ax + 3, x \text{ is rational} \\ 2 - x, x \text{ is irrational} \end{cases}$ is continuous at exactly two points, then the possible values of *a* are c) $(-\infty, -1) \cup (3, \infty)$ b) $(-\infty, 3)$ d) None of these a) (2,∞) 36. Let $f: R \to R$ be a function defined by $f(x) = \max\{x, x^3\}$. The set of all point where f(x) is NOT differentiable is b) $\{-1, 0\}$ d) $\{-1, 0, 1\}$ a) $\{-1, 1\}$ c) {0,1}

37. A point where function f(x) is not continuous where $f(x) = [\sin[x]]$ in $(0, 2\pi)$; [.] denotes the greatest integer $\leq x$ is a) (3, 0) b) (2, 0) c) (1,0) d) None of these 38. Let [·] denotes the greatest integer function and $f(x) = [\tan^2 x]$, then b) f(x) is continuous at x = 0a) $\lim_{x\to 0} f(x)$ does not exist d) f''(0) = 1c) f(x) is not differentiable at x = 039. A function f(x) is defined as $f(x) = \begin{cases} x^m \sin \frac{1}{x}, x \neq 0, m \in N \\ 0, & \text{if } x = 0 \end{cases}$. The least value of *m* for which f'(x) is continuous at x = 0 is a) 1 b) 2 cy 3 The function $f(x) = \frac{(3^x - 1)^2}{\sin x \cdot \ln(1 + x)}$, $x \neq 0$, is continuous at x = 0. Then the value of f(0) is c) 3 d) None 40. b) $(\log_e 3)^2$ a) $2 \log_e 3$ d) None of these c) log_e 6 41. The function $f(x) = (x^2 - 1)|x^2 - 3x + 2| + \cos(|x|)$ is NOT differentiable at a) –1 b) 0 c) 1 d) 2 42. A function f(x) is defined as $f(x) = \begin{cases} \sin x, x \text{ is rational} \\ \cos x, x \text{ is irrational} \\ \cos x, x \text{ is irrational} \end{cases}$ $a) x = n\pi + \pi/4, n \in I \qquad b) x = n\pi + \pi/8, n \in I \qquad c) x = n\pi + \pi/6, n \in I \qquad d) x = n\pi + \pi/3, n \in I$ $43. f(x) = \begin{cases} \frac{x}{2x^2 + |x|}, x \neq 0 \\ 1, & x = 0 \end{cases}$ then f(x) is a) Continuous but non-differentiable at x = 0b) Differentiable at x = 0c) Discontinuous at x = 0d) None of these 44. If both f(x) and g(x) are differentiable functions at $x = x_0$, then the function defined as h(x) = maximum ${f(x), g(x)}:$ a) Is always differentiable at $x = x_0$ b) Is never differentiable at $x = x_0$ c) Is differentiable at $x = x_0$ provided $f(x_0) \neq g(x_0)$ d) Cannot be differentiable at $x = x_0$ if $f(x_0) = g(x_0)$ Let $f(x) = \begin{cases} 1 - \sqrt{1 - x^2}, & \text{if } -1 \le x \le 1\\ 1 + \log \frac{1}{x}, & \text{if } x > 1 \end{cases}$ is 45. a) Continuous and differentiable at x = 1b) Continuous but not differentiable at x = 1c) Neither continuous nor differentiable at x = 1d) None of these 46. The function $f(x) = \sin^{-1}(\cos x)$ is b) Differentiable at $\frac{3\pi}{2}$ a) Not differentiable at $x = \frac{\pi}{2}$ c) Differentiable at x = 0d) Differentiable at $x = 2\pi$ 47. Which of the following statement is always true? ([.] represents the greatest integer function) a) If f(x) is discontinuous, then |f(x)| is discontinuous b) If f(x) is discontinuous, then f(|x|) is discontinuous c) f(x) = [g(x)] is discontinuous when g(x) is an integer d) None of these If $f(x) = \begin{cases} ax^2 + 1, x \le 1\\ x^2 + ax + b, x > 1 \end{cases}$ is differentiable at x = 1, then 48. c) a = 2, b = 0 d) a = 2, b = 1a) a = 1, b = 1b) a = 1, b = 049. If $f(x) = x^3 \text{ sgn } x$, then a) *f* is derivable at x = 0b) *f* is continuous but not derivable at x = 0c) L.H.D. at x = 0 is 1 d) R.H.D. at x = 0 is 1 50. Let $f(x) = \begin{cases} g(x)\cos\frac{1}{x}, x \neq 0\\ 0, x = 0 \end{cases}$, where g(x) is an even function differentiable at x = 0, passing through the origin. The f'(0)

a) Is equal to 1 b) Is equal to 0 c) Is equal to 2 d) Does not exist 51. The function $f(x) = \frac{4-x^2}{4x-x^3}$ is a) Discontinuous at only one point b) Discontinuous exactly at two points a) Discontinuous at only one point b) Discontinuous exactly at two points c) Discontinuous exactly at three points d) None of these If $f(x) = \frac{\tan(\frac{\pi}{4}-x)}{\cot 2x}$, $(x \neq \pi/4)$, is continuous at $x = \pi/4$, then the value of $f(\frac{\pi}{4})$ is a) 1 b) 1/2c) 1/3d) -1The function $f(x) = [x] \cos(\frac{2x-1}{2})\pi$, where [.] denotes the greatest integer function, is discontinuous at 52. 53. b) All integer points a) All x c) No xd) x which is not an integer 54. Let $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then which of the following is not true? a) Discontinuous at infinite number of points b) Discontinuous at $x = \frac{\pi}{2}$ c) Discontinuous at $x = -\frac{\pi}{2}$ d) None of these 55. Let a function f(x) be defined by $f(x) = \frac{x - |x - 1|}{x}$, then which of the following is not true a) Discontinuous at x = 0b) Discontinuous at x = 1c) Not differentiable at x = 0d) Not differentiable at x = 156. The function $f(x) = \sin(\log_e |x|)$, $x \neq 0$, and 1 if x = 0a) Is continuous at x = 0b) Has removable discontinuity at x = 0c) Has jump of discontinuity at x = 0d) Has oscillating discontinuity at x = 057. Number of points where the function $f(x) = \begin{cases} 1 + \left\lfloor \cos\frac{\pi x}{2} \right\rfloor, 1 < x \le 2\\ 1 - \{x\}, 0 \le x < 1\\ |\sin \pi x|, -1 \le x < 0 \end{cases} \text{ and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and } f(1) = 0 \text{ is continuous but non-differentiable is/are (where [·] and f(1) = 0 \text{ is continuous but non-differentiable is/are$ {·} represent greatest integer and fractional part function, respectively) d) None of these a) 0 b) 1 c) 2 58. If f(x) = |1 - x|, then the points where $\sin^{-1}(f|x|)$ is non-differentiable are a) {0, 1} $f(x) = \begin{cases} x^2 \left(\frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}\right) , x \neq 0. \text{ Then} \\ 0, x = 0 \end{cases}$ c) {0, 1, −1} d) None of these 59. a) f(x) is discontinuous at x = 0b) f(x) is continuous but non-differentiable at x = 0c) f(x) is differentiable at x = 0d) f'(0) = 260. a) 1 Let $y = f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. Then which of the following can best represent the graph of y = f(x)? d) None of these 61. a) \xrightarrow{y} (0,1) (If $f(x) = \begin{cases} |1 - 4x^2|, 0 \le x < 1\\ [x^2 - 2x], 1 \le x < 2 \end{cases}$, where [.] denotes the greatest integer function, then f(x) is 62.

Discuss the continuity and differentiability of f(x) in [0, 2)

	a) Differentiable for all x	blo at $x = 1$	b) Continuous at $x = 1$		
63.	(<i>f</i>) $f(x) = (x^2 - 4) x^3 - 6 x^3 -$	$x^2 + 11x - 6 + \frac{x}{x}$ then	u) None of these	be function $f(r)$ is not	
00.	$\frac{differentiable is}{differentiable is}$	x + 11x + 0 + 1 + x , then	the set of point at which th		
	a) $\{-2, 2, 1, 3\}$	h) $\{-2, 0, 3\}$	c) $\{-2, 2, 0\}$	d) {1 3}	
64.	$f(x) = \{x\}^2 - \{x^2\}(\{.\}\} de$	notes the fractional part fu	inction)	u) [1,5]	
	a) $f(x)$ is discontinuous a	it infinite number of intege	rs but not all integers		
	b) $f(x)$ is discontinuous a	t finite number of integers			
	c) $f(x)$ is discontinuous a	it all integers			
	d) $f(x)$ is continuous at a	ll integers			
65.	If $f(x) = \begin{cases} e^{x^2+x}, x > 0\\ ax+b, x \le 0 \end{cases}$ is	s differentiable at $x = 0$, th	en		
	a) $a = 1, b = -1$	b) $a = -1, b = 1$	c) $a = 1, b = 1$	d) $a = -1, b = -1$	
66.	Let $g(x)$ be a polynomial	of degree one and $f(x)$ be o	defined by $f(x) = \begin{cases} g(x), x \\ x ^{\sin x}, \end{cases}$	$x \le 0$ x > 0. If $f(x)$ is continuous	
	satisfying $f'(1) = f(-1)$,	then $g(x)$ is			
	a) $(1 + \sin 1)x + 1$	b) $(1 - \sin 1)x + 1$	c) $(1 - \sin 1)x - 1$	d) $(1 + \sin 1)x - 1$	
67.	If $f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10}$ for $x = \frac{x^2 - bx + 25}{x^2 - 7x + 10}$	\neq 5 is continuous at $x = 5$,	then the value of $f(5)$ is		
	a) 0	b) 5	c) 10	d) 25	
68.	Let $f(x) = [x]$ and $g(x) =$	$= \begin{cases} 0, & x \in Z \\ x^2, & x \in R - Z \end{cases}$. Then whi	ch of the following is not tr	ue ([.] represents greatest	
	integer function)				
	a) $\lim_{x\to 1} g(x)$ exists but	g(x) is not continuous at x	= 1		
	b) $\lim_{x \to 1} f(x)$ does not exist	and $f(x)$ is not continuous	s at $x = 1$		
	c) gof is a discontinuous	function			
60	d) fog is a discontinuous $(r-1)^n$	function			
09.	$\operatorname{Let} g(x) = \frac{(x-1)}{\log \cos^m(x-1)}; 0$	< x < 2, <i>m</i> and <i>n</i> are integ	gers, $m \neq 0, n > 0$, and let p	be the left hand derivative	
	of $ x - 1 $ at $x = 1$. If $\lim_{x \to 1} x = 1$.	$g_{x \to 1^+} g(x) = p$, then			
-	a) $n = 1, m = 1$	b) $n = 1, m = -1$	c) $n = 2, m = 2$	d) $n > 2, m = n$	
70.	$\operatorname{Let} f(x) = \begin{cases} \min\{\{x, x^2\} \\ \max\{2x, x^2 - 1\} \end{cases}$	$x \ge 0$ (-1)x < 0. Then which of th	e following is not true		
	a) $f(x)$ is continuous at x	= 0	b) $f(x)$ is not differentiable at $x = 1$		
71	c) $f(x)$ is not differentiable	le at exactly three point	d) None of these n^2		
/1.	Let <i>f</i> be a continuous fun	ction on R such that $f(1/4)$	$n) = (\sin e^n)e^{-n^2} + \frac{n}{n^2 + 1}.$	Then the value of $f(0)$ is	
	a) 1	b) 1/2	c) 0	d) None of these	
72.	$f(x) = \max\{x/n, \sin \pi x \ \text{cannot be} \}$	$ \}, n \in N$ has maximum points	ints of non-differentiability	for $x \in (0, 4)$, then n	
	a) 4	b) 2	c) 5	d) 6	
73.	If $f(x) = \int \frac{8^{x} - 4^{x} - 2^{x} - 4^{x} - 4^{x} - 2^{x} - 4^{x} $	$+\frac{1}{2}, x > 0$			
	$e^x \sin x + \pi x + $	$\lambda \ln 4, x \leq 0$			
	Is continuous at $x = 0$. The	ien the value of λ is			
	a) $4 \log_e 2$	b) 2 log _e 2	c) $\log_e 2$	d) None of these	
74.	$f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n}-1}{(x-1)^{2n}+1}$	s discontinuous at			
75	a) $x = 0$ only	b) $x = 2$ only	c) $x = 0$ and 2	d) None of these	
75.	Let $f(x) = \lim_{n \to \infty} \frac{(x^2 + 2x)}{(x^2 + 2x)}$	$\frac{+3+\sin \pi x}{+3+\sin \pi x}$, then			
	a) $f(x)$ is continuous and b) $f(x)$ is continuous but	not differentiable for all $x \in R$	$\in R$		
	$f(x)$ is continuous but not unreferitable for all $x \in K$				

	c) $f(x)$ is discontinuous a d) $f(x)$ is discontinuous a	at infinite number of points at finite number of points	S				
76.	Which of the following fu	nction is not differentiable	at x = 1?	1 11			
	a) $f(x) = (x^2 - 1) (x - 1) $	x - 1	b) $f(x) = \sin(x - 1) - d$) None of these	x - 1			
77	f(x) = tan(x - 1) + 1 If $x + 4 y = 6y$ then y a	x = 1 is a function of x is	uj Nolle of tilese				
	a) Continuous at $x = 0$	b) Derivable at $x = 0$	c) $\frac{dy}{dt} = \frac{1}{2}$ for all r	d) None of these			
70	Which of the following fu	b) Derivable at $x = 0$	$\int_{dx}^{dx} = \frac{1}{2}$ for an x	P([.] represents greatest			
70.	integer function)?						
	a) tan <i>x</i>	b) <i>x</i> [<i>x</i>]	c) $\frac{ x }{x}$	d) $\sin[\pi x]$			
79.	The function $f(x) = \{x\}$ s part function, is discontin	$\sin(\pi[x])$, where [.] denotes $\pi(x)$ where $\pi(x)$	s the greatest integer functi	on and {.} is the fractional			
	a) All <i>x</i> c) No <i>x</i>		b) All integer pointsd) x which is not an integ	er			
80.	The value of $f(0)$, so that	the function $f(x) = \frac{2x - \sin x}{2x + \tan x}$	$\frac{1}{x} \frac{1}{x}$ is continuous at each p	oint in its domain, is equal			
	to a) 2	h) 1/3	c) 2/3	d) –1/3			
81.	Which of the following fu	nctions is differentiable at	x = 0?	uj 175			
-	a) $\cos(x) + x $	b) $\cos(x) - x $	c) $\sin(x) + x $	d) $\sin(x) - x $			
82.	The number of points $f(x)$	$x) = \begin{cases} [\cos \pi x], \ 0 \le x \le \\ 2x - 3 [x - 2], 1 < z \end{cases}$	$\frac{1}{x \leq 2}$ is discontinuous at ([.] denotes the greatest			
	integer function)						
	a) Two points	b) Three points	c) Four points	d) No points			
83.	If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$,	then $f(x)$ is					
	a) Continuous on $[-1, 1]$ (-1, 1)	and differentiable on	b) Continuous $[-1, 1]$ and $(-1, 0) \cup (0, 1)$	l differentiable on			
	c) Continuous and different	entiable on $[-1, 1]$	d) None of these				
84.	If $f(x) = \begin{cases} \frac{1- x }{1+x}; x \neq -1\\ 1; x = -1 \end{cases}$,	then $f([2x])$ where $[\cdot]$ repr	resents the greatest integer	function is			
	a) Discontinuous at $x = -$	-1	b) Continuous at $x = 0$				
	c) Continuous at $x = 1/2$	•	d) Continuous at $x = 1$				
85.	Let $f(x)$ be defined in the	e interval [0, 4] such that					
	$f(x) = \begin{cases} 1 - x, 0 \le x \le 1\\ x + 2, 1 < x < 2\\ 4 - x, 2 < x < 4 \end{cases}$						
	Then number of points w	where $f(f(x))$ is discontinu	ious is				
	a) 1	b) 2	c) 3	d) None of these			
86.	If $f(x) = \frac{a \cos x - \cos bx}{x^2}$, $x = \frac{1}{2}$	$\neq 0$ and $f(0) = 4$ is continuous	uous at $x = 0$, then the order	ered pair (<i>a</i> , <i>b</i>) is			
	a) (±1,3)	b) (1, ±3)	c) (-1,-3)	d) (1, 3)			
87.	Let $f(x) = \lim_{n \to \infty} \frac{\log(2+x)}{2}$	$\frac{x)-x^{2n}\sin x}{1+x^{2n}}$. Then					
	a) f is continuous at $x =$	1	b) $\lim_{x \to 1^+} f(x) = \log 3$				
	c) $\lim_{x \to 1^+} f(x) = -\sin 1$		d) $\lim_{x \to 1^{-}} f(x)$ does not exis	t			
88.	The set of points where <i>x</i>	$z^2 x $ is thrice differentiable	e is				
	a) <i>R</i>	b) $R - \{0, \pm 1\}$	c) $R - \{0\}$	d) None of these			

89. Let $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, x < 4 \\ a+b, x = 4 \end{cases}$. Then f(x) is continuous at x = 4 when, $\frac{x-4}{|x-4|} + b, x > 4$ a) a = 0, b = 0 b) a = 1, b = 1 c) a = -1, b = 1 d) a = 1, b = -190. If $f(x) = \begin{cases} x^3, x^2 < 1 \\ x, x^2 \ge 1 \end{cases}$, then f(x) is differentiable at a) $(-\infty, \infty) - \{1\}$ b) $(-\infty, \infty) \sim \{1 - 1\}$ c) $(-\infty, \infty) \sim \{1 - 1, 0\}$ d) $(-\infty, \infty) \sim \{-1\}$ 91. If $f(x) = [\log_e x] + \sqrt{\{\log_e x\}}, x > 1$, where [.] and {.} denote the greatest integer function and the fractional part function, respectively, then a) f(x) is continuous but non-differentiable at x = e

- b) f(x) is differentiable at x = e
- c) f(x) is discontinuous at x = e
- d) None of these

Multiple Correct Answers Type

92. If $f(x) = \begin{cases} (\sin^{-1} x)^2 \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$ then a) f(x) is continuous everywhere in $x \in (-1, 1)$ b) f(x) is discontinuous in $x \in [-1, 1]$ c) f(x) is differentiable everywhere in $x \in (-1, 1)$ d) f(x) is non-differentiable nowhere in $x \in [-1, 1]$ 93. Which of the following function is thrice differentiable at x = 0? For event table at x = 0? c) $f(x) = |x| \sin^3 x$ d) $f(x) = x |\tan^3 x|$ b) $f(x) = x^3 |x|$ a) $f(x) = |x^3|$ 94. A function f(x) satisfies the relation $f(x + y) = f(x) + f(y) + xy(x + y) \forall x, y \in R$. If f'(0) = -1, then a) f(x) is a polynomial function b) f(x) is an exponential function c) f(x) is twice differentiable for all $x \in R$ d) f'(3) = 895. Let f(x) = [x] and $g(x) = \begin{cases} 0, x \in Z \\ x^2, x \in R - Z \end{cases}$ ([.] represents greatest integer function). Then a) $\lim_{x \to 1} g(x)$ exists but g(x) is not continuous at x = 1 b) f(x) is not continuous at x = 1d) *f o*g is continuous for all *x* c) gof is continuous for all x 96. Let $h(x) = \min\{x, x^2\}$, for every real number of *x*, then a) *h* is continuous for all *x* b) *h* is differentiable for all *x* c) h'(x) = 1, for all x > 1d) *h* is not differentiable at two values of *x* 97. Let $f: R \to R$ be any function and $g(x) = \frac{1}{f(x)}$. Then which of following is/are not true a) g is onto if f is onto b) g is one-one if *f* is one-to-one c) g is continuous if *f* is continuous d) g is differentiable if *f* is differentiable 98. The function $f(x) = \max\{(1 - x), (1 + x), 2\}, x \in (-\infty, \infty)$ is a) Continuous at all points b) Differentiable at all points c) Differentiable at all points except at x = 1 and x = -1d) Continuous at all points except at x = 1 and x = -1, where it is discontinuous

