Single Correct Answer Type

1. Which of the following has the electronic configuration $[\mathrm{Ar}] 3 d^{5}$?
a) Cr
b) Fe^{3+}
c) Mn
d) V
2. Electron affinity is positive when

$$
\mathrm{O}^{-} \text {is } \quad \mathrm{O}^{2-} \text { is } \quad \mathrm{O}^{+} \text {is }
$$

a) formed from 0
b) formed
c) formed from 0
Electron affinity is always negative value
3. $(A),(B),(C)$ are elements in the third short period. Oxide of (A) is ionic, that of (B) is amphoteric and of (C) a giant molecule.
$(A),(B)$ and (C) will have atomic number in the order
(A)
(C)
(A)
(B)
a) $<$ (B)
b) $<(B)$
c) $<(C)$
d) $<$ (A)
$<(C)$
$<(A)$
$<(B)$
$<(C)$
4. First long period contains elements
a) 8
b) 18
c) 32
d) 2
5. Li resemble Mg . This is called diagonal relationship which is attributed to
a) Same
b) Same
c) Penetratd
d) Identical value of value of ion of effective electron electron sub- nuclear egativity affinity shells charge
6. Which of the following does not represent the correct order of the properties indicated?

7. If Aufbau and Hund's rule are not used, then incorrect statement is

	Na will		Magnetic
K^{+}	be in	Cu	moment
would	same s^{-}	would	of

a) be
b) block (if c) be s -
coloured these block
ion rules are element
true)
d) $\begin{aligned} & \text { of } \\ & \operatorname{Cr}(24) \\ & \text { would } \\ & \text { be zero }\end{aligned}$
8. Representative elements belong to
a) s - and p-b) d-block
c) d - and f-d) f-block

block

block
9. Which of the following oxides is highly basic?
a) $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
c) $\mathrm{Na}_{2} \mathrm{O}$
d) BaO
10. If Aufbau rule is not followed, $\mathrm{K}-19$ will be placed in \qquad block
a) s
b) p
c) d
d) f
11. Which of the following metals forms a amphoteric oxide?
a) Ca
b) Ni
c) Zn
d) Fe
12. Catenation properties of $\mathrm{C}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$ are in order
$\mathrm{C} \gg \mathrm{Si}$
C $<S i$
C $>S i$
None of
a) $\begin{aligned} & >G e \\ & \approx S n\end{aligned}$
b) $<\begin{aligned} & <G e \\ & <S n\end{aligned}$
c) $\begin{aligned} & >S n \\ & >G e\end{aligned}$
d) $\begin{aligned} & \text { the } \\ & \text { above is }\end{aligned}$
$\gg P b$
$<P b$
$>P b$
correct
13. Select the correct statement
a) More
b) Less
c) Reducin
d) All the active
metals
are on
the left the left moving stateme side of side of down nts the the the
Periodic Periodic group
Table Table
14. The electronegativities of elements A and B are 1.2 and 3.4 units respectively. The type of bond connecting A and B in compound $A B$ is
a) Covalentb
b) Ionic
c) Coordin
d) Polar ate covalent covalent
15. Which of the following will have maximum electron affinity?
a) $1 s^{2} 2 s^{2} 2 \nprec$ b) $1 s^{2} 2 s^{2} 2 \nsim$ c) $1 s^{2} 2 s^{2} 2 \nsim$ d) $1 s^{2} 2 s^{2} 2 \nsim$
16. Select the correct alternate

Due to
completi
Due to lanthani de contracti
on of $3 d$ -
subshell, Both of
the
electroni \& (b) are above

| a) Zr | electroni | | $\&(b)$ are |
| :--- | :--- | :--- | :--- | above

which
increase
s the
inter-
electroni
c
repulsio
n hence,
size
increase
s
17. Point out the oxide which is amphoteric in nature
a) CO
b) $\mathrm{Bi}_{2} \mathrm{O}_{3}$
c) PbO
d) CO_{2}
18. Covalent radius of nitrogen is 70 pm . Hence, covalent radius of boron is about
a) 60 pm
b) 110 pm
c) 50 pm
d) 40 pm
19. Melting points of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and NaF will be in order
$\begin{aligned} & \mathrm{NaI} \\ & <\mathrm{NaBr} \\ & <\mathrm{NaCl} \\ & <\mathrm{NaF}\end{aligned}$
$\begin{aligned} & \mathrm{NaF} \\ &<\mathrm{NaCl} \\ &<\mathrm{NaBr} \\ &<\mathrm{NaI}\end{aligned}$
$\begin{aligned} & \mathrm{NaBr} \\ &<\mathrm{NaF} \\ &< \mathrm{NaCl} \\ &<\mathrm{NaI}\end{aligned}$
NaCl
d) $<\mathrm{NaI}$
$<\mathrm{NaBr}$
20. Which pair is different from the others?
a) $\mathrm{Li}-\mathrm{Mg}$
b) $\mathrm{Na}-\mathrm{K}$
c) $\mathrm{Ca}-\mathrm{Mg}$
d) $\mathrm{B}-\mathrm{Al}$
21. For the process
$X(\mathrm{~g})+e^{-} \rightarrow X^{-}(\mathrm{g}), \quad \Delta H=x$
and $X^{-}(\mathrm{g}) \rightarrow X(\mathrm{~g})+e^{-}, \quad \Delta H=y$
Select the correct alternate

| |
| :---: | nts

22. The atoms of the elements belonging to the same group of the Periodic Table will have
a) The
b) The
same
number
same
c) The
d) The number
same
same
of
protons
of
electron neutron electron
s in the s
valence-
shell
23. EC of Gd (64) is written as
a) $[\mathrm{Xe}]_{54} 4 f$
b) $\left.[\mathrm{Xe}]_{54} 4 f^{\prime} \mathrm{c}\right)[\mathrm{Xe}]_{54} 4 f$
d) $[\mathrm{Xe}]_{54} 4 f$:
24. Numbering of groups as $1,2, \ldots . .18$ was adopted by IUPAC in
a) 1986
b) 1906
c) 1908
d) 1988
25. Which of the following forms a stable +4 oxidation state?
a) Lanthan
b) Cerium
c) Europiu d
d) Gadolini um m um
26. A molecule $\mathrm{H}-X$ will be 50% ionic if electronegativity difference of H and X is
a) 1.2 eV
b) 1.4 eV
c) 1.5 eV
d) 1.7 eV
27. Most stable cation of element 113 will be
a) M^{3+}
b) M^{2+}
c) M^{+}
d) M_{2}^{2+}
28. Which is incorrect statement?

In solid state O^{2-} is
a) stabilize
a) ${ }_{d}$ by
neighbo
uring cations
from O^{-}Electron
All of the
b) is
c) affinity
d) above unfavour of $\mathrm{O}>\mathrm{S}$ able in
incorrect the gas phase

Formati
on of
O^{2-}
29. With respect to oxygen maximum valency is shown by
a) Halogen b)
) Oxygen
c) Nitrogend)
Boron family family family
family
30. The dominant factor in determining the IE of the elements on moving down the groups is its
a) Atomic
b) Effectivec) Both (a)
d) None of radius nuclear and (b) charge
above
31. Select the correct statement(s)

a) Across a b) The rate c)	Both (a) d)	None of	
transitio	of	$\&(b)$	the
n series,	decrease	are	above
there is	in the	correct	stateme
only a	size	stateme	nt is
small	across	nts	correct
decrease	the		
in	lanthani		
atomic	de series		
radius	is less		
from	than the		
one	across		
element	the first		
to	transitio		
another	n series		
due to			
very			
small			
increase			
in			
effective			

a) Across ab transitio
decrease the
in lanthani
atomic de series
radius is less
from than the
one across
element the first
to transitio
another n series
due to
small
increase
effective
nuclear
charge
32. Which of the following statement is false?

a) Element b)	Element c)	Element d)	Element
s of IB	s of VB	s of IA	s of IVB
and IIB	group	and IIA	group
groups	do not	groups	are
are	contain	are	neither
transitio	metalloi	normal	strongly
n	ds	element	electron
element		s	egative
s			nor
			strongly
			electrop

33. Which has maximum ionization potential?
a) N
b) 0
c) O^{+}
d) Na
34. Which has maximum IE?
a) Mg
b) Mg^{+}
c) Mg^{2+}
d) Equal
35. $M(\mathrm{~g}) \rightarrow M^{+}(\mathrm{g})+e^{-}, \Delta H=100 \mathrm{eV}$ $M(\mathrm{~g}) \rightarrow M^{2+}(\mathrm{g})+2 e^{-}, \Delta H=250 \mathrm{eV}$
Which is the incorrect statement?
I_{1} of $\quad I_{1}$ of $\quad I_{2}$ of $\quad I_{2}$ of
a) $M(\mathrm{~g})$ is
b) $M^{+}(\mathrm{g})$ is c$)$
$M(\mathrm{~g})$ is
d) $M(\mathrm{~g})$ is 100 eV 150 eV
250 eV
150 eV
36. Which is best oxidizing agent?
a) Ge^{4+}
b) Pb^{4+}
c) Sn^{4+}
d) Sn^{2+}
37. Element with valence shell-electronic configuration as $d^{5} s^{1}$ is placed in
a) $\begin{aligned} & \text { IA, } s- \\ & \text { block }\end{aligned}$
b) VIA, s -
c) $\begin{aligned} & \text { VIB, } s \text { - } \\ & \text { block }\end{aligned}$
d) $\begin{aligned} & \text { VIB, } d- \\ & \text { block }\end{aligned}$
38. Which group of elements is analogous to the lanthanides?
a) Halides
b) Actinide
c) Chalcog
d) Borides s enides
39. Which will have graded property similar to EC $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$?
a) $[\mathrm{Ar}] 3 d^{10}$
b) $[\mathrm{Kr}] 4 d^{10}$.c) $[\mathrm{Kr}] 5 s^{1}$
d) $\begin{aligned} & \text { All of } \\ & \text { these }\end{aligned}$
40. The separation of lanthanides in ion-exchange method is based on
a) Basicity
b) Size of
c) Size of
d) The of the hydroxi the des dions the unhydra solubilit ted ion y of nitrates
41. Which of the following will have the most negative electron affinity and which the least negative?
a) F, Cl
b) Cl, F
c) Cl, S
d) Cl, P
42. Select the correct statement about radius of an atom
a) Values
b) The
c) Both (a)
d) None of of van
der metallic \& (b) the
Waals' radii are are above is
radii are than the larger van der
than Waals'
those of radii,
covalent since the
radii bonding
because forces in
the van the
der metallic
Waals' crystal
forces lattice
are are
much much
weaker stronger
than the than the
forces van der
operatin Waals'
$g \quad$ forces
between
atoms in
a
covalent
ly
bonded
molecul
e
43. Sodium forms Na^{+}ion but it does not form Na^{2+} because

Very low value of	Very high	Low value of	Low value of
a) $(\text { IE })_{1}$	b) $\begin{aligned} & \text { value of } \\ & (\mathrm{IE})_{1}\end{aligned}$	c) $(\text { IE })_{1}$ and low	d) $(I E)_{1}$ and high
and	and	value of	value of
$(\mathrm{IE})_{2}$	$(\mathrm{IE})_{2}$	(IE) 2	$(\mathrm{IE})_{2}$

44. The electronic configuration
$1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{10}, 4 s^{2}, 4 p^{6} 4 d^{10}, 5 s^{2}$ is for
a) $\begin{aligned} & f \text {-block } \\ & \text { element }\end{aligned}$
b) $\begin{aligned} & d \text {-block } \\ & \text { element }\end{aligned}$
c) $\begin{aligned} & p \text {-block } \\ & \text { element }\end{aligned}$
d) $\begin{aligned} & s \text {-block } \\ & \text { element }\end{aligned}$
45. Which one of the following has the smallest atomic radius?
a) F
b) Cl
c) Cs
d) Mg
46. Mixture containing aqueous $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$ions are electrolysed. Cations are discharged at
cathode in the order: (easiest at the end)
$M^{+}(a q)+e^{-} \rightarrow M$
a) $\left.\left.\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{b}\right) \mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{lc}\right) \mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{N}$
d) $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{l}$
47. Screening effect is not observed in

All of
a) He^{+}
b) Li^{2+}
c) Be^{3+}
d) these cases
48. Which has maximum stability?
a) AsCl_{3}
b) SbCl_{3}
c) BiCl_{3}
d) Equal
49. In periodic Table, metallic elements appear
a) In the
b) In the
c) In the
left-
hand columns right-
hand
d) In the bottom columns
50. For the element (X), student (A) measured its radius as 102 nm , student (B) as 103 nm and (C) as 100 nm using same apparatus. Their teacher explained that measurements were correct by saying that recorded values by $(A),(B)$ and (C) are
a) Crystal,
b) Covalent
tc) Van der
d) None is

van der	, crystal	Waals,
Waals	and van	ionic
and	der	and
covalent	Waals	covalent
radii	radii	

51. The hydration energy of lithium ion is $-544 \mathrm{~kJ} \mathrm{~mol}^{-1}$ which is higher than that of other alkali metal ions. This is explained in terms of
a) Small
size of
b) Higher
c) Element d)
d) More
lithium
IP
of reactive
lowest than
atomic other
weight alkali metals
52. The ionic radii of $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+} are $1.35,1.34,0.95$ and 0.66 Å respectively. The radius of the Ne atom is
a) $1.39 \AA$
b) $1.12 \AA$
c) $0.85 \AA$
d) $0.50 \AA$
53. Metallic nature increases moving down the group because
a) Nuclear b)
b) Shieldin
c) Both (a) d
d) None of charge g and (b) the increase increase above
54. Which reaction has most negative ΔG° value?
Ga^{3+}
In^{3+}
Tl^{3+}
Cannot
a) $+2 e^{-}$
b) $+2 e^{-}$
c) $+2 e^{-}$
d) be
$\rightarrow \mathrm{Ga}^{+}$
$\rightarrow \mathrm{In}^{+}$
$\rightarrow \mathrm{Tl}^{+}$
predicte
55. Fluorine has the highest electronegativity among the $n s^{2} n p^{5}$ group on the Pauling scale, but the electron affinity of fluorine is less than that of chlorine because
$\left.\begin{array}{llll} & & & \begin{array}{l}\text { Small } \\ \text { size, }\end{array} \\ \text { high }\end{array}\right]$
56. Fluorine does not form any polyhalide as other halogens because

57. Among the following, the number of elements showing only one non-zero oxidation state is $\mathrm{O}, \mathrm{Cl}, \mathrm{F}, \mathrm{N}, \mathrm{P}, \mathrm{Sn}, \mathrm{Tl}, \mathrm{Na}, \mathrm{Ti}$
a) 1
b) 2
c) 3
d) 4
58. Select the correct statement

