

3.CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Sing	gle Correct Answer Type	block block
1.	Which of the following has the electronic	9. Which of the following oxides is highly basic?
	configuration [Ar]3d ⁵ ?	a) Al_2O_3 b) Cr_2O_3 c) Na_2O d) BaO
	a) Cr b) Fe^{3+} c) Mn d) V	10. If Aufbau rule is not followed, K-19 will be
2.	Electron affinity is positive when	placed in block
	Electron	a) s b) p c) d d) f
	affinity	11. Which of the following metals forms a
	0^{-} is 0^{2-} is 0^{+} is is always	amphoteric oxide?
	a) formed b) formed c) formed d)	a) Ca b) Ni c) Zn d) Fe
	from 0 from 0 ⁻ from 0 negative	12. Catenation properties of C, Si, Ge, Sn, Pb are in
	value	order
3.	(A), (B), (C) are elements in the third short	$C \gg Si$ $C < Si$ $C > Si$ None of
0.	period. Oxide of (A) is jonic, that of (B) is	> Ge < Ge > Sn the
	amphoteric and of (C) a giant molecule	a) $\approx Sn$ b) $< Sn$ c) $> Ge$ d) above is
	(A) (B) and (C) will have atomic number in	$\gg Ph$ $< Ph$ $> Ph$ correct
	the order	13. Select the correct statement
	(A) (C) (A) (B)	a) More b) Less c) Reducin d) All the
	(A) = (A) = (A) a) $< (B)$ b) $< (B)$ c) $< (C)$ d) $< (A)$	active active g nower above
	$\leq (C) \leq (A) \leq (B) \leq (C)$	metals metals decrease are
4	First long neriod contains elements	are on are on s correct
	a) 8 b) 18 c) 32 d) 2	the left the left moving stateme
5	Li resemble Mg. This is called diagonal	side of side of down nts
0.	relationship which is attributed to	the the the
	a) Same b) Same c) Penetrat d) Identical	Periodic Periodic group
	value of value of jon of effective	Table Table
	electron electron sub-	14. The electronegativities of elements A and B
	egativity affinity shells charge	are 1.2 and 3.4 units respectively. The type of
6	Which of the following does not represent the	bond connecting A and B in compound AB is
0.	correct order of the properties indicated?	a) Covalentb) Ionic c) Coordin d) Polar
	Ni ²⁺ $<$ Ee ²⁺ >	ate covalent
	$\int (0^{2+} < 0^{2+} > 0^{2+} $	covalent
	$Ni^{2+} > Sc > Fe^{2+} < Ni^{2+} >$	15. Which of the following will have maximum
	$Cr^{2+} > Ti > Mn^{2+} Cu^{2+}$	electron affinity?
	a) $Fe^{2+} > b) \frac{m^2}{(r > Mn} c) \frac{m}{(unnaired)} d$	a) $1s^2 2s^2 2rb$) $1s^2 2s^2 2rc$) $1s^2 2s^2 2rd$) $1s^2 2s^2 2rd$
	Mn^{2+} (size) d d	16. Select the correct alternate
	(size) electron electron	Due to
		completi
7	If Aufhau and Hund's rule are not used then	Due to $\frac{1}{2}$ on of $3d$ -
/.	incorrect statement is	lanthani subshell Both of
	Na will	de the Both (a) the
	K ⁺ be in Cu Magnetic	contracti electroni & (b) are above
	would same s- would moment	a) on Zr b)c charge c) correct d) are
	a) be b) block (if c) be s- d) of	and Hf density stateme incorrec
	coloured these block (r c) bes (r (24)	have in this nts stateme
	ion rules are element would	almost subshell nts
	true) be zero	equal becomes
8	Representative elements belong to	size
0.	a) s- and n - h) d -block c) d - and f-d) f-block	high
	and p by a block cya- and j-ajj-block	

which increase s the interelectroni С repulsio n hence. size increase

- S
- 17. Point out the oxide which is amphoteric in nature

a) CO b) Bi_2O_3 c) PbO dCO_2

- 18. Covalent radius of nitrogen is 70 pm. Hence, covalent radius of boron is about
- a) 60 pm b) 110 pm c) 50 pm d) 40 pm 19. Melting points of NaCl, NaBr, NaI and NaF will be in order

Nal NaF NaBr NaCl a) < NaBr = (NaBr = NaCl) < NaCl = (NaFr = NaCl) < NaBr = (NaCl) < NaCl = (NaCl) < NaCl = (NaCl) < NaCl = (NaCl) < (NaCl = NaCl) < (NaCl = NaCl = NaCl = NaCl) < (NaCl = NaCl =< Nal d) < NaF < NaF< NaI < NaI< NaBr

- 20. Which pair is different from the others? a) Li - Mg b) Na - K c) Ca - Mg d) B - Al
- 21. For the process

is y

 $X(g) + e^- \rightarrow X^-(g),$ $\Delta H = x$ and $X^{-}(g) \rightarrow X(g) + e^{-}$, $\Delta H = y$ Select the correct alternate

All the Electron above Ionizatio Electron a) ${n \text{ energy}}_{\text{of } X^-(g)} b) {affinity}_{\text{of } X(g)}$ affinity are c) of X(g)correct is x

stateme is – y nts

22. The atoms of the elements belonging to the same group of the Periodic Table will have

a)	The	b)	The	c)	The	d)	The
	same		same		same		same
	number		number		number		number
	of		of		of		of
	protons		electron		neutron		electron
			s in the		S		S
			valence-				
			shell				
P C		42					

- 23. EC of Gd (64) is written as a) $[Xe]_{54}4f$ b) $[Xe]_{54}4f$ c) $[Xe]_{54}4f$ d) $[Xe]_{54}4f$
- 24. Numbering of groups as 1, 2,....18 was adopted by IUPAC in a) 1986 b) 1906 c) 1908 d) 1988
- 25. Which of the following forms a stable +4oxidation state? a) Lanthan b) Cerium c) Europiu d) Gadolini um um m 26. A molecule H - X will be 50% ionic if electronegativity difference of H and X is b)1.4 eV c) 1.5 eV a) 1.2 eV d)1.7 eV 27. Most stable cation of element 113 will be c) *M*⁺ a) M^{3+} b)*M*²⁺ d) M_2^{2+} 28. Which is incorrect statement? Formati In solid on of state 0^{2-} 0^{2-} is All of the from 0⁻ Electron above a) stabilize b) is d by c) affinity d) are unfavour of 0 > Sneighbo incorrect able in uring the gas cations phase 29. With respect to oxygen maximum valency is shown by a) Halogen b) Oxygen c) Nitrogend) Boron family family family family 30. The dominant factor in determining the IE of the elements on moving down the groups is its a) Atomic b) Effectivec) Both (a) d) None of radius nuclear and (b) the charge above 31. Select the correct statement(s) a) Across a b) The rate c) Both (a) d) None of transitio of & (b) the n series, decrease are above there is in the correct stateme only a size stateme nt is small across nts correct decrease the in lanthani atomic de series radius is less from than the one across element the first to transitio n series another due to very small increase in

effective

nuclear charge

	charge			
32.	Which of the f	following sta	atement is	false?
	a) Element b)) Element c)	Element	d) Element
	s of IB	s of VB	s of IA	s of IVB
	and IIB	group	and IIA	group
	groups	do not	groups	are
	are	contain	are	neither
	transitio	metalloi	normal	strongly
	n	de	olomont	electron
	alamant	us	ciciliciit	egative
	clement		3	nor
	3			strongly
				oloctron
				electrop
22				USILIVE
33.	which has ma		zation pot	ential?
24	ajn d)0 C) U ¹	d)Na
34.	which has ma	IXIMUM IE?	2+	
05	a) Mg b) Mg' C) Mg ² '	d)Equal
35.	$M(g) \rightarrow M'(g)$	$(g) + e , \Delta H$	= 100 eV	
	$M(g) \rightarrow M^{2+}($	g) + 2 e^{-} , ΔI	$H = 250 \mathrm{e}$	V
	Which is the i	ncorrect sta	tement?	_
	I_1 of	I_1 of	I_2 of	I_2 of
	a) <i>M</i> (g) is b	$M^+(g)$ is c) <i>M</i> (g) is	d) $M(g)$ is
	100 eV	150 eV	250 eV	150 eV
36.	Which is best	oxidizing ag	gent?	2.1
	a) Ge ⁴⁺ b	$)Pb^{4+}$ c) Sn ⁴⁺	d)Sn ²⁺
37.	Element with	valence she	ll-electror	nic
	configuration	as d^5s^1 is p	laced in	
	a) ^{IA, s-} b	VIA, s-c	VIB, <i>s</i> -	d) VIB, d -
	block	block	' block	block
38.	Which group	of elements	is analogo	ous to the
	lanthanides?			
	a) Halides b)) Actinide c)	Chalcog	d) Borides
		S	enides	
39.	Which will ha	ve graded p	roperty si	milar to
	EC $1s^2 2s^2 2p^6$	3s ² 3p ⁶ 4s ¹	2	
	a) $[Ar] 3d^{10}h$	$\Gamma[Kr] 4d^{10}c$	[Kr]5c ¹	d) ^{All of}
	aj [m]5a b	j[n]n x	/ [IXI]55	these
40.	The separatio	n of lanthan	ides in ior	n-exchange
	method is bas	sed on		
	a) Basicity b)) Size of c)	Size of	d) The
	of the	the	the	solubilit
	hydroxi	hydrate	unhydra	y of
	des	d ions	ted ion	their
				nitrates
41.	Which of the f	following wi	ll have the	e most
	negative elect	ron affinity	and which	the least
	negative?	5		
	-			

a) F, Cl	b)Cl,F	c) Cl, S	d)Cl, P
<i>, ,</i>	, ,	, ,	, ,

42. Select the correct statement about radius of an atom

	atom			
	a) Values b)) The c) Both (a) d)	None of
	of van	metallic	& (b)	the
	der	radii are	are	above is
	Waals'	smaller	correct	correct
	radii are	than the		
	larger	van der		
	than	Waals'		
	those of	radii,		
	covalent	since the		
	radii	bonding		
	because	forces in		
	the van	the		
	der	metallic		
	Waals'	crystal		
	forces	lattice		
	are	are		
	much	much		
	weaker	stronger		
	than the	than the		
	forces	van der		
	operatin	Waals'		
	g	forces		
	between			
	atoms in			
	а			
	covalent			
	ly			
	bonded			
	molecul			
	е			
43.	Sodium forms	s Na ⁺ ion b	ut it does not	form
	Na ²⁺ because			
	Verylow	Very	Low	Low
	vely low	high	value of	value of
	(IF)	value of	$(IE)_1$	$(IE)_1$
	a) $(IL)_1$ b	$(IE)_1$	and low ^u	and high
	(IF)-	and	value of	value of
	(11)2	$(IE)_2$	(IE) ₂	$(IE)_2$
44.	The electroni	c configura	tion	
	$1s^2, 2s^2, 2p^6,$	3s², 3p ⁶ , 3a	l ¹⁰ , 4s ² , 4p ⁶ 4	$d^{10}, 5s^2$
	is for			
	a) f-block	d-block	p-block	s-block
	^a element	element	element	element
45.	Which one of	the followi	ng has the sm	allest
	atomic radius	?		

a) F
b) Cl
c) Cs
d) Mg
46. Mixture containing aqueous Li⁺, Na⁺, K⁺ ions are electrolysed. Cations are discharged at

	cathode in the order: (easiest at the end)				
	$M^+(aq) + e$	$ \rightarrow M $			
	a) Li+, Na+,	b)K ⁺ , Na ⁺ , I	c) Li+, K+,	Nd) Na ⁺ , K ⁺ , I	
47.	Screening ef	fect is not o	bserved ir	1	
				All of	
	a) He ⁺	b)Li ²⁺	c) Be ³⁺	d)these	
				cases	
48.	Which has m	naximum sta	ability?		
	a) AsCl ₃	b)SbCl ₃	c) BiCl ₃	d)Equal	
49.	In periodic 7	[able, metal]	lic elemen	ts appear	
	a) In the l	o) In the	c) In the	d) In the	
	left-	top rows	right-	bottom	
	hand		hand	rows	
	columns		column	S	
50.	For the elem	ent (X), stu	dent (A) r	neasured its	
	radius as 10	2 nm, stude	nt (<i>B</i>) as 1	103 nm and	
	(<i>C</i>) as 100 n	m using san	ne appara	tus. Their	
	teacher expl	ained that n	neasurem	ents were	
	correct by sa	aying that re	ecorded va	lues by	
	(A), (B) and	(C) are			
	a) Crystal, l	o) Covalento	c) Van dei	d) None is	
	van der	, crystal	Waals,	correct	
	Waals	and van	ionic		
	and	der	and		
	covalent	Waals	covalen	t	
	radii	radii			
51.	The hydratic	on energy of	f lithium io	on is	
	-544 kJ mol	⁻¹ which is	higher that	an that of	
	other alkali	metal ions. T	Гhis is exp	lained in	
	other alkali terms of	metal ions.	This is exp	lained in	
	other alkali terms of a) Small	metal ions. 7	Гhis is exp c) Elemen	lained in t d) More	
	other alkali terms of a) Small size of	metal ions. 7 5) Higher IP	This is exp c) Elemen of	lained in t d) More reactive then	
	other alkali terms of a) Small size of lithium	metal ions. 7 5) Higher (IP	Γhis is exp c) Elemen of lowest	lained in t d) More reactive than ather	
	other alkali terms of a) Small size of lithium	metal ions. 7 5) Higher IP	This is exp c) Elemen of lowest atomic	lained in t d) More reactive than other allvali	
	other alkali terms of a) Small size of lithium	metal ions. 7 5) Higher (IP	Γhis is exp c) Elemen of lowest atomic weight	lained in t d) More reactive than other alkali motals	
52	other alkali terms of a) Small size of lithium	metal ions. 7 b) Higher o IP	This is exp c) Elemen of lowest atomic weight	lained in t d) More reactive than other alkali metals	
52.	other alkali terms of a) Small size of lithium The ionic rac	metal ions. 7 5) Higher 6 IP dii of O ²⁻ , F	Chis is exp c) Elemen of lowest atomic weight -, Na ⁺ and	lained in t d) More reactive than other alkali metals l Mg ²⁺ are	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0.	metal ions. 7 5) Higher IP dii of O ^{2–} , F ⁻ 95 and 0.66	This is exp of lowest atomic weight [−] , Na ⁺ and Å respect	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0. radius of the	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is	Chis is exp of lowest atomic weight , Na ⁺ and Å respect	lained in t d) More reactive than other alkali metals Mg ²⁺ are tively. The	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0. radius of the a) 1.39 Å	metal ions. 7 5) Higher IP dii of O ^{2–} , F 95 and 0.66 e Ne atom is b) 1.12 Å	Chis is exp of lowest atomic weight -, Na ⁺ and Å respect c) 0.85 Å	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d)0.50 Å	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase	 Chis is exp C) Elemen of lowest atomic weight [−], Na⁺ and Å respect C) 0.85 Å cs moving 	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic nat group becau	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se	Chis is exp of lowest atomic weight , Na ⁺ and Å respect c) 0.85 Å s moving	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the	
52.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin o	 Chis is exp C) Elemen of lowest atomic weight [−], Na⁺ and Å respect c) 0.85 Å cs moving c) Both (a 	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the) d) None of	
52.	other alkali terms of a) Small size of lithium The ionic rac 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase	 This is exp c) Elemen of lowest atomic weight ⁻, Na⁺ and Å respect c) 0.85 Å s moving c) Both (a and (b) 	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the) d) None of the above	
52.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge increase	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase	 Chis is exp c) Elemen of lowest atomic weight [−], Na⁺ and A respect c) 0.85 Å s moving c c) Both (a and (b) 	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the) d) None of the above	
52.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge increase s	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase s ion has mos	 Chis is exp C) Elemen of lowest atomic weight -, Na⁺ and Å respect C) 0.85 Å s moving a c) Both (a and (b) 	lained in t d) More reactive than other alkali metals l Mg ²⁺ are tively. The d) 0.50 Å down the) d) None of the above	
52. 53.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge increase s Which react Ga ³⁺	metal ions. 7 b) Higher IP dii of O ²⁻ , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase s ion has mos In ³⁺	 This is exp c) Elemen of lowest atomic weight [−], Na⁺ and A respect c) 0.85 Å c) Both (a and (b) t negative Tl³⁺ 	lained in t d) More reactive than other alkali metals Mg ²⁺ are tively. The d) 0.50 Å down the d) 0.50 Å down the d) None of the above	
52. 53.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge increase s Which react Ga ³⁺ a) + 2e ⁻	metal ions. 7 b) Higher of IP dii of O^{2-} , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase s ion has mos In ³⁺ b) + 2e ⁻	 This is exp c) Elemen of lowest atomic weight -, Na⁺ and A respect c) 0.85 Å s moving atoming and (b) t negative Tl³⁺ c) + 2e⁻ 	lained in t d) More reactive than other alkali metals Mg ²⁺ are tively. The d) 0.50 Å down the) d) None of the above ΔG° value? Cannot	
52. 53.	other alkali terms of a) Small size of lithium The ionic rad 1.35, 1.34, 0. radius of the a) 1.39 Å Metallic natu group becau a) Nuclear I charge increase s Which react Ga^{3+} a) + 2 e^{-} $\rightarrow Ga^{+}$	metal ions. 7 b) Higher of IP dii of O^{2-} , F ⁻ 95 and 0.66 e Ne atom is b) 1.12 Å ure increase se b) Shieldin of g increase s ion has mos In ³⁺ b) + 2e ⁻ \rightarrow In ⁺	 This is exp c) Elemen of lowest atomic weight ¬, Na⁺ and A respect c) 0.85 Å c) Both (a and (b) t negative Tl³⁺ c) + 2e⁻ → Tl⁺ 	lained in t d) More reactive than other alkali metals Mg ²⁺ are tively. The d) 0.50 Å down the d) 0.50 Å down the d) 0.50 Å down the d) 0.50 Å	

