

9.COORDINATION COMPOUNDS

Single Correct Answer Type

1.	Oxidation number of Cr in	the following complex is		
	[0 ₂	ן 3 +		
	$\left[(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{Cr} \left\langle \begin{array}{c} \mathbf{O} \\ $	O) ₆		
	a) 3	b) 6	c) 4	d) 5
2.	What type of isomerism is	s present in the pair of com	plexes [Co(NH ₃) ₅ Br]SO ₄ a	and [Co(NH ₃) ₅ SO ₄]Br
	a) Linkage isomerism		b) Ligand isomerism	
	c) Ionisation isomerism		d) Coordination isomeris	m
3.	Test tube I contains (aq) I	KI, II contains (aq)HgCl ₂ ,III	I contains mixture of I and	II in 4:1 ratio, Select the
	correct statement			
	a) I and III give test for I ⁻	and K ⁺	b) II and III both give test	t for Hg ²⁺
	c) Both (a) and (b) are co	rrect	d) None of the above is co	orrect
4.	The number of unpaired e	electrons expected for the o	complex ion[Cr(NH ₃) ₆] ²⁺	
	a) 2	b) 3	c) 4	d) 5
5.	Isomerisms exhibited by	$[Cr(NH_3)_2(H_2O)_2Cl_2]^+$ are		
	a) Ionisation, optical		b) Hydrate, optical	
	c) Eometrical, optical		d) Coordinate, geometric	al
6.	The complex showing a sp	pin-only magnetic moment	of 2.82 BM is	
	a) Ni(CO) ₄	b) $[NiCl_4]^{2-}$	c) Ni(PPh ₃) ₄	d) $[Ni(CN)_4]^{2-}$
7.	The complex showing a sp	pin-only magnetic moment	of 2.82 BM is	
_	a) Ni(CI) ₄	b) $[NiCl_4]^{2-}$	c) Ni(PPh ₃) ₄	d) $[Ni(CN)_4]^{2-}$
8.	Consider the following co	mplex, ions, P, Q and $R P =$	$= [FeF_6]^{3-}, Q = [V(H_2O)_6]^{4}$	$^{2+}$ and $R = [Fe(H_2O)_6]^{2+}$
	The correct order of the c	omplex ions, according to t	their spin-only magnetic m	oment values (in BM) is
_	a) $R < Q < P$	b) $Q < R < P$	c) $R < P < Q$	d) $Q < P < R$
9.	$[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$	have similarity but not in		
4.0	a) Magnetic moment	b) C.N. and O.N	c) Structure	d) Both (a) and (c)
10.	Consider the following sta	atements in respect of [Co	$Cl_6]^{4-}$ complex ion	
	I. It is paramagnate			
	III. Oxidation number of c	obalt is –4		
	IV. The coordination num	ber of cobalt is 6		
	Select the correct stateme	ent		
	a) All of the above	b) III and IV only	c) I and IV only	d) I and II only
11.	$[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]^{2-}$]have		
	a) sp^3 hybridised Ni in bo	th cases	b) sp^3 and sp^2d hybridis	sed Ni
	c) <i>dsp²</i> and <i>sp</i> ³ hybridise	ed Ni	d) dsp^2 in both cases	
12.	The complex			
	Cl			
	H ₃ N ^{TT} py			
	Can be formally formed fr	om K ₂ [PtCl ₄] by which or	ne of the following sequence	es of substitution of the
	chloride ions?	21 - 4] - 5 61 61		
	a) Py, Br ⁻ , NH ₂	b) Br ⁻ , Pv, NH ₂	c) Br ⁻ , NH ₂ , Pv	d) NH ₃ , Br ⁻ , Pv
13.	Consider the following co	mplexes:	ر - ر _ی بر	
-	I. K_2 PtCl ₆ II.PtCl ₄ · 2NH ₂ II	I.PtCl₄ · 3NH₃IV.PtCl₄ · 5NI	H ₃	
	Their electrical conductar	nces in aqueous solutions a	ire	
	a) 256,0,97,404	b) 404,0,97,256	c) 256,97,0,404	d) 404,97,256,0

14.	Of the following complex ions,	he one that probably	has the large	est overall forn	nation constant, K_f , is
	a) $[Co(NH_3)_6]^{3+}$ b) $[Co(NH_3)_6]^{3+}$	$Co(H_2O)_6]^{3+}$	c) [Co(H ₂ 0]	$_{4}(\mathrm{NH}_{3})_{2}]^{3+}$	d) $[Co(en)_3]^{3+}$
15.	Which of the following complex	species is not expect	ed to exhibit	optical isomer	rism?
	a) $[Co(en)_3]^{3+}$ b) $[Co($	$Co(en)_2 Cl_2]^+$	c) [Co(NH ₃]) ₃ Cl ₃]	d) $[Co(en)(NH_3)Cl_2]^+$
16.	The ions or molecules attached	l to the central metal	atom or ion i	n a complex ar	e called
	a) Ligands b) C	helates	c) Ambiden	it	d) Lewis acid
17.	$[Co(NH_3)_5(NO_2)]^{2+}$ and $[Co(NH_3)_5(NO_2)]^{2+}$	$(_3)_5(0NO)]^{2+}$ will different difference (0.1)	er in		
	a) Colour b) St	ructure	c) Hybridis	ation	d) magnetic moment
18.	Potassium diamminedicyanosu	ılphatosuperoxo pala	tinate (IV) is		
	a) $K[Pt(CN)_2(O_2)(SO_4)(NH_3)_2]$		b) K ₄ [Pt(NI	$(H_3)_2(CN)_2(SO_4)$	(0_2)
	c) $K_2[Pt(NH_3)_2(CN)_2(SO_4(O_2)$]	d) K ₃ [Pt(NI	$(H_3)_2(CN)_2(SO_4)$	(0_2)
19.	Arrange the following in order	of decreasing number	of unpaired	electrons	
	I. $[Fe(H_2O)_6]^{2+}$ II. $[Fe(CB)_6]^{3-}$				
	III. $[Fe(CN)_6]^{4-}$ IV. $[Fe(Fe(H_2O)$	₆] ³⁺		-	
	a) IV, I, II, III b) I,	11, 111, IV	c) III, II, I, I	V	d) II, III, I, IV
20.	Among the following metal car	oonyls, C— O bond or	der is lowest	in -	
	a) $[Mn(CO)_6]^+$ b) [F	$e(CO)_5$]	c) [Cr(CO) ₆]	d) [V(CO) ₆] ⁻
21.	Of the following complex ions, o	one exhibits optical is	omerism, Th	at one is	
	a) $cis - [Co(en)_2Cl_2]^+$		b) [Co(NH _{3.}	$_4Cl_2$] ⁺	
~~	c) $[Co(NH_3)_2Cl_4]^-$		d) trans –	$[Co(en)_2Cl_2]^+$	
22.	In spectrochemical series chlor	ine is above than wat	er i.e., Cl > F	I_20 , this is due	to
	a) Good π -acceptor properties	of CI	(()		
	b) Strong σ –donor and good 1	t-acceptor properties	of CI		
	c) Good π –donor properties of d) Larger size of Cl then U. O	I CI			
22	Which pair is not associated wi	th complimentary col	our		
23.	a) Orange_blue b) V	allow_purple	c) Green -	rod	d) Red-vellow
24	Coordination number of Cr is si	x A complex with C	Ω^{2-} en and	superoxide Ω_{-}^{-}	will be in the ratio to
21.	make complex $[Cr(C, 0, 1)]$ (en)	$(0, 1]^{-1}$	<u>2</u> 04 , en ana	superoxide 02	will be in the ratio to
	$\frac{1}{2} \frac{1}{2} \frac{1}$	$V(0_2)_Z$			
	A I L		h) 1 1	2	
	a) 1 1 2 2		d) 2 1	1	
25	Which has maximum number of	funnaired electrons	uj 2 1	1	
20.	a) $[Cr(NH_{2})_{2}]^{3+}$ b) $[($	$CoF_{c}l^{3-}$	c) [Co(NH _a])_]3+	d) $Ni(CO)$.
26	Pentamminechloronlatinum (IV	Δ) chloride ionizes to	give	761	a) 11(00)4
_0.	a) Two jons b) T	hree ions	c) Four ions	5	d) Five ions
27.	If excess of $AgNO_3$ solution is a	dded to 100 mL of a 0	0.024 M solut	tion of dichloro	bis (ethylendiamine)
	cobalt (III) chloride, how many	moles of AgCl be pre	cipitated		
	a) 0.0012 b) 0.	0016	c) 0.0024		d) 0.0048
28.	Complex $[Co(en)_2Cl_2]^+$ can				
	a) Exist as <i>cis</i> -and trans-isome	r			
	Enantiomorphic pair <i>d</i> and <i>I</i>	are formed if the isor	ner in which	two unidentat	e liands have to be cis-cis
	to each other				
	c) Both (a) & (b) correct				
	d) None of the above is correct				
29.	Which of the following reaction	s are kinetically favo	urable		
	1. $[Cu(H_20)_4]^{2+} + 4NH_3$	$\rightarrow [\mathrm{Cu}(\mathrm{NH}_3)_4]^{2+} + 4$	H ₂ 0		
	2. $[Cu(H_2O)_4]^{2+} + 4Cl^-$	$\rightarrow [CuCl_4]^{2-} + 4 H_2($)		
	3. $[Co(H_2U)_6]^{sT} + 6Cl^2 - Cl^2$	$\rightarrow [\text{CoCl}_6]^{\circ-} + 4\text{H}_20$			
20	a_{J} 1,111 D J II CrCl AH O will exist as	,111	CJ 1,11		uj 1,11,111
50.	or orgen in the case of the ca				

	a) $[Cr(H_2O)_3Cl_3] \cdot H_2O$		
	b) $[Cr(H_2O)_4Cl_2]Cl$		
	c) Both (a) and (b)		
	d) None of these		
31.	Coordination number of calcium is six in		
	a) $[Ca(EDTA)]^{2-}$ b) CaC_2O_4	c) $[Ca(C_2O_4)_2]^{2-1}$	d) CaSO ₄ · $4H_2O$
32.	Which has aromatic ring in complex		- <u>-</u>
	a) DNG in dimethyl glyoximate	b) Cyclopenta-dienyl anio	on in ferrocene
	c) Both (a) and (b)	d) None of the above	
33.	If Δ_0 and Δ_t represent crystal field splitting energies	es for d-orbitals for octahed	Iral and tetrahedral
	geometries respectively, then for d^6 (high spin in be	oth cases) what are CFSE (i	gnore the pairing energy)
	respectively?	(0 F 0 - 0,7
	a) $0.6 \Delta_0$ and $0.6 \Delta_t$ b) $0.4 \Delta_0$ and $0.6 \Delta_t$	c) 0.6 Δ_0 and 0.6 Δ_t	d) 0.6 Δ_0 and 0.4 Δ_t
34.	Total number of geometrical isomers for the comple	ex [RhCl(CO)(PPh ₂)(NH ₂)]	is
-	a) 1 b) 2	c) 3	d) 4
35.	Spin only magnetic moment of the compound Hg[Cc	o(SCN)₄lis	
	$h \sqrt{3}$ $h \sqrt{15}$	c) $\sqrt{24}$	d) $\sqrt{8}$
36	Of the following complex ions one is a Bronsted-Lo	wry acid That one is	
50.	a) $[C_{\rm U}(\rm NH_{\odot})_{\rm c}]^{2+}$ b) $[F_{\rm e}(\rm C]_{\rm c}]^{-}$	c) $[F_{\Theta}(H, \Omega),]^{3+}$	d) $[7n(OH), 12^{-1}]$
37	Select the correct statement		
57.	a) Complex ion $[MoC]^{3-}$ is paramagnetic	h) Complex ion [Co(en)	1 ³⁺ is diamagnetic
	c) Both (a) and (b) are correct	d) None of the above is co	g is trainagnetic
38	$[Cr(NH_{1})-Br)C]$ and $[Cr(NH_{1})-C]]Brcan be distingu$	uished by / and isomerism s	shown is
50.	a) Ba(L, ionization b) AgN(L, ionization	c) $A_{\sigma}NO_{\sigma}$ coordinate	d) Ba(l. linkage
30	In the complex $[CoCl_{+} 4NH_{+}]$	cj Agivo ₃ , coorumate	uj Daci ₂ , ili kage
39.	a) Coordination entity is $[Co(NH_{1}), Cl_{2}]^{+}$	h) Counter ion is Cl ⁻	
	a) Coordination entity is $[Co(Mi_3)_4 Ci_2]$	d) None of the above is c	orract
4.0	The pair of compounds having metals in their highe	st ovidation state is	Jilect
т 0.	2) MpO FeC	b) $[MnO_{1}]^{-}$ CrO_C	
	a) $[F_{0}(CN), 1^{3} - [C_{0}(CN), 1]$	d) $[N_{1}C_{4}]^{2} - [C_{0}C_{1}]^{2}$	
41	Competitical shapes of the complexes formed by the	reaction of Ni^{2+} with Cl^{-}	N^- and H_0 respectively
т1.	acometrical shapes of the complexes formed by the	reaction of with Gr, (and m ₂ 0, respectively,
	a) Octahedral tetrahedral and square planar	h) Tetrahedral square nl	anar and octahedral
	c) Square planar tetrahedral and octahedral	d) Octahedral square pl	anar and octahedral
42	Geometrical shapes of the complexes formed by the	reaction of Ni ²⁺ with CN ⁻	$\sim CN^{-}$ and $H_{-}O$ respectively
12.	are	reaction of its with the	and analysis respectively,
	a) Octahedral tetrahedral and square planar		
	b) Tetrahedral, square planar and octahedral		
	c) Square planar, tetrahedral and octahedral		
	d) Octahedral, square planar and octahedral		
43.	The correct structure of ethylenediaminetetraacetic	c acid (EDTA) is	
10.	CH ₂ COOH		,COOH
		COOH	
		$N - CH_2$	$-CH_2 - N$
	H_2CCOOH CH_2COOH	COOH	СООН
		/	соон
		H ₂ C	,н
	c) $$ $N - CH_2 - CH_2 - N \langle$	d) $HOUC - H_2C > N - CH$	—сн—N
	н₂ссоон Сн₂соон	н	соон
		ноо	C C

