Single Correct Answer Type

1. Area enclosed between the curves $|y|=1-x^{2}$ and $x^{2}+y^{2}=1$ is
a) $\frac{3 \pi-8}{3}$ sq. units
b) $\frac{\pi-8}{3}$ sq. units
c) $\frac{2 \pi-8}{3}$ sq. units
d) None of these
2. The area enclosed by the curve $x y^{2}=a^{2}(a-x)$ and $(a-x) y^{2}=a^{2} x$ is
a) $(\pi-2) a^{2}$ sq. units
b) $(4-\pi) a^{2}$ sq. units
c) $\pi a^{2} / 3$ sq. units
d) None of these
3. The area of the region enclosed between the curves $x=y^{2}-1$ and $x=|y| \sqrt{1-y^{2}}$ is
a) 1 sq. units
b) $4 / 3$ sq. units
c) $2 / 3$ sq. units
d) 2 sq. units
4. Area enclosed by the curve $y=(x)$ defined parametrically as $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ is equal to
a) π sq. units
b) $\pi / 2$ sq. units
c) $\frac{3 \pi}{4}$ sq. units
d) $\frac{3 \pi}{2}$ sq. units
5. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the y-axis is
a) $\pi a^{2} / 2$ sq. units
b) πa^{2} sq. units
c) $3 \pi a^{2}$ sq. units
d) None of these
6. Area bounded by the curves $y=\log _{e} x$ and $y=\left(\log _{e} x\right)^{2}$ is
a) $e-2$ sq. units
b) $3-e$ sq. units
c) e sq. units
d) $e-1$ sq. units
7. The area of the loop of the curve, $a y^{2}=x^{2}(a-x)$ is
a) $4 a^{2}$ sq. units
b) $\frac{8 a^{2}}{15}$ sq. units
c) $\frac{16 a^{2}}{9}$ sq. units
d) None of these
8. The area bounded by the two branches of curve $(y-x)^{2}=x^{3}$ and the straight line $x=1$ is
a) $1 / 5$ sq. units
b) $3 / 5$ sq. units
c) $4 / 5$ sq. units
d) $8 / 4$ sq. units
9. The area o the region enclosed by the curves $y=x \log x$ and $y=2 x-2 x^{2}$ is
a) $\frac{7}{12}$ sq. units
b) $\frac{1}{2}$ sq. units
c) $\frac{5}{12}$ sq. units
d) None of these
10. If $f(x)=\sin x, \forall x \in\left[0, \frac{\pi}{2}\right], f(x)+f(\pi-x)=2, \forall x \in\left(\frac{\pi}{2}, \pi\right]$ and $f(x)=f(2 \pi-x), \forall x \in(\pi, 2 \pi)$, then the area enclosed by $y=f(x)$ and the x-axis is
a) π sq. units
b) 2π sq. units
c) 2 sq. units
d) 4 sq. units
11. The area of the region whose boundaries are defined by the curve $y=2 \cos x, y=3 \tan x$ and the y-axis is
a) $1+3 \operatorname{In}\left(\frac{2}{\sqrt{3}}\right)$ sq. units
b) $1+\frac{3}{2}$ In $3-3$ In 2 sq. units
c) $1+\frac{3}{2} \operatorname{In} 3-$ In 2 sq. units
d) $\operatorname{In} 3-\operatorname{In} 2$ sq. units
12. The area bounded by the curve $y^{2}=1-x$ and lines $y=\frac{|x|}{x}, x=-1$ and $x=\frac{1}{2}$ is
a) $\frac{3}{\sqrt{2}}-\frac{11}{6}$ sq. units
b) $3 \sqrt{2}-\frac{11}{4}$ sq. units
c) $\frac{6}{\sqrt{2}}-\frac{11}{5}$ sq. units
d) None of these
13. Let $f(x)=$ minimum $(x+1, \sqrt{1-x})$ for all $x \leq 1$. Then the area bounded by $y=f(x)$ and the x-axis is
a) $\frac{7}{3}$ sq. units
b) $\frac{1}{6}$ sq. units
c) $\frac{11}{6}$ sq. units
d) $\frac{7}{6}$ sq. units
14. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is
a) $12 \sqrt{3}$ sq. units
b) $6 \sqrt{3}$ sq. units
c) $8 \sqrt{3}$ sq. units
d) $4 \sqrt{3}$ sq. units
15. The area of the region of the plane bounded by max $(|x|,|y|) \leq 1$ and $x y \leq \frac{1}{2}$ is
a) $1 / 2+$ In 2 sq. units
b) $3+$ In 2 sq. units
c) $31 / 4$ sq. units
d) $1+2$ In 2 sq. units
16. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $(1,1 / 2)$ and $(4,2)$ is
a) $9 / 8$ sq. units
b) $3 / 8$ sq. units
c) $3 / 2$ sq. units
d) $9 / 4$ sq. units
17. The value of the parameter a such that the area bounded by $y=a^{2} x^{2}+a x+1$, coordinate axes and the line $x=1$ attains its least value, is equal to
a) $-\frac{1}{4}$ sq. units
b) $-\frac{1}{2}$ sq. units
c) $-\frac{3}{4}$ sq. units
d) -1 sq. units
18. The area bounded by the curves $y=\sin ^{-1}|\sin x|$ and $y=\left(\sin ^{-1}|\sin x|\right)^{2}$, where $0 \leq x \leq 2 \pi$, is
a) $\frac{1}{3}+\frac{\pi^{2}}{4}$ sq. units
b) $\frac{1}{6}+\frac{\pi^{3}}{8}$ sq. units
c) 2 sq. units
d) None of these
19. The area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x-axis is
a) $a^{2} / 3$ sq. units
b) $a^{2} / 4$ sq. units
c) $a^{2} / 43$ sq. units
d) $a^{2} / 12$ sq. units
20. Area bounded by $y=\frac{1}{x^{2}-2 x+2}$ and x-axis is
a) 2π sq. units
b) $\frac{\pi}{2}$ sq. units
c) 2 sq. units
d) π sq. units
21. The area bounded by the loop of the curve $4 y^{2}=x^{2}\left(4-x^{2}\right)$ is
a) $7 / 3$ sq. units
b) $8 / 3$ sq. units
c) $11 / 3$ sq. units
d) $16 / 3$ sq. units
22. The area of the region bounded by $x^{2}+y^{2}-2 x-3=0$ and $y=|x|+1$ is
a) $\frac{\pi}{2}-1$ sq. units
b) 2π sq. units
c) 4π sq. units
d) $\pi / 2$ sq. units
23. The area enclosed between the curves $y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right)$ and the x-axis is
a) 2 sq. units
b) 1 sq. units
c) 4 sq. units
d) None of these
24. The area of the region bounded by $x=0, y=0, x=2, y=2, y \leq e^{x}$ and $y \geq \operatorname{In} x$ is
a) $6-4$ In 2 sq. units
b) 4 In $2-2$ sq. units
c) 2 In $2-4$ sq. units
d) $6-2 \operatorname{In} 2$ sq. units
25. Consider two curve $C_{1}: y^{2}=4[\sqrt{y}] x$ and $C_{2}: x^{2}=4[\sqrt{x}] y$, where [.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines $x=1, y=$ $1, x=4, y=4$ is
a) $8 / 3$ sq. units
b) $10 / 3$ sq. units
c) $11 / 3$ sq. units
d) $11 / 4$ sq. units
26. The area of the region in 1 st quadrant bounded by the y-axis, $y=\frac{x}{4}, y=1+\sqrt{x}$ and $y=\frac{2}{\sqrt{x}}$ is
a) $2 / 3$ sq. units
b) $8 / 3$ sq. units
c) $11 / 3$ sq. units
d) $13 / 6$ sq. units
27. The area of the region containing the points (x, y) satisfying $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$ is
a) 8 sq. units
b) 2 sq. units
c) 4π sq. units
d) 2π sq. units
28. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is
a) $\frac{1}{3}$ sq unit
b) $\frac{2}{3}$ sq unit
c) $\frac{1}{4}$ sq unit
d) $\frac{1}{5}$ sq unit
29. The area bounded by $y=\sec ^{-1} x, y=\operatorname{cosec}^{-1} x$ and line $x-1=0$ is
a) $\log (3+2 \sqrt{2})-\frac{\pi}{2}$ sq. units
b) $\frac{\pi}{2}-\log (3+2 \sqrt{2})$ sq. units
c) $\pi-\log _{e} 3$ sq. units
d) None of these
30. The area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates $x=0$ and $x=2 \pi$ is
a) 4π sq. units
b) 8π sq. units
c) 4 sq. units
d) 8 sq. units
31. The area enclosed by the curve $y=\sqrt{4-x^{2}}, y \geq \sqrt{2} \sin \left(\frac{x \pi}{2 \sqrt{2}}\right)$ and the x-axis is divided by the y-axis in the ratio
a) $\frac{\pi^{2}-8}{\pi^{2}+8}$
b) $\frac{\pi^{2}-4}{\pi^{2}+4}$
c) $\frac{\pi^{2}-4}{\pi-4}$
d) $\frac{2 \pi^{2}}{2 \pi^{2}+\pi^{2}-8}$
32. The area between the curve $y=2 x^{4}-x^{2}$, the x-axis and the ordinates of the two minima of the curve is
a) $11 / 60$ sq. units
b) $7 / 120$ sq. units
c) $1 / 30$ sq. units
d) $7 / 90$ sq. units
33. The area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
a) $\sqrt{x-1}$
b) $\sqrt{x+1}$
c) $\sqrt{x^{2}+1}$
d) $\frac{x}{\sqrt{1+x^{2}}}$
34. The area of the region between the curves
$y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $\mathrm{y}=\sqrt{\frac{1-\sin x}{\cos x}}$
Bounded by the line $x=0$ and $x=\frac{\pi}{4}$
a) $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
b) $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
c) $\int_{0}^{\sqrt{2}+1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
d) $\int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
35. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is $\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then $f^{\prime}\left(\frac{\pi}{2}\right)$ is
a) $\left(\frac{\pi}{2}-\sqrt{2}-1\right)$
b) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
c) $-\frac{\pi}{2}$
d) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
36. The area of the figure bounded by the parabola $(y-2)^{2}=x-1$, the tangent to it at the point with the ordinate $x=3$ and the x-axis is
a) 7 sq. units
b) 6 sq. units
c) 9 sq. units
d) None of these
37. The area bounded by $y=3-|3-x|$ and $y=\frac{6}{|x+1|}$ is
a) $\frac{15}{2}-6 \operatorname{In} 2$ sq. units
b) $\frac{13}{2}-3$ In 2 sq. units
c) $\frac{13}{2}-6 \operatorname{In} 2$ sq. units
d) None of these
38. The area of the closed figure bounded by $x=-1, x=2$ and $y=\left\{\begin{array}{cc}-x^{2}+2, & x \leq 1 \\ 2 x-1, & x>1\end{array}\right.$ and the abscissa axis is
a) $16 / 3$ sq. units
b) $10 / 3$ sq. units
c) $13 / 3$ sq. units
d) $7 / 3$ sq. units
39. The area of the closed figure bounded by $x=-1, y=0, y=x^{2}+x+1$ and the tangent to the curve $y=x^{2}+x+1$ at $A(1,3)$ is
a) $4 / 3$ sq. units
b) $7 / 3$ sq. units
c) $7 / 6$ sq. units
d) None of these
40. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq unit. Then value of a is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{1}{3}$
41. The area bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+$ 4). Then $f(x)$ is
a) $(x-1) \cos (3 x+4)$
b) $\sin (3 x+4)$
c) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
d) None of these
42. The area bounded by the curves $y=x e^{x}, y=x e^{-x}$ and the line $x=1$ is
a) $\frac{2}{e}$ sq. units
b) $1-\frac{2}{e}$ sq. units
c) $\frac{1}{e}$ sq. units
d) $1-\frac{1}{e}$ sq. units
43. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x-axis in the first quadrant is
a) 9
b) $27 / 4$
c) 36
d) 18
44. Let $f(x)=x^{3}+3 x+2$ and $g(x)$ is the inverse of it. Then the area bounded by $g(x)$, the x-axis and the ordinate at $x=-2$ and $x=6$ is
a) $1 / 4$ sq. units
b) $4 / 3$ sq. units
c) $5 / 4$ sq. units
d) $7 / 3$ sq. units
45. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2$ above the x-axis is
a) πa^{2} sq. units
b) $\frac{3 \pi a^{2}}{2}$ sq. units
c) $2 \pi a^{2}$ sq. units
d) $3 \pi a^{2}$ sq. units

