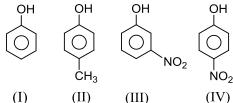

Single Correct Answer Type

- 1. HBr reacts fastest with:
 - a) 2-Methyl propan-2-ol b) Propan-1-ol
- c) Propan-2-ol
- d) 2-Methyl propan-1-ol

- 2. Diethyl ether on heating with cons.HI gives two moles of:
 - a) Ethanol
- b) Iodoform
- c) Ethyl iodide
- d) Methyl iodide

Phenol $\xrightarrow[\text{oxide}]{\text{Aerial}}$ coloured product. This is due to the formation of: 3.


- d) All
- The strongest acid among the following aromatic compound is: 4.
 - a) o-Nitrophenol
- b) *p*-Chlorophenol
- c) p-Nitrophenol
- d) *m*-Nitrophenol
- The crown-guest complex is called an inclusion compound. The crown ether allows the inorganic salt to 5. dissolve in non-polar solvents. KMnO₄ forms a complex with crown ether. In this complex, the host is..... and the guest is.....
 - a) K[⊕] and crown ether

b) Crown ether and K^{\oplus}

c) MnO_4^{Θ} and crown ether

d) Crown ether and MnO_4^{\ominus}

In the following compounds, 6.

The order of acidity is:

- a) III > IV > I > II
- b) I > IV > III > II
- c) II > I > III > IV
- d) IV > III > I > II

 $CH_3CH_2OH + CH_2N_2 \xrightarrow{HBE_4} Products$ 7.

Which of the following statements is true about the above reaction?

i.The product is CH₃CH₂OCH₃

ii. the strong acid HBF_4 first protonates CH_2N_2 to give CH_2N_2 , from which N_2 (an extremely good leaving group) is displaced

- iii. CH₃CH₂OH acts as a nucleophile
- iv. CH₂N₂ acts as a nucleophile
- a) i and ii
- b) i, ii, and iii
- c) i, ii, and iv
- d) All
- The compound which reacts fastest with Lucas reagent at room temperature is: 8.
 - a) Butan-2-ol
- b) Butan-1-ol
- c) 2-Methyl propan-1-ol d) 2-Methyl propan-2-ol

9.

Three compounds I, II and III are given

$$(I) \left(\begin{array}{c} OH \\ \\ CH_3 \\ \end{array} \right)_3 \quad (II) \left(\begin{array}{c} OH \\ \\ CH_3 \\ \end{array} \right) \left(\begin{array}{c} OH \\ \\ CH_3 \\ \end{array} \right)$$

The compounds (A), (B) and (C), respectively, are:

- a) I, II, and III
- b) I, III, and II
- c) II, I and III
- d) II, III, and I
- 10. Benzene diazonium chloride on reaction with phenol in a basic medium gives:
 - a) Diphenyl ether

b) p-Hydroxy azobenzene

c) Chlorobenzene

- d) Benzene
- 11. Which of the following alcohols has the highest boiling point?
 - a) Methanol
- b) 2-Butanol
- c) 1-Butanol
- d) 2-Methyl-2-propanol
- 12. Which of the following is produced during the following reaction?

$$CO(g) + H_2(g) \xrightarrow{575K} \dots \dots ?$$

- a) Ethanol
- b) Ethanal
- c) Methanol
- d) Methanal

13. Consider the reaction

$$\mathsf{C_3H_7} - \mathsf{OH} + \mathsf{Et_3O}^{\oplus}\mathsf{BF}_4^{\ominus} \to \mathsf{C_3H_7} - \mathsf{O} - \mathsf{Et} + \mathsf{EtOEt} + \mathsf{HBF_4}$$

Which of the following statements id wrong?

- a) The nucleophile in the reaction is C₃H₇OH
- b) The nucleophile in the reaction is BF_4^{Θ}

c) The leaving group is Et₂O

- d) SN² reaction occurs
- 14. Which of the following reactions is possible?
 - a) $Me_3C ONa + Me_3C Br \rightarrow Me_3C O CMe_3$
 - b) $Me_2CH ONa + Me_2CHBr \rightarrow Me_2CH O CHMe_2$
 - c) $PhONa + PhBr \rightarrow PhOPh$
 - d) PhONa + $CH_3Br \rightarrow PhOCH_3$
- 15. Which of the following ethers is present in clove oil?
 - a) Anethole
- b) Eugenol
- c) Vanillin
- d) Thymol

16. The decreasing other of acidic character of the following is:

(III)PhNH₂

- a) II > I > III
- b) III > I > II
- c) II > III > I
- d) I > III > II
- 17. When propanol is heated with Al_2O_3 at $380^{\circ}C(633 \text{ K})$, the product obtained is:
 - a) Dipropyl ether
- b) Propene
- c) Ethene
- d) Diethyl ether

18. $\xrightarrow{\text{COOH}} \xrightarrow{\text{B}_2\text{H}_6/\text{THF}} (A) \xrightarrow{\text{H}_2\text{O}_2/\text{OH}} (B)$

Three compounds I, II and III are given

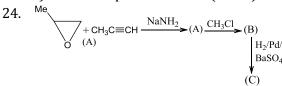
$$(I) \xrightarrow{O \longrightarrow CH_2OH} (II) \xrightarrow{O \longrightarrow CH_2OH} CH_2OH$$

(III)
$$H_3C$$
 CH_2OH

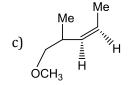
The compounds (A), (B), and (C), respectively, are:

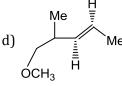
- a) I, II, and III
- b) I, III, and II
- c) III, II, and I
- d) III, I, and II

- 19. Amongst the following phenols which one is most acidic?
- a) Picric acid
- b) 2-Nitrophenol
- c) 2,4-Dinitrophenol
- d) m-Nitrophenol


- 20. Which among the following compounds will not give effervescence with sodium bicarbonate?
 - a) $C_6H_5CO_2H$
- b) $C_6H_5SO_3H$
- c) C_6H_5OH
- d) Picric acid
- 21. An organic compound (A) with molecular formula C₇H₈O dissolves in NaOH and gives characteristic colour with FeCl₃. On treatment with Br₂, it gives a tribromo product C₇H₅OBr₃. The compound is:
 - a) p-Hydroxybenzene

b) 2-Methoxy-2-phenyl propane


c) m-Cresol


- d) p-Cresol
- 22. Rubbing alcohol, used for rubdowns, on its evaporation reduces fever. It is cheaper and has replaced ethanol for this purpose. Its name is:
 - a) Methanol
- b) Ethanol
- c) Amyl alcohol
- d) Isopropyl alcohol

- 23. Power alcohol is:
 - a) Absolute alcohol :Petrol (20:80)
- b) Absolute alcohol: Petrol (80:20)
- c) Rectified spirit: Benzene (20:80)
- d) Rectified spirit: Benzene (80:20)

The product (C) is:

- 25. A compound (A) has a molecular formula C₂Cl₃OH. It reduces Fehling's solution and on oxidation given a monocarboxylic acid (B). It can be obtained by the action of chlorine on ethyl alcohol, (A) is:
 - a) Methyl chloride

b) Monochloroacetic acid

c) Chloral

- d) Chloroform
- 26. Which of the following alcohols is expected to give haloform test?
 - a) 1-pentanol
- b) 3-pentanol
- c) 2-propanol
- d) None of above
- 27. Which statement is correct for the conversion of ROH to RX by reagents (A) (SOCl₂, PBr₃, PCl₃, PI₃ and TsCl) compared to using HX?
 - a) No rearrangement occurs with predictable stereochemistry by reagents(A)
 - Reagents (A) are not useful for 3°alcohols, while HX reacts easily with 3° alcohols involving no rearrangement
 - Reagents (A) must be used in anhydrous conditions because all react vigorously with $\rm H_2O$ and they produce harmful gases (SO₂, HCl, HBr, and HI)
 - d) All
- 28. Absolute alcohols (100% ethanol) are prepared from rectified sprit (95% ethanol) by mixing a suitable amount of and subjected to fractional distillation (azeotropic distillation)
 - a) Toluene
- b) o-Xylene
- c) Methanol
- d) Benzene

- 29. Which of the following will react fastest with Lucas reagent?
 - a) Butan-1-ol

b) Butan-2-ol

c) 2-Methyl propane-2-ol

- d) 2-Methyl propane
- 30. Grain alcohol, a product of yeast fermentaion of sugars in grains and fruits, is:
 - a) Ethanol
- b) 1-Butanol
- c) 2-Methyl-1-propanol
- d) Methanol
- 31. There are two paths (I and II) for the preparation of phenyl-2,4-dinitro phenyl ether

Which of the following statements is true?

Path I:
$$\bigcirc$$
 Dinitration Fuming HNO₃ \bigcirc NO₂ \bigcirc ONa \bigcirc NO₂ \bigcirc NO₂ \bigcirc Path II: \bigcirc + \bigcirc Nitration \bigcirc Nitration \bigcirc (C) \bigcirc Nitration \bigcirc Nitration \bigcirc (C) \bigcirc Nitration \bigcirc (C) \bigcirc Nitration \bigcirc Nitration \bigcirc (C) \bigcirc Nitration \bigcirc Nitrat

Which of the following statements is true?

Path I is feasible, whereas path II is not

Path II is feasible, whereas path I is not

iii. The Cl of (A) undergoes SN reaction because it is activated by the two EWG $(-NO_2)$ groups

iv. The nitration of (C) does not give (B) but it gives because the first nitro group is deactivating, so the second nitro group enters the other ring

a) i

- c) i, iii, iv
- d) i and iv

- 32. Which of the following is most basic in character?

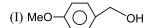
- b) CH₃CH₂OH
- c) CH₃OCH₃
- d) C_6H_5OH

33.
$$+ CH_3NH_2 \xrightarrow{H^{\oplus}} (x) \xrightarrow{O} H^{\oplus} (y)$$

The product (x) and (y) are:

$$x = HOCH2 - CH2 - NH - CH3$$

$$y = HOH2C - CH2 - N - CH2CH2OH$$


$$|$$

$$CH$$

b)
$$x = HOCH_2 - CH_2 - CH_2 - NH_2$$

 $y = HOH_2C - CH_2 - CH_2 - NH - CH_2 - CH_2OH$
 $x = HOCH_2 - CH_2 - NH - CH_3$
 $y = HOCH_2 - CH_2 - CH_2 - NH - CH_2 - CH_2OH$

d)
$$y = HO-CH_2-CH_2-N-CH_2$$
 CH_2 OH CH_3

34. Give the decreasing order of the reaction rates of the following benzyl with HBr

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > I > III > IV
- d) IV > III > I > II
- 35. The crown ethers are heterocyclic polyethers, usually with at least four oxygen atoms. The 12-crown-4 ether contains......carbon atoms
 - a) 12

b) 4

c) 8

- d) 16
- 36. When benzene sulphonic acid and p-nitrophenol are treated with NaHCO₃, the gases released respectively are
 - a) SO_2 , NO_2
- b) SO₂, NO
- c) SO_2 , CO_2
- d) CO_2 , CO_2

37. Consider the following reaction and identify (B)

$$\frac{\text{(i) CH}_3\text{CO}_3\text{H}}{\text{(ii) H}_2\text{O}^{\oplus}}$$
 (H

d)
$$\bigcirc$$
 CH₂OH

- 38. Diethylene glycol is obtained by heating glycol with:
 - a) Conc. H₂SO₄
- b) Conc.H₃PO₄
- c) Aq. KOH
- d) Conc. HNO₃
- 39. The best method to prepare cyclohexene from cyclohexanol is by using
 - a) Conc. HCI + ZnCI₂
- b) Conc. H₃PO₄
- c) HBr

d) Conc. HCI

- 40. Hydrogen bonding is maximum in:
 - a) Ethanol
- b) Diethyl ether
- c) Ethyl chloride
- d) Triethyl amine

