DCAM classes

4.CHEMICAL BONDING AND MOLECULAR STRUCTURE

Single Correct Answer Type

1. Which represents metallic character in an element?
a)

b)

c)

d) None of these
2. The enolic form of acetone contain
a) 10σ bonds, 1π bond and 1 lone pair
b) 8σ bonds, 2π bonds and 2 lone pairs
c) 9σ bonds, 1π bonds and 2 lone pairs
d) 9σ bonds, 2π bonds and 1 lone pairs
3. The common features among the species $\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are
a) Bond order three and isoelectronic
b) Bond order three and weak field ligands
c) Bond order two and π-acceptors
d) Isoelectronic and weak field ligands
4. The high density of water compared to ice is due to
a) Hydrogen bonding interactions
b) Dipole-dipole interactions
c) Dipole-induced dipole interactions
d) Induced dipole induced dipole interactions
5. Among the following species, identify the isostructural pairs
$\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HN}_{3}$
a) $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$
b) $\left[\mathrm{NF}_{3}, \mathrm{HN}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
c) $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
d) $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{HN}_{3}, \mathrm{BF}_{3}\right]$
6. Which combination will give the strongest ionic bond?
a) K^{+}and Cl^{-}
b) K^{+}and O^{2-}
c) Ca^{2+} and Cl^{-}
d) Ca^{2+} and O^{2-}
7. Ratio of σ and π bonds is maximum in
a) Naphthalene
b) Tetracyano methane
c) Enolic form of urea
d) equal
8. In which pair or pairs is the strongest bond found in the first species?
I: $\mathrm{O}_{2}^{2-}, \mathrm{O}_{2}$;
II: $\mathrm{N}_{2}, \mathrm{~N}_{2}^{+}$
III: $\mathrm{NO}^{+}, \mathrm{NO}^{-}$
a) I only
b) II only
c) I and III only
d) II and III only
9. $(\mathrm{C}-\mathrm{Cl})$ bond in $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$ (vinyl chloride) is stabilized in the same way as in
a) Benzyl chloride
b) Benzoyl chloride
c) Chlorobenzene
d) Allyl chloride
10. Select the correct statement about resonance
a) The larger the number of the contributing structures, the greater the stability of the molecule
b) Greater number of the covalent bonds add to the stability of the molecule
c) The positive charge should reside, as far as possible, on the less electronegative element
d) All the above are correct statements
11. Which of the following have identical bond order?
I. CN^{-}
II. O_{2}^{-}
III. NO^{+}
IV. CN^{+}
a) I, III
b) II, IV
c) I, II, III
d) I, IV
12. The geometry of the atoms in the species PCl_{4}^{+}is best described as
a) Tetrahedral
b) see-saw
c) Square
d) Trigonalbipyramidal
13. In a Lewis dot structure, the electrons which complete an octet but are not located between two atoms are referred to as
a) Bonding pairs
b) Delta minus electrons
c) Excess electrons
d) Lone pairs
14. Which one of the following compounds has the electron-pair geometry as the trigonalbipyramidal with three equatorial positions occupied by lone pairs of electrons?
a) AlCl_{3}
b) XeF_{2}
c) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
d) $\mathrm{CH}_{3}-\mathrm{Mg}-\mathrm{Br}$
15. Correct Lewis structure is
a) $|: \ddot{O}-\mathrm{C}=\ddot{\mathrm{N}}:|^{-}$
b) $\left[C \equiv C:\left.\right|^{2-}\right.$
c) $|: \ddot{\mathrm{c}}|-\ddot{\mathrm{O}}:\left.\right|^{-}$
d) $: \ddot{N}=\ddot{O}:$
16. A molecule in which the central atom forms three single bonds and has one lone pair is said to be have a shape
a) Bent
b) Linear
c) Planar
d) Pyramidal
17. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
a) $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
b) $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c) $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
d) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$
18. The percentage of p-character in the orbitals forming $\mathrm{P}-\mathrm{P}$ bonds in P_{4} is
a) 25
b) 33
c) 50
d) 75
19. Select the correct statement
a) Both lattice energy and hydration energies decrease with ionic size
b) Lattice energy can be calculated using Born-Haber cycle
c) If the anion is large compared to the cation, the lattice energy will remain almost constant within a particular group
d) All of the above are correct statements
20. The paramagnetism of oxygen is best explained by
a) MO theory
b) Valence bond theory
c) VSEPR theory
d) Lewis dot structure
21. When a chemical bond is formed, there is decrease in
a) Kinetic energy
b) Potential energy
c) Repulsive force
d) Attractive force
22. According to MO theory,
a) O_{2}^{+}is paramagnetic and bond order greater than O_{2}
b) O_{2}^{+}is paramagnetic and bond order less than O_{2}
c) O_{2}^{+}is diamagnetic and bond order is less than O_{2}
d) O_{2}^{+}is diamagnetic and bond order is more than O_{2}
23. The formal charge of the 0 atoms in the ion $|: \ddot{\mathrm{O}}=\mathrm{N}=\ddot{\mathrm{O}}:|^{+}$is
a) -2
b) -1
c) 0
d) +1
24. Which of the following can provide an electron pair for the formation of a coordinate covalent bond?
a) H^{+}
b) H^{-}
c) H_{2}
d) He^{2+}
25. Which of these molecules have non-bonding electron pairs on the central atom?
I. $\mathrm{SF}_{4} ; \quad$ II. $\mathrm{ICl}_{3} ; \quad$ III. SO_{2}
a) II only
b) I and II only
c) I and III only
d) I, II and III
26. A molecule of the type $A X_{5}$ has square pyramidal geometry. Hence, number of lone pairs on A is
a) 4
b) 3
c) 2
d) 1
27. Coordinate covalent bond is absent in
a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
b) Adduct of NH_{3} and BH_{3}
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) PCl_{3}
28. Which is not the resonance structure of phenoxide ion?
a)

b)

c)

d)

29. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B_{2} is
a) 1 and diamagnetic
b) 0 and diamagnetic
c) 1 and paramagnetic
d) 0 and paramagnetic
30. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}$ and NO_{2}^{+}, unpaired electron is present in
a) KO_{2} only
b) NO_{2}^{+}and BaO_{2}
c) KO_{2} and AlO_{2}^{-}
d) BaO_{2} only
31. What hybride orbitals are employed by carbon atoms 1,2 and 3 , respectively as labelled in the compound shown?

a) $s p^{3}, s p, s p$
b) $s p^{3}, s p^{2}, s p$
c) $s p^{3}, s p, s p^{2}$
d) $s p^{3}, s p^{2}, s p^{2}$
32. Which of the following are isoelectronic and isostructural?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
a) $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
b) $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
c) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$
33. When N_{2}^{+}is formed from N_{2} bond-order \qquad and when O_{2}^{+}is formed from O_{2} bond-order........
a) Increases
b) Decreases
c) Increases, decreases
d) Decreases, increases
34. Elements in period 3 or below don't always "obey" the octet rule because they
a) Can only use p orbitals for bonding
b) Can use s and p orbitals for bonding
c) Can use s, p and d orbitals for bonding
d) Cannot use d orbitalss for bonding
35. Match Column I (complex ions) with Column II (number of unpaired electrons) and select the correct answer

	Column I		Column II
A	$\left[\mathrm{CrF}_{6}\right]^{4-}$	1.	One
.			
B	$\left[\mathrm{MnF}_{6}\right]^{4-}$	2.	Two
. C $^{4-}$	$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$	3.	Three
.			
D	$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$	4.	Four
.		5.	Five

A B C D
a) $4 \quad 1 \quad 2 \quad 5$
b) $2 \quad 5 \quad 3 \quad 1$
c) $4 \quad 5 \quad 2 \quad 1$
d) 2135
36. Hybridisation on carbon in carbanion $\stackrel{\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}}{ }$ is
a) $s p^{3}$
b) $s p^{3} d^{2}$
c) $s p^{2}$
d) $s p^{3} d$
37. One of the following is least volatile
a) HCN
b) HF
c) $\mathrm{H}_{2} \mathrm{O}$
d) CS_{2}
38. $\mathrm{Mg}_{2} \mathrm{C}_{3}$ reacts with water forming propyne. C_{3}^{4-} has
a) Two sigma and two pi bonds
b) Three sigma and one pi bonds
c) Two sigma and one pi bonds
d) Two sigma and three pi bonds
39. Which of the following are isoelectronic and isostructural?

$$
\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}
$$

a) $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
b) $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
c) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$
40. Which of the following will have the molecular shape of a trigonalbipyramid?
a) $\mathrm{PF}_{3} \mathrm{Cl}_{2}$
b) IF_{5}
c) BrF_{5}
d) SbF_{2}^{2-}
41. Which structure appears wrong?
a) $\mathrm{H}-\stackrel{+}{\mathrm{N}}-\stackrel{+}{\mathrm{N}}=\mathrm{N}^{2-}$
b)

c) $\mathrm{H}^{+} \mathrm{F}^{-}$
d) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{Cl}}$
42. Which are non-polar molecules?

I: $\mathrm{NCl}_{3} ;$ II: $\mathrm{SO}_{3} ;$ III: PCl_{5}
a) I only
b) II only
c) I and II only
d) II and III only
43. $\mathrm{C}-\mathrm{H}$ bond distance is the longest in
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
44. Number of bond pairs (X) and lone pairs (Y) around the central atom in the I_{3}^{-}ion are X Y
a) 22
b) 23
c) $3 \quad 2$
d) $4 \quad 3$
45. Which property could describe a covalent compound?
a) It conducts electricity when melted
b) It is a gas at room temperature
c) It is composed of a non-metal and metal
d) It is solid with a very high melting point
46. Which of the following ions has the maximum polarizing power?
a) Na^{+}
b) Ca^{2+}
c) Mg^{2+}
d) Al^{3+}
47. True structure is predicted by
a) Valence-bond approach
b) Sidgwick approach
c) Hybride formation
d) None of these
48. N_{2} and O_{2} are converted into monoanion N_{2}^{-}and O_{2}^{-}respectively. Which of the following statement is wrong?
a) In N_{2}, the $\mathrm{N}-\mathrm{N}$ bond weakens
b) In $\mathrm{O}_{2}^{-}, 0-0$ bond length increases
c) In O_{2}^{-}, bond-order decreases
d) N_{2}^{-}become diamagnetic
49. Central O atom in O_{3} is \qquad hybridized
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) $d s p^{2}$
50. The table shown below gives the bond dissociation energies ($E_{\text {diss }}$) for single covalent bonds of carbon (C) atoms with element ' A ', ' B ', ' C ' and ' D '. Which element has the smallest atom?

Bond	$E_{\text {diss }}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{C}-A$	240
$\mathrm{C}-B$	328
$\mathrm{C}-C$	276
$\mathrm{C}-D$	485
a) A	

c) C
d) D
51. Select the correct statement
a) BF_{3} and NH_{3} have same dipole moment
b) Dipole moment of NH_{3} is smaller than that of BF_{3}
c) BF_{3} molecule has a planar structure, while the NH_{3} molecule is tetrahedral
d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) valence orbital
52. The species having pyramidal shape is
a) SO_{3}
b) BrF_{3}
c) SiO_{3}^{2-}
d) OSF_{2}
53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol?
a) Steric hindrance
b) Hyperconjugation
c) H-bonding
d) Resonance
54. Hybridization of the underlined atom is affected when
a) $\mathrm{CH}_{3} \mathrm{COOH}$ is decarboxylated
b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is dehydrated
c) $\mathrm{CH}_{3} \mathrm{CH}_{3}$ is chlorinated
d) $\underline{\mathrm{C}}_{6} \mathrm{H}_{6}$ is nitrated
55. Which of the following molecules is expected to exhibit diamagnetic behaviour?
a) C_{2}
b) N_{2}
c) O_{2}
d) S_{2}
56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is

a) $s p^{3}$, pyramidal
b) $s p^{2}$, planar trigonal
c) $s p^{2}$, linear
d) $s p^{3}$, tetrahedral
57. The structure and hybridization of silicon and carbon in $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ is
a) Bent, $s p$
b) Trigonal, $s p^{2}$
c) Octahedral, $s p^{3} d$
d) Tetrahedral, $s p^{3}$
58. Select the correct statement
a) Cations with 18 -electron shell have greater polarizing power than the cations with 8 -electron shell
b) Inner electros have poor shielding effect on the nucleus and thus electronegativity of the 18 -electron shell is increased
c) CuCl is covalent and NaCl is ionic
d) All the above are correct statements
59. The species having pyramidal shape is
a) SO_{3}
b) BrF_{3}
c) SiO_{3}^{2-}
d) OSF_{2}
60. Number of lone pair (s) in XeOF_{4} is/are
a) 0
b) 1
c) 2
d) 3
61. Consider the following compounds
I. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$,
II. $\mathrm{NH}_{4} \mathrm{Cl}$,
III. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Ionic, covalent and coordinate bonds are present in
a) I, II and III
b) I and III
c) II and III
d) I and II
62. Following consists of discrete polar molecules at room temperatures
a) CS_{2}
b) RaCl_{2}
c) HCN
d) F_{2}
63. Energy gaps between the highest filled band and the lowest empty bands in element A, B, C and D are 0 , 70,530 and $110 \mathrm{kJmol}^{-1}$. Thus
a) Element A is metal
b) Element C is insulator
c) Element B and D can be semiconductors
d) All are correct conclusions about element A, B, C and D
64. The correct stability order of the following resonance structure is

a) (I) $>$ (II) $>$ (IV) $>$ (III)
b) (I) $>$ (III) $>$ (II) $>$ (IV)
c) (II) $>$ (I) $>$ (III) $>$ (IV)
d) (III) $>$ (I) $>$ (IV) $>$ (II)
65. Stability of the species $\mathrm{Li}_{2}, \mathrm{Li}_{2}^{-}$and Li_{2}^{+}increases in the order of
a) $\mathrm{Li}_{2}<\mathrm{Li}_{2}^{+}<\mathrm{Li}_{2}^{-}$
b) $\mathrm{Li}_{2}^{-}<L \mathrm{i}_{2}^{+}<L \mathrm{i}_{2}$
c) $\mathrm{Li}_{2}<L \mathrm{i}_{2}^{-}<L \mathrm{i}_{2}^{+}$
d) $\mathrm{Li}_{2}^{-}<L \mathrm{i}_{2}<\mathrm{Li}_{2}^{+}$
66. Which of the following molecules or ions is not linear?
a) BeCl_{2}
b) I_{3}^{-}
c) CS_{2}
d) ICl_{2}^{+}
67. O_{2} molecule is paramagnetic due to presence of
a) Two unpaired electrons in antibonding MO
b) One unpaired electron in antibonding MO
c) Two unpaired electrons in bonding MO
d) One unpaired electron in bonding MO
68. An ionic compound $A^{+} B^{-}$is most likely to be formed from A and B when
a) Ionization energy of A is low
b) Electron affinity of B is low
c) Electronegativity of B is low
d) Ionization energy of B is low
69. A set of inner d-complex is
a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{Pt}(\mathrm{en})_{2}\right]^{2+}$
b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
c) Both (a) and (b)
d) None of the above
70. Polarizing, action of Cd^{2+} on anion is stronger than that of Ca^{2+} because
a) The charges of the ions are same
b) Their radii are same $\left(\mathrm{Ca}^{2+}=0.104 \mathrm{~nm} ; \mathrm{Cd}^{2+}=0.099 \mathrm{~nm}\right)$
c) The Ca^{2+} ion has a noble-gas electron configuration, and the Cd^{2+} ion, an 18-electron configuration of c) its outer shell
d) All the above are correct
71. Compound X is highly volatile and insoluble in water. Bonding in X is
a) Ionic
b) Covalent
c) Polar covalent
d) Coordinate
72. In vinyl acetylene $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$, type of overlapping in $\left(\mathrm{C}_{2} \sigma \mathrm{C}_{3}\right)$ bond is
a) $s p^{2}-s p$
b) $s p-s p^{2}$
c) $s p^{3}-s p^{3}$
d) $s p^{3}-s p^{2}$
73. Match Column I with Column II and select the correct answer

Column I (species)	Column II $(\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle)
A. NO_{2}^{+}	1.180°
B. NO_{2}	2.132°
C. NO_{2}^{-}	3.120°
D. NO_{3}^{-}	4.115°
	5.109°

A $\quad \mathrm{B} \quad \mathrm{C} \quad \mathrm{D}$
a) $5 \quad 4 \quad 3 \quad 2$
b) $5 \quad 2 \quad 4 \quad 3$
c) $1 \quad 2 \quad 4 \quad 2$
d) $1 \quad 4 \quad 3 \quad 2$
74. Select the incorrect statement
a) Double bond is shorter than a single bond
b) σ-bond is weaker than a π-bond
c) Double bond is stronger than a single bond
d) Covalent bond is stronger than a hydrogen bond
75. Which of the following has the highest percentage of ionic character in its bonding?
a) Lil
b) MgCl_{2}
c) CsF
d) CsI
76. Which of the following is non-polar but contains polar bonds?
a) HCl
b) CO_{2}
c) NH_{3}
d) NO_{2}
77. $\mathrm{Mg}^{2+} \mathrm{O}^{2-}$ is formed since
a) IE of Mg is low
b) EA of 0 is low
c) IE of Mg is high
d) IE of 0 is low
78. The structure of 1, 3-butadiene is $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$ and the distance between the central carbon atom is $1.46 \AA$ (instead of $1.54 \AA$). This is due to the

Existence of on-octet resonance structures involving double bonding between the central carbon atoms
a) \oplus

b) Decrease in bond length when terminal double bonds exist
c) $s p^{2}-s p^{2}$ overlapping
d) $p-p$ overlaping
79. Among the following, the paramagnetic compound is
a) $\mathrm{Na}_{2} \mathrm{O}_{2}$
b) O_{3}
c) $\mathrm{N}_{2} \mathrm{O}$
d) KO_{2}
80. Which plot best represents the potential energy (E) of two hydrogen atoms as they approach one another to form a hydrogen molecule?
a)

b)

c)

d)