Multiple Correct Answers Type

46. Area bounded by the curve $y=\operatorname{In}, x, y=0$ and $x=3$ is
a) (In $9-2)$ sq unit
b) (In $27-2$) sq unit
c) $\operatorname{In}\left(\frac{27}{e^{2}}\right)$ sq unit
d) (greater than 3) sq unit
47. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal to $9 / 2$?
a) -4
b) -2
c) 2
d) 4
48. Let $A(k)$ be the area bounded by the curves $y=x^{2}-3$ and $y=k x+2$
a) The range of $A(k)$ is $\left[\frac{10 \sqrt{5}}{3}, \infty\right)$
b) The range of $A(k)$ is $\left[\frac{20 \sqrt{5}}{3}, \infty\right)$
c) If function $k \rightarrow A(k)$ is defined for $k \in[-2, \infty)$, then $A(k)$ is many-one function
d) The value of k for which area is minimum is 1
49. The value (s) of ' a^{\prime} for which the area of the triangle included between the axes and any tangent to the curve $x^{a} y=\lambda^{a}$ is constant is/are
a) $-\frac{1}{2}$
b) -1
c) $\frac{1}{2}$
d) 1
50. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then
a) $S_{1}: S_{2} \equiv 1: 1$
b) $S_{2}: S_{3} \equiv 1: 2$
c) $S_{1}: S_{3} \equiv 1: 1$
d) $S_{1}:\left(S_{1}+S_{2}\right)=1: 2$
51. The area enclosed by the curves $x=a \sin ^{3} t$ and $y=a \cos ^{3} t$ is equal to
a) $12 a^{2} \int_{0}^{\pi / 2} \cos ^{4} t \sin ^{2} t d t$
b) $12 a \int_{0}^{\pi / 2} \cos ^{2} t \sin ^{4} t d t$
c) $2 \int_{-a}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x$
d) $4 \int_{0}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x$
52. If the curve $y=a x^{1 / 2}+b x$ passes through the point $(1,2)$ and lies above the x-axis for $0 \leq x \leq 9$ and the area enclosed by the curve, the x-axis and the line $x=4$ is 8 sq. units. Then
a) $a=1$
b) $b=1$
c) $a=3$
d) $b=-1$
53. Which of the following have the same bounded area
a) $f(x)=\sin x, \mathrm{~g}(x)=\sin ^{2} x$, where $0 \leq x \leq 10 \pi$
b) $f(x)=\sin x, \mathrm{~g}(x)=|\sin x|$, where $0 \leq x \leq 20 \pi$
c) $f(x)=|\sin x|, \mathrm{g}(x)=\sin ^{3} x$, where $0 \leq x \leq 10 \pi$
d) $f(x)=\sin x, \mathrm{~g}(x)=\sin ^{4} x$, where $0 \leq x \leq 10 \pi$
54. If A_{i} is the area bounded by $\left|x-a_{i}\right|+|y|=b_{i}, i \in N$, where $a_{i+1}=a_{i}+\frac{3}{2} b_{i}$ and $b_{i+1}=\frac{b_{i}}{2}, a_{1}=0, b_{1}=$ 32, then
a) $A_{3}=128$
b) $A_{3}=256$
c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i}=\frac{8}{3}(32)^{2}$
d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i}=\frac{4}{3}(16)^{2}$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 55 to 54 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: Let f be a real values function satisfying $f\left(\frac{x}{y}\right)=f(x)-f(y)$ and $\lim _{x \rightarrow 0} \frac{f(1+x)}{x}=3$. Then, the area bounded by the curve $y=f(x)$, the y-axis and the line $y=3$ is $3 e$ sq unit
Statement 2: The function $f(x)$ is concave down

Statement 1: The area bounded by the curves $y=x^{2}+2 x-3$ and the line $y=\lambda x+1$ is least, if $\lambda=2$

Statement 2: The area bounded by the curve $y=x^{2}+2 x-3$ and $y=\lambda x+1$ is $\left.\left\{(\lambda-2)^{2}+16\right)^{3 / 2}\right\}$ sq unit

Statement 1: Ratio of areas in which $f(x)$ cuts the circle $x^{2}+y^{2}=36$ is 1:1
Statement 2: Both $y=f(x)$ and the circle are symmetric about origin

Statement 1: Area enclosed by the curve $y=e^{x^{3}}$ between the lines $x=a, x=b$ and x-axis is $\int_{a}^{b} e^{x^{3}} d x$
Statement 2: $e^{x^{3}}$ is an increasing function
59 Consider two regions
R_{1} : Point P is nearer to $(1,0)$ than to $x=-1$
R_{2} : Point P is nearer to $(0,0)$ than to $(8,0)$
Statement 1: Area of the region common to R_{1} and R_{2} is $\frac{128}{3}$ sq. units
Statement 2: Area bounded by $x=4 \sqrt{y}$ and $y=4$ is $\frac{32}{3}$ sq. units

Statement 1: If $f(x)=(x-1)(x-2)(x-3)$, then area enclosed by $|f(x)|$ between the lines $x=2.2, x=2.8$ and x-axis is equal to $\int_{2.2}^{2.8}(x-1)(x-2)(x-3) d x$
Statement 2: $\quad(x-1)(x-2)(x-3) \leq 0, \forall x \in[2.2,2.8]$

Statement 1: The area enclosed between the parabolas $y^{2}-2 y+4 x+5=0$ and $x^{2}+2 x-y+2=0$ is same as that of bounded by curves $y^{2}=-4 x$ and $x^{2}=y$
Statement 2: Shifting of origin to point (h, k) does not change the bounded area

Statement 1: The area bounded by the curves $y=x^{2}-3$ and $y=k x+2$ is least if $k=0$
Statement 2: The area bounded by the curves $y=x^{2}-3$ and $y=-k x+2$ is $\sqrt{k^{2}+20}$

Statement 1: Area enclosed by the curve $|x|+|y|=2$ is 8 unit
Statement 2: $\quad|x|+|y|=2$ represents on square of side length $\sqrt{8}$ unit

Statement 1: The area of the function $y=\sin ^{2} x$ from 0 to π will be more than that of curve $y=\sin x$ from 0 to π
Statement 2: $\quad t^{2}<t$, if $0<t<1$

Statement 1: The area bounded by parabola $y=x^{2}-4 x+3$ and $y=0$ is $4 / 3$ sq. units
Statement 2: The area bounded by curve $y=f(x) \geq 0$ and $y=0$ between ordinates $x=a$ and $x=b$ (where $b>a$) is $\int_{a}^{b} f(x) d x$

Statement 1: Area bounded by $y=e^{x}, y=0$ and $x=0$ is 1 sq. units
Statement 2: Area bounded by $y=\log _{e} x, x=0$ and $y=0$ is 1 sq. units
67
Statement 1: Area bounded by $2 \geq \max .\{|x-y|,|x+y|\}$ is 8 sq. units
Statement 2: Area of the square of side length 4 is 16 sq. units

Statement 1: The area of the ellipse $2 x^{2}+3 y^{2}=6$ will be more than the area bounded by $2|x|+3|y| \leq 6$
Statement 2: The length of major axis of the ellipse $2 x^{2}+3 y^{2}=6$ is less than the distance between the points of $2|x|+3|y| \leq 6$ on x-axis

Statement 1: The area of the region bounded by the curve $2 y=\log _{e} x, y=e^{2 x}$ and the pair of lines $(x+y-1) \times(x+y-3)=0$ is $2 k$ sq. units
Statement 2: The area of the region bounded by the curves $y=e^{2 x}, y=x$ and the pair of lines $x^{2}+y^{2}+2 x y-4 x-4 y+3=0$ is k units

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$) in columns II.
70.

Column-I

(A) Area enclosed by $[x]^{2}=[y]^{2}$ for $1 \leq x \leq 4$
(B) Area enclosed by $[|x|]+[|y|]=2$
(p) 8 sq. units
(C) Area enclosed by $[|x|][|y|]=2$
(q) 6 sq. units
(D) Area enclosed by $\frac{[|x|]}{[|y|]}=2,-5 \leq x \leq 5$
(r) 4 sq. units

CODES :

	A	B	C	D
a)	p	q	s	r
b)	q	s	p	p
c)	s	p	r	q
d)	p	r	q	s

71.

(A) Area enclosed by $y=[x]$ and $y=\{x\}$ where $[\cdot]$ and $\{\cdot\}$ represent greatest integer and fractional part functions, respectively
(B) The area bounded by the curves $y^{2}=x^{3}$ and $|y|=2 x$
(C) The smaller area included between the curves $\sqrt{x}+\sqrt{|y|}=1$ and $|x|+|y|=1$
(D) Area bounded by the curves $y=\left[\frac{x^{2}}{64}+2\right]$ (where [.] denotes the greatest integer function), $y=x-1$ and $x=0$ above the x axis
CODES :
A
B
C
D
a) r
S
q
p
b) p
q
r
s
c) \quad q
p
S
r
d) s
r
p
q
72.

Column-I

Column- II
(A) The area bounded by the curve $y=x|x|, x$ axis and the ordinates $x=1, x=-1$
(B) The area of the region lying between the lines $x-y+2=0, x=0$ and the curve $x=\sqrt{y}$
(C) The area enclosed between the curves $y^{2}=x$ and $y=|x|$
(D) The area bounded by parabola $y^{2}=x$, straight (s) $1 / 6$ sq. units line $y=4$ and y-axis
CODES:

	A	B	C	D
a)	r	p	s	q
b)	p	s	q	r
c)	q	r	p	s
d)	s	q	r	p

Linked Comprehension Type

This section contain(s) 13 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
Paragraph for Question Nos. 73 to -73
Let $f(x)=x^{2}-3 x+2$ be a function, $\forall x \in R$

On the basis of above information, answer the following questions
73. The area bounded by $f(x)$, the x-axis and y-axis is
a) $\frac{1}{3}$ sq unit
b) $\frac{2}{3}$ sq unit
c) $\frac{3}{5}$ sq unit
d) $\frac{5}{6}$ sq unit

Paragraph for Question Nos. 74 to-74

Let there are two functions defined by $f(x)=\min (|x|,|x-1|,|x+1|)$ and $\mathrm{g}(x)=\min \left\{e^{x}, e^{-x}\right\}$. Now, the roots of he equation $e^{-x}-x=0$ is $a, \forall a \in R$
On the basis of above information, answer the following questions :
74. The area bounded by $f(x)$ in $[-1,1]$ and x-axis is
a) $\frac{1}{5}$ sq unit
b) $\frac{1}{4}$ sq unit
c) $\frac{1}{3}$ sq unit
d) $\frac{1}{2}$ sq unit

Paragraph for Question Nos. 75 to-75

Let A_{r} be the area of the region bounded between the curves $y^{2}=\left(e^{-k r}\right) x$ (where $k>0, r \in N$) and the line $y=m x$ (where $m \neq 0$), k and m are some constants
75. $A_{1}, A_{2}, A_{3}, \ldots$ are in G.P. with common ratio
a) e^{-k}
b) $e^{-2 k}$
c) $e^{-4 k}$
d) None of these

Paragraph for Question Nos. 76 to-76

If $y=f(x)$ is a monotonic function in (a, b), then the area bounded by the ordinates at
$x=a, x=b, y=f(x)$ and $y=f(c)$ (where $c \in(a, b)$) is minimum when $c=\frac{a+b}{2}$
Proof: $A=\int_{a}^{c}(f(c)-f(x)) d x+\int_{c}^{b}(f(x)-f(c)) d x$
$=f(c)(c-a)-\int_{a}^{c}(f(x)) d x+\int_{c}^{b}(f(x)) d x-f(c)(b-c)$
$\Rightarrow A=[2 c-(a+b)] f(c)+\int_{c}^{b}(f(x)) d x-\int_{a}^{c}(f(x)) d x$

Differentiating w.r.t. c,
$\frac{d A}{d c}=[2 c-(a+b)] f^{\prime}(c)+2 f(c)+0-f(c)-(f(c)-0)$

For maximum and minima $\frac{d A}{d c}=0$
$\Rightarrow f^{\prime}(c)[2 c-(a+b)]=0\left(\right.$ as $\left.f^{\prime}(c) \neq 0\right)$
Hence $c=\frac{a+b}{2}$
Also for $c<\frac{a+b}{2}, \frac{d A}{d c}<0$ and for $c>\frac{a+b}{2}, \frac{d A}{d c}>0$
Hence A is minimum when $c=\frac{a+b}{2}$
76. If the area bounded by $f(x)=\frac{x^{3}}{3}-x^{2}+a$ and the straight lines $x=0, x=2$ and the x-axis is minimum, then the value of a is
a) $1 / 3$
b) 2
c) 1
d) $2 / 3$

Paragraph for Question Nos. 77 to - 77

Consider the areas $S_{0}, S_{1}, S_{2} \ldots$ bounded by the x-axis and half-waves of the curve $y=e^{-x} \sin x$, where $x \geq 0$
77. The value of S_{0} is
a) $\frac{1}{2}\left(1+e^{\pi}\right)$ sq. units
b) $\frac{1}{2}\left(1+e^{-\pi}\right)$ sq. units
c) $\frac{1}{2}\left(1-e^{-\pi}\right)$ sq. units
d) $\frac{1}{2}\left(e^{\pi}-1\right)$ sq. units