- 41. Wine with 24 proof is.....by volume of alcohol
 - a) 12%

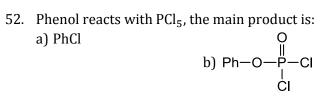
b) 24%

c) 48%

d) 6%

The compound (C) is:

43.
$$CH_3 - CH_2 - O - CH_2 - CH_3 + O_2 \xrightarrow{hv} (A)$$


The product (A) is:

$$CH_3$$
- CH - O - CH_2 - CH_3

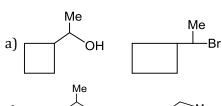
- CH₂-CH₂-O-CH₂-CH₂ d) | OOH OOH
- 44. When ethanol is heated with conc. $\rm H_2SO_4$ at $140^{\circ}C(413K)$, the product obtained as:
 - a) Diethyl sulphate
- b) Ethene
- c) Diethyl ether
- d) All

45. Which of the following is oxetene?

	a) O b) O	c) O	d) O
46.	When glycerol is treated with a small amount of HI of		
47	a) Glycerol triiodide b) Allyl iodide	c) 2-Iodopropane	d) None
47.	Give the decreasing order of reactivity of the following	ng compounds with HBr	
	(I) OH		
	(II) H_3C OH		
	(III) MeO—OH		
	(IV) OH		
	a) III $> IV > II > I$		
	b) III $> II > IV > I$		
	c) III $> II > IV$		
	d) $II > III > IV > I$		
48.	In CH ₃ CH ₂ OH, the bond that undergoes heterolytic of		
	a) $C - C$ b) $C - O$	c) C – H	d) 0 – H
49.	The intestinal antiseptic Salol is correctly represent	ed as:	
	OH	OH	OH
	a) \bigcirc	c) [O] COOCH ₃	d) [OC ₂ H ₅
50.	Which is the best method for the conversion of (A) p	3	2 0
001	vimon to the best method for the convention of (11) p		Mo Br [€]
		$(A) + TsCl \longrightarrow Me$	Ts SN^2
	$\begin{array}{ccc} \text{Me} & & \text{Me} + \text{PBr}_3 & & \\ \text{a)} & & \text{OH} \end{array}$	b) $(TsCl = Tosyl chloride, p-Me-$	
	(A)		
	(=-)		(B) + Me \longrightarrow SO ₃ (Tosylate ion)
	c) (A) $\xrightarrow{\text{HBr}}$ (B)	d) Both (a) and (b)	•
51.	(A) $(C_6H_{10}O) \xrightarrow{\text{Na}}$ No reaction		
	HI → MeI + (B) Alcohol		
	$\sqrt{\text{NaOH} + I_2}$		
	Yellow ppt.		
	The compound (A) is:		
	•	O Me	d) None
	a) Me O Me	c) Me	

- 53. In Zeisel's method for the determination of methoxyl groups, a sample of 2.68 gm of a compound (A) gave 14.08 gm of AgI. If the molecular weight of compound (A) is 134, the number of $(-0CH_3)$ group (s) in the compound (A) is:
 - a) 1

b) 2


c) 3

d) 4

54.
$$\frac{\text{MgBr}}{\text{(ii) CH}_3\text{CHO}} (A) \xrightarrow{\text{HBr}} (B)$$

The compounds (A) and (B) are

A B

55.
$$CH_3OH + C_2H_5OH \xrightarrow{H^{\oplus}} products$$

- a) The product is $CH_3 O C_2H_5$
- c) The product is $C_2H_5 O C_2H_5$
- 56. COOH H_2N NH_2 $(i) H_3O^{\oplus}$ (ii) Heat (B) NH_2 (A)

- b) The product is $CH_3 O CH_3$
- d) All

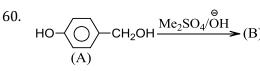
The product (B) is:

- 57. Which of the following reactions is possible?
 - a) $(CH_3)_3C CH_2 ONa + (CH_3)_3C CH_2Br \rightarrow (CH_3)_3C CH_2 O CH_2 C(CH_3)_3$
 - b) $CH_3CH = CH ONa + CH_3CH = CH Br \rightarrow CH_3CH = CH O CH = CH CH_3$
 - c) $(CH_3)_3C ONa + CH_3CH_2Br \rightarrow (CH_3)_3C O CH_2 CH_3$
 - d) $CH_3CH_2ONa + PhBr \rightarrow CH_3CH_2O Ph$

58. (A)
$$\stackrel{\text{HCl+ZnCl}_2}{\longleftarrow}$$
 Me₃C - CH₂OH $\stackrel{\text{SOCl}_2}{\longleftarrow}$ (B)

(A) and (B) are:

A B


a)
$$Me_3C - CH_2ClMe_3C - CH_2Cl$$

- Me $C CH_2CI$ Me $C CH_2 Me$
- - a) Me Me Me
 - c) Me $\stackrel{\text{I and }}{\underset{\text{Me}}{\longrightarrow}} Me$

ОН

b) Me-C-CH₂Me
$$Me_3$$
C-CH₂CI
CI
Me Me

- $\begin{array}{ccc} & \text{Me} & \text{Me} \\ \downarrow & & \downarrow \\ \text{d)} & \text{Me-C-CH}_2\text{Me} & \text{Me-C-CH}_2\text{-Me} \\ \downarrow & & \downarrow \\ \text{CI} & & \text{CI} \end{array}$
- b) Me and HO Me
- d) All

The product (B) is:

- d) All
- 61. When glycerol is heated with a large amount of HI or PI₃, the product obtained is:
 - a) Glycerol triiodide
- b) Allyl iodide
- c) 2- Iodopropane
- d) None

- 62. Which of the following ether is called phenetole?
 - a) PhOCH₃

b) PhOC₂H₅

c) PhOC₃H₇

- d) $p NO_2 C_6H_4OC_2H_5$
- 63. Ethyl alcohol is heated with conc. H₂SO₄. The product formed is:

c) C_2H_4

d) C_2H_6

- 64. Which of the following is wood alcohol?
 - a) CH₃OH
- b) C_2H_5OH
- c) 1-Butanol
- d) 2-Methyl-1-propanol

- 65. Which of the following statements is/ are **wrong**?
 - a) When diethyl ether is treated with excess of Cl₂ in light, perchloro diethyl ether is obtained (C₂Cl₅)₂O
 - b) When diethyl ether is treated with 1 mol of Cl_2 in dark, 1-chloro ethyl ether is obtained
 - c) When diethyl ether is treated with 2 mol of Cl₂ in dark, 1,1'-dichlorodiethyl is obtained
 - When diethyl ether is treated with 2 mol of Cl_2 in dark, 1,1'-dichloro and 1,2-dichloroethyl ether are obtained
- 66. Consider the reaction

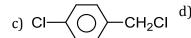
 $C_3H_7OH + CH_2 - N_2(Diazomethane) \xrightarrow{HBF_4}$

The leaving group is:

a) CH_2^{Θ}

b) N_2

c) BF₄

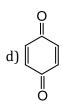

- 67. Dioxane used as a solvent is obtained by distilling.....with.......
 - - a) Glycerol, conc. H₂SO₄ b) Glycerol, conc. H₃PO₄ c) Glycol, conc. H₂SO₄
- d) Glycol,conc. H₃PO₄
- 68. The presence of peroxides in old samples of ethers is detected by shaking them with a freshly prepared solution of Fe²⁺(FeSO₄) followed by the addition of KCNS. The appearance of......colour indicates the presence of peroxides
 - a) Blue

c) Red

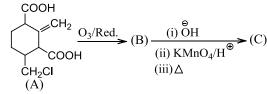
d) Brown

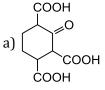
The product (B) is:

 \bigcirc CH₂CI b) CI— \bigcirc CH₂OH c) CI—

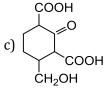

- 70. The compound that will react with HBr most readily is:
 - a) $(CH_3)_3COH$
- b) $(CH_3)_2CHOH$
- c) CH₃CH₂OH
- d) C_6H_5OH

71. $\frac{OH}{H_2O}$ (B). The product (B) is:



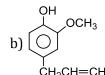


- 72. Fusel oil (Greek, inferior oil) is a mixture of alcohols obtained is small amounts along with ethanol in the fermentation of starch. The major component in fusel oil is:
 - a) Amyl alcohol
- b) Isoamyl alcohol
- c) Cetyl alcohol
- d) Butyl alcohol


73.

The compound (C) is:

- 74. Which of the following is not used as inhalation anaesthetic?
 - a) Ethoxyethane
- b) Anethole
- c) Ethrane
- d) Isoflurane
- 75. The product of combustion of an aliphatic thiol(RSH) at 298 K are:
 - a) $CO_2(g)$, $H_2O(g)$, and $SO_2(g)$


b) $CO_2(g)$, $H_2O(l)$, and $SO_2(g)$

c) $CO_2(l)$, $H_2O(l)$, and $SO_2(g)$

- d) $CO_2(g)$, $H_2O(l)$, and $SO_2(l)$
- 76. When phenyl magnesium bromide reacts with *t*-butanol, the product would be
 - a) Benzene
- b) Phenol
- c) *t*-butyl benzene
- d) t-butyl phenyl ether

77. Which of the following structure represents Vanillin?

- 78. Brandy is distilled from fermented fruits, rum is distilled from molasses, Bourbon whisky from corn, rye whisky from rye, scotch whisky from barley, Irish whisky from potatoes, Saki from rice, and beer from......
 - a) Malt

- b) Yeast
- c) Grapes
- d) Apples

79.

$$OH + C_2C_5I \xrightarrow{OC_2H_5} Anhy. C_2H_5OH$$

- a) $C_6H_5OC_2H_5$
- b) $C_2H_5OC_2H_5$
- c) $C_6H_5OC_6H_5$
- d) C_6H_5I
- 80. Which of the following is not used as a flavouring agent in perfumes?
 - a) Methyl salicylate
- b) Thymol
- c) Phenyl salicylate
- d) Eugenol

81.

$$HO - CH_2 - CH_2 - CH_2 - CH_2Cl \stackrel{OH}{\rightarrow} (A)$$

Which of the following statements is true?

i. The product (A) is $HO - CH_2 - CH_2 - CH_2 - CH_2OH$

ii. The product (A) is (tetrahydrofuran, THF)

- iii.(A) is prepared by SN²reaction
- iv.(A) is prepared by intramolecular SN² reaction
- a) i

- b) ii and iv
- c) i and iv
- d) ii and iii

82. An industrial method for preparation of methanol is:

- a) Catalytic reduction of carbon monoxide in the presence of $ZnO Cr_2O_3$
- b) By reacting methane with steam at 900°C with nickel as catalyst
- c) By reacting formaldehyde with aqueous sodium hydroxide solution
- d) None of these
- 83. Which of the following is the best synthesis of the ether (A) shown below:

$$O_2N$$
 O_2 $O-Ph$

a)
$$Ph - O - OH \xrightarrow{HNO_3 + HSO_4}$$
 (Dinitration)

b)
$$PhONa + O_2N \longrightarrow F \longrightarrow$$

c)
$$PhF + NaO \longrightarrow NO_2 \longrightarrow O_2N$$

d) Benzene + HO
$$\sim$$
 NO₂ \rightarrow

- 84. Which of the following is most acidic?
 - a) Benzyl alcohol
- b) 2-Butanol
- c) tert-Butyl alcohol
- d) Hydroxybenzene

- 85. Which of the following statements is correct?
 - i. Glycerol on reaction with oxalic acid at $110^{\circ}C(383K)$ and followed by heating and hydrolysis gives formic acid and glycerol
 - ii. Glycerol on reaction with oxalic acid at 230°C(503K) and followed by heating gives allyl alcohol
 - iii. Glycerol on oxidation with conc. HNO_3 gives glyceric acid and tartonic acid
 - iv Glycerol on oxidation with conc. HNO₃ gives glyceric acid
 - a) i and ii
- b) i and iii
- c) iii and iv
- d) i,ii,iii,iv
- 86. Proof is defined as......the percentage by volume of alcohol in ethanol-water mixture
 - a) Twice
- b) Thrice
- c) Half

d) Four times

87. Me Excess of HI \rightarrow (A) + (B)

The products (A) and (B) are:

- d) All
- 88. Which of the following statements is wrong about the following reaction?

