

8.BINOMIAL THEOREM

Single Correct Answer Type

1.	$\binom{30}{0}\binom{30}{10} - \binom{30}{1}\binom{30}{11} + $	$\binom{30}{20}\binom{30}{30}$ is equal to				
	a) ${}^{30}C_{11}$	b) ${}^{60}C_{10}$	c) ${}^{30}C_{10}$	d) $^{65}C_{55}$		
2.	The coefficient of $a^8b^4c^9d^9$ in $(abc + abd + acd + bcd)^{10}$ is					
	a) 10!	b) $\frac{10!}{8! 4! 9! 9!}$	c) 2520	d) None of these		
3.	The value of $\sum_{r=1}^{15} \frac{r2^r}{(r+2)!}$ is	equal to				
	a) $\frac{(17)! - 12^{16}}{(17)!}$	b) $\frac{(18)! - 2^{17}}{(18)!}$	c) $\frac{(16)! - 2^{15}}{(16)!}$	d) $\frac{(15)! - 2^{14}}{(15)!}$		
4.	If $(1 - x^2)^n \sum_{r=0}^n a_r x^r (1$	$(-x)^{2n-r}$, then a_r is equal	to			
F	a) ^{<i>n</i>} C _{<i>r</i>}	b) ${}^{n}C_{r} 3^{r}$	c) ${}^{2n}C_r$	d) ${}^{n}C_{r}2^{r}$		
5.	The term independent of	a in the expansion of $(1 + 1)$	$\sqrt{a} + \frac{1}{\sqrt{a}-1}$ is			
	a) ${}^{30}C_{20}$	b) 0	c) ${}^{30}C_{10}$	d) None of these		
6.	If $(1 + 2x + x^2)^n = \sum_{r=0}^{2n}$	$a_r x^r$ then $a_r =$				
	a) $({}^{n}C_{r})^{2}$	b) ${}^{n}C_{r} \cdot {}^{n}C_{r+1}$	c) ${}^{2n}C_r$	d) ${}^{2n}C_{r+1}$		
7.	The value of $\sum_{r=0}^{50} (-1)^r \frac{50}{r}$	$\frac{C_r}{+2}$ is equal to				
	a) $\frac{1}{50 \times 51}$	b) $\frac{1}{52 \times 50}$	c) $\frac{1}{52 \times 51}$	d) None of these		
8	Maximum sum of coefficie	52×50 ent in the expansion of (1 –	$-r \sin A + r^2$) ⁿ is			
0.	a) 1	h) 2^n	a^{n}	9.0		
9	In the expansion of $[(1 +$	$(x)/(1-x)]^2$ the coefficient	t of x^n will be	uj o		
<i>.</i>	a) $4n$	h) $4n - 3$	c) $4n + 1$	d) None of these		
	a) $4n$ b) $4n - 5$ c) $4n + 1$ d) None of these					
10.	In the expansion of $(3^{-x/4})$	$(4 \pm 35x/4)^n$ the sum of hind	mial coefficient is 64 and t	orm with the greatest		
10.	In the expansion of $(3^{-x/4})$	$(4 + 3^{5x/4})^n$ the sum of bind ods the third by $(n - 1)$ the	omial coefficient is 64 and t	erm with the greatest		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0	$(4 + 3^{5x/4})^n$ the sum of bind eds the third by $(n - 1)$, the	omial coefficient is 64 and t e value of x must be	erm with the greatest		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$ 10 let 4 B	$(4 + 3^{5x/4})^n$ the sum of bind eds the third by $(n - 1)$, the b) 1	pmial coefficient is 64 and t e value of x must be c) 2	erm with the greatest d) 3 $(1 + r)^{10} (1 + r)^{20}$ and		
10. 11.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0,, 10$ let $A_r, B_r = (1 + x)^{30}$ Then	$(4^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectively	omial coefficient is 64 and t e value of <i>x</i> must be c) 2 ly, the coefficient of <i>x^r</i> in th	erm with the greatest d) 3 le $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10. 11.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , $B_r = (1 + x)^{30}$. Then	$(4^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel	omial coefficient is 64 and t e value of x must be c) 2 y, the coefficient of x^r in th	erm with the greatest d) 3 ie $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0,, 10$ let $A_r, B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$	$(4^{4} + 3^{5x/4})^{n}$ the sum of bindeds the third by $(n - 1)$, the b) 1 and C_r denotes, respectively	omial coefficient is 64 and t e value of <i>x</i> must be c) 2 ly, the coefficient of <i>x^r</i> in th	erm with the greatest d) 3 are $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0,, 10$ let $A_r, B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to	$(4^{4} + 3^{5x/4})^{n}$ the sum of bindeds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel	omial coefficient is 64 and t e value of x must be c) 2 ly, the coefficient of x^r in th	erm with the greatest d) 3 le $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , $B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$	$(4^{4} + 3^{5x/4})^{n}$ the sum of bindeds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$	erm with the greatest d) 3 are $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let $A_r, B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0	$(4^{4} + 3^{5x/4})^{n}$ the sum of bindeds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$	erm with the greatest d) 3 as $(1 + x)^{10}$, $(1 + x)^{20}$, and		
10.11.12.	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , $B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 + 1$	$(4^{+} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$	erm with the greatest d) 3 are $(1 + x)^{10}$, $(1 + x)^{20}$, and		
 10. 11. 12. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let $A_r, B_r = (1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 + a$ a) 15	$(4^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $(-15^{2}C_{2}^{2} - \dots - 15^{2}C_{15}^{2})$ is b) -15	pomial coefficient is 64 and t e value of x must be c) 2 by the coefficient of x^r in th b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0	erm with the greatest d) 3 te $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51		
 10. 11. 12. 13. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=1}^n \frac{1}{n_{C_r}}$	$(4^{+} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $(-1^{-15}C_2^2 - \dots - 1^{15}C_{15}^2)$ is b) -15 $(-1^{-15}C_2^2)$ equals	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51		
 10. 11. 12. 13. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=1}^n$ a) $(n - 1)a_n$	$(4^{+} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $(1 - 1)^{-15}C_{15}^{2}$ is b) -15 $(1 - 1)^{-15}C_{15}^{2}$ is b) -15 $(1 - 1)^{-15}C_{15}^{2}$ is b) na_n	pomial coefficient is 64 and t e value of x must be c) 2 by, the coefficient of x^r in th b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0 c) $(1/2)na_n$	erm with the greatest d) 3 le $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above		
 10. 11. 12. 13. 14. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n$ a) $(n - 1)a_n$ If the coefficient of x^n in ($A^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $C_r^{15}C_2^2 - \dots - {}^{15}C_{15}^2$ is b) -15 $= 0 \frac{r}{n_{C_r}}$ equals b) na_n $T + x)^{101}(1 - x + x^2)^{100}$ is	pomial coefficient is 64 and t e value of x must be c) 2 by, the coefficient of x^r in th b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0 c) $(1/2)na_n$ s non-zero, then n cannot b	erm with the greatest d) 3 le $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above be of the form		
 10. 11. 12. 13. 14. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n \frac{1}{n_{C_r}}$ a) $(n - 1)a_n$ If the coefficient of x^n in (a) $3r + 1$	$A^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $C_r^{15}C_2^2 - \dots - {}^{15}C_{15}^2$ is b) -15 $= 0 \frac{r}{n_{C_r}}$ equals b) na_n $(1 + x)^{101}(1 - x + x^2)^{100}$ is b) $3r$	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ c) 0 c) $(1/2)na_n$ s non-zero, then <i>n</i> cannot b c) $3r + 2$	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above he of the form d) None of these		
 10. 11. 12. 13. 14. 15. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n \frac{1}{n_{C_r}}$ in (a) $3r + 1$ The number of integral te	$A^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $C_r^{15}C_2^2 - \dots - {}^{15}C_{15}^2$ is b) -15 $E_0 \frac{r}{n_{C_r}}$ equals b) na_n $(1 + x)^{101}(1 - x + x^2)^{100}$ is b) $3r$ rms in the expansion of ($$	pomial coefficient is 64 and t e value of x must be c) 2 b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0 c) $(1/2)na_n$ s non-zero, then n cannot b c) $3r + 2$ $\overline{3} + \sqrt[8]{5}^{256}$ is	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above he of the form d) None of these		
 10. 11. 12. 13. 14. 15. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n$ a) $(n - 1)a_n$ If the coefficient of x^n in (a) $3r + 1$ The number of integral ter a) 33	$A^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel C_r denotes, respectivel b) -15 $E_0 \frac{r}{n_{C_r}}$ equals b) na_n $(1 + x)^{101}(1 - x + x^2)^{100}$ is b) $3r$ rms in the expansion of ($$ b) 34	pomial coefficient is 64 and t e value of x must be c) 2 by, the coefficient of x^r in th b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0 c) $(1/2)na_n$ s non-zero, then n cannot b c) $3r + 2$ $\overline{3} + \sqrt[8]{5}^{256}$ is c) 35	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above he of the form d) None of these d) None of these		
 10. 11. 12. 13. 14. 15. 16. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n a_r$ a) $(n - 1)a_n$ If the coefficient of x^n in (a) a) $3r + 1$ The number of integral te a) 33 $\sum_{r=0}^{300} a_r x^r = (1 + x + x^2 + x^2)$	$(4^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel $(1^{-15}C_2^2 - \dots - {}^{15}C_{15}^2)$ is b) -15 $(1^{5}C_r)^{-15}$ equals b) na_n $(1 + x)^{101}(1 - x + x^2)^{100}$ is b) $3r$ rms in the expansion of $(\sqrt{2})$ b) 34 $(1 + x^3)^{100}$. If $a = \sum_{r=0}^{300} a_r$, the	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ c) $C_{10} - B_{10}$ c) $C_{10} - C_{10} - C_{10}$ c) $C_{10} - C_{10} - C_{10} - C_{10}$ c) $C_{10} - C_{10} - C_{10} - C_{10} - C_{10}$ c) $C_{10} - C_{10} - C_{10$	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above he of the form d) None of these d) None of these		
 10. 11. 12. 13. 14. 15. 16. 	In the expansion of $(3^{-x/4})$ binomial coefficient exceed a) 0 For $r = 0$,,10 let A_r , B_r is $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to a) $B_{10} - C_{10}$ c) 0 The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$ a) 15 If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n$ a) $(n - 1)a_n$ If the coefficient of x^n in (a) $3r + 1$ The number of integral te a) 33 $\sum_{r=0}^{300} a_r x^r = (1 + x + x^2 + x^2)$ a) 300a	$(4^{4} + 3^{5x/4})^{n}$ the sum of bind eds the third by $(n - 1)$, the b) 1 and C_r denotes, respectivel C_r denotes, respectivel b) -15 $=0 \frac{r}{n_{C_r}}$ equals b) na_n $(1 + x)^{101}(1 - x + x^2)^{100}$ is b) $3r$ rms in the expansion of $(\sqrt{2})$ b) 34 $(\sqrt{2})$ $(\sqrt{2})$ $(\sqrt{2}$	b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ c) 2 b) $A_{10}(B_{10}^2 - C_{10}A_{10})$ d) $C_{10} - B_{10}$ c) 0 c) $(1/2)na_n$ s non-zero, then <i>n</i> cannot b c) $3r + 2$ $\overline{3} + \sqrt[8]{5}^{256}$ is c) 35 hen $\sum_{r=0}^{300} r a_r$ is equal to c) $150a$	erm with the greatest d) 3 he $(1 + x)^{10}$, $(1 + x)^{20}$, and d) 51 d) None of the above he of the form d) None of these d) None of these d) 75 <i>a</i>		

a)
$$-\frac{1}{n+1}$$
 b) $-\frac{1}{n}$ c) $\frac{1}{n+1}$ d) $\frac{n}{n+1}$
18. If x is positive, the first negative term in the expansion of $(1 + x)^{27/5}$ is $(|x| < 1)$
a) 5^{10} term b) 8^{10} term c) 6^{10} term d) 7^{10} term
19. The value of $2^{10}_{20} - x^{10}C_1 + x^{20}C_2 + x^{20}C_3 + x^{20}C_{12} + x^{20}C_{12} + x^{20}C_{13} + x^{20}C_{14} + x^{20}C_{15}$ is
a) $2^{10} - \frac{x^{20}C_{10} + x^{20}C_{1}}{2}$ b) $2^{10} - \frac{(x^{20}C_{10} + 2x^{20}C_{12})}{2}$
c) $2^{19} - \frac{x^{20}C_{10}}{2}$ d) None of these
21. If $|x| < 1$, then $1 + n\left(\frac{1}{2x}\right)^{2} + \frac{x^{10}(1+x^{2})^{2}}{2} + \cdots$ is equal to
a) $\left(\frac{1}{2x} + \frac{1}{2}\right)^{n}$ b) $\left(\frac{1+x^{2}}{2x}\right)^{n}$ c) $\left(\frac{1-x}{1+x}\right)^{n}$ d) $\left(\frac{1+x}{1-x}\right)^{n}$
22. The coefficient of x^{26} in the expansion of $(1 + x^{3} - x^{6})^{10}$ is
a) $1 \quad b^{10}$ o $e^{-30}C_{6}$ d) $x^{30}C_{3}$
23. The number of distinct terms in the expansion of $\left(x + \frac{1}{x} + x^{2}\frac{1}{x^{1}}\right)^{15}$ is/are (with respect to different power of x)
a) 2^{150} b) 61 c) 127 d) None of these
24. The value of $\sum_{20}^{40} p^{140}C_{20}^{20}C_{7}$ is
a) $40^{-60}C_{23}$ b) $40^{-70}C_{30}$ c) $(x + \frac{1}{x} + x^{2}\frac{1}{x^{1}}\right)^{15}$ is/are (with respect to different power of x)
a) 210 b) 105 c) 70 d) $11-x^{17/3}$ d) $(1-x)^{-17/3}$
25. $1+\frac{1}{3}x+\frac{1+x^{24}}{1+x^{24}}+\frac{1+x^{24}}{1+x^{24}}+\frac{1}{$

35.	The coefficient of $x^r [0 \le 2x + 2x$	$r \leq (n-1)$] in the expanse	ion of $(x+3)^{n-1} + (x+3)$	$x^{n-2}(x+2) + (x+2)$		
	3n-3x+22++x+2n-1	are b) $n \in (2^{n-r} - 2^{n-r})$	c) $n (2r + 2n - r)$	d) None of these		
26	a) $C_r(5 - 2^{-1})$	$U_r(S^* - Z^*)$	$C_{r}(3 + 2^{n})$			
50.	$ \prod_{n=1}^{\infty} (3 + x^{-1})^{n} + x^{-1})^{n} = a_0 + a_1 x + a_2 x^{-1} + \dots + a_n x^{n}, \text{ then the value of } a_0 - \frac{1}{2}a_1 - \frac{1}{2}a_2 + a_3 - \frac{1}{2}a_1 + \frac{1}{2}a_2 + a_3 - \frac{1}{2}a_1 + \frac{1}{2}a_2 + a_3 - \frac{1}{2}a_1 + \frac{1}{2}a_2 + \frac{1}{2}a_2 + \frac{1}{2}a_2 + \frac{1}{2}a_3 $					
	$\frac{1}{2}a_5 + a_6 - \cdots$ is					
	a) 3 ²⁰¹⁰	b) 1	c) 2 ²⁰¹⁰	d) None of these		
37.	$(n+2)^{n}C_{0}2^{n+1} - (n+2)^{n}C_{0}2^{n+1}$	1) ${}^{n}C_{1}2^{n} + n {}^{n}C_{2}2^{n-1} - \cdots$	is equal to			
	a) 4	b) 4n	c) $4(n+1)$	d) $2(n+2)$		
38.	The coefficient of x^{53} in t	the expansion $\sum_{m=0}^{100} 100 C_m$	$(x-3)^{100-m}2^m$ is			
	a) ¹⁰⁰ C ₄₇	b) ¹⁰⁰ C ₅₃	c) $-^{100}C_{53}$	d) $-^{100}C_{100}$		
39.	The fractional part of 2 ⁴ⁿ	$n < N$ /15 is ($n \in N$)				
	$\frac{1}{2}$	$h)$ $\frac{2}{}$	$c) \frac{4}{}$	d) None of these		
	a) <u>15</u>	⁰) 15	$\frac{15}{15}$			
40.	If $(1 + 2x + 3x^2)^{10} = a_0$	$+ a_1 x + a_2 x^2 + \ldots + a_{20} x^{20}$, then a_1 equals			
	a) 10	b) 20	c) 210	d) None of these		
41.	The approximate value o	f (1.0002) ³⁰⁰⁰ is				
	a) 1.6	b) 1.4	c) 1.8	d) 1.2		
42.	$\left[\left({^{n}C_{0} + {^{n}C_{3}} + \dots \right) - 1/2 \right]$	$\binom{n}{C_1} + \binom{n}{C_2} + \binom{n}{C_4} + \binom{n}{C_5} + \binom{n}{C_5}$	$[\dots]^{2} + 3/4 ({^{n}C_{1}} - {^{n}C_{2}} +$	$- {}^{n}C_{4} - {}^{n}C_{5} + \dots)^{2} =$		
	a) 3	b) 4	c) 2	d) 1		
43.	The last two digits of the	number 3 ⁴⁰⁰ are				
	a) 81	b) 43	c) 29	d) 01		
44.	$\sum k \left(1 - \frac{1}{2}\right)^{\kappa - 1} =$					
	$\sum_{k=1}^{n} (1 n)$					
	a) <i>n</i> (<i>n</i> − 1)	b) <i>n</i> (<i>n</i> + 1)	c) <i>n</i> ²	d) $(n + 1)^2$		
45.	If the coefficients of $r^{ m th}$, ($(r+1)^{\text{th}}$ and $(r+2)^{\text{th}}$ term	ns in the binomial expansion	n of $(1+y)^m$ are in AP.,		
	then m and r satisfy the e	equation				
	a) $m^2 - m(4r + 1) + 4r^2$	$2^{2} + 2 = 0$	b) $m^2 - m(4r - 1) + 4r^2$	-2 = 0		
	c) $m^2 - m(4r - 1) + 4r^2$	$^{2} + 2 = 0$	d) $m^2 - m(4r+1) + 4r^2$	-2 = 0		
46.	If $ x < 1$, then the coefficient	cient of x^n in expansion of	$(1 + x + x^2 + x^3 +)^2$ is			
	a) <i>n</i>	b) <i>n</i> – 1	c) <i>n</i> + 2	d) <i>n</i> + 1		
47.	If $(1-x)^{-n} = a_0 + a_1 x - a_1 x$	$+ a_2 x^2 + + a_r x^r +,$ then	$a_0 + a_1 + a_2 + \dots + a_r$ is equ	ual to		
	a) $\frac{n(n+1)(n+2)\cdots(n+1)}{n}$	+r)	b) $\frac{(n+1)(n+2)\cdots(n+1)}{(n+1)(n+2)\cdots(n+1)}$	<i>r</i>)		
	r!	L m 1)	r!			
	c) $\frac{n(n+1)(n+2)\cdots(n+2)}{n!}$	+7 - 1)	a) None of these			
48.	7 !		$\int \sqrt{2x-1}$	1] ⁷		
10.	The value of <i>x</i> for which	the sixth term in the expan	sion of $2^{\log_2 \sqrt{9^{x-1}+7}} + \frac{1}{2^{\frac{1}{5}\log^2}}$	$\frac{1}{2^{(3^{x-1}+1)}}$ is 84 is		
	a) 4	b) 1 or 2	c) 0 or 1	d) 3		
49.	In the expansion of $(5^{1/2})$	$\pm 7^{1/8}$ 1024 the number of	f integral terms is	-)-		
	a) 128	h 120		d) 121		
50	$x^{2}+x+1$	DJ 129	cj 150	uj 151		
50.	$ \lim_{x \to 1} \frac{1}{1-x} = a_0 + a_1 x + a_2 $	$_{2}x^{2}+$, then $\sum_{r=1}^{50}a_{r}$ is equ	al to			
	a) 148	b) 146	c) 149	d) None of these		
51.	If $p = (8 + 3\sqrt{7})^n$ and f	$= p - [p]$, where $[\cdot]$ denote	es the greatest integer funct	tion, then the value of		
	p(1-f) is equal to					
	a) 1	b) 2	c) 2 ⁿ	d) 2 ²ⁿ		
52.	The value of $\sum_{r=1}^{n+1} (\sum_{k=1}^{n} \sum_{r=1}^{n} \sum_{k=1}^{n} \sum_{r=1}^{n} $	${}^{k}C_{r-1}$ (where $r, k, n \in N$)	is equal to			
	a) $2^{n+1} - 2$	b) $2^{n+1} - 1$	c) 2 ^{<i>n</i>+1}	d) None of these		
53.	Value of $\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{r} (k)^{r}$	C_r) is				
	$-1 - 1 - 0 3^{K}$					

	a) $\frac{2}{3}$	b) $\frac{4}{3}$	c) 2	d) 1
54.	The coefficient of x^4 in (x)	$(2-3/x^2)^{10}$ is		
	a) $\frac{405}{256}$	b) $\frac{504}{259}$	c) $\frac{450}{263}$	d) None of these
55.	The coefficient of the mide the same, if α equals	lle term in the binomial ex	pansion in power of x of (1	$(-\alpha x)^4$ and of $(1-\alpha x)^6$ is
	a) $-\frac{5}{3}$	b) $\frac{10}{3}$	c) $-\frac{3}{10}$	d) $\frac{3}{5}$
56.	If x^m occurs in the expans	ion of $(x + 1/x^2)^{2n}$, then t	he coefficient of x^m is	
	a) $\frac{(2n)!}{(m)!(2n-m)!}$	b) $\frac{(2n)! 3! 3!}{(2n-m)!}$	c) $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$	d) None of these
57.	The last two digits of the r	umber (23) ¹⁴ are		
	a) 01	b) 03	c) 09	d) None of these
58.	If $(1 + x - 2x^2)^6 = 1 + a_1$	$x + a_2 x^2 + a_3 x^3 + \dots$, then	the value of $a_2 + a_4 + a_6 +$	$\dots + a_{12}$ will be
	a) 32	b) 31	c) 64	d) 1024
59.	If $n - {}^{1}C_{r} = (k^{2} - 3) {}^{n}C_{r}$.	$_{+1}$, then $k \in$		_
	a) (−∞, −2)	b) [2,∞)	c) $\left[-\sqrt{3}, \sqrt{3}\right]$	d) (√3, 2]
60.	The coefficient of x^{10} in th	e expansion of $(1 + x^2 - x)$	$(x^3)^8$ is	
	a) 476	b) 496	c) 506	d) 528
61.	If the 6 th term in the expan	nsion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)$	⁸ is 5600, then <i>x</i> equals	
	a) 1	b) log _e 10	c) 10	d) <i>x</i> does not exist
62.	The expression $(\sqrt{2x^2 + 1})$	$(+\sqrt{2x^2-1})^6 + (\frac{2}{\sqrt{2x^2+1}+x^2})^6$	$\frac{1}{\sqrt{2x^2-1}}^6$ is a polynomial of	degree
	a) 6	b) 8	c) 10	d) 12
63.	If the last term in the bino	mial expansion of $\left(2^{1/3} - \frac{1}{3}\right)$	$\left(\frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{3^{5/3}}\right)^{\log_3 8}$, then the	5 th term from the
	beginning is	L) 420	-) 105	d) Nama af thana
64	$1 1 \times 3 1 \times 3 \times 5$	0] 420	cj 105	a) None of these
04.	$1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 3}{4 \times 8 \times 12}$	$\frac{1}{2} + \cdots =$		4
	a) √2	b) $\frac{1}{\sqrt{2}}$	c) $\sqrt{3}$	d) $\frac{1}{\sqrt{3}}$
65.	If the coefficients of 5 th , 6 ^t	th and 7 th terms in the expa	ansion of $(1 + x)^n$ be in A.P	P., then $n =$
	a) 7 only	b) 14 only	c) 7 or 14	d) None of these
66.	The coefficient of x^n in the	e expansion of $(1 - x)(1 - x)$	$(x)^n$ is	
	a) <i>n</i> – 1	b) $(-1)^n (1+n)$	c) $(-1)^{n-1}(n-1)^2$	d) $(-1)^{n-1}n$
67.	The expression $(x + (x^3 -$	$(-1)^{\frac{1}{2}} \Big)^{5} + \left(x + (x^{3} + 1)^{\frac{1}{2}}\right)^{5}$	is a polynomial of degree	
	a) 5	b) 6	c) 7	d) 8
68.	The sum of rational term i	$n(\sqrt{2} + \sqrt[3]{3} + \sqrt[6]{5})^{10}$ is equ	ial to	
	a) 12632	b) 1260	c) 126	d) None of these
69.	If C_r stands for nC_r , then t	the sum for the series $\frac{2(\frac{n}{2})!}{n!}$	$(\frac{2}{2})! [C_0^2 - 2C_1^2 + 3C_2^2 - \dots +$	$(-1)^{n}(n+1)C_{n}^{2}$], where <i>n</i>
	is an even positive integer	is equal to		
	a) 0	b) $(-1)^{n/2}(n+1)$	c) $(-1)^n (n+2)$	d) $(-1)^n n$
70.	The coefficient of x^5 in the	e expansion of $(1 + x)^{21}$ +	$(1+x)^{22} + \dots + (1+x)^{30}$	is
	a) ${}^{51}C_5$	b) ⁹ C ₅	c) ${}^{31}C_6 - {}^{21}C_6$	d) ${}^{30}C_5 + {}^{20}C_5$
71.	If $f(x) = 1 - x + x^2 - x^3$	$+\cdots - x^{15} + x^{16} - x^{17}$, the	en the coefficient of x^2 in f	(x - 1) is
	a) 826	b) 816	c) 822	d) None of these

