Single Correct Answer Type

1. A unit vector in $x y$-plane that makes an angle 45° with the vector ($\hat{\imath}+\hat{\jmath}$) and an angle of 60° with the vector ($3 \hat{\mathbf{1}}-4 \hat{\mathbf{j}}$), is
a) $\hat{\mathbf{i}}$
b) $\frac{1}{\sqrt{2}}(\hat{\mathbf{l}}-\hat{\mathbf{\jmath}})$
c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}})$
d) None of these
2. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be unit vectors inclined at an angle $2 \alpha(0 \leq \alpha \leq \pi)$ each other, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|<1$, if
a) $\alpha=\frac{\pi}{2}$
b) $\alpha<\frac{\pi}{3}$
c) $\alpha>\frac{2 \pi}{3}$
d) $\frac{\pi}{3}<\alpha<\frac{2 \pi}{3}$
3. The cartesian from of the plane $\overrightarrow{\mathbf{r}}=(s-2 t) \hat{\mathbf{i}}+(3-t) \hat{\mathbf{j}}+(2 s+t) \hat{\mathbf{k}}$ is
a) $2 x-5 y-z-15=0$
b) $2 x-5 y+z-15=0$
c) $2 x-5 y-z+15=0$
d) $2 x+5 y-z+15=0$
4. If $\overrightarrow{\mathbf{a}}=4 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$, the vector form of the component of $\overrightarrow{\mathbf{a}}$ along $\overrightarrow{\mathbf{b}}$ is
a) $\frac{18}{5}(3 \hat{\mathbf{\imath}}+4 \hat{\mathbf{k}})$
b) $\frac{18}{25}(3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
c) $\frac{36}{25}(3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
d) $\frac{19}{18}(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}})$
5. A force $\overrightarrow{\mathbf{F}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ acts at a point A, whose position vectors is $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}$. The moment of $\overrightarrow{\mathbf{F}}$ about the origin is
a) $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
b) $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
c) $\hat{\mathbf{1}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
6. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors, then
$\frac{(\vec{a}+2 \vec{b}) \times(2 \vec{b}+\vec{c}) \cdot(5 \vec{c}+\vec{a})}{\vec{a} \cdot(\vec{b} \times \vec{c})}$ is equal to
a) 10
b) 14
c) 18
d) 12
7. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are perpendicular to $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ respectively and if $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=6,|\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=8$ and $|\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}|=10$, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is equal to
a) $5 \sqrt{5}$
b) 50
c) $10 \sqrt{2}$
d) 10
8. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, then the angle θ which $\vec{a}+\vec{b}+\vec{c}$ makes with any one of three given vectors is given by
a) $\cos ^{-1} \frac{1}{\sqrt{3}}$
b) $\cos ^{-1} \frac{1}{3}$
c) $\cos ^{-1} \frac{2}{\sqrt{3}}$
d) None of these
9. Forces $3 O \vec{A}, 5 O \vec{B}$ act along $O A$ and $O B$. If their resultant passes through C on $A B$, then
a) C is a mid-point of $A B$
b) C divides $A B$ in the ratio $2: 1$
c) $3 A C=5 C B$
d) $2 A C=3 C B$
10. The centre of the circle given by $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})=15$ and $\overrightarrow{\mathbf{r}}-(\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=4$ is
a) $(1,2,4)$
b) $(3,1,4)$
c) $(1,3,4)$
d) None of these
11. Consider a tetrahedron with faces $F_{1}, F_{2}, F_{3}, F_{4}$. Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ be the vectors whose magnitudes are respectively equal to areas of $F_{1}, F_{2}, F_{3}, F_{4}$ and whose directions are perpendicular to these faces in outward direction. Then, $\left|\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}+\vec{v}_{4}\right|$ equals
a) 1
b) 4
c) 0
d) None of these
12. The volume of the tetrahedron having the edges $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ as coterminous is $\frac{2}{3}$ cu unit. Then, λ equals
a) 1
b) 2
c) 3
d) 4
13. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-coplanar vectors then the vector equation $\overrightarrow{\mathbf{r}}=(1-p-q) \overrightarrow{\mathbf{a}}+p \overrightarrow{\mathbf{b}}+q \overrightarrow{\mathbf{c}}$ represent a
a) Straight line
b) Plane
c) Plane passing through the origin
d) Sphere
14. A force of magnitude 5 units acting along the vector $2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ displaces the point of application from the point $(1,2,3)$ to the point $(5,3,7)$, then the work done by the force is
a) $\frac{50}{7}$ units
b) $\frac{50}{3}$ units
c) $\frac{25}{3}$ units
d) $\frac{25}{4}$ units
15. If $\vec{\alpha}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \vec{\beta}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \vec{\gamma}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then what is the value of $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\vec{\alpha} \times \vec{\gamma})$?
a) 47
b) 74
c) -74
d) None of these
16. The line of intersection of the planes $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})=1$ and $\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=2$ is parallel to the vector
a) $-4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
b) $4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
c) $-4 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
d) $-4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-11 \hat{\mathbf{k}}$
17. $A B C D E F$ is a regular hexagon with centre at the origin such that
$\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}=\lambda \overrightarrow{\mathbf{E D}}$. Then, λ is equal to
a) 2
b) 4
c) 6
d) 3
18. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-zero, non-collinear vectors, then $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{i}}] \hat{\mathbf{i}}+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{j}}] \hat{\mathbf{j}}+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{k}}] \hat{\mathbf{k}}+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]$ is equal to
a) $2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
d) None of these
19. If $\overrightarrow{\mathbf{a}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}), \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=1$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$, then $\overrightarrow{\mathbf{b}}$ is
a) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
b) $2 \hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}$
d) $2 \hat{\imath}$
20. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be three non-coplanar vectors and let $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}$ and $\overrightarrow{\mathbf{r}}$ be vector defined by the relations.
$\overrightarrow{\mathbf{p}}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}, \overrightarrow{\mathbf{q}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}$ and $\overrightarrow{\mathbf{r}}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}$. Then, the value of the expression $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{p}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{q}}+(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{r}}$ is equal to
a) 0
b) 1
c) 2
d) 3
21. If m_{1}, m_{2}, m_{3} and m_{4} are respectively the magnitudes of the vectors
$\overrightarrow{\mathbf{a}_{1}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{a}_{2}}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{a}_{3}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{a}_{4}}=\widehat{-\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, then the correct order of m_{1}, m_{2}, m_{3} and m_{4} is
a) $m_{3}<m_{1}<m_{4}<m_{2}$
b) $m_{3}<m_{1}<m_{2}<m_{4}$
c) $m_{3}<m_{4}<m_{1}<m_{2}$
d) $m_{3}<m_{4}<m_{2}<m_{1}$
22. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar vectors and λ is a real number, then $\left[\lambda(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \lambda^{2} \overrightarrow{\mathbf{b}} \lambda \overrightarrow{\mathbf{c}}\right]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]$ for
a) exactly two values of λ
b) exactly three values of λ
c) no real values of λ
d) exactly one values of λ
23. Let a, b and c be distinct non-negative numbers. If the vectors $a \hat{\mathbf{i}}+a \hat{\mathbf{j}}+c \hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $c \hat{\mathbf{i}}+c \hat{\mathbf{j}}+b \hat{\mathbf{k}}$ lie in a plane, then c is
a) The harmonic mean of a and b
b) Equal to zero
c) The arithmetic mean of a and b
d) The geometric mean of a and b
24. In a trapezium $A B C D$ the vector $B \vec{C}=\lambda \vec{A} D$. If $\vec{P}=A \vec{C}+\vec{B} D$ is collinear with $\vec{A} D$ such that $\vec{p}=\mu \vec{A} D$, then
a) $\mu=\lambda+1$
b) $\lambda=\mu+1$
c) $\lambda+\mu=1$
d) $\mu=2+\lambda$
25. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to
a) 29
b) -29
c) $29 / 2$
d) $-29 / 2$
26. If $|\overrightarrow{\mathbf{A}}|=3,|\overrightarrow{\mathbf{b}}|=4$, then a value of λ for which $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}$ is
a) $\frac{9}{16}$
b) $\frac{3}{4}$
c) $\frac{3}{2}$
d) $\frac{4}{3}$
27. $\overrightarrow{\mathbf{u}}=\hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})+\hat{\mathbf{j}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})+\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})$ is equal
a) $\overrightarrow{\mathbf{a}}$
b) $2 \overrightarrow{\mathbf{a}}$
c) $3 \overrightarrow{\mathbf{a}}$
d) None of these
28. The locus of a point equidistant from two points whose position vectors are $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, is
a) $\left\{\overrightarrow{\mathbf{r}}-\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})\right\}(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})=0$
b) $\{\overrightarrow{\mathbf{r}}-(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})\} \cdot \overrightarrow{\mathbf{b}}=0$
c) $\left\{\overrightarrow{\mathbf{r}}-\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})\right\} \cdot \overrightarrow{\mathbf{a}}=0$
d) $\left\{\overrightarrow{\mathbf{r}}-\frac{1}{2}(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})\right\} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=0$
29. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two vectors such that $|\overrightarrow{\mathbf{a}}|+3 \sqrt{3}, \overrightarrow{\mathbf{b}}=4$ and $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{7}$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) 120°
b) 60°
c) 30°
d) 150°
30. If $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{c}}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$, then a vector perpendicular to $\overrightarrow{\mathbf{a}}$ and in the plane containing $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is
a) $-17 \hat{\mathbf{i}}+21 \hat{\mathbf{j}}-97 \hat{\mathbf{k}}$
b) $17 \hat{\mathbf{i}}+21 \hat{\mathbf{j}}-123 \hat{\mathbf{k}}$
c) $-17 \hat{\mathbf{i}}-21 \hat{\mathbf{j}}+97 \hat{\mathbf{k}}$
d) $-17 \hat{\mathbf{i}}-21 \hat{\mathbf{j}}-97 \hat{\mathbf{k}}$
31. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors each of magnitude unity, then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to
a) 3
b) 1
c) $\sqrt{3}$
d) None of these
32. $(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{j}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}$ is equal to
a) $\overrightarrow{\mathbf{a}}$
b) $2 \overrightarrow{\mathbf{a}}$
c) $3 \vec{a}$
d) $\overrightarrow{\boldsymbol{0}}$
33. If $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{\imath}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$, then $\overrightarrow{\mathbf{a}}$ is equal to
a) \hat{i}
b) $\hat{\mathbf{k}}$
c) $\hat{\mathbf{j}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
34. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}$ be a unit victor perpendicular to $\overrightarrow{\mathbf{a}}$ and coplanar with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{c}}$ is
a) $\frac{1}{\sqrt{2}}(\hat{\mathbf{j}}+\hat{\mathbf{k}})$
b) $\frac{1}{\sqrt{2}}(\hat{\mathbf{j}}-\hat{\mathbf{k}})$
c) $\frac{1}{\sqrt{6}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$
d) $\frac{1}{\sqrt{6}}(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$
35. The plane through the point $(-1,-1,-1)$ and containing the line of intersection of the planes $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}})=0$ and $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=0$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}})=0$
c) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}-5 \hat{\mathbf{k}})=0$
d) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})=0$
36. If a parallelogram is constructed on the vectors $\vec{a}=3 \vec{\mu}-\vec{v}, \vec{b}=\vec{u}+3 \vec{v}$ and $|\vec{u}|=|\vec{v}|=2$ and the angle between \vec{u} is $\pi / 3$, then the ratio of the lengths of the sides is
a) $\sqrt{7}: \sqrt{13}$
b) $\sqrt{6}: \sqrt{2}$
c) $\sqrt{3}: \sqrt{5}$
d) None of these
37. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the vertices A, B, C respectively of $\triangle A B C$. The vector area of $\triangle A B C$ is
a) $\frac{1}{2}\{\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})\}$
b) $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$
c) $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$
d) $\frac{1}{2}\{(\vec{b} \cdot \vec{c}) \vec{a}+(\vec{c} \cdot \vec{a}) \vec{b}+(\vec{a} \cdot \vec{b}) \vec{c}\}$
38. The work done in moving an object along a vector $\vec{d}=3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ if the applied force is $\vec{F}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$ is
a) 12 units
b) 11 units
c) 10 units
d) 9 units
39. $\overrightarrow{\mathbf{a}} \times[\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]$ is equal to
a) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$
b) $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
c) $[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})] \overrightarrow{\mathbf{a}}$
d) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$
40. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar vectors, then $\left|\begin{array}{lll}\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \\ \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \\ \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}\end{array}\right|$ is equal to
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
b) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{1 / 3}$
d) None of these
41. If $|\overrightarrow{\mathbf{a}}|=10,|\overrightarrow{\mathbf{b}}|=2$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=12$ then $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ is equal to
a) 12
b) 14
c) 16
d) 18
42. If $|\vec{a}|=4,|\vec{b}|=4$ and $|\vec{c}|=5$ such that $\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a})$ and $\vec{c} \perp(\vec{a}+\vec{b})$, then $|\vec{a}+\vec{b}+\vec{c}|$ is
a) 7
b) 5
c) 13
d) $\sqrt{57}$
43. The summation of two unit vectors is a third unit vector, then the modulus of the difference of the unit vectors is
a) $\sqrt{3}$
b) $1-\sqrt{3}$
c) $1+\sqrt{3}$
d) $-\sqrt{3}$
44. If θ is the angle between vectors \vec{a} and \vec{b} such that $\vec{a} \cdot \vec{b} \geq 0$, then
a) $0 \leq \theta \leq \pi$
b) $\frac{\pi}{2} \leq \theta \leq \pi$
c) $0 \leq \theta \leq \frac{\pi}{2}$
d) $0<\theta<\frac{\pi}{2}$
45. The vectors $2 \hat{\imath}+3 \hat{\jmath}, 5 \hat{\imath}+6 \hat{\jmath}$ and $8 \hat{\imath}+\lambda \hat{\jmath}$ have their initial points at $(1,1)$. The value of λ so that the vectors terminate on one straight line, is
a) 0
b) 3
c) 6
d) 9
46. If p th, q th, r th term of a GP are the positive numbers a, b, c then angle between the vectors $\log a^{3} \hat{\mathbf{i}}+$ $\log b 3 \mathbf{j}+\log c 3 \mathbf{k}$ and $q-r \mathbf{i}+r-p \mathbf{j}+(p-q) \mathbf{k}$ is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) $\sin ^{-1}\left(\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)$
47. The value of λ, for which the four points $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{1}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ are coplanar, is
a) -2
b) 8
c) 6
d) 0
