4.CHEMICAL BONDING AND MOLECULAR STRUCTURE

Single Correct Answer Type

1. Which represents metallic character in an element?

d) None of these

- 2. The enolic form of acetone contain
 - a) 10 σ bonds, 1 π bond and 1 lone pair
- b) 8 σ bonds, 2 π bonds and 2 lone pairs
- c) 9 σ bonds, 1 π bonds and 2 lone pairs
- d) 9 σ bonds, 2 π bonds and 1 lone pairs
- The common features among the species CN^- , CO and NO^+ are 3.
 - a) Bond order three and isoelectronic
- b) Bond order three and weak field ligands
- c) Bond order two and π -acceptors
- d) Isoelectronic and weak field ligands
- The high density of water compared to ice is due to
 - a) Hydrogen bonding interactions
 - b) Dipole-dipole interactions
 - c) Dipole-induced dipole interactions
 - d) Induced dipole induced dipole interactions
- 5. Among the following species, identify the isostructural pairs

 NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3

a) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$

b) $[NF_3, HN_3]$ and $[NO_3^-, BF_3]$

c) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$

- d) $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$
- Which combination will give the strongest ionic bond?
 - a) K⁺ and Cl⁻
- b) K^+ and O^{2-}
- c) Ca²⁺and Cl⁻
- d) Ca^{2+} and O^{2-}

- Ratio of σ and π bonds is maximum in 7.
 - a) Naphthalene
- b) Tetracyano methane
- c) Enolic form of urea
- d) equal
- In which pair or pairs is the strongest bond found in the first species?

I: O_2^{2-}, O_2 ; II: N_2, N_2^+

III: NO⁺, NO⁻

- a) I only
- b) II only
- c) I and III only
- d) II and III only
- (C CI) bond in $CH_2 = CH CI$ (vinyl chloride) is stabilized in the same way as in
- a) Benzyl chloride
- b) Benzoyl chloride
- c) Chlorobenzene
- d) Allyl chloride

- 10. Select the correct statement about resonance
 - a) The larger the number of the contributing structures, the greater the stability of the molecule
 - b) Greater number of the covalent bonds add to the stability of the molecule
 - c) The positive charge should reside, as far as possible, on the less electronegative element
 - d) All the above are correct statements
- 11. Which of the following have identical bond order?

I. CN-

II. O_2^- IV. CN+

III. NO+ a) I, III

b) II, IV

- c) I, II, III
- d) I, IV
- 12. The geometry of the atoms in the species PCl₄ is best described as
 - a) Tetrahedral
- b) see-saw
- c) Square
- d) Trigonalbipyramidal
- 13. In a Lewis dot structure, the electrons which complete an octet but are not located between two atoms are referred to as
 - a) Bonding pairs
 - b) Delta minus electrons
 - c) Excess electrons

	d) Lone pairs			
14.	Which one of the followi	ng compounds has the elect	tron-pair geometry as the t	rigonalbipyramidal with
		ns occupied by lone pairs of		
	a) AlCl ₃			
	b) XeF ₂			
	c) $[Pt(NH_3)_2Cl_2]$			
	d) $CH_3 - Mg - Br$			
15.	Correct Lewis structure	is		
	a) [:Ö—c=N:]	b) [C≡C :] ²⁻	c) [:ci—o:] -	d) :N=0:
16.	A molecule in which the	central atom forms three si	ngle bonds and has one lon	e pair is said to be have a
	shape			•
	a) Bent	b) Linear	c) Planar	d) Pyramidal
17	•	reasing C – O bond length o		a) i yi aiiii aai
1/.		b) $CO_2 < CO_3^{2-} < CO$		d) co < co < co ² =
4.0	•	-	-	$a_1 c_0 < c_{02} < c_{03}$
18.		racter in the orbitals forming		
	a) 25	b) 33	c) 50	d) 75
19.	Select the correct statem			
	a) Both lattice energy an	d hydration energies decre	ase with ionic size	
	b) Lattice energy can be	calculated using Born-Habe	er cycle	
	c) If the anion is large co	ompared to the cation, the la	ittice energy will remain alı	nost constant within a
	particular group			
	d) All of the above are co	orrect statements		
20.	=	xygen is best explained by		
	a) MO theory	b) Valence bond theory	c) VSEPR theory	d) Lewis dot structure
21	•	s formed, there is decrease i		a) Lewis dot structure
41.				d) Attractive force
22	a) Kinetic energy	,	c) Repulsive force	d) Attractive force
<i>ZZ</i> .	According to MO theory,			
		nd bond order greater than	O_2	
	, <u>-</u> -	nd bond order less than O ₂		
		l bond order is less than 0_2		
	d) 0_2^+ is diamagnetic and	l bond order is more than O	2	
23.		1.0-N	= `. ') ⁺ is	
		0 atoms in the ion $\ddot{\circ}=N$		
	a) -2	b) -1	c) 0	d) +1
24.	Which of the following c	an provide an electron pair	for the formation of a coord	
	a) H ⁺	b) H ⁻	c) H ₂	d) He ²⁺
25.	Which of these molecule	s have non-bonding electro	n pairs on the central atom	?
	I. SF ₄ ; II. ICl ₃ ; III.	SO_2		
	a) II only	b) I and II only	c) I and III only	d) I, II and III
26.		X_5 has square pyramidal ge	•	•
	a) 4	b) 3	c) 2	d) 1
27	Coordinate covalent bon	,	c) 2	u) I
۷/.		d is absent in	b) Adduct of NII and DII	
	a) [Fe(CN) ₆] ⁴⁻		b) Adduct of NH ₃ and BH ₃	3
	c) H ₃ 0 ⁺		d) PCl ₃	
28.	Which is not the resonar	nce structure of phenoxide i	on?	
	;;	: 0	:o .	:ö: [⊜]
	a) 💢 🖯	b) [c) He	d) 📉
	"' \	~, 		~, []
	~	Š		>

29. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule $\,B_2$ is

30.	-	and diamagnets ong KO_2 , AlO_2^- , B		and NO_2^+ , unpa	aired electron	c) 1 and paramagnetic is present in	d) 0 and paramagnetic
	a) k	ζO ₂ only		b) NO ₂ +and	BaO_2	c) KO_2 and AlO_2^-	d) BaO ₂ only
31.	Wh	at hybride orbita	als a	re employed b	y carbon aton	ns 1, 2 and 3, respectively a	s labelled in the compound
	sho	wn?					
		:0:					
	Hac	:O: C-C-C≡N: 1 2 3					
	3	1 2 3					
	a) s	sp^3 , sp , sp		b) sn^3 , sn^2	sn	c) sp^3 , sp , sp^2	d) sp^3 , sp^2 , sp^2
32.	-	ich of the follow					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o _ .		$\frac{1}{3}$, CO_3^{2-} , CIO_3^{-} , SO_3^{-}					
	_			h) SO ₂ NO ₂	-	c) ClO ₃ -, CO ₃ ²⁻	d) CO ²⁻ SO ₂
33	Wh.	on N ⁺ is formed	fror	n N., bond-ord	s ler and w	when O_2^+ is formed from O_2	hond-order
55.		ncreases	11 01	b) Decrease		c) Increases, decreases	
24	-		2 04	•		_	u) Decreases, ilicreases
34.						the octet rule because they	la fou handina
	,	Can only use p or		U		b) Can use s and p orbital	•
25		Can use s, p and a					· ·
35.		•	mpi	ex ions) with C	Loiumn II (nur	nber of unpaired electrons)	and select the correct
	ans	wer					
	Α	Column I	1.	Column II			
		$[\operatorname{CrF}_6]^{4-}$	1.	One			
	В	$[MnF_6]^{4-}$	2.	Two			
		[0]					
	С	$[Cr(CN)_6]^{4-}$	3.	Three			
	D	$[Mn(CN)_6]^{4-}$	4.	Four			
			5.	Five			
			٦.	rive			
	Α	в с р					
		1 2 5				b) 2 5 3 1	
	-	5 2 1				d) 2 1 3 5	
36	_		,		e .	uj 2 1 5 5	
50.		oridisation on ca	rbor		CH ₃ IS	. 2	15 2 1
	a) s	•		b) $sp^{3}d^{2}$		c) sp^2	d) sp^3d
37.		e of the following	g is lo				
	a) F			b) HF	-4 -	c) H ₂ O	d) CS ₂
38.		$_2C_3$ reacts with w			yne. C_3^{4-} has		
	-	Two sigma and tw	_			b) Three sigma and one p	
	_	Two sigma and o	_			d) Two sigma and three p	oi bonds
39.	Wh	ich of the follow	_		ic and isostru	ctural?	
		$NO_3^-, CO_3^{2-},$	ClO	, SO ₃			
	a) N	$10_3^-, C0_3^{2-}$		b) SO ₃ , NO ₃	- 3	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3
40.	Wh	ich of the follow	ing v	vill have the m	iolecular shap	e of a trigonalbipyramid?	
	a) F	PF ₃ Cl ₂		b) IF ₅		c) BrF ₅	d) SbF ₂ ² -
41	Wh	ich structure ani	naar	s wrong?			

c) H⁺F⁻

42. Which are non-polar molecules? I: NCl_3 ; II: SO_3 ; III: PCl_5

b) F B=F

d) $\stackrel{\Theta}{\text{CH}}_2$ -CH= $\stackrel{\Phi}{\text{CI}}$

43. C — It bond distance is the longest in a) C ₂ H ₂ b) C ₂ H ₄ c) C ₂ H ₆ d) C ₂ H ₂ Br ₂ 44. Number of bond pairs (X) and lone pairs (Y) around the central atom in the I ₃ ion are X Y 3) 2 2 b) 2 3 c) 3 2 45. Which property could describe a covalent compound? a) It conducts electricity when melted c) It is composed of a non-metal and metal d) It is solid with a very high melting point which of the following ions has the maximum polarizing power? a) Na ⁺ b) Ca ²⁺ c) Mg ²⁺ d) Al ³⁺ 47. True structure is predicted by a) Valence-bond approach b) Sidgwick approach c) Hybride formation d) None of these wrong? a) In N ₂ , the N − N bond weakens c) In O ₂ , 0 − 0 bond length increases c) In O ₂ , bond-order decreases d) N ₂ bin O ₂ , 0 − 0 bond length increases c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic double shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹) C − A 240 C − B 328 C − C 276 C − D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NF ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vorbital 52. The species having pyramidal shape is a) SO ₃ b) BFF ₃ c) SiO ² ₃ d) OSF ₂ 3 Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 4. Hybridization of the underlined atom is affected when a) CH ₂ CoOld is decarboxylated b) CH ₃ CH ₃ Oll is dehydrated c) CH ₃ CH ₃ is shlorinated b) Sp ² , planar trigonal c) sp ² , linear d) Sp ³ , tetrahed 5. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ C) C ₂ d) S ₂ Hybridization of the underlined atom is affected when a) Sp ³					
a) C_2H_2 b) C_2H_4 c) C_2H_6 d) $C_2H_2Br_2$ 44. Number of bond pairs (X) and lone pairs (Y) around the central atom in the I_3^- ion are $X Y$ a) $Z Z$ b) $Z Z$ d) $Z Z$	43.			c) I and II only	d) II and III only
44. Number of bond pairs (X) and lone pairs (Y) around the central atom in the L_3^- ion are X Y Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			=	c) C ₂ H ₆	d) $C_2H_2Br_2$
X Y a) 2 2 b) 2 3 c) 3 2 d) 4 3 45. Which property could describe a covalent compound? a) It conducts electricity when melited b) It is a gas at room temperature c) It is composed of a non-metal and metal d) It is solid with a very high melting point electricity when melited b) It is a gas at room temperature c) It is composed of a non-metal and metal d) It is solid with a very high melting point electricity with a point of the following ions has the maximum polarizing power? a) Na* b) Ca²+ c) Mg²+ d) Al³+ 47. True structure is predicted by a) Valence-bond approach c) Hybride formation d) None of these electricity which of the following statement wrong? a) In N₂, the N - N bond weakens c) In O₂, D - O bond length increases c) In O₂, D - O bond length increases d) N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following statement of N₂ become diamagnetic electricity which of the following wise sthe bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (K mol ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 A A B B C C - D 485 A A B B C C - D 485 A A B B B C C - D 485 A A B B B B B B B B	44.		· - ·		=
45. Which property could describe a covalent compound? a) It conducts electricity when melted b) It is a gas at room temperature c) It is composed of a non-metal and metal d) It is solid with a very high melting point d) Which of the following ions has the maximum polarizing power? a) Na+ b) Ca ²⁺ c) Mg ²⁺ d) Al ³⁺ 47. True structure is predicted by a) Valence-bond approach c) Hybride formation d) None of these d) N ₂ andO ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following statemed wrong? a) In N ₂ , the N – N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic d) Central O atom in O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² d) dsp ² d) The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k) moi ⁻¹) C - A 240 C - B 32B C - C 276 C - D 485 B) B C C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₅ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) varieties 25. The species having pyramidal shape is a) SO ₃ b) BFF ₃ c) SiO ² ₃ d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ CH ₂ CH ₃ is chlorinated b) CH ₃ CH ₂ CH is dehydrated c) CH ₃ CH ₃ is chlorinated b) Sp ² , planar trigonal c) sp ² , linear d) Sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is		X Y			
45. Which property could describe a covalent compound? a) It conducts electricity when melted c) It is composed of a non-metal and metal d) It is solid with a very high melting point electricity when melted c) It is composed of a non-metal and metal d) It is solid with a very high melting point d) Which of the following ions has the maximum polarizing power? a) Na+ b) Ca ²⁺ c) Mg ²⁺ d) Al ³⁺ d) Al ³⁺ d) Ca ²⁺ c) Mg ²⁺ d) None of these d) Valence-bond approach c) Hybride formation d) None of these d) Valence-bond approach c) Hybride formation d) None of these d) Namodo ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following stateme wrong? a) In N ₂ , the N – N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic d) Catomin O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² d) Map ² for the table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹)		a) 2 2		b) 2 3	
a) It conducts electricity when melted b) It is a gas at room temperature c) It is composed of a non-metal and metal d) It is solid with a very high melting point d) It is collowing ions has the maximum polarizing power? a) Na² b) Ca²²+ c) Mg²²+ d) Al³²+ 47. True structure is predicted by a) Valence-bond approach b) Sidgwick approach c) Hybride formation d) None of these 48. N₂andO₂ are converted into monoanion N₂ and O₂ respectively. Which of the following stateme wrong? a) In N₂, the N − N bond weakens b) In O₂, O − O bond length increases c) In O₂, bond-order decreases d) N₂ become diamagnetic 49. Central O atom in O₃ is hybridized a) sp b) sp² c) sp³ d) dsp² 50. The table shown below gives the bond dissociation energies (Ediss) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? 80nd Ediss (k moi⁻¹) C − A 240 C − B 328 C − C 276 C − D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF₃ and NH₃ have same dipole moment b) Dipole moment of NH₃ is smaller than that of BF₃ c) BF₃ molecule has a planar structure, while the NH₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) v. orbital 52. The species having pyramidal shape is a) SO₃ b) BrF₃ c) SiO₃² d) OSF₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated c) CH₃CH₃ is chlorinated b) CH₃CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated c) CH₃CH₃ is chlorinated b) N₂ c) O₂ d) S₂ 64. Hybridization of the introgen atom and electron geometry around nitrogen atom in pyridine is N Na a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahece 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is		c) 3 2		d) 4 3	
46. Which of the following ions has the maximum polarizing power? a) Na* b) Ca ²⁺ c) Mg ²⁺ d) Al ³⁺ 47. True structure is predicted by a) Valence-bond approach c) Hybride formation d) None of these 48. N ₂ andO ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following statement wrong? a) In N ₂ , the N – N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (kJ moi ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) v. orbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ² d) OSF ₂ 3. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 4. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ COH is dehydrated c) CH ₃ CH ₃ is chlorinated dom is affected when a) CH ₃ COOH is decarboxylated b) N ₂ c) O ₂ d) S ₂ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N 1 sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is	45.	Which property could des	cribe a covalent compound	d?	
46. Which of the following ions has the maximum polarizing power? 4) Na* b) Ca²* c) Mg²* d) Al³* 47. True structure is predicted by a) Valence-bond approach c) Hybride formation b) Sidgwick approach d) None of these 48. NaandO2 are converted into monoanion N2 and O2 respectively. Which of the following statement wrong? a) In N2, the N - N bond weakens c) In O2, bond-order decreases d) N1 D2 become diamagnetic 49. Central O atom in O3 is hybridized a) sp b) sp² c) sp³ d) dsp² 50. The table shown below gives the bond dissociation energies (Ediss) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond Ediss (k] mol - 1		a) It conducts electricity v	when melted	b) It is a gas at room tem	perature
a) Na ⁺ b) Ca ²⁺ c) Mg ²⁺ d) Al ³⁺ 47. True structure is predicted by a) Valence-bond approach c) Hybride formation d) None of these 48. N ₂ andO ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following statemed wrong? a) In N ₂ , the N - N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) sp b) sp ² c) The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 a) A b) B c) C d) D Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vorbital Select the correct best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Select correct best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Select correct best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Select correct best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Select correct best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Select correct sease of the policy of the policy of the object of the policy of the object of the policy		c) It is composed of a non	-metal and metal	d) It is solid with a very h	igh melting point
47. True structure is predicted by a) Valence-bond approach c) Hybride formation 48. N ₂ andO ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following stateme wrong? a) In N ₂ , the N – N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹)	46.	Which of the following ior	ns has the maximum polari	izing power?	
a) Valence-bond approach c) Hybride formation d) None of these 8. N ₂ andO ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following statemed wrong? a) In N ₂ , the N - N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) Sp b) Sp ² c) Sp ³ d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (kJ mol ⁻¹)		a) Na ⁺	b) Ca ²⁺	c) Mg^{2+}	d) Al ³⁺
c) Hybride formation d) None of these 48. N ₂ and O ₂ are converted into monoanion N ₂ and O ₂ respectively. Which of the following statemed wrong? a) In N ₂ , the N - N bond weakens b) In O ₂ , 0 - 0 bond length increases c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) sp b) sp ² c) sp ² d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mo ⁻¹)	47.	True structure is predicte	d by		
48. N₂andO₂ are converted into monoanion N₂ and O₂ respectively. Which of the following statemed wrong? a) In N₂, the N − N bond weakens c) In O₂, bond-order decreases d) N₂ become diamagnetic 49. Central O atom in O₃ is hybridized a) sp b) sp² c) sp³ d) dsp² 50. The table shown below gives the bond dissociation energies (Ediss) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond Ediss (k mol⁻¹)		a) Valence-bond approach	h	b) Sidgwick approach	
wrong? a) In N ₂ , the N - N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central O atom in O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹)		c) Hybride formation		d) None of these	
a) In N ₂ , the N - N bond weakens c) In O ₂ , bond-order decreases d) N ₂ become diamagnetic 49. Central 0 atom in O ₃ is hybridized a) sp b) sp ² c) sp ³ d) dsp ² 50. The table shown below gives the bond dissociation energies (E _{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vaorbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 64. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ , is nitrated C H ₃ CH ₃ is chlorinated d) C ₆ H ₇ , is nitrated C H ₃ CH ₃ is chlorinated d) C ₇ d) S ₂ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N	48.		to monoanion N_2^- and O_2^-	respectively. Which of the f	following statement is
c) In O_2^- , bond-order decreases d) N_2^- become diamagnetic 49. Central 0 atom in 0_3 is hybridized a) sp b) sp^2 c) sp^3 d) dsp^2 50. The table shown below gives the bond dissociation energies ($E_{\rm diss}$) for single covalent bonds of (C) atoms with element ' A' , ' B' , ' C' and ' D' . Which element has the smallest atom? Bond $E_{\rm diss}$ ($K mol^{-1}$) $C - A 240$ $C - B 328$ $C - C 276$ $C - D 485$ $C - C 276$ $C - D 485$ $C - C 276$ $C - D 276$		· ·	weakens	b) In 0^{-}_{2} , 0 – 0 bond leng	th increases
49. Central O atom in O ₃ is hybridized a) sp b) sp^2 c) sp^3 d) dsp^2 50. The table shown below gives the bond dissociation energies (E_{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E_{diss} (k mol^{-1})					
a) sp b) sp^2 c) sp^3 d) dsp^2 50. The table shown below gives the bond dissociation energies (E_{diss}) for single covalent bonds of (C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E_{diss} (kJ mol ⁻¹)	49.			, _	
(C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 a) A b) B c) C d) D Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) variety orbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ² d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 66. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N				c) sp^3	d) dsp^2
(C) atoms with element 'A', 'B', 'C' and 'D'. Which element has the smallest atom? Bond E _{diss} (k mol ⁻¹) C - A 240 C - B 328 C - C 276 C - D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vaorbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ² d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N	50.	The table shown below gi	ves the bond dissociation e	energies (E_{diss}) for single of	covalent bonds of carbon
C - A 240 C - B 328 C - C 276 C - D 485 A B B C C C D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vaorbital 52. The species having pyramidal shape is a) SO ₃ b) BFF ₃ c) SiO ₃ ² d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated d) C ₆ H ₆ is nitrated d) C ₆ H ₆ is nitrated d) C ₉ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is C CH ₃ CH ₃ is pyramidal b) Sp ² , planar trigonal c) Sp ² , linear d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed					
C - A 240 C - B 328 C - C 276 C - D 485 A B B C C C D 485 a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vaorbital 52. The species having pyramidal shape is a) SO ₃ b) BFF ₃ c) SiO ₃ ² d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated d) C ₆ H ₆ is nitrated d) C ₆ H ₆ is nitrated d) C ₉ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is C CH ₃ CH ₃ is pyramidal b) Sp ² , planar trigonal c) Sp ² , linear d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed d) Sp ³ , tetrahed d) Sp ³ , pyramidal d) Sp ³ , tetrahed		Bond E_{diss} (kJ mol ⁻¹)			
a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) varioritial 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is					
a) A b) B c) C d) D 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the o-nitrophenol is more volatile than p-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is O N 3 Sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is		C-B 328			
a) <i>A</i> b) <i>B</i> c) <i>C</i> d) <i>D</i> 51. Select the correct statement a) BF ₃ and NH ₃ have same dipole moment b) Dipole moment of NH ₃ is smaller than that of BF ₃ c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) varietistal 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ^{2−} d) OSF ₂ 53. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is		$\begin{vmatrix} C - C \end{vmatrix}$ 276			
 51. Select the correct statement a) BF₃ and NH₃ have same dipole moment b) Dipole moment of NH₃ is smaller than that of BF₃ c) BF₃ molecule has a planar structure, while the NH₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO₃ b) BrF₃ c) SiO₃² d) OSF₂ 53. Which concept best explains that the <i>o</i>-nitrophenol is more volatile than <i>p</i>-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₂OH is dehydrated d) C₆H₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is			b) B	c) C	4) D
 a) BF₃ and NH₃ have same dipole moment b) Dipole moment of NH₃ is smaller than that of BF₃ c) BF₃ molecule has a planar structure, while the NH₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO₃ b) BrF₃ c) SiO₃²⁻ d) OSF₂ 53. Which concept best explains that the <i>o</i>-nitrophenol is more volatile than <i>p</i>-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated d) C₆H₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is 	51	,	•	c) c	u) D
 b) Dipole moment of NH₃ is smaller than that of BF₃ c) BF₃ molecule has a planar structure, while the NH₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO₃ b) BrF₃ c) SiO₃²⁻ d) OSF₂ 53. Which concept best explains that the <i>o</i>-nitrophenol is more volatile than <i>p</i>-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated d) C₆H₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is	J1.				
c) BF ₃ molecule has a planar structure, while the NH ₃ molecule is tetrahedral d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is O N 1 Sp ³ , pyramidal b) Sp ² , planar trigonal c) Sp ² , linear d) Sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is			-		
d) The nitrogen atom has unshared pair of electrons while the boron atom has a free (vacant) vacorbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ COOH is decarboxylated c) CH ₃ CH ₃ OOH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ OOH is dehydrated					
orbital 52. The species having pyramidal shape is a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is				_	a free (vacant) valence
 52. The species having pyramidal shape is a) SO₃ b) BrF₃ c) SiO₃²⁻ d) OSF₂ 53. Which concept best explains that the <i>o</i>-nitrophenol is more volatile than <i>p</i>-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated d) C₆H₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is			anonarea pair or electronic	wille the boron atom has	a free (vacant) valence
a) SO ₃ b) BrF ₃ c) SiO ₃ ²⁻ d) OSF ₂ 53. Which concept best explains that the <i>o</i> -nitrophenol is more volatile than <i>p</i> -nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is	52.		nidal shape is		
 Which concept best explains that the <i>o</i>-nitrophenol is more volatile than <i>p</i>-nitrophenol? a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated d) C₆H₆ is nitrated Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed The structure and hybridization of silicon and carbon in Si(CH₃)₄ is			•	c) SiO_3^{2-}	d) OSF ₂
a) Steric hindrance b) Hyperconjugation c) H-bonding d) Resonance 54. Hybridization of the underlined atom is affected when a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is O O O O	53.	, ,	, ,	, ,	· -
 54. Hybridization of the underlined atom is affected when a) CH₃COOH is decarboxylated b) CH₃CH₂OH is dehydrated c) CH₃CH₃ is chlorinated d) C₆H₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH₃)₄ is 		= = =	-	-	-
a) CH ₃ COOH is decarboxylated b) CH ₃ CH ₂ OH is dehydrated c) CH ₃ CH ₃ is chlorinated d) C ₆ H ₆ is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C ₂ b) N ₂ c) O ₂ d) S ₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) sp ³ , pyramidal b) sp ² , planar trigonal c) sp ² , linear d) sp ³ , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is	54.	•	, , , ,	= = = = = = = = = = = = = = = = = = =	,
c) $CH_3\underline{C}H_3$ is chlorinated d) \underline{C}_6H_6 is nitrated 55. Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C_2 b) N_2 c) O_2 d) S_2 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is a) sp^3 , pyramidal b) sp^2 , planar trigonal c) sp^2 , linear d) sp^3 , tetrahed 57. The structure and hybridization of silicon and carbon in $Si(CH_3)_4$ is		-			ted
 Which of the following molecules is expected to exhibit diamagnetic behaviour? a) C₂ b) N₂ c) O₂ d) S₂ Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed The structure and hybridization of silicon and carbon in Si(CH₃)₄ is 		- -		-	
 a) C₂ b) N₂ c) O₂ d) S₂ 56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is a) sp³, pyramidal b) sp², planar trigonal c) sp², linear d) sp³, tetrahed The structure and hybridization of silicon and carbon in Si(CH₃)₄ is 	55.	, - - -	olecules is expected to exhi	· - · · ·	?
56. Hybridization of the nitrogen atom and electron geometry around nitrogen atom in pyridine is N a) Sp^3 , pyramidal b) Sp^2 , planar trigonal c) Sp^2 , linear d) Sp^3 , tetrahed 57. The structure and hybridization of silicon and carbon in $Si(CH_3)_4$ is					
a) sp^3 , pyramidal b) sp^2 , planar trigonal c) sp^2 , linear d) sp^3 , tetrahed 57. The structure and hybridization of silicon and carbon in Si(CH ₃) ₄ is	56.	′ -	, <u>-</u>	· -	, <u>-</u>
57. The structure and hybridization of silicon and carbon in $Si(CH_3)_4$ is				, c	
57. The structure and hybridization of silicon and carbon in $Si(CH_3)_4$ is		N			
		a) sp^3 , pyramidal	b) sp^2 , planar trigonal	c) sp^2 , linear	d) sp^3 , tetrahedral
a) Bent, sp b) Trigonal, sp^2 c) Octahedral, sp^3d d) Tetrahedral,	57.	The structure and hybridi	zation of silicon and carbo	n in Si(CH ₃) ₄ is	
		a) Bent, sp	b) Trigonal, sp^2	c) Octahedral, sp^3d	d) Tetrahedral, sp^3