The function $f(x) = \begin{cases} 1, |x| \ge 1 \\ \frac{1}{n^2}, \frac{1}{n} < |x| < \frac{1}{n-1}, n = 2, 3, ... \\ 0, x = 0 \end{cases}$ a) Is discontinuous at infinite points b) Is continuous everywhere c) Is discontinuous only at $x = \frac{1}{n}$, $n \in \mathbb{Z} - \{0\}$ d) None of these 100. Which of the statement(s) is/are incorrect? a) If f + g is continuous at x = a, then f and g are continuous at x = ab) If $\lim_{x\to a} (fg)$ exists, then both $\lim_{x\to a} f$ and $\lim_{x\to a} g$ exist c) Discontinuity at $x = a \Rightarrow$ non-existence of limit d) All functions defined on a closed interval attain a maximum or a minimum value in that interval Let g(x) = xf(x), where $f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0\\ 0, x = 0 \end{cases}$. At x = 0101. b) g is differentiable while f is not a) g is differentiable but g' is not continuous c) Both *f* and g are differentiable d) g is differentiable and g' is continuous 102. Let $f(x) = [\sin^4 x]$, then (where [.] represents the greatest integer function) a) f(x) is continuous at x = 0b) f(x) is differentiable at x = 0c) f(x) is non-differentiable at x = 0d) f'(0) = 1103. Which of the following function *f* has/have a removable discontinuity at the indicated point? b) $f(x) = \frac{x-7}{|x-7|}$ at x = 7a) $f(x) = \frac{x^2 - 2x - 8}{x + 2}$ at x = -2c) $f(x) = \frac{x^3 + 64}{x + 4}$ at x = -4d) $f(x) = \frac{3 - \sqrt{x}}{9 - x}$ at x = 9104. f(x) is differentiable function and (f(x), g(x)) is differentiable at x = a, then a) g(x) must be differentiable at x = ab) If g(x) is discontinuous, then f(a) = 0c) $f(a) \neq 0$, then g(x) must be differentiable d) None of these 105. $f(x) = \frac{[x]+1}{\{x\}+1}$ for $f: [0, \frac{5}{2}) \to (\frac{1}{2}, 3]$, where [.] represents the greatest integer function and {.} represents the fractional part of x, then which of the following is true a) f(x) is injective discontinuous function b) f(x) surjective non-differentiable function c) min $\left(\lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x)\right) = f(1)$ d) max (x values of point of discontinuity)= f(1)106. Let $f(x) = \begin{cases} 0, x < 0 \\ x^2, x > 0 \end{cases}$ then for all x a) f' is differentiable b) *f* is differentiable c) f' is continuous d) f is continuous 107. Which of the following is/are true for $f(x) = \text{sgn}(x) \times \sin x$ a) Discontinuous no where b) An even function d) f(x) is differentiable for all x c) f(x) is periodic 108. $f(x) = \begin{cases} x + a, x \ge a \\ 2 - x, x < 0 \end{cases}$ and $g(x) = \begin{cases} \{x\}, x < 0 \\ \sin x + b, x \ge 0 \end{cases}$ and if f(g(x)) is continuous at x = 0 then which of the following is/are true (where $\{x\}$ represents the fractional part function) b) If b < -1, then a + b = 1a) If b = 1, then a can take any real value c) No values of *a* and *b* are possible d) There exist finite ordered pairs (a, b)109. Let $f(x) = \operatorname{sgn}(\cos 2x - 2\sin x + 3)$, where sgn (·) is the signum function, then f(x)a) Is continuous over its domain b) Has a missing point discontinuity

99.

d) Irremovable discontinuity

c) Has isolated point discontinuit The function $f(x) = \begin{cases} |x-3|, x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, x < 1 \end{cases}$ is 110. a) Continuous at x = 1b) Differentiable at x = 1c) Continuous at x = 3d) Differentiable at x = 3111. If x + |y| = 2y, then y as a function of x is b) Continuous at x = 0a) Defined for all real x d) Such that $\frac{dy}{dx} = \frac{1}{3}$ for x < 0c) Differentiable for all x112. If $f(x) = \begin{cases} |x| - 3, x < 1 \\ |x - 2| + a, x \ge 1 \end{cases}$ and $g(x) = \begin{cases} 2 - |x|, x < 2 \\ sgn(x) - b, x \ge 2 \end{cases}$ and h(x) = f(x) + g(x) is discontinuous at exactly one point then which of the following values of *a* and *b* are possible a) a = -3, b = 0 b) a = 2, b = 1 c) a = 2, b = 0 d) a = -3, b = 1113. If $f(x) = \begin{cases} x^2(\text{sgn}[x]) + \{x\}), 0 \le x < 2\\ \sin x + |x - 3|, 2 \le x < 4 \end{cases}$, where [] and {} represents the greatest integer and the fractional part function, respectivel a) f(x) is differentiable at x = 1b) f(x) is continuous but non-differentiable at x = 1c) f(x) is non-differentiable at x = 2d) f(x) is discontinuous at x = 2114. Let $f(x) = \begin{cases} \frac{e^{-1+ax}}{x^2}, x > 0\\ b, x = 0\\ \sin \frac{x}{2}, x < 0 \end{cases}$, then a) f(x) is continuous at x = 0 if a = -1, $b = \frac{1}{2}$ b) f(x) is discontinuous at x = 0 if $b \neq \frac{1}{2}$ c) f(x) has irremovable discontinuity at x = 0 if $a \neq -1$ d) f(x) has removable discontinuity at x = 0 if $a = -1, b \neq \frac{1}{2}$ 115. If $f(x) = \text{sgn}(x^2 - ax + 1)$ has maximum number of points of discontinuity, then c) $a \in (-2, 2)$ a) $a \in (2, \infty)$ b) $a \in (-\infty, -2)$ d) None of these 116. If f(x) = [|x|], where [.] denotes the greatest integer function, then which of the following is not true? a) f(x) is continuous $\forall x \in R$ b) f(x) is continuous from right and discontinuous from left $\forall x \in N$ c) f(x) is continuous from left and discontinuous from right $\forall x \in I$ d) f(x) is continuous at x = 0The function $f(x) = \begin{cases} 5x - 4 \text{ for } 0 < x \le 1\\ 4x^2 - 3x \text{ for } 1 < x < 2 \text{ is}\\ 3x + 4 \text{ for } x \ge 2 \end{cases}$ 117. a) Continuous at x = 1 and x = 1b) Continuous at x = 1 but not derivable at x = 2c) Continuous at x = 2 but not derivable at x = 1d) Continuous at x = 1 and 2 but not derivable at x = 1 and x = 2118. Which of the following function(s) has/have removable discontinuity at x = 1? a) $f(x) = \frac{1}{\ln |x|}$ b) $f(x) = \frac{x^2 - 1}{x^3 - 1}$ c) $f(x) = 2^{-2\frac{1}{1-x}}$ d) $f(x) = \frac{\sqrt{x+1} - \sqrt{2x}}{x^2 - x}$

119.

$$f(x) = \begin{cases} \left(\frac{2}{2}\right)^{(\cot 1x)/(\cot 2x)}; 0 < x < \frac{\pi}{2} \\ b + 3; x = \frac{\pi}{2} \\ \text{ is continuous at } x = \pi/2, \text{ then} \\ (1 + |\cot x|)^{(\alpha |\tan x|)/k}; \frac{\pi}{2} < x < \pi \\ a) a = 0 \\ b) a = 2 \\ c) b = -2 \\ d) b = 2 \end{cases}$$
120. Let $g(x) = x f(x)$, where

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), x \neq 0 \\ 0, x = 0 \end{cases}$$
At $x = 0$
At $x = 0$
a) g is differentiable but g' is not continuous
b) g is differentiable while f is not differentiable
c) Both f and g are differentiable
d) g is differentiable but g' is not continuous
121. The function $f(x) = 1 + |\sin x|$ is
a) Continuous nowhere
b) Continuous nowhere
b) Continuous nowhere
c) Not differentiable at $x = 0$
d) Not differentiable at $x = 1$
d) Differentiable at $x = 1$
d) Differentiable at $x = 1$
d) Differentiable is
a) ($-\infty, \infty$) b) $[0, \infty)$
c) $(-\infty, 0) \cup (0, \infty)$ d) $(0, \infty)$
124. If $f(x) = \frac{x}{2}$, then in $[0, \pi]$
a) Both tan $f(x)$) and $\frac{1}{f(x)}$ are continuous
d) None of these
125. The following functions are continuous on $(0, \pi)$
a) tan x
b) $\int_{0}^{x} t \sin \frac{1}{t} dt$
c) $\begin{cases} 1, 0 < x \le \frac{3\pi}{4} \\ c i \begin{cases} 1, 0 < x \le \frac{3\pi}{4} \\ c i \begin{cases} 1, 0 < x \le \frac{3\pi}{4} \\ c i \end{cases} discontinuous and $f^{-1}(x)$ are discontinuous
d) None of these
125. The following functions are continuous on $(0, \pi)$
a) tan x
b) $\int_{0}^{x} t \sin \frac{1}{t} dt$
c) $\begin{cases} 1, 0 < x \le \frac{3\pi}{4} \\ c i \end{cases} differentiable everywhere
c) $f(x) \times g(x)$ is differentiable everywhere
d) $f(x) \times g(x)$ is differentiable everywhere
c) $f(x) \times g(x)$ is differentiable everywhere
c) $f(x) \times g(x)$ is differentiable everywhere
d) $f(x) \times g(x)$ is continuous at $x = 0$
b) $f(x)$ is not continuous at $x = 0$
d) $f(x)$ is not continuous at $x = 0$
c) $f(x)$ is differentiable everywhere
c) $f(x)$ is continuous at $x = 0$
c) $f(x)$ is continuous at $x = 0$$$

$$f(x) = \lim_{n \to \infty} \begin{bmatrix} \cos^{2n} x & \text{if } x < 0\\ \sqrt[n]{\sqrt{1 + x^n}} & \text{if } 0 \le x \le 1\\ \frac{1}{1 + x^n} & \text{if } x > 1 \end{bmatrix}$$

Which of the following does not hold good?

- a) Continuous at x = 0 but discontinuous at x = 1
- b) Continuous at x = 1 but discontinuous at x = 0
- c) Continuous both at x = 1 and x = 0

d) Discontinuous both at
$$x = 1$$
 and $x = 0$

^{129.} If
$$f(x) = \sin \ln\left(\frac{\sqrt{9-x^2}}{2-x}\right)$$
, then

- a) Domain of f(x) is $x \in (-3, 2)$
- b) Range of f(x) is $y \in (-1, 1)$
- c) f(x) is continuous at x = 0
- d) The right hand limit of y = (x 3)f(x) at x = -3 is zero
- 130. A function *f* is defined on an interval [*a*, *b*]. Which of the following statement(s) is/are incorrect?
 - a) If f(a) and f(b) have opposite signs, then there must be a point $c \in (a, b)$ such that f(c) = 0
 - b) If *f* is continuous on [a, b], f(a) < 0 and f(b) > 0, then there must be a point $c \in (a, b)$ such that f(c) = 0
 - c) If f is continuous on [a, b], then there is a point c in (a, b) such that f(c) = 0, then f(a) and f(b) have opposite signs
 - d) If f has no zeros on [a, b], then f(a) and f(b) have the same sign

131. If $f(x) = \lim_{t \to \infty} \frac{|a+\sin \pi x|^{t}-1}{|a+\sin \pi x|^{t}+1}$, $x \in (0, 6)$, then

- a) If a = 1, then f(x) has 5 points of discontinuity
- b) If a = 3, then f(x) has no point of discontinuity
- c) If a = 0.5, then f(x) has 6 points of discontinuity
- d) If a = 0, then f(x) has 6 points of discontinuity

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 132 to 131. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

132

Statement 1: $f(x) = (2x - 5)^{3/5}$ is non-differentiable at x = 5/2

Statement 2: If the graph of y = f(x) has sharp turn at x = a, then it is non-differentiable

133

```
Statement 1: The function f(x) = a_1 e^{|x|} + a_2 |x|^5, where a_1, a_2 are constants, is differentiable at x = 0 if a_1 = 0
```

Statement 2: $e^{|x|}$ is a many-one function

134

```
Statement 1: Let f(x) = \lim_{m \to \infty} \{\lim_{n \to \infty} \cos^{2m}(n! \pi x)\}, and g(x) = \begin{cases} 0, \text{ if } x \text{ is rational} \\ 1, \text{ if } x \text{ is irrational} \end{cases}. Then h(x) = f(x) + g(x) is continuous for all x

Statement 2: f(x) and g(x) are discontinuous for all x \in \mathbb{R}
```

135

Statement 1:	If $f(x)$ is a continuous function such that $f(0) = 1$ and $f(x) \neq x, \forall x \in R$, then
	$f\left(f(x)\right) > x$
Statement 2:	If $f: R \to R$, $f(x)$ is a onto function, then $f(x) = 0$ has at least one solution

136

	Statement 1:	$f(x) = x \sin x$ is non-differentiable at $x = 0$
	Statement 2:	If $f(x)$ is not differentiable and $g(x)$ is differentiable at $x = a$, then $f(x)g(x)$ can still be differentiable at $x = a$
137		
	Statement 1:	$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is non-differentiable at $x = \pm 1$
	Statement 2:	Principal value of $\tan^{-1} x$ are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
138		
	Statement 1:	If $ f(x) \le x $ for all $x \in R$, then $ f(x) $ is continuous at 0
	Statement 2:	If $f(x)$ is continuous, then $ f(x) $ is also continuous
139		
	Statement 1:	If $f(x)$ and $g(x)$ are two differentiable functions $\forall x \in R$, then $y = \max\{f(x), g(x)\}$ is always continuous but not differentiable at the point of intersection of graphs of $f(x)$ and $g(x)$
	Statement 2:	$y = \max\{f(x), g(x)\}\$ is always differentiable in between the two consecutive roots of $f(x) - g(x) = 0$ if both the functions $f(x)$ and $g(x)$ are differentiable $\forall x \in R$
140		

Statement 1: $y = \sin x$ and $y = \sin^{-1} x$, both are differentiable functions

```
Statement 2: Differentiable of f(x) \Rightarrow differentiability of y = f^{-1}(x)
```

141

```
Statement 1: Both the functions |In x| and In x are both continuous for all x
```

Statement 2: Continuity of $|f(x)| \Rightarrow$ continuity of f(x)

142

Statement 1: $f(x) = (\sin \pi x)(x-1)^{1/5}$ is differentiable at x = 1

Statement 2: Product of two differentiable function is always differentiable

143

```
Statement 1: The function f(x) = \left[\sqrt{x}\right] is discontinuous for all integral values of x in its domain (where [x] is the greatest integer \leq x)

Statement 2: [g(x)] will be discontinuous for all x given by g(x) = k, where k is any integer
```

144

Statement 1: $f(x) = sgn(x^2 - 2x + 3)$ is continuous for all x

Statement 2: $ax^2 + bx + c = 0$ has no real roots if $b^2 - 4ac < 0$

145

Statement 1: $f(x) = ||x^2| - 3|x| + 2|$ is not differentiable at 5 points

Statement 2: If the graph of f(x) crosses the *x*-axis at *m* distinct points, then g(x) = |f(x)| is always non-differentiable at least at *m* distinct points

146

Statement 1: The function $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ \cos x & x = 0 \end{cases}$ is discontinuous at x = 0

Statement 2: f(0) = 1

147 Consider the functions $f(x) = x^2 - 2x$ and g(x) = -|x|

Statement 1: The composite function F(x) = f(g(x)) is not derivable at x = 0

Statement 2: $F'(0^+) = 2$ and $F'(0^-) = -2$

148

Statement 1: $f(x) = \operatorname{sgn} x$ is discontinuous at $x = 0 \Rightarrow f(x) = |\operatorname{sgn} x|$ is discontinuous at x = 0

Statement 2: Discontinuity of $f(x) \Rightarrow$ discontinuity of |f(x)|

149 Consider [·] and {·} denote the greatest integer function and the fractional part function, respectively Let $f(x) = \{x\} + \sqrt{\{x\}}$

Statement 1: *f* is not differentiable at integral values of *x*

Statement 2: *f* is not continuous at integral points

150

- **Statement 1:** $f(x) = [\sin x] [\cos x]$ is discontinuous at $x = \pi/2$, where [.] represent the greatest integer function
- **Statement 2:** If f(x) and g(x) are discontinuous at x = a, then f(x) + g(x) is discontinuous at x = a

Statement 1: *gof* is differentiable at x = 0 and its derivative is continuous at that point

Statement 2: *gof* is twice differentiable at x = 0

152 Consider the function f(x) = sgn(x - 1) and $g(x) = \cot^{-1}[x - 1]$, where [·] denotes the greatest integer function

Statement 1: The function F(x) = f(x), g(x) is discontinuous at x = 1

Statement 2: If f(x) is discontinuous at x = a and g(x) is also discontinuous at x = a, then the product function f(x)g(x) is discontinuous at x = a

153

Statement 1: $f(x) = \lim_{x \to \infty} \frac{x^{2n}-1}{x^{2n}+1}$ is discontinuous at x = 1**Statement 2:** If limit of function exists at x = a but not equal to f(a), then f(x) is discontinuous at x = a

154

Statement 1: If f(x) is discontinuous at x = e and $\lim_{x \to a} g(x) = e$, then $\lim_{x \to a} f(g(x))$ cannot be equal to $f\left(\lim_{x \to a} g(x)\right)$

Statement 2: If f(x) is continuous at x = e and $\lim_{x \to a} g(x) = e$, then $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$

155 Consider the function

 $f(x) = \cot^{-1}\left(\operatorname{sgn}\left(\frac{[x]}{2x-[x]}\right)\right)$, where [·] denotes the greatest integer function **Statement 1:** f(x) is discontinuous at x = 1

Statement 2: f(x) is non-differentiable at x = 1

156

Statement 1: If f'(x) exists then f'(x) is continuous

Statement 2: Every differentiable function is continuous

157

Statement 1:	$f(x) = \sin x + [x]$ is discontinuous at $x = 0$, where [.] denotes the greatest integer
	function
Statement 2:	If $g(x)$ is continuous and $h(x)$ is discontinuous at $x = a$, then $g(x) + h(x)$ will necessary
	be discontinuous at $x = a$

158

Statement 1: $f(x) = \min\{\sin x, \cos x\}$ is non-differentiable at $x = \pi/2$

Statement 2: Non-differentiability of $\max\{g(x), h(x)\} \Rightarrow$ non-differentiability of $\min\{g(x), h(x)\}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

159. Consider the function $f(x) = x^2 + bx + c$, where $D = b^2 - 4c > 0$

Column-I

Column- II

(A) b < 0, c > 0 (p) 1 (B) c = 0, b < 0 (q) 2

Ρ	а	g	е	I	16

Column-I
(A)
$$f(x) = \lim_{n \to \infty} \cos^{2n}(2\pi x) + \left\{x + \frac{1}{2}\right\}$$
, where (p) Continuous
{.} denotes the fractional part function at $x = \frac{1}{2}$
(B) $f(x) = (\log_e x)(x-1)^{1/5}$ at $x = 1$ (q) Discontinuous
(C) $f(x) = [\cos 2\pi x] + \sqrt{\left\{\sin \pi \frac{x}{2}\right\}}$, where [.] and
{.} denote the greatest integer and the
fractional part function, respectively at $x = 1$

Column- II

Column- II

(p) Continuous at x = 0

- (q) Discontinuous at x = 0
- (r) Differentiable at x = 0
- (s) Non-differentiable at x = 0

c)	r	S	q	р
d)	S	r	р	q

В

С

S

r

D

r

S

160.
Let
$$f(x) = \begin{cases} \frac{5e^{1/x} + 2}{3 - e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \\ 0, & x = 0 \end{cases}$$

Column-I

= 0

- (A) y = f(x) is
- **(B)** y = xf(x) is
- (C) $y = x^2 f(x)$ is
- (D) $y = x^{-1}f(x)$ is
- **CODES**:

	Α	В	С	D
a)	P,s	q,s	p,q	p,r
b)	p,r	q,s	p,s	q
c)	q,s	p,s	p,r	q,s
d)	p,s	p,q	q,s	p,r

 $f(x) = \begin{cases} \cos 2x , x \in Q\\ \sin x, x \notin Q \end{cases} \text{ at } x = \frac{\pi}{6} \end{cases}$

161.

(D)

CODES:

(s) Non-differentiable

(C) c = 0, b > 0

(D) b = 0, c < 0

А

CODES:

(s) 5

	Α	В	С	D
a)	Q,s	p,r	p,r	p,s
b)	p,r	q,s	p,s	p,r
c)	q,s	p,s	p,r	p,q
d)	p,q	q,s	p,s	q,r

162.

