Single Correct Answer Type

1. The value of the expression $x^{4}-8 x^{3}+18 x^{2}-8 x+2$ when $x=2+\sqrt{3}$
a) 2
b) 1
c) 0
d) 3
2. If $z=x+i y(x, y \in R, x \neq-1 / 2)$, the number of value of z safisfying $|z|^{n}=z^{2}|z|^{n-2}+z|z|^{n-2}+1$. ($n \in N, n>1$) is
a) 0
b) 1
c) 2
d) 3
3. If α, β, γ are the roots of $x^{3}-x^{2}-1=0$ then the value of $(1+\alpha) /(1-\alpha)+(1+\beta) /(1-\beta)+(1+$ $\gamma) /(1-\gamma)$ is equal to
a) -5
b) -6
c) -7
d) -2
4. If the equation $\left|x^{2}+b x+c\right|=k$ has four roots, then
a) $b^{2}-4 c>0$ and $0<k<\frac{4 c-b^{2}}{4}$
b) $b^{2}-4 c<0$ and $0<k<\frac{4 c-b^{2}}{4}$
c) $b^{2}-4 c>0$ and $k>\frac{4 c-b^{2}}{4}$
d) None of these
5. The value of z satisfying the equation $\log z+\log z^{2}+\cdots+\log z^{n}=0$ is
a) $\cos \frac{4 m \pi}{n(n+1)}+i \sin \frac{4 m \pi}{n(n+1)}, m=1,2, \ldots$
b) $\cos \frac{4 m \pi}{n(n+1)}-i \sin \frac{4 m \pi}{n(n+1)}, m=1,2, \ldots$
c) $\sin \frac{4 m \pi}{n(n+1)}+i \cos \frac{4 m \pi}{n(n+1)}, m=1,2, \ldots$
d) 0
6. If $a(p+q)^{2}+2 b p q+c=0$ and $a(p+r)^{2}+2 b p r+c=0(a \neq 0)$, then
a) $q r=p^{2}$
b) $q r=p^{2}+\frac{c}{a}$
c) $q r=-p^{2}$
d) None of these
7. The value of m for which one of the roots of $x^{2}-3 x+2 m=0$ is double of one of the roots of $x^{2}-x+$ $m=0$ is
a) -2
b) 1
c) 2
d) None of these
8. Roots of the equations are $(z+1)^{5}=(z-1)^{5}$ are
a) $\pm i \tan \left(\frac{\pi}{5}\right), \pm i \tan \left(\frac{2 \pi}{5}\right)$
b) $\pm i \cot \left(\frac{\pi}{5}\right), \pm i \cot \left(\frac{2 \pi}{5}\right)$
c) $\pm i \cot \left(\frac{\pi}{5}\right), \pm i \tan \left(\frac{2 \pi}{5}\right)$
d) None of these
9. Total number of integral values of ' a ' so that $x^{2}-(a+1) x+a-1=0$ has integral roots is equal to
a) 1
b) 2
c) 4
d) None of these
10. $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers representing the vertices of a quadrilateral $A B C D$ taken in order. If $z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left[\left(z_{4}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right]=\pi / 2$, then the quadrilateral is
a) Rectangle
b) Rhombus
c) Square
d) Trapezium
11. If the roots of the equation $a x^{2}+b x+c=0$ are of the form $(k+1) / k$ and $(k+2) /(k+1)$, then $(a+b+c)^{2}$ is equal to
a) $2 b^{2}-a c$
b) $\sum a^{2}$
c) $b^{2}-4 a c$
d) $b^{2}-2 a c$
12. Let r, s and t be the roots of the equation, $8 x^{3}+1001 x+2008=0$. The value of $(r+s)^{3}+(s+t)^{3}+$ $(t+r)^{3}$ is
a) 251
b) 751
c) 735
d) 753
13. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has
a) Both roots in (a, b)
b) Both roots in $(-\infty, a)$
c) Both roots in $(b,+\infty)$
d) One root in $(-\infty, a)$ and the other in $(b,+\infty)$
14. If l, m, n are real $l \neq m$, then the roots of the equation $(l-m) x^{2}-5(l+m) x-2(l-, m)=0$ are
a) Real and equal
b) Complex
c) Real and unequal
d) None of these
15. If the expression $x^{2}+2(a+b+c) x+3(b c+c a+a b)$ is a perfect square, then
a) $a=b=c$
b) $a= \pm b= \pm c$
c) $a=b \neq c$
d) None of these
16. If $|z|<\sqrt{2}-1$, then $\left|z^{2}+2 z \cos \alpha\right|$ is
a) Less than 1
b) $\sqrt{2}+1$
c) $\sqrt{2}-1$
d) None of these
17. If ω be a complex $n^{\text {th }}$ root of unity, then $\sum_{i=1}^{n}(a r+b) \omega^{r-1}$ is equal to
a) $\frac{n(n+1) a}{2}$
b) $\frac{n b}{1-n}$
c) $\frac{n a}{\omega-1}$
d) None of these
18. If $a, b \in R, a \neq 0$ and the quadratic equation $a x^{2}-b x+1=0$ has imaginary roots then $(a+b+1)$ is
a) Positive
b) Negative
c) Zero
d) Dependent on the sign of b
19. Sum of the non-real roots of $\left(x^{2}+x-2\right)\left(x^{2}+x-3\right)=12$ is
a) -1
b) 1
c) -6
d) 6
20. Let $z=\cos \theta+i \sin \theta$. Then, the value of $\sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)$ at $\theta=2^{\circ}$ is
a) $\frac{1}{\sin 2^{\circ}}$
b) $\frac{1}{3 \sin 2^{\circ}}$
c) $\frac{1}{2 \sin 2^{\circ}}$
d) $\frac{1}{4 \sin 2^{\circ}}$
21. If α, β be the roots of the equation $u^{2}-2 u+2=0$ and if $\cot \theta=x+1$, then $\left[(x+\alpha)^{n}-(x+\beta)^{n}\right] /[\alpha-$ $\beta]$ is equal to
a) $\frac{\sin n \theta}{\sin ^{n} \theta}$
b) $\frac{\cos n \theta}{\cos ^{n} \theta}$
c) $\frac{\sin n \theta}{\cos ^{n} \theta}$
d) $\frac{\cos n \theta}{\sin ^{n} \theta}$
22. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of the equation $(x-1)^{3}+8=0$ are
a) $-1,1+2 \omega, 1+2 \omega^{2}$
b) $-1,1-2 \omega, 1-2 \omega^{2}$
c) $-1,-1,-1$
d) None of these
23. Suppose A is a complex number and $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is
a) 3
b) 6
c) 9
d) 12
24. If a, b, c, d are four consecutive terms of an increasing A.P. then the roots of the equation $(x-a)(x-c)+$ $2(x-b)(x-d)=0$ are
a) Non-real complex
b) Real and equal
c) Integers
d) Real and distinct
25. If the equations $a x^{2}+b x+c=0$ and $x^{3}+3 x^{2}+3 x+2=0$ have two common roots, then
a) $a=b=c$
b) $a=b \neq c$
c) $a=-b=c$
d) None of these
26. If α and β, α and γ, α and δ are the roots of the equations $a x^{2}+2 b x+c=0,2 b x^{2}+c x+a=0$ and $c x^{2}+a x+2 b=0$, respectively, where a, b and c are positive real numbers, then $\alpha+\alpha^{2}=$
a) $a b c$
b) $a+2 b+c$
c) -1
d) 0
27. If α, β are the roots of $x^{2}+p x+q=0$ and $x^{2 n}+p^{n} x^{n}+q^{n}=0$ and if $(\alpha / \beta),(\beta / \alpha)$ are the roots of $x^{n}+1+(x+1)^{n}=0$, then $n(\in N)$
a) Must be an odd integer
b) May be any integer
c) Must be an even integer
d) Cannot say anything
28. If $z^{2}+z|z|+\left|z^{2}\right|=0$, then the locus of z is
a) A circle
b) A straight line
c) A pair of straight lines
d) None of these
29. If $|z|=1$ and $w=\frac{z-1}{z+1}($ where $z \neq-1)$, then $\operatorname{Re}(w)$ is
a) 0
b) $\frac{1}{|z+1|^{2}}$
c) $\left|\frac{1}{z+1}\right| \cdot \frac{1}{|z+1|^{2}}$
d) $\frac{\sqrt{2}}{|z+1|^{2}}$
30. If the equation $x^{2}+a x+b=0$ has distinct real roots and $x^{2}+a|x|+b=0$ has only one real root, then which of the following is true
a) $b=0, a>0$
b) $b=0, a<0$
c) $b>0, a<0$
d) $b<0, a>0$
31. Let $f(x)=a x^{2}-b x+c^{2}, b \neq 0$ and $f(x) \neq 0$ for all $x \in R$. Then
a) $a+c^{2}<b$
b) $4 a+c^{2}>2 b$
c) $9 a-3 b+c^{2}<0$
d) None of these
32. The number of real roots of the equation $x^{2}-3|x|+2=0$ is
a) 2
b) 1
c) 4
d) 3
33. If z_{1} and z_{2} are the complex roots of the equation $(x-3)^{3}+1=0$, then $z_{1}+z_{2}$ equals to
a) 1
b) 3
c) 5
d) 7
34. If $x^{2}+p x+1$ is factor of the expression $a x^{3}+b x+c$, then
a) $a^{2}-c^{2}=a b$
b) $a^{2}+c^{2}=-a b$
c) $a^{2}-c^{2}=-a b$
d) None of these
35. If $z=(i)^{(i)^{(i)}}$ where $i=\sqrt{-1}$, then $|z|$ is equal to
a) 1
b) $e^{-\pi / 2}$
c) $e^{-\pi}$
d) None of these
36. The number of roots of the equation $\sqrt{x-2}\left(x^{2}-4 x+3\right)=0$ is
a) Three
b) Four
c) One
d) Two
37. Total number of values of a so that $x^{2}-x-a=0$ has integral roots, where $a \in N$ and $6 \leq a \leq 100$, is equal to
a) 2
b) 4
c) 6
d) 8
38. If a, b, c are the sides of the triangle $A B C$ such that $a \neq b \neq c$ and $x^{2}-2(a+b+c) x+3 \lambda(a b+b c+$ $c a=0$ has real roots, then
a) $\lambda<\frac{4}{3}$
b) $\lambda>\frac{5}{3}$
c) $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$
d) $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
39. Suppose A, B, C are defined as $A=a^{2} b+a b^{2}-a^{2} c-a c^{2}, B=b^{2} c+b c^{2}-a^{2} b-a b^{2}$ and $C=a^{2} c+$ $a c^{2}-b^{2} c-b c^{2}$, where $a>b>c>0$ and the equation $A x^{2}+B x+C=0$ has equal roots, then a, b, c are in
a) A.P.
b) G.P.
c) H.P.
d) A.G.P.
40. Consider the equation $x^{2}+2 x-n=0$, where $n \in N$ and $n \in[15,100]$. Total number of different values of ' n ' so that the given equation has integral roots is
a) 8
b) 3
c) 6
d) 4
41. If $x^{2}+x+1=0$, then the value of $(x+1 / x)^{2}+\left(x^{2}+1 / x^{2}\right)^{2}+\cdots+\left(x^{27}+1 / x^{27}\right)^{2}$ is
a) 27
b) 72
c) 45
d) 54
42. If $\left(x^{2}+p x+1\right)$ is a factor of $\left(a x^{3}+b x+c\right)$, then
a) $a^{2}+c^{2}=-a b$
b) $a^{2}-c^{2}=-a b$
c) $a^{2}-c^{2}=a b$
d) None of these
43. Let z, w be complex numbers such that $\bar{z}+i \bar{w}=0$ and $\arg z w=\pi$. Then $\arg z$ equals
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{3 \pi}{4}$
d) $\frac{5 \pi}{4}$
44. If $a>0, b>0$ and $c>0$ then the roots of the equation $a x^{2}+b x+c=0$
a) Are real and negative
b) Have positive real parts
c) Have negative real parts
d) None of these
45. Which of the following is equal to $\sqrt[3]{-1}$?
a) $\frac{\sqrt{3}+\sqrt{-1}}{2}$
b) $\frac{-\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}$
c) $\frac{\sqrt{3}-\sqrt{-1}}{\sqrt{-4}}$
d) $-\sqrt{-1}$
46. The interval of a for which the equation $\tan ^{2} x-(a-4) \tan x+4-2 a=0$ has at least one solution $\forall x \in[0, \pi / 4]$
a) $a \in(2,3)$
b) $a \in[2,3]$
c) $a \in(1,4)$
d) $a \in[1,4]$
47. Which of the following represents a point in an Argand plane, equidistant from the roots of the equation $(z+1)^{4}=16 z^{4}$?
a) $(0,0)$
b) $\left(-\frac{1}{3}, 0\right)$
c) $\left(\frac{1}{3}, 0\right)$
d) $\left(0, \frac{2}{\sqrt{5}}\right)$
48. If α, β, γ are such that $\alpha+\beta+\gamma=2, \alpha^{2}+\beta^{2}+\gamma^{2}=6, \alpha^{3}+\beta^{3}+\gamma^{3}=8$, then $\alpha^{4}+\beta^{4}+\gamma^{4}$ is
a) 18
b) 10
c) 15
d) 36
49. The minimum value of $\left|a+b \omega+c \omega^{2}\right|$, where a, b and c are all not equal integers and $\omega(\neq 1)$ is a cube root of unity, is
a) $\sqrt{3}$
b) $1 / 2$
c) 1
d) 0
50. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and $z_{1}+z_{2}+z_{3}=0$, then area of the triangle whose vertices are z_{1}, z_{2}, z_{3} is
a) $3 \sqrt{3} / 4$
b) $\sqrt{3} / 4$
c) 1
d) 2
51. Number of positive integers n for which $n^{2}+96$ is a perfect square is
a) 8
b) 12
c) 4
d) Infinite
52. The greatest positive argument of complex number satisfying $|z-4|=\operatorname{Re}(z)$ is
a) $\frac{\pi}{3}$
b) $\frac{2 \pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{4}$
53. If x and y are complex numbers, then the system of equations $(1+i) x+(1-i) y=1,2 i x+2 y=1+$ i has
a) Unique solution
b) No solution
c) Infinite number of solutions
d) None of these
54. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the root is square of the other, then p is equal to
a) $1 / 3$
b) 1
c) 3
d) $2 / 3$
55. If α, β are the roots of the equation $x^{2}-2 x+3=0$. Then the equation whose roots are $P=\alpha^{3}-3 \alpha^{2}+$ $5 \alpha-2$ and $Q=\beta^{3}-\beta^{2}+\beta+5$ is
a) $x^{2}+3 x+2=0$
b) $x^{2}-3 x-2=0$
c) $x^{2}-3 x+2=0$
d) None of these
56. If centre of a regular hexagon is at origin and one of the vertices on Argand diagram is $1+2 i$, then its perimeter is
a) $2 \sqrt{5}$
b) $6 \sqrt{2}$
c) $4 \sqrt{5}$
d) $6 \sqrt{5}$
57. If $z_{1} z_{2} \in C, z_{1}^{2}+z_{2}^{2} \in R, z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$ and $z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11$, then the value of $z_{1}^{2}+z_{2}^{2}$ is
a) 10
b) 12
c) 5
d) 8
58. $P(x)$ is a polynomial with integral coefficients such that for four distinct integers $a, b, c, d ; P(a)=P(b)=$ $P(c)=P(d)=3$. If $P(e)=5$ (e is an integer), then
a) $e=1$
b) $e=3$
c) $e=4$
d) No real value of e
59. If α, β are the roots of $a x^{2}+b x+c=0$ and $a+b, \beta+h$ are the roots of $p x^{2}+q x+r=0$, then $h=$
a) $-\frac{1}{2}\left(\frac{a}{b}-\frac{p}{q}\right)$
b) $\left(\frac{b}{a}-\frac{q}{p}\right)$
c) $\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$
d) None of these
60. If t and c are two complex numbers such that $|t| \neq|c|,|t|=1$ and $z=(a t+b) /(t-c), z=x+i y$. Locus of z is (where a, b are complex numbers)
a) Line segment
b) Straight line
c) Circle
d) None of these
61. The complex numbers $z=x+i y$ which satisfy the equation $|(z-5 i) /(z+5 i)|=1$ lie on
a) The x-axis
b) The straight line $y=5$
c) A circle passing through the origin
d) None of these
62. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$, where $c<0<b$, then
a) $0<\alpha<\beta$
b) $\alpha<0<\beta<|\alpha|$
c) $\alpha<\beta<0$
d) $\alpha<0<|\alpha|<\beta$
63. All the values of m for which both the roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less than 4 , lie in the interval
a) $-2<m<0$
b) $m>3$
c) $-1<m<3$
d) $1<m<4$
64. Two towns A and B are 60 km apart. A school is to be built to serve 150 students in town A and 50 students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school be built at
a) Town B
b) 45 km from town A
c) Town A
d) 45 km from town B
65. If $z=[(\sqrt{3} / 2)+i / 2]^{5}+[(\sqrt{3} / 2)-i / 2]^{5}$, then
a) $\operatorname{Re}(z)=0$
b) $\operatorname{Im}(z)=0$
c) $\operatorname{Re}(z)>0, \operatorname{Im}(z)>0$
d) $\operatorname{Re}(z)>0, \operatorname{Im}(z)<0$
66. Let p and q be real numbers such that $p \neq 0, p^{3} \neq q$ and $p^{3} \neq-q$. If α and β are non-zero complex numbers satisfying $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
a) $\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$
b) $\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$
c) $\left(p^{3}-q\right) x^{2}-\left(5 p^{3}-2 q\right) x+\left(p^{3}-q\right)=0$
d) $\left(p^{3}-q\right) x^{2}-\left(5 p^{3}+2 q\right) x+\left(p^{3}-q\right)=0$
67. Let p and q be roots of the equation $x^{2}-2 x+A=0$ and let r and s be the roots of the equation $x^{2}-18 x+B=0$. If $p<q<r<s$ are in arithmetic progression, then the values of A and B are
a) $3,-77$
b) 3,77
c) $-3,-77$
d) $-3,77$
68. If α and β are the roots of the equation $x^{2}+p x+q=0$, and α^{4} and β^{4} are the roots of $x^{2}-r x+q=0$, then the roots of $x^{2}-4 q x+2 q^{2}-r=0$ are always
a) Both non-real
b) Both positive
c) Both negative
d) Opposite in sign
69. The shaded region, where
$P \equiv(-1,0), Q \equiv(-1+\sqrt{2}, \sqrt{2})$
$R \equiv(-1+\sqrt{2},-\sqrt{2}), S \equiv(1,0)$ is represented by

a) $|z+1|>2,\left|\arg (z+1)<\frac{\pi}{4}\right|$
b) $|z+1|<2, \arg (z+1)<\frac{\pi}{2}$
c) $|z-1|>2, \arg (z+1)>\frac{\pi}{4}$
d) $|z-1|<2, \left\lvert\, \arg (z+1)>\frac{\pi}{4}\right.$
70. Number of values of a for which equations $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$ have a common root
a) 0
b) 1
c) 2
d) Infinite
71. If $|z-2-i|=|z|\left|\sin \left(\frac{\pi}{4}-\arg z\right)\right|$, then locus of z is
a) A pair of straight lines
b) Circle
c) Parabola
d) Ellipse
72. If $z=i \log (2-\sqrt{-3})$, then $\cos z=$
a) -1
b) $-1 / 2$
c) 1
d) $1 / 2$
73. If $x, y \in R$ satisfy theEquation $x^{2}+y^{2}-4 x-2 y+5=0$, then the value of the expression $\left[(\sqrt{x}-\sqrt{y})^{2}+\right.$ $4 x y) /(x+x y)$ is
a) $\sqrt{2}+1$
b) $\frac{\sqrt{2}+1}{2}$
c) $\frac{\sqrt{2}-1}{2}$
d) $\frac{\sqrt{2}+1}{\sqrt{2}}$
74. The least value of the expression $x^{2}+4 y^{2}+3 z^{2}-2 x-12 y-6 z+14$ is
a) 1
b) No least value
c) 0
d) None of these
75. If $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of the triangle $A B C$ such that $\left(z_{1}-z_{2}\right) /\left(z_{3}-z_{2}\right)=(1 / \sqrt{2})+(i / \sqrt{2})$, the triangle $A B C$ is
a) Equilateral
b) Right angled
c) Isosceles
d) Obtuse angled
76. If the roots of the equation, $x^{2}+2 a x+b=0$, are real and distinct and they differ by at most $2 m$, then b lies in the interval
a) $\left(a^{2}, a^{2}+m^{2}\right)$
b) $\left(a^{2}-m^{2}, a^{2}\right)$
c) $\left[a^{2}-m^{2}, a^{2}\right)$
d) None of these
77. If x is real, then the maximum value of $\left(3 x^{2}+9 x+17\right) /\left(3 x^{2}+9 x+7\right)$ is
a) $1 / 4$
b) 41
c) 1
d) $17 / 7$
78. If $a<0, b>0$ then $\sqrt{a} \sqrt{b}$ is equal to
a) $-\sqrt{|a| b}$
b) $\sqrt{|a| b} i$
c) $\sqrt{|a| b}$
d) None of these
79. The inequality $|z-4|<|z-2|$ represents the region given by
a) $\operatorname{Re}(z) \geq 0$
b) $\operatorname{Re}(z)<0$
c) $\operatorname{Re}(z)>0$
d) None of these
80. If $x=9^{1 / 3} 9^{1 / 9} 9^{1 / 27} \cdots \infty, y=4^{1 / 3} 4^{-1 / 9} 4^{1 / 27} \cdots \infty$, and $z=\sum_{r=1}^{\infty}(1+i)^{-r}$, then $\arg (x+y z)$ is equal to
a) 0
b) $\pi-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
c) $-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
d) $-\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
81. The set of values of a for which $(a-1) x^{2}-(a+1) x+a-1 \geq 0$ is true for all $x \geq 2$
a) $(-\infty, 1)$
b) $\left(1, \frac{7}{3}\right)$
c) $\left(\frac{7}{3}, \infty\right)$
d) None of these
82. If $w=\alpha+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w-\bar{w} z}{1-z}\right)$ is purely real, then the set of values of z is
a) $|z|=1, z \neq 2$
b) $|z|=1$ and $z \neq 1$
c) $z=\bar{z}$
d) None of these
83. The number of points of intersection of two curves $y=2 \sin x$ and $y=5 x^{2}+2 x+3$ is
a) 0
b) 1
c) 2
d) ∞
84. If roots of an equation $x^{n}-1=0$ are $1, a_{1}, a_{2}, \ldots a_{n-1}$, then the value of $\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-a_{3}\right) \ldots(1-$ a_{n-1}) will be
a) n
b) n^{2}
c) n^{n}
d) 0
85. If one root of the equation $a x^{2}+b x+c=0$ is square of the other, then $a(c-b)^{3}=c X$, where X is
a) $a^{3}-b^{3}$
b) $a^{3}+b^{3}$
c) $(a-b)^{3}$
d) None of these
86. Let x, y, z, t be real numbers $x^{2}+y^{2}=9, z^{2}+t^{2}=4$ and $x t-y z=6$. Then the greatest value of $P=x z$ is
a) 2
b) 3
c) 4
d) 6
87. Let $\lambda \in R$, the origin and the non-real roots of $2 z^{2}+2 z+\lambda=0$ form the three vertices of an equilateral triangle in the Argand plane then λ is
a) 1
b) $\frac{2}{3}$
c) 2
d) -1
88. The number of values of k for which $\left[x^{2}-(k-2) x+k^{2}\right] \times\left[x^{2}+k x+(2 k-1)\right]$ is a perfect square is
a) 2
b) 1
c) 0
d) None of these
89. Let $p(x)=0$ be a polynomial equation of the least possible degree, with rational coefficients, having $\sqrt[3]{7}+\sqrt[3]{49}$ as one of its roots. Then the product of all the roots of $p(x)=0$ is
a) 56
b) 63
c) 7
d) 49
90. The number of real solutions of the equation $|x|^{2}-3|x|+2=0$ is
a) 4
b) 1
c) 2
d) 0
91. The number of integral values of a for which the quadratic equation $(x+a)(x+1991)+1=0$ has integral roots are
a) 3
b) 0
c) 1
d) 2
92. Let z and ω be two complex numbers such that $|z| \leq 1,|\omega| \leq 1$ and $|z-i \omega|=|z-i \bar{\omega}|=2$ then z equals
a) 1 or i
b) i or $-i$
c) 1 or -1
d) i or -1
93. z_{1} and z_{2} lie on a circle with centre at the origin. The point of intersection z_{3} of the tangents at z_{1} and z_{2} is given by
a) $\frac{1}{2}\left(\bar{z}_{1}+\bar{z}_{2}\right)$
b) $\frac{2 z_{1} z_{2}}{z_{1}+z_{2}}$
c) $\frac{1}{2}\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right)$
d) $\frac{z_{1}+z_{2}}{\bar{z}_{1} \bar{z}_{2}}$
94. If α and β be the roots of the equation $x^{2}+p x-1 /\left(2 p^{2}\right)=0$ where $p \in R$. Then the minimum value of $\alpha^{4}+\beta^{4}$ is
a) $2 \sqrt{2}$
b) $2-\sqrt{2}$
c) 2
d) $2+\sqrt{2}$
95. If α, β are the roots of $a x^{2}+c=b x$, then the equation $(a+c y)^{2}=b^{2} y$ in y has the roots
a) $\alpha \beta^{-1}, \alpha^{-1} \beta$
b) α^{-2}, β^{-2}
c) α^{-1}, β^{-1}
d) α^{2}, β^{2}
96. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \cdots(\cos n \theta+i \sin n \theta)=1$, then the value of θ is, $m \in N$
a) $4 m \pi$
b) $\frac{2 m \pi}{n(n+1)}$
c) $\frac{4 m \pi}{n(n+1)}$
d) $\frac{m \pi}{n(n+1)}$
97. The roots of the cubic equation $(z+a b)^{3}=a^{3}$, such that $a \neq 0$, represent the vertices of a triangle of sides of length
a) $\frac{1}{\sqrt{3}}|a b|$
b) $\sqrt{3}|a|$
c) $\sqrt{3}|b|$
d) $|a|$
98. A quadratic equation whose product of roots x_{1} and x_{2} is equal to 4 and satisfying the relation $x_{1} /\left(x_{1}-1\right)+x_{2} /\left(x_{2}-1\right)=2$ is
a) $x^{2}-2 x+4=0$
b) $x^{2}+2 x+4=0$
c) $x^{2}+4 x+4=0$
d) $x^{2}-4 x+4=0$
99. If the equation $\cot ^{4} x-2 \operatorname{cosec}^{2} x+a^{2}=0$ has at least one solution then, sum of all possible integral values of a is equal to
a) 4
b) 3
c) 2
d) 0
100. The number of irrational roots of the equation $4 x /\left(x^{2}+x+3\right)+5 x /\left(x^{2}-5 x+3\right)=-3 / 2$ is
a) 4
b) 0
c) 1
d) 2
101. If z_{1}, z_{2} and z_{3} are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\left(1 / z_{1}\right)+\left(1 / z_{2}\right)+\left(1 / z_{2}\right)\right|=1$, then $\left|z_{1}+z_{2}+z_{3}\right|$ is
a) Equal to 1
b) Less than 1
c) Greater than 3
d) Equal to 3
102. If z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$. If z_{1} has positive real part and z_{2} has
negative imaginary part, then $\left[\left(z_{1}+z_{2}\right) /\left(z_{1}-z_{2}\right)\right]$ may be
a) Purely imaginary
b) Real and positive
c) Real and negative
d) None of these
103. If the expression $[m x-1+(1 / x)]$ is non-negative for all positive real x, then the minimum value of m must be
a) $-1 / 2$
b) 0
c) $1 / 4$
d) $1 / 2$
104. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then $\left|z_{1}-z_{2}\right|$ is equal to
a) $\left|z_{1}\right|+\left|z_{2}\right|$
b) $\left|z_{1}\right|-\left|z_{2}\right|$
c) $\left[\left|z_{1}\right|-\left|z_{2}\right|\right]$
d) 0
105.

Locus of z if $\arg [z-(1+i)]=\left\{\begin{array}{cll}\frac{3 \pi}{4} & \text { when } & |z| \leq|z-2| \\ \frac{-\pi}{4} & \text { when } & |z|>|z-4|\end{array}\right.$ is
a) Straight lines passing through $(2,0)$
b) Straight lines passing through $(2,0),(1,1)$
c) A line segment
d) A set of two rays
106. For positive integers n_{1}, n_{2} the value of the expression $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}}$, where $i=\sqrt{-1}$ is a real number if and only if
a) $n_{1}=n_{2}+1$
b) $n_{1}=n_{2}-1$
c) $n_{1}=n_{2}$
d) $n_{1}>0, n_{2}>0$
107. If $\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|z_{1}\right|=3$ and $\left|z_{2}\right|=4$, then area of $\triangle A B C$, if affixes of A, B and C are z_{1}, z_{2} and $\left[\left(z_{2}-i z_{1}\right) /(1-i)\right]$ respectively, is
a) $\frac{5}{2}$
b) 0
c) $\frac{25}{2}$
d) $\frac{25}{4}$
108. $x^{2}-x y+y^{2}-4 x-4 y+16=0$ represents
a) A point
b) A circle
c) A pair of straight lines
d) None of these
109. Sum of common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{1985}+z^{100}+1=0$ is
a) -1
b) 1
c) 0
d) 1
110. If the roots of the equation $a x^{2}-b x+c=0$ are α, β then the roots of the equation $b^{2} c x^{2}-a b^{2} x+a^{3}=$ 0 are
a) $\frac{1}{\alpha^{3}+\alpha \beta}, \frac{1}{\beta^{3}+\alpha \beta}$
b) $\frac{1}{\alpha^{2}+\alpha \beta}, \frac{1}{\beta^{2}+\alpha \beta}$
c) $\frac{1}{\alpha^{4}+\alpha \beta}, \frac{1}{\beta^{4}+\alpha \beta}$
d) None of these
111. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on
a) A circle
b) A parabola
c) An ellipse
d) None of these
112. The locus of point z satisfying $\operatorname{Re}\left(\frac{1}{z}\right)=k$, where k is a non-zero real number, is
a) A straight line
b) A circle
c) An ellipse
d) A hyperbola
113.

The number of integral values of x satifying $\sqrt{-x^{2}+10 x-16}<x-2$ is
a) 0
b) 1
c) 2
d) 3
114. Let α, β be the roots of the equation $x^{2}-p x+r=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation $x^{2}-q x+r=$ 0 . Then the value of r is
a) $\frac{2}{9}(p-q)(2 q-p)$
b) $\frac{2}{9}(q-p)(2 p-q)$
c) $\frac{2}{9}(q-2 p)(2 q-p)$
d) $\frac{2}{9}(2 p-q)(2 q-p)$
115. For $x^{2}-(a+3)|x|+4=0$ to have real solutions, the range of a is
a) $(-\infty,-7] \cup[1, \infty)$
b) $(-3, \infty)$
c) $(-\infty,-7]$
d) $[1, \infty)$
116. If $z=3 /(2+\cos \theta+i \sin \theta)$, then locus of z is
a) A straight line
b) A circle having centre on y-axis
c) A parabola
d) A circle having centre on x-axis
117. The number of real solutions of the equation $(9 / 10)^{x}=-3+x-x^{2}$ is
a) 2
b) 0
c) 1
d) None of these
118. If p, q, r are +ve and are in A.P., in the roots of quadratic equation $p x^{2}+q x+r=0$ are all real for
a) $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
b) $\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3}$
c) All p and r
d) No p and r
119. If $\arg (z)<0$, then $\arg (-z)-\arg (z)=$
a) π
b) $-\pi$
c) $-\frac{\pi}{2}$
d) $\frac{\pi}{2}$
120. If $\alpha, \beta, \gamma, \sigma$ are the roots of the equation $x^{4}+4 x^{3}-6 x^{2}+7 x-9=0$, then the value of $\left(1+\alpha^{2}\right)(1+$ $\beta 21+\gamma 2(1+\sigma 2)$ is
a) 9
b) 11
c) 13
d) 5
121. If $\left|\frac{z_{1}}{z_{2}}\right|=1$ and $\arg \left(z_{1} z_{2}\right)=0$, then
a) $z_{1}=z_{2}$
b) $\left|z_{2}\right|^{2}=z_{1} z_{2}$
c) $z_{1} z_{2}=1$
d) None of these
122. The complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for
a) $x=n \pi$
b) $x=0$
c) $x=(n+1 / 2) \pi$
d) No value of x
123. $P(z)$ be a variable point in the Argand plane such that $|z|=$ minimum $\{|z-1|,|z+1|\}$ then $z+\bar{z}$ will be equal to
a) -1 or 1
b) 1 but not equal to -1
c) -1 but not equal to 1
d) None of these
124. If $z=(\lambda+3)-i \sqrt{5-\lambda^{2}}$, then the locus of z is
a) Ellipse
b) Semicircle
c) Parabola
d) Straight line
125. For all complex numbers z_{1}, z_{2} satisfying $\left|z_{1}\right|=12$ and $\left|z_{2}-3-4 i\right|=5$, the minimum value of $\left|z_{1}-z_{2}\right|$ is
a) 0
b) 2
c) 7
d) 17
126. If α, β be the roots of the equation $(x-a)(x-b)+c=0(c \neq 0)$, then the roots of the equation $(x-c-\alpha)(x-c-\beta)=c$ are
a) $a+c$ and $b+c$
b) $a-c$ and $b-c$
c) a and $b+c$
d) $a+c$ and b
127. If $\tan \theta_{1}, \tan \theta_{2}, \tan \theta_{3}$ are the real roots of the $x^{3}-(a+1) x^{2}+(b-a) x-b=0$, where $\theta_{1}+\theta_{2}+\theta_{3} \in$ $(0, \pi)$, then $\theta_{1}+\theta_{2}+\theta_{3}$ is equal to
a) $\pi / 2$
b) $\pi / 4$
c) $3 \pi / 4$
d) π
128. If $|z|=1$ then the point representing the complex number $-1+3 z$ will lie on
a) A circle
b) A straight line
c) A parabola
d) A hyperbola
129. The set of all possible real values of a such that the inequality $(x-(a-1))\left(x-\left(a^{2}+2\right)\right)<0$ holds for all $x \in(-1,3)$ is
a) $(0,1)$
b) $(\infty,-1]$
c) $(-\infty,-1)$
d) $(1, \infty)$
130. If the root of the equation $(a-1)\left(x^{2}+x+1\right)^{2}=(a+1)\left(x^{4}+x^{2}+1\right)$ are real and distinct then the value of $a \in$
a) $(-\infty, 3]$
b) $(-\infty,-2) \cup(2, \infty)$
c) $[-2,2]$
d) $[-3, \infty)$
131. The equation $x-2 /(x-1)=1-2 /(x-1)$ has
a) No root
b) One root
c) Two equals roots
d) Infinitely many roots
132. Let α, β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$. Then the roots of the equation $(x-\alpha)(x-$ $\beta+c=0$ are
a) a, c
b) b, c
c) a, b
d) $a+c, b+c$
133. Number of complex numbers z such that $|z|=1$ and $|z / \bar{z}+\bar{z} / z|=1$ is $(\arg (z) \in[0,2 \pi))$
a) 4
b) 6
c) 8
d) More than 8
134. If $x=1+i$ is a root of the equation $x^{3}-i x+1-i=0$, then the other real root is
a) 0
b) 1
c) -1
d) None of these
135. If $\left(m_{r}, 1 / m_{r}\right), r=1,2,3,4$ be four pairs of values of x and y that satisfy the equation $x^{2}+y^{2}+2 g x+$ $2 f y+c=0$, then value of $m_{1} m_{2} m_{3} m_{4}$ is
a) 0
b) 1
c) -1
d) None of these
136. If $k+\left|k+z^{2}\right|=|z|^{2}\left(k \in R^{-}\right)$, then possible argument of z is
a) 0
b) π
c) $\pi / 2$
d) None of these
137. Let $a \neq 0$ and $p(x)$ be a polynomial of degree greater than 2 . If $p(x)$ leaves remainders a and $-a$ when divided respectively by $x+a$ and $x-a$, then remainder when $p(x)$ is divided by $x^{2}-a^{2}$ is
a) $2 x$
b) $-2 x$
c) x
d) $-x$
138. If z is a complex number lying in the fourth quadrant of Argand plane and $|[k z /(k+1)]+2 i|>\sqrt{2}$ for all real value of $k(k \neq-1)$, then range of $\arg (z)$ is
a) $\left(-\frac{\pi}{8}, 0\right)$
b) $\left(-\frac{\pi}{6}, 0\right)$
c) $\left(-\frac{\pi}{4}, 0\right)$
d) None of these
139. The largest interval for which $x^{12}-x^{9}+x^{4}-x+1>0$ is
a) $-4<x \leq 0$
b) $0<x<1$
c) $-100<x<100$
d) $-\infty<x<\infty$
140. If $|2 z-1|=|z-2|$ and z_{1}, z_{2}, z_{3} are complex numbers such that $\left|z_{1}-\alpha\right|<\alpha,\left|z_{2}-\beta\right|<\beta$, then $\left|\frac{z_{1}+z_{2}}{\alpha+\beta}\right|$
a) $<|z|$
b) $<2|z|$
c) $>|z|$
d) $>2|z|$
141. If $a, b, c, d \in R$, then the equation $\left(x^{2}+a x-3 b\right)\left(x^{2}-c x+b\right)\left(x^{2}-d x+2 b\right)=0$ has
a) 6 real roots
b) At least 2 real roots
c) 4 real roots
d) 3 real roots
142. If a, b, c be distinct positive numbers, then the nature of roots of the equation $1 /(x-a)+1 /(x-b)+$ $1 /(x-c)=1 / x$ is
a) All real and distinct
b) All real and at least two are distinct
c) At least two real
d) All non-real
143. If the roots of the quadratic equation $\left(4 p-p^{2}-5\right) x^{2}-(2 p-1) x+3 p=0$ lie on either side of unity, then the number of integral values of p is
a) 1
b) 2
c) 3
d) 4
144. If $k>0,|z|=|w|=k$ and $\alpha=\frac{z-\bar{w}}{k^{2}+z \bar{w}}$, then $\operatorname{Re}(\alpha)$ equals
a) 0
b) $k / 2$
c) k
d) none of these
145. Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ be the minimum value of $f(x)$. As b varies, the range of $m(b)$ is
a) $[0,1]$
b) $\left(0, \frac{1}{2}\right]$
c) $\left[\frac{1}{2}, 1\right]$
d) $(0,1]$
146. The coefficient of x in the equation $x^{2}+p x+q=0$ was wrongly written as 17 in place of 13 and the roots thus found was -2 and -15 . Then the roots of the correct equation are
a) $-3,10$
b) $-3,-10$
c) $3,-10$
d) None of these
147. If $8 i z^{3}+12 z^{2}-18 z+27 i=0$, then
a) $|z|=\frac{3}{2}$
b) $|z|=\frac{2}{3}$
c) $|z|=1$
d) $|z|=\frac{3}{4}$
148. If ' z ' lies on the circle $|z-2 i|=2 \sqrt{2}$ then the value of $\arg [(z-2) /(z+2)]$ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
149. If ' p ' and ' q ' are distinct prime numbers, then the number of distinct imaginary numbers which are $p^{\text {th }}$ as well as $q^{\text {th }}$ roots of unity are
a) $\min (p, q)$
b) $\max (p, q)$
c) 1
d) Zero
150. Let a be a complex number such that $|a|<1$ and $z_{1}, z_{2}, z_{3}, \ldots$ be the vertices of a polygon such that $z_{k}=1+a+a^{2}+\cdots+a^{k-1}$ for all $k=1,2,3, \ldots$ then z_{1}, z_{2}, \ldots. lie within the circle
a) $\left|z-\frac{1}{1-a}\right|=\frac{1}{|a-1|}$
b) $\left|z+\frac{1}{a+1}\right|=\frac{1}{|a+1|}$
c) $\left|z-\frac{1}{1-a}\right|=|a-1|$
d) $\left|z+\frac{1}{a+1}\right|=|a+1|$
151. The sum of values of x satisfying the equation $(31+8 \sqrt{15})^{x^{2}-3}+1=(32+8 \sqrt{15})^{x^{2}-3}$ is
a) 3
b) 0
c) 2
d) None of these
152. Let a, b, c be real numbers, $a \neq 0$. If α is a root of $a^{2} x^{2}+b x+c=0 . \beta$ is the root of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$, then the equation $a^{2} x^{2}+2 b x+2 c=0$ has a root γ that always satisfies
a) $\gamma=\frac{\alpha+\beta}{2}$
b) $\gamma=\alpha+\frac{\beta}{2}$
c) $\gamma=\alpha$
d) $\alpha<\gamma<\beta$
153. If α, β be the non-zero roots of $a x^{2}+b x+c=0$ and α^{2}, β^{2} be the roots of $a^{2} x^{2}+b^{2} x+c^{2}=0$, then a, b, c are in
a) G.P.
b) H.P.
c) A.P.
d) None of these
154. The equation $2^{2 x}+(a-1) 2^{x+1}+a=0$ has roots of opposite signs then exhaustive set of values of a is
a) $a \in(-1,0)$
b) $a<0$
c) $a \in(-\infty, 1 / 3)$
d) $a \in(0,1 / 3)$
155. Let $z=x+i y$ be a complex number where x and y are integers. Then the area of the rectangle whose
vertices are the roots of the equation $z \bar{z}^{3}+\bar{z} z^{3}=350$ is
a) 48
b) 32
c) 40
d) 80
156. If the quadratic equation $4 x^{2}-2(a+c-1) x+a c-b=0(a>b>c)$
a) Both roots are greater than a
b) Both roots are less than c
c) Both roots lie between $c / 2$ and $a / 2$
d) Exactly one of the roots lies between $c / 2$ and $a / 2$
157. Let $\left|z_{r}-r\right| \leq r, \forall r=1,2,3, \ldots n$. Then $\left|\sum_{r=1}^{n} z_{r}\right|$ is less than
a) n
b) $2 n$
c) $n(n+1)$
d) $\frac{n(n+1)}{2}$
158. If $\left(a x^{2}+c\right) y+\left(a^{\prime} x^{2}+c^{\prime}\right)=0$ and x is a rational function of y and $a c$ is negative, then
a) $a c^{\prime}+a^{\prime} c=0$
b) $a / a^{\prime}=c / c^{\prime}$
c) $a^{2}+c^{2}=a^{\prime 2}+c^{\prime 2}$
d) $a a^{\prime}+c c^{\prime}=1$
159. Let z and ω be two non-zero complex numbers such that $|z|=|\omega|$ and $\arg z=\pi-\arg \omega$, then z equals
a) ω
b) $-\omega$
c) $\bar{\omega}$
d) $-\bar{\omega}$
160. Suppose that $f(x)$ is a quadratic expression positive for all real x. If $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any real x (where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ represent $1^{\text {st }}$ and $2^{\text {nd }}$ derivative respectively)
a) $\mathrm{g}(x)<0$
b) $\mathrm{g}(x)>0$
c) $g(x)=0$
d) $g(x) \geq 0$
161. If z_{1} is a root of the equation $a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}=3$, where $\left|a_{i}\right|<2$ for $i=0,1, \ldots, n$. Then
a) $\left|z_{1}\right|>\frac{1}{3}$
b) $\left|z_{1}\right|<\frac{1}{4}$
c) $\left|z_{1}\right|>\frac{1}{4}$
d) $|z|<\frac{1}{3}$
162. The complex numbers z_{1}, z_{2} and z_{3} satisfying $\left[\left(z_{1}-z_{3}\right) /\left(z_{2}-z_{3}\right)\right]=[(1-i \sqrt{3}) / 2]$ are the vertices of a triangle which is
a) Of area zero
b) Right-angled isosceles
c) Equilateral
d) Obtuse-angled isosceles
163. The number of solutions of the equation $z^{2}+\bar{z}=0$ is
a) 1
b) 2
c) 3
d) 4
164. If α is the $n^{\text {th }}$ root of unity, then $1+2 \alpha+3 \alpha^{2}+\cdots$ to n terms equal to
a) $\frac{-n}{(1-\alpha)^{2}}$
b) $\frac{-n}{1-\alpha}$
c) $\frac{-2 n}{1-\alpha}$
d) $\frac{-2 n}{(1-\alpha)^{2}}$
165. If α, β be the roots of the equation $2 x^{2}-35 x+2=0$, then the value of $(2 \alpha-35)^{3}(2 \beta-35)^{3}$ is equal to
a) 8
b) 1
c) 64
d) None of these
166. If z is a complex number such that $-\pi / 2 \leq \arg z \leq \pi / 2$, then which of the following inequality is true?
a) $|z-\bar{z}| \leq|z|(\arg z-\arg \bar{z})$
b) $|z-\bar{z}| \geq|z|(\arg z-\arg \bar{z})$
c) $|z-\bar{z}|<(\arg z-\arg \bar{z})$
d) None of these
167. If $x^{2}+a x-3 x-(a+2)=0$ has real and distinct roots, then minimum value of $\left(a^{2}+1\right) /\left(a^{2}+2\right)$ is
a) 1
b) 0
c) $\frac{1}{2}$
d) $\frac{1}{4}$
168. If α and β are the roots of the equation $x^{2}-a x+b=0$ and $A_{n}=\alpha^{n}+\beta^{n}$, then which of the following is true?
a) $A_{n+1}=a A_{n}+b A_{n-1}$
b) $A_{n+1}=b A_{n}+a A_{n-1}$
c) $A_{n+1}=a A_{n}-b A_{n-1}$
d) $A_{n+1}=b A_{n}-a A_{n-1}$
169. The polynomial $x^{6}+4 x^{5}+3 x^{4}+2 x^{3}+x+1$ is divisible by where w is cube root of units Where ω is one of the imaginary cube roots of unity
a) $x+\omega$
b) $x+\omega^{2}$
c) $(x+\omega)\left(x+\omega^{2}\right)$
d) $(x-\omega)\left(x-\omega^{2}\right)$
170. Let $f(x)=a x^{2}+b x+c, a \neq 0$ and $\Delta=b^{2}-4 a c$. If $\alpha+\beta, \alpha^{2}+\beta^{2}$ and $\alpha^{3}+\beta^{3}$ are in GP, then
a) $\Delta \neq 0$
b) $b \Delta=0$
c) $c \Delta=0$
d) $b c \neq 0$
171. z_{1} and z_{2} are two distinct points in an Argand plane. If $a\left|z_{1}\right|=b\left|z_{2}\right|$ (where $a, b \in R$), then the point $\left(a z_{1} / b z_{2}\right)+\left(b z_{2} / a z_{1}\right)$ is a point on the
a) Line segment $[-2,2]$ of the real axis
b) Line segment $[-2,2]$ of the imaginary axis
c) Unit circle $|z|=1$
d) The line with $\arg z=\tan ^{-1} 2$
172. The number of complex numbers z satifying $|z-3-i|=|z-9-i|$ and $|z-3+3 i|=3$ are
a) One
b) Two
c) Four
d) None of these
173. If ' z ' is complex number then the locus of ' z ' satisfying the condition $|2 z-1|=|z-1|$ is
a) Perpendicular bisector of line segment joining $1 / 2$ and 1
b) Circle
c) Parabola
d) None of the above curves
174. If $x y=2(x+y), x \leq y$ and $x, y \in N$, then the number of solutions of the equation are
a) Two
b) Three
c) No solution
d) Infinitely many solutions
175. If the roots of the equation $x^{2}-2 a x+a^{2}+a-3=0$ are real and less than 3 , then
a) $a<2$
b) $2 \leq a \leq 3$
c) $3<a \leq 4$
d) $a>4$
176. Let $f(x)=a x^{2}+b x+c, a, b, c \in R$. If $f(x)$ takes real values for real values of x and non-real values of x, then
a) $a=0$
b) $b=0$
c) $c=0$
d) Nothing can be said about a, b, c
177. If $z(1+a)=b+i c$ and $a^{2}+b^{2}+c^{2}=1$, then $[(1+i z) /(1-i z)=$
a) $\frac{a+i b}{1+c}$
b) $\frac{b-i c}{1+a}$
c) $\frac{a+i c}{1+b}$
d) None of these
178. The number of positive integral solutions of $x^{4}-y^{4}=3789108$ is
a) 0
b) 1
c) 2
d) 4
179. Let a, b and c be real numbers such that $4 a+2 b+c=0$ and $a b>0$. Then the equation $a x^{2}+b x+c=0$ has
a) Complex roots
b) Exactly one root
c) Real roots
d) None of these
180. If $\omega(\neq 1)$ is a cube root of unity and $(1+\omega)^{7}=A+B \omega$ then A and B are respectively
a) 0,1
b) 1,1
c) 1,0
d) $-1,1$
181. Consider the equation $10 z^{2}-3 i z-k=0$, where z is a complex variable and $i^{2}=-1$. Which of the following statements is true?
a) For real positive numbers k, both roots are purely imaginary
b) For all complex numbers k, neither roots is real
c) For real purely imaginary numbers k, both roots are real and irrational
d) For real negative numbers k, both roots are purely imaginary
182. The expression $\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{8}=$
a) 1
b) -1
c) i
d) $-i$
183. If roots of $x^{2}-(a-3) x+a=0$ are such that at least one of them is greater than 2 , then
a) $a \in[7,9]$
b) $a \in[7, \infty]$
c) $a \in[9, \infty]$
d) $a \in[7,9)$
184. If a, b, c are three distinct positive real numbers, then the number of real roots of $a x^{2}+2 b|x|-c=0$ is
a) 0
b) 4
c) 2
d) None of these
185. If $i=\sqrt{-1}$, then $4+5[(-1 / 2)+i \sqrt{3} / 2]^{334}+3[(-1 / 2)+(i \sqrt{3} / 2)]^{365}$ is equal to
a) $1-i \sqrt{3}$
b) $-1+i \sqrt{3}$
c) $i \sqrt{3}$
d) $-i \sqrt{3}$
186. The smallest positive integer n for which $[(1+i) /(1-i)]^{n}=1$ is
a) $n=8$
b) $n=16$
c) $n=12$
d) None of these
187. If x, y and z are real and different and $u=x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$, then u is always
a) Non-negative
b) Zero
c) Non-positive
d) None of these
188. If the ratio of the roots of $a x^{2}+2 b x+c=0$ is same as the ratio of the $p x^{2}+2 q x+r=0$, then
a) $\frac{2 b}{a c}=\frac{q^{2}}{p r}$
b) $\frac{b}{a c}=\frac{q}{p r}$
c) $\frac{b^{2}}{a c}=\frac{q^{2}}{p r}$
d) None of these
189. If one root of $x^{2}-x-k=0$ is square of the other, then $k=$
a) $2 \pm \sqrt{5}$
b) $2 \pm \sqrt{3}$
c) $3 \pm \sqrt{2}$
d) $5 \pm \sqrt{2}$
190. If $n \in N>1$ then sum of real part of roots of $z^{n}=(z+1)^{n}$ is equal to
a) $\frac{n}{2}$
b) $\frac{(n-1)}{2}$
c) $-\frac{n}{2}$
d) $\frac{(1-n)}{2}$
191. If z is a complex number having least absolute value and $|z-2+2 i|=1$, then $z=$
a) $(2-1 / \sqrt{2})(1-i)$
b) $(2-1 / \sqrt{2})(1+i)$
c) $(2+1 / \sqrt{2})(1-i)$
d) $(2+1 / \sqrt{2})(1+i)$
192. If $x=2+2^{2 / 3}+2^{1 / 3}$, then the value of $x^{3}-6 x^{2}+6 x$ is
a) 3
b) 2
c) 1
d) -2
193. The principal argument of the complex number $\left[(1+i)^{5}(1+\sqrt{3 i})^{2}\right] /[-2 i(-\sqrt{3}+i)]$ is
a) $\frac{19 \pi}{12}$
b) $-\frac{7 \pi}{12}$
c) $-\frac{5 \pi}{12}$
d) $\frac{5 \pi}{12}$
194. The range of a for which the equation $x^{2}+a x-4=0$ has its smaller root in the interval $(-1,2)$ is
a) $(-\infty,-3)$
b) $(0,3)$
c) $(0, \infty)$
d) $(-\infty,-3) \cup(0, \infty)$
195. If α and β are the roots of $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always
a) One positive and one negative root
b) Two positive roots
c) Two negative roots
d) Cannot say anything
196. The number of solutions of the equation $\sin \left(e^{x}\right)=5^{x}+5^{-x}$ is
a) 0
b) 1
c) 2
d) Infinitely many
197. If $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots, then $2 / q=$
a) $\frac{1}{p}+\frac{1}{r}$
b) $p+r$
c) $p^{2}+r^{2}$
d) $\frac{1}{p^{2}}+\frac{1}{r^{2}}$
198. The roots of the equation $t^{3}+3 a t^{2}+3 b t+c=0$ are z_{1}, z_{2}, z_{3} which represent the vertices of an equilateral triangle, then
a) $a^{2}=3 b$
b) $b^{2}=a$
c) $a^{2}=b$
d) $b^{2}=3 a$
199. The integral values of m for which the roots of the equation $m x^{2}+(2 m-1) x+(m-2)=0$ are rational are given by the expression [where n is integer]
a) n^{2}
b) $n(n+2)$
c) $n(n+1)$
d) None of these
200. Let $z=1-t+i \sqrt{t^{2}+t+2}$, where t is a real parameter. The locus of z in the Argand plane is
a) A hyperbola
b) An ellipse
c) A straight line
d) None of these
201. $1, z_{1}, z_{2}, z_{3}, \ldots, z_{n-1}$ are the $n^{\text {th }}$ roots of unity, then the value of $1 /\left(3-z_{1}\right)+1 /\left(3-z_{2}\right)+\cdots+1 /(3-$ z_{n-1}) is equal to
a) $\frac{n 3^{n-1}}{3^{n}-1}+\frac{1}{2}$
b) $\frac{n 3^{n-1}}{3^{n}-1}-1$
c) $\frac{n 3^{n-1}}{3^{n}-1}+1$
d) None of these
202. Given $z=(1+i \sqrt{3})^{100}$, then $[\operatorname{RE}(z) / \operatorname{IM}(z)]$ equals
a) 2^{100}
b) 2^{50}
c) $\frac{1}{\sqrt{3}}$
d) $\sqrt{3}$
203. The quadratic $x^{2}+a x+b+1=0$ has roots which are positive integers, then $\left(a^{2}+b^{2}\right)$ can be equal to
a) 50
b) 37
c) 61
d) 19
204. x_{1} and x_{2} are the roots of $a x^{2}+b x+c=0$ and $x_{1} x_{2}<0$. Roots of $x_{1}\left(x-x_{2}\right)^{2}+x_{2}\left(x-x_{1}\right)^{2}=0$ are
a) Real and opposite sign
b) Negative
c) Positive
d) Non-real
205. Both the roots of the equation $(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$ are always
a) Positive
b) Real
c) Negative
d) None of these
206. If $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+c a$ lies in the interval
a) $\left[\frac{1}{2}, 2\right]$
b) $[-1,2]$
c) $\left[-\frac{1}{2}, 1\right]$
d) $\left[-1, \frac{1}{2}\right]$
207. If $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \arg \left(z_{1} / z_{2}\right)=\pi$, then $z_{1}+z_{2}$ is equal to
a) 0
b) Purely imaginary
c) Purely real
d) None of these
208. If $b_{1} b_{2}=2\left(c_{1}+c_{2}\right)$, then at least one of the equations $x^{2}+b_{1} x+c_{1}=0$ and $x^{2}+b_{2} x+c_{2}=0$ has
a) Imaginary roots
b) Real roots
c) Purely imaginary roots
d) None of these
209. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$, then the value of $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma$ is
a) $\sin (a+b+\gamma)$
b) $3 \sin (\alpha+\beta+\gamma)$
c) $18 \sin (\alpha+\beta+\gamma)$
d) $\sin (\alpha+2 \beta+3)$
210. If $z=x+i y$ and $\omega=(1-i z) /(z-i)$, then $|\omega|=1$ implies that, in the complex plane
a) z lies on the imaginary axis
b) z lies on the real axis
c) z lies on the unit circle
d) None of these
211. The maximum area of the triangle formed by the complex coordinate z, z_{1}, z_{2} which satisfy the relations $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ and $\left|z-\left(z_{1}+z_{2}\right) / 2\right| \leq r$, where $r>\left|z_{1}-z_{2}\right|$ is
a) $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
b) $\frac{1}{2}\left|z_{1}-z_{2}\right| r$
c) $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2} r^{2}$
d) $\frac{1}{2}\left|z_{1}-z_{2}\right| r^{2}$
212. The points $z_{1}, z_{2}, z_{3}, z_{4}$ in the complex plane are the vertices of a parallelogram taken in order if and only if
a) $z_{1}+z_{4}=z_{2}+z_{3}$
b) $z_{1}+z_{3}=z_{2}+z_{4}$
c) $z_{1}+z_{2}=z_{3}+z_{4}$
d) None of these
213. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has
a) No solution
b) One solution
c) Two solutions
d) More than two solutions
214. If $\left(b^{2}-4 a c\right)^{2}\left(1+4 a^{2}\right)<64 a^{2}, a<0$, then maximum value of quadratic expression $a x^{2}+b x+c$ is always less than
a) 0
b) 2
c) -1
d) -2
215. The curve $y=(\lambda+1) x^{2}+2$ intersects the curve $y=\lambda x+3$ in exactly one point, if λ equals
a) $\{-2,2\}$
b) $\{1\}$
c) $\{-2\}$
d) $\{2\}$
216. If $a^{2}+b^{2}=1$, then $(1+b+i a) /(1+b-i a)=$
a) 1
b) 2
c) $b+i a$
d) $a+i b$
217. If z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle $A B C$ such that $\left|z_{1}-i\right|=\left|z_{2}-i\right|=\left|z_{3}-i\right|$, then $\left|z_{1}+z_{2}+z_{3}\right|$ equals to
a) $3 \sqrt{3}$
b) $\sqrt{3}$
c) 3
d) $\frac{1}{3 \sqrt{3}}$
218. Let C_{1} and C_{2} are concentric circles of radius 1 and $8 / 3$, respectively, having centre at $(3,0)$ on the Aragnd plane. If the complex number z satisfies the inequality $\log _{1 / 3}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$ then
a) z lies outside C_{1} but inside C_{2}
b) z lies inside of both C_{1} and C_{2}
c) z lies outside both of C_{1} and C_{2}
d) None of these
219. If a, b and c are real numbers such that $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+c a$ lies in the interval
a) $[1 / 2,2]$
b) $[-1,2]$
c) $[-1 / 2,1]$
d) $[-1,1 / 2]$
220. If $z=x+i y$ and $x^{2}+y^{2}=16$, then the range of $||x|-|y||$ is
a) $[0,4]$
b) $[0,2]$
c) $[2,4]$
d) None of these
221. If $|z-1| \leq 2$ and $\left|\omega z-1-\omega^{2}\right|=a$ (where ω is a cube root of unity) then complete set of values of a is
a) $0 \leq a \leq 2$
b) $\frac{1}{2} \leq a \leq \frac{\sqrt{3}}{2}$
c) $\frac{\sqrt{3}}{2}-\frac{1}{2} \leq a \leq \frac{1}{2}+\frac{\sqrt{3}}{2}$
d) $0 \leq a \leq 4$
222. If α, β are real and α^{2}, β^{2} are the roots of the equation $a^{2} x^{2}+x+1-a^{2}=0(a>1)$, then $\beta^{2}=$
a) a^{2}
b) $1-\frac{1}{a^{2}}$
c) $1-a^{2}$
d) $1+a^{2}$
223. If the complex number z satisfies the condition $|z| \geq 3$, then the least value of $[z+(1 / z) \mid$ is equal to
a) $5 / 3$
b) $8 / 3$
c) $11 / 3$
d) None of these
224. The points $z_{1}=3+\sqrt{3} i$ and $z_{2}=2 \sqrt{3}+6 i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z_{1} and z_{2} is
a) $z=\frac{(3+2 \sqrt{3})}{2}+\frac{\sqrt{3}+2}{2} i$
b) $z=5+5 i$
c) $z=-1-i$
d) None of these
225. If $\left|z^{2}-3\right|=3|z|$ then the maximum value of $|z|$ is
a) 1
b) $\frac{3+\sqrt{21}}{2}$
c) $\frac{\sqrt{21}-3}{2}$
d) None of these
226. If a complex number z satisfies $|2 z+10+10 i| \leq 5 \sqrt{3}-5$, then the least principle argument of z is
a) $-\frac{5 \pi}{6}$
b) $-\frac{11 \pi}{12}$
c) $-\frac{3 \pi}{4}$
d) $-\frac{2 \pi}{3}$
227. If x be real, then $x /\left(x^{2}-5 x+9\right)$ lies between
a) -1 and $-1 / 11$
b) 1 and $-1 / 11$
c) 1 and $1 / 11$
d) None of these
228. The complex number associated with the vertices A, B, C of $\triangle A B C$ are $e^{\text {th }}, \omega$, $\bar{\omega}$, respectively [where $\omega, \bar{\omega}$ are the complex cube roots of unity and $\cos \theta>\operatorname{Re}(\omega)]$, then the complex number of the point where angle bisector of A meets the circumcircle of the triangle, is
a) $e^{i \theta}$
b) $e^{-i \theta}$
c) $\omega \bar{\omega}$
d) $\omega+\bar{\omega}$
229. If $\arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2}$ and $\left|\frac{z}{|z|}-z_{1}\right|=3$ then $\left|z_{1}\right|$ equals to
a) $\sqrt{26}$
b) $\sqrt{10}$
c) $\sqrt{3}$
d) $2 \sqrt{2}$
230. Dividing $f(z)$ by $z-i$, we obtain the remainder i and dividing it by $z+i$, we get the remainder $1+i$, then remainder upon the division of $f(z)$ by $z^{2}+1$ is
a) $\frac{1}{2}(z+1)+i$
b) $\frac{1}{2}(i z+1)+i$
c) $\frac{1}{2}(i z-1)+i$
d) $\frac{1}{2}(z+i)+1$
231. If both roots of the equation $a x^{2}+x+c-a=0$ are imaginary and $c>-1$, then
a) $3 a>2+4 c$
b) $3 a<2+4 c$
c) $c<a$
d) None of these
232. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be roots of $x^{2}-4 x+q=0$. If $\alpha, \beta, \gamma, \delta$ are in G.P., then the integral values of p and q, respectively are
a) $-2,-32$
b) $-2,3$
c) $-6,3$
d) $-6,-32$
233. If α, β be the roots of the equation $a x^{2}+b x+c=0$, then value of $\left(a \alpha^{2}+c\right) /(a \alpha+b)+\left(a \beta^{2}+c\right) /(a \beta+$ b) is
a) $\frac{b\left(b^{2}-2 a c\right)}{4 a}$
b) $\frac{b^{2}-4 a c}{2 a}$
c) $\frac{b\left(b^{2}-2 a c\right)}{a^{2} c}$
d) None of these
234. Number of solutions of the equation $z^{3}+\left[3(\bar{z})^{2}\right] /|z|=0$ where z is a complex number is
a) 2
b) 3
c) 6
d) 5
235. Given z is a complex number with modulus 1 . Then the equation $[(1+i a) /(1-i a)]^{4}=z$ has
a) All roots real and distinct
b) Two real and two imaginary
c) Three roots real and one imaginary
d) One root real and three imaginary
236. If the equation $z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are real coefficients different from zero, has a purely imaginary root, then the expression $a_{3} /\left(a_{1} a_{2}\right)+\left(a_{1} a_{4}\right) /\left(a_{2} a_{3}\right)$ has the value equal to
a) 0
b) 1
c) -2
d) 2
237.

