Single Correct Answer Type

1. $\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\ldots\binom{30}{20}\binom{30}{30}$ is equal to
a) ${ }^{30} C_{11}$
b) ${ }^{60} C_{10}$
c) ${ }^{30} C_{10}$
d) ${ }^{65} C_{55}$
2. The coefficient of $a^{8} b^{4} c^{9} d^{9}$ in $(a b c+a b d+a c d+b c d)^{10}$ is
a) 10 !
b) $\frac{10!}{8!4!9!9!}$
c) 2520
d) None of these
3. The value of $\sum_{r=1}^{15} \frac{r 2^{r}}{(r+2)!}$ is equal to
a) $\frac{(17)!-12^{16}}{(17)!}$
b) $\frac{(18)!-2^{17}}{(18)!}$
c) $\frac{(16)!-2^{15}}{(16)!}$
d) $\frac{(15)!-2^{14}}{(15)!}$
4. If $\left(1-x^{2}\right)^{n} \sum_{r=0}^{n} a_{r} x^{r}(1-x)^{2 n-r}$, then a_{r} is equal to
a) ${ }^{n} C_{r}$
b) ${ }^{n} C_{r} 3^{r}$
c) ${ }^{2 n} C_{r}$
d) ${ }^{n} C_{r} 2^{r}$
5. The term independent of a in the expansion of $\left(1+\sqrt{a}+\frac{1}{\sqrt{a}-1}\right)^{-30}$ is
a) ${ }^{30} C_{20}$
b) 0
c) ${ }^{30} C_{10}$
d) None of these
6. If $\left(1+2 x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$ then $a_{r}=$
a) $\left({ }^{n} C_{r}\right)^{2}$
b) ${ }^{n} C_{r}{ }^{n} C_{r+1}$
c) ${ }^{2 n} C_{r}$
d) ${ }^{2 n} C_{r+1}$
7. The value of $\sum_{r=0}^{50}(-1)^{r} \frac{{ }^{50} C_{r}}{r+2}$ is equal to
a) $\frac{1}{50 \times 51}$
b) $\frac{1}{52 \times 50}$
c) $\frac{1}{52 \times 51}$
d) None of these
8. Maximum sum of coefficient in the expansion of $\left(1-x \sin \theta+x^{2}\right)^{n}$ is
a) 1
b) 2^{n}
c) 3^{n}
d) 0
9. In the expansion of $[(1+x) /(1-x)]^{2}$, the coefficient of x^{n} will be
a) $4 n$
b) $4 n-3$
c) $4 n+1$
d) None of these
10. In the expansion of $\left(3^{-x / 4}+3^{5 x / 4}\right)^{n}$ the sum of binomial coefficient is 64 and term with the greatest binomial coefficient exceeds the third by $(n-1)$, the value of x must be
a) 0
b) 1
c) 2
d) 3
11. For $r=0, \ldots, 10$ let A_{r}, B_{r} and C_{r} denotes, respectively, the coefficient of x^{r} in the $(1+x)^{10},(1+x)^{20}$, and $(1+x)^{30}$. Then
$\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$
is equal to
a) $B_{10}-C_{10}$
b) $A_{10}\left(B_{10}^{2}-C_{10} A_{10}\right)$
c) 0
d) $C_{10}-B_{10}$
12. The value of ${ }^{15} C_{0}^{2}-{ }^{15} C_{1}^{2}+{ }^{15} C_{2}^{2}-\cdots-{ }^{15} C_{15}^{2}$ is
a) 15
b) -15
c) 0
d) 51
13. If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$, then $\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$ equals
a) $(n-1) a_{n}$
b) $n a_{n}$
c) $(1 / 2) n a_{n}$
d) None of the above
14. If the coefficient of x^{n} in $(1+x)^{101}\left(1-x+x^{2}\right)^{100}$ is non-zero, then n cannot be of the form
a) $3 r+1$
b) $3 r$
c) $3 r+2$
d) None of these
15. The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is
a) 33
b) 34
c) 35
d) None of these
16. $\sum_{r=0}^{300} a_{r} x^{r}=\left(1+x+x^{2}+x^{3}\right)^{100}$. If $a=\sum_{r=0}^{300} a_{r}$, then $\sum_{r=0}^{300} r a_{r}$ is equal to
a) $300 a$
b) $100 a$
c) $150 a$
d) $75 a$
17. The value of $\sum_{r=1}^{n}(-1)^{r+1} \frac{{ }^{n} C_{r}}{r+1}$ is equal of
a) $-\frac{1}{n+1}$
b) $-\frac{1}{n}$
c) $\frac{1}{n+1}$
d) $\frac{n}{n+1}$
18. If x is positive, the first negative term in the expansion of $(1+x)^{27 / 5}$ is $(|x|<1)$
a) $5^{\text {th }}$ term
b) $8^{\text {th }}$ term
c) $6^{\text {th }}$ term
d) $7^{\text {th }}$ term
19. The value of $\sum_{r=0}^{10} r{ }^{10} C_{r} 3^{r}(-2)^{10-r}$ is
a) 20
b) 10
c) 300
d) 30
20. The value of ${ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+{ }^{20} C_{3}+{ }^{20} C_{4}+{ }^{20} C_{12}+{ }^{20} C_{13}+{ }^{20} C_{14}+{ }^{20} C_{15}$ is
a) $2^{19}-\frac{\left({ }^{20} C_{10}+{ }^{20} C_{9}\right)}{2}$
b) $2^{19}-\frac{\left({ }^{20} C_{10}+2 \times{ }^{20} C_{9}\right)}{2}$
c) $2^{19}-\frac{{ }^{20} C_{10}}{2}$
d) None of these
21. If $|x|<1$, then $1+n\left(\frac{2 x}{1+x}\right)+\frac{n(n+1)}{2!}\left(\frac{2 x}{1+x}\right)^{2}+\cdots$ is equal to
a) $\left(\frac{2 x}{1+x}\right)^{n}$
b) $\left(\frac{1+x 2 x}{2 x}\right)^{n}$
c) $\left(\frac{1-x}{1+x}\right)^{n}$
d) $\left(\frac{1+x}{1-x}\right)^{n}$
22. The coefficient of x^{28} in the expansion of $\left(1+x^{3}-x^{6}\right)^{30}$ is
a) 1
b) 0
c) ${ }^{30} C_{6}$
d) ${ }^{30} C_{3}$
23. The number of distinct terms in the expansion of $\left(x+\frac{1}{x}+x^{2} \frac{1}{x^{2}}\right)^{15}$ is/are (with respect to different power of x)
a) 255
b) 61
c) 127
d) None of these
24. The value of $\sum_{r=0}^{40} r^{40} C_{r}^{30} C_{r}$ is
a) $40{ }^{69} C_{29}$
b) $40{ }^{70} C_{30}$
c) ${ }^{69} C_{29}$
d) ${ }^{70} C_{30}$
25. $1+\frac{1}{3} x+\frac{1 \times 4}{3 \times 6} x^{2}+\frac{1 \times 4 \times 7}{3 \times 6 \times 9} x^{3}+\ldots$ is equal to
a) x
b) $(1+x)^{1 / 3}$
c) $(1-x)^{1 / 3}$
d) $(1-x)^{-1 / 3}$
26. The coefficient of the term independent of x in the expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is
a) 210
b) 105
c) 70
d) 112
27. The total number of terms which are dependent on the value of x, in the expansion of $\left(x^{2}-2+\frac{1}{x^{2}}\right)^{2}$ is equal to
a) $2 n+1$
b) $2 n$
c) n
d) $n+1$
28. The value $\sum_{r=0}^{20} r(20-r)\left({ }^{20} C_{r}\right)^{2}$ is equal to
a) $400{ }^{39} C_{20}$
b) $400{ }^{40} C_{19}$
c) $400{ }^{39} C_{19}$
d) $400{ }^{38} C_{20}$
29. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ are the binomial coefficients, then $2 \times C_{1}+2^{3} \times C^{3}+2^{5} \times C_{5}+\cdots$ equals
a) $\frac{3^{n}+(-1)^{n}}{2}$
b) $\frac{3^{n}-(-1)^{n}}{2}$
c) $\frac{3^{n}+1}{2}$
d) $\frac{3^{n}-1}{2}$
30. If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ration 1:7:42, then the value of n is
a) 60
b) 70
c) 55
d) None of these
31. The number of real negative terms in the binomial expansion of $(1+i x)^{4 n-2}, n \in N, x>0$ is
a) n
b) $n+1$
c) $n-1$
d) $2 n$
32. The sum of $1+n\left(1-\frac{1}{x}\right)+\frac{n(n+1)}{2!}\left(1-\frac{1}{x}\right)^{2}+\cdots \infty$ will be
a) x^{n}
b) x^{-n}
c) $\left(1-\frac{1}{x}\right)^{n}$
d) None of these
33. For $2 \leq r \leq n,\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}=$
a) $\binom{n+1}{r-1}$
b) $2\binom{n+1}{r+1}$
c) $2\binom{n+1}{r}$
d) $\binom{n+2}{r}$
34. The sum of series ${ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\cdots+{ }^{20} C_{10}$ is
a) $\frac{1}{2}{ }^{20} C_{10}$
b) 0
c) ${ }^{20} C_{10}$
d) $-{ }^{20} C_{10}$
35. The coefficient of $x^{r}[0 \leq r \leq(n-1)]$ in the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+$ $3 n-3 x+22+\ldots+x+2 n-1$ are
a) ${ }^{n} C_{r}\left(3^{r}-2^{n}\right)$
b) ${ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
c) ${ }^{n} C_{r}\left(3^{r}+2^{n-r}\right)$
d) None of these
36. If $\left(3+x^{2008}+x^{2009}\right)^{2010}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, then the value of $a 0-\frac{1}{2} a_{1}-\frac{1}{2} a_{2}+a_{3}-\frac{1}{2} a_{4}-$ $\frac{1}{2} a_{5}+a_{6}-\cdots$ is
a) 3^{2010}
b) 1
c) 2^{2010}
d) None of these
37. $(n+2){ }^{n} C_{0} 2^{n+1}-(n+1){ }^{n} C_{1} 2^{n}+n^{n} C_{2} 2^{n-1}-\cdots$ is equal to
a) 4
b) $4 n$
c) $4(n+1)$
d) $2(n+2)$
38. The coefficient of x^{53} in the expansion $\sum_{m=0}^{100} 100 C_{m}(x-3)^{100-m} 2^{m}$ is
a) ${ }^{100} C_{47}$
b) ${ }^{100} C_{53}$
c) $-{ }^{100} C_{53}$
d) $-{ }^{100} C_{100}$
39. The fractional part of $2^{4 n} / 15$ is $(n \in N)$
a) $\frac{1}{15}$
b) $\frac{2}{15}$
c) $\frac{4}{15}$
d) None of these
40. If $\left(1+2 x+3 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{20} x^{20}$, then a_{1} equals
a) 10
b) 20
c) 210
d) None of these
41. The approximate value of $(1.0002)^{3000}$ is
a) 1.6
b) 1.4
c) 1.8
d) 1.2
42. $\left[\left({ }^{n} C_{0}+{ }^{n} C_{3}+\ldots\right)-1 / 2\left({ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{4}+{ }^{n} C_{5}+\ldots\right)\right]^{2}+3 / 4\left({ }^{n} C_{1}-{ }^{n} C_{2}+{ }^{n} C_{4}-{ }^{n} C_{5}+\ldots\right)^{2}=$
a) 3
b) 4
c) 2
d) 1
43. The last two digits of the number 3^{400} are
a) 81
b) 43
c) 29
d) 01
44. $\sum_{k=1}^{\infty} k\left(1-\frac{1}{n}\right)^{k-1}=$
a) $n(n-1)$
b) $n(n+1)$
c) n^{2}
d) $(n+1)^{2}$
45. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the binomial expansion of $(1+y)^{m}$ are in AP., then m and r satisfy the equation
a) $m^{2}-m(4 r+1)+4 r^{2}+2=0$
b) $m^{2}-m(4 r-1)+4 r^{2}-2=0$
c) $m^{2}-m(4 r-1)+4 r^{2}+2=0$
d) $m^{2}-m(4 r+1)+4 r^{2}-2=0$
46. If $|x|<1$, then the coefficient of x^{n} in expansion of $\left(1+x+x^{2}+x^{3}+\ldots\right)^{2}$ is
a) n
b) $n-1$
c) $n+2$
d) $n+1$
47. If $(1-x)^{-n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r} x^{r}+\ldots$, then $a_{0}+a_{1}+a_{2}+\ldots+a_{r}$ is equal to
a) $\frac{n(n+1)(n+2) \cdots(n+r)}{r!}$
b) $\frac{(n+1)(n+2) \cdots(n+r)}{r!}$
c) $\frac{n(n+1)(n+2) \cdots(n+r-1)}{r!}$
d) None of these
48. The value of x for which the sixth term in the expansion of $\left[2^{\log _{2} \sqrt{9^{x-1}+7}}+\frac{1}{2^{\frac{1}{5} \log _{2}\left(3^{x-1}+1\right)}}\right]^{7}$ is 84 is
a) 4
b) 1 or 2
c) 0 or 1
d) 3
49. In the expansion of $\left(5^{1 / 2}+7^{1 / 8}\right)^{1024}$, the number of integral terms is
a) 128
b) 129
c) 130
d) 131
50. If $\frac{x^{2}+x+1}{1-x}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$, then $\sum_{r=1}^{50} a_{r}$ is equal to
a) 148
b) 146
c) 149
d) None of these
51. If $p=(8+3 \sqrt{7})^{n}$ and $f=p-[p]$, where [•] denotes the greatest integer function, then the value of $p(1-f)$ is equal to
a) 1
b) 2
c) 2^{n}
d) $2^{2 n}$
52. The value of $\sum_{r=1}^{n+1}\left(\sum_{k=1}^{n}{ }^{k} C_{r-1}\right)$ (where $r, k, n \in N$) is equal to
a) $2^{n+1}-2$
b) $2^{n+1}-1$
c) 2^{n+1}
d) None of these
53. Value of $\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^{k}}\left({ }^{k} C_{r}\right)$ is
a) $\frac{2}{3}$
b) $\frac{4}{3}$
c) 2
d) 1
54. The coefficient of x^{4} in $\left(x / 2-3 / x^{2}\right)^{10}$ is
a) $\frac{405}{256}$
b) $\frac{504}{259}$
c) $\frac{450}{263}$
d) None of these
55. The coefficient of the middle term in the binomial expansion in power of x of $(1-\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same, if α equals
a) $-\frac{5}{3}$
b) $\frac{10}{3}$
c) $-\frac{3}{10}$
d) $\frac{3}{5}$
56. If x^{m} occurs in the expansion of $\left(x+1 / x^{2}\right)^{2 n}$, then the coefficient of x^{m} is
a) $\frac{(2 n)!}{(m)!(2 n-m)!}$
b) $\frac{(2 n)!3!3!}{(2 n-m)!}$
c) $\frac{(2 n)!}{\left(\frac{2 n-m}{3}\right)!\left(\frac{4 n+m}{3}\right)!}$
d) None of these
57. The last two digits of the number (23) ${ }^{14}$ are
a) 01
b) 03
c) 09
d) None of these
58. If $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then the value of $a_{2}+a_{4}+a_{6}+\ldots+a_{12}$ will be
a) 32
b) 31
c) 64
d) 1024
59. If $n-{ }^{1} C_{r}=\left(k^{2}-3\right){ }^{n} C_{r+1}$, then $k \in$
a) $(-\infty,-2)$
b) $[2, \infty)$
c) $[-\sqrt{3}, \sqrt{3}]$
d) $(\sqrt{3}, 2]$
60. The coefficient of x^{10} in the expansion of $\left(1+x^{2}-x^{3}\right)^{8}$ is
a) 476
b) 496
c) 506
d) 528
61. If the $6^{\text {th }}$ term in the expansion of $\left(\frac{1}{x^{8 / 3}}+x^{2} \log _{10} x\right)^{8}$ is 5600 , then x equals
a) 1
b) $\log _{e} 10$
c) 10
d) x does not exist
62. The expression $\left(\sqrt{2 x^{2}+1}+\sqrt{2 x^{2}-1}\right)^{6}+\left(\frac{2}{\sqrt{2 x^{2}+1}+\sqrt{2 x^{2}-1}}\right)^{6}$ is a polynomial of degree
a) 6
b) 8
c) 10
d) 12
63. If the last term in the binomial expansion of $\left(2^{1 / 3}-\frac{1}{\sqrt{2}}\right)^{n}$ is $\left(\frac{1}{3^{5 / 3}}\right)^{\log _{3} 8}$, then the $5^{\text {th }}$ term from the beginning is
a) 210
b) 420
c) 105
d) None of these
64.

$1+\frac{1}{4}+\frac{1 \times 3}{4 \times 8}+\frac{1 \times 3 \times 5}{4 \times 8 \times 12}+\cdots=$
a) $\sqrt{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{3}$
d) $\frac{1}{\sqrt{3}}$
65. If the coefficients of $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms in the expansion of $(1+x)^{n}$ be in A.P., then $n=$
a) 7 only
b) 14 only
c) 7 or 14
d) None of these
66. The coefficient of x^{n} in the expansion of $(1-x)(1-x)^{n}$ is
a) $n-1$
b) $(-1)^{n}(1+n)$
c) $(-1)^{n-1}(n-1)^{2}$
d) $(-1)^{n-1} n$
67. The expression $\left(x+\left(x^{3}-1\right)^{\frac{1}{2}}\right)^{5}+\left(x+\left(x^{3}+1\right)^{\frac{1}{2}}\right)^{5}$ is a polynomial of degree
a) 5
b) 6
c) 7
d) 8
68. The sum of rational term in $(\sqrt{2}+\sqrt[3]{3}+\sqrt[6]{5})^{10}$ is equal to
a) 12632
b) 1260
c) 126
d) None of these
69. If C_{r} stands for ${ }^{n} C_{r}$, then the sum for the series $\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!}\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\cdots+(-1)^{n}(n+1) C_{n}^{2}\right]$, where n is an even positive integer is equal to
a) 0
b) $(-1)^{n / 2}(n+1)$
c) $(-1)^{n}(n+2)$
d) $(-1)^{n} n$
70. The coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}+\cdots+(1+x)^{30}$ is
a) ${ }^{51} C_{5}$
b) ${ }^{9} C_{5}$
c) ${ }^{31} C_{6}-{ }^{21} C_{6}$
d) ${ }^{30} C_{5}+{ }^{20} C_{5}$
71. If $f(x)=1-x+x^{2}-x^{3}+\cdots-x^{15}+x^{16}-x^{17}$, then the coefficient of x^{2} in $f(x-1)$ is
a) 826
b) 816
c) 822
d) None of these
72. The coefficient of $1 / x$ in the expansion of $(1+x)^{m}(1+1 / x)^{n}$ is
a) $\frac{n!}{(n-1)!(n+1)!}$
b) $\frac{(2 n)!}{(n-1)!(n+1)!}$
c) $\frac{(2 n)!}{(2 n-1)!(2 n+1)!}$
d) None of these
73. In the expansion of $\left(1+3 x+2 x^{2}\right)^{6}$, the coefficient of x^{11} is
a) 144
b) 288
c) 216
d) 576
74. The coefficient of x^{5} in the expansion of $\left(x^{2}-x-2\right)^{5}$ is
a) -83
b) -82
c) -86
d) -81
75. If in the expansion of $(1+x)^{n}, a, b, c$ are three consecutive coefficients, then $n=$
a) $\frac{a c+a b+b c}{b^{2}+a c}$
b) $\frac{2 a c+a b+b c}{b^{2}-a c}$
c) $\frac{a b+b c}{b^{2}-a c}$
d) None of these
76. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$ and $\frac{f(x)}{1-x}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+\cdots$, then
a) $b_{n}+b_{n-1}=a_{n}$
b) $b_{n}-b_{n-1}=a_{n}$
c) $b_{n} / b_{n-1}=a_{n}$
d) None of these
77. If in the expansion of $(a-2 b)^{n}$, the sum of $5^{\text {th }}$ and $6^{\text {th }}$ terms in 0 , then the values of $a / b=$
a) $\frac{n-4}{5}$
b) $\frac{2(n-4)}{5}$
c) $\frac{5}{n-4}$
d) $\frac{5}{2(n-4)}$
78. If x is so small that x^{3} and higher powers of x may be neglected, then $\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^{3}}{(1-x)^{1 / 2}}$ may be approximated as
a) $3 x+\frac{3}{8} x^{2}$
b) $1-\frac{3}{8} x^{2}$
c) $\frac{x}{2}-\frac{3}{x} x^{2}$
d) $-\frac{3}{8} x^{2}$
79. The sum of the coefficients of even power of x in the expansion $\left(1+x+x^{2}+x^{3}\right)^{5}$ is
a) 256
b) 128
c) 512
d) 64
80. ${ }^{404} C_{4}-{ }^{4} C_{1}{ }^{303} C_{4}+{ }^{4} C_{2}{ }^{202} C_{4}-{ }^{4} C_{3}{ }^{101} C_{4}$ is equal to
a) $(401)^{4}$
b) $(101)^{4}$
c) 0
d) $(201)^{4}$
81. If n is an integer between 0 and 21 , then the minimum value of $n!(21-n)$! is attained for $n=$
a) 1
b) 10
c) 12
d) 20
82. The value of $\frac{{ }^{n} C_{0}}{n}+\frac{{ }^{n} C_{1}}{n+1}+\frac{{ }^{n} C_{2}}{n+2}+\cdots+\frac{{ }^{n} C_{n}}{2 n}$ is equal to
a) $\int_{0}^{1} x^{n-1}(1-x)^{n} d x$
b) $\int_{1}^{2} x^{n}(x-1)^{n-1} d x$
c) $\int_{1}^{2} x^{n-1}(1+x)^{n} d x$
d) $\int_{0}^{1}(1-x)^{n} x^{n-1} d x$
83. If the term independent of x in the $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , then k equals
a) $2,-2$
b) $3,-3$
c) $4,-4$
d) $1,-1$
84. $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$ then $C_{0} C_{2}+C_{1} C_{3}+C_{2} C_{4}+\cdots+C_{n-2} C_{n}=$
a) $\frac{(2 n)!}{(n!)^{2}}$
b) $\frac{(2 n)!}{(n-1)!(n+1)!}$
c) $\frac{(2 n)!}{(n-2)!(n+2)!}$
d) None of these
85. If the sum of the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ is a and if the sum of the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$ is b, then
a) $a=3 b$
b) $a=b^{3}$
c) $b=a^{3}$
d) None of these
86. Given positive integers $r>1, n>2$ and that the coefficient of $(3 r)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the binomial expansion of $(1+x)^{2 n}$ are equal. Then
a) $n=2 r$
b) $n=2 r+1$
c) $n=3 r$
d) None of these
87. If the coefficient of x^{7} in $\left[a x^{2}+\left(\frac{1}{b x}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[a x^{2}-\left(\frac{1}{b x^{2}}\right)\right]^{11}$, then a and b satisfy the relation
a) $a+b=1$
b) $a-b=1$
c) $a b=1$
d) $\frac{a}{b}=1$
88. The value of $\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\binom{30}{2}\binom{30}{12}+\cdots+\binom{30}{20}\binom{30}{30}=$
a) ${ }^{60} C_{20}$
b) ${ }^{30} C_{10}$
c) ${ }^{60} C_{30}$
d) ${ }^{40} C_{30}$
89. If the expansion in powers of x of the function $1 /[(1-a x)(1-b x)]$ is $a_{0}+a_{1} x+a_{2} x^{2}+a_{2} x^{3}+\cdots$, then a_{n} is
a) $\frac{b^{n}-a^{n}}{b-a}$
b) $\frac{a^{n}-b^{n}}{b-a}$
c) $\frac{a^{n+1}-b^{n+1}}{b-a}$
d) $\frac{b^{n+1}-a^{n+1}}{b-a}$
90. The coefficient of x^{5} in $\left(1+2 x+3 x^{2}+\ldots\right)^{-3 / 2}$ is $(|x|<1)$
a) 21
b) 25
c) 26
d) None of these
91. The value of $\sum_{r=0}^{10}(r)^{20} C_{r}$ is equal to
a) $20\left(2^{18}+{ }^{19} C_{10}\right)$
b) $10\left(2^{18}+{ }^{19} C_{10}\right)$
c) $20\left(2^{18}+{ }^{19} C_{11}\right)$
d) $10\left(2^{18}+{ }^{19} C_{11}\right)$
92. The coefficient of $x^{2} y^{3}$ in the expansion of $(1-x+y)^{20}$ is
a) $\frac{20!}{2!3!}$
b) $-\frac{20!}{2!3!}$
c) $\frac{20!}{5!2!3!}$
d) None of these
93. ' p ' is a prime number and $n<p<2 n$. If $N={ }^{2 n} C_{n}$, then
a) p divides N
b) p^{2} Divides N
c) p cannot divide N
d) None of these
94. If ${ }^{n+1} C_{r+1}:{ }^{n} C_{r}:{ }^{n-1} C_{r-1}=11: 6: 3$, then $n r=$
a) 20
b) 30
c) 40
d) 50
95. In the binomial expansion of $(a-b)^{n} n \geq 5$, the sum of the $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero. Then a / b equals
a) $(n-5) / 6$
b) $(n-4) / 5$
c) $n /(n-4)$
d) $6 /(n-5)$
96. If the coefficients of $r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(3+7 x)^{29}$ are equal, then r equals
a) 15
b) 21
c) 14
d) None of these
97. If $f(x)=x^{n}$, then the value of $f(1)+\frac{f^{1}(1)}{1}+\frac{f^{2}(1)}{2!}+\cdots+\frac{f^{n}(1)}{n!}$, where $f^{r}(x)$ denotes the $r^{\text {th }}$ order derivative of $f(x)$ with respect to x is
a) n
b) 2^{n}
c) 2^{n-1}
d) None of these
98. In the expansion of $\left(1+x+x^{3}+x^{4}\right)^{10}$, the coefficient of x^{4} is
a) ${ }^{40} C_{4}$
b) ${ }^{10} C_{4}$
c) 210
d) 310
99. The coefficient of x^{4} in the expansion of $\left\{\sqrt{1+x^{2}}-x\right\}^{-1}$ in ascending powers of x, when $|x|<1$, is
a) 0
b) $\frac{1}{2}$
c) $-\frac{1}{2}$
d) $-\frac{1}{8}$
100. If the sum of the coefficients in the expansion of $(a+b)^{n}$ is 4096 , then the greatest coefficient in the expansion is
a) 924
b) 792
c) 1594
d) None of these

Multiple Correct Answers Type

101. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$, then $C_{0}-\left(C_{0}+C_{1}\right)+\left(C_{0}+C_{1}+C_{2}\right)-\left(C_{0}+C_{1}+C_{2}+C_{3}\right)+$ $\cdots+(-1)^{n-1}\left(C_{0}+C_{1}+\cdots+C_{n-1}\right)$, where n is even integer is
a) A positive value
b) A negative value
c) Divisible by 2^{n-1}
d) Divisible by 2^{n}
102. The last digit of $3^{3^{4 n}}+1, n \in N$, is
a) ${ }^{4} C_{3}$
b) ${ }^{8} C_{7}$
c) 8
d) 4
103. In the expansion of $\left(2-2 x+x^{2}\right)^{9}$
a) Number of distinct terms is 10
b) Coefficient of x^{4} is 97
c) Sum of coefficients is 1
d) Number of distinct terms is 55
104. Which of the following is/are correct?
a) $101^{50}-99^{50}>100^{50}$
b) $101^{50}-100^{50}>99^{50}$
c) $(1000)^{1000}>(1001)^{999}$
d) $(1001)^{999}>(1000)^{1000}$
105. For which of the following values of $x, 5^{\text {th }}$ term is the numerically greatest term in the expansion of $(1+x / 3)^{10}$
a) -2
b) 1.8
c) 2
d) -1.9
106. The middle term in the expansion of $(x / 2+2)^{8}$ is 1120 ; then $x \in R$ is equal to
a) -2
b) 3
c) -3
d) 2
107. The sum of the coefficient in the expansion of $\left(1+a x-2 x^{2}\right)^{n}$ is
a) Positive, when $a<1$ and $n=2 k, k \in N$
b) Negative, when $a<1$ and $n=2 k+1, k \in N$
c) Positive, when $a>1$ and $n \in N$
d) Zero, when $a=1$
108. For natural numbers m, n if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots$, and $a_{1}=a_{2}=10$, then
a) $m<n$
b) $m>n$
c) $m+n=80$
d) $m-n=20$
109. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the expansion of $(1+x)^{14}$ are in AP., then r is/are
a) 5
b) 12
c) 10
d) 9
110. In the expansion of $\left(7^{1 / 3}+11^{1 / 9}\right)^{6561}$,
a) There are exactly 730 rational terms
b) There are exactly 5831 irrational terms
c) The term which involves greatest binomial coefficients is irrational
d) The term which involves greatest binomial coefficients is rational
111. The number of values of r satisfying the equation ${ }^{69} C_{3 r-1}-{ }^{69} C_{r^{2}}={ }^{69} C_{r^{2}-1}-{ }^{69} C_{3 r}$ is
a) 1
b) 2
c) 3
d) 7
112. In the expansion of $\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n}, n \in N$,
a) Number of terms is $2 n+1$
b) Coefficient of constant term is 2^{n-1}
c) Coefficient of $x^{2 n-2}$ is n
d) Coefficient of x^{2} in n
113. For the expansion $\left(x \sin p+x^{-1} \cos p\right)^{10},(p \in R)$,
a) The greatest value of the term independent of x is $10!2^{5}(5!)^{2}$
b) The least value of sum of coefficient is zero
c) The greatest value of sum coefficient is 32
d) The least value of the term independent of x occurs when $p=(2 n+1) \frac{\pi}{4}, n \in \mathcal{Z}$
114. If $(4+\sqrt{15})^{n}=I+f$, where n is an odd natural number, I is an integer and $0<f<1$, then
a) I is an odd integer
b) I is an even integer
c) $(I+f)(1-f)=1$
d) $1-f=(4-\sqrt{5})^{n}$
115. If the $4^{\text {th }}$ term in the expansion of $(a x+1 / x)^{n}$ is $5 / 2$, then
a) $a=\frac{1}{2}$
b) $n=8$
c) $a=\frac{2}{3}$
d) $n=6$
116.