PhOEt $\xrightarrow{1.BBr_2}$ products

- (BBr Br ⊕ a) BBr₃ plays a role similar to the H in HI by forming a comples with the ether
- b) The liberated Br[⊖]attacks Et, displacing PhOBBr₂, which is ultimately hydrolysed to give the products
- c) The products are PhOH + EtBr + H_3BO_3
- d) The products are PhBr + EtOH + H_3BO_3
- 89. Identify Z in the following series:

$$C_2H_5OH \xrightarrow{PBr_3} X \xrightarrow{alc.KOH} \xrightarrow{(i)H_2SO_4} Z$$

a) $CH_2 = CH_2$

b) $CH_3 - CH_2OH$

c) $CH_3 - CH_2 - O - CH_2 - CH_3$

- d) None
- 90. Give the decreasing order of reactivity of the following alkyl halides in the Williamson's reaction

i. $(CH_3)_3C - CH_2Br$ ii. $CICH_2CH = CH_2$

iii.ClCH₂CH₂CH₃

iv. BrCH₂CH₂CH₃

- a) ii > iv > iii > i
- b) i > iii > iv > ii
- c) ii > iii > iv > i d) i > iv > iii > ii
- 91. The decreasing order of acidic character of the following is:

$$\mathsf{OH}(\mathsf{III}) \longrightarrow \mathsf{OH}(\mathsf{III})$$

- >—c≡ch (IV) ⟨ >—cooh
- a) II > IV > III > I
- b) I > III > IV > II
- c) IV > II > I > III
- d) III > I > II > IV

- 92. The decreasing order of acidic character of the following is:
 - I. EtOH
 - II. Me COOH
 - III. $MeOOC CH_2 COOMe$

- a) II > III > IV > I b) II > III > IV c) I > IV > III > II

3.
$$CH_2 - C - CH_3 = \frac{1. (CH_3)_2 \text{ LiCu (1 mol)}}{2. \text{ H}_2\text{O}}$$
?

The product is:

a)
$$\overset{\text{CH}_3-\text{CH}_2-\text{CH}-\text{CH}_2-\text{C}-\text{CH}_3}{\overset{\text{I}}{\text{OH}}}$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{C}) & & \mathsf{CH_2}\text{-}\mathsf{C}\text{-}\mathsf{CH_3} \\ \mathsf{O} & & \mathsf{OH} \end{array}$$

- 94. Dynamite is:
 - a) Mixture of glyceryl nitrate and dinitrate adsorbed on Keiselguhr
 - b) Mixture of glyceryl dinitrate and trinitrate adsorbed on Keiselguhr
 - c) Mixture of glyceryl nitrate and trinitrate adsorbed on Keiselguhr
 - d) All
- 95. consider the reaction:

 $C_2H_5O^{\Theta}$ + Dimethyl sulphate

The leaving group is:

- a) MeOSO₂O⊖
- b) MeO⊖
- c) Me[⊖]

d) MeOSO₂⊖

96.
$$Ph-CH_2-O-O+OH$$

$$\frac{\text{Excess of HI}}{}$$
 (A) + (B)

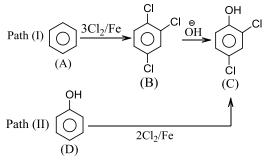
a)
$$PhCH_2OH + I \longrightarrow OH$$

b)
$$PhCH_2I + HO \longrightarrow OH$$

c)
$$PhCH_2I + I \longrightarrow OH$$

d)
$$PhCH_2OH + I \longrightarrow$$

Multiple Correct Answers Type


97. Me OH + Me OH
$$\frac{\text{Conc. H}_2\text{SO}_4}{\text{Low temp.}}$$

a) Butyl propyl ether

b) Dipropyl ether

c) Dibutyl ether

- d) Propene + But-2-ene (cisand trans)+ Butene
- 98. Which of the following statement is/are correct about the following reactions?

- a) Both paths I and II are feasible
- b) Path I is feasible
- c) Phenol cannot be chlorinated because the ring is susceptible to oxidation by Cl₂
- d) The formation of (C) from (B) proceeds by ArSN reaction (addition-elimination)
- 99. Which of the following statements is/are correct?
 - a) The nitration of phenol is faster than phenyl acetate

The reaction of ${\,^{{\mbox{\footnotesize PhO}}}}^{\Theta}$ is faster than

b)
$$\left(NC - \bigcirc \bigcirc \bigcirc \bigcirc \right)$$
 with PhCH₂Cl

- c) Base-catalysed hydrolysis of *p*-nitrphenyl acetate is faster than phenyl acetate
- d) Acid-catalysed esterification of PhOH is faster than p-nitrophenol with MeCOOH
- 100. Which of the following statements is/are correct about the following reaction?

Ph Me Aerial oxidation Me Me
$$O_2$$
 Ph $O-O-H$ H_3O $(C) + (D)$ Me Me (B)

a) The products (C) and (D), respectively, are PhOH + $Me_2C = 0$

The products (C) and (D), respectively, are

b) MeOH +
$$\stackrel{\text{Ph}}{\longrightarrow}$$
 =0

- c) Ph group is a better migrator than Me group
- d) Me group is a better migrator than ph group
- 101. Which of the following paths is/are feasible for the preparation of ether (A)?

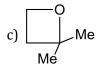
Path I:
$$\bigcirc$$
ONa + \times ONA (A)

Path II:
$$\bigcirc$$
 OH + HO \bigcirc Conc. H₂SO₄ \bigcirc (A)

Divinyl ether

Path III:
$$CH_2=CH_2$$
 $\frac{1. \text{Hg}(OCOCF_3)_2}{2. \text{HO}-CH=CH_2}$ (A)

3. NaBH₄ Divinyl ether


Path IV: + HOCH₂CH₂CI
$$\xrightarrow{\text{1.Conc. H}_2\text{SO}_4}$$
 $\xrightarrow{\text{at 413 K}}$ (A) Divinyl ether

102.
$$\begin{array}{c} A(C_5H_{10}O) \xrightarrow{Hot \ HI} C_5H_{10}I_2 \ (B) \xrightarrow{KOH + EtOH} \\ \\ (Chiral \ ether) & & \\ I \xrightarrow{3} Me \\ (C) \\ 1,3-Pentadiene \end{array}$$

The structure of (A) is:

103. Phenol is less acidic than

a) Acetic acid

b) *p*-Methoxyphenol

c) *p*-Nitrophenol

d) Ethanol

104. (I)
$$O_2N$$
— O — CH_2 — O —OMe $Excess$
 HI
 V
 B

(II)
$$\bigcirc$$
 O-CH₂ \bigcirc OMe $\xrightarrow{\text{Excess}}$ E+F

which of the following statements is/ are correct?

- a) Both reactions proceed by SN¹ mechanism
- b) Both reactions proceed by SN²mechanism
- c) Reaction (I) proceeds by SN1 and reaction (II) by SN2 mechanism
- d) Reaction (I) proceeds by SN² and reaction (II) by SN¹ mechanism
- 105. Which of the following paths is/are feasible for the preparation of ether (E)?

$$\begin{array}{c} \text{CH}_2\text{Br} & \text{C}_2\text{H}_5\text{O}^{\Theta/}\\ \\ \text{Path (I)} & \begin{array}{c} \\ \\ \end{array} & + \text{ PhOH} \\ \hline \\ \\ \end{array} \begin{array}{c} \text{CH}_2\text{Br} & \text{PhOH}\\ \\ \end{array} \\ \begin{array}{c} \text{PhO}^{O/}\\ \\ \text{anhyd. PhOH} \\ \end{array} \\ \begin{array}{c} \text{CH}_2\text{-O-C}_2\text{H}_6 \\ \\ \end{array} \\ \begin{array}{c} \text{CH}_2\text{-O-C}_2\text{H}_6 \\ \\ \end{array} \end{array}$$

a) Path I is feasible

b) Path II is feasible

c) Both paths are feasible

- d) None is feasible
- 106. Which of the following statements is/are correct about the given reaction

COOH

$$\begin{array}{c}
 & Br_2/H_2O \\
\hline
OH & Br_2/glacial \\
OMe & MeCOOH
\end{array}$$
(B) $(C_7H_5Br_3O_2)$

COOH
$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ OH & & \\ & & \\ C) & & \\ \end{array}$$

$$\begin{array}{c|c} & & & \\ Br_2/H_2O \\ \hline & or \\ \hline & or \\ Br_2/glacial \\ AcOH \\ \end{array}$$

$$\begin{array}{c|c} & & \\ C & & \\ \end{array}$$

The products (B) and (D), respectively, are:

The products (B) and (D), respectively, are:

- c) In the formation of both products (B) and (D), one Br is obtained by ipso substitution while the other Br is obtained by SE reaction
- d) In the formation of (B) and (D), two Br atoms are obtained by ipso substitution, whereas the other Br is obtained by SE reaction

107.
$$\begin{array}{c|c} & \text{NH}_2 & \text{Reaction I} & \text{OH} \\ & & \underline{\text{aq. NaHSO}_3} & \\ & & \alpha \text{-Napthyl amine} & \alpha \text{-Naphthol} \\ & & (i) \text{ aq. NaHSO}_3 & \\ & & (ii) \text{ NH}_3 \text{ or } (\text{NH}_4)_2 \text{SO}_3 \\ \end{array}$$

Reactions I and II are limited mainly to naphthalene compounds. These reactions are called, respectively:

a) Bucherer reaction and its reversal

(Reaction II)

- b) Bischler-Napieralski reaction and its reversal
- c) Birnbaum-Simonini reaction and its reversal
- d) Borodine-Hunsdiecker reaction and its reversal

108. Which of the following reactions is feasible for the preparation of 1-propoxy-2 methyl propane (I)?

- a) Williamson's synthesis of (Me₂CHCH₂ONa + MeCH₂CH₂Cl)
- b) Williamson's synthesis of (Me₂CHCH₂Cl + MeCH₂CH₂ONa)
- c) Alkoxy mercuration-demercuration of (Me₂CH = CH₂ + MeCH₂CH₂OH)
- d) Alkoxy mercuration demercuration of propene with Me₂CHCH₂OH

109. Reaction (I)

Me Anhyd. HI

Reaction (II)

Anhyd. HI

Reaction (II)

$$(B+C)$$

Which of the following statements is/are correct?