If $z_{1,}, z_{2}, z_{3}$ are three complex numbers and $A=\left[\begin{array}{ccc}\arg z_{1} & \arg z_{2} & \arg z_{3} \\ \arg z_{2} & \arg z_{3} & \arg z_{1} \\ \arg z_{3} & \arg z_{1} & \arg z_{2}\end{array}\right]$ then A is divided by
a) $\arg \left(z_{1}+z_{2}+z_{3}\right)$
b) $\arg \left(z_{1} z_{2} z_{3}\right)$
c) All numbers
d) cannot say
238. Let z_{1} and z_{2} be $n^{\text {th }}$ roots of unity which subtend a right angle at the origin. Then n must be of the form
a) $4 k+1$
b) $4 k+2$
c) $4 k+3$
d) $4 k$

Multiple Correct Answers Type

239. If a, b, c are distinct numbers in arithmetic progressions then both the roots of the quadratic equation $(a+2 b-3 c) x^{2}+(b+2 c-3 a) x+(c+2 a-3 b)=0$ are
a) Real
b) Positive
c) Negative
d) Rational
240. If the equation $a x^{2}+b x+c=0, a, b c \in R$ have non-real roots, then
a) $c(a-b+c)>0$
b) $c(a+b+c)>0$
c) $c(4 a-2 b+c)>0$
d) None of these
241. Let z be a complex number satisfying equation $z^{p}=\bar{z}^{q}$, where $p, q \in N$, then
a) If $p=q$, then number of solutions of equation will be infinite
b) If $p=q$, then number of solutions of equation will be finite
c) If $p \neq q$, then number of solutions of equation will be $p+q+1$
d) If $p \neq q$, then number of solutions of equation will be $p+q$
242. Let $a, b, c \in Q^{\prime}$ satisfying $a>b>c$. Which of the following statement(s) hold true for the quadratic
polynomial $f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$?
a) The mouth of the parabola $y=f(x)$ opens upwards
b) Both roots of the equation $f(x)=0$ are rational
c) x-coordinate of vertex of the graph is positive
d) Product of the roots is always negative
243. Let $P(x)$ and $Q(x)$ be two polynomials. Suppose that $f(x)=P\left(x^{3}\right)+x Q\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then
a) $P(x)$ is divisible by $(x-1)$ but $Q(x)$ is not
b) $\begin{aligned} & Q(x) \text { is divisible by }(x-1) \text { but } P(x) \text { is not } \\ & \text { divisible by }(x-1)\end{aligned}$ divisible by $(x-1)$
c) Both $P(x)$ and $Q(x)$ are divisible by $(x-1)$
d) $f(x)$ is divisible by $(x-1)$
244. z_{1} and z_{2} are the roots of the equation $z^{2}-a z+b=0$, where $\left|z_{1}\right|=\left|z_{2}\right|=1$ and a, b are non-zero complex numbers, then
a) $|a| \leq 1$
b) $|a| \leq 2$
c) $\arg \left(a^{2}\right)=\arg (b)$
d) $\arg a=\arg \left(b^{2}\right)$
245. Let z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$. If z_{1} has positive real part and z_{2} has negative imaginary part, then $\left(z_{1}+z_{2}\right) /\left(z_{1}-z_{2}\right)$ may be
a) Zero
b) Real and positive
c) Real and negative
d) Purely imaginary
246. Given that the complex numbers which satisfy the equation $z \bar{z}^{3}+\bar{z} z^{3}=350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then
a) Area of rectangle is 48 sq. units
b) If $z_{1}, z_{2}, z_{3}, z_{4}$ are vertices of rectangle then $z_{1}+z_{2}+z_{3}+z_{4}=0$
c) Rectangle is symmetrical about real axis
d) $\arg \left(z_{1}-z_{3}\right)=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
247. If $z_{1}=5+12 i$ and $\left|z_{2}\right|=4$ then
a) Maximum $\left(\left|z_{1}+i z_{2}\right|\right)=17$
b) Minimum $\left(\left|z_{1}+(1+i) z_{2}\right|\right)=13-4 \sqrt{2}$
c) Minimum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{4}$
d) Maximum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{3}$
248. For the quadratic equation $x^{2}+2(a+1) x+9 a-5=0$, which of the following is/are true?
a) If $2<a<5$, then roots are of opposite sign
b) If $a<0$, then roots are of opposite sign
c) If $a>7$, then both roots are negative
d) If $2 \leq a \leq 5$, then roots are unreal
249. Given $z=f(x)+i g(x)$ where $f, g:(0,1) \rightarrow(0,1)$ are real valued functions. Then, which of the following does not hold good?
a) $z=\frac{1}{1-i x}+i\left(\frac{1}{1+i x}\right)$
b) $z=\frac{1}{1+i x}+i\left(\frac{1}{1-i x}\right)$
c) $z=\frac{1}{1+i x}+i\left(\frac{1}{1+i x}\right)$
d) $z=\frac{1}{1-i x}+i\left(\frac{1}{1-i x}\right)$
250. If S is the set of all real x such that $(2 x-1) /\left(2 x^{3}+3 x^{2}+x\right)$ is positive, then S contains
a) $\left(-\infty,-\frac{3}{2}\right)$
b) $\left(-\frac{3}{2},-\frac{1}{4}\right)$
c) $\left(-\frac{1}{4}, \frac{1}{2}\right)$
d) $\left(\frac{1}{2}, 3\right)$
251. If the following figure shows the graph of $f(x)=a x^{2}+b x+c$, then

a) $a c<0$
b) $b c>0$
c) $a b>0$
d) $a b c<0$
252. If the equation $a x^{2}+b x+c=0(a>0)$ has two roots α and β such that $\alpha<-2$ and $\beta>2$, then
a) $b^{2}-4 a c>0$
b) $c<0$
c) $a+|b|+c<0$
d) $4 a+2|b|+c<0$
253. If $|z-1|=1$, then
a) $\arg ((z-1-i) / z)$ can be equal to $-\pi / 4$
b) $(z-2) / z$ is purely imaginary number
c) $(z-2) / z$ is purely real number
d) If $\arg (z)=\theta$, where $z \neq 0$ and θ is acute, then $1-2 / z=i \tan \theta$
254. If the points $A(z), B(-z)$ and $C(1-z)$ are the vertices of an equilateral triangle $A B C$, then
a) Sum of possible z is $1 / 2$
b) Sum of possible z is 1
c) Product of possible z is $1 / 4$
d) Product of possible z is $1 / 2$
255. If every pair from among the equations $x^{2}+a x+b c=0, x^{2}+b x+c a=0$ and $x^{2}+c x+a b=0$ has a common root, then
a) The sum of the three common roots is $-1 / 2(a+b+c)$
b) The sum of the three common roots is $2(a+b+c)$
c) The product of the three common roots is $a b c$
d) The product of the three common roots is $a^{2} b^{2} c^{2}$
256. $\left|z^{2}\right|^{3}$ is equal to
a) $\left|z^{3}\right|^{2}$
b) $\left|\bar{z}^{3}\right|^{2}$
c) $|z|^{6}$
d) $\left|z^{6}\right|$
257. If $a x^{2}+(b-c) x+a-b-c=0$ has unequal real roots for all $c \in R$, then
a) $b<0<a$
b) $a<0<b$
c) $b<a<0$
d) $b>a>0$
258. If $\cos x-y^{2}-\sqrt{y-x^{2}-1} \geq 0$, then
a) $y \geq 1$
b) $x \in R$
c) $y=1$
d) $x=0$
259. Equation of tangent drawn to circle $|z|=r$ at the point $A\left(z_{0}\right)$ is
a) $\operatorname{Re}\left(\frac{Z}{z_{0}}\right)=1$
b) $z \bar{z}_{0}+z_{0} \bar{z}=2 r^{2}$
c) $\operatorname{Im}\left(\frac{Z}{z_{0}}\right)=1$
d) $\operatorname{Im}\left(\frac{z_{0}}{z}\right)=1$
260. If $a, b, c \in R$ and $a b c<0$, then the equation $b c x^{2}+2(b+c-a) x+a=0$, has
a) Both positive roots
b) Both negative roots
c) Real roots
d) One positive and one negative root
261. If $\sqrt{5-12 i}+\sqrt{-5-12 i}=z$, then principle value of $\arg z$ can be
a) $-\frac{\pi}{4}$
b) $\frac{\pi}{4}$
c) $\frac{3 \pi}{4}$
d) $-\frac{3 \pi}{4}$
262. If α, β are the roots of the quadratic equation $a x^{2}+b x+c=0$ then which of the following expression will be the symmetric function of roots
a) $\left|\log \frac{\alpha}{\beta}\right|$
b) $\alpha^{2} \beta^{5}+\beta^{2} \alpha^{5}$
c) $\tan (\alpha-\beta)$
d) $\left(\log \frac{1}{\alpha}\right)^{2}+\left(\log \beta^{2}\right)$
263. Let z_{1}, z_{2}, z_{3} be the three non-zero complex numbers such that $z_{2} \neq 1, a=\left|z_{1}\right|, b=\left|z_{2}\right|$ and $c=\left|z_{3}\right|$. Let, $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$
Then
a) $\arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2}$
b) Orthocenter of triangle formed by z_{1}, z_{2}, z_{3} is $z_{1}+z_{2}+z_{3}$
c) If triangle formed by z_{1}, z_{2}, z_{3} is equilateral, then its area is $\frac{3 \sqrt{3}}{2}\left|z_{1}\right|^{2}$
d) If triangle formed by z_{1}, z_{2}, z_{3} is equialateral then $z_{1}+z_{2}+z_{3}=0$
264. If the quadratic equation $a x^{2}+b x+c=0(a>0)$ has $\sec ^{2} \theta$ and $\operatorname{cosec}^{2} \theta$ as its roots, then which of the following must hold good?
a) $b+c=0$
b) $b^{2}-4 a c \geq 0$
c) $c \geq 4 a$
d) $4 a+b \geq 0$
265. If $\left|z_{1}\right|=15$ and $\left|z_{2}-3-4 i\right|=5$, then
a) $\left|z_{1}-z_{2}\right|_{\text {min }}=5$
b) $\left|z_{1}-z_{2}\right|_{\text {min }}=10$
c) $\left|z_{1}-z_{2}\right|_{\text {max }}=20$
d) $\left|z_{1}-z_{2}\right|_{\text {max }}=25$
266. z_{1}, z_{2}, z_{3} and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are non-zero complex numbers such that $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ and $z_{3}^{\prime}=(1-\mu) z_{1}^{\prime}+$ μz_{2}^{\prime} then which of the following statements is/are true?
a) If $\lambda, \mu \in R-\{0\}$, then z_{1}, z_{2} and z_{3} are collinear and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are collinear separately
b) If λ, μ are complex numbers, where $\lambda=\mu$ then triangles formed by points z_{1}, z_{2}, z_{3} and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are b) similar
c) If λ, μ are distinct complex numbers, then points z_{1}, z_{2}, z_{3} and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are not connected by any well defined geometry
d) If $0<\lambda<1$, then z_{3} divides the line joining z_{1} and z_{2} internally and if $\mu>1$ then z_{3}^{\prime} divides the line joining of $z_{1}^{\prime}, z_{2}^{\prime}$ externally
267. If from a point P representing the complex number z_{1} on the curve $|z|=2$, two tangents are drawn from P to the curve $|z|=1$, meeting at points $Q\left(z_{2}\right)$ and $R\left(z_{3}\right)$, then
a) Complex number $\left(z_{1}+z_{2}+z_{3}\right) / 3$ will be on the curve $|z|=1$
b) $\left(\frac{4}{\bar{z}_{1}}+\frac{1}{\bar{z}_{2}}+\frac{1}{\bar{z}_{3}}\right)\left(\frac{4}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right)=9$
c) $\arg \left(\frac{z_{2}}{z_{3}}\right)=\frac{2 \pi}{3}$
d) Orthocentre and circumcentre of $\triangle P Q R$ will coincide
268. If every pair from among the equations $x^{2}+p x+q r=0, x^{2}+q x+r p=0$ and $x^{2}+r x+p q=$ 0 , where p, q, r are unequal non-zero numbers, have a common root, then the value of $\left(\frac{\text { sum of common roots }}{\text { product of common roots }}\right)$ is
a) $\frac{\sum p}{p q r}$
b) $\left(\sum p\right)^{2}$
c) $\sum \frac{1}{p}$
d) 0
269. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair of complex number $w_{1}=a+i c$ and $w_{2}=b+i d$ satisfies
a) $\left|w_{1}\right|=1$
b) $\left|w_{2}\right|=1$
c) $\operatorname{Re}\left|w_{1} \bar{w}_{2}\right|=0$
d) None of these
270. If $\arg (z+a)=\pi / 6$ and $\arg (z-a)=2 \pi / 3\left(a \in R^{+}\right)$, then
a) $|z|=a$
b) $|z|=2 a$
c) $\arg (z)=\frac{\pi}{2}$
d) $\arg (z)=\frac{\pi}{3}$
271. A rectangle of maximum area is inscribed in the circle $|z-3-4 i|=1$. If one vertex of the rectangle is $4+4 i$, then another adjacent vertex of this rectangle can be
a) $2+4 i$
b) $3+5 i$
c) $3+3 i$
d) $3-3 i$
272. If amp $\left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then
a) $z_{1}+z_{2}=0$
b) $z_{1} z_{2}=1$
c) $z_{1}=\bar{z}_{2}$
d) None of these
273. If the equations $4 x^{2}-x-1=0$ and $3 x^{2}+(\lambda+\mu) x+\lambda-\mu=0$ have a root common then the rational values of λ and μ are
a) $\lambda=\frac{-3}{4}$
b) $\lambda=0$
c) $\mu=\frac{3}{4}$
d) $\mu=0$
274. If $\left|a x^{2}+b x+c\right| \leq 1$ for all x in $[0,1]$, then
a) $|a| \leq 8 \mid$
b) $|b|>8$
c) $|c| \leq 1$
d) $|a|+|b|+|c| \leq 17$
275. If $x, y \in R$ and $2 x^{2}+6 x y+5 y^{2}=1$, then
a) $|x| \leq \sqrt{5}$
b) $|x| \geq \sqrt{5}$
c) $y^{2} \leq 2$
d) $y^{2} \leq 4$
276. Let z_{1} and z_{2} be two distinct complex numbers and let $z=(1-t) z_{1}+t z_{2}$ for some real number t with $0<t<1$. If $\arg (w)$ denotes the principle argument of a non-zero complex number w, then
a) $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
b) $\arg \left(z-z_{1}\right)=\arg \left(z-z_{2}\right)$
c) $\left|\begin{array}{cc}z-z_{1} & \bar{z}-\overline{z_{1}} \\ z_{2}-z_{1} & \overline{z_{2}}-\overline{z_{1}}\end{array}\right|=0$
d) $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)$
277. Value $(s)(-i)^{1 / 3}$ is/are
a) $\frac{\sqrt{3}-i}{2}$
b) $\frac{\sqrt{3}+i}{2}$
c) $\frac{-\sqrt{3}-i}{2}$
d) $\frac{-\sqrt{3}+i}{2}$
278. z_{0} is a root of the equation $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\cdots+z \cos \theta_{n-1}+\cos \theta_{n}=2$, where $\theta_{i} \in R$, then
a) $\left|z_{0}\right|>1$
b) $\left|z_{0}\right|>\frac{1}{2}$
c) $\left|z_{0}\right|>\frac{1}{4}$
d) $\left|z_{0}\right|>\frac{3}{2}$
279. Let $f(x)=a x^{2}+b x+c$. Consider the following diagram. Then

a) $c<0$
b) $b>0$
c) $a+b-c>0$
d) $a b c<0$
280. If α is a complex constant such that $\alpha z^{2}+z+\bar{\alpha}=0$ has a real root, then
a) $\alpha+\bar{\alpha}=1$
b) $\alpha+\bar{\alpha}=0$
c) $\alpha+\bar{\alpha}=-1$
d) The absolute value of the real roots is 1
281. If $p=a+b \omega+c \omega^{2}, q=b+c \omega+a \omega^{2}$ and $r=c+a \omega+b \omega^{2}$ where $a, b, c \neq 0$ and ω is the complex cube root of unity, then
a) If p, q, r lie on the circle $|z|=2$, the triangle formed by these points is equilateral
b) $p^{2}+q^{2}+r^{2}=a^{2}+b^{2}+c^{2}$
c) $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$
d) None of these
282. $P\left(z_{1}\right), Q\left(z_{2}\right), R\left(z_{3}\right)$ and $S\left(z_{4}\right)$ are four complex numbers representing the vertices of a rhombus taken in order on the complex plane, then which one of the following is/are correct?
a) $\frac{z_{1}-z_{4}}{z_{2}-z_{3}}$ is purely real
b) $\operatorname{amp} \frac{z_{1}-z_{4}}{z_{2}-z_{4}}=\operatorname{amp} \frac{z_{2}-z_{4}}{z_{3}-z_{4}}$
c) $\frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is purely imaginary
d) It is not necessary that $\left|z_{1}-z_{3}\right| \neq\left|z_{2}-z_{4}\right|$
283. If z_{1}, z_{2} be two complex numbers $\left(z_{1} \neq z_{2}\right)$ satisfying $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|$, then
a) $\frac{z_{1}}{z_{2}}$ is purely imaginary
b) $\frac{z_{1}}{z_{2}}$ is purely real
c) $\left|\arg z_{1}-\arg z_{2}\right|=\pi$
d) $\left|\arg z_{1}-\arg z_{2}\right|=\frac{\pi}{2}$
284. If $|z-(1 / z)|=1$ then
a) $|z|_{\max }=\frac{1+\sqrt{5}}{2}$
b) $|z|_{\min }=\frac{\sqrt{5}-1}{2}$
c) $|z|_{\max }=\frac{\sqrt{5}-2}{2}$
d) $|z|_{\min }=\frac{\sqrt{5}-1}{\sqrt{2}}$
285. A quadratic equation whose difference of roots is 3 and the sum of the squares of the roots is 29 , is given by
a) $x^{2}+9 x+14=0$
b) $x^{2}+7 x+10=0$
c) $x^{2}-7 x-10=0$
d) $x^{2}-7 x+10=0$
286. If α and β are the roots of $a x^{2}+b x+c=0$ and $\alpha+h, \beta+h$ are the roots of $p x^{2}+q x+r=0$, then
a) $h=\frac{1}{2}\left(\frac{b}{a}, \frac{q}{p}\right)$
b) $\frac{b^{2}-4 a c}{a^{2}}=\frac{q^{2}-4 p r}{p^{2}}$
c) $\frac{a}{p}=\frac{b}{q}=\frac{c}{r}$
d) None of these
287. If α is one root of the equation $4 x^{2}+2 x-1=0$, then its other root is given by
a) $4 \alpha^{3}-3 \alpha$
b) $4 \alpha^{3}+3 \alpha$
c) $\alpha-\frac{1}{2}$
d) $-\alpha-\frac{1}{2}$
288. Locus of complex number satisfying $\arg [(z-5+4 i) /(z+3-2 i)]=-\pi / 4$ is the arc of a circle
a) Whose radius is $5 \sqrt{2}$
b) Whose radius is 5
c) Whose length (of arc) is $\frac{15 \pi}{\sqrt{2}}$
d) Whose centre is $-2-5 i$
289. If the roots of the equation, $x^{3}+p x^{2}+q x-1=0$ form an increasing G.P., where p and q are real, then
a) $p+q=0$
b) $p \in(-3, \infty)$
c) One of the root is unity
d) One root is smaller than 1 and one root is greater than 1
290. If $\left|\left(z-z_{1}\right) /\left(z-z_{2}\right)\right|=3$, where z_{1} and z_{2} are fixed complex numbers and z is a variable complex number, then ' z ' lies on a
a) Circle with ' z_{1} ' as its interior point
b) Circle with ' z_{2} ' as its interior point
c) Circle with ' z_{1} ' as its exterior point
d) Circle with ' z_{2} ' as its exterior point
291. The value of x satisfying the equation $2^{2 x}-8 \times 2^{x}=-12$ is
a) $1+\frac{\log 3}{\log 2}$
b) $\frac{1}{2} \log 6$
c) $1+\log \frac{3}{2}$
d) 1
292. The equation $x^{2}+a^{2} x+b^{2}=0$ has two roots each of which exceeds a number c, then
a) $a^{4}>4 b^{2}$
b) $c^{2}+a^{2} c+b^{2}>0$
c) $-\frac{a^{2}}{2}>c$
d) None of these
293. If the equations $x^{2}+b x-a=0$ and $x^{2}-a x+b=0$ have a common root, then
a) $a+b=0$
b) $a=b$
c) $a-b=1$
d) $a+b=1$
294. If $\cos ^{4} \theta+a, \sin ^{4} \theta+\alpha$ are the roots of the equation $x^{2}+2 b x+b=0$ and $\cos ^{2} \theta+\beta, \sin ^{2} \theta+\beta, \sin ^{2} \theta+$ β are the roots of the equation $x 2+4 x+2=0$, then values of b are
a) 2
b) -1
c) -2
d) 1
295. If a, b, c are in G.P. then the roots of the equation $a x^{2}+b x+c=0$ are in the ratio
a) $\frac{1}{2}(-1+i \sqrt{3})$
b) $\frac{1}{2}(1-i \sqrt{3})$
c) $\frac{1}{2}(-1-i \sqrt{3})$
d) $\frac{1}{2}(1+i \sqrt{3})$
296. If $x^{3}+3 x^{2}-9 x+c$ is of the form $(x-\alpha)^{2}(x-\beta)$, then c is equal to
a) 27
b) -27
c) 5
d) -5
297. If $p, q, r \in R$ and the quadratic equation $p x^{2}+q x+r=0$ has no real root, then
a) $p(p+q+r)>0$
b) $r(p+q+r)>0$
c) $q(p+q+r)>0$
d) $(p+q+r)>0$
298. If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, then it must be equal to
a) $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$
b) $\frac{q-q^{\prime}}{p^{\prime}-p}$
c) $\frac{p^{\prime}-p}{q-q^{\prime}}$
d) $\frac{p q^{\prime}-p^{\prime} q}{p-p^{\prime}}$
299. A complex number z is rotated in anticlockwise direction by an angle α and we get z^{\prime} and if the same complex number z is rotated by an angle α in clockwise direction and we get $z^{\prime \prime}$ then
a) $z^{\prime}, z, z^{\prime \prime}$ are in G.P.
b) $z^{\prime}, z, z^{\prime \prime}$ are in H.P.
c) $z^{\prime}+z^{\prime \prime}=2 z \cos \alpha$
d) $z^{\prime 2}+z^{\prime \prime 2}=2 z^{2} \cos 2 \alpha$
300. Given that the two curves $\arg (z)=\pi / 6$ and $|z-2 \sqrt{3} i|=r$ intersect in two distinct points, then
a) $[r] \neq 2$
b) $0<r<3$
c) $r=6$
d) $3<r<2 \sqrt{3}$
301. If $c \neq 0$ and the equation $\frac{p}{2 x}=\frac{a}{x+c}+\frac{b}{x-c}$ has two equal roots, then p can be
a) $(\sqrt{a}-\sqrt{b})^{2}$
b) $(\sqrt{a}+\sqrt{b})^{2}$
c) $a+b$
d) $a-b$
302. If $c \neq 0$ and the equation $p /(2 x)=a /(x+c)+b /(x-c)$ has two equal roots, then p can be
a) $(\sqrt{a}-\sqrt{b})^{2}$
b) $(\sqrt{a}+\sqrt{b})^{2}$
c) $a+b$
d) $a-b$
303. The equation $x^{\frac{3}{4}}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\sqrt{2}$ has
a) At least one real solution
b) Exactly three solutions
c) Exactly one irrational solution
d) Complex roots
304. If P and Q are represented by the complex number z_{1} and z_{2}, such that $\left|1 / z_{2}+1 / z_{1}\right|=\left|1 / z_{2}-1 / z_{1}\right|$, then
a) $\triangle O P Q$ (where O is the origin) is equilateral
b) $\triangle O P Q$ is right angled
c) The circumcentre of $\triangle O P Q$ is $\frac{1}{2}\left(z_{1}+z_{2}\right)$
d) The circumcentre of $\triangle O P Q$ is $\frac{1}{3}\left(z_{1}+z_{2}\right)$
305. If $\left(x^{2}+a x+3\right) /\left(x^{2}+x+a\right)$ takes all real values for possible real values of x, then
a) $4 a^{3}+39<0$
b) $4 a^{3}+39 \geq 0$
c) $a \geq \frac{1}{4}$
d) $a<\frac{1}{4}$
306. Given than α, γ are roots of the equation $A x^{2}-4 x+1=0$, and β, δ the roots of the equation of $B x^{2}-6 x+1=0$, such that α, β, γ and δ are in H.P., then
a) $A=3$
b) $A=4$
c) $B=2$
d) $B=8$
307. Let $P(x)=x^{2}+b x+c$, where b and c are integer. If $P(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, then
a) $P(x)=0$ has imaginary roots
b) $P(x)=0$ has roots of opposite sign
c) $P(1)=4$
d) $P(1)=6$
308. If n is natural number ≥ 2, such that $z^{n}=(z+1)^{n}$, then
a) Roots of equation lie on a straight line parallel to y-axis
b) Roots of equation lie on a straight line parallel to x-axis
c) Sum of the real parts of the roots is $-[(n-1) / 2]$
d) None of these
309. If $z^{3}+(3+2 i) z+(-1+i a)=0$ has one real root, then the value of ' a ' lies in interval $(a \in R)$
a) $(-2,1)$
b) $(-1,0)$
c) $(0,1)$
d) $(-2,3)$
310. For $a>0$, the roots of the equation $\log _{a x} a+\log _{x} a^{2}+\log _{a^{2} x} a^{3}=0$ are given by
a) $a^{-4 / 3}$
b) $a^{-3 / 4}$
c) $a^{-1 / 2}$
d) a^{-1}
311. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair of complex numbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfies
a) $\left|\omega_{1}\right|=1$
b) $\left|\omega_{2}\right|=1$
c) $\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=0$
d) $\omega_{1} \bar{\omega}_{2}=0$
312. If $z=x+i y$, then the equation $|(2 z-i) /(z+1)|=m$ represnts a circle then m can be
a) $1 / 2$
b) 1
c) 2
d) $3<r<2 \sqrt{2}$
313. If $1, z_{1}, z_{2}, z_{3}, \ldots, z_{n-1}$ be the $n^{\text {th }}$ roots unity and ω be a non-real complex cube root of unity, then the product $\prod_{r=1}^{n-1}\left(\omega-z_{r}\right)$ can be equal to
a) 0
b) 1
c) -1
d) $1+\omega$
314. If $z=\omega, \omega^{2}$, where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the Argand plane then the third vertex may be represented by
a) $z=1$
b) $z=0$
c) $z=-2$
d) $z=-1$
315. If $(\sin \alpha) x^{2}-2 x+b \geq 2$, for all real values of $x \leq 1$ and $\alpha \in(0, \pi / 2) \cup(\pi / 2, \pi)$, then possible real values of b is/are
a) 2
b) 3
c) 4
d) 5
316. If the roots of the equation $x^{2}+a x+b=0$ are c and d, then roots of the equation $x^{2}+(2 c+a) x+c^{2}+$ $a c+b=0$ are
a) c
b) $d-c$
c) $2 c$
d) 0
317. Let $P(x)$ and $Q(x)$ be two polynomials. Suppose that $f(x)=P\left(x^{3}\right)+x Q\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then
a) $P(x)$ is divisible by $(x-1)$ but $Q(x)$ is not divisible by $x-1$
b) $Q(x)$ is divisible by $(x-1)$ but $P(x)$ is not divisible by $x-1$
c) Both $P(x)$ and $Q(x)$ are divisible by $x-1$
d) $f(x)$ is divisible by $x-1$
318. If the equation $a x^{2}+b x+c=0(a>0)$ has two real roots α and β such that $\alpha<-2$ and $\beta>2$, then which of the following statements is/are true?
a) $a-|b|+c<0$
b) $c<0, b^{2}-4 a c>0$
c) $4 a-2|b|+c<0$
d) $9 a-3|b|+c<0$
319. For real x, then function $(x-a)(x-b) /(x-c)$ will assume all real values provided
a) $a>b>c$
b) $a<b<c$
c) $a>c>b$
d) $a<c<b$
320. The real value of θ for which the expression $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is a real number is
a) $2 n \pi+\frac{\pi}{2}, n \in I$
b) $2 n \pi-\frac{\pi}{2}, n \in I$
c) $2 n \pi \pm \frac{\pi}{2}, n \in I$
d) $2 n \pi \pm \frac{\pi}{4}, n \in I$
321. If the equation whose roots are the squares of the roots of the cubic $x^{3}-a x^{2}+b x-1=0$ is identical with the given cubic equation, then
a) $a=0, b=3$
b) $a=b=0$
c) $a=b=3$
d) a, b are roots of $x^{2}+x+2=0$
322. If $|z-3|=\min \{|z-1|,|z-5|\}$, then $\operatorname{Re}(z)$ equals to
a) 2
b) $\frac{5}{2}$
c) $\frac{7}{2}$
d) 4
323. The graph of the quadratic trinomial $y=a x^{2}+b x+c$ has its vertex at $(4,-5)$ and two x-intercepts one positive and one negative. Which of the following holds good?
a) $a>0$
b) $b<0$
c) $c<0$
d) $8 a=b$
324. If $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{amp} z_{1}+\operatorname{amp} z_{2}=0$, then
a) $z_{1} z_{2}=1$
b) $z_{1}+z_{2}=0$
c) $z_{1}=\bar{z}_{2}$
d) None of these
325. If the equation, $z^{3}+(3+i) z^{2}-3 z-(m+i)=0$, where $m \in R$, has at least one real root, then m can have the value equal to
a) 1
b) 2
c) 3
d) 5

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 326 to 325. Each question contains STATEMENT 1(Assertion) and STATEMENT 2 (Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

326
Statement 1: The greatest integral value of λ for which $(2 \lambda-1) x^{2}-4 x+(2 \lambda-1)=0$ has real roots, is 2.
Statement 2: For real roots of $a x^{2}+b x+c=0, D \geq 0$.
327
Statement 1: If roots of the equation $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-4 c=1$
Statement 2: If a, b, c are odd integer, then the roots of the equation $4 a b c x^{2}+\left(b^{2}-4 a c\right) x-b=0$ are real and distinct
328 Let $a x^{2}+b x+c=0, a \neq 0(a, b, c \in R)$ has no real roots and $a+b+2 c=2$
Statement 1: $\quad a x^{2}+b x+c>0, \forall x \in R$
Statement 2: $a+b$ is positive
329
Statement 1: If $\cos (1-i)=a+i b$, where $a, b \in R$ and $i=\sqrt{-1}$, then $a=\frac{1}{2}\left(e+\frac{1}{e}\right) \cos 1, b=$ $12 e-1 e \sin 1$

Statement 2: $\quad e^{i \theta}=\cos \theta+i \sin \theta$
330 Let fourth roots of unity z_{1}, z_{2}, z_{3} and z_{4} respectively
Statement 1: $\quad z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=0$
Statement 2: $\quad z_{1}+z_{2}+z_{3}+z_{4}=0$
331
Statement 1: The equation $(x-p)(x-r)+\lambda(x-q)(x-s)=0$, where $p<q<r<s$, has non-real roots
Statement 2: The equation $p x^{2}+q x+r=0(p, q, r \in R)$ has non-real roots if $q^{2}-4 p r<0$

Statement 1: If both roots of the equation $2 x^{2}-x+a=0(a \in R)$ lies in (1, 2), then $-1<a \leq 1 / 8$.
Statement 2: If $F(x)=2 x^{2}-x+a$, then $D \geq 0, f(1)>0, f(2)>0$ yield $-1<a \leq 1 / 8$. 333

Statement 1: The number of values of a for which $\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a^{2}-4=0$ is an identity in x is 2
Statement 2: If $a=b=c=0$, then equation $a x^{2}+b x+c=0$ is an identity in x

Statement 1: If equations $a x^{2}+b x+c=0,(a, b, c \in R)$ and $2 x^{2}+3 x+4=0$ have a common root, then $a: b: c=2: 3: 4$.
Statement 2: Roots of $2 x^{2}+3 x+4=0$ are imaginary

Statement 1: If z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|+\left|z_{1}-z_{2}\right|$, then $\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)=0$
Statement 2: $\arg (z)=0 \Rightarrow z$ is purely real

Statement 1: If $a, b, c \in Z$ and $a x^{2}+b x+c=0$ has an irrational root, then $|f(\lambda)| \geq 1 / q^{2}$, where $\lambda \in\left(\lambda=\frac{p}{q} ; p, q \in Z\right)$ and $f(x)=a x^{2}+b x+c$
Statement 2: If $a, b, c \in Q$ and $b^{2}-4 a c$ is positive but not a perfect square, then roots of equation $a x^{2}+b x+c=0$ are irrational and always occur in conjugate pair like $2+\sqrt{3}$ and $2-\sqrt{3}$

337
Statement 1: If equations $a x^{2}+b x+c=0$ and $x^{2}-3 x+4=0$ have exactly one root common, then at least one of a, b, c is imaginary
Statement 2: If a, b, c are not all real, then equation $a x^{2}+b x+c=0$ can have one root real and one root imaginary

Statement 1: Locus of z, satisfying the equation $|z-1|+|z-8|=5$ is an ellipse
Statement 2: Sum of focal distances of any point on ellipse is constant

Statement 1: If $\cos ^{2} \pi / 8$ is a root of the equation $x^{2}+a x+b=0$ where $a, b \in Q$, then ordered pair (a, b) is $[-1,(1 / 8)]$
Statement 2: If $a+m b=0$ and m is irrational, then $a, b=0$
Consider the function $f(x)=\log _{e}\left(a x^{3}+(a+b) x^{2}+(b+c) x+c\right)$
Statement 1: Domain of the functions is $(-1, \infty) \sim\{-(b / 2 a)\}$, where $a>0, b^{2}-4 a c=0$
Statement 2: $a x^{2}+b x+c=0$ has equal roots when $b^{2}-4 a c=0$
341 If $z_{1} \neq-z_{2}$ and $\left|z_{1}+z_{2}\right|=\left|\left(1 / z_{1}\right)+\left(1 / z_{2}\right)\right|$ then

Statement 1: $z_{1} z_{2}$ is unimodular
Statement 2: z_{1} and z_{2} both are unimodular

Statement 1: If $z_{1}+z_{2}=a$ and $z_{1} z_{2}=b$, where $a=\bar{a}$ and $b=\bar{b}$, then $\arg \left(z_{1} z_{2}\right)=0$
Statement 2: The sum and product of two complex numbers are real if and only if they are conjugate of each other

Statement 1: If all real values of x obtained from the equation $4^{x}-(a-3) 2^{x}+(a-4)=0$ are nonpositive, then $a \in(4,5]$
Statement 2: If $a x^{2}+b x+c$ is non-positive for all real values of x, then $b^{2}-4 a c$ must be negative or zero and ' a ' must be negative

Statement 1: If $p x^{2}+q x+r=0$ is a quadratic equation $(p, q, r \in R)$ such that its roots are α, β and $p+q+r<0, p-q+r<0$ and $r>0$, then $[\alpha]+[\beta]=-1$, where $[\cdot]$ denotes greatest integer function
Statement 2: If for any two real numbers a and b, function $f(x)$ is such that $f(a) f(b)<0 \Rightarrow f(x)$ has at least one real root lying in (a, b)

Statement 1: If $a>0$ and $b^{2}-a c<0$, then domain of the function $f(x)=\sqrt{a x^{2}+2 b x+c}$ is R
Statement 2: If $b^{2}-a c<0$, then $a x^{2}+2 b x+c=0$ has imaginary roots

Statement 1: If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\left|z_{1}+2 z_{2}+3 z_{3}\right|=6$, then the value of $\mid z_{2} z_{3}+$ $8 z_{3} z_{1}+27 z_{1} z_{2} \mid$ is 36
Statement 2: $\left|z_{1}+z_{2}+z_{3}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$

Statement 1: If $f(x)$ is a quadratic polynomial satisfying $f(2)+f(4)=0$. If unity is a root of $f(x)=0$, then the other root is 3.5
Statement 2: If $\mathrm{g}(x)=p x^{2}+q x+r=0$ has roots α, β, then $\alpha+\beta=-q / p$ and $\alpha \beta=(r / p)$

Statement 1: If both roots of the equation $4 x^{2}-2 x+a=0, a \in R$ lie in the interval ($-1,1$), then-2 $<a \leq \frac{1}{4}$.
Statement 2: If $f(x)=4 x^{2}-2 x+a$, then $D \geq 0, f(-1)>0$ and $f(1)>0 \Rightarrow-2<a \leq \frac{1}{4}$

Statement 1: If $a^{2}+b^{2}+c^{2}<0$, then if roots of the equation $a x^{2}+b x+c=0$ are imaginary, then they are not complex conjugates
Statement 2: equation $a x^{2}+b x+c=0$ has complex conjugate roots when a, b, c are real

Statement 1: The equation $x^{2}+(2 m+1) x+(2 n+1)=0$, where m and n are integer cannot have any rational roots
Statement 2: The quantity $(2 m+1)^{2}-4(2 n+1)$, where $m, n \in I$ can never be a perfect square

Statement 1: If n is an odd integer greater than 3 but not a multiple of 3 , then $(x+1)^{n}-x^{n}-1$ is divisible by $x^{3}+x^{2}+x$
Statement 2: If n is an odd integer greater than 3 but not a multiple of 3 , we have $1+\omega^{n}+\omega^{2 n}=3$

Statement 1: If $x+(1 / x)=1$ and $p=x^{4000}+\left(1 / x^{4000}\right)$ and q be the digit at unit place in the number $2^{2^{n}}+1, n \in N$ and $n>1$, then the value of $p+q=8$
Statement 2: If ω, ω^{2} are the roots of $x+1 / x=-1$, then $x^{2}+1 / x^{2}=-1, x^{3}+\left(1 / x^{3}\right)=2$

Statement 1: If $0<\alpha<(\pi / 4)$, then the equation $(x-\sin \alpha) \times(x-\cos \alpha)-2=0$ has both roots in $(\sin \alpha, \cos \alpha)$
Statement 2: If $f(a)$ and $f(b)$ possess opposite signs, then there exist at least one solution of the equation $f(x)=0$ in open interval (a, b)

Statement 1: Let z_{1} and z_{2} are two complex numbers such that $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|$ then the orthocentre of $\triangle A O B$ is $\left[\left(z_{1}+z_{2}\right) / 2\right]$ (where O is origin)
Statement 2: In case of right angled triangle, orthocentre is that point at which the triangle is right angled

Statement 1: If $\left|\frac{z z_{1}-z_{2}}{z z_{1}+z_{2}}\right|=k,\left(z_{1}, z_{2} \neq 0\right)$, then the locus of z is circle
Statement 2: As $\left|\frac{z-z_{1}}{z-z_{2}}\right|=\lambda$ represents a circle, if $\lambda \notin\{0,1\}$

Statement 1: If z_{1}, z_{2} are the roots of the quadratic equation $a z^{2}+b z+c=0$ such that $\operatorname{Im}\left(z_{1} z_{2}\right) \neq 0$, then at least one of a, b, c is imaginary
Statement 2: If quadratic equation having real coefficients has complex roots, then roots are always conjugate to each other

Statement 1: If the equation $a x^{2}+b x+c=0,0<a<b<c$, has non-real complex roots z_{1} and z_{2}, then $\left|z_{1}\right|>1,\left|z_{2}\right|>1$
Statement 2: Complex roots always occur in conjugate pairs

Statement 1: equation $i x^{2}+(i-1) x-(1 / 2)-i=0$ has imaginary roots
Statement 2: If $a=i, b=i-1$ and $c=-(1 / 2)-i$, then $b^{2}-4 a c<0$

Statement 1: The question $-x^{2}+x-1=\sin ^{4} x$ has only one solution.

Statement 2: If the curve $y=f(x)$ and $y=\mathrm{g}(x)$ cut at one point, the number of solution is 1 .

Statement 1: If $a, b, c, a_{1}, b_{1}, c_{1}$ are rational and equations $a x^{2}+2 b x+c=0$ and $a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have one and only one root in common, then both $b^{2}-a c$ and $b_{1}^{2}-a_{1} c_{1}$ must be perfect squares
Statement 2: If two quadratic equations with rational coefficient have a common irrational root $p+$ \sqrt{q}, then both roots will be common
361
Statement 1: If $a+b+c=0$ and a, b, c are rational, then the roots of the equation $(b+c-a) x^{2}+$ $(c+a-b) x+(a+b-c)=0$ are rational.
Statement 2: Discriminant of equation $(b+c-a) x^{2}+(c+a-b) x+(a+b-c)=0$ is a perfect square.
Let a, b, c, p, q be real numbers. Suppose α, β are the roots of the equation $x^{2}+2 p x+q=0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $x^{2}+2 b x+c=0$, where $\beta^{2} \notin(-1,0,1)$
Statement 1: $\quad\left(p^{2}-q\right)\left(b^{2}-a c\right) \geq 0$
Statement 2: $\quad b \neq p a$ or $c \neq q a$
363
Statement 1: If $\left(a^{2}-4\right) x^{2}+\left(a^{2}-3 a+2\right) x+\left(a^{2}-7 a+10\right)=0$ is an identity, then the value of a is 2
Statement 2: If $a-b=0$, then $a x^{2}+b x+c=0$ is an identity

Statement 1: If $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, then $\frac{z_{1}}{z_{2}}$ is purely imaginary
Statement 2: If z is purely imaginary, then $z+\bar{z}=0$
365 Let $f(x)=-x^{2}+(a+1) x+5$
Statement 1: $f(x)$ is positive for some $\alpha<x<\beta$ and for all $a \in R$
Statement 2: $\quad f(x)$ is positive for all $x \in R$ and for some real a
366
Statement 1: $\quad\left|z_{1}-a\right|<a,\left|z_{2}-b\right|<b,\left|z_{3}-c\right|<c$, where a, b, c are positive real numbers, then $\left|z_{1}+z_{2}+z_{3}\right|$ is greater than $2|a+b+c|$
Statement 2: $\quad\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
367
Statement 1: If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|, z_{1}+z_{2}+z_{3}=0$ and $\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of $\triangle A B C$, then one of the values of $\arg \left(z_{2}+z_{3}-2 z_{1}\right) /\left(z_{3}-z_{2}\right)$ is $\pi / 2$
Statement 2: In equilateral triangle orthocentre coincides with centroid
368 Let a, b, c be real such that $a x^{2}+b x+c=0$ and $x^{2}+x+1=0$ have a common root
Statement 1: $a=b=c$

Statement 2: Two quadratic equations with real coefficients cannot have only one imaginary root common

Statement 1: If the roots of $x^{5}-40 x^{4}+P x^{3}+Q x^{2}+R x+S=0$ are in G.P. and sum of their reciprocal is 10 , then $|S|=64$
Statement 2: $\quad x_{1} x_{2} x_{3} x_{4} x_{5}=-S$, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are the roots of given equation 370

Statement 1: The product of all values of $(\cos \alpha+i \sin \alpha)^{3 / 5}$ is $\cos 3 \alpha+i \sin 3 \alpha$
Statement 2: The product of fifth roots of unity is 1
371
Statement 1: If $\arg \left(z_{1} z_{2}\right)=2 \pi$, then both z_{1} and z_{2} are purely real (z_{1} and z_{2} have principle arguments)
Statement 2: Principle argument of complex number lies in $(-\pi, \pi)$
372
Statement 1: Let $f(x)$ be quadratic expression such that $f(0)+f(1)=0$. If -2 is one of the root of $f(x)=0$, then other root is $3 / 5$.
Statement 2: If α, β are the zero's of $f(x)=a x^{2}+b x+c$, then sum of zero's $=-b / a$, product of zero's $=c / a$.
373
Statement 1: Let z be a complex number, then the equation $z^{4}+z+2=0$ cannot have a root, such that $|z|<1$
Statement 2: $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
374 Consider a general expression of degree 2 in two variables as $f(x, y)=5 x^{2}+2 y^{2}-2 x y-6 x-6 y+9$
Statement 1: $f(x, y)$ can be resolved into two linear factors over real coefficients
Statement 2: If we compare $f(x, y)$ with $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$, we have $a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.
375.

Column-I

Column- II
(A) If a, b, c and d are four zero real number such that $(d+a-b)^{2}+(d+b-c)^{2}=0$ and the roots of the equation $a(b-c) x^{2}+$
$b(c-a) x+c(a-b)=0$ are real and equal then
(B) If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-$ (q) a, b, c are in A.P $2 b(a+c) x+\left(b^{2}+c^{2}=0\right)$ are real and equal
then
(C) If the equation $a x^{2}+b x+c=0$ and
(r) a, b, c are in G.P.
$x^{3}-3 x^{2}+3 x-1=0$ have a common real root, then
(D) Let a, b, c be positive real numbers such that
(s) a, b, c are in H.P. the expression
$b x^{2}+\left(\sqrt{(a+c)^{2}+4 b^{2}}\right) x+(a+c)$ is nonnegative $\forall x \in R$, then

CODES :

	A	B	C	D
a)	r	p	qr	s
b)	p	q	q, r	s
c)	$\mathrm{q}, \mathrm{r}, \mathrm{s}$	r	p	q
d)	q, r	s	r	p

376.

Column-I

Column- II
(A) $|z-1|=|z-i|$
(p) Pair of straight line
(B) $|z+\bar{z}|+|z-\bar{z}|=2$
(q) A line through the origin
(C) $|z+\bar{z}|=|z-\bar{z}|$
(r) Circle
(D) If $|z|=1$, then $2 / z$ lies on
(s) Square

CODES :
A
B
C
D
a) $\begin{array}{llll}\mathrm{p} & \mathrm{r} & \mathrm{q} & \mathrm{s}\end{array}$
b) r
q s p
c) $\quad \begin{array}{llll}\mathrm{q} & \mathrm{s} & \mathrm{p} & \mathrm{r}\end{array}$
d) $\quad \mathrm{s} \quad \mathrm{p} \quad \mathrm{r} \quad \mathrm{q}$
${ }^{377}$. If $a=\frac{1-i \sqrt{3}}{2}$, then the correct matching of list I from list II is

Column-I

Column- II
(A) $a \bar{a}$
(p) $-\frac{\pi}{3}$
(B) $\arg \left(\frac{1}{a}\right)$
(q) $-i \sqrt{3}$
(C) $a-\bar{a}$
(r) $2 i \sqrt{3}$
(D) $\operatorname{Im}\left(\frac{4}{3 a}\right)$
(s) 1
(t) $\frac{\pi}{3}$
(u) $\frac{2}{\sqrt{3}}$

CODES :

A
B
C
D
a) d
e
c
b
b) d
a
b
f
c) f
e
b
c
d) d
a
b
c
378.

