Single Correct Answer Type

1. Which of the following functions is non-differentiable?
a) $f(x)=\left(e^{x}-1\right)\left|e^{2 x}-1\right|$ in R
b) $f(x)=\frac{x-1}{x^{2}+1}$ in R
c) $f(x)=\left\{\begin{array}{c}||x-3|-1|, x<3 \\ \frac{x}{3}[x]-2, x \geq 3\end{array}\right.$ at $x=3$

Where [.] represents the greatest integer function
d) $f(x)=3(x-2)^{1 / 3}+3$ in R
2. Given that $\prod_{n=1}^{n} \cos \frac{x}{2^{n}}=\frac{\sin x}{2^{n} \sin \left(\frac{x}{2^{n}}\right)}$ and
$f(x)=\left\{\begin{array}{c}\lim _{n \rightarrow \infty} \sum_{n=1}^{n} \frac{1}{2^{n}} \tan \left(\frac{x}{2^{n}}\right), x \in(0, \pi)-\left\{\frac{\pi}{2}\right\} \\ \frac{2}{\pi}, x=\frac{\pi}{2}\end{array}\right.$
Then which one of the following is true?
a) $f(x)$ has non-removable discontinuity of finite type at $x=\frac{\pi}{2}$
b) $f(x)$ has removable discontinuity at $x=\frac{\pi}{2}$
c) $f(x)$ is continuous at $x=\frac{\pi}{2}$
d) $f(x)$ has non-removable discontinuity of infinite type at $x=\frac{\pi}{2}$
3. If $f(x)=\left\{x^{2}\right\}-(\{x\})^{2}$, where $\{x\}$ denotes the fractional part of x, then
a) $f(x)$ is continuous at $x=-2$ but not at $x=2$
b) $f(x)$ is continuous at $x=2$ but not at $x=-2$
c) $f(x)$ is continuous at $x=2$ and at $x=-2$
d) $f(x)$ is discontinuous at $x=-2$ and at $x=2$
4. The function $f(x)=|12 \operatorname{sgn} 2 x|+2$ has
a) Jump discontinuity
b) Removal discontinuity
c) Infinite discontinuity
d) No discontinuity at $x=0$
5. $f(x)=\lim _{n \rightarrow \infty} \sin ^{2 n}(\pi x)+\left[x+\frac{1}{2}\right]$, where [.] denotes the greatest integer function is
a) Continuous at $x=1$ but discontinuous at $x=3 / 2$
b) Continuous at $x=1$ and $x=3 / 2$
c) Discontinuous at $x=1$ and $x=3 / 2$
d) Discontinuous at $x=1$ but continuous at $x=3 / 2$
6. If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ is differentiable at $x=0$, then
a) $a=b=c=0$
b) $a=0, b=0, c \in R$
c) $b=c=0, a \in R$
d) $c=0, a=0, b \in R$
7. The function $f(x)$ defined by
$f(x)=\left\{\begin{array}{c}\log _{(4 x-3)}\left(x^{2}-2 x+5\right), \frac{3}{4}<x<1 \text { and } x>1 \\ 4, \quad x=1\end{array}\right.$
a) Is continuous at $x=1$
b) Is discontinuous at $x=1$ since $f\left(1^{+}\right)$does not exists though $f\left(1^{-}\right)$exists
c) Is discontinuous at $x=1$ since $f\left(1^{-}\right)$does not exist though $f\left(1^{+}\right)$exists
d) Is discontinuous at $x=1$ since neither $f\left(1^{+}\right)$nor $f\left(1^{-}\right)$exists
8.

If $f(x)=\left\{\begin{array}{c}x+2, x<0 \\ -x^{2}-2,0 \leq x<1, \text { then the number of points of discontinuity of }|f(x)| \text { is } \\ x, x \geq 1\end{array}\right.$
a) 1
b) 2
c) 3
d) None of these
9. The set of all points, where $f(x)=\sqrt[3]{x^{2}|x|}-|x|-1$ is not differentiable, is
a) $\{0\}$
b) $\{-1,0,1\}$
c) $\{0,1\}$
d) None of these
10. For a real number y, let $[y]$ denotes the greatest integer less than or equal to y. Then the function $f(x)=\frac{\tan (\pi[x-\pi])}{1+[x]^{2}}$ is
a) Discontinuous at some x
b) Continuous at all x, but the derivative $f^{\prime}(x)$ does not exist for some x
c) $f^{\prime}(x)$ exists for all x, but the derivative $f^{\prime}\left(x_{0}\right)$ does not exist second for some x
d) $f^{\prime}(x)$ exists for all x
11. $f(x)=\left[x^{2}\right]-\{x\}^{2}$, where [.] and $\{$.$\} denote the greatest integer function and the fractional part,$ respectively, is
a) Continuous at $x=1,-1$
b) Continuous at $x=-1$ but not at $x=1$
c) Continuous at $x=-1$ but not at $x=-1$
d) Discontinuous at $x=1$ and $x=-1$
12. If $f(x)=\cos \pi(|x|+[x])$, (where [.] denotes the greatest integral function), then which is not true?
a) Continuous at $x=1 / 2$
b) Continuous at $x=0$
c) Differentiable in $(-1,0)$
d) Differentiable in $(0,1)$
13. If $f(x)=\left\{\begin{array}{lr}\sin x, & x<0 \\ \cos x-|x-1|, & x \geq 0\end{array}\right.$ then $\mathrm{g}(x)=f(|x|)$ is non-differentiable for
a) No value of x
b) Exactly one value of x
c) Exactly three values of x
d) None of these
14. If $f(x)=\left\{\begin{array}{ll}e^{-1 / x^{2}} & x>0 \\ 0, & x \leq 0\end{array}\right.$, then $f(x)$ is
a) Differentiable at $x=0$
b) Continuous but not differentiable at $x=0$
c) Discontinuous at $x=0$
d) None of these
15. The function $f(x)=[x]^{2}-\left[x^{2}\right]$ (where $[y]$ is the greatest integer less than or equal to y), is discontinuous at
a) All integers
b) All integers except 0 and 1
c) All integers except 0
d) All integers except 1
16. If $f(x)=\operatorname{sgn}\left(\sin ^{2} x-\sin x-1\right)$ has exactly four points of discontinuity for $x \in(0, n \pi), n \in N$, then
a) Minimum value of n is 5
b) Maximum value of n is 6
c) There are exactly two possible values of n
d) None of these
17. If $f(2+x)=f(-x)$ for all $x \in R$, then differentiability at $x=4$ implies differentiability at
a) $x=1$
b) $x=-1$
c) $x=-2$
d) Cannot say anything
18. The left-hand derivatives of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ an integer, is
a) $(-1)^{k}(k-1) \pi$
b) $(-1)^{k-1}(k-1) \pi$
c) $(-1)^{k} k \pi$
d) $(-1)^{k-1} k \pi$
19. Which of the following is true about
$f(x)= \begin{cases}\frac{(x-2)}{|x-2|}\left(\frac{x^{2}-1}{x^{2}+1}\right) & , x \neq 2 \\ \frac{3}{5} ; & x=2\end{cases}$
a) $f(x)$ is continuous at $x=2$
b) $f(x)$ has removable discontinuity at $x=2$
c) $f(x)$ has non-removable discontinuity at $x=2$
d) Discontinuity at $x=2$ can be removed by redefining function at $x=2$
20. $f(x)=[\sin x]+[\cos x], x \in[0,2 \pi]$, where [.] denotes the greatest integer function. The total number of points, where $f(x)$ is non-differentiable, is equal to
a) 2
b) 3
c) 5
d) 4
21. Let $f(x)=||x|-1|$, then points where $f(x)$ is not differentiable, is/(are)
a) $0, \pm 1$
b) ± 1
c) 0
d) 1
22. The number of values of $x \in[0,2]$ at which $f(x)=\left|x-\frac{1}{2}\right|+|x-1|+\tan x$ is not differentiable at
a) 0
b) 1
c) 3
d) None of these
23. If $f(x)=\left\{\begin{array}{c}x-1, x<0 \\ x^{2}-2 x, x \geq 0\end{array}\right.$, then
a) $f(|x|)$ is discontinuous at $x=0$
b) $f(|x|)$ is differentiable at $x=0$
c) $|f(x)|$ is non-differentiable at $x=0,2$
d) $|f(x)|$ is continuous at $x=0$
24. The function defined by $f(x)=(-1)^{\left[x^{3}\right]}$ ([.] denotes the greatest integer function) satisfies
a) Discontinuous for $x=n^{1 / 3}$, where n is any integer b) $f(3 / 2)=1$
c) $f^{\prime}(x)=1$ for $-1<x<1$
d) None of these
25. Given that $f(x)=x \mathrm{~g}(x) /|x|, \mathrm{g}(0)=\mathrm{g}^{\prime}(0)=0$ and $f(x)$ is continuous at $x=0$. Then the value of $f^{\prime}(0)$
a) Does not exist
b) Is -1
c) Is 1
d) Is 0
26. The number of points, where the function $f(x)=\max (|\tan x|, \cos |x|)$ is non-differentiable in the interval $(-\pi, \pi)$, is
a) 4
b) 6
c) 3
d) 2
27. If $f(x)=\left\{\begin{array}{c}2 x-[x]+x \sin (x-[x]) ; x \neq 0 \\ 0 ; \\ x=0\end{array}\right.$, where [.] denotes the greatest integer function, then n cannot be
a) 4
b) 2
c) 5
d) 6
28. Let $f: R \rightarrow R$ be given by $f(x)=5 x$, if $x \in Q$ and $f(x)=x^{2}+6$ if $x \in R \sim Q$, then
a) f is continuous at $x=2$ and $x=3$
b) f is continuous at $x=2$ and $x=3$
c) f is continuous at $x=2$ but not at $x=3$
d) f is continuous at $x=3$ but not at $x=2$
29. If $f(x)=\frac{x-e^{x}+\cos 2 x}{x^{2}}, x \neq 0$, is continuous at $x=0$, then

Where $[x]$ and $\{x\}$ denote the greatest integer and fractional part function, respectively
a) $f(0)=5 / 2$
b) $[f(0)]=-2$
c) $\{f(0)\}=-0.5$
d) $[f(0)]\{f(0)\}=-1.5$
30. Let $f(x)$ be a function for all $x \in R$ and $f^{\prime}(0)=1$. Then $\mathrm{g}(x)=f(|x|)-\sqrt{\frac{1-\cos 2 x}{2}}$, at $x=0$
a) Is differentiable at $x=0$ and its value is 1
b) Is differentiable at $x=0$ and its value is 0
c) Is non-differentiable at $x=0$ as its graph has sharp turn at $x=0$
d) Is non-differentiable at $x=0$ as its graph has vertical tangent at $x=0$
31. If $f(x)=\left\{\begin{array}{ll}x^{a} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ is continuous but non-differentiable at $x=0$, then
a) $a \in(-1,0)$
b) $a \in(0,2]$
c) $a \in(0,1]$
d) $a \in[1,2)$
32.

Let $f(x)=\left\{\begin{array}{c}\sin 2 x, 0, x \leq \pi / 6 \\ a x+b, \pi / 6<x<1\end{array}\right.$. If $f(x)$ and $f^{\prime}(x)$ are continuous, then
a) $a=1, b=\frac{1}{\sqrt{2}}+\frac{\pi}{6}$
b) $a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}$
c) $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
d) None of these
33. $f(x)=\left\{\begin{array}{c}3-\left[\cot ^{-1} \frac{2 x^{3}-3}{x^{2}}\right] \text { if } x>0 \\ \left\{x^{2}\right\} \cos \left(e^{1 / x}\right), \text { if } x<0\end{array}\right.$ is continuous at $x=0$, then the value of $f(0)$, (where $[x]$ and $\{x\}$ denotes the greatest integer and fractional part functions, respectively)
a) 0
b) 1
c) -1
d) None of these
34. The number of points of non-differentiability for $f(x)=\max \{| | x|-1|, 1 / 2 \mid\}$ is
a) 4
b) 3
c) 2
d) 5
35. If $f(x)=\left\{\begin{array}{c}x^{2}-a x+3, x \text { is rational } \\ 2-x, x \text { is irrational }\end{array}\right.$ is continuous at exactly two points, then the possible values of a are
a) $(2, \infty)$
b) $(-\infty, 3)$
c) $(-\infty,-1) \cup(3, \infty)$
d) None of these
36. Let $f: R \rightarrow R$ be a function defined by $f(x)=\max \left\{x, x^{3}\right\}$. The set of all point where $f(x)$ is NOT differentiable is
a) $\{-1,1\}$
b) $\{-1,0\}$
c) $\{0,1\}$
d) $\{-1,0,1\}$
37. A point where function $f(x)$ is not continuous where $f(x)=[\sin [x]]$ in $(0,2 \pi)$; [.] denotes the greatest integer $\leq x$ is
a) $(3,0)$
b) $(2,0)$
c) $(1,0)$
d) None of these
38. Let $[\cdot]$ denotes the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$, then
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) $f^{\prime \prime}(0)=1$
39. A function $f(x)$ is defined as $f(x)=\left\{\begin{array}{c}x^{m} \sin \frac{1}{x}, x \neq 0, m \in N \\ 0, \quad \text { if } x=0\end{array}\right.$. The least value of m for which $f^{\prime}(x)$ is continuous at $x=0$ is
a) 1
b) 2
c) 3
d) None
40. The function $f(x)=\frac{\left(3^{x}-1\right)^{2}}{\sin x \cdot \operatorname{In}(1+x)}, x \neq 0$, is continuous at $x=0$. Then the value of $f(0)$ is
a) $2 \log _{e} 3$
b) $\left(\log _{e} 3\right)^{2}$
c) $\log _{e} 6$
d) None of these
41. The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is NOT differentiable at
a) -1
b) 0
c) 1
d) 2
42. A function $f(x)$ is defined as $f(x)=\left\{\begin{array}{c}\sin x, x \text { is rational } \\ \cos x, x \text { is irrational }\end{array}\right.$ is continuous at
a) $x=n \pi+\pi / 4, n \in I$
b) $x=n \pi+\pi / 8, n \in I$
c) $x=n \pi+\pi / 6, n \in I$
d) $x=n \pi+\pi / 3, n \in I$
43. $f(x)=\left\{\begin{array}{ll}\frac{x}{2 x^{2}+|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$ then $f(x)$ is
a) Continuous but non-differentiable at $x=0$
b) Differentiable at $x=0$
c) Discontinuous at $x=0$
d) None of these
44. If both $f(x)$ and $g(x)$ are differentiable functions at $x=x_{0}$, then the function defined as $h(x)=$ maximum $\{f(x), g(x)\}:$
a) Is always differentiable at $x=x_{0}$
b) Is never differentiable at $x=x_{0}$
c) Is differentiable at $x=x_{0}$ provided $f\left(x_{0}\right) \neq \mathrm{g}\left(x_{0}\right)$
d) Cannot be differentiable at $x=x_{0}$ if $f\left(x_{0}\right)=\mathrm{g}\left(x_{0}\right)$
45. Let $f(x)=\left\{\begin{array}{c}1-\sqrt{1-x^{2}}, \text { if }-1 \leq x \leq 1 \\ 1+\log \frac{1}{x}, \text { if } x>1\end{array}\right.$ is
a) Continuous and differentiable at $x=1$
b) Continuous but not differentiable at $x=1$
c) Neither continuous nor differentiable at $x=1$
d) None of these
46. The function $f(x)=\sin ^{-1}(\cos x)$ is
a) Not differentiable at $x=\frac{\pi}{2}$
b) Differentiable at $\frac{3 \pi}{2}$
c) Differentiable at $x=0$
d) Differentiable at $x=2 \pi$
47. Which of the following statement is always true? ([.] represents the greatest integer function)
a) If $f(x)$ is discontinuous, then $|f(x)|$ is discontinuous
b) If $f(x)$ is discontinuous, then $f(|x|)$ is discontinuous
c) $f(x)=[\mathrm{g}(x)]$ is discontinuous when $\mathrm{g}(x)$ is an integer
d) None of these
48. If $f(x)=\left\{\begin{array}{c}a x^{2}+1, x \leq 1 \\ x^{2}+a x+b, x>1\end{array}\right.$ is differentiable at $x=1$, then
a) $a=1, b=1$
b) $a=1, b=0$
c) $a=2, b=0$
d) $a=2, b=1$
49. If $f(x)=x^{3} \operatorname{sgn} x$, then
a) f is derivable at $x=0$
b) f is continuous but not derivable at $x=0$
c) L.H.D. at $x=0$ is 1
d) R.H.D. at $x=0$ is 1
50. Let $f(x)=\left\{\begin{array}{l}g(x) \cos \frac{1}{x}, x \neq 0 \\ 0,\end{array} \quad x=0\right.$, where $g(x)$ is an even function differentiable at $x=0$, passing through the origin. The $f^{\prime}(0)$
a) Is equal to 1
b) Is equal to 0
c) Is equal to 2
d) Does not exist
51. The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is
a) Discontinuous at only one point
b) Discontinuous exactly at two points
c) Discontinuous exactly at three points
d) None of these
52. If $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x},(x \neq \pi / 4)$, is continuous at $x=\pi / 4$, then the value of $f\left(\frac{\pi}{4}\right)$ is
a) 1
b) $1 / 2$
c) $1 / 3$
d) -1
53. The function $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$, where [.] denotes the greatest integer function, is discontinuous at
a) All x
b) All integer points
c) No x
d) x which is not an integer
54. Let $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{2 n}$, then which of the following is not true?
a) Discontinuous at infinite number of points
b) Discontinuous at $x=\frac{\pi}{2}$
c) Discontinuous at $x=-\frac{\pi}{2}$
d) None of these
55. Let a function $f(x)$ be defined by $f(x)=\frac{x-|x-1|}{x}$, then which of the following is not true
a) Discontinuous at $x=0$
b) Discontinuous at $x=1$
c) Not differentiable at $x=0$
d) Not differentiable at $x=1$
56. The function $f(x)=\sin \left(\log _{e}|x|\right), x \neq 0$, and 1 if $x=0$
a) Is continuous at $x=0$
b) Has removable discontinuity at $x=0$
c) Has jump of discontinuity at $x=0$
d) Has oscillating discontinuity at $x=0$
57. Number of points where the function
$f(x)=\left\{\begin{array}{c}1+\left[\cos \frac{\pi x}{2}\right], 1<x \leq 2 \\ 1-\{x\}, \quad 0 \leq x<1 \\ |\sin \pi x|,-1 \leq x<0\end{array}\right.$ and $f(1)=0$ is continuous but non-differentiable is/are (where $[\cdot]$ and
$\{\cdot\}$ represent greatest integer and fractional part function, respectively)
a) 0
b) 1
c) 2
d) None of these
58. If $f(x)=|1-x|$, then the points where $\sin ^{-1}(f|x|)$ is non-differentiable are
a) $\{0,1\}$
b) $\{0,-1\}$
c) $\{0,1,-1\}$
d) None of these
59. $f(x)=\left\{\begin{array}{c}x^{2}\left(\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}\right) \\ 0, \quad x=0\end{array}, x \neq 0\right.$. Then
a) $f(x)$ is discontinuous at $x=0$
b) $f(x)$ is continuous but non-differentiable at $x=0$
c) $f(x)$ is differentiable at $x=0$
d) $f^{\prime}(0)=2$
60. $f(x)=\left\{\begin{array}{ll}x e^{-\left(\frac{1}{x}+\frac{1}{|x|}\right)}, & x \neq 0 \\ a, & x=0\end{array}\right.$. The value of a, such that $f(x)$ is differentiable at $x=0$, is equal to
a) 1
b) -1
c) 0
d) None of these
61. Let $y=f(x)=\left\{\begin{array}{cc}e^{-\frac{1}{x^{2}}} \text { if } x \neq 0 \text {. Then which of the following can best represent the graph of } y=f(x) \text { ? } \\ 0 & \text { if } x=0\end{array}\right.$.
a)

b)

c)

d)

62. If $f(x)=\left\{\begin{array}{l}\left|1-4 x^{2}\right|, 0 \leq x<1 \\ {\left[x^{2}-2 x\right], 1 \leq x<2}\end{array}\right.$, where [.] denotes the greatest integer function, then $f(x)$ is

Discuss the continuity and differentiability of $f(x)$ in $[0,2)$
a) Differentiable for all x
b) Continuous at $x=1$
c) $f(x)$ is non-differentiable at $x=1$
d) None of these
63. If $f(x)=\left(x^{2}-4\right)\left|x^{3}-6 x^{2}+11 x-6\right|+\frac{x}{1+|x|}$, then the set of point at which the function $f(x)$ is not differentiable is
a) $\{-2,2,1,3\}$
b) $\{-2,0,3\}$
c) $\{-2,2,0\}$
d) $\{1,3\}$
64. $f(x)=\{x\}^{2}-\left\{x^{2}\right\}(\{$.$\} denotes the fractional part function)$
a) $f(x)$ is discontinuous at infinite number of integers but not all integers
b) $f(x)$ is discontinuous at finite number of integers
c) $f(x)$ is discontinuous at all integers
d) $f(x)$ is continuous at all integers
65. If $f(x)=\left\{\begin{array}{l}e^{x^{2}+x}, x>0 \\ a x+b, x \leq 0\end{array}\right.$ is differentiable at $x=0$, then
a) $a=1, b=-1$
b) $a=-1, b=1$
c) $a=1, b=1$
d) $a=-1, b=-1$
66. Let $\mathrm{g}(x)$ be a polynomial of degree one and $f(x)$ be defined by $f(x)=\left\{\begin{array}{c}g(x), x \leq 0 \\ |x|^{\sin x}, x>0 .\end{array}\right.$. If $f(x)$ is continuous satisfying $f^{\prime}(1)=f(-1)$, then $\mathrm{g}(x)$ is
a) $(1+\sin 1) x+1$
b) $(1-\sin 1) x+1$
c) $(1-\sin 1) x-1$
d) $(1+\sin 1) x-1$
67. If $f(x)=\frac{x^{2}-b x+25}{x^{2}-7 x+10}$ for $x \neq 5$ is continuous at $x=5$, then the value of $f(5)$ is
a) 0
b) 5
c) 10
d) 25
68. Let $f(x)=[x]$ and $\mathrm{g}(x)=\left\{\begin{array}{c}0, \\ x^{2}, \\ ,\end{array} \quad x \in Z-Z\right.$. . Then which of the following is not true ([.] represents greatest integer function)
a) $\lim _{x \rightarrow 1} \mathrm{~g}(x)$ exists but $\mathrm{g}(x)$ is not continuous at $x=1$
b) $\lim _{x \rightarrow 1} f(x)$ does not exist and $f(x)$ is not continuous at $x=1$
c) gof is a discontinuous function
d) $f o g$ is a discontinuous function
69. Let $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; 0<x<2, m$ and n are integers, $m \neq 0, n>0$, and let p be the left hand derivative of $|x-1|$ at $x=1$. If $\lim _{x \rightarrow 1^{+}} g(x)=p$, then
a) $n=1, m=1$
b) $n=1, m=-1$
c) $n=2, m=2$
d) $n>2, m=n$
70. Let $f(x)=\left\{\begin{array}{c}\min \left(\left\{x, x^{2}\right\}\right) x \geq 0 \\ \max \left\{2 x, x^{2}-1\right\} x<0\end{array}\right.$. Then which of the following is not true
a) $f(x)$ is continuous at $x=0$
b) $f(x)$ is not differentiable at $x=1$
c) $f(x)$ is not differentiable at exactly three point
d) None of these
71. Let f be a continuous function on R such that $f(1 / 4 n)=\left(\sin e^{n}\right) e^{-n^{2}}+\frac{n^{2}}{n^{2}+1}$. Then the value of $f(0)$ is
a) 1
b) $1 / 2$
c) 0
d) None of these
72. $f(x)=\max \{x / n,|\sin \pi x|\}, n \in N$ has maximum points of non-differentiability for $x \in(0,4)$, then n cannot be
a) 4
b) 2
c) 5
d) 6
73.