d

55. Fluorine has the highest electronegativity among the ns^2np^5 group on the Pauling scale, but the electron affinity of fluorine is less than that of chlorine because

						Small
						size,
						high
						electron
a)	The atomic number of fluorine b) is less than that of chlorine	Fluorine being the first member of the family behaves in an unusual manner	c)	Chlorine can accomm odate an electron better than fluorine by utilizing its vacant 3 <i>d</i> - orbital	d)	electron density and an increase d electron repulsio n makes addition of an electron to fluorine less favourab le than that in the case of
						chlorine
-						

56. Fluorine does not form any polyhalide as other halogens because
It because

	It had	Of the	lt brings
	it has	of the	about
I. I	low	absence	about
It has	F — F	of d-	maximu
maximu			m
a) m ionic	bond	orbitals	d)coordina
	energy	⁽⁾ in the	ujcooruma
characte	(20 E	valanca	tion
r	(30.5	valence	number
-	kcal	shell of	
	mol^{-1}	fluorine	in other
	mor)	nuorme	elements

- 57. Among the following, the number of elements showing only one non-zero oxidation state is O, Cl, F, N, P, Sn, Tl, Na, Ti
- a) 1 b) 2 c) 3 d) 4 58. Select the correct statement Ionic Covalent LiAlH₄ All the hydrides nature of can above b)^{hydrides} c)^{reduce} carbonyl^{d)} correct are a) better reducing s across compou stateme agents a period nds to nts

and alcohols decrease s down the group

59. The following acids have been arranged in the order of decreasing acid strength. Identify the correct order

ClOH (I) BrOH (II) IOH (III) a) $\stackrel{I > II}{> III}$ b) $\stackrel{II > I}{> III}$ c) $\stackrel{III > II}{> I}$ d) $\stackrel{I > III}{> II}$

60. Gd (64) has unpaired electrons with sum of spin.....

a) 7, 3.5 b) 8, 3 c) 6, 3 d) 8, 4

- 61. For Cu⁺, effective nuclear charge felt by a 3*d*-electron is
 - a) 14.25 b) 13.95 c) 14.65 d) 29.0
- 62. The relative thermal stabilities of alkali metal halides are such that

CsCl LiCl CsCl CsCl > RbCl> NaCl< RbCl> RbCla) > KCl b) > KClc) < *KCl* d > KCl> NaCl> RbCl> NaCl< NaCl> LiCl> CsCl< LiCl > LiCl

63. Which of the following order is wrong?

 $Li^{2+} <$ $Al_2 0_3 <$ $Na^+ <$ $NH_3 <$ Li < *Be* Mg0 <a) $\frac{PH_3}{AsH_3} - \frac{b}{c} < B$ $K^+ <$ c) $Na_2 0 < d$ Cs⁺ – $K_{2}0$ acidic $-(IE)_{1}$ ionic basic radius

64. The statement is not true for the long form of the Periodic Table

65. Element with atomic number 115 has configuration as and with most stable

cation as a) ${[Rn]7s^25 \atop M^{3+}} {[Rn]7s^25 \atop M^{5+}} {[Rn]7s^25 \atop M^+} {[Rn]5d^{10} \atop M^{5+}}$

66. In which case effective nuclear charge is minimum?

a) Be

b)Be²⁺ c)Be³⁺ d)Equal

67. Following graph shows variation of ionization potential (IP) with atomic number in second period (Li – Ne). Value of ionization potential (IP) of Na (11) will be

- a) Above b) Below c) Below Lid) Between Ne Ne but N and O above O
- 68. Recently (in Aug 2003) two new elements have been discovered with atomic numbersa) 113, 114b) 114, 115c) 115, 116d) 113, 115
- 69. *AB* is predominantly ionic as A^+B^- if (IP stands for ionization potential, EA for electron affinity and EN for electronegativity)

a)
$$\stackrel{(\mathrm{IP})_A}{<(\mathrm{IP})_B}$$
 b) $\stackrel{(\mathrm{EA})_A}{<(\mathrm{EA})_B}$ c) $\stackrel{(\mathrm{EN})_A}{<(\mathrm{EN})_B}$ d) $\stackrel{(\mathrm{IP})_B}{<(\mathrm{IP})_A}$

- 70. M³⁺ has electronic configuration as [Ar]3d¹⁰4s², hence it lies in a) *s*-block b)*p*-block c) *d*-block d)*f*-block
- 71. Transition elements have vacanta) *s*-orbital b)*p*-orbital c) *d*-orbital d)*f*-orbital
- 72. When the following five anions are arranged in order of decreasing ionic radius, the correct sequence is

a) Se²⁻, I⁻, Ib) I⁻, Se²⁻, (c) Se²⁻, I⁻, Id) I⁻, Se²⁻, I

73. Match Column I (atomic number of elements) with Column II (position of elements in Periodic Table) and select the correct answer using the codes given below the Columns

	Column I		Column II		
Α	19	1.	<i>p</i> -block		
В	22	2.	<i>f</i> -block		
С	32	3.	<i>d</i> -block		
D	64	4.	s-block		
Cod	Codes				
АВСD					
	0 0 1 1 1				

a) 1 2 3 4 b) 4 3 1 2 c) 4 1 3 2 d) 2 1 3 4

74.	Ionic radii of: $a)_{Cl^{-}}^{K^{+}} d)_{>P^{5+}}^{P^{3+}}$		effective square nuclear of nuclear of charge effective charge effective nuclear
75.	Covalency is favoured in the following cases		nuclear charge
	a) A b) A larger c) Large d) In all the smaller anion charges above cation on cases	82.	charge Out of BeH ₂ , CuH ₂ , CrH ₂ and NaH, covalent hydrides are
	cation or		All of Al
76.	anion Main group elements constitute	83.	Which of the following is a transition element?
	a) $ \frac{s - \operatorname{and} p}{\operatorname{block}} $ b) $ \frac{p - \operatorname{and} d}{\operatorname{block}} $ c) $ \frac{s - \operatorname{and} d}{\operatorname{block}} $ d) $ \frac{d - \operatorname{and} f}{\operatorname{block}} $	84.	a) Al b) As c) Ni d) Rb Elements <i>X</i> and <i>Y</i> have valence shell electron
77.	Oxidation energy of $Li(s)$ to $Li^+(aq)$ is least in		configuration as
	group IA elements. This is because of		$X: ns^2np^1; Y: ns^2np^3$ Which compound is likely formed from X and
	maximu Maximu Less Maximu m heat		Y?
	m heat negative m p_{1} of p_{2} heat of dispiration		a) X_3Y_5 b) Y_3X_5 c) XY d) YX
	sublimat hydratio hydratio n energy	85.	Higher values of ionization energies of the $5d$ -
	ion of n of Li ⁺ n of Li ⁺ of Li		transition elements are consistent with the
78	LI(S) Select the correct statement		a) Relativerd) Relativerd) All of the
70.	a) Electron b) Electron c) Both (a) d) None of		smaller smaller smaller are
	affinity affinity & (b) the		effective size of penetrat correct
	of of F is are above is		nuclear their ion
	nitrogen higher correct correct		charge atoms
	is much than	86.	Tendency of I ⁻ , Br ⁻ , Cl ⁻ and F ⁻ to be oxidized
	lower that of		is in order
	than chlorine that of its		a) > Cl ⁻ b) < Cl ⁻ c) $I^{-} < Cl^{-}$ > F ⁻ < F ⁻ = F ⁻
	neighbo	87.	For which of the following crystals would you
	uring element		expect the assumption of anion-anion contact to be valid?
	s carbon		a) CsBr b) NlaF c) KCl d) NaI
	and	88.	Which of the following represents the correct
70	Oxygen Chalcogens are elements of		Ca Ba S Se and Ar?
7).	ns^2np^4		Ca < S $S < Se$ $Ba < Ca$ $Ca < Ba$
	a) Group 16 b) p-block c) configur d) correct ation		a) $\stackrel{< Ba}{< Se}$ b) $\stackrel{< Ca}{< Ba}$ c) $\stackrel{< Se}{< S}$ d) $\stackrel{< S}{< Se}$
80.	The electron affinities of N, O, S and Cl are such		< Ar $< Ar $ $< Ar $ $< Ar$
	that	89.	Valence electrons in the element <i>A</i> are 3 and
	$N < 0$ $N < 0$ $N < 0 < N$ $0 \approx Cl$ $d < Cl$		that in element <i>B</i> are 6. Most probable
	$a_{J} < S < Cl^{DJ} < Cl < S^{CJ} < N \approx S^{DJ} < Cl^{DJ}$		$(A_{2}B_{1})A_{2}B_{2}$ $(A_{2}B_{2})A_{2}B_{2}$
81.	Ionic radii are	90.	Which of the following ions has the smallest
	a) Inversel b) Inversel c) Directly d) Directly		radius?
	y y proporti proporti		a) Ti^{2+} b) Pt^{2+} c) Ni^{2+} d) Zr^{2+}
	proporti proporti onal to onal to	91.	As we proceed from top to bottom in the
	onal to onal to effective square		Periodic Table

a) Hydroxi	b) Oxyacid	c) Neither	d) Both of
des are	s are	of the	the
more	less	above	above
basic	acidic		

- 92. Element 113 is produced via α-decay β-decay α-decay β-decay of of of of element b) element c) element d) a) 'element 115 114 111 112
- 93. Two new elements (discovered in Aug 2003) with atomic number 113 and 115 are to be placed in

a) *s*-block b)*p*-block c) *d*-block d)*f*-block

94. Nitrogen is found to have higher value of ionization potential because

		Its	
It has half- filled <i>p</i> - orbitals	It is b) chemical c ly inert	shielding effect) overcom d es the nuclear charge	All of the above are correct
It has half- filled p- orbitals	It is b)chemical c ly inert	effect) overcom d es the nuclear charge	All of the above are correct

95. Extent of hydration of Na⁺, Mg²⁺, Al³⁺ is in order

 $\begin{array}{lll} Na^{+} & Na^{+} & Al^{3+} \\ a) < Al^{3+} & b) < Mg^{2+} & c) < Mg^{2+} & d) \text{Equal} \\ < Mg^{2+} & < Al^{3+} & < Na^{+} \end{array}$

96. Which pair represents incorrect first IE?

a) Be > B b) N > 0 c) Li > Na d) $\overset{\text{He}}{>}$ He⁺

97. Of the following pairs, the one containing examples of metalloid elements in the Periodic Table is

d)B and Si

a) Na and Kb)F and Cl c) $\frac{\text{Cu and}}{\text{Ag}}$

98. Which of the following reactions should be most favoured thermodynamically?

of B butof B butof B^+ abnorma I_2 of I_2 oflly highBe < I_2 Be < I_2 of B

 $Be > I_1 \qquad Be < I_1 \qquad Be^+ < I_1 \qquad Be^{2+} \text{ is}$

100. State, which one of the following has the largest atomic radius?

- 101. The lanthanides have electron configuration with $6s^2$ in common but with variable occupation of the
 - a) 6p-level b) 5p-level c) 5d-level d) 4f-level
- 102. Which is largest in size in aqueous solution? a) Li⁺ b) Na⁺ c) Cs⁺ d) Rb⁺
- 103. First, second and third IP values are 100 eV, 150 eV and 1500 eV. Element can be a) Be b) B c) F d) Na
- 104. The high oxidizing power of fluorine is due toa) High b) High c) Both (a) d) None of electron ionizatio and (b) these affinity n energy
- 105. The relative extend to which the various orbitals penetrate the electron clouds of other orbitals is

a) ${}^{s > p}_{> d > f}$ b) ${}^{s < p}_{< d < f}$ c) ${}^{s < d}_{< p < f}$ d) ${}^{d < s}_{< p < f}$

106. The compound of vanadium has magnetic moment of 1.73 BM. The vanadium chloride has the formula

a) VCl_2 b) VCl_3 c) VCl_4 d) VCl_5

107. Recently discovered element with atomic number 115 is

a) Uun b) Uub c) Uup d) Uus 108. Consider the following statements,

- 1. Cs⁺ is more highly hydrated than the other alkali metal ions
- Among the alkali metals Li, Na, K and Rb, lithium has the highest melting point
- 3. Among the alkali metals only lithium forms a stable nitride by direct combination

Of these statements

a) I, II and b) I and II c) I and III d) II and III III are are are are correct correct correct correct

109. Which represents alkalies metals based on

 $(IE)_1$ and $(IE)_2$ values?