81. Among the following ions the $p \pi-d \pi$ overlap could be present in
a) NO_{2}^{-}
b) NO_{3}^{-}
c) PO_{4}^{3-}
d) CO_{3}^{2-}
82. In I_{3}^{-}, Lewis base is
a) I_{2}
b) I^{-}
c) I_{2}^{+}
d) I_{2}^{-}
83. The expected spin-only magnetic moments (BM) for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$ respectively are
a) 1.73 and 1.73
b) 1.73 and 5.92
c) 0 and 1.73
d) 0 and 5.92
84. The hybridization of atomic orbitals of N in $\mathrm{NO}_{2}^{+} \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are respectively
a) $s p, s p^{2}, s p^{3}$
b) $s p, s p^{3}, s p^{2}$
c) $s p^{2}, s p, s p^{3}$
d) $s p^{2}, s p^{3}, s p$
85. ZnCO_{3} is thermally more stable than MgCO_{3}, because
a) $\mathrm{Mg}(\mathrm{OH})_{2}$ exhibits only basic properties while $\mathrm{Zn}(\mathrm{OH})_{2}$ is amphoteric
b) Polarizing action of Zn^{2+} with 18 -electron configuration on the anion is larger than that of Mg^{2+} with a
b) noble-gas electron configuration and of same size and charge
c) Both (a) and (b) are correct
d) None of the above
86. A diatomic molecule has a dipole moment of 1.2 D . If the bond distance is $1.0 \AA$, fraction of an electronic charge on each atom is
a) 0.25
b) 0.33
c) 0.66
d) 0.90
87. The maximum covalency is equal to the number of
a) Paired p-electrons
b) Unpaired s-electrons
c) Unpaired s - and p-electrons
d) s - and p-electrons in the valence shell
88. One of the following ions has a trigonal planar shape
a) SO_{3}^{2-}
b) PO_{4}^{3-}
c) CN^{-}
d) CO_{3}^{2-}
89. In carbon-hydrogen-oxygen compounds
a) All O -to - H bonds are π bonds
b) All C - to - H bonds are σ bonds
c) All $\mathrm{C}-$ to -C bonds are σ and π bonds
d) All C -to - C bonds are π bonds
90. Which of the following diatomic molecules would be stabilized by the removal of an electron?
a) C_{2}
b) CN
c) N_{2}
d) O_{2}
91. Which statement is not correct about NO_{2} ?
a) It is paramagnetic
b) It forms dimer and paramagnetism is lost
c) It has one coordinate bonds
d) It has nitrogen oxygen triple bond
92. Which of the following compounds has both ionic and covalent bonding?
a) NaBr
b) $\mathrm{Ba}(\mathrm{CN})_{2}$
c) PCl_{5}
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
93. Which of the following has zero dipole moment?
a) CO
b) SO_{2}
c) SO_{3}
d) $\mathrm{H}_{2} \mathrm{O}$
94. What is the geometry of nitrogen atom in $\mathrm{NH}_{3}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{N}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}$?
I. Trigonal planar
II. Trigonal pyramidal
III. Square planar
a) I, I, I
b) II, II, III
c) II, I, II
d) II, II, I
95. Select the correct statements
a) The delocalized electrons in the π-orbitals of graphite cause this allotropic form to conduct electricity
b) Pauling assigns "metallic valence" equal to their group number to the elements of IA to VIA
c) Diatomic lithium molecules Li_{2} are stable towards dissociaction
d) All are correct statements
96. Which pair of substances will have the most similar geometry?
a) $\mathrm{SO}_{3}, \mathrm{SO}_{3}^{2-}$
b) $\mathrm{SO}_{3}, \mathrm{SO}_{4}^{2-}$
c) $\mathrm{SO}_{3}, \mathrm{CO}_{3}^{2-}$
d) $\mathrm{SO}_{4}^{2-}, \mathrm{CO}_{3}^{2-}$
97. In which case, hybridisation of the central atom is affected when
a) NH_{3} changes to NH_{4}^{+}
b) AlH_{3} changes to AlH_{4}^{-}
c) In both cases
d) In none case
98. The carbon dioxide molecule is linear. The electronegativities of C and O are 2.5 and 3.5 respectively. Based on these values and on consideration of molecular geometry, the $\mathrm{C}-0$ bond is...... and the molecule is......
a) Polar; polar
b) Non-polar; non-polar
c) Polar; non-polar
d) Non-polar; polar
99. The species having bond order different from that in CO is
a) NO^{-}
b) NO^{+}
c) CN^{-}
d) N_{2}
100. The molecules that will have dipole moments are
a) 1,2-dichloro benzene
b) cis-3-hexene
c) trans-2-pentene
d) All of these
101. The $\mathrm{As}-\mathrm{Cl}$ bond distance in AsCl_{3} is $2.20 \AA$. If radius of chlorine atom is $0.99 \AA$ then radius of As atom is
a) $0.24 \AA$
b) $3.19 \AA$
c) $1.21 \AA$
d) $2.09 \AA$
102. Which species has the same shape as the NO_{3}^{-}ion?
a) SO_{3}
b) SO_{3}^{2-}
c) ClF_{3}
d) ClO_{3}^{-}
103. Which of the following has $-\mathrm{O}-\mathrm{O}$ - linkage?
a) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
b) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
d) $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
104. The hydrogen bond is not present in
a) Phenol
b) Liquid HCl
c) Water
d) Liquid NH_{3}
105. Which of the following statements is correct for CsBr_{3} ?
a) It is covalent compound
b) It contains Cs^{3+} and Br^{-}
c) It contains Cs^{+}and Br_{3}^{-}
d) It contains $\mathrm{Cs}^{+}, \mathrm{Br}^{-}$and lattice Br_{2} molecule
106. The ground state electronic configuration of valence shell electrons in nitrogen molecule $\left(\mathrm{N}_{2}\right)$ is written as $K K\left(\sigma^{*} 2 s\right)^{2}\left(\sigma^{*} 2 s\right)^{2}(\pi 2 p)^{4}(\sigma 2 p)^{2}$. Hence, the bond order in nitrogen molecule is
a) 0
b) 1
c) 2
d) 3
107. Which of the following is an electron-deficient compound?
a) NaBH_{4}
b) CO_{2}
c) $\mathrm{B}_{2} \mathrm{H}_{6}$
d) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
108. Consider the following species

I: $\mathrm{S}_{4} \mathrm{O}_{6}^{2-} ; \quad$ II: $\mathrm{S}_{3} \mathrm{O}_{9} ; \quad$ III: $\mathrm{S}_{2} \mathrm{O}_{5}^{2-} ; \quad$ IV: $\mathrm{P}_{3} \mathrm{O}_{9}^{3-}$
Which of the above species have same number of $X-O-X$ linkage ($X=P$ or S)?
a) II, III
b) I, III
c) II, IV
d) I, IV
109. The nitrogen atoms in $\mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}$and NH_{4}^{+}are all surrounded by eight electrons. When these species are arranged in increasing of $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle, correct order is
a) $\mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}$
b) $\mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$
c) $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}$
d) $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$
110. Solubility of $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in water in increasing order is
a) $\mathrm{NaCl}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{Na}_{3} \mathrm{PO}_{4}$
b) $\mathrm{Na}_{3} \mathrm{PO}_{4}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{NaCl}$
c) $\mathrm{NaCl}<\mathrm{Na}_{3} \mathrm{PO}_{4}<\mathrm{Na}_{2} \mathrm{SO}_{4}$
d) $\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{NaCl}<\mathrm{Na}_{3} \mathrm{PO}_{4}$
111. The shape of IF_{7} molecule is
a) Pentagonal bipyramidal
b) Trigonal pyramidal
c) Tetrahedral
d) Square planar
112. Which set contains no ionic species?
a) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{OF}_{2}, \mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{CO}_{2}, \mathrm{CCl}_{4}, \mathrm{Cl}_{2}$
c) $\mathrm{BF}_{3}, \mathrm{AlF}_{3}, \mathrm{TlF}_{3}$
d) $\mathrm{I}_{2}, \mathrm{CaO}, \mathrm{CH}_{3} \mathrm{Cl}$
113. Which species has the maximum number of lone pair of electrons on the central atom?
a) $\left[\mathrm{ClO}_{3}^{-}\right]$
b) XeF_{4}
c) SF_{4}
d) $\left[I_{3}^{-}\right]$
114. The hybridization scheme for the central atom includes a d-orbital contribution in
a) I_{3}^{-}
b) PCl_{3}
c) NO_{3}^{-}
d) $\mathrm{H}_{2} \mathrm{Se}$
115. (I)1, 2-dihydroxy benzene
(II) 1, 3-dihydroxy benzene
(III) 1, 4-dihydroxy benzene
(IV) Hydroxy benzene

The increasing order of boiling points of above mentioned alcohols is
a) I $<$ II $<$ III $<$ IV
b) I $<$ II $<$ IV $<$ III
c) IV $<$ I $<$ II $<$ III
d) IV $<$ II $<$ I $<$ III
116. Which one of the following has the highest boiling point?
a) AsH_{3}
b) SbH_{3}
c) PH_{3}
d) NH_{3}
117. Which set of properties would identify a white solid unknown as a molecular compound?
I. contains a metal
II. has a definite crystal structure
III. dissolves in water, but not in organic liquids
IV. melts at $80^{\circ} \mathrm{C}$
V. does not conduct electricity in fused state
a) I, II, III
b) I, III, V
c) II, III, IV
d) II, IV, V
118. All the following molecules are polar except one
a) BCl_{3}
b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
c) NH_{3}
d) FNO
119. Number of water molecules directly attached to one water molecule is
a) 1
b) 2
c) 3
d) 4
120. For the dot structure shown the most likely elements are $X=\ldots$ and $Y=\ldots$

a) Carbon, hydrogen
b) Carbon, oxygen
c) Fluorine, carbon
d) Carbon, fluorine
121. Specify the coordination geometry around the hybridization of N and B atoms in a $1: 1$ complex of BF_{3} and NH_{3}
a) N : tetrahedral, $s p^{3}$; B: tetrahedral, $s p^{3}$
b) N: pyramidal, $s p^{3}$; B: pyramidal, $s p^{3}$
c) N : pyramidal, $s p^{3}$; B: planar, $s p^{2}$
d) N : pyramidal, $s p^{3}$; B: tetrahedral, $s p^{3}$
122. PCl_{5} has a shape of trigonal bipyramid whereas IF_{5} has the shape of a square pyramid. It is due to
a) Presence of unshared electron pair on I which is oriented so as to minimize repulsion while P in PCl_{5}
a) has no unshared pair
b) Octet of P is complete while that of I is incomplete
c) P and I are of different group
d) F and Cl have different extent of repulsion
123. The angle between the bonding orbitals of a molecule $A X_{3}$ with zero dipole moment is
a) 120°
b) 109°
c) 104°
d) 180°
124. Covalency of carbon in the CO molecule is three because
a) An unexcited carbon atom has two upaired electrons
b) The carbon atom can be an acceptor of an electron pair
c) The carbon atom has four valence electrons
d) Maximum covalency of carbon is three
125. In ammonia, $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle is
a) 170°
b) 104.5°
c) 109.5°
d) 120°
126. Select the correct statement about carbonium ion $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{5}$.
a) This is cation shares eight electrons among five bonds
b) There is no empty orbital
c) It is not electro deficient
d) All the above are correct statements
127. Allyl cyanide has
a) 9 sigma bonds and 4 pi bonds
b) 9 sigma bonds, 3 pi bonds and 1 lone pair
c) 8 sigma bonds and 5 pi bonds
d) 8 sigma bonds, 3 pi bonds
128. Bond order of $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}$and O_{2}^{2-} is in order
a) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
b) $\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
c) $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2+}$
d) $\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}$
129. Which of the following bonds is the weakest?
a) Coordinate bond
b) Hydrogen bond
c) Van der Waal' forces
d) Covalent bond
130. The correct order of dipole moments of $\mathrm{HF}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$ is
a) $\mathrm{HF}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{HF}<\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{HF}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
131. On heating one end of a piece of a metal the other end becomes hot because of
a) Resistance of the metal
b) Mobility of atoms in the metal
c) Energized electrons moving to the other end
d) Minor perturbation in the energy atom
132. In which of the following pairs of molecules/ions both the species are not likely to exist?
a) $\mathrm{H}_{2}^{+}, \mathrm{He}_{2}^{2-}$
b) $\mathrm{H}_{2}^{-}, \mathrm{He}_{2}^{2-}$
c) $\mathrm{H}_{2}^{2+}, \mathrm{He}_{2}$
d) $\mathrm{H}_{2}^{-}, \mathrm{He}_{2}^{2+}$
133. Electron pairs occupy localised orbitals. Their orbitals are oriented in such a way that the repulsion
between electron clouds becomes
a) Zero
b) Minimum
c) Maximum
d) Infinite
134. A substance in which large energy gap separates the valence and conduction band is a/an
a) Metal
b) Metalloid
c) Semiconductor
d) Insulator
135. Among the following the molecule with the highest dipole moment is
a) $\mathrm{CH}_{3} \mathrm{Cl}$
b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
c) CHCl_{3}
d) CCl_{4}
136. The correct order of increasing bond length of $\mathrm{C}-\mathrm{H}(\mathrm{I}), \mathrm{C}-\mathrm{O}$ (II), $\mathrm{C}-\mathrm{C}$ (III) and $\mathrm{C}=\mathrm{C}(\mathrm{IV})$ is
a) $\mathrm{I}<$ II $<$ III, IV
b) I $<$ IV $<$ II $<$ III
c) IV $<$ III $<$ II $<$ I
d) III $<$ IV $<$ II $<$ I
137. Which of the following has the smallest bond length?
a) NO^{+}
b) NO
c) NO^{-}
d) Equal
138. According to VSEPR theory, a molecule with three charge clouds including one lone pair would have a shape
a) Bent
b) Linear
c) Tetrahedral
d) Trigonal planar
139. HCN and HNC molecular have equal number of
a) Lone pair and σ bonds
b) σ bonds and π bonds
c) π bonds and lone pair
d) Lone pairs, σ bonds and π bonds
140. The cyanide ion CN^{-}and the nitrogen molecule N_{2} are isoelectronic. However, in contrast to $\mathrm{CN}^{-}, \mathrm{N}_{2}$ is chemically inert due to
a) Unsymmetrical electron distribution
b) Low bond energy
c) Absence of bond polarity
d) Presence of greater number of electrons in bonding
141. Solubility of KCl is maximum in
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$
142. Select the correct statement
a) LiF and MgO are isostructural and also isodimensional, but a crystal of MgO is much harder than one of
a)

LiF
b) The thermal stability of the isomorphoussulphates of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+} w.r.t. decomposition into b) metal oxide and sulphur trioxide increases in the order $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}$
c) Both (a) \& (b) are correct
d) None of the above
143. Solutions of alkali metals in liquid ammonia at $-33^{\circ} \mathrm{C}$ conduct electricity without chemical reaction at the electrodes. Hence, conductivity should
a) Increase as temperature is lowered
b) Decrease as temperature is lowered
c) Remain constant on changing the temperature
d) There is always interaction of alkali metal with liquid ammonia
144. In which of the following sets do all the three compounds have bonds that are mainly ionic?
a) $\mathrm{NaCl}, \mathrm{NCl}_{3}, \mathrm{CCl}_{4}$
b) $\mathrm{CsBr}, \mathrm{BaBr}_{2}, \mathrm{SrO}$
c) $\mathrm{CsF}, \mathrm{BF}_{3}, \mathrm{NH}_{3}$
d) $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{SO}_{2}$
145. Which species has the maximum number of lone pair of electrons on the central atom?
a) $\left[\mathrm{ClO}_{3}^{-}\right]$
b) XeF_{4}
c) SF_{4}
d) $\left[I_{3}^{-}\right]$
146. Which of the following does not obey 18 -electron rule?
a) $\mathrm{Cr}(\mathrm{CO})_{6}$
b) $\mathrm{Fe}(\mathrm{CO})_{5}$
c) $\mathrm{V}(\mathrm{CO})_{6}$
d) $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
147. Ortho-isomers have dipole moments. In which cases dipole moments are maximum and minimum?

Maximum Minimum
a)

Cl	Cl	CH_{3}	CH_{3}
OH	CH	Cl	Cl

b) | OH | CH_{3} | Cl | Cl |
| :--- | :--- | :--- | :--- |
| | | | |

c) | OH | NO_{2} | CH_{3} | CH_{3} |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |

d) | OH | NO_{2} | Cl | Cl |
| :--- | :--- | :--- | :--- |

148. Select the correct statement about carbenium ion $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}$

Select the correct statement about carbenium ion
a) It is planar with empty p-orbital
b) There are three sigma $(\mathrm{C}-\mathrm{H})$ bonds
c) It is electron deficient with six electrons in outer-shell
d) All the above are correct statements
149. $A s F_{5}$ molecule is trigonal bipyramidal. The hybride orbitals used by As atoms for bonding are
a) $d_{x^{2}-y^{2}}, d_{z^{2}}, s, p_{x}, p_{y}$
b) $d_{x y^{\prime}}, s, p_{x^{\prime}}, p_{y^{\prime}}, p_{z}$
c) $s, p_{x}, p_{y}, p_{z}, d_{x y}$
d) $d_{x^{2}-y^{2}}, s, p_{x^{\prime}}, p_{y^{\prime}}, p_{z^{\prime}}$
150. Octet rule is not followed in
a) $\mathrm{CCl}_{4}, \mathrm{~N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$
b) $\mathrm{BF}_{3}, \mathrm{BeCl}_{2}$ and NO_{2}
c) $\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{MgO}$
d) $\mathrm{PCl}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
151. Metallic bonding is explained by
a) Band model
b) Electron-sea model
c) Both (a) and (b)
d) None of the these
152. Which of the following species contain at least one atom that violates the octet rule?
a) $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$
b) $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$
c) Both (a) and (b)
d) None of these
153. Which of the following molecule does not possess a permanent dipole moment?
a) $\mathrm{H}_{2} \mathrm{~S}$
b) SO_{2}
c) CS_{2}
d) SO_{3}
154. Which pair is not correct order of lattice energy?
a) $\mathrm{KCl}>\mathrm{MgO}$
b) $\mathrm{AlN}>\mathrm{MgO}$
c) $\mathrm{CaO}>\mathrm{BaO}$
d) $\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}$
155. Geometrical configuration of BF_{3} and NF_{3} molecules is
a) The same because of same covalency of the central atom
b) Different because BF_{3} is polar and NF_{3} is non-polar
c) Different because BF_{3} is non-polar and NF_{3} is polar
d) None is correct
156. Which of the following species/ molecules has a planar geometry?
a) $\mathrm{Ni}(\mathrm{CO})_{4}$
b) SF_{4}
c) CoCl_{4}^{2-}
d) XeF_{4}
157. Which of the following is most polar bond?
a) $\mathrm{Cl}-\mathrm{Cl}$
b) $\mathrm{N}-\mathrm{F}$
c) $C-F$
d) $0-F$
158. Which has a maximum repulsive interaction?
a) $b p-b p$
b) $l p-l p$
c) $l p-b p$
d) Equal
159. Which one of the following molecules will form a linear polymeric structure due to hydrogen bonding?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) HCl
d) HF
160. Molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
a) The same, with 2,0 and 1 lone pair of electrons respectively
b) The same, with 1,1 and 1 lone pair of electrons respectively
c) Different with 0, 1 and 2 lone pair of electrons respectively
d) Different with 1, 0 and 2 lone pair of electrons respectively
161. MgSO_{4} is soluble while BaSO_{4} is insoluble in $\mathrm{H}_{2} \mathrm{O}$. This is because
a) Lattice energy of BaSO_{4} is greater than MgSO_{4}
b) BaSO_{4} is more covalent than MgSO_{4}
c) Hydration energy of Mg^{2+} is greater than Ba^{2+}
d) Lattice energy of MgSO_{4} is greater than BaSO_{4}
162. Delocalized molecular orbitals are found in
a) H_{2}
b) HS^{-}
c) CH_{4}
d) CO_{3}^{2-}
163. When the number of electron pairs on the central atom is six, then geometry of the molecule is
a) Octahedral
b) Trigonalbipyramidal
c) Equilateral triangle
d) Linear
164. Ionization energies (IE) and electron affinities (EA) of F and Cl are given below