72.	The coefficient of $1/x$ in t	the expansion of $(1 + x)^m$	$(1 + 1/x)^n$ is	
	n!	(2 <i>n</i>)!	(2 <i>n</i>)!	d) None of these
	a) $(n-1)!(n+1)!$	(n-1)!(n+1)!	(2n-1)!(2n+1)!	
73.	In the expansion of $(1 + 3)$	$3x + 2x^2)^6$, the coefficient	of x^{11} is	
	a) 144	b) 288	c) 216	d) 576
74.	The coefficient of x^5 in the	e expansion of $(x^2 - x - 2)$	2) ⁵ is	
	a) -83	b) -82	c) -86	d) -81
75.	If in the expansion of (1 -	$(+x)^n$, a, b, c are three cons	ecutive coefficients, then <i>n</i>	=
	a) $\frac{ac+ab+bc}{ac+ab+bc}$	b) $\frac{2ac + ab + bc}{2ac + ab + bc}$	ab + bc	d) None of these
	$b^2 + ac$	$b^{2} - ac$	$b^2 - ac$	
76.	Let $f(x) = a_0 + a_1 x + a_2$	$a_n x^2 + \dots + a_n x^n + \dots$ and $\frac{f(n+1)}{1}$	$\frac{(x)}{-x} = b_0 + b_1 x + b_2 x^2 + \dots$	$+ b_n x^n + \cdots$, then
	a) $b_n + b_{n-1} = a_n$	b) $b_n - b_{n-1} = a_n$	c) $b_n/b_{n-1} = a_n$	d) None of these
77.	If in the expansion of (<i>a</i> -	$(-2b)^n$, the sum of 5^{th} and $(-2b)^n$	6 th terms in 0, then the valu	les of $a/b =$
	n-4	2(n-4)	5	5
	a) <u></u>	b) <u>5</u>	C) $\frac{1}{n-4}$	a) $\frac{1}{2(n-4)}$
78.			$(1+x)^{3/2} - ($	$(1+\frac{1}{2}x)^3$
	If x is so small that x^3 and	d higher powers of <i>x</i> may b	be neglected, then $\frac{1}{(1-x)^2}$	$\frac{2}{1/2}$ may be
	approximated as			
	a) $3r + \frac{3}{r^2}$	h) $1 - \frac{3}{r^2}$	c) $\frac{x}{x} - \frac{3}{x^2}r^2$	d) $-\frac{3}{r^2}r^2$
	8	8	$2x^{\lambda}$	8
79.	The sum of the coefficien	ts of even power of <i>x</i> in the	e expansion $(1 + x + x^2 + x^3)$	³) ⁵ is
	a) 256	b) 128	c) 512	d) 64
80.	${}^{404}C_4 - {}^{4}C_1 {}^{303}C_4 + {}^{4}C_2$	$^{202}C_4 - {}^4C_3 {}^{101}C_4$ is equal	l to	
	a) (401) ⁴	b) (101) ⁴	c) 0	d) (201) ⁴
81.	If <i>n</i> is an integer between	0 and 21, then the minimu	$\lim_{n \to \infty} \operatorname{value of} n! (21 - n)! \text{ is a}$	ttained for $n =$
~~	a) 1 $n_c n_c$	b) 10 n_{c} n_{c}	c) 12	d) 20
82.	The value of $\frac{c_0}{n} + \frac{c_1}{n+1} + \frac{c_1}{n+1}$	$\frac{c_2}{n+2} + \dots + \frac{c_n}{2n}$ is equal to		
	$\int_{-\infty}^{1} n^{-1} (1 - n) n dn$	$1 \sum_{n=1}^{2} n (1)^{n-1} l$	$\sum_{n=1}^{2} n^{-1} (1 + n)^{n} $	$\int_{1}^{1} (1 \dots) n \dots n - 1 \dots$
	a) $\int_{0}^{\infty} x^{n-1} (1-x)^{n} dx$	b) $\int_{1}^{1} x^{n} (x-1)^{n-1} dx$	c) $\int_{1} x^{n-1} (1+x)^{n} dx$	a) $\int_{0}^{1} (1-x)^{n} x^{n-1} dx$
83.	If the term independent (of x in the $\left(\sqrt{x} - \frac{k}{k}\right)^{10}$ is 40)5 then k equals	Ū
		$\sqrt{x} = \frac{1}{x^2}$ is 40	, uleli k equais	
~ .	a) 2, -2	b) 3, -3	c) 4, -4	d) 1, −1
84.	$(1+x)^n = C_0 + C_1 x + C_2$	$c_2 x^2 + \dots + C_n x^n$ then $C_0 C_2$	$+ c_1 c_3 + c_2 c_4 + \dots + c_{n-2} c_$	$L_n =$
	a) $\frac{(2n)!}{(2n)!}$	b) $\frac{(2n)!}{(2n)!}$	c) $\frac{(2n)!}{(2n)!}$	d) None of these
05	$(n!)^2$	(n-1)!(n+1)!	(n-2)!(n+2)!	
85.	If the sum of the coefficie	nts in the expansion of (1 -	$-3x + 10x^2)^n$ is a and if th	e sum of the coefficients in
	the expansion of $(1 + x^2)$	$h^{\prime\prime}$ is <i>b</i> , then	24 3	
06	a) $a = 3b$	b) $a = b^3$	c) $b = a^{3}$	d) None of these
86.	Given positive integers r	> 1, n > 2 and that the coe	efficient of $(3r)^{ch}$ and $(r+2)^{ch}$	2) th terms in the binomial
	expansion of $(1 + x)^{2n}$ and	re equal. Then		
07	a) $n = 2r$	b) $n = 2r + 1$	c) $n = 3r$	d) None of these
87.	If the coefficient of x^7 in	$\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the c	coefficient of x^{-7} in $\left[ax^2 - b\right]$	$\left(\frac{1}{hr^2}\right)^{11}$, then a and b
	satisfy the relation		L	
	a) $a \downarrow b = 1$	b) $a = b - 1$	a) $ab = 1$	$a^{a} - 1$
	$a_{j}u + v = 1$	b j u = b = 1	C = 1	$a_{j}\frac{b}{b} = 1$
88.	The value of $\binom{30}{0}\binom{30}{10}$ -	$\binom{30}{1}\binom{30}{11} + \binom{30}{2}\binom{30}{12} +$	$\dots + \binom{30}{20}\binom{30}{20} =$	
	a) $^{60}C_{20}$	b) ${}^{30}C_{10}$	$(20^{-10}C_{20})^{-60}C_{20}$	d) ${}^{40}C_{20}$
89.	If the expansion in nowe	$x = 5^{-10}$ s of x of the function $1/[(1)]$	$(1 - hx) = a_{0} + a_{1}$	$x + a_2 x^2 + a_2 x^3 + \cdots$ then
	a_n is			
	·· /			

	$b^n - a^n$	$a^n - b^n$	$a^{n+1} - b^{n+1}$	$b^{n+1} - a^{n+1}$
	b-a	$b \overline{b-a}$	b-a	b-a
90.	The coefficient of x^5 in (1	$(x^{2} + 2x + 3x^{2} +)^{-3/2}$ is (1)	: < 1)	
	a) 21	b) 25	c) 26	d) None of these
91.	The value of $\sum_{r=0}^{10} (r)^{20} C_r$	is equal to		
	a) $20(2^{18} + {}^{19}C_{10})$	b) $10(2^{18} + {}^{19}C_{10})$	c) $20(2^{18} + {}^{19}C_{11})$	d) $10(2^{18} + {}^{19}C_{11})$
92.	The coefficient of x^2y^3 in	the expansion of $(1 - x + x)$	$(y)^{20}$ is	
	20!	b) $-\frac{20!}{}$	c) <u>20!</u>	d) None of these
	a) <u>2! 3!</u>	$\frac{1}{2!3!}$	5! 2! 3!	
93.	'p' is a prime number and	$n . If N = {}^{2n}C_n, t$	hen	
	a) p divides N	b) p ² Divides N	c) <i>p</i> cannot divide <i>N</i>	d) None of these
94.	If ${}^{n+1}C_{r+1}$: ${}^{n}C_{r}$: ${}^{n-1}C_{r-1}$ =	= 11: 6: 3, then <i>nr</i> =		
	a) 20	b) 30	c) 40	d) 50
95.	In the binomial expansion	of $(a - b)^n n \ge 5$, the sum	of the $5^{\mbox{\tiny th}}$ and $6^{\mbox{\tiny th}}$ terms is z	ero. Then a/b equals
	a) (<i>n</i> − 5)/6	b) (<i>n</i> − 4)/5	c) $n/(n-4)$	d) $6/(n-5)$
96.	If the coefficients of r^{th} are	nd $(r+1)^{\text{th}}$ terms in the ex	pansion of $(3 + 7x)^{29}$ are e	equal, then <i>r</i> equals
	a) 15	b) 21	c) 14	d) None of these
97.	If $f(x) = x^n$, then the value	ue of $f(1) + \frac{f^{1}(1)}{1} + \frac{f^{2}(1)}{2!} + \frac{f^{2}(1)}{2!}$	$\cdots + \frac{f^{n}(1)}{n!}$, where $f^{r}(x)$ den	otes the $r^{ m th}$ order
	derivative of $f(x)$ with respectively.	spect to <i>x</i> is		
	a) <i>n</i>	b) 2 ⁿ	c) 2^{n-1}	d) None of these
98.	In the expansion of $(1 + x)$	$(x + x^3 + x^4)^{10}$, the coefficie	ent of x^4 is	
	a) ⁴⁰ C ₄	b) ¹⁰ C ₄	c) 210	d) 310
99.	The coefficient of x^4 in the	e expansion of $\{\sqrt{1+x^2}-x\}$	$x\}^{-1}$ in ascending powers of	of x , when $ x < 1$, is
	a) 0	b) $\frac{1}{2}$	c) $-\frac{1}{2}$	d) $-\frac{1}{8}$
100.	If the sum of the coefficier	nts in the expansion of $(a +$	$(b)^n$ is 4096, then the great	test coefficient in the
	expansion is			
	a) 924	b) 792	c) 1594	d) None of these

Multiple Correct Answers Type

101. If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then $C_0 - (C_0 + C_1) + (C_0 + C_1 + C_2) - (C_0 + C_1 + C_2 + C_3) + (C_0 + C_1 + C_2) + (C_0 + C_2$				
$\cdots + (-1)^{n-1}(C_0 + C_1 +$	$\cdots + C_{n-1}$), where <i>n</i> is even	n integer is		
a) A positive value	b) A negative value	c) Divisible by 2^{n-1}	d) Divisible by 2 ⁿ	
102. The last digit of $3^{3^{4n}} + 2^{3^{4n}}$	$n \in N$, is			
a) ⁴ C ₃	b) ⁸ C ₇	c) 8	d) 4	
103. In the expansion of (2 –	$(2x + x^2)^9$			
a) Number of distinct te	rms is 10			
b) Coefficient of x^4 is 97	,			
c) Sum of coefficients is	1			
d) Number of distinct te	rms is 55			
104. Which of the following i	s/are correct?			
a) $101^{50} - 99^{50} > 100^{50}$	0	b) 101 ⁵⁰ - 100 ⁵⁰ > 99 ⁵⁰)	
c) $(1000)^{1000} > (1001)$	999	d) $(1001)^{999} > (1000)^{10}$	00	
105. For which of the followi	ng values of <i>x</i> , 5 th term is t	he numerically greatest terr	n in the expansion of	
$(1 + x/3)^{10}$				
a) —2	b) 1.8	c) 2	d) —1.9	
106. The middle term in the	expansion of $(x/2 + 2)^8$ is	1120; then $x \in R$ is equal to		
a) -2	b) 3	c) -3	d) 2	

107. The sum of the coefficient in the expansion of $(1 + ax - 2x^2)^n$ is a) Positive, when a < 1 and $n = 2k, k \in N$ b) Negative, when a < 1 and $n = 2k + 1, k \in N$ c) Positive, when a > 1 and $n \in N$ d) Zero, when a = 1108. For natural numbers *m*, *n* if $(1 - y)^m (1 + y)^n = 1 + a_1y + a_2y^2 + ...$, and $a_1 = a_2 = 10$, then c) m + n = 80b) m > nd) m - n = 20a) m < n109. If the coefficients of r^{th} , $(r + 1)^{\text{th}}$ and $(r + 2)^{\text{th}}$ terms in the expansion of $(1 + x)^{14}$ are in AP., then r is/are a) 5 b) 12 c) 10 d) 9 110. In the expansion of $(7^{1/3} + 11^{1/9})^{6561}$ a) There are exactly 730 rational terms b) There are exactly 5831 irrational terms c) The term which involves greatest binomial coefficients is irrational d) The term which involves greatest binomial coefficients is rational 111. The number of values of r satisfying the equation ${}^{69}C_{3r-1} - {}^{69}C_{r^2} = {}^{69}C_{r^2-1} - {}^{69}C_{3r}$ is a) 1 ^{112.} In the expansion of $\left(x^2 + 1 + \frac{1}{x^2}\right)^n$, $n \in N$, a) Number of terms is 2n + 1b) Coefficient of constant term is 2^{n-1} c) Coefficient of x^{2n-2} is n d) Coefficient of x^2 in n113. For the expansion $(x \sin p + x^{-1} \cos p)^{10}$, $(p \in R)$, a) The greatest value of the term independent of x is $10! 2^5 (5!)^2$ b) The least value of sum of coefficient is zero c) The greatest value of sum coefficient is 32 d) The least value of the term independent of x occurs when $p = (2n + 1)\frac{\pi}{4}$, $n \in \mathbb{Z}$ 114. If $(4 + \sqrt{15})^n = I + f$, where *n* is an odd natural number, *I* is an integer and 0 < f < 1, then b) *I* is an even integer c) (I + f)(1 - f) = 1 d) $1 - f = (4 - \sqrt{5})^n$ a) *I* is an odd integer 115. If the 4th term in the expansion of $(ax + 1/x)^n$ is 5/2, then a) $a = \frac{1}{2}$ c) $a = \frac{2}{2}$ b) *n* = 8 d) n = 6^{116.} If $f(m) = \sum_{i=0}^{m} {30 \choose 30 - i} {20 \choose m - i}$ Where $\binom{p}{q} = {}^{p}C_{q}$, then a) Maximum value of f(m) is ${}^{50}C_{25}$ c) f(m) is always divisible by 50 ($1 \le m \le 49$) b) $f(0) + f(1) + ... + f(50) = 2^{50}$ d) The value of $\sum_{m=0}^{50} (f(m))^2 = {}^{100}C_{50}$ 117. If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, $n \in N$, then $C_0 - C_1 + C_2 - \dots + (-1)^{m-1} C_{m-1}$ is equal to (m < n)a) $\frac{(n-1)(n-2)\cdots(n-m+1)}{(m-1)!}(-1)^{m-1}$ b) $^{n-1}C_{m-1}(-1)^{m-1}$ c) $\frac{(n-1)(n-2)\cdots(n-m)}{(m-1)!}(-1)^{m-1}$ d) $^{n-1}C_{n-m}(-1)^{m-1}$ 118. Let $(1 + x^2)^2 (1 + x)^n = \sum_{k=0}^{n+4} a_k x^k$. If a_1, a_2 and a_3 are in arithmetic progression, then the possible value/values of *n* is/are a) 5 b) 4 c) 3 d) 2 119. If for z as real or complex, $(1 + z^2 + z^4)^8 = C_0 + C_1 z^2 + C_2 z^4 + \ldots + C_{16} z^{32}$, then a) $C_0 - C_1 + C_2 - C_3 + \ldots + C_{16} = 1$ b) $C_0 + C_3 + C_6 + C_9 + C_{12} + C_{15} = 3^7$ d) $C_1 + C_4 + C_7 + C_{10} + C_{13} + C_{16} = 3^7$ c) $C_2 + C_5 + C_8 + C_{11} + C_{14} = 3^6$ 120. 10th term of $\left(3 - \sqrt{\frac{17}{4} + 3\sqrt{2}}\right)^{2}$ a) An irrational number b) A rational number c) A positive integer d) A negative integer

121. In the expansion of $(x + a)^n$ if the sum of odd terms be *P* and sum of even terms be *Q*, then

	a) $P^2 - Q^2 = (x^2 - a^2)^n$		b) $4PQ - (x + a)^{2n} - (x - a)^{2n}$	$(-a)^{2n}$
	c) $2(P^2 + Q^2) = (x + a)^{2n}$	$(x-a)^{2n}$	d) None of these	
122.	If <i>n</i> is a positive integer an	ad if $(1 + x + x^2)^n = \sum_{r=0}^{2n} a^r$	$a_r x^r$, then	
	a) $a_1 = a_{2n-r}$, for $0 \le r \le r$	2 <i>n</i>		
	b) $a_0 + a_1 + \dots + a_{n-1} = \frac{1}{2}$	$(3^n - a_n)$		
	c) $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \dots$	$+ a_{2n}^2 = a_n$		
	d) $a_0 + a_1 + \dots + a_{2n} = \frac{1}{2}$	$(3^n + 1)$		
123.	The value of ${}^{n}C_{1} + {}^{n+1}C_{2}$	$+ {}^{n-2}C_3 + \dots + {}^{n+m-1}C_m$	is equal to	
	a) ${}^{m+n}C_{n-1}$		b) ${}^{m+n}C_{n-1}$	
	c) ${}^{m}C_{1} + {}^{m+1}C_{2} + {}^{m+2}C_{3}$	$G_3 + \dots + {}^{m+n-1}C_n$	d) $^{m+n}C_{m-1}$	
124.	The value/values of x in the	the expression $(x + x^{\log_{10} x})$	\int^{5} if the third term in the ex	xpansion is 10,00,000 is
	/are			
	a) 10	b) 100	c) 10 ^{-5/2}	d) 10 ^{-3/2}
125.	The number $101^{100} - 1$ is	divisible by		
	a) 100	b) 1000	c) 10000	d) 100000

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 126 to 125. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

126 Let $S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$, $S_2 = \sum_{j=1}^{10} j 10_{C_j}$ and $S_3 = \sum_{j=1}^{10} j^2 {}^{10} C_j$

Statement 1: $S_3 = 55 \times 2^9$

Statement 2: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$

127

```
Statement 1: If n is an odd prime, then the integral part of (\sqrt{5} + 2)^n - 2^{n+1} is divisible by 2n)
```

Statement 2: If *n* is prime, then ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n-1}$ must be divisible by *n*

128

Statement 1: The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$ is (n + 1)

Statement 2: The coefficient of x^r in $(1 - x)^{-n}$ when $n \in N$ is ${}^{n+r-1}C_r$

129

Statement 1: The coefficient of $x^{3\lambda+2}$ in the expansion of $(a + x)^{\lambda}(b + x)^{\lambda+1}(c + x)^{\lambda+2} \quad \forall \lambda \in N$ is $\lambda(a + b + c)$

Statement 2: The coefficient of x^m in the expansion $(a + x)^n$ is ${}^nC_m a^{n-m}$

130

Statement 1: The sum of coefficients in the expansion of $(3^{-x/4} + 3^{5x/4})^n$ is 2^n **Statement 2:** The sum of coefficients in the expansion of $(x + y)^n$ is 2^n when we put x = y = 1

131

Statement 1: The term independent of x in the expansion of $\left(x + \frac{1}{x} + 2\right)^m$ is $\frac{(4m)!}{(2m!)^2}$ **Statement 2:** The coefficient of x^6 in the expansion $(1 + x)^n$ is nC_6

132

Statement 1: The number of terms in the expansion $\left(x + \frac{1}{x} + 1\right)^n$ is 2n + 1**Statement 2:** The number of terms in the expansion $(a_1 + a_2 + a_3 + ... + a_m)^n$ is ${}^{n+m-1}C_{m-1}$

133

Statement 1:	$\sum_{0 \le i <} \sum_{j \le n} \left(\frac{i}{n_{C_i}} + \frac{j}{n_{C_j}} \right) \text{ is equal to } \frac{n^2}{2} a \text{, where } a = \sum_{r=0}^n \frac{1}{n_{C_r}}$
Statement 2:	$\sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} = \sum_{r=0}^{n} \frac{n-r}{{}^{n}C_{r}}$

134

- **Statement 1:** Three consecutive binomial coefficients are always in A.P.
- Statement 2: Three consecutive binomial coefficients are not in H.P. or G.P.

135

Statement 1:	The total number of dissimilar terms in the expansion of $(x_1 + x_2 + \dots + x_n)^3$ is			
	n(n+1)(n+2)			
	6			

Statement 2: The total number of dissimilar terms in the expansion of $(x_1 + x_2 + x_3)^n$ is $\frac{n(n+1)(n+2)}{6}$

136

Statement 1: If *p* is a prime number $(p \neq 2)$, then $\left[\left(2 + \sqrt{5}\right)^p\right] - 2^{p+1}$ is always divisible by *p* (where [.] denotes the greatest integer function)

Statement 2: If *n* is prime, then ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$, \cdots , ${}^{n}C_{n-1}$ must be divisible by *n*

137

Statement 1: $3^{2n+2} - 8n - 9$ is divisible by 64, $\forall n \in N$

Statement 2:
$$(1 + x)^n - nx - 1$$
 is divisible by x^2 , $\forall n \in N$

138

Statement 1: The coefficient of x^n in $\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}\right)$ is $\frac{3^n}{n!}$ **Statement 2:** The coefficient of x^n in e^{3x} is $\frac{3^n}{n!}$ 139

Statement 1: The value of $({}^{10}C_0) + ({}^{10}C_0 + {}^{10}C_1) + ({}^{10}C_0 + {}^{10}C_1 + {}^{10}C_2) + \dots + ({}^{10}C_0 + {}^{10}C_1 + {}^{10}C_2 + \dots + {}^{10}C_9)$ is $10 \dots 2^9$ **Statement 2:** ${}^{n}C_1 + 2 {}^{n}C_2 + 3 {}^{n}C_3 + \dots + n {}^{n}C_n = n2^{n-1}$

140

Statement 1: For every natural number $n \ge 2$. $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$

Statement 2: For every natural number $n \ge 2$ $\sqrt{n(n+1)} < n+1$

141

Statement 1: In the expansion of
$$(1 + x)^{41}(1 - x + x^2)^{40}$$
, the coefficient of x^{85} is zero.

Statement 2: In the expansion of $(1 + x)^{41}$ and $(1 - x + x^2)^{40}$, x^{85} term does not occur

142

Statement 1: ${}^{m}C_{r} + {}^{m}C_{r-1} {}^{n}C_{1} + {}^{m}C_{r-2} {}^{n}C_{2} + \dots + {}^{n}C_{r} = 0$, if m + n < r

Statement 2:
$${}^{n}C_{r} = 0$$
 if $n < n$

143

Statement 1: The number of distinct terms in $(1 + x + x^2 + x^3 + x^4)^{1000}$ is 4001

Statement 2: The number of distinct terms in the expansion $(a_1 + a_2 + \dots + a_m)^n$ is ${}^{n+m-1}C_{m-1}$

144 Let *n* be a positive integer and *k* be a whole number, $k \leq 2n$

Statement 1: The maximum value of ${}^{2n}C_k$ is ${}^{2n}C_n$

Statement 2:
$$\frac{2nC_{k+1}}{2nC_k} < 1$$
, for $k = 0, 1, 2, ..., n - 1$ and $\frac{2nC_k}{2nC_{k-1}} > 1$ for $k = n + 1, n + 2, ..., 2n$

145

Statement 1: If $\sum_{r=1}^{n} r^3 \left(\frac{n_{C_r}}{n_{C_{r-1}}} \right) = 196$, then the sum of the coefficients of power *x* in the expansion of the polynomial $(x - 3x^2 + x^3)^n$ is -1**Statement 2:** $\frac{n_{C_r}}{n_{C_{r-1}}} = \left(\frac{n - r + 1}{r} \right) \forall n \in N \text{ and } r \in W$

146

Statement 1: Remainder when 3456²²²² is divided by 7 is 4

Statement 2: Remainder when 5²²²² is divided 7 is 4

147 In the expansion of $(1 + x + x^2 + x^3)^6$, then coefficient of x^{14} is

```
Statement 1: 130
```

Statement 2: 120

Statement 1: Greatest term in the expansion of $(1 + x)^{12}$, when x = 11/10 is 7th

Statement 2: 7th term in the expansion of $(1 + x)^{12}$ has the factor ${}^{12}C_6$ which is greatest value of ${}^{12}C_r$ 149

Statement 1:
$$\sum_{\substack{r=0\\r=0}}^{n} (r+1) \cdot {}^{n}C_{r} = (n+2)2^{n-1}$$

Statement 2:
$$\sum_{\substack{r=0\\r=0}}^{n} (r+1) \, {}^{n}C_{r} \cdot x^{r} = (1+x)^{n} + nx(1+x)^{n-1}$$

150 The height of a communication satellite. (G=6.67 $\times 10^{-11}$ N m²/kg²) ,(M=5.98 $\times 10^{24}$ ×kg , R=6.4 $\times 10^{6}$ m,)

Statement 1: 35850 km

Statement 2: 3585 km

151

Statement 1:	If $n \in N$ and 'n' is not a multiple of 3 and $(1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then the value of
	$\sum_{r=0}^{n} (-1)^r a_r {}^n C_r$ is zero
Statement 2:	The coefficient of x^n in the expansion of $(1 - x^3)$ is zero, if $n = 3k + 1$ or $n = 3k + 2$

152

Statement 1: If *n* is even, then ${}^{2n}C_1 + {}^{2n}C_3 + \ldots + {}^{2n}C_{n-1} = 2^{2n-1}$

Statement 2: ${}^{2n}C_1 + {}^{2n}C_3 + \ldots + {}^{2n}C_{2n-1} = 2^{2n-1}$

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

153.