	a) Cations with 18-electron shell have greater polari	zing power than the cation	s with 8-electron shell		
	b) Inner electros have poor shielding effect on the nu shell is increased	icleus and thus electronega	tivity of the 18-electron		
	c) CuCl is covalent and NaCl is ionic				
	d) All the above are correct statements				
59.	The species having pyramidal shape is				
0,1	a) SO ₃ b) BrF ₃	c) SiO ₃ ² -	d) OSF ₂		
60	Number of lone pair (s) in XeOF ₄ is/are	c) 5103	u) 051 2		
00.	a) 0 b) 1	c) 2	d) 3		
61	Consider the following compounds	C) 2	u) 3		
01.	I. K ₄ [Fe(CN) ₆], II. NH ₄ Cl, III. H ₂ SO ₄				
	Ionic, covalent and coordinate bonds are present in	-) II I II	II L I (L		
(2	a) I, II and III b) I and III	c) II and III	d) I and II		
62.	Following consists of discrete polar molecules at roo	-	D. E.		
	a) CS ₂ b) RaCl ₂	c) HCN	d) F ₂		
63.	Energy gaps between the highest filled band and the	lowest empty bands in ele	ment A, B, C and D are 0 ,		
	70, 530 and 110 kJmol ⁻¹ . Thus				
	a) Element <i>A</i> is metal				
	b) Element <i>C</i> is insulator				
	c) Element <i>B</i> and <i>D</i> can be semiconductors				
	d) All are correct conclusions about element <i>A</i> , <i>B</i> , <i>C</i> a				
64.	The correct stability order of the following resonance	e structure is			
	$H_2C = \stackrel{+}{N} = \stackrel{-}{N} \qquad H_2C = \stackrel{-}{N} = \stackrel{-}{N}$				
	$H_2\bar{C} \longrightarrow \stackrel{+}{N} \longrightarrow N$ $H_2\bar{C} \longrightarrow N \longrightarrow \stackrel{+}{N}$				
		1.) (1) > (11) > (11) > (11)			
	a) (I) > (II) > (IV) > (III)	b) $(I) > (III) > (IV)$			
	c) (II) > (I) > (IV)	d) (III)> (I) > (IV) > (II)			
65.	Stability of the species Li ₂ , Li ₂ ⁻ and Li ₂ ⁺ increases in the	ne order of			
		c) $\text{Li}_2 < L\text{i}_2^- < L\text{i}_2^+$	d) $\text{Li}_{2}^{-} < L\text{i}_{2} < L\text{i}_{2}^{+}$		
66.	Which of the following molecules or ions is not linear	,	2) 2 2 2		
	a) BeCl ₂ b) I ₃	c) CS ₂	d) ICl ₂ ⁺		
67.	O ₂ molecule is paramagnetic due to presence of	3, 332	, 2		
0	a) Two unpaired electrons in antibonding MO				
	b) One unpaired electron in antibonding MO				
	c) Two unpaired electrons in bonding MO				
	d) One unpaired electron in bonding MO				
68	An ionic compound A^+B^- is most likely to be formed	I from 4 and R when			
00.	a) Ionization energy of A is low	b) Electron affinity of B is	low		
	c) Electronegativity of <i>B</i> is low	d) Ionization energy of <i>B</i> :			
69	A set of inner <i>d</i> -complex is	a) formzation energy of b	13 10 W		
0).	a) $[Fe(CN)_6]^{4-}$, $[Ni(CN)_4]^{2-}$, $[Pt(en)_2]^{2+}$	b) $[Fe(H_2O)_6]^{3+}$, $[CoF_6]^{3-}$	[Cr(CN) 13-		
	c) Both (a) and (b)	d) None of the above	, [01 (014)6]		
70	Polarizing, action of Cd ²⁺ on anion is stronger than t	· · · · · · · · · · · · · · · · · · ·			
/ U.		nat vi Ga Decause			
	a) The charges of the ions are same b) Their radii are same $(Ca^{2+} - 0.104 \text{ pm}) Cd^{2+} - 0.104 \text{ pm}$	000 nm)			
	b) Their radii are same ($Ca^{2+} = 0.104$ nm; $Cd^{2+} = 0.000$ The Ca^{2+} ion has a noble-gas electron configuration its outer shell		electron configuration of		

58. Select the correct statement

- d) All the above are correct
- 71. Compound *X* is highly volatile and insoluble in water. Bonding in *X* is
 - a) Ionio

- b) Covalent
- c) Polar covalent
- d) Coordinate
- 72. In vinyl acetylene $CH \equiv C CH = CH_2$, type of overlapping in $(C_2 \sigma C_3)$ bond is
 - a) sp^2 -sp
- b) $sp-sp^2$
- c) sp^3-sp^3
- d) sp^3-sp^2

73. Match Column I with Column II and select the correct answer

Column I	Column II
(species)	(0 - N - 0)
	angle)
A. NO ₂ ⁺	1. 180°
B. NO ₂	2. 132°
C. NO ₂	3. 120°
D. NO ₃	4. 115°
	5. 109°

- A B C D
- a) 5 4 3 2

b) 5 2 4 3

c) 1 2 4 2

d) 1 4 3 2

- 74. Select the incorrect statement
 - a) Double bond is shorter than a single bond
 - b) σ -bond is weaker than a π -bond
 - c) Double bond is stronger than a single bond
 - d) Covalent bond is stronger than a hydrogen bond
- 75. Which of the following has the highest percentage of ionic character in its bonding?
 - a) Lil

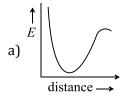
- b) MgCl₂
- c) CsF

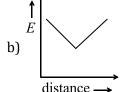
- d) CsI
- 76. Which of the following is non-polar but contains polar bonds?
 - a) HCl

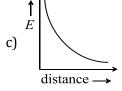
b) CO₂

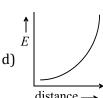
c) NH₃

d) NO_2


- 77. $Mg^{2+}O^{2-}$ is formed since
 - a) IE of Mg is low
- b) EA of O is low
- c) IE of Mg is high
- d) IE of O is low
- 78. The structure of 1, 3-butadiene is $CH_2 = CH CH = CH_2$ and the distance between the central carbon atom is 1.46 Å (instead of 1.54 Å). This is due to the


Existence of on-octet resonance structures involving double bonding between the central carbon atoms


- a) ⊕ ⊝ CH₂−CH=CH−CH₂
- b) Decrease in bond length when terminal double bonds exist
- c) sp^2-sp^2 overlapping
- d) p-p overlaping
- 79. Among the following, the paramagnetic compound is
 - a) Na_2O_2
- b) 0_3


c) N_20

- d) KO_2
- 80. Which plot best represents the potential energy (*E*) of two hydrogen atoms as they approach one another to form a hydrogen molecule?

- 81. Among the following ions the $p\pi$ - $d\pi$ overlap could be present in
 - a) NO_2^-

b) NO_{3}^{-}

c) PO_4^{3-}

d) CO_3^{2-}

- 82. In I_3^- , Lewis base is
 - a) L

b) I-

c) I₂⁺

- d) I_2^-
- 83. The expected spin-only magnetic moments (BM) for $[Fe(CN)_6]^{4-}$ and $[FeF_6]^{3-}$ respectively are

84.	a) 1.73 and 1.73 The hybridization of atom	b) 1.73 and 5.92	c) 0 and 1.73 and NH $_4^+$ are respectively	d) 0 and 5.92
	a) sp, sp^2, sp^3	b) sp, sp^3, sp^2	c) sp^2 , sp , sp^3	d) sp^2 , sp^3 , sp
85.	a) Mg(OH) ₂ exhibits only b) Polarizing action of Zn ²	figuration and of same size	$\mathrm{OH})_2$ is amphoteric aration on the anion is large	er than that of Mg ²⁺ with a
86.	=	dipole moment of 1.2 D. If	the bond distance is 1.0 Å,	fraction of an electronic
	charge on each atom is	-		
	a) 0.25	b) 0.33	c) 0.66	d) 0.90
87.	The maximum covalency	is equal to the number of		
	a) Paired <i>p</i> -electrons		b) Unpaired s-electrons	
	c) Unpaired s- and p-elect	trons	d) s - and p - electrons in the	ne valence shell
88.	One of the following ions	has a trigonal planar shape	}	
	a) SO_3^{2-}	b) PO ₄ ³⁻	c) CN ⁻	d) CO_3^{2-}
89.	In carbon-hydrogen-oxyg	en compounds		
	a) All O -to - H bonds are	π bonds	b) All C -to - H bonds are	σ bonds
	c) All C -to - C bonds are		d) All C -to - C bonds are	
90.			stabilized by the removal of	
,	a) C ₂	b) CN	c) N ₂	d) 0 ₂
91.	Which statement is not co	•	9) 1.2	w) 02
,	a) It is paramagnetic	110000000000000000000000000000000000000	b) It forms dimer and para	amagnetism is lost
	c) It has one coordinate b	onds	d) It has nitrogen oxygen	_
92.		mpounds has both ionic an		
,	a) NaBr	b) Ba(CN) ₂	c) PCl ₅	d) CH ₃ CH ₂ OH
93.	Which of the following has	, , , <u>-</u>	5) - 5-3	1)32
	a) CO	b) SO ₂	c) SO ₃	d) H ₂ O
94.	-	itrogen atom in NH ₃ , N(CH	2 0	
		II. Trigonal pyramidal	373 F- (- 37313	
	III. Square planar	0 17		
	a) I, I, I	b) II, II, III	c) II, I, II	d) II, II, I
95.	Select the correct stateme	-	, , ,	
			hite cause this allotropic fo	orm to conduct electricity
	b) Pauling assigns "metall	ic valence" equal to their g	roup number to the elemen	its of IA to VIA
	c) Diatomic lithium molec	cules Li ₂ are stable towards	s dissociaction	
	d) All are correct statemen	nts		
96.	Which pair of substances	will have the most similar	geometry?	
	a) SO_3 , SO_3^{2-}	b) SO ₃ , SO ₄ ²⁻	c) SO_3 , CO_3^{2-}	d) SO_4^{2-} , CO_3^{2-}
97.	In which case, hybridisation	on of the central atom is af	fected when	
	a) NH ₃ changes to NH ₄ ⁺	b) AlH ₃ changes to AlH ₄	c) In both cases	d) In none case
98.	The carbon dioxide molec	ule is linear. The electrone	gativities of C and O are 2.5	and 3.5 respectively.
	Based on these values and	l on consideration of molec	cular geometry, the $C-0$ b	ond is and the molecule
	is			
	a) Polar; polar	b) Non-polar; non-polar	c) Polar; non-polar	d) Non-polar; polar
99.	The species having bond of	order different from that in	CO is	
	a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N ₂
100.	The molecules that will ha	eve dipole moments are		
	a) 1, 2-dichloro benzene	b) cis-3-hexene	c) trans-2-pentene	d) All of these

101	. The As—CI bond distance	$\sin AsCl_3$ is 2.20A. If radius	of chlorine atom is 0.99 A t	hen radius of As atom is
	a) 0.24 Å	b) 3.19 Å	c) 1.21 Å	d) 2.09 Å
102	. Which species has the sa	me shape as the NO_3^- ion?		
	a) SO ₃	b) SO_3^{2-}	c) ClF ₃	d) ClO ₃
103	· Which of the following ha	as $-0-0$ – linkage?		
	a) $H_2S_2O_6$	b) H ₂ S ₂ O ₈	c) $H_2S_2O_3$	d) $H_2S_4O_6$
104	. The hydrogen bond is no		, , , ,	, 2 1 0
	a) Phenol	b) Liquid HCl	c) Water	d) Liquid NH ₃
105		atements is correct for CsB	,)13
	a) It is covalent compour		b) It contains Cs ³⁺ and B	r [–]
	c) It contains Cs ⁺ and Br		d) It contains Cs ⁺ , Br ⁻ an	
106	-	_	-	molecule (N_2) is written a
			l order in nitrogen molecul	
	a) 0	b) 1	c) 2	d) 3
107	•	an electron-deficient comp	,	<i>a)</i> 5
10,	a) NaBH ₄	b) CO ₂	c) B_2H_6	d) Al ₂ Cl ₆
108	. Consider the following sp	, <u>-</u>	0) 12116	a) 1112016
100	I: $S_4O_6^{2-}$; II: S_3O_9 ;			
			-0-X linkage ($X=P$ or	\$\2
	a) II, III	b) I, III	$-0-\lambda$ illikage ($\lambda = F$ of c) II, IV	d) I, IV
100		3 .	rrounded by eight electron	, ,
109		13 , 111 2 and 111 4 are an sulfit 13 5 H $-$ N $-$ H bond angle, cor		s. When these species are
	a) NH ₃ , NH ₂ , NH ₄ ⁺	_	` **** ****± ****	9) MA- MA MA+
110	_ · · · · · · - · · · · · · · · · · · · · · · · · · ·		, , , ,	$u_1 Nn_2, Nn_3, Nn_4$
110		$_4$ and Na $_3$ PO $_4$ in water in in		N C1
	a) NaCl $< Na_2SO_4 < Na_3$		b) $Na_3PO_4 < Na_2SO_4 < Na_2SO_5 < Na_2SO$	
111	c) NaCl $< Na_3PO_4 < Na_3PO_4$	= =	d) $Na_2SO_4 < NaCl < Na$	₃ PO ₄
111	. The shape of IF ₇ molecul		15 m + 1 + 11	
	a) Pentagonal bipyramid	al	b) Trigonal pyramidal	
440	c) Tetrahedral		d) Square planar	
112	. Which set contains no ior	_) DE AIE MIE	
	a) NH ₄ Cl, OF ₂ , H ₂ S		c) BF ₃ , AlF ₃ , TlF ₃	d) I ₂ , CaO, CH ₃ Cl
113			ir of electrons on the centra	
	a) [ClO ₃]	b) XeF ₄	c) SF ₄	d) [I ₃]
114			ides a d -orbital contributio	
	a) I ₃	b) PCl ₃	c) NO_3^-	d) H ₂ Se
115	. (I)1, 2-dihydroxy benzen			
	(II) 1, 3-dihydroxy benze			
	(III) 1, 4-dihydroxy benz	ene		
	(IV) Hydroxy benzene			
	-	oiling points of above men		
	a) $I < II < III < IV$		b) $I < II < IV < III$	
	c) $IV < I < II < III$		d) $IV < II < I < III$	
116	. Which one of the following	ng has the highest boiling p	oint?	
	a) AsH ₃	b) SbH ₃	c) PH ₃	d) NH ₃
117	. Which set of properties v	vould identify a white solid	l unknown as a molecular c	ompound?
	I. contains a metal			
	II. has a definite crystal s	tructure		
	III. dissolves in water, bu	t not in organic liquids		
	IV. melts at 80°C			
	V. does not conduct elect	ricity in fused state		