If $f(x)=\left\{\begin{array}{c}\frac{8^{x}-4^{x}-2^{x}+1}{x^{2}}, x>0 \\ e^{x} \sin x+\pi x+\lambda \operatorname{In} 4, x \leq 0\end{array}\right.$
Is continuous at $x=0$. Then the value of λ is
a) $4 \log _{e} 2$
b) $2 \log _{e} 2$
c) $\log _{e} 2$
d) None of these
74. $f(x)=\lim _{n \rightarrow \infty} \frac{(x-1)^{2 n}-1}{(x-1)^{2 n}+1}$ is discontinuous at
a) $x=0$ only
b) $x=2$ only
c) $x=0$ and 2
d) None of these
75. Let $f(x)=\lim _{n \rightarrow \infty} \frac{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}-1}{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}+1^{\prime}}$, then
a) $f(x)$ is continuous and differentiable for all $x \in R$
b) $f(x)$ is continuous but not differentiable for all $x \in R$
c) $f(x)$ is discontinuous at infinite number of points
d) $f(x)$ is discontinuous at finite number of points
76. Which of the following function is not differentiable at $x=1$?
a) $f(x)=\left(x^{2}-1\right)|(x-1)(x-2)|$
b) $f(x)=\sin (|x-1|)-|x-1|$
c) $f(x)=\tan (|x-1|)+|x-1|$
d) None of these
77. If $x+4|y|=6 y$, then y as a function of x is
a) Continuous at $x=0$
b) Derivable at $x=0$
c) $\frac{d y}{d x}=\frac{1}{2}$ for all x
d) None of these
78. Which of the following functions have finite number of points if discontinuity in $R([\cdot]$ represents greatest integer function)?
a) $\tan x$
b) $x[x]$
c) $\frac{|x|}{x}$
d) $\sin [\pi x]$
79. The function $f(x)=\{x\} \sin (\pi[x])$, where [.] denotes the greatest integer function and $\{$.$\} is the fractional$ part function, is discontinuous at
a) All x
b) All integer points
c) No x
d) x which is not an integer
80. The value of $f(0)$, so that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point in its domain, is equal to
a) 2
b) $1 / 3$
c) $2 / 3$
d) $-1 / 3$
81. Which of the following functions is differentiable at $x=0$?
a) $\cos (|x|)+|x|$
b) $\cos (|x|)-|x|$
c) $\sin (|x|)+|x|$
d) $\sin (|x|)-|x|$
82. The number of points $f(x)=\left\{\begin{array}{c}{[\cos \pi x], 0 \leq x \leq 1} \\ |2 x-3|[x-2], 1<x \leq 2\end{array}\right.$ is discontinuous at ([.] denotes the greatest integer function)
a) Two points
b) Three points
c) Four points
d) No points
83. If $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$, then $f(x)$ is
a) $\begin{aligned} & \text { Continuous on }[-1,1] \text { and differentiable on } \\ & (-1,1)\end{aligned}$
b) Continuous $[-1,1]$ and differentiable on
c) Continuous and differentiable on $[-1,1]$
$(-1,0) \cup(0,1)$
84. If $f(x)=\left\{\begin{array}{ll}\frac{1-|x|}{1+x} ; & x \neq-1 \\ 1 ; & x=-1\end{array}\right.$, then $f([2 x])$ where $[\cdot]$ represents the greatest integer function is
a) Discontinuous at $x=-1$
b) Continuous at $x=0$
c) Continuous at $x=1 / 2$
d) Continuous at $x=1$
85. Let $f(x)$ be defined in the interval $[0,4]$ such that
$f(x)=\left\{\begin{array}{l}1-x, 0 \leq x \leq 1 \\ x+2,1<x<2 \\ 4-x, 2 \leq x \leq 4\end{array}\right.$
Then number of points where $f(f(x))$ is discontinuous is
a) 1
b) 2
c) 3
d) None of these
86. If $f(x)=\frac{a \cos x-\cos b x}{x^{2}}, x \neq 0$ and $f(0)=4$ is continuous at $x=0$, then the ordered pair (a, b) is
a) $(\pm 1,3)$
b) $(1, \pm 3)$
c) $(-1,-3)$
d) $(1,3)$
87. Let $f(x)=\lim _{n \rightarrow \infty} \frac{\log (2+x)-x^{2 n} \sin x}{1+x^{2 n}}$. Then
a) f is continuous at $x=1$
b) $\lim _{x \rightarrow 1^{+}} f(x)=\log 3$
c) $\lim _{x \rightarrow 1^{+}} f(x)=-\sin 1$
d) $\lim _{x \rightarrow 1^{-}} f(x)$ does not exist
88. The set of points where $x^{2}|x|$ is thrice differentiable is
a) R
b) $R-\{0, \pm 1\}$
c) $R-\{0\}$
d) None of these
89.

Let $f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, x<4 \\ a+b, x=4 \\ \frac{x-4}{|x-4|}+b, x>4\end{array}\right.$. Then $f(x)$ is continuous at $x=4$ when,
a) $a=0, b=0$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=1, b=-1$
90. If $f(x)=\left\{\begin{array}{c}x^{3}, x^{2}<1 \\ x, x^{2} \geq 1\end{array}\right.$, then $f(x)$ is differentiable at
a) $(-\infty, \infty)-\{1\}$
b) $(-\infty, \infty) \sim\{1-1\}$
c) $(-\infty, \infty) \sim\{1-1,0\}$
d) $(-\infty, \infty) \sim\{-1\}$
91. If $f(x)=\left[\log _{e} x\right]+\sqrt{\left\{\log _{e} x\right\}}, x>1$, where [.] and $\{$.$\} denote the greatest integer function and the$ fractional part function, respectively, then
a) $f(x)$ is continuous but non-differentiable at $x=e$
b) $f(x)$ is differentiable at $x=e$
c) $f(x)$ is discontinuous at $x=e$
d) None of these

Multiple Correct Answers Type

92. If $f(x)=\left\{\begin{array}{cc}\left(\sin ^{-1} x\right)^{2} \cos (1 / x), & x \neq 0 \\ 0, & x=0\end{array}\right.$ then
a) $f(x)$ is continuous everywhere in $x \in(-1,1)$
b) $f(x)$ is discontinuous in $x \in[-1,1]$
c) $f(x)$ is differentiable everywhere in $x \in(-1,1)$
d) $f(x)$ is non-differentiable nowhere in $x \in[-1,1]$
93. Which of the following function is thrice differentiable at $x=0$?
a) $f(x)=\left|x^{3}\right|$
b) $f(x)=x^{3}|x|$
c) $f(x)=|x| \sin ^{3} x$
d) $f(x)=x\left|\tan ^{3} x\right|$
94. A function $f(x)$ satisfies the relation $f(x+y)=f(x)+f(y)+x y(x+y) \forall x, y \in R$. If $f^{\prime}(0)=-1$, then
a) $f(x)$ is a polynomial function
b) $f(x)$ is an exponential function
c) $f(x)$ is twice differentiable for all $x \in R$
d) $f^{\prime}(3)=8$
95. Let $f(x)=[x]$ and $g(x)=\left\{\begin{array}{c}0, x \in Z \\ x^{2}, x \in R-Z\end{array}\right.$ ([.] represents greatest integer function). Then
a) $\lim _{x \rightarrow 1} \mathrm{~g}(x)$ exists but $\mathrm{g}(x)$ is not continuous at $x=1$
b) $f(x)$ is not continuous at $x=1$
c) gof is continuous for all x
d) fog is continuous for all x
96. Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of x, then
a) h is continuous for all x
b) h is differentiable for all x
c) $h^{\prime}(x)=1$, for all $x>1$
d) h is not differentiable at two values of x
97. Let $f: R \rightarrow R$ be any function and $g(x)=\frac{1}{f(x)}$. Then which of following is/are not true
a) g is onto if f is onto
b) g is one-one if f is one-to-one
c) g is continuous if f is continuous
d) g is differentiable if f is differentiable
98. The function $f(x)=\max \{(1-x),(1+x), 2\}, x \in(-\infty, \infty)$ is
a) Continuous at all points
b) Differentiable at all points
c) Differentiable at all points except at $x=1$ and $x=-1$
d) Continuous at all points except at $x=1$ and $x=-1$, where it is discontinuous
99.

The function $f(x)=\left\{\begin{array}{c}1,|x| \geq 1 \\ \frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, x=0\end{array}\right.$
a) Is discontinuous at infinite points
b) Is continuous everywhere
c) Is discontinuous only at $x=\frac{1}{n}, n \in Z-\{0\}$
d) None of these
100. Which of the statement(s) is/are incorrect?
a) If $f+\mathrm{g}$ is continuous at $x=a$, then f and g are continuous at $x=a$
b) If $\lim _{x \rightarrow a}(f g)$ exists, then both $\lim _{x \rightarrow a} f$ and $\lim _{x \rightarrow a}$ g exist
c) Discontinuity at $x=a \Rightarrow$ non-existence of limit
d) All functions defined on a closed interval attain a maximum or a minimum value in that interval
101. Let $\mathrm{g}(x)=x f(x)$, where $f(x)=\left\{\begin{array}{c}x \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$. At $x=0$
a) g is differentiable but g ' is not continuous
b) g is differentiable while f is not
c) Both f and g are differentiable
d) g is differentiable and g^{\prime} is continuous
102. Let $f(x)=\left[\sin ^{4} x\right]$, then (where [.] represents the greatest integer function)
a) $f(x)$ is continuous at $x=0$
b) $f(x)$ is differentiable at $x=0$
c) $f(x)$ is non-differentiable at $x=0$
d) $f^{\prime}(0)=1$
103. Which of the following function f has/have a removable discontinuity at the indicated point?
a) $f(x)=\frac{x^{2}-2 x-8}{x+2}$ at $x=-2$
b) $f(x)=\frac{x-7}{|x-7|}$ at $x=7$
c) $f(x)=\frac{x^{3}+64}{x+4}$ at $x=-4$
d) $f(x)=\frac{3-\sqrt{x}}{9-x}$ at $x=9$
104. $f(x)$ is differentiable function and $(f(x) \cdot g(x))$ is differentiable at $x=a$, then
a) $\mathrm{g}(x)$ must be differentiable at $x=a$
b) If $\mathrm{g}(x)$ is discontinuous, then $f(a)=0$
c) $f(a) \neq 0$, then $\mathrm{g}(x)$ must be differentiable
d) None of these
105. $f(x)=\frac{[x]+1}{\{x\}+1}$ for $f:\left[0, \frac{5}{2}\right) \rightarrow\left(\frac{1}{2}, 3\right]$, where [.] represents the greatest integer function and $\{$.$\} represents the$ fractional part of x, then which of the following is true
a) $f(x)$ is injective discontinuous function
b) $f(x)$ surjective non-differentiable function
c) $\min \left(\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)\right)=f(1)$
d) $\max (x$ values of point of discontinuity $)=f(1)$
106. Let $f(x)=\left\{\begin{array}{c}0, x<0 \\ x^{2}, x \geq 0\end{array}\right.$ then for all x
a) f^{\prime} is differentiable
b) f is differentiable
c) f^{\prime} is continuous
d) f is continuous
107. Which of the following is/are true for $f(x)=\operatorname{sgn}(x) \times \sin x$
a) Discontinuous no where
b) An even function
c) $f(x)$ is periodic
d) $f(x)$ is differentiable for all x
108. $f(x)=\left\{\begin{array}{l}x+a, x \geq a \\ 2-x, x<0\end{array}\right.$ and $g(x)=\left\{\begin{array}{c}\{x\}, x<0 \\ \sin x+b, x \geq 0\end{array}\right.$ and if $f(g(x))$ is continuous at $x=0$ then which of the following is/are true (where $\{x\}$ represents the fractional part function)
a) If $b=1$, then a can take any real value
b) If $b<-1$, then $a+b=1$
c) No values of a and b are possible
d) There exist finite ordered pairs (a, b)
109. Let $f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3)$, where $\operatorname{sgn}(\cdot)$ is the signum function, then $f(x)$
a) Is continuous over its domain
b) Has a missing point discontinuity
c) Has isolated point discontinuity
d) Irremovable discontinuity
110.

The function $f(x)=\left\{\begin{array}{c}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$ is
a) Continuous at $x=1$
b) Differentiable at $x=1$
c) Continuous at $x=3$
d) Differentiable at $x=3$
111. If $x+|y|=2 y$, then y as a function of x is
a) Defined for all real x
b) Continuous at $x=0$
c) Differentiable for all x
d) Such that $\frac{d y}{d x}=\frac{1}{3}$ for $x<0$
112. If $f(x)=\left\{\begin{array}{c}|x|-3, x<1 \\ |x-2|+a, x \geq 1\end{array}\right.$ and $\mathrm{g}(x)=\left\{\begin{array}{c}2-|x|, x<2 \\ \operatorname{sgn}(x)-b, x \geq 2\end{array}\right.$ and $h(x)=f(x)+\mathrm{g}(x)$ is discontinuous at exactly one point then which of the following values of a and b are possible
a) $a=-3, b=0$
b) $a=2, b=1$
c) $a=2, b=0$
d) $a=-3, b=1$
113. If $f(x)=\left\{\begin{array}{l}\left.x^{2}(\operatorname{sgn}[x])+\{x\}\right), 0 \leq x<2 \\ \sin x+|x-3|, \quad 2 \leq x<4\end{array}\right.$, where [] and $\{ \}$ represents the greatest integer and the fractional part function, respectively
a) $f(x)$ is differentiable at $x=1$
b) $f(x)$ is continuous but non-differentiable at $x=1$
c) $f(x)$ is non-differentiable at $x=2$
d) $f(x)$ is discontinuous at $x=2$
114.

Let $f(x)=\left\{\begin{array}{c}\frac{e^{x}-1+a x}{x^{2}}, x>0 \\ b, x=0 \\ \sin \frac{\frac{x}{2}}{x}, \quad x<0\end{array}\right.$, then
a) $f(x)$ is continuous at $x=0$ if $a=-1, b=\frac{1}{2}$
b) $f(x)$ is discontinuous at $x=0$ if $b \neq \frac{1}{2}$
c) $f(x)$ has irremovable discontinuity at $x=0$ if $a \neq-1$
d) $f(x)$ has removable discontinuity at $x=0$ if $a=-1, b \neq \frac{1}{2}$
115. If $f(x)=\operatorname{sgn}\left(x^{2}-a x+1\right)$ has maximum number of points of discontinuity, then
a) $a \in(2, \infty)$
b) $a \in(-\infty,-2)$
c) $a \in(-2,2)$
d) None of these
116. If $f(x)=[|x|]$, where [.] denotes the greatest integer function, then which of the following is not true?
a) $f(x)$ is continuous $\forall x \in R$
b) $f(x)$ is continuous from right and discontinuous from left $\forall x \in N$
c) $f(x)$ is continuous from left and discontinuous from right $\forall x \in I$
d) $f(x)$ is continuous at $x=0$
117. The function $f(x)=\left\{\begin{array}{c}5 x-4 \text { for } 0<x \leq 1 \\ 4 x^{2}-3 x \text { for } 1<x<2 \text { is } \\ 3 x+4 \text { for } x \geq 2\end{array}\right.$
a) Continuous at $x=1$ and $x=2$
b) Continuous at $x=1$ but not derivable at $x=2$
c) Continuous at $x=2$ but not derivable at $x=1$
d) Continuous at $x=1$ and 2 but not derivable at $x=1$ and $x=2$
118. Which of the following function(s) has/have removable discontinuity at $x=1$?
a) $f(x)=\frac{1}{\operatorname{In}|x|}$
b) $f(x)=\frac{x^{2}-1}{x^{3}-1}$
c) $f(x)=2^{-\frac{1}{1-x}}$
d) $f(x)=\frac{\sqrt{x+1}-\sqrt{2 x}}{x^{2}-x}$
119.
$f(x)=\left\{\begin{array}{c}\left(\frac{3}{2}\right)^{(\cot 3 x) /(\cot 2 x)} ; 0<x<\frac{\pi}{2} \\ b+3 ; \quad x=\frac{\pi}{2} \\ (1+|\cot x|)^{(a|\tan x|) / b} ; \frac{\pi}{2}<x<\pi\end{array} \quad\right.$ is continuous at $x=\pi / 2$, then
a) $a=0$
b) $a=2$
c) $b=-2$
d) $b=2$
120. Let $g(x)=x f(x)$, where
$f(x)=\left\{\begin{array}{c}x \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$
At $x=0$
a) g is differentiable but g^{\prime} is not continuous
b) g is differentiable while f is not differentiable
c) Both f and g are differentiable
d) g is differentiable but g^{\prime} is continuous
121. The function $f(x)=1+|\sin x|$ is
a) Continuous nowhere
b) Continuous everywhere
c) Not differentiable at $x=0$
d) Not differentiable at infinite number of points
122. Let $[x]$ denotes the greatest integer less than or equal to x. If $f(x)=[x \sin \pi x]$, then $f(x)$ is
a) Continuous at $x=0$
b) Continuous in $(-1,0)$
c) Differentiable at $x=1$
d) Differentiable in $(-1,1)$
123. The set of all points, where the function $f(x)=\frac{x}{1+|x|}$, is differentiable is
a) $(-\infty, \infty)$
b) $[0, \infty)$
c) $(-\infty, 0) \cup(0, \infty)$
d) $(0, \infty)$
124. If $f(x)=\frac{x-2}{2}$, then in $[0, \pi]$
a) Both $\tan (f(x))$ and $\frac{1}{f(x)}$ are continuous
b) $\tan (f(x))$ is continuous but $f^{-1}(x)$ is not continuous
c) $\tan \left(f^{-1}(x)\right)$ and $f^{-1}(x)$ are discontinuous
d) None of these
125. The following functions are continuous on $(0, \pi)$
a) $\tan x$
b) $\int_{0}^{x} t \sin \frac{1}{t} d t$
c) $\left\{\begin{array}{c}1, \quad 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \frac{2}{9} x, \quad \frac{3 \pi}{4}<x<\pi\end{array}\right.$
d) $\left\{\begin{array}{c}x \sin x, 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x), \frac{\pi}{2}<x<\pi\end{array}\right.$
126. If $f(x)=x+|x|+\cos \left(\left[\pi^{2}\right] x\right)$ and $g(x)=\sin x$, where [.] denotes the greatest integer function, then
a) $f(x)+\mathrm{g}(x)$ is continuous everywhere
b) $f(x)+\mathrm{g}(x)$ is differentiable everywhere
c) $f(x) \times \mathrm{g}(x)$ is differentiable everywhere
d) $f(x) \times \mathrm{g}(x)$ is continuous but not differentiable at $x=0$
127.

If $f(x)=\left\{\begin{array}{c}\frac{x \log \cos x}{\log \left(1+x^{2}\right)}, x \neq 0 \\ 0, \quad x=0\end{array}\right.$ then
a) $f(x)$ is not continuous at $x=0$
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
d) $f(x)$ is differentiable at $x=0$
128. The function defined as
$f(x)=\lim _{n \rightarrow \infty}\left[\begin{array}{c}\cos ^{2 n} x \\ \text { if } x<0 \\ \sqrt[n]{\sqrt{1+x^{n}}} \\ \text { if } 0 \leq x \leq 1, \\ \frac{1}{1+x^{n}}\end{array}\right.$ if $x>1, ~$
Which of the following does not hold good?
a) Continuous at $x=0$ but discontinuous at $x=1$
b) Continuous at $x=1$ but discontinuous at $x=0$
c) Continuous both at $x=1$ and $x=0$
d) Discontinuous both at $x=1$ and $x=0$
129. If $f(x)=\sin \ln \left(\frac{\sqrt{9-x^{2}}}{2-x}\right)$, then
a) Domain of $f(x)$ is $x \in(-3,2)$
b) Range of $f(x)$ is $y \in(-1,1)$
c) $f(x)$ is continuous at $x=0$
d) The right hand limit of $y=(x-3) f(x)$ at $x=-3$ is zero
130. A function f is defined on an interval $[a, b]$. Which of the following statement(s) is/are incorrect?
a) If $f(a)$ and $f(b)$ have opposite signs, then there must be a point $c \in(a, b)$ such that $f(c)=0$
b) If f is continuous on $[a, b], f(a)<0$ and $f(b)>0$, then there must be a point $c \in(a, b)$ such that
b) $f(c)=0$
c) If f is continuous on $[a, b]$, then there is a point c in (a, b) such that $f(c)=0$, then $f(a)$ and $f(b)$ have opposite signs
d) If f has no zeros on $[a, b]$, then $f(a)$ and $f(b)$ have the same sign
131. If $f(x)=\lim _{t \rightarrow \infty} \frac{|a+\sin \pi x|^{t}-1}{|a+\sin \pi x|^{t}+1}, x \in(0,6)$, then
a) If $a=1$, then $f(x)$ has 5 points of discontinuity
b) If $a=3$, then $f(x)$ has no point of discontinuity
c) If $a=0.5$, then $f(x)$ has 6 points of discontinuity
d) If $a=0$, then $f(x)$ has 6 points of discontinuity

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 132 to 131. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: $\quad f(x)=(2 x-5)^{3 / 5}$ is non-differentiable at $x=5 / 2$
Statement 2: If the graph of $y=f(x)$ has sharp turn at $x=a$, then it is non-differentiable

Statement 1: The function $f(x)=a_{1} e^{|x|}+a_{2}|x|^{5}$, where a_{1}, a_{2} are constants, is differentiable at $x=0$ if $a_{1}=0$

Statement 2: $e^{|x|}$ is a many-one function

Statement 1: Let $f(x)=\lim _{m \rightarrow \infty}\left\{\lim _{n \rightarrow \infty} \cos ^{2 m}(n!\pi x)\right\}$, and $\mathrm{g}(x)=\left\{\begin{array}{l}0 \text {, if } x \text { is rational } \\ 1, \text { if } x \text { is irrational }\end{array}\right.$ Then $h(x)=f(x)+\mathrm{g}(x)$ is continuous for all x
Statement 2: $\quad f(x)$ and $\mathrm{g}(x)$ are discontinuous for all $x \in R$

Statement 1: If $f(x)$ is a continuous function such that $f(0)=1$ and $f(x) \neq x, \forall x \in R$, then $f(f(x))>x$
Statement 2: If $f: R \rightarrow R, f(x)$ is a onto function, then $f(x)=0$ has at least one solution

Statement 1: $f(x)=|x| \sin x$ is non-differentiable at $x=0$
Statement 2: If $f(x)$ is not differentiable and $\mathrm{g}(x)$ is differentiable at $x=a$, then $f(x) \mathrm{g}(x)$ can still be differentiable at $x=a$

Statement 1: $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ is non-differentiable at $x= \pm 1$
Statement 2: Principal value of $\tan ^{-1} x$ are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Statement 1: If $|f(x)| \leq|x|$ for all $x \in R$, then $|f(x)|$ is continuous at 0
Statement 2: If $f(x)$ is continuous, then $|f(x)|$ is also continuous

Statement 1: If $f(x)$ and $\mathrm{g}(x)$ are two differentiable functions $\forall x \in R$, then $y=\max \{f(x), \mathrm{g}(x)\}$ is always continuous but not differentiable at the point of intersection of graphs of $f(x)$ and $\mathrm{g}(x)$
Statement 2: $\quad y=\max \{f(x), \mathrm{g}(x)\}$ is always differentiable in between the two consecutive roots of $f(x)-\mathrm{g}(x)=0$ if both the functions $f(x)$ and $\mathrm{g}(x)$ are differentiable $\forall x \in R$

Statement 1: $y=\sin x$ and $y=\sin ^{-1} x$, both are differentiable functions
Statement 2: Differentiable of $f(x) \Rightarrow$ differentiability of $y=f^{-1}(x)$

Statement 1: Both the functions $|\operatorname{In} x|$ and $\operatorname{In} x$ are both continuous for all x
Statement 2: Continuity of $|f(x)| \Rightarrow$ continuity of $f(x)$