Column-I

(A)
$$\sum_{i \neq j} \sum_{i \neq j} {}^{10}C_i {}^{10}C_j$$

(B)
$$\sum_{0 \le i} \sum_{s \le j \le n} {}^{10}C_i {}^{10}C_j$$

(C)
$$\sum_{0 \le i} \sum_{s \le j \le n} {}^{10}C_i {}^{10}C_j$$

(D)
$$\sum_{i=0}^{10} \sum_{j=0} {}^{10}C_i {}^{10}C_j$$

CODES :

Imn_I

(p) $\frac{2^{20} - {}^{20}C_{10}}{2}$ (q) $2^{20} - {}^{20}C_{10}$

Column- II

(s)
$$\frac{2^{20} + {}^{20}C_{10}}{2}$$

A B C D

148

a)	р	q	r	S
b)	q	S	р	r
c)	S	r	q	р
d)	r	р	S	q

154.

Column-I

Column- II

(A) The sum of binomial coefficients of terms (p) 2³⁹ containing power of *x* more than x^{20} in $(1 + x)^{41}$ is divisible by (B) The sum of binomial coefficients of rational (q) 2⁴⁰ terms in the expansion of $(1 + \sqrt{2})^{42}$ is divisible by (C) Id $\left(x + \frac{1}{x} + x^2 + \frac{1}{x^2}\right)^{21} = a_0 x^{-42} + a_1 x^{-41} + a_2 x^{-40} + \cdots + a_{84} x^{42}$, then $a_0 + a_2 + \cdots + a_{84}$ is (r) 2⁴¹ divisible by (s) 2³⁸ (D) The sum of binomial coefficients of positive real terms in the expansion of $(1 + ix)^{42}(x > x)$ θ is divisible by **CODES**: А В С D

a)	Q,s,p	r,s,p,q	r,s,p,q	q,s,p
b)	s,p,q	s,p,q,r	s,p,q,r	s,p,q
c)	p,s,q	q,r,s,p	q,r,s,p	p,s,q
d)	p,q,s	p,q,r,s	p,q,r,s	p,q,s

155.

Column-I

(A)	If ${}^{(n+1)}C_4 + {}^{(n+1)}C_3 + {}^{(n+2)}C_3 > {}^{(n+3)}C_3$, then	(p)	4
	possible value/values of <i>n</i> is/are		
(B)	The remainder when $(3053)^{456} - (2417)^{333}$	(q)	5
	is divided by 9 is less than		
(C)	The digit in the unit place of the number	(r)	6
	$183! + 3^{183}$ is greater than		
(D)	If sum of the coefficients of the first, second	(s)	7
	and third terms of the expansion of $(x^2 +$		
	<i>1xm</i> is 46, then the index of the term that does		
	not contain x is greater than		

CODES:

A B C D

Column- II

a)	R,s,q	q,r,s,p	q,r,p	q,p
b)	s,q,r	r,s,p,q	r,p,q	q,p
c)	r,s	s,r,p,q	q,r	q,p
d)	q,r,s	p,q,r,s	p,q,r	p,q

156. The correct matching of List I from List II

Column-I

(A) $(1-x)^{-n}$

(B) $(1+n)^{-n}$

- (C) If x > 1, Then $1 + \frac{1}{x} + \frac{3}{x^2} + \cdots$ is
- (D) If |x| > 1, then $1 - \frac{2}{x^2} + \frac{3}{x^4} + \frac{4}{x^6} + \cdots$ is

(1)
$$\frac{x}{x+1}$$

(2) $1 - nx + \frac{n(n+1)}{2!}x^2 - \cdots$
If $|x| < 1$
(3) $1 + nx + \frac{n(n+1)}{2!}x^2 + \cdots$
If $|x| < 1$
(4) $\frac{x}{x-1}$

Column- II

(5)
$$\frac{x^4}{(x^2+1)^2}$$

(6) $\frac{x^4}{(x^2-1)^2}$

CODES :

	Α	В	С	D
a)	1	3	4	5
b)	2	3	4	5
c)	3	2	4	5
d)	2	3	1	5

157.

Column-I

- (A) The coefficient of tow consecutive terms in the (p) 9 expansion of $(1 + x)^n$ will be equal, then *n* can be
- **(B)** If $15^n + 23^n$ is divided by 19, then *n* can be (q) 10
- (C) ${}^{10}C_0 {}^{20}C_{10} {}^{10}C_1 {}^{18}C_{10} + {}^{10}C_2 {}^{16}C_{10} \cdots$ is (r) 11 divisible by 2^n , then *n* can be
- (D) If the coefficients of T_r , T_{r+1} , T_{r+2} term of (s) 12 $(1 + x)^{14}$ are in AP., then *r* is less than

CODES :

A B C D

Column- II

a)	P,r	p,r	p,q	q,r,s
b)	r,p	r,p	q,p	r,s,q
c)	r,p	r,p	q,p	s,q,r
d)	r,p	r,p	q,p	r,q,s

158.

Column-I

Column- II

(A)	${}^{32}C_0^2 - {}^{32}$	$^{32}C_1^2 + ^{32}$	$C_2^2 - \dots +$	$^{32}C_{32}^2 =$	(p)	⁶³ C ₁₆
(B)	$^{32}C_0^2 + \frac{1}{2}$	$^{32}C_1^2 + ^{32}$	$C_2^2 - \dots +$	$^{32}C_{32}^2 =$	(q)	³² C ₁₆
(C)	$\frac{1}{32}(1\times \frac{1}{32})$	$^{32}C_1^2 + 2 >$	$\times {}^{32}C_2^2 +$	\cdots + 32 × ³² C	(r)	0
(D)	${}^{32}C_0^2 - {}^{32}$	$^{31}C_1^2 + ^{32}$	$C_2^2 - \dots -$	$^{-31}C_{31}^2 =$	(s)	⁶⁴ C ₃₂
COD	ES :					
	Α	В	С	D		
a)	Р	q	r	S		
b)	S	r	q	р		
c)	q	S	р	r		
d)	r	p	S	q		

q

Linked Comprehension Type

This section contain(s) 16 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. Paragraph for Question Nos. 159 to -159

If $a, b \in$ prime numbers and $n \in N$, then free from radical terms or rational terms in the expansion of $(a^{1/p} + b^{1/q})^n$ are the terms in which indices of *a* and *b* are integers. On the basis of above information, answer the following questions

159. In the expansion of $(7^{1/3} + 11^{1/9})^{6561}$, the number of terms free from radicals is a) 715 b) 725 c) 730 d) 745

Paragraph for Question Nos. 160 to - 160

р

If $C = {}^{n}C_{r}$, then evaluate the expression $P = \sum_{0 \le r < s \le n} \sum (C_{r}C_{s})$ we make use of $C_0^2 + C_1^2 + \dots + C_n^2 = {}^{2n}C_n$ and expansion of $(C_0 + C_1 + \dots + C_n)^2$. On the basis of above information, answer the following questions

160. The value of $P = \sum_{0 \le r} C_r C_s$ is

a)
$$2^{2n} - \frac{1}{2} ({}^{2n}C_n)$$

b) $2^{2n-1} - \frac{1}{2} ({}^{2n}C_n)$
c) $2^{2n} - {}^{2n}C_n$
d) None of these

Paragraph for Question Nos. 161 to - 161

The sixth term in the expansion of $\left[\sqrt{\{2^{\log(10-3^x)}\}} + \sqrt[5]{\{2^{(x-2)\log 3}\}}\right]^m$ is equal to 21, if it is known that the binomial coefficient of the 2nd, 3rd and 4th terms in the expansion represents, respectively, the first, third and fifth terms of an AP. (the symbol log stands for logarithm to the base 10)

 161. The value of m is

 a) 6
 b) 7
 c) 8
 d) 9

Paragraph for Question Nos. 162 to - 162

The 2nd, 3rd and 4th terms in the expansion of $(x + a)^n$ are 240, 720 and 1080, respectively

162. The value of (<i>x</i> +	$(a)^n$ can be		
a) 64	b) —1	c) -32	d) None of these

Paragraph for Question Nos. 163 to - 163

If $(1 + x + x^2)^{20} = a_0 + a_1 x + a_2 x^2 \cdots + a_{40} x^{40}$, then answer the following questions

163. The value of
$$a_0 + a_1 + a_2 + ... + a_{19}$$
 is
a) $\frac{1}{2}(9^{10} + a_{20})$ b) $\frac{1}{2}(9^{10} - a_{20})$ c) $\frac{9^{10}}{2}$ d) None of these

Paragraph for Question Nos. 164 to - 164

An equation $a_0 + a_1 x + a_2 x^2 + \dots + a_{99} x^{99} + x^{100} = 0$ has roots ${}^{99}C_0$, ${}^{99}C_1$, ${}^{99}C_2$, \dots , ${}^{99}C_{99}$

 164. The value of a_{99} is equal to

 a) 2^{98} b) 2^{99} c) -2^{99} d) None of these

Paragraph for Question Nos. 165 to - 165

Any complex number in polar form can be an expression in Euler's form as $\cos \theta + i \sin \theta = e^{i\theta}$. This form of the complex number is useful in finding the sum of series $\sum_{r=0}^{n} {}^{n}C_{r}(\cos \theta + i \sin \theta)^{r}$

$$\sum_{r=0}^{n} {}^{n}C_{r}(\cos r\theta + i\sin r\theta) = \sum_{r=0}^{n} {}^{n}C_{r}e^{ir\theta}$$
$$= \sum_{r=0}^{n} {}^{n}C_{r}(r^{i\theta})^{r}$$
$$= (1 + e^{i\theta})^{n}$$

Also, we know that the sum of binomial series does not change if r is replaced by n - r. Using these facts, answer the following questions

165. The value of
$$\sum_{r=0}^{100} {}^{100}C_r (\sin rx)$$
 is equal toa) $2^{100} \cos^{100} \frac{x}{2} \sin 50x$ b) $2^{100} \sin(50x) \cos \frac{x}{2}$ c) $2^{101} \cos^{100}(50x) \sin \frac{x}{2}$ d) $2^{101} \sin^{100}(50x) \cos(50x)$

Paragraph for Question Nos. 166 to - 166

Let
$$P = \sum_{r=1}^{50} \frac{50+r}{50} C_{r(2r-1)}}{C_{r(50+r)}}, Q = \sum_{r=0}^{50} (50C_{r})^{2}, R = \sum_{r=0}^{100} (-1)^{r} (100C_{r})^{2}$$

 166. The value of P - Q is equal to

 a) 1
 b) -1
 c) 2^{50} d) 2^{100}

Paragraph for Question Nos. 167 to - 167

P is a set containing *n* elements. A subset *A* of *P* is chosen and the set *P* is reconstructed by replacing the elements of *A*. A subset *B* of *P* is chosen again

167. The number of ways of choosing A and B such that A and B have no common elements isa) 3^n b) 2^n c) 4^n d) None of these

Integer Answer Type

168. The largest real value for x such that $\sum_{k=0}^{4} \left(\frac{3^{4-k}}{(4-k)!} \right) \left(\frac{x^k}{k!} \right) = \frac{32}{3}$ is

- 169. Sum of last three digits of the number $N = 7^{100} 3^{100}$ is
- 170. Number of values in set of values of 'r' for which ${}^{23}C_r + 2.{}^{23}C_{r+1} + {}^{23}C_{r+2} \ge {}^{25}C_{15}$ is
- ^{171.} Let $a = 3^{\frac{1}{223}} + 1$ and for all $n \ge 3$, let $f(n) = {}^{n} C_{0} \cdot a^{n-1} {}^{n}C_{1} \cdot a^{n-2} + {}^{n}C_{2} \cdot a^{n-3} \dots + (-1)^{n-1} \cdot {}^{n}C_{n-1} \cdot a^{0}$. If the value of $f(2007) + f(2008) = 3^{k}$ where $k \in N$, then the value of k is
- 172. If the three consecutive coefficient in the expansion of $(1 + x)^n$ are 28, 56 and 70, then the value of *n* is
- 173. If *R* is remainder when $6^{83} + 8^{83}$ is divided by 49, then the value of *R*/5 is
- 174. Let *a* and *b* be the coefficient of x^3 in $(1 + x + 2x^2 + 3x^3)^4$ and $(1 + x + 2x^2 + 3x^3 + 4x^4)^4$ respectively. Then the value of 4a/b is
- 175. If the constant term in the binomial expansion of $\left(x^2 \frac{1}{x}\right)^n$, $n \in N$ is 15, then the value of n is equal to
- 176. The value of $\lim_{n\to\infty} \sum_{r=1}^n \left(\sum_{t=0}^{r-1} \frac{1}{5^n} \cdot C_r \cdot C_t \cdot 3^t \right)$ is equal to
- ^{177.} If the middle term in the expansion of $\left(\frac{x}{2}+2\right)^8$ is 1120; then the sum of possible real values of x is
- 178. Least positive integer just greater then $(1 + 0.00002)^{50000}$ is
- 179. Let $1 + \sum_{r=1}^{10} (3^r \cdot {}^{10}C_r + r \cdot {}^{10}C_r) = 2^{10}(\alpha \cdot 4^5 + \beta)$ where $\alpha, \beta \in N$ and $(x) = x^2 2x k^2 + 1$. If α, β lies between the roots of f(x) = 0, then find the smallest positive integral value of k

180. Degree of the polynomial $\left[\sqrt{x^2+1} + \sqrt{x^2-1}\right]^8 + \left[\frac{1}{\sqrt{\sqrt{x^2+1}+\sqrt{x^2-1}}}\right]^8$ is

181. If the coefficients of the (2r + 4)th, (r + 2)th terms in the expansion of $(1 + x)^{18}$ are equal, then the value of r is

182. If the second term of the expansion $\left[a^{1/13} + \frac{a}{\sqrt{a^{-1}}}\right]^n$ is $14a^{5/2}$, then the value of $\frac{n_{C_3}}{n_{C_2}}$ is

- 183. Given $(1 2x + 5x^5 10x^3)(1 + x)^n = 1 + a_1x + a_2x^2 + \cdots$ and that $a_1^2 = 2a_2$ then the value of *n* is 184. If the coefficients of the r^{th} , $(r + 1)^{\text{th}}$, $(r 2)^{\text{th}}$ terms in the expansion of $(1 + x)^{14}$ are in AP, then the largest value of r is
- 185. If the coefficients x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ and coefficient of x^{-7} in $\left(ax \frac{1}{bx^2}\right)^{11}$ are equal then the value of ab is 186. The remainder, if $1 + 2 + 2^2 + 2^3 + \dots + 2^{1999}$ is divided by 5 is

187. The largest value of x for which the fourth term in the expansion, $\left(5^{\frac{2}{5}\log 5^{\sqrt{4^{x}+44}}} + \frac{1}{5^{\log 5^{\sqrt{2^{x-1}+7}}}}\right)^8$ is 336 is

8.BINOMIAL THEOREM

						ANS	W	ER K	KEY :						
1)	С	2)	С	3)	а	4)	d		a,c						
5)	b	6)	С	7)	С	8)	С	9)	a,d	10)	a,b,c	11)	c,d	12)	
9)	а	10)	а	11)	d	12)	С		a,c,						
13)	С	14)	С	15)	а	16)	С	13)	a,b,c	14)	a,c,d	15)	a,d	16)	
17)	d	18)	b	19)	d	20)	b		a,b,d						
21)	d	22)	b	23)	b	24)	а	17)	a,b,d	18)	b,c,d	19)	a,b,d	20)	а
25)	d	26)	а	27)	С	28)	d	21)	a,b,c	22)	a,b,c,d	23)	a,c,d	24)	
29)	b	30)	С	31)	а	32)	а		a,c						
33)	d	34)	а	35)	b	36)	С	25)	a,b,c	1)	С	2)	а	3)	а
37)	С	38)	С	39)	а	40)	b		4)	d					
41)	а	42)	d	43)	d	44)	С	5)	b	6)	d	7)	b	8)	а
45)	d	46)	d	47)	b	48)	b	9)	d	10)	b	11)	а	12)	а
49)	b	50)	С	51)	а	52)	а	13)	а	14)	а	15)	а	16)	b
53)	С	54)	а	55)	С	56)	С	17)	а	18)	b	19)	а	20)	d
57)	С	58)	b	59)	d	60)	а	21)	а	22)		23)	b	24)	а
61)	С	62)	а	63)	а	64)	а	25)		26)	а	27)	d	1)	b
65)	С	66)	b	67)	С	68)	d		2)	d	3)	d	4)	С	
69)	С	70)	С	71)	b	72)	b	5)	а	6)	С	1)	С	2)	b
73)	d	74)	d	75)	b	76)	b		3)	b	4)	b			
77)	b	78)	d	79)	С	80)	b	5)	b	6)	С	7)	а	8)	b
81)	b	82)	b	83)	b	84)	С	9)	а	1)	1	2)	0	3)	5
85)	b	86)	а	87)	С	88)	b		4)	9					
89)	d	90)	d	91)	а	92)	d	5)	8	6)	7	7)	4	8)	6
93)	а	94)	d	95)	b	96)	b	9)	1	10)	0	11)	3	12)	5
97)	b	98)	d	99)	d	100)	а	13)	8	14)	6	15)	4	16)	6
1)	b,c	2)	a,d	3)	c,d	4)		17)	9	18)	1	19)	0	20)	4
	a,b,c														
5)	a,b,c,	d 6)	a,d	7)	a,b,c,	d 8)									

6

7

1 (c)

Given, $A = {}^{30}C_0 \cdot {}^{30}C_{10} - {}^{30}C_1 \cdot {}^{30}C_{11} + {}^{30}C_2 \cdot$ ${}^{30}C_{12} + \dots + {}^{30}C_{20} \cdot {}^{30}C_{30}$ = coefficient of x^{20} in $(1+x)^{30}(1-x)^{30}$ = coefficient of x^{20} in $(1 + x^2)^{30}$ coefficient = of x^{20} in $\sum_{r=0}^{30} (-1)^{r-30} C_r (x^2)^r$ $= (-1)^{10} \cdot {}^{30}C_{10}$ {for coefficient of x^{20} , let r = 10 $= {}^{30}C_{10}$ 2 (c) $a^{10}b^{10}c^{10}d^{10}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{10}$ Therefore the required coefficient is equal to the coefficient of $a^{-2}b^{-6}c^{-1}d^{-1}$ in $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)^{10}$, which is given by $\frac{10!}{2!\,6!\,1!\,1!} = \frac{10 \times 9 \times 8 \times 7}{2} = 2520$ (a) 3 $\frac{r \times 2^r}{(r+2)!} = \frac{(r+2-2)2^r}{(r+2)!}$ $= \frac{2^r}{(r+1)!} - \frac{2^{r+1}}{(r+2)!}$ $= -\left(\frac{2^{r+1}}{(r+2)!} - \frac{2^r}{(r+1)!}\right)$ = -(V(r) - V(r-1)) $\Rightarrow \sum_{r=1}^{15} \frac{r \times 2^{r}}{(r+2)!} = -(V(15) - V(0))$ $=-\left(\frac{2^{16}}{17!}-\frac{2}{2!}\right)$ $=1-\frac{2^{16}}{(17)!}$ 4 (d) $(1-x)^n (1+x)^n = \sum_{r=0}^n a_r x^r (1-x)^n (1-x)^{n-r}$ $\Rightarrow (1-x+2x)^n = \sum_{r=0}^n a_r x^r (1-x)^{n-r}$ $\Rightarrow \sum_{i=1}^{n} {}^{n}C_{r}(1-x)^{n-r}(2x)^{r} = \sum_{i=1}^{n} a_{r}x^{r}(1-x)^{n-r}$ Comparing general term, we get $a_r = {}^n C_r 2^r$ 5 (b)

 51×52

$$=\frac{1}{51}-\frac{1}{52}$$

$$=\frac{1}{51 \times 52}$$

8

9

Alternative solution:

$$(1-x)^{n} = \sum_{r=0}^{n} {}^{n}C_{r}(-1)^{r}x^{r}$$

$$\Rightarrow x(1-x)^{n} = \sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r}x^{r+1}$$

Integration both sides within the limits 0 to 1, we get

$$\int_{0}^{1} x(1-x)^{n} dx = \sum_{r=0}^{n} (-1)^{r} \frac{{}^{n}C_{r}}{r+2}$$

$$\Rightarrow \sum_{r=0}^{n} (-1)^{r} \frac{{}^{n}C_{r}}{r+2} = \int_{0}^{1} x(1-x)^{n} dx$$

$$\int_{0}^{1} (1-x)x^{n} dx \quad (\text{replace } x \text{ by } 1-x)$$

$$= \frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \Big|_{0}^{1}$$

$$= \frac{1}{n+1} - \frac{1}{n+2}$$

$$= \frac{1}{(n+1)(n+2)}$$
Now put $n = 50$
8 (c)
Sum of coefficient in $(1-x \sin \theta + x^{2})^{n}$ is
 $(1-\sin \theta + 1)^{n}$
(putting $x = 1$)
This sum is greatest when $\sin \theta = -1$, then
maximum sum is 3^{n}
9 (a)
Given term can be written as
 $(1+x)^{2}(1-x)^{-2}$

$$= (1+2x+x^{2})[1+2x+3x^{2} + \dots + (n-1) + x^{n-2} + nx^{n-1} + (n+1)x^{n} + \dots]$$
Coefficient of x^{n} is $(n+1+2n+n-1) = 4n$
10 (a)
To get sum of coefficients put $x = 0$. Given that
sum of coefficients is
 $2^{n} = 64$
 $\Rightarrow n = 6$
The greatest binomial coefficient is ${}^{6}C_{3}$
Now given that
 $T_{4} - T_{3} = 6 - 1 = 5$
 \Rightarrow
 ${}^{6}C_{3}(3^{-x/4})^{3}(3^{5x/4})^{3} - {}^{6}C_{2}(3^{-x/4})^{2}(3^{5x/4})^{4} = 5$

Which is satisfied by x = 0

11 (d) A_r = Coefficient of x^r in $(1 + x)^{10} = {}^{10}C_r$ B_r = Coefficient of x^r in $(1 + x)^{20} = {}^{20}C_r$ C_r = Coefficient of x^r in $(1 + x)^{30} = {}^{30}C_r$ $\therefore \sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ $=\sum_{r=1}^{10} A_r B_{10} B_r, -\sum_{r=1}^{10} A_r C_{10} A_r$ $=\sum_{r=1}^{10} {}^{10}C_r {}^{20}C_{10} {}^{20}C_r \sum_{r=1}^{10} {}^{10}C_r {}^{30}C_{10} {}^{10}C_r l$ $\sum_{i=1}^{10} {}^{10}C_{10-rl} {}^{20}C_{10} {}^{20}C_r - \sum_{i=1}^{10} {}^{10}C_{10-r} {}^{30}C_{10} {}^{10}C_r l$ $= {}^{20}C_{10}\sum_{r}^{10}{}^{10}C_{10-r}{}^{20}C_{r}$ $- {}^{30}C_{10} \sum_{r=1}^{10} {}^{10}C_{10-r} {}^{10}C_r$ $= {}^{20}C_{10}({}^{30}C_{10}-1) - {}^{30}C_{10}({}^{20}C_{10}-1)$ $= {}^{20}C_{10}({}^{30}C_{10} - 1) - {}^{30}C_{10}({}^{20}C_{10} - 1)$ = {}^{30}C_{10} - {}^{20}C_{10} = C_{10} - B_{10} 12 (c) As we know that ${}^{n}C_{0} - {}^{n}C_{1}^{2} + {}^{n}C_{2}^{2} - {}^{n}C_{3}^{2} + \dots +$ $(-1)^n {}^n C_n^2 = 0$ (if *n* is odd) and in the question n = 15 (odd). Hence, sum of given series is 0 13 (c) Let, $b = \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}}$ (1) $= \sum_{r=0}^{n} \frac{n-r}{n_{C_{n-r}}}$ (we can replace r by n-r) $=\sum_{n=1}^{n}\frac{n-r}{{}^{n}C_{r}}$ (2)Adding (1) and (2), we have $2b = \sum_{r=0}^{n} \frac{r}{nC_r} + \sum_{r=0}^{n} \frac{n-r}{nC_r}$ $= n \sum_{r=0}^{\infty} \frac{1}{{}^n C_r}$ $= na_n$ $\Rightarrow b = \frac{n}{2}a_n$ 14 (C) We have

$$(1+x)^{101}(1-x+x^{2})^{100} = (1+x)((1+x)(1+x+x^{2}))^{100}$$

$$= (1+x)(1+x^{3})^{100} = (1+x)\{C_{0}+C_{1}x^{3}+C_{2}x^{6}+\cdots + C_{100}x^{300}\}$$

$$= (1+x)\sum_{r=0}^{n} {}^{n}C_{r}x^{3} = \sum_{r=0}^{n} {}^{n}C_{r}x^{3r} + \sum_{r=0}^{n} {}^{n}C_{r}x^{3r+1}$$
Hence, there will be no term containing $3r + 2$
(a)

General term,

$$T_{r+1} = {}^{256}C_1 (\sqrt{3})^{256-r} (\sqrt[8]{5})^r$$

= ${}^{256}C_r 3 {}^{\frac{256-r}{2}} 5^{\frac{r}{8}}$

The terms are integral if $\frac{256-r}{2}$ and $\frac{r}{8}$ are both positive integers $\therefore r = 0, 8, 16, 24, \dots, 256$

Hence, there are 33 integral terms

16 **(c)**

15

$$\sum_{r=0}^{300} a_r \times x^r = (1 + x + x^2 + x^3)^{100}$$

Clearly, ' a_r ' is the coefficient of x^r in the expansion of $(1 + x + x^2 + x^3)^{100}$

Replacing x by 1/x in the given equation, we get

$$\sum_{r=0}^{3} a_r \left(\frac{1}{x}\right)^r = \frac{1}{x^{300}} (x^3 + x^2 + x + 1)^{100}$$
$$\Rightarrow \sum_{r=0}^{300} a_r x^{300-r} = (1 + x + x^2 + x^3)^{100}$$