Column-I

Column- II
(A) If $x^{2}+a x+b=0$ has roots α, β and $x^{2}+p x+q=0$ has roots $-\alpha, \gamma$, then
(B) If $x^{2}+a x+b=0$ has roots α, β and $x^{2}+p x+q=0$ has roots $1 / \alpha, \gamma$, then
(C) If $x^{2}+a x+b=0$ has roots α, β and $x^{2}+p x+q=0$ has roots $-2 / \alpha, \gamma$, then
(D) If $x^{2}+a x+b=0$ has roots α, β and $x^{2}+p x+q=0$ has roots $-1 /(2 \alpha), \gamma$, then
(p) $(1-b q)^{2}=(a-p b)(p-a q)$
(q) $(4-b q)^{2}=(4 a+2 p b)(-2 p-a q)$
(r) $(1-4 b q)^{2}=(a+2 b p)(-2 p-4 a q)$
(s) $(q-b)^{2}=(a q+b p)(p-a)$

CODES :

	A	B	C	D
a)	s	p	q	r
b)	q	p	s	r
c)	r	s	p	q
d)	p	r	q	s

379.

Column-I

Column- II

(A) If $|z-2 i|+|z-7 i|=k$, then locus of z is an ellipse if $k=$
(B) If $|(2 z-3) /(3 z-2)|=k$, then locus of z is a circle if $2 / 3$ is a point inside circle and $3 / 2$ is outside the circle if $k=$
(C) If $|z-3|-|z-4 i|=k$, then locus of z is a
(r) 2 hyperbola if k is
(D) If $|z-(3+4 i)=(k / 50)| a \bar{z}+\bar{a} z+b \mid$, where
(s) 4 $a=3+4 i$, then locus of z is a hyperbola with $k=$
(t) 5

CODES :

	A	B	C	D
a)	P, q	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$	r, s	p, q
b)	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$	r, s	p, q	p, q
c)	r, s	p, q	p, q	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$
d)	p, q	$\mathrm{p,q}$	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$	r, s

380.

Column-I

Column- II

(A) $y=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}, x \in R$, then y can be
(p) 1
(B) $y=\frac{x^{2}-3 x-2}{2 x-3}, x \in R$, then y can be
(C) $y=\frac{2 x^{2}-2 x+4}{x^{2}-4 x+3}, x \in R$, then y can be
(q) 4
(D) $x^{2}-(a-3) x+2<0, \forall x \in(-2,3)$, then a can be
CODES :

	A	B	C	D
a)	p	$\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$	$\mathrm{p}, \mathrm{q}, \mathrm{s}$	r, s
b)	r, S	p, q	q, s	p
c)	p, q	r, s	q, s	p
d)	q, s	r, S	p, q	r

381.

Column-I

Column- II
(A) One root is positive and the other is negative
(p) 0
for the equation $(m-2) x^{2}-(8-2 m) x-$ $(8-3 m)=0$
(B) Exactly one root of equation $x^{2}-$
(q) Infinite
$m(2 x-8)-15=0$ lies in interval $(0,1)$
(C) The equation $x^{2}+2(m+1) x+9 m-5=0$
(r) 1 has both roots negative
(D) The equation $x^{2}+2(m-1) x+m+5=0$
(s) 2 has both roots lying on either sides of 1
CODES :

	A	B	C	D
a)	p	q	s	r
b)	q	s	p	r
c)	s	p	r	q

d) r
r
q
p
382.

Column-I

(A) The value of $\sum_{n=1}^{5}\left(x^{n}+1 / x^{n}\right)^{2}$ when
(p) 2 $x^{2}-x+1=0$ is
(B) If $\left[\frac{1+\cos \theta+i \sin \theta}{\sin \theta+i(1+\cos \theta)}\right]^{4}=\cos n \theta+i \sin n \theta$, then $n=$
(C) The adjacent vertices of a regular polygon of n sides having centre at origin are the points z
and \bar{z}. If $\operatorname{Im}(z) / \operatorname{Re}(z)=\sqrt{2}-1$, then the value of $n / 4$ is
(D) $(1 / 50)\left\{\sum_{r=1}^{10}(r-\omega)\left(r-\omega^{2}\right)\right\}=($ where ω is
(s) 8 cube root of unity)

CODES :

	A	B	C	D
a)	q	r	p	s
b)	s	q	p	r
c)	r	p	s	q
d)	p	e	q	r

383. Match the statements of Column I with these in Column II.
(Note : Here z takes values in the complex plane and $\operatorname{Im}(z)$ and $\operatorname{Re}(z)$ denote respectively, the imaginary part and the real part of z)

Column-I

(A) The set of points z satisfying $|z-i| z|\mid=$ $z+i z /$ is contained in or equal to
(B) The set of points z satisfying $|z+4|+$ $|z-4|=0$ is contained in or equal to
(C) If $|w|=2$, then the set of points $z=w-\frac{1}{w}$ is contained in or equal to
(D) If $|w|=1$, then the set of points $z=w+\frac{1}{w}$ is contained in or equal to

Column- II

(p) An ellipse with eccentricity $4 / 5$
(q) The set of points z satisfying $\operatorname{Im}(z)=0$
(r) The set of points z satisfying $|\operatorname{Im} z| \leq 1$
(s) The set of points satisfying $|\operatorname{Re} z| \leq 2$
(t) The set of points z satisfying $|z| \leq 3$

CODES :

A
B
C
D
a) $\quad \mathrm{s} \quad \mathrm{q} \quad \mathrm{q} \quad \mathrm{p}$
b) $\mathrm{p} \quad \mathrm{s} \quad \mathrm{t}, \mathrm{s} \mathrm{q}$,
c) $\quad q, \quad p \quad p, s, t \quad q, r, s, t$
d) $\begin{array}{llll}\mathrm{t}, \mathrm{s} & \mathrm{q} & \mathrm{p} & \mathrm{s}\end{array}$
384. Match the following for the equation $x^{2}+a|x|+1=0$, where a is a parameter

Column-I

Column- II
(A) No real roots
(p) $a<-2$
(B) Two real roots
(q) ϕ
(C) Three real roots
(r) $a=-2$
(D) Four distinct real roots
(s) $a \geq 0$

CODES:

	A	B	C	D
a)	r	p	q	s
b)	s	r	q	p

c) p
q r
s
d) $\quad \mathrm{q} \quad \mathrm{s} \quad \mathrm{p} \quad \mathrm{r}$
385.

Column-I

Column- II
(A) $z^{4}-1=0$
(p) $z=\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}$
(B) $z^{4}+1=0$
(q) $z=\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}$
(C) $i z^{4}+1=0$
(r) $z=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
(D) $i z^{4}-1=0$
(s) $z=\cos 0+i \sin 0$

CODES :
A
B
C
D

a)	s	r	p	q
b)	r	p	q	s
c)	p	q	r	s

d) q
r
s
p
386. Let α, β, γ are the roots of the equation $x^{3}-10 x^{2}+7 x+8=0$. Match the following and choose the correct answer

Column-I

Column- II

(A) $\alpha+\beta+\gamma$
(1) $-\frac{43}{4}$
(B) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(2) $-\frac{7}{8}$
(C) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(3) 86
(D) $\frac{\alpha}{\beta \gamma}+\frac{\beta}{\gamma \alpha}+\frac{\gamma}{\alpha \beta}$
(4) 0
(5) 10

CODES :

	A	B	C	D
a)	5	3	1	2
b)	4	3	1	2
c)	5	3	2	1
d)	5	2	3	1

387. Which of the condition/conditions in column II are satisfied by the quadrilateral formed by $z_{1}, z_{2}, z_{3}, z_{4}$ in order given in column I?

Column-I

Column- II

(A) Parallelogram
(p) $z_{1}-z_{4}=z_{2}-z_{3}$
(B) Rectangle
(q) $\left|z_{1}-z_{3}\right|=\left|z_{2}-z_{4}\right|$
(C) Rhombus
(r) $\frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is purely real
(D) Square
(s) $\frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is purely imaginary
(t) $\frac{z_{1}-z_{2}}{z_{3}-z_{2}}$ is purely imaginary

CODES :

A
B
C
D
a) $P, q, r, t \quad p, r, s \quad p, q, r, s, t \quad p, r$
b) $\quad \mathrm{p}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{t}$
c) $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{t} \quad \mathrm{p}, \mathrm{r}, \mathrm{s}$
d) p,r p,q,r,t p,r,s p,q,r,s,t
388. Let α and β be the roots of the quadratic equation $a x^{2}+b x+c=0$. Observe the lists given below

Column-I

Column- II

(A) (i) $\alpha=\beta$
(p) (A) $\left(a c^{2}\right)^{1 / 3}+\left(a^{2} c\right)^{1 / 3}+b=0$
(B) (ii) $\alpha=2 \beta$
(q) (C) $b^{2}=6 a c$
(C) (iii) $\alpha=3 \beta$
(r) (D) $3 b^{2}=16 a c$
(D) (iv) $\alpha=\beta^{2}$
(s) (E) $b^{2}=4 a c$
(t) (F) $\left(a c^{2}\right)^{1 / 3}+\left(a^{2} c\right)^{1 / 3}=b$

CODES :

A
B
C
D
a) e
b
d
f
b) e
b
a
d
c) \quad e
d
b
f
d) e
b
d
a

Linked Comprehension Type

This section contain(s) 41 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 389 to -389
Suppose z_{1}, z_{2} and z_{3} represent the vertices A, B and C of an equilateral triangle $A B C$ on the Argand plane. Then, $A B=B C=C A$

$\Rightarrow\left|z_{2}-z_{1}\right|=\left|z_{3}-z_{2}\right|=\left|z_{1}-z_{3}\right|$
Also, $\angle C A B=\frac{\pi}{3} \Rightarrow \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)= \pm \frac{\pi}{3}$
$\therefore \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\left|\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right|\left\{\cos \left(\pm \frac{\pi}{3}\right)\right\}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$
$\Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}-\frac{1}{2}= \pm \frac{\sqrt{3}}{2} i$
$\Rightarrow \frac{2 z_{3}-z_{1}-z_{2}}{2\left(z_{2}-z_{1}\right)}= \pm \frac{\sqrt{3}}{2} i$
On squaring, we get
$\left(2 z_{3}-z_{1}-z_{2}\right)^{2}=-3\left(z_{2}-z_{1}\right)^{2}$
On the basis of above information, answer the following questions
389. If the complex z_{1}, z_{2}, z_{3} represent the vertices of an equilateral triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, then $z_{1}+z_{2}+z_{3}$ is equal to
a) 0
b) 3
c) ω
d) ω^{2}

Paragraph for Question Nos. 390 to - 390

Let $z=a+i b=(a, b)$ be any complex number, $\forall a, b \in R$ and $i=\sqrt{-1}$. If $(a, b) \neq(0,0)$, then $\arg (z)=$ $\tan -1 \mathrm{ba}$, where $\arg z \leq \pi$ andarg $z+\arg -z=\pi$, ifarg $z<0-\pi$, ifarg $z>0$

On the basis of above information, answer the following questions
390. If $\arg (z)>0$, then $\arg (-z)-\arg (z)=\lambda_{1}$ and if $\arg (z)<0$, then $\arg (z)-\arg (-z)=\lambda_{2}$, then
a) $\lambda_{1}+\lambda_{2}=0$
b) $\lambda_{1}-\lambda_{2}=0$
c) $3 \lambda_{1}-2 \lambda_{2}=0$
d) $2 \lambda_{1}-3 \lambda_{2}=0$

Paragraph for Question Nos. 391 to - 391

The equation $z^{n}-1=0$ has n roots which are called the nth roots of unity. The nth roots of unity are $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ which are in GP, where $\alpha=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right) ; i=\sqrt{-1}$, then we have following results

1. $\quad \sum_{r=0}^{n-1} \alpha^{r}=0$ or $\sum_{r=0}^{n-1} \cos \left(\frac{2 \pi r}{n}\right)=0$
and $\sum_{r=0}^{n-1} \sin \left(\frac{2 \pi r}{n}\right)=0$
2. $z^{\mathrm{n}}-1=\sum_{r=0}^{n-1}\left(z-\alpha^{r}\right)$

On the basis of above information, answer the following questions
391. The value of $\sum_{r=1}^{n-1} \frac{1}{\left(2-\alpha^{r}\right)}$ is equal to
a) $(n-2) 2^{n}$
b) $\frac{(n-2) 2^{n-1}+1}{2^{n}-1}$
c) $\frac{(n-2) 2^{n-1}}{2^{n}-1}$
d) $\frac{(n-1) 2^{n-1}}{2^{n}-1}$

Paragraph for Question Nos. 392 to - 392

Directions (Q. No. 34 to 36) Consider the quadratic equation
$(1+m) x^{2}-2(1+3 m) x+(1+8 m)=0$,
where $m \in R-\{-1\}$.
On the basis of above information, answer the following questions.
392. The number of integral values of m such that given quadratic equation has imaginary roots, are
a) 0
b) 1
c) 2
d) 3

Paragraph for Question Nos. 393 to - 393

Let the roots of $f(x)=x$ be α and β, where $f(x)$ is a quadratic polynomial $a x^{2}+b x+c, \alpha$ and β are also the roots of $f(f(x))=x$. Let the other two roots of $f(f(x))=x$ be λ and δ.
On the basis of above information, answer the following questions.
393. The correct statement (s) is/ are
I. if α and β are real and unequal , then λ and δ are also real.
II. if α and β are imaginary, then λ and δ are also imaginary.
a) I only
b) II only
c) Both I and II
d) Neither I nor II

Paragraph for Question Nos. 394 to - 394

Directions (Q. No. 40 and 41) If $x=2+i \sqrt{3}$ is a root of $x^{2}+p x+q=0$, where p, q are real, then On the basis of above information, answer the following questions.
a) -3
b) -4
c) 4
d) 3

Paragraph for Question Nos. 395 to - 395

Directions (Q. No. 42 and 43) Let $f(x)=x^{2}+b_{1} x+c_{1}, \mathrm{~g}(x)=x^{2}+b_{2} x+c_{2}$, real roots of $f(x)=0$ be α, β and real roots of $\mathrm{g}(x)=0$ be $\alpha+\delta, \beta+\delta$. Also, assume that the least value of $f(x) b e-\frac{1}{4}$ and the least value of $\mathrm{g}(x)$ occurs at $x=\frac{7}{2}$.
On the basis of above information, answer the following questions.
395. The least value of $\mathrm{g}(x)$ is
a) -1
b) $-\frac{1}{2}$
c) $-\frac{1}{4}$
d) $-\frac{1}{3}$

Paragraph for Question Nos. 396 to - 396

Consider the complex numbers z_{1} and z_{2} satisfying the relation $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
396. Complex number $z_{1} \bar{z}_{2}$ is
a) Purely real
b) Purely imaginary
c) Zero
d) None of these

Paragraph for Question Nos. 397 to - 397

Consider the complex numbers $z=(1-i \sin \theta) /(1+i \cos \theta)$
397. The value of θ for which z is purely real are
a) $n \pi-\frac{\pi}{4}, n \in I$
b) $n \pi+\frac{\pi}{4}, n \in I$
c) $n \pi, n \in I$
d) None of these

Paragraph for Question Nos. 398 to - 398

Consider a quadratic equation $a z^{2}+b z+c=0$ where a, b, c are complex numbers
398. The condition that the equation has one purely imaginary root is
a) $(c \bar{a}-a \bar{c})^{2}=-(b \bar{c}+c \bar{b})(a \bar{b}+\bar{a} b)$
b) $(c \bar{a}+a \bar{c})^{2}=(b \bar{c}+c \bar{b})(a \bar{b}+\bar{a} b)$
c) $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}-c \bar{b})(a \bar{b}-\bar{a} b)$
d) None of these

Paragraph for Question Nos. 399 to - 399

Consider the equation $a z+b \bar{z}+c=0$, where $a, b, c \in Z$
399. If $|a| \neq|b|$, then z represents
a) Circle
b) Straight line
c) One point
d) Ellipse

Paragraph for Question Nos. 400 to - 400

Let z be a complex number satisfying $z^{2}+2 z \lambda+1=0$, where λ is a parameter which can take any real value
400. The roots of this equation lie on a certain circle if
a) $-1<\lambda<1$
b) $\lambda>1$
c) $\lambda<1$
d) None of these

Paragraph for Question Nos. 401 to - 401

Consider the equation $a z^{2}+z+1=0$ having purely imaginary root where $a=\cos \theta+i \sin \theta, i=\sqrt{-1}$ and function $f(x)=x^{3}-3 x^{2}+3(1+\cos \theta) x+5$, then answer the following questions
401. Which of the following is true about $f(x)$?
a) $f(x)$ decreases for $x \in[2 n \pi,(2 n+1) \pi], n \in Z$
b) $f(x)$ decreases for $x \in\left[(2 n-1) \frac{\pi}{2},(2 n+1) \frac{\pi}{2}\right], n \in Z$
c) $f(x)$ is non-monotonic function
d) $f(x)$ increases for $x \in R$

Paragraph for Question Nos. 402 to - 402

Complex numbers z satisfy the equation $|z-(4 / z)|=2$
402. The difference between the least and the greatest moduli of complex numbers is
a) 2
b) 4
c) 1
d) 3

Paragraph for Question Nos. 403 to - 403

Consider $\triangle A B C$ in Argand plane. Let $A(0), B(1)$ and $C(1+i)$ be its vertices and M be the mid-point of $C A$. Let z be a variable complex number on the line $B M$. Let u be another variable complex number defined as $u=z^{2}+1$
403. Locus of u is
a) Parabola
b) Ellipse
c) Hyperbola
d) None of these

Paragraph for Question Nos. 404 to - 404

In an Argand plane z_{1}, z_{2} and z_{3} are respectively, the vertices of an isosceles triangle $A B C$ with $A c=B C$ and $\angle C A B=\theta$. If z_{4} is the centre of triangle, then
404. The value of $A B \times A C /(I A)^{2}$ is
a) $\frac{\left(z_{3}-z_{1}\right)\left(z_{3}-z_{1}\right)}{\left(z_{4}-z_{1}\right)^{2}}$
b) $\frac{\left(z_{2}-z_{1}\right)\left(z_{1}-z_{3}\right)}{\left(z_{4}-z_{1}\right)^{2}}$
c) $\frac{\left(z_{4}-z_{1}\right)}{\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)}$
d) None of these
$A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of a triangle $A B C$ inscribed in the circle $|z|=2$. Internal angle bisector of the angle A meets the circumcircle again at $D\left(z_{4}\right)$
405. Complex number representing point D is
a) $z_{4}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$
b) $\sqrt{\frac{z_{2}+z_{3}}{z_{1}}}$
c) $\sqrt{\frac{z_{2} z_{3}}{z_{1}}}$
d) $z_{4}=\sqrt{z_{2} Z_{3}}$

Paragraph for Question Nos. 406 to - 406

Consider an unknown polynomial which when divided by $(x-3)$ and by $(x-4)$ leaves remainders as 2 and 1 , respectively. Let $R(x)$ be the remainder when this polynomial is divided by $(x-3)(x-4)$
406. If equation $R(x)=x^{2}+a x+1$ has two distinct real root then exhaustive values of a are
a) $(-2,2)$
b) $(-\infty,-2) \cup(2, \infty)$
c) $(-2, \infty)$
d) All real numbers

Paragraph for Question Nos. 407 to - 407

Consider the quadratic equation $a x^{2}-b x+c=0, a, b, c \in N$, which has two distinct real root belonging to the interval (1, 2)
407. The least value of a is
a) 4
b) 6
c) 7
d) 5

Paragraph for Question Nos. 408 to - 408

Consider the equation $x^{4}+2 a x^{3}+x^{2}+2 a x+1=0$, where $a \in R$. Also range of function $f(x)=x+1 / x$ is $(-\infty,-2] \cup[2, \infty)$
408. If equation has at least two distinct positive real roots then all possible values of a are
a) $(-\infty,-1 / 4)$
b) $(5 / 4, \infty)$
c) $(-\infty,-3 / 4)$
d) None of these

Paragraph for Question Nos. 409 to - 409

Let $f(x)=x^{2}+b_{1} x+c_{1}, \mathrm{~g}(x)=x^{2}+b_{2} x+c_{2}$. Let the real roots of $f(x)=0$ be α, β and real roots of $\mathrm{g}(x)=0$ be $\alpha+h, \beta+h$. The least value of $f(x)$ is $-1 / 4$. The least value of $\mathrm{g}(x)$ occurs at $x=7 / 2$
409. The least value of $g(x)$ is
a) $-\frac{1}{4}$
b) -1
c) $-\frac{1}{3}$
d) $-\frac{1}{2}$

Paragraph for Question Nos. 410 to - 410

In the given figure, vertices of $\triangle A B C$ lie on $y=f(x)=a x^{2}+b x+c$. The $\triangle A B C$ is right angled isosceles triangle whose hypotenuse $A C=4 \sqrt{2}$ units

410. $y=f(x)$ is given by
a) $y=x^{2}-2 \sqrt{2}$
b) $y=x^{2}-12$
c) $y=\frac{x^{2}}{2}-2$
d) $y=\frac{x^{2}}{2 \sqrt{2}}-2 \sqrt{2}$

Paragraph for Question Nos. 411 to - 411

Consider the inequality $9^{x}-a 3^{x}-a+3 \leq 0$, where ' a ' is a real parameter
411. The given inequality has at least one negative solution for $a \in$
a) $(-\infty, 2)$
b) $(3, \infty)$
c) $(-2, \infty)$
d) $(2,3)$

Paragraph for Question Nos. 412 to - 412

Consider the in equation $x^{2}+x+a-9<0$
412. The value of the real parameter ' a ' so that the given in equation has at least one positive solution:
a) $(-\infty, 37 / 4)$
b) $(-\infty, \infty)$
c) $(3, \infty)$
d) $(-\infty, 9)$

Paragraph for Question Nos. 413 to - 413

' $a f(\mu)<0$ ' is the necessary and sufficient condition for a particular real number μ to lie between the roots of a quadratic equation $f(x)=0$, where $f(x)=a x^{2}+b x+c$. Again if $f\left(\mu_{1}\right) f\left(\mu_{2}\right)<0$, then exactly one of the roots will lie between μ_{1} and μ_{2}
413. If $|b|>|a+c|$, then
a) One root of $f(x)=0$ is positive, the other is negative
b) Exactly one of the roots of $f(x)=0$ lies in $(-1,1)$
c) 1 lies between the roots of $f(x)=0$
d) Both the roots of $f(x)=0$ are less than 1

Paragraph for Question Nos. 414 to - 414

The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in A.P.
414. All possible values of β are
a) $\left(-\infty, \frac{1}{3}\right)$
b) $\left(-\infty,-\frac{1}{3}\right)$
c) $\left(\frac{1}{3}, \infty\right)$
d) $\left(-\frac{1}{3}, \infty\right)$

Integer Answer Type

415. Given α and β are the roots of the quadratic equation $x^{2}-4 x+k=0(k \neq 0)$. If $\alpha \beta, \alpha \beta^{2}+\alpha^{2} \beta, \alpha^{3}+\beta^{3}$ are in geometric progression, then the value of $7 k / 2$ equals
416. Let $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ be a polynomial such that $P(1)=1, P(2)=8, P(3)=27, P(4)=64$, then the value of $P(5)$ is divisible by prime number
417. Let $|z|=2$ and $w=\frac{z+1}{z-1}$ where $z, w \in C$ (where C is the set of complex numbers) Then product of least and greatest value of modulus of w is
418. If the equation $2 x^{2}+4 x y+7 y^{2}-12 x-2 y+t=0$ where ' t ' is a parameter has exactly one real solution of the form (x, y). Then the sum of $(x+y)$ is equal to
419. If set of values of ' a ' for which $f(x)=a x^{2}-(3+2 a) x+6, a \neq 0$ is positive for exactly three distinct negative integral values of x is $(c, d]$, then the value of $\left(c^{2}+4|d|\right)$ is equal to
420. Let $P(x)=\frac{5}{3}-6 x-9 x^{2}$ and $Q(y)=-4 y^{2}+4 y+\frac{13}{2}$. If there exist unique pair of real numbers (x, y) such that $P(x) Q(y)=20$, then the value of $(6 x+10 y)$ is
421. Let ' a ' is a real number satisfying $a^{3}+\frac{1}{a^{3}}=18$. Then the value of $a^{4}+\frac{1}{a^{4}}-39$ is
422. If ω is the imaginary cube root of unity, then find the number of pairs of integers (a, b) such that $|a \omega+b|=1$
423. If $\left[\frac{1+\cos \theta+i \sin \theta}{\sin \theta+i(1+\cos \theta)}\right]^{4}=\cos n \theta+i \sin n \theta$, then n is
424. If the expression $(1+i r)^{3}$ is of the form of $s(1+i)$ for some real ' s ' where ' r ' is also real and, then the sum of all possible values of r is
425. Given that $x^{2}-3 x+1=0$, then the value of the expression $y=x^{9}+x^{7}+x^{-9}+x^{-7}$ is divisible by prime number
426. The minimum value of the expression $E=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$ is m then the value of $m / 5$ is
427. a, b, c are reals such that $a+b+c=3$ and $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{10}{3}$. The value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$ is
428. If a and b are positive numbers and each of the equations $x^{2}+a x+2 b=0$ and $x^{2}+2 b x+a=0$ has real roots, then the smallest possible value of $(a+b)$ is
429. Suppose a, b, c are the roots of the cubic $x^{3}-x^{2}-2=0$. Then the value of $a^{3}+b^{3}+c^{3}$ is
430. Let $P(x)=x^{3}-8 x^{2}+c x-d$ be a polynomial with real coefficients and with all its roots being distinct positive integers. Then number of possible value of ' c ' is
431. If complex number $z(z \neq 2)$ satisfies the equation $z^{2}=4 z+|z|^{2}+\frac{16}{|z|^{3}}$ then the value of $|z|^{4}$ is
432. Let $x^{2}+y^{2}+x y+1 \geq a(x+y) \forall x, y \in R$, then the number of possible integer(s) in the range of a is
433. The quadratic polynomial $p(x)$ has the following properties: $p(x) \geq 0$ for all real numbers, $p(1)=0$ and $p(2)=2$. Find the value of $p(3)$ is
434. Suppose $a, b, c, \in \operatorname{I}$ such that greatest common divisor of $x^{2}+a x+b$ and $x^{2}+b x+c$ is $(x+1)$ and the least common multiple of $x^{2}+a x+b$ and $x^{2}+b x+c$ is $\left(x^{3}-4 x^{2}+x+6\right)$. Then the value of $|a+b+c|$ is equal to
435. If $a, b \in R$ such that $a+b=1$ and $(1-2 a b)\left(a^{3}+b^{3}\right)=12$. The value of $\left(a^{2}+b^{2}\right)$ is equal to
436. If $x+y+z=12$ and $x^{2}+y^{2}+z^{2}=96$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=36$. Then the value $x^{3}+y^{3}+z^{3}$ is divisible by prime number
437. Suppose that z is a complex number that satisfies $|z-2-2 i| \leq 1$. The maximum value of $|2 i z+4|$ is equal to
438. If $|z+2-i|=5$ and maximum value of $|3 z+9-7 i|$ is M then the value of $M / 4$ is
439. Let a, b and c be real numbers which satisfy the equations $a+\frac{1}{b c}=\frac{1}{5}, b+\frac{1}{a c}=\frac{-1}{15}$ and $c+\frac{1}{a b}=\frac{1}{3}$. The value of $\frac{c-b}{c-a}$ is equal to
440. If the complex numbers x and y satisfy $x^{3}-y^{3}=98 i$ and $x-y=7 i$ then $x y=a+i b$ where $a, b \in R$. The value of $(a+b) / 3$ equals
441. The quadratic equation $x^{2}+m x+n=0$ has roots which are twice those of $x^{2}+p x+m=0$ and m, n and $p \neq 0$. Then the value n / p is
442. The complex number z satisfies $z+|z|=2+8 i$. The value of $(|z|-8)$ is
443. Let α_{1}, β_{1} are the roots of $x^{2}-6 x+p=0$ and α_{2}, β_{2} are the roots of $x^{2}-54 x+q=0$. If $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$, from an increasing G.P., then sum of the digits of the value of $(q-p)$ is
444. Number of positive integers x for which $f(x)=x^{3}-8 x^{2}+20 x-13$ is a prime number is
445.

If $\sqrt{\sqrt{\sqrt{x}}}=\sqrt[4]{\sqrt[4]{\sqrt[4]{3 x^{4}+4}}}$, then the value of x^{4} is
446. All the values of k for which the quadratic polynomial $f(x)=-2 x^{2}+k x+k^{2}+5$ has two distinct zeroes and only one of them satisfying $0<x<2$, lie in the interval (a, b). The value of $(a+10 b)$ is
447. If z be a complex number satisfying $z^{4}+z^{3}+2 z^{2}+z+1=0$ then $|z|$ is equal to
448. Let $Z_{1}=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $Z_{2}=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ are two complex numbers. If $Z_{1} \cdot Z_{2}=a+i b$ where $a, b \in R$. If M is the greatest value of $(a+b) \forall \theta \in R$, then the value of $M^{1 / 3}$ is
449. If the roots of the cubic, $x^{3}+a x^{2}+b x+c=0$ are three consecutive positive integers. Then the value of $\frac{a^{2}}{b+1}$ is equal to
450 . Let α and β be the solutions of the quadratic equation $x^{2}-1154 x+1=0$, then the value of $\sqrt[4]{\alpha}+\sqrt[4]{\beta}$ is equal to
451. Let $1, w, w^{2}$ be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots $2 w,(2+3 w),\left(2+3 w^{2}\right),\left(2-w-w^{2}\right)$, is
452. If $x=\omega-\omega^{2}-2$, then the value of $x^{4}+3 x^{3}+2 x^{2}-11 x-6$ is (where ω is cube root of unity)
453. If $x=a+b i$ is a complex number such that $x^{2}=3+4 i$ and $x^{3}=2+11 i$ where $i=\sqrt{-1}$, then $(a+b)$ equal to
454. $f: R \rightarrow R, f(x)=\frac{3 x^{2}+m x+n}{x^{2}+1}$. If the range of this function is $[-4,3)$, then find the value of $|m+n|$ is
455. The function $f(x)=a x^{3}+b x^{2}+c x+d$ has three positive roots. If the sum of the roots of $f(x)$ is 4 , the largest possible integral values of c / a is
456. If equation $x^{4}-(3 m+2) x^{2}+m^{2}=0(m>0)$ has four real solutions which are in A.P., then the value of ' m ' is
457. If the cubic $2 x^{3}-9 x^{2}+12 x+k=0$ has two equal roots, then maximum value of $|k|$ is
458. Modulus of non zero complex number z, satistying $\bar{z}+z=0$ and $|z|^{2}-4 z i=z^{2}$ is
459. a, b, and c are all different and non-zero real numbers in arithmetic progression. If the roots of quadratic equation $a x^{2}+b x+c=0$ are α and β such that $\frac{1}{\alpha}+\frac{1}{\beta}, \alpha+\beta$ and $\alpha^{2}+\beta^{2}$ are in geometric progression, then the value of a / c will be
460. Let $A=\left\{a \in R \mid\right.$ the equation $\left.(1+2 i) x^{3}-2(3+i) x^{2}+(5-4 i) x+2 a^{2}=0\right\}$ has the at least one real root. Then the value of $\frac{\sum a^{2}}{2}$ is
461. If $a^{2}-4 a+1=4$, then the value of $\frac{a^{3}-a^{2}+a-1}{a^{2}-1}\left(a^{2} \neq 1\right)$ is equal to
462. Polynomial $P(x)$ contains only terms of odd degree. When $P(x)$ is divided by $(x-3)$, the remainder is 6 . If $P(x)$ is divided by $\left(x^{2}-9\right)$, then the remainder is $g(x)$. Then the value of $g(2)$ is
463. Let a, b and c be distinct non zero real numbers such that $\frac{1-a^{3}}{a}=\frac{1-b^{3}}{b}=\frac{1-c^{3}}{c}$. The value of $\left(a^{3}+b^{3}+c^{3}\right)$, is
464. If the equation $x^{2}+2(\lambda+1) x+\lambda^{2}+\lambda+7=0$ has only negative roots, then the least value of λ equals
465. If a, b, c are non-zero real numbers, then the minimum value of the expression $\left(\frac{\left(a^{4}+3 a^{2}+1\right)\left(b^{4}+5 b^{2}+1\right)\left(c^{4}+7 c^{2}+1\right)}{a^{2} b^{2} c^{2}}\right)$ is not divisible by prime number
466. Let $z=9+b i$ where b is non zero real and $i^{2}=-1$. If the imaginary part of z^{2} and z^{3} are equal, then $b / 3$ is

: ANSWER KEY :

1)	b	2)	b	3)	a	4)	a	189)	a	190)	d	191)	a	192)
5)	a	6)	b	7)	a	8)	b	193)	c	194)	a	195)	a	196)
9)	a	10)	a	11)	C	12)	d	197)	a	198)	c	199)	C	200)
13)	d	14)	c	15)	a	16)	a	201)	d	202)	c	203)	a	204)
17)	c	18)	a	19)	a	20)	d	205)	b	206)	c	207)	a	208)
21)	a	22)	b	23)	b	24)	d	209)	c	210)	b	211)	b	212)
25)	a	26)	c	27)	C	28)	c	213)	a	214)	b	215)	C	216)
29)	a	30)	a	31)	b	32)	c	217)	c	218)	a	219)	C	220)
33)	d	34)	a	35)	a	36)	d	221)	d	222)	b	223)	b	224)
37)	d	38)	a	39)	C	40)	a	225)	b	226)	a	227)	b	228)
41)	d	42)	c	43)	C	44)	c	229)	b	230)	b	231)	b	232)
45)	b	46)	b	47)	c	48)	a	233)	c	234)	d	235)	a	236)
49)	C	50)	a	51)	C	52)	d	237)	b	238)	d	1)	a,d	2)
53)	C	54)	c	55)	C	56)	d		a,b,c	3)	a,c	4)	a,b,c	
57)	c	58)	d	59)	c	60)	c	5)	c,d	6)	b,c	7)	a,d	8)
61)	a	62)	b	63)	c	64)	c		a,b,c					
65)	b	66)	b	67)	d	68)	d	9)	a,b,d	10)	b,c,d	11)	a,c,d	12)
69)	a	70)	b	71)	c	72)	d		a,d					
73)	d	74)	a	75)	c	76)	c	13)	a,b,d	14)	c,d	15)	a,b,d	16)
77)	b	78)	b	79)	d	80)	c		a,c					
81)	C	82)	b	83)	a	84)	a	17)	a,c	18)	a,b,c,d	19)	c,d	20)
85)	c	86)	b	87)	b	88)	b		c,d					
89)	a	90)	a	91)	d	92)	c	21)	a,b	22)	c,d	23)	a,b,c,d	24)
93)	b	94)	d	95)	b	96)	c		a,b,d					
97)	b	98)	a	99)	d	100)	d	25)	a,b,d	26)	a,b,c	27)	a,d	28)
101)	a	102)	a	103)	C	104)	c		a,b,c,d					
105)	d	106)	d	107)	d	108)	a	29)	a,b,c,d	30)	a,d	31)	a,b,c	32)
109)	a	110)	b	111)	d	112)	b		a,d					
113)	d	114)	d	115)	d	116)	d	33)	b,c	34)	b,c	35)	a,d	36)
117)	b	118)	b	119)	a	120)	c		a,d					
121)	b	122)	d	123)	a	124)	b	37)	a,c	38)	a,c,d	39)	a,c	40)
125)	b	126)	a	127)	b	128)	a		a,b,c					
129)	b	130)	b	131)	a	132)	c	41)	a,b,c,d	42)	a,c,d	43)	a,c	44)
133)	C	134)	C	135)	b	136)	c		a,b,c,d					
137)	d	138)	c	139)	d	140)	b	45)	a,d	46)	a,b	47)	b,d	48)
141)	b	142)	a	143)	b	144)	a		a,b					
145)	d	146)	b	147)	a	148)	b	49)	a,d	50)	a,c,d	51)	a,c,d	52)
149)	d	150)	a	151)	b	152)	d		b,c					
153)	a	154)	C	155)	a	156)	d	53)	a,d	54)	a,b,c	55)	a,c	56)
157)	c	158)	b	159)	d	160)	b		a,b					
161)	a	162)	c	163)	d	164)	b	57)	a,c	58)	b,c	59)	a,b	60)
165)	C	166)	a	167)	C	168)	c		a,b					
169)	d	170)	c	171)	a	172)	a	61)	a,c,d	62)	a,d	63)	a,b	64)
173)	b	174)	a	175)	a	176)	a		a,b					
177)	a	178)	a	179)	C	180)	b	65)	a,b,c	66)	b,c	67)	a,d	68)
181)	d	182)	b	183)	c	184)	c		a,d					
185)	c	186)	d	187)	a	188)	c	69)	a,c	70)	a,c	71)	a,b,d	72)

73)	a,c						
	a,b,c	74)	a,b,d	75)	a,b,d	76)	
	a,c						
77)	a,b	78)	b,d	79)	c,d	80)	
	a,b,c						
81)	c,d	82)	a,b,c	83)	b,c,d	84)	
	a,d						
85)	a,b,c	86)	a,c	87)	a,d	1)	d
	2)	b	3)	c	4)	a	
5)	b	6)	d	7)	a	8)	d
9)	b	10)	a	11)	a	12)	a
13)	d	14)	a	15)	b	16)	c
17)	a	18)	b	19)	a	20)	b
21)	b	22)	a	23)	a	24)	a
25)	a	26)	c	27)	d	28)	d
29)	d	30)	d	31)	a	32)	a
33)	b	34)	d	35)	a	36)	a
37)	b	38)	c	39)	c	40)	c
41)	d	42)	b	43)	a	44)	d
45)	b	46)	a	47)	a	48)	a
49)	d	1)	c	2)	c	3)	b
	4)	a					
5)	a	6)	a	7)	d	8)	b
9)	c	10)	b	11)	a	12)	c
13)	d	14)	d	1)	a	2)	b
	3)	b	4)	c			
5)	c	6)	b	7)	c	8)	b
9)	a	10)	a	11)	C	12)	a
13)	d	14)	a	15)	a	16)	a
17)	d	18)	d	19)	d	20)	c
21)	a	22)	d	23)	d	24)	d
25)	b	26)	a	1)	8	2)	3
	3)	1	4)	3			
5)	4	6)	3	7)	8	8)	6
9)	4	10)	3	11)	3	12)	6
13)	7	14)	6	15)	7	16)	2
17)	4	18)	3	19)	8	20)	6
21)	3	22)	2	23)	3	24)	5
25)	3	26)	7	27)	8	28)	9
29)	9	30)	3	31)	4	32)	7
33)	1	34)	5	35)	3	36)	6
37)	5	38)	1	39)	3	40)	4
41)	5	42)	6	43)	5	44)	2
45)	3	46)	9	47)	4	48)	4
49)	3	50)	6	51)	2	52)	5

: HINTS AND SOLUTIONS :

1 (b)
$x=2+\sqrt{3}$
$\Rightarrow(x-2)^{2}=3$
$\Rightarrow x^{2}-4 x+1=0$
$\Rightarrow(x-2)^{4}=9$
$\Rightarrow x^{4}-8 x^{3}+24 x^{2}-32 x+16=9$
$\Rightarrow x^{4}-8 x^{3}+18 x^{2}-8 x+2+6\left(x^{2}-4 x+1\right)-$
$1=0$ Using (1), we get
$x^{4}-8 x^{3}+18 x^{2}-8 x+2=1$
2 (b)
The given equation is
$|z|^{n}=\left(z^{2}+z\right)|z|^{n-2}+1$
$\Rightarrow z^{2}+z$ is real
$\Rightarrow z^{2}+z=\bar{z}^{2}+\bar{z}$
$\Rightarrow(z-\bar{z})(z+\bar{z}+1)=0$
$\Rightarrow z=\bar{z}=x$ as $z+\bar{z}+1 \neq 0(x \neq-1 / 2)$
Hence, the given equation reduces to
$x^{n}=x^{n}+x|x|^{n-2}+1$
$\Rightarrow x|x|^{n-2}=-1$
$\Rightarrow x=-1$
So number of solutions is 1
3 (a)
$\sum \alpha=1, \sum \alpha \beta=0, \alpha \beta \gamma=1$
$\sum \frac{1+\alpha}{1-\alpha}=-\sum \frac{-\alpha+1-2}{1-\alpha}=\sum\left(\frac{2}{1-\alpha}-1\right)$
$=2 \sum \frac{1}{1-\alpha}-3$
Now,
$\frac{1}{(x-\alpha)}+\frac{1}{(x-\beta)}+\frac{1}{(1-\gamma)}=\frac{3 x^{2}-2 x}{x^{3}-x^{2}-1}$
$\Rightarrow \frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}=\frac{3-2}{1-1-1}=-1$
$\Rightarrow \frac{1+\alpha}{1-\alpha}=-5$
4

(a)

For the equation to have four real roots, the line
$y=k$ must intersect $y=\left|x^{2}+b x+c\right|$ at four points
$\therefore D>0$ and $k \in\left(0,-\frac{D}{4}\right)$
5 (a)
We have,

$$
\begin{aligned}
& \log z+\log z^{2}+\log z^{3}+\cdots+\log z^{n}=0 \\
& \Rightarrow \log \left(z z^{2} z^{3} \cdots z^{n}\right)=0 \\
& \Rightarrow \log \left(z^{\frac{n(n+1)}{2}}\right)=0 \\
& \Rightarrow z^{\frac{n(n+1)}{2}}=1 \\
& \Rightarrow z=1^{\frac{2}{n(n+1)}} \\
& =\left(\cos 0^{\circ}+i \sin 0^{\circ} \frac{2}{n(n+1)}\right. \\
& =(\cos 2 m \pi+i \sin 2 m \pi)^{\frac{2}{n(n+1)}}, m=0,1,2,3, \ldots \\
& =\cos \frac{4 m \pi}{n(n+1)}+i \sin \frac{4 m \pi}{n(n+1)}, m=0,1,2, \ldots
\end{aligned}
$$

6 (b)
Given,
$a(p+q)^{2}+2 b p q+c=0$ and $a(p+r)^{2}+$
$2 b p r+c=0$
$\Rightarrow q$ and r satisfy the equation $a(p+x)^{2}+$
$2 b p x+c=0$
$\Rightarrow q$ and r are the roots of
$a x^{2}+2(a p+b p) x+c+a p^{2}=0$
$\Rightarrow q r=$ product of roots $=\frac{c+a p^{2}}{a}=p^{2}+\frac{c}{a}$
(a)

Let α be the root of $x^{2}-x+m=0$ and 2α be the root of $x^{2}-3 x+2 m=0$. Then, $\alpha^{2}-\alpha+m=0$ and $4 \alpha^{2}-6 \alpha+2 m=0$
Eliminating $\alpha, m^{2}=-2 m \Rightarrow m=0, m=-2$
(b)

For $z \neq 1$, the given equation can be written as
$\left(\frac{z+1}{z-1}\right)^{5}=1$
$\Rightarrow \frac{z+1}{z-1}=e^{2 k \pi i / 5}$
Where $k=-2,-1,1,2$
If we denote this value of z by z_{k}, then
$z_{k}=\frac{e^{2 k \pi i / 5}+1}{e^{2 k \pi i / 5}-1}$
$=\frac{e^{k \pi i / 5}+e^{-k \pi i / 5}}{e^{k \pi i / 5}-e^{-k \pi i / 5}}$
$=-i \cot \left(\frac{k \pi}{5}\right), k=-2,-1,1,2$
Therefore, roots of the equation are $\pm i \cot (\pi /$ 5), $\pm i \cot (2 \pi / 5)$

9 (a)
$x^{2}-(a+1) x+a-1=0$
$\Rightarrow(x-a)(x-1)=1$
Now, $a \in I$ and we want x to be an integer. Hence, $x-a=1, x-1=1$ or $x-\mathrm{a}=-1, x-1=-1$ $\Rightarrow a=1$ in both cases
10 (a)

The first condition implies that $\left(z_{1}+z_{3}\right) / 2=$ $\left(z_{2}+z_{4}\right) / 2$, i.e., diagonals $A C$ and $B D$ bisect each other. Hence, quadrilateral is a parallelogram. The second condition implies that the angle between $A D$ and $A B$ is 90°. Hence the parallelogram is a rectangle
11 (c)
We have,
$\frac{k+1}{k}+\frac{k+2}{k+1}=-\frac{b}{a}$
and $\frac{k+1}{k}+\frac{k+2}{k+1}=\frac{c}{a}$
$\Rightarrow \frac{k+2}{k}=\frac{c}{a}$ or $\frac{2}{k}=\frac{c}{a}-1=\frac{c-a}{a}$ or $k=\frac{2 a}{c-a}$
Now, eliminate k. Putting the value of k in Eq. (1), we get
$\frac{c+a}{2 a}+\frac{2 c}{c+a}=-\frac{b}{a}$
$\Rightarrow(c+a)^{2}+4 a c=-2 b(a+c)$
$\Rightarrow(a+c)^{2}+2 b(a+c)=-4 a c$
Adding b^{2} to both sides, we have
$(a+b+c)^{2}=b^{2}-4 a c$
12 (d)
Equation $8 x^{3}+1001 x+2008=0$ has roots r, s and t
$r+s+r=0, r s t=-\frac{2008}{8}=-251$
Now, let $r+s=A, s+1=B, t+r=C$,
$\therefore A+B+C=2(r+s+t)=0$
Hence,
$A^{3}+B^{3}+C^{3}=3 A B C$
$\therefore(r+s)^{3}+(s+t)^{3}+(t+r)^{3}$
$=3(r+s)(s+t)(t+r)$
$=3(r+s+t-t)(s+t+r-r)(t+r+s-s)$
$=-3 r s t($ as $r+s+t=0)$
$=3(251)=753$
13 (d)
Given equation is
$(x-a)(x-b)-1=0$
Let $f(x)=(x-a)(x-b)-1$. Then,
$f(a)=-1$ and $f(b)=-1$

Also, graph of $f(x)$ is concave upward; hence, a and b lie between the roots. Also, if $b>a$, then one root lies in $(-\infty, a)$ and the other root lies in (b, + $)$

14 (c)
l, m, n are real and $l \neq m$. Given equation is
$(l-m) x^{2}-5(l+m) x-2(l-m)=0$
$D=25(l+m)^{2}+8(l-m)^{2}>0, l, m \in R$
Therefore, the roots are real and unequal
15 (a)
Given quadratic expression is $x^{2}+2(a+b+$ $c x+3(b c+c a+a b)$, this quadratic expression will be a perfect square if the discriminant of its corresponding equation is zero. Hence,
$4(a+b+c)^{2}-4 \times 3(b c+c a+a b)=0$
$\Rightarrow(a+b+c)^{2}-3(b c+c a+a b)=0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

$$
-3(b c+c a+a b)=0
$$

$\Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0$
$\Rightarrow \frac{1}{2}\left[2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right]=0$
$\Rightarrow \frac{1}{2}\left[\left(a^{2}+b^{2}-2 a b\right)+\left(b^{2}+c^{2}-2 b c\right)\right.$
$\left.+\left(c^{2}+a^{2}-2 c a\right)\right]=0$
$\Rightarrow \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0$
Which is possible only when $(a-b)^{2}=$
$0,(b-c)^{2}=0$ and $(c-a)^{2}=0$, i.e., $a=b=c$
16 (a)
$\left|z^{2}+2 z \cos \alpha\right| \leq\left|z^{2}\right|+|2 z \cos \alpha|$
$=|z|^{2}+2|z||\cos \alpha|$
$\leq|z|^{2}+2|z|$
$<(\sqrt{2}-1)^{2}+2(\sqrt{2}-1)=1$

$$
\begin{aligned}
& E=\sum_{i=1}^{n}(a r+b) \omega^{r-1} \\
& =(a+b)+(2 a+b) \omega+(3 a+b) \omega^{2}+\cdots \\
& \quad+(n a+b) \omega^{n-1} \\
& =b \underbrace{\left(1+\omega+\omega^{2}+\cdots+\omega^{n-1}\right)}_{\text {zero }}+a\left(1+2 \omega+3 \omega^{2}\right. \\
& \quad+\cdots+n \omega^{n-1}
\end{aligned}
$$

Now,
$S=1+2 \omega+3 \omega^{2}+\cdots+n \omega^{n-1}$
$S \omega=\omega+2 \omega^{2}+\cdots+(n-1) \omega^{n-1}+n \omega^{n}$
$\therefore S(1-0)=\underbrace{1+\omega+\omega^{2}+\ldots+\omega^{n-1}}_{\text {zero }}-n \omega^{n}$ $=-n\left(\because \omega^{n}=1\right)$
$\Rightarrow S=\frac{n}{\omega-1}$
$\Rightarrow E=\frac{n a}{\omega-1}$
18 (a)
$D=b^{2}-4 a<0 \Rightarrow a>0$
Therefore the graph is concave upwards
$f(x)>0, \forall x \in R$
$\Rightarrow f(-1)>0$
$\Rightarrow a+b+1>0$
19 (a)
Put $x^{2}+x=y$, so that Eq.(1) becomes
$(y-2)(y-3)=12$
$\Rightarrow y^{2}-5 y-6=0$
$\Rightarrow(y-6)(y+1)=0 \Rightarrow y=6,-1$
When $y=6$, we get
$x^{2}+x-6=0$
$\Rightarrow(x+3)(x-2)=0$ or $x=-3,2$
When $y=-1$, we get
Which has non-real roots and sum of roots is -1
20 (d)
Given, $z=\cos \theta+i \sin \theta=e^{i \theta}$
21 (a)
$u^{2}-2 u+2=0 \Rightarrow u=1 \pm i$
$\Rightarrow \frac{(x+\alpha)^{n}-(x+\beta)^{n}}{\alpha-\beta}$
$=\frac{[(\cot \theta-1)+(1+i)]^{n}-[(\cot \theta-1)+(1-i)]^{n}}{2 i} \quad(\because \cot \theta-1=x)$
$=\frac{(\cos \theta+i \sin \theta)^{n}-(\cos \theta-i \sin \theta)^{n}}{\sin ^{n} \theta 2 i}$
$=\frac{2 i \sin n \theta}{\sin ^{n} \theta 2 i}$
$=\frac{\sin n \theta}{\sin ^{n} \theta}$
22
(b)
$\left(\frac{x-1}{-2}\right)^{3}=1$
$\Rightarrow \frac{x-1}{-2}=1, \omega, \omega^{2}$
$\Rightarrow x=-1,1-2 \omega, 1,-2 \omega^{2}$
23
(b)

Let $A=x+i y$. Given,
$|A|=1 \Rightarrow x^{2}+y^{2}=1$
and
$|A+1|=1 \Rightarrow(x+1)^{2}+y^{2}=1$
$\Rightarrow x=-\frac{1}{2}$ and $y= \pm \frac{\sqrt{3}}{2}$
$\Rightarrow A=\omega$ or ω^{2}
$\Rightarrow(\omega)^{n}=(1+\omega)^{n}=\left(-\omega^{2}\right)^{n}$
Therefore, n must be even and divisible by 3

$$
\begin{aligned}
& \therefore \sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)=\sum_{m=1}^{15} \operatorname{Im}\left(e^{i \theta}\right)^{2 m-1} \\
& =\sum_{m=1}^{15} \operatorname{Im} e^{i(2 m-1) \theta} \\
& =\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin 29 \theta \\
& =\frac{\sin \left(\frac{\theta+29 \theta}{2}\right) \sin \left(\frac{15 \times 2 \theta}{2}\right)}{\sin \left(\frac{2 \theta}{2}\right)} \\
& =\frac{\sin (15 \theta) \sin (15 \theta)}{\sin \theta}=\frac{1}{4 \sin 2^{\circ}}
\end{aligned}
$$

$\Rightarrow a=b=c$
26 (c)
Since α is root of all equations
$a \alpha^{2}+2 b \alpha+c=0$
$2 b \alpha^{2}+c \alpha+\alpha=0$
$c \alpha^{2}+a \alpha+2 b=0$
Adding we get $(a+2 b+c)\left(\alpha^{2}+\alpha+1\right)=0$
$a+2 b+c \neq 0$ as $a, b, c>0$
$\Rightarrow \alpha^{2}+\alpha+1=0$ or $\alpha^{2}+\alpha=-1$
27 (c)
We have,
$\alpha+\beta=-p$ and $\alpha \beta=q$
Also, since α, β are the root of $x^{2 n}+p^{n} x^{n}+q^{n}=$ 0 ,
we have
$\alpha^{2 n}+p^{n} \alpha^{n}+q^{n}=0$ and $\beta^{2 n}+p^{n} \beta^{n}+q^{n}=0$
Subtracting the above relations, we get
$\left(\alpha^{2 n}-\beta^{2 n}\right)+p^{n}\left(\alpha^{n}-\beta^{n}\right)=0$
$\therefore \alpha^{n}+\beta^{n}=-p^{n}$
Given, α / β or β / α is a root of $x^{n}+1+(x+1)^{n}=$ 0. So,
$(\alpha / \beta)^{n}+1+[(\alpha / \beta)+1]^{n}=0$
$\Rightarrow\left(\alpha^{n}+\beta^{n}\right)+(\alpha+\beta)^{n}=0$
$\Rightarrow-p^{n}+(-p)^{n}=0 \quad$ [Using (1) and (2)]
It is possible only when n is even
28 (c)

$$
\begin{aligned}
& z^{2}+z|z|+|z|^{2}=0 \Rightarrow\left(\frac{z}{|z|}\right)^{2}+\frac{z}{|z|}+1=0 \\
& \begin{aligned}
& \Rightarrow \frac{z}{|z|}=\omega, \omega^{2} \Rightarrow z=\omega|z| \text { or } z=\omega^{2}|z| \\
& \Rightarrow x+i y=|z|\left(\frac{-1}{2}+\frac{i \sqrt{3}}{2}\right) \text { or } x+i y \\
&=|z|\left(\frac{-1}{2}-\frac{i \sqrt{3}}{2}\right) \\
& \Rightarrow x=-\frac{1}{2}|z|, y=|z| \frac{\sqrt{3}}{2} \text { or } x=-\frac{|z|}{2}, y \\
&=-\frac{|z| \sqrt{3}}{2}
\end{aligned}
\end{aligned}
$$

$\Rightarrow y+\sqrt{3} x=0$ or $y-\sqrt{3} x=0 \Rightarrow y^{2}-3 x^{2}=0$
29
(a)

Since, $|z|=1$ and $w=\frac{z-1}{z+1} \quad \Rightarrow \quad z=\frac{1+w}{1-w}$
$\Rightarrow \quad|z|=\frac{|1+w|}{|1-w|} \Rightarrow|1-w|=|1+w|$

$$
\because|z|=1]
$$

$\Rightarrow \quad 1+|w|^{2}-2 \operatorname{Re}(w)=1+|w|^{2}+2 \operatorname{Re}(w)$
$\Rightarrow \quad \operatorname{Re}(w)=0$
30 (a)
Since the equation $x^{2}+a x+b=0$ has distinct
real roots and $x^{2}+a|x|+b=0$ has only one real root, so one root of the equation $x^{2}+a x+b=0$
will be zero and other root will be negative.
Hence, $b=0$ and $a>0$
Graph of $y=a x^{2}+b x+c$
according
to conditions given in
question