Ionic	Covalent	LiAlH_{4}	All the
hydrides	nature of	can	above

a) $\begin{aligned} & \text { are } \\ & \text { better }\end{aligned}$
b) hydrides reducing s across compou stateme agents a period nds to nts
and alcohols decrease
s down
the
group
59. The following acids have been arranged in the order of decreasing acid strength. Identify the correct order

ClOH (I) $\quad \mathrm{BrOH}$ (II) $\quad \mathrm{IOH}$ (III)
a) $\begin{aligned} & \mathrm{I}>I I \\ & >I I I\end{aligned}$
b) $\begin{aligned} & \text { II }>I \\ & >I I I\end{aligned}$
c) $\begin{aligned} & \text { III }>I I \\ & >I\end{aligned}$
d) $\mathrm{I}>I I I$
$>I I$
60. Gd (64) has unpaired electrons with sum of spin......
a) $7,3.5$
b) 8,3
c) 6,3
d) 8,4
61. For Cu^{+}, effective nuclear charge felt by a $3 d$ electron is
a) 14.25
b) 13.95
c) 14.65
d) 29.0
62. The relative thermal stabilities of alkali metal halides are such that

$$
\begin{array}{cccc}
\mathrm{CsCl} & \mathrm{LiCl} & \mathrm{CsCl} & \mathrm{CsCl} \\
>\mathrm{RbCl} & >\mathrm{NaCl} & >\mathrm{RbCl} & <\mathrm{RbCl} \\
\mathrm{a})>\mathrm{KCl} & \mathrm{~b})>\mathrm{KCl} & \mathrm{c})<\mathrm{KCl} & \text { d) }>\mathrm{KCl} \\
>\mathrm{NaCl} & >\mathrm{RbCl} & >\mathrm{NaCl} & <\mathrm{NaCl} \\
>\mathrm{LiCl} & >\mathrm{CsCl} & <\mathrm{LiCl} & >\mathrm{LiCl}
\end{array}
$$

63. Which of the following order is wrong?
$\mathrm{NH}_{3}<\quad \mathrm{Li}<B e$
$\mathrm{Al}_{2} \mathrm{O}_{3}<\quad \begin{aligned} & \mathrm{Li}^{2+}< \\ & \mathrm{Na}^{+}<\end{aligned}$

64. The statement is not true for the long form of the Periodic Table

It
reflects
the
$\begin{array}{ll}\text { sequenc } & \text { It helps } \\ \text { e of } & \text { to }\end{array}$
It
reflects predict
filling predict trends in the the the physical relative
a) electron b) stable c) and d)ionicity s in the valency chemical of the order of states of properti bond the sub- the es of the between energy elements elements anytwo
shells
s, p, d
and f
65. Element with atomic number 115 has configuration as \qquad and with most stable
cation as \qquad
a) $\begin{aligned} & {[\mathrm{Rn}]} \\ & M^{3+}\end{aligned}$
${ }_{M^{5+}}^{[\mathrm{Rn}] 7 s^{2} 5}$
$[\mathrm{Rn}] 7 s^{2} 5$
M^{+}
d) $\begin{gathered}{[\mathrm{Rn}] 5 d^{10}} \\ M^{5+}\end{gathered}$
66. In which case effective nuclear charge is minimum?
a) Be
b) Be^{2+}
c) Be^{3+}
d) Equal
67. Following graph shows variation of ionization potential (IP) with atomic number in second period $(\mathrm{Li}-\mathrm{Ne})$. Value of ionization potential (IP) of Na (11) will be

a) Above
b) Below
c) Below Li
Ne
Ne but
Between above 0
68. Recently (in Aug 2003) two new elements have been discovered with atomic numbers
a) 113,114 b) $114,115 \mathrm{c}) 115,116 \mathrm{~d}) 113,115$
69. $A B$ is predominantly ionic as $A^{+} B^{-}$if (IP stands for ionization potential, EA for electron affinity and EN for electronegativity)
a) $\begin{aligned} & (\mathrm{IP})_{A} \\ & <(\mathrm{IP})_{B}\end{aligned}$
b) $\begin{aligned} & (\mathrm{EA})_{A} \\ & <(\mathrm{EA})_{B}\end{aligned}$
c) $\begin{aligned} & (\mathrm{EN})_{A} \\ & <(\mathrm{EN})_{B}\end{aligned}$
d) $\begin{aligned} & (\mathrm{IP})_{B} \\ & <(\mathrm{IP})_{A}\end{aligned}$
70. M^{3+} has electronic configuration as
[Ar$] 3 d^{10} 4 s^{2}$, hence it lies in
a) s-block
b) p-block
c) d-block
d) f-block
71. Transition elements have vacant
a) s-orbital b) p-orbital c) d-orbital d) f-orbital
72. When the following five anions are arranged in order of decreasing ionic radius, the correct sequence is
a) $\mathrm{Se}^{2-} \mathrm{I}^{-}$,
, Fb$) \mathrm{I}^{-}, \mathrm{Se}^{2-},(\mathrm{c}$
(c) $\left.\mathrm{Se}^{2-}, \mathrm{I}^{-}, \mathrm{Fd}\right) \mathrm{I}^{-}, \mathrm{Se}^{2-}, \mathrm{I}$
73. Match Column I (atomic number of elements) with Column II (position of elements in Periodic Table) and select the correct answer using the codes given below the Columns

	Column I		Column II
A	19	1.	p-block
B	22	2.	f-block
C	32	3.	d-block
D	64	4.	s-block

Codes

A B C D
a) 1234 b) 4312 c) 4132 d) 2134
74. Ionic radii of:
a) $\begin{aligned} & \mathrm{Ti}^{4+} \\ & <M n^{7+}\end{aligned}$
b) ${ }^{35} \mathrm{Cl}^{-}$
c) $\begin{aligned} & \mathrm{K}^{+} \\ & >\mathrm{Cl}^{-}\end{aligned}$
d) $\begin{aligned} & \mathrm{P}^{3+} \\ & >\mathrm{P}^{5+}\end{aligned}$
75. Covalency is favoured in the following cases
a) A
b) A larger
) Large
d) In all the smaller anion charges above cation cases cation or anion
76. Main group elements constitute
a) $\begin{aligned} & s \text {-and } p \\ & \text { block }\end{aligned}$
b) $\begin{aligned} & p \text {-and } d \\ & \text { block }\end{aligned}$
c) $\begin{aligned} & s \text {-and } d \text { - } \\ & \text { block }\end{aligned}$
d) $\begin{aligned} & d \text {-and } f \text { - }\end{aligned}$
77. Oxidation energy of $\mathrm{Li}(s)$ to $\mathrm{Li}^{+}(a q)$ is least in group IA elements. This is because of

Maximu m heat of	Maximu m heat	Less negative	Maximu m
a) of sublimat ion of $\mathrm{Li}(s)$	b) of hydratio n of Li^{+}	c) heat of hydratio n of Li^{+}	d)ionizatio n energy of Li

78. Select the correct statement
a) Electron b) Electron c) Both (a) d) None of affinity affinity $\&(b)$ the
of of F is are above is
nitrogen higher correct correct
is much than
lower that of
than chlorine
that of
its
neighbo
uring
element
s carbon
and
oxygen
79. Chalcogens are elements of
a) $\begin{aligned} & \text { Group } \\ & 16\end{aligned}$
b) p-block $n s^{2} n p^{4}$
configur ation
80. The electron affinities of $\mathrm{N}, \mathrm{O}, \mathrm{S}$ and Cl are such that
a) $\begin{aligned} & \mathrm{N}<\mathrm{O} \\ & <S<C l\end{aligned}$
b)
$\begin{array}{llll}\text { a) Inversel b) } & \text { Inversel c) } & \text { Directly d) } & \text { Directly } \\ \text { y } & \text { y } & \text { proporti } & \text { proporti } \\ \text { proporti } & \text { proporti } & \text { onal to } & \text { onal to } \\ \text { onal to } & \text { onal to } & \text { effective } & \text { square }\end{array}$

effective	square	nuclear	of
nuclear	of	charge	effective
charge	effective		nuclear nuclear charge

82. Out of $\mathrm{BeH}_{2}, \mathrm{CuH}_{2}, \mathrm{CrH}_{2}$ and NaH , covalent hydrides are
a) $\mathrm{BeH}_{2}, \mathrm{Nalb}$
$\left.\mathrm{CuH}_{2}, \mathrm{CrFc}\right)$
BeH_{2}, Culd $)$ All of these
83. Which of the following is a transition element?
a) Al
b) As
c) Ni
d) Rb
84. Elements X and Y have valence shell electron configuration as
$X: n s^{2} n p^{1} ; Y: n s^{2} n p^{3}$
Which compound is likely formed from X and Y ?
a) $X_{3} Y_{5}$
b) $Y_{3} X_{5}$
c) $X Y$
d) $Y X$
85. Higher values of ionization energies of the $5 d$ transition elements are consistent with the
a) Relativel
b) Relativelc
) Relativeld)

y	y	y	above

smaller smaller smaller are
effective size of penetrat correct
nuclear their ion
charge atoms
86. Tendency of $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$and F^{-}to be oxidized is in order
$\mathrm{I}^{-}>\mathrm{Br}^{-} \quad \mathrm{I}^{-}<\mathrm{Br}^{-}$
$\mathrm{I}^{-}=\mathrm{Br}^{-}$
a) $>\mathrm{Cl}^{-}$
b) $<\mathrm{Cl}^{-}$
$<\mathrm{F}^{-}$
c) $\begin{aligned}<\mathrm{F}^{-}<\mathrm{E}^{\mathrm{d})} & <\mathrm{Cl}^{-} \\ = & \mathrm{F}^{-}\end{aligned}$
87. For which of the following crystals would you expect the assumption of anion-anion contact to be valid?
a) CsBr
b) NlaF
c) KCl
d) NaI
88. Which of the following represents the correct order of increasing first ionization enthalpy for $\mathrm{Ca}, \mathrm{Ba}, \mathrm{S}, \mathrm{Se}$ and Ar ?
$\mathrm{Ca}<S$
$\mathrm{S}<\mathrm{Se}$
$\mathrm{Ba}<\mathrm{Ca}$
$\mathrm{Ca}<B a$
a) $\begin{aligned} & <B a \\ & <S e\end{aligned}$
b) $<C a$
c) $<\begin{aligned} & <S e \\ & <S\end{aligned}$
d) $<S$
$<A r$
$<A r$
$<A r$
$<A r$
89. Valence electrons in the element A are 3 and that in element B are 6 . Most probable compound formed from A and B is
a) $A_{2} B$
b) $A B_{2}$
c) $A_{6} B_{3}$
d) $A_{2} B_{3}$
90. Which of the following ions has the smallest radius?
a) Ti^{2+}
b) Pt^{2+}
c) Ni^{2+}
d) Zr^{2+}
91. As we proceed from top to bottom in the Periodic Table
a) Hydroxi b) Oxyacid c)
Neither d) Both of
des are sare of the the more less above above basic acidic
92. Element 113 is produced via α-decay β-decay α-decay β-decay
a) $\begin{aligned} & \text { of } \\ & \text { element }\end{aligned}$
b) $\begin{aligned} & \text { of } \\ & \text { element }\end{aligned}$
c) of $\begin{aligned} & \text { of } \\ & \text { element }\end{aligned}$
d) of $\begin{aligned} & \text { element }\end{aligned}$ $115 \quad 114 \quad 111$ 112
93. Two new elements (discovered in Aug 2003) with atomic number 113 and 115 are to be placed in
a) s-block
b) p-block
c) d-block
d) f-block
94. Nitrogen is found to have higher value of ionization potential because

		Its	
	It is	shielding effect	All of the
half- a) filled p orbitals	b) chemical c) ly inert	overcom d es the nuclear charge	above are correct

95. Extent of hydration of $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$ is in order
Na^{+}
Na^{+}
Al^{3+}
a) $<\mathrm{Al}^{3+}$
b) $<\mathrm{Mg}^{2+}$
c) $<\mathrm{Mg}^{2+}$
d) Equal
$<\mathrm{Mg}^{2+}$
$<\mathrm{Al}^{3+}$
$<\mathrm{Na}^{+}$
96. Which pair represents incorrect first IE?
a) $\mathrm{Be}>\mathrm{B}$
b) $\mathrm{N}>0$
c) $\mathrm{Li}>\mathrm{Na}$
d) $\begin{aligned} & \mathrm{He} \\ & \mathrm{He}^{+}\end{aligned}$
97. Of the following pairs, the one containing examples of metalloid elements in the Periodic Table is
a) Na and Kb) F and Cl
c) $\begin{aligned} & \mathrm{Cu} \text { and } \\ & \mathrm{Ag}\end{aligned}$
d) B and Si
98. Which of the following reactions should be most favoured thermodynamically?

$$
\begin{array}{llll}
\mathrm{Na}_{2} \mathrm{O} & \mathrm{Na}_{2} \mathrm{O} & \mathrm{Na}_{2} \mathrm{O} & \mathrm{Na}_{2} \mathrm{O}
\end{array}
$$

a) $+\mathrm{Cl}_{2} \mathrm{O}_{7}$ b) $+\mathrm{SO}_{3}$
c) $+\mathrm{P}_{2} \mathrm{O}_{5}$
d) $+\mathrm{SiO}_{2}$
$\rightarrow 2 \mathrm{NaCl}\left(\rightarrow \mathrm{Na}_{2} \mathrm{SO} \rightarrow 2 \mathrm{Na}_{3} \mathrm{P} \rightarrow \mathrm{Na}_{2} \mathrm{SiC}\right.$
99.

which is the incorrect statements?
a) I_{1} of
b) I_{1} of
c) I_{2} of
d) I_{1} of

$\mathrm{Be}>I_{1}$	$\mathrm{Be}<I_{1}$	$\mathrm{Be}^{+}<I_{1}$	Be^{2+} is
of B but	of B but	of B^{+}	abnorma
I_{2} of	I_{2} of		lly high