If $f(m)=\sum_{i=0}^{m}\binom{30}{30-i}\binom{20}{m-i}$
Where $\binom{p}{q}={ }^{p} C_{q}$, then
a) Maximum value of $f(m)$ is ${ }^{50} C_{25}$
b) $f(0)+f(1)+\ldots+f(50)=2^{50}$
c) $f(m)$ is always divisible by $50(1 \leq m \leq 49)$
d) The value of $\sum_{m=0}^{50}(f(m))^{2}={ }^{100} C_{50}$
117. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}, n \in N$, then $C_{0}-C_{1}+C_{2}-\cdots+(-1)^{m-1} C_{m-1}$ is equal to $(m<n)$
a) $\frac{(n-1)(n-2) \cdots(n-m+1)}{(m-1)!}(-1)^{m-1}$
b) ${ }^{n-1} C_{m-1}(-1)^{m-1}$
c) $\frac{(n-1)(n-2) \cdots(n-m)}{(m-1)!}(-1)^{m-1}$
d) ${ }^{n-1} C_{n-m}(-1)^{m-1}$
118. Let $\left(1+x^{2}\right)^{2}(1+x)^{n}=\sum_{k=0}^{n+4} a_{k} x^{k}$. If a_{1}, a_{2} and a_{3} are in arithmetic progression, then the possible value/values of n is/are
a) 5
b) 4
c) 3
d) 2
119. If for z as real or complex, $\left(1+z^{2}+z^{4}\right)^{8}=C_{0}+C_{1} z^{2}+C_{2} z^{4}+\ldots+C_{16} z^{32}$, then
a) $C_{0}-C_{1}+C_{2}-C_{3}+\ldots+C_{16}=1$
b) $C_{0}+C_{3}+C_{6}+C_{9}+C_{12}+C_{15}=3^{7}$
c) $C_{2}+C_{5}+C_{8}+C_{11}+C_{14}=3^{6}$
d) $C_{1}+C_{4}+C_{7}+C_{10}+C_{13}+C_{16}=3^{7}$
120.
$10^{\text {th }}$ term of $\left(3-\sqrt{\frac{17}{4}+3 \sqrt{2}}\right)^{20}$
a) An irrational number
b) A rational number
c) A positive integer
d) A negative integer
121. In the expansion of $(x+a)^{n}$ if the sum of odd terms be P and sum of even terms be Q, then
a) $P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$
b) $4 P Q-(x+a)^{2 n}-(x-a)^{2 n}$
c) $2\left(P^{2}+Q^{2}\right)=(x+a)^{2 n}+(x-a)^{2 n}$
d) None of these
122. If n is a positive integer and if $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$, then
a) $a_{1}=a_{2 n-\mathrm{r}}$, for $0 \leq r \leq 2 n$
b) $a_{0}+a_{1}+\ldots+a_{n-1}=\frac{1}{2}\left(3^{n}-a_{n}\right)$
c) $a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-a_{3}^{2}+\ldots+a_{2 n}^{2}=a_{n}$
d) $a_{0}+a_{1}+\ldots+a_{2 n}=\frac{1}{2}\left(3^{n}+1\right)$
123. The value of ${ }^{n} C_{1}+{ }^{n+1} C_{2}+{ }^{n-2} C_{3}+\cdots+{ }^{n+m-1} C_{m}$ is equal to
a) ${ }^{m+n} C_{n-1}$
b) ${ }^{m+n} C_{n-1}$
c) ${ }^{m} C_{1}+{ }^{m+1} C_{2}+{ }^{m+2} C_{3}+\cdots+{ }^{m+n-1} C_{n}$
d) ${ }^{m+n} C_{m-1}$
124. The value/values of x in the expression $\left(x+x^{\log _{10} x}\right)^{5}$ if the third term in the expansion is $10,00,000$ is /are
a) 10
b) 100
c) $10^{-5 / 2}$
d) $10^{-3 / 2}$
125. The number $101^{100}-1$ is divisible by
a) 100
b) 1000
c) 10000
d) 100000

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 126 to 125. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

126 Let $S_{1}=\sum_{j=1}^{10} j(j-1){ }^{10} C_{j}, S_{2}=\sum_{j=1}^{10} \quad j 10_{C_{j}}$ and $S_{3}=\sum_{j=1}^{10} j^{2}{ }^{10} C_{j}$

Statement 1: $S_{3}=55 \times 2^{9}$
Statement 2: $S_{1}=90 \times 2^{8}$ and $S_{2}=10 \times 2^{8}$
127
Statement 1: If n is an odd prime, then the integral part of $(\sqrt{5}+2)^{n}-2^{n+1}$ is divisible by $\left.2 n\right)$
Statement 2: If n is prime, then ${ }^{n} C_{1},{ }^{n} C_{2}, \ldots .,{ }^{n} C_{n-1}$ must be divisible by n 128

Statement 1: The coefficient of x^{n} in the binomial expansion of $(1-x)^{-2}$ is $(n+1)$
Statement 2: The coefficient of x^{r} in $(1-x)^{-n}$ when $n \in N$ is ${ }^{n+r-1} C_{r}$

Statement 1: The coefficient of $x^{3 \lambda+2}$ in the expansion of $(a+x)^{\lambda}(b+x)^{\lambda+1}(c+x)^{\lambda+2} \forall \lambda \in N$ is $\lambda(a+b+c)$

Statement 2: The coefficient of x^{m} in the expansion $(a+x)^{n}$ is ${ }^{n} C_{m} a^{n-m}$

Statement 1: The sum of coefficients in the expansion of $\left(3^{-x / 4}+3^{5 x / 4}\right)^{n}$ is 2^{n}
Statement 2: The sum of coefficients in the expansion of $(x+y)^{n}$ is 2^{n} when we put $x=y=1$ 131

Statement 1: The term independent of x in the expansion of $\left(x+\frac{1}{x}+2\right)^{m}$ is $\frac{(4 m)!}{(2 m!)^{2}}$
Statement 2: The coefficient of x^{6} in the expansion $(1+x)^{n}$ is ${ }^{n} C_{6}$

Statement 1: The number of terms in the expansion $\left(x+\frac{1}{x}+1\right)^{n}$ is $2 n+1$
Statement 2: The number of terms in the expansion $\left(a_{1}+a_{2}+a_{3}+\ldots+a_{m}\right)^{n}$ is ${ }^{n+m-1} C_{m-1}$

Statement 1: $\quad \sum_{0 \leq i<} \sum_{j \leq n}\left(\frac{i}{{ }^{n} C_{i}}+\frac{j}{{ }^{n} C_{j}}\right)$ is equal to $\frac{n^{2}}{2} a$, where $a=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$
Statement 2: $\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}=\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{r}}$

Statement 1: Three consecutive binomial coefficients are always in A.P.
Statement 2: Three consecutive binomial coefficients are not in H.P. or G.P.

Statement 1: The total number of dissimilar terms in the expansion of $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{3}$ is $\frac{n(n+1)(n+2)}{6}$
Statement 2: The total number of dissimilar terms in the expansion of $\left(x_{1}+x_{2}+x_{3}\right)^{n}$ is $\frac{n(n+1)(n+2)}{6}$ 136

Statement 1: If p is a prime number $(p \neq 2)$, then $\left[(2+\sqrt{5})^{p}\right]-2^{p+1}$ is always divisible by p (where [.] denotes the greatest integer function)
Statement 2: If n is prime, then ${ }^{n} C_{1},{ }^{n} C_{2},{ }^{n} C_{3}, \cdots,{ }^{n} C_{n-1}$ must be divisible by n

Statement 1: $\quad 3^{2 n+2}-8 n-9$ is divisible by $64, \forall n \in N$
Statement 2: $(1+x)^{n}-n x-1$ is divisible by $x^{2}, \forall n \in N$ 138

Statement 1: The coefficient of x^{n} in $\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}\right)$ is $\frac{3^{n}}{n!}$
Statement 2: The coefficient of x^{n} in $e^{3 x}$ is $\frac{3^{n}}{n!}$

Statement 1: The value of $\left({ }^{10} C_{0}\right)+\left({ }^{10} C_{0}+{ }^{10} C_{1}\right)+\left({ }^{10} C_{0}+{ }^{10} C_{1}+{ }^{10} C_{2}\right)+\cdots+\left({ }^{10} C_{0}+{ }^{10} C_{1}+\right.$ $\left.{ }^{10} C_{2}+\cdots+{ }^{10} C_{9}\right)$ is $10 \cdots 2^{9}$
Statement 2: ${ }^{n} C_{1}+2{ }^{n} C_{2}+3{ }^{n} C_{3}+\cdots+n^{n} C_{n}=n 2^{n-1}$
140

Statement 1: For every natural number $n \geq 2$.

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}
$$

Statement 2: For every natural number $n \geq 2$

$$
\sqrt{n(n+1)}<n+1
$$

Statement 1: In the expansion of $(1+x)^{41}\left(1-x+x^{2}\right)^{40}$, the coefficient of x^{85} is zero
Statement 2: In the expansion of $(1+x)^{41}$ and $\left(1-x+x^{2}\right)^{40}, x^{85}$ term does not occur
142
Statement 1: $\quad{ }^{m} C_{r}+{ }^{m} C_{r-1}{ }^{n} C_{1}+{ }^{m} C_{r-2}{ }^{n} C_{2}+\cdots+{ }^{n} C_{r}=0$, if $m+n<r$
Statement 2: $\quad{ }^{n} C_{r}=0$ if $n<r$

Statement 1: The number of distinct terms in $\left(1+x+x^{2}+x^{3}+x^{4}\right)^{1000}$ is 4001
Statement 2: The number of distinct terms in the expansion $\left(a_{1}+a_{2}+\cdots+a_{m}\right)^{n}$ is ${ }^{n+m-1} C_{m-1}$
144 Let n be a positive integer and k be a whole number, $k \leq 2 n$
Statement 1: The maximum value of ${ }^{2 n} C_{k}$ is ${ }^{2 n} C_{n}$
Statement 2: $\quad \frac{{ }^{2 n} c_{k+1}}{{ }^{2 n} C_{k}}<1$, for $k=0,1,2, \ldots, n-1$ and $\frac{{ }^{2 n} c_{k}}{{ }^{2 n} C_{k-1}}>1$ for $k=n+1, n+2, \ldots, 2 n$

Statement 1: If $\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)=196$, then the sum of the coefficients of power x in the expansion of the polynomial $\left(x-3 x^{2}+x^{3}\right)^{n}$ is -1
Statement 2: $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\left(\frac{n-r+1}{r}\right) \forall n \in N$ and $r \in W$

Statement 1: Remainder when 3456^{2222} is divided by 7 is 4
Statement 2: Remainder when 5^{2222} is divided 7 is 4
147 In the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$, then coefficient of x^{14} is
Statement 1: 130
Statement 2: 120

Statement 1: Greatest term in the expansion of $(1+x)^{12}$, when $x=11 / 10$ is $7^{\text {th }}$
Statement 2: $7^{\text {th }}$ term in the expansion of $(1+x)^{12}$ has the factor ${ }^{12} C_{6}$ which is greatest value of ${ }^{12} C_{r}$ 149

Statement 1:

$$
\sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r}=(n+2) 2^{n-1}
$$

Statement 2: $\quad \sum_{r=0}^{n}(r+1)^{n} C_{r} \cdot x^{r}=(1+x)^{n}+n x(1+x)^{n-1}$

150 The height of a communication satellite. ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$) , $\left(\mathrm{M}=5.98 \times 10^{24} \times \mathrm{kg}, \mathrm{R}=6.4 \times 10^{6} \mathrm{~m}\right.$,
Statement 1: 35850 km
Statement 2: 3585 km
151
Statement 1: If $n \in N$ and ' n ' is not a multiple of 3 and $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$, then the value of $\sum_{r=0}^{n}(-1)^{r} a_{r}{ }^{n} C_{r}$ is zero
Statement 2: The coefficient of x^{n} in the expansion of $\left(1-x^{3}\right)$ is zero, if $n=3 k+1$ or $n=3 k+2$ 152

Statement 1: If n is even, then ${ }^{2 n} C_{1}+{ }^{2 n} C_{3}+\ldots+{ }^{2 n} C_{n-1}=2^{2 n-1}$
Statement 2: ${ }^{2 n} C_{1}+{ }^{2 n} C_{3}+\ldots+{ }^{2 n} C_{2 n-1}=2^{2 n-1}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II. 153.

Column-I

Column- II

(A) $\sum \sum_{i \neq j}{ }^{10} C_{i}{ }^{10} C_{j}$
(p) $\frac{2^{20}-{ }^{20} C_{10}}{2}$
(B) $\sum_{0 \leq i} \sum_{j \leq j \leq n}{ }^{10} C_{i}{ }^{10} C_{j}$
(q) $2^{20}-{ }^{20} C_{10}$
(C) $\sum_{0 \leq i} \sum_{j \leq n}{ }^{10} C_{i}{ }^{10} C_{j}$
(r) $\quad 2^{20}$
(D) $\sum_{i=0}^{10} \sum_{j=0}^{10}{ }^{10} C_{i}{ }^{10} C_{j}$
(s) $\frac{2^{20}+{ }^{20} C_{10}}{2}$
CODES :
A
B
C
D
a) $\begin{array}{llll}\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s}\end{array}$
b) $\mathrm{q} \quad \mathrm{s} \quad \mathrm{p} \quad \mathrm{r}$
c) $\begin{array}{lllll}\text { s } & \text { r } & \text { q } & \text { p }\end{array}$
d) $\begin{array}{lllll}r & p & s & q\end{array}$
154.

Column-I

(A) The sum of binomial coefficients of terms containing power of x more than x^{20} in $(1+x)^{41}$ is divisible by
(B) The sum of binomial coefficients of rational terms in the expansion of $(1+\sqrt{2})^{42}$ is divisible by
(C) $\operatorname{Id}\left(x+\frac{1}{x}+x^{2}+\frac{1}{x^{2}}\right)^{21}=a_{0} x^{-42}+a_{1} x^{-41}+$ $a_{2} x^{-40}+\cdots a_{84} x^{42}$, then $a_{0}+a_{2}+\cdots+a_{84}$ is divisible by
(D) The sum of binomial coefficients of positive
(s) 2^{38} real terms in the expansion of $(1+i x)^{42}(x>$ O is divisible by
CODES :
A
B
C
D
a) $\quad \mathrm{Q}, \mathrm{s}, \mathrm{p} \quad \mathrm{r}, \mathrm{s}, \mathrm{p}, \mathrm{q} \quad \mathrm{r}, \mathrm{s}, \mathrm{p}, \mathrm{q} \quad \mathrm{q}, \mathrm{s}, \mathrm{p}$
b) $s, p, q \quad s, p, q, r \quad s, p, q, r \quad s, p, q$
c) $\quad \mathrm{p}, \mathrm{s}, \mathrm{q} \quad \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{p} \quad \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{p} \quad \mathrm{p}, \mathrm{s}, \mathrm{q}$
d) $\quad \mathrm{p}, q, \mathrm{~s} \quad \mathrm{p}, q, r, \mathrm{~s} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} \quad \mathrm{p}, q, \mathrm{~s}$
155.

Column-I
Column- II
(A) If ${ }^{(n+1)} C_{4}+{ }^{(n+1)} C_{3}+{ }^{(n+2)} C_{3}>{ }^{(n+3)} C_{3}$, then
(p) 4 possible value/values of n is/are
(B) The remainder when $(3053)^{456}-(2417)^{333}$
(q) 5 is divided by 9 is less than
(C) The digit in the unit place of the number $183!+3^{183}$ is greater than
(D) If sum of the coefficients of the first, second
(r) 6
(s) 7 and third terms of the expansion of $\left(x^{2}+\right.$ $1 x m$ is 46 , then the index of the term that does not contain x is greater than

CODES :

A
B
C
D
a) $\mathrm{R}, \mathrm{s}, \mathrm{q} \quad \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{p} \quad \mathrm{q}, \mathrm{r}, \mathrm{p} \quad \mathrm{q}, \mathrm{p}$
b) $s, q, r \quad r, s, p, q \quad r, p, q \quad q, p$
c) $\mathrm{r}, \mathrm{s} \quad \mathrm{s}, \mathrm{r}, \mathrm{p}, \mathrm{q} \quad \mathrm{q}, \mathrm{r} \quad \mathrm{q}, \mathrm{p}$
d) $\quad q, r, s \quad p, q, r, s \quad p, q, r \quad p, q$
156. The correct matching of List I from List II

Column-I

Column- II

(A) $(1-x)^{-n}$
(1) $\frac{x}{x+1}$
(B) $(1+n)^{-n}$
(2) $1-n x+\frac{n(n+1)}{2!} x^{2}-\cdots$

If $|x|<1$
(C) If $x>1$,

Then $1+\frac{1}{x}+\frac{3}{x^{2}}+\cdots$ is
(D) If $|x|>1$, then
$1-\frac{2}{x^{2}}+\frac{3}{x^{4}}+\frac{4}{x^{6}}+\cdots$ is
(3) $1+n x+\frac{n(n+1)}{2!} x^{2}+\cdots$

If $|x|<1$
(4) $\frac{x}{x-1}$
(5) $\frac{x^{4}}{\left(x^{2}+1\right)^{2}}$
(6) $\frac{x^{4}}{\left(x^{2}-1\right)^{2}}$

CODES :

	A	B	C	D
a)	1	3	4	5
b)	2	3	4	5
c)	3	2	4	5
d)	2	3	1	5

157.

Column-I

Column- II
(A) The coefficient of tow consecutive terms in the (p) 9 expansion of $(1+x)^{n}$ will be equal, then n can be
(B) If $15^{n}+23^{n}$ is divided by 19 , then n can be
(q) 10
(C) ${ }^{10} C_{0}{ }^{20} C_{10}-{ }^{10} C_{1}{ }^{18} C_{10}+{ }^{10} C_{2}{ }^{16} C_{10}-\cdots$ is
(r) 11 divisible by 2^{n}, then n can be
(D) If the coefficients of T_{r}, T_{r+1}, T_{r+2} term of
(s) 12 $(1+x)^{14}$ are in AP., then r is less than
CODES :
A
B
C
D
a) $\mathrm{P}, \mathrm{r} \quad \mathrm{p}, \mathrm{r} \quad \mathrm{p}, \mathrm{q} \quad \mathrm{q}, \mathrm{r}, \mathrm{s}$
b) r,p r,p $\quad \mathrm{q}, \mathrm{p} \quad \mathrm{r}, \mathrm{s}, \mathrm{q}$
c) r,p r,p $\quad \mathrm{q}, \mathrm{p} \quad \mathrm{s}, \mathrm{q}, \mathrm{r}$
d) r,p r,p $\quad \mathrm{p}, \mathrm{p} \quad \mathrm{r}, \mathrm{q}, \mathrm{s}$
158.

Column-I

Column- II

(A) ${ }^{32} C_{0}^{2}-{ }^{32} C_{1}^{2}+{ }^{32} C_{2}^{2}-\cdots+{ }^{32} C_{32}^{2}=$
(p) ${ }^{63} C_{16}$
(B) ${ }^{32} C_{0}^{2}+{ }^{32} C_{1}^{2}+{ }^{32} C_{2}^{2}-\cdots+{ }^{32} C_{32}^{2}=$
(q) ${ }^{32} C_{16}$
(C) $\frac{1}{32}\left(1 \times{ }^{32} C_{1}^{2}+2 \times{ }^{32} C_{2}^{2}+\cdots+32 \times{ }^{32} C_{32}\right)$
(r) 0
(D) ${ }^{32} C_{0}^{2}-{ }^{31} C_{1}^{2}+{ }^{32} C_{2}^{2}-\cdots-{ }^{31} C_{31}^{2}=$
(s) ${ }^{64} C_{32}$

CODES :

	A	B	C	D
a)	P	q	r	s
b)	s	r	q	p
c)	q	s	p	r
d)	r	p	s	q

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Paragraph for Question Nos. 159 to -159

If $a, b \in$ prime numbers and $n \in N$. then free from radical terms or rational terms in the expansion of $\left(a^{1 / p}+b^{1 / q}\right)^{n}$ are the terms in which indices of a and b are integers.
On the basis of above information, answer the following questions
159. In the expansion of $\left(7^{1 / 3}+11^{1 / 9}\right)^{6561}$, the number of terms free from radicals is
a) 715
b) 725
c) 730
d) 745

Paragraph for Question Nos. 160 to - 160

If $C={ }^{n} C_{\mathrm{r}}$, then evaluate the expression $P=\sum_{0 \leq \mathrm{r}<s \leq n} \sum\left(C_{\mathrm{r}} C_{s}\right)$ we make use of $C_{0}^{2}+C_{1}^{2}+\ldots+C_{n}^{2}={ }^{2 n} C_{n}$ and expansion of $\left(C_{0}+C_{1}+\ldots+C_{n}\right)^{2}$. On the basis of above information, answer the following questions
160. The value of $P=0 \leq \mathrm{r}<s \leq n$ is
a) $2^{2 n}-\frac{1}{2}\left({ }^{2 n} C_{n}\right)$
b) $2^{2 n-1}-\frac{1}{2}\left({ }^{2 n} C_{n}\right)$
c) $2^{2 n}-{ }^{2 n} C_{n}$
d) None of these

Paragraph for Question Nos. 161 to - 161

The sixth term in the expansion of $\left[\sqrt{\left\{2^{\log \left(10-3^{x}\right)}\right\}}+\sqrt[5]{\left\{2^{(x-2) \log 3}\right\}}\right]^{m}$ is equal to 21 , if it is known that the binomial coefficient of the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion represents, respectively, the first, third and fifth terms of an AP. (the symbol log stands for logarithm to the base 10)
161. The value of m is
a) 6
b) 7
c) 8
d) 9

Paragraph for Question Nos. 162 to - 162

The $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are 240,720 and 1080 , respectively
162. The value of $(x+a)^{n}$ can be
a) 64
b) -1
c) -32
d) None of these

Paragraph for Question Nos. 163 to - 163

If $\left(1+x+x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2} \cdots+a_{40} x^{40}$, then answer the following questions
163. The value of $a_{0}+a_{1}+a_{2}+\ldots+a_{19}$ is
a) $\frac{1}{2}\left(9^{10}+a_{20}\right)$
b) $\frac{1}{2}\left(9^{10}-a_{20}\right)$
c) $\frac{9^{10}}{2}$
d) None of these

Paragraph for Question Nos. 164 to - 164

An equation $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{99} x{ }^{99}+x^{100}=0$ has roots ${ }^{99} C_{0},{ }^{99} C_{1},{ }^{99} C_{2}, \cdots,{ }^{99} C_{99}$
164. The value of a_{99} is equal to
a) 2^{98}
b) 2^{99}
c) -2^{99}
d) None of these

Paragraph for Question Nos. 165 to - 165

Any complex number in polar form can be an expression in Euler's form as $\cos \theta+i \sin \theta=e^{i \theta}$. This form of the complex number is useful in finding the sum of series $\sum_{r=0}^{n}{ }^{n} C_{r}(\cos \theta+i \sin \theta)^{r}$
$\sum_{r=0}^{n}{ }^{n} C_{r}(\cos r \theta+i \sin r \theta)=\sum_{r=0}^{n}{ }^{n} C_{r} e^{i r \theta}$
$=\sum_{r=0}^{n}{ }^{n} C_{r}\left(r^{i \theta}\right)^{r}$
$=\left(1+e^{i \theta}\right)^{n}$

Also, we know that the sum of binomial series does not change if r is replaced by $n-r$.
Using these facts, answer the following questions
165. The value of $\sum_{r=0}^{100}{ }^{100} C_{r}(\sin r x)$ is equal to
a) $2^{100} \cos ^{100} \frac{x}{2} \sin 50 x$
b) $2^{100} \sin (50 x) \cos \frac{x}{2}$
c) $2^{101} \cos ^{100}(50 x) \sin \frac{x}{2}$
d) $2^{101} \sin ^{100}(50 x) \cos (50 x)$

