

8.APPLICATION OF INTEGRALS

Single Correct Answer Type

1.	Area enclosed between the curves $ y = 1 - x^2$ and $x^2 + y^2 = 1$ is				
	a) $\frac{3\pi - 8}{3}$ sq. units	b) $\frac{\pi-8}{3}$ sq. units	c) $\frac{2\pi - 8}{3}$ sq. units	d) None of these	
2.	The area enclosed by the	curve $xy^2 = a^2(a - x)$ and	$(a-x)y^2 = a^2x$ is		
	a) $(\pi - 2)a^2$ sq. units	b) $(4 - \pi)a^2$ sq. units	c) $\pi a^2/3$ sq. units	d) None of these	
3.	The area of the region end	closed between the curves .	$x = y^2 - 1$ and $x = y \sqrt{1 - 1}$	$-y^2$ is	
	a) 1 sq. units	b) 4/3 sq. units	c) $2/3$ sq. units	d) 2 sq. units	
4.	Area enclosed by the curv	y = (x) defined paramet	rically as $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$	$\frac{1}{2}$ is equal to	
	a) π sq. units	b) $\pi/2$ sq. units	c) $\frac{3\pi}{4}$ sq. units	d) $\frac{3\pi}{2}$ sq. units	
5.	Area bounded by the curv	$xe xy^2 = a^2(a - x)$ and the	<i>y</i> -axis is		
C	a) $\pi a^2/2$ sq. units	b) πa^2 sq. units	c) $3\pi a^2$ sq. units	d) None of these	
0.	Alea bounded by the curves $a_1 e_2 = 2$ sq units	$y = \log_e x$ and $y = (\log_e x)$	e^{x} (18)	d) $e = 1$ sa units	
7.	The area of the loop of the	e curve, $ay^2 = x^2(a - x)$ is	c) c sq. units		
	a) $4a^2$ sq. units	b) $\frac{8a^2}{15}$ sq. units	c) $\frac{16a^2}{9}$ sq. units	d) None of these	
8.	The area bounded by the	two branches of curve $(y -$	$(x)^2 = x^3$ and the straight	line $x = 1$ is	
	a) 1/5 sq. units	b) 3/5 sq. units	c) 4/5 sq. units	d) 8/4 sq. units	
9.	The area o the region end	losed by the curves $y = x \log x$	$\log x$ and $y = 2x - 2x^2$ is		
	a) $\frac{7}{12}$ sq. units	b) $\frac{1}{2}$ sq. units	c) $\frac{5}{12}$ sq. units	d) None of these	
10.	If $f(x) = \sin x, \forall x \in \left[0, \frac{\pi}{2}\right]$	$\int f(x) + f(\pi - x) = 2, \forall x$	$\in \left(\frac{\pi}{2}, \pi\right)$ and $f(x) = f(2\pi)$	$(-x), \forall x \in (\pi, 2\pi)$, then the	
	area enclosed by $y = f(x)$) and the <i>x</i> -axis is			
	a) π sq. units	b) 2π sq. units	c) 2 sq. units	d) 4 sq. units	
11.	The area of the region wh	ose boundaries are defined	I by the curve $y = 2 \cos x$, y	$y = 3 \tan x$ and the y-axis is	
	a) $1 + 3 \ln\left(\frac{2}{\sqrt{3}}\right)$ sq. units		b) $1 + \frac{3}{2} \ln 3 - 3 \ln 2$ sq. un	nits	
	c) $1 + \frac{3}{2} \ln 3 - \ln 2$ sq. uni	its	d) In 3 –In 2 sq. units		
12.	The area bounded by the	curve $y^2 = 1 - x$ and lines	$y = \frac{ x }{x}$, $x = -1$ and $x = \frac{1}{2}$ i	S	
	a) $\frac{3}{\sqrt{2}} - \frac{11}{6}$ sq. units	b) $3\sqrt{2} - \frac{11}{4}$ sq. units	c) $\frac{6}{\sqrt{2}} - \frac{11}{5}$ sq. units	d) None of these	
13.	Let $f(x)$ =minimum (x +	$(1,\sqrt{1-x})$ for all $x \le 1$. The	ien the area bounded by y	= f(x) and the <i>x</i> -axis is	
	a) $\frac{7}{3}$ sq. units	b) $\frac{1}{6}$ sq. units	c) $\frac{11}{6}$ sq. units	d) $\frac{7}{6}$ sq. units	
14.	The area inside the parab	ola $5x^2 - y = 0$ but outside	e the parabola $2x^2 - y + 9$	= 0 is	
	a) $12\sqrt{3}$ sq. units	b) $6\sqrt{3}$ sq. units	c) $8\sqrt{3}$ sq. units	d) $4\sqrt{3}$ sq. units	
15.	The area of the region of t	the plane bounded by max	$(x , y) \le 1 \text{ and } xy \le \frac{1}{2}$ is	3	
	a) 1/2 + In 2 sq. units	b) 3+ In 2 sq. units	c) 31/4 sq. units	d) 1+2 In 2 sq. units	
16.	The area of the closed figu	are bounded by $y = \frac{x^2}{2} - 2x$	x + 2 and the tangents to it	at (1, 1/2) and (4, 2) is	
	a) 9/8 sq. units	b) 3/8 sq. units	c) 3/2 sq. units	d) 9/4 sq. units	
17.	The value of the parameter	er a such that the area bound	nded by $y = a^2x^2 + ax + 1$, coordinate axes and the	
	line $x = 1$ attains its least	value, is equal to	2		
	a) $-\frac{1}{4}$ sq. units	b) $-\frac{1}{2}$ sq. units	c) $-\frac{3}{4}$ sq. units	d) −1 sq. units	
18.	The area bounded by the	curves $v = \sin^{-1} \sin x $ ar	$v = (\sin^{-1} \sin x)^2$. when	re $0 < x < 2\pi$. is	

a) $\frac{1}{3} + \frac{\pi^2}{4}$ sq. units b) $\frac{1}{6} + \frac{\pi^3}{8}$ sq. units d) None of these c) 2 sq. units 19. The area bounded by the curve $a^2y = x^2(x + a)$ and the *x*-axis is a) $a^2/3$ sq. units 20. Area bounded by $y = \frac{1}{x^2 - 2x + 2}$ and *x*-axis is c) $a^2/43$ sq. units d) $a^2/12$ sq. units b) $\frac{\pi}{2}$ sq. units c) 2 sq. units a) 2π sq. units d) π sq. units 21. The area bounded by the loop of the curve $4y^2 = x^2(4 - x^2)$ is b) 8/3 sq. units a) 7/3 sq. units c) 11/3 sq. units d) 16/3 sq. units 22. The area of the region bounded by $x^2 + y^2 - 2x - 3 = 0$ and y = |x| + 1 is a) $\frac{\pi}{2}$ – 1 sq. units b) 2π sq. units c) 4π sq. units d) $\pi/2$ sq. units ^{23.} The area enclosed between the curves $y = \log_e(x + e)$, $x = \log_e(\frac{1}{y})$ and the *x* -axis is b) 1 sq. units d) None of these a) 2 sq. units c) 4 sq. units 24. The area of the region bounded by x = 0, y = 0, x = 2, y = 2, $y \le e^x$ and $y \ge \ln x$ is a) $6 - 4 \ln 2$ sq. units b) $4 \ln 2 - 2$ sq. units c) $2 \ln 2 - 4$ sq. units d) 6 – 2 In 2 sq. units 25. Consider two curve $C_1: y^2 = 4[\sqrt{y}]x$ and $C_2: x^2 = 4[\sqrt{x}]y$, where [.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines x = 1, y =1, x = 4, y = 4 is a) 8/3 sq. units b) 10/3 sq. units c) 11/3 sq. units d) 11/4 sq. units 26. The area of the region in 1st quadrant bounded by the *y*-axis, $y = \frac{x}{4}$, $y = 1 + \sqrt{x}$ and $y = \frac{2}{\sqrt{x}}$ is b) 8/3 sq. units c) 11/3 sq. units a) 2/3 sq. units d) 13/6 sq. units 27. The area of the region containing the points (x, y) satisfying $4 \le x^2 + y^2 \le 2(|x| + |y|)$ is b) 2 sq. units c) 4π sq. units d) 2π sq. units a) 8 sq. units 28. The area bounded by the curves $y = (x - 1)^2$, $y = (x + 1)^2$ and $y = \frac{1}{4}$ is b) $\frac{2}{3}$ sq unit a) $\frac{1}{3}$ sq unit 29. The area bounded by $y = \sec^{-1} x$, $y = \csc^{-1} x$ and line x - 1 = 0 is a) $\frac{1}{3}$ sq unit d) $\frac{1}{5}$ sq unit b) $\frac{\pi}{2} - \log(3 + 2\sqrt{2})$ sq. units a) $\log(3+2\sqrt{2}) - \frac{\pi}{2}$ sq. units c) $\pi - \log_e 3$ sq. units d) None of these 30. The area bounded by the curve $f(x) = x + \sin x$ and its inverse function between the ordinates x = 0 and $x = 2\pi$ is a) 4π sq. units b) 8π sq. units c) 4 sq. units d) 8 sq. units 31. The area enclosed by the curve $y = \sqrt{4 - x^2}$, $y \ge \sqrt{2} \sin\left(\frac{x\pi}{2\sqrt{2}}\right)$ and the *x*-axis is divided by the *y*-axis in the ratio d) $\frac{2\pi^2}{2\pi^2 + \pi^2 - 8}$ a) $\frac{\pi^2 - 8}{\pi^2 + 8}$ b) $\frac{\pi^2 - 4}{\pi^2 + 4}$ c) $\frac{\pi^2 - 4}{\pi^4}$ 32. The area between the curve $y = 2x^4 - x^2$, the *x*-axis and the ordinates of the two minima of the curve is b) 7/120 sq. units c) 1/30 sq. units a) 11/60 sq. units d) 7/90 sq. units 33. The area bounded by the *x*-axis, the curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is d) $\frac{x}{\sqrt{1+x^2}}$ a) $\sqrt{x-1}$ c) $\sqrt{x^2 + 1}$ b) $\sqrt{x+1}$ 34. The area of the region between the curves $y = \sqrt{\frac{1 + \sin x}{\cos x}}$ and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$