$$(IE)_1 (IE)_2$$

a) X 100 b) Y 95 c) Z 195 d) M 200

a) I_1 of b) I_1 of c) I_2 of d) I_1 of

110	120	500	250
110. Which ha	s maximum	polarizing p	oower in
cation?			
a) Li ⁺	b)Mg ²⁺	c) Al ³⁺	d)0 ²⁻
111. The corre	ect order of in	ncreasing io	onic character
is			
BeCl ₂	BeCl ₂	BaCl ₂	MgCl ₂
< Mg(Cl _{2 L} < CaCl	$_2$ $<$ CaC	$l_2 \rightarrow < CaCl_2$
a) < CaC	$l_2 \xrightarrow{D} < MgC$	$l_2 \stackrel{(c)}{\sim} < MgC$	$Cl_2 \xrightarrow{(1)} < BeCl_2$
< BaC	l ₂ < BaCl	₂ < BeC	$l_2 < BaCl_2$
112. Recently	discovered e	lements (A	ugust 2003)
with aton	nic number 1	13 and 115	5 have valence
electrons	in		
a) <i>s</i> -orbi	tal b) <i>p</i> -orbit	al c) <i>d</i> -orbi	tald) <i>f</i> -orbital
113. Element v	with atomic 1	number 113	3 has been
reported	in August 20	03. Its elec	tronic
configura	tion is simila	ar to that of	
a) Si	b)Ga	c) Bi	d)At
114. Which of	the following	g propertie	s shows a
clear peri	odic variatio	n?	
a) First	b) Molar	c) Numb	er d) All of the
ionizat	tio mass of	f of	above
n ener	gy the	isotop	es
	elemen	t of the	
		atom	
115. Select the	correct alte	rnate about	t (IE)
$(IE)_1 o$	of $(IE)_1 o$	f	None of
Be >	(0 > 0)	Both (a) d)the
1 (IE) ₁ (of $(IE)_1 $ o	f ^o and (b) above
В	N		
116. IP of an e	lement does	not depend	lon
a) Its	b) The	c) Electro	on d) Penetrat
nuclea	r shieldi	n neutra	lit ion
charge	g effect	У	effect
117. Reducing	action of hy	drides is du	ie to
Uxidat	tio Oxidati	io Reduc	tio Reductio
a) n of H	b) n of H t	:0 C) N OF H	to a)n of H
to H	H' montheath	H a hiahaatal	to H
118. Which ele	ement has th	e nignest ei	ectron
allinty:	b) Cl	a) Dr	d) I
ajr 110 Ionia radi	D)CI	с) вг	u)1
119. Ionic rau	1 01 35 <i>c</i> 1-	12+	D3+
a) $(Mn)^{11}$	$(a + b) = \frac{37}{37}$	$(c)^{\kappa}$	d) $\begin{bmatrix} P^{+} \\ D^{5+} \end{bmatrix}$
< MII	ia mara alaat	> CI	> P ^o
120. Fluorine	The heat our	ronegative	that
nitrogen.	h) The	a) The	d) Electron
aj ille	o charge	U I IIE	u) Electron
valenc	r charge	valenc	e egativity
e in F	nuclou	ciccul c c in F	s from
5 111 1	nucleus	י אווני פ	5 11 0111

	are on the	is +9, while that on	and N are in different	left to right in
	average,	that on	unierent	
	a little	N	shells	the
	closer to	nucleus	and thus	periods
	the	is +7	their	
	nucleus		energy	
	than in		are	
	Ν		greatly	
			different	
121. Se	elect the inco	orrect order	of size of io	ns/atoms
	$I^+ < I$	Fe = Co	Ni < Cu	None is
a	^J < I ⁻	V = Ni	<zn a)<="" td=""><td>'incorrect</td></zn>	'incorrect

- 122. The heat of hydration of Ca^{2+} , Sr^{2+} and Ba^{2+} in the decreasing order is
 - $\begin{array}{cccc} Ca^{2+} & Ca^{2+} & Sr^{2+} & Ba^{2+} \\ a) > Sr^{2+} & b) > Ba^{2+} & c) > Ba^{2+} & d) > Sr^{2+} \\ > Ba^{2+} & > Sr^{2+} & > Ca^{2+} & > Ca^{2+} \end{array}$
- 123. Following are the values of the electron affinities (in kJ mol⁻¹) of the formation of 0^- and 0^{2-} from 0

124. The second ionisation energy is always higher than the first ionization energy because the

a) Ion	b)	Electron c)	Electron d)	None of
	becomes	5	is more	is	the
	more		tightly	attracte	above is
	stable		bound	d more	the
	attaining	3	to the	by the	correct
	an octet		nucleus	core	
	or		in an ion	electron	
	duplet			S	
	configur				

- ations 125. SI unit of IE is
- a) kJ mol⁻¹ b) eV atom⁻c) J mol⁻¹ d) kcal mol⁻
- 126. Out of C, Si, Ge, Sn, Pb metallic nature is in a) Ge, Sn, Pbb) Sn, Pb c) Ge, Pb d) Ge, Sn 127. Which element has the highest first IP2
- 127. Which element has the highest first IP?
 - a) N b) Ne c) He d) H
- 128. An oxide behaves as an acid or a base depending on its
 - a) Size and b) Size onlyc) Charge d) None of charge only these
- 129. The electronegativities of N, C, Si and P are such that

a) $\stackrel{P < Si}{< C < N}$ $\stackrel{Si < P}{> N < C}$ $\stackrel{Si < P}{< C < N}$ $\stackrel{P < Si}{< N < C}$

130. Recently (in 2003) element with atomic number 110 has been named by IUPAC as

a) HS b)Mt c) Ds c	l)Sg
131. The size of th	e second an	d third row	transition
elements beir	ng almost th	e same. Thi	s is due to
<i>d</i> -and <i>f</i> -	0		
orhitals			
do not			
uu nuu	I anthan:		Nonoof
shield	Lanthani	Both (a)	None of
a) the	de c) & (b) ared	the
² nuclear	^c ontracti	true	f above is
charge	on		true
very			
effectivel			
У			
132. Out of F ₂ , Cl ₂ ,	Br_2 and I_2 ,	most oxidiz	ing agent
is			
a) F ₂ b	$)Cl_2$ c) Br_2 d	$I)I_2$
133. Select the cor	rect order o	f (IE) ₁	-
Cu < Zn	Ag < Cd	Hg > Au	None of
a) < <i>Ga</i> b) < In	>Tl	l) these
134. Of the four ΛH	I values nee	eded to calc	ulate the
lattice energy	using the R	orn-Haber	cycle the
ono that is m	using the D		ic
		U IIIeasul e	15) The
a) The heat b	f The neatc)	· · · · ·) The
of	01	ionizatio	electron
sublimat	formatio	n energy	affinity
ion of	n of	of the	of the
the	gaseous	metal	non-
metal	atoms of		metal
	the non-		
	metal		
135. The lanthanic	les contracti	ion refers to)
a) Ionic b)	Valence c)	The d) Electron
radius of	electron	density	egativity
the	s of the	of the	с .
series	series	series	
136. The statemen	t that is not	correct for	the
neriodic class	ification of e	elements is	
P		The first	For
		ionizatio	transitio
The		n	n
nronorti	Non-	anergios	alamento
properti	metallic	of	the d
es or	elements		u = u - u
elements	are	elements	subshell
are the)lesser in c	along a	s are
´ periodic Č	number	period	filled
function	than	do not	with
s of their	metallic	vary in a	electron
atomic	alomonto	regular	monoton
numbers	elements	manner	ically
		with	with
		increase	increase

		in	in
		atomic	atomic
		number	number
137. $N_0/2$ atom	s of X(g) ar	e converted i	into $X^+(g)$
by energy	$E_1. N_0/2$ ato	oms of $X(g)$ a	re
converted	into $X^{-}(g)$	by energy E_2	. Hence,
ionization	potential ar	d electron at	ffinity of
X(g) are	F		-9
$2E_1 2($	E ₁ 2E ₁ 2E	$E_2 (E_1 - E_2)$) None is
a) $\frac{-1}{N_{2}}$, $\frac{-1}{N_{2}}$	$\frac{-1}{N_{o}}$, $\frac{-1}{N_{o}}$, $\frac{-1}{N_{o}}$	$\frac{2}{c}$ c) $\frac{(-1)^{-2}}{N_{c}}$	-d)
138 Following	the transitio	on elements	(IE) drops
130. Fullowing		TI This is du	$(IE)_1$ urops
abi upuy ii	i Ga, ili allu	11. This is du	
		Remova	I
		of an	
		electron	
		from the	2
		singly	
Decreas	Se Increas	occupied	l None of
in	in	np-	the
a) effectiv	e b)	c) orbitals	d)
nuclear	atomic	of higher	r above is
charge	radius	energy	correct
		than the	
		ns-	
		orbitals	
		of Zn Cd	I
		and Hg	L
139 Flectroned	ativity and	electron affir	uity of an
aloment A	aro V and V	rosportivolu	Honco
ionization	ale A allu I	^T espectively	. Hence,
$\frac{101112at1011}{Y \perp V}$	potential of	AIS	
a) $\frac{n+1}{2}$	b)2 <i>X</i> – <i>Y</i>	c) 2 <i>Y</i> – <i>X</i>	d) $2X + Y$
140 Following	triade have	annrovimate	ly oqual
rizo	li laus llave	approximate	ay equal
SIZE	-2 E No	0í	$M_{p} + E_{o}^{2}$
INA , MI	g г, ne,	0	мп, ге
a),	.b)	. c) Fe, Co, N	id), .
electron	ni electro	ni	electroni
c)	C)		c)
141. The first io	nization po	tential of Al i	s smaller
than that o	f Mg becau	se	
		Al has	The
The	The	one	atomic
atomic	b) atomic	unpaired	d)number
^a size of	size of	electron	of
Al > Mg	g Al < M	g in <i>p</i> -	
		orbital	Ai > Mg
142. The ionizat	tion potenti	al of nitroger	n is
a) Same as	b) Less	c) Greater	d) None of
,		/	

that of

oxygen

than

that of oxygen

than

that of

oxygen

the

above

143. Which of the	following se	ts of eleme	ents is		
arranged in c	order of incr	easing			
electronegativity based on Pauling scale?					
a) S, Si, P b) P, S, Si c)) S, P, Si	d) P, Si, S		
144. For Be, Z_{eff} =	: 1.95 and fo	or Be ^{$x+$} , Z_{ef}	f = 2.30.		
Hence, ion is			•		
a) Be ⁺ ł	b)Be ²⁺ c) Be ³⁺	d)Be ⁰		
145. Ionic hvdride	es react with	water to g	ive		
a) A basic b) An c`	A (d) Protons		
solution	acidic	hvdride	,		
	solution	ion			
146. Going down i	n a group fr	om F to I. w	which of the		
following pro	operties incr	eases			
a) Ionic b) Ionizatioc) Oxidizin (d) Electron		
radius	n energy	g power	egativity		
147. In which case	e bond lengt	h is shorter	ned?		
a) When b) When c) In both	d) None of		
multiplic	electron	cases	the		
itv	egativiti		above		
occurs	es are		cases		
between	different		cubeb		
atoms	uniorent				
148 Ionization en	ergy of the e	element X(g) is L and		
the electron :	affinity of X^+	(g) is E th	en		
		E E	E E		
$a_1 I = E$ b	(1) = -E c) I	I(b)		
		2	2		
149. The ionizatio	n energy of 1	2 hydrogen i	s 13.6 eV		
149. The ionizatio and the first	n energy of ionization er	2 hydrogen i hergy of he	2 s 13.6 eV lium is		
149. The ionizatio and the first 24.6 eV. Ener	n energy of i ionization er gy evolved i	hydrogen i hergy of he n the follow	s 13.6 eV lium is wing		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain	n energy of ionization er gy evolved i process is	hydrogen i hergy of he n the follow	s 13.6 eV lium is ving		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-}$	n energy of i ionization er gy evolved i process is → He	2 hydrogen i nergy of he n the follow	s 13.6 eV lium is wing		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVt	n energy of ionization energy evolved i process is → He \rightarrow He \rightarrow -54.4 eVc	hydrogen i hergy of he n the follow) -27.2 eV	2 s 13.6 eV lium is wing d)-79.0 eV		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is	n energy of ionization er gy evolved i process is \rightarrow He (-54.4 eVc) different free	hydrogen i hergy of he n the follow) -27.2 eV om the othe	2 s 13.6 eV lium is wing d)-79.0 eV ers?		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVt 150. Which pair is a) Li – Mg k	n energy of ionization ergy evolved in process is \rightarrow He \rightarrow He \rightarrow -54.4 eVc \rightarrow different from bold for the second	hydrogen i hergy of he n the follow) -27.2 eV om the oth) Be $- \text{Al}$	2 s 13.6 eV lium is wing d)—79.0 eV ers? d)Li — Na		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p	n energy of i ionization er gy evolved i process is \rightarrow He (-54.4 eVc) different from (-54.5 eVc) (-54.4 eVc) (-56.4 eVc) $(-56.4 \text$	hydrogen i hergy of he n the follow) -27.2 eV om the othe) Be $- \text{Al}$ ich is not si	d) – 2 s 13.6 eV lium is wing d) – 79.0 eV ers? d) Li – Na hown by		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVt 150. Which pair is a) Li - Mg t 151. Pick out the p transition elec	n energy of ionization er ionization er gy evolved i process is \rightarrow He b) -54.4 eVc different fro b) B - Si c property wh ements	hydrogen is nergy of he n the follow) -27.2 eV om the oth) Be $-$ Al ich is not sh	a) = 2 s 13.6 eV lium is wing d) – 79.0 eV ers? d) Li – Na hown by		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eV 150. Which pair is a) Li - Mg b 151. Pick out the p transition ele a) Show b	n energy of i ionization er gy evolved i process is \rightarrow He (-54.4 eVc) different fro (-54.4 eVc) different fro (-	hydrogen is nergy of hei n the follow) -27.2 eV om the otho) Be $-$ Al ich is not show	a) = 2 s 13.6 eV lium is wing d) – 79.0 eV ers? d) Li – Na hown by d) Act as		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain He ²⁺ + 2e ⁻ a) -49.2 eVt 150. Which pair is a) Li - Mg t 151. Pick out the p transition ele a) Show b variable	n energy of ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c property wh ements) Impart c) colour	hydrogen i hergy of he n the follow) -27.2 eV om the oth) Be - Al ich is not s) Are	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio	n energy of i ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c property wh ements) Impart c) colour to flame	hydrogen is nergy of hei n the follow) $-27.2 \text{ eV}($ om the otho) Be $-$ Al ich is not sl) Are paramag netic in	a) = 2 s 13.6 eV lium is wing d) = 79.0 eV ers? d) Li = Na hown by d) Act as catalytic agents		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eV 150. Which pair is a) Li - Mg k 151. Pick out the p transition ele a) Show b variable oxidatio n state	n energy of ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c property wh ements) Impart c) colour to flame	hydrogen i hergy of he n the follow) -27.2 eV om the otho) Be - Al ich is not sh) Are paramag netic in nature	a) = 2 s 13.6 eV lium is wing d) = 79.0 eV ers? d) Li = Na hown by d) Act as catalytic agents		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O^{2-}	n energy of i ionization er gy evolved i process is → He b) -54.4 eVc different fre b) B - Si c property wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg	hydrogen is nergy of hei n the follow) $-27.2 \text{ eV}(0)$ om the othor) Be $-$ Al ich is not si) Are paramag netic in nature g^{2+} and Al ³	a) = 2 s 13.6 eV lium is wing d) – 79.0 eV ers? d) Li – Na hown by d) Act as catalytic agents + are		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O^{2-} isoelectronic	n energy of ionization er ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c broperty wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg	hydrogen i hydrogen i hergy of he n the follow) -27.2 eV om the othe) Be $-$ Al ich is not sl) Are paramag netic in nature 3^{2^+} and Al ³ radii show	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain He ²⁺ + 2e ⁻ - a) -49.2 eVt 150. Which pair is a) Li - Mg t 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O^{2-} isoelectronic An	n energy of i ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c coroperty wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A	hydrogen i hergy of he n the follow) -27.2 eV om the otho) Be - Al ich is not sl) Are paramag netic in nature g ²⁺ and Al ³ radii show	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O^{2-} isoelectronic An increase	n energy of i ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c property wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A decrease	hydrogen in hergy of her n the follow) -27.2 eV om the other) Be - Al ich is not show) Are paramag netic in nature g^{2+} and Al ³ radii show A	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are A 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from	n energy of ionization er gy evolved i process is → He b) -54.4 eVc different fro b) B - Si c property wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg decrease from	hydrogen i hergy of he n the follow) –27.2 eV om the otho) Be – Al) Be – Al ich is not sl) Are paramag netic in nature g ²⁺ and Al ³ radii show A significa	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are A significa 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from O^{2-} to	n energy of i ionization energy of i ionization energy evolved i process is \rightarrow He (-54.4 eVc) different from (-54.4 eVc) different from (-56.4 eVc) different from (-56.4 eVc) different from (-56.4 eVc) different from (-56.4 eVc) ments (-56.4 eVc) men	hydrogen i hergy of hei n the follow) -27.2 eV om the otho) Be - Al ich is not sl) Are paramag netic in nature g ²⁺ and Al ³ radii show A significa nt	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are A significa nt 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eV 150. Which pair is a) Li - Mg k 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from O^{2-} to a) F ⁻ and k	n energy of i ionization er gy evolved i a process is → He b) -54.4 eVc different from b) B - Si c coroperty wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A decrease from O^{2^-} to b) F ⁻ and c	hydrogen in hergy of her n the follow $) -27.2 \text{ eV}_{0}$ om the othol) Be - Al () Be - Al () Be - Al () Are () Are () Are () Are () Are () aramag () netic innature () aramag () arama	 a) - 2 s 13.6 eV lium is wing d) - 79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are A significa nt d) decrease 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from O^{2-} to a) F ⁻ and h then	n energy of i ionization energy of i ionization energy evolved i process is \rightarrow He b) -54.4 eVc different from b) B - Si c broperty wh ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A decrease from 0 ²⁻ to b) F ⁻ and c then	hydrogen is nergy of hei n the follow) -27.2 eV om the otho) Be - Al ich is not sl) Are paramag netic in nature g ²⁺ and Al ³ radii show A significa nt) increase from	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents + are A significa nt d) decrease from 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-} -$ a) -49.2 eVh 150. Which pair is a) Li - Mg h 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from O^{2-} to a) F ⁻ and h then decrease	n energy of i ionization energy of i ionization energy of i process is \rightarrow He b) -54.4 eVc different from b) B $-$ Si c coroperty whether ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A decrease from O^{2-} to b) F ⁻ and c then increase	hydrogen in hergy of hei n the follow $) -27.2 \text{ eV}_{0}$ om the othol) Be - Al abc - Al bbc - Al bb	 a) 1 = 2 s 13.6 eV lium is wing d) -79.0 eV ers? d) Li - Na hown by d) Act as catalytic agents d) Act as catalytic agents + are A significa nt d) decrease from 0²⁻ to 		
149. The ionizatio and the first i 24.6 eV. Ener electron-gain $He^{2+} + 2e^{-}$ a) -49.2 eV 150. Which pair is a) Li - Mg H 151. Pick out the p transition ele a) Show b variable oxidatio n state 152. The ions O ²⁻ isoelectronic An increase from O^{2-} to a) F ⁻ and H then decrease from	n energy of i ionization energy of i ionization energy evolved i process is → He b) -54.4 eVc different from b) B - Si c coroperty when ements) Impart c) colour to flame , F ⁻ , Na ⁺ , Mg . Their ionic A decrease from 0 ²⁻ to b) F ⁻ and c then increase from	hydrogen is nergy of hei n the follow $) -27.2 \text{ eV}_{0}$ om the follow $) -27.2 \text{ eV}_{0}$ om the othe) Be - Al ich is not sl) Are paramag netic in nature β^{2+} and Al ³ radii show A significa nt) increase from O^{2-} to Al ³⁺	s 13.6 eV lium is wing d) -79.0 eV ers? d) Li $-$ Na hown by d) Act as catalytic agents + are A significa nt d) decrease from O^{2-} to Al ³⁺		