Graph of $y=a x^{2}+b|x|+c$

31 (b)
Here, $a x^{2}-b x+c^{2}=0$ does not have real roots.
So,
$D<0 \Rightarrow b^{2}-4 a c^{2}<0 \Rightarrow a>0$
Therefore, $f(x)$ is always positive. So,
$f(2)>0 \Rightarrow 4 a-2 b+c^{2}>0$
$32 \quad$ (c)
We have,
$|x|^{2}-3|x|+2=0$
$\Rightarrow(|x|-1)(|x|-2)=0$
$\Rightarrow|x|=1,2 \Rightarrow x= \pm 1, \pm 2$
33 (d)
$(x-3)^{3}+1=0$
$\Rightarrow\left(\frac{x-3}{-1}\right)^{3}=1$
$\Rightarrow \frac{x-3}{-1}=1, \omega, \omega^{2}$
$\Rightarrow x=2,3-\omega, 3-\omega^{2}$
Hence, the run of complex root is $6-(\omega+\omega)^{2}=$ $6+1=7$
$34 \quad$ (a)
Given that $x^{2}+p x+1$ is a factor of $a x^{3}+b x+c$.
Then let $a x^{3}+b x+c=\left(x^{2}+p x+1\right)(a x+\lambda)$, where λ is a constant. Then equation the
coefficients of like powers of x on both sides, we get
$0=a p+\lambda, b=p \lambda+a, c=\lambda$
$\Rightarrow p=-\frac{\lambda}{a}=-\frac{c}{a}$

Hence,
$b=\left(-\frac{c}{a}\right) c+a$
or $a b=a^{2}-c^{2}$
35 (a)
$i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=e^{\frac{i \pi}{2}}$
$\Rightarrow i^{i}=\left(e^{\frac{i \pi}{2}}\right)^{i}=e^{-\frac{\pi}{2}}$
$\Rightarrow z=(i)^{(i)^{i}}=i^{e-\frac{\pi}{2}}$
$\Rightarrow|z|=1$
36 (d)
Given equation is satisfied by $x=1,2,3$. But for $x=1, \sqrt{x-2}$ is not defined. Hence, number of roots is 2 and the roots are $x=2$ and 3
37 (d)
$x^{2}-x-a=0, D=1+4 a=$ odd
D must be perfect square of some odd integer. Let
$D=(2 \lambda+1)^{2}$
$\Rightarrow 1+4 a=1+4 \lambda^{2}+4 \lambda$
$\Rightarrow a=\lambda(\lambda+1)$
Now,
$a \in[6,100]$
$\Rightarrow a=6,12,20,30,42,56,72,90$
Thus a can attain eight different values
38 (a)
Since, a, b and c are the sides of a $\triangle A B C$, then
$|a-b|<|c| \Rightarrow a^{2}+b^{2}-2 a b<c^{2}$
Similarly, $b^{2}+c^{2}-2 b c<a^{2}, c^{2}+a^{2}-2 c a<$ b^{2}
On adding, we get
$\left(a^{2}+b^{2}+c^{2}\right)<2(a b+b c+c a)$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}<2$
Also, $D \geq 0,(a+b+c)^{2}-3 \lambda(a b+b c+c a) \geq 0$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}>3 \lambda-2$
From Eqs. (i) and (ii),
$3 \lambda-2<2 \Rightarrow \lambda<\frac{4}{3}$
39 (c)
$A=a(b-c)(a+b+c)$
$B=b(c-a)(a+b+c)$
$C=c(a-b)(a+b+c)$
Now,
$A x^{2}+B x+C=0$
$\Rightarrow(a+b+c)\left\{a(b-c) x^{2}+b(c-a) x\right.$

$$
+c(a-b)\}=0
$$

Given that roots are equal. Hence,
$D=0$
$\Rightarrow b^{2}\left(c-a^{2}\right)-4 a c(b-c)(a-b)=0$

$$
\begin{aligned}
& \Rightarrow b^{2} c^{2}-2 a b^{2} c+b^{2} a^{2}-4 a^{2} b c+4 a c b^{2} \\
& \quad+4 a^{2} c^{2}-4 a b c^{2}=0 \\
& \Rightarrow b^{2} c^{2}+b^{2} a^{2}+4 a^{2} c^{2}+2 a b^{2} c-4 a^{2} b c \\
& \quad-4 a b c^{2}=0 \\
& \Rightarrow(b c+a b-2 a c)^{2}=0 \\
& \Rightarrow b c+a b=2 a c \\
& \Rightarrow \frac{1}{a}+\frac{1}{c}=\frac{2}{b} \\
& \Rightarrow a, b, c \text { are in H.P. }
\end{aligned}
$$

40 (a)
$x^{2}+2 x-n=0 \Rightarrow(x+1)^{2}=n+1$
$\Rightarrow x=-1 \pm \sqrt{n+1}$
Thus, $n+1$ should be a perfect square. Now, $n \in[5,100] \Rightarrow n+1 \in[6,101]$
Perfect square values of $n+1$ are
$9,16,25,36,49,64,81,100$. Hence, number of values is 8
41 (d)
$x^{2}+x+1=0 \Rightarrow x=\omega$ or ω^{2}
Let $x=\omega$. Then,
$x+\frac{1}{x}=\omega+\frac{1}{\omega}=\omega+\omega^{2}=-1$
$x^{2}+\frac{1}{x^{2}}=\omega^{2}+\frac{1}{\omega^{2}}=\omega^{2}+\omega=-1$
$x^{3}+\frac{1}{x^{3}}=\omega^{3}+\frac{1}{\omega^{3}}=2$
$x^{4}+\frac{1}{x^{4}}=\omega^{4}+\frac{1}{\omega^{4}}=\omega+\omega^{2}=-1$, etc
$\therefore\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\cdots$
$+\left(x^{27}+\frac{1}{x^{27}}\right)^{2}$
$=\left[\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{4}+\frac{1}{x^{4}}\right)^{2}+\cdots\right.$
$\left.+\left(x^{26}+\frac{1}{x^{26}}\right)^{2}\right]$
$+\left[\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\left(x^{6}+\frac{1}{x^{6}}\right)^{2}\right.$
$\left.+\left(x^{9}+\frac{1}{x^{9}}\right)+\cdots+\left(x^{27}+\frac{1}{x^{27}}\right)^{2}\right]$
$=18+9\left(2^{2}\right)=54$
42 (c)

$$
\begin{gathered}
\frac{a x-s p}{\sqrt[x^{2}+p x+1]{a x^{3}+b x+c}} \\
a x^{3}+a p x^{2}+a x \\
-\overline{a p x^{2}+(b-a) x+c} \\
\frac{-a p x^{2}+a p^{2} x-a p}{\left(b-a+a p^{2}\right) x+c+a p}
\end{gathered}
$$

Now, remainder must be zero. Hence,
$b-a+a p^{2}=0$ and $c+a p=0$
$\Rightarrow p=-\frac{c}{a}$ and $p^{2}=\frac{a-b}{a}$
$\Rightarrow\left(\frac{-c}{a}\right)^{2}=\frac{a-b}{a}$
$\Rightarrow c^{2}=a^{2}-a b$
$\Rightarrow a^{2}-c^{2}=a b$
43 (c)
$\bar{z}+i \bar{w}=0$
$\Rightarrow z-i w=0$
$\Rightarrow z=i w$
$\arg z w=\pi$
$\Rightarrow \arg z+\arg w=\pi$
$\Rightarrow \arg z+\arg \frac{z}{i}=\pi \quad$ [Using (1)]
$\Rightarrow \arg z+\arg z-\arg i=\pi$
$\Rightarrow 2 \arg z-\frac{\pi}{2}=\pi$
$\Rightarrow 2 \arg Z=\frac{3 \pi}{2}$
$\Rightarrow \arg Z=\frac{3 \pi}{4}$
44 (c)
As $a, b, c>0$, so a, b, c should be real (note that other relation is not defined in the set of complex numbers). Therefore, the roots of equation are either real or complex conjugate
Let α, β be the roots of $a x^{2}+b x+c=0$. Then,
$\alpha+\beta=-\frac{b}{a}=-$ ve and $\alpha \beta=\frac{c}{a}=+$ ve
Hence, either both α, β are - ve (if roots are real) or both α, β have - ve real part (if roots are complex conjugate)
45 (b)
$x=\sqrt[3]{-1}$
$\Rightarrow x^{3}=-1$
$\Rightarrow(-x)^{3}=1$
$\Rightarrow-x=1, \omega, \omega^{2}$
$\Rightarrow x=-1,-\omega,-\omega^{2}$
$=-1, \frac{1+\sqrt{3} i}{2}, \frac{1-\sqrt{3} i}{2}$
$=-1, \frac{-\sqrt{3}+i}{2 i}, \frac{\sqrt{3}+i}{2 i}$
$=-1, \frac{-\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}, \frac{\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}$
(b)
$\tan x=\frac{a-4-\sqrt{(a-4)^{2}-4(4-2 a)}}{2}$
$=\frac{a-4-a}{2}=a-2,-2$
$\therefore \tan x=a-2(\because \tan x \neq-2)$
$\because x \in\left[0, \frac{\pi}{4}\right]$
$\therefore 0 \leq a-2 \leq 1$
$\Rightarrow 2 \leq a \leq 3$
47 (c)
$\left(\frac{z+1}{z}\right)^{4}=16$
$\Rightarrow \frac{z+1}{z}= \pm 2, \pm 2 i$
The roots are $1,-1 / 3,(-1 / 5-(2 / 5) i)$ and $(-1 / 5+(2 / 5) i)$
Note that $(-1 / 3,0)$ and $(1,0)$ are equidistant from $(1 / 3,0)$ and since it lies on the perpendicular bisector of $A B$, it will be equidistant from A and B also

48 (a)
We have,
$(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\beta \gamma+\gamma \alpha+\alpha \beta)$
$\Rightarrow 4=6+2(\beta \gamma+\gamma \alpha+\alpha \beta)$
$\Rightarrow \beta \gamma+\gamma \alpha+\alpha \beta=-1$
Also, $\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=(\alpha+\beta+\gamma)\left(\alpha^{2}+\right.$
$\left.\beta^{2}+\gamma^{2}-\beta \gamma-\gamma \alpha-\alpha \beta\right)$
$\Rightarrow 8-3 \alpha \beta \gamma=2(6+1)$
$\Rightarrow 3 \alpha \beta \gamma=8-14=-6$ or $\alpha \beta \gamma=-2$
Now,
$\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{2}=\sum \alpha^{4}+2 \sum \alpha^{2} \beta^{2}$
$=\sum \alpha^{4}+2\left[\left(\sum \alpha \beta\right)^{2}-2 \alpha \beta \gamma\left(\sum \alpha\right)\right]$
$\Rightarrow \sum \alpha^{4}=36-2\left[(-1)^{2}-2(-2)(2)\right]=18$
49 (c)
Let $x=\left|a+b \omega+c \omega^{2}\right|$
$\Rightarrow \quad x^{2}=\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$\Rightarrow \quad x^{2}=\frac{1}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
...(i)
Since a, b, c are all integers but not all
simultaneously equal
\Rightarrow If $a=b$, then $a \neq c$ and $b \neq c$
As, difference of integers=integer
$\Rightarrow \quad(b-c)^{2} \geq 1$
[as minimum difference of two consecutive
integers is (± 1)]
Also, $(c-a)^{2} \geq 1$
\therefore From Eq. (i),
$x^{2}=\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$\geq \frac{1}{2}[0+1+1]$
$\Rightarrow \quad x^{2} \geq 1$
Hence, minimum value of x is 1
50 (a)
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$
Hence, the circumcentre of triangle is origin. Also, centroid $\left(z_{1}+z_{2}+z_{3}\right) / 3=0$, which coincides with the circumcentre. So the triangle is equilateral. Since radius is 1 , length of side is $a=\sqrt{3}$. Therefore, the area of the triangle is $(\sqrt{3} / 4) a^{2}=(3 \sqrt{3} / 4)$
51 (c)
Let m be a positive integer for which
$n^{2}+96=m^{2}$
$\Rightarrow m^{2}-n^{2}=96 \Rightarrow(m+n)(m-n)=96$
$\Rightarrow(m+n)\{(m+n)-2 n\}=96$
$\Rightarrow m+n$ and $m-n$ must be both even
As $96=2 \times 48$ or 4×24 or 6×16 or 8×12, hence, number of solutions is 4
52 (d)

$|z-4|=\operatorname{Re}(z)$
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}}=x$
$\Rightarrow x^{2}-8 x+16+y^{2}=x^{2}$
$\Rightarrow y^{2}=8(x-2)$
The given relation represents the part of the parabola with focus $(4,0)$ lying above x-axis and the imaginary axis as the directrix. The two tangents from directrix are at right angle. Hence greatest positive argument of z is $\pi / 4$
53 (c)
Observing carefully the system of equations, we find
$\frac{1+i}{2 i}=\frac{1-i}{2}=\frac{1}{1+i}$
Hence, there are infinite number of solutions
54 (c)
Let α, α^{2} be the roots of $3 x^{2}+p x+3=0$. Now, $S=\alpha+\alpha^{2}=-p / 3, p=\alpha^{3}=1$
$\Rightarrow \alpha=1, \omega, \omega^{2} \quad\left(\right.$ where $\left.\omega=\frac{-1+\sqrt{3} i}{2}\right)$
$\alpha+\alpha^{2}=-p / 3 \Rightarrow \omega+\omega^{2}=-p / 3$
$\Rightarrow-1=-p / 3 \Rightarrow p=3$

55 (c)
Given, α, β are roots of equation
$x^{2}-2 x+3=0$
$\Rightarrow \alpha^{2}-2 \alpha+3=0$
And $\beta^{2}-2 \beta+3=0$ (2)
$\Rightarrow \alpha^{2}=2 \alpha-3 \Rightarrow \alpha^{3}=2 \alpha^{2}-3 \alpha$
$\Rightarrow P=\left(2 \alpha^{2}-3 \alpha\right)-3 \alpha^{2}+5 \alpha-2$
$\Rightarrow-\alpha^{2}+2 \alpha-2=3-2=1, \quad[$ Using (1)]
Similarly, we have $Q=2$
Now, sum of root is 3 and product of roots is 2 .
Hence, the required equation is $x^{2}-3 x+2=0$
(d)

Let the vertices be $z_{0}, z_{1}, \ldots, z_{5}$ w.r.t. centre O at origin and $\left|z_{0}\right|=\sqrt{5}$
Now $\triangle O A_{2} A_{3}$ is equilateral $\Rightarrow O A_{2}=O A_{3}=$
$A_{2} A_{3}=\sqrt{5}$
$=\left|z_{0}\right||\cos \theta+i \sin \theta-1|$
Perimeter $=6 \sqrt{5}$
57 (c)
We have,
$z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$
$z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11$
Multiplying (2) by i and adding it to (1), we get
$z_{1}^{3}-3 z_{2}^{2} z_{1}+i\left(3 z_{1}^{2} z_{2}-z_{2}^{3}\right)=2+11 i$
$\Rightarrow\left(z_{1}+i z_{2}\right)^{3}=2+11 i$
Multiplying (2) by i and subtracting it from (1), we get
$z_{1}^{3}-3 z_{2}^{2} z_{1}-i\left(3 z_{1}^{2} z_{2}-z_{2}^{3}\right)=2-11 i$
$\Rightarrow\left(z_{1}-i z_{2}\right)^{3}=2-11 i$
Multiplying (3) and (4), we get
$\left(z_{1}^{2}+z_{2}^{2}\right)^{3}=2^{2}-121 i^{2}=4+121=125$
$\Rightarrow z_{1}^{2}+z_{2}^{2}=5$
(d)
$P(a)=P(b)=P(c)=P(d)=3$
$\Rightarrow P(x)=3$ has a, b, c, d as its roots
$\Rightarrow P(x)-3=(x-a)(x-b)(x-c)(x-d) Q(x)$
$[\because Q(x)$ has integral coefficient]
Given $P(e)=5$, then
$(e-a)(e-b)(e-c)(e-d) Q(e)=5$
This is possible only when at least three of the five integers $(e-a),(e-b)(e-c)(e-d) Q(e)$ are equal to 1 or -1 . Hence, two of them will be equal,
which is not possible. Since a, b, c, d are distinct integers, therefore $P(e)=5$ is not possible
59 (c)
We have
$\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$
$a+h+\beta+h=-\frac{q}{p},(\alpha+h)(\beta+h)=\frac{r}{p}$
$\Rightarrow \alpha+\beta+2 h=-\frac{q}{p}$
$\Rightarrow-\frac{b}{a}+2 h=\frac{-q}{p}\left[\because a+b=-\frac{b}{a}\right]$
$\Rightarrow h=\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$
60 (c)
$z=\frac{a t+b}{t-c} \Rightarrow t=\frac{b+c z}{z-a}$
Now, $|t|=1$
$\Rightarrow\left|\frac{b+c z}{z-a}\right|=1$
$\Rightarrow\left|\frac{z+\frac{b}{c}}{z-a}\right|=\frac{1}{|c|}=(\neq 1$ as $|c| \neq|t|)$
\Rightarrow locus of z is a circle
61 (a)
We know that $\left|z-z_{1}\right|=\left|z-z_{2}\right|$. Then locus of z is the line, which is a perpendicular bisector of line segment joining z_{1} and z_{2}
Hence,
$z=x+i y$
$\Rightarrow|z-5 i|=|z+5 i|$
Therefore, z remains equidistant from $z_{1}=5 i$ and $z_{2}=5 i$. Hence, z lies on perpendicular bisector of line segment joining z_{1} and z_{2}, which is clearly the real axis or $y=0$
Alternative solution:
$\left|\frac{z-5 i}{z+5 i}\right|=1$
$\Rightarrow|x+i y-5 i|=|x+i y+5 i|$
$\Rightarrow|x+(y-5) i|=|x+(y+5) i|$
$\Rightarrow x^{2}+(y-5)^{2}=x^{2}+(y+5)^{2}$
$\Rightarrow x^{2}+y^{2}-10 y+25=x^{2}+y^{2}+10 y+25$
$\Rightarrow 20 y=0$
$\Rightarrow y=0$
62 (b)
Here $D=b^{2}-4 c>0$ because $c<0<b$. So, roots are real and unequal. Now,
$\alpha+\beta=-b<0$ and $\alpha \beta=c<0$
Therefore, one root is positive and the other root is negative, the negative root being numerically bigger. As $\alpha<\beta$, so α is the negative root while β is the positive root. So, $|\alpha|>\beta$ and $\alpha<0<\beta<$ $|\alpha|$

The given equation is
$x^{2}-2 m x+m^{2}-1=0$
$\Rightarrow(x-m)^{2}-1=0$
$\Rightarrow(x-m+1)(x-m-1)=0$
$\Rightarrow x=m-1, m+1$
From given condition,
$m-1>-2$ and $m+1<4$
$\Rightarrow m>-1$ and $m<3$
Hence, $-1<m<3$
(c)

Let the distance of the school from A be x.
Therefore, the distance of the school from B is $60-x$. The total distance covered by 200 students is
$[150 x+50(60-x)]=[100 x+3000]$
This is minimum when $x=0$. Hence, the school should be at town A
(b)
$z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$
$=\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{5}+\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{5}$
$=\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)+\left(\cos \frac{5 \pi}{6}-i \sin \frac{5 \pi}{6}\right)$
$=2 \cos \frac{5 \pi}{6}$
$=-\sqrt{3}$
$\Rightarrow \operatorname{Re}(z)<0$ and $\operatorname{Im}(z)=0$

Alternative solution:

$z=\bar{z}_{1}+\bar{z}_{2}$
Where
$\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}$
$\Rightarrow z$ is real
$\Rightarrow \operatorname{Im}(z)=0$
(b)

Sum of roots $=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$ and product $=1$
Given, $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$

$$
\begin{equation*}
\Rightarrow(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=q \tag{i}
\end{equation*}
$$

$\therefore \alpha^{2}+\beta^{2}-\alpha \beta=\frac{-q}{p}$
And $(\alpha+\beta)^{2}=p^{2}$

$$
\Rightarrow \alpha^{2}+\beta^{2}+2 \alpha \beta=p^{2}
$$

From Eqs. (i) and (ii), we get
$\alpha^{2}+\beta^{2}=\frac{p^{3}-2 q}{3 p}$
And $\quad \alpha \beta=\frac{p^{3}+q}{3 p}$
\therefore Required equation is
$x^{2}-\frac{\left(p^{3}-2 q\right) x}{\left(p^{3}+q\right)}+1=0$
$\Rightarrow\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$
(d)

Let the four numbers in A.P. be $p=a-3 d, q=$ $a-d, r=a+d, s=a+3 d$. Therefore,
$p+q=2, r+s=18$
Given that $p q=A, r s=B$
$\therefore p+q+r+s=4 a=20$
$\Rightarrow a=5$
Now, $p+q=2 \Rightarrow 10-4 d=2$
$r+s=18 \Rightarrow 10+4 d=18$
$\therefore d=2$
Hence, the numbers are $-1,3,7,11$
$p q=A=-3, r s=B=77$
68
(d)
α, β are roots of $x^{2}+p x+q=0$. Hence,
$\alpha+\beta=-p$
$\alpha \beta=q$
Now,
α^{4}, β^{4} are roots $x^{2}-p x+q=0$. Hence,
$\alpha^{4}+\beta^{4}=r, \alpha^{4} \beta^{4}=q$
Now, for equation $x^{2}-4 q x+2 q^{2}-r=0$,
product of roots is
$2 q^{2}-r=2(\alpha \beta)^{2}-\left(\alpha^{4}+\beta^{4}\right)$
$=-\left(\alpha^{2}-\beta^{2}\right)^{2}$
<0
As product of roots is negative, so the roots must be real
69 (a)
Here, $|P Q|=|P S|=|P R|=2$
\therefore Shaded part represents the external part of circle having centre $(-1,0)$ and radius 2

As we know equation of circle having centre z_{0} and radius r, is
$\left|z-z_{0}\right|=r$
$\therefore \quad|z-(-1+0 i)|>2$
$\Rightarrow \quad|z+1|>2$
Also, argument of $z+1$ with represent to positive direction of x-axis is $\pi / 4$
$\therefore \arg (z+1) \leq \frac{\pi}{4}$
And argument of $z+1$ in anti-clockwise direction is $-\pi / 4$.

$$
\begin{array}{ll}
\therefore & -\frac{\pi}{4} \leq \arg (z+1) \\
\Rightarrow & |\arg (z+1)| \leq \frac{\pi}{4}
\end{array}
$$

$70 \quad$ (b)
Given equations are
$x^{3}+a x+1=0$
or $x^{4}+a x^{2}+x=0$
and $x^{4}+a x^{2}+1=0$ (2)
From (1) - (2), we get $x=1$. Thus, $x=1$ is the common roots.
Hence,
$1+a+1=0 \Rightarrow a=-2$
71 (c)
We have,
$|(x-2)+i(y-1)|=|z|\left|\frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta\right|$
Where $\theta=\arg z$
$\sqrt{(x-2)^{2}+(y-1)^{2}}=\frac{1}{\sqrt{2}}|x-y|$
Which is a parabola
72 (d)
$z=i \log (2-\sqrt{3})$
$\Rightarrow e^{i z}=e^{i^{2} \log (2-\sqrt{3})}=e^{-\log (2-\sqrt{3})}$
$\Rightarrow e^{i z}=e^{\log (2-\sqrt{3})^{-1}}=e^{\log (2-\sqrt{3})}=(2+\sqrt{3})$
$\Rightarrow \cos z=\frac{e^{i z}+e^{-i z}}{2}=\frac{(2+\sqrt{3})+(2-\sqrt{3})}{2}=2$
73 (d)
$f(x, y)=(x-2)^{2}+(y-1)^{2}=0$
$\Rightarrow x=2$ and $y=1$
$\therefore E=\frac{(\sqrt{2}-1)^{2}+4 \sqrt{2}}{2+\sqrt{2}}=\frac{(\sqrt{2}+1)^{2}}{\sqrt{2}(\sqrt{2}+1)}=\frac{\sqrt{2}+1}{\sqrt{2}}$
74 (a)
Let, $f(x, y, z)=x^{2}+4 y^{2}+3 z^{2}-2 x-12 y-$
$6 z+14$
$=(x-1)^{2}+(2 y-3)^{2}+3(z-1)^{2}+1$
For the least value of $f(x, y, z)$,
$x-1=0,2 y-3=0$ and $z-1=0$
$\therefore x=1, y=3 / 2, z=1$
Hence the least value of $f(x, y, z)$ is $f(1,3 / 2,1)=$ 1
75 (c)

$\frac{z_{1}-z_{2}}{z_{3}-z_{2}}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=e^{i \pi / 4}$
$\angle C B A=\frac{\pi}{4}$
Also,
$\left|z_{1}-z_{2}\right|=\left|z_{3}-z_{2}\right|$

Hence, $\triangle A B C$ is isosceles
76 (c)
Let the roots be α, β
$\therefore \alpha+\beta=-2 a$ and $\alpha \beta=b$
Given,
$|\alpha-\beta| \leq 2 m$
$\Rightarrow|\alpha-\beta|^{2} \leq(2 m)^{2}$
$\Rightarrow(\alpha+\beta)^{2}-4 a b \leq 4 m^{2}$
$\Rightarrow 4 a^{2}-4 b \leq 4 m^{2}$
$\Rightarrow a^{2}-m^{2} \leq b$ and discriminant $D>0$ or
$4 a^{2}-4 b>0$
$\Rightarrow a^{2}-m^{2} \leq b$ and $b<a^{2}$
Hence, $b \in\left[a^{2}-m^{2}, a^{2}\right]$
77 (b)
Let,
$y=\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$
$\Rightarrow 3 x^{2}(y-1)+9 x(y-1)+7 y-17=0$
Since x is real, so,
$D \geq 0$
$\Rightarrow 81(y-1)^{2}-4 \times 3(y-1)(7 y-17) \geq 0$
$\Rightarrow(y-1)(y-41) \leq 0 \Rightarrow 1 \leq y \leq 41$
Therefore, the maximum value of y is 41
78 (b)
Verify by selecting particular values of a and b
Let $a=-9$ and $b=4$. Then,
$\sqrt{a} \sqrt{b}=\sqrt{-9} \sqrt{4}=(3 i)(2)=6 i$
From option (a), we have
$-\sqrt{|a| b}=-\sqrt{|-9| \times 4}=-\sqrt{36}=-6$
From option (b), we have
$\sqrt{|a| b i}=\sqrt{|-9| \times 4} i=6 i$
79 (d)
$|z-4|<|z-2|$
$\Rightarrow|(x-4)+i y|<|(x-2)+i y|$
$\Rightarrow(x-4)^{2}+y^{2}<(x-2)^{2}+y^{2}$
$\Rightarrow-8 x+16<-4 x+4$
$\Rightarrow 4 x-12>0$
$\Rightarrow x>3$
$\Rightarrow \operatorname{Re}(z)>3$
80 (c)
$x=9^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots}=9^{\frac{\frac{1}{3}}{1-\frac{1}{3}}}=9^{\frac{1}{2}}=3$
$y=4^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots}=4^{\frac{\frac{1}{3}}{1+\frac{1}{3}}}=4^{\frac{1}{4}}=\sqrt{2}$
$z=\sum_{r=1}^{\infty}(1+i)^{-r}$

$$
=\frac{1}{1+i}+\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{3}}+\cdots
$$

$=\frac{\frac{1}{1+i}}{1-\frac{1}{1+i}}=\frac{1}{i}=-i$
Let $a=x+y z=3-\sqrt{2} i$ (fourth quadrant).
Then,
$\arg \alpha=-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
81 (c)
Given,
$(a-1) x^{2}-(a+1) x+a-1 \geq 0$
$\Rightarrow a\left(x^{2}-x+1\right)-\left(x^{2}+x+1\right) \geq 0$
$\Rightarrow a \geq \frac{x^{2}+x+1}{x^{2}-x+1}$
$=1+\frac{2 x}{x^{2}-x+1}$
$=1+\frac{2}{x+\frac{1}{x}-1}$
Let $y=x+1 / x$. Now, y is increasing in $[2, \infty)$.
Hence,
$1+\frac{2}{x+\frac{1}{x}-1} \in\left(1, \frac{7}{3}\right]$
For all $x \geq 2$, Eq. (1) should be true. Hence,
$a>7 / 3$
82 (b)
Let $z_{1}=\frac{w-\overline{w_{z}}}{1-z}$ be purely real
$\Rightarrow \quad z_{1}=\overline{z_{1}}$
$\therefore \quad \frac{w-\bar{w} z}{1-z}=\frac{\bar{w}-w \bar{z}}{1-\bar{z}}$
$\Rightarrow \quad w-w \bar{Z}-\bar{w} z+\bar{w} z \bar{Z}$
$=\bar{w}-z \bar{w}-w \bar{z}+w z \bar{z}$
$\Rightarrow \quad(w-\bar{w})+(\bar{w}-w)|z|^{2}=0$
$\Rightarrow \quad(w-\bar{w})+\left(1-|z|^{2}\right)=0$
$\Rightarrow \quad|z|^{2}=1$

$$
[\text { as, } w-\bar{w} \neq 0, \text { since } \beta \neq 0]
$$

$\Rightarrow \quad|z|=1$ and $z \neq 1$
83 (a)
Minimum value of $5 x^{2}+2 x+3$ is
$-\frac{D}{4 a}=-\frac{(2)^{2}-4(5)(3)}{4(5)}>2$
Where maximum value of $2 \sin x$ is 2 . Therefore, the two curves do not meet at all
84 (a)
Clearly,
$x^{n}-1=(x-1)\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)$
$\Rightarrow \frac{x^{n}-1}{x-1}=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)$
$\Rightarrow 1+x+x^{2}+\cdots+x^{n-1}$

$$
=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)
$$

$\Rightarrow n=\left(1-a_{1}\right)\left(1-a_{2}\right) \ldots\left(1-a_{n-1}\right) \quad$ [putting
$x=1$]

85 (c)
If one root is square of the other root of the equation $a x^{2}+b x+c=0$, then
$\beta=\alpha^{2} \Rightarrow \alpha^{2}+\alpha=-b / a$ and $\alpha^{2} a=c / a$
By eliminating α, we get
$b^{3}+a c^{2}+a^{2} c=3 a b c$
Which can be written in the form $a(c-b)^{3}=$ $c(a-b)^{3}$

Alternative solution:

Let the roots be 2 and 4 . Then the equation is $x^{2}-6 x+8=0$
Here obviously,
$X=\frac{a(c-b)^{3}}{c}=\frac{1(14)^{3}}{8}=\frac{14}{2} \times \frac{14}{2} \times \frac{14}{2}=7^{3}$
Which is given by $(a-b)^{3}=7^{3}$
86
(b)
$x=3 \cos \theta ; y=3 \sin \theta$
$z=2 \cos \phi ; t=2 \sin \phi$
$\therefore 6 \cos \theta \sin \phi-6 \sin \theta \cos \phi=6$
$\Rightarrow \sin (\phi-\theta)=1$
$\Rightarrow \phi=90^{\circ}+\theta$
$\Rightarrow P=x z=-6 \sin \theta \cos \theta=-3 \sin 2 \theta$
$\Rightarrow P_{\text {max }}=3$
87
(b)
$2 z^{2}+2 z+\lambda=0$
Let the roots be z_{1}, z_{2}. Then,
$z_{1}+z_{2}=-1$ and $z_{1} z_{2}=\frac{\lambda}{2}$
$0, z_{1}, z_{2}$ form, an equilateral triangle
$\therefore z_{1}^{2}+z_{2}^{2}=z_{1} z_{2}$
$\Rightarrow\left(z_{1}+z_{2}\right)^{2}=3 z_{1} z_{2}$
$\Rightarrow 1=3 \frac{\lambda}{2}$
$\Rightarrow \lambda=\frac{2}{3}$
88 (b)
For given situation, $x^{2}-(k-2) x+k^{2}=0$ and $x^{2}+k x+2 k-1=0$ should have both roots common or each should have equal roots. If both roots are common, then
$\frac{1}{1}=\frac{-(k-2)}{k}=\frac{k^{2}}{2 k-1}$
$\Rightarrow k=-k+2$ and $2 k-1=k^{2} \Rightarrow k=1$
If both the equations have equal roots, then
$(k-2)^{2}-4 k^{2}=0$ and $k^{2}-4(2 k-1)=0$
$\Rightarrow(3 k-2)(-k-2)=0$ and $k^{2}-8 k+4=0$ (no common value)
Therefore, $k=1$ is the only possible value
89 (a)
$x=\sqrt[3]{7}+\sqrt[3]{49}$

$$
\begin{gathered}
\Rightarrow x^{3}=7+49+3 \sqrt[3]{7} \sqrt[3]{49}(\sqrt[3]{7}+\sqrt[3]{49}) \\
=56+21 x \\
\Rightarrow x^{3}-21 x-56=0
\end{gathered}
$$

Therefore, the product of roots is 56
90 (a)
$|x|^{2}-3|x|+2=0$
$\Rightarrow(|x|-2)(|x|-1)=0$
$\Rightarrow|x|=1$ or 2
$\Rightarrow x= \pm 1, \pm 2$
Hence, there are four real solutions
91 (d)
$(x+a)(x+1991)+1=0$
$\Rightarrow(x+a)(x+1991)=-1$
$\Rightarrow(x+a)=1$ and $x+1991=-1$
$\Rightarrow a=1993$
or $x+a=-1$ and $x+1991=1 \Rightarrow a=1989$
92 (c)
We have,
$2=|z-i \omega| \leq|z|+|\omega| \quad\left(\because\left|z_{1}+z_{2}\right|\right.$ $\left.\leq\left|z_{1}\right|+\left|z_{2}\right|\right)$
$\therefore|z|+|\omega| \geq 2$
(i)

But given that $|z| \leq 1$ and $|\omega| \leq 1$. Hence
$\Rightarrow|z|+|\omega| \leq 2$
(ii)

From (i) and (ii),
$|z|=|\omega|=1$
Also, $|z+i \omega|=|z-i \bar{\omega}|$
$\Rightarrow|z-(-i \omega)|=|z-i \bar{\omega}|$
Hence, z lies on perpendicular bisector of the line segment joining $(-i \omega)$ and $(i \bar{\omega})$, which is a real axis, as $(-i \omega)$ and $(i \bar{\omega})$ are conjugate to each other. For $z, \operatorname{Im}(z)=0$. If $z=x$, then
$|z| \leq 1 \Rightarrow x^{2} \leq 1$
$\Rightarrow-1 \leq x \leq 1$
(b)

As $\triangle O A C$ is a right-angled triangle with right angle at A, so
$\left|z_{1}\right|^{2}+\left|z_{3}-z_{1}\right|^{2}=\left|z_{3}\right|^{2}$
$\Rightarrow 2\left|z_{1}\right|^{2}-\bar{z}_{3} z_{1}-\bar{z}_{1} z_{3}=0$
$\Rightarrow 2 \bar{z}_{1}-\bar{z}_{3}-\frac{\bar{z}_{1}}{z_{1}} z_{3}=0$
Similarly,
$2 \bar{z}_{2}-\bar{z}_{3}-\frac{\bar{z}_{2}}{z_{2}} z_{3}=0$
Subtracting (2) from (1), we get
$2\left(\bar{z}_{2}-z_{1}\right)=z_{3}\left(\frac{\bar{z}_{1}}{z_{1}}-\frac{\bar{z}_{2}}{z_{2}}\right)$
$\Rightarrow \frac{2 r^{2}\left(z_{1}-z_{2}\right)}{z_{1} z_{2}}=z_{3} r^{2}\left(\frac{z_{2}^{2}-z_{1}^{2}}{z_{1}^{2} z_{2}^{2}}\right) \quad\left[\because\left|z_{1}\right|^{2}\right.$ $\left.=\left|z_{2}\right|^{2}=r^{2}\right]$
$\Rightarrow z_{3}=\frac{2 z_{1} z_{2}}{z_{2}+z_{1}}$
94 (d)
Here,
$\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}$
$=\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}^{2}-2(\alpha \beta)^{2}$
$=\left(p^{2}+\frac{1}{p^{2}}\right)^{2}-\frac{1}{2 p^{4}}$
$=p^{4}+\frac{1}{2 p^{4}}+2$
$=\left(p^{2}-\frac{1}{\sqrt{2} p^{2}}\right)^{2}+2+\sqrt{2} \geq 2+\sqrt{2}$
Thus, the minimum value of $\alpha^{4}+\beta^{4}$ is $2+\sqrt{2}$
95 (b)
$a x^{2}-b x+c=0$
$\alpha+\beta=\frac{b}{a}, \alpha \beta=\frac{c}{a}$
Also, $(a+c y)^{2}=b^{2} y$
$\Rightarrow c^{2} y^{2}-\left(b^{2}-2 a c\right) y+a^{2}=0$
$\Rightarrow\left(\frac{c}{a}\right)^{2} y^{2}-\left(\left(\frac{b}{a}\right)^{2}-2\left(\frac{c}{a}\right)\right) y+1=0$
$\Rightarrow(\alpha \beta)^{2} y^{2}-\left(\alpha^{2}+\beta^{2}\right) y+1=0$
$\Rightarrow y^{2}-\left(\alpha^{-2}+\beta^{-2}\right) y+\alpha^{-2} \beta^{-2}=0$
$\Rightarrow\left(y-\alpha^{-2}\right)\left(y-\beta^{-2}\right)=0$
Hence the roots are α^{-2}, β^{-2}
96 (c)
We have,
$(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots$

$$
\times(\cos n \theta+i \sin n \theta)=1
$$

$\Rightarrow \cos (\theta+2 \theta+3 \theta+\cdots+n \theta)$

$$
+i \sin (\theta+2 \theta+\cdots+n \theta)=1
$$

$\Rightarrow \cos \left(\frac{n(n+1)}{2} \theta\right)+i \sin \left(\frac{n(n+1)}{2} \theta\right)=1$
$\Rightarrow \cos \left(\frac{n(n+1)}{2} \theta\right)=1$ and $\sin \left(\frac{n(n+1)}{2} \theta\right)=0$
$\Rightarrow \frac{n(n+1)}{2} \theta=2 m \pi \Rightarrow \theta=\frac{4 m \pi}{n(n+1)}$, where $m \in Z$
(b)

Taking cube roots of both sides, we get
$z+a b=a(1)^{1 / 3}=a, a \omega, a \omega^{2}$
Where
$\therefore z_{1}=a-a b, z_{2}=a \omega-a b, z_{3}=a \omega^{2}-a b$
$\left|z_{1}-z_{2}\right|=|a(1-\omega)|$
$=|a|\left|1-\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)\right|$
$=|a|\left|\frac{3}{2}-i \frac{\sqrt{3}}{2}\right|$
$=|a|\left(\frac{9}{4}+\frac{3}{4}\right)^{1 / 2}=\sqrt{3}|a|$
Similarly,
$\left|z_{2}-z_{3}\right|=\left|z_{3}-z_{1}\right|=\sqrt{3}|a|$
(a)

We have,
$x_{1} x_{2}=4$
$\Rightarrow x_{2}=\frac{4}{x_{1}}$
$\therefore \frac{x_{1}}{x_{1}-1}+\frac{x_{2}}{x_{2}-1}=2$
$\Rightarrow \frac{x_{1}}{x_{1}-1}+\frac{\frac{4}{x_{1}}}{\frac{4}{x_{1}}-1}=2$
$\Rightarrow \frac{x_{1}}{x_{1}-1}+\frac{4}{4-x_{1}}=2$
$\Rightarrow 4 x_{1}-x_{1}^{2}+4 x_{1}-4=2\left(x_{1}-1\right)\left(4-x_{1}\right)$
$\Rightarrow x_{1}^{2}-2 x_{1}+4=0$
$\Rightarrow x^{2}-2 x+4=0$
99 (d)
$\cot ^{4} x-2\left(1+\cot ^{2} x\right)+a^{2}=0$
$\Rightarrow \cot ^{4} x-2 \cot ^{2} x+a^{2}-2=0$
$\Rightarrow\left(\cot ^{2} x-1\right)^{2}=3-a^{2}$
Now, for at least one solution
$3-a^{2} \geq 0$
$\Rightarrow a^{2}-3 \leq 0$
$\therefore a \in[-\sqrt{3}, \sqrt{3}]$
Integral values are $-1,0,1$
\therefore sum $=0$
100 (d)
Here, $x=0$ is not a root. Divide both the numerator and denominator by x and put $x+3 / x=y$ to obtain
$\frac{4}{y+1}+\frac{5}{y-5}=-\frac{3}{2} \Rightarrow y=-5,3$
$x+3 / x=-5$ has two irrational roots and
$x+3 / x=3$ has imaginary roots
101 (a)
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| \quad$ (given)
Now,
$\left|z_{1}\right|=1 \Rightarrow\left|z_{1}\right|^{2}=1 \Rightarrow z_{1} \bar{z}_{1}=1$
Similarly,
$z_{2} \bar{z}_{2}=1, z_{3} \bar{z}_{3}=1$
Now,
$\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$
$\Rightarrow\left|\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}\right|=1$
$\Rightarrow\left|\overline{z_{1}+z_{2}+z_{3}}\right|=1$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=1$

102 (a)
Let $z_{1}=a+i b$ and $z_{2}=c-i d$, where $a>0$ and $d>0$. Then,
$\left|z_{1}\right|=\left|z_{2}\right| \Rightarrow a^{2}+b^{2}=c^{2}+d^{2}$
Now,
$\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{(a+i b)+(c-i d)}{(a+i b)-(c-i d)}$
$=\frac{[(a+c)+i(b-d)][(a-c)-i(b+d)]}{[(a-c)+i(b+d)][(a-c)-i(b+d)]}$
$=\frac{\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)-2(a d+b c) i}{a^{2}+c^{2}-2 a c+b^{2}+d^{2}+2 b d}$
$=\frac{-(a d+b c) i}{a^{2}+b^{2}-a c+b d} \quad[$ Using (1)]
Hence, $\left(z_{1}+z_{2}\right) /\left(z_{1}-z_{2}\right)$ is purely imaginary.
However, if $a d+b c=0$, then $\left(z_{1}+z_{2}\right) /\left(z_{1}-z_{2}\right)$ will be equal to zero. According to the conditions of the equation, we can have $a d+b c=0$
103 (c)
We know that $a x^{2}+b x+c \geq 0, \forall x \in R$,
If $a>0$ and $b^{2}-4 a c \leq 0$. So,
$m x-1+\frac{1}{x} \geq 0 \Rightarrow \frac{m x^{2}-x+1}{x} \geq 0$
$\Rightarrow m x^{2}-x+1 \geq 0$ as $x>0$
Now, $m x^{2}-x+1 \geq 0$ if $m>0$ and $1-4 m \leq 0$ $\Rightarrow m>0$ and $m \geq 1 / 4$
Thus, the minimum value of m is $1 / 4$
104 (c)
We have,
$\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)$
Where $\theta_{1}=\arg \left(z_{1}\right)$ and $\theta_{2}=\arg \left(z_{2}\right)$. Given,
$\arg \left(z_{1}-z_{2}\right)=0$
$\Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right|$
$=\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}$
$\Rightarrow\left|z_{1}-z_{2}\right|=\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
105 (d)
The given equation is written as
$\arg (z-(1+i))= \begin{cases}\frac{3 \pi}{4}, & \text { when } x \leq 2 \\ \frac{-\pi}{4}, & \text { when } x>2\end{cases}$

Therefore, the locus is a set of two rays
106 (d)
$(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}}$
$=\left[(1+i)^{n_{1}}+(1-i)^{n_{1}}\right]+\left[(1+i)^{n_{2}}+(1-i)^{n_{2}}\right]$
$=\left[(1+i)^{n_{1}}+\overline{(1+i)^{n_{1}}}\right]+\left[(1+i)^{n_{2}}+\overline{(1+i)^{n_{2}}}\right]$
$=$ [purely real number] + [purely real number]

Hence, n_{1} and n_{2} are any integers
107 (d)
$\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
$\Rightarrow i z_{1}, 0+i 0$ and z_{2} are collinear
$\Rightarrow \arg \left(i z_{1}\right)=\arg \left(z_{2}\right)$
$\Rightarrow \arg \left(z_{2}\right)-\arg \left(z_{1}\right)=\frac{\pi}{2}$

Let,
$z_{3}=\frac{z_{2}-i z_{1}}{1-i}$
$\Rightarrow(1-i) z_{3}=z_{2}-i z_{1}$
$\Rightarrow z_{2}-z_{3}=i\left(z_{1}-z_{3}\right)$
$\therefore \angle A C B=\frac{\pi}{2}$
and
$\left|z_{1}-z_{3}\right|=\left|z_{2}-z_{3}\right|$
$\Rightarrow A C=B C$
$\because A B^{2}=A C^{2}+B C^{2}$
$\Rightarrow A C=\frac{5}{\sqrt{2}} \quad(\because A B=5)$
Therefore area of $\triangle A B C$ is $(1 / 2) A C \times B C=$ $A C^{2} / 2=25 / 4$ sq. units
108 (a)
Given equation is
$x^{2}-(y+4) x+y^{2}-4 y+16=0$
Since x is real, so,
$D \geq 0$
$\Rightarrow(y+4)^{2}-4\left(y^{2}-4 y+16\right) \geq 0$
$\Rightarrow-3 y^{2}+24 y-48 \geq 0$
$\Rightarrow y^{2}-8 y+16 \leq 0$
$\Rightarrow(y-4)^{2} \leq 0$
$\Rightarrow y-4=0$
$\Rightarrow y=4$
Since the equation is symmetric in x and y, therefore $x=4$ only
109 (a)
We have,
$z^{3}+2 z^{2}+2 z+1=0$
$\Rightarrow\left(z^{3}+1\right)+2 z(z+1)=0$
$\Rightarrow(z+1)\left(z^{2}+z+1\right)=0$
$\Rightarrow z=-1, \omega, \omega^{2}$
Since $z=-1$ does not satisfy $z^{1985}+z^{100}+1=$ 0 while $z=\omega, \omega^{2}$ satisfy it, hence sum is $\omega+\omega^{2}=-1$
110 (b)

Multiplying the given equation by c / a^{3}, we get
$\frac{b^{2} c^{2}}{a^{3}} x^{2}-\frac{b^{2} c}{a^{2}} x+c=0$
$\Rightarrow a\left(\frac{b c}{a^{2}} x\right)^{2}-b\left(\frac{b c}{a^{2}}\right) x+c=0$
$\Rightarrow \frac{b c}{a^{2}} x=\alpha, \beta$
$\Rightarrow(\alpha+\beta) \alpha \beta x=\alpha, \beta$
$\Rightarrow x=\frac{1}{(\alpha+\beta) \alpha}, \frac{1}{(\alpha+\beta) \beta}$
111 (d)
Let $z=x+i y$. Then,
$\left|z^{2}-1\right|=|z|^{2}+1$
$\Rightarrow\left|\left(x^{2}-y^{2}-1\right)+2 i x y\right|=x^{2}+y^{2}+1$
$\Rightarrow\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2} y^{2}=\left(x^{2}+y^{2}+1\right)^{2}$
$\Rightarrow x=0$
Hence, z lies on imaginary axis
112 (b)
Let $z=x+i y$. Then,
$\operatorname{Re}\left(\frac{1}{z}\right)=k$
$\Rightarrow \operatorname{Re}\left(\frac{1}{x+i y}\right)=k$
$\Rightarrow \operatorname{Re}\left(\frac{x}{x^{2}+y^{2}}-\frac{i y}{x^{2}+y^{2}}\right)=k$
$\Rightarrow \frac{x}{x^{2}+y^{2}}=k$
$\Rightarrow x^{2}+y^{2}-\frac{1}{k} x=0$
Which is circle
113 (d)
$\sqrt{-x^{2}+10 x-16}<x-2$
We must have
$-x^{2}+10 x-16 \geq 0$
$\Rightarrow x^{2}-10 x+16 \leq 0$
$\Rightarrow 2 \leq x \leq 8$
Also, $-x^{2}+10 x-16<x^{2}-4 x+4$
$\Rightarrow 2 x^{2}-14 x+20>0$
$\Rightarrow x^{2}-7 x+10>0$
$\Rightarrow x>5$ or $x<2$
From (1) and (2)
$5<x \leq 8 \Rightarrow x=6,7,8$
114 (d)
Since, the equation $x^{2}-p x+r=0$ has roots
(α, β) and the equation $x^{2}-q x+r=0$ has roots $\left(\frac{\alpha}{2}, 2 \beta\right)$
$\therefore \quad \alpha+\beta=p$ and $r=\alpha \beta$ and $\frac{\alpha}{2}+2 \beta=q$
$\Rightarrow \beta=\frac{2 q-p}{3}$ and $\alpha=\frac{2(2 p-q)}{3}$
$\therefore \alpha \beta=r=\frac{2}{9}(2 q-p)(2 p-q)$

115 (d)
$a=\frac{x^{2}+4}{|x|}-3$
$=|x|+\frac{4}{|x|}-3=\left(\sqrt{|x|}-\frac{2}{\sqrt{|x|}}\right)+1$
$\Rightarrow a \geq 1$
116 (d)
Given,
$z=\frac{3}{2+\cos \theta+i \sin \theta}$
$\cos \theta+i \sin \theta=\frac{3}{z}-2=\frac{3-2 z}{z}$
$\Rightarrow 1=\frac{|3-2 z|}{|z|}$ [taking modulus]
$\Rightarrow \frac{\left|z-\frac{3}{2}\right|}{|z|}=\frac{1}{2}$
Hence, locus of z is a circle
117 (b)
Let $f(x)=-3+x-x^{2}$. Then $f(x)<0$ for all x,
because coefficient of x^{2} is less than 0 and $D<0$.
Thus, L.H.S. of the given equation is always positive whereas the R.H.S. is always less than zero. Hence, there is no solution

118 (b)

For real roots,
$q^{2}-4 p r \geq 0$
$\Rightarrow\left(\frac{p+r}{2}\right)^{2}-4 p r \geq 0 \quad(\because p, q, r$ are in A.P. $)$
$\Rightarrow p^{2}+r^{2}-14 p r \geq 0$
$\Rightarrow \frac{p^{2}}{r^{2}}-14 \frac{p}{r}+1 \geq 0$
$\Rightarrow\left(\frac{p}{r}-7\right)^{2}-48 \geq 0$
$\Rightarrow\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3}$
119 (a)
$\arg (-z)-\arg (z)=\arg \left(\frac{-Z}{z}\right)=\arg (-1)=\pi$
120 (c)
Since $\alpha, \beta, \gamma, \sigma$ are the roots of the given equation, therefore

$$
\begin{aligned}
x^{4}+4 x^{3}-6 x^{2} & +7 x-9 \\
& =(x-\alpha)(x-\beta)(x-\gamma)(x-\sigma)
\end{aligned}
$$

Putting $x=i$ and then $x=-i$, we get
$1-4 i+6+7 i-9=(i-\alpha)(i-\beta)(i-\gamma)(i-\sigma)$ and $1+4 i+6-7 i-9=(-i-\alpha)(-i-\beta)(-i-$ $\gamma(-i-\sigma)$
Multiplying these two equations, we get

$$
\begin{aligned}
& (-2+3 i)(-2-3 i) \\
& \quad=\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)(1 \\
& \left.\quad+\sigma^{2}\right) \\
& \Rightarrow 13=\left(1+\sigma^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\sigma^{2}\right)
\end{aligned}
$$

121 (b)
Let $z_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+i \sin \theta_{1}\right)$. Now,
$\left|\frac{z_{1}}{z_{2}}\right|=1 \Rightarrow\left|z_{1}\right|=\left|z_{2}\right|$
Also,
$\arg \left(z_{1} z_{2}\right)=0 \Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$
$\Rightarrow \arg \left(z_{2}\right)=-\theta_{1}$
$\Rightarrow z_{2}=\left|z_{2}\right|\left(\cos \left(-\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$
$=\left|z_{1}\right|\left(\cos \theta_{1}-i \sin \theta_{1}\right)=\bar{z}_{1}$
$\Rightarrow \bar{z}_{2}=\overline{\left(\bar{z}_{1}\right)}=z_{1}$
$\Rightarrow\left|z_{2}\right|^{2}=z_{1} z_{2}$
122 (d)
Let $z_{1}=\sin x+i \cos 2 x ; z_{2}=\cos x-i \sin 2 x$.
Then
$\bar{z}_{1}=z_{2}$
$\Rightarrow \sin x-i \cos 2 x=\cos x-i \sin 2 x$
$\Rightarrow \sin x=\cos x$ and $\cos 2 x=\sin 2 x$
$\Rightarrow \tan x=1$ and $\tan 2 x=1$
$\Rightarrow x=\frac{\pi}{4}$ and $x=\frac{\pi}{8}$
Which is not possible. Hence, there is no value of x 123 (a)

When $|z-1|<|z+1|$ (or $x>0$)
$|z|=|z-1|$
$\Rightarrow x^{2}+y^{2}=(x-1)^{2}+y^{2}$
$\Rightarrow x=1 / 2$
$\Rightarrow z+\bar{z}=1$
When $|z-1|>|z+1|($ or $x<0)$
$|z|=|z+1|$
$\Rightarrow x^{2}+y^{2}=(x+1)^{2}+y^{2}$
$\Rightarrow x=-1 / 2$
$\Rightarrow z+\bar{z}=-1$
124 (b)
Let $z=x+i y$. Then,
$x=\lambda+3$ and $y=-\sqrt{5-\lambda^{2}}$
$\Rightarrow(x-3)^{2}=\lambda^{2}$
and
$y^{2}=5-\lambda^{2}$
From (1) and (2),
$(x-3)^{2}=5-y^{2} \Rightarrow(x-3)^{2}+y^{2}=5$
Obviously it is a semicircle as $y<0$. Hence part of the circle lies below the x-axis
125
(b)
$\left|z_{1}\right|=12$. Therefore, z_{1} lies on a circle with centre $(0,0)$ and radius 12 units. As $\left|z_{2}-3-4 i\right|=5$, so z_{2} lies on a circle with centre $(3,4)$ and radius 5 units

From the above figure it is clear that $\left|z_{1}-z_{2}\right|$, i.e., distance between z_{1} and z_{2} will be minimum when they lie at A and B, respectively. i.e., on diagram as shown. Then $\left|z_{1}-z_{2}\right|=A B=O A-$ $O B=12-2(5)=2$. As it is the minimum value, we must have $\left|z_{1}-z_{2}\right| \geq 2$
(a)

Given, α, β are roots of the equation $(x-a)(x-$ $b+c=0$
Then, by factor theorem,
$(x-a)(x-b)+c=(x-\alpha)(x-\beta)$
Replacing x by $x-c$,
$(x-c-a)(x-c-b)+c$

$$
=(x-c-\alpha)(x-c-\beta)
$$

$\Rightarrow(x-c-\alpha)(x-c-\beta)-c$

$$
=[x-(c+a)][x-(c+b)]
$$

Then, again by factor theorem roots of the equation $(x-c-\alpha)(x-c-\beta)-c=0$ are $a+c$ and $b+c$
127 (b)
$\tan \theta_{1}+\tan \theta_{2}+\tan \theta_{3}=(a+1)$
$\sum \tan \theta_{1} \tan \theta_{2}=(b-a)$
$\tan \theta_{1} \tan \theta_{2} \tan \theta_{3}=b$
$\therefore \tan \left(\theta_{1}+\theta_{2}+\theta_{3}\right)=\frac{\sum \tan \theta_{1}-\Pi \tan \theta_{1}}{1-\sum \tan \theta_{1} \tan \theta_{2}}$
$=\frac{a+1-b}{1-(b-a)}=1$
$\Rightarrow \theta_{1}+\theta_{2}+\theta_{3}=\frac{\pi}{4}$
128 (a)
$|z|=1$, let $\alpha=-1+3 z$
$\Rightarrow \alpha+1=3 z$
$\Rightarrow|\alpha+1|=3|z|=3$
Hence, ' α ' lies on a circle centred at -1 and radius equal to 3
129 (b)