	a) I, II, III b) I, III, V	c) II, III, IV	d) II, IV, V
118.	All the following molecules are polar except one		
	a) BCl ₃ b) CH ₂ Cl ₂	c) NH ₃	d) FNO
119.	Number of water molecules directly attached to on	e water molecule is	
	a) 1 b) 2	c) 3	d) 4
120.	For the dot structure shown the most likely elemen	its are $X = \dots$ and $Y = \dots$	
	:Ÿ:		
	;ÿ: ;ÿ.—,X.—,ÿ: ;;;:		
	a) Carbon, hydrogen b) Carbon, oxygen		
121.	Specify the coordination geometry around the hybr	ridization of N and B atoms	in a 1:1 complex of BF ₃ and
	NH ₃		
	a) N: tetrahedral, sp^3 ; B: tetrahedral, sp^3		
	c) N: pyramidal, sp^3 ; B: planar, sp^2	, 1, , , , , , , , , , , , , , , , , ,	
122.	PCl ₅ has a shape of trigonal bipyramid whereas IF ₅		
	Presence of unshared electron pair on I which is a)	oriented so as to minimize	repulsion while P in PCI ₅
	has no unshared pair		
	b) Octet of P is complete while that of I is incomple	te	
	c) P and I are of different group		
122	d) F and Cl have different extent of repulsion	-l- 4V	
123.	The angle between the bonding orbitals of a molecu		
124	a) 120° b) 109°	c) 104°	d) 180°
124.	Covalency of carbon in the CO molecule is three bed		
	a) An unexcited carbon atom has two upaired electb) The carbon atom can be an acceptor of an electron		
	c) The carbon atom has four valence electrons	on pan	
	d) Maximum covalency of carbon is three		
125	In ammonia, $H - N - H$ bond angle is		
123.	a) 170° b) 104.5°	c) 109.5°	d) 120°
126.		Ð	u) 120
120.	Select the correct statement about carbonium ion	CH ₅ .	
	a) This is cation shares eight electrons among five	bonds	
	b) There is no empty orbital		
	c) It is not electro deficient		
	d) All the above are correct statements		
127.	Allyl cyanide has		
	a) 9 sigma bonds and 4 pi bonds	b) 9 sigma bonds, 3 pi bo	nds and 1 lone pair
	c) 8 sigma bonds and 5 pi bonds	d) 8 sigma bonds, 3 pi bo	nds
128.	Bond order of O_2 , O_2^+ , O_2^- and O_2^{2-} is in order		
	a) $0_2^- < 0_2^{2-} < 0_2 < 0_2^+$ b) $0_2^{2-} < 0_2^- < 0_2 < 0_2^+$	c) $0_2^+ < 0_2 < 0_2^- < 0_2^{2+}$	d) $0_2 < 0_2^+ < 0_2^- < 0_2^{2-}$
129.	Which of the following bonds is the weakest?		
	a) Coordinate bond b) Hydrogen bond	c) Van der Waal' forces	d) Covalent bond
130.	The correct order of dipole moments of HF, H ₂ S and	dH_2O is	
	a) $HF < H_2S < H_2O$ b) $HF < H_2S > H_2O$	c) $HF > H_2S > H_2O$	d) $HF > H_2O < H_2S$
131.	On heating one end of a piece of a metal the other e	nd becomes hot because of	
	a) Resistance of the metal	b) Mobility of atoms in th	
	c) Energized electrons moving to the other end	d) Minor perturbation in	
132.	In which of the following pairs of molecules/ions b		
	a) H_2^+, He_2^{2-} b) H_2^-, He_2^{2-}	e) <u>Z</u>	d) H_2^- , He_2^{2+}
133.	Electron pairs occupy localised orbitals. Their orbit	als are oriented in such a w	ay that the repulsion

	between electron clouds	becomes		
	a) Zero	b) Minimum	c) Maximum	d) Infinite
134.	A substance in which lar	ge energy gap separates th	e valence and conduction ba	and is a/an
	a) Metal	b) Metalloid	c) Semiconductor	d) Insulator
135.	Among the following the	molecule with the highest	dipole moment is	
	a) CH ₃ Cl	b) CH ₂ Cl ₂	c) CHCl ₃	d) CCl ₄
	The correct order of incr	_		
	C - H (I), C - O (II), C -			
	a) I <ii<iii, iv<="" td=""><td>•</td><td>c) IV<iii<ii<i< td=""><td>d) III<iv<ii<i< td=""></iv<ii<i<></td></iii<ii<i<></td></ii<iii,>	•	c) IV <iii<ii<i< td=""><td>d) III<iv<ii<i< td=""></iv<ii<i<></td></iii<ii<i<>	d) III <iv<ii<i< td=""></iv<ii<i<>
	-	as the smallest bond lengtl		
	a) NO ⁺	b) NO	c) NO ⁻	d) Equal
	=	ory, a molecule with three o	charge clouds including one	lone pair would have a
	shape	1571) m . 1 1 1	1) m + 1 1
	a) Bent	b) Linear	c) Tetrahedral	d) Trigonal planar
	HCN and HNC molecular	<u>-</u>	h) = hondo and = hondo	
	a) Lone pair and σ bonds		b) σ bonds and π bonds	d = banda
	c) π bonds and lone pair The grapide ion CN^- and		d) Lone pairs, σ bonds are	
	chemically inert due to	i the introgen molecule N ₂	are isoelectronic. However,	iii coiiti ast to Civ , iv ₂ is
	a) Unsymmetrical electr	on distribution	b) Low bond energy	
	c) Absence of bond polar		d) Presence of greater nu	mher of electrons in
	c) Thosenee of bond polar	ricy	bonding	imber of electrons in
141.	Solubility of KCl is maxin	num in	bonamg	
	a) CH ₃ CH ₂ OH		c) H ₂ 0	d) CH ₃ COOH
	Select the correct statem	, ,	·)2 ·	,3
	LiF and MgO are isost		sional, but a crystal of MgO	is much harder than one of
	a) LiF			
	The thermal stability b)	of the isomorphoussulphat	tes of Ca^{2+} , Sr^{2+} and $Ba^{2+}w$.	r.t. decomposition into
			e order CaSO ₄ , SrSO ₄ , BaSO ₂	
	c) Both (a) & (b) are cor	rect		
	d) None of the above			
		-	S°C conduct electricity witho	ut chemical reaction at the
	electrodes. Hence, condu	•		
	a) Increase as temperatu			
	b) Decrease as temperat			
	=	hanging the temperature		
	•	action of alkali metal with l	•	
	_	-	ounds have bonds that are i	=
	a) NaCl, NCl ₃ , CCl ₄	b) CsBr, BaBr ₂ , SrO	c) CsF, BF ₃ , NH ₃	d) Al ₂ O ₃ , CaO, SO ₂
	=	=	air of electrons on the centra	
	a) $[ClO_3^-]$	b) XeF ₄	c) SF ₄	d) [I ₃]
	=	oes not obey 18-electron r	c) V(CO) ₆	d) $Mn_2(CO)_{10}$
	a) $Cr(CO)_6$	b) Fe(CO) ₅	es dipole moments are maxi	, _ , , 10
147.	X	ole moments. In which case	es dipole moments are maxi	mum and minimum:
	Î Y			
	Maximum M	linimum		

	X - Y - X - Y		
	a) Cl Cl CH ₃ CH ₃		
	b) OH CH ₃ Cl Cl		
	c) OH NO ₂ CH ₃ CH ₃		
	d) OH NO ₂ Cl Cl		
148.	•		
110.	Select the correct statement about carbenium ion C	H ₃ .	
	a) It is planar with empty <i>p</i> -orbital		
	b) There are three sigma (C – H) bonds		
	c) It is electron deficient with six electrons in outer-	shell	
	d) All the above are correct statements		
149.	AsF_5 molecule is trigonal bipyramidal. The hybride of	orbitals used by As atoms fo	r bonding are
	a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ b) $d_{xy'}, s, p_{x'}, p_{y'}, p_z$	c) s, p_x, p_y, p_z, d_{xy}	d) $d_{x^2-y^2}$, s , $p_{x'}$, $p_{y'}$, p_z
150.	Octet rule is not followed in		
	a) CCl ₄ , N ₂ O ₄ and N ₂ O ₅ b) BF ₃ , BeCl ₂ and NO ₂	c) NaCl, MgCl ₂ , MgO	d) PCl ₃ , NH ₃ , H ₂ O
151.	Metallic bonding is explained by	, 5 2 5	<i>y 3, 3, 2</i>
		c) Both (a) and (b)	d) None of the these
152.	Which of the following species contain at least one a	, , , , ,	=
	a) $0 - Cl - 0$ b) $F - Xe - F$	c) Both (a) and (b)	d) None of these
153.	Which of the following molecule does not possess a	permanent dipole moment	=
	a) H ₂ S b) SO ₂	c) CS ₂	d) SO ₃
154.	Which pair is not correct order of lattice energy?		
	a) KCl > MgO b) AlN > MgO	c) CaO > BaO	d) $MgCO_3 > CaCO_3$
155.	Geometrical configuration of BF ₃ and NF ₃ molecules	s is	
	a) The same because of same covalency of the centr	al atom	
	b) Different because BF ₃ is polar and NF ₃ is non-pol	lar	
	c) Different because BF ₃ is non-polar and NF ₃ is pol	ar	
	d) None is correct		
156.	Which of the following species/ molecules has a pla	nar geometry?	
	a) Ni(CO) ₄ b) SF ₄	c) CoCl ₄ ²⁻	d) XeF ₄
157.	Which of the following is most polar bond?	-	
	a) Cl – Cl b) N – F	c) C — F	d) O – F
158.	Which has a maximum repulsive interaction?		
	a) <i>bp-bp</i> b) <i>lp-lp</i>	c) lp-bp	d) Equal
159.	Which one of the following molecules will form a lin	ear polymeric structure du	e to hydrogen bonding?
	a) NH ₃ b) H ₂ O	c) HCl	d) HF
160.	Molecular shapes of SF ₄ , CF ₄ and XeF ₄ are		
	a) The same, with 2, 0 and 1 lone pair of electrons re	espectively	
	b) The same, with 1, 1 and 1 lone pair of electrons re	espectively	
	c) Different with 0, 1 and 2 lone pair of electrons res	spectively	
	d) Different with 1, 0 and 2 lone pair of electrons res	spectively	
161.	$\mbox{MgSO}_4\mbox{is}$ soluble while \mbox{BaSO}_4 is insoluble in $\mbox{H}_2\mbox{O}.$ Th	nis is because	
	a) Lattice energy of BaSO ₄ is greater than MgSO ₄		
	b) $BaSO_4$ is more covalent than $MgSO_4$		
	c) Hydration energy of Mg ²⁺ is greater than Ba ²⁺		
	d) Lattice energy of $MgSO_4$ is greater than $BaSO_4$		
162.	Delocalized molecular orbitals are found in		

c) CH_4

c) Equilateral triangle

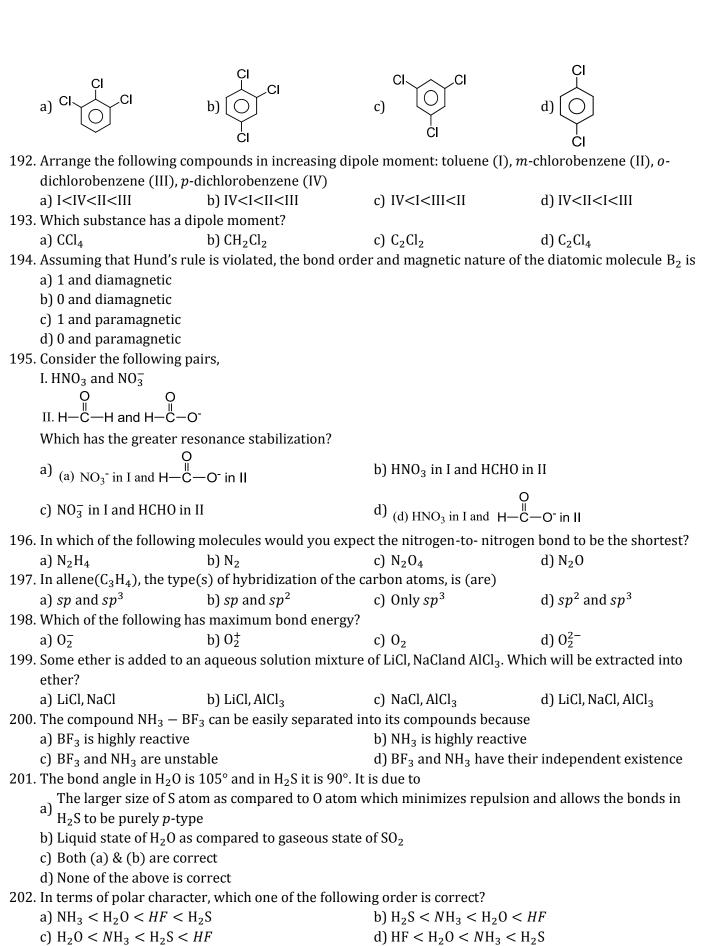
163. When the number of electron pairs on the central atom is six, then geometry of the molecule is

b) Trigonalbipyramidal

b) HS-

a) H₂

a) Octahedral


d) CO_3^{2-}

d) Linear

164. Ionization energies (IE) and electron affinities (EA) of F and Cl are given below Element | IE EA 17.4 eV | 3.45 eV F Cl 13.0 eV | 3.61 eV Compound formed between F and Cl is predominantly d) CI < _ a) F+Clb) Cl+F-165. Based on VSEPR theory, the number of 90 degree F - Br - F angles in BrF_5 is d) 3 a) 0 b) 1 166. The shape of XeO₂F₂ molecule is d) See-saw a) Trigonalbipyramidal b) Square planar c) Tetrahedral 167. Select the correct statement about valence-bond approach a) Each bond is formed by maximum overlap for its maximum stability b) It represents localized electron model of bonding c) Most of the electrons retain the same orbital locations as in a separated atoms d) All the above are correct statements 168. Which of the following molecules are expected to exhibit intermolecular H-bonding? I. Acetic acid II. *o*-nitrophenol III. *m*-nitrophenol IV. o-boric acid Select the correct alternate a) I, II, III b) I, II, IV c) I, III, IV d) II, III, IV 169. H-bonding is maximum in a) Ethanol b) Methoxy methane c) Chloroethane d) N, N-diethyl amino ethane 170. Which of the following molecules does not have a dipole moment? b) CHCl₃ c) CH₂Cl₂ d) BF₃ 171. Which has maximum number of lone-pairs of electrons on the central atom? b) H_3O^+ c) XeF₄ d) XeF₆ 172. Azide ion (N_3^-) exhibits an N – N bond order of 2 and may be represented by resonance structures I, II and III given below $: \underline{\bar{N}} = \stackrel{+}{N} = \underline{\bar{N}} : \longleftrightarrow \stackrel{2^{-}}{:} \underline{\bar{N}} = \stackrel{+}{N} = N : \longleftrightarrow : N = \stackrel{+}{N} = \stackrel{\cdot}{N} : \stackrel{2^{-}}{:} 1$ Select the correct statement a) Structures I and II make greater contributions than III b) Structures II and III make greater contributions than I c) Structures I and III make greater contributions than II d) All three structures make equal contributions 173. The number of anti-bonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital theory is (atomic number of 0 is 8) b) 2 c) 4 174. If there are five electron pairs in outer shell, then structure and bond angle as predicted by Sidgwick-Powell theory is a) Octahedron, 90° b) Trigonalbipyramidal, 120° and 90° d) Tetrahedron, 109° 28' c) Pentagonal bipyramidal, 72° and 90° 175. Which property is not due to H-bonding? a) High boiling point of water b) High viscosity of glycerol c) Solubility of ammonia in water d) Polar nature of halogen acid 176. Number of unpaired electrons in $[V(H_2O)_6]^{3+}$ is b) 3 c) 4 d) 5 177. Considering the state of hybridization of carbon atoms, find out the molecules among the following which

	a) $CH_3 - CH_2 - CH_2 - CH$	H_3	b) $CH_3 - CH = CH - CH_3$				
	c) $CH_3 - C \equiv C - CH_3$		d) $CH_2 = CH - CH_2 - C \equiv$	E CH			
178.	The BCl ₃ is a planar molecular whereas NCl ₃ is pyramidal because						
	a) B $-$ Cl bond is more polar than N $-$ Cl bond						
	b) N $-$ Cl bond is more covalent than B $-$ Cl bond						
	c) Nitrogen atom is small	er than boron atom					
	d) BCl ₃ has no lone pair e	lectrons but NCl ₃ has a lone	e pair of electrons				
179.	The number of electron d	ots in Lewis structure indic	cates				
	a) Number of valence electrons in an atom						
	b) Number of protons in t	the nucleus of the atom					
	c) Total number of electr	ons in an atom					
	d) Total number of electr	ons and protons in an atom	1				
180.	Chelation can occur in						
	a) Complexes with bident	tate ligands	b) Intramolecular H-bond	ling			
	c) Both of the above cases		d) None of the above case	=			
181.	=	in short lived species CH_2^{2+}	_				
	a) <i>sp</i> -linear	——————————————————————————————————————	c) sp ³ -tetraheral	d) None is correct			
182.		ecular formula Be _n Al ₂ Si ₆ O ₁	, .	,			
	a) 1	b) 2	c) 3	d) 4			
183.	•	respectively 1, 3 and 5 elec		,			
	from	, , , , , , , , , , , , , , , , , , ,		P			
	a) A and C	b) A and B	c) B and B	d) <i>B</i> and <i>C</i>			
	OF and F ₂ can be compare	•	·) - ·····	-,			
2011	a) OF is paramagnetic wh						
		ards dissociation into atoms	3				
	c) Both (a) & (b) are corr		,				
	d) None of the above is co						
185.		olecule is z, molecular orbi	tals $n_{\cdot \cdot}$ and $n_{\cdot \cdot}$ overlan to fo	rm, which of the following			
100.	orbital?		outs px arra py sveriap to re	, 01 010 10110 11110			
	a) π -molecular orbital	b) σ -molecular orbital	c) δ -molecular orbital	d) No bond will form			
186	=	overlapping of atomic orbit		aj No bolia Wili loi lii			
100.	a) $s-s>s-p>p-p$	overlapping of atomic or or	tais is in order				
	b) $s - s$						
	c) $s - p < s - s < p - p$						
	d) $p - p < s - s < s - p$						
187	The hybride orbital of the	central atom in AlF. is					
107.	a) sp	b) sp^2	c) sp^3	d) dsp^2			
1ΩΩ	All the following molecule	, .	c_{j} s_{p}	u) usp			
100.	a) SO ₂	b) CO ₂	c) HCN	d) NO			
190	-	(X) geometry because		,			
109.	lone pairs of electron		use its central atom has	. (1) bolius aliu (2)			
	X YZ	3					
			b) Linear 2 2				
	a) Bent 2 2 c) Pyramidal 3 1		=				
100	•	a nautral atom V ia favouro	.,				
190.		a neutral atom X is favoure					
	a) High electron affinity	al	b) Large size of <i>X</i>	,			
101	c) Low ionization potenti		d) High charge on anion <i>x</i>				
TAT.	Which has maximum dipo	de moment:					

is linear?