48. Given that $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=4,|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=10$, then $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}$ equals
a) 88
b) 44
c) 22
d) None of these
49. If the diagonals of a parallelogram are $3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$, then the lengths of its sides are
a) $\sqrt{8}, \sqrt{10}$
b) $\sqrt{6}, \sqrt{14}$
c) $\sqrt{5}, \sqrt{12}$
d) None of these
50. If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}$, then
a) $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|$
b) $|\overrightarrow{\mathbf{c}}|=1,|\overrightarrow{\mathbf{a}}|=1$
c) $|\overrightarrow{\mathbf{b}}|=2,|\overrightarrow{\mathbf{b}}|=2|\overrightarrow{\mathbf{a}}|$
d) $|\overrightarrow{\mathbf{b}}|=1,|\overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{a}}|$
51. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$. Then the vectors $\overrightarrow{\mathbf{b}}$ satisfying $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=3$ is
a) $-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
b) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
52. The value of c so that for all real x, the vectors $c x \hat{\imath}-6 \hat{\jmath}+3 \hat{k}, x \hat{\imath}+2 \hat{\jmath}+2 c x \hat{k}$ make an obtuse angle are
a) $c<0$
b) $0<c<4 / 3$
c) $-4 / 3<c<0$
d) $c>0$
53. If $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=5, \overrightarrow{\mathbf{a}}+|\overrightarrow{\mathbf{c}}|=7$, then angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) π
54. If $\overrightarrow{\mathbf{p}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{q}}=4 \hat{\mathbf{k}}-\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}$, then the unit vector in the direction of $3 \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}-2 \overrightarrow{\mathbf{r}}$ is
a) $\frac{1}{3}(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
b) $\frac{1}{3}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
c) $\frac{1}{3}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
d) $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
55. The vectors \vec{X} and \vec{Y} satisfy the equations $2 \vec{X}+\vec{Y}=\vec{p}$ and $\vec{X}+2 \vec{Y}=\vec{q}$, where $\vec{p}=\vec{\imath}+\vec{\jmath}$ and $\vec{q}=\hat{\imath}-\hat{\jmath}$. If θ is the angle between \vec{X} and \vec{Y}, then
a) $\cos \theta=\frac{4}{5}$
b) $\sin \theta=\frac{1}{\sqrt{2}}$
c) $\cos \theta=-\frac{4}{5}$
d) $\cos \theta=-\frac{3}{5}$
56. If $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}$ and $\overrightarrow{\mathbf{r}}$ are perpendicular to $\overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{p}}$ and $\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}$ respectively and if $|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}|=6,|\overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{r}}|=4 \sqrt{3}$ and $|\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{p}}|=4$, then $|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{r}}|$ is
a) $5 \sqrt{2}$
b) 10
c) 15
d) 5
57. Let $A B C D$ be a parallelogram and M be the point of intersection of the diagonals. If O is any point, then $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=$
a) $3 \vec{O} M$
b) $4 \vec{O} M$
c) $2 \vec{O} M$
d) $\vec{O} M$
58. The work done by the force $\vec{F}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$ in moving an object along the vector $3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ is
a) -9 units
b) 15 units
c) 9 units
d) None of these
59. $[\hat{\mathbf{1}} \hat{\mathbf{k}} \hat{\mathbf{j}}]+[\hat{\mathbf{k}} \hat{\mathbf{j}} \hat{\mathbf{i}}]+[\hat{\mathbf{j}} \hat{\mathbf{k}} \mathbf{i}]$ is equal to
a) 1
b) 3
c) -3
d) -1
60. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the unit vectors such that $\overrightarrow{\mathbf{a}}$ is perpendicular to the plane $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and the angle between $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is $\frac{\pi}{3}$ then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is equal to
a) 0
b) ± 1
c) ± 2
d) ± 3
61. A parallelogram is constructed on the vectors $\overrightarrow{\mathbf{a}}=3 \vec{\alpha}-\vec{\beta}, \overrightarrow{\mathbf{b}}=\vec{\alpha}+3 \vec{\beta}$, if $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then length of diagonal of the parallelogram is
a) $4 \sqrt{7}$
b) $4 \sqrt{3}$
c) $4 \sqrt{17}$
d) None of these
62. If $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$, then $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})$ is
a) Positive
b) Negative
c) Zero
d) None of these
63. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$, then
a) $\vec{b}=\vec{c}$
b) $\vec{b}-\vec{c}| | \vec{a}$
c) $\vec{b}-\vec{c} \perp \vec{a}$
d) None of these
64. If the volume of the tetrahedron whose vertices are $(1,-6,10),(-1,-3,7),(5,-1, \lambda)$ and $(7,-4,7)$ is 11 cubic units, then $\lambda=$
a) 2,6
b) 3,4
c) 1,7
d) 5,6
65. The vector $\frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}+\hat{k})$ is
a) Unit vector
b) Parallel to the vector $\hat{\imath}+\hat{\jmath}-1 / 2 \hat{k}$
c) Perpendicular to the vector $3 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
d) All the above
66. If $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} . \vec{a}=0$ where $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}, \vec{b}=3 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{c}=\hat{\imath}+\hat{\jmath}+3 \hat{k}$, then $\vec{r}=$
a) $\frac{1}{2}(\hat{\imath}+\hat{\jmath}+\hat{k})$
b) $2(\hat{\imath}+\hat{\jmath}+\hat{k})$
c) $2(-\hat{\imath}+\hat{\jmath}+\hat{k})$
d) $\frac{1}{2}(\hat{\imath}-\hat{\jmath}+\hat{k})$
67. $(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{l}}) \hat{\mathbf{l}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{\jmath}}) \hat{\mathbf{\jmath}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}$ is equal to
a) $\overrightarrow{\boldsymbol{a}}$
b) $2 \vec{a}$
c) $3 \overrightarrow{\mathbf{a}}$
d) $\overrightarrow{\boldsymbol{0}}$
68. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=$
a) 6
b) 5
c) 4
d) 3
69. If $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are any two non-collinear unit vectors and $\overrightarrow{\mathbf{a}}$ is any vector, then $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{b}}(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{c}}+\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
is equal to
a) $\overrightarrow{\boldsymbol{0}}$
b) \vec{a}
c) $\overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{c}}$
70. The unit vector perpendicular to $\hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}$ and coplanar with $\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}$ and $2 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}$ is
a) $\frac{2 \hat{\mathbf{1}}-5 \hat{\mathbf{j}}}{\sqrt{2 a}}$
b) $2 \hat{\mathbf{\imath}}+5 \hat{\mathbf{\jmath}}$
c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}})$
d) $\hat{\mathbf{i}}+\hat{\boldsymbol{\jmath}}$
71. Unit vector which is perpendicular to both the vectors $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ is
a) $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
b) $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
c) $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$
d) $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$
72. If the position vector of the vertices, A, B, C of a $\triangle A B C$ are $7 \hat{\mathbf{j}}+10 \hat{\mathbf{k}},-\hat{\mathbf{\imath}}+6 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $-4 \hat{\mathbf{\imath}}+9 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ respectively, then triangle is
a) Equilateral
b) Isosceles
c) Scalene
d) Right angled and isosceles also
73. If three points A, B and C have position vectors $\hat{\imath}+x \hat{\jmath}+3 \hat{k}, 3 \hat{\imath}+4 \hat{\jmath}+7 \hat{k}$ and $y \hat{\imath}-2 \hat{\jmath}-5 \hat{k}$ respectively are collinear, then $(x, y)=$
a) $(2,-3)$
b) $(-2,3)$
c) $(-2,-3)$
d) $(2,3)$
74. The vectors $\overrightarrow{\mathbf{a}}(x)=\cos x \hat{\mathbf{\imath}}+(\sin x) \hat{\mathbf{\jmath}}$ and $\overrightarrow{\mathbf{b}}(x)=x \hat{\mathbf{\imath}}+\sin x \hat{\mathbf{\jmath}}$ are collinear for
a) Unique value of $x, 0<x<\frac{\pi}{6}$
b) Unique value of $x, \frac{\pi}{6}<x<\frac{\pi}{3}$
c) No value of x
d) Infinitely many values of $x, 0<x<\frac{\pi}{2}$
75. A unit vector in $x y$-plane makes an angle of 45° with the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and an angle of 60° with the vector $3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}$ is
a) $\hat{\mathbf{i}}$
b) $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}}$
c) $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}}{\sqrt{2}}$
d) None of these
76. The vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c}, which of the following is correct
a) $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
b) $\vec{a} \cdot \vec{b} \times \vec{c}=1$
c) $\vec{a} . \vec{b} \times \vec{c}=-1$
d) $\vec{a} \cdot \vec{b} \times \vec{c}=3$
77. If the volume of parallelopiped with coterminous $4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}-9 \hat{\mathbf{j}}+p \hat{\mathbf{k}}$ is 34 cu units, then p is
equal to
a) 4
b) -13
c) 13
d) 6
78. The value of $\frac{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}}{2 \overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2}}$ is
a) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
b) 1
c) 0
d) $\frac{1}{2}$
79. The magnitude of cross product of two vectors is $\sqrt{3}$ times the dot product. The angle between the vectors is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{4}$
80. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point, then $O \vec{A}+O \vec{B}+O \vec{C}+$ $O \vec{D}=$
a) $2 \vec{O} G$
b) $4 \vec{O} G$
c) $5 \vec{O} G$
d) $3 \vec{O} G$
81. If $\vec{a}=(-1,1,1)$ and $\vec{b}=(2,0,1)$, then the vector \vec{X} satisfying the conditions
(i) that it is coplanar with \vec{a} and \vec{b}
(ii) that it is perpendicular to \vec{b}, (iii) that $\vec{a} \cdot \vec{X}=7$ is,
a) $-3 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
b) $-\frac{3}{2} \hat{\imath}+\frac{5}{2} \hat{\jmath}+3 \hat{k}$
c) $3 \hat{\imath}+16 \hat{\jmath}-6 \hat{k}$
d) None of these
82. If $A B C D E F$ is a regular hexagon, then $\vec{A} C+\vec{A} D+\vec{E} A+\vec{F} A=$
a) $2 \vec{A} B$
b) $3 \vec{A} B$
c) $\vec{A} B$
d) $\overrightarrow{0}$
83. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to
a) $[\vec{a} \vec{b} \vec{c}]^{2}$
b) $[\vec{a} \vec{b} \vec{c}]^{3}$
c) $[\vec{a} \vec{b} \vec{c}]^{4}$
d) None of these
84. Suppose $\overrightarrow{\mathbf{a}}=\lambda \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}}$. If the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is grater than 90°, then λ satisfies the inequality
a) $-7<\lambda<1$
b) $\lambda>1$
c) $1<\lambda<7$
d) $-5<\lambda<1$
85. Let $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\overrightarrow{r_{1}}=\vec{a}-\vec{b}+\vec{c}, \overrightarrow{r_{2}}=\vec{b}+\vec{c}-\vec{a}, \overrightarrow{r_{3}}=\vec{c}+\vec{a}+\vec{b}, \vec{r}=2 \vec{a}-$ $3 \vec{b}+4 \vec{c}$
If $\vec{r}=\lambda_{1} \overrightarrow{r_{1}}+\lambda_{2} \overrightarrow{r_{2}}+\lambda_{3} \overrightarrow{r_{3}}$, then
a) $\lambda_{1}=7$
b) $\lambda_{1}+\lambda_{3}=3$
c) $\lambda_{1}+\lambda_{2}+\lambda_{3}=3$
d) $\lambda_{3}+\lambda_{2}=2$
86. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of points A, B, C and D respectively such that $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=$ $(\vec{b}-\vec{a}) \cdot(\vec{c}-\vec{a})=0$, then D is the
a) Centroid of $\triangle A B C$
b) Circumcentre of $\triangle A B C$
c) Orthocenter of $\triangle A B C$
d) None of these
87. A, B, C, D, E, F in that order, are the vertices of a regular hexagon with center origin. If the position vectors A and B are respectively, $4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then $\overrightarrow{\mathbf{D E}}$ is equal to
a) $7 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
b) $-7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$
d) $-4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
88. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) Π
b) $\frac{2 \pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{2}$
89. The ratio in which $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ divides the join of $-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ is
a) $2: 1$
b) $2: 3$
c) $3: 4$
d) $1: 4$
90. The values of x for which the angle between the vectors $\vec{a}=x \hat{\imath}-3 \hat{\jmath}-\hat{k}$ and $\vec{b}=2 x \hat{\imath}-x \hat{\jmath}-\hat{k}$ is acute and angle between \vec{b} and y-axis lies between $\pi / 2$ and π are
a) -1
b) All $x>0$
c) 1
d) All $x<0$
91. The moment about the point $M(-2,4,-6)$ of the force represented in magnitude and position $\overrightarrow{\mathbf{A B}}$ where
the points A and B have the coordinates $(1,2,-3)$ and $(3,-4,2)$ respectively, is
a) $8 \hat{\mathbf{i}}-9 \hat{\mathbf{j}}-14 \hat{\mathbf{k}}$
b) $2 \hat{\mathbf{\imath}}-6 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
c) $-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
d) $-5 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
92. The angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{5 \pi}{6}$ and the projection of $\overrightarrow{\mathbf{a}}$ in the direction of $\overrightarrow{\mathbf{b}}$ is $\frac{-6}{\sqrt{3}}$, then $|\overrightarrow{\mathbf{a}}|$ is equal to
a) 6
b) $\frac{\sqrt{3}}{2}$
c) 12
d) 4
93. The equation of the line passing through the points $a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}+a_{3} \hat{\mathbf{k}}$ and $b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}+b_{3} \hat{\mathbf{k}}$ is
a) $\left(a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}+a_{3} \hat{\mathbf{k}}\right)+t\left(b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}+b_{3} \hat{\mathbf{k}}\right)$
b) $\left(a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}+a_{3} \hat{\mathbf{k}}\right)-t\left(b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}+b_{3} \hat{\mathbf{k}}\right)$
c) $\begin{gathered}a_{1}(1-t) \hat{\mathbf{1}}+a_{2}(1-t) \hat{\mathbf{\jmath}}+a_{3}(1-t) \hat{\mathbf{k}}+\left(b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}\right. \\ \left.+b_{3} \hat{\mathbf{k}}\right) t\end{gathered}$
d) None of the above
$\left.+b_{3} \hat{\mathbf{k}}\right) t$
94. The vector $\vec{b}=3 \hat{\imath}+4 \hat{k}$ is to be written as the sum of a vector $\vec{\alpha}=\hat{\imath}+\hat{\jmath}$ and a vector $\vec{\beta}$ perpendicular to \vec{a}. Then $\vec{\alpha}=$
a) $\frac{3}{2}(\hat{\imath}+\hat{\jmath})$
b) $\frac{2}{3}(\hat{\imath}+\hat{\jmath})$
c) $\frac{1}{2}(\hat{\imath}+\hat{\jmath})$
d) $\frac{1}{3}(\hat{\imath}+\hat{\jmath})$
95. A parallelogram is constructed on $3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}}$, where $|\overrightarrow{\mathbf{a}}|=6$ and $|\overrightarrow{\mathbf{b}}|=8$ and $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are antiparallel, then the length of the longer diagonal is
a) 40
b) 64
c) 42
d) 48
96. If the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ from the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$ then
a) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=0$
b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=0$
c) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=0$
97. The vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ of equal magnitude 5 originating from a point and directs respectively towards northeast and north-west. Then, the magnitude of $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ is
a) $3 \sqrt{2}$
b) $2 \sqrt{3}$
c) $2 \sqrt{5}$
d) $5 \sqrt{2}$
98. If the vectors $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+a \hat{\mathbf{j}}+a^{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+b \hat{\mathbf{j}}+b^{2} \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+c \hat{\mathbf{j}}+c^{2} \hat{\mathbf{k}}$ are three non-coplanar vectors and $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$, then the value of $a b c$ is