56.	a) $[Fe(C_2O_4)_6]^{3-}$ The complex	b) $[Fe(C_2O_4)_3]^{3-}$	c) $[Fe(C_2O_4)_3]^{2-}$	d) $[Fe(C_2O_4)_3]^{4-}$
	$H_{3}N$ $H_{3}N$ $H_{3}N$ $H_{3}N$ $H_{3}N$			
	a) Is the molecular compl	ex	b) Has four ions in the aq	ueous solution
	c) Primary valency of cob	alt is six	d) All the above are corre	ect
57.	Lead poisoning in the bod	ly can be removed by		
	a) EDTA in the form of ca	lcium dihydrogen salt	b) <i>cis-</i> platin	
	c) Zeise's salt		d) DMG	
58.	What is CFSE of a free Co	(II) ion on forming the tetra	ahedral chloro complex [C	$oCl_4]^{2-}$ (in the units of Δ_0)
	a) 0.6	b) 1.2	c) 1.8	d) 2.4
59.	Potassium trisoxalatochro	omate (III) is		
	a) $K_3[Cr(C_2O_4)_3]$	b) $K[Cr(C_2O_4)_3]$	c) $K_2[Cr(C_2O_4)_3]$	d) $K_4[Cr(C_2O_4)_3]$
60.	Which of the following co	mplexes exhibit optical iso	merism?	
	a) Trans-tetramminedith	iocyanatochromium (III) ic	on	
	b) CIS-diamminedicarbon	atocobaltate (III) ion		
	d) Cis glycinatonlatinum			
61	Select the correct stateme	(II)		
01.	a) Chelation effect is max	imum for five or six-memh	ered rings	
	b) Complex ions in which	ligands can be interchange	ed rapidly are said to be lab	nile
	c) Both (a) and (b) are co	rrect	ta rapialy are sala to be lab	
	d) None of the above is co	orrect		
62.	IUPAC name of is K ₄ [Fe($(CN)_6$] is		
	a) Potassium hexacyano	iron (II)	b) Potassium iron (II) he	xacyano
	c) Tetrapotassium iron (I	I) hexacyano	d) Potassium hexacyanof	errate (II)
63.	Among $Ni(CO)_4 \cdot [Ni(CN)]$	$_4]^{2-}$ and NiCl $_4^{2-}$		
	a) Ni(CO) ₄ and[Ni(CN) ₄] ²	diamagnetic andNiCl ₄ ²⁻	is paramagnetic	
	b) Ni(CO) ₄ and NiCl ₄ ^{2–} are	diamagnetic and[Ni(CN) ₄]	^{2–} are paramagnetic	
	c) Ni(CO) ₄ is diamagnetic	and $[Ni(CN)_4]^2$ and $NiCl_4^2$	are paramagnetic	
	d) NiCl ₄ ²⁻ and[Ni(CN) ₄] ²⁻	are diamagnetic and Ni(CC	$)_4$ is paramagnetic	
64.	Cu ²⁺ and Cd ²⁺ are disting	uished through formation of	of complex $[Cu(CN)_4]^{3-}$ and	$[Cs(CN)_4]^{2-}$, when H_2S
	gas is passed			
	a) There is yellow precipi	tate due to LdS	b) There is black precipit	ate due to CuS
65	Which one of the following	uon que lo cus	t obout the EAN rule?	of cus and cus together
05.	a) $[Cu(CN), 1^3 -$	b) [Cr(NH ₂), 1 ³⁺	c) $[Fe(CN)_1]^{4-}$	d) $[Ni(CO)]$
66	$Z_{eisse's salt is}$	b) [ci (iiii3)6]		u) [M(00)4]
00.	a) $[Pt(NH_2)_2C]_2$]	b) K[PtC] ₂ (C ₂ H ₄)]	c) Fe(CrHr) ₂	d) None of these
67.	$[C_0(NO_2)(NH_2)_{r}]^{2+}$ is vel	llow in colour. then its link	age isomer is	
-	a) Yellow	b) Red	c) Blue	d) orange
68.	Select the correct statem	ent	,	, 0
	a) Excess of copper and in	on are removed by the che	elating ligands D-penicillam	nine and desferrioxime B via
	the formation of coord	ination compounds		
	b) Cis-platin is used in the	e treatment of cancer		
	c) Both (a) and (b) are co	orrect		
	d) None of the above is co	orrect		

69.	$[Fe^{II}(O_2)(CN)_4Cl$] ^{4–} is named a	S					
	a) Chlorotetracya	nodioxoferrat	e (II) ion	b) Chl	orotetracya	noperox	oferrate (II) ion	
	c) Chlorotetracya	nosuperoxofe	rrate (II) ion	d) None of the above is correct				
70.	When concentrated HClis added to a, solution of $[Co(H_2O)_6]^{2+}$ ion, an intense blue colour develops due t						s due to	
	the formation wh	ich one of the	following					
	a) [CoCl ₆] ^{4–}	b) [C	$oCl_4]^{2-}$	c) [Co	$Cl_2(H_20)_4]$		d) $[CoCl(H_2O)_5]^+$	
71.	In the complex [P	$t(0_2)(en)_2(Br$.)] ²⁺ coordination nu	imber a	nd oxidatio	n numbe	r of platinum are	
	a) 4,3	b) 4,	5	c) 4,6			d) 6,4	
72.	Which of the follo	wing types of	bonds are present in	CuSO ₄	•5H ₂ 0		-	
	I. Electrovalent I	I. Covalent III.	Coordinate		-			
	Select the correc	t answer out	of					
	a) I,II	b) II,	III	c) I,III			d) I,II,III	
73.	EAN of the element	nts (*) are equ	al in					
	a) Ni(CO) ₄ , [Fe(C)	N) ₆] ⁴⁻		b) [Ni	$(en)_2]^{2+}, [F$	$e(H_2O)_6$]2+	
	c) $[Co(CN)_6]^{3-}, [I]_{3-}$	$[e(CN)_{6}]^{3-}$		d) [Ni	$(en)_2]^{2+}, [S_1]^{2+}$	$c(H_2O)_6]$	3+	
74.	Match the geomet	try (given in C	olumn I) with the co	mplexe	s (in Colum	ı II) in		
	Column I	Column II	-					
	A. Octahedral	$[Ni(CN)_4]^{2-}$						
	D. Square	$NI(CO)_4$						
	C. Tetrahedral	[Fe(CN) _€] ^{4−}						
	A B C	[()0]						
	a) 1 2 3			b) 3	1 2			
	c) 3 2 1			d) 2	1 3			
75.	The compound(s)) that exhibit (s) geometrical isome	erism is	(are)			
	a) $[Pt(en)Cl_2]$	b) [P	$t(en)_2 Cl_2$	c) [Pt	$(en)_2 Cl_2 Cl_2$	2	d) $[Pt(NH_3)_4Cl_2$	
76.	What is the ratio	of uncomplexe	ed to complexed Zn ²⁺	ion in	a solution th	nat is 10	M in , in NH ₃ if the s	stability
	constant of is [Zn	$(NH_3)_4]^{2+}$ is 3	3×10^{9}					
	a) 3.3 $\times 10^{-9}$	b) 3.	3×10^{-11}	c) 3.3	$\times 10^{-14}$		d) 3 $\times 10^{-13}$	
77.	Complexes of whi	ch ions are no	t kinetically labile					
	a) Cu ²⁺ , Ni ²⁺			b) Cr ³	+, Co ³⁺			
	c) V ³⁺ , Ti ⁴⁺			d) Noi	ne of the ab	ove is coi	rrect	
78.	In which case rac	emic mixture i	s obtained on mixing	g its mir	ror images	in 1:1 mo	olar ratio	
	a) $[Cr(en)_3]^{3+}$	b) [N	li(DMG) ₂]	c) Cis	-[Cu(Gly)]	2]	d) In all cases	
79.	Which of the follo	wing an exam	ple of coordination c	ompou	nd			
	a) CoCl ₃ · 6NH ₃			b) KCl	\cdot MgCl ₂ \cdot 6H	H ₂ 0		
	c) $FeSO_4 \cdot 6H_2O$			d) FeS	$0_4 \cdot (\mathrm{NH}_4)_2$	$SO_4 \cdot 6H$	₂ 0	
80.	Which is the incom	rrect observat	ion					
	For the comple	x , [CoF ₆] ^{3–} ,F	is a weak-field ligan	d, so th	at $\Delta_{\rm oct} < P$	(electron	n –pairing energy) a	and is
	thus high spin	complex						
	b) For the comple	x, [Co(NH ₃) ₆]	³⁺ , NH ₃ is a strong-fi	eld liga	nd, so that 🛛	$A_{oct} > P$ a	nd thus low spin co	omplex
	c) $\Lambda_t = +\frac{4}{-}\Lambda_{a}$							
	9 ⁻⁰⁰⁰			,	1 1	6.4		
01	d) Greater the ion	ic charge on the	he central metal ion t	the grea	ter the valu	e of Δ		
81.	In Which case geo	metrical isom	ers is possible with <i>l</i>	M as me	etal ion?			
0.0	a) MX_2Y_2	b) M_{1}	X_2Y_4	c) <i>MX</i>	$_{2}Y_{2}Z_{2}$,	d) In all cases	.1
<u></u> δΖ.	wnie Ti ^{s+} , V ^{s+} ,	e^{-1} and Co^{2+1}	afford a large numb	er of te	tranedral co	omplexes	s, Cr ^{or} never does	this, the
	reason being		anlittin a veitle e e vei	ation of	ligan d-			
	aj ur - iorces ni	gn ei ystal field	splitting with a veri	a war	nganus strabodral (Cn3+ ~~~	tom plays the	
	b)	adilization ene	a gy in octanedral VIS	-a-vis to	enaneural	LI - · Syst	tem plays the	
	Declaing role							

c) The ionic radius of Cr^{3+} is the largest among the other M^{3+} ions mentioned Electronegativity of Cr^{3+} is the largest among these trivalent 3d- metals and so chromium prefers to be associated with as many ligands as its ionic radius permits 83. In an octahedral complex, if ligands on one axis are displaced little away from their ideal positions the crystal field splitting of d-orbitals for this complex is as given below $d_{x^2-v^2}d_{z^2}d_{xy}d_{yz}d_{xz}$ The ligands are displaced on which axis/axes a) x-and v b) y-only d) z-only c) *x*-only 84. Of the following complex ions, one exhibits isomerism. That is a) $[Ag(NH_3)_2]^+$ b) $[Co(NH_3)_5NO_2]^{2+}$ c) $[Pt(en)Cl_2]$ d) $[Co(NH_3)_5Cl]^{2+}$ 85. A compound has the empirical formula $CoCl_3 \cdot 5NH_3$, When an aqueous solution of this compound is mixed with excess silver nitrate, 2 moles of AgCl precipitate per mol of compound. On reaction with excess HClno NH_4^+ is detected. Hence, it is a) $[Co(NH_3)_5Cl_2]Cl$ b) $[Co(NH_3)_5Cl]Cl_2$ c) $[Co(NH_3)_5Cl_3]$ d) $[Co(NH_3)_4Cl_2]Cl \cdot NH_3$ 86. Hexammine platinum (IV) tetrachloroplatinate (II) is a) $[Pt(NH_3)_6][PtCl_4)_3]$ b) $[Pt(NH_3)_6[PtCl_4]]$ c) $[Pt(NH_3)_6][PtCl_4]_2$ d) $[Pt(NH_3)_6][PtCl_4]_2$ 87. The crystal field-splitting for Cr^{3+} , ion in octahedral field increases for ligands I⁻, H₂O, NH₃, CN⁻ and the order is a) $I^- < H_2 0 < N H_3 < C N^$ b) $CN^- < I^- < H_2O < NH_3$ c) $CN^- < NH_3 < H_2O < I^$ d) $NH_3 < H_2 0 < I^- < CN^-$ 88. For the complex ML_2 , stepwise formation constants for $M + L \rightleftharpoons ML$ $ML + L \rightleftharpoons ML_2$ are 4 and 3. Hence, overall stability constant for $M + 2L \rightleftharpoons ML_2$ is d) 0.75 b) 7 c) 1.33 a) 12 89. The formula of a carbonyl complex of cobalt, $(CO)_n Co - Co(CO)_n$, in which there a single covalent Co – Cobond is b) $Co_2(CO)_6$ a) $Co_2(CO)_4$ c) $Co_2(CO)_8$ d) $Co_2(CO)_{10}$ 90. The spin only magnetic moment value (in Bohr magneton units) of $Cr(CO)_6$ is a) 0 c) 4.90 d) 5.92 b) 2.84 91. Select the correct statement a) $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{2+}$ can be distinguished by magnetic moment b) $[Ni(CN)_6]^{2-}$ and $[Ni(CO)_4]$ both are diamagnetic c) $[Fe(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{2+}$ have equal magnetic moment d) All the above are correct statements 92. Which is true for $[Ni(en)_2]^{2+}$, Z(Ni)=28a) Paramagnetism, dsp^2 , square planar, CN of Ni =2 b) Diamagnetism, dsp^2 square planar, CN of Ni =4 c) Diamagnetism, sp^3 tetrahedral, CN of Ni =4 d) Paramagnetism , sp^3 square planar, CN of Ni =4 93. Among the following complexes $(K - P)K_3[Fe(CN)_6](K)$, $(Co(NH_3)_6Cl_3(L),$ $Na_{3}[Co(ox)_{3}](M), [Ni(H_{2}O)_{6}]Cl_{2}(N),$ $K_2[Pt(CN)_4](0)$ and $[Zn(H_2O)_6](NO_3)_2(P)$ The diamagnetic complexes are a) K. L. M. N b) K, M, O, P c) L,M, O, P d) L, M, N, O 94. Extraction of Ag from sulphide ore and removal of unreacted silver from photographic plate involve complexes a) $[Ag(S_2O_3)_2]^{3-}$ in both b) $[Ag(CN)_2]^{-}$ in both c) $[Ag(S_2O_3)_2]^{3-}, [Ag(CN)_2]^{-}$ d) $[Ag(CN)_2]^{-}, [Ag(S_2O_3)_2]^{3-}$