Column-I

(A)	$f(x) = \begin{cases} \frac{1}{ x } \text{ for } x \ge 1\\ ax^2 + b \text{ for } x < 1 \end{cases}$ is differentiable	(p)	2
	everywhere and $ k = a + b$, then the value of		
	k is		
(B)	If $f(x) = \operatorname{sgn}(x^2 - ax + 1)$ has exactly one	(q)	-2
	point of discontinuity, then the value of <i>a</i> can		
	be		
(C)	$f(x) = [2 + 3 n \sin x], n \in N; x \in (0, \pi)$ has	(r)	1
	exactly 11 points of discontinuity, then the		
	value of <i>n</i> is		
(D)	f(x) = x - 2 + a has exactly three points	(s)	-1
	of non-differentiability, then the value of <i>a</i> is		
COD	ES :		

	Α	В	С	D
a)	P,q	p,r	p,s	q,s
b)	r,s	p,q	p,q	p,r
c)	p,r	q,s	p,q	r,s
d)	q,s	p,r	r,s	p,q

163.

Column-I

- (A) $f(x) = |x^3|$ is
- **(B)** $f(x) = \sqrt{|x|}$ is
- (C) $f(x) = |\sin^{-1} x|$ is
- **(D)** $f(x) = \cos^{-1} |x|$ is

CODES:

	Α	В	С	D
a)	P,q,r	p,r,s	p,r,s	p,r,s

Column- II

- Column- II
- (p) Continuous in (-1, 1)
- (q) Differentiable in (-1, 1)
- (r) Differentiable in (0, 1)
- (s) Not differentiable at least at one point in (-1, 1)

b)	p,q	p,r,s	q,r	p,r
c)	q,r	p,s	p,r	p,r,s
d)	p,q	s,q	p,r	q,s

Linked Comprehension Type

This section contain(s) 11 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. Paragraph for Question Nos. 164 to -164

Let $f(x = \begin{cases} \frac{x^2}{x^2}, x < 0\\ 3, & x = 0\\ \left\{1 + \left(\frac{P(x)}{x^2}\right)\right\}^{1/x}, & x > 0 \end{cases}$, where P(x) is a cubic function and f is continuous at x = 0

164. The range of function $g(x) = 3a \sin x - b \cos x$ is

c) [-12, 12] b) [-5,5] a) [-10, 10] d) None of these

Paragraph for Question Nos. 165 to - 165

Let
$$f(x) = \begin{cases} x+2, 0 \le x < 2\\ 6-x, x \ge 2 \end{cases}$$
,
 $g(x) = \begin{cases} 1 + \tan x, 0 \le x < \frac{\pi}{4}\\ 3 - \cot x, \frac{\pi}{4} \le x < \pi \end{cases}$

165. f(g(x)) is

- a) Discontinuous at $x = \pi/4$
- b) Differentiable at $x = \pi/4$
- c) Continuous but non-differentiable at $x = \pi/4$
- d) Differentiable at $x = \pi/4$, but derivative is not continuous

Paragraph for Question Nos. 166 to - 166

Consider
$$f(x) = x^2 + ax + 3$$
 and $g(x) = x + b$ and $F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n}g(x)}{1 + x^{2n}}$

166. If F(x) is continuous at x = 1, then a) b = a + 3 b) b = a - 1 c) a = b - 2d) None of these

Paragraph for Question Nos. 167 to - 167

Let $f(x) = \begin{cases} [x], -2 \le x \le -\frac{1}{2} \\ 2x^2 - 1, -\frac{1}{2} < x \le 2 \end{cases}$ and g(x) = f(|x|) + |f(x)|, where $[\cdot]$ represents greatest integer function

167. The number of	points where $ f(x) $ is non-	differentiable is	
a) 3	b) 4	c) 2	d) 5

Paragraph for Question Nos. 168 to - 168

Given the continuous function

$$y = f(x) = \begin{cases} x^2 + 10x + 8, x \le -2\\ ax^2 + bx + c, -2 < x < 0, a \ne 0\\ x^2 + 2x, x \ge 0 \end{cases}$$

If a line *L* touches the graph of y = f(x) at three points, then

Integer Answer Type

169. $f(x) = \frac{x}{1 + (\ln x)(\ln x) \cdots \infty} \forall x \in [1, 3]$ is non-differentiable at x = k. Then the value of $[k^2]$ is (where $[\cdot]$ represents greatest integer function)

- 170. Number of points of discontinuity for $f(x) = \text{sgn}(\sin x), x \in [0, 4\pi]$ is 171. Let f(x) and g(x) be two continuous functions and $h(x) = \lim_{n \to \infty} \frac{x^{2n} \cdot f(x) + x^{2m} \cdot g(x)}{(x^{2n} + 1)}$. If limit of h(x) exists at r = 1 then one root of f(r) = g(r) = 0

172.
Let
$$f(x) =\begin{cases} \frac{x}{2} - 1, 0 \le x < 1 \\ \frac{1}{2}, 1 \le x \le 2 \end{cases}$$
 and $g(x) = (2x + 1)(x - k) + 3, 0 \le x \infty$. Then $g(f(x))$ is continuous at $x = 1$ if 12k is equal to

173. A differentiable function *f* satisfying a relation $f(x + y) = f(x) + f(y) + 2xy(x + y) - \frac{1}{3} \forall x, y \in R$ and $\lim_{h\to 0} \frac{3f(h)-1}{6h} = \frac{2}{3}$. Then the value of [f(2)] is (where [x] represents greatest integer function)

- 174. If the function $f(x) = \frac{\tan(\tan x) \sin(\sin x)}{\tan x \sin x}$ $(x \neq 0)$ is continuous at x = 0, then the value of f(0) is 175. Let $f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n+1}}$. If f(x) is continuous for all $x \in R$, then the value of a + 8b is
- 176. If f(x) is a continuous function $\forall x \in R$ and the $f(x) \in (1, \sqrt{30})$, and $g(x) = \left[\frac{f(x)}{a}\right]$, where $[\cdot]$ denotes the greatest integer function, is continuous $\forall x \in R$, then the least positive integral value of a is
- 177. Number of points where $f(x) = \text{sgn}(x^2 3x + 2) + [x 3], x \in [0, 4]$ is discontinuous is (where $[\cdot]$
- denotes the greatest integer function) ^{178.} Let $g(x) = \begin{bmatrix} a\sqrt{x+1} & \text{if } 0 < x < 3 \\ bx + 2 & \text{if } 3 \le x < 5 \end{bmatrix}$, if g(x) is differentiable on (0, 5) then (a + b) equals
- 179. Number of points of non-differentiability of function $f(x) = \max\{\sin^{-1}|\sin x|, \cos^{-1}|\sin x|\}, 0 < x < 2\pi$ is 180. Given $\frac{\int_{f(y)}^{f(x)} e^t dt}{\int_{x}^{y} (1/t) dt} = 1, \forall x, y \in \left(\frac{1}{e^2}, \infty\right)$ where f(x) is continuous and differentiable function and $f\left(\frac{1}{e}\right) = 0$. If $g(x) = \begin{cases} e^x, x \ge k \\ e^{x^2}, 0 \le x \le k \end{cases}$; then the value of 'k' for which f(g(x)) is continuous $\forall x \in R^+$ is
- 181. Number of points where f(x) = [x] + [x + 1/3] + [x + 2/3], then ([·] denotes the greatest integer function) is discontinuous for $x \in (0, 3)$
- 182. The least integer value of p for which f''(x) is everywhere continuous where

$$f(x) = \begin{cases} x^p \sin\left(\frac{1}{x}\right) + x|x|, & x \neq 0\\ 0, & x = 0 \end{cases}$$

5.CONTINUITY AND DIFFERENTIABILITY

	: ANSWER KEY :														
1)	d	2)	С	3)	b	4)	а	13)	b,c	14)	a,b,d	15)	b,c,d	16)	
5)	а	6)	b	7)	d	8)	а		a,b						
9)	d	10)	d	11)	d	12)	b	17)	a,b	18)	b,d	19)	a,b,c	20)	
13)	С	14)	а	15)	d	16)	С		a,b,d						
17)	С	18)	а	19)	С	20)	С	21)	a,b	22)	a,c,d	23)	a,b,c,c	i 24)	
21)	а	22)	С	23)	С	24)	а		a,b						
25)	d	26)	а	27)	d	28)	а	25)	b,d	26)	a,b	27)	b,d	28)	
29)	d	30)	b	31)	С	32)	С		a,c						
33)	а	34)	d	35)	С	36)	d	29)	a,b	30)	b,d,e	31)	a,b,d	32)	а
37)	d	38)	b	39)	С	40)	b	33)	d	34)	b,c	35)	a,c	36)	
41)	d	42)	а	43)	С	44)	С		b,d						
45)	b	46)	b	47)	d	48)	С	37)	b,c	38)	a, c	39)	a,c,d	40)	
49)	а	50)	b	51)	С	52)	b		a,b,c,c	1					
53)	С	54)	d	55)	b	56)	d	1)	b	2)	b	3)	b	4)	b
57)	b	58)	С	59)	С	60)	d	5)	d	6)	b	7)	b	8)	d
61)	С	62)	С	63)	d	64)	а	9)	С	10)	С	11)	b	12)	С
65)	С	66)	b	67)	а	68)	С	13)	а	14)	С	15)	b	16)	а
69)	С	70)	d	71)	а	72)	b	17)	С	18)	а	19)	С	20)	С
73)	С	74)	С	75)	а	76)	С	21)	С	22)	b	23)	d	24)	b
77)	а	78)	С	79)	С	80)	b	25)	d	26)	a	27)	С	1)	d
81)	d	82)	b	83)	b	84)	b		2)	С	3)	а	4)	b	
85)	b	86)	b	87)	С	88)	С	5)	a	1)	b	2)	С	3)	а
89)	d	90)	b	91)	a	1)			4)	a	_		_		
	a,c	2)	b,c,d	3)	a,c,d	4)		5)	С	1)	7	2)	5	3)	1
	a,b,c		_						4)	6	_		_		_
5)	a,c,d	6)	a,c,d	7)	a,c	8)		5)	8	6)	2	7)	8	8)	6
	a,c	4.02				400		9)	4	10)	2	11)	7	12)	1
9)	a,b,c,d	10)	a,b	11)	a,b	12)		13)	8	14)	5				
	a,c,d														

: HINTS AND SOLUTIONS :

3

4

5

(b)

1 (d)

2

 $f(x) = (e^x - 1)|e^{2x} - 1|$ $= (e^{x} - 1)|e^{x} - 1||e^{x} + 1|$ $= (e^{x} + 1)(e^{x} - 1)|e^{x} - 1|$ Now, both $e^x + 1$ and $(e^x - 1)|e^x - 1|$ are differentiable [as g(x)|g(x)] is differentiable when g(x) = 0Hence, f(x) is differentiable $f(x) = \frac{x-1}{x^2+1}$ is rational function is which denominator never becomes zero Hence, f(x) is differentiable $f(x) = \begin{cases} ||x-3|-1|, x < 3\\ \frac{x}{3}[x] - 2, x \ge 3 \end{cases}$ $=\begin{cases} |3-x-1|, x < 3\\ \frac{x}{3}3 - 2, 3 \le x < 4 \end{cases}$ $= \begin{cases} |x-2|, x < 3\\ x-2, 3 \le x < 4 \end{cases}$ $= x - 2, x \in [2, 4)$ Hence, f(x) is differentiable at x = 3 $f(x) = 3(x-2)^{3/4} + 3 \Rightarrow f'(x) = \frac{9}{4}(x-2)^{-1/4}$ Which is non-differentiable at x = 2Here f(x) is continuous and the graph has vertical tangent at x = 2; however, graph is smooth in neighbourhood of x = 2(c) Given that $\cos \frac{x}{2} \cos \frac{x}{2^2} \cos \frac{x}{2^3} \dots \cos \frac{x}{2^n} = \frac{\sin x}{2^n \sin \left(\frac{x}{x}\right)}$ (1)Taking logarithm to the base 'e' on both sides of equation (1) and then differentiating w.r.t. *x*, we get $\sum_{n=1}^{\infty} \frac{1}{2^n} \tan \frac{x}{2^n} = \left(\frac{1}{2^n} \cot \frac{x}{2^n} - \cot x\right)$ $\therefore \lim_{n \to \infty} \sum_{n=1}^{n} \frac{1}{2^n} \tan \frac{x}{2^n} = \lim_{n \to \infty} \left(\frac{1}{x} \times \frac{\frac{x}{2^n}}{\tan \frac{x}{2^n}} - \cot x \right)$ $=\left(\frac{1}{x}-\cot x\right)$:. We have $f(x) = \begin{cases} \frac{1}{x} - \cot x, x \in (0, \pi) - \{\frac{\pi}{2}\} \\ \frac{2}{x}, x = \frac{\pi}{2} \end{cases}$ Clearly $\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \left(\frac{1}{x} - \cot x\right) = \frac{2}{\pi} = f\left(\frac{\pi}{2}\right)$

Hence f(x) is continuous at $x = \frac{\pi}{2}$

f(2) = 0, $f(2^+) = \{4^+\} - \{2^+\}^2 = 0 - 0 = 0$ $f(2^{-}) = \{4^{-}\} - \{2^{-}\}^{2} = 1 - 1 = 0$ Hence f(x) is continuous at x = 2f(-2) = 0, $f(-2^+) = \{4^-\} - \{-2^+\}^2 = 1 - 0 = 1$ Hence f(x) is discontinuous at x = -2(a) $f(x) = 2|\operatorname{sgn}(2x)| + 2 = \begin{cases} 4, x > 0\\ 2, x = 0\\ 0, x < 0 \end{cases}$ Thus, f(x) has non-removable discontinuity at x = 0(a) $f(x) = \lim_{n \to \infty} (\sin^2[\pi x])^n + \left[x + \frac{1}{2}\right]$ Now $g(x) = \lim_{n \to \infty} (\sin^2(\pi x))^n$ is discontinuous when $\sin^2(\pi x) = 1$ or $\pi x = (2n + 1)\frac{\pi}{2}$ or $x = \frac{(2n+1)}{2}, n \in \mathbb{Z}$ Thus, g(x) is discontinuous at x = 3/2Also $h(x) = \left[x + \frac{1}{2}\right]$ is discontinuous at x = 3/2But $f(3/2) = \lim_{n \to \infty} (\sin^2(3\pi/2))^n + \left[\frac{3}{2} + \frac{1}{2}\right] = 1 + \frac{1}{2}$ 2 = 3 $f(3/2^{+}) = \lim_{n \to \infty} (\sin^2((3\pi/2)^{+}))^n + \left| \left(\frac{3}{2}\right)^{+} + \frac{1}{2} \right|$ = 0 + 2 = 2Hence, f(x) is discontinuous at x = 3/2Both g(x) and h(x) are continuous at x = 1, hence, f(x) is continuous at x = 1(b) $|\sin x|$ and $e^{|x|}$ are not differentiable at x = 0 and $|x^3|$ is differentiable at x = 0

Therefore, for f(x) to be differentiable at x = 0, We must have a = 0, b = 0 and c can be any real number

(d)

6

7

We have $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h)$ = $\lim_{h \to 0} \frac{\log(4+h^2)}{\log(1-4h)} = -\infty$ And, $\lim_{x \to 1^{+}} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} \frac{\log(4+h^2)}{\log(1+4h)} = \infty$ So, $f(1^{-})$ and $f(1^{+})$ do not exist

$$f(x) = \begin{cases} x + 2, & x < 0 \\ -x^2 - 2, 0 \le x < 1 \\ x, & x \ge 1 \end{cases}$$

$$\int (x) = \begin{cases} -x - 2, x < -2 \\ x + 2, -2 \le x < 0 \\ x^2 + 2, 0 \le x < 1 \\ x, & x \ge 1 \end{cases}$$
Discontinuous at $x = 1$ \therefore number of points of discount 1
$$f(x) = \sqrt[3]{|x|^3} - |x| - 1$$

$$\Rightarrow |x| - |x| - 1 = -1$$
Hence, differentiable for all x

$$f(x) = \frac{\tan(\pi[x - \pi])}{1 + |x|^2}$$
By definition, $[x - \pi]$ is an integer whatever be the value of x and so $\pi[x - \pi]$ is an integral multiple of π
Consequently, $\tan(\pi[x - \pi]) = 0, \forall x$
And since $1 + [x]^2 \neq 0$ for any x , we conclude that $f(x) = 0$
Thus $f(x)$ is constant function and so it is continuous and differentiable
$$f(x) = [x^2] - [x]^2$$
 $f(-1) = 1, f(-1^-) = 1 - 1 = 0$
 $f(1) = 1, f(1^+) = 1 - 0 = 1$
 $f(1^-) = 0 - 1 = -1$
Thus, $f(x)$ is discontinuous at $x = 1, -1$

$$f(x) = \cos \pi (|x| + |x|)$$
 $= \left\{ \cos \pi (-x + (-1)), -1 \le x < 0 \right\}$
 $\left\{ \cos \pi (x + 0), \quad 0 \le x < 1 \right\}$
 $= \left\{ -\cos \pi x, 0 \le x < 1 \right\}$
 $= \left\{ -\cos \pi x, 0 \le x < 1 \right\}$
Obviously, $f(x)$ is discontinuous and differentiable in $(-1, 0)$ and $(0, 1)$

$$f(|x|) = \left\{ \sin |x|, \quad |x| < 0 \right\}$$
 $f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = \cos(x) - ||x| - 1|, \quad |x| \ge 0$
 $\Rightarrow f(|x|) = (x + 1)$
Hence, $f(|x|)$
Hence, $f(|x|)$
 $f(|x|) = (x + 1)$
 $f(|x|) = ($

x < 0

9

Now $f'(0^+) = \lim_{h \to 0} \frac{e^{-1/h^2} - 0}{h} = \lim_{h \to 0} \frac{1/h}{e^{1/h^2}}$ = $\lim_{h \to 0} \frac{-1/h^2}{-2/h^3 e^{1/h^2}}$ (applying L' Hopital's rule) $=\frac{1}{2}\lim_{h\to 0}\frac{h}{e^{1/h^2}}=0$ Also $f(0^-) = 0$ Thus, f(x) is differentiable at x = 015 (d) Let *k* is integer $f(k) = 0, f(k - 0) = (k - 1)^2 - (k^2 - 1)$ = 2 - 2k $f(k+0) = k^2 - (k^2) = 0$ If f(x) is continuous at x = k, then 2 - 2k = 0 $\Rightarrow k = 1$ 16 **(c)** $f(x) = \operatorname{sgn}(\sin^2 x - \sin x - 1)$ is discontinuous when $\sin^2 x - \sin x - 1 = 0$ or $\sin x = \frac{1 \pm \sqrt{5}}{2}$ or $\sin x = \frac{1 - \sqrt{5}}{2}$ For exactly four point of discontinuity, *n* can take value 4 or 5 as shown in the diagram $y = \sin x$ π 2π 3π 4π 17 (c) f(2+x) = f(-x)Replace x by x - 1, we have f(2 + x - 1) =f(-x+1) or f(1+x) = f(1-x)Hence f(x) is symmetrical about line x = 1Now put x = 2 in (1), we get f(4) = f(-2), hence differentiability at x = 4 implies differentiability at $x \rightarrow 2$ 18 **(a)** L.H.D. at x = k $= \lim_{h \to 0} \frac{f(k) - f(k-h)}{h}$ (k = integer) $=\lim_{h\to 0}\frac{[k]\sin k\pi - [k-h]\sin(k-h)\pi}{h}$ $=\lim_{h\to 0}\frac{-(k-1)\sin(k\pi-h\pi)}{h} \quad [\because\sin k\pi=0]$ $=\lim_{h\to 0}\frac{-(k-1)(-1)^{k-1}\sin h\pi}{h\pi}\times\pi$ 19 (c) $\lim_{x \to 2^+} \frac{(x-2)}{|x-2|} \left(\frac{x^2 - 1}{x^2 + 1} \right) = \lim_{x \to 2^+} \frac{(x-2)}{(x-2)} \left(\frac{x^2 - 1}{x^2 + 1} \right)$ $= \lim_{x \to 2^+} \left(\frac{x^2 - 1}{x^2 + 1} \right) = \frac{3}{5}$ $= \lim_{x \to 2^{-}} \frac{(x-2)}{|x-2|} \left(\frac{x^2 - 1}{x^2 + 1} \right)$

$$= \lim_{x \to 2^{-}} \frac{(x-2)}{(2-x)} \left(\frac{x^2 - 1}{x^2 + 1} \right) = -\frac{3}{5}$$