- The compounds (B) and (C), respectively, are $Me_3C I + MeOH$ and reaction (I) proceeds by SN^1 mechanism
- The compounds (B) and (C) respectively, are $Me_3C-OH+MeI$ and reaction (I) proceeds by SN^2
- The compounds (E) and (F), respectively, are $Me_3C I + MeOH$ and reaction (II) proceeds by SN¹mechanism
- The compounds (E) and (F), respectively, are $Me_3C-OH+MeOH$ and reaction (II) proceeds by SN^2 mechanism

110.
$$\begin{array}{c}
OH \\
& \ominus \\
\hline
(i) OH \\
(ii) CH_3OSO_2OCH_3
\end{array}$$
(B)
$$\begin{array}{c}
\bullet \\
(i) OH \\
\hline
(i) OH \\
(ii) CH_3I
\end{array}$$
(C)

The product (B) and (C), respectively, are:

c) (B) is
$$Ph-O-S-CH_3$$

b) (B) is
$$Ph-O-S-OCH_3$$

d) (B) is both (b) and (C)

111. OH Conc.
$$(A)$$
 Conc. H_2SO_4 at $100^{\circ}C$

The compounds given are:

$$OH$$
 SO_3H
 $HO-O$
 SO_3F

Which of the following statements is/ are correct?

- a) Compound (A) and (B) are (I) and (II), respectively
- b) Compound (I) is the major product at lower temperature when the reaction is under kinetic or rate control
- c) Compound (II) is the major product at high temperature when the reaction is under thermodynamical or equilibrium control
- d) Compound (II) is more stable
- 112. Grignard reagents give alkanes with
 - a) Alcohol
- b) Water
- c) Phenol
- d) Ether

- 113. Esters on reaction with EtMgBr give:
 - a) 1°alcohols
- b) 2°alcohols
- c) 3°alcohols
- d) Hydroxy ketone

114. PhOH
$$(A)$$
 (B) (B) (B) (B) (B) (B) (B) (B) (C) (C) (C) (C) (D) Fremy's salt

The compounds (B), (C), (D), respectively, are:

- a) Cyclohexanol, benzene, and p-quinone
- b) Benzene, cyclohexanol, and p-quinone
- c) p-Quinone, cyclohexanol, and benzene
- d) Cyclohexanol, p-quinone, and benzene
- 115. Which of the following paths is/are feasible for the preparation of ether (A)

a) a. Path II: Ph
$$\stackrel{\text{Me}}{\longrightarrow}$$
 + EtONa $\stackrel{\text{Ph}}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ b. Path II: Ph $\stackrel{\text{Me}}{\longrightarrow}$ + EtBr $\stackrel{\text{Ph}}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ C. Path III: Ph $\stackrel{\text{Me}}{\longrightarrow}$ + EtOH $\stackrel{\text{L. Hg(OCOCF}_3)_2}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ OEt $\stackrel{\text{L. Hg(OCOCF}_3)_2}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ OEt $\stackrel{\text{L. Hg(OCOCF}_3)_2}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ 2. NaBH₄

b)
$$b. Path II: Ph$$

ONa

Ne

OEt

(A)

c. Path III: Ph
$$\frac{1. \text{ Hg(OCOCF}_{3)2}}{2. \text{ NaBH}_4} \text{ Ph} \xrightarrow{\text{Me}}$$
CEt
(A)

d) d.Path IV: Ph
$$\stackrel{\text{Me}}{\longrightarrow}$$
 $\stackrel{\text{1. Hg(OCOCF}_3)_2}{\longrightarrow}$ Ph $\stackrel{\text{Me}}{\longrightarrow}$ OEt (A)

116. In the conversion of (A) to (B), the best method for the protection of (OH) group is silylation method because:

$$\begin{array}{c|c} Me & Me \\ \hline Me & Me \\ \hline (A) & (B) \end{array}$$

- Benzylation method is not effective as Ag_2O might react with Br group of the reactant to give an (OH)
- b) ROTHP cannot be used because the alcohol is likely to rearrange under the acidic conditions of ether formation
- c) Silylation method is effective since (OH) group is not sterically hindered The reaction can be carried out without protecting (OH) group, as shown below:
- $^{\text{d)}}(A) \xrightarrow{\text{1.Mg/ether}} (B)$

117. Which of the following statement is/are correct about the following reactions?

Path (I)

Path (I)

$$OH$$
 OH
 OOH
 OOH

- a) Path I is feasible
- b) Path II is feasible
- PhCl cannot be trinitrated because Cl and $twoNO_2$ atoms deactivate the ring towards further SE
- d) 2,4-Dinitrophenol can be nitrated because the two deactivating NO₂ groups prevent ring oxidation 118. Phenol is more acidic than

a)
$$OH$$
 OCH_3 b) OCH_3 c) CH_3COOH d) C_2H_5OH

119. (B)
$$RBr$$
Protic
Solvent β -or-2-napthoxide
ion
(A)

The compounds given are:

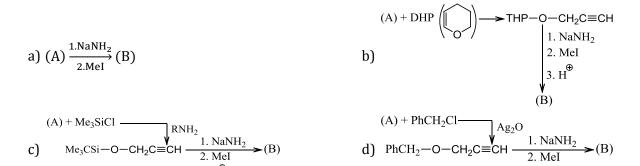
$$\bigcap_{(I)}^{\mathsf{R}} \mathsf{OH} \quad \bigcap_{(II)} \mathsf{OR}$$

Which of the following statements is /are correct?

a) The compound (B) is (I)

b) The compound (B) is n(II)

c) The compound (C) is (I)


- d) The compound (D) is II
- 120. Which of the following reactions is feasible for the preparation of propyl *sec*-butyl ether (I)?

Williamson's synthesis with

Alkoxy mercuration-demercuration of b) Me or Me
$$^{\text{Me}}$$
 + MeCH₂CH₂OH

Alkoxy mercuration-demecuration of

- c) Propene + MeCH₂ CH—OH
 |
 Me
- d) Intermolecular dehydration of MeCH₂CH(Me)OHandMeCH₂CH₂OH
- 121. In the conversion of (A) $HOCH_2C \equiv CH to(B)HOCH_2C \equiv C Me$, the best method is:

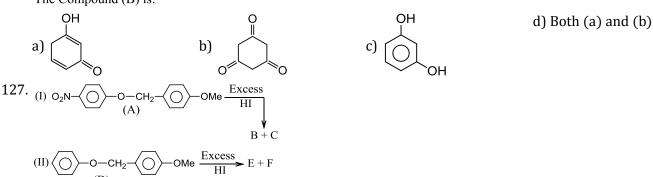
- 122. Which of the following statements is/ are correct?
 - a) 4-Chlorophenol (I) will dissolve in NaOH but 4-chloro-1-methyl benzene (II) will not
 - b) 4- Methyl benzoic (III) acid will dissolve in aq. NaHCO₃but 4- methyl phenol (IV) will not
 - c) 2,4,6- Trinitrophenol (V) will dissolve in aq-NaHCO₃ but 4-methyl phenol (VI) will not
 - d) 4-Ethyl phenol (VII) will dissolve in aq. NaOH but ethyl phenyl ether (VII) will not
- 123. Which of the following is/are less acidic than *p*-nitrophenol
 - a) *o*-Nitrophenol
- b) *m*-Nitrophenol
- c) Phenol
- d) p-Cresol

3. H₂/Pd

- 124. The (0 H) group in alcohols can be replaced by:
 - a) SOCl₂
- b) Cl₂

c) PCl₅

- d) $P + Cl_2$
- 125. Which of the following statements is/are correct about the following reaction?


- a) Compound (D) is in major amount (68%) and (E) is in minor (32%)
- b) Compound (D) is in minor amount (32%) and (E) is in major (68%)
- c) The aldehyde (D) arises from migration of H, and cresol (E) comes from migration of p-tolyl
- d) H is a better migrator
- 126. Phenols are generally not changes with NaBH₄/H₃0 $^{\oplus}$ 1,3- and 1,4-benzenediols are unchanged under these conditions. However, 1,3,5-benzenetriol (phloroglucinol) gives a high yield of product (B)

OH
NaBH₄/H₃O
$$\bullet$$
OH
Phloroglucinol

NaBH₄/H₃O
 \bullet
OH

(A)

The Compound (B) is:

Which of the following statements is/are correct about the above reaction?

The compounds (B) and (C), respectively, are:

a)
$$O_2N-\langle \bigcirc \rangle -I+I-CH_2-\langle \bigcirc \rangle -OH$$

b) The compounds (E) and (F), respectively, are:

$$\bigcirc$$
OH + I—CH₂— \bigcirc OH

The compounds (B) and (C), respectively, are:

°)
$$NO_2$$
—OH + I—CH $_2$ —O

d) The compounds (E) and (F), respectively, are:

$$\bigcirc$$
 I + I—CH₂— \bigcirc I

- 128. Phenol can be prepared by
 - a) Hydrolysis of chlorobenzene with aqueous KOH solution
 - b) Heating sodium salicylate with (NaOH+CaO)
 - c) Reacting cumene hydroperoxide with dil.H₂SO₄
 - d) Heating benzenediazonium chloride with dil.H2SO4
- 129. Which of the following will result in the formation of an ether?

a)
$$C_6H_5Br + CH_3O^-Na^+ \rightarrow$$

b)
$$C_6H_5O^-Na^+ + CH_3Br \rightarrow$$

c) $(CH_3)_3CO^-Na^+ + C_2H_5Br \rightarrow$

d)
$$(CH_3)_3CBr + C_2H_5O^-Na^+ \rightarrow$$

- 130. Which of the following statements is/are wrong?
 - a) THF (tetrahydrofuran) is a stronger Lewis base than diethyl ether
 - b) Diisopropyl ether is a stronger Lewis base than diethyl ether
 - c) THF is a stronger Lewis base than DHF (dihydrofuran)
 - d) Furan is a stronger Lewis base than DHF
- 131. Which of the following compounds will give a yellow precipitate with iodine and alkali
 - a) Acetophenone
- b) Methyl acetate
- c) Acetamide
- d) 2-Hydroxypropane

- 132. Alcohols may act as
 - a) Bronsted acid
- b) Lewis base
- c) Oxidising agent
- d) Reducing agent

d) None of these

a) Bronsted acid b) Lewis base 133.
$$CH_3$$
— CH — CH — CH — CH_3 $\frac{C_2H_5ONa}{Willamson's synthesis}$ [A] CH_3 Br

A is

a)
$$CH_3 - C - CH_2 - CH_3$$
 b) $CH_3 - CH_5 - CH_2 - CH_3$ c) $CH_3 - C - CH_2 - CH_3$ OC₂H₅ c) $CH_3 - C - CH_2 - CH_3$ CH₃ $CH_3 - C - CH_2 - CH_3$ CH₃

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

134.