We have,
$a-1 \leq-1$ and $a^{2}+2 \geq 3$
$a \leq 0$ and $a^{2} \geq 1$
Hence, $a \leq-1$
130 (b)
$x^{4}+x^{2}+1=\left(x^{2}+1\right)^{2}-x^{2}$
$=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
$x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \neq 0 \forall x$
Therefore, we can cancel this factor and we get $(a-1)\left(x^{2}-x+1\right)=(a+1)\left(x^{2}-x+1\right)$
or $x^{2}-a x+1=0$
It has real and distinct roots if $D=a^{2}-4>0$
131 (a)
Given equation is
$x-\frac{2}{x-1}=1-\frac{2}{x-1}$
Clearly, $x \neq 1$ for the given equation to be defined if $x-1 \neq 0$. We can cancel the common term $-2 /(x-1)$ on both sides to get $x=1$, but it is not possible. So, given equation has no roots
132 (c)
α, β are roots of the equation $(x-a)(x-b)=$ $c, c \neq 0$
$\therefore(x-a)(x-b)-c=(x-\alpha)(x-\beta)$
$\Rightarrow(x-\alpha)(x-\beta)+c=(x-a)(x-b)$
Hence, the roots of $(x-\alpha)(x-\beta)+c=0$ are a and b
133 (c)
Let $z=\cos x+i \sin x, x \in[0,2 \pi)$. Then,
$1=\left|\frac{z}{\bar{Z}}+\frac{\bar{z}}{z}\right|$
$=\frac{\left|z^{2}+\bar{z}^{2}\right|}{|z|^{2}}$
$=|\cos 2 x+i \sin 2 x+\cos 2 x-i \sin 2 x|$
$=2|\cos 2 x|$
Now,
$\cos 2 x=1 / 2$
$\Rightarrow x_{1}=\frac{\pi}{6}, x_{2}=\frac{5 \pi}{6}, x_{3}=\frac{7 \pi}{6}, x_{4}=\frac{11 \pi}{6}$
$\cos 2 x=-\frac{1}{2}$
$\Rightarrow x_{5}=\frac{\pi}{3}, x_{6}=\frac{2 \pi}{3}, x_{7}=\frac{4 \pi}{3}, x_{8}=\frac{5 \pi}{3}$
134 (c)
Clearly, $x=-1$ satisfies the equation
135 (b)
If $\left[m_{r},\left(1 / m_{r}\right)\right]$ satisfy the given equation
$x^{2}+y^{2}+2 g x+2 f y+c=0$, then
$m_{r}^{2}+\frac{1}{m_{r}^{2}}+2 \mathrm{~g} m_{r}+\frac{2 f}{m_{r}}+c=0$
$\Rightarrow m_{r}^{4}+2 g m_{r}^{3}+c m_{r}^{2}+2 f m_{r}+1=0$
Now, roots of given equation are $m_{1}, m_{2}, m_{3}, m_{4}$. The product of roots
$m_{1} m_{2} m_{3} m_{4}=\frac{\text { contant term }}{\text { coefficient of } m_{r}^{4}}=\frac{1}{1}=1$
$\left|k+z^{2}\right|=\left|z^{2}\right|-k=\left|z^{2}\right|+|k|$
$\Rightarrow k, z^{2}$ and $0+i 0$ are collinear
$\Rightarrow \arg \left(z^{2}\right)=\arg (k)$
$\Rightarrow 2 \arg (z)=\pi$
$\Rightarrow \arg (z)=\frac{\pi}{2}$
137 (d)
We are given that $p(-a)=a$ and $p(a)=-a$ [since when a polynomial $f(x)$ is divided by $x-$ a, remainder is $f(a)$]. Let the remainder, when $p(x)$ is divided by $x^{2}-a^{2}$, be $A x+B$. Then $p(x)=Q(x)\left(x^{2}-a^{2}\right)+A x+B$
Where $Q(x)$ is the quotient. Putting $x=a$ and $-a$ in (1), we get
$p(a)=0+A a+B \Rightarrow-a=A a+B$
and $p(-a)=0-a A+B \Rightarrow a=-a A+B$
Solving (2) and (3), we get
$B=0$ and $A=-1$
Hence, the required remainder is $-x$
(c)

$k z /(k+1)$ represents any point lying on the line joining origin and z
Given,
$\left|\frac{k z}{k+1}+2 i\right|>\sqrt{2}$
Hence, $k z /(k+1)$ should lie outside the circle
$|z+2 i|>\sqrt{2}$. So, z should lie in the shaded region $\therefore-\frac{\pi}{4}<\arg (z)<0$
139 (d)
Given expression is
$x^{12}-x^{9}+x^{4}-x+1=f(x)$
For $x<0$, put $x=-y$, where $y>0$. Thus, we get $f(x)=y^{12}+y^{9}+y^{4}+y+1>0$ for $y>0$
For $0<x<1$,
$x^{9}<x^{4} \Rightarrow-x^{9}+x^{4}>0$
Also, $1-x>0$ and $x^{12}>0$
$\Rightarrow x^{12}-x^{9}+x^{4}+1-x>0 \Rightarrow f(x)>0$
For $x>1$,
$f(x)=x\left(x^{3}-1\right)\left(x^{8}+1\right)+1>0$
So $f(x)>0$ for $-\infty<x<\infty$
140 (b)
$|2 z-1|=|z-2|$
$\Rightarrow|2 z-1|^{2}=|z-2|^{2}$
$\Rightarrow(2 z-1)(2 \bar{z}-1)=(z-2)(\bar{z}-2)$
$\Rightarrow 4 z \bar{z}-2 \bar{z}-2 z+1=z \bar{z}-2 \bar{z}-2 z+4$
$\Rightarrow 3|z|^{2}=3$
$\Rightarrow|z|=1$
Again,
$\left|z_{1}+z_{2}\right|=\left|z_{1}-\alpha+z_{2}-\beta+\alpha+\beta\right|$
$\leq\left|z_{1}-\alpha\right|+\left|z_{2}-\beta\right|+|\alpha+\beta|$
$<\alpha+\beta+|\alpha+\beta|$
$=2|\alpha+\beta| \quad[\because \alpha, \beta>0]$
$\therefore\left|\frac{z_{1}+z_{2}}{\alpha+\beta}\right|<2$
$\Rightarrow\left|\frac{z_{1}+z_{2}}{\alpha+\beta}\right|<2|z|$
141 (b)
The discriminant of the given equations are
$D_{1}=a^{2}+12 b, D_{2}=c^{2}-4 b$ and $D_{3}=d^{2}-8 b$
$\therefore D_{1}+D_{2}+D_{3}=a^{2}+c^{2}+d^{2} \geq 0$
Hence, at least one of D_{1}, D_{2}, D_{3} is non-negative.
Therefore, the equation has at least two real roots
142 (a)
The equation on simplifying gives
$x(x-b)(x-c)+x(x+c)(x-a)$ $+x(x-a)(x-b)$
$-(x-a)(x-b)(x-c)=0$
Let,

$$
\begin{aligned}
f(x)=x(x-b) & (x-c)+x(x-c)(x-a) \\
& +x(x-a)(x-b) \\
& -(x-a)(x-b)(x-c)
\end{aligned}
$$

We can assume without loss of generality that $a<b<c$. Now,
$f(a)=a(a-b)(a-c)>0$
$f(b)=b(b-c)(b-a)<0$
$f(c)=c(c-a)(c-b)>0$
So, one root of (1) lies in (a, b) and one root in (b, c). Obviously the third root must also be real

Note that coefficient of x^{2} is $\left(4 p-p^{2}-5\right)<0$.
Therefore the graph is concave downward.
According to the question, 1 must lie between the roots. Hence,
$f(1)>0$
$\Rightarrow 4 p-p^{2}-5-2 p+1+3 p>0$
$\Rightarrow-p^{2}+5 p-4>0$
$\Rightarrow p^{2}-5 p+4<0$

$\Rightarrow(p-4)(p-1)<0$
$\Rightarrow 1<p<4$
$\Rightarrow p \in[2,3]$

144 (a)
$\alpha=\frac{z-\bar{w}}{k^{2}+z \bar{w}} \Rightarrow \bar{\alpha}=\frac{\bar{z}-w}{k^{2}+\bar{z} w}$
But $z \bar{z}=w \bar{w}=k^{2}$. Hence
$\Rightarrow \bar{\alpha}=\frac{\frac{k^{2}}{z}-\frac{k^{2}}{\bar{w}}}{k^{2}+\frac{k^{2}}{z} \frac{k^{2}}{\bar{w}}}=\frac{\bar{w}-z}{z \bar{w}+k^{2}}=-\alpha$
$\Rightarrow \alpha+\bar{\alpha}=0$
$\Rightarrow \operatorname{Re}(\alpha)=0$
145 (d)
Minimum value of $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ is
$m(b)=-\frac{(2 b)^{2}-4\left(1+b^{2}\right)}{4\left(1+b^{2}\right)}=\frac{1}{1+b^{2}}$
Clearly, $m(b)$ has range $(0,1]$
146 (b)
Correct equation is
$x^{2}+13 x+q=0$
Incorrect equation is
$x^{2}+17 x+q=0$
Given that roots of Eq. (1) are -2 and -15 .
Therefore, product of the roots of incorrect
equation is $q=(-2)(-15)=30$. From (1), the correct equation is
$x^{2}+13 x+30=0$
$\therefore x=-3,-10$
147 (a)
$8 i z^{3}+12 z^{2}-18 z+27 i=0$
$\Rightarrow 4 i z^{2}(2 z-3 i)-9(2 z-3 i)=0$
$\Rightarrow(2 z-3 i)\left(4 i z^{2}-9\right)=0$
$\Rightarrow z=\frac{3 i}{2}$ and $z^{2}=\frac{9}{4 i}$
$\Rightarrow|z|=\frac{3}{2}$ and $\left|z^{2}\right|=\frac{9}{4}$
$\Rightarrow|z|=\frac{3}{2}$
148 (b)

$C A=C B=2 \sqrt{2}, O C=2$
$\Rightarrow O A=O B=2$
$\Rightarrow A \equiv 2+0 i, B=-2+0 i$
Clearly,
$\angle B C A=\pi / 2$
$\Rightarrow \angle B P A=\pi / 4$
$\Rightarrow \arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{4}$

We have,
$e^{\frac{2 \pi r i}{\rho}}=e^{\frac{2 \pi m}{q}}$
$r=0,1, \ldots, p-1$
$m=0,1, \ldots, q-1$
This is possible iff $r=m=0$ but for $r=m=0$
we get I which is not an imaginary number
150 (a)
Given,
$z_{k}=1+a+a^{2}+\cdots+a^{k-1}=\frac{1-a^{k}}{1-a}$
$\Rightarrow z_{k}-\frac{1}{1-a}=-\frac{a^{k}}{1-a}$
$\Rightarrow\left|z_{k}-\frac{1}{1-a}\right|=\frac{|a|^{k}}{|1-a|}<\frac{1}{|1-a|} \quad[\because|a|<1]$
Hence, z_{k} lies within the circle
$\therefore\left|z-\frac{1}{1-a}\right|=\frac{1}{|1-a|}$
151 (b)
$(31+8 \sqrt{15})^{x^{2}-3}+1=(32+8 \sqrt{15})^{x^{2}-3}$
$\Rightarrow(31+8 \sqrt{15})^{x^{2}-3}+1^{x^{2}-3}=(32+8 \sqrt{15})^{x^{2}-3}$
$\Rightarrow x^{2}-3=1$ or $x= \pm 2\left[\because a^{n}+b^{n}=(a+b)^{n}\right]$

We know that if $f(\alpha)$ and $f(\beta)$ are of opposite
signs then there must be a value γ between α and β such that $f(\gamma)=0$. Hence, a, b, c are real
numbers and $a \neq 0$. As α is a root of $a^{2} x^{2}+b x+$ $c=0$, so
$a^{2} \alpha^{2}+b \alpha+c=0$
Also, β is a root of $a^{2} x^{2}-b x-c=0$, so
$a^{2} \beta^{2}-b \beta-c=0$ (2)
Now, let $f(x)=a^{2} x^{2}+2 b x+2 c$. Then,
$f(\alpha)=a^{2} \alpha^{2}+2 b \alpha+2 c$
$=a^{2} \alpha^{2}+2(b \alpha+c)$
$=a^{2} \alpha^{2}+2\left(-a^{2} \alpha^{2}\right) \quad[$ Using (1) $]$
$=-a^{2} \alpha^{2}<0$
and $f(\beta)=a^{2} \beta^{2}+2 b \beta+2 c$
$=a^{2} \beta^{2}+2(b \beta+c)$
$=a^{2} \beta^{2}+2\left(a^{2} \beta^{2}\right) \quad[\operatorname{Using}(2)]$
$=3 a^{2} \beta^{2}>0$
Since $f(\alpha)$ and $f(\beta)$ are of opposite signs and γ is a root of equation $f(x)=0$, therefore, γ must lie between α and β. Thus, $\alpha<\gamma<\beta$
153 (a)
α, β are roots of $a x^{2}+b x+c=0$. Hence,
$\alpha+\beta=-\frac{b}{a}$
$\alpha \beta=\frac{c}{a}$
α^{2}, β^{2} are roots of $a^{2} x^{2}+b^{2} x+c^{2}=0$. Hence,
$\alpha^{2}+\beta^{2}=-\frac{b^{2}}{a^{2}}$
$\alpha^{2} \beta^{2}=\frac{c^{2}}{a^{2}}$
Now, from (3),
$(\alpha+\beta)^{2}-2 \alpha \beta=-\frac{b^{2}}{a^{2}}$
$\Rightarrow\left(\frac{-b}{a}\right)^{2}-2 \frac{c}{a}=\frac{-b^{2}}{a^{2}}$
$\Rightarrow 2 \frac{b^{2}}{a^{2}}=\frac{2 c}{a}$
$\Rightarrow b^{2}=a c \Rightarrow a, b, c$ are in G.P.
154 (c)
The given equation is
$2^{2 x}+(a-1) 2^{x+1}+a=0$
or
$t^{2}+2(a-1) t+a=0$, where $2^{x}=t$
Now, $t=1$ should lie between the roots of this equation
$\therefore 1+2(a-1)+a<0 \Rightarrow a<\frac{1}{3}$
155 (a)
Since, $z \bar{z}\left(z^{2}+\bar{z}^{2}\right)=350$
$\Rightarrow \quad 2\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=350$
$\Rightarrow \quad\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175$
Since, $x, y \in I$, the only possible case which gives integral solution, is
$x^{2}+y^{2}=25$
$x^{2}-y^{2}=7$
From Eqs. (i) and (ii), we get
$x^{2}=16, \quad y^{2}=9$
$\Rightarrow \quad x= \pm 4, y= \pm 3$
\therefore Area of rectangle $=8 \times 6=48$
156 (d)
Here, $f(x)=(2 x-a)(2 x-c)+(2 x-b)$. So,
$f\left(\frac{a}{2}\right)=a-b, f\left(\frac{c}{2}\right)=c-b$
Now,
$f\left(\frac{a}{2}\right) f\left(\frac{c}{2}\right)=(a-b)(c-b)<0(a>b>c)$
Hence, exactly one of the roots lies between $c / 2$ and $a / 2$
$\left|\sum_{r=1}^{n} z_{r}\right| \leq \sum_{r=1}^{n}\left|z_{r}\right| \leq \sum_{r=1}^{n}\left|z_{r}-r\right|+\sum_{r=1}^{n} r \leq 2 \sum_{r=1}^{n} r$ 158 (b)
$\left(a x^{2}+c\right) y+\left(a^{\prime} x^{2}+c^{\prime}\right)=0$
or $x^{2}\left(a y+a^{\prime}\right)+\left(c y+c^{\prime}\right)=0$
It x is rational, then the discriminant of the above equation must be a perfect square. Hence,
$0-4\left(a y+a^{\prime}\right)\left(c y+c^{\prime}\right)$ must be a perfect square $\Rightarrow-a c y^{2}-\left(a c^{\prime}+a^{\prime} c\right) y-a^{\prime} c^{\prime}$ must be a perfect square
$\Rightarrow\left(a c^{\prime}+a^{\prime} c\right)^{2}-4 a c a^{\prime} c^{\prime}=0 \quad[\because D=0]$
$\Rightarrow\left(a c^{\prime}-a^{\prime} c\right)^{2}=0$
$\Rightarrow a c^{\prime}=a^{\prime} c$
$\Rightarrow \frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}$
159 (d)
We have,
$|z|=|\omega|$ and $\arg z=\pi-\arg \omega$
Let $\omega=r e^{i \theta}$. Then
$z=r e^{i(\pi-\theta)}$
$\Rightarrow z=r e^{i \pi} e^{-i \theta}\left(r e^{-i \theta}\right)(\cos \pi+i \sin \pi)$
$=\bar{\omega}(-1)=-\bar{\omega}$
160 (b)
Let $f(x)=a x^{2}+b x+c$ be a quadratic
expression such that $f(x)>0$ for all $x \in R$. Then,
$a>0$ and $b^{2}-4 a c<0$. Now, $\mathrm{g}(x)=f(x)+$
$f^{\prime}(x)+f^{\prime \prime}(x)$
$\Rightarrow \mathrm{g}(x)=a x^{2}+x(b+2 a)+(b+2 a+c)$
Discriminant of $g(x)$ is
$D=(b+2 a)^{2}-4 a(b+2 a+c)$
$=b^{2}-4 a^{2}-4 a c$
$=\left(b^{2}-4 a c\right)-4 a^{2}$
$<0\left(\because b^{2}-4 a c<0\right)$
Therefore, $\mathrm{g}(x)>0$ for all $x \in R$
161 (a)
$a_{0} z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\cdots+a_{n-1} z+a_{n}=3$
$\Rightarrow|3|=\left|a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}\right|$
$\Rightarrow 3 \leq\left|a_{0}\right||z|^{n}+\left|a_{1}\right||z|^{n-1}+\cdots+\left|a_{n-1}\right||z|$ $+\left|a_{n}\right|$
$\Rightarrow 3<2\left(|z|^{n}+|z|^{n-1}+\cdots+|z|+1\right)$
$\Rightarrow 1+|z|+|z|^{2}+\cdots+|z|^{n}>\frac{3}{2}$
If $|z| \geq 1$, the inequality is clearly satisfied. For
$|z|<1$, we must have,
$\frac{1-|z|^{n+1}}{1-|z|}>\frac{3}{2}$
$\Rightarrow 2-2|z|^{n+1}>3-3|z|$
$\Rightarrow 2|z|^{n+1}<3|z|-1$
$\Rightarrow 3|z|-1>0$
$\Rightarrow|z|>\frac{1}{3}$
162 (c)
$\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$
$\Rightarrow \arg \left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)=\arg \left(\frac{1-i \sqrt{3}}{2}\right)$
Hence, the angle between $z_{1}-z_{3}$ and $z_{2}-z_{3}$ is 60°. Also,
$\left|\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right|=\left|\frac{1-i \sqrt{3}}{2}\right|$
$\Rightarrow\left|\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right|=1$
$\Rightarrow\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{3}\right|$
Hence, the triangle with vertices z_{1}, z_{2} and z_{3} is isosceles with vertices angle 60°. Hence rest of the two angles should also be 60° each. Therefore, the required triangle is an equilateral triangle
163 (d)
Let $z=x+i y$, so that $\bar{z}=x-i y$
$\therefore z^{2}+\bar{z}=0$
$\Rightarrow\left(x^{2}-y^{2}+x\right)+i(2 x y-y)=0$
Equating real and imaginary parts, we get
$x^{2}-y^{2}+x=0$
and $2 x y-y=0 \Rightarrow y=0$ or $x=\frac{1}{2}$
If $y=0$, then (1) gives $x^{2}+x=0 \Rightarrow x=0$ or $x=-1$
If $x=1 / 2$, then from (1),
$y^{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} \Rightarrow y= \pm \frac{\sqrt{3}}{2}$
Hence, there are four solutions in all
164 (b)
Let,
$S=1+2 a+3 a^{2}+\cdots+n \alpha^{n-1}$
$\Rightarrow \alpha S=\alpha+2 \alpha^{2}+3 \alpha^{3}+\cdots+(n-1) \alpha^{n-1}$

$$
+n a^{n}
$$

On subtracting, we get
$S(1-\alpha)=1+\left[\alpha+\alpha^{2}+\alpha^{n-1}\right]-n a^{n}$
$=1+\frac{\alpha\left(1-\alpha^{n-1}\right)}{1-\alpha}-n \alpha^{n}$
$\Rightarrow S=\frac{1}{1-\alpha}+\frac{\alpha-\alpha^{n}}{(1-\alpha)^{2}}-\frac{n \alpha^{n}}{1-\alpha} \quad\left[\because \alpha^{n}=1\right]$
$=\frac{1}{1-\alpha}+\frac{\alpha-1}{(1-\alpha)^{2}}-\frac{n}{1-\alpha}=-\frac{n}{1-\alpha}$
165 (c)
Since α, β are the roots of the equation
$2 x^{2}-35 x+2=0$, therefore,
$2 \alpha^{2}-35 \alpha=-2$ or $2 \alpha-35=\frac{-2}{\alpha}$
and $2 \beta^{2}-35 \beta=-2$ or $2 \beta-35=\frac{-2}{\beta}$
Now,
$(2 \alpha-35)^{3}(2 \beta-35)^{3}=\left(\frac{-2}{\alpha}\right)^{3}\left(\frac{-2}{\beta}\right)^{3}$
$=\frac{8 \times 8}{\alpha^{3} \beta^{3}}=\frac{64}{1}=64 \quad(\because \alpha \beta=1)$
166 (a)

$|z-\bar{z}|$ is the length $A B$ while $|z|(\arg z-\arg \bar{z})$ is arc length $A B$
$\therefore|z-\bar{z}| \leq|z|(\arg z-\arg \bar{z})$

167 (c)
$D>0 \Rightarrow(a-3)^{2}+4(a+2)>0$
$\Rightarrow a^{2}-6 a+9+4 a+8>0$
$\Rightarrow a^{2}-2 a+17>0$
$\Rightarrow a \in R$
$\therefore \frac{a^{2}+1}{a^{2}+2}=1-\frac{1}{a^{2}+2} \geq \frac{1}{2}$
168 (c)
$A_{n+1}=\alpha^{n+1}+\beta^{n+1}$
$=\alpha^{n+1}+\alpha^{n} \beta+\beta^{n+1}+\alpha \beta^{n}-\alpha^{n} \beta-\alpha \beta^{n}$
$=\alpha^{n}(\alpha+\beta)+\beta^{n}(\beta+\alpha)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)$
$=\alpha^{n}(\alpha+\beta)+\beta^{n}(\beta+\alpha)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)$
$=(\alpha+\beta)\left(\alpha^{n}+\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)$
$=a A_{n}-b A_{n-1}$
169 (d)
Let $f(x)=x^{6}+4 x^{5}+3 x^{4}+2 x^{3}+x+1$. Hence,
$f(\omega)=\omega^{6}+4 \omega^{5}+3 \omega^{4}+2 \omega^{3}+\omega+1$
$=1+4 \omega^{2}+3 \omega+2+\omega+1$
$=4\left(\omega^{2}+\omega+1\right)$
$=0$
Hence, $f(x)$ is divisible by $x-\omega$. Then $f(x)$ is also divisible by $x-\omega^{2}$ (as complex roots occur in conjugate pairs)
$f(-\omega)=(-\omega)^{6}+4(-\omega)^{5}+3(-\omega)^{4}+2(-\omega)^{3}$

$$
+(-\omega)+1
$$

$=\omega^{6}-4 \omega^{5}+3 \omega^{4}-2 \omega^{3}-\omega+1$
$=1-4 \omega^{2}+3 \omega-2-\omega+1$
$\neq 0$
170 (c)
Since, $(\alpha+\beta),\left(\alpha^{2}+\beta^{2}\right)$ and $\left(\alpha^{3}+\beta^{3}\right)$ are in GP.
$\left(\alpha^{2}+\beta^{2}\right)^{2}=(\alpha+\beta)\left(\alpha^{3}+\beta^{3}\right)$
$\Rightarrow \alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}=\alpha^{4}+\beta^{4}+\alpha \beta^{3}+\beta \alpha^{3}$
$\Rightarrow \alpha \beta\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)=0$
$\Rightarrow \alpha \beta(\alpha-\beta)^{2}=0$
$\Rightarrow \alpha \beta=0$ or $\alpha=\beta$
ie, $\frac{c}{a}=0$ or $\Delta=0$
$\Rightarrow c \Delta=0$
171 (a)
Assuming $\arg z_{1}=\theta$ and $\arg z_{2}=\theta+\alpha$,
$\frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}=\frac{a\left|z_{1}\right| e^{i \theta}}{b\left|z_{2}\right| e^{i(\theta+\alpha)}}+\frac{b\left|z_{2}\right| e^{i(\theta+\alpha)}}{a\left|z_{1}\right| e^{i \theta}}$
$=e^{-i \alpha}+e^{i \alpha}=2 \cos \alpha$
Hence, the point lies on the line segment $[-2,2]$ of the real axis

172 (a)
Let $z=x+i y$. Then,
$|z-3-i|=|z-9-i|$
$\Rightarrow \sqrt{(x-3)^{2}+(y-1)^{2}}=\sqrt{(x-9)^{2}+(y-1)^{2}}$
$\Rightarrow x=6$
$|z-3+3 i|=3$
$\Rightarrow \sqrt{(x-3)^{2}+(y+3)^{2}}=3$
For $x=6, y=-3$
$\therefore z=6-3 i$
173 (b)
$2\left|z-\frac{1}{2}\right|=|z-1|$
$|z-1|$
$\therefore \overline{\left|z-\frac{1}{2}\right|}=2$
So, locus of z is a circle
174 (a)
$x y=2(x+y) \Rightarrow y(x-2)=2 x$
$\therefore y=\frac{2 x}{x-2}=2+\frac{4}{x-2} \Rightarrow x$

$$
=3,4(x \neq 6 \text { as } x<y)
$$

By trial, $x=3,4,6$. Then $y=6,4,3$. But $x \leq y$.
Therefore, $x=3,4$ and $y=6,4$ are two solutions
175 (a)
If both the roots of a quadratic equation
$a x^{2}+b x+c=0$ are less than k, then $a f(k)>0,-b / 2 a<k$ and $D \geq 0$. Now,

$f(x)=x^{2}-2 a x+a^{2}+a-3$
$\Rightarrow f(3)>0, a<3,-4 a+12 \geq 0$
$\Rightarrow a^{2}-5 a+6>0, a<3,-4 a+12 \geq 0$
$\Rightarrow a<2$ or $a>3, a<3, a \leq 3$
$\Rightarrow a<2$
176 (a)
Suppose $a \neq 0$. We rewrite $f(x)$ as follows:
$f(x)=a\left\{x^{2}+\frac{b}{a} x+\frac{c}{a}\right\}$
$=a\left\{\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right\}$
$f\left(-\frac{b}{2 a}+i\right)=a\left\{\left(-\frac{b}{2 a}+i+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right\}$
$=a\left\{-1+\frac{4 a c-b^{2}}{4 a^{2}}\right\}$, which is real number. This is
against the hypothesis. Therefore, $a=0$
177 (a)
$\frac{1+i z}{1-i z}=\frac{1+i(b+i c) /(1+a)}{1-i(b+i c) /(1+a)}$
$=\frac{1+a-c+i b}{1+a+c-i b}$
$=\frac{(1+a-c+i b)(1+a+c+i b)}{(1+a+c)^{2}+b^{2}}$
$=\frac{1+2 a+a^{2}-b^{2}-c^{2}+2 i b+2 i a b}{1+a^{2}+c^{2}+b^{2}+2 a c+2(a+c)}$
$=\frac{2 a+2 a^{2}+2 i b+2 i a b}{2+2 a c+2(a+c)} \quad\left(\because a^{2}+b^{2}+c^{2}=1\right)$
$=\frac{a+a^{2}+i b+i a b}{1+a c+(a+c)}$
$=\frac{a(a+1)+i b(a+1)}{(a+1)(c+1)}$
$=\frac{a+i b}{c+1}$
178
(a)

Since R.H.S. is an even integer. So L.H.S. is also an even integer. So, either both x and y are even integers, or both of them are odd integers. Now, $x^{4}-y^{4}=(x-y)(x+y)\left(x^{2}+y^{2}\right)$
$\Rightarrow x-y, x+y, x^{2}+y^{2}$ must be an even integer Therefore, $(x-y)(x+y)\left(x^{2}+y^{2}\right)$ must be divisible by 8 . But R.H.S. is not divisible by 8.
Hence, the given equation has no solution
179 (c)
Clearly, $x=2$ is a root of the equation and imaginary roots always occur in pairs. Therefore, the other root is also real
180 (b)
$(1+\omega)^{7}=A+B \omega$
$\Rightarrow\left(-\omega^{2}\right)^{7}=A+B \omega \quad\left(\because 1+\omega+\omega^{2}=0\right)$
$\Rightarrow-\omega^{14}=A+B \omega$
$\Rightarrow-\omega^{2}=A+B \omega \quad\left(\because \omega^{3}=1\right)$
$\Rightarrow 1+\omega=A+B \omega$
$\Rightarrow A=1, B=1$
181
(d)
$10 z^{2}-3 i z-k=0$
$\Rightarrow z=\frac{3 i \pm \sqrt{-9+40 k}}{20}$
Now, $D=-9+40 k$. If $k=1$, then $D=31$. So (a) is false
If k is a negative real number, then D is a negative real number. So (d) is true
If $k=i$, then $D=-9+40 i=16+40 i-25=$ $(4+5 i)^{2}$, and the roots are $(1 / 5)+(2 / 5) i$. So (c) is false
If $k=0$ (which is a complex number), then the roots are 0 and $(3 / 10) i$. So (b) is false
182 (b)
Let,
$\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}=z$
$\Rightarrow\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{8}$
$=\left(\frac{1+z}{1+\frac{1}{z}}\right)^{8}$
$=z^{8}$
$=\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^{8}$
$=\left(\cos \left(\frac{\pi}{2}-\frac{\pi}{8}\right)+i \sin \left(\frac{\pi}{2}-\frac{\pi}{8}\right)\right)^{8}$
$=\left(\cos \frac{3 \pi}{8}+i \sin \frac{3 \pi}{8}\right)^{8}$
$=\cos 3 \pi=-1$
183 (c)
$x^{2}-(a-3) x+a=0$
$\Rightarrow D=(a-3)^{2}-4 a$
$=a^{2}-10 a+9$
$=(a-1)(a-9)$

Case I:

Both the roots are greater than 2
$D \geq 0, f(2)>0,-\frac{B}{2 A}>2$
$\Rightarrow(a-1)(a-9) \geq 0 ; 4-(a-3) 2+a$ $>0 ; \frac{a-3}{2}>2$
$\Rightarrow a \in(-\infty, 1] \cup[9, \infty) ; a<10 ; a>7$
$\Rightarrow a \in[9,10) \quad$ (1)

Case II:

One root is greater than 2 and the other root is less than or equal to 2 . Hence,
$f(2) \leq 0$
$\Rightarrow 4-(a-3) 2+a \leq 0$
$\Rightarrow a \geq 10$
From (1) and (2),
$a \in[9,10) \cup[10, \infty) \Rightarrow a \in[9, \infty)$
184 (c)
Here a, b, c are positive. So,
$|x|=-b+\sqrt{b^{2}+a c}$
Hence, x has two real values, neglecting
$|x|=-b-\sqrt{b^{2}+a c}$, as $|x| \geq 0$
185 (c)
$E=4+5(\omega)^{334}+3(\omega)^{365}$
$=4+5 \omega+3 \omega^{2}$
$=1+2 \omega+3\left(1+\omega+\omega^{2}\right)$
$=1+(-1+i \sqrt{3})$
$=i \sqrt{3}$
186 (d)
$\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{1-1+2 i}{2}=\mathrm{i}$
Now $i^{n}=1$. Hence, the smallest positive integral value of n should be 4

187 (a)
$u=x^{2}+4 y^{2}+9 z^{2}-6 y z-2 z x-2 x y$
$=\frac{1}{2}\left[2 x^{2}+8 y^{2}+18 z^{2}-12 y z-6 z x-4 x y\right]$
$=\frac{1}{2}\left[\left(x^{2}-4 x y+4 y^{2}\right)+\left(4 y^{2}+9 z^{2}-12 y z\right)\right.$

$$
\left.+\left(x^{2}+9 z^{2}-6 z x\right)\right]
$$

$=\frac{1}{2}\left[(x-2 y)^{2}+(2 y-3 z)^{2}+(3 z-x)^{2}\right] \geq 0$
Hence, u is always non-negative
188 (c)
Let roots of the equation $a x^{2}+2 b x+c=0$ be α and β and roots of the equation $p x^{2}+2 q x+r=$ 0 be γ and δ. Given,
$\frac{\alpha}{\beta}=\frac{\gamma}{\delta} \Rightarrow \frac{\alpha}{\gamma}=\frac{\beta}{\delta}$
$\Rightarrow \frac{\alpha+\beta}{\gamma+\delta}=\sqrt{\frac{\alpha \beta}{\gamma \delta}}$
$\Rightarrow \frac{-\frac{2 b}{a}}{-\frac{2 q}{p}}=\sqrt{\frac{\frac{c}{a}}{\frac{r}{p}}}$
$\Rightarrow \frac{b^{2}}{a c}=\frac{q^{2}}{p r}$
189 (a)
Let α and α^{2} be the roots of $x^{2}-x-k=0$. Then, $\alpha+\alpha^{2}=1$ and $\alpha^{3}=-k$
$\Rightarrow(-k)^{1 / 3}+(-k)^{2 / 3}=1$
$\Rightarrow-k^{1 / 3}+k^{2 / 3}=1$
$\Rightarrow\left(k^{2 / 3}-k^{1 / 3}\right)^{3}=1$
$\Rightarrow k^{2}-k-3 k\left(k^{2 / 3}-k^{1 / 3}\right)=1$
$\Rightarrow k^{2}-k-3 k(1)=1$
$\Rightarrow k^{2}-4 k-1=0$
$\Rightarrow k=2 \pm \sqrt{5}$
190 (d)
The equation $z^{n}=(z+1)^{n}$ will have exactly $n-1$ roots. We have,
$\left(\frac{z+1}{z}\right)^{n}=1$
$\Rightarrow\left|\frac{z+1}{z}\right|=1$
$\Rightarrow|z+1|=|z|$
Therefore, ' z ' lies on the right bisector of the segment connecting the points $(0,0)$ and $(-1,0)$.
Thus $\operatorname{Re}(z)=-1 / 2$. Hence, roots are collinear and will have their real parts equal to $-1 / 2$.
Hence, roots are collinear and will have their real parts equal to $-1 / 2$
Hence sum of the real parts of roots is $(-1 / 2)(n-1)$

191 (a)
We have,
$|z-2+2 i|=1$
$\Rightarrow|z-(2-2 i)|=1$
Hence, z lies on a circle having centre at $(2,-2)$ and radius 1 . It is evident from the figure that the required complex number z is given by the point P. We find that $O P$ makes an angle $\pi / 4$ with $O X$ and

$O P=O C-C P=\sqrt{2^{2}+2^{2}}-1=2 \sqrt{2}-1$
So, coordinates of P are $[2 \sqrt{2}-1) \cos (\pi / 4)$]
$-(2 \sqrt{2}-1) \sin (\pi / 4)$, i. e. , $((\sqrt{2}-1 / \sqrt{2}),-(2-$ $1 / \sqrt{2})$). Hence,
$z=\left(2-\frac{1}{\sqrt{2}}\right)+\left\{-\left(2-\frac{1}{\sqrt{2}}\right)\right\} i=\left(2-\frac{1}{\sqrt{2}}\right)(1-i)$
192 (b)
Given $x-2=2^{2 / 3}+2^{1 / 3}$
Cubing both sides, we get
$(x-2)^{3}=2^{2}+2+3 \times 2^{2 / 3} \times 2^{1 / 3}(x-2)$

$$
=6+6(x-2)
$$

or $x^{3}-6 x^{2}+12 x-8=-6+6 x$
$\therefore x^{3}-6 x^{2}+6 x=2$
193 (c)
$\frac{(1+i)^{5}(1+\sqrt{3} i)^{2}}{-2 i(-\sqrt{3}+i)}$

$$
=\frac{(\sqrt{2})^{5}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{5} 2^{2}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{2}}{2 i 2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)}
$$

\Rightarrow Argument $=\frac{5 \pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{2}+\frac{\pi}{6}=\frac{19 \pi}{12}$
Therefore, the principle argument is $-5 \pi / 12$

194 (a)
Clearly, $f(-1)>0, f(2)<0$. Now,

$f(0)=-4<0$
$\Rightarrow f(-1)=1-a-4>0$ and $f(2)=4+2 a-$
$4<0$
$\Rightarrow a<-3$ and $a<0$
$\Rightarrow a \in(-\infty,-3)$
195 (a)
α, β are roots of $x^{2}+p x+q=0$. Hence,
$\alpha+\beta=-p$ and $\alpha \beta=q$
α^{4}, β^{4} are roots of $x^{2}-r x+s=0$. Hence,
$\alpha^{4}+\beta^{4}=r, \alpha^{4} \beta^{4}=q$
Now for equation $x^{2}-4 q x+2 q^{2}-r=0$, the product of roots is
$2 q^{2}-r=2(\alpha \beta)^{2}-\left(\alpha^{4}+\beta^{4}\right)$
$=-\left(\alpha^{2}-\beta^{2}\right)^{2}$
<0
Therefore, the product of roots is negative. So, the roots must be real and of opposite signs
196 (a)
The given equation is $\sin \left(e^{x}\right)=5^{x}+5^{-x}$. We know that 5^{x} and 5^{-x} both are + ve real numbers
Now, $5^{x}+5^{-x}=\left(\sqrt{5^{x}}-\sqrt{5^{-x}}\right)^{2}+2 \geq 2$
But L.H.S. $=\sin \left(e^{x}\right) \leq 1$
Hence, no solution
197 (a)
Since $p(q-r)+q(r-q)+r(p-q)=0$, so one root is 1 and the other root is $r(p-q) /[p(q-r)]$. Since both the roots are equal, we have
$\frac{r p-r q}{p q-p r}=1$
$\Rightarrow r p-r q=p q-p r$
$\Rightarrow 2 r p=q(p+r)$
$\Rightarrow \frac{2}{q}=\frac{p+r}{p r}=\frac{1}{p}+\frac{1}{r}$

198 (c)
$S_{1}=\sum z_{1}=-3 a, S_{2}=\sum z_{1} z_{2}=3 b$
Since the triangle is equilateral, we have
$\sum z_{1}^{2}=\sum z_{1} z_{2}$
$\Rightarrow\left(\sum z_{1}\right)^{2}-2 \sum z_{1} z_{2}=\sum z_{1} z_{2}$
$\Rightarrow\left(\sum z_{1}\right)^{2}=3 \sum z_{1} z_{2}$
$\Rightarrow(-3 a)^{2}=3(3 b)$
$\Rightarrow 9 a^{2}=9 b$
$\Rightarrow a^{2}=b$
199 (c)
Discriminant $D=(2 m-1)^{2}-4(m-2) m=$
$4 m+1$ must be perfect square. Hence,
$4 m+1=k^{2}$, say for some $k \in I$
$\Rightarrow m=\frac{(k-1)(k+1)}{4}$
Clearly, k must be odd. Let $k=2 n+1$
$\therefore m=\frac{2 n(2 n+2)}{4}=n(n+1), n \in I$
200 (a)
$x+i y=1-t+i \sqrt{t^{2}+t+2}$
$\Rightarrow x=1-t, y=\sqrt{t^{2}+t+2}$
Eliminating t,
$y^{2}=t^{2}+t+2=(1-x)^{2}+1-x+2$

$$
=\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4}
$$

$\Rightarrow y^{2}-\left(x-\frac{3}{2}\right)^{2}=\frac{7}{4}, \quad$ which is a hyperbola
201 (d)
$\left(z^{n}-1\right)=(z-1)\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n-1}\right)$
(1)

Differentiating w.r.t. x, and then dividing by (1), we have
$\frac{n z^{n-1}}{z^{n}-1}=\frac{1}{z-1}+\frac{1}{z-z_{1}}+\frac{1}{z-z_{2}}+\cdots+\frac{1}{z-z_{n-1}}$
Putting $z=3$, we get
$\frac{n 3^{n-1}}{3^{n}-1}=\frac{1}{2}+\frac{1}{3-z_{1}}+\frac{1}{3-z_{2}}+\cdots+\frac{1}{3-z_{n-1}}$
$\Rightarrow \frac{1}{3-z_{1}}+\frac{1}{3-z_{2}}+\cdots+\frac{1}{3-z_{n-1}}=\frac{n 3^{n-1}}{3^{n}-1}-\frac{1}{2}$
202 (c)
$z=(1+i \sqrt{3})^{100}=2^{100}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{100}$
$=2^{100}\left(\cos \frac{100 \pi}{3}+i \sin \frac{100 \pi}{3}\right)$
$=2^{100}\left(-\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$
$=2^{100}\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)$
$\Rightarrow \frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}=\frac{-1 / 2}{-\sqrt{3} / 2}=\frac{1}{\sqrt{3}}$
203 (a)
$x^{2}+a x+b+1=0$ has positive integral roots α and β. Hence,
$(\alpha+\beta)=-a$ and $\alpha \beta=b+1$
$\Rightarrow(\alpha+\beta)^{2}+(\alpha \beta-1)^{2}=a^{2}+b^{2}$
$\Rightarrow a^{2}+b^{2}=\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)$
$\Rightarrow a^{2}+b^{2}$ can be equal to 50 (since other options have prime numbers)
204 (a)
$x_{1}\left(x-x_{2}\right)^{2}+x_{2}\left(x-x_{1}\right)^{2}=0$
$\Rightarrow x^{2}\left(x_{1}+x_{2}\right)-4 x x_{1} x_{2}\left(x_{1}+x_{2}\right)^{2}>0\left(\because x_{1} x_{2}\right.$ $<0)$
The product of roots is $x_{1} x_{2}<0$. Thus, the roots are real and of opposite signs
205 (b)
The given equation is
$(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)$ $=0$
$\Rightarrow 3 x^{2}-2(a+b+c) x+(a b+b c+c a)=0$
$D=4(a+b+c)^{2}-12(a b+b c+c a)$
$=4\left[a^{2}+b^{2}+c^{2}-a b-b c-c a\right]$
$=2\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \geq 0, \forall a, b, c$
Therefore, the roots of the given equation are always real
206 (c)
Given that
$a^{2}+b^{2}+c^{2}=1$
We know that
$(a+b+c)^{2} \geq 0$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a \geq 0$
$\Rightarrow 2(a b+b c+c a) \geq-1 \quad[$ Using (1)]
$\Rightarrow a b+b c+c a \geq-1 / 2$
Also, we know that
$\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \geq 0$
$\Rightarrow a^{2}+b^{2}+c^{2}-a b b c-c a \geq 0$
$\Rightarrow a b+b c+c a \leq 1 \quad$ [Using (1)]
Combining (2) and (3), we get
$-1 / 2 \leq a b+b c+c a \leq 1$
$\Rightarrow a b+b c+c a \in[-1 / 2,1]$
207 (a)
We have,
$\arg \left(\frac{Z_{1}}{Z_{2}}\right)=\pi$
$\Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=\pi$
$\Rightarrow \arg \left(z_{1}\right)=\arg \left(z_{2}\right)+\pi$
Let $\arg \left(z_{2}\right)=\theta$. Then $\arg \left(z_{1}\right)=\pi+\theta$
$\therefore z_{1}=\left|z_{1}\right| \cos (\pi+\theta)+i \sin (\pi+\theta)$
$=\left|z_{1}\right|(-\cos \theta-i \sin \theta)$
and $z_{2}=\left|z_{2}\right|(\cos \theta+i \sin \theta)$
$=\left|z_{1}\right|(\cos \theta+i \sin \theta) \quad\left(\because\left|z_{1}\right|=\left|z_{2}\right|\right)$
$=-z_{1}$
$\Rightarrow z_{1}+z_{2}=0$
208 (b)
Let D_{1} and D_{2} be discriminants of $x^{2}+b_{1} x+c_{1}=$
0 and $x^{2}+b_{2} x+c_{2}=0$, respectively. Then,
$D_{1}+D_{2}=b_{1}^{2}-4 c_{1}+b_{2}^{2}-4 c_{2}$
$=\left(b_{1}^{2}+b_{2}^{2}\right)-4\left(c_{1}-c_{2}\right)$
$=b_{1}^{2}+b_{2}^{2}-2 b_{1} b_{2}\left[\because b_{1} b_{2}=2\left(c_{1}+c_{2}\right)\right]$
$=\left(b_{1}-b_{2}\right)^{2} \geq 0$
$\Rightarrow D_{1} \geq 0$ or $D_{2} \geq 0$ and D_{1} and D_{2} both are
positive
Hence, at least one of the equations has real roots
209 (c)
Let
$a=\cos \alpha \sin \alpha$
$b=\cos \beta+i \sin \beta$
$c=\cos \gamma+i \sin \gamma$
Then,
$a+2 b+3 c=(\cos \alpha+2 \cos \beta+3 \cos \gamma)$

$$
+i(\sin \alpha+2 \sin \beta+3 \sin \gamma)=0
$$

$\Rightarrow a^{3}+8 b^{3}+27 c^{3}=18 a b c$
$\Rightarrow \cos 3 \alpha+8 \cos 3 \beta+27 \cos 3 \gamma$

$$
=18 \sin (\alpha+\beta+\gamma)
$$

and $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma=18 \sin (\alpha+$
$\beta+\gamma)$
210 (b)
$|\omega|=1$
$\Rightarrow\left|\frac{1-i z}{z-i}\right|=1$
$\Rightarrow|1-i z|=|z-i|$
$\Rightarrow|-i||z+i|=|z-i|$
$\Rightarrow|z+i|=|z-i|$
Hence, z is equidistant from $(0,-1)$ and $(0,1)$. So, z lies on perpendicular bisector of $(0,-1)$ and $(0$, 1) i.e., x-axis, and $y=0$. Therefore, z lies on real axis
211 (b)

By the given conditions, the area of the triangle
$A B C$ is given by $(1 / 2)\left|z_{1}-z_{2}\right| r$
212 (b)
If vertices of a parallelogram are $z_{1}, z_{2}, z_{3}, z_{4}$, then as diagonals bisect each other as given,
$\frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}$
$\Rightarrow z_{1}+z_{3}=z_{2}+z_{4}$
213 (a)
The given equation is
$\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$
Squaring both sides, we get
$x+1+x-1-2 \sqrt{x^{2}-1}=4 x-1$
$\Rightarrow-2 \sqrt{x^{2}-1}=2 x-1$
Again squaring both sides, we get
$\Rightarrow 4\left(x^{2}-1\right)=4 x^{2}-4 x+1$
$\Rightarrow-4 x=-5$
$\Rightarrow x=5 / 4$
Substituting this value of x in given equation, we get
$\sqrt{\frac{5}{4}+1}-\sqrt{\frac{5}{4}-1}=\sqrt{4 \times \frac{5}{4}-1}$
$\Rightarrow \frac{3}{2}-\frac{1}{2}=2$ (not satisfied)
Therefore, $5 / 4$ is not a solution of given equation.
Hence, the given equation has no solution
214 (b)
$\frac{\left(b^{2}-4 a c\right)^{2}}{16 a^{2}}<\frac{4}{1+4 a^{2}}$
Now,
$\max \left(a x^{2}+b x+c\right)=-\frac{b^{2}-4 a c}{4 a}$
Also, $\frac{-2}{\sqrt{1+4 a^{2}}}<-\frac{b^{2}-4 a c}{4 a}<\frac{2}{\sqrt{1+4 a^{2}}} \quad$ [From (1)]
So, maximum value is always less than 2 (when $a \rightarrow 0$)
215 (c)
As $(\lambda-1) x^{2}+2=\lambda x+3$ has only one solution,
so $D=0$
$\Rightarrow \lambda^{2}-4(\lambda+1)(-1)=0$
$\Rightarrow \lambda^{2}+4 \lambda+4=0$
$\Rightarrow(\lambda+2)^{2}=0$
$\therefore \lambda=-2$
216 (c)
Given that $a^{2}+b^{2}=1$. Therefore,
$\frac{1+b+i a}{1+b-i a}=\frac{(1+b+i a)(1+b+i a)}{(1+b-i a)(1+b+i a)}$
$=\frac{(1+b)^{2}-a^{2}+2 i a(1+b)}{1+b^{2}+2 b+a^{2}}$
$=\frac{\left(1-a^{2}\right)+2 b+b^{2}+2 i a(1+b)}{2(1+b)}$
$=\frac{2 b^{2}+2 b+2 i a(1+b)}{2(1+b)}$
$=b+i a$
217 (c)
Given that
$\left|z_{1}-i\right|=\left|z_{2}-i\right|=\left|z_{3}-i\right|$
Hence, z_{1}, z_{2}, z_{3} lie on the circle whose centre is i.