A13+ Al^{3+} 153. Select the correct statement. $(IE)_1$ of $(IE)_1$ of the 5*d*series correspo Both of nding elements elements are Both (a) the a) of 3d b)smaller c) & (b) ared)above and 4d than that correct are series of 3*d* incorrect and 4*d*are series almost similar elements 154. Which set does not show correct matching? $Sc^{3+}[Ne]$; $Fe^{2+}[Ar]$; Cr[Ar]3dAll of the a) zero b) VIII c) VIB d) above group group group 155. The basic character of hydrides of group 15 (VA) is in which of the following order? NH₃ NH₃ NH₃ $< PH_3$ $> PH_3$ $< PH_3$ None of a) < BiH₃ b) > AsH₃ c) < AsH₃ d)the $< SbH_3$ > SbH₃ < SbH₃ above $< AsH_3$ $> BiH_3$ $< BiH_3$ **Multiple Correct Answers Type** 156. The first element of a group in many ways differs from the other heavier members of the group. This is due to The high The electron The The egativity unavaila higher a) smaller b) and high c) bility of d) shielding size ionizatio deffect n orbitals potential 157. Pick out the isoelectronic structures from the following: (I) CH_3^+ (II) H_3O^+ (III) NH_3 (IV) CH_3^- : a) I and II b) III and c) I and III d) II, III IV and IV 158. Which of the following compounds possesses zero dipole moment? Carbon b)Benzene c) tetrachlod) a) Water ride 159. Which of the following statements is/are true? Ionisatio Metallic Atomic The first a) and b) and ionicc) n energy d) ionisatio covalent radii of is n

160. An	radii of potassiu m are 2.3 Å and 2.03 Å respecti vely	niobium and tantalum are almost same	inversel y proporti onal to the screenin g effect	energies of Be and Mg are more than ionisatio n energies of B and Al respecti vely radii with	164.	Which state A pi- bond is weaker than sigma- bond Intermolecu a) High b.p. liquid	ment(s) is/ar A sigma- bond is b)weaker c) than pi- bond ilar H-bonding b) Capable c) of forming two series of	e correct? A(=) bond stronger than single bond g in HF ma Dibasic	A covalent bond is stronger than H- bond kes it: d) Capable of forming acid salt
ato	omic numbe	er occurs in	any group o	f the			salt		
Pe	riodic Table	e and in acco	ordance with	n this the	166.	IE_2 for an el	lement are inv	variably high	gher than
ior	nic radii of T	'i(IV) and Z	r(IV) ions ar	e 0.68 A		IE_1 because	: 		
an	d 0.74 A res	pectively; b	out for Hf(IV) ion the		The size	lt 1S		
ior	nic radius is	0.75 A whice	ch is almost	the same		of cation	aimcuit	IE is	All of the
as	that for Zr(IV) ion. This	S IS due to			a) smaller	b) $\begin{bmatrix} 0 \\ remove \end{bmatrix}$) endothe	d) above
			Differen			than its	<i>'e'</i> from	rmic	above
	Greater		coordina			atom	cation		
	degree		tion		167.	Which state	ment(s) is/ar	e correct?	
	of	Lanthani	number	Actinide		PF ₃ has			
a)	covalenc b) de	of Zr^{4+} d	contracti		higher	Dipole	I ⁺ is	I [–] is
-	y in	contracti	and	on		a) bond	h) of NH ₂ is c	smaller	d) smaller
	compou nd of	on	Hf ⁴⁺ in			angle	more	′ than I [_]	^{than I+}
	ни ог Hf ⁴⁺		their			than	than NF ₃	ion	ion
	111		compou		4.00	PCl ₃			1.1
			nds		168.	The melting	point of RbB	18 682°C	while that
161. Wł	hich of the f	ollowing pa	irs of specie	s have		of NaF 18 98	8°C. The prin	cipal reaso	n that the
nea	arly same since $s^2 = 1$	ize?	N 2± N N	T → 1 × 2 ±		of RbBr is th	nt of Nar 15 III	JCH HIgher	tildil tildt
a)	Rb ⁺ , O ^{2−} b)CI ⁻ , Na ⁺ c)) Mg ²⁺ , Nad)	Li ⁺ , Mg ²⁺			lat	The	
162. Wi	hich form tv	vo or more	chlorides?	Γ.				differenc	
aj 162 Mi	ich of tho f) Fig C)	tomonto ic/	aro				e in	
103. 101	rrect?	unowing sta	atements is/	ale		m	The	electron	The
a)	The b)	The c)	The d)	The		The	bond in	egativity	internucl
۵,	peroxide	peroxide	peroxide	bond		molar mass of	RDBr has	between	ear
	ion has a	ions has	ion as	length of		nass or a) NaE is	h) covalent c	Rb and	d) $r \perp r$ is
	bond	a longer	well as	peroxide		aj Nal ⁻ 15 smaller	characte	' Br is	$u_{f_c} + I_a$ is greater
	order of	and	the	ion is		than that	t r than	smaller	for RhBr
	1 while	weaker	oxygen	greater		of RbBr	the bond	than the	than for
	the	bond	molecul	than			in NaF	differenc	NaF
	oxygen	than the	e are	that of				e bat	
	molecul	oxygen	paramag	the				Detween	
	e has a	molecul	netic	oxygen	160	Which amor	athe follows	iva and F	noar?
	bond	e has		molecul	109.	a) RoF	$h \Delta \alpha (CN)^{-1} \sim$	ig is/are ll	d)YeE
	order of			e	170	a) Der ₂	r_{2} r_{2} r_{2} r_{2}	/202	ujner ₂
	2				1/0.	i ne isotone	(3) or $_{32}$ Ge is	/ d1 e:	

a) ${}^{77}_{32}$ Ge b) ${}^{77}_{33}$ As c) ${}^{77}_{34}$ Se d) $^{78}_{34}$ Se 171. Electrovalency is favoured by: High a) Low *IE* b) High *EA* c) lattice values d) None of these energy 172. Resonance occurs due to the: a) Delocali b) Delocali c) Delocali d) Migratio zation of zation of zation of n of a lone sigmapiprotons pair of electron electron electron S S S 173. Which molecules(s) has/have V-shape? d) None of these a) H_2O b)SnCl₂ c) H_2S 174. Which is/are correct order of ionic mobility? Al³⁺ Li⁺ Na^+ K^+ b) < Mg²⁺ c) < Mg²⁺ d) < Na⁺ a) < Na⁺ $< K^+$ $< Al^{3+}$ $< Na^+$ $< Li^+$ 175. Resonance structures of a molecule should have: a) Identicalb) Nearly c) The d) Identical bonding arrange the same ment of same number atoms energy of content paired electron S 176. Consider the following ionization steps $M(g) \rightarrow M^+(g) + e^-, \quad \Delta H = 100 \text{ eV}$ $M(g) \rightarrow M^{2+}(g) + 2e^{-}, \Delta H = 250 \text{ eV}$ Select the correct statement(s) $(IE)_1$ of $(IE)_1$ of $(IE)_2$ of $(IE)_2$ of a) M(g) is b) $M^+(g)$ is c) M(g) is d) M(g) is 100 eV 150 eV 250 eV 150 eV 177. Select the correct statements Cu([Ar]3 Ce, Pr Cu, Pd and Si, Ge and Nd and Ni K([Ar]4*s*] and As a) are fb) are dc) have d)are block block been metalloi elements elements placed in ds s-block 178. The molecule(s) which show H-bonding is/are: 0-Ethyl a) nitrophe b) Water d)acetoace c) HCl nol tate 179. The compound which contains both ionic and covalent bond is/are:

a)CH₄ b)NH₄OH c)KCN $d)K_4[Fe(CN)]$ 180. When an isotope undergoes K-capture, its mass number a) Remains b) Remains c) Remains d) As well the the the as the same same same atomic while while while number the the the decrease atomic atomic atomic s by one number number number increase decrease increase s by one s by two s by one 181. The octet rule is not obeyed in: a) CO_2 $b)BCl_3$ c) PCl₅ d)SiF₄ 182. The species that does not contain peroxide bond is/are: a) PbO₂ $b)H_{2}O_{2}$ c) MnO_2 $d)BaO_2$ 183. Which combination(s) given below is/are correct? XeF₆a) $\frac{\text{HgCl}_2}{\text{linear}}$ b) $\frac{\text{ClF}_3\text{-}\text{T}}{\text{shaped}}$ c) square d) $\frac{\text{nal}}{\text{planar}}$ bypyrami 184. A, B, C are three substances. A does not conduct electricity in the solid or liquid state. B conducts electricity both in the fused and solution states, while *C* conducts electricity only in the solution state. Which of the following statement(s) is/are true regarding A, B and C? A has A has C has non-B is a) polar c) ionic in d) polar b)polar covalent covalent covalent nature linkage linkage linkage 185. Which of the following statements is/are correct? CH_3^+ sp^2 shows sp^2 hybridiz NH⁺₄ has Hybridiz hybridiz ed a regular ed ation orbitals d) orbitals tetrahed c) have a) whereas b) always ral equal s- $CH_3^$ form σ geometr and pshows bonds y sp^3 characte hybridiz r ation 186. The type of bond(s) present in ammonium

chloride is/are

a) Ionic b) Covalentc) Coordin d) None of these ate 187. Which of the following is/are coloured and paramagnetic? a) Cu⁺ $b)NO_2$ c) $[Fe(H_2O)d)[Al(OH)_4]$ 188. Which of the following compounds contain both ionic and covalent bonds? c) CuSO₄, 5Id) NaOH a) NH₄Cl b)KCN 189. Select the correct statement(s) Among Cs⁺ is the Ionic alkali mobility more Ionizatio of Li⁺ is highly metals n hydrated Li, Na, K maximu potential a) that the b) and Rb, c) m d) of Li is other lithium among smaller alkali Li⁺, Na⁺ has the than that and K⁺ metal highest of Na melting ions ions point 190. The linear structure is assumed by: a) $SnCl_2$ b)NCO⁻ c) CS_2 $d)NO_2^+$ 191. Which possess fractional bond order? a) 0^+_2 $b)0_{2}^{-}$ c) H_{2}^{+} $d)N_2$ 192. Which of the following elements have the similar value of electronegativity? a) Te b) S c) P d) H 193. Chlorine atom does not differ from chlorine ion in the number of which of the following? a) Neutron b) Electron c) Size d) Protons S S 194. Ionization energy is influenced by: a) Size of b) Charge c) Electron d) None of atom on the the S nucleus present above in inner shells 195. Which has/have zero value of dipole moment? a) $[Ni(CN)_4b)CHCl_3$ c) CO_2 d) 196. The molecule, CHO: Has Has Reduces a) intermol ecular Hintermol ecular H-Is steamvolatile reagent bonding bonding