Statement 1: $f(x)=(\sin \pi x)(x-1)^{1 / 5}$ is differentiable at $x=1$
Statement 2: Product of two differentiable function is always differentiable

Statement 1: The function $f(x)=[\sqrt{x}]$ is discontinuous for all integral values of x in its domain (where $[x]$ is the greatest integer $\leq x$)
Statement 2: $\quad[\mathrm{g}(x)]$ will be discontinuous for all x given by $\mathrm{g}(x)=k$, where k is any integer

Statement 1: $f(x)=\operatorname{sgn}\left(x^{2}-2 x+3\right)$ is continuous for all x
Statement 2: $a x^{2}+b x+c=0$ has no real roots if $b^{2}-4 a c<0$

Statement 1: $f(x)=\left|\left|x^{2}\right|-3\right| x|+2|$ is not differentiable at 5 points
Statement 2: If the graph of $f(x)$ crosses the x-axis at m distinct points, then $\mathrm{g}(x)=|f(x)|$ is always non-differentiable at least at m distinct points
146
Statement 1: The function $f(x)=\left\{\begin{array}{l}\frac{e^{1 / x}-1}{e^{1 / x}+1}, x \neq 0 \\ \cos x \quad x=0\end{array}\right.$ is discontinuous at $x=0$
Statement 2: $\quad f(0)=1$
147 Consider the functions $f(x)=x^{2}-2 x$ and $g(x)=-|x|$
Statement 1: The composite function $F(x)=f(\mathrm{~g}(x))$ is not derivable at $x=0$
Statement 2: $\quad F^{\prime}\left(0^{+}\right)=2$ and $F^{\prime}\left(0^{-}\right)=-2$
148
Statement 1: $f(x)=\operatorname{sgn} x$ is discontinuous at $x=0 \Rightarrow f(x)=|\operatorname{sgn} x|$ is discontinuous at $x=0$
Statement 2: Discontinuity of $f(x) \Rightarrow$ discontinuity of $|f(x)|$
149 Consider [•] and $\{\cdot\}$ denote the greatest integer function and the fractional part function, respectively Let $f(x)=\{x\}+\sqrt{\{x\}}$
Statement 1: f is not differentiable at integral values of x
Statement 2: f is not continuous at integral points
150
Statement 1: $f(x)=[\sin x]-[\cos x]$ is discontinuous at $x=\pi / 2$, where [.] represent the greatest integer function
Statement 2: If $f(x)$ and $g(x)$ are discontinuous at $x=a$, then $f(x)+g(x)$ is discontinuous at $x=a$
151 Let $f(x)=x|x|$ and $g(x)=\sin x$
Statement 1: gof is differentiable at $x=0$ and its derivative is continuous at that point
Statement 2: gof is twice differentiable at $x=0$
152 Consider the function $f(x)=\operatorname{sgn}(x-1)$ and $g(x)=\cot ^{-1}[x-1]$, where [•] denotes the greatest integer function

Statement 1: The function $F(x)=f(x), \mathrm{g}(x)$ is discontinuous at $x=1$
Statement 2: If $f(x)$ is discontinuous at $x=a$ and $g(x)$ is also discontinuous at $x=a$, then the product function $f(x) \mathrm{g}(x)$ is discontinuous at $x=a$

Statement 1: $\quad f(x)=\lim _{x \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$ is discontinuous at $x=1$
Statement 2: If limit of function exists at $x=a$ but not equal to $f(a)$, then $f(x)$ is discontinuous at $x=a$

Statement 1: If $f(x)$ is discontinuous at $x=e$ and $\lim _{x \rightarrow a} \mathrm{~g}(x)=e$, then $\lim _{x \rightarrow a} f(\mathrm{~g}(x))$ cannot be equal to $f\left(\lim _{x \rightarrow a} g(x)\right)$
Statement 2: If $f(x)$ is continuous at $x=e$ and $\lim _{x \rightarrow a} g(x)=e$, then $\lim _{x \rightarrow a} f(\mathrm{~g}(x))=f\left(\operatorname{limg}_{x \rightarrow a} g(x)\right)$
155 Consider the function
$f(x)=\cot ^{-1}\left(\operatorname{sgn}\left(\frac{[x]}{2 x-[x]}\right)\right)$, where $[\cdot]$ denotes the greatest integer function
Statement 1: $\quad f(x)$ is discontinuous at $x=1$
Statement 2: $\quad f(x)$ is non-differentiable at $x=1$
156
Statement 1: If $f^{\prime}(x)$ exists then $f^{\prime}(x)$ is continuous
Statement 2: Every differentiable function is continuous
157
Statement 1: $f(x)=\sin x+[x]$ is discontinuous at $x=0$, where [.] denotes the greatest integer function
Statement 2: If $\mathrm{g}(x)$ is continuous and $h(x)$ is discontinuous at $x=a$, then $\mathrm{g}(x)+h(x)$ will necessary be discontinuous at $x=a$

Statement 1: $f(x)=\min \{\sin x, \cos x\}$ is non-differentiable at $x=\pi / 2$
Statement 2: Non-differentiability of $\max \{\mathrm{g}(x), h(x)\} \Rightarrow$ non-differentiability of $\min \{\mathrm{g}(x) h(x)\}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.
159. Consider the function $f(x)=x^{2}+b x+c$, where $D=b^{2}-4 c>0$

Column-I

Column- II

(A) $b<0, c>0$
(p) 1
(B) $c=0, b<0$
(q) 2
(C) $c=0, b>0$
(r) 3
(D) $b=0, c<0$
(s) 5

CODES :
A
B
C
D
a) $\begin{array}{llll}\mathrm{p} & \mathrm{q} & \mathrm{s} & \mathrm{r}\end{array}$
b) $\begin{array}{llll}\text { q } & p & r & s\end{array}$
c) $\begin{array}{llll}r & \text { s } & q & p\end{array}$
d) \quad s \quad r \quad p \quad q
160. Let $f(x)= \begin{cases}\frac{5 e^{1 / x}+2}{3-e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{cases}$
Column-I

Column- II

(A) $y=f(x)$ is
(p) Continuous at $x=0$
(B) $y=x f(x)$ is
(q) Discontinuous at $x=0$
(C) $y=x^{2} f(x)$ is
(r) Differentiable at $x=0$
(D) $y=x^{-1} f(x)$ is
(s) Non-differentiable at $x=0$

CODES :

	A	B	C	D
a)	P, s	q, s	p, q	p, r
b)	p, r	q, s	p, s	q
c)	q, s	p, s	p, r	q, s
d)	p, s	p, q	q, s	p, r

161.

(A) $f(x)=\lim _{n \rightarrow \infty} \cos ^{2 n}(2 \pi x)+\left\{x+\frac{1}{2}\right\}$, where
(p) Continuous
\{.\} denotes the fractional part function at $x=\frac{1}{2}$
(B) $f(x)=\left(\log _{e} x\right)(x-1)^{1 / 5}$ at $x=1$
(q) Discontinuous
(C) $f(x)=[\cos 2 \pi x]+\sqrt{\left\{\sin \pi \frac{x}{2}\right\}}$, where [.] and
(r) Differentiable
\{.\} denote the greatest integer and the fractional part function, respectively at $x=1$
(D) $f(x)=\left\{\begin{array}{c}\cos 2 x, x \in Q \\ \sin x, x \notin Q\end{array}\right.$ at $x=\frac{\pi}{6}$
(s) Non-differentiable

CODES:

	A	B	C	D
a)	Q, s	p, r	p, r	p, s
b)	p, r	q, s	p, s	p, r
c)	q, s	p, s	p, r	p, q
d)	p, q	q, s	p, s	q, r

162.

Column-I

Column- II

(A) $f(x)=\left\{\begin{array}{c}\frac{1}{|x|} \text { for }|x| \geq 1 \\ a x^{2}+b \text { for }|x|<1\end{array}\right.$ is differentiable everywhere and $|k|=a+b$, then the value of k is
(B) If $f(x)=\operatorname{sgn}\left(x^{2}-a x+1\right)$ has exactly one
(q) -2
point of discontinuity, then the value of a can be
(C) $f(x)=[2+3|n| \sin x], n \in N ; x \in(0, \pi)$ has
(r) 1
exactly 11 points of discontinuity, then the value of n is
(D) $f(x)=|||x|-2|+a|$ has exactly three points
(s) -1
of non-differentiability, then the value of a is

CODES :

A
B
C
D
a) $\quad \mathrm{P}, \mathrm{q} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{s} \quad \mathrm{q}, \mathrm{s}$
b) $r, s \quad p, q \quad p, q \quad p, r$
c) $\mathrm{p}, \mathrm{r} \quad \mathrm{q}, \mathrm{s} \quad \mathrm{p}, \mathrm{q} \quad \mathrm{r}, \mathrm{s}$
d) $\quad \mathrm{q}, \mathrm{s} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}$
163.

Column-I

Column- II

(A) $f(x)=\left|x^{3}\right|$ is
(p) Continuous in $(-1,1)$
(B) $f(x)=\sqrt{|x|}$ is
(q) Differentiable in $(-1,1)$
(C) $f(x)=\left|\sin ^{-1} x\right|$ is
(r) Differentiable in $(0,1)$
(D) $f(x)=\cos ^{-1}|x|$ is
(s) Not differentiable at least at one point in $(-1,1)$

CODES :

A
B
C
D
a) $P, q, r \quad p, r, s \quad p, r, s \quad p, r, s$
b) $p, q \quad p, r, s \quad q, r \quad p, r$
c) $\quad \mathrm{q}, \mathrm{r} \quad \mathrm{p}, \mathrm{s} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{r}, \mathrm{s}$
d) $\mathrm{p}, \mathrm{q} \quad \mathrm{s}, \mathrm{q} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{q}, \mathrm{s}$

Linked Comprehension Type

This section contain(s) 11 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 164 to -164
Let $f\left(x=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ \left\{1+\left(\frac{P(x)}{x^{2}}\right)\right\}^{1 / x}, & x>0\end{array}\right.\right.$, where $P(x)$ is a cubic function and f is continuous at $x=0$
164. The range of function $g(x)=3 a \sin x-b \cos x$ is
a) $[-10,10]$
b) $[-5,5]$
c) $[-12,12]$
d) None of these

Paragraph for Question Nos. 165 to - 165

Let $f(x)=\left\{\begin{array}{c}x+2,0 \leq x<2 \\ 6-x, \quad x \geq 2\end{array}\right.$,
$g(x)=\left\{\begin{array}{l}1+\tan x, 0 \leq x<\frac{\pi}{4} \\ 3-\cot x, \frac{\pi}{4} \leq x<\pi\end{array}\right.$
165. $f(\mathrm{~g}(x))$ is
a) Discontinuous at $x=\pi / 4$
b) Differentiable at $x=\pi / 4$
c) Continuous but non-differentiable at $x=\pi / 4$
d) Differentiable at $x=\pi / 4$, but derivative is not continuous

Paragraph for Question Nos. 166 to - 166
Consider $f(x)=x^{2}+a x+3$ and $g(x)=x+b$ and $F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} \mathrm{~g}(x)}{1+x^{2 n}}$
166. If $F(x)$ is continuous at $x=1$, then
a) $b=a+3$
b) $b=a-1$
c) $a=b-2$
d) None of these

Paragraph for Question Nos. 167 to - 167

Let $f(x)=\left\{\begin{array}{c}{[x],-2 \leq x \leq-\frac{1}{2}} \\ 2 x^{2}-1,-\frac{1}{2}<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$, where [•] represencts greatest integer function
167. The number of points where $|f(x)|$ is non-differentiable is
a) 3
b) 4
c) 2
d) 5

Paragraph for Question Nos. 168 to - 168

Given the continuous function
$y=f(x)=\left\{\begin{array}{c}x^{2}+10 x+8, x \leq-2 \\ a x^{2}+b x+c,-2<x<0, a \neq 0 \\ x^{2}+2 x, x \geq 0\end{array}\right.$
If a line L touches the graph of $y=f(x)$ at three points, then
168. The slope of the line ' L ' is equal to
a) 1
b) 2
c) 4
d) 6

Integer Answer Type

169. $f(x)=\frac{x}{1+(\operatorname{In} x)(\operatorname{In} x) \cdots \infty} \forall x \in[1,3]$ is non-differentiable at $x=k$. Then the value of $\left[k^{2}\right]$ is (where $[\cdot]$ represents greatest integer function)
170. Number of points of discontinuity for $f(x)=\operatorname{sgn}(\sin x), x \in[0,4 \pi]$ is
171. Let $f(x)$ and $\mathrm{g}(x)$ be two continuous functions and $h(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n \cdot} \cdot f(x)+x^{2 m} \cdot \mathrm{~g}(x)}{\left(x^{2 n}+1\right)}$. If limit of $h(x)$ exists at $x=1$, then one root of $f(x)-\mathrm{g}(x)=0$ is
172. Let $f(x)=\left\{\begin{array}{c}\frac{x}{2}-1,0 \leq x<1 \\ \frac{1}{2}, 1 \leq x \leq 2\end{array}\right.$ and $\mathrm{g}(x)=(2 x+1)(x-k)+3,0 \leq x \infty$. Then $\mathrm{g}(f(x))$ is continuous at $x=1$ if $12 k$ is equal to
173. A differentiable function f satisfying a relation $f(x+y)=f(x)+f(y)+2 x y(x+y)-\frac{1}{3} \forall x, y \in R$ and $\lim _{h \rightarrow 0} \frac{3 f(h)-1}{6 h}=\frac{2}{3}$. Then the value of $[f(2)]$ is (where $[x]$ represents greatest integer function)
174. If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}(x \neq 0)$ is continuous at $x=0$, then the value of $f(0)$ is
175. Let $f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n-1}+a x^{2}+b x}{x^{2 n}+1}$. If $f(x)$ is continuous for all $x \in R$, then the value of $a+8 b$ is
176. If $f(x)$ is a continuous function $\forall x \in R$ and the $f(x) \in(1, \sqrt{30})$, and $g(x)=\left[\frac{f(x)}{a}\right]$, where [•] denotes the greatest integer function, is continuous $\forall x \in R$, then the least positive integral value of a is
177. Number of points where $f(x)=\operatorname{sgn}\left(x^{2}-3 x+2\right)+[x-3], x \in[0,4]$ is discontinuous is (where [•] denotes the greatest integer function)
178. Let $\mathrm{g}(x)=\left[\begin{array}{c}a \sqrt{x+1} \text { if } 0<x<3 \\ b x+2 \text { if } 3 \leq x<5\end{array}\right.$, if $\mathrm{g}(x)$ is differentiable on $(0,5)$ then $(a+b)$ equals
179. Number of points of non-differentiability of function $f(x)=\max \left\{\sin ^{-1}|\sin x|, \cos ^{-1}|\sin x|\right\}, 0<x<2 \pi$ is
180. ${ }_{\text {Given }} \frac{\int_{f(x)}^{f(x)} e^{t} d t}{\int_{y}^{x}(1 / t) d t}=1, \forall x, y \in\left(\frac{1}{e^{2}}, \infty\right)$ where $f(x)$ is continuous and differentiable function and $f\left(\frac{1}{e}\right)=0$. If $\mathrm{g}(x)=\left\{\begin{array}{c}e^{x}, x \geq k \\ e^{x^{2}}, 0<x<k\end{array}\right.$; then the value of ' k ' for which $f(\mathrm{~g}(x))$ is continuous $\forall x \in R^{+}$is
181. Number of points where $f(x)=[x]+[x+1 / 3]+[x+2 / 3]$, then $([\cdot]$ denotes the greatest integer function) is discontinuous for $x \in(0,3)$
182. The least integer value of p for which $f^{\prime \prime}(x)$ is everywhere continuous where $f(x)= \begin{cases}x^{p} \sin \left(\frac{1}{x}\right)+x|x|, & x \neq 0 \\ 0, & x=0\end{cases}$

: ANSWER KEY :															
1)	d	2)	c	3)	b	4)	a	13)	b,c	14)	a,b,d	15)	b,c,d	16)	
5)	a	6)	b	7)	d	8)	a		a,b						
9)	d	10)	d	11)	d	12)	b	17)	a,b	18)	b,d	19)	a,b,c	20)	
13)	c	14)	a	15)	d	16)	c		a,b,d						
17)	c	18)	a	19)	c	20)	c	21)	a,b	22)	a,c,d	23)	a,b,c,d	24)	
21)	a	22)	c	23)	c	24)	a		a,b						
25)	d	26)	a	27)	d	28)	a	25)	b,d	26)	a,b	27)	b,d	28)	
29)	d	30)	b	31)	c	32)	c		a,c						
33)	a	34)	d	35)	c	36)	d	29)	a,b	30)	b,d,e	31)	a,b,d	32)	a
37)	d	38)	b	39)	c	40)	b	33)	d	34)	b,c	35)	a,c	36)	
41)	d	42)	a	43)	c	44)	c		b,d						
45)	b	46)	b	47)	d	48)	c	37)	b,c	38)	a, c	39)	a,c,d	40)	
49)	a	50)	b	51)	c	52)	b		a,b,c,d						
53)	c	54)	d	55)	b	56)	d	1)	b	2)	b	3)	b	4)	b
57)	b	58)	c	59)	c	60)	d	5)	d	6)	b	7)	b	8)	d
61)	c	62)	c	63)	d	64)	a	9)	c	10)	c	11)	b	12)	c
65)	c	66)	b	67)	a	68)	c	13)	a	14)	c	15)	b	16)	a
69)	c	70)	d	71)	a	72)	b	17)	c	18)	a	19)	c	20)	c
73)	c	74)	c	75)	a	76)	c	21)	c	22)	b	23)	d	24)	b
77)	a	78)	c	79)	c	80)	b	25)	d	26)	a	27)	c	1)	d
81)	d	82)	b	83)	b	84)	b		2)	c	3)	a	4)	b	
85)	b	86)	b	87)	c	88)	c	5)	a	1)	b	2)	c	3)	a
89)	d	90)	b	91)	a	1)			4)	a					
	a,c	2)	b,c,d	3)	a,c,d	4)		5)	c	1)	7	2)	5	3)	1
	a,b,c								4)	6					
5)	a,c,d	6)	a,c,d	7)	a,c	8)		5)	8	6)	2	7)	8	8)	6
	a,c							9)	4	10)	2	11)	7	12)	1
9)	$\begin{aligned} & \text { a,b,c,d } \\ & \mathbf{a , c , d} \end{aligned}$		a,b	11)	a,b	12)		13)	8	14)	5				

: HINTS AND SOLUTIONS :

1 (d)
$f(x)=\left(e^{x}-1\right)\left|e^{2 x}-1\right|$
$=\left(e^{x}-1\right)\left|e^{x}-1\right|\left|e^{x}+1\right|$
$=\left(e^{x}+1\right)\left(e^{x}-1\right)\left|e^{x}-1\right|$
Now, both $e^{x}+1$ and $\left(e^{x}-1\right)\left|e^{x}-1\right|$ are differentiable
[as $\mathrm{g}(x)|\mathrm{g}(x)|$ is differentiable when $\mathrm{g}(x)=0$]
Hence, $f(x)$ is differentiable
$f(x)=\frac{x-1}{x^{2}+1}$ is rational function is which
denominator never becomes zero
Hence, $f(x)$ is differentiable
$f(x)=\left\{\begin{array}{c}||x-3|-1|, x<3 \\ \frac{x}{3}[x]-2, x \geq 3\end{array}\right.$
$=\left\{\begin{array}{l}|3-x-1|, x<3 \\ \frac{x}{3} 3-2,3 \leq x<4\end{array}\right.$
$=\left\{\begin{array}{c}|x-2|, x<3 \\ x-2,3 \leq x<4\end{array}\right.$
$=x-2, x \in[2,4)$
Hence, $f(x)$ is differentiable at $x=3$
$f(x)=3(x-2)^{3 / 4}+3 \Rightarrow f^{\prime}(x)=\frac{9}{4}(x-2)^{-1 / 4}$
Which is non-differentiable at $x=2$
Here $f(x)$ is continuous and the graph has vertical tangent at $x=2$; however, graph is smooth in neighbourhood of $x=2$
2 (c)
Given that $\cos \frac{x}{2} \cos \frac{x}{2^{2}} \cos \frac{x}{2^{3}} \ldots \cos \frac{x}{2^{n}}=\frac{\sin x}{2^{n} \sin \left(\frac{x}{2^{n}}\right)}$
(1)

Taking logarithm to the base ' e ' on both sides of equation (1) and then differentiating w.r.t. x, we get
$\sum_{n=1}^{n} \frac{1}{2^{n}} \tan \frac{x}{2^{n}}=\left(\frac{1}{2^{n}} \cot \frac{x}{2^{n}}-\cot x\right)$
$\therefore \lim _{n \rightarrow \infty} \sum_{n=1}^{n} \frac{1}{2^{n}} \tan \frac{x}{2^{n}}=\lim _{n \rightarrow \infty}\left(\frac{1}{x} \times \frac{\frac{x}{2^{n}}}{\tan \frac{x}{2^{n}}}-\cot x\right)$

$$
=\left(\frac{1}{x}-\cot x\right)
$$

\therefore We have $f(x)=\left\{\begin{array}{c}\frac{1}{x}-\cot x, x \in(0, \pi)-\left\{\frac{\pi}{2}\right\} \\ \frac{2}{\pi}, x=\frac{\pi}{2}\end{array}\right.$
Clearly $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{x}-\cot x\right)=\frac{2}{\pi}=f\left(\frac{\pi}{2}\right)$
Hence $f(x)$ is continuous at $x=\frac{\pi}{2}$

3 (b)
$f(2)=0$,
$f\left(2^{+}\right)=\left\{4^{+}\right\}-\left\{2^{+}\right\}^{2}=0-0=0$
$f\left(2^{-}\right)=\left\{4^{-}\right\}-\left\{2^{-}\right\}^{2}=1-1=0$
Hence $f(x)$ is continuous at $x=2$
$f(-2)=0$,
$f\left(-2^{+}\right)=\left\{4^{-}\right\}-\left\{-2^{+}\right\}^{2}=1-0=1$
Hence $f(x)$ is discontinuous at $x=-2$
4 (a)
$f(x)=2|\operatorname{sgn}(2 x)|+2=\left\{\begin{array}{l}4, x>0 \\ 2, x=0 \\ 0, x<0\end{array}\right.$
Thus, $f(x)$ has non-removable discontinuity at $x=0$
5 (a)
$f(x)=\lim _{n \rightarrow \infty}\left(\sin ^{2}[\pi x]\right)^{n}+\left[x+\frac{1}{2}\right]$
Now $\mathrm{g}(x)=\lim _{n \rightarrow \infty}\left(\sin ^{2}(\pi x)\right)^{n}$ is discontinuous when $\sin ^{2}(\pi x)=1$ or $\pi x=(2 n+1) \frac{\pi}{2}$ or
$x=\frac{(2 n+1)}{2}, n \in z$
Thus, $\mathrm{g}(x)$ is discontinuous at $x=3 / 2$
Also $h(x)=\left[x+\frac{1}{2}\right]$ is discontinuous at $x=3 / 2$
But $f(3 / 2)=\lim _{n \rightarrow \infty}\left(\sin ^{2}(3 \pi / 2)\right)^{n}+\left[\frac{3}{2}+\frac{1}{2}\right]=1+$ $2=3$
$f\left(3 / 2^{+}\right)=\lim _{n \rightarrow \infty}\left(\sin ^{2}\left((3 \pi / 2)^{+}\right)\right)^{n}+\left[\left(\frac{3}{2}\right)^{+}+\frac{1}{2}\right]$

$$
=0+2=2
$$

Hence, $f(x)$ is discontinuous at $x=3 / 2$
Both $\mathrm{g}(x)$ and $h(x)$ are continuous at $x=1$, hence, $f(x)$ is continuous at $x=1$
(b)
$|\sin x|$ and $e^{|x|}$ are not differentiable at $x=0$ and $\left|x^{3}\right|$ is differentiable at $x=0$
Therefore, for $f(x)$ to be differentiable at $x=0$,
We must have $a=0, b=0$ and c can be any real number
(d)

