

5.COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Single Correct Answer Type

1.	The value of the expression $x^4 - 8x^3 + 18x^2$ a) 2 b) 1	$x^{2} - 8x + 2$ when $x = 2 + \sqrt{3}$ c) 0	d) 3
2.	If $z = x + iy(x, y \in R, x \neq -1/2)$, the numb $(n \in N, n > 1)$ is	er of value of z safisfying $ z ^n =$	$= z^2 z ^{n-2} + z z ^{n-2} + 1$.
	a) 0 b) 1	c) 2	d) 3
3.	If α , β , γ are the roots of $x^3 - x^2 - 1 = 0$ the	n the value of $(1 + \alpha)/(1 - \alpha)$	$+(1+\beta)/(1-\beta)+(1+\beta)$
	γ)/(1 – γ) is equal to		
	a) -5 b) -6	c) -7	d) -2
4.	If the equation $ x^2 + bx + c = k$ has four ro	ots, then	
	a) $b^2 - 4c > 0$ and $0 < k < \frac{4c - b^2}{4}$	b) $b^2 - 4c < 0$ and 0	$< k < \frac{4c-b^2}{4}$
	c) $b^2 - 4c > 0$ and $k > \frac{4c - b^2}{4}$	d) None of these	4
5.	The value of <i>z</i> satisfying the equation $\log z$ +	$\log z^2 + \dots + \log z^n = 0$ is	
	a) $\cos \frac{4m\pi}{n(n+1)} + i \sin \frac{4m\pi}{n(n+1)}$, $m = 1, 2,$		
	b) $\cos \frac{4\pi i \pi}{m(m+1)} - i \sin \frac{4\pi i \pi}{m(m+1)}, m = 1, 2,$		
	n(n+1) $n(n+1)\Delta m\pi \Delta m\pi$		
	c) $\sin \frac{nnn}{n(n+1)} + i \cos \frac{nnn}{n(n+1)}$, $m = 1, 2,$		
	d) 0		
6.	If $a(p+q)^2 + 2bpq + c = 0$ and $a(p+r)^2 + c$	$-2bpr + c = 0 \ (a \neq 0)$, then	
	a) $qr = p^2$ b) $qr = p^2 + \frac{c}{a}$	c) $qr = -p^2$	d) None of these
7.	The value of <i>m</i> for which one of the roots of $m = 0$ is	$x^2 - 3x + 2m = 0$ is double of	one of the roots of $x^2 - x + x^2 - x^2 + x^2 $
	a) –2 b) 1	c) 2	d) None of these
8.	Roots of the equations are $(z + 1)^5 = (z - 1)^5$) ⁵ are	
	a) $\pm i \tan\left(\frac{\pi}{5}\right)$, $\pm i \tan\left(\frac{2\pi}{5}\right)$	b) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \cot\left(\frac{\pi}{5}\right)$	$\left(\frac{2\pi}{5}\right)$
	c) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \tan\left(\frac{2\pi}{5}\right)$	d) None of these	
9.	Total number of integral values of 'a' so that	$x^2 - (a+1)x + a - 1 = 0$ has	integral roots is equal to
	a) 1 b) 2	c) 4	d) None of these
10.	z_1, z_2, z_3, z_4 are distinct complex numbers re	presenting the vertices of a qua	adrilateral ABCD taken in
	order. If $z_1 - z_4 = z_2 - z_3$ and $\arg[(z_4 - z_1)]$	$(z_2 - z_1)] = \pi/2$, then the qua	drilateral is
	a) Rectangle b) Rhombus	c) Square	d) Trapezium
11.	If the roots of the equation $ax^2 + bx + c = 0$ $(a + b + c)^2$ is equal to) are of the form $(k + 1)/k$ and	(k+2)/(k+1), then
	a) $2b^2 - ac$ b) $\sum a^2$	c) $b^2 - 4ac$	d) $b^2 - 2ac$
12.	Let r , s and t be the roots of the equation, $8x$	$x^3 + 1001x + 2008 = 0$. The val	lue of $(r + s)^3 + (s + t)^3 + (s + t)^3$
	$(t+r)^{3}$ is		
	a) 251 b) 751	c) 735	d) 753
13.	If $b > a$, then the equation $(x - a)(x - b) - b$	1 = 0 has	
	a) Both roots in (<i>a</i> , <i>b</i>)	b) Both roots in $(-\infty,$	a)
	c) Both roots in $(b, +\infty)$	d) One root in $(-\infty, a)$	and the other in $(b, +\infty)$
4.4		-	

	a) Real and equal	b) Complex	c) Real and unequal	d) None of these
15.	If the expression $x^2 + 2(a)$	(a+b+c)x + 3(bc+ca+b)	<i>ab</i>) is a perfect square, the	n
	a) $a = b = c$	b) $a = \pm b = \pm c$	c) $a = b \neq c$	d) None of these
16.	If $ z < \sqrt{2} - 1$, then $ z^2 + 1 = 1$	$-2z\cos\alpha$ is		
	a) Less than 1	b) $\sqrt{2} + 1$	c) $\sqrt{2} - 1$	d) None of these
17.	If ω be a complex n^{th} root	t of unity, then $\sum_{i=1}^{n} (ar + b)$) ω^{r-1} is equal to	
	n(n+1)a	nb	na	d) None of these
	$a) \frac{1}{2}$	$b \int \frac{1}{1-n}$	c) $\overline{\omega - 1}$,
18.	If $a, b \in R$, $a \neq 0$ and the $a \neq 0$	quadratic equation $ax^2 - b$	bx + 1 = 0 has imaginary ro	bots then $(a + b + 1)$ is
	a) Positive		b) Negative	
	c) Zero		d) Dependent on the sign	of b
19.	Sum of the non-real roots	of $(x^2 + x - 2)(x^2 + x - 3)$	(3) = 12 is	
	a) —1	b) 1	c) -6	d) 6
20.	Let $z = \cos \theta + i \sin \theta$. Th	en, the value of $\sum_{m=1}^{15} \text{Im}(z)$	2^{2m-1}) at $\theta = 2^{\circ}$ is	
	a) $\frac{1}{1}$	b) $\frac{1}{2}$	c) $\frac{1}{2}$	d) $\frac{1}{1}$
21	$\sin 2^{\circ}$	$3 \sin 2^{\circ}$	$2 \sin 2^{\circ}$	$4 \sin 2^{\circ}$
Z 1.	β	u = 2u + 2 = 0	and if $cot \sigma = x + 1$, then $[(.$	$(x + a)^{\alpha} - (x + p)^{\alpha}$
	$\beta \int d\theta $	cosnA	sin nθ	$\cos n\theta$
	a) $\frac{\sin n\theta}{\sin^n \theta}$	b) $\frac{\cos n\theta}{\cos^n \theta}$	c) $\frac{\sin n\theta}{\cos^n \theta}$	d) $\frac{\cos n\theta}{\sin^n \theta}$
22.	If the cube roots of unity a	are 1, ω , ω^2 , then the roots	of the equation $(x - 1)^3 +$	8 = 0 are
	a) $-1, 1 + 2\omega, 1 + 2\omega^2$	b) $-1, 1 - 2\omega, 1 - 2\omega^2$	c) $-1, -1, -1$	d) None of these
23.	Suppose <i>A</i> is a complex n	number and $n \in N$, such that	$A^n = (A+1)^n = 1$, then the formula $A^n = (A+1)^n = 1$.	the least value of <i>n</i> is
	a) 3	b) 6	c) 9	d) 12
24.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are four conse	cutive terms of an increasi	ng A.P. then the roots of the	equation $(x - a)(x - c) +$
	2(x-b)(x-d) = 0 are			
	a) Non-real complex	b) Real and equal	c) Integers	d) Real and distinct
25.	If the equations $ax^2 + bx$	$+ c = 0 \text{ and } x^3 + 3x^2 + 3x^3$	x + 2 = 0 have two commo	n roots, then
	a) $a = b = c$	b) $a = b \neq c$	c) $a = -b = c$	d) None of these
26.	If α and β , α and γ , α and	δ are the roots of the equa	$tions ax^2 + 2bx + c = 0, 2k$	$bx^2 + cx + a = 0$ and
	$cx^2 + ax + 2b = 0$, respe	ctively, where <i>a</i> , <i>b</i> and <i>c</i> ar	e positive real numbers, the	$ en \alpha + \alpha^2 = $
	a) <i>abc</i>	b) $a + 2b + c$	c) -1	d) 0
27.	If α , β are the roots of x^2 $x^n + 1 + (x + 1)^n = 0$, th	$p + px + q = 0$ and $x^{2n} + p^n$ en $n (\in N)$	$dx^n + q^n = 0$ and if (α/β) , (β/α) are the roots of
	a) Must be an odd integer		b) May be any integer	
	c) Must be an even intege	er	d) Cannot say anything	
28.	If $z^2 + z z + z^2 = 0$, the	en the locus of <i>z</i> is		
	a) A circle		b) A straight line	
20	c) A pair of straight lines 7^{-1}		d) None of these	
29.	If $ z = 1$ and $w = \frac{1}{z+1} (w)$	here $z \neq -1$), then $\operatorname{Re}(w)$ i	S	
	a) 0	b) $\frac{1}{ z+1 ^2}$	c) $\left \frac{1}{z+1} \right \cdot \frac{1}{ z+1 ^2}$	$d)\frac{\sqrt{2}}{ z+1 ^2}$
30.	If the equation $x^2 + ax + a$	b = 0 has distinct real roo	ts and $x^2 + a x + b = 0$ has	is only one real root, then
	which of the following is t	true		
	a) $b = 0, a > 0$	b) <i>b</i> = 0, <i>a</i> < 0	c) <i>b</i> > 0, <i>a</i> < 0	d) <i>b</i> < 0, <i>a</i> > 0
31.	Let $f(x) = ax^2 - bx + c^2$	$f, b \neq 0$ and $f(x) \neq 0$ for al	$x \in R$. Then	
	a) $a + c^2 < b$	b) $4a + c^2 > 2b$	c) $9a - 3b + c^2 < 0$	d) None of these
32.	The number of real roots	of the equation $x^2 - 3 x + 3 x $	-2 = 0 is	
	20	1.2.4	2.4	1) 0
00	a) 2	b) 1	c) 4	d) 3

	a) 1	b) 3	c) 5	d) 7
34.	If $x^2 + px + 1$ is factor of	the expression $ax^3 + bx + bx$	c, then	
	a) $a^2 - c^2 = ab$	b) $a^2 + c^2 = -ab$	c) $a^2 - c^2 = -ab$	d) None of these
35.	If $z = (i)^{(i)^{(i)}}$ where $i = \sqrt{2}$	$\sqrt{-1}$, then $ z $ is equal to		
	a) 1	b) $e^{-\pi/2}$	c) $e^{-\pi}$	d) None of these
36.	The number of roots of th	the equation $\sqrt{r-2}(r^2-4)$	(x + 3) = 0 is	,
	a) Three	h) Four	c) One	d) Two
37	Total number of values of	f a so that $x^2 - x - a = 0$ h	as integral roots where a	$\in N$ and $6 < a < 100$ is
071	equal to			
	a) 2	b) 4	c) 6	d) 8
38.	If a, b, c are the sides of th	e triangle ABC such that a	$\neq h \neq c$ and $x^2 - 2(a + h)$	(a) = (a) + (a)
	ca=0 has real roots, then			
	4	5	(4 5)	(1 5)
	a) $\lambda < \frac{1}{3}$	b) $\lambda > \frac{1}{3}$	c) $\lambda \in \left(\frac{1}{3}, \frac{1}{3}\right)$	d) $\lambda \in \left(\frac{1}{3}, \frac{1}{3}\right)$
39.	Suppose A, B, C are define	$ad as A = a^2b + ab^2 - a^2c$	$-ac^2, B = b^2c + bc^2 - a^2$	$b - ab^2$ and $C = a^2c + c$
	$ac^2 - b^2c - bc^2$, where c	a > b > c > 0 and the equal	$\operatorname{tion} Ax^2 + Bx + C = 0 \text{ has}$	equal roots, then <i>a</i> , <i>b</i> , <i>c</i> are
	in			
	a) A.P.	b) G.P.	c) H.P.	d) A.G.P.
40.	Consider the equation x^2	$+2x - n = 0$, where $n \in N$	V and $n \in [15, 100]$. Total n	umber of different values of
	'n' so that the given equat	tion has integral roots is		
	a) 8	b) 3	c) 6	d) 4
41.	If $x^2 + x + 1 = 0$, then the	e value of $(x + 1/x)^2 + (x^2)^2$	$(x^2 + 1/x^2)^2 + \dots + (x^{27} + 1/x^2)^2$	$(x^{27})^2$ is
	a) 27	b) 72	c) 45	d) 54
42.	If $(x^2 + px + 1)$ is a facto	r of $(ax^3 + bx + c)$, then		
	a) $a^2 + c^2 = -ab$	b) $a^2 - c^2 = -ab$	c) $a^2 - c^2 = ab$	d) None of these
43.	Let <i>z</i> , <i>w</i> be complex numbers	pers such that $\overline{z} + i\overline{w} = 0$ a	nd $\arg zw = \pi$. Then $\arg z \in$	equals
	$\frac{\pi}{-}$	b) $\frac{\pi}{-}$	$\frac{3\pi}{2}$	d) $\frac{5\pi}{2}$
	4 16	$\frac{2}{2}$	4	4
44.	If $a > 0, b > 0$ and $c > 0$	then the roots of the equat		
	a) Are real and negative		b) Have positive real part	S
4 5	c) Have negative real par	$\sqrt{3}\sqrt{-1}$	d) None of these	
45.	Which of the following is	equal to $\sqrt[7]{-1?}$		
	a) $\frac{\sqrt{3} + \sqrt{-1}}{\sqrt{3} + \sqrt{-1}}$	b) $\frac{-\sqrt{3} + \sqrt{-1}}{$	c) $\frac{\sqrt{3} - \sqrt{-1}}{\sqrt{3} - \sqrt{-1}}$	d) $-\sqrt{-1}$
	2	$\sqrt{-4}$	$\sqrt{-4}$	
46.	The interval of <i>a</i> for whic	h the equation $\tan^2 x - (a$	$(-4) \tan x + 4 - 2a = 0$ ha	s at least one solution
	$\forall x \in [0, \pi/4]$	1) - [0, 0]		1) - [4 4]
4 17	a) $a \in (2, 3)$	b) $a \in [2, 3]$	c) $a \in (1, 4)$	d) $a \in [1, 4]$
47.	Which of the following re	presents a point in an Arga	nd plane, equidistant from	the roots of the equation
	$(z+1)^{+} = 16z^{+}?$. 1	.1	())
	a) (0, 0)	b) $\left(-\frac{1}{2},0\right)$	c) $\left(\frac{1}{2}, 0\right)$	d) $\left(0, \frac{2}{\sqrt{\pi}}\right)$
10	If α , β , α are such that α .	$\sqrt{3}$ / $R + y = 2 \alpha^2 + R^2 + x^2 =$	$\sqrt{3}$ / - 6 $\alpha^3 + \beta^3 + \gamma^3 - 9$ then	$\sqrt{5'}$
40.	(α, β, γ) are such that $\alpha + \alpha$	$-p + \gamma = 2, \alpha + p + \gamma = -$	$= 0, \alpha^{2} + p^{2} + \gamma^{2} = 0, \text{ uten}$	$u + p + \gamma$ is
10	d 10 The minimum value of la	b_{10} + b_{10} + c_{10}^{2} where a_{10} has	U ID nd c are all not equal integr	uj 50 (+1) is a sub-
49.	root of unity is	$+ b\omega + c\omega$, where u, b as	nu c'are an not equal intege	$(\neq 1)$ is a cube
	$\sqrt{2}$	h) 1/2	c) 1	d) ()
EO	$d_{J} \sqrt{3}$	$v_j \mathbf{I}_{\mathbf{A}}$	uj I	uju
50.	$ z_1 = z_2 = z_3 = 1$ a	$z_1 + z_2 + z_3 = 0$, then a	a) 1	er uces are Z_1, Z_2, Z_3 is
- 4	a) $3\sqrt{3}/4$	UJ √3/4		uj 2
51.	Number of positive integ	ers n for which $n^2 + 96$ is a	perfect square is	
		D117	C1 4	

52.	The greatest positive argu	ument of complex number	satisfying $ z - 4 = \operatorname{Re}(z)$ is	S
	a) $\frac{\pi}{2}$	b) $\frac{2\pi}{2}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$
E2	³ 3	³ 3 mhore than the system of	$\frac{2}{2}$	4^{-1}
55.	<i>i</i> has	mbers, men me system or	= quations (1 + i)x + (1 - i)	y = 1, 2ix + 2y = 1 +
	a) Unique solution		b) No solution	
	c) Infinite number of solu	itions	d) None of these	
54.	For the equation $3x^2 + p$.	x + 3 = 0, p > 0, if one of t	he root is square of the oth	er, then p is equal to
	a) 1/3	b) 1	c) 3	d) 2/3
55.	If α , β are the roots of the	equation $x^2 - 2x + 3 = 0$. Then the equation whose	roots are $P = \alpha^3 - 3\alpha^2 + $
	$5\alpha - 2$ and $Q = \beta^3 - \beta^2 + \beta^2$	$+\beta$ + 5 is		
	a) $x^2 + 3x + 2 = 0$	b) $x^2 - 3x - 2 = 0$	c) $x^2 - 3x + 2 = 0$	d) None of these
56.	If centre of a regular hexa	gon is at origin and one of	the vertices on Argand diag	gram is $1 + 2i$, then its
	perimeter is			
	a) 2√5	b) 6√2	c) $4\sqrt{5}$	d) 6√5
57.	If $z_1 z_2 \in C$, $z_1^2 + z_2^2 \in R$, z	$_1(z_1^2 - 3z_2^2) = 2$ and $z_2(3z_2)$	$z_1^2 - z_2^2) = 11$, then the valu	e of $z_1^2 + z_2^2$ is
	a) 10	b) 12	c) 5	d) 8
58.	P(x) is a polynomial with	integral coefficients such t	that for four distinct integer	rs a, b, c, d; P(a) = P(b) =
	P(c) = P(d) = 3. If P(e)	= 5 (<i>e</i> is an integer), then		
-	a) <i>e</i> = 1	b) $e = 3$	c) $e = 4$	d) No real value of <i>e</i>
59.	If α , β are the roots of ax^{α}	$a^2 + bx + c = 0$ and $a + b$, β	$3 + h$ are the roots of $px^2 + 1$	qx + r = 0, then $h =$
	a) $-\frac{1}{2}\left(\frac{a}{b}-\frac{p}{q}\right)$	b) $\left(\frac{b}{a} - \frac{q}{p}\right)$	c) $\frac{1}{2} \left(\frac{b}{a} - \frac{q}{p} \right)$	d) None of these
60.	If t and c are two complex	x numbers such that $ t \neq $	c , t = 1 and z = (at + b)	/(t-c), z = x + iy. Locus
	of <i>z</i> is (where <i>a</i> , <i>b</i> are con	nplex numbers)		
	a) Line segment	b) Straight line	c) Circle	d) None of these
61.	The complex numbers $z =$	= x + iy which satisfy the e	equation $ (z-5i)/(z+5i) $	=1 lie on
	a) The <i>x</i> -axis		b) The straight line $y = 5$	
	c) A circle passing throug	h the origin	d) None of these	
62.	If α and β ($\alpha < \beta$) are the	e roots of the equation x^2 +	-bx + c = 0, where $c < 0 < 0$	< b, then
60	a) $0 < \alpha < \beta$	b) $\alpha < 0 < \beta < \alpha $	c) $\alpha < \beta < 0$	d) $\alpha < 0 < \alpha < \beta$
63.	All the values of <i>m</i> for wh	ich both the roots of the ec	$x^2 - 2mx + m^2 - 1$	= 0 are greater than -2
	but less than 4, lie in the i	nterval	a) 1 4 m 4 2	
61	a) $-2 < m < 0$ Two towns A and P are 60	DJ $m > 3$	CJ = 1 < m < 3	a) $1 < m < 4$
04.	students in town B. If the	total distance to be travell	e built to selve 150 students	he as small as possible
	then the school be built at			be as small as possible,
	a) Town B	b) 45 km from town A	c) Town A	d) 45 km from town B
65.	$I_{5} = -\left[\left(\sqrt{2}/2\right) + \frac{1}{2}/2\right]^{5} + \frac{1}{2}$	$\left[\left(\sqrt{2}/2\right) + \frac{1}{2}\sqrt{2}\right]^{5} \text{ then}$		
	$\Pi Z = [(\sqrt{3}/2) + l/2] + l/2 + l/2$	$[(\sqrt{3}/2) - t/2]$, then b) $Im(z) = 0$	C $D_{C}(z) > 0$ $I_{m}(z) > 0$	d) $P_{\alpha}(z) > 0$ Im $(z) < 0$
66	A) $\operatorname{Re}(2) = 0$ Let <i>n</i> and <i>a</i> be real numb	of III(2) = 0 ers such that $n \neq 0$ $n^3 \neq 0$	$(2) \operatorname{Re}(2) > 0, \operatorname{III}(2) > 0$ and $n^3 \neq -a$ If α and β are	u) $\operatorname{Re}(2) > 0$, III $(2) < 0$
00.		$\frac{1}{2} \frac{1}{2} \frac{1}$	q and $p \neq q$. If u and p and p and $p \neq q$.	$\alpha = \beta = \beta$
	numbers satisfying $\alpha + \beta$	$= -p \text{ and } \alpha^\circ + \beta^\circ = q, \text{ th}$	ien a quadratic equation ha	$\operatorname{Ving}_{\beta} = \operatorname{and}_{\alpha} = \operatorname{as}_{\alpha} \operatorname{its}_{\alpha} \operatorname{roots}_{\alpha} \operatorname{is}_{\alpha}$
	a) $(p^3 + q)x^2 - (p^3 + 2q)x^2$	$)x + (p^3 + q) = 0$	b) $(p^3 + q)x^2 - (p^3 - 2q)$	$)x + (p^3 + q) = 0$
	c) $(p^3 - q)x^2 - (5p^3 - 2)x^2$	$q)x + (p^3 - q) = 0$	d) $(p^3 - q)x^2 - (5p^3 + 2)$	$q)x + (p^3 - q) = 0$
67.	Let <i>p</i> and <i>q</i> be roots of the	e equation $x^2 - 2x + A = 0$) and let <i>r</i> and <i>s</i> be the root	s of the equation
	$x^2 - 18x + B = 0.$ If $p < $	q < r < s are in arithmetic	c progression, then the valu	es of A and B are
	a) 3, –77	b) 3, 77	c) -3, -77	d) -3,77
68.	If α and β are the roots of	the equation $x^2 + px + q$	= 0, and α^4 and β^4 are the	$roots of x^2 - rx + q = 0,$
	then the roots of $x^2 - 4q$	$x + 2q^2 - r = 0$ are alway	S	
	aJ Both non-real	bJ Both positive	cJ Both negative	d) Upposite in sign

69.	The shaded region, where	<u>e</u>		
	$P \equiv (-1,0), Q \equiv (-1+\sqrt{2})$	$\sqrt{2}, \sqrt{2})$		
	$R \equiv \left(-1 + \sqrt{2}, -\sqrt{2}\right), S \equiv$	(1,0) is represented by		
	P O S R X			
	a) $ z + 1 > 2$, $ \arg(z + 1) $	$) < \frac{\pi}{4}$	b) $ z + 1 < 2$, $\arg(z + 1)$	$<\frac{\pi}{2}$
	c) $ z - 1 > 2$, $\arg(z + 1)$	$>\frac{\pi}{4}$	d) $ z - 1 < 2$, $ \arg(z + 1)$	$) > \frac{\pi}{4}$
70.	Number of values of <i>a</i> for	which equations $x^3 + ax$ -	$+1 = 0$ and $x^4 + ax^2 + 1 =$	= 0 have a common root
	a) 0	b) 1	c) 2	d) Infinite
71.	If $ z - 2 - i = z \sin(\frac{\pi}{4})$	$-\arg z$, then locus of z is		
	a) A pair of straight lines		b) Circle	
	c) Parabola		d) Ellipse	
72.	If $z = i \log(2 - \sqrt{-3})$, the	$n \cos z =$		
	a) —1	b) -1/2	c) 1	d) 1/2
73.	If $x, y \in R$ satisfy the Equa	ation $x^2 + y^2 - 4x - 2y + 5$	5 = 0, then the value of the	expression $\left[\left(\sqrt{x} - \sqrt{y}\right)^2 + \right]$
	<i>4xy)/(x+xy)</i> is			-
	_	$\sqrt{2} + 1$	$\sqrt{2} - 1$	$\sqrt{2} + 1$
	a) $\sqrt{2} + 1$	b) $\frac{\sqrt{2} + 1}{2}$	c) $\frac{\sqrt{2}}{2}$	d) $\frac{\sqrt{2}}{\sqrt{2}}$
74.	The least value of the exp	ression $x^2 + 4y^2 + 3z^2 - 2$	2x - 12y - 6z + 14 is	V 2
	a) 1	b) No least value	c) 0	d) None of these
75.	If $A(z_1), B(z_2), C(z_3)$ are t the triangle <i>ABC</i> is	the vertices of the triangle A	ABC such that $(z_1 - z_2)/(z_2)$	$(1/\sqrt{2}) = (1/\sqrt{2}) + (i/\sqrt{2}),$
	a) Equilateral	b) Right angled	c) Isosceles	d) Obtuse angled
76.	If the roots of the equatio	n, $x^2 + 2ax + b = 0$, are re	al and distinct and they dif	fer by at most 2 <i>m</i> , then b
	lies in the interval			
77	a) $(a^2, a^2 + m^2)$	b) $(a^2 - m^2, a^2)$	c) $[a^2 - m^2, a^2]$	d) None of these
//.	If x is real, then the maxim	num value of $(3x^2 + 9x + .)$	$\frac{1}{3x^2 + 9x + 7}$ is	d) 17/7
78.	If $a < 0$ $h > 0$ then $\sqrt{a}\sqrt{b}$	is equal to		u) 1///
/ 01	a) $-\sqrt{ a }h$	b) $\sqrt{ a h} i$	c) $\sqrt{ a } h$	d) None of these
79	The inequality $ z - 4 < 1$	z = 21 represents the region	$\nabla \nabla \nabla u = b$	
, ,,	a) $\operatorname{Re}(z) > 0$	b) $\operatorname{Re}(z) < 0$	c) $\operatorname{Re}(z) > 0$	d) None of these
80.	If $x = 9^{1/3}9^{1/9}9^{1/27} \cdots \infty$,	$y = 4^{1/3} 4^{-1/9} 4^{1/27} \cdots \infty$, ar	and $z = \sum_{r=1}^{\infty} (1+i)^{-r}$, then	arg(x + yz) is equal to
	a) 0	b) $\pi - \tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$	c) $-\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$	d) $-\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$
81.	The set of values of <i>a</i> for v	which $(a - 1)x^2 - (a + 1)x^2$	$x + a - 1 \ge 0$ is true for all	$x \ge 2$
	a) (−∞,1)	b) $\left(1,\frac{7}{3}\right)$	c) $\left(\frac{7}{3},\infty\right)$	d) None of these
82.	If $w = \alpha + i\beta$, where $\beta \neq$	0 and $z \neq 1$, satisfies the co	ondition that $\left(\frac{w-\overline{w}z}{1-z}\right)$ is pur	ely real, then the set of
	values of <i>z</i> is		\ <u>1</u> -2 /	
	a) $ z = 1, z \neq 2$	b) $ z = 1$ and $z \neq 1$	c) $z = \overline{z}$	d) None of these
02				
83.	The number of points of it	ntersection of two curves y	$y = 2\sin x \text{ and } y = 5x^2 + 2$	x + 3 is

84.	If roots of an equation x^n	$-1 = 0$ are 1, $a_1, a_2, \dots a_{n-1}$	1, then the value of $(1 - a_1)$	$(1 - a_2)(1 - a_3) \dots (1 - a_3)$
	a) n	b) n^2	c) n^n	0 (b
85.	If one root of the equation	$ax^2 + bx + c = 0$ is squar	e of the other, then $a(c - h)$	$x^{3} = cX$, where X is
	a) $a^3 - h^3$	b) $a^3 + b^3$	c) $(a - h)^3$	d) None of these
86.	Let x, y, z, t be real number	$e^{x^2} + v^2 = 9$, $z^2 + t^2 = 4$	4 and $xt - vz = 6$. Then the	e greatest value of $P = xz$ is
00.	a) 2	b) 3	c) 4	d) 6
87.	Let $\lambda \in R$, the origin and t	the non-real roots of $2z^2$ +	$2z + \lambda = 0$ form the three	vertices of an equilateral
	triangle in the Argand pla	ne then λ is		
	a) 1	b) $\frac{2}{3}$	c) 2	d) —1
88.	The number of values of k	t for which $[x^2 - (k - 2)x]$	$(+k^2] \times [x^2 + kx + (2k - 1)]$)] is a perfect square is
	a) 2	b) 1	c) 0	d) None of these
89.	Let $p(x) = 0$ be a polynomial	nial equation of the least po	ossible degree, with rationa	al coefficients, having
	$\sqrt[3]{7} + \sqrt[3]{49}$ as one of its ro	ots. Then the product of all	the roots of $p(x) = 0$ is	
	a) 56	b) 63	c) 7	d) 49
90.	The number of real soluti	ons of the equation $ x ^2 - 3$	3 x + 2 = 0 is	
	a) 4	b) 1	c) 2	d) 0
91.	The number of integral va integral roots are	lues of <i>a</i> for which the qua	dratic equation $(x + a)(x + a)$	+ 1991) + 1 = 0 has
	a) 3	b) 0	c) 1	d) 2
92.	Let <i>z</i> and ω be two compl	ex numbers such that $ z \leq$	$ 1, \omega \le 1 \text{ and } z - i\omega =$	$ z - i\overline{\omega} = 2$ then z equals
	a) 1 or <i>i</i>	b) <i>i</i> or – <i>i</i>	c) 1 or −1	d) <i>i</i> or −1
93.	z_1 and z_2 lie on a circle wigiven by	th centre at the origin. The	point of intersection z_3 of	the tangents at z_1 and z_2 is
	a) $\frac{1}{2}(\overline{z}_1 + \overline{z}_2)$	b) $\frac{2z_1z_2}{z_1 + z_2}$	c) $\frac{1}{2} \left(\frac{1}{z_1} + \frac{1}{z_2} \right)$	d) $\frac{z_1 + z_2}{\overline{z}_1 \overline{z}_2}$
94.	If α and β be the roots of $\alpha^4 + \beta^4$ is	the equation $x^2 + px - 1/($	$(2p^2) = 0$ where $p \in R$. The	en the minimum value of
	a) 2 √2	b) $2 - \sqrt{2}$	c) 2	d) $2 + \sqrt{2}$
95.	If α , β are the roots of ax^2	$c^2 + c = bx$, then the equation	$bn (a + cy)^2 = b^2 y in y has$	s the roots
	a) $\alpha\beta^{-1}, \alpha^{-1}\beta$	b) α^{-2} , β^{-2}	c) α^{-1}, β^{-1}	d) α^2 , β^2
96.	If $(\cos \theta + i \sin \theta)(\cos 2\theta)$	$+i\sin 2\theta$) $(\cos n\theta + i\sin \theta)$	$(n n \theta) = 1$, then the value of	f θ is, $m \in N$
	a) 4m=	$2m\pi$	$4m\pi$	$m\pi$
	aj 41111	n(n+1)	$\frac{n(n+1)}{n(n+1)}$	n(n+1)
97.	The roots of the cubic equ of length	$ation(z+ab)^3 = a^3$, such	that $a \neq 0$, represent the v	ertices of a triangle of sides
	a) $\frac{1}{\sqrt{3}} ab $	b) $\sqrt{3} a $	c) √3 <i>b</i>	d) <i>a</i>
98.	A quadratic equation who	se product of roots x_1 and	x_2 is equal to 4 and satisfyi	ng the relation
	$x_1/(x_1-1) + x_2/(x_2-1)$) = 2 is		
	a) $x^2 - 2x + 4 = 0$	b) $x^2 + 2x + 4 = 0$	c) $x^2 + 4x + 4 = 0$	d) $x^2 - 4x + 4 = 0$
99.	If the equation $\cot^4 x - 2$	$\csc^2 x + a^2 = 0$ has at le	east one solution then, sum	of all possible integral
	values of <i>a</i> is equal to			
	a) 4	b) 3	c) 2	d) 0
100.	The number of irrational	roots of the equation $4x/(x)$	$(x^2 + x + 3) + 5x/(x^2 - 5x)$	(+3) = -3/2 is
	a) 4	b) 0	c) 1	d) 2
101.	If z_1, z_2 and z_3 are comple $ z_1 + z_2 + z_3 $ is	ex numbers such that $ z_1 =$	$ z_2 = z_3 = (1/z_1) + (1) $	$ z_2 + (1/z_2) = 1$, then
	a) Equal to 1	b) Less than 1	c) Greater than 3	d) Equal to 3
102.	If z_1 and z_2 be complex nu	mbers such that $z_1 \neq z_2$ and	d $ z_1 = z_2 $. If z_1 has positive	ve real part and z_2 has

negative imaginary part, then $[(z_1 + z_2)/(z_1 - z_2)]$ may be

a) Purely imaginary b) Real and positive c) Real and negative d) None of these 103. If the expression [mx - 1 + (1/x)] is non-negative for all positive real *x*, then the minimum value of *m* must be

c) ¼ a) -1/2b) 0 d) $\frac{1}{2}$ 104. If for complex numbers z_1 and z_2 , $\arg(z_1) - \arg(z_2) = 0$, then $|z_1 - z_2|$ is equal to a) $|z_1| + |z_2|$ b) $|z_1| - |z_2|$ c) $[|z_1| - |z_2|]$ Locus of z if $\arg[z - (1 + i)] = \begin{cases} \frac{3\pi}{4} & \text{when } |z| \le |z - 2| \\ \frac{-\pi}{4} & \text{when } |z| > |z - 4| \end{cases}$ is d) 0 105. b) Straight lines passing through (2, 0), (1, 1) a) Straight lines passing through (2, 0) d) A set of two rays c) A line segment 106. For positive integers n_1 , n_2 the value of the expression $(1 + i)^{n_1} + (1 + i^3)^{n_1} + (1 + i^5)^{n_2} + (1 + i^7)^{n_2}$, where $i = \sqrt{-1}$ is a real number if and only if a) $n_1 = n_2 + 1$ b) $n_1 = n_2 - 1$ c) $n_1 = n_2$ d) $n_1 > 0, n_2 > 0$ 107. If $|z_2 + iz_1| = |z_1| + |z_2|$ and $|z_1| = 3$ and $|z_2| = 4$, then area of $\triangle ABC$, if affixes of *A*, *B* and *C* are z_1, z_2 and $[(z_2 - iz_1)/(1 - i)]$ respectively, is c) $\frac{25}{2}$ d) $\frac{25}{4}$ 108. $x^2 - xy + y^2 - 4x - 4y + 16 = 0$ represents a) A point b) A circle d) None of these c) A pair of straight lines 109. Sum of common roots of the equations $z^3 + 2z^2 + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ is c) 0 a) –1 b) 1 110. If the roots of the equation $ax^2 - bx + c = 0$ are α , β then the roots of the equation $b^2cx^2 - ab^2x + a^3 =$ 0 are a) $\frac{1}{\alpha^3 + \alpha\beta}$, $\frac{1}{\beta^3 + \alpha\beta}$ b) $\frac{1}{\alpha^2 + \alpha\beta}$, $\frac{1}{\beta^2 + \alpha\beta}$ c) $\frac{1}{\alpha^4 + \alpha\beta}$, $\frac{1}{\beta^4 + \alpha\beta}$ d) None of these 111. If $|z^2 - 1| = |z|^2 + 1$, then z lies on a) A circle b) A parabola c) An ellipse d) None of these 112. The locus of point *z* satisfying Re $\left(\frac{1}{z}\right) = k$, where *k* is a non-zero real number, is b) A circle c) An ellipse a) A straight line d) A hyperbola The number of integral values of *x* satisfying $\sqrt{-x^2 + 10x - 16} < x - 2$ is 113. b) 1 d) 3 a) 0 114. Let α , β be the roots of the equation $x^2 - px + r = 0$ and $\frac{\alpha}{2}$, 2β be the roots of the equation $x^2 - qx + r = 0$ 0. Then the value of *r* is a) $\frac{2}{9}(p-q)(2q-p)$ b) $\frac{2}{9}(q-p)(2p-q)$ c) $\frac{2}{9}(q-2p)(2q-p)$ d) $\frac{2}{9}(2p-q)(2q-p)$ 115. For $x^2 - (a + 3) |x| + 4 = 0$ to have real solutions, the range of *a* is a) $(-\infty, -7] \cup [1, \infty)$ b) (−3,∞) c) (−∞, −7] d) [1,∞) 116. If $z = 3/(2 + \cos \theta + i \sin \theta)$, then locus of z is a) A straight line b) A circle having centre on y-axis c) A parabola d) A circle having centre on x-axis 117. The number of real solutions of the equation $(9/10)^x = -3 + x - x^2$ is c) 1 a) 2 d) None of these b) 0 118. If *p*, *q*, *r* are +ve and are in A.P., in the roots of quadratic equation $px^2 + qx + r = 0$ are all real for a) $\left| \frac{r}{p} - 7 \right| \ge 4\sqrt{3}$ b) $\left| \frac{p}{r} - 7 \right| \ge 4\sqrt{3}$ c) All *p* and *r* d) No *p* and *r* 119. If $\arg(z) < 0$, then $\arg(-z) - \arg(z) =$

	a) π	b) <i>-π</i>	c) $-\frac{\pi}{2}$	d) $\frac{\pi}{2}$
120.	If α , β , γ , σ are the roots of	the equation $x^4 + 4x^3 - 6$	$5x^{2} + 7x - 9 = 0$, then the	value of $(1 + \alpha^2)(1 + \alpha^2)$
	$B21 + v2(1 + \sigma^2)$ is			
	a) 9	b) 11	c) 13	d) 5
121.	If $\begin{vmatrix} z_1 \end{vmatrix} = 1$ and $\arg(z, z) =$	0 then	0) 20	
	$\left\ \frac{1}{z_2} \right\ = 1 \text{ and } \arg(z_1 z_2) =$	- 0, then		
	a) $z_1 = z_2$	b) $ z_2 ^2 = z_1 z_2$	c) $z_1 z_2 = 1$	d) None of these
122.	The complex numbers sin	$x + i \cos 2x$ and $\cos x - i \sin x$	in $2x$ are conjugate to each	other for
	a) $x = n\pi$	b) $x = 0$	c) $x = (n + 1/2)\pi$	d) No value of <i>x</i>
123.	P(z) be a variable point in	the Argand plane such tha	$ z = \min(z - 1 , z)$	$z + 1 $ then $z + \overline{z}$ will be
	equal to			
	a) –1 or 1	b) 1 but not equal to -1	c) -1 but not equal to 1	d) None of these
124.	If $z = (\lambda + 3) - i\sqrt{5 - \lambda^2}$,	then the locus of <i>z</i> is		
	a) Ellipse	b) Semicircle	c) Parabola	d) Straight line
125.	For all complex numbers 2	$ z_1, z_2$ satisfying $ z_1 = 12$ and	nd $ z_2 - 3 - 4i = 5$, the matrix	inimum value of $ z_1 - z_2 $ is
	a) 0	b) 2	c) 7	d) 17
126.	If α , β be the roots of the ϵ	equation $(x - a)(x - b) + a$	$c = 0 (c \neq 0)$, then the root	s of the equation
	$(x-c-\alpha)(x-c-\beta) =$	c are		
	a) $a + c$ and $b + c$	b) <i>a</i> − <i>c</i> and <i>b</i> − <i>c</i>	c) a and $b + c$	d) $a + c$ and b
127.	If $ an heta_1$, $ an heta_2$, $ an heta_3$ are	the real roots of the $x^3 - 6$	$(a+1)x^2 + (b-a)x - b =$	= 0, where $\theta_1 + \theta_2 + \theta_3 \in$
	$(0,\pi)$, then $\theta_1 + \theta_2 + \theta_3$ is	s equal to		
	a) π/2	b) π/4	c) 3π/4	d) π
128.	If $ z = 1$ then the point re	epresenting the complex nu	1 mber -1 + 3z will lie on	
	a) A circle	b) A straight line	c) A parabola	d) A hyperbola
129.	The set of all possible real	values of <i>a</i> such that the ir	nequality $(x - (a - 1))(x - a)$	$-(a^2+2)) < 0$ holds for
	all $x \in (-1, 3)$ is			
	a) (0, 1)	b) (∞, −1]	c) (−∞,−1)	d) (1,∞)
130.	If the root of the equation	$(a-1)(x^2 + x + 1)^2 = (a$	$(x^4 + x^2 + 1)$ are real	l and distinct then the
	value of $a \in$			
	a) (−∞,3]	b) $(-\infty, -2) \cup (2, \infty)$	c) [-2,2]	d) [−3,∞)
131.	The equation $x - 2/(x - 2)$	1) = 1 - 2/(x - 1) has		
	a) No root	b) One root	c) Two equals roots	d) Infinitely many roots
132.	Let α , β be the roots of the	e equation $(x - a)(x - b) =$	$= c, c \neq 0$. Then the roots of	f the equation $(x - \alpha)(x - \alpha)$
	$\beta + c = 0$ are			
	a) <i>a</i> , <i>c</i>	b) <i>b</i> , <i>c</i>	c) <i>a</i> , <i>b</i>	d) <i>a</i> + <i>c</i> , <i>b</i> + <i>c</i>
133.	Number of complex numb	ers <i>z</i> such that $ z = 1$ and	$ z/\bar{z} + \bar{z}/z = 1 \text{ is } (\arg(z))$	$\in [0,2\pi))$
	a) 4	b) 6	c) 8	d) More than 8
134.	If $x = 1 + i$ is a root of the	equation $x^3 - ix + 1 - i =$	= 0, then the other real roo	tis
	a) 0	b) 1	c) -1	d) None of these
135.	If $(m_r, 1/m_r), r = 1, 2, 3, 4$	be four pairs of values of x	c and y that satisfy the equa	ation $x^2 + y^2 + 2gx + y^2$
	2fy + c = 0, then value of	f $m_1 m_2 m_3 m_4$ is		
	a) 0	b) 1	c) -1	d) None of these
136.	If $k + k + z^2 = z ^2 (k \in$	R^{-}), then possible argume	ent of z is	
	a) 0	b) π	c) π/2	d) None of these
137.	Let $a \neq 0$ and $p(x)$ be a point of $p(x)$ be a p	olynomial of degree greater	than 2. If $p(x)$ leaves remain	ainders a and – a when
	divided respectively by <i>x</i>	+ a and $x - a$, then remain	der when $p(x)$ is divided b	$y x^2 - a^2$ is
	a) 2 <i>x</i>	b) –2 <i>x</i>	c) <i>x</i>	d) – <i>x</i>
138.	If <i>z</i> is a complex number l	ying in the fourth quadrant	of Argand plane and $ [kz/$	$(k+1)] + 2i > \sqrt{2}$ for all
	real value of $k(k \neq -1)$, the set of the s	hen range of $arg(z)$ is		

a) $\left(-\frac{\pi}{8},0\right)$	b) $\left(-\frac{\pi}{6},0\right)$	c) $\left(-\frac{\pi}{4},0\right)$	d) None of these
139. The largest interval for w	which $x^{12} - x^9 + x^4 - x + 1$. > 0 is	
a) $-4 < x \le 0$	b) 0 < <i>x</i> < 1	c) −100 < <i>x</i> < 100	d) $-\infty < x < \infty$
140. If $ 2z - 1 = z - 2 $ and	z_1, z_2, z_3 are complex numb	ers such that $ z_1 - \alpha < \alpha$,	$ z_2 - \beta < \beta$, then $\left \frac{z_1 + z_2}{\alpha + \beta} \right $
a) < <i>z</i>	b) < $2 z $	c) > $ z $	d) > $2 z $
141. If $a, b, c, d \in R$, then the e	equation $(x^2 + ax - 3b)(x^2)$	$(-cx+b)(x^2-dx+2b)$	= 0 has
a) 6 real roots	b) At least 2 real roots	c) 4 real roots	d) 3 real roots
142. If <i>a</i> , <i>b</i> , <i>c</i> be distinct positi 1/(x - c) = 1/x is	ve numbers, then the natur	e of roots of the equation 1	$\frac{1}{(x-a)} + \frac{1}{(x-b)} + $
a) All real and distinct		b) All real and at least tw	o are distinct
c) At least two real		d) All non-real	
143. If the roots of the quadra	tic equation $(4p - p^2 - 5)x$	$x^2 - (2p - 1)x + 3p = 0$ lie	e on either side of unity,
then the number of integ	ral values of <i>p</i> is		
a) 1	b) 2	c) 3	d) 4
144. If $k > 0$, $ z = w = k$ and	d $\alpha = \frac{z - \overline{w}}{1 + z - \overline{w}}$, then Re(α) eq	uals	
a) ()	h) $k/2$	c) k	d) none of these
145 Let $f(x) = (1 + h^2)x^2 +$	2hx + 1 and let $m(h)$ be th	e minimum value of $f(x)$	As h varies the range of
m(b) is			is b varies, the range of
a) [0,1]	b) $\left(0, \frac{1}{2}\right)$	c) $\left[\frac{1}{2}, 1\right]$	d) (0, 1]
146. The coefficient of win the	$\left(\begin{array}{c} 2 \\ 2 \end{array} \right)$	[2] J	in place of 12 and the posta
140. The coefficient of x in the thus found was -2 and -2	= equation $x^{+} + px^{+} + q^{-} = 0$	was wrongry written as 17	In place of 15 and the roots
$a_{2} = 2.10$	-13. Then the roots of the to		d) None of these
$a_{1} = 3, 10$ 147 If $g_{12}^{3} \pm 12z^{2} = 18z \pm 2$	0j = 3, = 10 7i = 0 then	cj 3, -10	uj none or mese
147.11012 + 122 - 102 + 2	7t = 0, then 2		3
a) $ z = \frac{3}{2}$	b) $ z = \frac{-1}{3}$	c) $ z = 1$	d) $ z = \frac{3}{4}$
148. If 'z' lies on the circle $ z $ -	$-2i = 2\sqrt{2}$ then the value	of $\arg[(z-2)/(z+2)]$ is e	qual to
π	π		π
$\frac{a}{3}$	$\frac{0}{4}$	<u>c)</u> <u>6</u>	$\frac{1}{2}$
149. If ' p ' and ' q ' are distinct p	prime numbers, then the nu	mber of distinct imaginary	numbers which are p^{th} as
well as <i>q</i> th roots of unity	are		
a) $\min(p,q)$	b) $\max(p,q)$	c) 1	d) Zero
150. Let <i>a</i> be a complex numb	er such that $ a < 1$ and z_1 ,	z_2, z_3, \dots be the vertices of	a polygon such that
$z_k = 1 + a + a^2 + \dots + a$	k^{k-1} for all $k = 1, 2, 3, \dots$ the	n z_1, z_2, \dots lie within the cir	cle
a) $ z - \frac{1}{ z } = \frac{1}{ z }$	b) $\left z + \frac{1}{z} \right = \frac{1}{z}$	c) $ z - \frac{1}{ z } = a - 1 $	d) $ z + \frac{1}{ z } = a + 1 $
1-a a-1	a + 1 a + 1	-a -a	a + 1
151. The sum of values of x sa x^2 a	itisfying the equation		
$\left(31 + 8\sqrt{15}\right)^{x^2 - 3} + 1 =$	$(32 + 8\sqrt{15})^{x^2 - 3}$ is		
a) 3	b) 0	c) 2	d) None of these
152. Let <i>a</i> , <i>b</i> , <i>c</i> be real number	rs, $a \neq 0$. If α is a root of a^2 :	$x^2 + bx + c = 0. \beta$ is the ro	bot of $a^2x^2 - bx - c = 0$ and
0 < lpha < eta , then the equa	ation $a^2x^2 + 2bx + 2c = 0$ h	has a root γ that always sat	isfies
a) $\gamma = \frac{\alpha + \beta}{\alpha + \beta}$	b) $\gamma = \alpha + \frac{\beta}{2}$	c) $\gamma = \alpha$	d) $\alpha < \gamma < \beta$
$\frac{152}{152}$ If α β he the new zero re	2 = 0	$d \alpha^2 \beta^2$ has the reasts of $\alpha^2 \alpha$	$2 + h^2 x + a^2 = 0$ then
a, b, c are in	dts dt dx + bx + c = 0 and	aa, p be the roots of ax	+ b x + c = 0, then
a) G.P.	b) H.P.	c) A.P.	d) None of these
154. The equation $2^{2x} + (a - a)^{2x}$	$1)2^{x+1} + a = 0$ has roots of	of opposite signs then exhai	ustive set of values of <i>a</i> is
a) $a \in (-1, 0)$	b) <i>a</i> < 0	c) $a \in (-\infty, 1/3)$	d) $a \in (0, 1/3)$
155. Let $z = x + iy$ be a comp	lex number where x and y	are integers. Then the area	of the rectangle whose

vertices are the root	s of the equation $z\bar{z}^3 + \bar{z}z$	$z^3 = 350$ is	
a) 48	b) 32	c) 40	d) 80
156. If the quadratic equa	tion $4x^2 - 2(a + c - 1)x$	a + ac - b = 0 (a > b > c)	
a) Both roots are gre	eater than <i>a</i>	b) Both roots are le	ess than c
c) Both roots lie bet	ween $c/2$ and $a/2$	d) Exactly one of th	be roots lies between $c/2$ and $a/2$
157 Lot $ z = x \leq x \forall x =$	$= 1.2.2 \qquad \text{m Then } \Sigma^n $	tic loss than	ie roots nes between c/2 and u/2
157. Let $ 2_r - 1 \le 1, \forall 1 =$	= 1, 2, 5, <i>n</i> . Then $ \underline{Z}_{r=1} ^2$	z_r is less than	m(m+1)
a) <i>n</i>	b) 2 <i>n</i>	c) $n(n+1)$	d) $\frac{n(n+1)}{2}$
	2		2
158. If $(ax^2 + c)y + (a'x)$	(c' + c') = 0 and x is a rational formula $(c' + c') = 0$	ional function of y and ac is	negative, then
a) $ac' + a'c = 0$	b) $a/a' = c/c'$	c) $a^2 + c^2 = a'^2 + c'^2 + a''^2 + c''^2 + a''^2 + a'''^2 + a''''^2 + a'''''''''^2 + a'''''''''''''''''''''''''''''''''''$	c'^2 d) $aa' + cc' = 1$
159. Let z and ω be two n	on-zero complex number	rs such that $ z = \omega $ and an	$\operatorname{rg} z = \pi - \operatorname{arg} \omega$, then z equals
a) ω	b) <i>−</i> ω	c) $\overline{\omega}$	d) $-\overline{\omega}$
160. Suppose that $f(x)$ is	a quadratic expression p	ositive for all real x. If $g(x)$	= f(x) + f'(x) + f''(x), then for
any real x (where f'	(x) and $f''(x)$ represent	1 st and 2 nd derivative respe	ectively)
a) $g(x) < 0$	b) $g(x) > 0$	c) $g(x) = 0$	d) $g(x) > 0$
161 If z_i is a root of the e	austion $a_n z^n + a_n z^{n-1} + a_n z^{n-1}$	$\cdots + a$ $z + a = 3$ when	re $ a_i < 2$ for $i = 0.1$ <i>n</i> Then
1	1	$1 u_{n-1} z + u_n = 3,$ when	1
a) $ z_1 > \frac{1}{2}$	b) $ z_1 < \frac{1}{4}$	c) $ z_1 > \frac{1}{4}$	d) $ z < \frac{1}{2}$
J 167 The complex number	4 mag = and = antiofring	4	$\frac{1}{\sqrt{2}}$ (2) are the continue of a
102. The complex number	rs z_1, z_2 and z_3 satisfying	$[(z_1 - z_3)/(z_2 - z_3)] = [(1$	$-i\sqrt{3}/2$ are the vertices of a
changle which is		h) Dight angled ise	
		b) Right-angled iso	sceles
c) Equilateral		d) Obtuse-angled is	sosceles
163. The number of solut	ions of the equation z^2 +	$\bar{z} = 0$ is	
a) 1	b) 2	c) 3	d) 4
164. If α is the n^{th} root of	unity, then $1 + 2\alpha + 3\alpha^2$	$n^2 + \cdots$ to <i>n</i> terms equal to	
-n	-n	-2n	-2n
a) $\frac{1}{(1-\alpha)^2}$	b) $\frac{1-\alpha}{1-\alpha}$	c) $\frac{1-\alpha}{1-\alpha}$	d) $\frac{1}{(1-\alpha)^2}$
165. If α , β be the roots of	f the equation $2x^2 - 35x$	+2 = 0, then the value of ($(2\alpha - 35)^3 (2\beta - 35)^3$ is equal to
a) 8	h) 1	c) 64	d) None of these
166 If z is a complex num	box such that $\pi/2 < \infty$	$\sigma_{\pi} = \sigma_{\pi}/2$ then which of the	a fallowing in aquality is true?
	The such that $-\pi/2 \leq a$	$g_2 \leq \pi/2$, then which of the	
a) $ z - z \leq z (\arg z)$	$z - \arg z$	b) $ z - z \ge z $ (arg	$z = \arg z$
c) $ z - z < (\arg z - z)$	argz)	d) None of these	
167. If $x^2 + ax - 3x - (a + ax) = -3x - (a + ax) + ($	+2) = 0 has real and dis	stinct roots, then minimum	value of $(a^2 + 1)/(a^2 + 2)$ is
a) 1	b) 0	$(1)\frac{1}{2}$	$d)\frac{1}{2}$
		$\frac{c}{2}$	$\frac{d}{4}$
168. If α and β are the root	ots of the equation $x^2 - a$	$ax + b = 0$ and $A_n = \alpha^n + \beta$	^{3ⁿ} , then which of the following is
true?			
a) $A_{n+1} = aA_n + bA_n$	b) $A_{n+1} = bA_n + a_n$	A_{n-1} c) $A_{n+1} = aA_n - b_n$	A_{n-1} d) $A_{n+1} = bA_n - aA_{n-1}$
169. The polynomial x^6 +	$4x^5 + 3x^4 + 2x^3 + x + 3x^4 + 2x^3 + x + 3x^4 + 2x^3 + x^4 + 3x^4 + 2x^3 + x^4 + 3x^4 + 3$	1 is divisible by where w is	cube root of units
Where ω is one of th	e imaginary cube roots of	f unity	
	b) $w \perp \omega^2$	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right) $	$d (x) (x)^{2}$
$a_{1}x + \omega$	$b j x + \omega$	$(x + \omega)(x + \omega)$	$\int u (x - \omega)(x - \omega)$
170. Let $f(x) = ax^2 + bx$	$+ c, a \neq 0$ and $\Delta = b^{-} - c$	4 <i>ac</i> . If $\alpha + \beta, \alpha^2 + \beta^2$ and α	$z^2 + p^2$ are in GP, then
a) ∆≠ 0	b) $b\Delta = 0$	c) $c\Delta = 0$	d) $bc \neq 0$
171. z_1 and z_2 are two dist	tinct points in an Argand	plane. If $a z_1 = b z_2 $ (whe	ere $a, b \in R$), then the point
$(az_1/bz_2) + (bz_2/az_1)$	(z_1) is a point on the		
a) Line segment [–2	,2] of the real axis	b) Line segment [–	2, 2] of the imaginary axis
c) Unit circle $ z = 1$		d) The line with arg	$gz = \tan^{-1} 2$
172. The number of comm	lex numbers z satifving	z-3-i = z-9-i and	z - 3 + 3i = 3 are
a) One	b) Two	c) Four	d) None of these
173 If $'z'$ is complex num	her then the locus of (π')	atisfying the condition 127.	-1 - z-1 is
	eston of line some set is in	ausiying the condition 22 - ausi 1/2 and 1	1 - 2 - 1 = 13
a) rerpendicular bis	ector of fine segment join	111g 1/2 and 1	