Paragraph for Question Nos. 166 to - 166

Let $P=\sum_{r=1}^{50} \frac{{ }^{50+r} C_{r(2 r-1)}}{{ }^{50} C_{r}(50+r)}, Q=\sum_{r=0}^{50}\left({ }^{50} C_{r}\right)^{2}, R=\sum_{r=0}^{100}(-1)^{r}\left({ }^{100} C_{r}\right)^{2}$
166. The value of $P-Q$ is equal to
a) 1
b) -1
c) 2^{50}
d) 2^{100}

Paragraph for Question Nos. 167 to - 167

P is a set containing n elements. A subset A of P is chosen and the set P is reconstructed by replacing the elements of A. A subset B of P is chosen again
167. The number of ways of choosing A and B such that A and B have no common elements is
a) 3^{n}
b) 2^{n}
c) 4^{n}
d) None of these

Integer Answer Type

168. The largest real value for x such that $\sum_{k=0}^{4}\left(\frac{3^{4-k}}{(4-k)!}\right)\left(\frac{x^{k}}{k!}\right)=\frac{32}{3}$ is
169. Sum of last three digits of the number $N=7^{100}-3^{100}$ is
170. Number of values in set of values of ' r ' for which ${ }^{23} C_{r}+2 .{ }^{23} C_{r+1}+{ }^{23} C_{r+2} \geq{ }^{25} C_{15}$ is
171. Let $a=3^{\frac{1}{223}}+1$ and for all $n \geq 3$, let $f(n)={ }^{n} C_{0} \cdot a^{n-1}-{ }^{n} C_{1} \cdot a^{n-2}+{ }^{n} C_{2} \cdot a^{n-3}-\cdots+(-1)^{n-1} \cdot{ }^{n} C_{n-1} \cdot a^{0}$. If the value of $f(2007)+f(2008)=3^{k}$ where $k \in N$, then the value of k is
172. If the three consecutive coefficient in the expansion of $(1+x)^{n}$ are 28,56 and 70 , then the value of n is
173. If R is remainder when $6^{83}+8^{83}$ is divided by 49 , then the value of $R / 5$ is
174. Let a and b be the coefficient of x^{3} in $\left(1+x+2 x^{2}+3 x^{3}\right)^{4}$ and $\left(1+x+2 x^{2}+3 x^{3}+4 x^{4}\right)^{4}$ respectively. Then the value of $4 a / b$ is
175. If the constant term in the binomial expansion of $\left(x^{2}-\frac{1}{x}\right)^{n}, n \in N$ is 15 , then the value of n is equal to
176. The value of $\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\sum_{t=0}^{r-1} \frac{1}{5^{n}} \cdot{ }^{n} C_{r} \cdot{ }^{r} C_{t} \cdot 3^{t}\right)$ is equal to
177. If the middle term in the expansion of $\left(\frac{x}{2}+2\right)^{8}$ is 1120 ; then the sum of possible real values of x is
178. Least positive integer just greater then $(1+0.00002)^{50000}$ is
179. Let $1+\sum_{r=1}^{10}\left(3^{r} .^{10} C_{r}+r .{ }^{10} C_{r}\right)=2^{10}\left(\alpha \cdot 4^{5}+\beta\right)$ where $\alpha, \beta \in N$ and $(x)=x^{2}-2 x-k^{2}+1$. If α, β lies between the roots of $f(x)=0$, then find the smallest positive integral value of k
180. Degree of the polynomial $\left[\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right]^{8}+\left[\frac{1}{\sqrt{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}}\right]^{8}$ is
181. If the coefficients of the $(2 r+4)^{\text {th }},(r+2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal, then the value of r is
182. If the second term of the expansion $\left[a^{1 / 13}+\frac{a}{\sqrt{a^{-1}}}\right]^{n}$ is $14 a^{5 / 2}$, then the value of $\frac{{ }^{n} C_{3}}{{ }^{n} C_{2}}$ is
183. Given $\left(1-2 x+5 x^{5}-10 x^{3}\right)(1+x)^{n}=1+a_{1} x+a_{2} x^{2}+\cdots$ and that $a_{1}^{2}=2 a_{2}$ then the value of n is
184. If the coefficients of the $r^{\text {th }},(r+1)^{\text {th }},(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{14}$ are in AP, then the largest value of r is
185. If the coefficients x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and coefficient of x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ are equal then the value of $a b$ is 186. The remainder, if $1+2+2^{2}+2^{3}+\cdots+2^{1999}$ is divided by 5 is
186.

The largest value of x for which the fourth term in the expansion, $\left(5^{\frac{2}{5} \log 5^{\sqrt{4^{x}+44}}}+\frac{1}{5^{\log 5} \sqrt[3]{\sqrt{2^{x-1}+7}}}\right)^{8}$ is 336 is

: ANSWER KEY:

1)	c	2)	c	3)	a	4)	d		a,c					
5)	b	6)	c	7)	c	8)	c	9)	a,d	10)	a,b,c	11)	c,d	12)
9)	a	10)	a	11)	d	12)	c		a,c,					
13)	c	14)	c	15)	a	16)	c	13)	a,b,c	14)	a,c,d	15)	a,d	16)
17)	d	18)	b	19)	d	20)	b		a,b,d					
21)	d	22)	b	23)	b	24)	a	17)	a,b,d	18)	b,c,d	19)	a,b,d	20)
25)	d	26)	a	27)	c	28)	d	21)	a,b,c	22)	a,b,c,d	23)	a,c,d	24)
29)	b	30)	c	31)	a	32)	a		a,c					
33)	d	34)	a	35)	b	36)	c	25)	a,b,c	1)	c	2)	a	3)
37)	c	38)	c	39)	a	40)	b		4)	d				
41)	a	42)	d	43)	d	44)	c	5)	b	6)	d	7)	b	8)
45)	d	46)	d	47)	b	48)	b	9)	d	10)	b	11)	a	12)
49)	b	50)	c	51)	a	52)	a	13)	a	14)	a	15)	a	16)
53)	c	54)	a	55)	c	56)	c	17)	a	18)	b	19)	a	20)
57)	c	58)	b	59)	d	60)	a	21)	a	22)		23)	b	24)
61)	c	62)	a	63)	a	64)	a	25)		26)	a	27)	d	1)
65)	c	66)	b	67)	c	68)	d		2)	d	3)	d	4)	c
69)	c	70)	c	71)	b	72)	b	5)	a	6)	c	1)	c	2)
73)	d	74)	d	75)	b	76)	b		3)	b	4)	b		
77)	b	78)	d	79)	c	80)	b	5)	b	6)	c	7)	a	8)
81)	b	82)	b	83)	b	84)	c	9)	a	1)	1	2)	0	3)
85)	b	86)	a	87)	c	88)	b		4)	9				
89)	d	90)	d	91)	a	92)	d	5)	8	6)	7	7)	4	8)
93)	a	94)	d	95)	b	96)	b	9)	1	10)	0	11)	3	12)
97)	b	98)	d	99)	d	100)	a	13)	8	14)	6	15)	4	16)
1)	b,c	2)	a,d	3)	c,d	4)		17)	9	18)	1	19)	0	20)
5)	a,b	6)	a,d	7)	a,b,	8)								

: HINTS AND SOLUTIONS :

1 (c)
Given, $A={ }^{30} C_{0} \cdot{ }^{30} C_{10}-{ }^{30} C_{1} \cdot{ }^{30} C_{11}+{ }^{30} C_{2}$.
${ }^{30} C_{12}+\cdots+{ }^{30} C_{20} \cdot{ }^{30} C_{30}$

$$
=\text { coefficient of } x^{20} \text { in }(1+x)^{30}(1-x)^{30}
$$

$=$ coefficient of x^{20} in $\left(1+x^{2}\right)^{30}$

$$
=\quad \text { coefficient }
$$

of
x^{20} in $\sum_{r=0}^{30} \quad(-1)^{r}{ }^{30} C_{r}\left(x^{2}\right)^{r}$
$=(-1)^{10} \cdot{ }^{30} C_{10}$ \{for coefficient of x^{20}, let $r=10\}$

$$
={ }^{30} C_{10}
$$

2 (c)
$a^{10} b^{10} c^{10} d^{10}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{10}$
Therefore the required coefficient is equal to the coefficient
of $a^{-2} b^{-6} c^{-1} d^{-1}$ in $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{10}$, which is given by
$\frac{10!}{2!6!1!1!}=\frac{10 \times 9 \times 8 \times 7}{2}=2520$
3
(a)
$\frac{r \times 2^{r}}{(r+2)!}=\frac{(r+2-2) 2^{r}}{(r+2)!}$
$=\frac{2^{r}}{(r+1)!}-\frac{2^{r+1}}{(r+2)!}$
$=-\left(\frac{2^{r+1}}{(r+2)!}-\frac{2^{r}}{(r+1)!}\right)$
$=-(V(r)-V(r-1))$
$\Rightarrow \sum_{r=1}^{15} \frac{r \times 2^{r}}{(r+2)!}=-(V(15)-V(0))$
$=-\left(\frac{2^{16}}{17!}-\frac{2}{2!}\right)$
$=1-\frac{2^{16}}{(17)!}$

4

$$
(1-x)^{n}(1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r}(1-x)^{n}(1-x)^{n-r}
$$

$$
\Rightarrow(1-x+2 x)^{n}=\sum_{r=0}^{n} a_{r} x^{r}(1-x)^{n-r}
$$

$\Rightarrow \sum_{r=0}^{n}{ }^{n} C_{r}(1-x)^{n-r}(2 x)^{r}=\sum_{r=0}^{n} a_{r} x^{r}(1-x)^{n-r}$
Comparing general term, we get $a_{r}={ }^{n} C_{r} 2^{r}$

$$
\begin{aligned}
& \left(1+\sqrt{a}+\frac{1}{\sqrt{a}-1}\right)^{-30} \\
& =\left(\frac{a}{\sqrt{a}-1}\right)^{-30} \\
& =\left(\frac{\sqrt{a}-1}{a}\right)^{30} \\
& =\frac{1}{a^{30}}(1-\sqrt{a})^{30} \\
& =\frac{1}{a^{30}}\left\{{ }^{30} C_{0}-{ }^{30} C_{1} \sqrt{a}+\cdots+{ }^{30} C_{30}(\sqrt{a})^{30}\right\}
\end{aligned}
$$

There is no term independent of a
6 (c)

$$
\begin{aligned}
& \begin{aligned}
\left(1+2 x+x^{2}\right)^{n} & =\sum_{r=0}^{2 n} a_{r} x^{r} \Rightarrow\left[(1+x)^{2}\right]^{n} \\
& =\sum_{r=0}^{2 n} a_{r} x^{r}
\end{aligned} \\
& \Rightarrow(1+x)^{2 n}=\sum_{r=0}^{2 n} a_{r} x^{r} \\
& \Rightarrow \sum_{r=0}^{2 n}{ }^{2 n} C_{r} x^{r}=\sum_{r=0}^{2 n} a_{r} x^{r} \\
& \Rightarrow a_{r}={ }^{2 n} C_{r}
\end{aligned}
$$

(c)

Here,

$$
\begin{aligned}
& T_{r}=(-1)^{r} \frac{{ }^{50} C_{r}}{r+2} \\
& =(-1)^{r}(r+1) \frac{{ }^{50} C_{r}}{(r+1)(r+2)} \\
& =(-1)^{r}(r+1) \frac{{ }^{52} C_{r+2}}{51 \times 52} \\
& =(-1)^{r} \frac{[(r+2)-1]^{52} C_{r+2}}{51 \times 52} \\
& =(-1)^{r} \frac{\left[52{ }^{51} C_{r+1}-{ }^{52} C_{r+2}\right]}{51 \times 52} \\
& =\frac{\left[-52^{51} C_{r+1}(-1)^{r+1}-{ }^{52} C_{r+2}(-1)^{r+2}\right]}{51 \times 52} \\
& \sum_{r=0}^{50}(-1)^{r} \frac{{ }^{50} C_{r}}{r+2} \\
& =\sum_{r=0}^{50} \frac{\left[-52^{51} C_{r+1}(-1)^{r+1}-{ }^{52} C_{r+2}(-1)^{r+2}\right]}{51 \times 52} \\
& =-52 \frac{(1-1)^{51}-{ }^{51} C_{0}}{51 \times 52} \\
& -\frac{(1-1)^{52}-{ }^{52} C_{0}+{ }^{52} C_{1}}{51 \times 52}
\end{aligned}
$$

$=\frac{1}{51}-\frac{1}{52}$
$=\frac{1}{51 \times 52}$
Alternative solution:
$(1-x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r}(-1)^{r} x^{r}$
$\Rightarrow x(1-x)^{n}=\sum_{r=0}^{n}(-1)^{r{ }^{n}} C_{r} x^{r+1}$
Integration both sides within the limits 0 to 1 , we get
$\int_{0}^{1} x(1-x)^{n} d x=\sum_{r=0}^{n}(-1)^{r} \frac{{ }^{n} C_{r}}{r+2}$
$\Rightarrow \sum_{r=0}^{n}(-1)^{r} \frac{{ }^{n} C_{r}}{r+2}=\int_{0}^{1} x(1-x)^{n} d x$
$\int_{0}^{1}(1-x) x^{n} d x \quad$ (replace x by $1-x$)
$=\frac{x^{n+1}}{n+1}-\left.\frac{x^{n+2}}{n+2}\right|_{0} ^{1}$
$=\frac{1}{n+1}-\frac{1}{n+2}$
$=\frac{1}{(n+1)(n+2)}$
Now put $n=50$
8 (c)
Sum of coefficient in $\left(1-x \sin \theta+x^{2}\right)^{n}$ is
$(1-\sin \theta+1)^{n}$
(putting $x=1$)
This sum is greatest when $\sin \theta=-1$, then maximum sum is 3^{n}
9 (a)
Given term can be written as

$$
\begin{aligned}
(1+x)^{2}(1-x &)^{-2} \\
& =\left(1+2 x+x^{2}\right)\left[1+2 x+3 x^{2}\right. \\
& +\cdots+(n-1)
\end{aligned}
$$

$$
\times x^{n-2}+
$$

$\left.n x^{n-1}+(n+1) x^{n}+\cdots\right]$
Coefficient of x^{n} is $(n+1+2 n+n-1)=4 n$
10 (a)
To get sum of coefficients put $x=0$. Given that sum of coefficients is
$2^{n}=64$
$\Rightarrow n=6$
The greatest binomial coefficient is ${ }^{6} C_{3}$
Now given that
$T_{4}-T_{3}=6-1=5$
\Rightarrow
${ }^{6} C_{3}\left(3^{-x / 4}\right)^{3}\left(3^{5 x / 4}\right)^{3}-{ }^{6} C_{2}\left(3^{-x / 4}\right)^{2}\left(3^{5 x / 4}\right)^{4}=5$
Which is satisfied by $x=0$

11 (d)
$A_{r}=$ Coefficient of x^{r} in $(1+x)^{10}={ }^{10} C_{r}$
$B_{r}=$ Coefficient of x^{r} in $(1+x)^{20}={ }^{20} C_{r}$
$C_{r}=$ Coefficient of x^{r} in $(1+x)^{30}={ }^{30} C_{r}$
$\therefore \sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ $=\sum_{r=1}^{10} A_{r} B_{10} B_{r},-\sum_{r=1}^{10} A_{r} C_{10} A_{r}$
$=\sum_{r=1}^{10}{ }^{10} C_{r}{ }^{20} C_{10}{ }^{20} C_{r} \sum_{r=1}^{10}{ }^{10} C_{r}{ }^{30} C_{10}{ }^{10} C_{r} \mathrm{l}$
$\sum_{r=1}^{10}{ }^{10} C_{10-r l}{ }^{20} C_{10}{ }^{20} C_{r}-\sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{30} C_{10}{ }^{10} C_{r} l$
$={ }^{20} C_{10} \sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{20} C_{r}$
$-{ }^{30} C_{10} \sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{10} C_{r}$
$={ }^{20} C_{10}\left({ }^{30} C_{10}-1\right)-{ }^{30} C_{10}\left({ }^{20} C_{10}-1\right)$
$={ }^{20} C_{10}\left({ }^{30} C_{10}-1\right)-{ }^{30} C_{10}\left({ }^{20} C_{10}-1\right)$
$={ }^{30} C_{10}-{ }^{20} C_{10}=C_{10}-B_{10}$
12 (c)
As we know that ${ }^{n} C_{0}-{ }^{n} C_{1}^{2}+{ }^{n} C_{2}^{2}-{ }^{n} C_{3}^{2}+\cdots+$ $(-1)^{n}{ }^{n} C_{n}^{2}=0$
(if n is odd) and in the question $n=15$ (odd).
Hence, sum of given series is 0
13 (c)
Let,
$b=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$
$=\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{n-r}}$ (we can replace r by $n-r$)
$=\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{r}}$
Adding (1) and (2), we have
$2 b=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}+\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{r}}$
$=n \sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$
$=n a_{n}$
$\Rightarrow b=\frac{n}{2} a_{n}$
(c)

We have,

$$
\begin{aligned}
& \begin{aligned}
&(1+x)^{101}\left(1-x+x^{2}\right)^{100} \\
&=(1+x)\left((1+x)\left(1+x+x^{2}\right)\right)^{100} \\
&=(1+x)(1+\left.x^{3}\right)^{100} \\
&=(1+x)\left\{C_{0}+C_{1} x^{3}+C_{2} x^{6}+\cdots\right. \\
& \quad\left.+C_{100} x^{300}\right\}
\end{aligned} \\
& =(1+x) \sum_{r=0}^{n}{ }^{n} C_{r} x^{3} \\
& =\sum_{r=0}^{n}{ }^{n} C_{r} x^{3 r}+\sum_{r=0}^{n}{ }^{n} C_{r} x^{3 r+1}
\end{aligned}
$$

Hence, there will be no term containing $3 r+2$
15 (a)
General term,
$T_{r+1}={ }^{256} C_{1}(\sqrt{3})^{256-r}(\sqrt[8]{5})^{r}$
$={ }^{256} C_{r} 3^{\frac{256-r}{2}} 5^{\frac{r}{8}}$
The terms are integral if $\frac{256-r}{2}$ and $\frac{r}{8}$ are both positive integers
$\therefore r=0,8,16,24, \ldots, 256$
Hence, there are 33 integral terms
16 (c)
$\sum_{r=0}^{300} a_{r} \times x^{r}=\left(1+x+x^{2}+x^{3}\right)^{100}$
Clearly, ' a_{r} ' is the coefficient of x in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{100}$
Replacing x by $1 / x$ in the given equation, we get
$\sum_{r=0}^{300} a_{r}\left(\frac{1}{x}\right)^{r}=\frac{1}{x^{300}}\left(x^{3}+x^{2}+x+1\right)^{100}$
$\Rightarrow \sum_{r=0}^{300} a_{r} x^{300-r}=\left(1+x+x^{2}+x^{3}\right)^{100}$
Here, a_{r} represents the coefficient of x^{300-r} in
$\left(1+x+x^{2}+x^{3}\right)^{100}$
Thus, $a_{r}=a_{300-r}$
Let $I=\sum_{r=0}^{300} r \times a_{r}$
$=\sum_{r=0}^{300}(300-r) a_{300-r}$
$=\sum_{r=0}^{300}(300-r) a_{r}$
$=300 \sum_{r=0}^{300} a_{r}-\sum_{r=0}^{300} r a_{r}$
$\Rightarrow 2 I=300 a$
$\Rightarrow I=150 a$
17
(d)
$\sum_{r=1}^{n}(-1)^{r+1} \frac{{ }^{n} C_{r}}{(r+1)}=\frac{1}{n+1} \sum_{r=1}^{n}(-1)^{r+1 n+1} C_{r+1}$
$=\frac{1}{n+1}(0-1+(n+1))=\frac{n}{n+1}$
18 (b)
T_{r+1} in $(1+x)^{n}$ is
$\frac{n(n-1)(n-2) \cdots(n-r+1)}{r!} x^{r}$
For first negative term,
$n-r+1<0$
$\Rightarrow \frac{27}{5}-r+1<0$
$\Rightarrow r>\frac{32}{5}$
Thus, first negative term occurs when $r=7$
19 (d)
$\sum_{r=0}^{10} r^{10} C_{r} 3^{r}(-2)^{10-r}$
$=10 \sum_{r=0}^{10}{ }^{9} C_{r-1} 3^{r}(-2)^{10-r}$
$=10 \times 3 \sum_{r=0}^{10}{ }^{9} C_{r-1} 3^{r-1}(-2)^{10-r}$
$=30(3-2)^{10}$
$=30$
(b)

Given series is ${ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{8}$
$=\frac{1}{2}\left(2 \cdot{ }^{20} C_{0}+2^{20} C_{1}+\cdots 2 \cdot{ }^{20} C_{8}\right)$
$=\frac{1}{2}\left[\left({ }^{20} C_{0}+{ }^{20} C_{1}+\cdots+{ }^{20} C_{8}+{ }^{20} C_{9}+{ }^{20} C_{10}\right.\right.$
$\left.+{ }^{20} C_{11}+\cdots+{ }^{20} C_{20}\right)-\left({ }^{20} C_{9}\right.$
$\left.\left.+{ }^{20} C_{10}+{ }^{20} C_{11}\right)\right]$
$=\frac{1}{2}\left[2^{20}-2 \cdot{ }^{20} C_{9}-{ }^{20} C_{10}\right]$
$=2^{19}-\frac{\left(2 \cdot{ }^{20} C_{9}+{ }^{10} C_{10}\right)}{2}$
$=\frac{\left(2^{20}-{ }^{20} C_{10}\right)}{2}-{ }^{20} C_{9}$
$=2^{19}-\frac{\left({ }^{20} C_{10}+2 \times{ }^{20} C_{9}\right)}{2}$
21 (d)
Required value is

$$
\begin{aligned}
\left(1-\frac{2 x}{1+x}\right)^{-n} & =\left(\frac{1+x-2 x}{1+x}\right)^{-n}=\left(\frac{1-x}{1+x}\right)^{-n} \\
& =\left(\frac{1+x}{1-x}\right)^{-n}
\end{aligned}
$$

22 (b)
$\left(1+x^{3}-x^{6}\right)^{30}$
$=\left\{1+x^{3}\left(1-x^{3}\right)\right\}^{30}$
$={ }^{30} C_{0}+{ }^{30} C_{1} x^{3}\left(1-x^{3}\right)+{ }^{30} C_{2} x^{6}\left(1-x^{3}\right)^{2}+\ldots$
Obviously, each term will contain $x^{3 m}, m \in N$. But
28 is not divisible by 3 . Therefore, there will be no
term containing x^{28}
23 (b)
$\left(x+\frac{1}{x}+x^{2}+\frac{1}{x^{2}}\right)^{15}$
$=\left(\frac{x^{3}+x+x^{4}+1}{x^{2}}\right)^{15}$
$=\frac{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{60} x^{60}}{x^{30}}$
Hence, the total number of terms is 61
24 (a)
$\sum_{r=0}^{40} r^{40} C_{r}{ }^{30} C_{r}$
$=40 \sum_{r=0}^{40}{ }^{39} C_{r-1}{ }^{30} C_{r}$
$=40 \sum_{r=0}^{40}{ }^{39} C_{r-1}{ }^{30} C_{30-r}$
$=40^{39+30} C_{r-1+30-r}$
$=40{ }^{69} C_{29}$
25 (d)
Let,
$(1+y)^{n}=1+\frac{1}{3} x+\frac{1 \times 4}{3 \times 6} x^{2}+\frac{1 \times 4 \times 7}{3 \times 6 \times 9} x^{3}+\cdots$
$=1+n y+\frac{n(n-1)}{2!} y^{2}+\cdots$
Comparing the terms, we get
$n y=\frac{1}{3} x, \frac{n(n-1)}{2!} y^{2}=\frac{1 \times 4}{3 \times 6} x^{2}$
Solving, $n=-1 / 3, y=-x$. Hence, the given series is $(1-x)^{-1 / 3}$
26 (a)
We have,
$\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}$
$=\frac{\left(x^{1 / 3}\right)^{3}+1^{3}}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x^{1 / 2}\left(x^{1 / 2}-1\right)}$
$=\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x^{1 / 2}+1}{x^{1 / 2}}$
$=x^{1 / 3}+1-1-x^{-1 / 2}=x^{1 / 3}-x^{-1 / 2}$
$\therefore\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$

$$
=\left(x^{1 / 3}-x^{-1 / 2}\right)^{10}
$$

Let T_{r+1} be the general term in $\left(x^{1 / 3}-x^{-1 / 2}\right)^{10}$.
Then,
$T_{r+1}={ }^{10} C_{r}\left(x^{1 / 3}\right)^{10-r}(-1)^{r}\left(x^{-1 / 2}\right)^{r}$
For this term to be independent of x, we must have
$\frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow 20-2 r-3 r=0 \Rightarrow r=4$

So, the required coefficient is ${ }^{10} C_{4}(-1)^{4}=210$
27 (c)

$$
\begin{aligned}
\left(x^{2}-2+\frac{1}{x^{2}}\right)^{n} & =\frac{1}{x^{2 n}}\left(x^{4}-2 x^{2}+1\right)^{n} \\
& =\frac{\left(x^{2}-1\right)^{2 n}}{x^{2 n}}
\end{aligned}
$$

Total number of terms that are dependent on x is equal to number of terms in the expansion of $\left(x^{2}-1\right)^{2 n}$ that have degree of x different from $2 n$, which is given by $(2 n+1)-1=2 n$
$\sum_{r=0}^{20} r(20-r) \times\left({ }^{20} C_{r}\right)^{2}$
$=\sum_{r=0}^{20} r \times{ }^{20} C_{r}(20-r){ }^{20} C_{20-r}$
$\Rightarrow \sum_{r=0}^{20} 20{ }^{19} C_{r-1} \times 20 \times{ }^{19} C_{19-r}$
$=400 \times \sum_{r=0}^{20}{ }^{19} C_{r-1} \times{ }^{19} C_{19-r}$
$=400 \times$ coefficient of x^{18} in $(1+x)^{19}(1+x)^{19}$
$=400 \times{ }^{38} C_{18}$
$=400 \times{ }^{38} C_{20}$

$$
\begin{aligned}
& \text { (b) } \\
& (1+x)^{n}=C_{0}+C_{1} x+C_{2} x+C_{2} x^{2}+C_{3} x^{3}+\cdots \\
& +C_{n} x^{n} \\
& (1-x)^{n}=C_{0}-C_{1} x+C_{2} x^{2}-C_{3} x^{3}+\cdots \\
& +(-1)^{n} C_{n} x^{n} \\
& \Rightarrow\left[(1+x)^{n}-(1-x)^{n}\right] \\
& =2\left[C_{1} x+C_{3} x^{3}+C_{5} x^{5}+\cdots\right] \\
& \Rightarrow \frac{1}{2}\left[(1+x)^{n}-(1-x)^{n}\right] \\
& \left.=C_{1} x+C_{3} x^{3}+C_{5} x^{5}+\cdots\right]
\end{aligned}
$$