100. State, which one of the following has the largest atomic radius?
a) Cs
b) Mg
c) Ba
d) Cr
101. The lanthanides have electron configuration with $6 s^{2}$ in common but with variable occupation of the
a) $6 p$-level
b) $5 p$-level
c) $5 d$-level
d) $4 f$-level
102. Which is largest in size in aqueous solution?
a) Li^{+}
b) Na^{+}
c) Cs^{+}
d) Rb^{+}
103. First, second and third IP values are $100 \mathrm{eV}, 150 \mathrm{eV}$ and 1500 eV . Element can be
a) Be
b) B
c) F
d) Na
104. The high oxidizing power of fluorine is due to
a) High
b) High
c) Both
(a) d
d) None of electron ionizatio and (b) these affinity n energy
105. The relative extend to which the various orbitals penetrate the electron clouds of other orbitals is
a) $\begin{aligned} & s>p \\ & >d>f\end{aligned}$
b) $\begin{aligned} & s<p \\ & <d<f\end{aligned}$
c) $\begin{aligned} & s<d \\ & <p<f\end{aligned}$
d) $\begin{aligned} & d<s \\ & <p<f\end{aligned}$
106. The compound of vanadium has magnetic moment of 1.73 BM . The vanadium chloride has the formula
a) VCl_{2}
b) VCl_{3}
c) VCl_{4}
d) VCl_{5}
107. Recently discovered element with atomic number 115 is
a) Uun
b) Uub
c) Uup
d)Uus
108. Consider the following statements,
109. Cs^{+}is more highly hydrated than the other alkali metal ions
110. Among the alkali metals $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ and Rb , lithium has the highest melting point
111. Among the alkali metals only lithium forms a stable nitride by direct combination
Of these statements
a) I, II and
III are
b) I and II
are
c) I and III
are
d) II and III
correct correct correct are correct
112. Which represents alkalies metals based on $(\mathrm{IE})_{1}$ and (IE) $)_{2}$ values?
$(\text { IE })_{1}(\text { IE })_{2}$
a) $X \quad 100$
b) $Y \quad 95$
c) $Z \quad 195$
d) $M \quad 200$

$$
\begin{array}{llll}
110 & 120 & 500 & 250
\end{array}
$$

110. Which has maximum polarizing power in cation?
a) Li^{+}
b) Mg^{2+}
c) Al^{3+}
d) O^{2-}
111. The correct order of increasing ionic character is
a) $\begin{aligned} & \mathrm{BeCl}_{2} \\ & <\mathrm{MgCl}_{2} \\ & <\mathrm{CaCl}_{2}\end{aligned}$
b) $\begin{aligned} & <\mathrm{CaCl}_{2} \\ & <\mathrm{MgCl}_{2}\end{aligned}$
c) $<\mathrm{CaCl}_{2}$
d) $<\mathrm{CaCl}_{2}$
$<\mathrm{BaCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{BeCl}_{2}<\mathrm{BaCl}_{2}$
112. Recently discovered elements (August 2003) with atomic number 113 and 115 have valence electrons in
a) s-orbital b) p-orbital c) d-orbital d) f-orbital
113. Element with atomic number 113 has been reported in August 2003. Its electronic configuration is similar to that of
a) Si
b) Ga
c) Bi
d) At
114. Which of the following properties shows a clear periodic variation?
a) First
b) Molar
c) Number
d) All of the ionizatio mass of of above n energy the isotopes element of the atom
115. Select the correct alternate about (IE)
a) $\begin{aligned} & \text { (IE) }{ }_{1} \text { of } \\ & (\mathrm{IE})_{1} \text { of } \\ & \text { B }\end{aligned}$

c) Both (a)
None of and (b)
d) the above
116. IP of an element does not depend on
a) Its
b) The
c) Electron d
d) Penetrat nuclear shieldin neutralit ion charge geffect y effect
117. Reducing action of hydrides is due to Oxidatio Oxidatio Reductio Reductio a) n of $\mathrm{H}^{-} \quad$ b) n of H to c) n of H to d) n of H^{+} to $\mathrm{H} \quad \mathrm{H}^{+} \quad \mathrm{H}^{-} \quad$ to H
118. Which element has the highest electron affinity?
a) F
b) Cl
c) Br
d)I
119. Ionic radii of
a) $\begin{aligned} & \mathrm{Ti}^{4+} \\ & <\mathrm{Mn}^{7+}\end{aligned}$
b) $\begin{aligned} & { }^{35} \mathrm{Cl}^{-} \\ & { }^{37} \mathrm{Cl}^{-}\end{aligned}$
c) $\begin{aligned} & \mathrm{K}^{+} \\ & >\mathrm{Cl}^{-}\end{aligned}$
d) $\begin{aligned} & \mathrm{P}^{3+} \\ & >\mathrm{P}^{5+}\end{aligned}$
120. Fluorine is more electronegative than nitrogen. The best explanation is that
a) The
b) The
c) The
d) Electron valence charge valence egativity electron on a F electron increase s in F nucleus s in F s from

are on	is +9,	and N	left to
the	while	are in average,	that on a
a little	N	shells	the
closer to	nucleus	and thus	periods
the	is +7	their	
nucleus		energy	
than in		are greatly N	
		different	

121. Select the incorrect order of size of ions/atoms
a) $\begin{aligned} & \mathrm{I}^{+}<\mathrm{I}^{-}\end{aligned}$
b) $\begin{aligned} & \mathrm{Fe}=\mathrm{Co} \\ & =\mathrm{Ni}\end{aligned}$
c) $\begin{aligned} & \mathrm{Ni}<\mathrm{Cu} \\ & <\mathrm{Zn}\end{aligned}$
d) $\begin{aligned} & \text { None is }\end{aligned}$
122. The heat of hydration of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+} in the decreasing order is
Ca^{2+}
Ca^{2+}
Sr^{2+}
Ba^{2+}
a) $>\mathrm{Sr}^{2+}$
b) $>\mathrm{Ba}^{2+}$
c) $>\mathrm{Ba}^{2+}$
d) $>\mathrm{Sr}^{2+}$
$>\mathrm{Ba}^{2+}$
$>\mathrm{Sr}^{2+}$
$>\mathrm{Ca}^{2+}$
$>\mathrm{Ca}^{2+}$
123. Following are the values of the electron affinities (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of the formation of O^{-} and O^{2-} from 0

$$
\text { a) }-142,-7 b)-142,70 \text { c) } 142,702 \text { d) }-142,-1
$$

124. The second ionisation energy is always higher than the first ionization energy because the
a) Ion
b) Electron c)
Electron
d) None of becomes is more is is the more tightly attracte above is stable bound d more the attaining to the by the correct an octet nucleus core or in an ion electron duplet S configur ations
125. SI unit of IE is
a) $\left.\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~b}\right) \mathrm{eV}$ atom $^{-} \mathrm{c}$
c) $\mathrm{J} \mathrm{mol}^{-1}$
d) $\mathrm{kcal} \mathrm{mol}^{-}$
126. Out of $\mathrm{C}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$ metallic nature is in
a) $\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pbb}) \mathrm{Sn}, \mathrm{Pb}$
c) Ge, Pb
d) Ge, Sn
127. Which element has the highest first IP?
a) N
b) Ne
c) He
d) H
128. An oxide behaves as an acid or a base depending on its
a) Size and
b) Size onlyc)
Charge
d) None of charge
only these
129. The electronegativities of $\mathrm{N}, \mathrm{C}, \mathrm{Si}$ and P are such that
a) $\begin{aligned} & \mathrm{P}<S i \\ & <C<N\end{aligned}$
b) $\begin{aligned} & \mathrm{Si}<P \quad \text { c) } \\ & <N<C\end{aligned} \begin{aligned} & \mathrm{Si}<P \\ & <C<N\end{aligned}$
d) $\begin{aligned} & \mathrm{P}<S i \\ & <N<C\end{aligned}$
130. Recently (in 2003) element with atomic number 110 has been named by IUPAC as
a) HS
b) Mt
c) Ds
d) Sg
131. The size of the second and third row transition elements being almost the same. This is due to d-and f -
orbitals
do not

132. Out of $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2}, most oxidizing agent is
a) F_{2}
b) Cl_{2}
c) Br_{2}
d) I_{2}
133. Select the correct order of (IE) 1_{1}
a) $\begin{aligned} & \mathrm{Cu}<\mathrm{Zn} \\ & <G a\end{aligned}$
b) $\begin{aligned} & \mathrm{Ag}<C \\ & <\text { In }\end{aligned}$
c) $\begin{aligned} & \mathrm{Hg}> \\ & >\mathrm{Tl}\end{aligned}$
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
134. Of the four ΔH values needed to calculate the lattice energy using the Born-Haber cycle, the one that is most difficult to measure is
a) The heat
) The heatc
) The
d) The

of	of	ionizatio	electron
sublimat	formatio	n energy	affinity
ion of	n of	of the	of the
the	gaseous	metal	non-
metal	atoms of the non-		metal
	metal		

135. The lanthanides contraction refers to
a) Ionic
b) Valence
c) The
d) Electron radius of electron density
the s of the of the series series series
136. The statement that is not correct for the periodic classification of elements is The first For ionizatio transitio

The properti es of elements
a) are the
periodic function s of their atomic numbers
b)
lesser in c)
number than metallic elements

		The first ionizatio	For transitio
The properti es of elements	Nonmetallic elements are	n energies of elements	n elements the d subshell
a) are the periodic function s of their atomic numbers)lesser in c) number than metallic elements	along a period do not vary in a regular manner with increase	d) s are filled with electron monoton ically with increase

in	in
atomic	atomic
number	number

137. $N_{0} / 2$ atoms of $X(\mathrm{~g})$ are converted into $X^{+}(\mathrm{g})$ by energy $E_{1} . N_{0} / 2$ atoms of $X(\mathrm{~g})$ are converted into $X^{-}(\mathrm{g})$ by energy E_{2}. Hence, ionization potential and electron affinity of $X(\mathrm{~g})$ are
a) $\left.\frac{2 E_{1}}{N_{0}}, \frac{2\left(E_{1}\right.}{} \mathrm{b}\right) \frac{2 E_{1}}{N_{0}}, \frac{2 E_{2}}{N_{0}}$ c) $\frac{\left(E_{1}-E_{2}\right)}{N_{0}}$ d) None is
138. Following the transition elements, (IE) ${ }_{1}$ drops abruptly in Ga , In and Tl . This is due to

139. Electronegativity and electron affinity of an element A are X and Y respectively. Hence, ionization potential of A is
a) $\frac{X+Y}{2}$
b) $2 X-Y$
c) $2 Y-X$
d) $2 X+Y$
140. Following triads have approximately equal size

$$
\mathrm{Na}^{+}, \mathrm{Mg}^{2} \quad \mathrm{~F}^{-}, \mathrm{Ne}, \mathrm{O}^{-} \quad \mathrm{Mn}^{+}, \mathrm{Fe}^{2-}
$$

a)
electroni ${ }^{\text {b }}$
b) ${ }^{-}$electroni
c) $\mathrm{Fe}, \mathrm{Co}, \mathrm{Nid})^{-}$
c) $\quad \mathrm{c})$
c)
141. The first ionization potential of Al is smaller than that of Mg because
a) The
a) atomic
size of $\mathrm{Al}>\mathrm{Mg} \quad \mathrm{Al}<\mathrm{Mg}$

Al has	
one The	
c)	unpairedatomic electron number
in $p-$ of orbital $\mathrm{Al}>\mathrm{Mg}$	

142. The ionization potential of nitrogen is
a) Same as
b) Less that of than oxygen that of
c) Greater
than
that of
oxygen
d) None of the above
143. Which of the following sets of elements is arranged in order of increasing electronegativity based on Pauling scale?
a) $\mathrm{S}, \mathrm{Si}, \mathrm{P}$
b) P, S, Si
c) $\mathrm{S}, \mathrm{P}, \mathrm{Si}$
d) $\mathrm{P}, \mathrm{Si}, \mathrm{S}$
144. For $\mathrm{Be}, \mathrm{Z}_{\text {eff }}=1.95$ and for $\mathrm{Be}^{x+}, Z_{\text {eff }}=2.30$. Hence, ion is
a) Be^{+}
b) Be^{2+}
c) Be^{3+}
d) Be^{0}
145. Ionic hydrides react with water to give
a) A basic
b) An
c) A
d) Protons solution acidic hydride solution ion
146. Going down in a group from F to I, which of the following properties increases
a) Ionic
b) Ionizatioc) Oxidizin
d) Electron radius nenergy g power egativity
147. In which case bond length is shortened?
a) When
b) When
c) In both
d) None of multiplic electron cases
ity egativiti the above
occurs es are cases
between different atoms
148. Ionization energy of the element $X(\mathrm{~g})$ is I and the electron affinity of $X^{+}(\mathrm{g})$ is E then
a) $I=E$
b) $I=-E$
c) $I=\frac{E}{2}$
d) $I=-\frac{E}{2}$
149. The ionization energy of hydrogen is 13.6 eV and the first ionization energy of helium is 24.6 eV . Energy evolved in the following electron-gain process is
$\mathrm{He}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{He}$
a) $-49.2 \mathrm{eVb})-54.4 \mathrm{eVc})-27.2 \mathrm{eVd})-79.0 \mathrm{eV}$
150. Which pair is different from the others?
a) $\mathrm{Li}-\mathrm{Mg}$
b) $B-S i$
c) $\mathrm{Be}-\mathrm{Al}$
d) $\mathrm{Li}-\mathrm{Na}$
151. Pick out the property which is not shown by transition elements
a) Show
b) Impart
c) Are
d) Act as variable colour paramag catalytic
oxidatio to flame netic in agents n state nature
152. The ions $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ and Al^{3+} are isoelectronic. Their ionic radii show

An	A		
increase	decrease	A	A
from	from	significa	significa
O^{2-} to	O^{2-} to	nt	nt
a) F^{-}and	b) F^{-}and	c) increase d) decrease	
then	then	from	from
decrease	increase	O^{2-} to	O^{2-} to
from	from	Al^{3+}	Al^{3+}
Na^{+}to	Na^{+}to		

$\mathrm{Al}^{3+} \quad \mathrm{Al}^{3+}$
153. Select the correct statement.

$(\text { IE })_{1}$ of	$(\text { IE })_{1}$ of
the	$5 d-$

correspo series
nding elements Both of
elements are Both (a) the
a) of $3 d$
b) smaller
c) \& (b) ared)above
and $4 d$
series
than that correct
are
are and $4 d$ -
almost series
similar elements
154. Which set does not show correct matching?
$\mathrm{Sc}^{3+}[\mathrm{Ne}]: \quad \mathrm{Fe}^{2+}[\mathrm{Ar}]: \quad \mathrm{Cr}[\mathrm{Ar}] 3 d$
a) zero
b) VIII c) VIB
d) All of the group group group
155. The basic character of hydrides of group 15 (VA) is in which of the following order?

$$
\begin{array}{rccc}
\mathrm{NH}_{3} & \mathrm{NH}_{3} & \mathrm{NH}_{3} & \\
<\mathrm{PH}_{3} & >\mathrm{PH}_{3} & <\mathrm{PH}_{3} \quad \text { None of } \\
\text { a) }<\mathrm{BiH}_{3} & \text { b) }>\mathrm{AsH}_{3} & \text { c })<\mathrm{AsH}_{3} \quad \text { d) the } \\
<\mathrm{SbH}_{3} & >\mathrm{SbH}_{3} & <\mathrm{SbH}_{3} \quad \text { above } \\
<\mathrm{AsH}_{3} & >\mathrm{BiH}_{3} & <\mathrm{BiH}_{3}
\end{array}
$$

Multiple Correct Answers Type

156. The first element of a group in many ways differs from the other heavier members of the group. This is due to

The high
electron The The
The egativity unavaila higher
a) smaller
size
b) and high c) bility of d)
ionizatio d -
shielding
n orbitals effect
potential
157. Pick out the isoelectronic structures from the following:
(I) CH_{3}^{+}(II) $\mathrm{H}_{3} \mathrm{O}^{+}$(III) NH_{3} (IV) CH_{3}^{-}:
a) I and II
b) III and
c) I and III
d) II, III

IV
and IV
158. Which of the following compounds possesses zero dipole moment?
a) Water
Carbon
b) Benzene c) tetrachlod)
ride
Boron
159. Which of the following statements is/are true?