b) Circle c) Parabola d) None of the above curves 174. If xy = 2(x + y), $x \le y$ and $x, y \in N$, then the number of solutions of the equation are b) Three a) Two d) Infinitely many solutions c) No solution 175. If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then a) a < 2 b) $2 \le a \le 3$ c) $3 < a \le 4$ d) a > 4176. Let $f(x) = ax^2 + bx + c$, $a, b, c \in R$. If f(x) takes real values for real values of x and non-real values of x, then b) *b* = 0 a) a = 0c) c = 0d) Nothing can be said about *a*, *b*, *c* 177. If z(1 + a) = b + ic and $a^2 + b^2 + c^2 = 1$, then [(1+iz)/(1-iz)=a) $\frac{a+ib}{1+c}$ b) $\frac{b-ic}{1+a}$ c) $\frac{a+ic}{1+b}$ 178. The number of positive integral solutions of $x^4 - y^4 = 3789108$ is d) None of these b) 1 a) 0 c) 2 d) 4 179. Let *a*, *b* and *c* be real numbers such that 4a + 2b + c = 0 and ab > 0. Then the equation $ax^2 + bx + c = 0$ has a) Complex roots b) Exactly one root c) Real roots d) None of these 180. If $\omega \neq 1$ is a cube root of unity and $(1 + \omega)^7 = A + B\omega$ then A and B are respectively a) 0, 1 b) 1, 1 c) 1,0 d) -1.1181. Consider the equation $10z^2 - 3iz - k = 0$, where z is a complex variable and $i^2 = -1$. Which of the following statements is true? a) For real positive numbers k, both roots are purely imaginary b) For all complex numbers k, neither roots is real c) For real purely imaginary numbers k, both roots are real and irrational d) For real negative numbers k, both roots are purely imaginary The expression $\left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{2}-i\cos\frac{\pi}{2}}\right]^8$ = 182. c) i d) −*i* a) 1 183. If roots of $x^2 - (a - 3)x + a = 0$ are such that at least one of them is greater than 2, then a) $a \in [7, 9]$ b) $a \in [7, \infty]$ c) $a \in [9, \infty]$ d) $a \in [7, 9)$ 184. If *a*, *b*, *c* are three distinct positive real numbers, then the number of real roots of $ax^2 + 2b|x| - c = 0$ is a) 0 b) 4 c) 2 d) None of these ^{185.} If $i = \sqrt{-1}$, then $4 + 5[(-1/2) + i\sqrt{3}/2]^{334} + 3[(-1/2) + (i\sqrt{3}/2)]^{365}$ is equal to a) $1 - i\sqrt{3}$ b) $-1 + i\sqrt{3}$ c) $i\sqrt{3}$ d 186. The smallest positive integer *n* for which $[(1 + i)/(1 - i)]^n = 1$ is d) $-i\sqrt{3}$ a) n = 8 b) n = 16 c) n = 12 d) None of thes 187. If *x*, *y* and *z* are real and different and $u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$, then *u* is always d) None of these a) Non-negative b) Zero c) Non-positive d) None of these 188. If the ratio of the roots of $ax^2 + 2bx + c = 0$ is same as the ratio of the $px^2 + 2qx + r = 0$, then a) $\frac{2b}{ac} = \frac{q^2}{pr}$ b) $\frac{b}{ac} = \frac{q}{pr}$ c) $\frac{b^2}{ac} = \frac{q^2}{pr}$ d) None of these 189. If one root of $x^2 - x - k = 0$ is square of the other, then k =a) $2 \pm \sqrt{5}$ b) 2 $\pm \sqrt{3}$ c) $3 \pm \sqrt{2}$ d) 5 + $\sqrt{2}$ 190. If $n \in N > 1$ then sum of real part of roots of $z^n = (z+1)^n$ is equal to a) $\frac{n}{2}$ b) $\frac{(n-1)}{2}$ c) $-\frac{n}{2}$ d) $\frac{(1-n)}{2}$ 191. If z is a complex number having least absolute value and |z - 2 + 2i| = 1, then z =

	a) $(2 - 1/\sqrt{2})(1 - i)$	b) $(2 - 1/\sqrt{2})(1 + i)$	c) $(2 + 1/\sqrt{2})(1 - i)$	d) $(2 + 1/\sqrt{2})(1 + i)$
192	If $x = 2 + 2^{2/3} + 2^{1/3}$, the	en the value of $x^3 - 6x^2 + 6$	óx is	
	a) 3	b) 2	c) 1	d) –2
193	The principal argument o	f the complex number $\left[(1 - 1)\right]$	$(+i)^{5}(1+\sqrt{3i})^{2}]/[-2i(-\sqrt{3i})^{2}]$	$\overline{3}+i$] is
	a) $\frac{19\pi}{1}$	b) $-\frac{7\pi}{3}$	c) $-\frac{5\pi}{3}$	d) $\frac{5\pi}{3}$
104	¹² The renge of a fear which t	$\frac{12}{12}$	12 O has its smaller reat in th	$\frac{12}{12}$
194	. The fange of a for which t	$\frac{1}{10} = \frac{1}{10} $		$\frac{d}{d} \left(\begin{array}{c} \infty \\ \infty \end{array} \right) \left(\begin{array}{c} -1, 2 \end{array} \right) $
195	If α and β are the roots of	$Sr^2 \pm nr \pm a = 0 \text{ and } a^4 \beta$	4 are the roots of $r^2 - rr \perp$	$(1)(-\infty, -3) \cup (0, \infty)$
195	$x^2 - 4ax + 2a^2 - r = 0$ h	$x + px + q = 0$ and α, p		s – 0, then the equation
	a) One positive and one n	egative root	b) Two positive roots	
	c) Two negative roots	0	d) Cannot say anything	
196	. The number of solutions of	of the equation $\sin(e^x) = 5$	$x^{x} + 5^{-x}$ is	
	a) 0	b) 1	c) 2	d) Infinitely many
197	If $p(q-r)x^2 + q(r-p)x$	r + r(p - q) = 0 has equal	roots, then $2/q =$	
	1 1	b) $n \perp r$	c) $m^2 + r^2$	$d) \frac{1}{1} + \frac{1}{1}$
	$a) \frac{-}{p} + \frac{-}{r}$	<i>b) p + r</i>	$c_{j}p_{j} + r_{j}$	$r^{1}\frac{1}{p^{2}} + \frac{1}{r^{2}}$
198	The roots of the equation equilateral triangle, then	$t^3 + 3at^2 + 3bt + c = 0$ as	re z_1, z_2, z_3 which represent	t the vertices of an
	a) $a^2 = 3b$	b) $b^2 = a$	c) $a^2 = b$	d) $b^2 = 3a$
199	. The integral values of <i>m</i> f	or which the roots of the ed	quation $mx^2 + (2m - 1)x$ -	(m-2) = 0 are rational
	are given by the expression	on [where <i>n</i> is integer]		
	a) <i>n</i> ²	b) <i>n</i> (<i>n</i> + 2)	c) $n(n+1)$	d) None of these
200	• Let $z = 1 - t + i\sqrt{t^2 + t} + i\sqrt{t^2 + t}$	<mark>⊦ 2</mark> , where <i>t</i> is a real param	eter. The locus of z in the A	rgand plane is
	a) A hyperbola	b) An ellipse	c) A straight line	d) None of these
201	$1, z_1, z_2, z_3, \dots, z_{n-1}$ are the	e $n^{ m th}$ roots of unity, then th	e value of $1/(3 - z_1) + 1/(3 - z_1)$	$(3 - z_2) + \dots + 1/(3 - 1)$
	z_{n-1}) is equal to			
	a) $\frac{n3^{n-1}}{1}$ + 1	h) $\frac{n3^{n-1}}{1}$ - 1	c) $\frac{n3^{n-1}}{1}$ + 1	d) None of these
	$\frac{n}{3^n-1} + \frac{1}{2}$	$3^{n} - 1 = 1$	$\frac{3^{n}-1}{3^{n}-1}$	
202	Given $z = (1 + i\sqrt{3})^{100}$, th	hen $[RE(z)/IM(z)]$ equals	4	
	a) 2 ¹⁰⁰	b) 2 ⁵⁰	c) $\frac{1}{\sqrt{3}}$	d) √3
203	The quadratic $x^2 + ax + b$	b + 1 = 0 has roots which a	are positive integers, then ($(a^2 + b^2)$ can be equal to
	a) 50	b) 37	c) 61	d) 19
204	x_1 and x_2 are the roots of	$ax^2 + bx + c = 0 \text{ and } x_1 x_2$	< 0. Roots of $x_1(x - x_2)^2$	$(x - x_1)^2 = 0$ are
	a) Real and opposite sign		b) Negative	
	c) Positive		d) Non-real	
205	. Both the roots of the equa	ation $(x - b)(x - c) + (x - c)$	a)(x-c) + (x-a)(x-b)) = 0 are always
	a) Positive	b) Real	c) Negative	d) None of these
206	. If $a^2 + b^2 + c^2 = 1$, then a	ab + bc + ca lies in the interval	erval	
	a) $\left[\frac{1}{2}, 2\right]$	b) [-1,2]	c) $\left[-\frac{1}{2}, 1\right]$	d) $\left[-1,\frac{1}{2}\right]$
207	If $ z_1 = z_2 $ and $\arg \arg(z)$	$z_1/z_2) = \pi$, then $z_1 + z_2$ is equivalent to $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 + z_2$ if $z_2 + z_2$ if $z_2 + z_2$ is equivalent to $z_2 + z_2$ if $z_2 +$	qual to	
	a) 0	b) Purely imaginary	c) Purely real	d) None of these
208	. If $b_1 b_2 = 2(c_1 + c_2)$, then	at least one of the equation	$ans x^2 + b_1 x + c_1 = 0 \text{ and } x^2$	$b^2 + b_2 x + c_2 = 0$ has
	a) Imaginary roots		b) Real roots	
	c) Purely imaginary roots	1	d) None of these	
209	If $\cos \alpha + 2\cos \beta + 3\cos \beta$	$\gamma = \sin \alpha + 2 \sin \beta + 3 \sin \gamma$	y = 0, then the value of sin 3	$3\alpha + 8\sin 3\beta + 27\sin 3\gamma$ is
	a) $\sin(a + b + \gamma)$	b) $3\sin(\alpha + \beta + \gamma)$	c) $18\sin(\alpha + \beta + \gamma)$	d) $\sin(\alpha + 2\beta + 3)$
210	. If $z = x + iy$ and $\omega = (1 - iy)$	$(z - i)$, then $ \omega = 1$	implies that, in the complex	k plane

	a) <i>z</i> lies on the imaginary	axis	b) <i>z</i> lies on the real axis	
	c) <i>z</i> lies on the unit circle		d) None of these	
211	. The maximum area of the	triangle formed by the con	plex coordinate z, z_1, z_2 w	hich satisfy the relations
	$ z - z_1 = z - z_2 $ and $ z $	$-(z_1+z_2)/2 \le r$, where r	$r > z_1 - z_2 $ is	1
	a) $\frac{1}{2} z_1 - z_2 ^2$	b) $\frac{1}{2} z_1 - z_2 r$	c) $\frac{1}{2} z_1 - z_2 ^2 r^2$	d) $\frac{1}{2} z_1 - z_2 r^2$
212	. The points z_1, z_2, z_3, z_4 in	the complex plane are the v	vertices of a parallelogram	taken in order if and only if
	a) $z_1 + z_4 = z_2 + z_3$	b) $z_1 + z_3 = z_2 + z_4$	c) $z_1 + z_2 = z_3 + z_4$	d) None of these
213	The equation $\sqrt{x+1} - \sqrt{x}$	$x-1 = \sqrt{4x-1}$ has		
	a) No solution		b) One solution	
	c) Two solutions		d) More than two solution	IS
214	. If $(b^2 - 4ac)^2(1 + 4a^2) < always less than$	$< 64a^2$, $a < 0$, then maximu	m value of quadratic expre	ession $ax^2 + bx + c$ is
	always less than	h) 2	c) _1	d) _2
215	The curve $u = (1 + 1)x^2$	U_{j}^{2}	-1	$u_j - z_j$
215	(-2, 2)	+ 2 lifter sects the curve y -	$-\lambda x + 3 \text{ III exactly one points}$	d (2)
216	a) $\{-2, 2\}$ If $a^2 + b^2 = 1$ then $(1 + b^2)$	$UJ\{1\}$	() {-2}	u) {2}
210	1 u + v = 1, uten $(1 + u)$	(1 + iu)/(1 + v - iu) =	a) $b + ia$	d) $a + ib$
217	a) I If z z z are the vertice	UJ 2 s of an oquilatoral triangle.	$C_{J} D + i u$	$u_j u + i b_j$ $- i - z_j - i then$
217	$ z_1 + z_2 + z_3 $ equals to		$\frac{1}{2} \int \int$	$z_2 - i_1 - z_3 - i $, then
	a) $2\sqrt{2}$	h) $\sqrt{2}$	c) 3	d) <u>1</u>
	a) 575	0) 7 3		$3\sqrt{3}$
218	. Let C_1 and C_2 are concent	ric circles of radius 1 and 8	/3, respectively, having cer	ntre at (3, 0) on the Aragnd
	plane. If the complex num	ber z satisfies the inequalit	у	
	$\log_{1/3}\left(\frac{ z-3 ^2+2}{ z-3 ^2+2}\right) > 1$ the	n		
	(11 z-3 -2)			
	a) z lies outside C but in	side C	b) z lies inside of both C	and C
	a) z lies outside C_1 but ins	side C_2	b) <i>z</i> lies inside of both C_1	and C ₂
219	 a) z lies outside C₁ but ins c) z lies outside both of C If a h and c are real numbers 	side C_2 and C_2 pers such that $a^2 + b^2 + c^2$	b) <i>z</i> lies inside of both C_1 d) None of these -1 then $ab + bc + ca$ lies	and C_2
219	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numbre a) $[1/2, 2]$	side C_2 a_1 and C_2 pers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies	and C_2 s in the interval d) $[-1, 1/2]$
219	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) [1/2, 2] . If $z = x + iy$ and $x^2 + y^2$	side C_2 a_1 and C_2 pers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16 then the range of $ x $	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$	and C ₂ s in the interval d) [−1, 1/2]
219 220	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numbres a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0.4]$	side C_2 1 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0, 2]$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2 4]$	and C_2 s in the interval d) $[-1, 1/2]$
219 220 221	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) [1/2, 2] If $z = x + iy$ and $x^2 + y^2$ a) [0,4]	side C_2 and C_2 pers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ = $(w^2) = a$ (where w is a constant of $ x $	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these
219 220 221	a) z lies outside C_1 but ins c) z lies outside both of C . If a, b and c are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $	side C_2 and C_2 pers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a cu	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - $ y $ is c) $[2,4]$ ube root of unity) then com	and C_2 s in the interval d) [-1, 1/2] d) None of these aplete set of values of <i>a</i> is
219 220 221	a) z lies outside C_1 but ins c) z lies outside both of C . If a, b and c are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$	side C_2 1 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a cuble) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these splete set of values of <i>a</i> is d) $0 \le a \le 4$
219 220 221 222	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a culo b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a^2)$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these splete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$, then $\beta^2 =$
219 220 221 222	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) a^2	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a correct of $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a)$ c) $1 - a^2$	and C_2 is in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$
 219 220 221 222 222 223 	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numbres a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) a^2 If the complex number <i>z</i> s	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a cuble) b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of [2]	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$, then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to
 219 220 221 222 223 	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numbres a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) a^2 . If the complex number <i>z</i> s a) $5/3$	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a correct of $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(ax^2)$ c) $1 - a^2$ 3, then the least value of $[ax^2 + bx^2]$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these
 219 220 221 222 223 224 	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) α^2 . If the complex number <i>z</i> s a) $5/3$. The points $z_1 = 3 + \sqrt{3}i$	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a culor b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a - c)$ c) $1 - a^2$ 3, then the least value of $[a - c]$ c) $11/3$ on a complex plane. The c	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numbres a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 ^2$ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) a^2 If the complex number <i>z</i> s a) $5/3$ The points $z_1 = 3 + \sqrt{3}i$ are the bisector of the angle for β	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a cuble) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c)$ c) $11/3$ n on a complex plane. The c	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these plete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 	a) <i>z</i> lies outside C_1 but ins c) <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) a^2 . If the complex number <i>z</i> s a) $5/3$. The points $z_1 = 3 + \sqrt{3}ia$ the bisector of the angle f $(3 + 2\sqrt{3}) = \sqrt{3} + \frac{1}{3}ia$	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a culor b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c]$ c) $11/3$ n on a complex plane. The conduction of $a + c$ d z_2 is	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 	a) <i>z</i> lies outside <i>C</i> ₁ but inside <i>c</i> and <i>z</i> lies outside both of <i>C</i> . If <i>a</i> , <i>b</i> and <i>c</i> are real number a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) a^2 If the complex number <i>z</i> so a) $5/3$ The points $z_1 = 3 + \sqrt{3}i a$ the bisector of the angle of a) $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a curve b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{a} = i$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a - c)$ c) $1 - a^2$ 3, then the least value of $[a - c]$ c) $11/3$ n on a complex plane. The conduct z_2 is b) $z = 5 + 5i$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 	a) z lies outside C_1 but ins c) z lies outside both of C. If a, b and c are real numb a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) a^2 If the complex number z s a) $5/3$ The points $z_1 = 3 + \sqrt{3}i a$ the bisector of the angle f a) $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$ c) $z = -1 - i$	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a curve b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{a}$	b) <i>z</i> lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(ax)$ c) $1 - a^2$ 3, then the least value of $[ax]$ c) $11/3$ n on a complex plane. The condition z_2 is b) $z = 5 + 5i$ d) None of these	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 225 	a) z lies outside C_1 but ins c) z lies outside both of C . If a, b and c are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) α^2 . If the complex number z s a) $5/3$. The points $z_1 = 3 + \sqrt{3}i$ a the bisector of the angle f a) $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$ c) $z = -1 - i$. If $ z^2 - 3 = 3 z $ then the	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a culor b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{2} - i$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c)$ c) $11/3$ n on a complex plane. The conduct of $a = 2$ b) $z = 5 + 5i$ d) None of these	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 225 	a) z lies outside C_1 but inside c) z lies outside both of C. If a, b and c are real numbers a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) a^2 . If the complex number z is a) $5/3$. The points $z_1 = 3 + \sqrt{3}i a$ is the bisector of the angle for a $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$. c) $z = -1 - i$. If $ z^2 - 3 = 3 z $ then the a) 1	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a curve b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given formed by the vectors z_1 and $\frac{2}{2} - i$ e maximum value of $ z $ is b) $\frac{3 + \sqrt{21}}{2}$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c)$ c) $11/3$ n on a complex plane. The c d z_2 is b) $z = 5 + 5i$ d) None of these c) $\frac{\sqrt{21} - 3}{2}$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these splete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on
 219 220 221 222 223 224 225 	a) z lies outside C_1 but ins c) z lies outside both of C . If a, b and c are real numb a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) α^2 . If the complex number z s a) $5/3$. The points $z_1 = 3 + \sqrt{3}i a$ the bisector of the angle f a) $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$ c) $z = -1 - i$. If $ z^2 - 3 = 3 z $ then the a) 1	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a curve b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{-i}$ e maximum value of $ z $ is b) $\frac{3 + \sqrt{21}}{2}$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c]$ c) $11/3$ n on a complex plane. The conduct of $a = 2$ b) $z = 5 + 5i$ d) None of these	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on d) None of these
 219 220 221 222 223 224 225 226 	a) z lies outside C_1 but inside c) z lies outside both of C. If a, b and c are real number a) $[1/2, 2]$. If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$. If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$. If α, β are real and α^2, β^2 a) a^2 . If the complex number z set a) $5/3$. The points $z_1 = 3 + \sqrt{3}i a$ the bisector of the angle for a $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$ c) $z = -1 - i$. If $ z^2 - 3 = 3 z $ then the a) 1. If a complex number z sate $z = \frac{1}{2}$.	side C_2 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a curve b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{2} - i$ e maximum value of $ z $ is b) $\frac{3 + \sqrt{21}}{2}$ cisfies $ 2z + 10 + 10i \le 5\sqrt{3}$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c)$ c) $11/3$ n on a complex plane. The c d z_2 is b) $z = 5 + 5i$ d) None of these c) $\frac{\sqrt{21} - 3}{2}$ $\sqrt{3} - 5$, then the least princ	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these plete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on d) None of these
 219 220 221 222 223 224 225 226 	a) z lies outside C_1 but ins c) z lies outside both of C. If a, b and c are real numb a) $[1/2, 2]$ If $z = x + iy$ and $x^2 + y^2$ a) $[0,4]$ If $ z - 1 \le 2$ and $ \omega z - 1 $ a) $0 \le a \le 2$ If α, β are real and α^2, β^2 a) α^2 If the complex number z s a) $5/3$ The points $z_1 = 3 + \sqrt{3}i a$ the bisector of the angle f a) $z = \frac{(3 + 2\sqrt{3})}{2} + \frac{\sqrt{3} + 2}{2}$ c) $z = -1 - i$ If $ z^2 - 3 = 3 z $ then the a) 1 If a complex number z sat a) $-\frac{5\pi}{2}$	side C_2 1 and C_2 bers such that $a^2 + b^2 + c^2$ b) $[-1, 2]$ = 16, then the range of $ x $ b) $[0,2]$ $-\omega^2 = a$ (where ω is a culor b) $\frac{1}{2} \le a \le \frac{\sqrt{3}}{2}$ are the roots of the equation b) $1 - \frac{1}{a^2}$ satisfies the condition $ z \ge$ b) $8/3$ and $z_2 = 2\sqrt{3} + 6i$ are given ormed by the vectors z_1 and $\frac{2}{-i}$ e maximum value of $ z $ is b) $\frac{3 + \sqrt{21}}{2}$ cisfies $ 2z + 10 + 10i \le 5\sqrt{2}$ b) $-\frac{11\pi}{2}$	b) z lies inside of both C_1 d) None of these = 1, then $ab + bc + ca$ lies c) $[-1/2, 1]$ - y is c) $[2,4]$ ube root of unity) then com c) $\frac{\sqrt{3}}{2} - \frac{1}{2} \le a \le \frac{1}{2} + \frac{\sqrt{3}}{2}$ n $a^2x^2 + x + 1 - a^2 = 0(a + c)$ c) $1 - a^2$ 3, then the least value of $[a + c]$ c) $1 - a^2$ 3, then the least value of $[a + c]$ c) $11/3$ n on a complex plane. The conduct of $a + c$ d) None of these c) $\frac{\sqrt{21} - 3}{2}$ $\sqrt{3} - 5$, then the least prince c) $-\frac{3\pi}{2}$	and C_2 s in the interval d) $[-1, 1/2]$ d) None of these uplete set of values of <i>a</i> is d) $0 \le a \le 4$ $a > 1$), then $\beta^2 =$ d) $1 + a^2$ z + (1/z) is equal to d) None of these omplex number lying on d) None of these iple argument of <i>z</i> is d) $-\frac{2\pi}{2}$

227.	If <i>x</i> be real, then $x/(x^2 - 5x^2)$	5x + 9) lies between		
	a) -1 and -1/11	b) 1 and -1/11	c) 1 and 1/11	d) None of these
228.	The complex number asso	ciated with the vertices A,	B, C of ΔABC are e^{th} , ω , $\overline{\omega}$,	respectively [where ω , $\overline{\omega}$
	are the complex cube root	s of unity and $\cos \theta > Re(d)$	$\omega)]$, then the complex numl	ber of the point where
	angle bisector of A meets t	the circumcircle of the trian	ngle, is	
	a) $e^{i heta}$	b) $e^{-i\theta}$	c) ω <u>ω</u>	d) $\omega + \overline{\omega}$
229.	If $\arg\left(\frac{z_1 - \frac{z}{ z }}{\frac{z}{ z }}\right) = \frac{\pi}{2}$ and $\left \frac{z}{ z }\right $	$ -z_1 = 3$ then $ z_1 $ equals	to	
	a) √ <u>26</u>	b) $\sqrt{10}$	c) √3	d) 2√2
230.	Dividing $f(z)$ by $z - i$, we	obtain the remainder <i>i</i> and	d dividing it by <i>z</i> + <i>i</i> , we get	t the remainder $1 + i$, then
	remainder upon the divisi	on of $f(z)$ by $z^2 + 1$ is		
	1	1	1	$\frac{1}{(-1)}$
	$\frac{1}{2}(z+1) + i$	$\frac{10}{2}(lz+1)+l$	$c) \frac{1}{2}(lz - 1) + l$	$(1)\frac{1}{2}(z+l)+1$
231.	If both roots of the equation	$\sin ax^2 + x + c - a = 0 \text{ are}$	imaginary and $c > -1$, the	en
	a) $3a > 2 + 4c$	b) 3 <i>a</i> < 2 + 4 <i>c</i>	c) <i>c</i> < <i>a</i>	d) None of these
232.	Let α , β be the roots of x^2	$-x + p = 0$ and γ , δ be root	ots of $x^2 - 4x + q = 0$. If α ,	, β , γ , δ are in G.P., then the
	integral values of p and q ,	respectively are		
	a) -2, -32	b) -2, 3	c) -6,3	d) -6, -32
233.	If α , β be the roots of the e	equation $ax^2 + bx + c = 0$,	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)$	$a(\alpha + b) + (a\beta^2 + c)/(a\beta + c)$
233.	If α , β be the roots of the e <i>b</i>) is	equation $ax^2 + bx + c = 0$,	then value of $(a\alpha^2 + c)/(c)$	$(a\alpha + b) + (a\beta^2 + c)/(a\beta + c)$
233.	If α , β be the roots of the e b) is a) $b(b^2 - 2ac)$	equation $ax^2 + bx + c = 0$, b) $b^2 - 4ac$	then value of $(a\alpha^2 + c)/(c\beta^2 - 2ac)$	$(a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these
233.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$	then value of $(a\alpha^2 + c)/(c)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$	$(a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these
233. 234.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $	then value of $(a\alpha^2 + c)/(c)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex m	$a\alpha + b$) + $(a\beta^2 + c)/(a\beta + d)$ None of these number is
233. 234.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3	then value of $(a\alpha^2 + c)/(c^2)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex r c) 6	$a\alpha + b$) + $(a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5
233.234.235.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given z is a complex numb	equation $ax^{2} + bx + c = 0$, b) $\frac{b^{2} - 4ac}{2a}$ e equation $z^{3} + [3(\bar{z})^{2}]/ z $ b) 3 ber with modulus 1. Then t	then value of $(a\alpha^2 + c)/(a\alpha^2)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex m c) 6 he equation $[(1 + ia)/(1 - a\alpha^2)]$	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has
233.234.235.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin	equation $ax^{2} + bx + c = 0$, b) $\frac{b^{2} - 4ac}{2a}$ e equation $z^{3} + [3(\bar{z})^{2}]/ z $ b) 3 ber with modulus 1. Then the the ct	then value of $(a\alpha^2 + c)/(a\alpha^2)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex r c) 6 he equation $[(1 + ia)/(1 - b)]$ Two real and two imag	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary
233. 234. 235.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given z is a complex numb a) All roots real and distin c) Three roots real and on	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 per with modulus 1. Then the ct e imaginary	then value of $(a\alpha^2 + c)/(a\alpha^2)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex r c) 6 he equation $[(1 + ia)/(1 - b)$ Two real and two imag d) One root real and three	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary
233.234.235.236.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3$	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 ber with modulus 1. Then the ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh	then value of $(a\alpha^2 + c)/(a\alpha^2)$ c) $\frac{b(b^2 - 2ac)}{a^2c}$ =0 where <i>z</i> is a complex r c) 6 he equation $[(1 + ia)/(1 - b)$ Two real and two imag d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from
 233. 234. 235. 236. 	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 ber with modulus 1. Then t ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh ry root, then the expressio	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex r c) 6 he equation $[(1 + ia)/(1 - b)$ Two real and two imag d) One root real and three ere a_{1,a_2,a_3,a_4} are real coes n $a_3/(a_1a_2) + (a_1a_4)/(a_2a_3)$	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to
233.234.235.236.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1z^3 - zero$, has a purely imagina a) 0	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 ber with modulus 1. Then the ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh ry root, then the expression b) 1	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex respectively on the equation $[(1 + ia)/(1 - b)]$ Two real and two images d) One root real and three ere $a_{1,a_{2,a_{3,a_{4}}}$ are real coefficients of $a_{3}/(a_{1}a_{2}) + (a_{1}a_{4})/(a_{2}a_{2})$ c) -2	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to d) 2
233.234.235.236.237.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given z is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina a) 0	equation $ax^{2} + bx + c = 0$, b) $\frac{b^{2} - 4ac}{2a}$ e equation $z^{3} + [3(\bar{z})^{2}]/ z $ b) 3 per with modulus 1. Then t ct e imaginary $+ a_{2}z^{2} + a_{3}z + a_{4} = 0$, wh ry root, then the expression b) 1 $\begin{bmatrix} \arg z \end{bmatrix}$	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex m c) 6 he equation $[(1 + ia)/(1 - b)$ Two real and two imag d) One root real and three ere a_{1,a_2,a_3,a_4} are real coes n $a_3/(a_1a_2) + (a_1a_4)/(a_2a_1)$ c) -2 arg z_2 arg z_3	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to d) 2
233.234.235.236.237.	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina a) 0 If z_{1, z_2, z_3} are three complet	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 per with modulus 1. Then t ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh ry root, then the expression b) 1 ex numbers and $A = \begin{bmatrix} \arg z \\ \arg z \end{bmatrix}$	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex respectively the complex respectively on the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of $a_3/(a_1a_2) + (a_1a_4)/(a_2a_1a_2)$ n $a_3/(a_1a_2) + (a_1a_4)/(a_2a_1a_2)$ c) -2 1 arg z_2 arg z_3 2 arg z_3 arg z_1 then <i>A</i> is a arg z_4 arg z_5 arg z_7 ar	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to d) 2 s divided by
233.234.235.236.237.	If α , β be the roots of the e <i>b</i>) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina a) 0 If z_{1,z_2,z_3} are three complet a) arg $(z_1 + z_2 + z_2)$	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 per with modulus 1. Then the ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, which ry root, then the expression b) 1 ex numbers and $A = \begin{bmatrix} \arg z \\ \arg z \\ \arg z \\ \arg z \end{bmatrix}$	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex respectively the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of $a_3/(a_1a_2) + (a_1a_4)/(a_2a_1a_2) + (a_1a_2)/(a_2a_2a_1a_2a_2a_1a_2a_1a_2a_2)$ then <i>A</i> is a arg z_1 arg z_2 arg z_3 arg z_3 arg z_1 arg z_2 arg z_3 arg	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to d) 2 s divided by d) cannot say
 233. 234. 235. 236. 237. 238. 	If α , β be the roots of the e b) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina a) 0 If z_1, z_2, z_3 are three complet a) arg $(z_1 + z_2 + z_3)$ Let z_1 and z_2 be n^{th} roots of	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 per with modulus 1. Then t ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh ry root, then the expression b) 1 ex numbers and $A = \begin{bmatrix} \arg z \\ \arg z \\ \arg z \end{bmatrix}$ b) $\arg(z_1 z_2 z_3)$	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex respectively a complex respectively a complex respectively and the equation $[(1 + ia)/(1 - b)$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of $a_3/(a_1a_2) + (a_1a_4)/(a_2a_2)$ c) -2 1 arg z_2 arg z_3 2 arg z_3 arg z_1 3 arg z_1 arg z_2 c) All numbers ght angle at the origin. The	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary e imaginary fficients different from a_3) has the value equal to d) 2 s divided by d) cannot say n <i>n</i> must be of the form
 233. 234. 235. 236. 237. 238. 	If α , β be the roots of the e <i>b</i>) is a) $\frac{b(b^2 - 2ac)}{4a}$ Number of solutions of the a) 2 Given <i>z</i> is a complex numb a) All roots real and distin c) Three roots real and on If the equation $z^4 + a_1 z^3 - zero$, has a purely imagina a) 0 If z_{1,z_2,z_3} are three complet a) arg $(z_1 + z_2 + z_3)$ Let z_1 and z_2 be n^{th} roots of a) $4k + 1$	equation $ax^2 + bx + c = 0$, b) $\frac{b^2 - 4ac}{2a}$ e equation $z^3 + [3(\bar{z})^2]/ z $ b) 3 ber with modulus 1. Then t ct e imaginary $+ a_2 z^2 + a_3 z + a_4 = 0$, wh ry root, then the expression b) 1 ex numbers and $A = \begin{bmatrix} \arg z \\ \arg z \\ \arg z \end{bmatrix}$ b) $\arg(z_1 z_2 z_3)$ of unity which subtend a ridinal substantial substanti	then value of $(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c)/(a\alpha^2 + c))/(a\alpha^2 + c)$ =0 where <i>z</i> is a complex response of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images d) One root real and three ere a_{1,a_2,a_3,a_4} are real coefficients of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images of the equation $[(1 + i\alpha)/(1 - b)]$ Two real and two images of the equation $[(1 + i\alpha)/(1 - b)]$ and $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ the equation $[(1 + i\alpha)/(1 - b)]$ the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ the equation $[(1 + i\alpha)/(1 - b)]$ then A is a constant of the equation $[(1 + i\alpha)/(1 - b)]$ th	$a\alpha + b) + (a\beta^2 + c)/(a\beta + d)$ None of these number is d) 5 $(ia)]^4 = z$ has inary imaginary fficients different from a_3) has the value equal to d) 2 s divided by d) cannot say n n must be of the form d) 4k

Multiple Correct Answers Type

239. If *a*, *b*, *c* are distinct numbers in arithmetic progressions then both the roots of the quadratic equation $(a + 2b - 3c)x^{2} + (b + 2c - 3a)x + (c + 2a - 3b) = 0$ are b) Positive a) Real d) Rational c) Negative 240. If the equation $ax^2 + bx + c = 0$, $a, b, c \in R$ have non-real roots, then b) c(a + b + c) > 0 c) c(4a - 2b + c) > 0a) c(a-b+c) > 0d) None of these 241. Let *z* be a complex number satisfying equation $z^p = \overline{z}^q$, where $p, q \in N$, then a) If p = q, then number of solutions of equation will be infinite b) If p = q, then number of solutions of equation will be finite c) If $p \neq q$, then number of solutions of equation will be p + q + 1d) If $p \neq q$, then number of solutions of equation will be p + q242. Let $a, b, c \in Q'$ satisfying a > b > c. Which of the following statement(s) hold true for the quadratic

polynomial $f(x) = (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b)$? a) The mouth of the parabola y = f(x) opens upwards b) Both roots of the equation f(x) = 0 are rational c) x-coordinate of vertex of the graph is positive d) Product of the roots is always negative 243. Let P(x) and Q(x) be two polynomials. Suppose that $f(x) = P(x^3) + xQ(x^3)$ is divisible by $x^2 + x + 1$, then a) P(x) is divisible by (x - 1) but Q(x) is not divisible by (x - 1)b) Q(x) is divisible by (x - 1) but P(x) is not divisible by (x - 1)c) Both P(x) and Q(x) are divisible by (x - 1) d) f(x) is divisible by (x - 1)244. z_1 and z_2 are the roots of the equation $z^2 - az + b = 0$, where $|z_1| = |z_2| = 1$ and a, b are non-zero complex numbers, then a) $|a| \le 1$ c) $\arg(a^2) = \arg(b)$ d) $\arg a = \arg(b^2)$ b) $|a| \le 2$ 245. Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then $(z_1 + z_2)/(z_1 - z_2)$ may be a) Zero b) Real and positive c) Real and negative d) Purely imaginary 246. Given that the complex numbers which satisfy the equation $z\overline{z}^3 + \overline{z}z^3 = 350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then a) Area of rectangle is 48 sq. units b) If z_1, z_2, z_3, z_4 are vertices of rectangle then $z_1 + z_2 + z_3 + z_4 = 0$ c) Rectangle is symmetrical about real axis d) $\arg(z_1 - z_3) = \frac{\pi}{4}$ or $\frac{3\pi}{4}$ 247. If $z_1 = 5 + 12i$ and $|z_2| = 4$ then a) Maximum $(|z_1 + iz_2|) = 17$ b) Minimum $(|z_1 + (1 + i)z_2|) = 13 - 4\sqrt{2}$ d) Maximum $\left| \frac{z_1}{z_2 + \frac{4}{z_2}} \right| = \frac{13}{3}$ c) Minimum $\left| \frac{z_1}{z_2 + \frac{4}{-}} \right| = \frac{13}{4}$ 248. For the quadratic equation $x^2 + 2(a + 1)x + 9a - 5 = 0$, which of the following is/are true? a) If 2 < a < 5, then roots are of opposite sign b) If a < 0, then roots are of opposite sign c) If a > 7, then both roots are negative d) If $2 \le a \le 5$, then roots are unreal 249. Given z = f(x) + i g(x) where $f, g: (0, 1) \rightarrow (0, 1)$ are real valued functions. Then, which of the following does not hold good? a) $z = \frac{1}{1 - ir} + i \left(\frac{1}{1 + ir} \right)$ b) $z = \frac{1}{1+ix} + i\left(\frac{1}{1-ix}\right)$ d) $z = \frac{1 + ix}{1 - ix} + i\left(\frac{1}{1 - ix}\right)$ c) $z = \frac{1}{1+ix} + i\left(\frac{1}{1+ix}\right)$ 250. If S is the set of all real x such that $(2x - 1)/(2x^3 + 3x^2 + x)$ is positive, then S contains a) $\left(-\infty, -\frac{3}{2}\right)$ b) $\left(-\frac{3}{2}, -\frac{1}{4}\right)$ c) $\left(-\frac{1}{4}, \frac{1}{2}\right)$ d) $\left(\frac{1}{2}, 3\right)$ 251. If the following figure shows the graph of $f(x) = ax^2 + bx + c$, then a) *ac* < 0 b) bc > 0c) *ab* > 0 d) *abc* < 0

a) ac < 0b) bc > 0c) ab > 0d) abc < 0252. If the equation $ax^2 + bx + c = 0$ (a > 0) has two roots α and β such that $\alpha < -2$ and $\beta > 2$, then a) $b^2 - 4ac > 0$ b) c < 0c) a + |b| + c < 0d) 4a + 2|b| + c < 0

253. If |z - 1| = 1, then a) $\arg((z-1-i)/z)$ can be equal to $-\pi/4$ b) (z-2)/z is purely imaginary number c) (z-2)/z is purely real number d) If $\arg(z) = \theta$, where $z \neq 0$ and θ is acute, then $1 - 2/z = i \tan \theta$ 254. If the points A(z), B(-z) and C(1-z) are the vertices of an equilateral triangle ABC, then a) Sum of possible z is 1/2b) Sum of possible *z* is1 d) Product of possible z is 1/2c) Product of possible z is 1/4 255. If every pair from among the equations $x^2 + ax + bc = 0$, $x^2 + bx + ca = 0$ and $x^2 + cx + ab = 0$ has a common root, then a) The sum of the three common roots is -1/2(a + b + c)b) The sum of the three common roots is 2(a + b + c)c) The product of the three common roots is *abc* d) The product of the three common roots is $a^2b^2c^2$ 256. $|z^2|^3$ is equal to a) $|z^3|^2$ b) $|\bar{z}^3|^2$ c) $|z|^6$ d) $|z^6|$ 257. If $ax^2 + (b - c)x + a - b - c = 0$ has unequal real roots for all $c \in R$, then a) b < 0 < a b) a < 0 < b258. If $\cos x - y^2 - \sqrt{y - x^2 - 1} \ge 0$, then d) b > a > 0c) *b* < *a* < 0 b) $x \in R$ d) x = 0a) $y \ge 1$ c) y = 1259. Equation of tangent drawn to circle |z| = r at the point $A(z_0)$ is a) $\operatorname{Re}\left(\frac{z}{z_0}\right) = 1$ b) $z\overline{z_0} + z_0\overline{z} = 2r^2$ c) $\operatorname{Im}\left(\frac{z}{z_0}\right) = 1$ 260. If $a, b, c \in R$ and abc < 0, then the equation $bcx^2 + 2(b + c - a)x + a = 0$, has d) Im $\left(\frac{z_0}{z}\right) = 1$ a) Both positive roots b) Both negative roots d) One positive and one negative root c) Real roots 261. If $\sqrt{5-12i} + \sqrt{-5-12i} = z$, then principle value of arg *z* can be a) $-\frac{\pi}{4}$ b) $\frac{\pi}{4}$ c) $\frac{3\pi}{4}$ d) $-\frac{3\pi}{4}$ 262. If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$ then which of the following expression will be the symmetric function of roots a) $\log \frac{\alpha}{\beta}$ b) $\alpha^2 \beta^5 + \beta^2 \alpha^5$ c) $\tan(\alpha - \beta)$ d) $\left(\log\frac{1}{\alpha}\right)^2 + (\log\beta^2)$ 263. Let z_1, z_2, z_3 be the three non-zero complex numbers such that $z_2 \neq 1$, $a = |z_1|$, $b = |z_2|$ and $c = |z_3|$. Let, $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ Then a) $\arg\left(\frac{z_3}{z_2}\right) = \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2$ b) Orthocenter of triangle formed by z_1, z_2, z_3 is $z_1 + z_2 + z_3$ c) If triangle formed by z_1, z_2, z_3 is equilateral, then its area is $\frac{3\sqrt{3}}{2}|z_1|^2$ d) If triangle formed by z_1, z_2, z_3 is equialateral then $z_1 + z_2 + z_3 = 0$ 264. If the quadratic equation $ax^2 + bx + c = 0$ (a > 0) has sec² θ and cosec² θ as its roots, then which of the following must hold good? b) $b^2 - 4ac \ge 0$ c) $c \ge 4a$ a) b + c = 0d) $4a + b \ge 0$ 265. If $|z_1| = 15$ and $|z_2 - 3 - 4i| = 5$, then

a) $|z_1 - z_2|_{\min} = 5$ b) $|z_1 - z_2|_{\min} = 10$ c) $|z_1 - z_2|_{\max} = 20$ d) $|z_1 - z_2|_{\max} = 25$ 266. z_1, z_2, z_3 and z'_1, z'_2, z'_3 are non-zero complex numbers such that $z_3 = (1 - \lambda)z_1 + \lambda z_2$ and $z'_3 = (1 - \mu)z'_1 + \mu z'_2$ then which of the following statements is/are true?

- a) If $\lambda, \mu \in R \{0\}$, then z_1, z_2 and z_3 are collinear and z'_1, z'_2, z'_3 are collinear separately
- b) If λ, μ are complex numbers, where $\lambda = \mu$ then triangles formed by points z_1, z_2, z_3 and z'_1, z'_2, z'_3 are similar
- If λ , μ are distinct complex numbers, then points z_1 , z_2 , z_3 and z'_1 , z'_2 , z'_3 are not connected by any well defined geometry
- If $0 < \lambda < 1$, then z_3 divides the line joining z_1 and z_2 internally and if $\mu > 1$ then z'_3 divides the line d) joining of z'_1, z'_2 externally
- 267. If from a point *P* representing the complex number z_1 on the curve |z| = 2, two tangents are drawn from *P* to the curve |z| = 1, meeting at points $Q(z_2)$ and $R(z_3)$, then
 - a) Complex number $(z_1 + z_2 + z_3)/3$ will be on the curve |z| = 1
 - b) $\left(\frac{4}{\overline{z}_1} + \frac{1}{\overline{z}_2} + \frac{1}{\overline{z}_3}\right) \left(\frac{4}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right) = 9$ c) $\arg\left(\frac{z_2}{z_2}\right) = \frac{2\pi}{3}$

d) Orthocentre and circumcentre of ΔPQR will coincide

268. If every pair from among the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$ and $x^2 + rx + pq = 0$, where p, q, r are unequal non-zero numbers, have a common root, then the value of

 $\left(\frac{\text{sum of common roots}}{\text{product of common roots}}\right)$ is

a) $\frac{\sum p}{pqr}$ b) $\left(\sum p\right)^2$ c) $\sum \frac{1}{p}$

d) 0

- 269. If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $|z_1| = |z_2| = 1$ and $\text{Re}(z_1\bar{z}_2) = 0$, then the pair of complex number $w_1 = a + ic$ and $w_2 = b + id$ satisfies
- a) $|w_1| = 1$ b) $|w_2| = 1$ c) Re $|w_1\overline{w}_2| = 0$ d) None of these 270. If $\arg(z + a) = \pi/6$ and $\arg(z a) = 2\pi/3$ ($a \in R^+$), then

a)
$$|z| = a$$
 b) $|z| = 2a$ c) $\arg(z) = \frac{\pi}{2}$ d) $\arg(z) = \frac{\pi}{3}$

271. A rectangle of maximum area is inscribed in the circle |z - 3 - 4i| = 1. If one vertex of the rectangle is 4 + 4i, then another adjacent vertex of this rectangle can be

- a) 2 + 4i b) 3 + 5i c) 3 + 3i d) 3 3i272. If amp $(z_1z_2) = 0$ and $|z_1| = |z_2| = 1$, then a) $z_1 + z_2 = 0$ b) $z_1 = z_2 = 1$ c) $z_2 = \overline{z_2}$ d) None of the set
- a) $z_1 + z_2 = 0$ b) $z_1 z_2 = 1$ c) $z_1 = \overline{z}_2$ d) None of these 273. If the equations $4x^2 x 1 = 0$ and $3x^2 + (\lambda + \mu)x + \lambda \mu = 0$ have a root common then the rational values of λ and μ are

a)
$$\lambda = \frac{-3}{4}$$
 b) $\lambda = 0$ c) $\mu = \frac{3}{4}$ d) $\mu = 0$
274. If $|ax^2 + bx + c| \le 1$ for all x in [0, 1], then
a) $|a| \le 8|$ b) $|b| > 8$ c) $|c| \le 1$ d) $|a| + |b| + |c| \le 17$
275. If x, y \in R and $2x^2 + 6xy + 5y^2 = 1$, then
a) $|x| \le \sqrt{5}$ b) $|x| \ge \sqrt{5}$ c) $y^2 \le 2$ d) $y^2 \le 4$

276. Let z_1 and z_2 be two distinct complex numbers and let $z = (1 - t)z_1 + tz_2$ for some real number t with 0 < t < 1. If arg(w) denotes the principle argument of a non-zero complex number w, then

a)
$$|z - z_1| + |z - z_2| = |z_1 - z_2|$$

b) $\arg(z - z_1) = \arg(z - z_2)$
c) $\begin{vmatrix} z - z_1 & \overline{z} - \overline{z_1} \\ z_2 - z_1 & \overline{z_2} - \overline{z_1} \end{vmatrix} = 0$
277. Value $(s)(-i)^{1/3}$ is/are
a) $\frac{\sqrt{3} - i}{2}$
b) $\frac{\sqrt{3} + i}{2}$
c) $\frac{-\sqrt{3} - i}{2}$
d) $\frac{-\sqrt{3} + i}{2}$
278. z_0 is a root of the equation $z^n \cos \theta_0 + z^{n-1} \cos \theta_1 + \dots + z \cos \theta_{n-1} + \cos \theta_n = 2$, where $\theta_i \in R$, then
a) $|z_0| > 1$
b) $|z_0| > \frac{1}{2}$
c) $|z_0| > \frac{1}{4}$
d) $|z_0| > \frac{3}{2}$
279. Let $f(x) = ax^2 + bx + c$. Consider the following diagram. Then

$$y = ax^2 + bx + c$$

a)
$$c < 0$$
 b) $b > 0$ c) $a + b - c > 0$ d) $abc < 0$
280. If a is a complex constant such that $az^2 + z + \overline{a} = 0$ has a real root, then
a) $a + \overline{a} = 1$ d) The absolute value of the real roots is 1
281. If $p = a + b\omega + c\omega^2$, $q = b + c\omega + a\omega^2$ and $r = c + a\omega + b\omega^2$ where $a, b, c \neq 0$ and ω is the complex cube
root of unity, then
a) If p, a, r lie on the circle $|z| = 2$, the triangle formed by these points is equilateral
b) $p^2 + q^2 + r^2 = a^2 + b^2 + c^2$
c) $p^2 + q^2 + r^2 = 2(pq + qr + rp)$
d) None of these
282. $P(z_1), Q(z_2), R(z_3)$ and $S(z_4)$ are four complex numbers representing the vertices of a rhombus taken in
order on the complex plane, then which one of the following is/are correct?
a) $\frac{z_1 - z_4}{z_2 - z_4}$ is purely real
b) $amp \frac{z_1 - z_4}{z_2 - z_4} = am \frac{z_2 - z_4}{z_1 - z_4}$
283. If z_1, z_2 be two complex numbers $(z_1 \neq z_2)$ satisfying $|z_1^2 - z_2^2| = |\overline{z_1^2} + \overline{z_2}^2 - 2\overline{z_1}\overline{z_2}$, then
a) $\frac{z_1}{z_2}$ is purely imaginary b) $\frac{z_1}{z_1}$ is purely real
c) $|arg z_1 - arg z_2| = \pi$ d) $|arg z_1 - arg z_2| = \frac{\pi}{2}$
284. If $|z - (1/2)| = 1$ then
a) $|z|_{max} = \frac{1 \pm \sqrt{2}}{2}$ b) $|z|_{min} = \frac{\sqrt{5} - 1}{2}$ c) $|z|_{max} = \frac{\sqrt{5} - 2}{2}$ d) $|z|_{min} = \frac{\sqrt{5} - 1}{\sqrt{2}}$
285. A quadratic equation whose difference of roots is 3 and the sum of the squares of the roots is 29, is given
by
a) $x^2 + 9x + 14 = 0$ b) $x^2 + 7x + 10 = 0$ c) $x^2 - 7x - 10 = 0$ d) $x^2 - 7x + 10 = 0$
286. If $a a \alpha \beta$ are the roots of $ax^2 + bx + c = 0$ and $a + h, \beta + h$ are the roots of $px^2 + qx + r = 0$, then
a) $h = \frac{1}{2} \left(\frac{a}{a}, \frac{q}{p}\right)$ b) $\frac{b^2 - 4ac}{a^2} = \frac{q^2 - 4p^2}{p^2}$
c) $\frac{a}{p} = \frac{b}{r}$ d) None of these
287. If a is one root of the equation $4x^2 + 2x - 1 = 0$, then its other root is given by
a) $4a^2 - 3a$ b) $4a^3 + 3a$ c) $a - \frac{1}{2} - m/4$ is the arc of a circle
a) Whose radius is $5\sqrt{2}$ b) Whose radius is 5
c) Whose length (of arc) is $\frac{15\pi}{\sqrt{2}}$ d) Whose centre is $-2 - 5i$
289. If the roots of

291	a) Circle with ' z_1 ' as its int c) Circle with ' z_1 ' as its ex The value of x satisfying t	terior point terior point he equation 2 ^{2x} – 8 × 2 ^x =	b) Circle with ' z_2 ' as its in d) Circle with ' z_2 ' as its ex = -12 is	terior point terior point
	a) $1 + \frac{\log 3}{\log 2}$	b) $\frac{1}{2}\log 6$	c) $1 + \log \frac{3}{2}$	d) 1
292	The equation $x^2 + a^2x + a^2x$	$b^2 = 0$ has two roots each	of which exceeds a number	c, then
	a) $a^4 > 4b^2$	b) $c^2 + a^2c + b^2 > 0$	c) $-\frac{a^2}{2} > c$	d) None of these
293	If the equations $x^2 + bx - bx = bx + bx + bx + bx + bx + bx + bx +$	$-a = 0$ and $x^2 - ax + b =$	0 have <i>a</i> common root, the	n
	a) $a + b = 0$	b) $a = b$	c) $a - b = 1$	d) $a + b = 1$
294	If $\cos^4 \theta + a$, $\sin^4 \theta + \alpha$ ar	e the roots of the equation	$x^2 + 2bx + b = 0 \text{ and } \cos^2 x$	$^{2}\theta + \beta$, sin ² $\theta + \beta$, sin ² $\theta + \beta$
	β are the roots of the equa	ation $x^2 + 4x + 2 = 0$, then va	lues of <i>b</i> are	
205	a) 2	b) -1	c) -2	d) 1
295.	If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then th	e roots of the equation ax^2	c + bx + c = 0 are in the ra	1
	a) $\frac{1}{2}(-1+i\sqrt{3})$	b) $\frac{1}{2}(1-i\sqrt{3})$	c) $\frac{1}{2}(-1-i\sqrt{3})$	d) $\frac{1}{2}(1+i\sqrt{3})$
296	If $x^3 + 3x^2 - 9x + c$ is of	the form $(x - \alpha)^2 (x - \beta)$, t	then <i>c</i> is equal to	
	a) 27	b) -27	c) 5	d) —5
297.	If $p, q, r \in R$ and the quad	ratic equation $px^2 + qx + qx$	r = 0 has no real root, then	
	a) $p(p + q + r) > 0$	b) $r(p+q+r) > 0$	c) $q(p+q+r) > 0$	d) $(p + q + r) > 0$
298.	If the equations $x^2 + px + y$	$-q = 0$ and $x^2 + p'x + q' = $	= 0 have a common root, th	en it must be equal to
	a) $\frac{pq'-p'q}{q-q'}$	b) $\frac{q-q}{p'-p}$	c) $\frac{p'-p}{q-q'}$	d) $\frac{pq'-p'q}{p-p'}$
299.	A complex number z is ro	tated in anticlockwise dire	ction by an angle α and we	get z' and if the same
	complex number z is rota	ted by an angle α in clockw	vise direction and we get z'	' then
	a) <i>z'</i> , <i>z</i> , <i>z''</i> are in G.P.		b) <i>z'</i> , <i>z</i> , <i>z''</i> are in H.P.	
	c) $z' + z'' = 2z \cos \alpha$		d) $z'^2 + z''^2 = 2z^2 \cos 2\alpha$	
300	Given that the two curves	$\arg(z) = \pi/6$ and $ z - 2\sqrt{3} $	$\overline{Bi} = r$ intersect in two dist	tinct points, then
	a) [<i>r</i>] ≠ 2	b) 0 < <i>r</i> < 3	c) <i>r</i> = 6	d) $3 < r < 2\sqrt{3}$
301	If $c \neq 0$ and the equation	$\frac{p}{2x} = \frac{a}{x+c} + \frac{b}{x-c}$ has two equ	al roots, then p can be	
	a) $\left(\sqrt{a} - \sqrt{b}\right)^2$	b) $\left(\sqrt{a} + \sqrt{b}\right)^2$	c) <i>a</i> + <i>b</i>	d) <i>a</i> – <i>b</i>
302	If $c \neq 0$ and the equation f	p/(2x) = a/(x+c) + b/(x+c)	(c - c) has two equal roots,	then p can be
	a) $\left(\sqrt{a} - \sqrt{b}\right)^2$	b) $\left(\sqrt{a} + \sqrt{b}\right)^2$	c) <i>a</i> + <i>b</i>	d) <i>a</i> – <i>b</i>
303	The equation $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x}$	$y_{g_2} x - \frac{5}{4} = \sqrt{2}$ has		
	a) At least one real solution	on	b) Exactly three solutions	
	c) Exactly one irrational s	olution	d) Complex roots	
304	If <i>P</i> and <i>Q</i> are represented a) ΔOPQ (where <i>O</i> is the <i>Q</i>	d by the complex number <i>z</i> origin) is equilateral	1 and z_2 , such that $ 1/z_2 + b \Delta OPQ$ is right angled	$1/z_1 = 1/z_2 - 1/z_1 $, then
	c) The circumcentre of ΔC	$DPQ \text{ is } \frac{1}{2}(z_1 + z_2)$	d) The circumcentre of Δc	$DPQ \text{ is } \frac{1}{2}(z_1 + z_2)$
305	If $(x^2 + ax + 3)/(x^2 + x - 3)$	(+ a) takes all real values fo	r possible real values of x_i	then
	a) $4a^3 + 20 < 0$	b) $4a^3 + 20 > 0$	1	d) = 1
	a) $4a^{2} + 39 < 0$	$0) 4a^{2} + 39 \ge 0$	c) $a \geq \frac{-4}{4}$	a) $a < \frac{1}{4}$
306	Given than α , γ are roots of $Rr^2 - 6r + 1 = 0$ such that	of the equation $Ax^2 - 4x + ax^2 - bx^2 + ax^2 + bx^2 + $	$1 = 0$, and β , δ the roots of then	f the equation of
	Dx = 0x + 1 = 0, such the	$at \alpha, \beta, \gamma and o are in fi.r.,$ $b) \Delta = \Delta$	c) $B = 2$	d) $B = 8$
307	Let $P(x) = x^2 + bx + c$, w	where b and c are integer. If	$FP(x)$ is a factor of both x^4	$+ 6x^2 + 25$ and
	$3x^4 + 4x^2 + 28x + 5$, then	n		
	 a) P(x) = 0 has imaginary c) P(1) = 4 	y roots	b) $P(x) = 0$ has roots of o d) $P(1) = 6$	pposite sign

308.	If <i>n</i> is natural number ≥ 2	2, such that $z^n = (z+1)^n$,	then	
	a) Roots of equation lie or	n a straight line parallel to	y-axis	
	b) Roots of equation lie or	n a straight line parallel to .	<i>x</i> -axis	
	c) Sum of the real parts of	the roots is $-[(n-1)/2]$		
	d) None of these	N		
309.	If $z^3 + (3+2i)z + (-1+i)z + (-1+i$	ia) = 0 has one real root,	then the value of 'a' lies in	interval $(a \in R)$
	a) (-2, 1)	b) (-1,0)	c) (0, 1)	d) (-2, 3)
310.	For $a > 0$, the roots of the	e equation $\log_{ax} a + \log_{x} a$	$a^2 + \log_{a^2 x} a^3 = 0$ are given	by
	a) $a^{-4/3}$	b) $a^{-3/4}$	c) $a^{-1/2}$	d) <i>a</i> ⁻¹
311.	If $z_1 = a + ib$ and $z_2 = c - pair of complex numbers$	+ <i>id</i> are complex numbers $\omega_1 = a + ic$ and $\omega_2 = b + b$	such that $ z_1 = z_2 = 1$ and id satisfies	and $\operatorname{Re}(z_1\overline{z}_2) = 0$, then the
212	a) $ \omega_1 = 1$ If $z = x \pm iy$ then the equ	$ \omega_2 = 1$ $ \omega_2 = 1$	c) $\operatorname{Re}(\omega_1 \omega_2) = 0$ m represents a circle then r	$\omega_1 \omega_1 \omega_2 = 0$
512.	112 - x + iy, then the equal $1/2$	$\frac{1}{2} \frac{1}{2} \frac{1}$	c) 2	$\frac{1}{2}$
010	a) 1/2	UJI the second		a) $3 < r < 2\sqrt{2}$
313.	If $1, z_1, z_2, z_3,, z_{n-1}$ be the product $\prod_{r=1}^{n-1} (\omega - z_r)$ can	he $n^{\rm cm}$ roots unity and ω be n be equal to	a non-real complex cube r	oot of unity, then the
	a) 0	b) 1	c) -1	d) $1 + \omega$
314.	If $z = \omega$, ω^2 , where ω is a	non-real complex cube roo	ot of unity, are two vertices	of an equilateral triangle in
	the Argand plane then the	e third vertex may be repre	sented by	
	a) $z = 1$	b) $z = 0$	c) $z = -2$	d) $z = -1$
315.	If $(\sin \alpha)x^2 - 2x + b > 2$.	for all real values of $x < 1$	and $\alpha \in (0, \pi/2) \cup (\pi/2, \pi/2)$), then possible real values
	of <i>b</i> is/are			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	a) 2	b) 3	c) 4	d) 5
316.	If the roots of the equation	$n x^2 + ax + b = 0$ are c an	d d, then roots of the equat	ion $x^2 + (2c + a)x + c^2 + c^2$
0101	ac + b = 0 are			
	a) <i>c</i>	b) $d - c$	c) 2 <i>c</i>	d) 0
317.	Let $P(x)$ and $Q(x)$ be two	polynomials. Suppose that	$f(x) = P(x^3) + xQ(x^3)$ is	divisible by $x^2 + x + 1$,
	then			
	a) $P(x)$ is divisible by $(x - x)$	-1) but $Q(x)$ is not divisib	le by $x - 1$	
	b) $Q(x)$ is divisible by $(x - x)$	-1) but $P(x)$ is not divisib	le by $x - 1$	
	c) Both $P(x)$ and $Q(x)$ are	e divisible by $x - 1$		
	d) $f(x)$ is divisible by $x - $	1		
318.	If the equation $ax^2 + bx$ - which of the following sta	+ c = 0 ($a > 0$) has two re- tements is/are true?	al roots α and β such that c	$\alpha < -2$ and $\beta > 2$, then
	a) $a - b + c < 0$	b) $c < 0, b^2 - 4ac > 0$	c) $4a - 2 b + c < 0$	d) $9a - 3 b + c < 0$
319.	For real <i>x</i> , then function ((x-a)(x-b)/(x-c) will	assume all real values pro	vided
	a) $a > b > c$	b) $a < b < c$	c) $a > c > b$	d) <i>a</i> < <i>c</i> < <i>b</i>
320.	The real value of θ for wh	ich the expression $\frac{1+i\cos\theta}{1-2i\cos\theta}$	is a real number is	5
	a) $2n\pi + \frac{\pi}{2}, n \in I$	b) $2n\pi - \frac{\pi}{2}, n \in I$	c) $2n\pi \pm \frac{\pi}{2}, n \in I$	d) $2n\pi \pm \frac{\pi}{4}$, $n \in I$
321.	If the equation whose roo	ts are the squares of the ro	bots of the cubic $x^3 - ax^2 + ax^2$	bx - 1 = 0 is identical
	with the given cubic equa	tion, then		
	a) <i>a</i> = 0, <i>b</i> = 3		b) $a = b = 0$	
	c) $a = b = 3$		d) <i>a</i> , <i>b</i> are roots of $x^2 + x$	+2 = 0
322.	If $ z - 3 = \min\{ z - 1 , z \}$	z - 5 , then Re(z) equals t	0	
	a) 2	ы ⁵	ر) ⁷	d) 4
		$\frac{5}{2}$	$\frac{1}{2}$	
323.	The graph of the quadrati positive and one negative	c trinomial $y = ax^2 + bx + bx$. Which of the following ho	⊢ c has its vertex at (4, -5) Ids good?	and two <i>x</i> -intercepts one
	a) <i>a</i> > 0	b) <i>b</i> < 0	c) $c < 0$	d) 8 <i>a</i> = <i>b</i>

324. If $|z_1| = |z_2| = 1$ and $amp z_1 + amp z_2 = 0$, then a) $z_1 z_2 = 1$ b) $z_1 + z_2 = 0$ c) $z_1 = \overline{z_2}$ d) None of these 325. If the equation, $z^3 + (3 + i)z^2 - 3z - (m + i) = 0$, where $m \in R$, has at least one real root, then m can have the value equal to a) 1 b) 2 c) 3 d) 5

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 326 to 325. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

326

Statement 1: The greatest integral value of λ for which $(2\lambda - 1)x^2 - 4x + (2\lambda - 1) = 0$ has real roots, is 2.