Bounded by the line x = 0 and $x = \frac{\pi}{4}$

	a) $\int_{1}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}}$, dt	b) $\int_{1}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}}$	= dt
	$\int_{0}^{\sqrt{2}+1} (1+t^{2})\sqrt{1-t^{2}}$		$J_0 (1+t^2)\sqrt{1-t^2}$	-
	c) $\int_{0} \frac{1}{(1+t^2)\sqrt{1-t^2}}$	$\frac{1}{2}$ dt	d) $\int_{0} \frac{1}{(1+t^{2})\sqrt{1-t^{2}}}$	$\frac{1}{2}dt$
35.	Let $f(x)$ be a non-negative	ve continuous function suc	h that the area bounded by	the curve $y = f(x)$, <i>x</i> -axis
	and the ordinates $x = \frac{\pi}{4}a$	and $x = \beta > \frac{\pi}{4}$ is $\beta \sin \beta + \beta$	$\frac{\pi}{4}\cos\beta + \sqrt{2}\beta$. Then $f'\left(\frac{\pi}{2}\right)$	is
	a) $\left(\frac{\pi}{2} - \sqrt{2} - 1\right)$	b) $\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$	c) $-\frac{\pi}{2}$	d) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
36.	The area of the figure bo	unded by the parabola (y -	$(-2)^2 = x - 1$, the tangent t	to it at the point with the
	ordinate $x = 3$ and the x	-axis is		
37	a) / sq. units	b) 6 sq. units $\frac{6}{6}$	c) 9 sq. units	a) None of these
57.	The area bounded by $y =$	$= 3 - 3 - x $ and $y = \frac{12}{ x+1 }$	12	
	a) $\frac{15}{2}$ – 6 In 2 sq. units	b) $\frac{13}{2}$ – 3 In 2 sq. units	c) $\frac{13}{2}$ -6 In 2 sq. units	d) None of these
38.	The area of the closed fig	sure bounded by $x = -1, x$	= 2 and $y = \begin{cases} -x^2 + 2, & x \\ 2x - 1, & x \end{cases}$	≤ 1 and the abscissa axis is > 1
	a) 16/3 sq. units	b) 10/3 sq. units	c) 13/3 sq. units	d) 7/3 sq. units
39.	The area of the closed fig	sure bounded by $x = -1$, y	$y = 0, y = x^2 + x + 1$ and t	he tangent to the curve
	$y = x^2 + x + 1$ at $A(1,3)$	$\frac{15}{12}$ b) $\frac{7}{2}$ can units	c) 7/6 ca unite	d) None of these
40	The area enclosed betwe	DJ 7/5 Sq. units en the curves $v = ar^2$ and	c) 7/6 sq. units $x = ay^2(a > 0)$ is 1 sq uni	it Then value of a is
10.	1	1	x = uy (u > 0) is 1 sq uin	1
	a) $\sqrt{3}$	b) $\frac{1}{2}$	c) 1	d) $\frac{-}{3}$
41.	The area bounded by the 4). Then $f(x)$ is	curve $y = f(x)$, the <i>x</i> -axis	s and the ordinates $x = 1$ and	$\operatorname{ind} x = b \operatorname{is} (b-1) \operatorname{sin}(3b + 1)$
	a) $(x - 1)\cos(3x + 4)$		b) $\sin(3x + 4)$	
	c) $\sin(3x+4) + 3(x-1)$	$\cos(3x+4)$	d) None of these	
42.	The area bounded by the	curves $y = xe^x$, $y = xe^{-x}$	and the line $x = 1$ is	1
	a) $\frac{2}{e}$ sq. units	b) $1 - \frac{2}{e}$ sq. units	c) $\frac{1}{e}$ sq. units	d) $1 - \frac{1}{e}$ sq. units
43.	The area bounded by the	curves $y = \sqrt{x}$, $2y + 3 = 2$	x and x-axis in the first qua	drant is
	a) 9	b) 27/4	c) 36	d) 18
44.	Let $f(x) = x^3 + 3x + 2a$ ordinate at $x = -2$ and x	and $g(x)$ is the inverse of it $x = 6$ is	. Then the area bounded by	y g(x), the x-axis and the
	a) $1/4$ sq. units	b) $4/3$ sq. units	c) $5/4$ sq. units	d) 7/3 sa. units
45.	The area enclosed betwe	een the curve $y^2(2a - x) =$	$= x^3$ and the line $x = 2$ above	ve the <i>x</i> -axis is
	a) πa^2 sq. units	b) $\frac{3\pi a^2}{2}$ sq. units	c) $2\pi a^2$ sq. units	d) $3\pi a^2$ sq. units
		Multiple Correc	t Answers Type	
46.	Area bounded by the cur	ve $y = In, x, y = 0$ and $x =$	= 3 is	
	a) (In 9 – 2) sq unit	b) (In 27 – 2) sq unit	c) In $\left(\frac{27}{a^2}\right)$ sq unit	d) (greater than 3) sq unit
47.	For which of the followin	ig values of <i>m</i> is the area o	f the regions bounded by th	the curve $y = x - x^2$ and the
	line $y = mx$ equal to 9/2	?		-
	a) –4	b) -2	c) 2	d) 4
48.	Let $A(k)$ be the area bound	nded by the curves $y = x^2$	-3 and y = kx + 2	

a) The range of
$$A(k)$$
 is $\left[\frac{10\sqrt{5}}{3},\infty\right)$

b) The range of
$$A(k)$$
 is $\left[\frac{20\sqrt{5}}{3},\infty\right)$

c) If function $k \to A(k)$ is defined for $k \in [-2, \infty)$, then A(k) is many-one function

d) The value of *k* for which area is minimum is 1

49. The value (s) of 'a' for which the area of the triangle included between the axes and any tangent to the curve $x^a y = \lambda^a$ is constant is/are

a)
$$-\frac{1}{2}$$
 b) -1 c) $\frac{1}{2}$ d) 1

50. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_1, S_2, S_3 are the areas of these parts numbered from top to bottom, respectively, then a) $S_1: S_2 \equiv 1:1$ b) $S_2: S_3 \equiv 1:2$ c) $S_1: S_3 \equiv 1:1$ d) $S_1: (S_1 + S_2) = 1:2$

a) $5_1 \cdot 5_2 = 1 \cdot 1$ b) $5_2 \cdot 5_3 = 1 \cdot 2$ c) $5_1 \cdot 5_3 = 1 \cdot 1$ d) $5_1 \cdot (5_1 + 5_2)$ 51. The area enclosed by the curves $x = a \sin^3 t$ and $y = a \cos^3 t$ is equal to a) $12a^2 \int_{0}^{\pi/2} \cos^4 t \sin^2 t \, dt$ b) $12a \int_{0}^{\pi/2} \cos^2 t \sin^4 t \, dt$ c) $2 \int_{-a}^{a} (a^{2/3} - x^{2/3})^{3/2} \, dx$ d) $4 \int_{0}^{a} (a^{2/3} - x^{2/3})^{3/2} \, dx$

52. If the curve $y = ax^{1/2} + bx$ passes through the point (1, 2) and lies above the *x*-axis for $0 \le x \le 9$ and the area enclosed by the curve, the *x*-axis and the line x = 4 is 8 sq. units. Then a) a = 1 b) b = 1 c) a = 3 d) b = -1

a)
$$a = 1$$
 b) $b = 1$ c) $a = 3$
53. Which of the following have the same bounded area

a)
$$f(x) = \sin x$$
, $g(x) = \sin^2 x$, where $0 \le x \le 10\pi$

b)
$$f(x) = \sin x$$
, $g(x) = |\sin x|$, where $0 \le x \le 20\pi$

- c) $f(x) = |\sin x|, g(x) = \sin^3 x$, where $0 \le x \le 10\pi$
- d) $f(x) = \sin x$, $g(x) = \sin^4 x$, where $0 \le x \le 10\pi$

54. If A_i is the area bounded by $|x - a_i| + |y| = b_i$, $i \in N$, where $a_{i+1} = a_i + \frac{3}{2}b_i$ and $b_{i+1} = \frac{b_i}{2}$, $a_1 = 0$, $b_1 = 32$, then

a)
$$A_3 = 128$$
 b) $A_3 = 256$ c) $\lim_{n \to \infty} \sum_{i=1}^n A_i = \frac{8}{3}(32)^2$ d) $\lim_{n \to \infty} \sum_{i=1}^n A_i = \frac{4}{3}(16)^2$

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 55 to 54. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1

b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1

c) Statement 1 is True, Statement 2 is False

d) Statement 1 is False, Statement 2 is True

55

Statement 1: Let *f* be a real values function satisfying $f\left(\frac{x}{y}\right) = f(x) - f(y)$ and $\lim_{x\to 0} \frac{f(1+x)}{x} = 3$. Then, the area bounded by the curve y = f(x), the *y*-axis and the line y = 3 is 3e sq unit **Statement 2:** The function f(x) is concave down

56

Statement 1: The area bounded by the curves $y = x^2 + 2x - 3$ and the line $y = \lambda x + 1$ is least, if $\lambda = 2$

Statement 2: The area bounded by the curve $y = x^2 + 2x - 3$ and $y = \lambda x + 1$ is $\{(\lambda - 2)^2 + 16)^{3/2}\}$ sq unit

57 f(x) is a polynomial of degree 3 passing through origin having local extrema at $x = \pm 2$

Statement 1: Ratio of areas in which f(x) cuts the circle $x^2 + y^2 = 36$ is 1:1

Statement 2: Both y = f(x) and the circle are symmetric about origin

58

Statement 1: Area enclosed by the curve $y = e^{x^3}$ between the lines x = a, x = b and x-axis is $\int_a^b e^{x^3} dx$ **Statement 2:** e^{x^3} is an increasing function

59 Consider two regions R_1 : Point *P* is nearer to (1, 0) than to x = -1 R_2 : Point *P* is nearer to (0, 0) than to (8, 0) **Statement 1:** Area of the region common to R_1 and R_2 is $\frac{128}{3}$ sq. units **Statement 2:** Area bounded by $x = 4\sqrt{y}$ and y = 4 is $\frac{32}{3}$ sq. units

60

Statement 1:	If $f(x) = (x - 1)(x - 2)(x - 3)$, then area enclosed by $ f(x) $ between the lines		
	$x = 2.2, x = 2.8$ and x-axis is equal to $\int_{2.2}^{2.8} (x - 1)(x - 2)(x - 3) dx$		
Statement 2:	$(x-1)(x-2)(x-3) \le 0, \forall x \in [2.2, 2.8]$		

61

Statement 1:	The area enclosed between the parabolas $y^2 - 2y + 4x + 5 = 0$ and $x^2 + 2x - y + 2 = 0$
	is same as that of bounded by curves $y^2 = -4x$ and $x^2 = y$
Statement 2:	Shifting of origin to point (h, k) does not change the bounded area

62

63

Statement 1:	The area bounded by the curves $y = x^2 - 3$ and $y = kx + 2$ is least if $k = 0$
Statement 2:	The area bounded by the curves $y = x^2 - 3$ and $y = -kx + 2$ is $\sqrt{k^2 + 20}$

- **Statement 1:** Area enclosed by the curve |x| + |y| = 2 is 8 unit
- **Statement 2:** |x| + |y| = 2 represents on square of side length $\sqrt{8}$ unit

64

Statement 1: The area of the function $y = \sin^2 x$ from 0 to π will be more than that of curve $y = \sin x$ from 0 to π **Statement 2:** $t^2 < t$, if 0 < t < 1

65

Statement 1:	The area bounded by parabola $y = x^2 - 4x + 3$ and $y = 0$ is 4/3 sq. units
Statement 2:	The area bounded by curve $y = f(x) \ge 0$ and $y = 0$ between ordinates $x = a$ and $x = b$ (where $b > a$) is $\int_{a}^{b} f(x) dx$

66

	Statement 1:	Area bounded by $y = e^x$, $y = 0$ and $x = 0$ is 1 sq. units
	Statement 2:	Area bounded by $y = \log_e x$, $x = 0$ and $y = 0$ is 1 sq. units
67		
	Statement 1:	Area bounded by $2 \ge \max \{ x - y , x + y \}$ is 8 sq. units
	Statement 2:	Area of the square of side length 4 is 16 sq. units
68		
	Statement 1:	The area of the ellipse $2x^2 + 3y^2 = 6$ will be more than the area bounded by $2 x + 3 y \le 6$
	Statement 2:	The length of major axis of the ellipse $2x^2 + 3y^2 = 6$ is less than the distance between the points of $2 x + 3 y \le 6$ on <i>x</i> -axis
69		
	Statement 1:	The area of the region bounded by the curve $2y = \log_e x$, $y = e^{2x}$ and the pair of lines $(y + y - 1) \times (y + y - 2) = 0$ is $2k$ or write
	Statement 2:	$(x + y - 1) \times (x + y - 3) = 0$ is $2k$ sq. units The area of the region bounded by the curves $y = e^{2x}$, $y = x$ and the pair of lines $x^2 + y^2 + 2xy - 4x - 4y + 3 = 0$ is k units

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

70.