95.	5. FeSO ₄ on treatment with excess of KCN gives a product that does not give test of Fe ²⁺ , the product					
	formed is					
	a) $[Fe(CN)_2]SO_4$	b) $K_3[Fe(CN)_6]$	c) $K_4[Fe(CN)_6]$	d) KFe[Fe(CN) ₆]		
96.	$[Fe(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$	$(20)_6]^{4-}$ differ in				
	a) geometry, magnetic	moment	b) Magnetic moment a	nd colour		
	c) Geometry and hybri	dization	d) None of the above			
97.	Select the correct state	ment				
	The $d_{x^2-y^2}$ and d_{z^2} of	orbitals are directed alon a	set of mutually perpendicu	llar <i>x</i> , <i>y</i> and <i>z</i> -axes. As a group		
	a) these orbitals are ca	lled, e_{σ} orbitals				
	b) The d_{xy} , d_{yz} and d_{xy}	orbitals lie between the a	xes and collectively called t-	a orbitals		
	c) Both (a) & (b) are c_1	rrect	·····	-6		
	d) None of the above is	correct				
98	$[Pt (NH_{\star})(NO_{\star})Pv (NH_{\star})]$	$(OH)^{+}$ will form geometr	ical isomers			
<i>J</i> 0.	$\frac{1}{2}$	h) 3		d) 5		
90	a) 2 The number of water r	b) 5 nolecule(s) directly bond	ed to the motal centre in Cu	$SO_{5H}O_{1c}$		
<i>))</i> .	a) 1	h) 2		d) 4		
100	a) I Extraction of metals or	other processes is through	b the complex formation	u) +		
100	L Cyanida process	other processes is throug	If the complex for mation			
	II Monds process					
	III. Photographic fixing	process				
	Complexes formed in t	hese methods are				
	I II	III				
	a) $[Ag(NH_3)_2]$ ClNi(C	$(0)_4 [Ag(CN)_2]^-$	b) $[Ag(CN)_2]^-$ Ni(CO	$)_4 \qquad [A(S_2O_3)_2]^{3-1}$		
	c) $[Ag(CN)_2]^ [Ag(S_2)^-$	$(0_3)_2]^{3-}$ Ni(CO) ₄	d) $[Cd(CN)_4]^{2-}$ Ni(CC	$(Ag(S_2O_3)_2)^{3-}$		
101	. The intense blue colour	r of Prussian blue salts ari	ses from which one of the fo	ollowing?		
	a) <i>d-d</i> transition		b) Inter valence electro	on transfer		
	c) Ligand to metal char	ge transfer	d) Metal to ligand char	e transfer		
102	$. \operatorname{NiCl}_{2} \{ P(C_{2}H_{5})_{2}(C_{6}H_{5}) \}$	} ₂ exhibits temperature d	ependent magnetic behavio	r (paramagnetic/diamagnetic)		
	the coordination geom	etries of Ni ²⁺ in the paran	nagnetic and diamagnetic st	ates are respectively		
	a) Tetrahedral and tetr	ahedral	b) Square planar and s	quare planar		
	c) Tetrahedral and squ	are planar	d) Square planar and t	etrahedral		
103	. The reaction between 1	netallic silver and aqueou	s NaCN forming a soluble c	omplex occurs in the presence		
	of					
	a) Nitrogen	b) Helium	c) Argon	d) Oxygen		
104	. Which complex gives tl	nree chloride ions per form	nula unit?			
	a) $CrCl_3 \cdot 6H_2O$	b) $CrCl_3 \cdot 5H_2O$	c) $CrCl_3 \cdot 4H_2O$	d) All of these		
105	. The spin only magnetic	: moment value (in Bohrm	agneton units) of $Cr(CO)_6$ i	S		
	a) 0	b) 2.84	c) 4.90	d) 5.92		
106	. The crystal field splittin	ng energy for octahedral (Δ_0) and tetrahedral (Δ_t) co	omplexes is related as		
	a) $\wedge \frac{4}{4}$	h) $\Lambda = \frac{1}{4} \Lambda$	c) $\Lambda = -2\Lambda$	d) $\Lambda = -\frac{4}{4}\Lambda$		
	$\Delta_t = -\frac{1}{9}\Delta_0$	$\Delta_t = \frac{1}{2} \Delta_o$	$c_{0} \Delta_{0} - \Delta_{t}$	$\Delta_0 = -\frac{1}{9}\Delta_t$		
107	. Which one of the follow	ving compounds has tetra	hedral geometry			
	a) [Ni(CN) ₄] ^{2–}	b) [NiCl ₄] ^{2–}	c) $[PdCl_4]^{2-}$	d) $[Pd(CN)_4]^{2-}$		
108	. If there is 100% ionisat	tion of this complex A com	pound has the empirical for	rmula $CoCl_3 \cdot 5NH_3$, When an		
	aqueous solution of thi	s compound is mixed with	n excess silver nitrate, 2 mol	es of AgCl precipitate per mol		
	of compound. On react	ion with excess HClno NH	⁺ ₄ is detected, its 1 M solution	on at 300 k will have osmotic		
	pressure equal to					
	a) 8.21 atm					
	a) 8.21 atm b) 24.63 atm					

d) 73.89 atm

109. Which of the following compo	ounds show optical isom	erism?	
I. $Cis - [Co(NH_3)_4Cl_2]^+II.Trophical Content of the second s$	$ans - [Co(en)_2Cl_2]^+III.C$	$is - [Co(en)_2Cl_2]^+IV.[Co(en)_2Cl_2]$	$(n)_3]^{3+}$
Select the correct answer us	ing the codes given below	W	
a) I and IV b)	II and III	c) III and IV	d) I,III and IV
110. Which kind of isomerism is e	xhibited by octahedral C	$lo(NH_3)_4Br_2Cl?$	
a) Geometrical and ionisation	n	b) Geometrical and optical	l
c) Optical and ionisation		d) Geometrical only	
111. Which contains monovalent of	cationic complex		
a) $CoCl_3 \cdot 6NH_3$ b)	[CoCl ₃ · 5NH ₃	c) CoCl ₃ · 4NH ₃	d) CoCl ₃ · 3NH ₃
112. As per IUPAC nomenclature,	the name of the complex	$(C_0(H_2O)_4(NH_3)_2)Cl_3$ is	
a) Tetraaquadiaminecobalt (III) chloride	b) Tetraaquadiaminecobal	lt (III) chloride
c) Diaminetetraquacobalt (II	I) chloride	d) Diamminetetraaquacob	alt (III) chloride
113. The compound having tetrah	edral geometry is	, I	
a) $[Ni(CN)_4]^{2-}$ b)	$[Pd(CN_{4})]^{2-}$	c) $[PdC]_{2}^{2-}$	d) [NiC] $_{12}^{-}$
114 The IIIPAC name of [Ni(NH _a)	$1 \left[NiC \right] $ is		
a) Tetrachloro nickel (II) – te	ptraammine nickel (II)		
b) Totraamming nickel (II)	totrachloro nickol(II)		
a) Tetraammine nickel (II) –	tetrachloro nickel(II)		
d) Tetrachloro pickel (II) - to	traamming nickelate(II)		
u) Tetracinoro nicker (II) -te	(0)	n ion in couche planer and	l a stab a dual sa ana atura
115. What are the spin-only magn	euc moments (In BM) Io	or ion in square-planar and	l octaneural geometry
respectively			
a) 0,2,83 b)	2.83,2.83	c) 2.83,0	d) 0,0
116. Which one of the following is	the correct order of the	wavelengths of absorption	for complexes?
I. $[Ni(H_2O)_6]^{2+11}$. $[Ni(NH_3)_6]$	$^{2+}$ III. [Ni(NO ₂) ₆] ⁴⁻		
a) I>II>III b)	> >	c) III>II>I	d) > >
117. The coordination number of	Pt in the complex ion [Pt	$(en)_2 Cl_2]^{2+}$ is	
a) 3 b)	4	c) 5	d) 6
118. Which has maximum EAN of	the underlined atoms		
(Cr = 24, Co = 27, Fe = 26, T)	Ni = 28)		
a) [Cr(EDTA)] ⁻ b)	$[Co(en)_3]^{3+}$	c) $[Fe(C_2O_4)_3]^{3-1}$	d) [Ni(CN) ₄] ^{2–}
119. The ionization isomer of [Cr	$(H_2O)_4Cl(NO_2)]Cl$ is		
a) $[Cr(H_2O)_4(O_2N)]Cl_2$		b) $[Cr(H_2O)_4Cl_2](NO_2)$	
c) $[Cr(H_2O)_4Cl(ONO)]Cl$		d) $[Cr(H_2O)_4Cl_2(NO_2)] \cdot H$	20
120. Which one of the following co	omplexes is expected to	have lowest Δ_0 values?	
a) $[Co(NH_3)_6]^{3+}$ b)	$[CoF_{6}]^{3-}$	c) $[Rh(NH_3)_5]^{3+}$	d) $[Ir(NH_3)_6]^{3+}$
121. Primary and secondary valen	ncy of Pt in $[Pt(en)_2Cl_2]$	Cl ₂ are	
a) 4,4 b)	4,6	c) 6,6	d) 4,2
122. Which is Prussian blue			
		, .	
a) KF ^{III} [Fe ^{II} (CN) ₆] b)	KFe ^{III} [Fe ^{III} (CN) _€]	c) $K_2[Fe^{II}(CN)_{\epsilon}]$	d) K ₂ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123 In the complex PtCl \cdot 5NH ₂	KFe ^{III} [Fe ^{III} (CN) ₆]	c) $K_2[Fe^{II}(CN)_6]$	d) K ₃ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123. In the complex $PtCl_4 \cdot 5NH_3$ a) Two Cl^- ligands satisfy pr	KFe ^{III} [Fe ^{III} (CN) ₆]	c) $K_2[Fe^{II}(CN)_6]$	d) K ₃ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123. In the complex $PtCl_4 \cdot 5NH_3$ a) Two Cl ⁻ ligands satisfy pr b) Four NH ₂ ligands satisfy s	KFe ^{III} [Fe ^{III} (CN) ₆] imary as well as seconda	c) $K_2[Fe^{II}(CN)_6]$ ary valencies	d) K ₃ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123. In the complex $PtCl_4 \cdot 5NH_3$ a) Two Cl^- ligands satisfy pr b) Four NH_3 ligands satisfy s	KFe ^{III} [Fe ^{III} (CN) ₆] Timary as well as seconda Secondary valency	c) K ₂ [Fe ^{II} (CN) ₆] ary valencies	d) K ₃ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123. In the complex $PtCl_4 \cdot 5NH_3$ a) Two Cl^- ligands satisfy pr b) Four NH_3 ligands satisfy s c) Ions are $[Pt(NH_3)_4Cl_2]^{2+}$ a d) All the above are correct of	KFe ^{III} [Fe ^{III} (CN) ₆] Timary as well as seconda Secondary valency and 2Cl ⁻	c) K ₂ [Fe ^{II} (CN) ₆] ary valencies	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement of the correct statemen	KFe ^{III} [Fe ^{III} (CN) ₆] Fimary as well as seconda secondary valency and 2Cl ⁻ tatements	c) $K_2[Fe^{II}(CN)_6]$ ary valencies	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement a c) Iso ionization isomeria [Content of the correct statement a 	KFe ^{III} [Fe ^{III} (CN) ₆] Fimary as well as secondates secondary valency and 2Cl ⁻ tatements about the complex [Co(1 a (NUL) PriSO	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$	d) K ₃ [Fe(CN) ₆]
a) $KF_e^{III}[Fe^{II}(CN)_6]$ b) 123. In the complex $PtCl_4 \cdot 5NH_3$ a) Two Cl^- ligands satisfy pr b) Four NH_3 ligands satisfy s c) Ions are $[Pt(NH_3)_4Cl_2]^{2+}$ d) All the above are correct statement a a) Its ionization isomer is $[Ce_1 + 2P_1]^{2+}$	$KFe^{III}[Fe^{III}(CN)_6]$ Fimary as well as secondates secondary valency and $2Cl^-$ tatements about the complex [Co(1 o(NH ₃) ₅ Br]SO ₄	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement a a) Its ionization isomer is [Ca b) It gives yellow precipitate 	$KFe^{III}[Fe^{III}(CN)_6]$ rimary as well as secondates secondary valency and $2Cl^-$ tatements about the complex [Co(I o(NH ₃) ₅ Br]SO ₄ with AgNO ₃	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement a a) Its ionization isomer is [Ca b) It gives yellow precipitate c) Its ionization isomer give a 	$KFe^{III}[Fe^{III}(CN)_6]$ minary as well as secondates secondary valency and $2Cl^-$ tatements about the complex [Co(I o(NH ₃) ₅ Br]SO ₄ with AgNO ₃ white precipitate with B	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$ aBl_2	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement a a) Its ionization isomer is [Ca b) It gives yellow precipitate c) Its ionization isomer give a d) All the above are correct statement a 	$KFe^{III}[Fe^{III}(CN)_6]$ minary as well as secondates secondary valency and $2Cl^-$ tatements about the complex [Co(I o(NH ₃) ₅ Br]SO ₄ with AgNO ₃ white precipitate with B tatements	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$ aBl_2	d) K ₃ [Fe(CN) ₆]
 a) KF^{III}_e[Fe^{II}(CN)₆] b) 123. In the complex PtCl₄ · 5NH₃ a) Two Cl⁻ ligands satisfy pr b) Four NH₃ ligands satisfy s c) Ions are [Pt(NH₃)₄Cl₂]²⁺ a d) All the above are correct statement a a) Its ionization isomer is [Ca b) It gives yellow precipitate c) Its ionization isomer give a d) All the above are correct statement a 	$KFe^{III}[Fe^{III}(CN)_6]$ Finary as well as secondates secondary valency and 2Cl ⁻ tatements about the complex [Co(I o(NH ₃) ₅ Br]SO ₄ with AgNO ₃ white precipitate with B tatements	c) $K_2[Fe^{II}(CN)_6]$ ary valencies $NH_3)_5SO_4]Br$ aBl_2	d) K ₃ [Fe(CN) ₆]