Statement 2: For real roots of $ax^2 + bx + c = 0, D \ge 0$.

327

Statement 1: If roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c = 1$

Statement 2: If *a*, *b*, *c* are odd integer, then the roots of the equation $4 \ abc \ x^2 + (b^2 - 4ac)x - b = 0$ are real and distinct

328 Let $ax^2 + bx + c = 0$, $a \neq 0$ ($a, b, c \in R$) has no real roots and a + b + 2c = 2

Statement 1: $ax^2 + bx + c > 0, \forall x \in R$

Statement 2: a + b is positive

329

Statement 1: If $\cos(1-i) = a + ib$, where $a, b \in R$ and $i = \sqrt{-1}$, then $a = \frac{1}{2}\left(e + \frac{1}{e}\right)\cos 1$, $b = 12e - 1e\sin 1$

Statement 2: $e^{i\theta} = \cos \theta + i \sin \theta$

330 Let fourth roots of unity z_1 , z_2 , z_3 and z_4 respectively

Statement 1: $z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$

Statement 2:
$$z_1 + z_2 + z_3 + z_4 = 0$$

331

Statement 1: The equation $(x - p)(x - r) + \lambda(x - q)(x - s) = 0$, where p < q < r < s, has non-real roots

Statement 2: The equation $px^2 + qx + r = 0$ ($p, q, r \in R$) has non-real roots if $q^2 - 4pr < 0$

332

	Statement 1:	If both roots of the equation $2x^2 - x + a = 0 (a \in R)$ lies in (1, 2), then $-1 < a \le 1/8$.
	Statement 2:	If $F(x) = 2x^2 - x + a$, then $D \ge 0$, $f(1) > 0$, $f(2) > 0$ yield $-1 < a \le 1/8$.
333		
	Statement 1:	The number of values of <i>a</i> for which $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$ is an identity in <i>x</i> is 2
	Statement 2:	If $a = b = c = 0$, then equation $ax^2 + bx + c = 0$ is an identity in x
334		
	Statement 1:	If equations $ax^2 + bx + c = 0$, $(a, b, c \in R)$ and $2x^2 + 3x + 4 = 0$ have a common root, then $a : b : c = 2 : 3 : 4$.
	Statement 2:	Roots of $2x^2 + 3x + 4 = 0$ are imaginary
335		
	Statement 1:	If z_1 and z_2 are two complex numbers such that $ z_1 = z_2 + z_1 - z_2 $, then $\operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$
	Statement 2:	$\arg(z) = 0 \Rightarrow z$ is purely real
336		
	Statement 1:	If $a, b, c \in Z$ and $ax^2 + bx + c = 0$ has an irrational root, then $ f(\lambda) \ge 1/q^2$, where $\lambda \in (\lambda = \frac{p}{q}; p, q \in Z)$ and $f(x) = ax^2 + bx + c$
	Statement 2:	If $a, b, c \in Q$ and $b^2 - 4ac$ is positive but not a perfect square, then roots of equation $ax^2 + bx + c = 0$ are irrational and always occur in conjugate pair like $2 + \sqrt{3}$ and $2 - \sqrt{3}$
337		
	Statement 1:	If equations $ax^2 + bx + c = 0$ and $x^2 - 3x + 4 = 0$ have exactly one root common, then at least one of <i>a</i> , <i>b</i> , <i>c</i> is imaginary
	Statement 2:	If <i>a</i> , <i>b</i> , <i>c</i> are not all real, then equation $ax^2 + bx + c = 0$ can have one root real and one root imaginary.
338		root magnary
	Statement 1:	Locus of z, satisfying the equation $ z - 1 + z - 8 = 5$ is an ellipse
	Statement 2:	Sum of focal distances of any point on ellipse is constant
339		
	Statement 1:	If $\cos^2 \pi/8$ is a root of the equation $x^2 + ax + b = 0$ where $a, b \in Q$, then ordered pair (a, b) is $[-1, (1/8)]$
	Statement 2:	If $a + mb = 0$ and m is irrational, then $a, b = 0$
340	Consider the fu	function $f(x) = \log_e(ax^3 + (a+b)x^2 + (b+c)x + c)$
	Statement 1:	Domain of the functions is $(-1, \infty) \sim \{-(b/2a)\}$, where $a > 0, b^2 - 4ac = 0$
	Statement 2:	$ax^2 + bx + c = 0$ has equal roots when $b^2 - 4ac = 0$

341 If $z_1 \neq -z_2$ and $|z_1 + z_2| = |(1/z_1) + (1/z_2)|$ then

Statement 1: $z_1 z_2$ is unimodular

Statement 2: z_1 and z_2 both are unimodular

342

0
:

Statement 2: The sum and product of two complex numbers are real if and only if they are conjugate of each other

343

- **Statement 1:** If all real values of *x* obtained from the equation $4^x (a 3)2^x + (a 4) = 0$ are non-positive, then $a \in (4, 5]$
- **Statement 2:** If $ax^2 + bx + c$ is non-positive for all real values of *x*, then $b^2 4ac$ must be negative or zero and '*a*' must be negative

344

Statement 1:	If $px^2 + qx + r = 0$ is a quadratic equation $(p, q, r \in R)$ such that its roots are α, β and
	$p + q + r < 0$, $p - q + r < 0$ and $r > 0$, then $[\alpha] + [\beta] = -1$, where $[\cdot]$ denotes greatest
	integer function

Statement 2: If for any two real numbers *a* and *b*, function f(x) is such that $f(a)f(b) < 0 \Rightarrow f(x)$ has at least one real root lying in (a, b)

345

Statement 1:	If $a > 0$ and $b^2 - ac < 0$, then domain of the function $f(x) = \sqrt{ax^2 + 2bx + c}$ is <i>R</i>
Statement 2:	If $b^2 - ac < 0$, then $ax^2 + 2bx + c = 0$ has imaginary roots

346

Statement 1:	If $ z_1 = 1$, $ z_2 = 2$, $ z_3 = 3$ and $ z_1 + 2z_2 + 3z_3 = 6$, then the value of $ z_2z_3 + 3z_3 = 6$
	$8z_3z_1 + 27z_1z_2$ is 36
Statement 2:	$ z_1 + z_2 + z_3 \le z_1 + z_2 + z_3 $

347

Statement 1:	If $f(x)$ is a quadratic polynomial satisfying $f(2) + f(4) = 0$. If unity is a root of $f(x) = 0$,
	then the other root is 3.5
Statement 2:	If $g(x) = px^2 + qx + r = 0$ has roots α , β , then $\alpha + \beta = -q/p$ and $\alpha\beta = (r/p)$

348

Statement 1:	If both roots of the equation $4x^2 - 2x + a = 0, a \in R$ lie in the interval (-1,1),
	then $-2 < a \leq \frac{1}{4}$.
Statement 2:	If $f(x) = 4x^2 - 2x + a$, then $D \ge 0$, $f(-1) > 0$ and $f(1) > 0 \Rightarrow -2 < a \le \frac{1}{4}$.

349

Statement 1:	If $a^2 + b^2 + c^2 < 0$, then if roots of the equation $ax^2 + bx + c = 0$ are imaginary, then
	they are not complex conjugates
Statement 2:	equation $ax^2 + bx + c = 0$ has complex conjugate roots when a, b, c are real

350

	Statement 1:	The equation $x^2 + (2m + 1)x + (2n + 1) = 0$, where <i>m</i> and <i>n</i> are integer cannot have
		any rational roots
	Statement 2:	The quantity $(2m + 1)^2 - 4(2n + 1)$, where $m, n \in I$ can never be a perfect square
351		
551		
	Statement 1:	If <i>n</i> is an odd integer greater than 3 but not a multiple of 3, then $(x + 1)^n - x^n - 1$ is
		divisible by $x^3 + x^2 + x$
	Statement 2:	If <i>n</i> is an odd integer greater than 3 but not a multiple of 3, we have $1 + \omega^n + \omega^{2n} = 3$
252		
552		
	Statement 1:	If $x + (1/x) = 1$ and $p = x^{4000} + (1/x^{4000})$ and q be the digit at unit place in the number
		$2^{2^n} + 1, n \in N$ and $n > 1$, then the value of $p + q = 8$
	Statement 2:	If ω , ω^2 are the roots of $x + 1/x = -1$, then $x^2 + 1/x^2 = -1$, $x^3 + (1/x^3) = 2$
353		
	Statement 1.	If $0 < \alpha < (\pi/4)$ then the equation $(x - \sin \alpha) \times (x - \cos \alpha) - 2 = 0$ has both roots in
	Statement 1.	$(\sin \alpha \cos \alpha)$
	Statement 2:	If $f(a)$ and $f(b)$ possess opposite signs, then there exist at least one solution of the
		equation $f(x) = 0$ in open interval (a, b)
354		
	Statement 1:	Let z_1 and z_2 are two complex numbers such that $ z_1 - z_2 = z_1 + z_2 $ then the
		orthocentre of $\triangle AOB$ is $[(z_1 + z_2)/2]$ (where <i>O</i> is origin)
	Statement 2:	In case of right angled triangle, orthocentre is that point at which the triangle is right
		angled
355		
	Statement 1.	$\left[\frac{z}{z}\right] = \frac{z}{z}$
	Statement 1.	If $\left \frac{1}{z z_1 + z_2}\right = k$, $(z_1, z_2 \neq 0)$, then the locus of z is circle
	Statement 2:	As $\left \frac{z-z_1}{z-z_1}\right = \lambda$ represents a circle, if $\lambda \notin \{0, 1\}$
250		$ z-z_2 $
350		
	Statement 1:	If z_1, z_2 are the roots of the quadratic equation $az^2 + bz + c = 0$ such that Im $(z_1z_2) \neq 0$,
		then at least one of <i>a</i> , <i>b</i> , <i>c</i> is imaginary
	Statement 2:	If quadratic equation having real coefficients has complex roots, then roots are always
		conjugate to each other
357		
	Chataan 44	
	Statement 1:	If the equation $ax^2 + bx + c = 0, 0 < a < b < c$, has non-real complex roots z_1 and z_2 ,
	Statement 7.	then $ z_1 > 1$, $ z_2 > 1$
	Statement 2:	complex roots always occur in conjugate pairs
358		
	_	
	Statement 1:	equation $ix^2 + (i-1)x - (1/2) - i = 0$ has imaginary roots
	Statement 2:	If $a = i, b = i - 1$ and $c = -(1/2) - i$, then $b^2 - 4ac < 0$
359		
	Statement 1.	The question $u^2 + u = 1 - \sin^4 u$ has only one solution
	Statement 1:	The question $-x^2 + x - 1 = \sin^2 x$ has only one solution.

Statement 2: If the curve y = f(x) and y = g(x) cut at one point, the number of solution is 1.

360

- **Statement 1:** If *a*, *b*, *c*, *a*₁, *b*₁, *c*₁ are rational and equations $ax^2 + 2bx + c = 0$ and $a_1x^2 + 2b_1x + c_1 = 0$ have one and only one root in common, then both $b^2 ac$ and $b_1^2 a_1c_1$ must be perfect squares
- **Statement 2:** If two quadratic equations with rational coefficient have a common irrational root $p + \sqrt{q}$, then both roots will be common

361

- **Statement 1:** If a + b + c = 0 and a, b, c are rational, then the roots of the equation $(b + c a)x^2 + (c + a b)x + (a + b c) = 0$ are rational.
- **Statement 2:** Discriminant of equation $(b + c a)x^2 + (c + a b)x + (a + b c) = 0$ is a perfect square.
- 362 Let *a*, *b*, *c*, *p*, *q* be real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and α , $\frac{1}{\beta}$ are the roots of the equation $x^2 + 2bx + c = 0$, where $\beta^2 \notin (-1, 0, 1)$ **Statement 1:** $(p^2 - q)(b^2 - ac) \ge 0$

Statement 2: $b \neq pa$ or $c \neq qa$

363

Statement 1: If $(a^2 - 4)x^2 + (a^2 - 3a + 2)x + (a^2 - 7a + 10) = 0$ is an identity, then the value of *a* is 2 **Statement 2:** If a - b = 0, then $ax^2 + bx + c = 0$ is an identity

364

- **Statement 1:** If $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$, then $\frac{z_1}{z_2}$ is purely imaginary
- **Statement 2:** If *z* is purely imaginary, then $z + \overline{z} = 0$

365 Let $f(x) = -x^2 + (a+1)x + 5$

Statement 1: f(x) is positive for some $\alpha < x < \beta$ and for all $a \in R$

Statement 2: f(x) is positive for all $x \in R$ and for some real *a*

366

```
Statement 1: |z_1 - a| < a, |z_2 - b| < b, |z_3 - c| < c, where a, b, c are positive real numbers, then
|z_1 + z_2 + z_3| is greater than 2|a + b + c|
Statement 2: |z_1 \pm z_2| \le |z_1| + |z_2|
```

367

Statement 1: If $|z_1| = |z_2| = |z_3|$, $z_1 + z_2 + z_3 = 0$ and (z_1) , $B(z_2)$, $C(z_3)$ are the vertices of $\triangle ABC$, then one of the values of $\arg(z_2 + z_3 - 2z_1)/(z_3 - z_2)$ is $\pi/2$ **Statement 2:** In equilateral triangle orthocentre coincides with centroid

368 Let *a*, *b*, *c* be real such that $ax^2 + bx + c = 0$ and $x^2 + x + 1 = 0$ have a common root

Statement 1: a = b = c

Statement 2: Two quadratic equations with real coefficients cannot have only one imaginary root common

369

Statement 1:	If the roots of $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. and sum of their
	reciprocal is 10, then $ S = 64$
Statement 2:	$x_1 x_2 x_3 x_4 x_5 = -S$, where x_1, x_2, x_3, x_4, x_5 are the roots of given equation

370

Statement 1:	The product of all values of $(\cos \alpha + i \sin \alpha)^{3/5}$ is $\cos 3\alpha + i \sin 3\alpha$

Statement 2: The product of fifth roots of unity is 1

371

Statement 1:	If $\arg(z_1z_2) = 2\pi$, then both z_1 and z_2 are purely real (z_1 and z_2 have principle
	arguments)
Statement 2:	Principle argument of complex number lies in $(-\pi, \pi)$

372

Statement 1:	Let $f(x)$ be quadratic expression such that $f(0) + f(1) = 0$. If -2 is one of the root of
	f(x) = 0, then other root is 3/5.
Statement 2:	If α , β are the zero's of $f(x) = ax^2 + bx + c$, then sum of zero's $= -b/a$, product of zero's
	= c/a.

373

Statement 1: Let *z* be a complex number, then the equation $z^4 + z + 2 = 0$ cannot have a root, such that |z| < 1**Statement 2:** $|z_1 + z_2| \le |z_1| + |z_2|$

374 Consider a general expression of degree 2 in two variables as $f(x, y) = 5x^2 + 2y^2 - 2xy - 6x - 6y + 9$

Statement 1: f(x, y) can be resolved into two linear factors over real coefficients

Statement 2: If we compare f(x, y) with $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, we have $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

375.

Column-I

- (A) If *a*, *b*, *c* and *d* are four zero real number such (p) a + b + c = 0that $(d + a - b)^2 + (d + b - c)^2 = 0$ and the roots of the equation $a(b - c)x^2 + b(c - a)x + c(a - b) = 0$ are real and equal then (B) If the roots of the equation $(a^2 + b^2)x^2 - (a) - a + c$ are in A
- **(B)** If the roots of the equation $(a^2 + b^2)x^2 -$ (q) *a, b, c* are in A.P $2b(a + c)x + (b^2 + c^2 = 0)$ are real and equal

then

- (C) If the equation $ax^2 + bx + c = 0$ and $x^3 3x^2 + 3x 1 = 0$ have a common real root, then
- (D) Let *a*, *b*, *c* be positive real numbers such that (s) *a*, the expression $l_{1} = 2 + \left(\sqrt{(a+b)^{2} + 4b^{2}}\right) = 1 + (a+b)^{2}$

$$bx^2 + (\sqrt{(a+c)^2 + 4b^2})x + (a+c)$$
 is non-
negative $\forall x \in R$, then

CODES:

	Α	В	С	D
a)	r	р	qr	S
b)	р	q	q,r	S
c)	q,r,s	r	р	q
d)	q,r	S	r	р

376.

Column-I

- (A) |z-1| = |z-i|
- **(B)** $|z + \overline{z}| + |z \overline{z}| = 2$
- (C) $|z + \overline{z}| = |z \overline{z}|$
- **(D)** If |z| = 1, then 2/z lies on
- **CODES**:

	Α	В	С	D
a)	р	r	q	S
b)	r	q	S	р
c)	q	S	р	r
d)	S	р	r	q

^{377.} If $a = \frac{1-i\sqrt{3}}{2}$, then the correct matching of list I from list II is

Column-I

(A)	aā	(p)	$-\frac{\pi}{3}$
(B)	$\arg\left(\frac{1}{a}\right)$	(q)	$-i\sqrt{3}$
(C)	$a-\overline{a}$	(r)	$2i\sqrt{3}$
(D)	$\operatorname{Im}\left(\frac{4}{3a}\right)$	(s)	1
		(t)	$\frac{\pi}{3}$

(r) *a*, *b*, *c* are in G.P.

(s) *a*, *b*, *c* are in H.P.

Column- II

- (p) Pair of straight line
- (q) A line through the origin
- (r) Circle
- (s) Square

CODES:

	Α	В	С	D
a)	d	e	с	b
b)	d	а	b	f
c)	f	e	b	С
d)	d	а	b	С

378.

Column-I

- (A) If $x^2 + ax + b = 0$ has roots α , β and $x^2 + px + q = 0$ has roots $-\alpha$, γ , then
- **(B)** If $x^2 + ax + b = 0$ has roots α , β and $x^2 + px + q = 0$ has roots $1/\alpha$, γ , then
- (C) If $x^2 + ax + b = 0$ has roots α , β and $x^2 + px + q = 0$ has roots $-2/\alpha$, γ , then
- **(D)** If $x^2 + ax + b = 0$ has roots α, β and
- $x^2 + px + q = 0$ has roots $-1/(2\alpha)$, γ , then **CODES** :

	Α	В	С	D
a)	S	р	q	r
b)	q	р	S	r
c)	r	S	р	q
d)	р	r	q	S

379.

Column-I

- (A) If |z 2i| + |z 7i| = k, then locus of z is an (p) 7 ellipse if k =
- **(B)** If |(2z 3)/(3z 2)| = k, then locus of z is a (q) 8 circle if 2/3 is a point inside circle and 3/2 is outside the circle if k =
- (C) If |z 3| |z 4i| = k, then locus of z is a (r) 2 hyperbola if k is
- **(D)** If $|z (3 + 4i) = (k/50)|a\overline{z} + \overline{a}z + b|$, where (s) 4 a = 3 + 4i, then locus of z is a hyperbola with k =

(t) 5

CODES :

Column- II

- (p) $(1 bq)^2 = (a pb)(p aq)$
- (q) $(4-bq)^2 = (4a+2pb)(-2p-aq)$
- (r) $(1-4bq)^2 = (a+2bp)(-2p-4aq)$
- (s) $(q-b)^2 = (aq+bp)(p-a)$

	Α	В	С	D
a)	P,q	p,q,r,s,t	r,s	p,q
b)	p,q,r,s,t	r,s	p,q	p,q
c)	r,s	p,q	p,q	p,q,r,s,t
d)	p,q	p,q	p,q,r,s,t	r,s

380.

Column-I

(A)	$y = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$, $x \in R$, then y can be	(p) 1
(B)	$y = \frac{x^2 - 3x - 2}{2}$, $x \in R$, then y can be	(q) 4

(C)
$$y = \frac{2x^2 - 2x + 4}{x^2 - 4x + 3}, x \in R$$
, then y can be (r) -3

(D)
$$x^2 - (a - 3)x + 2 < 0, \forall x \in (-2, 3)$$
, then *a* (s) −10 can be

CODES:

	Α	В	С	D
a)	р	p,q,r,s	p,q,s	r,s
b)	r,s	p,q	q,s	р
c)	p,q	r,s	q,s	р
d)	q,s	r,s	p,q	r

381.

Column-I

- (A) One root is positive and the other is negative (p) 0 for the equation (m 2)x² (8 2m)x (8 3m) = 0
 (B) Exactly one root of equation x² (q) Infinite m(2x 8) 15 = 0 lies in interval (0, 1)
- (C) The equation $x^2 + 2(m+1)x + 9m 5 = 0$ (r) 1 has both roots negative
- (D) The equation $x^2 + 2(m-1)x + m + 5 = 0$ (s) 2 has both roots lying on either sides of 1

CODES:

	Α	В	С	D
a)	р	q	S	r
b)	q	S	р	r
c)	S	р	r	q

Column- II

d) r r q p

382.

Column-I

Column- II

(A) The value of $\sum_{n=1}^{5} (x^n + 1/x^n)^2$ when (p) 2 $x^2 - x + 1 = 0$ is (B) If $\left[\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i(1+\cos\theta)}\right]^4 = \cos n\theta + i\sin n\theta$, then (q) 4

n =

- (C) The adjacent vertices of a regular polygon of n (r) 9 sides having centre at origin are the points z and \overline{z} . If $\text{Im}(z)/\text{Re}(z) = \sqrt{2} 1$, then the value of n/4 is
- (D) $(1/50)\{\sum_{r=1}^{10}(r-\omega)(r-\omega^2)\} = (\text{where } \omega \text{ is } (s) \ 8 \text{ cube root of unity})$

CODES:

	Α	В	C	D
a)	q	r	р	S
b)	S	q	р	r
c)	r	р	S	q
d)	р	е	q	r

383. Match the statements of Column I with these in Column II.

(*Note* : Here z takes values in the complex plane and Im (z) and Re (z) denote respectively, the imaginary part and the real part of z)

Column-I

- (A) The set of points *z* satisfying |z i|z|| = z + iz/i is contained in or equal to
- (B) The set of points *z* satisfying |z + 4| + |z 4| = 0 is contained in or equal to
- (C) If |w| = 2, then the set of points $z = w \frac{1}{w}$ is contained in or equal to
- **(D)** If |w| = 1, then the set of points $z = w + \frac{1}{w}$ is contained in or equal to

Column- II

- (p) An ellipse with eccentricity 4/5
- (q) The set of points *z* satisfying Im(z) = 0
- (r) The set of points *z* satisfying $|\text{Im } z| \le 1$
- (s) The set of points satisfying $|\text{Re } z| \le 2$
- (t) The set of points *z* satisfying $|z| \leq 3$

CODES:

	Α	В	С	D
a)	S	q	q	р
b)	р	S	t, s	q,
c)	q,	р	p, s, t	q, r, s, t

384. Match the following for the equation $x^2 + a|x| + 1 = 0$, where *a* is a parameter

Column-I	Column- I
(A) No real roots	(p) <i>a</i> < −2
(B) Two real roots	(q) <i>φ</i>
(C) Three real roots	(r) $a = -2$
(D) Four distinct real roots	(s) $a \ge 0$
CODES :	

	Α	В	C	D
a)	r	р	q	S
b)	S	r	q	р
c)	р	q	r	S
d)	q	S	р	r

385.

Column-I

- (A) $z^4 1 = 0$ (B) $z^4 + 1 = 0$ (C) $iz^4 + 1 = 0$
- **(D)** $iz^4 1 = 0$
- CODES :

	Α	В	С	D
a)	S	r	р	q
b)	r	р	q	S
c)	р	q	r	S
d)	q	r	S	р

(p) $z = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$ (q) $z = \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}$ (r) $z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ (s) $z = \cos 0 + i \sin 0$

386. Let α , β , γ are the roots of the equation $x^3 - 10x^2 + 7x + 8 = 0$. Match the following and choose the correct answer

Column-I

Column- II

Column- II

(A) $\alpha + \beta + \gamma$ (B) $\alpha^2 + \beta^2 + \gamma^2$ (1) $-\frac{43}{4}$ (2) $-\frac{7}{8}$

(C)	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	(3)	86
(D)	$\frac{\alpha}{\beta\gamma} + \frac{\beta}{\gamma\alpha} + \frac{\gamma}{\alpha\beta}$	(4)	0
	ργ γα αρ	(5)	10

CODES :

	Α	В	С	D
a)	5	3	1	2
b)	4	3	1	2
c)	5	3	2	1
d)	5	2	3	1

Column-I

387. Which of the condition/conditions in column II are satisfied by the quadrilateral formed by z_1, z_2, z_3, z_4 in order given in column I?

Column- II

Column- II

(p) (A) $(ac^2)^{1/3} + (a^2c)^{1/3} + b = 0$

(q) (C) $b^2 = 6ac$

(r) (D) $3b^2 = 16ac$

(A)	Parallelogram	(p)	$z_1 - z_4 = z_2 - z_3$
(B)	Rectangle	(q)	$ z_1 - z_3 = z_2 - z_4 $
(C)	Rhombus	(r)	$\frac{z_1-z_2}{z_3-z_4}$ is purely real
(D)	Square	(s)	$\frac{z_1-z_3}{z_2-z_4}$ is purely imaginary
		(t)	$\frac{z_1-z_2}{z_3-z_2}$ is purely imaginary

CODES:

	Α	В	С	D
a)	P,q,r,t	p,r,s	p,q,r,s,t	p,r
b)	p,r,s	p,q,r,s,t	p,r	p,q,r,t
c)	p,q,r,s,t	p,r	p,q,r,t	p,r,s
d)	p,r	p,q,r,t	p,r,s	p,q,r,s,t

388. Let α and β be the roots of the quadratic equation $ax^2 + bx + c = 0$. Observe the lists given below

Column-I

(A) (i) $\alpha = \beta$

(B) (ii) $\alpha = 2\beta$

(C) (iii) $\alpha = 3\beta$

(D) (iv) $\alpha = \beta^2$ (s) (E) $b^2 = 4ac$

(t) (F)
$$(ac^2)^{1/3} + (a^2c)^{1/3} = b$$

CODES :

	Α	В	С	D
a)	e	b	d	f
b)	e	b	а	d
c)	e	d	b	f
d)	е	b	d	а

Linked Comprehension Type

This section contain(s) 41 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 389 to -389**

Suppose z_1, z_2 and z_3 represent the vertices A, B and C of an equilateral triangle ABC on the Argand plane. Then, AB = BC = CA

$$A(z_{1})$$

$$B(z_{2}) = C(z_{3})$$

$$\Rightarrow |z_{2} - z_{1}| = |z_{3} - z_{2}| = |z_{1} - z_{3}|$$
Also, $\angle CAB = \frac{\pi}{3} \Rightarrow \arg\left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right) = \pm \frac{\pi}{3}$

$$\therefore \frac{z_{3}-z_{1}}{z_{2}-z_{1}} = \left|\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right| \left\{\cos\left(\pm\frac{\pi}{3}\right)\right\} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

$$\Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}} - \frac{1}{2} = \pm \frac{\sqrt{3}}{2}i$$

$$\Rightarrow \frac{2z_{3}-z_{1}-z_{2}}{2(z_{2}-z_{1})} = \pm \frac{\sqrt{3}}{2}i$$
On squaring, we get
$$(2z_{3} - z_{1} - z_{2})^{2} = -3(z_{2} - z_{1})^{2}$$
On the basis of above information, answer the following questions

389. If the complex z_1, z_2, z_3 represent the vertices of an equilateral triangle such that $|z_1| = |z_2| = |z_3|$, then $z_1 + z_2 + z_3$ is equal to a) 0 b) 3 c) ω d) ω^2

Paragraph for Question Nos. 390 to - 390

Let z = a + ib = (a, b) be any complex number, $\forall a, b \in R$ and $i = \sqrt{-1}$. If $(a, b) \neq (0, 0)$, then $\arg(z) = \tan(-1)ba$, where $\arg z \le \pi$ and $\arg z + \arg - z = \pi$, if $\arg z < \theta - \pi$, if $\arg z > \theta$

On the basis of above information, answer the following questions

390. If
$$\arg(z) > 0$$
, then $\arg(-z) - \arg(z) = \lambda_1$ and if $\arg(z) < 0$, then $\arg(z) - \arg(-z) = \lambda_2$, then
a) $\lambda_1 + \lambda_2 = 0$ b) $\lambda_1 - \lambda_2 = 0$ c) $3\lambda_1 - 2\lambda_2 = 0$ d) $2\lambda_1 - 3\lambda_2 = 0$

Paragraph for Question Nos. 391 to - 391

The equation $z^n - 1 = 0$ has n roots which are called the nth roots of unity. The nth roots of unity are 1, α , α^2 , ..., α^{n-1} which are in GP, where $\alpha = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$; $i = \sqrt{-1}$, then we have following results 1. $\sum_{r=0}^{n-1} \alpha^r = 0$ or $\sum_{r=0}^{n-1} \cos\left(\frac{2\pi r}{n}\right) = 0$ and $\sum_{r=0}^{n-1} \sin\left(\frac{2\pi r}{n}\right) = 0$ 2. $z^n - 1 = \sum_{r=0}^{n-1} (z - \alpha^r)$ On the basis of above information, answer the following questions

391. The value of
$$\sum_{r=1}^{n-1} \frac{1}{(2-\alpha^r)}$$
 is equal to
a) $(n-2) 2^n$ b) $\frac{(n-2)2^{n-1}+1}{2^n-1}$ c) $\frac{(n-2)2^{n-1}}{2^n-1}$ d) $\frac{(n-1)2^{n-1}}{2^n-1}$

Paragraph for Question Nos. 392 to - 392

Directions (Q. No. 34 to 36) Consider the quadratic equation $(1 + m)x^2 - 2(1 + 3m)x + (1 + 8m) = 0$, where $m \in R - \{-1\}$. On the basis of above information, answer the following questions.

392. The number of integral values of *m* such that given quadratic equation has imaginary roots, area) 0b) 1c) 2d) 3

Paragraph for Question Nos. 393 to - 393

Let the roots of f(x) = x be α and β , where f(x) is a quadratic polynomial $ax^2 + bx + c$, α and β are also the roots of f(f(x)) = x. Let the other two roots of f(f(x)) = x be λ and δ . On the basis of above information, answer the following questions.

393. The correct statement (s) is/ are

I. if α and β are real and unequal ,then λ and δ are also real. II. if α and β are imaginary, then λ and δ are also imaginary.

a) I only b) II only c) Both I and II d) Neither I nor II

Paragraph for Question Nos. 394 to - 394

Directions (Q. No. 40 and 41) If $x = 2 + i\sqrt{3}$ is a root of $x^2 + px + q = 0$, where p, q are real, then On the basis of above information, answer the following questions.

a) —3	b) —4	c) 4	d) 3
,	,	,	,

Paragraph for Question Nos. 395 to - 395

Directions (Q. No.42 and 43) Let $f(x) = x^2 + b_1 x + c_1$, $g(x) = x^2 + b_2 x + c_2$, real roots of f(x) = 0 be α , β and real roots of g(x) = 0 be $\alpha + \delta$, $\beta + \delta$. Also, assume that the least value of $f(x)be - \frac{1}{4}$ and the least value of g(x) occurs at $x = \frac{7}{2}$.

On the basis of above information, answer the following questions.

395. The least value of g(x) is

a) -1 b) $-\frac{1}{2}$ c) $-\frac{1}{4}$ d) $-\frac{1}{3}$

Paragraph for Question Nos. 396 to - 396

Consider the complex numbers z_1 and z_2 satisfying the relation $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$

396. Complex number $z_1\overline{z}_2$ is			
a) Purely real	b) Purely imaginary	c) Zero	d) None of these

Paragraph for Question Nos. 397 to - 397

Consider the complex numbers $z = (1 - i \sin \theta)/(1 + i \cos \theta)$

397. The value of θ for which *z* is purely real are a) $n\pi - \frac{\pi}{4}, n \in I$ b) $n\pi + \frac{\pi}{4}, n \in I$ c) $n\pi, n \in I$ d) None of these

Paragraph for Question Nos. 398 to - 398

Consider a quadratic equation $az^2 + bz + c = 0$ where *a*, *b*, *c* are complex numbers

398. The condition that the equation has one purely imaginary root is

a) $(c\overline{a} - a\overline{c})^2 = -(b\overline{c} + c\overline{b})(a\overline{b} + \overline{a}b)$ b) $(c\overline{a} + a\overline{c})^2 = (b\overline{c} + c\overline{b})(a\overline{b} + \overline{a}b)$ c) $(c\overline{a} - a\overline{c})^2 = (b\overline{c} - c\overline{b})(a\overline{b} - \overline{a}b)$ d) None of these

Paragraph for Question Nos. 399 to - 399

Consider the equation $az + b\overline{z} + c = 0$, where $a, b, c \in Z$

399. If $ a \neq b $, then z	represents		
a) Circle	b) Straight line	c) One point	d) Ellipse

Paragraph for Question Nos. 400 to - 400

Let *z* be a complex number satisfying $z^2 + 2z\lambda + 1 = 0$, where λ is a parameter which can take any real value

400. The roots of this equation lie on a certain circle if

a) $-1 < \lambda < 1$ b) $\lambda > 1$ c) $\lambda < 1$ d) None of these

Paragraph for Question Nos. 401 to - 401

Consider the equation $az^2 + z + 1 = 0$ having purely imaginary root where $a = \cos \theta + i \sin \theta$, $i = \sqrt{-1}$ and function $f(x) = x^3 - 3x^2 + 3(1 + \cos \theta)x + 5$, then answer the following questions

401. Which of the following is true about f(x)?

a) f(x) decreases for $x \in [2n\pi, (2n+1)\pi], n \in Z$ b) f(x) decreases for $x \in \left[(2n-1)\frac{\pi}{2}, (2n+1)\frac{\pi}{2}\right], n \in Z$ c) f(x) is non-monotonic function d) f(x) increases for $x \in R$

Paragraph for Question Nos. 402 to - 402

Complex numbers *z* satisfy the equation |z - (4/z)| = 2

402. The difference between the least and the greatest moduli of complex numbers isa) 2b) 4c) 1d) 3

Paragraph for Question Nos. 403 to - 403

Consider $\triangle ABC$ in Argand plane. Let A(0), B(1) and C(1 + i) be its vertices and M be the mid-point of CA. Let z be a variable complex number on the line BM. Let u be another variable complex number defined as $u = z^2 + 1$

403. Locus of *u* is a) Parabola

b) Ellipse

c) Hyperbola

d) None of these

Paragraph for Question Nos. 404 to - 404

In an Argand plane z_1 , z_2 and z_3 are respectively, the vertices of an isosceles triangle *ABC* with Ac = BC and $\angle CAB = \theta$. If z_4 is the centre of triangle, then

404. The value of
$$AB \times AC/(IA)^2$$
 is
a) $\frac{(z_3 - z_1)(z_3 - z_1)}{(z_4 - z_1)^2}$ b) $\frac{(z_2 - z_1)(z_1 - z_3)}{(z_4 - z_1)^2}$ c) $\frac{(z_4 - z_1)}{(z_2 - z_1)(z_3 - z_1)}$ d) None of these

Paragraph for Question Nos. 405 to - 405
$A(z_1), B(z_2), C(z_3)$ are the vertices of a triangle *ABC* inscribed in the circle |z| = 2. Internal angle bisector of the angle *A* meets the circumcircle again at $D(z_4)$

405. Complex number representing point *D* is

a)
$$z_4 = \frac{1}{z_2} + \frac{1}{z_3}$$
 b) $\sqrt{\frac{z_2 + z_3}{z_1}}$ c) $\sqrt{\frac{z_2 z_3}{z_1}}$ d) $z_4 = \sqrt{z_2 z_3}$

Paragraph for Question Nos. 406 to - 406

Consider an unknown polynomial which when divided by (x - 3) and by (x - 4) leaves remainders as 2 and 1, respectively. Let R(x) be the remainder when this polynomial is divided by (x - 3)(x - 4)

406. If equation $R(x) = x$	$x^2 + ax + 1$ has two distinct real	l root then exhau	istive values of <i>a</i> are
a) (-2, 2)	b) (−∞,−2) ∪ (2,∞)	c) (−2,∞)	d) All real numbers

Paragraph for Question Nos. 407 to - 407

Consider the quadratic equation $ax^2 - bx + c = 0$, $a, b, c \in N$, which has two distinct real root belonging to the interval (1, 2)

407. The least value of <i>a</i> is			
a) 4	b) 6	c) 7	d) 5

Paragraph for Question Nos. 408 to - 408

Consider the equation $x^4 + 2ax^3 + x^2 + 2ax + 1 = 0$, where $a \in R$. Also range of function f(x) = x + 1/x is $(-\infty, -2] \cup [2, \infty)$

408. If equation has at least two distinct positive real roots then all possible values of *a* are

a) $(-\infty, -1/4)$ b) $(5/4, \infty)$	c) (−∞, −3/4)	d) None of these
---	---------------	------------------

Paragraph for Question Nos. 409 to - 409

Let $f(x) = x^2 + b_1 x + c_1$, $g(x) = x^2 + b_2 x + c_2$. Let the real roots of f(x) = 0 be α, β and real roots of g(x) = 0 be $\alpha + h, \beta + h$. The least value of f(x) is -1/4. The least value of g(x) occurs at x = 7/2

409. The least value of g(x) is

a) $-\frac{1}{4}$ b) -1 c) $-\frac{1}{3}$ d) $-\frac{1}{2}$

Paragraph for Question Nos. 410 to - 410

In the given figure, vertices of $\triangle ABC$ lie on $y = f(x) = ax^2 + bx + c$. The $\triangle ABC$ is right angled isosceles triangle whose hypotenuse $AC = 4\sqrt{2}$ units

410. y = f(x) is given by

a)
$$y = x^2 - 2\sqrt{2}$$
 b) $y = x^2 - 12$ c) $y = \frac{x^2}{2} - 2$ d) $y = \frac{x^2}{2\sqrt{2}} - 2\sqrt{2}$

Paragraph for Question Nos. 411 to - 411

Consider the inequality $9^x - a3^x - a + 3 \le 0$, where 'a' is a real parameter

411. The given inequality has at least one negative solution for $a \in$ a) $(-\infty, 2)$ b) $(3, \infty)$ c) $(-2, \infty)$ d) (2, 3)

Paragraph for Question Nos. 412 to - 412

Consider the in equation $x^2 + x + a - 9 < 0$

412. The value of the real parameter '*a*' so that the given in equation has at least one positive solution: a) $(-\infty, 37/4)$ b) $(-\infty, \infty)$ c) $(3, \infty)$ d) $(-\infty, 9)$

Paragraph for Question Nos. 413 to - 413

 $af(\mu) < 0$ is the necessary and sufficient condition for a particular real number μ to lie between the roots of a quadratic equation f(x) = 0, where $f(x) = ax^2 + bx + c$. Again if $f(\mu_1)f(\mu_2) < 0$, then exactly one of the roots will lie between μ_1 and μ_2

413. If |b| > |a + c|, then

- a) One root of f(x) = 0 is positive, the other is negative
- b) Exactly one of the roots of f(x) = 0 lies in (-1, 1)
- c) 1 lies between the roots of f(x) = 0
- d) Both the roots of f(x) = 0 are less than 1

Paragraph for Question Nos. 414 to - 414

The real numbers x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + \beta x + \gamma = 0$ are in A.P.

414. All possible values of β are

a)
$$\left(-\infty, \frac{1}{3}\right)$$
 b) $\left(-\infty, -\frac{1}{3}\right)$ c) $\left(\frac{1}{3}, \infty\right)$ d) $\left(-\frac{1}{3}, \infty\right)$

Integer Answer Type

- 415. Given α and β are the roots of the quadratic equation $x^2 4x + k = 0$ ($k \neq 0$). If $\alpha\beta$, $\alpha\beta^2 + \alpha^2\beta$, $\alpha^3 + \beta^3$ are in geometric progression, then the value of 7k/2 equals
- 416. Let $P(x) = x^4 + ax^3 + bx^2 + cx + d$ be a polynomial such that P(1) = 1, P(2) = 8, P(3) = 27, P(4) = 64, then the value of P(5) is divisible by prime number
- 417. Let |z| = 2 and $w = \frac{z+1}{z-1}$ where $z, w \in C$ (where C is the set of complex numbers) Then product of least and greatest value of modulus of w is
- 418. If the equation $2x^2 + 4xy + 7y^2 12x 2y + t = 0$ where 't' is a parameter has exactly one real solution of the form (x, y). Then the sum of (x + y) is equal to
- 419. If set of values of 'a' for which $f(x) = ax^2 (3 + 2a)x + 6$, $a \neq 0$ is positive for exactly three distinct negative integral values of x is (c, d], then the value of $(c^2 + 4|d|)$ is equal to
- 420. Let $P(x) = \frac{5}{3} 6x 9x^2$ and $Q(y) = -4y^2 + 4y + \frac{13}{2}$. If there exist unique pair of real numbers (x, y) such that P(x)Q(y) = 20, then the value of (6x + 10y) is
- 421. Let 'a' is a real number satisfying $a^3 + \frac{1}{a^3} = 18$. Then the value of $a^4 + \frac{1}{a^4} 39$ is
- 422. If ω is the imaginary cube root of unity, then find the number of pairs of integers (a, b) such that $|a\omega + b| = 1$
- 423. If $\left[\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i(1+\cos\theta)}\right]^4 = \cos n\theta + i\sin n\theta$, then *n* is
- 424. If the expression $(1 + ir)^3$ is of the form of s(1 + i) for some real 's' where 'r' is also real and, then the sum of all possible values of r is
- 425. Given that $x^2 3x + 1 = 0$, then the value of the expression $y = x^9 + x^7 + x^{-9} + x^{-7}$ is divisible by prime number
- 426. The minimum value of the expression $E = |z|^2 + |z 3|^2 + |z 6i|^2$ is *m* then the value of *m*/5 is 427. *a*, *b*, *c* are reals such that a + b + c = 3 and $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} = \frac{10}{3}$. The value of $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$ is
- 428. If *a* and *b* are positive numbers and each of the equations $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ has real roots, then the smallest possible value of (a + b) is
- 429. Suppose *a*, *b*, *c* are the roots of the cubic $x^3 x^2 2 = 0$. Then the value of $a^3 + b^3 + c^3$ is
- 430. Let $P(x) = x^3 8x^2 + cx d$ be a polynomial with real coefficients and with all its roots being distinct positive integers. Then number of possible value of 'c' is
- 431. If complex number $z(z \neq 2)$ satisfies the equation $z^2 = 4z + |z|^2 + \frac{16}{|z|^3}$ then the value of $|z|^4$ is
- 432. Let $x^2 + y^2 + xy + 1 \ge a(x + y) \forall x, y \in R$, then the number of possible integer(s) in the range of *a* is
- 433. The quadratic polynomial p(x) has the following properties: $p(x) \ge 0$ for all real numbers, p(1) = 0 and p(2) = 2. Find the value of p(3) is
- 434. Suppose $a, b, c, \in I$ such that greatest common divisor of $x^2 + ax + b$ and $x^2 + bx + c$ is (x + 1) and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $(x^3 - 4x^2 + x + 6)$. Then the value of |a + b + c|is equal to
- 435. If $a, b \in R$ such that a + b = 1 and $(1 2ab)(a^3 + b^3) = 12$. The value of $(a^2 + b^2)$ is equal to

436. If x + y + z = 12 and $x^2 + y^2 + z^2 = 96$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36$. Then the value $x^3 + y^3 + z^3$ is divisible by prime number

- 437. Suppose that *z* is a complex number that satisfies $|z 2 2i| \le 1$. The maximum value of |2iz + 4| is equal to
- 438. If |z + 2 i| = 5 and maximum value of |3z + 9 7i| is M then the value of M/4 is
- 439. Let *a*, *b* and *c* be real numbers which satisfy the equations $a + \frac{1}{bc} = \frac{1}{5}$, $b + \frac{1}{ac} = \frac{-1}{15}$ and $c + \frac{1}{ab} = \frac{1}{3}$. The value of $\frac{c-b}{c-a}$ is equal to
- 440. If the complex numbers x and y satisfy $x^3 y^3 = 98i$ and x y = 7i then xy = a + ib where $a, b \in R$. The value of (a + b)/3 equals

- 441. The quadratic equation $x^2 + mx + n = 0$ has roots which are twice those of $x^2 + px + m = 0$ and m, n and $p \neq 0$. Then the value n/p is
- 442. The complex number *z* satisfies z + |z| = 2 + 8i. The value of (|z| 8) is
- 443. Let α_1 , β_1 are the roots of $x^2 6x + p = 0$ and α_2 , β_2 are the roots of $x^2 54x + q = 0$. If α_1 , β_1 , α_2 , β_2 , from an increasing G.P., then sum of the digits of the value of (q p) is
- 444. Number of positive integers x for which $f(x) = x^3 8x^2 + 20x 13$ is a prime number is

445. If $\sqrt{\sqrt{x}} = \sqrt[4]{\sqrt[4]{\sqrt{4}\sqrt{3x^4 + 4}}}$, then the value of x^4 is

- 446. All the values of k for which the quadratic polynomial $f(x) = -2x^2 + kx + k^2 + 5$ has two distinct zeroes and only one of them satisfying 0 < x < 2, lie in the interval (a, b). The value of (a + 10b) is
- 447. If *z* be a complex number satisfying $z^4 + z^3 + 2z^2 + z + 1 = 0$ then |z| is equal to
- 448. Let $Z_1 = (8 + i) \sin \theta + (7 + 4i) \cos \theta$ and $Z_2 = (1 + 8i) \sin \theta + (4 + 7i) \cos \theta$ are two complex numbers. If $Z_1, Z_2 = a + ib$ where $a, b \in R$. If M is the greatest value of $(a + b) \forall \theta \in R$, then the value of $M^{1/3}$ is 449. If the roots of the cubic, $x^3 + ax^2 + bx + c = 0$ are three consecutive positive integers. Then the value of
- 449. If the roots of the cubic, $x^3 + ax^2 + bx + c = 0$ are three consecutive positive integers. Then the value of $\frac{a^2}{b+1}$ is equal to
- 450. Let α and β be the solutions of the quadratic equation $x^2 1154x + 1 = 0$, then the value of $\sqrt[4]{\alpha} + \sqrt[4]{\beta}$ is equal to
- 451. Let 1, w, w^2 be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots 2w, (2 + 3w), $(2 + 3w^2)$, $(2 w w^2)$, is
- 452. If $x = \omega \omega^2 2$, then the value of $x^4 + 3x^3 + 2x^2 11x 6$ is (where ω is cube root of unity)
- 453. If x = a + bi is a complex number such that $x^2 = 3 + 4i$ and $x^3 = 2 + 11i$ where $i = \sqrt{-1}$, then (a + b) equal to
- 454. $f: R \to R, f(x) = \frac{3x^2 + mx + n}{x^2 + 1}$. If the range of this function is [-4, 3), then find the value of |m + n| is
- 455. The function $f(x) = ax^3 + bx^2 + cx + d$ has three positive roots. If the sum of the roots of f(x) is 4, the largest possible integral values of c/a is
- 456. If equation $x^4 (3m + 2)x^2 + m^2 = 0 (m > 0)$ has four real solutions which are in A.P., then the value of 'm' is
- 457. If the cubic $2x^3 9x^2 + 12x + k = 0$ has two equal roots, then maximum value of |k| is
- 458. Modulus of non zero complex number *z*, satisfying $\overline{z} + z = 0$ and $|z|^2 4zi = z^2$ is
- 459. *a*, *b*, and *c* are all different and non-zero real numbers in arithmetic progression. If the roots of quadratic equation $ax^2 + bx + c = 0$ are α and β such that $\frac{1}{\alpha} + \frac{1}{\beta}$, $\alpha + \beta$ and $\alpha^2 + \beta^2$ are in geometric progression, then the value of a/c will be
- 460. Let $A = \{a \in R | \text{ the equation } (1+2i)x^3 2(3+i)x^2 + (5-4i)x + 2a^2 = 0\}$ has the at least one real root. Then the value of $\frac{\sum a^2}{2}$ is
- 461. If $a^2 4a + 1 = 4$, then the value of $\frac{a^3 a^2 + a 1}{a^2 1}$ ($a^2 \neq 1$) is equal to
- 462. Polynomial P(x) contains only terms of odd degree. When P(x) is divided by (x 3), the remainder is 6. If P(x) is divided by $(x^2 9)$, then the remainder is g(x). Then the value of g(2) is
- ^{463.} Let *a*, *b* and *c* be distinct non zero real numbers such that $\frac{1-a^3}{a} = \frac{1-b^3}{b} = \frac{1-c^3}{c}$. The value of $(a^3 + b^3 + c^3)$, is
- 464. If the equation $x^2 + 2(\lambda + 1)x + \lambda^2 + \lambda + 7 = 0$ has only negative roots, then the least value of λ equals
- 465. If *a*, *b*, *c* are non-zero real numbers, then the minimum value of the expression

 $\left(\frac{(a^4+3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1)}{a^2b^2c^2}\right)$ is not divisible by prime number

466. Let z = 9 + bi where b is non zero real and $i^2 = -1$. If the imaginary part of z^2 and z^3 are equal, then b/3 is

5.COMPLEX NUMBERS AND QUADRATIC EQUATIONS

						: ANS	N	ER K	EY:						
1)	b	2)	b	3)	а	4)	а	189)	а	190)	d	191)	а	192)	b
5)	а	6)	b	7)	а	8)	b	193)	С	194)	а	195)	а	196)	a
9)	а	10)	а	11)	С	12)	d	197)	а	198)	С	199)	С	200)	a
13)	d	14)	С	15)	а	16)	a	201)	d	202)	С	203)	а	204)	а
17)	С	18)	а	19)	а	20)	d	205)	b	206)	С	207)	а	208)	b
21)	а	22)	b	23)	b	24)	d	209)	С	210)	b	211)	b	212)	b
25)	а	26)	С	27)	С	28)	С	213)	а	214)	b	215)	С	216)	С
29)	а	30)	а	31)	b	32)	С	217)	С	218)	а	219)	С	220)	а
33)	d	34)	а	35)	а	36)	d	221)	d	222)	b	223)	b	224)	b
37)	d	38)	а	39)	С	40)	а	225)	b	226)	а	227)	b	228)	d
41)	d	42)	С	43)	С	44)	С	229)	b	230)	b	231)	b	232)	а
45)	b	46)	b	47)	С	48)	а	233)	С	234)	d	235)	a	236)	b
49)	С	50)	а	51)	С	52)	d	237)	b	238)	d	1)	a,d	2)	
53)	С	54)	С	55)	С	56)	d		a,b,c	3)	a,c	4)	a,b,c		
57)	С	58)	d	59)	С	60)	С	5)	c,d	6)	b,c	7)	a,d	8)	
61)	а	62)	b	63)	С	64)	С		a,b,c						
65)	b	66)	b	67)	d	68)	d	9)	a,b,d	10)	b,c,d	11)	a,c,d	12)	
69)	а	70)	b	71)	С	72)	d		a,d						
73)	d	74)	а	75)	С	76)	С	13)	a,b,d	14)	c,d	15)	a,b,d	16)	
77)	b	78)	b	79)	d	80)	С		a,c						
81)	С	82)	b	83)	а	84)	a	17)	a,c	18)	a,b,c,d	19)	c,d	20)	
85)	С	86)	b	87)	b	88)	b		c,d						
89)	а	90)	а	91)	d	92)	С	21)	a,b	22)	c,d	23)	a,b,c,d	24)	
93)	b	94)	d	95)	b	96)	С		a,b,d						
97)	b	98)	а	99)	d	100)	d	25)	a,b,d	26)	a,b,c	27)	a,d	28)	
101)	а	102)	а	103)	С	104)	С		a,b,c,d						
105)	d	106)	d	107)	d	108)	a	29)	a,b,c,d	30)	a,d	31)	a,b,c	32)	
109)	а	110)	b	111)	d	112)	b		a,d						
113)	d	114)	d	115)	d	116)	d	33)	b,c	34)	b,c	35)	a,d	36)	
117)	b	118)	b	119)	а	120)	С		a,d						
121)	b	122)	d	123)	а	124)	b	37)	a,c	38)	a,c,d	39)	a,c	40)	
125)	b	126)	а	127)	b	128)	a		a,b,c						
129)	b	130)	b	131)	a	132)	С	41)	a,b,c,d	42)	a,c,d	43)	a,c	44)	
133)	С	134)	С	135)	b	136)	С		a,b,c,d						
137)	d	138)	С	139)	d	140)	b	45)	a,d	46)	a,b	47)	b,d	48)	
141)	b	142)	а	143)	b	144)	a		a,b		_		_		
145)	d	146)	b	147)	а	148)	b	49)	a,d	50)	a,c,d	51)	a,c,d	52)	
149)	d	150)	а	151)	b	152)	d		b,c						
153)	а	154)	C	155)	a	156)	d	53)	a,d	54)	a,b,c	55)	a,c	56)	
157)	С	158)	b	159)	d	160)	b		a,b						
161)	а	162)	С	163)	d	164)	b	57)	a,c	58)	b,c	59)	a,b	60)	
165)	C	166)	а	167)	С	168)	С		a,b						
169)	d	170)	С	171)	а	172)	а	61)	a,c,d	62)	a,d	63)	a,b	64)	
173)	b	174)	а	175)	а	176)	a		a,b						
177)	a	178)	a	179)	С	180)	b	65)	a,b,c	66)	b,c	67)	a,d	68)	
181)	d	182)	b	183)	С	184)	С		a,d						
185)	С	186)	d	187)	а	188)	С	69)	a,c	70)	a,c	71)	a,b,d	72)	