Putting $x=2$, we have
$2 C_{1}+2^{3} C_{3}+2^{5} C_{5}+\cdots=\frac{3^{n}-(-1)^{n}}{2}$
30 (c)
Let $(r+1)^{\text {th }},(r+2)^{\text {th }}$ and $(r+3)^{\text {th }}$ be three consecutive terms
Then,
${ }^{n} C_{r}:{ }^{n} C_{r+1}:{ }^{n} C_{r+2}=1: 7: 42$
Now,
$\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{1}{7} \Rightarrow \frac{r+1}{n-r}=\frac{1}{7} \Rightarrow n-8 r=7$
$\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r+2}}=\frac{7}{42} \Rightarrow \frac{r+2}{n-r-1}=\frac{1}{6} \Rightarrow n-7 r=13$
Solving (i) and (ii), we get $n=55$
31 (a)
$T_{r+1}={ }^{4 n-2} C_{r}(i x)^{r}$
T_{r+1} is negative, if i^{r} is negative and real
$i^{r}=-1 \Rightarrow r=2,6,10, \ldots$, which form an A.P.
$0 \leq r \leq 4 n-2$
$4 n-2=2+(r-1) 4 \Rightarrow r=n$
The required number of terms is n
32 (a)
$1+n\left(1-\frac{1}{x}\right)+\frac{n(n+1)}{2!}\left(1-\frac{1}{x}\right)^{2}+\cdots \infty$
$=1-n\left[-\left(1-\frac{1}{x}\right)\right]+\frac{-n(-n-1)}{2!}\left[-\left(1-\frac{1}{x}\right)\right]^{2}+\cdots \infty$
$=\left[1-\left(1-\frac{1}{x}\right)\right]^{-n}$
$=x^{n}$
33 (d)
$\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}$
$=\left[\binom{n}{r}+\binom{n}{r-1}\right]+\left[\binom{n}{r-1}+\binom{n}{r-2}\right]$
$=\binom{n+1}{r}+\binom{n+1}{r-1}=\binom{n+2}{r} \quad[$

$$
\left.\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right]
$$

34 (a)
We know that
$(1-1)^{20}={ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\cdots$
$+{ }^{20} C_{10}-{ }^{20} C_{11}+{ }^{20} C_{12}-\cdots$
$+{ }^{20} C_{20}=0$
$2\left({ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\cdots-{ }^{20} C_{9}\right)$
$+{ }^{20} C_{10}=0$
$\left[\because{ }^{20} C_{20}={ }^{20} C_{0},{ }^{20} C_{19}={ }^{20} C_{1}\right.$, etc $]$
$\Rightarrow{ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\cdots-{ }^{20} C_{9}$

$$
+{ }^{20} C_{10}
$$

$=-\frac{1}{2}{ }^{20} C_{10}+{ }^{20} C_{10}=\frac{1}{2}{ }^{20} C_{10}$
35 (b)
We have
$(x+3)^{n-1}+(x+3)^{n-2}(x+2)$

$$
+(x+3)^{n-3}(x+2)^{2}+\cdots
$$

$$
+(x+2)^{n-1}
$$

$$
=\frac{(x+3)^{n}-(x+2)^{n}}{(x+3)-(x+2)}=(x+3)^{n}-(x+2)^{n}
$$

$$
\left(\because \frac{x^{n}-a^{n}}{x-a}=x^{n-1}+x^{n-2} a^{1}+x^{n-3} a^{2}+\cdots\right.
$$

$$
\left.+a^{n-1}\right)
$$

Therefore, coefficient of x^{r} in the given expression is equal to
Coefficient of x^{r} in $\left[(x+3)^{n}-(x+2)^{n}\right]$, which is given by
${ }^{n} C_{r} 3^{n-r}-{ }^{n} C_{r} 2^{n-r}={ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
36 (c)
Put $x=\omega, \omega^{2}$
$\left(3+\omega+\omega^{2}\right)^{2010}=a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots$
$\Rightarrow 2^{2010}=a_{0}+a_{1} \omega^{2}+a_{2} \omega+a_{3}+a_{4} \omega+\cdots$
(1)
and $2^{2010}=a_{0}+a_{1} \omega^{2}+a_{2} \omega+a_{3}+a_{4} \omega+\cdots$
(2)

Adding (1) and (2), we have
$2 \times 2^{2010}=2 a_{0}-a_{1}+a_{2}+2 a_{3}-a_{4}-a_{5}+2 a_{6}$
$\Rightarrow 2^{2010}=a_{0}-\frac{1}{2} a_{1}-\frac{1}{2} a_{2}+a_{3}-\frac{1}{2} a_{4}-\frac{1}{2} a_{5}$

$$
+a_{6} \cdots
$$

(c)
$t_{r+1}=(-1)^{r}(n-r+2)^{n} C_{r} 2^{n-r+1}$
$=(n+2) 2^{n+1}(-1)^{r n} C_{r}\left(\frac{1}{2}\right)^{r}$

$$
-2^{n+1}(-1)^{r} r^{n} C_{r}\left(\frac{1}{2}\right)^{r}
$$

$=(n+2) 2^{n+1}{ }^{n} C_{r}\left(-\frac{1}{2}\right)^{r}$
$+2^{n} n^{n-1} C_{r-1}\left(-\frac{1}{2}\right)^{r-1}$
\therefore Sum $=(n+2) 2^{n+1}\left\{{ }^{n} C_{0}-{ }^{n} C_{1} \times \frac{1}{2}+{ }^{n} C_{2} \times\right.$ $122-\ldots+n 2 n n-1 C O-n-1 C 1 \times 12+$ $n-1 C 2 \times 122+\ldots$
$=(n+2) 2^{n+1}\left(1-\frac{1}{2}\right)^{n}+n 2^{n}\left(1-\frac{1}{2}\right)^{n-1}$
$=2(n+2)+2 n$
$=4 n+4$
38 (c)
The given sigma is the expansion of $[(x-3)+$ $2100=x-1100=1-x 100$
Therefore, x^{53} will occur in T_{54}
$T_{54}={ }^{100} C_{53}(-x)^{53}$
Therefore, the coefficient is $-{ }^{100} C_{53}$
39 (a)
$\frac{2^{4 n}}{15}=\frac{(15+1)^{n}}{15}$
$=\frac{\left({ }^{n} C_{0} 15^{n}+{ }^{n} C_{1} 15^{n-1}+\ldots+{ }^{n} C_{n-1} 15+{ }^{n} C_{n}\right)}{15}$
$=$ Integer $+\frac{1}{5}$
Hence, the fractional part of $\frac{2^{4 n}}{15}$ is $\frac{1}{15}$
40 (b)
$a_{1}=$ coefficient of x in $\left(1+2 x+3 x^{2}\right)^{10}$
$=$ coefficient of x in $\left((1+2 x)+3 x^{2}\right)^{10}$
$=$ coefficient of x in
$\left({ }^{10} C_{0}(1+2 x)^{10}+{ }^{10} C_{1}(1+2 x)^{9}\left(3 x^{2}\right)+\cdots\right)$
$=$ coefficient of x in ${ }^{10} C_{0}(1+2 x)^{10}$
$={ }^{10} C_{0} 2 \cdot{ }^{10} C_{1}=20$
41 (a)
$(1.0002)^{3000}=(1+0.0002)^{3000}$
$=1+(3000)(0.0002)$

$$
+\frac{(3000)(2999)}{1.2}(0.0002)^{2}+\ldots
$$

$=1+(3000)(0.0002)=1.6$
42 (d)
$(1+\omega)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} \omega+\cdots$
$=\left({ }^{n} C_{0}+{ }^{n} C_{3}+\cdots\right)$

$$
+\left({ }^{n} C_{1}+{ }^{n} C_{4}+\cdots\right)\left(\frac{-1+\sqrt{3} i}{2}\right)
$$

$+\left({ }^{n} C_{2}+{ }^{n} C_{5}+\cdots\right)\left(\frac{-1-\sqrt{3} i}{2}\right)$
$=\left({ }^{n} C_{0}+{ }^{n} C_{3}+\cdots\right)$

$$
-\frac{1}{2}\left({ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{4}+{ }^{n} C_{5} \ldots\right)
$$

$+\frac{i \sqrt{3}}{2}\left({ }^{n} C_{1}-{ }^{n} C_{2}+{ }^{n} C_{4}-{ }^{n} C_{5}+\cdots\right)$
Equating the modulus, we get $\left|\left(-\omega^{2}\right)^{n}\right|=1$
43 (d)
$3^{400}=81100=(1+80)^{100}$
$={ }^{100} C_{0}+{ }^{100} C_{1} 80+\cdots+{ }^{100} C_{100} 80^{100}$
\Rightarrow Last two digits are 01
44 (c)
$\sum_{k=1}^{n} k\left(1-\frac{1}{n}\right)^{k-1}$
$=1+2\left(1-\frac{1}{n}\right)^{1}+3\left(1-\frac{1}{n}\right)^{2}+\cdots$
$=1+2 t+3 t^{2}+\cdots$
$=(1-t)^{-2}$
$\left[1-\left(1-\frac{1}{n}\right)\right]^{-2}=\left(\frac{1}{n}\right)^{-2}=n^{2}$
(d)

Here, the coefficients of T_{r}, T_{r+1} and T_{r+2} in
$(1+y)^{m}$ are in A.P.
$\Rightarrow{ }^{m} C_{r-1}{ }^{m} C_{r}$ and ${ }^{m} C_{r+1}$ are in A.P.
$\Rightarrow 2{ }^{m} C_{r}={ }^{m} C_{r-1}+{ }^{m} C_{r+1}$
$\Rightarrow 2 \frac{m!}{r!(m-r)!}=\frac{m!}{(r-1)!(m-r+1)!}$

$$
+\frac{m!}{(r+1)!(m-r-1)!}
$$

$\Rightarrow \frac{2}{r(m-r)}=\frac{1}{(m-r+1)(m-r)}+\frac{1}{(r+1) r}$
$\Rightarrow m^{2}-m(4 r+1)+4 r^{2}-2=0$
46 (d)
$\left(1+x+x^{2}+\cdots\right)^{2}=\left((1-x)^{-1}\right)^{2}=(1-x)^{-2}$
$=1+2 x+3 x^{2}+\cdots$
Therefore, coefficient of x^{n} is $n+1$
(b)

We have,
$(1-x)^{-n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{r} x^{r}+\cdots$
And
$(1-x)^{-1}=1+x+x^{2}+x^{3}+. .+x^{r}+\cdots$
Hence,
$a_{0}+a_{1}+a_{2}+\cdots+a_{r}$
$=$ Coefficient of x^{r} in the product of the two series
$=$ Coefficient of x^{r} in $(1-x)^{-n}(1-x)^{-1}$
$=$ Coefficient of x^{r} in $(1-x)^{-(n+1)}$
$=\frac{(n+1)(n+2) \cdots(n+r)}{r!}$
$={ }^{r+n+1-1} C_{n+1-1}={ }^{n+r} C_{n}$
(b)

By the given condition,
$84=T_{6}=T_{5+1}$
$={ }^{7} C_{5}\left(2^{\log _{2} \sqrt{9^{x-1}+7}}\right)^{2}\left(\frac{1}{2^{\frac{1}{5} \log _{2}\left(3^{x-1}+1\right)}}\right)^{5}$
$=212^{\log _{2}\left(9^{x-1}+7\right) 2^{-\log _{2}\left(3^{x-1}+1\right)}}$
$\Rightarrow 4=2^{\log _{2} \frac{9^{x-1}+7}{3^{x-1}+1}}=\frac{9^{x-1}+7}{3^{x-1}+1}$
$\Rightarrow\left(3^{x-1}\right)^{2}-4 \times 3^{x-1}+3=0$
$\Rightarrow\left(3^{x-1}-1\right)\left(3^{x-1}-3\right)=0$
$\Rightarrow 3^{x-1}=1$ or 3
$\Rightarrow 3^{x-1}=3^{0}$ or 3^{1}
$\Rightarrow x-1=0$ or 1
$\Rightarrow x=1,2$
49 (b)
$T_{r+1}={ }^{1024} C_{r}\left(5^{1 / 2}\right)^{1024-r}\left(7^{1 / 8}\right)^{r}$
Now this term is an integer if $1024-r$ is an even integer, for which $r=0,2,4,6, \ldots, 1022,1024$ of which $r=0,8,16,2424, \ldots, 1024$ are divisible by 8 which makes $r / 8$ an integer
For A.P., $r=0,8,16,24, \ldots, 1024$,
$1024=0+(n-1) 8 \Rightarrow n=129$
50 (c)
$\frac{\left(x^{2}+x+1\right)(1-x)}{(1-x)^{2}}=\left(1-x^{3}\right)(1-x)^{-2}$
$=\left(1-x^{3}\right)\left(1+2 x+3 x^{2}+\cdots\right)$
Now, $a_{r}=(r+1)-(r-2)=3$
But $a_{1}=2$
So, $\sum_{r=1}^{50} a_{r}=2+49 \times 3=149$

51 (a)
$p=(8+3 \sqrt{7})^{n}={ }^{n} C_{0} 8^{n}+{ }^{n} C_{1} 8^{n-1}(3 \sqrt{7})+\cdots$
Let,
$p_{1}=(8-3 \sqrt{7})^{n}={ }^{n} C_{0} 8^{n}-{ }^{7} C_{1} 8^{n-1}(3 \sqrt{7})+\cdots$
$p_{1}+p_{2}=2\left({ }^{n} C_{0} 8^{n}+{ }^{n} C_{2} 8^{n-2}(3 \sqrt{7})^{2}+\cdots\right)=$
even integer p_{1} clearly belongs to $(0,1)$
$\Rightarrow[p]+f+p_{1}=$ even integer
$\Rightarrow f+p_{1}=$ integer
$f \in(0,1), p_{1} \in(0,1)$
$\Rightarrow f+p \in(0,2)$
$\Rightarrow f+p_{1}=1$
$\Rightarrow p_{1}=1-f$
Now, $p(1-f)=p p_{1}-\left[(8+3 \sqrt{7})^{n}(8-\right.$
$37 n=1$
52 (a)

$$
\begin{aligned}
& \sum_{r=1}^{n+1}\left(\sum_{k=1}^{n}{ }^{k} C_{r-1}\right) \\
& =\sum_{r=1}^{n+1}\left(\sum_{k=1}^{n}\left({ }^{k+1} C_{r}-{ }^{k} C_{r}\right)\right) \\
& =\sum_{r=1}^{n+1}\left({ }^{n+1} C_{r}-{ }^{1} C_{r}\right) \\
& =2^{n+1}-2
\end{aligned}
$$

53 (c)
$\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^{k}}\left({ }^{k} C_{r}\right)$
$=\sum_{k=1}^{\infty}\left(\frac{1}{3^{k}}\left(\sum_{r=0}^{k}{ }^{k} C_{r}\right)\right)$
$=\sum_{k=0}^{\infty}\left(\frac{2^{k}}{3^{k}}\right)$
$=\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots \infty$
$=\frac{2 / 3}{1-\frac{2}{3}}=2$
54 (a)

$$
\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}
$$

General term in this expansion is

$$
\begin{aligned}
& T_{r+1}={ }^{10} C_{r}\left(\frac{x}{2}\right)^{10-r}\left(\frac{-3}{x^{2}}\right)^{r} \\
&={ }^{10} C_{r} x^{10-3 r} \frac{(-1)^{r} 3^{r}}{2^{10-r}}
\end{aligned}
$$

For coefficient of x^{4}, we should have $r=2$
Therefore, coefficient of x^{4} is ${ }^{10} C_{2} \frac{(-1)^{2} 3^{2}}{2^{8}}=\frac{405}{256}$
(c)

Middle term of $(1+\alpha x)^{4}$ is T_{3}
Its coefficient is ${ }^{4} C_{2}(\alpha)^{2}=6 \alpha^{2}$
Middle term of $(1-\alpha x)^{6}$ is T_{4}
Its coefficient is ${ }^{6} C_{3}\left(-\alpha^{3}\right)=-20 \alpha^{3}$
According to question,
$6 \alpha^{2}=-20 \alpha^{3}$
$\Rightarrow 3 \alpha^{2}+10 \alpha^{3}=0$
$\Rightarrow \alpha^{2}(3+10 \alpha)=0$
$\Rightarrow \alpha=-\frac{3}{10}$
56 (c)
$T_{r+1}={ }^{2 n} C_{r} x^{2 n-r}\left(\frac{1}{x^{2}}\right)^{r}={ }^{2 n} C_{r} x^{2 n-3 r}$
This contains x^{m}. If $2 n-3 r=m$, then
$r=\frac{2 n-m}{3}$
\Rightarrow Coefficient of $x^{m}={ }^{2 n} C_{r}, r=\frac{2 n-m}{3}$
$=\frac{2 n!}{(2 n-r)!r!}=\frac{2 n!}{\left(2 n-\frac{2 n-m}{3}\right)!\left(\frac{2 n-m}{3}\right)!}$
$=\frac{(2 n)!}{\left(\frac{4 n+m}{3}\right)!\left(\frac{2 n-m}{3}\right)!}$
57 (c)
$(23)^{14}=(529)^{7}=(530-1)^{7}$
$={ }^{7} C_{0}(530)^{7}-{ }^{7} C_{1}(530)^{6}$

$$
+\cdots-{ }^{7} C_{5}(530)^{2}+{ }^{7} C_{6} 530-1
$$

$={ }^{7} C_{0}(530)^{7}-{ }^{7} C_{1}(530)^{6}+\cdots+3710-1$
$=100 m+3709$
Therefore, last two digits are 09
58 (b)
$\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\cdots$
Putting $x=1$, we get
$0=1+a_{1}+a_{2}+a_{3}+\cdots+a_{12}$
Putting $x=-1$, we get
$64=1-a_{1}+a_{2}+a_{3}+\cdots+a_{12}$
(1) $+(2)$ gives
$64=2\left[1+a_{2}+a_{4}+\cdots+a_{12}\right]$
$\Rightarrow 1+a_{2}+a_{4}+\cdots+a_{12}=32$
$\Rightarrow a_{2}+a_{4}+\cdots+a_{32}=31$
59 (d)
Here ${ }^{n-1} C_{r}=\left(k^{2}-3\right)^{n} C_{r+1}$
$\Rightarrow{ }^{n-1} C_{r}=\left(k^{2}-3\right) \frac{n}{r+1}{ }^{n-1} C_{r}$
$\Rightarrow k^{2}-3=\frac{r+1}{n}$
$\left[\right.$ since, $n-1 \geq r \Rightarrow \frac{r+1}{n} \leq 1$ and $\left.n, r \geq 0\right]$
$\Rightarrow 0<k^{2}-3 \leq 1 \Rightarrow 3<k^{2} \leq 4$
$\Rightarrow k \in[-2,-\sqrt{3}) \cup(\sqrt{3}, 2]$
60 (a)
We rewrite the given expression as [1+
$\left.x^{2}(1-x)\right]^{8}$ and expand by using the binomial theorem. We have,

$$
\begin{aligned}
& {\left[1+x^{2}(1-x)\right]^{8}} \\
& ={ }^{8} C_{0}+{ }^{8} C_{1} x^{2}(1
\end{aligned}
$$

$$
\begin{aligned}
& -x)+{ }^{8} C_{2} x^{4}(1-x)^{2}+{ }^{8} C_{3} x^{6}(1 \\
& -x)^{3}+{ }^{8} C_{4} x^{8}(1-x)^{4}+{ }^{8} C_{5} x^{10}(1 \\
& -x)^{5}+\cdots
\end{aligned}
$$

The two terms which contain x^{10} are ${ }^{8} C_{4} x^{8}(1-$ $x 8$ and 8C5x101-x5.
Thus, the coefficient of x^{10} in the given expression is given by ${ }^{8} C_{4}$ [coefficient of x^{2} in the expansion of $\left.(1-x)^{4}\right]+{ }^{8} C_{5}$
$={ }^{8} C_{4}(6)+{ }^{8} C_{5}=\frac{8!}{4!4!}(6)+\frac{8!}{3!5!}$
$=(70)(6)+56=476$
61 (c)
It is given that $6^{\text {th }}$ term in the expansion of
$\left(\frac{1}{x^{8 / 3}}+x^{2} \log _{40} x\right)^{8}$ is 5600 , therefore
${ }^{8} C_{5}\left(x^{2} \log _{10} x\right)^{5}\left(\frac{1}{x^{8 / 3}}\right)^{3}=5600$
$\Rightarrow 56 x^{10}\left(\log _{10} x\right)^{5} \frac{1}{x^{8}}=5600$
$\Rightarrow x^{2}\left(\log _{10} x\right)^{5}=100$
$\Rightarrow x^{2}\left(\log _{10} x\right)^{5}=10^{2}\left(\log _{10} 10\right)^{5}$
$\Rightarrow x=10$
62 (a)
We have,
$\frac{2}{\sqrt{2 x^{2}+1}+\sqrt{2 x^{2}-1}}$
$=\frac{2\left(\sqrt{2 x^{2}+1}-\sqrt{2 x^{2}-1}\right)}{\left(2 x^{2}+1\right)-\left(2 x^{2}-1\right)}$

$$
=\sqrt{2 x^{2}+1}-\sqrt{2 x^{2}-1}
$$

Thus, the given expression can be written as

$$
\begin{aligned}
& \left(\sqrt{2 x^{2}+1}+\sqrt{2 x^{2}-1}\right)^{6} \\
& \quad+\left(\sqrt{2 x^{2}+1}-\sqrt{2 x^{2}-1}\right)^{6}
\end{aligned}
$$

But
$(a+b)^{6}+(a-b)^{6}=2\left[a^{6}+{ }^{6} C_{2} a^{4} b^{2}+{ }^{6} C_{4} a^{2} b^{4}+\right.$ b^{6}]
Therefore, $\left(\sqrt{2 x^{2}+1}+\sqrt{2 x^{2}-1}\right)^{6}+$
$\left(\sqrt{2 x^{2}+1}-\sqrt{2 x^{2}-1}\right)^{6}$

$$
\begin{aligned}
=2\left[\left(2 x^{2}+1\right)^{3}\right. & +15\left(2 x^{2}+1\right)^{2}\left(2 x^{2}-1\right) \\
& +15\left(2 x^{2}+1\right) \times\left(2 x^{2}-1\right)^{2} \\
& \left.+\left(2 x^{2}-1\right)^{3}\right]
\end{aligned}
$$

Which is a polynomial of degree 6
(a)

Last term of $\left(2^{1 / 3}-\frac{1}{\sqrt{2}}\right)^{n}$ is

$$
\begin{gathered}
T_{n+1}={ }^{n} C_{n}\left(2^{1 / 3}\right)^{n-n}\left(-\frac{1}{\sqrt{2}}\right)^{n}={ }^{n} C_{n}(-1)^{n} \frac{1}{2^{n / 2}} \\
=\frac{(-1)^{n}}{2^{n / 2}}
\end{gathered}
$$

Also, we have
$\left(\frac{1}{3^{5 / 3}}\right)^{\log _{3} 8}=\frac{1}{\left(3^{5 / 3}\right)^{3 \log _{3} 2}}=3^{-(5 / 3) \log _{3} 2^{3}}=2^{-5}$
Thus,
$\frac{(-1)^{n}}{2^{n / 2}}=2^{-5}$
$\Rightarrow \frac{(-1)^{n}}{2^{n / 2}}=\frac{(-1)^{10}}{2^{5}}$
$\Rightarrow n / 2=5$
$\Rightarrow n=10$
Now,
$T_{5}=T_{4+1}={ }^{10} C_{4}\left(2^{1 / 3}\right)^{10-4}\left(-\frac{1}{\sqrt{2}}\right)^{4}$
$=\frac{10!}{4!6!}\left(2^{1 / 3}\right)^{6}(-1)^{4}\left(2^{-1 / 2}\right)^{4}$
$=210\left(2^{2}\right)(1)\left(2^{-2}\right)=210$
(a)

Let the given series be identical with
$(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \times 2} x^{2}+\cdots \infty$
$\Rightarrow n x=\frac{1}{4} \Rightarrow n^{2} x^{2}=\frac{1}{16}$
Also,
$\frac{n(n-1)}{2} x^{2}=\frac{3}{32} \Rightarrow \frac{2 n}{n-1}=\frac{\frac{1}{16}}{\frac{3}{32}}=\frac{2}{3}$
$\Rightarrow 3 n=n-1$
$\Rightarrow 2 n=-1$
$\Rightarrow n=-\frac{1}{2}$
$\Rightarrow x=-\frac{1}{2}$
\Rightarrow Required sum $=\left(1-\frac{1}{2}\right)^{-\frac{1}{2}}=\left(\frac{1}{2}\right)^{-\frac{1}{2}}$
$=(2)^{\frac{1}{2}}=\sqrt{2}$
(c)

Coefficient of T_{5} is ${ }^{n} C_{4}$ that of T_{6} is ${ }^{n} C_{5}$ and that of T_{7} is ${ }^{n} C_{6}$
According to the condition, $2^{n} C_{5}={ }^{n} C_{4}+{ }^{n} C_{6}$. Hence,

$$
\begin{aligned}
& 2\left[\frac{n!}{(n-5)!5!}\right]=\left[\frac{n!}{(n-4)!4!}+\frac{n!}{(n-6)!6!}\right] \\
& \Rightarrow 2\left[\frac{1}{(n-5) 5}\right]=\left[\frac{1}{(n-4)(n-5)}+\frac{1}{6 \times 5}\right]
\end{aligned}
$$

After solving, we get $n=7$ or 14
66 (b)
$(1-x)(1-x)^{n}$

$$
\begin{aligned}
=(1-x)[1+ & n(-x) \\
& \left.+\cdots+{ }^{n} C_{n-1}(-x)^{n-1}+{ }^{n} C_{n}(-x)^{n}\right]
\end{aligned}
$$

Therefore, coefficient of x^{n} is
${ }^{n} C_{n}(-1)^{n}-{ }^{n} C_{n-1}(-1)^{n-1}=(-1)^{n}+(-1)^{n} n$ $=(-1)^{n}(1+n)$
67 (c)
The given expression is $\left(x+\sqrt{x^{3}-1}\right)^{5}+$
$\left(x-\sqrt{x^{3}+1}\right)^{5}$
We know that

$$
\begin{aligned}
& (x+a)^{n}+(x-a)^{n} \\
& \quad=2\left[{ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}\right. \\
& \left.\quad+{ }^{n} C_{4} x^{n-4} a^{4}+\cdots\right]
\end{aligned}
$$

Therefore the given expression is equal to
$2\left[{ }^{5} C_{0} x{ }^{5}+{ }^{5} C_{2} x{ }^{3}\left(x^{3}-1\right)+{ }^{5} C_{4} x\left(x^{3}-1\right)^{2}\right]$
Maximum power of x involved here is 7 , also only +ve integral powers of x are involved, therefore the given expression is a polynomial of degree 7
(d)