Also given that the triangle is equilateral. Hence centroid and circumcentre coincides
$\therefore \frac{z_{1}+z_{2}+z_{3}}{3}=i$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=3$
218 (a)
$\log _{1 / 3}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$
$\Rightarrow \frac{|z-3|^{2}+2}{11|z-3|-2}<\frac{1}{3}$
$\Rightarrow(3 t-8)(t-1)<0$ (where $|z-3|=t)$
$\Rightarrow 1<|z-3|<8 / 3$
Hence z lies between the two concentric circles
219 (c)
Put $a b+b c+c a=t$. Now,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 t$
$\Rightarrow(a+b+c)^{2}=1+2 t$
$\Rightarrow 1+2 t \geq 0$
$\Rightarrow-\frac{1}{2} \leq t$
Again, $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2-2 t$
$\Rightarrow 2-2 t \geq 0$
$\Rightarrow t \leq 1$
$\Rightarrow-\frac{1}{2} \leq t \leq t \leq 1$
220 (a)
Here $x=4 \cos \theta, y=4 \sin \theta$
$\therefore||x|-|y||$
$=|4| \cos \theta|-4| \sin \theta| |$
$=4| | \cos \theta|-\sin \theta| \mid$
$=4 \sqrt{1-2|\cos \theta||\sin \theta|}$
$=4 \sqrt{1-|\sin 2 \theta|}$
Hence, the range is [0, 4]
221 (d)
$\left|\omega z-1-\omega^{2}\right|=a$
$\Rightarrow|z+1|=a \Rightarrow|z-1+2|=a$
$\Rightarrow|z-1|+2 \geq a \Rightarrow 0 \leq a \leq 4$
222 (b)
We have,
$x=\frac{-1 \pm \sqrt{1-4 a^{2}\left(1-a^{2}\right)}}{2 a^{2}}$
$=\frac{-1 \pm\left(2 a^{2}-1\right)}{2 a^{2}}$
$=1-\frac{1}{a^{2}}$ or $-a^{2}$
$\Rightarrow \beta^{2}=1-\frac{1}{a^{2}}$
223 (b)
$\left|z+\frac{1}{z}\right| \geq\left||z|-\frac{1}{|z|}\right|$
Hence the least value occurs when $|z|=3$
$\therefore\left|z+\frac{1}{z}\right|_{\text {least }}=3-\frac{1}{3}=\frac{8}{3}$

224 (b)

Note that $z_{1}=3+\sqrt{3} i$ lies on the line $y=(1 / \sqrt{3}) x$ and $z_{2}=2 \sqrt{3}+6 i$ lies on the line $y=\sqrt{3} x$
Hence $z=5+5 i$ will only lie on the bisector of z_{1} and z_{2}, i.e. $y=x$

225 (b)
$\left|z^{2}-3\right| \geq|z|^{2}-3$
$\Rightarrow 3|z| \geq|z|^{2}-3$
$\Rightarrow|z|^{2}-3|z|-3 \leq 0$
$\Rightarrow 0<|z| \leq \frac{3+\sqrt{21}}{2}$
226 (a)

$|2 z+10+10 i| \leq 5 \sqrt{3}-5$
$\Rightarrow|z+5+5 i| \leq \frac{5(\sqrt{3}-1)}{2}$
Point B has least principle argument. Now,
$A B=\frac{5(\sqrt{3}-1)}{2}$
$O A=5 \sqrt{2}$
$\angle A O B=\frac{\pi}{12}$
$\therefore \arg (z)=-\frac{5 \pi}{6}$
227 (b)
Let,
$\frac{x}{x^{2}-5 x+9}=y$
$\Rightarrow y x^{2}-5 y x+9 y=x$
$\Rightarrow y x^{2}-(5 y+1) x+9 y=0$
Now, x is real, so
$D \geq 0$
$\Rightarrow(-(5 y+1))^{2}-4 \cdot y \cdot(9 y) \geq 0$
$\Rightarrow-11 y^{2}+10 y+1 \geq 0$
$\Rightarrow 11 y^{2}-10 y-1 \leq 0$
$\Rightarrow(11 y+1)(y-1) \leq 0$
$\Rightarrow-\frac{1}{11} \leq y \leq 1$
228 (d)

Clearly,
$\angle D O B=\angle C O D=A$
$\Rightarrow z=\omega e^{i A}$ and $\bar{\omega}=z e^{i A}$ (Applying rotation
about O)
$\Rightarrow z^{2}=\omega \bar{\omega}=1$
$\Rightarrow z=-1 \quad$ (As A and D are non opposite sides of $B C)$
229 (b)
Given that
$\arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2}$
and
$\left|\frac{Z}{|z|}-z_{1}\right|=3$
From which we can establish the following geometry

From the diagram,
$\left|\frac{z}{|z|}-z_{1}\right|=3,\left|z_{1}\right|=\sqrt{9+1}=\sqrt{10}$
$f(z)=\mathrm{g}(z)(z-i)(z+i)+a z+b ; a, b \in C$
Given,
$f(i)=i \Rightarrow a i+b=i$
and $f(-i)=1+i$
$\Rightarrow a(-i)+b=1+i$
From (1) and (2), we have
$a=\frac{i}{2}, b=\frac{1}{2}+i$
Hence, the required remainder is $a z+b=$
$(1 / 2) i z+(1 / 2)+i$

231 (b)
Let,
$f(x)=a x^{2}+x+c-a$
$f(1)=c+1>0 \quad(\because c>-1)$
Therefore, given expression is positive $\forall x \in R$.
So,
$f\left(\frac{1}{2}\right)>0$
$\Rightarrow \frac{a}{4}+\frac{1}{2}+c-a>0$
$\Rightarrow 4 c-3 a+2>0$
$\Rightarrow 4 c+2>3 a$
232 (a)
Clearly, $\quad \alpha+\beta=1, \alpha \beta=p, \gamma+\delta=4, \gamma \delta=$ $q(p, q \in I)$
Since $\alpha, \beta, \gamma, \delta$ are in G.P. (with common ratio r), so
$\alpha+\alpha r=1, \alpha\left(r^{2}+r^{3}\right)=4$
$\Rightarrow \alpha(1+r)=1, \alpha r^{2}(1+r)=4$
$\Rightarrow r^{2} \times 1=4 \Rightarrow r^{2}=4 \Rightarrow r=2,-2$
If $r=2$,
$\alpha+2 \alpha=1 \Rightarrow \alpha=\frac{1}{3}$
If $r=-2$,
$\alpha-2 \alpha=1 \Rightarrow \alpha=-1$
But $p=\alpha \beta \in I$
$\therefore r=-2$ and $\alpha=-1$
$\Rightarrow p=-2$,
$q=\alpha^{2} r^{5}=1(-2)^{5}=-32$
233 (c)
$a \alpha^{2}+c=-b \alpha, a \alpha+b=-\frac{c}{\alpha}$
Hence, the given expression is
$\frac{b}{c}\left(\alpha^{2}+\beta^{2}\right)=\frac{b\left(b^{2}-2 a c\right)}{a^{2} c}$
234 (d)
Given,
$z^{3}+\frac{3(\bar{z})^{2}}{|z|}=0$
Let,
$z=r e^{i} \theta$
$\Rightarrow r^{3} e^{i 3 \theta}+3 r e^{-i 2 \theta}=0$
Since ' r ' cannot be zero, so
$r e^{i 5 \theta}=-3$
Which will hold for $r=3$ and five distinct value of ' θ '. Thus there are five solutions
235 (a)
$\left(\frac{1+i a}{1-i a}\right)^{4}=z$
$\Rightarrow\left|\frac{1+i a}{1-i a}\right|^{4}=|z|$
$\Rightarrow\left|\frac{a-i}{a+i}\right|^{4}=1$
$\Rightarrow|a-i|=|a+i|$
Therefore, a lies on the perpendicular bisector of i and $-i$, which is real axis. Hence all the roots are real
236 (b)
Let $x i$ be the root where $x \neq 0$ and $x \in R$
$x^{4}-a_{1} x^{3} i-a_{2} x^{2}+a_{3} x i+a_{4}=0$
$\Rightarrow x^{4}-a_{2} x^{2}+a_{4}=0$
and
$a_{1} x^{3}-a_{3} x=0$
From Eq. (2),
$a_{1} x^{2}-a_{3}=0$
$\Rightarrow x^{2}=a_{3} / a_{1} \quad($ as $x \neq 0)$
Putting the value of x^{2} in Eq. (1), we get
$\frac{a_{3}^{2}}{a_{1}^{2}}-\frac{a_{2} a_{3}}{a_{1}}+a_{4}=0$
$\Rightarrow a_{3}^{2}+a_{4} a_{1}^{2}=a_{1} a_{2} a_{3}$
$\Rightarrow \frac{a_{3}}{a_{1} a_{2}}+\frac{a_{1} a_{4}}{a_{2} a_{3}}=1$ (dividing by $a_{1} a_{2} a_{3}$)

237 (b)

If z_{1}, z_{2}, z_{3} are three complex numbers, then
$A=\left|\begin{array}{ccc}\arg z_{1} & \arg z_{2} & \arg z_{3} \\ \arg z_{2} & \arg z_{3} & \arg z_{1} \\ \arg z_{3} & \arg z_{1} & \arg z_{2}\end{array}\right|$
$\Rightarrow A=\left(\arg z_{1}+\arg z_{1}\right.$

$$
\left.+\arg z_{3}\right)\left|\begin{array}{ccc}
1 & \arg z_{2} & \arg z_{3} \\
1 & \arg z_{3} & \arg z_{1} \\
1 & \arg z_{1} & \arg z_{2}
\end{array}\right|
$$

(Using $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$)
$\Rightarrow A=\arg \left(z_{1} z_{2} z_{3}\right)\left|\begin{array}{ccc}1 & \arg z_{2} & \arg z_{3} \\ 1 & \arg z_{3} & \arg z_{1} \\ 1 & \arg z_{1} & \arg z_{2}\end{array}\right|$
Hence, A is divisible by $\arg \left(z_{1} z_{2} z_{3}\right)$
238 (d)
Let,
$z=(1)^{1 / n}=(\cos 2 k \pi+i \sin 2 k \pi)^{1 / n}$
$=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots, n-1$
Let
$z_{1}=\cos \left(\frac{2 k_{1} \pi}{n}\right)+i \sin \left(\frac{2 k_{1} \pi}{n}\right)$
and
$z_{2}=\cos \left(\frac{2 k_{2} \pi}{n}\right)+i \sin \left(\frac{2 k_{2} \pi}{n}\right)$
Be the two values of z such that they subtend angle of 90° at origin. Then,
$\Rightarrow \frac{2 k_{1} \pi}{n}-\frac{2 k_{2} \pi}{n}= \pm \frac{\pi}{2} \Rightarrow 4\left(k_{1}-k_{2}\right)= \pm n$
As k_{1} and k_{2} are integers and $k_{1} \neq k_{2}$, therefore $n=4 m, m \in Z$
239 (a,d)
Let $A=a+2 b-3 c, B=b+2 c-3 a, C=c+$
$2 a-3 b$
$\therefore A+B+C=0$
Hence, roots are 1 and $\frac{C}{A}$.
Thus, roots are real and rational.
240 (a,b,c)
Since the roots of $a x^{2}+b x+c=0$ are non-real, so, $f(x)=a x^{2}+b x+c$ will have same sign for every value of x. Hence,
$f(0)=c, f(1)=a+b+c, f(-1)=a-b+c$
$f(-2)=4 a-2 b+c$
$\Rightarrow c(a+b+c)>0, c(a-b+c)$

$$
>0, c(4 a-2 b+c)>0
$$

241 (\mathbf{a}, \mathbf{c})
If $p=q$, then equation become $z^{p}=\bar{z}^{q}$ and it has infinite number of solutions because any $z \in R$
will satisfy it. If $p \neq q$, let $p>q$, then $z^{p}=\bar{z}^{q}$
$\therefore|z|^{p}=|z|^{q}$
$\Rightarrow|z|^{p}\left(|z|^{p-q}-1\right)=0$
$\Rightarrow|z|=0$ or $|z|=1$
$|z|=0 \Rightarrow z=0+i 0$
$|z|=1 \Rightarrow z=e^{i \theta}$
$\Rightarrow e^{(p+q) \theta_{i}}=1$
$\Rightarrow z=1^{1 /(p+q)}$
Therefore, the number of solutions is $p+q+1$
242 (a,b,c)
$f(x)=A x^{2}+B x+C$
$A=a+b-2 c=(a-c)+(b-c)>0$
$\Rightarrow A>0$
Hence, the graph is concave upwards. Also, $x=1$ is obvious solution; therefore, both roots are rational
$b+c-2 a=\underbrace{(b-a)}_{-\mathrm{ve}}+\underbrace{(c-a)}_{-\mathrm{ve}}<0$
$\Rightarrow B<0$
\therefore vertex $=-\frac{B}{2 A}>0$
Hence, abscissa of the vertex is positive. Option
(d) need not be correct as with $a=5, b=4, c=$
$2, P<0$ and with $a=6, b=3, c=2, P>0$
243 (c,d)
We have, $x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right)$
Since, $f(x)$ is divisible by $x^{2}+x+1, f(\omega)=$
$0, f\left(\omega^{2}\right)=0$
$\therefore P\left(\omega^{3}\right)+\omega Q\left(\omega^{3}\right)=0$
$\Rightarrow P(1)+\omega Q(1)=0$
and $P\left(\omega^{6}\right)+\omega^{2} Q\left(\omega^{6}\right)=0$
$\Rightarrow P(1)+\omega^{2} Q(1)=0$
On solving Eqs. (i) and (ii), we get
$P(1)=0$ and $Q(1)=0$
\therefore Both $P(x)$ and $Q\left(x^{3}\right)$ are divisible by $(x-1)$
$\Rightarrow P\left(x^{3}\right)$ and $Q\left(x^{3}\right)$ are divisible by $x^{3}-1$ and hence by $(x-1)$
Since, $f(x)=P\left(x^{3}\right)+x Q\left(x^{3}\right)$, we get $f(x)$ is divisible by $x-1$
244 (b,c)
z_{1} and z_{2} are the roots of the equation
$z^{2}-a z+b=0$. Hence, $z_{1}+z_{2}=a, z_{1} z_{2}=b$
Now,
$\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
$\Rightarrow\left|z_{1}+z_{2}\right|=|a| \leq 1+1=2 \quad\left(\because\left|z_{1}\right|=\left|z_{2}\right|\right.$ =1)

$\Rightarrow \arg (a)=\frac{1}{2}\left[\arg \left(z_{2}\right)+\arg \left(z_{1}\right)\right]$
Also, $\arg (b)=\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$\Rightarrow 2 \arg (a)=\arg (b)$
245 (a,d)
Let $z_{1}=a+i b, a>0$ and $b \in R ; z_{2}=c+i d, d<$ $0, c \in R$
Given,
$\left|z_{1}\right|=\left|z_{2}\right|$
$\Rightarrow a^{2}+b^{2}=c^{2}+d^{2}$
$\Rightarrow a^{2}-c^{2}=d^{2}-b^{2}$
Now,
$\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{(a+c)+i(b+d)}{(a-c)+i(b-d)}$
$\left[\left(a^{2}-c^{2}\right)+\left(b^{2}-d^{2}\right)\right]+i[(a-c)(b+d)-$
$=\frac{(a+c)(b-d)]}{(a-c)^{2}+(b-d)^{2}}$
Which is a purely imaginary number or zero in case $a+c=b+d=0$
246 (a,b,c)
Let $z=x+i y$ where x, y satisfy the given equation. Hence,
$\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175$
$\Rightarrow x^{2}+y^{2}=25$ and $x^{2}-y^{2}=7$ (as all other possibilities will give non-integral solutions) Hence, possible values of z will be $4+3 i, 4-$ $3 i,-4+3 i$ and $-4-3 i$. Clearly, it will form a rectangle having length of the diagonal 10

From the diagram, options (a), (b), (c) are correct 247 ($\mathbf{a}, \mathbf{b}, \mathbf{d}$)
$z_{1}=5+12 i,|z|_{2}=4$
$\left|z_{1}+i z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|=13+4=17$
$\therefore\left|z_{1}+(1+i) z_{2}\right| \geq\left|\left|z_{1}\right|-|1+i|\right| z_{2}| |$
$=13-4 \sqrt{2}$
$\therefore \min \left(\left|z_{1}+(1+i) z_{2}\right|\right)=13-4 \sqrt{2}$
$\left|z_{2}+\frac{4}{z_{2}}\right| \leq\left|z_{2}\right|+\frac{4}{\left|z_{2}\right|}=4+1=5$
$\left|z_{2}+\frac{4}{z_{2}}\right| \geq\left|z_{2}\right|-\frac{4}{\left|z_{2}\right|}=4-1=3$
$\therefore \max \left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{3}$ and $\min \left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{5}$
248 (b,c,d)
Given equation is
$x^{2}+2(a+1) x+9 a-5=0$
$D=4(a+1)^{2}-4(9 a-5)=4(a-1)(a-6)$
$\therefore D \geq 0 \Rightarrow a \leq 1$ or $a \geq 6 \Rightarrow$ roots are real
If $a<0$, then $9 a-5<0$. Hence, the products of roots is less than 0 . So, the roots are of opposite sign. If $a>7$, then sum of roots is $-2(a+1)<0$. Product of roots is greater than 0
249 ($\mathbf{a}, \mathbf{c}, \mathbf{d}$)
Choice (a) on simplification gives
$z=\frac{1+x}{1+x^{2}}+i \frac{1+x}{1+x^{2}}$
For $x=0.5, f(0.5)>1$ which is out of range.
Hence, (a) is not correct. From choice (b),
$z=\frac{1-x}{1+x^{2}}+i \frac{1-x}{1+x^{2}}$
$f(x)$ and $\mathrm{g}(x) \in(0,1)$ if $x \in(0,1)$. Hence, (b) is correct. From choice (c),
$z=\frac{1+x}{1+x^{2}}+\frac{1-x}{1+x^{2}} i$
Hence, (c) is not correct. From choice (d),
$z=\frac{1-x}{1+x^{2}}+\frac{1+x}{1+x^{2}} i$
Hence, (d) is not correct
250 (a,d)
We have,
$f(x)=\frac{2 x-1}{2 x^{3}+3 x^{2}+x}=\frac{2 x-1}{x(2 x+1)(x+1)}$
Critical points are $x=1 / 2,0,-1 / 2,-1$
On number line by sign scheme method, we have

For $f(x)>0, x \in(-\infty,-1) \cup(-1 / 2,0) \cup$
$(1 / 2, \infty)$. Clearly, S contains $(-\infty,-3 / 2)$ and $(1 / 2,3)$
251 (a,b,d)

From the graph,
$f(0)=c>0$
Also, the graph is concave downward. Hence,
$a<0$
Further, abscissa of the vertex,
$\frac{b}{2 a}$ (3)

From (1), (2), (3), $a c<0, a b<0$ and $b c>0$
252 (c,d)
Since, the equation has two distinct roots α and β, the discriminant, $b^{2}-4 a c>0$,
we must have
$f(x)=a x^{2}+b x+c<0$ for $\alpha<x<\beta$

Since, $\alpha<0<\beta$, we must have $f(0)=c<0$
Also, as $\alpha<-1,1<\beta$, we get
$f(-1)=a-b+c<0$
and $f(1)=a+b+c<0$
$\Rightarrow a+|b|+c<0$
Since, $\alpha<-2,2<\beta$.
$f(-2)=4 a-2 b+c<0$
and $f(2)=4 a+2 b+c<0$
$\Rightarrow 4 a+2|b|+c<0$
253 (a,b,d)

Since $\arg ((z-1-i) / z)$ is the angle subtended by the chord joining the points O and $1+i$ at the circumference of the circle $|z-1|=1$, so it is equal to $-\pi / 4$. The line joining the points $z=0$ and $z=2+0 i$ is the diameter
$\arg \frac{z-2}{z}= \pm \frac{\pi}{2}$
$\Rightarrow \frac{z-2}{z-0}$ is purely imaginary
We have,
$\angle O P A=\frac{\pi}{2}$
$\Rightarrow \arg \left(\frac{2-z}{0-z}\right)=\frac{\pi}{2} \Rightarrow \frac{z-2}{z}=\frac{A P}{O P} i$
Now in $\triangle O A P$,
$\tan \theta=\frac{A P}{O P}$
Thus,
$\frac{z-2}{z}=i \tan \theta$
254 (\mathbf{a}, \mathbf{c})
Triangle $A B C$ is equilateral. Hence,
$z^{2}+(-z)^{2}+(1-z)^{2}$

$$
=z(-z)+z(1-z)+(-z)(1-z)
$$

$\Rightarrow 3 z^{2}-2 z+1=-z^{2}$
$\Rightarrow 4 z^{2}-2 z+1=0$
Sum of roots $=2$
and product of roots is $=\frac{1}{4}$
255 (\mathbf{a}, \mathbf{c})
Since each pair has common root, let the roots be α, β for Eq. (1); β, γ for Eq. (2) and γ, α for Eq. (3). Therefore,
$\alpha+\beta=-\alpha, \alpha \beta=b c$
$\beta+\gamma=-b, \beta \gamma=c a$
$\gamma+\alpha=-c, \gamma \alpha=a b$
Adding, we get
$2(\alpha+\beta+\gamma)=-(a+b+c)$
$\Rightarrow \alpha+\beta+\gamma=-\frac{1}{2}(a+b+c)$
Also by multiplying product of roots, we have
$\alpha^{2} \beta^{2} \gamma^{2}=a^{2} b^{2} c^{2} \Rightarrow \alpha \beta \gamma=a b c$
257 (\mathbf{c}, \mathbf{d})
We have,
$D=(b-c)^{2}-4 a(a-b-c)>0$
$\Rightarrow b^{2}+c^{2}-2 b c-4 a^{2}+4 a b+4 a c>0$
$\Rightarrow c^{2}+(4 a-2 b) c-4 a^{2}+4 a b+b^{2}>0$ for all $c \in R$
Discriminant of the above expression in c must be negative. Hence,
$(4 a-2 b)^{2}-4\left(-4 a^{2}+4 a b+b^{2}\right)<0$
$\Rightarrow 4 a^{2}-4 a b+b^{2}+4 a^{2}-4 a b-b^{2}<0$
$\Rightarrow a(a-b)<0$
$\Rightarrow a<0$ and $a-b>0$ or $a>0$ and $a-b>0$
$\Rightarrow b<a<0$ or $b>a>0$
258 (c,d)
$\cos x-y^{2}-\sqrt{y-x^{2}-1} \geq 0$
Now, $\sqrt{y-x^{2}-1}$ is defined when $y-x^{2}-1 \geq$

0 or $y \geq x^{2}+1$. So minimum value of y is 1 . From (1),
$\cos x-y^{2} \geq \sqrt{y-x^{2}-1}$
Where $\cos x-y^{2} \leq 0$ [as when $\cos x$ is maximum $(=1)$ and y^{2} is minimum (=1), so $\cos x-y^{2}$ is maximum]. Also,
$\sqrt{y-x^{2}-1} \geq 0$
Hence, $\cos x-y^{2}=\sqrt{y-x^{2}-1}=0$
$\Rightarrow y=1$ and $\cos x=1, y=x^{2}+1$
$\Rightarrow x=0, y=1$
259 (a,b)

$O A P=\frac{\pi}{2}$
$\Rightarrow \frac{z-z_{0}}{z_{0}}$ is purely imaginary
$\Rightarrow \frac{z-z_{0}}{z_{0}}+\frac{\bar{z}-\bar{z}_{0}}{\bar{z}_{0}}=0$
$\Rightarrow \frac{z}{z_{0}}+\frac{\bar{z}}{\bar{Z}_{0}}=2$
$\Rightarrow \operatorname{Re}\left(\frac{Z}{Z_{0}}\right)=1$
From (1),
$z \bar{z}_{0}+z_{0} \bar{z}=2\left|z_{0}\right|^{2}=2 r^{2}$
260 (c,d)
Product of roots is
$\frac{a}{b c}<0[\because a b c<0]$
Hence, roots are real and of opposite sign
261 (a,b,c,d)
$\sqrt{5-12 i}=\sqrt{(3-2 i)^{2}}= \pm(3-2 i)$
$\sqrt{-5-12 i}=\sqrt{(2-3 i)^{2}}= \pm(2-3 i)$
$\Rightarrow z=\sqrt{5-12 i}+\sqrt{-5-12 i}$
$=-1,-i,-5+5 i, 5-5 i, 1+i$
Therefore, principle values of $\arg z$ are
$-3 \pi / 4,3 \pi / 4,-\pi / 4, \pi / 4$
262 (a,b,d)
Symmetric functions are those which do not change by interchanging α and β
263 (a,b,d)
Given,
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$
$\Rightarrow a^{3}+b^{3}+c-3 a b c=0$
$\Rightarrow(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
$\Rightarrow \frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=0$
$\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\Rightarrow a=b=c \quad\left[\because a+b+c \neq 0, \because z_{1} \neq 0, \therefore\left|z_{1}\right|\right.$ $=a \neq 0$ etc]

Hence, $O A=O B=O C$, where O is the origin and A, B, C are the points representing z_{1}, z_{2} and z_{3}, respectively. Therefore, O is circumcentre of $\angle A B C$. Now,
$\arg \left(\frac{z_{3}}{z_{2}}\right)=\angle B O C$
$=2 \angle B A C=2 \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$
$=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2} \quad[\because \angle B O C=2 \angle B A C]$

Hence,

$\arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2}$
Also, centroid is $\left(z_{1}+z_{2}+z_{3}\right) / 3$. Since
$H G: G O \equiv 2: 1$ (where H is orthocenter and G is centroid), then orthocenter is $z_{1}+z_{2}+z_{3}$ (by section formula). When triangle is equilateral centroid coincides with circumcentre; hence $z_{1}+z_{2}+z_{3}=0$
Also, the area for equilateral triangle is $(\sqrt{3} / 4) L^{2}$, where L is length of side. Since radius is $\left|z_{1}\right|$, $L=\sqrt{3}\left|z_{1}\right|$, hence area is $(3 \sqrt{3} / 4)\left|z_{1}\right|^{2}$
264 (a,b,c)
$\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$
Sum of the roots is equal to their product and the roots are real. Hence,
$-\frac{b}{a}=\frac{c}{a}$
$\Rightarrow b+c=0$
Also $b^{2}-4 a c \geq 0$
$\Rightarrow c^{2}-4 a c \geq 0$
$\Rightarrow c(c-4 a) \geq 0$
$\Rightarrow c-4 a \geq 0(\because c>0)$
Further $b^{2}+4 a b \geq 0$
$\Rightarrow b+4 a \leq 0(\because b<0)$
265 (a,d)

We have,
$\left|z_{1}\right|=15,\left|z_{2}-3-4 i\right|=5$
Minimum value of $\left|z_{1}-z_{2}\right|$ is $A B=O B-O A=$ $15-10=5$. Maximum value of $\left|z_{1}-z_{2}\right|$ is
$C A=O A+O C=10+15=25$

$z_{3}=(1-\lambda) z_{1}+z_{2}=\frac{(1-\lambda) z_{1}+\lambda z_{2}}{1-\lambda+\lambda}$
Hence, z_{3} divides the line joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ in the ratio $\lambda:(1-\lambda)$. That means the given points are collinear. Also, the ratio $\lambda /(1-\lambda)>0$ (or $0<\lambda<1$) if z_{3} divides the line joining z_{1} and z_{2} internally and $\mu /(1-\mu)<0$ (or $\mu<0$ or $\mu>1$) if z_{3}^{\prime} divides the line joining $z_{1}^{\prime}, z_{2}^{\prime}$ externally
When λ, μ are complex numbers, where $\lambda=\mu$, we have $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ and $z_{3}^{\prime}=(1-\lambda) z_{1}^{\prime}+$ λz_{2}^{\prime}. Comparing the value of λ, we have
$\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{z_{3}^{\prime}-z_{1}^{\prime}}{z_{2}^{\prime}-z_{1}^{\prime}}$
$\Rightarrow\left|\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right|=\left|\frac{z_{3}^{\prime}-z_{1}^{\prime}}{z_{2}^{\prime}-z_{1}^{\prime}}\right|$ and $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\arg \left(\frac{z_{3}^{\prime}-z_{1}^{\prime}}{z_{2}^{\prime}-z_{1}^{\prime}}\right)$
$\Rightarrow \frac{A C}{A B}=\frac{P R}{P Q}$ and $\angle B A C=\angle Q P R$
Hence, triangles $A B C$ and $P Q R$ are similar
267 (a,b,c,d)

Since $O Q=1$ and $O P=2$, so $\sin (\angle O P Q)=1 / 2$ and hence $\angle Q P R=\pi / 3$. Then $\angle P Q R$ is equilateral. Also, $O M \perp Q R$. Then from $\angle O M Q$, $O M=1 / 2$. Hence $M N=1 / 2$. Then centroid of $\angle P Q R$ lies on $|z|=1$
As $P Q R$ is an equilateral triangle, so orthocenter, circumcentre and centroid will coincide. Now,
$\Rightarrow\left|\frac{z_{1}+z_{2}+z_{3}}{3}\right|=1$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|^{2}=9$
$\Rightarrow\left(z_{1}+z_{2}+z_{3}\right)\left(\bar{z}_{1}+\bar{z}_{1}+\bar{z}_{3}\right)=9$
$\Rightarrow\left(\frac{4}{\bar{z}_{1}}+\frac{1}{\bar{z}_{2}}+\frac{1}{\bar{z}_{3}}\right)\left(\frac{4}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right)=9$
and
$\angle Q O R=120^{\circ}$
268 (\mathbf{a}, \mathbf{d})
Let the roots of three given equations be
$(\alpha, \beta) ;(\beta, \gamma)$ and (γ, α), then on substituting β in first two equations.
We get, $\beta^{2}+p \beta+q r=0$ and $\beta^{2}+q \beta+r p=0$.
On subtracting, we get $(p-q) \beta+r(q-p)=0$
$\Rightarrow \beta=r$. If $p \neq q$
$\therefore \frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}=\frac{p+q+r}{p q r}=\frac{\sum p}{p q r}$
and $p+q+r=0$
269 (a,b,c)
We have, $z_{1}=a+i b$ and $z_{2}=c+i d$
$\therefore\left|z_{1}\right|^{2}=a^{2}+b^{2}=1$ and $\left|z_{2}\right|^{2}=c^{2}+d^{2}=1$
...(i)
Also, $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0 \Rightarrow a c+b d=0$
$\Rightarrow \frac{a}{b}=-\frac{d}{c}=\lambda$
From Eqs. (i) and (ii),
$b^{2} \lambda^{2}+b^{2}=c^{2}+\lambda^{2} c^{2}$
$\Rightarrow b^{2}=c^{2}$ and $a^{2}=d^{2}$
Now, $\left|w_{1}\right|=\sqrt{a^{2}+c^{2}}=\sqrt{a^{2}+b^{2}}=1$
and $\left|w_{2}\right|=\sqrt{b^{2}+d^{2}}=\sqrt{a^{2}+b^{2}}=1$
$\operatorname{Re} \mid w_{1} \overline{w_{2}}=(a b+c d)$
$=(b \lambda) b+c(-\lambda c)$
$=\lambda\left(b^{2}-c^{2}\right)=0$
Hence, (a), (b) and (c) are correct answers
270 (a,d)
Refer the figure, z lies on the point of intersection of the rays from A and $B . \angle A C B$ is a right angle and $O B C$ is an equilateral triangle. Hence,
$O C=a \Rightarrow z=a\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$

Clearly, the inscribed rectangle is square. Let the adjacent vertex be z. Then,
$\frac{3+4 i-(z)}{(3+4 i)-(4+4 i)}=e^{ \pm i \pi / 2} \quad$ (by rotation about centre)
$\Rightarrow 3+4 i-z= \pm i(-1)$
$\Rightarrow z=3+4 i \pm i=3+5 i$ or $3+3 i$
272 (b,c)
$\operatorname{amp}\left(z_{1} z_{2}\right)=0 \Rightarrow \operatorname{amp} z_{1}+\operatorname{amp} z_{2}=0$
$\therefore \operatorname{amp} z_{1}=-\operatorname{amp} z_{2}=\operatorname{amp} \bar{z}_{2}$
Since $\left|z_{1}\right|=\left|z_{2}\right|$, we get $\left|z_{1}\right|=\left|\bar{z}_{2}\right|$. So, $z_{1}=\bar{z}_{2}$.
Also, $z_{1} z_{2}=\bar{z}_{2} z_{2}=\left|z_{2}\right|^{2}$
$=1$ because $\left|z_{2}\right|=1$
273 (a,d)
Roots of $4 x^{2}-x-1=0$ are irrational. So, one root common implies both roots are common.
Therefore,
$\frac{4}{3}=\frac{-1}{\lambda+\mu}=\frac{-1}{\lambda-\mu}$
$\Rightarrow \lambda=\frac{-3}{4}, \mu=0$
274 (a,d)
On putting $x=0,1$ and $1 / 2$, we get
$-1 \leq c \leq 1$ (1)
$-1 \leq a+b+c \leq 1$ (2)
$-4 \leq a+2 b+4 c \leq 4$ (3)
From (1), (2), (3), we get
$|b| \leq 8$ and $|a| \leq 8$
$\Rightarrow|a|+|b|+|c| \leq 17$
275 (a,c)
$2 x^{2}+6 x y+5 y^{2}=1$
Equation (1) can be rewriter as
$2 x^{2}+(6 y) x+5 y^{2}-1=0$
Since x is real,
$36 y^{2}-8\left(5 y^{2}-1\right) \geq 0$
$\Rightarrow y^{2} \leq 2$
$\Rightarrow-\sqrt{2} \leq y \leq \sqrt{2}$
Equation (1) can also be rewriter as
$5 y^{2}+(6 x) y+2 x^{2}-1=0$
Since y is real,
$36 x^{2}-20\left(2 x^{2}-1\right) \geq 0$
$\Rightarrow 36 x^{2}-40 x^{2}+20 \geq 0$
$\Rightarrow-4 x^{2} \geq-20$
$\Rightarrow x^{2} \leq 5$
$\Rightarrow-\sqrt{5} \leq x \leq \sqrt{5}$
276 (a,c,d)

Given, $z=\frac{(1-t) z_{1}+t z_{2}}{(1-t)+t}$

$$
\mathrm{t}:(1-\mathrm{t})
$$

Clearly, z divides z_{1} and z_{2} in the ratio of
$t:(1-t), 0<t<1$
$\Rightarrow \quad A P+B P=A B$
ie, $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
\Rightarrow Option (ac) is true
And $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z\right)=\arg \left(z_{2}-z_{1}\right)$
\Rightarrow (b) is false and (d) is true
Also, $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)$
$\Rightarrow \quad \arg \left(\frac{z-z_{1}}{z_{2}-z_{1}}\right)=0$
$\therefore \quad \frac{z-z_{1}}{z_{2}-z_{1}}$ is purely real
$\Rightarrow \quad \frac{z-z_{1}}{z_{2}-z_{1}}=\frac{\bar{z}-\overline{z_{1}}}{\overline{z_{2}}-\overline{z_{1}}}$ or $\left|\begin{array}{cc}z-z_{1} & \bar{z}-\overline{z_{1}} \\ z_{2}-z_{1} & \overline{z_{2}}-\overline{z_{1}}\end{array}\right|=0$
\therefore Options (c) is correct
277 (a,c)
$(-i)^{1 / 3}=\left(i^{3}\right)^{1 / 3}=i, i \omega, i \omega^{2}$
Where
$\omega=\frac{-1+\omega \sqrt{3}}{2}$
Hence roots are, $i,(-\sqrt{3}-i) / 2,(\sqrt{3}-i) / 2$
278 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$)
$z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\cdots+z \cos \theta_{n-1}+\cos \theta_{n}$ $=2$
$\Rightarrow 2=\mid z_{0}^{n} \cos \theta_{0}+z_{0}^{n-1} \cos \theta_{1}+\cdots+z_{0} \cos \theta_{n-1}$ $+\cos \theta_{n} \mid$
$\Rightarrow 2 \leq\left|z^{n}\right|\left|\cos \theta_{0}\right|+|z|^{n-1}\left|\cos \theta_{1}\right|+\cdots$ $+\left|z_{0}\right|\left|\cos \theta_{n-1}\right|+\left|\cos \theta_{n}\right|$
$\Rightarrow 2 \leq\left|z_{0}\right|^{n}+\left|z_{0}\right|^{n-1}+\left|z_{0}\right|^{n-2}+\cdots+\left|z_{0}\right|+1$
Which is clearly satisfied for $\left|z_{0}\right| \geq 1$. If $\left|z_{0}\right|<1$, then
$2<1+\left|z_{0}\right|+\left|z_{0}\right|^{2}+\cdots+|z|^{n}+\cdots \infty$
$\Rightarrow 2<\frac{1}{1-\left|z_{0}\right|}$
$\Rightarrow\left|z_{0}\right|>\frac{1}{2}$
279 (a,b,c,d)
Let $f(x)=a x^{2}+b x+c$

From the diagram, we can see that $a>0, c<0$
and $-[b(2 a)]<0$. Hence, $b>0$
$\therefore a+b-c>0$
280 (a,c,d)
Let $z=c$ be a real root. Then,
$\alpha c^{2}+c+\bar{\alpha}=0$
Putting $\alpha=p+i q$, we have
$(p+i q) c^{2}+c+p-i q=0$
$\Rightarrow p c^{2}+c+p=0$ and $q c^{2}-q=0 \Rightarrow c=$ $\pm 1 \quad(\because q \neq 0)$
\therefore (1) $\Rightarrow \alpha \pm 1+\bar{\alpha}=0$
Also,
$|c|=1$
281 (a,c)
$p+q+r=a+b \omega+c \omega^{2}$
$+b+c \omega+a \omega^{2}$
$+c+a \omega+b \omega^{2}$
$\therefore p+q+r=(a+b+c)\left(1+\omega+\omega^{2}\right)=0$
p, q, r lie on the circle $|z|=2$, whose circumcentre is origin. Also, $(p+q+r) / 3=0$. Hence the centroid coincides with circumcentre. So, the triangle is equilateral. Now,

$$
\begin{aligned}
& (p+q+r)^{2}=0 \\
& \begin{array}{c}
\Rightarrow p^{2}+q^{2}+r^{2}=-2 p q r\left[\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\right] \\
=-2 p q r\left[\frac{1}{a+b \omega+c \omega^{2}}+\frac{1}{b+c \omega+a \omega^{2}}\right. \\
\left.\quad+\frac{1}{c+a \omega+b \omega^{2}}\right] \\
=-2 p q r\left[\frac{1}{\omega^{2}\left(a \omega+b \omega^{2}+c\right)}+\frac{1}{\omega\left(b \omega^{2}+c+a \omega\right)}\right. \\
\left.\quad+\frac{1}{c+a \omega+b \omega^{2}}\right] \\
=\frac{-2 p q r}{a \omega+b \omega^{2}+c}\left[\frac{1}{\omega^{2}}+\frac{1}{\omega}+\frac{1}{1}\right]=0
\end{array}
\end{aligned}
$$

Hence,
$p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$
282 (a,b,c,d)

1. $P S \| Q R \Rightarrow \arg \left(\frac{z_{1}-z_{4}}{z_{2}-z_{3}}\right)=0 \Rightarrow \frac{z_{1}-z_{4}}{z_{2}-z_{3}}$ is purely real
2. Since diagonal bisect the angle
$\Rightarrow \operatorname{amp}\left(\frac{z_{1}-z_{4}}{z_{2}-z_{4}}\right)=\operatorname{amp}\left(\frac{z_{2}-z_{4}}{z_{3}-z_{4}}\right)$
3. Diagonals of rhombus are perpendicular.

Hence, $\left(z_{1}-z_{3}\right) /\left(z_{2}-z_{4}\right)$ is purely imaginary
4. Diagonals of rhombus are not equal.

Hence, $\left|z_{1}-z_{3}\right| \neq\left|z_{2}-z_{4}\right|$
283 (a,d)
$\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{1}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|$
$\Rightarrow\left|z_{1}-z_{2}\right|\left|z_{1}+z_{2}\right|=\left|\bar{z}_{1}-\bar{z}_{2}\right|^{2}$
$\Rightarrow\left|z_{1}+z_{2}\right|=\left|\bar{z}_{1}-\bar{z}_{2}\right|$
$\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$
$\Rightarrow\left|\frac{z_{1}}{z_{2}}+1\right|=\left|\frac{z_{1}}{z_{2}}-1\right|$
$\Rightarrow \frac{z_{1}}{z_{2}}$ lies on \perp bisector of 1 and -1
$\Rightarrow \frac{z_{1}}{z_{2}}$ lies on imaginary axis
$\Rightarrow \frac{z_{1}}{z_{2}}$ is purely imaginary
$\Rightarrow \arg \left(\frac{Z_{1}}{Z_{2}}\right)= \pm \frac{\pi}{2}$
$\left|\arg \left(z_{1}\right)-\arg \left(z_{2}\right)\right|=\frac{\pi}{2}$
284 (a,b)
$\left|z-\frac{1}{z}\right|=1$
$\Rightarrow 1 \geq\left||z|-\frac{1}{|z|}\right|$
$\Rightarrow-1 \leq|z|-\frac{1}{|z|} \leq 1$
$\Rightarrow-|z| \leq|z|^{2}-1 \leq|z|$
From $|z|^{2}-1 \geq|z|$, we get
$|z|^{2}+|z|-1 \geq 0$
$\Rightarrow|z| \geq \frac{-1+\sqrt{5}}{2}$
From $|z|^{2}-1 \leq|z|$, we get
$|z|^{2}-|z|-1 \leq 0$
$\Rightarrow \frac{1-\sqrt{5}}{2} \leq|z| \leq \frac{1+\sqrt{5}}{2}$
From (1) and (2), we get
$\Rightarrow \frac{-1+\sqrt{5}}{2} \leq|z| \leq \frac{1+\sqrt{5}}{2}$
$\Rightarrow|z|_{\min }=\frac{\sqrt{5}-1}{2},|z|_{\max }=\frac{1+\sqrt{5}}{2}$
285 (b,d)
Let α and β be the roots.
$\therefore|\alpha-\beta|=3$ and $\alpha^{2}+\beta^{2}=29$
$\Rightarrow|\alpha-\beta|^{2}=9$
$\Rightarrow \alpha^{2}+\beta^{2}-2 \alpha \beta=9$
$\Rightarrow \alpha \beta=10$
Now, $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$=29+20=49$
$\therefore \alpha+\beta= \pm 7$
Hence, required equation is
$x^{2} \pm 7 x+10=0$
Hence, options (b) and (d) are correct.

286 (a,b)
$\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
$\alpha+h+\beta+h=\frac{-q}{p}$
and $(\alpha+h)(\beta+h)=\frac{r}{p}$
$\therefore-\frac{q}{p}=\alpha+\beta+2 h=-\frac{b}{a}+2 h$
$\Rightarrow h=\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$
Now, $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$
$=\left(-\frac{b}{a}\right)^{2}-\frac{4 c}{a}=\frac{b^{2}-4 a c}{a^{2}}$
Also, $(\alpha-\beta)^{2}=[(\alpha+h)-(\beta+h)]^{2}$
$=\frac{q^{2}-4 p r}{p^{2}}$
$\Rightarrow \frac{b^{2}-4 a c}{a^{2}}=\frac{q^{2}-4 p r}{p^{2}}$
287 (a,d)
Let α and β be the roots of the equation
$4 x^{2}+2 x-1=0$
$\therefore \alpha+\beta=-\frac{2}{4}=-\frac{1}{2}$ and $4 \alpha^{2}+2 \alpha-1=0$
$\Rightarrow \beta=-\frac{1}{2}-\alpha$ and $4 \alpha^{2}=1-2 \alpha$
$\Rightarrow 4 \alpha^{3}-\alpha(1-2 \alpha)=\alpha-2 \alpha^{2}$
$=\alpha-\frac{1}{2}+\alpha=2 \alpha-\frac{1}{2}$
$\Rightarrow 4 \alpha^{3}-3 \alpha=-\alpha-\frac{1}{2}=\beta$
288 (a,c,d)

$\frac{z_{0}-(-3+2 i)}{z_{0}-(5-4 i)}=\frac{B D}{A D}=e^{i \pi / 2}=i$
$\Rightarrow z_{0}+3-2 i=i z_{0}-5 i-4$
$\Rightarrow z_{0}=-2-5 i$
\Rightarrow Radius $A D=|5-4 i-(-2-5 i)|$
$=|17+i|$
$=\sqrt{50}=5 \sqrt{2}$
Length of arc $=\frac{3}{4}$ (perimeter of circle)
$=\frac{3}{4}(2 \pi \times 5 \sqrt{2})$
$=\frac{15 \pi}{\sqrt{2}}$
289 (a,c,d)

Let the roots be $a / r, a$, $a r$, where $a>0, r>1$.
Now,
$a / r+a+a r=-p$
$a(a / r)+a(a r)+(a r)(a / r)=q$
$(a / r)(a)(a r)=1$
$\Rightarrow a^{3}=1$
$\Rightarrow a=1$
Hence, (c) is correct. From (1), putting $a=1$, we get
$-p-3>0\left(\because r+\frac{1}{r}>2\right)$
$\Rightarrow p<-3$
Hence, (b) is not correct. Also,
$1 / r+1+r=-p$
From (2), putting $a=1$, we get
$1 / r+r+1=q$ (5)
From (4) and (5), we have
$-p=q \Rightarrow p+q=0$
Hence, (a) is correct. Now, as $r>1$
$a / r=1 / r<1$
and $a r=r>1$
Hence, (d) is correct
290 (b,c)

Let internal and external bisectors of $\angle A P B$ meet the line joining A and B at P_{1} and P_{2}, respectively. Hence,
$A P_{1}: P_{1} B \equiv P A: P B \equiv 3: 1$ (internal division)
$A P_{2}: P_{2} B \equiv P A: P B \equiv 3: 1$ (external division)
Thus, P_{1} and P_{2} are fixed points. Also,
$\angle P_{1} P P_{2}=\frac{\pi}{2}$
Thus ' P ' lies on a circle having $P_{1} P_{2}$ as its diameter. Clearly, $B\left(z_{2}\right)$ lies inside this circle
291 (a,d)
$2^{x}=t$
$t^{2}-8 t+12=0$
$(t-6)(t-2)=0$
$2^{x}=6 \Rightarrow x=\log _{2} 6=1+\frac{\log 3}{\log 2}$
$2^{x}=2 \Rightarrow x=1$
292 (a,b,c)
Since, the roots of equation are real.
$\therefore B^{2}-4 A C>0$
$\Rightarrow a^{4}>4 b^{2}$
Hence, option (a) is correct.
If $f(x)=x^{2}+a^{2} x+b^{2} \quad(\because c$ lies outside the roots)
$\therefore f(c)>0$, then $c^{2}+a^{2} c+b^{2}>0$
Hence, option (b) is correct.
Also, $(x$-coordinate of vertex $)>c$
$\Rightarrow-\frac{a^{2}}{2}>c$
Hence, option (c) is correct.
293 (a,c)
If α be the common root, then
$\alpha^{2}+b \alpha-a=0$ and $\alpha^{2}-a \alpha+b=0$
Subtracting,
$\alpha(b+a)-(a+b)=0$
$\Rightarrow(a-b)(\alpha-1)=0$
$\Rightarrow a+b=0$ or $\alpha=1$
When $\alpha=1$, then from any equation we have
$a-b=1$
294 (a,b)
Here,
$\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$
$\Rightarrow \cos ^{4} \theta-\sin ^{4} \theta=\cos 2 \theta$
$\Rightarrow(-2 b)^{2}-4 b=(-4)^{2}-4 \times 2$
(since L.H.S. is difference of roots of first equation and R.H.S. is difference of roots of second equation)
$\Rightarrow 4 b^{2}-4 b=16-8=8$
$\Rightarrow 4 b^{2}-4 b-8=0$
$\Rightarrow b^{2}-b-2=0$
$\Rightarrow(b+1)(b-2)=0$
$\Rightarrow b=2,-1$
295 (a,c)
Given, $b^{2}=a c$
$\Rightarrow\left(\frac{b}{a}\right)^{2}=\frac{c}{a}$
$\Rightarrow\left(-\frac{b}{a}\right)^{2}=\frac{c}{a}$
$\Rightarrow(\alpha+\beta)^{2}=\alpha \beta$
$\Rightarrow \alpha^{2}+\beta^{2}+\alpha \beta=0$
$\Rightarrow\left(\frac{\alpha}{\beta}\right)^{2}+\left(\frac{\alpha}{\beta}\right)+1=0$
$\Rightarrow \frac{\alpha}{\beta}=\frac{-1 \pm \sqrt{3} i}{2} \quad($ where $i=\sqrt{-1})$
$f(x)=x^{3}+3 x^{2}-9 x+c$ is of the form $(x-\alpha)^{2}(x-\beta)$, showing that α is a double root so that $f^{\prime}(x)=0$ has also one root α, i.e.,
$3 x^{2}+6 x-9=0$ has one root α. Hence, $x^{2}+2 x-3=0$ or $(x+3)(x-1)=0$ has the root α which can be either -3 or 1 . If $\alpha=1$, then $f(x)=0$ gives $c-5=0$ or $c=5$. If $\alpha=-3$, then
$f(x)=0$ gives
$-27+27+27+c=0$
$\therefore c=-27$
297 (a,b)
The equation $p x^{2}+q x+r=0$ has no real root, therefore $D<0$.
$\therefore p f(x)>0, \forall x \in R$, where $f(x)=p x^{2}+q x+r$
In general, $p f(1)>0 \Rightarrow p(p+q+r)>0 \ldots$ (i)
and $p f(0)>0 \Rightarrow p r>0$
From relations (i) and (ii), we get
$r(p+q+r)>0$
298 (a,b)
Equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root. Therefore,
$\left(q-q^{\prime}\right)^{2}=\left(p q^{\prime}-p^{\prime} q\right)\left(p^{\prime}-p\right)(1)$
Subtracting two equations, we have
$x=\frac{q-q^{\prime}}{p^{\prime}-p}$
Also using (1),
$x=\frac{q-q^{\prime}}{p^{\prime}-p}=\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$

299 (a,c,d)

$z^{\prime}=z e^{i \alpha}$
$z^{\prime \prime}=z e^{-i \alpha}$
$\therefore z^{\prime} z^{\prime \prime}=z^{2}$
$\Rightarrow z^{\prime}, z, z^{\prime \prime}$ are in G.P.
Also,
$\left(\frac{z^{\prime}}{z}\right)^{2}+\left(\frac{z^{\prime \prime}}{z}\right)^{2}=2 \cos 2 \alpha$
$\Rightarrow z^{\prime 2}+z^{\prime \prime 2}=2 z^{2} \cos 2 \alpha$
$\Rightarrow z^{\prime 2}+z^{\prime \prime 2}=2 z^{2}\left(2 \cos ^{2} \alpha-1\right)$
$\Rightarrow z^{\prime 2}+z^{\prime \prime 2}+2 z^{2}=4 z^{2} \cos ^{2} \alpha$
$\Rightarrow z^{\prime 2}+z^{\prime \prime 2}+2 z^{\prime} z^{\prime \prime}=4 z^{2} \cos ^{2} \alpha$
$\Rightarrow\left(z^{\prime}+z^{\prime \prime}\right)^{2}=4 z^{2} \cos ^{2} \alpha$
$\Rightarrow z^{\prime}+z^{\prime \prime}=2 z \cos \alpha$
300 (\mathbf{a}, \mathbf{d})
Orer
$C P=r, O C=2 \sqrt{3}, \angle C O P=\pi / 3$
$\Rightarrow C P=O C \sin \frac{\pi}{3}=2 \sqrt{3} \frac{\sqrt{3}}{2}=3$
Thus, when $r=3$, the circle touches the line.
Hence, for two distinct points of intersection
$3<r<2 \sqrt{3}$
301 (a,b)
The given equation can be written as
$\frac{p}{2 x}=\frac{(a+b) x+c(b-a)}{x^{2}-c^{2}}$
or $p\left(x^{2}-c^{2}\right)=2(a+b) x^{2}-2 c(a-b) x$
or $(2 a+2 b-p) x^{2}-2 c(a-b) x+p c^{2}=0$
Now, $c^{2}(a-b)^{2}-p c^{2}(2 a+2 b-p)=0 \quad(\because$ equal roots)
$\Rightarrow(a-b)^{2}-2 p(a+b)+p^{2}=0\left(\because c^{2} \neq 0\right)$
$\Rightarrow[p-(a+b)]^{2}=(a+b)^{2}-(a-b)^{2}$
$\Rightarrow p=a+b \pm 2 \sqrt{a b}=(\sqrt{a} \pm \sqrt{b})^{2}$
302 (a,b)
We can write the given equation as
$\frac{p}{2 x}=\frac{(a+b) x+c(b-a)}{x^{2}-c^{2}}$
$\Rightarrow p\left(x^{2}-c^{2}\right)=2(a+b) x^{2}-2 c(a-b) x$
$\Rightarrow(2 a+2 b-p) x^{2}-2 c(a-b) x+p c^{2}=0$
For this equation to have equal roots,
$c^{2}(a-b)^{2}-p c^{2}(2 a+2 b-p)=0$
$\Rightarrow(a-b)^{2}-2 p(a+b)+p^{2}=0 \quad\left[\because c^{2} \neq 0\right]$
$\Rightarrow[p-(a+b)]^{2}=(a+b)^{2}-(a-b)^{2}=4 a b$
$\Rightarrow p-(a+b)= \pm 2 \sqrt{a b}$
$\Rightarrow p=a+b \pm 2 \sqrt{a b}=(\sqrt{a} \pm \sqrt{b})^{2}$
303 (a,b,c)
$x^{\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}}=\sqrt{2}$
$\Rightarrow\left(\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right) \log _{2} x=\log _{2} \sqrt{2}$
(taking logarithm both sides on base 2)
$\Rightarrow\left(\frac{3}{4} t^{2}+t-\frac{5}{4}\right) t=\frac{1}{2}$ (putting $\left.\log _{2} x=t\right)$
$\Rightarrow 3 t^{3}+4 t^{2}-5 t-2=0$
$\Rightarrow 3 t^{3}-3 t^{2}+7 t^{2}-7 t+2 t-2=0$
$\Rightarrow\left(3 t^{2}+7 t+2\right)(t-1)=0$
$\Rightarrow(3 t+1)(t+2)(t-1)=0$
$\Rightarrow t=\log _{2} x=1,-2,-\frac{1}{3}$
$\Rightarrow x=2,2^{-2}, 2^{-\frac{1}{3}}$
304 (b,c)
We have,
$\left|\frac{1}{z_{2}}+\frac{1}{z_{1}}\right|=\left|\frac{1}{z_{2}}-\frac{1}{z_{1}}\right| \Rightarrow\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$
Squaring both sides, we have
$\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)$

$$
=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)
$$

$\Rightarrow 4\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)=0$
$\Rightarrow \frac{Z_{1}}{Z_{2}}+\frac{\bar{z}_{1}}{\bar{z}_{2}}=0$
$\Rightarrow \arg \left(\frac{z_{1}}{z_{2}}\right)=\frac{\pi}{2}=\arg \left(\frac{z_{1}-0}{z_{2}-0}\right)$

That is angle between z_{2}, O and z_{1} is a right angle, taken in order, as shown in the above diagram.
Now, the circumcentre of the above diagram will lie on the line $P Q$ as diameter and is represented by C which is the centre of $P Q$, such that $z=\left(z_{1}+z_{2}\right) / 2$, where z is the affix of circumcentre
305 (\mathbf{a}, \mathbf{d})
Let,
$\frac{x^{2}+a x+3}{x^{2}+x+a}=y$
$\Rightarrow x^{2}(1-y)-x(y-a)+3-a y=0$
$\because x \in R$
$(y-a)^{2}-4(1-y)(3-a y) \geq 0$
$\Rightarrow(1-4 a) y^{2}+(2 a+12) y+a^{2}-12 \geq 0$
Now, (1) is true for all $y \in R$, if $1-4 a>0$ and $D \leq 0$. Hence,
$a<\frac{1}{4}$ and $4(a+6)^{2}-4\left(a^{2}-12\right)(1-4 a) \leq 0$
$\Rightarrow a<\frac{1}{4}$ and $4 a^{3}-36 a+48 \leq 0$
$\Rightarrow a<\frac{1}{4}$ and $4 a^{3} \leq 36 a-48$
$\Rightarrow 4 a^{3}<36\left(\frac{1}{4}\right)-48$
$\Rightarrow 4 a^{3}+39<0 \quad\left[\because a<\frac{1}{4}\right]$
306 (a,d)
Since $\alpha, \beta, \gamma, \delta$ are in H.P., hence $1 / \alpha, 1 / \beta, 1 / \gamma, 1 / \delta$ are in A.P. and they may be taken as $a-3 d$, $a-$ $d, a+d, a+3 d$. Replacing x by $1 / x$, we get the equation whose roots are $1 / \alpha, 1 / \beta, 1 / \gamma, 1 / \delta$.
Therefore, equation $x^{2}-4 x+A=0$ has roots $a-3 d, a+d$ and equation $x^{2}-6 x+B=0$ has roots $a-d, a+3 d$. Sum of the roots is
$2(a-d)=4,2(a+d)=6$
$\therefore a=5 / 2, d=1 / 2$
Product of the roots is
$(a-3 d)(a+d)=A=3$
$(a-d)(a+3 d)=B=8$
307 (a,c)
Since $P(x)$ divides both of them, hence $P(x)$ also divides
$\left(3 x^{4}+4 x^{2}+28 x+5\right)-3\left(x^{4}+6 x^{2}+25\right)$
$=-14 x^{2}+28 x-70$
$=-14\left(x^{2}-2 x+5\right)$
Which is a quadratic. Hence,
$P(x)=x^{2}-2 x+5 \Rightarrow P(1)=4$
308 (a,c)
Given,
$z^{n}=(z+1)^{n} \Rightarrow\left|z^{n}\right|=\left|(z+1)^{n}\right|$
$\therefore|z|^{n}=|z+1|^{n} \Rightarrow|z|=|z+1|$
$\Rightarrow|z|^{2}=|z+1|^{2}$
$\Rightarrow x^{2}+y^{2}=(x+1)^{2}+y^{2}$, where $z=x+i y$
$\Rightarrow x=-\frac{1}{2}$
Hence, z lies on the line $x=-1 / 2$. Hence sum of real parts of the roots is $-(n-1) / 2$ (since
equation has $n-1$ roots)
309 (a,b,d)
Let $z=\alpha$ be a real root. Then,
$\alpha^{3}+(3+2 i) \alpha+(-1+i a)=0$
$\Rightarrow\left(\alpha^{3}+3 \alpha-1\right)+i(a+2 \alpha)=0$
$\Rightarrow \alpha^{3}+3 \alpha-1=0$ and $\alpha=-a / 2$
$\Rightarrow-\frac{a^{3}}{8}-\frac{3 a}{2}-1=0$
$\Rightarrow a^{3}+12 a+8=0$
Let $f(a)=a^{3}+12 a+8$
$\therefore f(-1)<0, f(0)>0, f(-2)<0, f(1)>0$ and $f(3)>0$
Hence, $a \in(-1,0)$ or $a \in(-2,1)$ or $a \in(-2,3)$
310 (a,c)
The given equation can be rewritten as
$\frac{1}{1+\log _{a} x}+\frac{2}{\log _{a} x}+\frac{3}{2+\log _{a} x}$
Let $\log _{a} x=t$
Then, $\frac{1}{1+t}+\frac{2}{t}+\frac{3}{2+t}=0$
$\Rightarrow 6 t^{2}+11 t+4=0$
$\Rightarrow(2 t+1)(3 t+4)=0$
$\Rightarrow t=-\frac{1}{2}$ and $t=-\frac{4}{3}$
$\Rightarrow \log _{a} x=-\frac{1}{2}$ and $\log _{a} x=-\frac{4}{3}$
$\Rightarrow x=a^{-1 / 2}$ and $x=a^{-4 / 3}$
311 (a,b,c)
$\left|z_{1}\right|=\left|z_{2}\right|=1 \Rightarrow a^{2}+b^{2}=c^{2}+d^{2}=1$
and
$\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0 \Rightarrow \operatorname{Re}\{(a+i b)(c-i d)\}=0 \Rightarrow$ $a c+b d=0$
Now from (1) and (2),
$a^{2}+b^{2}=1 \Rightarrow a^{2}+\frac{a^{2} c^{2}}{d^{2}}=1 \Rightarrow a^{2}=d^{2}$
Also,
$c^{2}+d^{2}=1 \Rightarrow c^{2}+\frac{a^{2} c^{2}}{b^{2}}=1 \Rightarrow b^{2}=c^{2}$
$\left|\omega_{1}\right|=\sqrt{a^{2}+c^{2}}=\sqrt{a^{2}+b^{2}}=1$ [From (1) and (4)]
and
$\left|\omega_{2}\right|=\sqrt{b^{2}+d^{2}}=\sqrt{a^{2}+b^{2}}=1 \quad[$ From (1) and (4)]

Further,
$\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=\operatorname{Re}\{(a+i c)(b-i d)\}$
$=a b+c d$
$=a b+\left(-\frac{a c^{2}}{b}\right) \quad[$ From (2) $]$
$=\frac{a b^{2}-a c^{2}}{b}=0 \quad[$ From (4)]
Also,
$\operatorname{Im}\left(\omega_{1} \bar{\omega}_{2}\right) b c-a d=b c-a\left(-\frac{a c}{b}\right)=\frac{\left(a^{2}+b^{2}\right) c}{b}$

$$
=\frac{c}{b}= \pm 1 \neq 0
$$

$\therefore\left|\omega_{1}\right|=1,\left|\omega_{2}\right|=1$ and $\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=0$
312 ($\mathbf{a}, \mathbf{b}, \mathbf{d}$)
$\left|\frac{2 z-i}{z+1}\right|=m \Rightarrow\left|z-\frac{i}{2}\right|=\frac{m}{2}|z+1|$
This shows that the given equation will represent a circle, if $m / 2 \neq 1$, i.e., $m \neq 2$
313 (a,b,d)
$x^{n}-1=(x-1)\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{n-1}\right)$
$\Rightarrow \frac{x^{n}-1}{x-1}=\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{n-1}\right)$
Putting $x=\omega$, we have
$\prod_{r=1}^{n-1}\left(\omega-z_{r}\right)=\frac{\omega^{n}-1}{\omega-1}$

$$
=\left\{\begin{array}{c}
0, \quad \text { if } n=3 k, k \in Z \\
1, \quad \text { if } n=3 k+1, k \in Z \\
1+\omega, \text { if } n=3 k+2, k \in Z
\end{array}\right.
$$