Multiple Correct Answers Type

203. Which of the following pairs contain same number of electrons but their shapes are different?

- a) BF₃, BCl₃
- b) CH₄, NH₃
- c) NH_3 , H_2O
- d) BeCl₂, BeF₂

204. In $\ BrF_3$ molecule, the lone pairs occupy equatorial $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	position to minimize			
a) Lone pair-bond pair repulsion only				
b) Bond pair-bond pair repulsion only				
c) Lone pair-lone pair repulsion and lone pair-bond	pair repulsion			
d) Lone-pair-lone pair repulsion only				
205. The isotone(s) of $^{76}_{32}$ Ge is/are:				
a) $^{77}_{32}\text{Ge}$ b) $^{77}_{33}\text{As}$	c) ⁷⁷ ₃₄ Se	d) ⁷⁸ ₃₄ Se		
206. Which is/are correct statements?				
a) A solute will dissolve in water if hydration energ	y is greater than lattice ene	rgy		
b) If the anion is large compared to the cation, the la	attice energy will remain al	most constant		
Solubility of II A hydroxide is in order				
2 Be(OH) ₂ < Mg (OH) ₂ < Ca (OH) ₂ < Sr (OH) ₂				
d) AgF is water soluble				
207. Resonance occurs due to the :				
a) Delocalization of a lone pair of electrons				
b) Delocalization of sigma-electrons				
c) Delocalization of pi-electrons				
d) Migration of protons				
208. Select the correct statement(s) about C_3^{4-} ion				
a) It reacts with H ₂ O forming C ₃ H ₆	b) It react with H ₂ O form			
c) It has two sigma and two pi bonds	d) It has three sigma and	one pi bonds		
209. Which of the following statements is/are correct?				
a) Hybridization is the mixing of atomic orbitals pri	or to their combining into r	nolecular orbitals		
b) sp^2 -hybrid orbitals are at 120° to one another				
c) dsp^3 -hybrid orbitals are directed towards the co				
d) sp^3d^2 -hybrid orbitals are directed towards the contraction of the first state of the sta		ron		
210. In which of the following hybridization of underline		L'II 'al. AlII		
a) PCl_5 solid dissociates into PCl_4^- and PCl_6^- b) PCl_4^+ is protonated give PCl_4^+	$\begin{pmatrix} c \end{pmatrix}_{c}$ NH ₄ NU ₃ is neated to	d) LiH reacts with AlH ₃ forming LiAlH ₄		
		iorming Liain ₄		
211. Which are the species in which sulphur undergoes s	c) SO_4^{2-}	9) II C		
a) SF ₄ b) SCl ₂ 212. Correct order of thermal stability is/are	c) 30 ₄	d) H ₂ S		
a) Li ₃ N > N a ₃ N > K ₃ N	b) $BeCl_2 > MgCl_2 > CaC$	า		
c) $K_2CO_3 > Na_2CO_3 > Li_2CO_3$	d) BeCO ₃ > $MgCO_3$ < Ca	-		
$L_1 \times L_2 \times L_3 = L_2 \times L_3 \times L_2 \times L_3 \times L_3 \times L_4 \times L_4 \times L_5 $	$u_1 Deco_3 > Mgco_3 < ct$	<i>i</i> CO ₃		
a) The electronegativity of F is greater than that of (
a) The electronegativity of this greater than that of the	1			
b) H ₂ O involves hydrogen bonding whereas BeF ₂ is				
b) H ₂ O involves hydrogen bonding whereas BeF ₂ is c) H ₂ Ois linear and BeF ₂ is angular				
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 	a discrete molecule	ermining m.n. and h.n.?		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely t 	a discrete molecule o be most important in dete			
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely t a) ICl b) Br₂ 	a discrete molecule o be most important in dete $\rm c)~H_2S$	ermining m.p. and b.p.? d) CO		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely tall ICl b) Br₂ 215. Which is/are the correct increasing order of the process. 	a discrete molecule o be most important in detection C operty indicated?	d) CO		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely ta) ICl b) Br₂ 215. Which is/are the correct increasing order of the proparation of the proparation. a) BaO < SrO < CaO < MgO < BeO (lattice energy) 	a discrete molecule o be most important in dete c) H ₂ S operty indicated? v) b) LiF < LiCl < LiBr < L	d) CO il (melting point)		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely tale ICl b) Br₂ 215. Which is/are the correct increasing order of the property of	a discrete molecule o be most important in dete c) H ₂ S operty indicated? o) b) LiF < LiCl < LiBr < L d) NaF < MgO < AlN <	d) CO il (melting point) SiC (lattice energy)		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely ta ICl b) Br₂ 215. Which is/are the correct increasing order of the property a) BaO < SrO < CaO < MgO < BeO (lattice energy c) AlF₃ < AlCl₃ < AlBr₃ < AlI₃ (covalent nature) 216. Which combination of the compounds with their material 	a discrete molecule o be most important in dete c) H ₂ S operty indicated? o) b) LiF < LiCl < LiBr < L d) NaF < MgO < AlN < agnetic moments are correct	d) CO il (melting point) SiC (lattice energy) tt?		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely ta) ICl b) Br₂ 215. Which is/are the correct increasing order of the property a) BaO < SrO < CaO < MgO < BeO (lattice energy c) AlF₃ < AlCl₃ < AlBr₃ < AlI₃ (covalent nature) 216. Which combination of the compounds with their mata) [Mn(H₂O)₆]Cl₃μ = 4.90 BM 	a discrete molecule o be most important in dete c) H ₂ S operty indicated? o) b) LiF < LiCl < LiBr < L d) NaF < MgO < AlN < agnetic moments are correct b) [Fe(H ₂ O) ₆]Cl ₃ μ = 5.92	d) CO il (melting point) SiC (lattice energy) ct? 2 BM		
 b) H₂O involves hydrogen bonding whereas BeF₂ is c) H₂Ois linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 214. In which molecule is the van derWaals force likely ta ICl b) Br₂ 215. Which is/are the correct increasing order of the property a) BaO < SrO < CaO < MgO < BeO (lattice energy c) AlF₃ < AlCl₃ < AlBr₃ < AlI₃ (covalent nature) 216. Which combination of the compounds with their material 	a discrete molecule o be most important in dete c) H ₂ S operty indicated? o) b) LiF < LiCl < LiBr < L d) NaF < MgO < AlN < agnetic moments are correct	d) CO il (melting point) SiC (lattice energy) ct? 2 BM		
b) $\rm H_2O$ involves hydrogen bonding whereas BeF ₂ is c) $\rm H_2O$ is linear and BeF ₂ is angular d) $\rm H_2O$ is angular and BeF ₂ is linear 214. In which molecule is the van derWaals force likely ta) ICl b) Br ₂ 215. Which is/are the correct increasing order of the proa) BaO $<$ $SrO < CaO < MgO < BeO$ (lattice energy c) AlF ₃ $<$ $AlCl_3 < AlBr_3 < AlI_3$ (covalent nature) 216. Which combination of the compounds with their mata) [Mn(H ₂ O) ₆]Cl ₃ $\mu = 4.90$ BM c) Ni(CO) ₄ $\mu = 0.00$ BM	a discrete molecule o be most important in dete c) H ₂ S operty indicated? o) b) LiF < LiCl < LiBr < L d) NaF < MgO < AlN < agnetic moments are correct b) [Fe(H ₂ O) ₆]Cl ₃ μ = 5.92	d) CO il (melting point) SiC (lattice energy) ct? 2 BM		

a) SiF ₄	b) XeF ₄	c) SF ₄	d) BF ₃
219. Which of the following ha	eve a dipole moment?		
a) 2,2,3,3-	h) Tugua 2 nontono	a) Cia 12 diablementhene	Trans-1,2-
tetramethylbutane	b) <i>Trans</i> -2-pentene	c) Cis-1,2-dichloroethene	dichloroethene
220. Which of the following ha	eve identical bond-order?		
a) CN ⁻	b) 0 ₂	c) NO ⁺	d) CN ⁺
221. The linear structure is as	sumed by :		
a) SnCl ₂	b) NCO	c) CS ₂	d) NO ₂ ⁺
222. Which molecule(s) has/h	ave V-shape?		
a) H ₂ O	b) SnCl ₂	c) H ₂ S	d) None of these
223. The planar shape of N(Si	H_3) ₃ is explained by the		
a) Type of hybride orbita	ls of nitrogen		
b) Additional $d\pi$ - $p\pi$ over	lap along the $N - Si$ bond		
c) Higher electronegativi	ty of nitrogen		
d) Higher electronegativi	ty of silicon		
224. Which of the following is	/are coloured and paramag	gnetic?	
a) Cu ⁺	b) NO ₂	c) $[Fe(H_2O)_6]^{2+}$	d) $[Al(OH)_4]^-$
225. Which form two or more	chlorides?		
a) Na	b) Hg	c) Cu	d) Fe
226. Species having same bon	d order are		
a) NO	b) NO ⁺	c) NO ²⁺	d) NO ⁻
227. Which one of the following	ng arrangement does not gi	ve the correct picture of the	trends indicated against
it?			
a) $F_2 > Cl_2 > Br_2 > I_2$: Electron gain enthalpy		
b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy	•	
c) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity		
d) $F_2 > Cl_2 > Br_2 > I_2$: Oxidizing power		
228. The type of bond(s) pres	ent in ammonium chloride	is/are :	
a) Ionic	b) Covalent	c) Coordinate	d) None of these
229. Which phosphorus (P) ha	as		
a) $P - P - P$ bond angle of	of 60°	b) 4 lone pairs of electron	S
c) 4P – P single bonds		d) 6P – P single bonds	
230. Which has/have magneti	c moment?		
a) $[Fe(H_2O)_6]^{2-}$	b) $[Ni(CN)_4]^{2-}$	c) $[Fe(CN)_6]^{3-}$	d) 0 ₂
231. The molecules(s) which	show H-bonding is/are:		
a) o-nitrophenol	b) Water	c) HCl	d) Ethyl acetoacetate
232. Pick out the isoelectronic	structures from the follow	ring:	
$(I)CH_3^+$ $(II)H_3O^+$ $(III)NI$	H_3 (IV)CH $_3^-$		
a) I and II	b) III and IV	c) I and III	d) II, III and IV
233. Ionization energy is influ	enced by :		
a) Size of atom	-		
b) Charge on the nucleus			
c) Electrons present in in	ner shells		
d) Name of the other			
d) None of the above			
234. CO_2 is isostructural with	:		
-	: b) SnCl ₂	c) C ₂ H ₂	d) NO ₂
234. CO_2 is isostructural with	b) SnCl ₂	c) C ₂ H ₂	d) NO ₂
234. CO ₂ is isostructural with a) HgCl ₂	b) SnCl ₂ re correct?	c) C ₂ H ₂	d) NO ₂
234. CO ₂ is isostructural with a) HgCl ₂ 235. Which statement(s) is/an	b) SnCl ₂ re correct? nan sigma-bond	c) C ₂ H ₂	d) NO ₂

12. 4			
=	ovalent bond is stronger than H-bond		
	have linear structure?		
a) BeF		c) CO_2	d) XeF ₂
	ovalency is favoured by :		
=	v IE values b) High EA values	c) High lattice energy	d) None of these
	of the following statements is/are correct?		
	shows sp^2 -hybridization whereas CH_3 sho	ows <i>sp</i> ³ -hybrization	
,	has a regular tetrahedral geometry		
	-hybridized orbitals have equals s -and p -ch	aracter	
	oridized orbitals always form σ-bonds		
	possess fractional bond order?		
a) 0 ₂ ⁺	b) 0 ⁻ 2	c) H ₂ ⁺	d) N ₂
	tet rule is not obeyed in :		N 9.7
a) CO ₂		c) PCl ₅	d) SiF ₄
	ler the following compounds		
$I.B_3O$	II. $B_3N_3H_6^{\text{III.}}C_5H_5^{\Theta}$		
Planaı	and aromatic character is in		
a) All	b) I and II only	c) II and III only	d) I and III only
242. Reson	ance structures of a molecule should have :		
=	ntical arrangement of atoms		
=	rly the same energy content		
=	same number of paired electrons		
=	ntical bonding		
243. In whi	ch of the following driving force is to compl		
			Н
		B_1H_1+2 $\longrightarrow 2$	
a) 2BI	$I_3 \rightleftharpoons B_2H_6$	b) $^{\mathrm{B_2H_6}+2}$ \longrightarrow 2	⊕ O—B—H H
-		b) $^{\mathrm{B_{2}H_{6}+2}} \underset{\mathrm{THF}}{ \smile} \longrightarrow 2 $	
c) NH	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$	b) $^{\text{B}_2\text{H}_6+2}$ \longrightarrow 2 \longrightarrow 2 \longrightarrow THF d) $^{\text{CH}_3\text{CHO}} + ^{\text{BH}_3} \rightarrow ^{\text{CH}_3}$	
c) NH 244. Intern	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it:	THF	
c) NH 244. Intern a) Hig	$g_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ holecular H-bonding in HF makes it : In b.p. liquid	THF	
c) NH 244. Intern a) Hig b) Cap	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt	THF	
c) NH 244. Intern a) Hig b) Cap c) Dib	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic	THF	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ holecular H-bonding in HF makes it: In b.p. liquid hable of forming two series of salt hasic hable of forming acid salt	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) <u>P</u> Cl	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl $_4^+$ and PCl $_6^-$	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl_4^+ and PCl_6^- reacts with $\underline{Al}H_3$ forming $LiAlH_4$	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCI b) LiH c) NH	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl $_4^+$ and PCl $_6^-$ reacts with $\underline{Al}H_3$ forming LiAlH $_4$ $_5$ is protonated	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCI b) LiH c) NH	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl_4^+ and PCl_6^- reacts with $\underline{Al}H_3$ forming $LiAlH_4$	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (solid) dissociates into PCl ₄ and PCl ₆ Heacts with AlH ₃ forming LiAlH ₄ Hable (solid) is protonated Hable (solid) is protonated Hable (solid) is heated forming PH ₃ and H ₃ PO ₃ Hable (solid) exists but PbBr ₄ and PbI ₄ do not because of	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (solid) dissociates into PCl_4^+ and PCl_6^- Harren reacts with AlH_3 forming $LiAlH_4$ Hable is protonated Hable CO_2 is heated forming PH_3 and H_3PO_3	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br ⁻ b) Chl	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (solid) dissociates into PCl_4^+ and PCl_6^- Hareacts with AlH_3 forming $LiAlH_4$ Hable is protonated Hable O_2 is heated forming PH_3 and H_3PO_3 Hexists but $PbBr_4$ and PbI_4 do not because of and I^- ions are bigger in size Horizontal	THF d) $CH_3CHO + BH_3 \rightarrow CH_3$	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ holecular H-bonding in HF makes it: $_5$ b.p. liquid able of forming two series of salt asic able of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl_4^+ and PCl_6^- reacts with $\underline{Al}H_3$ forming $LiAlH_4$ \underline{Al}_5 is protonated \underline{Al}_5 or \underline{Al}_5 and \underline{Al}_5 exists but \underline{Al}_5 and \underline{Al}_5 and \underline{Al}_5 and \underline{Al}_5 and \underline{Al}_5 are bigger in size or ine is a gas and \underline{Al}_5 are more electronegative	THF d) CH ₃ CHO + BH ₃ → CH ₃ erlined atom is affected	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (solid) dissociates into PCl_4^+ and PCl_6^- Hareacts with AlH_3 forming $LiAlH_4$ Hable is protonated Hable O_2 is heated forming PH_3 and H_3PO_3 Hexists but $PbBr_4$ and PbI_4 do not because of and I^- ions are bigger in size Horizontal or I_2 are more electronegative Hable I_3 are more electronegative Hable I_4 are more electronegative Hable I_4 are more electronegative Hable I_5 are more electronegative Hable I_5 are more electronegative Hable I_5 are more electronegative	to Pb^{4+}	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (solid) dissociates into PCl_4^+ and PCl_6^- Harreacts with AlH_3 forming LiAlH Hable is protonated Hable O_2 is heated forming PH_3 and H_3PO_3 Hexists but $PbBr_4$ and PbI_4 do not because of and I^- ions are bigger in size Hable O_3 is a gas Hable O_4 and O_5 are more electronegative Hable O_5 is protonine and iodine to oxidize O_5 is the following the pair in which the two specific that O_5 is a gas Hable O_5 is a gas Hable O_5 in the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following the pair in which the two specific that O_5 is the following that O_5 is the following the pair in which the two specific that O_5 is the following that O_5	to Pb^{4+} ecies are isostructural are	3CH ₂ OH
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCI b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon a) SiF	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ holecular H-bonding in HF makes it: $_4$ b.p. liquid hole of forming two series of salt hasic hable of forming acid salt following case (s), hybridization of the und $_5$ (solid) dissociates into PCl_4^+ and PCl_6^- reacts with AlH_3 forming $LiAlH_4$ has is protonated $_5 (O_2)$ is heated forming PH_3 and H_3PO_3 hexists but $PbBr_4$ and PbI_4 do not because of and I^- ions are bigger in size horine is a gas had I_2 are more electronegative holility of bromine and iodine to oxidize Pb^{2+} had SF_4 had S	to Pb^{4+} c) BH_4^- and NH_4^+	
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon a) SiF 248. The sp	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: In b.p. liquid Hable of forming two series of salt Hasic Hable of forming acid salt Hollowing case (s), hybridization of the und Hable (s), hybri	to Pb^{4+} cies are isostructural are c) BH_4^- and NH_4^+ s /are:	$_{3}\mathrm{CH}_{2}\mathrm{OH}$ d) PF_{6}^{-} and SF_{6}
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon a) SiF, 248. The sp a) PbC	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: $_4$ b.p. liquid $_5$ able of forming two series of salt $_5$ acic $_5$ able of forming acid salt $_5$ (solid) dissociates into PCl_4^+ and $PCl_6^ _5$ reacts with AlH_3 forming LiAlH $_4$ $_5$ is protonated $_5$ ($_2$ is heated forming $_3$ and $_3$ $_4$ $_5$ $_4$ and $_4$ $_5$ $_4$ and $_5$ $_4$ and $_5$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_6$ $_7$ $_8$ $_8$ $_8$ $_8$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$	THF d) CH ₃ CHO + BH ₃ → CH ₃ erlined atom is affected to Pb ⁴⁺ ecies are isostructural are c) BH ₄ and NH ₄ s /are: c) MnO ₂	3CH ₂ OH
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon a) SiF 248. The sp a) PbC 249. Which	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ holecular H-bonding in HF makes it: $_4$ b.p. liquid help of forming two series of salt hasic hable of forming acid salt hollowing case (s), hybridization of the und hasic hable of forming acid salt hollowing case (s), hybridization of the und hasic hable of forming acid salt hollowing case (s), hybridization of the und hasic hable of forming acid salt hollowing case (s), hybridization of the und hasic half of the salt half of the und half of t	THF d) CH ₃ CHO + BH ₃ → CH ₃ erlined atom is affected to Pb ⁴⁺ ecies are isostructural are c) BH ₄ and NH ₄ s /are: c) MnO ₂ egarding ionic compounds?	$_{3}\mathrm{CH}_{2}\mathrm{OH}$ d) PF_{6}^{-} and SF_{6}
c) NH 244. Intern a) Hig b) Cap c) Dib d) Cap 245. In the a) PCl b) LiH c) NH d) H ₃ I 246. PbCl ₄ a) Br b) Chl c) Br ₂ d) Ina 247. Amon a) SiF 248. The sp a) PbC 249. Which a) The	$_3 + BH_3 \rightarrow [NH_3 \rightarrow BH_3]$ Holecular H-bonding in HF makes it: $_4$ b.p. liquid $_5$ able of forming two series of salt $_5$ acic $_5$ able of forming acid salt $_5$ (solid) dissociates into PCl_4^+ and $PCl_6^ _5$ reacts with AlH_3 forming LiAlH $_4$ $_5$ is protonated $_5$ ($_2$ is heated forming $_3$ and $_3$ $_4$ $_5$ $_4$ and $_4$ $_5$ $_4$ and $_5$ $_4$ and $_5$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_6$ $_7$ $_8$ $_8$ $_8$ $_8$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$	THF d) CH ₃ CHO + BH ₃ → CH ₃ erlined atom is affected to Pb ⁴⁺ ecies are isostructural are c) BH ₄ and NH ₄ s /are: c) MnO ₂ egarding ionic compounds?	$_{3}\mathrm{CH}_{2}\mathrm{OH}$ d) PF_{6}^{-} and SF_{6}

c) They consist of ions d) They generally have high melting and boiling points 250. In which of the following pairs, molecules/ions have similar shape? a) CO_2 and H_2O b) BF₃ and H₂O c) CCl₄ and PtCl₄ d) NH₃ and BF₃ 251. Which statement(s) is/are correct? a) PF₃ has higher bond angle than PCl₃ b) Dipole moment of NH₃ is more than NF₃ c) I⁺ is smaller than I⁻ ion d) I⁻ is smaller than I⁺ ion 252. The correct structural representation of diborane is: d) $H_2 \mid H \mid B = B \mid H$ $c) \xrightarrow{H_{int}} B \xrightarrow{H} B_{int}^{H_{int}} H$ a) [BH₂]⁺[BH₄]⁻ 253. In which central atom(s) has/have one lone pair of electron? d) XeF₆ b) NH₃ c) PCl₃ 254. Which among the following is/are linear? c) CO_2 a) BeF₂ b) $Ag(CN)_{2}^{-}$ d) XeF₂ 255. Which combination(s) given below is/are correct? a) HgCl₂-linear b) ClF₃-T-shaped c) ICl₄ -square planar d) XeF₆-pentagonal bipyramid 256. A, B, C are three substances. A does not conduct electricity in the solid or liquid state. B conducts electricity both in the fused and solution states, while C conducts electricity only in the solution state. Which of the following statement(s) is/are true regarding A, B and C? a) A has polar covalent linkage b) A has non-polar covalent linkage c) *B* is ionic in nature d) C has polar covalent linkage 257. Which of the following compounds possesses zero dipole moment? b) Benzene c) Carbon tetrachloride d) Boron trifluoride 258. The correct order of the 0-0 bond length in O_2 , H_2O_2 and O_3 is c) $0_2 > H_2 O_2 > O_3$ d) $0_3 > H_2 O_2 > O_2$ a) $H_2O_2 > O_3 > O_2$ b) $O_2 > O_3 > H_2O_2$ 259. Which of the following is/are electron deficient compounds? d) C_3^{4-} b) B_2H_6 c) AlCl₃ a) NaBH₄ 260. Which of the following are diamagnetic? c) 0_2^{2-} d) C_2 b) N₂⁺ a) Li₂ 261. The Molecule, CHO:

a) Has intermolecular H-bonding

- b) Has intermolecular H-bonding
- c) Reduces Tollen's reagent
- d) Is steam-volatile
- 262. Which combinations of the compounds and their geometry are correct?
 - a) HgCl₂ -linear
- b) ClF₃ -V-shaped
- c) ClF₃ -T-shaped
- d) ICl₄ square planar

263. Which of the following force(s) is/are weak?

	a) Covalent forces	b) Van der Waal's forces	_	d) London forces	
264.		variably higher than IE_1 be	cause :		
	a) The size of cation is sn				
	b) It is difficult to remove	e 'e' from cation			
	c) <i>IE</i> is endothermic				
	d) All of the above				
265.	. Which has/have zero val	ue of dipole moment?			
	a) [Ni(CN) ₄] ₂	b) CHCl ₃	c) CO ₂	d) Cl—Cl	
266.	. In I ₃				
	a) I_2 is Lewis acid and I^-	as Lewis base	b) I ₂ is Lewis base and I ⁻	as Lewis acid	
	c) I ₃ itself behaves as am	photeric anion	d) I ₃ does not exist		
267.	. The compound which cor	ntains both ionic and covale	ent bond is/are :		
	a) CH ₄	b) NH ₄ OH	c) KCN	d) $K_4[Fe(CN)_6]$	
268.	. Which of the following st	atements is/are correct?			
	a) The peroxide ion has a	bond order of 1 while the	oxygen molecule has a bon	d order of 2.	
	b) The peroxide ion has a	longer and weaker bond th	nan the oxygen molecule ha	as	
		ell as the oxygen molecule a	= =		
		oxide ion is greater than th	at of the oxygen molecule		
269.	Select the incorrect state	ments about [XeF ₅]			
	a) Xe is sp^3d hybridised		b) Xe is sp^3d^3 hybridised		
	c) It has pentagonal sp^3d		d) It has two lone pairs at	t the axial position	
270.		nditions apply to resonating			
		tures should have similar e	-		
	b) The contributing struc apart	tures should be represente	d such that unlike charges	reside on atoms that are far	
	c) The electropositive ele negative charge	ement should always has po	ositive charge and the elect	ronegative element	
	d) The contributing struc	tures must have the same r	number of unpaired electro	ons	
271.	. Which combinations of th	ne compounds and their geo	ometry are correct		

a) H₂O-V-shaped

b) NH₂-trigonal pyramidal

c) BCl₃-tetrahedral

d) BeCl₂- linear

272. Which of the following compounds contain both ionic and covalent bonds?

a) NH₄Cl

b) KCN

c) CuSO₄. 5H₂O

d) NaOH

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 273 to 272. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

Statement 1: Alkanes are insoluble in water

Statement 2: Organic compounds do not form hydrogen bonding with water

274

Statement 1: The first ionisation energy of Be is greater than that of B.