General term in the expansion of
$(\sqrt{2+\sqrt[3]{3}+\sqrt[6]{5}})^{10}$ is
$\frac{10!}{a!b!c!}(\sqrt{2})^{a}(\sqrt[3]{3})^{b}(\sqrt[6]{5})^{c}$ where $a+b+c=10$
For rational term, we have the following:

Value of a, b, c	Value of term
$\begin{aligned} & a=4, b=0, c \\ & =6 \end{aligned}$	$\begin{gathered} \frac{10!}{4!0!6!}(\sqrt{2})^{4}(\sqrt[3]{3})^{0}(\sqrt[6]{5})^{6} \\ =4200 \end{gathered}$
$\begin{aligned} & a=10, b \\ & =0, c=0 \end{aligned}$	$\begin{aligned} & \frac{10!}{10!0!0!} \\ & =32 \end{aligned}(\sqrt{2})^{10}(\sqrt[3]{3})^{0}(\sqrt[6]{5})^{0}$
$\begin{aligned} & a=4, b=6, c \\ & =0 \end{aligned}$	$\begin{gathered} \frac{10!}{4!6!0!}(\sqrt{2})^{4}(\sqrt[3]{3})^{6}(\sqrt[6]{5})^{0} \\ =7560 \end{gathered}$

69 (c)
Since n is even, let $n=2 m$. Then,
L.H.S. $=S=\frac{2 m!m!}{(2 m)!}\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}+\cdots\right.$

$$
\begin{equation*}
\left.+(-1)^{2 m} \times(2 m+1) C_{2 m}^{2}\right] \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\Rightarrow S=\frac{2 m!m!}{(2 m)!} & {\left[(2 m+1) C_{0}^{2}-2 m C_{1}^{2}+(2 m-1)\right.} \\
& \left.\times C_{2}^{2}+\cdots+C_{0}^{2}\right] \quad(2)\left(\text { using } C_{r}\right. \\
& \left.=C_{n-r}\right)
\end{aligned}
$$

Adding (1) and (2), we get
$2 S=2 \frac{m!m!}{(2 m)!}(2 m+2)\left[C_{0}^{2}-C_{1}^{2}+C_{2}^{2}+\cdots+C_{2 m}^{2}\right]$
Now keeping in mind that $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-$
$\cdots+C_{n}^{2}=(-1)^{n / 2{ }^{n}} C_{n / 2}$
If n is even, we get
$S=2 \frac{2 m!m!}{(2 m)!}(m+1)\left[(-1)^{m 2 m} C_{m}\right]$
$=2\left(\frac{n}{2}+1\right)(-1)^{n / 2}$
$=(-1)^{n / 2}(n+2)$
70 (c)

$$
\begin{aligned}
& (1+x)^{21}+(1+x)^{22}+\cdots+(1+x)^{30} \\
& =(1+x)^{21}\left[\frac{(1+x)^{10}-1}{(1+x)-1}\right] \\
& \quad=\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]
\end{aligned}
$$

\Rightarrow Coefficient of x^{5} in the given expression
$=$ Coefficient of x^{5} in $\left\{\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]\right\}$
$=$ Coefficient of x^{6} in $\left[(1+x)^{31}-\left(1+x^{21}\right)\right]$
$={ }^{31} C_{6}-{ }^{21} C_{6}$
71 (b)
$f(x)=1-x+x^{2}-x^{3}+\cdots-x^{15}+x^{16}-x^{17}$

$$
=\frac{1-x^{18}}{1+x}
$$

$\Rightarrow f(x-1)=\frac{1-(x-1)^{18}}{x}$
Therefore, required coefficient of x^{2} is equal to coefficient of x^{3} in $1-(x-1)^{18}$, which is given by ${ }^{18} C_{3}=816$
72 (b)
c.e. of x^{-1} in $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$
$=$ c.e. of $x^{-1} \operatorname{in} \frac{(1+x)^{2 n}}{x^{n}}$
$=$ c.e. of x^{n-1} in $(1+x)^{2 n}$
$={ }^{2 n} C_{n-1}$
$=\frac{(2 n)!}{(n-1)!(n+1)!}$
73 (d)
$\left(1+3 x+2 x^{2}\right)^{6}=[1+x(3+2 x)]^{6}$

$$
\begin{aligned}
=1+{ }^{6} C_{1} x(3+ & 2 x)+{ }^{6} C_{2} x^{2}(3+2 x)^{2}+{ }^{6} C_{3} x^{3} \\
& +(3+2 x)^{3}+{ }^{6} C_{4} x^{4}(3+2 x)^{4} \\
& +{ }^{6} C_{5} x^{5}(3+2 x)^{5}+{ }^{6} C_{6} x^{6}(3 \\
& +2 x)^{6}
\end{aligned}
$$

We get x^{11} only from ${ }^{6} C_{6} x^{6}(3+2 x)^{6}$. Hence, coefficient of x^{11} is ${ }^{6} C_{5} \times 3 \times 2^{5}=576$
(d)

$$
\left.\begin{array}{l}
(x-2)^{5}(x+1)^{5} \\
=\left[{ }^{5} C_{0} x^{5}-{ }^{5} C_{1} x^{4} \times 2+\cdots\right]\left[{ }^{5} C_{0}+{ }^{5} C_{1} x+\cdots\right] \\
\Rightarrow \text { Coefficient of } x^{5} \\
={ }^{5} C_{0}{ }^{5} C_{5}-{ }^{5} C_{1}
\end{array} \quad \times 2 \times{ }^{5} C_{4}+{ }^{5} C_{2} \times 2^{2} \times{ }^{5} C_{3}-{ }^{5} C_{3}\right)
$$

$=1-5 \times 5 \times 2+10 \times 10 \times 4-10 \times 10 \times 8+5$ $\times 5 \times 16-32$
$=-81$

75 (b)
Here $a={ }^{n} C_{r}, b={ }^{n} C_{r+1}$ and $c={ }^{n} C_{r+2}$
Put $n=2, r=0$, then option (b) holds the condition, i.e.,
$n=\frac{2 a c+a b+b c}{b^{2}-a c}$
76 (b)
$\frac{f(x)}{1-x}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+\cdots$
$\Rightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$
$=(1-x)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+\cdots\right)$
Comparing the coefficient of x^{n} on the both sides, $a_{n}=b_{n}-b_{n-1}$
77 (b)
$T_{5}={ }^{n} C_{4} a^{n-4}(-2 b)^{4}$
and $T_{6}={ }^{n} C_{5} a^{n-5}(-2 b)^{5}$
As $T_{5}+T_{6}=0$, we get
${ }^{n} C_{4} 2^{4} a^{n-4} b^{4}={ }^{n} C_{5} 2^{5} a^{n-5} b^{5}$
$\Rightarrow \frac{a^{n-4} b^{4}}{a^{n-5} b^{5}}=\frac{n!2^{5}}{5!(n-5)!} \cdot \frac{4!(n-4)!}{n!2^{4}}$
$\Rightarrow \frac{a}{b}=\frac{2(n-4)}{5}$
78 (d)
$\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^{3}}{(1-x)^{1 / 2}}$
$=\frac{\left(1+\frac{3}{2} x+\frac{3}{8} x^{2}\right)-\left(1+\frac{3}{2} x+3 \frac{x^{2}}{4}\right)}{(1-x)^{1 / 2}}$
$=\frac{-3}{8} x^{2}(1-x)^{-1 / 2}$
$=-\frac{3}{8} x^{2}\left(1+\frac{x}{2}\right)$
$=-\frac{3}{8} x^{2}$
79 (c)
$\left(1+x+x^{2}+x^{3}\right)^{5}$

$$
\begin{aligned}
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& +a_{15} x^{15}
\end{aligned}
$$

Putting $x=1$ and $x=-1$ alternatively, we have
$a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{15}=4^{5}$
$a_{0}-a_{1}+a_{2}-a_{3}+\cdots-a_{15}=0$
Adding (1) and (2), we have
$2\left(a_{0}+a_{2}+a_{4}+\cdots+a_{14}\right)=4^{5}$
$\Rightarrow a_{0}+a_{2}+a_{4}+\cdots+a_{14}=2^{9}=512$
80
(b)

The given expression is the coefficient of x^{4} in

$$
\begin{aligned}
{ }^{4} C_{0}(1+x)^{404} & -{ }^{4} C_{1}(1+x)^{303} \\
& +{ }^{4} C_{2}(1+x)^{202}-{ }^{4} C_{3}(1+x)^{101} \\
& +{ }^{4} C_{4}
\end{aligned}
$$

$=$ Coefficient of x^{4} in $\left[(1+x)^{101}-1\right]^{4}$
$=$ Coefficient of x^{4} in $\left({ }^{101} C_{1} x+{ }^{101} C_{2} x{ }^{2}+\cdots\right)^{4}$
$=(101)^{4}$
81 (b)
$n!(21-n)!=21!\frac{n!(21-n)!}{21!}=\frac{21!}{{ }^{21} C_{n}}$ which is minimum
When ${ }^{21} C_{n}$ is maximum which occurs when $n=10$
82 (b)
Let,
$S=\frac{{ }^{n} C_{0}}{n}+\frac{{ }^{n} C_{1}}{n+1}+\frac{{ }^{n} C_{2}}{n+2}+\cdots+\frac{{ }^{n} C_{n}}{2 n}$
$={ }^{n} C_{0} \int_{0}^{1} x^{n-1} d x+{ }^{n} C_{1} \int_{0}^{1} x^{n} d x$
$+\cdots+{ }^{n} C_{n} \int_{0}^{1} x^{2 n-1} d x$
$=\int_{0}^{1}\left[{ }^{n} C_{0} x^{n-1}+{ }^{n} C_{1} x^{n}+\cdots+{ }^{n} C_{n} x^{2 n-1}\right] d x$
$=\int_{0}^{1} x^{n-1}(1+x)^{n} d x$
$=\int_{1}^{2} x^{n}(x-1)^{n-1} d x$
83 (b
$t_{r+1}={ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{-k}{x^{2}}\right)^{r}={ }^{10} C_{r} x^{5-5 r / 2}(-k)^{r}$
For this to be independent of x, r must be 2 , so that
${ }^{10} C_{2} k^{2}=405 \Rightarrow k= \pm 3$
84
(c)
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots+$
$C_{n-1} x^{n-1}+C_{n} x^{n}$
$(x+1)^{n}=C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+\cdots+$
$C_{n-1} x+C_{n}$
Multiplying Eqs. (1) and (2) and equating the coefficient of x^{n-2}, we get
$C_{0} C_{2}+C_{1} C_{3}+C_{2} C_{4}+\cdots+C_{n-2} C_{n}$
$=$ Coefficient of x^{n-2} in $(1+x)^{2 n}$
$={ }^{2 n} C_{n-2}$
$=\frac{(2 n)!}{(n+2)!(n+2)!}$
85 (b)
We have, $a=$ sum of the coefficients in the expansion of
$\left(1-3 x+10 x^{2}\right)^{n}=(1-3+10)^{n}=(8)^{n}=$
(2) ${ }^{3 n}$ (putting $x=1$)

Now, $b=$ sum of the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$
$=(1+1)^{n}=2^{n}$. Clearly, $a=b^{3}$
$86 \quad$ (a)

Given that r and n are + ve integers such that $r>1, n>2$. Also, in the expansion of $(1+x)^{2 n}$,
Coefficient of $3 r^{\text {th }}$ term $=$ coefficient of $(r+2)^{\text {th }}$ term
$\Rightarrow{ }^{2 n} C_{3 r-1}={ }^{2 n} C_{r+1}$
$\Rightarrow 3 r-1=r+1$ or $3 r-1+r+1$

$$
\begin{aligned}
& =2 n\left[\text { using }{ }^{n} C_{x} \Rightarrow{ }^{n} C_{y} \Rightarrow x\right. \\
& =y \text { or } x+y=n]
\end{aligned}
$$

$\Rightarrow r=1$ or $2 r=n$
But $r>1$
$\therefore n=2 r$
87 (c)
For $\left(a x^{2}+\left(\frac{1}{b x}\right)\right)^{11}, T_{r+1}={ }^{11} C_{r}\left(a x^{2}\right)^{11-r}\left(\frac{1}{b x}\right)^{r}$
$={ }^{11} C_{r} a^{11-r} \frac{1}{b^{r}} x^{22-3 r}$
For x^{7},
$22-3 r=7$
$\Rightarrow 3 r=15$
$\Rightarrow r=5$
$\Rightarrow T_{6}={ }^{11} C_{5} a^{6} \frac{1}{b^{5}} x^{7}$
\Rightarrow Coefficient of x^{7} is ${ }^{11} C_{5} \frac{a^{6}}{b^{5}}$
Similarly, coefficient of x^{-7} in $\left(a x-\left(\frac{1}{b x^{2}}\right)\right)^{11}$ is
${ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
Given that
${ }^{11} C_{5} \frac{a^{6}}{b^{5}}={ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
$\Rightarrow a=\frac{1}{b}$
$\Rightarrow a b=1$
88
(b)
$(1-x)^{30}={ }^{30} C_{0} x{ }^{0}-{ }^{30} C_{1} x^{1}+{ }^{30} C_{2} x^{2}+\cdots+$ $(-1)^{30}{ }^{30} C_{30} x^{30}$
$(x+1)^{30}={ }^{30} C_{0} x^{30}+{ }^{30} C_{1} x^{29}+{ }^{30} C_{2} x^{28}+$ $\cdots+{ }^{30} C_{10} x^{20}+\cdots+{ }^{30} C_{30} x^{0}$
Multiplying (1) and (2) and equating the coefficient of x^{20} on both sides, we get required sum is equal to coefficient of x^{20} in $\left(1-x^{2}\right)^{30}$, which is given by ${ }^{30} C_{10}$
89 (d)
$\frac{1}{(1-a x)(1-b x)}$

$$
\begin{aligned}
& =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \\
& +\cdots
\end{aligned}
$$

But $(1-a x)^{-1}(1-b x)^{-1}=\left(1+a x+a^{2} x^{2}+\right.$
$\ldots 1+b x+b 2 x 2+\ldots$
\Rightarrow Coefficient of x^{2} is $b^{n}+a b^{n-1}+a^{2} b^{n-2}+\cdots+$
$a^{n-1} b+a^{n}$
$=\frac{b^{n+1}-a^{n+1}}{b-a}$
$\Rightarrow a_{n}=\frac{b^{n+1}-a^{n+1}}{b-a}$
90 (d)
$\left(1+2 x+3 x^{2}+\cdots\right)^{-3 / 2}=\left[(1-x)^{2}\right]^{-3 / 2}$
$=(1-x)^{3}=1-3 x+3 x^{2}-x^{3}$
Therefore, coefficient of x^{5} is 0
91 (a)
$\sum_{r=0}^{10}(r){ }^{20} C_{r}=\sum_{r=1}^{10} 20 \times{ }^{19} C_{r-1}$
$=20\left({ }^{19} C_{0}+{ }^{19} C_{1}+\cdots+{ }^{19} C_{10}\right)$
$=20\left({ }^{19} C_{0}+{ }^{19} C_{1}+\cdots+{ }^{19} C_{10}\right)$
$=20\left(\frac{1}{2} \times 2^{19}+{ }^{19} C_{10}\right)$
$=20\left(2^{18}+{ }^{19} C_{10}\right)$
92 (d)
The general term in the expansion of $(1-x+$ $y 20$ is
$\frac{20!}{r!s!t!} 1^{r}(-x)^{5}(y)^{r}$, where $r+s+t=20$
For $x^{2} y^{3}$, we have the term
$\frac{20!}{15!2!3!} 1^{15}(-x)^{2}(y)^{3}$
Hence, the coefficient of $x^{2} y^{3}$ is
$\frac{20!}{15!2!3!}$
93 (a)
$N={ }^{2 n} C_{n}=\frac{(2 n)!}{(n!)^{2}}=\frac{(n+1)(n+2) \cdots(n+n)}{(n!)}$
$\Rightarrow(n!) N=(n+1)(n+2) \cdots(n+n)$
Since $n<p<2 n$, so p divides $(n+1)(n+$
$2 \cdots n+n$
94 (d)
$\frac{{ }^{n+1} C_{r+1}}{{ }^{n} C_{r}}=\frac{11}{6} \Rightarrow \frac{\frac{n+1}{r+1} \times{ }^{n} C_{r}}{{ }^{n} C_{r}}=\frac{11}{6}$
$\Rightarrow 6 n+6=11 r+11 \Rightarrow 6 n-11 r=5$
Also,
$\frac{{ }^{n} C_{r}}{{ }^{n-1} C_{r-1}}=\frac{6}{3} \Rightarrow \frac{\frac{n}{r} \times{ }^{n-1} C_{r-1}}{{ }^{n-1} C_{r-1}}=\frac{6}{3} \Rightarrow n \Rightarrow 2 r$
From (1) and (2), $r=5$ and $n=10$,
$\therefore n r=50$
95 (b)
$(a-1)^{n}, n \geq 5$
In the binomial expansion,
$T_{5}+T_{6}=0$
$\Rightarrow{ }^{n} C_{4} a^{n-4} b^{4}-{ }^{n} C_{5} a^{n-5} b^{5}=0$

$$
\begin{aligned}
\Rightarrow & \frac{{ }^{n} C_{4}}{{ }^{n} C_{5}} \frac{a}{b}=1 \Rightarrow \\
& =1\left[\text { using } \frac{4+1}{n-4} \frac{a}{b}\right. \\
& =\frac{a}{b} C_{r} \\
{ }^{n} C_{r+1} & \left.=\frac{n-4}{n-r}\right] \\
5 &
\end{aligned}
$$

96
(b)

We have $T_{r+1}={ }^{29} C_{r} 3{ }^{29-r}(7 x)^{r}=\left({ }^{29} C_{r} \times\right.$
329-rx7rxr
Coefficient of $(r+1)^{\text {th }}$ term is ${ }^{29} C_{r} \times 3^{29-r} \times 7^{r}$
And coefficient of $r^{\text {th }}$ term is ${ }^{29} C_{r-1} \times 3^{30-r} \times$ 7^{r-1}
From given condition,
${ }^{29} C_{r} \times 3^{29-r} \times 7^{r}={ }^{29} C_{r-1} \times 3^{30-r} \times 7^{r-1}$
$\Rightarrow \frac{{ }^{29} C_{r}}{{ }^{29} C_{r-1}}=\frac{3}{7} \Rightarrow \frac{30-r}{r}=\frac{3}{7} \Rightarrow r=21$
97 (b)
We have, $f(x)=x^{n}$. So,
$f^{1}(x)=n x^{n-1} \Rightarrow f(1)=n$
$f^{2}(x)=n(n-1) x^{n-2} \Rightarrow f^{2}(1)=n(n-1)$
$f^{3}(x)=n(n-1(n-2)) x^{n-3} \Rightarrow f^{3}(1)$

$$
=n(n-1)(n-2)
$$

:
$f^{n}(x)=n(n-1)(n-2) \ldots 1 \Rightarrow f^{n}(1)$ $=n(n-1)(n-2) \ldots 1$
$\Rightarrow f(1)+\frac{f^{1}(1)}{1}+\frac{f^{2}(1)}{2!}+\cdots \frac{f^{n}(1)}{n!}$
$=1+\frac{n}{1}+\frac{n(n-1)}{2!}+\frac{n(n-1)(n-2)}{3!} \cdots$

$$
+\frac{n(n-1)(n-2) \cdots 1}{n!}
$$

$={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}$
$=2^{n}$
98
(d)
$\left(1+x+x^{3}+x^{4}\right)^{10}=(1+x)^{10}\left(1+x^{3}\right)^{10}$
$=\left(1+{ }^{10} C_{1} x+{ }^{10} C_{2} x^{2}+{ }^{10} C_{3} x^{3}+{ }^{10} C_{4} x^{4} \cdots\right)$
$\left(1+{ }^{10} C_{1} x^{3}+{ }^{10} C_{2} x^{6}+\cdots\right)$
Therefore, coefficient of x^{4} is ${ }^{10} C_{1}{ }^{10} C_{1}+{ }^{10} C_{4}=$ 310
99 (d)
$\left[\sqrt{1+x^{2}}-x\right]^{-1}=\frac{1}{\sqrt{1+x^{2}}-x} \times \frac{\left(\sqrt{1+x^{2}}+x\right)}{\left(\sqrt{1+x^{2}}+x\right)}$
$=\frac{\sqrt{1+x^{2}}+x}{1+x^{2}-x^{2}}=x+\sqrt{1+x^{2}}=x+\left(1+x^{2}\right)^{1 / 2}$
$=x+1+\frac{1}{2} x^{2}+\frac{1}{2}\left(-\frac{1}{2}\right) \frac{x^{4}}{2!}+\cdots$
Obviously, the coefficient of x^{4} is $-1 / 8$
100 (a)
We know that the sum of the coefficients in a binomial expansion is obtained by replacing each
variable by unit in the given expression.
Therefore, sum of the coefficients in $(a+b)^{n}$ is given by $(1+1)^{n}$
$\therefore 4096=2^{n} \Rightarrow 2^{n}=2^{12} \Rightarrow n=12$
Hence, n is even. So, the greatest coefficient is
${ }^{n} C_{n / 2}$, i.e.,
${ }^{12} C_{6}=924$
101 (b,c)
For $n=2 m$, the given expression is
$C_{0}-\left(C_{0}+C_{1}\right)+\left(C_{0}+C_{1}+C_{2}\right)$

$$
-\left(C_{0}+C_{1}+C_{2}+C_{3}\right)
$$

$$
+\cdots(-1)^{n-1}\left(C_{0}+C_{1}+\cdots+C_{n-1}\right)
$$

$=C_{0}-\left(C_{0}+C_{1}\right)+\left(C_{0}+C_{1}+C_{2}\right)$

$$
-\left(C_{0}+C_{1}+C_{2}+C_{3}\right)+\cdots-\left(C_{0}\right.
$$

$$
\left.+C_{1}+\cdots+C_{2 m-1}\right)
$$

$=-\left(C_{1}+C_{3}+C_{5}+\cdots+C_{2 m-1}\right)$
$=-\left(C_{1}+C_{3}+C_{5}+\cdots+C_{n-1}\right)=-2^{n-1}$
102 (a,d)
$\because 3^{4 n}=81^{n}=(1+80)^{n}=1+80 \lambda, \lambda \in N$
$\therefore 3^{3^{4 n}}=3^{1+80 \lambda}=3 \cdot 3^{80 \lambda}=3 \cdot(9)^{40 \lambda}$

$$
=3(10-1)^{40 \lambda}
$$

$=3(1+10 \mu)=3+30 \mu$
\therefore Last digit of $3^{3^{4 n}}+1$ is 4
103 (c,d)
\because Number of distinct terms $={ }^{9+3-1} C_{3-1}=$
${ }^{11} C_{2}=55$
Sum of coefficients $=(2-2+1)^{9}=1^{9}=1$
and $\left(2-2 x+x^{2}\right)^{9}=\sum \frac{9!}{\alpha!\beta!\gamma!}(2)^{\alpha}(-2 x)^{\beta}\left(x^{2}\right)^{\gamma}$
Here, $\beta+2 \gamma=4, \alpha+\beta+\gamma=9$

α	β	γ	
5	4	0	
\therefore	6	2	1
	7	0	2

\therefore Coefficient of x^{4}
$=\frac{9!}{5!4!0!} \cdot 2^{5} \cdot(-2)^{4}+\frac{9!}{6!2!1!}(2)^{6}(-2)^{2}$

$$
+\frac{9!}{7!0!2!}(2)^{7}(-2)^{0}
$$

$=2^{9}(126+126+9)=133632$

104 (a,b,c)
$\because(101)^{50}-(99)^{50}=(100+1)^{50}-(100-1)^{50}$
$=2\left\{{ }^{50} C_{1}(100)^{49}+{ }^{50} C_{3}(100)^{47}\right.$
$\left.+{ }^{50} C_{5}(100)^{45}+\ldots\right\}$
$=(100)^{50}+2\left\{{ }^{50} C_{3}(100)^{47}+{ }^{50} C_{5}(100)^{45}+\ldots\right\}$
$>(100)^{50}$
$\Rightarrow(101)^{50}-(99)^{50}>(100)^{50}$
$\Rightarrow(101)^{50}-(100)^{50}>(99)^{50}$
Also, $\left(\frac{1001}{1000}\right)^{999}=\left(1+\frac{1}{1000}\right)^{999}$
$=1+{ }^{999} C_{1}\left(\frac{1}{1000}\right)+{ }^{999} C_{2}\left(\frac{1}{1000}\right)^{2}+\ldots$.
$<1+1+1+1+\ldots+1$
$=1000$
$\therefore\left(\frac{1001}{1000}\right)^{999}<1000$
$\Rightarrow(1001)^{999}<(1000)^{1000}$
105 (a,b,c,d)
Let T_{5} be numerically the greatest term in the expansion of $(1+x / 3)^{10}$
Then,
$\left[\frac{T_{5}}{T_{4}}\right] \geq 1$ and $\left[\frac{T_{6}}{T_{5}}\right] \leq 1$
Now,
$\frac{T_{r+1}}{T_{r}}=\frac{10-r+1}{r} \frac{x}{3}$
$\Rightarrow\left|\frac{7}{4} \times \frac{x}{3}\right| \geq 1$ and $\left|\frac{6}{5} \times \frac{x}{3}\right| \leq 1$
$\Rightarrow|x| \geq \frac{12}{7}$ and $|x| \leq \frac{5}{2}$
$\Rightarrow \frac{12}{7} \leq|x| \leq \frac{5}{2}$
$\Rightarrow x \in\left[-\frac{5}{2},-\frac{12}{7}\right] \cup\left[\frac{12}{7}, \frac{5}{2}\right]$
106 (a,d)
Middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}$ or $(4+1)^{\text {th }}$ or T_{5}
$\Rightarrow T_{5}={ }^{8} C_{4}\left(\frac{x}{2}\right)^{4} \times 2^{4}=1120$
$\Rightarrow \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} x^{4}=1120$
$\Rightarrow x^{4}=\frac{1120}{70}=16$
$\Rightarrow\left(x^{2}+4\right)\left(x^{2}-4\right)=0$
$\Rightarrow x= \pm 2(\because x \in R)$
107 (a,b,c,d)
We know that to get the sum of coefficients, we put $x=1$
Then, sum of coefficients is $\left(1+a x-2 x^{2}\right)^{n}$ is $(a-1)^{n}$
Obviously, when $a>1$, sum is positive for any n 108 (a,c)
$(1-y)^{m}(1+y)^{n}$

$$
\begin{aligned}
=\left(1-{ }^{m} C_{1} y\right. & \left.+{ }^{m} C_{2}-\ldots\right)\left(1+{ }^{n} C_{1} y\right. \\
& \left.+{ }^{n} C_{2} y^{2}+\ldots\right) \\
=1+(n-m) y & \\
& +\left\{\frac{m(m-1)}{2}+\frac{n(n-1)}{2}\right. \\
& -m n\} y^{2}+\ldots
\end{aligned}
$$