							1
73)	a,c a.b.c	74)	a.b.d	75)	a.b.d	76)	
,	a.c	,	,,	,	,,	,	
77)	a,b	78)	b,d	79)	c,d	80)	
81)	a,b,c c,d	82)	a,b,c	83)	b,c,d	84)	
05)	a,a	96)		07)	a d	1)	A
85)	a, D, C	80j h	a,c 2)	87)	a,u 4)	1)	a
L J	2) h	D ()	3) d	C 7)	4)	a ov	A
5) 0)	U h	10)	u	/J 11)	d	0J 12)	u
7J 12)	U d	10)	a	11)	d h	16)	a
13)	a	14J 10)	a L	15)	D	10)	C h
1/j	a h	18)	D	19)	a	20)	D
21J 25)	D	22)	a	23)	a	24J 20)	a
25)	a	26)	C	27)	a	28)	a
29)	d	30)	d	31)	а	32)	а
33)	b	34)	d	35)	а	36)	а
37)	b	38)	С	39)	С	40)	С
41)	d	42)	b	43)	а	44)	d
45)	b	46)	а	47)	а	48)	а
49)	d	1)	С	2)	С	3)	b
	4)	а					
5)	а	6)	а	7)	d	8)	b
9)	С	10)	b	11)	а	12)	С
13)	d	14)	d	1)	а	2)	b
	3)	b	4)	С			
5)	С	6)	b	7)	С	8)	b
9)	а	10)	а	11)	С	12)	а
13)	d	14)	а	15)	а	16)	а
17)	d	18)	d	19)	d	20)	С
21)	а	22)	d	23)	d	24)	d
25)	b	26)	а	1)	8	2)	3
	3)	1	4)	3			
5)	4	6)	3	7)	8	8)	6
9)	4	10)	3	11)	3	12)	6
13)	7	14)	6	15)	7	16)	2
17)	4	18)	3	19)	8	20)	6
21)	3	22)	2	23)	3	24)	5
25)	3	26)	7	27)	8	28)	9
29)	9	30)	3	31)	4	32)	7
33)	1	34)	5	, 35)	3	, 36)	6
37)	5	38)	1	39)	3	40)	4
41)	- 5	42)	6	43)	- 5		2
45)	3	46)	9	47)	4	48)	4
49)	3	50)	6	51)	2	52)	5
,	0	501	÷	51)	-		Ŭ
							1

: HINTS AND SOLUTIONS :

5

6

7

8

5), $\pm i \cot(2\pi/5)$

1 **(b)**

 $x = 2 + \sqrt{3}$ $\Rightarrow (x - 2)^{2} = 3$ $\Rightarrow x^{2} - 4x + 1 = 0 \quad (1)$ $\Rightarrow (x - 2)^{4} = 9$ $\Rightarrow x^{4} - 8x^{3} + 24x^{2} - 32x + 16 = 9$ $\Rightarrow x^{4} - 8x^{3} + 18x^{2} - 8x + 2 + 6(x^{2} - 4x + 1) - 1 = 0 \quad \text{Using (1), we get}$ $x^{4} - 8x^{3} + 18x^{2} - 8x + 2 = 1$ **(b)**

2 **(**

The given equation is $|z|^{n} = (z^{2} + z)|z|^{n-2} + 1$ $\Rightarrow z^{2} + z \text{ is real}$ $\Rightarrow z^{2} + z = \overline{z}^{2} + \overline{z}$ $\Rightarrow (z - \overline{z})(z + \overline{z} + 1) = 0$ $\Rightarrow z = \overline{z} = x \text{ as } z + \overline{z} + 1 \neq 0 (x \neq -1/2)$ Hence, the given equation reduces to $x^{n} = x^{n} + x|x|^{n-2} + 1$ $\Rightarrow x|x|^{n-2} = -1$ $\Rightarrow x = -1$

So number of solutions is 1

3

(a)

$$\sum_{\alpha=1}^{\infty} \alpha = 1, \sum_{\alpha=1}^{\infty} \alpha \beta = 0, \alpha \beta \gamma = 1$$

$$\sum_{\alpha=1}^{\infty} \frac{1+\alpha}{1-\alpha} = -\sum_{\alpha=1}^{\infty} \frac{-\alpha+1-2}{1-\alpha} = \sum_{\alpha=1}^{\infty} \left(\frac{2}{1-\alpha}-1\right)$$

$$= 2\sum_{\alpha=1}^{\infty} \frac{1}{1-\alpha} - 3$$
Now,
$$\frac{1}{(x-\alpha)} + \frac{1}{(x-\beta)} + \frac{1}{(1-\gamma)} = \frac{3x^2 - 2x}{x^3 - x^2 - 1}$$

$$\Rightarrow \frac{1}{1-\alpha} + \frac{1}{1-\beta} + \frac{1}{1-\gamma} = \frac{3-2}{1-1-1} = -1$$
$$\Rightarrow \frac{1+\alpha}{1-\alpha} = -5$$

4

(a)

For the equation to have four real roots, the line

y = k must intersect $y = |x^2 + bx + c|$ at four points $\therefore D > 0 \text{ and } k \in \left(0, -\frac{D}{4}\right)$ (a) We have, $\log z + \log z^2 + \log z^3 + \dots + \log z^n = 0$ $\Rightarrow \log(zz^2z^3\cdots z^n) = 0$ $\Rightarrow \log\left(z^{\frac{n(n+1)}{2}}\right) = 0$ $\Rightarrow z^{\frac{n(n+1)}{2}} = 1$ $\Rightarrow z = 1^{\frac{2}{n(n+1)}}$ $= (\cos 0^{\circ} + i \sin 0^{\circ})^{\frac{2}{n(n+1)}}$ $= (\cos 2m\pi + i \sin 2m\pi)^{\frac{2}{n(n+1)}}, m = 0, 1, 2, 3, \dots$ $= \cos \frac{4m\pi}{n(n+1)} + i \sin \frac{4m\pi}{n(n+1)}, m = 0, 1, 2, \dots$ **(b)** Given. $a(p+q)^{2} + 2bpq + c = 0$ and $a(p+r)^{2} + c = 0$ 2bpr + c = 0 \Rightarrow *q* and *r* satisfy the equation $a(p + x)^2 +$ 2bpx + c = 0 \Rightarrow *q* and *r* are the roots of $ax^{2} + 2(ap + bp)x + c + ap^{2} = 0$ $\Rightarrow qr = \text{product of roots} = \frac{c+ap^2}{a} = p^2 + \frac{c}{a}$ (a) Let α be the root of $x^2 - x + m = 0$ and 2α be the root of $x^2 - 3x + 2m = 0$. Then, $\alpha^2 - \alpha + m = 0$ and $4\alpha^2 - 6\alpha + 2m = 0$ Eliminating α , $m^2 = -2m \Rightarrow m = 0, m = -2$ (b) For $z \neq 1$, the given equation can be written as $\left(\frac{z+1}{z-1}\right)^5 = 1$ $\Rightarrow \frac{z+1}{z-1} = e^{2k\pi i/5}$ Where k = -2, -1, 1, 2If we denote this value of z by z_k , then $z_k = \frac{e^{2k\pi i/5} + 1}{e^{2k\pi i/5} - 1}$ $e^{k\pi i/5} + e^{-k\pi i/5}$ $=\frac{e^{k\pi i/5}}{e^{k\pi i/5}-e^{-k\pi i/5}}$ $= -i \cot\left(\frac{k\pi}{5}\right), k = -2, -1, 1, 2$ Therefore, roots of the equation are $\pm i \cot(\pi/\pi)$

9 (a)

$$x^2 - (a + 1)x + a - 1 = 0$$

 $\Rightarrow (x - a)(x - 1) = 1$
Now, $a \in I$ and we want x to be an integer. Hence,
 $x - a = 1, x - 1 = 1$ or $x - a = -1, x - 1 = -1$
 $\Rightarrow a = 1$ in both cases
10 (a)
 $D(z_4)$
 $D(z_4)$
 $C(z_3)$

 $\begin{array}{c} D(z_4) \\ \\ A(z_1) \end{array} \\ \hline \\ B(z_2) \end{array}$

The first condition implies that $(z_1 + z_3)/2 = (z_2 + z_4)/2$, i.e., diagonals *AC* and *BD* bisect each other. Hence, quadrilateral is a parallelogram. The second condition implies that the angle between *AD* and *AB* is 90°. Hence the parallelogram is a rectangle

11 (c)

We have,

$$\frac{k+1}{k} + \frac{k+2}{k+1} = -\frac{b}{a} \quad (1)$$
and $\frac{k+1}{k} + \frac{k+2}{k+1} = \frac{c}{a}$
 $\Rightarrow \frac{k+2}{k} = \frac{c}{a} \text{ or } \frac{2}{k} = \frac{c}{a} - 1 = \frac{c-a}{a} \text{ or } k = \frac{2a}{c-a} \quad (2)$
Now, eliminate k. Putting the value of k in Eq. (1),
we get

$$\frac{c+a}{2a} + \frac{2c}{c+a} = -\frac{b}{a}$$
 $\Rightarrow (c+a)^2 + 4ac = -2b(a+c)$
 $\Rightarrow (a+c)^2 + 2b(a+c) = -4ac$
Adding b^2 to both sides, we have
 $(a+b+c)^2 = b^2 - 4ac$
(d)

12 (d)

Equation $8x^3 + 1001x + 2008 = 0$ has roots *r*, *s* and *t*

$$r + s + r = 0, rst = -\frac{2008}{8} = -251$$

Now, let $r + s = A, s + 1 = B, t + r = C$,
 $\therefore A + B + C = 2 (r + s + t) = 0$
Hence,
 $A^3 + B^3 + C^3 = 3ABC$
 $\therefore (r + s)^3 + (s + t)^3 + (t + r)^3$
 $= 3(r + s)(s + t)(t + r)$
 $= 3(r + s + t - t)(s + t + r - r)(t + r + s - s)$
 $= -3rst(as r + s + t = 0)$
 $= 3(251) = 753$

13 **(d)**

Given equation is (x-a)(x-b) - 1 = 0Let f(x) = (x-a)(x-b) - 1. Then, f(a) = -1 and f(b) = -1 Also, graph of f(x) is concave upward; hence, a and b lie between the roots. Also, if b > a, then one root lies in $(-\infty, a)$ and the other root lies in $(b, +\infty)$

l, m, n are real and $l \neq m$. Given equation is $(l-m)x^2 - 5(l+m)x - 2(l-m) = 0$ $D = 25(l+m)^2 + 8(l-m)^2 > 0, l, m \in R$ Therefore, the roots are real and unequal

Given quadratic expression is $x^2 + 2(a + b + a)$ *cx*+3(*bc*+*ca*+*ab*), this quadratic expression will be a perfect square if the discriminant of its corresponding equation is zero. Hence, $4(a + b + c)^2 - 4 \times 3(bc + ca + ab) = 0$ $\Rightarrow (a+b+c)^2 - 3(bc+ca+ab) = 0$ $\Rightarrow a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ -3(bc + ca + ab) = 0 $\Rightarrow a^2 + b^2 + c^2 - ab - bc - ca = 0$ $\Rightarrow \frac{1}{2}[2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca] = 0$ $\Rightarrow \frac{1}{2}[(a^2 + b^2 - 2ab) + (b^2 + c^2 - 2bc)]$ $+(c^2 + a^2 - 2ca)] = 0$ $\Rightarrow \frac{1}{2}[(a-b)^2 + (b-c)^2 + (c-a)^2] = 0$ Which is possible only when $(a - b)^2 =$ $(b-c)^2 = 0$ and $(c-a)^2 = 0$, i.e., a = b = c16 (a) $|z^2 + 2z\cos\alpha| \le |z^2| + |2z\cos\alpha|$ $= |z|^2 + 2|z||\cos \alpha$ $\leq |z|^2 + 2|z|$ $<(\sqrt{2}-1)^2+2(\sqrt{2}-1)=1$ 17 (c) $E=\sum(ar+b)\ \omega^{r-1}$ $= (a+b) + (2a+b)\omega + (3a+b)\omega^2 + \cdots$ $+ (na+b)\omega^{n-1}$ = $b \underbrace{(1+\omega+\omega^2+\cdots+\omega^{n-1})}_{\text{zero}} + a(1+2\omega+3\omega^2)$ $+\cdots+n\omega^{n-1}$ Now, $S = 1 + 2\omega + 3\omega^2 + \dots + n\omega^{n-1}$

 $S\omega = \omega + 2\omega^2 + \dots + (n-1)\omega^{n-1} + n\omega^n$

$$\begin{aligned} s(1-0) &= \frac{1+\omega+\omega^2+\ldots+\omega^{n-1}-n\omega^n}{z\cos^n} = n\omega \\ &= -n \ (: \omega^n = 1) \\ \Rightarrow S &= \frac{n}{m-1} \\ \Rightarrow E &= \frac{n\alpha}{m-1} \\ \Rightarrow E &= \frac{n\alpha}$$

$$\therefore \sum_{m=1}^{15} \operatorname{Im} (z^{2m-1}) = \sum_{m=1}^{15} \operatorname{Im} (e^{i\theta})^{2m-1}$$
$$= \sum_{m=1}^{15} \operatorname{Im} e^{i(2m-1)\theta}$$
$$= \sin \theta + \sin 3\theta + \sin 5\theta + \dots + \sin 29 \theta$$
$$= \frac{\sin \left(\frac{\theta + 29\theta}{2}\right) \sin \left(\frac{15 \times 2\theta}{2}\right)}{\sin \left(\frac{2\theta}{2}\right)}$$
$$= \frac{\sin(15 \theta) \sin(15 \theta)}{\sin \theta} = \frac{1}{4 \sin 2^{\circ}}$$

 $\Rightarrow a = b = c$ 26 (c) Since α is root of all equations $a\alpha^2 + 2b\alpha + c = 0$ $2b\alpha^2 + c\alpha + \alpha = 0$ $c\alpha^2 + a\alpha + 2b = 0$ Adding we get $(a + 2b + c)(\alpha^2 + \alpha + 1) = 0$ $a + 2b + c \neq 0$ as a, b, c > 0 $\Rightarrow \alpha^2 + \alpha + 1 = 0 \text{ or } \alpha^2 + \alpha = -1$ 27 (c) We have, $\alpha + \beta = -p \text{ and } \alpha\beta = q$ (1) Also, since α , β are the root of $x^{2n} + p^n x^n + q^n =$ 0, we have $\alpha^{2n} + p^n \alpha^n + q^n = 0$ and $\beta^{2n} + p^n \beta^n + q^n = 0$ Subtracting the above relations, we get $(\alpha^{2n} - \beta^{2n}) + p^n(\alpha^n - \beta^n) = 0$ $\therefore \ \alpha^n + \beta^n = -p^n \quad (2)$ Given, α/β or β/α is a root of $x^n + 1 + (x + 1)^n =$ 0. So, $(\alpha/\beta)^n + 1 + [(\alpha/\beta) + 1]^n = 0$ $\Rightarrow (\alpha^n + \beta^n) + (\alpha + \beta)^n = 0$ $\Rightarrow -p^n + (-p)^n = 0$ [Using (1) and (2)] It is possible only when *n* is even 28 (c) $z^{2} + z|z| + |z|^{2} = 0 \Rightarrow \left(\frac{z}{|z|}\right)^{2} + \frac{z}{|z|} + 1 = 0$ $\Rightarrow \frac{z}{|z|} = \omega, \omega^2 \Rightarrow z = \omega |z| \text{ or } z = \omega^2 |z|$ $\Rightarrow x + iy = |z| \left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right) \text{ or } x + iy$ $= |z| \left(\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right)$ $\Rightarrow x = -\frac{1}{2}|z|, y = |z|\frac{\sqrt{3}}{2} \text{ or } x = -\frac{|z|}{2}, y$ $=-\frac{|z|\sqrt{3}}{2}$ $\Rightarrow y + \sqrt{3}x = 0 \text{ or } y - \sqrt{3}x = 0 \Rightarrow y^2 - 3x^2 = 0$ 29 (a) Since, |z| = 1 and $w = \frac{z-1}{z+1} \Rightarrow z = \frac{1+w}{1-w}$ [34 $|z| = \frac{|1+w|}{|1-w|} \Rightarrow |1-w| = |1+w|$ ⇒ |z| = 1 $1 + |w|^2 - 2 \operatorname{Re}(w) = 1 + |w|^2 + 2 \operatorname{Re}(w)$ ⇒ ${\rm Re}(w) = 0$ ⇒ 30 (a) Since the equation $x^2 + ax + b = 0$ has distinct real roots and $x^2 + a|x| + b = 0$ has only one real

root, so one root of the equation $x^2 + ax + b = 0$

will be zero and other root will be negative. Hence, b = 0 and a > 0

Graph of $y = ax^2 + bx + c$ according to conditions given in question

Graph of $y = ax^2 + b|x| + c$

31 **(b)**

Here, $ax^2 - bx + c^2 = 0$ does not have real roots. So. $D < 0 \Rightarrow b^2 - 4ac^2 < 0 \Rightarrow a > 0$ Therefore, f(x) is always positive. So, $f(2) > 0 \Rightarrow 4a - 2b + c^2 > 0$ 32 (c) We have, $|x|^2 - 3|x| + 2 = 0$ $\Rightarrow (|x| - 1)(|x| - 2) = 0$ $\Rightarrow |x| = 1, 2 \Rightarrow x = \pm 1, \pm 2$ 33 (d) $(x-3)^3 + 1 = 0$ $\Rightarrow \left(\frac{x-3}{-1}\right)^3 = 1$ $\Rightarrow \frac{x-3}{1} = 1, \omega, \omega^2$ $\Rightarrow x = 2, 3 - \omega, 3 - \omega^2$ Hence, the run of complex root is $6 - (\omega + \omega)^2 =$ 6 + 1 = 7(a) Given that $x^2 + px + 1$ is a factor of $ax^3 + bx + c$.

Then let $ax^{3} + bx + c = (x^{2} + px + 1)(ax + \lambda)$, where λ is a constant. Then equation the coefficients of like powers of *x* on both sides, we get 0

$$0 = ap + \lambda, b = p\lambda + a, c = \lambda$$
$$\Rightarrow p = -\frac{\lambda}{a} = -\frac{c}{a}$$

Hence,

$$b = \left(-\frac{c}{a}\right)c + a$$
or $ab = a^2 - c^2$
35 (a)

$$i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{\frac{i\pi}{2}}$$

$$\Rightarrow i^i = \left(e^{\frac{i\pi}{2}}\right)^i = e^{-\frac{\pi}{2}}$$

$$\Rightarrow z = (i)^{(i)^i} = i^{e^{-\frac{\pi}{2}}}$$

$$\Rightarrow |z| = 1$$
36 (d)
Given equation is satisfied by $x = 1, 2, 3$. But for
 $x = 1, \sqrt{x-2}$ is not defined. Hence, number of
roots is 2 and the roots are $x = 2$ and 3
37 (d)
 $x^2 - x - a = 0, D = 1 + 4a = \text{odd}$
 D must be perfect square of some odd integer. Let
 $D = (2\lambda + 1)^2$
 $\Rightarrow 1 + 4a = 1 + 4\lambda^2 + 4\lambda$
 $\Rightarrow a = \lambda(\lambda + 1)$
Now,
 $a \in [6, 100]$
 $\Rightarrow a = 6, 12, 20, 30, 42, 56, 72, 90$
Thus *a* can attain eight different values
38 (a)
Since, *a*, *b* and *c* are the sides of a $\triangle ABC$, then
 $|a - b| < |c| \Rightarrow a^2 + b^2 - 2ab < c^2$
Similarly, $b^2 + c^2 - 2bc < a^2$, $c^2 + a^2 - 2ca < b^2$
On adding, we get
 $(a^2 + b^2 + c^2) < 2(ab + bc + ca)$
 $\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2 \dots (i)$
Also, $D \ge 0, (a + b + c)^2 - 3\lambda(ab + bc + ca) \ge 0$
 $\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} > 3\lambda - 2 \dots (ii)$
From Eqs. (i) and (ii),
 $3\lambda - 2 < 2 \Rightarrow \lambda < \frac{4}{3}$
39 (c)
 $A = a(b - c)(a + b + c)$
 $B = b(c - a)(a + b + c)$
 $B = b(c - a)(a + b + c)$
 $Ax^2 + Bx + C = 0$
 $\Rightarrow (a + b - i)\{a(b - c)x^2 + b(c - a)x + c(a - b)\} = 0$
Given that roots are equal. Hence,
 $D = 0$
 $\Rightarrow b^2(c - a^2) - 4ac(b - c)(a - b) = 0$

$$\Rightarrow b^{2}c^{2} - 2ab^{2}c + b^{2}a^{2} - 4a^{2}bc + 4acb^{2} + 4a^{2}c^{2} - 4abc^{2} = 0 \Rightarrow b^{2}c^{2} + b^{2}a^{2} + 4a^{2}c^{2} + 2ab^{2}c - 4a^{2}bc -4abc^{2} = 0 \Rightarrow (bc + ab - 2ac)^{2} = 0 \Rightarrow bc + ab = 2ac \Rightarrow \frac{1}{a} + \frac{1}{c} = \frac{2}{b} \Rightarrow a, b, c are in H.P. 40 (a) x^{2} + 2x - n = 0 \Rightarrow (x + 1)^{2} = n + 1 \Rightarrow x = -1 \pm \sqrt{n+1} Thus, n + 1 should be a perfect square. Now, n \in [5, 100] \Rightarrow n + 1 \in [6, 101] Perfect square values of n + 1 are 9, 16, 25, 36, 49, 64, 81, 100. Hence, number of values is 8 41 (d) x^{2} + x + 1 = 0 \Rightarrow x = \omega \text{ or } \omega^{2} Let x = \omega. Then, x + \frac{1}{x} = \omega + \frac{1}{\omega} = \omega + \omega^{2} = -1 x^{2} + \frac{1}{x^{2}} = \omega^{2} + \frac{1}{\omega^{2}} = \omega^{2} + \omega = -1 x^{3} + \frac{1}{x^{3}} = \omega^{3} + \frac{1}{\omega^{3}} = 2 x^{4} + \frac{1}{x^{4}} = \omega^{4} + \frac{1}{\omega^{4}} = \omega + \omega^{2} = -1, \text{ etc} $\therefore \left(x + \frac{1}{x}\right)^{2} + \left(x^{2} + \frac{1}{x^{2}}\right)^{2} + \left(x^{3} + \frac{1}{x^{3}}\right)^{2} + \cdots + \left(x^{27} + \frac{1}{x^{27}}\right)^{2} = \left[\left(x + \frac{1}{x}\right)^{2} + \left(x^{2} + \frac{1}{x^{2}}\right)^{2} + \left(x^{4} + \frac{1}{x^{4}}\right)^{2} + \cdots + \left(x^{26} + \frac{1}{x^{26}}\right)^{2}\right] + \left[\left(x^{3} + \frac{1}{x^{3}}\right)^{2} + \left(x^{6} + \frac{1}{x^{6}}\right)^{2} + \left(x^{9} + \frac{1}{x^{9}}\right) + \cdots + \left(x^{27} + \frac{1}{x^{27}}\right)^{2}\right] = 18 + 9(2^{2}) = 54 42 (c) $\overline{x^{2} + ax^{3} + apx^{2} + ax} - apx^{2} + (b - a)x + c - apx^{2} + ap^{2})x + c + ap} Now, remainder must be zero. Hence,$$$$

$$b - a + ap^{2} = 0 \text{ and } c + ap = 0$$

$$\Rightarrow p = -\frac{c}{a} \text{ and } p^{2} = \frac{a-b}{a}$$

$$\Rightarrow \left(\frac{-c}{a}\right)^{2} = \frac{a-b}{a}$$

$$\Rightarrow c^{2} = a^{2} - ab$$

$$\Rightarrow a^{2} - c^{2} = ab$$

43 (c)

$$\overline{z} + i\overline{w} = 0$$

$$\Rightarrow z - iw = 0 \quad (1)$$

$$\Rightarrow z = iw$$

$$\arg zw = \pi$$

$$\Rightarrow \arg z + \arg w = \pi$$

$$\Rightarrow \arg z + \arg z - \arg i = \pi$$

$$\Rightarrow 2 \arg z - \frac{\pi}{2} = \pi$$

$$\Rightarrow 2 \arg z = \frac{3\pi}{2}$$

$$\Rightarrow \arg z = \frac{3\pi}{4}$$

44 (c)

As a, b, c > 0, so a, b, c should be real (note that other relation is not defined in the set of complex numbers). Therefore, the roots of equation are either real or complex conjugate Let α , β be the roots of $ax^2 + bx + c = 0$. Then, $\alpha + \beta = -\frac{b}{a} = -\text{ve and } \alpha\beta = \frac{c}{a} = +\text{ve}$ Hence, either both α , β are – ve (if roots are real) or both α , β have – ve real part (if roots are complex conjugate)

45 **(b)**

$$x = \sqrt[3]{-1}$$

$$\Rightarrow x^{3} = -1$$

$$\Rightarrow (-x)^{3} = 1$$

$$\Rightarrow -x = 1, \omega, \omega^{2}$$

$$\Rightarrow x = -1, -\omega, -\omega^{2}$$

$$= -1, \frac{1 + \sqrt{3}i}{2}, \frac{1 - \sqrt{3}i}{2}$$

$$= -1, \frac{-\sqrt{3} + i}{2i}, \frac{\sqrt{3} + i}{2i}$$

$$= -1, \frac{-\sqrt{3} + \sqrt{-1}}{\sqrt{-4}}, \frac{\sqrt{3} + \sqrt{-1}}{\sqrt{-4}}$$
46 **(b)**

$$\tan x = \frac{a - 4 - \sqrt{(a - 4)^2 - 4(4 - 2a)}}{2}$$
$$= \frac{a - 4 - a}{2} = a - 2, -2$$
$$\therefore \tan x = a - 2 \quad (\because \tan x \neq -2)$$
$$\because x \in \left[0, \frac{\pi}{4}\right]$$

$$\therefore 0 \le a - 2 \le 1$$

$$\Rightarrow 2 \le a \le 3$$
47 (c)

$$\left(\frac{z+1}{z}\right)^4 = 16$$

$$\Rightarrow \frac{z+1}{z} = \pm 2, \pm 2i$$
The roots are 1, -1/3, (-1/5 - (2/5)i) and
(-1/5 + (2/5)i)
Note that (-1/3, 0) and (1, 0) are equidistant
from (1/3, 0) and since it lies on the

perpendicular bisector of AB, it will be equidistant from A and B also

48 **(a)**

We have,

$$(\alpha + \beta + \gamma)^{2} = \alpha^{2} + \beta^{2} + \gamma^{2} + 2(\beta\gamma + \gamma\alpha + \alpha\beta)$$

$$\Rightarrow 4 = 6 + 2(\beta\gamma + \gamma\alpha + \alpha\beta)$$

$$\Rightarrow \beta\gamma + \gamma\alpha + \alpha\beta = -1$$
Also, $\alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha\beta\gamma = (\alpha + \beta + \gamma)(\alpha^{2} + \beta^{2} + \gamma^{2} - \beta\gamma - \gamma\alpha - \alpha\beta)$

$$\Rightarrow 8 - 3\alpha\beta\gamma = 2(6 + 1)$$

$$\Rightarrow 3\alpha\beta\gamma = 8 - 14 = -6 \text{ or } \alpha\beta\gamma = -2$$
Now,

$$(\alpha^{2} + \beta^{2} + \gamma^{2})^{2} = \sum \alpha^{4} + 2\sum \alpha^{2}\beta^{2}$$

$$= \sum \alpha^{4} + 2\left[\left(\sum \alpha\beta\right)^{2} - 2\alpha\beta\gamma\left(\sum \alpha\right)\right]$$

$$\Rightarrow \sum \alpha^{4} = 36 - 2\left[(-1)^{2} - 2(-2)(2)\right] = 18$$
49 (c)
Let $x = |a + b\omega + c\omega^{2}|$

$$\Rightarrow x^{2} = (a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$\Rightarrow x^{2} = \frac{1}{2}\{(a - b)^{2} + (b - c)^{2} + (c - a)^{2}\}$$
...(i)
Since a, b, c are all integers but not all
simultaneously equal

$$\Rightarrow \text{ If } a = b, \text{ then } a \neq c \text{ and } b \neq c$$
As, difference of integers=integer

$$\Rightarrow (b - c)^{2} \ge 1$$
[as minimum difference of two consecutive
integers is (± 1)]
Also, $(c - a)^{2} \ge 1$
 \therefore From Eq. (i),

 $x^{2} = \frac{1}{2}[(a-b)^{2} + (b-c)^{2} + (c-a)^{2}]$ $\geq \frac{1}{2}[0+1+1]$ $\Rightarrow x^{2} \geq 1$ Hence, minimum value of x is 1

 $|z_1| = |z_2| = |z_3| = 1$ Hence, the circumcentre of triangle is origin. Also, centroid $(z_1 + z_2 + z_3)/3 = 0$, which coincides with the circumcentre. So the triangle is equilateral. Since radius is 1, length of side is $a = \sqrt{3}$. Therefore, the area of the triangle is $(\sqrt{3}/4)a^2 = (3\sqrt{3}/4)$

51 **(c)**

Let *m* be a positive integer for which $n^2 + 96 = m^2$ $\Rightarrow m^2 - n^2 = 96 \Rightarrow (m + n)(m - n) = 96$ $\Rightarrow (m + n)\{(m + n) - 2n\} = 96$ $\Rightarrow m + n$ and m - n must be both even As $96 = 2 \times 48$ or 4×24 or 6×16 or 8×12 , hence, number of solutions is 4

52 **(d)**

$$|z - 4| = \operatorname{Re}(z)$$

$$\Rightarrow \sqrt{(x - 4)^2 + y^2} = x$$

$$\Rightarrow x^2 - 8x + 16 + y^2 = x^2$$

$$\Rightarrow y^2 = 8(x - 2)$$

The given relation represents the part of the parabola with focus (4, 0) lying above *x*-axis and the imaginary axis as the directrix. The two tangents from directrix are at right angle. Hence greatest positive argument of *z* is $\pi/4$

53 **(c)**

Observing carefully the system of equations, we find

 $\frac{1+i}{2i} = \frac{1-i}{2} = \frac{1}{1+i}$

Hence, there are infinite number of solutions

54 **(c)**

Let α , α^2 be the roots of $3x^2 + px + 3 = 0$. Now, $S = \alpha + \alpha^2 = -p/3, p = \alpha^3 = 1$ $\Rightarrow \alpha = 1, \omega, \omega^2 \quad \left(\text{where } \omega = \frac{-1 + \sqrt{3}i}{2}\right)$ $\alpha + \alpha^2 = -p/3 \Rightarrow \omega + \omega^2 = -p/3$ $\Rightarrow -1 = -p/3 \Rightarrow p = 3$ 55 (c) Given, α , β are roots of equation $x^2 - 2x + 3 = 0$ $\Rightarrow \alpha^2 - 2\alpha + 3 = 0 \quad (1)$ And $\beta^2 - 2\beta + 3 = 0$ (2) $\Rightarrow \alpha^2 = 2\alpha - 3 \Rightarrow \alpha^3 = 2\alpha^2 - 3\alpha$ $\Rightarrow P = (2\alpha^2 - 3\alpha) - 3\alpha^2 + 5\alpha - 2$ $\Rightarrow -\alpha^2 + 2\alpha - 2 = 3 - 2 = 1$, [Using (1)] Similarly, we have Q = 2Now, sum of root is 3 and product of roots is 2. Hence, the required equation is $x^2 - 3x + 2 = 0$ 56 (d) $A_3(1+2i)$ A_5 (0.0)Let the vertices be z_0, z_1, \dots, z_5 w.r.t. centre O at origin and $|z_0| = \sqrt{5}$ Now ΔOA_2A_3 is equilateral $\Rightarrow OA_2 = OA_3 =$ $A_2 A_3 = \sqrt{5}$ $= |z_0| |\cos \theta + i \sin \theta - 1|$ Perimeter = $6\sqrt{5}$ 57 (c) We have, $z_1(z_1^2 - 3z_2^2) = 2 \quad (1)$ $z_2(3z_1^2 - z_2^2) = 11 \quad (2)$ Multiplying (2) by *i* and adding it to (1), we get $z_1^3 - 3z_2^2 z_1 + i(3z_1^2 z_2 - z_2^3) = 2 + 11i$ $\Rightarrow (z_1 + iz_2)^3 = 2 + 11i \qquad (3)$ Multiplying (2) by *i* and subtracting it from (1), we get $z_1^3 - 3z_2^2 z_1 - i(3z_1^2 z_2 - z_2^3) = 2 - 11i$ $\Rightarrow (z_1 - iz_2)^3 = 2 - 11i \quad (4)$ Multiplying (3) and (4), we get $(z_1^2 + z_2^2)^3 = 2^2 - 121i^2 = 4 + 121 = 125$ $\Rightarrow z_1^2 + z_2^2 = 5$ 58 (d) P(a) = P(b) = P(c) = P(d) = 3 $\Rightarrow P(x) = 3$ has a, b, c, d as its roots $\Rightarrow P(x) - 3 = (x - a)(x - b)(x - c)(x - d)Q(x)$ [:: Q(x) has integral coefficient] Given P(e) = 5, then (e-a)(e-b)(e-c)(e-d)Q(e) = 5This is possible only when at least three of the five integers (e - a), (e - b)(e - c)(e - d)Q(e) are equal to 1 or -1. Hence, two of them will be equal, which is not possible. Since a, b, c, d are distinct integers, therefore P(e) = 5 is not possible

59 **(c)**

We have

$$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$

 $a + h + \beta + h = -\frac{q}{p}, (\alpha + h)(\beta + h) = \frac{r}{p}$
 $\Rightarrow \alpha + \beta + 2h = -\frac{q}{p}$
 $\Rightarrow -\frac{b}{a} + 2h = \frac{-q}{p} [\because a + b = -\frac{b}{a}]$
 $\Rightarrow h = \frac{1}{2} \left(\frac{b}{a} - \frac{q}{p}\right)$

60 **(c)**

$$z = \frac{at+b}{t-c} \Rightarrow t = \frac{b+cz}{z-a}$$

Now, $|t| = 1$
$$\Rightarrow \left|\frac{b+cz}{z-a}\right| = 1$$
$$\Rightarrow \left|\frac{z+\frac{b}{c}}{z-a}\right| = \frac{1}{|c|} = (\neq 1 \text{ as } |c| \neq |t|)$$

 \Rightarrow locus of z is a circle

61 (a)

We know that $|z - z_1| = |z - z_2|$. Then locus of z is the line, which is a perpendicular bisector of line segment joining z_1 and z_2 Hence, z = x + iy $\Rightarrow |z - 5i| = |z + 5i|$ Therefore, *z* remains equidistant from $z_1 = 5i$ and $z_2 = 5i$. Hence, z lies on perpendicular bisector of line segment joining z_1 and z_2 , which is clearly the real axis or y = 0Alternative solution: $\frac{|z-5i|}{|z+5i|}$ = 1 $\Rightarrow |x + iy - 5i| = |x + iy + 5i|$ $\Rightarrow |x + (y - 5)i| = |x + (y + 5)i|$ $\Rightarrow x^{2} + (y - 5)^{2} = x^{2} + (y + 5)^{2}$ $\Rightarrow x^{2} + y^{2} - 10y + 25 = x^{2} + y^{2} + 10y + 25$ $\Rightarrow 20v = 0$ $\Rightarrow y = 0$

62 **(b)**

63 **(c)**

Here $D = b^2 - 4c > 0$ because c < 0 < b. So, roots are real and unequal. Now, $\alpha + \beta = -b < 0$ and $\alpha\beta = c < 0$

Therefore, one root is positive and the other root is negative, the negative root being numerically bigger. As $\alpha < \beta$, so α is the negative root while β is the positive root. So, $|\alpha| > \beta$ and $\alpha < 0 < \beta < |\alpha|$

The given equation is $x^2 - 2mx + m^2 - 1 = 0$ $\Rightarrow (x - m)^2 - 1 = 0$ $\Rightarrow (x - m + 1)(x - m - 1) = 0$ $\Rightarrow x = m - 1, m + 1$ From given condition, m - 1 > -2 and m + 1 < 4 $\Rightarrow m > -1$ and m < 3Hence, -1 < m < 364 (c) Let the distance of the school from A be *x*. Therefore, the distance of the school from B is 60 - x. The total distance covered by 200

students is [150x + 50(60 - x)] = [100x + 3000]This is minimum when x = 0. Hence, the school should be at town A

$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{5} + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^{5}$$

$$= \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{5} + \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^{5}$$

$$= \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) + \left(\cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6}\right)$$

$$= 2\cos\frac{5\pi}{6}$$

$$= -\sqrt{3}$$

$$\Rightarrow \operatorname{Re}(z) < 0 \text{ and } \operatorname{Im}(z) = 0$$
Alternative solution:

$$z = \overline{z}_{1} + \overline{z}_{2}$$
Where

$$\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{5}$$

$$\Rightarrow z \text{ is real}$$

$$\Rightarrow \operatorname{Im}(z) = 0$$
66 (b)
Sum of roots = $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}$ and product =1
Given, $\alpha + \beta = -p$ and $\alpha^{3} + \beta^{3} = q$

$$\Rightarrow (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2}) = q$$

$$\therefore \alpha^{2} + \beta^{2} - \alpha\beta = \frac{-q}{p} \qquad ...(i)$$
And $(\alpha + \beta)^{2} = p^{2}$

$$\Rightarrow \alpha^{2} + \beta^{2} + 2\alpha\beta = p^{2}$$
From Eqs. (i) and (ii), we get

$$\alpha^{2} + \beta^{2} = \frac{p^{3} - 2q}{3p}$$
And $\alpha\beta = \frac{p^{3} + q}{3p}$

$$\therefore$$
 Required equation is

$$x^{2} - \frac{(p^{3} - 2q)x}{(p^{3} + q)} + 1 = 0$$

$$\Rightarrow (p^{3} + q)x^{2} - (p^{3} - 2q)x + (p^{3} + q) = 0$$

67 (d) Let the four numbers in A.P. be p = a - 3d, q =a - d, r = a + d, s = a + 3d. Therefore, p + q = 2, r + s = 18Given that pq = A, rs = B $\therefore p + q + r + s = 4a = 20$ $\Rightarrow a = 5$ Now, $p + q = 2 \Rightarrow 10 - 4d = 2$ $r + s = 18 \Rightarrow 10 + 4d = 18$ $\therefore d = 2$ Hence, the numbers are -1, 3, 7, 11pq = A = -3, rs = B = 7768 (d) α , β are roots of $x^2 + px + q = 0$. Hence, $\alpha + \beta = -p$ $\alpha\beta = q$ Now, α^4 , β^4 are roots $x^2 - px + q = 0$. Hence, $\alpha^4 + \beta^4 = r_1 \alpha^4 \beta^4 = q$ Now, for equation $x^2 - 4qx + 2q^2 - r = 0$, product of roots is $2q^2 - r = 2(\alpha\beta)^2 - (\alpha^4 + \beta^4)$ $= -(\alpha^2 - \beta^2)^2$ < 0 As product of roots is negative, so the roots must be real 69 (a) Here, |PQ| = |PS| = |PR| = 2

: Shaded part represents the external part of circle having centre (-1, 0) and radius 2

As we know equation of circle having centre z_0 and radius r, is

 $|z - z_0| = r$ |z - (-1 + 0i)| > 2... |z + 1| > 2⇒ ...(i)

Also, argument of z + 1 with represent to positive direction of *x*-axis is $\pi/4$

 $\therefore \arg(z+1) \leq \frac{\pi}{4}$

And argument of z + 1 in anti-clockwise direction is $-\pi/4$.

$$\begin{array}{ll} \therefore & -\frac{\pi}{4} \le \arg(z+1) \\ \Rightarrow & |\arg(z+1)| \le \frac{\pi}{4} \end{array}$$

70 **(b)** Given equations are $x^3 + ax + 1 = 0$ or $x^4 + ax^2 + x = 0$ (1) and $x^4 + ax^2 + 1 = 0$ (2) From (1) – (2), we get x = 1. Thus, x = 1 is the common roots. Hence. $1 + a + 1 = 0 \Rightarrow a = -2$ 71 (c) We have, $|(x-2) + i(y-1)| = |z| \left| \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta \right|$ Where $\theta = \arg z$ $\sqrt{(x-2)^2 + (y-1)^2} = \frac{1}{\sqrt{2}}|x-y|$ Which is a parabola 72 (d) $z = i \log(2 - \sqrt{3})$ $\Rightarrow e^{iz} = e^{i^2 \log(2-\sqrt{3})} = e^{-\log(2-\sqrt{3})}$ $\Rightarrow e^{iz} = e^{\log(2-\sqrt{3})^{-1}} = e^{\log(2-\sqrt{3})} = (2+\sqrt{3})$ $\Rightarrow \cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{(2 + \sqrt{3}) + (2 - \sqrt{3})}{2} = 2$ 73 (d) $f(x, y) = (x - 2)^2 + (y - 1)^2 = 0$ $\Rightarrow x = 2$ and y = 1 $\therefore E = \frac{\left(\sqrt{2} - 1\right)^2 + 4\sqrt{2}}{2 + \sqrt{2}} = \frac{\left(\sqrt{2} + 1\right)^2}{\sqrt{2}(\sqrt{2} + 1)} = \frac{\sqrt{2} + 1}{\sqrt{2}}$ 74 (a) Let, $f(x, y, z) = x^2 + 4y^2 + 3z^2 - 2x - 12y -$ 6z + 14 $= (x-1)^{2} + (2y-3)^{2} + 3(z-1)^{2} + 1$ For the least value of f(x, y, z), x - 1 = 0, 2y - 3 = 0 and z - 1 = 0 $\therefore x = 1, y = 3/2, z = 1$ Hence the least value of f(x, y, z) is f(1, 3/2, 1) =1 75 (c) $A(z_1)$ $C(z_3)$ $\frac{z_1 - z_2}{z_3 - z_2} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} = e^{i\pi/4}$ $\angle CBA = \frac{\pi}{4}$

Also.

 $|z_1 - z_2| = |z_3 - z_2|$

Hence, $\triangle ABC$ is isosceles 76 (c) Let the roots be α , β $\therefore \alpha + \beta = -2a$ and $\alpha\beta = b$ Given, $|\alpha - \beta| \le 2m$ $\Rightarrow |\alpha - \beta|^2 \le (2m)^2$ $\Rightarrow (\alpha + \beta)^2 - 4ab \le 4m^2$ $\Rightarrow 4a^2 - 4b \le 4m^2$ $\Rightarrow a^2 - m^2 \le b$ and discriminant D > 0 or $4a^2 - 4b > 0$ $\Rightarrow a^2 - m^2 \le b$ and $b < a^2$ Hence, $b \in [a^2 - m^2, a^2]$ 77 **(b)** Let, $y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ $\Rightarrow 3x^{2}(y-1) + 9x(y-1) + 7y - 17 = 0$ Since *x* is real, so, $D \ge 0$ $\Rightarrow 81(y-1)^2 - 4 \times 3(y-1)(7y-17) \ge 0$ $\Rightarrow (y-1)(y-41) \le 0 \Rightarrow 1 \le y \le 41$ Therefore, the maximum value of *y* is 41 78 (b) Verify by selecting particular values of *a* and *b* Let a = -9 and b = 4. Then, $\sqrt{a}\sqrt{b} = \sqrt{-9}\sqrt{4} = (3i)(2) = 6i$ From option (a), we have $-\sqrt{|a|b} = -\sqrt{|-9| \times 4} = -\sqrt{36} = -6$ From option (b), we have $\sqrt{|a|bi} = \sqrt{|-9| \times 4} i = 6i$ 79 (d) |z - 4| < |z - 2| $\Rightarrow |(x-4) + iy| < |(x-2) + iy|$ $\Rightarrow (x-4)^2 + y^2 < (x-2)^2 + y^2$ $\Rightarrow -8x + 16 < -4x + 4$ $\Rightarrow 4x - 12 > 0$ $\Rightarrow x > 3$ $\Rightarrow \operatorname{Re}(z) > 3$ 80 (c) $x = 9^{\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots} = 9^{\frac{\frac{1}{3}}{1 - \frac{1}{3}}} = 9^{\frac{1}{2}} = 3$ $y = 4^{\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots} = 4^{\frac{\frac{1}{3}}{1 + \frac{1}{3}}} = 4^{\frac{1}{4}} = \sqrt{2}$ $z = \sum_{i=1}^{\infty} (1+i)^{-r}$ $=\frac{1}{1+i}+\frac{1}{(1+i)^2}+\frac{1}{(1+i)^3}+\cdots$

$$= \frac{\frac{1}{1+i}}{1-\frac{1}{1+i}} = \frac{1}{i} = -i$$
Let $a = x + yz = 3 - \sqrt{2}i$ (fourth quadrant).
Then,
arg $a = -\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$
81 (c)
Given,
 $(a-1)x^2 - (a+1)x + a - 1 \ge 0$
 $\Rightarrow a(x^2 - x + 1) - (x^2 + x + 1) \ge 0$
 $\Rightarrow a \ge \frac{x^2 + x + 1}{x^2 - x + 1}$
 $= 1 + \frac{2x}{x^2 - x + 1}$
 $= 1 + \frac{2x}{x^2 - x + 1}$
 $= 1 + \frac{2}{x+\frac{1}{x-1}}$ (1)
Let $y = x + 1/x$. Now, y is increasing in $[2, \infty)$.
Hence,
 $1 + \frac{2}{x + \frac{1}{x} - 1} \in \left(1, \frac{7}{3}\right]$
For all $x \ge 2$, Eq. (1) should be true. Hence,
 $a > 7/3$
82 (b)
Let $z_1 = \frac{w - \overline{w_2}}{1-z}$ be purely real
 $\Rightarrow z_1 = \overline{z_1}$
 $\therefore \frac{w - \overline{w}z}{1 - z} = \frac{\overline{w} - w\overline{z}}{1 - \overline{z}}$
 $\Rightarrow w - w\overline{z} - \overline{w}z + \overline{w}z \overline{z}$
 $\Rightarrow (w - \overline{w}) + (1 - |z|^2) = 0$
 $\Rightarrow |z|^2 = 1$
[as, $w - \overline{w} \ne 0$, since $\beta \ne 0$]
 $\Rightarrow |z| = 1$ and $z \ne 1$
83 (a)
Minimum value of $5x^2 + 2x + 3$ is
 $-\frac{D}{4a} = -\frac{(2)^2 - 4(5)(3)}{4(5)} > 2$
Where maximum value of 2 sin x is 2. Therefore,
the two curves do not meet at all
84 (a)
Clearly,
 $x^n - 1 = (x - 1)(x - a_1)(x - a_2) ... (x - a_{n-1})$
 $\Rightarrow 1 + x + x^2 + ... + x^{n-1}$
 $= (x - a_1)(x - a_2) ... (x - a_{n-1})$
 $\Rightarrow 1 = (1 - a_1)(1 - a_2) ... (1 - a_{n-1})$ [putting

8

8

8

x = 1

85 (c) If one root is square of the other root of the equation $ax^2 + bx + c = 0$, then $\beta = \alpha^2 \Rightarrow \alpha^2 + \alpha = -b/a$ and $\alpha^2 a = c/a$ By eliminating α , we get $b^3 + ac^2 + a^2c = 3abc$ Which can be written in the form $a(c - b)^3 =$ $c(a-b)^3$ Alternative solution: Let the roots be 2 and 4. Then the equation is $x^2 - 6x + 8 = 0$ Here obviously, $X = \frac{a(c-b)^3}{c} = \frac{1(14)^3}{8} = \frac{14}{2} \times \frac{14}{2} \times \frac{14}{2} = 7^3$ Which is given by $(a - b)^3 = 7^3$ 86 **(b)** $x = 3\cos\theta$; $y = 3\sin\theta$ $z = 2\cos\phi$; $t = 2\sin\phi$ $\therefore 6\cos\theta\sin\phi - 6\sin\theta\cos\phi = 6$ $\Rightarrow \sin(\phi - \theta) = 1$ $\Rightarrow \phi = 90^{\circ} + \theta$ $\Rightarrow P = xz = -6\sin\theta\cos\theta = -3\sin2\theta$ $\Rightarrow P_{\text{max}} = 3$ 87 **(b)** $2z^2 + 2z + \lambda = 0$ Let the roots be z_1, z_2 . Then, $z_1 + z_2 = -1$ and $z_1 z_2 = \frac{\lambda}{2}$ $0, z_1, z_2$ form, an equilateral triangle $\therefore z_1^2 + z_2^2 = z_1 z_2$ $\Rightarrow (z_1 + z_2)^2 = 3z_1z_2$ $\Rightarrow 1 = 3\frac{\lambda}{2}$ $\Rightarrow \lambda = \frac{2}{2}$ 88 (b) For given situation, $x^2 - (k - 2)x + k^2 = 0$ and $x^2 + kx + 2k - 1 = 0$ should have both roots common or each should have equal roots. If both roots are common, then $\frac{1}{1} = \frac{-(k-2)}{k} = \frac{k^2}{2k-1}$ $\Rightarrow k = -k + 2$ and $2k - 1 = k^2 \Rightarrow k = 1$ If both the equations have equal roots, then $(k-2)^2 - 4k^2 = 0$ and $k^2 - 4(2k-1) = 0$ $\Rightarrow (3k-2)(-k-2) = 0$ and $k^2 - 8k + 4 = 0$ (no common value) Therefore, k = 1 is the only possible value 89 (a) $x = \sqrt[3]{7} + \sqrt[3]{49}$

 $\Rightarrow x^{3} = 7 + 49 + 3\sqrt[3]{7} \sqrt[3]{49} (\sqrt[3]{7} + \sqrt[3]{49})$ = 56 + 21x $\Rightarrow x^3 - 21x - 56 = 0$ Therefore, the product of roots is 56 90 (a) $|x|^2 - 3|x| + 2 = 0$ $\Rightarrow (|x| - 2)(|x| - 1) = 0$ $\Rightarrow |x| = 1 \text{ or } 2$ $\Rightarrow x = \pm 1, \pm 2$ Hence, there are four real solutions 91 (d) (x+a)(x+1991) + 1 = 0 \Rightarrow (x + a)(x + 1991) = -1 \Rightarrow (x + a) = 1 and x + 1991 = -1 $\Rightarrow a = 1993$ or x + a = -1 and $x + 1991 = 1 \Rightarrow a = 1989$ 92 (c) We have, $2 = |z - i\omega| \le |z| + |\omega| \quad (\because |z_1 + z_2|$ $\leq |z_1| + |z_2|$ $\therefore |z| + |\omega| \ge 2 \quad (i)$ But given that $|z| \le 1$ and $|\omega| \le 1$. Hence $\Rightarrow |z| + |\omega| \le 2$ (ii) From (i) and (ii), $|z| = |\omega| = 1$ Also, $|z + i\omega| = |z - i\overline{\omega}|$ $\Rightarrow |z - (-i\omega)| = |z - i\overline{\omega}|$ Hence, z lies on perpendicular bisector of the line segment joining $(-i\omega)$ and $(i\overline{\omega})$, which is a real axis, as $(-i\omega)$ and $(i\overline{\omega})$ are conjugate to each other. For z, Im(z) = 0. If z = x, then $|z| \leq 1 \Rightarrow x^2 \leq 1$ $\Rightarrow -1 \le x \le 1$ 93 (b) $A(z_1)$ $B(z_2)$ As $\triangle OAC$ is a right-angled triangle with right angle at A, so $|z_1|^2 + |z_3 - z_1|^2 = |z_3|^2$ $\Rightarrow 2|z_1|^2 - \overline{z}_3 z_1 - \overline{z}_1 z_3 = 0$ $\Rightarrow 2\overline{z}_1 - \overline{z}_3 - \frac{\overline{z}_1}{z_1} z_3 = 0 \quad (1)$ Similarly, $2\overline{z}_2 - \overline{z}_3 - \frac{\overline{z}_2}{z_2}z_3 = 0 \quad (2)$ Subtracting (2) from (1), we get $2(\overline{z}_2 - z_1) = z_3 \left(\frac{\overline{z}_1}{z_1} - \frac{\overline{z}_2}{z_2} \right)$

$$\Rightarrow \frac{2r^2(z_1 - z_2)}{z_1 z_2} = z_3 r^2 \left(\frac{z_2^2 - z_1^2}{z_1^2 z_2^2}\right) \quad [\because |z_1|^2 \\ = |z_2|^2 = r^2] \\ \Rightarrow z_3 = \frac{2z_1 z_2}{z_2 + z_1}$$

94 **(d)**

Here,

$$\alpha^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2}$$

$$= \{(\alpha + \beta)^{2} - 2\alpha\beta\}^{2} - 2(\alpha\beta)^{2}$$

$$= \left(p^{2} + \frac{1}{p^{2}}\right)^{2} - \frac{1}{2p^{4}}$$

$$= p^{4} + \frac{1}{2p^{4}} + 2$$

$$= \left(p^{2} - \frac{1}{\sqrt{2}p^{2}}\right)^{2} + 2 + \sqrt{2} \ge 2 + \sqrt{2}$$

Thus, the minimum value of $\alpha^4 + \beta^4$ is $2 + \sqrt{2}$ 95 **(b)**

$$ax^{2} - bx + c = 0$$

$$\alpha + \beta = \frac{b}{a}, \alpha\beta = \frac{c}{a}$$
Also, $(a + cy)^{2} = b^{2}y$

$$\Rightarrow c^{2}y^{2} - (b^{2} - 2ac)y + a^{2} = 0$$

$$\Rightarrow \left(\frac{c}{a}\right)^{2}y^{2} - \left(\left(\frac{b}{a}\right)^{2} - 2\left(\frac{c}{a}\right)\right)y + 1 = 0$$

$$\Rightarrow (\alpha\beta)^{2}y^{2} - (\alpha^{2} + \beta^{2})y + 1 = 0$$

$$\Rightarrow y^{2} - (\alpha^{-2} + \beta^{-2})y + \alpha^{-2}\beta^{-2} = 0$$

$$\Rightarrow (y - \alpha^{-2})(y - \beta^{-2}) = 0$$
Hence the roots are α^{-2}, β^{-2}

96 (c)

We have,

$$(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \dots \times (\cos n\theta + i \sin n\theta) = 1$$

$$\Rightarrow \cos(\theta + 2\theta + 3\theta + \dots + n\theta) + i \sin(\theta + 2\theta + \dots + n\theta) = 1$$

$$\Rightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) + i \sin\left(\frac{n(n+1)}{2}\theta\right) = 1$$

$$\Rightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) = 1 \text{ and } \sin\left(\frac{n(n+1)}{2}\theta\right) = 0$$

$$\Rightarrow \frac{n(n+1)}{2}\theta = 2m\pi \Rightarrow \theta = \frac{4m\pi}{n(n+1)}, \text{ where } m \in Z$$
97 **(b)**
Taking cube roots of both sides, we get

Taking cube roots of both sides, we get $z + ab = a(1)^{1/3} = a, a\omega, a\omega^2$ Where $\therefore z_1 = a - ab, z_2 = a\omega - ab, z_3 = a\omega^2 - ab$ $|z_1 - z_2| = |a(1 - \omega)|$ $= |a| \left| 1 - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) \right|$

 $= |a| \left| \frac{3}{2} - i \frac{\sqrt{3}}{2} \right|$ $= |a| \left(\frac{9}{4} + \frac{3}{4}\right)^{1/2} = \sqrt{3}|a|$ Similarly, $|z_2 - z_3| = |z_3 - z_1| = \sqrt{3} |a|$ 98 (a) We have, $x_1 x_2 = 4$ $\Rightarrow x_2 = \frac{4}{x_1}$ $\therefore \frac{x_1}{x_1 - 1} + \frac{x_2}{x_2 - 1} = 2$ $\Rightarrow \frac{x_1}{x_1 - 1} + \frac{\frac{4}{x_1}}{\frac{4}{x_1} - 1} = 2$ $\Rightarrow \frac{x_1}{x_1 - 1} + \frac{4}{4 - x_1} = 2$ $\Rightarrow 4x_1 - x_1^2 + 4x_1 - 4 = 2(x_1 - 1)(4 - x_1)$ $\Rightarrow x_1^2 - 2x_1 + 4 = 0$ $\Rightarrow x^2 - 2x + 4 = 0$ 99 (d) $\cot^4 x - 2(1 + \cot^2 x) + a^2 = 0$ $\Rightarrow \cot^4 x - 2 \cot^2 x + a^2 - 2 = 0$ $\Rightarrow (\cot^2 x - 1)^2 = 3 - a^2$ Now, for at least one solution $3-a^2 \ge 0$ $\Rightarrow a^2 - 3 \le 0$ $\therefore a \in \left[-\sqrt{3}, \sqrt{3}\right]$ Integral values are -1, 0, 1 \therefore sum= 0 100 (d) Here, x = 0 is not a root. Divide both the numerator and denominator by *x* and put x + 3/x = y to obtain $\frac{4}{y+1} + \frac{5}{y-5} = -\frac{3}{2} \Rightarrow y = -5, 3$ x + 3/x = -5 has two irrational roots and x + 3/x = 3 has imaginary roots 101 (a) $|z_1| = |z_2| = |z_3|$ (given) Now, $|z_1| = 1 \Rightarrow |z_1|^2 = 1 \Rightarrow z_1\overline{z}_1 = 1$ Similarly, $z_2\overline{z}_2 = 1, z_3\overline{z}_3 = 1$ Now, $\begin{vmatrix} \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \end{vmatrix} = 1$ $\Rightarrow \frac{|\overline{z}_1 + \overline{z}_2 + \overline{z}_3|}{|\overline{z}_1 + z_2 + z_3|} = 1$ $|z_1 + z_2 + z_3| = 1$