71.

Column-I							Column- II
(A)	Area enc	losed by [:	$x]^2 = [y]$	² for $1 \le x \le 4$	(p)	8 sq. units	
(B)	Area enc	losed by [x] + [y]] = 2	(q)	6 sq. units	
(C)	Area enc	losed by [x][y] =	= 2	(r)	4 sq. units	
(D)	Area enc	losed by []	$\frac{x]}{y } = 2, -$	$5 \le x \le 5$	(s)	12 sq. units	
COD	DES :	LI	נוע				
	Α	В	С	D			
a)	р	q	S	r			
b)	q	S	р	р			
c)	S	р	r	q			
d)	р	r	q	S			

Column-I

Column- II

(A)	Area enclosed by $y = [x]$ and $y = \{x\}$ where	(p)	32/5 sq. units
	$\left[\cdot ight]$ and $\left\{\cdot ight\}$ represent greatest integer and		
	fractional part functions, respectively		

- **(B)** The area bounded by the curves $y^2 = x^3$ and (q) 1 sq. units |y| = 2x
- (C) The smaller area included between the curves (r) 4 sq. units $\sqrt{x} + \sqrt{|y|} = 1$ and |x| + |y| = 1
- **(D)** Area bounded by the curves $y = \left[\frac{x^2}{64} + 2\right]$ (s) 2/3 sq. units (where [.] denotes the greatest integer function), y = x 1 and x = 0 above the *x*-axis

```
CODES :
```

	Α	В	С	D
a)	r	S	q	р
b)	р	q	r	S
c)	q	р	S	r
d)	S	r	р	q

72.

Column-I

Column- II

- (A) The area bounded by the curve y = x|x|, x- (p) 10/3 sq. units axis and the ordinates x = 1, x = -1
- **(B)** The area of the region lying between the lines (q) 64/3 sq. units x y + 2 = 0, x = 0 and the curve $x = \sqrt{y}$
- (C) The area enclosed between the curves $y^2 = x$ (r) 2/3 sq. units and y = |x|
- **(D)** The area bounded by parabola $y^2 = x$, straight (s) 1/6 sq. units line y = 4 and *y*-axis

CODES:

	Α	В	С	D
a)	r	р	S	q
b)	р	S	q	r
c)	q	r	р	S
d)	S	q	r	р

Linked Comprehension Type

This section contain(s) 13 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct. **Paragraph for Question Nos. 73 to -73**

Let $f(x) = x^2 - 3x + 2$ be a function, $\forall x \in R$

On the basis of above information, answer the following questions

73. The area bounded by f(x), the *x*-axis and *y*-axis is c) $\frac{3}{5}$ sq unit d) ⁵/₆ sq unit b) $\frac{2}{2}$ sq unit a) $\frac{1}{2}$ sq unit

Paragraph for Question Nos. 74 to - 74

Let there are two functions defined by $f(x) = \min(|x|, |x-1|, |x+1|)$ and $g(x) = \min\{e^x, e^{-x}\}$. Now, the roots of he equation $e^{-x} - x = 0$ is $a, \forall a \in R$

On the basis of above information, answer the following questions :

74. The area bounded by f(x) in [-1,1] and *x*-axis is c) $\frac{1}{3}$ sq unit d) $\frac{1}{2}$ sq unit a) $\frac{1}{r}$ sq unit b) $\frac{1}{4}$ sq unit

Paragraph for Question Nos. 75 to - 75

Let A_r be the area of the region bounded between the curves $y^2 = (e^{-kr})x$ (where $k > 0, r \in N$) and the line y = mx (where $m \neq 0$), k and m are some constants

75.	A_1, A_2, A_3, \dots are in G.P. wi	th common ratio		
	a) <i>e^{-k}</i>	b) e^{-2k}	c) e^{-4k}	d) None of these

Paragraph for Question Nos. 76 to - 76

If
$$y = f(x)$$
 is a monotonic function in (a, b) , then the area bounded by the ordinates at
 $x = a, x = b, y = f(x)$ and $y = f(c)$ (where $c \in (a, b)$) is minimum when $c = \frac{a+b}{2}$
Proof: $A = \int_{a}^{c} (f(c) - f(x)) dx + \int_{c}^{b} (f(x) - f(c)) dx$
 $= f(c)(c - a) - \int_{a}^{c} (f(x)) dx + \int_{c}^{b} (f(x)) dx - f(c)(b - c)$
 $\Rightarrow A = [2c - (a + b)]f(c) + \int_{c}^{b} (f(x)) dx - \int_{a}^{c} (f(x)) dx$
 $f(b)$
 $(0, f(c))$
 $f(a)$
 $x = a$
 $x = b$
Differentiating w.r.t. c ,
 dA

$$\frac{dA}{dc} = [2c - (a+b)]f'(c) + 2f(c) + 0 - f(c) - (f(c) - 0)$$

For maximum and minima $\frac{dA}{dc} = 0$ $\Rightarrow f'(c)[2c - (a + b)] = 0$ (as $f'(c) \neq 0$) Hence $c = \frac{a+b}{2}$ Also for $c < \frac{a+b}{2}$, $\frac{dA}{dc} < 0$ and for $c > \frac{a+b}{2}$, $\frac{dA}{dc} > 0$ Hence *A* is minimum when $c = \frac{a+b}{2}$

76. If the area bounded by $f(x) = \frac{x^3}{3} - x^2 + a$ and the straight lines x = 0, x = 2 and the *x*-axis is minimum, then the value of *a* is a) 1/3 b) 2 c) 1 d) 2/3

Paragraph for Question Nos. 77 to - 77

Consider the areas S_0, S_1, S_2 ... bounded by the *x*-axis and half-waves of the curve $y = e^{-x} \sin x$, where $x \ge 0$

77. The value of S_0 is

a) $\frac{1}{2}(1+e^{\pi})$ sq. units b) $\frac{1}{2}(1+e^{-\pi})$ sq. units c) $\frac{1}{2}(1-e^{-\pi})$ sq. units d) $\frac{1}{2}(e^{\pi}-1)$ sq. units

Paragraph for Question Nos. 78 to - 78

Two curves $C_1 \equiv [f(y)]^{2/3} + [f(x)]^{1/3} = 0$ and $C_2 \equiv [f(y)]^{2/3} + [f(x)]^{2/3} = 12$, satisfying the relation $f(x - y)f(x + y) - (x + y)f(x - y) = 4xy(x^2 - y^2)$

78. The area bounded by C_1 and C_2 isa) $2\pi - \sqrt{3}$ sq. unitsb) $2\pi + \sqrt{3}$ sq. unitsc) $\pi + \sqrt{6}$ sq. unitsd) $2\sqrt{3} - \pi$ sq. units

Paragraph for Question Nos. 79 to - 79

Consider the two curves $C_1: y = 1 + \cos x$ and $C_2: y = 1 + \cos(x - \alpha)$ for $\alpha \equiv \left(0, \frac{\pi}{2}\right)$, where $x \in [0, \pi]$. Also the area of the figure bounded by the curves C_1, C_2 and x = 0 is same as that of the figure bounded of $C_2, y = 1$ and $x = \pi$

- 79. The value of α is
 - a) $\frac{\pi}{4}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{8}$

Paragraph for Question Nos. 80 to - 80

Consider the function defined implicitly by the equation $y^2 - 2ye^{\sin^{-1}x} + x^2 - 1 + [x] + e^{2\sin^{-1}x} = 0$ (where [x] denotes the greatest integer function)

80. The area of the region bounded by the curve and the line x = -1 is a) $\pi + 1$ sq. units b) $\pi - 1$ sq. units c) $\frac{\pi}{2} + 1$ sq. units d) $\frac{\pi}{2} - 1$ sq. units

Paragraph for Question Nos. 81 to - 81

Computing area with parametrically represented boundaries:

If the boundary of a figure is represented by parametric equation, i.e., x = x(t), y = y(t), then the area of the figure is evaluated by one of the three formulas

$$S = -\int_{\alpha}^{\beta} y(t)x'(t)dt, S = \int_{\alpha}^{\beta} x(t)y'(t)dt,$$
$$S = \frac{1}{2} \int_{\alpha}^{\beta} (xy' - yx') dt,$$

Where α and β are the values of the parameter *t* corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing *t*

81. The area of the region bounded by an arc of cycloid $x = a(t - \sin t)$, $y = a(1 - \cos t)$ and the *x*-axis is a) $6\pi a^2$ sq. units b) $3\pi a^2$ sq. units c) $4\pi a^2$ sq. units d) None of these

Integer Answer Type

- 82. If 'a' (a > 0) is the value of parameter for each of which the area of the figure bounded by the straight line, $y = \frac{a^2 - ax}{1 + a^4}$ and the parabola $y = \frac{x^2 + 2ax + 3a^2}{1 + a^4}$ is the greatest, then the value of a^4 is
- 83. If *S* is the sum of possible values of *c* for which the area of the figure bounded by the curves $y = \sin 2x$, the straight lines $x = \pi/6$, x = c and the abscissa axis is equal to 1/2, then the value of π/S is
- 84. The area enclosed by the curve $C: y = x\sqrt{9 x^2}$ ($x \ge 0$) and the *x*-axis is
- 85. If the area enclosed by the curve $y = \sqrt{x}$ and $x = -\sqrt{y}$, the circle $x^2 + y^2 = 2$ above the *x*-axis, is *A* then the value of $\frac{16}{\pi}A$ is
- 86. If the area bounded by the curve $y = x^2 + 1$ and the tangents to it drawn from the origin is *A*, then the value of 3*A* is
- 87. Let *S* be the area bounded by the curve $y = \sin x$ ($0 \le x \le \pi$) and the *x*-axis and *T* be the area bounded by the curves $y = \sin x \left(0 \le x \le \frac{\pi}{2}\right)$, $y = a \cos x \left(0 \le x \le \frac{\pi}{2}\right)$ and the *x*-axis (where $a \in R^+$) The value of (2a) such that $S(T = 1)^{\frac{1}{2}}$ is

