

Single Correct Answer Type

- 1. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
- a) Hyperbola
 b) Circle
 c) Straight line
 d) Parabola

 2. Due to Doppler's effect, the shift in wavelength observed is 0.1Å for a star producing wavelength 6000Å.
 Velocity of recession of the star will be
- a) 2.5 km/s
 b) 10 km/s
 c) 5 km/s
 d) 20 km/s

 3. The graph showing the dependence of intensity of transmitted light on the angle between polarizer and analyser, is

- 4. The idea of secondary wavelets for the propagation of a wave was first given by
a) Newtonb) Huygenc) Maxwelld) Fresnel
- 5. A ray of light is incident at polarising angle such that its deviation is 24°, then angle of incidence is
 a) 24°
 b) 57°
 c) 66°
 d) 90°
- 6. If a source is transmitting electromagnetic wave of frequency $8.2 \times 10^6 Hz$, then wavelength of the electromagnetic waves transmitted from the source will be a) 36.6 m b) 40.5 m c) 42.3 m d) 50.9 m

7. Light of wavelength λ is incident on a slit of width *d*. The resulting diffraction pattern is observed on a screen at a distance *D*. The linear width of the principal maximum is equal to the width of the slit, if *D* equals

a)
$$\frac{d^2}{2\lambda}$$
 b) $\frac{d}{\lambda}$ c) $\frac{2\lambda^2}{d}$ d) $\frac{2\lambda}{d}$

- 8. In Young's double slit experiment, the central bright fringe can be identified
 - a) As it has greater intensity than the other bright fringes
 - b) As it is wider than the other bright fringes
 - c) As it is narrower than the other bright fringes
 - d) By using white light instead of monochromatic light

9. Yellow light is used in single slit diffraction experiment with slit width 0.6 *mm*. If yellow light is replaced by *X*- rays then the pattern will reveal

- a) That the central maxima is narrower b) No diffraction pattern
- c) More number of fringes d) Less number of fringes
- 10. The wavelength of the matter waves is independent of
- a) Charge b) Momentum c) Velocity d) Mass
 - 11. In Young's double slit experiment, first slit has width four times the width of the second slit. The ratio of the maximum intensity to the minimum intensity in the interference fringe system is
 a) 2:1
 b) 4:1
 c) 9:1
 d) 8:1
 - 12. A very thin film that reflects white light appearsa) Colouredb) Whitec) Blackd) Red
 - 13. What is the minimum thickness of a thin film required for constructive interference in the reflected light from it?Given, the refractive index of the film = 1.5

Wavelength of the light incident on the film = 60nm

	a) 100 <i>nm</i>	b) 300 <i>nm</i>	c) 50 <i>nm</i>	d) 200 <i>nm</i>
14.	Two light sources a	re said to be coherent if the	ey are obtained from	
	a) Two independer	it point sources emitting lig	ht of the same wavelengt	h
	b) A single point so	urce		
	c) A wide source			
	d) Two ordinary bu	lbs emitting light of differe	nt wavelengths	
15.	80 g of impure suga	ar when dissolved in a litre	of water given an optical	rotation of9.9°, when placed in a
	tube of length 20 cr	n. If the specific rotation of	sugar is 66°, then concen	tration of sugar solution will be
	a) 80 <i>gL</i> ⁻¹	b) 75 <i>gL</i> ⁻¹	c) 65 gL^{-1}	d) 50 gL^{-1}
16.	Select the right opt	ion in the following		
	a) Christian Huyger	ns, a contemporary of New	ton established the wave	theory of light by assuming that
	light waves were	e transverse		
	b) Maxwell provide	d the theoretical evidence	that light is transverse wa	ave
	c) Thomas Young e	xperimentally proved the v	vave behavior of light and	l Huygens assumption
	d) All the statemen	ts given above, correctly an	swers the question "what	t is light?"
17.	The oscillating elec	tric and magnetic vectors o	f an electromagnetic wav	e are oriented along
	a) The same directi	on but differ in phase by 9)°	
	b) The same directi	on and are in phase		
	c) Mutually perpen	dicular directions and are i	in phase	
	d) Mutually perpen	dicular directions and diffe	er in phase by 90°	
18.	H-polaroid is prepa	red by		
	a) Orienting herapa	athite crystal in the same di	rection in nitrocellulose	
	b) Using thin tourm	aline crystals		
	c) Stretching polyv	inyl alcohol and then heate	d with dehydration agent	
	d) Stretching polyv	inyl alcohol and then impre	gnation with iodine	

19. In a double slit experiment, the distance between slits is increased 10 times whereas their distance from screen is halved, then what is the fringe width?

a) It remains same
b) Becomes 1/10
c) Becomes 1/20
d) Becomes 1/90

20. Consider Fraunhofer diffraction pattern obtained with a single slit at normal incidence. At the angular position of first diffraction minimum, the phase difference between the wavelets from the opposite edges of the slit is

a)
$$\frac{\pi}{4}$$
 b) $\frac{\pi}{2}$ c) π d) 2π

21. Two slits separated by a distance of 1 mm are illuminated with red light of wavelength 6.5×10^{-7} m. the interference fringes are observed on a screen place 1 m from the slits. The distance between the third dark fringe and the fifth bright fringe is equal to

a) 0.65 mm b) 1.63 mm c) 3.25 mm d) 4.88 mm

22. In the given figure, C is middle point of $line S_1 S_2$. A monochromatic light of wavelength λ is incident on slits. The ratio intensity of S_3 and S_4 is

b) ∞

a) Zero

c) 4:1

- d) 1:4
- 23. When a thin transparent plate of thickness t and refractive index μ is placed in the path of one of the two interfering waves of light, then the path difference changes by

a)
$$(\mu + 1)t$$
 b) $(\mu - 1)t$ c) $\frac{(\mu + 1)}{t}$ d) $\frac{(\mu - 1)}{t}$

- 24. For the constructive interference the path difference between the two interfering waves must be equal to
 - a) $(2n+1)\lambda$ b) $2n\pi$ c) $n\lambda$ d) $(2n+1)\frac{\lambda}{2}$
- 25. The figure shows four pairs of polarizing sheets, seen face-on. Each pair is mounted in the path of initially unpolarised light. The polarizing direction of each sheet (indicated by the dashed line) is referenced to either a horizontal *x*-axis or a vertical *y* axis. Rank the pair according to the fraction of the initial intensity that they pass, greatest first

33. A beam of plane polarized light falls normally on a polarizer of cross sectional area $3 \times 10^{-4} m^2$. Flux of energy of incident ray in $10^{-3}W$. The polarizer rotates with an angular frequency of 31.4 rad/s. The energy of light passing through the polarizer per revolution will be

a) 10^{-4} Joule b) 10^{-3} Joule c) 10^{-2} Joule d) 10^{-1} Joule

- 34. A signal emitted by an antenna from a certain point can be received at another point of the surface in the form of
 - a) Sky wave b) Ground wave c) Sea wave d) Both (a) and (b)
- 35. In Young's double slit experiment with monochromatic light of wavelength 600 mm, the distance between slits is 10^{-3} m. For changing fringe width by 3×10^{-5} m
 - a) The screen is moved away from the slits by 5 cm
 - b) The screen is moved by 5 cm towards the slits
 - c) The screen is moved by 3 cm towards the slits
 - d) Both (a) and (b) are correct
- 36. Two ideal slits S_1 and S_2 are at a distance d apart, and illuminated by light of wavelength λ passing through an ideal source slit S placed on the line through S_2 as shown. The distance between the planes of slits and the source slit is D. A screen is held at a distance D from the plane of the slits. The minimum value of d for which there is darkness at O is

- 37. Which one of the following phenomena is not explained by Huygen's construction of wavefronta) Refractionb) Reflectionc) Diffractiond) Origin of spectra
- 38. A star is going away from the earth. An observer on the earth will see the wavelength of light coming from the star
 - a) Decreased
 - b) Increased
 - c) Neither decreased nor increased
 - d) Decreased or increased depending upon the velocity of the star

39. In the diffraction pattern of	a straight slit
-----------------------------------	-----------------

- a) All bands are uniformly bright b) All bands are uniformly wide
- c) Central band is narrower d) Central band is wider
- 40.Light of wavelength 6000 Å is incident on a single slit. The first minimum of the diffraction pattern is
obtained at 4 mm from the centre. The screen is at a distance of 2 m from the slit. The slit width will be
a) 0.3 mmb) 0.2 mmc) 0.15 mmd) 0.1 mm
- 41. Which of the following is a dich roic crystal?
 a) Quartz
 b) Tourmaline
 c) Mica
 d) Selenite
 42. In order to see diffraction the thickness of the film is

a) 100 Å b) 10,000 Å c) 1 mm d) 1 cm 43. Specific rotation of sugar solution is 0.5 deg m²k/g. 200 kgm⁻³ of impure sugar solution is taken in a sample polarimeter tube of length 20 cm and optical rotation is found to be 19°. The percentage of purity of sugar is

- a) 20% b) 80% c) 95% d) 89%
- 44. The angle of polarization for any medium is 60°, what will be critical angle for this

```
a) \sin^{-1}\sqrt{3} b) \tan^{-1}\sqrt{3} c) \cos^{-1}\sqrt{3} d) \sin^{-1}\frac{1}{\sqrt{2}}
```

45. Unpolarized light of intensity $32Wm^{-2}$ passes through three polarizers such that transmission axes of the first and second polarizer makes an angle 30° with each other and the transmission axis of the last polarizer is crossed with that of the first. The intensity of final emerging light will be

	a) 32 Wm ⁻²	b) 3 <i>Wm</i> ⁻²	c) $8 Wm^{-2}$	d) 4 <i>Wm</i> ⁻²
46.	If two waves represente	d by $y_1 = 4 \sin \omega t$ and $y_2 =$	$3\sin\left(\omega t+\frac{\pi}{2}\right)$ interfere at	a point, the amplitude of the
	resulting wave will be al	oout	(3)	
	a) 7	b) 6	c) 5	d) 3.5
47.	In single slit diffraction	pattern		
	a) Central fringe has neg	gligible width than others		
	b) All fringes are of same	e width		
	c) Central fringes do not	t exist		
10	d) None of the above	morimont the fringe width i	a R If ontino arrangementi	a placed in a liquid of
40.	refractive index <i>n</i> the fr	inge width becomes	is p. if entire all angement i	is placed in a liquid of
	β		ζβ	β
	a) $\frac{1}{n+1}$	b) <i>nβ</i>	c) $\frac{n}{n}$	d) $\frac{1}{n-1}$
49.	In Young's double slit ex the central fringe when A	periment, phase difference $\lambda = 5000$ Åis	between light waves reach	ing 3 rd bright fringe from
	a) 6 π	b) 2 π	c) 4 π	d) zero
50.	Direction of the first sec	ondary maximum in the Fra	aunhoffer diffraction patter	n at a single slit is given by
	(<i>a</i> is the width of the slit	t)		21
	a) $a \sin \theta = \frac{\lambda}{2}$	b) $a\cos\theta = \frac{3\lambda}{2}$	c) $a \sin \theta = \lambda$	d) $a \sin \theta = \frac{3\lambda}{2}$
51.	In the Young's double sli	it experiment, a mica slip of	thickness <i>t</i> and refractive	index <i>u</i> is introduced in the
	ray from first source S_1 .	By how much distance fring	es pattern will be displaced	d.
	d (11) t	D	d d	D
	$a \int \frac{D}{D} (\mu - 1) \ell$	$b \int \frac{d}{d} (\mu - 1) t$	$(\mu - 1)D$	$d \frac{d}{d} (\mu - 1)$
52.	In Young's double slit ex	periment, the wavelength o	of the light used is doubled	and distance between two
	slits is half of initial dista	ance, the resultant fringe wi	idth becomes	1) 1 (2) (from the
52	a) 2 times	DJ 3 times	CJ 4 times	a) 1/2 times
55.	a) Fringe will appear for	a moment then it will disar	npear	win nappen
	b) Fringes will occur as f	from monochromatic light	o p our	
	c) Only bright fringes wi	ill appear		
	d) No fringes will appear	r		
54.	The angular resolution of	of a 10 cm diameter telescop	be at a wavelength of 5000	Å is of the order of
	a) 10 ⁶ rad	b) 10 ⁻² rad	c) 10^{-4} rad	d) 10^{-6} rad
55.	What should be refractiv	ve index of a transparent me	edium to be invisible in vac	uum?
56	a) I In Young's double slit ev	DJ <1 mariment the distance betw	CJ >1 voon the two slits is made k	a) None of these
50.	will become	perment, the distance betv	veen the two shts is made i	ian, men me ninge widdi
	a) Half	b) Double	c) One fourth	d) Unchanged
57.	The maximum intensity	in the case if <i>n</i> identical inc	oherent waves, each of inte	ensity 2 Wm ^{-2} is 32Wm ^{-2} .
	The value of <i>n</i> is			
	a) 4	b) 16	c) 32	d) 64
58.	According to corpuscula	r theory of light, the differe	nt colours of light are due t	0
	a) Different electromagn	ietic waves	b) Different force of attra	action among the corpuscles
50	c) Different size of the c	orpuscies	d) None of the above	forman anotional area
59.	$3 \times 10^{-4} \text{ m}^2$ The polari	zer notates with an angular	frequency of 21 Δ rads ⁻¹ T	The energy of light passing
	through the polarizer ne	er revolution will be	requercy of orritado . I	ne energy of nene passing
	a) 10 ⁻⁴ J	b) 10 ⁻³ J	c) 10 ⁻² J	d) 10 ⁻¹ J
~~	T .1 ·			

S	1	1
T		
$\frac{1}{d}$		Р
¥	S ₂	

	a) Bright fringe	b) Dark fringe	c) Either dark or light	d) None of the above
61.	The two coherent source	s of equal intensity produce	e maximum intensity of 100) units at a point. If the
	intensity of one of the sou	urces is reduced by 36% by	reducing its width then the	e intensity of light at the
	same point will be			
	a) 90	b) 89	c) 67	d) 81
62.	In a double slit interferen	ice experiment, the distance	e between the slits is 0.05 c	m and screen is 2 m away
	from the slits. The wavele	ength of light is 8.0×10^{-5}	cm. The distance between s	successive fringes is
	a) 0.24 cm	b) 3.2 cm	c) 1.28 cm	d) 0.32 cm
63.	Unpolarised light falls on	two polarizing sheets place	ed one on top of the other.	What must be the angle
	between the characterist	ic directions of the sheets if	f the intensity of the final tr	ansmitted light is one-third
	the maximum intensity o	f the first transmitted beam	יייייין, איז	
	a) 75°	b) 55°	c) 35°	d) 15°
64	Consider the following st	atements A and B and ident	tify the correct answer	
01.	A Fresnel's diffraction na	attern occurs when the sour	rce of light or the screen on	which the diffraction
	nattern is seen or when h	ooth are at finite distance fr	om the anerture	
	B Diffracted light can be	used to estimate the helical	structure of nucleic acids	
	a) A and B are true		h) A and B are false	
	c) A is true but B is false		d) A is false but B is true	
65	In Young's double slit evr	periment the slits are 3 mm	apart. The wavelength of	light used is 5000 Å and the
001	distance between the slit	s and the screen is 90 cm^{-1}	The fringe width in 9 (mm)	is
	a) 1 5	b) 0.015	c) 20	d) 0.15
66	The magnetic field ampli	tude of an electromagnetic	wave is $2 \times 10^{-7}T$ It's elec	tric field amplitude if the
00.	wave is travelling in free	snace is .		the new amplitude if the
	a) $6Vm^{-1}$	b) $60Vm^{-1}$	c) $10/6Vm^{-1}$	d) None of these
67	The velocity of a moving	galaxy is 300 $km \text{ s}^{-1}$ and the	he annarent change in wave	elength of a spectral line
07.	emitted from the galaxy i	s observed as 0.5 <i>nm</i> . Then	the actual wavelength of t	the spectral line is
	a) $3000 $	b) 5000 Å		d) 4500 Å
68	A laser heam can be focus	sed on an area equal to the	square of its wavelength A	He-Ne laser radiates
00.	energy at the rate of 1ml	and its wavelength is 632	8 nm The intensity of focu	ssed hear will he
	a) $1.5 \times 10^{13} W/m^2$	h) 2.5 $\times 10^9 W/m^2$	c) $3.5 \times 10^{17} W/m^2$	d) None of these
69	The frequencies of X -ray	$5 2.5 \times 10^{-10} W/m$	$c_{j} = 5.5 \times 10^{-10} \text{ W/m}$	c Then
07.	a) $a < h h > c$	a > h h > c	c) $a > h h < c$	d) $a < h h < c$
70	Two coherent sources set	narated by distance d are r	adiating in phase having w	avelength λ A detector
70.	moves in a hig circle arou	and the two sources in the r	plane of the two sources. Th	the angular position of $n = 4$
	interference maxima is gi	iven as	func of the two sources. If	
		iven us		
	$\begin{pmatrix} \leftarrow d \rightarrow \\ \bullet & \bullet \end{pmatrix}$			
	$\left\langle S_{1} \qquad S_{2} \right\rangle$			
	a) $\sin^{-1} n\lambda$	b) $\cos^{-1} 4\lambda$	c) $\tan^{-1} \frac{d}{d}$	d) $\cos^{-1} \lambda$
	$\frac{d}{d}$	$\frac{d}{d}$	$\frac{1}{4\lambda}$	$\frac{1}{4d}$
71	If λ_{μ} , λ_{μ} and λ_{μ} represent	t the wavelength of visible l	ight x-rays and microwave	s respectively then

71. If λ_v, λ_r and λ_m represent the wavelength of visible light *x*-rays and microwaves respectively, then
a) λ_m > λ_x > λ_v
b) λ_v > λ_m > λ_y
c) λ_m > λ_v > λ_x
d) λ_v > λ_x > λ_m
72. A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue

light

a) No change

- b) Diffraction bands become narrower and crowded together
- c) Band become broader and farther apart
- d) Bands disappear altogether
- 73. Assuming that universe is expanding, if the spectrum of light coming from a star which is going away from earth is tested, then in the wavelength of light
 - a) There will be no change
 - b) The spectrum will move to infrared region
 - c) The spectrum will seems to shift to ultraviolet side
 - d) None of the above

74. In Young's double slit experiment, distance between two sources is 0.1 mm. The distance of screen from the source is 20 cm. Wavelength of light used is 5460 Åhen angular position of first dark fringe is
a) 0.08°
b) 0.16°
c) 0.20°
d) 0.32°

75. The ratio of intensities of consecutive maxima in the diffraction pattern due to a single slit is a) 1:4:9 b) 1:2:3 c) $1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}$ d) $1:\frac{1}{\pi^2}:\frac{9}{\pi^2}$

76. The time period of rotation of the sun is 25 days and its radius is 7 × 10⁸ m. The Doppler shift for the light of wavelength 6000 Å emitted from the surface of the sun will be
a) 0.04 Å
b) 0.40 Å
c) 4.00 Å
d) 40.0 Å

- 77. When light is incident on a doubly refracting crystal, two refracted rays-ordinary ray (*O*-ray) and extra ordinary ray (*E*-ray) are produced. Then
 - a) Both *O*-ray and *E*-ray are polarized perpendicular to the plane of incidence
 - b) Both O-ray and E-ray are polarized in the plane of incidence
 - c) *E*-ray is polarised perpendicular to the plane of incidence and *O*-ray in the plane of incidence
 - d) *E*-ray is polarized in the plane of incidence and *O*-ray perpendicular to the plane of incidence
- 78. A light wave is incident normally over a slit of width 24 × 10⁻⁵ cm. The angular position of second dark fringe from the central maxima is 30°. What is the wavelength of light
 a) 6000 Å
 b) 5000 Å
 c) 3000 Å
 d) 1500 Å
- 79. In an interference pattern the position of zeroth order maxima is 4.8 mm from a certain point *P* on the screen. The fringe width is 0.2 mm. The position of second maxima from point *P* is
 - a) 5.1 mm b) 5 mm c) 40 mm d) 5.2 mm
- 80. Light if wavelength 2×10^{-3} m falls on a slit of width 4×10^{-3} m. The angular dispersion of the central maximum will be

a) 30° b) 60° c) 90° d) 180° 81. In a double slit experiment, the screen is placed at a distance of 1.25 m from the slits. When the apparatus is immersed in water ($\mu_w = 4/3$), the angular width of a fringe is found to be 0.2°. When the experiment is performed in air with same set up, the angular width of the fringe is a) 0.4° b) 0.27° c) 0.35° d) 0.15°

82. Two luminous point sources separated by a certain distance are at 10 km from an observer. If the aperture of his eye is 2.5 × 10⁻³ m and the wavelength of light used is 500 nm, the distance of separation between the point sources just seen to be resolved is

a) 12.2 m
b) 24.2 m
c) 2.44 m
d) 1.22 m

- 83. The similarity between the sound waves and light waves is
 - a) Both are electromagnetic waves b) Both are longitudinal waves
 - c) Both have the same speed in a medium d) They can produce interference
- 84. In a Young's double slit experiment, the slit separation is 1 mm and the screen is 1 m from the slit. For a monochromatic light of wavelength 500 nm, the distance of 3rd minima from the central maxima is
 a) 0.50 mm
 b) 1.25 mm
 c) 1.50 mm
 d) 1.75 mm
- 85. The Brewster angle for the glass-air interface is 54.74°. If a ray of light going from air to glass strikes at an

	angle of incidence 45°, then the angle of refraction is			
	(Hint : $\tan 54.74^\circ = \sqrt{2}$)			
	a) 60°	b) 30°	c) 25°	d) 54.74°
86.	A slit of width <i>a</i> is illumined	nated by red light of wavele	ength 6500Å. If the first mi	nimum falls at $\theta = 30^\circ$, the
	value of <i>a</i> is		0	
	a) 6.5×10^{-4} mm	b) 1.3 micron	c) 3250Å	d) 2.6×10^{-4} cm
87.	An electromagnetic wave	e travels along <i>z</i> -axis. Which	h of the following pairs of s	pace and time varying fields
	would generate such a w	vave	01	
	a) E_r, B_v	b) E_{y}, B_{x}	c) E_{z}, B_{r}	d) E_{γ}, B_{z}
88.	What will be the angular	width of central maxima in	Fraunhoffer diffraction w	hen light of wavelength
	6000Å is used and slit w	idth is 12×10^{-5} cm		
	a) 2 <i>rad</i>	b) 3 <i>rad</i>	c) 1 <i>rad</i>	d) 8 rad
89.	The phenomenon which	does not take place in soun	d waves is	
07.	a) Scattering	b) Diffraction	c) Interference	d) Polarisation
90.	In a single slit diffraction	of light of wavelength λ by	a slit of width <i>e</i> , the size of	f the central maximum on a
	screen at a distance <i>b</i> is			
		. 2bλ	、2bλ	2bλ
	a) $2b\lambda + e$	b) <u></u>	c) $\frac{-}{e} + e$	d) $-e - e$
91.	A beam of circularly pola	arised light us completely al	osorbed by an object on wh	nich it falls. If U represents
	absorbed energy and ω r	epresents angular frequence	cy, then angular momentur	n transferred to the object is
	given by			
	U	b) U	c) U	d^{2U}
	a) $\frac{1}{\omega^2}$	$\frac{1}{2\omega}$	ω	ω
92.	If white light is used in the	ne Newton's rings experime	ent, the colour observed in	the reflected light is
	complementary to that o	bserved in the transmitted	light through the same poi	nt. This is due to
	a) 90° change of phase ir	1 one of the reflected waves		
	b) 180° change of phase	in one of the reflected wave	es	
	c) 145° change of phase	in one of the reflected wave	es	
	d) 45° change of phase in	one of the reflected waves		
93.	The periodic time of rota	ition of a certain star is 22 d	lays and its radius is 7×10)° <i>metres</i> . If the wavelength
	of light emitted by its su	rface be 4320 A, the Dopple	r shift will be (1 day = 864	.00 sec)
	a) 0.033 Å	b) 0.33 Å	c) 3.3 Å	d) 33 Å
94.	A point source of electro	magnetic radiation has an a	overage power output of 15	500 W. The maximum value
	of electric field at a dista	nce of 3 <i>m</i> from this source	in Vm^{-1} is	
	a) 500	b) 100	c) $\frac{500}{$	d) $\frac{250}{2}$
05			3	3
95.	At what angle should an	unpolarised beam be incide	ent on a crystal of $\mu = \sqrt{3}$, s	o that reflected beam is
	polarised?			
	a) 45°	b) 60°	c) 90°	d) 0°
96.	In Young's double slit ex	periment, the intensity of lig	ght coming from the first s	lit is double the intensity
	from the second slit. The	ratio of the maximum inter	nsity to the minimum inten	sity on the interference
	fringe pattern observed	is		
~ -	a) 34	b) 40	c) 25	d) 38
97.	Huygens wave theory all	ows us to know		
	a) The wavelength of the	ewave	b) The velocity of the wa	ve
~~	c) The amplitude of the	wave	d) The propagation of wa	ave fronts
98.	Two coherent sources of	intensities, I_1 and I_2 produ	ce an interference pattern.	The maximum intensity in
	tne interference pattern	will be	-	<u> </u>
	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $\left(\sqrt{I_1} + \sqrt{I_2}\right)^2$
00	The main difference het	waan the phonomena of inte	prforonco and diffraction is	that

99. The main difference between the phenomena of interference and diffraction is that

a) Diffraction is caused by reflected waves from a source whereas interference is caused due to refraction						
of waves from a source	of waves from a source					
b) Diffraction is due to interaction of waves derived from the same source, whereas interference is that bending of light from the same wavefront						
c) Diffraction is due to interaction	c) Diffraction is due to interaction of light from wavefront, whereas the interference is the interaction of					
two waves derived from the sar	two waves derived from the same source					
d) Diffraction is due to interaction of light from the same wavefront whereas interference is the interaction of waves from two isolated sources						
100. Approximate height of ozone layer	above the ground is					
a) 60 to 70 km b) 59 km	m to 80 km c) 70 km	$n ext{ to } 100 ext{ km} ext{d} 100$) <i>km</i> to 200 <i>km</i>			
101. In Young's double slit experiment	when violet light of wavele	ngth 4358 Å is used, the	84 fringe are seen in			
the field of view, but when sodium	light of certain wavelength	is used, then 62 fringes :	are seen in the field			
of view, the wavelength of sodium	light is					
a) 6893 Å b) 5904	LÅ c) 5523	Å d) 642	29 Å			
102 In a certain double slit experiment	al arrangement interferen	re fringes of width 1 0 mr	n each are observed			
when light of wavelength 5000 Å i	s used. Keening the set up i	inaltered if the source is	replaced by another			
source of wavelength 6000 Å, the	fringe width will be	marter eu, ir the source is	replaced by another			
a) $0.5 mm$ b) $1.0 m$	m c) 12 n	um d)15	mm			
103. Two coherent monochromatic ligh	t the arms of intensities I and	1 41 are superposed. The	maximum and			
minimum possible intensities in th	e resulting beam are	t in all o superposed the				
a) $5I$ and I b) $5I$ ar	d 3I c) 9 <i>I</i> ar	: 1e (b I b	and 31			
104. Light appears to travel in straight	lines since	ur uj sre				
a) It is not absorbed by the atmos	ohere b) It is i	eflected by the atmosphe	pre			
c) Its wavelength is very small	d) Its ve	locity is very large				
105. The ratio of intensities of two way	es is 9:1. They are producir	interference. The ratio	of maximum and			
minimum intensities will be			01 110011100110			
a) 10:8 b) 9:1	c) 4:1	d) 2 :	1			
106. In a Young's double slit experiment	it, the slit separation is 0.2c	m, the distance between	the screen and slit is			
1 <i>m</i> . Wavelength of the light used i	s 5000 Å. The distance bety	veen two consecutive dar	k fringes (in <i>mm</i>) is			
a) 0.25 b) 0.26	c) 0.27	d) 0.2	8			
107. If I_0 is the intensity of the principal	l maximum in the single sli	t diffraction pattern, then	what will be its			
intensity when the slit which is do	ubled	,				
I_0	a) 21	d) <i>11</i>				
a) I_0 b) $\frac{1}{2}$	$C_{J} Z_{I_{0}}$	u) 41 ₀				
108. In the phenomenon of interference	e, energy is					
a) Destroyed at bright fringes	b) Creat	ted at dark fringes				
c) Conserved but it is redistribute	d d) Same	e at all points				
109. If <i>n</i> represents the order of a half p	period zone, the area of this	zone is approximately pr	roportional to n^m			
where <i>m</i> is equal to						
a) Zero b) Half	c) One	d) Tw	0			
110. In the spectrum of light of a lumin	ous heavenly body the wav	elength of a spectral line	is measured to be			
4747Å while actual wavelength of	the line is 4700Å. The relat	ive velocity of the heaver	nly body with			
respect to earth will be (velocity o	f light is $3 \times 10^8 m/s$)					
a) $3 \times 10^5 m/s$ moving towards th	e earth b) 3 × 1	$10^5 m/s$ moving away from	n the earth			
c) $3 \times 10^6 m/s$ moving towards th	e earth d) 3 × 1	$10^6 m/s$ moving away from	n the earth			
111. In Young's double slit experiment,	the distance between the t	wo slits is 0.1 mm and the	e wavelength of light			
used is $4 \times 10^{-7} m$. If the width of	the fringe on the screen is 4	<i>mm</i> , the distance betwe	en screen and slit is			
a) 0.1 mm b) 1 cm	c) 0.1 <i>c</i>	m d) 1 <i>n</i>	1			
112. The slits in a Young's double slit ex	kperiment have equal widtl	ns and the source is place	d symmetrically			
relative to the slits. The intensity a	It the central fringes is I_0 . If	one of the slits is closed,	the intensity at this			

a) I_{0}			
)-0	b) <i>I</i> ₀ /4	c) <i>I</i> ₀ /2	d) 4 <i>I</i> ₀
113. In Fresnel's bipris	m experiment is held in wat	ter instead of air, then what	t will be the effect on fringe width
a) Decreases	b) Increases	c) No effect	d) None of these
114. Irreducible phase	difference in any wave of 50	000 Å from a source of light	t is
a) π	b) 12π	c) $12\pi \times 10^6$	d) $\pi \times 10^{6}$
115. The critical angle of	of a certain medium is \sin^{-1}	$\left(\frac{3}{-}\right)$ The polarizing angle	of the medium is
	/2	(5). The polarizing angle	
a) $\tan^{-1}\left(\frac{4}{3}\right)$	b) $\tan^{-1}\left(\frac{3}{4}\right)$	c) $\tan^{-1}\left(\frac{5}{3}\right)$	d) $\sin^{-1}(\frac{4}{5})$
116. Which of the follow	ving shows green house eff	ect	
a) Ultraviolet rays	b) Infrared rays	c) X-rays	d) None of these
117. Two Nicols are ori	ented with their principal p	olanes making an angle of 6	0°. The percentage of incident
unpolarised light v	which passes through the sy	vstem is	
a) 50%	b) 100%	c) 12.5%	d) 37.5%
118. In an electromagn	etic wave, the amplitude of	electric field is $1 V/m$, the	frequency of wave is $5 \times 10^{14} Hz$.
The wave is propa	gating along <i>z</i> -axis. The ave	erage energy density of elec	ctric field, in $Joule/m^3$, will be
a) 1.1×10^{-11}	b) 2.2×10^{-12}	c) 3.3×10^{-13}	d) 4.4×10^{-14}
119. In a Young's doubl	e slit experiment, distance l	between sources is 1 mm a	nd distance between the screen
and sources is 1 m	. If the fringe width on the s	screen is 0.06 cm, then λ is	
a) 6000 Å	b) 4000 Å	c) 1200 Å	d) 2400 Å
120. In Young's double	slit experiment, a minimum	ı is obtained when the plan	e difference of super imposing
waves is			
a) Zero	b) (2 <i>n</i> − 1) <i>π</i>	c) <i>nπ</i>	d) $(n + 1)\pi$
121. Which one of the f	ollowing is INCORRECT stat	tement in the transmission	of electromagnetic waves
a) Ground wave p	ropagation is for high freque	ency transmission	
b) Sky wave propa	gation is facilitated by iono	spheric	
cJ Space wave is o	f high frequency and is suita	able for line of sight comm	unication
c) Space wave is o d) Space wave is u	f high frequency and is suita sed for satellite communica	able for line of sight commu ition	unication
c) Space wave is od) Space wave is u122. Light wave is trave	f high frequency and is suita sed for satellite communica elling along y-direction. If th	able for line of sight commu- tion ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along y-direction. If th or at that time is along	able for line of sight commu- ation ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along	able for line of sight commu- ation ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along y-direction. If th or at that time is along	able for line of sight commu ation ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along	able for line of sight commution tion ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along y-direction. If th or at that time is along	able for line of sight commu ation ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along	able for line of sight commu ation ne corresponding \vec{E} vector	unication at any time is along the x-axis, the
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis	able for line of sight commu- ation ne corresponding \vec{E} vector \vec{E} vector	unication at any time is along the x-axis, the d) -z-axis
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis th <i>a</i> is illuminated by violet	able for line of sight commu- ation ne corresponding \vec{E} vector c) + <i>z</i> -axis clight of wavelength 400 <i>m</i>	unication at any time is along the x-axis, the d) $-z$ -axis <i>m</i> and the width of the diffraction
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis th <i>a</i> is illuminated by violet	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis clight of wavelength 400 <i>m</i>	unication at any time is along the x-axis, the d) $-z$ -axis <i>m</i> and the width of the diffraction binated by yellow light of
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> the width of the diffraction	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis c light of wavelength 400 <i>m</i> c width is covered and illum on pattern is	unication at any time is along the x-axis, the d) $-z$ -axis <i>m</i> and the width of the diffraction hinated by yellow light of
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{y} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction is hes and the width is zero	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis thight of wavelength 400 <i>m</i> twidth is covered and illum on pattern is b) $v/3$	unication at any time is along the x-axis, the d) $-z$ -axis <i>m</i> and the width of the diffraction hinated by yellow light of
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 <i>m</i> a) The pattern van	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis t light of wavelength 400 <i>nn</i> t width is covered and illum on pattern is b) $y/3$ d) None of these	unication at any time is along the x-axis, the d) $-z$ -axis <i>n</i> and the width of the diffraction hinated by yellow light of
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3y 124. A single slit of wid	f high frequency and is suita sed for satellite communica elling along <i>y</i> -direction. If th or at that time is along th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis light of wavelength 400 <i>m</i> width is covered and illum on pattern is b) $y/3$ d) None of these	unication at any time is along the x-axis, the d) $-z$ -axis m and the width of the diffraction hinated by yellow light of 0 nm The observing screen is
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from	b) <i>x</i> -axis b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero	able for line of sight commu- ation the corresponding \vec{E} vector c) +z-axis t light of wavelength 400 m t width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 500 contral bright fringe will be	unication at any time is along the x-axis, the d) $-z$ -axis m and the width of the diffraction hinated by yellow light of 0 <i>nm</i> . The observing screen is
 c) Space wave is o d) Space wave is u 122. Light wave is trave direction of <i>B</i> vect <i>x</i> a) <i>y</i>-axis 123. A single slit of wid pattern is measure wavelength 600 m a a) The pattern van c) 3<i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 	b) <i>x</i> -axis b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero th 0.20 <i>mm</i> is illuminated w the slit. The width of the con b) 2 <i>mm</i>	c) $+z$ -axis c) $+z$ -axis light of wavelength 400 m width is covered and illum on pattern is b) $y/3$ d) None of these with light of wavelength 500 entral bright fringe will be c) 4 mm	d) <i>-z</i> -axis <i>m</i> and the width of the diffraction hinated by yellow light of 0 <i>nm</i> . The observing screen is
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effe	b) <i>x</i> -axis b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero th 0.20 <i>mm</i> is illuminated v the slit. The width of the co b) 2 <i>mm</i>	c) + <i>z</i> -axis c) + <i>z</i> -axis light of wavelength 400 <i>m</i> width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 50 entral bright fringe will be c) 4 <i>mm</i>	at any time is along the x-axis, the d) <i>-z</i> -axis <i>n</i> and the width of the diffraction hinated by yellow light of 0 <i>nm</i> . The observing screen is d) 5 <i>mm</i>
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effe	b) <i>x</i> -axis that time is along b) <i>x</i> -axis that time is along that time is along b) <i>x</i> -axis that time is along b) <i>x</i> -axis that time is along that the solution of the solution the soluti	able for line of sight commu- ation the corresponding \vec{E} vector \vec{E} c) +z-axis light of wavelength 400 m width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 500 entral bright fringe will be c) 4 mm b) Only light wave	at any time is along the x-axis, the d) – <i>z</i> -axis <i>m</i> and the width of the diffraction hinated by yellow light of 0 <i>nm</i> . The observing screen is d) 5 <i>mm</i>
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effe a) Only sound wav c) Only ultrasonic	b) x-axis b) x-axis b) x-axis th a is illuminated by violet ed as y. When half of the slit n, the width of the diffraction ishes and the width is zero th 0.20 mm is illuminated we th exist. The width of the comparison b) 2 mm ect can be observed in res waves	c) + <i>z</i> -axis c) + <i>z</i> -axis light of wavelength 400 <i>m</i> width is covered and illum on pattern is b) $y/3$ d) None of these with light of wavelength 500 entral bright fringe will be c) 4 <i>mm</i> b) Only light waves d) Sound as well as	at any time is along the x-axis, the d) -z-axis <i>m</i> and the width of the diffraction hinated by yellow light of 0 <i>nm</i> . The observing screen is d) 5 <i>mm</i> S s light wayes
 c) Space wave is o d) Space wave is u 122. Light wave is trave direction of <i>B</i> vect <i>z</i> a) <i>y</i>-axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3<i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effer a) Only sound wave c) Only ultrasonic 126. How will the diffraction for a different content of the different content content content content of the different content c	b) <i>x</i> -axis b) <i>x</i> -axis th <i>a</i> is illuminated by violet ed as <i>y</i> . When half of the slit <i>n</i> , the width of the diffraction ishes and the width is zero th 0.20 <i>mm</i> is illuminated with the slit. The width of the construction b) 2 <i>mm</i> ect can be observed in res waves	able for line of sight commu- ation the corresponding \vec{E} vector is c) +z-axis t light of wavelength 400 m t width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 500 entral bright fringe will be c) 4 mm b) Only light waves d) Sound as well as thange when vellow light w	d) - <i>z</i> -axis <i>m</i> and the width of the diffraction ninated by yellow light of 0 <i>nm</i> . The observing screen is d) 5 <i>mm</i>
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effe a) Only sound wav c) Only ultrasonic 126. How will the diffra	b) x-axis b) x-axis that time is along b) x-axis that time is along b) x-axis that time is along b) x-axis that is illuminated by violet b) a sy. When half of the slit n, the width of the diffraction ishes and the width is zero th 0.20 mm is illuminated we the slit. The width of the complexity of the slit. The width of the slit. The width of the complexity of the slit. The width of the slit. The	c) $+z$ -axis c) $+z$ -axis c) $+z$ -axis light of wavelength 400 m width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 500 entral bright fringe will be c) 4 mm b) Only light waves d) Sound as well as change when yellow light u	d) - <i>z</i> -axis <i>m</i> and the width of the diffraction ninated by yellow light of 0 <i>nm</i> . The observing screen is d) 5 <i>mm</i> s s light waves s replaced by blue light? The
c) Space wave is o d) Space wave is u 122. Light wave is trave direction of \vec{B} vect \vec{x} a) <i>y</i> -axis 123. A single slit of wid pattern is measure wavelength 600 m a) The pattern van c) 3 <i>y</i> 124. A single slit of wid placed 80 <i>cm</i> from a) 1 <i>mm</i> 125. The diffraction effe a) Only sound wav c) Only ultrasonic 126. How will the diffra fringe will be a) Wider	b) x-axis b) x-axis th a is illuminated by violet ed as y. When half of the slit n, the width of the diffraction ishes and the width is zero th 0.20 mm is illuminated width of the compared th 0.20 mm is illuminated width of the compared th 0.20 mm is illuminated width of the compared th 0.20 mm is illuminated width of the compared b) 2 mm ect can be observed in res waves action pattern of single slit of b) Narrower	able for line of sight commu- tion ne corresponding \vec{E} vector \vec{E} c) +z-axis c light of wavelength 400 m c width is covered and illum on pattern is b) $y/3$ d) None of these vith light of wavelength 500 entral bright fringe will be c) 4 mm b) Only light waves d) Sound as well as change when yellow light un	d) -z-axis n and the width of the diffraction ninated by yellow light of 0 nm. The observing screen is d) 5 mm s s light waves s replaced by blue light? The d) Fainter

127. <i>F</i>	A lamp emits monochron electrical power to electr field associated with the e	natic green light uniformly i omagnetic waves and const electromagnetic radiation a	in all directions. The lamp i umes 100W of power. The it a distance of 10 <i>m</i> from th	s 3% efficient in converting amplitude of the electric be lamp will be
2	a) $1.34 V/m$	b) 2.68 <i>V</i> / <i>m</i>	c) 5.36 V /m	d) 9.37 V/m
128. I	n a Fresnel biprism expe	eriment, the two positions o	f lens give separation betw	veen the slits as 16 cm and 9
(cm, respectively. What is	the actual distance of sepa	ration?	1) 1 4
100 7	a) 12.5 cm Γ	b) 12 cm	c) 13 cm	d) 14 cm
129. 1	I wo waves of intensity I	undergo Interference. The	maximum intensity obtaine	
120 (i) <i>I/Z</i> Colours of this films room	DJ I It from	C) 21	u) 41
130.0		It from		
	JI Dr a rainy day, a small oil	l film on water chow brillio	nt colours. This is due to	
) Dispersion of light	h) Interference of light	c) Absorption of light	d) Scattering of light
121 7	The width of the diffraction	on hand varies	c) Absolption of light	u) seattering of light
151.1	a) Inversely as the wavel	ength		
ł) Directly as the width o	f the slit		
	r) Directly as the distance	e between the slit and the s	creen	
(d) Inversely as the size of	the source from which the	slit is illuminated	
132.7	ΓV waves have a wavelen	igth range of 1-10 <i>meter</i> . T	heir frequency range in <i>MH</i>	<i>Iz</i> is
2	a) 30-300	b) 3-30	c) 300-3000	d) 3-3000
133. I	Diffraction and interferer	nce of light suggest	,	,
2	a) Nature of light is electi	ro-magnetic	b) Wave nature	
(c) Nature is quantum	C	d) Nature of light is trans	verse
134. I	f <i>L</i> is the coherence length	th and <i>c</i> the velocity of light	t, the coherent time is	
	a) al	h ^L	c)	d) 1
c	1) <i>CL</i>	c	$\frac{C}{L}$	$\frac{dJ}{Lc}$
135. I a	If the polarizing angle of an equilateral prism mad Given : $\tan 54.74^\circ = 1.4^\circ$	a piece of glass for green lig e of same glass is 14]	ht is 54.74°, then the angle	of minimum deviation for
2	a) 45°	b) 54.74°	c) 60°	d) 30°
136. Y	Young's experiment estal	olishes that		
2	a) Light consists of waves	5	b) Light consists of partic	les
C	c) Light consists of neithe	er particles nor waves	d) Light consists of both p	particles and waves
137. <i>I</i>	A ray of light strikes a gla	ss plate at an angle of60°. I	f the reflected an refracted	rays are perpendicular to
e	each other, the index of r	efraction of glass is		
	. 1	3	. 3	
2	$\frac{1}{2}$	b) $\left \frac{3}{2}\right $	c) $\frac{1}{2}$	d) 1.732
120 7	– Deven hannen af light hande	$\sqrt{2}$	-	The sheet
138.1	I WO Deams of light navin	g intensities I and 4I interiors are $\pi/2$ at point 4 and 4	ere to produce a fringe pat π at point <i>R</i> . Then the differ	tern on a screen. The phase
i	ntensities at <i>A</i> and <i>B</i> is	earns is $\pi/2$ at point A and π	at point <i>b</i> . Then the unier	ence between the resultant
2	a) 2 <i>1</i>	b) 4 <i>I</i>	c) 5 <i>1</i>	d) 7 <i>I</i>
139. V	Which statement is corre	ct for a zone plate and a len	IS	
6	a) Zone plate has multi fo	ocii whereas lens has one		
ł	o) Zone plate has one foc	us whereas lens has multip	le focii	
C	c) Both are correct			
C	d) Zone plate has one foc	us whereas a lens has infini	ite	
140.7	Гwo coherent waves are	represented by $y_1 = a_1 \cos \theta$	$s \omega t \text{ and } y_2 = a_1 \sin \omega t$, sup	perimposed on each other.
]	Γhe resultant intensity is			
2	a) $(a_1 + a_2)$	b) $(a_1 - a_2)$	c) $(a_1^2 + a_2^2)$	d) $(a_1^2 - a_2^2)$
141. I	n Young's double slit into	erterence experiment, the s	lit separation is made 3 fol	d. The fringe width

Decomes						
a) 1/3 times	b) 1/9 <i>times</i>	c) 3 times	d) 9 times			
142. In Young's experim	ent, the ratio of maximum t	o minimum intensities of t	the fringe system is 4:1. The			
aniplitudes of the c	b) $2 \cdot 1$	allo a) 2 · 1	d) 1 · 1			
d J 4 : 1 142 When the angle of i	UJJII neidanco on a matarial is 6(UJZII)° the reflected light is cor	uj I : I			
143. When the angle of incidence on a material is 60°, the reflected light is completely polarized. The velocity of the refracted ray inside the material is (in ms^{-1})						
a) 3 × 10 ⁸	b) $\left(\frac{3}{\sqrt{2}}\right) \times 10^8$	c) $\sqrt{3} \times 10^{8}$	d) 0.5×10^8			
144. The <i>rms</i> value of the density of the electric	e electric field of the light c romagnetic wave is	oming from the Sun is 720	N/C. The average total energy			
a) $6.37 \times 10^{-9} J/m^3$	b) $81.35 \times 10^{-12} J/r$	n^3 c) $3.3 \times 10^{-3} J/m^3$	d) $4.58 \times 10^{-6} J/m^3$			
145. If a source of light i change because of	s moving away from a static	onary observer, then the fr	requency of light wave appears to			
a) Doppler's effect	b) Interference	c) Diffraction	d) None of these			
146. Light propagates 20	cm distance in glass of refra	ctive index 1.5 in time t_0 . I	n the same time t_0 , light			
propagates a distar	ice of 2.25 cm in a medium.	The refractive index of the	e medium is			
a) 4/3	b) 3/2	c) 8/3	d) None of these			
147. In Young's double s	lit experiment, a minimum	is obtained when the phas	e difference of superimposing			
naves 15	b) $(2n - 1)\pi$	c) <i>η</i> π	d) $(n \pm 1)\pi$			
148 Which if the followi	ing phenomena is not comm	on to sound and light way	$u_j(n+1)n$			
a) Interference	h) Diffraction	c) Coherence	d) Polarisation			
149 The diffraction effe	ct can be observed in	ej concrence	uj i blarisation			
a) Only sound wave		h) Only light waves				
c) Only ultrasonic v		d) Cound on well on	light ways			
c) Only ultrasonic waves d) Sound as well as light waves						
150 Consider the follow	vaves ving statements A and B and	u) Sound as well as l identify the correct answ	er			
150. Consider the follow	vaves ring statements A and B and on be used to study the belic	l identify the correct answ	er			
150. Consider the follow A. Polarised light ca B. Optics axis is a di	vaves ring statements A and B and an be used to study the helic irrection and not any particu	l identify the correct answ al surface of nucleic acids	er			
150. Consider the follow A. Polarised light ca B. Optics axis is a di a) A and B are corr	vaves ring statements A and B and an be used to study the helic irection and not any particu	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro	er			
150. Consider the follow A. Polarised light ca B. Optics axis is a di a) A and B are corr	vaves ring statements A and B and in be used to study the helic irection and not any particu ect B is wrong	l identify the correct answ al surface of nucleic acids lar line in the crystal b) A and B are wro d) A is wrong but B	ng er			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) A and B are corr c) A is correct but B 151. In the context of Do 	vaves ring statements <i>A</i> and <i>B</i> and an be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the term	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) A and B are wro d) A is wrong but B m 'red shiff' signifies	ng ? is correct			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) A and B are corr c) A is correct but B 151. In the context of Do a) Decrease in frequencies 	vaves ving statements <i>A</i> and <i>B</i> and on be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the term uency	l identify the correct answ al surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ	er ng ? is correct			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 	vaves ring statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) A and B are wro d) A is wrong but B m 'red shift' signifies b) Increase in frequ d) Increase in inten	er ng ? is correct iency asity			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are corr c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut 	ving statements <i>A</i> and <i>B</i> and an be used to study the helic irection and not any particu ect 3 is wrong oppler effect in light, the terr uency nsity ion of an optical instrument	l identify the correct answ al surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter	er ng ? is correct nency hsity			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 	vaves ring statements A and B and in be used to study the helic irection and not any particu ect B is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization	er ng ? is correct uency sity d) Interference			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are corr c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slited 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect 3 is wrong oppler effect in light, the terr uency hsity ion of an optical instrument b) Diffraction experiment the distance bet	a) Sound as well as l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization	er ng ? is correct tency tsity d) Interference urces is 2 mm and the screen is at			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slited a distance of 1 m. If 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet if the fringe width is found to	al identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave	er ng P is correct lency lency lisity d) Interference urces is 2 mm and the screen is at elength of the light used is			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are corr c) A is correct but B 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slites a distance of 1 m. If a) 4000Å 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>F</i> the fringe width is found to b) 5000Å	al identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inten c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å	er ng ? is correct hency hsity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slite a distance of 1 m. If a) 4000Å 154. Colours in thin film 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>F</i> the fringe width is found to b) 5000Å s are due to	al identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inten c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å	er ng P is correct hency hsity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correction c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slites a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen 	ving statements <i>A</i> and <i>B</i> and an be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>f</i> the fringe width is found to b) 5000Å s are due to omenon	al identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inten c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å b) Scattering pheno	er ng ? is correct tency asity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correct but B 151. In the context of Docal Decrease in freq c) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slite a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference phe 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>B</i> the fringe width is found to b) 5000Å s are due to omenon enomenon	a) Sound as well as l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe	er ng ers is correct iency isity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correction c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slites a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference phe 155. Which rays are not 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>T</i> the fringe width is found to b) 5000Å s are due to omenon enomenon the portion of electromagne	a) Sound as well as l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization tween the two coherent so b be 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe	er ng l is correct lency hsity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correct but B 151. In the context of Docal Decrease in freq c) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slites a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference phe 155. Which rays are not a) X-rays 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>T</i> the fringe width is found to b) 5000Å s are due to omenon enomenon the portion of electromagne b) Microwaves	 a) Sound as well as well as a surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in intention of the comparison of the two coherent so the two coherent so the 0.03 cm, then the wave c) 5890Å b) Scattering phenometric spectrum c) <i>α</i>-rays 	er ng ? is correct tency ty d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correction c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slit of a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference phe 155. Which rays are not a) X-rays 156. In Young's double s 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particul ect <i>B</i> is wrong oppler effect in light, the term uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>T</i> the fringe width is found to b) 5000Å s are due to omenon the portion of electromagne b) Microwaves	 a) Sound as well as well as a surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequed) Increase in frequed) Increase in interfact arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å b) Scattering phenometric spectrum c) <i>α</i>-rays fringe width 	er ng lis correct lency lisity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slite a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference pher 155. Which rays are not a) <i>X</i>-rays 156. In Young's double s a) Can be changed of 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particul ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>f</i> the fringe width is found to b) 5000Å s are due to omenon the portion of electromagne b) Microwaves filt interference pattern the only by changing the wavele	a) Sound as well as l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in frequ d) Increase in inter c arises on account of c) Polarization ween the two coherent so b to 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe etic spectrum c) α -rays fringe width ength of incident light	er ng l is correct nency urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dia a) A and B are correction c) A is correct but B 151. In the context of Doca a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slit of a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference phe 155. Which rays are not a) X-rays 156. In Young's double s a) Can be changed of the phene 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particul ect <i>B</i> is wrong oppler effect in light, the term uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>T</i> the fringe width is found to b) 5000Å s are due to omenon the portion of electromagne b) Microwaves clit interference pattern the only by changing the wavele only by changing the separa	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c arises on account of c) Polarization ween the two coherent so b be 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe etic spectrum c) α -rays fringe width ength of incident light tion between the two slits	er ng lis correct lency lisity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves			
 150. Consider the follow A. Polarised light ca B. Optics axis is a di a) <i>A</i> and <i>B</i> are corr c) <i>A</i> is correct but <i>B</i> 151. In the context of Do a) Decrease in freq c) Decrease in inter 152. The limit of resolut a) Reflection 153. In young's two slites a distance of 1 m. If a) 4000Å 154. Colours in thin film a) Diffraction phen c) Interference pher 155. Which rays are not a) <i>X</i>-rays 156. In Young's double s a) Can be changed b) Can be changed 	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particul ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>B</i> the fringe width is found to b) 5000Å s are due to omenon the portion of electromagne b) Microwaves elit interference pattern the only by changing the wavele only by changing the wavele	a) Sound as well as l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in intent c arises on account of c) Polarization ween the two coherent so be 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe etic spectrum c) α -rays fringe width ength of incident light tion between the two slits elength or by changing the	er ng l is correct nency usity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves separation between the two slits			
 150. Consider the follow A. Polarised light ca B. Optics axis is a dial a) A and B are correct but B 151. In the context of Docal Decrease in freqting c) Decrease in interest of the second s	ving statements <i>A</i> and <i>B</i> and in be used to study the helic irection and not any particu- ect <i>B</i> is wrong oppler effect in light, the terr uency nsity ion of an optical instrument b) Diffraction experiment the distance bet <i>T</i> the fringe width is found to b) 5000Å s are due to omenon the portion of electromagne b) Microwaves clit interference pattern the only by changing the wavel only by changing the wavel either by changing the wavel	l identify the correct answ cal surface of nucleic acids lar line in the crystal b) <i>A</i> and <i>B</i> are wro d) <i>A</i> is wrong but <i>B</i> m 'red shift' signifies b) Increase in frequ d) Increase in inter c) Polarization c) Polarization cween the two coherent so b to 0.03 cm, then the wave c) 5890Å b) Scattering pheno d) Polarization phe etic spectrum c) α -rays fringe width ength of incident light tion between the two slits elength or by changing the nged	er ng lis correct lency lisity d) Interference urces is 2 mm and the screen is at elength of the light used is d) 6000Å omenon nomenon d) Radio waves			