197. Which of the following conditions apply to resonating structures?

	IC	sonating s	il uctul co:				
	a)	The b	o) The	c)	The	d)	The
		contribu	contribu		electrop		contribu
		ting	ting		ositive		ting
		structur	structur		element		structur
		es	es		should		es must
		should	should		always		have the
		have	be		has		same
		similar	represe		positive		number
		energies	nted		charge		of
			such		and the		unpaire
			that		electron		d
			unlike		egative		electron
			charges		element		S
			reside		negative		
			on		charge		
			atoms				
			that far				
			apart				
198.	W	hich has/h	ave magne	tic	moment	?	
	a	$[Fe(H_20)]$	b)[Ni(CN)4	LC)	[Fe(CN)	5d)	02
199.	Th	ie factors t	hat influen	ce	the ioniz	ati	on
	en	ergies are					
	a)	The size b	o) The	c)	How	d)	The
		of the	charge		effective		atomic
		atom	on the		ly the		mass
			nucleus		inner		
					electron		
					s screen		
					the		
					nuclear		
					charge		
200.	In	which, cer	ntral atom(s)	has/have	e or	ne lone
	ра	ir of electr	on?				
	a) Cl ₂	b)NH ₃	c)	PCl ₃	d)	XeF ₆
201.	W	hich of the	following	for	ce(s) is/	are	weak?
		Covalent	Van der		Coulom	ni	London
	a) forces	b)Waals'	c)	forces	"d)	forces
		101000	forces		101000		101000
202.	Sta	ability of io	ons of Ge, S	n a	ınd Pb wi	ll b	e in
	or	der					
		Ge ²⁺	Pb ⁴⁺		Sn ²⁺		Pb ⁴⁺
	a	$) < Sn^{2+}$	b) $<$ Sn ⁴⁺	c)	< Sn ⁴⁺	d)	< Pb ²⁺
		$< Pb^{2+}$	< Ge ⁴⁺				
203	W	hich one o	f the follow	vin	g arrange	me	ents does

203. Which one of the following arrangements does not give the correct picture of the trends indicated against it?

$Br_2 >$	$Br_2 > I_2$	$Br_2 > I_2$	$Br_2 > I_2$
I ₂ :	: bond	:	:
Electron	dissociat	Electron	Oxidising
gain	ion	egativity	power
enthalpy	energy		
204. The properties	s that show	similar tren	ds down
the group amo	ng the elem	ents of grou	ip 1 to
17, is/are			
a) Metallic b)	Reactivitc)	Electron d)	Melting
characte	у	egativity	or
r			boiling
			points
205. Which of the fo	ollowing hav	ve a dipole r	noment?
		Cis.1 2.	Trans-1,
2,2,3,3-	Trans-2-	dichloro d	2-
^a tetrametl ^b	pentene	athono	dichloro
		ethene	ethene
206. Which of the fo	ollowing sta	tements is/	are
correct regard	ing ionic co	mpounds?	
a) They areb)	They arec)	They d)	They
good	generall	consist	generall
conduct	y soluble	of ions	y have
ors at	in polar		high
room	solvents		melting
tempera			and
ture			boiling
			points
Accorti	on Boscon	ing Tymo	
ASSELU	UII - Reasul	ing type	
This section conta	ain(s) 0 qu	lestion(s) n	umbered
207 to 206. Each	question c	ontains STA	TEMENT
1(Assertion) and	STATEMEN	NT 2(Reaso	n). Each
question has the 4	choices (a)	, (b), (c) an	d (d) out
of which ONLY ONE	is correct.		
a) Statement 1 is Ti	rue, Stateme	ent 2 is True	;
Statement 2 is co	orrect explai	nation for St	atement
1			
b) Statement 1 is Ti	rue, Stateme	ent 2 is True	;
Statement 2 is n o	ot correct ex	planation fo	or
Statement 1			
c) Statement 1 is Ti	rue, Stateme	ent 2 is False	2
d) Statement 1 is Fa	alse, Statem	ent 2 is True	e
207			
Statement 1:	If differen	ce of	
	electroneg	ativity betw	veen
	two atoms	s is zero the	
	resultant	nolecule wi	ll be
	non-nolar	covalent	
	non point	covarciit	

	Statement 2:	The shared pair of electron lies just in the middle of two atoms
208		
	Statement 1:	PCl ₅ conducts current in solid state
209	Statement 2:	PCl ₅ exists as [PCl ₄] ⁺ and [PCl ₆] [–] ions
	Statement 1:	Solubility of NaOH in water increases with rise in temperature, although it is exothermic dissolution
	Statement 2:	Changes showing exothermic nature occurs in backward direction if temperature is raised
210		
	Statement 1:	The electron attachment enthalpy of fluorine is more negative than that of chlorine
	Statement 2:	gas elements have positive value of electron attachment enthalpies
211		
	Statement 1:	N and P show a maximum covalency of five
	Statement 2:	P can expand the outer shell of electrons beyond an octet by involving <i>d</i> -orbitals
212		present in its valence shell
212		
	Statement 1:	Shielding effect increases as we go down the group
	Statement 2:	More is the electrons in the penultimate shell, more is shielding
213		
	Statement 1:	The lattice energy of silver halides is
	Statement 2:	Agr > $AgCl$ > $AgBr$ > AgI AgF is water soluble
214		

	Statement 1:	The bond angle in H_2O is	221		
	Statement 7.	greater than H_2S		Statement 1:	F atom has less electron
	Statement 2:	H-S due to low			affinity than Cl atom
		H_2S due to low electronegativity of S		Statement 2:	Additional electrons are
215		creed onegativity of b			repelled more effectively by
					3 <i>p</i> -elctrons in Cl atom than by
	Statement 1:	Manganese has a less			2 <i>p</i> -electrons in F atom
		favourable electron affinity	222		
		than its neighbours in either		Statement 1:	<i>p</i> -dimethoxy benzene is polar
	Statement 2:	The magnitude of an			molecule
		element's electron affinity		Statement 2:	The two methoxy groups at
		depends on the element's			para positions are located as
		valence shell electrons			
		configuration			
216			222		CH ₃
	Statement 1:	Plutonium among the	223		
		transuranic elements is the		Statement 1:	The molecule <i>cis</i> -1-
		longest lived element.			chloropropene is more polar
	Statement 2:	Plutonium is not radioactive.		6	than <i>trans</i> -1-chloropropene
217				Statement 2:	The magnitude of resultant
21/					propene is pop-zero
	Statement 1:	NH_3 and CH_3^- both have	224		propene is non-zero
		pyramidal shape			
	Statement 2:	N in NH ₃ and C in CH_3^- both		Statement 1:	The first ionization energy of
		have <i>sp</i> ³ -hybridization with		6	Be is greater than B.
		one lone pair of electron on		Statement 2:	2p- orbitals have lower
218		each	225		energy than 25- of bitais.
210			225		
	Statement 1:	The bond angle in BF_3 is		Statement 1:	The dipole moment of NF_3 is
		smaller than that in BF_4			more than NH ₃
	Statement 2:	BF_3 has sp^2 -hybridization,		Statement 2:	The presence of lone pair of
		whereas DF_4 has Sp^2 -			additive contribution in
219		nybridization			dipole moment of NH ₂
/					whereas it shows a negative
	Statement 1:	The ionisation energy of ${}_{1}H^{2}$			contribution towards dipole
		is more than ionisation			moment of NF ₃
	Statement 7.	energy of $_1H^2$	226		
	Statement 2:	This is due to isotopic effect		Statement 1	E_{\star} for halogens is
220				Statement 1.	E_{A_2} for harogens is
	Statement 1.	Atomia sizo of silver is almost		Statement 2:	Halogens have ns^2np^5
	statement 1:	Atomic size of silver is almost			configuration and can
	Statement 2:	<i>d</i> -subshell has low			accommodate only one
		penetration power and			electron
		produce poor shielding.	227		
		-			

	Statement 1:	In any period, the radius of			of NaCl
		the noble gas is lowest	235		
228	Statement 2:	He has the highest IE in the Periodic Table		Statement 1:	The bond energy of $P - Cl$ bond in PCl_3 and PCl_5 are
	Statement 1:	Nobel gases have large positive electron gain enthalpy.		Statement 2:	different In PCl ₃ , $sp^3 - p$ overlapping whereas in PCl ₅ , $sp^3d - p$ overlapping is noticed
	Statement 2:	Electron has the enter the next higher principal	236	Statement 1.	BE molecule is planar with
220		quantum level.		Statement 1.	an angle of 120°C
229	Statement 1:	P — Cl bond in PCl ₃ and PCl ₅ had different bond energy	237	Statement 2:	BF_3 has bond pair-lone pair electron ratio 1 : 3
	Statement 2:	P in PCl ₃ and PCl ₅ is sp^3 -		Statement 1.	First invitation anongy for
230		hybridized		Statement 1:	nitrogen is lower than oxygen.
	Statement 1:	The first ionisation energy of		Statement 2:	Across a period effective
	Statement 2.	N is greater than 0 N atom has half filled <i>n</i> -	238		nuclear charge decreases.
	Statement 2.	orbitals	250		
231				Statement 1:	SF_4 has lone pair of electron
	Statement 1:	Sulphur atom has higher electron affinity than oxygen.			preference to apical position in the overall
	Statement 2:	Oxygen is more			trigonal bipyramidal
		electronegative than sulphur, that's why can hold electron better.		Statement 2:	geometry If lone pair is at equatorial position then only repulsion
232					is minimum
	Statement 1:	IF ₇ is super octet molecule	239		
	Statement 2:	Central atom of I in IF_7 has 14		Statement 1:	All molecules with polar bond
233		electrons		Statement 2:	Dipole moment is a vector quantity
	Statement 1:	$FeCl_2$ is more covalent than	240		
		$FeCl_3$ because electro negativity of $Fe^{3+} > Fe^{2+}$		Statement 1:	Isoelectronic species are
	Statement 2:	Higher is the charge on cation, more is deformation of anion, more is covalent character	241	Statement 2:	electrons but different radii. Higher the charge, smaller the ion.
234			241		
	Statement 1:	Solubility of NaCl in D_2O is		Statement 1:	The dipole moment of NH_3 is less than NF_3
	Statement 2:	less than, H_2O Higher viscosity of D_2O I responsible for low solubility		Statement 2:	The lone pair present on N shows additive nature to N - H vector whereas it is

	subtractive to N – F vector	matched	l with St	atements	in colu	mns II.	
242		247 Mat	ch the e	lement (ii	n Colum	n I) with i	ts
Statement 1:	MO configuration of CO is	. unic	que prop	oerties (in	n Colum	n II)	
	$\sigma 1s^2, \sigma^* 1s^2 \sigma 2s^2, \sigma 2p_x^2, \pi 2p_y^2, \pi$	Column-I			Column- II		
Statement 2:	The bond energy level $\sigma^* 2s^2$		Goru			Gorumn	
	because then only bond	(A)	F		(1) Ma	aximum ic	onization
	length order for CO (more)	(B)	Cl		energy (2) Maximum		
	and CO^+ (less) can be				ele	ectronega	tivity
242	explained	(C)	Fe		(3) Ma	aximum	
243					ele	ectronaffii	nity
Statement 1:	IE_1 for He is maximum and	(D)	не		(4) Ke III	centiy nai PAC	med by
	EA_1 for Cl is more than E_{A_1} of	(E)	Ds		(5) Variable valency		
Statement 2.	F He nossesses electrons in 1s	Cod					
Statement 2.	sub-shell, closest to nucleus,	Lou	es:				
	whereas electron density in F		Α	В	С	D	Ε
	is maximum which exerts	(a)	3	4	2	5	1
	more electron-electron		1	2	n	4	-
244	repulsion	(0)	1	Z	3	4	5
Ch		(c)	2	3	5	1	4
Statement 1:	as many as 32 electrons in an	(d)	5	1	4	3	2
	energy level but only <i>s</i> and p	240 M-4	-l- +l +-			. Caluma	I)
	sublevel electrons are	248 Mat the	ch thể t <u>r</u> corresp	pe of ele	ments (1 ectronic	n Column configura	I) WITH
Chat	considered for the octet rule.	Colu	ımn II)		eeti onne	connguia	
Statement 2:	For any atom, electrons	Column-I			Column- II		
	assume greater stability.	(A) Inert gas elements (1) ns^1 to ns^2nn^5					
245						2. 2	6
Statement 1:	Ionisation energy of nitrogen	(B)	Main gr element	oup	(2) 1s	² to ns ² n	00
	(7) is more than that of	(C)	Transiti	on	(3) (n	$(-2)f^{1-1}$	4
	oxygen (8)		element	S	$(n-1)s^2p^6d^{10}ns^2$		
Statement 2:	Half-filled <i>p</i> -orbitals in nitrogon $(2n^3)$ are more	(D)	Inner tr	ansition	(4) (n	$(-1)d^{1-9}$	ns²
	stable		element	S	(5)(n)	$(-1)d^{10}n$	s ²
246					(3) (11	- 1)u n	.3
Statement 1.	The first ionication energy of	Cod	es :				
Statement 1.	Be is greater than that of B		А	В	С	D	
Statement 2:	2 <i>p</i> -orbital is lower in energy		1	Э	2	Λ	
	than 2 <i>s</i> -orbital	(a)	T	L	Э	4	
Ма	trix-Match Type	(b)	2	1	4	3	
Ma	an maun type	(c)	4	3	2	1	
This section contain	1(s) 0 questions. Each question	(4)	3	4	1	2	
contains Statement	S given in 2 columns which have	(u)	5	T	1	4	

to be matched. Statements in **columns I** have to be

L

	Α	В	С	D
(a)	1	2	3	4
(b)	2	1	4	3
(c)	4	3	2	1
(d)	3	4	1	2

249 The correct match of contents in Column I with

those in column II is					(A) 19			
	Colu	mn-I		Column- II		(B) 22	2
(A) H	le		(1) Hig	gh electron		(C) 32	2
(B) Cl		aff (2) Mo	affinity (2) Most electropositive			(D) 64		
(C) (a		ele (3) Str	element (3) Strongest reducing		Codes :		5:
(D)L	i		age (4) Hig	ent Thest ionisat	tion			Α
	1		ene	ergy	cion	(a)	4
Code	s :					(b)	3
	Α	В	С	D		(c)	2
(a)	3	1	2	4		(d)	1
(b)	4	3	2	1		252		
(c)	2	4	1	3				
(d)	1	2	3	4				Colu
(e)	4	1	2	3		(A) M	elting

250 Match the atomic number (in Column I) with its IUPAC nomenclature (in Column II) .

	Colu	mn-I		Column-	II			
(A) 1	.05		(1) Uu	h				
(B) 1	.07		(2) Uu	n				
(C) 1	.09		(3) Un	S				
(D) 1	10		(4) Un	р				
(E) 116			(5) Un	(5) Une				
Code	s :							
	A	В	С	D	Ε			
(a)	4	3	5	2	1			
(b)	1	2	3	4	5			
(c)	2	5	4	3	2			
(d)	5	1	2	5	4			
1 Match atomic number of elements (in Colum I) with position of elements in the Periodic								

25 n .