Paragraph for Question Nos. 78 to-78

Two curves $C_{1} \equiv[f(y)]^{2 / 3}+[f(x)]^{1 / 3}=0$ and $C_{2} \equiv[f(y)]^{2 / 3}+[f(x)]^{2 / 3}=12$, satisfying the relation $f(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$
78. The area bounded by C_{1} and C_{2} is
a) $2 \pi-\sqrt{3}$ sq. units
b) $2 \pi+\sqrt{3}$ sq. units
c) $\pi+\sqrt{6}$ sq. units
d) $2 \sqrt{3}-\pi$ sq. units

Paragraph for Question Nos. 79 to-79

Consider the two curves $C_{1}: y=1+\cos x$ and $C_{2}: y=1+\cos (x-\alpha)$ for $\alpha \equiv\left(0, \frac{\pi}{2}\right)$, where $x \in[0, \pi]$. Also the area of the figure bounded by the curves C_{1}, C_{2} and $x=0$ is same as that of the figure bounded of $C_{2}, y=1$ and $x=\pi$
79. The value of α is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{8}$

Paragraph for Question Nos. 80 to - 80

Consider the function defined implicitly by the equation $y^{2}-2 y e^{\sin ^{-1} x}+x^{2}-1+[x]+e^{2 \sin ^{-1} x}=0$ (where $[x]$ denotes the greatest integer function)
80. The area of the region bounded by the curve and the line $x=-1$ is
a) $\pi+1$ sq. units
b) $\pi-1$ sq. units
c) $\frac{\pi}{2}+1$ sq. units
d) $\frac{\pi}{2}-1$ sq. units

Paragraph for Question Nos. 81 to- 81

Computing area with parametrically represented boundaries:
If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=y(t)$, then the area of the figure is evaluated by one of the three formulas
$S=-\int_{\alpha}^{\beta} y(t) x^{\prime}(t) d t, S=\int_{\alpha}^{\beta} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t
81. The area of the region bounded by an arc of cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x-axis is
a) $6 \pi a^{2}$ sq. units
b) $3 \pi a^{2}$ sq. units
c) $4 \pi a^{2}$ sq. units
d) None of these

Integer Answer Type

82. If ' $a^{\prime}(a>0)$ is the value of parameter for each of which the area of the figure bounded by the straight line, $y=\frac{a^{2}-a x}{1+a^{4}}$ and the parabola $y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}$ is the greatest, then the value of a^{4} is
83. If S is the sum of possible values of c for which the area of the figure bounded by the curves $y=\sin 2 x$, the straight lines $x=\pi / 6, x=c$ and the abscissa axis is equal to $1 / 2$, then the value of π / S is
84. The area enclosed by the curve $C: y=x \sqrt{9-x^{2}}(x \geq 0)$ and the x-axis is
85. If the area enclosed by the curve $y=\sqrt{x}$ and $x=-\sqrt{y}$, the circle $x^{2}+y^{2}=2$ above the x-axis, is A then the value of $\frac{16}{\pi} \mathrm{~A}$ is
86. If the area bounded by the curve $y=x^{2}+1$ and the tangents to it drawn from the origin is A, then the value of $3 A$ is
87. Let S be the area bounded by the curve $y=\sin x(0 \leq x \leq \pi)$ and the x-axis and T be the area bounded by the curves $y=\sin x\left(0 \leq x \leq \frac{\pi}{2}\right), y=a \cos x\left(0 \leq x \leq \frac{\pi}{2}\right)$ and the x-axis (where $a \in R^{+}$)
The value of (3a) such that $S: T=1: \frac{1}{3}$ is
88. Area bounded by the relation $[2 x]+[y]=5, x, y>0$, is (where [•] represents greatest integer function)
89. If the area bounded by the curve $f(x)=x^{1 / 3}(x-1)$ and x-axis is A, then the value of $28 A$ is
90. If S is the sum of cubes of possible value of ' c ' for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, then straight lines $x=1$ and $x=c$ and the abscissa axis is equal to $16 / 3$, then the value of [S], where [•] denotes the greatest integer function, is
91. Let C be a curve passing through $M(2,2)$ such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve C and line $x=2$ is A, then the value of $\frac{3 A}{2}$ is
92. Consider two curve $C_{1}: y=\frac{1}{x}$ and $C_{2}: y=\operatorname{In} x$ on the $x y$ plane. Let D_{1} denotes the region surrounded by C_{1}, C_{2} and the line $x=1$ and D_{2} denotes the region surrounded by C_{1}, C_{2} and the line $x=a$. If $D_{1}=D_{2}$, then the sum of logarithm of possible values of a is
93. If the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$ is A, then the value of $3 A-17$ is
94. The area bounded by the curves $y=x(x-3)^{2}$ and $y=x$ is (in sq. units):
95. The area enclosed by $f(x)=12+a x+-x^{2}$ coordinates axes and the ordinates at $x=3(f(3)>0)$ is 45 square units. If m and n are the x-axis intercepts of the graph of $y=f(x)$ then the value of $(m+n+a)$ is
96. The value ' a ' $(a>0)$ for which the area bounded by the curves $y=\frac{x}{6}+\frac{1}{x^{2}}, y=0, x=a$ and $x=2 a$ has the least value is
97. If A is the area bounded by the curves $y=\sqrt{1-x^{2}}$ and $y=x^{3}-x$, then the value of π / A

: ANSWER KEY :

1)	a	2)	a	3)	d	4)	a	9)	a,c	1)	b	2)	c	3)	a
5)	b	6)	b	7)	b	8)	c		4)	b					
9)	a	10)	b	11)	b	12)	a	5)	d	6)	d	7)	a	8)	
13)	d	14)	a	15)	b	16)	a	9)	a	10)	d	11)	b	12)	
17)	c	18)	d	19)	d	20)	d	13)	b	14)	d	15)	a	1)	b
21)	d	22)	a	23)	a	24)	a		2)	c	3)	a	1)	d	
25)	c	26)	c	27)	a	28)	a		2)	d	3)	b	4)	d	
29)	a	30)	d	31)	d	32)	b	5)	a	6)	b	7)	c	8)	
33)	d	34)	b	35)	c	36)	c	9)	b	1)	3	2)	6	3)	9
37)	c	38)	a	39)	c	40)	a		4)	8					
41)	c	42)	a	43)	a	44)	c	5)	2	6)	4	7)	3	8)	9
45)	b	1)	b,c,d	2)	b,d	3)		9)	2	10)	8	11)	1	12)	6
	b,c	4)	b,d					13)	8	14)	8	15)	1	16)	2
5)	$\begin{aligned} & \text { a,c,d } \\ & \text { a,c,d } \end{aligned}$	6)	a,c,d	7)	c,d	8)									

: HINTS AND SOLUTIONS :

1 (a)

The dotted area is
$A=\int_{0}^{1}\left(1-x^{2}\right) d x=\left(x-\frac{x^{3}}{3}\right)_{0}^{1}=1-\frac{1}{3}=\frac{2}{3}$
Hence, area bounded by circle $x^{2}+y^{2}=1$ and $|y|=1-x^{2}$
$=$ lined area
$=$ Area of circle - area bounded by $|y|=1-x^{2}$
$=\pi-4 .\left(\frac{2}{3}\right)=\frac{3 \pi-8}{3}$ sq. units

2 (a)

The two curves are
$x y^{2}=a^{2}(a-x) \Rightarrow x=\frac{a^{3}}{a^{2}+y^{2}}$
and $(a-x) y^{2}=a^{2} x$
$\Rightarrow x=\frac{a y^{2}}{a^{2}+y^{2}}=\frac{a y^{2}+a^{3}-a^{3}}{a^{2}+y^{2}}=a-\frac{a^{3}}{a^{2}+y^{2}}$
Curve (1) is symmetrical about x-axis, and have y-axis as the asymptote
Curve (2) is symmetrical about x-axis, tangent at origin as y-axis and the asymptote $x=a$
The two curves intersect at the point $P(a / 2, a)$ and $Q(a / 2,-a)$

Required area
$=2 \int_{0}^{a}\left[-a+\frac{a^{3}}{a^{2}+y^{2}}+\frac{a^{3}}{a^{2}+y^{2}}\right] d y$ (integrating along y-axis)
$=2\left[-a y+2 a^{2} \tan ^{-1} \frac{y}{a}\right]_{0}^{a}$
$=2\left[-a^{2}+2 a^{2} \frac{\pi}{4}\right]$
$=(\pi-2) a^{2}$ sq. units
3 (d)

$A=2 \int_{0}^{1}\left[y \sqrt{1-y^{2}}-\left(y^{2}-1\right)\right] d y$
$=2$ sq. units
4 (a)
Clearly t can be any real number
Let $t=\tan \theta \Rightarrow x=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$\Rightarrow x=\cos 2 \theta$, and
$y=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$
$\Rightarrow x^{2}+y^{2}=1$
Thus, required area $=\pi$ sq. units
5 (b)
$x y^{2}=a^{2}(a-x)$
$\Rightarrow x=\frac{a^{3}}{y^{2}+a^{2}}$
The given curve is symmetrical about x-axis, and meets it at $(a, 0)$
The line $x=0$, i.e., y-axis is an asymptote
(tangent at infinitly)
Area $=\int_{0}^{\infty} x d y=2 \int_{0}^{\infty} \frac{a^{3}}{y^{2}+a^{2}} d x$
$=2 a^{3} \frac{1}{a}\left[\tan ^{-1} \frac{y}{a}\right]_{0}^{\infty}=2 a^{2} \frac{\pi}{2}=\pi a^{2}$ sq. units

6
(b)

Given curves are $y=\log _{e} x$ and $y=\left(\log _{e} x\right)^{2}$
Solving $\log _{e} x=\left(\log _{e} x\right)^{2} \Rightarrow \log _{e} x=0,1 \Rightarrow x=$ 1 and $x=e$
Also, for $1<x<e, 0<\log _{e} x<1 \Rightarrow \log _{e} x>$ $\left(\log _{e} x\right)^{2}$
For $x>e, \log _{e} x<\left(\log _{e} x\right)^{2}$
$y=\left(\log _{e} x\right)^{2}>0$ for all $x>0$
and when $x \rightarrow 0,\left(\log _{e} x\right)^{2} \rightarrow \infty$
From these information, we can plot the graph of the functions

Then the required area $=\int_{1}^{e}\left(\log x-\left(\log _{e} x\right)^{2}\right) d x$

$$
\begin{aligned}
& =\int_{1}^{e} \log x d x-\int_{1}^{e}\left(\log _{e} x\right)^{2} d x \\
& =\left[x \log _{e} x-x\right]_{1}^{e}-\left[x\left(\log _{e} x\right)^{2}\right]_{1}^{e} \\
& \quad+\int_{1}^{e} \frac{2 \log _{e} x}{x} x d x
\end{aligned}
$$

$=1-e+2\left[x \log _{e} x-x\right]_{1}^{e}=3-e$ sq. units
(b)
$a y^{2}=x^{2}(a-x) \Rightarrow y= \pm x \sqrt{\frac{a-x}{a}}$

Curve tracing: $y=x \sqrt{\frac{a-x}{a}}$
We must have $x \leq a$
For $0<x \leq a, y>0$ and for $x<0, y<0$
Also $y=0 \Rightarrow x=0, a$
Curve is symmetrical about x-axis
When $x \rightarrow-\infty, y \rightarrow-\infty$
Also, it can be verified that y has only one point of maxima for $0<x<a$

Area $=2 \int_{0}^{a} x \sqrt{\frac{a-x}{a}} d x$
$\sqrt{\frac{a-x}{a}}=t \Rightarrow 1-\frac{x}{a}=t^{2} \Rightarrow x=a\left(1-t^{2}\right)$
$\Rightarrow A=2 \int_{1}^{0} a\left(1-t^{2}\right) t(-2 a t) d t$
$=4 a^{2} \int_{0}^{1}\left(t^{2}-t^{4}\right) d t$
$=4 a^{2}\left[\frac{t^{3}}{3}-\frac{t^{5}}{5}\right]_{0}^{1}$
$=4 a^{2}\left[\frac{1}{3}-\frac{1}{5}\right]=\frac{8 a^{2}}{15}$ sq. units
(c)
$(y-x)^{2}=x^{3}$, where $x \geq 0 \Rightarrow y-x= \pm x^{3 / 2}$
$\Rightarrow y=x+x^{3 / 2}$
$y=x-x^{3 / 2}$
Function (1) is an increasing function
Function (2) meets x-axis, when $x-x^{3 / 2}=0$ or $x=0,1$
Also, for $0<x<1, x-x^{3 / 2}>0$ and for $x>1, x-x^{3 / 2}<0$
When $x \rightarrow \infty, x-x^{3 / 2} \rightarrow-\infty$
From these information, we can plot the graph as below:

Required area
$=\int_{0}^{1}\left[\left(x+x^{3 / 2}\right)-\left(x-x^{3 / 2}\right)\right] d x=2 \int_{0}^{1} x^{3 / 2} d x$ $=2\left[\frac{x^{5 / 2}}{5 / 2}\right]_{0}^{1}=\frac{4}{5}$ sq. units
9 (a)
Curve tracing: $y=x \log _{e} x$
Clearly, $x>0$
For $0<x<1, x \log _{e} x<0$, and for $x>$
1, $x \log _{e} x>0$
Also $x \log _{e} x=0 \Rightarrow x=1$
Further, $\frac{d y}{d x}=0 \Rightarrow 1+\log _{e} x=0 \Rightarrow x=1 / e$,
which is a point of minima

Required area
$=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x-\int_{0}^{1} x \log x d x$
$=\left[x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{1}-\left[\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}\right]_{0}^{1}$
$=\left(1-\frac{2}{3}\right)-\left[0-\frac{1}{4}-\frac{1}{2} \lim _{x \rightarrow 0} x^{2} \log x\right]=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$
(b)
$f(x)=\sin x$
$f(x)+f(\pi-x)=2$
$f(x)=2-f(\pi-x)=2-\sin (\pi-x)=2-$ $\sin x$, where $x \in\left(\frac{\pi}{2}, \pi\right]$
$f(x)=f(2 \pi-x)=2-\sin (2 \pi-x)$, where $x \in\left(\pi, \frac{3 \pi}{2}\right]$ $f(x)=f(2 \pi-x)=-\sin x$, where $x \in\left(\frac{3 \pi}{2}, 2 \pi\right]$
$f(x)=\left\{\begin{array}{c}\sin x, x \in\left[0, \frac{\pi}{2}\right] \\ 2-\sin x, x \in\left(\frac{\pi}{2}, \pi\right] \\ 2+\sin x, x \in\left(\pi, \frac{3 \pi}{2}\right] \\ -\sin x, x \in\left(\frac{3 \pi}{2}, 2 \pi\right]\end{array}\right.$
$y=2-\sin \mathrm{x} \quad y=2+\sin \mathrm{x}$

Area $=\int_{0}^{\pi / 2} \sin x \sin d x+\int_{\pi / 2}^{\pi}(2-\sin x) d x+$ $\int_{\pi}^{3 \pi / 2}(2+\sin x) d x+\int_{3 \pi / 2}^{2 \pi}(-\sin x) d x$ $=1+2 \times \frac{\pi}{2}-1+2 \cdot \frac{\pi}{2}-1+1=2 \pi$ sq. units
(b)

Solving $2 \cos x=3 \tan x$, we get
$2-2 \sin ^{2} x=3 \sin x \Rightarrow \sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6}$

Required area $=\int_{0}^{\pi / 6}(2 \cos x-3 \tan x) d x$
$=2 \sin x-\left.3 \log \sec x\right|_{0} ^{\pi / 6}=1-3 \operatorname{In} 2$

$$
+\frac{3}{2} \text { In } 3 \text { sq. units }
$$

12 (a)

From figure
$A=\int_{-1}^{0}(-1-(-1 \sqrt{1-x})) d x+\int_{0}^{1 / 2}(1$

$$
-\sqrt{1-x}) d x
$$

$=\left[-x-\frac{(1-x)^{3 / 2}}{3 / 2}\right]_{-1}^{0}+\left[x+\frac{(1-x)^{3 / 2}}{3 / 2}\right]_{0}^{1 / 2}$
$=\left[-\frac{2}{3}-\left(1-\frac{2 \times 2^{3 / 2}}{3}\right)\right]+\left[\frac{1}{2}+\frac{2}{3 \times 2^{3 / 2}}-\frac{2}{3}\right]$
$=\frac{2}{3 \times 2^{3 / 2}}+\frac{2 \times 2^{3 / 2}}{3}-\frac{4}{3}-\frac{1}{2}$
$=\frac{3}{\sqrt{2}}-\frac{4}{3}-\frac{1}{2}$
$=\frac{3}{\sqrt{2}}-\frac{11}{6}$ sq. units
13 (d)

Required area $=$ shaded region
$=\int_{0}^{1}\left(x_{2}-x_{1}\right) d y$ (integrating along y-axis)
$=\int_{0}^{1}\left[\left(1-y^{2}\right)-(y-1)\right] d y$
$=\frac{7}{6}$ sq. units

(a)

Given $5 x^{2}-y=0$, and (1)

$2 x^{2}-y+9=0$
Eliminating y, we get
$5 x^{2}-\left(2 x^{2}+9\right)=0$
$\Rightarrow 3 x^{2}=9 \Rightarrow x=-\sqrt{3}, \sqrt{3}$
\therefore required area
$=2 \int_{0}^{\sqrt{3}}\left(\left(2 x^{2}+9\right)-5 x^{2}\right) d x$
$=2 \int_{0}^{\sqrt{3}}\left(9-3 x^{2}\right) d x$
$=2\left[9 x-x^{3}\right]_{0}^{\sqrt{3}}$
$=2[9 \sqrt{3}-3 \sqrt{3}]$
$=12 \sqrt{3}$ sq. units
15
(b)
$\max (|x|,|y|) \leq 1 \Rightarrow|x| \leq 1$, and $|y| \leq 1$
Which represent square bounded by $x= \pm 1$ and $y= \pm 1$

Required area is lined area
Now, shaded area is
$2 \int_{1 / 2}^{1}\left(1-\frac{1}{2 x}\right) d x=2\left(x-\frac{1}{2} \operatorname{In} x\right)_{1 / 2}^{1}$
$=2\left[(1-0)-\left(\frac{1}{2}-\frac{1}{2} \operatorname{In} \frac{1}{2}\right)\right]$
$=1-\operatorname{In} 2$ sq. units
\Rightarrow Horizontal lined area $=4-(1-\operatorname{In} 2)=3+$ In 2 sq. units

16 (a)
$y=\frac{x^{2}}{2}-2 x+2=\frac{(x-2)^{2}}{2}$,
$\frac{d y}{d x}=x-2,\left(\frac{d y}{d x}\right)_{x=1}=-1,\left(\frac{d y}{d x}\right)_{x=4}=2$
\Rightarrow Tangent at $(1,1 / 2)$ is $y-1 / 2=-1(x-1)$ or
$2 x+2 y-3=0$
Tangent at $(4,2)$ is $y-2=2(x-4)$ or
$2 x-y-6=0$

Hence, $A=\int_{1}^{5 / 2}\left(\frac{x^{2}}{2}-2 x+2-\frac{3-2 x}{2}\right) d x+$

$$
\begin{aligned}
& \int_{5 / 2}^{4}\left(\frac{x^{2}}{2}-2 x+2-(2 x-6)\right) d x \\
& \begin{aligned}
&=\int_{1}^{4}\left(\frac{x^{2}}{2}-2 x+2\right) d x-\int_{1}^{5 / 2}\left(\frac{3-2 x}{2}\right) d x \\
&-\int_{5 / 2}^{4}(2 x-6) d x
\end{aligned} \\
& \begin{array}{c}
=\left(\frac{x^{3}}{6}-x^{2}+2 x\right)_{1}^{4}-\frac{1}{2}\left(3 x-x^{2}\right)_{1}^{5 / 2} \\
=\left(\frac{63}{6}-15+6\right)-\frac{1}{2}\left(3 \times \frac{3}{2}-\left(\frac{25}{4}-1\right)\right) \\
\quad-\left(\left(16-\frac{25}{4}\right)-6\left(4-\frac{5}{2}\right)\right)
\end{array} \\
& =\frac{3}{2}-\frac{1}{2}\left(\frac{9}{2}-\frac{21}{4}\right)-\left(\frac{39}{4}-6\left(\frac{3}{2}\right)\right) \\
& =\frac{9}{8} \text { sq. units }
\end{aligned}
$$

17 (c)
$a^{2} x^{2}+a x+1$ is clearly positive for all real values of x. Area under consideration
$A=\int_{0}^{1}\left(a^{2} x^{2}+a x+1\right) d x$
$=\frac{a^{2}}{3}+\frac{a}{2}+1$
$=\frac{1}{6}\left(2 a^{2}+3 a+6\right)$
$=\frac{1}{6}\left(2\left(a^{2}+\frac{3}{2} a+\frac{9}{16}\right)+6-\frac{18}{16}\right)$
$=\frac{1}{6}\left(2\left(a+\frac{3}{4}\right)^{2}+\frac{39}{8}\right)$, which is clearly minimum for $a=-\frac{3}{4}$
$y=\sin ^{-1}|\sin x|=\left\{\begin{array}{c}x, \quad 0 \leq x<\frac{\pi}{2} \\ \pi-x, \frac{\pi}{2} \leq x<\pi \\ x-\pi, \pi \leq x<\frac{3 \pi}{2} \\ 2 \pi-x, \frac{3 \pi}{2} \leq x<2 \pi\end{array}\right.$
$y=\left(\sin ^{-1}|\sin x|\right)^{2}=\left\{\begin{array}{c}x^{2}, \quad 0 \leq x<\frac{\pi}{2} \\ (\pi-x)^{2}, \frac{\pi}{2} \leq x<\pi \\ (x-\pi)^{2}, \pi \leq x<\frac{3 \pi}{2} \\ (2 \pi-x)^{2}, \frac{3 \pi}{2} \leq x<2 \pi\end{array}\right.$
The required area A is shown shaded in figure

$\Rightarrow 4 \int_{0}^{1}\left(x-x^{2}\right) d x+4 \int_{1}^{\pi / 2}\left(x^{2}-x\right) d x$ $=\frac{4}{3}+\pi^{2}\left[\frac{\pi-3}{6}\right]$ sq. units

19 (d)
The curve is $y=\frac{x^{2}(x+a)}{a^{2}}$, which is a cubic polynomial
Since $\frac{x^{2}(x+a)}{a^{2}}=0$ has repeated root $x=0$, it touches x-axis at $(0,0)$ and intersects at $(-a, 0)$

Required area $=\int_{-a}^{0} y d x=\int_{-a}^{0}\left[\frac{x^{2}(x+a)}{a^{2}}\right] d x=$ $a^{2} / 12$ sq. units
20
(d)
$y=\frac{1}{(x-1)^{2}+1}$
y is maximum when $(x-1)^{2}=0$. Also, graph is symmetrical about line $x=1$

Area $=2 \int_{1}^{\infty} \frac{1}{(x-1)^{2}+1} d x=2\left[\tan ^{-1}(x-1)\right]_{1}^{\infty}=\pi$ sq. units
21 (d)

$$
\begin{aligned}
& 4 y^{2}=x^{2}\left(4-x^{2}\right) \\
& \Rightarrow y= \pm \frac{1}{2} \sqrt{x^{2}\left(4-x^{2}\right)} \\
& \Rightarrow y= \pm \frac{x}{2} \sqrt{\left(4-x^{2}\right)}
\end{aligned}
$$

\therefore Area $(A)=4 \times \int_{0}^{2} \frac{x}{2} \sqrt{\left(4-x^{2}\right)} d x$
Let $4-x^{2}=t \Rightarrow-2 x d x=d t$
$\Rightarrow A=\int_{0}^{4} \sqrt{t} d t=\left[\frac{t^{3 / 2}}{3 / 2}\right]_{0}^{4}=\frac{2}{3} \times[\sqrt{64}-0]$
$\Rightarrow A=\frac{16}{3}$ sq. units
22
(a)

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-3=0 \\
& \Rightarrow(x-1)^{2}+y^{2}=4
\end{aligned}
$$

$$
A=\int_{1-\sqrt{2}}^{0}\left(\sqrt{4-(x-1)^{2}}-(-x+1) d x\right.
$$

$$
+\int_{0}^{1}\left(\sqrt{4-(x-2)^{2}}\right.
$$

$$
-(x+1)) d x
$$

$$
=\frac{x-1}{2} \sqrt{4-(x-1)^{2}}+\frac{4}{2} \sin ^{-1} \frac{x-1}{2}+\frac{x^{2}}{2}
$$

$$
-\left.x\right|_{1-\sqrt{2}} ^{0}
$$

$$
+\frac{x-1}{2} \sqrt{4-(x-1)^{2}}+\frac{4}{2} \sin ^{-2} \frac{x-1}{2}-\frac{x^{2}}{2}-\left.x\right|_{0} ^{1}
$$

$$
=\left(-\frac{\sqrt{3}}{2}-\frac{\pi}{3}\right)-\left(\frac{-\sqrt{2}}{2} \sqrt{2}-\frac{\pi}{2}+\frac{3-2 \sqrt{2}}{2}-1\right.
$$

$$
+\sqrt{2})+\left(-\frac{1}{2}-1\right)-\left(-\frac{\sqrt{3}}{2}-\frac{\pi}{3}\right)
$$

$$
\begin{gathered}
=-\left(-1-\frac{\pi}{2}+\frac{3}{2}-\sqrt{2}-1+\sqrt{2}\right)-\frac{3}{2} \\
=\frac{\pi}{2}-1 \text { sq. units }
\end{gathered}
$$