Here, a_r represents the coefficient of x^{300-r} in $(1 + x + x^2 + x^3)^{100}$

Thus,
$$a_r = a_{300-r}$$

Let $I = \sum_{r=0}^{300} r \times a_r$
 $= \sum_{r=0}^{300} (300 - r)a_{300-r}$
 $= \sum_{r=0}^{300} (300 - r)a_r$
 $= 300 \sum_{r=0}^{300} a_r - \sum_{r=0}^{300} ra_r$
 $\Rightarrow 2I = 300a$
 $\Rightarrow I = 150a$
17 (d)
 $\sum_{r=1}^{n} (-1)^{r+1} \frac{{}^{n}C_r}{(r+1)} = \frac{1}{n+1} \sum_{r=1}^{n} (-1)^{r+1n+1} C_{r+1}$

$$= \frac{1}{n+1} (0 - 1 + (n+1)) = \frac{n}{n+1}$$
18 **(b)**
 $T_{r+1} \text{ in } (1 + x)^n \text{ is } \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!} x^r$
For first negative term,
 $n - r + 1 < 0$
 $\Rightarrow \frac{27}{5} - r + 1 < 0$
 $\Rightarrow r > \frac{32}{5}$
Thus, first negative term occurs when $r = 7$
19 **(d)**
 $\sum_{r=0}^{10} r^{10}C_r 3^r (-2)^{10-r}$
 $= 10 \sum_{r=0}^{10} {}^{9}C_{r-1} 3^{r-1} (-2)^{10-r}$
 $= 30(3 - 2)^{10}$
 $= 30$
20 **(b)**
Given series is ${}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_8$
 $= \frac{1}{2} (2 \cdot {}^{20}C_0 + 2 \, {}^{20}C_1 + \dots + {}^{20}C_8 + {}^{20}C_9 + {}^{20}C_{10} + {}^{20}C_{11} + \dots + {}^{20}C_{20}) - ({}^{20}C_9 + {}^{20}C_{10} + {}^{20}C_{11})]$
 $= \frac{1}{2} [2^{20} - 2 \cdot {}^{20}C_9 - {}^{20}C_{10}]$
 $= 2^{19} - \frac{(2 \cdot {}^{20}C_9 + {}^{10}C_{10})}{2}$
 $= \frac{(2^{20} - {}^{20}C_{10})}{2} - {}^{20}C_9$
 $= 2^{19} - \frac{({}^{20}C_{10} + 2 \times {}^{20}C_9)}{2}$
21 **(d)**
Required value is
 $\left(1 - \frac{2x}{1+x}\right)^{-n} = \left(\frac{1+x-2x}{1+x}\right)^{-n} = \left(\frac{1-x}{1+x}\right)^{-n}$

22 **(b)** $(1 + x^3 - x^6)^{30}$ $= \{1 + x^3 (1 - x^3)\}^{30}$ $= {}^{30}C_0 + {}^{30}C_1x^3(1 - x^3) + {}^{30}C_2x^6(1 - x^3)^2 + ...$ Obviously, each term will contain $x^{3m}, m \in N$. But 28 is not divisible by 3. Therefore, there will be no

term containing x^{28} 23 (b) $\left(x+\frac{1}{x}+x^2+\frac{1}{x^2}\right)^{15}$ $= \left(\frac{x^3 + x + x^4 + 1}{x^2}\right)^{15}$ $=\frac{a_0+a_1x+a_2x^2+\dots+a_{60}x^{60}}{x^{30}}$ Hence, the total number of terms is 61 24 (a) $\sum^{40} r^{40} C_r \,\,^{30} C_r$ $= 40 \sum_{n=1}^{40} {}^{39}C_{r-1} {}^{30}C_r$ $= 40 \sum_{r=0}^{40} {}^{39}C_{r-1} {}^{30}C_{30-r}$ $= 40^{39+30} C_{r-1+30-r}$ $= 40^{69}C_{29}$ 25 (d) Let, $(1+y)^n = 1 + \frac{1}{3}x + \frac{1 \times 4}{3 \times 6}x^2 + \frac{1 \times 4 \times 7}{3 \times 6 \times 9}x^3 + \cdots$ $= 1 + ny + \frac{n(n-1)}{2!}y^2 + \cdots$ Comparing the terms, we get $ny = \frac{1}{3}x, \frac{n(n-1)}{2!}y^2 = \frac{1 \times 4}{3 \times 6}x^2$ Solving, n = -1/3, y = -x. Hence, the given series is $(1 - x)^{-1/3}$ 26 (a) We have $\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}$ $=\frac{\left(x^{1/3}\right)^3+1^3}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x^{1/2}(x^{1/2}-1)}$ $=\frac{(x^{1/3}+1)(x^{2/3}-x^{1/3}+1)}{x^{2/3}-x^{1/3}+1}-\frac{x^{1/2}+1}{x^{1/2}}$ $= x^{1/3} + 1 - 1 - x^{-1/2} = x^{1/3} - x^{-1/2}$ $\therefore \left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ $= (x^{1/3} - x^{-1/2})^{10}$ Let T_{r+1} be the general term in $(x^{1/3} - x^{-1/2})^{10}$. Then.

 $T_{r+1} = {}^{10} C_r (x^{1/3})^{10-r} (-1)^r (x^{-1/2})^r$ For this term to be independent of *x*, we must have $\frac{10-r}{3} - \frac{r}{2} = 0 \Rightarrow 20 - 2r - 3r = 0 \Rightarrow r = 4$ So, the required coefficient is ${}^{10}C_4(-1)^4 = 210$ (c)

$$\left(x^2 - 2 + \frac{1}{x^2}\right)^n = \frac{1}{x^{2n}}(x^4 - 2x^2 + 1)^n$$
$$= \frac{(x^2 - 1)^{2n}}{x^{2n}}$$

27

2

2

3

3

Total number of terms that are dependent on x is equal to number of terms in the expansion of $(x^2 - 1)^{2n}$ that have degree of x different from 2n, which is given by (2n + 1) - 1 = 2n

8 (d)

$$\sum_{r=0}^{20} r(20-r) \times ({}^{20}C_r)^2$$

$$= \sum_{r=0}^{20} r \times {}^{20}C_r (20-r) {}^{20}C_{20-r}$$

$$\Rightarrow \sum_{r=0}^{20} 20 {}^{19}C_{r-1} \times 20 \times {}^{19}C_{19-r}$$

$$= 400 \times \sum_{r=0}^{20} {}^{19}C_{r-1} \times {}^{19}C_{19-r}$$

$$= 400 \times \operatorname{coefficient} of x^{18} in (1+x)^{19}(1+x)^{19}$$

$$= 400 \times {}^{38}C_{18}$$

$$= 400 \times {}^{38}C_{20}$$
9 (b)
(1+x)^n = C_0 + C_1x + C_2x + C_2x^2 + C_3x^3 + \cdots + C_nx^n
(1-x)^n = C_0 - C_1x + C_2x^2 - C_3x^3 + \cdots + (-1)^nC_nx^n
$$\Rightarrow [(1+x)^n - (1-x)^n]$$

$$= 2[C_1x + C_3x^3 + C_5x^5 + \cdots]$$
Putting $x = 2$, we have
 $2C_1 + 2^3C_3 + 2^5C_5 + \cdots = \frac{3^n - (-1)^n}{2}$
0 (c)
Let $(r+1)^{\text{th}}, (r+2)^{\text{th}}$ and $(r+3)^{\text{th}}$ be three
consecutive terms
Then,
 ${}^nC_{r+1} = \frac{1}{7} \Rightarrow \frac{r+2}{n-r-1} = \frac{1}{6} \Rightarrow n - 7r = 13$ (ii)
Solving (i) and (ii), we get $n = 55$
1 (a)
 $T_{r+1} = {}^{4n-2}C_r(ix)^r$

 T_{r+1} is negative, if i^r is negative and real

$$i^{r} = -1 \Rightarrow r = 2, 6, 10, ..., \text{ which form an A.P.}$$

 $0 \le r \le 4n - 2$
 $4n - 2 = 2 + (r - 1)4 \Rightarrow r = n$
The required number of terms is n
(a)
 $1 + n\left(1 - \frac{1}{x}\right) + \frac{n(n+1)}{2!}\left(1 - \frac{1}{x}\right)^{2} + \cdots \infty$

 ∞

$$= 1 - n \left[- \left(1 - \frac{1}{x}\right) \right] + \frac{1}{2!} \left[- \left(1 - \frac{1}{x}\right) \right] + \cdots$$

$$= \left[1 - \left(1 - \frac{1}{x}\right) \right]^{-n}$$

$$= x^{n}$$
33 (d)
$$\binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2}$$

$$= \left[\binom{n}{r} + \binom{n}{r} \right] + \left[\binom{n}{r-2} + \binom{n}{r-2} \right]$$

$$= [\binom{n}{r} + \binom{n-1}{r-1} + [\binom{n-1}{r-1} + \binom{n-2}{r-2}]$$

= $\binom{n+1}{r} + \binom{n+1}{r-1} = \binom{n+2}{r} [$
 $\therefore {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}]$

34 **(a)**

32

We know that

$$(1-1)^{20} = {}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \cdots + {}^{20}C_{10} - {}^{20}C_{11} + {}^{20}C_{12} - \cdots + {}^{20}C_{20} = 0$$

$$2({}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \cdots - {}^{20}C_9) + {}^{20}C_{10} = 0$$

$$[\because {}^{20}C_{20} = {}^{20}C_0, {}^{20}C_{19} = {}^{20}C_1, \text{etc}]$$

$$\Rightarrow {}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \cdots - {}^{20}C_9 + {}^{20}C_{10}$$

$$= -\frac{1}{2} {}^{20}C_{10} + {}^{20}C_{10} = \frac{1}{2} {}^{20}C_{10}$$

35 **(b)**

We have

$$(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + \cdots + (x+2)^{n-1}$$

$$= \frac{(x+3)^n - (x+2)^n}{(x+3) - (x+2)} = (x+3)^n - (x+2)^n$$

$$\left(\because \frac{x^n - a^n}{x-a} = x^{n-1} + x^{n-2}a^1 + x^{n-3}a^2 + \cdots + a^{n-1} \right)$$

Therefore, coefficient of x^r in the given expression is equal to Coefficient of x^r in $[(x + 3)^n - (x + 2)^n]$, which is given by ${}^nC_r 3^{n-r} - {}^nC_r 2^{n-r} = {}^nC_r (3^{n-r} - 2^{n-r})$ 36 (c) Put $x = c_1 c_1^2$

Put $x = \omega, \omega^2$ $(3 + \omega + \omega^2)^{2010} = a_0 + a_1\omega + a_2\omega^2 + \cdots$ $\Rightarrow 2^{2010} = a_0 + a_1\omega^2 + a_2\omega + a_3 + a_4\omega + \cdots$

(1)and $2^{2010} = a_0 + a_1\omega^2 + a_2\omega + a_3 + a_4\omega + \cdots$ (2)Adding (1) and (2), we have $2 \times 2^{2010} = 2a_0 - a_1 + a_2 + 2a_3 - a_4 - a_5 + 2a_6$ $\Rightarrow 2^{2010} = a_0 - \frac{1}{2}a_1 - \frac{1}{2}a_2 + a_3 - \frac{1}{2}a_4 - \frac{1}{2}a_5$ 37 (c) $t_{r+1} = (-1)^r (n-r+2) \, {}^n C_r 2^{n-r+1}$ $= (n+2)2^{n+1}(-1)^r C_r \left(\frac{1}{2}\right)^r$ $-2^{n+1}(-1)^r r^n {}^n C_r \left(\frac{1}{2}\right)^r$ $= (n+2)2^{n+1} {}^{n}C_{r}\left(-\frac{1}{2}\right)^{r}$ $+2^n n^{n-1} C_{r-1} \left(-\frac{1}{2}\right)^{r-1}$ $\therefore \text{Sum} = (n+2)2^{n+1} \Big\{ {}^{n}C_{0} - {}^{n}C_{1} \times \frac{1}{2} + {}^{n}C_{2} \times \frac{1}{2} \Big\}$ 122-...+n2n n-1C0- n-1C1×12+ n-1C2×122+... $= (n+2)2^{n+1}\left(1-\frac{1}{2}\right)^n + n2^n\left(1-\frac{1}{2}\right)^{n-1}$ = 2(n+2) + 2n=4n+438 (c) The given sigma is the expansion of [(x - 3) +2100=x-1100=1-x100 Therefore, x^{53} will occur in T_{54} $T_{54} = {}^{100} C_{53} (-x)^{53}$ Therefore, the coefficient is $-{}^{100}C_{53}$ 39 (a) $\frac{2^{4n}}{15} = \frac{(15+1)^n}{15}$ $=\frac{({}^{n}C_{0}15^{n}+{}^{n}C_{1}15^{n-1}+\ldots+{}^{n}C_{n-1}15+{}^{n}C_{n})}{15}$ = Integer + $\frac{1}{5}$ Hence, the fractional part of $\frac{2^{4n}}{15}$ is $\frac{1}{15}$ 40 **(b)** $a_1 = \text{coefficient of } x \text{ in } (1 + 2x + 3x^2)^{10}$ =coefficient of x in $((1+2x) + 3x^2)^{10}$ =coefficient of x in $({}^{10}C_0(1+2x){}^{10}+{}^{10}C_1(1+2x){}^9(3x^2)+\cdots)$ =coefficient of x in ${}^{10}C_0(1+2x){}^{10}$ $= {}^{10}C_0 2. {}^{10}C_1 = 20$

 $(1.0002)^{3000} = (1 + 0.0002)^{3000}$

= 1 + (3000)(0.0002) $+\frac{(3000)(2999)}{12}(0.0002)^2+...$ = 1 + (3000)(0.0002) = 1.642 (d) $(1+\omega)^n = {}^nC_0 + {}^nC_1\omega + \cdots$ $= ({}^{n}C_{0} + {}^{n}C_{3} + \cdots)$ $+ ({}^{n}C_{1} + {}^{n}C_{4} + \cdots) \left(\frac{-1 + \sqrt{3}i}{2}\right)$ $+({}^{n}C_{2}+{}^{n}C_{5}+\cdots)\left(\frac{-1-\sqrt{3}i}{2}\right)$ $= ({}^{n}C_{0} + {}^{n}C_{3} + \cdots)$ $-\frac{1}{2}({}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{4} + {}^{n}C_{5} \dots)$ $+\frac{i\sqrt{3}}{2}({}^{n}C_{1}-{}^{n}C_{2}+{}^{n}C_{4}-{}^{n}C_{5}+\cdots)$ Equating the modulus, we get $|(-\omega^2)^n| = 1$ 43 (d) $3^{400} = 81100 = (1 + 80)^{100}$ $=^{100} C_0 + ^{100} C_1 80 + \dots + ^{100} C_{100} 80^{100}$ \Rightarrow Last two digits are 01 44 (c) $\sum_{n=1}^{n} k \left(1 - \frac{1}{n}\right)^{k-1}$ $= 1 + 2\left(1 - \frac{1}{n}\right)^{1} + 3\left(1 - \frac{1}{n}\right)^{2} + \cdots$ $= 1 + 2t + 3t^2 + \cdots$ $=(1-t)^{-2}$ $\left[1-\left(1-\frac{1}{n}\right)\right]^{-2}=\left(\frac{1}{n}\right)^{-2}=n^2$ 45 (d) Here, the coefficients of T_r , T_{r+1} and T_{r+2} in $(1+y)^m$ are in A.P. $\Rightarrow {}^{m}C_{r-1} {}^{m}C_{r}$ and ${}^{m}C_{r+1}$ are in A.P. $\Rightarrow 2^{m}C_{r} = {}^{m}C_{r-1} + {}^{m}C_{r+1}$ $\Rightarrow 2\frac{m!}{r!(m-r)!} = \frac{m!}{(r-1)!(m-r+1)!}$ $\Rightarrow \frac{2}{r(m-r)} = \frac{1}{(m-r+1)(m-r)} + \frac{1}{(r+1)r}$ $\Rightarrow m^2 - m(4r + 1) + 4r^2 - 2 = 0$ 46 **(d)** $(1 + x + x^{2} + \cdots)^{2} = ((1 - x)^{-1})^{2} = (1 - x)^{-2}$ $= 1 + 2x + 3x^2 + \cdots$ Therefore, coefficient of x^n is n + 147 **(b)** We have. $(1-x)^{-n} = a_0 + a_1x + a_2x^2 + \dots + a_rx^r + \dots$ And

 $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$ Hence, $a_0 + a_1 + a_2 + \dots + a_r$ = Coefficient of x^r in the product of the two series = Coefficient of x^r in $(1-x)^{-n}(1-x)^{-1}$ = Coefficient of x^r in $(1 - x)^{-(n+1)}$ $=\frac{(n+1)(n+2)\cdots(n+r)}{r!}$ $= {}^{r+n+1-1}C_{n+1-1} = {}^{n+r}C_n$ 48 **(b)** By the given condition, $84 = T_6 = T_{5+1}$ $= {}^{7}C_{5} \left(2^{\log_{2} \sqrt{9^{x-1}+7}} \right)^{2} \left(\frac{1}{2^{\frac{1}{5} \log_{2}(3^{x-1}+1)}} \right)^{5}$ $= 21 \, 2^{\log_2(9^{x-1}+7)2^{-\log_2(3^{x-1}+1)}}$ $\Rightarrow 4 = 2^{\log_2 \frac{9^{x-1}+7}{3^{x-1}+1}} = \frac{9^{x-1}+7}{3^{x-1}+1}$ $\Rightarrow (3^{x-1})^2 - 4 \times 3^{x-1} + 3 = 0$ $\Rightarrow (3^{x-1}-1)(3^{x-1}-3) = 0$ $\Rightarrow 3^{x-1} = 1 \text{ or } 3$ $\Rightarrow 3^{x-1} = 3^0 \text{ or } 3^1$ $\Rightarrow x - 1 = 0 \text{ or } 1$ $\Rightarrow x = 1.2$ 49 (b) $T_{r+1} = {}^{1024} C_r (5^{1/2})^{1024-r} (7^{1/8})^r$ Now this term is an integer if 1024 - r is an even integer, for which $r = 0, 2, 4, 6, \dots, 1022, 1024$ of which r = 0, 8, 16, 2424, ..., 1024 are divisible by 8 which makes r/8 an integer For A.P., $r = 0, 8, 16, 24, \dots, 1024$, $1024 = 0 + (n - 1)8 \Rightarrow n = 129$ 50 (c) $\frac{(x^2 + x + 1)(1 - x)}{(1 - x)^2} = (1 - x^3)(1 - x)^{-2}$ $=(1-x^3)(1+2x+3x^2+\cdots)$ Now, $a_r = (r+1) - (r-2) = 3$ But $a_1 = 2$ So, $\sum_{r=1}^{50} a_r = 2 + 49 \times 3 = 149$

51 (a)

$$p = (8 + 3\sqrt{7})^{n} = {}^{n}C_{0}8^{n} + {}^{n}C_{1}8^{n-1}(3\sqrt{7}) + \cdots$$
Let,

$$p_{1} = (8 - 3\sqrt{7})^{n} = {}^{n}C_{0}8^{n} - {}^{7}C_{1}8^{n-1}(3\sqrt{7}) + \cdots$$

$$p_{1} + p_{2} = 2({}^{n}C_{0}8^{n} + {}^{n}C_{2}8^{n-2}(3\sqrt{7})^{2} + \cdots) =$$
even integer p_{1} clearly belongs to $(0,1)$
 $\Rightarrow [p] + f + p_{1} =$ even integer
 $\Rightarrow f + p_{1} =$ integer
 $f \in (0,1), p_{1} \in (0,1)$
 $\Rightarrow f + p \in (0,2)$
 $\Rightarrow f + p_{1} = 1$
 $\Rightarrow p_{1} = 1 - f$
Now, $p(1 - f) = pp_{1} - [(8 + 3\sqrt{7})^{n}(8 - 37n = 1)]$

52 (a)

$$\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} {}^{k}C_{r-1} \right)$$

=
$$\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} ({}^{k+1}C_{r} - {}^{k}C_{r}) \right)$$

=
$$\sum_{r=1}^{n+1} ({}^{n+1}C_{r} - {}^{1}C_{r})$$

=
$$2^{n+1} - 2$$

$$\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^{k}} \binom{k}{C_{r}}$$
$$= \sum_{k=1}^{\infty} \left(\frac{1}{3^{k}} \left(\sum_{r=0}^{k} C_{r} \right) \right)$$
$$= \sum_{k=0}^{\infty} \left(\frac{2^{k}}{3^{k}} \right)$$
$$= \frac{2}{3} + \left(\frac{2}{3} \right)^{2} + \cdots \infty$$
$$= \frac{2/3}{1 - \frac{2}{2}} = 2$$

54 (a)

55

(c)

$$\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$$

General term in this expansion is

$$T_{r+1} = {}^{10}C_r \left(\frac{x}{2}\right)^{10-r} \left(\frac{-3}{x^2}\right)^r$$
$$= {}^{10}C_r x^{10-3r} \frac{(-1)^r 3^r}{2^{10-r}}$$

For coefficient of x^4 , we should have r = 2Therefore, coefficient of x^4 is ${}^{10}C_2 \frac{(-1)^2 3^2}{2^8} = \frac{405}{256}$

Middle term of $(1 + \alpha x)^4$ is T_3 Its coefficient is ${}^{4}C_{2}(\alpha)^{2} = 6\alpha^{2}$ Middle term of $(1 - \alpha x)^6$ is T_4 Its coefficient is ${}^{6}C_{3}(-\alpha^{3}) = -20\alpha^{3}$ According to question, $6\alpha^2 = -20\alpha^3$ $\Rightarrow 3\alpha^2 + 10\alpha^3 = 0$ $\Rightarrow \alpha^2 (3 + 10\alpha) = 0$ $\Rightarrow \alpha = -\frac{3}{10}$ 56 (c) $T_{r+1} = {}^{2n} C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r = {}^{2n} C_r x^{2n-3r}$ This contains x^m . If 2n - 3r = m, then $r = \frac{2n - m}{3}$ \Rightarrow Coefficient of $x^m = {}^{2n}C_r, r = \frac{2n-m}{3}$ $=\frac{2n!}{(2n-r)!\,r!}=\frac{2n!}{\left(2n-\frac{2n-m}{3}\right)!\left(\frac{2n-m}{3}\right)!}$ $=\frac{(2n)!}{\left(\frac{4n+m}{3}\right)!\left(\frac{2n-m}{3}\right)!}$ 57 (c) $(23)^{14} = (529)^7 = (530 - 1)^7$ $= {}^{7}C_{0}(530)^{7} - {}^{7}C_{1}(530)^{6}$ $+\cdots - {}^{7}C_{5}(530)^{2} + {}^{7}C_{6}530 - 1$ $= {}^{7}C_{0}(530)^{7} - {}^{7}C_{1}(530)^{6} + \dots + 3710 - 1$ = 100m + 3709Therefore, last two digits are 09 58 **(b)** $(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + \cdots$ Putting x = 1, we get $0 = 1 + a_1 + a_2 + a_3 + \dots + a_{12} \quad (1)$ Putting x = -1, we get $64 = 1 - a_1 + a_2 + a_3 + \dots + a_{12} \quad (2)$ (1)+(2) gives $64 = 2[1 + a_2 + a_4 + \dots + a_{12}]$ $\Rightarrow 1 + a_2 + a_4 + \dots + a_{12} = 32$ $\Rightarrow a_2 + a_4 + \dots + a_{32} = 31$ 59 (d) Here ${}^{n-1}C_r = (k^2 - 3) {}^nC_{r+1}$ $\Rightarrow {}^{n-1}C_r = (k^2 - 3) \frac{n}{r+1} {}^{n-1}C_r$ $\implies k^2 - 3 = \frac{r+1}{n}$ $\left[\operatorname{since}, n-1 \ge r \Longrightarrow \frac{r+1}{n} \le 1 \text{ and } n, r \ge 0\right]$ $\Rightarrow 0 < k^2 - 3 \le 1 \Rightarrow 3 < k^2 \le 4$ $\Rightarrow k \in [-2, -\sqrt{3}] \cup (\sqrt{3}, 2]$ 60 (a)

We rewrite the given expression as [1 +

 $x^{2}(1-x)$ ⁸ and expand by using the binomial theorem. We have,

 $[1 + x^2(1 - x)]^8$ $=^{8} C_{0} + {}^{8}C_{1}x^{2}(1$ $-x)+{}^{8}C_{2}x^{4}(1-x)^{2}+{}^{8}C_{3}x^{6}(1-x)^{2}$ $(-x)^{3} + {}^{8}C_{4}x^{8}(1-x)^{4} + {}^{8}C_{5}x^{10}(1-x)^{4}$ $(-x)^{5} + \cdots$

The two terms which contain x^{10} are ${}^{8}C_{4}x^{8}(1$ *x8* and *8C5x101-x5*.