Statement 2: 2*p*-orbital is lower in energy than 2*s*-orbital.

275

Statement 1: Ionisation enthalpy is always positive.

Statement 2: Energy is always required when electrons are removed.

276

Statement 1: Molecular nitrogen is less reactive than molecular oxygen.

Statement 2: The bond length of N_2 is shorter than that of oxygen.

277

Statement 1: N and P show a maximum covalency of five.

Statement 2: P can expand the outer shell of electrons beyond an octet by involving *d*-orbitals present

in its valence shell.

278

Statement 1: NaCl is more ionic than NaI.

Statement 2: Chlorine is more electronegative than iodine.

279

Statement 1: The dipole moment of NF_3 is more than NF_3 .

Statement 2: The presence of lone pair of electron on N shows an additive contribution in dipole

moment of NH₃ whereas it shows a negative contribution towards dipole moment of NF₃.

280

Statement 1: The bond angle in BF_3 is smaller than that in BF_4 .

Statement 2: BF₃ has sp^2 -hybridisation, whereas BF₄ has sp^3 -hybridisation.

281

Statement 1: Bond energy has order likeC $- C \le C \le C$

Statement 2: Bond energy increases with increase in bond order

282

Statement 1: The bond angle in H_2O is greater than H_2S .

Statement 2: H-bonding does not occur in H₂S due to low electronegativity of S.

283

Statement 1: MO configuration of CO is $\sigma 1s^2, \sigma^* \ 1s^2 \ \sigma 2s^2, \sigma 2p_x^2, \pi 2p_y^2, \pi 2p_z^2, \sigma^* \ 2s^2$ **Statement 2:**

The bond energy level σ^*2s^2 possesses higher energy because then only bond length

order for CO (more) and CO⁺ (less) can be explained.

284

Statement 1: All molecules with polar bond have dipole moment.

Statement 2: Dipole moment is a vector quantity.

285

Statement 1: The lattice energy of silver halides is

AgF > AgCl > AgBr > AgI.

Statement 2: AgF is water soluble.

286

Statement 1: Magnesium combines with fluorine to form MgF₂

Statement 2: Oppositely charged ions are attracted to each other by electrovalent bond

287

Statement 1: Solubility of NaCl in D_2O is less than, H_2O

Statement 2: Higher viscosity of D₂O is responsible for low solubility of NaCl.

288

Statement 1: The ionisation energy of $_1H^2$ is more than ionisation energy of $_1H^1$.

Statement 2: This is due to isotopic effect.

289

Statement 1: IF_7 is super octet molecule.

Statement 2: Central atom of I in IF_7 has 14 electrons.

290

Statement 1: The first ionisation energy of N is greater than 0.

Statement 2: N atom has half filled *p*-orbitals.

291

Statement 1: SeCl₄ does not have a tetrahedral structure.

Statement 2: Se in SeCl₄ has two lone pairs.

292

Statement 1: *p*-dimethoxy benzene is polar molecule.

Statement 2: The two methoxy groups at para positions are located as

293

Statement 1: LiCl is predominantly a covalent compound.

Statement 2: Electronegativity difference between Li and Cl is too small.

294

Statement 1: In NH₃, N is sp^3 hybridised, but angle is found to be 104°.

Statement 2: The decrease in bond angle is due to repulsion between the lone pairs on nitrogen and

bond pair between N and H.

295

Statement 1: IE_1 for He is maximum and EA_1 for Cl is more than EA_1 of F.

Statement 2: He possesses paired electrons in 1s sub-shell, closest to nucleus, whereas electron

density in F is maximum which exerts more electro-electron repulsion.

296

Statement 1: E_{A2} for halogens is endothermic.

Statement 2: Halogens have $ns^2 np^5$ configuration and can accommodate only one electron.

297

Statement 1: In the aqueous HF solution, H_3O^+ and F^- are more likely to be found.

Statement 2: Hydrogen bonding in HF is stronger than that in H₂O.

298

Statement 1: CO₂ molecules are linear

Statement 2: The value of dipole moment of CO_2 is zero

299

Statement 1: F atom has less electron affinity than Cl atom.

Statement 2: Additional electrons are repelled more effectively by 3*p*-electrons in Cl atom than by 2*p*-

electrons in F atom.

300

Statement 1: SF₄ has lone pair of electron at equatorial position in preference to apical position in the

overall trigonal bipyramidal geometry.

Statement 2: If lone pair is at equatorial position then only repulsion is minimum.

301

Statement 1: Solubility of NaOH in water increases with rise in temperature, although it is exothermic

dissolution.

Statement 2: Changes showing exothermic nature occurs in backward direction it temperature is

raised.

Statement 1: The dipole moment of NH_3 is less than NF_3 . **Statement 2:** The lone pair present on N shows additive nature of N-H vector whereas it is subtractive to N—F vector. 303 **Statement 1:** The molecule *cis-*1-chloropropene is more polar than *trans-*l-chloropropene. **Statement 2:** The magnitude of resultant vector in *trans*-l-chloro-propene is non-zero. 304 **Statement 1:** F - F bond has low bond dissociation energy **Statement 2:** The fluorine has low reactivity 305 **Statement 1:** BF₃ molecule is planar with an angle of 120°C. **Statement 2:** BF_3 has bond pair-lone pair electron ratio 1 : 3. 306 **Statement 1:** The bond energy of P—Cl bond in PCl₃ and PCl₅ are different. **Statement 2:** In PCl₃, $sp^3 - p$ overlapping whereas in PCl₅, $sp^3d - p$ overlapping is noticed. 307 **Statement 1:** FeCl₂ is more covalent than FeCl₃ because electronegativity of Fe³⁺ > Fe²⁺. **Statement 2:** Higher is the charge on cation, more is deformation of anion, more is covalent character. 308 **Statement 1:** NH_3 and CH_3^- both have pyramidal shape. N in NH₃ and C in CH $_3^-$ both have sp^3 -hybridisation with one lone pair of electron on Statement 2: 309 **Statement 1:** If difference of electronegativity between two atoms is zero the resultant molecule will be non-polar covalent. **Statement 2:** The shared pair of electron lies just in the middle of two atoms. 310

Statement 1: All F - S - F angle in SF_4 is greater than 90° but less than bond 180° .

Statement 2: The lone pair-bond pair repulsion is weaker the bond pair-bond pair repulsion.

311

Statement 1: PCl₅ conducts current in solid state.

Statement 2: PCl_5 exists as $[PCl_4]^+$ and $[PCl_6]^-$ ions.

312

Statement 1: P—Cl bond in PCl₃ and PCl₅ had different bond energy.

Statement 2: P in PCl_3 and PCl_5 is sp^3 -hybridised.

313

Statement 1: Oxygen does not possess d- orbitals in their valency shell

Statement 2: The covalency of oxygen is two

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

314. Match the species in Column I with corresponding character(s)in Column II

Column-I Column-II **(A)** CO₂ (1) Zero dipole moment (B) CH₄ (2) Expansion of octet **(C)** ClF₂[⊕] (3) sp^3 hybridisation (4) sp^3d hybridisation **(D)** PCl₅ **(E)** ClF₂[⊖] (5) Linear **CODES:** A В C D E 1,3 3 2,4 3,5 1,5 a) b) 1,5 1,3 3 2,4 1,5 3 1,5 c) 2,4 3,5 1,3 3 d) 3,5 1,5 1,3 1,5

315. Match the compounds (in Column I) with the structures (in Column II)

		Column-I		Column- II
(A)	$(CH_3)_3B$		(1)	Square planar
(B)	NH ₄ Cl		(2)	Trigonalbipyramid
(C)	[lCl ₄]-		(3)	Tetrahedral
(D)	PCl ₅		(4)	Trigonal

CODES: A В \mathbf{C} D 3 a) 2 4 1 b) 2 1 3 4 1 4 2 3 c) d) 4 3 1 2 316. Match the type of species (in Column I) with the compound (in Column II) Column-I Column-II (A) Ionic species (1) HCl (B) Non-polar covalent (2) LiCH₃ (C) Polar covalent species having sigma bond only (3) KCH₃ (4) NO **CODES:** A В \mathbf{C} D 1 3 4 a) 4 3 b) 2 1 c) 2 4 3 1 d) 1 3 4 2 317. Match List I with List II and choose the correct matching codes from the choices given. Column-I Column-II (**A**) PCl₅ (1) Linear **(B)** IF₇ (2) Pyramidal (C) H_30^+ (3) Trigonal bipyramidal **(D)** ClO₂ (4) Tetrahedral (E) NH₄⁺ (5) Pentagonal bipyramidal (6) Angular **CODES:** A В \mathbf{C} D E

3

3

a)

b)

5

5

2

4

1

1

4

4

- c) 3 5 6 1 4 d) 3 5 2 6 4 5 2 e) 3 4 4
- 318. Match the compounds (in Column I) with the type of hybridization on the central atom/ion (in Column II)

Column-I

- (A) BCl₃
- **(B)** NH₃
- (C) $[Cu(NH_3)_4]^{2+}$
- **(D)** $[Fe(H_2O)_6]^{2+}$

- Column-II
- (1) sp^3
- (2) sp^3d^2
- (3) sp^2
- (4) dsp^2

CODES:

- A В \mathbf{C} D a) 1 2 3 4
- 2 b) 1 3
- 3 2 c) 1 4
- 3 2 1 d) 4
- 319. Match the items under Column I with items under Column II

Column-I

- (A) PCl₅
- **(B)** F₂0
- **(C)** BCl₃
- **(D)** NH₃

- Column- II
- (1) V-shaped
- (2) Triangular planar
- (3) Trigonalbipyramidal
- (4) Trigonal pyramidal
- (5) Tetrahedral

CODES:

- A В \mathbf{C} D
- 2 4 1 a) 3
- b) 3 1 2 4
- c) 2 2 4 1
- d) 1 4 3
- 320. Match List I with List II and select the correct answer:

Column-I

2

Column-II

- (A) ICI-
- **(B)** BrF₂⁺
- **(D)** AlCl₄

(C) ClF₄

- (1) Linear
- (2) Pyramidal
- (3) Tetrahedral
- (4) Square planar
- (5) Angular

CODES:

- A В \mathbf{C} D
- 1 2 4 5 a)
- 5 2 3 b) 4
- 5 c) 1 4 3
- d) 5 1 3 4
- 321. Match the species (in Column I) with the bond order (in Column I)

Column-I

Column- II

- **(A)** N₂
- **(B)** 0_2
- **(C)** F₂
- **(D)** 0_2^+

- (1) 1.0
- (2) 2.0
- (3) 2.5
- (4) 3.0

- **CODES:**
 - A
- В
- \mathbf{C}

1

D

3

1

- 4 a)
- 2

- 2 b)
- 3
- 4

c)

d)

1

3

- 1 4
- 2

3

- 4 2
- 322. Match the species in Column I with their properties in Column II

Column-I

Column- II

- **(A)** NH₃
- (B) Θ NH₂
- ⊕ NH₄ (C)
- **(D)** BH₄

- (1) Lewis acid
- (2) Lewis base
- (3) Distorted geometry
- (4) sp^3 hybridised central atom
- (5) Has two types of H

CODES:

A В \mathbf{C} D

- a) 2,3,4 2,3,4 3,5 4,5
- 2 b) 4,5 3,5 2,3,4
- c) 3,5 5 4,5 2,3,4
- d) 5 4,5 2,3,4 3,5
- 323. Match List I with List II. Select the correct answer using the codes given below the list.

Column-I

Column- II

Column- II

- (A) NH₄
- **(B)** PCl₅
- (C) SF₆
- **(D)** IF₇

- (p) $sp^{3}d^{3}$
- (q) sp^3d
- (r) sp^3
- (s) sp^3d^2

CODES:

 \mathbf{C} A В D

- a) r q S p
- b) p r q S
- c) q p S
- d) S p q r
- 324. Match Column I (hybrid bond orbitals) with Column II (species) and select the correct answer

Column-I

- **(A)** sp^3
- (B) dsp^2
- (C) sp^3d
- **(D)** sp^3d^2

- (1) lCl_4^-
- (2) TeCl₄
- $(3) MnO_4^-$
- (4) $Ni(CN)_4^{2-}$

CODES:

 \mathbf{C} D A В

- a) 3 2 1 4
- b) 4 2 1 3
- 2 1 3 4 c)
- 2 d) 1 3 4

Column-I

Column- II

- **(A)** B₂
- **(B)** N₂
- (C) 0_2^-
- **(D)** 0_2

- (1) Paramagnetic
- (2) Undergoes oxidation
- (3) Undergoes reduction
- (4) Bond order ≥ 2
- (5) Mixing of 's' and 'p' orbitals

CODES:

- A B C D
- **a)** 2,3,4,5 1,2,3,5 1,3,4,5 3,5
- **b)** 1,2,3,5 2,3,4,5 1,2,3,5 1,3,4,5
- **c)** 1,3,4,5 3,5 2,3,4,5 1,2,3,5
- **d)** 3,5 1,3,4,5 4,5 2,3,4,5
- 326. Match List I and List II and pick out correct matching codes from the given choices.

Column-I

Column- II

- **(A)** CIF₃
- **(B)** PCl₅
- **(C)** IF₅
- **(D)** CCl₄
- **(E)** XeF₄

- (1) Square planar
- (2) Tetrahedral
- (3) Trigonal bipyramidal
- (4) Square pyramidal
- (5) T-shaped

CODES:

- A B C D E
- **a)** 5 4 3 2 1
- **b)** 5 3 4 2 1
- **c)** 5 3 4 1 1
- **d)** 4 3 5 2 1
- **e)** 5 4 1 5 1
- 327. Match the compounds (in Column I) with the structure (in Column II)

Column-I

Column- II

(A) XeF₄

(1) Distorted octahedral

(B) XeF₆ (C) XeO_3 **(D)** XeO_4 **CODES:**

- (2) Tetrahedral
- (3) Square planar
- (4) Pyramidal
- A В \mathbf{C} D a) 3 1 4 2 b) 1 2 3 4 c) 2 4 1 3 d) 4 3 2 1
- 328. Match List I with List II. Select the correct answer using the codes given below the list.

Column-I Column- II (p) $sp^{3}d^{3}$ (A) NH₄

- (q) sp^3d **(B)** PCl₅
- (r) sp^3 **(C)** SF₆
- (s) sp^3d^2 **(D)** IF₇

CODES: A В \mathbf{C} D

- a) r q S p b) r S p q c) q r p S
- d) p q
- 329. Match the species in Column I with their properties in Column II

Column-I Column- II

- (A) SF₆ (1) π bonds are also present
- **(B)** 0_3 (2) σ bonds are only present
- (3) Hypervalent **(C)** BeH₂ **(D)** CO (4) Hypovalent
 - (5) Linear

A В \mathbf{C} D

CODES:

a)	1,5	2,3	1,2,5	2,4,5
b)	1,2,5	2,4,5	1,5	2,3
c)	2,3	1,5	2,4,5	1,2,5

1,2,5

d)

2,4,5

330. Match the compounds in the list I with that in List II.

2,3

1,5

		Co	olumn-I				Column- II
(A)	XeO_3					(p)	Planar triangular
(B)	XeOF ₄					(q)	T- shape
(C)	BO ₃ ³⁻					(r)	Trigonal pyramid
(D)	CIF ₃					(s)	Square pyramid
(E)	$I_3^-(aq)$					(t)	Linear
						(u)	Bent
COD	ES:						
	A	В	C	D	E		
a)	p	S	r	q	t		
b)	q	S	p	r	t		
c)	r	S	p	q	t		
d)	S	S	p	q	t		

Linked Comprehension Type

This section contain(s) 30 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 331 to -331

When does ions C⁺ and A⁻ of an ionic molecule, C⁺A⁻whose both the ions are symmetrical come closer or each other of the ions gets distorted or polarized by the other ion. But the produced by C⁺cation in A⁻ anion is appreciable while that produced by A⁻ anion in C⁺ cation is negligible. The ability of a cation to polarise a nearby anion is called its polarizing power or polarizing ability. In the polarization process the electrons of the anion are withdrawn by the cation towards itself

- 331. Bond polarity of diatomic molecule is because of
 - a) Difference in ionization potential
 - b) Difference in electron affinities of the two atoms
 - c) Difference in electronegativies of the two atoms
 - d) All of the above

According to the concept of resonance, whenever a single Lewis structure can't describe a molecule accurately, then a number of structure called resonating structure, with similar energy. Same relative position of all nuclei and with same number of paired and unpaired electrons

The molecule as such has a single definite structure which is the resonance hybrid of the resonating structure and can't as such be depicted by a single Lewis structure. As a result of resonance, the bond order may change in many molecules or ions, and is given by formula

Total number of bonds between two atoms

$$Bond\ order = \frac{in\ all\ the\ structure}{Total\ number\ of\ resonating\ structures}$$

- 332. Which of the following molecule contains one pair of non bonding electrons?
 - a) H₂O

b) HF

c) NH₃

d) CH₄

Paragraph for Question Nos. 333 to - 333

Boron-containing compounds often have a boron atom with only three bonds (and no lone pairs) two structure have been assigned to BF_3

$$\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\vdots &$$

- 333. Select the correct statements
 - a) Octet of F is complete in I and II but octet of B is incomplete in I but complete in II
 - b) Octets of F and B are complete in I and II
 - c) Octets of F and B are incomplete in I and II
 - d) Octet of F is complete in I and II but octet of B is complete in I but incomplete in II

Paragraph for Question Nos. 334 to - 334

Consider the following molecules and answer the questions given

I: H₂O;

 $II:CO_2$;

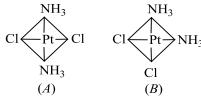
III: NH₃

IV: CCl₄;

V: ClF

334. In which compound are the bonds most polar?

a) H₂0


b) CO₂

c) CCl₄

d) ClF

Paragraph for Question Nos. 335 to - 335

The platinum-chlorine distance has been found to be 2.32~Å in several crystalline compounds. This value applies to both of the compounds shown in the figure

Based on the above structures, answer the following questions

335. Cl – Cl distance in structure (A) is

- a) 2.32 Å
- b) 4.64 Å
- c) 1.16 Å
- d) 9.28 Å

Paragraph for Question Nos. 336 to - 336

By the following method you can predict the geometrical shape of species with only one central atom, without first drawing the Lewis structure

- 1. Total number of electron pairs = (number of valence electrons \pm electrons (for ionic charge)/2
- 2. Number of bond electron pairs = number of atoms -1
- 3. Number of electron pairs around central atom = total number of electron pairs -3 [number terminal atoms (except H)]
- 4. Number lone pair = (number of central electron pairs number bond pairs number bond pairs) Read the above method and answer the following questions

336. If *A* is the central element of the molecule containing *A* and *X* element and *E* the number of electron pairs round it then VSEPR notation AX_3E will be for the molecules

- a) PCl₅, ICl₄
- b) NH₃, H₂O
- c) NH_3 , ClO_3^-
- d) ICl_4^- , ClO_3^-

Paragraph for Question Nos. 337 to - 337

Read the following short write-up and answer the questions at the end of it

In certain polar solvents PCl₅ undergoes an ionization reaction in which Cl⁻ ion leaves one PCl₅ molecule and attaches itself to another

$$2PCl_5 \rightleftharpoons PCl_4^+ + PCl_6^-$$

337. Select the incorrect statement (s)

- a) Dissociation is a redox reaction
- b) Hybridization changes from sp^3d to $sp^3d^2(PCl_6^-)$ and $sp^3(PCl_4^+)$
- c) Structure changes from trigonalbipyramidal to tetrahedral (PCl₄⁺) and octahedral (PCl₆⁻)
- d) None of the above is incorrect

Paragraph for Question Nos. 338 to - 338

Read the following short write-up and answer the questions at the end of it

"Each of the following compounds has a nitrogen-nitrogen bond"

$$(A)$$
N₂, (B) N₂H₄ (C) N₂F₂

Molecules may be polar or non-polar, that is dependent on the electronegativity difference between two atoms. Their bond-lengths (between N-atoms) have been 1.45Å, 1.10 Å and 1.22 Å but not in correct order

338. Compounds have been matched with their bond-length (between N-atoms). Which is not the correct matching?

- a) A 1.10 Å
- b) $B 1.45 \,\text{Å}$ c) $C 1.22 \,\text{Å}$
- d) None of these

Paragraph for Question Nos. 339 to - 339

Read the following short-write up and answer the questions at the end of it

"Methyl isocyanate is used to make certain pesticides. In December 1984, water leaked into a tank containing

this substance at a chemical plant, producing a toxic cloud that killed thousands of people in Bhopal

339. Which is not the resonance structure of methyl isocyanate?

a)
$$CH_3 - \ddot{N} = C = \ddot{O}$$

a)
$$CH_3 - \dot{N} = C = \ddot{O}$$
: b) $CH_3 - \dot{N} = C = \ddot{O}$: c) $CH_3 - N = C - \ddot{O}$: d) $CH_3 - \dot{N} = N - \ddot{O}$:

c)
$$CH_3-N\equiv C-\ddot{O}$$

d)
$$CH_3 - \stackrel{\oplus}{N} = N - \stackrel{\odot}{O}$$
:

Paragraph for Question Nos. 340 to - 340

Assume following structure of N₂O and answer the questions

$$\begin{array}{cccc}
\ddot{N} = \ddot{N} = \ddot{O} & : \ddot{N} = N = O: : N = N \rightarrow \ddot{O}: \\
I & II & III \\
\ddot{N} = \ddot{N} = \ddot{O} & : N = N = \ddot{O}: \\
IV & V & VI
\end{array}$$

340. Which is the most favourable structure?

Paragraph for Question Nos. 341 to - 341

We consider dissociation energy of different species

Species	Dissociationenergy
	$(kJ \text{ mol}^{-1})$
0_{2}^{+}	642.9
0_2	493.6
0_{2}^{-}	395.0
N_2^+	840.7
N_2^-	765.0
N_2	941.7
NO ⁺	1046.9
NO	626.9
NO ⁻	487.8

Answer the following questions

341. In which cases bond-order increases?

- a) O_2 changes to O_2^+ b) N_2 changes to N_2^+ c) NO changes to NO^-
- d) In all case

Paragraph for Question Nos. 342 to - 342

Dipole moment of a bond is a vector and physical quantity to calculate the percentage ionic character in a covalent bond. It is expressed as:

Dipole moment
$$(\mu) = \overrightarrow{\delta} \times d$$

Where, δ is dipole moment and d is the bond length.