Thus, L.H.L. \neq R.H.L. Hence, the function has non-removable discontinuity at x = 2

20 **(c)**

[sin x] is non-differentiable at $x = \frac{\pi}{2}$, π , 2π and [cos x] is non-differentiable at x = 0, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, 2π Thus, f(x) is definitely non-differentiable at $x = \pi$, $\frac{3\pi}{2}$, 0 Also, $f(\frac{\pi}{2}) = 1$, $f(\frac{\pi}{2} - 0) = 0$ $f(2\pi) = 1$, $f(2\pi - 0) = -1$ Thus, f(x) is also non-differentiable at $x = \frac{\pi}{2}$ and 2π

21 (a)

Using graphical transformation

(iii) y = ||x| - 1|

As, we know the function is not differentiable at6 sharp edges and in figure (iii) y = ||x| - 1| we have 3 sharp edges at x = -1, 0, 1 $\therefore f(x)$ is not differentiable at $\{0, \pm 1\}$

22 **(c)**

 $\left|x - \frac{1}{2}\right|$ is continuous everywhere but not differentiable at $x = \frac{1}{2}$, |x - 1| is continuous everywhere but not differentiable at x = 1, and tan x is continuous in [0, 2] except at $x = \frac{\pi}{2}$ Hence f(x) is not differentiable at $x = \frac{1}{2}$, $1, \frac{\pi}{2}$

23 (c)

 $f(x) = \begin{cases} |x| - 1, & |x| < 0\\ |x|^2 - 2|x|, & |x| \ge 0 \end{cases}$ Where |x| < 0 is not possible thus, neglecting we get, $f(|x|) = |x|^2 - 2|x|, |x| \ge 0$ $f(|x|) = \begin{cases} x^2 + 2x, x < 0\\ x^2 - 2x, x \ge 0 \end{cases}$ (1)

 $\Rightarrow f'(|x|) = \begin{cases} 2x+2, & x < 0\\ 2x-2, & x > 0 \end{cases}$ Clearly f(|x|) is continuous at x = 0, but nondifferentiable at x = 0 $f(|x|) = \begin{cases} |x| - 1, & |x| < 0\\ |x|^2 - 2|x|, |x| \ge 0\\ 1 - x, & x < 0\\ -x^2 + 2x, & 0 \le x < 2\\ x^2 - 2x, & x \ge 2 \end{cases}$ Clearly |f(x)| is discontinuous at x = 0, but continuous at x = 2Also, g'(x) = $\begin{cases} -1, \ x < 0 \\ -2x + 2, \ 0 < x < 2 \\ 2x - 2, \ x > 2 \end{cases}$ |f(x)| is non-differentiable at x = 0 and x = 224 (a) $f(x) = (-1)^{[x^3]}$ is discontinuous When $x^3 = n, n \in Z \Rightarrow x = n^{1/3}$ $f\left(\frac{3}{2}\right) = (-1)^3 = -1$ For $x \in (-1, 0)$, $f(x) = (-1)^{-1} = -1$ $\Rightarrow f'(x) = 0$ For $x \in [0, 1)$, $f(x) = (-1)^{\circ} = 1$ $\Rightarrow f'(x) = 0$ 25 (d) f(x) is continuous at $x = 0 \Rightarrow \lim_{x \to 0} f(x) = f(0)$ $\Rightarrow f(0) = \lim_{x \to 0} f(0+h) = \lim_{h \to 0} \frac{hg(h)}{|h|} = \lim_{h \to 0} g(h)$ = g(0) = 0Now $f'(0^+) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{hg(h)}{|h|}}{h}$ = $\lim_{h \to 0} \frac{g(h)}{h} = \lim_{h \to 0} \frac{g(h) - g(0)}{h}$ = g'(0) (as g(0) = 0) $f'(0^{-}) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$ $= \lim_{h \to 0} \frac{\frac{-hg(-h)}{|-h|}}{-h} = \lim_{h \to 0} \frac{g(-h)}{h}$ $= -\lim_{h \to 0} \frac{g(-h) - g(0)}{-h} = -g'(0) = 0$ Hence, f'(0) exists and f'(0) = 026 (a)

The functions is not differentiable and continuous at two points between $x = -\pi/2$ and $x = \pi/2$. Also the function is not continuous at $x = \frac{\pi}{2}$ and $x = -\frac{\pi}{2}$. Hence, at four points, the function is not differentiable

27 (d)

 $f(2^+) = 2 + 2\sin(0) = 2$ $f(2^-) = 3 + 2\sin(1)$ Hence, f(x) is discontinuous at x = 2Also $f(0^+) = 2(0) - 0 - 0\sin(0 - 0) = 0$ and $f(0^-) = 2(0) - (-1) - 0\sin(0 - (-1)) = 1$ Hence, f(x) is discontinuous at x = 0

$$f(x)$$
 is continuous when $5x = x^2 + 6 \Rightarrow x = 2,3$
29 (d)

$$\lim_{x \to 0} \frac{x - e^x + 1 - (1 - \cos 2x)}{x^2}$$

=
$$\lim_{x \to 0} \left[\frac{x - e^x + 1}{x^2} - \frac{(1 - \cos 2x)}{x^2} \right]$$

=
$$\lim_{x \to 0} \left[\frac{x + 1 - \left(1 + x + \frac{x^2}{2}\right)}{x^2} - \frac{2 \sin^2 x}{x^2} \right]$$
 (Using expansion of e^x)
= $-\frac{1}{2} - 2$
= $-\frac{5}{2}$; hence for continuous $f(0) = -\frac{5}{2}$

Now
$$[f(0)] = -3; \{f(0)\} = \left\{-\frac{5}{2}\right\} = \frac{1}{2}$$

Hence, $[f(0)]\{f(0)\} = -\frac{3}{2} = -1.5$

$$g'(0^{+}) = \lim_{h \to 0} \frac{f(|h|) - |\sin h| - f(0)}{h}$$

=
$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} - \lim_{h \to 0} \frac{\sin h}{h}$$

=
$$1 - 1 = 0$$

=
$$g'(0^{-}) = \lim_{h \to 0} \frac{f(|-h|) - |\sin(-h)| - f(0)}{-h}$$

=
$$\lim_{h \to 0} \frac{f(-h) - f(0)}{-h} + \lim_{h \to 0} \frac{\sin h}{h}$$

=
$$-1 + 1 = 0$$

Thus, g(x) is differentiable and g'(0) = 031 **(c)**

(c)

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^a \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h^{a-1} \sin\left(\frac{1}{h}\right)$$
This limit will not exist if $a - 1 \le 0 \Rightarrow a \le 1$
Now $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^a \sin\left(\frac{1}{x}\right) = 0$ if $a > 0$
Thus, $a \in (0, 1]$
(c)
Clearly, $f(x)$ is continuous for all x except
possibly at $x = \pi/6$
For $f(x)$ to be continuous at $x = \pi/6$, we must
have
 $\lim_{x \to \pi/6} f(x) = \lim_{x \to \pi/6^+} f(x)$
 $\Rightarrow \lim_{x \to \pi/6} \sin 2x = \lim_{x \to \pi/6} ax + b$
 $\Rightarrow \sin(\pi/3) = (\pi/6)a + b$
 $\Rightarrow \frac{\sqrt{3}}{2} = \frac{\pi}{6}a + b$ (1)
For $f(x)$ to be differentiable at $x = \pi/6$, we must
have L.H.D. at $x = \pi/6 =$ R.H.D. at $x = \pi/6$
 $\Rightarrow \lim_{x \to \pi/6} 2 \cos 2x = \lim_{x \to \pi/6} a$
 $\Rightarrow 2 \cos \pi/3 = a \Rightarrow a = 1$
Putting $a = 1$ in equation (1), we get $b =$
 $(\sqrt{3}/2) - \pi/6$
(a)
 $\lim_{x \to 0^+} \left(3 - \left[\cot^{-1}\frac{2x^3 - 3}{x^2}\right]\right) = (3 - [\cot^{-1}(-\infty)])$
 $= (3 - [\pi])$
 $= \lim_{x \to 0^-} \{x^2\} \cos(e^{1/x})$

 $= (0)(\cos(e^{-\infty})) = 0$

Thus f(x) has irremovable discontinuity at x = 0, hence f(0) does not exist

33

32

Clearly from the graph, f(x) is non-differentiable at five points, x = -2, -1, 0, 1, 2

35 **(c)**

 $f(x) = \begin{cases} x^2 - ax + 3, & x \text{ is rational} \\ 2 - x, & x \text{ is rational} \end{cases}$

Is continuous when $x^2 - ax + 3 = 2 - x$ or $x^2 - (a-1)x + 1 = 0$ Which must have two distinct roots for $(a-1)^2 - 4 > 0$ $\Rightarrow (a-1-2)(a-1+2) > 0$ $\Rightarrow a \in (-\infty, -1) \cup (3, \infty)$ 36 (d) From the graph $f(x) = \max\{x, x^3\} =$ *x* < -1 $\begin{cases} x^3, -1 \le x \le 0 \\ x, \quad 0 < x < 1 \end{cases}$ x^3 . x > 1Clearly, f is not differentiable at -1, 0 and 1 37 (d) For $0 \le x < 1$, $f(x) = [\sin 0] = 0$, $1 \le x < 1$ $2, f(x) = [\sin 1] = 0$ $2 \le x < 3, f(x) = [\sin 2] = 0, \ 3 \le x < 4, f(x)$ $= [\sin 3] = 0$ $4 \le x < 5, f(x) = [\sin 4] = -1$ Hence, there is discontinuity at point (4, -1)38 (b) $0 \le \tan^2 x < 1$ when $-\frac{\pi}{4} < x < \frac{\pi}{4}$ $\Rightarrow f(x) = 0 - \frac{\pi}{4} < x < \frac{\pi}{4}$ Hence, f(x) is continuous and differentiable at x = 0, also f'(0) = 039 (c) $f'(0^+) = \lim_{h \to 0} \frac{h^m \sin \frac{1}{h}}{h} \text{ must exist} \Rightarrow m > 1$ For m > 1, h'(x) = $\begin{bmatrix} m x^{m-1} \sin \frac{1}{x} - x^{m-2} \cos \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{bmatrix}$ Now $\lim_{h \to 0} h(x) = \lim_{h \to 0} \left(m h^{m-1} \sin \frac{1}{h} - h^{m-2} \cos \frac{1}{h} \right)$ Limit exists if m > 2 $\therefore m \in N \Rightarrow m = 3$ 40 **(b)** Given f(x) is continuous at x = 0 $\Rightarrow \lim_{x \to 0} f(x) = f(0)$

 $\Rightarrow \lim_{x \to 0} \frac{(3^x - 1)^2}{\sin x \ln(1 + x)} = f(0)$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{\left(\frac{3^{x}-1}{x}\right)^{2}}{\left(\frac{\sin x}{x}\right)\left(\frac{\ln(1+x)}{x}\right)} = (\ln 3)^{2}$ 41 (d) $f(x) = (x^2 - 1)|x^2 - 3x + 2| + \cos(|x|)$ $= [(x-1)|x-1|]|x-2| + \cos x$ (x-1)|x-1| and $\cos x$ are differentiable for all x But |x - 2| is non-differentiable at x = 2Hence, f(x) is non-differentiable at x = 242 (a) f(x) is continuous at some x where $\sin x = \cos x$ or $\tan x = 1$ or $x = n\pi + \pi/4, n \in I$ 43 (c) $f(0+0) = \lim_{h \to 0} f(h)$ $= \lim_{h \to 0} \frac{h}{2h^2 + h} = \lim_{h \to 0} \frac{1}{2h + 1} = 1$ and $f(0-0) = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \frac{-h}{2h^2 + |-h|}$ $\lim_{h \to 0} \frac{-h}{2h^2 + h} = \lim_{h \to 0} \frac{-1}{2h + 1} = -1$ 44 (c) 3π/4 $5\pi/4$ Consider the graph of $f(x) = \max(\sin x, \cos x)$, which is non-differentiable at $x = \pi/4$, hence

statement (a) is false From the graph y = f(x) is differentiable at $x = \pi/2$, hence statement (b) is false Statement (c) is always true Statement (d) is false as consider $g(x) = \max(x, x^2)$ at x = 0, for which $x = x^2$ at x = 0, but f(x) is differentiable at x = 0

45 **(b)**

$$f(1) = 1 - \sqrt{1 - 1^2} = 1$$

$$f(1^-) = \lim_{x \to 1^+} (1 - \sqrt{1 - x^2}) = 1$$

$$f(1^+) = \lim_{x \to 1^-} \left(1 + \log \frac{1}{x}\right) = 1 + \log \frac{1}{1} = 1$$
Hence, $f(x)$ is continuous at $x = 1$

$$f'(1^+) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{1 + \log \frac{1}{1 + h} - 1}{h}$$

$$= -\lim_{h \to 0} \frac{\log(1 + h)}{h} = -1$$

$$f'(1^-) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{1 - \sqrt{1 - (1 - h)^2} - 1}{-h} = \lim_{h \to 0} \frac{\sqrt{2 - h}}{\sqrt{h}} = \infty$$
Hence, $f(x)$ is non-differentiable at $x = 1$

46 **(b)**

Since both $\cos x$ and $\sin^{-1} x$ are continuous function. $f(x) = \sin^{-1}(\cos x)$ is also a continuous function. Now

$$f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{-\sin x}{|\sin x|}$$

Hence, $f(x)$ is non-differentiable at $x = n\pi, n \in \mathbb{Z}$
48 (c)
$$f(x) = \begin{cases} ax^2 + 1, x \le 1\\ x^2 + ax + b, x > 1 \end{cases}$$
 is differentiable at

x = 1Then f(x) is continuous at x = 1 $\Rightarrow f(1^-) = f(1^+) \Rightarrow a+1 = 1+a+b \Rightarrow b = 0$ Also $f'(x) = \begin{cases} 2ax, x < 1\\ 2x + a, x > 1 \end{cases}$ We must have $f'(1^-) = f'(1^+) \Rightarrow 2a = 2 + a \Rightarrow$ a = 2

49 (a)

We have
$$f(x) = \begin{cases} x^3, x > 0 \\ 0, x = 0 \\ -x^3, x < 0 \end{cases}$$

Clearly, $f(x)$ is continuous at $x = 0$
(L.H.D. at $x = 0$) $= \left[\frac{d}{dx}(-x^3)\right]_{x=0} = [-3x^2]_{x=0} = 0$
Similar (R.H.D. at $x = 0$)=0

So, f(x) is differentiable at x = 0

50 **(b)** g(x) is an even function, then g(x) = g(-x) $\Rightarrow \mathbf{g}'(x) = -\mathbf{g}'(-x) \Rightarrow \mathbf{g}'(0) = -\mathbf{g}'(0) \Rightarrow \mathbf{g}'(0)$ Now $f'(0) = \lim_{h \to 0} \frac{g(0+h)\cos(1/h) - 0}{h}$ $= \lim_{h \to 0} \frac{g(h)\cos(1/h)}{h} = \lim_{h \to 0} g'(0)\cos(1/h) = 0$ 51 (c)

We have $f(x) = \frac{4-x^2}{x(4-x^2)}$

Clearly, there are three points of discontinuity, viz., 0, 2, −2

52 **(b)**

$$f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}, (x \neq \pi/4) \text{ is continuous at}$$
$$x = \pi/4$$
$$\Rightarrow f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x)$$
$$= \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}$$

Now by applying L' Hopital's rule,

$$= \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2\left(\frac{\pi}{4} - x\right)}{-2 \csc^2(2x)} = \frac{1}{2}$$

53 (c)

> When *x* is not an integer, both the functions [x]and $\cos\left(\frac{2x-1}{2}\right)\pi$ are continuous \therefore f(x) is continuous on all non-integral points For $x = n \in I$

$$\lim_{x \to n-} f(x) = \lim_{x \to n-} [x] \cos\left(\frac{2x-1}{2}\right) \pi$$
$$= (n-1) \cos\left(\frac{2n-1}{2}\right) \pi = 0$$
$$\lim_{x \to n+} f(x) = \lim_{x \to n+} [x] \cos\left(\frac{2x-1}{2}\right) \pi$$
$$= n \cos\left(\frac{2n-1}{2}\right) \pi = 0$$
Also $f(n) = n \cos\frac{(2n-1)\pi}{2} = 0$
$$\therefore f \text{ is continuous at all integral points a}$$

f is continuous at all integral points as well. Thus, *f* is continuous everywhere

54 (d)

55

Since $\lim_{n \to \infty} x^{2n} = \begin{cases} 0, \text{ if } |x| < 1\\ 1, \text{ if } |x| = 1 \end{cases}$ $\therefore f(x) = \lim_{x \to \infty} (\sin x)^{2n} = \begin{cases} 0, \text{ if } |\sin x| < 1\\ 1, \text{ if } |\sin x| = 1 \end{cases}$ Thus, f(x) is continuous at all x, except for those values of x for which $|\sin x| = 1$, i.e., x = $(2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$ (b) We have

$$f(x) = \frac{x - |x - 1|}{x} = \begin{cases} \frac{x + x - 1}{x}, & x < 1, x \neq 0\\ \frac{x - (x - 1)}{x}, & x \ge 1 \end{cases}$$
$$= \begin{cases} \frac{2x - 1}{x}, & x < 1, x \neq 0\\ \frac{1}{x}, & x \ge 1 \end{cases}$$

Clearly, f(x) is discontinuous at x = 0 as it is not defined at x = 0. Since f(x) is not defined at x = 0, therefore f(x) cannot be differentiable at x = 0. Clearly f(x) is continuous at x = 1, but it is not differentiable at x = 1, because Lf'(1) = 1and Rf'(1) = -1

56 **(d)**

We have $\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \sin(\log_e |-h|) = \lim_{h\to 0} \sin(\log_e h)$ which does not exist and oscillates between -1 and 1. Similarly, $\lim_{x\to 0^+} f(x)$ lies between -1 and 1

57 **(b)**

$$f(x) = \begin{cases} 1 + \left[\cos\frac{\pi x}{2}\right], 1 < x \le 2\\ 1 - \{x\}, \ 0 \le x < 1 \\ |\sin \pi x|, -1 \le x < 0 \end{cases}$$
$$\begin{cases} 1 - 1, \ 1 < x \le 2\\ 1 - x, \ 0 \le x < 1\\ -\sin \pi x, -1 \le x < 0 \end{cases}$$
$$f(x) \text{ is continuous at } x = 1 \text{ but not differentiable}$$

58 **(c)**

Given that
$$f(x) = |1 - x|$$

$$\Rightarrow f(|x|) = \begin{cases} x - 1, & x > 1 \\ 1 - x, & 0 < x \le 1 \\ 1 + x, & -1 \le x \le 0 \\ -x - 1, & x < -1 \end{cases}$$
Clearly, the domain of $\sin^{-1}(f|x|)$ is [

Clearly, the domain of $\sin^{-1}(f|x|)$ is [-2, 2] \Rightarrow It is non-differentiable at the points $\{-1, 0, 1\}$

59 **(c)**

At
$$x = 0$$
,
L.H.L. = $\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$
= $\lim_{h \to 0} h^2 \left(\frac{e^{-1/h} - e^{1/h}}{e^{-1/h} + e^{1/h}} \right)$
= $\lim_{h \to 0} h^2 \left(\frac{e^{-2/h} - 1}{e^{-2/h} + 1} \right)$
= $0 \left(\frac{0 - 1}{0 + 1} \right) = 0$
R.H.L. = $\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} f(0 + h)$
= $\lim_{h \to 0} h^2 \left(\frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} \right)$
= $\lim_{h \to 0} h^2 \left(\frac{1 - e^{-2/h}}{1 + e^{-2/h}} \right)$