 $O-CH_2$ when treated with HI produces: 2I b) CH_2OH c)

- 135. Which of the following statements is /are correct?
 - a) Pheny vinyl ether (I) will decolourise Br₂/CCl₄solution but ether phenyl ether (II) will not
 - b) 4-Fluorphenol (III) is a stronger acid than 4-methyl phenol (IV)
 - c) 3-Nitrophenol (V) is a stronger acid than 4-nitrophenol (VI)
 - d) 4-Chlorophenol (VII) is a stronger acid than 4-fluorophenol (VIII)
- 136. Which of the following acid-base reactions is/ are feasible?
 - a) PhONa + $CH_3CH_2OH \rightarrow PhOH + CH_3CH_2ONa$
- b) PhOH + NaOH \rightarrow PhONa + H₂O
- c) PhONa + aq. $HCl \rightarrow PhOH + NaCl$
- d) PhONa + $H_2O + CO_2 \longrightarrow OH$
- 137. Which of the following statements is/are correct?
 - a) PhOH has a higher boiling point than PhSH (benzenethiol)
 - b) p-Hydroquinone has a higher melting point than catechol
 - c) o-Nitrophenol has a lower boiling point than m-and p-isomers

- d) *o*-Hydroxybenzaldehyde is more water soluble than *m*-and *p*-isomers
- 138. Which of the following statement is/are correct?
 - a) Phenol is more easily oxidised than benzene
 - b) Benzaldehyde and PhCl can distinguished by NaHSO₃
 - c) p-Cresol and benzoic acid can be distinguished by NaOH
 - d) Phenol and benzene acid can be distinguished by adding dry ice in aqueous NaOH solution
- 139. In the conversion of (A) to (B), the best method for the protection of (OH) group is:

- a) Benzylation method
 - b) Silylation method
- c) ROTHP method
- d) Both (a) and (b)
- 140. When phenol is reacted with CHCl₃ and NaOH followed by acidification, salicylaldehyde is obtained. Which of the following species are involved in the above mentioned reaction as intermediates?

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 141 to 140. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

141

Statement 1:

$$\begin{array}{c}
OH \\
\hline
& 3Cl_2/Fe \\
\hline
& \bullet
\end{array}$$
(B)

The product (B) is
$$\begin{pmatrix} CI & CI \\ CI & CI \end{pmatrix}$$

Statement 2: Phenol cannot be chlorinated because the ring is susceptible to oxidation by Cl₂

142

- **Statement 1:** The solubility of *n*-alcohol in water decreases with an increase in molecular weight
- **Statement 2:** The reactive proportion of the hydrocarbon part in alcohols increases with increasing molecular weight permits enhanced hydrogen bonding with water

143

Statement 1: Diphenyl ether (I) on dinitration gives the product (II)

Statement 2: The ring with first nitro group is deactivated by \bar{e} —withdrawing NO₂ group, so the second nitro group enters the other ring

144

Statement 1: OH

Dehydration of $CH_3CH_2CHCH_3$ gives $CH_3CH_2CH = CH_2$ as the minor product ad $CH_3CH = CHCH_3$ as the major product

145

Statement 1: Ethers on reaction with air and light form hydroperoxides. These peroxides decompose violently at high temperature. Allyl n-propyl ether with O_2 in light gives mainly 1-hydroperoxide ally-n-propyl ether

Statement 2: The reaction proceeds *via* the formation of radical anion

146

Statement 1: Alcohols have higher boiling points than alkanes

Statement 2: 0 - H bond of alcohol is highly polarized

147

Statement 1: When glycerol is heated with hydrogen iodide, only allyl iodide is formed

Statement 2: With hydrogen iodide, glycerol forms three different compounds like propene, isopropyl iodide and allyl iodide

148

Statement 1:

$$\begin{array}{c|c} F & OH \\ \hline CI & & PhO^{\Theta}/PhOH \\ \hline & NO_2 & Product \\ \end{array}$$

Statement 2: $p - NO_2 - C_6H_4O^{\Theta}$ is a stronger nucleophile than PhO^{Θ}

149

Statement 1: *p*- Nitrophenol is a stronger acid than *o*-nitrophenol

Statement 2: Intramolecular hydrogen bonding makes the *o*-isomer weaker than the *p*-isomer

150

Statement 1: Ether have low dipole moments and sp^3 hybridised oxygen atom

Statement 2: Ethers behaves as Lewis base

151

Statement 1: 2,6-Diamethyl-4-nitrophenol (I) is more acidic than 3,5-dimethyl-4-nitrophenol (II)

 $\textbf{Statement 2:} \quad \text{It is due to the steric inhibition of the resonance of } (-NO_2) \\ \text{group with two (Me) groups}$

in (II)

152

Statement 1: Reduction potential value (E°) of O-benzoquine

$$\begin{pmatrix}
O & O \\
O & O
\end{pmatrix}$$
(I) is greater than *p*-benzoquinone
$$\begin{pmatrix}
O & O & O
\end{pmatrix}$$

Hydroquinone

$$Q + 2H^{\oplus} + 2\bar{e} \longrightarrow H_2Q$$

Statement 2: Two adjacent (C = 0) groups in (I) destabilise (I) relative to (II)

153

Statement 1: The major products formed by heating compound (A) in

$$O_2N-O-CH_2-O-OMe$$

with HI are:

$$O_2N$$
—OH and ICH_2 —OH

with excess HI are:

$$O_2N$$
— O_1 and I — CH_2 — O — O $IV)$

Statement 2: ArSN reaction takes place if the ring is activated by EW (e.g., $(-NO_2)$ group), at o-, p-,

and *m*-position

154

Statement 1:

Furan is more soluble than DHF (Dihydrofuran; in H₂O

Statement 2: Greater the \bar{e} density on the 0 atom stronger is the H-bonding and more soluble is the

ether

155

Statement 1:

The boiling point of diethyl ether is greater than furan

Statement 2: Furan is more compact and has less surface area

Statement 1: Benzoic acid is stronger acid than phenol

Statement 2: Resonating structures of phenoxide ion has negative charge on less electronegative carbon atom

157

Statement 1: The major products formed by heating

$$\begin{array}{c|c} O_2N - \bigcirc O - CH_2 - \bigcirc OMe \\ \hline with HI are: \\ O_2N - \bigcirc OH \ and \ ICH_2 - \bigcirc OH \\ \hline (II) \end{array}$$

Statement 2: Benzyl carbocation is more stable

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

158.

Column-I

- **(A)** BHA (Butylated hydroxy anisole)
- **(B)** BHT (Butylated hydroxy toluene)
- **(C)** PAS (p Amino salicylic acid)
- **(D)** 2, 4-D(2,4-Dichlorophenoxy acetic acid)
- **(E)** Amidol (2, 4- Diaminophenol)

Column- II

- (p) Broad leaf weed killer
- (q) Anti-oxidant
- (r) Food preservative
- (s) Anti-tuberculosis drug
- (t) Photographic developer

CODES:

	A	В	C	D	E
a)	d	e	c,d	b	e
b)	b,c	b,c	d	a	e
c)	a,b	С	d,e	a	e
d)	b,d	a,d	e	b	e

159.

Column-I

Column- II

(A)
$$Mg/ether$$

$$H_2O^{\oplus}$$

(p) Vinylic radical

(B) R-C≡C-R

$$\frac{\text{Li} + \text{NH}_3}{+ \text{EtOH}}$$

(C)

$$\frac{\Delta}{\text{Benzene}}$$

(D) \\ +

- **CODES:**
 - A B C D
- a) a d c d
- **b)** d a,b,c d d
- c) t r s q
- **d)** t q s r

- (q) Radical anion
- (r) trans-Vinylic anion
- (s) Concerted mechanism

160. Match the following, choosing one item from column \boldsymbol{X} and the appropriate item from column \boldsymbol{Y}

Column-I

- (A) Williamson's synthesis

(B) Neutral FeCl₃ test

- (C) Lucas test
- CODES:
 - A
- В
- C

a

b

С

c

D

- **a)** b
- С
- b)
- С
- a
- c)
- a
- **d)** a
- b

- Column- II
- (p) tert-Alcohol
- (q) Ether
- (r) Phenol

161.

Column-I

- - D_2/N_1
- **(B)** (I) $\xrightarrow{\text{MCPBA}}$

- Column- II
- (p) Overall syn addition
- (q) Optically inactive due to external compensation

- (C) $(I) \xrightarrow{Br_2/H_2O}$
- (D) $(1) \xrightarrow{\text{Cold alk.}} \text{KMnO}_4$

- (r) Optically inactive due to internal compensation
- Product has two chiral centres
- (t) Diastereomers will be formed

CODES:

A

b

e

- D

d

b

- a) A,c,d
- b,d

a,b,c

В

a,c,d

- b)
- d

 \mathbf{C}

e

- С
- d
- d) e

c)

- b
- d С
- 162. Match the list given below

Column-I

- (A) Phenolic esters on heating in presence of AlCl₃ (p) Claisen rearrangement
- **(B)** Ary-allyl ethers are heated
- **(C)** Polyhydroxy phenol undergo acylation with RNC + HCl
- **CODES:**
 - A
- В
- \mathbf{C}

a

a

b

D

a)

b)

163.

- c)
- b
- b

С

- С
- d) С
- Column-I
- $\underbrace{\frac{1. \text{Hg(OAc)}_2 + \text{H}_2\text{O}}{9}}_{2. \text{NaBH}_4, \text{OH}}$
- **(B)** 1.Hg(OCOCF₃)₂+PhOH 2.NaBH₄
- 1. B_2H_6/THF
- $Ph = -Me \frac{1. B_2 H_6 / THF}{2. H_2 O_2 / OH}$

- Column-II
- (q) Houben-Hoesch reaction
- (r) Fries rearrangement

- Column-II
- (p) Syn-hydration with anti-Markovnikov's regiospecificity
- (q) Anti-hydration with Markovnikov's regiospecificity
- (r) Cyclic intermediate transition state
- (s) Overall non-stereospecific

(t) Overall stereospecific

CODES:

- A B C D
- **a)** b a,b,c d d
- **b)** e c d b
- **c)** d b d c
- **d)** b,s d,d a,c,d a,c,e

164.

Column-I

- (A) $_{2}$ \longrightarrow OH
 - $\frac{\text{Conc. H}_2\text{SO}_4}{413\text{K}}$
- (B) ONa +
- (C) \triangle
- 3. NaBH₄
- (**D**) ₂ OH
 - $\frac{\text{Conc. H}_2\text{SO}_4}{413\text{K}}$

CODES:

- A B C D
- **a)** c e b,d e
- **b)** c c a,b d
- **c)** b,d e c c
- **d)** a b,e d

Column- II

- (p) Alkoxy mercuration-demercuration
- (q) _-o-_
- (r) ()
- (s) _____

165.

Column-I

e

- (A) $\frac{\text{NH}_2}{\frac{\text{HNO}_2}{\Delta}}$
- (B) OH H[⊕]/△

- Column- II
- (p) Ring expansion
- (q) Ring constraction

(C)
$$\stackrel{\text{Me}}{\longrightarrow} =_{\text{N}} \stackrel{\text{OH}}{\longrightarrow} \frac{\text{PCl}_5}{\longrightarrow}$$

CODES:

- A B C D
- a) B,c,d a,c,d d c,d,e
- **b)** d,e c c,d
- **c)** b c,d c,e a
- **d)** a,b c d,e b

166.

Column-I

(A) Me Ph OH

(B) Me Ph ONa+

$$\stackrel{\mathsf{Me}}{\underset{\mathsf{Ph}}{\longleftarrow}} \mathsf{Br}$$

(C) $Ph-CH=CH_2$

- (D) Me Ph ONa Me + MeBr→
- **CODES:**
- \mathbf{C} A В D C,b a) d,e a,e b) С d b c) b,d d c,e c d) d a,b c,d e

- (r) Carbocation
- (s) Rearrangement
- (t) Radical anion

Column- II

- (p) Williamson's synthesis
- (q) Intramolecular dehydration
- (r) $Ph CH = CH_2$
- (s) Me Me
- (t) Me Me Me

Linked Comprehension Type

This section contain(s) 22 paragraph(s) and based upon each paragraph, multiple choice questions have to be answered. Each question has atleast 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 167 to -167

Chemical reaction of alcohols are mainly based on – OH group of alcohol. The oxygen atom of – OH group polarize both the C-O bond and the O-H bond of any alcohol. Polarization of the O-H bond makes the hydrogen partially positive and explain why alcohols are weak acids. Polarization of the C-O bond makes the carbon atoms partially positive. The polarization of C-O bond is responsible for the weak basic character of alcohols. On the basis of the above explanation, alcohols give two types of reactions

167. Which of the following alcohols is the strongest acid?

- a) CH₃CH₂OH
- b) $(CH_3)_3COH$
- c) CH₃OH
- d) (CH₃)₂CHCH₂OH

Paragraph for Question Nos. 168 to - 168

Phenols are converted into alkyl aryl ethers by reaction in alkaline solution with alkyl halides. For the preparation of aryl methyl ethers, dimethyl sulphate is frequently used instead of more expensive methyl halides.