Metallic Atomic Ionisatio The first
a) and b) and ionicc) n energy d)ionisatio
covalent radii of is
n

radii of	niobium	inversel	energies
potassiu	and	y	of Be
m are	tantalum	proporti	and Mg
$2.3 \AA$	are	onal to	are more
and 2.03	almost	the	than
\AA	same	screenin	ionisatio
respecti		geffect	n
vely			energies of B and
			Al respecti
			vely

160. An increase in both atomic and ionic radii with atomic number occurs in any group of the
Periodic Table and in accordance with this the ionic radii of $\mathrm{Ti}(\mathrm{IV})$ and $\mathrm{Zr}(\mathrm{IV})$ ions are $0.68 \AA$ and $0.74 \AA$ A respectively; but for $\mathrm{Hf}(\mathrm{IV})$ ion the ionic radius is $0.75 \AA$ which is almost the same as that for $\mathrm{Zr}(\mathrm{IV})$ ion. This is due to

Differen
ce in the
Greater
of Lanthani

161. Which of the following pairs of species have nearly same size?
a) $\mathrm{Rb}^{+}, \mathrm{O}^{2-}$
b) $\mathrm{Cl}^{-}, \mathrm{Na}^{+}$
c) $\left.\mathrm{Mg}^{2+}, \mathrm{Nad}\right) \mathrm{Li}^{+}, \mathrm{Mg}^{2+}$
162. Which form two or more chlorides?
a) Na
b) Hg
c) Cu
d) Fe
163. Which of the following statements is/are correct?
a) The
b) The
c) The
d) The peroxide peroxide peroxide bond ionhas a ionshas ion as length of bond a longer well as peroxide order of and the ion is 1 while weaker oxygen greater the bond molecul than oxygen than the e are that of molecul oxygen paramag the e has a molecul netic oxygen bond e has molecul order of e
coordina
tion
number Actinide
164. Which statement(s) is/are correct?
A pi-
$A(=) \quad A$ bond is A sigmabond covalent
a) than sigmabond

b) weaker than pibond single bond bond
165. Intermolecular H -bonding in HF makes it:
a) High b.p.
) Capable
c) Dibasic
d) Capable liquid
of
forming
two series of salt
of
forming acid salt
166. $I E_{2}$ for an element are invariably higher than $I E_{1}$ because:

The size	It is
of cation	difficult

a) $\stackrel{\text { is }}{\text { smaller }}$
b) $\begin{array}{r}\text { to } \\ \text { remove }\end{array}$
than its
' e ' from atom cation $I E$ is
c) endothe d
All of the rmic
a) ${ }_{32}^{77} \mathrm{Ge}$
b) ${ }_{33}^{77} \mathrm{As}$
c) ${ }_{34}^{77} \mathrm{Se}$
d) ${ }_{34}^{78} \mathrm{Se}$
171. Electrovalency is favoured by:
a) $\begin{aligned} & \text { Low } I E \\ & \text { values }\end{aligned}$
b) $\begin{aligned} & \text { High } E A \\ & \text { values }\end{aligned}$
High values
c) lattice
energy
d) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
172. Resonance occurs due to the:
a) Delocali
b) Delocali
c) Delocali
d) Migratio zation of zation of zation of n of a lone sigma- piprotons pair of electron electron electron s s s
173. Which molecules(s) has/have V-shape?
a) $\mathrm{H}_{2} \mathrm{O}$
b) SnCl_{2}
c) $\mathrm{H}_{2} \mathrm{~S}$
d) None of
174. Which is/are correct order of ionic mobility?
Li^{+}
Na^{+}
Al^{3+}
K^{+}
a) $<\mathrm{Na}^{+}$
b) $<\mathrm{Mg}^{2+}$
c) $<\mathrm{Mg}^{2+}$
d) $<\mathrm{Na}^{+}$
$<\mathrm{K}^{+}$
$<\mathrm{Al}^{3+}$
$<\mathrm{Na}^{+}$
$<\mathrm{Li}^{+}$
175. Resonance structures of a molecule should have:
a)

a) Identicalb)	Nearly	c)	The
arrange	dhe Identical		
ment of	same	same	bumber

176. Consider the following ionization steps
$M(\mathrm{~g}) \rightarrow M^{+}(\mathrm{g})+e^{-}, \quad \Delta H=100 \mathrm{eV}$
$M(\mathrm{~g}) \rightarrow M^{2+}(\mathrm{g})+2 e^{-}, \Delta H=250 \mathrm{eV}$
Select the correct statement(s)
$(\mathrm{IE})_{1}$ of
(IE) ${ }_{1}$ of
$(\mathrm{IE})_{2}$ of
$(\mathrm{IE})_{2}$ of
a) $M(\mathrm{~g})$ is
b) $M^{+}(\mathrm{g})$ is c) $M(\mathrm{~g})$ is
d) $M(\mathrm{~g})$ is 100 eV
150 eV
250 eV 150 eV
177. Select the correct statements

$$
\mathrm{Cu}([\mathrm{Ar}] 3
$$

Ce, Pr	Cu, Pd	and	Si, Ge
and Nd	and Ni	$\mathrm{K}([\mathrm{Ar}] 4 \mathrm{~s}$	and As

a) are f -
b) are d -
c) have
d)are block block been metalloi elements elements placed in ds s-block
178. The molecule(s) which show H-bonding is/are:
a) nitrophe b) Water nol
c) HCl ,
179. The compound which contains both ionic and covalent bond is/are:
a) CH_{4}
b) $\mathrm{NH}_{4} \mathrm{OH}$
c) KCN
d) $\mathrm{K}_{4}[\mathrm{Fe}(\mathrm{CN}$
180. When an isotope undergoes K-capture, its mass number
a) Remainsb
b) Remains c)
Remains
d) As well
the the the as the
same same same atomic
while while while number
the the the decrease
atomic atomic atomic s by one
number number number
increase increase decrease
sby one sby two s by one
181. The octet rule is not obeyed in:
a) CO_{2}
b) BCl_{3}
c) PCl_{5}
d) SiF_{4}
182. The species that does not contain peroxide bond is/are:
a) PbO_{2}
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) MnO_{2}
d) BaO_{2}
183. Which combination(s) given below is/are correct?
a) $\begin{aligned} & \mathrm{HgCl}_{2}- \\ & \text { linear }\end{aligned}$
b) $\begin{gathered}\mathrm{ClF}_{3}-\mathrm{T}- \\ \text { shaped }\end{gathered}$
ICl_{4}^{-}
c)
pquare
planar
$\mathrm{XeF}_{6}-$
d) ${ }^{\mathrm{p}}$
nal bypyram
184. A, B, C are three substances. A does not conduct electricity in the solid or liquid state. B conducts electricity both in the fused and solution states, while C conducts electricity only in the solution state. Which of the following statement(s) is/are true regarding A, B and C ?

185. Which of the following statements is/are correct?
CH_{3}^{+}
shows
$s p^{2}$ -
hybridiz ation
a) whereas b)
CH_{3}^{-} shows $s p^{3}$ hybridiz ation
186. The type of bond(s) present in ammonium chloride is/are
a) Ionic
b) Covalentc) Coordin
d) None of ate these
187. Which of the following is/are coloured and paramagnetic?
a) Cu^{+}
b) NO_{2}
c) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{d}\right)\left[\mathrm{Al}(\mathrm{OH})_{4}\right.$
188. Which of the following compounds contain both ionic and covalent bonds?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) KCN
c) $\left.\mathrm{CuSO}_{4}, 5 \mathrm{fd}\right) \mathrm{NaOH}$
189. Select the correct statement(s)

Among

Cs^{+}is	the	Ionic	
more	alkali	mobility	Ionizatio
highly	metals	of Li^{+}is	n
hydrated	$\mathrm{Li}, \mathrm{Na}, \mathrm{K}$	maximu	potential

a)
) that the b) and $\mathrm{Rb}, \mathrm{c}) \mathrm{m}$
d) of Li is
other lithium among smaller
alkali has the $\mathrm{Li}^{+}, \mathrm{Na}^{+}$than that
metal highest and K^{+}of Na
ions melting ions point
190. The linear structure is assumed by:
a) SnCl_{2}
b) NCO^{-}
c) CS_{2}
d) NO_{2}^{+}
191. Which possess fractional bond order?
a) O_{2}^{+}
b) O_{2}^{-}
c) H_{2}^{+}
d) N_{2}
192. Which of the following elements have the similar value of electronegativity?
a) Te
b) S
c) P
d) H
193. Chlorine atom does not differ from chlorine ion in the number of which of the following?
a) Neutron s
b) Electron
c) Size
d) Protons
194. Ionization energy is influenced by:
a) Size of atom
b) Charge on the
c) Electron d nucleus present above in inner shells
195. Which has/have zero value of dipole moment?
a) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right.$
b) CHCl_{3}
c) CO_{2}
d)

196. The molecule,

197. Which of the following conditions apply to resonating structures?
a) The
b) The
c) The
d) The contribu contrib
ting ting ositive ting
structur structur element should structur es must should should always have the
have be has same
similar represe positive number
energies nted
such and the unpaire
that electron d
unlike egative electron
charges element s
reside negative
on charge
atoms
that far apart
198. Which has/have magnetic moment?
a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{b}\right)\left[\mathrm{Ni}(\mathrm{CN})_{4} \mathrm{c}\right)\left[\mathrm{Fe}(\mathrm{CN})_{6} \mathrm{~d}\right) \mathrm{O}_{2}$
199. The factors that influence the ionization energies are
a) The size
b) The of the charge
c) How
d) The atom on the effective atomic nucleus inner electron s screen
the nuclear charge
200. In which, central atom(s) has/have one lone pair of electron?
a) Cl_{2}
b) NH_{3}
c) PCl_{3}
d) XeF_{6}
201. Which of the following force(s) is/are weak?
a) Covalent $\begin{aligned} & \text { forces }\end{aligned}$
Van der
b) Waals' forces
c) $\begin{aligned} & \text { Coulom } \\ & \text { forces }\end{aligned}$
d) $\begin{aligned} & \text { London } \\ & \text { forces }\end{aligned}$
202. Stability of ions of Ge, Sn and Pb will be in order
Ge^{2+}
Pb^{4+}
a) $<\mathrm{Sn}^{2+}$
b) $<\mathrm{Sn}^{4+}$
c) $\begin{aligned} & \mathrm{Sn}^{2+} \\ & <\mathrm{Sn}^{4+}\end{aligned}$
d) $\begin{aligned} & \mathrm{Pb}^{4+} \\ & <\mathrm{Pb}^{2+}\end{aligned}$
203. Which one of the following arrangements does not give the correct picture of the trends indicated against it?
a) $\begin{aligned} & \mathrm{F}_{2}> \\ & \mathrm{Cl}_{2}>\end{aligned}$
b) $\begin{aligned} & \mathrm{F}_{2}> \\ & \mathrm{Cl}_{2}>\end{aligned}$
c) $\begin{aligned} & \mathrm{F}_{2}> \\ & \mathrm{Cl}_{2}>\end{aligned}$
d) $\begin{aligned} & \mathrm{F}_{2}> \\ & \mathrm{Cl}_{2}>\end{aligned}$

$\mathrm{Br}_{2}>$	$B \mathrm{r}_{2}>\mathrm{I}_{2}$	$B \mathrm{r}_{2}>\mathrm{I}_{2}$	$B r_{2}>\mathrm{I}_{2}$
$\mathrm{I}_{2}:$	$:$ bond	$:$	$:$
Electron	dissociat	Electron	Oxidising
gain	ion	egativity	power
enthalpy	energy		

204. The properties that show similar trends down the group among the elements of group 1 to 17, is/are
a) Metallic
b) Reactivitc
Electron
d) Melting characte y egativity or r boiling points
205. Which of the following have a dipole moment?
a) 2,2,3,3-
a) $\begin{aligned} & 2,2,3,3-\quad \text { b) } \begin{array}{l}\text { Trans-2- } \\ \text { tetrametl }\end{array} \text { pentene }\end{aligned}$
Cis-1, 2-
Trans-1,
c) dichloro d)
ethene
dichloro ethene
206. Which of the following statements is/are correct regarding ionic compounds?

a) They areb)	They arec)	They	d) They
good	generall	consist	generall
conduct	y soluble	of ions	y have
ors at	in polar		high
room	solvents		melting
tempera		and	
ture		boiling	
		points	

Assertion - Reasoning Type

This section contain(s) 0 question(s) numbered 207 to 206. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True;

Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True;

Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True 207

Statement 1: If difference of electronegativity between two atoms is zero the resultant molecule will be non-polar covalent

Statement 2: The shared pair of electron lies just in the middle of two atoms

Statement 1: PCl_{5} conducts current in solid state
Statement 2: PCl_{5} exists as $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$ions

Statement 1: Solubility of NaOH in water increases with rise in temperature, although it is exothermic dissolution
Statement 2: Changes showing exothermic nature occurs in backward direction if temperature is raised

Statement 1: The electron attachment enthalpy of fluorine is more negative than that of chlorine
Statement 2: All alkaline earth and noble gas elements have positive value of electron attachment enthalpies

Statement 1: N and P show a maximum covalency of five
Statement 2: P can expand the outer shell of electrons beyond an octet by involving d-orbitals present in its valence shell

Statement 1: Shielding effect increases as we go down the group
Statement 2: More is the electrons in the penultimate shell, more is shielding

Statement 1: The lattice energy of silver halides is
$\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$
Statement 2: AgF is water soluble

Statement 1: The bond angle in $\mathrm{H}_{2} \mathrm{O}$ is greater than $\mathrm{H}_{2} \mathrm{~S}$
Statement 2: H -bonding does not occur in $\mathrm{H}_{2} \mathrm{~S}$ due to low electronegativity of S

Statement 1: Manganese has a less favourable electron affinity than its neighbours in either side
Statement 2: The magnitude of an element's electron affinity depends on the element's valence shell electrons configuration

Statement 1: Plutonium among the transuranic elements is the longest lived element.
Statement 2: Plutonium is not radioactive.