Thus, the coefficient of x^{10} in the given expression is given by ${}^{8}C_{4}$ [coefficient of x^{2} in the expansion of $(1-x)^4$] +⁸C₅

$$={}^{8} C_{4}(6) + {}^{8}C_{5} = \frac{8!}{4! \, 4!}(6) + \frac{8!}{3! \, 5!}$$
$$= (70)(6) + 56 = 476$$

It is given that 6th term in the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{40} x\right)^8$ is 5600, therefore ${}^{8}C_{5}(x^{2}\log_{10}x)^{5}\left(\frac{1}{x^{8/3}}\right)^{3} = 5600$ $\Rightarrow 56 x^{10} (\log_{10} x)^5 \frac{1}{r^8} = 5600$ $\Rightarrow x^2 (\log_{10} x)^5 = 100$ $\Rightarrow x^2 (\log_{10} x)^5 = 10^2 (\log_{10} 10)^5$ $\Rightarrow x = 10$ 62 (a)

We have,

$$\frac{2}{\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}}$$

= $\frac{2(\sqrt{2x^2 + 1} - \sqrt{2x^2 - 1})}{(2x^2 + 1) - (2x^2 - 1)}$
= $\sqrt{2x^2 + 1} - \sqrt{2x^2 - 1}$
Thus, the given expression can be written

n as

$$\left(\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}\right)^6 + \left(\sqrt{2x^2 + 1} - \sqrt{2x^2 - 1}\right)^6$$

6

But

 $(a+b)^6 + (a-b)^6 = 2[a^6 + {}^6C_2a^4b^2 + {}^6C_4a^2b^4 +$ 65 b6] Therefore, $(\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1})^6 +$ $(\sqrt{2x^2+1}-\sqrt{2x^2-1})^6$ $= 2[(2x^{2} + 1)^{3} + 15(2x^{2} + 1)^{2}(2x^{2} - 1)]$ $+15(2x^{2}+1) \times (2x^{2}-1)^{2}$ $+(2x^2-1)^3$]

Which is a polynomial of degree 6

63 (a)

Last term of $\left(2^{1/3} - \frac{1}{\sqrt{2}}\right)^n$ is

$$T_{n+1} = {}^{n}C_{n} \left(2^{1/3}\right)^{n-n} \left(-\frac{1}{\sqrt{2}}\right)^{n} = {}^{n}C_{n} (-1)^{n} \frac{1}{2^{n/2}}$$
$$= \frac{(-1)^{n}}{2^{n/2}}$$

Also, we have

64

66

$$\left(\frac{1}{3^{5/3}}\right)^{\log_3 8} = \frac{1}{(3^{5/3})^{3\log_3 2}} = 3^{-(5/3)\log_3 2^3} = 2^{-5}$$
Thus,

$$\frac{(-1)^n}{2^{n/2}} = 2^{-5}$$

$$\Rightarrow \frac{(-1)^n}{2^{n/2}} = \frac{(-1)^{10}}{2^5}$$

$$\Rightarrow n/2 = 5$$

$$\Rightarrow n = 10$$
Now,
 $T_5 = T_{4+1} = {}^{10} C_4 (2^{1/3})^{10-4} \left(-\frac{1}{\sqrt{2}}\right)^4$

$$= \frac{10!}{4! 6!} (2^{1/3})^6 (-1)^4 (2^{-1/2})^4$$

$$= 210(2^2)(1)(2^{-2}) = 210$$
(a)
Let the given series be identical with
 $(1 + x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots \infty$

$$\Rightarrow nx = \frac{1}{4} \Rightarrow n^2 x^2 = \frac{1}{16}$$
Also,

$$\frac{n(n-1)}{2}x^2 = \frac{3}{32} \Rightarrow \frac{2n}{n-1} = \frac{\frac{1}{16}}{\frac{3}{32}} = \frac{2}{3}$$

$$\Rightarrow 3n = n - 1$$

$$\Rightarrow 2n = -1$$

$$\Rightarrow n = -\frac{1}{2}$$

$$\Rightarrow \text{Required sum} = \left(1 - \frac{1}{2}\right)^{-\frac{1}{2}} = \left(\frac{1}{2}\right)^{-\frac{1}{2}}$$

$$= (2)^{\frac{1}{2}} = \sqrt{2}$$
(c)
Coefficient of T_5 is ${}^{n}C_4$ that of T_6 is ${}^{n}C_5$ and that of T_7 is ${}^{n}C_6$
According to the condition, $2^{n}C_5 = {}^{n}C_4 + {}^{n}C_6$.
Hence,

$$2\left[\frac{n!}{(n-5)! 5!}\right] = \left[\frac{n!}{(n-4)(n-5)} + \frac{1}{6 \times 5}\right]$$
After solving, we get $n = 7$ or 14
(b)
 $(1 - x)(1 - x)^n$

$$= (1-x)[1+n(-x) + \dots + {}^{n}C_{n-1}(-x)^{n-1} + {}^{n}C_{n}(-x)^{n}]$$

Therefore, coefficient of x^{n} is
 ${}^{n}C_{n}(-1)^{n} - {}^{n}C_{n-1}(-1)^{n-1} = (-1)^{n} + (-1)^{n}n$
 $= (-1)^{n}(1+n)$
67 (c)

The given expression is $(x + \sqrt{x^3 - 1})^5 +$

 $(x - \sqrt{x^{3} + 1})^{5}$ We know that $(x + a)^{n} + (x - a)^{n}$ $= 2[{}^{n}C_{0}x^{n} + {}^{n}C_{2}x^{n-2}a^{2}$ $+ {}^{n}C_{4}x^{n-4}a^{4} + \cdots]$

Therefore the given expression is equal to $2[{}^{5}C_{0}x^{5} + {}^{5}C_{2}x^{3}(x^{3} - 1) + {}^{5}C_{4}x(x^{3} - 1)^{2}]$ Maximum power of *x* involved here is 7, also only +ve integral powers of *x* are involved, therefore the given expression is a polynomial of degree 7 (d)

68 **(d)**

General term in the expansion of

$$\left(\sqrt{2} + \sqrt[3]{3} + \sqrt[6]{5}\right)^{10}$$
 is
$$\frac{10!}{a!b!c!} \left(\sqrt{2}\right)^{a} \left(\sqrt[3]{3}\right)^{b} \left(\sqrt[6]{5}\right)^{c}$$
 where $a + b + c = 10$

For rational term, we have the following:

Value of <i>a</i> , <i>b</i> , <i>c</i>	Value of term
a = 4, b = 0, c	$10!$ $(\sqrt{2})^4 (\sqrt[3]{2})^0 (\sqrt[6]{5})^6$
= 6	$\frac{4!0!6!}{4!0!6!}$
	= 4200
a = 10, b	$10! (\sqrt{2})^{10} (\sqrt[3]{2})^{0} (\sqrt[6]{5})^{0}$
= 0, c = 0	$10!0!0!(^{(2)})(^{(3)})(^{(3)})$
	= 32
a = 4, b = 6, c	$10!$ $(\sqrt{2})^4 (\sqrt[3]{2})^6 (\sqrt[6]{5})^0$
= 0	$\frac{4!6!0!}{4!6!0!}$
	= 7560

69 **(c)**

Since *n* is even, let
$$n = 2m$$
. Then,
L. H. S. = $S = \frac{2m!m!}{(2m)!} [C_0^2 - 2C_1^2 + 3C_2^2 + \cdots + (-1)^{2m} \times (2m+1)C_{2m}^2]$ (1)
 $\Rightarrow S = \frac{2m!m!}{(2m)!} [(2m+1)C_0^2 - 2mC_1^2 + (2m-1) \times C_2^2 + \cdots + C_0^2]$ (2) (using C_r
 $= C_{n-r}$)
Adding (1) and (2), we get
 $2S = 2\frac{m!m!}{(2m)!} (2m+2)[C_0^2 - C_1^2 + C_2^2 + \cdots + C_{2m}^2]$
Now keeping in mind that $C_0^2 - C_1^2 + C_2^2 - \cdots + C_n^2 = (-1)^{n/2} {}^n C_{n/2}$
If *n* is even, we get

$$S = 2 \frac{2m! m!}{(2m)!} (m + 1)[(-1)^{m 2m} C_m]$$

$$= 2 \left(\frac{n}{2} + 1\right) (-1)^{n/2}$$

$$= (-1)^{n/2} (n + 2)$$
70 (c)

$$(1 + x)^{21} + (1 + x)^{22} + \dots + (1 + x)^{30}$$

$$= (1 + x)^{21} \left[\frac{(1 + x)^{10} - 1}{(1 + x) - 1}\right]$$

$$= \frac{1}{x} [(1 + x)^{31} - (1 + x)^{21}]$$

$$\Rightarrow \text{ Coefficient of } x^5 \text{ in the given expression}$$

$$= \text{ Coefficient of } x^5 \text{ in the given expression}$$

$$= \text{ Coefficient of } x^6 \text{ in } [(1 + x)^{31} - (1 + x)^{21}]$$

$$= \text{ Coefficient of } x^6 \text{ in } [(1 + x)^{31} - (1 + x)^{21}]$$

$$= \text{ Coefficient of } x^6 \text{ in } [(1 + x)^{31} - (1 + x^{21})]$$

$$= ^{31}C_6 - ^{21}C_6$$
71 (b)

$$f(x) = 1 - x + x^2 - x^3 + \dots - x^{15} + x^{16} - x^{17}$$

$$= \frac{1 - x^{18}}{1 + x}$$

$$\Rightarrow f(x - 1) = \frac{1 - (x - 1)^{18}}{x}$$
Therefore, required coefficient of x^2 is equal to coefficient of x^3 in $1 - (x - 1)^{18}$, which is given by $^{18}C_3 = 816$
72 (b)
c.e. of x^{-1} in $(1 + x)^n \left(1 + \frac{1}{x}\right)^n$

$$= \text{c.e. of } x^{-1} \text{ in } (1 + x)^{2n}$$

$$= \frac{(2n)!}{(n - 1)! (n + 1)!}$$
73 (d)

$$(1 + 3x + 2x^2)^6 = [1 + x(3 + 2x)]^6$$

$$= 1 + ^6C_1 x(3 + 2x) + ^6C_2 x^2(3 + 2x)^2 + ^6C_3 x^3$$

$$+ (3 + 2x)^3 + ^6C_4 x^4(3 + 2x)^4$$

$$+ ^6C_5 x^5(3 + 2x)^5 + ^6C_6 x^6(3 + 2x)^6$$
We get x^{11} only from $^6C_6 x^6 (3 + 2x)^6$. Hence, coefficient of x^{11} is $^6C_5 \times 3 \times 2^5 = 576$
74 (d)

$$(x - 2)^5(x + 1)^5$$

$$= [^5C_0 x^5 - 5C_1 x^4 \times 2 + \dots][^5C_0 + 5C_1 x + \dots]$$

$$\Rightarrow \text{ Coefficient of } x^5$$

$$= ^5C_0 5C_5 - ^5C_1 \times 2 \times ^5C_4 + ^5C_2 \times 2^2 \times ^5C_3 - ^5C_3$$

$$\times 2^3 \times ^5C_2 + ^5C_4 \times 2^4 \times ^5C_1$$

 $- {}^{5}C_{5} \times 2^{5} \times {}^{5}C_{0}$ = 1 - 5 × 5 × 2 + 10 × 10 × 4 - 10 × 10 × 8 + 5 × 5 × 16 - 32

= -81

Page | 27

75 (b) Here $a = {}^{n}C_{r}$, $b = {}^{n}C_{r+1}$ and $c = {}^{n}C_{r+2}$ Put n = 2, r = 0, then option (b) holds the condition, i.e., $n = \frac{2ac + ab + bc}{b^2 - ac}$ 76 **(b)** $\frac{f(x)}{1-x} = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots$ $\Rightarrow a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$ $= (1 - x)(b_0 + b_1x + b_2x^2 + \dots + b_nx^n + \dots)$ Comparing the coefficient of x^n on the both sides, $a_n = b_n - b_{n-1}$ 77 **(b)** $T_5 = {}^n C_4 a^{n-4} (-2b)^4$ and $T_6 = {}^n C_5 a^{n-5} (-2b)^5$ As $T_5 + T_6 = 0$, we get ${}^{n}C_{4}2^{4} a^{n-4}b^{4} = {}^{n}C_{5}2^{5}a^{n-5}b^{5}$ $\Rightarrow \frac{a^{n-4}b^4}{a^{n-5}b^5} = \frac{n! \, 2^5}{5! \, (n-5)!} \cdot \frac{4! \, (n-4)!}{n! \, 2^4}$ $\Rightarrow \frac{a}{b} = \frac{2(n-4)}{\varsigma}$ 78 (d) $\frac{(1+x)^{3/2} - \left(1 + \frac{1}{2}x\right)^3}{(1-x)^{1/2}}$ $=\frac{\left(1+\frac{3}{2}x+\frac{3}{8}x^2\right)-\left(1+\frac{3}{2}x+3\frac{x^2}{4}\right)}{(1-x)^{1/2}}$ $=\frac{-3}{8}x^2(1-x)^{-1/2}$ $=-\frac{3}{8}x^{2}\left(1+\frac{x}{2}\right)$ $=-\frac{3}{8}x^{2}$ 79 (C) $(1 + x + x^2 + x^3)^5$ $= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$ $+ a_{15}x^{15}$ Putting x = 1 and x = -1 alternatively, we have $a_0 + a_1 + a_2 + a_3 + \dots + a_{15} = 4^5$ (1) $a_0 - a_1 + a_2 - a_3 + \dots - a_{15} = 0$ (2)Adding (1) and (2), we have $2(a_0 + a_2 + a_4 + \dots + a_{14}) = 4^5$ $\Rightarrow a_0 + a_2 + a_4 + \dots + a_{14} = 2^9 = 512$ 80 **(b)** The given expression is the coefficient of x^4 in ${}^{4}C_{0}(1+x){}^{404}-{}^{4}C_{1}(1+x){}^{303}$ + ${}^{4}C_{2}(1+x)^{202} - {}^{4}C_{3}(1+x)^{101}$ $+ {}^{4}C_{4}$ =Coefficient of x^4 in $[(1 + x)^{101} - 1]^4$ =Coefficient of x^4 in $({}^{101}C_1x + {}^{101}C_2x^2 + \cdots)^4$

$$= (101)^{n}$$
81 **(b)**
 $n! (21 - n)! = 21! \frac{n!(21-n)!}{21!} = \frac{21!}{2!C_{n}}$ which is
minimum
When ${}^{21}C_{n}$ is maximum which occurs when
 $n = 10$
82 **(b)**
Let,
 $S = \frac{nC_{0}}{n} + \frac{nC_{1}}{n+1} + \frac{nC_{2}}{n+2} + \dots + \frac{nC_{n}}{2n}$
 $=^{n}C_{0}\int_{0}^{1} x^{n-1}dx + nC_{1}\int_{0}^{1} x^{n}dx$
 $+ \dots + nC_{n}\int_{0}^{1} x^{2n-1}dx$
 $= \int_{0}^{1} [nC_{0}x^{n-1} + nC_{1}x^{n} + \dots + nC_{n}x^{2n-1}]dx$
 $= \int_{0}^{1} x^{n-1}(1+x)^{n}dx$
 $= \int_{1}^{2} x^{n}(x-1)^{n-1}dx$
83 **(b)**
 $t_{r+1} = {}^{10}C_{r}(\sqrt{x})^{10-r} \left(\frac{-k}{x^{2}}\right)^{r} = {}^{10}C_{r}x^{5-5r/2}(-k)^{r}$
For this to be independent of x, r must be 2, so that
 ${}^{10}C_{2}k^{2} = 405 \Rightarrow k = \pm 3$
84 **(c)**
 $(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{n-1}x^{n-1} + C_{n}x^{n}$ (1)
 $(x + 1)^{n} = C_{0}x^{n} + C_{1}x^{n-1} + C_{2}x^{n-2} + \dots + C_{n-1}x + C_{n}$ (2)
Multiplying Eqs. (1) and (2) and equating the coefficient of x^{n-2} , we get
 $C_{0}C_{2} + C_{1}C_{3} + C_{2}C_{4} + \dots + C_{n-2}C_{n}$
 $= Coefficient of x^{n-2} in (1 + x)^{2n}$
 $= \frac{2n}{(n+2)!(n+2)!}$
85 **(b)**
We have, $a = \text{sum of the coefficients in the expansion of $(1 - 3x + 10x^{2})^{n} = (1 - 3 + 10)^{n} = (8)^{n} = (2)^{3n} (\text{putting } x = 1)$
Now, $b = \text{sum of the coefficients in the expansion of $(1 + x^{2})^{n}$$$

 $= (1+1)^n = 2^n$. Clearly, $a = b^3$ (a)

86

Given that r and n are +ve integers such that r > 1, n > 2. Also, in the expansion of $(1+x)^{2n}$, Coefficient of $3r^{\text{th}}$ term = coefficient of $(r + 2)^{\text{th}}$ term $\Rightarrow {}^{2n}C_{3r-1} = {}^{2n}C_{r+1}$ \Rightarrow 3r - 1 = r + 1 or 3r - 1 + r + 1 $= 2n \text{ [using } {}^{n}C_{x} \Rightarrow {}^{n}C_{y} \Rightarrow x$ = y or x + y = n] \Rightarrow r = 1 or 2r = nBut r > 1 $\therefore n = 2r$ 87 (c) For $\left(ax^2 + \left(\frac{1}{bx}\right)\right)^{11}$, $T_{r+1} = {}^{11} C_r (ax^2)^{11-r} \left(\frac{1}{bx}\right)^r$ $=^{11} C_r a^{11-r} \frac{1}{h^r} x^{22-3r}$ For x^7 , 22 - 3r = 7 $\Rightarrow 3r = 15$ $\Rightarrow r = 5$ $\Rightarrow T_6 = {}^{11} C_5 a^6 \frac{1}{h^5} x^7$ \Rightarrow Coefficient of x^7 is ${}^{11}C_5 \frac{a^{\circ}}{b^5}$ Similarly, coefficient of x^{-7} in $\left(ax - \left(\frac{1}{hx^2}\right)\right)^{11}$ is ${}^{11}C_6 \frac{a^5}{h^6}$ Given that ${}^{11}C_5 \frac{a^6}{h^5} = {}^{11}C_6 \frac{a^5}{h^6}$ $\Rightarrow a = \frac{1}{L}$ $\Rightarrow ab = 1$ 88 (b) $(1-x)^{30} = {}^{30}C_0x^0 - {}^{30}C_1x^1 + {}^{30}C_2x^2 + \dots +$ $(-1)^{30} {}^{30}C_{30}x^{30}$ (1) $(x + 1)^{30} = {}^{30}C_0 x^{30} + {}^{30}C_1 x^{29} + {}^{30}C_2 x^{28} +$ $\cdots + {}^{30}C_{10}x^{20} + \cdots + {}^{30}C_{30}x^{0}$ (2) Multiplying (1) and (2) and equating the coefficient of x^{20} on both sides, we get required sum is equal to coefficient of x^{20} in $(1 - x^2)^{30}$, which is given by ${}^{30}C_{10}$ (d) 89 $\frac{1}{(1-ax)(1-bx)}$ $= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ But $(1 - ax)^{-1}(1 - bx)^{-1} = (1 + ax + a^2x^2 + a^2x^2)^{-1}$...1+bx+b2x2+... \Rightarrow Coefficient of x^2 is $b^n + ab^{n-1} + a^2b^{n-2} + \dots +$

 $a^{n-1}b + a^n$ $=\frac{b^{n+1}-a^{n+1}}{b-a}$ $\Rightarrow a_n = \frac{b^{n+1} - a^{n+1}}{b - a}$ 90 (d) $(1 + 2x + 3x^2 + \cdots)^{-3/2} = [(1 - x)^2]^{-3/2}$ $= (1-x)^3 = 1 - 3x + 3x^2 - x^3$ Therefore, coefficient of x^5 is 0 91 (a) $\sum^{10} (r)^{-20} C_r = \sum^{10} 20 \times {}^{19} C_{r-1}$ $= 20({}^{19}C_0 + {}^{19}C_1 + \dots + {}^{19}C_{10})$ = 20({}^{19}C_0 + {}^{19}C_1 + \dots + {}^{19}C_{10}) $= 20 \left(\frac{1}{2} \times 2^{19} + {}^{19}C_{10} \right)$ $= 20(2^{18} + {}^{19}C_{10})$ 92 (d) The general term in the expansion of (1 - x +*v20* is $\frac{20!}{r!s!t!}$ 1^{*r*}(-*x*)⁵(*y*)^{*r*}, where r + s + t = 20For x^2y^3 , we have the term $\frac{20!}{15!\,2!\,3!}1^{15}(-x)^2(y)^3$ Hence, the coefficient of x^2y^3 is 20! 15! 2! 3! 93 (a) $N = {}^{2n}C_n = \frac{(2n)!}{(n!)^2} = \frac{(n+1)(n+2)\cdots(n+n)}{(n!)}$ $\Rightarrow (n!)N = (n+1)(n+2)\cdots(n+n)$ Since n , so <math>p divides (n + 1)(n + 1) $2 \cdots n + n$ 94 (d) $\frac{\binom{n+1}{r}C_{r+1}}{\binom{n}{r}} = \frac{11}{6} \Rightarrow \frac{\binom{n+1}{r+1} \times \binom{n}{r}C_r}{\binom{n}{r}} = \frac{11}{6}$ $\Rightarrow 6n + 6 = 11r + 11 \Rightarrow 6n - 11r = 5$ (1)Also, $\frac{{}^{n}C_{r}}{{}^{n-1}C_{r-1}} = \frac{6}{3} \Rightarrow \frac{\frac{n}{r} \times {}^{n-1}C_{r-1}}{{}^{n-1}C_{r-1}} = \frac{6}{3} \Rightarrow n \Rightarrow 2r$ (2)From (1) and (2), r = 5 and n = 10, \therefore nr = 50 95 (b) $(a-1)^n, n \ge 5$ In the binomial expansion, $T_5 + T_6 = 0$ $\Rightarrow {}^{n}C_{4}a^{n-4}b^{4} - {}^{n}C_{5}a^{n-5}b^{5} = 0$

 $\Rightarrow \frac{{}^{n}C_{4}a}{{}^{n}C_{5}b} = 1 \Rightarrow \frac{4+1}{n-4}a$ $=1\left[\text{using } \frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{r+1}{n-r}\right]$ $\Rightarrow \frac{a}{h} = \frac{n-4}{r}$ 96 **(b)** We have $T_{r+1} = {}^{29}C_r 3^{29-r} (7x)^r = ({}^{29}C_r \times$ 329-rx7rxr Coefficient of $(r + 1)^{\text{th}}$ term is ${}^{29}C_r \times 3^{29-r} \times 7^r$ And coefficient of r^{th} term is ${}^{29}C_{r-1} \times 3^{30-r} \times$ 7^{r-1} From given condition, $^{29}C_r \times 3^{29-r} \times 7^r = ^{29}C_{r-1} \times 3^{30-r} \times 7^{r-1}$ $\Rightarrow \frac{{}^{29}C_r}{{}^{29}C_{r-1}} = \frac{3}{7} \Rightarrow \frac{30-r}{r} = \frac{3}{7} \Rightarrow r = 21$ 97 **(b)** We have, $f(x) = x^n$. So, $f^1(x) = nx^{n-1} \Rightarrow f(1) = n$ $f^{2}(x) = n(n-1)x^{n-2} \Rightarrow f^{2}(1) = n(n-1)$ $f^{3}(x) = n(n-1(n-2))x^{n-3} \Rightarrow f^{3}(1)$ = n(n-1)(n-2) $f^{n}(x) = n(n-1)(n-2) \dots 1 \Rightarrow f^{n}(1)$ $= n(n-1)(n-2) \dots 1$ $\Rightarrow f(1) + \frac{f^{1}(1)}{1} + \frac{f^{2}(1)}{2!} + \cdots + \frac{f^{n}(1)}{n!}$ $= 1 + \frac{n}{1} + \frac{n(n-1)}{2!} + \frac{n(n-1)(n-2)}{3!} \cdot$ $+\frac{n(n-1)(n-2)\cdots 1}{n!}$ $= {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$ $= 2^{n}$ 98 (d) $(1 + x + x^3 + x^4)^{10} = (1 + x)^{10}(1 + x^3)^{10}$ $= (1 + {}^{10}C_1x + {}^{10}C_2x^2 + {}^{10}C_3x^3 + {}^{10}C_4x^4 \cdots)$ $(1+{}^{10}C_1x^3+{}^{10}C_2x^6+\cdots)$ Therefore, coefficient of x^4 is ${}^{10}C_1 {}^{10}C_1 + {}^{10}C_4 =$ 310 99 (d) $\left[\sqrt{1+x^2} - x\right]^{-1} = \frac{1}{\sqrt{1+x^2} - x} \times \frac{(\sqrt{1+x^2} + x)}{(\sqrt{1+x^2} + x)}$ $=\frac{\sqrt{1+x^2}+x}{1+x^2-x^2}=x+\sqrt{1+x^2}=x+(1+x^2)^{1/2}$ $= x + 1 + \frac{1}{2}x^{2} + \frac{1}{2}\left(-\frac{1}{2}\right)\frac{x^{4}}{2!} + \cdots$ Obviously, the coefficient of x^4 is -1/8100 (a) We know that the sum of the coefficients in a

binomial expansion is obtained by replacing each

variable by unit in the given expression. Therefore, sum of the coefficients in $(a + b)^n$ is given by $(1+1)^n$ $\therefore 4096 = 2^n \Rightarrow 2^n = 2^{12} \Rightarrow n = 12$ Hence, *n* is even. So, the greatest coefficient is ${}^{n}C_{n/2}$, i.e., ${}^{12}C_6 = 924$ 101 (b,c) For n = 2m, the given expression is $C_0 - (C_0 + C_1) + (C_0 + C_1 + C_2)$ $-(C_0 + C_1 + C_2 + C_3)$ $+\cdots (-1)^{n-1}(C_0+C_1+\cdots+C_{n-1})$ $= C_0 - (C_0 + C_1) + (C_0 + C_1 + C_2)$ $-(C_0 + C_1 + C_2 + C_3) + \dots - (C_0)$ $+ C_1 + \dots + C_{2m-1})$ $= -(C_1 + C_3 + C_5 + \dots + C_{2m-1})$ $= -(C_1 + C_3 + C_5 + \dots + C_{n-1}) = -2^{n-1}$ 102 (a,d) $:: 3^{4n} = 81^n = (1+80)^n = 1 + 80\lambda, \lambda \in N$ $\therefore 3^{3^{4n}} = 3^{1+80\lambda} = 3 \cdot 3^{80\lambda} = 3 \cdot (9)^{40\lambda}$ $= 3(10 - 1)^{40\lambda}$ $= 3(1 + 10\mu) = 3 + 30\mu$: Last digit of $3^{3^{4n}} + 1$ is 4 103 (c,d) : Number of distinct terms = ${}^{9+3-1}C_{3-1} =$ $^{11}C_2 = 55$ Sum of coefficients = $(2 - 2 + 1)^9 = 1^9 = 1$ and $(2 - 2x + x^2)^9 = \sum \frac{9!}{\alpha! \beta! \gamma!} (2)^{\alpha} (-2x)^{\beta} (x^2)^{\gamma}$ Here, $\beta + 2\gamma = 4$, $\alpha + \beta + \gamma = 9$ α βγ 5 4 0 ∴ 6 2 1 7 0 2 \therefore Coefficient of x^4 $=\frac{9!}{5!4!0!} \cdot 2^5 \cdot (-2)^4 + \frac{9!}{6!2!1!} (2)^6 (-2)^2$ $+\frac{9!}{7!0!2!}(2)^7(-2)^0$ $= 2^{9}(126 + 126 + 9) = 133632$