Given,
$a_{1}=10$
$\Rightarrow a_{1}=n-m=10$
$a_{2}=\frac{m^{2}+n 62-m-n-2 m n}{2}=10$
$(m-n)^{2}-(m+n)=20$
$\Rightarrow m+n=80$ (2)
Solving (1) and (2), we get $m=35, n=45$
109 (a,d)
Coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ term are ${ }^{14} C_{r-1},{ }^{14} C_{r}$ and ${ }^{14} C_{r+1}$
If these coefficients are in A.P., then
$2\left({ }^{14} C_{r}\right)={ }^{14} C_{r-1}+{ }^{14} C_{r+1}$
$\Rightarrow \frac{2(14)!}{r!(14-r)}=\frac{(14)!}{(r-1)!(15-r)!}$

$$
+\frac{(14)!}{(r+1)!(13-r)}
$$

$\Rightarrow \frac{2(14)!}{r!(14-r)!}$
$=\frac{(14)![(r+1) r+(15-r)(14-r)]}{(r+1)!(15-r)!}$
$\Rightarrow 2(15-r)(r+1)=2 r^{2}-28 r+210$
$\Rightarrow r^{2}-14 r+45=0$ or $(r-5)(r-9)=0$
$\Rightarrow r=5$ or 9
110 (a,b,c)
General term is ${ }^{6561} C_{r} 7 \frac{6561-r}{3} 11^{\frac{r}{9}}$
To make the term free of radical sign, r should be a multiple of 9
$\therefore r=0,9,18,27, \ldots 6561$
Hence, there are 730 terms. The greatest binomial coefficients are
${ }^{6561} C_{\frac{6561-1}{2}}$ and ${ }^{6561} C_{\frac{6561-3}{2}}$ or ${ }^{6561} C_{3280}$ and ${ }^{6561} C_{3279}$
Now, 3280 are 3279 are not a multiple of 3;
hence, both terms involving greatest binomial coefficients are irrational
111 (c,d)
${ }^{69} C_{3 r-1}+{ }^{69} C_{3 r}={ }^{69} C_{r^{2}-1}+{ }^{69} C_{r^{2}}$
$\Rightarrow{ }^{70} C_{3 r}={ }^{70} C_{r^{2}}$
Thus, $r^{2}=3 r$ or $70-3 r=r^{2}$ so that $r=0,3$ or 7,10
Hence, $r=3$ and 7(as the given equation is nor defined for $r=0$ and -10)

112 (\mathbf{a}, \mathbf{c},)

$$
\begin{aligned}
& \left(x^{2}+1+\frac{1}{x^{2}}\right) \\
& ={ }^{n} C_{0}+{ }^{n} C_{1}\left(x^{2}+\frac{1}{x^{2}}\right)+{ }^{n} C_{2}\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\cdots \\
& \quad+{ }^{n} C_{n}+\left(x^{2}+\frac{1}{x^{2}}\right)^{n}
\end{aligned}
$$

This contains each of the term
$x^{0}, x^{2}, x^{4}, \ldots x^{2} n, x^{-2}, x^{-4}, \ldots, x^{-2 n}$
Coefficient of constant term $=n C_{0}+\left(n C_{2}\right)(2)+$ $\left(n C_{4}\right)\left(4 C_{2}\right)+\left(n C_{6}\right)\left(6 C_{3}\right)+\cdots \neq 2^{n-1}$ coefficient of $x^{2 n-2}$ in $n C_{n-1}=n$ coefficient of x^{2} is
${ }^{n} C_{1}+\left({ }^{n} C_{3}\right)\left({ }^{3} C_{1}\right)+\left(n C_{5}\right)\left({ }^{5} C_{2}\right)+\cdots>n$
113 (a,b,c)
$\left(x \sin p+x^{-1} \cos p\right)^{10}$
The general term in the expansion is
$T_{r+1}={ }^{10} C_{r}(x \sin p)^{10-r}\left(x^{-1} \cos p\right)^{r}$
For the term independent of x, we have
$10-2 r=0$ or $r=5$
Hence, the independent term is
${ }^{10} C_{5} \sin ^{5} p \cos ^{5} p={ }^{10} C_{5} \frac{\sin ^{5} 2 p}{32}$
Which is the greatest when $\sin 2 p=1$
The least value of ${ }^{10} C_{5} \frac{\sin ^{5} 2 p}{32}$ is $-\frac{10!}{2^{5}(5!)^{2}}$ when $\sin 2 p$
$=-1$ or $p=(4 n-1) \frac{\pi}{4}, n \in Z$
Sum of coefficient is $(\sin p+\cos p)^{10}$, when $x=1$ or $(1+\sin 2 p)^{5}$, which is least when $\sin 2 p=-1$ Hence, least sum of coefficients is zero. Greatest sum of coefficient occurs when $\sin 2 p=1$. Hence, greatest sum is $2^{5}=32$
114 (a,c,d)
$I+f=(4+\sqrt{15})^{n}$
Let $f^{\prime}=(4-\sqrt{15})^{n}$. then $0<f^{\prime}<1$
$I+f={ }^{n} C_{0} 4^{n}+{ }^{n} C_{1} 4^{n-1} \sqrt{15}+{ }^{n} C_{2} 4^{n-2} 15$

$$
+{ }^{n} C_{3} 4^{n-3}(\sqrt{15})^{3}+\cdots
$$

$f^{\prime}={ }^{n} C_{0} 4^{n}-{ }^{n} C_{1} 4{ }^{n-1} \sqrt{15}+{ }^{n} C_{2} 4^{n-2} \cdot 15$

$$
-{ }^{n} C_{3} 4^{n-3}(\sqrt{15})^{3}+\cdots
$$

$\therefore I+f+f^{\prime}=2\left({ }^{n} C_{0} 4^{n}+{ }^{n} C_{2} 4^{n-2} \times 15+\cdots\right)=$ even integer
$\because 0<f+f^{\prime}<2 \Rightarrow f+f^{\prime}=1 \Rightarrow 1-f=f^{\prime}$
Thus, I is an odd integer. Now,
$1-f=f^{\prime}=(4-\sqrt{15})^{n}$
$(I+f)(1-f)=(I+f) f^{\prime}=1$
115 (\mathbf{a}, d)
It is given that the fourth term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, therefore
${ }^{n} C_{3}(a x)^{n-3}\left(\frac{1}{x}\right)^{3}=\frac{5}{2} \Rightarrow{ }^{n} C_{3} a^{n-3} x^{n-6}=\frac{5}{2}$
$[\because$ R.H.S is independent of $x]$
Putting $n=6$ in (i), we get ${ }^{6} C_{3} a^{3}=\frac{5}{2} \Rightarrow a^{3}=\frac{1}{8} \Rightarrow$
$a=\frac{1}{2}$
116 (a,b,d)

$$
\begin{array}{r}
f(m)=\sum_{i=0}^{m}\binom{30}{30-i}\binom{20}{m-i} \\
=\sum_{i=0}^{m}\binom{30}{i}\binom{20}{m-i}={ }^{50} C_{m}
\end{array}
$$

$f(m)$ is greatest when $m=25$. Also,
$f(0)+f(1)+\cdots+f(50)$
$={ }^{50} C_{0}+{ }^{50} C_{1}+{ }^{50} C_{2}+\cdots+{ }^{50} C_{50}=2^{50}$
Also, ${ }^{50} C_{m}$ is not divisible by 50 for any m as 50 is not a prime number
$\sum_{m=0}^{50}(f(m))^{2}=\left({ }^{50} C_{0}\right)^{2}+\left({ }^{50} C_{1}\right)^{2}+\left({ }^{50} C_{2}\right)^{2}+\cdots$

$$
+\left({ }^{50} C_{50}\right)^{2}={ }^{100} C_{50}
$$

117 (a,b,d)
$\frac{(n-1)(n-2) \cdots(n-m+1)}{(m-1)!}$
$=\frac{(n-1)(n-2) \cdots(n-m+1)(n-m) \cdots 2.1}{(n-m)!(m-1)!}$
$={ }^{n-1} C_{m-1}$
$=$ Coefficient of x^{m-1} in $(1+x)^{n-1}$
$=$ Coefficient of x^{m-1} in $(1+x)^{n}(1+x)^{-1}$
Now,
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{m-1} x^{m-1}+$ $\cdots+C_{n} x^{n}$
$(1+x)^{-1}=$
$1-x+x^{2}-x^{3}+\cdots+(-1)^{m-1} x^{m-1}+\cdots$
(2)

Collecting the coefficient of x^{m-1} in the product of
(1) and (2), we get
$(-1)^{m-1} C_{0}+(-1)^{m-2} C_{1}+\cdots+C_{m-1}$
$=$ Coefficient of x^{m-1} in $(1+x)^{n-1}$
$={ }^{n-1} C_{m-1}$
$\therefore C_{0}-C_{1}+C_{2}-\cdots+(-1)^{m-1} C_{m-1}$
$={ }^{n-1} C_{m-1}(-1)^{m-1}$
$=\frac{(n-1)(n-2) \cdots(n-m+1)}{(m-1)!}(-1)^{m-1}$
118 (b,c,d)
L.H.S $=\left(1+2 x^{2}+x^{4}\right)\left(1+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\right.$
R.H.S $=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$

Comparing the coefficient of x, x^{2}, x^{3}, \ldots
$a_{1}=C_{1}, a_{2}=C_{2}+2, a_{3}=C_{3}+2 C_{1}$
Now, $2 a_{2}=a_{1}+a_{3}$ (A.P.)
$\Rightarrow 2\left({ }^{n} C_{2}+2\right)={ }^{n} C_{1}+\left({ }^{n} C_{3}+2^{n} C_{1}\right) \quad[U \operatorname{sing}(1)]$
$\Rightarrow 2 \frac{n(n-1)}{2}+4=3 n+\frac{n(n-1)(n-2)}{6}$
$\Rightarrow n^{3}-9 n^{2}+26 n-24=0$
$\Rightarrow(n-2)\left(n^{2}-7 n+12\right)=0$
$\Rightarrow(n-2)(n-3)(n-4)=0$
$\Rightarrow n=2,3,4$
119 (a,b,d)
$\left(1+z^{2}+z^{4}\right)^{8}=C_{0}+C_{1} z^{2}+C_{2} z^{4}+\cdots+C_{16} z^{32}$
(1)

Putting $z=i$, where $i=\sqrt{-1}$,
$(1-1+1)^{8}=C_{0}-C_{1}+C_{2}-C_{3}+\cdots+C_{16}$
$\Rightarrow C_{0}-C_{1}+C_{2}-C_{3}+\cdots+C_{16}=1$
Also, putting $z=\omega$,
$\left(1+\omega^{2}+\omega^{4}\right)^{8}$

$$
\begin{aligned}
& =C_{0}+C_{1} \omega^{2}+C_{2} \omega^{4}+\cdots \\
& +C_{16} \omega^{32}
\end{aligned}
$$

$\Rightarrow C_{0}+C_{1} \omega^{2}+C_{2} \omega+C_{3}+\cdots+C_{16} \omega^{32}=0$
(2)

Putting $x=\omega^{2}$,
$\left(1+\omega^{4}+\omega^{8}\right)^{8}$

$$
\begin{align*}
& =C_{0}+C_{1} \omega^{4}+C_{2} \omega^{8}+\cdots \\
& +C_{16} \omega^{64} \tag{3}
\end{align*}
$$

$\Rightarrow C_{0}+C_{1} \omega+C_{2} \omega^{2}+\cdots+C_{16} \omega=0$
Putting $x=1$,
$3^{8}=C_{0}+C_{1}+C_{2}+\cdots+C_{16}$
Adding (2), (3) and (4), we have
$3\left(C_{0}+C_{3}+\cdots+C_{15}\right)=3^{8}$
$\Rightarrow C_{0}+C_{3}+\cdots+C_{15}=3^{7}$
Similarly, first multiplying (1) by z and then putting $1, \omega, \omega^{2}$ and adding we get
$C_{1}+C_{4}+C_{7}+C_{10}+C_{13}+C_{16}=3^{7}$
Multiplying (1) by z^{2} and then putting $1, \omega, \omega^{2}$
and adding, we get
$C_{2}+C_{5}+C_{8}+C_{11}+C_{14}=3^{7}$
120 (a)
We have,
$\frac{17}{4}+3 \sqrt{2}=\frac{1}{4}(9+8-12 \sqrt{2})$
$=\frac{1}{4}(3-2 \sqrt{2})^{2}$
$\therefore 3-\sqrt{\frac{17}{4}}+3 \sqrt{2}=3-\frac{1}{2}(3+2 \sqrt{2})$
$=\frac{3}{2}-\sqrt{2}$
Hence, the $10^{\text {th }}$ term of $\left(3-\sqrt{\frac{17}{4}+3 \sqrt{2}}\right)^{20}=$ $\left(\frac{3}{2}-\sqrt{2}\right)^{20}$ is
${ }^{20} C_{9}\left(\frac{3}{2}\right)^{20-9}(-\sqrt{2})^{9}$
Which is an irrational number
121 (a,b,c)
We have,

$$
\begin{aligned}
& (x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2} \\
& \quad+\cdots+{ }^{n} C_{n} a^{n} \\
& =\left[{ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{n}+\cdots\right] \\
& \quad+\left[{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+\cdots\right]
\end{aligned}
$$

or
$(x+a)^{n}=P+\mathcal{Q}$
Similarly,
$(x-a)^{n}=P-Q$

1. $\quad(1) \times(2) \Rightarrow P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$
2. \quad Squaring (1) and (2) and subtracting (2) from (1), we get $4 P Q=(x+a)^{2 n}-$ $(x-a)^{2 n}$
3. Squaring (1) and (2) and adding,

$$
2\left(P^{2}+Q^{2}\right)=(x+a)^{2 n}+(x-a)^{2 n}
$$

122 (a,b,c,d)

On putting $x=\frac{1}{x}$ in given equation, we get
$\sum_{r=0}^{2 n} a_{r}\left(\frac{1}{x}\right)^{r}=\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}=\frac{1}{x^{2 n}}\left(x^{2}+x+1\right)^{n}$
$\Rightarrow \sum_{r=0}^{2 n} a_{r} x^{2 n-r}=\left(x^{2}+x+1\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$
$=\sum_{r=0}^{2 n} a_{2 n-r} x^{2 n-r}$
On equating the coefficients of $x^{2 n-r}$ on both
sides, we get $a_{r}=a_{2 n-r}$ for $0 \leq r \leq 2 n$
Now, on putting $x=1$ in Eq. (i), we get
$a_{0}+a_{1}+a_{2}+\ldots+a_{2 n}=(1+1+1)^{n}=3^{n}$
But $a_{r}=a_{2 n-r}$, for $0 \leq r \leq n-1$
$2\left(a_{0}+a_{1}+\ldots+a_{n-1}\right)+a_{n}=3^{n}$
$a_{0}+a_{1}+\ldots+a_{n-1}=\frac{1}{2}\left(3^{n}-a_{n}\right)$

Again

$\left(1+x+x^{2}\right)^{n}=$
$a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{2 n} x^{2 n}$.
On replacing x by $-\frac{1}{x}$, we get
$\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}=a_{0}-\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}-\frac{a_{3}}{x^{3}}+\ldots+\frac{a_{2 n}}{x^{2 n}}$.
On multiplying Eqs. (iii) and (iv) and comparing constant terms, then
RHS $=a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-a_{3}^{2}+\ldots+a_{2 n}^{2}$
$=$ Constant term in $\left(1+x+x^{2}\right)^{n}\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}$
\therefore Coefficient of $x^{2 n}$ in $\left(1+x^{2}+x^{4}\right)^{n}$ is a_{n}
Again putting $x=-1$ in Eq.(i), we get
$a_{0}-a_{1}+a_{2}-a_{3}+\ldots+a_{2 n}=1 \ldots$ (v)
On adding Eqs. (ii) and (v) and dividing by 2, we get
$a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}=\frac{1}{2}\left(3^{n}+1\right)$
123 ($\mathbf{a}, \mathbf{c}, \mathrm{d}$)
${ }^{n} C_{1}+{ }^{n+1} C_{2}+{ }^{n+2} C_{3}+\cdots+{ }^{n+m-1} C_{m}$
$={ }^{n} C_{n-1}+{ }^{n+1} C_{n-1}+{ }^{n+2} C_{n-1}+\cdots+{ }^{n+m-1} C_{n-1}$
$=$ Coefficient of x^{n-1} in $(1+x)^{n}+(1+x)^{n+1}+$
$(1+x)^{n+2}+\cdots+(1+x)^{n+m-1}$
$=$ Coefficient of x^{n-1} in $(x+1)^{n}\left[\frac{(1+x)^{m}-1}{(1+x)-1}\right]$
$=$ Coefficient of $x^{n-1} \operatorname{in} \frac{(1+x)^{m+n}-(1+x)^{n}}{x}$
$=$ Coefficient of x^{n} in $\left[(1+x)^{m+n}-(1+x)^{n}\right]$
$={ }^{m+n} C_{n}-1$
Similarly, we can prove

$$
\begin{gathered}
{ }^{m} C_{1}+{ }^{m+1} C_{2}+{ }^{m+2} C_{3}+\cdots+{ }^{m+n-1} C_{n} \\
={ }^{m+n} C_{m}-1
\end{gathered}
$$

124 (a,c)
Inclusion of $\log x$ implies $x>0$
Now, $3^{\text {rd }}$ term in the expansion is
$T_{2+1}={ }^{5} C_{2} x^{5-2}\left(x^{\log _{10} x}\right)^{2}=1000000$ (given)
or
$x^{3+2 \log _{10} x}=10^{5}$
Taking logarithm of both sides, we get
$\left(3+2 \log _{10} x\right) \log _{10} x=5$
or
$2 y^{2}+3 y-5=0$,
where $\log _{10} x=y$
or
$(y-1)(2 y+5)=0$ or $y=1$ or $-5 / 2$
or
$\log _{10} x=1$ or $-5 / 2$
$\therefore x=10^{1}=10$ or $10^{-5 / 2}$
125 (a,b,c)
$(101)^{100}-1=(1+100)^{100}-1$
$=1+{ }^{100} C_{1}(100)$
$+{ }^{100} C_{2}(100)^{2}+\ldots . .+{ }^{100} C_{100}(100)^{100}-1$
$=10^{4} \lambda \forall \lambda \in N$
126 (c)
$S_{1}=\sum_{j=1}^{10} j(j-1) \frac{10!}{j(j-1)(j-2)!(10-j)!}$
$=90=\sum_{j=2}^{10} \frac{8!}{(j-2)(8-(j-2))!}$
$=90.2^{8}$
and $S_{2}=\sum_{j=1}^{10} j(j-1) \frac{10!}{j(j-1)!(9-(j-1))!}$
$=10=\sum_{j=1}^{10} \frac{9!}{j(j-1)!(9-(j-1))!}=10.2^{9}$
and $S_{3}=\sum_{j=1}^{10}[j(j-1)+j]{ }^{10} C_{j}$
$=\sum_{j=1}^{10} j(j-1){ }^{10} C_{j}+\sum_{j=1}^{10} j{ }^{10} C_{j}$
$=90.2^{8}+10.2^{9}$
$=90.2^{8}+20.2^{8}=110.2^{8}=55.2^{9}$
(a)

Let $(\sqrt{5}+2)^{n}=N+f$, where N is an integer and $0<f<1$

Let $(\sqrt{5}-2)^{n}=f^{\prime}$, then $0<f^{\prime}<1$
Let $(\sqrt{5}+2)^{n}-(\sqrt{5}-2)^{n}=$ integer $(\because n$ is odd $)$
$\therefore N=(\sqrt{5}+2)^{n}-(\sqrt{5}-2)^{n}$
$=2\left[{ }^{n} C_{1} \cdot 2 \cdot 5^{(n-1) / 2}+{ }^{n} C_{3} \cdot 2^{3} \cdot 5^{(n-3) / 2}+\ldots\right]$
$\Rightarrow N$ is divisible by $2 n$ on using statement II
(If n is prime and $r<n$, then there is no factor which will cut $n \Rightarrow{ }^{n} C_{r}$ will be divisible by n)

128 (a)
Since, coefficient of x^{r} in $(1-x)^{-n}={ }^{n+r-1} C_{r}$
\therefore Coefficient of x^{n} in $(1-x)^{-2}={ }^{2+n-1} C_{n}$
$={ }^{n+1} C_{n}=(n+1)$
Hence, option (a) is correct
129 (d)
$\because(a+x)^{\lambda}(b+x)^{\lambda+1}(c+x)^{\lambda+2}$
$=\{(x+a)(x+a) \ldots \lambda$ times $\}$
$\{(x+b)(x+b) \ldots(\lambda+1)$ times $\}$
$\{(x+c)(x+c) \ldots(\lambda+2)$ times $\}$
$=x^{3 \lambda+3}+\{a \lambda+b(\lambda+1)+c(\lambda+2)\} x^{3 \lambda+2}+\ldots$
\therefore Coefficient of $x^{3 \lambda+2}$ is $\lambda(a+b+c)+b+2 c$
130 (b)
Obviously, statement 2 is true. But to get the sum of coefficient in the expansion of $\left(3^{-x / 4}+\right.$
$35 x 4 n$, we must put $x=0$

131 (d)

$$
\left(x+\frac{1}{x}+2\right)^{m}=\left(\frac{x^{2}+2 x+1}{x}\right)^{m}=\frac{(1+x)^{2 m}}{x^{m}}
$$

Term independent of x is coefficient of x^{m} in the expansion of $(1+x)^{2 m}={ }^{2 m} C_{m}=\frac{(2 m)!}{(m!)^{2}}$

Hence, statement I is false and statement II is true 132 (b)

Given expression $=\left\{1+\left(x+\frac{1}{x}\right)\right\}^{n}$

$$
\begin{aligned}
=1+{ }^{n} C_{1}(x+ & \left.\frac{1}{x}\right)+{ }^{n} C_{2}\left(x+\frac{1}{x}\right)^{2} \\
& +{ }^{n} C_{3}\left(x+\frac{1}{x}\right)^{3}+\ldots+\left(x+\frac{1}{x}\right)^{n}
\end{aligned}
$$

This will be of the form

$$
\begin{gathered}
=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\frac{b_{1}}{x}+\frac{b_{2}}{x^{2}} \\
+\frac{b_{3}}{x^{3}}+\ldots+\frac{b_{n}}{x^{n}}
\end{gathered}
$$

\therefore Number of terms $=1+n+n=2 n+1$
133 (a)
$S=\sum_{0 \leq i<} \sum_{j \leq n}\left(\frac{i}{{ }^{n} C_{i}}+\frac{j}{{ }^{n} C_{j}}\right)$
$=\sum_{0 \leq i<} \sum_{j \leq n}\left(\frac{n-i}{{ }^{n} C_{n-i}}+\frac{n-j}{{ }^{n} C_{n-j}}\right)$
$=n \sum_{0 \leq i<} \sum_{j \leq n}\left(\frac{1}{{ }^{n} C_{i}}+\frac{1}{{ }^{n} C_{j}}\right)-S$
$\Rightarrow S=\frac{n}{2} \sum_{0 \leq i<} \sum_{j \leq n}\left(\frac{i}{{ }^{n} C_{i}}+\frac{j}{{ }^{n} C_{j}}\right)$
$=\frac{n}{2}\left(\sum_{r=0}^{n-1} \frac{n-r}{{ }^{n} C_{r}}+\sum_{r=1}^{n} \frac{r}{{ }^{n} C_{r}}\right)$
$=\frac{n}{2}\left(\sum_{r=0}^{n} \frac{n}{{ }^{n} C_{r}}\right)$
$=\frac{n^{2}}{2} a$
134 (d)
Statement 2 is true as it is the property of binomial coefficients. But statement 1 is false as
three consecutive binomial coefficients may be in A.P. but not always

135 (b)
We know that the total number of terms in
$\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}$ is C_{r-1}. So, the total number of terms in $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{3}$ is
${ }^{3+n-1} C_{n-1}={ }^{n+2} C_{n-1}={ }^{n+2} C_{3}$
$=\frac{(n+2)(n+1) n}{6}$
and the total number of terms in $\left(x_{1}+x_{2}+x_{3}\right)^{n}$ is
${ }^{n+3-1} C_{n-1}={ }^{n+2} C_{3}=\frac{(n+2)(n+1) n}{6}$

136 (a)

We have,
$(2+\sqrt{5})^{p}+(2-\sqrt{5})^{p}=$
$2\left[2^{p}+{ }^{p} C_{2} 2^{p-5} 5+{ }^{p} C_{4} 2^{p-4} 5^{2}+\cdots+{ }^{p} C_{p-1} 2 \times\right.$
$5 p-1 / 2$ (1)
From, (1), $(2+\sqrt{5})^{p}+(2-\sqrt{5})^{p}$ is an integer and
$-1<(2-\sqrt{5})^{p}<0 \quad(\because p$ is odd $)$
So, $\left[(2+\sqrt{5})^{p}\right]=(2+\sqrt{5})^{p}+(2-\sqrt{5})^{p}$
$=2^{p+1}+{ }^{p} C_{2} 2^{p-1} 5+\cdots+{ }^{p} C_{p-1} 2^{2} 5^{(p-1) / 2}$
$\therefore\left[(2+\sqrt{5})^{p}\right]-2^{p+1}$
$=2\left[{ }^{p} C_{2} 2^{p-2} 5+{ }^{p} C_{4} 2^{p-4} 5^{2}\right.$
$\left.+\cdots+{ }^{p} C_{p-1} 2 \times 5^{(p-1) / 2}\right]$
Now, all the binomial coefficients
${ }^{p} C_{2}=\frac{p(p-1)}{1 \times 2}$,
${ }^{p} C_{2}=\frac{p(p-1)(p-2)(p-3)}{1 \times 2 \times 3 \times 4}, \ldots,{ }^{p} C_{p-1}=p$
are divisible by the prime p. Thus, R.H.S. is divisible by p

137 (a)
$(1+x)^{n}-n x-1=$
$\left(1+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x{ }^{n}\right)-n x-1$
$={ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n} x^{n}$
$=x^{2}\left({ }^{n} C_{2}+{ }^{n} C_{3} x+\cdots+{ }^{n} C_{n} x{ }^{n-2}\right)$
Hence, $(1+x)^{n}-n x-1$ is divisible by x^{2}
Now in (1), replace x by $8 n+1$. Then, we have

$$
\begin{aligned}
(1+8)^{n+1}- & (n+1) 8-1 \\
& =8^{2}\left({ }^{n} C_{2}+{ }^{n} C_{3} 8+\cdots+{ }^{n} C_{n} 8^{n-2}\right)
\end{aligned}
$$

$\Rightarrow 9^{2 n+2}-8 n-9$

$$
=8^{2}\left({ }^{n} C_{2}+{ }^{n} C_{3} 8+\cdots+{ }^{n} C_{n} 8^{n-2}\right)
$$

Which is divisible by 64
Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

138 (a)
Coefficient of x^{n} in $\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \frac{x^{n}}{n!}\right)^{3}$
$=$ Coefficient of x^{n} in $\left(1+x+\frac{x^{2}}{2!}+\cdots \frac{x^{n}}{n!}+\cdots\right)^{3}$
(as higher powers of x are not counted while calculating the coefficient of x^{n})
$=$ Coefficient of x^{n} in $e^{3 x}=\frac{3^{n}}{n!}$
139 (a)
$\left({ }^{10} C_{0}\right)+\left({ }^{10} C_{0}+{ }^{10} C_{1}\right)+\left({ }^{10} C_{0}+{ }^{10} C_{1}+{ }^{10} C_{2}\right)+\cdots$ $+\left({ }^{10} C_{0}+{ }^{10} C_{1}+{ }^{10} C_{2}+\cdots+{ }^{10} C_{9}\right)$
$=10^{10} C_{0}+9{ }^{10} C_{1}+8{ }^{10} C_{2}+\cdots+{ }^{10} C_{9}$
$={ }^{10} C_{1}+2{ }^{10} C_{2}+3{ }^{10} C_{3}+\cdots+10{ }^{10} C_{10}$
$=\sum_{r=1}^{10} r{ }^{10} C_{r}=10 \sum_{r=1}^{10}{ }^{9} C_{r-1}=10 \times 2^{9}$
140 (a)
$n(n+1)=n^{2}+n<n^{2}+n+n+1=(n+1)^{2}$
$\Rightarrow \sqrt{n(n+1)}<n+1, \forall n \geq 2$
$\Rightarrow \sqrt{n}<\sqrt{n+1}$
$\Rightarrow \frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n+1}} ; n \geq 2$
Statement II is true.