Statement 1: NH_{3} and CH_{3}^{-}both have pyramidal shape
Statement 2: $\quad \mathrm{N}$ in NH_{3} and C in CH_{3}^{-}both have $s p^{3}$-hybridization with one lone pair of electron on each

Statement 1: The bond angle in BF_{3} is smaller than that in BF_{4}
Statement 2: BF_{3} has $s p^{2}$-hybridization, whereas BF_{4}^{-}has $s p^{3}$ hybridization

Statement 1: The ionisation energy of ${ }_{1} \mathrm{H}^{2}$ is more than ionisation energy of ${ }_{1} \mathrm{H}^{1}$
Statement 2: This is due to isotopic effect

Statement 1: Atomic size of silver is almost equal to that of gold.
Statement 2: d-subshell has low penetration power and produce poor shielding.

Statement 1: F atom has less electron affinity than Cl atom
Statement 2: Additional electrons are repelled more effectively by $3 p$-elctrons in Cl atom than by $2 p$-electrons in F atom

Statement 1: p-dimethoxy benzene is polar molecule
Statement 2: The two methoxy groups at para positions are located as

223
Statement 1: The molecule cis-1chloropropene is more polar than trans-1-chloropropene
Statement 2: The magnitude of resultant vector in trans-1-chloropropene is non-zero

Statement 1: The first ionization energy of $B e$ is greater than B.
Statement 2: $2 p$ - orbitals have lower energy than $2 s$ - orbitals.
225
Statement 1: The dipole moment of NF_{3} is more than NH_{3}
Statement 2: The presence of lone pair of electron on N shows an additive contribution in dipole moment of NH_{3} whereas it shows a negative contribution towards dipole moment of NF_{3}

Statement 1: $E_{A_{2}}$ for halogens is endothermic
Statement 2: Halogens have $n s^{2} n p^{5}$ configuration and can accommodate only one electron

Statement 1: In any period, the radius of the noble gas is lowest
Statement 2: He has the highest IE in the Periodic Table

Statement 1: Nobel gases have large positive electron gain enthalpy.
Statement 2: Electron has the enter the next higher principal quantum level.

Statement 1: $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{3} and PCl_{5} had different bond energy
Statement 2: P in PCl_{3} and PCl_{5} is $s p^{3}$ hybridized

Statement 1: The first ionisation energy of N is greater than O
Statement 2: $\quad \mathrm{N}$ atom has half filled p orbitals

Statement 1: Sulphur atom has higher electron affinity than oxygen.
Statement 2: Oxygen is more electronegative than sulphur, that's why can hold electron better.

232

Statement 1: $\quad \mathrm{IF}_{7}$ is super octet molecule
Statement 2: Central atom of I in IF_{7} has 14 electrons

233

Statement 1: FeCl_{2} is more covalent than FeCl_{3} because electro negativity of $\mathrm{Fe}^{3+}>\mathrm{Fe}^{2+}$
Statement 2: Higher is the charge on cation, more is deformation of anion, more is covalent character

Statement 1: Solubility of NaCl in $\mathrm{D}_{2} \mathrm{O}$ is less than, $\mathrm{H}_{2} \mathrm{O}$
Statement 2: Higher viscosity of $\mathrm{D}_{2} \mathrm{O}$ I responsible for low solubility
of NaCl
235

Statement 1: The bond energy of $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{3} and PCl_{5} are different
Statement 2: In $\mathrm{PCl}_{3}, s p^{3}-p$ overlapping whereas in $\mathrm{PCl}_{5}, s p^{3} d-p$ overlapping is noticed

Statement 1: BF_{3} molecule is planar with an angle of $120^{\circ} \mathrm{C}$
Statement 2: $\quad \mathrm{BF}_{3}$ has bond pair-lone pair electron ratio 1 : 3
237

Statement 1: First ionization energy for nitrogen is lower than oxygen.
Statement 2: Across a period effective nuclear charge decreases.

Statement 1: $\quad \mathrm{SF}_{4}$ has lone pair of electron at equatorial position in preference to apical position in the overall trigonal bipyramidal geometry
Statement 2: If lone pair is at equatorial position then only repulsion is minimum

Statement 1: All molecules with polar bond have dipole moment
Statement 2: Dipole moment is a vector quantity

Statement 1: Isoelectronic species are having same number of electrons but different radii.

Statement 2: Higher the charge, smaller the ion.
241

Statement 1: The dipole moment of NH_{3} is less than NF_{3}
Statement 2: The lone pair present on N shows additive nature to N - H vector whereas it is
subtractive to $\mathrm{N}-\mathrm{F}$ vector
242
Statement 1: MO configuration of CO is $\sigma 1 s^{2}, \sigma^{*} 1 s^{2} \sigma 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}, \pi$
Statement 2: The bond energy level $\sigma^{*} 2 s^{2}$ possesses higher energy because then only bond length order for CO (more) and CO^{+}(less) can be explained
243

Statement 1: $I E_{1}$ for He is maximum and $E A_{1}$ for Cl is more than $E_{A_{1}}$ of F

Statement 2: He possesses electrons in $1 s$ sub-shell, closest to nucleus, whereas electron density in F is maximum which exerts more electron-electron repulsion

Statement 1: Known elements may contain as many as 32 electrons in an energy level but only s and p sublevel electrons are considered for the octet rule.
Statement 2: For any atom, electrons present in s - and p-subshells assume greater stability.
245

Statement 1: Ionisation energy of nitrogen (7) is more than that of oxygen (8)
Statement 2: Half-filled p-orbitals in nitrogen $\left(2 p^{3}\right)$ are more stable
246
Statement 1: The first ionisation energy of Be is greater than that of B
Statement 2: $2 p$-orbital is lower in energy than $2 s$-orbital

Matrix-Match Type

This section contain(s) 0 questions. Each question contains Statements given in 2 columns which have to be matched. Statements in columns I have to be
matched with Statements in columns II.

247 Match the element (in Column I) with its

- unique properties (in Column II)

Column-I

(A) F
(B) Cl
(C) Fe
(D) He
(E) Ds

Column- II
(1) Maximum ionization energy
(2) Maximum electronegativity
(3) Maximum electronaffinity
(4) Recently named by IUPAC
(5) Variable valency

Codes:

	A	B	C	D	E
(a)	3	4	2	5	1
(b)	1	2	3	4	5
(c)	2	3	5	1	4
(d)	5	1	4	3	2

248 Match the type of elements (in Column I) with
. the corresponding electronic configuration (in Column II)

Column-I

Column- II
(A) Inert gas elements (1) $n s^{1}$ to $n s^{2} n p^{5}$
(B) Main group
(2) $1 s^{2}$ to $n s^{2} n p^{6}$
elements
(C) Transition
(3) $(n-2) f^{1-14}$
elements
$(n-1) s^{2} p^{6} d^{10} n s^{2}$
(D) Inner transition
(4) $(n-1) d^{1-9} n s^{2}$ elements
(5) $(n-1) d^{10} n s^{2}$

Codes:

	A	B	C	D
(a)	1	2	3	4
(b)	2	1	4	3
(c)	4	3	2	1
(d)	3	4	1	2

249 The correct match of contents in Column I with
those in column II is

Column-I
Column- II
(A) He
(B) Cl
(C) Ca
(D) Li

Codes:

	A	B	C	D
(a)	3	1	2	4
(b)	4	3	2	1
(c)	2	4	1	3
(d)	1	2	3	4
(e)	4	1	2	3

250 Match the atomic number (in Column I) with its IUPAC nomenclature (in Column II)

Column-I
Column- II
(A) 105
(1) Uuh
(B) 107
(2) Uun
(C) 109
(3) Uns
(D) 110
(4) Unp
(E) 116
(5) Une

Codes:

	A	B	C	D	E
(a)	4	3	5	2	1
(b)	1	2	3	4	5
(c)	2	5	4	3	2
(d)	5	1	2	5	4

251 Match atomic number of elements (in Column
I) with position of elements in the Periodic Table (in Column II)

Column-I
Column- II
(A) 19
(1) p-block
(B) 22
(2) f-block
(C) 32
(3) d-block
(D) 64
(4) s-block

Codes:

	A	B	C	D
(a)	4	3	1	2
(b)	3	4	2	1
(c)	2	1	3	4
(d)	1	2	4	3

Column-I

Column- II

Codes:

	A	B	C	D
(a)	4	3	2	1
(b)	2	1	4	3
(c)	3	2	1	4
(d)	1	4	3	2

Linked Comprehension Type

This section contain(s)0 paragraphs. Based upon each paragraph, multiple choice questions have to be answered. Each question has at least 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 253-252

Ionic radius is the effective distance from the nucleus of an ion up to which it has its influence on
its electron cloud. A cation is always much smaller than the corresponding atom. Further more the number of electrons removed, smaller will be the size of the resulting positive ion. For example
$r_{\mathrm{Fe}}>r_{\mathrm{Fe}^{2+}}>r_{\mathrm{Fe}^{3+}}$
A cation formed by the loss of electrons may result in the complete disappearance of the outer shell and since, the remaining inner shells do not extend so far in space, the cation is much smaller than the metal atom. For example

$$
\underset{(2,8,1)}{\mathrm{Na}} \rightarrow \underset{(2,8)}{\mathrm{Na}^{+}}
$$

In case of isoelectronic ions, the greater the nuclear charge, the greater is the attraction for electrons and smaller is ionic radius
253. The size of the species $\mathrm{Pb}, \mathrm{Pb}^{2+}$ and Pb^{4+} decreases as
Pb^{4+}
Pb
Pb^{4+}
Pb^{2+}
a) $>\mathrm{Pb}^{2+}$
b) $>\mathrm{Pb}^{2+}$
c) $>P b$
d) $>\mathrm{Pb}^{4+}$
$>P b$
$>\mathrm{Pb}^{4+}>\mathrm{Pb}^{2+}$
$>P b$

Paragraph for Question Nos. 254-254

Just as energy is required to remove an electron from an atom, energy is generally released when an electron is added to a neutral atom. When an electron is added to a neutral gaseous atom to convert it into a negative ion, the enthalpy change accompanying the process is called the electron gain enthalpy $\left(\Delta_{e \mathrm{~g}} H\right)$. It provides a quantitative measure of the ease with which an atom adds an electron to form anion
$X(\mathrm{~g})+e^{-} \rightarrow X^{-}(\mathrm{g})+$ Energy
Electron gain enthalpy, like ionisation potential, is expressed in electron volt/atom or $\mathrm{kcal} / \mathrm{mol}$ or $\mathrm{kJ} / \mathrm{mol}$. Electron gain enthalpy of chlorine is -349 $\mathrm{kJ} / \mathrm{mol}$. This means that 349 kJ of energy is released when one mole of chlorine atoms (6.02×10^{23} atoms) change into Cl^{-}ions
$\mathrm{Cl}(\mathrm{g})+e^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g})+349 \mathrm{~kJ}$
$\mathrm{Cl}(\mathrm{g})+e^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \Delta_{e \mathrm{~g}} \mathrm{H}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$
254. Second electron gain enthalpy
a) Can be
b) Is
c) Is
d) Is positive always always always or zero negative positive negative

(energy	(energy
is	is
released	absorbe
)	d)

Following questions are based on $\operatorname{Sc}(Z=21)$
255. Out of $\mathrm{Sc}^{3+}, \mathrm{Sc}^{2+}$ and Sc^{+}paramagnetic as well coloured ions are

All being
a) $\mathrm{Sc}^{+}, \mathrm{Sc}^{2+} \mathrm{b}$
b) $\left.\mathrm{Sc}^{+}, \mathrm{Sc}^{3+} \mathrm{c}\right) \mathrm{Sc}^{2+}, \mathrm{Sc}^{3-}$
d-block element

Paragraph for Question Nos. 256-256

Following rule in general, classifies p-block elements into metals, non-metals and metalloids (where P is the period and N the valence electrons) $(P+1)>N$, the element would be metal $(P+1)<N$, the element would be non-metal $(P+1)=N$, the element would be metalloid Answer the following question
256. Metalloid will be out of elements with atomic number 13, 14, 15, 16
a) 13
b) 14
c) 15
d) 16

Paragraph for Question Nos. 257-257
In the following table I_{1}, I_{2} and I_{3} of the main group elements in 2 nd period have been given

	Li	Be	B	C	N	O	F	Ne
I_{1}	513	899	801	108	140	131	168	$20 ؛$
				6	2	4	1	0
I_{2}	729	175	242	235	285	338	337	$39!$
	8	7	7	2	6	8	4	2
I_{3}	118	148	366	462	457	530	605	$61:$
	15	48	0	0	8	0	0	2

Answer the following questions based on the above table
257. There is increase in ionization energy along a period going Li to Ne , but I_{1} of B is less than that of Be. This is due to

Removal
Valence electron in B is in $2 p$ -
orbital of higher
a) energy than that of Be in $2 s$ orbital of lower energy
of paired
electron
in Be
requires
higher
energy
than that of removal of unpaired electron in B

Paragraph for Question Nos. 258-258
The sums of first and second ionization energies
and those of third and fourth ionization energies (in $\mathrm{MJ} \mathrm{mol}{ }^{-1}$) of nickel and platinum are

	$(\mathrm{IE})_{1}+(\mathrm{IE})_{2}$	$(\mathrm{IE})_{2}+(\mathrm{IE})_{4}$
Ni	2.49	8.80
Pt	2.66	6.70

Based on this information, answer the following questions
258. Most common oxidation states of Ni and Pt are respectively
a) $+2,+2$
b) $+4,+2$
c) $+2,+4$
d) $+4,+4$

Paragraph for Question Nos. 259-259
The (IE) ${ }_{1}$ and the (IE) $)_{2}$ on $\mathrm{kJ} \mathrm{mol}^{-1}$ of a few elements designated by Roman numerals are shown below

Element	$(\mathrm{IE})_{1}$	$(\mathrm{IE})_{2}$
A	2372	5251
B	520	7300
C	900	1760
D	1680	3380

Based on the above information, answer the following questions
259. Which of the above elements is likely to be a reactive metal?
a) A
b) B
c) C
d) D

Paragraph for Question Nos. 260-260
Consider the following table comparing ionic radius