a) 0
b) 1
c) 2
d) -12
99. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$ then the area of parallelogram having diagonals $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ is
a) $4 \sqrt{6}$ sq units
b) $\frac{1}{2} \sqrt{21}$ sq units
c) $\frac{\sqrt{6}}{2}$ sq units
d) $\sqrt{6}$ sq units
100. Let $\vec{a}=\hat{\imath}+\hat{\jmath}-\hat{k}, \vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and \vec{c} be a unit vector perpendicular to \vec{a} and coplanar with \vec{a} and \vec{b}, then it is given by
a) $\frac{1}{\sqrt{6}}(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
b) $\frac{1}{\sqrt{2}}(\hat{\jmath}+\hat{k})$
c) $\frac{1}{\sqrt{6}}(\hat{\imath}-2 \hat{\jmath}+\hat{k})$
d) $\frac{1}{2}(\hat{\jmath}-\hat{k})$
101. If $\vec{a} \cdot \hat{\imath}=4$, then $(\vec{a} \times \hat{\jmath}) \cdot(2 \hat{\jmath}-3 \hat{k})=$
a) 12
b) 2
c) 0
d) -12
102. If $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\lambda(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$, then λ is equal to
a) 4
b) 7
c) 8
d) 9
103. Forces acting on a particle have magnitude 5,3 and 1 unit and act in the direction of the vectors $6 \hat{\mathbf{i}}+2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-2 \hat{\mathbf{\jmath}}+6 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ respectively. They remain constant while the particle is displaced from the points $A(2,-1,-3)$ to $B(5,-1,1)$. The work done is
a) 11 unit
b) 33 unit
c) 10 unit
d) 30 unit
104. For any vector \vec{r}, the value of $\hat{\imath} \times(\vec{r} \times \hat{\imath})+\hat{\jmath} \times(\vec{r} \times \hat{\jmath})+\hat{k} \times(\vec{r} \times \hat{k})$, is
a) $\overrightarrow{0}$
b) $2 \vec{r}$
c) $-2 \vec{r}$
d) None of these
105. The vector equation of the plane passing through the origin and the line of intersection of the planes
$\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=\lambda$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=\mu$, is
a) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{a}}-\mu \overrightarrow{\mathbf{b}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}-\mu \overrightarrow{\mathbf{a}})=0$
c) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}})=0$
d) $\overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}+\mu \overrightarrow{\mathbf{a}})=0$
106. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar and $[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \mathbf{c}+\overrightarrow{\mathbf{a}}]=k[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$, then k is equal to
a) 0
b) 1
c) 2
d) 3
107. If $\overrightarrow{\mathbf{a}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}), \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=1$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}-\hat{\mathbf{k}}$, then $\overrightarrow{\mathbf{b}}$ is
a) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
b) $2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}$
d) $2 \hat{\mathbf{i}}$
108. A tetrahedron has vertices at $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then, the angle between the faces $O A B$ and $A B C$ will be
a) $\cos ^{-1}\left(\frac{19}{35}\right)$
b) $\cos ^{-1}\left(\frac{17}{31}\right)$
c) 30°
d) 90°
109. If $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}-5 \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then ratio in which $\overrightarrow{\mathbf{c}}$ divides $\overrightarrow{\mathbf{A B}}$ is
a) $3: 2$ internally
b) $3: 2$ externally
c) $2: 3$ internally
d) 2:3 externally
110. The perimeter of the triangle whose vertices have the position vectors $\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, 5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{\imath}}+5 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}$ is given by
a) $15+\sqrt{157}$
b) $15-\sqrt{157}$
c) $\sqrt{15}+\sqrt{157}$
d) $\sqrt{15}-\sqrt{157}$
111. If $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $|\overrightarrow{\mathbf{a}}|=5,|\overrightarrow{\mathbf{b}}|=4$ and $|\overrightarrow{\mathbf{c}}|=3$, then the value of $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}|$ is
a) 25
b) 50
c) -25
d) 20
112. If \vec{a} is any vector, then $(a \times \hat{\imath})^{2}+(a \times \hat{\jmath})^{2}+(a \times \hat{k})^{2}=$
a) \vec{a}^{2}
b) $2 \vec{a}^{2}$
c) $3 \vec{a}^{2}$
d) $4 \vec{a}^{2}$
113. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors (no two of which are collinear), such that the pairs of vectors $(\vec{a}+\vec{b}, \vec{c})$ and $(\vec{b}+\vec{c}, \vec{a})$ are collinear, then $\vec{a}+\vec{b}+\vec{c}=$
a) \vec{a}
b) \vec{b}
c) \vec{c}
d) $\overrightarrow{0}$
114. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three non-coplanar vectors and $\overrightarrow{\mathbf{r}}$ be any vector in space such that $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=1, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=2$ and $\overrightarrow{\mathbf{r}}$. $\overrightarrow{\mathbf{c}}=3$. If $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=1$, then $\overrightarrow{\mathbf{r}}$ is equal to
a) $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+2 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
c) $(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{a}}+2(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}+3(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}$
d) None of these
115. If $\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}+\overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{0}},|\overrightarrow{\mathbf{x}}|=|\overrightarrow{\mathbf{y}}|+|\overrightarrow{\mathbf{z}}|=2$, and θ is angle between $\overrightarrow{\mathbf{y}}$ and $\overrightarrow{\mathbf{z}}$, then the value of $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta$ is equal to
a) $4 / 3$
b) $5 / 3$
c) $1 / 3$
d) 1
116. If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=-|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) 45°
b) 180°
c) 90°
d) 60°
117. Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$. If $\overrightarrow{\mathbf{r}}$ is a vector such that $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=0$, then value of $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}$ is
a) 7
b) -7
c) -5
d) 5
118. If the vectors $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}-2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}-4 \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}+5 \overrightarrow{\mathbf{c}}$ are coplanar, then the value of λ is
a) 2
b) -1
c) 1
d) -2
119. $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ are three non-zero vectors, no two of them are parallel. If $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ is collinear to $\overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}$ is collinear to $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}$ is equal to
a) $\overrightarrow{\mathbf{A}}$
b) $\overrightarrow{\mathbf{B}}$
c) $\overrightarrow{\mathbf{C}}$
d) $\overrightarrow{0}$
120. Consider points A, B, C and D with position vectors $7 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}, \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+10 \hat{\mathbf{k}},-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ respectively. Then, $A B C D$ is a
a) Square
b) Rhombus
c) Rectangle
d) None of these
121. If $|\vec{a}|=7,|\vec{b}|=11,|\vec{a}+\vec{b}|=10 \sqrt{3}$, then $|\vec{a}-\vec{b}|$ equals
a) 10
b) $\sqrt{10}$
c) $2 \sqrt{10}$
d) 20
122. In a parallelogram $A B C D,|\vec{A} B|=a,|\vec{A} D|=b$ and $|\vec{A} C|=c$. The value of $\vec{D} B \cdot \overrightarrow{A B}$ is
a) $\frac{3 a^{2}+b^{2}-c^{2}}{2}$
b) $\frac{a^{2}+3 b^{2}-c^{2}}{2}$
c) $\frac{a^{2}-b^{2}+3 c^{2}}{2}$
d) $\frac{a^{2}+3 b^{2}+c^{2}}{2}$
123. If θ be the angle between the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, then
a) $\cos \theta=\frac{4}{21}$
b) $\cos \theta=\frac{3}{19}$
c) $\cos \theta=\frac{2}{19}$
d) $\cos \theta=\frac{5}{21}$
124. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be three non-zero vectors such that no two these are collinear. If the vector $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ is collinear with $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}$ is collinear with $\overrightarrow{\mathbf{a}}(\lambda$ being some non-zero scalar). Then $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{c}}$ equals
a) $\lambda \overrightarrow{\mathbf{a}}$
b) $\lambda \overrightarrow{\mathbf{b}}$
c) $\lambda \overrightarrow{\mathbf{c}}$
d) $\overrightarrow{0}$
125. Let $A B C$ be a triangle the position vectors of whose vertices are respectively $7 \hat{\jmath}+10 \hat{k},-\hat{\imath}+6 \hat{\jmath}+6 \hat{k}$ and $-4 \hat{\imath}+9 \hat{\jmath}+6 \hat{k}$. Then, $\triangle A B C$ is
a) Isosceles and right angled
b) Equilateral
c) Right angled but not isosceles
d) None of these
126. $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=$
a) $[\vec{a} \vec{b} \vec{c}] \vec{c}$
b) $[\vec{a} \vec{b} \vec{c}] \vec{b}$
c) $[\vec{a} \vec{b} \vec{c}] \vec{a}$
d) $a \times(\vec{b} \times \vec{c})$
127. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar vectors and λ be a real number, then the vectors $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}, \lambda \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}}$ and $(2 \lambda-1) \overrightarrow{\mathbf{c}}$ are non-coplanar for
a) All values of λ
b) All except one value of λ
c) All except two values of λ
d) No value of λ
128. The position vectors of P and Q are respectively $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. If R is a point on $\overrightarrow{\mathbf{P Q}}$ such that $\overrightarrow{\mathbf{P R}}=5 \overrightarrow{\mathbf{P Q}}$, then the position vector of R is
a) $5 \overrightarrow{\mathbf{b}}-4 \overrightarrow{\mathbf{a}}$
b) $5 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{a}}$
c) $4 \overrightarrow{\mathbf{b}}-5 \overrightarrow{\mathbf{a}}$
d) $4 \overrightarrow{\mathbf{b}}+5 \overrightarrow{\mathbf{a}}$
129. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors. Suppose $\vec{a} \cdot \vec{b}=\vec{a} . \vec{c}=0$ and the angle between \vec{b} and $\vec{c} \frac{\pi}{6}$. Then, $\vec{a}=$
a) $\pm 2(\vec{b} \times \vec{c})$
b) $-2(\vec{b} \times \vec{c})$
c) $2(\vec{b} \times \vec{c})$
d) $(\vec{b} \times \vec{c})$
130. If $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ are the position vectors of the points A and B, then the position vector of the points of trisection of $A B$ are
a) $\frac{4}{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\frac{10}{3} \hat{\mathbf{k}}, \frac{5}{3} \hat{\mathbf{i}}+\frac{11}{3} \hat{\mathbf{k}}$
b) $-\frac{4}{3} \hat{\mathbf{i}}-\hat{\mathbf{j}}-\frac{10}{3} \hat{\mathbf{k}},-\frac{5}{3} \hat{\mathbf{i}}-\frac{11}{3} \hat{\mathbf{k}}$
c) $\frac{4}{3} \hat{\mathbf{i}}-\hat{\mathbf{j}}-\frac{10}{3} \hat{\mathbf{k}},-\frac{5}{3} \hat{\mathbf{i}}-\frac{11}{3} \hat{\mathbf{k}}$
d) $-\frac{4}{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\frac{10}{3} \hat{\mathbf{k}}, \frac{5}{3} \hat{\mathbf{i}}-\frac{11}{3} \hat{\mathbf{k}}$
131. D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of $\triangle A B C$ and G is the centroid of the triangle, then $\overrightarrow{G D}+\overrightarrow{G E}+\overrightarrow{G F}=$
a) $\overrightarrow{0}$
b) $2 \overrightarrow{A B}$
c) $2 \overrightarrow{G A}$
d) $2 \overrightarrow{G C}$
132. If D, E and F are respectively the mid points of $A B, A C$ and $B C$ in $\triangle A B C$, then
$\overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{A F}}$ is equal to
a) $\overrightarrow{\mathbf{D C}}$
b) $\frac{1}{2} \overrightarrow{\mathbf{B F}}$
c) $2 \overrightarrow{\mathbf{B F}}$
d) $\frac{3}{2} \overrightarrow{\mathbf{B F}}$
133. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a}+\vec{b}$ makes an angle of 30° with \vec{a}, then
a) $|\vec{b}|=2|\vec{a}|$
b) $|\vec{a}|=2|\vec{b}|$
c) $|\vec{a}|=\sqrt{3}|\vec{b}|$
d) None of these
134. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, and
$\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})+\hat{\mathbf{j}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})+\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})$
Then length of $\overrightarrow{\mathbf{b}}$ is equal to
a) $\sqrt{12}$
b) $2 \sqrt{12}$
c) $3 \sqrt{14}$
d) $2 \sqrt{14}$
135. If a, b, c are different real numbers and $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}, b \hat{\mathbf{i}}+c \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and
$c \hat{\mathbf{\imath}}+a \hat{\jmath}+b \hat{\boldsymbol{k}}$ are position vectors of three non-collinear points, then
a) centroid of $\triangle A B C$ is $\frac{a+b+c}{3}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
b) $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ is not really inclined to three vectors
c) Triangle $A B C$ is a scalene triangle
d) Perpendicular from the origin to the plane of the triangle does not meet it at the centroid
136. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are unit vectors and $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=1$, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|$ is equal to
a) $\sqrt{2}$
b) 1
c) $\sqrt{5}$
d) $\sqrt{3}$
137. If $\overrightarrow{\mathbf{a}}=(1,-1)$ and $\overrightarrow{\mathbf{b}}=(-2, m)$ are two collinear vectors, then m is equal to
a) 2
b) 4
c) 3
d) 0
138. If O is origin of C is the mid point of $A(2,-1)$ and $B(-4,3)$. Then, the value of $\overrightarrow{\mathbf{O C}}$ is
a) $\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}$
b) $\hat{\imath}$ - $\hat{\mathbf{j}}$
c) $-\hat{\mathbf{i}}+\hat{\mathbf{j}}$
d) $-\hat{\mathbf{i}}-\hat{\boldsymbol{\jmath}}$
139. The values of x for which the angle between the vectors $\vec{a}=x \hat{\imath}-3 \hat{\jmath}-\hat{k}$ and $\vec{b}=2 x \hat{\imath}+x \hat{\jmath}-\hat{k}$ is acute and the angle between the vector \vec{b} and the y-axis lies between $\frac{\pi}{2}$ and π are
a) 1,2
b) $-2,-3$
c) All $x<0$
d) All $x>0$
140. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are position vectors of the vertices of the triangle $A B C$, then $\frac{|(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}})|}{(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}})}$ is equal to
a) $\cot A$
b) $\cot C$
c) $-\tan C$
d) $\tan A$
141. $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=\overrightarrow{\mathbf{a}} \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{j}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})=1$, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $\hat{\mathbf{i}}-\hat{\mathbf{k}}$
b) $(3 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) / 3$
c) $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) / 3$
d) $(3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) / 3$
142. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=x \hat{\mathbf{i}}+(x-2) \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and if the vector $\overrightarrow{\mathbf{c}}$ lies in the plane of vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then x equals
a) 0
b) 1
c) -2
d) 2
143. The figure formed by the four points $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}, 5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and $\hat{\mathbf{k}}-\hat{\mathbf{j}}$ is
a) Trapezium
b) Rectangle
c) Parallelogram
d) None of these
144. If $\vec{a}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=3 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$, then the vector in the direction of \vec{a} and having magnitude as $|\vec{b}|$, is
a) $7(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
b) $\frac{7}{9}(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
c) $\frac{7}{3}(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
d) None of these
145. If I is incentre of $\triangle A B C$, then I is
a) $\frac{a \overrightarrow{\mathbf{a}}+b \overrightarrow{\mathbf{b}}+c \overrightarrow{\mathbf{c}}}{a+b+c}$
b) $\frac{a \overrightarrow{\mathbf{a}}+b \overrightarrow{\mathbf{b}}+c \overrightarrow{\mathbf{c}}}{\sqrt{a^{2}+b^{2}+c^{2}}}$