a) a.c. current	b) d.c. current	c) Displacement current	d) Impedance		
158. In a Young's experiment,	8. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one mater away. If it produces the second dark fringe at a distance of 1 mm from the central fringe, the				
meter away. If it produce	meter away. If it produces the second dark fringe at a distance of 1 mm from the central fringe, the				
wavelength of monochro	matic light used will be				
a) 60×10^{-4} cm	b) 10×10^{-4} cm	c) 60×10^{-5} cm	d) 6×10^{-5} cm		
159. In young's experiment th	e wavelength of red light is	7.8×10^{-5} cm and that of	blue light 5.2×10^{-2} cm.		
The value of <i>n</i> for which	(n + 1)th blue bright band of	coincides with <i>n^{tn}</i> red band	is		
a) 4	b) 3	c) 2	d) 1		
160. Consider the following st	tatements about electromag	netic waves and choose the	e correct ones		
S1 : Electromagnetic way	ves having wavelengths 100	0 times smaller than light v	vaves are called X-rays		
S2 : Ultraviolet waves are	e used in the treatment of sv	vollen joints			
S3 : Alpha and gamma ra	ys are not electromagnetic	waves			
S4 : de Broglie waves are	e not electromagnetic in nati	ire			
S5 : Electromagnetic wav	ves exhibit polarization whil	e sound waves do not			
a) \$1, \$4 and \$5	bJ 53, 54, and 55	c) \$1, \$3 and \$5	d) 52, 53 and 54		
161. Conditions of diffraction	1S a	a			
a) $\frac{\alpha}{\lambda} = 1$	b) $\frac{\alpha}{\lambda} \gg 1$	c) $\frac{\alpha}{\lambda} \ll 1$	d) None of these		
162. A parallel beam of fast m	oving electrons is incident r	normally on a narrow slit. A	screen is placed at a large		
distance from the slit. If t	the speed of the electrons is	increased, which of the foll	lowing statement is correct		
a) Diffraction pattern is r	not observed on the screen i	n the case of electrons	5		
b) The angular width of t	the central maxima of the di	ffraction pattern will increa	ase		
c) The angular width of t	the central maxima will decr	ease			
d) The angular width of t	he central maxima will rem	ain the same			
163. In Young's experiment, o	ne slit is covered with a blue	e filter and the other (slit)	with a yellow filter. Then		
the interference pattern			2		
_					
a) Will be blue	b) Will be yellow	c) Will be green	d) Will not be formed		
a) Will be blue 164. The fringe width a distan	b) Will be yellow ace of 50 cm from the slits in	c) Will be green Young's experiment for lig	d) Will not be formed ght of wavelength 6000 Å is		
a) Will be blue 164. The fringe width a distan 0.048 cm. The fringe wid	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2	c) Will be green Young's experiment for lig λ = 5000 Å will be	d) Will not be formed ght of wavelength 6000 Å is		
 a) Will be blue 164. The fringe width a distan 0.048 cm. The fringe wid a) 0.04 cm 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 7 b) 0.4 cm	c) Will be green a Young's experiment for lig $\lambda = 5000$ Å will be c) 0.14 cm	d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm		
 a) Will be blue 164. The fringe width a distan 0.048 cm. The fringe wid a) 0.04 cm 165. A wave is propagating in 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 7 b) 0.4 cm a medium of electric dielect	 c) Will be green a Young's experiment for lig λ = 5000 Å will be c) 0.14 cm tric constant 2 and relative 	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of statements 	 b) Will be yellow ace of 50 cm from the slits in b) the same distance for 2 b) 0.4 cm a medium of electric dielect b) a medium is 	 c) Will be green a Young's experiment for light and the second secon	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of states a) 5 Ω 	 b) Will be yellow a ce of 50 cm from the slits in b) 0.4 cm a medium of electric dielect b) 376.6 Ω 	 c) Will be green a Young's experiment for lig a = 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω 	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe widting a) 0.04 cm 165. A wave is propagating in The wave impedance of states a) 5 Ω 166. Light of wavelength 589. 	 b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3nm is incident normally or 	 c) Will be green a Young's experiment for light of the solution of the side of the	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω Yhat will be the angular 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of second seco	 b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3nm is incident normally or action maximum at a distan 	c) Will be green a Young's experiment for lig $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω n the slit of width 0.1 <i>nm</i> . W ce of 1 <i>m</i> from the slit	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω 'hat will be the angular 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of states a) 5 Ω 166. Light of wavelength 589. width of the central diffrational 0.68° 	 b) Will be yellow ace of 50 cm from the slits in th at the same distance for <i>λ</i> b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3<i>nm</i> is incident normally or action maximum at a distan b) 1.02° 	c) Will be green a Young's experiment for lig $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . W ce of 1 <i>m</i> from the slit c) 0.34°	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of second seco	b) Will be yellow the of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant	c) Will be green a Young's experiment for lig $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . W ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found	d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω that will be the angular d) None of these d shifted towards red. Then		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of sea a) 5 Ω 166. Light of wavelength 589. width of the central diffrational 0.68° 167. When the wavelength of the conclusion is 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) the angular d) None of these d shifted towards red. Then 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of second a) 5 Ω 166. Light of wavelength 589. width of the central diffration a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2 b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant	c) Will be green a Young's experiment for lig $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . W ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away	d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of second a) 5 Ω 166. Light of wavelength 589. width of the central diffration a) 0.68° 167. When the wavelength of the conclusion is a) The star is approachint c) There is gravitational 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains station	d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth onary		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of sea 1) 5 Ω 166. Light of wavelength 589. width of the central diffration a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2 b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged	c) Will be green a Young's experiment for light A = 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains station in an attempt to explain	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth from arth 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of sea (a) 5 Ω 166. Light of wavelength 589. width of the central diffration (a) 0.68° 167. When the wavelength of the conclusion is a) The star is approachint c) There is gravitational 168. The idea of the quantum a) Interference 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged	 c) Will be green a Young's experiment for light = 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1<i>nm</i>. We could be the slit of width 0.1<i>nm</i>. We could be the slit of the slit	d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω /hat will be the angular d) None of these l shifted towards red. Then from earth mary		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of sea a) 5 Ω 166. Light of wavelength 589. width of the central diffration a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of the conclusion spectrum of the concl	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2 b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body	 c) Will be green a Young's experiment for light A = 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be shown the slit of width 0.1<i>nm</i>. We can be slit of width 0.1<i>nm</i>. We ca	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth from ary 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω n the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains static in an attempt to explain b) Diffraction d) Polarization of electromagnetic waves	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) None of these d) None of these d) shifted towards red. Then from earth mary 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central differance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experimental a) Sir J.C. Bose 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell	 c) Will be green a Young's experiment for light a 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1<i>nm</i>. We ce of 1<i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains static in an attempt to explain b) Diffraction d) Polarization of electromagnetic waves c) Marconi 	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth mary d) Hertz 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments a) Sir J.C. Bose 170. In Young's double slit expendents of the conclusion is a) The star is approached by the scientist experiments a) Sir J.C. Bose 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω <i>3nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell periment, the two slit act as	 c) Will be green a Young's experiment for light = 5000 Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1nm. We constant the slit of width 0.1nm. We constant the slit of width 0.1nm. We constant is measured it is found b) The star recedes away d) The star recedes away d) The star remains statication d) Polarization of electromagnetic waves c) Marconi c) coherent sources if equal a 	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) None of these d) None of these d) Shifted towards red. Then from earth mary d) Hertz mplitude A and 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational for the idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments a) Sir J.C. Bose 170. In Young's double slit experiments a) the star is approached by a specific texpendent of the conclusion is a) The star is the specific texperiments a) Sir J.C. Bose 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell periment, the two slit act as experiment with the same s	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains static in an attempt to explain b) Diffraction d) Polarization of electromagnetic waves c) Marconi coherent sources if equal a setup, the two slits are sour	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω That will be the angular d) None of these d shifted towards red. Then from earth from ary d) Hertz implitude A and ces of equal amplitude A 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments a) Sir J.C. Bose 170. In Young's double slit experiments and wavelength <i>λ</i> but are specific to the conclusion of the scientific the conclusion is a) Sir J.C. Bose 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for λ b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3nm is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell periment, the two slit act as experiment with the same se incoherent. The ratio of the	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . Will be c) 0.34° star is measured it is found b) The star recedes away d) The star recedes away d) The star remains static in an attempt to explain b) Diffraction d) Polarization of electromagnetic waves c) Marconi coherent sources if equal a setup, the two slits are source e intensity of light at the militered	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) None of these d) None of these d) None of these d) Shifted towards red. Then from earth mary d) Hertz mplitude A and rces of equal amplitude A id-point of the screen in the 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments a) Sir J.C. Bose 170. In Young's double slit experiments and wavelength <i>λ</i> but area first case to that in the set of t	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2 b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3 <i>nm</i> is incident normally or action maximum at a distan b) 1.02° light coming from a distant ag the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell periment, the two slit act as experiment with the same s is incoherent. The ratio of the econd case is	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω a the slit of width 0.1 <i>nm</i> . We ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains static lin an attempt to explain b) Diffraction d) Polarization of electromagnetic waves c) Marconi coherent sources if equal a setup, the two slits are sour e intensity of light at the material	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) None of these d) None of these d) None of these d) Shifted towards red. Then from earth from earth onary d) Hertz mplitude A and ces of equal amplitude A id-point of the screen in the 		
 a) Will be blue 164. The fringe width a distant 0.048 cm. The fringe width a) 0.04 cm 165. A wave is propagating in The wave impedance of se a) 5 Ω 166. Light of wavelength 589. width of the central diffrance a) 0.68° 167. When the wavelength of the conclusion is a) The star is approaching c) There is gravitational 168. The idea of the quantum a) Interference c) Radiation spectrum of 169. Which scientist experiments a) Sir J.C. Bose 170. In Young's double slit experiments and wavelength <i>λ</i> but are first case to that in the set a) 2:1 	b) Will be yellow ace of 50 cm from the slits in th at the same distance for 2 b) 0.4 cm a medium of electric dielect such a medium is b) 376.6 Ω 3nm is incident normally or action maximum at a distan b) 1.02° light coming from a distant of the observer effect on the light nature of light has emerged f a black body entally proved the existence b) Maxwell periment, the two slit act as experiment with the same s is incoherent. The ratio of the econd case is b) 1:2	c) Will be green a Young's experiment for light $\lambda = 5000$ Å will be c) 0.14 cm tric constant 2 and relative c) 1883 Ω n the slit of width 0.1 <i>nm</i> . Will ce of 1 <i>m</i> from the slit c) 0.34° star is measured it is found b) The star recedes away d) The star remains static in an attempt to explain b) Diffraction d) Polarization of electromagnetic waves c) Marconi coherent sources if equal a setup, the two slits are sour e intensity of light at the million c) 3:4	 d) Will not be formed ght of wavelength 6000 Å is d) 0.45 cm magnetic permeability 50. d) 3776 Ω d) 3776 Ω d) None of these d) None of these d) None of these d) Shifted towards red. Then from earth from earth mary d) Hertz mplitude A and ces of equal amplitude A id-point of the screen in the d) 4:3 		

a) Central fringe has negligible width than others	b) All fringes are of same	width
172 The distance between the first and the sixth minim	u) None of the above	of a single alit is 0.5 mm. The
1/2. The distance between the first and the sixth mining	a flight used is $E000$ Å the	on the clit width will be
a) 5 mm b) 2 5 mm	c) 1 25 mm	d) 1.0 mm
173 The angle of incidence of light is equal to Brewster's	cj 1.25 mm s angle then	u) 1.0 mm
A Reflected ray is perpendicular to refracted ray	s angre, then	
B Refracted ray is parallel to reflected ray		
C. Reflected light is polarized having its electric vector	tor in the plane of incidence	2
D. Refracted light is polarized		-
a) (A) and (D) are true b) (A) and (B) are true	c) (A) and (C) are true	d) (B) and (C) are true
174. Which of the following electromagnetic waves have	minimum frequency	
a) Microwaves b) Audible waves	c) Ultrasonic waves	d) Radiowaves
175. The frequency of light ray having the wavelength 30	000Å is	
a) $9 \times 10^{13} cycles/s$ b) $10^{15} cycles/s$	c) 90 cycles/s	d) 3000 cycles/s
176. In which of the following is the interference due to	the division of wave front	
a) Young's double slit experiment	b) Fresnel's biprism expe	eriment
c) Lloyd's mirror experiment	d) Demonstration colour	s of thin film
177. Light is incident normally on a diffraction grating th	rough which the first order	r diffraction is seen at 32°.
The second order diffraction will be seen at		
a) 48°	b) 64°	
c) 80°	d) There is no second or	ler diffraction in this case
178. A spectral line $\lambda = 5000$ Å in the light coming from	a distant star is observed a	s a 5200 Å. What will be
recession velocity of the star	_	
a) $1.15 \times 10^7 cm/s$ b) $1.15 \times 10^7 m/s$	c) $1.15 \times 10^7 km/s$	d) 1.15 <i>km/s</i>
179. A long straight wire of resistance R , radius a and let	ngth <i>l</i> carries a constant cu	rrent <i>I</i> . The Poynting vector
for the wire will be	-0 -	-0 -
a) $\frac{IR}{2}$ b) $\frac{IR^2}{R}$	c) $\frac{I^2 R}{m}$	d) $\frac{I^2 R}{I^2 R}$
$2\pi al$ al	al foloatromognatio waxao far	$2\pi al$
a) Space wave propagation is achieved by ionosphe	ric reflection	communication purposes
b) Sky wave propagation is used for line-of-sight co	mmunication	
c) Electromagnetic waves of frequencies higher that	n 30 <i>MHz</i> nenetrate ionosr	here
d) Satellite communication uses sky wave mode of	propagation	here
181. Two waves originating from source S_1 and S_2 havin	g zero phase difference and	l common wavelength λ will
show complete destructive interference at a point <i>I</i>	$P_{1} \text{ is } (S_1 P - S_2 P) =$	
3λ	4λ	, 11λ
a) 5λ b) $-\frac{1}{4}$	$\frac{c}{2}$	a) <u>2</u>
182. In a Young's double slit experiment, the separation	of the two slits is doubled. '	To keep the same spacing of
fringes, the distance <i>D</i> of the screen from the slits s	hould be made	
$a) \frac{D}{d}$ $b) \frac{D}{d}$	c) 2D	d) 4 <i>D</i>
$\frac{3}{2}$	oj 1 0	
183. A beam of light of wavelength 600 <i>nm</i> from a distar	it source falls on a single sli	t 1 <i>mm</i> wide and the
resulting diffraction pattern is observed on a screer	n 2 <i>m</i> away. The distance be	etween the first dark fringes
on either side of the central bright fringe is		
a) 1.2 mm b) 1.2 cm	cJ 2.4 <i>cm</i>	a) 2.4 mm
104. I wo concrent sources of light can be obtained by		
a) I wo unierent lamps b) Two different lamps but of the same newer		
c) Two different lamps of same nower and having t	he same colour	
d) None of the above	ne sume corour	

- 185. In hydrogen spectrum the wavelength of H_{α} line is 656 nm whereas in the spectrum of a distant galaxy, H_{α} line wavelength is 706 nm. Estimated speed of the galaxy with respect to earth is
- a) $2 \times 10^8 m/s$ b) $2 \times 10^7 m/s$ c) $2 \times 10^6 m/s$ d) $2 \times 10^5 m/s$ 186. The distance between the first dark and bright band formed in Young's double slit experiment with band width *B* is

a)
$$\frac{B}{4}$$
 b) B c) $\frac{B}{2}$ d) $\frac{3B}{2}$

- 187. If for a calcite crystal μ_0 and μ_e are the refractive indices of the crystal for O- ray and *E*-ray respectively, then along the optic axis of the crystal
- a) μ₀ = μ_e
 b) μ_e = μ₀
 c) μ_e = μ₀
 d) None of these
 188. A beam with wavelength λ falls on a stack of partially reflecting planes with separation *d*. The angle θ that the beam should make with the planes so that the beams reflected from successive planes may interfere constructively is (where n = 1, 2,)

a)
$$\sin^{-1}\left(\frac{n\lambda}{d}\right)$$
 b) $\tan^{-1}\left(\frac{n\lambda}{d}\right)$ c) $\sin^{-1}\left(\frac{n\lambda}{2d}\right)$ d) $\cos^{-1}\left(\frac{n\lambda}{2d}\right)$

189. Which one of the following have minimum wavelength

- a) Ultraviolet rays
 b) Cosmic rays
 c) *X*-rays
 d) γ-rays
 190. A star is moving towards the earth with a speed of 4.5 × 10⁶m/s. If the true wavelength of a certain line in the spectrum received from the star is 5890 Å, its apparent wavelength will be about (*c* = 3 × 10⁸m/s)
 a) 5890Å
 b) 5978Å
 c) 5802Å
 d) 5896Å
- 191. Select the right option in the following
 - a) Christian Huygens a contemporary of Newton established the wave theory of light by assuming that light waves were transverse
 - b) Maxwell provided the compelling theoretical evidence that light is transverse wave
 - c) Thomas Young experimentally proved the wave behaviour of light and Huygens assumption
 - d) All the statements give above, correctly answers the question "what is light"
- 192. The average electric field of electromagnetic waves in certain region of free space is $9 \times 10^{-4} NC^{-1}$. Then the average magnetic field in the same region is of the order of
 - a) $27 \times 10^{-4}T$ b) $3 \times 10^{-12}T$ c) $\left(\frac{1}{3}\right) \times 10^{-12}T$ d) $3 \times 10^{12}T$

193. The radius *r* of half period zone is proportional to

a)
$$\sqrt{n}$$
 b) $\frac{1}{\sqrt{n}}$ c) n^2

b) Decreases

194. In a Young's double slit experiment, the source illuminating the slits is changed from blue to violet. The width of the fringes

- a) Increases
- 195. In a Young's double slit experiment, the fringe width is found to be 2 mm, when light of wavelength 6000 Å is used. Find the change in fringe width if the whole apparatus is immersed in water of refractive index 1.33.

c) Becomes unequal

- a) 0.5 mm
 b) 1 mm
 c) 1.5 mm
 d) 2 mm
 196. A parallel plate capacitor with plate area *A* and separation between the plates *d*, is charged by a constant current *i*, consider a plane surface of area *A*/2 parallel to the plates and drawn symmetrically between the plates, the displacement current through this area, will be
 - a) i b) $\frac{i}{2}$ c) $\frac{i}{4}$ d) None of these

197. In a Young's double-slit experiment, constructive interference is produced at a certain point *P*. The

d) $\frac{1}{n}$

d) Remains constant

intensities of light at *P* due to the individual sources are 4 and 9 units. The resultant intensity at point *P* will be a) 13 units b) 25 units c) $\sqrt{97}$ units d) 5 units 198. The wavefront of distant source of unknown shape is approximately b) Cylindrical d) Plane a) Spherical c) Elliptical 199. According to Newton's corpuscular theory, the speed of light is a) Same in all the media b) Lesser in rarer medium c) Lesser in denser medium d) Independent of the medium 200. In a Young's double slit experiment, the slit separation is 1mm and the screen is 1m from the slit. For a monochromatic light of wavelength 500 nm, the distance of 3rd minima from the central maxima is a) 0.50 mm b) 1.25 mm c) 1.50 mm d) 1.75 mm 201. A parallel beam of light of wavelength 6000Å gets diffracted by a single silt of width 0.3 mm. The angular position of the first minima of diffracted light is a) 6×10^{-3} rad b) 1.8×10^{-3} rad c) 3×10^{-3} rad d) 2×10^{-3} rad 202. A circular disc is placed in front of a narrow source. When the point of observation is at a distance of 1 *meter* from the disc, then the disc covers first HPZ. The intensity at this point is I_0 . The intensity at a point distance 25 cm from the disc will be (If ratio of consecutive amplitude of HPZ is 0.9) a) $I_1 = 0.531I_0$ b) $I_1 = 0.053I_0$ c) $I_1 = 53I_0$ d) $I_1 = 5.03I_0$ 203. In Young's double slit experiment intensity at a point is (1/4) of the maximum intensity. Angular position of this point is b) $\sin^{-1}(\lambda/2d)$ a) $\sin^{-1}(\lambda/d)$ c) $\sin^{-1}(\lambda/3d)$ d) $\sin^{-1}(\lambda/4d)$ 204. An electromagnetic wave going through vacuum is described by $E = E_0 \sin(kx - \omega t)$; $B = B_0 \sin(kx - \omega t)$ ωt). Which of the following equations is true c) $E_0 B_0 = \omega k$ a) $E_0 k = B_0 \omega$ b) $E_0 \omega = B_0 k$ d) None of these 205. To observe diffraction, the size of an aperture a) Should be of the same orders wavelength should be much larger than the wavelength b) Should be much larger than the wavelength c) Have no relation to wavelength d) Should be exactly $\lambda/2$ 206. Wave which cannot travel in vacuum is b) Infrasonic a) X-ravs c) Ultraviolet d) Radiowaves 207. The fringe width in Young's double slit experiment increases when a) Wavelength increases b) Distance between the slits increases c) Distance between the source and screen decreases d) The width of the slits increases 208. Two beams of light will not give rise to an interference pattern, if a) They are coherent b) They have the same wavelength c) They are linearly polarized perpendicular to each other d) They are not monochromatic 209. In a YDSE bi-chromatic light of wavelengths 400 nm and 560 nm are used. The distance between the slits is 0.1 mm and the distance between the plane of the slits and the screen is 1m. The minimum distance between two successive regions of complete darkness is a) 4 mm b) 5.6 mm d) 28 mm c) 14 mm 210. The ratio of maximum and minimum intensities of two sources is 4:1. The ratio of their amplitudes is a) 1:3 b) 3 : 1 c) 1:9 d) 1 : 16 211. The wave theory of light was given by a) Maxwell b) Planck c) Huygen d) Young

212. Interference fringes are being produced on screen XY by the slits S_1 and S_2 . In figure, the correct fringe

locus is

$S_1 \mid W_1 \mid $	W ₃		
$S \xrightarrow{P} S_2 \xrightarrow{W_2}$	$Q W_4$		
a) PQ	b) W ₁ W ₂	c) W ₃ W ₄	d) <i>XY</i>
213. The width of a single	slit if the first minimum i	s observed at an angle 2° wit	th a light of wavelength 6980Å
a) 0.2 mm	b) 2×10^{-5} mm	c) 2×10^5 mm	d) 2 mm
214. In Young's double slit	experiment, a mica slit o	f thickness t and refractive i	ndex μ is introduced in the ray
from the first source	S_1 . By how much distance	e the fringes pattern will be d	lisplaced
d		d	
a) $\frac{1}{D}(\mu-1)t$	b) $\frac{d}{d}(\mu - 1)t$	c) $\overline{(\mu-1)D}$	d) $\frac{d}{d}(\mu-1)$
215. In Young's double slit	experiment, the distance	e between sources is 1 <i>mm</i> a	nd distance between the screen
and source is 1 <i>m</i> . If t	he fringe width on the sc	reen is 0.06 <i>cm</i> , then $\lambda =$	
a) 6000 Å	b) 4000 Å	c) 1200 Å	d) 2400 Å
216. When two coherent r	nonochromatic beams of	intensity I and 9I interface, t	he possible maximum and
minimum intensities	of the resulting beam are		
a) 9 <i>I</i> and <i>I</i>	b) 9/and 4/	c) 16/and 4/	d) 16/and /
217. Maxwell's equations	describe the fundamental	laws of	
a) Electricity only	b) Magnetism only	c) Mechanics only	d) Both (a) and (b)
218. If we observe the sing	gle slit Frunhofer diffracti	on with wavelength λ and sl	it width <i>e,</i> the width of the
central maxima is 2θ .	On decreasing the slit w	idth for the same λ	
a) θ increases			
b) θ remains unchang	ged		
c) θ decreases			
d) θ increases or deci	reases depending on the i	ntensity of light	
219. In Young's double slit	experiment, the distance	e between slits is 0.0344 mm	. The wavelength of light used is
600 mm. what is the a	angular width of a fringe	formed on a distant screen?	
a) 1°	b) 2°	c) 3°	d) 4°
220. A point source of elec	tromagnetic radiation ha	s an average power output o	of 800 W. The maximum value of
electric field at a dista	ance 4.0 <i>m</i> from the sourc	ce is	
a) 64.7 V/m	b) 57.8 <i>V/m</i>	c) 56.72 <i>V/m</i>	d) 54.77 <i>V/m</i>
221. For a wave propagati	ng in a medium, identify	the property that is independ	dent of the others
a) Velocity		b) Wavelength	
c) Frequency		d) All these depend o	on each other
222. In Young's double ali	t experiment, the seventh	maximum with wavelength	λ_1 is at a distance d_1 and the
same maximum with	wavelength λ_2 is at distant	nce d_2 . Then $d_1/d_2 =$	
λ_1	λ_2	c) $\frac{\lambda_1^2}{\lambda_1}$	d) $\frac{\lambda_2^2}{\lambda_2^2}$
λ_2	λ_1	λ_2^2	$\frac{\lambda_1^2}{\lambda_1^2}$
223. An oil flowing on wat	er seems coloured due to	interference. For observing	this effect, the approximate
thickness of the oil fil	m should be		
a) 100 Å	b) 10000 Å	c) 1 mm	d) 1 <i>cm</i>
224. The wave theory of li	ght was given by		
a) Maxwell	b) Planck	c) Huygen	d) Young
225. In Young's double slit	experiment, the phase d	ifference between the light v	vaves reaching third bright
fringe from the centra	al fringe will be ($\lambda = 600$	0Å)	
a) Zero	b) 2π	c) 4π	d) 6π
226. Laser beams are used	l to measure long distance	e because	2
a) They are monochr	omatic	b) They are highly po	blarized
c) They are coherent		d) They have high de	gree of parallelism
j			

- 227. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_1 is found to be coincident with the third maximum at λ_2 . So
- a) 3λ₁ = 0.3λ₂
 b) 3λ₁ = λ₂
 c) λ₁ = 3.5λ₂
 d) 0.3λ₁ = 3λ₂
 228. White light is used to illuminate the two slits in a Young's double slit experiment. The separation between slits is *b* and the screen is at a distance *d*(> > *b*) from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing, figure. Some of these missing wavelengths are

a)
$$\lambda = \frac{b^2}{d}, \frac{2b^2}{3d}$$
 b) $\lambda = \frac{b^2}{2d}, \frac{3b^2}{2d}$ c) $\lambda = \frac{2b^2}{3d}$ d) $\lambda = \frac{3b^2}{4d}$

229. A beam of light *AO* is incident on a glass slab ($\mu = 1.54$) in a direction as shown in figure. The reflected ray *OB* is passed through a Nicol prism. On viewing through a Nicole prism, we find on rotating the prism that

a) The intensity is reduced down to zero and remains zero

b) The intensity reduces down some what and rises again

c) There is no change in intensity

d) The intensity gradually reduces to zero and then again increases

230. A parallel beam of fast moving electrons is incident normally on a narrow slit. A screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statement is correct?

a) Diffraction pattern is not observed on the screen in the case of electrons

- b) The angular width of the central maximum of the diffraction pattern will increase
- c) The angular width of the central maximum will decrease
- d) The angular width of the central maximum will remains the same
- 231. Which of the following radiations has the least wavelength
 - a) γ -rays b) β -rays c) α -rays d) X-rays

232. Which of the following waves have the maximum wavelengtha) *X*-raysb) I.R. raysc) UV rays

b) 126°56′

d) Radio waves

d) $1.945 \times 10^{-7} m$

d) 30°4′

233. A circular disc is placed in front of a narrow source. When the point of observation is 2 *m* from the disc, then it covers first HPZ. The intensity at this point is *I*. When the point of observation is 25 *cm* from the disc then intensity will be

a)
$$\left(\frac{R_6}{R_2}\right)^2 I$$
 b) $\left(\frac{R_7}{R_2}\right)^2 I$ c) $\left(\frac{R_8}{R_2}\right)^2 I$ d) $\left(\frac{R_9}{R_2}\right)^2 I$

234. A light of wavelength 5890 Å falls normally on a thin air film. The minimum thickness of the film such that the film appears dark in reflected light is

```
a) 2.945 \times 10^{-7}m b) 3.945 \times 10^{-7}m
```

235. Polarizing angle for water is 53°4′. If light is incident at this angle on the surface of water and reflected, the angle of refraction is

c) $4.95 \times 10^{-7} m$

c) 36°56′

a) 53°4′

- 236. In Young's double slit experiment, the separation between the slit and the screen increases. The fringe width
 - a) Increases b) Decreases c) Remains unchanged d) None of these

 237. In which of the following is the interference due to the division of wavefront? a) Young's double slit experiment b) Fresnel's biprism experiment c) Liyod's mirror experiment d) Demonstration colours of thin film 238. Air has refractive index 1.0003. The thickness of air column, which will have one more wavelength of 				
yellow light (6000A) that	h) 2 cm			
	$D \int 2 C m$		$u_j \ge \kappa m$	
239. A star emitting radiation	at a wavelength of 5000A is	s approaching earth with a	velocity of $1.5 \times 10^{\circ} m/s$.	
	h of the radiation as receive	ed on the earth, is		
aj 25A	b) Zero	c) 100A	d) 2.5A	
240. In Young's double slit exp the fringes are 0.012 cm v a) 0.024 cm	wide. What is the distance l b) 2.4 <i>cm</i>	used is 6000A and the scre petween the slits c) 0.24 <i>cm</i>	d) 0.2 <i>cm</i>	
241. Which of the following ca	nnot be explained on the b	asis of wave nature of light	?	
I. Polarization				
II. Optical activity				
III. Photoelectric effect				
IV. Compton effect				
a) (111) and (1V)	b) (11) and (111)	c) (1) and (11)	d) (11) and (1 v)	
242. The figure shows a double $(u + 2)$ has an actional.	e slit experiment where <i>P</i> a	and Q are the slits. The patr	Televise the control friends of $n\lambda$	
and $(n + 2)\lambda$ respectively	, where <i>n</i> is a whole numb	er and λ is the wavelength.	Taking the central tringe as	
zero, what is formed at x				
$P = \frac{n\lambda}{(n+2)\lambda} e^{\frac{n}{2}}$				
a) First bright	b) First dark	c) Second bright	d) Second dark	
243. When the angle of incider the refracted ray inside th	the material is 60° , the material is (in ms^{-1})	reflected light is complete	ly polarized. The velocity of	
a) 3 × 10 ⁸	b) $\left \frac{3}{\sqrt{2}} \right \times 10^8$	c) $\sqrt{3} \times 10^{8}$	d) 0.5 × 10 ⁸	
244. In Young's double slit eve	LVZJ	light is replaced by white	ight	
 a) All bright fringes become white b) All bright fringes have colours between violet and red c) Only the central fringe is white, all other fringes are coloured 				
245. By corpuscular theory of	light, the phenomenon whi	ch can be explained is		
a) Refraction	b) Interference	c) Diffraction	d) Polarization	
246. In Young's double slit exp will be intensity at the po	periment, the intensity on so int where path difference i	creen at a point where path s /4 ?	difference is λ is <i>K</i> . What	
a) <i>K</i> /4	b) <i>K</i> /2	c) <i>K</i>	d) zero	
247. If I_0 is the intensity of the intensity when the slit wi	principal maximum in the dth is doubled?	single slit diffraction patter	rn, then what will be its	
a) 2 <i>I</i> ₀	b) 4 <i>I</i> ₀	c) <i>I</i> ₀	d) $\frac{I_0}{2}$	
248. Electromagnetic radiation	n of highest frequency is		۷.	
a) Infrared radiations	b) Visible radiation	c) Radio waves	d)γ-rays	

249.	Maximum diffraction takes place in a given slit for		
	a) γ – rays	b) Ultraviolet light	
	c) Infrared light	d) Radiowaves	
250.	In Young's double slit experiment, an interference pa	attern is obtained on a scre	en by a light of wavelength
	6000Å coming from the coherent sources S_1 and S_2 .	At certain point <i>P</i> on the s	creen third dark fringe is
	formed. Then the path difference $S_1P - S_2P$ in micro	ons is	
	a) 0.75 b) 1.5	c) 3.0	d) 4.5
251.	The two slits at a distance of 1 mm are illuminated b	y the light of wavelength 6	$1.5 \times 10^{-7} m$. The
	interference fringes are observed on a screen placed	l at a distance of 1 <i>m</i> . The d	istance between third dark
	fringe and fifth bright fringe will be		
	a) 0.65 mm b) 1.63 mm	c) 3.25 mm	d) 4.88 mm
252.	To observe diffraction the size of an obstacle		
	a) Should be of the same order as wavelength	b) Should be much larger	than the wavelength
	c) Have no relation to wavelength	d) Should be exactly $\lambda/2$	
253.	An unpolarised beam of intensity I_0 is incident on a	pair of nicols making an an	gle of 60° with each other.
	The intensity of light emerging from the pair is		
	a) I_0 b) $I_0/2$	c) <i>I</i> ₀ /4	d) <i>I</i> ₀ /8
254.	A light has amplitude A and angle between analyser	and polarizer is 60°. Light	is reflected by analyser has
	amplitude	_	
	a) $A\sqrt{2}$ b) $A/\sqrt{2}$	c) $\sqrt{3}A/2$	d) A/2
255.	Oil floating on water looks coloured due to interfere	nce of light. What should b	e the order of magnitude of
	thickness of oil layer in order that this effect may be	observed?	
	a) 10,000 Å b) 1 cm	c) 10 Å	d) 100 Å
256.	The wavelength of light observed on the earth, from	a moving star is found to d	lecrease by 0.05%. Relative
	to the earth the star is		
	a) Moving away with a velocity of $1.5 \times 10^5 m/s$		
	b) Coming closer with a velocity of $1.5 \times 10^5 m/s$		
	c) Moving away with a velocity of $1.5 \times 10^4 m/s$		
	d) Coming closer with a velocity of $1.5 \times 10^4 m/s$		
257.	An interference pattern was made by using red light	. If the red light changes wi	th blue light, the fringes
	will become	. – .	
	a) Wider b) Narrower	c) Fainter	d) Brighter
258.	Two waves having the intensities in the ratio of 9:1	produce interference. The i	atio of maximum to
	minimum intensity is equal to		1) 0 4
250	a) 10:8 b) 9:1	c) 4:1	d) 2:1
259.	The theory associated with secondary wavelets is		•,
	a) Doppler's effect	b) Special theory of relati	vity
200	c) Huygen's wave theory	a) None of the above	th 500 pm. The distance
260.	A harrow she of which 2 mm is muminated by mono	chromatic light of waveleng	gui 500 nm. The distance
	a) 5 mm b) 0.5 mm	c) 1 mm	d) 10 mm
261	The Young's double slit experiment is performed with	CJ I IIIII th blue and with green ligh	uj 10 mm
201.	The found s double sitt experiment is perior med with 54.0 Å respectively. If w is the distance of 4th maxim	ui blue and with green ligh	t of wavelength 4500 A and
	5400 A respectively. If x is the distance of 4 th maxim	h) $x(h u_0) > x(groon)$	-11
	a) $x(blue) = x(green)$	d) $x(\text{blue}) > x(\text{green}) = E$	100/4260
262	$C_{J} \times (Diue) < \chi (green)$	u) $x(\text{plue})/x(\text{green}) = 5^2$	400/4300
202.	$\begin{array}{c} \text{rrequency of wave is o } \times 10^{-1} \Pi Z. \text{ file wave is} \\ \text{a) Padiowave} \\ \end{array}$	c) Y-ray	d) None of these
263	a radiowave D initiowave d $40-46$ d		
200.	In young s double slit experiment $\frac{1}{D} = 10^{-1} (d = \text{dist})^{-1}$	ance between slits, <i>D</i> =dist	ance of screen from the
	slits). At a point <i>P</i> on the screen resultant intensity i	s equal to the intensity due	to the individual slit I_0 .

	Then the distance of noin	t D from the control mayim	$\lim_{k \to \infty} i_{k} \left(1 - c_{000} \right)^{k}$	
	a) 0.5 mm	h) 2 mm	$\frac{1}{2} = 0000 \text{ A}$	d) 4 mm
261	a) 0.5 IIIII	DJ Z IIIII d in an VDCE aunaniment 7	CJ I IIIIII The alit width is d When th	u) 4 mm
204	increased then	u in an <i>i DSE</i> experiment.	The shit which is a. when th	le velocity of electron is
	a) No interference is obse	arvod	h) Eringo width incrosco	c.
	a) No interference is obse	el veu	d) Fringe width romains	samo
265	Light ways travel in yac	s um along the <i>u</i> avis Whi	u) Fillige width fellallis	same
205	Light waves that in value a_{1}	b) $x = constant$	c) z = constant	d) $x + y + z = constant$
266	a) $y = constant$ In Young's double slit ever	DJ x = constant	$c_{j} = c_{j} = c_{j}$	$u_j x + y + z = constant$
200	source is 1m. If the fringe	width on the screen is 0.04	Source is I linn and distant	te between the screen and
	$_{2}$ $_{2}$	b) 4000 Å	$r_{\rm c}$ 1200 Å	d) 2400 Å
267	a) 0000 A	DJ 4000 A	CJ 1200 A	uj 2400 A
207	superpose at a certain po the intensities in the two	int. If in once case the phas cases will be	e difference is 0° and in ot	her case is $\pi/2$, the ratio of
	a) 1:1	b) 2:1	c) 4:1	d) None of these
268	In an interference pattern	n produced by two identica	l slits, the intensity at the s	lit of the central maximum
	is <i>I</i> . The intensity at the s	ame spot when either if the	e slits is closed is I_0 . Therefo	ore
	a) $I = I_0$	•	Ū	
	b) $I = 2I_0$			
	c) $I = 4I_0$			
	d) I and I_0 are not related	to each other		
269	Red light of wavelength 6	25 <i>nm</i> is incident normally	on an optical diffraction g	rating with 2×10^5 lines/m.
	Including central principa	al maxima, how many maxi	ma may be observed on a s	screen which is far from the
	grating			
	a) 15	b) 17	c) 8	d) 16
270	In Young's double slit exp	eriment, 12 fringes are obt	tained to be formed in a ce	rtain segment of the screen
	when light of wavelength	600 mm is used. If the way	velength of light is changed	to 400 mm, number of
	fringes observed in the sa	ame segment of the screen	is given by	
	a) 12	b) 18	c) 24	d) 30
271	In a biprism experiment,	5 th dark fringe is obtained a	at a point. If a thin transpa	rent film is placed in the
	path of one of waves, then	n 7 th bright fringes is obtair	ned at the same point. The	thickness of the film in
	terms of wavelength l and	d refractive index μ will be		
	1.5λ	b) $1.5(n-1)$	c) $25(u-1)$	$d = \frac{2.5\lambda}{2.5\lambda}$
	$aJ \overline{(\mu-1)}$	$0) 1.5(\mu - 1)\lambda$	$c_{j} 2.5(\mu - 1)\lambda$	$(\mu - 1)$
272	An astronaut floating free	ely in space decides to use h	nis flash light as a rocket. H	e shines a 10 watt light
	beam in a fixed direction	so that he acquires momen	tum in the opposite direct	ion. If his mass is 80 <i>kg</i> ,
	how long must he need to	o reach a velocity of 1 ms ⁻¹		
	a) 9 <i>s</i>	b) 2.4 × 10 ³ s	c) $2.4 \times 10^6 s$	d) 2.4 × 10 ⁹ s
273	In Young's double slit exp	periment if monochromatic	light used is replaced by w	vhite light, then
	a) No fringes are observe	d		
	b) Only central fringe is w	vhite, all other fringes are c	oloured	
	c) All bright fringes becom	me white		
	d) All bright fringes have	colours between violet and	l red	
274	A single slit of width d is i	illuminated by violet light o	of wavelength 400 nm and	the width of the diffraction
	patter is measured as <i>y</i> .	When half of the slit width	is covered and illuminated	by yellow light of
	wavelength 600 nm the v	width of the diffraction nat	. .	
	wavelengen 000 mil, ene v	which of the unitaction path	tern is	

- b) *y/*3
- c) 3y
- d) None of the above

275.	For the sustained interfer	ence of light, the necessary	condition is that the two s	ources should	
	a) Have constant phase di	ifference	b) Be narrow		
	c) Be close to each other		d) Of same amplitude		
276	In a two-slit experiment,	with monochromatic light,	fringes are obtained on a s	creen placed at some	
	distance from the slits. If	the screen is moved by 5 $ imes$	$10^{-2}m$ towards slits, the c	hange in fringe width is	
	$10^{-3}m$ Then the waveleng	gth of light used is (given tl	nat distance between the s	lits is 0.03 <i>mm</i>)	
	a) 4000 Å	b) 4500 Å	c) 5000 Å	d) 6000 Å	
277.	Electromagnetic waves ar	e transverse in nature is ev	vident by		
	a) Polarization	b) Interference	c) Reflection	d) Diffraction	
278	A polarizer is used to	-	-	-	
	a) Reduce intensity of ligh	nt	b) Produce polarized ligh	t	
	c) Increase intensity of lig	ght	d) Produce unpolarised li	ght	
279.	In case of linearly polarize	ed light, the magnitude of t	he electric field vector	-	
	a) Does not change with t	ime			
	b) Varies periodically with	h time			
	c) Increases and decrease	es linearly with time			
	d) Is parallel to the direct	ion of propagation			
280	In young's double slit exp	eriment, the intensity of th	e maxima is <i>I</i> . If the width o	of each slit is doubled, the	
	intensity if the maxima w	ill be			
	a) <i>I</i> /2	b) 2 <i>I</i>	c) 4 <i>I</i>	d) <i>I</i>	
281	The speed of electromagn	etic wave in vacuum deper	nds upon the source of radi	ation	
	a) Increases as we move f	from γ -rays to radio waves	b) Decreases as we move	from γ -rays to radio waves	
	c) Is same for all of them		d) None of these		
282.	In Young's double slit exp	eriment the amplitudes of	two sources are 3a and a r	espectively. The ratio of	
	intensities of bright and d	ark fringes will be			
	a) 3 : 1	b) 4 : 1	c) 2:1	d) 9 : 1	
283	Illumination of the sun at	noon is maximum because	-	-	
	a) Scattering is reduced a	t noon	b) Refraction of light is m	inimum at noon	
	c) Rays are incident almo	st normally	d) The sun is nearer to ea	rth at noon	
284	The intensity of gamma ra	adiation from a given sourc	e is <i>I</i> . On passing through 3	36 <i>mm</i> of lead, it is reduced	
	to $\frac{I}{I}$. The thickness of lead	which will reduce the inte	nsity to ^I will be		
	8 (1) 19 mm	h) 12 mm	$\frac{2}{2}$	d) 0 mm	
20E	a) 10 mm	UJ 12 mm	C) $0 mm$	a poppoficating surface is [a	
203	is the velocity of light	in electromagnetic wave of	intensity (waits/m) on	a nom enecting surface is [c	
	a) La	b) La^2	a) I/a	d) L/a^2	
206	dj IC In an interformance experir	UJIC nont thind bright fringes of	$C_{J}I/C$	$u_J I/C$	
200.	nm What should be the r	nent, third bright fringes an	re obtained at a point on the	ie screen with a light of 700	
	nini. what should be the v	vavelength of the light sour	ce ili order to obtaili 5 th bi	ight if flige at the same	
	point:	$b \in 0.0$ nm	a) 120 nm	d) 750 nm	
207	a) 030 IIIII A alit of width a is illumin	UJ SUU IIIII atad with a manashramati	CJ 420 IIII a light of wavelength 1 fee	uj 750 IIII	
207	diffraction nattorn is obse	ated with a monocili offiation	a distance D from the slit	To increase the width of the	
	antral maximum and sha	a veu oli a screen placeu at		To increase the width of the	
	central maximum one site	Julu	h) Dograda a		
	a) Decrease D		b) Decrease a	aanaad	
200	$C = \int dt $	ourses of the same amplitu	u) The which cannot be ch	minetes the sensor The	
200	intonsity of the control	Sources of the same amplitude L	iue A anu wavelength λ lill	miniates the screen. The	
	he	r_0 . If the sources	s were incoherent, the inte	nsity at the same point will	
	DC			In	
	a) 4 <i>I</i> ₀	b) 2 <i>I</i> ₀	c) <i>I</i> ₀	d) $\frac{10}{2}$	
				<u>ц</u>	

289. Two parallel slits 0.6 mm apart are illuminated by light source of wavelength 6000 Å. The distance

	between two consecutive	dark fringes on a screen 1	<i>m</i> away from the slits is	
	a) 1 <i>mm</i>	b) 0.01 mm	c) 0.1 m	d) 10 <i>m</i>
290	As a result of interference	e of two coherent sources o	f light energy is	
	a) Redistributed and the	distribution does not very	with time	
	b) Increased			
	c) Redistributed and that	distribution changes with	time	
	d) Decreased			
291	Which of the following sta	atements indicates that ligh	nt waves are transverse	
	a) Light waves can travel	in vacuum	b) Light waves show inte	rference
	c) Light waves can be pol	arized	d) Light waves can be dif	fracted
292	Huygen's principle of sec	ondary wavelets may be us	ed to	
	a) Find the velocity of light	nt in vacuum	b) Explain the particle be	havior of light
	c) Find the new position	of the wavefront	d) Explain photoelectric e	effect
293	To demonstrate the phen	omenon of interference, we	e require two sources whic	h emit radiation
	a) Of the same frequency	and having a definite phase	e b) Of nearly the same free	quency
	relationship			
	c) Of the same frequency		d) Of different wavelengt	hs
294	The electric and the mag	netic field, associated with a	an <i>e</i> .m. wave propagating a	long the $+z$ -axis, can be
	represented by			
	a) $\left[\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{k}\right]$	b) $\left[\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{j}\right]$	c) $\left[\vec{E} = E_0 \hat{k}, \vec{B} = B_0 \hat{\iota}\right]$	d) $\left[\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{i}\right]$
295	In Young's double slit exp	periment with sodium vapo	ur lamp of wavelength 589	nm and the slits 0.589 mm
	apart, the half angular wi	dth of the central maximun	n is	
	a) $\sin^{-1}(0.01)$	b) sin ⁻¹ (0.0001)	c) $\sin^{-1}(0.001)$	d) $\sin^{-1}(0.1)$
296	In Young's double slit exp	periment intensity at a poin	t is $(1/4)$ of the maximum	intensity. Angular position
	of this point is			
	a) $\sin^{-1}(\lambda/d)$	b) $\sin^{-1}(\lambda/2d)$	c) $\sin^{-1}(\lambda/3d)$	d) $\sin^{-1}(\lambda/4d)$
297	If the separation between	slits in Young's double slit	experiment is reduced to	$\frac{1}{r}$ rd, the fringe width
	hecomes n times. The val	ue of <i>n</i> is	1	3
	a) 3	1	c) 9	1
	uj 5	b) $\frac{1}{3}$		d) -
298	Wave nature of light follo	ws because		-
	a) Light rays travel in a st	raight line		
	b) Light exhibits the pher	nomena of reflection and re	fraction	
	c) Light exhibits the pher	omena of interference		
	d) Light causes the pheno	mena of photoelectric effe	ct	
299	Which radiation in sunlig	ht, causes heating effect		
	a) Ultraviolet	b) Infrared	c) Visible light	d) All of these
300	In a given direction, the in	ntensities of the scattered li	ight by a scattering substar	nce for two beams of light
	are in the ratio of 256 : 81	I. The ratio of the frequence	cy of the first beam to the fr	equency of the second
	beam is			
	a) 64 : 127	b) 1 : 2	c) 64 : 27	d) None of these
301	Which of the following dia	agrams represent the varia	tion of electric field vector	with time for a circularly
	polarized light			
	. →.	>.	\rightarrow	
	a) ^E	b) $ E $	c) <i>E</i>	d)
				h h h
	$t \rightarrow$	$t \rightarrow$	$t \rightarrow$	

302. In a Young's experiment, one of the slits is covered with a transparen't sheet of thickness 3.6×10^{-3} cm due to which position of central fringe shifts to a position originally occupied by 30th fringe. The refractive

 $t \rightarrow$

 $t \rightarrow$

	index of the sheet, if $\lambda = 6000$ Å, is				
	a) 1.5	b) 1.2	c) 1.3	d) 1.7	
303	The range of wavelength	of the visible light is			
	a) 10 Å to 100 Å	b) 4,000 Å to 8,000 Å	c) 8,000 Å to 10,000 Å	d) 10,000 Å to 15,000 Å	
304	Radius of central zone of	circular zone plate is 2.3m	n. Wavelength of incident l	ight is 5893 Å. Source is at a	
	distance of $6m$. Then the	distance of first image will	be		
	a) 9 <i>m</i>	b) 12 <i>m</i>	c) 24 <i>m</i>	d) 36m	
305	A heavenly body is recedi	ing from earth such that the	e fractional change in λ is 1,	, then its velocity is	
	a) <i>c</i>	b) $\frac{3c}{5}$	c) $\frac{c}{5}$	d) $\frac{2c}{5}$	
306	The phenomenon of pola	rization of light indicates th	at		
	a) Light is a longitudinal	wave			
	b) Light is a transverse w	ave			
	c) Light is not a wave				
	d) Light travels with the v	velocity of $3 \times 10^8 \text{ ms}^{-1}$			
307	When unpolarised light b	eam is incident from air on	to glass ($n = 1.5$) at the po	larizing angle	
	a) Reflected beam is pola	rized 100 percent			
	b) Reflected and refracted	d beams are partially polari	zed		
	c) The reason for (a) is the	nat almost all the light is ref	lected		
	d) All of the above				
308	In the adjacent diagram, (CP represents a wavefront a	and AO & BP, the correspon	nding two rays. Find the	
	condition on θ for constructive interference at P between the ray BP and reflected ray OP				

a) $\cos \theta = 3\lambda/2d$

c) $\sec \theta - \cos \theta = \lambda/d$ d) $\sec \theta - \cos \theta = 4\lambda/d$

- 309. The sun is rotating about its own axis. The spectral lines emitted from the two ends of its equator, for an observer on the earth, will show
 - a) Shift towards red end
 - b) Shift towards violet end
 - c) Shift towards red end by one line and towards violet end by other

b) $\cos \theta = \lambda/4d$

- d) No shift
- 310. Evidence for the wave nature of light cannot be obtained from
- a) Reflection
 b) Doppler effect
 c) Interference
 d) Diffraction
 311. A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates Young's double slit and gives rise to two overlapping interference patterns on the screen. The central maximum of both lights coincide. Further, it is observed that the third bright fringe of known light coincides with the 4th bright fringe of unknown light. From this data, the wavelength of the unknown light is
 a) 393.4 nm
 b) 885.0 nm
 c) 442.5 nm
 d) 776.8 nm
- 312. A single slit Fraunhofer diffraction pattern is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern for red light of wavelength 6500Å?
- a) 4400 Å
 b) 4100 Å
 c) 4642.8 Å
 d) 9100 Å
 313. A narrow slit of width 2mm is illuminated by monochromatic light of wavelength 500nm. The distance between the first minima on either side on a screen at a distance of 1m is
 - a) 5mm b) 0.5mm c) 1mm d) 10mm