23 (a)
$y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right) \Rightarrow y=e^{-x}$
For $y=\log _{e}(x+e)$ shift the graph of $y=\log _{e} x, e$ units left hand side

Required area $=\int_{1-e}^{0} \log _{e}(x+e) d x+\int_{0}^{\infty} e^{-x} d x$
$=\left|x \log _{e}(x+e)\right|_{1-e}^{0}-\int_{1-e}^{0} \frac{x}{x+e} d x-\left|e^{-x}\right|_{0}^{\infty}$
$=\int_{0}^{1-e}\left(1-\frac{e}{x+e}\right) d x-e^{-\infty}+e^{0}$
$=|x-e \log (x+e)|_{0}^{1-e}-0+1$
$=1-e+e \log e+1=2$ sq. units
(a)

$A=\int_{1}^{2} \operatorname{In} x d x$
$=[x \log x-x]_{1}^{2}$
$=2 \log 2-1$
\Rightarrow Required area $=4-2(2 \operatorname{In} 2-1)=6-4 \operatorname{In} 2$ sq. units
25
(c)
$y^{2}=4[\sqrt{y}] x$
For $y \in[1,4),[\sqrt{y}]=1 \Rightarrow y^{2}=4 x$

Similarly, for $x \in[1,4),\lfloor\sqrt{x}\rfloor=1$ and $x^{2}=4\lfloor\sqrt{x}] y$ would transform into $x^{2}=4 y$

The required area is being shaded
$A=\int_{1}^{2}(2 \sqrt{x}-1) d x+\int_{2}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x$
$=\left(\frac{4}{3} x^{3 / 2}-x\right)_{1}^{2}+\left(\frac{4}{3} x^{3 / 2}-\frac{x^{3}}{12}\right)_{2}^{4}=\frac{11}{3}$ sq. units
26
(c)

$A_{1}=\int_{0}^{1}\left(1+\sqrt{x}-\frac{x}{4}\right) d x$
$=\left[x+\frac{2 x^{3 / 2}}{3}-\frac{x^{2}}{8}\right]_{0}^{1}=1+\frac{2}{3}-\frac{1}{8}=\frac{37}{24}$
$A_{2}=\int_{1}^{4}\left(\frac{2}{\sqrt{x}}-\frac{x}{4}\right) d x$
$=\left[4 \sqrt{x}-\frac{x^{2}}{8}\right]_{1}^{4}$
$=\left[8-2-4+\frac{1}{8}\right]=\frac{17}{8}$
$\Rightarrow A=A_{1}+A_{2}=\frac{88}{24}=\frac{11}{3}$ sq. units
27 (a)
The points in the required region satisfy
$4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$
Since the curve (1) is symmetrical about both the axes, the required area is 4 times the area of the region in the first quadrant. Therefore, it is sufficient to sketch the region and to find the area in the first quadrant
In the first quadrant, the curve (1) consist of two
curves

$$
\begin{aligned}
& x^{2}+y^{2} \geq 4, \text { and }\left(\mathrm{C}_{1}\right) \\
& x^{2}+y^{2}-2 x-2 y \geq 0\left(\mathrm{C}_{2}\right)
\end{aligned}
$$

\therefore Required area $=4$ area $A B C D A$
$=4$ (area of semi-circle $A B C A$) - (area of sector ADCA)
$=4($ area of semi-circle $A B C A)-$ (area of sector
$O A D C O$ - area of triangle $O A C$)
$=4\{\pi-(\pi-2)\}=8$ sq. units
(a)

The points of intersection of given curves and line are
$Q\left(\frac{1}{2}, \frac{1}{4}\right)$ and $R\left(\frac{-1}{2}, \frac{1}{4}\right)$

Required area $=2 \int_{0}^{1 / 2}\left\{(x-1)^{2}-\frac{1}{4}\right\} d x$
$=2\left\{\frac{(x-1)^{3}}{3}-\frac{1}{4} x\right\}_{0}^{1 / 2}$
$=2\left\{\frac{(-1 / 2)^{3}}{3}-\frac{1}{8}-\left(-\frac{1}{3}-0\right)\right\}$
$=\frac{1}{3}$ sq unit

Integrating along x-axis, we get
$A=\int_{1}^{\sqrt{2}}\left(\operatorname{cosec}^{-1} x-\sec ^{-1} x\right) d x$
Integrating along y-axis, we get
$A=2 \int_{0}^{\pi / 4}(\sec y-1) d y$
$=2[\log |\sec y+\tan y|-y]_{0}^{\pi / 4}$
$=2\left[\log |\sqrt{2}+1|-\frac{\pi}{4}\right]$

$$
=\log (3+2 \sqrt{2})-\frac{\pi}{2} \text { sq. units }
$$

(d)

Curve tracing : $y=x+\sin x$
$\frac{d y}{d x}=1+\cos x \geq 0 \quad \forall x$
Also $\frac{d^{2} y}{d x^{2}}=-\sin x=0$ when $x=n \pi, n \in Z$
Hence, $x=n \pi$ are points of inflection, where curve changes its concavity
Also for $x \in(0, \pi), \sin x>0 \Rightarrow x+\sin x>x$,
And for $x \in(\pi, 2 \pi), \sin x<0 \Rightarrow x+\sin x<x$
From these information, we can plot the graph of $y=f(x)$ and its inverse

Required area $=4 A$, where
$A=\int_{0}^{\pi}(x+\sin x) d x-\int_{0}^{\pi} x d x$
$=\int_{0}^{\pi} \sin x d x=2$ square units
31 (d)
$y=\sqrt{4-x^{2}}, y=\sqrt{2} \sin \left(\frac{x \pi}{2 \sqrt{2}}\right)$
Intersect at $x=\sqrt{2}$

Area to the left of y-axis is π
Area to the right of y-axis
$=\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-\sqrt{2} \sin \frac{x \pi}{2 \sqrt{2}}\right) d x$
$=\left(\frac{x \sqrt{4-x^{2}}}{2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{\sqrt{2}}+\left(\frac{4}{\pi} \cos \frac{x \pi}{2 \sqrt{2}}\right)_{0}^{\sqrt{2}}$
$=\left(1+2 \times \frac{\pi}{4}\right)+\frac{4}{\pi}(0-1)$
$=1+\frac{\pi}{2}-\frac{4}{\pi}$
$=\frac{2 \pi+\pi^{2}-8}{2 \pi}$ sq. units
\therefore ratio $=\frac{2 \pi^{2}}{2 \pi+\pi^{2}-8}$
32 (b)
The curve is $y=2 x^{4}-x^{2}=x^{2}\left(2 x^{2}-1\right)$
The curve is symmetrical about the axis of y Also, it is a polynomial of 4 degree having roots 0 , $0, \pm \frac{1}{\sqrt{2}} \cdot x=0$ is repeated root. Hence, graph touches at $(0,0)$
The curve intersects the axes at $O(0,0), A(-1 /$
$\sqrt{2}, 0)$ and $B(1 / \sqrt{2}, 0)$
Thus, the graph of the curve is show in figure

Here, $y \leq 0$, as x varies from $x=-1 / 2$ to $x=1 / 2$
\therefore The required area
$=2$ Area OCDO
$=2\left|\int_{0}^{1 / 2} y d x\right|$
$=2\left|\int_{0}^{1 / 2}\left(2 x^{4}-x^{2}\right) d x\right|$
$=7 / 120$ sq. units
(d)

Area $=\int_{1}^{b} f(x) d x=\sqrt{b^{2}+1}-\sqrt{2}$
$=\sqrt{b^{2}+1}-\sqrt{1+1}$
$=\left|\sqrt{x^{2}+1}\right|_{1}^{b}$
$\therefore f(x)=\frac{d}{d x}\left(\sqrt{x^{2}+1}\right)=\frac{1}{2} \frac{2 x}{\sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}$
(b)

Required area $=\int_{0}^{\pi / 4}\left(\sqrt{\frac{1+\sin x}{\cos x}}\right.$

$$
\left.-\sqrt{\frac{1-\sin x}{\cos x}}\right) d x
$$

$\because\left[\frac{1+\sin x}{\cos x}>\frac{1-\sin x}{\cos x}>0\right]$

$=\int_{0}^{\pi / 4} \frac{1+\tan \frac{x}{2}-1+\tan \frac{x}{2}}{\sqrt{1-\tan ^{2} \frac{x}{2}}} d x$

$$
=\int_{0}^{\pi / 4} \frac{2 \tan \frac{x}{2}}{\sqrt{1-\tan ^{2} \frac{x}{2}}} d x
$$

put $\tan \frac{x}{2}=t \Rightarrow \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t$
\therefore Required area $=\int_{0}^{\tan \frac{\pi}{8}} \frac{4 t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
$=\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
$\left[\because \tan \frac{\pi}{8}=\sqrt{2}-1\right]$
35
(c)
$\int_{\pi / 4}^{\beta} f(x) d x=\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$
Differentiating both sides w.r.t. β, we get
$\therefore f(\beta)=\beta \cos \beta+\sin \beta-\frac{\pi}{4} \sin \beta+\sqrt{2}$
$\Rightarrow f^{\prime}(\beta)=-\beta \sin \beta+\cos \beta+\cos \beta-\frac{\pi}{4} \cos \beta$
$\Rightarrow f^{\prime}\left(\frac{\pi}{2}\right)=-\frac{\pi}{2}$
$36 \quad$ (c)
Given parabola is $(y-2)^{2}=x-1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(y-2)}$
When $y=3, x=2$
$\therefore \frac{d y}{d x}=\frac{1}{2(3-2)}=\frac{1}{2}$
Tangent at $(2,3)$ is $y-3=\frac{1}{2}(x-2) \Rightarrow x-2 y+$ $4=0$

\therefore required area
$=\int_{0}^{3}\left((y-2)^{2}+1\right) d y-\int_{0}^{3}(2 y-4) d y$
$=\left|\frac{(y-2)^{3}}{3}+y\right|_{0}^{3}-\left|y^{2}-4 y\right|_{0}^{3}$
$=\frac{1}{3}+3+\frac{8}{3}-(9-12)=9$ sq. units

First consider $y=3-|3-x|$
For $x<3 ; y=3-(3-x)=x$
For $x \geq 3 ; y=3-(x-3)=6-x$
Consider $y=\frac{6}{|x+1|}$
For $x<-1 ; y=\frac{6}{-1-x}$
$\Rightarrow(1+x) y=-6$
For $x>-1 ; y=\frac{6}{x+1}$
Required area
$=\left[\int_{2}^{3}\left(x-\frac{6}{x+1}\right) d x+\int_{3}^{5}\left((6-x)-\frac{6}{x+1}\right) d x\right]$
$=\left[\left(\frac{x^{2}}{2}\right)_{2}^{3}+\left(6 x-\frac{x^{2}}{2}\right)_{3}^{5}-(6 \log (x+1))_{2}^{5}\right]$
$=\left[\frac{5}{2}+4-6 \log 2\right]=\frac{13}{2}-6 \operatorname{In} 2$ sq. units
(a)

Fig. 9.42
$A=\int_{-1}^{1}\left(-x^{2}+2\right) d x+\int_{1}^{2}(2 x-1) d x$
$=\left(-\frac{x^{3}}{3}+2 x\right)_{-1}^{1}+\left(x^{2}-x\right)_{1}^{2}$
$=\frac{16}{3}$ sq. units
(c)

Given $y=x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \Rightarrow y-\frac{3}{4}=$ $\left(x+\frac{1}{2}\right)^{2}$
This is a parabola with vertex at $\left(-\frac{1}{2}, \frac{3}{4}\right)$ and the curve is concave upwards
$y=x^{2}+x+1 \Rightarrow \frac{d y}{d x}=2 x+1 \Rightarrow\left(\frac{d y}{d x}\right)_{(1,3)}=3$
Equation of the tangent at $A(1,3)$ is $y=3 x$

Required (shaded) area $=$ area $A B D M N-$ area ONA
Now, area $A B D M N=\int_{-1}^{1}\left(x^{2}+x+1\right) d x$
$=2 \int_{0}^{1}\left(x^{2}+1\right)=\frac{8}{3}$
Area of $O N A=\frac{1}{2} \times 1 \times 3=\frac{3}{2}$
\therefore required area $=\frac{8}{3}-\frac{3}{2}=\frac{16-9}{6}=\frac{7}{6}$ sq. units
$40 \quad$ (a)
The points of intersection of given curves are $(0,0)$ and
$\left(\frac{1}{a}, \frac{1}{a}\right)$

\therefore Required area $O A B C O$
$=$ area of $O C B D O$

- area of $O A B D O$
$\Rightarrow \int_{0}^{1 / a}\left(\sqrt{\frac{x}{a}}-a x^{2}\right) d x=1 \quad$ [given]
$\Rightarrow\left(\frac{1}{\sqrt{a}} \cdot \frac{x^{3 / 2}}{3 / 2}-\frac{a x^{3}}{3}\right)_{0}^{1 / a}=1$
$\Rightarrow \frac{2}{3 a^{2}}-\frac{1}{3 a^{2}}=1$
$\Rightarrow a^{2}=\frac{1}{3} \Rightarrow a=\frac{1}{\sqrt{3}} \quad[$ as $a>0]$