c) $\frac{1}{3}[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]$
d) $\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{a+b+c}$
146. If \vec{a} and \vec{b} are unit vectors, then which of the following values of $\vec{a} . \vec{b}$ is not possible?
a) $\sqrt{3}$
b) $\sqrt{3} / 2$
c) $1 / \sqrt{2}$
d) $-1 / 2$
147. The two vectors $\{\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}-\lambda \hat{\mathbf{\jmath}}+6 \hat{\mathbf{k}}\}$ are parallel, if λ is equal to
a) 2
b) -3
c) 3
d) -2
148. Force acting on a particle have magnitude 5,3 and 1 unit act in the direction of the vectors $6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ respectively. They remain constant while the particle is displaced from the point $A(2,-1,-3)$ to $B(5-1,1)$. The work done is
a) 11 units
b) 33 units
c) 10 units
d) 30 units
149. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$, then
a) Either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\vec{c}$
b) $\vec{a}|\mid(\vec{b}-\vec{c})$
c) $\vec{a} \perp(\vec{b}-\vec{c})$
d) None of these
150. The two vectors $\vec{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}, \vec{b}=4 \hat{\imath}-\lambda \hat{\jmath}+6 \hat{k}$ are parallel if $\lambda=$
a) 2
b) -3
c) 3
d) -2
151. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit coplanar vectors, then $[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]$ is equal to
a) 1
b) 0
c) $-\sqrt{3}$
d) $\sqrt{3}$
152. The angle between the vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ when $\overrightarrow{\mathbf{a}}=(1,1,4)$ and $\overrightarrow{\mathbf{b}}=(1,-1,4)$ is
a) 45°
b) 90°
c) 15°
d) 30°
153. Let $P(3,2,6)$ be a point in space and Q be a point on the line $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})+\mu(-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}})$. Then, the value of μ for which the vector $\overrightarrow{\mathbf{P Q}}$ is parallel to the plane $x-4 y+3 z=1$ is
a) $\frac{1}{4}$
b) $-\frac{1}{4}$
c) $\frac{1}{8}$
d) $-\frac{1}{8}$
154. The area of triangle having verities as $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}},-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, 4 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ is
a) 36 sq units
b) 0 sq units
c) 39 sq units
d) 11 sq units
155. If $\vec{r} \times \vec{a}=\vec{b} \times \vec{a} ; \vec{r} \times \vec{b}=\vec{a} \times \vec{b} ; \vec{a} \neq 0 ; \vec{b} \neq 0 ; \vec{a} \neq \lambda \vec{b}, \vec{a}$ is not perpendicular to \vec{b}, then $\vec{r}=$
a) $\vec{a}-\vec{b}$
b) $\vec{a}+\vec{b}$
c) $\vec{a} \times \vec{b}+\vec{a}$
d) $\vec{a} \times \vec{b}+\vec{b}$
156. If $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ are three unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$, where $\overrightarrow{\mathbf{0}}$ is null vector, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is
a) -3
b) -2
c) $-\frac{3}{2}$
d) 0
157. The edges of a parallelopiped are unit length and are parallel to non-coplanar unit vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ such that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=\frac{1}{2}$ Then, the volume of the parallelopiped is
a) $\frac{1}{\sqrt{2}}$ cu unit
b) $\frac{1}{2 \sqrt{2}}$ cu unit
c) $\frac{\sqrt{3}}{2}$ cu unit
d) $\frac{1}{\sqrt{3}}$ cu unit
158. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})+\hat{\mathbf{\jmath}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})+\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})$, then length of $\overrightarrow{\mathbf{b}}$ is equal to
a) $\sqrt{12}$
b) $2 \sqrt{12}$
c) $3 \sqrt{14}$
d) $2 \sqrt{14}$
159. A vector $\overrightarrow{\mathbf{a}}$ has components $2 p$ and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense, if this respect to new system $\overrightarrow{\mathbf{a}}$ has components $p+1$ and 1 , then
a) $p=0$
b) $p=1$ or $p=\frac{-1}{2}$
c) $p=-1$
d) $p=1$ or $p=-1$
160. If the vectors $\overrightarrow{r_{1}}=a \hat{\imath}+\hat{\jmath}+\hat{k}, \overrightarrow{r_{2}}=\hat{\imath}+b \hat{\jmath}+\hat{k}, \overrightarrow{r_{3}}=\hat{\imath}+\hat{\jmath}+c \hat{k}(a \neq 1, b \neq 1, c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$, is
a) -1
b) 0
c) 1
d) None of these
161. A non-zero vectors $\overrightarrow{\mathbf{a}}$ is such that its projection along the vectors $\frac{\hat{\mathbf{1}}+\hat{\mathbf{\jmath}}}{\sqrt{2}}$ and $\frac{-\hat{\mathbf{1}}+\hat{\mathbf{\jmath}}}{\sqrt{2}}$ and $\overrightarrow{\mathbf{k}}$ are equal, then unit vector along $\overrightarrow{\mathbf{a}}$ is
a) $\frac{\sqrt{2} \hat{\mathbf{\jmath}}-\hat{\mathbf{k}}}{\sqrt{3}}$
b) $\frac{\hat{\mathbf{j}}-\sqrt{2} \hat{\mathbf{k}}}{\sqrt{3}}$
c) $\frac{\sqrt{2}}{\sqrt{3}} \hat{\mathbf{\jmath}}+\frac{\hat{\mathbf{k}}}{\sqrt{3}}$
d) $\frac{\hat{\boldsymbol{\jmath}}-\hat{\mathbf{k}}}{\sqrt{2}}$
162. Let P, Q, R and S be the points on the plane with position vectors $-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}, 4 \hat{\mathbf{i}}, 3 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ and $-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ respectively. The quadrilateral $P Q R S$ must be
a) Parallelogram, which is neither a rhombus nor a rectangle
b) Square
c) Rectangle, but not a square
d) Rhombus, but not a square
163. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors and $\Delta=\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} . \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} . \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|$, then
a) $\Delta=0$
b) $\Delta=1$
c) $\Delta=$ any non-zero value
d) None of these
164. If $\vec{a}=-2 \hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+5 \hat{\jmath}$ and $\vec{c}=4 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$, then the projection of $3 \vec{a}-2 \vec{b}$ on the axis of the vector \vec{c} is
a) 11
b) -11
c) 33
d) -33
165. A tetrahedron has vertices at $O(0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then, the angle between the faces $O A B$ and $A B C$ will be
a) $\cos ^{-1}\left(\frac{19}{35}\right)$
b) $\cos ^{-1}\left(\frac{7}{31}\right)$
c) 30°
d) 90°
166. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ and $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is equal to $\lambda(\vec{b} \times \vec{c})$, then $\lambda=$
a) 3
b) 4
c) 5
d) None of these
167. $\overrightarrow{\mathbf{a}} \times[\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]$ is equal to
a) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$
b) $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
c) $[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})] \overrightarrow{\mathbf{a}}$
d) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$
168. If \vec{a} is a unit vector such that $\vec{a} \times(\hat{\imath}+2 \hat{\jmath}+\hat{k})=\hat{\imath}-\hat{k}$, then $\vec{a}=$
a) $-\frac{1}{3}(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})$
b) \hat{j}
c) $\frac{1}{3}(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
d) $\hat{\imath}$
169. The medium $A D$ of the triangle $A B C$ is bisected at $E, B E$ meets $A C$ in F, then $A F: A C=$
a) $3 / 4$
b) $1 / 3$
c) $1 / 2$
d) $1 / 4$
170. Vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are inclined at an angle $\theta=120^{\circ}$. If $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=2$, then $\left[(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}) \times(3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}]^{2}\right.$ is equal to
a) 190
b) 275
c) 300
d) 192
171. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-coplanar vectors, then $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot[(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})]$ is
a) 0
b) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
172. If $\vec{a}=\hat{\imath}+\hat{\jmath}-\hat{k}, \vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and \vec{c} is a unit vector perpendicular to the vector \vec{a} and coplanar with \vec{a} and \vec{b}, then a unit vector \vec{d} perpendicular to both \vec{a} and \vec{c} is
a) $\frac{1}{\sqrt{6}}(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
b) $\frac{1}{\sqrt{2}}(\hat{\jmath}+\hat{k})$
c) $\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath})$
d) $\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{k})$
173. If G is the centroid of the $\triangle A B C$, then $\overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{B G}}+\overrightarrow{\mathbf{G C}}$ is equal to
a) $2 \overrightarrow{\mathbf{G B}}$
b) $2 \overrightarrow{\mathbf{G A}}$
c) $\overrightarrow{\boldsymbol{0}}$
d) $2 \overrightarrow{\mathbf{B G}}$
174. A non-zero vector $\overrightarrow{\mathbf{a}}$ is parallel to the line of intersection of the plane determined by vectors $\hat{\mathbf{i}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}$ and the plane determined by the vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}, \hat{\mathbf{i}}-\hat{\mathbf{k}}$. The angle between $\overrightarrow{\mathbf{a}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{4}$
d) None of these
175. If $|\overrightarrow{\mathbf{a}}|=5,|\overrightarrow{\mathbf{b}}|=6$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=-25$, then $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ is equal to
a) 25
b) $6 \sqrt{11}$
c) $11 \sqrt{5}$
d) $5 \sqrt{11}$
176. If $A B C D E$ is a pentagon, then
$\vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C$ is equal to
a) $4 \vec{A} C$
b) $2 \vec{A} C$
c) $3 \vec{A} C$
d) $5 \vec{A} C$
177. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then
a) $(\vec{a} \pm \vec{d})=\lambda(\vec{b} \pm \vec{c})$
b) $\vec{a}+\vec{c}=\lambda(\vec{b}+\vec{d})$
c) $(\vec{a}-\vec{c})=\lambda(\vec{c}+\vec{d})$
d) None of these
178. $\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))$ equals
a) $(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$
b) $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$
c) $(\vec{b} \cdot \vec{b})(\vec{a} \times \vec{b})$
d) $(\vec{b} \cdot \vec{b})(\vec{b} \times \vec{a})$
179. In a quadrilateral $A B C D, \vec{A} B+\vec{D} C=$
a) $\vec{A} B+\vec{C} B$
b) $\vec{A} C+\vec{B} D$
c) $\vec{A} C+\vec{D} B$
d) $\overrightarrow{A D}-\vec{C} B$
180. Let $\vec{a}=x \hat{\imath}+y \hat{\imath}+z \hat{k}, \vec{b}=\hat{\jmath}$. The value of \vec{c} for which $\vec{a}, \vec{b}, \vec{c}$ form a right handed system is
a) $y \hat{\imath}$
b) $-3 \hat{\imath}+x \hat{k}$
c) $\overrightarrow{0}$
d) $3 \hat{\imath}-x \hat{k}$
181. If the position vector of a point $\vec{a}+2 \vec{b}$ and \vec{a} divides $A B$ in the ratio $2: 3$, then the position vector of B, is
a) $2 \vec{a}-\vec{b}$
b) $\vec{b}-2 \vec{a}$
c) $\vec{a}-3 \vec{b}$
d) \vec{b}
182. The value of a so that the volume of parallelopiped formed by $\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+\hat{\mathbf{k}}$ becomes minimum is
a) -3
b) 3
c) $1 / \sqrt{3}$
d) $\sqrt{3}$
183. A vector of magnitude 12 units perpendicular to the plane containing the vectors $4 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $-8 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
b) $8 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
c) $8 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
d) $8 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
184. Let the unit vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be perpendicular to each other and the unit vector $\overrightarrow{\mathbf{c}}$ be inclined at an angle θ to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. If $\overrightarrow{\mathbf{c}}=\alpha, \overrightarrow{\mathbf{a}}+\beta, \overrightarrow{\mathbf{b}}+\gamma(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$, where α, β, γ are scalars, then
a) $\alpha=\cot \theta, \beta=\sin \theta, \gamma^{2}=\cos 2 \theta$
b) $\alpha=\cos \theta, \beta=\cos \theta, \gamma^{2}=\cos 2 \theta$
c) $\alpha=\cos \theta, \beta=\sin \theta, \gamma^{2}=\cos 2 \theta$
d) $\alpha=\sin \theta, \beta=\cos \theta, \gamma^{2}=\cos 2 \theta$
185. If the volume of the parallelopiped with $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ as coterminous edges is 40 cu units, then the volume of the parallelopiped having $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ as coterminous edges inn cubic units is
a) 80
b) 120
c) 160
d) 40
186. Let two non-collinear unit vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ from and acute angle. A point P moves so that at any time t the position vector $\overrightarrow{\mathbf{O P}}$ (where O is the origin) is given by $\hat{\mathbf{a}} \cos t+\hat{\mathbf{b}} \sin t$. When P is farthest form origin O, let M be the length of $\overrightarrow{\mathbf{O P}}$ and $\widehat{\mathbf{u}}$ be the unit vector along $\overrightarrow{\mathbf{O P}}$ Then,
a) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$ and $M=(1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
b) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}-\hat{\mathbf{b}}}{|\hat{\mathbf{a}}-\hat{\mathbf{b}}|}$ and $M=(1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
c) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$ and $M=(1+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
d) $\widehat{\mathbf{u}}=\frac{\hat{\mathbf{a}}-\hat{\mathbf{b}}}{|\hat{\mathbf{a}}-\hat{\mathbf{b}}|}$ and $M=(1+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1 / 2}$
187. The position vector of midpoint lying on the line joining the points whose position vectors are $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$, is
a) $\hat{\mathbf{j}}$
b) $\hat{\mathbf{i}}$
c) $\hat{\mathbf{k}}$
d) $\overrightarrow{0}$
188. If A, B, C are vertices of a triangle whose position vectors are \vec{a}, \vec{b} and \vec{c} respectively and G is the centroid of $\triangle A B C$, then $\vec{G} A+\vec{G} B+\vec{G} C$, is
a) $\overrightarrow{0}$
b) $\vec{a}+\vec{b}+\vec{c}$
c) $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
d) $\frac{\vec{a}-\vec{b}-\vec{c}}{3}$
189. A non-zero vector $\overrightarrow{\mathbf{a}}$ is parallel to the line of intersection of the plane determined by the vectors $\hat{\mathbf{i}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}$ and the plane determined by the vectors $\hat{\mathbf{i}}-\hat{\mathbf{j}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$. The angle between $\overrightarrow{\mathbf{a}}$ and $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{4}$
190. If the planes $\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}-\lambda \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=0$ and $\overrightarrow{\mathbf{r}} \cdot(\lambda \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}})=5$ are perpendicular to each other, then the value of $\lambda^{2}+\lambda$ is
a) 0
b) 2
c) 1
d) 3
191. In $\triangle A B C$, if $2 \overrightarrow{\mathbf{A C}}=3 \overrightarrow{\mathbf{C B}}$, then $2 \overrightarrow{\mathbf{0 A}}+3 \overrightarrow{\mathbf{0 B}}$ equals
a) $5 \overrightarrow{\mathbf{O C}}$
b) $-\overrightarrow{\mathbf{O C}}$
c) $\overrightarrow{\mathbf{O C}}$
d) $4 \overrightarrow{\mathbf{O C}}$
192. If the vectors $\left(\sec ^{2} A\right) \hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\imath}+\left(\sec ^{2} B\right) \hat{\jmath}+\hat{k}, \hat{\imath}+\hat{\jmath}+\left(\sec ^{2} c\right) \hat{k}$ are coplanar, then the value of $\operatorname{cosec}^{2} A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C$ is
a) 1
b) 2
c) 3
d) None of these
193. If the points whose position vectors are $2 \hat{\imath}+\hat{\jmath}+\hat{k}, 6 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $14 \hat{\imath}-5 \hat{\jmath}+p \hat{k}$ are collinear, then $p=$
a) 2
b) 4
c) 6
d) 8
194. If $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta}$ and $\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}$ and $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are non-coplanar and $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}$ $+\vec{\delta}$ equals
a) $a \vec{\alpha}$
b) $b \vec{\delta}$
c) 0
d) $(a+b) \vec{\gamma}$
195. If the points with position vectors $20 \hat{\imath}+p \hat{\jmath}, 5 \hat{\imath}-\hat{\jmath}$ and $10 \hat{\imath}-13 \hat{\jmath}$ are collinear, then $p=$
a) 7
b) -37