We have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)$
$=\lim _{h \rightarrow 0} \frac{\log \left(4+h^{2}\right)}{\log (1-4 h)}=-\infty$
And, $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} \frac{\log \left(4+h^{2}\right)}{\log (1+4 h)}=\infty$
So, $f\left(1^{-}\right)$and $f\left(1^{+}\right)$do not exist
(a)
$f(x)=\left\{\begin{array}{cc}x+2, & x<0 \\ -x^{2}-2, & 0 \leq x<1 \\ x, & x \geq 1\end{array}\right.$
$\therefore|f(x)|=\left\{\begin{array}{c}-x-2, x<-2 \\ x+2,-2 \leq x<0 \\ x^{2}+2,0 \leq x<1 \\ x, \quad x \geq 1\end{array}\right.$
Discontinuous at $x=1 \therefore$ number of points of discount 1
9 (d)
$f(x)=\sqrt[3]{|x|^{3}}-|x|-1$
$\Rightarrow|x|-|x|-1=-1$
Hence, differentiable for all x
10 (d)
$f(x)=\frac{\tan (\pi[x-\pi])}{1+[x]^{2}}$
By definition, $[x-\pi]$ is an integer whatever be the value of x and so $\pi[x-\pi]$ is an integral multiple of π
Consequently, $\tan (\pi[x-\pi])=0, \forall x$
And since $1+[x]^{2} \neq 0$ for any x, we conclude that $f(x)=0$
Thus $f(x)$ is constant function and so it is continuous and differentiable
11 (d)
$f(x)=\left[x^{2}\right]-\{x\}^{2}$
$f(-1)=1, f\left(-1^{-}\right)=1-1=0$
$f(1)=1, f\left(1^{+}\right)=1-0=1$
$f\left(1^{-}\right)=0-1=-1$
Thus, $f(x)$ is discontinuous at $x=1,-1$
12 (b)
$f(x)=\cos \pi(|x|+[x])$
$=\left\{\begin{array}{cc}\cos \pi(-x+(-1)), & -1 \leq x<0 \\ \cos \pi(x+0), & 0 \leq x<1\end{array}\right.$
$=\left\{\begin{array}{c}-\cos \pi x,-1 \leq x<0 \\ \cos \pi x, 0 \leq x<1\end{array}\right.$
Obviously, $f(x)$ is discontinuous at $x=0$,
otherwise $f(x)$ is continuous and differentiable in $(-1,0)$ and $(0,1)$
13 (c)
$f(|x|)=\left\{\begin{array}{c}\sin |x|, \quad|x|<0 \\ \cos (x)-||x|-1|, \quad|x| \geq 0\end{array}\right.$
$\Rightarrow f(|x|)=\cos (x)-||x|-1|, x \in R$
[as $|x|<0$ is not possible and $|x| \geq 0$ is true $\forall x \in R$]
Which is non-differentiable at $x=0$ and when
$|x|-1=0$ or $x= \pm 1$
Hence, $f(|x|)$ has exactly three points of nondifferentiability
14 (a)
Clearly $f(x)$ is continuous at $x=0$

Now $f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}-0}{h}=\lim _{h \rightarrow 0} \frac{1 / h}{e^{1 / h^{2}}}$
$=\lim _{h \rightarrow 0} \frac{-1 / h^{2}}{-2 / h^{3} e^{1 / h^{2}}}$ (applying L' Hopital's rule)
$=\frac{1}{2} \lim _{h \rightarrow 0} \frac{h}{e^{1 / h^{2}}}=0$
Also $f\left(0^{-}\right)=0$
Thus, $f(x)$ is differentiable at $x=0$
(d)

Let k is integer
$f(k)=0, f(k-0)=(k-1)^{2}-\left(k^{2}-1\right)$

$$
=2-2 k
$$

$f(k+0)=k^{2}-\left(k^{2}\right)=0$
If $f(x)$ is continuous at $x=k$, then $2-2 k=0$
$\Rightarrow k=1$
16
(c)
$f(x)=\operatorname{sgn}\left(\sin ^{2} x-\sin x-1\right)$ is discontinuous
when $\sin ^{2} x-\sin x-1=0$
or $\sin x=\frac{1 \pm \sqrt{5}}{2}$ or $\sin x=\frac{1-\sqrt{5}}{2}$
For exactly four point of discontinuity, n can take value 4 or 5 as shown in the diagram

17 (c)
$f(2+x)=f(-x)$
Replace x by $x-1$, we have $f(2+x-1)=$ $f(-x+1)$ or $f(1+x)=f(1-x)$
Hence $f(x)$ is symmetrical about line $x=1$
Now put $x=2$ in (1), we get $f(4)=f(-2)$, hence differentiability at $x=4$ implies differentiability at $x \rightarrow 2$
18
(a)
L.H.D. at $x=k$
$=\lim _{h \rightarrow 0} \frac{f(k)-f(k-h)}{h} \quad(k=$ integer $)$
$=\lim _{h \rightarrow 0} \frac{[k] \sin k \pi-[k-h] \sin (k-h) \pi}{h}$
$=\lim _{h \rightarrow 0} \frac{-(k-1) \sin (k \pi-h \pi)}{h}[\because \sin k \pi=0]$
$=\lim _{h \rightarrow 0} \frac{-(k-1)(-1)^{k-1} \sin h \pi}{h \pi} \times \pi$

$$
=\pi(k-1)(-1)^{k}
$$

19 (c)
$\lim _{x \rightarrow 2^{+}} \frac{(x-2)}{|x-2|}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\lim _{x \rightarrow 2^{+}} \frac{(x-2)}{(x-2)}\left(\frac{x^{2}-1}{x^{2}+1}\right)$
$=\lim _{x \rightarrow 2^{+}}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\frac{3}{5}$
$=\lim _{x \rightarrow 2^{-}} \frac{(x-2)}{|x-2|}\left(\frac{x^{2}-1}{x^{2}+1}\right)$
$=\lim _{x \rightarrow 2^{-}} \frac{(x-2)}{(2-x)}\left(\frac{x^{2}-1}{x^{2}+1}\right)=-\frac{3}{5}$
Thus, L.H.L. \neq R.H.L.
Hence, the function has non-removable discontinuity at $x=2$
20 (c)
[$\sin x$] is non-differentiable at $x=\frac{\pi}{2}, \pi, 2 \pi$ and [$\cos x$] is non-differentiable at $x=0, \frac{\pi}{2}, \frac{3 \pi}{2}, 2 \pi$ Thus, $f(x)$ is definitely non-differentiable at $x=\pi, \frac{3 \pi}{2}, 0$
Also, $f\left(\frac{\pi}{2}\right)=1, f\left(\frac{\pi}{2}-0\right)=0$
$f(2 \pi)=1, f(2 \pi-0)=-1$
Thus, $f(x)$ is also non-differentiable at $x=\frac{\pi}{2}$ and 2π
21 (a)
Using graphical transformation

(iii) $\mathrm{y}=|\mathrm{x}|-1 \mid$

As, we know the function is not differentiable at6 sharp edges and in figure (iii) $y=||x|-1|$ we have 3 sharp edges at $x=-1,0,1$
$\therefore f(x)$ is not differentiable at $\{0, \pm 1\}$
22 (c)
$\left|x-\frac{1}{2}\right|$ is continuous everywhere but not
differentiable at $x=\frac{1}{2},|x-1|$ is continuous everywhere but not differentiable at $x=1$, and
$\tan x$ is continuous in $[0,2]$ except at $x=\frac{\pi}{2}$
Hence $f(x)$ is not differentiable at $x=\frac{1}{2}, 1, \frac{\pi}{2}$
(c)
$f(x)=\left\{\begin{array}{cr}|x|-1, & |x|<0 \\ |x|^{2}-2|x|, & |x| \geq 0\end{array}\right.$
Where $|x|<0$ is not possible thus, neglecting we get,
$f(|x|)=|x|^{2}-2|x|,|x| \geq 0$
$f(|x|)=\left\{\begin{array}{l}x^{2}+2 x, x<0 \\ x^{2}-2 x, x \geq 0\end{array}\right.$
$\Rightarrow f^{\prime}(|x|)= \begin{cases}2 x+2, & x<0 \\ 2 x-2, & x>0\end{cases}$
Clearly $f(|x|)$ is continuous at $x=0$, but non-
differentiable at $x=0$
$f(|x|)= \begin{cases}|x|-1, & |x|<0 \\ |x|^{2}-2|x|, & |x| \geq 0\end{cases}$
$g(x)=|f(x)|=\left\{\begin{array}{c}1-x, x<0 \\ -x^{2}+2 x, 0 \leq x<2 \\ x^{2}-2 x, x \geq 2\end{array}\right.$
Clearly $|f(x)|$ is discontinuous at $x=0$, but continuous at $x=2$
Also, $\mathrm{g}^{\prime}(x)=\left\{\begin{array}{c}-1, x<0 \\ -2 x+2,0<x<2 \\ 2 x-2, x>2\end{array}\right.$
$|f(x)|$ is non-differentiable at $x=0$ and $x=2$
(a)
$f(x)=(-1)^{\left[x^{3}\right]}$ is discontinuous
When $x^{3}=n, n \in Z \Rightarrow x=n^{1 / 3}$
$f\left(\frac{3}{2}\right)=(-1)^{3}=-1$
For $x \in(-1,0), f(x)=(-1)^{-1}=-1$
$\Rightarrow f^{\prime}(x)=0$
For $x \in[0,1), f(x)=(-1)^{\circ}=1$
$\Rightarrow f^{\prime}(x)=0$
(d)
$f(x)$ is continuous at $x=0 \Rightarrow \lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} \frac{h g(h)}{|h|}=\lim _{h \rightarrow 0} g(h)$
$=g(0)=0$
Now $f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h \mathrm{~g}(h)}{|h|}}{h}$
$=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(h)}{h}=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(h)-\mathrm{g}(0)}{h}$
$=g^{\prime}(0)($ as $g(0)=0)=0$
$f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\frac{-h \mathrm{~g}(-h)}{|-h|}}{-h}=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(-h)}{h}$
$=-\lim _{h \rightarrow 0} \frac{g(-h)-g(0)}{-h}=-g^{\prime}(0)=0$
Hence, $f^{\prime}(0)$ exists and $f^{\prime}(0)=0$
(a)

The functions is not differentiable and continuous at two points between $x=-\pi / 2$ and $x=\pi / 2$.
Also the function is not continuous at $x=\frac{\pi}{2}$ and $x=-\frac{\pi}{2}$. Hence, at four points, the function is not differentiable
27 (d)
$f\left(2^{+}\right)=2+2 \sin (0)=2$
$f\left(2^{-}\right)=3+2 \sin (1)$
Hence, $f(x)$ is discontinuous at $x=2$
Also $f\left(0^{+}\right)=2(0)-0-0 \sin (0-0)=0$
and $f\left(0^{-}\right)=2(0)-(-1)-0 \sin (0-(-1))=1$
Hence, $f(x)$ is discontinuous at $x=0$
28 (a)
$f(x)$ is continuous when $5 x=x^{2}+6 \Rightarrow x=2,3$
29 (d)
$\lim _{x \rightarrow 0} \frac{x-e^{x}+1-(1-\cos 2 x)}{x^{2}}$
$=\lim _{x \rightarrow 0}\left[\frac{x-e^{x}+1}{x^{2}}-\frac{(1-\cos 2 x)}{x^{2}}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{x+1-\left(1+x+\frac{x^{2}}{2}\right)}{x^{2}}-\frac{2 \sin ^{2} x}{x^{2}}\right]$ (Using expansion of
e^{x})
$=-\frac{1}{2}-2$
$=-\frac{5}{2}$; hence for continuous $f(0)=-\frac{5}{2}$
Now $[f(0)]=-3 ;\{f(0)\}=\left\{-\frac{5}{2}\right\}=\frac{1}{2}$
Hence, $[f(0)]\{f(0)\}=-\frac{3}{2}=-1.5$
30
(b)
$\mathrm{g}^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(|h|)-|\sin h|-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}-\lim _{h \rightarrow 0} \frac{\sin h}{h}$
$=1-1=0$
$=\mathrm{g}^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{f(|-h|)-|\sin (-h)|-f(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h}+\lim _{h \rightarrow 0} \frac{\sin h}{h}$
$=-1+1=0$

Thus, $g(x)$ is differentiable and $g^{\prime}(0)=0$
31 (c)
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{a} \sin \left(\frac{1}{h}\right)}{h}=\lim _{h \rightarrow 0} h^{a-1} \sin \left(\frac{1}{h}\right)$
This limit will not exist if $a-1 \leq 0 \Rightarrow a \leq 1$
Now $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{a} \sin \left(\frac{1}{x}\right)=0$ if $a>0$
Thus, $a \in(0,1]$
(c)

Clearly, $f(x)$ is continuous for all x except possibly at $x=\pi / 6$
For $f(x)$ to be continuous at $x=\pi / 6$, we must have
$\lim _{x \rightarrow \pi / 6^{-}} f(x)=\lim _{x \rightarrow \pi / 6^{+}} f(x)$
$\Rightarrow \lim _{x \rightarrow \pi / 6} \sin 2 x=\lim _{x \rightarrow \pi / 6} a x+b$
$\Rightarrow \sin (\pi / 3)=(\pi / 6) a+b$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\pi}{6} a+b$
For $f(x)$ to be differentiable at $x=\pi / 6$, we must have L.H.D. at $x=\pi / 6=$ R.H.D. at $x=\pi / 6$
$\Rightarrow \lim _{x \rightarrow \pi / 6} 2 \cos 2 x=\lim _{x \rightarrow \pi / 6} a$
$\Rightarrow 2 \cos \pi / 3=a \Rightarrow a=1$
Putting $a=1$ in equation (1), we get $b=$ $(\sqrt{3} / 2)-\pi / 6$
(a)
$\lim _{x \rightarrow 0+}\left(3-\left[\cot ^{-1} \frac{2 x^{3}-3}{x^{2}}\right]\right)=\left(3-\left[\cot ^{-1}(-\infty)\right]\right)$

$$
=(3-[\pi])
$$

$=\lim _{x \rightarrow 0-}\left\{x^{2}\right\} \cos \left(e^{1 / x}\right)$
$=\left(\lim _{x \rightarrow 0-}\left\{x^{2}\right\}\right)\left(\lim _{x \rightarrow 0-} \cos \left(e^{1 / x}\right)\right)$
$=(0)\left(\cos \left(e^{-\infty}\right)\right)=0$
Thus $f(x)$ has irremovable discontinuity at $x=0$, hence $f(0)$ does not exist
(d)

Clearly from the graph, $f(x)$ is non-differentiable at five points, $x=-2,-1,0,1,2$
(c)
$f(x)=\left\{\begin{array}{cc}x^{2}-a x+3, \quad x \text { is rational } \\ 2-x, \quad x \text { is rational }\end{array}\right.$

Is continuous when $x^{2}-a x+3=2-x$ or $x^{2}-(a-1) x+1=0$
Which must have two distinct roots for
$(a-1)^{2}-4>0$
$\Rightarrow(a-1-2)(a-1+2)>0$
$\Rightarrow a \in(-\infty,-1) \cup(3, \infty)$
(d)

From the graph $f(x)=\max \left\{x, x^{3}\right\}=$
$\left\{\begin{array}{lr}x, & x<-1 \\ x^{3}, & -1 \leq x \leq 0 \\ x, & 0<x<1 \\ x^{3}, & x \geq 1\end{array}\right.$
Clearly, f is not differentiable at $-1,0$ and 1
37 (d)
For $0 \leq x<1, f(x)=[\sin 0]=0, \quad 1 \leq x<$
2, $f(x)=[\sin 1]=0$
$2 \leq x<3, f(x)=[\sin 2]=0,3 \leq x<4, f(x)$

$$
=[\sin 3]=0
$$

$4 \leq x<5, f(x)=[\sin 4]=-1$
Hence, there is discontinuity at point $(4,-1)$
38 (b)
$0 \leq \tan ^{2} x<1$ when $-\frac{\pi}{4}<x<\frac{\pi}{4}$
$\Rightarrow f(x)=0-\frac{\pi}{4}<x<\frac{\pi}{4}$
Hence, $f(x)$ is continuous and differentiable at $x=0$, also $f^{\prime}(0)=0$
39
(c)
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{h^{m} \sin \frac{1}{h}}{h}$ must exist $\Rightarrow m>1$
For
$m>1, h^{\prime}(x)=$
$\left[\begin{array}{c}m x^{m-1} \sin \frac{1}{x}-x^{m-2} \cos \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$
Now $\lim _{h \rightarrow 0} h(x)=\lim _{h \rightarrow 0}\left(m h^{m-1} \sin \frac{1}{h}-h^{m-2} \cos \frac{1}{h}\right)$
Limit exists if $m>2$
$\therefore m \in N \Rightarrow m=3$
40 (b)
Given $f(x)$ is continuous at $x=0$
$\Rightarrow \lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)^{2}}{\sin x \operatorname{In}(1+x)}=f(0)$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{\left(\frac{3^{x}-1}{x}\right)^{2}}{\left(\frac{\sin x}{x}\right)\left(\frac{\ln (1+x)}{x}\right)}=(\operatorname{In} 3)^{2}$
41 (d)
$f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$
$=[(x-1)|x-1|]|x-2|+\cos x$
$(x-1)|x-1|$ and $\cos x$ are differentiable for all x
But $|x-2|$ is non-differentiable at $x=2$
Hence, $f(x)$ is non-differentiable at $x=2$
42 (a)
$f(x)$ is continuous at some x where $\sin x=\cos x$ or $\tan x=1$ or $x=n \pi+\pi / 4, n \in I$
43 (c)
$f(0+0)=\lim _{h \rightarrow 0} f(h)$
$=\lim _{h \rightarrow 0} \frac{h}{2 h^{2}+h}=\lim _{h \rightarrow 0} \frac{1}{2 h+1}=1$
and $f(0-0)=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{-h}{2 h^{2}+|-h|}$
$\lim _{h \rightarrow 0} \frac{-h}{2 h^{2}+h}=\lim _{h \rightarrow 0} \frac{-1}{2 h+1}=-1$
(c)

Consider the graph of $f(x)=\max (\sin x, \cos x)$, which is non-differentiable at $x=\pi / 4$, hence statement (a) is false
From the graph $y=f(x)$ is differentiable at $x=\pi / 2$, hence statement (b) is false
Statement (c) is always true
Statement (d) is false as consider $\mathrm{g}(x)=$ $\max \left(x, x^{2}\right)$ at $x=0$, for which $x=x^{2}$ at $x=0$, but $f(x)$ is differentiable at $x=0$

45
(b)
$f(1)=1-\sqrt{1-1^{2}}=1$
$f\left(1^{-}\right)=\lim _{x \rightarrow 1^{+}}\left(1-\sqrt{1-x^{2}}\right)=1$
$f\left(1^{+}\right)=\lim _{x \rightarrow 1^{-}}\left(1+\log \frac{1}{x}\right)=1+\log \frac{1}{1}=1$
Hence, $f(x)$ is continuous at $x=1$
$f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{1+\log \frac{1}{1+h}-1}{h}$
$=-\lim _{h \rightarrow 0} \frac{\log (1+h)}{h}=-1$
$f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{1-\sqrt{1-(1-h)^{2}}-1}{-h}=\lim _{h \rightarrow 0} \frac{\sqrt{2-h}}{\sqrt{h}}=\infty$
Hence, $f(x)$ is non-differentiable at $x=1$
46 (b)
Since both $\cos x$ and $\sin ^{-1} x$ are continuous
function. $f(x)=\sin ^{-1}(\cos x)$ is also a continuous function. Now
$f^{\prime}(x)=\frac{-\sin x}{\sqrt{1-\cos ^{2} x}}=\frac{-\sin x}{|\sin x|}$
Hence, $f(x)$ is non-differentiable at $x=n \pi, n \in Z$ 48 (c)
$f(x)=\left\{\begin{array}{c}a x^{2}+1, x \leq 1 \\ x^{2}+a x+b, x>1\end{array}\right.$ is differentiable at
$x=1$
Then $f(x)$ is continuous at $x=1$
$\Rightarrow f\left(1^{-}\right)=f\left(1^{+}\right) \Rightarrow a+1=1+a+b \Rightarrow b=0$
Also $f^{\prime}(x)=\left\{\begin{array}{c}2 a x, x<1 \\ 2 x+a, x>1\end{array}\right.$
We must have $f^{\prime}\left(1^{-}\right)=f^{\prime}\left(1^{+}\right) \Rightarrow 2 a=2+a \Rightarrow$ $a=2$
49 (a)
We have $f(x)=\left\{\begin{array}{c}x^{3}, x>0 \\ 0, x=0 \\ -x^{3}, x<0\end{array}\right.$
Clearly, $f(x)$ is continuous at $x=0$
(L.H.D. at $x=0)=\left[\frac{d}{d x}\left(-x^{3}\right)\right]_{x=0}=\left[-3 x^{2}\right]_{x=0}=$ 0
Similar (R.H.D. at $x=0$) $=0$
So, $f(x)$ is differentiable at $x=0$