314.	Which of following can not l	be polarized		
	a) Radio waves b) Ultraviolet rays	c) Infrared rays	d) Ultrasonic waves
315.	In Young's experiment, the	distance between the slits	s is reduced to half and the	distance between the slit
	and screen is doubled, then	the fringe width		
	a) Will not change		b) Will become half	
	c) Will be doubled		d) Will become four times	;
316.	In a Young's double slit exp	periment using red and bl	ue lights of wavelengths 6	00 nm and 480 nm
	respectively, the value of <i>n</i> f	from which the <i>nth</i> red fri	inge coincides with $(n + 1)$) the blue fringe is
	a) 5 b	o) 4	c) 3	d) 2
317.	In Young's experiment, the t	third bright band for light	of wavelength 6000 Å coi	ncides with the fourth
	bright band for another sou	rce of light in the same ar	rangement. Then the wav	elength of second source is
	a) 3600 Å b	o) 4000 Å	c) 5000 Å	d) 4500 Å
318.	In Fresnel's biprism ($\mu = 1$.	5) experiment the distant	ce between source and bip	rism is 0.3 <i>m</i> and that
	between biprism and screen	n is $0.7m$ and angle of pris	sm is 1°. The fringe width w	vith light of wavelength
	6000 Å will be			
	a) 3 <i>cm</i> b	o) 0.011 cm	c) 2 <i>cm</i>	d) 4 <i>cm</i>
319.	The rectilinear propagation	of light in a medium is du	ie to its	
	a) High Velocity b) Large wavelength	c) High frequency	d) Source
320.	If an interference pattern ha	as maximum and minimu	m intensities in 36 : 1 ratio	then what will be the ratio
	of amplitudes			
	a) 5 : 7 b	o) 7 : 4	c) 4:7	d) 7 : 5
321.	Light of wavelength 500nm	is used to form interferen	nce pattern in Young's dou	ble slit experiment. A
	uniform glass plate of refrac	ctive index 1.5 and thickn	ess 0.1 <i>nm</i> is introduced in	the path of one of the
	interfering beams. The num	ber of fringes which will s	shift the cross wire due to	this is
	a) 100 b	o) 200	c) 300	d) 400
322.	If white light is used in the N	Newton's rings experimen	it, the colour observed in t	he reflected light is
	complementary to that obse	erved in the transmitted li	ight is complementary to the	hat observed in the
	transmitted light through th	ie same point. This is due	eto	
	a) 90° change of phase in or	te of the reflected waves		
	b) 180° change of phase in c	one of the reflected waves		
	c) 145° change of phase in c	one of the reflected waves		
	d) 45° change of phase in or	the of the reflected waves		
323.	A beam of light of waveleng	th 600 nm from a distanc	e source falls on a single sl	it 1.00 mm wide and the
	resulting diffraction pattern	is observed on a screen A	2m away. The distance bet	ween the first dark fringes
	on either side of the central	bright fringe is		
224	a) 1.2 cm b)) 1.2 mm)2 tha thisleran af sin asl	CJ Z.4 CM	a) 2.4 mm
324.	Air has refractive index 1.00	J3, the thickness of air col	umn, which will have one	more wave length of yellow
	light (6000 A) than in the sa	ame thickness of vacuum	IS	
005	a) 2 mm b	oj 2 cm	c) 2 m	d) 2 km
325.	I wo stars are situated at a c	listance of 8 light year fro	om the earth. These are to	be just resolved by a
	telescope of diameter 0.25 r	n. If the wavelength of lig	ght used is 5000A, then the	distance between the stars
	must be 2×10^{10}			124001010
000	a) 3×10^{10} m b	$0.335 \times 10^{11} \text{ m}$	c) 1.95×10^{-1} m	a) 4.32×10^{10} m
326.	Electromagnetic waves trav	el in a medium which has	relative permeability 1.3 a	and relative permittivity
	2.14. Then the speed of the (2.14)	electromagnetic wave in t	the medium will be 2.6×10^8	1) 1 0 108 /
227	a) $13.6 \times 10^{\circ} m/s$ b	$0) 1.8 \times 10^{2} m/s$	C) $3.6 \times 10^{6} m/s$	a) $1.8 \times 10^{\circ} m/s$
327.	in rreshei s diprism experir	nent, on increasing the pr	isin angle, Iringe Width Wi	11
	a) Increase		d) Depend on the next	of object
220	A dit E om wide is imadiate	d normally with mission	up Depend on the position	Then the angular spread of
.120.	л sin s ciii wide is ii i auiateo	u normany with fillerowa	ves of wavelength 1.0 till.	i nen die angulai spreau Ol

	the central maximum on	either side if incident light	is nearly	
	a) 1/5 rad	b) 4 rad	c) 5 rad	d) 6 rad
329	Which of the following p	henomena can explain quan	tum nature of light	
	a) Photoelectric effect	b) Interference	c) Diffraction	d) Polarization
330	Two slits, 4 mm apart are	e illuminated by light of way	velength600 Å. What will b	e the fringe width on a
	screen placed 2 m from t	he slits?		
	a) 0.12 mm	b) 0.3 mm	c) 3.0 mm	d) 4.0 mm
331	Consider the following st	atements in case of Young's	s double slit experiment.	
	<i>I</i> . A slit <i>S</i> is necessary	y if we use an ordinary exte	nded source of light.	
	/I. A slit <i>S</i> is not needed	ed if we use an ordinary but	well collimated beam of lig	ght.
	/II. A slit <i>S</i> is not neede	ed if we use a spetially cohe	rent source of light.	
	Nhich of the above stater	nent are correct?		
	a) (i)And (iii)	b) (ii) and (iii)	c) (i)and (ii)	d) (i), (b) and (iii)
332	. For skywave propagation	n of a 10 <i>MHz</i> signal, what s	hould be the maximum ele	ctron density in ionosphere
	a) $\sim 1.2 \times 10^{12} m^{-3}$	b) ∼10 ⁶ m ^{−3}	c) $\sim 10^{14} m^{-3}$	d) $\sim 10^{22} m^{-3}$
333.	In a Young's double slit e	xperiment the intensity at a	a point where the path diffe	erence is $\frac{\lambda}{6}$ (λ being the
	wavelength of the light u	sed) is <i>I</i> . If I_0 denotes the n	naximum intensity, I/I_0 is e	equal to
	ر 1 ا	$\sqrt{3}$	、1	, 3
	a) $\sqrt{2}$	b) $\frac{1}{2}$	$\frac{c}{2}$	d) $\frac{1}{4}$
334	. Two sources of waves ar	e called coherent if		
	a) Both have the same ar	nplitude of vibrations		
	b) Both produce waves o	f the same wavelength		
	c) Both produce waves o	f the same wavelength havi	ng constant phase differen	ce
	d) Both produce waves h	aving the same velocity		
335	. A beam of light of wavele	ength 600 nm from a distant	t source falls on a single slit	t 1 mm wide and the
	resulting diffraction patt	ern is observed on a screen	2 m away. The distance be	etween the first dark fringes
	on either side of the cent	ral bright fringe is		
	a) 1.2 cm	b) 1.2 mm	c) 2.4 cm	d) 2.4 mm
336	nth Bright fringe if red light	ght ($\lambda_1 = 7500$ Å) coincides	s with $(n+1)^{th}$ bright frin	ge of green light($\lambda_2 =$
	<i>6000 Å</i> . The value of <i>n=</i> ?)		
	a) 4	b) 5	c) 3	d) 2
337	. Which of the following st	atements is true, when sph	erical waves fall on a plane	refracting surface,
	separating two media			
	a) The reflected waves for	orm spherical wave fronts		
	b) The reflected waves for	orm plane wave fronts		
	c) The refracted waves for	orm plane wave fronts		
	d) There are no refracted	l waves		
338.	Brewster's angle in term	s of refractive index (n) of t	the medium	4
	a) $\tan^{-1}[\sqrt{n}]$	b) $\sin^{-1}[n]$	c) $\sin^{-1}[\sqrt{n}]$	d) $\tan^{-1}[n]$
339	In double slit experiment	t, for light of which colour th	ne fringe width will be mini	imum
	a) Violet	b) Red	c) Green	d) Yellow
340	. If a white light is used in	Young's double slit experim	ients then a very large num	iber of coloured fringes can
	be seen			
	a) With first order violet	fringes being closer to the o	central white fringes	
	b) First order red fringes	being closer to the central	white fringes	
	c) with a central white fi	ringe		
711	u) with a central black fr	ilige	anlagad hura distance in the	an a glaga plata of or o
341	. III Young's double slit exj	periment, the tringes are dis	splaced by a distance x whe	en a glass plate of one

refractive index 1.5 is introduced in the path of one of the beams. When this plate in replaced by another plate of the same thickness, the shift of fringes is (3/2)x. The refractive index of the second plate is

	a) 1.75	b) 1.50	c) 1.25	d) 1.00	
342	. Two waves are represent	ted by the equations $y_1 = a$	$a \sin \omega t$ and $y_2 = a \cos \omega t$.	Гhe first wave	
	a) Leads the second by π		b) Lags the second by π		
	c) Leads the second by $\frac{\pi}{2}$		d) Lags the second by $\frac{\pi}{2}$		
343	. In a Young' s double slit e	experiment, the intensity at	a point where the path diff	ference	
	is $\frac{\lambda}{6}$ where (λ is waveleng	th of the light) is I . If I_0 de	notes the maximum intensi	ity, then	
	$\frac{1}{I_0}$ is equal to		_		
	a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{3}{4}$	
344	. A Young's double slit exp	eriment uses a monochron	natic source. The shape of t	the interference fringes	
	formed on a screen is	h) Cinala	a) Straight line	d) Davahala	
345	In a VDSF hi-chromatic li	b) Clicle abt of wavelengths 400 nm	c) straight life and 560 nm are used. The	distance between the slits	
515	is 0.1 mm and the distance	ce between the plane of the	slits and the screen is 1 m.	The minimum distance	
	between two successive i	b) E 6 mm	ess 1s	d) 20 mm	
346	$\frac{1}{1} \frac{1}{1} \frac{1}$	$y_{1} = \beta_{1}$ and $y_{2} = A_{2} \sin(\omega)$	$t = \beta_{\rm c}$) superimpose to for	uj 20 IIIII m a resultant wave whose	
540	amplitude is	p_1 and $y_2 = R_2 \sin(\omega)$			
	a) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos^2 A_2}$	$(\beta_1 - \beta_2)$	b) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2} \sin A_2$	$(\beta_1 - \beta_2)$	
	c) $A_1 + A_2$		d) $ A_1 + A_2 $		
347	. A Young's double slit exp	eriment uses a monochron	natic source. The shape of t	he interference fringes	
	formed on a screen is				
	a) Straight line	b) Parabola	c) Hyperbola	d) Circle	
348	. A plane electromagnetic	wave of wave intensity 6 W	$7/m^2$ strikes a small mirror	area 40 cm^2 , held	
	second will be	roaching wave. The momen	itum transferred by the wa	ve to the mirror each	
	a) $64 \times 10^{-7} ka - m/s^2$		h) $4.8 \times 10^{-8} ka - m/s^2$		
	c) $3.2 \times 10^{-9} kg - m/s^2$		d) $1.6 \times 10^{-10} kg - m/s^2$		
349	. The dual nature of light is	s exhibited by			
	a) Photoelectric effect		b) Refraction and interfer	rence	
	c) Diffraction and reflect	ion	d) Diffraction and photoe	electric effect	
350	. The wavelength of the lig	ht used in Young's double	slit experiment is λ . The in	tensity at a point on the	
	screen is <i>I</i> , where the pat	h difference is $\frac{\lambda}{6}$. If I_0 deno	otes the maximum intensity	<i>t</i> , then the ratio of <i>I</i> and I_0 is	
	a) 0.866	b) 0.5	c) 0.707	d) 0.75	
351	Following figure shows s exactly in phase and are s travel along path 1 and 2	ources S_1 and S_2 that emits separated by a distance equ , the interference produce a	s light of wavelength $λ$ in all ual to 1.5λ. If we start at the a maxima all along	directions. The sources are indicated start point and	
	1 Start	2			
	S ₁ S ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	$ \overleftarrow{d/2} $ Start $ \overleftarrow{d/2} $				
	a) Path 1	b) Path 2	c) Any path	d) None of these	
352	· An electromagnetic wave	in vacuum has the electric	and magnetic field $ec{E}$ and $ec{B}$	$\vec{\beta}$, which are always	
	perpendicular to each oth Then	ner. The direction of polariz	zation is given by $ec{X}$ and that	It of wave propagation by \vec{k} .	
	a) $\vec{X} \vec{B}$ and $\vec{k} \vec{B} \times \vec{E}$	b) $\vec{X} \vec{E}$ and $\vec{k} \vec{E} \times \vec{B}$	c) $\vec{X} \vec{B}$ and $\vec{k} \vec{E} \times \vec{B}$	d) $\vec{X} \vec{E}$ and $\vec{k} \vec{B} \times \vec{E}$	

353. Two coherent sources of different intensities send waves which interfere. The ratio of maximum intensity			
to the minimum intensity is 25. The intensities of th	ie sources are in the ratio		
a) 25:1 b) 5:1	c) 9:4	d) 25 : 16	
354. Which of the following is not an essential condition	for interference?		
a) The two interfering waves must be propagated	I in almost the same direc	ction or the two interfering	
waves must intersect at very small angle			
b) The wave must have the same period and wavele	ngth		
c) The amplitude of the two waves must be equal			
d) The two interfering beams of light must originate	e from the same source		
355. Among the two interfering monochromatic sources	A and B; A is ahead of B in	phase by 66°. If the	
observation be taken from point P, such that $PB - P$	$PA = \lambda/4$. Then the phase d	lifference between the	
waves from A and B reaching P is	2 40 60	1200	
a) 156° b) 140°	c) 136°	d) 126°	
356. Wave nature of light is verified by			
a) Interference b) Photoelectric effect	c) Reflection	d) Refraction	
357. Heat radiations propagate with the speed of			
a) α -rays b) β -rays	c) Light waves	d) Sound waves	
358. A new system of units is evolved in which the values	s of μ_0 and ϵ_0 are 2 and 8 re	espectively. Then the speed	
of light in this system will be			
a) 0.25 b) 0.5	c) 0.75		
359. In the set up shown in figure, the two slits S_1 and S_2	are not equidistant from th	e slit S. The central fringe at	
U is, then			
S_1			
Service O			
a) Always bright			
b) Always dark			
c) Either dark or bright depending on the position of	of S		
d) Neither dark nor bright			
360. Critical angle for certain medium is $\sin^{-1}(0.6)$. The	polarizing angle of that mee	dium is	
a) $\tan^{-1}[1.5]$ b) $\sin^{-1}[0.8]$	c) tan ⁻¹ [1.6667]	d) tan ⁻¹ [0.6667]	
361. A zone plate of focal length 60 <i>cm</i> , behaves as a conv	vex lens, If wavelength of in	cident light is 6000 Å, then	
radius of first half period zone will be			
a) $36 \times 10^{-8}m$ b) $6 \times 10^{-8}m$	c) $\sqrt{6} \times 10^{-8} m$	d) $6 \times 10^{-4} m$	
362. A 20 cm length of a certain solution causes right har	nded rotation of 38°. A 30 c	m length of another	
solution causes left handed rotation of 24°. The opt	ical rotation caused by 30 c	cm length of a mixture of the	
above solutions in the volume ratio 1 : 2 is	5	5	
a) Left handed rotation of 14°	b) Right handed rotation	of 14°	
c) Left handed rotation of 3°	d) Right handed rotation	of 3°	
363. In an apparatus, the electric field was found to oscill	late with an amplitude of 18	8 <i>V/m</i> . The magnitude of	
the oscillating magnetic field will be	1	, 0	
a) $4 \times 10^{-6}T$ b) $6 \times 10^{-8}T$	c) $9 \times 10^{-9}T$	d) $11 \times 10^{-11}T$	
364. The dielectric constant of air is 1.006. The speed of	electromagnetic wave trave	elling in air is $a \times 10^8 m s^{-1}$.	
where <i>a</i> is about	<u>.</u>	J	
a) 3 b) 3.88	c) 2.5	d) 3.2	
365. In Young's double slit experiment, the spacing betw	een the slits is <i>d</i> and wavel	ength of light used is 6000Å.	
If the angular width of a fringe formed on a distance	screen is 1°, then value of	<i>d</i> is	

	a) 1 mm	b) 0.05 mm	c) 0.03 mm	d) 0.01 mm
366	. In Young's double slit exp	eriment, the aperture scre	en distance is 2 m. The slit	width is 1 mm. Light of
	600 nm is used. If a thin p	plate of glass ($\mu - 1.5$) of the	ickness 0.06 mm is placed	over one of the slits, then
	there will be a lateral disp	placement of the fringes by	_	
	a) Zero	b) 6 cm	c) 10 cm	d) 15 cm
367	. Four independent waves a	are represented by equation	ons	,
	VIII. $X_1 = a_1 \sin \omega t$			
	IX. $X_2 = a_1 \sin 2 \omega t$			
	X. $X_2 = a_1 \sin \omega_1 t$			
	XI. $X_4 = a_1 \sin(\omega t + \delta)$			
	Interference is possible be	etween waves represented	by equation	
	a) 3 and 4	b) 1 and 2	c) 2 and 3	d) 1 and 4
368	. In the Young's double slit	experiment, the central ma	axima are observed to be $I_{\rm ob}$	If one of the slits is
000	covered, then the intensit	v at the central maxima wi	ll become	
		I ₀	Io	
	a) $\frac{10}{2}$	b) $\frac{1}{\sqrt{2}}$	c) $\frac{-6}{4}$	d) <i>I</i> ₀
369	. Which of the following rei	presents an infrared wavel	ength	
007	a) 10^{-4} cm	b) 10^{-5} cm	c) 10^{-6} cm	d) 10^{-7} cm
370	Two identical light source	$s_{1} = s_{2} = s_{1} = s_{2}$	me wavelength λ These lig	ht rays will exhibit
070	interference if		ine wavelengen z. These ng	ne ruyo win exilibit
	a) Their phase differences	s remain constant		
	h) Their phases are distrib	huted randomly		
	c) Their light intensities r	remain constant		
	d) Their light intensities c	change randomly		
371	A beam of light of waveler	agth 600 nm from a distant	source falls on a single slit	1 mm wide and the
571	resulting diffraction natte	rn is observed on a screen	2 m away The distance he	tween the first dark fringes
	on either side of the centr	al bright fringe is	2 maway. The distance be	tween the mist dark minges
	a) 1.2 cm	h) 1.2 mm	c) 24 cm	d) 2.4 mm
372	The electric field acception	of with an am wave in wa	$\vec{E} = \hat{E} = \hat{E} = \hat{E} + \hat{E} = \hat{E} + \hat{E} = \hat{E} + \hat{E} + \hat{E} = \hat{E} + $	$u_j 2.7 \text{ mm}$
572	E g and t and in walt /m n	eu with all e.m. wave m vac	Luuin is given by E = i 40 C	$OS(RZ = 0 \times 10^{-1})$, where
	E, Z and t are in $Volt/m$, in	h) 0 5m ⁻¹	very. The value of wave vec	d $2m^{-1}$
272	a) $2m^{-1}$	$D J 0.5m^{-1}$	$C \int 6m^{-2}$	a) $3m^{-1}$
3/3	. when one of the shifts of Y	oung s'experiment is cover	ed with a transparent snee	t of unickness 4.8 mm, the
	central tringe shifts to a p	osition originally occupied	by the 30 ^{cm} bright fringe. V	vnat snould be the
	thickness of the sheet if th	ie central fringe has to shif	t to the position occupied b	by 20 th bright fringe
	a) 3.8 mm	b) 1.6 mm	c) 7.6 mm	d) 3.2 mm
374	. How fast a person should	drive his car so that the re	d signal of light appears gro	een?
	(Wavelength for red colou	r = 6200A and wavelengt	h for green colour = $5400A$	A)
	a) $1.5 \times 10^8 m/s$	b) $7 \times 10^7 m/s$	c) $3.9 \times 10^7 m/s$	d) $2 \times 10^8 m/s$
375	. Two light rays having the	same wavelength λ in vacu	um are in phase initially.	Then the first ray travels a
	path L_1 through a medium	n of refractive index n_1 whi	le the second ray travels a	path of length L_2 through a
	medium of refractive inde	ex n_2 . The two waves are two waves are the two waves are the two waves are two wav	hen combined to produce in	nterference. The two waves
	are then combined to pro	duce interference. The pha	ase difference between the	two waves is
	a) $\frac{2\pi}{m}$ $(L_2 - L_4)$	b) $\frac{2\pi}{n} (n_1 L_1 - n_2 L_2)$	c) $\frac{2\pi}{n} (n_2 L_4 - n_4 L_2)$	d) $\frac{2\pi}{L_1 - L_2}$
	$\lambda^{(L_2 - L_1)}$	$\lambda^{(n_1n_1 n_2n_2)}$	$\lambda^{(n_2 \mu_1 \dots n_1 \mu_2)}$	$\lambda (n_1 - n_2)$
376	. On introducing a thin film	in the path of one of the tw	vo interfering beams, the c	entral fringe will shift by
	one fringe width. If $\mu - 1$.	.5, the thickness of the film	is (wavelength of monoch	romatic light is λ)
	a) 4λ	b) 3λ	c) 2λ	d) λ
377	. In Young's double slit exp	eriment, the length if band	is 1 mm. The ring width is	1.021 mm. The number of
	fringe is			
	a) 45	b) 46	c) 47	d) 48

378. Figure represents a glass plate placed vertically on a horizontal table with a beam of unpolarised light falling on its surface at the polarizing angle of 57° with the normal. The electric vector in the reflected light on screen *S* will vibrate with respect to the plane of incidence in a

/

57"57			
\rightarrow			
a) Vertical plane		h) Horizontal plane	
c) Plane making an angle	of 45° with the vertical	d) Plane making an angle	of 57° with the horizontal
379. Huygen's conception of s	secondary waves	uj i lane making an angre	or 57 with the norizontal
a) Allow us to find the fo	cal length of a thick lens		
b) Is a geometrical metho	od to find a wavefront		
c) Is used to determine t	he velocity of light		
d) Is used to explain pola	irization		
380. An electromagnetic wave	e propagating along north h	has its electric field vector ι	ıpwards. Its magnetic field
vector point towards	r ron or or o		r i i i i i i i i i i i i i i i i i i i
a) North	b) East	c) West	d) Downwards
381. In a single slit diffraction	experiment first minimum	for red light (660 <i>nm</i>) coi	ncides with first maximum
of some other wavelengt	h λ' . The value of λ' is		
a) 4400 Å	b) 6600 Å	c) 2000 Å	d) 3500 Å
382. In Young's double slit exp	periment with sodium vapo	our lamp of wavelength 589	9 nm and the slits 0.589 mm
apart, the half angular w	idth of the central maximur	n is	
a) sin ⁻¹ 0.01	b) sin ⁻¹ 0.0001	c) sin ⁻¹ 0.001	d) sin ⁻¹ 0.1
383. Infrared radiation was di	iscovered in 1800 by		
a) William Wollaston	b) William Herschel	c) Wilhelm Roentgen	d) Thomas Young
384. By Huygen's wave theory	y of light, we cannot explair	the phenomenon of	
a) Interference	b) Diffraction	c) Photoelectric effect	d) Polarization
385. A single slit is used to ob	serve diffraction pattern w	ith red light. On replacing	the red light with violet light
the diffraction pattern w	ould		
a) Remain unchanged	b) Become narrower	c) Become broader	d) Disappear
386. The width of the diffraction	ion band varies		
a) Inversely as the wavel	ength		
b) Directly as the width o	of the slit		
c) Directly as the distanc	e between the slit and the s	screen	
d) Inversely as the size o	f the source from which the	e slit is illuminated	
387. The angular width of the	central maximum of the di	ffraction pattern in a single	e slit (of width ' a ')
experiment, with λ as the	e wavelength of light is		
$a)\frac{3\lambda}{2}$	h) $\frac{\lambda}{\lambda}$	$\frac{2\lambda}{2}$	$d \frac{\lambda}{\lambda}$
2a	2a	a	a
388. Following diffraction pat	tern was obtained using a c	diffraction grating using tw	o different wavelengths λ_1
and λ_2 . With the help of	the figure identify which is	the longer wavelength and	l their ratios.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{1} \\ \lambda_{1}$		

b) λ_{4} is longer than λ_{2} and ther ratio of the longer to the shorter wavelength is 1.5 c) λ_{4} and λ_{2} are equal and their ratio is 1.0 d) λ_{2} is longer than λ_{1} and the ratio of the longer to the shorter wavelength is 2.5 389. The exone layer absorbs a) Infrared radiations b) Ultraviolet radiations c) <i>X</i> -rays d) <i>y</i> -rays 390. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum <i>p</i> and energy <i>E</i> , then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_{p} = 2 \times 10^{-5}$ sin (0.5 × 10 ⁻⁵ x + 1.5 × 10 ⁻¹¹ t) This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in N/m^{2}) of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the fold of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) $a(0 b) 90 c) 40 d) 1.5$ 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength 4000 Å, the surce, the observer <i>C</i> moves away from the source with the same speed. The observers <i>B</i> and <i>C</i> measure the speed of light coming from asource to be v_{A} , v_{B} and v_{C} . The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_{A} > v_{B} > v_{C} c) 101 d) 251396. Three observers B and C measure the speed of light coming from asource to be v_{A}, v_{B} = v_{C}397. Intensities of the two waves of light are I and 4I. The maximum intensity of the resultant wave aftersuperoposi$	a) λ_2 is longer than λ_2	$_1$ and the ratio of the longer t	o the shorter wavelength	n is 1.5
c) λ_1 and λ_2 are equal and their ratio is 1.0 d) λ_2 is longer than λ_1 and the ratio of the longer to the shorter wavelength is 2.5 389. The ozone layer absorbs a) Infrared radiations b) Ultraviolet radiations c) X -rays d) y -rays 390. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E , then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin(0.5 \times 10^{3} x + 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure $(n \ M/m^2)$ of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-4} d) 10^{-6} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 15.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) 01 brigh intensity 396. Three observers A, B and C measure the speed of light coming from a source to be v_A, v_B and v_c . The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer B kays attionary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_c$ b) $p_A < v_B < v_c$ c) $v_A = v_B = v_c$ d) $v_A = v_B > v_c$ 397. Intensities of the two waves of light are I and $4I$. The maximum intensity of the resultant wave after superposition is a) $5I$ b) $9I$ c) $2I < 0$ ($2A = 40$ d) $25I$ 398. The waves of	b) λ_1 is longer than λ_2	2 and the ratio of the longer t	o the shorter wavelength	n is 1.5
d) λ_2 is longer than λ_1 and the ratio of the longer to the shorter wavelength is 2.5 389. The ozone layer absorbs a) Infrared radiations b) Ultraviolet radiations c) X-rays d) γ -rays 390. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_{\gamma} = 2 \times 10^{-7} \text{ sin} (0.5 \times 10^{3} \times 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure $(in, N/m^2)$ of the visible light is of the order of a) 10^{-2} b) 10^{-3} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0f longer wavelength c) Of shorter wavelength d) Mac measure the speed of light coming from a source to be v_{μ} , v_{μ} and v_{c} . The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer B atays stationary, the surrounding space is vacuum every where. Then a) $v_{\lambda} > v_{\beta} > v_{c}$ b) $v_{\lambda} < v_{\beta} < v_{c}$ c) $v_{\lambda} = v_{\beta} = v_{c}$ d) $v_{\lambda} = v_{\beta} > v_{c}$ 395. There, the waves of light are I and 4I. The maximum intensity of the resultant wave after superposition is a) 51 b) 91 c) 161 d) 251 395. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length	c) λ_1 and λ_2 are equa	l and their ratio is 1.0		
389. The ozone layer absorbs a) Infrared radiations b) Ultraviolet radiations c) X-rays d) γ-rays 30) A plane clectromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then a) p = 0, E = 0 b) p ≠ 0, E ≠ 0 c) p ≠ 0, E = 0 d) p = 0, E ≠ 0 391. The magnetic field in a plane electromagnetic wave is given by B _p = 2 × 10 ⁻⁷ sin(0.5 × 10 ³ x + 1.5 × 10 ¹¹ t) This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in N/m ²) of the visible light is of the order of a) 10 ⁻⁶ d) 10 ⁻⁶ 393. The phenomenon of interference is shown by a) Infraued machanical waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view or monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 4000Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Planized b) 0f longer wavelength c) 0f Shorer wavelength d) 0 fug v _k > v _k > v _k 396. Three observers A, B and C measure the speed of light coming from a source to be v _k , v _B and v _C . The observer B stays stationary, the sourrounding space is vacuum every where. The	d) λ_2 is longer than λ_2	$_1$ and the ratio of the longer t	o the shorter wavelength	n is 2.5
a) Infrared radiations b) Ultraviolet radiations c) X-rays d) y-rays 390. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in N/m ²) of the visible light is of the order of a) 10^{-2} b) 10^{-5} c) 10^{-6} d) 10^{-9} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double site experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0 for ourse, the observer <i>C</i> moves away from the source with the same speed. The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>A</i> moves of waves of light are <i>l</i> and 4 <i>l</i> . The maximum intensity of the rase of superposition is a) $5 I$ b) $y_A < v_R < v_R - v_C$ b) $y_A < v_R = v_R = v_C$ d) $v_A = v_R > v_C$ 397. Intensities of the two waves of light are <i>l</i> and 4 <i>l</i> . The maximum intensity of the rotal length which is known as coherence length. For sodium light, this length is $2.4 cm$. The number of oscillations in this length will be disappears b) All fringe will be coloured a) 4.068×10^6 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 397. If white light is used in a biprism experiment then a) $1.0rcases by 2$	389. The ozone layer abso	rbs		
390. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{-1} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave392. The radiation pressure $(\ln N/m^2)$ of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-6} 393. The phenomenon of interference is shown by a) longitudinal mechanical waves only c) Electromagnetic waves only d) All the above types of waves394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 01 forger wavelength d) 01 l.5395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 01 of 01 of 01 longer wavelength c) of shorter wavelength d) 01 forger wavelength c) of shorter wavelength b) $v_x < v_y < v_y cd) 01 of y = v_y d) v_x = v_y v_c396. Thee observers A, B and C measure the speed of light coming from a source to be v_x, v_B and v_c. Theobserver A moves towards the source, the observer C moves away from the source with the same speed.The observer B stays stationary, the surrounding space is vacuum every where. Thenv_x > v_y > v_y c397. The observer B stays stationary, the surrounding space is vacuum every where. Thenobserver A$	a) Infrared radiations	b) Ultraviolet radiation	s c) X-rays	d)γ-rays
energy <i>F</i> , then a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in <i>Nm</i> ²) of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000Å, then the number of fringes obtained in the same field of view are a) $(0 b) 90 c) 40 d) 1.5$ 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Folarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be $v_A, v_B \Rightarrow v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $51 b) 91 c) 161 d) 251$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be disappears b) All fringe will be doalve as speriment then a) $4.068 \times 10^6 d) 4.068 \times 10^6 d) 4.068 \times 10^5$ 399. If white light is used in a biprims experiment the a) Fringe pattern will be da	390. A plane electromagne	etic wave is incident on a mat	erial surface. If the wave	delivers momentum p and
a) $p = 0, E = 0$ b) $p \neq 0, E \neq 0$ c) $p \neq 0, E = 0$ d) $p = 0, E \neq 0$ 391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-5} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} c)$ This electromagnetic wave is a) λ visible light b) λ in infrared wave c) λ microwave d) λ radio wave 392. The radiation pressure (in N/m^2) of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only d) λ ll the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $(1 - 4 + v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5000 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is $2.4 cm$. The number of oscillations	energy <i>E</i> , then			
391. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in <i>N/m²</i>) of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0 flonger wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves for wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 10 for source is intreased by 2%, what would be the effect on the intensity a) 1.6 ceases by 4% b) 10 recreases by 2% c) Decreases by 2% d) 20 cereases by 4% 400. When a compact disc is illuminated by a source of w	a) $p = 0, E = 0$	b) $p \neq 0, E \neq 0$	c) $p \neq 0, E = 0$	d) $p = 0, E \neq 0$
$B_{y} = 2 \times 10^{-7} \sin(0.5 \times 10^{3} x + 1.5 \times 10^{11} t)$ This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in <i>N/m</i> ²) of the visible light is of the order of a) 10 ⁻² b) 10 ⁻⁴ c) 10 ⁻⁶ d) 10 ⁻⁸ 393. The phenomenon or interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double sitt experiment we get 60 fringes in the field of view of monochromatic light of wavelength 400Å. If we use monochromatic light of wavelength 6000Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be $v_{A^{1}}v_{B}$ and v_{C} . The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_{A} > v_{B} > v_{C}$ b) $v_{A} < v_{B} < v_{C}$ c) $v_{A} = v_{B} = v_{C}$ d) $v_{A} = v_{B} > v_{C}$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁶ b) 4.068 × 10 ⁶ c) 2.408 × 10 ⁶ d) 4.068	391. The magnetic field in	a plane electromagnetic way	e is given by	
This electromagnetic wave is a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in N/m ²) of the visible light is of the order of a) 10 ⁻² b) 10 ⁻⁴ c) 10 ⁻⁶ d) 10 ⁻⁸ 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) 0 flight intensity 396. Three observer A, B and C measure the speed of light coming from a source to be v_A, v_B and v_C . The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer A moves towards the source, the observer C moves away from the source with and v_C . The observer A moves towards the source and 41. The maximum intensity of the resultant wave after superposition is a) 51 b) 91 c) 161 d) 251 398. The waves of wavelength 5900 A emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 4.068 × 10 ⁶ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be white while others will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source of white light, coloured 1anes' are observed. This is due to a	$B_{\rm v} = 2 \times 10^{-7} \sin(0.5)$	$5 \times 10^3 x + 1.5 \times 10^{11} t$		
a) A visible light b) An infrared wave c) A microwave d) A radio wave 392. The radiation pressure (in N/m^2) of the visible light is of the order of a) 10^{-8} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of an object, the maximum accuracy is achieved if the light is used to determine the position of an object, the maximum accuracy is achieved if the light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Folarized b) 0f longer wavelength d) 0f high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C < c)$ $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is $2.4 cm$. The number of oscillations in this length will be disappears b) All fringe will be coloured c) C entral fringe will be disappears b) All f	This electromagnetic	wave is		
392. The radiation pressure (in N/m^2) of the visible light is of the order of a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is $2.4 cm$. The number of oscillations in this length will be a) 4.068×10^6 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be white while others will be cloured d) Central fringe will be white while others will be cloured d) Central fringe will be white while others will be cloured d) Central fringe will be white while others will be cloured d) Loreases by 4% b) Din	a) A visible light	b) An infrared wave	c) A microwave	d) A radio wave
a) 10^{-2} b) 10^{-4} c) 10^{-6} d) 10^{-8} 393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be white while others will be coloured d) Central fringe will be disappears b) All fringe will be disappears b) All fringes will be disappears b) All fringes will be disappears b) All fringes will be dive the others will be coloured d) Central fringe will be dive the others will be coloured d) Central fringe will be dive the others will be coloured d) Central fringe will be dive the while others will be coloured d) Central fringe will be dive the time interference pattern. The maximum intensit	392. The radiation pressu	re (in N/m^2) of the visible light	ht is of the order of	- ,
393. The phenomenon of interference is shown by a) Longitudinal mechanical waves only b) Transverse mechanical waves only c) Electromagnetic waves only d) All the above types of waves (d) All the above types of waves of waves of waves of waves of wave the the all the the above type of waves (d) All the above types of waves of wavelength t	a) 10^{-2}	b) 10 ⁻⁴	c) 10 ⁻⁶	d) 10 ⁻⁸
b) Sing Primer values of the transmission of the first value of the primer value of the transmission of transmission	393. The phenomenon of i	nterference is shown by	•) =•	~) _ ·
c) Electromagnetic waves only d) All the above types of waves 394. In Young's double slit experiment we get 60 fringes in the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0f longer wavelength c) 0f shorter wavelength d) 0f high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5000 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁶ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be white while others will be coloured d) Central fringe will be white while others will be coloured d) Central fringe will be dwite will be a source of white light, coloured 'lanes' are observed. This is due to a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) D	a) Longitudinal mech	anical wayes only	h) Transverse mecha	nical waves only
b) Interview of monochromatic light of mates of the field of view of monochromatic light of wavelength 4000Å. If we use monochromatic light of wavelength 6000 Å, then the number of fringes obtained in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) 0f shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A, v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁶ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Diffraction c) Interference d) Refraction 402. The intensity a) Increases by 4% b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities <i>I</i> ₁ and <i>I</i> ₂ produce an interference pattern. The maximum intensity in the interference pattern will be and the value and reflected wave and reflected wave is 180° when light ray $-\frac{1}{\sqrt{12}}$	c) Flectromagnetic w	aves only	d) All the above type	s of waves
SY. In Fourge 5 dealed on capacity of Figure 6.1 may be a variable of the two moments in the number of fringes obtained in the same field of view are a) 60b) 90c) 40d) 1.5395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarizedb) 0f longer wavelength d) 0f high intensity396. Three observers A, B and C measure the speed of light coming from a source to be v_A, v_B and v_C . The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer B stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are I and 4I. The maximum intensity of the resultant wave after superposition is a) 51b) 91c) 161d) 251398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 4.068 × 10^6d) 4.068 × 10^5399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be darkd) Decreases by 2% c) Decreases by 2% d) Decreases by 4%400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Diffraction c) Interference d) Refraction402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ <b< td=""><td>394 In Young's double slit</td><td>experiment we get 60 fringe</td><td>es in the field of view of n</td><td>nonochromatic light of</td></b<>	394 In Young's double slit	experiment we get 60 fringe	es in the field of view of n	nonochromatic light of
by a setting in two in the same field of view are a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0f longer wavelength c) 0f shorter wavelength d) 0f high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2% , what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference all Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	wavelength 4000Å If	we use monochromatic light	c of wavelength 6000 Å t	hen the number of fringes
a) 60 b) 90 c) 40 d) 1.5 395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	obtained in the came	field of view are	of wavelength 0000 Å, t	nen me number of ninges
a) 60b) 90c) 40u) 1.5395. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is a) Polarized b) 0f longer wavelength c) 0f shorter wavelength d) 0f high intensityb) 0f longer wavelength d) 0f high intensity396. Three observers A, B and C measure the speed of light coming from a source to be v_A, v_B and v_C . The observer A moves towards the source, the observer C moves away from the source with the same speed. The observer B stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are l and 4l. The maximum intensity of the resultant wave after superposition is a) 5 l b) 9 l c) 16 l d) 25 l398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4%401. When a compact disc is illuminated by a source of white light, coloured 1anes' are observed. This is due to a) Dispersion b) Diffraction c) Interference attern. The maximum intensity in the interference pattern will be a) $l_1 + l_2$ b) $l_1^2 + l_2^2$ c) $(l_1 + l_2)^2$ d) $(\sqrt{l_1} + \sqrt{l_2})^2$ 403	a) 60	h) 00	a) 40	d) 1 E
Sys. When a beam of right is used to determine the position of an object, the maximum acturacy is achieved if the light is a) Polarized b) of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	aj ou 205 When a hear of light	b) 90	U 40 ition of an object the ma	u) 1.5
a) Polarized b) Of longer wavelength d) Of high intensity 3) Polarized b) Of longer wavelength d) Of high intensity 3) For the observer <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 3) Thensities of the two waves of light are <i>I</i> and <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 3) S. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 3) 9. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2% , what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{T_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	the light is	is used to determine the pos	ition of all object, the ma	ixinium accuracy is achieved in
b) Of longer wavelength c) Of shorter wavelength d) Of high intensity 396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	che light is		h) Of langar wavelon	ath
396. Three observers <i>A</i> , <i>B</i> and <i>C</i> measure the speed of light coming from a source to be v_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) $5I$ b) $9I$ c) $16I$ d) $25I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2% , what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensitis I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) Of abortor waveler	ath	d) Of high intensity	gtii
Sys. Three observer <i>A</i> , <i>b</i> and <i>C</i> the source the speed of light conting from a source to be V_A , v_B and v_C . The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2% , what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	C) OI SHOFLEF WAVELEF	igui	u) Of high intensity	as to be a send as The
The observer <i>A</i> moves towards the source, the observer <i>C</i> moves away from the source with the same speed. The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) $5I$ b) $9I$ c) $16I$ d) $25I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	396. Three observers A, B	and c measure the speed of	ngnt coming from a sour	te to be v_A, v_B and v_C . The
The observer <i>B</i> stays stationary, the surrounding space is vacuum every where. Then a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) $5 I$ b) $9 I$ c) $16 I$ d) $25 I$ 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is $2.4 cm$. The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference pattern. The maximum intensity in the interference pattern will be a) $l_1 + l_2$ b) $l_1^2 + l_2^2$ c) $(l_1 + l_2)^2$ d) $(\sqrt{l_1} + \sqrt{l_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	observer A moves to	wards the source, the observe	er C moves away from th	e source with the same speed.
a) $v_A > v_B > v_C$ b) $v_A < v_B < v_C$ c) $v_A = v_B = v_C$ d) $v_A = v_B > v_C$ 397. Intensities of the two waves of light are <i>I</i> and <i>4I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	The observer B stays	stationary, the surrounding	space is vacuum every w	nere. I nen
397. Intensities of the two waves of light are <i>I</i> and 4 <i>I</i> . The maximum intensity of the resultant wave after superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) $v_A > v_B > v_C$	$v_A < v_B < v_C$	$c_{J} v_{A} = v_{B} = v_{C}$	a) $v_A = v_B > v_C$
superposition is a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	397. Intensities of the two	waves of light are I and 41. I	he maximum intensity o	f the resultant wave after
a) 5 <i>I</i> b) 9 <i>I</i> c) 16 <i>I</i> d) 25 <i>I</i> 398. The waves of wavelength 5900 Å emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068 × 10 ⁸ b) 4.068 × 10 ⁴ c) 4.068 × 10 ⁶ d) 4.068 × 10 ⁵ 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	superposition is			N 25 1
398. The waves of wavelength 5900 A emitted by any atom or molecule must have some finite total length which is known as coherence length. For sodium light, this length is 2.4 cm. The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4%401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) 5 <i>l</i>	b) 9 <i>1</i>	c) 16 <i>1</i>	d) 25 <i>I</i>
which is known as coherence length. For sodium light, this length is 2.4 <i>cm</i> . The number of oscillations in this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	398. The waves of waveler	ngth 5900 A emitted by any a	tom or molecule must ha	ave some finite total length
this length will be a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	which is known as co	herence length. For sodium l	ight, this length is 2.4 <i>cm</i>	. The number of oscillations in
a) 4.068×10^8 b) 4.068×10^4 c) 4.068×10^6 d) 4.068×10^5 399. If white light is used in a biprism experiment then a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	this length will be			_
399. If white light is used in a biprism experiment thena) Fringe pattern will be disappearsb) All fringe will be colouredc) Central fringe will be white while others will be colouredd) Central fringe will be dark400. If separation between screen and source is increased by 2%, what would be the effect on the intensitya) Increases by 4%b) Increases by 2%c) Decreases by 2%d) Decreases by 4%401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due toa) Dispersionb) Diffractionc) Interferenced) Refraction402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will bea) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) 4.068×10^8	b) 4.068×10^4	c) 4.068×10^{6}	d) 4.068×10^5
a) Fringe pattern will be disappears b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	399. If white light is used i	n a biprism experiment then		
b) All fringe will be coloured c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) Fringe pattern will	be disappears		
c) Central fringe will be white while others will be coloured d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	b) All fringe will be co	oloured		
d) Central fringe will be dark 400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	c) Central fringe will	be white while others will be	coloured	
400. If separation between screen and source is increased by 2%, what would be the effect on the intensity a) Increases by 4%b) Increases by 2% b) Increases by 2%c) Decreases by 2% d) Decreases by 4%401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersionb) Diffractionc) Interference402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	d) Central fringe will	be dark		
a) Increases by 4% b) Increases by 2% c) Decreases by 2% d) Decreases by 4% 401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	400. If separation between	n screen and source is increas	sed by 2%, what would b	e the effect on the intensity
401. When a compact disc is illuminated by a source of white light, coloured 'lanes' are observed. This is due to a) Dispersion402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) Increases by 4%	b) Increases by 2%	c) Decreases by 2%	d) Decreases by 4%
a) Dispersion b) Diffraction c) Interference d) Refraction 402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	401. When a compact disc	is illuminated by a source of	white light, coloured 'lar	nes' are observed. This is due to
402. Two coherent sources of intensities I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	a) Dispersion	b) Diffraction	c) Interference	d) Refraction
the interference pattern will be a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	402. Two coherent source	s of intensities <i>I</i> ₁ and <i>I</i> ₂ prod	uce an interference patte	ern. The maximum intensity in
a) $I_1 + I_2$ b) $I_1^2 + I_2^2$ c) $(I_1 + I_2)^2$ d) $(\sqrt{I_1} + \sqrt{I_2})^2$ 403. The phase difference between incident wave and reflected wave is 180° when light ray	the interference patte	ern will be		
403. The phase difference between incident wave and reflected wave is 180° when light ray	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $\left(\sqrt{I_{1}} + \sqrt{I_{2}}\right)^{2}$
105. The phase unterence between meluent wave and reficted wave is 100 when light lay	403 The phase difference	hetween incident wave and	reflected wave is 120° with	hen light ray
				nen nent ray

	a) Enters into glass from air		b) Enters into air from glass	
	c) Enters into glass from diamond		d) Enters into water from glass	
404.	Wavefront of a wave has	direction with wave motior	1	
	a) Parallel	b) Perpendicular	c) Opposite	d) At an angle of θ
405.	Light is incident on a glas	s surface at polarizing angle	e of 57.5°. Then the angle b	etween the incident ray
	and the refracted ray is			
	a) 57.5°	b) 115°	c) 65°	d) 205°
406.	Through which character	we can distinguish the ligh	t waves from sound waves	
	a) Interference	b) Refraction	c) Polarization	d) Reflection
407.	A parallel monochromati	c beam of light is incident n	ormally on a narrow slit. A	diffraction pattern is
	formed on a screen place	d perpendicular to the dire	ction of incident beam. At t	he first maximum of the
	diffraction pattern, the ph	hase difference between the	e rays coming from the edge	es of the slit is
	a) 0	b) $\frac{\pi}{2}$	c) π	d) 2π
4.08	The principle of superpos	Z Sition is basic to the phonon	non of	
400.	a) Total internal reflection	n	h) Interference	
	c) Reflection	11	d) Refraction	
409	The observed wavelength	n of light coming from a dist	ant galaxy is found to be in	creased by 0.5% as
107.	compared with that comi	ng from a terrestrial source	• The galaxy is found to be in	101 Casea by 0.570 as
	a) Stationary with respec	t to the earth	. The galaxy is	
	b) Approaching the earth	with velocity of light		
	c) Receding from the eart	h with the velocity of light		
	d) Receding from the eart	h with a velocity equal to 1	$5 \times 10^{6} m/s$	
410.	The equations of displace	ment of two wayes are give	$\sin \alpha v_1 = 10 \sin(3\pi t + \pi/3\pi t)$	3) $v_2 = 5(\sin 3\pi t + 1)$
	$3\cos 3\pi t$ then what is the	ratio of their amplitude?		5) <u>5</u> 2 5 (5111 5117 1
	a) 1.2	b) 2.1	c) 1.1	d) None of these
111	a) 1.2 Through quantum theory	0 J 2.1	upper of phonomona obsor	u) None of these
Ŧ11.	necessary to retain the w	or light we can explain a in	in the phenomenon of	veu with light, it is
	a) Photoelectric effect	ave nature of light to explai	h) Diffraction	
	c) Compton effect		d) Black body radiation	
412	If the shift of wavelength	of light emitted by a star is	towards violet, then this sh	nows that star is
	a) Stationary	or light officer by a star is	b) Moving towards earth	
	c) Moving away from ear	th	d) Information is incompl	ete
413.	What is the path difference	ce of destructive interferen	ce	
	.)1	1) (1 + 1)	$(n+1)\lambda$	$\lambda (2n+1)\lambda$
	a) nx	$D) n(\lambda + 1)$	$\frac{1}{2}$	$\frac{1}{2}$
414.	Two light sources are said	d to be of coherent nature		
	a) When they have same	frequency and a varying ph	ase difference	
	b) When they have same	frequency and a constant p	hase difference	
	c) When they have consta	ant phase difference and dif	fferent frequencies	
	d) When they have varyin	ng phase difference and diff	erent frequencies	
415.	A star is moving away fro	m the earth with a velocity	of 100 <i>km/s</i> . If the velocity	y of light is $3 imes 10^8 m/s$
	then the shift of its spectr	al line of wavelength 5700	Å due to Doppler's effect w	rill be
	a) 0.63Å	b) 1.90Å	c) 3.80Å	d) 5.70Å
416.	In an interference experiment	nent, third bright fringe is o	obtained at a point on the s	creen with a light of 700
	nm. What should be the v	wavelength of the light sour	ce in order to obtain 5 th br	ight fringe at the same
	point?			
	a) 500 nm	b) 630 nm	c) 750 nm	d) 420 nm
417.	If the amplitude ratio of t	wo sources producing inter	ference is 3 : 5, the ratio of	intensities at maxima and
	minima is			
	a) 25 : 16	b) 5 : 3	c) 16:1	d) 25 : 9

418. In Young's double slit experiment, the aperture screen distance is 2m. The fringe width is 1 mm. Light of 600 *nm* is used. If a thin plate of glass ($\mu = 1.5$) of thickness 0.06 *mm* is placed over one of the slits, then there will be a lateral displacement of the fringes by a) 0 *cm* b) 5 *cm* d) 15 *cm* c) 10 *cm* 419. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by $5 \times 10^{-2} m$ towards the slits, the change in fringe width is $3 \times 10^{-5}m$. If separation between the slits is $10^{-3}m$, the wavelength of light used is b) 5000 Å a) 6000 Å c) 3000 Å d) 4500 Å 420. A ray of light of intensity *I* is incident on a parallel glass-slab at a point *A* as shown in fig. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays AB and A'B' undergo interference. The ratio $I_{\text{max}}/I_{\text{min}}$ is a) 4 : 1 b) 8 : 1 c) 7:1 d) 49:1 421. The wave front due to a source situated at infinity is a) Spherical b) Cylindrical c) Planar d) None of these 422. In the propagation of light waves, the angle between the direction of vibration and plane of polarization is a) 0° b) 90° c) 45° d) 80° 423. In Young's double slit experiment, the distance between the slits is 1 mm and that between slit and screen is 1 meter and 10th fringe is 5 mm away from the central bright fringe, then wavelength of light used will be a) 5000 Å b) 6000 Å c) 7000 Å d) 8000 Å 424. Which of the following cannot be explained on the basis of wave nature of light? (i) Polarization (ii) Optical activity (iii) Photoelectric effect (iv) Compton effect a) (ii) and (iv) b) (ii) and (iii) c) (i) and (iii) d) (ii) and (iv) 425. An unpolarised beam of intensity I_0 falls on a polariod. The intensity of the emergent light is c) $\frac{I_0}{4}$ d) Zero a) $\frac{I_0}{2}$ b) *I*₀ 426. The two slits are 1mm apart from each other and illuminated with a light of wavelength $5 \times 10^{-7}m$. If the distance of the screen is 1 *m* from the slits, then the distance between third dark fringe and fifth bright fringe is a) 1.5 mm d) 0.625 mm b) 0.75 mm c) 1.25 mm 427. A. The wavelength of microwaves is greater than that of UV-rays B. The wavelength of IR rays is lesser than that of UV-rays C. The wavelength of microwaves is lesser than that of IR rays D. Gamma rays has shortest wavelength in the electromagnetic spectrum Of the above statements

a) A and B are true
b) B and C are true
c) C and D are true
d) A and D are true
428. In Young's double slit experiment the two slits are *d* distance apart. Interference pattern is observed on a screen at a distance *D* from the slits. A dark fringe is observed on the screen directly opposite to one of the slits. The wavelength of light is

a) $\frac{D^2}{2d}$ b) $\frac{d^2}{2D}$ c) $\frac{D^2}{d}$ d) $\frac{d^2}{D}$

429. In a Young's double slit e and wavelength λ . In and incoherent sources of wa	experiment, the two slits act other experiment with the s aves of same amplitude and	t as coherent sources of wa same arrangement the two l wavelength. If the intensi	ives of equal amplitude <i>A</i> slits are made to act as ty at the middle point of the
screen in the first case is	I_1 and in the second case I_2 ,	, then the ratio $\frac{I_1}{I_2}$ is	
a) 4	b) 2	c) 1	d) 0.5
430. In the Young's double sli	t experiment, the interferen	nce pattern is found to have	e an intensity ratio between
bright and dark fringes a	s 9. This implies that		
a) The intensities at the s	screen due to two slits are !	5 units and 4 units respecti	vely
b) The intensities at the s	screen due to two slits are 4	4 units and 1 units respecti	vely
c) The amplitude ratio is	3		
a) The amplitude ratio is	Z	f	
431. In Young's double slit ex	periment, angular width of	tringes is 0.20° for sodium	light of wavelength 5890 A.
a) 0.11°	h) 0 15°	c) 0.22°	ዓ) ሀ 30 ₀
432. Which one of the following	ng is the property of a mon	ochromatic, plane electron	agnetic wave in free space
a) Electric and magnetic	fields have a phase differer	nce of $\pi/2$	
b) The energy contributi	on of both electric and mag	netic fields are equal	
c) The direction of propa	agation is in the direction of	$f \vec{B} \times \vec{E}$	
d) The pressure exerted	by the wave is the product	of its speed and energy der	nsity
433. Intensity of light depend	s upon		
a) Velocity	b) Wavelength	c) Amplitude	d) Frequency
434. The Young's double slit e	experiment is performed with	ith blue and with green ligh	nt of wavelengths 4360 Å
and 5460 Å respectively	The formula of 4^{th} is the distance of 4^{th} in	naximum from the central	one, then
a) $x(blue) = x (green)$	b) $x(blue) > x (green)$	c) $x(\text{blue}) < x (\text{green})$	d) $\frac{x(\text{blue})}{(1-x)^2}$ $\frac{5460}{1260}$
135 In Voung's double slit ev	norimont the 8th maximur	n with wavelength 2 is at	x(green) = 4360
central maximum and th	e $6th$ maximum with a way	velength λ_2 is at a distance of λ_1	d_2 . Then (d_1/d_2) is equal to
a) $\frac{4}{3} \left(\frac{\lambda_2}{\lambda_1} \right)$	b) $\frac{4}{3} \left(\frac{\lambda_1}{\lambda_2} \right)$	c) $\frac{3}{4} \left(\frac{\lambda_2}{\lambda_1} \right)$	d) $\frac{3}{4} \left(\frac{\lambda_1}{\lambda_2} \right)$
436. Two identical radiators have a separation of $d = \lambda/4$ where λ is the wavelength of the waves emitted by either source. The initial phase difference between the sources is $\pi/4$. Then the intensity on the screen at a distant point situated at an angle $\theta = 30^{\circ}$ from the radiators is (here I_o is intensity at that point due to one radiator alone)			
a) <i>I_o</i>	b) 2 <i>I</i> o	c) 3 <i>I</i> _o	d) 4 <i>I</i> _o
437. In a biprism experiment,	by using light of waveleng	th5000 Å, 5mm wide fringe	es are obtained on a screen
1.0 m away from the coh	erent sources. The separati	ion between the two cohere	ent sources is
a) 1.0 mm	b) 0.1 mm	c) 0.05 mm	d) 0.01 mm
438. For constructive interfer path difference should be	ence to take place between e	two monochromatic light	waves of wavelength λ , the
a) $(2n-1)\frac{\lambda}{4}$	b) $(2n-1)\frac{\lambda}{2}$	c) nλ	d) $(2n+1)\frac{\lambda}{2}$
439. Which phenomenon best	t supports the theory that n	natter has a wave nature?	2
a) Electron momentum	b) Electron diffraction	c) Photon momentum	d) Photon diffraction
440. In Young's double slit interference pattern the fringe width			
a) Can be changed only by changing the wavelength of incident light			
b) Can be changed only by changing the separation between the two slits			
c) Can be changed either	by changing the waveleng	th or by changing the separ	ration between two sources
d) Is a universal constant and hence cannot be changed \vec{x}			
441. The electric field of an el <i>t</i> and <i>x</i> are in seconds an	ectromagnetic wave in free ad metres respectively. It ca	e space is given by $ec{E}=10$ c in be inferred that	$\cos(10^7 t + kx)\hat{j} V/m$, where