Differentiating both sides w.r.t. b, we get

$$
\begin{aligned}
& \Rightarrow f(b)=3(b-1) \cos (3 b+4)+\sin (3 b+4) \\
& \Rightarrow f(x)=\sin (3 x+4)+3(x-1) \cos (3 x+4)
\end{aligned}
$$

41 (c)
Given $\int_{1}^{b} f(x) d x=(b-1) \sin (3 b+4)$
42 (a)
Curve tracing: $y=x e^{x}$
Let $\frac{d y}{d x}=0 \Rightarrow e^{x}+x e^{x}=0 \Rightarrow x=-1$
Also, at $x=-1, \frac{d y}{d x}$ changes sign from - ve to + ve, hence, $x=-1$ is a point of minima
When $x \rightarrow \infty, y \rightarrow \infty$
Also $\lim _{x \rightarrow \infty} x e^{x}=\lim _{x \rightarrow \infty} \frac{x}{e^{-x}}=\lim _{x \rightarrow \infty} \frac{1}{-e^{-x}}=0$
With similar types of arguments, we can draw the graph of $y=x e^{-x}$

Required area
$=\int_{0}^{1} x e^{x} d x-\int_{0}^{1} x e^{-x} d x$
$=\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x-\left(\left[-x e^{-x}\right]_{0}^{1}+\int_{0}^{1} e^{-x} d x\right)$
$=e-(e-1)-\left(-e^{-1}-\left(e^{-1}-1\right)\right)=\frac{2}{e}$ sq. units

43
(a)

Required area $O A B O=\int_{0}^{9} \sqrt{x} d x-\int_{3}^{9}\left(\frac{x-3}{2}\right) d x$ $=\left(\frac{x^{3 / 2}}{3 / 2}\right)_{0}^{9}-\frac{1}{2}\left(\frac{x^{2}}{2}-3 x\right)_{3}^{9}$

$=\left(\frac{2}{3} \cdot 27\right)-\frac{1}{2}\left\{\left(\frac{81}{2}-27\right)-\left(\frac{9}{2}-9\right)\right\}$
$=9$ sq units

44 (c)
The required area will be equal to the area enclosed by $y=f(x), y$-axis between the abscissa At $y=-2$ and $y=6$
Hence, $A=\int_{0}^{1}(6-f(x)) d x+\int_{-1}^{0}(f(x)-$

$$
\begin{aligned}
& -2 d x \\
& =\int_{0}^{1}\left(4-x^{3}-3 x\right) d x+\int_{-1}^{0}\left(x^{3}+3 x+4\right) d x \\
& =\frac{5}{4} \text { sq. units }
\end{aligned}
$$

(b)

The required area $A=\int_{0}^{2 a} \sqrt{\frac{x^{3}}{2 a-x}} d x$

Put $x=2 a \sin ^{2} \theta$
$\Rightarrow d x=2 a 2 \sin \theta \cos \theta d \theta$
$\Rightarrow A=8 a^{2} \int_{0}^{\pi}\left(\frac{1-\cos 2 \theta}{2}\right)^{2} d \theta$
$=2 a^{2} \int_{0}^{\pi}\left(1-2 \cos 2 \theta+\cos ^{2} 2 \theta\right) d \theta$
$=2 a^{2} \int_{0}^{\pi}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) d \theta$
$=\frac{3 \pi a^{2}}{2}$
(b,c,d)
Required area $=\int_{1}^{3} \operatorname{In} x d x$

$=[x \operatorname{In} x-x]_{1}^{3}$
$=(3 \operatorname{In} 3-2)$
$=\operatorname{In} 27-2$ sq unit (b is correct)
$=\operatorname{In} 27-\operatorname{In} e^{2}$
$=\operatorname{In}\left(27 / e^{2}\right)$ sq unit (c is correct)

Also, $\operatorname{In}\left(\frac{27}{e^{2}}\right)>3$
$\Rightarrow \operatorname{In}\left(\frac{27}{e^{2}}\right)>3$ In e
\Rightarrow In $27>\operatorname{In} e^{5}$, which is false

(b,d)

The two curves meet at $m x=x-x^{2}$ or
$x^{2}=x(1-m)$
$\therefore x=0,1-m$
$A=\int_{0}^{1-m}\left(x-x^{2}-m x\right) d x$
$=\left[(1-m) \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1-m}=\frac{9}{2}$ if $m<1$
$\Rightarrow(1-m)^{3}\left[\frac{1}{2}-\frac{1}{3}\right]=\frac{9}{2}$
$\Rightarrow(1-m)^{3}=27$
$\Rightarrow m=-2$
But if $m>1$ and $1-m$ is -ve , then
$\left[(1-m) \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{1-m}^{0}=\frac{9}{2}$
$\Rightarrow-(1-m)^{3}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{9}{2}$
$\Rightarrow-(1-m)^{3}=-27$
$\Rightarrow m=4$
48 (b,c)

Line $y=k x+2$ passes through fixed point $(0,2)$
for different value of k
Also, it is obvious that minimum $A(k)$ occurs when $k=0$, as when line is rotated from this position about point $(0,2)$ the increased part of area is more than the decreased part of area
\therefore Minimum area $=2 \int_{0}^{\sqrt{5}}\left(2-\left(x^{2}-3\right)\right) d x$
$=2 \int_{0}^{\sqrt{5}}\left(5-x^{2}\right) d x$
$=2\left[5 x-\frac{x^{3}}{3}\right]_{0}^{\sqrt{5}}$
$=2\left[5 \sqrt{5}-\frac{5 \sqrt{5}}{3}\right]$
$=\frac{20 \sqrt{5}}{3}$ sq. units
49 (b,d)
Given curve $x^{a} y=\lambda^{a}$
$(\lambda, 1)$ is a point on the given curve
Now, differentiating Eq. (i) w. r.t. x, we get
$a x^{a-1} y+x^{a} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-a x^{a-1} y}{x^{a}}=-\frac{a y}{x}$
At $(\lambda, 1) \quad \frac{d y}{d x}=-\frac{a}{\lambda}$
Equation of tangent at $(\lambda, 1)$ is
$y-1=-\frac{a}{\lambda}(x-\lambda)$,
Now, $x=0$
$\Rightarrow y=1+a$
$y=0$
$\Rightarrow x=\frac{\lambda}{a}+\lambda=\frac{\lambda(1+a)}{a}$
Area, $A=\frac{1}{2} \times(1+a) \frac{(1+a) \lambda}{a}$
Now, $\frac{d A}{d a}=\frac{1}{2} \lambda\left[\frac{a \cdot 2(1+a)-(1+a)^{2}}{a^{2}}\right]$
For maxima or minima, put $\frac{d A}{d a}=0$
$\Rightarrow(2 a-1-a)(1+a)=0$
$\Rightarrow(a-1)(a+1)=0$
$\Rightarrow a=1, a=-1$
50 ($\mathbf{a}, \mathbf{c}, \mathrm{d}$)
$y^{2}=4 x$ and $x^{2}-4 y$ meet at $O(0,0)$ and $A(4,4)$

Now $S_{3}=\int_{0}^{4} \frac{x^{2}}{4} d x=\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\frac{1}{12}[64-0]=\frac{16}{3}$
$S_{2}=\int_{0}^{4} 2 \sqrt{x} d x-S_{3}=2\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{4}-\frac{16}{3}$
$=\frac{4}{3}[8-0]-\frac{16}{3}=\frac{16}{3}$
And $S_{1}=4 \times 4-\left(S_{2}+S_{3}\right)=16-\left(\frac{16}{3}+\frac{16}{3}\right)=\frac{16}{3}$
Hence, $S_{1}: S_{2}: S_{3}=1: 1: 1$
51 (a,c,d)
Eliminating t, we have $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} \Rightarrow y=$ $\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2}$

From diagram,

$$
\begin{aligned}
& \Rightarrow A=2 \int_{-a}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x \\
&=4 \int_{0}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x
\end{aligned}
$$

$A=4 \int_{0}^{a} y d x$
$=4 a^{2} \int_{0}^{\pi / 2} 3 \cos ^{3} t \sin ^{2} t \cos t d t$
52 (c,d)
Since the curve $y=a x^{1 / 2}+b x$ passes through the point $(1,2)$

$$
\begin{equation*}
\therefore 2=a+b \tag{1}
\end{equation*}
$$

By observation the curve also passes through (0, $0)$

Therefore, the area enclosed by the curve, x-axis and $x=4$ is given by

$$
\begin{align*}
& A=\int_{0}^{4}\left(a x^{1 / 2}+b x\right) d x=8 \Rightarrow \frac{2 a}{3} \times 8+\frac{b}{2} \times 16 \\
& \quad=8 \\
& \Rightarrow \frac{2 a}{3}+b=1 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get $a=3, b=-1$
53 (a,c,d)

We know that area bounded by $y=\sin x$ and x axis for $x \in[0, \pi]$ is 2 sq. units
Then area bounded by $y=\sin x$ and $y=\sin ^{2} x$ is 4 sq. units for $x \in[0,2 \pi]$
Then for $x \in[0,10 \pi]$, the area bounded is 20 sq. units

The area bounded by $y=\sin x$ and $y=|\sin x|$ for $x \in[0,2 \pi]$ is 4 sq. units
Then for $x \in[0,20 \pi]$, the area bounded is 40 sq. units

The area bounded by $y=\sin x$ and $y=\sin ^{3} x$ for $x \in[0,2 \pi]$ is 4 sq. units
Then for $x \in[0,10 \pi]$, the area bounded is 20 sq. units
Similarly, the area bounded by $y=\sin x$ and $y=\sin ^{4} x$ for $x \in[0,10 \pi]$ is 20 sq. units
54 (a,c)
$a_{1}=0, b_{1}=32, a_{2}=a_{1}+\frac{3}{2} b_{1}=48, b_{2}=\frac{b_{1}}{2}$ $=16$
$a_{3}=48+\frac{3}{2} \times 16=72, b_{3}=\frac{16}{2}=8$

So the three loops from $i=1$ to $i=3$ are alike
Now area of i th loop $($ square $)=\frac{1}{2}(\text { diagonal })^{2}$
$A_{i}=\frac{1}{2}\left(2 b_{i}\right)^{2}=2\left(b_{i}\right)^{2}$
So, $\frac{A_{i+1}}{A_{i}}=\frac{2\left(b_{i+1}\right)^{2}}{2\left(b_{i}\right)^{2}}=\frac{1}{4}$
So the areas form a G.P. series
So, the sum of the G.P. upto infinite terms
$=A_{i} \frac{1}{1-r}=2(32)^{2} \times \frac{1}{1-\frac{1}{4}}$
$=2 \times(32)^{2} \times \frac{4}{3}$
$=\frac{8}{3}(32)^{2}$ square units

55 (b)
Given, $f\left(\frac{x}{y}\right)=f(x)-f(y) \ldots$ (i)

On putting $x=y$, then
$f(1)=0$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{h}$ [from Eq. (i)]
$=\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{x \cdot \frac{h}{x}}$
$=\frac{3}{x} \quad\left[\because \lim _{x \rightarrow 0} \frac{f(1+x)}{x}=3\right]$
$\therefore f(x)=3 \operatorname{In} x+c$
Put $x=1$, then
$f(1)=0+c=0$
$\Rightarrow f(x)=3 \operatorname{In} x=y$ (say)
$\therefore x=e^{y / 3}$

\therefore Required area $=\int_{-\infty}^{3} x d y$
$=\int_{-\infty}^{3} e^{y / 3} d y=3\left\{e^{y / 3}\right\}_{-\infty}^{3}$
$=3(e-0)=3 e$ sq unit
$\because f^{\prime \prime}(x)=-\frac{3}{x^{2}}<0$
$\Rightarrow f(x)$ is concave down
56 (c)
The given curves are
$y=x^{2}+2 x-3$
and $y=\lambda x+1$
Solving Eqs. (i) and (ii), we get
$x^{2}+(2-\lambda) x-4=0$
α, β are the roots of the quadratic, then
$\alpha+\beta=\lambda-2, \alpha \beta=-4$
hence, required area
$S(\lambda)=\left|\int_{\alpha}^{\beta}(\lambda x+1)-\left(x^{2}+2 x-3\right) d x\right|$
$=\left|\left\{4 x+(\lambda-2) \frac{x^{2}}{2}-\frac{x^{3}}{3}\right\}_{\alpha}^{\beta}\right|$
$=\left|4(\beta-\alpha)+\frac{(\lambda-2)}{2}\left(\beta^{2}-\alpha^{2}\right)-\frac{1}{3}\left(\beta^{3}-\alpha^{3}\right)\right|$
$=\sqrt{(\beta-\alpha)^{2}-4 \beta \alpha}$
$\left|\left\{4+\frac{(\lambda-2)}{2}(\beta+\alpha)-\frac{1}{3}\left\{(\alpha+\beta)^{2}\right\}-\alpha\right\}\right|$
$=\frac{1}{6}\left\{(\lambda-2)^{2}+16\right\}^{3 / 2}$
For least value of $S(\lambda), \lambda-2=0$
$\therefore \lambda=2$
57 (a)
Statement 2 is correct as $y=f(x)$ is odd and hence statement 1 is correct