50 (b)
$\mathrm{g}(x)$ is an even function, then $\mathrm{g}(x)=\mathrm{g}(-x)$
$\Rightarrow \mathrm{g}^{\prime}(x)=-\mathrm{g}^{\prime}(-x) \Rightarrow \mathrm{g}^{\prime}(0)=-\mathrm{g}^{\prime}(0) \Rightarrow \mathrm{g}^{\prime}(0)$

$$
=0
$$

Now $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(0+h) \cos (1 / h)-0}{h}$
$=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(h) \cos (1 / h)}{h}=\lim _{h \rightarrow 0} \mathrm{~g}^{\prime}(0) \cos (1 / h)=0$
51 (c)
We have $f(x)=\frac{4-x^{2}}{x\left(4-x^{2}\right)}$
Clearly, there are three points of discontinuity, viz., $0,2,-2$
52 (b)
$f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x},(x \neq \pi / 4)$ is continuous at
$x=\pi / 4$
$\Rightarrow f\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} f(x)$
$=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}$
Now by applying L' Hopital's rule,
$=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sec ^{2}\left(\frac{\pi}{4}-x\right)}{-2 \operatorname{cosec}^{2}(2 x)}=\frac{1}{2}$
53 (c)
When x is not an integer, both the functions $[x]$ and $\cos \left(\frac{2 x-1}{2}\right) \pi$ are continuous
$\therefore f(x)$ is continuous on all non-integral points
For $x=n \in I$
$\lim _{x \rightarrow n_{-}} f(x)=\lim _{x \rightarrow n_{-}}[x] \cos \left(\frac{2 x-1}{2}\right) \pi$
$=(n-1) \cos \left(\frac{2 n-1}{2}\right) \pi=0$
$\lim _{x \rightarrow n+} f(x)=\lim _{x \rightarrow n+}[x] \cos \left(\frac{2 x-1}{2}\right) \pi$
$=n \cos \left(\frac{2 n-1}{2}\right) \pi=0$
Also $f(n)=n \cos \frac{(2 n-1) \pi}{2}=0$
$\therefore f$ is continuous at all integral points as well.
Thus, f is continuous everywhere
54 (d)
Since $\lim _{n \rightarrow \infty} x^{2 n}=\left\{\begin{array}{l}0, \text { if }|x|<1 \\ 1, \text { if }|x|=1\end{array}\right.$
$\therefore f(x)=\lim _{x \rightarrow \infty}(\sin x)^{2 n}=\left\{\begin{array}{l}0, \text { if }|\sin x|<1 \\ 1, \text { if }|\sin x|=1\end{array}\right.$
Thus, $f(x)$ is continuous at all x, except for those values of x for which $|\sin x|=1$, i.e., $x=$
$(2 k+1) \frac{\pi}{2}, k \in Z$
55 (b)
We have
$f(x)=\frac{x-|x-1|}{x}=\left\{\begin{array}{c}\frac{x+x-1}{x}, x<1, x \neq 0 \\ \frac{x-(x-1)}{x}, x \geq 1\end{array}\right.$
$=\left\{\begin{array}{c}\frac{2 x-1}{x}, x<1, x \neq 0 \\ \frac{1}{x}, \quad x \geq 1\end{array}\right.$
Clearly, $f(x)$ is discontinuous at $x=0$ as it is not defined at $x=0$. Since $f(x)$ is not defined at $x=0$, therefore $f(x)$ cannot be differentiable at $x=0$. Clearly $f(x)$ is continuous at $x=1$, but it is not differentiable at $x=1$, because $L f^{\prime}(1)=1$ and $R f^{\prime}(1)=-1$
56 (d)
We have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} \sin \left(\log _{e}|-h|\right)=$ $\lim _{h \rightarrow 0} \sin \left(\log _{e} h\right)$ which does not exist and oscillates between -1 and 1. Similarly, $\lim _{x \rightarrow 0^{+}} f(x)$ lies between -1 and 1
57 (b)
$f(x)=\left\{\begin{array}{c}1+\left[\cos \frac{\pi x}{2}\right], 1<x \leq 2 \\ 1-\{x\}, 0 \leq x<1 \\ |\sin \pi x|,-1 \leq x<0\end{array}=\right.$
$\left\{\begin{array}{c}1-1,1<x \leq 2 \\ 1-x, 0 \leq x<1 \\ -\sin \pi x,-1 \leq x<0\end{array}\right.$
$f(x)$ is continuous at $x=1$ but not differentiable
58 (c)
Given that $f(x)=|1-x|$
$\Rightarrow f(|x|)=\left\{\begin{array}{cc}x-1, & x>1 \\ 1-x, & 0<x \leq 1 \\ 1+x, & -1 \leq x \leq 0 \\ -x-1, & x<-1\end{array}\right.$
Clearly, the domain of $\sin ^{-1}(f|x|)$ is $[-2,2]$
\Rightarrow It is non-differentiable at the points $\{-1,0,1\}$
59 (c)
At $x=0$,
L.H.L. $=\lim _{x \rightarrow 0-} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} h^{2}\left(\frac{e^{-1 / h}-e^{1 / h}}{e^{-1 / h}+e^{1 / h}}\right)$
$=\lim _{h \rightarrow 0} h^{2}\left(\frac{e^{-2 / h}-1}{e^{-2 / h}+1}\right)$
$=0\left(\frac{0-1}{0+1}\right)=0$
R.H.L. $=\lim _{x \rightarrow 0+} f(x)=\lim _{h \rightarrow 0} f(0+h)$
$=\lim _{h \rightarrow 0} h^{2}\left(\frac{e^{1 / h}-e^{-1 / h}}{e^{1 / h}+e^{-1 / h}}\right)$
$=\lim _{h \rightarrow 0} h^{2}\left(\frac{1-e^{-2 / h}}{1+e^{-2 / h}}\right)$
$=0\left(\frac{1-0}{1+0}\right)=0$
and $f(0)=0$
\Rightarrow L.H.L $=$ R.H.L. $=f(0)$
Hence, $f(x)$ is continuous at $x=0$
Also L.H.D. $=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{h^{2} \frac{e^{-1 / h}-e^{1 / h}}{e^{-1 / h}+e^{1 / h}}-0}{-h}$
$=-\lim _{h \rightarrow 0} h \frac{e^{-2 / h}-1}{e^{-2 / h}+1}=0$
and R.H.D. $=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{2} \frac{e^{1 / h}-e^{-1 / h}}{e^{1 / h}+e^{-1 / h}}-0}{-h}$
$=-\lim _{h \rightarrow 0} h \frac{1-e^{-2 / h}}{1+e^{-2 / h}}=0$
Hence, $f(x)$ is differentiable at $x=0$ and $f^{\prime}(0)=0$

60 (d)
Clearly, $f(x)$ is continuous at $x=0$ if $a=0$
Now, $f^{\prime}(0+0)=\lim _{h \rightarrow 0} \frac{h e^{-\left(\frac{1}{h}+\frac{1}{h}\right)}-0}{h}$
$=\lim _{h \rightarrow 0} \frac{h e^{-2 / h}-0}{h}=0$
$f^{\prime}(0-0)=\lim _{h \rightarrow 0} \frac{-h e^{-\left(\frac{1}{h}+\frac{1}{h}\right)}-0}{-h}=1$
Thus, no values of a exists
61 (c)
Obviously $\lim _{x \rightarrow 0+} e^{-1 / x^{2}}=\lim _{x \rightarrow 0-} e^{-1 / x^{2}}=0$,
Hence $f(x)$ is continuous at $x=0$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{1 / h}{e^{1 / h^{2}}}$
$=\lim _{h \rightarrow 0} \frac{-1 / h^{2}}{-e^{1 / h^{2}} \cdot \frac{2}{h^{3}}}=\lim _{h \rightarrow 0} \frac{2 h^{3}}{h^{2} e^{1 / h^{2}}}=0$
Hence f is differentiable at $x=0$. Also
$\lim _{x \rightarrow \pm \infty} e^{-\frac{1}{x^{2}}} \rightarrow 1$
62
(c)

Since $1 \leq x<2 \Rightarrow 0 \leq x-1<1$
$\Rightarrow\left[x^{2}-2 x\right]=\left[(x-1)^{2}-1\right]=\left[(x-1)^{2}\right]-1$
$=0-1=-1$
$\therefore f(x)=\left\{\begin{array}{cc}1-4 x^{2}, & 0 \leq x<\frac{1}{2} \\ 4 x^{2}-1, & \frac{1}{2} \leq x<1 \\ -1, & 1 \leq x<2\end{array}\right.$
\therefore graph of $f(x)$:

It is clear from graph that $f(x)$ is discontinuous at $x=1$ and differentiable at $x=\frac{1}{2}$ and $x=1$
63 (d)
$\frac{x}{1+|x|}$ is always differentiable (also at $x=0$)
Also $(x-2)(x+2)|(x-1)(x-2)(x-3)|$ is not differentiable at $x=1,3$
So, $f(x)$ is not differentiable at $x=1,3$
64 (a)
Hence check continuity at $x=k, k \in Z$
For positive integers
$f(k)=\{k\}^{2}-\left\{k^{2}\right\}=0$
$f\left(k^{+}\right)=\left\{k^{+}\right\}^{2}-\left\{\left(k^{+}\right)^{2}\right\}=0-0$
$f\left(k^{-}\right)=\left\{k^{-}\right\}^{2}-\left\{\left(k^{-}\right)^{2}\right\}=1-1=0$
For negative integers,
$f(k)=\left\{k^{2}\right\}-\left\{k^{2}\right\}=0$
$f\left(k^{+}\right)=\left\{k^{+}\right\}^{2}-\left\{\left(k^{+}\right)^{2}\right\}=0-1=-1$
$f\left(k^{-}\right)=\left\{k^{-}\right\}^{2}-\left\{\left(k^{-}\right)^{2}\right\}=1-0=1$
Hence, $f(x)$ is continuous at positive integers and discontinuous at negative intergers
65 (c)
For $f(x)$ to be continuous at $x=0$, we have
$f\left(0^{-}\right)=f\left(0^{+}\right) \Rightarrow a(0)+b=1 \Rightarrow b=1$
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{h^{2}+h}-b}{h}$
$=\lim _{h \rightarrow 0} \frac{e^{h^{2}+h}-1}{h}=\lim _{h \rightarrow 0} \frac{e^{h^{2}+h}-1}{h(h+1)}(h+1)=1$
$\therefore f^{\prime}\left(0^{-}\right)=a$
Hence, $a=1$
66
(b)
$f\left(0^{+}\right)=\lim _{x \rightarrow 0+}|x|^{\sin x}=e^{\lim _{x \rightarrow 0} \sin x \log |x|}$
$=e^{\lim _{x \rightarrow 0} \frac{\log x}{\operatorname{cosec} x}}=e^{0}=1 \quad$ (Using L'Hopital rule)
$f\left(0^{-}\right)=g(0)=1$
Let $g(x)=a x+b$
$\Rightarrow b=1 \Rightarrow \mathrm{~g}(x)=a x+1$
For $x>0, f^{\prime}(x)=e^{\sin x \operatorname{In}(|x|)}[\cos x \operatorname{In}(|x|)+$ $\sin x x$
$f^{\prime}(1)=1[0+\sin 1]=\sin 1$
$f(-1)=-a+1 \Rightarrow a=1-\sin 1$
$\Rightarrow \mathrm{g}(x)=(1-\sin 1) x+1$
67 (a)
$f(x)=\frac{x^{2}-b x+25}{x^{2}-7 x+10}, x \neq 5$
$f(x)$ is continuous at $x=5$, only if
$\lim _{x \rightarrow 5} \frac{x^{2}-b x+25}{x^{2}-7 x+10}$ is finite
Now $x^{2}-7 x+10 \rightarrow 0$ when $x \rightarrow 5$
Then we must have $x^{2}-b x+25 \rightarrow 0$ for which $b=10$
Hence, $\lim _{x \rightarrow 5} \frac{x^{2}-10 x+25}{x^{2}-7 x+10}=\lim _{x \rightarrow 5} \frac{x-5}{x-2}=0$
(c)

Since, $\lim _{x \rightarrow 1^{-}} \mathrm{g}(x)=\lim _{x \rightarrow 1^{+}} \mathrm{g}(x)=1$ and $\mathrm{g}(1)=0$
So, $\mathrm{g}(x)$ is not continuous at $x=1$ but $\lim _{x \rightarrow 1} \mathrm{~g}(x)$
exists
We have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}[1-h]=$ 0
and, $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0}[1+h]=1$
So, $\lim _{x \rightarrow 1} f(x)$ does not exist and so $f(x)$ is not
continuous at $x=1$
We have $\operatorname{gof}(x)=\mathrm{g}(f(x))=\mathrm{g}([x])=0, \forall x \in R$
We have $f o g(x)=f(\operatorname{g}(x))$
$=\left\{\begin{array}{c}f(0), \quad x \in Z \\ f\left(x^{2}\right), x \in R-Z\end{array}=\left\{\begin{array}{c}0, \quad x \in z \\ {\left[x^{2}\right], x \in R-Z}\end{array}\right.\right.$
Which is clearly not continuous

Given, $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; \quad 0<x<2, \quad m \neq$
$0, n$ are integers and $|x-1|= \begin{cases}x-1 ; & x \geq 1 \\ 1-x ; & x<1\end{cases}$
The left hand derivative of $|x-1|$ at $x=1$ is
$p=-1$
Also, $\lim _{x \rightarrow 1^{+}} g(x)=p=-1$
$\Rightarrow \quad \lim _{h \rightarrow 0} \frac{(1+h-1)^{n}}{\log \cos ^{m}(1+h-1)}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{h^{n}}{m \log \cos h}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{n \cdot h^{n-1}}{m \frac{1}{\cos h}(-\sin h)}=-1$
[using L 'Hospital's rule]
$\Rightarrow \quad\left(\frac{n}{m}\right) \lim _{h \rightarrow 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)}=1$
$\Rightarrow n=2$ and $\frac{n}{m}=1$
$\Rightarrow m=n=2$
70 (d)

From the graph it is clear that $f(x)$ is everywhere continuous but not differentiable at $x=1$ $\sqrt{2}, 0,1$
71 (a)
As f is continuous so $f(0)=\lim _{x \rightarrow 0} f(x)$
$\Rightarrow f(0)=\lim _{n \rightarrow \infty} f(1 / 4 n)$
$=\lim _{n \rightarrow \infty}\left(\left(\sin e^{n}\right) e^{-n^{2}}+\frac{1}{1+1 / n^{2}}\right)=0+1=1$
72 (b)
$f(x)=\max \left\{\frac{x}{n},|\sin \pi x|\right\}$

Thus, for the maximum points of nondifferentiability, graphs of $y=\frac{x}{n}$ and $y=|\sin \pi x|$ must intersect at maximum number of points which occurs when $n>3.5$
Hence, the least value of n is 4
73 (c)
$f(0)=0+0+\lambda \operatorname{In} 4=\lambda \operatorname{In} 4$
R.H.L. $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)$
$=\lim _{h \rightarrow 0} \frac{8^{h}-4^{h}-2^{h}+1^{h}}{h^{2}}$
$=\lim _{h \rightarrow 0} \frac{\left(4^{h}-1\right)\left(2^{h}-1\right)}{h . h}$
$=\lim _{h \rightarrow 0}\left(\frac{4^{h}-1}{h}\right) \lim _{h \rightarrow 0}\left(\frac{2^{h}-1}{h}\right)$
$=\operatorname{In} 4 \operatorname{In} 2$
$\therefore f(0)=$ R.H.L.
$\Rightarrow \lambda=\operatorname{In} 2$
74 (c)
$f(x)=\lim _{n \rightarrow \infty} \frac{\left[(x-1)^{2}\right]^{n}-1}{\left[(x-1)^{2}\right]^{n}+1}$
$=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{\left[(x-1)^{2}\right]^{n}}}{1+\frac{1}{\left[(x-2)^{2}\right]^{n}}}$
$=\left\{\begin{array}{c}-1,0 \leq(x-1)^{2}<1 \\ 0,(x-1)^{2}=1 \\ 1,(x-1)^{2}>1\end{array}\right.$
$=\left\{\begin{array}{cc}1, & x<0 \\ 0, & x=0 \\ -1, & 0<x<2 \\ 0, & x=2 \\ 1, & x>2\end{array}\right.$
Thus, $f(x)$ is discontinuous at $x=0,2$
75 (a)
$x^{2}+2 x+3+\sin \pi x=(x+1)^{2}+2+\sin \pi x>1$
$\therefore f(x)=1 \forall x \in R$
$f(x)=\left(x^{2}-1\right)|(x-1)(x-2)|$
$f(x)=\left(x^{2}-1\right)|(x-1)(x-2)|$
$=(x+1)[(x-1|x-1|]|x-2|$
Which is differentiable at $x=1$
For $f(x)=\sin (|x-1|)-|x-1|$
$f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\sin h-h-0}{-h}=0$
$f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{\sin |-h|-|-h|}{-h}=\lim _{h \rightarrow 0} \frac{\sin h-h}{-h}$

$$
=0
$$

Hence, $f(x)$ is differentiable at $x=1$
For $f(x)=\tan (|x-1|)+|x-1|$
$f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{\tan h+h-0}{h}=2$
$f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{\tan |-h|+|-h|}{-h}=\lim _{h \rightarrow 0} \frac{\tan h+h}{-h}$

$$
=-2
$$

Hence, $f(x)$ is non-differentiable at $x=1$
(a)

We have $x+4|y|=6 y$
$\Rightarrow \begin{cases}x-4 y=6 y, & \text { if } y<0 \\ x+4 y=6 y, & \text { if } y \geq 0\end{cases}$
$\Rightarrow y=\left\{\begin{array}{l}\frac{1}{2} x, \text { if } x \geq 0 \\ \frac{1}{10} x, \text { if } x<0\end{array} \Rightarrow f^{\prime}(x)=\left\{\begin{array}{l}\frac{1}{2}, x>0 \\ \frac{1}{10}, x<0\end{array}\right.\right.$
Clearly, $f(x)$ is continuous at $x=0$ but nondifferentiable at $x=0$
78 (c)
$f(x)=\tan x$ is discontinuous when $x=$
$(2 n+1) \pi / 2, n \in Z$
$f(x)=x[x]$ is discontinuous when $x=k, k \in Z$
$f(x)=\sin [n \pi x]$ is discontinuous when
$n \pi x=k, k \in Z$
Thus, all the above functions have infinite number of points of discontinuity
But $f(x)=\frac{[x]}{x}$ is discontinuous when $x=0$ only
79 (c)
$f(x)=\{x\} \sin (\pi[x])$
$=\{x\} \sin$ (integral multiple of π)
$=0$
Hence, $f(x)$ is continuous for all x
(b)

The function f is clearly continuous at each point in its domain except possibly at $x=0$. Given that $f(x)$ is continuous at $x=0$
Therefore, $f(0)=\lim _{x \rightarrow 0} f(x)$
$=\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$
$=\lim _{x \rightarrow 0} \frac{2-\left(\sin ^{-1} x\right) / x}{2+\left(\tan ^{-1} x\right) x}=\frac{1}{3}$
81 (d)
$f(x)=\cos (|x|)+|x|=\cos x+|x|$ is non-
differentiable at $x=0$ as $|x|$ is non-differentiable at $x=0$. Similarly $f(x)=\cos (|x|)-|x|$ is non-
differentiable at $x=0$
$f(x)=\sin |x|+|x|= \begin{cases}-\sin x-x, & x<0 \\ +\sin x+x, & x \geq 0\end{cases}$
$\Rightarrow f^{\prime}(x)= \begin{cases}-\cos x-1, & x<0 \\ +\cos x+1, & x \geq 0\end{cases}$
Which is not differentiable at $x=0$
$f(x)=\sin |x|-|x|=\left\{\begin{array}{c}-\sin x+x, x<0 \\ \sin x-x, x \geq 0\end{array}\right.$
$\Rightarrow f^{\prime}(x)= \begin{cases}-\cos x+1, & x<0 \\ +\cos x-1, & x \geq 0\end{cases}$
$\therefore f$ is differentiable at $x=0$
82
(b)

Consider $x \in[0,1]$
From the graph given in figure, it is clear that [$\cos \pi x]$ is discontinuous at
$x=0,1 / 2$

Now consider $x \in(1,2]$
$f(x)=[x-2]|2 x-3|$
For $x \in(1,2) ;[x-2]=-1$ and for $x=$
2; $[x-2]=0$
Also $|2 x-3|=0 \Rightarrow x=3 / 2$
$\Rightarrow x=3 / 2$ and 2 may be the points at which $f(x)$ is discontinuous (2)
$f(x)=\left\{\begin{array}{c}1, \quad x=0 \\ 0, \quad 0<x \leq \frac{1}{2} \\ -1, \quad \frac{1}{2}<x \leq 1 \\ -(3-2 x), 1<x \leq 3 / 2 \\ -(2 x-3), 3 / 2<x \leq 2 \\ 0, \quad x=2\end{array}\right.$
Thus, $f(x)$ is continuous when $x \in[0,2]-$ $\{0,1 / 2,2\}$
83 (b)
We have $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$
The domain of definition of $f(x)$ is $[-1,1]$
For $x \neq 0, x \neq \pm 1$, we have
$f^{\prime}(x)=\frac{1}{\sqrt{1-\sqrt{1-x^{2}}}} \times \frac{x}{\sqrt{1-x^{2}}}$
Since $f(x)$ is not defined on the right side of $x=1$ and on the left side of $x=-1$
Also, $f^{\prime}(x) \rightarrow \infty$ when $x \rightarrow-1^{+}$or $x \rightarrow 1^{-}$
So, we check the differentiability at $x=0$
Now, L.H.D. at $x=0$
$=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^{2}}}-0}{-h}$
$=-\lim _{h \rightarrow 0} \frac{\sqrt{1-\left(1-(1 / 2) h^{2}+(3 / 8) h^{4}+\cdots\right)}}{h}$
$=-\lim _{h \rightarrow 0} \sqrt{\frac{1}{2}-\frac{3}{8} h^{2}+\cdots}=-\frac{1}{\sqrt{2}}$
Similarly, R.H.D. at $x=0$ is $\frac{1}{\sqrt{2}}$
Hence, $f(x)$ is not differentiable at $x=0$
84 (b)
We have $f(x)= \begin{cases}\frac{1-|x|}{1+x}, & x \neq-1 \\ 1, & x=-1\end{cases}$
$=\left\{\begin{array}{l}1, \quad x<0, \\ \frac{1-x}{1+x}, x \geq 0\end{array}(\because f(-1)=1\right.$ is given $)$
$\Rightarrow f([2 x])=\left\{\begin{array}{c}1,[2 x]<0 \\ \frac{1-[2 x]}{1+[2 x]},[2 x] \geq 0\end{array}\right.$
$=\left\{\begin{array}{c}1, \quad x<0 \\ 1, \quad 0 \leq x<1 / 2 \\ 0, \\ 1 / 2 \leq x<1 \\ -1 / 3,1 \leq x<\frac{3}{2}\end{array}\right.$
Clearly, $f(x)$ is continuous for all $x<\frac{1}{2}$ and discontinuous at $x=\frac{1}{2}, 1$
$f(x)$ is discontinuous at $x=1$ and $x=2$
$\Rightarrow f(f(x))$ may be discontinuous when $f(x)=1$ or 2
Now $1-x=1 \Rightarrow x=0$, where $f(x)$ is continuous
$x+2=1 \Rightarrow x=-1 \notin(1,2)$
$4-x=1 \Rightarrow x=3 \in[2,4]$
Now $1-x=2 \Rightarrow x=-1 \notin[0,1]$
$x+2=2 \Rightarrow x=0 \notin(0,2]$
$4-x=2 \Rightarrow x=2 \in[2,4]$
Hence $f(f(x))$ is discontinuous at $x=2,3$
(b)

We must have $\lim _{x \rightarrow 0} \frac{a \cos x-\cos b x}{x^{2}}=4$
$\Rightarrow \lim _{x \rightarrow 0} \frac{a\left(1-\frac{x^{2}}{2!}\right)-\left(1-\frac{b^{2} x^{2}}{2!}\right)}{x^{2}}=4$
$\Rightarrow \lim _{x \rightarrow 0}\left[\frac{(a-1)}{x^{2}}-\left(\frac{a}{2}-\frac{b^{2}}{2}\right)\right]=4$
$\Rightarrow a=1$ and $\frac{a}{2}-\frac{b^{2}}{2}=-4$
$\Rightarrow a=1$ and $b^{2}=9$
$\Rightarrow a=1$ and $b= \pm 3$
(c)

For $|x|<1, x^{2 n} \rightarrow 0$ as $n \rightarrow \infty$ and for
$|x|>1,1 / x^{2 n} \rightarrow 0$ as $n \rightarrow \infty$. So
$f(x)$
$=\left\{\begin{array}{c}\log (2+x), \quad|x<1| \\ \lim _{n \rightarrow \infty} \frac{x^{-2 n} \log (2+x)-\sin x}{x^{-2 n}+1}=-\sin x, \text { if }|x|> \\ \frac{1}{2}[\log (2+x)-\sin x], \quad|x|=1\end{array}\right.$
Thus, $\lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1}(-\sin x)=-\sin 1$
and $\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1} \log (2+x)=\log 3$
88
(c)

Let $f(x)=x^{2}|x|$ which could be expressed as
$f(x)=\left\{\begin{array}{c}-x^{3}, x<0 \\ 0, \quad x=0 \Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}-3 x^{2}, x<0 \\ 0, x=0 \\ x^{3}, \quad x>0\end{array}\right. \\ 3 x^{2}, x>0\end{array}\right.$
So, $f^{\prime}(x)$ exists for all real x
$f^{\prime \prime}(x)=\left\{\begin{array}{cc}-6 x, & x<0 \\ 0, & x=0 \\ 6 x, & x>0\end{array}\right.$
So, $f^{\prime \prime}(x)$ exists for all real x
$f^{\prime \prime \prime}(x)= \begin{cases}-6, & x<0 \\ 0, & x=0 \\ 6, & x>0\end{cases}$
However, $f^{\prime \prime \prime}(0)$ does not exist since $f^{\prime \prime \prime}\left(0^{-}\right)=$ -6 and $f^{\prime \prime \prime}\left(0^{+}\right)=6$ which are not equal. Thus, the set of points where $f(x)$ is thrice
differentiable is $R-\{0\}$
(d)