The value of (3*a*) such that $S: T = 1: \frac{1}{3}$ is

- 88. Area bounded by the relation [2x] + [y] = 5, x, y > 0, is (where $[\cdot]$ represents greatest integer function)
- 89. If the area bounded by the curve $f(x) = x^{1/3} (x 1)$ and *x*-axis is *A*, then the value of 28*A* is
- 90. If *S* is the sum of cubes of possible value of '*c*' for which the area of the figure bounded by the curve $y = 8x^2 x^5$, then straight lines x = 1 and x = c and the abscissa axis is equal to 16/3, then the value of [*S*], where [·] denotes the greatest integer function, is
- 91. Let *C* be a curve passing through M(2, 2) such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve *C* and line x = 2 is *A*, then the value of $\frac{3A}{2}$ is
- 92. Consider two curve $C_1: y = \frac{1}{x}$ and $C_2: y = \text{In } x$ on the xy plane. Let D_1 denotes the region surrounded by C_1, C_2 and the line x = 1 and D_2 denotes the region surrounded by C_1, C_2 and the line x = a. If $D_1 = D_2$, then the sum of logarithm of possible values of a is
- 93. If the area of the region { $(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2$ } is *A*, then the value of 3A 17 is
- 94. The area bounded by the curves $y = x(x 3)^2$ and y = x is (in sq. units):
- 95. The area enclosed by $f(x) = 12 + ax + -x^2$ coordinates axes and the ordinates at x = 3(f(3) > 0) is 45 square units. If *m* and *n* are the *x*-axis intercepts of the graph of y = f(x) then the value of (m + n + a) is

- 96. The value 'a' (a > 0) for which the area bounded by the curves $y = \frac{x}{6} + \frac{1}{x^2}$, y = 0, x = a and x = 2a has the least value is
- 97. If *A* is the area bounded by the curves $y = \sqrt{1 x^2}$ and $y = x^3 x$, then the value of π/A

8.APPLICATION OF INTEGRALS

: ANSWER KEY :															
1)	а	2)	а	3)	d	4)	а	9)	a,c	1)	b	2)	С	3)	а
5)	b	6)	b	7)	b	8)	С		4)	b					
9)	а	10)	b	11)	b	12)	а	5)	d	6)	d	7)	а	8)	С
13)	d	14)	а	15)	b	16)	а	9)	а	10)	d	11)	b	12)	а
17)	С	18)	d	19)	d	20)	d	13)	b	14)	d	15)	а	1)	b
21)	d	22)	а	23)	а	24)	а		2)	С	3)	а	1)	d	
25)	С	26)	С	27)	а	28)	а		2)	d	3)	b	4)	d	
29)	а	30)	d	31)	d	32)	b	5)	а	6)	b	7)	С	8)	а
33)	d	34)	b	35)	С	36)	С	9)	b	1)	3	2)	6	3)	9
37)	С	38)	а	39)	С	40)	а		4)	8					
41)	С	42)	а	43)	а	44)	С	5)	2	6)	4	7)	3	8)	9
45)	b	1)	b,c,d	2)	b,d	3)		9)	2	10)	8	11)	1	12)	6
-	b,c	4)	b,d	-		-		13)	8	14)	8	15)	1	16)	2
5)	a,c,d	6)	a,c,d	7)	c,d	8)				2		2		2	
	a,c,d			-	-	-									

Required area

7

Given curves are $y = \log_e x$ and $y = (\log_e x)^2$ Solving $\log_e x = (\log_e x)^2 \Rightarrow \log_e x = 0, 1 \Rightarrow x =$ 1 and x = eAlso, for 1 < x < e, $0 < \log_e x < 1 \Rightarrow \log_e x >$ $(\log_e x)^2$ For x > e, $\log_e x < (\log_e x)^2$ $y = (\log_e x)^2 > 0$ for all x > 0and when $x \to 0$, $(\log_e x)^2 \to \infty$ From these information, we can plot the graph of

8

 $\Rightarrow y = x + x^{3/2} \quad (1)$ $y = x - x^{3/2}$

 $x > 1, x - x^{3/2} < 0$

When $x \to \infty$, $x - x^{3/2} \to -\infty$

x = 0, 1

below:

(2)

Function (1) is an increasing function

Also, for 0 < x < 1, $x - x^{3/2} > 0$ and for

Function (2) meets *x*-axis, when $x - x^{3/2} = 0$ or

From these information, we can plot the graph as

the functions

Then the required area = $\int_{1}^{e} (\log x - (\log_{e} x)^{2}) dx$ $= \int_{-\infty}^{e} \log x dx - \int_{-\infty}^{e} (\log_e x)^2 dx$ $= [x \log_e x - x]_1^e - [x (\log_e x)^2]_1^e$ $+\int_{1}^{e}\frac{2\log_{e} x}{x}xdx$ $= 1 - e + 2[x \log_e x - x]_1^e = 3 - e$ sq. units **(b)** $ay^2 = x^2(a-x) \Rightarrow y = \pm x \sqrt{\frac{a-x}{a}}$

Curve tracing: $y = x \sqrt{\frac{a-x}{a}}$ We must have $x \leq a$ For $0 < x \le a, y > 0$ and for x < 0, y < 0Also $y = 0 \Rightarrow x = 0, a$ Curve is symmetrical about *x*-axis When $x \to -\infty, y \to -\infty$ Also, it can be verified that *y* has only one point of maxima for 0 < x < a(a, 0)Area = $2 \int_0^a x \sqrt{\frac{a-x}{a}} dx$ $\sqrt{\frac{a-x}{a}} = t \Rightarrow 1 - \frac{x}{a} = t^2 \Rightarrow x = a(1-t^2)$ $\Rightarrow A = 2 \int_{1}^{0} a(1-t^2) t(-2at) dt$ $=4a^{2}\int_{0}^{1}(t^{2}-t^{4})dt$ $=4a^{2}\left[\frac{t^{3}}{3}-\frac{t^{5}}{5}\right]^{1}$ $=4a^{2}\left[\frac{1}{3}-\frac{1}{5}\right]=\frac{8a^{2}}{15}$ sq. units (c) $(y-x)^2 = x^3$, where $x \ge 0 \Rightarrow y - x = \pm x^{3/2}$

9 (a)

Curve tracing: $y = x \log_e x$ Clearly, x > 0For 0 < x < 1, $x \log_e x < 0$, and for x > 1, $x \log_e x > 0$ Also $x \log_e x = 0 \Rightarrow x = 1$ Further, $\frac{dy}{dx} = 0 \Rightarrow 1 + \log_e x = 0 \Rightarrow x = 1/e$, which is a point of minima

Required area

10

$$= \int_{0}^{1} (2x - 2x^{2}) dx - \int_{0}^{1} x \log x \, dx$$

= $\left[x^{2} - \frac{2x^{3}}{3} \right]_{0}^{1} - \left[\frac{x^{2}}{2} \log x - \frac{x^{2}}{4} \right]_{0}^{1}$
= $\left(1 - \frac{2}{3} \right) - \left[0 - \frac{1}{4} - \frac{1}{2} \lim_{x \to 0} x^{2} \log x \right] = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$
(b)
 $f(x) = \sin x$
 $f(x) + f(\pi - x) = 2$

$$f(x) = 2 - f(\pi - x) = 2 - \sin(\pi - x) = 2 - \sin(x - x) = 2 - \sin(x, where x \in (\frac{\pi}{2}, \pi])$$

$$f(x) = f(2\pi - x) = 2 - \sin(2\pi - x), where x \in (\pi, \frac{3\pi}{2}]$$

$$f(x) = \begin{cases} \sin x, x \in [0, \frac{\pi}{2}] \\ 2 - \sin x, x \in (\frac{\pi}{2}, \pi] \\ 2 + \sin x, x \in (\pi, \frac{3\pi}{2})] \\ -\sin x, x \in (\frac{3\pi}{2}, 2\pi] \end{cases}$$

$$y = 2 - \sin x \quad y = 2 + \sin x$$

$$y = 2 - \sin x \quad y = 2 + \sin x$$

$$y = 2 - \sin x \quad y = 2 + \sin x$$

$$x' = \int_{0}^{\pi/2} \sin x \sin dx + \int_{\pi/2}^{\pi} (2 - \sin x) dx + \int_{\pi}^{\pi/2} (2 - \sin x) dx = 1 + 2 \times \frac{\pi}{2} - 1 + 2 \cdot \frac{\pi}{2} - 1 + 2 \cdot \frac{\pi}{2} - 1 + 1 = 2\pi \text{ sq. units}$$
11 (b)
Solving 2 cos x = 3 tan x, we get

$$2 - 2 \sin^{2} x = 3 \sin x \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$$

$$x = \int_{0}^{\pi/6} (2 \cos x - 3 \tan x) dx$$

$$= 2 \sin x - 3 \log \sec x \Big|_{0}^{\pi/6} = 1 - 3 \ln 2 + \frac{3}{2} \ln 3 \text{ sq. units}$$

From figure

$$A = \int_{-1}^{0} \left(-1 - \left(-1\sqrt{1-x} \right) \right) dx + \int_{0}^{1/2} \left(1 - \sqrt{1-x} \right) dx$$
$$= \left[-x - \frac{(1-x)^{3/2}}{3/2} \right]_{-1}^{0} + \left[x + \frac{(1-x)^{3/2}}{3/2} \right]_{0}^{1/2}$$
$$= \left[-\frac{2}{3} - \left(1 - \frac{2 \times 2^{3/2}}{3} \right) \right] + \left[\frac{1}{2} + \frac{2}{3 \times 2^{3/2}} - \frac{2}{3} \right]$$
$$= \frac{2}{3 \times 2^{3/2}} + \frac{2 \times 2^{3/2}}{3} - \frac{4}{3} - \frac{1}{2}$$
$$= \frac{3}{\sqrt{2}} - \frac{4}{3} - \frac{1}{2}$$
$$= \frac{3}{\sqrt{2}} - \frac{11}{6} \text{ sq. units}$$

1 10

13 **(d)**

$$= \int_0^1 (x_2 - x_1) dy \text{ (integrating along y-axis)}$$
$$= \int_0^1 [(1 - y^2) - (y - 1)] dy$$
$$= \frac{7}{6} \text{ sq. units}$$

14 (a)

Required area is lined area Now, shaded area is

$$2\int_{1/2}^{1} \left(1 - \frac{1}{2x}\right) dx = 2\left(x - \frac{1}{2}\ln x\right)_{1/2}^{1}$$