c) -7
d) 37
196. If $[\vec{a} \vec{b} \vec{c}]=3$, then the volume (in cubic units) of the parallelopiped with $2 \vec{a}+\vec{b}, 2 \vec{b}+\vec{c}$ and $2 \vec{c}+\vec{a}$ as coterminus edges is
a) 15
b) 22
c) 25
d) 27
197. Le the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ be such that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=0$. Let P_{1} and P_{2} be planes determined by pair of vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}$ respectively. Then, the angle between P_{1} and P_{2} is
a) 0
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
198. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors then $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{a} \times \vec{c})}{\vec{c} \cdot(\vec{a} \times \vec{b})}$ is equal to
a) 0
b) 2
c) 1
d) None of these
199. Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ If $\overrightarrow{\mathbf{c}}$ is a vector such that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|\overrightarrow{\mathbf{c}}|$ and $|\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}|=2 \sqrt{2}$ and angle between $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is 30°, then $|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}|$ is
a) $\frac{3}{2}$
b) $\frac{2}{3}$
c) 2
d) $\frac{\sqrt{3}}{2}$
200. The area of the parallelogram whose diagonals are the vectors $2 \vec{a}-\vec{b}$ and $4 \vec{a}-5 \vec{b}$ where \vec{a} and \vec{b} are the unit vectors forming an angle of 45°, is
a) $3 \sqrt{2}$
b) $3 / \sqrt{2}$
c) $\sqrt{2}$
d) None of these
201. In a quadrilateral $A B C D$, the point P divides $D C$ in the ratio $1: 2 Q$ is the mid point of $A C$. If $\overrightarrow{\mathbf{A B}}+2 \overrightarrow{\mathbf{A D}}+$ $\overrightarrow{\mathbf{B C}}-2 \overrightarrow{\mathbf{D C}}=k \overrightarrow{\mathbf{P Q}}$, then k is equal to
a) -6
b) -4
c) 6
d) 4
202. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=4$ and $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|=2$, then $|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}$ is equal to
a) 6
b) 2
c) 20
d) 8
203. If $\vec{a} \vec{b} \vec{c}$ and $\vec{p}, \vec{q}, \vec{r}$ are reciprocal system of vectors, then $\vec{a} \times \vec{p}+\vec{b} \times \vec{q}+\vec{c} \times \vec{r}$ equals
a) $[\vec{a} \vec{b} \vec{c}]$
b) $(\vec{p}+\vec{q}+\vec{r})$
c) $\overrightarrow{0}$
d) $\vec{a}+\vec{b}+\vec{c}$
204. If the vectors $\overrightarrow{\mathbf{a}}=\left(c \log _{2} x\right) \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\left(\log _{2} x\right) \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\left(2 c \log _{2} x\right) \hat{\mathbf{k}}$ make an abtuse angle for any $x \in(0, \infty)$, then the interval of which c belongs
a) $\left(\frac{4}{3}, 0\right)$
b) $\left(-\infty,-\frac{4}{3}\right)$
c) $\left(\frac{3}{4}, 0\right)$
d) $\left(-\frac{3}{4}, 0\right)$
205. Let $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{c}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$ is
a) $2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}$
b) $2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k}$
c) $-2 \hat{\imath}+5 \hat{\jmath}+5 \hat{k}$
d) $2 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
206. The angle between the straight lines $\overrightarrow{\mathbf{r}}=(2-3 t) \hat{\mathbf{i}}+(1+2 t) \hat{\mathbf{j}}+(2+6 t) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{r}}=(1+4 s) \hat{\mathbf{i}}+(2-s) \hat{\mathbf{j}}+$ $(8 s-1) \hat{\mathbf{k}}$ is
a) $\cos ^{-1}\left(\frac{\sqrt{41}}{34}\right)$
b) $\cos ^{-1}\left(\frac{21}{34}\right)$
c) $\cos ^{-1}\left(\frac{43}{63}\right)$
d) $\cos ^{-1}\left(\frac{34}{63}\right)$
207. A vector which makes equal angles with the vectors $\frac{1}{3}(\hat{\imath}-2 \hat{\jmath}+2 \hat{k}), \frac{1}{5}(-4 \hat{\imath}-3 \hat{k})$ and $\hat{\jmath}$ is
a) $5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
b) $-5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
c) $5 \hat{\imath}-\hat{\jmath}+5 \hat{k}$
d) $5 \hat{\imath}+\hat{\jmath}-5 \hat{k}$
208. In a $\triangle A B C$, if $\vec{A} B=\hat{\imath}-7 \hat{\jmath}+\hat{k}$ and $\vec{B} C=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$, then $|\vec{C} A|=$
a) $\sqrt{61}$
b) $\sqrt{52}$
c) $\sqrt{51}$
d) $\sqrt{41}$
209. If $\hat{l}, \hat{\jmath}, \hat{k}$ are unit orthonormal vectors and \vec{a} is a vector, if $\vec{a} \times \vec{r}=\hat{\jmath}$, then $\vec{a} \cdot \vec{r}$ is
a) 0
b) 1
c) -1
d) Arbitrary scalar
210. If the scalar product of the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ with the unit vector along $m \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is equal to 2 , then one of the value of m is
a) 3
b) 4
c) 5
d) 6
211. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non-collinear vectors. If there exists scalars α, β such that $\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$, then
a) $\alpha=\beta \neq 0$
b) $\alpha+\beta=0$
c) $\alpha=\beta=0$
d) $\alpha \neq \beta$
212. The vector $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+m \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(m+1) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+m \hat{\mathbf{k}}$ are coplanar, if m is equal to
a) 1
b) 4
c) 3
d) No value of m for which vectors are coplanar
213. The unit vector in $X O Y$ plane and making angles 45° and 60° respectively with $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $b=0 \hat{\imath}+\hat{\jmath}-\hat{k}$, is
a) $-\frac{1}{\sqrt{2}} \hat{\imath}+\frac{1}{\sqrt{2}} \hat{k}$
b) $\frac{1}{\sqrt{2}} \hat{\imath}-\frac{1}{\sqrt{2}} \hat{k}$
c) $\frac{1}{3 \sqrt{2}} \hat{\imath}+\frac{4}{3 \sqrt{2}} \hat{\jmath}+\frac{1}{3 \sqrt{2}} \hat{k}$
d) None of these
214. The value of λ, for which the four points
$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ are coplanar, is
a) 2
b) 4
c) 6
d) 8
215. If $|\vec{a}|=|\vec{b}|$, then
a) $(\vec{a}+\vec{b})$ is parallel to $\vec{a}-\vec{b}$
b) $\vec{a}+\vec{b}$ is \perp to $\vec{a}-\vec{b}$
c) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=2|\vec{a}|^{2}$
d) None of these
216. The area of a parallelogram whose adjacent sides are given by the vectors
$\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$ and $-3 \hat{\mathbf{\imath}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ (in sq unit), is
a) $\sqrt{180}$ sq unit
b) $\sqrt{140}$ sq unit
c) $\sqrt{80}$ sq unit
d) $\sqrt{40}$ sq unit
217. If P is any point with in a triangle $A B C$, then $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{C P}}$ is equal to
a) $\overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{C B}}$
b) $\overrightarrow{\mathbf{B C}}+\overrightarrow{\mathbf{B A}}$
c) $\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{A B}}$
d) $\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{B A}}$
218. Let the unit vectors \vec{a} and \vec{b} be perpendicular to each other and the unit vector \vec{c} be inclined at an angle θ to both \vec{a} and \vec{b}. If $\vec{c}=x \vec{a}+y \vec{b}+\vec{c}(\vec{a} \times \vec{b})$, then
a) $x=\cos \theta, y=\sin \theta, z=\cos 2 \theta$
b) $x=\sin \theta, y=\cos \theta, z=-\cos 2 \theta$
c) $x=y=\cos \theta, z^{2}=\cos 2 \theta$
d) $x=y=\cos \theta, z^{2}=-\cos 2 \theta$
219. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} . \vec{b}=0$ and $\vec{a}+\vec{b}=\vec{c}$, then
a) $|\vec{a}|^{2}+|\vec{b}|^{2}=|\vec{c}|^{2}$
b) $|\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}$
c) $|\vec{b}|^{2}=|\vec{a}|^{2}=|\vec{c}|^{2}$
d) None of these
220. If $O A C B$ is a parallelogram with $\vec{O} C=\vec{a}$ and $\vec{A} B=\vec{b}$, then $\vec{O} A=$
a) $\vec{a}+\vec{b}$
b) $\vec{a}-\vec{b}$
c) $\frac{1}{2}(\vec{b}-\vec{a})$
d) $\frac{1}{2}(\vec{a}-\vec{b})$
221. Five points given by A, B, C, D, E are in plane. Three forces $\overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{A D}}$ and $\overrightarrow{\mathbf{A E}}$ act a A and three forces $\overrightarrow{\mathbf{C B}}, \overrightarrow{\mathbf{D B}}, \overrightarrow{\mathbf{E B}}$ act at B. Then, their resultant is
a) $2 \overrightarrow{\mathbf{A C}}$
b) $3 \overrightarrow{\mathbf{A B}}$
c) $3 \overrightarrow{\mathbf{D B}}$
d) $2 \overrightarrow{\mathbf{B C}}$
222. The vector $\overrightarrow{\mathbf{a}}=\alpha \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}$ lies in the plane of the vectors $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\vec{c}=\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and bisects the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ Then, which one of the following gives possible value of α and β ?
a) $\alpha=1, \beta=1$
b) $\alpha=2, \beta=2$
c) $\alpha=1, \beta=2$
d) $\alpha=2, \beta=1$
223. A unit vector perpendicular to the plane of $\vec{a}=2 \hat{\imath}-6 \hat{\jmath}-3 \hat{k}, \vec{b}=4 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ is
a) $\frac{4 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}-\hat{\mathbf{k}}}{\sqrt{26}}$
b) $\frac{2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}}{7}$
c) $\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{\jmath}}+6 \hat{\mathbf{k}}}{7}$
d) $\frac{2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}}{7}$
224. Vectors \vec{a} and \vec{b} are inclined at angle $\theta=120^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to
a) 300
b) 325
c) 275
d) 225
225. If $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=4$ then $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}) \cdot(2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ is equal to
a) 12
b) 2
c) 0
d) -12
226. The volume (in cubic unit) of the tetrahedron with edges $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ is
a) 4
b) $\frac{2}{3}$
c) $\frac{1}{6}$
d) $\frac{1}{3}$
227. If $|\vec{a} \times \vec{b}|=4,|\vec{a} \cdot \vec{b}|=2$, then $|\vec{a}|^{2}+|\vec{b}|^{2}=$
a) 6
b) 2
c) 20
d) 8
228. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three unit vectors such that $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\frac{1}{2} \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ being non-parallel. If θ_{1} is the angle between $\overrightarrow{\mathbf{a}}$ and θ_{2} is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$, then
a) $\theta_{1}=\frac{\pi}{6}, \theta_{2}=\frac{\pi}{3}$
b) $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{6}$
c) $\theta_{1}=\frac{\pi}{2}, \theta_{2}=\frac{\pi}{3}$
d) $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{2}$
229. If P, Q, R are the mid-points of the sides $A B, B C$ and $C A$ of $\triangle A B C$ are O is a point within the triangle, then $\vec{O} A+\vec{O} B+\vec{O} C=$
a) $2(\vec{O} P+\vec{O} Q+\vec{O} R)$
b) $\vec{O} P+\vec{O} Q+\vec{O} R$
c) $4(\vec{O} P+\vec{O} Q+\vec{O} R)$
d) $6(\vec{O} P+\vec{O} Q+\vec{O} R)$
230. $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}$ is equal to
a) $\overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2}$
b) $\overrightarrow{\mathbf{a}}^{2}+\overrightarrow{\mathbf{b}}^{2}$
c) 1
d) $2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
231. If $\overrightarrow{\mathbf{a}}$ is a vector of magnitude 50 , collinear with the vector $\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-\frac{15}{2} \hat{\mathbf{k}}$ and makes an acute angle with the positive direction of z-axis, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $-24 \hat{\mathbf{i}}+32 \hat{\mathbf{j}}+30 \hat{\mathbf{k}}$
b) $24 \hat{\mathbf{i}}-32 \hat{\mathbf{j}}-30 \hat{\mathbf{k}}$
c) $12 \hat{\mathbf{i}}-16 \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$
d) $-12 \hat{\mathbf{i}}+16 \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$
232. If $A B C D E F$ is a regular hexagon with $\vec{A} B=\vec{a}$ and $\vec{B} C=\vec{b}$, then $\vec{C} E$ equals
a) $\vec{b}-\vec{a}$
b) $-\vec{b}$
c) $\vec{b}-2 \vec{a}$
d) $\vec{b}+\vec{a}$
233. If the vectors $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $m \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ are coplanar, then the value of m is
a) $\frac{5}{8}$
b) $\frac{8}{5}$
c) $-\frac{7}{4}$
d) $\frac{2}{3}$
234. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the three vectors mutually perpendicular to each other to form a right handed system and $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$, then $[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$ is equal to
a) 0
b) -24
c) 3600
d) -215
235. The value of $\hat{\mathbf{i}} \times(\hat{\mathbf{j}} \times \hat{\mathbf{k}})+\hat{\mathbf{j}} \times(\hat{\mathbf{k}} \times \hat{\mathbf{i}})+\hat{\mathbf{k}} \times(\hat{\mathbf{i}} \times \hat{\mathbf{j}})$ is
a) $\overrightarrow{0}$
b) \hat{i}
c) $\hat{\mathbf{j}}$
d) $\hat{\mathbf{k}}$
236. The number of the distinct real values of λ, for which the vectors $-\lambda^{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\lambda^{2} \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda^{2} \hat{\mathbf{k}}$ are coplanar, is
a) Zero
b) One
c) Two
d) Three
237. A particle is acted on by a force of 6 units in the direction $9 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and is displaced from the point $3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$ to the point $7 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$. The work done is
a) 18
b) 15
c) 12
d) 9
238. If $\widehat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ unit vectors and θ is the acute angle between them, then $2 \widehat{\mathbf{u}} \times 3 \hat{\mathbf{v}}$ is a unit vector for
a) Exactly two values of θ
b) More than two values of θ
c) No value of θ
d) Exactly one value of θ
239. The total work done by two forces $\overrightarrow{\mathbf{F}}_{1}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{F}}_{2}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ acting on a particle when it is displaced from the point $3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\mathbf{k}$ to $5 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
a) 8 units
b) 9 units
c) 10 units
d) 11 units
240. In a regular hexagon $A B C D E F, A \vec{B}=\vec{a}, B \vec{C}=\vec{b}$ and $\vec{C} D=\vec{c}$. Then, $\vec{A} E=$
a) $\vec{a}+\vec{b}+\vec{c}$
b) $2 \vec{a}+\vec{b}+\vec{c}$
c) $\vec{b}+\vec{c}$
d) $\vec{a}+2 \vec{b}+2 \vec{c}$
241. If $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \hat{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{c}=3 \hat{\imath}+\hat{\jmath}$, then $\vec{a}+t \vec{b}$ is perpendicular to \vec{c}, if t is equal to
a) 8
b) 4
c) 6
d) 2
242. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be three non-coplanar vectors, and let $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}$ and $\overrightarrow{\mathbf{r}}$ be vectors defined by the relations
$\overrightarrow{\mathbf{p}}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}, \overrightarrow{\mathbf{q}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}$ and $\overrightarrow{\mathbf{r}}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}$
Then, the value of the expression
$(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{p}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{q}}+(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{r}}$ is equal to
a) 0
b) 1
c) 2
d) 3
243. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-zero, non-coplanar vectors and
$\overrightarrow{\mathbf{b}}_{1}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}} \quad, \overrightarrow{\mathbf{b}}_{2}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}$
And
$\overrightarrow{\mathbf{c}}_{1}+\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}+\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$
$\overrightarrow{\mathbf{c}}_{2}+\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}_{1}}{\left|\overrightarrow{\mathbf{b}}_{1}\right|^{2}} \overrightarrow{\mathbf{b}}_{1}$,
$\overrightarrow{\mathbf{c}}_{3}=\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}_{2}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$,
$\overrightarrow{\mathbf{c}}_{4}=\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{c}}|^{2}} \overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{b}}|^{2}} \overrightarrow{\mathbf{b}}_{1}$
Then, which of the following is a set of mutually orthogonal vectors?
a) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{1}\right\}$
b) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{2}\right\}$
c) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{c}}_{3}\right\}$
d) $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{2}, \overrightarrow{\mathbf{c}}_{4}\right\}$
244. If $\overrightarrow{\mathbf{a}}$ is vector perpendicular to both $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ then
a) $\overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
c) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
d) $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
245. If G is the centroid of $\triangle A B C$ and G^{\prime} is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$, then $A \vec{A}^{\prime}+B \vec{B}^{\prime}+C \vec{C}^{\prime}=$
a) $2 G \vec{G}^{\prime}$
b) $3 G \vec{G}^{\prime}$
c) $G \vec{G}^{\prime}$
d) $4 G \vec{G}^{\prime}$
246. If $\vec{u}=\vec{a}-\vec{b}, \vec{v}=\vec{a}+\vec{b}$ and $|\vec{a}|=|\vec{b}|=2$, then $|\vec{u} \times \vec{v}|$ is
a) $2 \sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
b) $2 \sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$
c) $\sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
d) $\sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$
247. If the vectors $\vec{a}=\left(2 \log _{3} x, a\right)$ and $\vec{b}=\left(-3, a \log _{3} x, \log _{3} x\right)$ are inclined at an acute angle, then
a) $a=0$
b) $a<0$
c) $a>0$
d) None of these
248. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{k}}-\hat{\mathbf{i}}$. If $\overrightarrow{\mathbf{d}}$ is a unit vectors such that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}=0=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$, then $\overrightarrow{\mathbf{d}}$ is (are)
a) $\pm \frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}$
b) $\pm \frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{6}}$
c) $\pm \frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
d) $\pm \hat{\mathbf{k}}$
249. If \vec{a} is a vector of magnitude 50 collinear with the vector $\vec{b}=6 \hat{\imath}-8 \hat{\jmath}-\frac{15}{2} \hat{k}$ and makes an acute angle with the positive direction of z-axis, then $\vec{a}=$
a) $24 \hat{\imath}-32 \hat{\jmath}-30 \hat{k}$
b) $-24 \hat{\imath}+32 \hat{\jmath}+30 \hat{k}$
c) $12 \hat{\imath}-16 \hat{\jmath}-15 \hat{k}$
d) None of these
250. The work done by the force $\vec{F}=2 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ in moving a particle from $A(3,4,5)$ to $B(1,2,3)$ is
a) 0
b) $3 / 2$
c) -4
d) -2
251. Let the pairs, \vec{a}, \vec{b} and \vec{c}, \vec{d} each determines a plane. Then the planes are parallel, if
a) $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=0$
b) $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=0$
c) $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$
d) $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$
252. Magnitude of vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are $3,4,5$ respectively. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ are mutually perpendicular, then magnitude of $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ is
a) $4 \sqrt{2}$
b) $3 \sqrt{2}$
c) $5 \sqrt{2}$
d) $3 \sqrt{3}$
253. If $A B C D$ be a parallelogram and M be the point of intersection of the diagonals. If O is any point, then
$\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{O D}}$ is
a) $3 \overrightarrow{\mathbf{O M}}$
b) $4 \overrightarrow{\mathbf{O M}}$
c) $\overrightarrow{\mathbf{O M}}$
d) $2 \overrightarrow{\mathbf{O M}}$
254. The position vectors of the point A and B with respect to O are $2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$. The length of
the internal bisector of $\angle B O A$ of $\triangle A O B$ is
a) $\frac{\sqrt{136}}{9}$
b) $\frac{\sqrt{136}}{3}$
c) $\frac{20}{3}$
d) $\frac{\sqrt{217}}{9}$
255. Let $\overrightarrow{\mathrm{A}}=\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=\hat{\mathbf{1}}, \overrightarrow{\mathbf{C}}=c_{1} \hat{\mathbf{\imath}}+c_{2} \hat{\mathbf{\jmath}}+c_{3} \hat{\mathbf{k}}$. If $c_{2}=-1$ and $c_{3}=1$, then to make three vectors coplanar
a) $c_{1}=0$
b) $c_{1}=1$
c) $c_{1}=2$
d) No value of c_{1} can be found
256. If, in a right triangle $A B C$, the hypotenuse $A B=p$, then
$A \vec{B} \cdot A \vec{C}+B \vec{C} \cdot B \vec{A}+C \vec{A} \cdot C \vec{B}$ is equal to
a) $2 p^{2}$
b) $\frac{p^{2}}{2}$
c) p^{2}
d) None of these
257. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then
a) $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
b) $|\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}$
c) $\vec{a}+\vec{b}=\vec{c}$
d) None of these
258. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=4$ and $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|=2$, then $|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}$ is equal to
a) 2
b) 6
c) 8
d) 20
259. If $A B C D E F$ is a regular hexagon, then $\vec{A} D+\vec{E} B+\vec{F} C$ equals
a) $2 \vec{A} B$
b) $\overrightarrow{0}$
c) $3 \vec{A} B$
d) $4 \vec{A} B$
260. If $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$, then the volume of the parallelopiped with coterminous edges $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}$ is
a) 4
b) 5
c) 63
d) 8
261. If $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=1$, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
b) $\hat{\mathbf{i}}-\hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
262. If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is
a) 2
b) $2 \sqrt{2}$
c) 4
d) None of these
263. If A, B, C, D, E are five coplanar points, then $\overrightarrow{\mathbf{D A}}+\overrightarrow{\mathbf{D B}}+\overrightarrow{\mathbf{D C}}+\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{C E}}$ is equal to
a) $\overrightarrow{\mathbf{O E}}$
b) $3 \overrightarrow{\mathbf{D E}}$
c) $2 \overrightarrow{\mathrm{DE}}$
d) $4 \overrightarrow{\mathbf{E D}}$
264. If $\vec{a} \cdot \hat{\imath}=\vec{a}(\hat{\imath}+\hat{\jmath})=\vec{a} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=1$, then $\vec{a}=$
a) $\overrightarrow{0}$
b) $\hat{\imath}$
c) $\hat{\jmath}$
d) $\hat{\imath}+\hat{\jmath}+\hat{k}$
265. If the position vectors of the vertices of $\triangle A B C$ are $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, then the triangle $A B C$ is
a) Right angled and isosceles
b) Right angled, but not isosceles
c) Isosceles but not right angled
d) Equilateral
266. The volume of the parallelopiped whose coterminous edges are $\hat{\mathbf{\imath}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{\imath}}-5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, is
a) 4 cu unit
b) 3 cu unit
c) 2 cu unit
d) 8 cu unit
267. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then
a) \vec{a} is parallel to \vec{b}
b) $\vec{a} \perp \vec{b}$
c) $|\vec{a}|=|\vec{b}|$
d) None of these
268. If $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$, then angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $(\overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}, \overrightarrow{\mathbf{b}} \neq \overrightarrow{\mathbf{0}})$
a) $\frac{\pi}{3}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{2}$
269. If the vectors $\alpha \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}+\gamma \hat{\mathbf{k}}(\alpha, \beta, \gamma \neq 1)$ are coplanar, then the value of $\frac{1}{1-\alpha}+\frac{1}{1-\beta}-\frac{1}{1-\gamma}$ is
a) -1
b) 0
c) 1
d) $1 / 2$
270. The unit vector in $Z O X$ plane and making angle 45° and 60° respectively with $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=0 \hat{\mathbf{i}}+$ $\hat{\mathbf{j}}-\hat{\mathbf{k}}$, is
a) $-\frac{1}{\sqrt{2}} \hat{\mathbf{i}}+\frac{1}{\sqrt{2}} \hat{\mathbf{k}}$
b) $\frac{1}{\sqrt{2}} \hat{\mathbf{i}}-\frac{1}{\sqrt{2}} \hat{\mathbf{k}}$
c) $\frac{1}{3 \sqrt{2}} \hat{\mathbf{i}}+\frac{4}{3 \sqrt{2}} \hat{\mathbf{j}}+\frac{1}{3 \sqrt{2}} \hat{\mathbf{k}}$
d) None of these above
271. If the vectors
$\vec{a}=\hat{\imath}+a \hat{\jmath}+a^{2} \hat{k}, \vec{b}=\hat{\imath}+b \hat{\jmath}+b^{2} \hat{k}, \vec{c}=\hat{\imath}+c \hat{\jmath}+c^{2} \hat{k}$
are three non-coplanar vectors and $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$, then the value of $a b c$ is
a) 0
b) 1
c) 2
d) -1
272. Let $\widehat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ are unit vectors such that $\widehat{\mathbf{u}} \cdot \hat{\mathbf{v}}=0$ If $\hat{\mathbf{r}}$ is any vector coplanar with $\widehat{\mathbf{u}}$ and $\hat{\mathbf{v}}$, then the magnitude of the vector $\overrightarrow{\mathbf{r}} \times(\widehat{\mathbf{u}} \times \hat{\mathbf{v}})$ is
a) 0
b) 1
c) $|\overrightarrow{\mathbf{r}}|$
d) $2|\overrightarrow{\mathbf{r}}|$
273. The projection of the vector $\hat{\imath}-2 \hat{\jmath}+\hat{k}$ on the vector $4 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$, is
a) $\frac{5 \sqrt{6}}{10}$
b) $\frac{19}{9}$
c) $\frac{9}{19}$
d) $\frac{\sqrt{6}}{19}$
274. $\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})}+\frac{\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}$ is equal to
a) 1
b) 2
c) 0
d) ∞
275. If $\overrightarrow{\mathbf{u}}_{1}$ and $\overrightarrow{\mathbf{u}}_{2}$ be vectors of unit length and θ be the angle between them, then $\frac{1}{2}\left|\overrightarrow{\mathbf{u}}_{2}-\overrightarrow{\mathbf{u}}_{1}\right|$ is
a) $\sin \theta$
b) $\sin \frac{\theta}{2}$
c) $\cos \theta$
d) $\cos \frac{\theta}{2}$
276. Let $\vec{b}=4 \hat{\imath}+3 \hat{\jmath}$ be two vectors perpendicular to each other in the $x y$-plane. Then, a vector in the same plane having projections 1 and 2 along \vec{b} and \vec{c}, respectively, is
a) $\hat{\imath}+2 \hat{\jmath}$
b) $2 \hat{\imath}-\hat{\jmath}$
c) $2 \hat{\imath}+\hat{\jmath}$
d) None of these
277. Find the equation of the perpendicular drown from the origin to the plane $2 x+4 y-5 z=10$
a) $\overrightarrow{\mathbf{r}}=(2 k, 5 k, 4 k) k \in R$
b) $\overrightarrow{\mathbf{r}}=(2 k, 4 k,-5 k) k \in R$
c) $\overrightarrow{\mathbf{r}}=(2 k, 4 k, 5 k) k \in R$
d) None of these
278. The vector \vec{a} coplanar with the vectors $\hat{\imath}$ and $\hat{\jmath}$, perpendicular to the vector $\vec{b}=4 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}$ such that $|\vec{a}|=|\vec{b}|$ is
a) $\sqrt{2}(3 \hat{\imath}+4 \hat{\jmath})$ or, $-\sqrt{2}(3 \hat{\imath}+4 \hat{\jmath})$
b) $\sqrt{2}(4 \hat{\imath}+3 \hat{\jmath})$ or, $-\sqrt{2}(4 \hat{\imath}+3 \hat{\jmath})$
c) $\sqrt{3}(4 \hat{\imath}+5 \hat{\jmath})$ or, $-\sqrt{3}(4 \hat{\imath}+5 \hat{\jmath})$
d) $\sqrt{3}(5 \hat{\imath}+4 \hat{\jmath})$ or, $-\sqrt{3}(5 \hat{\imath}+4 \hat{\jmath})$
279. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be vectors with magnitude 3,4 and 5 respectively and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is
a) 47
b) 25
c) 50
d) -25
280. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the position vectors of the vertices of an equilateral triangle, whose orthocenter is at the origin, then
a) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}}^{2}=\overrightarrow{\mathbf{b}}^{2}+\overrightarrow{\mathbf{c}}^{2}$
c) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$
d) None of these
281. If $4 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ are the position vectors of the vertices A, B and C respectively of triangle $A B C$. The position vector of the point where the bisector of angle A meets $B C$ is
a) $\frac{1}{2}(6 \hat{\mathbf{i}}+13 \hat{\mathbf{j}}+18 \hat{\mathbf{k}})$
b) $\frac{2}{3}(6 \hat{\mathbf{i}}+12 \hat{\mathbf{j}}-8 \hat{\mathbf{k}})$
c) $\frac{1}{3}(-6 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-9 \hat{\mathbf{k}})$
d) $\frac{2}{3}(-6 \hat{\mathbf{i}}-12 \hat{\mathbf{j}}+8 \hat{\mathbf{k}})$
282. If the vectors $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$ are collinear and $|\vec{b}|=21$, then $\vec{b}=$
a) $\pm 3(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
b) $\pm(2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k})$
c) $\pm 21(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
d) $\pm 21(\hat{\imath}+\hat{\jmath}+\hat{k})$
283. The value of $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$, where $|\vec{a}|=1,|\vec{b}|=5,|\vec{c}|=3$, is
a) 0
b) 1
c) 6
d) None of these
284. The distance between the line $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and the plane $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ is
a) $\frac{10}{9}$
b) $\frac{3}{10}$
c) $\frac{10}{3 \sqrt{3}}$
d) $\frac{10}{9}$
285. In a parallelogram $A B C D,|\vec{A} B|=a,|\vec{A} D|=b$ and $|\vec{A} C|=c$. Then, $\vec{D} B \cdot \vec{A} B$ has the value
a) $\frac{3 a^{2}+b^{2}-c^{2}}{2}$
b) $\frac{a^{2}+3 b^{2}-c^{2}}{2}$
c) $\frac{a^{2}-b^{2}+3 c^{2}}{2}$
d) $\frac{a^{2}+3 b^{2}+c^{2}}{2}$
286. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, then the angle between the vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ is
a) 60°
b) 90°
c) 45°
d) 55°
287. If $\vec{a}=\hat{\imath}+\hat{\jmath}-\hat{k}, \vec{b}=-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\vec{c}=-\hat{\imath}+2 \hat{\jmath}-\hat{k}$, then a unit vector normal to the vectors $\vec{a}+\vec{b}$ and $\vec{b}-\vec{c}$ is
a) $\hat{\imath}$
b) $\hat{\jmath}$
c) \hat{k}
d) None of these
288. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and three vectors such that $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ and the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is $\frac{\pi}{2}$ then
a) $a^{2}=b^{2}+c^{2}$
b) $b^{2}=c^{2}+a^{2}$
c) $c^{2}=a^{2}+b^{2}$
d) $2 a^{2}-b^{2}=c^{2}$
289. If the position vector of A with respect to O is $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{A B}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$

Then the position vector of B with respect to O is
a) $-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
b) $6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
c) $\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
290. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{\imath}}+9 \hat{\mathbf{\jmath}}+11 \hat{\mathbf{k}}$, then the area of the parallelogram having diagonals $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ is
a) $4 \sqrt{6}$
b) $\frac{1}{2} \sqrt{21}$
c) $\frac{\sqrt{6}}{2}$
d) $\sqrt{6}$
291. The angle between the vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{a}}=(1,1,4)$ and $\overrightarrow{\mathbf{b}}=(1,-1,4)$ is
a) 90°
b) 45°
c) 30°
d) 15°
292. Area of rhombus is, where diagonals are $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
a) $\sqrt{21.5}$
b) $\sqrt{31.5}$
c) $\sqrt{28.5}$
d) $\sqrt{38.5}$
293. If the vectors $\hat{\imath}-2 x \hat{\jmath}-3 y \hat{k}$ and $\hat{\imath}+3 x \hat{\jmath}+2 y \hat{k}$ are orthogonal to each other, then the locus of the point (x, y) is
a) A circle
b) An ellipse
c) A parabola
d) A straight line
294. If the position vectors of the vertices of a triangle are $2 \hat{\imath}-\hat{\jmath}+\hat{k}, \hat{\imath}-3 \hat{\jmath}-5 \hat{k}$ and $3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}$, then the triangle is
a) Equilateral
b) Isosceles
c) Right angled isosceles
d) Right angled
295. The two variable vectors $3 x \hat{\mathbf{i}}+y \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $x \hat{\mathbf{i}}-4 y \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ are orthogonal to each other, then the locus of (x, y) is
a) Hyperbola
b) Circle
c) Straight line
d) Ellipse
296. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$, then $|\vec{a}-\vec{b}|$ is equal to
a) 1
b) $\sqrt{2}$
c) $\sqrt{3}$
d) None of these
297. The angle between the vectors $2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ and $2 \hat{\imath}-\hat{\jmath}-\hat{k}$ is
a) $\pi / 2$
b) $\pi / 4$
c) $\pi / 3$
d) None of these
298. A unit vector coplanar with $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and perpendicular to $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\left(\frac{\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}}{\sqrt{2}}\right)$
b) $\left(\frac{\hat{\mathbf{1}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}\right)$
c) $\left(\frac{\hat{\mathbf{1}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}}{\sqrt{6}}\right)$
d) $\left(\frac{\hat{\mathbf{1}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{6}}\right)$
299. The length of the longer diagonal of the parallelogram constructed on $5 \vec{a}+2 \vec{b}$ and $\vec{a}-3 \vec{b}$ if it is given that $|\vec{a}|=2 \sqrt{2},|\vec{b}|=3$ and angle between \vec{a} and \vec{b} is $\pi / 4$, is
a) 15
b) $\sqrt{113}$
c) $\sqrt{593}$
d) $\sqrt{369}$
300. The position vector of the point where the line $\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}+t(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})$ meets the plane $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=$ 5 is
a) $5 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
c) $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
d) $5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
301. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then the angle between \vec{a} and \vec{b} is
a) $\pi / 6$
b) $2 \pi / 3$
c) $5 \pi / 3$
d) $\pi / 3$
302. If $\overrightarrow{\mathbf{a}}$ is perpendicular to $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}|\overrightarrow{\mathbf{a}}|=2,|\overrightarrow{\mathbf{b}}|=3,|\overrightarrow{\mathbf{c}}|=4$ and the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is $\frac{2 \pi}{3}$, then $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ is equal to
a) $4 \sqrt{3}$
b) $6 \sqrt{3}$
c) $12 \sqrt{3}$
d) $18 \sqrt{3}$
303. The position vectors of the points A, B, C are $(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}),(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $(\hat{\mathbf{i}}+4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ respectively. These points
a) Form an isosceles triangle
b) Form a right angled triangle
c) Are collinear
d) Form a scalene triangle
304. If $\vec{a}=4 \hat{\imath}+6 \hat{\jmath}$ and $\vec{b}=3 \hat{\jmath}+4 \hat{k}$, then the vector form of component of \vec{a} along \vec{b} is
a) $\frac{18}{10 \sqrt{3}}(3 \hat{\jmath}+4 \hat{k})$