Also, $\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}}, \ldots \ldots, \forall n \geq 2$ On adding all of them, we get
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>\frac{n}{\sqrt{n}}=\sqrt{n}, \forall n \geq 2$
Clearly, Statements I and II are true and
Statement II is a correct explanation of Statement I.

141 (b)

$$
\begin{aligned}
& (1+x)^{41}\left(1-x+x^{2}\right)^{40} \\
& =(1+x)(1+x)^{40}\left(1-x+x^{2}\right)^{40} \\
& =(1+x)\left(1+x^{3}\right)^{40} \\
& =\left(1+x^{3}\right)^{40}+x\left(1+x^{3}\right)^{40} \\
& =\left(1+{ }^{40} C_{1} x^{3}+{ }^{40} C_{2} x^{6}+\cdots+{ }^{40} C_{40} x^{120}\right) \\
& \quad+\left({ }^{40} C_{0}+{ }^{40} C_{1} x^{4}+{ }^{40} C_{2} x^{7}\right. \\
& \left.\quad+\cdots+{ }^{40} C_{40} x^{121}\right)
\end{aligned}
$$

Hence, the coefficient of x^{85} is zero as there is no term in the above expansion which has x^{85}

Also, statement 2 is correct but it is not a correct explanation of statement 1

142 (a)
We know that

$$
\begin{aligned}
& { }^{m} C_{r}+{ }^{m} C_{r-1}{ }^{n} C_{1}+{ }^{m} C_{r-2}{ }^{n} C_{2}+\cdots+{ }^{n} C_{r} \\
& =\text { Coefficient of } x^{r} \text { in }(1+x)^{m}(1+x)^{n} \\
& =\text { Coefficient of } x^{r} \text { in }(1+x)^{m+n} \\
& ={ }^{m+n} C_{r} \\
& =0 \text { as } m+n<r
\end{aligned}
$$

143 (b)

$$
\begin{aligned}
\left(1+x+x^{2}+\right. & \left.x^{3}+x^{4}\right)^{1000} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& +a_{4000} x^{4000}
\end{aligned}
$$

Clearly, there are 4001 terms. Also, number of term in the expansion
$\left(a_{1}+a_{2}+\cdots+a_{m}\right)^{n}$ is ${ }^{n+m-1} C_{m-1}$
Clearly, statement 2 has nothing to do with statement 1

144 (a)
Statement 2 is true(can be checked easily) and
that is why

$$
\begin{gathered}
{ }^{2 n} C_{0}<{ }^{2 n} C_{1}<{ }^{2 n} C_{2}<\cdots<{ }^{2 n} C_{n-1}<{ }^{2 n} C_{n} \\
>{ }^{2 n} C_{n+1} \cdots>{ }^{2 n} C_{2 n}
\end{gathered}
$$

145 (d)
$\sum_{r=1}^{n} r^{3}\left(\frac{n-r+1}{r}\right)^{2}=\sum_{r=1}^{n} r(n-r+1)^{2}$
$=\sum_{r=1}^{n} r\left\{(n+1)^{2}-2(n+1) r+r^{2}\right\}$
$=(n+1)^{2} \sum r-2(n+1) \sum r^{2}+\sum r^{3}$
$=(n+1)^{2} \times \frac{n(n+1)}{2}$

$$
-\frac{2(n+1) \times n(n+1)(2 n+1)}{6}
$$

$$
+\left[\frac{n(n+1)}{2}\right]^{2}
$$

$=\frac{(n+1)^{2} \cdot n \cdot(n+2)}{12}=14^{2}$ (given)
$=7^{2} \times 2^{2}=\frac{7^{2} \cdot 6 \cdot 8}{12}$
$\therefore n=6$

Sum of coefficients $=(1-3+1)^{6}=(-1)^{6}=1$
146 (a)
$3456^{2222}=(7 \times 493+5)^{2222}$
$=(7 k+5)^{2222}$
$=7 m+5^{2222}$
Now,
$5^{2222}=5^{2}\left(5^{3}\right)^{740}$
$=25(125)^{740}$
$=25(126-1)^{740}$
$=25[7 n+1]$
$=175 n+25$
Remainder when $175 n+25$ is divided by 7 is 4
Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

1470
115
148 (b)
$\frac{T_{r+1}}{T_{r}}=\frac{12-r+1}{r} \frac{11}{10}$
Let,
$T_{r+1} \geq T_{r} \Rightarrow 13-r \geq 1.1 x$
$\Rightarrow 13 \geq 2.1 r$
$\Rightarrow r \leq 6.19$
Hence, the greatest term occurs for $r=6$. Hence, $7^{\text {th }}$ term is the greates term. Also, the binomial coefficient of $7^{\text {th }}$ term is ${ }^{12} C_{6}$ which is the greatest binomial coefficient.

But this is not the reason for which T_{7} is the greatest. Here, it is coincident that the greatest term has the greatest binomial coefficient

Hence, statement 1 is true, statement 2 is true; but statement 2 is not correct explanation of statement 1

149 (a)
Since, $\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}=(1+x)^{n}$
On multiplying by x on both sides, we get
$\sum_{r=0}^{n}{ }^{n} C_{r} \cdot x^{r+1}=x(1+x)^{n}$
On differentiating w.r.t. x, we get
$\sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r} \cdot x^{r}=(1+x)^{n}+n x(1+x)^{n-1}$
Statement II is true
If $x=1$, then
$\sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r}=2^{n}+n(2)^{n-1}=(n+2) 2^{n-1}$
\therefore Statement I is true, Statement II is true;
Statement II is a correct explanation for
Statement I.
151 (a)

$$
\begin{equation*}
\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r} \tag{1}
\end{equation*}
$$

We have that

$$
\begin{align*}
(1-r)^{n}=\sum_{r=0}^{n} & (-1)^{n-r}{ }^{n} C_{r} x^{r} \\
& =\sum_{r=0}^{n}(-1)^{n-r}{ }^{n} C_{r} x^{n-r} \tag{2}
\end{align*}
$$

Multiplying (1) and (2), we get

$$
\sum_{r=0}^{n}(-1)^{n-r}{ }^{n} C_{r} a_{r}
$$

$$
=\text { coefficient of } x^{n} \text { in }\left(1-x^{3}\right)^{n}
$$

Since $n \neq 3 k$, therefore
$\sum_{r=0}^{n}(-1)^{n-r} a_{r}{ }^{n} C_{r}=0$
$\Rightarrow \sum_{r=0}^{n}(-1)^{r} a_{r}{ }^{n} C_{r}=0$
Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

152 (d)
Since, n is even, put $n=2$
LHS $={ }^{4} C_{1}=4$ and $\mathrm{RHS}=2^{3}=8$
Hence, Statement I is false, but Statement II is true
153 (b)
In the sum of series $\sum_{i=1}^{n} \sum_{j=1}^{n} f(i) \times f(j)=$
$i=1 n f(i) j=1 n f(j)$
i and j are independent. In this summation, three types of terms occur, for which $i<j, i>j$ and $i=j$. Also, the sum of terms when $i<j$ is equal to the sum of the terms when $i>j$ if $f(i)$ and $f(j)$ are symmetrical. So, in that case
$\sum_{i=0}^{n} \sum_{j=0}^{n} f(i) \times f(j)=\sum_{0 \leq i<} \sum_{j \leq n} f(i) \times f(j)+$
$\sum_{0 \leq j<i \leq n} \sum_{i \leq n} f(i) f(j)+\sum_{i=} \sum_{j} f(i) f(j)$
$=2 \sum_{0 \leq i<} \sum_{j \leq n} f(i) f(j)+\sum_{i=} \sum_{j} f(i) f(j)$
$\Rightarrow \sum_{0 \leq i<} \sum_{j \leq n} f(i) f(j)$
$=\frac{\sum_{i=0}^{n} \sum_{j=0}^{n} f(i) \times f(j)-\sum_{i=j} \sum f(i) f(j)}{2}$

1. $\quad \sum \sum_{i \neq j}{ }^{10} C_{i}{ }^{10} C_{j}=\sum_{i=0}^{10} \sum_{j=0}^{10}{ }^{10} C_{i}{ }^{10} C_{j}-$

$$
\sum_{i=0}^{10}{ }^{10} C_{i}^{2}=2^{20}-{ }^{20} C_{10}
$$

2. $\quad \sum_{0 \leq i \leq} \sum_{j \leq 10}{ }^{10} C_{i}{ }^{10} C_{j}=$ $i=010 j=01010 \mathrm{Ci} 10 \mathrm{C} j+i=010$ $10 C i 22=220+20 C 102$
3. $\quad \sum_{0 \leq i<} \sum_{j \leq 10}{ }^{10} C_{i}{ }^{10} C_{j}=$ $i=010 j=01010 C i 10 C j-i=01010 C i 22$
$=\frac{2^{20}-{ }^{20} C_{10}}{2}$
4. $\quad \sum_{i=0}^{10} \sum_{j=0}^{10}{ }^{10} C_{i}{ }^{10} C_{j}=$
$i=01010 C i j=01010 C j=220$
154 (d)
5. $\quad \operatorname{In}(1+x){ }^{41}={ }^{41} C_{0}+{ }^{41} C_{1} x+{ }^{41} C_{2} x^{2}+$ $\cdots+{ }^{41} C_{20} x^{20}+{ }^{41} C_{21} x^{21}+\cdots+$ ${ }^{41} C_{41} x{ }^{41}$
$\Rightarrow{ }^{41} C_{21}+{ }^{41} C_{22}+\cdots+{ }^{41} C_{41}=2^{40}$
6. $(1+\sqrt{2})^{42}={ }^{42} C_{0}+{ }^{42}\left(C_{1} \sqrt{2}\right)+$

$$
{ }^{42} C_{2}(\sqrt{2})^{2}+{ }^{42} C_{1}(\sqrt{2})^{3}+\cdots+
$$

$$
{ }^{42} C_{42}(\sqrt{2})^{42}
$$

Sum of binomial coefficients of rational terms is
${ }^{42} C_{0}+{ }^{42} C_{2}+{ }^{42} C_{4}+\cdots+{ }^{42} C_{42}=2^{41}$
3. $\left(x+\frac{1}{x}+x^{2}+\frac{1}{x^{2}}\right)^{21}=\left(\frac{x^{3}+x+x^{4}+1}{x^{2}}\right)^{21}$
$=\frac{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{82} x^{82}}{x^{42}}$
Now, putting $x=1$, we get
$4^{21}=a_{0}+a_{1}+a_{2}+\cdots+a_{82}$
Putting $x=-1$, we get
$0=a_{0}-a_{1}+a_{2}-a_{3}+\cdots+a_{82}$
Adding, we get
$4^{21}=2\left(a_{0}+a_{2}+\cdots+a_{82}\right)$
$\Rightarrow a_{0}+a_{2}+\cdots+a_{82}=2^{41}$

4. We know that

$$
\begin{equation*}
{ }^{n} C_{0}-{ }^{n} C_{2}+{ }^{n} C_{4}-{ }^{n} C_{6}+\cdots=2^{n / 2} \cos \frac{n \pi}{4} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& { }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+{ }^{n} C_{6}+\cdots=2^{n-1} \tag{2}\\
& \Rightarrow{ }^{n} C_{0}+{ }^{n} C_{4}+{ }^{n} C_{8}+\cdots \\
& =\frac{1}{2}\left(2^{n / 2} \times \cos \frac{n \pi}{4}+2^{n-1}\right)
\end{align*}
$$

For $n=42$,

$$
\begin{aligned}
{ }^{42} C_{0}+{ }^{42} C_{4}+ & { }^{42} C_{8}+\cdots \\
& =\frac{1}{2}\left(2^{21} \times \cos \frac{21 \pi}{2}+2^{41}\right)=2^{40}
\end{aligned}
$$

155 (d)

1. $\quad{ }^{(n+1)} C_{4}+{ }^{(n+1)} C_{3}+{ }^{(n+2)} C_{3}={ }^{(n+3)} C_{4}$
$\Rightarrow{ }^{(n+3)} C_{4}>{ }^{(n+3)} C_{3} \Rightarrow \frac{{ }^{n+3} C_{4}}{{ }^{n+3} C_{3}}>1$
$\Rightarrow n>4$ or $n \geq 5$
2. $(3053)^{456}-(2417)^{333}$
$=(339 \times 9+2)^{456}-(269 \times 9-4)^{333}$
Remainder of given number is same as remainder of $2^{456}+4^{333}$
and
$2^{456}+4^{333}=(64)^{76}+(64)^{111}$
$=(1+63)^{76}+(1+63)^{111}$
$=(1+9 \times 7)^{76}+(1+9 \times 7)^{111}$
Hence, the remainder is 2
3. We know that n ! terminates in 0 for $n \geq 5$ and $3^{4 n}$ terminates in $1\left(\because 3^{4}=81\right)$

Therefore, $3^{180}=\left(3^{4}\right)^{45}$ terminates in 1
Also, $3^{3}=27$ terminates in 7
Hence, $183!+3^{183}$ terminates in 7
That is, the digit in the unit place is 7
4. We are given
${ }^{m} C_{0}+{ }^{m} C_{1}+{ }^{m} C_{2}=46$
$\Rightarrow 2 m+m(m-1)=90$
$\Rightarrow m^{2}+m-90=0$
$\Rightarrow m=9$ as $m>0$
Now, $(r+1)^{\text {th }}$ term of $\left(x^{2}+\frac{1}{x}\right)^{m}$ is
${ }^{m} C_{r}\left(x^{2}\right)^{m-r}\left(\frac{1}{x}\right)^{r}={ }^{m} C_{r} x x^{2 m-3 r}$
For this to be independent of $x, 2 m-3 r=0 \Rightarrow$ $r=6$

156 (c)
(A) $(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\cdots$ if $|x|$ <1
(B) $(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}-\ldots$ if $|x|$
<1
(C) $1+\frac{1}{x}+\frac{1}{x^{2}}+\cdots=\frac{1}{1-\frac{1}{x}}=\frac{x}{x-1} \quad[\because x>1]$
(D) $1-\frac{2}{x^{2}}+\frac{3}{x^{4}}-\frac{4}{x^{6}}+\ldots=\left(1+\frac{1}{x^{2}}\right)^{-2}$

$$
=\frac{x^{4}}{\left(x^{2}+1\right)^{2}}
$$

157 (a)
Let consecutive coefficients be ${ }^{n} C_{r}$ and ${ }^{n} C_{r+1}$. Then,

$$
\begin{aligned}
& \frac{n!}{(n-r)!r!}=\frac{n!}{(n-r-1)!(r+1)!} \\
& \Rightarrow \frac{1}{(n-r)(n-r-1)!r!} \\
& \quad=\frac{1}{(n-r-1)!(r+1) r!}
\end{aligned}
$$

$\Rightarrow r+1=n-r$
$\Rightarrow n=2 r+1$
Hence, n is odd
$E=(19-4)^{n}+(19+4)^{n}$
$2\left[{ }^{n} C_{0} 19^{n}+{ }^{n} C_{2} 19^{n-2} 4^{2}+\cdots+{ }^{n} C_{n} 4^{n}\right]$
when n is even
or
$2\left[{ }^{n} C_{0} 19^{n}+{ }^{n} C_{2} \cdot 19^{n-2} \cdot 4^{2}+\cdots+{ }^{n} C_{n-1} 19\right.$.
$\left.4^{n-1}\right]$ then n is odd
$\Rightarrow E$ is divisible by 19 when n is odd
${ }^{10} C_{0}{ }^{20} C_{10}-{ }^{10} C_{1}{ }^{18} C_{10}+{ }^{10} C_{2}{ }^{16} C_{10}-\cdots$
$=$ Coefficient of x^{10} in $\left[{ }^{10} C_{0}(1+x)^{20}-\right.$ $10 C 1 \times 1+x 18+10 C 21+x 16-\ldots$
$=$ Coefficient of x^{10} in $\left[{ }^{10} C_{0}\left((1+x)^{2}\right)^{10}-\right.$

$$
\begin{aligned}
& \left.{ }^{10} C_{1} \times\left((1+x)^{2}\right)^{9}+{ }^{10} C_{2}\left((1+x)^{2}\right)^{8}-\cdots\right] \\
& =\text { Coefficient of } x^{10} \text { in }\left[(1+x)^{2}-1\right]^{10} \\
& =\text { Coefficient of } x^{10} \text { in }\left[2 x+x^{2}\right]^{10} \\
& =2^{10} \\
& T_{r}={ }^{14} C_{r-1} x^{r-1} ; T_{r+1}={ }^{14} C_{r} x^{r} T_{r+2}= \\
& { }^{14} C_{r+1} x x^{r+1}
\end{aligned}
$$

By the given condition,

$$
\begin{align*}
& 2{ }^{14} C_{r}={ }^{14} C_{r-1}+{ }^{14} C_{r+1} \tag{1}\\
& \Rightarrow 2=\frac{{ }^{14} C_{r-1}}{{ }^{14} C_{r}}+\frac{{ }^{14} C_{r+1}}{{ }^{14} C_{r}} \\
& \Rightarrow 2=\frac{r}{14-r+1}+\frac{14-(r+1)+1}{r+1} \\
& \Rightarrow 2=\frac{r}{15-r}+\frac{14-r}{r+1} \\
& \Rightarrow r=9
\end{align*}
$$

158 (c)

We know that
${ }^{n} C_{0}^{2}+{ }^{n} C_{1}^{2}+\cdots+{ }^{n} C_{n}^{2}={ }^{2 n} C_{n}$
And
${ }^{n} C_{0}^{2}-{ }^{n} C_{1}^{2}+\cdots+(-1)^{n}{ }^{n} C_{n}^{2}$

$$
=\left\{\begin{array}{cc}
0, & \text { if } n \text { is odd } \\
{ }^{n} C_{n / 2}(-1)^{n}, & \text { if } n \text { is even }
\end{array}\right.
$$

From this, ${ }^{31} C_{0}^{2}-{ }^{31} C_{1}^{2}+{ }^{31} C_{2}^{2}-\cdots-{ }^{31} C_{31}^{2}=0$
${ }^{32} C_{0}^{2}-{ }^{32} C_{1}^{2}+{ }^{32} C_{2}^{2}-\cdots+{ }^{32} C_{32}^{2}={ }^{32} C_{16}$
${ }^{32} C_{0}^{2}-{ }^{32} C_{1}^{2}+{ }^{32} C_{2}^{2}-\cdots+{ }^{32} C_{32}^{2}={ }^{64} C_{32}$
Also, $(1 / 32)\left(1 \times{ }^{32} C_{1}^{2}+2 \times{ }^{32} C_{2}^{2}-\cdots+32 \times\right.$
${ }^{32} C_{32}^{2}$)
$=\frac{1}{32} \sum_{r=1}^{32} r\left({ }^{32} C_{r}\right)^{2}$
$=\frac{1}{32} \sum_{r=1}^{32} r^{32} C_{r}{ }^{32} C_{32-r}$
$=\frac{1}{32} \sum_{r=1}^{32} 32{ }^{31} C_{r-1}{ }^{32} C_{32-r}$
$={ }^{63} C_{31}={ }^{63} C_{32}$
159 (c)
General term, $T_{r+1}={ }^{6561} C_{r}\left(7^{1 / 3}\right)^{6561-r}$.
$\left(11^{1 / 9}\right)^{r}$
$={ }^{6561} C_{r} \cdot 77^{2187-\frac{r}{3}} \cdot 11^{\frac{r}{9}}$
If T_{r+1} is rational
then $\frac{r}{9}$ and $\frac{r}{3}$ are integers
$\therefore r$ is a multiple of 9
$\because 0 \leq r \leq 6561$
$\Rightarrow 0 \leq \frac{r}{9} \leq 729$
$\therefore \frac{r}{9}=0,1,2,3, \ldots ., 729$
\therefore Total terms $=730$

160 (b)
Now, $\left(C_{0}+C_{1}+\ldots+C_{n}\right)^{2}=\sum_{r=0}^{n} C_{r}^{2}+2 P$
$\Rightarrow 2 P=\left(2^{n}\right)^{2}-\sum_{r=0}^{n} C_{r}^{2}$
$\Rightarrow P=2^{2 n-1}-\frac{1}{2}\left({ }^{2 n} C_{n}\right)$

161 (b)

The coefficient of the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion are ${ }^{m} C_{1},{ }^{m} C_{2}$ and ${ }^{m} C_{3}$, which are given in A.P. Hence,
$2{ }^{m} C_{2}={ }^{m} C_{1}+{ }^{m} C_{3}$
$\Rightarrow \frac{2 m(m-1)}{2!}=m+\frac{m(m-1)(m-2)}{3!}$
$\Rightarrow m\left(m^{2}-9 m+14\right)=0$
$\Rightarrow m(m-2)(m-7)=0$
$\Rightarrow m=7\left(\because m \neq 0\right.$ or 2 as $6^{\text {th }}$ term is given equal to 21)
Now, $6^{\text {th }}$ term in the expansion, when $m=7$, is
${ }^{7} C_{5}\left[\sqrt{\left\{2^{\log \left(10-3^{x}\right)}\right\}}\right]^{7-5} \times\left[\sqrt[5]{\left\{2^{(x-3) \log 3}\right\}}\right]^{5}=21$
$\Rightarrow \frac{7 \times 6}{2!} 2^{\log \left(10-3^{x}\right)} \times 2^{(x-2) \log 3}=21$
$\Rightarrow 2^{\log \left(10-3^{x}\right)+(x-2) \log 3}=1=2^{0}$
$\Rightarrow \log \left(10-3^{x}\right)+(x-2) \log 3=0$
$\Rightarrow \log \left(10-3^{x}\right)(3)^{(x-2)}=0$
$\Rightarrow\left(10-3^{x}\right) \times 3^{x} \times 3^{-2}=1$
$\Rightarrow 10 \times 3^{x}-\left(3^{x}\right)^{2}=9$
$\Rightarrow\left(3^{x}\right)^{2}-10 \times 3^{x}+9=0$
$\Rightarrow\left(3^{x}-1\right)\left(3^{x}-9\right)=0$
$\Rightarrow 3^{x}-1=0 \Rightarrow 3^{x}=1=3^{0} \Rightarrow x=0$
$\Rightarrow 3^{x}-9=0 \Rightarrow 3^{x}=3^{2} \Rightarrow x=2$
Hence, $x=0$ or 2 . When $x=2$
$\left[\sqrt{\left\{2^{\log \left(10-3^{x}\right)}\right\}}+\sqrt[5]{\left\{2^{(x-2) \log 3}\right\}}\right]^{m}$
$=[1+1]^{7}=128$
When $x=0$,
$\left[\sqrt{\left\{2^{\log \left(10-3^{x}\right)}\right\}}+\sqrt[5]{\left\{2^{(x-2) \log 3}\right\}}\right]^{m}$
$=\left[\sqrt{\left\{2^{\log 9}\right\}}+\sqrt[5]{\left\{2^{-2 \log 3}\right\}}\right]^{7}$
$=\left[2^{\frac{\log 9}{2}}+\frac{1}{2^{\frac{\log 9}{5}}}\right]^{7}>2^{7}$
Hence, the minimum value is 128
162 (b)
$2^{\text {nd }}$ term is ${ }^{n} C_{1} x^{n-1} a=240$
$3^{\text {rd }}$ term is ${ }^{n} C_{2} x{ }^{n-2} a^{2}=720$
$4^{\text {th }}$ term is ${ }^{n} C_{3} x^{n-3} a^{3}=1080$
Multiplying (1) and (3) and dividing by the square of (2), we get
$\frac{{ }^{n} C_{1} \times{ }^{n} C_{3}}{\left({ }^{n} C_{2}\right)^{2}}=\frac{240 \times 1080}{(720)^{2}}$
$\Rightarrow \frac{n \times n(n-1)(n-2)(2!)^{2}}{n^{2}(n-1)^{2} \times 3!}=\frac{1}{2}$
$\Rightarrow 4(n-2)=3(n-1) \quad(\because n \neq 1)$
$\Rightarrow n=5$
Putting $n=5$, from (1) and (2), we get
$5 x^{4} a=240$ and $10 x^{3} a^{2}=720$
$\Rightarrow \frac{\left(5 x^{4} a\right)^{2}}{10 x^{3} a^{2}}=\frac{(240)^{2}}{720}$
or
$x^{5}=32$
$\therefore x=2$
$\therefore a=\frac{240}{5 x^{4}}=\frac{48}{2^{4}}=3$
Hence, $x=2, a=3$ and $n=5$
$(x-a)^{n}=(2-3)^{5}=-1$
Also,
$(2+3)^{5}=2^{5}+{ }^{5} C_{1} 2^{4} \times 3+{ }^{5} C_{2} 2^{3} \times 3^{2}+{ }^{5} C_{3} 2^{2}$

$$
\times 3^{3}+{ }^{5} C_{4} 2 \times 3^{4}+{ }^{5} C_{5} 3^{5}
$$

$=32+240+720+1080+810+243$
Hence, least value of the term is 32
Sum of odd-numbered terms is $32+720+810=$ 1562
163 (b)
Let,
$\left(1+x+x^{2}\right)^{20}=\sum_{r=0}^{40} a_{r} x^{r}$
Replacing x by $1 / x$, we get
$\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)^{20}=\sum_{r=0}^{40} a_{r}\left(\frac{1}{x}\right)^{r}$
$\Rightarrow\left(1+x+x^{2}\right)^{20}=\sum_{r=0}^{40} a_{r} x^{40-r}$
Since (1) and (2) are same series, coefficient of x^{r}
in (1) $=$ coefficient of x^{r} in (2)
$\Rightarrow a_{r}=a_{40-r}$
In (1), putting $x=1$, we get
$3^{20}=a_{0}+a_{1}+a_{2}+\cdots+a_{40}$
$=\left(a_{0}+a_{1}+a_{2}+\cdots+a_{19}\right)+a_{20}$

$$
+\left(a_{21}+a_{n+2}+\cdots+a_{40}\right)
$$

$$
\begin{gathered}
=2\left(a_{0}+a_{1}+a_{2}+\cdots+a_{19}\right)+a_{20}\left(\because a_{r}\right. \\
\left.=a_{40-r}\right) \\
\Rightarrow a_{0}+a_{1}+a_{2}+\cdots+a_{19}=\frac{1}{2}\left(3^{20}-a_{20}\right) \\
\quad=\frac{1}{2}\left(9^{10}-a_{20}\right)
\end{gathered}
$$