 $=0\left(\frac{1-0}{1+0}\right)=0$ and f(0) = 0 \Rightarrow L.H.L = R.H.L. = f(0)Hence, f(x) is continuous at x = 0Also L.H.D. = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$ = $\lim_{h \to 0} \frac{h^2 \frac{e^{-1/h} - e^{1/h}}{e^{-1/h} + e^{1/h}} - 0}{-h}$ $= -\lim_{h \to 0} h \frac{e^{-2/h} - 1}{e^{-2/h} + 1} = 0$ and R.H.D. = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ = $\lim_{h \to 0} \frac{h^2 \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} - 0}{-h}$ = $-\lim_{h \to 0} h \frac{1 - e^{-2/h}}{1 + e^{-2/h}} = 0$ Hence, f(x) is differentiable at x = 0 and f'(0) = 060 **(d)** Clearly, f(x) is continuous at x = 0 if a = 0Now, $f'(0+0) = \lim_{h \to 0} \frac{he^{-(\frac{1}{h} + \frac{1}{h})} - 0}{h}$ $=\lim_{h\to 0}\frac{he^{-2/h}-0}{h}=0$ $f'(0-0) = \lim_{h \to 0} \frac{-he^{-\left(\frac{1}{h} + \frac{1}{h}\right)} - 0}{-h} = 1$ Thus, no values of *a* exists 61 (c) Obviously $\lim_{x\to 0^+} e^{-1/x^2} = \lim_{x\to 0^-} e^{-1/x^2} = 0$, Hence f(x) is continuous at x = 0 $f'(0) = \lim_{h \to 0} \frac{e^{-1/h^2}}{h} = \lim_{h \to 0} \frac{1/h}{e^{1/h^2}}$ $= \lim_{h \to 0} \frac{-1/h^2}{-e^{1/h^2} \cdot \frac{2}{h^3}} = \lim_{h \to 0} \frac{2h^3}{h^2 e^{1/h^2}} = 0$ Hence *f* is differentiable at x = 0. Also $\lim_{x \to \pm \infty} e^{-\frac{1}{x^2}} \to 1$ 62 (c) Since $1 \le x < 2 \Rightarrow 0 \le x - 1 < 1$ $\Rightarrow [x^2 - 2x] = [(x - 1)^2 - 1] = [(x - 1)^2] - 1$ $\therefore f(x) = \begin{cases} 1 - 4x^2, & 0 \le x < \frac{1}{2} \\ 4x^2 - 1, & \frac{1}{2} \le x < 1 \\ -1, & 1 \le x \le 2 \end{cases}$ \therefore graph of f(x):

It is clear from graph that f(x) is discontinuous at x = 1 and differentiable at $x = \frac{1}{2}$ and x = 163 (d) $\frac{x}{1+|x|}$ is always differentiable (also at x = 0) Also (x-2)(x+2)|(x-1)(x-2)(x-3)| is not differentiable at x = 1.3So, f(x) is not differentiable at x = 1, 364 (a) Hence check continuity at $x = k, k \in Z$ For positive integers $f(k) = \{k\}^2 - \{k^2\} = 0$ $f(k^+) = \{k^+\}^2 - \{(k^+)^2\} = 0 - 0$ $f(k^{-}) = \{k^{-}\}^{2} - \{(k^{-})^{2}\} = 1 - 1 = 0$ For negative integers, $f(k) = \{k^2\} - \{k^2\} = 0$ $f(k^+) = \{k^+\}^2 - \{(k^+)^2\} = 0 - 1 = -1$ $f(k^{-}) = \{k^{-}\}^{2} - \{(k^{-})^{2}\} = 1 - 0 = 1$ Hence, f(x) is continuous at positive integers and discontinuous at negative intergers 65 (c) For f(x) to be continuous at x = 0, we have $f(0^{-}) = f(0^{+}) \Rightarrow a(0) + b = 1 \Rightarrow b = 1$ $f'(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{h^2 + h} - b}{h}$ $= \lim_{h \to 0} \frac{e^{h^2 + h} - 1}{h} = \lim_{h \to 0} \frac{e^{h^2 + h} - 1}{h(h+1)}(h+1) = 1$ $\therefore f'(0^-) = a$ Hence, a = 166 **(b)** $f(0^+) = \lim_{x \to 0^+} |x|^{\sin x} = e^{\lim_{x \to 0} \sin x \log |x|}$ $= e^{\lim_{x \to 0} \frac{\log x}{\csc x}} = e^0 = 1 \quad \text{(Using L' Hopital rule)}$ $f(0^{-}) = g(0) = 1$ Let g(x) = ax + b $\Rightarrow b = 1 \Rightarrow g(x) = ax + 1$ For x > 0, $f'(x) = e^{\sin x \ln(|x|)} \left[\cos x \ln(|x|) + \right]$ sin*xx* $f'(1) = 1[0 + \sin 1] = \sin 1$

 $f(-1) = -a + 1 \Rightarrow a = 1 - \sin 1$ \Rightarrow g(x) = (1 - sin 1)x + 1 67 (a) $f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10}, x \neq 5$ f(x) is continuous at x = 5, only if $\lim_{x\to 5} \frac{x^2 - bx + 25}{x^2 - 7x + 10}$ is finite Now $x^2 - 7x + 10 \rightarrow 0$ when $x \rightarrow 5$ Then we must have $x^2 - bx + 25 \rightarrow 0$ for which b = 10Hence, $\lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 7x + 10} = \lim_{x \to 5} \frac{x - 5}{x - 2} = 0$ 68 (C) Since, $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1$ and g(1) = 0So, g(x) is not continuous at x = 1 but $\lim_{x \to 1} g(x)$ exists We have $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} [1-h] =$ and, $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [1+h] = 1$ So, $\lim_{x \to 1} f(x)$ does not exist and so f(x) is not continuous at x = 1We have $gof(x) = g(f(x)) = g([x]) = 0, \forall x \in R$ We have fog(x) = f(g(x)) $= \begin{cases} f(0), & x \in Z \\ f(x^2), x \in R - Z \end{cases} = \begin{cases} 0, & x \in Z \\ [x^2], x \in R - Z \end{cases}$ Which is clearly not continuous 69 (c) Given, $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}; \ 0 < x < 2, \ m \neq$ 0, *n* are integers and $|x - 1| = \begin{cases} x - 1; & x \ge 1 \\ 1 - x; & x < 1 \end{cases}$ The left hand derivative of |x - 1| at x = 1 is p = -1Also, $\lim_{x \to 1^+} g(x) = p = -1$ $\Rightarrow \lim_{h \to 0} \frac{(1+h-1)^n}{\log \cos^m (1+h-1)} = -1$ $\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$ $\Rightarrow \lim_{h \to 0} \frac{n \cdot h^{n-1}}{m \frac{1}{\cos h} (-\sin h)} = -1$ [using L 'Hospital's rule] $\left(\frac{n}{m}\right)\lim_{h\to 0}\frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)} = 1$ \Rightarrow n = 2 and $\frac{n}{m} = 1$ $\Rightarrow m = n = 2$ 70 (d)

From the graph it is clear that f(x) is everywhere continuous but not differentiable at $x = 1 - \sqrt{2}$, 0, 1

71 (a)

As f is continuous so $f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow f(0) = \lim_{n \to \infty} f(1/4n)$ $= \lim_{n \to \infty} \left((\sin e^n) e^{-n^2} + \frac{1}{1+1/n^2} \right) = 0 + 1 = 1$

72 **(b)**

Thus, for the maximum points of nondifferentiability, graphs of $y = \frac{x}{n}$ and $y = |\sin \pi x|$ must intersect at maximum number of points which occurs when n > 3.5Hence, the least value of n is 4

73 **(c)**

$$f(0) = 0 + 0 + \lambda \ln 4 = \lambda \ln 4 \quad (1)$$

R.H.L. = $\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h)$

$$= \lim_{h \to 0} \frac{8^h - 4^h - 2^h + 1^h}{h^2}$$

$$= \lim_{h \to 0} \frac{(4^h - 1)(2^h - 1)}{h \cdot h}$$

$$= \lim_{h \to 0} \left(\frac{4^h - 1}{h}\right) \lim_{h \to 0} \left(\frac{2^h - 1}{h}\right)$$

$$= \ln 4 \ln 2 \quad (2)$$

 $\therefore f(0) = \text{R.H.L.}$
 $\Rightarrow \lambda = \ln 2$
74 (c)

$$f(x) = \lim_{n \to \infty} \frac{[(x-1)^2]^n - 1}{[(x-1)^2]^n}$$

$$= \lim_{n \to \infty} \frac{1 - \frac{1}{[(x-1)^2]^n}}{1 + \frac{1}{[(x-2)^2]^n}}$$

 $-1, 0 \le (x - 1)^2 < 1$ $0, (x - 1)^2 = 1$ $1, (x - 1)^2 > 1$ $\begin{cases} 1, & x < 0, \\ 0, & x = 0, \\ -1, 0 < x < 2, \\ 0, & x = 2, \\ 2 \end{cases}$ Thus, f(x) is discontinuous at x = 0, 275 (a) $x^{2} + 2x + 3 + \sin \pi x = (x + 1)^{2} + 2 + \sin \pi x > 1$ $\therefore f(x) = 1 \ \forall \ x \in R$ 76 (c) $f(x) = (x^2 - 1)|(x - 1)(x - 2)|$ $f(x) = (x^2 - 1)|(x - 1)(x - 2)|$ = (x + 1)[(x - 1|x - 1|]|x - 2|Which is differentiable at x = 1For $f(x) = \sin(|x - 1|) - |x - 1|$ $f'(1^+) = \lim_{h \to 0} \frac{\sin h - h - 0}{-h} = 0$ $f'(1^{-}) = \lim_{h \to 0} \frac{\sin|-h| - |-h|}{-h} = \lim_{h \to 0} \frac{\sin h - h}{-h}$ Hence, f(x) is differentiable at x = 1For $f(x) = \tan(|x - 1|) + |x - 1|$ $f'(1^+) = \lim_{h \to 0} \frac{\tan h + h - 0}{h} = 2$ $f'(1^{-}) = \lim_{h \to 0} \frac{\tan|-h| + |-h|}{-h} = \lim_{h \to 0} \frac{\tan h + h}{-h}$ Hence, f(x) is non-differentiable at x = 177 (a) We have x + 4|y| = 6y $\Rightarrow \begin{cases} x - 4y = 6y, & \text{if } y < 0\\ x + 4y = 6y, & \text{if } y \ge 0 \end{cases}$ $\Rightarrow y = \begin{cases} \frac{1}{2}x, & \text{if } x \ge 0\\ \frac{1}{10}x, & \text{if } x < 0 \end{cases} \Rightarrow f'(x) = \begin{cases} \frac{1}{2}, & x > 0\\ \frac{1}{10}, & x < 0 \end{cases}$ Clearly, f(x) is continuous at x = 0 but nondifferentiable at x = 078 (c) $f(x) = \tan x$ is discontinuous when x = $(2n+1)\pi/2, n \in Z$ f(x) = x[x] is discontinuous when $x = k, k \in \mathbb{Z}$ $f(x) = \sin[n\pi x]$ is discontinuous when $n\pi x = k, k \in \mathbb{Z}$ Thus, all the above functions have infinite number of points of discontinuity But $f(x) = \frac{[x]}{x}$ is discontinuous when x = 0 only 79 (c) $f(x) = \{x\}\sin(\pi[x])$

 $= \{x\} \sin (\text{integral multiple of } \pi)$

= 0

Hence, f(x) is continuous for all x

80 **(b)**

The function f is clearly continuous at each point in its domain except possibly at x = 0. Given that f(x) is continuous at x = 0

Therefore,
$$f(0) = \lim_{x \to 0} f(x)$$

= $\lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$
= $\lim_{x \to 0} \frac{2 - (\sin^{-1} x)/x}{2 + (\tan^{-1} x)x} = \frac{1}{3}$

81 **(d)**

 $f(x) = \cos(|x|) + |x| = \cos x + |x| \text{ is non-differentiable at } x = 0 \text{ as } |x| \text{ is non-differentiable at } x = 0.$ Similarly $f(x) = \cos(|x|) - |x| \text{ is non-differentiable at } x = 0$

83

84

85

(b)

$$f(x) = \sin |x| + |x| = \begin{cases} +\sin x + x, & x \ge 0 \\ +\sin x + x, & x \ge 0 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} -\cos x - 1, & x < 0 \\ +\cos x + 1, & x \ge 0 \end{cases}$$

Which is not differentiable at $x = 0$

$$f(x) = \sin |x| - |x| = \begin{cases} -\sin x + x, x < 0 \\ \sin x - x, x \ge 0 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} -\cos x + 1, & x < 0 \\ +\cos x - 1, & x \ge 0 \end{cases}$$

$$\therefore f \text{ is differentiable at } x = 0$$

82 **(b)**

Consider $x \in [0, 1]$ From the graph given in figure, it is clear that $[\cos \pi x]$ is discontinuous at

Now consider $x \in (1, 2]$ f(x) = [x - 2]|2x - 3|For $x \in (1, 2)$; [x - 2] = -1 and for x = 2; [x - 2] = 0Also $|2x - 3| = 0 \Rightarrow x = 3/2$ $\Rightarrow x = 3/2$ and 2 may be the points at which f(x)is discontinuous (2)

$$f(x) = \begin{cases} 1, & x = 0 \\ 0, & 0 < x \le \frac{1}{2} \\ -1, & \frac{1}{2} < x \le 1 \\ -(3 - 2x), 1 < x \le 3/2 \\ -(2x - 3), 3/2 < x \le 2 \\ 0, & x = 2 \end{cases}$$
Thus, $f(x)$ is continuous when $x \in [0, 2] - \{0, 1/2, 2\}$
(b)
We have $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$
The domain of definition of $f(x)$ is $[-1, 1]$
For $x \neq 0, x \neq \pm 1$, we have
 $f'(x) = \frac{1}{\sqrt{1 - \sqrt{1 - x^2}}} \times \frac{x}{\sqrt{1 - x^2}}$
Since $f(x)$ is not defined on the right side of $x = 1$
and on the left side of $x = -1$
Also, $f'(x) \to \infty$ when $x \to -1^+$ or $x \to 1^-$
So, we check the differentiability at $x = 0$
Now, L.H.D. at $x = 0$
 $= \lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h}$
 $= \lim_{h \to 0} \frac{\sqrt{1 - \sqrt{1 - h^2}} - 0}{-h}$
 $= \lim_{h \to 0} \frac{\sqrt{1 - \sqrt{1 - h^2}} - 0}{-h}$
 $= -\lim_{h \to 0} \frac{\sqrt{1 - \sqrt{1 - h^2}} - 0}{-h}$
 $= -\lim_{h \to 0} \frac{\sqrt{1 - (1 - (1/2)h^2 + (3/8)h^4 + \cdots)}}{h}$
 $= -\lim_{h \to 0} \sqrt{\frac{1}{2} - \frac{3}{8}h^2} + \cdots = -\frac{1}{\sqrt{2}}$
Similarly, R.H.D. at $x = 0$ is $\frac{1}{\sqrt{2}}$
Hence, $f(x)$ is not differentiable at $x = 0$
(b)
We have $f(x) = \begin{cases} \frac{1 - |x|}{1 + x}, x \neq -1 \\ 1, x = -1 \end{cases}$
 $= \begin{cases} 1, & x < 0, \\ \frac{1 - |x|}{1 + x}, x \ge 0 \ (\because f(-1) = 1 \text{ is given}) \end{cases}$
 $\Rightarrow f(|2x|) = \begin{cases} 1, |2x| < 0 \\ \frac{1 - |2x|}{1 + |2x|}, |2x| \ge 0 \end{cases}$
 $= \begin{cases} 1, & 0 \le x < 1/2 \\ 0, & 1/2 \le x < 1 \\ -1/3, 1 \le x < \frac{3}{2} \end{cases}$
Clearly, $f(x)$ is continuous for all $x < \frac{1}{2}$ and discontinuous at $x = \frac{1}{7}$, 1

Page **| 30**

f(x) is discontinuous at x = 1 and x = 2 $\Rightarrow f(f(x))$ may be discontinuous when f(x) = 1or 2 Now $1 - x = 1 \Rightarrow x = 0$, where f(x) is continuous $x + 2 = 1 \Rightarrow x = -1 \notin (1, 2)$ $4 - x = 1 \Rightarrow x = 3 \in [2, 4]$ Now $1 - x = 2 \Rightarrow x = -1 \notin [0, 1]$ $x + 2 = 2 \Rightarrow x = 0 \notin (0, 2]$ $4 - x = 2 \Rightarrow x = 2 \in [2, 4]$ Hence f(f(x)) is discontinuous at x = 2, 3**(b)** 86 We must have $\lim_{x\to 0} \frac{a\cos x - \cos bx}{x^2} = 4$ $\Rightarrow \lim_{x \to 0} \frac{a\left(1 - \frac{x^2}{2!}\right) - \left(1 - \frac{b^2 x^2}{2!}\right)}{x^2} = 4$ $\Rightarrow \lim_{x \to 0} \left[\frac{(a-1)}{x^2} - \left(\frac{a}{2} - \frac{b^2}{2} \right) \right] = 4$ $\Rightarrow a = 1 \text{ and } \frac{a}{2} - \frac{b^2}{2} = -4$ $\Rightarrow a = 1 \text{ and } b^2 = 9$ $\Rightarrow a = 1 \text{ and } b = \pm 3$ 87 (c) For |x| < 1, $x^{2n} \to 0$ as $n \to \infty$ and for $|x| > 1, 1/x^{2n} \rightarrow 0$ as $n \rightarrow \infty$. So f(x) $= \begin{cases} \log(2+x), & |x<1|\\ \lim_{n \to \infty} \frac{x^{-2n} \log(2+x) - \sin x}{x^{-2n} + 1} = -\sin x, \text{ if } |x| > \\ \frac{1}{2} [\log(2+x) - \sin x], & |x| = 1 \end{cases}$ Thus, $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (-\sin x) = -\sin 1$ and $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} \log(2 + x) = \log 3$ 88 (c) Let $f(x) = x^2 |x|$ which could be expressed as $f(x) = \begin{cases} -x^3 , x < 0\\ 0, \quad x = 0 \Rightarrow f'(x) = \begin{cases} -3x^2, x < 0\\ 0, x = 0\\ 3x^2, x > 0 \end{cases}$ So, f'(x) exists for all real x $f''(x) = \begin{cases} -6x, & x < 0\\ 0, & x = 0\\ 6x, & x > 0 \end{cases}$ So, f''(x) exists for all real x $f'''(x) = \begin{cases} -6, & x < 0 \\ 0, & x = 0 \\ 6, & x > 0 \end{cases}$ However, f'''(0) does not exist since $f'''(0^-) =$ -6 and $f'''(0^+) = 6$ which are not equal. Thus, the set of points where f(x) is thrice differentiable is $R - \{0\}$ 89 (d) We have,

L.H.L. =
$$\lim_{h \to 0} f(4 - h)$$

= $\lim_{h \to 0} \frac{4 - h - 4}{|4 - h - 4|} + a$
= $\lim_{h \to 0} \left(-\frac{h}{h} + a \right) = a - 1$
R.H.L. = $\lim_{x \to 4^+} f(x)$
= $\lim_{h \to 0} f(4 + h)$
= $\lim_{h \to 0} \frac{4 + h - 4}{|4 + h - 4|} + b = b + 1$
 $\Rightarrow f(4) = a + b$
Since $f(x)$ is continuous at $x = 4$, therefore
 $\lim_{x \to 4^-} f(x) = f(4) = \lim_{x \to 4^+} f(x)$
 $\Rightarrow a - 1 = a + b = b + 1 \Rightarrow b = -1$ and $a = 1$
(b)
 $f(x)$ is clearly continuous for $x \in R$
 $x' + \frac{y}{2} + \frac{y}{1} + \frac{y}{1} + \frac{y}{2} + \frac{y}{2$