(1) The wavelength λ is 188.4 m			
(2) The wave number k is 0.33 rad/ m			
(3) The wave amplitude is 10 V/m			
(4) The wave is propagating along $+x$ direction			
Which one of the following pairs of statements is co	rrect		
a) (3) and (4) b) (1) and (2)	c) (2) and (3)	d) (1) and (3)	
442. The electric and magnetic field of an electromagneti	c wave are		
a) In phase and parallel to each other			
b) In opposite phase and perpendicular to each othe	er		
c) In opposite phase and parallel to each other			
d) In phase and perpendicular to each other			
443. In Young's double slit experiment, the slit width and	l the distance of slits from t	the screen both are doubled.	
The fringe width			
a) Increases b) Decreases	c) Remains unchanged	d) None of these	
444. What is ozone hole			
a) Hole in the ozone layer	b) Formation of ozone la	yer	
c) Thinning of ozone layer in troposphere	d) Reduction in ozone th	ickness in stratosphere	
445. Two slits are separated by a distance of 0.5 mm and	illuminated with light of λ	= 6000 Å. If the screen is	
placed 2.5 <i>m</i> from the slits. The distance of the third	bright fringe from the cen	tre will be	
a) 1.5 mm b) 3 mm	c) 6 mm	d) 9 mm	
446. Pick out the longest wavelength from the following	types of radiations	2	
a) Blue light b) γ -rays	c) X-rays	d) Red light	
447. The bending of beam of light around corners of obst	acles is called	2	
a) Reflection b) Diffraction	c) Refraction	d) Interference	
448. A parallel beam of light of wavelength 3141.59Å is in	ncident on a small aperture	e. After passing through the	
aperture, the beam is no longer parallel but diverges	s at 1° to the incident direc	tion. What is the diameter of	
the aperture?			
a) 180m b) 18µm	c) 1.8m	d) 0.18m	
449. Two sources give interference pattern which is obse	erved on a screen, D distan	ce apart from the sources.	
The fringe width is 2ω . If the distance <i>D</i> is now doul	oled, the fringe width will		
a) Become $\omega/2$ b) Remain the same	c) Become ω	d) Become 4ω	
450. In Young's experiment, the distance between slits is	0.28 mm and distance bet	ween slits and screen is	
1.4 <i>m</i> . Distance between central bright fringe and th	ird bright fringe is 0.9 cm.	What is the wavelength of	
used light			
a) 5000 Å b) 6000 Å	c) 7000 Å	d) 9000 Å	
451. In the figure is shown Young's double slit experimer	nt. Q is the position of the f	irst bright fringe on the right	
side of $O.P$ is the 11^{th} fringe on the other side, as m	easured from Q. If the way	elength of the light used is	
$6000 \times 10^{-10} m$, then $S_1 B$ will be equal to	· ·	0 0	
$ \int S_1 = R $			
0			
a) $6 \times 10^{-6}m$ b) $6.6 \times 10^{-6}m$	c) $3.138 \times 10^{-7} m$	d) $3.144 \times 10^{-7} m$	
452. Angular width (β) of central maximum of a diffracti	on pattern on a single slit d	loes not depend upon	
a) Distance between slit and source	b) Wavelength of light us	ed	
c) Width of the slit	d) Frequency of light slit		
453. If the sodium light in Young's double slit experiment is replaced by red light, the fringe width will			
a) Decrease	b) Increase		
c) Remain unaffected	d) First increase, then de	crease	

454. It is believed that the universe is expanding and hen	ce the distant stars are rec	eding from us. Light from										
such a star will snow												
a) Shift in frequency towards longer wavelengths												
b) Shift in frequency towards shorter wavelengths												
d) A shift in frequency but a decrease in intensity	d comotimos towards abo	utou waval an ath a										
a) A smit in frequency sometimes towards longer an	in sometimes towards sho	ia made										
455. What is the effect of Freshel's diprism experiment w	h) Diffusction nottorn is											
a) Fringe are affected	d) None of these	spread more										
c) Central Image is white and an are coloured	a) None of these											
a) 1 mm b) 2 mm	c) 3 mm	d) 4 mm										
457 When a thin metal plate is placed in the path of one	of the interfering beams of	light										
a) Fringe width increases	h) Fringes disannear	ingit										
c) Fringes become brighter	d) Fringes becomes blur	red										
458 When light is incident on a diffraction grating the ze	ro order principal maximu	ım will be										
a) One of the component colours	b) Absont											
c) Spectrum of the colours	d) White											
459 Radio waves and visible light in vacuum have	u) white											
a) Same velocity but different wavelength	h) Continuous amission s	snectrum										
c) Band absorption spectrum	d) Line emission spectru	m										
460 An ontically active compound	a) line emission speetra	111										
a) Rotates the plane polarized light												
b) Changing the direction of polarized light												
c) Do not allow plane polarized light to pass through	ı											
d) None of the above	1											
461. A ray of light is incident on the surface of a glass plat	te at an angle of incidence	equal to Brewster's angle ϕ .										
If μ represents the refractive index of glass with rest	pect to air, then the angle b	between reflected and										
refracted ravs is	, , , , , , , , , , , , , , , , , , , ,											
a) $90 + \phi$	b) $\sin^{-1}(\mu \cos \phi)$											
c) 90°	d) 90° - $\sin^{-1}(\sin^{-1}\phi/\mu)$	l)										
462. Which of the following has/have zero average value	in a plane electromagnetic	c wave										
a) Both magnetic and electric fields	b) Electric field only											
c) Magnetic field only	d) Magnetic energy											
463. In a Fresnel's diffraction arrangement, the screen is	at a distance of 2 meter fro	om a circular aperture. It is										
found that for light of wavelengths λ_1 and λ_2 , the rac	lius of 4 <i>th</i> zone for λ_1 coin	cides with the radius of 5 th										
zone for λ_2 . Then the ratio $\lambda_1: \lambda_2$ is	-											
a) $\sqrt{4/5}$ b) $\sqrt{5/4}$	c) 5/4	d) 4/5										
464 A star moves away from earth at speed $0.8 c$ while e	mitting light of frequency	$6 \times 10^{14} Hz$ What frequency										
will be observed on the earth (in units of $10^{14}Hz$) (c	r = sneed of light)	o x 10 m2. What hequency										
a) 0.24 b) 1.2	c) 30	q) 3 3										
465 A plane wave of wavelength 6250 Å is incident norm	ally on a slit of width 2 x	10^{-2} cm The width of the										
nrincinal maximum on a screen distant 50 cm will h		10 cm. the width of the										
a) 212 5 $\times 10^{-3}$ cm b) 212 5 $\times 10^{-4}$ cm	c) 312 cm	d) 212 5 $\times 10^{-5}$ cm										
466 If the intensities of the two interfering beams in You	ng's double alit experimen	$u_J S I Z . S \times 10^{-1}$ CIII										
400. If the intensities of the two interfering beams in rou	sity is good when	It be I_1 and I_2 , then the										
a) L is much greater than L	b) L is much smaller that	n I										
a) I_1 is much greater than I_2	d) Either $L = 0$ or $L = 0$	II I ₂										
$J_{11} = I_2$ 467 Two coherent sources of intensity ratio 1 · 4 produce	$u_{1} = u_{1} = 0 0 I_{2} = 0$	' The fringe visibility will be										
a) 1 b) 0.9	c 0.4	d) 0.6										
aj 1 UJ V.O 468 The electromagnetic wave having the shortest wave	longth is	uj 0.0										
TOO. THE ELECTION AND THE WAVE HAVING THE SHOLLEST WAVE	ICHYUI IS											
	a) X-rays	b) γ-rays	c) Infrared rays	d) Microwaves								
-----	---	---	--	--	--	--	--	--	--	--	--	--
469	A slit of width <i>a</i> is illumin	ated by white light. For rec	$\frac{1}{1}$ light ($\lambda = 6500$ Å). the fir	st minima is obtained at								
	$\theta = 30^{\circ}$. Then the value of	f <i>a</i> will be										
	a) 3250 Å	b) $6.5 \times 10^{-4} mm$	c) 1.24 microns	d) 2.6 × 10^{-4} cm								
470	. Wavefront means	,	,	,								
	a) All particles in it have	same phase										
	b) All particles have oppo	site phase of vibrations										
	c) Few particles are in sa	me phase, rest are in oppos	site phase									
	d) None of these	r i i i i i i i i i i i i i i i i i i i	I III									
471	. An electromagnetic wave	of frequency $v = 3.0 MHz$	passes from vacuum into a	dielectric medium with								
	relative permitivity $\varepsilon_r = \frac{1}{2}$	4.0. Then	1									
	a) Wavelength is doubled	and the frequency remain	s unchanged									
	b) Wavelength is doubled and frequency becomes half											
	c) Wavelength is halved and frequency remains unchanged											
	d) Wavelength and freque	ency both remain unchange	ed									
472	. Ordinary light incident or	n a glass slab at the polarisi	ng angle, suffers a deviatio	n of22°. The value of the								
	angle of refraction in glas	s in this case is										
	a) 56°	b) 68°	c) 34°	d) 22°								
473	. What will be the angle of	diffraction for the first orde	er maximum due to Fraunh	ofer diffraction by a single								
	slit of width 0.50 mm, usi	ng light of wavelength 500	nm?									
	a) 1×10^{-3} rad	b) 3×10^{-3} rad	c) 1.5×10^{-4} rad	d) 1.5 × 10 ⁻³ rad								
474	The Young' experiment is	performed with the lights	of blue ($\lambda = 4360$ Å) and g	green colour ($\lambda = 5460$ Å), if								
	the distance of the 4th fri	nge from the centre is <i>x</i> , the	en									
	a) α (Plue) $-\alpha$ (Creen)	b) $\alpha(\text{Plue}) > \alpha(\text{Creen})$	a) $w(\text{Dlug}) < w(\text{Croop})$	x(Blue) = 5460								
	a) x (blue) – x (Green)	DJ x(Diue) > x(Green)	x(Blue) < x(Gleen)	$\frac{1}{x(Green)} = \frac{1}{4360}$								
475	. In a Young's double slit ex	xperiment, the fringe width	will remain same, if $(D =$	distance between screen								
	and plane of slits, $d = sep$	paration between two slits a	and λ = wavelength of light	t used)								
	a) Both λ and D are doub	led	b) Both <i>d</i> and <i>D</i> are doub	led								
	c) <i>D</i> is doubled but <i>d</i> is h	alved	d) λ is doubled but <i>d</i> is ha	alved								
476	. A beam of light consisting	g of two wavelengths 650 n	<i>m</i> and 520 <i>nm</i> is used to il	luminate the slit of a								
	Young's double slit exper	iment. Then the order of th	e bright fringe of the longe	r wavelength that coincide								
	with a bright fringe of the	shorter wavelength at the	least distance from the cer	itral maximum is								
	a) 1	b) 2	c) 3	d) 4								
477	. If white light is used in Yo	oung's double slit experime	nt									
	a) No interference patter	n is formed										
	b) White fringes are form	ed										
	c) Central bright fringe is	white										
470	d) Central bright fringe is	coloured		1 1								
4/8	. The maximum distance u	pto which I v transmission	from a 1 v tower of height	<i>n</i> can be received is								
	proportional to $k^{1/2}$	b) <i>b</i>	a) h	d) h?								
470	$d \int n^{-\gamma} dr$	UJ IL	<i>c</i>) <i>n</i>	u) <i>n</i> -								
479	a) a rays	b) & rave		d) None of these								
180	aj u — rays In Voung's double slit ovr	$D_{j} p = 1ays$	cjγ = lays	uj Nolle of these								
400	width of the other slit. The	en in the interference patt	orn									
	a) The intensities of mavi	ma increase while that of n	ninima decrease									
	h) The intensities of both	maxima and minima decre	2356									
	c) The intensities of both	maxima and minima remai	in the same									
	d) The intensities of both	maxima and minima increa										

481. A single slit Fraunhoffer diffraction pattern is formed with white light. For what wavelength of light the

third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern for red light of wavelength 6500 Å

a) 4400 Å b) 4100 Å c) 4642.8 Å d) 9100 Å

482. Light passes successively through two polarimeter tubes each of length 0.29*m*. The first tube contains dextro rotatory solution of concentration $60kgm^{-3}$ and specific rotation $0.01rad \ m^2kg^{-1}$. The second tube contains laevo rotatory solution of concentration $30kg/m^3$ and specific rotation $0.02radm^2kg^{-1}$. The net rotation produced is

- a) 15°b) 0°c) 20°d) 10°483. Two coherent sources of intensity ratio 1:4 produce an interference pattern. The fringe visibility will be
a) 1b) 0.8c) 0.4d) 0.6
- 484. Two polaroids are kept crossed to each other. Now one of them us rotated through an angle of 45°. The percentage of incident light now transmitted through the system is
 a) 15%
 b) 25%
 c) 50%
 d) 60%
- 485. In Young's double slit experiment, the interference pattern is found to have an intensity ratio between bright and dark fringes is 9, this implies that
 - a) The intensities at the screen due to two slits are 5 units and 4 units respectively
 - b) The intensities at the screen due to the two slits are 4 units and 1 units, respectively
 - c) The amplitude ratio is 7
 - d) The amplitude ratio is 6
- 486. Interference may be seen using two independent
 - a) Sodium lamps
 - c) Lasers

- b) Fluorescet tubes
- d) Mercury vapour lamps
- 487. In a Young's double slit experiment, the separation between the two slits is 0.9 mm and the fringes are observed 1 m away. If it produces the second dark fringes at a distance of 1 mm from the central fringe, the wavelength of the monochromatic source of light used is
- a) 450 nm
 b) 400 nm
 c) 5002 nm
 d) 600 nm
 488. In the adjacent diagram, *CP* represents a wavefront and *AO* and *BP*, the corresponding two rays. Find the condition on θ for constructive interference at *P* between the ray *BP* and reflected ray *OP*

a) $\cos \theta = \frac{3\lambda}{2}$	b) $\cos \theta = \frac{\lambda}{2}$	c) $\sec \theta - \cos \theta = \frac{\lambda}{-1}$	d) $\sec \theta - \cos \theta = \frac{4\lambda}{2}$	
2d	4d	d d	d d	
9 In double slit experim	ent the distance between	two slits is 0.6 mm and these a	are illuminated with light	of

489. In double slit experiment, the distance between two slits is 0.6 mm and these are illuminated with light of wavelength 4800 Å. The angular width of first dark fringe on the screen distant 120 cm from slits will be a) 8×10^{-4} rad b) 6×10^{-4} rad c) 4×10^{-4} rad d) 16×10^{-4} rad

- 490. In an experiment of Newton's rings, the diameter of the 20th dark ring was found to be 5.82 *mm* and that of the 10th ring 3.36 *mm*. If the radius of the plano-convex lens is 1 *m*, the wavelength of light used is
 a) 5646 Å
 b) 5896 Å
 c) 5406 Å
 d) 5900 Å
- 491. A radio receiver antenna that is 2 m long is oriented along the direction of the electromagnetic wave and receives a signal of intensity $5 \times 10^{-16} W/m^2$. The maximum instantaneous potential difference across the two ends of the antenna is

a) 1.23 μV
b) 1.23 mV
c) 1.23 V
d) 12.3 mV
492. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the finges are observed one metre away. If it produces the second dark fringe at a distance of 1 mm from the central fringe, the wavelength of monochromatic light used would be

a) 60×10^{-4} cm	b) 10×10^{-4} cm	c) 10×10^{-5} cm	d) 6×10^{-5} cm
---------------------------	---------------------------	---------------------------	--------------------------

493	. The condition for observi the slit should be	ng Fraunhoffer diffraction	from a single slit is that the	e light wavefront incident on
	a) Spherical	b) Cylindrical	c) Plane	d) Elliptical
494	. In a Young's experiment,	two coherent sources are p	blaced 0.90 mm apart and t	the fringes are observed one
	metre away. If it produces	s the second dark fringe at	a distance of 1 <i>mm</i> from th	ne central fringe, the
	wavelength of monochron	matic light used would be		0,
	a) $60 \times 10^{-4} cm$	b) $10 \times 10^{-4} cm$	c) $10 \times 10^{-5} cm$	d) $6 \times 10^{-5} cm$
495	In Young's double slit exp	eriment the wavelength of	light was changed from 70)00Å to 3500Å. While
	doubling the separation b	etween the slits which of t	he following is not true for	this experiment
	a) The width of the fringe	es changes	0	1
	b) The colour of bright fri	nges changes		
	c) The separation betwee	en successive bright fringes	changes	
	d) The separation betwee	en successive dark fringes r	emains unchanged	
496	A beam of natural light fa	lls on a system of 6 polaroi	ds, which are arranged in s	succession such that each
	polaroid is turned throug	h 30° with respct to the pro	eceding one. The percentag	ge of incident intensity that
	passes through the syster	n will be		· ·
	a) 100%	b) 50%	c) 30%	d) 12%
497	Newton postulated his co	rpuscular theory on the ba	sis of	,
	a) Newton's rings		b) Colours of thin films	
	c) Rectilinear propagation	n of light	d) Dispersion of white lig	ht
498	A screen is placed 50 <i>cm</i> f	rom a single slit, which is il	luminated with 6000Å ligh	nt. If distance between the
	first and third minima in	the diffraction pattern is 3 <i>r</i>	<i>nm</i> , the width of the slit is	
	a) 0.1 <i>mm</i>	b) 0.2 <i>mm</i>	c) 0.3 <i>mm</i>	d) 0.4 <i>mm</i>
499	In a Fraunhoffer diffraction	on at single slit of width 'd'	with incident light of wave	elength 5500 Å. the first
	minimum is observed. at	angle 30°. The first seconda	arv maximum is observed a	at an angle $\theta =$
	, <u>1</u>	. 1	3	$\sqrt{3}$
	a) $\sin^{-1} \frac{1}{\sqrt{2}}$	b) $\sin^{-1}\frac{1}{4}$	c) $\sin^{-1}\frac{1}{4}$	d) $\sin^{-1}\frac{\sqrt{3}}{2}$
500	In Young's experiment, us	sing red light ($\lambda = 6600$ Å).	60 fringes are seen in the	field of view. How many
	fringes will be seen by us	ing violet light ($\lambda = 4400$ Å)?	, ,
	a) 10	h) 20	c) 45	d) 90
501	A heam of natural light fa	lls on a system of 5 polaroi	ds which are arranged in s	succession such that the
501	nass axis of each Polaroid	is turned through 60° with	respect to the preceding	one The fraction of the
	incident light intensity th	at passes through the syste	m is	one. The fraction of the
	1	1	1	. 1
	a) $\frac{1}{64}$	b) $\frac{1}{32}$	c) $\frac{1}{256}$	d) $\frac{1}{512}$
502	. Plane microwaves are inc	ident on a long slit having a	a width of 5 cm. The wavel	ength of the microwaves if
	the first minimum is form	ied at 30° is		
	a) 2.5 cm	b) 2 cm	c) 25 cm	d) 2 mm
503	At two points P and Q on	screen in Young's double s	lit experiment. Waves fror	n slits
	S_1 and S_2 have a path diff	ference of 0 and $\frac{\lambda}{\lambda}$ respectiv	ely. The ratio of intensities	sat
	Dand Quvill ha	4 100 pool		
		h) 2 . 1	a) [] . 1	J) 4 . 1
F 04	dj 5 · 2	UJZ · I	$c_{j} \sqrt{2} : 1$	uj 4 · 1
504	in a two slits experiment	with monochromatic light,	iringes are obtained on a s 10^{-2}	creen placed at some
	distance from the slits. If	the screen is moved by 5 \times	10 ⁻² m towards the slits, t	ne change in fringe width is
	3×10^{-9} m. If separation	between the slits is 10 ⁻⁵ m,	the wavelength of light us	ed is
	a) 4500 A	b) 3000 A	c) 5000 A	d) 6000 A
505	In a Young's double-slit e	xperiment the tringe width	is 0.2mm. If the waveleng	th of light used is increased
	by 10% and the separation	on between the slits is also i	increased by 10%, the fring	ge width will be
	a) 0.20 mm	bJ 0.401 mm	c) 0.242 mm	d) 0.165 mm
506	. For what distance is ray c	ptics a good approximation	n when the aperture is 4 <i>m</i>	<i>m</i> wide and the wavelength

Page | 39

	is 500 <i>nm</i>			
	a) 32 m	b) 64 <i>m</i>	c) 16 m	d) 8 <i>m</i>
507	White light may be consid	ered to be a mixture of wa	ives with λ ranging betwee	n 3900 Å and 7800 Å. An oil
	film of thickness 10,000 Å	is examined normally by	reflected light. If $\mu = 1.4$, th	en the film appears bright
	for	5 5		
	a) 4308 Å. 5091 Å. 6222 Å	b) 4000 Å. 5091 Å. 5600 Å	Å c) 4667 Å. 6222 Å. 7000 Å	Å d) 4000 Å. 4667 Å. 5600 Å.
508	Two non-coherent source	s emit light beams of inten	sities I and 4I . The maxim	um and minimum
	intensities in the resulting	g beam are		
	a) 9I and I	b) 9 <i>I</i> and 3 <i>I</i>	c) 5 <i>I</i> and <i>I</i>	d) 5 <i>I</i> and 3 <i>I</i>
509.	In an interference experin	nent, the spacing between	successive maxima or mini	ima is
	a) $\lambda d/D$	b) $\lambda D/d$	c) dD/λ	d) $\lambda d/4D$
510	When an unpolarized light	t of intensity <i>I</i> ⁰ is incident	on a polarizing sheet, the i	ntensity of the light which
	does not get transmitted i	S		
	a) Zero	h) I	1	d) ¹ I
		0) I ₀	$C_{1} = \frac{1}{2} I_{0}$	$\frac{1}{4}I_0$
511	When a plane polarized lig	ght is passed through an a	nalyser and analyser is rota	ated through 90°, the
	intensity of the emerging	light		
	a) Varies between a maxim	num and minimum	b) Becomes zero	
	c) Does not vary		d) Varies between a maxi	mum and zero
512	Which of the following ph	enomenon exhibits particl	e's nature of light?	
	a) Interference	b) Diffraction	c) Polarization	d) Photoelectric effect
513	Refractive index of materi	al is equal to tangent of po	olarizing angle. It is called	
	a) Brewster's law	b) Lambert's law	c) Malus's law	d) Bragg's law
514	In Young's double slit exp	eriment, the fringe width i	s $1 \times 10^{-4} m$. If the distanc	e between the slit and
	screen is doubled and the	distance between the two	slit is reduced to half and v	wavelength is changed from
	$6.4 \times 10^{-7} m \text{ to } 4.0 \times 10^{-7}$	<i>m</i> , the value of new fringe	e width will be	N
	a) $0.15 \times 10^{-4}m$	b) $2.0 \times 10^{-4}m$	c) $1.25 \times 10^{-4} m$	d) $2.5 \times 10^{-4}m$
515.	In Young's double slit exp	eriment, if d , D and λ repre	esent, the distance betweer	the slits, the distance of
	the screen from the slits a	nd wavelength of light use	d respectively, then the bar	nd width is inversely
	proportional to			12. 22
- 4 6	a) λ	b) <i>d</i>	c) D	d) λ^2
516	Energy stored in electrom	agnetic oscillations is in th	te form of	
F 1 7	a) Electrical energy	b) Magnetic energy	c) Both (a) and (b)	d) None of these
517.	Light waves can be polariz	zed as they are		
F 10	a) Transverse	b) Of high frequency	C) Longitudinal	d) Reflected
518	A single silt is located elle	clively at mining in front (of a tens of focal tength 1 m	and it is mummated
	normally with light of way	/eiength 600 nm. The nrst	. minima on either side of c	entral maximum are
	separated by 4 mm. with	h) 0.2 mm	a) 0.2 mm	d) 0.4 mm
E10	d JU.1 IIIII In the set up shown in Fig	b) 0.2 IIIII the two slits S and S are	CJ U.S IIIII	U_{j} 0.4 IIIII
519	in the set up shown in Fig	the two sitts, S_1 and S_2 are	e not equiuistant nom the s	sint 5. The central in hige at 0
	• S ₁			
	s •			
	• J ₂			
	a) Always hright		h) Always dark	
	Either dark or hright de	enending on the position o	f d) Neither dark nor brigh	ıt
	c) S	penaning on the position o		

520. In Young's double slit experiment, if one of the slits is closed fully, then in the interference pattern

- a) A bright slit will be observed, no interference pattern will exist
- b) The bright fringes will become more bright
- c) The bright fringes will become fainter
- d) None of the above
- 521. Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate μ is

a)
$$\frac{\lambda}{4(\mu-1)}$$
 b) $\frac{2\lambda}{4(\mu-1)}$ c) $\frac{\lambda}{(\mu-1)}$ d) $\frac{\lambda}{2(\mu-1)}$

522. Radiations of intensity 0.5 W/m^2 are striking a metal plate. The pressure on the plate is a) $0.166 \times 10^{-8} N/m^2$ b) $0.332 \times 10^{-8} N/m^2$ c) $0.111 \times 10^{-8} N/m^2$ d) $0.083 \times 10^{-8} N/m^2$ 523. A light source approaches the observer with velocity 0.8 *c*. The Doppler shift for the light of wavelength

- 5500Å is
- a) 4400 Å b) 1833 Å c) 3167 Å d) 7333 Å

524. A thin film of soap solution (n = 1.4) lies on the top of a glass plate (n = 1.5). When visible light is incident almost normal to the plate, two adjacent reflection maxima are observed at two wavelengths 400 and 630 nm. The minimum thickness of the soap solution is a) 420 nm b) 450 nm c) 630 nm d) 1260 nm

525. What is the minimum thickness of a thin film required for constructive interference in the reflected light from it?

Given, the refractive index of the film = 1.5, wavelength of the light incident on the film = 600 nma) 100 nmb) 300nmc) 50 nmd) 200 nm

- 526. A thin mica sheet of thickness $2 \times 10^{-6}m$ and refractive index ($\mu = 1.5$) is introduced in the path of the first wave. The wavelength of the wave used is 5000 Å. The central bright maximum will shift a) 2 fringes upward b) 2 fringes downward c) 10 fringes upward d) None of these
- 527. In Fraunhofer diffraction experiment, L is the distance between screen and the obstacle, b is the size of obstacle and λ is wavelength of incident light. The general condition for the applicability of Fraunhofer diffraction is

a)
$$\frac{b^2}{L\lambda} >> 1$$
 b) $\frac{b^2}{L\lambda} = 1$ c) $\frac{b^2}{L\lambda} << 1$ d) $\frac{b^2}{L\lambda} \neq 1$

528. In Young's double slit experiment, a glass plate is placed before a slit which absorbs half the intensity of light. Under this case

- a) The brightness of fringes decreases
- b) The fringe width decreases
- c) No fringes will be observed
- d) The bright fringes become fainter and the dark fringes have finite light intensity
- 529. The coherent formula for fringe visibility is

a)
$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$
 b) $V = \frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{max}} - I_{\text{min}}}$ c) $V = \frac{I_{\text{max}}}{I_{\text{min}}}$ d) $V = \frac{I_{\text{min}}}{I_{\text{max}}}$

530. If Young's double slit experiment, is performed in water

- a) The fringe width will decrease b) The fringe width will increase
- c) The fringe width will remain unchanged d) There will be no fringe
- 531. Microwaves from a transmitter are directed normally towards a plane reflector. A detector moves along the normal to the reflector. Between positions of 14 successive maxima, the detector travels a distance of 0.14 m. The frequency of transmitter is
 - a) 1.5×10^{10} H b) 10^{10} H c) 3×10^{10} H d) 6×10^{10} H

532. In a Young's double slit experiment the intensity at a point where the path difference is $\frac{\lambda}{6}$ (λ being the

wavelength of the light used) is *I*. If I_0 denotes the maximum intensity, $\frac{I}{I_0}$ is equal to

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\frac{\sqrt{3}}{2}$ c) 1/2 d) 3/4

533. In Young's experiment, monochromatic light is used to illuminate the two slits *A* and *B*. Interference

fringes are observed on a screen placed in front of the slits. Now if a thin glass plate is placed normally in the path of the beam coming from the slit

a) The fringes will disappear
b) The fringe width will increase
c) The fringe width will increase
d) There will be no change in the fringe width but the pattern shifts
534. In Young's double slit experiment if the slits widths are in the ratio 1: 9, the ratio of the intensities at minima to that at maxima will be
a) 1 b) 1/9 c) 1/4 d) 1/3
535. When a compact disc is illuminated by small source of white light, coloured bands are observed. This is due to
a) Dispersion b) Diffraction c) Interference d) Reflection
536. If
$$\vec{E}$$
 and \vec{B} are the electric and magnetic field vectors of E.M. waves then the direction of propagation of E.M. wave is along the direction of m order minima is
a) $d\vec{B}$ b) \vec{B} c) $\vec{E} \times \vec{B}$ d) None of these
537. The condition for diffraction of m th order minima is
a) $d \sin 0_m = m\lambda, m = 1, 2, 3, ...$
c) $d \sin 0_m = (m + 1)\frac{\lambda}{2}, m = 1, 2, 3, ...$
c) $d \sin 0_m = (m - 1)\frac{\lambda}{2}, m = 1, 2, 3, ...$
538. In the phenomenon of diffraction of light, when blue light is used in the experiment instead of red light, then
a) Fringes will become narrower b) Fringes will become broader
c) No change in fringe width d) None of the above
539. The electric field of a plane electromagnetic field is (in (m^{-3})
a) 13.29×10^{-12} b) 8.6×10^{-12} c) 17.72×10^{-12} d) 4.43×10^{-12}
540. Angular width decreases by 30%. The wavelength of this light will be
a) $(000 \ A$ b) $4200 \ A$ c) $3000 \ A$ d) $1800 \ A$
541. The transverse nature of light is shown by
a) luterference of light is shown by
a) (a000 \lefta b) $(n + 1)\pi$ c) $(2n - 1)\pi$ d) Zero
543. Scap bubble appears coloured due to the phenomenon of
a) $(n = freerence of light is shown by
a) interference of light b) Refraction of light c) Polarisation of light d) Dispersion of light
541. The transverse nature of light is shown by
a) luterference of light b) Refraction of light c) Polarisation of light d) Dispersion of light
542. In an interference wavelength of this light will be
a) $(000 \ A$ b) $(n + 1$$

- 545. A polaroid is placed at 45° to an incoming light of intensity I_0 . Now the intensity of light passing through polaroid after polarization would be
 - a) I_0 b) $I_0/2$ c) $I_0/4$ d) Zero

546. Two polaroids are placed in the path of unpolarised beam of intensity I_0 such that no light is emitted from the second polaroid. If a third polaroid whose polarization axis makes an angle θ with the polarization axis of first polaroid, is placed between these polaroids then the intensity of light emerging from the last polaroid will be

a)
$$\left(\frac{I_0}{8}\right)\sin^2 2\theta$$
 b) $\left(\frac{I_0}{4}\right)\sin^2 2\theta$ c) $\left(\frac{I_0}{2}\right)\cos^4 2\theta$ d) $I_0\cos^4 \theta$

547. Two beams of light of intensity I_1 and I_2 interfere to give an interference pattern. If the ratio of maximum intensity to that of minimum intensity is $\frac{25}{9}$, then $\frac{I_1}{I_2}$ is

a)
$$5/3$$
 b) 4 c) $\frac{81}{625}$ d) 16

548. When two coherent monochromatic light beams of intensities I and 4I are superimposed. What are the maximum and minimum possible intensities in the resulting beams? a) 51 and 1 b) 5*I* and 3*I* c) 9*I* and *I* d) 9I and 3I

549. A plane electromagnetic wave travels in free space along *x*-axis. At a particular point in space, the electric field along *y*-axis is 9.3 Vm^{-1} . The magnetic induction (*B*) along *z*-axis is a) $3.1 \times 10^{-8}T$ b) $3 \times 10^{-5}T$ c) $3 \times 10^{-6}T$ d) $9.3 \times 10^{-6}T$

550. Young's double slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_G , β_R and β_R , respectively. Then

b) $\beta_B > \beta_G > \beta_R$ a) $\beta_G > \beta_B > \beta_R$ c) $\beta_R > \beta_B > \beta_G$ d) $\beta_R > \beta_G > \beta_B$ 551. An electromagnetic wave, going through vacuum is described by $E = E_0 \sin(kx - \omega t)$. Which of the following is independent of wavelength

a) k c) k/ω d) *kω* b) ω

552. Two waves of equal amplitude and frequency interfere each other. The ratio of intensity when the two waves arrive in phase to that when they arrive 90° out of phase is

a) 1:1 b) $\sqrt{2}$: 1 c) 2:1 d) 4 : 1

- 553. In Young's double slit experiment, when two light waves form third minimum, they have
 - b) Phase difference of $\frac{5\pi}{2}$ a) Phase difference of 3π d) Path difference of $\frac{5\lambda}{2}$ c) Path difference of 3λ
- 554. In a Young's double slit experiment, the fringe width is found to be 0.4 mm. If the whole apparatus is immersed in water of refractive index 4/3 without disturbing the geometrical arrangement, the new fringe width will be

a) 0.30 mm b) 0.40 mm c) 0.53 mm d) 450 micron 555. In a biprism experiment, by using light of wavelength 5000 Å, 5mm wide fringes are obtained on a screen 1.0 *m* away from the coherent sources. The separation between the two coherent sources is b) 0.1 mm c) 0.05 mm a) 1.0 mm d) 0.01 mm

556. A 20 cm length of a certain solution causes right handed rotation of 38°. A 30 cm length of another solution causes left handed rotation of 24°. The optical rotation caused by 30 cm length of a mixture of the above solutions in the volume ratio 1:2 is

c) $n^2 I_0$

- a) Left handed rotation of 14° b) Right handed rotation of 14° c) Left handed rotation of 3°
 - d) Right handed rotation of 3°

557. Light is an electromagnetic wave. Its speed in vacuum is given by the expression

b) $\frac{I_0}{n}$

a)
$$\sqrt{\mu_o \varepsilon_o}$$
 b) $\sqrt{\frac{\mu_o}{\varepsilon_o}}$ c) $\sqrt{\frac{\varepsilon_o}{\mu_o}}$ d) $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$

558. *n* coherent source of intensity I_0 are superimposed at a point, the intensity of the point is

d) None of these

a) nI_0

- 559. Biological importance of Ozone layer is
 - a) It stops ultraviolet rays

c) Ozone layer reflects radio waves

b) Ozone rays reduce green house effect

d) Ozone layer controls O_2/H_2 radio in atmosphere 560. In which one of the following regions of the electromagnetic spectrum will the vibrational motion of molecules give rise to absorption

a) Ultraviolet b) Microwaves

c) Infrared

d) Radio waves

d) $\lambda(n-l)$

561. Which of the following is not a property of light

- a) It requires a material medium for propagation
- b) It can travel through vacuum
- c) It involves transportation of energy
- d) It has finite speed
- 562. A parallel beam of light of intensity I_0 is incident on a glass plate, 25% of light is reflected by upper surface and 50% of light is reflected from lower surface. The ratio of maximum to minimum intensity in interference region of reflected rays is

a)
$$\left(\frac{\frac{1}{2} + \sqrt{\frac{3}{8}}}{\frac{1}{2} - \sqrt{\frac{3}{8}}}\right)^2$$
 b) $\left(\frac{\frac{1}{4} + \sqrt{\frac{3}{8}}}{\frac{1}{2} - \sqrt{\frac{3}{8}}}\right)^2$ c) $\frac{5}{8}$ d) $\frac{8}{5}$

563. The 21 cm radio wave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction is atomic hydrogen, the energy of the emitted wave is nearly

- b) 1 Joule a) 10⁻¹⁷ *Joule* c) 7×10^{-8} *Joule* d) 10^{-24} *Joule* 564. In Young's double slit experiment, a third slit is made in between the double slits. Then
 - a) Fringes of unequal width are formed
 - b) Contrast between bright and dark fringes is reduced
 - c) Intensity of fringes totally disappears
 - d) Only bright light is observed on the screen
- 565. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by $2\pi l$ radian. If there is a maximum in direction D the distance XO using in as an integer is given by

566. A glass slab of thickness 8 cm contains the same number of waves as 10 cm of water when both are transverse by the same monochromatic light. If the refractive index of water is 4/3, then refractive index of glass is

c) $\frac{\lambda}{2}(n+l)$

a) 5/4 b) 3/2 c) 5/3 d) 16/15

567. In Young's double slit experiment, if *L* is the distance between the slits and the screen upon which interference pattern is observed, x is the average distance between the adjacent fringes and d being the slit separation. The wavelength of light is given by

a)
$$\frac{xd}{L}$$
 b) $\frac{xL}{d}$ c) $\frac{Ld}{x}$ d) $\frac{1}{Ld}$

- 568. λ_a and λ_m are the wavelength of a beam of light in air and medium respectively. If θ is the polarising angle, the correct relation between λ_a , λ_m and θ is
 - d) $\lambda_m = \lambda_a \cot \theta$ a) $\lambda_a = \lambda_m \tan^2 \theta$ c) $\lambda_a = \lambda_m \cot \theta$ b) $\lambda_m = \lambda_a \tan^2 \theta$
- 569. Out of the following statements which is not correct
 - a) When unpolarised light passes through a Nicol prism, the emergent light is elliptically polarised
 - b) Nicol prism works on the principle of double refraction and total internal reflection
 - c) Nicol prism can be used to produce and analyse polarized light

d) Calcite and Quartz are	both doubly refracting cry	stals	
In Young's double slit exp	eriment, distance betweer	n two sources is 0.1 <i>mm</i> . Th	ne distance of screen from
the sources is 20 cm. Way	elength of light used is 54	60 Å. Then angular position	n of the first dark fringe is
a) 0.08°	b) 0.18°	c) 0.20°	d) 0.313°
In Young's double slit exp	eriment, the intensity on t	he screen at a point where	path difference λ is <i>K</i> . What
will be the intensity at the	e point where path differen	nce is $\lambda/4$	
a) $\frac{K}{4}$	b) $\frac{K}{2}$	c) <i>K</i>	d) Zero
A wavefront presents one	, two and three HPZ at poi	nts A, B and C respectively	. If the ratio of consecutive
amplitudes of HPZ is 4 : 3,	, then the ratio of resultan	t intensities at these point	will be
a) 169 : 16 : 256	b) 256 : 16 : 169	c) 256 : 16 : 196	d) 256 : 196 : 16
V_o and V_E represent the ve	elocities, μ_o and μ_E the ref.	ractive indices of ordinary	and extraordinary rays for a
doubly refracting crystal.	Then		
a) $V_o \ge V_E$, $\mu_o \le \mu_E$ if the o	crystal is calcite	b) $V_o \leq V_E$, $\mu_o \leq \mu_E$ if the	crystal is quartz
c) $V_o \leq V_E$, $\mu_o \geq \mu_E$ if the o	crystal is calcite	d) $V_o \ge V_E$, $\mu_o \ge \mu_E$ if the	crystal is quartz
100 π phase difference =	Path difference.		
a) 10λ	b) 25λ	c) 50λ	d) 100λ
Diffraction effects are eas	ier to notice in the case of	sound waves than in the ca	se of light waves because
a) Sound waves are longit	tudinal	b) Sound is perceived by	the ear
c) Sound waves are mech	anical waves	d) Sound waves are of lo	nger wavelength
Three waves of equal freq	uency having amplitudes	10μm, 4μm, 7μm arrive at a	a given point with
successive phase differen	ce of $\frac{\pi}{2}$, the amplitude of the	he resulting wave in μm is g	given by
a) 4	b) 5	c) 6	d) 7
An unpolarised beam of in	itensity 2 a^2 passes through	gh a thin Polaroid. Assumir	g zero absorption in the
Polaroid, the intensity of e	emergent plane polarized	light is	-8 F F
, <u>,</u>			a^2
a) z a²	b) a ²	c) $\sqrt{2a^2}$	$\frac{d}{2}$
In an interference pattern	by two identical slits, the	intensity of central maxim	a is <i>I</i> . what will be the
intensity of the same spot	, if one of the slits is closed	1?	
a) <i>I</i> /4	b) <i>I</i> /2	c) <i>I</i>	d) 2 <i>I</i>
In the diffraction pattern	of a single slit		
a) All bands are uniformly	y bright	b) All bands are uniform	ly wide
c) Central band is narrow	er	d) Central band is wider	
Electromagnetic waves ca	in be deflected by		
a) Electric field only	b) Magnetic field only	c) Both (a) and (b)	d) None of these
If <i>c</i> is the speed of electro	magnetic waves in vacuun	n, its speed in a medium of	dielectric constant K and
relative permeability μ_r is	5		
a) $v = \frac{1}{1}$	b) $u = c \sqrt{\mu K}$	$v = \frac{c}{c}$	d) $v = \frac{K}{1}$
$\sqrt{\mu_r K}$	$b j v = c \sqrt{\mu r n}$	$\sqrt{\mu_r K}$	$\sqrt{\mu_r C}$
In diffraction from a single	e slit, the angular width of	the central maxima does n	ot depend on
a) λ of light used			
b) Width of slit			
c) Distance of slits from se	creen		
d) Ratio of λ and slit width	h		
A wave can transmit	from one place to anothe	er	
a) Energy	b) Amplitude	c) Wavelength	d) Matter
Ozone is found in			
a) Stratosphere	b) Ionosphere	c) Mesosphere	d) Troposphere
aj seracospilere	s) ioncephere	ej mesesphere	
	d) Calcite and Quartz are 1 In Young's double slit exp the sources is 20 <i>cm</i> . Way a) 0.08° In Young's double slit exp will be the intensity at the a) $\frac{K}{4}$ A wavefront presents one amplitudes of HPZ is 4 : 3, a) 169 : 16 : 256 V_o and V_E represent the ver doubly refracting crystal. a) $V_o \ge V_E$, $\mu_o \le \mu_E$ if the of c) $V_o \le V_E$, $\mu_o \ge \mu_E$ if the of 100 π phase difference = a) 10 λ Diffraction effects are eas a) Sound waves are longing c) Sound waves are longing c) Sound waves are mech Three waves of equal free successive phase different a) 4 An unpolarised beam of in Polaroid, the intensity of the a) 2 a^2 In an interference pattern intensity of the same spot a) $I/4$ In the diffraction pattern for a) All bands are uniformly c) Central band is narrow Electromagnetic waves can a) Electric field only If <i>c</i> is the speed of electron relative permeability μ_r is a) $\nu = \frac{1}{\sqrt{\mu_r K}}$ In diffraction from a single a) λ of light used b) Width of slit c) Distance of slits from s d) Ratio of λ and slit width A wave can transmit a) Energy Ozone is found in b) Stratesphere	d) Calcite and Quartz are both doubly refracting cry In Young's double slit experiment, distance between the sources is 20 <i>cm</i> . Wavelength of light used is 54 a) 0.08° b) 0.18° In Young's double slit experiment, the intensity on t will be the intensity at the point where path different a) $\frac{K}{4}$ b) $\frac{K}{2}$ A wavefront presents one, two and three HPZ at point amplitudes of HPZ is 4 : 3, then the ratio of resultant a) 169 : 16 : 256 b) 256 : 16 : 169 V_o and V_E represent the velocities, μ_o and μ_E the refi- doubly refracting crystal. Then a) $V_o \ge V_E, \mu_o \le \mu_E$ if the crystal is calcite () $V_o \le V_E, \mu_o \ge \mu_E$ if the crystal is calcite 100 π phase difference = Path difference. a) 10 λ b) 25 λ Diffraction effects are easier to notice in the case of a) Sound waves are longitudinal c) Sound waves are longitudinal c) Sound waves are longitudinal c) Sound waves are mechanical waves Three waves of equal frequency having amplitudes successive phase difference of $\frac{\pi}{2}$, the amplitude of the a) 4 b) 5 An unpolarised beam of intensity 2 a^2 passes throug Polaroid, the intensity of emergent plane polarized a) $2 a^2$ b) a^2 In an interference pattern by two identical slits, the intensity of the same spot, if one of the slits is closed a) $1/4$ b) $1/2$ In the diffraction pattern of a single slit a) All bands are uniformly bright c) Central band is narrower Electromagnetic waves can be deflected by a) Electric field only b) Magnetic field only If <i>c</i> is the speed of electromagnetic waves in vacuum relative permeability μ_r is a) $v = \frac{1}{\sqrt{\mu_r K}}$ b) $v = c\sqrt{\mu_r K}$ In diffraction from a single slit, the angular width of a) λ of light used b) Width of slit c) Distance of slits from screen d) Ratio of λ and slit width A wave can transmit from one place to another a) Energy b) Amplitude Ozone is found in a) Stateore bran	d) Calcite and Quartz are both doubly refracting crystals In Young's double slit experiment, distance between two sources is 0.1 mm. Th the sources is 20 cm. Wavelength of light used is 5460 Å. Then angular position a) 0.08° b) 0.18° c) 0.20° In Young's double slit experiment, the intensity on the screen at a point where will be the intensity at the point where path difference is $\lambda/4$ a) $\frac{K}{4}$ b) $\frac{K}{2}$ c) K A wavefront presents one, two and three HPZ at points A, B and C respectively amplitudes of HPZ is 4 : 3, then the ratio of resultant intensities at these point · a) 169 : 16 : 256 b) 256 : 16 : 169 c) 256 : 16 : 196 V _o and V _E represent the velocities, μ_o and μ_E the refractive indices of ordinary doubly refracting crystal. Then a) $V_o \ge V_E, \mu_o \le \mu_E$ if the crystal is calcite b) $V_o \le V_E, \mu_o \ge \mu_E$ if the c) $V_o \le V_E, \mu_o \ge \mu_E$ if the crystal is calcite d) $V_o \ge V_E, \mu_o \ge \mu_E$ if the c) $U_0 \ge V_E, \mu_o \ge \mu_E$ if the crystal is calcite d) $V_o \ge V_E, \mu_o \ge \mu_E$ if the c) $U_0 \ge V_E, \mu_o \ge \mu_E$ if the crystal is calcite d) $V_o \ge V_E, \mu_o \ge \mu_E$ if the c) $U_0 = 0$ and difference = Path difference. a) 10 λ b) 25 λ c) 50 λ Diffraction effects are easier to notice in the case of sound waves are of lo Three waves of equal frequency having amplitudes 10 $\mu m, 4\mu m, 7\mu m$ arrive at successive phase difference of $\frac{\pi}{2}$ the amplitude of the resulting wave in μm is g a) 4 b) 5 c) 6 An unpolarised beam of intensity 2 a^2 passes through a thin Polaroid. Assumir Polaroid, the intensity of emergent plane polarized light is a) $2a^2$ b) a^2 c) $\sqrt{2}a^2$. In an interference pattern by two identical slits, the intensity of central maxim intensity of the same spot, if one of the slits is closed? a) $I/4$ b) $I/2$ c) I In the diffraction pattern of a single slit a) All bands are uniformly bright b) All bands are uniform c) Central band is narrower d) Central band is wider Electromagnetic waves can be deflected by a) $Electric field only$

	a) 1.062 <i>amp</i>	b) $1.062 \times 10^{-2} amp$	c) $1.062 \times 10^{-3} amp$	d) $1.062 \times 10^{-4} amp$
586	. If a transparent medium o	of refractive index $\mu = 1.5$	and thickness $t = 2.5 \times 10^{\circ}$	^{-5}m is inserted in front of
	one of the slits of Young's	Double Slit experiment, ho	w much will be the shift in	the interference pattern?
	The distance between the	e slits is 0.5 <i>mm</i> and that be	etween slits and screen is 1	00 cm
	a) 5 <i>cm</i>	b) 2.5 <i>cm</i>	c) 0.25 <i>cm</i>	d) 0.1 <i>cm</i>
587	. The electromagnetic wav	es do not transport		
	a) Energy	b) Charge	c) Momentum	d) Information
588	. Plane polarized light is pa	assed through a polaroid. O	n viewing through the pola	roid we find that when the
	polariod is given one com	plete rotation about the di	rection of the light, one of t	he following is observed
	a) The intensity of light g	radually decreases to zero	and remains at zero	
	b) The intensity of light g	radually increases to a max	timum and remains at max	imum
	c) There is no change in i	ntensity		
	d) The intensity of light is	twice maximum and twice	e zero	
589	· In the visible region of the	e spectrum the rotation of t	the plane of polarization is	given by $\theta = a + \frac{b}{12}$. The
	ontical rotation produced	by a particular material is	found to be 30° <i>ner mm</i> at	$\lambda = 5000$ Å and
	$50^{\circ}ner\ mm\ at\ \lambda = 4000\text{\AA}$	The value of constant <i>a</i> w	ill he	
	50 per min at n = 4000 A 50°	50°	Q°	٩°
	a) + $\frac{30}{9}$ per mm	b) $-\frac{30}{9}$ per mm	c) $+\frac{5}{50}$ per mm	d) $-\frac{5}{50}$ per mm
590	. In Young's double-slit exr	periment, an interference p	attern is obtained on a scre	een by a light of wavelength
	6000 Å, coming from the	coherent sources S_1 and S_2	At certain point <i>P</i> on the s	screen third dark fringe is
	formed. Then the nath dif	ference $S_1P - S_2P$ in micro	ons is	
	a) 0.75	b) 1.5	c) 3.0	d) 4.5
591	. In Young's double slit exp	eriment a minima is obser	ved when path difference b	between the interfering
071	heam is			
	a) λ	b) 1.5λ	c) 2 <i>)</i>	d) 2.25λ
592	The <i>k</i> line of singly ionize	d calcium has a wavelengt	h of 393.3 <i>nm</i> as measured	on earth. In the spectrum
072	of one of the observed gal	axies, this spectral line is l	ocated at 401.8 <i>nm</i> . The sp	eed with which the galaxy is
	moving away from us, wil	ll be	outou ut 10110 mm 110 op	eed men men ene garany is
	a) 6480 km/s	b) $3240 \ km/s$	c) $4240 \ km/s$	d) None of these
593	Two coherent sources S_1	and S_2 are separated by a c	listance four times the way	relength λ of the source. The
	sources lies along v axis v	whereas a detector moves a	along $+ x$ axis. Leaving the	origin and far off points the
	number of points where r	naxima are observed is		
	a) 2	b) 3	c) 4	d) 5
594	. Specific rotation of sugar	solution is 0.01 SI units. 20	$00 kam^{-3}$ of impure sugar s	solution is taken in a
	nolarimeter tube of lengt	h $0.25m$ and an optical rota	ation of 0.4 <i>rad</i> is observed	The percentage of purity
	of sugar is the sample is			
	a) 80%	b) 89%	c) 11%	d) 20%
595	. To demonstrate the phen	omenon of interference we	e require two sources which	h emit radiations of
	a) Nearly the same freque	encv	-1	
	b) The same frequency	, ,		
	c) Different wavelength			
	d) The same frequency ar	nd having a definite phase r	elationship	
596	. The 6563 Å line emitted k	by hydrogen atom in a star	is found to be red shifted b	v 5 Å. The speed with which
	the star is receding from	the earth is		у
	a) $17.29 \times 10^9 m/s$	b) 4.29 $\times 10^7 m/s$	c) $3.39 \times 10^5 m/s$	d) 2.29 $\times 10^5 m/s$
597	. A thin film of soap solutio	on $(\mu_c = 1.4)$ lies on the tor	of a glass plate $(\mu_a = 1.5)$. When visible light is
	incident almost normal to	the plate, two adjacent ref	flection maxima are observ	red at two wavelengths 420
	and 630 <i>nm</i> The minimu	m thickness of the soan sol	ution are	ea at two wavelengths 120
	a) 420 nm	h) 450 <i>nm</i>	c) $630 nm$	d) 1260 nm
598	The electromagnetic theo	ry of light failed to evoluin	cj 000 mit	aj 1200 min
270		,		