58
(b)

Since, $y=e^{x^{3}}$
$\therefore \frac{d y}{d x}=e^{x^{3}} \cdot 3 x^{2}>0$
$\Rightarrow y$ is an increasing function
And area bounded by the curve $y=e^{x^{3}}$ between
the lines $x=a, x=b$ and x-axis $\int_{a}^{b} e^{x^{3}} d x$
59 (d)
R_{1} : points $P(x, y)$ is nearer to $(1,0)$ than to $x=-1$
$\Rightarrow \sqrt{(x-1)^{2}+y^{2}}<|x+1|$
$\Rightarrow y^{2}<4 x$
\Rightarrow Point P lies inside parabola $y^{2}=4 x$
R_{2} : Point $P(x, y)$ is nearer to $(0,0)$ than to $(8,0)$
$\Rightarrow|x|<|x-8|$
$\Rightarrow x^{2}<x^{2}-16 x+64$
$\Rightarrow x<4$
\Rightarrow Point P is towards left side of line $x=4$

The area of common region of R_{1} and R_{2} is the area bounded by $x=4$ and $y^{2}=4 x$

(a)

This area is twice the area bounded by $x=4 \sqrt{y}$ and $y=4$

Now, the area bounded by $x=4 \sqrt{y}$ and $y=4$ is

$$
\begin{gathered}
A=\int_{0}^{4}\left(4-\frac{x^{2}}{4}\right) d x=\left[4 x-\frac{x^{3}}{12}\right]_{0}^{4}=\left[16-\frac{64}{12}\right] \\
=\frac{32}{3} \text { sq. units }
\end{gathered}
$$

Hence, the area bounded by R_{1} and R_{2} is $\frac{64}{3}$ sq. units

Thus, statement 1 is false but statement 2 is true
60 (d)
It is clear from the figure for $x \in[2.2,2.8]$
$\Rightarrow(x-1)(x-2)(x-3) \leq 0$

Required area $=\left|\int_{2.2}^{2.8} f(x) d x\right|$
$=\left|\int_{2.2}^{2.8}(x-1)(x-2)(x-3) d x\right|$
61 (a)
Given curves are $y^{2}-2 y+4 x+5=0$ and $x^{2}+2 x-y+2=0$
or $(y-1)^{2}=-4(x+1)$ and $(x+1)^{2}=y-1$
Shifting origin to $(-1,1)$, equation of given curves change to $Y^{2}=-4 X$ and $X^{2}=Y$

Hence, statement 1 is true and statement 2 is correct explanation of statement 1

64 (d)
For $0<t<1$
$t^{2}<1$
$\therefore \sin ^{2} x<\sin x$
$\Rightarrow \int_{0}^{\pi} \sin ^{2} x d x<\int_{0}^{\pi} \sin x d x$

(b)

Area $=\int_{1}^{3}-\left(x^{2}-4 x+3\right) d x=-\left(\frac{x^{3}}{3}-\frac{4 x^{2}}{2}+\right.$ 3×13
$=\frac{4}{3}$ sq. units
\therefore Statement 1 is true

Obviously, statement 2 is true, but does not explain statement 1

66 (a)
Since $y=e^{x}$ and $y=\log _{e} x$ are inverse to each other

67 (b)
$2 \geq \max \{|x-y|,|x+y|\}$
$\Rightarrow|x-y| \leq 2$ and $|x+y| \leq 2$, which forms a square of diagonal length 4 units

\Rightarrow The area of the region is $\frac{1}{2} \times 4 \times 4=8$ sq. units
This is equal to the area of the square of side length $2 \sqrt{2}$
(d)

Area of ellipse $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$ is
$\pi \sqrt{3} \sqrt{2}=3.14 \times \sqrt{6}=7.8$ (approx.) sq unit, the area bounded by $2|x|+3|y| \leq 6$ is $4 \times \frac{1}{2} \times 3 \times 2$
$=12$ squnit

and length of major axis $=2 \sqrt{6}<3+3$
69
(a)

$y=e^{2 x}$ and $2 y=\log _{e} x$ are inverse of each other The shaded area is given as k sq. units
\Rightarrow The required area is $2 k$ sq. units
70
(b)
a. $[x]^{2}=[y]^{2}$, where $1 \leq x \leq 4$
$\Rightarrow[x]= \pm[y]$

b. $[|x|]+[|y|]=2$

The graph is symmetrical about both x-axis and y axis
For $x, y>0 ;[x]+[y]=2$
$\Rightarrow[x]=0$ and $[y]=2,[x]=1$ and $[y]=1$ or $[x]=2$ and $[y]=0$

c. $[|x|][|y|]=2$

The graph is symmetrical about both x-axis and y axis
For $x, y>0 ;[x][y]=2 \Rightarrow[x]=1$ and $[y]=2$ or $[x]=2$ and $[y]=1$

d. $\frac{[|x|]}{[|y|]}=2$, where $-5 \leq x \leq 5$

The graph is symmetrical about both the axes
For $x, y>0,[x]=2[y],[y] \neq 0$
$\Rightarrow[x]=2$ and $[y]=1$ or $[x]=4$ and $[y]=2$

71 (c)
a. Area $=2\left(\frac{1}{2} 1.1\right)=1$ sq. Units

b. $y^{2}=x^{3}$ and $|y|=2 x$, both the curve are symmetric about y-axis

$4 x^{2}-x^{3} \Rightarrow x=0,4$
The required area $=2 \int_{0}^{4}\left(2 x-x^{3 / 2}\right) d x=\frac{32}{5}$ sq. units
c. $\sqrt{x}+\sqrt{|y|}=1$

The curve is symmetrical about x-axis
$\sqrt{|y|}=1-\sqrt{x}$ and $\sqrt{x}=1-\sqrt{|y|}$
\Rightarrow for $x>0, y>0 \sqrt{y}=1-\sqrt{x}$
$\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}}$
$\frac{d y}{d x}=-\sqrt{\frac{y}{x}}$
$\frac{d y}{d x}<0$, function is decreasing, the required area
$=2 \int_{0}^{1}((1-x)-(1-2 \sqrt{x}+x) d x$
$=4 \int_{0}^{1}(\sqrt{x}-x) d x$
$=4\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{1}$
$=4\left[\frac{2}{3}-\frac{1}{2}\right]$
$=\frac{2}{3}$ sq. units
d. If $-8<x<8$, then $y=2$

If $x \in(-8 \sqrt{2},-8] \cup[8,8 \sqrt{2})$, then $y=3$, and so
on
Intersection of $y=x-1$ and $y=2$. We get
$x=3 \in(-8,8)$
Intersection of $y=x-1$ and $y=3$
We get $x=4 \notin(-8 \sqrt{2},-8] \cup[8,8 \sqrt{2})$
Similarly, $y=x-1$ will not intersect $y=\left[\frac{x^{2}}{64}+2\right]$ at any other integral, except in the interval
$x \in(-8,8)$
The required area (shaded region) $=2 \times 3-\frac{1}{2} \times$ 2×2
$=4$ sq. units

72 (a)

Required area $=2 \int_{0}^{1} x|x| d x$
$=2\left(\frac{x^{3}}{3}\right)_{0}^{1}=\frac{2}{3}$

$=\int_{0}^{2}\left[(x+2)-\left(x^{2}\right)\right] d x=\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{0}^{2}$ $=2+4-\frac{8}{3}=\frac{10}{3}$ sq. units
c. Reqd. area $=\int_{0}^{1}(\sqrt{x}-x) d x=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{1}$
$=\left(\frac{1}{3 / 2}-\frac{1}{2}\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$ sq. units

d. $y=4$ meets the parabola $y^{2}=x$ at A is $(16,4)$

Required area $=$ Area of rectangle $O M A C-$ Area OMA
$=4 \times 16-\int_{0}^{16} \sqrt{x} d x=64-\left|\frac{x^{3 / 2}}{3 / 2}\right|_{0}^{16}$
$=64-\frac{2}{3}\left(4^{3}\right)=64-\frac{128}{3}=\frac{64}{3}$ sq. units
73 (d)
$\because f(x)=x^{2}-3 x+2$
\therefore Required area $=\int_{0}^{1} f(x) d x$

$=\int_{0}^{1}\left(x^{2}-3 x+2\right) d x$
$=\frac{1}{3}-\frac{3}{2}+2=\frac{5}{6}$ sq unit
74
(d)
\because Graph of $f(x)=\min (|x|,|x-1|,|x+1|)$

and graph of $\mathrm{g}(x)=\min \left(e^{x}, e^{-x}\right)$

Required area $=2 \times \frac{1}{2} \times 1 \times \frac{1}{2}$
$=\frac{1}{2}$ sq unit
75
(b)

Solving the two equations,
$m^{2} x^{2}=\left(e^{-k r}\right) x$
$x_{1}=0, x_{2}=\frac{e^{-k r}}{m^{2}}$,

So, $A_{r}=\int_{0}^{x_{2}}\left(e^{-\frac{k r}{2}} \sqrt{x}-m x\right) d x$
$=\frac{2}{3} e^{-k r / 2} x_{2}^{3 / 2}-m \frac{x_{2}^{2}}{2}$
$=\frac{2}{3} e^{-k r / 2} \frac{e^{-3 k r / 2}}{m^{3}}-\frac{m}{2} \frac{e^{-2 k r}}{m^{4}}=\frac{e^{-2 k r}}{6 m^{3}}$
Now, $\frac{A_{r+1}}{A_{r}}=\frac{e^{-2 k(r+1)}}{e^{-2 k r}}=e^{-2 k}=$ constant
So, the sequence $A_{1}, A_{2}, A_{3}, \ldots$ is in G.P.

Sum of n terms $=\frac{e^{-2 k}}{6 m^{3}} \frac{e^{-2 n k}-1}{e^{-2 k}-1}=\frac{1}{6 m^{3}} \frac{e^{-2 n k}-1}{1-e^{2 k}}$
Sum of infinite terms $=A_{1} \frac{1}{1-e^{-2 k}}$
$=\frac{e^{-2 k}}{6 m^{3}} \times \frac{e^{2 k}}{e^{2 k}-1}=\frac{1}{6 m^{3}\left(e^{2 k}-1\right)}$
76 (d)
$f(x)=\frac{x^{3}}{3}-x^{2}+a$
$f^{\prime}(x)=x^{2}-2 x=x(x-2)<0$ (note that $f(x)$ is monotonic in (0,2))
Hence for the minimum and $f(x)$ must cross the x-axis at $\frac{0+2}{2}=1$
Hence, $f(1)=\frac{1}{3}-1+a=0$
$\Rightarrow a=\frac{2}{3}$
(a)

Since $-1 \leq \sin x \leq 1$, the curve $y=e^{-x} \sin x$ is bounded by the curves $y=e^{-x}$ and $y=e^{-x}$

Also, the curve $y=e^{-x} \sin x$ intersects the positive semi-axis $O X$ at the points where $\sin x=0$, where $x_{n}=n \pi, n \in Z$
Also $\left|y_{n}\right|=\mid y$ coordinate in the half-wave $S_{n} \mid$
$=(-1)^{n} e^{-x} \sin x$, and in $S_{n}, n \pi \leq x \leq(n+1) \pi$
$\therefore S_{n}=(-1)^{n} \int_{n \pi}^{(n+1) \pi} e^{-x} \sin x d x$
$=\frac{(-1)^{n+1}}{2}\left[e^{-x}(-\sin x+\cos x)\right]_{n \pi}^{(n+1) \pi}$
$=\frac{(-1)^{n+1}}{2}\left[e^{-(n+1) \pi}(-1)^{n+1}-e^{n \pi}(-1)^{n}\right]$
$=\frac{e^{-n \pi}}{2}\left(1+e^{\pi}\right)$
$\Rightarrow \frac{S_{n+1}}{S_{n}}=e^{-\pi}$ and $S_{0}=\frac{1}{2}\left(1+e^{\pi}\right)$
\therefore the sequence $S_{0}, S_{1}, S_{2}, \ldots$ forms an infinite G.P. with common ratio $e^{-\pi}$
$\therefore \sum_{n=0}^{\infty} S_{n}=\frac{\frac{1}{2}\left(1+e^{\pi}\right)}{1-e^{-\pi}}$
78 (b)
Given

$$
\begin{aligned}
& (x-y) f(x+y)-(x+y) f(x-y) \\
& \quad=4 x y\left(x^{2}-y^{2}\right) \\
& =\left(x^{2}-y^{2}\right)\left[(x+y)^{2}-(x-y)^{2}\right] \\
& =(x-y)(x+y)^{3}-(x+y)(x-y)^{3} \\
& \Rightarrow f(x+y)=(x+y)^{3} \Rightarrow f(x)=x^{3}, f(y)=y^{3}
\end{aligned}
$$