Element	IE	EA
F	17.4 eV	3.45 eV
Cl	13.0 eV	3.61 eV

Compound formed between F and Cl is predominantly
a) $\mathrm{F}^{+} \mathrm{Cl}^{-}$
b) $\mathrm{Cl}^{+} \mathrm{F}^{-}$
c) $\mathrm{F}-\mathrm{Cl}$
d) $\mathrm{Cl}<_{\mathrm{F}}^{\mathrm{F}}$
165. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5} is
a) 0
b) 1
c) 2
d) 3
166. The shape of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ molecule is
a) Trigonalbipyramidal
b) Square planar
c) Tetrahedral
d) See-saw
167. Select the correct statement about valence-bond approach
a) Each bond is formed by maximum overlap for its maximum stability
b) It represents localized electron model of bonding
c) Most of the electrons retain the same orbital locations as in a separated atoms
d) All the above are correct statements
168. Which of the following molecules are expected to exhibit intermolecular H-bonding?
I. Acetic acid
II. o-nitrophenol
III. m-nitrophenol
IV. o-boric acid

Select the correct alternate
a) I, II, III
b) I, II, IV
c) I, III, IV
d) II, III, IV
169. H-bonding is maximum in
a) Ethanol
b) Methoxy methane
c) Chloroethane
d) N, N-diethyl amino ethane
170. Which of the following molecules does not have a dipole moment?
a) IBr
b) CHCl_{3}
c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
d) BF_{3}
171. Which has maximum number of lone-pairs of electrons on the central atom?
a) XeF_{2}
b) $\mathrm{H}_{3} \mathrm{O}^{+}$
c) XeF_{4}
d) XeF_{6}
172. Azide ion (N_{3}^{-}) exhibits an $\mathrm{N}-\mathrm{N}$ bond order of 2 and may be represented by resonance structures I, II and III given below

Select the correct statement
a) Structures I and II make greater contributions than III
b) Structures II and III make greater contributions than I
c) Structures I and III make greater contributions than II
d) All three structures make equal contributions
173. The number of anti-bonding electron pairs in O_{2}^{2-} molecular ion on the basis of molecular orbital theory is (atomic number of 0 is 8)
a) 5
b) 2
c) 4
d) 6
174. If there are five electron pairs in outer shell, then structure and bond angle as predicted by SidgwickPowell theory is
a) Octahedron, 90°
b) Trigonalbipyramidal, 120° and 90°
c) Pentagonal bipyramidal, 72° and 90°
d) Tetrahedron, $109^{\circ} 28^{\prime}$
175. Which property is not due to H -bonding?
a) High boiling point of water
b) High viscosity of glycerol
c) Solubility of ammonia in water
d) Polar nature of halogen acid
176. Number of unpaired electrons in $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is
a) 2
b) 3
c) 4
d) 5
177. Considering the state of hybridization of carbon atoms, find out the molecules among the following which
is linear?
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
d) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
178. The BCl_{3} is a planar molecular whereas NCl_{3} is pyramidal because
a) $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
b) $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
c) Nitrogen atom is smaller than boron atom
d) BCl_{3} has no lone pair electrons but NCl_{3} has a lone pair of electrons
179. The number of electron dots in Lewis structure indicates
a) Number of valence electrons in an atom
b) Number of protons in the nucleus of the atom
c) Total number of electrons in an atom
d) Total number of electrons and protons in an atom
180. Chelation can occur in
a) Complexes with bidentate ligands
b) Intramolecular H-bonding
c) Both of the above cases
d) None of the above cases
181. Hybridization on carbon in short lived species CH_{2}^{2+} is
a) $s p$-linear
b) $s p^{2}$-trigonal
c) $s p^{3}$-tetraheral
d) None is correct
182. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{AI}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$ is
a) 1
b) 2
c) 3
d) 4
183. Elements A, B and C have respectively 1,3 and 5 electrons in valence shell. Ionic compound is not formed from
a) A and C
b) A and B
c) B and B
d) B and C
184. OF and F_{2} can be compared in terms of
a) OF is paramagnetic while F_{2} is diamagnetic
b) OF is more stable towards dissociation into atoms
c) Both (a) \& (b) are correct
d) None of the above is correct
185. Main axis of a diatomic molecule is z, molecular orbitals p_{x} and p_{y} overlap to form, which of the following orbital?
a) π-molecular orbital
b) σ-molecular orbital
c) δ-molecular orbital
d) No bond will form
186. The strength of bonds by overlapping of atomic orbitals is in order
a) $s-s>s-p>p-p$
b) $s-s<p-p<s-p$
c) $s-p<s-s<p-p$
d) $p-p<s-s<s-p$
187. The hybride orbital of the central atom in AlF_{4}^{-}is
a) $s p$
b) $s p^{2}$
c) $s p^{3}$
d) $d s p^{2}$
188. All the following molecules are linear except one
a) SO_{2}
b) CO_{2}
c) HCN
d) NO
189. The water molecule has a (X). geometry because its central atom has \qquad bonds and \qquad lone pairs of electrons XYZ
a) Bent
$2 \quad 2$
b) Linear 2
c) Pyramidal 31
d) Tetrahedral 40
190. Formation of anion from a neutral atom X is favoured by
a) High electron affinity
b) Large size of X
c) Low ionization potential
d) High charge on anion X
191. Which has maximum dipole moment?
a)

b)

c)

d)

192. Arrange the following compounds in increasing dipole moment: toluene (I), m-chlorobenzene (II), o dichlorobenzene (III), p-dichlorobenzene (IV)
a) I $<$ IV $<$ II $<$ III
b) IV $<$ I $<$ II $<$ III
c) IV $<$ I $<$ III $<$ II
d) IV $<$ II $<$ I $<$ III
193. Which substance has a dipole moment?
a) CCl_{4}
b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
c) $\mathrm{C}_{2} \mathrm{Cl}_{2}$
d) $\mathrm{C}_{2} \mathrm{Cl}_{4}$
194. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B_{2} is
a) 1 and diamagnetic
b) 0 and diamagnetic
c) 1 and paramagnetic
d) 0 and paramagnetic
195. Consider the following pairs,
I. HNO_{3} and NO_{3}^{-}

Which has the greater resonance stabilization?
a)

b) HNO_{3} in I and HCHO in II
c) NO_{3}^{-}in I and HCHO in II
d)

196. In which of the following molecules would you expect the nitrogen-to- nitrogen bond to be the shortest?
a) $\mathrm{N}_{2} \mathrm{H}_{4}$
b) N_{2}
c) $\mathrm{N}_{2} \mathrm{O}_{4}$
d) $\mathrm{N}_{2} \mathrm{O}$
197. In allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$, the type(s) of hybridization of the carbon atoms, is (are)
a) $s p$ and $s p^{3}$
b) $s p$ and $s p^{2}$
c) Only $s p^{3}$
d) $s p^{2}$ and $s p^{3}$
198. Which of the following has maximum bond energy?
a) O_{2}^{-}
b) O_{2}^{+}
c) O_{2}
d) O_{2}^{2-}
199. Some ether is added to an aqueous solution mixture of $\mathrm{LiCl}, \mathrm{NaCland} \mathrm{AlCl}_{3}$. Which will be extracted into ether?
a) $\mathrm{LiCl}, \mathrm{NaCl}$
b) $\mathrm{LiCl}, \mathrm{AlCl}_{3}$
c) $\mathrm{NaCl}, \mathrm{AlCl}_{3}$
d) $\mathrm{LiCl}, \mathrm{NaCl}, \mathrm{AlCl}_{3}$
200. The compound $\mathrm{NH}_{3}-\mathrm{BF}_{3}$ can be easily separated into its compounds because
a) BF_{3} is highly reactive
b) NH_{3} is highly reactive
c) BF_{3} and NH_{3} are unstable
d) BF_{3} and NH_{3} have their independent existence
201. The bond angle in $\mathrm{H}_{2} \mathrm{O}$ is 105° and in $\mathrm{H}_{2} \mathrm{~S}$ it is 90°. It is due to
a) The larger size of S atom as compared to O atom which minimizes repulsion and allows the bonds in
a) $\mathrm{H}_{2} \mathrm{~S}$ to be purely p-type
b) Liquid state of $\mathrm{H}_{2} \mathrm{O}$ as compared to gaseous state of SO_{2}
c) Both (a) \& (b) are correct
d) None of the above is correct
202. In terms of polar character, which one of the following order is correct?
a) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<H F<\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<H F$
c) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<H F$
d) $\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}$

Multiple Correct Answers Type

203. Which of the following pairs contain same number of electrons but their shapes are different?
a) $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$
b) $\mathrm{CH}_{4}, \mathrm{NH}_{3}$
c) $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{BeCl}_{2}, \mathrm{BeF}_{2}$
204. In BrF_{3} molecule, the lone pairs occupy equatorial position to minimize
a) Lone pair-bond pair repulsion only
b) Bond pair-bond pair repulsion only
c) Lone pair-lone pair repulsion and lone pair-bond pair repulsion
d) Lone-pair-lone pair repulsion only
205. The isotone(s) of ${ }_{32}^{76} \mathrm{Ge}$ is/are:
a) ${ }_{32}^{77} \mathrm{Ge}$
b) ${ }_{33}^{77} \mathrm{As}$
c) ${ }_{34}^{77} \mathrm{Se}$
d) ${ }_{34}^{78} \mathrm{Se}$
206. Which is/are correct statements?
a) A solute will dissolve in water if hydration energy is greater than lattice energy
b) If the anion is large compared to the cation, the lattice energy will remain almost constant
c) Solubility of II A hydroxide is in order
c) $\mathrm{Be}(\mathrm{OH})_{2}<\mathrm{Mg}(\mathrm{OH})_{2}<\mathrm{Ca}(\mathrm{OH})_{2}<\mathrm{Sr}(\mathrm{OH})_{2}$
d) AgF is water soluble
207. Resonance occurs due to the :
a) Delocalization of a lone pair of electrons
b) Delocalization of sigma-electrons
c) Delocalization of pi-electrons
d) Migration of protons
208. Select the correct statement(s) about C_{3}^{4-} ion
a) It reacts with $\mathrm{H}_{2} \mathrm{O}$ forming $\mathrm{C}_{3} \mathrm{H}_{6}$
b) It react with $\mathrm{H}_{2} \mathrm{O}$ forming $\mathrm{C}_{3} \mathrm{H}_{4}$
c) It has two sigma and two pi bonds
d) It has three sigma and one pi bonds
209. Which of the following statements is/are correct?
a) Hybridization is the mixing of atomic orbitals prior to their combining into molecular orbitals
b) $s p^{2}$-hybrid orbitals are at 120° to one another
c) $d s p^{3}$-hybrid orbitals are directed towards the corners of a regular tetrahedron
d) $s p^{3} d^{2}$-hybrid orbitals are directed towards the corners of a regular octahedron
210. In which of the following hybridization of underlined atom(s) is/are affected?
a) PCl_{5} solid dissociates
a) into PCl_{4}^{+}and PCl_{6}^{-}
b) NH_{3} is protonated to ${ }_{\text {c }}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ is heated to
give $\mathrm{N}_{2} \mathrm{O}$
d) $\begin{aligned} & \mathrm{LiH} \text { reacts with } \mathrm{AlH}_{3} \\ & \text { forming } \mathrm{LiAlH}_{4}\end{aligned}$
211. Which are the species in which sulphur undergoes $s p^{3}$ hybridisation?
a) SF_{4}
b) SCl_{2}
c) SO_{4}^{2-}
d) $\mathrm{H}_{2} \mathrm{~S}$
212. Correct order of thermal stability is/are
a) $\mathrm{Li}_{3} \mathrm{~N}>\mathrm{Na}_{3} \mathrm{~N}>\mathrm{K}_{3} \mathrm{~N}$
b) $\mathrm{BeCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{CaCl}_{2}$
c) $\mathrm{K}_{2} \mathrm{CO}_{3}>\mathrm{Na}_{2} \mathrm{CO}_{3}>\mathrm{Li}_{2} \mathrm{CO}_{3}$
d) $\mathrm{BeCO}_{3}>\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}$
213. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because
a) The electronegativity of F is greater than that of 0
b) $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas BeF_{2} is a discrete molecule
c) $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular
d) $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
214. In which molecule is the van derWaals force likely to be most important in determining m.p. and b.p.?
a) ICl
b) Br_{2}
c) $\mathrm{H}_{2} \mathrm{~S}$
d) CO
215. Which is/are the correct increasing order of the property indicated?
a) $\mathrm{BaO}<\mathrm{SrO}<\mathrm{CaO}<\mathrm{MgO}<\mathrm{BeO}$ (lattice energy)
b) $\mathrm{LiF}<\mathrm{LiCl}<\mathrm{LiBr}<$ Lil (melting point)
c) $\mathrm{AlF}_{3}<\mathrm{AlCl}_{3}<\mathrm{AlBr} \mathrm{r}_{3}<\mathrm{AlI}_{3}$ (covalent nature)
d) $\mathrm{NaF}<M g O<A l N<S i C$ (lattice energy)
216. Which combination of the compounds with their magnetic moments are correct?
a) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \mu=4.90 \mathrm{BM}$
b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \mu=5.92 \mathrm{BM}$
c) $\mathrm{Ni}(\mathrm{CO})_{4} \mu=0.00 \mathrm{BM}$
d) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \mu=0.00 \mathrm{BM}$
217. Ionic radii of :
a) $\mathrm{Ti}^{4+}<\mathrm{Mn}^{7+}$
b) ${ }^{35} \mathrm{Cl}^{+}<{ }^{37} \mathrm{Cl}^{-}$
c) $\mathrm{K}^{+}>\mathrm{Cl}^{-}$
d) $\mathrm{P}^{3+}>\mathrm{P}^{5+}$
218. Which of the following do not have lone pair?
a) SiF_{4}
b) XeF_{4}
c) SF_{4}
d) BF_{3}
219. Which of the following have a dipole moment?
a) $2,2,3,3-$ tetramethylbutane
b) Trans-2-pentene
c) Cis-1,2-dichloroethene d
d) $\begin{aligned} & \text { Trans-1,2- } \\ & \text { dichloroethene }\end{aligned}$
220. Which of the following have identical bond-order?
a) CN^{-}
b) O_{2}^{-}
c) NO^{+}
d) CN^{+}
221. The linear structure is assumed by :
a) SnCl_{2}
b) NCO
c) CS_{2}
d) NO_{2}^{+}
222. Which molecule(s) has/have V -shape?
a) $\mathrm{H}_{2} \mathrm{O}$
b) SnCl_{2}
c) $\mathrm{H}_{2} \mathrm{~S}$
d) None of these
223. The planar shape of $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$ is explained by the
a) Type of hybride orbitals of nitrogen
b) Additional $d \pi-p \pi$ overlap along the $N-S i$ bond
c) Higher electronegativity of nitrogen
d) Higher electronegativity of silicon
224. Which of the following is/are coloured and paramagnetic?
a) Cu^{+}
b) NO_{2}
c) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
d) $\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
225. Which form two or more chlorides?
a) Na
b) Hg
c) Cu
d) Fe
226. Species having same bond order are
a) NO
b) NO^{+}
c) NO^{2+}
d) NO^{-}
227. Which one of the following arrangement does not give the correct picture of the trends indicated against it?
a) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electron gain enthalpy
b) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Bond dissociation energy
c) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electronegativity
d) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Oxidizing power
228. The type of bond(s) present in ammonium chloride is/are :
a) Ionic
b) Covalent
c) Coordinate
d) None of these
229. Which phosphorus (P) has
a) $P-P-P$ bond angle of 60°
b) 4 lone pairs of electrons
c) $4 P-P$ single bonds
d) 6P - P single bonds
230. Which has/have magnetic moment?
a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2-}$
b) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
d) O_{2}
231. The molecules(s) which show H -bonding is/are:
a) o-nitrophenol
b) Water
c) HCl
d) Ethyl acetoacetate
232. Pick out the isoelectronic structures from the following :
(I) CH_{3}^{+}
(II)
(IV) CH_{3}^{-}
a) I and II
b) III and IV
c) I and III
d) II, III and IV
233. Ionization energy is influenced by :
a) Size of atom
b) Charge on the nucleus
c) Electrons present in inner shells
d) None of the above
234. CO_{2} is isostructural with :
a) HgCl_{2}
b) SnCl_{2}
c) $\mathrm{C}_{2} \mathrm{H}_{2}$
d) NO_{2}
235. Which statement(s) is/are correct?
a) A pi-bond is weaker than sigma-bond
b) A sigma-bond is weaker than pi-bond
c) A (=) bond stronger than single bond
d) A covalent bond is stronger than H-bond
236. Which have linear structure?
a) BeF_{2}
b) $\mathrm{Ag}[\mathrm{CN}]_{2}^{-}$
c) CO_{2}
d) XeF_{2}
237. Electrovalency is favoured by :
a) Low $I E$ values
b) High $E A$ values
c) High lattice energy
d) None of these
238. Which of the following statements is/are correct?
a) CH_{3}^{+}shows $s p^{2}$-hybridization whereas CH_{3}^{-}shows $s p^{3}$-hybrization
b) NH_{4}^{+}has a regular tetrahedral geometry
c) $s p^{2}$-hybridized orbitals have equals s-and p-character
d) Hybridized orbitals always form σ-bonds
239. Which possess fractional bond order?
a) O_{2}^{+}
b) O_{2}^{-}
c) H_{2}^{+}
d) N_{2}
240. The octet rule is not obeyed in:
a) CO_{2}
b) BCl_{3}
c) PCl_{5}
d) SiF_{4}
241. Consider the following compounds
I. $\mathrm{B}_{3} \mathrm{O}_{3}^{3-} \quad$ II. $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}{ }^{\text {III. } \mathrm{C}_{5} \mathrm{H}_{5}{ }^{\ominus}}$

Planar and aromatic character is in
a) All
b) I and II only
c) II and III only
d) I and III only
242. Resonance structures of a molecule should have:
a) Identical arrangement of atoms
b) Nearly the same energy content
c) The same number of paired electrons
d) Identical bonding
243. In which of the following driving force is to complete the octet of B atom permanently?
a) $2 \mathrm{BH}_{3} \rightleftharpoons \mathrm{~B}_{2} \mathrm{H}_{6}$
b)

c) $\mathrm{NH}_{3}+\mathrm{BH}_{3} \rightarrow\left[\mathrm{NH}_{3} \rightarrow \mathrm{BH}_{3}\right]$
d) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{BH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
244. Intermolecular H -bonding in HF makes it :
a) High b.p. liquid
b) Capable of forming two series of salt
c) Dibasic
d) Capable of forming acid salt
245. In the following case (s), hybridization of the underlined atom is affected
a) PCl_{5} (solid) dissociates into PCl_{4}^{+}and PCl_{6}^{-}
b) LiH reacts with $\underline{\mathrm{AlH}}_{3}$ forming LiAlH_{4}
c) NH_{3} is protonated
d) $\mathrm{H}_{3} \mathrm{PO}_{2}$ is heated forming PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$
246. PbCl_{4} exists but PbBr_{4} and PbI_{4} do not because of
a) Br^{-}and I^{-}ions are bigger in size
b) Chlorine is a gas
c) Br_{2} and I_{2} are more electronegative
d) Inability of bromine and iodine to oxidize Pb^{2+} to Pb^{4+}
247. Among the following the pair in which the two species are isostructural are
a) SiF_{4} and SF_{4}
b) IO_{3}^{-}and XeO_{3}
c) BH_{4}^{-}and NH_{4}^{+}
d) PF_{6}^{-}and SF_{6}
248. The species that does not contain peroxide bond is /are :
a) PbO_{2}
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) MnO_{2}
d) BaO_{2}
249. Which of the following statements is/are correct regarding ionic compounds?
a) They are good conductors at room temperature
b) They are generally soluble in polar solvents
c) They consist of ions
d) They generally have high melting and boiling points
250. In which of the following pairs, molecules/ions have similar shape?
a) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
b) BF_{3} and $\mathrm{H}_{2} \mathrm{O}$
c) CCl_{4} and PtCl_{4}
d) NH_{3} and BF_{3}
251. Which statement(s) is/are correct?
a) PF_{3} has higher bond angle than PCl_{3}
b) Dipole moment of NH_{3} is more than NF_{3}
c) I^{+}is smaller than I^{-}ion
d) I^{-}is smaller than I^{+}ion
252. The correct structural representation of diborane is:
a) $\left[\mathrm{BH}_{2}\right]^{+}\left[\mathrm{BH}_{4}\right]^{-}$
b)

c)

d)