c) Both (a) & (b) correct	d) None is Correct	
126. Following ligands can show linkage isomerism		
a) CNS b) NO ₂	c) CN	d) All of these
127. Among the following complexes (<i>K-P</i>),		
$K_3[Fe(CN)_6](K)$, [Co(NH ₃) ₆]Cl ₃ (L),		
$Na_3[Co(ox)_3](M)$		
$[Ni(H_2O)_6]Cl_2(N)$, and		
$[Zn(H_2O)_6](NO_3)_2(P)$ the diamagnetic complexes		
a) <i>K, L, M, N</i> b) <i>K, M, O, P</i>	c) <i>L, M, O, P</i>	d) <i>L, M, N, O</i>
128. Which one of the following is an example of coordinate	ation isomerism	
a) [Co(NH ₃) ₅ Br]SO ₄ and [Co(NH ₃) ₅ SO ₄]Br	b) [Co(NH ₃) ₅ NO ₂]Cl ₂ and	l [Co(NH ₃) ₅ ONO]Cl ₂
c) $[Cr(H_2O)_6Cl_3and [Cr(H_2O)_5Cl]Cl_2 \cdot H_2O$	d) $[Cr(NH_3)_6][Co(CN)_6]a$	nd [Co(NH ₃) ₆][Cr(CN) ₆
129. Which of the following complexes is diamagnetic?		
a) $[Fe(CN)_6]^{4-}$ b) $[Cu(NH_3)_4]^{2+}$	c) $[Ti(H_2O)_6]^{3+}$	d) $[Ni(en)_2]^{2+}$
130. Which is used in cancer-chemotherapy?		
a) Cis-platin b) Zeise's salt	c) Both (a) and (b)	d) None of these
131. The complex $[Fe(H_2O)_5NO]^{2+}$ is formed in the brochest of the broch	own ring test nitrates whe	en freshly prepared FeSO ₄
solution is added to aqueous solution of NO_3^-	followed by addition of c	conc. H ₂ SO ₄ Select correct
statement about this complex		
a) Colour change is due to charge transfer		
b) It has iron in $+1$ oxidate state and nitrosyl as NO ⁺	-	
c) It has magnetic moment of 3.87 BM confirming th	ree unpaired electrons in F	⁷ e
d) All the above are correct statements		
132. Optical isomers are		
1. enantiomers		
2. non-superimposable		
3. have the property of chirality		
4. form racemic mixture if present in 1:1 ratio		
a) III Jy are correct b) III III are correct	c) All are correct	d) All are incorrect
133 In the ring compounds formed by hidentate ligands	on hinding to a metal or m	etal ions are called
a) Ligands b) Chelates	c) Complexes	d) Amhident
134 Select the correct statement	ej dompiexes	ajministacite
a) Geometrical isomer may differ in dipole moment	and visible/IIV spectra	
b) Complexes of the type $[Ma_{2}b_{2}]$ can also have facia	l (fac) and meridional (me	r) isomer
c) No ontical isomer exists for the complex <i>trans</i> –	$[Co(en)_{2}C]_{2}]^{+}$	
d) All the above are correct	[00(01)2012]	
Multiple Correct	Answers Type	
125 The effective stomic number of $C_0(CO)$ is 25 and by	anco is loss stable. It attain	e etabilitu bu
155. The effective atomic number $O(CO)_4$ is 55 and its	a) Dimorization	d) Totramorization
126 Which of the following complexes will have four diff	C) Differ ization	
a) [Co(on), C] [C]	b) $[C_0(\alpha_n)(N \square + 1), C \square + 1]C$	
a) $[Co(DDh) (NII)Cl]Cl$	d) $[Co(en) C $	
127 Which of the following coordination compounds we	u) [CO(eII)3]CI3	
a) Pontaamminonitrocobalt (III) iodido	h) Diamminodichloroplat	inum (II)
a) remaanninennu ocoball (111) loulue	of praiminieurchioroplat	
(UI) chlorida	d) Tris-(ethylenediamine	e) cobalt (III) bromide
(11) children (11) (11) (11) (11) (11) (11) (11) (11	vriem	
130. which of the following call show coordination isome	$\frac{1}{10} = \frac{1}{10} $	
aj [UU(1113)4][r UI4]	$D_{1} [I \in (I \cap I_3)_6]_2 [P ((C \cap I_6)]_2]$	3
		Page 10

c) $[Co(NH_3)_6][Cr(C_2O_4)_3]$ d) $[Pt(en_3)](SO_4)_2$ 139. Which of the following statement is/are false? a) $[Ni(CO)_4]$ is high spin complex b) Weak ligands like F⁻, Cl⁻ and OH⁻ usually form low spin complexes c) $[FeF_6]^{3-}$ is high spin complex d) Strong ligand like CN^- and NO_2^- , generally form high spin complexes 140. The pair (s) of coordination complexes/ions exhibiting the same kind of isomerism is/are b) $[Co(NH_3)_4Cl_2]^+$ and $[Pt(NH_3)_2(H_2O)Cl]^+$ a) $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_4Cl_2]Cl_3$ c) [CoBr₂Cl₂]²⁻and[PtBr₂Cl₂]²⁻ d) [Pt(NH₃)₃(NO₃)]Cl and [Pt(NH₃)₃Cl]Br 141. CH=CHCOOH The compound may be called as a) Cinnamic acid b) Mandelic acid c) Citric acid d) 3-phenylprop-2-ene-1-oic acid 142. Nitroprusside ion is A: $[Fe^{II}(CN)_5NO^+]^{2-}$ and not B: $[Fe^{III}(CN)_5 NO]^{2-}A$. and B can be differentiated by a) Estimating the concentration of iron b) Measuring the concentration of CN⁻ c) Measuring the magnetic moment d) Thermally decomposing the compound 143. $K_4[Fe(CN)_6]$ is used in the identification of a) Cu²⁺ ions b) Fe³⁺ ions c) Cd²⁺ ions d) Fe²⁺ ions 144. Consider the following compounds and choose the correct statement CH₂CH₃ $\begin{array}{c|c} H_3C & & \\ \hline \\ OH & & \\ (I) & (II) \\ \end{array} H OH \\ \begin{array}{c} CH_2CH_3 & HO \\ CH_3 \\ (II) \\ \end{array} H OH \\ \begin{array}{c} CH_3 \\ (II) \\ \end{array} H OH \\ \end{array} H OH \\ \begin{array}{c} CH_3 \\ (II) \\ \end{array} H OH \\ \end{array} H OH \\ \begin{array}{c} CH_3 \\ (II) \\ \end{array} H OH \\ \end{array} H OH \\ \begin{array}{c} CH_3 \\ (II) \\ \end{array} H OH \\ \bigg H OH$ a) Structure (I) and (II) are identical b) All are identical c) Structure (I) and (III) are identical d) Structure (I) and (II) are different 145. Bidentate ligands are a) $C_2 O_4^{2-}$ (oxalate) b) En (ethylenediamine) c) DMG (dimethyl glyoxime) d) Gly (glycine) 146. In which of the following, the chemical formula and the name correctly matched? a) $K_3[Cr(C_2O_4)_3]$ – Potassium trioxalatochromate (III) b) $K[Pt(NH_3)Cl_5] - Potassium amminepentachloro palatinate (IV)$ c) Na₂[Ni(EDTA)] – Sodium ethylenediaminetetra Acetonickel (I) d) $[Ag(CN)_2]^-$ – Dicyanoargentate (I) 147. Which of the following can exist in syn and anti forms? a) $(C_6H_5)C = NOH$ b) $C_6H_5 - N = N - OH$ c) $C_6H_5 - N = N - C_6H_5$ d) $C_6H_5 - N = NOH$ 148. CN⁻ is a strong field ligand .This is due to the fact that a) It carries negative charge b) It is a conjugate base of weak acid c) It can accept electrons from metal species d) It forms high spin complexes with metal species 149. Which of the following name is/are correct for compound is/are

 $CH_2 - CH - CH_2 - COCI$ | | COCI COCI a) Pentanedinoyl chloride b) Alkanedinoyl chloride c) 3-chloroformyl pentane dinoylchloride d) None of the above 150. The compound $CH_3 - C \equiv C - CH_3$ can be named as a) Allylene b) But-2-yne c) Dimethyl acetylene d) crotonylene 151. Which is optically active? $a) \xrightarrow{H_3C} C = C = C = C \xrightarrow{CH_3} H$ b) $\overset{\text{CI}}{\overset{}_{H}} c = c = c = c = c \overset{\text{C}_2H_5}{\underset{H}{\overset{}_{H}}}$ $CH_3 - CH - COOH$ c) | 152. Which of the following statements are not correct? A *meso* compound is optically active because the rotation caused by any molecule is cancelled by an equal and opposite rotation caused by another molecules that is the mirror image of the first b) A meso compound has chiral centres and but exhibits no optical activity c) A meso compound has no chiral centres and thus exhibits no optical activity A *meso* compound has molecules which are superimposable on their mirror image a even through they d) contain chiral centres 153. For which of the following *dⁿ* configuration of octahedral complexes, can't exist in both high spin and low spin forms a) d⁵ b) *d*⁶ c) d^8 d) *d*³ 154. Which of the following complexes are chelates a) bis-(dimethyl glyoximato)nickel (III) b) Potassium ethylenediaminetetracyanato chromate (III) c) Tetraamminedicyanocobalt (III) nitrate d) Trans-diglycinatopalladium (II) 155. Which of the following are paramagnetic c) [CoF₆]³⁻ a) $[Ni(CN)_4]^{2-}$ b) $[NiCl_4]^{2-}$ d) $[Co(NH_3)_6]^{3+}$ 156. Which of the following name are correct for the compound? COOH $HOOC - CH_2 - CH_2 - CH - CH_2 - CH_2 - COOH$ b) 4-carboxy heptane-1,7-dioic acid a) Heptane-1,4,7-trioic acid c) Pentan-1,3,5-tricarboxylic acid d) All of the above 157. 0.0012 mol of $CrCl_3 \cdot 6H_20$ was passed through a cation exchange resin and acid coming out of it required 28.5 mL of 0.125 M NaOH. Hence, complex is a) $[Cr(H_2O)_5Cl_2 \cdot H_2O]$ b) $[Cr(H_2O)_4Cl_2] \cdot 2H_2O$ c) $[Cr(H_2O)_6]Cl_3$ d) $[Cr(H_2O)_3Cl_3] \cdot 3H_2O$ 158. Which of the following are cyclic compounds? a) Borazole b) Pyrrole c) Anthracene d) Isobutylene 159. Which are correct statements? a) $[Ag(NH_3)_2]^+$ is linear with *sp* hybridized Ag⁺ ion b) NiCl₄^{2–}, Vo₄^{3–} and MnO₄^{3–}have tetralhedral geometry c) $[Cu(NH_3)_4]^{2+}$, $[Pt(NH_3)_4]^{2+}$ and $[Ni(CN)_4]^{2-}$ have dsp²hybridisation of the metal ion d) Fe(CO)₅ have bipyramidal structure with hybridised iron 160. Using anhydrous AlCl₃ as catalyst, which one of the reaction produces ethyl benzene? a) $CH_3CH_2OH + C_6H_6$ b) $CH_3CH = CH_2 + C_6H_6$ c) $CH_2 = CH_2C_6H_6$ d) $CH_3 - CH_3 + C_6H_6$

161. In which of the following compounds transition metal may have zero oxidation state a) $[Fe(CO)_5]$ b) $[Ni(CN)_4]^{2-}$ c) Fe_2O_3 d) CrO_5

162. The Fischer-projection of the molecule as represented in the wedge

163. In which of the following complexes metal atoms have zero oxidation state?

a) $[Fe_2(CO)_9]$ b) $[Ni(CO)_4]$ c) $Na[Co(CO)_4]$ d) Cu

164. Identify the complexes which is/are eapected to be coloureda) $Ti(NO_3)_4$ b) $[Cu(NCCH_3)]^+BF_4^-$ c) $[Cr(NH_3)_6]Cl_3$ d) $K_3[VF_6]$

165. Which is/are correct statement(s)

a) [Co(en)₃][Cr(CN)₆]will display coordination isomerism

b) [Mn(CO)₅(SCN)]will display linkage isomerism

c) $[Co(NH_3)_5(NO_3)]SO_4$ will display ionization isomerism

d) None of the above is correct

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 166 to 165. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

166

	Statement 1:	The IUPAC name for the compound, NCCH $_2$ CH $_2$ COOH is 3-cyano propanoic acid
	Statement 2:	–COOH is considered as substituent group while – CN is considered as the principal functional group
167		
	Statement 1:	$CH_3 - CH(Cl)OH$ is a optically active compound
	Statement 2:	Dissymetry arises in a chemical compound owing to the presence of chiral centre
168		

Statement 1: F⁻ ion is weak ligand and forms outer orbital complex.

Statement 2: F⁻ ion can not force the electrons of d_{z^2} and $d_{x^2-y^2}$ orbitals to occupy $d_{xy} d_{yz}$ and d_{zx} orbitals of the same shell.

	Statement 1:	Highly charged cations are expected to form most strongly acidic hydrated cations
	Statement 2:	The acidity of a hydrated metal ion depends on the strength of the bond between cation
170		and oxygen
	Statement 1:	A compound whose molecule has D configuration will always be dextrorotatory
	Statement 2:	Compounds having D configuration may be dextrorotatory or levorotatory
171		
	Statement 1:	The IUPAC name of the $CH_2 - CH = CH - C \equiv CH$ is pent-3-en-1-vne and not pent-2-ene-
		4-yne
	Statement 2:	Lowest locant rule for multiple bond is preferred
172		
	Statement 1:	EDTA forms complexes with a large number of metal ions
	Statement 2:	It coordinates with 6 points of attachement to the metal, 4 0-atoms and two N atoms
173		
	Statement 1:	Ions with more than five 3 <i>d</i> electrons have usually slightly larger magnetic moment than calculated on the basis of $u = \sqrt{n(n+2)}$
	Statement 2:	The maximum number of unpaired <i>d</i> -electrons is five as in Mn ²⁺ and Fe ³⁺ and so, $\mu = 5.92$ for 5 unpaired electrons
174		
	Statement 1:	The conversion of an optically active compound into its enantiomer is called Walden inversion
	Statement 2:	A racemic mixture is optically inactive due to internal compensation
175		
	Statement 1:	Staggered form is less stable than the eclipsed form
	Statement 2:	The conformation in which the bond pairs of two central atoms are very far from one another is called staggered form
176		
	Statement 1:	<i>d-d</i> transition is not possible in $[Sc(H_20)_6]^{3+}$
	Statement 2:	$[Ti(H_20)_6]^{4+}$ is coloured while $[Sc(H_20)_6]^{3+}$ is colourless
177		
	Statement 1:	$CH_3 O$ U $CH_3 - CH - CH_2 - C - OH is 2 method by ten ois said$
	Statement 2:	In poly functional group, the substituent should be given lower number than the principal
178		functional group