608. In Young's double slit experiment, let S_1 and S_2 be the two slits and *C* be the centre of the screen. If $\angle S_1 C S_2 = \theta$ and λ is the wavelength, the fringe width will be

609. Which one of the following property of light does not support wave theory of light?

- b) Light waves get polarized
- c) Light shows photoelectric effect
- d) Light shows interference

610. A parallel beam of monochromatic light of wavelength 5000 Å is incident normally on a single narrow slit of width 0.001mm. The light is focused by a convex lens on a screen placed on the focal plane. The first minimum will be formed for the angle of diffraction equal to a) 0° b) 15° d) 60° c) 30° 611. In Huygen's wave theory, the locus of all points in the same state of vibration is called a) A half period zone b) Oscillator c) A wave front d) A ray 612. In an interference experiment, the spacing between successive maxima or minima is (Where the symbols have their usual meanings) a) $\frac{\lambda d}{D}$ c) $\frac{dD}{\lambda}$ b) $\frac{\lambda D}{d}$ d) $\frac{\lambda d}{4D}$ 613. In a diffraction pattern by a wire, on increasing diameter of wire, fringe width a) Decreases b) Increases c) Remains unchanged d) Increasing or decreasing will depend on wavelength 614. In a double slit arrangement fringes are produced using light of wavelength 4800 Å. One slit is covered by a thin plate of glass of refractive index 1.4 and the other with another glass plate of same thickness but of refractive index 1.7. By doing so the central bright shifts to original fifth bright fringe from centre. Thickness of glass plate is a) 8 μm b) 6 μm c) 4 µm d) 10 µm 615. Wavelength of light of frequency 100Hz b) $3 \times 10^{6} m$ c) $4 \times 10^{6} m$ a) $2 \times 10^{6} m$ d) $5 \times 10^{6} m$ 616. Two nicol prism are first crossed and then one of them is rotated through 60°. The percentage of incident light transmitted is a) 1.25 b) 25.0 d) 50 c) 37.5 617. A star emitting light of wavelength 5896 Å is moving away from the earth with a speed of 3600 km/s. The wavelength of light observed on earth will $(c = 3 \times 10^8 m/s \text{ is the speed of light})$ a) Decrease by 5825.25 Å b) Increase by 5966.75 Å c) Decrease by 70.75 Å d) Increase by 70.75 Å 618. A Young's double slit set up for interference is shifted from air to within water, then the fringe width a) Becomes infinite b) Decreases c) Increases d) Remain unchanged 619. Young's experiment is performed in air and then performed in water, the fringe width a) Will remain same b) Will decrease d) Will be infinite c) Will increase 620. Two beams of light will not give rise to an interference pattern, if a) They are coherent b) They have the same wavelength c) They are linearly polarized perpendicular to each other d) They are not monochromatic 621. A grating which would be most suitable for constructing a spectrometer for the visible and ultraviolet region, should have

a)
$$I_o \cos \frac{\pi x}{\beta}$$
 b) $4I_o \cos^2 \frac{\pi x}{\beta}$ c) $I_o \cos^2 \frac{\pi x}{\beta}$ d) $\frac{I_o}{4} \cos^2 \frac{\pi x}{\beta}$

632. When an unpolarized light of intensity I_0 is incident on a polarizing sheet, the intensity of the light which does not get transmitted is

a)
$$\frac{1}{2}I_0$$
 b) $\frac{1}{4}I_0$ c) Zero d) I_0

633. Two light rays having the same wavelength λ in vacuum are in phase initially. Then the first ray travel a path L_1 through a medium of refractive index n_1 , while the travel second ray travels a path of length L_2 through a medium of refractive index n_2 . The two waves are then combined to observe interference. The phase difference the two waves is

a)
$$\frac{2\pi}{\lambda}(L_2 - L_1)$$
 b) $\frac{2\pi}{\lambda}(n_1L_2 - n_2L_1)$ c) $\frac{2\pi}{\lambda}(n_2L_1 - n_1L_2)$ d) $\frac{2\pi}{\lambda}(\frac{L_1}{n_1} - \frac{L_2}{n_2})$

634. Two polaroids are placed in the path of unpolarized beam of intensity I_0 such that no light is emitted from the second polaroid. If a third Polaroid whose polarization axis makes an angle θ with the polarization axis of first Polaroid, is placed between these polaroids, then the intensity of light emerging from the last Polaroid will be

a)
$$\left(\frac{I_0}{8}\right) \sin^2 2\theta$$
 b) $\left(\frac{I_0}{4}\right) \sin^2 2\theta$ c) $\left(\frac{I_0}{2}\right) \cos^4 2\theta$ d) $I_0 \cos^4 \theta$

635. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelengths in the ratio 1:2 are used. If the ratio of the slit separation in the two cases is 2 : 1, the ratio of the distances between the plane of the slits and the screen in the two set-ups is

a) 4 : 1
b) 1 : 1
c) 1 : 4
d) 2 : 1

636. If a star is moving towards the earth, then the lines are shifted towards

637. In an electromagnetic wave, the electric and magnetizing fields are 100 Vm⁻¹ and 0.265 Am⁻¹. The maximum energy flow is
a) 26.5 W/m²
b) 36.5 W/m²
c) 46.7 W/m²
d) None of these

a) 26.5 W/m²
b) 36.5 W/m²
c) 46.7 W/m²
d) None of these
638. Two slits, 4mm apart, are illuminated by light of wavelength 6000 Å. What will be fringe width on a screen placed 2m from the slits

639. A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates Young's double slit and gives rise to two overlapping interference patterns on the screen. The central maximum of both lights coincide. Further, it is observed that the third bright fringe of known light coincides with the 4th bright fringe of the unknown light. From this data, the wavelength of the unknown light is
a) 393.4 nm
b) 885.0 nm
c) 442.5 nm
d) 776.8 nm

640. A parallel monochromatic beam of light is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of incident beam. At the first maxima of the diffraction pattern the phase difference between the rays coming from the edges of the slit is a) 0 b) $\frac{\pi}{2}$ c) π d) 2π

641. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is

642. The condition for obtaining secondary maxima in the diffraction pattern due to single slit is

a)
$$a \sin \theta = n\lambda$$
 b) $a \sin \theta = (2n-1)\frac{\lambda}{2}$ c) $a \sin \theta = (2n-1)\lambda$ d) $a \sin \theta = \frac{n\lambda}{2}$

643. Red light of wavelength 625 nm is incident normally on an optical diffraction grating with 2 × 10⁵ lines/m. Including central principal maxima, how many maxima may be observed on a screen which is for from the grating?

a) 15 b) 17 c) 8 d) 16

644. By a monochromatic wave, we mean

d) Zero

- a) A single ray
 b) A single ray of a single colour
 c) Wave having a single wavelength
 d) Many rays of a single colour

 645. In Huygen's wave theory, the locus of all points in the same state of vibration is called

 a) A half period zone
 b) Oscillator
 c) A wave-front
 d) A ray

 646. A rocket is moving away from the earth at a speed of 6 × 10⁷m/s. The rocket has blue light in it. What will be the wavelength of light recorded by an observer on the earth (wavelength of blue light = 4600 Å)

 a) 4600 Å
 b) 5520 Å
 c) 3680 Å
 d) 3920 Å
- 647. All components of the electromagnetic spectrum in vacuum have the same
- a) Energy
 b) Velocity
 c) Wavelength
 d) Frequency
 648. The average magnetic energy density of an electromagnetic wave of wavelength λ travelling in free space is given by

a)
$$\frac{B^2}{2\lambda}$$
 b) $\frac{B^2}{2\mu_0}$ c) $\frac{2B^2}{\mu_0\lambda}$ d) $\frac{B}{\mu_0\lambda}$

649. The intensity ratio of two coherent sources of light is *p*. They are interfering in some region and produce interference pattern. Then the fringe visibility is

a)
$$\frac{1+p}{2\sqrt{p}}$$
 b) $\frac{2\sqrt{p}}{1+p}$ c) $\frac{p}{1+p}$ d) $\frac{2p}{1+p}$

650. An optically active compound

- a) Rotates the plane polarized light
- b) Changes the direction of polarized light
- c) Does not allow plane polarized light to pass through
- d) None of the above

651. The coherent curve between fringe width β and distance between the slits (*d*)in figure is

652. According to Maxwell's hypothesis, a changing electric field gives rise to

- a) An *e*.m.f. b) Electric current c) Magnetic field d) Pressure radiant 653. In a double slit experiment, 5th dark fringe is formed opposite to one the slits. The wavelength of light is a) $\frac{d^2}{6D}$ b) $\frac{d^2}{5D}$ c) $\frac{d^2}{15D}$ d) $\frac{d^2}{9D}$
- 654. In a Young's double slit experiment (slit distance d) monochromatic light of wavelength λ is used and the figure pattern observed at a distance L from the slits. The angular position of the bright fringes are

a)
$$\sin^{-1}\left(\frac{N\lambda}{d}\right)$$
 b) $\sin^{-1}\left(\frac{\left(N+\frac{1}{2}\right)\lambda}{d}\right)$ c) $\sin^{-1}\left(\frac{N\lambda}{L}\right)$ d) $\sin^{-1}\left(\frac{\left(N+\frac{1}{2}\right)\lambda}{L}\right)$

655. The equations of two interfering waves are $y_1 = b \cos \omega t$ and $y_2 = b \cos(\omega t + \phi)$. For destructive interference the path difference is

656. In a wave, the path difference corresponding to a phase difference of ϕ is

a)
$$\frac{\pi}{2\lambda}\phi$$
 b) $\frac{\pi}{\lambda}\phi$ c) $\frac{\lambda}{2\pi}\phi$ d) $\frac{\lambda}{\pi}\phi$

657. The velocity of light emitted by a source *S* observed by an observer *O*, who is at rest with respect to *S* is *c*. If the observer moves towards *S* with velocity *v*, the velocity of light as observed will be

- a) c + v b) c v c) c d) $\sqrt{1 \frac{v^2}{c^2}}$
- 658. A plane wavefront ($\lambda = 6 \times 10^{-7}m$) falls on a slit 0.4 mm wide. A convex lens of focal length 0.8m placed behind the slit focusses the light on a screen. What is the linear diameter of second maximum

a) 6 <i>mm</i>	b) 12 <i>mm</i>	c) 3 <i>mm</i>	d) 9 <i>mm</i>
659. T	'he maximum intensity o	f fringes in Young's experir	nent is <i>I</i> . If one of the slit is	s closed, then the intensity
a	t that place becomes I_o . V	Which of the following rela	tion is true	
a) $I = I_o$		b) $I = 2I_{o}$	
C	$I = 4I_0$		d) There is no relation be	tween I and I_o
660. Ii	n the Young's double slit	experiment, for which cold	our the fringe width is least	-
a) Red	b) Green	c) Blue	d) Yellow
661. li	n the Young's double slit	experiment, the spacing be	etween two slits is 0.1 mm.	If the screen is kept at a
d	listance of 1.0 <i>m</i> from the	e slits and wavelength of lig	tht is 5000 Å, then the fring	ge width is
a) 1.0 <i>cm</i>	b) 1.5 <i>cm</i>	c) 0.5 <i>cm</i>	d) 2.0 <i>cm</i>
662. D	oppler's effect in sound :	in addition to relative velo	city between source and ol	oserver, also depends while
S	ource and observer or bo	oth are moving. Doppler eff	fect in light depends only o	n the relative velocity of
S	ource and observer. The	reason of this is	0	, , , , , , , , , , , , , , , , , , ,
a) Einstein's mass – energ	y relation	b) Einstein's theory of re	lativelv
c) Photoelectric effect		d) None of these	, ,
663. M	/ Ionochromatic green ligh	nt of wavelength $5 \times 10^{-7} m$	n illuminates a pair of slits	1 mm apart. The separation
0	f bright lines on the inter	rference pattern formed on	a screen 2 <i>m</i> away is	1 1
a) 0.25 mm	b) 0.1 mm	c) 1.0 mm	d) 0.01 mm
664. If	f the two waves represen	ited by $y_1 = 4 \sin \omega t$ and y	$v_2 = 3\sin(\omega t + \pi/3)$ interf	ere at a point, the amplitude
0	of the resulting wave will	be about		
a) 7	b) 5	c) 6	d) 3.5
665. Ii	n Young's double slit exp	eriment, a third slit is mad	e in between the double sli	its. Then
a) Intensity of fringes tota	ally disappears		
b) Only bright light is obs	erved on the screen		
c) Fringes of unequal wid	th are formed		
d	l) Contrast between brigh	nt and dark fringes is reduc	ced	
666. R	adio waves diffract arou	nd building although light	waves do not. The reason i	s that radio waves
a) Travel with speed large	er than <i>c</i>	b) Have much larger wav	elength than light
c) Carry news		d) Are not electromagnet	ic waves
667. T	'he wavelength of light vi	sible to eye is of the order	of	
a	$10^{-2}m$	b) 10 ⁻¹⁰ m	c) 1 <i>m</i>	d) $6 \times 10^{-7} m$
668. T	he electromagnetic wave	es travel with a velocity		
a) Equal to velocity of sou	ind	b) Equal to velocity of lig	ht
c) Less than velocity of lig	ght	d) None of these	
669. L	ight of wavelength $\lambda = 5$	000 Å falls normally on a r	arrow slit. A screen placed	l at a distance of 1 <i>m</i> from
tl	he slit and perpendicular	to the direction of light. Th	ne first minima of the diffra	action pattern is situated at
5	mm from the centre of c	central maximum. The widt	h of the slit is	
a			II OI LIIC SIIL IS	
) 0.1 <i>mm</i>	b) 1.0 mm	c) 0.5 <i>mm</i>	d) 0.2 <i>mm</i>
670. V) 0.1 <i>mm</i> Vhat causes change in the	b) 1.0 <i>mm</i> e colours of the soap or oil	c) 0.5 <i>mm</i> films for the given beam of	d) 0.2 <i>mm</i> Flight
670. W a) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence	b) 1.0 <i>mm</i> e colours of the soap or oil b) Angle of reflection	c) 0.5 <i>mm</i> films for the given beam of c) Thickness of film	d) 0.2 <i>mm</i> flight d) None of these
670. W a 671. If) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a	b) 1.0 mme colours of the soap or oilb) Angle of reflectionpoint source and screen is	c) 0.5 <i>mm</i> films for the given beam of c) Thickness of film doubled, then intensity of 1	d) 0.2 <i>mm</i> Flight d) None of these light on the screen will
670. W a 671. If b) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a pecome	b) 1.0 mme colours of the soap or oilb) Angle of reflectionpoint source and screen is	c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of	d) 0.2 <i>mm</i> Flight d) None of these light on the screen will
670. W a 671. If b a) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a become) Four times	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of 1 c) Half 	d) 0.2 <i>mm</i> Flight d) None of these light on the screen will d) One-fourth
670. W a 671. If b a 672. In) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a pecome) Four times n a double slit interferen	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of c) Half e between the slits is 0.05 of contents 	 d) 0.2 mm f light d) None of these light on the screen will d) One-fourth cm and screen is 2 m away
670. W a 671. If b a 672. In fr) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a ecome) Four times n a double slit interferen rom the slits. The wavele	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance ngth of light is 6000Å. The 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of 1 c) Half e between the slits is 0.05 of distance between the fring 	 d) 0.2 mm f light d) None of these light on the screen will d) One-fourth cm and screen is 2 m away ge is
670. W a 671. If b a 672. In fr a) 0.1 mm What causes change in the) Angle of incidence f the distance between a secome) Four times n a double slit interference rom the slits. The wavele) 0.24 cm 	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance ngth of light is 6000Å. The b) 0.12 cm 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of 1 c) Half e between the slits is 0.05 c distance between the fring c) 1.24 cm 	d) 0.2 mm Flight d) None of these light on the screen will d) One-fourth cm and screen is 2 m away ge is d) 2.28 cm
670. W a 671. If b a 672. In fr a 673. T) 0.1 <i>mm</i> Vhat causes change in the) Angle of incidence f the distance between a become) Four times n a double slit interferen rom the slits. The wavele) 0.24 cm The size of an obstacle in	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance ngth of light is 6000Å. The b) 0.12 cm order to observe diffraction 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of c) Half e between the slits is 0.05 c distance between the fring c) 1.24 cm n of light must be 	 d) 0.2 mm f light d) None of these light on the screen will d) One-fourth cm and screen is 2 m away ge is d) 2.28 cm
670. W a 671. If b a 672. In fr a 673. T a) 0.1 mm Vhat causes change in the) Angle of incidence f the distance between a secome) Four times n a double slit interferention the slits. The wavele) 0.24 cm 'he size of an obstacle in) Of any order 	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance ngth of light is 6000Å. The b) 0.12 cm order to observe diffraction 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of c) Half e between the slits is 0.05 of distance between the fring c) 1.24 cm n of light must be 	d) 0.2 mm Flight d) None of these light on the screen will d) One-fourth cm and screen is 2 m away ge is d) 2.28 cm
670. W a 671. If b a 672. In fr a 673. T a b) 0.1 mm Vhat causes change in the) Angle of incidence f the distance between a become) Four times n a double slit interferentrom the slits. The wavele) 0.24 cm The size of an obstacle in) Of any order Of the order of waveler 	 b) 1.0 mm colours of the soap or oil b) Angle of reflection point source and screen is b) Double ce experiment, the distance ngth of light is 6000Å. The b) 0.12 cm order to observe diffraction 	 c) 0.5 mm films for the given beam of c) Thickness of film doubled, then intensity of c) Half e between the slits is 0.05 c distance between the fring c) 1.24 cm n of light must be 	d) 0.2 mm Flight d) None of these light on the screen will d) One-fourth cm and screen is 2 m away ge is d) 2.28 cm

d) Much smaller than wavelength

- 674. If fringes width $\lambda = 5.89 \times 10^{-5}$ cm is 0.431 mm and shift of white central fringe on introducing a mica sheet in one path is 1.89 mm. Thickness of the mica sheet will be ($\mu = 1.59$) a) 438×10^{-6} m b) 538×10^{-6} m c) 638×10^{-6} m d) None of these
- 675. A plane electromagnetic wave travelling along the *X*-direction has a wavelength of 3 mm. The variation in the electric field occurs in the *Y*-direction with an amplitude 66 $V m^{-1}$. The equations for the electric and magnetic fields as a function of *x* and *t* are respectively

$$E_y = 33 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$B_z = 1.1 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$E_y = 11 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$B_y = 11 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$E_x = 33 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$E_x = 33 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$B_y = 11 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$E_x = 33 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$B_x = 11 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$E_y = 66 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

$$B_z = 2.2 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$
67. In Young's double slit experiment, the separation between the slit is haled and the distance between the slits and screen is doubled. The fringe-width will
a) Be halved
b) Be doubled
c) Be quadrupled
d) Remain unchanged
677. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by 5 × 10^{-2} m towards the slits, the charge in fringe width is 3 × 10^{-5} m. If separation between the slits is 10^{-3} m, the wavelength of light used is a) 6000 Å b) 5000 Å c) 3000 Å d) 4500 Å
678. In Fresnel diffraction, if the distance between the disc and the screen is doubled. The fringe width is case b) Decrease c) Remain constant d) None of these 679. When light is incident on a diffraction grating, the zero order principal maximum will be a) Spectrum of the colours b) White c) One of the component colours b) White c) One of the component colours b) White c) One of the component colours d) Absent 680. The angle of incidence at which reflected light is totally polarized for reflection from air to glass (refractive index n) is a) sin^{-1}(n) b) sin^{-1} \left(\frac{1}{n} \right) c) tan^{-1} \left(\frac{1}{n} \right) d) tan^{-1}(n) 681. A stone thrown into sill water, creates a circular wave pattern moving radially outwards. If *r* is the distance between the dist in two positions between therising at a point one-quarter of the distance between the slit in two positions are4.05 × 10^{-3} m and 2.90 × 10^{-3} m respectively. The distance b

684. In a Fraunhofer diffraction experiment at a single slit using a light of wavelength 400 nm, the first

minimum is formed at an angle of 30°. The direction	on θ of the first secondary m	aximum is given by
a) $\sin^{-1}\left(\frac{2}{3}\right)$ b) $\sin^{-1}\left(\frac{3}{4}\right)$	c) $\sin^{-1}(\frac{1}{4})$	d) $\tan^{-1}\left(\frac{2}{3}\right)$
685. In double slit experiment, the angular width of the	fringes is 0.20° for the sodiu	ım light ($\lambda = 5890$ Å). In
Order to increase the angular width of the fringes b	y 10%, the necessary chang	ge in the wavelength is
a) Increase of 589 Å b) Decrease of 589 Å	c) Increase of 6479 Å	d) Zero
686. The wave theory of light, in its original form, was fi	rst postulated by	
a) Issac Newton	b) Christian Huygens	
c) Thomas Young	d) Augustin Jean Fresnel	
687. Which of the following cannot be polarized?		
a) Ultraviolet rays b) Ultrasonic waves	c) X-rays	d) Radiowaves
688. Ray diverging from a point source form a wave from	nt that is	
a) Cylindrical b) Spherical	c) Plane	d) Cubical
689. In the experiment of diffraction at a single slit, if the	e slit width is decreased, the	e width of the central
maximum		
a) Increases in both Fresnel and Fraunhoffer diffra	ction	
b) Decreases both in Fresnal and Fraunhoffer diffra	nction	
c) Increases in Fresnel diffraction but decreases in	Fraunhoffer diffraction	
d) Decreases in Fresnel diffraction but increases in	Fraunhoffer diffraction	
690. The phenomenon of diffraction of light was discover	ered by	
a) Huyghen b) Newton	c) Fresnel	d) Grimaldi
691. In Young's double slit experiment, the 7 th maximum	n wavelength λ_1 is at a dista	nce d_1 and that with
wavelength λ_2 is at a distance d_2 .Then (d_1/d_2) is		
a) (λ_1/λ_2) b) (λ_2/λ_1)	c) $(\lambda_1^2/\lambda_2^2)$	d) $(\lambda_2^2/\lambda_1^2)$
692. A beam of electron is used in an YDSE experiment.	The slit width is <i>d</i> . When the	ne velocity of electron is
increased, then		
a) No interference is observed		
b) Fringe width increases		
c) Fringe width decreases		
d) Fringe width remains same		
693. If the eighth bright band due to light of wavelength	λ_1 coincides with ninth brig	ght band from light of
wavelength λ_2 in Young's double slit experiment, the	nen the possible wavelength	of visible light are
a) 400 nm and 450 nm b) 425 nm and 400 nm	c) 400 <i>nm</i> and 425 <i>nm</i>	d) 450 <i>nm</i> and 400 <i>nm</i>
694. Yellow light is used in single slit diffraction experim	nent with slit width 0.6 mm.	If yellow light is replaced
by X-rays, then the pattern will reveal that		
a) No diffraction pattern	b) That the central maxir	na narrower
c) Less number of fringes	d) More number of fringe	es
695. In Young's double slit experiment, if the widths of t	he slits are in the ratio 4 : 9,	the ratio of the intensity at
maxima to the intensity at minima will be		
a) 169 : 25 b) 81 : 16	c) 25 : 1	d) 9 : 4
696. Which of the following is not electromagnetic in na	ture	
a) X-rays b) Gamma rays	c) Cathode rays	d) Infrared rays
697. The penetration of light into the region of geometri	cal shadow is called	
a) Polarization b) Interference	c) Diffraction	d) Refraction
698. In a Young's double slit experimental arrangement	shown here, if a mica sheet	of thickness <i>t</i> and refractive
index μ is placed in front of the slit S_1 , then the path	n difference $(S_1P - S_2P)$	

$$s_{\text{berrow}} = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^$$

709. In a Young's double slit experiment(slit distance d) monochromatic light of

wavelength λ is used and the fringe pattern observed at a distance *L* from the slits. The angular position of the bright fringes are

a)
$$\sin^{-1}\left(\frac{n\lambda}{d}\right)$$
 b) $\sin^{-1}\left(\frac{\left(n+\frac{1}{2}\right)\lambda}{d}\right)$ c) $\sin^{-1}\left(\frac{n\lambda}{L}\right)$ d) $\sin^{-1}\left(\frac{\left(n+\frac{1}{2}\right)\lambda}{L}\right)$

- 710. A beam of ordinary unpolarised light passes through a tourmaline crystal C_1 and then it passes through another tourmaline crystal C_2 , which is oriented such that its principal plane is parallel to that of C_2 . The intensity if emergent light is I_0 . Now C_2 is rotated by 60° about the ray. The emergent ray will have an intensity
 - a) $2I_0$ b) $I_0/2$ c) $I_0/4$ d) $I_0/\sqrt{2}$

10.WAVE OPTICS

1) d 2) c 3) a 4) b 189) b 190) c 191) b 192) 5) b 6) a 7) a 8) d 193) a 194) b 195) c 196) 9) b 10) a 11) c 12) a 197) b 198) d 199) b 200) 13) a 14) b 15) b 16) b 201) d 202) a 203) c 204) 17) c 18) d 19) c 20) d 205) a 206) b 207) a 208) 21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216)<
5) b 6) a 7) a 8) d 193) a 194) b 195) c 196) 9) b 10) a 11) c 12) a 197) b 198) d 199) b 200) 13) a 14) b 15) b 16) b 201) d 202) a 203) c 204) 17) c 18) d 19) c 20) d 205) a 206) b 207) a 208) 21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 2
9) b 10) a 11) c 12) a 197) b 198) d 199) b 200) 13) a 14) b 15) b 16) b 201) d 202) a 203) c 204) 17) c 18) d 19) c 20) d 205) a 206) b 207) a 208) 21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b <
13) a 14) b 15) b 16) b 201) d 202) a 203) c 204) 17) c 18) d 19) c 20) d 205) a 206) b 207) a 208) 21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b
17) c 18) d 19) c 20) d 205) a 206) b 207) a 208) 21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b 224) 37) d 38) b 39) d 40) a 225) d 230) c 231) a 232) 41) b 42) b 43) c 44) d 229) d 230) c 231) a
21) b 22) b 23) b 24) c 209) d 210) b 211) c 212) 25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b 224) 37) d 38) b 39) d 40) a 225) d 226) d 227) c 228) 41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c
25) b 26) a 27) b 28) d 213) b 214) b 215) a 216) 29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b 224) 37) d 38) b 39) d 40) a 225) d 226) d 227) c 228) 41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
29) b 30) c 31) d 32) b 217) d 218) a 219) a 220) 33) a 34) d 35) d 36) c 221) c 222) a 223) b 224) 37) d 38) b 39) d 40) a 225) d 226) d 227) c 228) 41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
33) a 34) d 35) d 36) c 221) c 222) a 223) b 224) 37) d 38) b 39) d 40) a 225) d 226) d 227) c 228) 41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
37) d 38) b 39) d 40) a 225) d 226) d 227) c 228) 41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
41) b 42) b 43) c 44) d 229) d 230) c 231) a 232) 45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
45) b 46) b 47) d 48) c 233) d 234) a 235) c 236)
49) a 50) d 51) b 52) c 237) b 238) a 239) a 240)
53) d 54) d 55) a 56) b 241) a 242) c 243) c 244)
57) b 58) c 59) a 60) a 245) a 246) b 247) c 248)
61) d 62) d 63) b 64) c 249) d 250) b 251) b 252)
65) d 66) a 67) b 68) b 253) c 254) d 255) a 256)
69) a 70) b 71) c 72) b 257) b 258) c 259) c 260)
73) b 74) b 75) c 76) a 261) c 262) d 263) b 264)
77) d 78) a 79) a 80) b 265) a 266) a 267) b 268)
81) d 82) c 83) d 84) b 269) b 270) b 271) d 272)
85) b 86) b 87) a 88) c 273) b 274) b 275) a 276)
89) d 90) c 91) c 92) a 277) a 278) b 279) b 280)
93) a 94) b 95) b 96) a 281) c 282) b 283) c 284)
97) d 98) d 99) c 100) a 285) c 286) c 287) b 288)
101) b 102) c 103) c 104) c 289) a 290) a 291) c 292)
105) c 106) a 107) d 108) c 293) a 294) b 295) c 296)
109) a 110) d 111) d 112) b 297) a 298) c 299) b 300)
113) b 114) a 115) c 116) b 301) a 302) a 303) b 304)
117) c 118) b 119) a 120) b 305) a 306) b 307) a 308)
121) a 122) d 123) c 124) c 309) c 310) a 311) c 312)
125) d 126) b 127) a 128) b 313) b 314) d 315) d 316)
129) d 130) b 131) c 132) a 317) d 318) b 319) c 320)
133) b 134) b 135) d 136) a 321) a 322) b 323) d 324)
137) d 138) b 139) a 140) c 325) c 326) d 327) b 328)
141) a 142) b 143) c 144) d 329) a 330) b 331) a 332)
145) a 146) a 147) b 148) d 333) d 334) c 335) d 336)
149) d 150) a 151) a 152) b 337) a 338) d 339) a 340)
153) d 154) c 155) c 156) c 341) b 342) d 343) d 344)
157) c 158) d 159) c 160) a 345) d 346) a 347) c 348)
161) a 162) c 163) d 164) a 349) d 350) d 351) a 352)
165) c 166) a 167) b 168) c 353) c 354) c 355) a 356)
169) d 170) a 171) d 172) b 357) c 358) a 359) c 360)
173) c 174) b 175) b 176) b 361) d 362) d 363) b 364)
177) d 178) b 179) d 180) c 365) c 366) b 367) d 368)
181) d 182) c 183) d 184) d 369) a 370) a 371) d 372)
185) b 186) c 187) a 188) c 373) d 374) c 375) b 376)

377)	С	378)	а	379)	b	380) b	581)	С	582)	С	583)	а	584)	а
381)	а	382)	С	383)	b	384) c	585)	b	586)	b	587)	b	588)	d
385)	b	386)	С	387)	С	388) c	589)	b	590)	b	591)	b	592)	а
389)	ĥ	390)	h	391)	c	392) c	593)	ĥ	594)	a	595)	ď	596)	d
393)	d	394)	c	395)	c	396) c	597)	b	598)	a	599)	c	600)	a
397)	h	398)	h	399)	c	400) d	601)	h	602)	h	603)	d	604)	c
401)	h	402)	d	403)	a	404) h	605)	c	606)	d	607)	a	608)	a
405)	d	406)	u C	407)	d	408) h	609)	c	610)	u c	611)	u C	612)	h
403) 409)	u d	400)	c	411)	h	400) b 412) h	613)	с 2	614)	с 2	615)	с h	616)	C
407) 413)	u d	410) 414)	с h	415)	h	412) d	617)	d	618)	a h	619)	h	620)	c
417)	u c	418)	h	410)	2	410) d	621)	d d	622)	h	623)	и 2	624)	c
421)	c c	422)	2	423)	а 2	420) u 424) a	625)	h	626)	2	625)	a c	629)	d
425)	נ ס	426)	a c	423) 427)	a d	424) d	629)	C C	630)	a d	631)	c	632)	u a
423)	a h	420)	t h	427)	u h	420) u 422) h	622)	L h	624)	u	625)	ι 2	626)	a
427)	U C	430)	U C	431)	D h	432) D	627)	0	629)	a h	620)	a	640)	L d
433)	L h	434J 120)	ι c	433)	U h	430) D	6/1)	a h	642)	U h	642)	L h	644)	u
4375	U d	430J 442)	L d	439)	U	440) C	041J	U A	042J 646)	U h	043J 647)	U h	044J 640)	L h
441) 445)	u d	442J	u d	443J 447)	C h	444) U	045J	C h	040J 650)	D	047J 651)	D h	040J 652)	D
445J	u d	440J 450)	u h	447J 451)	D	440J U	049J	U d	050J (E4)	a	051) (55)	D	052J	C
449J	u L	450J	D	451J 455)	a	452) a	053	a	054J	a	055J	C	050)	C
453)	0 1	454J	a	455J	C	450J a	05/J	C	058)	a L	059)	C	00UJ	C
45/J	D	458)	a	459J	a	460) a	001J	C J	662J	D	663J	C J	664J	C
461) 4(5)	С	462J	a	403J	C	464) D	665J	a	666J	D	00/J	a	668J	D
465)	a	466)	С	467)	D	468) D	669J	a	670)	С	671)	a	672)	а
469)	С	470)	а	471)	C	472) c	673)	b	674)	a	675)	d	676)	C
473)	а	474)	С	475)	b	476) d	677)	a	678)	b	679)	b	680)	a
477)	С	478)	a	479)	d	480) d	681)	b	682)	a	683)	a	684)	b
481)	C	482)	b	483)	b	484) b	685)	а	686)	b	687)	b	688)	b
485)	b	486)	С	487)	d	488) b	689)	a	690)	d	691)	а	692)	С
489)	а	490)	a	491)	a	492) d	693)	d	694)	a	695)	С	696)	С
493)	С	494)	d	495)	d	496) d	697)	С	698)	b	699)	a	700)	а
497)	C	498)	b	499)	C	500) d	701)	а	702)	d	703)	b	704)	С
501)	d	502)	a	503)	b	504) d	705)	С	706)	d	707)	d	708)	а
505)	a	506)	a	507)	a	508) d	709)	а	710)	С				
509)	b	510)	С	511)	d	512) d								
513)	a	514)	d	515)	b	516) c								
517)	a	518)	С	519)	С	520) a								
521)	d	522)	b	523)	С	524) b								
525)	а	526)	a	527)	С	528) d								
529)	a	530)	a	531)	С	532) d								
533)	d	534)	С	535)	b	536) c								
537)	а	538)	а	539)	b	540) b								
541)	С	542)	С	543)	а	544) b								
545)	b	546)	а	547)	d	548) c								
549)	а	550)	d	551)	С	552) c								
553)	d	554)	а	555)	b	556) d								
557)	d	558)	а	559)	а	560) b								
561)	a	562)	а	563)	d	564) b								
565)	b	566)	С	567)	а	568) d								
569)	а	570)	d	571)	b	572) b								
573)	С	574)	С	575)	d	576) b								
577)	b	578)	а	579)	d	580) d								

: HINTS AND SOLUTIONS :

2 (c)

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} \therefore v = \frac{\Delta\lambda}{\lambda}c = \frac{0.1}{6000} \times 3 \times 10^5 km/s$$
$$= 5 km/s$$

3 **(a)**

According to law of Malus, when a beam of completely plane polarized light is incident on an analyser, the resultant intensity of light (*I*) transmitted from the analyser varies directly as the square of the cosine of the angle (θ) between planes of transmission of analyser and polarizer *ie*, $I \propto \cos^2 \theta$ and $I = I_0 \cos^2 \theta$...(i)

Where I_0 = intensity of the light from polarizer From Eq. (i), we note that if the transmission axes of polarizer and analyser are parallel (*ie*, θ = 0° or 180°), then $I = I_0$. It means that intensity of transmitted light is maximum. When the transmission axes of polarizer and analyser are perpendicular (*ie*, θ = 90°), then I = $I_0 \cos^2 90^\circ = 0$. It means the intensity of transmitted light is minimum On plotting a graph between I and θ as given by

relation (i), we get the curve as shown in figure

4 **(b)**

(b)

The idea of secondary wavelets is given by Huygen

5

Here, $i_p = r + \delta$

Moreover, $i_p + r = 90^{\circ}$

...(ii)

From Eqs. (i) and (ii), we get

$$i_p + (i_p - 24) = 90^\circ$$

 $\Rightarrow i_p = 57^\circ$

(a)

6

$$\lambda = \frac{c}{v} = \frac{3 \times 10^8}{8.2 \times 10^6} = 36.5m$$

7 (a)

The linear width of central principal maximum

$$=\frac{2\lambda D}{d}$$

If it is equal to width of slit (*d*), then

$$\frac{2\lambda D}{d} = d \text{ or } D = \frac{d^2}{2\lambda}$$

8 **(d)**

When white light is used instead of monochromatic light, the central bright fringe becomes white, while others are coloured. Hence, distinction is made.

(b)

9

Diffraction is obtained when the slit width is of the order of wavelength of EM waves (or light). Here wavelength of *X*-rays $(1 - 100\text{\AA})$ is veryvery lesser than slit width (0.6 *mm*). Therefore no diffraction pattern will be observed

10 **(a)**

Wavelength of matter wave or de Broglie wave length

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

From the above relation it is clear that wavelength of matter wave is independent the charge

11 **(c)**

Let intensity of light coming from each slit of a coherent source is *I*.

As first slit has width 4 times the width of the second slit, so

$$I_1 = 4I$$
 and $I_2 = I$

Page | 59

$$: \frac{I_{max}}{I_{min}} = \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{\left(\sqrt{4I} + \sqrt{I}\right)^2}{\left(\sqrt{4I} - \sqrt{I}\right)^2} = \frac{9}{1}$$

12 **(a)**

When a thin film (say of oil) is spread over (say water), seen in broad light brilliant coloured pattern in observed. This coloured pattern arises due to interference of light reflected from the upper and lower surfaces of the film.

13 (a)

The condition for constructive interference in a thin film of thickness *t* and refractive index μ in the reflected system, for normal incidence is

$$2\mu t = \left(n + \frac{1}{2}\right)\lambda$$
, where $n = 0, 1, 2, 3$

For minimum thickness, n = 0

$$\therefore 2\mu t = \frac{\lambda}{2} \Rightarrow t = \frac{\lambda}{4\mu} = \frac{600 \times 10^{-9}}{4 \times 1.5} = 100nm$$

14 **(b)**

When two sources are obtained from a single source, the wavefront is divided into two parts. These two wavefronts act as if they are emanated from two sources having a fixed phase relationship

15 **(b)**

Here, $\theta = 9.9^{\circ}$, l = 20 cm = 0.2 m, $s = 66^{\circ}$

$$c = ?c = \frac{\theta}{ls} = \frac{9.9}{2 \times 66} = 0.075 \text{ g cc}^{-1}$$

= 75 gL⁻¹.

16 **(b)**

Maxwell first proved it mathematically that light waves are transverse in nature.

17 (c)

 \vec{E} and \vec{B} are mutually perpendicular to each other and are in phase i.e. they become zero and minimum at the same place and at the same time

18 **(d)**

When a thin sheet of polyvinyl alcohol is stretched and then impregnating with iodine, H-polaroid is obtained.

19 (c)

Let λ be wavelength of monochromatic light, *d* the distance between coherent sources, and *D* the distance between screen and source, then fringe width is

$$B = \frac{DR}{d}$$

Given,
$$d_1 = d$$
, $D_1 = D$, $d_2 = 10d$, $D_2 = \frac{D}{2}$

$$\therefore \ \beta_2 = \frac{\frac{D}{2}\lambda}{10d} = \frac{D\lambda}{20d}$$

$$\Rightarrow \beta_2 = \frac{\beta}{20}$$

20 (d)

21

The angular position of first diffraction minimum is

$$\sin \theta = \frac{\lambda}{a}$$

The phase difference

$$\Phi = \frac{2\pi}{\lambda} \times \Delta x$$
$$\Phi = \frac{2\pi}{\lambda} \times \lambda$$
$$\Phi = 2\pi$$

(b) Here, $d = 1 \text{ mm} = 10^{-3} \text{m}$, n

$$\lambda = 6.5 \times 10^{-7} \,\mathrm{m}$$

$$D = 1m$$

$$x_{5} = n\lambda \frac{D}{d} = 5 \times 6.5 \times 10^{-7} \times \frac{1}{10^{-3}}$$
$$= 32.5 \times 10^{-4} \text{m}$$
$$x_{3} = (2n - 1)\frac{\lambda D}{2 d}$$

$$= \frac{(2 \times 3 - 1) \times 6.5 \times 10^{-7}}{2 \times 10^{-3}}$$
$$= 16.25 \times 10^{-4} \text{ m}$$
$$x_5 - x_3 = (32.5 - 16.25)10^{-4} \text{ m}$$
$$= 16.25 \times 10^{-4} \text{ m} = 1.63 \text{ mm}$$

22 **(b)**

As S_3 , $\Delta x = S_1 S_3 - S_2 S_3 = 0$

$$\therefore \quad \varphi = \frac{2\pi}{\lambda} \Delta x = 0$$

$$\therefore I_3 = I_0 + I_0 + 2\sqrt{I_0 \times I_0(\cos 0^\circ)}$$

$$\therefore I_3 = 4I_0$$

The path difference at S_4 is

$$\Delta x' = S_1 S_4 - S_2 S_4 = \frac{xd}{D} \qquad \left(\text{here, } x = \frac{\lambda D}{2d}\right)$$
$$= \frac{d}{D} \times \frac{\lambda D}{2d} = \frac{\lambda}{2}$$
$$\therefore \quad \varphi' = \frac{2\pi \lambda}{\lambda 2} = \pi$$

$$\therefore I_4 = I_0 + I_0 + 2I_0 \cos \pi = 0$$

$$\therefore \frac{I_3}{I_4} = \frac{4I_0}{0} = \infty$$

24 **(c)**

Phase difference,

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$$

In a constructive interference,
$$\Delta \phi = 2n\pi$$

Where n = 0, 1, 2, 3, ... $\therefore 2n\pi = \frac{2\pi}{\lambda} \Delta x$ Or $\Delta x = n\lambda$

25 **(b)**

Final intensity of light is given by Malus law $I = I_0 \cos^2 \theta$; where θ = Angle between transmission axes of polarizer and analyser Hence decreasing order of intensity is (i) > (iv) > (ii) > (iii)

27 **(b)**

Distance of third maxima from central maxima is $x = \frac{3\lambda D}{d} = \frac{3 \times 5000 \times 10^{-10} \times (200 \times 10^{-2})}{0.2 \times 10^{-3}}$ = 1.5cm

29 **(b)**

At the centre, all colours meet in phase, hence central fringe is white.

30 **(c)**

The ratio of intensities of successive maxima is

$$1: \left(\frac{2}{3\pi}\right)^2: \left(\frac{2}{5\pi}\right)^2: \left(\frac{2}{7\pi}\right)^2$$
$$= 1: \frac{4}{9\pi^2}: \frac{4}{25\pi^2}$$

31 **(d)**

Since *P* is ahead of *Q* by 90° and path difference between *P* and *Q* is $\lambda/4$. Therefore at *A*, phase difference is zero, so intensity is 4*I*. At *C* it is zero and at *B*, the phase difference is 90°, so intensity is 2*I*

32 **(b)**

In this case, we can assume that both the source and the observer are moving towards each other with speed

v. Hence
$$v' = \frac{c-u_o}{c-u_s} = \frac{c-(-v)}{c-v}v = \frac{c+v}{c-v}v$$

= $\frac{(c+v)(c-v)}{(c-v)^2}v = \frac{c^2-v^2}{c^2+v^2-2vc}v$

Since
$$v < < c$$
, therefore $v' = \frac{c^2}{c^2 - 2vc} = \frac{c}{c - 2v}v$

33 **(a)**

Using Malus law, $I = I_0 \cos^2 \theta$

As here polarizer is rotating, *i. e.*, all the values of θ are possible

$$I_{av} = \frac{1}{2\pi} \int_{0}^{2\pi} I \, d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} I_0 \cos^2 \theta \, d\theta$$

On integration we get $I_{av} = \frac{I_0}{2}$
Where $I_0 = \frac{\text{Energy}}{\text{Area} \times \text{Time}} = \frac{p}{A} = \frac{10^{-3}}{3 \times 10^{-4}} = \frac{10}{3} \frac{Watt}{m^2}$
 $\therefore I_{av} = \frac{1}{2} \times \frac{10}{3} = \frac{5}{3} Watt$
and Time period $T = \frac{2\pi}{\omega} = \frac{2 \times 3.14}{31.4} = \frac{1}{5} s$

∴ Energy of light passing through the polarizer per revolution = I_{av} × Area × $T = \frac{5}{3} \times 3 \times 10^{-4} \times 10^{-4}$

$\frac{1}{5} = 10^{-4} J$

л

34 **(d)**

Ground wave and sky wave both are amplitude modulated wave and the amplitude modulated signal is transmitted by a transmitting antenna and received by the receiving antenna at a distance place

$$\beta = \frac{D}{d}\lambda$$
$$\Delta\beta = \frac{\Delta D}{d}\lambda$$
$$\Delta D = \frac{d\Delta\beta}{\lambda}$$
$$= \frac{10^{-3} \times 3 \times 10}{600 \times 10^{-9}}$$

= 5 cm away or towards the slits

36 **(c)**

Path difference between the waves reaching at $O, \Delta = \Delta_1 + \Delta_2$ where $\Delta_1 =$ Initial path difference $\Delta_2 =$ Path difference between the waves after emerging from slits

$$(2n-1)\frac{\lambda}{2} i. e^{\frac{d^2}{D}} = (2n-1)\frac{\lambda}{2} \Rightarrow \sqrt{\frac{(2n-1)\lambda D}{2}} = d$$

For minimum distance $n = 1$ so $d = \sqrt{\frac{\lambda D}{2}}$

37 (d)

Origin of spectra is not explained by Huygen's theory

40 **(a)**

From $a \sin \theta = n\lambda$

$$a\frac{x}{D} = n\lambda, a = \frac{n\lambda D}{x} = \frac{1 \times 6000 \times 10^{-10} \times 2}{4 \times 10^{-3}}$$

= 3 × 10⁻⁴ = 0.3 mm

41 **(b)**

Some crystals such as tourmaline and sheets of iodosulphate of quinine have the property of strongly absorbing the light with vibrations perpendicular to a specific direction (called transmission axis) transmitting the light with vibrations parallel to it. This selective absorption of light is called dichroism.

42 **(b)**

Thickness of the film must be of the order of wavelength of light falling on film (*i. e.*, visible light)

43 **(c)**

The strength of solution is given by

$$c = \frac{\theta}{l \times s}$$

Where the symbols have their usual meanings.

Here,
$$\theta = 19^{\circ}$$
, $l = 20 \text{ cm} = 0.20 \text{ m}$

$$S = 0.5 \deg \mathrm{m}^2 \mathrm{kg}^{-1}$$

$$c = \frac{19}{0.20 \times 0.5} = 190 \text{ kg} - \text{m}^{-3}$$

The sugar sample dissolved in a m^3 of water is 200 kg in which 190 kg is pure sugar.

Therefore, purity is $\frac{190}{200} \times 100 = 95\%$

44 **(d)**

By using $\mu = \tan \theta_p \Rightarrow \mu = \tan 60 = \sqrt{3}$ Also $C = \sin^{-1}\left(\frac{1}{\mu}\right) \Rightarrow C = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

45 **(b)**

Angle between P_1 and $P_2 = 30^\circ$ [Given] Angle between P_2 and $P_3 = \theta = 90^\circ - 30^\circ = 60^\circ$

The intensity of light transmitted by P_1 is $I_1 = \frac{I_0}{2} = \frac{32}{2} = 16\frac{W}{m^2}$

According to Malus law the intensity of light transmitted

by P_2 is $I_2 = I_1 \cos^2 30^\circ = 16 \left(\frac{\sqrt{3}}{2}\right)^2 = 12 \frac{W}{m^2}$ Similarly intensity of light transmitted by P_3 is $I_3 = I_2 \cos^2 \theta = 12 \cos^2 60^\circ = 12 \left(\frac{1}{2}\right)^2 = 3 \frac{W}{m^2}$

46 (b)

$$\phi = \pi/3, a_1 = 4, a_2 = 3$$

So, $A = \sqrt{a_1^2 + a_2^2 + 2a_1 \cdot a_2 \cos \phi} \Rightarrow A = 6$

47 (d)

> In single slit diffraction, the central fringe has maximum intensity and has the width double than other fringes.

48

 $\beta \neq \frac{\lambda D}{d}$ and $\lambda \propto \frac{1}{\mu}$

49

Path difference of 3rd bright fringe from central fringe= 3λ , so that the phase difference= $3(2\pi)$ = 6π rad.

50 (d)

For n^{th} secondary maxima path difference

$$d\sin\theta = (2n+1)\frac{\lambda}{2} \Rightarrow a\sin\theta = \frac{3}{2}$$

51 (b)

For a path difference $(\mu - 1)t$, the shift is

$$\mathbf{x} = (\mu - 1)\mathbf{t}\frac{\mathbf{D}}{\mathbf{d}}$$

52 (c)

 $\beta \propto \frac{\lambda}{d}$

53 (d)

54 (d)

If we use torch light in place of monochromatic light then overlapping of fringes pattern take place. Hence no fringe will appear

Angular resolution = $\frac{1.22\lambda}{d}$

$$=\frac{1.22\times5000\times10^{-10}}{10\times10^{-2}}=6.1\times10^{-6}$$

 $\approx 10^{-6}$ rad

55 (a)

To be invisible in vacuum μ of medium must be equal to μ of vacuum, which is 1.

$$\beta \propto \frac{1}{d}$$

57 (b)

For incoherent waves,

$$I_{\rm max} = nI$$

$$\therefore \quad n = \frac{I_{\text{max}}}{I} = \frac{32}{2} = 16$$

58 (c)

According to Corpuscular theory different colours of light are due to different sizes of Corpuscules

59 (a)

Here, $\omega = 31.4 \text{ rads}^{-1}$

 \therefore Time period of revolution,

$$T = \frac{2\pi}{\omega} = \frac{2 \times 3.14}{31.4} = 0.2s$$

Energy transmitted/revolution

$$= (IA)T = \left(\frac{I_0}{2}A\right)T$$
$$= \frac{\phi_0 T}{2} = \frac{10^{-3} \times 0.2}{31.4} = 10^{-4}$$

61 (d)

1

Intensity of each source = $I_0 = \frac{100}{4} = 25unit$ If the intensity of one of the source is reduced by 36% then $I_1 = 25$ unit and $I_2 = 25 - 25 \times \frac{36}{100} =$ 16 (*unit*) Hence resultant intensity at the same point will be $I = I_1 + I_2 + 2\sqrt{I_1I_2} = 25 + 16 + 2\sqrt{25 \times 16}$ = 81*unit*

62 (d)

Distance between successive fringes-fringe width

$$=\beta = \frac{\lambda D}{d} = \frac{8 \times 10^{-5} \times 2}{0.05} = 0.32 \text{ cm}$$

63 **(b)**

$$I' = \frac{I}{2}\cos^2\theta = \frac{I}{6} \text{ or } \cos\theta = \frac{1}{\sqrt{3}} \therefore \theta = 55^\circ$$

65 (d)

Let λ be wavelength of monochromatic light, used to illuminate the slit *S*, and *d* be the distance between coherent sources, then width of slits is given by

$$W = \frac{D\lambda}{d}$$

When *D* is distance between screen and source.