253. In which central atom(s) has/have one lone pair of electron?
a) Cl_{2}
b) NH_{3}
c) PCl_{3}
d) XeF_{6}
254. Which among the following is/are linear?
a) BeF_{2}
b) $\mathrm{Ag}(\mathrm{CN})^{-}$
c) CO_{2}
d) XeF_{2}
255. Which combination(s) given below is/are correct?
a) HgCl_{2}-linear
b) ClF_{3} - T -shaped
c) ICl_{4}^{-}-square planar
d) XeF_{6}-pentagonal bipyramid
256. A, B, C are three substances. A does not conduct electricity in the solid or liquid state. B conducts electricity both in the fused and solution states, while C conducts electricity only in the solution state. Which of the following statement(s) is/are true regarding A, B and C ?
a) A has polar covalent linkage
b) A has non-polar covalent linkage
c) B is ionic in nature
d) C has polar covalent linkage
257. Which of the following compounds possesses zero dipole moment?
a) Water
b) Benzene
c) Carbon tetrachloride
d) Boron trifluoride
258. The correct order of the $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
a) $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
b) $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
c) $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$
d) $\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
259. Which of the following is/are electron deficient compounds?
a) NaBH_{4}
b) $\mathrm{B}_{2} \mathrm{H}_{6}$
c) AlCl_{3}
d) C_{3}^{4-}
260. Which of the following are diamagnetic?
a) Li_{2}
b) N_{2}^{+}
c) O_{2}^{2-}
d) C_{2}
261. The Molecule,

a) Has intermolecular H-bonding
b) Has intermolecular H-bonding
c) Reduces Tollen's reagent
d) Is steam-volatile
262. Which combinations of the compounds and their geometry are correct?
a) HgCl_{2}-linear
b) ClF_{3} - V -shaped
c) $\mathrm{ClF}_{3}-\mathrm{T}$-shaped
d) ICl_{4}^{-}- square planar
263. Which of the following force(s) is/are weak?
a) Covalent forces
b) Van der Waal's forces
c) Coulombic forces
d) London forces
264. $I E_{2}$ for an element are invariably higher than $I E_{1}$ because :
a) The size of cation is smaller than its atom
b) It is difficult to remove ' e ' from cation
c) $I E$ is endothermic
d) All of the above
265. Which has/have zero value of dipole moment?
a) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]_{2}$
b) CHCl_{3}
c) CO_{2}
d)

266. $\mathrm{In} \mathrm{I}_{3}^{-}$
a) I_{2} is Lewis acid and I^{-}as Lewis base
b) I_{2} is Lewis base and I^{-}as Lewis acid
c) I_{3}^{-}itself behaves as amphoteric anion
d) I_{3}^{-}does not exist
267. The compound which contains both ionic and covalent bond is/are :
a) CH_{4}
b) $\mathrm{NH}_{4} \mathrm{OH}$
c) KCN
d) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
268. Which of the following statements is/are correct?
a) The peroxide ion has a bond order of 1 while the oxygen molecule has a bond order of 2 .
b) The peroxide ion has a longer and weaker bond than the oxygen molecule has
c) The peroxide ion as well as the oxygen molecule are paramagnetic
d) The bond length of peroxide ion is greater than that of the oxygen molecule
269. Select the incorrect statements about $\left[\mathrm{XeF}_{5}\right]^{-}$
a) Xe is $s p^{3} d$ hybridised
b) Xe is $s p^{3} d^{3}$ hybridised
c) It has pentagonal $s p^{3} d^{3}$ structure
d) It has two lone pairs at the axial position
270. Which of the following conditions apply to resonating structures?
a) The contributing structures should have similar energies
b) The contributing structures should be represented such that unlike charges reside on atoms that are far apart
c) The electropositive element should always has positive charge and the electronegative element negative charge
d) The contributing structures must have the same number of unpaired electrons
271. Which combinations of the compounds and their geometry are correct
a) $\mathrm{H}_{2} \mathrm{O}-\mathrm{V}$-shaped
b) NH_{2}-trigonal pyramidal
c) BCl_{3}-tetrahedral
d) BeCl_{2} - linear
272. Which of the following compounds contain both ionic and covalent bonds?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) KCN
c) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
d) NaOH

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 273 to 272. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: Alkanes are insoluble in water
Statement 2: Organic compounds do not form hydrogen bonding with water

Statement 1: The first ionisation energy of $B e$ is greater than that of B.
Statement 2: $2 p$-orbital is lower in energy than $2 s$-orbital.
275
Statement 1: Ionisation enthalpy is always positive.
Statement 2: Energy is always required when electrons are removed.
276
Statement 1: Molecular nitrogen is less reactive than molecular oxygen.
Statement 2: The bond length of N_{2} is shorter than that of oxygen.
277
Statement 1: N and P show a maximum covalency of five.
Statement 2: P can expand the outer shell of electrons beyond an octet by involving d-orbitals present in its valence shell.

Statement 1: NaCl is more ionic than NaI .
Statement 2: Chlorine is more electronegative than iodine.

Statement 1: The dipole moment of NF_{3} is more thanNF N_{3}.
Statement 2: The presence of lone pair of electron on N shows an additive contribution in dipole moment of NH_{3} whereas it shows a negative contribution towards dipole moment of NF_{3}.

Statement 1: The bond angle in BF_{3} is smaller than that in BF_{4}.
Statement 2: $\quad \mathrm{BF}_{3}$ has $s p^{2}$-hybridisation, whereas BF_{4}^{-}has $s p^{3}$-hybridisation.
281
Statement 1: Bond energy has order likeC - $\mathrm{C}<=C<C \equiv \mathrm{C}$
Statement 2: Bond energy increases with increase in bond order

Statement 1: The bond angle in $\mathrm{H}_{2} \mathrm{O}$ is greater than $\mathrm{H}_{2} \mathrm{~S}$.
Statement 2: H-bonding does not occur in $\mathrm{H}_{2} \mathrm{~S}$ due to low electronegativity of S .

Statement 1: MO configuration of CO is
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2} \sigma 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 \mathrm{p}_{\mathrm{y}}^{2}, \pi 2 p_{z}^{2}, \sigma^{*} 2 s^{2}$
Statement 2: The bond energy level $\sigma^{*} 2 s^{2}$ possesses higher energy because then only bond length order for CO (more) and CO^{+}(less) can be explained.

Statement 1: All molecules with polar bond have dipole moment.
Statement 2: Dipole moment is a vector quantity.

Statement 1: The lattice energy of silver halides is
$\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$.
Statement 2: AgF is water soluble.
286
Statement 1: Magnesium combines with fluorine to form MgF_{2}
Statement 2: Oppositely charged ions are attracted to each other by electrovalent bond
287
Statement 1: Solubility of NaCl in $\mathrm{D}_{2} \mathrm{O}$ is less than, $\mathrm{H}_{2} \mathrm{O}$
Statement 2: Higher viscosity of $\mathrm{D}_{2} \mathrm{O}$ is responsible for low solubility of NaCl .
288
Statement 1: The ionisation energy of ${ }_{1} \mathrm{H}^{2}$ is more than ionisation energy of ${ }_{1} \mathrm{H}^{1}$.
Statement 2: This is due to isotopic effect.
289
Statement 1: $I F_{7}$ is super octet molecule.
Statement 2: Central atom of I in $I F_{7}$ has 14 electrons.

Statement 1: The first ionisation energy of N is greater than 0 .
Statement 2: $\quad \mathrm{N}$ atom has half filled p-orbitals.
291
Statement 1: SeCl_{4} does not have a tetrahedral structure.
Statement 2: Se in SeCl_{4} has two lone pairs.
292
Statement 1: p-dimethoxy benzene is polar molecule.
Statement 2: The two methoxy groups at para positions are located as

293
Statement 1: LiCl is predominantly a covalent compound.
Statement 2: Electronegativity difference between Li and Cl is too small.

Statement 1: In $\mathrm{NH}_{3}, \mathrm{~N}$ is $s p^{3}$ hybridised, but angle is found to be 104°.
Statement 2: The decrease in bond angle is due to repulsion between the lone pairs on nitrogen and bond pair between N and H .

Statement 1: $\quad I E_{1}$ for He is maximum and $E A_{1}$ for Cl is more than $E A_{1}$ of F .
Statement 2: He possesses paired electrons in $1 s$ sub-shell, closest to nucleus, whereas electron density in F is maximum which exerts more electro-electron repulsion.

Statement 1: $\quad E_{A 2}$ for halogens is endothermic.
Statement 2: Halogens have $n s^{2} n p^{5}$ configuration and can accommodate only one electron.

Statement 1: In the aqueous HF solution, $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}are more likely to be found.

Statement 2: Hydrogen bonding in HF is stronger than that in $\mathrm{H}_{2} \mathrm{O}$.
298

Statement 1: $\quad \mathrm{CO}_{2}$ molecules are linear
Statement 2: The value of dipole moment ofCO 2 is zero

Statement 1: F atom has less electron affinity than Cl atom.
Statement 2: Additional electrons are repelled more effectively by $3 p$-electrons in Cl atom than by $2 p$ electrons in F atom.

Statement 1: $\quad \mathrm{SF}_{4}$ has lone pair of electron at equatorial position in preference to apical position in the overall trigonal bipyramidal geometry.
Statement 2: If lone pair is at equatorial position then only repulsion is minimum.

Statement 1: Solubility of NaOH in water increases with rise in temperature, although it is exothermic dissolution.
Statement 2: Changes showing exothermic nature occurs in backward direction it temperature is raised.

Statement 1: The dipole moment of NH_{3} is less than NF_{3}.
Statement 2: The lone pair present on N shows additive nature of $\mathrm{N}-\mathrm{H}$ vector whereas it is subtractive to $\mathrm{N} — \mathrm{~F}$ vector.

Statement 1: The molecule cis-1-chloropropene is more polar than trans-l-chloropropene.
Statement 2: The magnitude of resultant vector in trans-l-chloro-propene is non-zero.
304
Statement 1: F - F bond has low bond dissociation energy
Statement 2: The fluorine has low reactivity
305
Statement 1: BF_{3} molecule is planar with an angle of $120^{\circ} \mathrm{C}$.
Statement 2: $\quad \mathrm{BF}_{3}$ has bond pair-lone pair electron ratio 1:3.
306
Statement 1: The bond energy of $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{3} and PCl_{5} are different.
Statement 2: In $\mathrm{PCl}_{3}, s p^{3}-p$ overlapping whereas in $\mathrm{PCl}_{5}, s p^{3} d-p$ overlapping is noticed.
307
Statement 1: FeCl_{2} is more covalent than FeCl_{3} because electronegativity of $\mathrm{Fe}^{3+}>\mathrm{Fe}^{2+}$.
Statement 2: Higher is the charge on cation, more is deformation of anion, more is covalent character

Statement 1: $\quad \mathrm{NH}_{3}$ and CH_{3}^{-}both have pyramidal shape.
Statement 2: N in NH_{3} and C in CH_{3}^{-}both have $s p^{3}$-hybridisation with one lone pair of electron on each.

Statement 1: If difference of electronegativity between two atoms is zero the resultant molecule will be non-polar covalent.
Statement 2: The shared pair of electron lies just in the middle of two atoms.

Statement 1: All $\mathrm{F}-\mathrm{S}-\mathrm{F}$ angle in SF_{4} is greater than 90° but less than bond 180°.
Statement 2: The lone pair-bond pair repulsion is weaker the bond pair-bond pair repulsion.

Statement 1: PCl_{5} conducts current in solid state.

Statement 2: PCl_{5} exists as $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$ions.

Statement 1: $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{3} and PCl_{5} had different bond energy.
Statement 2: P in PCl_{3} and PCl_{5} is $s p^{3}$-hybridised.
313
Statement 1: Oxygen does not possess d - orbitals in their valency shell
Statement 2: The covalency of oxygen is two

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
314. Match the species in Column I with corresponding character(s)in Column II

Column-I

Column- II
(A) CO_{2}
(1) Zero dipole moment
(B) CH_{4}
(2) Expansion of octet
(C) $\mathrm{ClF}_{2}^{\oplus}$
(3) $s p^{3}$ hybridisation
(D) PCl_{5}
(4) $s p^{3} d$ hybridisation
(E) $\mathrm{ClF}_{2}^{\ominus}$
(5) Linear

CODES :

	\mathbf{A}	\mathbf{B}	\mathbf{C}	D	E
a)	1,3	3	2,4	3,5	1,5
b)	1,5	1,3	3	2,4	1,5
c)	2,4	3,5	1,3	3	1,5
d)	3,5	3	1,5	1,3	1,5

315. Match the compounds (in Column I) with the structures (in Column II)

Column-I

Column- II

(A) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$
(1) Square planar
(B) $\mathrm{NH}_{4} \mathrm{Cl}$
(2) Trigonalbipyramid
(C) $\left[\mathrm{ICl}_{4}\right]^{-}$
(3) Tetrahedral
(D) PCl_{5}
(4) Trigonal

CODES :

	A	B	C	D
a)	3	2	4	1
b)	2	1	3	4
c)	1	4	2	3
d)	4	3	1	2

316. Match the type of species (in Column I) with the compound (in Column II)

Column-I

Column- II
(A) Ionic species
(1) HCl
(B) Non-polar covalent
(2) LiCH_{3}
(C) Polar covalent species having sigma bond only
(3) KCH_{3}
(4) NO

CODES :

	A	B	C	D
a)	4	1	3	4
b)	3	2	1	
c)	2	4	3	1
d)	1	3	4	2

317. Match List I with List II and choose the correct matching codes from the choices given.

Column-I

Column- II
(A) PCl_{5}
(1) Linear
(B) IF_{7}
(2) Pyramidal
(C) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) Trigonal bipyramidal
(D) ClO_{2}
(4) Tetrahedral
(E) NH_{4}^{+}
(5) Pentagonal bipyramidal
(6) Angular

CODES :

	A	B	C	D	E
a)	3	5	2	1	4
b)	3	5	4	1	4

c)	3	5	6	1	4
d)	3	5	2	6	4
e)	3	5	2	4	4

318. Match the compounds (in Column I) with the type of hybridization on the central atom/ion (in Column II)

Column-I

Column- II

(A) BCl_{3}
(1) $s p^{3}$
(B) NH_{3}
(2) $s p^{3} d^{2}$
(C) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(3) $s p^{2}$
(D) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $d s p^{2}$

CODES :

	A	B	C	D
a)	1	2	3	4
b)	2	4	1	3
c)	3	1	4	2
d)	4	3	2	1

319. Match the items under Column I with items under Column II

Column-I

Column- II

(A) PCl_{5}
(1) V-shaped
(B) $\mathrm{F}_{2} \mathrm{O}$
(2) Triangular planar
(C) BCl_{3}
(3) Trigonalbipyramidal
(D) NH_{3}
(4) Trigonal pyramidal
(5) Tetrahedral

CODES :

	A	B	C	D
a)	2	3	4	1
b)	3	1	2	4
c)	4	2	1	2
d)	1	4	3	2

320. Match List I with List II and select the correct answer:
(A) ICI^{-}
(1) Linear
(B) BrF_{2}^{+}
(2) Pyramidal
(C) ClF_{4}^{-}
(3) Tetrahedral
(D) AlCl_{4}^{-}
(4) Square planar
(5) Angular

CODES :

	A	B	C	D
a)	1	2	4	5
b)	4	5	2	3
c)	1	5	4	3
d)	5	1	3	4

321. Match the species (in Column I) with the bond order (in Column I)

Column-I

Column- II
(A) N_{2}
(1) 1.0
(B) O_{2}
(2) 2.0
(C) F_{2}
(3) 2.5
(D) O_{2}^{+}
(4) 3.0

CODES:

	A	B	C	D
a)	4	2	1	3
b)	2	3	4	1
c)	3	1	2	4
d)	1	4	3	2

322. Match the species in Column I with their properties in Column II

Column-I

Column- II

(A) NH_{3}
(1) Lewis acid
(B) $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$
(2) Lewis base
(C) $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$
(3) Distorted geometry
(D) BH_{4}^{-}
(4) $s p^{3}$ hybridised central atom
(5) Has two types of H

CODES :

	A	B	C	D
a)	$2,3,4$	$2,3,4$	3,5	4,5
b)	4,5	3,5	$2,3,4$	2
c)	3,5	5	4,5	$2,3,4$
d)	5	4,5	$2,3,4$	3,5

323. Match List I with List II. Select the correct answer using the codes given below the list.

Column-I

Column- II
(A) NH_{4}
(p) $s p^{3} d^{3}$
(B) PCl_{5}
(q) $s p^{3} d$
(C) SF_{6}
(r) $s p^{3}$
(D) IF_{7}
(s) $s p^{3} d^{2}$

CODES :

	A	B	C	D
a)	r	q	s	p
b)	p	q	r	s
c)	q	r	p	s
d)	s	p	q	r

324. Match Column I (hybrid bond orbitals) with Column II (species) and select the correct answer

Column-I

Column- II
(A) $s p^{3}$
(1) lCl_{4}^{-}
(B) $d s p^{2}$
(2) TeCl_{4}
(C) $s p^{3} d$
(3) MnO_{4}^{-}
(D) $s p^{3} d^{2}$
(4) $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$

CODES:

	A	B	C	D
a)	3	4	2	1
b)	4	2	1	3
c)	2	1	3	4
d)	1	3	4	2

325. Match each the diatomic molecules in Column I with its property/properties in Column II

Column-I

Column- II
(A) B_{2}
(1) Paramagnetic
(B) N_{2}
(2) Undergoes oxidation
(C) O_{2}^{-}
(3) Undergoes reduction
(D) O_{2}
(4) Bond order ≥ 2
(5) Mixing of ' s ' and ' p ' orbitals

CODES :
A
B
C
D
a) $\quad 2,3,4,5 \quad 1,2,3,5 \quad 1,3,4,5 \quad 3,5$
b) $1,2,3,5 \quad 2,3,4,5 \quad 1,2,3,5 \quad 1,3,4,5$
c) $\begin{array}{llll}1,3,4,5 & 3,5 & 2,3,4,5 & 1,2,3,5\end{array}$
d) $\quad 3,5 \quad 1,3,4,5 \quad 4,5 \quad 2,3,4,5$
326. Match List I and List II and pick out correct matching codes from the given choices.