	Statement 1:	Geometrical isomerism is also called C is- trans isomerism.
	Statement 2:	Tetrahedral complexes shows geometrical isomerism.
179		
	Statement 1:	In keto-enol tautomerism of dicarbonyl compounds, the enol form is preferred in contrast to the keto-form
	Statement 2:	The enol form is more stable due to resonance
180		
	Statement 1:	$[Ti(H_2O)_6]^{3+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless.
	Statement 2:	<i>d-d</i> transition is not possible in $[Sc(H_2O)_6]^{3+}$.
181		
	Statement 1:	A hydroxy group directly attached to a carbonyl group constitutes a carboxyl group
	Statement 2:	Ester is a family of carboxylic acid derivatives in which – OH group is altered by other group
182		
	Statement 1:	$[Cr(NH_3)_6]^{3+}$ is paramagnetic.
	Statement 2:	$[Cr(NH_3)_6]^{3+}$ shows d^2sp^3 hybridisation.
183		
	Statement 1:	Hydrazine has two N as donor atoms and behaves as a chelating ligand
	Statement 2:	Hydrazine is a neutral ligand
184		
	Statement 1:	CH ₃ is 3 methyl gyclopentane
	Statement 2:	In the numbering, double bonded carbon atom gets preference to the alkyl group in cycloalkenes
		Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

185. Match the complex (in Column I) with the equivalent conductance (in Column II)

	Column-I			Column- II
(A)	[Pt(NH ₃) ₅ Cl]Cl ₃	(1)	229	
(B)	$[Pt(NH_3)_4Cl_2]Cl_2$	(2)	97	
(C)	[Pt(NH ₃) ₃ Cl ₃]Cl	(3)	404	

(D) $[Pt(NH_3)_6]Cl_4$

(4) 523

(5) H-bonding

CODES:

	Α	В	С	D
a)	2	3	4	1
b)	1	4	3	2
c)	3	1	2	4
d)	4	2	1	3

186. Match the complex (in Column I) with its corresponding (ies) (given in Column II)

	Column-I		
(A)	[Ni(DMG)2]	(1)	Chelation
(B)	$Na_{3}[Fe(C_{2}O_{4})_{3}]$	(2)	Paramagnetic
(C)	$[Ni(en)_2]Cl_2$	(3)	Diamagnetic
(D)	Ni(Co) ₄	(4)	Conducting

CODES:

b)

4

	Α	В	С	D
a)	1,2,4	3	1,3,5	1,3,4
b)	1,3,5	1,2,4	1,3,4	3
c)	3	1,3,4	1,2,4	1,3,5
d)	1,2,4	1,3,5	3	1,2,4

2

187. Match the complex (in Column I) with the hybridization of the central ion (in Column II)

		Co	olumn-I			
(A)	$Ni(CO)_4$				(1)	sp^3d^2
(B)	[Ni(CN) ₄]2-			(2)	sp^3
(C)	[Fe(CN) ₆	5]4-			(3)	d^2sp^3
(D)	[MnF ₆] ⁴⁻	-			(4)	dsp^2
COD	ES:					
	Α	В	С	D		
a)	2	4	3	1		

1

3

Column- II

Column- II

c)	1	3	4	2
d)	3	1	2	4

188. Match list I and list II and choose the correct matching codes

	Column-I		Column- II
(A)	$[Ni(CN)_{4}]^{2-}$	(1)	Ti ⁴⁺
(B)	Chlorophyll	(2)	sp^3 ;paramagnetic
(C)	Ziegler-Natta catalyst	(3)	non-planar
(D)	$[NiCl_4]^{2-}$	(4)	Mg ²⁺
(E)	Deoxyhaemoglobin	(5)	Planar
		(6)	dsp ³ ;diamagnetic

CODES:

	Α	В	С	D	Ε
a)	6	4	1	2	3
b)	2	4	1	6	3
c)	2	4	1	6	3
d)	6	4	1	2	3
e)	2	4	3	6	3

189. Match the complex (in Column I) with the geometry (in Column II)

Column-I

- (A) $[Ni(CN)_4]^{2-}$
- **(B)** $[ZnCl_4]^{2-}$
- **(C)** [Fe(CO)₅]
- **(D)** $[Co(NO_2)_6]^{4-}$

CODES	:

	Α	В	С	D
a)	2	3	1	4
b)	3	1	2	5
c)	5	2	3	1
d)	1	4	5	2

Column- II

- (1) Tetrahedral
- (2) Trigonal bipyramidal
- (3) Square planar
- (4) Square pyramid
- (5) Octahedral

190. Match the following

Column-I

(B) 2,3,5-trimethyl hexane

- **(C)** Trimethyl bismuthane
- (D) Bicyclo [4.2.0] octane 1-ol

CODES:

	Α	В	С	D
a)	4	1	2	3
b)	1	2	4	3
c)	2	1	4	3
d)	3	2	4	1

Column- II

(1) $CH_3 - CH(CH_3)CH_2 - CH(CH_3) - CH(CH_3)$ $-CH_3$

(2)
$$CH_3 - CH(CH_3)CH_2 - CH(CH_3) - CH(CH_3)$$

- CH_3

(3)
$$CH_3 - CH(CH_3)CH_2 - CH(CH_3) - CH(CH_3)$$

- CH_2

(4) $CH_3 - CH(CH_3)CH_2 - CH(CH_3) - CH(CH_3)$ $-CH_3$

191. Match the complex (in Column I) with its coprresponding property (ies) (in Column II)

	Column-I		Column- II
(A)	$[Cr(NO_2)_2(NH_3)_2Cl_2]$	(1)	Geometrical isomerism
(B)	[Cr(NH ₃) ₄ Cl ₂]Br	(2)	Ionisation isomerism
(C)	$[Cr(en)_3]^{3+}$	(3)	Optical isomerism
(D)	$[Pt(NH_3)_2Cl_2][Cu(CN)_4]$	(4)	Linkage isomerism

- (4) Linkage isomerism
- (5) Coordinate isomerism

Column- II

CODES:

	Α	В	С	D
a)	1,4	1,2	3	1,4,5
b)	1,2	3	1,4,5	1,4
c)	3	1,4,5	1,4	1,2
d)	1,4,5	1,4	1,2	3

192. Match the complex (in Column I) with the oxidation number of Co (in Column II)

(A)	[Co(NCS)(NH ₃) ₅]SO ₃	(1)	-1
(B)	Na[Co(CO ₄)]	(2)	0

Column-I

Page | 18

(C)	$Na_4[Co(S_2O_3)_3]$	(3)	+1
(D)	$\operatorname{Co}_2(\operatorname{CO})_5$	(4)	+2
		(5)	+3

CODES :

c)

d)

3

	Α	В	С	D
a)	1	2	3	4
b)	5	3	2	1
c)	3	4	5	3
d)	5	1	4	2

2 3 4 1

4 1

193. Match the complex (in Column I) with the type of isomerism (in Column II)

		Co	olumn-I				Column- II
(A)	[Co(NH ₃	$)_4$ Cl ₂]			(1)	Optical	
(B)	cis — [Co	o(en) ₂ Cl ₂]			(2)	Ionisation	
(C)	[Co(en) ₂	(NO ₂)Cl]S	CN		(3)	Coordination	
(D)	[Co(NH ₃]) ₆]Cr(CN)	6]		(4)	Geometrical	
COD	ES :						
	Α	В	С	D			
a)	4	1	2	3			
b)	1	2	3	4			

2

194. Match the compounds given in List-I with their characteristic reactions given in List-II. Select the correct option.

Column-I Colu				Column- II		
(A)	$CH_3(CH_2)_3NH_2$				(p)	Alkaline hydrolysis
(B)	$CH_3C \equiv CH$				(q)	With KOH(alcohol) and CHCl ₃ produces bad smell
(C)	CH ₃ CH ₂ COOCH ₃				(r)	Gives white ppt. with ammoniacal $AgNO_3$.
(D)	CH ₃ CH(OH)CH ₃				(s)	With Lucas reagent cloudiness appears after 5 minutes
COD	ES:					
	A B		С	D		

a)	ii	i	iv	iii
b)	iii	ii	i	iv
c)	ii	iii	i	iv
d)	iv	ii	iii	i

Linked Comprehension Type

This section contain(s) 28 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 195 to -195

Splitting energy (Δ_{0}) can usually be measured from the absorption spectra of the complex ions. In simple cases when light is absorbed by a complex ion, an electron in one of the lower energy orbitals is excited to one of the higher energy orbital. The energy corresponding to the frequency of absorbed light is equal to Δ_o . If value of Δ_o for the complex is in visible region, the complex is coloured and the value of Δ_o lies in ultraviolet or infrared region, the complex is colourless. For octahedral complexes the crystal field stabilization energy is given by $CFSE = [-0.4t_{2g}N + 0.6e_gN']\Delta_o$, where N and N' are number of electrons in t_{2g} and e_g orbitals respectively

195. Among the following pairs of complexes, in which case the Δ_0 value is higher for the first one?

a) $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$	b) $[Co(H_2O)_6]^{2+}$ and $[Co(H_2O)_6]^{3+}$
c) $[Rh(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{3+}$	d) $[Co(NH_3)_6]^{3+}$ and $[Co(CN)_6]^{3-}$

c) $[Rh(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{3+}$

Paragraph for Question Nos. 196 to - 196

Complex compounds are molecular compounds which retain their identities even when dissolved in water. They do not give all the simple ions in solution but instead furnish complex ions. The complex compounds are often called coordination compounds because certain groups called ligands are attached to the central metal ion by coordinate or dative bonds. Coordination compounds exhibit isomerism, both structural and stereoisomerism. The structure, magnetic property, colour and electrical properties of complexes are explained are explained by various theories

196. Generally, a group of atoms can function as a ligand if

- a) They are free radicals
- b) They are either neutral molecules or negatively charged ions
- c) They are positively charged ions
- d) None of the above

Paragraph for Question Nos. 197 to - 197

Compounds in which one carbon atom is common to two different rings are known as "spiro" compounds. The name for a spiro compounds begins with the word spiro followed by the square brackets containing the number of carbon atoms, in ascending order, in each ring connected to the common carbon atom and then by the name of the parent hydrocarbon corresponding to the total number of C-atoms in the rings. The positions of substituents are indicated by numbers, the numbering beginning with the carbon atom adjacent to the common carbon and proceeding first around the smaller ring and then around the larger ring and finally ending on the common carbon atom

197.	is	
The IUPAC name of comp	pound V	
a) spiro (2,4) heptane		b) spiro (1,5) heptane
c) spiro (1,4) heptane		d) spiro (2,5) heptane

Paragraph for Question Nos. 198 to - 198

The organic compound contains more than two similar terminal groups and all such groups are directly attached to the principal chain, then none of these groups forms a part of the principal chain. To name such compounds special suffixes are used and when using these suffixes, the carbon atoms of these terminal groups are not counted in the principal chain. The special suffixes used in these cases are as

Functional group	suffix
-соон	-carboxylic acid
-СНО	-carbaldehyde
-CN	-carbonitrile
-COX	-carbonyl halide
-COOR	- <i>R</i> -carboxylate
-CONH ₂	-carboxamide

198. IUPAC name of CH₃CH(OH)COOH is

a) Carboxypropanol

c) 2-hydroxypropanoic acid

b) α-hydroxy propanoic acidd) Lactic acid

Paragraph for Question Nos. 199 to - 199

Stability of cycloalkanes can be explained on the basis of Baeyer strain theory. This theory is applicable only for cyclopropane, cyclobutane and cyclopentane. Stability of cyclohexane and its derivative can be explained by Mohr's theory. According to this theory cyclohexane exists in two forms chair and boat. The chair form is more stable than the boat form. Every carbon of chair form has an axial and equatorial bonds. Bulky groups are generally present at equatorial position. The preferred conformation of cyclohexane ring is the chain form, but when intramolecular hydrogen bonding is possible between the group 1 and 4 positions the molecule assume a boat form

199. According to Baeyer strain theory which cycloalkane is the most stable?						
a) Cyclohexane	b) Cyclopentane	c) Cyclopropane	d) Cyclobutane			

Paragraph for Question Nos. 200 to - 200

Tautomerism is the phenomenon in which two structural isomers differing in the relative positions of their atoms are spontaneously interconvertable and can exist in dynamic equilibrium. The two forms in tautomeric equilibrium are called tautomers of each other. The interconvertibility of tautomers is a chemical reaction which involves making and braking of bonds. Tautomers are true isomers, and either of the individual tautomeric forms may be isolated

$$CH_{3} - CH_{3} - CH_{3} - CH_{2} = CH_{3} - CH_{3}$$

200. In the keto-enol tautomerism of dicarbonyl compounds the enol form is preferred in contrast to the keto form. this is due to

- a) Rapid chemical exchange
- b) Group rearrangement
- c) Presence of carbonyl group on each side of the chain
- d) Resonance stabilization of enol form

Paragraph for Question Nos. 201 to - 202

The octahedral complex ions $[FeCl_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ are both paramagnetic but the former is high spin and the latter is low spin

Based on the above study, answer the following questions

201. High spin compl	ex [FeCl ₆] ^{3–} has the d-confi	iguration as	
a) $t_{2g}^3 e_g^2$	b) t ⁵ _{2g}	c) $t_{2g}^2 e_g^3$	d) eg

Paragraph for Question Nos. 202 to - 202

The Alsatian-Swiss chemist Alfred Werner pioneered the field of coordination chemistry in the late nineenth century. At that time, a number of compounds of cobalt (III) chloride with ammonia were known, with with gneral formulae

 $CoCl_3 \cdot xNH_3x = 3 \text{ to } 6$

Treatment of these compounds with aqueous HCl acid did not remove the ammonia. However treatment of the compounds with excess of AgNO₃ at 273 K gave white precipitate AgCl in varying ratio depending on the structure. Also each complex had electrical conductivity of varying nature. Based on the above study, answer the following questions

202. Which complex has the	e maximum electrical con	ductivity	
a) CoCl ₃ · 3NH ₃	b) CoCl ₃ · 4NH ₃	c) CoCl ₃ · 5NH ₃	d) CoCl ₃ · 6NH ₃

Paragraph for Question Nos. 203 to - 203

Consider the following reactions

I. $[Co(NH_3)_6]^{3+}(aq) + 6H_3O^+(aq) \rightleftharpoons [Co(H_2O)_6]^{3+}(aq) + 6NH_4^+(aq)$

The products are favoured in the above reaction

II. $[Co(NH_3)_6]^{2+}(aq) + 6H_3O^+(aq) \rightarrow [Co(H_2O)_6]^{2+}(aq) + 6NH_4^+(aq)$

This, reactions (II) takes place with H₂Oin a matter of seconds Based on the above reactions, answer the following questions

203. Select the correct statements

- a) $[Co(NH_3)_6]^{3+}$ thermodynamically and kinetically stable relative to $[Co(H_2O)_6]^{3+}$
- b) $[Co(NH_3)_6]^{3+}$ is thermodynamically unstable but kinetically stable relative to $[Co(H_2O)_6]^{3+}$
- c) $[Co(NH_3)_6]^{3+}$ is thermodynamically and kinetically unstable relative to $[Co(H_2O)_6]^{3+}$
- d) $[Co(NH_3)_6]^{3+}$ is thermodynamically stable but kinetically unstable relative to $[Co(H_2O)_6]^{3+}$

Paragraph for Question Nos. 204 to - 204

The octahedral complex ion $[FeCl_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ are both paramagnetic Answer the following questions

204. Select the correct statements

- a) $[FeCl_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ both are high-spin complex
- b) $[FeCl_6]^{3-}$ is high-spin and $[Fe(CN)_6]^{3-}$ is low-spin complex
- c) $[FeCl_6]^{3-}$ is low-spin and $[Fe(CN)_6]^{3-}$ is high-spin complex
- d) $[FeCl_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ both are low-spin complexes

Paragraph for Question Nos. 205 to - 205

Read the following experiment and answer the questions at the end of it

"A student in 1895 prepared three coordination compounds containing chromium with the following properties

Formula	Colour	CI ⁻ ions in solution
Per formula units		
A. $CrCl_3 \cdot 6H_2O$	Violet	3
B. $CrCl_3 \cdot 6H_2O$	Light greei	n 2
$C. CrCl_3 \cdot 6H_2O$	Dark green	1
205 Which compl	ex has maxii	num molecules of hydration

05. Which complex	has maximum molecules o	i iiyulatioli	
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) Equally

Paragraph for Question Nos. 206 to - 206

Read the following experimental method and answer the questions at the end of it.