OH
$$\begin{array}{c}
O = Na^{0} \\
\hline
NaOH \\
-H_{2}O
\end{array}$$

$$\begin{array}{c}
O = Na^{+} \\
+CH_{3}OSO_{2}-OCH_{3}
\end{array}$$

$$\begin{array}{c}
OCH_{3} \\
+CH_{3}OSO_{2}ONa
\end{array}$$
anisole

The above reaction is familiar Williamson's synthesis which can even be used for the preparation of unsymmetrical ethers like alkyl aryl ethers. Aryl halides can't be used in the Williamsons synthesis because of their low reactivity towards nucleophilic substitution. For the preparation of any alkyl aryl ether, there can be two combinations of reactants, but one combination can usually be ruled out.

$$\begin{array}{c} \operatorname{CH_3CH_2CH_2Br} + \operatorname{Na}^+\operatorname{O} - & \\ \hline \end{array} \\ \begin{array}{c} \operatorname{Route}(A) \\ \overline{\operatorname{Feasible}} \\ \\ \operatorname{CH_3CH_2CH_2O^*\operatorname{Na}}^+ + \operatorname{Br} - & \\ \hline \end{array} \\ \begin{array}{c} \operatorname{Route}(B) \\ \overline{\operatorname{Not}\operatorname{Feasible}} \\ \\ \operatorname{CH_3CH_2CH_2} - \operatorname{O} - & \\ \hline \end{array} \\ \begin{array}{c} \operatorname{Phenyl} n\operatorname{-propyl} \operatorname{ether} \end{array}$$

168. Ethyl bromide reacts with sodium methoxide to form ethyl methyl ether. It is an example of

- a) S_N 2 reaction
- b) S_N 1 reaction
- c) S_N 1 reaction
- d) Elimination reaction

Paragraph for Question Nos. 169 to - 169

169. The compound (B) is:

Paragraph for Question Nos. 170 to - 170

170. The compound (C) is:

Paragraph for Question Nos. 171 to - 171

171. Which statement is **wrong** about the compound (B)?

- a) (B) is obtained from (A) by acylation of activated ring at para-position to one of the (OH) groups
- b) (B) is obtained from (A) by esterification of one of the (OH) groups
- c) (B) is obtained from (A) by alkylation in the activated ring at para-position to one of (OH) groups
- d) (B) is obtained from (A) by esterification of both (OH) groups

Paragraph for Question Nos. 172 to - 172

OH

$$C_2H_5I$$
 NO_2
 p -Nitrophenol

 (G)
 $(G$

172. The compound (B) is:

a)
$$C_2H_5$$
 NO_2

c)
$$C_2H_5$$

$$\begin{array}{c} OC_2H_5 \\ C_2H_5 \\ OO_2 \end{array}$$

Paragraph for Question Nos. 173 to - 173

Me
$$\xrightarrow{\text{Me}}$$
 $\xrightarrow{\text{HNO}_2}$ $\xrightarrow{\text{RCO}_3\text{H}}$ $\xrightarrow{\text{CO}}$ $\xrightarrow{\text{LAH}}$ $\xrightarrow{\text{CD}}$ $\xrightarrow{\text{LAH}}$ $\xrightarrow{\text{CD}}$ $\xrightarrow{\text{LAH}}$ $\xrightarrow{\text{CD}}$ $\xrightarrow{\text{CD}}$ $\xrightarrow{\text{RCO}_3\text{H}}$ $\xrightarrow{\text{CD}}$ $\xrightarrow{\text{CD}}$

173. The compound (B) is:

Paragraph for Question Nos. 174 to - 174

$$\begin{array}{c|c} A(C_8H_8O_2) & \longrightarrow & \text{Gives intense colour} \\ \text{Vanillin} & \longrightarrow & \text{Gives silver mirror} \\ \text{isolated from} & & \longrightarrow & \text{Gives silver mirror} \\ \text{vanilla beans} & & \longrightarrow & \text{No reaction} \\ & & \longrightarrow & \text{Not steam distilled} \\ \end{array}$$

174. The compound (A) is:

Paragraph for Question Nos. 175 to - 175

OH

(A)

+ Me-CH=CH₂

(B)

(i) Mg/ether

(ii) CO₂

(iii) H₃O[®]

(E)

PBr₃

(D)

(H)
$$\frac{\Delta}{\text{Benzene}}$$
 I (F) + (G)

175. The compound (C) is:

Paragraph for Question Nos. 176 to - 176

$$(A) \begin{array}{c} 1 \\ 2 \\ 3 \\ \hline Or \\ Allylacohol \\ HF \\ (B) \\ (B) \\ (B) \\ (B) \\ (B) \\ (C) \\ 1. Hg (OCOCF_3)_2 + PhOH \\ 2. NaBH_4/OH \\ (D+E) \\ 1. Hg (OAc)_2 + THF + H_2O \\ 2. NaBH_4/OH \\ (H) \\ (F) + (G) \\ \end{array}$$

176. The compound (C)is:

Paragraph for Question Nos. 177 to - 177

177. The compound (B) is:

d) All

Paragraph for Question Nos. 178 to - 178

$$(A) \xrightarrow{\text{CH}_2\text{CH}_2\text{CN}} \frac{2 \text{ eq. KNH}_2}{\text{Liq. NH}_3} \bullet (B)$$

CI
$$\frac{2 \text{ eq. KNH}_2}{\text{Liq. NH}_3}$$
 Products (D)

178. The compound (B) is:

					:	ANS	W	ER K	EY:						
1)	a	2)	С	3)	С	4)	С	13)	a,d	14)	a	15)	a,b,c,d	16)	
5)	b	6)	d	7)	b	8)	d		a,b,c						
9)	a	10)	b	11)	C	12)	c	17)	b,c	18)	d	19)	b,d	20)	
13)	b	14)	d	15)	b	16)	a		a,b,c						
17)	b	18)	c	19)	a	20)	C	21)	a,c,d	22)	a,d	23)	a,d	24)	
21)	c	22)	d	23)	a	24)	a		a,b						
25)	c	26)	c	27)	d	28)	d	25)	b,c	26)	a,b,c,d	27)	a,b,c,d	28)	
29)	c	30)	a	31)	c	32)	C		a,c,d						
33)	a	34)	a	35)	c	36)	d	29)	a, c, d	30)	C	31)	a,b	32)	
37)	c	38)	b	39)	b	40)	a		b,c,d						
41)	a	42)	c	43)	a	44)	c	33)	b,c	34)	b,d	35)	a,d	36)	
45)	b	46)	b	47)	c	48)	d		a,b						
49)	b	50)	d	51)	c	52)	d	37)	b,c	38)	a,d	39)	a,b,d	40)	
53)	C	54)	b	55)	d	56)	d		b,c,d						
57)	c	58)	b	59)	a	60)	b	41)	a,b,c	42)	a,b,d	43)	a	44)	
61)	C	62)	b	63)	C	64)	a		a,d						
65)	d	66)	b	67)	c	68)	C	1)	d	2)	C	3)	d	4)	b
69)	a	70)	a	71)	b	72)	b	5)	c	6)	a	7)	d	8)	C
73)	b	74)	b	75)	b	76)	a	9)	a	10)	b	11)	a	12)	a
77)	c	78)	a	79)	b	80)	C	13)	c	14)	d	15)	a	16)	a
81)	b	82)	a	83)	b	84)	d	17)	a	1)	b	2)	b	3)	a
85)	d	86)	a	87)	c	88)	d		4)	a					
89)	b	90)	a	91)	C	92)	b	5)	d	6)	d	7)	b	8)	a
93)	a	94)	b	95)	a	96)	b	9)	a	1)	C	2)	a	3)	b
1)	a,.b,c	2)	b,c,d	3)	a,b,c,	d 4)			4)	a					
	a,c							5)	d	6)	b	7)	b	8)	b
5)	d	6)	a	7)	a,c	8)	a	9)	b	10)	c	11)	c	12)	C
9)	c	10)	a,c	11)	a	12)									
	a,b														

: HINTS AND SOLUTIONS :

1 (a)

Reactivity of alcohol with HBr is $3^{\circ} > 2^{\circ} > 1^{\circ}$; (a) is 3° alcohol

6 **(d)**

IV > III > I > II

In(IV), $(-NO_2)$ at para exerts more \bar{e} -withdrawing effect due to -R and -I effects, but in (III), $(-NO_2)$ at m-position exert only -I effect. So,(IV) is stronger than (III).

Phenol (I) is stronger than (II) in which (Me) group exerts \bar{e} - donating effect due to (+I and H.C.). Hence, the other of acidic character is as given above

8 **(d)**

Reactivity of alcohol with Lucas reagent is $3^{\circ} > 2^{\circ} > 1^{\circ}$. Further, (d) is a 3° alcohol

9 (a)

 B_2H_6 /THF also resuces (C = 0) group to (-CHOH) group and (-COOH) group to (CH₂OH), along with reaction at (C = C) bond to from alcohol (anti-Markovnikov's rule)

$$\begin{array}{c|c}
O \\
B_2H_6/THF
\end{array}$$

$$\begin{array}{c|c}
OH \\
H_2O_2/OH
\end{array}$$

$$\begin{array}{c}
H_2O_2OH
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

$$\begin{array}{c}
OH \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

$$\begin{array}{c}
OH \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3$$

$$CH_3$$

11 **(c)**

All are alcohols and form H-Bonding. Options (b), (c) and (d) have four C atoms. Only (C) is a straight chain alcohol having a larger surface area, and thus high boiling point

14 **(d)**

Six types of ethers cannot be prepared by Williamson's synthesis

	RX	RONa
1.	2°C	2°
2.	2°C	3°
	3°C	2°
3.	3°C	3°
4.	Ar	Ar
5.	Vinyl	Vinyl
6.	Neopentyl	Neopentyl

a.Not feasible, RX = 3° , RONa = 3° b.Not feasible, RX = 2° , RONa = 2° c. Not feasible, ArX, ArONa d. Feasible, RX = 1° , ArONa

16 **(a)**

Due to two \bar{e} -withdrawing (C = 0) groups in (II), it is more acidic than (I) (one EW (C = 0) group) Moreover, (II) is much more resonance stabilised than (I)

18 **(c)**

 B_2H_6 /THF besides reacting at (C == C) also selectively reduces only (-COOH) group to (-CH)₂OH) group in cyclic ester

$$H_3C$$
 $COOH$
 B_2H_6/THF
 CH_2OOH
 $COOH$
 CH_2OOH
 CH_2OOH
 $COOH$
 $COOH$

19 (a)

Picric acid is the strongest acid due to the presence of three (NO₂) group (-R and - Ieffect)