102 (a) Let $z_1 = a + ib$ and $z_2 = c - id$, where a > 0 and d > 0. Then, $|z_1| = |z_2| \Rightarrow a^2 + b^2 = c^2 + d^2$ (1) Now, $\frac{z_1 + z_2}{z_1 - z_2} = \frac{(a + ib) + (c - id)}{(a + ib) - (c - id)}$ $= \frac{[(a+c)+i(b-d)][(a-c)-i(b+d)]}{[(a-c)+i(b+d)][(a-c)-i(b+d)]}$ $= \frac{(a^2+b^2)-(c^2+d^2)-2(ad+bc)i}{a^2+c^2-2ac+b^2+d^2+2bd}$ $=\frac{-(ad+bc)i}{a^2+b^2-ac+bd}$ [Using (1)] Hence, $(z_1 + z_2)/(z_1 - z_2)$ is purely imaginary. However, if ad + bc = 0, then $(z_1 + z_2)/(z_1 - z_2)$ will be equal to zero. According to the conditions of the equation, we can have ad + bc = 0103 (c) We know that $ax^2 + bx + c \ge 0, \forall x \in R$, If a > 0 and $b^2 - 4ac \le 0$. So, $mx - 1 + \frac{1}{r} \ge 0 \Rightarrow \frac{mx^2 - x + 1}{r} \ge 0$ $\Rightarrow mx^2 - x + 1 \ge 0$ as x > 0Now, $mx^2 - x + 1 \ge 0$ if m > 0 and $1 - 4m \le 0$ $\Rightarrow m > 0$ and $m \ge 1/4$ Thus, the minimum value of *m* is $\frac{1}{4}$ 104 (c) We have, $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos(\theta_1 - \theta_2)$ Where $\theta_1 = \arg(z_1)$ and $\theta_2 = \arg(z_2)$. Given, $\arg(z_1 - z_2) = 0$ $\Rightarrow |z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2|$ $= (|z_1| - |z_2|)^2$ $\Rightarrow |z_1 - z_2| = ||z_1| - |z_2||$ 105 (d) The given equation is written as $\arg(z - (1 + i)) = \begin{cases} \frac{3\pi}{4}, & \text{when } x \le 2\\ \frac{-\pi}{4}, & \text{when } x > 2 \end{cases}$ (0,2) 🛉 (1,1) $\operatorname{Re}(z) = 1$ Therefore, the locus is a set of two rays 106 (d) $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$ $= [(1+i)^{n_1} + (1-i)^{n_1}] + [(1+i)^{n_2} + (1-i)^{n_2}]$ = $[(1+i)^{n_1} + \overline{(1+i)^{n_1}}] + [(1+i)^{n_2} + \overline{(1+i)^{n_2}}]$ 110 **(b)** =[purely real number]+[purely real number]

Hence, n_1 and n_2 are any integers 107 (d) $|z_2 + iz_1| = |z_1| + |z_2|$ \Rightarrow *iz*₁, 0 + *i*0 and *z*₂ are collinear $\Rightarrow \arg(iz_1) = \arg(z_2)$ $\Rightarrow \arg(z_2) - \arg(z_1) = \frac{\pi}{2}$ $C(z_3)$ Let. $z_3 = \frac{z_2 - iz_1}{1 - i}$ $\Rightarrow (1-i)z_3 = z_2 - iz_1$ $\Rightarrow z_2 - z_3 = i(z_1 - z_3)$ $\therefore \angle ACB = \frac{\pi}{2}$ and $|z_1 - z_3| = |z_2 - z_3|$ $\Rightarrow AC = BC$ $\therefore AB^2 = AC^2 + BC^2$ $\Rightarrow AC = \frac{5}{\sqrt{2}}$ (:: AB = 5) Therefore area of $\triangle ABC$ is $(1/2)AC \times BC =$ $AC^{2}/2 = 25/4$ sq. units 108 (a) Given equation is $x^2 - (y+4)x + y^2 - 4y + 16 = 0$ Since *x* is real, so, $D \geq 0$ $\Rightarrow (y+4)^2 - 4(y^2 - 4y + 16) \ge 0$ $\Rightarrow -3y^2 + 24y - 48 \ge 0$ $\Rightarrow y^2 - 8y + 16 \le 0$ $\Rightarrow (y-4)^2 \leq 0$ $\Rightarrow y - 4 = 0$ $\Rightarrow y = 4$ Since the equation is symmetric in *x* and *y*, therefore x = 4 only 109 (a) We have. $z^3 + 2z^2 + 2z + 1 = 0$ $\Rightarrow (z^3 + 1) + 2z(z+1) = 0$ $\Rightarrow (z+1)(z^2+z+1) = 0$ $\Rightarrow z = -1, \omega, \omega^2$ Since z = -1 does not satisfy $z^{1985} + z^{100} + 1 =$ 0 while $z = \omega, \omega^2$ satisfy it, hence sum is $\omega + \omega^2 = -1$

Multiplying the given equation by c/a^3 , we get $\frac{b^2c^2}{a^3}x^2 - \frac{b^2c}{a^2}x + c = 0$ $\Rightarrow a\left(\frac{bc}{a^2}x\right)^2 - b\left(\frac{bc}{a^2}\right)x + c = 0$ $\Rightarrow \frac{bc}{a^2} x = \alpha, \beta$ $\Rightarrow (\alpha + \beta)\alpha\beta x = \alpha, \beta$ $\Rightarrow x = \frac{1}{(\alpha + \beta)\alpha}, \frac{1}{(\alpha + \beta)\beta}$ 111 (d) Let z = x + iy. Then, $|z^2 - 1| = |z|^2 + 1$ $\Rightarrow |(x^2 - y^2 - 1) + 2ixy| = x^2 + y^2 + 1$ $\Rightarrow (x^2 - y^2 - 1)^2 + 4x^2y^2 = (x^2 + y^2 + 1)^2$ $\Rightarrow x = 0$ Hence, z lies on imaginary axis 112 **(b)** Let z = x + iy. Then, Re $\left(\frac{1}{z}\right) = k$ $\Rightarrow \operatorname{Re}\left(\frac{1}{x+iy}\right) = k$ $\Rightarrow \operatorname{Re}\left(\frac{x}{x^2 + y^2} - \frac{iy}{x^2 + y^2}\right) = k$ $\Rightarrow \frac{x}{x^2 + v^2} = k$ $\Rightarrow x^2 + y^2 - \frac{1}{k}x = 0$ Which is circle 113 (d) $\sqrt{-x^2 + 10x - 16} < x - 2$ We must have $-x^2 + 10x - 16 > 0$ $\Rightarrow x^2 - 10x + 16 \le 0$ $\Rightarrow 2 \le x \le 8$ (1) Also, $-x^2 + 10x - 16 < x^2 - 4x + 4$ $\Rightarrow 2x^2 - 14x + 20 > 0$ $\Rightarrow x^2 - 7x + 10 > 0$ $\Rightarrow x > 5 \text{ or } x < 2$ (2) From (1) and (2) $5 < x \le 8 \Rightarrow x = 6, 7, 8$ 114 (d) Since, the equation $x^2 - px + r = 0$ has roots (α, β) and the equation $x^2 - qx + r = 0$ has roots $\left(\frac{\alpha}{2}, 2\beta\right)$ $\therefore \ \alpha + \beta = p \text{ and } r = \alpha \beta \text{ and } \frac{\alpha}{2} + 2\beta = q$ $\Rightarrow \beta = \frac{2q-p}{3} \text{ and } \alpha = \frac{2(2p-q)}{3}$ $\therefore \ \alpha\beta = r = \frac{2}{9}(2q-p)(2p-q)$

115 (d)

$$a = \frac{x^{2} + 4}{|x|} - 3$$

$$= |x| + \frac{4}{|x|} - 3 = \left(\sqrt{|x|} - \frac{2}{\sqrt{|x|}}\right) + 1$$

$$\Rightarrow a \ge 1$$
116 (d)
Given,

$$z = \frac{3}{2 + \cos \theta + i \sin \theta}$$

$$\cos \theta + i \sin \theta = \frac{3}{z} - 2 = \frac{3 - 2z}{z}$$

$$\Rightarrow 1 = \frac{|3 - 2z|}{|z|} \text{ [taking modulus]}$$

$$\Rightarrow \frac{|z - \frac{3}{2}|}{|z|} = \frac{1}{2}$$
Hence, locus of z is a circle
117 (b)
Let $f(x) = -3 + x - x^{2}$. Then $f(x) < 0$ for all x, because coefficient of x^{2} is less than 0 and $D < 0$.
Thus, L.H.S. of the given equation is always
positive whereas the R.H.S. is always less than
zero. Hence, there is no solution
118 (b)
For real roots,
 $q^{2} - 4pr \ge 0$
 $\Rightarrow \left(\frac{p+r}{2}\right)^{2} - 4pr \ge 0$ ($\because p, q, r$ are in A.P.)
 $\Rightarrow p^{2} + r^{2} - 14pr \ge 0$
 $\Rightarrow \left(\frac{p}{r} - 7\right)^{2} - 48 \ge 0$
 $\Rightarrow \left|\frac{p}{r} - 7\right| \ge 4\sqrt{3}$
119 (a)
 $\arg(-z) - \arg(z) = \arg\left(\frac{-z}{z}\right) = \arg(-1) = \pi$
120 (c)
Since $\alpha, \beta, \gamma, \sigma$ are the roots of the given equation, therefore
 $x^{4} + 4x^{3} - 6x^{2} + 7x - 9$
 $= (x - \alpha)(x - \beta)(x - \gamma)(x - \sigma)$
Putting $x = i$ and then $x = -i$, we get
 $1 - 4i + 6 + 7i - 9 = (i - \alpha)(i - \beta)(i - \gamma)(i - \sigma)$
and $1 + 4i + 6 - 7i - 9 = (-i - \alpha)(-i - \beta)(-i - \gamma)(-i - \sigma)$
Multiplying these two equations, we get
 $(-2 + 3i)(-2 - 3i)$
 $= (1 + \alpha^{2})(1 + \beta^{2})(1 + \gamma^{2})(1 + \sigma^{2})$

121 **(b)** Let $z_1 = |z_1|(\cos \theta_1 + i \sin \theta_1)$. Now, $\left|\frac{z_1}{z_2}\right| = 1 \implies |z_1| = |z_2|$ Also. $\arg(z_1z_2) = 0 \Rightarrow \arg(z_1) + \arg(z_2) = 0$ $\Rightarrow \arg(z_2) = -\theta_1$ $\Rightarrow z_2 = |z_2|(\cos(-\theta_1) + i\sin(\theta_1))$ $= |z_1|(\cos\theta_1 - i\sin\theta_1) = \overline{z_1}$ $\Rightarrow \overline{z}_2 = \overline{(\overline{z}_1)} = z_1$ $\Rightarrow |z_2|^2 = z_1 z_2$ 122 (d) Let $z_1 = \sin x + i \cos 2x$; $z_2 = \cos x - i \sin 2x$. Then $\overline{z}_1 = z_2$ $\Rightarrow \sin x - i \cos 2x = \cos x - i \sin 2x$ \Rightarrow sin $x = \cos x$ and cos $2x = \sin 2x$ $\Rightarrow \tan x = 1$ and $\tan 2x = 1$ $\Rightarrow x = \frac{\pi}{4}$ and $x = \frac{\pi}{8}$ Which is not possible. Hence, there is no value of x123 (a) P(z)(-1, 0) O (1, 0)When |z - 1| < |z + 1| (or x > 0) |z| = |z - 1| $\Rightarrow x^2 + y^2 = (x - 1)^2 + y^2$ $\Rightarrow x = 1/2$ $\Rightarrow z + \overline{z} = 1$ When |z - 1| > |z + 1| (or x < 0) |z| = |z + 1| $\Rightarrow x^2 + y^2 = (x+1)^2 + y^2$ $\Rightarrow x = -1/2$ $\Rightarrow z + \overline{z} = -1$ 124 **(b)** Let z = x + iy. Then, $x = \lambda + 3$ and $y = -\sqrt{5 - \lambda^2}$ $\Rightarrow (x-3)^2 = \lambda^2 \quad (1)$ and $y^2 = 5 - \lambda^2$ (2)From (1) and (2), $(x-3)^2 = 5 - y^2 \Rightarrow (x-3)^2 + y^2 = 5$ Obviously it is a semicircle as y < 0. Hence part of the circle lies below the *x*-axis 125 (b) $|z_1| = 12$. Therefore, z_1 lies on a circle with centre (0, 0) and radius 12 units. As $|z_2 - 3 - 4i| = 5$, so z_2 lies on a circle with centre (3, 4) and radius 5 units

From the above figure it is clear that $|z_1 - z_2|$, i.e., distance between z_1 and z_2 will be minimum when they lie at A and B, respectively. i.e., on diagram as shown. Then $|z_1 - z_2| = AB = OA - AB$ OB = 12 - 2(5) = 2. As it is the minimum value, we must have $|z_1 - z_2| \ge 2$ 126 (a) Given, α , β are roots of the equation (x - a)(x - a)b+c=0Then, by factor theorem, $(x-a)(x-b) + c = (x-\alpha)(x-\beta)$ Replacing *x* by x - c. (x-c-a)(x-c-b)+c $= (x - c - \alpha)(x - c - \beta)$ $\Rightarrow (x - c - \alpha)(x - c - \beta) - c$ = [x - (c + a)][x - (c + b)]Then, again by factor theorem roots of the equation $(x - c - \alpha)(x - c - \beta) - c = 0$ are a + cand b + c127 (b) $\tan\theta_1 + \tan\theta_2 + \tan\theta_3 = (a+1)$ $\sum \tan \theta_1 \tan \theta_2 = (b-a)$ $\tan\theta_1\tan\theta_2\tan\theta_3=b$ $\therefore \tan(\theta_1 + \theta_2 + \theta_3) = \frac{\sum \tan \theta_1 - \prod \tan \theta_1}{1 - \sum \tan \theta_1 \tan \theta_2}$ $=\frac{a+1-b}{1-(b-a)}=1$ $\Rightarrow \theta_1 + \theta_2 + \theta_3 = \frac{\pi}{4}$ 128 (a) |z| = 1, let $\alpha = -1 + 3z$ $\Rightarrow \alpha + 1 = 3z$ $\Rightarrow |\alpha + 1| = 3|z| = 3$ Hence, ' α ' lies on a circle centred at -1 and radius equal to 3 129 (b) *a* - 1 -1 3 We have. $a - 1 \le -1$ and $a^2 + 2 \ge 3$ $a \leq 0$ and $a^2 \geq 1$ Hence, $a \leq -1$ 130 (b) $x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2$

 $= (x^{2} + x + 1)(x^{2} - x + 1)$ $x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4} \neq 0 \forall x$ Therefore, we can cancel this factor and we get $(a-1)(x^2 - x + 1) = (a+1)(x^2 - x + 1)$ or $x^2 - ax + 1 = 0$ It has real and distinct roots if $D = a^2 - 4 > 0$ 131 (a) Given equation is $x - \frac{2}{x - 1} = 1 - \frac{2}{x - 1}$ Clearly, $x \neq 1$ for the given equation to be defined if $x - 1 \neq 0$. We can cancel the common term -2/(x-1) on both sides to get x = 1, but it is not possible. So, given equation has no roots 132 (c) α,β are roots of the equation (x-a)(x-b) = $c.c \neq 0$ $\therefore (x-a)(x-b) - c = (x-\alpha)(x-\beta)$ $\Rightarrow (x - \alpha)(x - \beta) + c = (x - \alpha)(x - b)$ Hence, the roots of $(x - \alpha)(x - \beta) + c = 0$ are a and b 133 (c) Let $z = \cos x + i \sin x$, $x \in [0, 2\pi)$. Then, $1 = \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right|$ $=\frac{\left|z^2+\overline{z}^2\right|}{|z|^2}$ $= \left| \cos 2x + i \sin 2x + \cos 2x - i \sin 2x \right|$ $= 2 |\cos 2x|$ Now. $\cos 2x = 1/2$ $\Rightarrow x_1 = \frac{\pi}{6}, x_2 = \frac{5\pi}{6}, x_3 = \frac{7\pi}{6}, x_4 = \frac{11\pi}{6}$ $\cos 2x = -\frac{1}{2}$ $\Rightarrow x_5 = \frac{\pi}{3}, x_6 = \frac{2\pi}{3}, x_7 = \frac{4\pi}{3}, x_8 = \frac{5\pi}{3}$ 134 (c) Clearly, x = -1 satisfies the equation 135 **(b)** If $[m_r, (1/m_r)]$ satisfy the given equation $x^{2} + y^{2} + 2gx + 2fy + c = 0$, then $m_r^2 + \frac{1}{m_r^2} + 2gm_r + \frac{2f}{m_r} + c = 0$ $\Rightarrow m_r^4 + 2gm_r^3 + cm_r^2 + 2fm_r + 1 = 0$ Now, roots of given equation are m_1, m_2, m_3, m_4 . 14 The product of roots $m_1 m_2 m_3 m_4 = \frac{\text{contant term}}{\text{coefficient of } m_r^4} = \frac{1}{1} = 1$ 136 (c)

 $|k + z^{2}| = |z^{2}| - k = |z^{2}| + |k|$ \Rightarrow k, z^2 and 0 + i0 are collinear $\Rightarrow \arg(z^2) = \arg(k)$ $\Rightarrow 2 \arg(z) = \pi$ $\Rightarrow \arg(z) = \frac{\pi}{2}$ 137 (d) We are given that p(-a) = a and p(a) = -a[since when a polynomial f(x) is divided by x - f(x)*a*, remainder is f(a)]. Let the remainder, when p(x) is divided by $x^2 - a^2$, be Ax + B. Then $p(x) = Q(x)(x^2 - a^2) + Ax + B \quad (1)$ Where Q(x) is the quotient. Putting x = a and -ain (1), we get $p(a) = 0 + Aa + B \Rightarrow -a = Aa + B \quad (2)$ and $p(-a) = 0 - aA + B \Rightarrow a = -aA + B$ (3) Solving (2) and (3), we get B = 0 and A = -1Hence, the required remainder is -x138 (c)

kz/(k + 1) represents any point lying on the line joining origin and z

Given, $\left|\frac{kz}{k+1} + 2i\right| > \sqrt{2}$ Hence, kz/(k+1) should lie outside the circle $|z+2i| > \sqrt{2}$. So, *z* should lie in the shaded region

$$\therefore -\frac{\pi}{4} < \arg(z) < 0$$

Given expression is

$$x^{12} - x^9 + x^4 - x + 1 = f(x)$$

For $x < 0$, put $x = -y$, where $y > 0$. Thus, we get
 $f(x) = y^{12} + y^9 + y^4 + y + 1 > 0$ for $y > 0$
For $0 < x < 1$,
 $x^9 < x^4 \Rightarrow -x^9 + x^4 > 0$
Also, $1 - x > 0$ and $x^{12} > 0$
 $\Rightarrow x^{12} - x^9 + x^4 + 1 - x > 0 \Rightarrow f(x) > 0$
For $x > 1$,
 $f(x) = x(x^3 - 1)(x^8 + 1) + 1 > 0$
So $f(x) > 0$ for $-\infty < x < \infty$
40 **(b)**
 $|2z - 1| = |z - 2|$
 $\Rightarrow |2z - 1|^2 = |z - 2|^2$
 $\Rightarrow (2z - 1)(2\overline{z} - 1) = (z - 2)(\overline{z} - 2)$

$$\Rightarrow 4z\overline{z} - 2\overline{z} - 2z + 1 = z\overline{z} - 2\overline{z} - 2z + 4$$

$$\Rightarrow 3|z|^{2} = 3$$

$$\Rightarrow |z| = 1$$

Again,

$$|z_{1} + z_{2}| = |z_{1} - \alpha + z_{2} - \beta + \alpha + \beta|$$

$$\leq |z_{1} - \alpha| + |z_{2} - \beta| + |\alpha + \beta|$$

$$\leq \alpha + \beta + |\alpha + \beta|$$

$$= 2|\alpha + \beta| \quad [\because \alpha, \beta > 0]$$

$$\therefore \left|\frac{z_{1} + z_{2}}{\alpha + \beta}\right| < 2$$

$$\Rightarrow \left|\frac{z_{1} + z_{2}}{\alpha + \beta}\right| < 2|z|$$

141 **(b)**

The discriminant of the given equations are $D_1 = a^2 + 12b$, $D_2 = c^2 - 4b$ and $D_3 = d^2 - 8b$ $\therefore D_1 + D_2 + D_3 = a^2 + c^2 + d^2 \ge 0$ Hence, at least one of D_1 , D_2 , D_3 is non-negative. Therefore, the equation has at least two real roots

142 (a)

The equation on simplifying gives x(x-b)(x-c) + x(x+c)(x-a) + x(x-a)(x-b) - (x-a)(x-b)(x-c) = 0 (1) Let, f(x) = x(x-b)(x-c) + x(x-c)(x-a) + x(x-a)(x-b) - (x-a)(x-b) - (x-a)(x-b)(x-c)We can assume without loss of generality that a < b < c. Now, f(a) = a(a-b)(a-c) > 0 f(b) = b(b-c)(b-a) < 0 f(c) = c(c-a)(c-b) > 0So, one root of (1) lies in (*a*, *b*) and one root in

(*b*, *c*). Obviously the third root must also be real 143 **(b)**

Note that coefficient of x^2 is $(4p - p^2 - 5) < 0$. Therefore the graph is concave downward.

According to the question, 1 must lie between the roots. Hence,

$$f(1) > 0$$

$$\Rightarrow 4p - p^{2} - 5 - 2p + 1 + 3p > 0$$

$$\Rightarrow -p^{2} + 5p - 4 > 0$$

$$\Rightarrow p^{2} - 5p + 4 < 0$$

$$y = 1
$$\Rightarrow p \in [2, 3]$$$$

144 (a) $\alpha = \frac{z - \overline{w}}{k^2 + z\overline{w}} \Rightarrow \overline{\alpha} = \frac{\overline{z} - w}{k^2 + \overline{z}w}$ But $z\overline{z} = w\overline{w} = k^2$. Hence $\Rightarrow \overline{\alpha} = \frac{\frac{k^2}{z} - \frac{k^2}{\overline{w}}}{k^2 + \frac{k^2}{z} \frac{k^2}{\overline{w}}} = \frac{\overline{w} - z}{z\overline{w} + k^2} = -\alpha$ $\Rightarrow \alpha + \overline{\alpha} = 0$ $\Rightarrow \operatorname{Re}(\alpha) = 0$ 145 (d) Minimum value of $f(x) = (1 + b^2)x^2 + 2bx + 1$ is $m(b) = -\frac{(2b)^2 - 4(1+b^2)}{4(1+b^2)} = \frac{1}{1+b^2}$ Clearly, m(b) has range (0, 1]146 (b) Correct equation is $x^2 + 13x + q = 0$ (1) Incorrect equation is $x^2 + 17x + q = 0$ (2) Given that roots of Eq. (1) are -2 and -15. Therefore, product of the roots of incorrect equation is q = (-2)(-15) = 30. From (1), the correct equation is $x^2 + 13x + 30 = 0$ x = -3, -10147 (a) $8iz^3 + 12z^2 - 18z + 27i = 0$ $\Rightarrow 4iz^2(2z - 3i) - 9(2z - 3i) = 0$ $\Rightarrow (2z - 3i)(4iz^2 - 9) = 0$ $\Rightarrow z = \frac{3i}{2}$ and $z^2 = \frac{9}{4i}$ $\Rightarrow |z| = \frac{3}{2} \text{ and } |z^2| = \frac{9}{4}$ $\Rightarrow |z| = \frac{3}{2}$ 148 (b) P(z)(2*i*) $CA = CB = 2\sqrt{2}, OC = 2$ $\Rightarrow OA = OB = 2$ $\Rightarrow A \equiv 2 + 0i, B = -2 + 0i$ Clearly, $\angle BCA = \pi/2$ $\Rightarrow \angle BPA = \pi/4$ $\Rightarrow \arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$ 149 (d)

We have. $e^{\frac{2\pi ri}{\rho}} = e^{\frac{2\pi r}{q}}$ $2\pi m$ $r = 0, 1, \dots, p - 1$ $m = 0, 1, \dots, q - 1$ This is possible iff r = m = 0 but for r = m = 0we get I which is not an imaginary number 150 (a) Given, $z_k = 1 + a + a^2 + \dots + a^{k-1} = \frac{1 - a^k}{1 - a^k}$ $\Rightarrow z_k - \frac{1}{1-a} = -\frac{a^k}{1-a}$ $\Rightarrow \left| z_k - \frac{1}{1-a} \right| = \frac{|a|^k}{|1-a|} < \frac{1}{|1-a|} \quad [\because |a| < 1]$ Hence, z_k lies within the circle $\therefore \left| z - \frac{1}{1 - a} \right| = \frac{1}{|1 - a|}$ 151 (b) $(31 + 8\sqrt{15})^{x^2 - 3} + 1 = (32 + 8\sqrt{15})^{x^2 - 3}$ $\Rightarrow (31 + 8\sqrt{15})^{x^2 - 3} + 1^{x^2 - 3} = (32 + 8\sqrt{15})^{x^2 - 3}$ $\Rightarrow x^2 - 3 = 1 \text{ or } x = \pm 2 [\because a^n + b^n = (a + b)^n]$ 152 (d) We know that if $f(\alpha)$ and $f(\beta)$ are of opposite signs then there must be a value γ between α and β such that $f(\gamma) = 0$. Hence, a, b, c are real numbers and $a \neq 0$. As α is a root of $a^2x^2 + bx + bx$ c = 0, so $a^2\alpha^2 + b\alpha + c = 0 \quad (1)$ Also, β is a root of $a^2x^2 - bx - c = 0$, so $a^2\beta^2 - b\beta - c = 0 \quad (2)$ Now, let $f(x) = a^2x^2 + 2bx + 2c$. Then, $f(\alpha) = a^2 \alpha^2 + 2b \alpha + 2c$ $= a^2 \alpha^2 + 2(b\alpha + c)$ $= a^2 \alpha^2 + 2(-a^2 \alpha^2)$ [Using (1)] $= -a^2 \alpha^2 < 0$ and $f(\beta) = a^2 \beta^2 + 2b \beta + 2c$ $= a^2 \beta^2 + 2(b \beta + c)$ $= a^2 \beta^2 + 2(a^2 \beta^2)$ [Using (2)] $=3a^2\beta^2>0$ Since $f(\alpha)$ and $f(\beta)$ are of opposite signs and γ is a root of equation f(x) = 0, therefore, γ must lie between α and β . Thus, $\alpha < \gamma < \beta$ 153 (a) α, β are roots of $ax^2 + bx + c = 0$. Hence, $\alpha + \beta = -\frac{b}{a} \quad (1)$ $\alpha\beta = \frac{c}{a}$ (2) α^2 , β^2 are roots of $a^2x^2 + b^2x + c^2 = 0$. Hence, $\alpha^2 + \beta^2 = -\frac{b^2}{a^2} \quad (3)$

 $\alpha^2 \beta^2 = \frac{c^2}{a^2} \quad (4)$ Now, from (3), $(\alpha + \beta)^2 - 2\alpha\beta = -\frac{b^2}{a^2}$ $\Rightarrow \left(\frac{-b}{a}\right)^2 - 2\frac{c}{a} = \frac{-b^2}{a^2}$ $\Rightarrow 2\frac{b^2}{a^2} = \frac{2c}{a}$ $\Rightarrow b^2 = ac \Rightarrow a, b, c \text{ are in G.P.}$ 154 (c) The given equation is $2^{2x} + (a-1)2^{x+1} + a = 0$ or $t^{2} + 2(a - 1)t + a = 0$, where $2^{x} = t$ Now, t = 1 should lie between the roots of this equation $\therefore 1 + 2(a-1) + a < 0 \Rightarrow a < \frac{1}{3}$ 155 (a) Since, $z\bar{z}(z^2 + \bar{z}^2) = 350$ $2(x^2 + y^2)(x^2 - y^2) = 350$ ⇒ \Rightarrow $(x^2 + y^2)(x^2 - y^2) = 175$ Since, $x, y \in I$, the only possible case which gives integral solution, is $x^2 + y^2 = 25$...(i) $x^2 - y^2 = 7$...(ii) From Eqs. (i) and (ii), we get $x^2 = 16$, $y^2 = 9$ $x = \pm 4, y = \pm 3$ ⇒ \therefore Area of rectangle= $8 \times 6 = 48$ 156 (d) Here, f(x) = (2x - a)(2x - c) + (2x - b). So, $f\left(\frac{a}{2}\right) = a - b, f\left(\frac{c}{2}\right) = c - b$ Now. $f\left(\frac{a}{2}\right)f\left(\frac{c}{2}\right) = (a-b)(c-b) < 0(a > b > c)$ Hence, exactly one of the roots lies between c/2and a/2157 (c) $\left|\sum_{r=1}^{n} z_{r}\right| \leq \sum_{r=1}^{n} |z_{r}| \leq \sum_{r=1}^{n} |z_{r}-r| + \sum_{r=1}^{n} r \leq 2\sum_{r=1}^{n} r$ 158 (b) $(ax^{2} + c)y + (a'x^{2} + c') = 0$ or $x^2(ay + a') + (cy + c') = 0$ It *x* is rational, then the discriminant of the above equation must be a perfect square. Hence, 0 - 4(ay + a')(cy + c') must be a perfect square $\Rightarrow -acy^2 - (ac' + a'c)y - a'c'$ must be a perfect square

 $\Rightarrow (ac' + a'c)^2 - 4ac a'c' = 0 \quad [\because D = 0]$ $\Rightarrow (ac' - a'c)^2 = 0$ $\Rightarrow ac' = a'c$ $\Rightarrow \frac{a}{a'} = \frac{c}{c'}$ 159 (d) We have, $|z| = |\omega|$ and $\arg z = \pi - \arg \omega$ Let $\omega = re^{i\theta}$. Then $z = r e^{i(\pi - \theta)}$ $\Rightarrow z = re^{i\pi}e^{-i\theta} (re^{-i\theta})(\cos\pi + i\sin\pi)$ $=\overline{\omega}(-1)=-\overline{\omega}$ 160 **(b)** Let $f(x) = ax^2 + bx + c$ be a quadratic expression such that f(x) > 0 for all $x \in R$. Then, a > 0 and $b^2 - 4ac < 0$. Now, g(x) = f(x) +f'(x) + f''(x) $\Rightarrow g(x) = ax^2 + x(b + 2a) + (b + 2a + c)$ Discriminant of g(x) is $D = (b + 2a)^2 - 4a(b + 2a + c)$ $= b^2 - 4a^2 - 4ac$ $= (b^2 - 4ac) - 4a^2$ $< 0 (:: b^2 - 4ac < 0)$ Therefore, g(x) > 0 for all $x \in R$ 161 (a) $a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 3$ $\Rightarrow |3| = |a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n|$ $\Rightarrow 3 \le |a_0||z|^n + |a_1||z|^{n-1} + \dots + |a_{n-1}||z|$ $+ |a_n|$ $\Rightarrow 3 < 2(|z|^{n} + |z|^{n-1} + \dots + |z| + 1)$ $\Rightarrow 1 + |z| + |z|^2 + \dots + |z|^n > \frac{3}{2}$ If $|z| \ge 1$, the inequality is clearly satisfied. For |z| < 1, we must have, $\frac{1-|z|^{n+1}}{1-|z|} > \frac{3}{2}$ $\Rightarrow 2 - 2|z|^{n+1} > 3 - 3|z|$ $\Rightarrow 2|z|^{n+1} < 3|z| - 1$ $\Rightarrow 3|z| - 1 > 0$ $\Rightarrow |z| > \frac{1}{2}$ 162 (c) $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ $\Rightarrow \arg\left(\frac{z_1 - z_3}{z_2 - z_2}\right) = \arg\left(\frac{1 - i\sqrt{3}}{2}\right)$ Hence, the angle between $z_1 - z_3$ and $z_2 - z_3$ is 60°. Also, $\left|\frac{z_1 - z_3}{z_2 - z_2}\right| = \left|\frac{1 - i\sqrt{3}}{2}\right|$ $\Rightarrow \left| \frac{z_1 - z_3}{z_2 - z_2} \right| = 1$

 $\Rightarrow |z_1 - z_2| = |z_2 - z_3|$ Hence, the triangle with vertices z_1 , z_2 and z_3 is isosceles with vertices angle 60°. Hence rest of the two angles should also be 60° each. Therefore, the required triangle is an equilateral triangle 163 (d) Let z = x + iy, so that $\overline{z} = x - iy$ $\therefore z^2 + \overline{z} = 0$ $\Rightarrow (x^2 - y^2 + x) + i(2xy - y) = 0$ Equating real and imaginary parts, we get $x^2 - y^2 + x = 0$ and $2xy - y = 0 \Rightarrow y = 0$ or $x = \frac{1}{2}$ If y = 0, then (1) gives $x^2 + x = 0 \Rightarrow x = 0$ or x = -1If x = 1/2, then from (1), $y^2 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \Rightarrow y = \pm \frac{\sqrt{3}}{2}$ Hence, there are four solutions in all 164 **(b)** Let. $S = 1 + 2a + 3a^2 + \dots + n\alpha^{n-1}$ $\Rightarrow \alpha S = \alpha + 2\alpha^2 + 3\alpha^3 + \dots + (n-1)\alpha^{n-1}$ $+ na^n$ On subtracting, we get $S(1 - \alpha) = 1 + [\alpha + \alpha^2 + \alpha^{n-1}] - na^n$ $=1+\frac{\alpha(1-\alpha^{n-1})}{1-\alpha}-n\alpha^n$ $\Rightarrow S = \frac{1}{1-\alpha} + \frac{\alpha - \alpha^n}{(1-\alpha)^2} - \frac{n\alpha^n}{1-\alpha} \quad [\because \alpha^n = 1]$ $=\frac{1}{1-\alpha}+\frac{\alpha-1}{(1-\alpha)^2}-\frac{n}{1-\alpha}=-\frac{n}{1-\alpha}$ 165 (c) Since α , β are the roots of the equation $2x^2 - 35x + 2 = 0$, therefore, $2\alpha^2 - 35\alpha = -2 \text{ or } 2\alpha - 35 = \frac{-2}{\alpha}$ and $2\beta^2 - 35\beta = -2$ or $2\beta - 35 = \frac{-2}{\beta}$ Now. $(2\alpha - 35)^3 (2\beta - 35)^3 = \left(\frac{-2}{\alpha}\right)^3 \left(\frac{-2}{\beta}\right)^3$ $=\frac{8\times8}{\alpha^{3}\beta^{3}}=\frac{64}{1}=64$ (:: $\alpha\beta=1$) 166 (a) A(z)0 B(z) $|z - \overline{z}|$ is the length AB while $|z|(\arg z - \arg \overline{z})$ is arc length AB

 $\therefore |z - \overline{z}| \le |z|(\arg z - \arg \overline{z})$

167 (c)

$$D > 0 \Rightarrow (a - 3)^{2} + 4(a + 2) > 0$$

$$\Rightarrow a^{2} - 6a + 9 + 4a + 8 > 0$$

$$\Rightarrow a^{2} - 2a + 17 > 0$$

$$\Rightarrow a \in R$$

$$\therefore \frac{a^{2} + 1}{a^{2} + 2} = 1 - \frac{1}{a^{2} + 2} \ge \frac{1}{2}$$
168 (c)

$$A_{n+1} = a^{n+1} + \beta^{n+1}$$

$$= a^{n+1} + a^{n}\beta + \beta^{n}(\beta + a) - a\beta(a^{n-1} + \beta^{n-1})$$

$$= a^{n}(a + \beta) + \beta^{n}(\beta + a) - a\beta(a^{n-1} + \beta^{n-1})$$

$$= aA_{n} - bA_{n-1}$$
169 (d)
Let $f(x) = x^{6} + 4x^{5} + 3x^{4} + 2x^{3} + x + 1$. Hence,
 $f(\omega) = \omega^{6} + 4\omega^{5} + 3\omega^{4} + 2\omega^{3} + \omega + 1$

$$= 1 + 4\omega^{2} + 3\omega + 2 + \omega + 1$$

$$= 4(\omega^{2} + \omega + 1)$$

$$= 0$$
Hence, $f(x)$ is divisible by $x - \omega$. Then $f(x)$ is
also divisible by $x - \omega^{2}$ (as complex roots occur
in conjugate pairs)
 $f(-\omega) = (-\omega)^{6} + 4(-\omega)^{5} + 3(-\omega)^{4} + 2(-\omega)^{3} + (-\omega) + 1$

$$= \omega^{6} - 4\omega^{5} + 3\omega^{4} - 2\omega^{3} - \omega + 1$$

$$= 1 - 4\omega^{2} + 3\omega - 2 - \omega + 1$$

$$\neq 0$$
170 (c)
Since, $(\alpha + \beta), (\alpha^{2} + \beta^{2})$ and $(\alpha^{3} + \beta^{3})$ are in GP.
 $(\alpha^{2} + \beta^{2})^{2} = (\alpha + \beta)(\alpha^{3} + \beta^{3})$
 $\Rightarrow a^{4} + \beta^{4} + 2a^{2}\beta^{2} = a^{4} + \beta^{4} + a\beta^{3} + \betaa^{3}$
 $\Rightarrow a\beta(\alpha^{2} + \beta^{2} - 2\alpha\beta) = 0$
 $\Rightarrow a\beta(\alpha - \beta)^{2} = 0$
 $\Rightarrow a\beta(\alpha - \beta)^{2} = 0$
 $\Rightarrow a\beta(\alpha - \beta)^{2} = 0$
 $\Rightarrow c\Delta = 0$
171 (a)
Assuming arg $z_{1} = \theta$ and arg $z_{2} = \theta + \alpha$,
 $\frac{az_{1}}{bz_{2}} + \frac{bz_{2}}{b|z_{2}|e^{i(\theta + \alpha)}} + \frac{b|z_{2}|e^{i(\theta + \alpha)}}{a|z_{1}|e^{i\theta}}$
 $= e^{-i\alpha} + e^{i\alpha} = 2\cos \alpha$
Hence, the point lies on the line segment [-2, 2] of the real axis

172 (a) Let z = x + iy. Then, $\begin{aligned} |z - 3 - i| &= |z - 9 - i| \\ \Rightarrow \sqrt{(x - 3)^2 + (y - 1)^2} &= \sqrt{(x - 9)^2 + (y - 1)^2} \end{aligned}$ $\Rightarrow x = 6$ |z - 3 + 3i| = 3 $\Rightarrow \sqrt{(x - 3)^2 + (y + 3)^2} = 3$ For x = 6, y = -3 $\therefore z = 6 - 3i$ 173 **(b)** $2\left|z - \frac{1}{2}\right| = |z - 1|$ |z-1| $\therefore \quad \overline{\left|z-\frac{1}{2}\right|} = 2$ So, locus of z is a circle 174 (a) $xy = 2(x + y) \Rightarrow y(x - 2) = 2x$ $\therefore y = \frac{2x}{x-2} = 2 + \frac{4}{x-2} \Rightarrow x$ $= 3, 4 (x \neq 6 \text{ as } x < y)$ By trial, x = 3, 4, 6. Then y = 6, 4, 3. But $x \le y$. Therefore, x = 3, 4 and y = 6, 4 are two solutions 175 (a) If both the roots of a quadratic equation $ax^2 + bx + c = 0$ are less than k, then af(k) > 0, -b/2a < k and $D \ge 0$. Now, $f(x) = x^2 - 2ax + a^2 + a - 3$ $\Rightarrow f(3) > 0, a < 3, -4a + 12 \ge 0$ $\Rightarrow a^2 - 5a + 6 > 0, a < 3, -4a + 12 \ge 0$ $\Rightarrow a < 2 \text{ or } a > 3, a < 3, a \le 3$ $\Rightarrow a < 2$ 176 (a) Suppose $a \neq 0$. We rewrite f(x) as follows: $f(x) = a \left\{ x^2 + \frac{b}{a}x + \frac{c}{a} \right\}$ $= a \left\{ \left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right\}$ $f\left(-\frac{b}{2a}+i\right) = a\left\{\left(-\frac{b}{2a}+i+\frac{b}{2a}\right)^2 + \frac{4ac-b^2}{4a^2}\right\}$ $=a\left\{-1+\frac{4ac-b^2}{4a^2}\right\}$, which is real number. This is against the hypothesis. Therefore, a = 0177 (a) $\frac{1+iz}{1-iz} = \frac{1+i(b+ic)/(1+a)}{1-i(b+ic)/(1+a)}$

$$= \frac{1+a-c+ib}{1+a+c-ib}$$

= $\frac{(1+a-c+ib)(1+a+c+ib)}{(1+a+c)^2+b^2}$
= $\frac{1+2a+a^2-b^2-c^2+2ib+2iab}{1+a^2+c^2+b^2+2ac+2(a+c)}$
= $\frac{2a+2a^2+2ib+2iab}{2+2ac+2(a+c)}$ (:: $a^2+b^2+c^2=1$)
= $\frac{a+a^2+ib+iab}{1+ac+(a+c)}$
= $\frac{a(a+1)+ib(a+1)}{(a+1)(c+1)}$
= $\frac{a+ib}{c+1}$

Since R.H.S. is an even integer. So L.H.S. is also an even integer. So, either both *x* and *y* are even integers, or both of them are odd integers. Now, $x^4 - y^4 = (x - y)(x + y)(x^2 + y^2)$ $\Rightarrow x - y, x + y, x^2 + y^2$ must be an even integer Therefore, $(x - y)(x + y)(x^2 + y^2)$ must be divisible by 8. But R.H.S. is not divisible by 8. Hence, the given equation has no solution

179 **(c)**

Clearly, x = 2 is a root of the equation and imaginary roots always occur in pairs. Therefore, the other root is also real

180 **(b)**

 $\begin{array}{l} (1+\omega)^7 = A + B\omega \\ \Rightarrow (-\omega^2)^7 = A + B\omega \quad (\because 1+\omega+\omega^2=0) \end{array} \end{array}$ $\Rightarrow -\omega^{14} = A + B\omega$ $\Rightarrow -\omega^2 = A + B\omega \quad (\because \omega^3 = 1)$ $\Rightarrow 1 + \omega = A + B\omega$ $\Rightarrow A = 1, B = 1$ 181 (d) $10z^2 - 3iz - k = 0$ $\Rightarrow z = \frac{3i \pm \sqrt{-9 + 40k}}{20}$ Now, D = -9 + 40k. If k = 1, then D = 31. So (a) is false If *k* is a negative real number, then *D* is a negative real number. So (d) is true If k = i, then D = -9 + 40i = 16 + 40i - 25 = $(4 + 5i)^2$, and the roots are (1/5) + (2/5)i. So (c) is false If k = 0 (which is a complex number), then the roots are 0 and (3/10)i. So (b) is false 182 (b) Let, $\sin\frac{\pi}{8} + i\cos\frac{\pi}{8} = z$

$$\Rightarrow \left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right]^{8}$$

$$= \left(\frac{1+z}{1+\frac{1}{2}}\right)^{8}$$

$$= z^{8}$$

$$= \left(\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}\right)^{8} + i\sin\left(\frac{\pi}{2}-\frac{\pi}{8}\right)\right)^{8}$$

$$= \left(\cos\left(\frac{\pi}{2}-\frac{\pi}{8}\right)+i\sin\left(\frac{\pi}{2}-\frac{\pi}{8}\right)\right)^{8}$$

$$= \left(\cos\frac{3\pi}{8}+i\sin\frac{3\pi}{8}\right)^{8}$$

$$= \cos 3\pi = -1$$
183 (c)
 $x^{2} - (a-3)x + a = 0$
 $\Rightarrow D = (a-3)^{2} - 4a$
 $= a^{2} - 10a + 9$
 $= (a-1)(a-9)$
Case I:
Both the roots are greater than 2
 $D \ge 0, f(2) \ge 0, -\frac{B}{2A} \ge 2$
 $\Rightarrow a \in (-\infty, 1] \cup [9, \infty); a < 10; a > 7$
 $\Rightarrow a \in [9, 10)$ (1)
Case II:
One root is greater than 2 and the other root is
less than or equal to 2. Hence,
 $f(2) \le 0$
 $\Rightarrow 4 - (a-3)2 + a \le 0$
 $\Rightarrow a \ge 10$ (2)
From (1) and (2),
 $a \in [9, 10) \cup [10, \infty) \Rightarrow a \in [9, \infty)$
184 (c)
Here a, b, c are positive. So,
 $|x| = -b + \sqrt{b^{2} + ac}$
Hence, x has two real values, neglecting
 $|x| = -b - \sqrt{b^{2} + ac}, as |x| \ge 0$
185 (c)
 $F = 4 + 5(\omega)^{334} + 3(\omega)^{365}$
 $= 4 + 5\omega + 3\omega^{2}$
 $= 1 + 2\omega + 3(1 + \omega + \omega^{2})$
 $= 1 + (-1 + i\sqrt{3})$
 $= i\sqrt{3}$
186 (d)
 $\frac{1+i}{1-i} = \frac{(1+i)^{2}}{(1-i)(1+i)} = \frac{1-1+2i}{2} = i$
Now $i^{n} = 1$. Hence, the smallest positive integral
value of n should be 4

187 (a)

$$u = x^{2} + 4y^{2} + 9z^{2} - 6yz - 2zx - 2xy$$

$$= \frac{1}{2} [2x^{2} + 8y^{2} + 18z^{2} - 12yz - 6zx - 4xy]$$

$$= \frac{1}{2} [(x^{2} - 4xy + 4y^{2}) + (4y^{2} + 9z^{2} - 12yz) + (x^{2} + 9z^{2} - 6zx)]$$

$$= \frac{1}{2} [(x - 2y)^{2} + (2y - 3z)^{2} + (3z - x)^{2}] \ge 0$$

Hence, u is always non-negative

188 (c)

Let roots of the equation $ax^2 + 2bx + c = 0$ be α and β and roots of the equation $px^2 + 2qx + r = 0$ be γ and δ . Given,

$$\frac{\alpha}{\beta} = \frac{\gamma}{\delta} \Rightarrow \frac{\alpha}{\gamma} = \frac{\beta}{\delta}$$
$$\Rightarrow \frac{\alpha + \beta}{\gamma + \delta} = \sqrt{\frac{\alpha\beta}{\gamma\delta}}$$
$$\Rightarrow \frac{-\frac{2b}{a}}{-\frac{2q}{p}} = \sqrt{\frac{\frac{c}{a}}{\frac{r}{p}}}$$
$$\Rightarrow \frac{b^2}{ac} = \frac{q^2}{pr}$$

189 **(a)**

Let α and α^2 be the roots of $x^2 - x - k = 0$. Then, $\alpha + \alpha^2 = 1$ and $\alpha^3 = -k$ $\Rightarrow (-k)^{1/3} + (-k)^{2/3} = 1$ $\Rightarrow -k^{1/3} + k^{2/3} = 1$ $\Rightarrow (k^{2/3} - k^{1/3})^3 = 1$ $\Rightarrow k^2 - k - 3k(k^{2/3} - k^{1/3}) = 1$ $\Rightarrow k^2 - k - 3k(1) = 1$ $\Rightarrow k^2 - 4k - 1 = 0$ $\Rightarrow k = 2 \pm \sqrt{5}$

190 **(d)**

The equation $z^n = (z + 1)^n$ will have exactly n - 1 roots. We have,

$$\left(\frac{z+1}{z}\right)^n = 1$$
$$\Rightarrow \left|\frac{z+1}{z}\right| = 1$$
$$\Rightarrow |z+1| = |z|$$

Therefore, 'z' lies on the right bisector of the segment connecting the points (0, 0) and (-1, 0). Thus Re(z) = -1/2. Hence, roots are collinear and will have their real parts equal to -1/2. Hence, roots are collinear and will have their real parts equal to -1/2Hence sum of the real parts of roots is (-1/2)(n-1)

- 191 **(a)**
 - We have, |z - 2 + 2i| = 1

 $\Rightarrow |z - (2 - 2i)| = 1$

Hence, *z* lies on a circle having centre at (2, -2) and radius 1. It is evident from the figure that the required complex number *z* is given by the point *P*. We find that *OP* makes an angle $\pi/4$ with *OX* and

$$OP = OC - CP = \sqrt{2^2 + 2^2} - 1 = 2\sqrt{2} - 1$$

So, coordinates of *P* are $[2\sqrt{2} - 1) \cos(\pi/4)]$
 $-(2\sqrt{2} - 1) \sin(\pi/4)$, i. e., $((\sqrt{2} - 1/\sqrt{2}), -(2 - 1/\sqrt{2}))$

$$1/\sqrt{2}$$
)). Hence

$$z = \left(2 - \frac{1}{\sqrt{2}}\right) + \left\{-\left(2 - \frac{1}{\sqrt{2}}\right)\right\}i = \left(2 - \frac{1}{\sqrt{2}}\right)(1 - i)$$

192 **(b)**

Given
$$x - 2 = 2^{2/3} + 2^{1/3}$$

Cubing both sides, we get
 $(x - 2)^3 = 2^2 + 2 + 3 \times 2^{2/3} \times 2^{1/3}(x - 2)$
 $= 6 + 6(x - 2)$
or $x^3 - 6x^2 + 12x - 8 = -6 + 6x$
 $\therefore x^3 - 6x^2 + 6x = 2$
193 (c)
 $\frac{(1 + i)^5(1 + \sqrt{3}i)^2}{-2i(-\sqrt{3} + i)}$
 $= \frac{(\sqrt{2})^5(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}})^5 2^2(\frac{1}{2} + \frac{\sqrt{3}}{2}i)^2}{2i2(\frac{\sqrt{3}}{2} - \frac{i}{2})}$
 $\Rightarrow \text{Argument} = \frac{5\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{2} + \frac{\pi}{6} = \frac{19\pi}{12}$
Therefore, the principle argument is $-5\pi/12$

198 (c) $S_1 = \sum z_1 = -3a, S_2 = \sum z_1 z_2 = 3b$ Since the triangle is equilateral, we have $\sum z_1^2 = \sum z_1 z_2$ $\Rightarrow \left(\sum z_1\right)^2 - 2\sum z_1z_2 = \sum z_1z_2$ $\Rightarrow \left(\sum z_1\right)^2 = 3\sum z_1 z_2$ $\Rightarrow (-3a)^2 = 3(3b)$ $\Rightarrow 9a^2 = 9b$ $\Rightarrow a^2 = b$ 199 (c) Discriminant $D = (2m - 1)^2 - 4(m - 2)m =$ 4m + 1 must be perfect square. Hence, $4m + 1 = k^2$, say for some $k \in I$ $\Rightarrow m = \frac{(k-1)(k+1)}{4}$ Clearly, *k* must be odd. Let k = 2n + 1 $\therefore m = \frac{2n(2n+2)}{4} = n(n+1), n \in I$ 200 (a) $x + iy = 1 - t + i\sqrt{t^2 + t + 2}$ $\Rightarrow x = 1 - t, y = \sqrt{t^2 + t + 2}$ Eliminating *t*, $y^2 = t^2 + t + 2 = (1 - x)^2 + 1 - x + 2$ $=\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4}$ $\Rightarrow y^2 - \left(x - \frac{3}{2}\right)^2 = \frac{7}{4}$, which is a hyperbola 201 (d) $(z^{n}-1) = (z-1)(z-z_{1})(z-z_{2})\dots(z-z_{n-1})$ (1)Differentiating w.r.t. x, and then dividing by (1), we have $\frac{nz^{n-1}}{z^n-1} = \frac{1}{z-1} + \frac{1}{z-z_1} + \frac{1}{z-z_2} + \dots + \frac{1}{z-z_{n-1}}$ Putting z = 3, we get $\frac{n3^{n-1}}{3^n-1} = \frac{1}{2} + \frac{1}{3-z_1} + \frac{1}{3-z_2} + \dots + \frac{1}{3-z_{n-1}}$ $\Rightarrow \frac{1}{3-z_1} + \frac{1}{3-z_2} + \dots + \frac{1}{3-z_{n-1}} = \frac{n3^{n-1}}{3^n-1} - \frac{1}{2}$ 202 (c) $z = \left(1 + i\sqrt{3}\right)^{100} = 2^{100} \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{100}$ $= 2^{100} \left(\cos \frac{100\pi}{3} + i \sin \frac{100\pi}{3} \right)$ $=2^{100}\left(-\cos\frac{\pi}{3}-i\sin\frac{\pi}{3}\right)$ $=2^{100}\left(-\frac{1}{2}-\frac{i\sqrt{3}}{2}\right)$

$$\Rightarrow \frac{\operatorname{Re}(z)}{\operatorname{Im}(z)} = \frac{-1/2}{-\sqrt{3}/2} = \frac{1}{\sqrt{3}}$$
203 (a)
 $x^{2} + ax + b + 1 = 0$ has positive integral roots a
and β . Hence,
 $(a + \beta) = -a$ and $a\beta = b + 1$
 $\Rightarrow (a + \beta)^{2} + (a\beta - 1)^{2} = a^{2} + b^{2}$
 $\Rightarrow a^{2} + b^{2} = (a^{2} + 1)(\beta^{2} + 1)$
 $\Rightarrow a^{2} + b^{2}$ can be equal to 50 (since other options
have prime numbers)
204 (a)
 $x_{1}(x - x_{2})^{2} + x_{2}(x - x_{1})^{2} = 0$
 $\Rightarrow x^{2}(x_{1} + x_{2}) - 4x x_{1}x_{2}(x_{1} + x_{2})^{2} > 0 (\because x_{1}x_{2} - (0))$
The product of roots is $x_{1}x_{2} < 0$. Thus, the roots
are real and of opposite signs
205 (b)
The given equation is
 $(x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b)$
 $= 0$
 $\Rightarrow 3x^{2} - 2(a + b + c)x + (ab + bc + ca) = 0$
 $D = 4(a + b + c)^{2} - 12(ab + bc + ca)$
 $= 4[a^{2} + b^{2} + c^{2} - ab - bc - ca]$
 $= 2[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] \ge 0, \forall a, b, c$
Therefore, the roots of the given equation are
always real
206 (c)
Given that
 $a^{2} + b^{2} + c^{2} = 1$ (1)
We know that
 $(a + b + c)^{2} \ge 0$
 $\Rightarrow a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca \ge 0$
 $\Rightarrow 2(ab + bc + ca) \ge -1$ [Using (1)]
 $\Rightarrow ab + bc + ca \ge -1/2$ (2)
Also, we know that
 $\frac{1}{2}[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] \ge 0$
 $\Rightarrow a^{2} + b^{2} + c^{2} - ab bc - ca \ge 0$
 $\Rightarrow ab + bc + ca \le 1$ [Using (1)] (3)
Combining (2) and (3), we get
 $-1/2 \le ab + bc + ca \le 1$
 $\Rightarrow ab + bc + ca \le [-1/2, 1]$
207 (a)
We have,
 $\operatorname{arg}(\frac{x_{1}}{x_{2}}) = \pi$
 $\Rightarrow \operatorname{arg}(x_{1}) - \operatorname{arg}(x_{2}) = \pi$
 $\Rightarrow \operatorname{arg}(x_{1}) - \operatorname{arg}(x_{2}) = \pi$

Let $\arg(z_2) = \theta$. Then $\arg(z_1) = \pi + \theta$

 $\therefore z_1 = |z_1| \cos(\pi + \theta) + i \sin(\pi + \theta)$

 $= |z_1|(-\cos\theta - i\sin\theta)$

and $z_2 = |z_2|(\cos \theta + i \sin \theta)$ $= |z_1|(\cos\theta + i\sin\theta) \quad (\because |z_1| = |z_2|)$ $= -z_1$ $\Rightarrow z_1 + z_2 = 0$ 208 **(b)** Let D_1 and D_2 be discriminants of $x^2 + b_1 x + c_1 =$ 0 and $x^2 + b_2 x + c_2 = 0$, respectively. Then, $D_1 + D_2 = b_1^2 - 4c_1 + b_2^2 - 4c_2$ $= (b_1^2 + b_2^2) - 4(c_1 - c_2)$ $= b_1^2 + b_2^2 - 2b_1b_2 \quad [\because b_1b_2 = 2(c_1 + c_2)]$ $=(b_1-b_2)^2\geq 0$ $\Rightarrow D_1 \ge 0 \text{ or } D_2 \ge 0 \text{ and } D_1 \text{ and } D_2 \text{ both are}$ positive Hence, at least one of the equations has real roots 209 (c) Let $a = \cos \alpha \sin \alpha$ $b = \cos \beta + i \sin \beta$ $c = \cos \gamma + i \sin \gamma$ Then, $a + 2b + 3c = (\cos \alpha + 2\cos \beta + 3\cos \gamma)$ $+i(\sin \alpha + 2\sin \beta + 3\sin \gamma) = 0$ $\Rightarrow a^3 + 8b^3 + 27c^3 = 18 abc$ $\Rightarrow \cos 3\alpha + 8\cos 3\beta + 27\cos 3\gamma$ $= 18 \sin(\alpha + \beta + \gamma)$ and $\sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma = 18 \sin(\alpha + \beta)$ $\beta + \gamma$) 210 **(b)** $|\omega| = 1$ $\Rightarrow \left|\frac{1-iz}{z-i}\right| = 1$ $\Rightarrow |1 - iz| = |z - i|$ $\Rightarrow |-i||z+i| = |z-i|$ $\Rightarrow |z+i| = |z-i|$ Hence, *z* is equidistant from (0, -1) and (0, 1). So, *z* lies on perpendicular bisector of (0, -1) and (0, -1)1) i.e., *x*-axis, and y = 0. Therefore, *z* lies on real axis 211 (b) A(z)

By the given conditions, the area of the triangle *ABC* is given by $(1/2)|z_1 - z_2|r$

212 **(b)**

If vertices of a parallelogram are z_1, z_2, z_3, z_4 , then as diagonals bisect each other as given, $z_1 + z_3 = z_2 + z_4$

$$\frac{3}{2} = \frac{2}{2}$$

 $\Rightarrow z_1 + z_3 = z_2 + z_4$ 213 (a) The given equation is $\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$ Squaring both sides, we get $x + 1 + x - 1 - 2\sqrt{x^2 - 1} = 4x - 1$ $\Rightarrow -2\sqrt{x^2 - 1} = 2x - 1$ Again squaring both sides, we get $\Rightarrow 4(x^2 - 1) = 4x^2 - 4x + 1$ $\Rightarrow -4x = -5$ $\Rightarrow x = 5/4$ Substituting this value of *x* in given equation, we get $\sqrt{\frac{5}{4} + 1} - \sqrt{\frac{5}{4} - 1} = \sqrt{4 \times \frac{5}{4} - 1}$ $\Rightarrow \frac{3}{2} - \frac{1}{2} = 2$ (not satisfied) Therefore, 5/4 is not a solution of given equation. Hence, the given equation has no solution 214 (b) $\frac{\left(b^2 - 4ac\right)^2}{16a^2} < \frac{4}{1 + 4a^2} \quad (1)$ Now. $\max(ax^2 + bx + c) = -\frac{b^2 - 4ac}{4a}$ Also, $\frac{-2}{\sqrt{1+4a^2}} < -\frac{b^2 - 4ac}{4a} < \frac{2}{\sqrt{1+4a^2}}$ [From (1)] So, maximum value is always less than 2 (when $a \rightarrow 0$ 215 (c) As $(\lambda - 1)x^2 + 2 = \lambda x + 3$ has only one solution, so D = 0 $\Rightarrow \lambda^2 - 4(\lambda + 1)(-1) = 0$ $\Rightarrow \lambda^2 + 4\lambda + 4 = 0$ $\Rightarrow (\lambda + 2)^2 = 0$ $\therefore \lambda = -2$ 216 (c) Given that $a^2 + b^2 = 1$. Therefore, $\frac{1+b+ia}{1+b-ia} = \frac{(1+b+ia)(1+b+ia)}{(1+b-ia)(1+b+ia)}$ $=\frac{(1+b)^2 - a^2 + 2ia(1+b)}{1+b^2 + 2b + a^2}$ $= \frac{(1-a^2)+2b+a^2}{2(1+b)}$ $= \frac{2b^2+2b+2ia(1+b)}{2(1+b)}$ = b + ia217 (c) Given that $|z_1 - i| = |z_2 - i| = |z_3 - i|$ Hence, z_1, z_2, z_3 lie on the circle whose centre is *i*.