= $2\left[(1 - 0) - \left(\frac{1}{2} - \frac{1}{2}\ln\frac{1}{2}\right)\right]$
= $1 - \ln 2$ sq. units
 \Rightarrow Horizontal lined area = $4 - (1 - \ln 2) = 3 + \ln 2$ sq. units

$$A = \int_{0}^{1} (a^{2}x^{2} + ax + 1) dx$$

= $\frac{a^{2}}{3} + \frac{a}{2} + 1$
= $\frac{1}{6}(2a^{2} + 3a + 6)$
= $\frac{1}{6}\left(2\left(a^{2} + \frac{3}{2}a + \frac{9}{16}\right) + 6 - \frac{18}{16}\right)$
= $\frac{1}{6}\left(2\left(a + \frac{3}{4}\right)^{2} + \frac{39}{8}\right)$, which is clearly minimum for $a = -\frac{3}{4}$

of *x*. Area under consideration 18 **(d)**

$$y = \sin^{-1} |\sin x| = \begin{cases} x, & 0 \le x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} \le x < \pi \\ x - \pi, \pi \le x < \frac{3\pi}{2} \\ 2\pi - x, \frac{3\pi}{2} \le x < 2\pi \end{cases}$$
$$y = (\sin^{-1} |\sin x|)^2 = \begin{cases} x^2, & 0 \le x < \frac{\pi}{2} \\ (\pi - x)^2, \frac{\pi}{2} \le x < \pi \\ (x - \pi)^2, \pi \le x < \frac{3\pi}{2} \\ (2\pi - x)^2, \frac{3\pi}{2} \le x < 2\pi \end{cases}$$

The required area A is shown shaded in figure

The curve is $y = \frac{x^2(x+a)}{a^2}$, which is a cubic polynomial Since $\frac{x^2(x+a)}{a^2} = 0$ has repeated root x = 0, it

touches x-axis at (0, 0) and intersects at (-a, 0)

Required area = $\int_{-a}^{0} y dx = \int_{-a}^{0} \left[\frac{x^2(x+a)}{a^2} \right] dx = a^2/12$ sq. units

20 **(d)**

 $y = \frac{1}{(x-1)^2 + 1}$

y is maximum when $(x - 1)^2 = 0$. Also, graph is symmetrical about line x = 1

(d)
$$4y^2 = x^2(4)$$

21

$$\Rightarrow y = \pm \frac{1}{2}\sqrt{x^2(4-x^2)}$$
$$\Rightarrow y = \pm \frac{x}{2}\sqrt{(4-x^2)}$$

 $(-x^2)$ (1)

Since the curve (1) is symmetrical about both the axes, the required area is 4 times the area of the region in the first quadrant. Therefore, it is sufficient to sketch the region and to find the area in the first quadrant In the first quadrant, the curve (1) consist of two

 \therefore Required area = 4 area *ABCDA*

= 4(area of semi-circle *ABCA*) – (area of sector *ADCA*)

= 4(area of semi-circle *ABCA*) – (area of sector *OADCO* – area of triangle *OAC*) = $4{\pi - (\pi - 2)} = 8$ sq. units

28 (a)

The points of intersection of given curves and line are

$$Q\left(\frac{1}{2},\frac{1}{4}\right) \text{ and } R\left(\frac{-1}{2},\frac{1}{4}\right)$$

$$y = (x+1)^{2} \quad y = (x-1)^{2}$$

$$x' = \frac{1}{4}$$

$$\frac{1}{4} \quad P_{Q} \quad y = \frac{1}{4}$$

$$x' = \frac{1}{-1} - \frac{1}{2} \int_{0}^{0} \frac{1}{2} 1$$
Required area = $2 \int_{0}^{1/2} \left\{ (x-1)^{2} - \frac{1}{4} \right\} dx$

$$= 2 \left\{ \frac{(x-1)^{3}}{3} - \frac{1}{4} x \right\}_{0}^{1/2}$$

$$= 2 \left\{ \frac{(-1/2)^{3}}{3} - \frac{1}{8} - \left(-\frac{1}{3} - 0\right) \right\}$$

$$=\frac{1}{3}$$
 sq unit
29 (a)

Integrating along *x*-axis, we get

$$A = \int_{1}^{\sqrt{2}} (\csc^{-1}x - \sec^{-1}x) dx$$

Integrating along y-axis, we get
$$A = 2 \int_{0}^{\pi/4} (\sec y - 1) dy$$
$$= 2[\log|\sec y + \tan y| - y]_{0}^{\pi/4}$$
$$= 2 \left[\log|\sqrt{2} + 1| - \frac{\pi}{4}\right]$$
$$= \log(3 + 2\sqrt{2}) - \frac{\pi}{2} \text{ sq. units}$$

30 (d)

Curve tracing : $y = x + \sin x$ $\frac{dy}{dx} = 1 + \cos x \ge 0 \quad \forall x$ Also $\frac{d^2y}{dx^2} = -\sin x = 0$ when $x = n\pi, n \in Z$ Hence, $x = n\pi$ are points of inflection, where curve changes its concavity Also for $x \in (0, \pi)$, $\sin x > 0 \Rightarrow x + \sin x > x$, And for $x \in (\pi, 2\pi)$, $\sin x < 0 \Rightarrow x + \sin x < x$

From these information, we can plot the graph of y = f(x) and its inverse

Required area = 4*A*, where $A = \int_0^{\pi} (x + \sin x) dx - \int_0^{\pi} x dx$

$$= \int_0^{\pi} \sin x \, dx = 2 \text{ square units}$$

$$y = \sqrt{4 - x^2}, y = \sqrt{2}\sin\left(\frac{x\pi}{2\sqrt{2}}\right)$$

Intersect at $x = \sqrt{2}$

Area to the left of *y*-axis is π Area to the right of *y*-axis

$$= \int_{0}^{\sqrt{2}} \left(\sqrt{4 - x^{2}} - \sqrt{2} \sin \frac{x\pi}{2\sqrt{2}} \right) dx$$

= $\left(\frac{x\sqrt{4 - x^{2}}}{2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right)_{0}^{\sqrt{2}} + \left(\frac{4}{\pi} \cos \frac{x\pi}{2\sqrt{2}} \right)_{0}^{\sqrt{2}}$
= $\left(1 + 2 \times \frac{\pi}{4} \right) + \frac{4}{\pi} (0 - 1)$
= $1 + \frac{\pi}{2} - \frac{4}{\pi}$
= $\frac{2\pi + \pi^{2} - 8}{2\pi}$ sq. units
 \therefore ratio = $\frac{2\pi^{2}}{2\pi + \pi^{2} - 8}$

32 **(b)**

The curve is $y = 2x^4 - x^2 = x^2(2x^2 - 1)$ The curve is symmetrical about the axis of y Also, it is a polynomial of 4 degree having roots 0, $0, \pm \frac{1}{\sqrt{2}}. x = 0$ is repeated root. Hence, graph touches at (0, 0)The curve intersects the axes at $O(0, 0), A(-1/\sqrt{2}, 0)$ Thus, the graph of the curve is show in figure

Here, $y \le 0$, as x varies from x = -1/2 to x = 1/2 \therefore The required area = 2 Area OCDO

$$= 2 \left| \int_{0}^{1/2} y dx \right|$$

$$= 2 \left| \int_{0}^{1/2} (2x^{4} - x^{2}) dx \right|$$

$$= 7/120 \text{ sq. units}$$
33 (d)
Area = $\int_{1}^{b} f(x) dx = \sqrt{b^{2} + 1} - \sqrt{2}$

$$= \sqrt{b^{2} + 1} - \sqrt{1 + 1}$$

$$= \left| \sqrt{x^{2} + 1} \right|_{1}^{b}$$

 $\therefore f(x) = \frac{d}{dx} \left(\sqrt{x^{2} + 1} \right) = \frac{1}{2} \frac{2x}{\sqrt{x^{2} + 1}} = \frac{x}{\sqrt{x^{2} + 1}}$
34 (b)
Required area = $\int_{0}^{\pi/4} \left(\sqrt{\frac{1 + \sin x}{\cos x}} - \sqrt{\frac{1 - \sin x}{\cos x}} \right) dx$
 $\therefore \left[\frac{1 + \sin x}{\cos x} > \frac{1 - \sin x}{\cos x} > 0 \right]$

$$= \int_{0}^{\pi/4} \left(\sqrt{\frac{1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}} - \sqrt{\frac{1 - \frac{2 \tan \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}} \right) dx$$

$$= \int_{0}^{\pi/4} \frac{1 + \tan \frac{x}{2} - 1 + \tan \frac{x}{2}}{\sqrt{1 - \tan^{2} \frac{x}{2}}} dx$$

$$= \int_{0}^{\pi/4} \frac{2 \tan \frac{x}{2}}{\sqrt{1 - \tan^{2} \frac{x}{2}}} dx$$

put $\tan \frac{x}{2} = t \Rightarrow \frac{1}{2} \sec^{2} \frac{x}{2} dx = dt$
 \therefore Required area = $\int_{0}^{\tan \frac{\pi}{8}} \frac{4t dt}{(1 + t^{2})\sqrt{1 - t^{2}}} dt$

$$[\because \tan \frac{\pi}{8} = \sqrt{2} - 1]$$

35 (c)

$$\int_{\pi/4}^{\beta} f(x) dx = \beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2} \beta$$

Differentiating both sides w.r.t. β , we get
 $\therefore f(\beta) = \beta \cos \beta + \sin \beta - \frac{\pi}{4} \sin \beta + \sqrt{2}$
 $\Rightarrow f'(\beta) = -\beta \sin \beta + \cos \beta + \cos \beta - \frac{\pi}{4} \cos \beta$

$$=\frac{1}{3}+3+\frac{8}{3}-(9-12)=9$$
 sq. units

Given
$$y = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \Rightarrow y - \frac{3}{4} = \left(x + \frac{1}{2}\right)^2$$

This is a parabola with vertex at $\left(-\frac{1}{2},\frac{3}{4}\right)$ and the curve is concave upwards

$$y = x^{2} + x + 1 \Rightarrow \frac{dy}{dx} = 2x + 1 \Rightarrow \left(\frac{dy}{dx}\right)_{(1,3)} = 3$$

Equation of the tangent at $A(1,3)$ is $y = 3x$

Required (shaded) area = area *ABDMN* – area *ONA*

Now, area
$$ABDMN = \int_{-1}^{1} (x^2 + x + 1) dx$$

= $2 \int_{0}^{1} (x^2 + 1) = \frac{8}{3}$
Area of $ONA = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$
 \therefore required area $= \frac{8}{3} - \frac{3}{2} = \frac{16-9}{6} = \frac{7}{6}$ sq. units

40 (a)