It is usually expressed in terms of CGS unit known as Debye (D) $1D = 10^{-18}$ esu.cm. In SI unit it is expressed in Coulomb meter Resultant dipole moment (μ_R) of two bond moments (μ_1 and μ_2) acting at an angle θ , is given

$$\mu_R = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2\cos\theta}$$

If $\mu_1 = \mu_2$, also if $\cos\theta = 1$, i. e., $\theta = 180^\circ$ then $\mu = 0$. (molecule is nonpolar)

If $\mu \neq 0$ molecule is polar.

Dipole moment plays an important role in deciding the stability order of alkanes, *i. e*, a more stable alkane has less dipole moment. The dipole moment of a molecule can predict the geometrical and position isomers as well as orientations in benzene nucleus and polarity of molecule.

- 342. Dipole moment of HCl molecule is found to be 0.816 D. Assuming HCl bond length to be equal to 1Å, the % ionic character of HCl molecule is :
 - a) 10%

b) 17%

c) 27%

d) 37%

Integer Answer Type

- 343. Number of electron pairs in SF_6 at the corners of octahedron are
- 344. Number of shell in which valence electrons of iodine lies
- 345. In a very ideal imaginary condition, a sample of ice was taken, and its osmotic pressure was found to be 0.274 atm at 300 K (density 1g/mL). Thus, number of water units attached to one water unit is.....
- 346. Based on VSEPR theory, number of 90 degree F—Br—F in BrF_5 is
- 347. What is formal charge on F in BF₃?
- 348. Maximum number of atoms which can be attached on N-atom is
- 349. Number of unpaired electron(s) in O_2^- is/are.....
- 350. Bond order of BN is
- 351. Formal charge on sulphur in SO₂ is.....
- 352. Ratio of bond pair-lone pair electrons in XeOF₂ is
- 353. In a compound of Xe, F and O Xe = 60.4% (131.3), F = 17.5% (19.0) Thus, number of oxygen atom....
- 354. Bond order of NO⁺ is
- 355. Assuming C₆H₆ ring a regular hexagon and C—I bond lies on the line through the centre of hexagon. If the distance between adjacent carbon is 1.40 Å, the I—I distance in Å is....

- 356. What is the ratio of σ and π bonds in benzene?
- 357. Based on VSEPR theory, the number of 90° F Br F angles in BrF₅ is.....
- 358. AX_4 forms square planar type structure. Distance between A and X atoms is 4 units then distance between two X atom in trans position is....
- 359. Total number of orbitals involved in the formation of hybrid orbitals in ClF₂⁺ is.....
- 360. The dipole moment of AB is 1.6×10^{-30} cm. If intermolecular distance is 2.0×10^{-10} m, the % ionic character of AB is
- 361. How many of the following have incomplete duplet or octet on central atom?

 $\mathsf{BeCl}_2, \mathsf{BH}_3, \mathsf{NH_4}^+, \mathsf{H}^+, \mathsf{H}^-, \overset{\boldsymbol{\oplus}}{\mathsf{CH}_3}, \overset{\boldsymbol{\ominus}}{\mathsf{CH}_3}, \mathsf{CH}_2$

- 362. Steric number of CH₄ is.....
- 363. Number of electron pairs in XeF₄ at the corners of square are
- 364. Bond order for CO is ...
- 365. In O_3 , central oxygen involved in the formation of hybrid orbitals in ClF_2^- is....
- 366. How many maximum number of H atom are in the same plane in B₂H₆?
- 367. Difference of σ and π bonds in C(CN)₄ is.....

- 368. Superoxide ion has electrons in antibonding molecular orbitals
- 369. Total number of orbitals involved in the formation of hybrid orbitals in CIF₂ is.....
- 370. Number of hybride orbitals in XeF₄ is.....
- 371. Bond-order in NO⁺ is.....
- 372. A slightly polar molecule AB has dipole moment of 0.24 D. If bond-length is 1 Å, ionic character is....%
- 373. Steric number of H₂O is.....
- 374. Number of unpaired electrons in $O_2[AsF_4]$ is
- 375. Lone pairs in I_3^- are.....
- 376. How many of the following cases hybridization state of underlined atom changes?

$$\overline{N}H_{2} + \underline{S}O_{3} \rightarrow [NH_{2}SO_{3}]^{-}$$

$$\underline{C}H_{3}COOH \rightarrow CH_{4} + CO_{2}$$

$$\underline{2P}Cl_{5} \longrightarrow \overset{\oplus}{P}Cl_{4} + PCl_{6}^{\ominus}$$

$$CH_{3}\underline{C}H_{2}OH \rightarrow CH_{2} = CH_{2} + H_{2}O$$

$$\underline{Al}H_{3} + H^{-} \rightarrow AlH_{4}^{-}$$

$$2O = \underline{O} \rightarrow O \rightarrow 3O_{2}$$

$$(CH_{3})_{3}\underline{C}Cl \longrightarrow (CH_{3})_{3}C + Cl^{-}$$

377. Out of CH_2Cl_2 , CH_4 , CCl_4 , H_2O , $CHCl_3$, d-dichlorobenzene, o-cresol, p-xylene, SCl_2 , BF_3 , IBr and CH_2O , non-zero value of dipole moment is of....

						: ANSV	V	ER K	EY:						
1)	a	2)	С	3)	a			189)	a	190)	a	191)	a	192)	b
5)	С	6)	d	7)	c	_	d	193)	b	194)	a	195)	a	196)	b
9)	С	10)	d	11)	a	12)	a	197)	b	198)	b	199)	b	200)	d
13)	d	14)	b	15)	c	16)	d	201)	a	202)	b	1)	b,c	2)	c
17)	d	18)	d	19)	d	20)	a		3)	b,d	4)	a,b,c,d	l		
21)	b	22)	a	23)	c	24)	b	5)	a,c	6)	b	7)	a,b,d	8)	
25)	d	26)	d	27)	d	28)	c		a,c,d						
29)	a	30)	a	31)	b	32)	a	9)	b,c,d	10)	a,b,c,d	11)	d	12)	b
33)	d	34)	C	35)	c	36)	a	13)	a,c,d	14)	a,b,c,d	15)	d	16)	
37)	c	38)	a	39)	a	40)	a		a,d						
41)	a	42)	d	43)	c	44)	b	17)	b,c	18)	a,c	19)	b,c,d	20)	
45)	b	46)	d	47)	c	48)	d		a,b,c						
49)	b	50)	d	51)	d	52)	d	21)	a,b	22)	b,c	23)	b,c,d	24)	
53)	c	54)	b	55)	b	56)	b		a,c						
57)	d	58)	d	59)	d	60)	b	25)	a,b	26)	a,b,c	27)	a,b,d	28)	
61)	a	62)	b	63)	d	64)	b		a,c,d						
65)	b	66)	d	67)	a	68)	a	29)	a,b,d	30)	b,d	31)	a,b,c	32)	
69)	a	70)	C	71)	b	72)	a		a,c						
73)	C	74)	b	75)	c	76)	a	33)	a,c,d	34)	a,b,c	35)	a,b,c	36)	
77)	a	78)	a	79)	d	80)	a		a,b,d						
81)	c	82)	b	83)	d	84)	a	37)	a,b,c	38)	b,c	39)	a	40)	
85)	b	86)	a	87)	d	-	d		a,b						
89)	b	90)	d	91)	d	,		41)	b,c	42)	a,b,c,d	-	a,b	44)	a
93)	C	94)	d	95)	d	•	c	45)	b,c,d	46)	a,c	47)	b,c,d	48)	b
97)	b	98)	C	99)	a	•		49)	a,b,c	50)	c	51)	b,c,d	52)	
101)	С	102)	a	103)	b	•	b		a,b,c,d				_		
105)	c	106)	d	107)	C	•	C	53)	a,b,c	54)	b,c,d	55)	b,c,d	56)	a
109)	d	110)	b	111)	a	•	b	57)	b,c	58)	a,c,d	59)	b,d	60)	
113)	d	114)	a	-	c	-	b		a,c,d	(0)			_		
117)	d	118)	a	119)	d	-		61)	b,d	62)	a,b	63)	a,c,d	64)	a
121)	a	122)	a	123)	a	•		65)	b,c,d	66)	a,b	67)	b,c,d	68)	
125)	a	126)	d	127)	b	•	b	(0)	a,b,c,d			43		0)	
129)	C	130)	C	131)	С	-		69)	a,b,d	70)	a,b,c,d		a	2)	a
133)	b	134)	d	135)	a	,	b	5)	3)	a	4)	b 5)	1.	0)	1.
137)	a	138)	a	139)	d	-		5)	b	6) 10)	b	7) 11)	b	8) 12)	b b
141)	C	142)	c	143)	a	_		9) 12)	a a	10)	d	11)	c	12) 16)	b
145)	d	146)	C b	147) 151)	d	-		13)	d	14)	a	15)	c	16)	c
149)	c	150)	b	151) 155)	c	-		17)	c	18)	c	19)	c	20)	a h
153) 157)	c	154)	a h	155) 150)	C	-		21)	C b	22)	a	23)	c	24)	b
157) 161)	c	158) 162)	b d	159) 163)	d	-		25) 29)	b d	26) 30)	a b	27) 31)	a h	28) 32)	c
161) 165)	c a	164) 166)	u d	163) 167)	a d	-		33)	a d	34)	D C	31) 35)	b b	36)	c
169)	a a	170)	u d	171)	u a	-		37)	u C	34) 38)	d	39)	b b	30) 40)	c
173)	a C	170) 174)	u b	171) 175)	a d	-		41)	b	30) 1)	u b	39) 2)	d	3)	a b
173) 177)	c	174) 178)	d	173) 179)	u a		c	41J	ս 4)	d	U	ر ۲	u	J)	IJ
181)	a	182)	u C	183)	a C	-		5)	c c	u 6)	b	7)	С	8)	a
185)	a	186)	a	187)	c	-		9)	a	10)	a	11)	a	12)	a b
100)		100)	u	107)		100,	u	<i>-</i> ,	ш 	10)	<u>u</u>	11)	u	J	

13)	b	14)	a	15)	a	16)	С
17)	d	1)	c	2)	c	3)	a
	4)	a					
5)	b	6)	c	7)	d	8)	d
9)	c	10)	b	11)	a	12)	b
1)	6	2)	5	3)	4	4)	0
5)	0	6)	4	7)	1	8)	2
9)	0	10)	2	11)	3	12)	3
13)	7	14)	4	15)	8	16)	8
17)	4	18)	5	19)	5	20)	4
21)	4	22)	3	23)	3	24)	4
25)	0	26)	7	27)	5	28)	6
29)	3	30)	5	31)	4	32)	1
33)	3	34)	5	35)	7		

: HINTS AND SOLUTIONS :

1 (a)

Partially filled bonds or overlapping bonds represent metal

2 **(c)**

$$(c) CH_{3} - C - CH_{3} \xrightarrow{H^{+} \text{ or } OH^{-}} H \xrightarrow{\sigma} H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\pi} C \xrightarrow{\sigma} H$$

9
$$\sigma$$
- bond
$$\begin{bmatrix} 1 (C - 0)\sigma \text{ bond} \\ 1 (O - H)\sigma \text{ bond} \\ 5 (C - H)\sigma \text{ bonds} \\ 2(C - C)\sigma \text{ bonds} \end{bmatrix}$$

 1π bond $[1 (C - C)\pi$ bond

Two lone pairs on O-atom

3 **(a)**

	Electrons	Bond order	Ligand
CN-	14	3	Strong
CO	14	3	Strong
NO+	14	3	weak

4 (a)

Due to H-bonding in water molecules, water has high density

5 **(c)**

$$BF_3$$
 $H \leftarrow \ddot{O} \leftarrow H$
 $F - B \leftarrow F$
 $F - B \leftarrow F$
 $F - B \leftarrow G$
 $F - B$

$$H-\dot{N} = N = N$$
: each N atom is sp -hybridised

Thus, NF_3 and H_3O^+ are identical and BF_3 and NO_3^- are identical

6 **(d)**

Force of attraction between cation and anion is $F = \frac{kz_1z_2e^2}{r^2}$

Where, k is dielectric constant of the medium. z_1 and z_2 are charges on cation and anion, and r the internuclear distance

Size of
$$Cl^- > 0^{2-}$$

$$K^{+} > Ca^{2+}$$

Charge on $Ca^{2+} > K^+$

$$0^{2-} > Cl^{-}$$

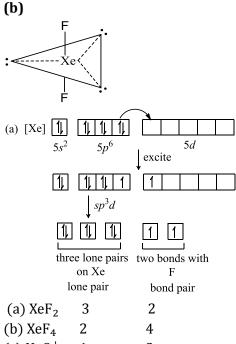
- 7 **(c)**
 - C

8 **(d)**

Bond order

$$I. O_2^{2-}$$
 1

$$N_2^+$$
 2.5


Larger the bond order, greater the bond energy

11 (a)

Species	Electrons	Bond order
I. CN ⁻	14	3.0
II. 0 ₂	17	1.5
III. NO ⁺	14	3.0
IV. CN+	12	2.0

I and II have same bond-order

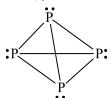
14 **(b**

(d) XeF_6 1 6

15 **(c)**

In (c), octet of Cl and O is completed as for Lewis structure

In (a), (b) and (d), octets of C, N and O as expected are not complete

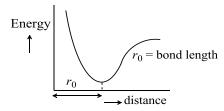

16 **(d)**

$$(d) \bigvee_{\mathbf{Y} = \mathbf{Y} \mathbf{Y}} \mathbf{X} \bigvee_{\mathbf{Y}} \mathbf{Y}$$

Due to lp - bp repulsion, tetrahedral geometry is distorted to pyramidal geometry

18 **(d)**

P-atom is sp^3 -hybridised. Thus, p-character in P_4 is 75%



20 **(a)**

M.O. theory explains filling of electrons in bonding and antibonding M.O. If there are unpaired electrons in theses orbitals then paramagnetic

21 **(b**)

When a chemical bond is formed, potential energy decreases

22 **(a)**

In O_2 molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of $O_2 = \sigma 1s^2$, $_{\sigma}^*1s^2$, $_{\sigma}2s^2$, $_{\sigma}^*2s^2$, $_{\sigma}2p_x^2$ ($\pi 2p_y^2$, $\pi 2p_z^2$), ($_{\pi}^*2p_y^1$, $_{\pi}^*2p_z^1$)

Bond order in $O_2 = \frac{1}{2}[N_{b-}N_a] = \frac{1}{2}[10-6] = 2.0$ In $O_2^+ = \sigma 1s^2$, $_{\sigma}^*1s^2$, $_{\sigma}2s^2$, $_{\sigma}^*2s^2$, $_{\sigma}2p_x^2$ $(\pi 2p_y^2 = \pi 2p_z^2)$, $(_{\pi}^*2p_y^1)$

Bond order in $O_2^+ = \frac{N_{b-}N_a}{2} = \frac{10-5}{2} = 2.5$

23 **(c)**

Formal charge = $v - \frac{s}{2} - u$

Where, v =valence electrons

s =shared electrons (forming bonds)

u = unshared electrons

[:Ö=N=Ö:] +

On oxygen atom $\begin{bmatrix} v = 6 \\ s = 4 \\ u = 4 \end{bmatrix}$

Thus, formal charge = $6 - \frac{4}{2} - 4$

$$=6-2-4=0$$

24 **(b)**

H+: no electro

H : one lone pair H:

H₂: no lone pair

He²⁺: no lone pair

27 **(d)**

(a)
$$\begin{bmatrix} NC \\ CN \downarrow \\ CN \rightarrow Fe \leftarrow NC \\ \uparrow NC \\ NC \end{bmatrix}$$
 Yes

(b) $[H_3N \rightarrow BH_3]$ Yes

(c)
$$\begin{bmatrix} H & H \\ O & H \\ H^+ \end{bmatrix} Yes$$

$$\begin{array}{ccc} \text{(d)} & \text{CI--P--CI} & \\ & \text{I} & \text{N} \\ & \text{CI} & \end{array}$$

28 **(c**)

These is delocalization of π -electrons in phenoxide ion, giving various resonating structures

29 **(a)** $B_{2}(10)$ $\sigma 1s^{2}\sigma^{*}1s^{2} \sigma 2s^{2}\sigma^{*}2s^{2} \pi 2p_{y}^{2}$ $N_{B} = 6$

 $N_B = 6$ $N_A = 4$

B0 diamagnetic = $\frac{6-4}{2}$ = 1

30 (a)

 $KO_2 \rightleftharpoons K^+ + O_2^-$ (one unpaired electron) NO_2^+ (no unpaired electron)

 $BaO_2 \rightleftharpoons Ba^{2+} + O_2^{2-}$ (no unpaired electron)

AlO₂ (no unpaired electron)

32 **(a)**

Electrons Structure

NO ₃	7 + 24 + 1	Triangular
002-	=	m days lay
CO ₃ ²⁻	32 6 + 24 + 2	Triangular
ClO_3^-	=	Pyramidal
	32	_
SO_3	17 + 24 + 1	Triangular
	=	
	42	
	16 + 24 =	
	40	

33 **(d)**

Electrons Bond

order

34 **(c)**

Third period and further periods involve s, p and d-orbitals for bonding. Thus, octet rule is generally violated

35 **(c)**

(C)				
Complex	Z (ato-	ON	Liga-	Unp
ions	mic		nd	a
	numbe			ired
	r of			elec
	me			t
	tal)			ron
A.	24	+2	Weak	4
CrF ₆ ⁴⁻	25	+2	Weak	5
В.	24	+2	Strong	2
MnF_6^{4-}		+2	Strong	1
C.	25			
$[Cr(CN)_{6}]^{4-}$				
D.				
$[Mn(CN)_{6}]^{4-}$				

 \overline{a}

Three (C - H) bonds and one lone pair = four hybride orbitals

Thus, sp^3

37 **(c)**

There is maximum association by intermolecular H-bonding in $\rm H_2O$ thus high boiling point and least volatile

38 (a

$$Mg_2C_3 + H_2O \rightarrow CH_3C \equiv CH$$

$$\overset{\Theta}{:} \overset{\sigma}{\underset{\pi,\pi}{=}} C \overset{\sigma}{\overset{\Theta}{:}} \overset{\Theta}{\underset{\Theta}{:}}$$

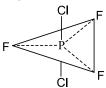
Two σ and two π bonds

39 **(a)**

In NO₃ ion, total number of electrons = 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals = $\frac{V-8B}{2}+B=\frac{24-8\times3}{2}+3$

 $(V \rightarrow \text{total number of electrons in valence shell}$

 $B \rightarrow$ probability of formation of bond)


In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid.

No. of hybrid orbital = $\frac{24-8\times3}{2} + 3 = 3$

Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural.