A rose-coloured compound has the empirical formula $CoCl_3 \cdot 5NH_3 \cdot H_2O$. Two moles of this compound react with concentrated sulphuric acid to formHCl(g) and one mole of a new compound with empirical formula $Co_2(SO_4)_3 \cdot 10NH_3 \cdot 5H_2O$

When this new compound is dried at room temperature, it loses three moles of water per mol of $Co_2(SO_4)_3 \cdot 10NH_3 \cdot 5H_2O$

206. What is the formula rose-coloured compound

a) $[Co(NH_3)_4Cl]Cl_2 \cdot H_2O$	b) [Co(NH ₃) ₅ H ₂ O]Cl ₂
c) $[Co(NH_3)_3(H_2O) \cdot Cl_2]Cl$	d) None of these

Paragraph for Question Nos. 207 to - 207

Mr. William isolated two complexes and in chemical abstract, he reported.

"A metal complex having composition $Cr(NH_3)_4Cl_2Br$ has been isolated in two forms (*A*) and (*B*) The form (*A*) reacts with AgNo₃ to give a white precipitate readily soluble in dilute aqueous ammonia, where (B) gives a pale yellow precipitate soluble in concentrated ammonia

Read the above report from chemical abstract and answer the questions at the end of it

207. Complex *A* and *B* are respectively a) [Cr(NH₃)₄Cl₂]Br, [Cr(NH₃)₄Br]Cl₂

c) $[Cr(NH_3)_4ClBr]Cl, [Cr(NH_3)_4Cl_2]Br$

b) [Cr(NH₃)₄Br]Cl₂, [Cr(NH₃)₄Cl₂]Br d) [Cr(NH₃)₄Cl₂]Br, [Cr(NH₃)₄ClBr]Cl

Paragraph for Question Nos. 208 to - 208

Study the following short write up and answer the questions at the end of it *A*, *B* and *C* are three complexes of chromium (III) with the empirical formula $H_{12}O_6Cl_3Cr$, All the three complexes have water and chloride ions as ligands complex *A* does not react with concentrated H_2SO_4 , whereas complexes *B* and *C* lose 6.75% and 13.5% of their original weight respectively, on treatment with concentrated H_2SO_4

208. Complex <i>A</i> is	
a) $[Cr(H_2O)_6]Cl_3$	b) $[Cr(H_2O)_5Cl]Cl_2 \cdot H_2O$
c) $[Cr(H_20)_4Cl_2]Cl \cdot 2H_20$	d) None of these

Paragraph for Question Nos. 209 to - 209

Consider the following experiments and answer the questions at the end of it (A) When $Fe(CN)_2$ solution is treated with KCN solution, species formed, no longer, gives tests of Fe^{2+} and CN^-

(*B*) When K_2SO_4 solution is treated with $Al_2(SO_4)_3$ solution, species formed give tests of K^+ , Al^{3+} and SO_4^{2-}

209. Species formed in exp	periment A does not give te	st ofFe ²⁺ andCN ⁻ . It is due	e to formation of
a) $K_2[Fe(CN)_4]$	b) $K_2[Fe(CN)_5]$	c) $K_3[Fe(CN)_6]$	d) $K_4[Fe(CN)_6]$

Paragraph for Question Nos. 210 to - 210

Following experiment has been given to identify isomer. Read the Experiment and answer the questions A compoundCo(en)₂(NO₂)₂Cl has been prepared in a number of isomeric forms. One form undergoes no reaction with AgNO₃ or (en) and is optically inactive .A second form reacts with AgNO₃but not with (en) and is optically active and reacts with bothAgNO₃ and (en), complexes are

cis-bis (ethylenediamine)dinitrocobalt (III) chloride

trans-bis (ethylenediamine)dinitrocobalt (III) chloride

trans-chloronitrobis(ethylenediamine)cobalt (III) nitrite

210. First form of the complex is						
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) None of these			

Paragraph for Question Nos. 211 to - 211

A research-guide instructed his two students to synthesize complex $[Co(NH_3)_5(NO_2)]Cl_2$ They synthsised complex with identical molecular formula. molar mass, geometry and spin, but they differed in colour Based on the above facts answer the following questions.

211. The difference in colour is due to

a) Optical isomerism	b) Geometrical isomerism
c) Linkage isomerism	d) Nuclear isomerism

Paragraph for Question Nos. 212 to - 212

Read the following short write-up and answer the questions at the end of it. One cationic complex has two isomers. *A* and .Each has $oneCo^{3+}$, fiveNH₃ $oneBr^{-}and SO_4^{2-}$ stoichiometrically. *A* given white ppt withBaCl₂while *B* give yellow ppt with AgNO₃

212. A can be

a) [Co(NH ₃) ₅]BrSO ₄	b) [Co(NH ₃) ₅ SO ₄]Br
c) [Co(NH ₃) ₅ Br]SO ₄	d) $[Co(NH_3)_4SO_4]Br \cdot NH_3$

Integer Answer Type

- 213. Total number of orbitals used in hybridization of octahedral complex $[Fe(CN)_6]^{3-}$ is.....
- 214. Number of aromatic rings in ferrocene is......
- 215. $[Co(NH_3)_6]^{3+}$ has..... unpaired electron (s) in t_{2g} orbitals
- 216. Ambidentate ligands out of Py, en, CNS, CN, CNO, $C_2O_4^{2-}$, NO₂, are
- 217. $CrCl_3H_{12}O_6$ loses 13.5% water on treatment with conc. H_2SO_4 . Number of water molecule lost is
- 218. Effective atomic number of Ni in Ni(CO)_x is 36. Thus, x = ...
- 219. Ionisable chloride ions in $CoCl_5 \cdot 4NH_3$ are.....
- 220. In the high spin complexes of Cr^3 number of unpaired electron in t_{2g} orbitals is.....
- 221. Magnetic moment of a complex is 4.9 BM. Thus, unpaired electron(s) may be.....
- 222. Nickel dimethylglyoximate is stable due to chelation. Chelate ring(s) is/are.....
- 223. EDTA is a multidentate ligand. Its deniticity (multicity) is......
- 224. *B* in question (4) is.....
- 225. The volume (in mL) of 0.1 M AgNO₃ for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of [Cr(H₂O)₅Cl]Cl₂ as silver chloride is.....

226. Ethylenediamine displaces H_2O in the complex $[Fe(H_2O)_6]^{3+}$ in three steps

 $[Fe(H_20)_6]^{3+} + 3 en \rightarrow [Fe(en)_3]^{3+} + 6H_20$ Stepwise formation constants are $\log k_1 = 4.34$ $\log k_2 = 3.31$ $\log k_3 = 2.05$ Overall formation constant is $A \times 10^B A$ is.....

- 227. There are electron in $e_{\rm g}$ orbitals is $[{\rm CoF}_6]^{3-}$
- 228. Square-planar $[Ni(CN)_4]^{2-}$ uses.... *d*-orbital(s) in hybridisation
- 229. Total number of geometrical isomers for the complex [RhCl(CO)(PPh₃)(NH₃)] is.....
- 230. CFSE of high-spin d^5 -Mn²⁺ complex is.....
- 231. EDTA⁴⁻ is ethylenediamine tetraacetate ion. The total number of N Co O bond angles in [CO(EDTA)]⁻ complex ion is......
- 232. There are..... electron in t_{2g} orbitals in $[CoF_6]^{3-}$
- 233. Total number of ions due to ionization of the complex $CoCl_3 \cdot 6H_2O$ is.....

9.COORDINATION COMPOUNDS

					:	ANS	W	ER K	EY:						
1)	а	2)	С	3)	d	4)	а		2)	а	3)	а	4)	b	
5)	С	6)	b	7)	b	8)	b	5)	d	6)	a	7)	a	8)	b
9)	d	10)	С	11)	С	12)	d	9)	С	10)	d	11)	С	12)	С
13)	а	14)	d	15)	b	16)	a	13)	С	14)	а	15)	а	16)	b
17)	а	18)	а	19)	а	20)	b	17)	b	18)	d	19)	а	1)	С
21)	а	22)	b	23)	d	24)	b		2)	b	3)	а	4)	а	
25)	b	26)	С	27)	С	28)	С	5)	b	6)	С	7)	а	8)	d
29)	С	30)	С	31)	а	32)	b	9)	а	10)	С	1)	С	2)	b
33)	С	34)	С	35)	b	36)	С		3)	а	4)	С			
37)	С	38)	b	39)	С	40)	b	5)	b	6)	d	7)	a	8)	d
41)	b	42)	b	43)	С	44)	b	9)	b	10)	b	11)	С	12)	b
45)	С	46)	d	47)	b	48)	С	13)	С	14)	а	15)	d	16)	C
49) - 0)	b	50)	c	51)	a	52)	a	17)	C	18)	c	1)	6	2)	2
53)	С	54) • • •	b	55)	b	56)	a		3)	0	4)	4	0		•
57)	a	58J	C	59J	a	60)	b	5)	2	6) 10)	4	7)	3	8)	3
61) (5)	C h	62) (()	d L	63) (7)	a h	64) (0)	a	9) 12)	4	10)	4	11)	6	12)	9 1
65J	D	66J 70)	D	67J 71)	D	68J 72)	C J	13)	6	14)	5	15)	2	16)	1
09J 72)	C	70J 74)	d h	/1) 75)	C	74) 76)	a	1/J 21)	3	18)	0	19)	8	20)	2
73J 77)	a h	74) 79)	0	73J 70)	ι 2	70J 90)	c c	21)	4						
81)	d	70J 82)	a h	79) 83)	a a	84)	t h								
85)	u h	86)	C C	87)	a a	88)	и а								
89)	C	90)	a	91)	d	92)	h								
93)	c	94)	d	95)	c	96)	b								
97)	C	98)	b	99)	d	100)	b								
101)	b	102)	c	103)	d	104)	a								
105)	а	106)	а	107)	b	108)	d								
109)	d	110)	а	111)	с	112)	С								
113)	d	114)	С	115)	а	116)	a								
117)	d	118)	b	119)	b	120)	d								
121)	b	122)	a	123)	d	124)	d								
125)	С	126)	d	127)	С	128)	d								
129)	а	130)	а	131)	d	132)	С								
133)	b	134)	d	1)	С	2)	b								
	3)	d	4)	a,c											
5)	a,b,d	6)	b,d	7)	a,d	8)	С								
9)	a,d	10)	a,d	11)	a,b,c,d	12)									
(0)	a,b,d														
13)	b,c,d	14)	b	15)	a,b,c	16)									
17)	b,c,d	10)	h a	10)	.	20)									
17)	D,C,A	18)	D,C	19)	c,a	20)									
21)	a,D,A	2 21	ha	22 1	0	241									
21 J	U,C a h a	22J	U,C	23J	U	24J									
25)	a,u,c a b c d	26)	a h	27)	1	281									
233	a, v, c, u a h c	201	a, U	<u> </u>	a	20]									
201	a, u, u a h d	30)	C	31)	abc	1)	c								
<u> </u>	ajuju	50)	L	51)	a, D, C,	1)	L	l							

	$[Ni(CN)_4]^{2-} dsp^2$ square planar diamagnetic
	$[NiCl_4]^{2-}sp^3$ tetrahedral paramagnetic
10	(c)
	[CoCl ₆] ^{4–}
	Oxidation number of cobalt = $+2$
	CN of cobalt = 6
	$Co^{2+} = [Ar] 3 d^7$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	hence, no pairing sp^3d^2
	Hence, no pairing
	It is thus paramagnetic and high spin complex
	Thus, (I) and (IV) are correct
11	(c)
	$[Ni(CN)_4]^{2-}$: dsp^2 square planar
	$Ni(CO)_4$: sp^3 tetrahedral
12	(d)
	Ligand strength is in order
	$Py < Br^- < NH_3$
	Thus, replacement of Cl [–] ligands by above ligands
	is in same order
13	(a) $(2 \times 1)^{1/2} = 2 \times 1 \times 10^{1/2} = 10^{1/2}$
	(a) $K_2[PtCl_6] \rightleftharpoons \underbrace{2K' + [PtCl_6]^2}_{Thursday}$
	(b) $PtCl_4 \cdot 2NH_3 \equiv [PtCl_4(NH_3)_2] \rightleftharpoons$ no ionization
	$\begin{array}{l} \text{One molecule} \\ \text{(c) PtCl} & \text{(3NH)} = \left[\text{Pt(NH)} \right] \text{(c) } \left[\text{(c)} \right] \rightarrow \end{array}$
	$\underbrace{[Pt(NH_3)_3Cl_3]^+ + Cl^-}_{I_1}$
	(d) $PtCl_4 \cdot 5NH_2 \equiv [Pt(NH_2)_{\epsilon}Cl]Cl_2 \rightleftharpoons$
	$[Pt(NH_3)_5Cl]^{3+} + 3Cl^-$
	four ions Conductance of number of ions
	Maximum conductance is of (d) and least that of
	(b)
14	(d)
	$[Co(en)_3]^{3+}$ is most stable due to chelate
	formation
	Thus, highest <i>K_f</i> value
15	(b)
	It does not lack symmetry
17	(a)
	Due to different n linkage, of NO_2 (metal linked to
	Co) and ONO (metal linked to Co) they differ in
10	colour
18	(a)
	AIIIOII IS $ PI(N\Pi_3)_2(UN)_2(SU_4)(U_2) $