b) $\frac{18}{25}(3 \hat{\jmath}+4 \hat{k})$
c) $\frac{18}{\sqrt{3}}(3 \hat{\jmath}+4 \hat{k})$
d) $3 \hat{\jmath}+4 \hat{k}$
305. Two vectors \vec{a} and \vec{b} are non-collinear. If vectors $\vec{c}=(x-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 x+1) \vec{a}-\vec{b}$ are collinear, then $x=$
a) $1 / 3$
b) $1 / 2$
c) 1
d) 0
306. Through the point $P(\alpha, \beta, \gamma)$ a plane is drawn at right angles to $O P$ to meet the coordinate axes are A, B, C respectively. If $O P=p$ then equation of plane $\overrightarrow{A, B, C}$ is
a) $\alpha x+\beta y+\gamma z=p$
b) $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=p$
c) $2 \alpha x+2 \beta y+2 \gamma z=p^{2}$
d) $\alpha x+\beta y+\gamma z=p^{2}$
307. If $A B C D E F$ is a regular hexagon with $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{C E}}$ equals
a) $\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$
b) $-\overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
d) None of these
308. A unit vector perpendicular to both $\hat{\imath}+\hat{\jmath}$ and $\hat{\jmath}+\hat{k}$, is
a) $\hat{\imath}-\hat{\jmath}+\hat{k}$
b) $\hat{\imath}+\hat{\jmath}+\hat{k}$
c) $\frac{\hat{\imath}+\hat{\jmath}+\hat{k}}{\sqrt{3}}$
d) $\frac{\hat{\imath}-\hat{\jmath}+\hat{k}}{\sqrt{3}}$
309. Let $A B C D$ be the parallelogram whose sides $A B$ and $A D$ are represented by the vectors $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ respectively. Then, if $\overrightarrow{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{A C}}$, then $\overrightarrow{\mathbf{a}}$ equal to
a) $\frac{1}{3}(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
b) $\frac{1}{3}(3 \hat{\mathbf{\imath}}+6 \hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})$
c) $\frac{1}{7}(3 \hat{\mathbf{i}}-6 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}})$
d) $\frac{1}{7}(3 \hat{\mathbf{1}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
310. The value of b such that the scalar product of the vector $\hat{\imath}+\hat{\jmath}+\hat{k}$ with the unit vector parallel to the sum of the vectors $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $b \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ is one, is
a) -2
b) -1
c) 0
d) 1
311. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and $x \vec{a}+y \vec{b}+z \vec{c}=0$, then
a) At least of one of x, y, z is zero
b) x, y, z are necessarily zero
c) None of them are zero
d) None of these
312. The ratio in which $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ divides the join of $-2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ and $7 \hat{\imath}-\hat{k}$, is
a) $1: 2$
b) $2: 3$
c) $3: 4$
d) $1: 4$
313. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}$ equals
a) $[\vec{a} \vec{b} \vec{c}]$
b) $2[\vec{a} \vec{b} \vec{c}]$
c) $[\vec{a} \vec{b} \vec{c}]^{2}$
d) None of these
314. The point of intersection of the lines $\overrightarrow{\mathbf{r}}=7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+s(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+t(\hat{\mathbf{i}}+$ $2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$) is
a) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
c) $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
315. let \vec{p} and \vec{q} be the position vectors of P and Q respectively, with respect to O and $|\vec{p}|=p,|\vec{q}|=q$. The points R and S divide $P Q$ internally and externally in the ratio $2: 3$ respectively. If $O \vec{R}$ and $\vec{O} S$ are
perpendicular, then
a) $9 p^{2}=4 q^{2}$
b) $4 p^{2}=9 q^{2}$
c) $9 p=4 q$
d) $4 p=9 q$
316. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{1}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ are two vectors, then the point of intersection of two lines $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{r}} \times$ $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is
a) $\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$
b) $\hat{\mathbf{i}}-\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}$
d) $3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
317. If $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{B}} \times(\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}})$ and $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}] \neq 0$, then $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})$ is equal to
a) $\overrightarrow{\boldsymbol{0}}$
b) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
c) $\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}$
d) $\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}$
318. If \vec{a} and \vec{b} are two vectors, then the equality $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ holds
a) Only if $\vec{a}=\vec{b}=\overrightarrow{0}$
b) For all \vec{a}, \vec{b}
c) Only if $\vec{a}=\lambda \vec{b}, \lambda>0$ or $\vec{a}=\vec{b}=\overrightarrow{0}$
d) None of these
319. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=x \hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-x) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=y \hat{\mathbf{i}}+x \hat{\mathbf{j}}+(1+x-y) \hat{\mathbf{k}}$. Then $[\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}]$ depends on
a) neither x nor y
b) both x and y
c) only x
d) only y
320. If the position vectors of three points A, B, C are respectively $\hat{\imath}+\hat{\jmath}+\hat{k}, 2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ and $7 \hat{\imath}+4 \hat{\jmath}+9 \hat{k}$, then the unit vector perpendicular to the plane of triangle $A B C$ is
а) $31 \hat{\imath}-18 \hat{\jmath}-9 \hat{k}$
b) $\frac{31 \hat{\imath}-38 \hat{\jmath}-9 \hat{k}}{\sqrt{2486}}$
c) $\frac{31 \hat{\imath}+38 \hat{\jmath}+9 \hat{k}}{\sqrt{2486}}$
d) None of these
321. For any three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}},(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}})$ is equal to
a) $2 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
b) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
d) 0
322. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit coplanar vectors, then $[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]$ is equal to
a) 1
b) 0
c) $-\sqrt{3}$
d) $\sqrt{3}$
323. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two unit vectors inclined to x-axis at anlges 30° and 120°, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|$ equals
a) $\sqrt{\frac{2}{3}}$
b) $\sqrt{2}$
c) $\sqrt{3}$
324. If the vectors $\hat{\imath}-2 x \hat{\jmath}+3 y \hat{k}$ and $\hat{\imath}+2 x \hat{\jmath}-3 y \hat{k}$ perpendicular, then the locus of (x, y) is
a) A circle
b) An ellipse
c) A hyperbola
d) None of these
325. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be non-zero vectors such that
$\left.(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\frac{1}{4}|\overrightarrow{\mathbf{b}}| \overrightarrow{\mathbf{c}} \right\rvert\, \overrightarrow{\mathbf{a}}$. If θ is the acute angle between vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is equal to
a) $\frac{2 \pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
326. A vector perpendicular to both the vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is
a) $\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}$
b) $\hat{\imath}$ - $\hat{\mathbf{\jmath}}$
c) $c(\hat{\mathbf{1}}-\hat{\mathbf{j}}), c$ is a scalar
d) None of these
327. If $\vec{a}, \vec{b}, \vec{c}$ are non-collinear vectors such that $\vec{a}+\vec{b}$ is parallel to \vec{c} and $\vec{c}+\vec{a}$ is parallel to \vec{b}, then
a) $\vec{a}+\vec{b}=\vec{c}$
b) $\vec{a}, \vec{b}, \vec{c}$ taken in order from the sides of a triangle
c) $\vec{b}+\vec{c}=\vec{a}$
d) None of these
328. A force of magnitude $\sqrt{6}$ acting along the line joining the points $A(2,-1,1)$ and $B(3,1,2)$ displaces a particle from A to B. The work done by the force is
a) 6
b) $6 \sqrt{6}$
c) $\sqrt{6}$
d) 12
329. A unit vector $\overrightarrow{\mathbf{a}}$ makes an angle $\frac{\pi}{4}$ with z-axis, if $\overrightarrow{\mathbf{a}}+\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is a unit vector, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $\frac{\hat{\mathbf{i}}}{2}+\frac{\hat{\mathbf{j}}}{2}+\frac{\hat{\mathbf{k}}}{2}$
b) $\frac{\hat{\mathbf{i}}}{2}+\frac{\hat{\mathbf{j}}}{2}-\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
c) $-\frac{\hat{\mathbf{i}}}{2}-\frac{\hat{\mathbf{j}}}{2}+\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
d) $\frac{\hat{\mathbf{i}}}{2}-\frac{\hat{\mathbf{j}}}{2}-\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
330. If $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=144$ and $|\overrightarrow{\mathbf{a}}|=4$ then $|\overrightarrow{\mathbf{b}}|$ is equal to
a) 12
b) 3
c) 8
d) 4
331. If $\overrightarrow{\mathbf{a}}$ is non-zero vector of modulus $|\overrightarrow{\mathbf{a}}|$ and m is a non-zero scalar, then $m \overrightarrow{\mathbf{a}}$ is a unit vector, if
a) $m= \pm 1$
b) $m=|\overrightarrow{\mathbf{a}}|$
c) $m=\frac{1}{|\overrightarrow{\mathbf{a}}|}$
d) $m= \pm 2$
332. If the constant forces $2 \hat{\imath}-5 \hat{\jmath}+6 \hat{k}$ and $-\hat{\imath}+2 \hat{\jmath}-\hat{k}$ act on a particle due to which it is displaced from a point $A(4,-3,-2)$ to a point $B(6,1,-3)$, then the work done by the forces is
a) 15 units
b) -15 units
c) 9 units
d) -9 units
333. If P, Q, R are three points with respective position vectors $\hat{\imath}+\hat{\jmath}, \hat{\imath}-\hat{\jmath}$ and $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$. The points P, Q, R are collinear, if
a) $a=b=c=1$
b) $a=b=c=0$
c) $a=1, b, c \in R$
d) $a=1, c=0, b \in R$
334. The projection of the vector $\vec{a}=4 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ on the axis making equal acute angles with the coordinate axes is
a) 3
b) $\sqrt{3}$
c) $\frac{3}{\sqrt{3}}$
d) None of these
335. The value of $[2 \hat{\mathbf{i}} 3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}]$ is equal to
a) -30
b) -25
c) 0
d) 11
336. $(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c}) \cdot \vec{d}$ equals
a) $[\vec{a} \vec{b} \vec{c}](\vec{b} \cdot \vec{d})$
b) $[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$
c) $[\vec{a} \vec{b} \vec{c}](\vec{c} \cdot \vec{d})$
d) None of these
337. If the constant force $2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ act on a particle due to which it is displaced from a point $A(4,-3,-2)$ to a point $B(6,1,-3)$ then the work done by the force is
a) 10 units
b) -10 units
c) 9 units
d) None of these
338. If forces of magnitudes 6 and 7 units acting in the directions $\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$ and $2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}$ respectively act on a particle which is displaced from the point $P(2,-1,-3)$ to $Q(5,-1,1)$, then the work done by the forces is
a) 4 units
b) -4 units
c) 7 units
d) -7 units
339. $[\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]$ is equal to
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
b) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
d) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
340. $A B C D$ is a quadrilateral $, P, Q$ are the mid points of $\overrightarrow{\mathbf{B C}}$ and $\overrightarrow{\mathbf{A D}}$, then $\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{D C}}$ is equal to
a) $3 \overrightarrow{\mathbf{Q P}}$
b) $\overrightarrow{\mathbf{Q P}}$
c) $4 \overrightarrow{\mathbf{Q P}}$
d) $2 \overrightarrow{\mathbf{Q P}}$
341. If D, E, F are respectively the mid-points of $A B, A C$ and $B C$ respectively in a $\triangle A B C$, then $\overrightarrow{B E}+\overrightarrow{A F}=$
a) $\overrightarrow{D C}$
b) $\frac{1}{2} \overrightarrow{B F}$
c) $2 \overrightarrow{B F}$
d) $\frac{3}{2} \overrightarrow{B F}$
342. $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are mutually perpendicular unit vectors, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is equal to
a) $\sqrt{3}$
b) 3
c) 1
d) 0
343. Let $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}, \vec{b}=3 \hat{\imath}+3 \hat{\jmath}-\hat{k}$ and $\vec{c}=d \hat{\imath}+\hat{\jmath}+(2 d-1) \hat{k}$. If \vec{c} is parallel to the plane of the vectors \vec{a} and \vec{b}, then $11 d=$
a) 2
b) 1
c) -1
d) 0
344. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are three non-coplanar vectors and $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{r}}$, are reciprocal vectors, then $(l \overrightarrow{\mathbf{a}}+m \overrightarrow{\mathbf{b}}+n \overrightarrow{\mathbf{c}}) \cdot(l \overrightarrow{\mathbf{p}}+$ $m \overrightarrow{\mathbf{q}}+n \overrightarrow{\mathbf{r}})$ is
a) $l+m+n$
b) $l^{3}+m^{3}+n^{3}$
c) $l^{2}+m^{2}+n^{2}$
d) None of these
345. If $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$ are unit vectors, then $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}|^{2}$ does not exceed
a) 4
b) 9
c) 8
d) 6
346. A constant force $\overrightarrow{\mathbf{F}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is acting on a particle such that the particle is displaced from the point $(1,2,3)$ to the point $(3,4,5)$. The work done by the force is
a) 2
b) 3
c) 4
d) 5
347. The value of a, for which the points A, B, C with position vectors $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ respectively are the vertices of a right
with $C=\frac{\pi}{2}$ are
a) -2 and -1
b) -2 and 1
c) 2 and -1
d) 2 and 1
348. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, then
a) $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
b) $\vec{a} \times(\vec{b} \times \vec{c})=\overrightarrow{0}$
c) $\vec{c} \times \vec{a}=\vec{a} \times \vec{b}$
d) $\vec{c} \times \vec{b}=\vec{b} \times \vec{a}$
349. If $\vec{a}+\vec{b} \neq 0$ and \vec{c} is a non-zero vector, then $(\vec{a}+\vec{b}) \times\{\vec{c}-(\vec{a}+\vec{b})\}$ is equal to
a) $\vec{a}+\vec{b}$
b) $(\vec{a}+\vec{b}) \times \vec{c}$
c) $\lambda \vec{c}$, where $\lambda \neq 0$
d) $\lambda(\vec{a} \times \vec{b}), \lambda \neq 0$
350. If a force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ is acting at the point $P(1,-1,2)$ then the magnitude of moment of $\overrightarrow{\mathbf{F}}$ about the point $Q(2,-1,3)$ is
a) $\sqrt{57}$
b) $\sqrt{39}$
c) 12
d) 17
351. If $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1$ and $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{3}$, then the value of $(3 \overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}}) \cdot(2 \overrightarrow{\mathbf{a}}+5 \overrightarrow{\mathbf{b}})$ is
a) -21
b) $-\frac{21}{2}$
c) 21
d) $\frac{21}{2}$
352. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, then the angle between \hat{a} and \hat{c} is
a) 30°
b) 45°
c) 60°
d) 90°
353. If the vectors $3 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$ and $2 \hat{\imath}-\hat{\jmath}+8 \hat{k}$ are perpendicular, then λ is equal to
a) -14
b) 7
c) 14
d) $1 / 7$
354. The equation of the plane perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}$ and passing through the point $(2,3,1)$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=1$
b) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=1$
c) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=7$
d) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})=10$
355. $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}})\}$ is equal to
a) $2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
c) 0
d) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
356. If \hat{n}_{1}, \hat{n}_{2} are two unit vectors and θ is the angle between them, then $\cos \theta / 2=$
a) $\frac{1}{2}\left|\hat{n}_{1}+\hat{n}_{2}\right|$
b) $\frac{1}{2}\left|\hat{n}_{1}-\hat{n}_{2}\right|$
c) $\frac{1}{2}\left(\hat{n}_{1} \cdot \hat{n}_{2}\right)$
d) $\frac{\left|\hat{n}_{1} \times \hat{n}_{2}\right|}{2\left|\hat{n}_{1}\right|\left|\hat{n}_{2}\right|}$
357. Let $A B C D$ be the parallelogram whose sides $A B$ and $A D$ are represented by the vectors $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ respectively. Then if $\overrightarrow{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{A C}}$, then $\overrightarrow{\mathbf{a}}$ is equal to
a) $(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}) / 3$
b) $(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) / 3$
c) $(3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) / 7$
d) $(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}) / 7$
358. If the points with position vectors $60 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}, 40 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}$ and $a \hat{\mathbf{i}}-52 \hat{\mathbf{j}}$ are collinear, then a is equal to
a) -40
b) -20
c) 20
d) 40
359. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a}+\vec{b}+\vec{c}=\alpha \vec{d}$ and $\vec{b}+\vec{c}+\vec{d}=\beta \vec{a}$, then $\vec{a}+\vec{b}+\vec{c}+\vec{d}$ is equal to
a) $\overrightarrow{0}$
b) $\alpha \vec{a}$
c) $\beta \vec{b}$
d) $(\alpha+\beta) \vec{c}$
360. The unit vector perpendicular to $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and coplanar with $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ and $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ is
a) $\frac{2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}}{\sqrt{29}}$
b) $2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}$
c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}})$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
361. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $[\vec{a} \vec{b} \vec{c}]$, is
a) 2
b) 3
c) 0
d) None of these
362. If the angle between $\hat{\mathbf{1}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{1}}+\hat{\mathbf{j}}+a \hat{\mathbf{k}}$ is $\frac{\pi}{3}$, then the value of a is
a) 0 or 2
b) -4 or 0
c) 0 or -2
d) 2 or -2
363. A vector which makes equal angles with the vectors $\frac{1}{3}(\hat{\imath}-2 \hat{\jmath}+2 \hat{k}), \frac{1}{5}(-4 \hat{\imath}-3 \hat{k})$, and $\hat{\jmath}$, is
a) $5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
b) $-5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
c) $-5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
d) $5 \hat{\imath}+\hat{\jmath}-5 \hat{k}$
364. Which one of the following vectors is of magnitude 6 and perpendicular to both $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$?