90

91

92 (a,c)

$$f(x) = \begin{cases} (\sin^{-1} x)^{2} \cos\left(\frac{1}{x}\right), x \neq 0 \\ x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (\sin^{-1} x)^{2} \cos\left(\frac{1}{x}\right) \\ = 0 \times (\text{any value between } -1 \text{ to } 1) = 0 \\ \text{Hence } f(x) \text{ is continuous at } x = 0 \\ f'(0^{+}) = \lim_{h \to 0} \frac{(\sin^{-1} h)^{2} \cos\left(\frac{1}{h}\right) - 0}{h} \\ = \left(\lim_{h \to 0} \frac{\sin^{-1} h}{h}\right) \left(\lim_{h \to 0} \sin^{-1} h\right) \left(\lim_{h \to 0} \cos\left(\frac{1}{h}\right)\right) \\ = 1 \times (0) \times (\text{any value between } -1 \text{ to } 1) = 0 \\ \text{Similarly, } f'(0^{-}) = 0 \\ \text{Hence, } f(x) \text{ is continuous and differentiable in } \\ [-1, 1] \text{ and } (-1, 1), \text{ respectively} \end{cases}$$
93 (b,c,d)

$$f(x) = |x^{3}| = \begin{cases} -x^{3}, x < 0 \\ x^{4}, x \ge 0 \end{cases} = f'''(x) \begin{cases} -6, x < 0 \\ 6, x > 0 \end{cases}$$
Hence $f'''(0)$ does not exist

$$f(x) = x^{3}|x| = \begin{cases} -x^{4}, x < 0 \\ x^{4}, x \ge 0 \end{cases} = f'''(x) \\ = \begin{cases} -24x, x < 0 \\ 24x, x > 0 \end{cases}$$
Hence $f'''(0) = 0$ and exists Similarly for $f(x) = |x| \sin^{3} x$ and $f(x) = x \\ x | \tan^{3} x |, a | \cos f'''(0) = 0$ and exists
94 (a,c,d)
Differentiating w.r.t. x , keeping y as constant, we get $f'(x + y) = f'(x) + 2xy + y^{2}$
Now put $x = 0$

$$f'(y) = f'(0) + y^{2} = y^{2} - 1 \\ \therefore f'(x) = \frac{x^{3}}{3} - x + c$$
Also $f(0 + 0) = f(0) + f(0) + 0 \therefore f(0) = 0$
 $\therefore f(x) = \frac{x^{3}}{3} - x, f(x)$ is twice differentiable for all $x \in R$ and $f'(3) = 3^{2} - 1 = 8$
95 (a,b,c)
Since, $\lim_{x \to 1^{-1}} g(x) = \lim_{x \to 1^{+1}} g(x) = 1$ and $g(1) = 0$
So, $g(x)$ is not continuous at $x = 1$ but $\lim_{x \to 1} g(x)$
exists
We have $\lim_{x \to 1^{-1}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 0$
and $\lim_{x \to 1^{+1}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 1$
So, $\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{-1}} f(1 - h) = \lim_{h \to 0} [1 - h] = 0$
and $\lim_{x \to 1^{+1}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 1$
So, $\lim_{x \to 1^{-1}} f(x)$ does not exist and hence $f(x)$ is not continuous at $x = 1$
We have $gof(x) = g(f(x)) = g([x]) = 0, \forall x, \in R$
So, gof is continuous for all x

We have $fog(x) = f(g(x)) = \begin{cases} f(0), \ x \in Z \\ f(x^2), \ x \in R - Z \end{cases}$

$$=\begin{cases} 0, & x \in Z\\ [x^2], & x \in R - Z \end{cases}$$

Which is clearly not continuous

From the figure, it is clear that h(x) =

From the graph, it is clear that h(x) is continuous for all $x \in R$, h'(x) = 1 for all x > 1, and h is not differentiable at x = 0 and 1

97 (a,c,d)

a is not correct as f(x) = x from *R* to *R* is onto but its reciprocal function $g(x) = \frac{1}{x}$ is not onto on *R*

b is obviously true

Also g(x) is not continuous, hence not differentiable though f(x) is continuous and differentiable in the above case

98 (a,c)

From the graph, it is clear that f(x) is continuous everywhere and also differentiable everywhere except at x = 1 and -1

99 **(a,c)**

$$f(x) = \begin{cases} 1, & |x| \ge 1\\ \frac{1}{n^2}, \frac{1}{n} < |x| < \frac{1}{n-1}, n = 2, 3, \dots\\ 0, & x = 0 \end{cases}$$

$$= \begin{cases} 1, & x \le \text{ or } x \ge 1 \\ \frac{1}{4}, & x \in \left(-1, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right) \\ \frac{1}{9}, & x \in \left(\frac{-1}{2}, -\frac{1}{3}\right) \cup \left(\frac{1}{3}, \frac{1}{2}\right) \\ \vdots & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ &$$

The function *f* is clearly continuous for |x| > 1We observe that

 $\lim_{x \to -1^+} f(x) = 1, \lim_{x \to -1^-} f(x) = \frac{1}{4}$ Also, $\lim_{x \to \frac{1+}{n}} f(x) = \frac{1}{n^2}$ and $\lim_{x \to \frac{1-}{n}} f(x) = \frac{1}{(n+1)^2}$ Thus f is discontinuous for $x = \pm \frac{1}{n}$, n = 1, 2, 3, ...Hence **a** and **c** are the correct answers 100 (a,b,c,d) **a**, **b**, and **c** are false. Refer to definitions for **d**, *f* must be continuous \Rightarrow False 101 (a,b) We have $g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$ If $x \neq 0$, $g'(x) = x^2 \cos\left(\frac{1}{x}\right) \left(-\frac{1}{x^2}\right) + 2x \sin\left(\frac{1}{x}\right)$ $= -\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right)$ Which exists for $\forall x \neq 0$ If x = 0, Then $g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x - 0}$ $=\lim_{x\to 0}x\sin\left(\frac{1}{x}\right)=0$ $\Rightarrow \mathbf{g}'(x) = \begin{cases} -\cos\left(\frac{1}{x}\right) + 2x\sin\frac{1}{x}, & x \neq 0\\ 0 & x = 0 \end{cases}$ At x = 0, $\cos\left(\frac{1}{x}\right)$ is not continuous, therefore g'(x) 106 (b,c,d) is not continuous at x = 0. At x = 0 $Lf' = \lim_{x \to 0} \frac{0 - (-x)\sin\sin\left(-\frac{1}{x}\right)}{x} = \sin\left(\frac{1}{x}\right)$ Which does not exist 102 (a,b) $\sin^4 x \in (0, 1)$ for $x \in (-\pi/2, \pi/2)$, $\Rightarrow f(x) = 0$ for $x \in (-\pi/2, \pi/2)$ Hence f(x) is continuous and differentiable at x = 0

103 (a,c,d)

$$f(x) = \frac{x^2 - 2x - 8}{x + 2} = \frac{(x + 2)(x - 4)}{x + 2} = x - 4, x$$

$$\neq -2$$

Hence f(x) has removable discontinuity at x = -2

Similarly f(x) in options (c) and (d) has also removable discontinuity

$$f(x) = \frac{x-7}{|x-7|} = \begin{cases} -1, x < 7\\ 1, x > 7 \end{cases}$$

Hence f(x) has non-removable discontinuity at x = 7

104 (b,c)

Option (a) is wrong as $f(x) = \sin x$ and g(x) =|x|, g(x) is non-differentiable at x = 0, but f(x) g(x) is differentiable at x = 0

105 (a,b,d)

Clearly, f(x) is discontinuous and bijective function

$$\lim_{x \to 1^{-}} f(x) = \frac{1}{2}, \lim_{x \to 1^{+}} f(x) = 2$$
$$\min\left(\lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x)\right) = \frac{1}{2} \neq f(1)$$
$$\max(1, 2) = 2 = f(1)$$

$$f(x) = \begin{cases} 0, & x < 0 \\ x^2, & x \ge 0 \end{cases} \Rightarrow f'(x) = \begin{cases} 0, & x < 0 \\ 2x, & x > 0 \end{cases}$$

which exists $\forall x$ except possibly at $x = 0$
At $x = 0, Lf' = 0 = Rf'$
 $\Rightarrow f$ is differentiable
Clearly, f' is non-differentiable
$$y = 0, \qquad y' = x^2$$

 $x' = 2, -1, \qquad 0, \qquad 1, 2, \qquad y' = x^2$

107 (a,b) $f(x) = \operatorname{sgn}(x)\sin x$ $f(0^+) = \operatorname{sgn}(0^+) \sin(0^+) = 1 \times (0) = 0$ $f(0^{-}) = \operatorname{sgn}(0^{-}) \sin(0^{-}) = (-1) \times (0) = 0$ Also f(0) = 0Hence, f(x) is continuous everywhere Both sgn(x) and sin(x) are odd functions Hence, f(x) is an even function Obviously, f(x) is non-periodic Now $f'(0^+) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$ $=\lim_{h\to 0}\frac{\operatorname{sgn}(h)\sin h-0}{h}=\lim_{h\to 0}\frac{\sin h}{h}=1$ and $f'(0^+) = \lim_{h \to 0} \frac{\operatorname{sgn}(-h) \operatorname{sin}(-h) - 0}{-h}$ = $\lim_{h \to 0} \frac{-1 \times (-\sin h)}{-h} = -1$ Hence, f(x) is non-differentiable at x = 0108 (a,b) For b = 1, we have f(g(0)) = f(sin(0) + 1) =f(1) = 1 + aAlso $f(g(0^+)) = \lim_{x \to 0^+} f(\sin x + 1) = f(1) = 1 +$ and $f(g(0^{-})) = \lim_{x \to 0^{-}} f(\{x\}) = f(1^{-}) = 1 + a$ Hence, f(g(x)) is continuous for b = 1For b < 0. $f(g(0)) = f(\sin(0) + b) = f(b) = 2 - b$ $f(g(0^+)) = \lim_{x \to 0^+} f(\sin x + b) = f(b) = 2 - b$ and $f(g(0^-)) = \lim_{x \to 0^-} f(\{x\}) = f(1) = 1 + a$ For continuity at x = 0, we must have 2 - b = 1 + a or a + b = 1109 (b,d) $f(x) = \operatorname{sgn}\left(\cos 2x - 2\sin x + 3\right)$ $= sgn(1 - 2sin^2 x - 2sin x + 3)$ $= \operatorname{sgn}(-2\sin^2 x - 2\sin x + 4)$ f(x) is discontinuous when $-2\sin^2 x - 2\sin x +$ 4=0 or $\sin 2x + \sin x - 2 = 0$ or $(\sin x - 1)(\sin x + 2) = 0$ or $\sin x = 1$ Hence f(x) is discontinuous 110 (a,b,c) $f(x) = \begin{cases} |x-3|, & x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$ $=\begin{cases} \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1\\ 3 - x, & 1 \le x < 3\\ x - 3, & x > 3 \end{cases}$ $\Rightarrow f'(x) = \begin{cases} \frac{x}{2} - \frac{3}{2}, & x < 1\\ -1, & 1 < x < 3\\ 1, & x > 2 \end{cases}$

Clearly, f(x) is non-differentiable at x = 3For x = 1, where function changes its definition $f(1^{-}) = \lim_{x \to 1} \left[\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} \right] = \frac{1}{4} - \frac{3}{2} + \frac{13}{4} = 2$ $f(1^+) = \lim_{x \to 3^+} |x - 3| = 2$ $Lf'(1^{-}) = -1, Rf'(1^{+}) = -1$ Hence, f(x) is differentiable at x = 1Hence, f(x) is continuous for all x but nondifferentiable at x = 3111 (a,b,d) Given that x + |y| = 2yIf y < 0, then $x - y = 2y \Rightarrow y = x/3 \Rightarrow x < 0$ If y = 0, then x = 0If y > 0, then $x + y = 2y \Rightarrow y = x \Rightarrow x > 0$ Thus, we can define $f(x) = y = \begin{cases} x/3, x < 0 \\ x, x \ge 0 \end{cases}$ $\Rightarrow \frac{dy}{dx} = \begin{cases} 1/3, x < 0\\ 1, x > 0 \end{cases}$ Clearly, y is continuous but non-differentiable at x = 0112 (a,b) f(x) is continuous for all x if it is continuous at x = 1 for which |1| - 3 = |1 - 2| + a or a = -3g(x) is continuous for all x if it is continuous at x = 2 for which 2 - |2| = sgn(2) - b = 1 - b or b = 1thus, f(x) + g(x) is continuous for all x if a = -3, b = 1hence, f(x) is discontinuous at exactly one point for options a and b 113 (a,c,d) For continuity at x = 1 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 \operatorname{sgn}[x] + \{x\}) = 1 + 0 = 1$ $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2 \operatorname{sgn}[x] + \{x\})$ $= 1 \operatorname{sgn}(0) + 1 = 1$ Also, f(1) = 1 \therefore L.H.L. = R.H.L. = f(1). Hence, f(x) is continuous at x = 1Now for differentiability, $f'(1^+) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

$$= \lim_{h \to 0} \frac{(1+h)^2 \operatorname{sgn} [1+h] + \{1+h\} - 1}{h}$$

$$= \lim_{h \to 0} \frac{(1+h)^2 + h - 1}{h} = \lim_{h \to 0} \frac{h^2 + 3h}{h} = 3$$
and $f'(1^-) = \lim_{h \to 0} \frac{(1-h)^2 \operatorname{sgn} [1-h] + \{1-h\} - 1}{-h}$

$$= \lim_{h \to 0} \frac{(1-h)^2 + 1 - h - 1}{-h}$$

$$= \lim_{h \to 0} \frac{h^2 - 3h}{-h} = 3$$
 $f'(1^+) = f'(1^-)$
Hence, $f(x)$ is differentiable at $x = 1$
Now at $x = 2$,
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^2 \operatorname{sgn} [x] + \{x\}) = 4 \times 0 + 1$
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} (\sin x + |x - 3|) = 1 + \sin 2$
Hence, L.H.L \neq R.H.L.
Hence, $f(x)$ is discontinuous at $x = 2$ and then $f(x)$ is also non-differentiable at $x = 2$
114 **(a,b,c,d) a** $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{x} + a}{2x} = \frac{1}{2} \Rightarrow a = -1$
If $a = -1$, then $\lim_{x \to 0^+} f(x) = \frac{1}{2}$, $\lim_{x \to 0^-} f(x) = \frac{1}{2}$
 $\therefore f(x)$ is continuous at $x = 0$ if $b = \frac{1}{2}$
c. If $a \neq -1$, then $\lim_{x \to 0} f(x) = \frac{1}{2}$
 $\therefore b \neq \frac{1}{2}$ premovable type of discontinuity at $x = 0$
115 **(a,b)**
For maximum points of discontinuity of $f(x) = \operatorname{sgn}(x^2 - ax + 1)$, $x^2 - ax + 1 = 0$ must have two distinct roots, for which $D = a^2 - 4 > 0$
 $\Rightarrow a \in (-\infty, -2) \cup (2, \infty)$
117 **(a,b)**
 $f(1^-) = 1; f(1^+) = 1; f(1) = 1$
 $f'(1^-) = 5; f'(1^+) = 5$
 $f(2^+) = 10, f(2^-) = 10$
 $f'(2^+) = 3; f'(2^-) = 13$
118 **(b,d)**
a $\lim_{x \to 1^+} \frac{x^{2}}{-1} = \frac{2}{3}$
 $\therefore f(x)$ has removable discontinuity at $x = 1$

c. $\lim_{x \to 1^{+}} \left(2^{-2^{\frac{1}{1-x}}}\right) = 1 \text{ and } \lim_{x \to 1^{-}} \left(2^{-2^{\frac{1}{1-x}}}\right) = 0$ Hence, the limit does not exist d. $\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2x}}{x^2 - x} = \frac{-1}{2\sqrt{2}} \text{ (Rationalizing)}$ $\therefore f(x) \text{ has removable discontinuity at } x = 1$ 119 (a,c) $f\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \left(\frac{3}{2}\right)^{\cot\left(3\left(\frac{\pi}{2} - h\right)\right)/\cot\left(2\left(\frac{\pi}{2} - h\right)\right)}$ $= \lim_{h \to 0} \left(\frac{3}{2}\right)^{-(\tan 3h)(\tan 2h)} = 1$ $f\left(\frac{\pi^{+}}{2}\right) = \lim_{h \to 0} \left[1 + \left|\cot\left(\frac{\pi}{2} + h\right)\right|\right]^{\left[a\left|\tan\left(\frac{\pi}{2} + h\right)\right|\right]/b}$ $= \lim_{h \to 0} (1 + \tan h)^{\frac{a \cot h}{b}}$ $= e^{\lim_{h \to 0} (1 + \tan h)^{\frac{a \cot h}{b}}} = e^{a/b}$ Also $f\left(\frac{\pi}{2}\right) = b + 3$ $f(x) \text{ is continuous at } x = \pi/2$ $\Rightarrow 1 = b + 3 = e^{a/b} \Rightarrow b = -2 \text{ and } a = 0$ 121 (b,d,e)

 $|\sin x|$ is continuous for all but not differentiable when $\sin x = 0$ (where $\sin x$ crosses *x*-axis) or $x = n\pi, n \in \mathbb{Z}$

122 (a,b,d)

From the graph, $0 \le x \sin \pi x < 1$, for $x \in [-1, 1]$ Hence, $f(x) = 0, x \in [-1, 1]$

 $f(x) = \frac{x}{1+|x|}$ is differentiable everywhere except probably at x = 0For x = 0

 $Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{\frac{-h}{1+h} - 0}{-h} = 1$ $Rf'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{h}{1+h} - 0}{h} = 1$ Lf'(0) = Rf'(0) \Rightarrow *f* is differentiable at *x* = 0 Hence, *f* is differentiable in $(-\infty, \infty)$ 124 (d) $x \in [0,\pi] \Rightarrow \frac{x-2}{2} \in \left[-1, \frac{\pi}{2} - 1\right]$ $\frac{1}{f(r)} = \frac{2}{r-2}$, which is continuous in $(-\infty, \infty) \sim \{2\}$ $\tan(f(x))$ is continuous in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ $f^{-1}(x) = 2(x + 1)$ which is clearly continuous but $tan(f^{-1}(x))$ is not continuous 125 (b,c) $0n(0,\pi)$ **a**. $\tan x = f(x)$ we know tan *x* is discontinuous at $x = \pi/2$ **b**. $f(x) = \int_0^x t \sin\left(\frac{1}{t}\right) dt$ $\Rightarrow f'(x) = x \sin\left(\frac{1}{x}\right)$ which is well-defined on $(0, \pi)$ \therefore f(x) being differentiable is continuous on $(0,\pi)$ c. $f(x) = \begin{cases} 1, & 0 < x \le 3\pi/4 \\ 2\sin\frac{2x}{9}, & 3\pi/4 < x < \pi \end{cases}$ Clearly, f(x) is continuous on $(0, \pi)$ except possibly at $x = 3\pi/4$, where L. H. L. = $\lim_{h \to 0} f\left(\frac{3\pi}{4} - h\right) = \lim_{x \to 0} 1 = 1$ R. H. L. = $\lim_{h \to 0} f\left(\frac{3\pi}{4} + h\right) = \lim_{n \to 0} 2\sin\frac{2}{9}\left(\frac{3\pi}{4} + h\right)$ $= \lim_{h \to 0} 2\sin\left(\frac{\pi}{6} + \frac{2h}{9}\right) = 2\sin\frac{\pi}{6} = 2 \times \frac{1}{2} = 1$ Also $f\left(\frac{3\pi}{4}\right) = 1$ As L. H. L. = R. H. L. = $f\left(\frac{3\pi}{4}\right) \therefore f(x)$ is continuous on $(0, \pi)$ $\mathbf{d}.\,f(x) = \begin{cases} x \sin x, \ 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x), \frac{\pi}{2} < x < \pi \end{cases}$ Here f(x) will be continuous on $(0, \pi)$ if it is continuous at $x = \pi/2$. At $x = \pi/2$ L. H. L. = $\lim_{h \to 0} f\left(\frac{\pi}{2} - h\right)$ $=\lim_{h\to 0} \left(\frac{\pi}{2} - h\right) \sin\left(\frac{\pi}{2} - h\right) = \frac{\pi}{2} \sin\frac{\pi}{2} = \frac{\pi}{2}$ R. H. L. = $\lim_{h \to 0} f\left(\frac{\pi}{2} + h\right) = \lim_{h \to 0} \frac{\pi}{2} \sin\left(\pi + \frac{\pi}{2} + h\right)$ $=\frac{\pi}{2}\sin(\pi+\frac{\pi}{2})=\frac{-\pi}{2}\sin\frac{\pi}{2}=-\frac{\pi}{2}$ As L. H. L. \neq R. H. L. \therefore f(x) is not continuous 126 (a,c)