The points of intersection of given curves are (0,0) and

$$\Rightarrow \left(\frac{1}{\sqrt{a}} \cdot \frac{x^{3/2}}{3/2} - \frac{ax^3}{3}\right)_0^{1/a} = 1$$
$$\Rightarrow \frac{2}{3a^2} - \frac{1}{3a^2} = 1$$
$$\Rightarrow a^2 = \frac{1}{3} \Rightarrow a = \frac{1}{\sqrt{3}} \quad [\text{as } a > 0]$$

Differentiating both sides w.r.t. *b*, we get $\Rightarrow f(b) = 3(b-1)\cos(3b+4) + \sin(3b+4)$ $\Rightarrow f(x) = \sin(3x+4) + 3(x-1)\cos(3x+4)$

41 **(c)**

Given $\int_{1}^{b} f(x) \, dx = (b-1)\sin(3b+4)$

42 (a)

Curve tracing: $y = x e^{x}$ Let $\frac{dy}{dx} = 0 \Rightarrow e^{x} + xe^{x} = 0 \Rightarrow x = -1$ Also, at $x = -1, \frac{dy}{dx}$ changes sign from - ve to +ve, hence, x = -1 is a point of minima When $x \to \infty, y \to \infty$ Also $\lim_{x\to\infty} xe^{x} = \lim_{x\to\infty} \frac{x}{e^{-x}} = \lim_{x\to\infty} \frac{1}{-e^{-x}} = 0$

With similar types of arguments, we can draw the graph of $y = x e^{-x}$

$$x' = xe^{x} + y = xe^{-x} + xe^{-x$$

Required area

$$= \int_{0}^{1} x e^{x} dx - \int_{0}^{1} x e^{-x} dx$$

= $[x e^{x}]_{0}^{1} - \int_{0}^{1} e^{x} dx - \left([-x e^{-x}]_{0}^{1} + \int_{0}^{1} e^{-x} dx \right)$
= $e - (e - 1) - \left(-e^{-1} - (e^{-1} - 1) \right) = \frac{2}{e}$ sq. units

43 (a

$$= \left(\frac{2}{3} \cdot 27\right) - \frac{1}{2} \left\{ \left(\frac{81}{2} - 27\right) - \left(\frac{9}{2} - 9\right) \right\}$$

= 9 sq units

4 **(c)**

The required area will be equal to the area enclosed by y = f(x), y-axis between the abscissa At y = -2 and y = 6Hence, $A = \int_0^1 (6 - f(x)) dx + \int_{-1}^0 (f(x) - \frac{-2dx}{4}) dx + \int_{-1}^0 (x^3 + 3x + 4) dx$ $= \frac{5}{4}$ sq. units

The required area
$$A = \int_0^{2a} \sqrt{\frac{x^3}{2a-x}} dx$$

Put
$$x = 2a \sin^2 \theta$$

 $\Rightarrow dx = 2a2 \sin \theta \cos \theta \, d\theta$
 $\Rightarrow A = 8a^2 \int_0^{\pi} \left(\frac{1 - \cos 2\theta}{2}\right)^2 d\theta$
 $= 2a^2 \int_0^{\pi} (1 - 2\cos 2\theta + \cos^2 2\theta) d\theta$
 $= 2a^2 \int_0^{\pi} \left(1 - 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}\right) d\theta$
 $= \frac{3\pi a^2}{2}$

46 **(b,c,d)**

Required area =
$$\int_{1}^{3} \ln x \, dx$$

$$= [x \ln x - x]_{1}^{3}$$

$$= (3 \ln 3 - 2)$$

$$= \ln 27 - 2 \text{ sq unit (b is correct)}$$

$$= \ln (27/e^{2}) \text{ sq unit (c is correct)}$$

Also, In
$$\left(\frac{27}{e^2}\right) > 3$$

 $\Rightarrow \ln \left(\frac{27}{e^2}\right) > 3 \ln e$
 $\Rightarrow \ln 27 > \ln e^5$, which is false
47 **(b,d)**
The two curves meet at $mx = x - x^2$ or
 $x^2 = x(1 - m)$
 $\therefore x = 0, 1 - m$
 $A = \int_0^{1-m} (x - x^2 - mx) dx$
 $= \left[(1 - m)\frac{x^2}{2} - \frac{x^3}{3}\right]_0^{1-m} = \frac{9}{2}$ if $m < 1$
 $\Rightarrow (1 - m)^3 \left[\frac{1}{2} - \frac{1}{3}\right] = \frac{9}{2}$
 $\Rightarrow (1 - m)^3 = 27$
 $\Rightarrow m = -2$
But if $m > 1$ and $1 - m$ is - ve, then
 $\left[(1 - m)\frac{x^2}{2} - \frac{x^3}{3}\right]_{1-m}^0 = \frac{9}{2}$
 $\Rightarrow -(1 - m)^3 \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{9}{2}$
 $\Rightarrow -(1 - m)^3 = -27$
 $\Rightarrow m = 4$
48 **(b,c)**

Line y = kx + 2 passes through fixed point (0, 2) for different value of k

Also, it is obvious that minimum A(k) occurs when k = 0, as when line is rotated from this position about point (0, 2) the increased part of area is more than the decreased part of area

:. Minimum area =
$$2 \int_0^{\sqrt{5}} (2 - (x^2 - 3)) dx$$

= $2 \int_0^{\sqrt{5}} (5 - x^2) dx$

$$= 2 \int_{0}^{1} (3 - x^{3}) dx$$
$$= 2 \left[5x - \frac{x^{3}}{3} \right]_{0}^{\sqrt{5}}$$
$$= 2 \left[5\sqrt{5} - \frac{5\sqrt{5}}{3} \right]$$

 $=\frac{20\sqrt{5}}{3}$ sq. units 49 (b,d) Given curve $x^a y = \lambda^a$...(i) $(\lambda, 1)$ is a point on the given curve Now, differentiating Eq. (i) w. r. t. x, we get $ax^{a-1}y + x^a \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{-ax^{a-1}y}{x^a} = -\frac{ay}{x}$ At $(\lambda, 1)$ $\frac{dy}{dx} = -\frac{a}{\lambda}$ Equation of tangent at $(\lambda, 1)$ is $y-1=-\frac{a}{\lambda}(x-\lambda),$ Now, x = 0 $\Rightarrow y = 1 + a$ y = 0 $\Rightarrow x = \frac{\lambda}{a} + \lambda = \frac{\lambda(1+a)}{a}$ Area, $A = \frac{1}{2} \times (1+a) \frac{(1+a)\lambda}{a}$ Now, $\frac{dA}{da} = \frac{1}{2} \lambda \left[\frac{a \cdot 2(1+a) - (1+a)^2}{a^2} \right]$ For maxima or minima, put $\frac{dA}{da} = 0$ $\Rightarrow (2a - 1 - a)(1 + a) = 0$ $\Rightarrow (a-1)(a+1) = 0$ $\Rightarrow a = 1, a = -1$

$$y^2 = 4x$$
 and $x^2 - 4y$ meet at $O(0, 0)$ and $A(4, 4)$

Now
$$S_3 = \int_0^4 \frac{x^2}{4} dx = \frac{1}{4} \left[\frac{x^3}{3} \right]_0^4 = \frac{1}{12} [64 - 0] = \frac{16}{3}$$

 $S_2 = \int_0^4 2\sqrt{x} dx - S_3 = 2 \left[\frac{x^{3/2}}{3/2} \right]_0^4 - \frac{16}{3}$
 $= \frac{4}{3} [8 - 0] - \frac{16}{3} = \frac{16}{3}$
And $S_1 = 4 \times 4 - (S_2 + S_3) = 16 - \left(\frac{16}{3} + \frac{16}{3} \right) = \frac{16}{3}$
Hence, $S_1: S_2: S_3 = 1: 1: 1$

51 **(a,c,d)**

Eliminating *t*, we have $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} \Rightarrow y = (a^{2/3} - x^{2/3})^{3/2}$

$$\Rightarrow A = 2 \int_{-a}^{a} (a^{2/3} - x^{2/3})^{3/2} dx$$
$$= 4 \int_{0}^{a} (a^{2/3} - x^{2/3})^{3/2} dx$$
$$A = 4 \int_{0}^{a} y \, dx$$
$$= 4a^{2} \int_{0}^{\pi/2} 3\cos^{3} t \sin^{2} t \cos t \, dt$$

52 (c,d)

53

Since the curve $y = ax^{1/2} + bx$ passes through the point (1, 2)

$$\therefore 2 = a + b \quad (1)$$

By observation the curve also passes through (0, 0)

Therefore, the area enclosed by the curve, *x*-axis and x = 4 is given by

$$A = \int_{0}^{4} (ax^{1/2} + bx) dx = 8 \Rightarrow \frac{2a}{3} \times 8 + \frac{b}{2} \times 16$$

= 8

$$\Rightarrow \frac{2a}{3} + b = 1 (2)$$

Solving (1) and (2), we get a = 3, b = -1 (a,c,d)

We know that area bounded by $y = \sin x$ and x-axis for $x \in [0, \pi]$ is 2 sq. units

Then area bounded by $y = \sin x$ and $y = \sin^2 x$ is 4 sq. units for $x \in [0, 2\pi]$

Then for $x \in [0, 10\pi]$, the area bounded is 20 sq. units

The area bounded by $y = \sin x$ and $y = |\sin x|$ for $x \in [0, 2\pi]$ is 4 sq. units

Then for $x \in [0, 20\pi]$, the area bounded is 40 sq. units

The area bounded by $y = \sin x$ and $y = \sin^3 x$ for $x \in [0, 2\pi]$ is 4 sq. units

Then for $x \in [0, 10\pi]$, the area bounded is 20 sq. units

Similarly, the area bounded by $y = \sin x$ and $y = \sin^4 x$ for $x \in [0, 10\pi]$ is 20 sq. units 54 **(a,c)**

So the three loops from i = 1 to i = 3 are alike Now area of *i*th loop (square) $= \frac{1}{2}$ (diagonal)²

$$A_{i} = \frac{1}{2} (2b_{i})^{2} = 2(b_{i})^{2}$$

So, $\frac{A_{i+1}}{A_{i}} = \frac{2(b_{i+1})^{2}}{2(b_{i})^{2}} = \frac{1}{4}$

So the areas form a G.P. series So, the sum of the G.P. upto infinite terms

$$= A_i \frac{1}{1-r} = 2(32)^2 \times \frac{1}{1-\frac{1}{4}}$$
$$= 2 \times (32)^2 \times \frac{4}{3}$$
$$= \frac{8}{3}(32)^2 \text{ square units}$$