Also given that the triangle is equilateral. Hence centroid and circumcentre coincides

$$\begin{array}{l} \therefore \frac{z_{1} + z_{2} + z_{3}}{3} = i \\ \Rightarrow |z_{1} + z_{2} + z_{3}| = 3 \\ \end{array}{218} \ (a) \\ \log_{1/3} \left(\frac{|z - 3|^{2} + 2}{11|z - 3| - 2} \right) > 1 \\ \Rightarrow \frac{|z - 3|^{2} + 2}{11|z - 3| - 2} < \frac{1}{3} \\ \Rightarrow (3t - 8)(t - 1) < 0 \quad (\text{where } |z - 3| = t) \\ \Rightarrow 1 < |z - 3| < 8/3 \\ \text{Hence z lies between the two concentric circles} \\ 219 \ (c) \\ \text{Put } ab + bc + ca = t. \text{ Now,} \\ (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2t \\ \Rightarrow (a + b + c)^{2} = 1 + 2t \\ \Rightarrow 1 + 2t \ge 0 \\ \Rightarrow -\frac{1}{2} \le t \\ \text{Again, } (a - b)^{2} + (b - c)^{2} + (c - a)^{2} = 2 - 2t \\ \Rightarrow 2 - 2t \ge 0 \\ \Rightarrow t \le 1 \\ \Rightarrow -\frac{1}{2} \le t \le t \le 1 \\ \end{aligned}$$
220 \qed (a)
Here $x = 4 \cos \theta, y = 4 \sin \theta \\ \therefore ||x| - |y|| \\ = |4| \cos \theta |-4| \sin \theta || \\ = 4\sqrt{1 - 2| \cos \theta || \sin \theta ||} \\ = 4\sqrt{1 - 2| \cos \theta || \sin \theta ||} \\ = 4\sqrt{1 - |\sin 2\theta ||} \\ \text{Hence, the range is } [0, 4] \\ 221 \ (d) \\ |\omega z - 1 - \omega^{2}| = a \\ \Rightarrow |z - 1| + 2 \ge a \Rightarrow 0 \le a \le 4 \\ 222 \ (b) \\ \text{ We have,} \\ x = \frac{-1 \pm \sqrt{1 - 4a^{2}(1 - a^{2})}}{2a^{2}} \\ = \frac{-1 \pm (2a^{2} - 1)}{2a^{2}} \\ = \frac{1 - \frac{1}{a^{2}} \text{ or } a^{2}} \\ \Rightarrow \beta^{2} = 1 - \frac{1}{a^{2}} \\ 223 \ (b) \\ |z + \frac{1}{z}| \ge ||z| - \frac{1}{|z|}| \\ \text{ Hence the least value occurs when } |z| = 3 \\ \end{cases}$

$$\therefore \left| z + \frac{1}{z} \right|_{\text{least}} = 3 - \frac{1}{3} = \frac{8}{3}$$
224 **(b)**

Note that $z_1 = 3 + \sqrt{3}i$ lies on the line $y = (1/\sqrt{3})x$ and $z_2 = 2\sqrt{3} + 6i$ lies on the line $y = \sqrt{3}x$

Hence z = 5 + 5i will only lie on the bisector of z_1 and z_2 , i.e. y = x

225 (b)

$$|z^{2} - 3| \ge |z|^{2} - 3$$

$$\Rightarrow 3|z| \ge |z|^{2} - 3$$

$$\Rightarrow |z|^{2} - 3|z| - 3 \le 0$$

$$\Rightarrow 0 < |z| \le \frac{3 + \sqrt{21}}{2}$$

226 **(a)**

227

$$|2z + 10 + 10i| \le 5\sqrt{3} - 5$$

$$\Rightarrow |z + 5 + 5i| \le \frac{5(\sqrt{3} - 1)}{2}$$

Point *B* has least principle argument. Now,

$$AB = \frac{5(\sqrt{3} - 1)}{2}$$
$$OA = 5\sqrt{2}$$
$$\angle AOB = \frac{\pi}{12}$$
$$\therefore \arg(z) = -\frac{5\pi}{6}$$
(b)
Let,

$$\frac{x}{x^2 - 5x + 9} = y$$

$$\Rightarrow yx^2 - 5yx + 9y = x$$

$$\Rightarrow yx^2 - (5y + 1)x + 9y = 0$$

Now, x is real, so

$$D \ge 0$$

$$\Rightarrow (-(5y + 1))^2 - 4 \cdot y \cdot (9y) \ge 0$$

$$\Rightarrow -11y^2 + 10y + 1 \ge 0$$

$$\Rightarrow 11y^2 - 10y - 1 \le 0$$

 $\Rightarrow (11y+1)(y-1) \le 0$ $\Rightarrow -\frac{1}{11} \le y \le 1$ 228 (d) $B(\boldsymbol{\omega})$ A/2D(z)(@)(Clearly, $\angle DOB = \angle COD = A$ $\Rightarrow z = \omega e^{iA}$ and $\overline{\omega} = z e^{iA}$ (Applying rotation about 0) $\Rightarrow z^2 = \omega \overline{\omega} = 1$ $\Rightarrow z = -1$ (As *A* and *D* are non opposite sides of BC) 229 **(b)** Given that $\arg\left(\frac{z_1 - \frac{z}{|z|}}{\frac{z}{|z|}}\right) = \frac{\pi}{2}$ and $\left|\frac{z}{|z|} - z_1\right| = 3$ From which we can establish the following geometry From the diagram, $\left|\frac{z}{|z|} - z_1\right| = 3, |z_1| = \sqrt{9+1} = \sqrt{10}$ 230 **(b)** $f(z) = g(z)(z - i)(z + i) + az + b; a, b \in C$ Given, $f(i) = i \implies ai + b = i \quad (1)$ and f(-i) = 1 + i $\Rightarrow a(-i) + b = 1 + i$ (2)From (1) and (2), we have $a = \frac{i}{2}, b = \frac{1}{2} + i$

Hence, the required remainder is az + b = (1/2)iz + (1/2) + i

231 (b) Let. $f(x) = ax^2 + x + c - a$ f(1) = c + 1 > 0 (:: c > -1) Therefore, given expression is positive $\forall x \in R$. So. $f\left(\frac{1}{2}\right) > 0$ $\Rightarrow \frac{a}{4} + \frac{1}{2} + c - a > 0$ $\Rightarrow 4c - 3a + 2 > 0$ $\Rightarrow 4c + 2 > 3a$ 232 (a) $\alpha + \beta = 1, \alpha\beta = p, \gamma + \delta = 4, \gamma\delta =$ Clearly, $q (p, q \in I)$ Since α , β , γ , δ are in G.P. (with common ratio r), so $\alpha + \alpha r = 1, \alpha (r^2 + r^3) = 4$ $\Rightarrow \alpha(1+r) = 1, \alpha r^2(1+r) = 4$ $\Rightarrow r^2 \times 1 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 2, -2$ If r = 2. $\alpha + 2\alpha = 1 \Rightarrow \alpha = \frac{1}{2}$ If r = -2. $\alpha - 2\alpha = 1 \Rightarrow \alpha = -1$ But $p = \alpha \beta \in I$ \therefore r = -2 and $\alpha = -1$ $\Rightarrow p = -2.$ $q = \alpha^2 r^5 = 1 \ (-2)^5 = -32$ 233 (c) $a\alpha^2 + c = -b\alpha, a\alpha + b = -\frac{c}{\alpha}$ Hence, the given expression is $\frac{b}{c}(\alpha^2 + \beta^2) = \frac{b(b^2 - 2ac)}{a^2c}$ 234 (d) Given. $z^3 + \frac{3(\overline{z})^2}{|z|} = 0$ Let. $z = re^{i}\theta$ $\Rightarrow r^3 e^{i3\theta} + 3r e^{-i2\theta} = 0$ Since 'r' cannot be zero, so $re^{i5\theta} = -3$ Which will hold for r = 3 and five distinct value of ' θ '. Thus there are five solutions 235 (a) $\left(\frac{1+ia}{1-iz}\right)^4 = z$ $\Rightarrow \left|\frac{1+ia}{1-ia}\right|^4 = |z|$

 $\Rightarrow \left| \frac{a-i}{a+i} \right|^4 = 1$ $\Rightarrow |a - i| = |a + i|$ Therefore, *a* lies on the perpendicular bisector of *i* and -i, which is real axis. Hence all the roots are real 236 (b) Let *xi* be the root where $x \neq 0$ and $x \in R$ $x^4 - a_1 x^3 i - a_2 x^2 + a_3 x i + a_4 = 0$ $\Rightarrow x^4 - a_2 x^2 + a_4 = 0$ (1) and $a_1 x^3 - a_3 x = 0$ (2)From Eq. (2), $a_1 x^2 - a_3 = 0$ $\Rightarrow x^2 = a_3/a_1 \quad (as x \neq 0)$ Putting the value of x^2 in Eq. (1), we get $\frac{a_3^2}{a_1^2} - \frac{a_2 a_3}{a_1} + a_4 = 0$ $\Rightarrow a_{3}^{2} + a_{4}a_{1}^{2} = a_{1}a_{2}a_{3}$ $\Rightarrow \frac{a_{3}}{a_{1}a_{2}} + \frac{a_{1}a_{4}}{a_{2}a_{3}} = 1 \text{ (dividing by } a_{1}a_{2}a_{3})$ 237 (b) If z_1, z_2, z_3 are three complex numbers, then $A = \begin{vmatrix} \arg z_1 & \arg z_2 & \arg z_3 \\ \arg z_2 & \arg z_3 & \arg z_1 \\ \arg z_3 & \arg z_1 & \arg z_2 \end{vmatrix}$ $\Rightarrow A = (\arg z_1 + \arg z_1)$ $+ \arg z_3) \begin{vmatrix} 1 & \arg z_2 & \arg z_3 \\ 1 & \arg z_3 & \arg z_1 \\ 1 & \arg z_2 & \arg z_2 \end{vmatrix}$ $(\text{Using } C_1 \to C_1 + C_2 + C_3)$ $\Rightarrow A = \arg(z_1 z_2 z_3) \begin{vmatrix} 1 & \arg z_2 & \arg z_3 \\ 1 & \arg z_3 & \arg z_1 \\ 1 & \arg z_1 & \arg z_2 \end{vmatrix}$ Hence, A is divisible by $\arg(z_1 z_2 z_3)$ 238 (d) Let. $z = (1)^{1/n} = (\cos 2k\pi + i \sin 2k\pi)^{1/n}$ $= \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1, 2, ..., n - 1$ $z_1 = \cos\left(\frac{2k_1\pi}{n}\right) + i\sin\left(\frac{2k_1\pi}{n}\right)$ $z_2 = \cos\left(\frac{2k_2\pi}{n}\right) + i\sin\left(\frac{2k_2\pi}{n}\right)$ Be the two values of z such that they subtend angle of 90° at origin. Then, $\Rightarrow \frac{2k_1\pi}{n} - \frac{2k_2\pi}{n} = \pm \frac{\pi}{2} \Rightarrow 4(k_1 - k_2) = \pm n$ As k_1 and k_2 are integers and $k_1 \neq k_2$, therefore $n = 4m, m \in Z$ 239 (a,d) Let A = a + 2b - 3c, B = b + 2c - 3a, C = c + 3c

2a - 3b $\therefore A + B + C = 0$ Hence, roots are 1 and $\frac{c}{r}$. Thus, roots are real and rational. 240 (a,b,c) Since the roots of $ax^2 + bx + c = 0$ are non-real, so, $f(x) = ax^2 + bx + c$ will have same sign for every value of *x*. Hence, f(0) = c, f(1) = a + b + c, f(-1) = a - b + cf(-2) = 4a - 2b + c $\Rightarrow c(a+b+c) > 0, c(a-b+c)$ > 0, c(4a - 2b + c) > 0241 (a,c) If p = q, then equation become $z^p = \overline{z}^q$ and it has infinite number of solutions because any $z \in R$ will satisfy it. If $p \neq q$, let p > q, then $z^p = \overline{z}^q$ $\therefore |z|^p = |z|^q$ $\Rightarrow |z|^p(|z|^{p-q} - 1) = 0$ $\Rightarrow |z| = 0 \text{ or } |z| = 1$ $|z| = 0 \Rightarrow z = 0 + i0$ $|z| = 1 \Rightarrow z = e^{i\theta}$ $\Rightarrow e^{(p+q)\theta_i} = 1$ $\Rightarrow z = 1^{1/(p+q)}$ Therefore, the number of solutions is p + q + 1242 (a,b,c) $f(x) = Ax^2 + Bx + C$ A = a + b - 2c = (a - c) + (b - c) > 0 $\Rightarrow A > 0$ Hence, the graph is concave upwards. Also, x = 1is obvious solution; therefore, both roots are rational $b + c - 2a = \underbrace{(b - a)}_{-\mathrm{ve}} + \underbrace{(c - a)}_{-\mathrm{ve}} < 0$ $\Rightarrow B < 0$ \therefore vertex = $-\frac{B}{2A} > 0$ Hence, abscissa of the vertex is positive. Option (d) need not be correct as with a = 5, b = 4, c =2, P < 0 and with a = 6, b = 3, c = 2, P > 0243 (c,d) We have, $x^{2} + x + 1 = (x - \omega)(x - \omega^{2})$ Since, f(x) is divisible by $x^2 + x + 1$, $f(\omega) =$ $0, f(\omega^2) = 0$ $\therefore P(\omega^3) + \omega Q(\omega^3) = 0$ $\Rightarrow P(1) + \omega Q(1) = 0 \dots (i)$ and $P(\omega^6) + \omega^2 Q(\omega^6) = 0$ $\Rightarrow P(1) + \omega^2 Q(1) = 0$...(ii) On solving Eqs. (i) and (ii), we get P(1) = 0 and Q(1) = 0: Both P(x) and $Q(x^3)$ are divisible by (x - 1)

 \Rightarrow $P(x^3)$ and $Q(x^3)$ are divisible by $x^3 - 1$ and hence by (x - 1)Since, $f(x) = P(x^3) + xQ(x^3)$, we get f(x) is divisible by x - 1244 (b,c) z_1 and z_2 are the roots of the equation $z^2 - az + b = 0$. Hence, $z_1 + z_2 = a$, $z_1 z_2 = b$ Now, $|z_1 + z_2| \le |z_1| + |z_2|$ $\Rightarrow |z_1 + z_2| = |a| \le 1 + 1 = 2 \quad (\because |z_1| = |z_2|$ = 1) $\theta_2 - \theta_1$ $\Rightarrow \arg(a) = \frac{1}{2} [\arg(z_2) + \arg(z_1)]$ Also, $\arg(b) = \arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ $\Rightarrow 2 \arg(a) = \arg(b)$ 245 (a,d) Let $z_1 = a + ib, a > 0$ and $b \in R$; $z_2 = c + id, d < c$ $0, c \in R$ Given, $|z_1| = |z_2|$ $\Rightarrow a^2 + b^2 = c^2 + d^2$ $\Rightarrow a^2 - c^2 = d^2 - h^2$ (1)Now. $\frac{z_1 + z_2}{z_1 - z_2} = \frac{(a+c) + i(b+d)}{(a-c) + i(b-d)}$ $[(a^2 - c^2) + (b^2 - d^2)] + i[(a-c)(b+d) - d^2)] = i[(a-c)(b+d) - d^2]$ $\frac{(a+c)(b-d)]}{(a-c)^2 + (b-d)^2}$ Which is a purely imaginary number or zero in case a + c = b + d = 0246 (a,b,c) Let z = x + iy where *x*, *y* satisfy the given equation. Hence, $(x^2 + y^2)(x^2 - y^2) = 175$ $\Rightarrow x^2 + y^2 = 25$ and $x^2 - y^2 = 7$ (as all other possibilities will give non-integral solutions) Hence, possible values of z will be 4 + 3i, 4 - 3i3i, -4 + 3i and -4 - 3i. Clearly, it will form a rectangle having length of the diagonal 10

From the diagram, options (a), (b), (c) are correct 247 **(a,b,d)**

$$\begin{aligned} z_1 &= 5 + 12i, |z|_2 = 4 \\ |z_1 + iz_2| &\le |z_1| + |z_2| = 13 + 4 = 17 \\ \therefore & |z_1 + (1+i)z_2| \ge ||z_1| - |1+i||z_2|| \\ &= 13 - 4\sqrt{2} \\ \therefore & \min(|z_1 + (1+i)z_2|) = 13 - 4\sqrt{2} \\ & \left|z_2 + \frac{4}{z_2}\right| \le |z_2| + \frac{4}{|z_2|} = 4 + 1 = 5 \\ & \left|z_2 + \frac{4}{z_2}\right| \ge |z_2| - \frac{4}{|z_2|} = 4 - 1 = 3 \\ \therefore & \max\left|\frac{z_1}{z_2 + \frac{4}{z_2}}\right| = \frac{13}{3} \text{ and } \min\left|\frac{z_1}{z_2 + \frac{4}{z_2}}\right| = \frac{13}{5} \end{aligned}$$

248 (b,c,d)

Given equation is

 $x^{2} + 2(a + 1)x + 9a - 5 = 0$ $D = 4(a + 1)^{2} - 4(9a - 5) = 4(a - 1)(a - 6)$ $\therefore D \ge 0 \Rightarrow a \le 1 \text{ or } a \ge 6 \Rightarrow \text{ roots are real}$ If a < 0, then 9a - 5 < 0. Hence, the products of roots is less than 0. So, the roots are of opposite sign. If a > 7, then sum of roots is -2(a + 1) < 0. Product of roots is greater than 0

249 (a,c,d)

Choice (a) on simplification gives

 $z = \frac{1+x}{1+x^2} + i\frac{1+x}{1+x^2}$ For x = 0.5, f(0.5) > 1 which is out of range. Hence, (a) is not correct. From choice (b),

$$z = \frac{1-x}{1+x^2} + i\frac{1-x}{1+x^2}$$

f(x) and g(x) \in (0, 1) if $x \in$ (0, 1). Hence, (b) is correct. From choice (c),

$$z = \frac{1+x}{1+x^2} + \frac{1-x}{1+x^2} i$$

Hence, (c) is not correct. From choice (d),

$$z = \frac{1-x}{1+x^2} + \frac{1+x}{1+x^2}i$$
Hence (d) is not corre

Hence, (d) is not correct

250 (a,d)

We have,

 $f(x) = \frac{2x-1}{2x^3+3x^2+x} = \frac{2x-1}{x(2x+1)(x+1)}$ Critical points are x = 1/2, 0, -1/2, -1On number line by sign scheme method, we have

For $f(x) > 0, x \in (-\infty, -1) \cup (-1/2, 0) \cup$ $(1/2, \infty)$. Clearly, *S* contains $(-\infty, -3/2)$ and (1/2, 3)251 (a,b,d) yFrom the graph, f(0) = c > 0 (1) Also, the graph is concave downward. Hence, a < 0 (2) Further, abscissa of the vertex, $\frac{b}{2a}$ (3) From (1), (2), (3), ac < 0, ab < 0 and bc > 0252 (c.d) Since, the equation has two distinct roots α and β , the discriminant, $b^2 - 4ac > 0$, we must have $f(x) = ax^2 + bx + c < 0$ for $\alpha < x < \beta$ -2 -1 0 1 2 Since, $\alpha < 0 < \beta$, we must have f(0) = c < 0Also, as $\alpha < -1$, $1 < \beta$, we get f(-1) = a - b + c < 0and f(1) = a + b + c < 0 $\Rightarrow a + |b| + c < 0$ Since, $\alpha < -2, 2 < \beta$. f(-2) = 4a - 2b + c < 0and f(2) = 4a + 2b + c < 0 $\Rightarrow 4a + 2|b| + c < 0$ 253 (a,b,d)†

Since $\arg((z - 1 - i)/z)$ is the angle subtended by the chord joining the points 0 and 1 + i at the circumference of the circle |z - 1| = 1, so it is equal to $-\pi/4$. The line joining the points z = 0and z = 2 + 0i is the diameter

 $\arg \frac{z-2}{z} = \pm \frac{\pi}{2}$ $\Rightarrow \frac{z-2}{z-0}$ is purely imaginary We have, $\angle OPA = \frac{\pi}{2}$ $\Rightarrow \arg\left(\frac{2-z}{0-z}\right) = \frac{\pi}{2} \Rightarrow \frac{z-2}{z} = \frac{AP}{OP}i$ Now in $\triangle OAP$, $\tan \theta = \frac{AP}{OP}$ Thus. $\frac{z-2}{z} = i \tan \theta$ 254 (a,c) Triangle ABC is equilateral. Hence, $z^{2} + (-z)^{2} + (1-z)^{2}$ = z(-z) + z(1-z) + (-z)(1-z) $\Rightarrow 3z^2 - 2z + 1 = -z^2$ $\Rightarrow 4z^2 - 2z + 1 = 0$ Sum of roots = 2and product of roots is $=\frac{1}{4}$ 255 (a,c) Since each pair has common root, let the roots be α , β for Eq. (1); β , γ for Eq. (2) and γ , α for Eq. (3). Therefore, $\alpha + \beta = -\alpha, \alpha\beta = bc$ $\beta + \gamma = -b, \beta \gamma = ca$ $\gamma + \alpha = -c, \gamma \alpha = ab$ Adding, we get $2(\alpha + \beta + \gamma) = -(a + b + c)$ $\Rightarrow \alpha + \beta + \gamma = -\frac{1}{2}(a+b+c)$ Also by multiplying product of roots, we have $\alpha^2 \beta^2 \gamma^2 = a^2 b^2 c^2 \Rightarrow \alpha \beta \gamma = abc$ 257 (c,d) We have, $D = (b - c)^2 - 4a(a - b - c) > 0$ $\Rightarrow b^{2} + c^{2} - 2bc - 4a^{2} + 4ab + 4ac > 0$ $\Rightarrow c^{2} + (4a - 2b)c - 4a^{2} + 4ab + b^{2} > 0$ for all $c \in R$ Discriminant of the above expression in *c* must be negative. Hence, $(4a - 2b)^2 - 4(-4a^2 + 4ab + b^2) < 0$ $\Rightarrow 4a^2 - 4ab + b^2 + 4a^2 - 4ab - b^2 < 0$ $\Rightarrow a(a-b) < 0$ $\Rightarrow a < 0$ and a - b > 0 or a > 0 and a - b > 0 $\Rightarrow b < a < 0 \text{ or } b > a > 0$ 258 (c,d) $\cos x - y^2 - \sqrt{y - x^2 - 1} \ge 0$ (1) Now, $\sqrt{y - x^2 - 1}$ is defined when $y - x^2 - 1 \ge 1$

0 or $y \ge x^2 + 1$. So minimum value of y is 1. From (1), $\cos x - y^2 \ge \sqrt{y - x^2 - 1}$ Where $\cos x - y^2 \le 0$ [as when $\cos x$ is maximum (= 1) and y^2 is minimum (= 1), so $\cos x - y^2$ is maximum]. Also, $\sqrt{v-x^2-1} > 0$ Hence, $\cos x - y^2 = \sqrt{y - x^2 - 1} = 0$ \Rightarrow y = 1 and cos x = 1, y = x² + 1 $\Rightarrow x = 0, y = 1$ 259 (a,b) $A(z_0)$ $OAP = \frac{\pi}{2}$ $\Rightarrow \frac{z-z_0}{z_0}$ is purely imaginary $\Rightarrow \frac{z - z_0}{z_0} + \frac{\overline{z} - \overline{z}_0}{\overline{z}_0} = 0$ $\Rightarrow \frac{z}{z_0} + \frac{\overline{z}}{\overline{z}_0} = 2 \qquad (1)$ $\Rightarrow \operatorname{Re}\left(\frac{z}{z_0}\right) = 1$ From (1), $z\overline{z}_0 + z_0\overline{z} = 2|z_0|^2 = 2r^2$ 260 (c,d) Product of roots is $\frac{a}{bc} < 0 \ [\because abc < 0]$ Hence, roots are real and of opposite sign 261 (a,b,c,d) $\sqrt{5-12i} = \sqrt{(3-2i)^2} = \pm (3-2i)$ $\sqrt{-5 - 12i} = \sqrt{(2 - 3i)^2} = \pm (2 - 3i)$ $\Rightarrow z = \sqrt{5 - 12i} + \sqrt{-5 - 12i}$ = -1, -i, -5 + 5i, 5 - 5i, 1 + iTherefore, principle values of arg z are $-3\pi/4, 3\pi/4, -\pi/4, \pi/4$ 262 (a,b,d) Symmetric functions are those which do not change by interchanging α and β 263 (a,b,d) Given, $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ $\Rightarrow a^3 + b^3 + c - 3abc = 0$ $\Rightarrow (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca) = 0$
$$\Rightarrow \frac{1}{2}(a+b+c)[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$$

= 0
$$\Rightarrow (a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$$

$$\Rightarrow a=b=c \quad [\because a+b+c\neq 0, \because z_{1}\neq 0, \therefore |z_{1}|]$$

= $a\neq 0$ etc]

Hence, OA = OB = OC, where O is the origin and A, B, C are the points representing z_1, z_2 and z_3 , respectively. Therefore, O is circumcentre of $\angle ABC$. Now,

$$\arg\left(\frac{z_3}{z_2}\right) = \angle BOC \quad (i)$$

$$= 2\angle BAC = 2\arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) \quad (ii)$$

$$= \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2 \quad [\because \angle BOC = 2\angle BAC]$$
Hence

Hence,

 $\arg\left(\frac{z_3}{z_2}\right) = \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2$

Also, centroid is $(z_1 + z_2 + z_3)/3$. Since $HG: GO \equiv 2:1$ (where H is orthocenter and G is centroid), then orthocenter is $z_1 + z_2 + z_3$ (by section formula). When triangle is equilateral centroid coincides with circumcentre; hence $z_1 + z_2 + z_3 = 0$

Also, the area for equilateral triangle is $(\sqrt{3}/4)L^2$, where *L* is length of side. Since radius is $|z_1|$, $L = \sqrt{3}|z_1|$, hence area is $(3\sqrt{3}/4)|z_1|^2$

264 (a,b,c)

sec² θ + cosec² θ = sec² θ cosec² θSum of the roots is equal to their product and the roots are real. Hence,

$$-\frac{b}{a} = \frac{c}{a}$$

$$\Rightarrow b + c = 0$$
Also $b^2 - 4ac \ge 0$

$$\Rightarrow c^2 - 4ac \ge 0$$

$$\Rightarrow c(c - 4a) \ge 0$$

$$\Rightarrow c - 4a \ge 0 \quad (\because c > 0)$$
Further $b^2 + 4ab \ge 0$

$$\Rightarrow b + 4a \le 0 \quad (\because b < 0)$$
265 (a,d)

We have, $|z_1| = 15, |z_2 - 3 - 4i| = 5$ Minimum value of $|z_1 - z_2|$ is AB = OB - OA = 15 - 10 = 5. Maximum value of $|z_1 - z_2|$ is CA = OA + OC = 10 + 15 = 25

266 (a,b,c,d)

$$z_3 = (1 - \lambda)z_1 + z_2 = \frac{(1 - \lambda)z_1 + \lambda z_2}{1 - \lambda + \lambda}$$

Hence, z_3 divides the line joining $A(z_1)$ and $B(z_2)$ in the ratio λ : $(1 - \lambda)$. That means the given points are collinear. Also, the ratio $\lambda/(1 - \lambda) > 0$ (or $0 < \lambda < 1$) if z_3 divides the line joining z_1 and z_2 internally and $\mu/(1 - \mu) < 0$ (or $\mu < 0$ or $\mu > 1$) if z'_3 divides the line joining z'_1, z'_2 externally

When λ , μ are complex numbers, where $\lambda = \mu$, we have $z_3 = (1 - \lambda)z_1 + \lambda z_2$ and $z'_3 = (1 - \lambda)z'_1 + \lambda z'_2$. Comparing the value of λ , we have

$$\frac{z_3 - z_1}{z_2 - z_1} = \frac{z'_3 - z'_1}{z'_2 - z'_1}$$

$$\Rightarrow \left| \frac{z_3 - z_1}{z_2 - z_1} \right| = \left| \frac{z'_3 - z'_1}{z'_2 - z'_1} \right| \text{ and } \arg\left(\frac{z_3 - z_1}{z_2 - z_1} \right) = \arg\left(\frac{z'_3 - z'_1}{z'_2 - z'_1} \right)$$

$$\Rightarrow \frac{AC}{AB} = \frac{PR}{PQ} \text{ and } \angle BAC = \angle QPR$$

Hence, triangles *ABC* and *PQR* are similar 267 (a,b,c,d)

Since OQ = 1 and OP = 2, so $sin(\angle OPQ) = 1/2$ and hence $\angle QPR = \pi/3$. Then $\angle PQR$ is equilateral. Also, $OM \perp QR$. Then from $\angle OMQ$, OM = 1/2. Hence MN = 1/2. Then centroid of $\angle PQR$ lies on |z| = 1

As *PQR* is an equilateral triangle, so orthocenter, circumcentre and centroid will coincide. Now,

$$\Rightarrow \left| \frac{z_{1} + z_{2} + z_{3}}{3} \right| = 1$$

$$\Rightarrow |z_{1} + z_{2} + z_{3}|^{2} = 9$$

$$\Rightarrow (z_{1} + z_{2} + z_{3})(\overline{z}_{1} + \overline{z}_{1} + \overline{z}_{3}) = 9$$
and
$$2(0R = 120^{\circ})$$
268 (a.d)
Let the roots of three given equations be
(a, β); (β , γ) and (γ , a), then on substituting β in
first two equations.
We get, $\beta^{2} + p\beta + qr = 0$ and $\beta^{2} + q\beta + rp = 0$.
On subtracting, we get $(p - q)\beta + r(q - p) = 0$

$$\Rightarrow \beta = r. \text{ If } p \neq q$$

$$\therefore \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = \frac{p + q + r}{pqr} = \frac{\sum p}{pqr}$$
and $p + q + r = 0$
269 (a.b.c)
We have, $z_{1} = a + ib$ and $z_{2} = c + id$

$$\therefore |z_{1}|^{2} = a^{2} + b^{2} = 1$$
 and $|z_{2}|^{2} = c^{2} + d^{2} = 1$
...(i)
Also, $\text{Re}(z_{1}, \overline{z}_{2}) = 0 \Rightarrow ac + bd = 0$

$$\Rightarrow \frac{a}{b} = -\frac{d}{c} = \lambda \dots$$
(ii)
From Eqs. (i) and (ii),
 $b^{2}\lambda^{2} + b^{2} = c^{2} + \lambda^{2}c^{2}$

$$\Rightarrow b^{2} = c^{2} \text{ and } a^{2} = d^{2}$$
Now, $|w_{1}| = \sqrt{b^{2} + d^{2}} = \sqrt{a^{2} + b^{2}} = 1$
and $|w_{2}| = \sqrt{b^{2} + d^{2}} = \sqrt{a^{2} + b^{2}} = 1$
Re $|w_{1}\overline{w_{2}} = (ab + cd)$

$$= \lambda(b^{2} - c^{2}) = 0$$
Hence, (a), (b) and (c) are correct answers
270 (a,d)
Refer the figure, z lies on the point of intersection
of the rays from A and B. $\angle ACB$ is a right angle
and OBC is an equilateral triangle. Hence,
 $OC = a \Rightarrow z = a\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

$$\frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}$$

y, the inscribed rectangle is square. Let the nt vertex be z. Then, $\frac{-(z)}{-(4+4i)} = e^{\pm i\pi/2}$ (by rotation about centre) $4i - z = \pm i(-1)$ $3 + 4i \pm i = 3 + 5i$ or 3 + 3i $z_1 z_2) = 0 \Rightarrow \operatorname{amp} z_1 + \operatorname{amp} z_2 = 0$ $z_1 = -\operatorname{amp} z_2 = \operatorname{amp} \overline{z}_2$ $|z_1| = |z_2|$, we get $|z_1| = |\overline{z}_2|$. So, $z_1 = \overline{z}_2$. $z_1 z_2 = \overline{z}_2 z_2 = |z_2|^2$ cause $|z_2| = 1$ of $4x^2 - x - 1 = 0$ are irrational. So, one ommon implies both roots are common. fore, $\frac{-1}{+\mu} = \frac{-1}{\lambda - \mu}$ $=\frac{-3}{4}, \mu = 0$ tting x = 0, 1 and 1/2, we get $c \le 1$ (1) $a+b+c \le 1 \quad (2)$ $a + 2b + 4c \le 4 \quad (3)$ (1), (2), (3), we get 8 and $|a| \leq 8$ $+ |b| + |c| \le 17$ $6xy + 5y^2 = 1$ (1) tion (1) can be rewriter as $(6y)x + 5y^2 - 1 = 0$ x is real, $-8(5y^2-1) \ge 0$ ≤ 2 $\overline{2} \le y \le \sqrt{2}$ tion (1) can also be rewriter as $(6x)y + 2x^2 - 1 = 0$ y is real, $-20(2x^2-1) \ge 0$ $x^2 - 40x^2 + 20 \ge 0$ $x^2 \ge -20$ ≤ 5 $\Rightarrow -\sqrt{5} \le x \le \sqrt{5}$ 276 (a,c,d)

Given,
$$z = \frac{(1-t)z_1+tz_2}{(1-t)+t}$$

 $\frac{A}{Z_1}$ $\frac{P}{Z_2}$ Z_2
 $t: (1-t)$
Clearly, z divides z_1 and z_2 in the ratio of
 $t: (1-t), 0 < t < 1$
 $\Rightarrow AP + BP = AB$
 $ie, |z - z_1| + |z - z_2| = |z_1 - z_2|$
 \Rightarrow Option (ac) is true
And $\arg(z - z_1) = \arg(z_2 - z) = \arg(z_2 - z_1)$
 \Rightarrow (b) is false and (d) is true
Also, $\arg(z - z_1) = \arg(z_2 - z_1)$
 $\Rightarrow \arg\left(\frac{z - z_1}{z_2 - z_1}\right) = 0$
 $\therefore \frac{z - z_1}{z_2 - z_1}$ is purely real
 $\Rightarrow \frac{z - z_1}{z_2 - z_1}$ is correct
277 (a,c)
 $(-i)^{1/3} = (i^3)^{1/3} = i, i\omega, i\omega^2$
Where
 $\omega = \frac{-1 + \omega\sqrt{3}}{2}$
Hence roots are, $i, (-\sqrt{3} - i)/2, (\sqrt{3} - i)/2$
278 (a,b,c)
 $z^n \cos \theta_0 + z^{n-1} \cos \theta_1 + \dots + z \cos \theta_{n-1} + \cos \theta_n$
 $= 2$
 $\Rightarrow 2 = |z_n^n \cos \theta_0 + z_n^{n-1} \cos \theta_1 + \dots + z_0 \cos \theta_{n-1} + \cos \theta_n|$
 $\Rightarrow 2 \le |z_0|^n + |z_0|^{n-1} ||\cos \theta_1| + \dots$
 $+ |z_0||\cos \theta_{n-1}| + |\cos \theta_n|$
 $\Rightarrow 2 \le |z_0|^n + |z_0|^{n-1} + |z_0|^{n-2} + \dots + |z_0| + 1$
Which is clearly satisfied for $|z_0| \ge 1$. If $|z_0| < 1$, then
 $2 < x + 1 + |z_0| + |z_0|^2 + \dots + |z|^n + \dots \infty$
 $\Rightarrow 2 < \frac{1}{1 - |z_0|}$
 $\Rightarrow |z_0| > \frac{1}{2}$
279 (a,b,c,d)
Let $f(x) = ax^2 + bx + c$

1

From the diagram, we can see that a > 0, c < 0and -[b(2a)] < 0. Hence, b > 0 $\therefore a + b - c > 0$ 280 (a,c,d) Let z = c be a real root. Then, $\alpha c^2 + c + \overline{\alpha} = 0 \quad (1)$ Putting $\alpha = p + iq$, we have $(p+iq)c^2 + c + p - iq = 0$ $\Rightarrow pc^2 + c + p = 0$ and $qc^2 - q = 0 \Rightarrow c =$ ± 1 (:: $q \neq 0$) \therefore (1) $\Rightarrow \alpha \pm 1 + \overline{\alpha} = 0$ Also, |c| = 1281 (a,c) $p + q + r = a + b\omega + c\omega^2$ $+b + c\omega + a\omega^2$ $+c + a\omega + b\omega^2$ $\therefore p + q + r = (a + b + c)(1 + \omega + \omega^2) = 0 \quad (1)$ p, q, r lie on the circle |z| = 2, whose circumcentre is origin. Also, (p + q + r)/3 = 0. Hence the centroid coincides with circumcentre. So, the triangle is equilateral. Now, $(p+q+r)^2 = 0$ $\Rightarrow p^{2} + q^{2} + r^{2} = -2pqr\left[\frac{1}{p} + \frac{1}{q} + \frac{1}{r}\right]$ $=-2pqr\left[\frac{1}{a+b\omega+c\omega^2}+\frac{1}{b+c\omega+a\omega^2}\right.$ $+\frac{1}{c+a\omega+b\omega^2}\Big]$ $=-2pqr\Big[\frac{1}{\omega^2(a\omega+b\omega^2+c)}+\frac{1}{\omega(b\omega^2+c+a\omega)}\Big]$ $+\frac{1}{c+a\omega+b\omega^2}\Big]$ $-\frac{2pqr}{a\omega+b\omega^2+c}\Big[\frac{1}{\omega^2}+\frac{1}{\omega}+\frac{1}{1}\Big]=0$ Hence, $p^2 + q^2 + r^2 = 2(pq + qr + rp)$ 282 (a,b,c,d)

1.
$$PS||QR \Rightarrow \arg\left(\frac{z_1-z_4}{z_2-z_3}\right) = 0 \Rightarrow \frac{z_1-z_4}{z_2-z_3}$$
 is
purely real
2. Since diagonal bisect the angle

$$\Rightarrow \operatorname{amp}\left(\frac{z_1 - z_4}{z_2 - z_4}\right) = \operatorname{amp}\left(\frac{z_2 - z_4}{z_3 - z_4}\right)$$

3. Diagonals of rhombus are perpendicular. Hence, $(z_1 - z_3)/(z_2 - z_4)$ is purely imaginary

4. Diagonals of rhombus are not equal. Hence, $|z_1 - z_3| \neq |z_2 - z_4|$

283 (a,d)

$$\begin{aligned} \left| z_1^2 - z_2^2 \right| &= \left| \overline{z}_1^2 + \overline{z}_1^2 - 2\overline{z}_1 \overline{z}_2 \right| \\ \Rightarrow \left| z_1 - z_2 \right| \left| z_1 + z_2 \right| &= \left| \overline{z}_1 - \overline{z}_2 \right|^2 \\ \Rightarrow \left| z_1 + z_2 \right| &= \left| \overline{z}_1 - \overline{z}_2 \right| \\ \left| z_1 + z_2 \right| &= \left| z_1 - z_2 \right| \\ \Rightarrow \left| \frac{z_1}{z_2} + 1 \right| &= \left| \frac{z_1}{z_2} - 1 \right| \\ \Rightarrow \frac{z_1}{z_2} \text{ lies on } \bot \text{ bisector of 1 and } -1 \\ \Rightarrow \frac{z_1}{z_2} \text{ lies on imaginary axis} \\ \Rightarrow \frac{z_1}{z_2} \text{ is purely imaginary} \\ \Rightarrow \arg\left(\frac{z_1}{z_2} \right) &= \pm \frac{\pi}{2} \\ \left| \arg(z_1) - \arg(z_2) \right| &= \frac{\pi}{2} \end{aligned}$$

284 (a,b)

$$\begin{vmatrix} z - \frac{1}{z} \end{vmatrix} = 1$$

$$\Rightarrow 1 \ge \left| |z| - \frac{1}{|z|} \right|$$

$$\Rightarrow -1 \le |z| - \frac{1}{|z|} \le 1$$

$$\Rightarrow -|z| \le |z|^2 - 1 \le |z|$$

From $|z|^2 - 1 \ge |z|$, we get

$$|z|^2 + |z| - 1 \ge 0$$

$$\Rightarrow |z| \ge \frac{-1+\sqrt{5}}{2} \quad (1)$$

From $|z|^2 - 1 \le |z|$, we get

$$|z|^2 - |z| - 1 \le 0$$

$$\Rightarrow \frac{1-\sqrt{5}}{2} \le |z| \le \frac{1+\sqrt{5}}{2} \quad (2)$$

From (1) and (2), we get

$$\Rightarrow \frac{-1+\sqrt{5}}{2} \le |z| \le \frac{1+\sqrt{5}}{2}$$

$$\Rightarrow |z|_{\min} = \frac{\sqrt{5} - 1}{2}, |z|_{\max} = \frac{1+\sqrt{5}}{2}$$

285 **(b,d)**
Let α and β be the roots.

$$\therefore |\alpha - \beta| = 3 \text{ and } \alpha^2 + \beta^2 = 29$$

$$\Rightarrow |\alpha - \beta|^2 = 9$$

$$\Rightarrow \alpha^2 + \beta^2 - 2\alpha\beta = 9$$

$$\Rightarrow \alpha\beta = 10$$

Now, $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$

$$= 29 + 20 = 49$$

$$\therefore \alpha + \beta = \pm 7$$

Hence, required equation is $x^2 \pm 7x + 10 = 0$ Hence, options (b) and (d) are correct.

286 (a,b)

$$\alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$

$$\alpha + h + \beta + h = \frac{-q}{p}$$
and $(\alpha + h)(\beta + h) = \frac{r}{p}$

$$\therefore -\frac{q}{p} = \alpha + \beta + 2h = -\frac{b}{a} + 2h$$

$$\Rightarrow h = \frac{1}{2} \left(\frac{b}{a} - \frac{q}{p}\right)$$
Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$

$$= \left(-\frac{b}{a}\right)^2 - \frac{4c}{a} = \frac{b^2 - 4ac}{a^2}$$
Also, $(\alpha - \beta)^2 = [(\alpha + h) - (\beta + h)]^2$

$$= \frac{q^2 - 4pr}{p^2}$$

$$\Rightarrow \frac{b^2 - 4ac}{a^2} = \frac{q^2 - 4pr}{p^2}$$

287 **(a,d)**

Let
$$\alpha$$
 and β be the roots of the equation
 $4x^2 + 2x - 1 = 0$
 $\therefore \alpha + \beta = -\frac{2}{4} = -\frac{1}{2}$ and $4\alpha^2 + 2\alpha - 1 = 0$
 $\Rightarrow \beta = -\frac{1}{2} - \alpha$ and $4\alpha^2 = 1 - 2\alpha$
 $\Rightarrow 4\alpha^3 - \alpha(1 - 2\alpha) = \alpha - 2\alpha^2$
 $= \alpha - \frac{1}{2} + \alpha = 2\alpha - \frac{1}{2}$
 $\Rightarrow 4\alpha^3 - 3\alpha = -\alpha - \frac{1}{2} = \beta$
288 (a,c,d)

$$\underbrace{C(z)}_{A(5-4i)} = \underbrace{BD}_{AD} = e^{i\pi/2} = i$$

 $\Rightarrow z_0 + 3 - 2i = iz_0 - 5i - 4$
 $\Rightarrow z_0 = -2 - 5i$
 $\Rightarrow \text{ Radius } AD = |5 - 4i - (-2 - 5i)|$
 $= |17 + i|$
 $= \sqrt{50} = 5\sqrt{2}$
Length of arc $= \frac{3}{4}$ (perimeter of circle)
 $= \frac{3}{4}(2\pi \times 5\sqrt{2})$
 $= \frac{15\pi}{\sqrt{2}}$
289 (a,c,d)

Let the roots be a/r, a, ar, where a > 0, r > 1. Now, $a/r + a + ar = -p \quad (1)$ a(a/r) + a(ar) + (ar)(a/r) = q (2) (a/r)(a)(ar) = 1 (3) $\Rightarrow a^3 = 1$ $\Rightarrow a = 1$ Hence, (c) is correct. From (1), putting a = 1, we get $-p - 3 > 0 \quad \left(:: r + \frac{1}{r} > 2\right)$ $\Rightarrow p < -3$ Hence, (b) is not correct. Also, 1/r + 1 + r = -p (4) From (2), putting a = 1, we get 1/r + r + 1 = q (5) From (4) and (5), we have $-p = q \Rightarrow p + q = 0$ Hence, (a) is correct. Now, as r > 1a/r = 1/r < 1and ar = r > 1Hence, (d) is correct 290 (b,c) P(z) $A(z_1)$ Let internal and external bisectors of $\angle APB$ meet the line joining *A* and *B* at P_1 and P_2 , respectively. Hence, $AP_1: P_1B \equiv PA: PB \equiv 3:1$ (internal division) $AP_2: P_2B \equiv PA: PB \equiv 3:1$ (external division) Thus, P_1 and P_2 are fixed points. Also, $\angle P_1 P P_2 = \frac{\pi}{2}$ Thus 'P' lies on a circle having P_1P_2 as its diameter. Clearly, $B(z_2)$ lies inside this circle

291 (a,d)

 $2^{x} = t$ $t^2 - 8t + 12 = 0$ (t-6)(t-2) = 0 $2^{x} = 6 \Rightarrow x = \log_{2} 6 = 1 + \frac{\log 3}{\log 2}$ $2^x = 2 \Rightarrow x = 1$ 292 (a,b,c) Since, the roots of equation are real. $\therefore B^2 - 4AC > 0$ $\Rightarrow a^4 > 4b^2$ Hence, option (a) is correct. If $f(x) = x^2 + a^2x + b^2$ (:: *c* lies outside the roots)

: f(c) > 0, then $c^2 + a^2c + b^2 > 0$ Hence, option (b) is correct. Also, (*x*-coordinate of vertex)> c $\Rightarrow -\frac{a^2}{2} > c$ Hence, option (c) is correct. 293 (a,c) If α be the common root, then $\alpha^2 + b\alpha - a = 0$ and $\alpha^2 - a\alpha + b = 0$ Subtracting, $\alpha(b+a) - (a+b) = 0$ $\Rightarrow (a-b)(\alpha-1) = 0$ $\Rightarrow a + b = 0 \text{ or } \alpha = 1$ When $\alpha = 1$, then from any equation we have a - b = 1294 (a,b) Here. $\cos^2\theta - \sin^2\theta = \cos 2\theta$ $\Rightarrow \cos^4 \theta - \sin^4 \theta = \cos 2\theta$ $\Rightarrow (-2b)^2 - 4b = (-4)^2 - 4 \times 2$ (since L.H.S. is difference of roots of first equation and R.H.S. is difference of roots of second equation) $\Rightarrow 4b^2 - 4b = 16 - 8 = 8$ $\Rightarrow 4b^2 - 4b - 8 = 0$ $\Rightarrow b^2 - b - 2 = 0$ $\Rightarrow (b+1)(b-2) = 0$ $\Rightarrow b = 2, -1$ 295 (a,c) Given, $b^2 = ac$ $\Rightarrow \left(\frac{b}{a}\right)^2 = \frac{c}{a}$ $\Rightarrow \left(-\frac{b}{a}\right)^2 = \frac{c}{a}$ $\Rightarrow (\alpha + \beta)^2 = \alpha \beta$ $\Rightarrow \alpha^2 + \beta^2 + \alpha\beta = 0$ $\Rightarrow \left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\alpha}{\beta}\right) + 1 = 0$ $\Rightarrow \frac{\alpha}{\beta} = \frac{-1 \pm \sqrt{3}i}{2} \text{ (where } i = \sqrt{-1}\text{)}$ 296 (b,c) $f(x) = x^3 + 3x^2 - 9x + c$ is of the form $(x - \alpha)^2 (x - \beta)$, showing that α is a double root so that f'(x) = 0 has also one root α , i.e., $3x^2 + 6x - 9 = 0$ has one root α . Hence, $x^{2} + 2x - 3 = 0$ or (x + 3)(x - 1) = 0 has the root α which can be either -3 or 1. If $\alpha = 1$, then f(x) = 0 gives c - 5 = 0 or c = 5. If $\alpha = -3$, then f(x) = 0 gives -27 + 27 + 27 + c = 0

 $\therefore c = -27$ 297 (a,b) The equation $px^2 + qx + r = 0$ has no real root, therefore D < 0. $\therefore pf(x) > 0, \forall x \in R$, where $f(x) = px^2 + qx + r$ In general, $pf(1) > 0 \Rightarrow p(p+q+r) > 0$...(i) and $pf(0) > 0 \Rightarrow pr > 0$ (ii) From relations (i) and (ii), we get r(p+q+r) > 0298 (a,b) Equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root. Therefore, $(q-q')^2 = (pq'-p'q)(p'-p)$ (1) Subtracting two equations, we have $x = \frac{q - q'}{p' - p}$ Also using (1), $x = \frac{q-q'}{p'-p} = \frac{pq'-p'q}{q-q'}$ 299 (a,c,d) $z' = z e^{i\alpha} \quad (1)$ $z'' = ze^{-i\alpha} \quad (2)$ $\therefore z'z'' = z^2$ \Rightarrow z', z, z'' are in G.P. Also $\left(\frac{z'}{z}\right)^2 + \left(\frac{z''}{z}\right)^2 = 2\cos 2\alpha$ $\Rightarrow z'^2 + z''^2 = 2z^2 \cos 2\alpha$ $\Rightarrow z'^2 + z''^2 = 2z^2(2\cos^2 \alpha - 1)$ $\Rightarrow z'^2 + z''^2 + 2z^2 = 4z^2 \cos^2 \alpha$ $\Rightarrow z'^2 + z''^2 + 2z'z'' = 4z^2 \cos^2 \alpha$ $\Rightarrow (z' + z'')^2 = 4z^2 \cos^2 \alpha$ $\Rightarrow z' + z'' = 2z \cos \alpha$ 300 (a,d) $C = \frac{1}{P(z)} \arg(z) = \pi/6$ $CP = r, OC = 2\sqrt{3}, \angle COP = \pi/3$ $\Rightarrow CP = OC \sin \frac{\pi}{2} = 2\sqrt{3} \frac{\sqrt{3}}{2} = 3$ Thus, when r = 3, the circle touches the line. Hence, for two distinct points of intersection $3 < r < 2\sqrt{3}$ 301 (a,b) The given equation can be written as $\frac{p}{2r} = \frac{(a+b)x + c(b-a)}{r^2 - c^2}$

or $p(x^2 - c^2) = 2(a + b)x^2 - 2c(a - b)x$ or $(2a + 2b - p)x^2 - 2c(a - b)x + pc^2 = 0$ Now, $c^{2}(a-b)^{2} - pc^{2}(2a+2b-p) = 0$ (:: equal roots) $\Rightarrow (a-b)^{2} - 2p(a+b) + p^{2} = 0 \quad (\because c^{2} \neq 0)$ $\Rightarrow [p - (a + b)]^2 = (a + b)^2 - (a - b)^2$ $\Rightarrow p = a + b \pm 2\sqrt{ab} = (\sqrt{a} \pm \sqrt{b})^2$ 302 (a,b) We can write the given equation as $\frac{p}{2x} = \frac{(a+b)x + c(b-a)}{x^2 - c^2}$ $\Rightarrow p(x^2 - c^2) = 2(a+b)x^2 - 2c(a-b)x$ $\Rightarrow (2a + 2b - p)x^{2} - 2c(a - b)x + pc^{2} = 0$ For this equation to have equal roots, $c^{2}(a-b)^{2} - pc^{2}(2a+2b-p) = 0$ $\Rightarrow (a-b)^{2} - 2p(a+b) + p^{2} = 0 \quad [\because c^{2} \neq 0]$ $\Rightarrow [p - (a + b)]^2 = (a + b)^2 - (a - b)^2 = 4ab$ $\Rightarrow p - (a + b) = +2\sqrt{ab}$ $\Rightarrow p = a + b \pm 2\sqrt{ab} = \left(\sqrt{a} \pm \sqrt{b}\right)^2$ 303 (a,b,c) $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}} = \sqrt{2}$ $\Rightarrow \left(\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}\right)\log_2 x = \log_2 \sqrt{2}$ (taking logarithm both sides on base 2) $\Rightarrow \left(\frac{3}{4}t^2 + t - \frac{5}{4}\right)t = \frac{1}{2} \text{ (putting } \log_2 x = t)$ $\Rightarrow 3t^3 + 4t^2 - 5t - 2 = 0$ $\Rightarrow 3t^3 - 3t^2 + 7t^2 - 7t + 2t - 2 = 0$ $\Rightarrow (3t^2 + 7t + 2)(t - 1) = 0$ $\Rightarrow (3t+1)(t+2)(t-1) = 0$ $\Rightarrow t = \log_2 x = 1, -2, -\frac{1}{3}$ $\Rightarrow x = 2, 2^{-2}, 2^{-\frac{1}{3}}$ 304 (b,c) We have, $\left|\frac{1}{z_2} + \frac{1}{z_1}\right| = \left|\frac{1}{z_2} - \frac{1}{z_1}\right| \Rightarrow |z_1 + z_2| = |z_1 - z_2|$ Squaring both sides, we have $|z_1|^2 + |z_2|^2 + 2(z_1\overline{z}_2 + \overline{z}_1z_2)$ $= |z_1|^2 + |z_2|^2 - 2(z_1\overline{z}_2 + \overline{z}_1z_2)$ $\Rightarrow 4(z_1\overline{z}_2 + \overline{z}_1z_2) = 0$ $\Rightarrow \frac{z_1}{z_2} + \frac{z_1}{\overline{z}_2} = 0$ $\Rightarrow \arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2} = \arg\left(\frac{z_1 - 0}{z_2 - 0}\right)$

That is angle between z_2 , O and z_1 is a right angle, taken in order, as shown in the above diagram. Now, the circumcentre of the above diagram will lie on the line PQ as diameter and is represented by C which is the centre of PQ, such that $z = (z_1 + z_2)/2$, where z is the affix of circumcentre

305 (a,d)

Let,
Let,

$$\frac{x^{2} + ax + 3}{x^{2} + x + a} = y$$

$$\Rightarrow x^{2}(1 - y) - x(y - a) + 3 - ay = 0$$

$$\because x \in R$$

$$(y - a)^{2} - 4(1 - y)(3 - ay) \ge 0$$

$$\Rightarrow (1 - 4a)y^{2} + (2a + 12)y + a^{2} - 12 \ge 0 \quad (1)$$
Now, (1) is true for all $y \in R$, if $1 - 4a > 0$ and
 $D \le 0$. Hence,
 $a < \frac{1}{4}$ and $4(a + 6)^{2} - 4(a^{2} - 12)(1 - 4a) \le 0$

$$\Rightarrow a < \frac{1}{4}$$
 and $4a^{3} - 36a + 48 \le 0$

$$\Rightarrow a < \frac{1}{4}$$
 and $4a^{3} \le 36a - 48$

$$\Rightarrow 4a^{3} < 36\left(\frac{1}{4}\right) - 48$$

$$\Rightarrow 4a^{3} + 39 < 0 \quad \left[\because a < \frac{1}{4}\right]$$
(a d)

306 (a,d)

Since α , β , γ , δ are in H.P., hence $1/\alpha$, $1/\beta$, $1/\gamma$, $1/\delta$ are in A.P. and they may be taken as a - 3d, a - 3dd, a + d, a + 3d. Replacing x by 1/x, we get the equation whose roots are $1/\alpha$, $1/\beta$, $1/\gamma$, $1/\delta$. Therefore, equation $x^2 - 4x + A = 0$ has roots a - 3d, a + d and equation $x^2 - 6x + B = 0$ has roots $a - d_1 a + 3d$. Sum of the roots is 2(a-d) = 4, 2(a+d) = 6 $\therefore a = 5/2, d = 1/2$ Product of the roots is (a-3d)(a+d) = A = 3(a-d)(a+3d) = B = 8307 (a,c) Since P(x) divides both of them, hence P(x) also divides $(3x^4 + 4x^2 + 28x + 5) - 3(x^4 + 6x^2 + 25)$ $= -14x^2 + 28x - 70$ $= -14(x^2 - 2x + 5)$ Which is a quadratic. Hence,