Ion \rightarrow	$\mathbf{N}^{\mathbf{3 -}}$	$\mathbf{0}^{\mathbf{2 -}}$	\mathbf{F}^{-}	$\mathbf{N a}^{+}$	$\mathbf{M g}^{\mathbf{2}}$
Number of electron	10	10	10	10	10
Number of nuclear protons	7	8	9	11	12
Ionic radius (pm)	146	140	133	98	79

Answer the following questions.
260. Select the correct alternate(s) in term of size
a) $\begin{aligned} & \mathrm{Na} \\ & >\mathrm{Na}^{+}\end{aligned}$
Mg
O^{2-}
b) $>\mathrm{Mg}^{+}$
c) $\mathrm{F}^{-}>F$
d) $>0^{-}$

Paragraph for Question Nos. 261-261

The heats of formation $\left(\Delta H_{f}{ }^{\circ}\right)$ of the oxides of the third period, sodium to chlorine, are in $\mathrm{kJ} \mathrm{mol}^{-1}$
$\begin{array}{llllll}\mathrm{Na}_{2} \mathrm{O} & \mathrm{MgO} & \mathrm{Al}_{2} \mathrm{O}_{3} & \mathrm{SiO}_{2} & \mathrm{P}_{4} \mathrm{O}_{10} & \mathrm{SO}_{3}\end{array}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}$
$\begin{array}{llllll}-416 & -602 & -1676 & -911 & -2984 & -395\end{array}$
$+250$
Based on these data, answer the following
questions
261. Which oxide has maximum negative heat of formation per oxygen atom?
a) $\mathrm{P}_{4} \mathrm{O}_{10}$
b) $\mathrm{Al}_{2} \mathrm{O}_{3}$
c) $\mathrm{Na}_{2} \mathrm{O}$
d) MgO

Paragraph for Question Nos. 262-262
The singly-bonded metallic radius of Na is 157 pm .
Assume that the increment between radii of different magnitudes is 60 pm
Answer the following questions
262. The covalent radius of Na is
a) 157 pm
b) 97 pm
c) 217 pm
d) 267 pm

Paragraph for Question Nos. 263-263
Following species have been given. Assign the species (by its number) showing the indicated property
(1) LiCl
(2) AlCl_{3}
(3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(4) BaO
(5) LiH
(6) Cl_{2}
(7) F_{2}
(8) Br_{2}
(9) MgCl_{2}
263. Which is maximum hydrated?
a) 4
b) 3
c) 2
d) 1

Paragraph for Question Nos. 264-264

Dipole moment of a bond is a vector and physical quantity to calculate the percentage ionic character in a covalent bond. It is expressed as:
Dipole moment $(\mu)=\vec{\delta} \times d$
Where, δ is dipole moment and d is the bond length It is usually expressed in terms of CGS unit known as Debye (D) $1 D=10^{-18}$ esu cm. In SI unit it is expressed in coulomb meter. Resultant dipole moment (μ_{R}) of two bond moments (μ_{1} and μ_{2}) acting at an angle θ, is given by:
$\mu_{R}=\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+2 \mu_{1} \mu_{2} \cos \theta}$
If $\mu_{1}=\mu_{2}$, also if $\cos \theta=-1$, i.e., $\theta=180^{\circ}$ then $\mu=0$ (molecule is nonpolar)
If $\mu \neq 0$ molecule is polar.
Dipole moment plays an important role in deciding the stability order of alkanes, i.e., a more stable alkane has less dipole moment. The dipole moment of a molecule can predict the geometrical and position isomers as well as orientations in benzene nucleus and polarity of molecule
264. Dipole moment of HCl molecule is found to be 0.816 D. Assuming HCl bond length to be equal to $1 \AA$, the \% ionic character of HCl molecule is:
a) 10%
b) 17%
c) 27%
d) 37%

Integer Answer Type

: ANSWER KEY :

1)	b	2)	b	3)	a	4)	b		a,b,d						
5)	a	6)	a	7)	a	8)	a	177)	a,b,d	178)	a,b,d	179)	b,c,d	180)	c
9)	d	10)	C	11)	C	12)	a	181)	b,c	182)	a,c	183)	a,b,c	184)	
13)	a	14)	b	15)	c	16)	c		b,c,d						
17)	C	18)	b	19)	a	20)	a	185)	a,b,d	186)	a,b,c	187)	b,c	188)	
21)	d	22)	b	23)	a	24)	d		a,b,c,d						
25)	b	26)	d	27)	c	28)	c	189)	b	190)	b,c,d	191)	a,b,c	192)	
29)	a	30)	a	31)	c	32)	d		a,c,d						
33)	C	34)	C	35)	c	36)	b	193)	a,d	194)	a,b,c	195)	a,c,d	196)	
37)	d	38)	b	39)	c	40)	b		b,d						
41)	d	42)	C	43)	d	44)	b	197)	a,b,c,d	198)	a,c,d	199)	a,b,c	200)	
45)	a	46)	a	47)	d	48)	c		b,c,d						
49)	a	50)	a	51)	a	52)	a	201)	b,d	202)	a,b,c,d	203)	a,b	204)	
53)	C	54)	C	55)	c	56)	c		a,c						
57)	b	58)	d	59)	a	60)	d	205)	b,c	206)	b,c,d	207)	C	208)	b
61)	a	62)	b	63)	b	64)	d	209)	d	210)	d	211)	b	212)	a
65)	a	66)	a	67)	C	68)	d	213)	d	214)	d	215)	b	216)	C
69)	c	70)	b	71)	c	72)	d	217)	c	218)	b	219)	C	220)	b
73)	b	74)	d	75)	d	76)	a	221)	a	222)	a	223)	b	224)	c
77)	c	78)	a	79)	d	80)	a	225)	b	226)	b	227)	d	228)	a
81)	a	82)	C	83)	c	84)	c	229)	a	230)	c	231)	b	232)	c
85)	b	86)	a	87)	d	88)	c	233)	b	234)	c	235)	C	236)	d
89)	d	90)	c	91)	d	92)	a	237)	d	238)	c	239)	b	240)	C
93)	b	94)	a	95)	b	96)	d	241)	b	242)	c	243)	C	244)	b
97)	d	98)	a	99)	b	100)	a	245)	a	246)	a	247)	C	248)	b
101)	d	102)	a	103)	a	104)	a	249)	c	250)	a	251)	a	252)	a
105)	a	106)	C	107)	c	108)	d	253)	b	254)	d	255)	a	256)	b
109)	C	110)	c	111)	a	112)	b	257)	c	258)	c	259)	b	260)	
113)	b	114)	a	115)	a	116)	c		a,b,c,d						
117)	a	118)	b	119)	d	120)	a	261)	d	262)	a	263)	C	264)	b
121)	d	122)	a	123)	b	124)	b	265)	8	266)	5	267)	1	268)	7
125)	c	126)	b	127)	c	128)	a	269)	6	270)	2	271)	2	272)	1
129)	C	130)	C	131)	c	132)	a	273)	6	274)	5	275)	2	276)	3
133)	c	134)	d	135)	a	136)	d	277)	1	278)	7	279)	3	280)	5
137)	b	138)	C	139)	b	140)	c	281)	6	282)	7	283)	2	284)	4
141)	C	142)	C	143)	b	144)	d	285)	4	286)	7	287)	5	288)	3
145)	a	146)	a	147)	c	148)	b	289)	6	290)	4	291)	4		
149)	d	150)	d	151)	b	152)	d								
153)	a $\mathbf{a}, \mathbf{b}, \mathbf{c}$	154)	a	155)	b	156)									
157)	b,d	158)	b,c,d	159)	a,b,c,d	160)	b								
161)	$\begin{aligned} & \text { a,d } \\ & \text { a,c,d } \end{aligned}$	162)	b,c,d	163)	a,b	164)									
165)	a,b,c,d	166)	a,b	167)	a,b,c	168)	d								
169)	$\begin{aligned} & \text { a,b,c,d } \\ & \text { a,c } \end{aligned}$	170)	b,d	171)	a,b,c	172)									
173)	a,b,c	174)	a,c	175)	a,b	176)									

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 (b)
$\mathrm{Fe}(26):[\mathrm{Ar}] 3 d^{6} 4 s^{2}$
$\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 d^{5}$
3 (a)
(a) Ionic Amphoteric Giant

Thus, atomic number increases in the order $A<B<C$
4 (b)
First long period starts with 3rd period [K(19)$\mathrm{Kr}(36)]$
Thus, total $=18$ elements
6 (a)
Ni^{2+} is smallest in size
7 (a)
$\mathrm{K}(19) 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$
$\mathrm{K}^{+}(19) 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Colourless ion due to lack of electron in d-orbitals
Thus, (a) is incorrect
10 (c)
E.C. of $K=19$ in the absence of Aufbau rule is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$ \uparrow
Last-filling electron goes into d-orbital
Thus, d-block element
11 (c)
$\mathrm{ZnO} \quad+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
Basic oxide
$\mathrm{ZnO}+\quad 2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Acidic oxide
14 (b)
A (1.2) is electropositive element
B (3.4) is electronegative element
Thus, ionic bond is formed
15 (c)
(b) and (d) with $s^{2} p^{6}$ configuration has zero values of EA

Cl (c) with empty d-orbital has greater EA than F(a)

17 (c)
PbO is soluble in $\mathrm{NaOH}-$ an acidic oxide PbO is soluble in $\mathrm{HCl}-$ a basic acid

Radius decreases along a period left to right

B	C	N	O
max.	70 Fm		

Thus, covalent radius of B would be higher than that of N
19 (a)
Smaller the size of anion, smaller the polarizing power and thus larger the ionic character of NaX . Thus, ionic character
$\mathrm{NaI}<\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{NaF}$
and mp: NaI $<\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{NaF}$
20 (a)
(a) $\mathrm{Li}-\mathrm{Mg}$ diagonal relationship
(b) $\mathrm{Na}-\mathrm{K}$
(c) $\mathrm{Ca}-\mathrm{Mg}$ same group
(d)] B - Al

21 (d)
$X(g)+e^{-} \rightarrow X^{-}(g), \quad \Delta H=x$
(EA of $X(g)$)
$X^{-}(g) \rightarrow X(g)+e^{-}, \quad \Delta H=y=\mathrm{IE}$ of
$X^{-}(g)=-$ EA of $X(g)$
Thus, (a), (b), (c) true
22 (b)
Elements in a group have same (EC) in valence shell
25 (b)
Ce (58) $[\mathrm{Xe}]_{54} 4 f^{1} 5 d^{1} 6 s^{2}$
Thus, Ce^{4+} has [Xe] configuration
27 (c)
Atomic number 113 belong to p-block (Group IIIA)
Probable oxidation states are $+1,+3$, but due to inert-pair effect
stability of $+1>+3$
Thus, M^{+}
29
(a)
$\mathrm{Cl}_{2} \mathrm{O}_{7} \mathrm{Cl}=+7$
30 (a)
Going down the group effective nuclear charge remains almost constant, hence (IE) is dependent on radius of two element
32 (d)
(IV) B contain $\mathrm{C}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$
$\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}$ are strongly electropositive

33 (c)
Isoelectronic $\mathrm{N}(7)$ and $\mathrm{O}^{+}(8)$ have same EC
$\left.\begin{array}{c}\mathrm{N}(7) \\ \mathrm{O}^{+}(8)\end{array}\right] 1 s^{2} 2 s^{2} 2 p^{3}$

1	1	1
$2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$		

Most stable due to all unpaired electrons
$\left.\mathrm{O}_{8}\right] 1 s^{2} 2 s^{2} 2 p^{4}$

1	1	1

Less stable than O^{+}and N
Since Z of $\mathrm{O}^{+}>Z$ of N
Hence IP of $\mathrm{O}^{+}>N$
Na with only one unpaired electron in $3 s^{1}$ has lowest IP
34 (c)
$\mathrm{Mg} \rightarrow \mathrm{Mg}^{+}+e^{-}(\mathrm{IE})_{1}$
$\mathrm{Mg}^{+} \rightarrow \mathrm{Mg}^{2+}+e^{-}(\mathrm{IE})_{2}$
$\mathrm{Mg}^{2+} \rightarrow \mathrm{Mg}^{3+}+e^{-}(\mathrm{IE})_{3}$
$(\mathrm{IE})_{1}<(\mathrm{IE})_{2}<(\mathrm{IE})_{3}$
35 (c)
$M(\mathrm{~g}) \rightarrow M^{+}(\mathrm{g})+e^{-}, I_{1}(M)=\Delta H_{1}=100 \mathrm{eV}$
(a) is correct
$M^{+}(\mathrm{g}) \rightarrow M^{2+}(\mathrm{g})+e^{-}, I_{2}(M)=250-100=$ 150 eV
or $I_{2}\left(M^{+}\right)=150 \mathrm{eV}(\mathrm{b})$ is correct
I_{2} of $M(\mathrm{~g})$ is 150 eV thus (c) is incorrect
36 (b)
$\mathrm{Pb}^{4+}+2 e^{-} \rightarrow \mathrm{Pb}^{2+}$
Stability of $\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}$
Hence, Pb^{4+} is reduced most easily and is thus best oxidizing agent

Valence shell electronic configuration is $d^{5} s^{1}$
Differentiating electron goes into d-orbitals. Thus, d-block element. Group VIB
(b)
$5 f$-block elements
39 (c)
EC: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{3} 3 p^{6} 4 s^{1}$
(Total 19 electrons i.e. $Z=19$)
It is K (alkali metals of Group 1)
Graded property will be that of same group

1. $\quad[\mathrm{Ar}] 3 d^{10} 4 s^{1}-\mathrm{Cu}$ group 11
2. $[\mathrm{Kr}] 4 d^{10} 5 s^{1}-\mathrm{Ag}$ group 11
3. $[\mathrm{Kr}] 5 s^{1}-\mathrm{Rb}$ group 1
(d)
$\mathrm{Na} \xrightarrow{(\mathrm{IE})_{1}} \mathrm{Na}^{+}$
$[\mathrm{Ne}] 3 \mathrm{~s}^{1} \quad[\mathrm{Ne}]$
$\mathrm{Na}^{+} \xrightarrow{(\mathrm{IE})_{2}} \mathrm{Na}^{2+}$
Ne
Na^{+}has stable inert gas configuration
Thus, (IE) ${ }_{2}$ is very high
46 (a)
Size of $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
Hydration $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
Size of hydrated ion $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
Smaller the size, $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
Larger the hydration, hence larger the size of the hydrated ion (in aqueous solution)
Heavier the ion, smaller the ionic mobility
Size $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}$
Hydration $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$
Ionic mobility $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}$
Discharged at cathode $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}$(Most easiest)
$\mathrm{He}^{+}, \mathrm{Li}^{2+}$ and Be^{3+} are isoelectronic of H atom (with one electron). Hence, single electron is not screened
48 (c)
$\mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$ are group 15 having oxidation +3 and +5 . Stability is in order
$\mathrm{As}^{5+}>\mathrm{Sb}^{5+}>\mathrm{Bi}^{5+}$
$\mathrm{As}^{3+}<\mathrm{Sb}^{3+}<\mathrm{Bi}^{3+}$ due to inert-pair effect
Thus, BiCl_{3} is most stable
49 (a)
Smaller the (IE), greater the metallic nature