Given, d = 3 mm, $\lambda = 5000 \text{ Å} = 5 \times 10^{-7} \text{ m}$

 $= 5 \times 10^{-4} \text{ mm}$

D = 90 cm = 900 mm

$$\therefore W = \frac{5 \times 10^{-4} \times 900}{3}$$

 $= 15 \times 10^{-2} \text{ mm} = 0.15 \text{ mm}$

66 **(a)**

6

69

$$c = \frac{E_0}{B_0} = \text{speed of light}$$

$$\Rightarrow E_0 = B_0 c$$

Given, $B_0 = 2 \times 10^{-7} T$, $c = 3 \times 10^8 m/s$
 $E_0 = 2 \times 10^{-7} \times 3 \times 10^8 = 60T m/s = 60 Vm^{-1}$
67 **(b)**
Here, $\Delta \lambda = 0.5nm = 0.5 \times 10^{-9}m$
 $v = 300kms^{-1} = 300 \times 10^3ms^{-1}$
 $As \frac{\Delta \lambda}{\lambda} = \frac{v}{c} \Rightarrow \lambda = \frac{\Delta \lambda c}{v}$
 $\therefore \lambda = \frac{(0.5 \times 10^{-9}m)(3 \times 10^8ms^{-1})}{(300 \times 10^3ms^{-1})} = 5 \times 10^{-7}m$
 $= 5000 \times 10^{-10}m = 5000 \text{ Å}$
68 **(b)**

Area through which the energy of beam passes $= (6.328 \times 10^{-7})^2 = 4 \times 10^{-13} m^2$ $\therefore I = \frac{P}{A} = \frac{10^{-3}}{4 \times 10^{-13}} = 2.5 \times 10^9 W/m^2$ (a)

 $v_{\gamma-rays} > v_{X-rays} > v_{UV-rays}$ 70 **(b)**

> Here path difference at a point *P* on the circle is given by

 $\Delta x = d \cos \theta \quad \dots (i)$ For maxima at P $\Delta x = n\lambda$...(ii) From equation (i) and (ii)

$$n\lambda = d\cos\theta \Rightarrow \theta = \cos^{-1}\left(\frac{n\lambda}{d}\right) = \cos^{-1}\left(\frac{4\lambda}{d}\right)$$

 $\lambda_m > \lambda_v > \lambda_x$

72 **(b)**

As $\lambda_{\text{blue}} < \lambda_{\text{red}}$ and width of diffraction bands is directly proportional to λ , therefore diffraction bands become narrower and crowded

73 **(b)**

Due to expansion of universe, the star will go away from the earth thereby increasing the observed wavelength. Therefore the spectrum will shift to the infrared region

74 **(b)**

$$d = 0.1 \text{ mm} = 10^{-4}, D = 20 \text{ cm} = \frac{1}{5} \text{ m}$$

$$\lambda = 5460$$
Å $= 5.46 \times 10^{-7}$ m

Angular position of first dark fringe is

$$\theta = \frac{x}{D} = \frac{\lambda}{2d} = \frac{5.46 \times 10^{-7}}{2 \times 10^{-4}}$$
$$= 2.73 \times 10^{-3} \text{ rad}$$

$$= 2.73 \times 10^{-3} \times \frac{180^{\circ}}{\pi} = 0.156^{\circ}$$

75 (c)

$$I = I_0 \left[\frac{\sin \alpha}{\alpha}\right]^2, \text{ where } \alpha = \frac{\phi}{2}$$
For n^{th} secondary maxima $d \sin \theta = \left(\frac{2n+1}{2}\right)\lambda$
 $\Rightarrow \alpha = \frac{\phi}{2} = \frac{\pi}{\lambda} [d \sin \theta] = \left(\frac{2n+1}{2}\right)\pi$
 $\therefore I = I_0 \left[\frac{\sin\left(\frac{2n+1}{2}\right)\pi}{\left(\frac{2n+1}{2}\right)\pi}\right]^2 = \frac{I_0}{\left\{\left(\frac{2n+1}{2}\right)\pi\right\}^2}$
So $I_0: I_1: I_2 = I_0: \frac{4}{9\pi^2} I_0: \frac{4}{25\pi^2} I_0$

$$=1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}$$

 $\Delta \lambda = \lambda \frac{v}{c}$ and $v = r\omega$

 $v = 7 \times 10^8 \times \frac{2\pi}{25 \times 24 \times 3600}, c = 3 \times 10^8 m/s$ $\therefore \Delta \lambda = 0.04 \text{\AA}$

78 **(a)**

For second dark fringe $d \sin \theta = 2\lambda$ $\Rightarrow 24 \times 10^{-5} \times 10^{-2} \times \sin 30 = 2\lambda$ $\Rightarrow \lambda = 6 \times 10^{-7} m = 6000 \text{ Å}$

79 **(a)**

The distance between zeroth order maxima and second order minima is

$$y_1 = \frac{\beta}{2} + \beta = \frac{3}{2}\beta$$
$$= \frac{3}{2} \times 0.2 \text{ mm} = 0.3 \text{ mm}$$

 \div The distance of second maxima from point P is

$$y = (4.8 + 0.3)$$
mm = 5.1 mm

80 **(b)**

Angular dispersion of central maximum=angular dispersion of 1st minimum (= 2θ)

From
$$\sin \theta = \frac{1\lambda}{a} = \frac{2 \times 10^{-3}}{4 \times 10^{-3}} = \frac{1}{2}$$

 $\theta = 30^{\circ}$
 $\therefore 2\theta = 2 \times 30^{\circ} = 60^{\circ}$

81 (d)

When the approatus is immersed is water the angular width of a fringe $\theta = \frac{\lambda}{d}$ and $\theta = 2^{\circ}$ and the angular width of a fringe in air

$$\theta' = \frac{\lambda}{d}$$

$$\frac{1}{\mu_{\omega}} = \frac{\lambda'}{\lambda}$$

$$\frac{\lambda'}{\alpha} = \frac{3}{4}$$
Now, $\frac{\theta'}{\theta} = \frac{\lambda'}{\alpha}$

$$\theta' = \frac{\lambda'}{\alpha} \times \theta$$

$$\theta' = \frac{3}{4} \times 0.2^{\circ}$$

$$\theta' = 0.15^{\circ}$$
82 (c)

According to Rayleigh's criterion,

$$\theta = 1.22\lambda/d_e$$

Where λ = wavelength of light,

 d_e = diameter of the pupil of the eye.

$$\therefore \ \theta = \frac{1.22 \times 500 \times 10^{-9}}{2.5 \times 10^{-3}} = 2.44 \times 10^{-4} \text{ rad}$$

But $\theta = \frac{a}{D}$

∴ distance of separation,

$$a = D \times \theta = 10 \times 10^3 \times 2.44 \times 10^{-4} = 2.44 \text{ m}$$

83 (d)

Sound waves and light waves both show interference

84 **(b)**

 $d = 1 \text{ mm} = 1 \times 10^{-3} \text{ m}, D = 1 \text{ m}$

 $\lambda = 500 \text{ nm} = 500 \times 10^{-9} \text{ m}$

Distance of *n*th minima from central maxima

$$x_n = \frac{(2n-1)\lambda D}{2} \frac{D}{d}$$

= $\frac{(2 \times 3 - 1) \times 500 \times 10^{-9}}{2} \times \frac{1}{1 \times 10^{-3}}$
= $2.5 \times 500 \times 10^{-6}$
= 12.5×10^{-4} m

= 1.25 mm

85 **(b)**

$$\mu = \tan i_p = \tan 54.74^\circ = \sqrt{2}$$
$$\because \sqrt{2} = \frac{\sin 40^\circ}{\sin r}$$
$$\Rightarrow \sin r = \frac{1}{2} \Rightarrow r = 30^\circ$$

86 **(b)**

According to principle of diffraction

 $a\sin\theta = n\lambda$

Where n = order of secondary minimum

 $a \sin 30^{\circ} = 1 \times (6500 \times 10^{-10})$

Or $a = 1.3 \times 10^{-6}$ m

Or a = 1.3 micron

87 (a)

 E_x and B_y would generate a plane EM wave travelling in z-direction. \vec{E} , \vec{B} and \vec{k} form a right handed system \vec{k} is along *z*-axis. As $\hat{i} \times \hat{j} = \hat{k}$ $\Rightarrow E_x \hat{\iota} \times B_y \hat{\jmath} = C \hat{k} \ i. e. E$ is along *x*-axis and *B* is along y-axis

88 (c)

Angular width $=\frac{2\lambda}{d} = \frac{2 \times 6000 \times 10^{-10}}{12 \times 10^{-5} \times 10^{-2}} = 1 rad$

89 (d)

As sound waves are longitudinal, therefore, polarization of sound waves is not possible.

90 (c)

The direction in which the first minima occurs is θ (say). Then $e \sin \theta = \lambda$ or $e\theta = \lambda$ or, $\theta = \frac{\lambda}{e}$

$$(:: \theta = \sin \theta \text{ when } \theta \text{ small})$$

Width of the central maximum = $2b\theta + e =$ $2b.\frac{\lambda}{e} + e$

91 (c)

Angular momentum

$$L = \frac{nh}{2\pi}$$

$$U = nhv$$

$$\omega = 2\pi v \Rightarrow v = \frac{\omega}{2\pi}$$

$$\therefore U = \frac{nh\omega}{2\pi}$$

 2π Or $U = L\omega$

$$L = \frac{U}{\omega}$$

93 (a)

$$\Delta \lambda = \lambda . \frac{v}{c} \text{ where } v = r\omega = r \times \left(\frac{2\pi}{T}\right)$$
$$\therefore \Delta \lambda = \frac{4320 \times 7 \times 10^8 \times 2 \times 3.14}{3 \times 10^8 \times 22 \times 86400} = 0.033\text{\AA}$$
(b)

$$\tan i_p = \mu = \sqrt{3} \quad \therefore i_p = 60^\circ$$

96 (a)

$$\frac{I_{\max}}{I_{\min}} = \left(\frac{\sqrt{\frac{I_1}{I_2}} + 1}{\sqrt{\frac{I_1}{I_2}} - 1}\right)^2 = \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)^2 = 34; \text{ [Given } I_1$$
$$= 2I_2\text{]}$$

97 (d)

Huygen's theory explains propagation of wavefront

98 (d)

Resultant intensity $I_R = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\phi$ For maximum I_R , $\phi = 0^\circ$

$$\Rightarrow I_R = I_1 + I_1 + 2\sqrt{I_1 I_2} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$$

99 **(c)**

In interference, we use two sources while in diffraction, we use light from two points of the

101 (b)

1

1

same wavefront.

As field of view is same in both cases

$$n_{1}\beta_{1} = n_{2}\beta_{2}$$
Or $n_{1}\left(\frac{D\lambda_{1}}{d}\right) = n_{2}\left(\frac{D\lambda_{2}}{d}\right)$
Or $\lambda_{2} = \left(\frac{n_{1}}{n_{2}}\right)\lambda_{1}$
 $\therefore \lambda_{2} = \left(\frac{84}{62}\right) \times 4358$
 $\lambda_{2} = 5904 \text{ Å}$
102 (c)
 $\frac{\beta_{1}}{\beta_{2}} = \frac{\lambda_{1}}{\lambda_{2}} \text{ or } \frac{1.0}{\beta_{2}} = \frac{5000}{6000} \text{ or } \beta_{2} = \frac{6000}{5000} = 1.2 \text{ mm}$
103 (c)
 $I_{\text{max}} = \left(\sqrt{I_{1}} + \sqrt{I_{2}}\right)^{2} = \left(\sqrt{I} + \sqrt{4I}\right)^{2} = 9I$
 $I_{\text{min}} = \left(\sqrt{I_{1}} - \sqrt{I_{2}}\right)^{2} = \left(\sqrt{I} - \sqrt{4I}\right)^{2} = I$
105 (c)

$$\frac{I_{\max}}{I_{\min}} = \left(\frac{\sqrt{\frac{I_1}{I_2}} + 1}{\sqrt{\frac{I_1}{I_2}} - 1}\right)^2 = \left(\frac{\sqrt{\frac{9}{1}} + 1}{\sqrt{\frac{9}{1}} - 1}\right)^2 = \frac{4}{1}$$

106 (a)

Distance between two consecutive dark fringes $a = \frac{\lambda D}{\Delta D} = \frac{5000 \times 10^{-10} \times 1}{0.25} = 0.25 \text{ mm}$

$$\beta = \frac{1}{d} = \frac{1}{0.2 \times 10^{-2}} = 0.25 \, mm$$
107 (d)

If you divide the original slit into N strips and represents the light from each strip, when it reaches the screen, by a phasor, then at the central maximum in the diffraction pattern you add N phasors, all in the same direction and each with the same amplitude. The intensity is therefore N^2 . If you double the slit width, you need 2N phasors, if they are each to have the amplitude of the phasors you used for the narrow slit. The intensity at the central maximum is proportional to $(2N)^2$ and is, therefore, four times the intensity for the narrow slit

108 (c)

In Young's double slit experiment, for maximum intensity (bright fringe)

$$x = m \frac{D\lambda}{d}$$

Where *m* is path difference, *D* the distance between screen and coherent sources, *d* the distance between coherent and λ the wavelength.

Putting m = 0, we get the position of the central bright fringe (which is called zero order fringe). Hence, at point O the path difference between two wavelets is zero. Hence, at O there is always a bright fringe. This is called the central fringe.

109 (a)

Area of half period zone is independent of order

of zone. Therefore, m is equal to zero in n^m 110 (d)

$$\Delta \lambda = \frac{v_s}{c} \lambda \Rightarrow v_s = \frac{\Delta \lambda . c}{\lambda} = \frac{47 \times 3 \times 10^8}{4700}$$

= 3 × 10⁶ m/s away from earth

111 (d)

$$\beta = \frac{\lambda D}{d} \Rightarrow (4 \times 10^{-3}) = \frac{4 \times 10^{-7} \times D}{0.1 \times 10^{-3}} \Rightarrow D = 1m$$

112 **(b)**

If intensity of each wave is I, then initially at central position $I_o = 4I$. When one of the slits is covered then

Intensity at central position will be *I* only, *i.e.*, $\frac{I_0}{4}$

$$\beta = \frac{(a+b)\lambda}{2a(\mu-1)\alpha}, i.e., \beta \propto \frac{\lambda}{(\mu-1)}$$

When placed in water $\beta' \propto \frac{\frac{\lambda}{\mu'}}{\left(\frac{\mu}{\mu'}-1\right)}$
 $i.e., \beta' \propto \frac{\lambda}{(\mu-\mu')}$ but $< \mu$
 $\therefore \frac{\beta'}{\beta} = \frac{(\mu-1)}{(\mu-\mu')} \quad \because \mu' > 1\lambda \quad \because \beta' > \beta$
 $i.e.,$ the fringe width increases

$$\tan i = \frac{1}{\sin C}$$
$$\cot i = \sin \left[\sin^{-1} \left(\frac{3}{5} \right) \right]$$
$$\tan i = \frac{5}{3}$$

$$i = \tan^{-1}\left(\frac{5}{3}\right)$$

116 **(b)**

Infrared radiations reflected by low lying clouds and keeps the earth warm

117 (c)

Intensity of polarized light from first polarizer $=\frac{100}{2}=50$

$$I = 50\cos^2 60^\circ = \frac{50}{4} = 12.5$$

118 **(b)**

Average energy density of electric field is given by

$$u_e = \frac{1}{2}\varepsilon_0 E^2 = \frac{1}{2}\varepsilon_0 \left(\frac{E_0}{\sqrt{2}}\right)^2 = \frac{1}{4}\varepsilon_0 E_0^2$$
$$= \frac{1}{4} \times 8.85 \times 10^{-12} (1)^2 = 2.2 \times 10^{-12} J/m^3$$
119 (a)

From
$$\beta = \frac{\lambda D}{d} \Rightarrow \lambda = \frac{\beta d}{D} = \frac{0.06 \times 10^{-2} \times 10^{-3}}{1}$$

= $6 \times 10^{-7} \text{m} = 6000 \text{\AA}$
120 (b)
In case of destructive interference (minima)
phase difference is odd multiple of π
122 (d)
Direction of wave propagation is given by $\vec{E} \times \vec{B}$
123 (c)
In single slit experiment,
Width of central maxima $(y) = 2\lambda D/d$
 $\Rightarrow \frac{y'}{y} = \frac{\lambda'}{d'} \times \frac{d}{\lambda} = \frac{600}{d/2} \times \frac{d}{400} \Rightarrow y' = 3y$
124 (c)
Width of central bright fringe
 $= \frac{2\lambda D}{d} = \frac{2 \times 500 \times 10^{-9} \times 80 \times 10^{-2}}{0.20 \times 10^{-3}}$
 $= 4 \times 10^{-3} m = 4mm$
126 (b)
Fringe width \propto wavelength of light.

Therefore fringe will become narrower.

$$S_{av} = \frac{1}{2} \varepsilon_0 c E_0^2 = \frac{P}{4\pi R^2}$$

$$\Rightarrow E_0 = \sqrt{\frac{P}{2\pi R^2 \varepsilon_0 C}}$$

$$= \sqrt{\frac{3}{2 \times 3.14 \times 100 \times 8.85 \times 10^{-12} \times 3 \times 10^8}$$

$$= 1.34V/m$$

128 **(b)**

In Fresnel biprism, the virtual images act as two coherent sources and from these two virtual images rays superimposed and interference fringes are formed in overlapping region *AB* on a screen placed at *O*.

In order to measure the distance 2d between the virtual sources S_1 and S_2 . Glaze brook gave a

method, known as magnification method due to Glaze brook. If d_1

129 (d)

For maximum intensity $\phi = 0^{\circ}$ $\therefore I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$ $= I + I + 2\sqrt{II} \cos 0^{\circ} = 4I$

130 **(b)**

Colours of thin film are due to interference of light 132 (a)

$$v = \frac{C}{\lambda} \Rightarrow v_1 = \frac{3 \times 10^8}{1} = 3 \times 10^8 Hz = 300 MHz$$

and $v_2 = \frac{3 \times 10^8}{10} = 3 \times 10^7 Hz = 30 MHz$

134 **(b)** Coherent time = $\frac{\text{Coherence length}}{\text{Velocity of light}} = \frac{L}{c}$

135 **(d)** By Brewster's law, $\mu = \tan \theta_p$

Or
$$\mu = \tan 54.74^\circ$$

$$0r \mu = 1.414$$

For an equilateral prism, $\angle A = 60^{\circ}$

$$\therefore \mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$
Or $1.414 = \frac{\sin\left(\frac{60^\circ + \delta_m}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)}$
Or $\frac{1.414 \times 1}{2} = \sin\left(\frac{60^\circ + \delta_m}{2}\right)$ [: $1.414 = \sqrt{2}$]
Or $\frac{\sqrt{2}}{2} = \sin\left(\frac{60^\circ + \delta_m}{2}\right)$
Or $\frac{1}{\sqrt{2}} = \sin\left(\frac{60^\circ + \delta_m}{2}\right)$
Or $45^\circ = \left(\frac{60^\circ + \delta_m}{2}\right)$

 $\mathrm{Or}\,\delta=30^\circ$

137 (d)

As reflected and refracted rays are perpendicular to each other, therefore, $i_p=i=60^\circ$

$$\mu = \tan i_p = \tan 60^\circ = \sqrt{3} = 1.732$$

138 **(b)**

Here, $I_1 = I, I_2 = 4I, \theta_1 = \pi/2$, $\theta_2 = \pi$

$$I_A = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \theta_1$$

$$= I + 4I + 2\sqrt{1 \times 4I} \cos \pi/2 = 5I$$

$$I_B = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \theta_2$$

$$= I + 4I + 2\sqrt{I \times 4I} \cos \pi$$

$$= 5I - 4I = I$$

$$\therefore I_A - I_B = 5I - I = 4I$$

139 (a)

Multiple focii of zone plate given by $f_p = \frac{r_n^2}{(2p-1)\lambda}$ Where $p = 1, 2, 3 \dots$

140 (c)

 $y_1 = a_1 \cos \omega t = a_1 \sin(\omega t + 90^\circ)$

- $y_2 = a_2 \sin \omega t$
- \therefore Phase difference= $\phi = 90^{\circ}$

$$R = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi} = \sqrt{a_1^2 + a_2^2}$$

 $\therefore \text{ Resultant intensity} I = R^2 = (a_1^2 + a_2^2).$

141 (a)

 $\beta \propto \frac{1}{d} \Rightarrow \text{If } d \text{ becomes thrice, then } \beta \text{ becomes } \frac{1}{3}$ times

142 **(b)**

$$\frac{I_{\max}}{I_{\min}} = \frac{\left(\frac{a_1}{a_2} + 1\right)^2}{\left(\frac{a_1}{a_2} - 1\right)^2} = \frac{4}{1} \Rightarrow \frac{a_1}{a_2} = \frac{3}{1}$$

143 **(c)**

From Brewster's law $\mu = \tan i_p \Rightarrow \frac{c}{v} = \tan 60^\circ = 3$

$$\Rightarrow v = \frac{c}{\sqrt{3}} = \frac{3 \times 10^8}{\sqrt{3}} = \sqrt{3} \times 10^8 m/s$$

144 (d)

Average energy density

$$v_{AV} = \frac{1}{2} \varepsilon_0 E_0^2 = \frac{1}{2} \varepsilon_0 (\sqrt{2}E_{rms})^2 = \varepsilon_0 E_{rms}^2$$

= 8.85 × 10⁻¹² × (720)² = 4.58 × 10⁻⁶ J/m³

145 **(a)**

According to Doppler's effect, wherever there is a relative motion between source and observer, the frequency observed is different from that given out by source

146 **(a)**

For a given time, optical path remain constant

 $\therefore \quad \mu_1 x_1 = \mu_2 x_2$

Or $1.5 \times 2 = \mu_2 \times 2.25$

$$\mu_2 = \frac{1.5 \times 2}{2.25} = \frac{2}{1.5} = \frac{20}{15} = \frac{4}{3}$$

147 **(b)**

In interference phenomenon, when both the waves are in opposite phase, we got destructive interference (or minima). As resultant amplitude of two superimposed wave is

$$R = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi}$$

And resultat intensity of two superimposed wave is

$$I = I_1 + I_2 + 2ka_1a_2\cos\phi$$

For minima (destructive interference), phase difference should be odd multiple of π .

ie,
$$\phi = (2n-1)\pi$$

As $\phi = \pi, 3\pi, 5\pi, ...$

ח ...

Hence, $\cos \phi = \cos(2n-1)\pi = -1$

So,
$$R_{\min} = \sqrt{a_1^2 + a_2^2 - 2a_1a_2}$$

$$=\sqrt{(a_1-a_2)^2}$$

or
$$R_{\min} = a_1 - a_2$$

Also, $I = I_1 + I_2 - 2ka_1a_2$
Or $I = I_1 + I_2 - 2a_1\sqrt{k}a_2\sqrt{k}$
 $= I_1 + I_2 - 2\sqrt{I_1I_2}$
Hence, $I < I_1 + I_2$

Hence, when the phase difference is odd multiple of π , then destructive interference is obtained. The resultant amplitude is equal to the difference of the individual amplitude and the resultant intensity is less than the sum of individual intensities.

148 **(d)**

Sound waves cannot be polarised as they are longitudinal. Light waves can be polarised as they are transverse.

149 (d)

The bending of light round the corners of the obstacles or the aperture is called diffraction. It is a characteristic of wave motion. Since light and sound both travel as waves, hence the phenomenon is observed in both.

153 (d)

From
$$\beta = \frac{\lambda D}{d}$$
,
 $\lambda = \frac{\beta \cdot d}{D} = \frac{0.3 \times 10^{-2} \times 2 \times 10^{-3}}{1} = 6 \times 10^{-7} \text{m}$
 $= 6000 \text{ Å}$

154 **(c)**

When the light rays fall on thin film of oil then rays are reflected from upper and lower layer of the thin films. These reflected rays produce interference pattern due which surface of thin film appears as coloured.

156 **(c)**

Fringe width is $\beta = \frac{D\lambda}{d}$ where *D* is the distance of the slits from the screen, *d* is the separation of the slits and λ , the wavelength

158 (d)

 $x = (2n-1)\frac{\lambda D}{2d}$

$$\lambda = \frac{2xd}{(2n-1)D} = \frac{2 \times 10^{-3} \times 0.9 \times 10^{-3}}{(2 \times 2 - 1) \times 1}$$

$$6 \times 10^{-7} \text{ m} = 6 \times 10^{-5} \text{ cm}$$

159 (c)

 $x = (n+1)\lambda_b = n\lambda_r$

$$\frac{n+1}{n} = \frac{\lambda_r}{\lambda_b} = \frac{7.8 \times 10^{-5}}{5.2 \times 10^{-5}} = \frac{3}{2}$$
$$1 + \frac{1}{b} = \frac{3}{2}$$
$$n = 2$$

161 **(a)**

For diffraction size of the obstacle must be of the order of wavelength of wave, *i. e.* $a \approx \lambda$

162 **(c)**

When the speed of the electrons is increased, the wavelength decreases. The central maxima extends from $-\lambda/a$ to $+\lambda/a$. As λ decreases, the width decreases. The angular width decreases 163 **(d)**

For interference, λ of both the waves must be same

164 **(a)**

$$\beta' = \frac{\lambda'}{\lambda}\beta = \frac{5000}{6000} \times 0.48 = 0.04$$
cm

165 **(c)**

Wave impedance $Z = \sqrt{\frac{\mu_r}{\varepsilon_r}} \times \sqrt{\frac{\mu_0}{\varepsilon_0}}$

$$=\sqrt{\frac{50}{2}} \times 376.6 = 1883\Omega$$

166 **(a)**

Angular width of central maxima

$$= \frac{2\lambda}{d} = \frac{2 \times 589.3 \times 10^{-9}}{0.1 \times 10^{-3}} rad$$
$$= 0.0117 \times \frac{180}{\pi} = 0.68^{\circ}$$

168 (c)

According to Plancks hypothesis, black bodies emit radiations in the form of photons

170 **(a)**

When sources are coherent

$$I_R = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$

At middle point of the screen, $\phi = 0^{\circ}$

$$I_R = I + I + 2\sqrt{II}\cos 0^\circ = 4I$$

When sources are incoherent,

$$I'_{R} = I_{1} + I_{2} = I + I + 2I$$
$$\frac{I_{R}}{I'_{R}} = \frac{4I}{2I} = 2$$

171 **(d)**

In single slit diffraction, the central fringe has maximum intensity and has the width double than other fringes

172 **(b)**

Distance between first and sixth minima

$$x = \frac{5\lambda D}{d}$$

$$\therefore \quad a = \frac{n\lambda D}{x} = \frac{1 \times 500 \times 10^{-10} \times 2}{0.5 \times 10^{-3}}$$

$$d = 2.5 \times 10^{-3} \text{m} = 2.5 \text{ mm}$$

173 **(c)**

From Brewster's law reflected ray is

perpendicular to refracted ray.

The reflected ray so obtained is plane polarised having its electric vector in the plane of incidence.

174 **(b)**

Audible waves are not electromagnetic wave

175 **(b)**
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{3000 \times 10^{-10}} = 10^{15} cycle/s$$

177 (d)

For a grating $(e + d) \sin \theta_n = n\lambda$ Where (e + d) = grating element

 $\sin \theta_n = \frac{n\lambda}{(e+d)}$

For n = 1, $\sin \theta_1 = \frac{\lambda}{(e+d)} = \sin 32^\circ$ This is more than 0.5. Now $\sin \theta_2$ will be more than 2×0.5 , which is not possible

178 **(b)**

 $\Delta \lambda = 5200 - 5000 = 200 \text{\AA}$ Now $\frac{\Delta \lambda}{\lambda'} = \frac{v}{c} \Rightarrow v = \frac{c\Delta \lambda}{\lambda'} = \frac{3 \times 10^8 \times 200}{5000}$ = $1.2 \times 10^7 m/s \approx 1.15 \times 10^7 m/s$

179 (d)

Electric field $E = \frac{V}{l} - \frac{iR}{l}$ (R = Resistance of wire) Magnetic field at the surface of wire $B = \frac{\mu_0 i}{2\pi a}$ (a = radius of wire)

Hence poynting vector, directed radially inward is given

By
$$S = \frac{EB}{\mu_0} = \frac{iR}{\mu_0 l} \cdot \frac{\mu_0 i}{2\pi a} = \frac{i^2 R}{2\pi a l}$$

181 **(d)**

 $S_1P - S_2P = 11(\lambda/2)$ =add integral multiple of $\lambda/2$

182 (c)

 $\beta = \frac{\lambda D}{d}$

Distance between the first dark fringes on either

side of central maxima = width of central maxima = $\frac{2\lambda D}{d} = \frac{2 \times 600 \times 10^{-9} \times 2}{1 \times 10^{-3}} = 2.4 \text{ mm}$

The coherent source cannot be obtained from two different light sources

$$v = \frac{c\Delta\lambda}{\lambda} = \frac{3 \times 10^8 \times (706 - 656)}{656} = \frac{1500}{656} \times 10^7$$
$$= 2 \times 10^7 m/s$$

186 (c)

Position of nth bright fringe $x_1 = \frac{n\lambda D}{d}$

For first bright fringe n = 1

$$\therefore x_1 = \frac{\lambda D}{d}$$

Position of nth dark fringe $x_2 = \frac{(2n-1)\lambda D}{2d}$

For first dark fringe n = 1

$$\therefore x_2 = \frac{\lambda D}{2d}$$

Now,
$$x_1 - x_2 = \frac{\lambda D}{2d}$$

If B is the band width, then

$$x_1 - x_2 = \frac{B}{2}$$

187 **(a)**

Along the optic axis, $\mu_0 = \mu_e$

188 (c)

Path difference = $2d \sin \theta$ \therefore For constructive interference $2d \sin \theta = n\lambda$

190 (c)

$$\lambda' = \lambda \left(1 - \frac{\nu}{c} \right) = 5890 \left(1 - \frac{4.5 \times 10^6}{3 \times 10^8} \right) = 5802\text{\AA}$$

192 **(b)**

$$E = 9 \times 10^{-4} N C^{-1}$$

For electromagnetic waves, $\frac{E}{B} = c$ speed of light in vacuum

 $\Rightarrow \frac{9 \times 10^{-4}}{B} = 3 \times 10^8 m s^{-1} \Rightarrow B = 3 \times 10^{-12} T$ 193 (a) $r_n = \sqrt{nd\lambda} \Rightarrow r_n \propto \sqrt{n}$ 194 (b) $\beta \propto \lambda$ 195 (c) Fringe width $\beta = 2 \text{ mm} = 2 \times 10^{-3} \text{ m}$ $\lambda = 6000 \text{ Å}$ $\mu = 1.33$ $\beta' = ?$ $\beta' = \frac{\beta}{\mu} = \frac{2}{1.33} = 1.5 \text{ mm}$ 196 (b) Suppose the charge on the capacitor at time *t* is *Q*, the electric field between the plates of the capacitor is $E = \frac{Q}{\varepsilon_0 A}$. The flux through the area considered is

 $\phi_E = \frac{Q}{\varepsilon_0 A} \cdot \frac{A}{2} = \frac{Q}{2\varepsilon_0}$

 \therefore The displacement current

$$i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \varepsilon_0 \left(\frac{1}{2\varepsilon_0}\right) \frac{dQ}{dt} = \frac{i}{2}$$

197 **(b)**

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos 0^\circ$$

= 4 + 9 + 2\sqrt{4 \times 9}
= 25 units

198 (d)

When the point source or linear source of light is at very large distance, a small portion of spherical or cylindrical wavefront appears to be plane. Such a wavefront is plane wavefront.

199 **(b)**

According to Newton's corpuscular theory, speed of light in a rarer medium (like air) is lasser than that in a denser medium (like water, glass).

200 **(b)**

Distance of
$$n^{th}$$
 minima from central bright fringe
 $x_n = \frac{(2n-1)\lambda D}{2d}$
For $n = 3$ *i. e.* 3^{rd} minima
 $x_3 = \frac{(2 \times 3 - 1) \times 500 \times 10^{-9} \times 1}{2 \times 1 \times 10^{-3}}$
 $= \frac{5 \times 500 \times 10^{-6}}{2} = 1.25 \times 10^{-3}m = 1.25 mm$
201 (d)
 $d \sin \theta = n\lambda$
 $0.3 \times 10^{-3} \times \theta = 6000 \times 10^{-10}$

 $\theta = 2 \times 10^{-3} \text{ rad}$

202 **(a)**

$$I_0 = R^2 = \frac{R_2^2}{4}$$

Number of *HPZ* covered by the disc at b = 25cm $n_1b_1 = n_2b_2$

$$n_2 = \frac{n_1 b_1}{b_2} = \frac{1 \times 1}{0.25} = 4$$

Hence the intensity at this point is

$$I = R'^{2} = \left(\frac{R_{5}}{2}\right)^{2} = \left(\frac{R_{5}}{R_{4}} \times \frac{R_{4}}{R_{3}} \times \frac{R_{3}}{R_{2}}\right)^{2} \times \left(\frac{R_{2}}{2}\right)^{2}$$

$$I = (0.9)^{6}I_{0}$$

$$I_{1} = 0.531I_{0}$$
Hence the correct answer will be (a)
203 (c)
$$I_{1} = 0.2 \left(\frac{\Phi}{2}\right)$$

$$I = I_{max} \cos^{2} \left(\frac{1}{2}\right)$$

$$\therefore \frac{I_{max}}{4} = I_{max} \cos^{2} \frac{\Phi}{2}$$

$$\cos \frac{\Phi}{2} = \frac{1}{2}$$

$$Or \frac{\Phi}{2} = \frac{\pi}{3}$$

$$\therefore \Phi = \frac{2\pi}{3} = \left(\frac{2\pi}{\lambda}\right) \cdot \Delta x \qquad \dots (i)$$

Where $\Delta x = d \sin \theta$

Substituting in Eq. (i) we get,

$$\sin \theta = \frac{\lambda}{3d}$$

Or $\theta = \sin^{-1} \left(\frac{\lambda}{3d}\right)$

204 (a)

 $\frac{E_0}{B_0} = c.$ also $k = \frac{2\pi}{\lambda}$ and $\omega = 2\pi v$ These relation gives $E_0 k = B_0 \omega$

205 (a)

For diffraction to be observed, size of aperture must be of the same order as wavelength of light

206 **(b)**

Infrasonic waves are mechanical waves

207 **(a)**
$$\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$$

208 (d)

When two waves of same frenquency, same wavelength and same velocity moves in the same
direction. Their superposition results in the interference. The two beams should be monochromatic.

209 **(d)**

Let *n*th minima of 400 *nm* coincides with *m*th minima of 560 *nm* then

$$(2n-1)400 = (2m-1)560 \Rightarrow \frac{2n-1}{2m-1} = \frac{7}{5} = \frac{14}{10}$$
$$= \frac{21}{15}$$

i. e., 4th minima of 400 *nm* coincides with 3rd minima of 560 *nm* The location of this minima is

$$=\frac{7(1000)(400 \times 10^{-6})}{2 \times 0.1} = 14 mm$$

Next, 11th minima of 400nm will coincide with 8th minima of 560 nm Location of this minima is

$$= \frac{21(1000)(400 \times 10^{-6})}{2 \times 0.1} = 42 mm$$

∴ Required distance = 28 mm

210 **(b)**

 $\frac{l_{\max}}{l_{\min}} = \frac{4}{1} \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2}$ Or $\frac{a_1 + a_2}{a_1 - a_2} = \frac{2}{1}$ Or $a_1 + a_2 = 2a_1 - 2a_2$ Or $a_1 = 3a_2$ $\therefore \quad \frac{l_1}{l} = \frac{a_1^2}{a^2} = \frac{(3a_2)^2}{a^2} = \frac{9}{1}$

$$I_2 \quad a_2^2 \quad a_2^2$$

 $\frac{a_1}{a_2} = \frac{3}{1}$

211 **(c)**

:.

Wave theory of light is given by Huygen

212 **(c)**

Interference fringes are bands on screen XYrunning parallel to the length of slits. Therefore, the locus of fringes is represented correctly by W_3W_4 .

213 **(b)**

The angular distance (θ) is given by

$$\theta = \frac{\lambda}{d}$$
$$\theta = 2^{\circ} = \frac{\pi}{180} \times 2, \lambda = 6980 \text{ Å}$$

$$= 6980 \times 10^{-10} \text{ m}$$
$$\Rightarrow d = \frac{\lambda}{\theta} = \frac{6980 \times 10^{-10} \times 180}{3.14 \times 2}$$
$$= 1.89 \times 10^{-5} \text{ mm}$$

$$\Rightarrow d = 2 \times 10^{-5} \text{ mm}$$

215 (a)

$$\beta = \frac{\lambda D}{d} \Rightarrow (0.06 \times 10^{-2}) = \frac{\lambda \times 1}{1 \times 10^{-3}} \Rightarrow \lambda$$

$$= 6000\text{\AA}$$

216 **(c)**

Given, $I_1 = I$ and $I_2 = 9I$ Maximum intensity $= (\sqrt{I_1} + \sqrt{I_2})^2$ $= (\sqrt{I} + \sqrt{9I})^2 = 16I$

Minimum intensity

$$= \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 = \left(\sqrt{I} - \sqrt{9I}\right)^2 = 4I$$

218 (a)

The diffraction pattern of light waves of wavelength (λ) diffracted by a single, long narrow slit of width is shown. For first minimum.

When *e* is decreased for same wavelength, $\sin \theta$ increases, hence θ increases. Thus, width of central maxima will increase.

220 (d)

Intensity of EM wave is given by

$$I = \frac{P}{4\pi R^2} = v_{av} \cdot c = \frac{1}{2} \varepsilon_0 E_0^2 \times c$$
$$\Rightarrow E_0 = \sqrt{\frac{P}{2\pi R^2 \varepsilon_0 c}}$$

$$= \sqrt{\frac{800}{2 \times 3.14 \times (4)^2 \times 8.85 \times 10^{-12} \times 3 \times 10^8}}$$
$$= 54.77 \frac{V}{m}$$

221 **(c)**

Frequency is independent of medium

222 (a) $d_1 = 7\lambda_1 \frac{D}{d}$ And $d_2 = 7\lambda_2 \frac{D}{d}$ $\therefore \frac{d_1}{d_2} = \frac{\lambda_1}{\lambda_2}$

224 (c)

In 1678 Huygen proposed the wave theory of light. According to Huygen, light travels in the form of waves. These waves after emerging from the light source travel in all directions with the velocity of light. Since, waves require a medium to travel Huygen proposed an all pervading medium ether.

225 (d)

 $\therefore n = 3, \therefore 2n\pi = 2 \times 3\pi = 6\pi$

226 (d)

Laser beams are perfectly parallel. So that they are very narrow and can travel a long distance without spreading. This is the feature of laser while they are monochromatic and coherent these are characteristics only

227 (c)

Position of first minima = position of third maxima *i. e.,*

$$\frac{1 \times \lambda_1 D}{d} = \frac{(2 \times 3 + 1)}{2} \frac{\lambda_2 D}{d} \Rightarrow \lambda_1 = 3.5\lambda_2$$

228 (a)

$$S_2 P = (d^2 + b^2)^{1/2} = d\left(1 + \frac{b^2}{d^2}\right)^{1/2}$$
$$= d\left(1 + \frac{b^2}{d^2}\right) = d + \frac{b^2}{2d}$$

Path difference= $S_2P - S_1P$

$$x = d + \frac{b^2}{d^2} - d = b^2/2d$$

For missing wavelengths $(2n-1)\frac{\lambda}{2} = x = \frac{b^2}{2d}$

For
$$n = 1, \lambda = \frac{b^2}{d}$$
,
For $n = 2, \lambda = \frac{2b^2}{3d}$,

229 (d)

In the arrangement shown, the unpolarised light is incident at polarizing angle of $90^{\circ} - 33^{\circ} = 57^{\circ}$. The reflected light is thus plane polarized light. When plane polarized light is passed through Nicol prism (a polarizer or analyser), the intensity gradually reduces to zero and finally increases

230 **(c)**

Angular fringe width is the ratio of fringe width to distance (*D*) of screen from the source *ie*,

$$\theta = \frac{\beta}{D}$$

As *D* is taken large, hence angular fringe width of the central maximum will decrease.

231 (a)

$$\lambda_{\gamma-rays} < \lambda_{x-rays} < \lambda_{\alpha-rays} < \lambda_{\beta-rays}$$

232 (d)
 $\lambda_{Radiowave} > \lambda_{IR rays} > \lambda_{UV rays} > \lambda_{x-rays}$
233 (d)
 $I = \frac{R_2^2}{4} \text{ given } n_1 b_1 = n_2 b_2 \Rightarrow 1 \times 200 = n_2 \times 25$
 $\therefore n_2 = 8 HPZ$
 $\therefore I = \left(\frac{R_9}{2}\right)^2$
 $= \left(\frac{R_9}{R_8} \times \frac{R_8}{R_7} \times \frac{R_7}{R_6} \times \frac{R_6}{R_5} \times \frac{R_5}{R_4} \times \frac{R_4}{R_3} \times \frac{R_3}{R_2} \times \frac{R_2}{R_2}\right)^2$
 $= \left(\frac{R_9}{R_2}\right)^2 I$
234 (a)
If thin film appears dark
 $2\mu t \cos r = n\lambda$ for normal incidence $r = 0^\circ$
 $\Rightarrow 2\mu t = n\lambda \Rightarrow t = \frac{n\lambda}{2\mu}$
 $\Rightarrow t_{\min} = \frac{\lambda}{2\mu} = \frac{5890 \times 10^{-10}}{2 \times 1} = 2.945 \times 10^{-7}m$
235 (c)
 $\theta_P + r = 90^\circ \text{ or } r = 90^\circ - \theta_P = 90^\circ - 53^\circ 4' = 36^\circ 56'$
236 (a)
 $\beta = \frac{\lambda D}{d}$
239 (a)
 $\Delta \lambda = \lambda \cdot \frac{v}{c} = \frac{1.5 \times 10^6}{3 \times 10^8} \times 5000 = 25\text{\AA}$

$$\begin{split} \beta &= \frac{\lambda D}{d} \Rightarrow d = \frac{\lambda D}{\beta} = \frac{6000 \times 10^{-10} \times (40 \times 10^{-2})}{0.012 \times 10^{-2}} \\ &= 0.2 cm \end{split}$$

241 (a)

Photoelectric effect and Compton effect cannot be explained on the basis of wave nature of light while polarization and optical activity can be explained.

242 **(c)**

For brightness, path difference = $n\lambda = 2\lambda$ So second is bright

243 **(c)**

From Brewster's law,

 $\mu = \tan i_p$

$$\Rightarrow \frac{c}{v} = \tan 60^\circ = \sqrt{3}$$
$$\Rightarrow v = \frac{c}{\sqrt{3}} = \frac{3 \times 10^8}{\sqrt{3}}$$
$$= \sqrt{3} \times \frac{10^8 \text{m}}{\text{s}}$$

244 (c)

In Young's double slit experiment, if white light is used in place of monochromatic light, then the central fringe is white and some coloured fringes around the central fringe are formed

Since $\beta_{red} > \beta_{violet}$ etc., the bright fringe of violet colour forms first and that of the red forms later It may be noted that, the inner edge of the dark fringe is red, while the outer edge is violet. Similarly, the inner edge of the bright fringe is violet and the outer edge is red

245 (a)

Corpuscular theory explains refraction of light

246 **(b)**

When path difference is λ , $I_{max} = 4I = K$

When path difference is $\frac{\lambda}{4}$, phase difference,

$$\phi = \pi/2$$

$$\therefore I_R = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$

$$= I + I = 2I = \frac{K}{2}$$

247 (c)

$$I = I_0 \left(\frac{\sin \theta}{\theta}\right)^2$$

And $\theta = \frac{\pi}{\lambda} \left(\frac{ay}{D}\right)$

For principal maximum y = 0

 $\therefore \ \theta = 0$

Hence, intensity will remain same.

248 (d)

$$v_{\gamma-rays} > v_{\text{visible radiation}} > v_{\text{Infrared}}$$

> $v_{\text{Radio waves}}$

249 **(d)**

Greater is the wavelength of wave higher will be its degree of diffraction.

250 **(b)**

 $\lambda = 6000 \text{ Å} = 6 \times 10^{-7} \text{ m}$

Path difference for dark fringe $\Delta x = (2n + 1)\frac{\lambda}{2}$

For third dark fringe n = 2

$$\therefore \Delta x = (2 \times 2 + 1) \times \frac{6 \times 10^{-7}}{2}$$
$$= \frac{5 \times 6 \times 10^{-7}}{2}$$
$$= 15 \times 10^{-7}$$
$$= 1.5 \times 10^{-6} \text{ m} = 1.5\mu$$

251 **(b)**

Distance between n^{th} bright fringe and m^{th} dark fringe (n > m)

$$\Delta x = \left(n - m + \frac{1}{2}\right)\beta$$

= $\left(5 - 3 + \frac{1}{2}\right) \times \frac{6.5 \times 10^{-7} \times 1}{1 \times 10^{-3}}$
= 1.63mm

Page | 75

253 **(c)**

According to Malus' law

$$I = I_0 \cos^2 \theta = I_0 (\cos^2 60^\circ) = I_0 \times \left(\frac{1}{2}\right)^2 = \frac{I_0}{4}$$

254 (d)

The amplitude will be $A \cos 60^\circ = A/2$

255 (a)

Oil floating on water looks coloured only when thickness of oil layer=wavelength of light=10000Å

256 **(b)**

 $\frac{\Delta\lambda}{\lambda} = \frac{v}{c} \Rightarrow \frac{0.05}{100} = \frac{v}{3 \times 10^8} \Rightarrow v = 1.5 \times 10^5 m/s$ (Since wavelength is decreasing, so star is coming closer)

257 **(b)**

$$\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$$

258 (c)

 $\frac{I_1}{I_2} = \frac{a^2}{b^2} = \frac{9}{1}$

$$\overline{b} = \overline{1}$$

$$\frac{l_{max}}{l_{min}} = \frac{(a+b)^2}{(a-b)^2} = \left(\frac{3+1}{3-1}\right)^2 = 4:1$$

260 **(b)**

Distance $=\frac{2\lambda}{b} \times d$ $=\frac{2 \times 0.5 \times 10^{-4}}{2} \times 100 = 0.5 \text{ mm}$

261 **(c)**

Distance of n^{th} maxima, $x = n\lambda \frac{D}{d} \propto \lambda$

As $\lambda_b < \lambda_g$

 $\therefore x_{blue} < x_{green}$

262 **(d)**

Wave is *uv* rays

263 **(b)**

The resultant intensity at any point *P* is

$$I = 4I_0 \cos^2\left(\frac{\Phi}{2}\right)$$

$$\therefore I_0 = 4I_0 \cos^2 \Phi/2$$

Or $\cos\frac{\Phi}{2} = \frac{1}{2}$

$$\therefore \ \frac{\Phi}{2} = \frac{\pi}{3} \ or \ \Phi = \frac{2\pi}{3}$$

If Δx is the corresponding value of path difference at *P*, then

$$\varphi = \frac{2\pi}{\lambda} (\Delta x)$$

$$\frac{2\pi}{3} = \frac{2\pi}{\lambda} \Delta x.$$

As $\Delta x = \frac{xd}{\lambda}$

$$\therefore \frac{1}{3} = \frac{1}{\lambda} \frac{xa}{D}$$

Or
$$x = \frac{\lambda}{3d/D} = \frac{6 \times 10^{-7}}{3 \times 10^{-4}} = 2 \times 10^{-3} \text{m}$$

x = 2mm

This is the difference of point P from central maximum.

264 **(c)**

Momentum of the electron will increase. So the wavelength ($\lambda = h/p$) of electrons will decrease and fringe width decreases as $\beta \propto \lambda$

265 **(a)**

As velocity of light is perpendicular to the wavefront, and light is travelling in vacuum along the y – axis, therefore, the wavefront is represented by y = constant.

266 **(a)**

When distance between screen and source is *D*, and *d* the distance between coherent sources, then fringe width (*W*) is given by

$$W = \frac{D\lambda}{d}$$

Where λ is wavelength of monochromatic light.

$$\lambda = \frac{Wd}{D}$$

Given, D = 1 m, $d = 1 \text{ mm} = 10^{-3} \text{ m}$,

W = 0.06 cm = 0.06 × 10⁻²m
∴
$$\lambda = \frac{0.06 \times 10^{-2} \times 10^{-3}}{1}$$

= 6 × 10⁻⁷m = 6000 Å

267 **(b)**

From $I_R = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$ When $\phi = 0^\circ$, $I_R = I + I + 2\sqrt{II} \cos 0^\circ = 4I$ When $\phi = 90^\circ$ $I'_R = I + I + 2\sqrt{II} \cos 90^\circ = 2I$ $\frac{I_R}{I'_R} = \frac{4I}{2I} = 2:1$

268 **(c)**

When one slit is closed, amplitude becomes half and intensity becomes 1/4th

$$ie_{J_0} = \frac{1}{4}I$$
 or $I = 4I_0$

269 **(b)**

Here, wavelength, $\lambda = 625nm = 625 \times 10^{-9}m$ Number of lines per meter, $N = 2 \times 10^5$ For principal maxima is grating spectra $\frac{\sin \theta}{N} = n\lambda$, Where n(= 1,2,3) is the order of principal maxima and θ is the angle of diffraction The maximum value of $\sin \theta$ is 1 $\therefore n = \frac{1}{N\lambda} = \frac{1}{2 \times 10^5 \times 625 \times 10^{-9}} = 8$

: Number of maxima = $2n + 1 = 2 \times 8 + 1 = 17$ 270 **(b)** Here, $n_1 = 12, \lambda_1 = 600$ nm $n_2 =?, \lambda_2 = 400$ nm As $n_1\lambda_1 = n_2\lambda_2$ $\therefore n_2 = \frac{n_1\lambda_1}{\lambda_2} = \frac{12 \times 600}{400} = 18$ 271 **(d)** For 5th dark fringe, $x_1 = (2n - 1)\frac{\lambda}{2}\frac{D}{d} = \frac{9\lambda D}{2d}$

For 7th bright fringe,
$$x_2 = n\lambda \frac{D}{d} = \frac{7\lambda D}{d}$$

 $x_2 - x_1 = (\mu - 1)t \frac{D}{d}$
 $\frac{\lambda D}{d} \left[7 - \frac{9}{2} \right] = (\mu - 1)t \frac{D}{d}$
 $t = \frac{2.5\lambda}{(\mu - 1)}$

272 **(d)**

Let it take *t sec* for astronaut to acquire a velocity of $1 ms^{-1}$. Then energy of photons = 10 *t* Momentum = $\frac{10t}{c} = 80 \times 1$ $t = \frac{80 \times 1 \times 3 \times 10^8}{10} = 2.4 \times 10^9 sec$

273 **(b)**

In Young's double slit experiment if white light is used instead of monochromatic light, then we shall get a white fringe at the centre surrounded on either side with some coloured fringes, with violet fringe in the beginning and red fringe in the last. 274 **(b)**

In simple slit diffraction experiment, width of central maxima

$$y = \frac{2\lambda D}{d}$$
$$\therefore \frac{y_1}{y_2} = \frac{\lambda_1}{\lambda_2} \times \frac{d_2}{d_1}$$
$$= \frac{400}{600} \times \frac{d/2}{d} = \frac{1}{3}$$

$$y_2 = 3y_1$$

275 **(a)**

The essential condition for sustained interference is constancy of phase difference

276 (d)

Fringe width $\beta = \frac{\lambda D}{d}$

Where *D* is the distance between slit and screen, *d* is the distance between two slits, λ is the wavelength of light

$$\therefore \Delta \beta = \frac{\lambda \Delta D}{d}$$
$$\Rightarrow \lambda = \frac{\Delta \beta d}{\Delta D} = \frac{10^{-3} \times 0.03 \times 10^{-3}}{5 \times 10^{-2}}$$
$$= \frac{10^{-3} \times 3 \times 10^{-5}}{5 \times 10^{-2}}$$
$$= 6 \times 10^{-7} m = 6000 \text{\AA}$$

277 (a)

Polarization is shown by only transverse waves 278 **(b)**

Polarizer produces polarized light

279 **(b)**

The magnitude of electric field vector varies periodically with time because it is the form of electromagnetic wave

280 **(b)**

 $I_{max} = I = I_1 + I_2 + 2\sqrt{I_1 I_2}$

When width of each slit is doubled, intensity from each slit becomes twice *ie*,

$$I'_{1} = 2I_{1} \text{ and } I'_{2} = 2I_{2}$$

$$\therefore I'_{max} = I' = I'_{1} + I'_{2} + 2\sqrt{I'_{1} \times I'_{2}}$$

$$= 2I_{1} + 2I_{2} + 2\sqrt{2I_{1} \times 2I_{2}}$$

$$= 2(I_{1} + I_{2} + 2\sqrt{I_{1} \times I_{2}}) = 2I$$

Speed of EM waves in vacuum $= \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \text{constant}$

$$\frac{I_{\max}}{I_{\min}} = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2 = \left(\frac{3a + a}{3a - a}\right)^2 = \frac{4}{1}$$

283 **(c)**

The intensity of illumination is given by $I = \frac{P \cos \theta}{r^2}$ Where *P* = power of the source *r* = distance between source and point

 θ = angle of incidence When θ = 0, *I* will be maximum. Hence, the rays

from the sun are incident normally on the earth surface

284 **(b)**

$$I' = I e^{-\mu x} \Rightarrow x = \frac{1}{\mu} \log_e \frac{I}{I'} \text{ (where } I = \text{ original}$$

intensity, $I' = \text{changed intensity}$
$$36 = \frac{1}{\mu} \log_e \frac{I}{I/8} = \frac{3}{\mu} \log_e 2 \quad \dots \text{ (i)}$$

$$x = \frac{1}{\mu} \log_e \frac{I}{I/2} = \frac{1}{\mu} \log_e 2 \quad \dots \text{ (ii)}$$

From equation (i) and (ii), $x = 12mm$
286 **(c)**
Here, $X_3 = X_5$

$$\frac{3D\lambda}{2d} = \frac{5D\lambda'}{2d}$$

$$\Rightarrow 3\lambda = 5\lambda' \text{ or } \frac{\lambda}{\lambda'} = \frac{3}{5}$$

$$\lambda' = \frac{3}{5} \times 700 \text{ nm} = 420 \text{ nm}$$

287 **(b)**

=

Width of the central maximum,

$$\beta_0 = \frac{2l}{a}$$
$$\beta_0 \propto \frac{1}{a}$$

 \therefore To increase the width of the central maximum one should decrease *a*.

288 (d)

289 (a)

The rays of light from two coherent sources superimpose each other on the screen forming alternate maxima (with maximum intensity I_0) and minima (with intensity zero). If two non-coherent sources superimpose, there will be no maxima and minima, instead the intensity will be $\frac{I_0}{2}$ throughout.