 $P(x) = x^2 - 2x + 5 \Rightarrow P(1) = 4$ 308 (a,c) Given. $z^{n} = (z+1)^{n} \Rightarrow |z^{n}| = |(z+1)^{n}|$ $\therefore |z|^n = |z+1|^n \Rightarrow |z| = |z+1|$ $\Rightarrow |z|^2 = |z+1|^2$ $\Rightarrow x^{2} + y^{2} = (x + 1)^{2} + y^{2}$, where z = x + iy $\Rightarrow x = -\frac{1}{2}$ Hence, *z* lies on the line x = -1/2. Hence sum of real parts of the roots is -(n-1)/2 (since equation has n - 1 roots) 309 (a,b,d) Let $z = \alpha$ be a real root. Then, $\alpha^3 + (3+2i)\alpha + (-1+ia) = 0$ $\Rightarrow (\alpha^3 + 3\alpha - 1) + i(a + 2\alpha) = 0$ $\Rightarrow \alpha^3 + 3\alpha - 1 = 0$ and $\alpha = -\alpha/2$ $\Rightarrow -\frac{a^3}{8} - \frac{3a}{2} - 1 = 0$ $\Rightarrow a^3 + 12a + 8 = 0$ Let $f(a) = a^3 + 12a + 8$ $\therefore f(-1) < 0, f(0) > 0, f(-2) < 0, f(1) > 0$ and f(3) > 0Hence, $a \in (-1, 0)$ or $a \in (-2, 1)$ or $a \in (-2, 3)$ 310 (a,c) The given equation can be rewritten as $\frac{1}{1 + \log_a x} + \frac{2}{\log_a x} + \frac{3}{2 + \log_a x}$...(i) Let $\log_a x =$ Then, $\frac{1}{1+t} + \frac{2}{t} + \frac{3}{2+t} = 0$ $\Rightarrow 6t^2 + 11t + 4 = 0$ $\Rightarrow (2t+1)(3t+4) = 0$ $\Rightarrow t = -\frac{1}{2} \text{ and } t = -\frac{4}{3}$ $\Rightarrow \log_a x = -\frac{1}{2}$ and $\log_a x = -\frac{4}{3}$ $\Rightarrow x = a^{-1/2} \text{ and } x = a^{-4/3}$ 311 (a,b,c) $|z_1| = |z_2| = 1 \implies a^2 + b^2 = c^2 + d^2 = 1$ (1) and $\operatorname{Re}(z_1\overline{z}_2) = 0 \implies \operatorname{Re}\left\{(a+ib)(c-id)\right\} = 0 \implies$ ac + bd = 0 (2) Now from (1) and (2), $a^{2} + b^{2} = 1 \Rightarrow a^{2} + \frac{a^{2}c^{2}}{d^{2}} = 1 \Rightarrow a^{2} = d^{2}$ (3)Also. $c^{2} + d^{2} = 1 \Rightarrow c^{2} + \frac{a^{2}c^{2}}{b^{2}} = 1 \Rightarrow b^{2} = c^{2}$ $|\omega_1| = \sqrt{a^2 + c^2} = \sqrt{a^2 + b^2} = 1$ [From (1) and (4)] and $|\omega_2| = \sqrt{b^2 + d^2} = \sqrt{a^2 + b^2} = 1$ [From (1) and (4)] Further,

Re
$$(\omega_1\omega_2) = \text{Re}\{(a + ic)(b - id)\}$$

= $ab + cd$
= $ab + cd$
= $ab + (c - \frac{ac^2}{b})$ [From (2)]
= $\frac{ab^2 - ac^2}{b} = 0$ [From (4)]
Also,
Im $(\omega_1\overline{\omega}_2)bc - ad = bc - a(-\frac{ac}{b}) = (\frac{a^2 + b^2)c}{b}$
= $\frac{c}{b} = \pm 1 \neq 0$
 $\therefore |\omega_1| = 1, |\omega_2| = 1$ and Re $(\omega_1\overline{\omega}_2) = 0$
312 (a,b,d)
 $|\frac{2z - i}{z + 1}| = m \Rightarrow |z - \frac{i}{2}| = \frac{m}{2}|z + 1|$
This shows that the given equation will represent
a circle, if $m/2 \neq 1$, i.e., $m \neq 2$
313 (a,b,d)
 $x^n - 1 = (x - 1)(x - z_1)(x - z_2) \cdots (x - z_{n-1})$
Putting $x = \omega$, we have
 $\prod_{r=1}^{n-1} (\omega - z_r) = \frac{\omega^n - 1}{\omega - 1}$
 $= \begin{cases} 0, & \text{if } n = 3k, k \in Z \\ 1, & \text{if } n = 3k + 1, k \in Z \\ 1 + \omega, \text{if } n = 3k + 2, k \in Z \end{cases}$
314 (a,c)
Clearly, we have to find it for real z. Let $z = x$.
Then,
 $|z - w| = |x - w^2| = |w - w^2|$
 $\Rightarrow (x + \frac{1}{2})^2 + \frac{3}{4} = \left| \frac{-1 + \sqrt{3}i}{2} - \frac{-1 - \sqrt{3}i}{2} \right|^2 = 3$
 $\Rightarrow x + \frac{1}{2} = \pm \frac{3}{2}$
 $\Rightarrow x = 1, -2$
315 (a,b)
Given, (sin $\alpha)x^2 - 2x + b \geq 2$. Let $f(x) = (sin \alpha)x^2 - 2x + b - 2$. Abscissa of the vertex is given by
 $x = \frac{1}{sin \alpha} > 1$
 $\int \frac{1}{\sqrt{1 + x - cosec \alpha}}$
The graph of $f(x) = (sin \alpha)x^2 - 2x + b - 2$ must be greater than zero but minimum is at $x = 1$.
That is,
 $sin \alpha - 2 + b - 2 \geq 0, b \geq 4 - sin \alpha, \alpha \in (0, \pi)$

316 (b,d) Let $f(x) = x^2 + ax + b$. Then, $x^{2} + (2c + a)x + c^{2} + ac + b = f(x + c)$ Thus, the roots of f(x + c) = 0 will be 0, d - c317 (c,d) We have, $x^{2} + x + 1 = (x - \omega)(x - \omega^{2})$ Since f(x) is divisible by $x^2 + x + 1$, $f(\omega) =$ $0, f(\omega^2) = 0, so$ $P(\omega^3) + \omega Q(\omega^3) = 0 \Rightarrow P(1) + \omega Q(1) = 0 \quad (1)$ $P(\omega^6) + \omega^2 Q(\omega^6) = 0 \Rightarrow P(1) + \omega^2 Q(1) = 0$ (2)Solving (1) and (2), we obtain P(1) = 0 and Q(1) = 0Therefore, both P(x) and Q(x) are divisible by x - 1. Hence, $P(x^3)$ and $Q(x^3)$ are divisible by $x^{3} - 1$ and so by x - 1. Since $f(x) = P(x^{3}) + P(x^{3})$ $xQ(x^3)$, we get f(x) is divisible by x - 1318 (a,b,c) $f(x) = ax^2 + bx + c$ $f(0) = c < 0, D > 0 \Rightarrow b^2 - 4ac > 0$ f(1) < 0 and f(-1) < 0 $\Rightarrow a - |b| + c < 0$ f(2) < 0 and f(-2) < 0 $\Rightarrow 4a - 2|b| + c < 0$ Nothing can be said about f(3) or f(-3), whether it is positive or negative 319 (c,d) Let, $y = \frac{(x-a)(x-b)}{(x-c)}$ $\Rightarrow (x-c)y = x^2 - (a+b)x + ab$ $\Rightarrow x^2 - (a+b+y)x + ab + cy = 0$ Since *x* is real, so $D \ge 0$ $\Rightarrow (a+b+y)^2 - 4(ab+cy) \ge 0, \forall x \in R$ $\Rightarrow y^2 + 2y(a+b-2c) + (a-b)^2 \ge 0, \forall x \in \mathbb{R}$ $\Rightarrow 4(a+b-2c)^2 - 4(a-b)^2 < 0$ $\Rightarrow (a+b-2c+a-b)(a+b-2c-a+b) < 0$ $\Rightarrow 4(a-c)(b-c) < 0$ $\Rightarrow a - c < 0$ and b - c > 0 or a - c > 0 and b-c < 0 $\Rightarrow a < c < b \text{ or } a > c > b$ 320 (a,b,c) We have, $\frac{1+i\cos\theta}{1-2i\cos\theta} = \frac{(1+i\cos\theta)(1+2i\cos\theta)}{(1-2i\cos\theta)(1+2i\cos\theta)}$ $=\frac{(1-2\cos^2\theta)+i3\cos\theta}{1+4\cos^2\theta}$

Thus, $\frac{(1+i\cos\theta)}{(1-2i\cos\theta)}$ is a real number if $\cos\theta = 0$ $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{2}$ Where *n* is an integer 321 (b,c,d) Given equation is $x^3 - ax^2 + bx - 1 = 0$. If roots of the equation be α , β , γ , then $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= a^2 - 2b$ $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2$ $= (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$ $= b^2 - 2a$ $\alpha^2 \beta^2 \gamma^2 = 1$ So, the equation whose roots are α^2 , β^2 , γ^2 is given by $x^3 - (a^2 - 2b)x^2 + (b^2 - 2a)x - 1 = 0$ It is identical to $x^3 - ax^2 + bx - 1 = 0$ $\Rightarrow a^2 - 2b = a$ and $b^2 - 2a = b$ Eliminating *b*, we get $\frac{(a^2-a)^2}{4} - 2a = \frac{a^2-a}{2}$ $\Rightarrow a\{a(a-1)^2 - 8 - 2(a-1)\} = 0$ $\Rightarrow a(a^3 - 2a^2 - a - 6) = 0$ $\Rightarrow a(a-3)(a^2+a+2) = 0$ $\Rightarrow a = 0 \text{ or } a = 3 \text{ or } a^2 + a + 2 = 0$ Which gives b = 0 or b = 3 or $b^2 + b + 2 = 0$. So, a = b = 0 or a = b = 3 or a, b are roots of $x^2 + x + 2 = 0$ 323 (a,b,c) v From figure, a > 0 $-\frac{b}{2a} = 4 \Rightarrow -\frac{b}{2a} > 0$ $\therefore b < 0$

f(0) = c < 0

Also, $-\frac{b}{2a} = 4 \Rightarrow 8a + b = 0$

324 (a,c) Let $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ $\Rightarrow |z_2| = r_2$ Also, $\arg(z_1) + \arg(z_2) = 0$ $\Rightarrow \arg(z_1) = -\arg(z_2) = -\theta_2$ $\therefore z_1 = r_2[\cos(-\theta_2) + i\sin(-\theta_2)]$ $= r_2 [\cos \theta_2 - i \sin \theta_2]$ $\Rightarrow z_2 = \overline{z}_2$ $\Rightarrow z_1 = \frac{1}{z_2}$ $\Rightarrow z_1 z_2 = 1$ 325 (a,d) If α is a real root, then $\alpha^{3} + (3+i)\alpha^{2} - 3\alpha - (m+i) = 0$ $\therefore \alpha^3 + 3\alpha^2 - 3\alpha - m = 0 \text{ and } \alpha^2 - 1 = 0$ $\Rightarrow \alpha = 1 \text{ or } -1$ $\alpha = 1 \Rightarrow m = 1$ $\alpha = -1 \Rightarrow m = 5$ 326 (d) For real roots, $D \ge 0$ $\Rightarrow (-4)^2 - 4(2\lambda - 1)(2\lambda - 1) \ge 0$ $\Rightarrow (2\lambda - 1)^2 \le 4$ $\Rightarrow -2 \leq 2\lambda - 1 \leq 2$ $\Rightarrow -\frac{1}{2} \le \lambda \le \frac{3}{2}$ \therefore Integral values of λ are 0 and 1. Hence, greatest integral value of $\lambda = 1$

327 **(b)**

According to statement 1, given equation is

$$x^2 - bx + c = 0$$

Let α , β be two roots such that

$$|\alpha - \beta| = 1$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 1$$

$$\Rightarrow b^2 - 4c = 1$$

According to statement 2, given equation is $4abc x^2 + (b^2 - 4ac)x - b = 0$. Hence,

$$D = (b^2 - 4ac)^2 + 16ab^2c$$

$$= (b^2 + 4ac)^2 > 0$$

Hence, roots are real and unequal

8 (c)

$$f(x) = ax^{2} + bx + c$$
Given, $f(0) + f(1) = 2$

$$\Rightarrow f(x) > 0 \forall x \in R$$

Hence, statement 1 is true. Let,

$$f(x) = x^2 - x + 1$$

a + b = 0

Hence, statement 2 is false

329 (a)

32

 $\therefore e^{i\theta} = \cos \theta + i \sin \theta$ $\Rightarrow e^{-i\theta} = \cos \theta - i \sin \theta$ $\therefore \cos \theta = \frac{e^{i\theta} + e^{i\theta}}{2}$ Now, $\cos(1-i) = \frac{e^{i(1-i)} + e^{-i(1-i)}}{2} = \frac{e^{(i+1)} + e^{-(1+i)}}{2}$ $= \frac{e(e^i) + e^{-1}(e^{-i})}{2}$ $= \frac{e(\cos 1 + i \sin 1 + e^{-1}(\cos 1 - i \sin 1))}{2}$ $= \frac{1}{2}\left(e + \frac{1}{e}\right)\cos 1 + \frac{i}{2}\left(e - \frac{1}{e}\right)\sin 1$ $\therefore a = \frac{1}{2}\left(e + \frac{1}{e}\right)\cos 1, b = \frac{1}{2}\left(e - \frac{1}{e}\right)\sin 1$

330 **(b)**

Fourth roots of unity are -1, 1, -i and i $\therefore z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$ and $z_1 + z_2 + z_3 + z_4 = 0$

331 (d)

Statement 2 is obviously true. Let,

 $f(x) = (x-p)(x-r) + \lambda(x-q)(x-s) = 0$

Then,
$$f(p) = \lambda(p-q)(p-s)$$

 $f(r) = \lambda(r-q)(r-s)$

$$\Rightarrow f(p)f(r) < 0$$

Hence, there is a root between p and r. Thus, statement 1 is false

332 **(a)**

Here, coefficient of $x^2 = 2 > 0$ then conditions

are $D \ge 0, f(1) > 0$ and f(2) > 0 $\Rightarrow 1 - 8a \ge 0, 2 - 1 + a > 0$ and 8 - 2 + a > 0 $\Rightarrow a \le \frac{1}{8}, a > -1$ and a > -6 $\Rightarrow -1 < a \le \frac{1}{8}$

Hence, option (a) is correct.

333 (d) $a^{2} - 3a + 2 = 0 \Rightarrow a = 1,2$ $a^{2} - 5a + 6 = 0 \Rightarrow a = 2,3$ $a^{2} - 4 = 0 \Rightarrow a = \pm 2$

Therefore, a = 2 is the only solution

Hence, statement 1 is false. Statement 2 is true by definition

334 **(b)**
$$D = (3)^2 - 4 \cdot 2 \cdot 4 = -23 < 0$$

: Roots of $2x^2 + 3x + 4 = 0$ are imaginary

Now, \because 2, 3, 4 \in *R*

 \therefore Roots are conjugate to each other.

: One root is common in $ax^2 + bx + c = 0$ and $2x^2 + 3x + 4 = 0$ (given) then other roots is also common.

 \therefore Roots are conjugate (*a*, *b*, *c* ∈ *R*)

Hence, both equation are identical

: a: b: c = 2: 3: 4

335 **(a)**

We have, $\arg(z) = 0 \Rightarrow z$ is purely real.

Also,
$$|z_1| = |z_2 + |z_1 - z_2|$$

 $\Rightarrow |z_1 - z_2|^2 = (|z_1| - |z_2|)^2$
 $\Rightarrow |z_1|^2 + |z_2|^2 - 2|z_1||z_2| \cos(\theta_1 - \theta_2)$
 $= |z_1|^2 + |z_2|^2 - 2|z_1||z_2|$
 $\Rightarrow \cos(\theta_1 - \theta_2) = 1$
 $\Rightarrow \theta_1 - \theta_2 = 0$
 $\Rightarrow \arg(z_1) - \arg(z_2) = 0$
 $\Rightarrow \arg\left(\frac{z_1}{z_2}\right) = 0 \Rightarrow \frac{z_1}{z_2}$ is purely real
 $\Rightarrow \operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0$

Statement (I) and Statement (II) are true and Statement (II) is a correct explanation of Statement (I)

336 **(a)**

Let $f(x) = ax^2 + bx + c$. Since coefficient are integers and one root is irrational, so both the roots are irrational. Hence, for any $\lambda \in Q$,

$$\begin{aligned} f(\lambda) &\neq 0 \Rightarrow |f(\lambda)| > 0 \\ \Rightarrow \left| \frac{ap^2}{q^2} + \frac{bp}{q} + c \right| > 0 \text{ where } \lambda = \frac{p}{q}, p, q \in \\ \Rightarrow \frac{1}{q^2} |ap^2 + bpq + cq^2| > 0 \end{aligned}$$

Now, $a, b, c, p, q \in I$. Hence,

$$|ap^{2} + bpq + cq^{2}| \ge 1$$

 $\Rightarrow |f(\lambda)| \ge \frac{1}{q^{2}}$

337 **(a)**

 $ax^2 + bx + c = 0$ has two complex conjugate roots only if all the coefficients are real. If all the coefficients are not real then it is not necessary that both the roots are imaginary. Hence, statement 2 is true

Now, equation $x^2 - 3x + 4 = 0$ has two complex conjugate roots. If $ax^2 + bx + c = 0$ has all coefficients real, then there will be two common roots. But if there is only one root common, then at least one of *a*, *b*, *c* must be non-real

Thus, both the statements are true and statement 2 is correct explanation of statement 1

338 (d)

 θ_2)

Statement 2 is true as it is the definition of an ellipse. Statement 1 is false as distance between 1 and 8 is 7 but |z - 1| + |z - 8| = 5 < 7. Hence not such *z* exists

339 **(a)**

$$\cos \frac{\pi}{4} = 2\cos^{2}\frac{\pi}{8} - 1$$

$$\Rightarrow \cos^{2}\frac{\pi}{8} = \left(\frac{1}{\sqrt{2}} + 1\right)\frac{1}{2}$$

$$\Rightarrow \cos^{4}\frac{\pi}{8} = \frac{1}{4}\left(\frac{1}{2} + 1 + \frac{2}{\sqrt{2}}\right) = \left(\frac{3}{2} + \sqrt{2}\right)\frac{1}{4}$$

$$\Rightarrow \frac{1}{4}\left(\frac{3}{2} + \sqrt{2}\right) + \frac{a}{2}\left(\frac{1}{\sqrt{2}} + 1\right) + b = 0$$

(:: \cos^{2} \pi/8 a root of equation)

$$\Rightarrow \left(\frac{3}{8} + \frac{a}{2} + b\right) + \sqrt{2}\left(\frac{1}{4} + \frac{a}{4}\right) = 0$$

Since *a* and *b* are rational, so

$$\frac{1}{4} + \frac{a}{4} = 0, \frac{3}{8} + \frac{a}{2} + b = 0$$
$$\Rightarrow a = -1, b = \frac{1}{8}$$

Thus, both the statements are correct and statement 2 is correct explanation of statement 1

340 **(b)**

Ζ

We must have

$$ax^{3} + (a+b)x^{2} + (b+c)x + c > 0$$

$$\Rightarrow ax^{2}(x+1) + bx(x+1) + c(x+1) > 0$$

$$\Rightarrow (x+1)(ax^{2} + bx + c) > 0$$

$$\Rightarrow a(x+1)\left(x + \frac{b}{2a}\right)^{2} > 0 \text{ as } b^{2} = 4ac$$

$$\Rightarrow x > -1 \text{ and } x \neq -\frac{b}{2a}$$

341 **(c)**

$$\begin{aligned} |z_1 + z_2| &= \left| \frac{z_1 + z_2}{z_1 z_2} \right| \\ \Rightarrow |z_1 + z_2| \left(1 - \frac{1}{|z_1 z_2|} \right) = 0 \\ \Rightarrow |z_1 z_2| &= 1 \end{aligned}$$

Hence, statement 1 is true. However, it is not necessary that $|z_1| = |z_2| = 1$. Hence, statement 2 is false

342 (a)

First, let the two complex numbers be conjugate of each other. Let complex numbers be $z_1 = x + iy$ and $z_2 = x - iy$. Then, $z_1 + z_2 =$ (x + iy) + (x - ix) = 2, which is real and $z_1 z_2 = (x + iy)(x - iy) = x^2 - i^2 y^2 = x^2 + y^2$ which is real Conversely, let z_1 and z_2 be two complex numbers such that their sum $z_1 + z_2$ and product $z_1 z_2$ both are real. Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$ and $z_1 z_2 =$ $(x_1xs_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$ Now, $z_1 + z_2$ and $z_1 z_2$ are real. Hence, $b_1 + b_2 = 0$ and $a_1b_2 + a_2b_1 = 0$ [: *z* is real \Rightarrow $\operatorname{Im}(z) = 0$ $\Rightarrow b_2 = -b_1 \text{ and } a_1b_2 + a_2b_1 = 0$ $= -b_1$ and $-a_1b_1 + a_2b_1 = 0$ $= -b_1$ and $(a_2 - a_1)b_1 = 0$ $= -b_1$ and $a_2 - a_1 = 0$ $= -b_1$ and $a_2 = a_1$ $\Rightarrow z_2 = a_2 + ib_2 = a_1 - ib_1$ $=\overline{z}_1$ Hence, z_1 and z_2 are conjugate of each other. Hence, statement 2 is true Also in statement 1, $a = \overline{a}$ and $b = \overline{b}$, then a and b

are real. Thus, $z_1 + z_2$ and $z_1 z_2$ are real. So, $z_2 = \overline{z}_2$

 $\Rightarrow \arg(z_1 z_2) = \arg(z_1 \overline{z}_1) = \arg(|z_1|^2) = 0$ Hence, statement 1 is correct and statement 2 is correct explanation of statement 1

343 **(b)**

The equation can be writer as

$$(2^x)^2 - (a-3)2^x + (a-4) = 0$$

$$\Rightarrow 2^x = 1 \text{ and } 2^x = a - 4$$

We have,

 $x \le 0$ and $2^x = a - 4$ [: *x* is non-positive]

$$\therefore \ 0 < a - 4 \le 1 \ \Rightarrow 4 < a \le 5$$

 $\therefore a \in (4,5)$

344 **(a)** Given equation is

> $px^{2} + qx + r = 0$ Let, $f(x) = px^{2} + qx + r$ f(0) = r > 0

f(1) = p + q + r < 0

$$f(-1) = p - q + r < 0$$

Hence, one root lies in (-1, 0) and the other in (0, 1)

$$\therefore [\alpha] = -1 \text{ and } [\beta] = 0$$

$$\Rightarrow [\alpha] + [\beta] = -1$$

Therefore, statement 2 is true and is correct explanation of statement 1

345 **(b)**

If a > 0, then graph of $y = ax^2 + 2bx + c$ is concave upward. Also if $b^2 - ac < 0$, then the graph always lies above *x*-axis; hence $ax^2 + 2bx + c > 0$ for all real values of *x*. Thus, domain of function $f(x) = \sqrt{ax^2 + 2bx + c}$ is *R*

If $b^2 - ac < 0$, then $ax^2 + 2bx + c = 0$ has imaginary roots. Then the graph of $y = ax^2 + 2bx + c$ never cuts *x*-axis, or *y* is either always positive or always negative. Hence, both the statements are correct but statement 2 is not correct explanation of statement 1

346 **(b)**

$$\begin{aligned} |z_{2}z_{3} + 8z_{3}z_{1} + 27z_{1}z_{2}| \\ &= \left| z_{1}z_{2}z_{3} \left(\frac{1}{z_{1}} + \frac{8}{z_{2}} + \frac{27}{z_{3}} \right) \right| \\ &= |z_{1}||z_{2}||z_{3}| \left| \frac{1}{z_{1}} + \frac{8}{z_{2}} + \frac{27}{z_{3}} \right| \\ &= |z_{1}||z_{2}||z_{3}| \left| \frac{\bar{z}_{1}}{|z_{1}|^{2}} + \frac{8\bar{z}_{2}}{|z_{2}|^{2}} + \frac{27\bar{z}_{3}}{|z_{3}|^{2}} \right| \\ &= |z_{1}||z_{2}||z_{3}| \left| \frac{\bar{z}_{1}}{1} + \frac{8\bar{z}_{2}}{4} + \frac{27\bar{z}_{3}}{9} \right| \\ &= |z_{1}||z_{2}||z_{3}||\overline{z_{1}} + 2z_{2} + 3z_{3}| \\ &= |z_{1}||z_{2}||z_{3}||z_{1} + 2z_{2} + 3z_{3}| \\ &= 1 \cdot 2 \cdot 3 \cdot 6 = 36 \end{aligned}$$

347 (a)

$$f(x) = (x - 1)(ax + b)$$

 $f(2) = 2a + b$
 $f(4) = 3(4a + b) = 12a + 3b$
 $f(2) + f(4) = 14a + 4b = 0$
 $\Rightarrow \frac{-b}{a} = 3.5$

Now, sum of roots is (a - b)/a = 1 - (b/a) = 1 + 3.5 = 4.5. Hence, the other root is 3.5

348 (a)

 $\operatorname{Let} f(x) = 4x^2 - 2x + a$

Also, both roots of f(x) = 0 lie in the interval (-1, 1).

 $\therefore D \ge 0, f(-1) > 0 \text{ and } f(1) > 0$

Now, $D \ge 0$

$$\Rightarrow (-2)^2 - 4 \cdot 4 \cdot a \ge 0$$

 $\Rightarrow a \leq \frac{1}{4}$ (i)

and f(-1) > 0

$$\Rightarrow 4(-1)^2 - 2(-1) + a > 0$$

$$\Rightarrow a > -6$$
 ...(ii)

Also,
$$f(1) > 0 \Rightarrow 4(1)^2 - 2(1) + a > 0$$

$$\Rightarrow a > -2$$
 ...(iii)

From Eqs. (i), (ii) and (iii), we get

$$-2 < a \le \frac{1}{4}$$

349 (a)

If $a^2 + b^2 + c^2 < 0$, then all a, b, c are not real or at least one of a, b, c is imaginary number. Hence roots of equation $ax^2 + bx + c = 0$ has no complex conjugate roots, even through the roots are complex. Hence statement 1 is true. Statement 2 is obviously true. Also, statement 2 is correct explanation of statement 1

350 (a)

$$D = \underbrace{(2m+1)^2}_{\text{odd}} - \underbrace{4(2n+1)}_{\text{even}}$$

For rational root, *D* must be a perfect square. As *D* is odd, let *D* be perfect square of 2l + 1, where $l \in Z$

$$(2m + 1)^2 - 4(2n + 1) = (2l + 1)^2$$

 $\Rightarrow (2m + 1)^2 - (2l + 1)^2 = 4(2n + 1)$
 $\Rightarrow [(2m + 1) + (2l + 1)][2(m - l)] = 4(2n + 1)$
 $\Rightarrow (m + l + 1)(m - l) = (2n + 1)$ (1)
R.H.S. of (1) is always odd but L.H.S. is always
even. Hence, *D* cannot be a perfect square. So, the

roots cannot be rational Hence, statement 1 is true, statement 2 is true and statement 2 is correct explanation for statement 1

351 **(c)**

 $x^{3} + x^{2} + x = x(x^{2} + x + 1) = x(x - \omega)(x - \omega^{2})$ Now $f(x) = (x + 1)^n - x^n - 1$ is divisible by $x^{3} + x^{2} + x$. Then f(0) = 0, $f(\omega) = 0$, $f(\omega^{2}) = 0$. Now, $f(0) = (0+1)^n - 0^n - 1 = 0$ $f(\omega) = (\omega + 1)^n - \omega^n - 1 = (-\omega^2)^n - \omega^n - 1$ $= -(\omega^{2n} + \omega^n + 1)$ = 0 (as *n* is not a multiple of 3) Similarly, we have $f(\omega^2) = 0$ Hence statement 1 is correct but statement 2 is false 352 (d) $x + \frac{1}{x} = 1$ $\Rightarrow x^2 - x + 1 = 0$ $\therefore x = -\omega, -\omega^2$ Now for $x = -\omega$, $p = \omega^{4000} + \frac{1}{\omega^{4000}} = \omega + \frac{1}{\omega} = -1$ Similarly for $x = -\omega^2$, P = -1. For n > 1, $2^{n} = 4k$ $\therefore 2^{2^n} = 2^{4k} = (16)^k =$ a number with last digit 6 $\Rightarrow q = 6 + 1 = 7$ Hence, p + q = -1 + 7 = 6353 (d) Let $f(x) = (x - \sin \alpha)(x - \cos \alpha) - 2$. Then, $f(\sin \alpha) = -2 < 0, f(\cos \alpha) = -2 < 0$ Also, as $0 < a < \pi/4$, hence, sin $\alpha < \cos \alpha$.

Also, as $0 < a < \pi/4$, hence, $\sin \alpha < \cos \alpha$. Therefore, equation f(x) = 0 has one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$

From the diagram when $|z_1 - z_2| = |z_1 + z_2|$, *OAB* is right-angled triangle. Hence orthocentre is 0

355 (d)

$$\left|\frac{z_1 z - z_2}{z_1 z + z_2}\right| = k$$

 $\Rightarrow \quad \left| \frac{z - \frac{z_2}{z_1}}{z + \frac{z_2}{z_1}} \right| = k$

Clearly, if $k \neq 0$, 1, then *z* would lie on a circle

If k = 1, z would lie on a perpendicular bisector of line segment joining $\frac{z_2}{z_1}$ and $-\frac{z_2}{z_1}$ and represents a points if k = 0

: Statement (I) is false and Statement (II) is true

356 (a)

We have,

 $az^2 + bz + c = 0 \quad (1)$

and z_1, z_2 [roots of (1)] are such that $\text{Im}(z_1z_2) \neq 0$. So, z_1 and z_2 are not conjugate of each other. That is complex roots of (1) are not conjugate of each other, which implies that coefficients a, b, c cannot all be real. Hence, at least one of a, b, c is imaginary

357 **(a)**

If roots of $ax^2 + bx + c = 0, 0 < a < b < c$, are non-real, then they will be the conjugate of each other. Hence,

$$z_{2} = \overline{z}_{1} \implies |z_{1}| = |z_{2}|$$
Now,

$$z_{1}z_{2} = \frac{c}{a} > 1 \implies |z_{1}|^{2} > 1$$

$$\implies |z_{1}| > 1$$

$$\implies |z_{2}| > 1$$
358 **(b)**

$$ix^{2} + (i-1)x - \frac{1}{2} - i = 0$$

$$\Rightarrow x = \frac{-(i-1) \pm \sqrt{(i-1)^{2} - 4(i)\left(-\frac{i}{2} - i\right)}}{\frac{2i}{2i}}$$

$$= \frac{-(i-1) \pm \sqrt{-4}}{2i}$$

Thus, roots are imaginary. Also, we have $b^2 - 4ac = -4 < 0$, but this is not the correct reason for which roots are imaginary as coefficients of the equation are imaginary

Hence, both the statements are correct but statement 2 is not correct explanation of statement 1

359 (d)

$$\operatorname{Let} f(x) = -x^2 + x - 1$$

Here, a < 0 and $D = (1)^2 - 4(1) < 0$, then f(x) < 0

But $\sin^4 x \ge 0$

 $\therefore -x^2 + x - 1 \neq \sin^4 x$

Hence, number of solutions is 0.

Hence, option (d) is correct.

360 (a)

Given equations are

 $ax^2 + 2bx + c = 0 \tag{1}$

 $a_1 x^2 + 2b_1 x + c_1 = 0 \quad (2)$

Since Eqs. (1) and (2) have only one common root and a, b, c, a_1, b_1, c_1 are rational, therefore, common root cannot be imaginary or irrational (as irrational roots occur in conjugate pair when coefficients are rational, and complex roots always occur in conjugate pair)

Hence, the common root must be rational. Therefore, both the roots of Eqs. (1) and (2) will be rational. Therefore, $4(b^2 - ac)$ and $4(b_1^2 - a_1c_1)$ must be perfect squares (squares of rational numbers). Hence, $b^2 - ac$ and $b_1^2 - a_1c_1$ must be perfect squares

361 **(a)**

Let A = b + c - a, B = c + a - b, C = a + b - c

$$\therefore A + B + C = 0$$

And given equation becomes

$$Ax^2 + Bx + C = 0$$

 $\therefore D = B^2 - 4AC$

$$= (A + C)^2 - 4AC = (A - C)^2$$

 $= 4[c-a]^2 = perfect square$

Hence, roots of $(b + c - a)x^2 + (c + a - b)x + (a + b - c) = 0$ are rationals.

Hence option (a) is correct.

362 **(b)**

Given $x^2 + 2px + q = 0$ $\therefore \alpha + \beta = -2p$...(i) $\alpha\beta = q$...(ii) And $ax^2 + 2bx + c = 0$ $\therefore \alpha + \frac{1}{\beta} = -\frac{2b}{a}$ (iii) and $\frac{\alpha}{\beta} = \frac{c}{a}$...(iv) Now, $(p^2 - q)(b^2 - ac)$ $= \left[\left(\frac{\alpha + \beta}{-2} \right)^2 - \alpha\beta \right] \left[\left(\frac{\alpha + \frac{1}{\beta}}{2} \right)^2 - \frac{\alpha}{\beta} \right] a^2$ $= \frac{(\alpha - \beta)^2}{16} \left(\alpha - \frac{1}{\beta} \right)^2 \cdot a^2 \ge 0$ \therefore Statement I is true. Again, now $pa = -\left(\frac{\alpha + \beta}{2} \right) a = -\frac{a}{2} (\alpha + \beta)$ and $b = -\frac{a}{2} \left(\alpha + \frac{1}{\beta} \right)$

Since, $pa \neq b \Rightarrow \alpha + \frac{\beta}{2} \neq \alpha + \beta$

 $\Rightarrow \beta^2 \neq 1, \beta \neq \{-1, 0, 1\}, \text{ which is correct.}$ Similarly, if $c \neq qa \Rightarrow a\frac{\alpha}{\beta} \neq a\alpha\beta$

$$\Rightarrow \alpha \left(\beta - \frac{1}{\beta} \right) \neq 0$$
$$\Rightarrow \alpha \neq 0 \text{ and } \beta - \frac{1}{\beta} \neq 0$$
$$\Rightarrow \beta \neq \{-1, 0, 1\}$$

Statement II is true.

Both Statement I and Statement II are true. But statement II does not explain Statement I.

363 (c)

Clearly, Statement 1 is true but Statement 2 is false, since, $ax^2 + bx + c = 0$ is an identity when a = b = c = 0

364 **(c)**

We have, $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$

$$\Rightarrow |z_1|^2 + |z_2|^2 + 2|z_1||z_2|\cos(\theta_1 - \theta_2) = |z_1|^2 + |z_2|^2$$

where,
$$\theta_1 = \arg(z_1)$$
, $\theta_2 = \arg(z_2)$

$$\Rightarrow \cos(\theta_1 - \theta_2) = 0 \Rightarrow \theta_1 - \theta_2 = \frac{\pi}{2}$$

$$\Rightarrow \arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
$$\Rightarrow \operatorname{Re}\left(\frac{z_1}{z_2}\right) = \frac{|z_1|}{|z_2|}\cos\frac{\pi}{2} = 0$$

 $\therefore \frac{z_1}{z_2}$ is purely imaginary

: Statement I is true

If z is purely imaginary then
$$z - \overline{z} = 0$$

365 **(c)**

Here, f(x) is a downward parabola

$$D = (a+1)^2 + 20 > 0$$

From the graph, clearly, statement 1 is true but

statement 2 is false

366 **(d)**

 $\begin{aligned} |z_1 + z_2 + z_3| &= |z_1 - a + z_2 - b + z_3 - c + (a \\ &+ b + c)| \\ &\leq |z_1 - a| + |z_2 - b| + |z_3 - c| + |a + b + c| \\ &\leq 2|a + b + c| \\ &\text{Hence, } |z_1 + z_2 + z_3| \text{ is less than } 2|a + b + c| \end{aligned}$

367 **(b)**

Since $|z_1| = |z_2| = |z_3|$, circumcentre of Δ is origin Also $\frac{z_1+z_2+z_3}{3} = 0$

Centroid concide with circumcentre $\Rightarrow \Delta$ is equilateral

$$A(z_{1})$$

$$D$$

$$C(z_{3})$$

$$\frac{z_{2} + z_{3}}{2}$$

$$arg\left(\frac{z_{2} + z_{3} - 2z_{1}}{z_{3} - z_{2}}\right) = arg\left(2\left(\frac{\frac{z_{2} + z_{3}}{2} - z_{1}}{z_{3} - z_{2}}\right)\right)$$

$$= arg\left(\frac{\frac{z_{2} + z_{3}}{2} - z_{1}}{z_{3} - z_{2}}\right)$$

 $(z_2 + z_3)/2$ is the mid-point of side *BC*. Clearly, line joining *A* and mid-point of *BC* will be perpendicular to side *BC*. Thus,

 $\arg\left(\frac{\frac{z_2+z_3}{2}-z_1}{z_3-z_2}\right) = \frac{\pi}{2}$

Hence, statement 2 is also true. However, it does not explain statement 1

368 (a)

 $x^2 + x + 1 = 0$

D = -3 < 0

Therefore, $x^2 + x + 1 = 0$ and $ax^2 + bx + c = 0$ have both the roots common. Hence, a = b = c

369 **(d)**

Roots of the equation $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. Let the roots be *a*, *ar*, *ar*², *ar*³, *ar*⁴. Therefore,

 $a + ar + ar^2 + ar^3 + ar^4 = 40$ (1)

and

$$\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \frac{1}{ar^3} + \frac{1}{ar^4} = 10$$
 (2)

From (1) and (2),

$$ar^2 = \pm 2$$
 (3)

Now, the product of roots is $a^5r^{10} = (ar^2)^5 = \pm 32$

 \therefore |S| = 32

370 **(b)**

We have, Let $x = (\cos \theta + i \sin \theta)^{3/5}$ $\Rightarrow x^5 = (\cos \theta + i \sin \theta)^3$ $\Rightarrow x^5 - (\cos 3\theta + i \sin 3\theta) = 0$ \Rightarrow Product of roots $= \cos 3\theta + i \sin 3\theta$ Also product of roots of the equation $x^5 - 1 = 0$ is 1. Hence statement 2 is true. But it is not correct explanation of statement 1

371 (a)

 $\arg(z_1z_2) = 2\pi \Rightarrow \arg(z_1) + \arg(z_2) = 2\pi \Rightarrow$ $\arg(z_1) = \arg(z_2) = \pi$, as principal arguments are from $-\pi$ to π

Hence both the complex numbers are purely real.Hence both the statements are true and statement2 is correct explanation of statement 1

372 (a)

Since, x = -2 is a root of f(x).

$$\therefore f(x) = (x+2)(ax+b)$$

But f(0) + f(1) = 0

$$\therefore 2b + 3a + 3b = 0$$

$$\Rightarrow -\frac{b}{a} = \frac{3}{5}$$

Hence, option (a) is correct.

373 (a)

Suppose there exists a complex number *z* which satisfies the given equation and is such that |z| < 1. Then, $z^4 + z + 2 = 0 \Rightarrow -2 = z^4 + z \Rightarrow |-2| = |z^4 + z|$ $\Rightarrow 2 \le |z^4| + |z| \Rightarrow 2 < 2$, because |z| < 1But 2 < 2 is not possible. Hence given equation cannot have a root *z* such that |z| < 1

374 **(d)**

 $f(x,y) = (2x - y)^2 + (x + y - 3)^2$

Therefore, statement 1 is false as it represents a point (1, 2)

375 (c)

a. d + a - b = 0 and d + b - c = 0d = b - a and d = c - b $\therefore b - a = c - b \Rightarrow 2b = a + b \Rightarrow a, b, c$ are in A.P. Also x = 1 satisfies the second equation. Therefore, the other root is also 1. Product of roots is 1 $\therefore c(a-b) = a(b-c) \Rightarrow b = \frac{2ac}{a+c} \Rightarrow a, b, c \text{ are in}$ H.P. Therefore, *a*, *b*, *c* are in A.P. and *a*, *b*, *c* in H.P Hence, *a*, *b*, *c* are in G.P. **b**. $(a^2 + b^2)x^2 - 2b(a + c)(b^2 + c^2) = 0$ The roots are real and equal. Hence, $4b^{2}(a+c)^{2} - 4(a^{2}+b^{2})(b^{2}+c^{2}) = 0$ $\Rightarrow b^2(a^2 + c^2 + 2ac)$ $-(a^2b^2 + a^2c^2 + b^4 + b^2c^2) = 0$ $\Rightarrow b^{2}a^{2} + b^{2}c^{2} + 2ab^{2}c - a^{2}b^{2} - a^{2}c^{2} - b^{4}$ $-b^2c^2 = 0$ $\Rightarrow 2ab^2c - a^2c^2 - b^4 = 0 \Rightarrow (b^2 - ac)^2 = 0$ Hence, $b^2 = ac$. Thus a, b, c are in G.P. **c**. $(x - 1)^3 = 0 \Rightarrow x = 1$ is the common root. Hence, a + b + c = 0**d.** $(a + c)^2 + 4b^2 - 4b(a + c) \le 0, \forall x \in R$ $\Rightarrow \left((a+c) - 2b \right)^2 \le 0$ $\Rightarrow a + c = 2b$ $\Rightarrow a, b, c \text{ in A.P.}$ 376 (c) **a**. |z - 1| = |z - i|Hence it lies on the perpendicular bisector of the line joining (1, 0) and (0, 1) which is a straight line passing through the origin **b**. $|z + \overline{z}| + |z - \overline{z}| = 2$ $\Rightarrow |x| + |y| = 1$ Hence, z lies on a square, **c**. Let z = x + iy. Then, $|z + \overline{z}| = |z - \overline{z}|$ $\Rightarrow |2x| = |2iy|$ $\Rightarrow |x| = |y|$ $\Rightarrow x = \pm y$ Hence, the locus of *z* is a pair of straight lines **d**. Let Z = 2/z. Then, $|Z| = \left|\frac{2}{z}\right| = \frac{2}{|z|} = \frac{2}{1} = 2$ This shows that Z lies on a circle with centre at the origin and radius 2 units

377 **(b)**

Given,
$$a = \frac{1 - i\sqrt{3}}{2} = \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

 $\therefore \quad \bar{a} = \frac{1}{2} + \frac{i\sqrt{3}}{2} \text{ and } \frac{1}{\bar{a}} = \frac{1 - i\sqrt{3}}{2}$

. —

5.
$$a\bar{a} = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) \left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)$$
$$= \left(\frac{1}{2}\right)^{2} - i^{2} \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{1}{4} + \frac{3}{4} = 1$$

6.
$$\arg\left(\frac{1}{a}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{2}{1}\right) = -\frac{\pi}{3}$$

7.
$$a - \bar{a} = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) - \left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) = -i\sqrt{3}$$

8.
$$\operatorname{Im}\left(\frac{4}{3a}\right) = \operatorname{Im}\left(\frac{4}{3\left(\frac{1-i\sqrt{3}}{2}\right)}\right)$$
$$= \operatorname{Im}\left(\frac{8(1+i\sqrt{3})}{3\left(1-i\sqrt{3}\right)(1+i\sqrt{3})}\right)$$
$$= \operatorname{Im}\left(\frac{2+2i\sqrt{3}}{3}\right) = \frac{2}{\sqrt{3}}$$

378 **(a)**

a. $x^2 + ax + b = 0$ has root α . Hence, $a^2 + a\alpha + b = 0 \quad (1)$ $x^{2} + px + q = 0$ has roots $-\alpha, \gamma$. Hence, $\alpha^2 - p\alpha + q = 0 \quad (2)$ Eliminating α from (1) and (2), we get $(q-b)^2 = (aq+bp)(-p-a)$ $\Rightarrow (q-b)^2 = -(aq+bp)(p+a)$ **b.** $x^2 + ax + b = 0$ has root is α, β . Hence, $\alpha + a\alpha + b = 0 \quad (1)$ $x^2 + px + q = 0$ has root $1/\alpha$. Hence, $q\alpha^2 + p\alpha + 1 = 0 \quad (2)$ Eliminating α from (1) and (2), we get $(1-bq)^2 = (a-pb)(p-aq)$ **c.** $x^2 + ax + b = 0$ has roots α , β . Hence, $\alpha^2 + a\alpha + b = 0 \ (1)$ $x^{2} + px + q = 0$ has roots $-2/\alpha$, γ . Hence, $q\alpha^2 - 2p\alpha + 4 = 0 \quad (2)$ Eliminating α from (1) and (2), we get $(4 - bq)^2 = (4a + 2pb)(-2p - aq)$ **d**. $x^2 + ax + b = 0$ has roots α , β . Hence, $\alpha^2 + a\alpha + b = 0 \quad (1)$ $x^{2} + px + q = 0$ has roots $-1/2\alpha$, γ . Hence, $4q\alpha^2 - 2p\alpha + 1 = 0 \quad (2)$ Eliminating α from (1) and (2), we get $(1-4bq)^2 = (a+2bp)(-2p-4aq)$ 379 (a) |z - 2i| + |z - 7i| = k is ellipse if 1. k > |7i - 2i| or k > 5 $\left|\frac{2z-3}{3z-2}\right| = k \implies \left|\frac{z-\frac{3}{2}}{z-\frac{2}{2}}\right| = \frac{3k}{2} \Rightarrow 3k/2 > 1 \Rightarrow$ 2.

k > 2/33. |z-3| - |z-4i| = k is hyperbola, if $k > |3 - 4i| \Rightarrow 0 < k < 5$ $|z - (3 + 4i)| = \frac{k}{50}|a\overline{z} + \overline{a}z + b|$ 4. $\Rightarrow |z - (3 + 4i)| = \frac{k}{5} \frac{|a\overline{z} + \overline{a}z + b|}{2|3 + 4i|}$ This is hyperbola if $k/5 > 1 \Rightarrow k > 5$ 380 (a) **a**. $y = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$ $\Rightarrow x^2y + 2xy + 4y = x^2 - 2x + 4$ $\Rightarrow (y-1)x^{2} + 2(y+1)x + 4(y-1) = 0$ D > 0 $\Rightarrow 4(y+1)^2 - 16(y-1)^2 \ge 0$ $\Rightarrow (y+1)^2 - (2y-2)^2 \ge 0$ $\Rightarrow (3y-1)(3-y) \ge 0$ $\Rightarrow (3y-1)(y-3) \le 0 \Rightarrow y \in \left[\frac{1}{2}, 3\right]$ \Rightarrow {1} \Rightarrow *P* **b**. $y = \frac{x^2 - 3x - 2}{2x - 3}$ $\Rightarrow x^2 - 3x - 2 = 2xy - 3y$ $\Rightarrow x^{2} - (3 + 2y)x + (3y - 2) = 0$ D > 0 $\Rightarrow (3+2y)^2 - 4(3y-2) \ge 0$ $\Rightarrow 9 + 4y^2 + 12y - 12y + 8 \ge 0$ $\Rightarrow 4v^2 + 17 \ge 0$ Which is always true. Hence, y ∈ R ⇒ {1, 4, -3, -10} ⇒ p, q, r, s c. y = $\frac{2x^2 - 2x + 4}{x^2 - 4x + 3}$ $\Rightarrow x^2y - 4xy + 3y = 2x^2 - 2x + 4$ $(y-2)x^2 + 2(1-2y)x + 3y - 4 = 0$ D > 0 $4(1-2y)^2 - 4(y-2)(3y-4) \ge 0$ $\Rightarrow 1 + 4y^2 - 4y - (3y^2 - 10y + 8) \ge 0$ $\Rightarrow v^2 + 6v - 7 \ge 0$ $\Rightarrow (y+7)(y-1) \ge 0$ $\Rightarrow y \ge 1 \text{ or } y \le -7$ \Rightarrow {1, 4, -10} \Rightarrow p, q, s d. $f(x) = x^2 - (a - 3)x + 2 < 0, \forall x \in [-2, -1]$ \Rightarrow f(-2) < 0 and f(-1) < 0 \Rightarrow 4 + 2(a - 3) + 2 < 0 and 1 + (a - 2) + 2 < 0 $\Rightarrow a < 0$ and a < -1 $\Rightarrow a < -1$ $\Rightarrow a \in \{-10, -3\}$ 381 (d) a. $(m-2)x^2 - (8-2m)x - (8-3m) = 0$ has root of opposite signs. The product of roots is $-\frac{8-3m}{m-2} < 0$

 $\Rightarrow \frac{3m-8}{m-2} < 0$ $\Rightarrow 2 < m < 8/3$ **b**. Exactly one root of equation $x^2 - m(2x - 8) - m(2x - 8)$ 15 = 0 lies in interval (0, 1) f(0)f(1) < 0 $\Rightarrow (0 - m(-8) - 15)(1 - m(-6) - 15) < 0$ $\Rightarrow (8m - 15)(6m - 15) < 0$ $\Rightarrow 15/8 < m < 15/6$ c. $x^2 + 2(m+1)x + 9m - 5 = 0$ has both roots negative. Hence, sum of roots is -2(m+1) < 0 or m > -1Product of roots is 9m - 5 > 0 or m > 5/9Discriminant, $D \ge 0 \Rightarrow 4(m+1)^2 - 4(9m-5) \ge 0$ $\Rightarrow m^2 - 7m + 6 \ge 0$ $\Rightarrow m \leq 1 \text{ or } m \geq 6$ Hence, for (1), (2) and (3), we get $m \in \left(\frac{5}{9}, 1\right] \cup [6, \infty)$ **d**. $f(x) = x^2 + 2(m-1)x + m + 5 = 0$ has one root less than 1 and the other root greater than 1. Hence, f(1) < 0 $\Rightarrow 1 + 2(m - 1) + m + 5 < 0$ $\Rightarrow m < -4/3$ 382 (b) **a**. $x^2 - x + 1 = 0$ $\Rightarrow x = \frac{1 \pm i\sqrt{3}}{2}$ $= -\omega, -\omega^2$ $\Rightarrow \left(x^n + \frac{1}{x^n}\right)^2 = (-1)^{2n} \left(\omega^n + \frac{1}{\omega^n}\right)^2$ $= (\omega^n + \omega^{2n})^2$ $::\frac{1}{\omega^n} = \frac{\omega^{2n}}{\omega^{3n}} = \omega^{2n}$ Now. $1 + \omega^n + \omega^{2n} = \frac{1 - \omega^{3n}}{1 - \omega^n} = 0$ for $n \neq 3p$ $\therefore \omega^n + \omega^{2n} = -1$ for $n \neq 3p$ = 2 for n = 3p $\therefore \sum_{n=1}^{3} \left(x^n + \frac{1}{x^n} \right)^2 = 8$ **b**. In the expression, $1 + \cos \theta + i \sin \theta$ $\overline{\sin\theta + i(1 + \cos\theta)}$ Numerator is $1 + \cos \theta + i \sin \theta = 2 \cos \frac{\theta}{2} \left[\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right]$

$$= 2 \cos \frac{\theta}{2} e^{i\theta/2}$$

and denominator is
 $-i^{2} \sin \theta + i(1 + \cos \theta) = i[\text{conjugate} \text{ numerator}]$
 $= i 2 \cos \frac{\theta}{2} e^{-\theta/2}$
 $\therefore E = \left(\frac{N^{r}}{D^{r}}\right) = \left[\frac{1}{i}\frac{e^{-i\theta/2}}{e^{-i\theta/2}}\right]^{4} = \frac{1}{i^{4}}e^{4i\theta}$
 $= \cos 4\theta + i \sin 4\theta$
 $\therefore n = 4$
c. We know that if $z = re^{i\theta}$, then $\overline{z} = re^{-i\theta}$
 $ightarrow B(z)$
 $\therefore \lim_{B(z)} = \frac{r \sin \theta}{r \cos \theta} = \tan \theta = \tan \frac{\pi}{n} = \sqrt{2} - 1$
 $\Rightarrow \tan \frac{\pi}{n} = \tan \frac{\pi}{8} \Rightarrow n = 8$
d. $\sum_{r=1}^{10}(r - \omega)(r - \omega^{2}) = \sum_{r=1}^{10}(r^{2} + r + 1)$
 $= \sum_{r} r^{2} + \sum_{r} r + 10$
 $= \frac{10 \times 11 \times 21}{6} + \frac{10 \times 11}{2} + 10$
 $= 450$
 $\Rightarrow \frac{1}{50} \left\{ \sum_{r=1}^{10} (r - \omega(r - \omega^{2})) \right\} = 9$
383 (c)
5. z is equidistant from the points $i |z|$ and

of

z is equidistant from the points i |z| and
 -i |z|, whose perpendicular bisector is Im
 (z) = 0

6. Sum of distance of *z* from (4, 0) and (-4, 0) is a constant 10, hence locus of *z* is ellipse with semi-major axis 5 and focus at $(\pm 4, 0), ae = 4$

7.
$$|z| \le |w| + \left|\frac{1}{w}\right| = \frac{5}{2} < 3$$

8.
$$|z| \le |w| + \left|\frac{1}{w}\right| = 2$$

$$\therefore \quad \operatorname{Re}(z) \le |z| \le 2$$

384 **(b)**

Obviously when $a \ge 0$, we have no roots as all the terms are followed by +ve sign. Also for a = -2,

we have $x^2 - 2|x| + 1 = 0$ or $|x| - 1 = 0 \Rightarrow x = \pm 1$ Hence, the equation has two roots Also when a < -2, for given equation $|x| = \frac{-a \pm \sqrt{a^2 - 4}}{2} > 0$ Hence, the equation has four roots as $|-a| > \sqrt{a^2 - 4}$. Obviously, the equation has no three real roots for any value of a 385 (a) $z^4 - 1 = 0 \Rightarrow z^4 = 1 = \cos 0 + i \sin 0 \Rightarrow$ 1. $z = (\cos 0 + i \sin 0)^{1/4}$ $= \cos 0 + i \sin 0$ $z^4 + 1 = 0 \quad \Rightarrow z^4 = -1 = \cos \pi +$ 2. $i\sin\pi \Rightarrow z = (\cos\pi + i\sin\pi)^{1/4}$ $=\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ $iz^4 + 1 = 0 \Rightarrow z^4 = i = \cos{\frac{\pi}{2}} + i\sin{\frac{\pi}{2}} \Rightarrow$ 3. $z = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{1/4}$ $=\cos\frac{\pi}{8}+i\sin\frac{\pi}{8}$ 4. $iz^4 - 1 = 0 \Rightarrow z^4 = -i = \cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$ $\Rightarrow z = \left(\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}\right)^{1/4} = \cos\frac{\pi}{8} - i\sin\frac{\pi}{8}$ 386 (c) (A) Here, $\alpha + \beta + \gamma = 10$...(i) $\alpha\beta + \beta\gamma + \gamma\alpha = 7$...(ii) And $\alpha\beta\gamma = -8$...(iii) (B) On squaring Eq. (i) both sides, we get $\alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 100$ $\Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 100 - 2(7)$ [from Eq. (ii)] $\Rightarrow \quad \alpha^2 + \beta^2 + \gamma^2 = 86 \qquad \dots (iv)$ (C) Now, $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\beta + \gamma\alpha}{\alpha\beta\gamma} = \frac{7}{-8}$ [from Eqs. (ii) and (iii) (D) Again now, $\frac{\alpha}{\beta\gamma} + \frac{\beta}{\alpha\gamma} + \frac{\gamma}{\alpha\beta}$ = $\frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha\beta\gamma}$ $=\frac{86}{-8}=-\frac{43}{4}$ [from Eqs. (iii) and (iv)] 387 (d) $D(z_4)$ $C(z_3)$ $A(z_1)$ $B(z_2)$

In parallelogram, the mid-points of diagonals coincide

 $\frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$ $\Rightarrow z_1 - z_4 = z_2 - z_3$ Also in parallelogram, *AB*||*CD*. Hence, $\arg\left(\frac{z_1 - z_2}{z_3 - z_4}\right) = 0$ $\Rightarrow \frac{z_1 - z_2}{z_3 - z_4}$ is purely real In rectangle, adjacent sides are perpendicular. Hence. $\arg\left(\frac{z_1 - z_2}{z_3 - z_2}\right) = \frac{\pi}{2}$ $\Rightarrow \frac{z_1 - z_2}{z_3 - z_2}$ is purely imaginary Also in rectangle, $AC = BD \Rightarrow |z_1 - z_3| = |z_2 - z_4|$ In rhombus, $AC \perp BD \Rightarrow \frac{z_1 - z_3}{z_2 - z_4}$ is purely imaginary 388 (d) Using the condition that the roots of $ax^2 + bx + bx$ c = 0 may be in the ratio m: n is $mnb^2 =$ $ac(m+n)^2$ (i) If the roots are $\alpha = \beta$, then $\alpha . \alpha b^2 = ac(\alpha + \alpha)^2$ $\Rightarrow b^2 = 4ac$ (ii) If the roots are $\alpha = 2\beta$, then $\beta . 2\beta b^2 = ac(\beta + 2\beta)^2$ $\Rightarrow 2b^2 = 9ac$ (iii) if the roots are $\alpha = 3\beta$, then $\beta.3\beta b^2 = ac(\beta + 3\beta)^2$ $\Rightarrow 3b^2 = 16ac$ (iv) If the roots are $\alpha = \beta^2$, then $(a^{2}c)^{\frac{1}{2+1}} + (ac^{2})^{\frac{1}{2+1}} = -b$ $\Rightarrow (a^2c)^{\frac{1}{3}} + (ac^2)^{\frac{1}{3}} = -b$ 389 (a) $|z_1| = |z_2| = |z_3|$: They lie on a circle having centre at origin shown as in the figure Z_1 Since, triangle is equilateral $\therefore z_1 + z_2 + z_3 = 0$ 390 (b) Given, $\arg(z) > 0$ and $\arg(-z) - \arg(z) = \lambda_1$, then $-\arg z - \arg(-z) = \lambda 1$ $\Rightarrow \ -\pi = \lambda_1 \ \Rightarrow \ \lambda_1 = -\pi$ Again, given $\arg(z) < 0$, $\arg(z) - \arg(-z) = \lambda_2$ $\Rightarrow \lambda_2 = -\pi$

$$\Rightarrow \frac{nz^{n-1}}{z^{n}-1} = \sum_{r=0}^{n-1} \frac{1}{(z-\alpha^{r})} \quad (\text{diferentiating})$$

$$\Rightarrow \frac{n(2)^{n-1}}{2^{n}-1} = \sum_{r=0}^{n-1} \frac{1}{(2-\alpha^{r})} \quad (\text{put } z = 2)$$

$$= 1 + \sum_{r=1}^{n-1} \frac{1}{(2-\alpha^{r})} = \frac{n(2)^{n-1} - 2^{n} + 1}{(2^{n}-1)}$$

$$= \frac{(n-2) - 2^{n-1} + 1}{2^{n}-1}$$
(c)
If α, β are the roots and D be the discriminant of the given quadratic equation, then
 $\alpha + \beta = \frac{2(1+3m)}{1+m}, \alpha\beta = \frac{1+8m}{1+m} \dots (i)$
and $D = 4(1 + 3m)^{2} - 4(1 + m)(1 + 8m)$
 $= 4m(m-3)$
If roots are real, then $D \ge 0$.
 $\therefore m \in (-\infty, 0] \cup [3, \infty) \dots (ii)$
 $D < 0$
 $\Rightarrow 4m(m-3) < 0$
 $\Rightarrow 0 < m < 3$
 $\Rightarrow m = 1, 2$
(c)
Since, the other roots of $f(f(x)) = x$ are λ and δ , we have
 $f(f(\lambda)) = \lambda$
Let $f(\lambda) = \gamma$
 $\Rightarrow f(\gamma) = \lambda \Rightarrow$ other roots γ and δ lie on the line
 $y = -x + c$
 \Rightarrow There must be two points C and D on the
parabola
 $y = ax^{2} + bx + c$ which are images of each other
in the line $y = x$
 \Rightarrow If α, β are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .
 $y = \frac{\beta(\alpha, \beta)}{\alpha}$ are real so are λ and δ .