We have,
L.H.L. $=\lim _{x \rightarrow 4^{-}} f(x)$
$=\lim _{h \rightarrow 0} f(4-h)$
$=\lim _{h \rightarrow 0} \frac{4-h-4}{|4-h-4|}+a$
$=\lim _{h \rightarrow 0}\left(-\frac{h}{h}+a\right)=a-1$
R.H.L. $=\lim _{x \rightarrow 4^{+}} f(x)$
$=\lim _{h \rightarrow 0} f(4+h)$
$=\lim _{h \rightarrow 0} \frac{4+h-4}{|4+h-4|}+b=b+1$
$\Rightarrow f(4)=a+b$
Since $f(x)$ is continuous at $x=4$, therefore
$\lim _{x \rightarrow 4^{-}} f(x)=f(4)=\lim _{x \rightarrow 4^{+}} f(x)$
$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1$ and $a=1$
(b)
$f(x)$ is clearly continuous for $x \in R$

$f^{\prime}(x)=\left\{\begin{array}{c}3 x^{2}, x^{2}<1 \\ 1, x^{2}>1\end{array}\right.$
Thus, $f(x)$ is non-differentiable at $x=1,-1$
91 (a)

$$
\begin{aligned}
& f(e)=\left[\log _{e} e\right]+\sqrt{\left\{\lg _{e} e\right\}}=[1]+\sqrt{\{1\}}=1+0 \\
& \quad=1 \\
& f\left(e^{+}\right)=\left[\log _{e} e^{+}\right]+\sqrt{\left\{\log _{e} e^{+}\right\}} \\
& =\lim _{h \rightarrow 0}[1+h]+\sqrt{\{1+h\}}=1+0=1 \\
& f\left(e^{-}\right)=\left[\log _{e} e^{-}\right]+\sqrt{\left\{\log _{e} e^{-}\right\}} \\
& =\lim _{h \rightarrow 0}[1-h]+\sqrt{\{1-h\}}=0+1=1
\end{aligned}
$$

Hence, $f(x)$ is continuous at $x=e$
Now $f^{\prime}\left(e^{+}\right)=\lim _{h \rightarrow 0} \frac{f(e+h)-f(e)}{h}$
$=\lim _{h \rightarrow 0} \frac{[1+h]+\sqrt{\{1+h\}}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{1+\sqrt{h}-1}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h}} \rightarrow \infty$
Hence, $f(x)$ is non-differentiable at $x=0$
$92(\mathbf{a}, \mathbf{c})$
$f(x)=\left\{\begin{array}{ll}\left(\sin ^{-1} x\right)^{2} \cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x\end{array}=0\right.$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\sin ^{-1} x\right)^{2} \cos \left(\frac{1}{x}\right)$
$=0 \times($ any value between -1 to 1$)=0$
Hence $f(x)$ is continuous at $x=0$
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{\left(\sin ^{-1} h\right)^{2} \cos \left(\frac{1}{h}\right)-0}{h}$
$=\left(\lim _{h \rightarrow 0} \frac{\sin ^{-1} h}{h}\right)\left(\lim _{h \rightarrow 0} \sin ^{-1} h\right)\left(\lim _{h \rightarrow 0} \cos \left(\frac{1}{h}\right)\right)$
$=1 \times(0) \times($ any value between -1 to 1$)=0$
Similarly, $f^{\prime}\left(0^{-}\right)=0$
Hence, $f(x)$ is continuous and differentiable in $[-1,1]$ and $(-1,1)$, respectively
93 (b,c,d)
$f(x)=\left|x^{3}\right|=\left\{\begin{array}{c}-x^{3}, x<0 \\ x^{3}, x \geq 0\end{array} \Rightarrow f^{\prime \prime \prime}(x)\left\{\begin{array}{c}-6, x<0 \\ 6, x>0\end{array}\right.\right.$
Hence $f^{\prime \prime \prime}(0)$ does not exist

$$
\begin{aligned}
f(x)=x^{3}|x| & =\left\{\begin{array}{c}
-x^{4}, x<0 \\
x^{4}, x \geq 0
\end{array} \Rightarrow f^{\prime \prime \prime}(x)\right. \\
& =\left\{\begin{array}{c}
-24 x, x<0 \\
24 x, x>0
\end{array}\right.
\end{aligned}
$$

Hence $f^{\prime \prime \prime}(0)=0$ and exists
Similarly for $f(x)=|x| \sin ^{3} x$ and $f(x)=$ $x\left|\tan ^{3} x\right|$, also $f^{\prime \prime \prime}(0)=0$ and exists
94 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
Differentiating w.r.t. x, keeping y as constant, we get $f^{\prime}(x+y)=f^{\prime}(x)+2 x y+y^{2}$
Now put $x=0$
$f^{\prime}(y)=f^{\prime}(0)+y^{2}=y^{2}-1$
$\therefore f^{\prime}(x)=x^{2}-1$
$\therefore f(x)=\frac{x^{3}}{3}-x+c$
Also $f(0+0)=f(0)+f(0)+0 \therefore f(0)=0$
$\therefore f(x)=\frac{x^{3}}{3}-x, f(x)$ is twice differentiable for all $x \in R$ and $f^{\prime}(3)=3^{2}-1=8$
95 (a,b,c)
Since, $\lim _{x \rightarrow 1^{-}} \mathrm{g}(x)=\lim _{x \rightarrow 1^{+}} \mathrm{g}(x)=1$ and $\mathrm{g}(1)=0$
So, $\mathrm{g}(x)$ is not continuous at $x=1$ but $\lim _{x \rightarrow 1} \mathrm{~g}(x)$
exists
We have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=$ $\lim _{h \rightarrow 0}[1-h]=0$
and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0}[1+h]=1$
So, $\lim _{x \rightarrow 1} f(x)$ does not exist and hence $f(x)$ is not continuous at $x=1$
We have $\operatorname{gof}(x)=\mathrm{g}(f(x))=\mathrm{g}([x])=0, \forall x, \in R$ So, gof is continuous for all x

We have $f o g(x)=f(g(x))=\left\{\begin{array}{c}f(0), x \in Z \\ f\left(x^{2}\right), x \in R-Z\end{array}\right.$

$$
=\left\{\begin{aligned}
0, & x \in Z \\
{\left[x^{2}\right], } & x \in R-Z
\end{aligned}\right.
$$

Which is clearly not continuous

(a,c,d)

From the figure, it is clear that $h(x)=$
$\left\{\begin{array}{lr}x, & \text { if } x \leq 0 \\ x^{2}, & \text { if } 0<x<1 \\ x, & \text { if } x \geq 1\end{array}\right.$

From the graph, it is clear that $h(x)$ is continuous for all $x \in R, h^{\prime}(x)=1$ for all $x>1$, and h is not differentiable at $x=0$ and 1

($\mathrm{a}, \mathrm{c}, \mathrm{d}$)

a is not correct as $f(x)=x$ from R to R is onto but its reciprocal function $\mathrm{g}(x)=\frac{1}{x}$ is not onto on R
b is obviously true
Also $\mathrm{g}(x)$ is not continuous, hence not differentiable though $f(x)$ is continuous and differentiable in the above case

(a,c)

From the graph, it is clear that $f(x)$ is continuous everywhere and also differentiable everywhere except at $x=1$ and -1

$$
f(x)=\left\{\begin{array}{c}
1, \quad|x| \geq 1 \\
\frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\
0, \quad x=0
\end{array}\right.
$$

$=\left\{\begin{array}{lr}1, & x \leq \text { or } x \geq 1 \\ \frac{1}{4}, & x \in\left(-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right) \\ \frac{1}{9}, & x \in\left(\frac{-1}{2}, \frac{-1}{3}\right) \cup\left(\frac{1}{3}, \frac{1}{2}\right)\end{array}\right.$

The function f is clearly continuous for $|x|>1$ We observe that
$\lim _{x \rightarrow-1^{+}} f(x)=1, \lim _{x \rightarrow-1^{-}} f(x)=\frac{1}{4}$
Also, $\lim _{x \rightarrow \frac{1+}{n}} f(x)=\frac{1}{n^{2}}$ and $\lim _{x \rightarrow \frac{1-}{n}} f(x)=\frac{1}{(n+1)^{2}}$
Thus f is discontinuous for $x= \pm \frac{1}{n}, n=1,2,3, \ldots$
Hence a and c are the correct answers
100 (a,b,c,d)
\mathbf{a}, \mathbf{b}, and \mathbf{c} are false. Refer to definitions for \mathbf{d}, f must be continuous \Rightarrow False
101 (a,b)
We have $\mathrm{g}(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}$
If $x \neq 0, \mathrm{~g}^{\prime}(x)=x^{2} \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)+2 x \sin \left(\frac{1}{x}\right)$
$=-\cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right)$
Which exists for $\forall x \neq 0$
If $x=0$,
Then
$\mathrm{g}^{\prime}(0)=\lim _{x \rightarrow 0} \frac{\mathrm{~g}(x)-\mathrm{g}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)-0}{x-0}$
$=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$
$\Rightarrow g^{\prime}(x)=\left\{\begin{array}{rl}-\cos \left(\frac{1}{x}\right)+2 x \sin \frac{1}{x}, & x\end{array}=0\right.$
At $x=0, \cos \left(\frac{1}{x}\right)$ is not continuous, therefore $\mathrm{g}^{\prime}(x)$
is not continuous at $x=0$. At $x=0$
$L f^{\prime}=\lim _{x \rightarrow 0} \frac{0-(-x) \sin \sin \left(-\frac{1}{x}\right)}{x}=\sin \left(\frac{1}{x}\right)$
Which does not exist
102 (a,b)
$\sin ^{4} x \in(0,1)$ for $x \in(-\pi / 2, \pi / 2)$,
$\Rightarrow f(x)=0$ for $x \in(-\pi / 2, \pi / 2)$
Hence $f(x)$ is continuous and differentiable at $x=0$
103 (a,c,d)
$f(x)=\frac{x^{2}-2 x-8}{x+2}=\frac{(x+2)(x-4)}{x+2}=x-4, x$

$$
\neq-2
$$

Hence $f(x)$ has removable discontinuity at $x=-2$
Similarly $f(x)$ in options (c) and (d) has also removable discontinuity
$f(x)=\frac{x-7}{|x-7|}=\left\{\begin{array}{c}-1, x<7 \\ 1, x>7\end{array}\right.$
Hence $f(x)$ has non-removable discontinuity at $x=7$
104 (b,c)
Option (a) is wrong as $f(x)=\sin x$ and $g(x)=$ $|x|, \mathrm{g}(x)$ is non-differentiable at $x=0$, but $f(x) \mathrm{g}(x)$ is differentiable at $x=0$
105 (a,b,d)

$f(x)\left\{\begin{array}{l}\frac{1}{x+1}, 0 \leq x<1 \\ \frac{2}{x}, 1 \leq x<2 \\ \frac{3}{x-1}, 2 \leq x<\frac{5}{2}\end{array}\right.$
Clearly, $f(x)$ is discontinuous and bijective function
$\lim _{x \rightarrow 1^{-}} f(x)=\frac{1}{2}, \lim _{x \rightarrow 1^{+}} f(x)=2$
$\min \left(\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)\right)=\frac{1}{2} \neq f(1)$
$\max (1,2)=2=f(1)$
106 (b,c,d)
$f(x)=\left\{\begin{array}{ll}0, & x<0 \\ x^{2}, & x \geq 0\end{array} \Rightarrow f^{\prime}(x)=\left\{\begin{array}{cc}0, & x<0 \\ 2 x, & x>0\end{array}\right.\right.$
which exists $\forall x$ except possibly at $x=0$
At $x=0, L f^{\prime}=0=R f^{\prime}$
$\Rightarrow f$ is differentiable
Clearly, f^{\prime} is non-differentiable

107 (a,b)
$f(x)=\operatorname{sgn}(x) \sin x$
$f\left(0^{+}\right)=\operatorname{sgn}\left(0^{+}\right) \sin \left(0^{+}\right)=1 \times(0)=0$
$f\left(0^{-}\right)=\operatorname{sgn}\left(0^{-}\right) \sin \left(0^{-}\right)=(-1) \times(0)=0$
Also $f(0)=0$
Hence, $f(x)$ is continuous everywhere
Both $\operatorname{sgn}(x)$ and $\sin (x)$ are odd functions
Hence, $f(x)$ is an even function
Obviously, $f(x)$ is non-periodic
Now $f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{\operatorname{sgn}(h) \sin h-0}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
and $f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{\operatorname{sgn}(-h) \sin (-h)-0}{-h}$
$=\lim _{h \rightarrow 0} \frac{-1 \times(-\sin h)}{-h}=-1$
Hence, $f(x)$ is non-differentiable at $x=0$
108 (a,b)
For $b=1$, we have $f(\mathrm{~g}(0))=f(\sin (0)+1)=$ $f(1)=1+a$
Also $f\left(\mathrm{~g}\left(0^{+}\right)\right)=\lim _{x \rightarrow 0^{+}} f(\sin x+1)=f(1)=1+$ a
and $f\left(\mathrm{~g}\left(0^{-}\right)\right)=\lim _{x \rightarrow 0^{-}} f(\{x\})=f\left(1^{-}\right)=1+a$
Hence, $f(\mathrm{~g}(x))$ is continuous for $b=1$
For $b<0$,
$f(\mathrm{~g}(0))=f(\sin (0)+b)=f(b)=2-b$
$f\left(\mathrm{~g}\left(0^{+}\right)\right)=\lim _{x \rightarrow 0^{+}} f(\sin x+b)=f(b)=2-b$
and $f\left(\mathrm{~g}\left(0^{-}\right)\right)=\lim _{x \rightarrow 0^{-}} f(\{x\})=f(1)=1+a$
For continuity at $x=0$, we must have
$2-b=1+a$ or $a+b=1$
109 (b,d)
$f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3)$
$=\operatorname{sgn}\left(1-2 \sin ^{2} x-2 \sin x+3\right)$
$=\operatorname{sgn}\left(-2 \sin ^{2} x-2 \sin x+4\right)$
$f(x)$ is discontinuous when $-2 \sin ^{2} x-2 \sin x+$ $4=0$ or $\sin 2 x+\sin x-2=0$
or $(\sin x-1)(\sin x+2)=0$ or $\sin x=1$
Hence $f(x)$ is discontinuous
110 (a,b,c)
$f(x)= \begin{cases}|x-3|, & x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & x<1\end{cases}$

$$
=\left\{\begin{array}{lc}
\frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & x<1 \\
3-x, & 1 \leq x<3 \\
x-3, & x \geq 3
\end{array}\right.
$$

$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{lc}\frac{x}{2}-\frac{3}{2}, & x<1 \\ -1, & 1<x<3 \\ 1, & x>3\end{array}\right.$

Clearly, $f(x)$ is non-differentiable at $x=3$
For $x=1$, where function changes its definition
$f\left(1^{-}\right)=\lim _{x \rightarrow 1}\left[\frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}\right]=\frac{1}{4}-\frac{3}{2}+\frac{13}{4}=2$
$f\left(1^{+}\right)=\lim _{x \rightarrow 1}|x-3|=2$
$L f^{\prime}\left(1^{-}\right)=-1, R f^{\prime}\left(1^{+}\right)=-1$
Hence, $f(x)$ is differentiable at $x=1$
Hence, $f(x)$ is continuous for all x but non-
differentiable at $x=3$
111 (a,b,d)
Given that $x+|y|=2 y$
If $y<0$, then $x-y=2 y \Rightarrow y=x / 3 \Rightarrow x<0$
If $y=0$, then $x=0$
If $y>0$, then $x+y=2 y \Rightarrow y=x \Rightarrow x>0$
Thus, we can define $f(x)=y=\left\{\begin{array}{c}x / 3, x<0 \\ x,\end{array}\right.$
$\Rightarrow \frac{d y}{d x}= \begin{cases}1 / 3, & x<0 \\ 1, & x>0\end{cases}$
Clearly, y is continuous but non-differentiable at $x=0$
112 (a,b)
$f(x)$ is continuous for all x if it is continuous at $x=1$ for which $|1|-3=|1-2|+a$ or $a=-3$
$\mathrm{g}(x)$ is continuous for all x if it is continuous at
$x=2$ for which $2-|2|=\operatorname{sgn}(2)-b=1-b$ or $b=1$
thus, $f(x)+\mathrm{g}(x)$ is continuous for all x if $a=-3, b=1$
hence, $f(x)$ is discontinuous at exactly one point for options \mathbf{a} and \mathbf{b}

113 (a,c,d)

For continuity at $x=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2} \operatorname{sgn}[x]+\{x\}\right)=1+0=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2} \operatorname{sgn}[x]+\{x\}\right)$

$$
=1 \operatorname{sgn}(0)+1=1
$$

Also, $f(1)=1$
\therefore L.H.L. $=$ R.H.L. $=f(1)$. Hence, $f(x)$ is continuous at $x=1$
Now for differentiability,
$f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{(1+h)^{2} \operatorname{sgn}[1+h]+\{1+h\}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{(1+h)^{2}+h-1}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+3 h}{h}=3$
and $f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{(1-h)^{2} \operatorname{sgn}[1-h]+\{1-h\}-1}{-h}$
$=\lim _{h \rightarrow 0} \frac{(1-h)^{2}+1-h-1}{-h}$
$=\lim _{h \rightarrow 0} \frac{h^{2}-3 h}{-h}=3$
$f^{\prime}\left(1^{+}\right)=f^{\prime}\left(1^{-}\right)$
Hence, $f(x)$ is differentiable at $x=1$
Now at $x=2$,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2} \operatorname{sgn}[x]+\{x\}\right)=4 \times 0+1$
$\lim _{h \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 2^{+}}(\sin x+|x-3|)=1+\sin 2$
Hence, L.H.L \neq R.H.L.
Hence, $f(x)$ is discontinuous at $x=2$ and then $f(x)$ is also non-differentiable at $x=2$
114 (a,b,c,d)
a. $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{e^{x}+a}{2 x}=\frac{1}{2} \Rightarrow a=-1$

If $a=-1$, then $\lim _{x \rightarrow 0^{+}} f(x)=\frac{1}{2}, \lim _{x \rightarrow 0^{-}} f(x)=\frac{1}{2}$
$\therefore f(x)$ is continuous at $x=0$ if $b=\frac{1}{2}$
c. If $a \neq-1$, then $\lim _{x \rightarrow 0} \frac{e^{x}+a}{2 x}$ does not exist
$\therefore x=0$ is a point of irremovable type of discontinuity
d. if $a=-1$, then $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$
$\therefore b \neq \frac{1}{2} \Rightarrow$ removable type of discontinuity at $x=0$
115 (a,b)
For maximum points of discontinuity of
$f(x)=\operatorname{sgn}\left(x^{2}-a x+1\right)$,
$x^{2}-a x+1=0$ must have two distinct roots, for
which $D=a^{2}-4>0$
$\Rightarrow a \in(-\infty,-2) \cup(2, \infty)$
117 (a,b)
$f\left(1^{-}\right)=1 ; f\left(1^{+}\right)=1 ; f(1)=1$
$f^{\prime}\left(1^{-}\right)=5 ; f^{\prime}\left(1^{+}\right)=5$
$f\left(2^{+}\right)=10, f\left(2^{-}\right)=10$
$f^{\prime}\left(2^{+}\right)=3 ; f^{\prime}\left(2^{-}\right)=13$
118 (b,d)
a. $\lim _{x \rightarrow 1^{+}} \frac{1}{\operatorname{In}|x|}=\infty$ and $\lim _{x \rightarrow 1^{-}} \frac{1}{\operatorname{In}|x|}=-\infty$,
hence $f(x)$ has non-removable discontinuity
b. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}=\frac{2}{3}$
$\therefore f(x)$ has removable discontinuity at $x=1$
c. $\lim _{x \rightarrow 1^{+}}\left(2^{-2^{\frac{1}{1-x}}}\right)=1$ and $\lim _{x \rightarrow 1^{-}}\left(2^{-2^{\frac{1}{1-x}}}\right)=0$

Hence, the limit does not exist
d. $\lim _{x \rightarrow 1} \frac{\sqrt{x+1}-\sqrt{2 x}}{x^{2}-x}=\frac{-1}{2 \sqrt{2}} \quad$ (Rationalizing)
$\therefore f(x)$ has removable discontinuity at $x=1$
119 (a,c)
$f\left(\frac{\pi^{-}}{2}\right)=\lim _{h \rightarrow 0}\left(\frac{3}{2}\right)^{\cot \left(3\left(\frac{\pi}{2}-h\right)\right) / \cot \left(2\left(\frac{\pi}{2}-h\right)\right)}$
$=\lim _{h \rightarrow 0}\left(\frac{3}{2}\right)^{\frac{\tan 3 h}{-\cot 2 h}}$
$=\lim _{h \rightarrow 0}\left(\frac{3}{2}\right)^{-(\tan 3 h)(\tan 2 h)}=1$
$f\left(\frac{\pi^{+}}{2}\right)=\lim _{h \rightarrow 0}\left[1+\left|\cot \left(\frac{\pi}{2}+h\right)\right|\right]^{\left[a\left|\tan \left(\frac{\pi}{2}+h\right)\right|\right] / b}$
$=\lim _{h \rightarrow 0}(1+\tan h)^{\frac{a \cot h}{b}}$
$=e^{\lim _{h \rightarrow 0}(1+\tan h-1) \frac{a \cot h}{b}}=e^{a / b}$
Also $f\left(\frac{\pi}{2}\right)=b+3$
$f(x)$ is continuous at $x=\pi / 2$
$\Rightarrow 1=b+3=e^{a / b} \Rightarrow b=-2$ and $a=0$
121 (b,d,e)

$|\sin x|$ is continuous for all but not differentiable when $\sin x=0$ (where $\sin x$ crosses x-axis) or $x=n \pi, n \in Z$
122 (a,b,d)

From the graph, $0 \leq x \sin \pi x<1$, for $x \in[-1,1]$
Hence, $f(x)=0, x \in[-1,1]$
123 (a)
$f(x)=\frac{x}{1+|x|}$ is differentiable everywhere except probably at $x=0$
For $x=0$
$L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{\frac{-h}{1+h}-0}{-h}=1$
$R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h}{1+h}-0}{h}=1$
$L f^{\prime}(0)=R f^{\prime}(0)$
$\Rightarrow f$ is differentiable at $x=0$
Hence, f is differentiable in $(-\infty, \infty)$
124 (d)
$x \in[0, \pi] \Rightarrow \frac{x-2}{2} \in\left[-1, \frac{\pi}{2}-1\right]$
$\frac{1}{f(x)}=\frac{2}{x-2}$, which is continuous in $(-\infty, \infty) \sim\{2\}$
$\tan (f(x))$ is continuous in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$f^{-1}(x)=2(x+1)$ which is clearly continuous but $\tan \left(f^{-1}(x)\right)$ is not continuous
125 (b,c)
On $(0, \pi)$
a. $\tan x=f(x)$
we know $\tan x$ is discontinuous at $x=\pi / 2$
b. $f(x)=\int_{0}^{x} t \sin \left(\frac{1}{t}\right) d t$
$\Rightarrow f^{\prime}(x)=x \sin \left(\frac{1}{x}\right)$ which is well-defined on $(0, \pi)$
$\therefore f(x)$ being differentiable is continuous on $(0, \pi)$
c. $f(x)= \begin{cases}1, & 0<x \leq 3 \pi / 4 \\ 2 \sin \frac{2 x}{9}, & 3 \pi / 4<x<\pi\end{cases}$