IJ	with position of eler	lients in the Period
Та	able (in Column II)	
	Column-I	Column- II

(C) 3	(C) 32			(3) <i>d</i> -block			
(D)6	(D) 64			(4) <i>s</i> -block			
Codes :							
	Α	В	С	D			
(a)	4	3	1	2			
(b)	3	4	2	1			
(c)	2	1	3	4			
(d)	1	2	4	3			
52							

(1) p-block

(2) *f*-block

Column-I			Column- II			
(A) Melting point			$(1) 0^{2-} < 0^- < 0 < 0^+$			
(B) T	herma	al stability	(2) F ⁻	$< Cl^- < Br^-$		
(C) Polarisability			< 1 ⁻ (3) HI < <i>HBr</i> < <i>HCl</i> < <i>HF</i>			
(D) E	lectro	n affinity	(4) $XeF_6 < XeF_4$			
Codes :			<	Xer ₂		
	Α	В	С	D		
(a)	4	3	2	1		
(b)	2	1	4	3		
(c)	3	2	1	4		
(d)	1	4	3	2		

Linked Comprehension Type

This section contain(s)0 paragraphs. Based upon each paragraph, multiple choice questions have to be answered. Each question has at least 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 253 - 252

Ionic radius is the effective distance from the nucleus of an ion up to which it has its influence on its electron cloud. A cation is always much smaller than the corresponding atom. Further more the number of electrons removed, smaller will be the size of the resulting positive ion. For example

$$r_{\rm Fe} > r_{\rm Fe^{2+}} > r_{\rm Fe^{3+}}$$

A cation formed by the loss of electrons may result in the complete disappearance of the outer shell and since, the remaining inner shells do not extend so far in space, the cation is much smaller than the metal atom. For example

Na
$$\rightarrow$$
 Na⁺
(2, 8, 1) (2, 8) (2, 8)

In case of isoelectronic ions, the greater the nuclear charge, the greater is the attraction for electrons and smaller is ionic radius

253. The size of the species Pb, Pb²⁺ and Pb⁴⁺

ueci eases a	S		
Pb ⁴⁺	Pb	Pb ⁴⁺	Pb ²⁺
a) > Pb^{2+}	b)> Pb^{2+}	c) > <i>Pb</i>	d)> Pb ⁴⁺
> Pb	$> Pb^{4+}$	$> Pb^{2+}$	> Pb

Paragraph for Question Nos. 254 - 254

Just as energy is required to remove an electron from an atom, energy is generally released when an electron is added to a neutral atom. When an electron is added to a neutral gaseous atom to convert it into a negative ion, the enthalpy change accompanying the process is called the electron gain enthalpy ($\Delta_{eg}H$). It provides a quantitative measure of the ease with which an atom adds an electron to form anion

 $X(g) + e^- \rightarrow X^-(g) + Energy$

Electron gain enthalpy, like ionisation potential, is expressed in electron volt/atom or kcal/mol or kJ/mol. Electron gain enthalpy of chlorine is -349kJ/mol. This means that 349 kJ of energy is released when one mole of chlorine atoms (6.02×10^{23} atoms) change into Cl⁻ ions Cl(g) + $e^- \rightarrow$ Cl⁻(g) + 349 kJ Cl(g) + $e^- \rightarrow$ Cl⁻(g) Δ_{eg} H = -349 kJ mol⁻¹

254. Second electron gain enthalpy

a) Can be b) Is	c)	Is	d) Is		
positive	always		always	alwa	iys	
or	zero		negative	posi	tive	
negative			(energy	(ene	rgy	
			is	is		
			released	abso	orbe	
)	d)		
Paragraph for Question Nos. 255 - 255						

Following questions are based on Sc(Z = 21)

255. Out of Sc³⁺, Sc²⁺ and Sc⁺ paramagnetic as well coloured ions are

All being a) Sc⁺, Sc²⁺b) Sc⁺, Sc³⁺c) Sc²⁺, Sc³⁻d)*d*-block element

Paragraph for Question Nos. 256 - 256

Following rule in general, classifies *p*-block elements into metals, non-metals and metalloids (where *P* is the period and *N* the valence electrons) (P + 1) > N, the element would be metal (P + 1) < N, the element would be non-metal (P + 1) = N, the element would be metalloid Answer the following question

256. Metalloid will be out of elements with atomic number 13, 14, 15, 16

a) 13	b) 14	c) 15	d) 16				
Paragraph for Question Nos 257 - 257							

r aragraph for Question 103. 257 - 257
In the following table I_1 , I_2 and I_3 of the main group
elements in 2nd period have been given

			-		0			
	Li	Be	В	С	N	0	F	Ne
I_1	513	899	801	108	140	131	168	20
				6	2	4	1	0
I_2	729	175	242	235	285	338	337	39!
	8	7	7	2	6	8	4	2
I_3	118	148	366	462	457	530	605	612
	15	48	0	0	8	0	0	2

Answer the following questions based on the above table

257. There is increase in ionization energy along a period going Li to Ne, but I_1 of B is less than that of Be. This is due to

Paragraph for Question Nos. 258 - 258 The sums of first and second ionization energies and those of third and fourth ionization energies (in MJ mol⁻¹) of nickel and platinum are

	$(IE)_1 + (IE)_2$	$(IE)_{2} + (IE)_{4}$
Ni	2.49	8.80
Pt	2.66	6.70

Based on this information, answer the following questions

258. Most common oxidation states of Ni and Pt are respectively

a) +2, +2 b) +4, +2 c) +2, +4 d) +4, +4

Paragraph for Question Nos. 259 - 259

The $(IE)_1$ and the $(IE)_2$ on kJ mol⁻¹ of a few elements designated by Roman numerals are shown below

Element	$(IE)_1$	$(IE)_2$
Α	2372	5251
В	520	7300
С	900	1760
D	1680	3380

Based on the above information, answer the following questions

259. Which of the above elements is likely to be a reactive metal?

a) A	b) <i>B</i>	c)
ujn	0,0	ς,

Paragraph for Question Nos. 260 - 260

Consider the following table comparing ionic radius

С

d)*D*

Ion \rightarrow	N ³⁻	02-	F ⁻	Na ⁺	Mg ²
Number of	10	10	10	10	10
electron					
Number of	7	8	9	11	12
nuclear protons					
Ionic radius	146	140	133	98	79
(pm)					

Answer the following questions.

260. Select the correct alternate(s) in term of size

No	Mg		0 ^{2–}
a) $\sum_{Na^+}^{Na}$	$b) > Mg^+$	c) $F^{-} > F$	d)>0 ⁻
> Na	$> Mg^{2+}$		> 0

Paragraph for Question Nos. 261 - 261

The heats of formation (ΔH_f°) of the oxides of the third period, sodium to chlorine, are in kJ mol⁻¹ MgO Al_2O_3 SiO₂ P_4O_{10} SO₃ Na_2O Cl_2O_7 -416 -602 -1676 -911 -2984 -395+250Based on these data, answer the following

questions

261. Which oxide has maximum negative heat of formation per oxygen atom?

a) $P_4 O_{10}$ b) Al_2O_3 c) Na_20 d)Mg0 Paragraph for Question Nos. 262 - 262

The singly-bonded metallic radius of Na is 157 pm. Assume that the increment between radii of different magnitudes is 60 pm Answer the following questions

262. The covalent radius of Na is

a) 157 pm b) 97 pm c) 217 pm d) 267 pm Paragraph for Question Nos. 263 - 263 Following species have been given. Assign the species (by its number) showing the indicated property

(1) LiCl (2) $AlCl_3$ $(3) Al_2 O_3$ (4) BaO (5) LiH (6) Cl_2 $(7) F_2$ (9) MgCl₂ (8) Br_2

263. Which is maximum hydrated?

d) 1

c) 2

b) 3 Paragraph for Question Nos. 264 - 264

Dipole moment of a bond is a vector and physical quantity to calculate the percentage ionic character in a covalent bond. It is expressed as:

Dipole moment $(\mu) = \vec{\delta} \times d$

a) 4

Where, δ is dipole moment and *d* is the bond length It is usually expressed in terms of CGS unit known as Debye (D) $1D = 10^{-18}$ esu cm. In SI unit it is expressed in coulomb meter. Resultant dipole moment (μ_R) of two bond moments (μ_1 and μ_2) acting at an angle θ , is given by:

$$\mu_R = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos\theta}$$

If $\mu_1 = \mu_2$, also if $\cos \theta = -1$, *i.e.*, $\theta = 180^\circ$ then $\mu = 0$ (molecule is nonpolar)

If $\mu \neq 0$ molecule is polar.

Dipole moment plays an important role in deciding the stability order of alkanes, *i.e.*, a more stable alkane has less dipole moment. The dipole moment of a molecule can predict the geometrical and position isomers as well as orientations in benzene nucleus and polarity of molecule

264. Dipole moment of HCl molecule is found to be 0.816 D. Assuming HCl bond length to be equal to 1 Å, the % ionic character of HCl molecule is: a) 10% b)17% c) 27% d)37%

Integer Answer Type

3.CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

					:	ANS	W	ER KI	EY:						
1)	b	2)	b	3)	а	4)	b		a.b.d						
5)	a	6)	a	-) 7)	a	8)	a	177)	a,b,d	178)	a,b,d	179)	b,c,d	180)	С
9)	d	10)	С	11)	с	12)	а	181)	b,c	182)	a,c	183)	a,b,c	184)	
13)	а	14)	b	15)	С	16)	С		b,c,d	-		-		-	
17)	С	18)	b	19)	а	20)	а	185)	a,b,d	186)	a,b,c	187)	b,c	188)	
21)	d	22)	b	23)	а	24)	d		a,b,c,d						
25)	b	26)	d	27)	С	28)	С	189)	b	190)	b,c,d	191)	a,b,c	192)	
29)	а	30)	а	31)	С	32)	d		a,c,d						
33)	С	34)	С	35)	С	36)	b	193)	a,d	194)	a,b,c	195)	a,c,d	196)	
37)	d	38)	b	39)	С	40)	b		b,d						
41)	d	42)	С	43)	d	44)	b	197)	a,b,c,d	198)	a,c,d	199)	a,b,c	200)	
45)	а	46)	a	47)	d	48)	С		b,c,d				_		
49)	а	50)	a	51)	а	52)	а	201)	b,d	202)	a,b,c,d	203)	a,b	204)	
53)	С	54)	С	55)	С	56)	С		a,c						
57)	b	58)	d	59)	a	60)	d	205)	b,c	206)	b,c,d	207)	C	208)	b
61)	а	62)	b	63)	b	64)	d	209)	d	210)	d	211)	b	212)	a
65)	а	66)	a	67)	С	68)	d	213)	d	214)	d	215)	b	216)	C
69) ==>	C	70)	b	71)	C	72)	d	217)	С	218)	b	219)	C	220)	b
73)	b	7 4)	d	75) - 0)	d	76)	a	221)	a	222)	a	223)	b	224)	С
77)	С	78)	а	79J	d	80)	a	225)	b	226)	b	227)	d	228)	a
81)	a	82)	С	83)	C	84)	С	229)	a	230)	С	231)	D	232)	C
85)	D	86)	a	87)	a J	88)	C	233)	D	234)	C	235)	C h	236)	a
89J 02)	a h	90J 04)	c	91) 05)	a h	92)	a d	237J	a h	238J	C	239J	D	240J 244)	C h
93J 07)	U d	94J	a	95J 00)	Ս Խ	90J 100)	u	241J 245)	D	242)	C	2435	C	244J 240)	Ե
97J 101)	u d	98J 102)	a	99J 102)	D	100)	a	245J 240)	a	240J 250)	a	247J 251)	C	248J 252)	D
101)	u a	102)	a c	103)	a	104)	a d	249J 252)	C h	250J 254)	a d	251J 255)	a	252J 256)	a h
103)	a	100)	l c	107)	ι 2	100)	u h	2555	U C	254)	u c	2555	a h	250)	U
109)	L h	110)	נ ה	115)	a a	112)	U C	2375	u ahad	2305	L	2395	D	2005	
117)	D a	119	a h	119)	a d	120)	ι a	261)	a, b, c, u d	262)	а	263)	C	264)	h
121)	d d	122)	a	123)	u h	120)	u h	265)	u 8	266)	а 5	267)	1	268)	7
121)	u C	126)	u h	123)	C C	121)	a	269)	6	270)	2	207)	2	200)	, 1
129)	C	130)	c c	131)	c	132)	a	273)	6	274)	5	275)	2	276)	3
133)	c	134)	d	135)	a	136)	d	277)	1	278)	7	279)	3	280)	5
137)	b	138)	c	139)	b	140)	С	281)	6	282)	7	283)	2	284)	4
141)	C	142)	C	143)	b	144)	d	285)	4	286)	7	287)	5	288)	3
, 145)	a	, 146)	a	147)	С	, 148)	b	289)	6	290)	4	291)	4	,	
, 149)	d	150)	d	151)	b	152)	d	,		,		,			
153)	а	154)	а	155)	b	156)									
-	a,b,c	-		-		2									
157)	b,d	158)	b,c,d	159)	a,b,c,d	160)	b								
161)	a,d	162)	b,c,d	163)	a,b	164)									
-	a,c,d	-		-		-									
165)	a,b,c,d	166)	a,b	167)	a,b,c	168)	d								
169)	a,b,c,d	170)	b,d	171)	a,b,c	172)									
	a,c														
173)	a,b,c	174)	a,c	175)	a,b	176)									