104 **(a,b,c)**

$$\therefore (101)^{50} - (99)^{50} = (100 + 1)^{50} - (100 - 1)^{50} \\
= 2\{ {}^{50}C_1(100)^{49} + {}^{50}C_3(100)^{47} \\
+ {}^{50}C_5(100)^{45} + ... \} \\
= (100)^{50} + 2\{ {}^{50}C_3(100)^{47} + {}^{50}C_5(100)^{45} + ... \} \\
> (100)^{50} \\
\Rightarrow (101)^{50} - (99)^{50} > (100)^{50} \\
\Rightarrow (101)^{50} - (100)^{50} > (99)^{50} \\
Also, \left(\frac{1001}{1000}\right)^{999} = \left(1 + \frac{1}{1000}\right)^{999} \\
= 1 + {}^{999}C_1\left(\frac{1}{1000}\right) + {}^{999}C_2\left(\frac{1}{1000}\right)^2 + \\
< 1 + 1 + 1 + 1 + ... + 1 \\
= 1000 \\
\therefore \left(\frac{1001}{1000}\right)^{999} < 1000 \\
\Rightarrow (1001)^{999} < (1000)^{1000}$$

105 (a,b,c,d)

Let T_5 be numerically the greatest term in the expansion of $(1 + x/3)^{10}$ Then, $\left[\frac{T_5}{T_4}\right] \ge 1$ and $\left[\frac{T_6}{T_5}\right] \le 1$ Now, $\frac{T_{r+1}}{T_r} = \frac{10 - r + 1x}{r}$ $\Rightarrow \left|\frac{7}{4} \times \frac{x}{3}\right| \ge 1$ and $\left|\frac{6}{5} \times \frac{x}{3}\right| \le 1$ $\Rightarrow |x| \ge \frac{12}{7}$ and $|x| \le \frac{5}{2}$ (1) $\Rightarrow \frac{12}{7} \le |x| \le \frac{5}{2}$ $\Rightarrow x \in \left[-\frac{5}{2}, -\frac{12}{7}\right] \cup \left[\frac{12}{7}, \frac{5}{2}\right]$ 106 **(a,d)**

Middle term is $\left(\frac{n}{2}+1\right)^{\text{th}}$ or $(4+1)^{\text{th}}$ or T_5 $\Rightarrow T_5 = {}^8C_4 \left(\frac{x}{2}\right)^4 \times 2^4 = 1120$ $\Rightarrow \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} x^4 = 1120$ $\Rightarrow x^4 = \frac{1120}{70} = 16$ $\Rightarrow (x^2 + 4)(x^2 - 4) = 0$ $\Rightarrow x = \pm 2 (\because x \in R)$ (a b c d)

107 **(a,b,c,d)** We know that to get the sum of coefficients, we put x = 1Then, sum of coefficients is $(1 + ax - 2x^2)^n$ is $(a - 1)^n$

Obviously, when a > 1, sum is positive for any n108 **(a,c)**

 $(1-y)^m(1+y)^n$

$$= (1 - {}^{m}C_{1}y + {}^{m}C_{2} - ...)(1 + {}^{n}C_{1}y + {}^{n}C_{2}y^{2} + ...)$$

$$= 1 + (n - m)y + \left\{\frac{m(m - 1)}{2} + \frac{n(n - 1)}{2} - mn\right\}y^{2} + ...$$
Given,
 $a_{1} = 10$
 $\Rightarrow a_{1} = n - m = 10$ (1)
 $m^{2} + n62 - m - n - 2mn$

 $a_2 = \frac{m + n62 - m - n - 2mn}{2} = 10$ $(m-n)^2 - (m+n) = 20$ $\Rightarrow m + n = 80$ (2) Solving (1) and (2), we get m = 35, n = 45109 (a,d) Coefficients of r^{th} , $(r + 1)^{\text{th}}$ and $(r + 2)^{\text{th}}$ term are ${}^{14}C_{r-1}$, ${}^{14}C_r$ and ${}^{14}C_{r+1}$ If these coefficients are in A.P., then $2({}^{14}C_r) = {}^{14}C_{r-1} + {}^{14}C_{r+1}$ $\Rightarrow \frac{2(14)!}{r! (14-r)} = \frac{(14)!}{(r-1)! (15-r)!}$ $+\frac{(14)!}{(r+1)!(13-r)}$ $\Rightarrow \frac{2(14)!}{r! (14-r)!}$ $=\frac{(14)!\left[(r+1)r+(15-r)(14-r)\right]}{(r+1)!(15-r)!}$ $\Rightarrow 2(15 - r)(r + 1) = 2r^2 - 28r + 210$ $\Rightarrow r^2 - 14r + 45 = 0 \text{ or } (r - 5)(r - 9) = 0$ $\Rightarrow r = 5 \text{ or } 9$ 110 (a,b,c) General term is ${}^{6561}C_r 7 {}^{\frac{6561-r}{3}} 11^{\frac{r}{9}}$ To make the term free of radical sign, *r* should be a multiple of 9 \therefore $r = 0, 9, 18, 27, \dots 6561$ Hence, there are 730 terms. The greatest binomial coefficients are $^{6561}C_{\underline{6561-1}}$ and $^{6561}C_{\underline{6561-3}}$ or $^{6561}C_{3280}$ and $^{6561}C_{3279}$ Now, 3280 are 3279 are not a multiple of 3; hence, both terms involving greatest binomial coefficients are irrational 111 (c,d) ${}^{69}C_{3r-1} + {}^{69}C_{3r} = {}^{69}C_{r^2-1} + {}^{69}C_{r^2}$ \Rightarrow ⁷⁰ $C_{3r} =$ ⁷⁰ C_{r^2} Thus, $r^2 = 3r$ or $70 - 3r = r^2$ so that r = 0.3 or 7,10 Hence, r = 3 and 7(as the given equation is nor

defined for r = 0 and -10)

112 (a,c.)

$$\begin{pmatrix} x^{2} + 1 + \frac{1}{x^{2}} \end{pmatrix} = {}^{n}C_{0} + {}^{n}C_{1} \left(x^{2} + \frac{1}{x^{2}} \right) + {}^{n}C_{2} \left(x^{2} + \frac{1}{x^{2}} \right)^{2} + \cdots + {}^{n}C_{n} + \left(x^{2} + \frac{1}{x^{2}} \right)^{n} \end{pmatrix}$$
This contains each of the term $x^{0}, x^{2}, x^{4}, ...x^{2}n, x^{-2}, x^{-4}, ..., x^{-2n}$
Coefficient of constant term $= nC_{0} + (nC_{2})(2) + (nC_{4})(4C_{2}) + (nC_{6})(6C_{3}) + \cdots \neq 2^{n-1}$ coefficient of x^{2n-2} in $nC_{n-1} = n$ coefficient of x^{2} is ${}^{n}C_{1} + ({}^{n}C_{3})({}^{3}C_{1}) + (nC_{5})({}^{5}C_{2}) + \cdots > n$
113 (a,b,c)
($x \sin p + x^{-1} \cos p$)¹⁰
The general term in the expansion is $T_{r+1} = {}^{10}C_{r}(x \sin p)^{10-r}(x^{-1} \cos p)^{r}$
For the term independent of x , we have $10 - 2r = 0$ or $r = 5$
Hence, the independent term is ${}^{10}C_{5} \sin^{5}p \cos^{5}p = {}^{10}C_{5} \frac{\sin^{5}2p}{32}$
Which is the greatest when $\sin 2p = 1$
The least value of ${}^{10}C_{5} \frac{\sin^{5}2p}{32}$ is $-\frac{10!}{2^{5}(5!)^{2}}$ when $\sin 2p$
 $= -1$ or $p = (4n - 1)\frac{\pi}{4}, n \in Z$
Sum of coefficient is $(\sin p + \cos p)^{10}$, when $x = 1$ or $(1 + \sin 2p)^{5}$, which is least when $\sin 2p = -1$
Hence, least sum of coefficients is zero. Greatest sum of coefficient occurs when $\sin 2p = 1$. Hence, greatest sum is $2^{5} = 32$
114 (a,c,d)
 $l + f = (4 + \sqrt{15})^{n}$
Let $f' = (4 - \sqrt{15})^{n}$. then $0 < f' < 1$
 $l + f = {}^{n}C_{0}4^{n} - {}^{n}C_{1}4^{n-1}\sqrt{15} + {}^{n}C_{2}4^{n-2}15 + {}^{n}C_{3}4^{n-3}(\sqrt{15})^{3} + \cdots$
 $f' = {}^{n}C_{0}4^{n} - {}^{n}C_{1}4^{n-1}\sqrt{15} + {}^{n}C_{2}4^{n-2}15 + {}^{n}C_{3}4^{n-3}(\sqrt{15})^{3} + \cdots$
 $\therefore l + f + f' = 2({}^{n}C_{0}4^{n} + {}^{n}C_{2}4^{n-2} \times 15 + \cdots) =$ even integer
 $\therefore 0 < f + f' < 2 \Rightarrow f + f' = 1 \Rightarrow 1 - f = f'$
Thus, *l* is an odd integer. Now, $1 - f = f' < (4 - \sqrt{15})^{n}$
 $(l + f)(1 - f) = (l + f)f' = 1$
115 (a,d)
It is given that the fourth term in the expansion of $\left(ax + \frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, therefore

 ${}^{n}C_{3}(ax)^{n-3}\left(\frac{1}{x}\right)^{3} = \frac{5}{2} \Rightarrow {}^{n}C_{3}a^{n-3}x^{n-6} = \frac{5}{2}$ (i) [: R.H.S is independent of x] Putting n = 6 in (i), we get ${}^{6}C_{3}a^{3} = \frac{5}{2} \Rightarrow a^{3} = \frac{1}{8} \Rightarrow$ $a = \frac{1}{a}$ 116 (a,b,d) $f(m) = \sum_{i=0}^{\infty} {30 \choose 30-i} {20 \choose m-i}$ $=\sum_{i=0}^{m} \binom{30}{i} \binom{20}{m-i} = {}^{50}C_m$ f(m) is greatest when m = 25. Also, $f(0) + f(1) + \dots + f(50)$ $= {}^{50}C_0 + {}^{50}C_1 + {}^{50}C_2 + \dots + {}^{50}C_{50} = 2^{50}$ Also, ${}^{50}C_m$ is not divisible by 50 for any *m* as 50 is not a prime number $\sum_{m=0} (f(m))^2 = ({}^{50}C_0)^2 + ({}^{50}C_1)^2 + ({}^{50}C_2)^2 + \cdots$ $+ (\,{}^{50}C_{50})^2 = \,{}^{100}C_{50}$ 117 (a,b,d) $\frac{(n-1)(n-2)\cdots(n-m+1)}{(m-1)!}$ $=\frac{(n-1)(n-2)\cdots(n-m+1)(n-m)\cdots 2.1}{(n-m)!(m-1)!}$ $= {}^{n-1}C_{m-1}$ = Coefficient of x^{m-1} in $(1 + x)^{n-1}$ = Coefficient of x^{m-1} in $(1 + x)^n (1 + x)^{-1}$ Now, $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_{m-1} x^{m-1} +$ $\cdots + C_n x^n$ (1) $(1+x)^{-1} =$ $1 - x + x^2 - x^3 + \dots + (-1)^{m-1} x^{m-1} + \dots$ (2)Collecting the coefficient of x^{m-1} in the product of (1) and (2), we get $(-1)^{m-1}C_0 + (-1)^{m-2}C_1 + \dots + C_{m-1}$ = Coefficient of x^{m-1} in $(1 + x)^{n-1}$ $= {}^{n-1}C_{m-1}$ $\therefore C_0 - C_1 + C_2 - \dots + (-1)^{m-1} C_{m-1}$ $= {}^{n-1}C_{m-1}(-1)^{m-1}$ $=\frac{(n-1)(n-2)\cdots(n-m+1)}{(m-1)!}(-1)^{m-1}$ 118 (b,c,d) L.H.S = $(1 + 2x^2 + x^4)(1 + C_1x + C_2x^2 + C_3x^3 + C_3x^3)$ R.H.S = $a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$ Comparing the coefficient of x, x^2, x^3, \cdots $a_1 = C_1, a_2 = C_2 + 2, a_3 = C_3 + 2C_1$ (1)

Now, $2a_2 = a_1 + a_3$ (A.P.)

 $\Rightarrow 2({}^{n}C_{2} + 2) = {}^{n}C_{1} + ({}^{n}C_{3} + 2{}^{n}C_{1}) \text{ [Using (1)]}$ $\Rightarrow 2\frac{n(n-1)}{2} + 4 = 3n + \frac{n(n-1)(n-2)}{6}$ $\Rightarrow n^3 - 9n^2 + 26n - 24 = 0$ $\Rightarrow (n-2)(n^2-7n+12) = 0$ $\Rightarrow (n-2)(n-3)(n-4) = 0$ $\Rightarrow n = 2, 3, 4$ 119 (a,b,d) $(1 + z^{2} + z^{4})^{8} = C_{0} + C_{1}z^{2} + C_{2}z^{4} + \dots + C_{14}z^{32}$ (1)Putting z = i, where $i = \sqrt{-1}$. $(1-1+1)^8 = C_0 - C_1 + C_2 - C_3 + \dots + C_{16}$ $\Rightarrow C_0 - C_1 + C_2 - C_3 + \dots + C_{16} = 1$ Also, putting $z = \omega$, $(1 + \omega^2 + \omega^4)^8$ $= C_0 + C_1 \omega^2 + C_2 \omega^4 + \cdots$ $+ C_{16} \omega^{32}$ $\Rightarrow C_0 + C_1 \omega^2 + C_2 \omega + C_3 + \dots + C_{16} \omega^{32} = 0$ (2)Putting $x = \omega^2$, $(1 + \omega^4 + \omega^8)^8$ $= C_0 + C_1 \omega^4 + C_2 \omega^8 + \cdots$ $+ C_{16} \omega^{64}$ $\Rightarrow C_0 + C_1 \omega + C_2 \omega^2 + \dots + C_{16} \omega = 0 \quad (3)$ Putting x = 1, $3^8 = C_0 + C_1 + C_2 + \dots + C_{16} \quad (4)$ Adding (2), (3) and (4), we have $3(C_0 + C_3 + \dots + C_{15}) = 3^8$ $\Rightarrow C_0 + C_3 + \dots + C_{15} = 3^7$ Similarly, first multiplying (1) by z and then putting 1, ω , ω^2 and adding we get $C_1 + C_4 + C_7 + C_{10} + C_{13} + C_{16} = 3^7$ Multiplying (1) by z^2 and then putting 1, ω , ω^2 and adding, we get $C_2 + C_5 + C_8 + C_{11} + C_{14} = 3^7$ 120 (a) We have, $\frac{17}{4} + 3\sqrt{2} = \frac{1}{4}(9 + 8 - 12\sqrt{2})$ $=\frac{1}{4}\left(3-2\sqrt{2}\right)^2$ $\therefore 3 - \frac{17}{4} + 3\sqrt{2} = 3 - \frac{1}{2}(3 + 2\sqrt{2})$ $=\frac{3}{2}-\sqrt{2}$ Hence, the 10th term of $\left(3 - \sqrt{\frac{17}{4} + 3\sqrt{2}}\right)^{20} =$ $\left(\frac{3}{2}-\sqrt{2}\right)^{20}$ is

 ${}^{20}C_9\left(\frac{3}{2}\right)^{20-9}\left(-\sqrt{2}\right)^9$ Which is an irrational number 121 (a,b,c) We have, $(x+a)^n = {}^nC_0 x^n + {}^nC_1 x^{n-1}a + {}^nC_2 x^{n-2}a^2$ $+\cdots + {}^{n}C_{n}a^{n}$ $= [{}^{n}C_{0}x^{n} + {}^{n}C_{2}x^{n-2}a^{n} + \cdots]$ + $[{}^{n}C_{1}x^{n-1}a + {}^{n}C_{3}x^{n-3}a^{3} + \cdots]$ or $(x+a)^n = P + Q$ (1)Similarly, (2) $(x-a)^n = P - Q$ $(1) \times (2) \Rightarrow P^2 - Q^2 = (x^2 - a^2)^n$ 1. Squaring (1) and (2) and subtracting (2) 2. from (1), we get $4PQ = (x + a)^{2n} - a^{2n}$ $(x-a)^{2n}$ 3. Squaring (1) and (2) and adding, $2(P^2 + Q^2) = (x + a)^{2n} + (x - a)^{2n}$ 122 (a,b,c,d) On putting $x = \frac{1}{x}$ in given equation, we get $\sum_{r=1}^{2n} a_r \left(\frac{1}{x}\right)^r = \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^n = \frac{1}{x^{2n}} (x^2 + x + 1)^n$ $\Rightarrow \sum_{r=1}^{2n} a_r x^{2n-r} = (x^2 + x + 1)^n = \sum_{r=1}^{2n} a_r x^r$ $= \sum_{r=0}^{2n} a_{2n-r} x^{2n-r} \dots (i)$ On equating the coefficients of x^{2n-r} on both sides, we get $a_r = a_{2n-r}$ for $0 \le r \le 2n$ Now, on putting x = 1 in Eq. (i), we get $a_0 + a_1 + a_2 + \ldots + a_{2n} = (1 + 1 + 1)^n = 3^n \dots (ii)$ But $a_r = a_{2n-r}$, for $0 \le r \le n-1$ $2(a_0 + a_1 + \ldots + a_{n-1}) + a_n = 3^n$ $a_0 + a_1 + \ldots + a_{n-1} = \frac{1}{2}(3^n - a_n)$ Again $(1 + x + x^2)^n =$ $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{2n} x^{2n}$...(iii) On replacing x by $-\frac{1}{x}$, we get $\left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^n = a_0 - \frac{a_1}{x} + \frac{a_2}{x^2} - \frac{a_3}{x^3} + \dots + \frac{a_{2n}}{x^{2n}} \dots (iv)$ On multiplying Eqs. (iii) and (iv) and comparing constant terms, then RHS = $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots + a_{2n}^2$ = Constant term in $(1 + x + x^2)^n \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^n$: Coefficient of x^{2n} in $(1 + x^2 + x^4)^n$ is a_n Again putting x = -1 in Eq.(i), we get

 $a_0 - a_1 + a_2 - a_3 + \ldots + a_{2n} = 1 \ldots (v)$ On adding Eqs. (ii) and (v) and dividing by 2, we get $a_0 + a_2 + a_4 + \ldots + a_{2n} = \frac{1}{2}(3^n + 1)$ 123 (a,c,d) ${}^{n}C_{1} + {}^{n+1}C_{2} + {}^{n+2}C_{3} + \dots + {}^{n+m-1}C_{m}$ $=^{n} C_{n-1} + ^{n+1} C_{n-1} + ^{n+2} C_{n-1} + \dots + ^{n+m-1} C_{n-1}$ = Coefficient of x^{n-1} in $(1 + x)^n + (1 + x)^{n+1} + (1 + x)^{n+1}$ $(1+x)^{n+2} + \dots + (1+x)^{n+m-1}$ = Coefficient of x^{n-1} in $(x + 1)^n \left[\frac{(1+x)^m - 1}{(1+x) - 1} \right]$ = Coefficient of x^{n-1} in $\frac{(1+x)^{m+n}-(1+x)^n}{x}$ = Coefficient of x^n in $[(1 + x)^{m+n} - (1 + x)^n]$ $=^{m+n} C_n - 1$ Similarly, we can prove ${}^{m}C_{1} + {}^{m+1}C_{2} + {}^{m+2}C_{3} + \dots + {}^{m+n-1}C_{n}$ $= {}^{m+n}C_m - 1$

124 (a,c)

Inclusion of $\log x$ implies x > 0Now, 3rd term in the expansion is $T_{2+1} = {}^{5}C_{2}x^{5-2}(x^{\log_{10}}x)^{2} = 1000000 \text{ (given)}$ or $x^{3+2\log_{10}x} = 10^5$ Taking logarithm of both sides, we get $(3 + 2\log_{10} x)\log_{10} x = 5$ or $2y^2 + 3y - 5 = 0$, where $\log_{10} x = y$ or (y-1)(2y+5) = 0 or y = 1 or -5/2or $\log_{10} x = 1 \text{ or } -5/2$ $\therefore x = 10^1 = 10 \text{ or } 10^{-5/2}$ 125 (a,b,c) $(101)^{100} - 1 = (1 + 100)^{100} - 1$ $= 1 + {}^{100}C_1(100)$ + ${}^{100}C_2(100)^2$ +..... + ${}^{100}C_{100}(100)^{100}$ - 1 $= 10^4 \lambda \forall \lambda \in N$ 126 (c) $S_1 = \sum_{i=1}^{1} j(j-1) \frac{10!}{j(j-1)(j-2)! (10-j)!}$ $=90 = \sum_{i=2}^{10} \frac{8!}{(j-2)(8-(j-2))!}$ $= 90.2^{8}$ and $S_2 = \sum_{j=1}^{\infty} j(j-1) \frac{10!}{j(j-1)! (9-(j-1))!}$

 $= 10 = \sum_{i=1}^{10} \frac{9!}{j(j-1)! (9-(j-1))!} = 10.2^{9}$ and $S_3 = \sum_{j=1}^{10} [j(j-1) + j]^{10} C_j$ $=\sum_{j=1}^{10} j(j-1)^{10}C_j + \sum_{j=1}^{10} j^{10}C_j$ $= 90.2^8 + 10.2^9$ $=90.2^{8} + 20.2^{8} = 110.2^{8} = 55.2^{9}$ 127 (a) Let $\left(\sqrt{5}+2\right)^n = N + f$, where *N* is an integer and 0 < f < 1Let $(\sqrt{5} - 2)^n = f'$, then 0 < f' < 1Let $\left(\sqrt{5}+2\right)^n - \left(\sqrt{5}-2\right)^n$ = integer (: *n* is odd) $: N = (\sqrt{5} + 2)^n - (\sqrt{5} - 2)^n$ $= 2\left[{}^{n}C_{1} \cdot 2 \cdot 5^{(n-1)/2} + {}^{n}C_{3} \cdot 2^{3} \cdot 5^{(n-3)/2} + \dots \right]$ \Rightarrow N is divisible by 2n on using statement II (If *n* is prime and r < n, then there is no factor which will cut $n \Rightarrow {}^{n}C_{r}$ will be divisible by n) 128 (a) Since, coefficient of x^r in $(1 - x)^{-n} = {}^{n+r-1}C_r$: Coefficient of x^n in $(1-x)^{-2} = {}^{2+n-1}C_n$ $= {}^{n+1}C_n = (n+1)$ Hence, option (a) is correct 129 (d) $\therefore (a+x)^{\lambda}(b+x)^{\lambda+1}(c+x)^{\lambda+2}$ $= \{(x+a)(x+a) \dots \lambda \text{ times}\}$ $\{(x+b)(x+b)...(\lambda+1)$ times $\}$ $\{(x + c)(x + c) ... (\lambda + 2) \text{ times}\}$ $= x^{3\lambda+3} + \{a\lambda + b(\lambda+1) + c(\lambda+2)\}x^{3\lambda+2} + \dots$: Coefficient of $x^{3\lambda+2}$ is $\lambda(a+b+c) + b + 2c$

130 **(b)**

Obviously, statement 2 is true. But to get the sum of coefficient in the expansion of $(3^{-x/4} + 35x4n)$, we must put x=0

131 (d)

$$\left(x + \frac{1}{x} + 2\right)^m = \left(\frac{x^2 + 2x + 1}{x}\right)^m = \frac{(1+x)^{2m}}{x^m}$$

Term independent of x is coefficient of x^m in the expansion of $(1 + x)^{2m} = {}^{2m}C_m = \frac{(2m)!}{(m!)^2}$

Hence, statement I is false and statement II is true

132 **(b)**

Given expression = $\left\{1 + \left(x + \frac{1}{x}\right)\right\}^n$

$$= 1 + {}^{n}C_{1}\left(x + \frac{1}{x}\right) + {}^{n}C_{2}\left(x + \frac{1}{x}\right)^{2} + {}^{n}C_{3}\left(x + \frac{1}{x}\right)^{3} + \ldots + \left(x + \frac{1}{x}\right)^{n}$$

This will be of the form

$$= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \frac{b_1}{x} + \frac{b_2}{x^2} + \frac{b_3}{x^3} + \dots + \frac{b_n}{x^n}$$

: Number of terms = 1 + n + n = 2n + 1

133 (a)

$$S = \sum_{0 \le i < j \le n} \left(\frac{i}{nC_i} + \frac{j}{nC_j} \right)$$
$$= \sum_{0 \le i < j \le n} \left(\frac{n-i}{nC_{n-i}} + \frac{n-j}{nC_{n-j}} \right)$$
$$= n \sum_{0 \le i < j \le n} \left(\frac{1}{nC_i} + \frac{1}{nC_j} \right) - S$$
$$\Rightarrow S = \frac{n}{2} \sum_{0 \le i < j \le n} \left(\frac{i}{nC_i} + \frac{j}{nC_j} \right)$$
$$= \frac{n}{2} \left(\sum_{r=0}^{n-1} \frac{n-r}{nC_r} + \sum_{r=1}^n \frac{r}{nC_r} \right)$$
$$= \frac{n}{2} \left(\sum_{r=0}^n \frac{n}{nC_r} \right)$$
$$= \frac{n^2}{2} a$$