20 **(c)**

Phenol does not react with NaHCO $_3$ or Na $_2$ CO $_3$. Although picric acid is a phenolic compound (2,4,6- trinitrophenol), due to the presence of 3NO $_2$ group (EWG), it is highly acidic and reacts with NaHCO $_3$ or Na $_2$ CO $_3$

21 **(c)**

Four DU in A and (C: H \approx 1: 1) suggest benzene ring with one extra C atom. Reactivity with NaOH and FeCl₃ suggests (A) to be a phenol. The formation of a tribromo product suggests that o-and p-positions are vacant. So methyl group should be present at m-position. Hence, (A) is m-cresol

$$\begin{array}{c|c}
OH & OH \\
\hline
OH & Br_2/H_2O \\
\hline
M-Cresol & Br_2/AcOH
\end{array}$$

$$\begin{array}{c|c}
Br_2/H_2O & Br_2/AcOH \\
\hline
Means & Br_2/AcOH
\end{array}$$

25 **(c**)

A positive Fehling's solution test suggests the presence of (-CHO) group.(A) would be $(C_2Cl_3OH-CHO) = Cl_3C-CHO \\ \text{Chloral} \\ \text{Chloral} \\ \text{Chloral}$

26 **(c)**

Alcohols having $(CH_3 - \frac{CH}{|} - OH)$ group give Iodofone test

a. Me
$$\frac{2}{3}$$
 $\frac{4}{5}$ OH negative test

29 **(c)**

Lucas reagent (anhyd.ZnCl $_2$ + conc. HCl = 1:1);reactivity is $3^\circ > 2^\circ > 1^\circ$ alcohol; (c) is a 3° alcohol

32 **(c**

Ethers are Lewis bases due to the presence of 2LP $\bar{e}'s$

34 (a)

The positive charge that develops on benzylic C in this SN^1 reaction is most effectively delocalised by (OMe) group (+R and – I). The $(p-NO_2)$ group withdraws \bar{e} density from the ring by – I and – R(p-Cl) group withdraws $\bar{e}s$ ' from the ring by – I only. More EDG (e. g – OMe)stabilies positive chargeon the benzyl C atom, whereas EWG (e. g, $-NO_2$, -Cl) destabilises the positive charge. Hence, the reactivity order is:I>II>III>IV

36 **(d)**

Benzene sulphonic acid and p-nitro phenol react with NaHCO₃ and evolve CO₂ gas.

$$SO_3H$$
 SO_3Na
 $+ H_2O + CO_2$
 OH
 ONa
 $+ H_2O + CO_2$
 NO_2
 $+ H_2O + CO_2$

Because benzene sulphonic acid p-nitrophenol are stronger acids, so they are capable to evolve ${\rm CO}_2$ with ${\rm NaHCO}_3$.

$$HCO_3^- + H^+ \rightarrow H_2O + CO_2 \uparrow$$
 acid

39 **(b)**

The best method to prepare cyclohexene from cyclohexanol is by conc. H_3PO_4 because in given options dehydrating agent is conc. H_3PO_4 .

40 (a)

H-bonding is maximum in ethanol because H is bounded to high EN element, i.e., O atom

47 (c

EDG favours SN¹ reactivity with HBr (The positive charge that develops on benzylic C in this SN¹reaction is most effectively delocalised by (OMe) group (+R and – I). The $(p - NO_2)$ group withdraws \bar{e} density from the ring by – I and - R(p-Cl) group withdraws \bar{e} s' from the ring by - I only. More EDG (e. g - OMe) stabilies positive chargeon the benzyl C atom, whereas EWG (e. g, $-NO_2$, -Cl) destabilises the positive charge. Hence, the reactivity order is:I>II>III>IV). EWG retards SN1 reactivity with HBr. ED effect of (-0Me) (+R, -I) is greater than (Me) group (+I and H.C.). So, reactivity of III>II. In (IV), (-OMe) group is at *m*-position and exerts only –I effect and so reactivity of (IV) is less than (I) So the reactivity order is : III > II > I > IV

48 **(d)**

Reaction of alcohol with Na indicates that (O - H) bond is most readly broken $(2ROH + 2Na \rightarrow 2RONa + H_2)$

49 **(b)**

Salol is phenyl salicylate

50 (d)

Method (c) would give rearranged product also. It would give a mixture of 2-bromo and 3-bromo pentane. In methods (a) and (b), no

rearrangement occurs and it gives (B) exclusively. The tosyl group, a good leaving group, is then easily displaced by reaction with Br^{\ominus} in an SN^2 reaction

51 **(c)**

Zero DU in compound (A) suggests alcohol or ether. Non- reactivity with Na suggests (A) to be an ether Iodoform test by (B) suggests the

presence of
$$(CH_3-CH-OH)$$
 group in B

Me Me^{O} Me^{Me} Me^{O} Me^{Me} Me^{OH} $Me^{$

53 **(c)**

2.68 gm of (A) gives 14.08 gm of Agl 134 gm of (A) gives $\xrightarrow{14.08 \times 134} = 704$ gm of Agl $= \xrightarrow{704}_{235}$ mol of Agl =3(0Me) groups

55 **(d)**

Intermolecular dehydration of two different 1°alcohols gives a mixture of ethers, ROR, ROR', and R'OR'

57 **(c)**

a. Not feasible, RX =NeopentylRONa =Neopentyl b. Not feasible, RX =Vinyl halide,RONa =Vinyl c. Not feasible, RX = 1°RONa = 3° d. Not Feasible, ArX, AONa = 1°

58 **(b)**

Me Me
$$\frac{\operatorname{Cl}^{\oplus}}{\operatorname{Shift}}$$
 Me Me Me

The formation of (B) does not involve carbocation formation and rearrangement, so the product (B) is Me_3CH_2Cl

60 **(b)**

Only the acidic ArOH is converted first to its conjugate base then to Me ether

63 (c) $C_2H_5OH \xrightarrow{Conc} CH_2 = CH_2 + H_2O$

69 (a)

The cleavage of (C - OH) bond is feasible rather than cleavage of (Ar - OH) bond because of resonance stabilisation in ArOH

70 **(a)**

Reactivity with HBr is $3^{\circ} > 2^{\circ} > 1^{\circ}$ alcohol;(a) is a 3° alcohol. Phenol does not react with HBr. (Ar - 0) bond is not broken unless the ring is activated by the presence of EWG (e.g., NO₂)atoand p-positions

75 **(b)**

RSH, e. g. ,
$$CH_3SH + 30_2(g)$$

 $\rightarrow CO_2(g) + SO_2(g) + 2H_2O(l)$

76 **(a)**

Phenyl magnesium bromide reacts with *t*-butanol to produce benzene because phenyl group (electronegative group) is associated with active hydrogen of alcohol, *i.e.*, —H of – OH group of alcohol.

$$C_6H_5MgBr + (CH_3)_3C - OH$$

 $\rightarrow C_6H_5 + (CH_3)_3CO - MgBr$

79 **(b**

 $C_2H_5O^-$ will attract the proton from phenol converting the later into phenoxide ion. This would then make nucleophilic attack on the methylene carbon of alkyl iodide, but $C_2H_5O^-$ is in excess $C_2H_5O^-$ is better nucleophile than $C_6H_5O^-$ (phenoxide) ion since while in the former the negative charge is localised over oxygen and in the later it is delocalised over the whole molecular frame work. So, it is $C_2H_5O^-$ ion that would make nucleophilic attack at ethyl iodide to give diethyl ether (Williamson's synthesis).

81 **(b)**

This is an example of intermolecular SN²Williamson's reaction

$$1 \underbrace{\bigcirc OH \qquad 4 \qquad CI \qquad OH \qquad \bigcirc OH \qquad \bigcirc OH \qquad \bigcirc CI \qquad SN^2 \qquad \bigcirc OH \qquad + CI \qquad \bigcirc OH \qquad \bigcirc O$$

4-Chlorobutanol

84 **(d)**

Phenol (hydroxyl benzene) is more acidic than alcohols

90 **(a)**

ii>iv>iii>i (allyl chloride>1° RBr > $1^{\circ}RCl$ >neopentyl bromide. (R – Br) bond is weaker than (R – Cl)bond SN² reaction is faster with (R – Br)than with (R – Cl)

91 **(c)**

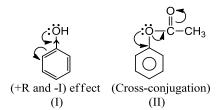
Acid (IV)>Phenol(II)> Alcohols(I)> Alkyne (III)

92 **(b)**

Acid (II)> Ester (III)> Alcohol(I)>Ketone (IV)

97 **(a,.b,c)**

A non-symmetrical ether is not usually prepared by heating a mixture of ROH and R'OH in acid. A mixture of three ether R-0-R, R-0-R, and R'-0-R' is obtained. So the products are:


$$Pr - OH + n - BuOH$$

$$\rightarrow$$
 PrOBu(a) + PrOPr(b)

+ BuOBu(c)

99 **(a,b,c,d)**

1. Correct. SE reaction if favoured by EDG; less favoured by EWG

Due to cross-conjugation in (II), \bar{e} -donating power of oxygen to the ring decreases and hence it is less reactive than (I)

Basic and nucleophilic character:

$$PhO^{\Theta} > N \equiv C - \left\langle \bigcirc \right\rangle - O^{\Theta}$$

Since, Ph0 $^{\ominus}$ is a stronger nucleophile than $p-NC-C_6H_4O^{\ominus}$. Hence, it reacts faster with PhCH₂Cl

$$O - C - CH_3 OH$$

$$O - CH_3 O$$

As we know,(I) is faster than (II). The \bar{e} -withdrawing effect of $(p-NO_2)$ group (-R and -I), from 0 makes $p-NO_2-C_6H_4-O_2$ weaker base and better leaving group d. Esterification of PhOH is faster than p-nitrophenol phenol, a less acidic compound (or

more basic) is more reactive in acidic conditions. With its \bar{e} —withdrawing $(p\text{-NO}_2)$ group, p- nitrophenol is less basic and less reactive

100 (a,c)

Even in the presence of two (Me) groups, (Ph) group a better migrator than (Me) group

102 (a)

One DU in (A) and formation of (B) with two I atoms suggest that (A) is a ring. The formation of (C)(five C atoms) suggest that (A) is a five-membered ring ether. So (A) is (a)

103 (a,c)

Acids are more acidic than phenol and phenols are more acidic than alcohols. p-Nitrophenol is a stronger acid than phenol due to -R and -I effects p- Methoxyphenol is weaker than phenol due to (+R and -I) effects. So, phenol is less acidic than acetic acid and p-nitrophenol

111 (a,b,c,d)

All statements are self-explanatory

112 (a,b,c)

Ether has no hydrogen atom attached to oxygen and hence, does not react with Grignard reagent to form alkanes

118 (a,d)

Due to powerful electron withdrawing mesomeric effect of the phenyl group, the O-H bond in phenols is strongly polarised than O-H bond in saturated alcohols. Hence, phenols are more acidic than alcohols. The acidity of phenols also decreases if an electron repelling group are attached in benzene ring

119 (a,d)

The resonance structure of 2-napthoxide ion (A) is:

$$(A) \xrightarrow{O^{\Theta}} (A_1)$$

(A) is an ambident nucleophile and a better nucleophile than (A_1) because negative charge is on more EN oxygen atom. In the pressure of polar non-protic solvent (DMF, diamethyl formamide), O-alkylation is favoured to give product II(C) In the presence of protic solvent, hydrogen

bonding with the O atom occurs, thus reducing the nucleophilicity of oxygen. Therefore, Calkylation is favoured to give product I (B)