 $\therefore \lambda_1 = \lambda_2$

Since, $z^{n} - 1 = \sum_{r=0}^{n-1} (z - \alpha^{r})$

 $\Rightarrow \log(z^n - 1) = \sum_{r=1}^{n-1} \log(z - \alpha^r)$

391 **(b)**

392

393

This is not possible $\Rightarrow \alpha, \beta$ and γ, δ can't be real. Also α and β are equal, then λ, δ can't be real.

394 **(b)**

If $x = 2 + i\sqrt{3}$ is one root, then the other root is $2-i\sqrt{3}$. Sum of roots = $4 \Rightarrow p = -4$ Product of roots = $7 \Rightarrow q = 7$ is given below. Graph of $y = x^2 - 4x + 7$ 395 (c) Now, $(\beta - \alpha) = [(\beta + \delta) - (\alpha + \delta)]$ $(\beta + \alpha)^2 - 4\alpha\beta$ $= [(\beta + \delta) + (\alpha + \delta)]^2$ $-4(\beta+\delta)(\alpha+\delta)$ $\Rightarrow (-b_1)^2 - 4c_1 = (-b_2)^2 - 4c_2$ $\Rightarrow D_1 = D_2$...(i) Since, least value of f(x) is $-\frac{D_1}{4} = \frac{-1}{4}$ $\Rightarrow D_1 = D_2 = 1$ Hence, least value of g(x) is $-D_2 = -\frac{1}{4}$ 396 (b) Given that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ $\Rightarrow |z_1|^2 + |z_2|^2 + z_1\overline{z_2} + \overline{z_1}z_2 = |z_1|^2 + |z_2|^2$ $\Rightarrow z_1 \overline{z}_2 + \overline{z}_1 z_2 = 0 \quad (1)$ $\Rightarrow \frac{z_1}{z_2} + \frac{\overline{z}_1}{z_2} = 0 \quad (\text{dividing by } z_2 \overline{z}_2)$

arguments are 0 and π 397 (a)

 $\Rightarrow \frac{z_1}{z_2} + \overline{\left(\frac{z_1}{z_2}\right)} = 0 \quad (2)$

$$z = \frac{1 - i \sin \theta}{1 + i \cos \theta} = \frac{(1 - i \sin \theta)(1 - i \cos \theta)}{(1 + i \cos \theta)(1 - i \cos \theta)}$$
$$= \frac{(1 - \sin \theta \cos \theta) - i(\cos \theta + \sin \theta)}{(1 + \cos^2 \theta)}$$
If z is purely real, then
$$\cos \theta + \sin \theta = 0$$
or
$$\tan \theta = -1$$
$$\Rightarrow \theta = n\pi - \frac{\pi}{4}, n \in I$$

From (1), z_2 , \overline{z}_2 is purely imaginary. From (2),

Also, $i(z_1/z_2)$ is purely real. Hence its possible

 $\arg\left(\frac{z_1}{z_2}\right) = \pm \frac{\pi}{2} \Rightarrow \arg(z_1) - \arg(z_2) = \pm \frac{\pi}{2}$

 z_1/z_2 is purely imaginary. Hence,

If z is purely imaginary, $1 - \sin \theta \cos \theta = 0$ or $\sin \theta \cos \theta = 1$, which is not possible

sin
$$\theta \cos \theta = 1$$
, which is not possible

$$|z| = \left| \frac{1 - i \sin \theta}{1 + i \cos \theta} \right| = \frac{\sqrt{1 + \sin^2 \theta}}{\sqrt{1 + \cos^2 \theta}}$$
If $|z| = 1$, then
 $\cos^2 \theta = \sin^2 \theta \Rightarrow \tan^2 \theta = 1 \Rightarrow \theta = n\pi \pm \frac{\pi}{4}, n \in I$
We have,
 $\arg(z) = \tan^{-1} \left(\frac{-(\cos \theta + \sin \theta)}{1 - \sin \theta \cos \theta} \right)$
Now,
 $\arg(z) = \pi/4$
 $\Rightarrow \frac{-(\cos \theta + \sin \theta)}{(1 - \sin \theta \cos \theta)} = 1$
 $\Rightarrow \cos^2 \theta + \sin^2 \theta + 2 \sin \theta \cos \theta$
 $= 1 + \sin^2 \theta \cos^2 \theta - 2 \sin \theta \cos \theta$
 $\Rightarrow 1 + 4 \sin \theta \cos \theta = 1 + \sin^2 \theta \cos^2 \theta$
 $\Rightarrow \sin^2 \theta \cos^2 \theta - 4 \sin \theta \cos \theta = 0$
 $\Rightarrow \sin \theta \cos \theta (\sin \theta \cos \theta - 4) = 0$
 $\Rightarrow \sin \theta \cos \theta = 0 \quad (\because \sin \theta \cos \theta = 4 \text{ is not possible})$
 $\Rightarrow \theta = (2n + 1)\pi \text{ or } \theta = (4n - 1)\pi/2, n \in I$
 $(\because -\cos \theta - \sin \theta > 0)$

398 (a)

(a) Let z_1 (purely imaginary) be a root of the given equation. Then, $z_1 = -\overline{z}_1$ and $az_1^2 + bz_1 + c = 0$ (1) $\overrightarrow{\qquad} = \overline{a}z_1^2 + \overline{b}z_1 + \overline{c} = 0$ $\Rightarrow \overline{a}z_1^2 - \overline{b}z_1 + \overline{c} = 0$ (as $\overline{z}_1 = -z_1$) (2) Now Eqs. (1) and (2) must have one common root $\therefore (c\overline{a} - a\overline{c})^2 = (b\overline{c} - c + c\overline{b})(-a\overline{b} - \overline{a}b)$ Let z_1 and z_2 be two purely imaginary roots. Then, $\overline{z}_1 = -z_1, \overline{z}_2 = -z_2$ Now, $az^2 + bz + c = 0$ (1)

$$\Rightarrow az^{2} + bz + c = \overline{0}$$

$$\Rightarrow \overline{a} \overline{z}^{2} + \overline{b}\overline{z} + \overline{c} = 0$$

$$\Rightarrow \overline{a} z^{2} - \overline{b} z + \overline{c} = 0 \quad (2)$$
Equations (1) and (2) must be identical as their roots are same,

$$\therefore \frac{a}{a} = -\frac{b}{\overline{b}} = \frac{c}{\overline{c}}$$

$$\Rightarrow a\overline{c} = \overline{a}c, a\overline{b} + \overline{a}b = 0 \text{ and } b\overline{c} + \overline{b}c = 0$$

Hence, $a\overline{c}$ is purely real and $a\overline{b}$ and $\overline{b}c$ are purely imaginary. Let z_1 (purely real) be a root of the given equation. Then, $z_1 = \overline{z}_1$ and $az_1^2 + bz_1 + c = 0$ $\Rightarrow az_1^2 + bz_1 + c = \overline{0}$ $\Rightarrow \overline{a} \, \overline{z}_1^2 + \overline{b} \overline{z}_1 + \overline{c} = 0$ $\Rightarrow \overline{a}z_1^2 + \overline{b}z_1 + \overline{c} = 0$ (2)Now (1) and (2) must have one common root. Hence. $(c\overline{a} - a\overline{c})^2 = (b\overline{c} - c\overline{b})(a\overline{b} - \overline{a}b)$ 399 (c) $az + b\overline{z} + c = 0$ (1) $\Rightarrow \overline{az} + \overline{b}z + \overline{c} = 0 \quad (2)$ Eliminating z from (1) and (2), we get $z = \frac{c\overline{a} - b\overline{c}}{|b|^2 - |a|^2}$ If $|a| \neq |b|$, then z represents one point on the Argand plane. If |a| = |b| and $\overline{a}c \neq b\overline{c}$, then no such z exists. Adding (1) and (2) $(\overline{a} + b)\overline{z} + (a + \overline{b})z + (c + \overline{c}) = 0$ This is of the form $A\overline{z} + \overline{A}z + B = 0$, where $B = c + \overline{c}$ is real. Hence locus of z is a straight line 400 (a) $z = -\lambda \pm \sqrt{\lambda^2 - 1}$ Case I: When $-1 < \lambda < 1$, we have $\lambda^2 < 1 \Rightarrow \lambda^2 - 1 < 0$ $z = -\lambda + i\sqrt{1 - \lambda^2}$ or $x = -\lambda$, $y = \pm\sqrt{1 - \lambda^2}$ $\Rightarrow y^2 = 1 - x^2$ or $x^2 + y^2 = 1$ Case II: $\lambda > 1 \Rightarrow \lambda^2 - 1 > 0$ $z = -\lambda \pm \sqrt{\lambda^2 - 1}$ or $x = -\lambda \pm \sqrt{\lambda^2 - 1}$, y = 0Roots are $(-\lambda, +\sqrt{\lambda^2-1}, 0), (-\lambda, -\sqrt{\lambda^2-1}, 0).$ One root lies inside the unit circle and the other root lies outside the unit circle Case III: When λ is very larger, then $z = -\lambda - \sqrt{\lambda^2 - 1} \approx -2\lambda$ $z = -\lambda + \sqrt{\lambda^2 - 1}$ $=\frac{(-\lambda+\sqrt{\lambda^2-1})(-\lambda-\sqrt{\lambda^2-1})}{(-\lambda-\sqrt{\lambda^2-1})}$ $=\frac{1}{-\lambda-\sqrt{\lambda^2-1}}=-\frac{1}{2\lambda}$ 401 (d) We have,

 $az^2 + z + 1 = 0$ (1)

 $\Rightarrow az^2 + z + 1 = 0$ (taking conjugate of both sides) $\Rightarrow \overline{a}z^2 - z + 1 = 0$ (2)[since z is purely imaginary $\overline{z} = -z$] Eliminating *z* from (1) and (2) by crossmultiplication rule, $(\overline{a}-a)^2 + 2(a+\overline{a}) = 0 \Rightarrow \left(\frac{\overline{a}-a}{2}\right)^2 + \frac{a+\overline{a}}{2} = 0$ $\Rightarrow -\left(\frac{a-\overline{a}}{2i}\right)^2 + \left(\frac{a+\overline{a}}{2}\right) = 0 \ \Rightarrow -\sin^2\theta + \cos\theta$ $\Rightarrow \cos \theta = \sin^2 \theta$ (3) Now, $f(x) = x^3 - 3x^2 + 3(1 + \cos \theta)x + 5$ $f'(x) = 3x^2 - 6x + 3(1 + \cos \theta)$ Its discriminant is $36 - 36(1 + \cos \theta) = -36 \cos \theta = -36 \sin^2 \theta < 0$ $\Rightarrow f'(x) > 0 \ \forall x \in R$ Hence, f(x) is increasing $\forall x \in R$. Also, f(0) = 5, then f(x) = 0 has one negative root. Now, $\cos 2\theta = \cos \theta \Rightarrow 1 - 2\sin^2 \theta = \cos \theta$ $\Rightarrow 1 - 2\cos\theta = \cos\theta$ $\Rightarrow \cos \theta = 1/3$ Which has four roots for $\theta \in [0, 4\pi]$ 402 (a)

We have, $\begin{vmatrix} |z| - \left|\frac{4}{z}\right| \le |z - \frac{4}{z}| = 2$ $\Rightarrow -2 \le |z| - \frac{4}{|z|} \le 2$ $\Rightarrow |z|^2 + 2|z| - 4 \ge 0 \text{ and } |z|^2 - 2|z| - 4 \le 0$ $\Rightarrow (|z| + 1)^2 - 5 \ge 0 \text{ and } (|z| - 1)^2 \le 5$ $\Rightarrow (|z| + 1 + \sqrt{5})(|z| + 1 - \sqrt{5}) \ge 0$ and $(|z| - 1 + \sqrt{5}) \times (|z| - 1 - \sqrt{5}) \le 0$ $\Rightarrow |z| \le -\sqrt{5} - 1 \text{ or } |z| \ge \sqrt{5} - 1 \text{ and } \sqrt{5} - 1 \le |z| \le \sqrt{5} + 1$ $\Rightarrow \sqrt{5} - 1 \le |z| \le \sqrt{5} + 1$ Hence, the least modulus is $\sqrt{5} - 1$ and the greatest modulus is $\sqrt{5} + 1$. Also,

 $Q(\bar{z})$

 $|z| = \sqrt{5} + 1 \Rightarrow \frac{4}{|z|} = \sqrt{5} - 1$ Now, $\frac{4}{z} = \frac{4\overline{z}}{|z|^2}$ Hence, 4/z lies in the direction of \overline{z} $\left|z - \frac{4}{z}\right| = PR = 2$ (given) We have, $OP = \sqrt{5} + 1$ and $OR = \sqrt{5} - 1$ $\Rightarrow \cos 2\theta = \frac{OP^2 + OR^2 - PR^2}{2OP \cdot OR}$ $=\frac{\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)^{2}-4}{2(5-1)}=1$ $\Rightarrow 2\theta = 0.2\pi$ $\Rightarrow \theta = 0, \pi$ \Rightarrow z is purely real $\Rightarrow z = \pm(\sqrt{5}+1)$ Similarly for $|z| = \sqrt{5} - 1$, we have $z = \pm(\sqrt{5} - 1)$ 403 (a) $BM \equiv y - 0 = -1(x - 1)$ x + y = 1 $\therefore \sqrt{u-1} = t + i(1-t)$ u = 2t + 2it(1 - t)x = 2t and y = 2t(1-t)y = x(1 - x/2) $2v = 2x - x^2$ $\Rightarrow (x-1)^2 = -2\left(y-\frac{1}{2}\right)$ Which is a parabola. Its axis is x = 1, i.e, $z + \overline{z} = 2$ and directrix is y = 1, i.e. $z - \overline{z} = 2i$ 404 (a) $C(z_3)$ $(z_1)A \not\models$ $\frac{AB \times AC}{(IA)^2} = \frac{AB}{IA} \times \frac{AC}{IA}$ $\angle IAB = \frac{\theta}{2}, \angle IAC = \frac{\theta}{2}$ $\frac{z_2 - z_1}{z_4 - z_1} = \frac{|z_2 - z_1|}{|z_4 - z_4|} e^{-\frac{i\theta}{2}}$ $\frac{z_3 - z_1}{z_4 - z_1} = \frac{|z_3 - z_1|}{|z_4 - z_1|} e^{\frac{i\theta}{2}}$ Multiplying $\frac{z_2 - z_1}{z_4 - z_1} \frac{z_3 - z_1}{z_4 - z_1} = \frac{|z_2 - z_1|}{|z_4 - z_1|} \frac{|z_3 - z_1|}{|z_4 - z_1|}$

 $\Rightarrow \frac{(z_2 - z_1)(z_3 - z_1)}{(z_4 - z_1)^2} = \frac{AB \times AC}{IA^2}$ (1)405 (d) $\angle BOD = 2 \angle BAD = A$ $\angle COD = 2 \angle CAD = A$ |z| = 2 $C(z_3)$ $\frac{z_4}{z_2} = e^{iA}, \frac{z_3}{z_4} = e^{iA}$ (From rotation about the point '0') $\Rightarrow z_4^2 = z_2 z_3$ 406 (d) Let unknown polynomial be P(x). Let Q(x) and R(x) be the quotient and remainder, respectively, when it is divided by (x - 3)(x - 4). Then, P(x) = (x - 3)(x - 4)Q(x) + R(x)Then, we have R(x) = ax + b $\Rightarrow P(x) = (x-3)(x-4)Q(x) + ax + b$ Given that P(3) = 2 and P(4) = 1. Hence, 3a + b = 2 and 4a + b = 1 $\Rightarrow a = -1$ and b = 5 $\Rightarrow R(x) = 5 - x$ $5 - x = x^{2} + ax + 1 \Rightarrow x^{2} + (a + 1)x - 4 = 0$ Given that roots are real and distinct $\therefore D > 0 \Rightarrow (a+1)^2 + 16 > 0$ Which is true or all real *x* 407 (d) $ax^2 - bx + c = 0$ Let $f(x) = ax^2 - bx + c$ be the corresponding quadratic expression and α , β be the roots of f(x) = 0. Then, $f(x) = a(x - \alpha)(x - \beta)$ Now, $af(1) > 0, af(2) > 0, 1 < \frac{b}{2a} < 2, b^2 - 4ac > 0$ $\Rightarrow a(1-\alpha)(1-\beta) > 0, a(2-\alpha)(2-\beta) > 0, 2a$ $< b < 4a, b^2 - 4ac > 0$ $\Rightarrow a^2(1-\alpha)(1-\beta)(2-\alpha)(2-\beta) > 0$ $\Rightarrow a^2(\alpha - 1)(2 - \alpha)(\beta - 1)(2 - \beta) > 0$

As f(1) and f(2) both are integers and f(1) > 0, and f(2) > 0, so f(1)f(2) > 0 $\Rightarrow f(1) f(2) \ge 1$ $\Rightarrow 1 \le a^2(\alpha - 1)(2 - \alpha)(\beta - 1)(2 - \beta)$ Now, $\frac{(\alpha - 1) + (2 - \alpha)}{2} \ge \left((\alpha - 1)(2 - \alpha) \right)^{1/2}$ $\Rightarrow (\alpha - 1)(2 - \alpha) \le \frac{1}{4}$ Similarly, $(\beta - 1)(2 - \beta) \le \frac{1}{4}$ $\Rightarrow (\alpha - 1)(2 - \alpha)(\beta - 1)(2 - \beta) < \frac{1}{16}$ As $\alpha \neq \beta$, so $a^2 > 16 \Rightarrow a \ge 5$ $\Rightarrow b^2 > 20c \text{ and } b > 10 \Rightarrow b \ge 11$ Also, $b^2 > 100 \Rightarrow c > 5 \Rightarrow c \ge 6$ 408 (c) Given equation is $x^4 + 2ax^3 + x^2 + 2ax = 0 \quad (1)$ or $\left(x^{2} + \frac{1}{x^{2}}\right) + 2a\left(x + \frac{1}{x}\right) + 1 = 0$ $\Rightarrow \left(x + \frac{1}{x}\right)^{2} + 2a\left(x + \frac{1}{x}\right) - 1 = 0$ $\Rightarrow t^2 + 2at - 1 = 0 \quad (2)$ Where t = x + (1/x). Now, $\left(x+\frac{1}{x}\right) \ge 2$ or $\left(x + \frac{1}{x}\right) \le -2$ $\therefore t \ge 2 \text{ or } t \le -2$ Now, eq. (1) will have at least two positive roots, when at least one root of Eq. (2) will be greater than 2. From eq. (2), $D = 4a^2 - 4(-1) = 4(1 + a^2) > 0, \forall a \in R$ (3) Let the roots of eq. (2) be α , β . If α , $\beta \leq 2$, then $\Rightarrow f(2) \ge 0$ and $\frac{-B}{2A} < 2$ $\Rightarrow 4 + 4a - 1 \ge 0$ and $-\frac{2a}{2} < 2$ $\Rightarrow a \ge -\frac{3}{4} \text{ and } a > -2$ $\Rightarrow a \ge -\frac{3}{4}$ Therefore, at least one root will be greater than 2. Then, $a < -\frac{3}{4}$ (4) Combining (3) and (4), we get *a* < – Hence, at least one root will be positive if $a \in [-\infty, -(3/4)]$ 409 (a) $(\beta - \alpha) = ((\beta + h) - (\alpha + h))$

 $(\beta + \alpha)^2 - 4\alpha\beta$ $= [(\beta + h) + (\alpha + h)]^2$ $-4(\beta + h)(\alpha + h)$ $(-b_1)^2 - 4c_1 = (-b_2)^2 - 4c_2$ $D_1 = D_2$ The least value of f(x) is $-\frac{D_1}{4} = -\frac{1}{4} \Rightarrow D_1 = 1 \text{ and } D_2 = 1$ Therefore, the least value of g(x) is $-\frac{D_2}{4} = -\frac{1}{4}$ The least value of g(x) occurs at $-\frac{b_2}{2} = \frac{7}{2} \Rightarrow b_2 = -7$ $\Rightarrow \bar{b}_2^2 - 4c_2 = D_2$ $\Rightarrow 49 - 4c_2 = 1 \Rightarrow \frac{48}{4} = c_2 \Rightarrow c_2 = 12$ $\Rightarrow x^2 - 7x + 12 = 0 \Rightarrow x = 3,4$ 410 (d) $\therefore AC = 4\sqrt{2}$ $\therefore AB = BC = \frac{4\sqrt{2}}{\sqrt{2}} = 4$ units $OB = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$ $\therefore A(-2\sqrt{2},0), B(2\sqrt{2},0), C(0,-2\sqrt{2})$ Since $y = ax^2 + bx + c$ passes through *A*, *B* and *C*, we get $y = \frac{x^2}{2\sqrt{2}} - 2\sqrt{2}$ 411 (d) Given that $9^x - a3^x - a + 3 \le 0$ Let $t = 3^x$. Then, $t^2 - at - a + 3 \le 0$ or $t^2 + 3 \le a(t+1)$ (1) Where $t \in R^+, \forall x \in R$ $f(t) + F_1(t) = t^2 + 3$ (0.3)0 _1 Let $f_1(t) = t^2 + 3$ and $f_2(t) = a(t + 1)$ For $x < 0, t \in (0, 1)$. That means (1) should have at least one solution in $t \in (0, 1)$. From (1), it is obvious that $a \in R^+$. Now $f_2(t) = a(t + 1)$ represents a straight line. It should meet the curve $f_1(t) = t^2 + 3$, at least once in $t \in (0, 1)$ $f_1(0) = 3, f_1(1) = 4, f_2(0) = a, f_2(1) = 2a$ If $f_1(0) = f_2(0)$, Then a = 3; if $f_1(1) = f_2(1)$, then a = 2. Hence, the required range is $a \in (2, 3)$ 412 (d)

Let $f(x) = x^2 + x + a - 9$ $x^2 + x + a - 9 < 0$ has at least one positive solution, then either both the roots of equation $x^{2} + x + a - 9 = 0$ are non-negative or 0 lies between the roots 0 (i) (ii) Now sum of roots $= -\frac{1}{2}$, hence case I is not possible. For case II, $f(0) < 0 \Rightarrow a - 9 < 0 \Rightarrow a < 9$ 413 (b) $b^2 > (a + c)^2$ $\Rightarrow (a+c-b)(a+c+b) < 0$ $\Rightarrow f(-1)f(1) < 0$ So, there is exactly one root in (-1, 1)414 (a) From the question, the real roots of $x^3 - x^2 +$ $\beta x + \gamma = 0$ are x_1, x_2, x_3 and they are in A.P. As x_1, x_2, x_3 are in A.P., let $x_1 = a - d, x_2 = a, x_3 =$ a + d. Now, $x_1 + x_2 + x_3 = -\frac{-1}{1} = 1$ $\Rightarrow a - d + a + a + d = 1$ $\Rightarrow a = \frac{1}{2}$ (1) $x_1 x_2 + x_2 x_3 + x_3 x_1 = \frac{\beta}{1} = \beta$ $\Rightarrow (a-d)a + a(a+d) + (a+d)(a-d) = \beta (2)$ $x_1 x_2 x_3 = -\frac{\gamma}{1} = -\gamma$ $\Rightarrow (a-d)a(a+d) = -\gamma \quad (3)$ From (1) and (2), we get $3a^2 - d^2 = \beta$ $\Rightarrow 3\frac{1}{9} - d^2 = \beta$, so $\beta = \frac{1}{3} - d^2 < \frac{1}{3}$ From (1) and (3), we get $\frac{1}{2}\left(\frac{1}{9}-d^2\right)=-\gamma$ $\Rightarrow \gamma = \frac{1}{3} \left(d^2 - \frac{1}{9} \right) > \frac{1}{3} \left(-\frac{1}{9} \right) = -\frac{1}{27}$ $\gamma \in \left(-\frac{1}{27}, +\infty\right)$

415 (8) Given $\alpha\beta$; $\alpha\beta(\alpha + \beta)$; $\alpha^3 + \beta^3$ are in G.P. $\alpha + \beta = 4$; $\alpha\beta = k$; $\alpha\beta^2 + \alpha^2\beta = \alpha\beta(\alpha + \beta)$ $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ = 64 - 3k(4) = 4(16 - 3k): k; 4k; 4(16 - 3k) are in G.P. $16k^2 = 4k(16 - 3k)$ 4k(4k - 16 + 3k) = 0 $k = 0; k = \frac{16}{7}$ 416 (3) Clearly, $P(x) - x^3 = 0$ has roots 1, 2, 3, 4 $\therefore P(x) - x^3 = (x - 1)(x - 2)(x - 3)(x - 4)$ $\Rightarrow P(x) = (x-1)(x-2)(x-3)(x-4) + x^3$ Hence, $P(5) = 1 \times 2 \times 3 \times 4 + 125 = 129$ 417 (1) Let z = a + ibGiven $|z| = 2 \Rightarrow a^2 + b^2 = 4 \Rightarrow a, b \in [-2, 2]$ Now $w = \frac{(a+1)+ib}{(a-1)+ib}$ $\Rightarrow |w| = \sqrt{\frac{(a+1)^2 + b^2}{(a-1)^2 + b^2}}$ $= \sqrt{\frac{a^2 + b^2 + 2a + 1}{a^2 + b^2 - 2a + 1}} = \sqrt{\frac{5 + 2a}{5 - 2a}}$ $|w|_{\text{max}} = \sqrt{\frac{5+4}{1}} = 3$ (when a = 2) $|w|_{\min} = \frac{5-4}{9} = \frac{1}{3}$ (when a = -2) Hence, required product is 1 418 (3) $2x^{2} + 4x(y - 3) + 7y^{2} - 2y + t = 0$ D = 0 (for one solution) $\Rightarrow 16(y-3)^2 - 8(7y^2 - 2y + t) = 0$ $\Rightarrow 2(y-3)^2 - (7y^2 - 2y + t) = 0$ $\Rightarrow 2(v^2 - 6v + 9) - (7v^2 - 2v + t) = 0$ $\Rightarrow -5y^2 - 10y + 18 - t = 0$ $\Rightarrow 5y^2 + 10y + t - 18 = 0$ Again D = 0 (for one solution) $\Rightarrow 100 - 20(t - 18) = 0$ $\Rightarrow 5 - t + 18 = 0$ $\Rightarrow t = 23$ For t = 23; $5y^2 + 10y + 5 = 0$ $(y+1)^2 = 0 \Rightarrow y = -1$ For y = -1; $2x^2 - 16x + 32 = 0$ $x^2 - 8x + 16 = 0$ $x = 4 \Rightarrow x + y = 3$ 419 **(4)** $f(x) = ax^2 - (3+2a)x + 6$

= (ax - 3)(x - 2)

Here, roots of the equation f(x) = 0 are 2 and 3/a, and f(0) = 6. f(x) should be positive for exactly three negative integral values of xTherefore, graph of f(x) must be a downward parabola passing through x = 2 and x = 3/a and $1 < \frac{3}{2} < -2$

$$-4 \leq \frac{1}{a} < -3$$

$$\therefore a \in \left(-1 - \frac{3}{4}\right]$$

$$Y \uparrow 6$$

$$-\frac{1}{4} + \frac{3}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = -1, d = -\frac{3}{4}$$

$$\Rightarrow c^{2} + 4|d| = 1 + 3 = 4$$
420 (3)
We have $P(x) = \frac{5}{2} - 6x - 9x^{2} = -(3x + 1)^{2} + \frac{8}{3}$

$$\Rightarrow P_{\max} = \frac{8}{3}$$
Similarly, $Q(y) = -4y^{2} + 4y + \frac{13}{2} = -(2y - 12 + 152)$

$$\Rightarrow Q_{\max} = \frac{15}{2}$$
Now, $P_{\max} \times Q_{\max} = \frac{8}{3} \times \frac{15}{2} = 20$
So $(x, y) \equiv \left(-\frac{1}{3}, \frac{1}{2}\right)$
Hence, $6x + 10y = 6\left(\frac{-1}{3}\right) + 10\left(\frac{1}{2}\right) = -2 + 5 = 3$

421 (8)

Let $\left(a + \frac{1}{a}\right) = t$ $\Rightarrow a^3 + \frac{1}{a^3} = 18$ $t^3 - 3t - 18 = 0 \quad (1)$ t = 3 satisfies (1) Hence factorizing (1) $(t-3)(t^2+3t+6) = 0$ t = 3 only is the solution : $a + \frac{1}{a} = 3 \Rightarrow a^2 + \frac{1}{a^2} = 7 \Rightarrow a^4 + \frac{1}{a^4} = 47$ We have $|a\omega + b| = 1$

422 (6)

 $\Rightarrow |a\omega + b|^2 = 1$ $\Rightarrow (a\overline{\omega} + b) = 1$ $\Rightarrow a^2 + ab(\omega + \overline{\omega}) + b^2 = 1$ $\Rightarrow a^2 - ab + b^2 = 1$ $\Rightarrow (a-b)^2 + ab = 1 \quad (1)$ When $(a - b)^2 = 0$ and ab = 1 then

(1, 1); (-1, -1)When $(a - b)^2 = 1$ and ab = 0 then (0, 1); (1, 0); (0, -1); (-1, 0)Hence there are 6 ordered pairs 423 (4) $= \left[\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i(1+\cos\theta)}\right]^4$ $= i^4 \left[\frac{1 + \cos \theta + i \sin \theta}{i \sin \theta + i^2 (1 + \cos \theta)} \right]^4$ $= \left[\frac{2\cos^2\frac{\theta}{2} + i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} - i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right]$ $= \left[\frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}}\right]^{4}$ $=\left[\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)^2\right]^4$ $=\cos 8\frac{\theta}{2} + i\sin 8\frac{\theta}{2} = \cos 4\theta + i\sin 4\theta \Rightarrow n = 4$ 424 (3) $(1+ri)^3 = s(1+i)$ $\Rightarrow 1 + 3ri + 3r^2i^2 + r^3i^3 = s(1+i)$ $\Rightarrow 1 - 3r^2 + i(3r - r^3) = s + si$ $\Rightarrow 1 - 3r^2 = s = 3r - r^3$ Hence, $1 - 3r^2 = 3r - r^3$ $\Rightarrow r^3 - 3r^2 - 3r + 1 = 0$ \Rightarrow sum of three roots is 3 425 (3) The given equation $x + \frac{1}{x} = 3$ $\therefore x^{2} + \frac{1}{x^{2}} = 7 \implies x^{4} + \frac{1}{x^{4}} = 47 \implies x^{8} + \frac{1}{x^{8}}$ $= (47)^2 - 2$ $\therefore x^8 + x^{-8} = 2207$ (1) Now $E = x^9 + x^7 + x^{-9} + x^{-7}$ $= x^8 \left(x + \frac{1}{x} \right) + x^{-9} + x^{-7}$ $= x^{8}\left(x+\frac{1}{x}\right) + x^{-8}\left(x+\frac{1}{x}\right)$ $E = \left(x + \frac{1}{x}\right) (x^8 + x^{-8})$ (2) Substitute the value of $x^8 + x^{-8} = 2207$ from (1) and $x + \frac{1}{x} = 3$ E = (3)(2207) = 6621426 (6) Let z = x + iy $\therefore E = z \,\overline{z} + (z - 3)(\overline{z} - 3) + (z - 6i)(\overline{z} + 6i)$ $= 3z\overline{z} - 3(z+\overline{z}) + 9 + 6(z-\overline{z})i + 36$ $= 3(x^2 + y^2) - 6x - 12y + 45$ $= 3[x^2 + y^2 - 2x - 4y + 15]$ $= 3[(x-1)^{2} + (y-2)^{2} + 10]$ $\therefore E_{\min} = 30$ when x = 1 and y = 2427 (7) Let $E = \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$

Now $3 + E = \frac{a}{b+c} + 1 + \frac{b}{c+a} + 1 + \frac{c}{a+b} + 1$ $\Rightarrow 3 + E = (a + b + c) \left[\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right]$ $\Rightarrow 3 + E = 3 \times \frac{10}{3} = 10 \Rightarrow E = 7$ 428 (6) $a^2 \ge 8b$ and $4b^2 \ge 4a$ Now $b^2 \ge a \Rightarrow b^4 \ge a^2 \ge 8b$ (a > 0, b > 0) $\therefore \Rightarrow b^3 \ge 8 \Rightarrow b \ge 2 (1)$ Again $a^2 \ge 8b$ and $b \ge 2$ $\Rightarrow a^2 \ge 16$ $\Rightarrow a \ge 4$ (2) From (1) and (2), $(a + b)_{least} = 6$ 429 (7) Given a + b + c = 1 (1) ab + bc + ca = 0 (2) abc = 2 (3) Now $(a + b + c)^2 = 1$ $a^2+b^2+c^2+2\sum ab=1$ $a^{2} + b^{2} + c^{2} = 1$ Now, $a^3 + b^3 + c^3 - 3abc = (a + b + c)[\sum a^2 - a^2 - b^2]$ ab = 1(1 - 0) = 1 $a^{3} + b^{3} + c^{3} = 1 + 3abc = 1 + 3 \times 2 = 7$ 430 (2) We have $x_2 + x_2 + x_3 = 8$ $x_1 x_2 x_3 = d$ $x_1x_2 + x_2x_3 + x_3x_1 = c$ Possible roots 1, 2, 5 or 1, 3, 4 $\therefore d = 10 \text{ or } d = 12$ $\Rightarrow c = 2 + 10 + 5 = 17 \text{ or } 3 + 12 + 4 = 19$ Hence, d = 10 and c = 17 or d = 12 and c = 19431 (4) We have $|z|^2 + \frac{16}{|z|^3} = z^2 - 4z = \overline{z}^2 - 4\overline{z}$ $\Rightarrow (z - \overline{z})(z + \overline{z} - 4) = 0$ $\Rightarrow z = \overline{z} = x(x \neq 2)$ So, $x^2 = 4x + x^2 + \frac{16}{|x|^3}$ $\Rightarrow x = \frac{-4}{|x|^3} \Rightarrow x = -\sqrt{2}$ $\therefore z = -\sqrt{2}$ $|z|^4 = 4$ 432 (3) $x^{2} + x(y - a) + y^{2} - ay + 1 \ge 0x \in R$ $\Rightarrow (y-a)^2 - 4(y^2 - ay + 1) \le 0$ $\Rightarrow -3y^2 + 2ay + a^2 - 4 \le 0$ $\therefore 3y^2 - 2ay + 4 - a^2 \ge 0 \ y \in R$ D < 0 $\Rightarrow 4a^2 - 4.3(4 - a^2) \le 0 \Rightarrow a^2 - 3(4 - a^2) \le 0$ $\Rightarrow 4a^2 - 12 < 0$

 \therefore range of $a \in (-\sqrt{3}, \sqrt{3}) \Rightarrow$ number of integer $\{-1, 0, 1\}$ 433 (8) As P(1) = 0and $p(x) \ge 0$ hence let $p(x) = k(x - 1)^2$, k > 0y O $p(2) = k = 2 \implies k = 2$ $\therefore p(x) = 2(x-1)^2 \Rightarrow p(3) = 8$ 434 (6) $x^{2} + ax + b \equiv (x + 1)(x + b) \Rightarrow b + 1 = a$ (1) Also $x^2 + bx + c \equiv (x+1)(x+c) \Rightarrow c+1 = b$ or b + 1 = c + 2 (2) hence b + 1 = a = c + 2also $(x + 1)(x + b)(x + c) \equiv x^3 - 4x^2 + x + 6$ $\Rightarrow x^3 + (1+b+c)x^2 + (b+bc+c)x + bc$ $\equiv x^3 - 4x^2 + x + 6$ $\Rightarrow 1 + b + c = -4$ $\Rightarrow 2c + 2 = -4 \Rightarrow c = -3; b = -2 \text{ and } a = -1$ $\Rightarrow a + b + c = -6$ 435 (3) Let $a^2 + b^2 = x$ $1 - 2ab = (a + b)^2 - 2ab = a^2 + b^2$ = x(a+b=1);Also $ab = \frac{1-x}{2}$ and $a^3 + b^3 = (a + b)(a^2 + b^2 - ab)$ $a^3 + b^3 = x - ab$ (1)But $ab = \frac{1-x}{2}$ Hence $a^3 + b^3 = x - \frac{1-x}{2} = \frac{3x-1}{2}$ Hence the equation $(1-2ab)(a^3+b^3) = 12$, becomes $x\left(\frac{3x-1}{2}\right) = 12$ $\Rightarrow 3x^2 - x - 24 = 0$ $\Rightarrow (x-3)(3x+8) = 0$ $\Rightarrow x = 3 \text{ or } x = -\frac{8}{3} (\text{not possible}) \text{ as } x = a^2 + a^2 +$ $b^2 \not< 0$ $\therefore x = 3 \Rightarrow a^2 + b^2 = 3$ 436 (2) $(x + y + z)^2 = 144$ (given) $\Rightarrow \sum x^2 + 2 \sum xy = 144$ $\Rightarrow 96 + 2\sum xy = 144 \Rightarrow \sum xy = 24$ Again $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36 \Rightarrow xyz = \frac{24}{36} = \frac{2}{3}$ Now $x^3 + y^3 + z^3 - 3xyz = (x + y + y^3)$

$$z)(\sum x^{2} - \sum xy)$$

$$\Rightarrow \sum x^{3} - 2 = (12)(96 - 24) = (12)(72) = 864$$

$$\Rightarrow \sum x^{3} = 866$$
437 (3)

$$|z - 2 - 2i| \le 1$$

$$\int_{1}^{y} (0,2) - (2,2) - (2,2) = 1$$

$$|z| = 12i | = |2i (2 - 2i)| = |2i||z - 2i|$$

$$|z - 2i| = |2i (2 - 2i)| = |2i||z - 2i|$$

$$|z - 2i| = distance of z from P(0, 2)$$
Hence, maximum value is 3
438 (5)

$$|3z + 9 - 7i| = |(3z + 6 - 3i) + (3 - 4i)| \le |3z + 6 - 3i| + |3 - 4i| = 3|z + 2 - i| + 5 = 20$$
439 (3)
We have $abc + 1 = \frac{bc}{5} = \frac{-ac}{15} = \frac{ab}{3}$

$$\Rightarrow \frac{a}{b} = -3 \text{ and } \frac{c}{b} = -5$$
Now $\frac{c - b}{c - a} = \frac{\frac{c}{b - 1}}{\frac{b}{b - a}} = \frac{-5 - 1}{-5 - (-3)} = 3$
440 (7)
We have
 $x^{3} - y^{3} = 98i$

$$\Rightarrow (x - y)^{3} + 3xy(x - y) = 98i$$

$$\Rightarrow -343i + 3(a + ib)(7i) = 98i$$

$$\Rightarrow a + ib = 21$$

$$\Rightarrow a = 21 \text{ and } b = 0$$

$$\Rightarrow a + b = 21$$
441 (8)
 $x^{2} + mx + n = 0 \sqrt{\frac{2\alpha}{2\beta}} \text{ and } x^{2} + px + m = 0 \sqrt{\frac{\alpha}{\beta}}$

$$2(\alpha + \beta) = -m (1)$$

$$4a\beta = n (2)$$
and $\alpha + \beta = -p (3)$

$$a\beta = m (4)$$

$$\therefore (1) \text{ and } (3) \Rightarrow 2p = m$$
and (2) and (4) $\Rightarrow 4m = n$

$$\Rightarrow \frac{n}{p} = \frac{4m}{m/2} = 8$$

442 **(9)**

Let z = a + bi

 $\Rightarrow |z|^2 = a^2 + b^2$ Now z + |z| = 2 + 8i $\Rightarrow a + bi + \sqrt{a^2 + b^2} = 2 + 8i$ $\Rightarrow a + \sqrt{a^2 + b^2} = 2, b = 8$ $\Rightarrow a + \sqrt{a^2 + 64} = 2$ $\Rightarrow a^2 + 64 = (2 - a)^2 = a^2 - 4a + 4$ \Rightarrow 4*a* = -60, *a* = -15 Thus, $a^2 + b^2 = 225 + 64 = 289$ $|z| = \sqrt{a^2 + b^2} = \sqrt{289} = 17$ 443 (9) Let $\alpha_1 = A$, $\beta_1 = AR$, $\alpha_2 = AR^2$, $\beta_2 = AR^3$ We have $\alpha_1 + \beta_1 = 6 \Rightarrow A(1+R) = 6$ (1) $\alpha_1 \beta_1 = p \Rightarrow A^2 R = p \quad (2)$ Also $\alpha_2 + \beta_2 = 54 \Rightarrow AR^2(1+R) = 54$ (3) $\alpha_2 \beta_2 = q \Rightarrow A^2 R^5 = q \quad (4)$ Now, on dividing Eq. (3) by Eq. (1), we get $\frac{AR^2(1+R)}{A(1+R)} = \frac{54}{6} = 9 \implies R^2 = 9$ \therefore R = 3 (As it is an increasing G.P.) \therefore On putting R = 3 in eq. (1), we get $A = \frac{6}{4} = \frac{3}{2}$: $p = A^2 R = \frac{9}{4} \times 3 = \frac{27}{4}$ and $q = A^2 R^5 = \frac{9}{4} \times 3 = \frac{27}{4}$ $243 = \frac{2187}{4}$ Hence, $q - p = \frac{2187 - 27}{4} = \frac{2160}{4} = 540$ 444 (3) $f(x) = (x-1)(x^2 - 7x + 13)$ For f(x) to be prime at least one of the factors must be prime Hence, $x - 1 = 1 \Rightarrow x = 2$ or $x^{2} - 7x + 13 = 1 \Rightarrow x^{2} - 7x + 12 = 0 \Rightarrow x = 3$ or 4 $\Rightarrow x = 2,3,4$ 445 **(4)** $x^{1/8} = (3x^4 + 4)^{1/64} \Rightarrow x^8 = 3x^4 + 4 \Rightarrow x^4 = 4$ 446 (7) For two distinct roots, D > 0 i.e., $k^2 +$ $8(k^2 + 5) > 0$ which is always true Also let $f(x) = -2x^2 + kx + k^2 + 5 = 0$ But f(0) > 0 and f(2) < 0y $\rightarrow x$ 0 2 $-8 + 2k + k^2 + 5 < 0 \Rightarrow k^2 + 2k - 3 < 0$ $\Rightarrow (k+3)(k-1) < 0$ $k \in (-3, 1) \Rightarrow a = -3; b = 1 \Rightarrow a + 10b$ = -3 + 10 = 7

447 (1) $z^4 + z^3 + z^2 + z^2 + z + 1 = 0$ $\Rightarrow (z^2 (z^2 + z + 1) + (z^2 + z + 1) = 0)$ $\Rightarrow (z^2 + z + 1)(z^2 + 1) = 0$ $\therefore z = i, -i, \omega, \omega^2$. For each, |z| = 1448 (5) $Z_1 = (8\sin\theta + 7\cos\theta) + i(\sin\theta + 4\cos\theta)$ $Z_2 = (\sin\theta + 4\cos\theta) + i(8\sin\theta + 4\cos\theta)$ Hence, $Z_1 = x + iy$ and $Z_2 = y + ix$ Where $x = (8 \sin \theta + 7 \cos \theta)$ and $y = (\sin \theta + 7 \sin \theta)$ $4\cos\theta$ $Z_1 \cdot Z_2 = (xy - xy) + i(x^2 + y^2) = i(x^2 + y^2)$ = a + ib $\Rightarrow a = 0; b = x^{2} + y^{2}$ Now, $x^2 + y^2 = (8 \sin \theta + 7 \cos \theta)^2 +$ $(\sin\theta + 4\cos\theta)^2$ $= 65 \sin^2 \theta + 65 \cos^2 \theta + 120 \sin \theta \cdot \cos \theta$ $= 65 + 60 \sin 2\theta$ $\Rightarrow Z_1 \cdot Z_2|_{\max} = 125$ 449 **(3)** *n*, *n* + 1, *n* + 2 sum = 3(n + 1) = -a $a^2 = 9(n+1)^2$ Sum of the roots taken 2 at a time $= \pm b$ \therefore n(n+1) + (n+1)(n+2) + (n+2)n + 1= b + 1 $n^{2} + n + n^{2} + 3n + 2 + n^{2} + 2n + 1 = b + 1$ $\therefore b + 1 = 3n^2 + 6n + 3$ $b + 1 = 3(n + 1)^2 = \frac{a^2}{3}; :: \frac{a^2}{h+1} = 3$ 450 (6) $\alpha + \beta = 1154$ and $\alpha\beta = 1$ $\left(\sqrt{\alpha} + \sqrt{\beta}\right)^2 = \alpha + \beta + 2\sqrt{\alpha\beta} = 1154 + 2$ $= 1156 = (34)^2$ $\Rightarrow \sqrt{\alpha} + \sqrt{\beta} = 34$ Again $(\alpha^{1/4} + \beta^{1/4})^2 = \sqrt{\alpha} + \sqrt{\beta} = +2(\alpha\beta)^{1/4} =$ 34 + 2 = 36 $\alpha^{1/4} + \beta^{1/4} = 6$ 451 **(5)** Roots are 2ω , $(2 + 3\omega)$, $(2 + 3\omega^2)$, $(2 - \omega - \omega^2)$ $2 + 3\omega$ and $2 + 3\omega^2$ are conjugate to each other 2ω is complex root, then other root must be $2\omega^2$ (as complex roots occur in conjugate pair) $2 - \omega - \omega^2 = 2 - (-1) = 3$ which is real Hence least degree of the polynomial is 5 452 (1) We have $x = \omega - \omega^2 - 2$ or $x + 2 = \omega - \omega^2$ Squaring, $x^2 + 4x + 4 = \omega^2 + \omega^4 - 2\omega^3 = \omega^2 + \omega^4 - 2\omega^3 = \omega^2 + \omega^4 - 2\omega^3 = \omega^2 + \omega^4 - 2\omega^4 = \omega^2 + \omega^4 - 2\omega^4 = \omega^2 + \omega^4 - 2\omega^4 = \omega^2 + \omega^4 + \omega^4 + \omega^4 = \omega^2 + \omega^4 + \omega^4 + \omega^4 + \omega^4 = \omega^2 + \omega^4 + \omega^4$ $\omega - 2 = -3$ $\Rightarrow x^2 + 4x + 7 = 0$ Dividing, $x^4 + 3x^3 + 2x^2 - 11x - 6$ by $x^{2} + 4x + 7$, we get

 $x^4 + 3x^3 + 2x^2 - 11x - 6$ $= (x^{2} + 4x + 7)(x^{2} - x - 1) + 1$ $= (0)(x^{2} - x - 1) + 1 = 0 + 1 = 1$ 453 (3) $x = \frac{x^3}{x^2} = \frac{2+11i}{3+4i} \times \frac{3-4i}{3-4i} = \frac{50+25i}{25} = 2+i$ 454 (4) $y = \frac{3x^2 + mx + n}{x^2 + 1}$ $x^{2}(y-3) - mx + y - n = 0$ $x \in R$ D > 0 $\Rightarrow m^2 - 4(y-3)(y-n) \ge 0$ $\Rightarrow m^2 - 4(y^2 - ny - 3y + 3n) \ge 0$ $4y^2 - 4y(n+3) + 12n - m^2 \le 0$ (1) Also given $(y + 4)(y - 3) \le 0$ $y^2 + y - 12 \le 0$ (2) Compare (1) and (2), we get $\frac{4}{1} = -\frac{4(n+3)}{1} =$ $12n - m^2$ \Rightarrow m = 0 and n = -4455 **(5)** Let $ax^3 + bx^2 + cx + d = 0$ has roots p, q, r $pq + qr + rp = \frac{c}{a}$ (1) But $pq + qr + rp \le p^2 + q^2 + r^2$ $= (p+q+r)^2 - 2\sum pq$ $\therefore 3(pq + qr + rp) \le (p + q + r)^2 = 16$ $\therefore 3\frac{c}{a} \le 16 \Rightarrow \frac{c}{a} \le \frac{16}{3} \Rightarrow$ largest possible integral value of $\frac{c}{a}$ is 5 456 (6) Let the roots be a - 3d, a - d, a + d, a + 3dSum of roots = $4a = 0 \Rightarrow a = 0$ Hence, roots are -3d, -d, d, 3dProduct of roots = $9d^4 = m^2 \Rightarrow d^2 = \frac{m}{3}$ (1) Again $\sum x_1 x_2 = 3d^2 - 3d^2 - 9d^2 - d^2 - 3d^2 + 3d^2$ $3d^2 = -10d^2$ = -(3m + 2) $\Rightarrow \frac{10m}{3} = 3m + 2 \Rightarrow 10m = 9m + 6$ $\Rightarrow m = 6$ 457 (5) We have $2x^3 - 9x^2 + 12x + k = 0$ Let the roots are α, α, β $2\alpha + \beta = \frac{9}{2} \qquad (1)$ $\alpha^2 + 2\alpha\beta = \frac{12}{2} = 6$ (2) are $\alpha^2 \beta = -\frac{k}{2}$ (3) putting $\beta = \left(\frac{9}{2} - 2\alpha\right)$ from (1) in (2)

 $\alpha^{2} + 2\alpha \left(\frac{9}{2} - 2\alpha\right) = 6 \Rightarrow \alpha^{2} + 9\alpha - 4\alpha^{2} = 6$ $\Rightarrow 3\alpha^2 - 9\alpha + 6 = 0$ $\Rightarrow \alpha^2 - 3\alpha + 2 = 0$ $\Rightarrow (\alpha - 2)(\alpha - 1) = 0 \Rightarrow \alpha = 2 \text{ or } 1$ If $\alpha = 2$ then $\beta = \frac{1}{2}$; if $\alpha = 1$ then $\beta = \frac{5}{2}$ $\therefore k = -2(4)\frac{1}{2} = -4$ or $k = -2(1^2)\left(\frac{5}{2}\right) = -5$ 458 (2) $\overline{z} + z = 0$ $\Rightarrow \overline{z} = -z$ (1) Now $|z|^2 - 4zi = z^2$ $\Rightarrow -z^2 - 4zi = z^2 \quad (\text{from (1)})$ $\Rightarrow 2z = -4i$ $\Rightarrow z = -2i$ $\Rightarrow |z| = 2$ 459 **(3)** We have $(\alpha + \beta)^2 = \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)(\alpha^2 + \beta^2)$ $\Rightarrow (\alpha + \beta)^2 = \left(\frac{1}{\alpha} + \frac{1}{\beta}\right) [(\alpha + \beta)^2 - 2\alpha\beta]$ Substituting $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ we have $\frac{b^2}{a^2} = \frac{-b}{c} \left(\frac{b^2}{a^2} - \frac{2c}{a} \right)$ $\Rightarrow cb^2 + b(b^2 - 2ac) = 0$ $b \neq 0, \therefore bc + b^2 - 2ac = 0$ a, b, c are in AP, $\therefore b = \frac{a+c}{2}$ $\therefore \text{ we have } \frac{(a+c)c}{2} + \left(\frac{a+c}{2}\right)^2 - 2ac = 0$ $\Rightarrow a^2 - 4ac + 3c^2 = 0 \Rightarrow (a - c)(a - 3c) = 0$ $a \neq c \therefore a = 3c \therefore \frac{a}{c} = 3$ 460 (9) $A \equiv (1+2i)x^3 - 2(3+i)x^2 + (5-4i)x + 2a^2$ = 0Let the real root of equation be α Then $(1+2i)\alpha^3 - 2(3+i)\alpha^2 + (5-4i)\alpha +$ $2a^2 = 0$ Equating imaginary part zero, we get $2\alpha^3 - 2\alpha^2 - 4\alpha = 0$ \Rightarrow or $\alpha(\alpha^2 - \alpha - 2) = 0$ $\Rightarrow \alpha = 0 \text{ or } \alpha = -1, 2$ Now equating real part zero $\alpha^3 - 6\alpha^2 + 5\alpha + 2a^2 = 0$ $\alpha = 0 \Rightarrow a = 0$ $\alpha = -1 \Rightarrow a = \pm \sqrt{6}$ $\alpha = 2 \Rightarrow a = \pm \sqrt{3}$ $\Rightarrow \sum_{n=0}^{\infty} a^{2} = (0)^{2} + (+\sqrt{6})^{2} + (-\sqrt{6})^{2} + (+\sqrt{3})^{2}$ $+(-\sqrt{3})^2 = 18$ 461 (4) Given $a^2 - 4a + 1 = 4 \Rightarrow a^2 + 1 = 4(1 + a)$ $y = \frac{(a-1)(1+a^2)}{a^2-1} = \frac{a^2+1}{a+1} = \frac{4(a+1)}{a+1} = 4$

462 (4) As P(x) is an odd function Hence, $P(-x) = -P(x) \Rightarrow P(-3) = -P(3) = -6$ Let $P(x) = Q(x^2 - 9) + ax + b$ (where *Q* is quotient and (ax + b) = g(x) =remainder) Now P(3) = 3a + b = 6 (1) $P(-3) = -3a + b = -6 \quad (2)$ Hence, b = 0 and a = 2Hence, $g(x) = 2x \Rightarrow g(2) = 4$ 463 (3) Let $\frac{1-a^3}{a} = \frac{1-b^3}{b} = \frac{1-c^3}{c} = k \Rightarrow \frac{1-x^3}{r} = k,$ Where *x* take 3 values *a*, *b* and *c* $\Rightarrow x^3 + kx - 1 = 0$ has roots *a*, *b*, *c* Now a + b + c = 0(1)abc = 1 (2) Hence $a^3 + b^3 + c^3 = 3abc = 3$ 464 (6) Let $f(x) = x^{2} + 2(\lambda + 1)x + \lambda^{2} + \lambda + 7$ If both roots of f(x) = 0 are negative, then $D = b^2 - 4ac = 4(\lambda + 1)^2 - 4(\lambda^2 + \lambda + 7) \ge 0$ $\Rightarrow \lambda - 6 \ge 0$ $\Rightarrow \lambda \in [6, \infty)$ (1) Sum of roots = $-2(\lambda + 1) < 0$ $\Rightarrow \lambda \in (-1, \infty)$ (2) And product of roots = $\lambda^2 + \lambda + 7 > 0 \forall \lambda \in R$ (3) \therefore From (1), (2), (3), we get $\lambda \in [6, \infty)$ (As (1), (2), (3) must be satisfied simultaneously)Hence, the least value of $\lambda = 6$ 465 (2) We have $\left(\frac{a^4+3a^2+1}{a^2}\right)\left(\frac{b^4+5b^2+1}{b^2}\right)\left(\frac{c^4+7c^2+1}{c^2}\right)$ $= \left(a^{2} + \frac{1}{a^{2}} + 3\right) \left(b^{2} + \frac{1}{b^{2}} + 5\right) \left(c^{2} + \frac{1}{c^{2}} + 7\right)$ $=\left(\left(a-\frac{1}{a}\right)^{2}+5\right)\left(\left(b-\frac{1}{b}\right)^{2}+7\right)\left(\left(c-\frac{1}{c}\right)^{2}+9\right)$ 466 (5) $z^2 = 81 - b^2 + 18bi$ $z^3 = 729 + 243bi - 27b^2 - b^3i$ $z^2 = z^3 \Rightarrow 243b - b^3 = 18b$ and $243 - b^2 =$ $18 \Rightarrow b = 15$