Column-I

Column- II
(A) CIF_{3}
(1) Square planar
(B) PCl_{5}
(2) Tetrahedral
(C) IF_{5}
(3) Trigonal bipyramidal
(D) CCl_{4}
(4) Square pyramidal
(E) XeF_{4}
(5) T-shaped

CODES :

	A	B	C	D	E
a)	5	4	3	2	1
b)	5	3	4	2	1
c)	5	3	4	1	1
d)	4	3	5	2	1
e)	5	4	1	5	1

327. Match the compounds (in Column I) with the structure (in Column II)

Column-I
Column- II
(A) XeF_{4}
(1) Distorted octahedral
(B) XeF_{6}
(2) Tetrahedral
(C) XeO_{3}
(3) Square planar
(D) XeO_{4}
(4) Pyramidal

CODES:

	A	B	C	D
a)	3	1	4	2
b)	1	2	3	4
c)	2	4	1	3
d)	4	3	2	1

328. Match List I with List II. Select the correct answer using the codes given below the list.

Column-I

Column- II
(A) NH_{4}
(p) $s p^{3} d^{3}$
(B) PCl_{5}
(q) $s p^{3} d$
(C) SF_{6}
(r) $s p^{3}$
(D) IF_{7}
(s) $s p^{3} d^{2}$

CODES:

	A	B	C	D
a)	r	q	s	p
b)	p	q	r	s
c)	q	r	p	s
d)	s	p	q	r

329. Match the species in Column I with their properties in Column II

Column-I
Column- II
(A) SF_{6}
(1) π bonds are also present
(B) O_{3}
(2) σ bonds are only present
(C) BeH_{2}
(3) Hypervalent
(D) CO
(4) Hypovalent
(5) Linear

CODES :
A
B
C
D
a) $\begin{array}{llll}1,5 & 2,3 & 1,2,5 & 2,4,5\end{array}$
b) $\begin{array}{llll}1,2,5 & 2,4,5 & 1,5 & 2,3\end{array}$
c) $2,3 \quad 1,5 \quad 2,4,5 \quad 1,2,5$
d) $2,4,5 \quad 1,2,5 \quad 2,3 \quad 1,5$
330. Match the compounds in the list I with that in List II.

Column-I

Column- II

(A) XeO_{3}
(p) Planar triangular
(B) XeOF_{4}
(q) T -shape
(C) BO_{3}^{3-}
(r) Trigonal pyramid
(s) Square pyramid
(t) Linear
(u) Bent

CODES :

	A	B	C	D	E
a)	p	s	r	q	t
b)	q	s	p	r	t
c)	r	s	p	q	t
d)	s	s	p	q	t

Linked Comprehension Type

This section contain(s) 30 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 331 to -331
When does ions C^{+}and A^{-}of an ionic molecule, $\mathrm{C}^{+} \mathrm{A}^{-}$whose both the ions are symmetrical come closer or each other of the ions gets distorted or polarized by the other ion. But the produced by C^{+}cation in A^{-}anion is appreciable while that produced by A^{-}anion in C^{+}cation is negligible. The ability of a cation to polarise a nearby anion is called its polarizing power or polarizing ability. In the polarization process the electrons of the anion are withdrawn by the cation towards itself
331. Bond polarity of diatomic molecule is because of
a) Difference in ionization potential
b) Difference in electron affinities of the two atoms
c) Difference in electronegativies of the two atoms
d) All of the above

According to the concept of resonance, whenever a single Lewis structure can't describe a molecule accurately, then a number of structure called resonating structure, with similar energy. Same relative position of all nuclei and with same number of paired and unpaired electrons
The molecule as such has a single definite structure which is the resonance hybrid of the resonating structure and can't as such be depicted by a single Lewis structure. As a result of resonance, the bond order may change in many molecules or ions, and is given by formula
Total number of bonds between two atoms
Bond order $=\frac{\text { in all the structure }}{\text { Total number of resonating structures }}$
332. Which of the following molecule contains one pair of non bonding electrons?
a) $\mathrm{H}_{2} \mathrm{O}$
b) HF
c) NH_{3}
d) CH_{4}

Paragraph for Question Nos. 333 to - 333

Boron-containing compounds often have a boron atom with only three bonds (and no lone pairs) two structure have been assigned to BF_{3}

I

333. Select the correct statements
a) Octet of F is complete in I and II but octet of B is incomplete in I but complete in II
b) Octets of F and B are complete in I and II
c) Octets of F and B are incomplete in I and II
d) Octet of F is complete in I and II but octet of B is complete in I but incomplete in II

Paragraph for Question Nos. 334 to - 334

Consider the following molecules and answer the questions given
I: $\mathrm{H}_{2} \mathrm{O}$;
$\mathrm{II}: \mathrm{CO}_{2}$;
III: NH_{3}
IV: CCl_{4};
V: CIF
334. In which compound are the bonds most polar?
a) $\mathrm{H}_{2} \mathrm{O}$
b) CO_{2}
c) CCl_{4}
d) ClF

Paragraph for Question Nos. 335 to - 335

The platinum-chlorine distance has been found to be $2.32 \AA$ in several crystalline compounds. This value applies to both of the compounds shown in the figure

(A)

(B)

Based on the above structures, answer the following questions
335. $\mathrm{Cl}-\mathrm{Cl}$ distance in structure (A) is
a) $2.32 \AA$
b) $4.64 \AA$
c) $1.16 \AA$
d) $9.28 \AA$

Paragraph for Question Nos. 336 to - 336

By the following method you can predict the geometrical shape of species with only one central atom, without first drawing the Lewis structure

1. Total number of electron pairs $=$ (number of valence electrons \pm electrons (for ionic charge)/2
2. Number of bond electron pairs $=$ number of atoms -1
3. Number of electron pairs around central atom $=$ total number of electron pairs -3 [number terminal atoms (except H)]
4. Number lone pair $=$ (number of central electron pairs - number bond pairs - number bond pairs)

Read the above method and answer the following questions
336. If A is the central element of the molecule containing A and X element and E the number of electron pairs round it then VSEPR notation $A X_{3} E$ will be for the molecules
a) $\mathrm{PCl}_{5}, \mathrm{ICl}_{4}^{-}$
b) $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{NH}_{3}, \mathrm{ClO}_{3}^{-}$
d) $\mathrm{ICl}_{4}^{-}, \mathrm{ClO}_{3}^{-}$

Paragraph for Question Nos. 337 to - 337

Read the following short write-up and answer the questions at the end of it
In certain polar solvents PCl_{5} undergoes an ionization reaction in which Cl^{-}ion leaves one PCl_{5} molecule and attaches itself to another
$2 \mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{4}^{+}+\mathrm{PCl}_{6}^{-}$
337. Select the incorrect statement (s)
a) Dissociation is a redox reaction
b) Hybridization changes from $s p^{3} d$ to $s p^{3} d^{2}\left(\mathrm{PCl}_{6}^{-}\right)$and $s p^{3}\left(\mathrm{PCl}_{4}^{+}\right)$
c) Structure changes from trigonalbipyramidal to tetrahedral $\left(\mathrm{PCl}_{4}^{+}\right)$and octahedral $\left(\mathrm{PCl}_{6}^{-}\right)$
d) None of the above is incorrect

Paragraph for Question Nos. 338 to - 338

Read the following short write-up and answer the questions at the end of it
"Each of the following compounds has a nitrogen-nitrogen bond"
(A) $\mathrm{N}_{2}, \quad(B) \mathrm{N}_{2} \mathrm{H}_{4}(C) \mathrm{N}_{2} \mathrm{~F}_{2}$

Molecules may be polar or non-polar, that is dependent on the electronegativity difference between two atoms.
Their bond-lengths (between N-atoms) have been $1.45 \AA, 1.10 \AA$ and $1.22 \AA$ but not in correct order
338. Compounds have been matched with their bond-length (between N -atoms). Which is not the correct matching?
a) $A-1.10 \AA$
b) $B-1.45 \AA$
c) $C-1.22 \AA$
d) None of these

Paragraph for Question Nos. 339 to - 339

Read the following short-write up and answer the questions at the end of it
"Methyl isocyanate is used to make certain pesticides. In December 1984, water leaked into a tank containing
this substance at a chemical plant, producing a toxic cloud that killed thousands of people in Bhopal
339. Which is not the resonance structure of methyl isocyanate?
a) $\mathrm{CH}_{3}-\ddot{\mathrm{N}}=\mathrm{C}=\ddot{\mathrm{O}}$:
b)

c)

d)

Paragraph for Question Nos. 340 to - 340

Assume following structure of $\mathrm{N}_{2} \mathrm{O}$ and answer the questions

340. Which is the most favourable structure?
a) I
b) III
c) V
d) VI

Paragraph for Question Nos. 341 to - 341

We consider dissociation energy of different species

Species	Dissociationenergy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
O_{2}^{+}	642.9
O_{2}	493.6
O_{2}^{-}	395.0
$\mathrm{~N}_{2}^{+}$	840.7
$\mathrm{~N}_{2}^{-}$	765.0
$\mathrm{~N}_{2}$	941.7
NO^{+}	1046.9
NO^{-}	626.9
NO^{-}	487.8

Answer the following questions
341. In which cases bond-order increases?
a) O_{2} changes to O_{2}^{+}
b) N_{2} changes to N_{2}^{+}
c) NO changes to NO^{-}
d) In all case

Paragraph for Question Nos. 342 to - 342

Dipole moment of a bond is a vector and physical quantity to calculate the percentage ionic character in a covalent bond. It is expressed as :

$$
\text { Dipole moment }(\mu)=\vec{\delta} \times d
$$

Where, δ is dipole moment and d is the bond length.
It is usually expressed in terms of CGS unit known as Debye (D) $1 \mathrm{D}=10^{-18}$ esu.cm. In SI unit it is expressed in Coulomb meter Resultant dipole moment (μ_{R}) of two bond moments (μ_{1} and μ_{2}) acting at an angle θ, is given by :
$\mu_{R}=\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+2 \mu_{1} \mu_{2} \cos \theta}$

If $\mu_{1}=\mu_{2}$, also if $\cos \theta=1$, i.e., $\theta=180^{\circ}$ then $\mu=0$. (molecule is nonpolar)
If $\mu \neq 0$ molecule is polar.
Dipole moment plays an important role in deciding the stability order of alkanes, i.e, a more stable alkane has less dipole moment. The dipole moment of a molecule can predict the geometrical and position isomers as well as orientations in benzene nucleus and polarity of molecule.
342. Dipole moment of HCl molecule is found to be 0.816 D . Assuming HCl bond length to be equal to $1 \AA \AA$, the $\%$ ionic character of HCl molecule is :
a) 10%
b) 17%
c) 27%
d) 37%

Integer Answer Type

343. Number of electron pairs in SF_{6} at the corners of octahedron are \qquad
344. Number of shell in which valence electrons of iodine lies \qquad
345. In a very ideal imaginary condition, a sample of ice was taken, and its osmotic pressure was found to be 0.274 atm at 300 K (density $1 \mathrm{~g} / \mathrm{mL}$). Thus, number of water units attached to one water unit is.....
346. Based on VSEPR theory, number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ in BrF_{5} is \qquad
347. What is formal charge on F in BF_{3} ?
348. Maximum number of atoms which can be attached on N -atom is
349. Number of unpaired electron(s) in O_{2}^{-}is/are.....
350. Bond order of BN is \qquad
351. Formal charge on sulphur in SO_{2} is.....
352. Ratio of bond pair-lone pair electrons in XeOF_{2} is \qquad
353. In a compound of Xe, F and $\mathrm{O} \mathrm{Xe}=60.4 \%$ (131.3), $\mathrm{F}=17.5 \%$ (19.0) Thus, number of oxygen atom.....
354. Bond order of NO^{+}is \qquad
355. Assuming $\mathrm{C}_{6} \mathrm{H}_{6}$ ring a regular hexagon and C -I bond lies on the line through the centre of hexagon. If the distance between adjacent carbon is $1.40 \AA$, the I-I distance in \AA is....

356. What is the ratio of σ and π bonds in benzene?
357. Based on VSEPR theory, the number of $90^{\circ} \mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5} is.....
358. $A X_{4}$ forms square planar type structure. Distance between A and X atoms is 4 units then distance between two X atom in trans position is....
359. Total number of orbitals involved in the formation of hybrid orbitals in ClF_{2}^{+}is.....
360. The dipole moment of $A B$ is $1.6 \times 10^{-30} \mathrm{~cm}$. If intermolecular distance is $2.0 \times 10^{-10} \mathrm{~m}$, the \% ionic character of $A B$ is \qquad
361. How many of the following have incomplete duplet or octet on central atom? $\mathrm{BeCl}_{2}, \mathrm{BH}_{3}, \mathrm{NH}_{4}^{+}, \mathrm{H}^{+}, \mathrm{H}^{-}, \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{3}, \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}, \mathrm{CH}_{2}$
362. Steric number of CH_{4} is.....
363. Number of electron pairs in XeF_{4} at the corners of square are
364. Bond order for CO is ...
365. In O_{3}, central oxygen involved in the formation of hybrid orbitals in ClF_{2}^{-}is....
366. How many maximum number of H atom are in the same plane in $\mathrm{B}_{2} \mathrm{H}_{6}$?
367. Difference of σ and π bonds in $\mathrm{C}(\mathrm{CN})_{4}$ is.....
368. Superoxide ion has \qquad electrons in antibonding molecular orbitals
369. Total number of orbitals involved in the formation of hybrid orbitals in ClF_{2}^{-}is.....
370. Number of hybride orbitals in XeF_{4} is.....
371. Bond-order in NO^{+}is.....
372. A slightly polar molecule $A B$ has dipole moment of 0.24 D. If bond-length is $1 \AA$, ionic character is.... $\%$
373. Steric number of $\mathrm{H}_{2} \mathrm{O}$ is.....
374. Number of unpaired electrons in $\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]$ is \qquad
375. Lone pairs in I_{3}^{-}are.....
376. How many of the following cases hybridization state of underlined atom changes?
$\overline{\mathrm{N}} \mathrm{H}_{2}+\underline{\mathrm{SO}}_{3} \rightarrow\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$
$\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}_{2}$
$2 \mathrm{PCl}_{5} \longrightarrow{\stackrel{\oplus}{\mathrm{P}} \mathrm{P}_{4}}^{+} \mathrm{PCl}_{6}^{\ominus}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{AlH}_{3}+\mathrm{H}^{-} \rightarrow \mathrm{AlH}_{4}^{-}$
$20=\underline{0} \rightarrow 0 \rightarrow 3 \mathrm{O}_{2}$
$\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{CCl}} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{C}}+\mathrm{Cl}^{-}$
377. Out of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$, d-dichlorobenzene, o-cresol, p-xylene, $\mathrm{SCl}_{2}, \mathrm{BF}_{3}, \mathrm{IBr}$ and $\mathrm{CH}_{2} \mathrm{O}$, nonzero value of dipole moment is of....

1)	a	2)	c	3)	a	4)	a	189)	a	190)	a	191)	a	192)
5)	c	6)	d	7)	C	8)	d	193)	b	194)	a	195)	a	196)
9)	C	10)	d	11)	a	12)	a	197)	b	198)	b	199)	b	200)
13)	d	14)	b	15)	C	16)	d	201)	a	202)	b	1)	b,c	2)
17)	d	18)	d	19)	d	20)	a		3)	b,d	4)	a,b,c,d		
21)	b	22)	a	23)	C	24)	b	5)	a,c	6)	b	7)	a,b,d	8)
25)	d	26)	d	27)	d	28)	c		a,c,d					
29)	a	30)	a	31)	b	32)	a	9)	b,c,d	10)	a,b,c,d	11)	d	12)
33)	d	34)	c	35)	c	36)	a	13)	a,c,d	14)	a,b,c,d	15)	d	16)
37)	c	38)	a	39)	a	40)	a		a,d					
41)	a	42)	d	43)	c	44)	b	17)	b,c	18)	a,c	19)	b,c,d	20)
45)	b	46)	d	47)	C	48)	d		a,b,c					
49)	b	50)	d	51)	d	52)	d	21)	a,b	22)	b,c	23)	b,c,d	24)
53)	c	54)	b	55)	b	56)	b		a,c					
57)	d	58)	d	59)	d	60)	b	25)	a,b	26)	a,b,c	27)	a,b,d	28)
61)	a	62)	b	63)	d	64)	b		a,c,d					
65)	b	66)	d	67)	a	68)	a	29)	a,b,d	30)	b,d	31)	a,b,c	32)
69)	a	70)	c	71)	b	72)	a		a,c					
73)	c	74)	b	75)	C	76)	a	33)	a,c,d	34)	a,b,c	35)	a,b,c	36)
77)	a	78)	a	79)	d	80)	a		a,b,d					
81)	c	82)	b	83)	d	84)	a	37)	a,b,c	38)	b,c	39)	a	40)
85)	b	86)	a	87)	d	88)	d		a,b					
89)	b	90)	d	91)	d	92)	b	41)	b,c	42)	a,b,c,d	43)	a,b	44)
93)	c	94)	d	95)	d	96)	c	45)	b,c,d	46)	a,c	47)	b,c,d	48)
97)	b	98)	c	99)	a	100)	d	49)	a,b,c	50)	c	51)	b,c,d	52)
101)	C	102)	a	103)	b	104)	b		a,b,c,d					
105)	c	106)	d	107)	C	108)	c	53)	a,b,c	54)	b,c,d	55)	b,c,d	56)
109)	d	110)	b	111)	a	112)	b	57)	b,c	58)	a,c,d	59)	b,d	60)
113)	d	114)	a	115)	C	116)	b		a,c,d					
117)	d	118)	a	119)	d	120)	d	61)	b,d	62)	a,b	63)	a,c,d	64)
121)	a	122)	a	123)	a	124)	b	65)	b,c,d	66)	a,b	67)	b,c,d	68)
125)	a	126)	d	127)	b	128)	b		a,b,c,d					
129)	C	130)	c	131)	C	132)	c	69)	a,b,d	70)	a,b,c,d	1)	a	2)
133)	b	134)	d	135)	a	136)	b		3)	a	4)	b		
137)	a	138)	a	139)	d	140)	c	5)	b	6)	b	7)	b	8)
141)	C	142)	c	143)	a	144)	b	9)	a	10)	d	11)	C	12)
145)	d	146)	c	147)	d	148)	d	13)	d	14)	a	15)	c	16)
149)	c	150)	b	151)	c	152)	c	17)	c	18)	c	19)	c	20)
153)	C	154)	a	155)	C	156)	a	21)	c	22)	a	23)	C	24)
157)	c	158)	b	159)	d	160)	d	25)	b	26)	a	27)	a	28)
161)	c	162)	d	163)	a	164)	b	29)	d	30)	b	31)	b	32)
165)	a	166)	d	167)	d	168)	c	33)	d	34)	c	35)	b	36)
169)	a	170)	d	171)	a	172)	b	37)	c	38)	d	39)	b	40)
173)	c	174)	b	175)	d	176)	a	41)	b	1)	b	2)	d	3)
177)	c	178)	d	179)	a	180)	c		4)	d				
181)	a	182)	c	183)	c	184)	c	5)	c	6)	b	7)	c	8)
185)	a	186)	a	187)	c	188)	a	9)	a	10)	a	11)	a	12)