314 (a,c)
Clearly, we have to find it for real z. Let $z=x$.
Then,

$$
\begin{aligned}
& |z-w|=\left|x-w^{2}\right|=\left|w-w^{2}\right| \\
& \Rightarrow\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}=\left|\frac{-1+\sqrt{3} i}{2}-\frac{-1-\sqrt{3} i}{2}\right|^{2}=3 \\
& \Rightarrow x+\frac{1}{2}= \pm \frac{3}{2}
\end{aligned}
$$

$\Rightarrow x=1,-2$
315 (a,b)
Given, $(\sin \alpha) x^{2}-2 x+b \geq 2$. Let $f(x)=$
$(\sin \alpha) x^{2}-2 x+b-2$. Abscissa of the vertex is given by
$x=\frac{1}{\sin \alpha}>1$

The graph of $f(x)=(\sin \alpha) x^{2}-2 x+b-$
$2, \forall x \leq 1$, is shown in the figure. Therefore,
minimum of $f(x)=(\sin \alpha) x^{2}-2 x+b-2$ must be greater than zero but minimum is at $x=1$. That is,
$\sin \alpha-2+b-2 \geq 0, b \geq 4-\sin \alpha, \alpha \in(0, \pi)$

316 (b,d)

Let $f(x)=x^{2}+a x+b$. Then,
$x^{2}+(2 c+a) x+c^{2}+a c+b=f(x+c)$
Thus, the roots of $f(x+c)=0$ will be $0, d-c$
317 (c,d)
We have,
$x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right)$
Since $f(x)$ is divisible by $x^{2}+x+1, f(\omega)=$
$0, f\left(\omega^{2}\right)=0$, so
$P\left(\omega^{3}\right)+\omega Q\left(\omega^{3}\right)=0 \Rightarrow P(1)+\omega Q(1)=0$
$P\left(\omega^{6}\right)+\omega^{2} Q\left(\omega^{6}\right)=0 \Rightarrow P(1)+\omega^{2} Q(1)=0$
(2)

Solving (1) and (2), we obtain
$P(1)=0$ and $Q(1)=0$
Therefore, both $P(x)$ and $Q(x)$ are divisible by $x-1$. Hence, $P\left(x^{3}\right)$ and $Q\left(x^{3}\right)$ are divisible by $x^{3}-1$ and so by $x-1$. Since $f(x)=P\left(x^{3}\right)+$ $x Q\left(x^{3}\right)$, we get $f(x)$ is divisible by $x-1$
318 (a,b,c)

$f(x)=a x^{2}+b x+c$
$f(0)=c<0, D>0 \Rightarrow b^{2}-4 a c>0$
$f(1)<0$ and $f(-1)<0$
$\Rightarrow a-|b|+c<0$
$f(2)<0$ and $f(-2)<0$
$\Rightarrow 4 a-2|b|+c<0$
Nothing can be said about $f(3)$ or $f(-3)$, whether it is positive or negative
319 (c,d)
Let,
$y=\frac{(x-a)(x-b)}{(x-c)}$
$\Rightarrow(x-c) y=x^{2}-(a+b) x+a b$
$\Rightarrow x^{2}-(a+b+y) x+a b+c y=0$
Since x is real, so
$D \geq 0$
$\Rightarrow(a+b+y)^{2}-4(a b+c y) \geq 0, \forall x \in R$
$\Rightarrow y^{2}+2 y(a+b-2 c)+(a-b)^{2} \geq 0, \forall x \in R$
$\Rightarrow 4(a+b-2 c)^{2}-4(a-b)^{2}<0$
$\Rightarrow(a+b-2 c+a-b)(a+b-2 c-a+b)<0$
$\Rightarrow 4(a-c)(b-c)<0$
$\Rightarrow a-c<0$ and $b-c>0$ or $a-c>0$ and
$b-c<0$
$\Rightarrow a<c<b$ or $a>c>b$
320 (a,b,c)
We have, $\frac{1+i \cos \theta}{1-2 i \cos \theta}=\frac{(1+i \cos \theta)(1+2 i \cos \theta)}{(1-2 i \cos \theta)(1+2 i \cos \theta)}$
$=\frac{\left(1-2 \cos ^{2} \theta\right)+i 3 \cos \theta}{1+4 \cos ^{2} \theta}$

Thus, $\frac{(1+i \cos \theta)}{(1-2 i \cos \theta)}$ is a real number if $\cos \theta=0$
$\Rightarrow \quad \theta=2 n \pi \pm \frac{\pi}{2}$
Where n is an integer
321 (b,c,d)
Given equation is $x^{3}-a x^{2}+b x-1=0$. If roots
of the equation be α, β, γ, then
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$
$=a^{2}-2 b$
$\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$ $=(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2 \alpha \beta \gamma(\alpha+\beta$ $+\gamma)$
$=b^{2}-2 a$
$\alpha^{2} \beta^{2} \gamma^{2}=1$
So, the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$ is given by
$x^{3}-\left(a^{2}-2 b\right) x^{2}+\left(b^{2}-2 a\right) x-1=0$
It is identical to
$x^{3}-a x^{2}+b x-1=0$
$\Rightarrow a^{2}-2 b=a$ and $b^{2}-2 a=b$
Eliminating b, we get
$\frac{\left(a^{2}-a\right)^{2}}{4}-2 a=\frac{a^{2}-a}{2}$
$\Rightarrow a\left\{a(a-1)^{2}-8-2(a-1)\right\}=0$
$\Rightarrow a\left(a^{3}-2 a^{2}-a-6\right)=0$
$\Rightarrow a(a-3)\left(a^{2}+a+2\right)=0$
$\Rightarrow a=0$ or $a=3$ or $a^{2}+a+2=0$
Which gives $b=0$ or $b=3$ or $b^{2}+b+2=0$. So, $a=b=0$ or $a=b=3$ or a, b are roots of $x^{2}+x+2=0$
323 (a,b,c)

From figure,
$a>0$
$-\frac{b}{2 a}=4 \Rightarrow-\frac{b}{2 a}>0$
$\therefore b<0$
$f(0)=c<0$
Also, $-\frac{b}{2 a}=4 \Rightarrow 8 a+b=0$

324 (a,c)
Let $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$\Rightarrow\left|z_{2}\right|=r_{2}$
Also, $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$
$\Rightarrow \arg \left(z_{1}\right)=-\arg \left(z_{2}\right)=-\theta_{2}$
$\therefore \quad z_{1}=r_{2}\left[\cos \left(-\theta_{2}\right)+i \sin \left(-\theta_{2}\right)\right]$
$=r_{2}\left[\cos \theta_{2}-i \sin \theta_{2}\right]$
$\Rightarrow \quad z_{2}=\bar{z}_{2}$
$\Rightarrow z_{1}=\frac{1}{z_{2}}$
$\Rightarrow \quad z_{1} z_{2}=1$
325 (a,d)
If α is a real root, then
$\alpha^{3}+(3+i) \alpha^{2}-3 \alpha-(m+i)=0$
$\therefore \alpha^{3}+3 \alpha^{2}-3 \alpha-m=0$ and $\alpha^{2}-1=0$
$\Rightarrow \alpha=1$ or -1
$\alpha=1 \Rightarrow m=1$
$\alpha=-1 \Rightarrow m=5$
(d)

For real roots, $D \geq 0$
$\Rightarrow(-4)^{2}-4(2 \lambda-1)(2 \lambda-1) \geq 0$
$\Rightarrow(2 \lambda-1)^{2} \leq 4$
$\Rightarrow-2 \leq 2 \lambda-1 \leq 2$
$\Rightarrow-\frac{1}{2} \leq \lambda \leq \frac{3}{2}$
\therefore Integral values of λ are 0 and 1.
Hence, greatest integral value of $\lambda=1$

327 (b)
According to statement 1, given equation is
$x^{2}-b x+c=0$

Let α, β be two roots such that
$|\alpha-\beta|=1$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=1$
$\Rightarrow b^{2}-4 c=1$

According to statement 2, given equation is
$4 a b c x^{2}+\left(b^{2}-4 a c\right) x-b=0$. Hence,
$D=\left(b^{2}-4 a c\right)^{2}+16 a b^{2} c$
$=\left(b^{2}+4 a c\right)^{2}>0$
Hence, roots are real and unequal

328 (c)
$f(x)=a x^{2}+b x+c$
Given, $f(0)+f(1)=2$
$\Rightarrow f(x)>0 \forall x \in R$
Hence, statement 1 is true. Let,
$f(x)=x^{2}-x+1$
$a+b=0$
Hence, statement 2 is false
329 (a)
$\because e^{i \theta}=\cos \theta+i \sin \theta$
$\Rightarrow e^{-i \theta}=\cos \theta-i \sin \theta$
$\therefore \cos \theta=\frac{e^{i \theta}+\mathrm{e}^{i \theta}}{2}$
Now, $\cos (1-i)=\frac{e^{i(1-i)}+e^{-i(1-i)}}{2}=\frac{e^{(i+1)}+e^{-(1+i)}}{2}$
$=\frac{e\left(e^{i}\right)+e^{-1}\left(e^{-i}\right)}{2}$
$=\frac{e\left(\cos 1+i \sin 1+e^{-1}(\cos 1-i \sin 1)\right.}{2}$
$=\frac{1}{2}\left(e+\frac{1}{e}\right) \cos 1+\frac{i}{2}\left(e-\frac{1}{e}\right) \sin 1$
$\therefore \quad a=\frac{1}{2}\left(e+\frac{1}{e}\right) \cos 1, b=\frac{1}{2}\left(e-\frac{1}{e}\right) \sin 1$
330 (b)
Fourth roots of unity are $-1,1,-i$ and i
$\therefore z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=0$ and $z_{1}+z_{2}+z_{3}+z_{4}=$ 0

331 (d)
Statement 2 is obviously true. Let,
$f(x)=(x-p)(x-r)+\lambda(x-q)(x-s)=0$
Then, $f(p)=\lambda(p-q)(p-s)$
$f(r)=\lambda(r-q)(r-s)$
$\Rightarrow f(p) f(r)<0$
Hence, there is a root between p and r. Thus, statement 1 is false

332 (a)
Here, coefficient of $x^{2}=2>0$ then conditions
are $D \geq 0, f(1)>0$ and $f(2)>0$
$\Rightarrow 1-8 a \geq 0,2-1+a>0$ and $8-2+a>0$
$\Rightarrow a \leq \frac{1}{8}, a>-1$ and $a>-6$
$\Rightarrow-1<a \leq \frac{1}{8}$
Hence, option (a) is correct.
$a^{2}-3 a+2=0 \Rightarrow a=1,2$
$a^{2}-5 a+6=0 \Rightarrow a=2,3$
$a^{2}-4=0 \Rightarrow a= \pm 2$

Therefore, $a=2$ is the only solution
Hence, statement 1 is false. Statement 2 is true by definition

334 (b)
$D=(3)^{2}-4 \cdot 2 \cdot 4=-23<0$
\therefore Roots of $2 x^{2}+3 x+4=0$ are imaginary
Now, $\because 2,3,4 \in R$
\therefore Roots are conjugate to each other.
\because One root is common in $a x^{2}+b x+c=0$ and $2 x^{2}+3 x+4=0$ (given) then other roots is also common.
\because Roots are conjugate $(a, b, c \in R)$
Hence, both equation are identical
$\therefore a: b: c=2: 3: 4$

335 (a)
We have, $\arg (z)=0 \Rightarrow z$ is purely real.
\therefore Statement (II) is true.
Also, $\left|z_{1}\right|=\left|z_{2}+\left|z_{1}-z_{2}\right|\right.$
$\Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}$
$\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)$
$=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right|$
$\Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=1$
$\Rightarrow \theta_{1}-\theta_{2}=0$
$\Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$
$\Rightarrow \arg \left(\frac{z_{1}}{z_{2}}\right)=0 \Rightarrow \frac{z_{1}}{z_{2}}$ is purely real
$\Rightarrow \operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)=0$
Statement (I) and Statement (II) are true and Statement (II) is a correct explanation of Statement (I)

336 (a)

Let $f(x)=a x^{2}+b x+c$. Since coefficient are integers and one root is irrational, so both the roots are irrational. Hence, for any $\lambda \in Q$,
$f(\lambda) \neq 0 \Rightarrow|f(\lambda)|>0$
$\Rightarrow\left|\frac{a p^{2}}{q^{2}}+\frac{b p}{q}+c\right|>0$ where $\lambda=\frac{p}{q}, p, q \in Z$
$\Rightarrow \frac{1}{q^{2}}\left|a p^{2}+b p q+c q^{2}\right|>0$
Now, $a, b, c, p, q \in I$. Hence,
$\left|a p^{2}+b p q+c q^{2}\right| \geq 1$
$\Rightarrow|f(\lambda)| \geq \frac{1}{q^{2}}$
337 (a)
$a x^{2}+b x+c=0$ has two complex conjugate roots only if all the coefficients are real. If all the coefficients are not real then it is not necessary that both the roots are imaginary. Hence, statement 2 is true

Now, equation $x^{2}-3 x+4=0$ has two complex conjugate roots. If $a x^{2}+b x+c=0$ has all
coefficients real, then there will be two common roots. But if there is only one root common, then at least one of a, b, c must be non-real

Thus, both the statements are true and statement 2 is correct explanation of statement 1

338 (d)
Statement 2 is true as it is the definition of an ellipse. Statement 1 is false as distance between 1 and 8 is 7 but $|z-1|+|z-8|=5<7$. Hence not such z exists
339 (a)
$\cos \frac{\pi}{4}=2 \cos ^{2} \frac{\pi}{8}-1$
$\Rightarrow \cos ^{2} \frac{\pi}{8}=\left(\frac{1}{\sqrt{2}}+1\right) \frac{1}{2}$
$\Rightarrow \cos ^{4} \frac{\pi}{8}=\frac{1}{4}\left(\frac{1}{2}+1+\frac{2}{\sqrt{2}}\right)=\left(\frac{3}{2}+\sqrt{2}\right) \frac{1}{4}$
$\Rightarrow \frac{1}{4}\left(\frac{3}{2}+\sqrt{2}\right)+\frac{a}{2}\left(\frac{1}{\sqrt{2}}+1\right)+b=0$
($\because \cos ^{2} \pi / 8$ a root of equation)
$\Rightarrow\left(\frac{3}{8}+\frac{a}{2}+b\right)+\sqrt{2}\left(\frac{1}{4}+\frac{a}{4}\right)=0$
Since a and b are rational, so
$\frac{1}{4}+\frac{a}{4}=0, \frac{3}{8}+\frac{a}{2}+b=0$
$\Rightarrow a=-1, b=\frac{1}{8}$
Thus, both the statements are correct and statement 2 is correct explanation of statement 1

340 (b)
We must have
$a x^{3}+(a+b) x^{2}+(b+c) x+c>0$
$\Rightarrow a x^{2}(x+1)+b x(x+1)+c(x+1)>0$
$\Rightarrow(x+1)\left(a x^{2}+b x+c\right)>0$
$\Rightarrow a(x+1)\left(x+\frac{b}{2 a}\right)^{2}>0$ as $b^{2}=4 a c$
$\Rightarrow x>-1$ and $x \neq-\frac{b}{2 a}$
$\left|z_{1}+z_{2}\right|=\left|\frac{z_{1}+z_{2}}{z_{1} z_{2}}\right|$
$\Rightarrow\left|z_{1}+z_{2}\right|\left(1-\frac{1}{\left|z_{1} z_{2}\right|}\right)=0$
$\Rightarrow\left|z_{1} z_{2}\right|=1$
Hence, statement 1 is true. However, it is not necessary that $\left|z_{1}\right|=\left|z_{2}\right|=1$. Hence, statement 2 is false
342 (a)
First, let the two complex numbers be conjugate of each other. Let complex numbers be
$z_{1}=x+i y$ and $z_{2}=x-i y$. Then, $z_{1}+z_{2}=$ $(x+i y)+(x-i x)=2$, which is real and $z_{1} z_{2}=(x+i y)(x-i y)=x^{2}-i^{2} y^{2}=x^{2}+y^{2}$, which is real
Conversely, let z_{1} and z_{2} be two complex numbers such that their sum $z_{1}+z_{2}$ and product $z_{1} z_{2}$ both are real. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$ and $z_{1} z_{2}=$ $\left(x_{1} x s_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)$
Now, $z_{1}+z_{2}$ and $z_{1} z_{2}$ are real. Hence,
$b_{1}+b_{2}=0$ and $a_{1} b_{2}+a_{2} b_{1}=0 \quad[\because z$ is real \Rightarrow $\operatorname{Im}(z)=0]$
$\Rightarrow b_{2}=-b_{1}$ and $a_{1} b_{2}+a_{2} b_{1}=0$
$=-b_{1}$ and $-a_{1} b_{1}+a_{2} b_{1}=0$
$=-b_{1}$ and $\left(a_{2}-a_{1}\right) b_{1}=0$
$=-b_{1}$ and $a_{2}-a_{1}=0$
$=-b_{1}$ and $a_{2}=a_{1}$
$\Rightarrow z_{2}=a_{2}+i b_{2}=a_{1}-i b_{1}$
$=\bar{z}_{1}$
Hence, z_{1} and z_{2} are conjugate of each other.
Hence, statement 2 is true
Also in statement $1, a=\bar{a}$ and $b=\bar{b}$, then a and b are real. Thus, $z_{1}+z_{2}$ and $z_{1} z_{2}$ are real. So,
$z_{2}=\bar{z}_{2}$
$\Rightarrow \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1} \bar{z}_{1}\right)=\arg \left(\left|z_{1}\right|^{2}\right)=0$
Hence, statement 1 is correct and statement 2 is correct explanation of statement 1
343 (b)
The equation can be writer as
$\left(2^{x}\right)^{2}-(a-3) 2^{x}+(a-4)=0$
$\Rightarrow 2^{x}=1$ and $2^{x}=a-4$
We have,
$x \leq 0$ and $2^{x}=a-4[\because x$ is non-positive $]$
$\therefore 0<a-4 \leq 1 \Rightarrow 4<a \leq 5$
$\therefore a \in(4,5)$

Given equation is
$p x^{2}+q x+r=0$
Let, $f(x)=p x^{2}+q x+r$
$f(0)=r>0$
$f(1)=p+q+r<0$
$f(-1)=p-q+r<0$
Hence, one root lies in $(-1,0)$ and the other in $(0$, 1)
$\therefore[\alpha]=-1$ and $[\beta]=0$
$\Rightarrow[\alpha]+[\beta]=-1$
Therefore, statement 2 is true and is correct explanation of statement 1

345 (b)
If $a>0$, then graph of $y=a x^{2}+2 b x+c$ is concave upward. Also if $b^{2}-a c<0$, then the graph always lies above x-axis; hence $a x^{2}+2 b x+c>0$ for all real values of x. Thus, domain of function $f(x)=\sqrt{a x^{2}+2 b x+c}$ is R

If $b^{2}-a c<0$, then $a x^{2}+2 b x+c=0$ has imaginary roots. Then the graph of $y=a x^{2}+$ $2 b x+c$ never cuts x-axis, or y is either always positive or always negative. Hence, both the statements are correct but statement 2 is not correct explanation of statement 1

346 (b)

$$
\begin{aligned}
\mid z_{2} z_{3}+8 z_{3} z_{1} & +27 z_{1} z_{2} \mid \\
& =\left|z_{1} z_{2} z_{3}\left(\frac{1}{z_{1}}+\frac{8}{z_{2}}+\frac{27}{z_{3}}\right)\right|
\end{aligned}
$$

$=\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|\left|\frac{1}{z_{1}}+\frac{8}{z_{2}}+\frac{27}{z_{3}}\right|$
$=\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|\left|\frac{\bar{z}_{1}}{\left|z_{1}\right|^{2}}+\frac{8 \bar{z}_{2}}{\left|z_{2}\right|^{2}}+\frac{27 \bar{z}_{3}}{\left|z_{3}\right|^{2}}\right|$
$=\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|\left|\frac{\bar{z}_{1}}{1}+\frac{8 \bar{z}_{2}}{4}+\frac{27 \bar{z}_{3}}{9}\right|$
$=\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right| \mid \overline{z_{1}+2 z_{2}+3 z_{3} \mid}$
$=\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|\left|z_{1}+2 z_{2}+3 z_{3}\right|$
$=1 \cdot 2 \cdot 3 \cdot 6=36$

347 (a)
$f(x)=(x-1)(a x+b)$
$f(2)=2 a+b$
$f(4)=3(4 a+b)=12 a+3 b$
$f(2)+f(4)=14 a+4 b=0$
$\Rightarrow \frac{-b}{a}=3.5$
Now, sum of roots is $(a-b) / a=1-(b / a)=$ $1+3.5=4.5$. Hence, the other root is 3.5

348 (a)
Let $f(x)=4 x^{2}-2 x+a$
Also, both roots of $f(x)=0$ lie in the interval (-1 , 1).
$\therefore D \geq 0, f(-1)>0$ and $f(1)>0$
Now, $D \geq 0$
$\Rightarrow(-2)^{2}-4 \cdot 4 \cdot a \geq 0$
$\Rightarrow a \leq \frac{1}{4}$
and $f(-1)>0$
$\Rightarrow 4(-1)^{2}-2(-1)+a>0$
$\Rightarrow a>-6$
Also, $f(1)>0 \Rightarrow 4(1)^{2}-2(1)+a>0$
$\Rightarrow a>-2$
From Eqs. (i), (ii) and (iii), we get
$-2<a \leq \frac{1}{4}$
349 (a)
If $a^{2}+b^{2}+c^{2}<0$, then all a, b, c are not real or at least one of a, b, c is imaginary number. Hence roots of equation $a x^{2}+b x+c=0$ has no complex conjugate roots, even through the roots are complex. Hence statement 1 is true. Statement 2 is obviously true. Also, statement 2 is correct explanation of statement 1

350 (a)
$D=\underbrace{\underbrace{(2 m+1)^{2}}_{\text {odd }}-\underbrace{4(2 n+1)}_{\text {even }}}_{\text {odd }}$

For rational root, D must be a perfect square. As D is odd, let D be perfect square of $2 l+1$, where $l \in Z$
$(2 m+1)^{2}-4(2 n+1)=(2 l+1)^{2}$
$\Rightarrow(2 m+1)^{2}-(2 l+1)^{2}=4(2 n+1)$
$\Rightarrow[(2 m+1)+(2 l+1)][2(m-l)]=4(2 n+1)$
$\Rightarrow(m+l+1)(m-l)=(2 n+1)$
R.H.S. of (1) is always odd but L.H.S. is always even. Hence, D cannot be a perfect square. So, the roots cannot be rational

Hence, statement 1 is true, statement 2 is true and statement 2 is correct explanation for statement 1
$x^{3}+x^{2}+x=x\left(x^{2}+x+1\right)=x(x-\omega)\left(x-\omega^{2}\right)$
Now $f(x)=(x+1)^{n}-x^{n}-1$ is divisible by
$x^{3}+x^{2}+x$. Then $f(0)=0, f(\omega)=0, f\left(\omega^{2}\right)=0$.
Now,
$f(0)=(0+1)^{n}-0^{n}-1=0$
$f(\omega)=(\omega+1)^{n}-\omega^{n}-1=\left(-\omega^{2}\right)^{n}-\omega^{n}-1$

$$
=-\left(\omega^{2 n}+\omega^{n}+1\right)
$$

$=0 \quad$ (as n is not a multiple of 3)
Similarly, we have $f\left(\omega^{2}\right)=0$
Hence statement 1 is correct but statement 2 is false
352
(d)
$x+\frac{1}{x}=1$
$\Rightarrow x^{2}-x+1=0$
$\therefore x=-\omega,-\omega^{2}$
Now for $x=-\omega$,
$p=\omega^{4000}+\frac{1}{\omega^{4000}}=\omega+\frac{1}{\omega}=-1$
Similarly for $x=-\omega^{2}, P=-1$. For $n>1$,
$2^{n}=4 k$
$\therefore 2^{2^{n}}=2^{4 k}=(16)^{k}=$ a number with last digit 6
$\Rightarrow q=6+1=7$
Hence, $p+q=-1+7=6$
353 (d)
Let $f(x)=(x-\sin \alpha)(x-\cos \alpha)-2$. Then,
$f(\sin \alpha)=-2<0, f(\cos \alpha)=-2<0$
Also, as $0<a<\pi / 4$, hence, $\sin \alpha<\cos \alpha$.
Therefore, equation $f(x)=0$ has one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$

354 (d)

From the diagram when $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|, O A B$ is right-angled triangle. Hence orthocentre is 0
355 (d)
$\left|\frac{z_{1} z-z_{2}}{z_{1} z+z_{2}}\right|=k$
$\Rightarrow\left|\frac{z-\frac{z_{2}}{z_{1}}}{z+\frac{z_{2}}{z_{1}}}\right|=k$
Clearly, if $k \neq 0,1$, then z would lie on a circle
If $k=1, z$ would lie on a perpendicular bisector of line segment joining $\frac{z_{2}}{z_{1}}$ and $-\frac{z_{2}}{z_{1}}$ and represents a points if $k=0$
\therefore Statement (I) is false and Statement (II) is true
356 (a)
We have,
$a z^{2}+b z+c=0$
and z_{1}, z_{2} [roots of (1)] are such that $\operatorname{Im}\left(z_{1} z_{2}\right) \neq$ 0 . So, z_{1} and z_{2} are not conjugate of each other.
That is complex roots of (1) are not conjugate of each other, which implies that coefficients a, b, c cannot all be real. Hence, at least one of a, b, c is imaginary
357 (a)
If roots of $a x^{2}+b x+c=0,0<a<b<c$, are non-real, then they will be the conjugate of each other. Hence,
$z_{2}=\bar{z}_{1} \Rightarrow\left|z_{1}\right|=\left|z_{2}\right|$
Now,
$z_{1} z_{2}=\frac{c}{a}>1 \Rightarrow\left|z_{1}\right|^{2}>1$
$\Rightarrow\left|z_{1}\right|>1$
$\Rightarrow\left|z_{2}\right|>1$

$$
\begin{aligned}
& i x^{2}+(i-1) x-\frac{1}{2}-i=0 \\
& \Rightarrow x=\frac{-(i-1) \pm \sqrt{(i-1)^{2}-4(i)\left(-\frac{i}{2}-i\right)}}{2 i} \\
& =\frac{-(i-1) \pm \sqrt{-4}}{2 i}
\end{aligned}
$$

Thus, roots are imaginary. Also, we have $b^{2}-4 a c=-4<0$, but this is not the correct reason for which roots are imaginary as coefficients of the equation are imaginary

Hence, both the statements are correct but statement 2 is not correct explanation of statement 1

Let $f(x)=-x^{2}+x-1$
Here, $a<0$ and $D=(1)^{2}-4(1)<0$, then $f(x)<$ 0

But $\sin ^{4} x \geq 0$
$\therefore-x^{2}+x-1 \neq \sin ^{4} x$
Hence, number of solutions is 0 .
Hence, option (d) is correct.
360 (a)
Given equations are
$a x^{2}+2 b x+c=0$

Since Eqs. (1) and (2) have only one common root and $a, b, c, a_{1}, b_{1}, c_{1}$ are rational, therefore, common root cannot be imaginary or irrational (as irrational roots occur in conjugate pair when coefficients are rational, and complex roots always occur in conjugate pair)

Hence, the common root must be rational. Therefore, both the roots of Eqs. (1) and (2) will be rational. Therefore, $4\left(b^{2}-a c\right)$ and
$4\left(b_{1}^{2}-a_{1} c_{1}\right)$ must be perfect squares (squares of rational numbers). Hence, $b^{2}-a c$ and $b_{1}^{2}-a_{1} c_{1}$ must be perfect squares

361 (a)
Let $A=b+c-a, B=c+a-b, C=a+b-c$
$\therefore A+B+C=0$
And given equation becomes
$A x^{2}+B x+C=0$
$\therefore D=B^{2}-4 A C$
$=(A+C)^{2}-4 A C=(A-C)^{2}$
$=4[c-a]^{2}=$ perfect square
Hence, roots of $(b+c-a) x^{2}+(c+a-b) x+$ $(a+b-c)=0$ are rationals.

Hence option (a) is correct.
362 (b)
Given $x^{2}+2 p x+q=0$
$\therefore \alpha+\beta=-2 p$
$\alpha \beta=q$
And $a x^{2}+2 b x+c=0$
$\therefore \alpha+\frac{1}{\beta}=-\frac{2 b}{a}$
and $\frac{\alpha}{\beta}=\frac{c}{a}$
Now, $\left(p^{2}-q\right)\left(b^{2}-a c\right)$
$=\left[\left(\frac{\alpha+\beta}{-2}\right)^{2}-\alpha \beta\right]\left[\left(\frac{\alpha+\frac{1}{\beta}}{2}\right)^{2}-\frac{\alpha}{\beta}\right] a^{2}$
$=\frac{(\alpha-\beta)^{2}}{16}\left(\alpha-\frac{1}{\beta}\right)^{2} \cdot a^{2} \geq 0$
\therefore Statement I is true.
Again, now $p a=-\left(\frac{\alpha+\beta}{2}\right) a=-\frac{a}{2}(\alpha+\beta)$
and $b=-\frac{a}{2}\left(\alpha+\frac{1}{\beta}\right)$
Since, $p a \neq b \Rightarrow \alpha+\frac{\beta}{2} \neq \alpha+\beta$
$\Rightarrow \beta^{2} \neq 1, \beta \neq\{-1,0,1\}$, which is correct.
Similarly, if $c \neq q a \Rightarrow a \frac{\alpha}{\beta} \neq a \alpha \beta$
$\Rightarrow \alpha\left(\beta-\frac{1}{\beta}\right) \neq 0$
$\Rightarrow \alpha \neq 0$ and $\beta-\frac{1}{\beta} \neq 0$
$\Rightarrow \beta \neq\{-1,0,1\}$
Statement II is true.
Both Statement I and Statement II are true. But statement II does not explain Statement I.

363 (c)

Clearly, Statement 1 is true but Statement 2 is false, since, $a x^{2}+b x+c=0$ is an identity when $a=b=c=0$

364 (c)
We have, $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$

$$
\begin{aligned}
\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} & \\
& +2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right) \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}
\end{aligned}
$$

where, $\theta_{1}=\arg \left(z_{1}\right), \theta_{2}=\arg \left(z_{2}\right)$
$\Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=0 \Rightarrow \theta_{1}-\theta_{2}=\frac{\pi}{2}$
$\Rightarrow \arg \left(\frac{z_{1}}{z_{2}}\right)=\frac{\pi}{2}$
$\Rightarrow \operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right)=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cos \frac{\pi}{2}=0$
$\therefore \frac{z_{1}}{z_{2}}$ is purely imaginary
\therefore Statement I is true
If z is purely imaginary then $z-\bar{z}=0$
365 (c)
Here, $f(x)$ is a downward parabola

$D=(a+1)^{2}+20>0$
From the graph, clearly, statement 1 is true but
statement 2 is false

366 (d)
$\left|z_{1}+z_{2}+z_{3}\right|=\mid z_{1}-a+z_{2}-b+z_{3}-c+(a$

$$
+b+c) \mid
$$

$\leq\left|z_{1}-a\right|+\left|z_{2}-b\right|+\left|z_{3}-c\right|+|a+b+c|$
$\leq 2|a+b+c|$
Hence, $\left|z_{1}+z_{2}+z_{3}\right|$ is less than $2|a+b+c|$
367 (b)
Since $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, circumcentre of Δ is origin Also $\frac{z_{1}+z_{2}+z_{3}}{3}=0$
Centroid concide with circumcentre
$\Rightarrow \Delta$ is equilateral

$\frac{z_{2}+z_{3}}{2}$
$\arg \left(\frac{z_{2}+z_{3}-2 z_{1}}{z_{3}-z_{2}}\right)=\arg \left(2\left(\frac{\frac{z_{2}+z_{3}}{2}-z_{1}}{z_{3}-z_{2}}\right)\right)$
$=\arg \left(\frac{\frac{z_{2}+z_{3}}{2}-z_{1}}{z_{3}-z_{2}}\right)$
$\left(z_{2}+z_{3}\right) / 2$ is the mid-point of side $B C$. Clearly, line joining A and mid-point of $B C$ will be perpendicular to side $B C$. Thus,
$\arg \left(\frac{\frac{z_{2}+z_{3}}{2}-z_{1}}{z_{3}-z_{2}}\right)=\frac{\pi}{2}$
Hence, statement 2 is also true. However, it does not explain statement 1
368
(a)
$x^{2}+x+1=0$
$D=-3<0$
Therefore, $x^{2}+x+1=0$ and $a x^{2}+b x+c=0$ have both the roots common. Hence, $a=b=c$

369 (d)
Roots of the equation $x^{5}-40 x^{4}+P x^{3}+Q x^{2}+$ $R x+S=0$ are in G.P. Let the roots be $a, a r, a r^{2}, a r^{3}, a r^{4}$. Therefore,
$a+a r+a r^{2}+a r^{3}+a r^{4}=40$
and
$\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^{2}}+\frac{1}{a r^{3}}+\frac{1}{a r^{4}}=10$

From (1) and (2),
$a r^{2}= \pm 2$
Now, the product of roots is $a^{5} r^{10}=\left(a r^{2}\right)^{5}=$ ± 32
$\therefore|S|=32$

370 (b)
We have,
Let $x=(\cos \theta+i \sin \theta)^{3 / 5}$
$\Rightarrow x^{5}=(\cos \theta+i \sin \theta)^{3}$
$\Rightarrow x^{5}-(\cos 3 \theta+i \sin 3 \theta)=0$
\Rightarrow Product of roots $=\cos 3 \theta+i \sin 3 \theta$
Also product of roots of the equation $x^{5}-1=0$ is

1. Hence statement 2 is true. But it is not correct explanation of statement 1
371 (a)
$\arg \left(z_{1} z_{2}\right)=2 \pi \Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=2 \pi \Rightarrow$ $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)=\pi$, as principal arguments are from $-\pi$ to π
Hence both the complex numbers are purely real.
Hence both the statements are true and statement 2 is correct explanation of statement 1
(a)

Since, $x=-2$ is a root of $f(x)$.
$\therefore f(x)=(x+2)(a x+b)$
But $f(0)+f(1)=0$
$\therefore 2 b+3 a+3 b=0$
$\Rightarrow-\frac{b}{a}=\frac{3}{5}$
Hence, option (a) is correct.
373 (a)
Suppose there exists a complex number z which satisfies the given equation and is such that
$|z|<1$. Then,
$z^{4}+z+2=0 \Rightarrow-2=z^{4}+z \Rightarrow|-2|=\left|z^{4}+z\right|$
$\Rightarrow 2 \leq\left|z^{4}\right|+|z| \Rightarrow 2<2$, because $|z|<1$
But $2<2$ is not possible. Hence given equation cannot have a root z such that $|z|<1$
(d)
$f(x, y)=(2 x-y)^{2}+(x+y-3)^{2}$
Therefore, statement 1 is false as it represents a point $(1,2)$
a. $d+a-b=0$ and $d+b-c=0$
$d=b-a$ and $d=c-b$
$\therefore b-a=c-b \Rightarrow 2 b=a+b \Rightarrow a, b, c$ are in A.P. Also $x=1$ satisfies the second equation.
Therefore, the other root is also 1. Product of roots is 1
$\therefore c(a-b)=a(b-c) \Rightarrow b=\frac{2 a c}{a+c} \Rightarrow a, b, c$ are in H.P.

Therefore, a, b, c are in A.P. and a, b, c in H.P
Hence, a, b, c are in G.P.
b. $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c)\left(b^{2}+c^{2}\right)=0$

The roots are real and equal. Hence,
$4 b^{2}(a+c)^{2}-4\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)=0$
$\Rightarrow b^{2}\left(a^{2}+c^{2}+2 a c\right)$

$$
-\left(a^{2} b^{2}+a^{2} c^{2}+b^{4}+b^{2} c^{2}\right)=0
$$

$\Rightarrow b^{2} a^{2}+b^{2} c^{2}+2 a b^{2} c-a^{2} b^{2}-a^{2} c^{2}-b^{4}$

$$
-b^{2} c^{2}=0
$$

$\Rightarrow 2 a b^{2} c-a^{2} c^{2}-b^{4}=0 \Rightarrow\left(b^{2}-a c\right)^{2}=0$
Hence, $b^{2}=a c$. Thus a, b, c are in G.P.
c. $(x-1)^{3}=0 \Rightarrow x=1$ is the common root.

Hence, $a+b+c=0$
d. $(a+c)^{2}+4 b^{2}-4 b(a+c) \leq 0, \forall x \in R$
$\Rightarrow((a+c)-2 b)^{2} \leq 0$
$\Rightarrow a+c=2 b$
$\Rightarrow a, b, c$ in A.P.
376 (c)
a. $|z-1|=|z-i|$

Hence it lies on the perpendicular bisector of the line joining $(1,0)$ and $(0,1)$ which is a straight line passing through the origin
b. $|z+\bar{z}|+|z-\bar{z}|=2$
$\Rightarrow|x|+|y|=1$
Hence, z lies on a square,
c. Let $z=x+i y$. Then,
$|z+\bar{z}|=|z-\bar{z}|$
$\Rightarrow|2 x|=|2 i y|$
$\Rightarrow|x|=|y|$
$\Rightarrow x= \pm y$
Hence, the locus of z is a pair of straight lines
d. Let $Z=2 / z$. Then,
$|Z|=\left|\frac{2}{Z}\right|=\frac{2}{|z|}=\frac{2}{1}=2$
This shows that Z lies on a circle with centre at the origin and radius 2 units
377
(b)

Given, $a=\frac{1-i \sqrt{3}}{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2}$
$\therefore \quad \bar{a}=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ and $\frac{1}{\bar{a}}=\frac{1-i \sqrt{3}}{2}$
5. $a \bar{a}=\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)$
$=\left(\frac{1}{2}\right)^{2}-i^{2}\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}+\frac{3}{4}=1$
6. $\quad \arg \left(\frac{1}{\bar{a}}\right)=\tan ^{-1}\left(\frac{\sqrt{3}}{2} \times \frac{2}{1}\right)=-\frac{\pi}{3}$
7. $a-\bar{a}=\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)-\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)=-i \sqrt{3}$
8. $\quad \operatorname{Im}\left(\frac{4}{3 a}\right)=\operatorname{Im}\left(\frac{4}{3\left(\frac{1-i \sqrt{3}}{2}\right)}\right)$
$=\operatorname{Im}\left(\frac{8(1+i \sqrt{3})}{3(1-i \sqrt{3})(1+i \sqrt{3})}\right)$
$=\operatorname{Im}\left(\frac{2+2 i \sqrt{3}}{3}\right)=\frac{2}{\sqrt{3}}$
378 (a)
a. $x^{2}+a x+b=0$ has root α. Hence,
$a^{2}+a \alpha+b=0$ (1)
$x^{2}+p x+q=0$ has roots $-\alpha, \gamma$. Hence,
$\alpha^{2}-p \alpha+q=0$
Eliminating α from (1) and (2), we get
$(q-b)^{2}=(a q+b p)(-p-a)$
$\Rightarrow(q-b)^{2}=-(a q+b p)(p+a)$
b. $x^{2}+a x+b=0$ has root is α, β. Hence,
$\alpha+a \alpha+b=0$
$x^{2}+p x+q=0$ has root $1 / \alpha$. Hence,
$q \alpha^{2}+p \alpha+1=0$
Eliminating α from (1) and (2), we get
$(1-b q)^{2}=(a-p b)(p-a q)$
c. $x^{2}+a x+b=0$ has roots α, β. Hence,
$\alpha^{2}+a \alpha+b=0$
$x^{2}+p x+q=0$ has roots $-2 / \alpha, \gamma$. Hence,
$q \alpha^{2}-2 p \alpha+4=0$
Eliminating α from (1) and (2), we get
$(4-b q)^{2}=(4 a+2 p b)(-2 p-a q)$
d. $x^{2}+a x+b=0$ has roots α, β. Hence,
$\alpha^{2}+a \alpha+b=0$
$x^{2}+p x+q=0$ has roots $-1 / 2 \alpha, \gamma$. Hence, $4 q \alpha^{2}-2 p \alpha+1=0$
Eliminating α from (1) and (2), we get
$(1-4 b q)^{2}=(a+2 b p)(-2 p-4 a q)$
379
(a)

1. $|z-2 i|+|z-7 i|=k$ is ellipse if $k>|7 i-2 i|$ or $k>5$
2. $\left|\frac{2 z-3}{3 z-2}\right|=k \Rightarrow\left|\frac{z-\frac{3}{2}}{z-\frac{2}{3}}\right|=\frac{3 k}{2} \Rightarrow 3 k / 2>1 \Rightarrow$

$$
k>2 / 3
$$

3. $|z-3|-|z-4 i|=k$ is hyperbola, if $k>|3-4 i| \Rightarrow 0<k<5$
4. $|z-(3+4 i)|=\frac{k}{50}|a \bar{z}+\bar{a} z+b|$
$\Rightarrow|z-(3+4 i)|=\frac{k}{5} \frac{|a \bar{z}+\bar{a} z+b|}{2|3+4 i|}$
This is hyperbola if $k / 5>1 \Rightarrow k>5$
380 (a)
a. $y=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$
$\Rightarrow x^{2} y+2 x y+4 y=x^{2}-2 x+4$
$\Rightarrow(y-1) x^{2}+2(y+1) x+4(y-1)=0$
$D \geq 0$
$\Rightarrow 4(y+1)^{2}-16(y-1)^{2} \geq 0$
$\Rightarrow(y+1)^{2}-(2 y-2)^{2} \geq 0$
$\Rightarrow(3 y-1)(3-y) \geq 0$
$\Rightarrow(3 y-1)(y-3) \leq 0 \Rightarrow y \in\left[\frac{1}{3}, 3\right]$
$\Rightarrow\{1\} \Rightarrow P$
b. $y=\frac{x^{2}-3 x-2}{2 x-3}$
$\Rightarrow x^{2}-3 x-2=2 x y-3 y$
$\Rightarrow x^{2}-(3+2 y) x+(3 y-2)=0$
$D \geq 0$
$\Rightarrow(3+2 y)^{2}-4(3 y-2) \geq 0$
$\Rightarrow 9+4 y^{2}+12 y-12 y+8 \geq 0$
$\Rightarrow 4 y^{2}+17 \geq 0$
Which is always true. Hence,
$y \in R \Rightarrow\{1,4,-3,-10\} \Rightarrow p, q, r, s$
c. $y=\frac{2 x^{2}-2 x+4}{x^{2}-4 x+3}$
$\Rightarrow x^{2} y-4 x y+3 y=2 x^{2}-2 x+4$
$(y-2) x^{2}+2(1-2 y) x+3 y-4=0$
$D \geq 0$
$4(1-2 y)^{2}-4(y-2)(3 y-4) \geq 0$
$\Rightarrow 1+4 y^{2}-4 y-\left(3 y^{2}-10 y+8\right) \geq 0$
$\Rightarrow y^{2}+6 y-7 \geq 0$
$\Rightarrow(y+7)(y-1) \geq 0$
$\Rightarrow y \geq 1$ or $y \leq-7$
$\Rightarrow\{1,4,-10\} \Rightarrow p, q, s$
d. $f(x)=x^{2}-(a-3) x+2<0, \forall x \in[-2,-1]$
$\Rightarrow f(-2)<0$ and $f(-1)<0$
$\Rightarrow 4+2(a-3)+2<0$ and $1+(a-2)+2<0$
$\Rightarrow a<0$ and $a<-1$
$\Rightarrow a<-1$
$\Rightarrow a \in\{-10,-3\}$
381 (d)
a. $(m-2) x^{2}-(8-2 m) x-(8-3 m)=0$ has root of opposite signs. The product of roots is
$-\frac{8-3 m}{m-2}<0$
$\Rightarrow \frac{3 m-8}{m-2}<0$
$\Rightarrow 2<m<8 / 3$
b. Exactly one root of equation $x^{2}-m(2 x-8)-$ $15=0$ lies in interval $(0,1)$
$f(0) f(1)<0$
$\Rightarrow(0-m(-8)-15)(1-m(-6)-15)<0$
$\Rightarrow(8 m-15)(6 m-15)<0$
$\Rightarrow 15 / 8<m<15 / 6$
c. $x^{2}+2(m+1) x+9 m-5=0$ has both roots negative. Hence, sum of roots is
$-2(m+1)<0$ or $m>-1$
Product of roots is
$9 m-5>0$ or $m>5 / 9$
Discriminant,
$D \geq 0 \Rightarrow 4(m+1)^{2}-4(9 m-5) \geq 0$
$\Rightarrow m^{2}-7 m+6 \geq 0$
$\Rightarrow m \leq 1$ or $m \geq 6$
Hence, for (1), (2) and (3), we get
$m \in\left(\frac{5}{9}, 1\right] \cup[6, \infty)$
d. $f(x)=x^{2}+2(m-1) x+m+5=0$ has one root less than 1 and the other root greater than 1 .
Hence,
$f(1)<0$
$\Rightarrow 1+2(m-1)+m+5<0$
$\Rightarrow m<-4 / 3$
382 (b)
a. $x^{2}-x+1=0$
$\Rightarrow x=\frac{1 \pm i \sqrt{3}}{2}$
$=-\omega,-\omega^{2}$
$\Rightarrow\left(x^{n}+\frac{1}{x^{n}}\right)^{2}=(-1)^{2 n}\left(\omega^{n}+\frac{1}{\omega^{n}}\right)^{2}$
$=\left(\omega^{n}+\omega^{2 n}\right)^{2}$
$\because \frac{1}{\omega^{n}}=\frac{\omega^{2 n}}{\omega^{3 n}}=\omega^{2 n}$
Now,
$1+\omega^{n}+\omega^{2 n}=\frac{1-\omega^{3 n}}{1-\omega^{n}}=0$ for $n \neq 3 p$
$\therefore \omega^{n}+\omega^{2 n}=-1$ for $n \neq 3 p$
$=2$ for $n=3 p$
$\therefore \sum_{n=1}^{5}\left(x^{n}+\frac{1}{x^{n}}\right)^{2}=8$
b. In the expression,
$\left[\frac{1+\cos \theta+i \sin \theta}{\sin \theta+i(1+\cos \theta)}\right]$
Numerator is
$1+\cos \theta+i \sin \theta=2 \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]$
$=2 \cos \frac{\theta}{2} e^{i \theta / 2}$
and denominator is
$-i^{2} \sin \theta+i(1+\cos \theta)=i[$ conjugate
numerator]
$=i 2 \cos \frac{\theta}{2} e^{-\theta / 2}$
$\therefore E=\left(\frac{N^{r}}{D^{r}}\right)=\left[\frac{1}{i} \frac{e^{-i \theta / 2}}{e^{-i \theta / 2}}\right]^{4}=\frac{1}{i^{4}} e^{4 i \theta}$
$=\cos 4 \theta+i \sin 4 \theta$
$\therefore n=4$
c. We know that if $z=r e^{i \theta}$, then $\bar{z}=r e^{-i \theta}$

$\therefore \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}=\frac{r \sin \theta}{r \cos \theta}=\tan \theta=\tan \frac{\pi}{n}=\sqrt{2}-1$
$\Rightarrow \tan \frac{\pi}{n}=\tan \frac{\pi}{8} \Rightarrow n=8$
d. $\sum_{r=1}^{10}(r-\omega)\left(r-\omega^{2}\right)=\sum_{r=1}^{10}\left(r^{2}+r+1\right)$
$=\sum r^{2}+\sum r+10$
$=\frac{10 \times 11 \times 21}{6}+\frac{10 \times 11}{2}+10$
$=450$
$\Rightarrow \frac{1}{50}\left\{\sum_{r=1}^{10}\left(r-\omega\left(r-\omega^{2}\right)\right\}=9\right.$
383 (c)
5. $\quad z$ is equidistant from the points $i|z|$ and $-i|z|$, whose perpendicular bisector is Im $(z)=0$
6. Sum of distance of z from $(4,0)$ and $(-4,0)$ is a constant 10 , hence locus of z is ellipse with semi-major axis 5 and focus at $(\pm 4,0), a e=4$
7. $|z| \leq|w|+\left|\frac{1}{w}\right|=\frac{5}{2}<3$
8. $\quad|z| \leq|w|+\left|\frac{1}{w}\right|=2$
$\therefore \quad \operatorname{Re}(z) \leq|z| \leq 2$
(b)

Obviously when $a \geq 0$, we have no roots as all the terms are followed by +ve sign. Also for $a=-2$,
we have
$x^{2}-2|x|+1=0$
or $|x|-1=0 \Rightarrow x= \pm 1$
Hence, the equation has two roots
Also when $a<-2$, for given equation
$|x|=\frac{-a \pm \sqrt{a^{2}-4}}{2}>0$
Hence, the equation has four roots as
$|-a|>\sqrt{a^{2}-4}$. Obviously, the equation has no three real roots for any value of a
385 (a)

1. $z^{4}-1=0 \Rightarrow z^{4}=1=\cos 0+i \sin 0 \Rightarrow$ $z=(\cos 0+i \sin 0)^{1 / 4}$
$=\cos 0+i \sin 0$
2. $z^{4}+1=0 \Rightarrow z^{4}=-1=\cos \pi+$
$i \sin \pi \Rightarrow z=(\cos \pi+i \sin \pi)^{1 / 4}$
$=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
3. $i z^{4}+1=0 \Rightarrow z^{4}=i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \Rightarrow$

$$
z=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{1 / 4}
$$

$=\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}$
4. $\quad i z^{4}-1=0 \Rightarrow z^{4}=-i=\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}$
$\Rightarrow z=\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}\right)^{1 / 4}=\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}$
386 (c)
(A) Here, $\alpha+\beta+\gamma=10$
$\alpha \beta+\beta \gamma+\gamma \alpha=7$
And $\alpha \beta \gamma=-8$
(B) On squaring Eq. (i) both sides, we get
$\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\beta \gamma+\gamma \alpha)=100$
$\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=100-2(7) \quad[$ from Eq.
(ii)]
$\Rightarrow \quad \alpha^{2}+\beta^{2}+\gamma^{2}=86$
(C) Now, $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \beta+\gamma \alpha}{\alpha \beta \gamma}=\frac{7}{-8}$
[from Eqs. (ii) and (iii)]
(D) Again now, $\frac{\alpha}{\beta \gamma}+\frac{\beta}{\alpha \gamma}+\frac{\gamma}{\alpha \beta}$
$=\frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{\alpha \beta \gamma}$
$=\frac{86}{-8}=-\frac{43}{4} \quad$ [from Eqs. (iii) and (iv)]
387 (d)

In parallelogram, the mid-points of diagonals coincide
$\frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}$
$\Rightarrow z_{1}-z_{4}=z_{2}-z_{3}$
Also in parallelogram, $A B \| C D$. Hence,
$\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)=0$
$\Rightarrow \frac{z_{1}-z_{2}}{z_{3}-z_{4}}$ is purely real
In rectangle, adjacent sides are perpendicular.
Hence,
$\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}\right)=\frac{\pi}{2}$
$\Rightarrow \frac{z_{1}-z_{2}}{z_{3}-z_{2}}$ is purely imaginary
Also in rectangle,
$A C=B D \Rightarrow\left|z_{1}-z_{3}\right|=\left|z_{2}-z_{4}\right|$
In rhombus,
$A C \perp B D \Rightarrow \frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is purely imaginary
388 (d)
Using the condition that the roots of $a x^{2}+b x+$ $c=0$ may be in the ratio $m: n$ is $m n b^{2}=$
$a c(m+n)^{2}$
(i) If the roots are $\alpha=\beta$, then
$\alpha . \alpha b^{2}=a c(\alpha+\alpha)^{2}$
$\Rightarrow b^{2}=4 a c$
(ii) If the roots are $\alpha=2 \beta$, then
$\beta .2 \beta b^{2}=a c(\beta+2 \beta)^{2}$
$\Rightarrow 2 b^{2}=9 a c$
(iii) if the roots are $\alpha=3 \beta$, then
$\beta .3 \beta b^{2}=a c(\beta+3 \beta)^{2}$
$\Rightarrow 3 b^{2}=16 a c$
(iv) If the roots are $\alpha=\beta^{2}$, then
$\left(a^{2} c\right)^{\frac{1}{2+1}}+\left(a c^{2}\right)^{\frac{1}{2+1}}=-b$
$\Rightarrow\left(a^{2} c\right)^{\frac{1}{3}}+\left(a c^{2}\right)^{\frac{1}{3}}=-b$
389 (a)
$\because\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$
\therefore They lie on a circle having centre at origin
shown as in the figure

Since, triangle is equilateral
$\therefore z_{1}+z_{2}+z_{3}=0$
390 (b)
Given, $\arg (z)>0$ and $\arg (-z)-\arg (z)=\lambda_{1}$,
then $-\arg z-\arg (-z)]=\lambda 1$
$\Rightarrow-\pi=\lambda_{1} \Rightarrow \lambda_{1}=-\pi$
Again, given $\arg (z)<0, \arg (z)-\arg (-z)=\lambda_{2}$ $\Rightarrow \lambda_{2}=-\pi$
$\therefore \quad \lambda_{1}=\lambda_{2}$
391 (b)
Since, $z^{n}-1=\sum_{r=0}^{n-1}\left(z-\alpha^{r}\right)$
$\Rightarrow \log \left(z^{\mathrm{n}}-1\right)=\sum_{r=0}^{n-1} \log \left(z-\alpha^{r}\right)$
$\Rightarrow \frac{n z^{n-1}}{z^{n}-1}=\sum_{r=0}^{n-1} \frac{1}{\left(z-\alpha^{\mathrm{r}}\right)} \quad$ (diferentiating)
$\Rightarrow \frac{n(2)^{n-1}}{2^{n}-1}=\sum_{r=0}^{n-1} \frac{1}{\left(2-\alpha^{\mathrm{r}}\right)} \quad($ put $z=2)$
$=1+\sum_{r=1}^{n-1} \frac{1}{\left(2-\alpha^{r}\right)}$
$\therefore \sum_{r=1}^{n-1} \frac{1}{\left(2-\alpha^{r}\right)}=\frac{n(2)^{n-1}-2^{n}+1}{\left(2^{n}-1\right)}$
$=\frac{(n-2)-2^{n-1}+1}{2^{n}-1}$
392 (c)
If α, β are the roots and D be the discriminant of the given quadratic equation, then
$\alpha+\beta=\frac{2(1+3 m)}{1+m}, \alpha \beta=\frac{1+8 m}{1+m}$
and $D=4(1+3 m)^{2}-4(1+m)(1+8 m)$
$=4 m(m-3)$
If roots are real, then $D \geq 0$.
$\therefore m \in(-\infty, 0] \cup[3, \infty)$
D<0
$\Rightarrow 4 m(m-3)<0$
$\Rightarrow 0<m<3$
$\Rightarrow m=1,2$
393 (c)
Since, the other roots of $f(f(x))=x$ are λ and δ, we have
$f(f(\lambda))=\lambda$
Let $f(\lambda)=\gamma$
$\Rightarrow f(\gamma)=\lambda \Rightarrow$ other roots γ and δ lie on the line
$y=-x+c$
\Rightarrow There must be two points C and D on the parabola
$y=a x^{2}+b x+c$ which are images of each other in the line $y=x$
\Rightarrow If α, β are real so are λ and δ.