55 **(b)** Given, $f\left(\frac{x}{y}\right) = f(x) - f(y)$...(i) On putting x = y, then

$$f(1) = 0$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(1+\frac{h}{x})}{h} \quad [\text{from Eq. (i)}]$$

$$= \lim_{h \to 0} \frac{f(1+\frac{h}{x})}{x \cdot \frac{h}{x}}$$

$$= \frac{3}{x} \quad \left[\because \lim_{x \to 0} \frac{f(1+x)}{x} = 3\right]$$

$$\therefore f(x) = 3 \ln x + c$$

Put $x = 1$, then

$$f(1) = 0 + c = 0$$

$$\Rightarrow f(x) = 3 \ln x = y \quad (\text{say})$$

$$\therefore x = e^{y/3}$$

 $\therefore \text{ Required area} = \int_{-\infty}^{3} x \, dy$

$$= \int_{-\infty}^{3} e^{y/3} dy = 3 \{ e^{y/3} \}_{-\infty}^{3}$$

$$=3(e-0)=3e$$
 sq unit

$$\therefore f''(x) = -\frac{3}{x^2} < 0$$

 \Rightarrow f(x) is concave down

56 **(c)** The given curves are $y = x^2 + 2x - 3$...(i) and $y = \lambda x + 1$...(ii) Solving Eqs. (i) and (ii), we get

$$x^2 + (2 - \lambda)x - 4 = 0$$

 α,β are the roots of the quadratic, then

 $\alpha + \beta = \lambda - 2, \alpha \beta = -4$

hence, required area

$$S(\lambda) = \left| \int_{\alpha}^{\beta} (\lambda x + 1) - (x^{2} + 2x - 3) dx \right|$$

= $\left| \left\{ 4x + (\lambda - 2) \frac{x^{2}}{2} - \frac{x^{3}}{3} \right\}_{\alpha}^{\beta} \right|$
= $\left| 4(\beta - \alpha) + \frac{(\lambda - 2)}{2} (\beta^{2} - \alpha^{2}) - \frac{1}{3} (\beta^{3} - \alpha^{3}) \right|$
= $\sqrt{(\beta - \alpha)^{2} - 4\beta\alpha}$
 $\left| \left\{ 4 + \frac{(\lambda - 2)}{2} (\beta + \alpha) - \frac{1}{3} \{ (\alpha + \beta)^{2} \} - \alpha \right\} \right|$
= $\frac{1}{6} \{ (\lambda - 2)^{2} + 16 \}^{3/2}$

For least value of $S(\lambda)$, $\lambda - 2 = 0$

$$\therefore \lambda = 2$$

57 (a)

Statement 2 is correct as y = f(x) is odd and hence statement 1 is correct

Since, $y = e^{x^3}$

$$\therefore \ \frac{dy}{dx} = e^{x^3} \cdot 3x^2 > 0$$

 \Rightarrow *y* is an increasing function

And area bounded by the curve $y = e^{x^3}$ between

the lines x = a, x = b and x-axis $\int_a^b e^{x^3} dx$

59 (d)

$$R_1$$
: points $P(x, y)$ is nearer to $(1, 0)$ than to
 $x = -1$
 $\Rightarrow \sqrt{(x-1)^2 + y^2} < |x+1|$
 $\Rightarrow y^2 < 4x$
 \Rightarrow Point *P* lies inside parabola $y^2 = 4x$
 R_2 : Point *P*(*x*, *y*) is nearer to (0, 0) than to (8, 0)
 $\Rightarrow |x| < |x-8|$
 $\Rightarrow x^2 < x^2 - 16x + 64$
 $\Rightarrow x < 4$
 \Rightarrow Point *P* is towards left side of line $x = 4$

The area of common region of R_1 and R_2 is the area bounded by x = 4 and $y^2 = 4x$

This area is twice the area bounded by $x = 4\sqrt{y}$ and y = 4

Now, the area bounded by $x = 4\sqrt{y}$ and y = 4 is

$$A = \int_0^4 \left(4 - \frac{x^2}{4}\right) dx = \left[4x - \frac{x^3}{12}\right]_0^4 = \left[16 - \frac{64}{12}\right]$$
$$= \frac{32}{3} \text{ sq. units}$$

Hence, the area bounded by R_1 and R_2 is $\frac{64}{3}$ sq. units

Thus, statement 1 is false but statement 2 is true

60 **(d)**

It is clear from the figure for $x \in [2.2, 2.8]$

$$\Rightarrow (x-1)(x-2)(x-3) \le 0$$

Required area =
$$\left| \int_{2.2}^{2.8} f(x) dx \right|$$

$$= \left| \int_{2.2}^{2.8} (x-1)(x-2)(x-3)dx \right|$$

61 (a)

Given curves are $y^2 - 2y + 4x + 5 = 0$ and $x^2 + 2x - y + 2 = 0$

or
$$(y-1)^2 = -4(x+1)$$
 and $(x+1)^2 = y-1$

Shifting origin to (-1, 1), equation of given curves change to $Y^2 = -4X$ and $X^2 = Y$

Hence, statement 1 is true and statement 2 is correct explanation of statement 1

64 **(d)**

For 0 < *t* < 1

$$t^{2} < 1$$

 $\therefore \sin^2 x < \sin x$

$$\Rightarrow \int_0^\pi \sin^2 x \, dx < \int_0^\pi \sin x \, dx$$

(b)
Area =
$$\int_{1}^{3} -(x^2 - 4x + 3)dx = -\left(\frac{x^3}{3} - \frac{4x^2}{2} + 3x13\right)$$

$$=\frac{4}{3}$$
 sq. units

 \therefore Statement 1 is true

Obviously, statement 2 is true, but does not explain statement 1

66 **(a)**

65

Since $y = e^x$ and $y = \log_e x$ are inverse to each other

67 **(b)**

 $2 \ge \max\{|x - y|, |x + y|\}$

 \Rightarrow $|x - y| \le 2$ and $|x + y| \le 2$, which forms a square of diagonal length 4 units

 \Rightarrow The area of the region is $\frac{1}{2} \times 4 \times 4 = 8$ sq. units

This is equal to the area of the square of side length $2\sqrt{2}$

68 **(d)**

Area of ellipse $\frac{x^2}{3} + \frac{y^2}{2} = 1$ is

 $\pi\sqrt{3}\sqrt{2} = 3.14 \times \sqrt{6} = 7.8$ (approx.) sq unit, the area bounded by $2|x| + 3|y| \le 6$ is $4 \times \frac{1}{2} \times 3 \times 2$

= 12 sq unit

and length of major axis = $2\sqrt{6} < 3 + 3$

69 (a)

 $y = e^{2x}$ and $2y = \log_e x$ are inverse of each other The shaded area is given as k sq. units

 \Rightarrow The required area is 2k sq. units

a. $[x]^2 = [y]^2$, where $1 \le x \le 4$ $\Rightarrow [x] = \pm [y]$

b. [|x|] + [|y|] = 2

The graph is symmetrical about both *x*-axis and *y*-axis

For x, y > 0; [x] + [y] = 2 $\Rightarrow [x] = 0$ and [y] = 2, [x] = 1 and [y] = 1 or [x] = 2 and [y] = 0

c. [|x|][|y|] = 2The graph is symmetrical about both *x*-axis and *y*-axis

For x, y > 0; $[x][y] = 2 \Rightarrow [x] = 1$ and [y] = 2 or [x] = 2 and [y] = 1

 $=4\left[\frac{x^{3/2}}{3/2}-\frac{x^2}{2}\right]^{1}$ $=4\left[\frac{2}{3}-\frac{1}{2}\right]$ $=\frac{2}{3}$ sq. units **d**. If -8 < x < 8, then y = 2If $x \in (-8\sqrt{2}, -8] \cup [8, 8\sqrt{2})$, then y = 3, and so on Intersection of y = x - 1 and y = 2. We get $x = 3 \in (-8, 8)$ Intersection of y = x - 1 and y = 3We get $x = 4 \notin (-8\sqrt{2}, -8] \cup [8, 8\sqrt{2})$ Similarly, y = x - 1 will not intersect $y = \left[\frac{x^2}{64} + 2\right]$ at any other integral, except in the interval $x \in (-8, 8)$ The required area (shaded region) = $2 \times 3 - \frac{1}{2} \times$ 2×2 = 4 sq. units (0,1) 0 (1,0) 72 (a) y = x|x|v x' (-1, 0) 0 (1, 0)a. Required area = $2 \int_0^1 x |x| dx$ $= 2\left(\frac{x^3}{3}\right)^1 = \frac{2}{3}$

$$= \int_{0}^{1} (x^{2} - 3x + 2)dx$$

$$= \int_{0}^{1} (x^{2} - 3x + 2)dx$$

$$= \frac{1}{3} - \frac{3}{2} + 2 = \frac{5}{6} \text{ sq unit}$$
74 (d)
 \therefore Graph of $f(x) = \min(|x|, |x - 1|, |x + 1|)$
 $\xrightarrow{y} = e^{x}$
and graph of $g(x) = \min(e^{x}, e^{-x})$
 $\xrightarrow{y} = e^{x}$
 $x' \rightarrow 0$
 y'
Required area = $2 \times \frac{1}{2} \times 1 \times \frac{1}{2}$
 $= \frac{1}{2} \text{ sq unit}$
75 (b)
Solving the two equations,
 $m^{2}x^{2} = (e^{-kr})x$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $y = e^{x}$
 $y = e^{x}$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $y = mx$
 $y = e^{-kr}(x)x$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $y = mx$
 $y = e^{-kr}(x)x$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $y = mx$
 $y = e^{-kr}(x)x$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $y = mx$
 $y = e^{-kr}(x)x$
 $x_{1} = 0, x_{2} = \frac{e^{-kr}}{m^{2}},$
 $x = \frac{2}{3}e^{-kr/2}\frac{e^{-3kr/2}}{m^{3}} - \frac{m}{2}\frac{e^{-2kr}}{m^{4}} = \frac{e^{-2kr}}{6m^{3}}$
Now, $\frac{A_{r+1}}{A_{r}} = \frac{e^{-2kr}}{e^{-2kr}} = e^{-2k} = \text{constant}$
So, the sequence $A_{1}, A_{2}, A_{3}, \dots$ is in G.P.