 $f(x) = x + |x| + \cos 9x$, $g(x) = \sin x$ Since both f(x) and g(x) are continuous everywhere, f(x) + g(x) is also continuous everywhere f(x) is non-differentiable and x = 0Hence f(x) + g(x) is non-differentiable at x = 0Now $h(x) = f(x) \times g(x)$ $=\begin{cases} (\cos 9x)(\sin x),\\ (2x+\cos 9x)(\sin x), \end{cases}$ *x* < 0 $x \ge 0$ Clearly, h(x) is continuous at x = 0Also h'(x) $=\begin{cases} \cos x \cos 9x - 9 \sin x \sin 9x, \\ (2 - 9 \sin 9x) \sin x + \cos x (2x + \cos 9x), \end{cases}$ х х $h'(0^{-}) = 1, h'(0^{+}) = 1$ $\Rightarrow f(x) \times g(x)$ is differentiable everywhere 127 (b,d) We have $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log \cos x}{\log(1 + x^2)}$ $= \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)} \frac{1 - \cos x}{1 - \cos x}$ $= \lim_{x \to 0} \frac{\log\{1 - (1 - \cos x)\}}{1 - \cos x} \frac{1 - \cos x}{\log(1 + x^2)}$ $= -\lim_{x \to 0} \frac{\log[1 - (1 - \cos x)]}{-(1 - \cos x)} \frac{2\sin^2 \frac{x}{2}}{4\left(\frac{x}{2}\right)^2} \frac{x^2}{\log(1 + x^2)}$ $=-\frac{1}{2}$ Hence, f(x) is differentiable at x = 0Hence, **b** and **d** are the correct answers 128 (b,c) $f(0^{-}) = \lim_{n \to \infty} \left[\lim_{x \to 0^{-}} (\cos^2 x)^n \right]$ = $(a \text{ value lesser than } 1)^{\infty} = 0$ $f(0^+) = \lim_{n \to \infty} \left[\lim_{x \to 0^+} (1 + x^n)^{1/n} \right] = 1$ Also $f(0) = 1 \Rightarrow$ discontinuous at x = 0Further, $f(1^{-}) = 1$; $f(1^{+}) = 0$; f(1) = 1 \Rightarrow discontinuous at x = 1129 (a, c) Clearly, f(x) is defined for all x satisfying $9 - x^2 > 0$ and $2 - x > 0 \Rightarrow x \in (-3, 2)$ So, domain of f(x) = (-3, 2)Clearly, range of f(x) = [-1, 1]Also, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$ So, f(x) is continuous at x = 0 $\lim_{x \to -3^+} (x - 3)f(x)$

$$= \lim_{h \to 0} (h)$$

- 6) sin $\left\{ \log \left(\frac{9 - (-3 + h)^2}{2 - (-3 + h)} \right) \right\}$

$$\Rightarrow \lim_{x \to -3^+} (x - 3) f(x)$$

= $\lim_{h \to 0} (h - 6) \sin \left\{ \log \left(\frac{h(6 - h)}{5 - h} \right) \right\}$
$$\Rightarrow \lim_{x \to -3^+} (x - 3) f(x) = (h - 6) \times (An$$

oscillating number)
$$\therefore \lim_{x \to -3^+} (x - 3) f(x) \text{ does not exist}$$

130 (a,c,d)

a is wrong as continuity is a must for f(x)**b** is the correct form of intermediate value theorem

c as per the graph (in figure), is incorrect

d is wrong if *f* is discontinuous

131 (a,b,c,d)

Given function is discontinuous when $a + \sin \pi x = 1$ Now if $a = 1 \Rightarrow \sin \pi x = 0 \Rightarrow x = 1, 2, 3, 4, 5$ If $a = 3 \Rightarrow \sin \pi x = -2$ not possible If $a = 0.5 \Rightarrow \sin \pi x = 0.5$ $\Rightarrow x$ has 6 values, 2 each for one cycle of period 2 If $a = 0 \Rightarrow \sin \pi x = +1 \Rightarrow x = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$ Hence, all the options are correct

132 **(b)**

$$f(x) = (2x - 5)^{3/5} \Rightarrow f'(x) = \frac{3}{5(2x - 5)^{2/5}}$$

Statement 2 as it is fundamental concept for nondifferentiability

But given function is non-differentiable at x = 5/2, as it has vertical tangent at x = 5/2, but not due to sharp turn

The graph of the function is smooth in the neighbourhood of x = 5/2

133 **(b)**

Statement 1 is correct as $e^{|x|}$ is non-differentiable at x = 0 134 **(b)**

We know that $0 \le \cos^2(n! \pi x) \le 1$

Hence, $\lim_{m\to\infty} \cos^{2m}(n! \pi x) = 0$ or 1, as

$$0 \le \cos^2(n! \pi x) < 1 \text{ or } \cos^2(n! \pi x) = 1$$

Also, since $n \to \infty$, then n! x = integer if $x \in Q$ and $n! x \neq$ integer if $x \in Q$ and $n! x \neq$ integer, if $x \in$ irrational

Hence, $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$

 \Rightarrow h(x) = 1 when $\forall x \in R$ which is continuous for all x; however, statement 2 does not correctly explain statement 1 as the addition of discontinuous functions may be continuous

Since f(x) is a continuous function such that f(0) = 1 and $f(x) \neq x, \forall x \in R$

The graph of y = f(x) always lies above the graph of y = x

Hence f(x) > x

Hence, f(f(x)) > x (as f(x) is onto function, f(x) takes all real values which acts as x)

Statement 2 is a fundamental property of continuous function, but does not explain statement 1

136 **(d)**

 $f(x) = |x| \sin x$

L. H. D =
$$\lim_{h \to 0} \frac{|0 - h| \sin(0 - h) - 0}{-h} = \lim_{h \to 0} \frac{-h \sin h}{-h}$$

= 0

R. H. D. =
$$\lim_{h \to 0} \frac{|0+h|\sin(0+h) - 0}{h} = \lim_{h \to 0} \frac{h\sin h}{h}$$

= 0

 \Rightarrow f(x) is differentiable at x = 0

137 **(b)**

Statement 2 is obviously true

But $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is non-differentiable at $x = \pm 1$ as $\frac{2x}{1-x^2}$ is not defined at $x = \pm 1$. Hence statement 1 is true but statement 2 is not the correct explanation of statement 1

138 **(b)**

- $|f(x)| \le |x|$
- $\Rightarrow 0 \le |f(x)| \le |x|$
- $\Rightarrow \text{Graph of } y = |f(x)| \text{ lies between the graph of } y = 0 \text{ and } y = |x|$

Also $|f(0)| \le 0 \Rightarrow f(0) = 0$

Also from Sandwich theorem, $\lim_{x\to 0} 0 \le \lim_{x\to 0} \frac{1}{x} \le \lim_{x\to 0} \frac{1}{x}$

$$\Rightarrow \lim_{x \to 0} |f(x)| = 0$$

$$\Rightarrow y = f(x) \text{ is continuous at } x$$

Also statement 2 is correct but it has no link with statement 1

= 0

139 **(d)**

Statement 1 is false, as consider the function $f(x) = \max\{0, x^3\}$ which is equivalent to

$$f(x) = \begin{cases} 0, x < 0\\ x^3, x \ge 0 \end{cases}$$

Here f(x) is continuous and differentiable at x = 0

However, statement 2 is obviously true

140 **(c)**

Statement 1 is obviously true

But statement 2 is false as $f(x) = x^3$ is differentiable, but $f^{-1}(x) = x^{1/3}$ is nondifferentiable at x = 0

 $f^{-1}(x) = x^{1/3}$ has vertical tangent at x = 0

141 **(c)**

Consider $f(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases}$

Hence |f(x)| = 1 for all x is continuous at x = 0

but f(x) is discontinuous at x = 0

142 **(b)**

 $f(x) = (\sin \pi x)(x-1)^{1/5}$ is continuous function as both $(\sin \pi x)$ and $(x-1)^{1/5}$ are continuous

But $(x - 1)^{1/5}$ is not differentiable at x = 1However, $f'(1^-) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$ $= \lim_{h \to 0} \frac{\sin[\pi(1-h)](1-h-1)^{1/5} - 0}{-h}$ $= \lim_{h \to 0} \frac{\sin(\pi h) - (-h)^{1/5}}{h} = 0$ and $f'(1^+) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ $= \lim_{h \to 0} \frac{\sin[\pi(1+h)](1+h-1)^{1/5} - 0}{h}$ $= \lim_{h \to 0} \frac{-\sin(\pi h)(h)^{1/5}}{h} = 0$

Hence, f(x) is differentiable at x = 1, through $(x - 1)^{1/5}$ is not differentiable at x = 1

However, statement 2 is correct but it is not a correct explanation of statement 1

143 **(c)**

Statement 1 is true as \sqrt{x} is monotonic function. But statement 2 is false as $f(x) = [\sin x]$ is continuous at $x = 3\pi/2$, though $\sin(3\pi/2) = -1$ (integer)

144 **(a)**

Statement 2 is true as it is a fundamental concept

Also, f(x) = sgn(g(x)) is discontinuous when g(x) = 0

Now the given function $f(x) = \text{sgn}(x^2 - 2x + 3)$ may be discontinuous when $x^2 + 2x + 3 = 0$, which is not possible: it has imaginary roots as its discriminant is < 0

145 **(c)**

See the graph of $f(x) = ||x^2| - 3|x| + 2|$,

However, statement 2 is false,

As $f(x) = x^3$ crosses x-axis at x = 0,

But $|f(x)| = |x^3|$ is differentiable at x = 0

146 **(b)**

Statement 2 is true as $\cos 0 = 1$

Now
$$\lim_{x \to 0^+} \frac{e^{1/x} - 1}{e^{1/x} + 1} = \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0} \frac{1 - e^{-1/h}}{1 + e^{-1/h}} = 1$$

and $\lim_{x \to 0^-} \frac{e^{1/x} - 1}{e^{1/x} + 1} = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1$

Thus L.H.L. ≠ R.H.L.

Hence, the function has no-removable discontinuity at x = 0

Hence, statement 2 is not a correct explanation of statement 1

147 (a)

```
F(x) = f(g(x)),

\Rightarrow F(x) = x^{2} + 2|x|

\Rightarrow F'(x) = (2x - 2, x < 0)
```

$$\Rightarrow I^{-}(x) = \{2x + 2, x > 0\}$$

Hence, $F'(0^+) = 2$ and $F'(0^-) = -2$

Hence, both statement are correct and statement 2 is a correct explanation of statement 1

148 (c)

We know that sgn(x) is discontinuous at x = 0

Also $f(x) = |\operatorname{sgn} x| = \begin{cases} 1, x \neq 0\\ 0, x = 0 \end{cases}$ which is discontinuous at x = 0

Consider
$$g(x) = \begin{cases} -1, x < 0\\ 1, x \ge 0 \end{cases}$$
. Here $g(x)$ is
discontinuous at $x = 0$ but $|g(x)| = 1$ for all x is

continuous at x = 0

Hence, answer is **c**

149 (a)

Let
$$x = k, k \in Z \Rightarrow f(k) = \{k\} + \sqrt{\{k\}} = 0$$

$$f(k^+) = 0 + 0 = 0, f(k^-) = 1 + 1 = 2$$

Hence, f(x) is not continuous at integral points

Hence, correct answer is **a**

150 (c)

We know that both $[\sin x]$ and $[\cos x]$ are discontinuous at $x = \pi/2$

Also $f(x) = [\sin x] - [\cos x]$ is discontinuous at $x = \pi/2$

As
$$f(\pi/2) = 1 - 0 = 1$$
 and $f(\pi/2^+) = 0 - (-1) = 1$

 $f(\pi/2^{-}) = 0 - 0 = 0$

But the difference of two discontinuous function is not necessarily discontinuous

151 **(c)**

f(x) = x|x| and $g(x) = \sin x$

$$gof(x) = \sin(x|x|) = \begin{cases} -\sin x^2, & x < 0\\ \sin x^2, & x \ge 0 \end{cases}$$

$$\therefore \quad (gof)'(x) = \begin{cases} -2x\cos x^2, & x < 0\\ 2x\cos x^2, & x \ge 0 \end{cases}$$

Clearly, L(gof)'(0) = 0 = R(gof)'(0)

 \therefore *gof* is differentiable at x = 0 and also its derivative is continuous at x = 0

Now,

$$(gof)''(x) = \begin{cases} -2x \cos x^2 + 4x^2 \sin x^2, \ x < 0\\ 2 \cos x^2 - 4x^2 \sin x^2, \ x > 0 \end{cases}$$

$$\therefore L(gof)''(0) = -2 \text{ and } R(gof)''(0) = 2$$

$$\therefore L(gof)''(0) \neq R(gof)''(0)$$

$$\therefore gof(x) \text{ is not twice differentiable at } x = 0$$

152 (c)

$$F(1) = 0, F(1^+) = \frac{\pi}{2} \text{ and } F(1^-) = -\frac{3\pi}{4}$$

 \Rightarrow *F* is discontinuous

But for
$$f(x) = \begin{bmatrix} 1, \text{ if } x \ge 0 \\ -1, \text{ if } x < 0 \end{bmatrix}$$
 and $g(x) = \begin{bmatrix} -1, \text{ if } x \ge 0 \\ 1, \text{ if } x < 0 \end{bmatrix}$ then $f(x)g(x)$ is continuous at $x = 0$

153 **(b)**

$$f(x) = \lim_{n \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$$
 is discontinuous at $x = 1$

$$= \begin{cases} -1, & x^2 < 1\\ 1, & x^2 > 1\\ 0, & x^2 = 1 \end{cases}$$

 $\Rightarrow f(1^+) = 1 \text{ and } f(1^{-1}) = -1$

Hence, f(x) is discontinuous at x = 1 as the limit of the function does not exist

154 (d)

Statement 1 is incorrect because if $\lim_{x \to a} g(x)$ and $\lim_{x \to a} f(g(x))$ approach *e* from the same side of *e* (say right side), and $\lim_{x \to e} f(x) = f(e) \neq \lim_{x \to e} f(x)$, then $\lim_{x \to a} f(g(x)) = f(e^+) = f(e)$

Statement 2 is correct

155 **(b)**

$$f(x) = \begin{bmatrix} \pi/4, x > 1 \\ \pi/4, x = 1 \\ \pi/2, x < 1 \end{bmatrix}$$
 [in the interval $(1 - 8, 1 + 8)$]

Hence, f is discontinuous and non-derivable, but non-derivability does not imply discontinuity

156 **(d)**

Consider $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0\\ 0, x = 0 \end{cases}$ which is differentiable at x = 0, but derivative is not continuous at x = 0

However, statement 2 is correct

157 (a)

 $\lim_{x \to 0^+} (\sin x + [x]) = 0, \lim_{x \to 0^-} (\sin x + [x]) = -1$

Thus, limit does not exist, hence f(x) is discontinuous at x = 0

Statement 2 is a fundamental property and is a correct explanation of statement 1

158 (c)

From the graph, statement 1 is true

Consider $f(x) = \min\{x, \sin |x|\}$ is differentiable at x = 0, through $g(x) = \max\{x, \sin |x|\}$ is nondifferentiable at x = 0

160 **(c)**

$$\mathbf{a} \cdot f(x) = \begin{cases} \frac{5e^{1/x}+2}{3-e^{1/x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$f(0^+) = \lim_{h \to 0} \frac{5e^{1/h}+2}{3-e^{1/h}} = \lim_{h \to 0} \frac{5+2e^{-1/h}}{3e^{-1/h}-1} = -5$$

Hence, $f(x)$ is discontinuous and non-
differentiable at $x = 0$
$$\mathbf{b} \cdot g(x) = xf(x) = \begin{cases} x \frac{5e^{1/x}+2}{3-e^{1/x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$f(0^+) = \lim_{h \to 0} h \frac{5e^{1/h}+2}{3-e^{1/h}} = \lim_{h \to 0} h \frac{5+2e^{-1/h}}{3e^{-1/h}-1}$$

$$= 0 \times (5) = 0$$

$$f(0^-) = \lim_{h \to 0} h \frac{5e^{-1/h}+2}{2-e^{-1/h}} = 0 \times (2/3) = 0$$

Hence,
$$f(x)$$
 is continuous at $x = 0$
 $Lg'(0) = \lim_{h \to 0} \frac{g(0-h) - g(0)}{-h}$

$$= \lim_{h \to 0} \frac{-hf(-h) - 0}{-h}$$

$$= \lim_{h \to 0} f(-h)$$

$$= \lim_{h \to 0} \frac{5e^{-1/h} + 2}{3 - e^{-1/h}} = \frac{0 + 2}{3 - 0} = \frac{2}{3}$$

$$Rg'(0) = \lim_{h \to 0} \frac{g(0 + h) - g(0)}{h}$$

$$= \lim_{h \to 0} f(h) = \lim_{h \to 0} \frac{5e^{1/h} + 2}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5 + 2e^{-1/h}}{3 - e^{1/h}}$$

$$= \lim_{h \to 0} \frac{5e^{-1/h} - 1}{2}$$

$$= \sum_{h \to 0} \frac{F(0)}{2 - 1}$$

$$= \lim_{h \to 0} \frac{h^2f(-h) - 0}{-h} = 0$$

$$RF'(0) = \lim_{h \to 0} \frac{F(0 + h) - F(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^2f(-h) - 0}{h} = 0$$

$$\therefore LF'(0) = RF'(0)$$

Hence, $F(x)$ is differentiable at $x = 0$, then it is always continuous at $x = 0$

d. Clearly from the above discussion $y = x^{-1}f(x)$
is discontinuous and hence non-differentiable at $x = 0$

161 (a)
a. $f(x) = \lim_{n \to \infty} [\cos^2(2\pi x)]^n + \{x + \frac{1}{2}\}$
obviously, $\lim_{x \to \frac{1}{2}} f(x) = 0 + 1$

$$f(x) = (\log x)(x - 1)^{1/5}$$
b. $f(x) = (\log x)(x - 1)^{1/5}$
Obviously, $f(x)$ is continuous at $x = 1$

$$f'(1^+) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\log(1+h)h^{1/5}}{h} = 0$$

$$f'(1^-) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\log(1-h)(-h)^{1/5}}{-h} = 0$$
Hence, $f(x)$ is differentiable at $x = 1$

c.
$$f(x) = [\cos 2\pi x] + \sqrt{\left\{\sin\left(\frac{\pi x}{2}\right)\right\}}$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} [\cos 2\pi x] + \lim_{x \to 1^{-}} \sqrt{\left\{\sin\left(\frac{\pi x}{2}\right)\right\}}$$

$$= 0 + 1 = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} [\cos(2\pi x)] + \lim_{x \to 1^{+}} \sqrt{\left\{\sin\left(\frac{\pi x}{2}\right)\right\}}$$

$$= 0 + 1 = 1$$
Also $f(1) = 1 + 0 = 1$
 $f(x)$ is continuous at $x = 1$
 $f'(1^{+})$

$$= \lim_{h \to 0} \frac{\left[\cos 2\pi (1 + h)\right] + \sqrt{\left\{\sin\left(\frac{\pi (1 + h)}{2}\right)\right\}} - 1}{h}$$

$$= \lim_{h \to 0} \frac{\left[\cos 2\pi h\right] + \sqrt{\left\{\cos\left(\frac{\pi h}{2}\right)\right\}} - 1}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{\cos\left(\frac{\pi h}{2}\right)} - 1}{h} = \lim_{h \to 0} \frac{-\frac{\pi}{2} \sin\left(\frac{\pi h}{2}\right)}{2\sqrt{\cos\left(\frac{\pi h}{2}\right)}} = 0$$
Similarly, $f'(1^{-}) = 0$
d. $f(x) = \begin{cases} \cos 2x, x \in Q \\ \sin x, x \notin Q \end{cases}$ at $\frac{\pi}{6}$
 $f(x)$ is continuous when $\cos 2x = \sin x$ which has $x = \frac{\pi}{6}$ as one of the solutions. Hence, it is continuous
Also in the neighbourhood of $x = \frac{\pi}{6}$,
 $f'(x) = \begin{cases} -2 \sin 2x, \frac{\pi}{6} - \delta < x < \frac{\pi}{6} \\ \cos x, \frac{\pi}{6} < x < \frac{\pi}{6} + \delta \end{cases}$
Here, $f'\left(\frac{\pi^{-}}{6}\right) \neq f'\left(\frac{\pi^{+}}{6}\right)$

、

Page | **41**

162 **(b)**

a. The given function is clearly continuous at all points except possibly at $x = \pm 1$

As f(x) is an even function, so we need to check its continuity only at x = 1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1^{-}} (ax^{2} + b) = \lim_{x \to 1^{+}} \frac{1}{|x|} \Rightarrow a + b = 1 \quad (1)$$

Clearly, f(x) is differentiable for all x, except possible at $x = \pm 1$. As f(x) is an even function, so we need to check its differentiability at x = 1 only

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} + b - 1}{x - 1} = \lim_{x \to 1^{+}} \frac{\frac{1}{|x|} - 1}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} - a}{x - 1} = \lim_{x \to 1^{+}} \frac{-1}{x} \Rightarrow 2a = -1 \Rightarrow a = -\frac{1}{2}$$

Putting a = -1/2 in (1) we get $b = 3/2 \Rightarrow |k| = 1 \Rightarrow k = \pm 1$ **b**. If $f(x) = \text{sgn}(x^2 - ax + 1)$ is discontinuous then $x^2 - ax + 1 = 0$ must have only one real root. Hence a = +2

c. $f(x) = [2 + 3|n| \sin x], n \in N$ has exactly 11 points of discontinuity in $x \in (0, \pi)$