Clearly, $f(x)$ is continuous on $(0, \pi)$ except
possibly at $x=3 \pi / 4$, where
L.H.L. $=\lim _{h \rightarrow 0} f\left(\frac{3 \pi}{4}-h\right)=\lim _{x \rightarrow 0} 1=1$
R. H. L. $=\lim _{h \rightarrow 0} f\left(\frac{3 \pi}{4}+h\right)=\lim _{x \rightarrow 0} 2 \sin \frac{2}{9}\left(\frac{3 \pi}{4}+h\right)$
$=\lim _{h \rightarrow 0} 2 \sin \left(\frac{\pi}{6}+\frac{2 h}{9}\right)=2 \sin \frac{\pi}{6}=2 \times \frac{1}{2}=1$
Also $f\left(\frac{3 \pi}{4}\right)=1$
As L. H. L. $=$ R.H.L. $=f\left(\frac{3 \pi}{4}\right) \therefore f(x)$ is continuous on $(0, \pi)$
d. $f(x)=\left\{\begin{array}{c}x \sin x, \quad 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x), \frac{\pi}{2}<x<\pi\end{array}\right.$

Here $f(x)$ will be continuous on $(0, \pi)$ if it is
continuous at $x=\pi / 2$. At $x=\pi / 2$
L.H. L. $=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}-h\right)$
$=\lim _{h \rightarrow 0}\left(\frac{\pi}{2}-h\right) \sin \left(\frac{\pi}{2}-h\right)=\frac{\pi}{2} \sin \frac{\pi}{2}=\frac{\pi}{2}$
R. H. L. $=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}+h\right)=\lim _{h \rightarrow 0} \frac{\pi}{2} \sin \left(\pi+\frac{\pi}{2}+h\right)$
$=\frac{\pi}{2} \sin \left(\pi+\frac{\pi}{2}\right)=\frac{-\pi}{2} \sin \frac{\pi}{2}=-\frac{\pi}{2}$
As L. H. L. \neq R. H. L. $\therefore f(x)$ is not continuous
126 (a,c)
$f(x)=x+|x|+\cos 9 x, g(x)=\sin x$
Since both $f(x)$ and $g(x)$ are continuous
everywhere, $f(x)+\mathrm{g}(x)$ is also continuous
everywhere
$f(x)$ is non-differentiable and $x=0$
Hence $f(x)+\mathrm{g}(x)$ is non-differentiable at $x=0$
Now $h(x)=f(x) \times \mathrm{g}(x)$
$= \begin{cases}(\cos 9 x)(\sin x), & x<0 \\ (2 x+\cos 9 x)(\sin x), & x \geq 0\end{cases}$
Clearly, $h(x)$ is continuous at $x=0$
Also
$h^{\prime}(x)$
$=\left\{\begin{array}{l}\cos x \cos 9 x-9 \sin x \sin 9 x, \\ (2-9 \sin 9 x) \sin x+\cos x(2 x+\cos 9 x),\end{array}\right.$
$h^{\prime}\left(0^{-}\right)=1, h^{\prime}\left(0^{+}\right)=1$
$\Rightarrow f(x) \times \mathrm{g}(x)$ is differentiable everywhere
127 (b,d)
We have $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\log \cos x}{\log \left(1+x^{2}\right)}$

$$
=\lim _{x \rightarrow 0} \frac{\log (1-1+\cos x)}{\log \left(1+x^{2}\right)} \frac{1-\cos x}{1-\cos x}
$$

$=\lim _{x \rightarrow 0} \frac{\log \{1-(1-\cos x)\}}{1-\cos x} \frac{1-\cos x}{\log \left(1+x^{2}\right)}$
$=-\lim _{x \rightarrow 0} \frac{\log [1-(1-\cos x)]}{-(1-\cos x)} \frac{2 \sin ^{2} \frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}} \frac{x^{2}}{\log \left(1+x^{2}\right)}$
$=-\frac{1}{2}$
Hence, $f(x)$ is differentiable at $x=0$
Hence, \mathbf{b} and \mathbf{d} are the correct answers
128 (b,c)
$f\left(0^{-}\right)=\lim _{n \rightarrow \infty}\left[\lim _{x \rightarrow 0^{-}}\left(\cos ^{2} x\right)^{n}\right]$
$=(\text { a value lesser than } 1)^{\infty}=0$
$f\left(0^{+}\right)=\lim _{n \rightarrow \infty}\left[\lim _{x \rightarrow 0^{+}}\left(1+x^{n}\right)^{1 / n}\right]=1$
Also $f(0)=1 \Rightarrow$ discontinuous at $x=0$
Further, $f\left(1^{-}\right)=1 ; f\left(1^{+}\right)=0 ; f(1)=1$
\Rightarrow discontinuous at $x=1$
129 (a, c)
Clearly, $f(x)$ is defined for all x satisfying
$9-x^{2}>0$ and $2-x>0 \Rightarrow x \in(-3,2)$
So, domain of $f(x)=(-3,2)$
Clearly, range of $f(x)=[-1,1]$
Also, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
So, $f(x)$ is continuous at $x=0$
Now,

$$
\begin{aligned}
\lim _{x \rightarrow-3^{+}}(x-3) f & (x) \\
& =\lim _{h \rightarrow 0}(h \\
& -6) \sin \left\{\log \left(\frac{9-(-3+h)^{2}}{2-(-3+h)}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow-3^{+}}(x-3) f(x) \\
& \quad=\lim _{h \rightarrow 0}(h-6) \sin \left\{\log \left(\frac{h(6-h)}{5-h}\right)\right\} \\
& \Rightarrow \lim _{x \rightarrow-3^{+}}(x-3) f(x)=(h-6) \times(\operatorname{An}
\end{aligned}
$$ oscillating number)

$\therefore \lim _{x \rightarrow-3^{+}}(x-3) f(x)$ does not exist
130 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
a is wrong as continuity is a must for $f(x)$
b is the correct form of intermediate value theorem

cas per the graph (in figure), is incorrect

d is wrong if f is discontinuous
131 (a,b,c,d)
Given function is discontinuous when
$a+\sin \pi x=1$
Now if $a=1 \Rightarrow \sin \pi x=0 \Rightarrow x=1,2,3,4,5$
If $a=3 \Rightarrow \sin \pi x=-2$ not possible
If $a=0.5 \Rightarrow \sin \pi x=0.5$
$\Rightarrow x$ has 6 values, 2 each for one cycle of period 2
If $a=0 \Rightarrow \sin \pi x=+1 \Rightarrow x=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$
Hence, all the options are correct
132
(b)
$f(x)=(2 x-5)^{3 / 5} \Rightarrow f^{\prime}(x)=\frac{3}{5(2 x-5)^{2 / 5}}$
Statement 2 as it is fundamental concept for nondifferentiability

But given function is non-differentiable at $x=5 / 2$, as it has vertical tangent at $x=5 / 2$, but not due to sharp turn

The graph of the function is smooth in the neighbourhood of $x=5 / 2$

133 (b)

Statement 1 is correct as $e^{|x|}$ is non-differentiable at $x=0$

134 (b)
We know that $0 \leq \cos ^{2}(n!\pi x) \leq 1$
Hence, $\lim _{m \rightarrow \infty} \cos ^{2 m}(n!\pi x)=0$ or 1, as
$0 \leq \cos ^{2}(n!\pi x)<1$ or $\cos ^{2}(n!\pi x)=1$
Also, since $n \rightarrow \infty$, then $n!x=$ integer if $x \in Q$ and $n!x \neq$ integer if $x \in Q$ and $n!x \neq$ integer, if $x \in$ irrational

Hence, $f(x)=\left\{\begin{array}{l}1, \text { if } x \text { is rational } \\ 0, \text { if } x \text { is irrational }\end{array}\right.$
$\Rightarrow h(x)=1$ when $\forall x \in R$ which is continuous for all x; however, statement 2 does not correctly explain statement 1 as the addition of discontinuous functions may be continuous

135 (b)

Since $f(x)$ is a continuous function such that $f(0)=1$ and $f(x) \neq x, \forall x \in R$

The graph of $y=f(x)$ always lies above the graph of $y=x$

Hence $f(x)>x$
Hence, $f(f(x))>x$ (as $f(x)$ is onto function, $f(x)$ takes all real values which acts as x)

Statement 2 is a fundamental property of continuous function, but does not explain statement 1

136 (d)
$f(x)=|x| \sin x$
L.H. $\mathrm{D}=\lim _{h \rightarrow 0} \frac{|0-h| \sin (0-h)-0}{-h}=\lim _{h \rightarrow 0} \frac{-h \sin h}{-h}$ $=0$
R. H. D. $=\lim _{h \rightarrow 0} \frac{|0+h| \sin (0+h)-0}{h}=\lim _{h \rightarrow 0} \frac{h \sin h}{h}$ $=0$
$\Rightarrow f(x)$ is differentiable at $x=0$
137 (b)
Statement 2 is obviously true
But $f(x)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ is non-differentiable at $x= \pm 1$ as $\frac{2 x}{1-x^{2}}$ is not defined at $x= \pm 1$. Hence statement 1 is true but statement 2 is not the correct explanation of statement 1

138 (b)

$|f(x)| \leq|x|$
$\Rightarrow 0 \leq|f(x)| \leq|x|$
\Rightarrow Graph of $y=|f(x)|$ lies between the graph of $y=0$ and $y=|x|$

Also $|f(0)| \leq 0 \Rightarrow f(0)=0$
Also from Sandwich theorem, $\lim _{x \rightarrow 0} 0 \leq$
$\lim x \rightarrow O f x \leq \lim x \rightarrow 0 / x /$
$\Rightarrow \lim _{x \rightarrow 0}|f(x)|=0$
$\Rightarrow y=f(x)$ is continuous at $x=0$
Also statement 2 is correct but it has no link with statement 1

139 (d)
Statement 1 is false, as consider the function
$f(x)=\max \left\{0, x^{3}\right\}$ which is equivalent to
$f(x)=\left\{\begin{array}{c}0, x<0 \\ x^{3}, x \geq 0\end{array}\right.$
Here $f(x)$ is continuous and differentiable at $x=0$

However, statement 2 is obviously true
140 (c)
Statement 1 is obviously true
But statement 2 is false as $f(x)=x^{3}$ is differentiable, but $f^{-1}(x)=x^{1 / 3}$ is nondifferentiable at $x=0$
$f^{-1}(x)=x^{1 / 3}$ has vertical tangent at $x=0$

141 (c)
Consider $f(x)=\left\{\begin{array}{l}1, \text { if } x \geq 0 \\ -1, \text { if } x<0\end{array}\right.$
Hence $|f(x)|=1$ for all x is continuous at $x=0$
but $f(x)$ is discontinuous at $x=0$
142 (b)
$f(x)=(\sin \pi x)(x-1)^{1 / 5}$ is continuous function as both $(\sin \pi x)$ and $(x-1)^{1 / 5}$ are continuous

But $(x-1)^{1 / 5}$ is not differentiable at $x=1$
However, $f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sin [\pi(1-h)](1-h-1)^{1 / 5}-0}{-h}$
$=\lim _{h \rightarrow 0} \frac{\sin (\pi h)-(-h)^{1 / 5}}{h}=0$
and $f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sin [\pi(1+h)](1+h-1)^{1 / 5}-0}{h}$
$=\lim _{h \rightarrow 0} \frac{-\sin (\pi h)(h)^{1 / 5}}{h}=0$
Hence, $f(x)$ is differentiable at $x=1$, through $(x-1)^{1 / 5}$ is not differentiable at $x=1$

However, statement 2 is correct but it is not a correct explanation of statement 1

143 (c)
Statement 1 is true as \sqrt{x} is monotonic function.
But statement 2 is false as $f(x)=[\sin x]$ is
continuous at $x=3 \pi / 2$, though $\sin (3 \pi / 2)=-1$ (integer)

144 (a)
Statement 2 is true as it is a fundamental concept
Also, $f(x)=\operatorname{sgn}(g(x))$ is discontinuous when $\mathrm{g}(x)=0$

Now the given function $f(x)=\operatorname{sgn}\left(x^{2}-2 x+3\right)$ may be discontinuous when $x^{2}+2 x+3=0$, which is not possible: it has imaginary roots as its discriminant is <0

145 (c)
See the graph of $f(x)=\left|\left|x^{2}\right|-3\right| x|+2|$,

Which is non-differentiable at 5 points, $x=0, \pm 1, \pm 2$

However, statement 2 is false,
As $f(x)=x^{3}$ crosses x-axis at $x=0$,
But $|f(x)|=\left|x^{3}\right|$ is differentiable at $x=0$
146 (b)
Statement 2 is true as $\cos 0=1$
Now $\lim _{x \rightarrow 0+} \frac{e^{1 / x}-1}{e^{1 / x}+1}=\lim _{h \rightarrow 0} \frac{e^{1 / h}-1}{e^{1 / h}+1}=\lim _{h \rightarrow 0} \frac{1-e^{-1 / h}}{1+e^{-1 / h}}=1$
and $\lim _{x \rightarrow 0-} \frac{e^{1 / x}-1}{e^{1 / x}+1}=\lim _{h \rightarrow 0} \frac{e^{-1 / h}-1}{e^{-1 / h}+1}=-1$
Thus L.H.L. \neq R.H.L.
Hence, the function has no-removable discontinuity at $x=0$

Hence, statement 2 is not a correct explanation of statement 1

147 (a)
$F(x)=f(\mathrm{~g}(x))$,
$\Rightarrow F(x)=x^{2}+2|x|$
$\Rightarrow F^{\prime}(x)=\left\{\begin{array}{l}2 x-2, x<0 \\ 2 x+2, x>0\end{array}\right.$
Hence, $F^{\prime}\left(0^{+}\right)=2$ and $F^{\prime}\left(0^{-}\right)=-2$
Hence, both statement are correct and statement 2 is a correct explanation of statement 1

148 (c)

We know that $\operatorname{sgn}(x)$ is discontinuous at $x=0$
Also $f(x)=|\operatorname{sgn} x|=\left\{\begin{array}{l}1, x \neq 0 \\ 0, x=0\end{array}\right.$ which is
discontinuous at $x=0$
Consider $g(x)=\left\{\begin{array}{c}-1, x<0 \\ 1, x \geq 0\end{array}\right.$. Here $g(x)$ is discontinuous at $x=0$ but $|g(x)|=1$ for all x is
continuous at $x=0$
Hence, answer is c
149 (a)
Let $x=k, k \in Z \Rightarrow f(k)=\{k\}+\sqrt{\{k\}}=0$
$f\left(k^{+}\right)=0+0=0, f\left(k^{-}\right)=1+1=2$
Hence, $f(x)$ is not continuous at integral points
Hence, correct answer is a

150 (c)
We know that both $[\sin x]$ and $[\cos x]$ are discontinuous at $x=\pi / 2$

Also $f(x)=[\sin x]-[\cos x]$ is discontinuous at $x=\pi / 2$

As $f(\pi / 2)=1-0=1$ and $f\left(\pi / 2^{+}\right)=0-$ $(-1)=1$
$f\left(\pi / 2^{-}\right)=0-0=0$
But the difference of two discontinuous function is not necessarily discontinuous

151 (c)

$f(x)=x|x|$ and $g(x)=\sin x$
$\operatorname{gof}(x)=\sin (x|x|)=\left\{\begin{array}{cc}-\sin x^{2}, & x<0 \\ \sin x^{2}, & x \geq 0\end{array}\right.$
$\therefore \quad(g \circ f)^{\prime}(x)=\left\{\begin{array}{r}-2 x \cos x^{2}, \quad x<0 \\ 2 x \cos x^{2}, \quad x \geq 0\end{array}\right.$
Clearly, $L(g \circ f)^{\prime}(0)=0=R(g \circ f)^{\prime}(0)$
$\therefore g o f$ is differentiable at $x=0$ and also its derivative is continuous at $x=0$

Now,
$(g \circ f)^{\prime \prime}(x)=\left\{\begin{array}{c}-2 x \cos x^{2}+4 x^{2} \sin x^{2}, x<0 \\ 2 \cos x^{2}-4 x^{2} \sin x^{2}, \quad x>0\end{array}\right.$
$\therefore L(g \circ f)^{\prime \prime}(0)=-2$ and $R(g \circ f)^{\prime \prime}(0)=2$
$\therefore L(g \circ f)^{\prime \prime}(0) \neq R(g \circ f)^{\prime \prime}(0)$
$\therefore g o f(x)$ is not twice differentiable at $x=0$

152 (c)
$F(1)=0, F\left(1^{+}\right)=\frac{\pi}{2}$ and $F\left(1^{-}\right)=-\frac{3 \pi}{4}$
$\Rightarrow F$ is discontinuous

But for $f(x)=\left[\begin{array}{c}1, \text { if } x \geq 0 \\ -1, \text { if } x<0\end{array}\right.$ and $g(x)=$ $\left[\begin{array}{ll}-1, & \text { if } x \geq 0 \\ 1, & \text { if } x<0\end{array}\right.$ then $f(x) \operatorname{g}(x)$ is continuous at $x=0$ 153 (b)
$f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$ is discontinuous at $x=1$
$=\left\{\begin{array}{cc}-1, & x^{2}<1 \\ 1, & x^{2}>1 \\ 0, & x^{2}=1\end{array}\right.$
$\Rightarrow f\left(1^{+}\right)=1$ and $f\left(1^{-1}\right)=-1$
Hence, $f(x)$ is discontinuous at $x=1$ as the limit of the function does not exist

154 (d)
Statement 1 is incorrect because if $\lim _{x \rightarrow a} g(x)$ and $\lim _{x \rightarrow a} f(g(x))$ approach e from the same side of e (say right side), and $\lim _{x \rightarrow e} f(x)=f(e) \neq \lim _{x \rightarrow e} f(x)$, then $\lim _{x \rightarrow a} f(g(x))=f\left(e^{+}\right)=f(e)$

Statement 2 is correct

155 (b)
$f(x)=\left[\begin{array}{l}\pi / 4, x>1 \\ \pi / 4, x=1 \\ \pi / 2, x<1\end{array}[\right.$ in the interval $(1-8,1+8)]$
Hence, f is discontinuous and non-derivable, but non-derivability does not imply discontinuity

156 (d)
Consider $f(x)=\left\{\begin{array}{cc}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ which is
differentiable at $x=0$, but derivative is not continuous at $x=0$

However, statement 2 is correct
157 (a)
$\lim _{x \rightarrow 0^{+}}(\sin x+[x])=0, \lim _{x \rightarrow 0^{-}}(\sin x+[x])=-1$
Thus, limit does not exist, hence $f(x)$ is discontinuous at $x=0$

Statement 2 is a fundamental property and is a correct explanation of statement 1
(c)

From the graph, statement 1 is true
Consider $f(x)=\min \{x, \sin |x|\}$ is differentiable at $x=0$, through $\mathrm{g}(x)=\max \{x, \sin |x|\}$ is nondifferentiable at $x=0$

Graph of $y=\max \{\mathbf{x}, \sin |\mathbf{x}|\}$
160 (c)
a. $f(x)= \begin{cases}\frac{5 e^{1 / x}+2}{3-e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{cases}$
$f\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{5 e^{1 / h}+2}{3-e^{1 / h}}=\lim _{h \rightarrow 0} \frac{5+2 e^{-1 / h}}{3 e^{-1 / h}-1}=-5$
Hence, $f(x)$ is discontinuous and non-
differentiable at $x=0$
b. $\mathrm{g}(x)=x f(x)=\left\{\begin{array}{cc}x \frac{5 e^{1 / x}+2}{3-e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
$f\left(0^{+}\right)=\lim _{h \rightarrow 0} h \frac{5 e^{1 / h}+2}{3-e^{1 / h}}=\lim _{h \rightarrow 0} h \frac{5+2 e^{-1 / h}}{3 e^{-1 / h}-1}$

$$
=0 \times(5)=0
$$

$f\left(0^{-}\right)=\lim _{h \rightarrow 0} h \frac{5 e^{-1 / h}+2}{3-e^{-1 / h}}=0 \times(2 / 3)=0$
Hence, $f(x)$ is continuous at $x=0$
$L g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(0-h)-g(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{-h f(-h)-0}{-h}$
$=\lim _{h \rightarrow 0} f(-h)$
$=\lim _{h \rightarrow 0} \frac{5 e^{-1 / h}+2}{3-e^{-1 / h}}=\frac{0+2}{3-0}=\frac{2}{3}$
$R \mathrm{~g}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(0+h)-\mathrm{g}(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(h)-0}{h}$
$=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} \frac{5 e^{1 / h}+2}{3-e^{1 / h}}$
$=\lim _{h \rightarrow 0} \frac{5+2 e^{-1 / h}}{3 e^{-1 / h}-1}$
$=\frac{5+0}{0-1}=-5$
$\because L F^{\prime}(0) \neq R F^{\prime}(0)$
Hence, $F(x)$ is not differentiable, but continuous
at $x=0$
c. For $x^{2} f(x)$,

Let $F(x)=x^{2} f(x)$
$\therefore L F^{\prime}(0)=\lim _{h \rightarrow 0} \frac{F(0-h)-F(0)}{-h}$
$=\lim _{h \rightarrow 0} \frac{h^{2} f(-h)-0}{-h}=0$
$R F^{\prime}(0)=\lim _{h \rightarrow 0} \frac{F(0+h)-F(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{2} f(h)-0}{h}=0$
$\therefore L F^{\prime}(0)=R F^{\prime}(0)$
Hence, $F(x)$ is differentiable at $x=0$, then it is always continuous at $x=0$
d. Clearly from the above discussion $y=x^{-1} f(x)$ is discontinuous and hence non-differentiable at $x=0$
161 (a)
a. $f(x)=\lim _{n \rightarrow \infty}\left[\cos ^{2}(2 \pi x)\right]^{n}+\left\{x+\frac{1}{2}\right\}$
obviously, $\lim _{x \rightarrow \frac{1}{2}} f(x)=0+0=0$
and $\lim _{x \rightarrow \frac{1}{2}^{-}} f(x)=0+1$
$\therefore f(x)$ is discontinuous at $x=\frac{1}{2}$
b. $f(x)=(\log x)(x-1)^{1 / 5}$

Obviously, $f(x)$ is continuous at $x=1$
$f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$

$$
\begin{aligned}
&=\lim _{h \rightarrow 0} \frac{\log (1+h) h^{1 / 5}}{h}=0 \\
& f^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\log (1-h)(-h)^{1 / 5}}{-h}=0
\end{aligned}
$$

Hence, $f(x)$ is differentiable at $x=1$
c. $f(x)=[\cos 2 \pi x]+\sqrt{\left\{\sin \left(\frac{\pi x}{2}\right)\right\}}$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[\cos 2 \pi x]+\lim _{x \rightarrow 1^{-}} \sqrt{\left\{\sin \left(\frac{\pi x}{2}\right)\right\}}$
$=0+1=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}[\cos (2 \pi x)]+\lim _{x \rightarrow 1^{+}} \sqrt{\left\{\sin \left(\frac{\pi x}{2}\right)\right\}}$
$=0+1=1$
Also $f(1)=1+0=1$
$f(x)$ is continuous at $x=1$
$f^{\prime}\left(1^{+}\right)$
$=\lim _{h \rightarrow 0} \frac{[\cos 2 \pi(1+h)]+\sqrt{\left\{\sin \left(\frac{\pi(1+h)}{2}\right)\right\}}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{[\cos 2 \pi h]+\sqrt{\left\{\cos \left(\frac{\pi h}{2}\right)\right\}}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{\cos \left(\frac{\pi h}{2}\right)}-1}{h}=\lim _{h \rightarrow 0} \frac{-\frac{\pi}{2} \sin \left(\frac{\pi h}{2}\right)}{2 \sqrt{\cos \left(\frac{\pi h}{2}\right)}}=0$
Similarly, $f^{\prime}\left(1^{-}\right)=0$
d. $f(x)=\left\{\begin{array}{c}\cos 2 x, x \in Q \\ \sin x, x \notin Q\end{array}\right.$ at $\frac{\pi}{6}$
$f(x)$ is continuous when $\cos 2 x=\sin x$ which has $x=\frac{\pi}{6}$ as one of the solutions. Hence, it is continuous
Also in the neighbourhood of $x=\frac{\pi}{6}$,
$f^{\prime}(x)=\left\{\begin{array}{l}-2 \sin 2 x, \frac{\pi}{6}-\delta<x<\frac{\pi}{6} \\ \cos x, \quad \frac{\pi}{6}<x<\frac{\pi}{6}+\delta\end{array}\right.$
Here, $f^{\prime}\left(\frac{\pi^{-}}{6}\right) \neq f^{\prime}\left(\frac{\pi^{+}}{6}\right)$
$\Rightarrow f(x)$ is not differentiable at $x=\frac{\pi}{6}$