	: HINTS AND	SO	LUTIONS :
Sing	gle Correct Answer Type	18	(b)
1	(b)		Radius decreases along a period left to right
	Fe(26): [Ar] $3d^{6}4s^{2}$		BCNOF
	$Fe^{3+}:[Ar]3d^5$		max. 70 pm
3	(a)		Thus, covalent radius of B would be higher than
	(a) Ionic Amphoteric Giant		that of N
	$\frac{A}{B} \xrightarrow{C} \text{Oxide}$	19	(a)
	Na ₂ O Al ₂ O ₃ SiO ₂ Acidic		Smaller the size of anion, smaller the polarizing
			power and thus larger the ionic character of NaX.
			Thus, ionic character
	Thus, atomic number increases in the order		NaI < NaBr < <i>NaCl</i> < <i>NaF</i>
	A < B < C		and mp : NaI < <i>NaBr</i> < <i>NaCl</i> < <i>NaF</i>
4	(D) First long newind starts with 2rd newind [K(10)	20	(a)
	First long period starts with 3rd period $[K(19) - K_{\pi}(20)]$		(a) Li – Mg diagonal relationship
	Nr(30)		
6	f(a) = f(a) = f(a) = f(a) = f(a) = f(a)		(b) $Na - K$
0	(a) Ni ²⁺ is smallest in size		(c) $\begin{bmatrix} Ca - Mg \end{bmatrix}$ same group
7	(a)		$(\mathbf{u}) \mathbf{J} \mathbf{B} - \mathbf{A} \mathbf{I} \mathbf{J}$
/	(a) $K(19)1c^22c^22n^63c^23n^63d^1$	21	(d)
	$K^{+}(10)1s^{2}2s^{2}2n^{6}3s^{2}3n^{6}$ Colourless ion due to		$X(q) + e^- \rightarrow X^-(q), \Delta H = x$
	12000000000000000000000000000000000000		(EA of X(q))
	Thus (a) is incorrect		$X^{-}(g) \rightarrow X(g) + e^{-}, \Delta H = y = \text{IE of}$
10			$X^{-}(g) = -\text{EA of } X(g)$
10	F C of $K = 19$ in the absence of Aufbau rule is		Thus, (a), (b), (c) true
	$1s^2 2s^2 2n^6 3s^2 3n^6 3d^1$	22	(b)
	15 25 2p 55 5p 5a ↑		Elements in a group have same (EC) in valence
	Last-filling electron goes into d -orbital		shell
	Thus, <i>d</i> -block element	25	(b)
11	(c)		Ce (58)[Xe] ₅₄ $4f^{1}5d^{1}6s^{2}$
	$ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$		Thus, Ce ⁴⁺ has [Xe] configuration
	Basic oxide	27	(c)
	$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$		Atomic number 113 belong to <i>p</i> -block (Group
	Acidic oxide		IIIA)
14	(b)		Probable oxidation states are $+1$, $+3$, but due to
	A (1.2) is electropositive element		inert-pair effect
	B (3.4) is electronegative element		stability of $+1 > +3$
	Thus, ionic bond is formed		Thus, M ⁺
15	(c)	29	(a)
	(b) and (d) with $s^2 p^6$ configuration has zero		Cl_2O_7 $Cl = +7$
	values of EA	30	(a)
	(1(a) with ampty d arbital has marter EA the	1	Going down the group effective nuclear charge
	$C_1(c)$ with empty <i>a</i> -orbital has greater EA than	1	remains almost constant, hence (IE) is dependent
	Г(d)		on radius of two element
17	(c)	32	
	PbO is soluble in NaOH – an acidic oxide	1	(IV) B CONTAIN L, SI, Ge, SN, PD
	PbO is soluble in HCl – a basic acid		Ge, Sil, PD are strongly electropositive

33 (c) Isoelectronic N(7) and $O^+(8)$ have same EC $\binom{N(7)}{1s^2 2s^2 2p^3}$ $0^{+}(8)$ 1 1 1 $2p_x^1 2p_y^1 2p_z^1$ Most stable due to all unpaired electrons 0_8] $1s^2 2s^2 2p^4$ 11 1 1 Less stable than O⁺ and N Since *Z* of $O^+ > Z$ of N Hence IP of $0^+ > N$ Na with only one unpaired electron in 3*s*¹ has lowest IP 34 (c) $Mg \rightarrow Mg^+ + e^- (IE)_1$ $Mg^+ \rightarrow Mg^{2+} + e^-$ (IE)₂ $Mg^{2+} \rightarrow Mg^{3+} + e^-$ (IE)₃ $(IE)_1 < (IE)_2 < (IE)_3$ 35 **(c)** $M(g) \to M^+(g) + e^-, I_1(M) = \Delta H_1 = 100 \text{ eV}$ (a) is correct $M^+(g) \rightarrow M^{2+}(g) + e^-, I_2(M) = 250 - 100 =$ 150 eV or $I_2(M^+) = 150 \text{ eV}$ (b) is correct I_2 of M(g) is 150 eV thus (c) is incorrect 36 **(b)** $Pb^{4+} + 2e^- \rightarrow Pb^{2+}$ Stability of $Pb^{2+} > Pb^{4+}$ Hence, Pb⁴⁺ is reduced most easily and is thus best oxidizing agent 37 (d) Valence shell electronic configuration is d^5s^1 Differentiating electron goes into *d*-orbitals. Thus, *d*-block element. Group VIB 38 **(b)** 5*f*-block elements 39 (c) EC: $1s^2 2s^2 2p^6 3s^3 3p^6 4s^1$ (Total 19 electrons i.e. Z = 19) It is K (alkali metals of Group 1) Graded property will be that of same group $[Ar]3d^{10}4s^1 - Cu group 11$ 1. $[Kr]4d^{10}5s^1 - Ag group 11$ 2. 3. $[Kr]5s^1 - Rb group 1$ 43 (d)

Na $\xrightarrow{(IE)_1}$ Na⁺ [Ne]3s¹ [Ne] $Na^+ \xrightarrow{(IE)_2} Na^{2+}$ Ne Na⁺ has stable inert gas configuration Thus, $(IE)_2$ is very high 46 **(a)** Size of $Li^+ < Na^+ < Rb^+ < Cs^+$ Hydration $Li^+ > Na^+ > Rb^+ > Cs^+$ Size of hydrated ion $Li^+ > Na^+ > Rb^+ > Cs^+$ Smaller the size, $Li^+ < Na^+ < Rb^+ < Cs^+$ Larger the hydration, hence larger the size of the hydrated ion (in aqueous solution) Heavier the ion, smaller the ionic mobility Size $Li^+ < Na^+ < K^+$ Hydration $Li^+ > Na^+ > K^+$ Ionic mobility $Li^+ < Na^+ < K^+$ Discharged at cathode $Li^+ < Na^+ < K^+$ (Most easiest) 47 (d) He⁺, Li²⁺ and Be³⁺ are isoelectronic of H atom (with one electron). Hence, single electron is not screened 48 (c) As, Sb, Bi are group 15 having oxidation +3 and +5. Stability is in order $As^{5+} > Sb^{5+} > Bi^{5+}$ $As^{3+} < Sb^{3+} < Bi^{3+}$ due to inert-pair effect Thus, BiCl₃ is most stable 49 **(a)** Smaller the (IE), greater the metallic nature Metallic Non-metallic Non-metallic Metallic 52 (a) In case of Ne van der Waals' radius is taken. Hence, it should have maximum size out of the given option 54 (c) Due to inert-pair effect, stability of $Ga^{3+} > In^{3+} > Tl^{3+}$ and $Ga^+ < In^+ < Tl^+$ Thus, $Tl^{3+} + 2e^- \rightarrow Tl^+$ Is most spontaneous. Thus $\Delta G^{\circ} < 0$ and is most negative 57 **(b)** F is the most electronegative element which

cannot loose electron to other so it exhibits only-1 state. Na is alkali metal which can loose only one electron so exhibits only +1 state. 58 (d) 1. $NaH + H_2O \rightarrow NaOH + H_2$ **Reducing nature** (b) LiH BeH₂ BH₂ CH₄ Covalent Ionic KH (c) >C=O + LiAlH₄ \rightarrow >CHOH 59 (a) Greater the electronegativity of X(Cl > Br > I)greater the acid strength Thus, I > II > III 60 **(d)** $Gd: 4f^{7}5d^{1}$ Unpaired electrons = 8Sum of spin = $8 \times \frac{1}{2} = 4$ 61 (a) $Cu^+ \underbrace{1s^2}_{(n-2)} \underbrace{2s^2 2p^6}_{(n-1)} \underbrace{3s^2 3p^6 3d^{10}}_{n}$ $S = 2 \times 1 + 8 \times 0.85 + 17 \times 0.35 = 14.75$ (One *d*-electron is screened by 17 electrons in *n*th, 8 electrons in (n - 1) and 2 electrons in (n - 2) $Z_{\rm eff} = 29 - 14.75 = 14.25$ 62 **(b)** Li⁺<Na⁺<K⁺<Rb⁺<Cs⁺ \leftarrow Li⁺>Na⁺>K⁺>Rb⁺>Cs⁺ Size Maximum — Covalent nature MCl Maximum Lattice energy of MCl Maximum — Thermal stability 63 **(b)** (b) (a) NH₃ PH_3 AsH₃ correct acidic (b) Li < B < Be < C (IE) Be has paired electron hence its (IE) is larger than that of B

Thus, (b) is incorrect

(c) Correct (d) correct

65 (a) Atomic number (115) has E.C. has $[Rn]_{86}7s^25d^{10}4f^{14}7p^3$ Probable oxidation states are +3, +5But due to inert pair effect M^{3+} is the most stable cation 66 (a) Effective nuclear charge $Z_{eff} = Z - S$ Where, Z =atomic number and S = screening constant = 0.35 per electron for electron in *n*th orbit = 0.85 per electron for electron in (n - 1)th orbit = 1.00 per electron for electrons in (n - 2)th, (n-3)th, (n-4)th orbit = 0.30 per electron in 1s-orbital (when alone) Be $1s^2 2s^2$ one valence-electron in 2s is screened by one electron in 2s-orbital (nth orbit) and two electrons in 1*s*-orbital ((n - 1)th orbit) $\therefore S = 0.35 + 2 \times 0.85 = 2.05$ $\therefore Z_{\text{eff}} = 4 - 2.05 = 1.95$ (given) Be⁺ $1s^2 2s^1 2s$ electron is screened by two electrons in 1*s*-orbital ((n - 1)th orbital) $S = 2 \times 0.85 = 1.70$ $\therefore Z_{\text{eff}} = 4 - 1.70 = 2.30$ Be³⁺ 1s¹ one electron in 1s-orbital (alone exists) is screened by another electron in same orbit. Thus. S = 0.30 $\therefore Z_{\text{eff}} = 4 - 0.30 = 3.70$ $Be^{3+}1s^1$ no-screening (single electron) Thus, $Z_{\rm eff} = 4$ Thus, $Z_{\text{effective}}$: Be < Be⁺ < Be²⁺ < Be³⁺ 67 (c) (IP) of Na (11)<(IP) of Li(3) 69 (c) $A \rightarrow A^+ + e^- (IP)_A < (IP)_B$ $B + e^- \rightarrow B^- (EA)_B > (EA)_A$ $(EN)_B > (EN)_B$ 70 **(b)** M^{3+} : [Ar] $3d^{10}4s^2$ $M: [Ar] 3d^{10} 4s^2 4p^3$ Three electrons have been removed from 4psuborbit Thus, *p*-block element

72 (d)

$$\begin{vmatrix} 0 \\ S \\ Cl \\ Se \\ Br \\ Thus, F^{-} < 0^{2-} I > Br > F \\ Se > 0 \\ I^{-} > Br^{-} > F^{-} \\ Se^{2-} > 0^{2-} I^{-} > F^{-} \\ Thus, I^{-} > Se^{2-} > Br^{-} > 0^{2-} > F^{-} \\ 73 (b) \\ A - 19 s - block \\ B - 22 d - block \\ D - 64 f - block \\ 2 - 32 p - block \\ D - 64 f - block \\ 79 (d) \\ Chalcogens are the elements of oxygen family: Valence shell configuration : ns^2np^4 Group: 16 Block: p
81 (a) $r_n = \frac{n^2a_0}{Z_{effective}}$
Thus, $r_n \propto \frac{1}{Z_{effective}}$
82 (c) NAH is an ionic hydride, others are covalent hydrides
83 (c) Ni: [Ar]3d^84s^2 Last electron enters into 3d-suborbit Thus, d-block element
84 (c) $X: ns^2np^1$ Valency $= +3$ (as in Al) It can loss three electrons to attain stable configuration $Y: ns^2np^3$ Valency $= -3$ (as in N) It can gain five electrons to attain stable configuration Thus, $X^3 + Y^3 - or XY$
86 (a) Γ^{-} is oxidized by Br_2, Cl_2, F_2 Br $^-$ is oxidized by Br_2 .
89 (d) Element Valence electrons Possible ion $A = 3 = A^{3+} = B^{2-} = B + 2e^{-} \rightarrow B^{2-} = B + 2e^{-} \rightarrow B^{2-} = B + 2e^{-} \rightarrow B^{2-}$$$

Thus, $A^{3+}B^{2-}A_2B_3$ 90 **(c)** $r_n \propto \frac{1}{Z}$ $Ti^{2+}(22) > Ni^{2+}(28)$ smaller $Pt^{2+}(5d\text{-series})$ $Zr^{2+}(4d\text{-series})$ Have higher number of orbits Hence, larger size 92 (a) ${}_{115}^{\text{m}}A \rightarrow {}_{113}^{\text{m}-4}B + \alpha({}_{2}^{4}\text{He})$ 93 **(b)** 113 - 32 - 32 - 18 = 31Thus, 113 and 115 are placed as shown IIIA VA Ga 31 33 As In 49 51 Sb Tl 81 81 Bi 113 115 ns^2np^1 ns^2np^3 Thus, these belong to *p*-block 95 **(b)** Na⁺, Mg²⁺ and Al³⁺ are isoelectronic Size $Na^+ > Mg^{2+} > Al^{3+}$ Charge +1 +2+3Smaller the size of cation, Larger the charge, Greater the hydration Thus, $Na^+ < Mg^{2+} < Al^{3+}$ 96 (d) ____ paired electron requires (d) Be |1↓| ← more energy than unpaired electron in B $2s^2$ $1s^{2}$ в [], [], [] Thus, IE of Be > BN 1. 11 |1| $1s^2$ $2s^2$ $2p^{3}$ stable higher (IE) than O due to paired electrons in 2p0 11, 11, 11, 1 $1s^2$ $2s^2$ $2p^4$ Thus, IE of N > 0(IE)_{Li>Na} due to smaller size of Li $\text{He} \rightarrow \text{He}^+ + e^- \quad (\text{IE})_1$ $\text{He}^+ \rightarrow \text{He}^{2+} + e^- \text{ (IE)}_2$ $(IE)_{2} > (IE)_{1}$ Thus, (IE) of $He^+ > He$ Thus, (d) is incorrect

97	(d)					
	2. Nd, $K = Metals$					
	3. F, Cl – Non-metals					
	4. Cu, Ag – Metals					
	5. B, Si – Metalloids					
98	(a)	1				
	Na_2O is basic in nature and other oxides are					
	acidic/basic/amphoteric					
	$SIO_2 P_2O_5 SO_3 CI_2O_7$					
	O. N. of element $+4$ $+5$ $+6$ $+7$ Acidic nature	1				
	Thus, greater the acidic nature, greater the					
	tendency of the reaction to occur					
	Thus, Cl_2O_7					
100	(a)	1				
	$r = \frac{n^2 a_0}{n^2 a_0}$	1				
	$r_n = Z_{\text{eff}}$					
	Cs (alkali metal) has largest atomic radius					
101	(d)					
102	Lanthanides form 4/ -series	1				
102	Size of Li ⁺ $<$ Na ⁺ $<$ Rb ⁺ $<$ Cs ⁺					
	Size of L1' < Na' < KD' < CS' Hydration Li ⁺ > Na ⁺ > Rb ⁺ > Cs ⁺ 1					
	Size of hydrated ion $Li^+ > Na^+ > Rb^+ > Cs^+$					
	Smaller the size, $Li^+ < Na^+ < Rb^+ < Cs^+$					
	Larger the hydration, hence larger the size of the					
	hydrated ion (in aqueous solution)					
103	(a) $M + M^{+} + z^{-}$ (IF) 100 -W					
	$M \rightarrow M^{2} + e$ (IE) ₁ = 100 eV $M \rightarrow M^{2+} + e^{-}$ (IE) = 150 eV					
	$M \to M^{-1} + e^{-1} (IE)_{2} = 150 \text{ eV}$ $M^{2+} \to M^{3+} + e^{-1} (IE)_{2} = 1500 \text{ eV}$					
	(IE) ₂ is very high indicating that M^{3+} is not	1				
	formed easily. Thus, M^{3+} has attained inert gas	1				
	configuration					
	$Be \rightarrow Be^+ + e^-$					
	$1s^2 2s^2 \ 1s^2 2s^1$					
	$Be^+ \rightarrow Be^{2+} + e^-$					
104	$1s^2 2s^1 1s^2$					
104	$ \begin{array}{c} \text{(a)} \\ F + \rho^- \rightarrow F^- \end{array} \end{array} $	1				
	Can be reduced easily	I				
106	(c)	1				
	$V(Z = 23) = [Ar]4s^2 3d^3$					
	<u>V^{x+}</u> =?	1				
	$4s^2$					
	$\begin{array}{c c} 1 & 1 & 1 \\ \hline 3d^3 \end{array}$					