Now equations of given curves are
$y^{2}+x=0$
$x^{2}+y^{2}=12$

Solving equations (1) and (2), we get
$x=-3, y= \pm \sqrt{3}$
The area bounded by curves

$$
\begin{aligned}
& A=2\left[\left|\int_{-2 \sqrt{3}}^{-3} \sqrt{12-x^{2}} d x\right|+\left|\int_{-3}^{0} \sqrt{-x} d x\right|\right] \\
& I_{1}=2 \int_{-2 \sqrt{3}}^{-3} \sqrt{12-x^{2}} d x=2 \int_{-\pi / 2}^{-\pi / 3} 12 \cos ^{2} \theta d \theta \\
& =12\left[\int_{-\pi / 2}^{-\pi / 3}(1+\cos 2 \theta) d \theta\right] \\
& =12\left[\theta+\frac{\sin \theta}{2}\right]_{-\pi / 2}^{-\pi / 3}=12\left[-\frac{\pi}{3}-\frac{\sqrt{3}}{4}+\frac{\pi}{2}\right] \\
& =12\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right]=2 \pi-3 \sqrt{3} \\
& I_{2}=2 \int_{-3}^{0} \sqrt{-x} d x=\frac{2\left[(-x)^{3 / 2}\right]_{-3}^{0}}{-3 / 2} \\
& \quad=-\frac{4}{3}\left[0-3^{3 / 2}\right]
\end{aligned}
$$

$=4 \sqrt{3}$
$A=2 \pi-3 \sqrt{3}+4 \sqrt{3}=2 \pi+\sqrt{3}$ sq. units
(c)

$1+\cos x=1+\cos (x-\alpha)$
$x=\alpha-x \Rightarrow x=\frac{\alpha}{2}$
Now $\int_{0}^{\alpha / 2}((1+\cos x)-(1+\cos (x-\alpha))) d x$
$=-\int_{\frac{\pi}{2}+\alpha}^{\pi}(1-(1+\cos (x-\alpha))) d x$
$\Rightarrow[\sin x-\sin (x-a)]_{0}^{\alpha / 2}=[\sin (x-\alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$
$\Rightarrow\left[\sin \frac{\alpha}{2}-\sin \left(-\frac{\alpha}{2}\right)\right]-[0-\sin (-\alpha)]$
$=\sin \left(\frac{\pi}{2}\right)-\sin (\pi-\alpha)$
$\Rightarrow 2 \sin \frac{\alpha}{2}-\sin \alpha=1-\sin \alpha$
Hence, $2 \sin \frac{\alpha}{2}=1 \Rightarrow \alpha=\frac{\pi}{3}$
80 (a)
For $-1 \leq x<0$
$\left(y-e^{\sin ^{-1} x}\right)^{2}=2-x^{2}$
$y=e^{\sin ^{-1} x} \pm \sqrt{2-x^{2}}$
$A=\int_{-1}^{0}\left(e^{\sin ^{-1} x}+\sqrt{2-x^{2}}\right)$

$$
-\left(e^{\sin ^{-1} x}-\sqrt{2-x^{2}}\right) d x
$$

$=2 \int_{-1}^{0} \sqrt{2-x^{2}} d x$
$=2\left(\left.\frac{1}{2} x \sqrt{2-x^{2}}\right|_{-1} ^{0}+\left.\frac{2}{2} \sin ^{-1} \frac{x}{\sqrt{2}}\right|_{-1} ^{0}\right)$
$=\left[1+2\left(0-\left(-\frac{\pi}{4}\right)\right)\right]$
$=\frac{\pi}{2}+1$ sq. units
For $0 \leq x<1, y=\sin ^{-1} x \pm \sqrt{1-x^{2}}$
$A=2 \int_{0}^{1} \sqrt{1-x^{2}} d x$
$=2\left[\left.\frac{x}{2} \sqrt{1-x^{2}}\right|_{0} ^{1}+\left.\frac{1}{2} \sin ^{-1} \frac{x}{1}\right|_{0} ^{1}\right]$
$=0+\sin ^{-1}(1)=\frac{\pi}{2}$ sq. units
Total area $=\left(\frac{\pi}{2}+1\right)+\frac{\pi}{2}=\pi+1$
81 (b)
$S=\left|-\int_{0}^{2 \pi} a(1-\cos t) a(1-\cos t) d t\right|$
$=\left|-a^{2} \int_{0}^{2 \pi}\left(1-2 \cos t+\cos ^{2} t\right) d t\right|$
$=\left|-a^{2} \int_{0}^{2 \pi}\left(1-2 \cos t+\left(\frac{1+\cos 2 t}{2}\right)\right) d t\right|$
$=\left|-\frac{a^{2}}{2} \int_{0}^{2 \pi}(3-4 \cos t+\cos 2 t) d t\right|$
$=\left|-\frac{a^{2}}{2}[3 t-4 \cos t+\cos 2 t]_{0}^{2 \pi}\right|$
$=\left|-3 \pi a^{2}\right|=3 \pi a^{2}$ sq. units
82
$y=\frac{a^{2}-a x}{1+a^{4}}$
$y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}$
Point of intersection of (1) and (2)
$\frac{a^{2}-a x}{1+a^{4}}=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}$
$(x+a)(x+2 a)=0$
$x=-a,-2 a$
Req. area $=\int_{-2 a}^{-a}\left[\left(\frac{a^{2}-a x}{1+a^{4}}\right)-\left(\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}\right)\right]$
$\therefore f(a)=\frac{a^{3}}{6\left(1+a^{4}\right)}$
$f(a)$ is max is
Then $f^{\prime}(a)=0$
$3+3 a^{4}-4 a^{4}=0$
$a^{4}=3$
(6)

Area $O A B C=\int_{0}^{\pi / 2} \sin 2 x d x=1$
Area $O A D=\int_{0}^{\pi / 6} \sin 2 x d x=\frac{1}{4}$
$\because \sin 2 x$ is symmetric about origin
So $c=-\frac{\pi}{6}$, because area $O A D=$ area $O E F$
$\int_{\frac{\pi}{6}}^{c} \sin 2 x d x=\frac{1}{2}$
$\cos 2 c=-\frac{1}{2} \cos 2 c=\frac{3}{2}$ (not possible)
$c=\frac{\pi}{3}$
So $c=-\frac{\pi}{6}, \frac{\pi}{3}$

Required area

$A=\int_{0}^{3} x \sqrt{9-x^{2}} d x$; Put $9-x^{2}=t^{2} \Rightarrow-2 x d x=$ $2 t d t$
$\therefore A=\int_{0}^{3} t^{2} d t=9$
(8)

Required area $=$ area of one quadrant of the circle
$=\pi / 2$

36 (2)
Let the point of the curve is $\left(x, x^{2}+1\right)$
Now, the slope of tangent at this point is $2 x$, which is equal to the slope of the line joining $\left(x, x^{2}+1\right)$ and $(0,0)$
Hence $2 x=\left(x^{2}+1\right) / x \Rightarrow 2 x^{2}=x^{2}+1$
$\Rightarrow x^{2}=1 \Rightarrow x= \pm 1$

Hence equation of tangent is $y= \pm 2 x$
Now area $2 \int_{0}^{1}\left(x^{2}+1-2 x\right) d x$
$=2 \int_{0}^{1}(x-1)^{2} d x$
$=2\left[\frac{(x-1)^{3}}{3}\right]_{0}^{1}=2 / 3$
87 (4)
We have $S=\int_{0}^{\pi} \sin x d x=2$, so $T=\frac{2}{3}$, where
$a>0$
Now $T=\int_{0}^{\tan ^{-1} a} \sin x d x+\int_{\tan ^{-1} a}^{\pi / 2} a \cos x d x=\frac{2}{3}$

$$
\text { i. e. }-\cos \left(\tan ^{-1} a\right)+1+a\left\{\left[1-\sin \left(\tan ^{-1} a\right)\right]\right\}
$$

i. e., $-\frac{1}{\sqrt{1+a^{2}}}+1+a-\frac{a^{2}}{\sqrt{1+a^{2}}}=\frac{2}{3}$
$\Rightarrow(a+1)-\sqrt{a^{2}+1}=\frac{2}{3} \Rightarrow a+\frac{1}{3}=\sqrt{a^{2}+1}$

$$
\Rightarrow a=\frac{4}{3}
$$

Hence $3 a=4$
88 (3)
$[2 x]=0 \Rightarrow 2 x \in[0,1) \Rightarrow x$
$\in[0,1 / 2) \Rightarrow[y]=5 \Rightarrow y \in[5,6)$
Similarly we can consider $[2 x]=1,2,3,4$ and 5

From the graph, area is 3 sq. units
89
Graph of $f(x)$ is as

$\left.A=\int_{0}^{1}\left(x^{4 / 3}-x^{1 / 3}\right) d x=\frac{3}{7} x^{3 / 7}-\frac{3}{4} x^{4 / 3}\right]_{0}^{1}$
$=\left|\frac{3}{7}-\frac{3}{4}\right|=3\left|\frac{4-7}{28}\right|=\frac{9}{28}$
$\Rightarrow 28 A=9$
90
(2)

Given than $\int_{1}^{c} y d x=\frac{16}{3}$
$\Rightarrow \int_{1}^{c}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
$c=(8-\sqrt{17})^{1 / 3} \quad(c>0)$
Area $O F E=\int_{0}^{c}\left(8 x^{2}-x^{5}\right) d x=\frac{8}{3} \quad(c>0)$
So $c=-1$
Hence $c=-1$ and $(8-\sqrt{17})^{1 / 3}$
91 (8)

Let $P(x, y)$ be any point on the curve C
Now, $\frac{d y}{d x}=\frac{1}{y}$
$\Rightarrow y d y=d x \Rightarrow \frac{y^{2}}{2}=x+k$
Since the curve passes through $M(2,2)$, so $k=0$
$\Rightarrow y^{2}=2 x$
Hence required area $=2 \int_{0}^{2} \sqrt{2 x} d x$
$=2 \sqrt{2} \times \frac{2}{3}\left(x^{3 / 2}\right)_{0}^{2}$
$=\frac{4}{3} \sqrt{2} \times 2 \sqrt{2}$
$=\frac{16}{3}$ (square unit)
(1)

Given that $D_{1}=D_{2}$
$\int_{1}^{c}\left(\frac{1}{x}-\log x\right) d x=\int_{c}^{a}\left(\log x-\frac{1}{x}\right) d x$
$\left(\frac{-1}{x^{2}}-x(\log x-1)\right)_{1}^{c}=\left(x(\log x-1)+\frac{1}{x^{2}}\right)_{c}^{a}$

$\therefore 0=a(\log a-1)+\frac{1}{a^{2}}$
$\therefore a=1$

Draw the given region point of intersection of
$y=x^{2}+1$
$y=x+1$
$x+1=x^{2}+1$
$x=0,1$

Required area $O A B C D E=\int_{0}^{1}\left(x^{2}+1\right) d x+$ $\int_{1}^{2}(x+1) d x$
$=\left(\frac{x^{3}}{3}+x\right)_{0}^{1}+\left(\frac{x^{2}}{2}+x\right)_{1}^{2}=\frac{23}{6}$ sq. units
94
(8)

Required area $=2 \int_{0}^{2}\left(x(x-3)^{2}-x\right) d x=8$ sq. units

95 (8)
$\int_{0}^{3}\left(-x^{2}+a x+12\right) d x=45$ gives $a=4$
Hence $f(x)=12+4 x-x^{2}=(2+x)(6-x)$
Hence $m=-2$ and $n=6$
$m+n+a=6-1+4=8$
(1)
$f(a)=\int_{a}^{2 a}\left(\frac{x}{6}+\frac{1}{x^{2}}\right) d x=\left(\frac{x^{2}}{12}-\frac{1}{x}\right)_{a}^{2 a}$
$=\left(\frac{4 a^{2}}{12}-\frac{1}{2 a}-\frac{a^{2}}{12}+\frac{1}{a}\right)=\frac{a^{2}}{4}+\frac{1}{2 a}$
Let $f^{\prime}(a)=\frac{2 a}{4}-\frac{1}{2 a^{2}}=0$
$\Rightarrow a=1$ which is point of minima
97
(2)
$y=\sqrt{1-x^{2}}$
$y=x^{3}-x$ (1)
$y=0$ in (2) $x=0,1,-1$ (2)

Required area $=$ area of region $B C A G O H B$
$=$ Area of semi-circle $B C A O B$
$=\frac{\pi}{2}$
$(\because$ area of $B H O E B=$ area of $O F A G O)$