162 (b)
a. The given function is clearly continuous at all points except possibly at $x= \pm 1$

As $f(x)$ is an even function, so we need to check its continuity only at $x=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1^{-}}\left(a x^{2}+b\right)=\lim _{x \rightarrow 1^{+}} \frac{1}{|x|} \Rightarrow a+b=1$
Clearly, $f(x)$ is differentiable for all x, except possible at $x= \pm 1$. As $f(x)$ is an even function, so we need to check its differentiability at $x=1$ only
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{a x^{2}+b-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{|x|}-1}{x-1}$
$\Rightarrow \lim _{x \rightarrow 1} \frac{a x^{2}-a}{x-1}=\lim _{x \rightarrow 1} \frac{-1}{x} \Rightarrow 2 a=-1 \Rightarrow a=-\frac{1}{2}$
Putting $a=-1 / 2$ in (1) we get $b=3 / 2 \Rightarrow|k|=1 \Rightarrow k= \pm 1$
b. If $f(x)=\operatorname{sgn}\left(x^{2}-a x+1\right)$ is discontinuous then $x^{2}-a x+1=0$ must have only one real root. Hence $a= \pm 2$
c. $f(x)=[2+3|n| \sin x], n \in N$ has exactly 11 points of discontinuity in $x \in(0, \pi)$

The required number of points are $1+2(3|n|-1)=6|n|-1=11 \Rightarrow n= \pm 2$
d. $f(x)=|||x|-2|+a|$ has exactly three points of non-differentiability
$f(x)$ is non-differentiable at $x=0,|x|-2=0$ or $x=0, \pm 2$
Hence, the value of a must be positive, as negative value of a allows $||x|-2|+a=0$ to have real roots, which given more points of non-differentiability

$\begin{aligned} & \mathrm{g}(x) \\ & =x^{2}+b x+c \end{aligned}$	$\begin{array}{r} \hline \mathrm{g}(\|x\|)=x^{2}+b\|x\| \\ +c \end{array}$	$\begin{aligned} f(x)=\|g(\|x\|)\| & =\mid x^{2} \\ & +b\|x\| \\ & +c \mid \end{aligned}$
$c=0, b>0$		

163 (a)
a. $f(x)=\left|x^{3}\right|=x(x|x|)$ is continuous and differentiable

b. $f(x)=\sqrt{|x|}$ is continuous

Clearly from the graph, $f(x)$ is non-differentiable at $x=0$
c. $f(x)=\left|\sin ^{-1} x\right|$ is continuous

Clearly from the graph, $f(x)$ is non-differentiable at $x=0$
d. $f(x)=\cos ^{-1}|x|$ is continuous

Clearly from the graph, $f(x)$ is no-differentiable at $x=0$
$f(x)= \begin{cases}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}} & , x<0 \\ 3, & x=0 \\ \left\{1+\left(\frac{P(x)}{x}\right)\right\}^{1 / x}, & x>0\end{cases}$
Where $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
$f(0)=3$
R. H. L. $=\lim _{x \rightarrow 0+} f(x)$
$=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0}\left\{1+\left(\frac{P(h)}{h}\right)\right\}^{1 / h}$
$\because f$ is continuous at $x=0$
\therefore R.H.L. exists
For the existence of R.H.L., $a_{0}, a_{1}=0$
\Rightarrow R. H. L. $=\lim _{h \rightarrow 0}\left(1+a_{2} h+a_{3} h^{2}\right)^{1 / h} \quad\left(1^{\infty}\right.$ form)
$=e^{\lim _{h \rightarrow 0}\left(1+a_{2} h+a_{3} h^{2}-1\right)(1 / h)}=e^{a_{2}}$
L.H.L. $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} \frac{a(1-(-h) \sin (-h))+b \cos (-h)+5}{(-h)^{2}}$
$=\lim _{h \rightarrow 0} \frac{a(1-h(h))+b\left(1-\frac{h^{2}}{2!}\right)+5}{h^{2}}$
For finite value of L.H.L., $a+b+5=0$ and
$-a-\frac{b}{2}=3$
Solving, we get $a=-1, b=-4$
Now $\mathrm{g}(x)=3 a \sin x-b \cos x=-3 \sin x+$
$4 \cos x$ which has the range $[-5,5]$
Also $P(x)=a_{3} x^{3}+\left(\log _{e} 3\right) x^{2}$
$P^{\prime \prime}(x)=6 a_{3} x+2 \log _{e} 3$
$\Rightarrow P^{\prime \prime}(0)=2 \log _{e} 3$
Further, $P(x)=b \Rightarrow a_{3} x^{3}+\left(\log _{e} 3\right) x^{2}=-4$ has only one real root, as the graph of $P(x)=a_{3} x^{3}+$ $\left(\log _{e} 3\right) x^{2}$ meets $y=-4$ only once for negative value of x
165 (c)
For $0 \leq x<\frac{\pi}{4}, g(x)=1+\tan x$
$x \in\left[0, \frac{\pi}{4}\right) \Rightarrow 1+\tan x \in[1,2)$
So $f(g(x))=f(1+\tan x)=1+\tan x+2$
and for $x \in\left[\frac{\pi}{4}, \pi\right), g(x)=3-\cot x$
$x \in\left[\frac{\pi}{4}, \pi\right) \Rightarrow 3-\cot x \in[2, \infty)$
So $f(g(x))=f(3-\cot x)=6-(3-\cot x)$
Let $h(x)=f(g(x))=\left\{\begin{array}{l}3+\tan x, 0 \leq x<\frac{\pi}{4} \\ 3+\cot x, \frac{\pi}{4} \leq x<\pi\end{array}\right.$
Clearly, $f(\mathrm{~g}(x))$ is continuous in $[0, \pi)$
Now $h^{\prime}\left(\frac{\pi^{+}}{4}\right)=\lim _{x \rightarrow \frac{\pi^{+}}{4}}\left(-\operatorname{cosec}^{2} x\right)=-2$
$h^{\prime}\left(\frac{\pi^{-}}{4}\right)=\lim _{x \rightarrow \frac{\pi^{-}}{4}}\left(\sec ^{2} x\right)=2$
So $f(\mathrm{~g}(x))$ is differentiable everywhere in $[0, \pi)$ other than at $x=\frac{\pi}{4}$
$f(g(x))=\left\{\begin{array}{l}|3+\tan x|, 0 \leq x<\frac{\pi}{4} \\ |3+\cot x|, \frac{\pi}{4} \leq x<\pi\end{array}\right.$
Which is non-differentiable at $x=\pi / 4$ and where $3+\cot x=0$ or $x=\cot ^{-1}(-3)$
For $x \in\left[0, \frac{\pi}{4}\right), 3+\tan x \in[3,4)$
For $x \in\left[\frac{\pi}{4}, \pi\right), 3+\cot x \in(-\infty, 4]$
Hence, the range is $[-\infty, 4)$
166 (a)
$F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g(x)}{1+x^{2 n}}$
$=\left\{\begin{array}{l}f(x), \quad 0 \leq x^{2}<1 \\ \frac{f(x)+g(x)}{2}, \\ x^{2}=1 \\ g(x), \quad x^{2}>1\end{array}\right.$
$= \begin{cases}\mathrm{g}(x), & x<-1 \\ \frac{f(-1)+\mathrm{g}(-1)}{2}, & x=-1 \\ f(x), & x=1 \\ \frac{f(1)+\mathrm{g}(1)}{2}, & x<1 \\ \mathrm{~g}(x), & x>1\end{cases}$
If $F(x)$ is continuous $\forall x \in R, F(x)$ must be made continuous out at $x= \pm 1$
For continuity at $x=-1, f(-1)=g(-1) \Rightarrow 1-$
$a+3=b-1 \Rightarrow$
$a+b=5$
For continuity at $x=1, f(1)=g(1) \Rightarrow 1+a+$
$3=1+b$
$\Rightarrow a-b=-3$
Solving equations (1) and (2), we get $a=1$ and $b=4$

$$
\begin{aligned}
f(x)=\mathrm{g}(x) \Rightarrow & x^{2}+x+3=x+4 \Rightarrow x^{2}=1 \Rightarrow x \\
& = \pm 1
\end{aligned}
$$

167 (a)

$$
f(x)=\left\{\begin{array}{c}
{[x],-2 \leq x \leq-\frac{1}{2}} \\
2 x^{2}-1,-\frac{1}{2}<x \leq 2
\end{array}\right.
$$

$$
=\left\{\begin{array}{c}
-2,-2 \leq x<-1 \\
-1,-1 \leq x \leq-\frac{1}{2} \\
2 x^{2}-1,-\frac{1}{2}<x \leq 2
\end{array}\right.
$$

$$
|f(x)|=\left\{\begin{array}{lr}
2, & -2 \leq x<-1 \\
1, & -1 \leq x \leq-\frac{1}{2} \\
\left|2 x^{2}-1\right|,-\frac{1}{2}<x \leq 2
\end{array}\right.
$$

$$
=\left\{\begin{array}{l}
2, \quad-2 \leq x<-1 \\
1, \quad-1 \leq x \leq-\frac{1}{2} \\
1-2 x^{2},-\frac{1}{2}<x \leq \frac{1}{\sqrt{2}} \\
2 x^{2}-1, \frac{1}{\sqrt{2}}<x \leq 2
\end{array}\right.
$$

$$
\begin{gathered}
f(|x|)= \begin{cases}-2, & -2 \leq|x|<-1 \\
-1, & -1 \leq|x| \leq-\frac{1}{2} \\
2|x|^{2}-1,-\frac{1}{2}<|x| \leq 2\end{cases} \\
\leq x \leq 2 x^{2}-1,-2 \\
\leq x \leq 2
\end{gathered}
$$

$$
\Rightarrow \mathrm{g}(x)=f(|x|)+|f(x)|
$$

$$
=\left\{\begin{array}{l}
2 x^{2}+1,-2 \leq x<-1 \\
2 x^{2}, \quad-1 \leq x \leq-\frac{1}{2} \\
0, \quad-\frac{1}{2}<x<\frac{1}{\sqrt{2}} \\
4 x^{2}-2, \frac{1}{\sqrt{2}} \leq x \leq 2
\end{array}\right.
$$

$$
g\left(-1^{-}\right)=\lim _{x \rightarrow-1}\left(2 x^{2}+1\right)=3, g\left(-1^{+}\right)
$$

$$
=\lim _{x \rightarrow-1} 2 x^{2}=2
$$

$$
g\left(-\frac{1^{-}}{2}\right)=\lim _{x \rightarrow-\frac{1}{2}} 2 x^{2}=\frac{1}{2}, g\left(-\frac{1^{+}}{2}\right)=\lim _{x \rightarrow-\frac{1}{2}} 0=0
$$

$$
\mathrm{g}\left(\frac{1^{-}}{\sqrt{2}}\right)=\lim _{x \rightarrow-\frac{1}{\sqrt{2}}} 0=0, \mathrm{~g}\left(\frac{1^{+}}{\sqrt{2}}\right)=\lim _{x \rightarrow-\frac{1}{\sqrt{2}}}\left(4 x^{2}-2\right)
$$

$=0$

Hence, $g(x)$ is discontinous at $x=-1,-\frac{1}{2}$
$g(x)$ is continuous at $x=\frac{1}{\sqrt{2}}$
Now, $g^{\prime}\left(\frac{1^{-}}{\sqrt{2}}\right)=0, g^{\prime}\left(\frac{1^{+}}{\sqrt{2}}\right)=8\left(\frac{1}{\sqrt{2}}\right)=\frac{8}{\sqrt{2}}$
Hence, $\mathrm{g}(x)$ is non-differentiable at $x=\frac{1}{\sqrt{2}}$
168 (c)
$f(x)=\left\{\begin{array}{lc}x^{2}+10 x+8, & x \leq-2 \\ a x^{2}+b x+c,-2<x & <0, a \neq 0 \\ x^{2}+2 x, & x\end{array}\right.$
For continuous at $x=0 \Rightarrow c=0$
Continuous at $x=-2 \Rightarrow 4-20+8=4 a-2 b$
$\Rightarrow 2 a-b=-4$
Now let the line $y=m x+p$ is tangent to all the three curves
Solving $y=m x+p$ and $y=x^{2}+2 x$
$x^{2}+2 x=m x+p$
$x^{2}+(2-m) \mathrm{x}-p=0$
$D=0$
$(2-m)^{2}+4 p=0$
Again solving $y=m x+p$ and $y=x^{2}+10 x+8$
$x^{2}+10 x+8=m x+p$
$\Rightarrow x^{2}+(10-m) x+8-p=0$
$D=0 \Rightarrow(10-m)^{2}-4(8-p)=0$
$\Rightarrow(10-m)^{2}-(2-m)^{2}=42$
$\Rightarrow(100-20 m)-(4-4 m)=32$
$\Rightarrow m=4$ and $p=-1$
Hence equation of the tangent to first and last curves is
$y=4 x-1$
Now solving this with $y=a x^{2}+b x($ as $c=0)$
$a x^{2}+b x=4 x-1 \Rightarrow a x^{2}+(b-4) x+1=0$
$D=0$
$\Rightarrow(b-4)^{2}=4 a$
Also $b=2 a+4 \quad$ (from (1))
$\therefore 4 a^{2}=4 a \Rightarrow a=1$ and $b=6($ as $a \neq 0)$
$f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0}(2 a x+b)=b$
$f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0}(2 a x+2)=2 \Rightarrow b=2$
169 (7)
Let $g(x)=(\operatorname{In} x)(\operatorname{In} x) \cdots \infty$
$\mathrm{g}(x)=\left\{\begin{array}{cc}0, & 1<x<e \\ 1, & x=e \\ \infty, & x>e\end{array}\right.$
Therefore $f(x)=\left\{\begin{array}{c}x, 1<x<e \\ x / 2, x=e \\ 0, \quad e<x<3\end{array}\right.$
Hence $f(x)$ is non-differentiable at $x=e$
170 (5)
$f(x)=\operatorname{sgn}(\sin x)$ is discontinuous when $\sin x=0$ $\Rightarrow x=0, \pi, 2 \pi, 3 \pi, 4 \pi$
$\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} \lim _{n \rightarrow \infty} \frac{x^{2 n} \cdot f(x)+x^{2 m} \cdot g(x)}{\left(1+x^{2 n}\right)}$

$$
=\mathrm{g}(1)
$$

$\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{+}} \lim _{n \rightarrow \infty} \frac{x^{2 n} \cdot f(x)+x^{2 m} \cdot g(x)}{\left(1+x^{2 n}\right)}$

$$
=f(1)
$$

$\because \lim _{x \rightarrow 1} h(x)$ exists $\Rightarrow f(1)=\mathrm{g}(1)$
$\Rightarrow f(x)-\mathrm{g}(x)=0$ has a root at $x=1$
(6)
$g(f(x))=\left\{\begin{array}{c}g\left(\frac{x}{2}-1\right), 0 \leq x<1 \\ g\left(\frac{1}{2}\right), 1 \leq x \leq 2\end{array}\right.$
$=\left\{\begin{array}{c}\frac{(x-1)(x-2-2 k)}{2}+3,0 \leq x<1 \\ 4-2 k, 1 \leq x<2\end{array}\right.$
$\lim _{x \rightarrow 1^{-}} g(f(x))=3, g(f(1))=4-2 k$ and $\lim _{x \rightarrow 1^{+}} g(f(x))=4-2 k$ for $g(f(x))$ to be continuous at $x=1,4-2 k=3 \Rightarrow k=\frac{1}{2}$
173 (8)

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f(x)+f(h)+2 x h(x+h)- \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3}-\left(f(x)+f(0)-\frac{1}{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}+2 x^{2}=f^{\prime}(0)+2 x^{2}
\end{aligned}
$$

$$
\lim _{h \rightarrow 0} \frac{3 f(h)-1}{6 h}=\lim _{h \rightarrow 0} \frac{f(h)-\frac{1}{3}}{2 h}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{2 h}
$$

$$
=\frac{f^{\prime}(0)}{2}=\frac{2}{3} \Rightarrow f^{\prime}(0)=\frac{4}{3}
$$

$$
\therefore f^{\prime}(x)=\frac{4}{3}+2 x^{2}
$$

$$
f(x)=\lambda+\frac{4}{3} x+\frac{2 x^{3}}{3} \Rightarrow f(0)=\lambda=\frac{1}{3}
$$

$$
\therefore f(x)=\frac{2 x^{3}}{3}+\frac{4}{3} x+\frac{1}{3} \Rightarrow f(2)=\frac{25}{3}
$$

174 (2)

$$
\begin{aligned}
& f(0)=\lim _{x \rightarrow 0} \frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x} \\
& =\lim _{x \rightarrow 0} \frac{\tan (\tan x)-\sin (\sin x)}{\frac{\tan x}{x}\left(\frac{1-\cos x}{x^{2}}\right) x^{3}} \\
& =2 \lim _{x \rightarrow 0} \frac{\tan (\tan x)-\sin (\sin x)}{x^{3}} \\
& =2 \lim _{x \rightarrow 0} \frac{\left(\tan x+\frac{\tan ^{3} x}{3}+\frac{2}{15} \tan ^{5} x+\cdots\right)-}{\left(\sin x-\frac{\sin ^{3} x}{3!}+\frac{\sin ^{5} x}{5!} \cdots\right)} \\
& x^{3}
\end{aligned}
$$

$=2 \lim _{x \rightarrow 0}\left(\left(\frac{\tan x-\sin x}{x^{3}}\right)+\frac{\left(\frac{\tan ^{3} x}{3}+\frac{\sin ^{3} x}{3!}\right)}{x^{3}}+\cdots\right)$
$=2 \lim _{x \rightarrow 0}\left(\left(\frac{\tan x}{x}\right)\left(\frac{1-\cos x}{x^{2}}\right)+\frac{1}{3}+\frac{1}{6}\right)=$
$212+12=2$
(8)
$f(x)\left[\begin{array}{lr}a x^{2}+b x & \text { for }-1<x<1 \\ \frac{a-b-1}{2} & x=-1 \\ \frac{a+b+1}{2} & x=1 \\ \frac{1}{x} \text { for } x>1 \text { or } x<-1\end{array}\right.$
For continuity at $x=1$ we have $a+b=\frac{a+b+1}{2}$
Hence, $a+b=1$
For continuity at $x=-1$
$a-b=-1 a-b=-1$
Hence $a=0$ and $b=1$
176 (6)
$g(x)=\left[\frac{f(x)}{a}\right]$ is continuous if $\left[\frac{f(x)}{a}\right]=0$ for $\forall f(x) \in(1, \sqrt{30})$, for which we must have $a>\sqrt{30}$
Hence the least value of a is 6
177 (4)
$\operatorname{sgn}\left(x^{2}-3 x+2\right)$ is discontinuous when
$x^{2}-3 x+2=0$ or $x=1,2$
$[x-3]=[x]-3$ is discontinuous at $x=1,2,3,4$
Thus $f(x)$ is discontinuous at $x=3,4$
Now both $\operatorname{sgn}\left(x^{2}-3 x+2\right)$ and $[x-3]$ are
discontinuous at $x=1$ and 2
Then $f(x)$ may be continuous at $x=1$ and 2
But $f(1)=-2$ and $f\left(1^{+}\right)=-1+0-3=-4$
Thus $f(x)$ is discontinuous at $x=1$
Also $f(2)=-1$ and $f\left(2^{+}\right)=1-1=0$
Hence $f(x)$ is discontinuous at $x=2$ also
178 (2)
$\mathrm{g}^{\prime}\left(3^{-}\right)=\lim _{h \rightarrow 0} \frac{\mathrm{~g}(3-h)-\mathrm{g}(3)}{-h}=\lim _{h \rightarrow 0} \frac{a \sqrt{4-h}-(3 b+2)}{-h}$
(1)

For existence of limit $\lim _{h \rightarrow 0} N^{r}=0$
$\therefore 2 a-3 b=2$
Now $\mathrm{g}^{\prime}\left(3^{+}\right)=\lim _{h \rightarrow 0} \frac{b(3+h)+2-(3 b+2)}{h}=b$
Substituting $3 b+2=2 a$ in equation (1)
$\mathrm{g}^{\prime}\left(3^{-}\right)=\lim _{h \rightarrow 0} \frac{a \sqrt{4-h}-2 a}{-h}$
$=\lim _{h \rightarrow 0}\left(\frac{(4-h)-4}{(-h)(\sqrt{4-h}+2)}\right)=\frac{a}{4}$
Hence $g^{\prime}\left(3^{-}\right)=g^{\prime}\left(3^{+}\right)$
$\frac{a}{4}=b \Rightarrow a=4 b$
From equation (2) and (4)
$8 b-3 b=2$
$\Rightarrow b=\frac{2}{5}$ and $a=\frac{8}{5}$
$\Rightarrow a+b=2$
$\sin ^{-1}|\sin x|$ is periodic with period π

180 (1)
Given $\frac{\int_{f(y)}^{f(x)} e^{t} d t}{\int_{y}^{x}(1 / t) d t}=1$
$\Rightarrow e^{f(x)}-e^{f(y)}=\operatorname{In} x-\operatorname{In} y$
$\Rightarrow e^{f(x)}-\operatorname{In} x=c \Rightarrow f(x)=\operatorname{In}(\operatorname{In} x+c)$
Since $f\left(\frac{1}{e}\right)=0 \Rightarrow c=2$
Now $f(\mathrm{~g}(x))=\left\{\begin{array}{c}\operatorname{In}(x+2) ; \quad x \geq k \\ \operatorname{In}\left(2+x^{2}\right) ; \quad 0<x<k\end{array}\right.$
For continuity at $x=k$
$\operatorname{In}(k+c)=\operatorname{In}\left(k^{2}+c\right) \Rightarrow$ either $k=0$ or $k=1$
$\because k>0 \Rightarrow k=1$
181 (8)
We have $f(x)=[x]+[x+1 / 3]+[x+2 / 3]=$ [3x]
Which is discontinuous when $3 x=k$ or
$x=k / 3, k \in I$
Hence points of discontinuity are $1 / 3,2 / 3,3 / 3$,
4/3, 5/3, 6/3, 7/3, 8/3
182 (5)
$\because f^{\prime \prime}(x)=\left\{\begin{array}{c}x^{p} \sin \left(\frac{1}{x}\right)+x^{2}, \quad x>0 \\ x^{p} \sin \left(\frac{1}{x}\right)-x^{2}, \quad x<0 \\ 0, \quad x=0\end{array}\right.$
$f^{\prime \prime \prime}(x)= \begin{cases}-x^{p-4} \sin \left(\frac{1}{x}\right)-(p-2) x^{p-3} \cos \left(\frac{1}{x}\right) \\ -p x^{p-3} \cos \left(\frac{1}{x}\right) \\ +p(p-1) x^{p-2} \sin \left(\frac{1}{x}\right)+2, & x>0 \\ -x^{p-4} \sin \left(\frac{1}{x}\right)-(p-2) x^{p-3} \cos \left(\frac{1}{x}\right) \\ p x^{p-3} \cos \left(\frac{1}{x}\right) \\ +p(p-1) x^{p-2} \sin \left(\frac{1}{x}\right)-2, & x<0 \\ 0, & x=0\end{cases}$
$\mathrm{RHL}=\mathrm{LHL}=f(0)=0$
$\because \sin \infty$ and $\cos \infty$ lie between -1 to 1 . For $p \geq 5$,
$\mathrm{RHL}=2 \quad \mathrm{LHL}=-2$
$f(0)=0$
For $p \in[5, \infty), f^{\prime \prime}(x)$ is not continuous