13)	b	14)	a	15)	a	16)	c
17)	d	1)	c	2)	c	3)	a
	4)	a					
5)	b	6)	c	7)	d	8)	d
9)	c	10)	b	11)	a	12)	b
1)	6	$2)$	5	$3)$	4	4)	0
5)	0	$6)$	4	$7)$	1	8)	2
9)	0	$10)$	2	$11)$	3	$12)$	3
13)	7	$14)$	4	$15)$	8	$16)$	8
17)	4	$18)$	5	$19)$	5	$20)$	4
21)	4	$22)$	3	$23)$	3	$24)$	4
25)	0	$26)$	7	$27)$	5	$28)$	6
29)	3	$30)$	5	$31)$	4	$32)$	1
33)	3	$34)$	5	$35)$	7		

: HINTS AND SOLUTIONS :

1 (a)
Partially filled bonds or overlapping bonds represent metal
2 (c)
(c)

9σ - bond $\left[\begin{array}{l}1(\mathrm{C}-\mathrm{O}) \sigma \text { bond } \\ 1(\mathrm{O}-\mathrm{H}) \sigma \text { bond } \\ 5(\mathrm{C}-\mathrm{H}) \sigma \text { bonds } \\ 2(\mathrm{C}-\mathrm{C}) \sigma \text { bonds }\end{array}\right.$
1π bond $[1(\mathrm{C}-\mathrm{C}) \pi$ bond
Two lone pairs on O -atom
3 (a)

	Electrons	Bond order	Ligand
CN^{-}	14	3	Strong
CO	14	3	Strong
NO^{+}	14	3	weak

4 (a)
Due to H-bonding in water molecules, water has high density
(c) NF_{3}

one lone pair, $s p^{3}$ three $(N-F)$ bonds (pyramidal)

no lone pair, $s p^{2}$
(triangular planar)

Thus, NF_{3} and $\mathrm{H}_{3} \mathrm{O}^{+}$are identical and BF_{3} and NO_{3}^{-}are identical
6 (d)
Force of attraction between cation and anion is
$F=\frac{k z_{1} z_{2} e^{2}}{r^{2}}$
Where, k is dielectric constant of the medium. z_{1} and z_{2} are charges on cation and anion, and r the internuclear distance

Size ofCl ${ }^{-}>\mathrm{O}^{2-}$
$\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
Charge onCa ${ }^{2+}>\mathrm{K}^{+}$
$\mathrm{O}^{2-}>\mathrm{Cl}^{-}$
7 (c)
C
8 (d)
Bond order
I. $\mathrm{O}_{2}^{2-} \quad 1$
$\mathrm{O}_{2} \quad 2 \quad$ Stronger
II. $\mathrm{N}_{2} \quad 3 \quad$ Stronger
$\mathrm{N}_{2}^{+} \quad 2.5$
III. $\mathrm{NO}^{+} 3$ Stronger
$\mathrm{NO}^{-} \quad 2$
Larger the bond order, greater the bond energy
11 (a)

Species	Electrons	Bond order
I. CN^{-}	14	3.0
II. O_{2}^{-}	17	1.5
III. NO^{+}	14	3.0
${\text { IV. } \mathrm{CN}^{+}}^{2}$	12	2.0

I and II have same bond-order
(b)

(a) $[\mathrm{Xe}]$

$s p^{3} d$

(a) XeF_{2}	3	2
(b) XeF_{4}	2	4
(c) $\mathrm{H}_{3} \mathrm{O}^{+}$	1	3

(d) $\mathrm{XeF}_{6} \quad 1$

15 (c)
In (c), octet of Cl and O is completed as for Lewis structure
In (a), (b) and (d), octets of C, N and O as expected are not complete
16 (d)
(d)

Due to $l p-b p$ repulsion, tetrahedral geometry is distorted to pyramidal geometry
18 (d)
P -atom is $s p^{3}$-hybridised. Thus, p-character in P_{4} is 75%

20 (a)
M.O. theory explains filling of electrons in bonding and antibonding M.O. If there are unpaired electrons in theses orbitals then paramagnetic
21 (b)
When a chemical bond is formed, potential energy decreases

22 (a)
In O_{2} molecule, the total number of electrons $=16$ Electronic distribution in molecular orbital of
$\mathrm{O}_{2}=\sigma 1 s^{2}, \stackrel{*}{\sigma} 1 s^{2}, \sigma 2 s^{2}, \stackrel{*}{\sigma} 2 s^{2}, \sigma 2 p_{x}^{2}\left(\pi 2 p_{y}^{2}, \pi 2 p_{z}^{2}\right)$
, $\left({ }_{\pi}^{*} 2 p_{y}^{1},{ }_{\pi}^{*} 2 p_{z}^{1}\right)$
Bond order in $\mathrm{O}_{2}=\frac{1}{2}\left[N_{b-} N_{a}\right]=\frac{1}{2}[10-6]=2.0$
In $\mathrm{O}_{2}^{+}=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2}$
$\left(\pi 2 p_{y}^{2}=\pi 2 p_{z}^{2}\right),\left({ }_{\pi}^{*} 2 p_{y}^{1}\right)$
Bond order in $\mathrm{O}_{2}^{+}=\frac{N_{b-} N_{a}}{2}=\frac{10-5}{2}=2.5$
23 (c)
Formal charge $=v-\frac{s}{2}-u$
Where, $v=$ valence electrons
$s=$ shared electrons (forming bonds)
$u=$ unshared electrons
$|: \ddot{O}=N=\ddot{O}:|^{+}$

On oxygen atom $\left[\begin{array}{l}v=6 \\ s=4 \\ u=4\end{array}\right.$
Thus, formal charge $=6-\frac{4}{2}-4$
$=6-2-4=0$
24 (b)
H^{+}: no electro
H^{-}: one lone pair H^{-}:
H_{2} : no lone pair
He^{2+} : no lone pair
(d)
(a)

(b) $\left[\mathrm{H}_{3} \mathrm{~N} \rightarrow \mathrm{BH}_{3}\right]$ Yes
(c)

(d)

(c)

These is delocalization of π-electrons in phenoxide ion, giving various resonating structures

(a)
B_{2} (10)
$\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \pi 2 p_{y}^{2}$
$N_{B}=6$
$N_{A}=4$
BO diamagnetic $=\frac{6-4}{2}=1$
30 (a)
$\mathrm{KO}_{2} \rightleftharpoons \mathrm{~K}^{+}+\mathrm{O}_{2}^{-}$(one unpaired electron)
NO_{2}^{+}(no unpaired electron)
$\mathrm{BaO}_{2} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{O}_{2}^{2-}$ (no unpaired electron)
AlO_{2}^{-}(no unpaired electron)
32 (a)

	Electrons	Structure

NO_{3}^{-}	$7+24+1$	Triangular
CO_{3}^{2-}	$\begin{aligned} & 32 \\ & 6+24+2 \end{aligned}$	Triangular
ClO_{3}^{-}	$\begin{aligned} & = \\ & 32 \end{aligned}$	Pyramidal
SO_{3}	$\begin{aligned} & 17+24+1 \\ & = \\ & 42 \\ & 16+24= \\ & 40 \end{aligned}$	Triangular

33 (d)

Electrons Bond

order

N_{2}	14	3.0	
$\mathrm{~N}_{2}^{+}$	13	2.5	decreases
O_{2}	16	2.0	
O_{2}^{+}	15	2.5 increases	

34 (c)
Third period and further periods involve s, p and d-orbitals for bonding. Thus, octet rule is generally violated
35 (c)

Complex ions	\boldsymbol{Z} (ato- mic numbe r of me tal)	ON	Liga- nd	Unp a ired elec t ron
A.	24	+2	Weak	4
CrF $_{6}^{4-}$	25	+2	Weak	5
B.	24	+2	Strong	2
MnF_{6}^{4-}	25	+2	Strong	1
$\mathrm{C.}^{\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}}$				
D.				
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$				

36 (a)

Three $(\mathrm{C}-\mathrm{H})$ bonds and one lone pair $=$ four hybride orbitals
Thus, $s p^{3}$
37 (c)
There is maximum association by intermolecular H -bonding in $\mathrm{H}_{2} \mathrm{O}$ thus high boiling point and least volatile
38 (a)
$\mathrm{Mg}_{2} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$

Two σ and two π bonds

39 (a)
In NO_{3}^{-}ion, total number of electrons $=$ $7+24+1=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbitals $=\frac{V-8 B}{2}+B=\frac{24-8 \times 3}{2}+3$
($V \rightarrow$ total number of electrons in valence shell
$B \rightarrow$ probability of formation of bond)
In CO_{3}^{2-} ion, total number of electrons $=$ $6+24+2=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbital $=\frac{24-8 \times 3}{2}+3=3$
Hence, NO_{3}^{-}and CO_{3}^{2-} ions are isoelectronic and isostructural.
(a)
$\mathrm{PF}_{3} \mathrm{Cl}_{2}: s p^{3} d$ hybridisation on P

Three hybride orbitals are at 120° and other two are at 90° with one each other. Thus, trigonal bipyramidal structure
41 (a)
N has incomplete octet
$\mathrm{H}-\mathrm{N}=\stackrel{\oplus}{\mathrm{N}}=\mathrm{N}^{\ominus} \longleftrightarrow \mathrm{H}-\stackrel{\oplus}{\mathrm{N}} \equiv \mathrm{N}=\mathrm{N}^{\ominus}$ are true structure
(d)

I :
 polar, $\mu>0$

II :
 $\xi=0$, being symmetrical and without lone pair

III :

Thus, II and III are non-polar
43 (c)
$(\mathrm{C}-\mathrm{H})$ bond length is in order
$\mathrm{C}-\mathrm{C}-\mathrm{H}>\mathrm{C}=\mathrm{C}-\mathrm{H}>\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
$s p^{3} s p^{2} s p$
44 (b)
l_{3}^{-}is formed when l^{-}(Lewis base) donated one lone pair to l_{0} (Lewis acid)
$\because \ddot{l}-\ddot{a}: \ddot{l}^{\ominus}$
Thus, lone pair on central atom $=$ Three and bond pair = Two
Thus, $X=2$
$Y=3$
(d)

Smaller the cationic size, larger the charge, larger the polarizing power
Size $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{Ca}^{2+}$
and charge $+3>+2>+1$
49
(b)
(b) $\mathrm{O}=\ddot{\mathrm{O}}: \rightarrow \ddot{\mathrm{O}}$:

$$
s p^{2}
$$

Central 0 -atom has one σ bond one coordinate bond and one lone pair
Thus, $s p^{2}$ hybridised
50 (d)
Smaller the size of the atom, greater the force of attraction hence greater the dissociation energy. Thus, element D with smallest size forms strongest $(C-D)$ bond
51 (d)
(d)

$\mu>0$

$\mu=0$ (due to symmetry)
(a) Incorrect
(b) $\mu_{\mathrm{NH}_{3}}>\mu_{\mathrm{BF}_{3}}$ thus incorrect
(c) Due to lone pair of $\mathrm{N}, \mathrm{NH}_{3}$ has pyramidal geometry thus incorrect
(d) Correct

53 (c)
(c)

intramolecular H -bonding in o nitrophenol involves only single molecule thus low b.p. and high volatile

Intermolecular H -bonding in p-nitrophenol involves larger number of molecules thus high boiling point thus low volatile nature
54
(b)

||
(a) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}-\mathrm{H} \xrightarrow[\text { Cao } / \mathrm{NaOH}]{\Delta} \mathrm{CH}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ $\uparrow \uparrow$
$s p^{3} s p^{3}$
No change
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
$s p^{3} s p^{2}$
Thus there is change
(c) $\mathrm{CH}_{3} \mathrm{CH}_{3} \xrightarrow{\mathrm{Cl}_{2}, h v} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
$\uparrow \uparrow$
$s p^{3} s p^{3}$
No change
(d)

No change
(d)
OSF_{2} has pyramidal shape

60 (b)
Number of lone pair in XeOF_{4} is one (1). The structure of XeOF_{4} is given as follows :

One π-bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.
61 (a)
I: $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ ionic bond
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ has coordinate bonds with Fe^{2+} and CN^{-}
CN^{-}has covalent bonding $\mathrm{N} \equiv \mathrm{C}^{\ominus}$
II: $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \quad$ ionic bond
NH_{4}^{+}has covalent and coordinate bond

III: $\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \quad$ ionic bond
SO_{4}^{2-} has covalent and coordinate bond

or
Thus, $\left[\begin{array}{c}\mathrm{O} \\ \uparrow \\ \mathrm{O}-\mathrm{S}-\mathrm{O}^{-} \\ \downarrow \\ \mathrm{O}\end{array}\right]$
62 (b)
(a) CS_{2} non-polar
(b) RaCl_{2} ionic
(c) HCN weak acid
(d) F_{2} non-polar

64 (b)
I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.
66 (d)
(d) (a) $\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl} s p$-linear
(b) $\mathrm{I}_{2} \leftarrow \mathrm{I}^{-}$

Lewise Lewis
acid base
There are three lone-pairs and two bond-pairs in the outer-shell of central atom. To minimize repulsive forces, three lone pairs occupy the equatorial position

Thus, linear bond angle 180°
$s p$-linear
(c) $\mathrm{S} \stackrel{\downarrow}{=} \mathrm{C}=\mathrm{S}$
(d) lCl_{2}

67 (a)
O_{2} (16)
$=(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi^{2}\right.$ Anti bonding M.O. has two unpaired electrons, hence, O_{2} is paramagnetic
68 (a)
$A \rightarrow A^{+}+e^{-}$
$B+e^{-} \rightarrow B^{-}$
$A^{+}+B^{-} \rightarrow\left(A^{+} B^{-}\right)$
A^{+}is formed when ionization energy of A is low
B^{-}is formed when electron affinity of B is high
69 (a)
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} d^{2} s p^{3}$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} d s p^{2}$
$\left[\mathrm{Pt}(\mathrm{en})_{2}\right]^{2+} d s p^{2}$
Thus, (a) is correct
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{3+} s p^{3} d^{2}$
$\left[\mathrm{CoF}_{6}\right]^{3-} s p^{3} d^{2}$
$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} d^{2} s p^{3}$
Thus, (b) is not correct
$70 \quad$ (c)
$\mathrm{Ca}_{20}:[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
Ca^{2+} : [Ar] noble gas configuration
$\mathrm{Cd}_{48}:[\mathrm{Kr}]_{36} 5 s^{2} 4 d^{10}$
$\mathrm{Cd}^{2+}:\left[[\mathrm{Kr}]_{36} 4 d^{10}\right] 10+6+\underbrace{6+2}_{s^{2} p^{6}}=18$
Electrons configuration of outer shell decreases screening effect, hence polarization of
$\mathrm{Cd}^{2+}>\mathrm{Ca}^{2+}$
71 (b)
Compounds which are insoluble in water have covalent bonds. Due to their low boiling points, there are highly volatile
$72 \quad$ (a)
(a)

When $(\mathrm{C}=\mathrm{C})$ bond and $(\mathrm{C} \equiv \mathrm{C})$ bond are present, numbering is done from $(\mathrm{C}=\mathrm{C})$ side. Thus,
$\left(\mathrm{C}_{2} \sigma \mathrm{C}_{3}\right)$ is formed by $\left(s p^{2}-s p\right)$ overlapping
74 (b)
Only σ single bond one σ, one π one σ, two π triple

I double bond II bond III
Both length I $>I I>I I I$ Thus, (a) is correct
Both energy I $<I I<I I I$ Thus, (c) is correct

π bond reacts than π bond is weaker than σ bond. Thus, (b) is incorrect
$\mathrm{H}_{2} \mathrm{O}$ molecules are associated by H -bonding and thus making it liquid

Thus, (d) is correct

75 (c)
Smaller the size of cation
Larger the size of anion,
Larger the charge,
Larger the polarizing power and thus smaller the ionic character
$\mathrm{Li}^{+}<\mathrm{Mg}^{2+}<\mathrm{Cs}^{+}$size
$+1<+2$ charge
$\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{l}^{-}$size
Thus, (c) has maximum ionic character
76 (a)
$\mathrm{H}-\mathrm{Cl}$ is formed by sharing of electron pair
between H and Cl
$\mathrm{H} \times \stackrel{\ddot{\mathrm{C}}}{\cdot} \cdot(\mathrm{H}-\mathrm{Cl})$ Thus non-polar
Since, Cl is more electronegative than H , hence bonding pair is pulled by Cl making it polar
$\delta+\delta$ -
$\mathrm{H}-\mathrm{Cl}$
77 (a)
$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$
Mg^{2+} is formed by low (IE) of Mg
$0+2 \mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}$
O^{2-} is formed by high (EA) of 0
78 (a)
(a) $\mathrm{CH}_{2}=\overparen{\mathrm{CH}}-\mathrm{CH} \stackrel{\ominus}{=} \mathrm{CH}_{2} \longleftrightarrow \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{\ominus}$

Due to resonance all ($\mathrm{C}-\mathrm{C}$) bond lengths are $1.46 \AA$ (which is less than C - C bond and larger than $\mathrm{C}=\mathrm{C}$ bond)
79 (d)
For $\mathrm{KO}_{2}, \mathrm{O}_{2}^{-}$has unpaired electron so, it is paramagnetic.
O_{2}^{-}(17)
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left(\sigma 2 p_{y}^{2}=\sigma 2 p_{z}^{2}\right)$,
${ }_{\pi}^{*} 2 p_{y}^{2}={ }_{\pi}^{*} 2 p_{z}^{1}$
80 (a)
As two H atoms approach each, there is stable bond formation where P.E. is minimum as shown in (a)
81 (c)
N and C (second period elements) lack d-orbitals.
Hence, $p \pi-d \pi$ overlap would be present in PO_{4}^{3-}
(b)
$\mathrm{l}^{-}+\mathrm{l}_{2} \rightarrow \mathrm{l}_{3}^{-}$
I^{-}is electron-pair donor thus is a Lewis-base
l_{2} is electron-pair acceptor thus it is a Lewis-acid [$\mathrm{l}^{-} \rightarrow \mathrm{l}_{2}$]
83
(d)

$\operatorname{Fe}(26):[\mathrm{Ar}] 3 d^{6} 4 s^{2}$| | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

N (unpaired electron) = zero
Thus, magnetic moment $=\sqrt{N(N+2)} B M=0$
$\left[\mathrm{FeF}_{6}\right]^{3-}$

$\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 d^{5}$| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Fe^{3+} with weak ligand (F^{-}) -no change-
$\left[\mathrm{FeF}_{6}\right]^{3-}:[\mathrm{Ar}] 3 d^{5}$

N (unpaired electrons) $=5$
Magnetic moment $=\sqrt{N(N+2)} \mathrm{BM}$
$=\sqrt{35} \mathrm{BM}=5.92 \mathrm{BM}$
86 (a)
$\mu=e \times l$
$e=\frac{\mu}{l}=\frac{1.2 \mathrm{D}}{1.0 \AA}=\frac{1.2 \times 10^{-18} \mathrm{esu} \mathrm{cm}}{1.0 \times 10^{-8} \mathrm{~cm}}$
$=1.2 \times 10^{-10} \mathrm{esu}$
Charge on electron $=4.8 \times 10^{-10}$ esu
Thus, fraction of charge $=\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}}=0.25$
(d)