25 **(b)** 1 1 \uparrow \uparrow \uparrow +4 +0 -2 - 2 - 1 = -1Cation is K⁺ $K[Pt(CN)_2(O_2)(SO_4)(NH_3)_2]$ 19 (a) Complex ligand Unpaired Electrons I. $[Fe(H_2O)_6]^{2+}H_2O$ –weak 4 II. $[Fe(CN)_6]^{3-}CN^- - strong 1$ III. $[Fe(CN)_6]^{4-}CN^{-} - strong = 0$ IV. $[Fe(H_2O)_6]^{3+}H_2O - weak = 5$ Thus, IV > I > II > III20 **(b)** 5. $Mn^+ =$ $3d^5$, $4s^1$. In presence of CO effective configu $3d^{6}, 4s^{0}$. Three lone pair of back bonding with vacant orbital of C in CO. $Fe^0 =$ 6. $3d^6$, $4s^2$. In presence of CO effective configu $3d^{8}$. Four lone pair for back bonding with CO. 34 7. $Cr^0 = 3d^4$, $4s^2$. Effective configuration = $3d^{6}$. Three lone pair for back bonding with CO. 35 $V^- = 3d^4$, $4s^2$. Effective configuration = 8. $3d^{6}$. Three lone pair for back bonding with CO. Maximum back bonding in $Fe(CO)_5$, therefore CO bond order is lowest here. 22 **(b)** When ligands are arranged in ascending order of crystal field splitting energy, Δ , they produce a spectrochemical series. In comparison to H_2O , Cl is strong σ -donor and good π -acceptor, therefore it is a strong ligand 36 than H₂O. Hence, in the spectrochemical series Cl is above than water. (d) 37

Unpaired electron (a) $[Cr(NH_3)_6]^{3+}(d^2sp^3)$ 3 (b) $[CoF_6]^{3-}(sp^3d^2)$ 4 (c) $[Co(NH_3)_6]^{3+}d^2sp^3$ 0 (d) Ni(CO)₄ sp^3 0 26 (c) $[Pt(NH_3)_5Cl]^{3+}Cl^{-}$ +4-1 Thus, complex is $[Pt(NH_3)_5Cl]Cl_3 \rightleftharpoons \underbrace{[Pt(NH_3)_5Cl]^{3+} + 3Cl^-}_{four ions}$ 27 **(c)** $[Co^{III}(en)_2Cl_2]Cl$ It has one ionisable Cl- $Cl^- + Ag^+ \rightarrow AgCl$ 100 mL of 0.024 M complex $\equiv 2.4 \times 10^{-3}$ mol complex $\equiv 2.4 \times 10^{-3} \text{ mol AgCl} = 0.0024$ 30 (c) $[Cr(H_20)_3Cl_3] \cdot H_20$ $[Cr(H_20)_4Cl_2]$ Oxidation number = +3and CN = 6 of Cr is satisfied by both 31 (a) EDTA is hexadentate (c) [*M*(*abcd*)] complex is square planar so will have three geometrical isomers. (b) In Hg[Co(SCN)₄], Co is present as Co^{2+} . The configuration of Co^{2+} is given as following $[Ar]3d^7 4s^0$ $Co^{2+} = 1$ unpaired electrons (n): Magnetic moment $(\mu) = \sqrt{n(n+2)}$ $\sqrt{3(3+2)} = \sqrt{15}$ BM (c)

 $[Fe(H_20)_6]^{3+} \rightleftharpoons [Fe(H_20)_6(0H^-)]^{2+} + H^+$ H⁺ ion donor thus, Bronsted-Lowry acid

(c)

Cl⁻ is a weak ligand hence

23

Complementary colour of red is green

 $[MoCl_6]^{3-} sp^3 d^2$ hybridisation and with unpaired 44 (b) electrons is paramagnetic (en) is a strong ligand DMG, en: Bidentate hence $[Co(en)_3]^{3+} - d^2sp^3$ hybridization and EDTA : Hexadentate with all paired electrons is diamagnetic py: Unidentate 38 **(b)** 46 **(d)** Complexes differ in nature of lonisation mmol of complex $=30 \times 0.01 = 0.3$ Also, 1 mole of $[Cr(NH_3)_5Br]Cl \xrightarrow{Ag^+} AgCl \downarrow$ complex $[Cr(H_2O)_5Cl]Cl_2$ gives only two moles of chloride ion when dissolved in solution. White ppt. $[Cr(H_2O)_5Cl]Cl_2 \rightarrow [Cr(H_2O)_5Cl]^{2+} + 2 Cl^{-}$ $[Cr(NH_3)_5Cl]Br \xrightarrow{Ag^+} AgBr \downarrow$ \Rightarrow mmol of Cl⁻ ion produced from its 0.3 mmol Yellow ppt. =0.639 (c) Hence, 0.6 mmol of Ag⁺ would be required for Complex is precipitation. $[Co(NH_3)_4Cl_2]Cl \rightleftharpoons [Co(NH_3)_4Cl_2]^+ + Cl^ \Rightarrow$ 0.60 mmol of Ag⁺=0.1 M × V (in mL) 40 **(b)** \Rightarrow V=6 mL (a) In MnO_2 , FeCl₃oxidation states of Mn and Fe 47 **(b)** are +4 and +3 respectively. The ionisation isomer of (b) In $(MnO_4)^-$, CrO_2Cl_2 oxidation states of Mn $[Cr(H_2O)_4Cl(NO_2)]Cl$ is $[Cr(H_2O)_4Cl_2](NO_2)$ and Cr are +7 and +6 respectively. because of exchanging of ligand and counter ions. (c) In $[Fe(CN)_6]^{3-}$, $[Co(CN)_3]$ oxidation states of 48 (C) Fe and Co are +3 and +3respectively. $[Co(NH_3)_4(CO_3)]NO_3$ (d) $[NiCl_4]^{2-}$, $[CoCl_4]^{-}$ oxidation states of Ni and No chelation Co are +2 and +3 respectively. 50 (c) 41 **(b)** Given complex is shown as $Ni^{2+} + 4CN^{-} \rightarrow [Ni(CN)_4]^{2-}$ NH_3 Here Ni^{2+} has d^{8-} configuration with CN^{-} as H₃N strong ligand. H₃N $3d^8$ ----- PV, --SV, ----- dual 52 (a) d^8 -configuration in strong ligand field gives dsp^2 hybridisation, hence square planar geometry. (a) $Ni^{2+} + 4Cl^{-} \rightarrow [NiCl_4]^{2-}$ Here Ni²⁺ has d^8 -configuration with CN⁻ as weak Chelate complex thus more stable than ligand. $[Ni(NH_3)_6]^{2+}$ 54 **(b)** Ligands are -NO₂, metal linked to N d^8 -configuration in weak ligand field gives -ONO, metal linked to O *sp*³hybridisation, hence tetrahedral geometry. 55 (b) Ni^{2+} with H_2O forms $[Ni(H_2O)_6]^{2+}$ complex and $Fe^{3+} + 3C_2O_4^{2-} \rightarrow [Fe(C_2O_4)_3]^{3-}$ H_2O is a weak ligand. soluble 3d56 (a) 11 11 11 $[Co(NH_3)_3Cl_3] \rightleftharpoons$ no ionization Thus, is the molecular complex

```
57 (a)
```

EDTA (in the form of dihydrogen salt) forms insoluble compound with $Pb^{2+}and$ is thus

Therefore, $[Ni(H_2O)_6]^{2+}$ has octahedral geometry.

drained out

(c)

$$Co^{2+} = [Ar]3d^7$$

 $1 1 1 1 1 e_g$
 $1 1 t_{2g} - \frac{4}{5} \Delta_o$

59 **(a)**

58

$$Cr^{3+} + 3(C_2O_4)^{2-} \rightarrow K^+[Cr(C_2O_4)_3]^{3-}$$

Thus, complex is K₃[Cr(C₃O₄)₃]

60 **(b)**

O₃C NH₃ O₃C Co NH₃

Mirror -images are not superimposable

62 **(d)** +2 ↓

 \downarrow K₄ [Fe(CN)₆]

Cation anion

63 **(a)**

 $Ni(CO)_4$ sp^3 diamagnetic $[Ni(CN)_4]^{2-}$ dsp^2 diamagnetic $[NiCl_4]^{2-}$ sp^3 paramagnetic

64 **(a)**

 $[Cu(CN)_4]^{3-}$ is stable, does not ionize $[Cd(CN)_4]^{2-}$ is unstable, ionizes to form Cd²⁺, thus CdS is precipitated

65 **(b)**

EAN rule is not followed in which EAN of metal \neq EC of nearest inert gas

In this case Kr

Complex	Z	ON	Electrode from ligand (L)	EAN = Z - (ON) + L
(a)	29	+1	8	36
(b)	24	+3	12	33
(c)	26	+2	12	36
(d)	28	0	8	36

 $[Cr(NH_3)_6]^{3+}$ does not follow EAN rule

69 **(c)**

 $[Fe(O_2)(CN)_4(Cl)]^{4-}$ $\uparrow \downarrow \downarrow \downarrow \downarrow$ $+2 \quad 2x \quad -4 \quad -1 = -4$ Thus, oxygen is as superoxo

70 **(a)**

 $[Co(H_2O)_6]^{2+} + 6Cl^- \rightarrow [CoCl_6]^{4+} + 6H_2O$ Cl⁻ replaces H₂Oligands and intense blue colour is developed Superoxide (-1) \downarrow $[Pt(O_2)(en)_2(Br)]^{2+}$ \uparrow Bidentate Thus, ON = +4 CN = 6

72 **(d)**

 $CuSO_4 \cdot 5H_2Oexists as[Cu(H_2O)_4]SO_4 \cdot H_2O$ Ionic bonding between $[Cu(H_2O)_4]^{2+}$ and SO_4^{2-} Covalent bonding in SO_4^{2-} and $H_2Ocoordinate$ bonding in complex between Cu^{2+} and H_2O

73 (a)

	Z	ON	Electron from ligand (L)	EAN Z - (ON) + L
$Ni(CO)_4$	28	0	8	36
$[Fe(CN)_{6}]^{4-}$	26	2	12	36
$[Ni(en)_2]^{2+}$	28	2	8	34
$[Fe(H_20)_6]^{2+}$	26	2	12	36
$[Co(CN)_{6}]^{3-}$	27	3	12	36
$[Fe(CN)_{6}^{3-}]$	26	3	12	35
$[Sc(H_20)_6]^{3+}$	21	3	12	30

74 **(b)**

(A) octanehdral (3) $[Fe(CN)_6]^{4-} d^2 s p^3$ (B) square planar (1) $[Ni(CN)_4]^{2-} ds p^2$ (C) Tetrahedral (2) $Ni(CO)_4 s p^3$

$$Zn^{2+} + 4NH_3 \rightleftharpoons [Zn(NH_3)_4]^{2+}$$

$$K = \frac{[Zn(NH_3)_4]^{2+}}{[Zn^{2+}][NH_3]^4}$$

$$\frac{[Zn^{2+}]}{[Zn(NH_3)_4]^{2+}} = \frac{\text{uncomplexed zinc ion}}{1}$$

$$= \frac{1}{K[\text{NH}_3]^4} = \frac{1}{3 \times 10^9 \times (10)^4}$$
$$= 3.33 \times 10^{-14}$$

78 **(a)**

 $[Cr(en)_3]^{3+}$ exists as enantiomer and thus 1 : 1mixture of two optically active forms results in the formation of recemic mixture

79 **(a)**

1. $[CO(NH_3)_6]Cl_3$

- 2. Double salt
- 3. Simple salt
- 4. Double salt

84 **(b)**

It shows linkage isomerism

85 **(b)**

71 **(c)**

(b) $\operatorname{CoCl_3} \cdot 5\operatorname{NH_3} \xrightarrow{\operatorname{AgNO_3}} 2 \mod \operatorname{AgCl}$ 1 mol Thus, 2 Cl are outside coordinate sphere HCl No $\operatorname{NH_4^+}$

Thus, are inside coordinate sphere Thus, complex is[Co(NH₃)₅Cl]Cl₂

86 **(c)**

IV II $[Pt(NH_3)_6]^{4+}[Pt Cl_4]^{2-}$ Thus, complex is $[Pt(NH_3)_6][PtCl_4]_2$

87 (a)

It acid is weak, its conjugate base is strong ligand HI > HCN acid strength I⁻ < CN^- ligand strength NH₃ > H₂O ligand strength

.....