Sum of *n* terms = $\frac{e^{-2k}}{6m^3} \frac{e^{-2nk}-1}{e^{-2k}-1} = \frac{1}{6m^3} \frac{e^{-2nk}-1}{1-e^{2k}}$ Sum of infinite terms = $A_1 \frac{1}{1 - e^{-2k}}$ $=\frac{e^{-2k}}{6m^3}\times\frac{e^{2k}}{e^{2k}-1}=\frac{1}{6m^3(e^{2k}-1)}$ 76 (d) $f(x) = \frac{x^3}{3} - x^2 + a$ $f'(x) = x^2 - 2x = x(x - 2) < 0$ (note that f(x) is monotonic in (0, 2)) Hence for the minimum and f(x) must cross the x-axis at $\frac{0+2}{2} = 1$ Hence, $f(1) = \frac{1}{3} - 1 + a = 0$ $\Rightarrow a = \frac{2}{2}$ 77 (a) Since $-1 \le \sin x \le 1$, the curve $y = e^{-x} \sin x$ is bounded by the curves $y = e^{-x}$ and $y = e^{-x}$ $y = e^{-x} \sin x$ Also, the curve $y = e^{-x} \sin x$ intersects the positive semi-axis OX at the points where $\sin x = 0$, where $x_n = n\pi$, $n \in Z$ Also $|y_n| = |y \text{ coordinate in the half-wave } S_n|$ $= (-1)^n e^{-x} \sin x$, and in $S_n, n\pi \le x \le (n+1)\pi$: $S_n = (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx$ $=\frac{(-1)^{n+1}}{2}[e^{-x}(-\sin x+\cos x)]_{n\pi}^{(n+1)\pi}$ $=\frac{(-1)^{n+1}}{2}\left[e^{-(n+1)\pi}(-1)^{n+1}-e^{n\pi}(-1)^n\right]$ $=\frac{e^{-n\pi}}{2}(1+e^{\pi})$ $\Rightarrow \frac{S_{n+1}}{S_n} = e^{-\pi} \text{ and } S_0 = \frac{1}{2}(1+e^{\pi})$: the sequence S_0, S_1, S_2, \dots forms an infinite G.P. with common ratio $e^{-\pi}$ ∞ 1 (1 , π)

$$\therefore \sum_{n=0}^{\infty} S_n = \frac{\frac{1}{2}(1+e^n)}{1-e^{-\pi}}$$

78 **(b)**

Given

$$y = 1 + \cos x \quad y = 1 + \cos (x - \alpha)$$

$$1 + \cos x = 1 + \cos(x - \alpha)$$

$$x = \alpha - x \Rightarrow x = \frac{\alpha}{2}$$
Now $\int_{0}^{\alpha/2} ((1 + \cos x) - (1 + \cos(x - \alpha))) dx$

$$= -\int_{\frac{\pi}{2}+\alpha}^{\frac{\pi}{2}} (1 - (1 + \cos(x - \alpha))) dx$$

$$\Rightarrow [\sin x - \sin(x - \alpha)]_{0}^{\alpha/2} = [\sin(x - \alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$$

$$\Rightarrow [\sin \frac{\alpha}{2} - \sin(x - \alpha)]_{0}^{\alpha/2} = [\sin(x - \alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$$

$$\Rightarrow [\sin \frac{\alpha}{2} - \sin(x - \alpha)]_{0}^{\alpha/2} = [\sin(x - \alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$$

$$\Rightarrow [\sin \frac{\alpha}{2} - \sin(x - \alpha)]_{0}^{\alpha/2} = [\sin(x - \alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$$

$$\Rightarrow [\sin \frac{\alpha}{2} - \sin(x - \alpha)]_{0}^{\alpha/2} = [\sin(x - \alpha)]_{\pi}^{\frac{\pi}{2}+\alpha}$$

$$\Rightarrow [\sin \frac{\alpha}{2} - \sin(x - \alpha)]_{0}^{\alpha/2} = 1 \Rightarrow \alpha = \frac{\pi}{3}$$
(a)
For $-1 \le x < 0$
 $(y - e^{\sin^{-1}x})^{2} = 2 - x^{2}$
 $y = e^{\sin^{-1}x} \pm \sqrt{2 - x^{2}}$
 $A = \int_{-1}^{0} (e^{\sin^{-1}x} + \sqrt{2 - x^{2}}) - (e^{\sin^{-1}x} - \sqrt{2 - x^{2}}) dx$

$$= 2 \int_{-1}^{0} \sqrt{2 - x^{2}} dx$$

$$= 2 \left[\frac{1}{2}x\sqrt{2 - x^{2}}\right]_{-1}^{0} + \frac{2}{2}\sin^{-1}\frac{x}{\sqrt{2}}\Big|_{-1}^{0}$$

$$= \left[1 + 2\left(0 - \left(-\frac{\pi}{4}\right)\right)\right]$$

$$= \frac{\pi}{2} + 1$$
 sq. units
For $0 \le x < 1, y = \sin^{-1}x \pm \sqrt{1 - x^{2}}$
 $A = 2 \int_{0}^{1} \sqrt{1 - x^{2}} dx$

$$= 2 \left[\frac{x}{2}\sqrt{1 - x^{2}}\Big|_{0}^{1} + \frac{1}{2}\sin^{-1}\frac{x}{1}\Big|_{0}^{1}\right]$$

$$= 0 + \sin^{-1}(1) = \frac{\pi}{2}$$
 sq. units
Total area $= \left(\frac{\pi}{2} + 1\right) + \frac{\pi}{2} = \pi + 1$
(b)

80

81

x

$$S = \left| -\int_{0}^{2\pi} a(1 - \cos t)a(1 - \cos t)dt \right|$$

$$= \left| -a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \cos^{2} t)dt \right|$$

$$= \left| -a^{2} \int_{0}^{2\pi} (1 - 2\cos t + (\frac{1 + \cos 2t}{2}))dt \right|$$

$$= \left| -\frac{a^{2}}{2} \int_{0}^{2\pi} (3 - 4\cos t + \cos 2t)dt \right|$$

$$= \left| -\frac{a^{2}}{2} \left[3t - 4\cos t + \cos 2t \right]_{0}^{2\pi} \right|$$

$$= \left| -3\pi a^{2} \right| = 3\pi a^{2} \text{ sq. units}$$

82 (3)

$$y = \frac{a^{2} - ax}{1 + a^{4}} \quad (2)$$

Point of intersection of (1) and (2)

$$\frac{a^{2} - ax}{1 + a^{4}} = \frac{x^{2} + 2ax + 3a^{2}}{1 + a^{4}}$$

$$(x + a)(x + 2a) = 0$$

$$x = -a, -2a$$

Req. area = $\int_{-2a}^{-a} \left[\left(\frac{a^{2} - ax}{1 + a^{4}} \right) - \left(\frac{x^{2} + 2ax + 3a^{2}}{1 + a^{4}} \right) \right]$

$$\therefore f(a) = \frac{a^{3}}{6(1 + a^{4})}$$

$$f(a) \text{ is max is}$$

Then $f'(a) = 0$

$$3 + 3a^{4} - 4a^{4} = 0$$

$$a^{4} = 3$$

83 (6)

$$4\cos a = -\frac{\pi}{6}, \sin 2x \, dx = 1$$

Area $OABC = \int_{0}^{\pi/2} \sin 2x \, dx = 1$
Area $OAB = \int_{0}^{\pi/2} \sin 2x \, dx = 1$
Area $OAB = \int_{0}^{\pi/6} \sin 2x \, dx = \frac{1}{4}$

$$\therefore \sin 2x \text{ is symmetric about origin}$$

So $c = -\frac{\pi}{6}$, because area $OAD = \text{ area } OEF$

$$\int_{\frac{\pi}{6}}^{c} \sin 2x \, dx = \frac{1}{2}$$

$$\cos 2c = -\frac{1}{2}\cos 2c = \frac{3}{2} (\text{ not possible})$$

$$c = \frac{\pi}{3}$$

S4 (9)

Required area

$$A = \int_0^3 x\sqrt{9 - x^2} dx; \text{Put } 9 - x^2 = t^2 \Rightarrow -2x \, dx = 2t \, dt$$
$$\therefore A = \int_0^3 t^2 dt = 9$$

85 **(8)**

Required area = area of one quadrant of the circle $= \pi/2$

86 **(2)**

Let the point of the curve is $(x, x^2 + 1)$ Now, the slope of tangent at this point is 2x, which is equal to the slope of the line joining $(x, x^2 + 1)$ and (0, 0)

Hence
$$2x = (x^2 + 1)/x \Rightarrow 2x^2 = x^2 + 1$$

 $\Rightarrow x^2 = 1 \Rightarrow x = \pm 1$

Hence equation of tangent is $y = \pm 2x$ Now area $2 \int_0^1 (x^2 + 1 - 2x) dx$

$$= 2 \int_0^1 (x-1)^2 dx$$
$$= 2 \left[\frac{(x-1)^3}{3} \right]_0^1 = 2/3$$

87 **(4)**

We have $S = \int_0^{\pi} \sin x \, dx = 2$, so $T = \frac{2}{3}$, where a > 0Now $T = \int_0^{\tan^{-1} a} \sin x \, dx + \int_{\tan^{-1} a}^{\pi/2} a \cos x \, dx = \frac{2}{3}$

$$\Rightarrow \int_{1}^{c} (8x^{2} - x^{5}) dx = \frac{16}{3}$$

 $c = (8 - \sqrt{17})^{1/3} \quad (c > 0)$
Area $OFE = \int_{0}^{c} (8x^{2} - x^{5}) dx = \frac{8}{3} \quad (c > 0)$
So $c = -1$
Hence $c = -1$ and $(8 - \sqrt{17})^{1/3}$
(8)

Let $P(x, y)$ be any point on the curve C
Now, $\frac{dy}{dx} = \frac{1}{y}$

 $\Rightarrow ydy = dx \Rightarrow \frac{y^{2}}{2} = x + k$
Since the curve passes through $M(2, 2)$, so $k = 0$

 $\Rightarrow y^{2} = 2x$
Hence required area $= 2 \int_{0}^{2} \sqrt{2x} dx$
 $= 2\sqrt{2} \times \frac{2}{3} (x^{3/2})_{0}^{2}$
 $= \frac{4}{3}\sqrt{2} \times 2\sqrt{2}$
 $= \frac{16}{3} (\text{square unit})$
(1)
Given that $D_{1} = D_{2}$
 $\int_{1}^{c} (\frac{1}{x} - \log x) dx = \int_{c}^{a} (\log x - \frac{1}{x}) dx$
 $(\frac{-1}{x^{2}} - x(\log x - 1))_{1}^{c} = (x(\log x - 1) + \frac{1}{x^{2}})_{c}^{a}$

91

92

D1

 $\therefore 0 = a(\log a - 1) + \frac{1}{a^2}$

 $\therefore a = 1$

(6)

93

x = c

 $\dot{x} = a$

 $y = \log x$

 $C_1:y = 1/x$

Draw the given region point of intersection of

$$y = x^{2} + 1$$

 $y = x + 1$
 $x + 1 = x^{2} + 1$
 $x = 0, 1$
 $y = x^{2+1} y$
 $y = x^{2+1} y$
 $y = x^{2+1} y$
 $y = x^{2} + 1 y$
 $x = 2$
Required area $OABCDE = \int_{0}^{1} (x^{2} + 1) dx + \int_{1}^{2} (x + 1) dx$
 $= \left(\frac{x^{3}}{3} + x\right)_{0}^{1} + \left(\frac{x^{2}}{2} + x\right)_{1}^{2} = \frac{23}{6}$ sq. units
94 (8)
Required area $= 2\int_{0}^{2} (x(x - 3)^{2} - x) dx = 8$ sq. units
 $y = \frac{4}{1}$
 $y = \frac{4}$

 $J_{0}(-x^{2} + dx + 12) dx = 45 \text{ gives } a = 4$ Hence $f(x) = 12 + 4x - x^{2} = (2 + x)(6 - x)$ Hence m = -2 and n = 6m + n + a = 6 - 1 + 4 = 896 **(1)**

(: area of BHOEB = area of OFAGO)

DCAM classes Dynamic Classes for Academic Mastery