52 (a)
In case of Ne van der Waals' radius is taken.
Hence, it should have maximum size out of the given option
(c)

Due to inert-pair effect, stability of
$\mathrm{Ga}^{3+}>\mathrm{In}^{3+}>\mathrm{Tl}^{3+}$
and $\mathrm{Ga}^{+}<\mathrm{In}^{+}<\mathrm{Tl}^{+}$
Thus, $\mathrm{Tl}^{3+}+2 e^{-} \rightarrow \mathrm{Tl}^{+}$
Is most spontaneous. Thus $\Delta G^{\circ}<0$ and is most negative
(b)

F is the most electronegative element which
cannot loose electron to other so it exhibits only -1 state. Na is alkali metal which can loose only one electron so exhibits only +1 state.
58 (d)

1. $\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$

Reducing nature
(b) $\xrightarrow[\text { Ionic } \left\lvert\, \begin{array}{llll}\mathrm{NaH} \\ \mathrm{KH}\end{array}\right.]{\mathrm{LiH} \quad \mathrm{BeH}_{2} \quad \mathrm{BH}_{2} \quad \mathrm{CH}_{4}}$ Covalent
(c) $>\mathrm{C}=\mathrm{O}+\mathrm{LiAlH}_{4} \longrightarrow>\mathrm{CHOH}$

59 (a)
Greater the electronegativity of $X(\mathrm{Cl}>\mathrm{Br}>\mathrm{I})$ greater the acid strength
Thus, I > II > III
60 (d)
Gd : $4 f^{7} 5 d^{1}$
Unpaired electrons $=8$
Sum of spin $=8 \times \frac{1}{2}=4$
61 (a)
$C u^{+} \underbrace{1 s^{2}}_{(n-2)} \underbrace{2 s^{2} 2 p^{6}}_{(n-1)} \underbrace{3 s^{2} 3 p^{6} 3 d^{10}}_{n}$
$S=\overbrace{2 \times 1}^{\downarrow}+\overbrace{8 \times 0.85}^{\downarrow}+\overbrace{17 \times 0.35}^{\downarrow}=14.75$
(One d-electron is screened by 17 electrons in n th, 8 electrons in $(n-1)$ and 2 electrons in
($n-2$)
$Z_{\text {eff }}=29-14.75=14.25$
62 (b)
$\underset{\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}}{\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}}$Size
$\stackrel{\text { Maximum }}{\longleftarrow}$ Covalent nature MCl
$\stackrel{\text { Maximum }}{\longleftrightarrow}$ Lattice energy of MCl
Maximum
Thermal stability
63 (b)
(b) (a) NH_{3}
PH_{3}
$\mathrm{AsH}_{3} \downarrow$ correct
acidic
(b) $\mathrm{Li}<\mathrm{B}<B e<C$ (IE)

Be has paired electron hence its (IE) is larger than that of B

Thus, (b) is incorrect
(c) Correct (d) correct

65 (a)
Atomic number (115) has E.C. has
$[\mathrm{Rn}]_{86} 7 s^{2} 5 d^{10} 4 f^{14} 7 p^{3}$
Probable oxidation states are $+3,+5$
But due to inert pair effect M^{3+} is the most stable cation
66 (a)
Effective nuclear charge $Z_{\text {eff }}=Z-S$
Where, $Z=$ atomic number
and $S=$ screening constant
$=0.35$ per electron for electron in nth orbit
$=0.85$ per electron for electron in $(n-1)$ th orbit
$=1.00$ per electron for electrons in $(n-2)$ th,
($n-3$)th, $(n-4)$ th orbit
$=0.30$ per electron in 1 s -orbital (when alone)
Be $1 s^{2} 2 s^{2}$ one valence-electron in $2 s$ is screened by one electron in $2 s$-orbital (nth orbit) and two electrons in $1 s$-orbital ($(n-1)$ th orbit)
$\therefore S=0.35+2 \times 0.85=2.05$
$\therefore Z_{\text {eff }}=4-2.05=1.95$ (given)
$\mathrm{Be}^{+} 1 s^{2} 2 s^{1} 2 s$ electron is screened by two
electrons in $1 s$-orbital ($(n-1)$ th orbital)
$S=2 \times 0.85=1.70$
$\therefore Z_{\text {eff }}=4-1.70=2.30$
$\mathrm{Be}^{3+} 1 s^{1}$ one electron in 1s-orbital (alone exists) is screened by another electron in same orbit.
Thus,
$S=0.30$
$\therefore Z_{\text {eff }}=4-0.30=3.70$
$\mathrm{Be}^{3+} 1 s^{1}$ no-screening (single electron)
Thus, $Z_{\text {eff }}=4$
Thus, $Z_{\text {effective }}: \mathrm{Be}<\mathrm{Be}^{+}<\mathrm{Be}^{2+}<\mathrm{Be}^{3+}$
67 (c)
(IP) of $\mathrm{Na}(11)<$ (IP) of $\mathrm{Li}(3)$
69 (c)
$A \rightarrow A^{+}+e^{-}(\mathrm{IP})_{A}<(\mathrm{IP})_{B}$
$B+e^{-} \rightarrow B^{-}(\mathrm{EA})_{B}>(\mathrm{EA})_{A}$
$(E N)_{B}>(E N)_{B}$
70 (b)
$M^{3+}:[\operatorname{Ar}] 3 d^{10} 4 s^{2}$
$M:[\operatorname{Ar}] 3 d^{10} 4 s^{2} 4 p^{3}$
Three electrons have been removed from $4 p$ suborbit
Thus, p-block element

72 (d)
$\left|\begin{array}{c|c}\mathrm{O} & \mathrm{F} \\ \mathrm{S} & \mathrm{Cl} \\ \mathrm{Se} & \mathrm{Br} \\ \mathrm{I}\end{array}\right| \begin{array}{lll}\mathrm{T}\end{array} \left\lvert\, \begin{array}{ll}\mathrm{F}<\mathrm{O} & \\ & \\ & \mathrm{F}^{-}<\mathrm{O}^{2-} \\ \mathrm{Se}^{2-}>0 & \mathrm{I}>\mathrm{Br}>\mathrm{O}^{2-} \\ \mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{F}^{-}\end{array}\right.$
$\mathrm{I}>\mathrm{Se}$
$\therefore \mathrm{I}^{-}>\mathrm{Se}^{2-}$
Thus, $\mathrm{I}^{-}>\mathrm{Se}^{2-}>\mathrm{Br}^{-}>\mathrm{O}^{2-}>\mathrm{F}^{-}$
73 (b)
A-19 s-block
B-22 d-block
C-32 p-block
D-64 f-block
79 (d)
Chalcogens are the elements of oxygen family:
Valence shell configuration : $n s^{2} n p^{4}$
Group: 16
Block: p
81 (a)
$r_{n}=\frac{n^{2} a_{0}}{Z_{\text {effective }}}$
Thus, $r_{n} \propto \frac{1}{Z_{\text {effective }}}$
82 (c)
NaH is an ionic hydride, others are covalent hydrides
83 (c)
$\mathrm{Ni}:[\mathrm{Ar}] 3 d^{8} 4 s^{2}$
Last electron enters into $3 d$-suborbit
Thus, d-block element
84 (c)
$X: n s^{2} n p^{1}$
Valency $=+3$ (as in Al)
It can loss three electrons to attain stable configuration
$Y: n s^{2} n p^{3}$
Valency $=-3($ as in N$)$
It can gain five electrons to attain stable configuration
Thus, $X^{3+} Y^{3-}$ or $X Y$
86 (a)
I^{-}is oxidized by $\mathrm{Br}_{2}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}$
Br^{-}is oxidized by $\mathrm{Cl}_{2}, \mathrm{~F}_{2}$
Cl^{-}is oxidized by F_{2}
89 (d)
Element Valence electrons Possible ion

A	3	A^{3+}
B	6	B^{2-}

$B+2 e^{-} \rightarrow B^{2-}$
8 electrons in valence shell (stable)
$A \rightarrow A^{3+}+3 e^{-}$
Stable

Thus, $A^{3+} B^{2-} A_{2} B_{3}$
90 (c)
$r_{n} \propto \frac{1}{Z}$
$\mathrm{Ti}^{2+}(22)>\mathrm{Ni}^{2+}(28)$
smaller
$\mathrm{Pt}^{2+}(5 d$-series $)$
$\mathrm{Zr}^{2+}(4 d$-series $)$
Have higher number of orbits
Hence, larger size
92 (a)
${ }_{115}^{\mathrm{m}} A \rightarrow{ }_{113}^{\mathrm{m}-4} B+\alpha\left({ }_{2}^{4} \mathrm{He}\right)$
93 (b)
$113-32-32-18=31$
Thus, 113 and 115 are placed as shown
IIIA VA
Ga 3133 As
In $49 \quad 51 \mathrm{Sb}$
Tl $81 \quad 81 \mathrm{Bi}$
$\underbrace{113}_{n s^{2} n p^{1}} \underbrace{115}_{n s^{2} n p^{3}}$
Thus, these belong to p-block
95 (b)
$\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ and Al^{3+} are isoelectronic
Size $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
Charge $+1+2+3$
Smaller the size of cation,
Larger the charge,
Greater the hydration
Thus, $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$
96 (d)

(d) Be | $1 / 1$ | 1 |
| :---: | :---: |
| | $1 s^{2}$ |
| $2 s^{2}$ | |\(\quad \begin{aligned} \& paired electron requires

\& more energy than\end{aligned}\)

B 11 11
Thus, IE of $\mathrm{Be}>\mathrm{B}$

stable higher (IE) than O due to paired electrons in $2 p$

Thus, IE of $\mathrm{N}>0$
(IE) $)_{\mathrm{Li}>\mathrm{Na}}$ due to smaller size of Li
$\mathrm{He} \rightarrow \mathrm{He}^{+}+e^{-} \quad(\mathrm{IE})_{1}$
$\mathrm{He}^{+} \rightarrow \mathrm{He}^{2+}+e^{-}(\mathrm{IE})_{2}$
$(\mathrm{IE})_{2}>(\mathrm{IE})_{1}$
Thus, (IE) of $\mathrm{He}^{+}>\mathrm{He}$
Thus, (d) is incorrect

97 (d)
2. Na, K - Metals
3. $\quad \mathrm{F}, \mathrm{Cl}-$ Non-metals
4. Cu, Ag - Metals
5. $\quad \mathrm{B}, \mathrm{Si}-\mathrm{Metalloids}$

98 (a)
$\mathrm{Na}_{2} \mathrm{O}$ is basic in nature and other oxides are acidic/basic/amphoteric

| | $\left.\begin{array}{llll}\mathrm{SiO}_{2} & \mathrm{P}_{2} \mathrm{O}_{5} & \mathrm{SO}_{3} & \mathrm{Cl}_{2} \mathrm{O}_{7} \\ \begin{array}{ll}\text { O. N. of element } \\ \text { Acidic nature }\end{array} & \begin{array}{c}\text { +4 } \\ \text { increases }\end{array} & +6 & +7 \\ & & \end{array}\right]$ |
| :--- | :--- | :--- | :--- |

Thus, greater the acidic nature, greater the tendency of the reaction to occur Thus, $\mathrm{Cl}_{2} \mathrm{O}_{7}$
100 (a)
$r_{n}=\frac{n^{2} a_{0}}{Z_{\text {eff }}}$
Cs (alkali metal) has largest atomic radius
101 (d)
Lanthanides form $4 f$-series
102 (a)
Size of $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
Hydration $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
Size of hydrated ion $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
Smaller the size, $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
Larger the hydration, hence larger the size of the hydrated ion (in aqueous solution)
103 (a)
$M \rightarrow M^{+}+e^{-}(\text {IE })_{1}=100 \mathrm{eV}$
$M \rightarrow M^{2+}+e^{-}(\mathrm{IE})_{2}=150 \mathrm{eV}$
$M^{2+} \rightarrow M^{3+}+e^{-}(\mathrm{IE})_{3}=1500 \mathrm{eV}$
$(\mathrm{IE})_{3}$ is very high indicating that M^{3+} is not formed easily. Thus, M^{3+} has attained inert gas configuration
$\mathrm{Be} \rightarrow \mathrm{Be}^{+}+e^{-}$
$1 s^{2} 2 s^{2} 1 s^{2} 2 s^{1}$
$\mathrm{Be}^{+} \rightarrow \mathrm{Be}^{2+}+e^{-}$
$1 s^{2} 2 s^{1} 1 s^{2}$
104 (a)
$\mathrm{F}+e^{-} \rightarrow \mathrm{F}^{-}$
Can be reduced easily
106 (c)
$\mathrm{V}(Z=23)=[A r] 4 s^{2} 3 d^{3}$
$\mathrm{V}^{\mathrm{x}+}=$?