Covalency is in covalent compound and is equal to number of valence shell electron in s - and p orbitals

GroupExamples covalency	$\frac{\text { Valnce electrons }}{\boldsymbol{s}}$ Maximum			
13	B	2	1	3
14	Si	2	2	4
15	P	2	3	5
16	S	2	4	6
17	Cl	2	5	7

89 (b)
(b) $\mathrm{H} \stackrel{\sigma}{\sigma} \underset{\mathrm{H}}{\mathrm{C}} \underset{\mathrm{H}}{\stackrel{\sigma}{\pi}} \underset{\mid}{\mathrm{C}} \mathrm{C}$
$\mathrm{C}-\mathrm{H}$ bonds are always σ
90 (d)
A molecule is stabilized if
(a) bond order increases
(b) electron is removed from antibonding M.O. of
higher energy
Electrons Bond order

C_{2}	12	2.0

C_{2}^{+}	11	1.5

CN $13 \quad 2.5$
$\mathrm{CN}^{+} \quad 12 \quad 2.0$
$\begin{array}{lll}\mathrm{N}_{2} & 14 & 3.0\end{array}$
$\begin{array}{lll}\mathrm{N}_{2}^{+} & 13 & 2.5\end{array}$
$\begin{array}{lll}\mathrm{O}_{2} & 16 & 2.0\end{array}$
$\mathrm{O}_{2}^{+} \quad 15 \quad 2.5$ (two electrons in anti
bonding M.O.)
Thus, O_{2}^{+}is stabilised
91 (d)
(d)

paramagnetic
Thus, (a) is correct
$2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$
In $\mathrm{N}_{2} \mathrm{O}_{4}$ formation, unpaired electron is used.
Thus, paramagnetism is lost
Thus, (b) is correct
It is one coordinate bond. Thus, (c) is correct
There is no triple bond. Thus (d) is incorrect
92 (b)
(a) $\mathrm{NaBr} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Br}^{-}$only ionic
(b) $\mathrm{Ba}(\mathrm{CN})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{CN}^{-}$
Ba^{2+} and CN^{-}are joined by ionic bond
CN^{-}has covalent bond ${ }^{-} \mathrm{C} \equiv \mathrm{N}$
(c) PCl_{5} only covalent
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ only covalent

93 (c)
(c)

There is no lone pair on SO_{3} and also molecule is symmetrical, hence dipole moment is zero
94 (d)
$\left.\mathrm{NH}_{3}\right]$ Trigonal pyramidal due to
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ ip $-b p$ repulsion (instead of tetrahedral In $\mathrm{N}\left[\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right]_{3}$ structure is triangular planar as lone pair on N -atom is transferred to the empty d-orbitals of silicon ($p \pi-d \pi$ overlapping and its Lewis base character is lost. Thus, II, II, I
(b)
(b)

Thus, hybridization of Al is affected when AlH_{3} changes to AlH_{4}^{-}hybridisation of Al changes from $s p^{2}$ to $s p^{3}$
(c)
(c)

Based on (electronegativity) difference ($\mathrm{C}-0$)
bond is polar. But dipole moment of one ($\mathrm{C}-0$) side is compensated by that of other $(\mathrm{C}-0)$ side
$\mu_{\text {Total }}=\vec{\mu}_{1}+\vec{\mu}_{2}$
$=\vec{\mu}_{1}+\vec{\mu}_{2}=0$
99 (a)

$$
\mathrm{CO}(14)=\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{y}^{2}
$$

$$
=\pi 2 p_{z}^{2}, \sigma 2 p_{x}^{2}
$$

$\mathrm{BO}=\frac{N_{b}-N_{a}}{2}=\frac{10-4}{2}=3$
$\mathrm{NO}^{-}(16)=$
$\sigma 1 s^{2},{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2},{ }_{\sigma}^{*} 2 s^{2}, \sigma 2 p_{x}^{2},\left(\pi 2 p_{y}^{2}=\pi 2 p_{z}^{2}\right)$,
${ }_{\pi}^{*} 2 p_{y}^{1}={ }_{\pi}^{*} 2 p_{z}^{1}$
BO $=\frac{10-6}{2}=2$
NO^{+}(13); $\mathrm{BO}=3$
CN^{-}(14); $\mathrm{BO}=3$
$\mathrm{N}_{2}(14) ; B O=3$
Hence, bond order of NO^{-}is different from that of CO.
100 (d)
(d) (a)
 $\mu>0 \mu=2 \mu_{\mathrm{C}-\mathrm{X}} \cos \left(\frac{\theta}{2}\right)$
$=+\mathrm{ve}$
(b)

$\mu>0 \mu=\mathrm{I}+\mathrm{II}$
(c)

$\mu>0 \mu=\mathrm{I}+\mathrm{II}$
$=+\mathrm{ve}$
($\mathrm{I}>\mathrm{II}$)

101 (c)
(c) $\mathrm{Cl}-\mathrm{As}-\mathrm{Cl}$
Cl
Cl

$A B+B C=A C$
$r_{\mathrm{As}}+r_{\mathrm{Cl}}=A C=2.20$
$r_{\text {As }}+0.99=2.20$
$r_{\mathrm{As}}=2.20-0.99=1.21 \AA$
Oxygen has complete octet
103 (b)
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ (with (${ }^{-} \mathrm{O}-\mathrm{O}^{-}$) linkage) is formed when $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(peroxydisulphuric acid) is hydrolysed

peroxy linkage
104 (b)
Electronegativity of Cl is too low to form H bonding
105 (c)
$\mathrm{CsBr}_{3} \rightarrow \mathrm{Cs}^{\oplus}+\mathrm{Br}_{3}^{\ominus} \quad\left(\mathrm{Br}_{2}\right.$ with $\left.\mathrm{Br}^{-}\right)$
106 (d)
Bond order $=\frac{N_{B}-N_{A}}{2}=\frac{10-4}{2}=3$
$M_{B}=$ Electrons in bonding molecular orbital
$N_{A}=$ Electrons in antibonding molecular orbital
107 (c)
$\mathrm{B}_{2} \mathrm{H}_{6}$ has two types of bonding

1. Formed by two electrons between B and H
2. Formed by one electron between B and H

B -atom is thus electron-deficient
(c)
(c) I.

no $\mathrm{S}-\mathrm{O}-\mathrm{S}$ linkage

Three (S—O-S) linkages
III.

No(S-O-S) linkage
IV.

Three, $(P-O-P)$ linkage
Thus, II and IV have $\mathrm{X}-\mathrm{O}-\mathrm{X}(\mathrm{X}=\mathrm{S}, \mathrm{P})$
109 (d)
(d)

Repulsion $l p-l p l p-b p$
$l p-b p>b p-b p>b p-b p$
$b p-b p$
Due to repulsion, bond angle decreases
Bond angle $\mathrm{NH}_{2}^{-}<\mathrm{NH}_{3}<\mathrm{NH}_{4}^{+}$
110 (b)
Na^{+}is identical
$\mathrm{Cl}^{-} \mathrm{SO}_{4}^{2-} \mathrm{PO}_{4}^{3-}$
$\mathrm{NaCl}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{Na}_{3} \mathrm{PO}_{4}$ polar nature
111 (a)
lF_{7} has pentagonal bipyramidal structure

112 (b)
$\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
$\mathrm{AlF}_{3} \rightleftharpoons \mathrm{Al}^{3+}+3 \mathrm{~F}^{-}$
$\mathrm{TlF}_{3} \rightleftharpoons \mathrm{Tl}^{3+}+3 \mathrm{~F}^{-}$
$\mathrm{CaO} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{O}_{2}^{-}$
in (a) $\mathrm{NH}_{4} \mathrm{Cl}$ is ionic
(b) all are covalent
(c) AlF_{3} and TlF_{3} are ionic
(d) CaO is ionic

114 (a)
$\mathrm{I}_{3}\left(\mathrm{I}_{2} \leftarrow \mathrm{I}^{-}\right) s p^{3} d$
$\mathrm{PCl}_{3} s p^{3}$ (one lone pair on P)
$\mathrm{NO}_{3}^{-} s p^{2}$
$\mathrm{H}_{2} \mathrm{Sesp}^{3}$ (two lone pairs on Se)
115 (c)
1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H -bonding.)

Order of H-bonding in o, m and p-isomers of a compound is given below
Intermolecular H-bonding, $o<m<p$-isomers
intermolecular H -bonding
$o>m>p$ isomers.
Hydroxy benzene do not form a chain of H bonding . Hence, intermolecular H -bond is stronger than intermolecular H-bonds, so the stability of 1 , 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound is
IV $<$ I $<$ II $<$ III
116 (b)
$\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{NH}_{3}<\mathrm{SbH}_{3}$
$-87.5^{\circ} \mathrm{C},-62.4^{\circ} \mathrm{C},-34.5^{\circ} \mathrm{C},-18.4^{\circ} \mathrm{C}$
There is association by H -bonding in NH_{3} but molar mass of $\mathrm{SbH}_{3} \gg \mathrm{NH}_{3}$ makes it highest boiling point liquid
117 (d)
Compound is covalent. Thus,
I: Incorrect
II: Correct
III. Incorrect, covalent compound does not dissolve in $\mathrm{H}_{2} \mathrm{O}$
IV: Correct
V: Correct
Thus, II, IV and V
118 (a)
(a)

Resultant of two $(\mathrm{B}-\mathrm{Cl})$ is compensated by third $\mathrm{B}-\mathrm{Cl}$. Thus $\mu=0$
Thus, non-polar

119 (d)

Each water molecule is attached to four water molecules
120 (d)
Atom X has complete octet and Y has three lonepair and one $(X-Y)$ bond. Thus, X is C and Y is F
123 (a)
$A X_{3}$ has zero dipole moment. Thus, it has no lone pair. Thus, A is $s p^{2}$-hybridised. Hence
Bond angle $=120^{\circ}$

124 (b)

Oxygen can donate one electro pair to carbon $C \leftrightarrows 0$
(a)
(a)

There is lone pair-bond pair repulsion N -atom is $s p^{3}$-hybridised. But due to this repulsion, geometry is distorted to pyramidal and bond angle is 107°
(d)

Carbonium ion is formed when CH_{4} adds proton $\left(\mathrm{H}^{+}\right)$

Eight electrons shared, thus (a) is correct There is no empty orbital, thus (b) is correct octet complete, thus (c) is correct
(b)

$5(\mathrm{C}-\mathrm{H}) \sigma$ bonds
$3(\mathrm{C}-\mathrm{C}) \sigma$ bonds
$1(\mathrm{C}-\mathrm{N}) \sigma$ bonds
$2(\mathrm{C}-\mathrm{C}) \sigma$ bonds
1 lone pair on N
Thus, in all 9σ bonds, 3π bonds and 1 lone pair
(b)

	Electro \mathbf{n}	Bon \mathbf{d} orde \mathbf{r}
O_{2}	16	2.0
O_{2}^{+}	15	2.5
O_{2}^{-}	17	1.5
O_{2}^{2-}	18	1.0

Thus, BO is in order
$\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
130 (c)
$\mathrm{H}-\mathrm{F} \mu=1.91 \mathrm{D}$
$\mathrm{H}_{2} \mathrm{O}\left(\theta=104.5^{\circ}\right)=1.84 \mathrm{D}$
$\mathrm{H}_{2} \mathrm{~S}\left(\theta=92^{\circ}\right)=1.88 \mathrm{D}$
132 (c)
Bond-order = zero
135 (a)
The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule $\left(\mathrm{CH}_{4}\right)$ has zero moment value of dipole moment due to its symmetrical structure.
In CHCl_{3}, the resultant of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ dipole oppose the resultant of two $\mathrm{C}-\mathrm{Cl}$ dipoles while in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the resultant of $\mathrm{C}-\mathrm{H}$ dipoles adds to resultant of two $\mathrm{C}-\mathrm{Cl}$. In case $\mathrm{CH}_{3} \mathrm{Cl}$, the resultant of two $\mathrm{C}-\mathrm{H}$ dipole adds to the resultant of two C - Cl . In case $\mathrm{CH}_{3} \mathrm{Cl}$ the resultant of two $\mathrm{C}-\mathrm{H}$ dipoles add to the resultant of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ dipoles.
Thus dipole moment of $\mathrm{CH}_{3} \mathrm{Cl}$ is highest among the given compounds. The molecule $\left(\mathrm{CCl}_{4}\right)$ again becomes symmetrical and dipole moment reduces to zero.
136 (b)
$\mathrm{C}-\mathrm{H}<C=C<C-O<C-C$
$107120 \quad 143 \quad 154 \mathrm{pm}$
$\mathrm{I}<\mathrm{IV}<\mathrm{II}<\mathrm{III}$
138 (a)

Due to presence of lone pair, structure is bent
141 (c)
$\mathrm{H}_{2} \mathrm{O}$ is polar in nature
Like dissolve like
KCl being ionic compound is soluble in polar solvent as $\mathrm{H}_{2} \mathrm{O}$
143 (a)
The electrical conductivity of a metal decreases as temperature increases. The increase in temperature causes thermal agitation of the metal ions. This impedes the flow of electrons when an electrical field is applied
144 (b)

1. $\mathrm{NCl}_{3}, \mathrm{CCl}_{4}$ - covalent
2. All ionic
3. $\quad \mathrm{BF}_{3}, \mathrm{NH}_{3}-$ covalent
4. SO_{2}, covalent

145 (d)
In $\mathrm{ClO}_{3}^{-}, \mathrm{Cl}$ is central atom, it is $s p^{3}$ hybrid and on it one lone pair of electrons (free pair of electrons) is present.

Pyramidal shape
In $\mathrm{XeF}_{4}, \mathrm{Xe}$ is central atom it is $s p^{3} d^{2}$ hybrid and on it two lone pair of electrons are present.

Square planar
In $\mathrm{SF}_{4}, \mathrm{~S}$ is central atom and $s p^{3} d$-hybridised and on it one lone pair of electrons is present.

Irregular tetrahedral
In I_{3}^{-}, I is central atom and it is $s p^{3} d$ hybridised and on it three lone pair of electrons
are present.

Linear shape
146 (c)

1. $\operatorname{Cr}(\mathrm{CO})_{6}: 24+12=36$
2. $\quad \mathrm{Fe}(\mathrm{CO})_{5}: 26+10=36$
3. $\quad \mathrm{V}(\mathrm{CO})_{6}: 23+12=35$ (electron deficient)

147 (d)
(d)

Resultant $\mu=2 \mu^{\prime} \cos \left(\frac{\theta}{2}\right)$
μ^{\prime} is the vector moment of the groups X and Y at ortho position
$\pi \propto \cos \left(\frac{\theta}{2}\right)$
$\mu \propto \frac{1}{\theta}$
Repulsion increases θ, hence μ decreases attraction decreases θ, hence μ increases

By intramolecular H -bonding in o-nitrophenol, θ decreases, hence μ increases

Due to dipole-dipole repulsion of large Cl groups (steric effect) θ increases, hence μ decreases Thus, μ is maximum when $X=\mathrm{NO}_{2}$
$Y=0 \mathrm{H}$
And μ is minimum when $X=\mathrm{Cl}$
$Y=\mathrm{Cl}$
148 (d)
(d)

(a) planar, one empty p-orbital of carbon is present -correct
(b) thus $(\mathrm{C}-\mathrm{H}) \sigma$ bonds - correct
(c) octet of carbon is incomplete - correct

150 (b)
(b)

Six electrons on B
$\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$
Four electrons on Be

Seven electrons on N
Thus, B, Be and N are electron-deficients
153 (c)
$S=C=S$
Non-polar
154 (a)
Smaller size of cation
Larger the size of anion
Larger the charge on cation and anion, larger the
polarizing power and thus larger the covalent
nature and such compounds have larger lattice energy
(a) $\mathrm{K}^{+}>M \mathrm{~g}^{2+}$ size
$+1+2$ charge
$\mathrm{Cl}^{-}>\mathrm{O}^{2-} \quad$ size
$-1<2-$ charge
Thus, MgO is less ionic than KCl thus lattice energy of MgO is larger than that of KCl
Thus, given order is incorrect
(b) AlN $>$ MgOcorrect
(c) $\mathrm{CaO}>\mathrm{BaO}$ correct
(d) $\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}$ correct

155
(c)

$$
\mu=0
$$

Resultant dipole Due to lone pair Moment is zero, on $\mathrm{N}, N F_{3}$ is polar Thus non-polar
156 (a)
$\mathrm{Ni}(\mathrm{CO})_{4}: d s p^{2}$ square planar
$\mathrm{SF}_{4}: s p^{3} d$ (one lone pair on S)
$\left[\mathrm{CoCl}_{4}\right]^{2-}: s p^{3}$ tetrahedral
$\mathrm{XeF}_{4}: s p^{3} d^{2}$ square planar but two lone pairs
157 (c)
Bond is most polar it electronegativity (EN)
difference is maximum

158 (b)
Repulsion is in order
$l p-l p>l p-b p>b p-b p$
161 (c)
High solubility of MgSO_{4} is due to high enthalpy of hydration of the smaller Mg^{2+} ion which overcomes the lattice energy factor
163 (a)
It is a case of $s p^{3} d^{2}$ or $d^{2} s p^{3}$ hybridisation with octahedral geometry
164 (b)
lE of $\mathrm{Cl}<l E$ of F thus Cl^{+}is formed
$E A o f C l>E A$ of F . It is due to screening effect. F^{-} is predominantly formed due to greater electronegativity of F . thus, $\mathrm{Cl}^{+} \mathrm{F}^{-}$
165 (a)
In BrF_{5} number of electrons $=6$

$$
(1 l p+5 b p)
$$

So, the structure is supposed to be square pyramidal but will be distorted because of additional $l p-b p$ interaction.
Additional $l p-b p$ interaction reduced the all bond angle and do not let any angle to be 90°.
168 (c)
(c)

intermolecular H -bonding
II.

intramolecular H -bonding
III.

intermolecular H -bonding

intermolecular H -bonding (actually it is hexagonal structure)

Thus, I, III and IV have intermolecular H-bonding. (actually it is hexagonal structure)

Thus, I, III and IV have intermolecular. H-bonding 169 (a)
(a) (a) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{8-8+}{\mathrm{O}-\mathrm{H}}$ due to polarity there is H -bondir
(b) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$ no polar hydrogen
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ no polar hydrogen
$\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{N}$ no polar hydrogen
$\mathrm{CH}_{2}-\mathrm{CH}_{3}$
Thus, there is H -bonding in ethanol only
170 (d)

$\mu_{\text {net }}=\vec{\mu}_{\text {I }}+\vec{\mu}_{\text {II }}$
$=\vec{\mu}_{\mathrm{I}}-\vec{\mu}_{\mathrm{II}}$
$=0$
171 (a)
(a) $[\mathrm{Xe}]$

three lone pairs two bonds with

$$
\begin{array}{cc}
\text { on } \mathrm{Xe} & \mathrm{~F} \\
\text { lone pair } & \text { bond pair }
\end{array}
$$