The required number of points are $1 + 2(3|n| - 1) = 6|n| - 1 = 11 \Rightarrow n = \pm 2$

d. f(x) = ||x| - 2| + a| has exactly three points of non-differentiability

f(x) is non-differentiable at x = 0, |x| - 2 = 0 or $x = 0, \pm 2$

Hence, the value of *a* must be positive, as negative value of *a* allows ||x| - 2| + a = 0 to have real roots, which given more points of non-differentiability

163 (a)

a. $f(x) = |x^3| = x(x|x|)$ is continuous and differentiable

b. $f(x) = \sqrt{|x|}$ is continuous

Clearly from the graph, f(x) is non-differentiable at x = 0

c. $f(x) = |\sin^{-1} x|$ is continuous

Clearly from the graph, f(x) is non-differentiable at x = 0

d. $f(x) = \cos^{-1} |x|$ is continuous

Clearly from the graph, f(x) is no-differentiable at x = 0

164 **(b)**

$$f(x) = \begin{cases} \frac{a(1-x\sin x) + b\cos x + 5}{x^2}, x < 0\\ 3, x^2 & x = 0\\ \left\{1 + \left(\frac{P(x)}{x}\right)\right\}^{1/x}, x > 0 \end{cases}$$
Where $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$
 $f(0) = 3$
R. H. L. $= \lim_{x \to 0^+} f(x)$
 $= \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h) = \lim_{h \to 0} \left\{1 + \left(\frac{P(h)}{h}\right)\right\}^{1/h}$
 $\therefore f \text{ is continuous at } x = 0$
 \therefore R.H. L. exists
For the existence of R.H.L., $a_0, a_1 = 0$
 \Rightarrow R. H. L. $= \lim_{h \to 0} (1 + a_2 h + a_3 h^2)^{1/h}$ (1 ^{∞} form)
 $= e^{\lim_{h \to 0} (1 + a_2 h + a_3 h^2)^{1/h}}$ (1 ^{∞} form)
 $= e^{\lim_{h \to 0} (1 + a_2 h + a_3 h^2)^{1/h}}$ (1 ^{∞} form)
 $= \lim_{h \to 0} f(x) = \lim_{h \to 0} f(0-h)$
 $= \lim_{h \to 0} \frac{a(1 - (-h)\sin(-h)) + b\cos(-h) + 5}{(-h)^2}$
For finite value of L.H.L., $a + b + 5 = 0$ and
 $-a - \frac{b}{2} = 3$
Solving, we get $a = -1, b = -4$
Now $g(x) = 3a\sin x - b\cos x = -3\sin x + 4\cos x$ which has the range $[-5, 5]$
Also $P(x) = a_3 x^3 + (\log_e 3) x^2$
 $P''(x) = 6a_3 x + 2\log_e 3$

 $\Rightarrow P''(0) = 2 \log_e 3$ Further, $P(x) = b \Rightarrow a_3 x^3 + (\log_e 3) x^2 = -4$ has only one real root, as the graph of $P(x) = a_3 x^3 + (\log_e 3) x^2$ meets y = -4 only once for negative value of x

165 **(c)**

For
$$0 \le x < \frac{\pi}{4}$$
, $g(x) = 1 + \tan x$
 $x \in \left[0, \frac{\pi}{4}\right] \Rightarrow 1 + \tan x \in [1, 2)$
So $f(g(x)) = f(1 + \tan x) = 1 + \tan x + 2$
and for $x \in \left[\frac{\pi}{4}, \pi\right]$, $g(x) = 3 - \cot x$
 $x \in \left[\frac{\pi}{4}, \pi\right] \Rightarrow 3 - \cot x \in [2, \infty)$
So $f(g(x)) = f(3 - \cot x) = 6 - (3 - \cot x)$
Let $h(x) = f(g(x)) = \begin{cases} 3 + \tan x, 0 \le x < \frac{\pi}{4} \\ 3 + \cot x, \frac{\pi}{4} \le x < \pi \end{cases}$
Clearly, $f(g(x))$ is continuous in $[0, \pi)$
Now $h'\left(\frac{\pi^+}{4}\right) = \lim_{x \to \frac{\pi^+}{4}} (-\csc^2 x) = -2$
 $h'\left(\frac{\pi^-}{4}\right) = \lim_{x \to \frac{\pi^+}{4}} (\sec^2 x) = 2$

So f(g(x)) is differentiable everywhere in $[0, \pi)$ other than at $x = \frac{\pi}{4}$

$$f(g(x)) = \begin{cases} |3 + \tan x|, 0 \le x < \frac{\pi}{4} \\ |3 + \cot x|, \frac{\pi}{4} \le x < \pi \end{cases}$$

Which is non-differentiable at $x = \pi/4$ and where $3 + \cot x = 0$ or $x = \cot^{-1}(-3)$ For $x \in \left[0, \frac{\pi}{4}\right), 3 + \tan x \in [3, 4)$ For $x \in \left[\frac{\pi}{4}, \pi\right), 3 + \cot x \in (-\infty, 4]$ Hence, the range is $[-\infty, 4)$ (a)

166 **(a)**

$$F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n}g(x)}{1 + x^{2n}}$$

$$= \begin{cases} f(x), & 0 \le x^2 < 1 \\ \frac{f(x) + g(x)}{2}, x^2 = 1 \\ g(x), & x^2 > 1 \end{cases}$$

$$= \begin{cases} \frac{g(x), & x < -1 \\ \frac{f(-1) + g(-1)}{2}, x = -1 \\ f(x), & -1 < x < 1 \\ \frac{f(1) + g(1)}{2}, x = 1 \\ g(x), & x > 1 \end{cases}$$
If $F(x)$ is continuous $\forall x \in R, F(x)$ must be

If F(x) is continuous $\forall x \in R, F(x)$ must be made continuous out at $x = \pm 1$ For continuity at $x = -1, f(-1) = g(-1) \Rightarrow 1 -$ $a + 3 = b - 1 \Rightarrow$ $a + b = 5 \quad (1)$ For continuity at $x = 1, f(1) = g(1) \Rightarrow 1 + a +$ 3 = 1 + b $\Rightarrow a - b = -3 \quad (2)$ Solving equations (1) and (2), we get a = 1 and b = 4 $f(x) = g(x) \Rightarrow x^{2} + x + 3 = x + 4 \Rightarrow x^{2} = 1 \Rightarrow x$ $= \pm 1$

167 **(a)**

$$f(\mathbf{x}) = \begin{cases} [x], -2 \le x \le -\frac{1}{2} \\ 2x^2 - 1, -\frac{1}{2} < x \le 2 \\ = \begin{cases} -2, -2 \le x < -1 \\ -1, -1 \le x \le -\frac{1}{2} \\ 2x^2 - 1, -\frac{1}{2} < x \le 2 \end{cases}$$

$$|f(\mathbf{x})| = \begin{cases} 2, -2 \le x < -1 \\ 1, -1 \le x \le -\frac{1}{2} \\ |2x^2 - 1|, -\frac{1}{2} < x \le 2 \end{cases}$$

$$= \begin{cases} 2, -2 \le x < -1 \\ 1, -1 \le x \le -\frac{1}{2} \\ 1 - 2x^2, -\frac{1}{2} < x \le \frac{1}{\sqrt{2}} \\ 2x^2 - 1, \frac{1}{\sqrt{2}} < x \le 2 \end{cases}$$

$$f(|\mathbf{x}|) = \begin{cases} -2, -2 \le |\mathbf{x}| < -1 \\ -1, -1 \le |\mathbf{x}| \le -\frac{1}{2} = 2x^2 - 1, -2 \\ 2|x|^2 - 1, -\frac{1}{2} < |\mathbf{x}| \le 2 \end{cases}$$

$$\Rightarrow g(x) = f(|\mathbf{x}|) + |f(x)|$$

$$= \begin{cases} 2x^2 + 1, -2 \le x < -1 \\ 2x^2, -1 \le x \le -\frac{1}{2} \\ 0, -\frac{1}{2} < x < -\frac{1}{\sqrt{2}} \\ 4x^2 - 2, \frac{1}{\sqrt{2}} \le x \le 2 \end{cases}$$

$$g(-1^-) = \lim_{x \to -1} (2x^2 + 1) = 3, g(-1^+) \\ = \lim_{x \to -1} 2x^2 = 2 \\ g\left(-\frac{1^-}{2}\right) = \lim_{x \to -\frac{1}{\sqrt{2}}} 2x^2 = \frac{1}{2}, g\left(-\frac{1^+}{2}\right) = \lim_{x \to -\frac{1}{2}} 0 = 0 \\ g\left(\frac{1^-}{\sqrt{2}}\right) = \lim_{x \to -\frac{1}{\sqrt{2}}} 0 = 0, g\left(\frac{1^+}{\sqrt{2}}\right) = \lim_{x \to -\frac{1}{\sqrt{2}}} (4x^2 - 2) \\ = 0 \end{cases}$$

Hence, g(x) is discontinous at $x = -1, -\frac{1}{2}$ g(x) is continuous at $x = \frac{1}{\sqrt{2}}$ Now, $g'\left(\frac{1^{-}}{\sqrt{2}}\right) = 0, g'\left(\frac{1^{+}}{\sqrt{2}}\right) = 8\left(\frac{1}{\sqrt{2}}\right) = \frac{8}{\sqrt{2}}$ Hence, g(x) is non-differentiable at $x = \frac{1}{\sqrt{2}}$ 168 (c) $f(x) = \begin{cases} x^2 + 10x + 8, & x \le -2 \\ ax^2 + bx + c, -2 < x < 0, a \ne 0 \\ x^2 + 2x, & x \le 0 \end{cases}$ For continuous at $x = 0 \Rightarrow c = 0$ Continuous at $x = -2 \Rightarrow 4 - 20 + 8 = 4a - 2b$ $\Rightarrow 2a - b = -4$ (1) Now let the line y = mx + p is tangent to all the three curves Solving y = mx + p and $y = x^2 + 2x$ $x^{2} + 2x = mx + p$ $x^{2} + (2 - m)x - p = 0$ D = 0 $(2-m)^2 + 4p = 0 \qquad (2)$ Again solving y = mx + p and $y = x^2 + 10x + 8$ $x^{2} + 10x + 8 = mx + p$ $\Rightarrow x^2 + (10 - m)x + 8 - p = 0$ $D = 0 \Rightarrow (10 - m)^2 - 4(8 - p) = 0$ $\Rightarrow (10 - m)^2 - (2 - m)^2 = 42$ $\Rightarrow (100 - 20m) - (4 - 4m) = 32$ \Rightarrow *m* = 4 and *p* = -1 Hence equation of the tangent to first and last curves is y = 4x - 1 (3) Now solving this with $y = ax^2 + bx(as c = 0)$ $ax^{2} + bx = 4x - 1 \Rightarrow ax^{2} + (b - 4)x + 1 = 0$ D = 0 $\Rightarrow (b-4)^2 = 4a$ Also b = 2a + 4 (from (1)) $\therefore 4a^2 = 4a \Rightarrow a = 1 \text{ and } b = 6 \text{ (as } a \neq 0 \text{)}$ $f'(0^{-}) = \lim_{x \to 0} (2ax + b) = b$ $f'(0^+) = \lim_{x \to 0} (2ax + 2) = 2 \implies b = 2$ 169 (7) Let $g(x) = (\ln x)(\ln x) \cdots \infty$ $g(x) = \begin{cases} 0, & 1 < x < e \\ 1, & x = e \\ \infty, & x > e \end{cases}$ Therefore $f(x) = \begin{cases} x, & 1 < x < e \\ x/2, & x = e \\ 0, & e < x < 3 \end{cases}$ Hence f(x) is non-differentiable at x = e170 (5) $f(x) = \operatorname{sgn}(\sin x)$ is discontinuous when $\sin x = 0$ $\Rightarrow x = 0, \pi, 2\pi, 3\pi, 4\pi$ 171 (1)

 $\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} \lim_{n \to \infty} \frac{x^{2n} \cdot f(x) + x^{2m} \cdot g(x)}{(1 + x^{2n})}$ $\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{+}} \lim_{n \to \infty} \frac{x^{2n} \cdot f(x) + x^{2m} \cdot g(x)}{(1 + x^{2n})}$ = f(1) $: \lim_{x \to 1} h(x) \text{ exists} \Rightarrow f(1) = g(1)$ $\Rightarrow f(x) - g(x) = 0$ has a root at x = 1172 (6) $g(f(x)) = \begin{cases} g\left(\frac{x}{2} - 1\right), 0 \le x < 1\\ g\left(\frac{1}{2}\right), 1 \le x \le 2 \end{cases}$ $= \begin{cases} \frac{(x-1)(x-2-2k)}{2} + 3, 0 \le x < 1\\ 4-2k, 1 \le x < 2 \end{cases}$ $\lim_{x\to 1^{-}} g(f(x)) = 3, g(f(1)) = 4 - 2k$ and $\lim_{x \to 1^+} g(f(x)) = 4 - 2k \text{ for } g(f(x)) \text{ to be}$ continuous at $x = 1, 4 - 2k = 3 \Rightarrow k = \frac{1}{2}$ 173 (8) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ f(x) + f(h) + 2xh(x+h) - $=\lim_{h \to 0} \frac{\frac{1}{3} - \left(f(x) + f(0) - \frac{1}{3}\right)}{h}$ $= \lim_{h \to \infty} \frac{f(h) - f(0)}{h} + 2x^2 = f'(0) + 2x^2$ $\lim_{h \to 0} \frac{3f(h) - 1}{6h} = \lim_{h \to 0} \frac{f(h) - \frac{1}{3}}{2h} = \lim_{h \to 0} \frac{f(h) - f(0)}{2h}$ $=\frac{f'(0)}{2}=\frac{2}{3} \Rightarrow f'(0)=\frac{4}{3}$ $\therefore f'(x) = \frac{4}{2} + 2x^2$ $f(x) = \lambda + \frac{4}{3}x + \frac{2x^3}{3} \Rightarrow f(0) = \lambda = \frac{1}{3}$ $\therefore f(x) = \frac{2x^3}{3} + \frac{4}{3}x + \frac{1}{3} \Rightarrow f(2) = \frac{25}{3}$ 174 **(2)** $f(0) = \lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}$ $= \lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\frac{\tan x}{x} (\frac{1 - \cos x}{x^2}) x^3}$ $= 2 \lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{x^3}$ $\left(\tan x + \frac{\tan^3 x}{3} + \frac{2}{15}\tan^5 x + \cdots\right) -$ $= 2 \lim_{x \to 0} \frac{\left(\sin x - \frac{\sin^3 x}{3!} + \frac{\sin^5 x}{5!} \cdots\right)}{x^3}$

$$= 2 \lim_{x \to 0} \left(\left(\frac{\tan x - \sin x}{x^3} \right) + \frac{\left(\frac{\tan^3 x}{3} + \frac{\sin^3 x}{3!} \right)}{x^3} + \cdots \right)$$
$$= 2 \lim_{x \to 0} \left(\left(\frac{\tan x}{x} \right) \left(\frac{1 - \cos x}{x^2} \right) + \frac{1}{3} + \frac{1}{6} \right) =$$
$$212 + 12 = 2$$
(8)

$$f(x) \begin{bmatrix} \frac{ax^2 + bx}{a - b - 1} & \text{for } -1 < x < 1\\ \frac{a - b - 1}{2} & x = -1\\ \frac{a + b + 1}{2} & x = 1\\ \frac{1}{x} & \text{for } x > 1 \text{ or } x < -1 \end{bmatrix}$$

For continuity at x = 1 we have $a + b = \frac{a+b+1}{2}$ Hence, a + b = 1 (1) For continuity at x = -1 a - b = -1 a - b = -1 (2) Hence a = 0 and b = 1

176 (6)

175

 $g(x) = \left[\frac{f(x)}{a}\right]$ is continuous if $\left[\frac{f(x)}{a}\right] = 0$ for $\forall f(x) \in (1, \sqrt{30})$, for which we must have $a > \sqrt{30}$ Hence the least value of *a* is 6 177 (4) $sgn(x^2 - 3x + 2)$ is discontinuous when $x^2 - 3x + 2 = 0$ or x = 1, 2[x-3] = [x] - 3 is discontinuous at x = 1, 2, 3, 4Thus f(x) is discontinuous at x = 3, 4Now both sgn($x^2 - 3x + 2$) and [x - 3] are discontinuous at x = 1 and 2 Then f(x) may be continuous at x = 1 and 2 But f(1) = -2 and $f(1^+) = -1 + 0 - 3 = -4$ Thus f(x) is discontinuous at x = 1Also f(2) = -1 and $f(2^+) = 1 - 1 = 0$ Hence f(x) is discontinuous at x = 2 also

178 (2)

$$g'(3^{-}) = \lim_{h \to 0} \frac{g(3-h)-g(3)}{-h} = \lim_{h \to 0} \frac{a\sqrt{4-h}-(3b+2)}{-h}$$
(1)
For existence of limit $\lim_{h \to 0} N^{r} = 0$
 $\therefore 2a - 3b = 2$ (2)
Now $g'(3^{+}) = \lim_{h \to 0} \frac{b(3+h)+2-(3b+2)}{h} = b$ (3)
Substituting $3b + 2 = 2a$ in equation (1)
 $g'(3^{-}) = \lim_{h \to 0} \frac{a\sqrt{4-h}-2a}{-h}$
 $= \lim_{h \to 0} \left(\frac{(4-h)-4}{(-h)(\sqrt{4-h}+2)}\right) = \frac{a}{4}$
Hence $g'(3^{-}) = g'(3^{+})$

 $\frac{a}{4} = b \Rightarrow a = 4b \quad (4)$ From equation (2) and (4) 8b - 3b = 2 $\Rightarrow b = \frac{2}{5}$ and $a = \frac{8}{5}$ $\Rightarrow a + b = 2$ 179 (7) $\sin^{-1} | \sin x |$ is periodic with period π $= \cos^{-1} |\sin x|$ $\dot{\pi}/2$ π $3\pi/2$ 180 (1) Given $\frac{\int_{f(y)}^{f(x)} e^t dt}{\int_y^x (1/t) dt} = 1$ $\Rightarrow e^{f(x)} - e^{f(y)} = \ln x - \ln y$ $\Rightarrow e^{f(x)} - \ln x = c \Rightarrow f(x) = \ln (\ln x + c)$ Since $f\left(\frac{1}{c}\right) = 0 \Rightarrow c = 2$ Now $f(g(x)) = \begin{cases} \ln (x+2); & x \ge k \\ \ln (2+x^2); & 0 < x < k \end{cases}$ For continuity at x = k $\ln (k + c) = \ln (k^2 + c) \Rightarrow \text{either } k = 0 \text{ or } k = 1$ $:: k > 0 \Rightarrow k = 1$ 181 (8) We have f(x) = [x] + [x + 1/3] + [x + 2/3] =[3x]Which is discontinuous when 3x = k or $x = k/3, k \in I$ Hence points of discontinuity are 1/3, 2/3, 3/3, 4/3, 5/3, 6/3, 7/3, 8/3 182 (5) $\therefore f''(x) = \begin{cases} x^p \sin\left(\frac{1}{x}\right) + x^2, \ x > 0\\ x^p \sin\left(\frac{1}{x}\right) - x^2, \ x < 0 \end{cases}$

$$f'''(x) = \begin{cases} -x^{p-4} \sin\left(\frac{1}{x}\right) - (p-2)x^{p-3} \cos\left(\frac{1}{x}\right) \\ -px^{p-3} \cos\left(\frac{1}{x}\right) \\ +p(p-1)x^{p-2} \sin\left(\frac{1}{x}\right) + 2, \ x > 0 \\ -x^{p-4} \sin\left(\frac{1}{x}\right) - (p-2)x^{p-3} \cos\left(\frac{1}{x}\right) \\ px^{p-3} \cos\left(\frac{1}{x}\right) \\ +p(p-1)x^{p-2} \sin\left(\frac{1}{x}\right) - 2, \ x < 0 \\ 0, \qquad x = 0 \end{cases}$$

RHL = LHL = f(0) = 0 $\therefore \sin \infty$ and $\cos \infty$ lie between -1 to 1. For $p \ge 5$, RHL = 2 LHL = -2 f(0) = 0For $p \in [5, \infty)$, f''(x) is not continuous