281 **(c)**

Distance between two consecutive Dark fringes $=\frac{\lambda D}{d} = \frac{6000 \times 10^{-10} \times 1}{0.6 \times 10^{-3}}$ $= 1 \times 10^{-3} m = 1 mm$

291 **(c)**

Transverse waves can be polarized only 293 **(a)**

For interference frequency must be same and phase difference must be constant

294 **(b)**

 $\vec{E} \times \vec{B}$ points in the direction of wave propagation 295 (c)

In Youngs's double slit experiment half angular width is given by

$$\sin \theta = \frac{\lambda}{d} = \frac{589 \times 10^{-9}}{0.589 \times 10^{-3}} = 10^{-3}$$

$$\Rightarrow \theta = \sin^{-1}(0.001)$$

296 **(c)**

 $I = 4I_0 \cos^2(\phi/2) \Rightarrow \phi = 2\pi/3$ $\Rightarrow \Delta x \times (2\pi/\lambda) \Rightarrow 2\pi/3 = \lambda/3$ $\sin \theta = \Delta x/d \Rightarrow \sin \theta = \lambda/3d$

297 **(a)**

$$\beta \propto \frac{\lambda}{d} \text{ as } d \to \frac{d}{3} \text{ so } \beta \to 3\beta :: n = 3$$

298 **(c)**

Interference is explained by wave nature of light

299 **(b)**

Infrared causes heating effect

300 **(d)**

According to Rayleigh scattering formula, Intensity of scattered light $I \propto \frac{1}{(\lambda)^4} \propto f^4$

$$\frac{f_1}{f_2} = \left[\frac{I_1}{I_2}\right]^{-1/4}$$
$$= \left[\frac{256}{81}\right]^{-1/4}$$
$$= \frac{4}{3}$$

301 **(a)**

To form circularly polarized light $E_x = A \sin \omega t$ $E_y = A \cos \omega t$ Resultant amplitude $\left|\vec{E}\right|^2 = A^2 + A^2 + 2A \cdot A \cos \frac{\pi}{2} \Rightarrow \left|\vec{E}\right| = A\sqrt{2}$ = constant 302 (a) The position of 30th bright fringe

$$y_{30} = \frac{30\lambda D}{d}$$

Now position shift of central fringe is

$$y_0 = \frac{30\lambda D}{d}$$

But we know, $y_0 = \frac{D}{d}(\mu - 1)t$

$$\frac{30\lambda D}{d} = \frac{D}{d}(\mu - 1)t$$

(\(\mu - 1\)) = $\frac{30\lambda}{t} = \frac{30 \times (6000 \times 10^{-10})}{(3.6 \times 10^{-5})} = 0.5$
\(\therefore\) \(\mu = 1.5\)

303 **(b)**

Wavelength of visible spectrum is 3900Å – 7800Å 304 (a)

$$f_1 = \frac{r^2}{\lambda} = \frac{(2.3 \times 10^{-3})^2}{5893 \times 10^{-10}} = 9m$$

305 (a)
$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} \Rightarrow 1 = \frac{v}{c} \Rightarrow v = c$$

306 **(b)**

The polarization is the property of electromagnetic waves such as light which describes the direction of their transverse electric field. More generally, the polarization of transverse wave describes the direction of oscillation, in the plane perpendicular to the direction of travel. Longitudinal waves such as sound waves do not exhibit polarization, becomes for these waves the direction of oscillation is along the direction of travel.

307 (a)

If unpolarised light is incident at polarising angle, then reflected light is completely, ie, 100% polarized.

308 **(b)**

 $: PR = d \Rightarrow PO = d \sec \theta \text{ and } CO = PO \cos 2\theta = d \sec \theta \cos 2\theta \text{ is}$

 $= 5 \times 10^{-4} m = 0.5 \times 10^{-3} m = 0.5 mm$

$$\beta = \frac{\lambda p}{a} \Rightarrow \text{ If } D \text{ becomes twice and } d \text{ becomes half}$$

so β becomes four times
316 (b)
 $n\lambda_r = (n+1)\lambda_b$
 $\frac{n+1}{n} = \frac{\lambda_r}{\lambda_b} = \frac{600}{480} = \frac{4}{5}$
 $\frac{1}{n} = \frac{4}{5} - 1 = \frac{1}{4}n = 4$
317 (d)
 $x = \frac{mD\lambda_1}{d} = \frac{(m+1)D\lambda_2}{d}$
 $\Rightarrow 3 \times 6000 = 4\lambda_2$
Or $\lambda_2 = \frac{3 \times 6000}{4} = 4500 \text{ Å}$
318 (b)
 $\beta = \frac{(a+b)\lambda}{2a(\mu-1)\alpha}$
Where $a = \text{distance between source and biprism} = 0.3 m$
 $b = \text{distance between biprism and screen = 0.7 m}$
 $\alpha = \text{Angle of prism} = 1^\circ, \mu = 1.5, \lambda = 6000 \times 10^{-10}m$
Hence, $\beta = \frac{(0.3+0.7) \times 6 \times 10^{-7}}{2 \times 0.3(1.5-1) \times (1^{\circ \times \frac{\pi}{100})}}$
 $= 1.14 \times 10^{-4}m = 0.0114 \text{ cm}$
320 (d)
 $\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\frac{a_1}{2} + 1}{a_2}\right)^2 \Rightarrow \frac{a_1 + a_2}{a_1 - a_2} = 6$
 $\frac{7}{5} = \frac{a_1}{a_2}$
321 (a)
The number of fringes shifting is decided by the extra path difference is $(\mu - 1)t = n\lambda$
Or $(1.5 - 1) \times 0.1 \times 10^{-3} = n \times 500 \times 10^{-9}$
 $\Rightarrow n = 100$
322 (b)
The rings observed in reflected light are exactly complementary to those seen in transmitted light. Corresponding to every dark ring in reflected light. The ray reflected at the upper surface of the air-film suffers no phase change while the ray reflected internally at the lower surface suffers a phase change of π .
323 (d)

Ultrasonic waves are longitudinal waves 315 (d)

314 (d)

m

 $\lambda = 600 \text{ nm} = 6 \times 10^{-7} \text{m}$

 $a = 1 \text{ mm} = 10^{-3} \text{m}, D = 2 \text{ m}$

Distance between the first dark fringes on either side of central bright fringe=width of central maximum

$$= \frac{2\lambda D}{a} = \frac{2 \times 6 \times 10^{-7} \times 2}{10^{-3}}$$
$$= 24 \times 10^{-4} \text{m} = 2.4 \text{ mm}$$

324 (a)

 $\mu_{v} = 1$ and $\mu_{a} = 1.003$ $\therefore \quad \frac{\lambda_v}{\lambda_a} = \frac{\mu_a}{\mu_v} = 1.0003$ $x = \lambda_n n = \lambda_n (n+1)$ $\frac{n+1}{n} = \frac{\lambda_v}{\lambda_a} = 1.0003$ $1 + \frac{1}{n} = 1.0003, \frac{1}{n} = 0.0003$ $n = \frac{1}{0.0003} = \frac{10^4}{3}$ $\therefore x = \lambda_a n = 6000 \times 10^{-7} \text{mm} \times \frac{10^4}{3} = 2 \text{ mm}$

325 (c)

Limit of resolution of the telescope

$$a = \frac{1.22\lambda}{a} = \frac{d}{x}$$

Or $d = \frac{1.22\lambda x}{a}$
$$= \frac{1.22 \times 5 \times 10^{-7} \times 8 \times 10^{16}}{0.25} = 1.95 \times 10^{11} \text{m}$$

326 (d)

$$v = \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \frac{3 \times 10^8}{\sqrt{1.3 \times 2.14}} = 1.8 \times 10^8 m/s$$

327 **(b)**

Fringe width $(\beta) \propto \frac{1}{\operatorname{prism Angle}(\alpha)}$

328 (a)

Angular spread on either side is $\theta = \frac{\lambda}{a} = \frac{1}{5}$ rad

329 (a)

Photoelectric effect explain the quantum nature of $\begin{vmatrix} 337 \end{vmatrix}$ (a) light while interference, diffraction and

polarization explain the wave nature of light 330 (b)

$$\beta = \frac{\lambda D}{d} = \frac{6000 \times 10^{-10} \times 2}{4 \times 10^{-3}}$$

 $= 0.3 \times 10^{-3} \text{m} = 0.3 \text{mm}$

332 (a)

If maximum electron density of the ionosphere is $N_{\rm max}$ per m^3 then the critical frequency f_c is given by $f_c = 9(N_{\rm max})^{1/2}$ 3

$$\Rightarrow 10 \times 10^{6} = 9(N)^{1/2} \Rightarrow N = 1.2 \times 10^{12} m^{-3}$$

Phase difference
$$=\frac{2\pi}{\lambda}$$
 × path difference

ie,
$$\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \frac{\pi}{3}$$

As, $I = I_{\max} \cos^2\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_{\max}} = \cos^2\left(\frac{\phi}{2}\right)$
Or $\frac{I}{I_0} = \cos^2\left(\frac{\pi}{6}\right) = \frac{3}{4}$

334 (c)

Two coherent source must have a constant phase difference otherwise they can not produce interference

335 (d)

$$\beta = \frac{\lambda D}{d} = \frac{600 \times 10^{-9} \times 2}{1 \times 10^{-3}} = 12 \times 10^{-4} \text{ m}$$

So, distance between the first dark fringes on either side of the central bright fringe

$$X = 2\beta$$

= 2 × 12 × 10⁻⁴ m
= 24 × 10⁻⁴ m = 2.4 mm

336 (a)

As the two bright fringes coincide

$$\therefore n\lambda_1 = (n+1)\lambda_2$$

$$\frac{n+1}{n} = \frac{\lambda_1}{\lambda_2} = \frac{7500}{6000} = \frac{5}{4}$$

$$1 + \frac{1}{n} = \frac{5}{4}, n = 4$$

When spherical waves are incident on a plane refracting surface, separating two media, the

reflected waves have spherical wave fronts

338 (d)

Refractive index of a medium

 $n = \tan i_p$

Where i_p = Brewster's angle

 $\Rightarrow i_p = \tan^{-1}[n]$

339 (a)

 $\beta \propto \lambda, \therefore \lambda_{v} = \text{minimum}$

341 **(b)**

Fringe shift is given by $x = \frac{(\mu-1)t\beta}{\lambda}$ For first plate, $x = \frac{(\mu_1-1)t\beta}{\lambda}$ For second plate $\frac{3}{2}x = \frac{(\mu_2-1)t\beta}{\lambda}$ $\Rightarrow \left(\frac{\mu_2-1}{\mu_1-1}\right) = \frac{3}{2} \Rightarrow \left(\frac{\mu_2-1}{1.5-1}\right) = \frac{3}{2}$ $\Rightarrow \mu_2 = 1.75$ (d)

342 **(d)**

$$y_1 = a \sin \omega t$$
, $y_2 = a \cos \omega t = a \sin \left(\omega t + \frac{\pi}{2} \right)$

343 (d)

$$\phi = \frac{\lambda}{6} = \frac{360^{\circ}}{6} = 60^{\circ}$$

$$I = I_0 \cos^2 \theta$$

$$= I_0 \cos^2 60^{\circ}$$

$$= \frac{3}{4} \times I_0$$

$$\frac{I}{I_0} = \frac{3}{4}$$

345 (d)

Let *n*th minima of 400 nm coincides with mth minima of 560 nm, then

$$(2n-1)\left(\frac{400}{2}\right) = (2m-1)\left(\frac{560}{2}\right)$$
$$Or\frac{2n-1}{2m-1} = \frac{7}{2} = \frac{14}{10} = \cdots$$

ie. 4thminima of 400 nm coincides with 3rd minima of 560 nm.

Location of this minima is,

$$Y_1 = \frac{(2 \times 4 - 1)(1000)(400 \times 10^{-6})}{2 \times 0.4} = 14 \text{ mm}$$

Next $11^{\rm th}$ minima of 400 nm will coincide with $8^{\rm th}$ minima of 560 nm. Location of this minima is ,

$$Y_2 = \frac{(2 \times 11 - 1) (1000) (400 \times 10^{-6})}{2 \times 0.1} = 42 \text{ mm}$$

 \therefore Required distance= $Y_2 - Y_1 = 28$ mm

346 **(a)**

Amplitude A_1 and A_2 are added as vector. Angle between these vectors is the phase difference $(\beta_1 - \beta_2)$ between them

$$R = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\beta_1 - \beta_2)}$$

347 (c)

:.

The interference fringes for two slits are hyperbolic

348 (d)

Momentum transferred in one second

$$p = \frac{2U}{c} = \frac{2S_{av}A}{c} = \frac{2 \times 6 \times 40 \times 10^{-4}}{3 \times 10^8}$$

$$= 1.6 \times 10^{-10} kg - m/s^2$$

349 (d)

Diffraction shows the wave nature of light and photoelectric effect shows particle nature of light

350 **(d)**

Phase difference, $\phi = \frac{2\pi}{\lambda} \times \text{path difference}$ $\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \frac{\pi}{3} = 60^{\circ}$ Intensity, $I = I_0 \cos^2\left(\frac{\phi}{2}\right)$ $\frac{I}{I_0} = \cos^2(30^{\circ}) = \left(\frac{\sqrt{3}}{2}\right)^2 = 0.75$ 351 (a)

At any point along the path 1, path difference between the waves is 0 Hence maxima is obtained all along the path 1 At any point along the path 2, path difference is

1.5 λ which is odd multiple of $\frac{\lambda}{2}$, so minima is

obtained all along the path 2

353 **(c)**

Let a_1 and a_2 be amplitudes of the two waves. For maximum intensity

$$I_{\rm max} = (a_1 + a_2)^2$$

For minimum intensity

$$I_{\min} = (a_1 - a_2)^2$$

Given, $\frac{I_{\max}}{I_{\min}} = \frac{25}{1} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2}$
 $\Rightarrow \frac{a_1 + a_2}{a_1 - a_2} = \frac{5}{1}$
 $\Rightarrow \qquad \frac{a_1}{a_2} = \frac{3}{2}$

(law of componendo and dividendo) Also, Intensity \propto (amplitude)²

$$\therefore \frac{I_1}{I_2} = \left(\frac{a_1}{a_2}\right)^2 = \frac{9}{4}$$

355 (a)

Total phase difference

= Initial phase difference + Phase difference due to path

$$= 66^{\circ} + \frac{360^{\circ}}{\lambda} \times \Delta x = 66^{\circ} + \frac{360^{\circ}}{\lambda} \times \frac{\lambda}{4} = 66^{\circ} + 90$$
$$= 156^{\circ}$$

356 **(a)**

Photoelectric effect verifies particle nature of light. Reflection and refraction verify both particle nature and wave nature of light

358 **(a)**

The speed of light $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \frac{1}{\sqrt{2 \times 8}} = \frac{1}{4} = 0.25$

359 **(c)**

Path difference, $x = (SS_1 + S_10) - (SS_2 + S_20)$

If $x = n\lambda$, the central fringe at 0 will be bright. If $x = (2n - 1)\lambda/2$, the central fringe at 0 will be dark.

360 **(c)**

Critical angle, $C = \sin^{-1}(0.6)$ $\sin(C) = 0.6$ $\mu = \frac{1}{\sin C} = \frac{1}{0.6}$ Polarizing angle $i_p = \tan^{-1}(\mu) = \tan^{-1}\left(\frac{1}{0.6}\right)$ $= \tan^{-1}(1.6667)$

361 **(d)**

By using $f_p = \frac{r^2}{(2p-1)\lambda}$ For first $HPZ r = \sqrt{f_p\lambda} = \sqrt{0.6 \times 6000 \times 10^{-10}}$ $= 6 \times 10^{-4} m$

362 **(d)**

For liquid A

$$L_1 = 20 \text{ cm}, \theta_1 = 38^\circ; \text{ concentration} = C_1$$

Specific rotation
$$a_1 = \frac{\theta_1}{L_1 C_1} = \frac{38^\circ}{20 \times C_1}$$

Similarly, for liquid *B*

 $L_2 = 30 \text{ cm}, \theta_2 = -24^\circ, \text{concentration} = C_2$

Specific rotation $a_2 = \frac{\theta_2}{L_2 C_2} = \frac{(-24^\circ)}{30 \times C_2}$

The mixture has 1 part of liquid *A* and 2 parts of liquid *B*,

$$\therefore C_1': C_2' = 1 : 2$$

$$\theta = \{ a_1 C_1' + a_2 C_2' \} l$$

$$= \left\{ \frac{38^{\circ}}{20 \times C_1} \times \frac{C_1}{3} + \frac{(-24^{\circ})}{30 \times C_2} \times \frac{2C_2}{3} \right\} \times 30^{\circ}$$
$$= 19^{\circ} - 16^{\circ} = 3^{\circ}$$

Thus, the optical rotation of mixture is $+3^{\circ}$ in right had direction.

363 **(b)** $c = \frac{E}{B} \Rightarrow B = \frac{E}{c} = \frac{18}{3 \times 10^8} = 6 \times 10^{-8}T$

364 **(a)**

For an electromagnetic wave Velocity $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 m s^{-1}$ Air acts almost as vacuum $\therefore a = 3$ approximately

365 **(c)**

Here, $\sin = \theta = \left(\frac{y}{D}\right)$

So,
$$\Delta \theta = \frac{\Delta y}{D}$$

Angular fringe width $\theta_0 = \Delta \theta$ (width $\Delta y = \beta$)

$$\theta_0 = \frac{\beta}{D} = \frac{D\lambda}{d} \times \frac{1}{D} = \frac{\lambda}{d}$$

$$\theta_0 = 1^\circ = \pi/180 \text{ rad}$$

And $\lambda = 6 \times 10^{-7} \text{ m}$

$$d = \frac{\lambda}{\theta_0} = \frac{180}{\pi} \times 6 \times 10^{-7}$$

$$= 3.44 \times 10^{-5} \text{ m}$$

$$= 0.03 \text{ mm}$$

366 **(b)**

When a thin glass plate of thickness *t* is placed over one of the slits, then lateral displacement is given by

$$x = \frac{(\mu - 1)tD}{d}$$

Given, $\mu = 1.5$, t = 0.06 mm $= 6 \times 10^{-5}$ m

 $D = 2 \text{ m}, d = 1 \text{ mm} = 1 \times 10^{-3} \text{ m}$

Putting the values in the above relation, we get

$$x = \frac{(1.5 - 1) \times 6 \times 10^{-5} \times 2}{1 \times 10^{-3}}$$
$$= 0.5 \times 12 \times 10^{-2} = 0.06 \text{ m} = 6 \text{ cm}$$

367 (d)

To see interference, we need two sources with the same frequency and with a constant phase difference. In the given waves,

$$X_1 = a_1 \sin \omega t$$

And $X_4 = a_1 \sin(\omega t + \delta)$

Have a constant phase difference δ , so interference is possible between them.

For $X_1 = a_1 \sin \omega t$

And $X_2 = a_2 \sin 2\omega t$

Frequency is not equal and there is no constant phase difference.

For
$$X_1 = a_1 \sin \omega t$$

And $X_3 = a_1 \sin \omega_1 t$,

Frequency is different and there is no constant phase difference.

368 (a)

Intensity, $I_0 = I_1 + I_2 + 2\sqrt{I_1I_2}$

If $I_1 = I_2 = I(\text{Let})$

Then $I_0 = 4I$

When one slit is covered then $I_2 = 0$

$$\therefore I_0' = I = \frac{I_0}{4}$$

370 (a)

For interference phase difference must be constant

371 (d)

$$\beta = \frac{\lambda D}{d} = \frac{600 \times 10^{-9} \times 2}{1 \times 10^{-3}} = 12 \times 10^{-4} \text{ m}$$

So, distance between the first dark fringes on either side of the central bright fringe

$$= 2\beta$$
$$= 2 \times 12 \times 10^{-4} \text{ m}$$
$$= 24 \times 10^{-4} \text{ m}$$
$$= 2.4 \text{ mm}$$

372 (a)

$$\omega = 6 \times 10^{8}$$

$$k = \frac{\omega}{\nu} = \frac{6 \times 10^{8}}{3 \times 10^{8}} = 2m^{-1}$$

373 **(d)**

If shift is equivalent to *n* fringes then

$$n = \frac{(\mu - 1)t}{\lambda} \Rightarrow n \propto t \Rightarrow \frac{t_2}{t_1} = \frac{n_2}{n_1} \Rightarrow t_2 = \frac{n_2}{n_1} \times t$$
$$t_2 = \frac{20}{30} \times 4.8 = 3.2mm$$

374 **(c)**

Doppler shift (Source moving towards observer) $\lambda' = \lambda \left(1 - \frac{V}{C} \right)$

$$5400\text{ Å} = 6200\text{ Å} \left(1 - \frac{V}{C}\right)$$
$$V = \left[1 - \frac{54}{62}\right]C = 3.9 \times 10^{7} \text{ approx}$$

375 **(b)**

The optical path between any two points is proportional to the time of travel.

The distance traversed by light in a medium of refractive index μ in time *t* is given by

$$d = vt \qquad \dots \dots \dots (i)$$

Where v is velocity of light in the medium. The distance traversed by light in a vacuum in this

time.

$$\Delta = ct$$

$$= c \cdot \frac{d}{v} \qquad [From Eq. (i)]$$

$$= d \frac{c}{v} = \mu d \qquad (ii)$$

$$(Since, \mu = \frac{c}{v})$$

This distance is the equivalent distance in vacuum and is called optical path.

Here, optical path for first ray = $n_1 L_1$

Optical path for second ray = n_2L_2

Path difference = $n_1L_1 - n_2L_2$

Now, phase difference

$$= \frac{2\pi}{\lambda} \times \text{ path difference}$$
$$= \frac{2\pi}{\lambda} \times (n_1 L_1 - n_2 L_2)$$

376 **(c)**

$$\beta = \frac{\beta}{\lambda}(\mu - 1)t$$
$$\Rightarrow t = \frac{\lambda}{(\mu - 1)} = \frac{\lambda}{(1.5 - 1)} = 2\lambda$$

377 (c)

The number of fringes on either side of centre *C* of screen is

$$n_1 = \left[\frac{AC}{\beta}\right] = \left[\frac{0.5}{0.021}\right] = [23.8] = 23$$

 \therefore Total number of fringes

 $= 2n_1 +$ fringe at centre

$$= 2n_1 + 1 = 2 \times 23 + 1$$

$$= 46 + 1 = 47$$

In Young's experiment, the number of fringes should be odd.

378 **(a)**

When unpolarised light is made incident at polarizing angle, the reflected light is plane polarized in a direction perpendicular to the plane

Therefore \vec{E} in reflected light will vibrate in vertical plane with respect to plane of incidence 381 (a) In a single slit diffraction experiment, position of minima is given by $d \sin \theta = n\lambda$ So for first minima of red sin $\theta = 1 \times \left(\frac{\lambda_R}{d}\right)$ and as first maxima is midway between first and second minima, for wavelength λ' , Its position will be $d\sin\theta' = \frac{\lambda' + 2\lambda'}{2} \Rightarrow \sin\theta' = \frac{3\lambda'}{2d}$ According to given condition $\sin \theta = \sin \theta'$ $\Rightarrow \lambda' = \frac{2}{3}\lambda_R \text{ so } \lambda' = \frac{2}{3} \times 660 = 440nm = 4400\text{\AA}$ 382 (c) $\sin\theta = \frac{\lambda}{d}$ $=\frac{589\times10^{-9}}{0.589\times10^{-3}}=10^{-3}=\frac{1}{1000}=0.001$ 384 (c) Huygen's wave theory fails to explain the particle nature of light (*i.e.*, photoelectric effect) 385 (b) In diffraction pattern, fringe width is proportional to λ . We know that wavelength of violet light is less than that of red light, so on replacing red light with violet light, diffraction pattern would become narrower. 386 (c) Width of the diffraction band is given by $\beta = \frac{\lambda D}{A}$ Where *D*= distance between slit and the screen λ = wavelength of light used and d = width of slit. Hence, width of the diffraction band varies directly as the distance between the slit and the screen. 388 (c) The equation of *n*th principal maxima for wavelength λ is given by $(a+b)\sin\theta = n\lambda$

of incidence.

Where *a* is the width of transparent portion and *b* is that of opaque portion. The width (a + b) is

called the grating element.

The spectral lines will overlap, *ie*, they will have the same angle of diffraction of

 $\lambda_1 = \lambda_2$

When a line of wavelength λ_1 in order n_1 coincides with a line of unknown wavelength λ_2 in order n_2 , then

 $n_2\lambda_2=n_1\lambda_1$

Or $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$

389 **(b)**

Ozone layer absorbs most of the *UV* rays emitted by sun

390 **(b)**

EM waves carry momentum and hence can exert pressure on surfaces. They also transfer energy to the surface so $p \neq 0$ and $E \neq 0$

391 **(c)**

$$K = 0.5 \times 10^{3}$$
$$\frac{2\pi}{\lambda} = 0.5 \times 10^{3} \Rightarrow \lambda = \frac{2\pi}{0.5} \times 10^{-3}$$
$$\lambda = 12.76mm$$

 λ lies in range of microwave

392 (c)

In 1903, the American scientists Nicols and Hull measured the radiation pressure of visible light. It was found to be of the order of $7 \times 10^{-6} N/m^2$

393 (d)

Interference is shown by electromagnetic as well as mechanical waves

394 (c)

As
$$x = n_1 \beta_1 = n_2 \beta_2 = n_2 \lambda_1 = n_2 \lambda_2$$

$$\therefore n_2 = \frac{n_1 \lambda_1}{\lambda_2} = \frac{60 \times 4000}{6000} = 40$$

395 **(c)**

When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is shorter wavelength, because

Accuracy $\propto \frac{1}{\text{Wavelength}}$

397 **(b)**

 $I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2}$ So, $I_{\text{max}} = I + 4I + 2\sqrt{I \cdot 4I} = 9I$

398 **(b)**

Newton's of oscillations in coherence length

 $\frac{l}{\lambda} = \frac{0.024}{5900 \times 10^{-10}}$

$$= 40677.9 = 4.068 \times 10^4$$

399 **(c)**

When white light is used in a biprism experiment, central spot will be white, while the surronding fringes will be colored.

400 (d)

Intensity
$$\propto \frac{1}{r^2}$$

$$\frac{I_2}{I_1} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{r_1}{r_1(1+2\%)}\right)^2$$

$$I_2 = I_1(1+2\%)^{-2}$$
Expanding by binomial theorem $\Rightarrow I_2 = I_1(1-4\%)$
 \therefore Intensity decreases by 4%
402 (d)
Let $I_1 = a^2, I_2 = b^2$
 $\therefore I_{max} = (a+b)^2 = a^2 + b^2 + 2ab$

$$= I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$$

403 **(a)**

When light reflects from denser surface phase change of π occurs

404 **(b)**

Direction of wave is perpendicular to the wavefront

405 **(d)**

Required angle
=
$$2 \times 57.5 + 90 = 205^{\circ}$$

IR
ip
90
0

406 **(c)**

Polarization is not shown by sound waves

407 (d)

The phase difference (ϕ) between the wavelets from the top edge and the bottom edge of the slit is $\phi = \frac{2\pi}{\lambda} (d \sin \theta)$ where *d* is the slit width. The first minima of the diffraction pattern occurs at $\sin \theta = \frac{\lambda}{d}$, so $\phi = \frac{2\pi}{\lambda} \left(d \times \frac{\lambda}{d} \right) = 2\pi$

409 (d)

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}, \text{ Now } \Delta\lambda = \frac{0.5}{100}\lambda \Rightarrow \frac{\Delta\lambda}{\lambda} = \frac{0.5}{100}$$
$$\therefore v = \frac{0.5}{100} \times c = \frac{0.5}{100} \times 3 \times 10^8 = 1.5 \times 10^6 m/s$$
Increase in λ indicates that the star is receding

410 **(c)**

Here, $a = 10, b = \sqrt{5^2 + (5\sqrt{3})^2} = 10$ $\therefore \frac{a}{b} = \frac{10}{10} = 1:1$

411 **(b)**

Wave nature of light alone can explain the phenomenon like diffraction.

412 **(b)**

Shifting towards violet region shows that apparent wavelength has decreased. Therefore the source is moving towards the earth

413 (d)

For destructive interference path difference is odd multiple of $\frac{\lambda}{2}$

415 **(b)**

4

$$\Delta \lambda = \lambda \frac{v}{c} = 5700 \times \frac{100 \times 10^3}{3 \times 10^8} = 1.90^{\text{A}}$$

16 (d)
 $n_1 \lambda_1 = n_2 \lambda_2$

$$\begin{array}{l} n_1 \lambda_1 - n_2 \lambda_2 \\ \Rightarrow 3 \times 700 = 5 \times \lambda_2 \\ \Rightarrow \lambda_2 = 420 \text{ nm} \end{array}$$

$$\frac{a_1}{a_2} = \frac{3}{5}$$

$$\therefore \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{(3+5)^2}{(3-5)^2} = \frac{16}{1}$$

418 **(b)**

Lateral displacement of fringes $= \frac{\beta}{\lambda}(\mu - 1)t$ $= \frac{1 \times 10^{-3}}{600 \times 10^{-9}}(1.5 - 1) \times 0.06 \times 10^{-3} = 5 \ cm$

419 **(a)**

$$\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto D$$

$$\Rightarrow \frac{\beta_1}{\beta_2} = \frac{D_1}{D_2} \Rightarrow \frac{\beta_1 - \beta_2}{\beta_2} = \frac{D_1 - D_2}{D_2} \Rightarrow \frac{\Delta \beta}{\Delta D} = \frac{\beta_2}{D_2} = \frac{\lambda_2}{d_2}$$

$$\Rightarrow \lambda_2 = \frac{3 \times 10^{-5}}{5 \times 10^{-2}} \times 10^{-3} = 6 \times 10^{-7} m = 6000 \text{\AA}$$

420 (d)

From figure $I_1 = \frac{I}{4}$ and $I_2 = \frac{9I}{64} \Rightarrow \frac{I_2}{I_1} = \frac{9}{16}$

422 **(a)**

Plane containing the direction of vibration and wave motion is called plane of polarization. Plane of vibration is perpendicular to the direction of propagation and also perpendicular to the plane of polarization. Therefore, angle between plane of polarization and direction of propagation is 0°.

423 **(a)**

By using
$$x_n = \frac{n\lambda D}{d}$$

 $\Rightarrow (5 \times 10^{-3}) = \frac{10 \times \lambda \times 1}{(1 \times 10^{-3})} \Rightarrow \lambda = 5 \times 10^{-7} m$
 $= 5000 \text{\AA}$

425 **(a)**

If an unpolarised light is converted into plane polarized light by passing through a polaroid its intensity becomes half.

426 **(c)**

Distance of 5th bright fringe from central fringe

$$X_{5B} = \frac{5\lambda D}{d}$$
 ...(i)
Distance of 3rd dark fringe from central fringe,
 $X_{3D} = \frac{(2 \times 3 - 1)\lambda D}{2d} = \frac{5}{2} \frac{\lambda D}{d}$... (ii)
From (i) and (ii) required distance
 $X_{5B} - X_{3D} = \left(5 - \frac{5}{2}\right) \frac{\lambda D}{d} = \frac{5}{2} \times \frac{5 \times 10^{-7} \times 1}{1 \times 10^{-3}}$
 $= 1.25 \ mm$

428 **(d)**

*n*th dark fringe

$$(2n-1)\frac{D\lambda}{2d} = \frac{d}{2}$$
$$\lambda = \frac{d^2}{(2n-1)D} = \frac{d^2}{D}$$
$$\int_{a}^{b} \frac{S_2}{S_1}$$
$$y' = d/2$$
(for $n = 1$

429 **(b)**

For coherent sources

$$I_{1} = 4I_{0} \cos^{2} \frac{\phi}{2}$$

= 4I_{0}
For incoherent sources
$$I_{2} = I_{0} + I_{0} = 2I_{0}$$

$$\therefore \frac{I_{1}}{I_{2}} = 2$$

430 **(b)**
$$\frac{I_{max}}{I_{min}} = \frac{(a+b)^{2}}{(a-b)^{2}} = 9 \text{ or } \frac{a+b}{a-b} = 3$$

Or 3a - 3b = a + b or 2a = 4b;

$$\frac{I_1}{I_2} = \frac{a^2}{b^2} = \frac{4b^2}{b^2} = 4:1$$

431 **(b)**

Angular fringe width $\theta = \frac{\lambda}{d} \Rightarrow \theta \propto \lambda$ $\lambda_w = \frac{\lambda_a}{\mu_w}$ So $\theta_w = \frac{\theta_{air}}{\mu_w} = \frac{0.20}{\frac{4}{2}} = 0.15^{\circ}$

432 **(b)**

In electromagnetic wave, electric and magnetic fields are in phase

Electromagnetic wave carry energy as they travel through space and this energy is shared equally by electric and magnetic fields

The direction of the propagation of

electromagnetic wave is the direction of $\vec{E} \times \vec{B}$ The pressure exerted by the wave is equal to its energy density

In electromagnetic wave, the magnitudes of \vec{E} and \vec{B} are related by $\frac{E}{R}$

433 **(c)**

 $I \propto a^2$

434 **(c)**

Position of fourth maxima $x_0 = \frac{4D\lambda}{d}$

Or
$$x \propto \lambda$$

$$\therefore$$
 x(blue) < *x*(green)

435 **(b)**

Position of n^{th} maxima from central maxima is given by $x_n = \frac{n\lambda D}{n}$

$$\Rightarrow x_n \propto n\lambda \Rightarrow \frac{d_1}{d_2} = \frac{n_1\lambda_1}{n_2\lambda_2} = \frac{8\lambda_1}{6\lambda_2} = \frac{4}{3}\left(\frac{\lambda_1}{\lambda_2}\right)$$

436 (b)

The intensity at a point on screen is given by $I = 4I_0 \cos^2(\phi/2)$

Where ϕ is the phase difference. In this problem ϕ arises (i) due to initial phase difference of $\pi/4$ and (ii) due to path difference for the observation point situated at $\theta = 30^{\circ}$. Thus

$$\phi = \frac{\pi}{4} + \frac{2\pi}{\lambda} (d \sin \theta) = \frac{\pi}{4} + \frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} (\sin 30^\circ)$$
$$= \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
Thus $\frac{\phi}{2} = \frac{\pi}{4}$ and $I = 4I_0 \cos^2(\pi/4) = 2I_0$
437 **(b)**
From $\beta = \frac{\lambda D}{d}$

$$5 \times 10^{-3} = \frac{(5000 \times 10^{-10}) \times 1.0}{d}$$

$$d = \frac{5 \times 10^{-7}}{5 \times 10^{-3}} = 10^{-4} \text{m} = 0.1 \text{ mm}$$

438 **(c)**

For constructive interference path difference is even multiple of $\frac{\lambda}{2}$

439 **(b)**

Electron diffraction is the diffraction of a beam of electrons by atoms or molecules. The fact that electrons can be diffracted in a similar way to light shows the particles can act as waves.

440 **(c)**

Fringe width

$$W = \frac{\Delta\lambda}{d}$$

If the screen is placed at a constant distance from the source, then

$$W \propto \frac{\lambda}{d}$$

Hence, fringe width can be changed either by changing the wavelength of light or by changing the separation between the two slits.

441 **(d)**

Amplitude =
$$10\frac{v}{m}$$

 $C = \frac{\omega}{k}$
 $3 \times 10^8 = \frac{10^7}{k}$
 $k = \frac{1}{30}$

$$\frac{2\pi}{\lambda} = \frac{1}{30} \Rightarrow \lambda = 188.4m$$

443 **(c)**

Distance between two adjacent bright (or dark) fringes is called the fringe width. It is denoted by β , thus

$$\beta = \frac{D\lambda}{d}$$

Where *D* is the distance between slit source and screen and *d* is separation of slits.

Since, D and d are increased to same extent, so fringe width (w) will remain unchanged.

444 **(d)**

Ozone hole is depletion of ozone layer in stratosphere because of gases like CFC'S etc.

445 **(d)**

Distance of the *n*th bright fringe from the centre $x_n = \frac{n\lambda D}{d}$

$$\Rightarrow x_3 = \frac{3 \times 6000 \times 10^{-10} \times 2.5}{0.5 \times 10^{-3}} = 9 \times 10^{-3} m$$
$$= 9mm$$

446 **(d)**

$$\lambda_{Red} > \lambda_{Blue} > \lambda_{X-ray} > \lambda_{\gamma}$$

448 **(b)**

From diffraction at a single alit, size if aperture,

$$a = \frac{\pi}{\sin \theta}$$

$$a = \frac{3141.59 \times 10^{-10}}{\sin 1^{\circ}} = 18 \times 10^{-6} \text{m} = 18 \mu \text{m}$$

 $\beta \propto D$

450 **(b)**

Position of 3^{rd} bright fringe $x_3 = \frac{3D\lambda}{d}$ $\Rightarrow \lambda = \frac{x_3d}{3D} = \frac{(0.9 \times 10^{-2}) \times (0.28 \times 10^{-3})}{3 \times 1.4}$

$$3D \qquad 3 \times 1.4 = 6000 \text{\AA}$$

451 **(a)**

P is the position of 11th bright fringe from *Q*. From central position *O*, *P* will be the position of 10th bright fringe Path difference between the waves reaching at $P = S B = 10A = 10 \times 6000 \times 10^{-10} = 6 \times 10^{-10}$

 $P = S_1 B = 10\lambda = 10 \times 6000 \times 10^{-10} = 6 \times 10^{-6} m$

452 **(a)**

For single slit diffraction pattern $d \sin \theta = \lambda$ (d = slit width)

Angular width = $2\theta = 2\sin^{-1}\left(\frac{\lambda}{d}\right)$

It is independent of *D*, *i*. *e*., distance between screen and slit

 $B \propto \lambda$

455 **(c)**

With white light, the rays reaching the centre has zero path difference. So we get white fringe at the centre and coloured near the central fringe

456 **(a)**

Position of *n*th bright fringe from central maxima $x_{n1} = \frac{n_1 \lambda D}{n_1}$ here $n_1 = 5$

$$x_{n1} = \frac{1}{d}$$
 here n_1
 $x_{n1} = \frac{5\lambda D}{d}$

Position of n th dark fringe from central maxima

$$x_n = \frac{(2n-1)\lambda D}{2d}, \text{ here } n = 3$$
$$x_n = \frac{5}{2} \frac{\lambda D}{d}$$
$$x_{n1} - x_n = \frac{2.5\lambda D}{d} = 2.5 \beta$$
Given $\beta = 0.4 \text{ mm}$

 $\Rightarrow x_{n1} - x_n = 1 \text{ mm}$

459 **(a)**

In vacuum velocity of all EM waves are same but their wavelength are different

460 **(a)**

Optical rotation or optical activity is the rotation of linearly polarized light as it travels through certain materials. It occurs in solutions of chiral molecules (eg, sugar), solids with rotated crystal planes (eg, quartz) and spin polarized gases of atoms or molecules. Any linear polarization of light can be written as an equal combination of right hand (RHC) and left hand (LHC) circularly polarized light.

$$E_{\theta_D} = E_{\rm RHC} + e^{i2\theta D} E_{\rm LHC}$$

Where *E* is the electric field of light.

461 **(c)**

At polarizing angle, the reflected and refracted rays are mutually perpendicular to each other

462 **(a)**

Both magnetic and electric fields have zero average value in a plane *e*.m. wave

463 **(c)**

It is given that $r_4 = \sqrt{4b\lambda_1}$ and $r_5 = \sqrt{5b\lambda_2}$ are equal. Therefore $\sqrt{4b\lambda_1} = \sqrt{5b\lambda_2}$ Or $4b\lambda_1 = 5b\lambda_2$

$$0r \frac{\lambda_1}{\lambda_2} = \frac{5}{4}$$
464 **(b)**
Observed frequency $v' = v \left(1 - \frac{v}{c}\right)$
 $\Rightarrow v' = 6 \times 10^{14} \left(1 - \frac{0.8c}{c}\right) = 1.2 \times 10^{14} Hz$
465 **(a)**
Here, $\lambda = 6250$ Å $= 6250 \times 10^{-10}$ m
 $a = 2 \times 10^{-2}$ cm $= 2 \times 10^{-4}$ m
 $D = 50$ cm $= 0.5$ m
Width of central maximum $= \frac{2\lambda D}{a}$
 $= \frac{2 \times 6250 \times 10^{-10} \times 0.5}{2 \times 10^{-4}}$

 312.5×10^{-3} cm

466 **(c)** For maximum contrast, $I_1 = I_2$

467 **(b)**

Fringe visibility

$$V = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2}$$

Where I_1 and I_2 are intensities of coherent sources.

Given, $\frac{I_1}{I_2} = \frac{1}{4}$ $\therefore I_2 = 4I_1$ \therefore Fringe visibility $= \frac{2\sqrt{I_1 \times 4I_1}}{(I_1 + 4I_1)}$ $= \frac{2 \times 2I_1}{5I} = \frac{4}{5}$

$$= \frac{1}{5I_1} = \frac{1}{2}$$
$$\Rightarrow V = 0.8$$

468 **(b)**

The increasing order of given electromagnetic wave is as follows

 $\lambda_{\gamma-rays} < \lambda_{X-rays} < \lambda_{Infrared} < \lambda_{microwave}$ < $\lambda_{radio waves}$

469 **(c)**

For first minima
$$\theta = \frac{\lambda}{a}$$
 or $a = \frac{\lambda}{\theta}$
 $\therefore a = \frac{6500 \times 10^{-8} \times 6}{\pi} \text{ (As } 30^{\circ} = \frac{\pi}{6} \text{ radian} \text{)}$
 $= 1.24 \times 10^{-4} \text{ cm} = 1.24 \text{ microns}$

Wavefront is the locus of all the particles which vibrates in the same phase

471 **(c)**

Refractive index = $\sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}}$ Here μ is not specified so we can consider $\mu = \mu_0$ Then refractive index = $\sqrt{\frac{\varepsilon}{\varepsilon_0}} = 2$

 \therefore Speed and wavelength of wave becomes half and frequency remain unchanged

Deviation= $i_p - r = 20^{\circ}$

Also,
$$i_p = r = 90^\circ$$

Solve to get $r = 34^{\circ}$

474 **(c)**

Distance of
$$n^{th}$$
 bright fringe $y_n = \frac{n\lambda D}{d}$, *i.e.*, $y_n \propto \lambda$
 $\therefore \frac{x_{n_1}}{x_{n_2}} = \frac{\lambda_1}{\lambda_2} \Rightarrow \frac{x(\text{Blue})}{x(\text{Green})} = \frac{4360}{5460}$
 $\therefore x(\text{Green}) > x(\text{Blue})$
475 (b)
 $\beta = \frac{\lambda D}{d}$
476 (d)
 $n\beta_1 = (n+1)\beta_2$
 $\Rightarrow \frac{n \times 650 \times 10^{-19}D}{d}$
 $= \frac{(n+1) \times 520 \times 10^{-19} \times D}{d}$
 $\Rightarrow n = 4$

477 **(c)**

When white light is used in Young's double slit experiment, then different coloures will be split up on the viewing screen according to their wavelength while the central fringe will be white.

478 **(a)**

Distance covered by T.V. signals = $\sqrt{2hR}$ \Rightarrow maximum distance $\propto h^{1/2}$

479 **(d)**

In the given options none of sources generates plane wavefront, it can be artificially produced by reflection from a mirror or by refraction through a lens.

481 (c)

 $x = \frac{(2n+1)\lambda D}{2a}$ For red light, $x = \frac{(4+1)D}{2a} \times 6500$ Å For other light, $x = \frac{(6+1)D}{2a} \times \lambda \text{\AA}$ *X* is same for each $\therefore 5 \times 6500 = 7 \times \lambda \Rightarrow \lambda = \frac{5}{7} \times 6500 = 4642.8\text{\AA}$

482 (b)

Rotation produced $\theta = Sic$ Net rotation produced $\theta_r = \theta_1 - \theta_2 = l(S_1c_1 - \theta_2)$ S_2c_2) $= 0.29 \times [0.01 \times 60 - 0.02 \times 30] = 0$

483 **(b)**

 $\frac{I_1}{I_2} = \frac{1}{4} \Rightarrow I_1 = k \text{ and } I_2 = 4k$ $\therefore \text{ Fringe visibility } V = \frac{2\sqrt{I_1I_2}}{(I_1+I_2)} = \frac{2\sqrt{k\times 4k}}{(k+4k)} = 0.8$

484 (b)

If I_0 is intensity of unpolarized light, then intensity of polarized light from 1st Polaroid= $I_0/$ 2.

On rotating through 45°, intensity of light from 2nd Polaroid,

$$I = {\binom{I_0}{2}} (\cos 45^\circ)^2 = \frac{I_0}{2} {\left(\frac{1}{\sqrt{2}}\right)}^2 = \frac{I_0}{4}$$
$$= 25\% I_0$$

485 (b)

Given,
$$\frac{l_{max}}{l_{min}} = 9 = \frac{(a_1+a_2)^2}{(a_1-a_2)^2}$$

$$\therefore \frac{a_1+a_2}{a_1-a_2} = 3$$
Or $2a_1 = 4a_2$
Or $a_1 = 2a_2$

$$\Rightarrow \frac{a_1}{a_2} = 2$$

Again, intensity ratio at the screen due to two slits

$$\frac{I_1}{I_2} = \frac{a_1^2}{a_2^2} = \frac{4}{1}$$

Hence, amplitude ratio is 2 and intensities at the screen due to two slits are 4 units and 1 unit, respectively.

486 (c)

Interference may be seen using two independent lasers.

487 (d)

Given, spacing between second dark fringe and central fringe

$$= \beta + \frac{\beta}{2}$$

Or $\frac{3\beta}{2} = 1 \text{ mm}$
or $\beta = \frac{2}{3} \times 1 \text{ mm}$
 $\frac{\lambda D}{d} = \frac{2}{3} \text{ mm}$
 $\therefore \lambda = \frac{2}{3} \times 10^{-3} \times \frac{0.9 \times 10^{-3}}{1}$
 $\therefore \lambda = 0.6 \times 10^{-6} \text{ m}$
 $\therefore \lambda = 600 \times 10^{-9} \text{ m}$
 $= 600 \text{ m}$

488 (b)

$$PR = d$$

 $PO = d \sec \theta$

And $CO = PO \cot 2\theta = d \sec \theta \cos 2\theta$

Path difference between the two rays is,

$$\Delta x = CO + PO$$

 $= (d \sec \theta + d \sec \theta \cos 2\theta)$

Phase difference between the two rays is

 $\Delta \phi = \pi$ (one is reflected, while another is direct)

Therefore condition for constructive interference should be

489 (a)

Destructive interference occurs when the path difference is an odd multiple of $\lambda/2$.

Ie. $\frac{xd}{D} = \frac{(2n-1)\lambda}{2}$

Angular width of first dark fringe is

 $\frac{2x}{D} = \frac{2(2n-1)\lambda}{2d}$

Given, n = 1, $\lambda = 4800$ Å = 4800×10^{-10} m,

 $d' = 0.6 \text{ mm} = 0.6 \times 10^{-3} \text{ m}$

$$\therefore \frac{2x}{D} = \frac{2(2 \times 1 - 1) \times 4800 \times 10^{-10}}{2 \times 0.6 \times 10^{-3}}$$
$$= 8 \times 10^{-4} \text{ rad}$$

490 (a)

491

In the Newton's Ring interference experiment the diameter of the nth dark ring is given by

 $D_n = 2\sqrt{n.\lambda.R}$ where *R* is the radius of curvature of the lens and λ is the wavelength Using the formula we have

$$\lambda = \frac{D_{n+m}^2 - D_n^2}{4m.R} = \frac{D_{20}^2 - D_{10}^2}{4(20 - 10)R}$$
$$= \frac{(5.82 \times 10^{-3})^2 - (3.36 \times 10^{-3})^2}{4 \times 10 \times 1} = 5646 [\text{Å}]$$
(a)

 $I = \frac{1}{2}\varepsilon_0 C E_0^2$

$$\Rightarrow E_0 = \sqrt{\frac{2I}{\varepsilon_0 c}} = \sqrt{\frac{2 \times 5 \times 10^{-16}}{8.85 \times 10^{-12} \times 3 \times 10^8}}$$
$$= 0.61 \times 10^{-6} \frac{V}{m}$$
Also $E_0 = \frac{V_0}{d} \Rightarrow V_0 = E_0 d = 0.61 \times 10^{-6} \times 2 = 1.23 \mu V$

492 (d)

Distance of *n*th dark fringe from central fringe $(2n - 1)\lambda D$

$$x_n = \frac{2d}{2d}$$

$$\therefore x_2 = \frac{(2 \times 2 - 1)\lambda D}{2d} = \frac{3\lambda D}{2d}$$

$$\Rightarrow 1 \times 10^{-3} = \frac{3\lambda \times 1}{2 \times 0.9 \times 10^{-3}}$$

$$\Rightarrow \lambda = 6 \times 10^{-5} \text{ cm}$$

494 (d)

Distance of n^{th} dark fringe from central fringe $r = \frac{(2n-1)\lambda D}{\Delta D}$

$$x_n = \frac{2d}{2d}$$

$$\therefore x_2 = \frac{(2 \times 2 - 1)\lambda D}{2d} = \frac{3\lambda D}{2d}$$

$$\Rightarrow 1 \times 10^{-3} = \frac{3 \times \lambda \times 1}{2 \times 0.9 \times 10^{-3}} \Rightarrow \lambda = 6 \times 10^{-5} cm$$

$$z_5 \text{ (d)}$$

495 **(d**

$\beta \propto \frac{\lambda}{d}$

496 **(d)**

If *I* is the final intensity and I_0 is the initial intensity then

$$I = \frac{I_0}{2} (\cos^2 30^\circ)^5 \text{ or } \frac{I}{I_0} = \frac{1}{2} \times \left(\frac{\sqrt{3}}{2}\right)^{10} = 0.12$$

497 **(c)**

Newton's first law of motion states that every particle travels in a straight line with a constant velocity unless disturbed by an external force. So the corpuscles travels in straight lines

498 **(b)**

Position of
$$n^{\text{th}}$$
 minima $y_n = \frac{n \times D}{d}$
 $\Rightarrow y_3 - y_1 = \frac{D}{d} (3\lambda - \lambda) = \frac{2\lambda D}{d}$
 $\Rightarrow 3 \times 10^{-3} = \frac{2 \times 6000 \times 10^{-10} \times 0.5}{d}$
 $\Rightarrow d = 0.2 \times 10^{-3} m = 0.2mm$

500 (d)

Using red light ($\lambda = 6600$ Å)60 fringes are seen.