If $\alpha+\beta=\lambda+\delta \Rightarrow$ middle points of $A B$ and $C D$ become same.

This is not possible $\Rightarrow \alpha, \beta$ and γ, δ can't be real. Also α and β are equal, then λ, δ can't be real.
394 (b)
If $x=2+i \sqrt{3}$ is one root, then the other root is $2-i \sqrt{3}$.
Sum of roots $=4 \Rightarrow p=-4$
Product of roots $=7 \Rightarrow q=7$ is given below.
Graph of $y=x^{2}-4 x+7$

Now, $(\beta-\alpha)=[(\beta+\delta)-(\alpha+\delta)]$
$(\beta+\alpha)^{2}-4 \alpha \beta$

$$
\begin{aligned}
& =[(\beta+\delta)+(\alpha+\delta)]^{2} \\
& -4(\beta+\delta)(\alpha+\delta)
\end{aligned}
$$

$\Rightarrow\left(-b_{1}\right)^{2}-4 c_{1}=\left(-b_{2}\right)^{2}-4 c_{2}$
$\Rightarrow D_{1}=D_{2}$
Since, least value of $f(x)$ is
$-\frac{D_{1}}{4}=\frac{-1}{4}$
$\Rightarrow D_{1}=D_{2}=1$
Hence, least value of $g(x)$ is $-D_{2}=-\frac{1}{4}$
(b)

Given that
$\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
$\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
$\Rightarrow z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=0$
$\Rightarrow \frac{z_{1}}{z_{2}}+\frac{\bar{z}_{1}}{z_{2}}=0 \quad$ (dividing by $z_{2} \bar{z}_{2}$)
$\Rightarrow \frac{z_{1}}{z_{2}}+\overline{\left(\frac{z_{1}}{z_{2}}\right)}=0$
From (1), z_{2}, \bar{z}_{2} is purely imaginary. From (2),
z_{1} / z_{2} is purely imaginary. Hence,
$\arg \left(\frac{z_{1}}{z_{2}}\right)= \pm \frac{\pi}{2} \Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)= \pm \frac{\pi}{2}$
Also, $i\left(z_{1} / z_{2}\right)$ is purely real. Hence its possible arguments are 0 and π
397 (a)
$z=\frac{1-i \sin \theta}{1+i \cos \theta}=\frac{(1-i \sin \theta)(1-i \cos \theta)}{(1+i \cos \theta)(1-i \cos \theta)}$
$=\frac{(1-\sin \theta \cos \theta)-i(\cos \theta+\sin \theta)}{\left(1+\cos ^{2} \theta\right)}$
If z is purely real, then
$\cos \theta+\sin \theta=0$
or $\tan \theta=-1$
$\Rightarrow \theta=n \pi-\frac{\pi}{4}, n \in I$

If z is purely imaginary, $1-\sin \theta \cos \theta=0$ or $\sin \theta \cos \theta=1$, which is not possible
$|z|=\left|\frac{1-i \sin \theta}{1+i \cos \theta}\right|=\frac{\sqrt{1+\sin ^{2} \theta}}{\sqrt{1+\cos ^{2} \theta}}$
If $|z|=1$, then
$\cos ^{2} \theta=\sin ^{2} \theta \Rightarrow \tan ^{2} \theta=1 \Rightarrow \theta=n \pi \pm \frac{\pi}{4}, n$ $\in I$
We have,
$\arg (z)=\tan ^{-1}\left(\frac{-(\cos \theta+\sin \theta)}{1-\sin \theta \cos \theta}\right)$
Now,
$\arg (z)=\pi / 4$
$\Rightarrow \frac{-(\cos \theta+\sin \theta)}{(1-\sin \theta \cos \theta)}=1$
$\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta$
$=1+\sin ^{2} \theta \cos ^{2} \theta-2 \sin \theta \cos \theta$
$\Rightarrow 1+4 \sin \theta \cos \theta=1+\sin ^{2} \theta \cos ^{2} \theta$
$\Rightarrow \sin ^{2} \theta \cos ^{2} \theta-4 \sin \theta \cos \theta=0$
$\Rightarrow \sin \theta \cos \theta(\sin \theta \cos \theta-4)=0$
$\Rightarrow \sin \theta \cos \theta=0 \quad(\because \sin \theta \cos \theta=4$ is not possible)
$\Rightarrow \theta=(2 n+1) \pi$ or $\theta=(4 n-1) \pi / 2, n \in I$
$(\because-\cos \theta-\sin \theta>0)$
398 (a)
Let z_{1} (purely imaginary) be a root of the given equation. Then,
$z_{1}=-\bar{z}_{1}$
and
$a z_{1}^{2}+b z_{1}+c=0$
$\Rightarrow a z_{1}^{2}+b z_{1}+c=0$
$\Rightarrow \bar{a} \bar{z}_{1}^{2}+\bar{b} \bar{z}_{1}+\bar{c}=0$
$\Rightarrow \bar{a} z_{1}^{2}-\bar{b} z_{1}+\bar{c}=0 \quad\left(\right.$ as $\left.\bar{z}_{1}=-z_{1}\right)$
Now Eqs. (1) and (2) must have one common root
$\therefore(c \bar{a}-a \bar{c})^{2}=(b \bar{c}-++c \bar{b})(-a \bar{b}-\bar{a} b)$
Let z_{1} and z_{2} be two purely imaginary roots. Then,
$\bar{z}_{1}=-z_{1}, \bar{z}_{2}=-z_{2}$
Now,
$a z^{2}+b z+c=0$
$\Rightarrow a z^{2}+b z+c=\overline{0}$
$\Rightarrow \bar{a} \bar{z}^{2}+\bar{b} \bar{z}+\bar{c}=0$
$\Rightarrow \bar{a} z^{2}-\bar{b} z+\bar{c}=0$
Equations (1) and (2) must be identical as their roots are same,
$\therefore \frac{a}{a}=-\frac{b}{\bar{b}}=\frac{c}{\bar{c}}$
$\Rightarrow a \bar{c}=\bar{a} c, a \bar{b}+\bar{a} b=0$ and $b \bar{c}+\bar{b} c=0$

Hence, $a \bar{c}$ is purely real and $a \bar{b}$ and $\bar{b} c$ are purely imaginary. Let z_{1} (purely real) be a root of the given equation. Then,
$z_{1}=\bar{z}_{1}$
and
$a z_{1}^{2}+b z_{1}+c=0$
$\Rightarrow a z_{1}^{2}+b z_{1}+c=\overline{0}$
$\Rightarrow \bar{a} \bar{z}_{1}^{2}+\bar{b} \bar{z}_{1}+\bar{c}=0$
$\Rightarrow \bar{a} z_{1}^{2}+\bar{b} z_{1}+\bar{c}=0$
Now (1) and (2) must have one common root.
Hence,
$(c \bar{a}-a \bar{c})^{2}=(b \bar{c}-c \bar{b})(a \bar{b}-\bar{a} b)$
399 (c)
$a z+b \bar{z}+c=0$
$\Rightarrow \overline{a z}+\bar{b} z+\bar{c}=0$
Eliminating z from (1) and (2), we get
$z=\frac{c \bar{a}-b \bar{c}}{|b|^{2}-|a|^{2}}$
If $|a| \neq|b|$, then z represents one point on the Argand plane. If $|a|=|b|$ and $\bar{a} c \neq b \bar{c}$, then no such z exists. Adding (1) and (2)
$(\bar{a}+b) \bar{z}+(a+\bar{b}) z+(c+\bar{c})=0$
This is of the form $A \bar{z}+\bar{A} z+B=0$, where
$B=c+\bar{c}$ is real. Hence locus of z is a straight line
400 (a)
$z=-\lambda \pm \sqrt{\lambda^{2}-1}$

Case I:

When $-1<\lambda<1$, we have
$\lambda^{2}<1 \Rightarrow \lambda^{2}-1<0$
$z=-\lambda \pm i \sqrt{1-\lambda^{2}}$ or $x=-\lambda, y= \pm \sqrt{1-\lambda^{2}}$
$\Rightarrow y^{2}=1-x^{2}$ or $x^{2}+y^{2}=1$

Case II:

$\lambda>1 \Rightarrow \lambda^{2}-1>0$
$z=-\lambda \pm \sqrt{\lambda^{2}-1}$ or $x=-\lambda \pm \sqrt{\lambda^{2}-1}, y=0$
Roots are $\left(-\lambda,+\sqrt{\lambda^{2}-1}, 0\right),\left(-\lambda,-\sqrt{\lambda^{2}-1}, 0\right)$.
One root lies inside the unit circle and the other root lies outside the unit circle

Case III:

When λ is very larger, then
$z=-\lambda-\sqrt{\lambda^{2}-1} \approx-2 \lambda$
$z=-\lambda+\sqrt{\lambda^{2}-1}$

$$
=\frac{\left(-\lambda+\sqrt{\lambda^{2}-1}\right)\left(-\lambda-\sqrt{\lambda^{2}-1}\right)}{\left(-\lambda-\sqrt{\lambda^{2}-1}\right)}
$$

$=\frac{1}{-\lambda-\sqrt{\lambda^{2}-1}}=-\frac{1}{2 \lambda}$

401 (d)

We have,
$a z^{2}+z+1=0$
$\Rightarrow a z^{2}+z+1=0$
(taking conjugate of both
sides)
$\Rightarrow \bar{a} z^{2}-z+1=0$
[since z is purely imaginary $\bar{z}=-z$]
Eliminating z from (1) and (2) by cross-
multiplication rule,
$(\bar{a}-a)^{2}+2(a+\bar{a})=0 \Rightarrow\left(\frac{\bar{a}-a}{2}\right)^{2}+\frac{a+\bar{a}}{2}=0$
$\Rightarrow-\left(\frac{a-\bar{a}}{2 i}\right)^{2}+\left(\frac{a+\bar{a}}{2}\right)=0 \Rightarrow-\sin ^{2} \theta+\cos \theta$
$=0$
$\Rightarrow \cos \theta=\sin ^{2} \theta$
Now, $f(x)=x^{3}-3 x^{2}+3(1+\cos \theta) x+5$
$f^{\prime}(x)=3 x^{2}-6 x+3(1+\cos \theta)$
Its discriminant is
$36-36(1+\cos \theta)=-36 \cos \theta=-36 \sin ^{2} \theta<0$ $\Rightarrow f^{\prime}(x)>0 \forall x \in R$
Hence, $f(x)$ is increasing $\forall x \in R$. Also, $f(0)=5$, then $f(x)=0$ has one negative root. Now,
$\cos 2 \theta=\cos \theta \Rightarrow 1-2 \sin ^{2} \theta=\cos \theta$
$\Rightarrow 1-2 \cos \theta=\cos \theta$
$\Rightarrow \cos \theta=1 / 3$
Which has four roots for $\theta \in[0,4 \pi]$
402 (a)

We have,
$\left||z|-\left|\frac{4}{z}\right|\right| \leq\left|z-\frac{4}{z}\right|=2$
$\Rightarrow-2 \leq|z|-\frac{4}{|z|} \leq 2$
$\Rightarrow|z|^{2}+2|z|-4 \geq 0$ and $|z|^{2}-2|z|-4 \leq 0$
$\Rightarrow(|z|+1)^{2}-5 \geq 0$ and $(|z|-1)^{2} \leq 5$
$\Rightarrow(|z|+1+\sqrt{5})(|z|+1-\sqrt{5}) \geq 0$
and $(|z|-1+\sqrt{5}) \times(|z|-1-\sqrt{5}) \leq 0$
$\Rightarrow|z| \leq-\sqrt{5}-1$ or $|z| \geq \sqrt{5}-1$ and $\sqrt{5}-1 \leq$
$|z| \leq \sqrt{5}+1$
$\Rightarrow \sqrt{5}-1 \leq|z| \leq \sqrt{5}+1$
Hence, the least modulus is $\sqrt{5}-1$ and the greatest modulus is $\sqrt{5}+1$. Also,
$|z|=\sqrt{5}+1 \Rightarrow \frac{4}{|z|}=\sqrt{5}-1$
Now,
$\frac{4}{z}=\frac{4 \bar{z}}{|z|^{2}}$
Hence, $4 / z$ lies in the direction of \bar{z}
$\left|z-\frac{4}{z}\right|=P R=2 \quad$ (given)
We have,
$O P=\sqrt{5}+1$ and $O R=\sqrt{5}-1$
$\Rightarrow \cos 2 \theta=\frac{O P^{2}+O R^{2}-P R^{2}}{2 O P \cdot O R}$
$=\frac{(\sqrt{5}+1)^{2}+(\sqrt{5}-1)^{2}-4}{2(5-1)}=1$
$\Rightarrow 2 \theta=0,2 \pi$
$\Rightarrow \theta=0, \pi$
$\Rightarrow z$ is purely real
$\Rightarrow z= \pm(\sqrt{5}+1)$
Similarly for $|z|=\sqrt{5}-1$, we have $z= \pm(\sqrt{5}-1)$
403 (a)
$B M \equiv y-0=-1(x-1)$
$x+y=1$
$\therefore \sqrt{u-1}=t+i(1-t)$
$u=2 t+2 i t(1-t)$
$x=2 t$ and $y=2 t(1-t)$
$y=x(1-x / 2)$
$2 y=2 x-x^{2}$
$\Rightarrow(x-1)^{2}=-2\left(y-\frac{1}{2}\right)$
Which is a parabola. Its axis is $x=1$, i.e, $z+\bar{z}=2$ and directrix is $y=1$, i.e, $z-\bar{z}=2 i$
404 (a)

$\frac{A B \times A C}{(I A)^{2}}=\frac{A B}{I A} \times \frac{A C}{I A}$
$\angle I A B=\frac{\theta}{2}, \angle I A C=\frac{\theta}{2}$
$\frac{z_{2}-z_{1}}{z_{4}-z_{1}}=\frac{\left|z_{2}-z_{1}\right|}{\left|z_{4}-z_{1}\right|} e^{-\frac{i \theta}{2}}$
and
$\frac{z_{3}-z_{1}}{z_{4}-z_{1}}=\frac{\left|z_{3}-z_{1}\right|}{\left|z_{4}-z_{1}\right|} e^{\frac{i \theta}{2}}$
Multiplying,
$\frac{z_{2}-z_{1}}{z_{4}-z_{1}} \frac{z_{3}-z_{1}}{z_{4}-z_{1}}=\frac{\left|z_{2}-z_{1}\right|}{\left|z_{4}-z_{1}\right|} \frac{\left|z_{3}-z_{1}\right|}{\left|z_{4}-z_{1}\right|}$
$\Rightarrow \frac{\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)}{\left(z_{4}-z_{1}\right)^{2}}=\frac{A B \times A C}{I A^{2}}$
405 (d)
$\angle B O D=2 \angle B A D=A$
$\angle C O D=2 \angle C A D=A$

$\frac{z_{4}}{z_{2}}=e^{i A}, \frac{z_{3}}{z_{4}}=e^{i A} \quad$ (From rotation about the point ' 0 ')
$\Rightarrow z_{4}^{2}=z_{2} z_{3}$
406
(d)

Let unknown polynomial be $P(x)$. Let $Q(x)$ and $R(x)$ be the quotient and remainder, respectively, when it is divided by $(x-3)(x-4)$. Then,
$P(x)=(x-3)(x-4) Q(x)+R(x)$
Then, we have
$R(x)=a x+b$
$\Rightarrow P(x)=(x-3)(x-4) Q(x)+a x+b$
Given that $P(3)=2$ and $P(4)=1$. Hence,
$3 a+b=2$ and $4 a+b=1$
$\Rightarrow a=-1$ and $b=5$
$\Rightarrow R(x)=5-x$
$5-x=x^{2}+a x+1 \Rightarrow x^{2}+(a+1) x-4=0$
Given that roots are real and distinct
$\therefore D>0 \Rightarrow(a+1)^{2}+16>0$
Which is true or all real x

407 (d)
$a x^{2}-b x+c=0$

Let $f(x)=a x^{2}-b x+c$ be the corresponding quadratic expression and α, β be the roots of $f(x)=0$. Then,
$f(x)=a(x-\alpha)(x-\beta)$
Now,
$a f(1)>0, a f(2)>0,1<\frac{b}{2 a}<2, b^{2}-4 a c>0$
$\Rightarrow a(1-\alpha)(1-\beta)>0, a(2-\alpha)(2-\beta)>0,2 a$
$<b<4 a, b^{2}-4 a c>0$
$\Rightarrow a^{2}(1-\alpha)(1-\beta)(2-\alpha)(2-\beta)>0$
$\Rightarrow a^{2}(\alpha-1)(2-\alpha)(\beta-1)(2-\beta)>0$

As $f(1)$ and $f(2)$ both are integers and $f(1)>0$,
and $f(2)>0$, so $f(1) f(2)>0$
$\Rightarrow f(1) f(2) \geq 1$
$\Rightarrow 1 \leq a^{2}(\alpha-1)(2-\alpha)(\beta-1)(2-\beta)$
Now,
$\frac{(\alpha-1)+(2-\alpha)}{2} \geq((\alpha-1)(2-\alpha))^{1 / 2}$
$\Rightarrow(\alpha-1)(2-\alpha) \leq \frac{1}{4}$
Similarly, $(\beta-1)(2-\beta) \leq \frac{1}{4}$
$\Rightarrow(\alpha-1)(2-\alpha)(\beta-1)(2-\beta)<\frac{1}{16}$
As $\alpha \neq \beta$, so
$a^{2}>16 \Rightarrow a \geq 5$
$\Rightarrow b^{2}>20 c$ and $b>10 \Rightarrow b \geq 11$
Also, $b^{2}>100 \Rightarrow c>5 \Rightarrow c \geq 6$
408 (c)
Given equation is
$x^{4}+2 a x^{3}+x^{2}+2 a x=0$
or $\left(x^{2}+\frac{1}{x^{2}}\right)+2 a\left(x+\frac{1}{x}\right)+1=0$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}+2 a\left(x+\frac{1}{x}\right)-1=0$
$\Rightarrow t^{2}+2 a t-1=0$
Where $t=x+(1 / x)$. Now,
$\left(x+\frac{1}{x}\right) \geq 2$
or $\left(x+\frac{1}{x}\right) \leq-2$
$\therefore t \geq 2$ or $t \leq-2$
Now, eq. (1) will have at least two positive roots, when at least one root of Eq. (2) will be greater
than 2. From eq. (2),
$D=4 a^{2}-4(-1)=4\left(1+a^{2}\right)>0, \forall a \in R$
Let the roots of eq. (2) be α, β. If $\alpha, \beta \leq 2$, then
$\Rightarrow f(2) \geq 0$ and $\frac{-B}{2 A}<2$
$\Rightarrow 4+4 a-1 \geq 0$ and $-\frac{2 a}{2}<2$
$\Rightarrow a \geq-\frac{3}{4}$ and $a>-2$
$\Rightarrow a \geq-\frac{3}{4}$
Therefore, at least one root will be greater than 2 .
Then,
$a<-\frac{3}{4}$
Combining (3) and (4), we get
$a<-\frac{3}{4}$
Hence, at least one root will be positive if
$a \in[-\infty,-(3 / 4)]$
409 (a)
$(\beta-\alpha)=((\beta+h)-(\alpha+h))$
$(\beta+\alpha)^{2}-4 \alpha \beta$

$$
\begin{aligned}
& \quad=[(\beta+h)+(\alpha+h)]^{2} \\
& -4(\beta+h)(\alpha+h) \\
& \left(-b_{1}\right)^{2}-4 c_{1}=\left(-b_{2}\right)^{2}-4 c_{2} \\
& D_{1}=D_{2}
\end{aligned}
$$

The least value of $f(x)$ is
$-\frac{D_{1}}{4}=-\frac{1}{4} \Rightarrow D_{1}=1$ and $D_{2}=1$
Therefore, the least value of
$g(x)$ is $-\frac{D_{2}}{4}=-\frac{1}{4}$
The least value of $\mathrm{g}(x)$ occurs at
$-\frac{b_{2}}{2}=\frac{7}{2} \Rightarrow b_{2}=-7$
$\Rightarrow b_{2}^{2}-4 c_{2}=D_{2}$
$\Rightarrow 49-4 c_{2}=1 \Rightarrow \frac{48}{4}=c_{2} \Rightarrow c_{2}=12$
$\Rightarrow x^{2}-7 x+12=0 \Rightarrow x=3,4$
410 (d)
$\because A C=4 \sqrt{2}$
$\therefore A B=B C=\frac{4 \sqrt{2}}{\sqrt{2}}=4$ units
$O B=\sqrt{4^{2}-(2 \sqrt{2})^{2}}=2 \sqrt{2}$
$\therefore A(-2 \sqrt{2}, 0), B(2 \sqrt{2}, 0), C(0,-2 \sqrt{2})$
Since $y=a x^{2}+b x+c$ passes through A, B and C, we get $y=\frac{x^{2}}{2 \sqrt{2}}-2 \sqrt{2}$
411 (d)
Given that $9^{x}-a 3^{x}-a+3 \leq 0$
Let $t=3^{x}$. Then,
$t^{2}-a t-a+3 \leq 0$
or $t^{2}+3 \leq a(t+1)$
Where $t \in R^{+}, \forall x \in R$

Let $f_{1}(t)=t^{2}+3$ and $f_{2}(t)=a(t+1)$
For $x<0, t \in(0,1)$. That means (1) should have at least one solution in $t \in(0,1)$. From (1), it is obvious that $a \in R^{+}$. Now $f_{2}(t)=a(t+1)$ represents a straight line. It should meet the curve $f_{1}(t)=t^{2}+3$, at least once in $t \in(0,1)$
$f_{1}(0)=3, f_{1}(1)=4, f_{2}(0)=a, f_{2}(1)=2 a$
If $f_{1}(0)=f_{2}(0)$, Then $a=3$; if $f_{1}(1)=f_{2}(1)$, then $a=2$. Hence, the required range is $a \in(2,3)$

Let $f(x)=x^{2}+x+a-9$
$x^{2}+x+a-9<0$ has at least one positive solution, then either both the roots of equation $x^{2}+x+a-9=0$ are non-negative or 0 lies between the roots

(i)

(ii)

Now sum of roots $=-\frac{1}{2}$, hence case I is not possible. For case II,
$f(0)<0 \Rightarrow a-9<0 \Rightarrow a<9$
413 (b)
$b^{2}>(a+c)^{2}$
$\Rightarrow(a+c-b)(a+c+b)<0$
$\Rightarrow f(-1) f(1)<0$
So, there is exactly one root in $(-1,1)$
414 (a)
From the question, the real roots of $x^{3}-x^{2}+$ $\beta x+\gamma=0$ are x_{1}, x_{2}, x_{3} and they are in A.P. As x_{1}, x_{2}, x_{3} are in A.P., let $x_{1}=a-d, x_{2}=a, x_{3}=$ $a+d$. Now,
$x_{1}+x_{2}+x_{3}=-\frac{-1}{1}=1$
$\Rightarrow a-d+a+a+d=1$
$\Rightarrow a=\frac{1}{3}$ (1)
$x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=\frac{\beta}{1}=\beta$
$\Rightarrow(a-d) a+a(a+d)+(a+d)(a-d)=\beta$
$x_{1} x_{2} x_{3}=-\frac{\gamma}{1}=-\gamma$
$\Rightarrow(a-d) a(a+d)=-\gamma$
From (1) and (2), we get
$3 a^{2}-d^{2}=\beta$
$\Rightarrow 3 \frac{1}{9}-d^{2}=\beta$, so $\beta=\frac{1}{3}-d^{2}<\frac{1}{3}$
From (1) and (3), we get
$\frac{1}{3}\left(\frac{1}{9}-d^{2}\right)=-\gamma$
$\Rightarrow \gamma=\frac{1}{3}\left(d^{2}-\frac{1}{9}\right)>\frac{1}{3}\left(-\frac{1}{9}\right)=-\frac{1}{27}$
$\gamma \in\left(-\frac{1}{27},+\infty\right)$

Given $\alpha \beta ; \alpha \beta(\alpha+\beta) ; \alpha^{3}+\beta^{3}$ are in G.P.
$\alpha+\beta=4 ; \alpha \beta=k ; \alpha \beta^{2}+\alpha^{2} \beta=\alpha \beta(\alpha+\beta)$

$$
=4 k
$$

$\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
$=64-3 k(4)=4(16-3 k)$
$\therefore k ; 4 k ; 4(16-3 k)$ are in G.P.
$16 k^{2}=4 k(16-3 k)$
$4 k(4 k-16+3 k)=0$
$k=0 ; k=\frac{16}{7}$
416 (3)
Clearly, $P(x)-x^{3}=0$ has roots $1,2,3,4$
$\therefore P(x)-x^{3}=(x-1)(x-2)(x-3)(x-4)$
$\Rightarrow P(x)=(x-1)(x-2)(x-3)(x-4)+x^{3}$
Hence, $P(5)=1 \times 2 \times 3 \times 4+125=129$
417 (1)
Let $z=a+i b$
Given $|z|=2 \Rightarrow a^{2}+b^{2}=4 \Rightarrow a, b \in[-2,2]$
Now $w=\frac{(a+1)+i b}{(a-1)+i b}$;
$\Rightarrow|w|=\sqrt{\frac{(a+1)^{2}+b^{2}}{(a-1)^{2}+b^{2}}}$
$=\sqrt{\frac{a^{2}+b^{2}+2 a+1}{a^{2}+b^{2}-2 a+1}}=\sqrt{\frac{5+2 a}{5-2 a}}$
$|w|_{\text {max }}=\sqrt{\frac{5+4}{1}}=3 \quad($ when $a=2)$
$|w|_{\text {min }}=\sqrt{\frac{5-4}{9}}=\frac{1}{3} \quad($ when $a=-2)$
Hence, required product is 1
418 (3)
$2 x^{2}+4 x(y-3)+7 y^{2}-2 y+t=0$
$D=0$ (for one solution)
$\Rightarrow 16(y-3)^{2}-8\left(7 y^{2}-2 y+t\right)=0$
$\Rightarrow 2(y-3)^{2}-\left(7 y^{2}-2 y+t\right)=0$
$\Rightarrow 2\left(y^{2}-6 y+9\right)-\left(7 y^{2}-2 y+t\right)=0$
$\Rightarrow-5 y^{2}-10 y+18-t=0$
$\Rightarrow 5 y^{2}+10 y+t-18=0$
Again $D=0$ (for one solution)
$\Rightarrow 100-20(t-18)=0$
$\Rightarrow 5-t+18=0$
$\Rightarrow t=23$
For $t=23 ; 5 y^{2}+10 y+5=0$
$(y+1)^{2}=0 \Rightarrow y=-1$
For $y=-1 ; 2 x^{2}-16 x+32=0$
$x^{2}-8 x+16=0$
$x=4 \Rightarrow x+y=3$
419 (4)
$f(x)=a x^{2}-(3+2 a) x+6$
$=(a x-3)(x-2)$
Here, roots of the equation $f(x)=0$ are 2 and $3 / a$, and $f(0)=6 . f(x)$ should be positive for exactly three negative integral values of x Therefore, graph of $f(x)$ must be a downward parabola passing through $x=2$ and $x=3 / a$ and $-4 \leq \frac{3}{a}<-3$
$\therefore a \in\left(-1-\frac{3}{4}\right]$

$\therefore c=-1, d=-\frac{3}{4}$
$\Rightarrow c^{2}+4|d|=1+3=4$
420 (3)
We have $P(x)=\frac{5}{2}-6 x-9 x^{2}=-(3 x+1)^{2}+\frac{8}{3}$
$\Rightarrow P_{\text {max }}=\frac{8}{3}$
Similarly, $Q(y)=-4 y^{2}+4 y+\frac{13}{2}=-(2 y-$
$12+152$
$\Rightarrow Q_{\max }=\frac{15}{2}$
Now, $P_{\text {max }} \times Q_{\text {max }}=\frac{8}{3} \times \frac{15}{2}=20$
So $(x, y) \equiv\left(-\frac{1}{3}, \frac{1}{2}\right)$
Hence, $6 x+10 y=6\left(\frac{-1}{3}\right)+10\left(\frac{1}{2}\right)=-2+5=3$
421 (8)
$\operatorname{Let}\left(a+\frac{1}{a}\right)=t$
$\Rightarrow a^{3}+\frac{1}{a^{3}}=18$
$t^{3}-3 t-18=0$
$t=3$ satisfies (1)
Hence factorizing (1)
$(t-3)\left(t^{2}+3 t+6\right)=0$
$t=3$ only is the solution
$\therefore a+\frac{1}{a}=3 \Rightarrow a^{2}+\frac{1}{a^{2}}=7 \Rightarrow a^{4}+\frac{1}{a^{4}}=47$
422 (6)
We have $|a \omega+b|=1$
$\Rightarrow|a \omega+b|^{2}=1$
$\Rightarrow(a \bar{\omega}+b)=1$
$\Rightarrow a^{2}+a b(\omega+\bar{\omega})+b^{2}=1$
$\Rightarrow a^{2}-a b+b^{2}=1$
$\Rightarrow(a-b)^{2}+a b=1$
When $(a-b)^{2}=0$ and $a b=1$ then
$(1,1) ;(-1,-1)$
When $(a-b)^{2}=1$ and $a b=0$ then $(0,1) ;(1,0)$;
$(0,-1) ;(-1,0)$
Hence there are 6 ordered pairs
423 (4)
$=\left[\frac{1+\cos \theta+i \sin \theta}{\sin \theta+i(1+\cos \theta)}\right]^{4}$
$=i^{4}\left[\frac{1+\cos \theta+i \sin \theta}{i \sin \theta+i^{2}(1+\cos \theta)}\right]^{4}$
$=\left[\frac{2 \cos ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}-i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right]$
$=\left[\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\cos \frac{\theta}{2}-i \sin \frac{\theta}{2}}\right]^{4}$
$=\left[\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)^{2}\right]^{4}$
$=\cos 8 \frac{\theta}{2}+i \sin 8 \frac{\theta}{2}=\cos 4 \theta+i \sin 4 \theta \Rightarrow n=4$
424 (3)
$(1+r i)^{3}=s(1+i)$
$\Rightarrow 1+3 r i+3 r^{2} i^{2}+r^{3} i^{3}=s(1+i)$
$\Rightarrow 1-3 r^{2}+i\left(3 r-r^{3}\right)=s+s i$
$\Rightarrow 1-3 r^{2}=s=3 r-r^{3}$
Hence, $1-3 r^{2}=3 r-r^{3}$
$\Rightarrow r^{3}-3 r^{2}-3 r+1=0$
\Rightarrow sum of three roots is 3
425 (3)
The given equation $x+\frac{1}{x}=3$
$\therefore x^{2}+\frac{1}{x^{2}}=7 \Rightarrow x^{4}+\frac{1}{x^{4}}=47 \Rightarrow x^{8}+\frac{1}{x^{8}}$

$$
\begin{equation*}
=(47)^{2}-2 \tag{1}
\end{equation*}
$$

$\therefore x^{8}+x^{-8}=2207$
Now $E=x^{9}+x^{7}+x^{-9}+x^{-7}$

$$
\begin{align*}
& =x^{8}\left(x+\frac{1}{x}\right)+x^{-9}+x^{-7} \\
& \quad=x^{8}\left(x+\frac{1}{x}\right)+x^{-8}\left(x+\frac{1}{x}\right) \\
& E=\left(x+\frac{1}{x}\right)\left(x^{8}+x^{-8}\right) \tag{2}
\end{align*}
$$

Substitute the value of $x^{8}+x^{-8}=2207$ from (1) and $x+\frac{1}{x}=3$
$E=(3)(2207)=6621$
426 (6)
Let $z=x+i y$
$\therefore E=z \bar{z}+(z-3)(\bar{z}-3)+(z-6 i)(\bar{z}+6 i)$
$=3 z \bar{z}-3(z+\bar{z})+9+6(z-\bar{z}) i+36$
$=3\left(x^{2}+y^{2}\right)-6 x-12 y+45$
$=3\left[x^{2}+y^{2}-2 x-4 y+15\right]$
$=3\left[(x-1)^{2}+(y-2)^{2}+10\right]$
$\therefore E_{\text {min }}=30$ when $x=1$ and $y=2$
427 (7)
Let $E=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Now $3+E=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1$
$\Rightarrow 3+E=(a+b+c)\left[\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right]$
$\Rightarrow 3+E=3 \times \frac{10}{3}=10 \Rightarrow E=7$
428 (6)
$a^{2} \geq 8 b$ and $4 b^{2} \geq 4 a$
Now $b^{2} \geq a \Rightarrow b^{4} \geq a^{2} \geq 8 b(a>0, b>0)$
$\therefore \Rightarrow b^{3} \geq 8 \Rightarrow b \geq 2$ (1)
Again $a^{2} \geq 8 b$ and $b \geq 2$
$\Rightarrow a^{2} \geq 16$
$\Rightarrow a \geq 4$
From (1) and (2), $(a+b)_{\text {least }}=6$
429 (7)
Given $a+b+c=1$ (1)
$a b+b c+c a=0$
$a b c=2$
Now $(a+b+c)^{2}=1$
$a^{2}+b^{2}+c^{2}+2 \sum a b=1$
$\therefore a^{2}+b^{2}+c^{2}=1$
Now, $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left[\sum a^{2}-\right.$ $a b$
$=1(1-0)=1$
$a^{3}+b^{3}+c^{3}=1+3 a b c=1+3 \times 2=7$
430 (2)
We have $x_{2}+x_{2}+x_{3}=8$
$x_{1} x_{2} x_{3}=d$
$x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=c$
Possible roots 1, 2, 5 or 1, 3, 4
$\therefore d=10$ or $d=12$
$\Rightarrow c=2+10+5=17$ or $3+12+4=19$
Hence, $d=10$ and $c=17$ or $d=12$ and $c=19$
431 (4)
We have $|z|^{2}+\frac{16}{|z|^{3}}=z^{2}-4 z=\bar{z}^{2}-4 \bar{z}$
$\Rightarrow(z-\bar{z})(z+\bar{z}-4)=0$
$\Rightarrow z=\bar{z}=x(x \neq 2)$
So, $x^{2}=4 x+x^{2}+\frac{16}{|x|^{3}}$
$\Rightarrow x=\frac{-4}{|x|^{3}} \Rightarrow x=-\sqrt{2}$
$\therefore z=-\sqrt{2}$
$\therefore|z|^{4}=4$
432 (3)
$x^{2}+x(y-a)+y^{2}-a y+1 \geq 0 x \in R$
$\Rightarrow(y-a)^{2}-4\left(y^{2}-a y+1\right) \leq 0$
$\Rightarrow-3 y^{2}+2 a y+a^{2}-4 \leq 0$
$\therefore 3 y^{2}-2 a y+4-a^{2} \geq 0 y \in R$
$D \leq 0$
$\Rightarrow 4 a^{2}-4.3\left(4-a^{2}\right) \leq 0 \Rightarrow a^{2}-3\left(4-a^{2}\right) \leq 0$ $\Rightarrow 4 a^{2}-12 \leq 0$
\therefore range of $a \in(-\sqrt{3}, \sqrt{3}) \Rightarrow$ number of integer $\{-1,0,1\}$
433 (8)
As $P(1)=0$
and $p(x) \geq 0$ hence let $p(x)=k(x-1)^{2}, k>0$

$p(2)=k=2 \Rightarrow k=2$
$\therefore p(x)=2(x-1)^{2} \Rightarrow p(3)=8$
434 (6)
$x^{2}+a x+b \equiv(x+1)(x+b) \Rightarrow b+1=a$ (1)
Also $x^{2}+b x+c \equiv(x+1)(x+c) \Rightarrow c+1=b$
or $b+1=c+2$ (2)
hence $b+1=a=c+2$
also $(x+1)(x+b)(x+c) \equiv x^{3}-4 x^{2}+x+6$
$\Rightarrow x^{3}+(1+b+c) x^{2}+(b+b c+c) x+b c$

$$
\equiv x^{3}-4 x^{2}+x+6
$$

$\Rightarrow 1+b+c=-4$
$\Rightarrow 2 c+2=-4 \Rightarrow c=-3 ; b=-2$ and $a=-1$
$\Rightarrow a+b+c=-6$
435 (3)
Let $a^{2}+b^{2}=x$
$1-2 a b=(a+b)^{2}-2 a b=a^{2}+b^{2}$

$$
=x(a+b=1)
$$

Also $a b=\frac{1-x}{2}$
and $a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
$a^{3}+b^{3}=x-a b$
But $a b=\frac{1-x}{2}$
Hence $a^{3}+b^{3}=x-\frac{1-x}{2}=\frac{3 x-1}{2}$
Hence the equation
$(1-2 a b)\left(a^{3}+b^{3}\right)=12$, becomes
$x\left(\frac{3 x-1}{2}\right)=12$
$\Rightarrow 3 x^{2}-x-24=0$
$\Rightarrow(x-3)(3 x+8)=0$
$\Rightarrow x=3$ or $x=-\frac{8}{3}$ (not possible) as $x=a^{2}+$ $b^{2}<0$
$\therefore x=3 \Rightarrow a^{2}+b^{2}=3$
436 (2)
$(x+y+z)^{2}=144$ (given)
$\Rightarrow \sum x^{2}+2 \sum x y=144$
$\Rightarrow 96+2 \sum x y=144 \Rightarrow \sum x y=24$
Again $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=36 \Rightarrow x y z=\frac{24}{36}=\frac{2}{3}$
Now $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+$
z) $\left(\sum x^{2}-\sum x y\right)$
$\Rightarrow \sum x^{3}-2=(12)(96-24)=(12)(72)=864$
$\Rightarrow \sum x^{3}=866$
437 (3)
$|z-2-2 i| \leq 1$

Denotes the region inside a circle with centre (2,
2) and radius is 1
$|2 i z+4|=|2 i(2-2 i)|$
$=|2 i||z-2 i|$
$=2|z-2 i|$
$|z-2 i|=$ distance of z from $P(0,2)$
Hence, maximum value is 3
438 (5)
$|3 z+9-7 i|=|(3 z+6-3 i)+(3-4 i)|$
$\leq|3 z+6-3 i|+|3-4 i|$
$=3|z+2-i|+5$
$=20$
439 (3)
We have $a b c+1=\frac{b c}{5}=\frac{-a c}{15}=\frac{a b}{3}$
$\Rightarrow \frac{a}{b}=-3$ and $\frac{c}{b}=-5$
Now $\frac{c-b}{c-a}=\frac{\frac{c}{b}-1}{\frac{c}{b}-\frac{a}{b}}=\frac{-5-1}{-5-(-3)}=3$
440 (7)
We have
$x^{3}-y^{3}=98 i$
$\Rightarrow(x-y)^{3}+3 x y(x-y)=98 i$
$\Rightarrow-343 i+3(a+i b)(7 i)=98 i$
$\Rightarrow-343+3(a+b i) 7=98$
$\Rightarrow a+i b=21$
$\Rightarrow a=21$ and $b=0$
$\Rightarrow a+b=21$
441 (8)
$x^{2}+m x+n=0<_{2 \beta}^{2 \alpha}$ and $x^{2}+p x+m=0 \ll_{\beta}^{\alpha}$
$2(\alpha+\beta)=-m$
$4 \alpha \beta=n$ (2)
and $\alpha+\beta=-p$
$\alpha \beta=m$
\therefore (1) and (3) $\Rightarrow 2 p=m$
and (2) and (4) $\Rightarrow 4 m=n$
$\Rightarrow \frac{n}{p}=\frac{4 m}{m / 2}=8$
442 (9)
Let $z=a+b i$
$\Rightarrow|z|^{2}=a^{2}+b^{2}$
Now $z+|z|=2+8 i$
$\Rightarrow a+b i+\sqrt{a^{2}+b^{2}}=2+8 i$
$\Rightarrow a+\sqrt{a^{2}+b^{2}}=2, b=8$
$\Rightarrow a+\sqrt{a^{2}+64}=2$
$\Rightarrow a^{2}+64=(2-a)^{2}=a^{2}-4 a+4$,
$\Rightarrow 4 a=-60, a=-15$
Thus, $a^{2}+b^{2}=225+64=289$
$\therefore|z|=\sqrt{a^{2}+b^{2}}=\sqrt{289}=17$
443 (9)
Let $\alpha_{1}=A, \beta_{1}=\mathrm{AR}, \alpha_{2}=\mathrm{AR}^{2}, \beta_{2}=\mathrm{AR}^{3}$
We have $\alpha_{1}+\beta_{1}=6 \Rightarrow A(1+R)=6$ (1)
$\alpha_{1} \beta_{1}=p \Rightarrow A^{2} R=p$ (2)
Also $\alpha_{2}+\beta_{2}=54 \Rightarrow \mathrm{AR}^{2}(1+R)=54$
$\alpha_{2} \beta_{2}=q \Rightarrow A^{2} R^{5}=q$ (4)
Now, on dividing Eq. (3) by Eq. (1), we get
$\frac{A R^{2}(1+R)}{A(1+R)}=\frac{54}{6}=9 \Rightarrow R^{2}=9$
$\therefore R=3$ (As it is an increasing G.P.)
\therefore On putting $R=3$ in eq. (1), we get
$A=\frac{6}{4}=\frac{3}{2}$
$\therefore p=A^{2} R=\frac{9}{4} \times 3=\frac{27}{4}$ and $q=A^{2} R^{5}=\frac{9}{4} \times$
$243=\frac{2187}{4}$
Hence, $q-p=\frac{2187-27}{4}=\frac{2160}{4}=540$
444 (3)
$f(x)=(x-1)\left(x^{2}-7 x+13\right)$
For $f(x)$ to be prime at least one of the factors
must be prime
Hence, $x-1=1 \Rightarrow x=2$ or
$x^{2}-7 x+13=1 \Rightarrow x^{2}-7 x+12=0 \Rightarrow x=3$
or 4
$\Rightarrow x=2,3,4$
445 (4)
$x^{1 / 8}=\left(3 x^{4}+4\right)^{1 / 64} \Rightarrow x^{8}=3 x^{4}+4 \Rightarrow x^{4}=4$
446
For two distinct roots, $D>0$ i.e., $k^{2}+$
$8\left(k^{2}+5\right)>0$ which is always true
Also let $f(x)=-2 x^{2}+k x+k^{2}+5=0$
But $f(0)>0$ and $f(2)<0$

$-8+2 k+k^{2}+5<0 \Rightarrow k^{2}+2 k-3<0$
$\Rightarrow(k+3)(k-1)<0$
$k \in(-3,1) \Rightarrow a=-3 ; b=1 \Rightarrow a+10 b$

$$
=-3+10=7
$$

447 (1)
$z^{4}+z^{3}+z^{2}+z^{2}+z+1=0$
$\Rightarrow\left(z^{2}\left(z^{2}+z+1\right)+\left(z^{2}+z+1\right)=0\right.$
$\Rightarrow\left(z^{2}+z+1\right)\left(z^{2}+1\right)=0$
$\therefore z=\mathrm{i},-\mathrm{i}, \omega, \omega^{2}$. For each, $|z|=1$
448 (5)
$Z_{1}=(8 \sin \theta+7 \cos \theta)+i(\sin \theta+4 \cos \theta)$
$Z_{2}=(\sin \theta+4 \cos \theta)+i(8 \sin \theta+4 \cos \theta)$
Hence, $Z_{1}=x+i y$ and $Z_{2}=y+i x$
Where $x=(8 \sin \theta+7 \cos \theta)$ and $y=(\sin \theta+$ $4 \cos \theta$)
$Z_{1} \cdot Z_{2}=(x y-x y)+i\left(x^{2}+y^{2}\right)=i\left(x^{2}+y^{2}\right)$

$$
=a+i b
$$

$\Rightarrow a=0 ; b=x^{2}+y^{2}$
Now, $x^{2}+y^{2}=(8 \sin \theta+7 \cos \theta)^{2}+$
$(\sin \theta+4 \cos \theta)^{2}$
$=65 \sin ^{2} \theta+65 \cos ^{2} \theta+120 \sin \theta \cdot \cos \theta$
$=65+60 \sin 2 \theta$
$\left.\Rightarrow Z_{1} \cdot Z_{2}\right|_{\text {max }}=125$
449 (3)
$n, n+1, n+2$
sum $=3(n+1)=-a$
$\therefore a^{2}=9(n+1)^{2}$
Sum of the roots taken 2 at a time $= \pm b$
$\therefore n(n+1)+(n+1)(n+2)+(n+2) n+1$

$$
=b+1
$$

$n^{2}+n+n^{2}+3 n+2+n^{2}+2 n+1=b+1$
$\therefore b+1=3 n^{2}+6 n+3$
$b+1=3(n+1)^{2}=\frac{a^{2}}{3} ; \therefore \frac{a^{2}}{b+1}=3$
450 (6)
$\alpha+\beta=1154$ and $\alpha \beta=1$
$(\sqrt{\alpha}+\sqrt{\beta})^{2}=\alpha+\beta+2 \sqrt{\alpha \beta}=1154+2$

$$
=1156=(34)^{2}
$$

$\Rightarrow \sqrt{\alpha}+\sqrt{\beta}=34$
Again $\left(\alpha^{1 / 4}+\beta^{1 / 4}\right)^{2}=\sqrt{\alpha}+\sqrt{\beta}=+2(\alpha \beta)^{1 / 4}=$ $34+2=36$
$\alpha^{1 / 4}+\beta^{1 / 4}=6$
451 (5)
Roots are $2 \omega,(2+3 \omega),\left(2+3 \omega^{2}\right),\left(2-\omega-\omega^{2}\right)$ $2+3 \omega$ and $2+3 \omega^{2}$ are conjugate to each other 2ω is complex root, then other root must be $2 \omega^{2}$ (as complex roots occur in conjugate pair) $2-\omega-\omega^{2}=2-(-1)=3$ which is real
Hence least degree of the polynomial is 5
452 (1)
We have $x=\omega-\omega^{2}-2$ or $x+2=\omega-\omega^{2}$
Squaring, $x^{2}+4 x+4=\omega^{2}+\omega^{4}-2 \omega^{3}=\omega^{2}+$ $\omega-2=-3$
$\Rightarrow x^{2}+4 x+7=0$
Dividing, $x^{4}+3 x^{3}+2 x^{2}-11 x-6$ by $x^{2}+4 x+7$, we get

```
\(x^{4}+3 x^{3}+2 x^{2}-11 x-6\)
    \(=\left(x^{2}+4 x+7\right)\left(x^{2}-x-1\right)+1\)
\(=(0)\left(x^{2}-x-1\right)+1=0+1=1\)
```

453 (3)
$x=\frac{x^{3}}{x^{2}}=\frac{2+11 i}{3+4 i} \times \frac{3-4 i}{3-4 i}=\frac{50+25 i}{25}=2+i$
454 (4)
$y=\frac{3 x^{2}+m x+n}{x^{2}+1}$
$x^{2}(y-3)-m x+y-n=0$
$x \in R$
$D \geq 0$
$\Rightarrow m^{2}-4(y-3)(y-n) \geq 0$
$\Rightarrow m^{2}-4\left(y^{2}-n y-3 y+3 n\right) \geq 0$
$4 y^{2}-4 y(n+3)+12 n-m^{2} \leq 0$ (1)
Also given $(y+4)(y-3) \leq 0$
$y^{2}+y-12 \leq 0$
Compare (1) and (2), we get $\frac{4}{1}=-\frac{4(n+3)}{1}=$
$\frac{12 n-m^{2}}{-12}$
$\Rightarrow m=0$ and $n=-4$
455 (5)
Let $a x^{3}+b x^{2}+c x+d=0$ has roots p, q, r
$p q+q r+r p=\frac{c}{a}$
But $p q+q r+r p \leq p^{2}+q^{2}+r^{2}$
$=(p+q+r)^{2}-2 \sum p q$
$\therefore 3(p q+q r+r p) \leq(p+q+r)^{2}=16$
$\therefore 3 \frac{c}{a} \leq 16 \Rightarrow \frac{c}{a} \leq \frac{16}{3} \Rightarrow$ largest possible integral value of $\frac{c}{a}$ is 5
456 (6)
Let the roots be $a-3 d, a-d, a+d, a+3 d$
Sum of roots $=4 a=0 \Rightarrow a=0$
Hence, roots are $-3 d,-d, d, 3 d$
Product of roots $=9 d^{4}=m^{2} \Rightarrow d^{2}=\frac{m}{3}$ (1)
Again $\sum x_{1} x_{2}=3 d^{2}-3 d^{2}-9 d^{2}-d^{2}-3 d^{2}+$ $3 d^{2}=-10 d^{2}$
$=-(3 m+2)$
$\Rightarrow \frac{10 m}{3}=3 m+2 \Rightarrow 10 m=9 m+6$
$\Rightarrow m=6$
457 (5)
We have $2 x^{3}-9 x^{2}+12 x+k=0$
Let the roots are α, α, β
$2 \alpha+\beta=\frac{9}{2}$
$\alpha^{2}+2 \alpha \beta=\frac{12}{2}=6$
are $\alpha^{2} \beta=-\frac{k}{2}$
putting $\beta=\left(\frac{9}{2}-2 \alpha\right)$ from (1) in (2)
$\alpha^{2}+2 \alpha\left(\frac{9}{2}-2 \alpha\right)=6 \Rightarrow \alpha^{2}+9 \alpha-4 \alpha^{2}=6$
$\Rightarrow 3 \alpha^{2}-9 \alpha+6=0$
$\Rightarrow \alpha^{2}-3 \alpha+2=0$
$\Rightarrow(\alpha-2)(\alpha-1)=0 \Rightarrow \alpha=2$ or 1
If $\alpha=2$ then $\beta=\frac{1}{2}$; if $\alpha=1$ then $\beta=\frac{5}{2}$
$\therefore k=-2(4) \frac{1}{2}=-4$ or $k=-2\left(1^{2}\right)\left(\frac{5}{2}\right)=-5$
458 (2)
$\bar{z}+z=0$
$\Rightarrow \bar{z}=-Z$
Now $|z|^{2}-4 z i=z^{2}$
$\Rightarrow-z^{2}-4 z i=z^{2} \quad($ from (1))
$\Rightarrow 2 z=-4 i$
$\Rightarrow z=-2 i$
$\Rightarrow|z|=2$
459 (3)
We have $(\alpha+\beta)^{2}=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)\left(\alpha^{2}+\beta^{2}\right)$
$\Rightarrow(\alpha+\beta)^{2}=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]$
Substituting $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$ we have
$\frac{b^{2}}{a^{2}}=\frac{-b}{c}\left(\frac{b^{2}}{a^{2}}-\frac{2 c}{a}\right)$
$\Rightarrow c b^{2}+b\left(b^{2}-2 a c\right)=0$
$b \neq 0, \therefore b c+b^{2}-2 a c=0$
a, b, c are in AP, $\therefore b=\frac{a+c}{2}$
\therefore we have $\frac{(a+c) c}{2}+\left(\frac{a+c}{2}\right)^{2}-2 a c=0$
$\Rightarrow a^{2}-4 a c+3 c^{2}=0 \Rightarrow(a-c)(a-3 c)=0$
$a \neq c \quad \therefore a=3 c \quad \therefore \frac{a}{c}=3$
460 (9)
$A \equiv(1+2 i) x^{3}-2(3+i) x^{2}+(5-4 i) x+2 a^{2}$ $=0$
Let the real root of equation be α
Then $(1+2 i) \alpha^{3}-2(3+i) \alpha^{2}+(5-4 i) \alpha+$ $2 a^{2}=0$
Equating imaginary part zero, we get
$2 \alpha^{3}-2 \alpha^{2}-4 \alpha=0$
\Rightarrow or $\alpha\left(\alpha^{2}-\alpha-2\right)=0$
$\Rightarrow \alpha=0$ or $\alpha=-1,2$
Now equating real part zero
$\alpha^{3}-6 \alpha^{2}+5 \alpha+2 a^{2}=0$
$\alpha=0 \Rightarrow a=0$
$\alpha=-1 \Rightarrow a= \pm \sqrt{6}$
$\alpha=2 \Rightarrow a= \pm \sqrt{3}$
$\Rightarrow \sum a^{2}=(0)^{2}+(+\sqrt{6})^{2}+(-\sqrt{6})^{2}+(+\sqrt{3})^{2}$ $+(-\sqrt{3})^{2}=18$
461 (4)
Given $a^{2}-4 a+1=4 \Rightarrow a^{2}+1=4(1+a)$
$y=\frac{(a-1)\left(1+a^{2}\right)}{a^{2}-1}=\frac{a^{2}+1}{a+1}=\frac{4(a+1)}{a+1}=4$

As $P(x)$ is an odd function
Hence, $P(-x)=-P(x) \Rightarrow P(-3)=-P(3)=-6$
Let $P(x)=Q\left(x^{2}-9\right)+a x+b$
(where Q is quotient and $(a x+b)=g(x)=$ remainder)
Now $P(3)=3 a+b=6$
$P(-3)=-3 a+b=-6$
Hence, $b=0$ and $a=2$
Hence, $\mathrm{g}(x)=2 x \Rightarrow \mathrm{~g}(2)=4$
463 (3)
Let $\frac{1-a^{3}}{a}=\frac{1-b^{3}}{b}=\frac{1-c^{3}}{c}=k \Rightarrow \frac{1-x^{3}}{x}=k$,
Where x take 3 values a, b and c
$\Rightarrow x^{3}+k x-1=0$ has roots a, b, c
Now $a+b+c=0$
$a b c=1$
(2)

Hence $a^{3}+b^{3}+c^{3}=3 a b c=3$
464 (6)

Let $f(x)=x^{2}+2(\lambda+1) x+\lambda^{2}+\lambda+7$
If both roots of $f(x)=0$ are negative, then
$D=b^{2}-4 a c=4(\lambda+1)^{2}-4\left(\lambda^{2}+\lambda+7\right) \geq 0$

$$
\Rightarrow \lambda-6 \geq 0
$$

$\Rightarrow \lambda \in[6, \infty)$ (1)
Sum of roots $=-2(\lambda+1)<0$
$\Rightarrow \lambda \in(-1, \infty)$
(2)

And product of roots $=\lambda^{2}+\lambda+7>0 \forall \lambda \in R$
(3)
\therefore From (1), (2), (3), we get $\lambda \in[6, \infty)$
(As (1), (2), (3) must be satisfied simultaneously)
Hence, the least value of $\lambda=6$
465 (2)
We have $\left(\frac{a^{4}+3 a^{2}+1}{a^{2}}\right)\left(\frac{b^{4}+5 b^{2}+1}{b^{2}}\right)\left(\frac{c^{4}+7 c^{2}+1}{c^{2}}\right)$
$=\left(a^{2}+\frac{1}{a^{2}}+3\right)\left(b^{2}+\frac{1}{b^{2}}+5\right)\left(c^{2}+\frac{1}{c^{2}}+7\right)$
$=\left(\left(a-\frac{1}{a}\right)^{2}+5\right)\left(\left(b-\frac{1}{b}\right)^{2}+7\right)\left(\left(c-\frac{1}{c}\right)^{2}+9\right)$
466 (5)
$z^{2}=81-b^{2}+18 b i$
$z^{3}=729+243 b i-27 b^{2}-b^{3} i$
$z^{2}=z^{3} \Rightarrow 243 b-b^{3}=18 b$ and $243-b^{2}=$
$18 \Rightarrow b=15$