88 **(a)**

$$M + L \rightleftharpoons ML, \quad K_1 = \frac{[ML]}{[M][L]} = 4$$
$$M + L \rightleftharpoons ML_2, \quad K_2 = \frac{[ML_2]}{[ML][L]} = 3$$

$$M + 2L \rightleftharpoons ML_2K_3 = \frac{[ML_2]}{[M][L]^2}$$

$$K_1 = K_1 K_2 = 12$$
 (a)

CO is a strong ligand, all the six electrons of the valence shell of Cr is paired and spin only magnetic moment=0

91 **(d)**

95 (c)

90

Unpaired electrons (a) $[Fe(CN)_6]^{4-}$ 0 $[Fe(H_20)_6]^{2+}$ 4 Thus, they differ in magnetic moment (b) $[Ni(CN)_4]^{2-} dsp^2$ diamagnetic $Ni(CO)_4 sp^3$ diamagnetic Thus. true (c) Unpaired electron d^2sp^3 $[Fe(CN)_{6}]^{4-}$ 4 d^2sp^3 $[Co(NH_3)_6]^{3+}$ 4 Thus, true 92 **(b)** $\dot{N}i$ $\dot{e}n]^{2+}$ [en dsp^2 , CN of Ni = 4 94 (d) $Ag_2S + CN^- \rightarrow [Ag(CN)_2]^ AgBr + 2S_2O_3^{2-} \rightarrow [Ag(S_2O_3)_2]^{3-} + Br^{-}$ In photographic plate

FeSO₄ + 6KCN \rightarrow K₂SO₄ + K₄[Fe(CN)₆] 96 **(b)** [Fe(H₂O)₆]³⁺ sp^3d^2 (H₂O being weak ligand) Four unpaired electrons [Fe(CN)₆]⁴ d^2sp^3 CN⁻ being strong ligand no unpaired electron both have octahedral geometrical but differ in colour 98 **(b)** (b) $\begin{bmatrix} Py \\ HOH_2N \end{bmatrix} \begin{bmatrix} Py \\ NH_3 \\ O_2N \end{bmatrix} \begin{bmatrix} Py \\ NH_2OH \end{bmatrix}$

$$\begin{bmatrix} HOH_2N & HH_3 \\ O_2N & Pt \\ III & IV \\ HOH_2N & Pt \\ IV \end{bmatrix}$$

II and III, IV and V are identical

99 (d) [Cu(H₂O₄)]SO₄. H₂O coordination number of Cu is 4.
100 (h)

I.
$$Ag_2S + CN^- \rightarrow [Ag(CN)_2]^-$$

II. Ni + 4CO $\rightarrow [Ni(CO)_4]$
III. $AgBr + 2S_2O_2^{2-} \rightarrow [Ag(S_2O_2)_2]^{3-}$

101 (b)

$$Fe^{3+} + [Fe^{II}(CN)_6]^{4-} \rightarrow Fe^{2+} + [Fe^{III}(CN)_6]^{3-}$$

104 (a)

$$[\mathrm{Cr}(\mathrm{H}_2\mathrm{O})_6]\mathrm{Cl}_3 \rightleftharpoons [\mathrm{Cr}(\mathrm{H}_2\mathrm{O})_6]^{3+} + 3\mathrm{Cl}^{-1}$$

107 **(b)** $[NiCl_4]^{2-} sp^3 - tetrahedral$ Cl^- being a weak ligand

108 (d) $[Co(NH_3)_5Cl]Cl_2 \rightleftharpoons \underbrace{[Co(NH_3)_5Cl]^{2+} + 2Cl^-}_{y=3}$

Van't Hoff factor (number of ions per mole complex) i = i + (y - 1)x = 1 + 2x = 3(x = 1)Thus, osmotic pressure $\pi = MSTi = 1 \times 0.0821 \times 300 \times 3 = 73.89$ atm 109 (d) II does not form enantionmers 110 (a) Octahedral Co(NH₃)₄Br₂Cl shows ionisation and

geometrical isomerism.

In ionisation isomerism ligands show different coordination sphere and the anions present outside the coordination sphere. These are exchanged with each other as follows $Co(NH_3)_4Br_2Cl \rightleftharpoons [Co(NH_3)_4Br_2]^+ + Cl^-$ I $[Co(NH_3)_4BrCl]Br \rightleftharpoons [Co(NH_3)_4BrCl]^+ + Br^-$ II

In geometrical isomerism, coordination number of central atom (cobalt) is six and shape is octahedral, so it shows following geometrical isomers.

111 **(c)**

ON of Co = +3 and CN of Co = 6

- (a) $[\operatorname{Co}(\operatorname{NH}_3)_6]\operatorname{Cl}_3 \rightleftharpoons [\operatorname{Co}(\operatorname{NH}_3)_6]^{3+} + 3\operatorname{Cl}^-$
- (b) $[Co(NH_3)_5Cl]Cl_2 \rightleftharpoons [Co(NH_3)_5Cl]^{2+} + 2Cl^{-}$
- (c) $[Co(NH_3)_4Cl_2]Cl \rightleftharpoons [Co(NH_3)_4Cl_2]^+ + Cl^-$
- Monovalent cation (d) $[Co(NH_3)_3Cl_3] \rightleftharpoons$ no ionisation
- 113 (d)

 $[Ni(Cl)_4]^{2-}$ oxidation state of Ni is +2 So, configuration of

$$Ni^{2+} = 1s^2, 2s^22p^6, 3s^23p^63d^8$$

In Ni²⁺ 3d 4s 11 11 1

In $[NiCl_4]^2$ 1, 1, 1, 1, 1 × × × × × ×

 sp^3 - hybridisation

Thus, due to sp^3 -hybridisation of Ni²⁺ in $[NiCl_4]^{2-}$, the shape of $[NiCl_4]^{2-}$ is tetrahedral.

114 **(c)**

IUPAC name is tetraammine nickel (II) – tetrachloronickelate (II).

115 **(a)**

 $H_2 0 < NH_3 < NO_2$ ligand strength and energy. In square planar as in $[Ni(CN)_4^{2-}]$, hybridisation is dsp^2 thus all electrons are paired Magnetic moment = 0 In octahedral geometry as in $[NiCl_6]^{4-}$, hybridization is sp^3d^2 Unpaired electrons (N) = 2Magnetic moment = $\sqrt{N(N+2)}BM$ = $\sqrt{8}$

$$= 2.83 \text{ BM}$$
116 (a)
$$E = hv = \frac{hc}{\lambda}$$
hc

 $\therefore \lambda = \frac{1}{F}$

Weaker the ligands, smaller the energy difference, hence larger the value of λ

117 **(d)**

```
en is bidentate ligand
      [Pt(en)_2Cl_2]
      11
           2
      4
      Thus, six
118 (b)
      [Cr(EDTA)]<sup>-</sup>
      EDTA = Hexadentate
      Z = 24
      ONof Cr = +3
      Thus, (EAN) of Cr = 24 - 3 + 2 \times 6 = 33
      [Co(en)_3]^{3+}
      en = bidenate
      Z = 27
      ON of Co = +3
      EAN of Co = 27 - 3 + 12 = 36
      [Fe(C_2O_4)_3^{3-}]
      C_2 O_4^{2-} = bidentate
     Z = 26
      ON of Fe = +3
      EAN of Fe = 26 - 3 + 12 = 35
      [Ni(CN)_4]^{2-}
     CN^{-} = monodentate
      Z = 28
      ON of Ni = +2
      EAN of Ni = 28 - 2 + 8 = 34
121 (b)
      (b)
      Two chlorine satisfy (PV)
      Two chlorine satisfy (PV) and (SV)
      Two en satisfy (SV)
      Since,(en) is bidentate,
      Thus, PV = 4, SV = 6
      Note C.N. = SV
      O.N. = PV
122 (a)
     \operatorname{Fe}^{3+} + [\operatorname{Fe}^{\mathrm{II}}(\operatorname{CN})_4]^{4-} \to \operatorname{Fe}^{\mathrm{III}}[\operatorname{Fe}^{\mathrm{II}}(\operatorname{CN})_6]^{-}
      Prussian blue
```

124 (d)

```
[Co(NH_3)_5SO_4]Br \rightleftharpoons [Co(NH_3)_5SO_4]^+ + Br^-
                                                 Yellow ppt.
                                                 With AgNO<sub>3</sub>
[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}
                                            ↑
                                                 White ppt.
                                                 With BaCl<sub>2</sub>
```

125 (c)

 Fe^{3+} + $6NH_3 \rightarrow [Fe(NH_3)_6]^{3+}$ Lewis acid Lewis base

128 (d)

In which cation and anion both are complexes

129 (a)

Species with all paired electrons is diamagnetic

131 (d)

Fe²⁺changes to brown-coloured ring complex (b) NO \rightarrow NO⁺ + e^{-}

 $Fe^{2+} + e^- \rightarrow Fe^+$

(c)
$$Fe^{2+}$$
 [Ar] $3d^{6}$ 1 1 1 1 1
 Fe^{+} [Ar] $3d^{7}$ 1 1 1 (1 1)

Three unpaired electrons

Magnetic moment = $\sqrt{N(N+2)} = \sqrt{15} =$ 3.87 BM

Thus, (a),(b) and (c) are true

139 (a,b,d)

F⁻, Cl⁻ and OH⁻ are weak field ligands usually form high spin complexes. CN_2^- and NO_2^- are strong field ligands usually form low spin complexes, $[Ni(CO)_4]$ is low spin complex

143 (a,d)

 $K_4[Fe(CN)_6]$ gives blue colour with Fe^{2+} ions due to $Fe_2[Fe(CN)_6]$ and also gives chocolate precipitate with Cu²⁺ due to copper ferrocyanide formation

146 (a,b,d)

Three names and formulas are correctly matched $K_3[Cr(C_2O_4)_3] - Potassium trioxalatochormate$ (III)

 $K[Pt(NH_3)Cl_5] - Potassium$ amminepentachloroplantinate (IV) $[Ag(CN)_2]^-$ – Dicyanoargentate (I) ion

147 (b,c,d)

 $(C_6H_5)_2C = NOH$ can't exist in syn and anti forms due to molecular symmetry because of the presence of two identical C₆H₅ groups

149 (a,b,c)

CH2-CH-CH2-COCI COCI COCI

Alkanedinitrile \Rightarrow pentanedinitrile

 \Rightarrow 3-cyanopentanedinitrile

150 (b,c,d)

 $CH_3 - C \equiv C - CH_3$ can be named as but-2-yne dimethyl acetylene or crotonylene

151 (b,c,d)

(b) Alkene with even number of carbon atoms are non-polar so, these are optically active

(c) $CH_3 - CH(D) - COOH$ molecule contains one chiral carbon atom thus, it is optically active

³ is non-polar and does not contain any symmetric element thus, optically active

152 (b,c)

A meso compound has minimum two chiral centres and it has a plane of symmetry and it is optically inactive

153 (c,d)

The octahedral complexes having electronic configuration d^1 to d^3 are inner orbital complexes, while, those which having electronic configuration d^8 to d^{10} are outer orbital complex 158 (a,b,c)

Isobutylene is not a cyclic compound H₃C

162 (a,b,c)

For Fischer's projection to be drawn bring the wedge-edge in correct visual point. The compound can also be represented as

163 (a,b,d)

Metals in carbonyl complexes and metal atoms as such have zero oxidation state

166 (c)

-COOH is the principal group while - CN is the substituent group

167 **(a)**

In chiral centre, chiral axis and chiral plane, if any one is present, the molecule will be optically active

168 **(a)**

F⁻ ion is weak field ligand and it forms outer orbital complex as it cannot force the electrons to pair up.

169 **(b)**

Trivalent cations, as a group are more acidic than divalent cations and most monovalent cations have negligible acidic character

When cation-oxygen bond is strong, the bond between oxygen and hydrogen is weakened and the proton can be donated to a base

170 **(d)**

The configuration in a compound is independent of its physical properties like optical activity

171 **(a)**

If however, there is a choice in numbering, the double bond is always given preference over the triple bond

172 **(a)**

EDTA binds to both Ca²⁺ and Mg²⁺,*ie*, cations with noble gas configuration as well as to transition metal ions. It is so efficient in binding metal ions that it is used to remove traces of metal from distilled water

173 **(b)**

The slightly larger value of μ than expected from the formula $\mu = \sqrt{n(n+2)}$ is due to a small contribution from the orbital anguler momentum of the electrons to the magnetic moment

174 **(c)**

Racemic mixture is optically inactive because the two enantiomers rotate the plane polarised light equally in opposite directions and cancel each others rotation. This phenomenon is called external compensation

175 **(d)**

The staggered form is more stable than the

eclipsed form because the potential energy of staggered form in which the bond pairs of two carbons are far away from each other is minimum

176 **(c)**

Both $[Ti(H_2O)_6]^{4+}$ and $[Sc(H_2O)_6]^{3+}$ are colourless due to absence of free electrons in 3d subshell

177 **(c)**

The functional group is – COOH, the numbering is done from RHS to give minimum number to carbon atom bearing the functional group. The given compound is a derivative of butane. The substituent is the methyl group. So, the above compound is 3-methyl butanoic acid

178 **(c)**

Square planar complexes having dsp^2 hybridisation shows geometrical isomerism.

179 **(a)**

Resonance stabilisation of enol form can be shown as

180 **(a)**

 $[Sc[H_2O_6]^{3+}]$ has no unpaired electrons in its *d*-subshell and thus *d*-*d* transition is not possible whereas $[Ti(H_2O_6)]^{3+}$ has one unpaired electron in its d-subshell which gives rise to *d*-*d* transition to impart colour.

181 **(b)**

If the acidic hydrogen of carboxylic acid is replaced by an aryl or alkyl group, the resulting structure is a carboxylate ester

(H)
$$RC < \bigcirc O$$
 or (H) RCO_2R'

182 **(b)**

The Cr^{3+} ions has three unpaired electrons. It has $d^2 sp^3$ hybridisation and it is paramagnetic.

183 **(d)**

 $\rm NH_2 - \rm NH_2$ is neutral ligand. It does not act as bidentate because when it acts as bidentate, a three membered ring will be formed, that will highly strained

184 (a)

In naming cycloalkanes, number the ring to give CH+anhy. ZnCl₂+HCl CH₃the double bonded carbons 1 and 2 choose the direction of numbering. So, that the substituents get the lowest numbers. The position of the 2°alcohol →Cloudiness appears within 5 minute. double bond is not indicated because it is known to bond between C-1 and C-2 190 (c) $CH_3 - CH(CH_3) - CH_2 - CH(CH_3) -$ (A) $CH(CH_3) - CH_3$ 195 (c) 2,3,5-trimethyl hexane In complexes $[Rh(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{3+}$, central metal cations have same соон oxidation state as well as same ligands and they **(B)** fall in same group, but Δ_0 of $[Rh(H_2O)_6]^{3+} > \Delta_0$ of cyclohexane carboxylic acid $[Co(H_2O)_6]^{3+}$ because Rh³⁺ has high Z_{eff} value then Co³⁺ 196 (b) .OH Ligand must have capacity to donate lone pair of electrons to form coordinate bond (C) 199 (b) Baeyer predicted that a five membered ring bicyclo [4.2.0] octane-1-ol compound would be the most stable. It has angle (D) $(CH_3)_3Bi$ of deviation = 0.44° Trimethyl bismuthane And we know that stability $\propto \frac{1}{d}$ 194 (c) $CH_3(CH_2)_3 \cdot NH_2 \xrightarrow{KOH alc.} CH_3(CH_2)_3NC + 3KCl + 3 200$ (d) Due to hydrogen bonding and resonance enol $CH_3 \rightarrow C \equiv CH + Amm \cdot AgNO_3 \rightarrow CH_3C \equiv C \cdot Ag +$ form is preferred in contrast HNO_3 $\mathrm{CH}_3 \cdot \mathrm{CH}_2\mathrm{COOCH}_3 + \mathrm{NaOH} \xrightarrow{\Delta} \mathrm{CH}_3\mathrm{CH}_2\mathrm{COONa}$ $+ CH_3OH$

OH

DCAM classes Dynamic Classes for Academic Mastery