134 (d)

Statement 2 is true as it is the property of binomial coefficients. But statement 1 is false as

three consecutive binomial coefficients may be in A.P. but not always

135 **(b)**

We know that the total number of terms in $(x_1 + x_2 + \dots + x_r)^n$ is C_{r-1} . So, the total number of terms in $(x_1 + x_2 + \dots + x_n)^3$ is

$${}^{3+n-1}C_{n-1} = {}^{n+2}C_{n-1} = {}^{n+2}C_3$$
$$= \frac{(n+2)(n+1)n}{6}$$

and the total number of terms in $(x_1 + x_2 + x_3)^n$ is

$$^{n+3-1}C_{n-1} = {}^{n+2}C_3 = \frac{(n+2)(n+1)n}{6}$$

136 (a)

We have,

$$(2 + \sqrt{5})^{p} + (2 - \sqrt{5})^{p} = 2[2^{p} + {}^{p}C_{2}2^{p-5}5 + {}^{p}C_{4}2^{p-4}5^{2} + \dots + {}^{p}C_{p-1}2 \times 5p-1/2$$
(1)

From, (1), $(2 + \sqrt{5})^p + (2 - \sqrt{5})^p$ is an integer and

$$-1 < (2 - \sqrt{5})^{p} < 0 \quad (\because p \text{ is odd})$$

So, $[(2 + \sqrt{5})^{p}] = (2 + \sqrt{5})^{p} + (2 - \sqrt{5})^{p}$
 $= 2^{p+1} + {}^{p}C_{2}2^{p-1}5 + \dots + {}^{p}C_{p-1}2^{2}5^{(p-1)/2}$
 $\therefore [(2 + \sqrt{5})^{p}] - 2^{p+1}$
 $= 2[{}^{p}C_{2}2^{p-2}5 + {}^{p}C_{4}2^{p-4}5^{2}$
 $+ \dots + {}^{p}C_{p-1}2 \times 5^{(p-1)/2}]$

Now, all the binomial coefficients

$${}^{p}C_{2} = \frac{p(p-1)}{1 \times 2},$$

 ${}^{p}C_{2} = \frac{p(p-1)(p-2)(p-3)}{1 \times 2 \times 3 \times 4}, ..., {}^{p}C_{p-1} = p$

are divisible by the prime p. Thus, R.H.S. is divisible by p

137 (a)

$$(1+x)^{n} - nx - 1 = (1+{}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}) - nx - 1 \quad (1)$$

$$= {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$$

$$= x^{2}({}^{n}C_{2} + {}^{n}C_{3}x + \dots + {}^{n}C_{n}x^{n-2})$$
Hence, $(1+x)^{n} - nx - 1$ is divisible by x^{2}
Now in (1), replace x by $8n + 1$. Then, we have
 $(1+8)^{n+1} - (n+1)8 - 1$

$$= 8^{2}({}^{n}C_{2} + {}^{n}C_{3}8 + \dots + {}^{n}C_{n}8^{n-2})$$

$$\Rightarrow 9^{2n+2} - 8n - 9$$

$$= 8^{2}({}^{n}C_{2} + {}^{n}C_{3}8 + \dots + {}^{n}C_{n}8^{n-2})$$

Which is divisible by 64

Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

138 (a)

Coefficient of
$$x^n$$
 in $\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}\right)^3$
= Coefficient of x^n in $\left(1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots\right)^3$

(as higher powers of x are not counted while calculating the coefficient of x^n)

= Coefficient of x^n in $e^{3x} = \frac{3^n}{n!}$

139 (a)

$$({}^{10}C_0) + ({}^{10}C_0 + {}^{10}C_1) + ({}^{10}C_0 + {}^{10}C_1 + {}^{10}C_2) + \cdots + ({}^{10}C_0 + {}^{10}C_1 + {}^{10}C_2 + \cdots + {}^{10}C_9)$$

= $10^{10}C_0 + 9 \,{}^{10}C_1 + 8 \,{}^{10}C_2 + \cdots + {}^{10}C_9$
= ${}^{10}C_1 + 2 \,{}^{10}C_2 + 3 \,{}^{10}C_3 + \cdots + 10 \,{}^{10}C_{10}$
 $\sum_{i=1}^{10} 10 \, c_{i=1} + 2 \,{}^{10}C_{i=1} + 2 \,{}^{10}$

$$= \sum_{r=1}^{10} r^{10} C_r = 10 \sum_{r=1}^{10} {}^9 C_{r-1} = 10 \times 2^9$$

140 (a) $n(n+1) = n^{2} + n < n^{2} + n + n + 1 = (n+1)^{2}$ $\Rightarrow \sqrt{n(n+1)} < n + 1, \forall n \ge 2$ $\Rightarrow \sqrt{n} < \sqrt{n+1}$ $\Rightarrow \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}}; n \ge 2$ Statement II is true. Also, $\frac{1}{\sqrt{1}} > \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{3}} > \frac{1}{\sqrt{n}}, \dots, \forall n \ge 2$ On adding all of them, we get $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \frac{n}{\sqrt{n}} = \sqrt{n}, \forall n \ge 2$ Clearly, Statements I and II are true and Statement II is a correct explanation of Statement I. 141 **(b)** $(1+x)^{41}(1-x+x^2)^{40}$ $= (1+x)(1+x)^{40}(1-x+x^2)^{40}$

$$= (1 + x)(1 + x^{3})^{40}$$

= $(1 + x^{3})^{40} + x(1 + x^{3})^{40}$
= $(1 + {}^{40}C_{1}x^{3} + {}^{40}C_{2}x^{6} + \dots + {}^{40}C_{40}x^{120})$
+ $({}^{40}C_{0} + {}^{40}C_{1}x^{4} + {}^{40}C_{2}x^{7}$
+ $\dots + {}^{40}C_{40}x^{121})$

Hence, the coefficient of x^{85} is zero as there is no term in the above expansion which has x^{85}

Also, statement 2 is correct but it is not a correct explanation of statement 1

142 **(a)**

We know that

$${}^{m}C_{r} + {}^{m}C_{r-1} {}^{n}C_{1} + {}^{m}C_{r-2} {}^{n}C_{2} + \dots + {}^{n}C_{r}$$

$$= \text{Coefficient of } x^{r} \text{ in } (1+x)^{m}(1+x)^{n}$$

$$= Coefficient of x^{r} \text{ in } (1+x)^{m+n}$$

$$= {}^{m+n}C_{r}$$

$$= 0 \text{ as } m+n < r$$

143 **(b)**

$$(1 + x + x^2 + x^3 + x^4)^{1000}$$

 $= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$
 $+ a_{4000} x^{4000}$

Clearly, there are 4001 terms. Also, number of term in the expansion

$$(a_1 + a_2 + \dots + a_m)^n$$
 is ${}^{n+m-1}C_{m-1}$

Clearly, statement 2 has nothing to do with statement 1

144 (a)

Statement 2 is true(can be checked easily) and

that is why

$${}^{2n}C_0 < {}^{2n}C_1 < {}^{2n}C_2 < \cdots < {}^{2n}C_{n-1} < {}^{2n}C_n \\ > {}^{2n}C_{n+1} \cdots > {}^{2n}C_{2n}$$

145 (d)

$$\sum_{r=1}^{n} r^{3} \left(\frac{n-r+1}{r}\right)^{2} = \sum_{r=1}^{n} r(n-r+1)^{2}$$

$$= \sum_{r=1}^{n} r\{(n+1)^{2} - 2(n+1)r + r^{2}\}$$

$$= (n+1)^{2} \sum r - 2(n+1) \sum r^{2} + \sum r^{3}$$

$$= (n+1)^{2} \times \frac{n(n+1)}{2}$$

$$- \frac{2(n+1) \times n(n+1)(2n+1)}{6}$$

$$+ \left[\frac{n(n+1)}{2}\right]^{2}$$

$$= \frac{(n+1)^{2} \cdot n \cdot (n+2)}{12} = 14^{2} \text{ (given)}$$

$$= 7^{2} \times 2^{2} = \frac{7^{2} \cdot 6 \cdot 8}{12}$$

$$\therefore n = 6$$

Sum of coefficients = $(1 - 3 + 1)^6 = (-1)^6 = 1$

146 **(a)**

 $3456^{2222} = (7 \times 493 + 5)^{2222}$

- $=(7k+5)^{2222}$
- $= 7m + 5^{2222}$

Now,

 $5^{2222} = 5^2 (5^3)^{740}$

- $= 25(125)^{740}$
- $= 25(126 1)^{740}$
- = 25[7n + 1]
- = 175n + 25

Remainder when 175n + 25 is divided by 7 is 4

Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

147 ()
115
148 (b)

$$\frac{T_{r+1}}{T_r} = \frac{12 - r + 1}{r} \frac{11}{10}$$
Let,

$$T_{r+1} \ge T_r \Rightarrow 13 - r \ge 1.1x$$

$$\Rightarrow 13 \ge 2.1r$$

$$\Rightarrow r \le 6.19$$

Hence, the greatest term occurs for r = 6. Hence, 7th term is the greatest term. Also, the binomial coefficient of 7th term is ${}^{12}C_6$ which is the greatest binomial coefficient.

But this is not the reason for which T_7 is the greatest. Here, it is coincident that the greatest term has the greatest binomial coefficient

Hence, statement 1 is true, statement 2 is true; but statement 2 is not correct explanation of statement 1

149 (a)
Since,
$$\sum_{r=0}^{n} {}^{n}C_{r}x^{r} = (1+x)^{n}$$

On multiplying by x on both sides, we get
 $\sum_{r=0}^{n} {}^{n}C_{r} \cdot x^{r+1} = x(1+x)^{n}$
On differentiating w.r.t. x , we get
 $\sum_{r=0}^{n} (r+1) \cdot {}^{n}C_{r} \cdot x^{r} = (1+x)^{n} + nx(1+x)^{n-1}$
Statement II is true
If $x = 1$, then
 $\sum_{r=0}^{n} (r+1) \cdot {}^{n}C_{r} = 2^{n} + n(2)^{n-1} = (n+2)2^{n-1}$
 \therefore Statement I is true, Statement II is true;

Statement II is a correct explanation for Statement I.

151 **(a)**

$$(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r \qquad (1)$$

We have that

$$(1-r)^{n} = \sum_{r=0}^{n} (-1)^{n-r} {}^{n}C_{r}x^{r}$$
$$= \sum_{r=0}^{n} (-1)^{n-r} {}^{n}C_{r}x^{n-r} \qquad (2)$$

Multiplying (1) and (2), we get

$$\sum_{r=0}^{n} (-1)^{n-r} {}^{n}C_{r}a_{r}$$

= coefficient of x^{n} in $(1 - x^{3})^{n}$

Since $n \neq 3k$, therefore

$$\sum_{r=0}^{n} (-1)^{n-r} a_r \ ^n C_r = 0$$
$$\Rightarrow \sum_{r=0}^{n} (-1)^r a_r \ ^n C_r = 0$$

Hence, both the statements are correct and statement 2 is a correct explanation of statement 1

152 (d)

Since, *n* is even, put n = 2

LHS= ${}^{4}C_{1} = 4$ and RHS= $2^{3} = 8$

Hence, Statement I is false, but Statement II is true

153 **(b)**

In the sum of series $\sum_{i=1}^{n} \sum_{j=1}^{n} f(i) \times f(j) = i = 1nf(i)j = 1nf(j)$

i and *j* are independent. In this summation, three types of terms occur, for which i < j, i > j and i = j. Also, the sum of terms when i < j is equal to the sum of the terms when i > j if f(i) and f(j) are symmetrical. So, in that case

$$\begin{split} &\sum_{i=0}^{n} \sum_{j=0}^{n} f(i) \times f(j) = \sum_{0 \le i < j \le n} f(i) \times f(j) + \\ &\sum_{0 \le j < 1} \sum_{i \le n} f(i)f(j) + \sum_{i=1}^{n} \sum_{j \le n} f(i)f(j) \\ &= 2 \sum_{0 \le i < j \le n} f(i)f(j) + \sum_{i=1}^{n} \sum_{j \le n} f(i)f(j) \\ &\Rightarrow \sum_{0 \le i < j \le n} \sum_{j \le n} f(i)f(j) \\ &= \frac{\sum_{i=0}^{n} \sum_{j=0}^{n} f(i) \times f(j) - \sum_{i=j} \sum_{j \le n} f(i)f(j)}{2} \\ &1. \qquad \sum_{i \ne j} \sum_{i=0}^{10} \sum_{j=0}^{10} \sum_{j=0}^{10} \sum_{i=0}^{10} \sum_{i=0}^{10} \sum_{j=0}^{10} \sum_{i=0}^{10} \sum_{i=0}^{$$

 $\sum_{i=0}^{10} {}^{10}C_i^2 = 2^{20} - {}^{20}C_{10}$

- 2. $\sum_{0 \le i \le} \sum_{j \le 10} {}^{10}C_i {}^{10}C_j =$ $i = 010j = 010 \ 10Ci \ 10Cj + i = 010$ 10Ci22 = 220 + 20C102
- 3. $\sum_{0 \le i <} \sum_{j \le 10} {}^{10}C_i {}^{10}C_j =$ $i = 010j = 010 \ 10Ci \ 10Cj - i = 010 \ 10Ci22$

$$=\frac{2^{20}-{}^{20}C_{10}}{2}$$

4.
$$\sum_{i=0}^{10} \sum_{j=0}^{10} {}^{10}C_i {}^{10}C_j = i=010 \ 10Ci \ j=010 \ 10Cj=220$$

1. In $(1+x)^{41} = {}^{41}C_0 + {}^{41}C_1x + {}^{41}C_2x^2 + \dots + {}^{41}C_{20}x^{20} + {}^{41}C_{21}x^{21} + \dots + {}^{41}C_{41}x^{41}$

$$\Rightarrow \ ^{41}C_{21} + \ ^{41}C_{22} + \cdots + \ ^{41}C_{41} = 2^{40}$$

2.
$$(1 + \sqrt{2})^{42} = {}^{42}C_0 + {}^{42}(C_1\sqrt{2}) + {}^{42}C_2(\sqrt{2})^2 + {}^{42}C_1(\sqrt{2})^3 + \dots + {}^{42}C_{42}(\sqrt{2})^{42}$$

Sum of binomial coefficients of rational terms is

$${}^{42}C_0 + {}^{42}C_2 + {}^{42}C_4 + \dots + {}^{42}C_{42} = 2^{41}$$
3. $\left(x + \frac{1}{x} + x^2 + \frac{1}{x^2}\right)^{21} = \left(\frac{x^3 + x + x^4 + 1}{x^2}\right)^{21}$

$$= \frac{a_0 + a_1x + a_2x^2 + \dots + a_{82}x^{82}}{x^{42}} \qquad (1)$$

Now, putting x = 1, we get $4^{21} = a_0 + a_1 + a_2 + \dots + a_{82}$ Putting x = -1, we get $0 = a_0 - a_1 + a_2 - a_3 + \dots + a_{82}$

Adding, we get

$$4^{21} = 2(a_0 + a_2 + \dots + a_{82})$$

$$\Rightarrow a_0 + a_2 + \dots + a_{82} = 2^{41}$$

4. We know that

$${}^{n}C_{0} - {}^{n}C_{2} + {}^{n}C_{4} - {}^{n}C_{6} + \dots = 2^{n/2}\cos\frac{n\pi}{4}$$
 (1)
and

$${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + {}^{n}C_{6} + \dots = 2^{n-1}$$
(2)
$$\Rightarrow {}^{n}C_{0} + {}^{n}C_{4} + {}^{n}C_{8} + \dots = \frac{1}{2} \left(2^{n/2} \times \cos \frac{n\pi}{4} + 2^{n-1} \right)$$

For n = 42,

$${}^{42}C_0 + {}^{42}C_4 + {}^{42}C_8 + \cdots \\ = \frac{1}{2} \left(2^{21} \times \cos \frac{21\pi}{2} + 2^{41} \right) = 2^{40}$$

155 (d)

1. ${}^{(n+1)}C_4 + {}^{(n+1)}C_3 + {}^{(n+2)}C_3 = {}^{(n+3)}C_4$ $\Rightarrow {}^{(n+3)}C_4 > {}^{(n+3)}C_3 \Rightarrow \frac{{}^{n+3}C_4}{{}^{n+3}C_2} > 1$

$$\Rightarrow n > 4 \text{ or } n \ge 5$$

2. $(3053)^{456} - (2417)^{333}$
= $(339 \times 9 + 2)^{456} - (269 \times 9 - 4)^{333}$

Remainder of given number is same as remainder of $2^{456} + 4^{333}$

and

$$2^{456} + 4^{333} = (64)^{76} + (64)^{111}$$
$$= (1+63)^{76} + (1+63)^{111}$$
$$= (1+9\times7)^{76} + (1+9\times7)^{111}$$

Hence, the remainder is 2

3. We know that n! terminates in 0 for $n \ge 5$ and 3^{4n} terminates in $1(\because 3^4 = 81)$

Therefore, $3^{180} = (3^4)^{45}$ terminates in 1

Also, $3^3 = 27$ terminates in 7

Hence, $183! + 3^{183}$ terminates in 7

That is, the digit in the unit place is 7

4. We are given

$${}^{m}C_{0} + {}^{m}C_{1} + {}^{m}C_{2} = 46$$

$$\Rightarrow 2m + m(m - 1) = 90$$

$$\Rightarrow m^{2} + m - 90 = 0$$

$$\Rightarrow m = 9 \text{ as } m > 0$$

Now, $(r + 1)^{\text{th}} \text{ term of } \left(x^{2} + \frac{1}{x}\right)^{m} \text{ is}$

$${}^{m}C_{r}(x^{2})^{m-r}\left(\frac{1}{x}\right)^{r} = {}^{m}C_{r}x^{2m-3n}$$

For this to be independent of $x, 2m - 3r = 0 \Rightarrow r = 6$

156 **(c)**

$$(A)(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^{2} + \dots \text{ if } |x|$$

$$< 1$$

$$(B)(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^{2} - \dots \text{ if } |x|$$

$$< 1$$

$$(C)1 + \frac{1}{x} + \frac{1}{x^{2}} + \dots = \frac{1}{1 - \frac{1}{x}} = \frac{x}{x - 1} \quad [\because x > 1]$$

$$(D)1 - \frac{2}{x^{2}} + \frac{3}{x^{4}} - \frac{4}{x^{6}} + \dots = \left(1 + \frac{1}{x^{2}}\right)^{-2}$$

$$= \frac{x^{4}}{(x^{2} + 1)^{2}}$$

157 **(a)**

Let consecutive coefficients be ${}^{n}C_{r}$ and ${}^{n}C_{r+1}$. Then,

$$\frac{n!}{(n-r)!\,r!} = \frac{n!}{(n-r-1)!\,(r+1)!}$$
$$\Rightarrow \frac{1}{(n-r)(n-r-1)!\,r!} = \frac{1}{(n-r-1)!\,(r+1)r!}$$

 $\Rightarrow r + 1 = n - r$

$$\Rightarrow n = 2r + 1$$

Hence, *n* is odd

 $E = (19 - 4)^n + (19 + 4)^n$

 $2[{}^{n}C_{0}19^{n} + {}^{n}C_{2}19^{n-2}4^{2} + \dots + {}^{n}C_{n}4^{n}]$ when *n* is even

or

 $2[{}^{n}C_{0}19^{n} + {}^{n}C_{2} \cdot 19^{n-2} \cdot 4^{2} + \dots + {}^{n}C_{n-1}19 \cdot 4^{n-1}] \text{ then } n \text{ is odd}$

 \Rightarrow *E* is divisible by 19 when *n* is odd

 ${}^{10}C_0 \, {}^{20}C_{10} - \, {}^{10}C_1 \, {}^{18}C_{10} + \, {}^{10}C_2 \, {}^{16}C_{10} - \cdots$

=Coefficient of x^{10} in $[{}^{10}C_0(1+x)^{20} - 10C1 \times 1 + x18 + 10C21 + x16 - ...$

=Coefficient of x^{10} in $[{}^{10}C_0((1+x)^2)^{10} -$

$${}^{10}C_1 \times ((1+x)^2)^9 + {}^{10}C_2((1+x)^2)^8 - \cdots]$$

= Coefficient of x^{10} in $[(1+x)^2 - 1]^{10}$
= Coefficient of x^{10} in $[2x + x^2]^{10}$
= 2^{10}
 $T_r = {}^{14}C_{r-1}x^{r-1}; T_{r+1} = {}^{14}C_rx^rT_{r+2} =$
 ${}^{14}C_{r+1}x^{r+1}$
By the given condition,

$$2^{14}C_r = {}^{14}C_{r-1} + {}^{14}C_{r+1} \quad (1)$$

$$\Rightarrow 2 = \frac{{}^{14}C_{r-1}}{{}^{14}C_r} + \frac{{}^{14}C_{r+1}}{{}^{14}C_r}$$

$$\Rightarrow 2 = \frac{r}{14 - r + 1} + \frac{14 - (r+1) + 1}{r+1}$$

$$\Rightarrow 2 = \frac{r}{15 - r} + \frac{14 - r}{r+1}$$

$$\Rightarrow r = 9$$

We know that

$${}^{n}C_{0}^{2} + {}^{n}C_{1}^{2} + \dots + {}^{n}C_{n}^{2} = {}^{2n}C_{n}$$

And
 ${}^{n}C_{0}^{2} - {}^{n}C_{1}^{2} + \dots + (-1)^{n}{}^{n}C_{n}^{2}$
 $= \begin{cases} 0, & \text{if } n \text{ is odd} \\ {}^{n}C_{n/2}(-1)^{n}, & \text{if } n \text{ is even} \end{cases}$
From this, ${}^{31}C_{0}^{2} - {}^{31}C_{1}^{2} + {}^{31}C_{2}^{2} - \dots - {}^{31}C_{31}^{2} = 0$
 ${}^{32}C_{0}^{2} - {}^{32}C_{1}^{2} + {}^{32}C_{2}^{2} - \dots + {}^{32}C_{32}^{2} = {}^{32}C_{16}$
 ${}^{32}C_{0}^{2} - {}^{32}C_{1}^{2} + {}^{32}C_{2}^{2} - \dots + {}^{32}C_{32}^{2} = {}^{64}C_{32}$
Also, $(1/32)(1 \times {}^{32}C_{1}^{2} + 2 \times {}^{32}C_{2}^{2} - \dots + {}^{32} \times {}^{32}C_{32}^{2})$
 $= \frac{1}{32}\sum_{r=1}^{32} r({}^{32}C_{r})^{2}$
 $= \frac{1}{32}\sum_{r=1}^{32} r({}^{32}C_{r})^{2}$
 $= \frac{1}{32}\sum_{r=1}^{32} 32 {}^{31}C_{r-1} {}^{32}C_{32-r}$
 $= {}^{63}C_{31} = {}^{63}C_{32}$
159 (C)
General term, $T_{r+1} = {}^{6561}C_{r}(7^{1/3}){}^{6561-r}$.
 $(11^{1/9})^{r}$
 $= {}^{6561}C_{r} \cdot 7^{2187 - \frac{r}{3}} \cdot 11^{\frac{r}{9}}$
If T_{r+1} is rational

then $\frac{r}{9}$ and $\frac{r}{3}$ are integers $\therefore r$ is a multiple of 9 $\therefore 0 \le r \le 6561$ $\Rightarrow 0 \le \frac{r}{9} \le 729$ $\therefore \frac{r}{9} = 0, 1, 2, 3, \dots, 729$ \therefore Total terms=730

160 **(b)** Now, $(C_0 + C_1 + ... + C_n)^2 = \sum_{r=0}^n C_r^2 + 2P$ $\Rightarrow 2P = (2^n)^2 - \sum_{r=0}^n C_r^2$ $\Rightarrow P = 2^{2n-1} - \frac{1}{2} (2^n C_n)$

161 **(b)**

The coefficient of the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion are ${}^{m}C_{1}$, ${}^{m}C_{2}$ and ${}^{m}C_{3}$, which are given in A.P. Hence,

$$2^{m}C_{2} = {}^{m}C_{1} + {}^{m}C_{3}$$

$$\Rightarrow \frac{2m(m-1)}{2!} = m + \frac{m(m-1)(m-2)}{3!}$$

$$\Rightarrow m(m^{2} - 9m + 14) = 0$$

$$\Rightarrow m(m-2)(m-7) = 0$$

$$\Rightarrow m = 7(\because m \neq 0 \text{ or } 2 \text{ as } 6^{\text{th}} \text{ term is given equal to } 21)$$
Now, 6th term in the expansion, when $m = 7$, is
$${}^{7}C_{5} \left[\sqrt{\{2^{\log(10-3^{x})}\}} \right]^{7-5} \times \left[{}^{5}\sqrt{\{2^{(x-3)\log 3}\}} \right]^{5} = 21$$

$$\Rightarrow \frac{7 \times 6}{2!} 2^{\log(10-3^{x})} \times 2^{(x-2)\log 3} = 21$$

$$\Rightarrow 2^{\log(10-3^{x})+(x-2)\log 3} = 1 = 2^{0}$$

$$\Rightarrow \log(10 - 3^{x}) + (x - 2)\log 3 = 0$$

$$\Rightarrow \log(10 - 3^{x})(3)^{(x-2)} = 0$$

$$\Rightarrow (10 - 3^{x}) \times 3^{x} \times 3^{-2} = 1$$

$$\Rightarrow 10 \times 3^{x} - (3^{x})^{2} = 9$$

$$\Rightarrow (3^{x} - 1)(3^{x} - 9) = 0$$

$$\Rightarrow 3^{x} - 1 = 0 \Rightarrow 3^{x} = 1 = 3^{0} \Rightarrow x = 0$$

$$\Rightarrow 3^{x} - 9 = 0 \Rightarrow 3^{x} = 3^{2} \Rightarrow x = 2$$
Hence, $x = 0$ or 2. When $x = 2$

$$\left[\sqrt{\{2^{\log(10-3^{x})}\}} + 5\sqrt{\{2^{(x-2)\log 3}\}} \right]^{m}$$

$$= [1 + 1]^{7} = 128$$
When $x = 0$,
$$\left[\sqrt{\{2^{\log(10-3^{x})}\}} + 5\sqrt{\{2^{(x-2)\log 3}\}} \right]^{m}$$

$$= \left[\sqrt{\{2^{\log 9}\}} + \sqrt{\{2^{-2\log 3}\}}\right]^{7}$$
$$= \left[2^{\frac{\log 9}{2}} + \frac{1}{2^{\frac{\log 9}{5}}}\right]^{7} > 2^{7}$$