If there are *N* unpaired electrons then Magnetic moment = $\sqrt{N(N+2)}BM = 1.73$ $\therefore N(N+2) = 3$ $\therefore N = 1$ Thus, vanadium exists as V^{4+} $V^{4+} = [Ar]3d^1$ Thus, vanadium chloride is VCl₄ 07 (c) 1 1 5 $\uparrow \uparrow \uparrow$ Uup Thus, Uup 09 (c) M^+ (alkali metal ion) has inert gas configuration. Thus, after M^+ is formed from M (by(IE)₁), further ionization to M^{2+} from M^{+} (by(IE)₂) requires very high energy 10 (c) Maximum charge Least size Maximum polarizing power Thus, (c) [Note O^{2-} is anion] 11 (a) Based on Fajan's rule 12 **(b)** 113 - 32 - 32 - 18 = 31Thus, 113 and 115 are placed as shown IIIA VA Ga 31 33 As In 49 51 Sb Tl 81 81 Bi 113 115 ns^2np^3 ns^2np^1 Thus, these belong to *p*-orbital 13 **(b)** Element with atomic number 113 is placed in group 13 (IIIA) and has EC of valence shell as ns^2np^1 Si – Group 14 Ga – Group 13 Bi – Group 15 At – Group 17 14 (a) (IE)₁ decreases regularly 17 (a) $\mathrm{H^-} \rightarrow \mathrm{H} + e^-$ 19 (d) Greater the charge on cation smaller the size $Ti^{4+}(Z = 22, electron = 18) > Mn^{7+}(Z =$ 1. 25 electrons = 18)

 ${}^{37}\text{Cl}^- = {}^{35}\text{Cl}^-(Z = 17)$ 2. $K^+ < Cl^-$ 3. $P^{3+} > P^{5+}$ 4. Thus, correct 121 (d) 1. True 2. True 3. True 123 **(b)** $0 + e^- \to 0^-$ (EA) < 0 $0^- + e^- \to 0^{2-}$ (EA) > 0 132 (a) $F_2 > Cl_2 > Br_2 > I_2$ 137 (b) $X(g) \rightarrow X^+(g) + e^- E_1 \text{ for } \frac{N_0}{2} \text{ atoms}$ $\frac{N_0}{2}$ atoms of X(g) have been ionized, by energy $= E_1$ Thus, ionization energy $X(g) = \frac{2E_1}{N_0}$ per atom $X(g) + e^- \rightarrow X^-(g) E_2$ for $\frac{N_0}{2}$ atoms Thus, electron affinity of X(g) is $\frac{2E_0}{N_0}$ per atom 139 (b) $(\mathrm{EN})_A = \frac{(\mathrm{EN})_A + (\mathrm{IE})_A}{2}$ $X = \frac{Y + (IE)_A}{2}$ $(IE)_{A} = 2X - Y$ 140 (c) (a) $r_n \propto \frac{1}{7}$ $Na^+ > Mg^{2+} > Al^{3+}$ (b) $0^{2-} > F^- < Ne$ (c) Repulsive forces are balanced by attractive force Thus, true (d) $Mn^+ > Fe^{2+}$ 143 **(b)** $Si_{14}[Ne]3s^23p^2$ 1 1 2.8 $P_{15}[Ne]3s^23p^3$ 1

2.1 $S_{16}[Ne]3s^23p^4$ 11 1 1 2.5 Thus, P < S < Si144 (d) Effective nuclear charge $Z_{eff} = Z - S$ Where, Z = atomic number and S = screening constant = 0.35 per electron for electron in *n*th orbit = 0.85 per electron for electron in (n - 1)th orbit = 1.00 per electron for electrons in (n - 2)th, (n-3)th, (n-4)th orbit = 0.30 per electron in 1s-orbital (when alone) Be $1s^2 2s^2$ one valence-electron in 2s is screened by one electron in 2s-orbital (nth orbit) and two electrons in 1*s*-orbital ((n - 1)th orbit) $\therefore S = 0.35 + 2 \times 0.85 = 2.05$ $\therefore Z_{\text{eff}} = 4 - 2.05 = 1.95$ (given) Be⁺ $1s^22s^12s$ electron is screened by two electrons in 1*s*-orbital ((n - 1)th orbital) $S = 2 \times 0.85 = 1.70$ $\therefore Z_{\rm eff} = 4 - 1.70 = 2.30$ Be^{3+} 1s¹ one electron in 1s-orbital (alone exists) is screened by another electron in same orbit. Thus, S = 0.30 $\therefore Z_{\rm eff} = 4 - 0.30 = 3.70$ Be³⁺1s¹ no-screening (single electron) Thus, $Z_{\rm eff} = 4$ Thus, $Z_{\text{effective}}$: Be < Be⁺ < Be²⁺ < Be³⁺ 145 (a) $2NaOH + 2H_2O \rightarrow 2NaOH + 2H_2$ Ionic hydride basic 148 **(b)** $X(g) \rightarrow X^+(g) + e^-, \quad \Delta H = I$ $X^+(g) + e^- \rightarrow X(g), \quad \Delta H = -I$ Thus, I = -E149 (d) $H(g) \rightarrow H^+(g) + e^-$ (IE)₁ = 13.6 eV $He(g) \rightarrow He^+(g) + e^- (IE)_1 = 24.6 \text{ eV}$ $He^+(g)$ is now isoelectronic of H(g)Thus, $IE(He^+) = (IE)_H(Z)^2 = 13.6 \times 2^2 = 54.4 \text{ eV}$ Thus, $(IE)_1$ of He = 24.6 given $(IE)_2$ of He = $(IE)_1$ of He⁺ = 54.4 eV Thus, $\operatorname{He}(g) \to \operatorname{He}^{2+}(g) + 2e^{-1}$ $(IE)_1 + (IE)_2 = 24.6 + 54.4 = 79.0 \text{ eV}$ Hence, $\text{He}^{2+} + 2e^- \rightarrow \text{He } \Delta H = -79.0 \text{ eV}$ 150 (d) Except (d) all show diagonal relationship

151 **(b)**

Transition metals have very high (IE). They do not emit colour in flame

152 (d)

 0^{2-} F- Mg^{2+} Al^{3+} Na⁺ Ζ 8 9 10 11 12 Electron 10 10 10 10 10 $r_n \propto \frac{1}{Z}$

Thus, correct order is

$$0^{2-} > F^- > Na^+ > Mg^+ > Al^{3+}$$

154 **(a)**

Sc³⁺ 18 electrons Thus, Z (atomic number = 21) [Ar] $4s^23d^1$ Thus JUB group thus given me

Thus, IIIB group, thus given matching is incorrect

155 **(b)**

Smaller the size of element, greater the tendency to donate electron-pair. Thus, greater the basic nature

Multiple Correct Answers Type

159 **(a,b,c,d)**

(a) $r_{\text{metallic}} > r_{\text{covalent}}$ because covalent bond formation involves the overlapping of orbitals (b)Due to lanthanide contraction

(c)If screening effect increases, the valence shell electron get loosely bound. Hence, ionisation energy decreases

(c)Be and Mg has ns^2 configuration, *ie*, stable configuration, thus have higher IE

161 **(a,d)**

Li and Mg show diagonal relationship, thus have same size. $\rm Rb^+$ and $\rm O^{2-}$ also have similar size

192 **(a,c,d)**

Electronegativity of H (1.2), Te (2.1) and P (2.1) on Pauling's scale are similar but the electronegativity of S (2.5) is different from the other three elements

193 **(a,d)**

Number of protons (17) and neutrons (18) in Cl and Cl^- ion are equal. The ionic size of Cl^- ion is larger than that of Cl atom and also it has one electron more (18) than Cl (17)

204 **(a,c)**

Metallic character and electronegativity always

follow the similar trends down the group among the elements of group 1 to 17

Assertion - Reasoning Type

207 **(c)**

Explanation is correct reason for statement

208 **(b)**

Solid ionic compounds conduct current only in fused state. PCl₅ in solid state exists as [PCl₆]⁻[PCl₄]⁺

209 **(d)**

Assertion is an experimental fact observed against Le Chatelier principle

210 **(d)**

All alkaline earth metals and noble gases have positive values of electron attachment enthalpies as they have ns^2 and ns^2np^6 (fully-filled) electronic configuration

Cl has more electron affinity than F because the more compact electronic configuration in F imparts greater electron repulsion to the incoming electron

211 **(b)**

N shows maximum covalence of +3 along with one coordinate bond whereas P shows maximum covalence of +5 due to given explanation

212 **(a)**

The phenomenon in which the penultimate shell, *ie*, (n - 1) electrons act as shield in between nucleus and valence shell electrons thereby reducing the effective nuclear charge is known as shielding effect

213 **(d)**

Inspite of higher lattice energy AgF is soluble because F^- is extensively hydrated and heat of hydration predominates over lattice energy

214 (d)

The bond angle in $\rm H_2S$ is smaller because S atom has bigger size than O. Also $\rm H_2S$ does not show H-bonding

215 **(b)**

$$_{25}$$
Mn = 3 d^5 , 4 s^2 ; $_{24}$ Cr = 3 d^5 , 4 s^1 ; $_{26}$ Fe
= 3 d^6 , 4 s^2

Electron affinity of an element depends upon

227 (d) $^{38}_{44}$ Pu has longest half-life period. It is used in Statement I is incorrect as in any period, the radius of the noble gas is largest and not the breeder reactor as a fissionable nucleides and lowest break up by slow neutrons and from fission product. It is a radioactive element. 228 (a) Noble gases have large positive electron gain Explanation is correct reason for statement enthalpy because the electron has to enter the next high principle quantam level leading to a very unstable electronic configuration. In sp^2 -hybridization bond angle is 120°. In sp^3 it 229 (a) P in PCl₃ is sp^3 -hybridized; P – Cl bond is $sp^3 - p$ bond Explanation is correct reason for statement P in PCl₅ is sp^3d -hybridized; P – Cl bond is $sp^3d - p$ bond Atomic size of silver is almost equal to that of gold due to lanthanide contraction. 230 (c) Removal of electron from N atom requires more energy due to half filled p-orbital in N atom Electron affinity of F < Electron affinity of Cl. Due to more 2p-test electron repulsion in F atom 231 (b) Sulphur valence shell is less dense than oxygen. *p*-dimethoxy benzene is polar due to orientation 232 (c) of CH₃ group as, The resultant vector is not zero Explanation is correct reason for statement CH-233 (b) This is Fajans' rule. FeCl₃ is more covalent 234 (c) Explanation is correct reason for statement Both cis-and trans-forms are polar. Trans is 235 (c) more polar due to higher value of dipole moment due to additive nature of $\ensuremath{\mathsf{CH}}_3$ and $\ensuremath{\mathsf{Cl}}$ vectors Explanation is correct reason for statement 236 (d) BF₃ is planar due to sp^2 -hybridization. Also in The lower IE_1 of *B* than that of Be is because in BF₃, three bond pair on boron atom and 9 lone boron $(1s^22s^22P^1)$ electron is to be removed pairs of electrons on F atoms from 2 *P* which is easy, while in Be $(1s^22s^2)$ electron is to be removed from 2s-which is 237 (d) The ionization energy of N (VA) is more than O VI A because half filled and completely filled orbitals are more stable. Across a period effective nuclear The dipole moment of NH_3 is more than NF_3 charge increases with increase in atomic number because of the given explanation and atomic size in atomic number and atomic size decreases. Halogens can have only EA_1 value because they 238 (c) only electron one

addition, thus EA_2 for halogens is zero

accommodate can $(ns^2np^5 \text{ to } ns^2np^6)$: No scope for further

electronic configuration

216 (c)

217 (c)

218 **(b)**

219 (c)

220 (b)

221 (a)

222 (a)

223 (b)

224 (c)

225 (b)

226 (b)

difficult.

is 109°28'

Explanation is correct reason for statement

239 **(b)**

Molecules having polar bonds may (e.g., ClF₃ polar) or may not (e.g., BF₃) have dip[ole moment. The resultant vector of bond moment decides the net dipole moment in molecule

240 **(c)**

Charge is not defined as positive or negative [Isoelectronic species having higher the negative charge, larger the size, higher the positive charge smaller the size].

241 **(b)**

That is why $\mu_{\rm NH_3} > \mu_{\rm NF_3}$

242 **(c)**

Explanation is correct reason for statement

243 **(c)**

Explanation is correct reason for statement

244 **(b)**

Electrons in *d* and *f* sublevels can never be in the outer level of a neutral atom. The *s*-and *p*-electrons are in the highest energy level in the atom and are the electrons involved in the chemical reactions.

245 (a)

Symmetrical configuration (half-filled) is stable. Oxygen also gains half-filled configuration by losing an electron

246 (a)

Energy level of 2s is lesser than 2p-orbital

Matrix Match Type

249 **(c)**

(i) For noble gases (*e.g.*, He), ionisation energy is highest due to their completely filled electronic configuration.

(ii) Generally electron affinity increases in a

period (from IA to VII A group) and decreases in a group but electron affinity is highest for chlorine (Cl) (due to smaller size and high electron density of fluorine).

(iii) The ionization energy is lowest for Li, so it can lose electrons very easily, thus it behaves as a strongest reducing agent.

(iv) Electropositive character generally decreases in a period (from left to right) and increases in a group (on moving down), thus Ca is the most electropositive element among the given.

Hence, on the basis of above facts, the correct matches are (A)-iv (B)-i (C)-ii (D)-iii

Linked Comprehension Type

253 **(b)**

Higher is the positive charge, smaller is the size of the atom

254 **(d)**

During addition of second electron to a uninegative gaseous ion to form divalent gaseous ion, energy is absorbed to overcome the repulsions between the incoming second electron and the negative charge on the ion

264 **(b)**

 $\mu_m = \overline{\delta} \times d$ 0.816 × 10⁻¹⁸ = δ × 10⁻⁸ $\therefore \delta$ = 0.816 × 10⁻¹⁰ esu $\therefore \%$ ionic character = $\frac{0.816 \times 10^{-10}}{4.803 \times 10^{-10}} \times 100$ = 16.9%

DCAM classes Dynamic Classes for Academic Mastery