40 (a)

 PF_3Cl_2 : sp^3d hybridisation on P

Three hybride orbitals are at 120° and other two are at 90° with one each other. Thus, trigonal bipyramidal structure

41 **(a)**

N has incomplete octet

$$H-N=\stackrel{\oplus}{N=}N\stackrel{\ominus}{\longrightarrow}H-\stackrel{\oplus}{N=}N==N^{\ominus}$$
 are true structure

42 **(d)**

I: CI CI lone pair on N-atoms makes it polar,
$$\mu > 0$$

II: $\mu = 0$, being symmetrical and without lone pair

CI $\mu = 0$, without lone pair

CI $\mu = 0$, without lone pair

Thus, II and III are non-polar

43 (c) (C – H) bond length is in order $C - C - H > C = C - H > C \equiv C - H$ sp^3sp^2sp

44 **(b)**

 l_3^{-} is formed when l^{-} (Lewis base) donated one lone pair to l_0 (Lewis acid)

Thus, lone pair on central atom = Three and bond pair = Two

Thus,
$$X = 2$$

$$Y = 3$$

46 **(d)**

Smaller the cationic size, larger the charge, larger the polarizing power

Size $Al^{3+} < Mg^{2+} < Na^{+} < Ca^{2+}$ and charge +3 > +2 > +1

49 **(b**)

(b)
$$O = O : \rightarrow O :$$

$$sp^2$$

Central O-atom has one σ bond one coordinate bond and one lone pair Thus, sp^2 hybridised

50 **(d)**

Smaller the size of the atom, greater the force of attraction hence greater the dissociation energy. Thus, element D with smallest size forms strongest (C-D) bond

51 **(d)**

$$(d) \underset{H}{\overset{N}{\mapsto}} H \qquad \underset{F}{\overset{F}{\mapsto}} F$$

$$\mu > 0 \qquad \mu = 0 \text{ (due to symmetry)}$$

- (a) Incorrect
- (b) $\mu_{NH_3}>\mu_{BF_3}$ thus incorrect
- (c) Due to lone pair of N, NH₃ has pyramidal geometry thus incorrect
- (d) Correct

53 **(c)**

(c)
$$N = 0$$
 intramolecular H-bonding in onitrophenol involves only single molecule thus low b.p. and high volatile natur $N = 0$ $N = 0$ $N = 0$ $N = 0$

Intermolecular H-bonding in *p*-nitrophenol involves larger number of molecules thus high boiling point thus low volatile nature

54 **(b)**

O
||
(a)
$$CH_3 - C - O - H \xrightarrow{\Delta} CH_4 + Na_2CO_3$$

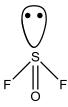
↑↑

 sp^3sp^3
No change
(b) $CH_3 - CH_2 - OH \xrightarrow{Conc.H_2SO_4} CH_2 = CH_2$

$$sp^3sp^2$$

Thus there is change

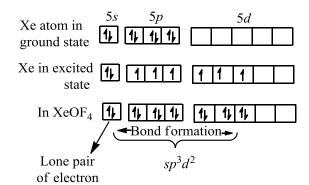
(c)
$$CH_3CH_3 \xrightarrow{Cl_2,hv} CH_3CH_2Cl$$
 $\uparrow \uparrow$
 sp^3sp^3


No change

$$(d) \xrightarrow{Sp^2} \xrightarrow{NO_2^+} \xrightarrow{NO_2^+}$$

No change

59 (d)


OSF₂ has pyramidal shape

60 **(b)**

Number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows:

F
$$rac{1}{\sqrt{\frac{1}{2}}}$$
 $rac{1}{\sqrt{\frac{1}{2}}}$ $rac{1}$ $rac{1$

One π -bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.

61 **(a**)

I: $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-}$ ionic bond $[Fe(CN)_6]^{4-}$ has coordinate bonds with Fe^{2+} and CN^-

CN⁻ has covalent bonding N \equiv C \ominus II: NH₄Cl \rightarrow NH₄⁺ + Cl⁻ ionic bond NH₄⁺ has covalent and coordinate bond

$$\begin{bmatrix} H \\ | \\ H - N \rightarrow H \\ | \\ H \end{bmatrix}^+$$

III: $H_2SO_4 \rightleftharpoons 2H^+ + SO_4^{2-}$ ionic bond SO_4^{2-} has covalent and coordinate bond

62 **(b)**

(a) CS₂ non-polar

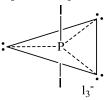
(b) RaCl₂ ionic

(c) HCN weak acid

(d) F₂ non-polar

64 **(b)**

I has maximum covalent bond and negative charge on electronegative nitrogen, most stable. III has more covalent bond than both II and IV, III is second most stable. Between II and IV, II is more stable since it has negative charge on nitrogen while IV has negative charge carbon.


66 **(d)**

(b)
$$I_2 \leftarrow I^-$$

Lewise Lewis

acid base

There are three lone-pairs and two bond-pairs in the outer-shell of central atom. To minimize repulsive forces, three lone pairs occupy the equatorial position

Thus, linear bond angle 180°

hence, O_2 is paramagnetic

$$sp$$
-linear \downarrow (c) S=C=S

(d) 1Cl₂

67 **(a)**

$$0_2(16)$$

=
$$(\sigma 1s)^2(\sigma^*1s)^2(\sigma 2s)(\sigma^*2s)^2(\sigma 2p_x)^2(\pi 2p_y)^2(\pi 2p_y)^2$$

Anti bonding M.O. has two unpaired electrons,

68 **(a)**

$$A \to A^+ + e^-$$

$$B + e^- \to B^-$$

$$A^+ + B^- \rightarrow (A^+B^-)$$

 A^+ is formed when ionization energy of A is low B^- is formed when electron affinity of B is high

69 **(a)**

$$[Fe(CN)_6]^{4-}d^2sp^3$$

 $[Ni(CN)_4]^{2-}dsp^2$

$$[Pt(en)_2]^{2+} dsp^2$$

Thus, (a) is correct

(b)
$$[Fe(H_2O_6)]^{3+}sp^3d^2$$

$$[CoF_6]^{3-} sp^3d^2$$

$$[Cr(CN)_6]^{3-}d^2sp^3$$

Thus, (b) is not correct

70 **(c)**

 Ca_{20} : [Ar] $4s^2$

Ca²⁺: [Ar] noble gas configuration

$$Cd_{48}$$
: $[Kr]_{36} 5s^2 4d^{10}$

$$Cd^{2+}$$
: [[Kr]₃₆ $4d^{10}$]10 + 6 + $\underbrace{6+2}_{s^2p^6}$ = 18

Electrons configuration of outer shell decreases screening effect, hence polarization of $Cd^{2+} > Ca^{2+}$

71 **(b)**

Compounds which are insoluble in water have covalent bonds. Due to their low boiling points, there are highly volatile

72 **(a)**

When (C = C) bond and $(C \equiv C)$ bond are present, numbering is done from (C = C) side. Thus, $(C_2\underline{\sigma}C_3)$ is formed by $(sp^2 - sp)$ overlapping

74 **(b)**

Only σ single bond one σ , one π one σ , two π triple

I double bond II bond III Both length I > II > III Thus, (a) is correct Both energy I < II < III Thus, (c) is correct

$$C = \frac{\sigma}{\pi} C + H_2 \longrightarrow C = C$$

 π bond reacts than π bond is weaker than σ bond. Thus, (b) is incorrect

 $\rm H_2O$ molecules are associated by H-bonding and thus making it liquid

thus H-bond breaks covalent bond in H₂O

Thus, (d) is correct

75 **(c)**

Smaller the size of cation Larger the size of anion,

Larger the charge,

Larger the polarizing power and thus smaller the ionic character

$$Li^+ < Mg^{2+} < Cs^+$$
 size

$$+1 < +2$$
 charge

$$F^- < Cl^- < l^-$$
 size

Thus, (c) has maximum ionic character

76 **(a)**

H-Cl is formed by sharing of electron pair between H and Cl

$$H \overset{\circ}{\cdot} Cl$$
: (H-Cl) Thus non-polar

Since, Cl is more electronegative than H, hence bonding pair is pulled by Cl making it polar

77 **(a)**

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

Mg²⁺ is formed by low (lE) of Mg

$$0 + 2e^- \rightarrow 0^{2-}$$

 0^{2-} is formed by high (EA) of 0

78 **(a)**

(a)
$$CH_2 = CH = CH_2 \leftarrow CH_2 - CH = CH - CH_2^{\Theta}$$

Due to resonance all (C - C) bond lengths are 1.46 Å (which is less than C - C bond and larger than C = C bond)

79 **(d)**

For KO_2, O_2^- has unpaired electron so, it is paramagnetic.

 $0_{2}^{-}(17)$

$$\sigma 1s^2$$
 , $_\sigma^* 1s^2$, $\sigma 2s^2$, $_\sigma^* 2s^2$, $\sigma 2p_x^2$, $(\sigma 2p_y^2=\sigma 2p_z^2)$, $_\pi^* 2p_y^2=_\pi^* 2p_z^1$

80 (a)

As two H atoms approach each, there is stable bond formation where P.E. is minimum as shown in (a)

81 **(c)**

N and C (second period elements) lack d-orbitals. Hence, $p\pi - d\pi$ overlap would be present in PO₄³

82 **(b)**

$$l^- + l_2 \rightarrow l_3^-$$

 l^- is electron-pair donor thus is a Lewis-base l_2 is electron-pair acceptor thus it is a Lewis-acid $[l^- \rightarrow l_2]$

83 **(d)**

Fe(26): [Ar]
$$3d^6 4s^2$$
 1 1 1 1 1

N (unpaired electron) = zero

Thus, magnetic moment= $\sqrt{N(N+2)}BM = 0$

$$[FeF_6]^{3-}$$

$$Fe^{3+}$$
 : [Ar] $3d^5$ 1 1 1 1 1

Fe³⁺ with weak ligand (F⁻) -no change-

$$[FeF_6]^{3-}: [Ar] 3d^5$$

N (unpaired electrons) = 5

Magnetic moment = $\sqrt{N(N+2)}$ BM

$$=\sqrt{35}BM = 5.92 BM$$

86 **(a)**

$$\mu = e \times l$$

$$e = \frac{\mu}{l} = \frac{1.2 \text{ D}}{1.0 \text{ Å}} = \frac{1.2 \times 10^{-18} \text{ esu cm}}{1.0 \times 10^{-8} \text{ cm}}$$

= 1.2 × 10⁻¹⁰ esu

Charge on electron = 4.8×10^{-10} esu

Thus, fraction of charge $=\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}} = 0.25$

37 **(d)**

Covalency is in covalent compound and is equal to number of valence shell electron in s- and p- orbitals

GroupExamples		Valnce electrons Maximum			
droup	Lyambics	S	p	Millulli	
covale	ncy				
13	В	2	1	3	
14	Si	2	2	4	
15	P	2	3	5	
16	S	2	4	6	
17	Cl	2	5	7	

39 (b

$$\begin{array}{ccc}
(b) \ \mathsf{H} & \overset{\sigma}{\longrightarrow} \mathsf{C} & \overset{\sigma}{\longrightarrow} \mathsf{C} & \overset{\sigma}{\longrightarrow} \mathsf{O} & \overset{\sigma}{\longrightarrow} \mathsf{H} \\
& \sigma | & & | \sigma \\
& & \mathsf{H} & & \mathsf{H}
\end{array}$$

C – H bonds are always σ

90 **(d)**

A molecule is stabilized if

- (a) bond order increases
- (b) electron is removed from antibonding M.O. of

higher energy

Electrons Bond order

			· -
C_2	12	2.0	
C_2^+	11	1.5	
CN	13	2.5	
CN+	12	2.0	
N_2	14	3.0	
N_2^+	13	2.5	
0_2	16	2.0	
0_{2}^{+}	15	2.5	$(two\ electrons\ in\ anti$

bonding M.O.)

Thus, O_2^+ is stabilised

91 **(d)**

Thus, (a) is correct

$$2NO_2 \rightleftharpoons N_2O_4$$

In N_2O_4 formation, unpaired electron is used.

Thus, paramagnetism is lost

Thus, (b) is correct

It is one coordinate bond. Thus, (c) is correct

There is no triple bond. Thus (d) is incorrect

92 **(b)**

- (a) $NaBr \rightleftharpoons Na^+ + Br^-$ only ionic
- (b) $Ba(CN)_2 \rightleftharpoons Ba^{2+} + 2CN^{-}$

Ba²⁺and CN⁻ are joined by ionic bond

 CN^- has covalent bond $^-C \equiv N$

- (c) PCl₅ only covalent
- (d) CH₃CH₂OH only covalent

93 **(c)**

(c)
$$\bigcup_{\mu=0}^{0} 1$$

There is no lone pair on SO₃ and also molecule is symmetrical, hence dipole moment is zero

94 (d)

NH₃ 1 Trigonal pyramidal due to $N(CH_3)_3$ p - bp repulsion (instead of tetrahedral In $N[(Si(CH_3)_3)_3]_3$ structure is triangular planar as lone pair on N-atom is transferred to the empty *d*-orbitals of silicon $(p\pi - d\pi)$ overlapping and its Lewis base character is lost. Thus, II, II, I

97 (b)

(b)
$$H$$
 Sp^3
 H
 Sp^3
 H

Thus, hybridization of Al is affected when AlH₃ changes to AlH₄ hybridisation of Al changes from sp^2 to sp^3

98 (c)

$$(c) \bigcirc \stackrel{\stackrel{\mu_2}{\longleftarrow}}{\overset{}{\stackrel{}}{\bigcirc}} \stackrel{\stackrel{\mu_1}{\longleftarrow}}{\overset{}{\stackrel{}}{\bigcirc}} 0$$

Based on (electronegativity) difference (C - 0)bond is polar. But dipole moment of one (C - 0)side is compensated by that of other (C - 0) side $\mu_{\text{Total}} = \vec{\mu}_1 + \vec{\mu}_2$

$$= \vec{\mu}_1 + \vec{\mu}_2 = 0$$

CO(14) =
$$\sigma 1s^2$$
, $_{\sigma}^* 1s^2$, $\sigma 2s^2$, $_{\sigma}^* 2s^2$, $\pi 2p_y^2$
= $\pi 2p_z^2$, $\sigma 2p_x^2$
BO = $\frac{N_b - N_a}{2}$ = $\frac{10 - 4}{2}$ = 3

$$BO = \frac{N_{b-}N_a}{2} = \frac{10-4}{2} = 3$$

$$N0^{-}(16) =$$

$$\sigma 1s^2$$
, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_x^2$, $(\pi 2p_y^2 = \pi 2p_z^2)$,

$$_{\pi}^{*}2p_{v}^{1}=_{\pi}^{*}2p_{z}^{1}$$

$$BO = \frac{10-6}{2} = 2$$

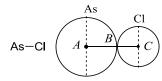
$$N0^{+}(13)$$
; $B0 = 3$

$$CN^{-}(14); BO = 3$$

$$N_2(14); BO = 3$$

Hence, bond order of NO⁻ is different from that of CO.

100 (d)


(d) (a)
$$U = 2\mu_{C-X} \cos\left(\frac{\theta}{2}\right)$$

$$(b) \xrightarrow{\mathsf{CH}_3\mathsf{CH}_2} \overset{\mathsf{I}}{\underset{\mathsf{H}}{\bigvee}} \mathsf{C} = \mathsf{C} \overset{\mathsf{II}}{\underset{\mathsf{H}}{\bigvee}} \mathsf{CH}_2\mathsf{CH}_3$$

$$\mu > 0 \ \mu = I + II$$

$$\mu > 0$$
 $\mu = I + II$

$$= +ve$$

$$AB + BC = AC$$

$$r_{As} + r_{Cl} = AC = 2.20$$

$$r_{\rm As} + 0.99 = 2.20$$

$$r_{As} = 2.20 - 0.99 = 1.21 \,\text{Å}$$

Oxygen has complete octet

103 **(b)**

$$H_2S_2O_8 + 2H_2O \rightarrow 2H_2SO_4 + H_2O_2$$

$$\rm H_2O_2$$
 (with ($^-O-O^-$) linkage) is formed when $\rm H_2S_2O_8$

(peroxydisulphuric acid) is hydrolysed

104 **(b)**

Electronegativity of Cl is too low to form H-bonding

105 (c)

$$CsBr_3 \rightarrow Cs^{\oplus} + Br_3^{\ominus}$$
 (Br₂ with Br⁻)

106 (d)

Bond order =
$$\frac{N_B - N_A}{2} = \frac{10 - 4}{2} = 3$$

 M_B = Electrons in bonding molecular orbital N_A = Electrons in antibonding molecular orbital

107 (c)

B₂H₆ has two types of bonding

- 1. Formed by two electrons between B and H
- 2. Formed by one electron between B and H

B-atom is thus electron-deficient

108 **(c)**

(c) I.
$${}^{\circ}O = {}^{\circ}S - S - S - {}^{\circ}S - {}^{\circ}O^{-}$$

Three (S-O-S) linkages

Three, (P-O-P) linkage

Thus, II and IV have X - O - X (X = S, P)

109 (d)

$$(d) \begin{array}{ccccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Repulsion lp - lplp - bp

$$lp - bp > bp - bp > bp - bp$$

$$bp - bp$$

Due to repulsion, bond angle decreases Bond angle $NH_2^- < NH_3 < NH_4^+$

110 **(b)**

Na⁺ is identical

 $NaCl > Na_2SO_4 > Na_3PO_4$ polar nature

111 (a)

IF₇ has pentagonal bipyramidal structure

112 **(b)**

$$NH_4Cl \rightleftharpoons NH_4^+ + Cl^-$$

$$AlF_3 \rightleftharpoons Al^{3+} + 3F^-$$

$$TlF_3 \rightleftharpoons Tl^{3+} + 3F^-$$

$$Ca0 \rightleftharpoons Ca^{2+} + O_2^-$$

- (b) all are covalent
- (c) AlF₃ and TlF₃ are ionic
- (d) CaO is ionic

$$I_3(I_2 \leftarrow I^-)sp^3d$$

 PCl_3sp^3 (one lone pair on P)

 $NO_3 sp^2$

 H_2Sesp^3 (two lone pairs on Se)

115 (c)

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

Order of H-bonding in o, m and p-isomers of a compound is given below

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

o > m > p isomers.

Hydroxy benzene do not form a chain of Hbonding. Hence, intermolecular H-bond is 124 (b) stronger than intermolecular H-bonds, so the stability of 1, 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound

116 **(b)**

$$PH_3 < AsH_3 < NH_3 < SbH_3$$

-87.5°C, -62.4°C, -34.5°C, -18.4°C

There is association by H-bonding in NH₃ but molar mass of SbH₃ >> NH₃ makes it highest boiling point liquid

117 **(d)**

Compound is covalent. Thus,

I: Incorrect

II: Correct

III. Incorrect, covalent compound does not

dissolve in H₂O

IV: Correct

V: Correct

Thus, II, IV and V

118 (a)

Resultant of two (B - Cl) is compensated by third

B - Cl. Thus $\mu = 0$

Thus, non-polar

119 (d)

$$(d) \begin{picture}(20,10) \put(0,0){\line(1,0){130}} \put(0,0){\line(1,0$$

Each water molecule is attached to four water molecules

120 (d)

Atom *X* has complete octet and *Y* has three lonepair and one (X - Y) bond. Thus,

X is C and Y is F

123 **(a)**

 AX_3 has zero dipole moment. Thus, it has no lone pair. Thus, A is sp^2 -hybridised. Hence Bond angle = 120°

Oxygen can donate one electro pair to carbon c≦o

125 (a)

There is lone pair-bond pair repulsion N-atom is sp^3 -hybridised. But due to this repulsion, geometry is distorted to pyramidal and bond angle is 107°

126 **(d)**

Carbonium ion is formed when CH₄ adds proton (H^+)

$$CH_4$$
 + H^+ \longrightarrow CH

Eight electrons shared between C and H atoms

Eight electrons shared, thus (a) is correct There is no empty orbital, thus (b) is correct octet complete, thus (c) is correct

127 **(b)**

$$(b) \ \ H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\pi,\pi} N;$$

$$H \quad H \quad H \quad H$$

 $5(C - H)\sigma$ bonds

 $3(C-C)\sigma$ bonds

 $1(C - N)\sigma$ bonds

 $2(C-C)\sigma$ bonds

1 lone pair on N

Thus, in all 9σ bonds, 3π bonds and 1 lone pair

128 **(b)**

	Electro	Bon
	n	d
		orde
		r
0_2	16	2.0
0_{2}^{+}	15	2.5
$ \begin{array}{c c} 0_2 \\ 0_2^+ \\ 0_2^- \\ 0_2^{2-} \end{array} $	17	1.5
0_2^{2-}	18	1.0

Thus, BO is in order

$$0_2^{2-} < 0_2^{-} < 0_2 < 0_2^{+}$$

130 **(c)**

$$H - F \mu = 1.91 D$$

$$H_2O (\theta = 104.5^\circ) = 1.84 D$$

$$H_2S(\theta = 92^\circ) = 1.88 D$$

132 (c)

Bond-order = zero

135 (a)

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule ($\mathrm{CH_4}$) has zero moment value of dipole moment due to its symmetrical structure.

In $CHCl_3$, the resultant of C-H and C-Cl dipole oppose the resultant of two C-Cl dipoles while in CH_2Cl_2 , the resultant of C-H dipoles adds to resultant of two C-Cl. In case CH_3Cl , the resultant of two C-H dipole adds to the resultant of two C-Cl. In case CH_3Cl the resultant of two C-H dipoles add to the resultant of C-H and C-Cl dipoles.

Thus dipole moment of CH_3Cl is highest among the given compounds. The molecule (CCl_4) again becomes symmetrical and dipole moment reduces to zero.

136 **(b)**

$$C - H < C = C < C - O < C - C$$

107 120 143 154 pm
 $I < IV < II < III$

138 (a)

Due to presence of lone pair, structure is bent

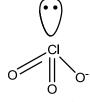
141 (c)

H₂O is polar in nature

Like dissolve like

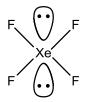
KCl being ionic compound is soluble in polar solvent as H_2O

143 **(a)**

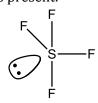

The electrical conductivity of a metal decreases as temperature increases. The increase in temperature causes thermal agitation of the metal ions. This impedes the flow of electrons when an electrical field is applied

144 **(b)**

- 1. NCl_3 , CCl_4 covalent
- 2. All ionic
- 3. BF_3 , NH_3 covalent
- 4. SO_2 , covalent

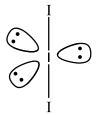

145 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on it one lone pair of electrons (free pair of electrons) is present.


Pyramidal shape

In XeF₄, Xe is central atom it is sp^3d^2 hybrid and on it two lone pair of electrons are present.

Square planar


In SF_4 , S is central atom and sp^3d -hybridised and on it one lone pair of electrons is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and on it three lone pair of electrons

are present.