Also,
$a_{0}+3 a_{1}+5 a_{2}+\cdots+81 a_{40}$
$=\left(a_{0}+81 a_{40}\right)+\left(3 a_{1}+79 a_{39}\right)+\cdots$
$+\left(39 a_{19}+43 a_{21}\right)+41 a_{20}$
$=82\left(a_{0}+a_{1}+a_{2}+\cdots+a_{19}\right)+41 a_{20}$
$=41\left(9^{10}-a_{20}\right)+41 a_{20}$
$=41 \times 3^{20}$
$a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-a_{3}^{2}+\cdots$ suggests that we have to
multiply the two expansions.
Replacing x by $-1 / x$ in (1), we get

$$
\begin{aligned}
& \left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{20}=a_{0}-\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}-\cdots+\frac{a_{40}}{x^{40}} \\
& \Rightarrow\left(1-x+x^{2}\right)^{20} \\
& \quad=a_{0} x^{40}-a_{1} x^{39}+a_{2} x^{38}-\cdots \\
& \\
& +a_{40}
\end{aligned}
$$

Clearly,
$a_{0}^{2}-a_{1}^{2}+a_{2}^{2}+\cdots+a_{40}^{2}$ is the coefficient of x^{40} in $\left(1+x++x^{2}\right)^{20}\left(1-x+x^{2}\right)^{20}$
$=$ Coefficient of x^{40} in $\left(1+x^{2}+x^{4}\right)^{20}$
In $\left(1+x^{2}+x^{4}\right)^{20}$, replace x^{2} by y, then the coefficient of y^{20} in $\left(1+y+y^{2}\right)^{20}$ is a_{20}. Hence, $a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots+a_{40}^{2}=a_{20}$ $\Rightarrow\left(a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots-a_{19}^{2}\right)+a_{20}^{2}$
$+\left(-a_{21}^{2}+\cdots+a_{40}^{2}\right)=a_{20}$
$\Rightarrow\left(a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots-a_{19}^{2}\right)+a_{20}^{2}=a_{20}$
$\Rightarrow a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots-a_{19}^{2}=\frac{a_{20}}{2}\left[1-a_{20}\right]$
164 (c)
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{99} x^{99}+x^{100}=0$ has roots ${ }^{99} C_{0},{ }^{99} C_{1},{ }^{99} C_{2}, \ldots,{ }^{99} C_{99}$
$\Rightarrow a_{0}+a_{1} x+a_{1} x^{2}+\cdots+a_{99} x^{99}+x^{100}$

$$
\begin{aligned}
& =\left(x-{ }^{99} C_{0}\right)\left(x-{ }^{99} C_{1}\right)(x \\
& \left.-{ }^{99} C_{2}\right) \ldots\left(x-{ }^{99} C_{99}\right)
\end{aligned}
$$

Now, sum of roots is

$$
\begin{aligned}
&{ }^{99} C_{0}+{ }^{99} C_{1}+{ }^{99} C_{2}+\cdots+{ }^{99} C_{99} \\
&=-\frac{a_{99}}{\text { coefficient of } x^{100}}
\end{aligned}
$$

$\Rightarrow a_{99}=-2^{99}$
Also, sum of product of roots taken two at a time is
$\frac{a_{99}}{\text { coefficient of } x^{100}}$

$$
\begin{aligned}
& \therefore \sum_{a \leq i<} \sum_{j \leq 99}{ }^{99} C_{i}{ }^{99} C_{j} \\
& =\frac{\left(\sum_{i=0}^{99} \sum_{j=0}^{99}{ }^{99} C_{i}{ }^{99} C_{j}\right)-\sum_{i=0}^{99}\left({ }^{99} C_{i}\right)^{2}}{2} \\
& =\frac{\left(\sum_{i=0}^{99}{ }^{99} C_{i} 2^{99}\right)-\sum_{i=0}^{99}\left({ }^{99} C_{i}\right)^{2}}{2} \\
& =\frac{2^{99} 2^{99}-\sum_{i=0}^{99}\left({ }^{99} C_{i}\right)^{2}}{2} \\
& =\frac{2^{198}-{ }^{198} C_{99}}{2} \\
& \left({ }^{99} C_{0}\right)^{2}+\left({ }^{99} C_{1}\right)^{2}+\cdots+\left({ }^{99} C_{99}\right)^{2} \\
& =\left({ }^{99} C_{0}+{ }^{99} C_{1}+{ }^{99} C_{2}+\cdots+{ }^{99} C_{99}\right)^{2} \\
& =\left(-a_{99}\right)^{2}-2 a_{98}{ }^{99} C_{i}{ }^{99} C_{j} \\
& =a_{99}^{2}-2 a_{98}
\end{aligned}
$$

165 (a)
$\sum_{r=0}^{100}{ }^{100} C_{r} \sin r x=\operatorname{Im}\left(\sum_{r=0}^{100}{ }^{100} C_{r} e^{i r x}\right)$
(Im=imaginary part)
$=\operatorname{Im}\left(\sum_{r=0}^{100}{ }^{100} C_{r}\left(e^{i x}\right)^{r}\right)$
$\left.=\operatorname{Im}\left(1+e^{i x}\right)^{100}\right)$
$=\operatorname{Im}(1+\cos x+i \sin x)^{100}$
$=\operatorname{Im}\left(2 \cos ^{2} \frac{x}{2}+2 i \sin \frac{x}{2} \times \cos \frac{x}{2}\right)^{100}$
$=\operatorname{Im}\left(2 \cos \frac{x}{2}\left(\cos \frac{x}{2}+i \sin \frac{x}{2}\right)\right)^{100}$
$=2^{100} \cos ^{100} \frac{x}{2} \sin (50 x)$
$\sum_{r=0}^{50}{ }^{50} C_{r} a^{r} \times b^{50-r} \times \cos (r B-(50-r) A)$
$=\operatorname{Re}\left(\sum_{r=0}^{50}{ }^{50} C_{r} a^{r} \times b^{50-r} \times e^{i(r B-(50-r) A)}\right)$
$=\operatorname{Re}\left(\sum_{r=0}^{50}{ }^{50} C_{r}\left(a \times e^{i B}\right)^{r} \times\left(b \times e^{-i A}\right)^{50-r}\right)$
$=\operatorname{Re}\left(a e^{i B}+b e^{-i A}\right)^{50}$
$=\operatorname{Re}(a \cos B+i a \sin B+b \cos A-i b \sin A)^{50}$
$=\operatorname{Re}(a \cos B+b \cos A)^{50}=c^{50}(\because a \sin B$

$$
=b \sin A)
$$

$\frac{\sum_{r=0}^{50}{ }^{50} C_{r} \sin 2 r x}{\sum_{r=0}^{50}{ }^{50} C_{r} \cos 2 r x}$

$$
=\frac{\sum_{r=0}^{50}{ }^{50} C_{50-r} \sin 2(50-r) x}{\sum_{r=0}^{50}{ }^{50} C_{50-r} \cos 2(50-r) x}
$$

$=\frac{\sum_{r=0}^{50}{ }^{50} C_{r}[\sin 2 r x+\sin 2(50-r) x]}{\sum_{r=0}^{50}{ }^{50} C_{r}[\cos 2 r x+\cos 2(50-r) x]}\left(\because \frac{a}{b}=\frac{c}{d}\right.$

$$
\left.=\frac{a+c}{b+d}\right)
$$

$=\frac{\sum_{r=0}^{50}{ }^{50} C_{r} 2 \sin (50 x) \cos (2 r-50) x}{\sum_{r=0}^{50}{ }^{50} C_{r} 2 \cos (50 x) \cos (2 r-50) x}$
$=\tan (50 x)$
$\Rightarrow f(\pi / 8)=\tan (25 \pi / 4)=\tan (6 \pi+\pi / 4)=1$
166 (b)
General term of the series is
$T(r)=\sum_{r=0}^{50} \frac{{ }^{50+r} C_{r}(2 r-1)}{{ }^{50} C_{r}(50+r)}$
$=\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}\left(1-\frac{50-r+1}{50+r}\right)$
$=\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}-\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}\left(\frac{50-r+1}{50+r}\right)$
Now,
$\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}\left(\frac{50-r+1}{50+r}\right)$
$=\frac{(50-r+1)(50+r)!r!(50-r)!}{r!50!(50+r) 50!}$
$=\frac{(50-r+1)!(50+r-1)!}{50!50!}$
$=\frac{{ }^{50+r-1} C_{r-1}}{{ }^{50} C_{r-1}}$
$\Rightarrow T(r)=\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}-\frac{{ }^{50+r-1} C_{r-1}}{{ }^{50} C_{r-1}}$

$$
=V(r)-V(r-1)
$$

Where $V(r)=\frac{{ }^{50+r} C_{r}}{{ }^{50} C_{r}}$
Now, sum of the given series
$P=\sum_{r=1}^{50} T(r)=V(50)-V(0)$
$=\frac{{ }^{100} C_{50}}{{ }^{50} C_{50}}-\frac{{ }^{50} C_{0}}{{ }^{50} C_{0}}={ }^{100} C_{50}-1$
Also,

$$
Q=\sum_{r=0}^{50}\left({ }^{50} C_{r}\right)^{2}
$$

$$
={ }^{50} C_{0}^{2}+{ }^{50} C_{1}^{2}+{ }^{50} C_{2}^{2}+\cdots
$$

$$
+{ }^{50} C_{50}^{2}={ }^{100} C_{50}
$$

$\Rightarrow P-Q=-1$
We know that
$C_{0}^{2}-C_{1}^{2}+C_{2}^{2}+\cdots+(-1)^{n} C_{n}^{2}$
$=\left\{\begin{array}{cc}{ }^{0,}, & \text { if } n \text { is odd } \\ (-1)^{n}{ }^{n} C_{n / 2}, & \text { if } n \text { is even }\end{array}\right.$
$\Rightarrow \sum_{r=0}^{100}(-1)^{r}\left({ }^{100} C_{r}\right)^{2}=(-1)^{100}{ }^{100} C_{50}={ }^{100} C_{50}$
$\Rightarrow P-R=-1$
$Q+R=2{ }^{100} C_{50}=2 P+2$
167 (a)
Suppose A contains $r(0 \leq r \leq n)$ elements
Then, B is constructed by selecting some elements
from the remaining $n-r$ elements Here, A can be chosen in ${ }^{n} C_{r}$ ways and B in ${ }^{n-r} C_{0}+{ }^{n-r} C_{1}+$ $\cdots+{ }^{n-r} C_{n-r}=2^{n-r}$ ways.
So, the total number of ways of choosing A and B is ${ }^{n} C_{r} \times 2^{n-r}$
But r can vary from 0 to n. So, total number of ways is
$\sum_{r=0}^{n}{ }^{n} C_{r} \times 2^{n-r}=(1+2)^{n}=3^{n}$
If A contains r elements, then B contains $(r+1)$
elements
Then, the number of ways of choosing A and B is ${ }^{n} C_{r} \times{ }^{n} C_{r+1}=C_{r} C_{r+1}$
But r can vary from 0 to ($n-10$.
So, total number of ways is
$\sum_{r=0}^{n-1} C_{r} C_{r+1}=C_{0} C_{1}+C_{1} C_{2}+\cdots+C_{n-1} C_{n}$

$$
={ }^{2 n} C_{n-1}
$$

Let A contains $r(0 \leq r \leq n)$ elements.
Then, A can be chosen in ${ }^{n} C_{r}$ ways. The subset B of A can have at most r elements, and the number of ways of choosing B is 2^{r}
Therefore, the number of ways of choosing A and B is ${ }^{n} C_{r} \times 2^{r}$
But r can vary from 0 to n
So, the total number of ways is
$\sum_{r=0}^{n}{ }^{n} C_{r} \times 2^{r}=(1+2)^{n}=3^{n}$
168 (1)
$=\sum_{k=0}^{4}\left(\frac{3^{4-k}}{(4-k)!}\right)\left(\frac{x^{k}}{k!}\right)$
$=\sum_{k=0}^{4}\left(\frac{3^{4-k}}{(4-k)!}\right)\left(\frac{x^{k}}{k!}\right) \frac{4!}{4!}$
$=\sum_{k=0}^{4} \frac{{ }^{4} C_{k} \cdot 3^{4-k} \cdot x^{k}}{4!}=\frac{(3+x)^{4}}{4!}$
According to the question,
$\frac{(3+x)^{4}}{4!}=\frac{32}{3}$
$\Rightarrow(3+x)^{4}=256$
$\Rightarrow x+3=4 \Rightarrow x=1$
169 (0)
Consider $(5+2)^{100}-(5-2)^{100}$
$=2\left[{ }^{100} C_{1} 5^{99} \cdot 2+{ }^{100} C_{3} 5^{97} \cdot 2^{3}+\cdots+{ }^{100} C_{99} 5\right.$ $\cdot 2^{99}$]
$=2\left[1000 \cdot 5^{98}+1000 .{ }^{100} C_{3} \cdot 5^{94}+\cdots\right.$
$+1000 \cdot 2^{98}$]
\Rightarrow minimum 000 as last three digits

170 (5)
${ }^{23} C_{r}+2 .{ }^{23} C_{r+1}+{ }^{23} C_{r+2}={ }^{24} C_{r+1}+{ }^{24} C_{r+2}$ $={ }^{25} C_{r+2} \geq{ }^{25} C_{15}$
$\therefore(r+2)$ can be $10,11,12,13$ and 15 so 5
elements
171 (9)
$f(n)={ }^{n} C_{0} a^{n-1}-{ }^{n} C_{1} a^{n-2}+{ }^{n} C_{2} a^{n-3}+\cdots$

$$
+(-1)^{n-1 n} C_{n-1} a^{0}
$$

$=\frac{1}{a}\left({ }^{n} C_{0} a^{n}-{ }^{n} C_{1} a^{n-1}+{ }^{n} C_{2} a^{n-2}+\cdots\right.$

$$
\left.+(-1)^{n-1} C_{n-1} a^{\prime}\right)
$$

$=\frac{1}{a}\left((a-1)^{n}-(-1)^{n}{ }^{n} C_{n}\right)$
$=\frac{1}{a}\left(\left(\frac{1}{3^{223}}-(-1)^{n}\right)\right)$
$f(x)=\frac{3^{\frac{n}{223}}-(-1)^{n}}{\left(3^{\frac{1}{223}}+1\right)}$
$\Rightarrow f(2007)=\frac{3^{\frac{2007}{223}}+1}{3^{\frac{1}{223}}+1}$
$\Rightarrow f(2008)=\frac{3^{\frac{2008}{223}}-1}{3^{\frac{1}{223}}+1}$
$\Rightarrow f(2007)+f(2008)=\frac{3^{\frac{2007}{223}}+3^{\frac{2008}{223}}}{3^{\frac{1}{223}+1}}$
$=\frac{3^{9}+3^{9+\frac{1}{223}}}{3^{\frac{1}{223}}+1}$
$=3^{9} \frac{\left(1+3^{\frac{1}{223}}\right)}{1+3^{\frac{1}{223}}}=3^{9}$
$\Rightarrow 3^{9}=3^{k}$ then $k=9$
172 (8)
Let the three consecutive coefficients be
${ }^{n} C_{r-1}=28,{ }^{n} C_{r}=56$ and ${ }^{n} C_{r+1}=70$,
So that $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}=\frac{56}{28}=2$ and $\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}=\frac{n-r}{r+1}=$ $\frac{70}{56}=\frac{5}{4}$
This gives $n+1=3 r$ and $4 n-5=9 r$
$\therefore \frac{4 n-5}{n+1}=3 \Rightarrow n=8$
173 (7)
$(1+7)^{83}+(7-1)^{83}=(1+7)^{83}-(1-7)^{83}$
$=2\left[{ }^{83} C_{1} \cdot 7+{ }^{83} C_{3} \cdot 7^{3}+\cdots+{ }^{83} C_{83} \cdot 7^{83}\right]=$
$(2 \cdot 7 \cdot 83)+49 I$ where I is an integer
Now $14 \times 83=1162$
$\therefore \frac{1162}{49}=23 \frac{35}{49}$
\therefore Reminder is 35
174 (4)
We have $b=$ coefficient of x^{3} in $\left(\left(1+x+2 x^{2}+\right.\right.$
$\left.\left.3 x^{3}\right)+4 x^{4}\right)^{4}$
$=$ coefficient of x^{3} in $\left[{ }^{4} C_{0}\left(1+x+2 x^{2}+\right.\right.$ $3 x 344 \times 40+4 C 11+x+2 x 2+3 \times 334 \times 41+\ldots]$
$=$ coefficient of x^{3} in $\left(1+x+2 x^{2}+3 x^{3}\right)^{4}=a$ Hence, $4 a / b=4$
175 (6)
$T_{r+1}={ }^{n} C_{r}\left(x^{2}\right)^{n-r}(-1)^{r} x^{-r}$
$={ }^{n} C_{r} x^{2 n-3 r}(-1)^{r}$
Constant term $={ }^{n} C_{r}(-1)^{r}$ if $2 n=3 r$
i.e., coefficient of $x=0$
hence, ${ }^{n} C_{2 n / 3}(-1)^{2 n / 3}=15={ }^{6} C_{4} n=6$
176

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{5^{n}} \cdot{ }^{n} C_{r}\left(\sum_{t=0}^{r-1}{ }^{r} C_{t} \cdot 3^{t}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{5^{n}} \cdot{ }^{n} C_{r}\left(4^{r}-3^{r}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{5^{n}}\left(\sum_{r=1}^{n}{ }^{n} C_{r} 4^{r}-\sum_{r=0}^{n}{ }^{n} C_{r} 3^{r}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{5^{n}}\left(5^{n}-4^{n}\right)=1
\end{aligned}
$$

177 (0)
Middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}$, i. e. , $(4+1)^{\text {th }}$, i. e.,T_{5}
$\therefore T_{5}={ }^{8} C_{4}\left(\frac{x}{2}\right)^{4} \cdot 2^{4}=1120 \Rightarrow x^{4} \frac{8 \cdot 7 \cdot 6.5}{1 \cdot 2 \cdot 3.4} x^{4}$

$$
=1120
$$

$\Rightarrow x^{4}=\frac{1120}{70}=16$
$\Rightarrow\left(x^{2}+4\right)\left(x^{2}-4\right)=0$
$\therefore x= \pm 2$ only as $x \in R$
178 (3)
$(1+0.00002)^{50000}=\left(1+\frac{1}{50000}\right)^{50000}$
Now we know that $2 \leq\left(1+\frac{1}{n}\right)^{n}<3 \forall n \geq 1 \Rightarrow$ Least integer is 3
179 (5)
We have $1+\sum_{r=1}^{10}\left(3^{r} \cdot{ }^{10} C_{r}+r \cdot{ }^{10} C_{r}\right)$
$=1+\sum_{r=1}^{10} 3^{r} \cdot{ }^{10} C_{r}+10 \sum_{r=1}^{10}{ }^{9} C_{r-1}$
$=1+4^{10}-1+10 \cdot 2^{9}$
$=4^{10}+5.2^{10}=2^{10}\left(4^{5}+5\right)$
$=2^{10}\left(\alpha \cdot 4^{5}+\beta\right)$, so $\alpha=1$ and $\beta=5$

Now $f(1)<0$ and $f(5)<0$
$f(1)<0 \Rightarrow-k^{2}<0 \Rightarrow k \neq 0$ and $f(5)<0$
$\Rightarrow 16-k^{2}<0$
$\Rightarrow k^{2}-16>0$
$\Rightarrow k \in(-\infty, 4) \cup(4, \infty)$
Hence, the smallest positive integral value of $k=5$
180 (8)
$=\left[\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right]^{8}+\left[\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right]^{8}$
$=2\left[\begin{array}{c}{ }^{8} C_{0}\left(\sqrt{x^{2}+1}\right)^{8}+{ }^{8} C_{2}\left(\sqrt{x^{2}+1}\right)^{6} \\ \left(\sqrt{x^{2}-1}\right)^{2}+ \\ { }^{8} C_{4}\left(\sqrt{x^{2}+1}\right)^{4}\left(\sqrt{x^{2}-1}\right)^{4} \\ { }^{8} C_{6}\left(\sqrt{x^{2}+1}\right)^{2}\left(\sqrt{x^{2}-1}\right)^{6} \\ +{ }^{8} C_{8}\left(\sqrt{x^{2}-1}\right)^{8}\end{array}\right]$
Which has degree 8
181 (6)
Coefficients of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms are equal
$\Rightarrow{ }^{18} C_{2 r+3}={ }^{18} C_{r-3}$ (when ${ }^{n} C_{x}={ }^{n} C_{y}$, then
$x=y$ or $x+y=n$)
$\Rightarrow 2 r+3+r-3=18 \Rightarrow r=6$
182 (4)
$T_{2}={ }^{n} C_{1}\left(a^{1 / 13}\right)^{n-1} \cdot a \sqrt{a}=14 a^{5 / 2}$
$\Rightarrow n \cdot a^{\frac{n-1}{13}}=14 a$
$\Rightarrow n \cdot a^{\frac{n-14}{13}}=14$
$\Rightarrow \frac{n-14}{13}=0$
$\Rightarrow n=14$
$\Rightarrow \frac{{ }^{14} C_{3}}{{ }^{14} C_{2}}=\frac{14!}{3!\cdot 11!} \frac{2!\cdot 12!}{14!}=\frac{12}{3}=4$
183 (6)
$\left(1-2 x+5 x^{2}-10 x^{3}\right)\left[{ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}\right.$

$$
+\cdots]=1+a_{1} x+a_{2} x^{2}+\cdots
$$

$\Rightarrow a_{1}=n-2$ and $a_{2}=\frac{n(n-1)}{2}-2 n+5$
Given that $a_{1}^{2}=2 a_{2}$
$\Rightarrow(n+2)^{2}=n(n-1)-4 n+10$
$\Rightarrow n^{2}-4 n+4=n^{2}-5 n+10$
$\Rightarrow n=6$
184 (9)
According to the question,
${ }^{14} C_{r-1},{ }^{14} C_{r},{ }^{14} C_{r+1}$ are in A.P., so $\left\{b=\frac{a+c}{2}\right\}$
$\Rightarrow 2 .{ }^{14} C_{r}={ }^{14} C_{r-1}+{ }^{14} C_{r+1}$

$$
\begin{aligned}
& \Rightarrow \frac{2.14!}{(14-r)!r!}=\frac{14!}{(14-r+1)!(r-1)} \\
& \quad+\frac{14!}{(14-r-1)!(r+1)!} \\
& \Rightarrow \frac{2}{(14-r)(13-r)!r(r-1)!} \\
& =\frac{1}{(15-r)(14-r)(13-r)!(r-1)!} \\
& +\frac{1}{(13-r)!(r+1) r(r-1)!} \\
& \Rightarrow \frac{2}{(14-r) r}=\frac{1}{(15-r)(14-r)}+\frac{1}{r(r+1)} \\
& \Rightarrow \frac{2}{(14-r) r}-\frac{1}{r(r+1)}=\frac{1}{(15-r)(14-r)} \\
& \Rightarrow \frac{3 r-12}{r(r+1)}=\frac{1}{(15-r)} \\
& \Rightarrow r=5 \text { or } 9
\end{aligned}
$$

185 (1)
Let x^{7} occurs in T_{r+1} term, then
$T_{r+1}={ }^{n} C_{r}\left(a x^{2}\right)^{n-r}\left(\frac{1}{b x}\right)^{r}$
$={ }^{11} C_{r} \frac{a^{11-r}}{b^{r}} \cdot x^{22-2 r-r}$
For $x^{7} \Rightarrow 22-3 r=7 \Rightarrow r=5$
Hence, coefficients of x^{7} is ${ }^{11} C_{5} \frac{a^{6}}{b^{5}}$
Let x^{-7} occur in T_{r+1} term, then
$T_{r+1}={ }^{11} C_{r}(a x)^{11-r}\left(-\frac{1}{b x^{2}}\right)^{r}$
$={ }^{11} C_{r} \frac{a^{11-r}}{(-b)^{r}} x^{11-3 r}$
For $x^{7} \Rightarrow 11-3 r=-7 \Rightarrow r=6$
Hence, coefficient of x^{-7} is ${ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
Now ${ }^{11} C_{5} \frac{a^{5}}{b^{6}}={ }^{11} C_{6} \frac{a^{6}}{b^{5}}$
$\Rightarrow{ }^{11} C_{5} a={ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
$\Rightarrow{ }^{11} C_{5} a={ }^{11} C_{11-6} \frac{1}{b}$
$\Rightarrow{ }^{11} C_{5} a={ }^{11} C_{5} \frac{1}{b}$
$\Rightarrow a b=1$

186 (0)
$1+2+2^{2}+2^{3}+\cdots+2^{1999}$
$=\frac{1\left(2^{2000}-1\right)}{1}$
$=2^{2000}-1$
$=(1-5)^{1000}-1$
$=1-{ }^{1000} C_{1} \cdot 5+{ }^{1000} C_{2} \cdot 5^{2}+\cdots+{ }^{1000} C_{1000}$ $\cdot 5^{1000}-1$
Which is divisible by 5
187 (4)

$$
\begin{aligned}
& \left(5^{\frac{2}{5} \log _{5} \sqrt{4^{x}+44}}+\frac{1}{5^{\log _{5} \sqrt[3]{2^{x-1}+7}}}\right)^{8} \\
& =\left(\left(\sqrt{4^{x}+44}\right)^{2 / 5}+\left(\frac{1}{\sqrt[3]{2^{x-1}+7}}\right)\right)^{8} \\
& =\left(\left(4^{x}+44\right)^{1 / 5}+\frac{1}{\left(2^{x-1}+7\right)^{1 / 3}}\right)^{8}
\end{aligned}
$$

Now
$T_{4}=T_{3+1}={ }^{8} C_{3}\left(\left(4^{x}+44\right)^{1 / 5}\right)^{8-3} \frac{1}{\left(\left(2^{x-1}+7\right)^{1 / 3}\right)^{3}}$
Given $336={ }^{8} C_{3}\left(\frac{4^{x}+44}{2^{x-1}+7}\right)$
Let $2^{x}=y$
$\Rightarrow 336={ }^{8} C_{3}\left(\frac{y^{2}+44}{(y / 2)+7}\right)$
$\Rightarrow 336=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}\left(\frac{2\left(y^{2}+44\right)}{y+14}\right)$
$\Rightarrow y^{2}-3 y+2=0 \Rightarrow y=0,2$