Hence, the minimum value is 128

162 **(b)**

 2^{nd} term is ${}^{n}C_{1}x^{n-1}a = 240$ (1) $3^{\rm rd}$ term is ${}^{n}C_{2}x^{n-2}a^{2} = 720$ (2)4th term is ${}^{n}C_{3}x^{n-3}a^{3} = 1080$ (3)Multiplying (1) and (3) and dividing by the square of (2), we get $\frac{{}^{n}C_{1} \times {}^{n}C_{3}}{({}^{n}C_{2})^{2}} = \frac{240 \times 1080}{(720)^{2}}$ $\Rightarrow \frac{n \times n(n-1)(n-2)(2!)^2}{n^2(n-1)^2 \times 3!} = \frac{1}{2}$ $\Rightarrow 4(n-2) = 3(n-1) \quad (\because n \neq 1)$ $\Rightarrow n = 5$ Putting n = 5, from (1) and (2), we get $5x^4a = 240$ and $10x^3a^2 = 720$ $\Rightarrow \frac{(5x^4a)^2}{10x^3a^2} = \frac{(240)^2}{720}$ or $x^5 = 32$ $\therefore x = 2$ $\therefore a = \frac{240}{5r^4} = \frac{48}{24} = 3$ Hence, x = 2, a = 3 and n = 5 $(x-a)^n = (2-3)^5 = -1$ Also, $(2+3)^5 = 2^5 + {}^5C_12^4 \times 3 + {}^5C_22^3 \times 3^2 + {}^5C_32^2$ $\times 3^{3} + {}^{5}C_{4}2 \times 3^{4} + {}^{5}C_{5}3^{5}$ = 32 + 240 + 720 + 1080 + 810 + 243Hence, least value of the term is 32 Sum of odd-numbered terms is 32 + 720 + 810 =1562

163 **(b)**

Let,

$$(1 + x + x^2)^{20} = \sum_{r=0}^{40} a_r x^r$$
 (1)
Replacing x by 1/x, we get
 $\left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^{20} = \sum_{r=0}^{40} a_r \left(\frac{1}{x}\right)^r$
 $\Rightarrow (1 + x + x^2)^{20} = \sum_{r=0}^{40} a_r x^{40-r}$ (2)
Since (1) and (2) are same series, coefficient of x^r
in (1)= coefficient of x^r in (2)
 $\Rightarrow a_r = a_{40-r}$
In (1), putting $x = 1$, we get
 $3^{20} = a_0 + a_1 + a_2 + \dots + a_{40}$
 $= (a_0 + a_1 + a_2 + \dots + a_{19}) + a_{20}$
 $+ (a_{21} + a_{n+2} + \dots + a_{40})$

 $= 2(a_0 + a_1 + a_2 + \dots + a_{19}) + a_{20} \quad (\because a_r)$ $= a_{40-r}$) $\Rightarrow a_0 + a_1 + a_2 + \dots + a_{19} = \frac{1}{2}(3^{20} - a_{20})$ $=\frac{1}{2}(9^{10}-a_{20})$ Also, $a_0 + 3a_1 + 5a_2 + \dots + 81a_{40}$ $= (a_0 + 81a_{40}) + (3a_1 + 79a_{39}) + \cdots$ $+(39a_{19}+43a_{21})+41a_{20}$ $= 82(a_0 + a_1 + a_2 + \dots + a_{19}) + 41a_{20}$ $= 41(9^{10} - a_{20}) + 41a_{20}$ $= 41 \times 3^{20}$ $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \cdots$ suggests that we have to multiply the two expansions. Replacing x by -1/x in (1), we get $\left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^{20} = a_0 - \frac{a_1}{x} + \frac{a_2}{x^2} - \dots + \frac{a_{40}}{x^{40}}$ $\Rightarrow (1 - x + x^2)^{20}$ $= a_0 x^{40} - a_1 x^{39} + a_2 x^{38} - \cdots$ $+ a_{40}$ (3) Clearly, $a_0^2 - a_1^2 + a_2^2 + \dots + a_{40}^2$ is the coefficient of x^{40} in $(1 + x + +x^2)^{20}(1 - x + x^2)^{20}$ = Coefficient of x^{40} in $(1 + x^2 + x^4)^{20}$ In $(1 + x^2 + x^4)^{20}$, replace x^2 by y, then the coefficient of y^{20} in $(1 + y + y^2)^{20}$ is a_{20} . Hence, $a_0^2 - a_1^2 + a_2^2 - \dots + a_{40}^2 = a_{20}$ $\Rightarrow (a_0^2 - a_1^2 + a_2^2 - \dots - a_{19}^2) + a_{20}^2$ $+(-a_{21}^2+\cdots+a_{40}^2)=a_{20}$ $\Rightarrow (a_0^2 - a_1^2 + a_2^2 - \dots - a_{19}^2) + a_{20}^2 = a_{20}$ $\Rightarrow a_0^2 - a_1^2 + a_2^2 - \dots - a_{19}^2 = \frac{a_{20}}{2} [1 - a_{20}]$ 164 (c) $a_0 + a_1 x + a_2 x^2 + \dots + a_{99} x^{99} + x^{100} = 0$ has roots ${}^{99}C_0$, ${}^{99}C_1$, ${}^{99}C_2$, ..., ${}^{99}C_{99}$ $\Rightarrow a_0 + a_1 x + a_1 x^2 + \dots + a_{99} x^{99} + x^{100}$ $=(x - {}^{99}C_0)(x - {}^{99}C_1)(x$ $(x - {}^{99}C_2) \dots (x - {}^{99}C_{99})$ Now, sum of roots is ${}^{99}C_0 + {}^{99}C_1 + {}^{99}C_2 + \dots + {}^{99}C_{99} \\ a_{99}$ coefficient of x^{100} $\Rightarrow a_{99} = -2^{99}$ Also, sum of product of roots taken two at a time is coefficient of x^{100}

$$\begin{split} & \therefore \sum_{a:l < l \le 99} \sum_{j=0}^{99} C_i \, {}^{99} C_j \\ &= \frac{\left(\sum_{l=0}^{99} \sum_{j=0}^{99} \, {}^{99} C_l \, {}^{99} C_j\right) - \sum_{l=0}^{99} (\, {}^{99} C_l)^2}{2} \\ &= \frac{\left(\sum_{l=0}^{99} \, {}^{99} C_l \, {}^{99} C_l\right)^2}{2} \\ &= \frac{2^{198} - {}^{198} C_{99}}{2} \\ &= \frac{2^{198} - {}^{198} C_{99}}{2} \\ &= ({}^{99} C_0)^2 + ({}^{99} C_1)^2 + \dots + ({}^{99} C_{99})^2 \\ &= ({}^{99} C_0)^2 - 2a_{98} \\ &= a_{29}^2 - 2a_{98} \\ &= 1 m \left(\sum_{r=0}^{100} {}^{100} C_r \, (e^{ix})^r\right) \\ &= 1 m \left(\sum_{r=0}^{100} {}^{100} C_r \, (e^{ix})^r\right) \\ &= 1 m \left(\sum_{r=0}^{100} {}^{100} C_r \, (e^{ix})^r\right) \\ &= 1 m \left(1 + \cos x + i \sin x\right)^{100} \\ &= 1 m \left(2 \cos^2 \frac{x}{2} + 2i \sin \frac{x}{2} \times \cos \frac{x}{2}\right)^{100} \\ &= 1 m \left(2 \cos^2 \frac{x}{2} + 2i \sin \frac{x}{2} \times \cos \frac{x}{2}\right)^{100} \\ &= 1 m \left(2 \cos^2 \frac{x}{2} \cos^2 x + i \sin \frac{x}{2}\right) \right)^{100} \\ &= 2^{100} \cos^{100} \frac{x}{2} \sin(50x) \\ &\sum_{r=0}^{50} {}^{50} C_r a^r \times b^{50-r} \times \cos(rB - (50 - r)A) \\ &= Re \left(\sum_{r=0}^{50} {}^{50} C_r (a \times e^{iB})^r \times (b \times e^{-iA})^{50-r}\right) \\ &= Re(a \cos B + ia \sin B + b \cos A - ib \sin A)^{50} \\ &= Re(a \cos B + ia \sin B + b \cos A - ib \sin A)^{50} \\ &= Re(a \cos B + b \cos A)^{50} = c^{50} (\because a \sin B \\ &= b \sin A) \\ \\ &= \sum_{r=0}^{50} {}^{50} C_r \cos 2rx \\ &= \frac{\sum_{r=0}^{50} {}^{50} C_r \cos 2rx \\ &= \frac{\sum_{r=0}^{50} {}^{50} C_r \cos 2rx + \cos 2(50 - r)x_l}{\sum_{r=0}^{50} {}^{50} C_r \cos 2rx + \cos 2(50 - r)x_l} \left(\because \frac{a}{b} = \frac{c}{d} \\ &= \frac{a + c}{b + d} \right) \end{aligned}$$

$$\begin{aligned} &= \frac{\sum_{r=0}^{50}}{\sum_{r=0}^{50}} \frac{\sum_{r=0}^{50} \sum_{r=0}^{50} \sum_{r=0}^{c} \sum_{r=0}^{50} \sum_{r=0}^{c} \sum_{r=0}^{50} \sum_{r=0}^{c} \sum_{r=0}^{50+r} \sum_{r=0}^{c} \sum_{r=0}^{50+r} \sum_{r=0}^{c} \sum_{r=$$

Page | 42

from the remaining n - r elements Here, A can be 170 (5) chosen in ${}^{n}C_{r}$ ways and *B* in ${}^{n-r}C_{0} + {}^{n-r}C_{1} +$ $\dots + {}^{n-r}C_{n-r} = 2^{n-r}$ ways. So, the total number of ways of choosing A and B is ${}^{n}C_{r} \times 2^{n-r}$ But *r* can vary from 0 to *n*. So, total number of ways is $\sum^{n} C_r \times 2^{n-r} = (1+2)^n = 3^n$ If *A* contains *r* elements, then *B* contains (r + 1)elements Then, the number of ways of choosing *A* and *B* is ${}^{n}C_{r} \times {}^{n}C_{r+1} = C_{r} C_{r+1}$ But *r* can vary from 0 to (n - 10). So, total number of ways is $\sum_{r=0} C_r C_{r+1} = C_0 C_1 + C_1 C_2 + \dots + C_{n-1} C_n$ $= {}^{2n}C_{n-1}$ Let *A* contains $r(0 \le r \le n)$ elements. Then, *A* can be chosen in ${}^{n}C_{r}$ ways. The subset *B* of A can have at most r elements, and the number of ways of choosing *B* is 2^r Therefore, the number of ways of choosing A and *B* is ${}^{n}C_{r} \times 2^{r}$ But r can vary from 0 to n So, the total number of ways is $\sum_{r=1}^{n} C_r \times 2^r = (1+2)^n = 3^n$ 168 (1) $=\sum_{k=1}^{\infty}\left(\frac{3^{4-k}}{(4-k)!}\right)\left(\frac{x^{k}}{k!}\right)$ $=\sum_{k=0}^{4} \left(\frac{3^{4-k}}{(4-k)!}\right) \left(\frac{x^{k}}{k!}\right) \frac{4!}{4!}$ $=\sum_{k=1}^{\infty} \frac{{}^{4}C_{k} \cdot 3^{4-k} \cdot x^{k}}{4!} = \frac{(3+x)^{4}}{4!}$ According to the question, $\frac{(3+x)^4}{4!} = \frac{32}{3}$ $\Rightarrow (3+x)^4 = 256$ $\Rightarrow x + 3 = 4 \Rightarrow x = 1$ 169 **(0)** Consider $(5+2)^{100} - (5-2)^{100}$ $= 2[\,{}^{100}C_1 5^{99} \cdot 2 + \,{}^{100}C_3 5^{97} \cdot 2^3 + \dots + \,{}^{100}C_{99} 5$ $= 2[1000 \cdot 5^{98} + 1000. \ ^{100}C_3 \cdot 5^{94} + \cdots$ $+1000 \cdot 2^{98}$] \Rightarrow minimum 000 as last three digits

 ${}^{23}C_r + 2$. ${}^{23}C_{r+1} + {}^{23}C_{r+2} = {}^{24}C_{r+1} + {}^{24}C_{r+2}$ $= {}^{25}C_{r+2} \geq {}^{25}C_{15}$ \therefore (r + 2) can be 10, 11, 12, 13 and 15 so 5 elements 171 (9) $f(n) = {}^{n}C_{0}a^{n-1} - {}^{n}C_{1}a^{n-2} + {}^{n}C_{2}a^{n-3} + \cdots$ $+ (-1)^{n-1n} C_{n-1} a^0$ $= \frac{1}{a} ({}^{n}C_{0}a^{n} - {}^{n}C_{1}a^{n-1} + {}^{n}C_{2}a^{n-2} + \cdots$ $+ (-1)^{n-1}C_{n-1}a')$ $=\frac{1}{a}((a-1)^n-(-1)^n {}^nC_n)$ $=\frac{1}{a}\left(\left(\frac{1}{3^{223}}-(-1)^n\right)\right)$ $f(x) = \frac{3^{\frac{n}{223}} - (-1)^n}{\left(3^{\frac{1}{223}} + 1\right)}$ $\Rightarrow f(2007) = \frac{3^{\frac{2007}{223}} + 1}{3^{\frac{1}{223}} + 1}$ $\Rightarrow f(2008) = \frac{3^{\frac{2008}{223}} - 1}{3^{\frac{1}{223}} + 1}$ $\Rightarrow f(2007) + f(2008) = \frac{3^{\frac{2007}{223}} + 3^{\frac{2008}{223}}}{3^{\frac{1}{222}+1}}$ $=\frac{3^9+3^{9+\frac{1}{223}}}{3^{\frac{1}{223}}+1}$ $= 3^9 \frac{\left(1 + 3^{\frac{1}{223}}\right)}{1} = 3^9$ $\Rightarrow 3^9 = 3^k$ then k = 9172 (8) Let the three consecutive coefficients be ${}^{n}C_{r-1} = 28, \; {}^{n}C_{r} = 56 \text{ and } {}^{n}C_{r+1} = 70,$ So that $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r} = \frac{56}{28} = 2$ and $\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1} =$ This gives n + 1 = 3r and 4n - 5 = 9r $\therefore \frac{4n-5}{n+1} = 3 \Rightarrow n = 8$ 173 (7) $(1+7)^{83} + (7-1)^{83} = (1+7)^{83} - (1-7)^{83}$ $= 2\left[{}^{83}C_1 \cdot 7 + {}^{83}C_3 \cdot 7^3 + \dots + {}^{83}C_{83} \cdot 7^{83} \right] =$ $(2 \cdot 7 \cdot 83) + 49I$ where I is an integer Now $14 \times 83 = 1162$ $\therefore \frac{1162}{49} = 23\frac{35}{49}$: Reminder is 35 174 (4)

We have $b = \text{coefficient of } x^3 \text{ in } ((1 + x + 2x^2 + x^2))$

$$3x^{3} + 4x^{4})^{4} = \operatorname{coefficient of } x^{3} \operatorname{in } [{}^{4}C_{0}(1 + x + 2x^{2} + 3x^{3}44x^{4}0 + 4C11 + x + 2x^{2} + 3x^{3}34x^{4}1 + ...]$$

$$= \operatorname{coefficient of } x^{3} \operatorname{in } (1 + x + 2x^{2} + 3x^{3})^{4} = a$$
Hence, $4a/b = 4$
175 (6)
 $T_{r+1} = {}^{n}C_{r}(x^{2})^{n-r}(-1)^{r}x^{-r}$

$$= {}^{n}C_{r}x^{2n-3r}(-1)^{r}$$
Constant term $= {}^{n}C_{r}(-1)^{r} \operatorname{if } 2n = 3r$
i.e., coefficient of $x = 0$
hence, ${}^{n}C_{2n/3}(-1)^{2n/3} = 15 = {}^{6}C_{4} n = 6$
176 (1)
 $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{5^{n}} \cdot {}^{n}C_{r}\left(\sum_{t=0}^{r-1} {}^{r}C_{t}, 3^{t}\right)$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{5^{n}} \cdot {}^{n}C_{r} (4^{r} - 3^{r})$$

$$= \lim_{n \to \infty} \frac{1}{5^{n}} \left(\sum_{r=1}^{n} {}^{n}C_{r}4^{r} - \sum_{r=0}^{n} {}^{n}C_{r}3^{r}\right)$$

$$= \lim_{n \to \infty} \frac{1}{5^{n}} (5^{n} - 4^{n}) = 1$$
177 (0)
Middle term is $\left(\frac{n}{2} + 1\right)^{\text{th}}$, i.e., $(4 + 1)^{\text{th}}$, i.e., T_{5}
 $\therefore T_{5} = {}^{8}C_{4}\left(\frac{X}{2}\right)^{4} \cdot 2^{4} = 1120 \Rightarrow x^{4} \frac{8.7.6.5}{1.2.3.4}x^{4}$

$$= 1120$$

$$\Rightarrow x^{4} = \frac{1120}{70} = 16$$

$$\Rightarrow (x^{2} + 4)(x^{2} - 4) = 0$$
 $\therefore x = \pm 2$ only as $x \in \mathbb{R}$
178 (3)
 $(1 + 0.00002)^{50000} = \left(1 + \frac{1}{50000}\right)^{50000}$
Now we know that $2 \leq \left(1 + \frac{1}{n}\right)^{n} < 3 \forall n \ge 1 \Rightarrow$
Least integer is 3
179 (5)
We have $1 + \sum_{r=1}^{10} (3^{r} \cdot {}^{10}C_{r} + r \cdot {}^{10}C_{r})$

$$= 1 + \sum_{r=1}^{10} 3^{r} \cdot {}^{10}C_{r} + 10 \sum_{r=1}^{10} {}^{9}C_{r-1}$$

$$= 1 + 4^{10} - 1 + 10 \cdot 2^{9}$$

$$= 4^{10} + 5.2^{10} = 2^{10}(4^{5} + 5)$$

$$= 2^{10}(\alpha \cdot 4^{5} + \beta)$$
, so $\alpha = 1$ and $\beta = 5$

$$\int (x)$$

Now f(1) < 0 and f(5) < 0 $f(1) < 0 \Rightarrow -k^2 < 0 \Rightarrow k \neq 0$ and f(5) < 0 $\Rightarrow 16 - k^2 < 0$ $\Rightarrow k^2 - 16 > 0$ $\Rightarrow k \in (-\infty, 4) \cup (4, \infty)$ Hence, the smallest positive integral value of k = 5180 **(8)**

$$= \left[\sqrt{x^{2} + 1} + \sqrt{x^{2} - 1}\right]^{8} + \left[\sqrt{x^{2} + 1} - \sqrt{x^{2} - 1}\right]^{8}$$
$$= 2 \begin{bmatrix} {}^{8}C_{0}\left(\sqrt{x^{2} + 1}\right)^{8} + {}^{8}C_{2}\left(\sqrt{x^{2} + 1}\right)^{6} \\ \left(\sqrt{x^{2} - 1}\right)^{2} + \\ {}^{8}C_{4}\left(\sqrt{x^{2} + 1}\right)^{4}\left(\sqrt{x^{2} - 1}\right)^{4} \\ {}^{8}C_{6}\left(\sqrt{x^{2} + 1}\right)^{2}\left(\sqrt{x^{2} - 1}\right)^{6} \\ + {}^{8}C_{8}\left(\sqrt{x^{2} - 1}\right)^{8} \end{bmatrix}$$

Which has degree 8

181 **(6)**

Coefficients of $(2r + 4)^{\text{th}}$ and $(r - 2)^{\text{th}}$ terms are equal $\Rightarrow {}^{18}C_{2r+3} = {}^{18}C_{r-3}$ (when ${}^{n}C_{x} = {}^{n}C_{y}$, then x = y or x + y = n) $\Rightarrow 2r + 3 + r - 3 = 18 \Rightarrow r = 6$ 182 **(4)** $T_{2} = {}^{n}C_{1}(a^{1/13})^{n-1} a\sqrt{a} = 14a^{5/2}$

$$\Rightarrow n \cdot a^{\frac{n-1}{13}} = 14a
\Rightarrow n \cdot a^{\frac{n-14}{13}} = 14
\Rightarrow \frac{n-14}{13} = 0
\Rightarrow n = 14
\Rightarrow \frac{{}^{14}C_3}{{}^{14}C_2} = \frac{14!}{3! \cdot 11!} \frac{2! \cdot 12!}{14!} = \frac{12}{3} = 4
183 (6)
(1 - 2x + 5x^2 - 10x^3)[{}^{n}C_0 + {}^{n}C_1x + {}^{n}C_2x^2 + \cdots] = 1 + a_1x + a_2x^2 + \cdots = 3a_1 = n - 2 \text{ and } a_2 = \frac{n(n-1)}{2} - 2n + 5
Given that $a_1^2 = 2a_2 = 3a_1 + 2a_2 = 3a_1 + 2a_2 = 2a_1 + 2a_2 = 3a_1 + 2a_1 + 2a_1$$$

$$\Rightarrow \frac{2.14!}{(14-r)!r!} = \frac{14!}{(14-r+1)!(r-1)} \\ + \frac{14!}{(14-r-1)!(r+1)!} \\ \Rightarrow \frac{2}{(14-r)(13-r)!r(r-1)!} \\ = \frac{1}{(15-r)(14-r)(13-r)!(r-1)!} \\ + \frac{1}{(13-r)!(r+1)r(r-1)!} \\ \Rightarrow \frac{2}{(14-r)r} = \frac{1}{(15-r)(14-r)} + \frac{1}{r(r+1)} \\ \Rightarrow \frac{2}{(14-r)r} - \frac{1}{r(r+1)} = \frac{1}{(15-r)(14-r)} \\ \Rightarrow \frac{3r-12}{r(r+1)} = \frac{1}{(15-r)} \\ \Rightarrow r = 5 \text{ or } 9$$

185 (1)

Let x^7 occurs in T_{r+1} term, then $T_{r+1} = {}^{n}C_r(ax^2)^{n-r} \left(\frac{1}{bx}\right)^r$ $= {}^{11}C_r \frac{a^{11-r}}{b^r} \cdot x^{22-2r-r}$ For $x^7 \Rightarrow 22 - 3r = 7 \Rightarrow r = 5$ Hence, coefficients of x^7 is ${}^{11}C_5 \frac{a^6}{b^5}$ Let x^{-7} occur in T_{r+1} term, then $T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(-\frac{1}{bx^2}\right)^r$ $= {}^{11}C_r \frac{a^{11-r}}{(-b)^r} x^{11-3r}$ For $x^7 \Rightarrow 11 - 3r = -7 \Rightarrow r = 6$ Hence, coefficient of x^{-7} is ${}^{11}C_6 \frac{a^5}{b^6}$ Now ${}^{11}C_5 \frac{a^5}{b^6} = {}^{11}C_6 \frac{a^6}{b^5}$ $\Rightarrow {}^{11}C_5 a = {}^{11}C_6 \frac{a^5}{b^6}$ $\Rightarrow {}^{11}C_5 a = {}^{11}C_{11-6} \frac{1}{b}$ $\Rightarrow {}^{11}C_5 a = {}^{11}C_5 \frac{1}{b}$

186 **(0)**

$$1 + 2 + 2^{2} + 2^{3} + \dots + 2^{1999}$$

 $= \frac{1(2^{2000} - 1)}{1}$
 $= 2^{2000} - 1$
 $= (1 - 5)^{1000} - 1$
 $= 1 - {}^{1000}C_{1} \cdot 5 + {}^{1000}C_{2} \cdot 5^{2} + \dots + {}^{1000}C_{1000}$
 $\cdot 5^{1000} - 1$

Which is divisible by 5

Lat $2^{\chi} - \alpha$

187 **(4)**

$$\left(5^{\frac{2}{5}\log_5\sqrt{4^{x}+44}} + \frac{1}{5^{\log_5}\sqrt[3]{2^{x-1}+7}} \right)^8$$

$$= \left(\left(\sqrt{4^x+44}\right)^{2/5} + \left(\frac{1}{\sqrt[3]{2^{x-1}+7}}\right) \right)^8$$

$$= \left((4^x+44)^{1/5} + \frac{1}{(2^{x-1}+7)^{1/3}} \right)^8$$
Now
$$T_4 = T_{3+1} = {}^8C_3 \left((4^x+44)^{1/5} \right)^{8-3} \frac{1}{((2^{x-1}+7)^{1/3})^3}$$
Given 336 = ${}^8C_3 \left(\frac{4^{x}+44}{2^{x-1}+7} \right)$

$$\Rightarrow 336 = {}^{8}C_{3}\left(\frac{y^{2}+44}{(y/2)+7}\right)$$
$$\Rightarrow 336 = \frac{8 \times 7 \times 6}{3 \times 2 \times 1}\left(\frac{2(y^{2}+44)}{y+14}\right)$$
$$\Rightarrow y^{2}-3y+2=0 \Rightarrow y=0,2$$

DCAM classes