Hence, range of field of view is

$$\Rightarrow 60 \times w = 60 \times \frac{D\lambda}{d}$$

Using light of wavelength λ' , n fringes are seen, then

$$\Rightarrow 60 \times \frac{D\lambda}{d} = n \times \frac{D\lambda'}{d}$$
$$60 \times \lambda = n \times \lambda'$$
$$\Rightarrow n = 60 \times \frac{\lambda}{\lambda'} = 60 \times \frac{6600}{4400} = 90$$

501 **(d)**

$$I = \frac{I_0}{2} \cdot \frac{1}{(4)^4}$$
$$= \frac{I_0}{512} = \frac{1}{512}$$

502 (a)

As, $a\sin\theta = n\lambda$

$$\lambda = \frac{a\sin\theta}{n} = \frac{5\sin 30^\circ}{1} = 2.5 \text{ cm}$$

503 **(b)**

Let I_0 is intensity of light emitted from the source, then

Resultant intensity

$$I = 4I_0 \cos^2 \frac{\varphi}{2}$$

$$I_1 = 4I_0 \cos^2 \frac{\varphi}{2} = 4I_0$$
Now, $\Delta x = \frac{\lambda}{4}$

$$\varphi = \frac{2\pi}{\lambda} \times \Delta x = \frac{2\pi}{\lambda} \times \frac{\lambda}{4}$$

$$\varphi = \frac{\pi}{2}$$
And $I_2 = 4I_0 \cos^2 \frac{\pi}{4} = 2I_0$

$$I_1: I_2 = 2: 1$$

504 **(d)**

$$\beta = \frac{\lambda D}{d}$$

$$\beta' = \frac{\lambda D'}{d}$$

$$\beta - \beta' = \frac{\lambda (D - D')}{d}$$

$$3 \times 10^{-5} = \frac{\lambda \times 5 \times 10^{-2}}{10^{-3}}$$
Or $\lambda = \frac{3 \times 10^{-5}}{50} = 6 \times 10^{-7} \text{m} = 6000 \text{\AA}$
505 (a)

 $\beta = \frac{\lambda D}{d}$; If λ and d both increase by 10%, there will be no change in fringe width (β)

Fresnel distance $Z_F = \frac{a^2}{\lambda} = \frac{(4 \times 10^{-3})^2 m^2}{500 \times 10^{-9} m} = 32m$ 507 (a) The film appears bright when the path difference $(2\mu t \cos r)$ is equal to odd multiple of $\frac{\lambda}{2}$ *i.e.* $2\mu t \cos r = (2n - 1)\lambda/2$ where n = 1, 2, 3 ... $\therefore \lambda = \frac{4\mu t \cos r}{(2n - 1)}$ $= \frac{4 \times 1.4 \times 10,000 \times 10^{-10} \times \cos 0}{(2n - 1)} = \frac{56000}{(2n - 1)} \text{\AA}$ $\therefore \lambda$ $= 56000 \text{\AA}, 18666 \text{\AA}, 11200 \text{\AA}, 8000 \text{\AA}, 6222 \text{\AA}, 5091 \text{\AA}$

The wavelength which are not within specified range are to be refracted

508 **(d)**

When two coherent light beams of intensities I_1 and I_2 superimpose, then maximum intensity is

 $(\sqrt{I_1} - \sqrt{I_2})^2$ and minimum intensity is $(\sqrt{I_1} - \sqrt{I_2})^2$. But when two incoherent light beams of intensities I_1 and I_2 superimpose, then maximum intensity is $(I_1 + I_2)$ and minimum intensity is $(I_1 - I_2)$.

$$\therefore \quad I_{\max} = 5I, I_{\min} = 3I$$

509 **(b)**

In an interference experiment the spacing between successive maxima and minima is called the fringe width and is given by $\beta = D\lambda/d$

510 **(c)**

If an unpolarised light is converted into plane polarized light by passing through a polaroid, it's intensity becomes half

512 **(d)**

Photoelectric effect states that light travels in the form of bundles or packets of energy, called photons. This effect is explained on the basis of quantum nature of light. So, it clearly explains the particle's nature of light

514 **(d)**

$$\beta = \frac{\lambda D}{d} \Rightarrow \frac{\beta_2}{\beta_1} = \frac{\lambda_2 D_2 d_1}{\lambda_1 D_1 d_2} \Rightarrow \beta_2 = 2.5 \times 10^{-4} m$$

515 **(b)**

Fringe width, $\beta = \frac{\lambda D}{d}$

517 (a)

Only transverse waves can be polarized 518 (c)

$$e \sin \theta = \lambda \Rightarrow \sin \theta \approx \theta = \frac{\lambda}{e}$$

 $x = f, \theta = \frac{f\lambda}{e}$

 $\therefore 2x =$ separation between minima on either side of central maximum'

$$=\frac{2f\lambda}{e}$$
Hence, $e = \frac{2f\lambda}{2x}$

$$=\frac{2\times1\times600\times10^{-9}}{4\times10^{-3}}=0.3 \text{ mm}$$

519 **(c)**

If path difference $\Delta = (SS_1 + S_1O) - (SS_2 + S2O = n\lambda)$ n = 0, 1, 2, 3, ... the central fringe at O is a bright fringe and if the path difference $\Delta = \left(n - \frac{1}{2}\right)\lambda$, n = 1,2,3, ... the central bright fringe will be a dark fringe

520 **(a)**

If one of slits is closed then interference fringes are not formed on the screen but a fringe pattern is observed due to diffraction from slit

521 **(d)**

From $(\mu - 1)t = n\lambda$

522 **(b)**

As metal as reflecting surface, for reflecting surface radiation pressure

$$P_r = \frac{2S}{c} = \frac{2 \times 0.5}{3 \times 10^8} = 0.332 \times 10^{-8}$$

523 **(c)**

According to Doppler's principle $\lambda' = \lambda \sqrt{\frac{1-\nu/c}{1+\nu/c}}$ for

$$v = c$$

 $\lambda' = 5500 \sqrt{\frac{(1 - 0.8)}{1 + 0.8}} = 1833.3$
 \therefore Shift = 5500 - 1833.3 = -3666.7

524 **(b)**

$$n_1\lambda_1 = n_2\lambda_2$$

$$\therefore n_1 \times 420 = n_2 \times 630$$

Or
$$2n_1 = 3n_2$$

If $n_2 = 2$, then $n_1 = 3$

Therefore, thickness of soap solution is given by

Interfore, inclusion is bound on bound of given by

$$\mu_{1} t = n_{1} \frac{\lambda_{1}}{2}$$
Or $t = \frac{3 \times 420}{1.4 \times 2} = 450 \text{ nm}$
525 (a)
Condition for constructive interference is
 $2\mu t = [2n + 1] \frac{\lambda}{2}$
Where, $n = 0, 1, 2, 3, \dots$...
For minimum thickness, $n = 0$
 $2\mu t = \frac{\lambda}{2}$
 $\Rightarrow t = \frac{\lambda}{4\mu} = \frac{600 \times 10^{-9}}{4 \times 1.5} = 100 \text{ nm}$
526 (a)
Shift $= \frac{\beta}{4}(\mu - 1)t = \frac{\beta}{(5000 \times 10^{-10})} \times (1.5 - 1) \times 2 \times 10^{-6}$
 $= 2\beta i.e., 2$ fringes upwards
527 (c)
The general condition for Frounhofer diffraction
is $\frac{b^{2}}{L^{2}} \ll 1$.
529 (a)
Fringe visibility (V) is given by $V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$
530 (a)
As we know
 $\beta = \frac{D}{d} \lambda$
 $\lambda \propto \frac{1}{\mu}$
From Eqs. (i) and (ii),
 $\beta \propto \lambda \propto \frac{1}{\mu}$
 $\beta \propto \frac{1}{\mu}$
The refractive index of water is greater than air, therefore fringe width will decrease.
531 (c)
Distance between two successive maxima
 $\lambda = \frac{0.14}{14} \text{ m} = 10^{-2} \text{ m},$
 $v = \frac{c}{\lambda} = \frac{3 \times 10^{8}}{10^{-2}} = 3 \times 10^{10} \text{ H}$

532 (d) $\frac{I}{I_0} = \cos^2\left(\frac{\phi}{2}\right); \phi = \frac{2\pi}{\lambda} \Delta x$ 533 (d) In the presence of thin glass plate, the fringe pattern shifts, but no change in fringe width occurs

534 **(c)**

Amplitude of the superimposing waves are

$$\frac{a_1}{a_2} = \left(\frac{1}{9}\right)^{1/2} = \frac{1}{3}$$
$$\frac{I_{\text{minima}}}{I_{\text{maxima}}} = \frac{(a_1 - a_2)^2}{(a_1 + a_2)^2} = \frac{1}{4}$$

535 **(b)**

The data which represents the music is stored on the compact disc in the form of very small pits arranged in a tightly wound spiral track in silvery surface. The distance between two neighbouring track is 1.6 micrometre. Which is only several times the wavelength of visible light, this small spacing is responsible for the wonderful colours reflected by a CD which works as a diffraction grating. Hence, diffraction is responsible for coloured bands.

536 **(c)**

EM waves travels perpendicular to *E* and *B*. Which are also perpendicular to each other $\vec{v} = \vec{E} \times \vec{B}$

537 (a)

For obtaining mth secondary minima at a point on screen, path difference between the diffracted waves $\Delta = d \sin \theta_m = \pm m \lambda$

Where, *m* = 1, 2, 3,

538 **(a)**

Width of central maximum is given by

$$w = \frac{2f\lambda}{a} \qquad \dots (i)$$

Where *f* is focal length of lens, *a* is width of slit and λ is wavelength of light used.

From Eq. (i), it is clear that fringe width

 $w \propto \lambda$

So, when blue light is used in the experiment instead of red light, the fringes will become narrower.

539 **(b)**

Amplitude of electric field and magnetic field are related by the relation

$$\frac{E_0}{B_0} = c$$

Average energy density of the magnetic field is

$$v_{B} = \frac{1}{4} \frac{B_{0}}{\mu_{0}}$$

$$= \frac{1}{4} \frac{E_{0}^{2}}{\mu_{0}c^{2}} \quad \left[\because B_{0} = \frac{E_{0}}{c} \right]$$

$$= \frac{1}{4} \varepsilon_{0} E_{0}^{2} \quad \left[\because c = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}} \right]$$

$$= \frac{1}{4} \times 8.854 \times 10^{-12} \times (2)^{2}$$

$$= 8.854 \times 10^{-12} Jm^{-3}$$

540 **(b)**

Angular width
$$\beta = \frac{2\lambda}{d} \Rightarrow \beta \propto \lambda$$

 $\Rightarrow \frac{\beta_1}{\beta_2} = \frac{\lambda_1}{\lambda_2} \Rightarrow \frac{\beta}{\frac{70}{100}\beta} = \frac{6000}{\lambda_2} \Rightarrow 4200\text{\AA}$

542 **(c)**

The intensity *I* is minimum for phase difference, $\delta = (2n - 1)\pi$ Where n = 1, 2, 3, ..., ...

Where
$$n = 1, 2, 3, ...$$

543 **(a)**

Phenomenon of interference of light takes place 544 **(b)**

For possible interference maxima on the screen, the condition is

$$d\sin\theta = n\lambda \qquad \dots (i)$$

Given : $d = \text{slit-width} = 2\lambda$

$$\therefore \quad 2\lambda\sin\theta = n\lambda$$

$$\Rightarrow 2\sin\theta = n$$

The maximum value of $\sin \theta$ is 1, hence, $n = 2 \times 1 = 2$

Thus, Eq. (i) must be satisfied by 5 integer values ie, -2 -1, 0, 1, 2. Hence, the maximum number of possible interference maxima is 5.

545 **(b)**

$$I = I_0 \cos^2 \theta = I_0 \cos^2 45 = \frac{I_0}{2}$$

546 **(a)**

No light is emitted from the second polaroid, so P_1 and P_2 are perpendicular to each other

$$P_1 \xrightarrow{\begin{array}{c} P_3 \\ \theta \\ 90^{\circ} - \theta \end{array}} P_2$$

Let the initial intensity of light is I_0 . So Intensity of light after transmission from first polaroid $=\frac{I_0}{2}$ Intensity of light emitted from $P_3 I_1 = \frac{I_0}{2} \cos^2 \theta$ Intensity of light transmitted from last polaroid *i.e.* from

$$P_{2} = I_{1} \cos^{2}(90^{\circ} - \theta) = \frac{I_{0}}{2} \cos^{2} \theta \cdot \sin^{2} \theta$$
$$= \frac{I_{0}}{8} (2 \sin \theta \cos \theta)^{2} = \frac{I_{0}}{8} \sin^{2} 2\theta$$

547 (d)
$$I_{\text{max}} = 25$$

 $\frac{I_{\max}}{I_{\min}} = \frac{25}{9}$

Or
$$\left(\frac{a_1+a_2}{a_1-a_2}\right)^2 = \frac{25}{9}$$

Where *a* denotes the amplitude.

Or
$$\frac{a_1 + a_2}{a_1 - a_2} = \frac{5}{3}$$

Or $\frac{a_1}{a_2} = 4$

As, $(amplitude)^2 \propto intensity$

Hence,
$$\frac{I_1}{I_2} = \left(\frac{a_1}{a_2}\right)^2 = 16$$

548 **(c)**

$$I_{max} = I_1 + I_2 + 2\sqrt{I_1 I_2}$$

= 4I + I + 2\sqrt{2I_1 \times I}
= 9I
$$I_{min} = I_1 + I_2 - 2\sqrt{2I_1 I_2}$$

$$I_{min} = I$$

549 **(a)**

Velocity of light

$$C = \frac{E}{B} \Rightarrow B = \frac{E}{C} = \frac{9.3}{3 \times 10^8} = 3.1 \times 10^{-8}T$$
550 (d)

$$\beta = \frac{\lambda D}{d}$$

$$\overline{VIBGYOR\lambda} \text{ increases}$$

$$\lambda_R > \lambda_G > \lambda_B$$
So $\beta_R > \beta_G > \beta_B$

551 (c) The angular wave number $k = \frac{2\pi}{\lambda}$; where λ is the wave length. The angular frequency is $w = 2\pi v$ The ratio $\frac{k}{\omega} = \frac{2\pi/\lambda}{2\pi v} = \frac{1}{v\lambda} = \frac{1}{c} = \text{constant}$ 552 (c) Resultant intensity $I = 4I_0 \cos^2(\phi/2)$ $\Rightarrow \frac{I_1}{I_2} = \frac{\cos^2(\phi_1/2)}{\cos^2(\phi_2/2)} = \frac{\cos^2 0}{\cos^2(90/2)} = \frac{2}{1}$ 553 (d) For minima, path difference $\Delta = (2n - 1)\frac{\lambda}{2}$ For third minima $n = 3 \Rightarrow \Delta = (2 \times 3 - 1)\frac{\lambda}{2} = \frac{5\lambda}{2}$ 554 (a) $\beta_{\text{water}} = \frac{B_{air}}{\mu} = \frac{0.4}{4/3} = 0.3mm$ 555 (b) $d = \frac{D\lambda}{R} = \frac{1 \times 5 \times 10^{-7}}{5 \times 10^{-3}} = 10^{-4}m = 0.1 \, mm$ 556 (d) Case I : $l_1 = 20cm$, $\theta_1 = 38^\circ$ Connection = C_1 : Specific rotation, $\alpha_1 = \frac{\theta_1}{l_1 C_1} = \frac{(38^\circ)}{20 \times C_1}$ Liquid A Case II : $l_2 = 30 cm$, $\theta_2 = -24^\circ$, concentration $= C_2$ Specific rotation $\alpha_2 = \frac{(-24^\circ)}{30 \times C_2}$. Liquid *B* The mixture has 1 part A and 2 part B $\therefore C_1': C_2' = 1:2$ $\therefore \theta = [\alpha_1 C_1' + \alpha_2 C_2']l$ $= \left\{ \frac{38}{20 \times C_1} \times \frac{C_1}{3} + \frac{(-24^\circ)}{30 \times C_2} \times \frac{2C_2}{3} \right\} \times 30$ $19^{\circ} - 16^{\circ} = +3^{\circ}$ The new angle of rotation is +3 in the right hand direction 557 (d) $\mu_0 = 4\pi \times 10^{-7}, \varepsilon_0 = 8.85 \times 10^{-12} \frac{N - m^2}{C^2}$ So $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \frac{meter}{second}$ 560 **(b)** Molecular spectra due to vibrational motion lie in the microwave region of EM-spectrum. Due to Kirchhoff's law in spectroscopy the same will be absorbed 561 (a) Light is electromagnetic in nature it does not require any material medium for its propagation 562 (a) The intensity of light reflected from upper surface

$$I_1 = I_0 \times 25\%$$
$$= I_0 \times \frac{25}{100}$$
$$= \frac{I_0}{4}$$

is

The intensity of transmitted light from upper surface is

$$I = I_0 - \frac{I_0}{4} = \frac{3I_0}{4}$$

 \therefore The intensity of reflected light from upper surface is

$$I_{2} = \frac{3I_{0}}{4} \times \frac{50}{100} = \frac{3I_{0}}{8}$$
$$\therefore \frac{I_{max}}{I_{min}} = \frac{\left(\sqrt{I_{1}} + \sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}} - \sqrt{I_{2}}\right)^{2}}$$
$$\therefore \frac{I_{max}}{I_{min}} = \frac{\left(\sqrt{I_{0}} + \sqrt{\frac{3I_{0}}{8}}\right)^{2}}{\left(\sqrt{\frac{I_{0}}{4}} - \sqrt{\frac{3I_{0}}{8}}\right)^{2}}$$
$$= \frac{\left(\frac{1}{2} + \sqrt{\frac{3}{8}}\right)^{2}}{\left(\frac{1}{2} - \sqrt{\frac{3}{8}}\right)^{2}}$$

563 (d)

$$E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{21 \times 10^{-2}} = 0.94 \times 10^{-24}$$
$$= 10^{-24} J$$

564 **(b)**

Contract between the bright and dark fringes will be reduced

565 **(b)**

For maxima
$$2\pi n = \frac{2\pi}{\lambda}(XO) - 2\pi l$$

Or $\frac{2\pi}{\lambda}(XO) = 2\pi(n+l)$ or $(XO) = \lambda(n+l)$

566 **(c)**

Let the wavelength of monochromatic light in glass be λ_g cm and in water be λ_w cm.

∴ Number of waves in 8 cm of glass= $\frac{8}{\lambda_g}$, and number of waves in 10 cm of glass = $\frac{8}{\lambda_w}$.

$$\frac{8}{\lambda_g} = \frac{10}{\lambda_w} \text{ or } \frac{\lambda_w}{\lambda_g} = \frac{10}{8} = \frac{5}{4}$$
Now, $\mu_g = \frac{c}{v_g}$ and $\mu_w = \frac{c}{v_w}$
 $\therefore \quad \frac{\mu_g}{\mu_w} = \frac{v_w}{v_g} = \frac{v\lambda_w}{v\lambda_g} = \frac{5}{4}$
 $\mu_g = \frac{5}{4}\mu_w = \frac{5}{4} \times \frac{4}{3} = \frac{5}{3}$

567 **(a)** We know that fringe width $\beta = \frac{D\lambda}{d}$ $\therefore x = \frac{L\lambda}{d} \Rightarrow \lambda = \frac{xd}{L}$

We know,
$$\lambda_m = \frac{a}{\mu}$$
 and $\mu = \tan \theta$

$$\therefore \quad \lambda_m = \frac{\lambda_a}{\tan \theta} = \lambda_a \cot \theta$$

569 (a)

If magnitude of light vector varies periodically during it's rotation, the tip of vector traces an ellipse and light is said to be elliptically polarized. This does not happen prism

570 **(d)**

Angular position of first dark fringe

$$\theta = \frac{\lambda}{d} = \frac{5460 \times 10^{-10}}{0.1 \times 10^{-3}} \times \frac{180}{\pi} \text{ (in degree)}$$

$$= 0.313^{\circ}$$

571 **(b)**

By using phase difference $\phi = \frac{2\pi}{\lambda} (\Delta)$ For path difference λ , phase difference $\phi_1 = 2\pi$ and for path difference $\lambda/4$, phase difference $\phi_2 = \pi/2$

Also by using $I = 4I_0 \cos^2 \frac{\phi}{2} \Rightarrow \frac{I_1}{I_2} = \frac{\cos^2(\phi_1/2)}{\cos^2(\phi_2/2)}$ $\Rightarrow \frac{K}{I_2} = \frac{\cos^2(2\pi/2)}{\cos^2\left(\frac{\pi/2}{2}\right)} = \frac{1}{1/2} \Rightarrow I_2 = \frac{K}{2}$

572 **(b)**

$$I_{A} = R_{1}^{2}$$

$$I_{B} = (R_{1} - R_{2})^{2} = R_{1}^{2} \left(1 - \frac{R_{2}}{R_{1}}\right)^{2} = R_{1}^{2} \left(1 - \frac{3}{4}\right)^{2}$$

$$= \frac{R_{1}^{2}}{16}$$

$$I_{C} = (R_{1} - R_{2} + R_{3})^{2} = R_{1}^{2} \left(1 - \frac{R_{2}}{R_{1}} + \frac{R_{3}}{R_{1}}\right)^{2}$$

$$= R_{1}^{2} \left(1 - \frac{R_{2}}{R_{1}} + \frac{R_{3}}{R_{2}} \times \frac{R_{2}}{R_{1}}\right)^{2}$$

$$= R_{1}^{2} \left(1 - \frac{3}{4} + \frac{3}{4} \times \frac{3}{4}\right)^{2} = \left(\frac{13}{16}\right)^{2} R_{1}^{2} = \frac{169}{256} R_{1}^{2}$$

$$\therefore I_{A}: I_{B}: I_{C} = R_{1}^{2}: \frac{R_{1}^{2}}{16}: \frac{169}{256} R_{1}^{2} = 256: 16: 169$$
573 **(c)**

In double refraction light rays always splits into two rays (0-ray & E-ray). 0-ray has same velocity in all direction but *E*-ray has different velocity in different direction

For calcite $\mu_e < \mu_0 \Rightarrow v_e > v_0$ For quartz $\mu_e > \mu_0 \Rightarrow v_0 > v_e$

574 (c)

Path difference $=\frac{\lambda}{2\pi}$ × phase difference $=\frac{\lambda}{2\pi} \times 100\pi = 50\lambda$

576 **(b)**

The amplitudes of the waves are

 $a_1 = 10 \ \mu m$, $a_2 = 4 \ \mu m$ and $a_3 = 7 \ \mu m$ and the phase difference between $1^{\mbox{\tiny st}}$ and $2^{\mbox{\tiny nd}}$ wave is $\frac{\pi}{2}$ and that between 2nd and 3rd is $\frac{\pi}{2}$. Therefore, phase difference between 1^{st} and 3^{rd} is π . Combining 1st with 3rd, their resultant amplitude is given by

$$A_1^2 = a_1^2 + a_3^2 + 2a_1a_3\cos\phi$$

Or $A_1 = \sqrt{10^2 + 7^2 + 2 \times 10 \times 7\cos\pi} = \sqrt{100 + 49 - 140}$

 $=\sqrt{9}=3\mu m$ in the direction of first Now combining this with 2nd wave we have, the resultant amplitude

$$A^{2} = A_{1}^{2} + a_{2}^{2} + 2A_{1}a_{2}\cos\frac{\pi}{2}$$

Or $A = \sqrt{3^{2} + 4^{2} + 2 \times 3 \times 4\cos 90^{\circ}} = \sqrt{9 + 16} = 5\mu m$

577 **(b)**

The intensity of plane polarised light is $=2a^2$.

: Intensity of polarised light from first nicol prism

$$=\frac{I_0}{2}=\frac{1}{2}\times 2a^2=a^2$$

578 (a)

$$I_R = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$

 $I_0 = I + I + I + 2I \cos 0^\circ = 4I$

When one of the slits is closed, intensity on the same spot

$$= I = I_0/4$$

579 (d)

In the diffraction due to narrow slit, the first minimum on either side on the central maximum in the direction θ is given by

 $e\sin\theta = \pm \lambda$

When slit is narrowed that is *e* is reduced, the angle θ increases which means that the central maximum becomes wider.

581 (c)

Speed of light of vacuum $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ and in another

medium
$$v = \frac{1}{\sqrt{\mu\varepsilon}}$$

$$\therefore \frac{c}{v} = \sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}} = \sqrt{\mu_r K} \Rightarrow v = \frac{c}{\sqrt{\mu_r K}}$$

582 (c)

For a slit of width *a*, light of wavelength λ , when light falls on the slit, the diffraction patterns so obtained as

Central diffraction maximum

The first diffraction minimum occurs at the angles given by

$$\sin \theta = \frac{\lambda}{a}$$

From the equation, it is clear that width of the central diffraction maximum is inversely proportional to the width of the slit. On increasing the width size *a*, the angle θ at which the intensity first becomes zero decreases, resulting in a narrower central band and if the slit width is made smaller, the angle θ increases, giving a wider central band.

583 (a)

A wave can transmit energy from one place to another

585 (b)

$$I_{D} = \varepsilon_{0} \frac{d\phi_{E}}{dt} = \varepsilon_{0} \frac{EA}{t} = \varepsilon_{0} \left(\frac{V}{d}\right) \cdot \frac{A}{t}$$
$$= \frac{8.85 \times 10^{-12} \times 400 \times 60 \times 10^{-4}}{2 \times 10^{-3} \times 10^{-6}}$$
$$= 1.602 \times 10^{-2} amp$$

586 **(b)**

Shift in the fringe pattern
$$x = \frac{(\mu - 1)t.D}{d}$$

= $\frac{(1.5 - 1) \times 2.5 \times 10^{-5} \times 100 \times 10^{-2}}{0.5 \times 10^{-3}} = 2.5 \ cm$

587 (b)

EM waves transport energy, momentum and information but not charge. EM waves are unchanged

589 (b)

$$\theta = a + \frac{b}{\lambda^2}$$

30 = $a + \frac{b}{(5000)^2}$ and 50 = $a + \frac{b}{(4000)^2}$
Solving for *a*, we get $a = -\frac{50^\circ}{9} per mm$

590 **(b)**

For dark fringe at *P* $S_1P - S_2P = \Delta = (2n - 1)\lambda/2$ Here n = 3 and $\lambda = 6000$ Å So, $\Delta = \frac{5\lambda}{2} = 5 \times \frac{6000\text{\AA}}{2} = 15000\text{\AA} = 1.5$ micron 592 (a) $\Delta \lambda \quad v \quad (401.8 - 393.3)$ v

$$\frac{1}{\lambda} = \frac{1}{c} \Rightarrow \frac{1}{393.3} = \frac{1}{3 \times 10^8}$$
$$\Rightarrow v = 6.48 \times 10^6 m/s = 6480 km/s$$

593 **(b)**

From
$$\Delta S_1 S_2 D$$
,
 $(S_1 D)^2 = (S_1 S_2)^2 + (S_2 D)^2$
 $(S_1 P + PD)^2 = (S_1 S_2)^2 + (S_2 D)^2$
 \downarrow^{y}
 \downarrow^{z}
 \downarrow^{z}

Here $S_1 P$ is the path difference = $n\lambda$ for maximum intensity

$$\therefore (n\lambda + x_n)^2 = (4\lambda)^2 + (x_n)^2$$

Or
$$x_n = \frac{16\lambda^2 - n^2\lambda^2}{2n\lambda}$$

Then $x_1 = \frac{16\lambda^2 - \lambda^2}{2\lambda} = 7.5\lambda$
 $x_2 = \frac{16\lambda^2 - 4\lambda^2}{4\lambda} = 3\lambda$
 $x_3 = \frac{16\lambda^2 - 9\lambda^2}{6\lambda} = \frac{7}{6}\lambda$
 $x_4 = 0$
 \therefore Number of points for maxima becomes 3
594 (a)
Specific rotation
 $(\alpha) = \frac{\theta}{lc} \Rightarrow c = \frac{\theta}{\alpha l} = \frac{0.4}{0.01 \times 0.25} = 160 kg/m^3$
Now percentage purity of sugar solution
 $= \frac{160}{200} \times 100 = 80\%$
596 (d)
 $\frac{\Delta\lambda}{\lambda} = \frac{v}{c} \Rightarrow v = \frac{\Delta\lambda}{\lambda} \cdot c = \frac{5}{6563} \times (3 \times 10^8)$
 $= 2.29 \times 10^5 m/sec$
597 (b)

597

For reflection at the air-soap solution interface, the phase difference is π

For reflection at the interface of soap solution to glass also there will be a phase difference of π : The condition for max. intensity = $2\mu t = n\lambda$ For $n_1 n \lambda_1 = (n-1)\lambda_2$

$$n 420nm = (n - 1)630 nm$$

$$n(630 - 420) = 630, \therefore n(210) = 630 nm$$

$$\therefore n = \frac{630}{210} = 3$$

This is the maximum order where they coincide

$$2 \times 1.4 \times t = 3 \times 420 \Rightarrow t = \frac{3 \times 420}{2 \times 1.40} = 450 \text{ nm}$$

598 (a)

The electromagnetic theory of light failed to explain photoelectric effect

599 (c)

 β -rays are beams of fast electrons

600 **(a)**

According to Brewster's law, when a beam of ordinary light (i. e., unpolarised) is reflected from a transparent medium (like glass), the reflected light is completely plane polarized at certain angle of incidence called the angle of polarization

601 (b)

Energy is conserved in the interference of light

602 (b) Angular width $\theta = \frac{\beta}{D}$ $=\frac{\lambda}{d}=\frac{4800\times10^{-10}}{0.6\times10^{-3}}=8\times10^{-4}$ rad 603 (d) Given single slit of width d = 0.1 mm $d = 0.1 \times 10^{-3} \text{ m}$ Or $d = 1 \times 10^{-4}$ m Light of wavelength a = 600 Å Or $\alpha = 6 \times 10^{-7} \text{ m}$ The angle of diffraction $\theta = \frac{n\lambda}{d}$ $\theta = \frac{2 \times 6 \times 10^{-7}}{1 \times 10^{-4}}$ $\theta = 12 \times 10^{-3}$ $\theta = 0.012$ rad 605 (c) Here $A^2 = a_1^2 + a_2^2 + 2a_1a_2\cos\delta$ $\therefore a_1 = a_2 = a$ $\therefore A^{2} = 2a^{2}(1 + \cos \delta) = 2a^{2}\left(1 + 2\cos^{2}\frac{\delta}{2} - 1\right)$ $\Rightarrow A^2 \propto \cos^2 \frac{\delta}{2}$ Now, $I \propto A^2 \therefore I \propto A^2 \propto \cos^2 \frac{\delta}{2}$ $\therefore I \propto \cos^2 \frac{0}{2}$ 606 (d) Let $A_1 = A_0$, Then $A_2 = 2A_0$ Intensity $I \propto A^2$ Hence $I_1 = I_0, I_2 = 4I_0$ We have $I = I_0 + 4I_0 + 2\sqrt{I_0 \times 4I_0} \cos \phi$ For I_{max} , $\cos \phi = 1$ Hence $I_m = 9I_0$ or $I_0 = \frac{I_m}{2}$ When phase difference is ϕ then $I = I_0 + 4I_0 + 2\sqrt{4I_0^2 \cos\phi}$ $= I_0 + 4I_0(1 + \cos \phi)$ $= I_0 \left(1 + 8\cos^2\frac{\phi}{2} \right) \left[\because 1 + \cos\phi = 2\cos^2\frac{\phi}{2} \right]$

607 (a)

 $=\frac{I_m}{Q}(1+8\cos^2\phi/2)$

When two plane-polarised waves are superimposed, then under certain conditions, the resultant light vector rotates with a constant magnitude in a plane perpendicular to the direction of propagation. The tip of the vector traces a circle and the light is said to be circularly polarized. To form circularly polarized light $E_x = E_0 \sin \omega t$ $E_y = E_0 \cos \omega t = E_0 \sin \left(\omega t + \frac{\pi}{2} \right)$ Where, E_0 is amplitude. Resultant amplitude

$$|\mathbf{E}|^2 = E_0^2 + E_0^2 + 2E_0 \cdot E_0 \cos{\frac{\pi}{2}}$$

 $|\mathbf{E}| = E_0 \sqrt{2} = \text{constant}$

Hence, the correct graph will be option (a).

$$\beta = \frac{\lambda D}{d} = \frac{\lambda}{d/D} = \frac{\lambda}{\theta}$$

609 (c)

6

Photoelectric effect does not support the wave theory of light.

610 **(c)**

For the first minima $d \sin \theta = \lambda$

$$\Rightarrow \sin \theta = \frac{\lambda}{d} \Rightarrow \theta = \sin^{-1} \left(\frac{5000 \times 10^{-10}}{0.001 \times 10^{-3}} \right) = 30^{\circ}$$

611 **(c)**

In Huygen's wave theory, the locus of all points in the same state of vibration is called a wavefront.

613 **(a)**

$$\beta = \frac{\lambda D}{d}$$
 where D = distance of screen from wire,
 d = diameter of wire

Shift due to one plate $\Delta x_1 = \frac{\beta}{\lambda} (\mu_1 - 1)t$ Shift due to another path $\Delta x_2 = \frac{\beta}{\lambda} (\mu_2 - 1)t$ Net shift $\Delta x = \Delta x_2 - \Delta x_1 = \frac{\beta}{\lambda} (\mu_2 - \mu_1)t$... (i) Also it is given that $\Delta x = 5\beta$ (ii) Hence $5\beta = \frac{\beta}{\lambda} (\mu_1 - \mu_2)t$

$$\Rightarrow t = \frac{5\lambda}{(\mu_2 - \mu_1)} = \frac{5 \times 4800 \times 10^{-10}}{(1.7 - 1.4)}$$
$$= 8 \times 10^{-6} m = 8\mu m$$

615 **(b)**

$$\lambda = \frac{c}{v} = \frac{3 \times 10^8}{100} = 3 \times 10^6 m$$

616 **(c)**

If I_0 is intensity of unpolarized light,

Then from 1st nicol, $I_1 = \frac{I_0}{2}$

From 2nd nicol, $I_2 = I_1 \cos^2(90^\circ - 60^\circ)$

$$= \frac{I_0}{2} \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{8}I_0$$
$$= \frac{I_2}{I_0} = 37.5\%$$

617 **(d)**

$$\Delta \lambda = \frac{v}{c} \lambda = \frac{3600 \times 10^3}{3 \times 10^8} \times 5896 = 70.75 \text{\AA}$$

So the increased wavelength of light is observed

618 **(b)**

When a Young's double slit set up for interference is shifted from air to within water then the fringe width decreases.

619 **(b)**

 $\beta \propto \lambda$, and $\lambda \propto \frac{1}{\mu}$ [β decreases]

620 **(c)**

Two beams having the same wavelength, monochromatic or white radiation, having the same initial phase (coherent sources), can give interference pattern by superposition. But when their vibrations are perpendicular to each other, interference will not be possible

621 **(d)**

A grating which would be most suitable for construction a spectrometer for the visible and ultraviolet region should have 1000000 lines $\rm cm^{-1}$.

622 **(b)**

Given,
$$d = 0.28 \text{ mm} = 0.28 \times 10^{-3} \text{ m}$$
,
 $D = 1.4 \text{ m}$,
 $\beta = 0.9 \text{ cm} = 0.9 \times 10^{-2} \text{ m}$
 $\beta = 3 \frac{D\lambda}{d}$
Or $\lambda = \frac{\beta d}{3D}$
Or $\lambda = \frac{0.9 \times 10^{-2} \times 0.28 \times 10^{-3}}{3 \times 1.4}$

Or $\lambda = 6 \times 10^{-7} \text{ m} = 6000 \text{ Å}$ 623 (a)

> If the surface absorbs all the incident energy then the total momentum delivered to the surface is $p = \frac{U}{c}$ (for complete absorption)

If the surface is a perfect reflector, then the total momentum delivered to the surface is

 $P = \frac{2U}{c}$ (for complete reflection)

624 **(c)**

Light appears to travel along straight lines because its wavelength is very small.

625 **(b)**

 $\lambda_{\rm Blue} < \lambda_{\rm Red}$. Therefore fringe pattern will contract because fringe width $\propto \lambda$

626 **(a)**

 $a \sin \theta = n\lambda$

$$\frac{ax}{f} = 3\lambda \text{ or } \lambda = \frac{ax}{3f} = \frac{0.3 \times 10^{-3} \times 5 \times 10^{-3}}{3 \times 1}$$

$$= 5 \times 10^7 \text{ m} = 5000 \text{ Å}$$

627 **(c)**

When the arrangement is dipped in water,

$$\beta' = \frac{\beta}{\mu} = \frac{x}{4/3} = \frac{3}{4}x = 0.75x$$

628 **(d)**

The refractive index of air is slightly more than 1. When chamber is evacuated, refractive index decreases and hence the wavelength increases and fringe width also increases

630 **(d)**

Here, $\frac{l_1}{l_2} = \frac{16}{9}$ Since, intensity \propto (amplitude)²

$$\therefore \frac{I_1}{I_2} = \left(\frac{A_1}{A_2}\right)^2 = \frac{16}{9}$$

$$\text{Or} \frac{A_1}{A_2} = \sqrt{\frac{16}{9}} = \frac{4}{3}$$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \frac{\left(\frac{A_1}{A_2} + 1\right)^2}{\left(\frac{A_1}{A_2} - 1\right)^2}$$

$$= \frac{\left(\frac{4}{3} + 1\right)^2}{\left(\frac{4}{3} - 1\right)^2} = \frac{49}{1}$$

631 **(c)** Path difference at point $P = \frac{xd}{p}$ Phase difference at point $P = \frac{2\pi xd}{\lambda D} = \frac{2\pi x}{\beta}$ $I_0 = 4I_1$, intensity at point P $I = I_1 + I_1 + 2I_1 \cos \frac{2\pi x}{\beta} = 2I_1 \left[1 + \cos \frac{2\pi x}{\beta} \right]$ $= I_0 \cos^2 \frac{\pi x}{\beta}$

632 **(a)**

 $I = I_0 \cos^2 \theta$

Intensity of polarized light = $\frac{I_0}{2}$

: Intensity of untransmitted light = $I_0 - \frac{I_0}{2} = \frac{I_0}{2}$

633 **(b)**

Optical path for 1st ray= n_1L_1

Optical path for 2nd ray= n_2L_2

$$\therefore$$
 Phase difference, $\phi = \frac{2\pi}{\lambda} \Delta x$

$$=\frac{2\pi}{\lambda}(n_1L_1-n_2L_2)$$

634 (a)

Let initial intensity of light is I_0 . So intensity of light after transmission from first Polaroid = $\frac{I_0}{2}$.

Intensity of light emitted from P_3

$$I_1 = \frac{I_0}{2} \cos^2 \theta$$

Intensity of light transmitted from last Polaroid

$$P_{2} = I_{1} \cos^{2}(90^{\circ} - \theta)$$

$$P_{2} = \frac{I_{0}}{2} \cos^{2} \theta \sin^{2} \theta$$

$$P_{2} = \frac{I_{0}}{8} (2 \sin \theta \cos \theta)^{2}$$

$$P_{2} = \frac{I_{0}}{8} \sin^{2} 2 \theta$$

635 (a) As $\beta = \frac{D\lambda}{d} \Rightarrow \frac{\beta_1}{\beta_2} = {\binom{D_1}{D_2}} {\binom{\lambda_1}{\lambda_2}} {\binom{d_2}{d_1}}$

 $\Rightarrow 1 = \left(\frac{D_1}{D_2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \Rightarrow \frac{D_1}{D_2} = \frac{4}{1}$ 636 (c) When the source and observer approach each other, apparent frequency increases and hence wavelength decreases 637 (a) Here $E_0 = 100 V/m$, $B_0 = 0.265 A/m$: Maximum rate of energy flow $S = \frac{E_0 \times B_0}{\mu_0}$ $= 100 \times 0.265 = 26.5 W/m^2$ 638 (b) $\beta = \frac{\lambda D}{d} = \frac{6000 \times 10^{-10} \times 2}{4 \times 10^{-3}} = 3 \times 10^{-4} m$ 639 (c) $3\lambda_1 = 4\lambda_2$ $\Rightarrow \lambda_2 = \frac{3}{4}\lambda_1 = \frac{3}{4} \times 590 = \frac{1770}{4} = 442.5 \text{ nm}$ 640 (d) The phase difference (ϕ) between the wavelets from the top edge and the bottom edge of the slit is $\phi = \frac{2\pi}{\lambda} (d \sin \theta)$ where *d* is the slit width. The first minima of the diffraction pattern occurs at $\sin \theta = \frac{\lambda}{d} \operatorname{so} \phi = \frac{2\pi}{\lambda} \left(d \times \frac{\lambda}{d} \right) = 2\pi$ 641 **(b)** For maxima $\Delta = d \sin \theta = n\lambda$ $\Rightarrow 2\lambda \sin \theta = n\lambda \Rightarrow \sin \theta = \frac{n}{2}$ Since value of $\sin \theta$ can not be greater 1 :: n = 0, 1, 2Therefore only five maximas can be obtained on both side of the screen 643 (b) For principal maxima in grating spectra $\frac{\sin\theta}{N} = n\lambda$ Where, n = (1, 2, 3) is the order of principal maxima and θ is the angle of diffraction. $n = \frac{1}{\lambda N} = \frac{1}{6.25 \times 10^{-7} \times 2 \times 10^5} = 8$ \therefore Number of maxima = $2n + 1 = 2 \times 8 + 1 = 17$ 644 (c) Monochromatic wave means of single wavelength not the single colour 645 (c) The locus of all particles in a medium vibrating in the same phase is called wave front

646 **(b)**
$$\frac{\Delta\lambda}{\lambda} = \frac{\nu}{c} = \frac{6 \times 10^7}{3 \times 10^8} = 0.2$$

$$\begin{split} \Delta\lambda &= \lambda' - \lambda = 0.2\lambda \Rightarrow \lambda' = 1.2\lambda = 1.2 \times 4600 \\ &= 5520 \text{\AA} \end{split}$$

647 **(b)**

All components of electromagnetic spectrum travel in vacuum with velocity $3 \times 10^8 m/s$

649 **(b)**

Visibility
$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{2\sqrt{I_1 I_2}}{(I_1 + I_2)}$$

= $\frac{2\sqrt{I_1/I_2}}{\left(\frac{I_1}{I_2} + 1\right)} = \frac{2\sqrt{P}}{(P+1)}$

650 **(a)**

When the plane-polarised light passes through certain substance, the plane of polarization of the light is rotated about the direction of propagation of light through a certain angle

651 **(b)**

As $\beta = \frac{\lambda D}{d}$

 $\therefore \ \beta \propto 1/d$

652 **(c)**

According to the Maxwell's EM theory, the EM waves propagation contains electric and magnetic field vibration in mutually perpendicular direction. Thus the changing of electric field give rise to magnetic field

653 **(d)**

For dark fringe,

$$\frac{xd}{D} = (2m-1)\frac{\lambda}{2}$$

$$S_{1} + P_{\overline{x}} = \frac{d}{2}$$

$$S_{2} - D - P_{\overline{x}} = \frac{d}{2}$$

Here,
$$m = 5, x = \frac{d}{2}$$

$$\therefore \frac{d}{2} \cdot \frac{d}{D} = (2 \times 5 - 1) \frac{\lambda}{2}$$

Or $\frac{d^2}{D} = 9\lambda$

$$\therefore \quad \lambda = \frac{d^2}{9D}$$

654 **(a)**

The condition for bright fringes is, Path difference, $\delta = d \sin \theta_{\text{bright}} = N\lambda$ Where, $N = 0, \pm 1, \pm 2$ The angular position of the bright fringes is $\theta_{\text{bright}} = \sin^{-1} \left(\frac{N\lambda}{a}\right)$

655 **(c)**

For destructive interference, path difference = $\frac{\lambda}{2}$.

Therefore, phase difference $=\frac{2\pi}{\lambda} \cdot \frac{\lambda}{2} = \pi$ radian=180°.

656 **(c)**

For 2π phase difference \rightarrow Path difference is λ \therefore For ϕ phase difference \rightarrow Path difference is $\frac{\lambda}{2\pi} \times \phi$

658 **(a)**

For secondary maxima $d \sin \theta = \frac{5\lambda}{2}$

$$\Rightarrow d\theta = d \cdot \frac{x}{D(\approx f)} = \frac{5\lambda}{2}$$
$$\Rightarrow 2x = \frac{5\lambda f}{d} = \frac{5 \times 0.8 \times 6 \times 10^{-7}}{4 \times 10^{-4}} = 6 \times 10^{-3} m$$
$$= 6mm$$

659 **(c)**

Suppose slit width's are equal, so they produces waves of equal intensity say I'. Resultant intensity at any point $I_R = 4I' \cos^2 \phi$ where ϕ is the phase difference between the waves at the point of observation For maximum intensity $\phi = 0^\circ \Rightarrow I_{max} = 4I' = I$...(i)

If one of slit is closed. Resultant intensity at the same point will be I' only, *i.e.*, $I' = I_0$...(ii) Comparing equations (i) and (ii) we get $I = 4I_0$

660 **(c)**

β∝λ

661 **(c)**

$$\beta = \frac{\lambda D}{d} = \frac{500 \times 10^{-10} \times 1}{0.1 \times 10^{-3}} m = 5 \times 10^{-3} m$$
$$= 0.5 \ cm$$

662 **(b)**

With reference to this theory the velocity of the observer is neglected w.r.t. the light velocity

663 (c)

$$\beta = \frac{\lambda D}{d} = \frac{5 \times 10^{-7} \times 2}{10^{-3}} m = 10^{-3} m = 1.0 mm$$
664 (c)

$$y_1 = 4 \sin \omega t$$

$$y_2 = 3 \sin(\omega t + \pi/3)$$
Here, $a = 4, b = 3, \phi = \pi/3$

$$R = \sqrt{a^2 + b^2 + 2ab \cos \phi}$$

$$= \sqrt{4^2 + 3^2 + 2 \times 4 \times 3 \cos \pi/3}$$

$$= \sqrt{37} = 6$$

665 **(d)**

If a third slit is made between the double slits, then contrast between bright and dark fringes is reduced.

668 **(b)**

Velocity of EM waves $=\frac{1}{\sqrt{\mu_0\varepsilon_0}}=3 imes 10^8 m/s=$ velocity of light

669 **(a)**

Position of nth minima $x_n = \frac{n\lambda D}{d}$ $\Rightarrow 5 \times 10^{-3} = \frac{1 \times 5000 \times 10^{-10} \times 1}{d}$ $\Rightarrow d = 10^{-4}m = 0.1 mm$

670 (c)

For viewing interference in oil films or soap bubble, thickness of film is of the order of wavelength of light

671 (d)

Intensity $\propto \frac{1}{(\text{Distance})^2}$

672 (a)

Distance between the fringe=fringe width

$$x = \beta = \frac{\lambda D}{d} = \frac{6 \times 10^{-7} \times 2}{0.05 \times 10^{-2}}$$
$$= 24 \times 10^{-4} \text{ m} = 0.24 \text{ cm}$$

673 **(b)**

Diffraction refers to various phenomenon associated with wave propagation, such as bending spreading and interference of waves emerging from aperture. While diffraction always occurs its effects are generally only noticeable for waves where the wavelength is of the order of the feature size of the diffraction objects or apertures. When a mica sheet is introduced in the path of one of the two interfering beams, then entire fringe pattern is displaced towards the beam is the path of which plate is introduce, but fringe width is not changed.

$$x_0 = \frac{D}{d}(\mu - 1)t \qquad \dots (i)$$

Also fringe width is

$$W = \frac{D\lambda}{d}$$

$$\therefore \frac{W}{\lambda} = \frac{D}{d} \qquad \dots (ii)$$

Using Eq. (ii) we get Eq. (i) as

$$x_0 = \frac{W}{\lambda}(\mu - 1)t$$

Given, $x_0 = 1.89 \times 10^{-3}$ m, $W = 0.431 \times 10^{-3}$ m,

$$\mu = 1.59, \quad \lambda = 5.89 \times 10^{-7} \text{m}.$$

$$1.89 \times 10^{-3} = \frac{0.431 \times 10^{-3}}{5.89 \times 10^{-7}} (1.59 - 1)t$$

$$\Rightarrow \qquad t = \frac{5.89 \times 10^{-7} \times 1.89 \times 10^{-3}}{0.431 \times 0.59 \times 10^{-3}}$$

$$\Rightarrow \qquad t = 4.38 \times 10^{-6} \text{m}$$

675 (d)

=

$$E_0 = 66Vm^{-1}$$

$$B_0 = \frac{E_0}{C} = \frac{66}{3 \times 10^8} = 2.2 \times 10^{-7}T$$

Since electromagnetic wave is of transverse nature. Hence if electric field is along *y*-axis, then magnetic field must be in *z*-axis. Since propagation is *x*-axis. Hence correct option is (d)
676 (c)

Let *S* be a slit illuminated by monochromatic light of wavelength(λ), let *S*₁, *S*₂ be coherent sources and distance between them be *d* and distance between source and screen is *D*. then, fringe width (*W*) is given by

$$W = \frac{D\lambda}{d}$$

When, $d_2 = \frac{d}{2}$, $D_2 = 2D$

$$\therefore W_2 = \frac{(2D)\lambda}{d/2} = 4\frac{D\lambda}{d} = 4W$$

The fringe width is quadrupled.

677 (a)

$$\beta = \frac{\lambda D}{d}$$

$$\Rightarrow \beta \propto D$$

$$\Rightarrow \frac{\beta_1}{\beta_2} = \frac{D_1}{D_2}$$

$$\Rightarrow \frac{\beta_1 - \beta_2}{\beta_2} = \frac{D_1 - D_2}{D_2}$$

$$\Rightarrow \frac{\Delta \beta}{\Delta D} = \frac{\beta_2}{D_2} = \frac{\lambda_2}{d_2}$$

$$\Rightarrow \lambda_2 = \frac{3 \times 10^{-5}}{5 \times 10^{-2}} \times 10^{-3}$$

$$= 6 \times 10^{-7} \text{m} = 6000 \text{\AA}$$
678 (b)

678 **(b)** $A = n\pi d\lambda \Rightarrow nd = \frac{A}{\pi\lambda} = \text{constant}$ $\Rightarrow n \propto \frac{1}{d} (n = \text{number of blocked } HPZ) \text{ on}$ decreasing d, n increases, hence intensity decreases 680 **(d)** $\mu m = \tan \theta_p \Rightarrow \theta_p = \tan^{-1} n$

681 **(b)**
$$I = \frac{P}{4\pi r^2} \propto A^2 \Rightarrow A \propto \frac{1}{r}$$

682 (a)

$$I = 4I_0 \cos^2 \frac{\phi}{2}$$

At central position $I_1 = 4I_0$...(i) Since the phase difference between two successive fringes is 2π , the phase difference between two points separated by a distance equal to one quarter of the distance between the two, successive fringes is equal to

$$\delta = (2\pi) \left(\frac{1}{4}\right) = \frac{\pi}{2} \text{ radian}$$

$$\Rightarrow I_2 = 4I_0 \cos^2\left(\frac{\pi}{2}\right) = 2I_0 \quad \dots \text{(ii)}$$

Using (i) and (ii), $\frac{I_1}{I_2} = \frac{4I_0}{2I_0} = 2$

Distance between the slits,

$$d = \sqrt{d_1 d_2} = \sqrt{4.05 \times 10^{-3} \times 2.90 \times 10^{-3}}$$

$$= 3.427 \times 10^{-3} \text{m}$$

684 **(b)**

For first diffraction minimum

 $a\sin\theta = \lambda$

$$\Rightarrow a = \frac{\lambda}{\sin \theta}$$

For first secondary maximum

$$a \sin \theta' = \frac{3\lambda}{2}$$

Or $\sin \theta' = \frac{3\lambda}{2} \times \frac{1}{a} = \frac{36\lambda}{2} \times \frac{\sin \theta}{\lambda}$
$$= \frac{3}{2} \times \sin 30^{\circ} = \frac{3}{4}$$

Or $\theta' = \sin^{-1}\left(\frac{3}{4}\right)$

685 **(a)**

 $\theta = \frac{\lambda}{a}$; θ can be increased by increasing λ , so here λ has to be increased by 10% *i. e.*, % Increase = $\frac{10}{100} \times 5890 = 589\text{\AA}$

686 **(b)**

Wave theory of light was first proposed by Christiar. Huygens.

687 **(b)** Ultrasonic waves cannot be polarized.

From
$$x = n\lambda \frac{D}{d}$$

 $d_1 = 7\lambda_1 \frac{D}{d}$
 $d_2 = 7\lambda_2 \frac{D}{d}$
 $\therefore \frac{d_1}{d_2} = \frac{\lambda_1}{\lambda_2}$

692 **(c)**

As velocity (or momentum) of electron is increased, the wavelength $\left(\lambda = \frac{h}{p}\right)$ will decrease. Hence, fringe width will decrease ($\omega \propto \lambda$)

694 (a)

To see the diffraction pattern, wavelength of radiation must be of the order of the dimensions of the slit. But here slit width 0.6 mm is very much large in comparison to wavelength of X-ray $(\lambda = 1 \text{ Å or } 10^{-7} \text{ mm})$. Therefore no diffraction pattern is observed.

695 **(c)**

Slit width ratio = 4:9; hence $I_1: I_2 = 4:9$ $\therefore \frac{a_1^2}{a_2^2} = \frac{4}{9} \Rightarrow \frac{a_1}{a_2} = \frac{2}{3}$ $\therefore \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{25}{1}$

697 **(c**)

It is caused due to turning of light around corners 698 **(b)**

Path difference at $P\Delta = (S_1P + (\mu - 1)t) - S_2P$ = $(S_1P - S_2P) + (\mu - 1)t$

699 **(a)**

In the normal adjustment of Young's double slit experiment, path difference between the waves at central location is always zero, so maxima is obtained at central position

700 (a)

At a point of maxima

$$\therefore I_{\rm max} = 4I_0 = 4 \,\rm Wm^{-2}$$

$$: I_0 = 1 \, \mathrm{Wm}^{-2}$$

701 (a)

As we know $\beta = \frac{D}{d}\lambda$ (i)

And $\lambda \propto \frac{1}{\mu}$ (ii)

From Eqs. (i) and (ii),

$$\beta \propto \lambda \propto \frac{1}{\mu}$$
$$\therefore \beta \propto \frac{1}{\mu}$$

The refractive index of water is greater than air, therefore fringe width will decrease.

702 **(d)**

$$I = a_1^2 + a_2^2 + 2a_1a_2\cos\phi$$

Put $a_1^2 + a_2^2 = A$ and $a_1a_2 = B$; $\therefore I = A + B\cos\phi$
703 **(b)**

In interference energy is redistribution

704 **(c)**

Newton considered light as made up of particle called corpuscles. The corpuscles of light were assumed to be almost point like particles without any mass. They travel with a tremendously high speed, so they experience a negligible force of gravity. As a result, the corpuscles travel in a straight line.

705 **(c)**

In interference of light the energy is transferred from the region of destructive interference to the region of constructive interference. The average energy being always equal to the sum of the energies of the interfering waves. Thus the phenomenon of interference is in complete agreement with the law of conservation of energy

706 **(d)**

707 (d)

To have the first minimum, the path difference between the waves from *A* and B = BD =

 $\frac{a}{2}$. sin $\theta = \frac{\lambda}{2}$. The path difference between the waves from *A* and *C* at the same point should be λ or phase difference is 2π

$$\begin{array}{c}
A \\
B \\
C \\
E
\end{array}$$

Let I_0 be the intensity of incident light

Then the intensity of light from the 1st polaroid is $I_1 = \frac{I_0}{2}$

Intensity of light from the 2nd polaroid is $I_2 = I_1 \cos^2 60^\circ = \frac{I_0}{2} \left(\frac{1}{2}\right)^2 = \frac{I_0}{8}$ Intensity of light from the 3rd polaroid is

$$I_3 = I_2 \cos^2 60^\circ = \frac{I_0}{8} \left(\frac{1}{2}\right)^2 = \frac{I_0}{32}$$

Intensity of light from the 4th polaroid is

$$I_4 = I_3 \cos^2 60^\circ = \frac{I_0}{32} \left(\frac{1}{2}\right)^2 = \frac{I_0}{128}$$

Intensity of light from the 5th polaroid is

$$I_5 = I_4 \cos^2 60^\circ = \frac{I_0}{128} \left(\frac{1}{2}\right)^2 = \frac{I_0}{512}$$

Therefore, the fraction of the incident light that passes through the system is

$$\frac{I_5}{I_0} = \frac{1}{512}$$

708 (a)

The direction of EM wave is given by the direction of $\vec{E} \times \vec{B}$

709 **(a)**

For constructive interference

Path difference $\Delta = d \sin \theta = n\lambda$

$$\Rightarrow \quad \theta = \sin^{-1}\left[\frac{n\lambda}{d}\right]$$

710 **(c)**

Intensity of light from $C_2 = I_0$

On rotating through 60°,

$$I = I_0 \cos^2 60^\circ$$
 (law of Malus)

$$=I_0\left(\frac{1}{2}\right)^2=I_0/4$$