(a) $\mathrm{XeF}_{2} \quad 3 \quad 2$
(b) $\mathrm{XeF}_{4} \quad 2 \quad 4$
(c) $\mathrm{H}_{3} \mathrm{O}^{+} \quad 1 \quad 3$
(d) $\mathrm{XeF}_{6} \quad 1 \quad 6$

172 (b)
Based on formal charges, II and III make greater contributions than I
173 (c)
$\mathrm{O}_{2}^{2-}=18$ electrons
$(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}$
$\left(\sigma 2 p_{x}\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi^{*} 2 p_{x}\right)^{2}\left(\pi^{*} 2 p_{y}\right)^{2}$
Underlined orbitals are antibonding M.O
Total $=4$
174 (b)
Three bond pairs are inclined at 120° with one each other, and the other two bond pairs are at 90° with first three, thus structure is: Trigonal
bipyramidal (as in PCl_{5})

175 (d)
(a) High boiling point of $\mathrm{H}_{2} \mathrm{O}$ is due to intermolecular H -bonding
(b) Glycerol molecules are associated by H-
bonding making it viscous
(c) NH_{3} molecules are joined to $\mathrm{H}_{2} \mathrm{O}$ molecules by H -bonding, making it water soluble
(d) Cl -atom withdraws electro by induction,
hence acid is ionized making it polar

176 (a)
(a)

$\mathrm{H}_{2} \mathrm{O}$ is a weak ligand hence no pairing of electrons
177 (c)
$s p^{3}-$ tetrahedral 109.5°
$s p^{2}-\operatorname{triangular} 120^{\circ}$
$s p$ - linear 180°
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
179 (a)
$H \cdot \times \underset{x \times}{\stackrel{\times}{\times}{ }_{x}^{x}}$
Valence electron in $\mathrm{H}=1$
Valence electrons in $\mathrm{Cl}=7$
180 (c)
Chelation is associated with ring formation. It can happen when
(a) ligand is bidentate as en

(b) intramolecular H-bonding is formed

181 (a)
(a)

$2+$
CH_{2} with incomplete octet of carbon is shortlived and has $s p$-hybridisation on carbon.
Linear
182 (c)
For $\mathrm{Be}_{n} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$

$$
\begin{array}{r}
2 n+6+24-36=0 \\
n=3
\end{array}
$$

183 (c)

Eleme nt	Valence electron	Probable group
A	1	Group 1 (alkali metal) Group 13 (boron family) Group 15 (nitrogen family)

Acan lose electron easily, thus is involved in ionic bond. B with three valence electrons (as Al) can form ionic compound with element of the type C with live electrons (as N) B and B together will not form ionic compound
184
(c)
$\begin{array}{cccc}\text { Species Electrons } & \begin{array}{c}\text { Bond } \\ \text { order }\end{array} & \begin{array}{c}\text { Unpaired } \\ \text { electron }\end{array} \\ 0-\mathrm{F} & 17 & 1.5 & 1\end{array}$
paramagnetic
$\begin{array}{lllll}\mathrm{F}_{2} & 18 & 1.0 & 0 & \text { diamagnetic }\end{array}$
There is one unpaired electron in $(0-F)$, hence paramagnetic, thus (a) is correct
Bond order of $\mathrm{O}-\mathrm{F}>\mathrm{F}-\mathrm{F}$
Thus, bond energy of $\mathrm{O}-\mathrm{F}>\mathrm{F}-\mathrm{F}$
Thus, (b) is correct
185 (a)
(a)

p_{y} and p_{z} overlap laterally forming π bonds
186 (a)
$s-s>s-p>p-p$
188 (a)
(a) $\mathrm{O}^{\swarrow} \stackrel{\ddot{\mathrm{S}}_{\mathrm{O}}}{ } s p^{2}$ - hybridised S , triangular
$\mathrm{HCN}, \mathrm{CO}_{2}$ and NO are linear

189 (a)
(a)

Bent geometry two $(\mathrm{O}-\mathrm{H}$) bonds and two lonepairs
190 (a)
$X+e^{-} \rightarrow X^{-} \quad \Delta H=-E$
Where E is electron affinity
X^{-}is formed when size is small and X has high electron affinity
191 (a)
Resultant moment is in one direction in 1,2,3trichlorobenzene, thus maximum dipole moment

resultant is due to III only

resultant of I and II is III

$\mu=\mathrm{I}-\mathrm{II}=0$
and III $=-\mathrm{IV}$
Thus, $\mu=0$
192 (b)

$\mu=2 \mu_{C-X} \cos \left(\frac{\theta}{2}\right)$
$\mu \propto \cos \left(\frac{\theta}{2}\right)$
$\mu \propto \frac{1}{\theta}$ (since as θ increases, $\cos \theta$ decreases)
Thus, $\mu_{\mathrm{IV}}=0\left(\cos \frac{180^{\circ}}{2}=\cos 90^{\circ}=0\right)$
and order being
$\mu_{\mathrm{IV}}<{\underset{\substack{\text { single } \\\left(\mathrm{C}-\mathrm{CH}_{3}\right)}}{\mu_{1}}<\underbrace{\mu_{\mathrm{II}}<\mu_{\mathrm{III}}}_{\begin{array}{c}\text { vector } \\ \text { summation }\end{array}}, ~}_{\text {(b) }}$

(b)

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is similar to CH_{4} (tetrahedral) but it has three different bond angles, $\mathrm{HCH}, \mathrm{HCCl}, \mathrm{ClCCl}$ which are close to but not equal to 109.5°. Since, electroegativity of $\mathrm{Cl}>\mathrm{C}>H$, the bond moments do not cancel and the molecule has a dipole moment

194 (a)
B_{2} : Total electrons $=10$
Configuration : $\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \pi 2 p_{x}^{1}=\pi 2 p_{y}^{1}$
If Hund's rule is violated, then
$\sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2} \pi 2 p_{x}^{2}=\pi 2 p_{y}^{0}$
So, diamagnetic
Bond order $=\frac{6-4}{2}=1$
195 (a)
Greater the resonating structure, greater the stability NO_{3}^{-}(with negative charge) has greater delocalization of π electrons thus more resonating structures similarly HCOO^{-}
196 (b)
Bond order $\mathrm{N} \equiv \mathrm{N}>\mathrm{N}=\mathrm{N}>\mathrm{N}-\mathrm{N}$
Bond length $\xrightarrow{\text { minimum maximum }}$
(a)

(b) $\mathrm{N} \equiv \mathrm{N}$
triple bond
(c)

(d) $: \mathrm{N} \equiv \mathrm{N} \longrightarrow \mathrm{O}$
triple bond
Bond length is in order
(b) $<$ (d) $<$ (a) $<$ (c)

In (d), resonance increases bond length
In (c), dimer formation is due to unpaired electrons. Hence, dipole-dipole repulsion increases bond length than single-bond
198 (b)
Greater the bond order, greater the bond energy
Bond order
(a) $\mathrm{O}_{2}^{-} \quad 1.5$
(b) $\mathrm{O}_{2}^{+} \quad 2.5$
(c) $\mathrm{O}_{2} \quad 2.0$
(d) $\mathrm{O}_{2}^{2-} 1.0$

199 (b)
Ether is a non-polar solvent (covalent) like dissolves likes (covalent) like dissolves likes (covalent)
Smaller the size of cation larger the charge, larger the polarizing power and thus larger the covalent nature of the compound with that cation $\left(\mathrm{Cl}^{-}\right.$
being common)
Size of $\mathrm{Li}^{+}<\mathrm{Na}^{+}$
Thus, LiCl is predominantly covalent
LiCl and AlCl_{3} thus will be extracted into ether
200 (d)
BF_{3} andNH H_{3} are joined by coordinate bond in which NH_{3} is a Lewis base and BF_{3} is a Lewis acid. They have therefore independent existence and thus separated
202 (b)
Greater the electronegativity, greater the polar character. Electronegativity of $\mathrm{F}>\mathrm{O}>N>S$ Thus, $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<H F$
203 (b,c)
The central atom in each of three molecules
$\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ undergoes $s p^{3}$ hybridisation.
In CH_{3} no line pair is present. InNH_{3} one lone pair is present while in water two lone pairs are present

pyramidal structure V-structure
(106.5 ${ }^{\circ}$)
(104.5 ${ }^{\circ}$)

226 (a,c)
(i) $\mathrm{NO} \rightarrow$ Total valence electrons $=11$

MO- configuration
$=$
$(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}\left(\pi^{*} 2 p_{y}\right)^{1}$
Bond order $=\frac{1}{2}(8-3)=2.5$
(ii) $\mathrm{NO}^{+} \rightarrow$ Total valence electrons $=10$

MO-configuration
$=(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}$
Bond order $=\frac{1}{2}(8-2)=3.0$
(iii) $\mathrm{NO}^{2+} \rightarrow$ Total valence electrons $=9$

MO-configuration
$=(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{x}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{y}}\right)^{2}\left(\pi 2 \mathrm{p}_{z}\right)^{1}$
Bond order $=\frac{1}{2}(7-2)=2.5$
(iv) $\mathrm{NO}^{-} \rightarrow$ Total valence electrons $=12$

MO-configuration
$=$
$(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\pi 2 p_{z}\right)^{2}\left(\pi^{*} 2 p_{y}\right)^{2}$
Bond order $=\frac{1}{2}(8-4)=2.0$

229 (a,b,d)

The four P atoms in P_{4} molecule are situated at the corners of tetrahedron. There are six $p-p$ single bonds with $p-p-p$ bond angle of 60°. Each P has a lone pair of electrons
260 (a,c,d)
From the molecular orbital theory, the number of unpaired electrons is zero. Hence, they are diamagnetic

271 (a,b,d)

Geometry of a molecule can be predicted if the state of hybridization at central atom is known (i) $\mathrm{H}_{2} \mathrm{O} \rightarrow$ Number of σ-bonds at 0 -atom $=2$

Number of lone pair of electrons at 0 atom $=2$
Total $=2+2=4$
Hybridisation is $s p^{3}$

Thus, the shape is angular of V-shaped
(ii) $\mathrm{NH}_{3} \rightarrow$ Number of σ-bonds at N atom $=3$

Number of lone pair of electrons at N atom $=1$
Total $=3+1=4$
Hybridisation is $s p^{3}$
Shape istrigonal pyramidal(not tetrahedral)
(iii) $\mathrm{BCl}_{3} \rightarrow$ Number of σ-bonds at B atom $=3$

Number of lone pair of electrons at B atom $=0$
Total $=3$
Hybridisation is $s p^{2}$
BCl_{3} is trigonal planar
(iv) $\mathrm{BeCl}_{2} \rightarrow$ Number of σ - bonds at Be atom $=2$

Number of lone pair of electrons at Be atom $=0$
Total $=2+0=2$
Hybridisation $=s p$
BeCl_{2} is linear and bond angle is 180°
273 (a)

A substance is said to be insoluble in water if it does not form hydrogen bonding with water. Alkanes, alkenes and ethers are insoluble in water

274 (a)
Energy level of $2 s$ is lesser than $2 p$-orbital.
275 (a)
Ionisation enthalpy id the energy required to remove an electron from an isolated gaseous atom in its ground state. It is always positive.

277 (b)

N shows maximum covalence of +3 along with one coordinate bond whereas P shows maximum covalence of +5 due to given explanation.
278 (b)
NaCl is more ionic than NaI because Cl^{-}is less polarised in comparison to I^{-}.

279 (b)
The dipole moment of NH_{3} is more than NF_{3} because of the given explanation.
280 (b)
In $s p^{2}$-hybridisation bond angle is 120°. In $s p^{3}$ it is $109^{\circ} 28^{\prime}$.

281 (a)
With increase in bond order, bond length decreases and hence, bond energy increases.

282 (d)
The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is smaller because S atom has bigger size than O . Also $\mathrm{H}_{2} \mathrm{~S}$ does not show $\mathrm{H}-$ bonding.
283 (c)
Explanation is correct reason for statement.
284 (b)
Molecules having polar bonds may (e.g. , CIF_{3} polar) or may not (e.g. , BF_{3}) have dipole moment. The resultant vector of bond moment decides the net dipole moment in molecule.
285 (d)
Inspite of higher lattice energy AgF is soluble because F^{-}is extensively hydrated and heat of hydration predominates over lattice energy.
286 (a)
Electrovalent bond is not possible between similar atoms. This type of bonding requires two atoms of different nature, one atom should have the tendency to lose electrons $i e$, electropositive

287 (c)
Explanation is correct reason for statement.

289 (c)
Explanation is correct reason for statement.
290 (c)
Removal of electron from N atom requires more .energy due to half filled p-orbital in N atom.
291 (c)
SeCl_{4}, has see-saw geometry ie, distorted trigonal pyramidal geometry. In SeCl_{4}, se is $s p^{3} d$ hybridised.

292 (a)
p-dimethoxy benzene is polar due to orientation of CH_{3} group as, The resultant vector is not zero.

293 (c)
LiCl is polar compound. In a period, we go from left to write the electronegativity increases. Li is a LA group element Cl is VIIA group element. So, the electronegativity difference is so large.

294 (a)

$l p-l p>l p-b p>b p-b p$.
In NH_{3} the three $\mathrm{N}-\mathrm{H}$ bond pairs are pushed close because of the lone pair-bond pair repulsion and HNH bond angle gets reduced from $109^{\circ} 28^{\circ}$ to 107°.

295 (c)
Explanation is correct reason for statement.
296 (b)
Halogens can have only $E A_{1}$ value because they can accommodate only one electrons $\left(n s^{2} n p^{5}\right.$ to $n s^{2} n p^{6}$): No scope for further addition, thus $E A_{2}$ for halogens is zero.
297 (b)
Aqueous HF mainly exists as $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-} because HF is more acidic than $\mathrm{H}_{2} \mathrm{O}$.

298 (a)
The values of dipole moments provide valuable information about the structure of molecules

299 (a)

Electron affinity of $\mathrm{F}<$ Electron affinity of Cl . Due to more $2 p$-test electron repulsion in F atom.

300 (c)
Explanation is correct reason for statement.
301 (d)
Assertion is an experimental fact observed against Le Chatelier principle.
302 (b)
That is why $\mu_{\mathrm{NH}_{3}}>\mu_{\mathrm{NF}_{3}}$.
303 (b)
Both cis-and trans-forms are polar. Trans is more polar due to higher value of dipole moment due to additive nature of CH_{3} and Cl vectors.
304 (c)
Fluorine is highly reactive because F - F bond has low bond dissociation energy

305 (d)
BF_{3} is planar due to $s p^{2}$-hybridisation. Also in BF_{3}, three bond pair on boron atom and 9 lone pairs of electrons on F atoms.
306 (c)
Explanation is correct reason for statement.
307 (b)
This is Fajans' rule. FeCl_{3} is more covalent.
308 (c)
Explanation is correct reason for statement.
309 (c)
Explanation is correct reason for statement.
310 (d)
SF_{4} has see-saw shape. It has non planar structure. In this structure bond angles are different between different $\mathrm{S}-\mathrm{F}$ atoms.
According to VSEPR theory $-l p-l p>l p-b p>$ $b p-b p$.

177°
311 (b)
Solid ionic compounds conduct current only in fused state. PCl_{5} in solid state exists as $\left[\mathrm{PCl}_{6}\right]^{-}\left[\mathrm{PCl}_{4}\right]^{+}$.
312 (a)
P in PCl_{3} is $s p^{3}$-hybridised; $\mathrm{P}-\mathrm{Cl}$ bond is $s p^{3}-p$ bond.
P in PCl_{5} is $s p 3 d$-hybridised; $\mathrm{P}-\mathrm{Cl}$ bond is $s p 3 d-p$ bond.
313 (b)
The elements having vacant d-orbitals in their valency shell show variable covalency by increasing the number of unpaired electrons
under excited conditions
317 (d)
$\mathrm{PCl}_{5}=s p^{3} d$ (Trigonal pyramidal)
$\mathrm{IF}_{7}=s p^{3} d^{3}$ (Pentagonal bipyramidal)
$\mathrm{H}_{3} \mathrm{O}^{+}=s p^{3}$ (Pyramidal)
$\mathrm{ClO}_{2}=s p^{2}$ (Angular) bond length are shorter
than single bond due to resonance.
$\mathrm{NH}_{4}^{+}=s p^{3}$ (Tetrahedral)
320 (c)
$\mathrm{ICl}_{2}^{-} \Rightarrow 2 b p+3 l p$ (thus, $s p^{3} d$
hybridization)=linear geometry
$\mathrm{BrF}_{2}^{+} \Rightarrow 2 b p+$
$2 l p$ (thus, $s p^{3}$ hybridisation)=angular geometry
$\mathrm{ClF}_{4}^{-} \Rightarrow 4 b p+2 l p$ (thus, $s p^{3} d^{2}$ hybridisation) $=$ square planar geometry
$\mathrm{AlCl}_{4}^{-} \Rightarrow 4 b p+0 l p$ (thus $s p^{3}$ hybridisation) $=$ tetrahedral geometry
323 (a)
Ethane $\mathrm{CH}_{3}-\mathrm{CH}_{3} 2 s p^{2}$ hybrid carbon
Ethylene $\mathrm{CH}_{2}=\mathrm{CH}_{2} 2 s p^{2}$ hybrid carbon
Acetylene CH $\equiv \mathrm{CH} 2 s p$ hybrid carbon

326 (b)

List I (Compound) List II (Structure) 4. CIF_{3} 1. T-Shaped 5. PCl_{5} 2.Trigonal 6. IF_{5}	3.	bipyramidal 7. CCl_{4}	3.
8.	XeF_{4}	4.	pyrare Tetrahedal Square planar

328 (a)

Molecule /ion	Type of hybridis ation
A. NH_{4}^{+}	r. $s p^{3}$ B. PCl_{5}
q. $s p^{3} d$ C. SF_{6} D. IF_{7}	$s p^{3} d^{2}$ p. $s p^{3} d^{3}$

330 (d)
$\mathrm{XeO}_{3}\left(s p^{3}\right.$ hybridisation)
$=$ contain a loan pair
$=$ trigonal pyramidal
shape
$\mathrm{XeOF}_{4}\left(s p^{3} d\right.$ hybridisation $)=$ one lone pair

$$
=\text { pyramidal shape }
$$

$\mathrm{BO}_{3}^{3-}\left(s p^{2}\right.$ hybridisation $)=$ planar triangular ClF_{3} ($s p^{3} d^{2}$ hybridisation)

$$
\begin{aligned}
& =\text { two lone pair } \\
& =T \text { shaped }
\end{aligned}
$$

$\mathrm{I}_{3}^{-}\left(s p^{3} d\right.$ hybridisation $)=3$ loan pair=linear
331 (c)
Polarity character is due to the difference in electronegativity of two atoms of molecule

In NH_{3} nitrogen has one lone pair of electron

342 (b)

$$
\begin{aligned}
& \mu_{\mathrm{m}}=\vec{\delta} \times d \\
& 0.816 \times 10^{-18}=\delta \times 10^{-8} \\
& \therefore \quad \delta=0.816 \times 10^{-10} \mathrm{esu} \\
& \therefore \% \text { ionic character }=\frac{0.816 \times 10^{-10}}{4.803 \times 10^{-10}} \times 100=16.9 \%
\end{aligned}
$$