122 (a,b,c,d)

a. Due to –I effect of Cl, 4-chlorophenol is acidic and dissolves in NaOH, (II) is an aryl halide and does not dissolve

b. (III) is an acid and dissolves in $NaHCO_3$ but (IV) is a phenol and does not dissolve

c. Although (V) is a phenol, because of the presence of $(3NO_2)$ group, it is exceptionally acidic $(pK_a=0.38)$.So it dissolves in NaHCO₃, but (VI) is a phenol $(pK_a=10.17)$ and will not dissolve

d. (VII) is a phenol and dissolves in NaOH, but (VIII) is an ether; and does not dissolve

123 **(a,b,c,d)**

i. Although o-nitrophenol should be more acidic than p-nitrophenol, but due to intramolecular H-bonding it is less acidic

ii. There is only -I effect of (NO_2) group at m-position, so (b) is less acidic than (I) (-R and -I at para)

iii. Phenol is less acidic than (I) (-R and - I) iv. p-Cresol is less acidic (+I and H.C. effects) of (Me)group than (-R and -I)

124 (a,c,d)

Cl₂oxidises alcohols to aldehyde and ketones but does not convert them into RCl

125 (a, c, d)

$$\begin{array}{c} CH_2-O-O-H & CH_2-O-O-O-H \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_2 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 & CH_3 & CH_3 \\ \hline \\ CH_4 & CH_5 & CH_3 \\ \hline \\ CH_5 & CH_5 & CH_5 & CH_5 \\ \hline \\ C$$

The yield of (D) is greater than (E) because H is a better migrator than the Ar-group. Moreover, there are 2H and one Ar-group, so statistically the yield of (D) is about twice that of (E)

128 **(b,c,d)**

Reaction (a) is not feasible since the ring is not activated by EWG (e.g., (NO_2) group). So, ArSN reaction is not feasible

129 **(b,c)**

Tertiary halide and aromatic halide do not give Williamson's ether synthesis

132 (a,b)

In presence of acids, alcohols act as Lewis base but in presence of base, they act as Bronsted acid, *ie*,

$$ROH + H^+ \longrightarrow R - OH_2$$

$$ROH + Na \longrightarrow RO^{-}Na^{+} + \frac{1}{2}H_{2}$$

133 **(b,c)**

In $S_N {\bf 1}$ reaction, leaving group leaves first and then attack of nucleophile occurs

$$\begin{array}{c|c} & H \\ & CH_3-C - CHCH_3 & \underline{Slow} \\ & CH_3 & CH_3 - CH-CH-CH_3 \\ & CH_3 & CH_3 & CH_3 \\ & & CH_3 & CH_3 \\ & & CH_3-HC-CH_2CH_3 & CH_3-C-CH_2CH_3 \\ & & CH_3 & CH_3 & CH_3 \\ & & CH_3 & CH_3 & CH_3 \\ & & & CH_3 & CH_3 \\ & & & CH_3 & CH_5 \\ & & & & CH_3 - CH-CH-CH_3 \\ & & & & CH_3 - CH-CH-CH_3 \\ & & & & & CH_3 - CH-CH-CH_3 \\ & & & & & & CH_3 - CH-CH-CH_3 \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\$$

135 **(a,b,d)**

Ph $^{\text{O}}$ (I), due to the presence of (C = C) bond, reacts with Br₂ by addition (thus, decolourise Br₂solution) butII does not b. Due to -I effect of F in(III), it is a stronger acid than (IV) (+I effect of (Me) group)

- c. Wrong statement
- d. Effect of electron-donating and electronwithdrawing substituent on the acidity of phenols:
- i. \overline{e} -withdrawing substituents disperse negative charges, making ${\rm ArO}^{\ominus}$ a weaker base and the phenol a stronger acid

$$\begin{split} & \text{EWG:} \Big[-\text{NO}_2 \,,\, -\text{CN},\, -\underset{\text{I}}{\text{C}} =_{\text{O}}, -\text{COOH}, -\text{COOR}, \\ & -\text{SO}_3\text{H},\, -\text{SO}_2\text{R}, -\text{R}_3\text{N}^{\oplus} \Big] \end{split}$$

OH
$$EDG + :B \longrightarrow B : H^{\oplus} + \bigcup_{\Theta} EDG$$
More acidic Base Charge dispersed Less basic

ii. \overline{e} -donating substituents concentrate negative charges making ${\rm Ar0}^{\ominus}$ a stronger base and the phenol a weaker acid

EDG:
$$(R - OR, NH_2, NR_2)$$

OH
$$EDG + :B \longrightarrow B : H^{\oplus} + \bigcup EDG$$
Less acidic
Base
Charge concentrated
More basic

136 **(b,c,d)**

In (a), the reverse reaction is feasible since phenol is a stronger acid than ethanol

137 (a,b,c)

a. PhOH has higher boiling point due to H-bonding b. Molecules of p-benzonoquinone can fit closer in solid state causing it to have higher melting point c and d

Intramolecular H-bonding (chelation) in the o-

isomers inhibits the intermolecular attraction, lowers the boiling point, reduces H-bonding with $\rm H_2O$, and decreases water solubilities. Intramolecular chelation does not occur in $\it m$ -and $\it p$ -isome3rs

138 (a,b,d)

a.The \bar{e} —donating effect of (OH)makes the ring of phenol very \bar{e} -rich, enabling it to readily donate \bar{e} 'sto oxidising agents

- b. Benzaldehyde reacts with NaHSO $_3$ but PhCl does not
- c. Both react with NaOH to form sodium salts d. Dry ice (CO_2) reacts with aq. NaOH to from NaHCO $_3$, which reacts with acid to form PhCOONa + CO_2 + H_2O

142 (c)

As the molecular weight increases, non-polar part increases and solubility decreases. So, statement I is correct. Statement II is incorrect because hydrogen bonding is not affected by an increase in the non-polar part

146 (a)

The high polarisation of O-H bond in alcohols gives rise to intramolecular hydrogen bonding, ie, molecules are brought nearer to each other and held together by attractive forces. No such hydrogen bonding exists in alkanes

147 (d)

When glycerol is heated with a small amount of HI, allyl iodide is fromed

$$\begin{array}{c|c} \text{CH}_2\text{OH} & \text{CH}_2 \\ | & | \\ \text{CHOH} + 3\text{HI} & & \text{CH}_2 \\ | & | \\ \text{CH}_2\text{OH} & \text{CH}_2\text{I} \\ \text{glycol} & \text{allyl iodide} \\ \end{array}$$

When glycerol is heated with a large amont of HI, the allyl iodide first formed is reduced to propene, which in presence of excess of HI forms isopropyl iodide

150 **(b)**

Due to the presence of lone pairs of electrons on

the oxygen atom, ethers behave as Lewis bases. They dissolve in acids like conc $\rm H_2SO_4$ and conc HCl to form oxonium salts

$$R - O - R + HCl \rightarrow [R_2OH] + Cl$$

153 **(c)**

(A) is true but (R) is false. ArSN reaction takes place if the ring is activated by EW (e.g., $-NO_2$) group only at o —and p — positions and not at m-position

156 (a)

In phenoxide ion all the resonating structures except one have negative charge on less electronegative carbon atom while in benzoate ion, both the resonating forms have negative charge on more electronegative oxygen atom

157 (a)

Both (A) and (R) are correct

159 **(b)**

a.It is pinacol formation which proceeds by radical anion

b. It is Birch reduction which proceeds by the formation

of radical anion
$$\rightarrow$$
 vinylic radical \rightarrow trans vinylic anion \downarrow Product
$$\begin{matrix}
R \\
H
\end{matrix}$$

c. It is an example of claisen rearrangement reaction and proceeds by concerted mechanism d. It is an example of Diels-Alder reaction and proceeds by concerted mechanism

160 (a)

a. Williamson's synthesis is used for the preparation of ether

b. Phenol gives distinct colour with neutral ${\rm FeCl_3}$ solution

c. Lucas test is used for distinction between 1° 2°, and 3° alcohols

162 (d)

In Fries rearrangement phenolic esters are heating in presence of AlCl₃

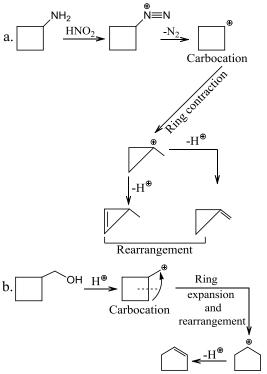
Claisen rearrangement-Ary-allyl ethers are heated.

Houben-Hoesch reaction- Polyhydroxy phenol undergo acylation with *R*NC + HCl

163 **(d)**

a. It is a mercuration-demercuration reaction;

formation of alcohol takes place according to Mark-ovnikov's rule. The first step of this reaction,


addition of electrophile $^{AcO}\overset{\oplus}{H}{}^g$ to (C=C) bond to form mercurinium ion, is stereospecific, but the second step, addition of H^{Θ} from NaBH₄, is not clearly stereospecific. So, overall the reaction is non-stereospecific

b. It is an alkoxy mercuration-demercuration reaction, which proceeds with a similar mechanism as in (a)

c. It is hydroboration oxidation (HBO) reaction. The formation of alcohol takes place with anti-Markovnikov's rule with syn-addition. The overall reaction is stereospecific

d. It is also an HBO reaction involving the formation of *cis*-alkene and proceeds with the similar mechanism as in (c)

165 (a)

c. It is an example of Beckmann rearrangement reaction.

Me OH
$$\frac{PCl_5}{\text{or }H^{\oplus}}$$
 Me COH Ph

d.It is an example of bimolecular reduction (formation of pinacol) followed by acid-catalysed rearrangement reaction to form pinacolone. The formation of pinacol proceeds by the formation of a radical anion intermediate

167 **(c)**

Of all the alcohols, methanol is the strongest acid

168 (a)

 $CH_3CH_2Br + CH_3ONa \rightarrow CH_3CH_2OCH_3$ is an example of S_N2 reaction

169 **(b)**

Two DU in (A) suggests that (A) is propyne

171 (d)

Esterification of both (OH) is

not feasible due to steric hindrance

174 **(b)**

i. (A) gives colour with FeCl₃, suggesting group

ii. (A) gives positive Tollens reagent test, suggesting (-CHO) group

iii. (A) contains only one (-OH) group, since it reacts with 1 mol of CH_3 Ito form mono methyl ether

iv(A) is not steam distilled, which suggests that (-OH) and (-CHO)groups are not in o-position v. Total C atom O atom, 6C (benzene)+-CHO + (-OH)group

vi. Formula of (A) = $C_8H_8O_3$

vii. To count for one additional C atom and one additional O atom, $(-\text{OCH}_3)$ group must be present in (A)

viii. A must contain

+(-CHO group) +

(+OMe group)and (-OH)and (-CHO) not in *ortho*-position

ix . Formation of (D), $\dot{O}H$; suggests two possible structures of (A):

But the compound $F(C_1H_6Br_2O_2)$ contains Br_2 , which is only possible with compound (II). Therefore, structure (A) is (II)

Reactions:

Alternative method of solving the problem

Start from (D) and proceed reverse to (C). (D) is obtained from (C) by HI, so two structure are possible for (A)

COOH
OMe
OMe
(I)
$$CO_2$$

$$Br_2$$

$$OH$$
OMe
$$(C_7H_5Br_3O_2)$$

$$not F$$
(or)

COOH
OMe
OH
OH
(II)
$$\begin{array}{c}
& \text{CO}_2 \\
& \text{Br}_2
\end{array}$$
Br
OMe
OH
OH
(F) $(C_7H_6Br_2O_2)$

So, (A) is II and then proceed to find out other products