If there are N unpaired electrons then
Magnetic moment $=\sqrt{N(N+2)} B M=1.73$
$\therefore N(N+2)=3$
$\therefore N=1$
Thus, vanadium exists as V^{4+}
$V^{4+}=[A r] 3 d^{1}$
Thus, vanadium chloride is VCl_{4}
107 (c)
115
$\uparrow \uparrow \uparrow$
U u p
Thus, Uup
109 (c)
M^{+}(alkali metal ion) has inert gas configuration. Thus, after M^{+}is formed from M (by $\left.(\mathrm{IE})_{1}\right)$,
further ionization to M^{2+} from $M^{+}\left(\mathrm{by}(\mathrm{IE})_{2}\right)$ requires very high energy
110 (c)
Maximum charge
Least size
Maximum polarizing power
Thus, (c) [Note O^{2-} is anion]
111 (a)
Based on Fajan's rule
112 (b)
$113-32-32-18=31$
Thus, 113 and 115 are placed as shown
IIIA VA
Ga 3133 As
In $49 \quad 51 \mathrm{Sb}$
Tl $81 \quad 81 \mathrm{Bi}$
$\underbrace{113}_{n s^{2} n p^{1}} \underbrace{115}_{n s^{2} n p^{3}}$
Thus, these belong to p-orbital
113 (b)
Element with atomic number 113 is placed in group 13 (IIIA) and has EC of valence shell as
$n s^{2} n p^{1}$
Si - Group 14
Ga - Group 13
Bi - Group 15
At - Group 17
114 (a)
(IE) ${ }_{1}$ decreases regularly
117 (a)
$\mathrm{H}^{-} \rightarrow \mathrm{H}+e^{-}$
119 (d)
Greater the charge on cation smaller the size

1. $\mathrm{Ti}^{4+}(Z=22$, electron $=18)>\mathrm{Mn}^{7+}(Z=$ 25 electrons $=18$)
2. ${ }^{37} \mathrm{Cl}^{-}={ }^{35} \mathrm{Cl}^{-}(Z=17)$
3. $\mathrm{K}^{+}<\mathrm{Cl}^{-}$
4. $\mathrm{P}^{3+}>\mathrm{P}^{5+}$

Thus, correct
121 (d)

1. True
2. True
3. True

123 (b)
$0+e^{-} \rightarrow \mathrm{O}^{-}(\mathrm{EA})<0$
$\mathrm{O}^{-}+e^{-} \rightarrow \mathrm{O}^{2-}(\mathrm{EA})>0$
132 (a)
$\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
137 (b)
$X(\mathrm{~g}) \rightarrow X^{+}(\mathrm{g})+e^{-} E_{1}$ for $\frac{N_{0}}{2}$ atoms
$\frac{N_{0}}{2}$ atoms of $X(\mathrm{~g})$ have been ionized, by energy $=E_{1}$
Thus, ionization energy $X(\mathrm{~g})=\frac{2 E_{1}}{N_{0}}$ per atom
$X(\mathrm{~g})+e^{-} \rightarrow X^{-}(\mathrm{g}) E_{2}$ for $\frac{N_{0}}{2}$ atoms
Thus, electron affinity of $X(\mathrm{~g})$ is $\frac{2 E_{0}}{N_{0}}$ per atom
139 (b)
$(\mathrm{EN})_{A}=\frac{(\mathrm{EN})_{A}+(\mathrm{IE})_{A}}{2}$
$X=\frac{Y+(\mathrm{IE})_{A}}{2}$
$(\mathrm{IE})_{A}=2 X-Y$
140 (c)
(a) $r_{n} \propto \frac{1}{Z}$
$\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
(b) $\mathrm{O}^{2-}>\mathrm{F}^{-}<\mathrm{Ne}$
(c) Repulsive forces are balanced by attractive force

Thus, true
(d) $\mathrm{Mn}^{+}>\mathrm{Fe}^{2+}$

143 (b)

$\mathrm{Si}_{14}[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
1 1 2.8

$\mathrm{P}_{15}[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
1
1

2.1

S $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ $1 L$ 1 1 2.5		

Thus, $\mathrm{P}<\mathrm{S}<\mathrm{Si}$
144
(d)

Effective nuclear charge $Z_{\text {eff }}=Z-S$
Where, $Z=$ atomic number
and $S=$ screening constant
$=0.35$ per electron for electron in nth orbit
$=0.85$ per electron for electron in $(n-1)$ th orbit
$=1.00$ per electron for electrons in $(n-2)$ th,
$(n-3)$ th, $(n-4)$ th orbit
$=0.30$ per electron in 1 s -orbital (when alone)
Be $1 s^{2} 2 s^{2}$ one valence-electron in 2 s is screened by one electron in $2 s$-orbital (nth orbit) and two electrons in $1 s$-orbital ($(n-1)$ th orbit)
$\therefore S=0.35+2 \times 0.85=2.05$
$\therefore Z_{\text {eff }}=4-2.05=1.95$ (given)
$\mathrm{Be}^{+} 1 s^{2} 2 s^{1} 2 s$ electron is screened by two
electrons in $1 s$-orbital $((n-1)$ th orbital)
$S=2 \times 0.85=1.70$
$\therefore Z_{\text {eff }}=4-1.70=2.30$
$\mathrm{Be}^{3+} 1 s^{1}$ one electron in $1 s$-orbital (alone exists) is screened by another electron in same orbit.
Thus,
$S=0.30$
$\therefore Z_{\text {eff }}=4-0.30=3.70$
$\mathrm{Be}^{3+} 1 s^{1}$ no-screening (single electron)
Thus, $Z_{\text {eff }}=4$
Thus, $Z_{\text {effective }}: \mathrm{Be}<\mathrm{Be}^{+}<\mathrm{Be}^{2+}<\mathrm{Be}^{3+}$
145 (a)
$2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+2 \mathrm{H}_{2}$
Ionic hydride basic
148 (b)
$X(\mathrm{~g}) \rightarrow X^{+}(\mathrm{g})+e^{-}, \quad \Delta H=I$
$X^{+}(\mathrm{g})+e^{-} \rightarrow X(\mathrm{~g}), \quad \Delta H=-I$
Thus, $I=-E$
149 (d)
$\mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}^{+}(\mathrm{g})+\mathrm{e}^{-} \quad(\mathrm{IE})_{1}=13.6 \mathrm{eV}$
$\mathrm{He}(\mathrm{g}) \rightarrow \mathrm{He}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{IE})_{1}=24.6 \mathrm{eV}$
$\mathrm{He}^{+}(\mathrm{g})$ is now isoelectronic of $\mathrm{H}(\mathrm{g})$
Thus, $\operatorname{IE}\left(\mathrm{He}^{+}\right)=(\mathrm{IE})_{\mathrm{H}}(\mathrm{Z})^{2}=13.6 \times 2^{2}=54.4 \mathrm{eV}$
Thus, $(\mathrm{IE})_{1}$ of $\mathrm{He}=24.6$ given
$(\mathrm{IE})_{2}$ of $\mathrm{He}=(\mathrm{IE})_{1}$ of $\mathrm{He}^{+}=54.4 \mathrm{eV}$
Thus, $\mathrm{He}(g) \rightarrow \mathrm{He}^{2+}(\mathrm{g})+2 e^{-}$
$(\mathrm{IE})_{1}+(\mathrm{IE})_{2}=24.6+54.4=79.0 \mathrm{eV}$
Hence, $\mathrm{He}^{2+}+2 e^{-} \rightarrow$ He $\Delta H=-79.0 \mathrm{eV}$
150 (d)
Except (d) all show diagonal relationship

151 (b)
Transition metals have very high (IE). They do not emit colour in flame
152 (d)

	O^{2-}	F^{-}	Na^{+}	Mg^{2+}	Al^{3+}
Z	8	9	10	11	12
Electron	10	10	10	10	10
$r_{n} \propto \frac{1}{Z}$					

Thus, correct order is
$\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{+}>\mathrm{Al}^{3+}$
154 (a)
$\mathrm{Sc}^{3+} 18$ electrons
Thus, Z (atomic number $=21$)
$[\mathrm{Ar}] 4 s^{2} 3 d^{1}$
Thus, IIIB group, thus given matching is incorrect
155 (b)
Smaller the size of element, greater the tendency to donate electron-pair. Thus, greater the basic nature

Multiple Correct Answers Type

159 (a,b,c,d)
(a) $r_{\text {metallic }}>r_{\text {covalent }}$ because covalent bond formation involves the overlapping of orbitals
(b)Due to lanthanide contraction
(c)If screening effect increases, the valence shell electron get loosely bound. Hence, ionisation energy decreases
(c)Be and Mg has $n s^{2}$ configuration, $i e$, stable configuration, thus have higher IE
161 (a,d)
Li and Mg show diagonal relationship, thus have same size. Rb^{+}and O^{2-} also have similar size
192 (a,c,d)
Electronegativity of H (1.2), Te (2.1) and P (2.1) on Pauling's scale are similar but the electronegativity of $S(2.5)$ is different from the other three elements
193 (a,d)
Number of protons (17) and neutrons (18) in Cl and Cl^{-}ion are equal. The ionic size of Cl^{-}ion is larger than that of Cl atom and also it has one electron more (18) than Cl (17)
204 (a,c)
Metallic character and electronegativity always
follow the similar trends down the group among the elements of group 1 to 17

Assertion - Reasoning Type

207 (c)

Explanation is correct reason for statement
208 (b)
Solid ionic compounds conduct current only in fused state. PCl_{5} in solid state exists as $\left[\mathrm{PCl}_{6}\right]^{-}\left[\mathrm{PCl}_{4}\right]^{+}$

209 (d)
Assertion is an experimental fact observed against Le Chatelier principle

210 (d)
All alkaline earth metals and noble gases have positive values of electron attachment enthalpies as they have $n s^{2}$ and $n s^{2} n p^{6}$ (fully-filled) electronic configuration

Cl has more electron affinity than F because the more compact electronic configuration in F imparts greater electron repulsion to the incoming electron

211 (b)
N shows maximum covalence of +3 along with one coordinate bond whereas P shows maximum covalence of +5 due to given explanation

212 (a)
The phenomenon in which the penultimate shell, $i e,(n-1)$ electrons act as shield in between nucleus and valence shell electrons thereby reducing the effective nuclear charge is known as shielding effect

213 (d)
Inspite of higher lattice energy AgF is soluble because F^{-}is extensively hydrated and heat of hydration predominates over lattice energy

214 (d)
The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is smaller because S atom has bigger size than O . Also $\mathrm{H}_{2} \mathrm{~S}$ does not show H bonding

215 (b)

$$
\begin{gathered}
{ }_{25} \mathrm{Mn}=3 d^{5}, 4 s^{2} ;{ }_{24} \mathrm{Cr}=3 d^{5}, 4 s^{1} ;{ }_{26} \mathrm{Fe} \\
=3 d^{6}, 4 s^{2}
\end{gathered}
$$

Electron affinity of an element depends upon
electronic configuration

216 (c)

${ }_{94}^{38} \mathrm{Pu}$ has longest half-life period. It is used in breeder reactor as a fissionable nucleides and break up by slow neutrons and from fission product. It is a radioactive element.

217 (c)
Explanation is correct reason for statement
218 (b)
In $s p^{2}$-hybridization bond angle is 120°. In $s p^{3}$ it is $109^{\circ} 28^{\prime}$

219 (c)
Explanation is correct reason for statement

220 (b)
Atomic size of silver is almost equal to that of gold due to lanthanide contraction.

221 (a)
Electron affinity of $\mathrm{F}<$ Electron affinity of Cl . Due to more $2 p$-test electron repulsion in F atom

222 (a)

p-dimethoxy benzene is polar due to orientation of CH_{3} group as, The resultant vector is not zero

223 (b)
Both cis-and trans-forms are polar. Trans is more polar due to higher value of dipole moment due to additive nature of CH_{3} and Cl vectors

224 (c)

The lower IE_{1} of B than that of Be is because in boron ($1 s^{2} 2 s^{2} 2 P^{1}$) electron is to be removed from $2 P$ which is easy, while in $\operatorname{Be}\left(1 s^{2} 2 s^{2}\right)$ electron is to be removed from $2 s$-which is difficult.

225 (b)
The dipole moment of NH_{3} is more than NF_{3} because of the given explanation

226 (b)

Halogens can have only $E A_{1}$ value because they can accommodate only one electron ($n s^{2} n p^{5}$ to $n s^{2} n p^{6}$): No scope for further
addition, thus $E A_{2}$ for halogens is zero

227 (d)

Statement I is incorrect as in any period, the radius of the noble gas is largest and not the lowest

228 (a)
Noble gases have large positive electron gain enthalpy because the electron has to enter the next high principle quantam level leading to a very unstable electronic configuration.

229 (a)
P in PCl_{3} is $s p^{3}$-hybridized; $\mathrm{P}-\mathrm{Cl}$ bond is $s p^{3}-p$ bond

P in PCl_{5} is $s p^{3} d$-hybridized; $\mathrm{P}-\mathrm{Cl}$ bond is $s p^{3} d-p$ bond

230 (c)
Removal of electron from N atom requires more energy due to half filled p-orbital in N atom

231 (b)
Sulphur valence shell is less dense than oxygen.

232 (c)

Explanation is correct reason for statement
233 (b)
This is Fajans' rule. FeCl_{3} is more covalent
234 (c)
Explanation is correct reason for statement
235 (c)
Explanation is correct reason for statement
236 (d)
BF_{3} is planar due to $s p^{2}$-hybridization. Also in BF_{3}, three bond pair on boron atom and 9 lone pairs of electrons on F atoms

237 (d)
The ionization energy of $\mathrm{N}(V A)$ is more than O VI A because half filled and completely filled orbitals are more stable. Across a period effective nuclear charge increases with increase in atomic number and atomic size in atomic number and atomic size decreases.

238 (c)
Explanation is correct reason for statement

239 (b)
Molecules having polar bonds may
(e.g., ClF_{3} polar) or may not (e.g., BF_{3}) have dip[ole moment. The resultant vector of bond moment decides the net dipole moment in molecule

240 (c)
Charge is not defined as positive or negative [Isoelectronic species having higher the negative charge, larger the size, higher the positive charge smaller the size].

241 (b)
That is why $\mu_{\mathrm{NH}_{3}}>\mu_{\mathrm{NF}_{3}}$
242 (c)
Explanation is correct reason for statement
243 (c)
Explanation is correct reason for statement
244 (b)
Electrons in d and f sublevels can never be in the outer level of a neutral atom. The s-and p electrons are in the highest energy level in the atom and are the electrons involved in the chemical reactions.

245 (a)
Symmetrical configuration (half-filled) is stable. Oxygen also gains half-filled configuration by losing an electron

246 (a)

Energy level of $2 s$ is lesser than $2 p$-orbital

Matrix Match Type

249 (c)
(i) For noble gases (e.g., He), ionisation energy is highest due to their completely filled electronic configuration.
(ii) Generally electron affinity increases in a
period (from IA to VII A group) and decreases in a group but electron affinity is highest for chlorine (Cl) (due to smaller size and high electron density of fluorine).
(iii) The ionization energy is lowest for Li, so it can lose electrons very easily, thus it behaves as a strongest reducing agent.
(iv) Electropositive character generally decreases in a period (from left to right) and increases in a group (on moving down), thus Ca is the most electropositive element among the given.

Hence, on the basis of above facts, the correct matches are (A)-iv (B)-i (C)-ii (D)-iii

Linked Comprehension Type

253 (b)
Higher is the positive charge, smaller is the size of the atom
254 (d)
During addition of second electron to a uninegative gaseous ion to form divalent gaseous ion, energy is absorbed to overcome the repulsions between the incoming second electron and the negative charge on the ion
264 (b)
$\mu_{m}=\bar{\delta} \times d$
$0.816 \times 10^{-18}=\delta \times 10^{-8}$
$\therefore \delta=0.816 \times 10^{-10}$ esu
$\therefore \%$ ionic character $=\frac{0.816 \times 10^{-10}}{4.803 \times 10^{-10}} \times 100$
= 16.9\%