Linear shape

146 **(c)**

1.
$$Cr(CO)_6$$
: 24 + 12 = 36

2.
$$Fe(CO)_5$$
: 26 + 10 = 36

3. $V(CO)_6 : 23 + 12 = 35$ (electron deficient)

147 (d)

$$(d)$$
 X Y

Resultant $\mu = 2\mu' \cos\left(\frac{\theta}{2}\right)$

 μ' is the vector moment of the groups X and Y at ortho position

$$\pi \propto \cos\left(\frac{\theta}{2}\right)$$

$$\mu \propto \frac{1}{\theta}$$

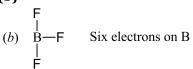
Repulsion increases θ , hence μ decreases attraction decreases θ , hence μ increases

By intramolecular H-bonding in \emph{o} -nitrophenol, θ decreases, hence μ increases

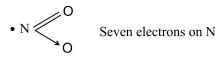
Due to dipole-dipole repulsion of large Cl groups (steric effect) θ increases, hence μ decreases Thus, μ is maximum when $X=NO_2$

$$Y = OH$$

And μ is minimum when X = Cl


Y = Cl

148 **(d)**


- (a) planar, one empty *p*-orbital of carbon is present —correct
- (b) thus (C H) σ bonds correct

(c) octet of carbon is incomplete – correct

150 **(b)**

CI-Be-CI Four electrons on Be

Thus, B, Be and N are electron-deficients

153 (c)

$$S = C = S$$

Non-polar

154 **(a)**

Smaller size of cation

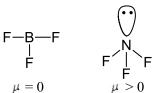
Larger the size of anion

Larger the charge on cation and anion, larger the polarizing power and thus larger the covalent nature and such compounds have larger lattice energy

(a)
$$K^+ > Mg^{2+}$$
 size

$$+1+2$$
 charge

$$Cl^- > 0^{2-}$$
 size


$$-1 < 2 - charge$$

Thus, MgO is less ionic than KCl thus lattice energy of MgO is larger than that of KCl

Thus, given order is incorrect

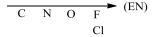
- (b) AlN > MgOcorrect
- (c) CaO > BaO correct
- (d) $MgCO_3 > CaCO_3$ correct

155 **(c)**

Resultant dipole Due to lone pair Moment is zero, on N, NF_3 is polar Thus non-polar

156 (a)

Ni(CO)₄: dsp^2 square planar


 SF_4 : sp^3d (one lone pair on S)

 $[CoCl_4]^{2-}$: sp^3 tetrahedral

 XeF_4 : sp^3d^2 square planar but two lone pairs

157 (c)

Bond is most polar it electronegativity (EN) difference is maximum

158 **(b)**

Repulsion is in order

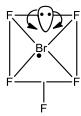
$$lp - lp > lp - bp > bp - bp$$

161 (c)

High solubility of $MgSO_4$ is due to high enthalpy of hydration of the smaller Mg²⁺ ion which overcomes the lattice energy factor

163 (a)

It is a case of sp^3d^2 or d^2sp^3 hybridisation with octahedral geometry


164 **(b)**

lE of Cl < lE of F thus Cl⁺ is formed EAofCl > EA of F. It is due to screening effect. F is predominantly formed due to greater electronegativity of F. thus, Cl+F-

165 (a)

In BrF_5 number of electrons = 6

$$(1 lp + 5 bp)$$

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

168 **(c)**

intermolecular H-bonding

intramolecular H-bonding

III.
$$N=0$$
—H $=0$ —H $=0$

intermolecular H-bonding

intermolecular H-bonding (actually it is hexagonal structure)

Thus, I, III and IV have intermolecular H-bonding. (actually it is hexagonal structure)

Thus, I, III and IV have intermolecular. H-bonding

169 (a)

(a) (a) CH_3CH_2 —O—H due to polarity there is H-bondir

(b) $CH_3 - O - CH_3$ no polar hydrogen

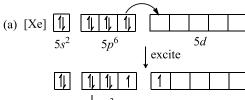
(c) $Cl - CH_2 - CH_3$ no polar hydrogen

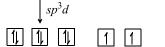
 $CH_2 - CH_3$

(d) $CH_3 - CH_2 - N$

no polar hydrogen

 $CH_2 - CH_3$


Thus, there is H-bonding in ethanol only


170 (d)

$$(d) \qquad \begin{matrix} \mathsf{F} & \mathsf{I} \\ \downarrow & \mathsf{I} \\ \mathsf{F} & \downarrow & \mathsf{II} \\ \end{matrix} \mathsf{F}$$

$$\mu_{\text{net}} = \vec{\mu}_{\text{I}} + \vec{\mu}_{\text{II}}$$
$$= \vec{\mu}_{\text{I}} - \vec{\mu}_{\text{II}}$$

171 (a)

three lone pairs two bonds with on Xe

lone pair bond pair 2

(a) XeF₂ 3

(b) XeF₄ 2 4 (c) H_30^+ 1 3

(d) XeF_6 1

172 **(b)**

Based on formal charges, II and III make greater contributions than I

173 (c)

$$0_2^{2-} = 18 \text{ electrons}$$

 $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2$

$$(\sigma 2p_x)^2 (\pi 2p_x)^2 (\pi 2p_y)^2 (\pi^* 2p_x)^2 (\pi^* 2p_y)^2$$

Underlined orbitals are antibonding M.O

Total = 4

174 **(b)**

Three bond pairs are inclined at 120° with one each other, and the other two bond pairs are at 90° with first three, thus structure is: Trigonal

bipyramidal (as in PCl₅)

175 (d)

- (a) High boiling point of $\rm H_2O$ is due to intermolecular H-bonding
- (b) Glycerol molecules are associated by H-bonding making it viscous
- (c) NH₃ molecules are joined to H₂O molecules by H-bonding, making it water soluble
- (d) Cl-atom withdraws electro by induction, hence acid is ionized making it polar

176 (a)

(a)
$$V_{23} = \boxed{1 \ 1 \ 1} \qquad \boxed{1}$$

$$V^{3+} = \boxed{1 \ 1} \qquad \boxed{1}$$

$$3d^3 \qquad 4s^2$$

$$V^{3+} = \boxed{1 \ 1} \qquad \boxed{1}$$

$$3d^2 \qquad 4s^2$$

H₂O is a weak ligand hence no pairing of electrons

177 (c)

 sp^3 – tetrahedral 109.5°

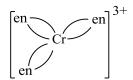
 sp^2 – triangular 120°

sp - linear 180°

$$CH_3 - C \equiv C - CH_3$$

179 (a)

$$H \bullet \times \overset{\times}{\underset{\times}{\text{Cl}}}\overset{\times}{\underset{\times}{\text{X}}}$$


Valence electron in H = 1

Valence electrons in Cl = 7

180 (c)

Chelation is associated with ring formation. It can happen when

(a) ligand is bidentate as en $\begin{pmatrix} CH_2NH_2 \\ CH_2NH_2 \end{pmatrix}$

(b) intramolecular H-bonding is formed

181 (a)

(a)
$$H \stackrel{2+}{\underset{Sp}{\longleftarrow}} H$$

 $^{2+}$ $^{\rm CH_2}$ with incomplete octet of carbon is shortlived and has sp-hybridisation on carbon. Linear

182 (c)

For $Be_nAl_2Si_6O_{18}$

$$2n + 6 + 24 - 36 = 0$$

$$n=3$$

183 **(c)**

Eleme nt	Valence electron	Probable group
A	1	Group 1 (alkali metal)
В	3	Group 13 (boron family)
С	5	Group 15 (nitrogen family)

Acan lose electron easily, thus is involved in ionic bond. *B* with three valence electrons (as Al) can form ionic compound with element of the type *C* with live electrons (as N) B and B together will not form ionic compound

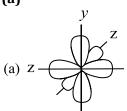
184 (c)

Species Electrons Bond Unpaired order electron

0 - F 17 1.5 1

paramagnetic

F₂ 18 1.0 0 diamagnetic


There is one unpaired electron in (0 - F), hence paramagnetic, thus (a) is correct

Bond order of O - F > F - F

Thus, bond energy of 0 - F > F - F

Thus, (b) is correct

185 (a)

 p_{ν} and p_{z} overlap laterally forming π bonds

186 (a)

$$s-s>s-p>p-p$$

188 (a)

(a)
$$sp^2$$
 - hybridised S, triangular HCN, CO₂ and NO are linear

Bent geometry two (0 - H) bonds and two lonepairs

190 (a)

$$X + e^- \rightarrow X^- \quad \Delta H = -E$$

Where *E* is electron affinity

 X^- is formed when size is small and X has high electron affinity

191 (a)

Resultant moment is in one direction in 1,2,3trichlorobenzene, thus maximum dipole moment

$$\mu_{total} = I + II + III$$

$$I = -II$$

and III = - IV
Thus,
$$\mu = 0$$

192 **(b)**

CH₃ CI CI CH₃

$$III CI IIII CI IV$$

$$\theta = 120^{\circ} \quad \theta = 60^{\circ} \quad \theta = 180$$

$$\mu = 2\mu_{C-X}\cos\left(\frac{\theta}{2}\right)$$

$$\mu \propto \cos\left(\frac{\theta}{2}\right)$$

 $\mu \propto \frac{1}{\theta}$ (since as θ increases, $\cos \theta$ decreases)

Thus,
$$\mu_{IV}=0~\left(cos\frac{180^{\circ}}{2}=cos\,90^{\circ}=0\right)$$

and order being

$$\begin{array}{c} \mu_{IV} < \underbrace{\mu_{1}}_{single} < \underbrace{\mu_{II} < \mu_{III}}_{vector} \\ \text{(C-CH}_{3}) \end{array}$$

193 **(b)**

CH₂Cl₂is similar to CH₄ (tetrahedral) but it has three different bond angles, HCH, HCCl, ClCCl which are close to but not equal to 109.5°. Since, electroegativity of Cl > C > H, the bond moments do not cancel and the molecule has a dipole moment

194 (a)

 B_2 : Total electrons = 10

Configuration: $\sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \pi 2p_x^1 = \pi 2p_y^1$

If Hund's rule is violated, then

$$\sigma 1s^2 {}_{\sigma}^* 1s^2 \sigma 2s^2 {}_{\sigma}^* 2s^2 \pi 2p_x^2 = \pi 2p_y^0$$

So, diamagnetic

Bond order = $\frac{6-4}{2}$ = 1

195 (a)

Greater the resonating structure, greater the stability NO₃ (with negative charge) has greater delocalization of π electrons thus more resonating structures similarly HCOO-

196 (b)

Bond order $N \equiv N > N = N > N - N$

Bond length minimum maximum

(a)
$$H N - N + H$$

$$(c) \overset{O}{\underset{\text{single bond}}{\triangleright}} N - N \overset{O}{\underset{\text{o}}{\triangleright}} O$$

(d) $:N \equiv N \longrightarrow O$ triple bond

Bond length is in order

In (d), resonance increases bond length In (c), dimer formation is due to unpaired electrons. Hence, dipole-dipole repulsion increases bond length than single-bond

198 **(b)**

Greater the bond order, greater the bond energy

Bond order

- (a) 0_2^- 1.5
- (b) 0_2^+ 2.5
- (c) 0_2
- (d) 0_2^{2} 1.0

199 **(b)**

Ether is a non-polar solvent (covalent) like dissolves likes (covalent) like dissolves likes (covalent)

Smaller the size of cation larger the charge, larger the polarizing power and thus larger the covalent nature of the compound with that cation(Clbeing common)

Size of $Li^+ < Na^+$

Thus, LiCl is predominantly covalent LiCl and AlCl₃ thus will be extracted into ether

200 (d)

BF₃andNH₃ are joined by coordinate bond in which NH₃ is a Lewis base and BF₃ is a Lewis acid. They have therefore independent existence and thus separated

202 **(b)**

Greater the electronegativity, greater the polar character. Electronegativity of F > 0 > N > SThus, $H_2S < NH_3 < H_2O < HF$

203 (b,c)

The central atom in each of three molecules CH_4 , NH_3 and H_2O undergoes sp^3 hybridisation. In CH₃ no line pair is present. InNH₃ one lone pair is present while in water two lone pairs are present

pyramidal structure V- structure tetrahedral (106.5°) $(109^{\circ}28')$

 (104.5°)

226 (a,c)

(i)NO → Total valence electrons =11

MO- configuration

$$(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2 \big(\pi 2p_y\big)^2 (\pi 2p_z)^2 \big(\pi^* 2p_y\big)^1$$

Bond order = $\frac{1}{2}(8-3) = 2.5$

(ii) $NO^+ \rightarrow Total \ valence \ electrons = 10$

MO-configuration

$$= (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2 (\pi 2p_y)^2 (\pi 2p_z)^2$$

Bond order = $\frac{1}{2}(8-2) = 3.0$

(iii) NO²⁺ →Total valence electrons = 9

MO-configuration

=
$$(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2 (\pi 2p_y)^2 (\pi 2p_z)^1$$

Bond order = $\frac{1}{2}(7-2) = 2.5$

 $(iv)NO^-$ →Total valence electrons = 12

MO-configuration

$$(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2 (\pi 2p_y)^2 (\pi 2p_z)^2 (\pi^* 2p_y)^2$$

Bond order =
$$\frac{1}{2}(8-4) = 2.0$$

229 (a,b,d)

The four P atoms in P₄ molecule are situated at the corners of tetrahedron. There are $\sin p - p$ single bonds with p - p - p bond angle of 60°. Each P has a lone pair of electrons

260 (a,c,d)

From the molecular orbital theory, the number of unpaired electrons is zero. Hence, they are diamagnetic

271 (a,b,d)

Geometry of a molecule can be predicted if the state of hybridization at central atom is known (i) $H_2O \rightarrow Number of \sigma$ -bonds at O-atom = 2

Number of lone pair of electrons at 0 atom =2

$$Total = 2 + 2 = 4$$

Hybridisation is sp^3

Thus, the shape is angular of V-shaped

(ii)NH₃ \rightarrow Number of σ -bonds at N atom =3

Number of lone pair of electrons at N atom =1

$$Total = 3 + 1 = 4$$

Hybridisation is sp^3

Shape istrigonal pyramidal(not tetrahedral)

(iii) $BCl_3 \rightarrow Number \text{ of } \sigma\text{-bonds at B atom} = 3$

Number of lone pair of electrons at B atom =0

Total = 3

Hybridisation is sp^2

BCl₃is trigonal planar

(iv)BeCl₂ \rightarrow Number of σ - bonds at Be atom =2

Number of lone pair of electrons at Be atom =0

$$Total = 2 + 0 = 2$$

Hybridisation= sp

BeCl₂ is linear and bond angle is 180°

273 (a)

A substance is said to be insoluble in water if it does not form hydrogen bonding with water.

Alkanes, alkenes and ethers are insoluble in water

274 (a)

Energy level of 2s is lesser than 2p-orbital.

275 (a)

Ionisation enthalpy id the energy required to remove an electron from an isolated gaseous atom in its ground state. It is always positive.

277 **(b)**

N shows maximum covalence of +3 along with one coordinate bond whereas P shows maximum covalence of +5 due to given explanation.

278 **(b)**

NaCl is more ionic than NaI because Cl^- is less polarised in comparison to I^- .

279 **(b)**

The dipole moment of NH₃ is more than NF₃ because of the given explanation.

280 **(b)**

In sp^2 -hybridisation bond angle is 120° . In sp^3 it is $109^\circ 28'$.

281 (a)

With increase in bond order, bond length decreases and hence, bond energy increases.

282 **(d)**

The bond angle in H_2S is smaller because S atom has bigger size than O. Also H_2S does not show H-bonding.

283 **(c)**

Explanation is correct reason for statement.

284 **(b)**

Molecules having polar bonds may $(e.g., CIF_3)$ polar) or may not $(e.g., BF_3)$ have dipole moment. The resultant vector of bond moment decides the net dipole moment in molecule.

285 (d)

Inspite of higher lattice energy AgF is soluble because F⁻ is extensively hydrated and heat of hydration predominates over lattice energy.

286 **(a)**

Electrovalent bond is not possible between similar atoms. This type of bonding requires two atoms of different nature, one atom should have the tendency to lose electrons *ie*, electropositive

287 (c)

Explanation is correct reason for statement.

289 (c)

Explanation is correct reason for statement.

290 **(c)**

Removal of electron from N atom requires more .energy due to half filled *p*-orbital in N atom.

291 **(c)**

 $SeCl_4$, has see-saw geometry ie, distorted trigonal pyramidal geometry. In $SeCl_4$, se is sp^3d hybridised.

292 (a)

p-dimethoxy benzene is polar due to orientation of CH_3 group as, The resultant vector is not zero.

$$CH_3$$
 CH_3

293 **(c)**

LiCl is polar compound. In a period, we go from left to write the electronegativity increases. Li is a LA group element Cl is VIIA group element. So, the electronegativity difference is so large.

294 (a)

$$lp - lp > lp - bp > bp - bp$$
.

In NH_3 the three N-H bond pairs are pushed close because of the lone pair-bond pair repulsion and HNH bond angle gets reduced from $109^{\circ}28^{\circ}$ to 107° .

295 (c)

Explanation is correct reason for statement.

296 **(b)**

Halogens can have only EA_1 value because they can accommodate only one electrons $(ns^2 np^5)$ to $ns^2 np^6$: No scope for further addition, thus EA_2 for halogens is zero.

297 **(b)**

Aqueous HF mainly exists as H_3O^+ and F⁻ because HF is more acidic than H_2O .

298 (a)

The values of dipole moments provide valuable information about the structure of molecules

299 **(a)**

Electron affinity of F < Electron affinity of Cl. Due to more 2p-test electron repulsion in F atom.

300 **(c)**

Explanation is correct reason for statement.

301 **(d)**

Assertion is an experimental fact observed against Le Chatelier principle.

302 **(b)**

That is why $\mu_{NH_3} > \mu_{NF_3}$.

303 **(b)**

Both *cis*-and *trans*-forms are polar. Trans is more polar due to higher value of dipole moment due to additive nature of CH₃ and Cl vectors.

304 (c)

Fluorine is highly reactive because F - F bond has low bond dissociation energy

305 **(d)**

 BF_3 is planar due to sp^2 -hybridisation. Also in BF_3 , three bond pair on boron atom and 9 lone pairs of electrons on F atoms.

306 **(c)**

Explanation is correct reason for statement.

307 **(b)**

This is Fajans' rule. FeCl₃is more covalent.

308 (c)

Explanation is correct reason for statement.

309 **(c)**

Explanation is correct reason for statement.

310 (d)

 ${
m SF_4}$ has see-saw shape. It has non planar structure. In this structure bond angles are different between different S - F atoms. According to VSEPR theory - lp- lp- lp- bp- bp- bp- bp-

311 **(b)**

Solid ionic compounds conduct current only in fused state. PCl_5 in solid state exists as $[PCl_6]^-[PCl_4]^+$.

312 (a)

P in PCl₃ is sp^3 -hybridised; P—Cl bond is sp^3 —p

P in PCl₅ is sp3 d-hybridised; P—Cl bond is sp3 d—p bond.

313 **(b)**

The elements having vacant *d*-orbitals in their valency shell show variable covalency by increasing the number of unpaired electrons

under excited conditions

317 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal)

 $IF_7 = sp^3d^3$ (Pentagonal bipyramidal)

 $H_3O^+ = sp^3$ (Pyramidal)

 $ClO_2 = sp^2$ (Angular) bond length are shorter than single bond due to resonance.

 $NH_4^+ = sp^3$ (Tetrahedral)

320 **(c)**

 $ICl_2^- \Rightarrow 2bp + 3lp \text{ (thus, } sp^3d$

hybridization)=linear geometry

 $BrF_2^+ \Rightarrow 2bp +$

2lp (thus, sp^3 hybridisation)=angular geometry

 $ClF_4^- \Rightarrow 4bp + 2lp$ (thus, sp^3d^2 hybridisation) =

square planar geometry

 $AlCl_4^- \Rightarrow 4bp + 0lp \text{ (thus } sp^3 \text{ hybridisation)} =$

tetrahedral geometry

323 **(a)**

Ethane $CH_3 - CH_3 2sp^2$ hybrid carbon

Ethylene $CH_2 = CH_2 2sp^2$ hybrid carbon

Acetylene $CH \equiv CH 2sp$ hybrid carbon

326 **(b)**

List	I	List	II (Structure)
(Cor	npound)		
4.	CIF ₃	1.	T-Shaped
5.	PCl_5	2.	Trigonal
6.	IF ₅		bipyramidal
7.	CCl_4	3.	Square
8.	XeF_4		pyramidal
		4.	Tetrahedral
		5.	Square
			planar

328 **(a)**

Molecule	Type of
/ion	hybridis
	ation
A. NH ₄ ⁺	$r. sp^3$
B. PCl ₅	$q. sp^3d$
C. SF ₆	$s. sp^3d^2$
D. IF ₇	$p. sp^3d^3$

330 (d)

 XeO_3 (sp^3 hybridisation)

= contain a loan pair

= trigonal pyramidal 342 **(b)**

shape

 $XeOF_4$ (sp^3 d hybridisation) = one lone pair = pyramidal shape

 $\mathrm{BO}_3^{3-}(sp^2 \; \mathrm{hybridisation}) = \mathrm{planar} \; \mathrm{triangular}$ ClF_3 (sp^3d^2 hybridisation)

> = two lone pair = T shaped

 I_3^- ($sp^3 d$ hybridisation) = 3 loan pair=linear

331 **(c)**

Polarity character is due to the difference in electronegativity of two atoms of molecule

332 **(c)**

In NH₃ nitrogen has one lone pair of electron

$$\mu_{\rm m} = \overrightarrow{\mathcal{S}} \times d$$

$$0.816 \times 10^{-18} = \delta \times 10^{-8}$$

$$\delta = 0.816 \times 10^{-10} \text{ esu}$$

∴ % ionic character =
$$\frac{0.816 \times 10^{-10}}{4.803 \times 10^{-10}} \times 100 = 16.9\%$$