a) $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
b) $2(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
c) $3(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
d) $2(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
365. In a right angled triangle $A B C$, the hypotenuse $A b=p$, then $\vec{A} B \cdot \vec{A} C+\vec{B} C \cdot \vec{B} A+\vec{C} A \cdot \vec{C} B$ is equal to
a) $2 p^{2}$
b) $\frac{p^{2}}{2}$
c) p^{2}
d) None of these
366. Which one of the following is not correct?
a) If $\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{c}}$ for some non-zero vector $\overrightarrow{\mathbf{p}}$ then $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar
b) The vectors $\hat{\mathbf{l}}+3 \hat{\mathbf{j}}, 2 \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are coplanar
c) The vector $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is coplanar with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$
367. The length of the shortest distance between the two lines $\overrightarrow{\mathbf{r}}=(-3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}})+s(-4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{r}}=(-2 \hat{\mathbf{i}}+7 \hat{\mathbf{k}})+t(-4 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ is
a) 7 units
b) 13 units
c) 8 units
d) 9 units
368. A vector perpendicular to the plane containing the points $A(1 .-1,2), B(2,0,-1), C(0,2,1)$ is
a) $4 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
b) $8 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
d) $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
369. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are unit vectors such that $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]=\frac{1}{4}$, then angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
370. If $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=4$, then a value of λ for which $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}$, is
a) $\frac{9}{16}$
b) $\frac{3}{4}$
c) $\frac{3}{2}$
d) $\frac{4}{3}$
371. $(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{y}}) \times(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})=$. \qquad . where $\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{y}} \in R^{3}$
a) $2(\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}})$
b) $|\overrightarrow{\mathbf{x}}|^{2}-|\overrightarrow{\mathbf{y}}|^{2}$
c) $\frac{1}{2}(\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}})$
d) None of these
372. If the vectors $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+\mu \hat{\mathbf{k}}$ are mutually orthogonal, then (λ, μ) is equal to
a) $(-3,2)$
b) $(2,-3)$
c) (-2.3)
d) $(3,-2)$
373. Given that $\vec{a}=(1,1,1), \vec{c}=(0,1,-1)$ and $\vec{a} \cdot \vec{b}=3$. If $\vec{a} \times \vec{b}=\vec{c}$, then $\vec{b}=$
a) $\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$
b) $\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)$
c) $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$
d) None of these
374. If \hat{a}, \hat{b} and \hat{c} are three unit vectors such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are the angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c}$ and \hat{c}, \hat{a} respectively, then among θ_{1}, θ_{2} and θ_{3}
a) All are acute angles
b) All are right angles
c) At least one is obtuse angle
d) None of these
375. Given vectors $\vec{x}=3 \hat{\imath}-6 \hat{\jmath}-\hat{k}, \vec{y}=\hat{\imath}+4 \hat{\jmath}-3 \hat{k}$ and $\vec{z}=3 \hat{\imath}+4 \hat{\jmath}+12 \hat{k}$, then the projection of $\vec{x} \times \vec{y}$ on vector \vec{z} is
a) 14
b) -14
c) 12
d) 15
376. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times\{\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}\}$ is equal to
a) $|\vec{a}|^{2} \vec{b}$
b) $|\vec{a}|^{3} \vec{b}$
c) $|\vec{a}|^{4} \vec{b}$
d) None of these
377. Let G be the centroid of $\triangle A B C$. If $\vec{A} B=\vec{a}, \vec{A} C=\vec{b}$, then the $\vec{A} G$, in terms of \vec{a} and \vec{b} is
a) $\frac{2}{3}(\vec{a}+\vec{b})$
b) $\frac{1}{6}(\vec{a}+\vec{b})$
c) $\frac{1}{3}(\vec{a}+\vec{b})$
d) $\frac{1}{2}(\vec{a}+\vec{b})$
378. The moment of the couple formed by the forces $5 \hat{\imath}+\hat{k}$ and $-5 \hat{\imath}-\hat{k}$ acting at the point $(9,-1,2)$ and $(3,-2,1)$ respectively is
a) $-\hat{\imath}+\hat{\jmath}+5 \hat{k}$
b) $\hat{\imath}-\hat{\jmath}-5 \hat{k}$
c) $2 \hat{\imath}-2 \hat{\jmath}-10 \hat{k}$
d) $-2 \hat{\imath}+2 \hat{\jmath}+10 \hat{k}$
379. The value of c so that for all real x, then vectors $o c x \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, x \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 c x \hat{\mathbf{k}}$ make an obtuse angle are
a) $c<0$
b) $0<c<\frac{4}{3}$
c) $-\frac{4}{3}<c<0$
d) $c>0$
380. If θ be the angle between the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, then
a) $\cos \theta=\frac{4}{21}$
b) $\cos \theta=\frac{3}{19}$
c) $\cos =\frac{2}{19}$
d) $\cos \theta=\frac{5}{21}$
381. The vectors $2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ and $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ are perpendicular when
a) $a=2, b=3, c=-4$
b) $a=4, b=4, c=5$
c) $a=4, b=4, c=-2$
d) None of these
382. If $\overrightarrow{\boldsymbol{\alpha}}=x(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+y(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}})+z(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$ and $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\frac{1}{8^{\prime}}$, then $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is equal to
a) $8 \vec{\alpha} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
b) $\vec{\alpha} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
c) $8(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
d) None of these
383. If vectors $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$ are collinear, then
a) $a=3, b=1$
b) $a=9, b=1$
c) $a=3, b=3$
d) $a=9, b=3$
384. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two unit vectors such that angle between them is 60°. Then, $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$ is equal to
a) $\sqrt{5}$
b) $\sqrt{3}$
c) 0
d) 1
385. The point collinear with $(1,-2,-3)$ and $(2,0,0)$ among the following is
a) $(0,4,6)$
b) $(0,-4,-5)$
c) $(0,-4,-6)$
d) $(0,-4,6)$
386. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are unit vectors, then the vectors $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ is parallel to the vector
a) $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
c) $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
d) $2 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
387. If θ is the angle between the lines $A B$ and $A C$ where A, B and C are the three points with coordinates $(1,2,-1),(2,0,3),(3,-1,2)$ respectively, then $\sqrt{462} \cos \theta$ is equal to
a) 20
b) 10
c) 30
d) 40
388. Let $\overrightarrow{\mathbf{v}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{w}}=\hat{\mathbf{\imath}}+3 \hat{\mathbf{k}}$, If $\overrightarrow{\mathbf{u}}$ is a unit vector, then maximum value of the scalar triple product [$\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}$] is
a) -1
b) $\sqrt{10}+\sqrt{6}$
c) $\sqrt{59}$
d) $\sqrt{60}$
389. Each of the angle between vectors \vec{a}, \vec{b} and \vec{c} is equal to 60°. If $|\vec{a}|=4,|\vec{b}|=2$ and $|\vec{c}|=6$, then the modulus of $\vec{a}+\vec{b}+\vec{c}$, is
a) 10
b) 15
c) 12
d) None of these
390. A force of magnitude 5 unit acting along the vector $2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ displaces the point of applications from $(1,2,3)$ to $(5,3,7)$ then the work done is
a) $50 / 7$ unit
b) $50 / 3$ unit
c) $25 / 3$ unit
d) $25 / 4$ unit
391. The equation of the plane passing through three non-collinear points $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is
a) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0$
b) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
c) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}))=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0$
392. If a vector \vec{r} of magnitude $3 \sqrt{6}$ is directed along the bisector of the angle between the vectors $\vec{a}=7 \hat{\imath}-$ $4 \hat{\jmath}-4 \hat{k}$ and $\vec{b}=-2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$, then $\vec{r}=$
a) $\hat{\imath}-7 \hat{\jmath}+2 \hat{k}$
b) $\hat{\imath}+7 \hat{\jmath}-2 \hat{k}$
c) $-\hat{\imath}+7 \hat{\jmath}+2 \hat{k}$
d) $\hat{\imath}-7 \hat{\jmath}-2 \hat{k}$
393. If the point whose position vectors are $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, 6 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $14 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+p \hat{\mathbf{k}}$ are collinear, then the value of p is
a) 2
b) 4
c) 6
d) 8
394. Let $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ be non-zero vectors such that
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\frac{1}{3}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}}$
If θ is the acute angle between the vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ then $\sin \theta$ equals
a) $\frac{1}{3}$
b) $\frac{\sqrt{2}}{3}$
c) $\frac{2}{3}$
d) $\frac{2 \sqrt{2}}{3}$
395. Let $A B C$ be a triangle, the position vectors of whose vertices are respectively $7 \hat{\mathbf{i}}+10 \hat{\mathbf{k}},-\hat{\mathbf{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $-4 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ Then, the $\triangle A B C$ is
a) Isosceles
b) Equilateral
c) Right angled isosceles
d) None of these
396. If C is the middle point of $A B$ and P is any point outside $A B$, then
a) $P \vec{A}+P \vec{B}=P \vec{C}$
b) $P \vec{A}+P \vec{B}=2 P \vec{C}$
c) $P \vec{A}+P \vec{B}+P \vec{C}=\overrightarrow{0}$
d) $P \vec{A}+P \vec{B}+2 P \vec{C}=\overrightarrow{0}$
397. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are any two vwctors, then $(2 \overrightarrow{\boldsymbol{a}}+3 \overrightarrow{\mathbf{b}}) \times(5 \overrightarrow{\mathbf{a}}+7 \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is equal to
a) $\overrightarrow{\mathbf{0}}$
b) 0
c) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
398. The moment about the point $M(-2,4,-6)$ of the force represented in magnitude and position by $A B$ where the points A and B have the coordinates $(1,2,-3)$ and $(3,-4,2)$ respectively is
a) $8 \hat{\imath}-9 \hat{\jmath}-14 \hat{k}$
b) $2 \hat{\imath}-6 \hat{\jmath}+5 \hat{k}$
c) $-3 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
d) $-5 \hat{\imath}+8 \hat{\jmath}-8 \hat{k}$
399. If the position vectors of A, B and Care respectively $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ then $\cos ^{2} A$ is equal to
a) 0
b) $\frac{6}{41}$
c) $\frac{35}{41}$
d) 1
400. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, then
a) $\vec{r} \perp \vec{c} \times \vec{a}$
b) $\vec{r} \perp \vec{a} \times \vec{b}$
c) $\vec{r} \perp \vec{b} \times \vec{c}$
d) $\vec{r}=\overrightarrow{0}$
401. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three non-coplanar vectors and $\overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{r}}$ constitute the corresponding reciprocal system of vectors then for any arbitrary vector $\vec{\alpha}$
a) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{a}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{c}}$
b) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}) \overrightarrow{\mathbf{p}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}) \overrightarrow{\mathbf{q}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}) \mathbf{r}$
c) $\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}) \overrightarrow{\mathbf{a}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}) \overrightarrow{\mathbf{b}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{c}}$
d) None of the above
402. The vector $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is coplanar with the vectors
a) $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{c}}$
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$
403. If $\overrightarrow{\mathbf{b}}$ is a unit vector, then $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ is
a) $|\overrightarrow{\mathbf{a}}|^{2} \overrightarrow{\mathbf{b}}$
b) $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}| \overrightarrow{\mathbf{a}}$
c) $\overrightarrow{\mathbf{a}}$
d) $\overrightarrow{\mathbf{b}}$
404. If $\sum_{i=1}^{n}\left|\overrightarrow{\mathbf{a}_{l}}\right|=\overrightarrow{\mathbf{0}}$, where $\left|\overrightarrow{\mathbf{a}_{l}}\right|=1 \forall i$, then the value of $\sum_{1 \leq i<} \sum_{j \leq n} \overrightarrow{\mathbf{a}_{l}} \cdot \overrightarrow{\mathbf{a}_{j}}$ is
a) n^{2}
b) $-n^{2}$
c) n
d) $-\frac{n}{2}$
405. If the vector $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ is perpendicular to $c \hat{\mathbf{k}}-\hat{\mathbf{j}}+6 \hat{\mathbf{i}}$ then c is equal to
a) 3
b) 4
c) 5
d) 6
406. If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$, then
a) $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{a}}|\mid \overrightarrow{\mathbf{b}}$
c) $\overrightarrow{\mathbf{a}}=\overrightarrow{\boldsymbol{0}}$ and $\overrightarrow{\mathbf{b}}=\overrightarrow{\boldsymbol{0}}$
d) $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$ or $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
407. If $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are adjacent side of a parallelogram, then the lengths of its diagonals are
a) $7, \sqrt{69}$
b) $6, \sqrt{59}$
c) $5, \sqrt{65}$
d) $5, \sqrt{55}$
408. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0$. Which of the following is correct?
a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
c) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are mutually perpendicular
409. If G is the centre of a regular hexagon $A B C D E F$, then $\vec{A} B+\vec{A} C+\vec{A} D+\vec{A} E+\vec{A} F=$
a) $3 \vec{A} G$
b) $2 \vec{A} G$
c) $6 \vec{A} G$
d) $4 \vec{A} G$
410. I. Two non-zero. Non-collinear vectors are linearly independent.
II. Any three coplanar vectors are linearly dependent. Which of the above statements is /are true?
a) Only I
b) Only II
c) Both I and II
d) Neither I nor II
411. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then $[2 \vec{a}-3 \vec{b} 7 \vec{b}-9 \vec{c} 12 \vec{c}-23 \vec{a}]$ is equal ro
a) 0
b) $1 / 2$
c) 24
d) 32
412. $[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$, then
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=1$
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar
c) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=-1$
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are mutually perpendicular
413. If $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$ and $|\overrightarrow{\mathbf{a}}|=\sqrt{37},|\overrightarrow{\mathbf{b}}|=3,|\overrightarrow{\mathbf{c}}|=4$, then the angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$
a) 30°
b) 45°
c) 60°
d) 90°
414. A unit vector coplanar with $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, and perpendicular to $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\left(\frac{\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{2}}\right)$
b) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}\right)$
c) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}}{\sqrt{6}}\right)$
d) $\left(\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{6}}\right)$
415. The projection of the vector $\hat{\imath}+\hat{\jmath}+\hat{k}$ along the vector of $\hat{\jmath}$, is
a) 1
b) 0
c) 2
d) -1
416. Volume of the parallelopiped having vertices at $O \equiv(0,0,0), A \equiv(2,-2,4)$, $B \equiv(5,-4,4)$ and $C \equiv(1,-2,4)$
a) 5 cu units
b) 10 cu units
c) 15 cu units
d) 20 cu units
417. The area of parallelogram constructed on the vectors $\vec{a}=\vec{p}+2 \vec{q}$ and $\vec{b}=2 \vec{p}+\vec{q}$, where \vec{p} and \vec{q} are unit vectors forming an angle of 30° is
a) $3 / 2$
b) $5 / 2$
c) $7 / 2$
d) None of these
418. If \vec{a} is a vector perpendicular to the vectors $\vec{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $c=-2 \hat{\imath}+4 \hat{\jmath}+\hat{k}$ and satisfies the condition $\vec{a} \cdot(\hat{\imath}-2 \hat{\jmath}+\hat{k})=-6$, then $\vec{a}=$
a) $5 \hat{\imath}+\frac{7}{2} \hat{\jmath}-4 \hat{k}$
b) $10 \hat{\imath}+7 \hat{\jmath}-8 \hat{k}$
c) $5 \hat{\imath}-\frac{7}{2} \hat{\jmath}+4 \hat{k}$
d) None of these
419. The projection of $\overrightarrow{\mathbf{a}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ on $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\frac{8}{\sqrt{35}}$
b) $\frac{9}{\sqrt{39}}$
c) $\frac{8}{\sqrt{14}}$
d) $\sqrt{14}$
420. Let $A B C D E F$ be a regular hexagon and $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{C D}}=\overrightarrow{\mathbf{c}}$, then $\overrightarrow{\mathbf{A E}}$ is equal to
a) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
b) $\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
c) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}}$
421. Three vectors $7 \hat{\mathbf{i}}-11 \hat{\mathbf{j}}+\hat{\mathbf{k}}, 5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and $12 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ from
a) an equilateral triangle
b) an isosceles triangle
c) a right angled triangle
d) Collinear
422. If $|\overrightarrow{\mathbf{a}}|=2,|\overrightarrow{\mathbf{b}}|=3$, and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are mutually perpendicular, then the area of triangle whose vertices are $\overrightarrow{\mathbf{0}}, \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ is
a) 5
b) 1
c) 6
d) 8
423. If V is the volume of the parallelopiped having three coterminus edges as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelopiped having three coterminus edges as
$\vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}$
$\vec{\beta}=(\vec{a} \cdot \vec{b}) \vec{a}+(\vec{b} \cdot \vec{b}) \vec{b}+(\vec{b} \cdot \vec{c}) \vec{c}$
$\vec{\gamma}=(\vec{a} \cdot \vec{c}) \vec{a}+(\vec{b} \cdot \vec{c}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c}$, is
a) V^{3}
b) 3 V
c) V^{2}
d) 2 V
424. The unit vectors orthogonal to the vector $-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and making equal angles with the X and Y axes is (are)
a) $\pm \frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-\hat{k})$
b) $\pm \frac{1}{3}(\hat{\imath}+\hat{\jmath}-\hat{k})$
c) $\pm \frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}-\hat{k})$
d) None of these
425. The unit vector perpendicular to vectors $\hat{\imath}-\hat{\jmath}$ and $\hat{\imath}+\hat{\jmath}$ forming a right handed system is
a) \hat{k}
b) $-\hat{k}$
c) $\frac{1}{\sqrt{2}}(\hat{\imath}-\hat{\jmath})$
d) $\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath})$
426. Given, $\overrightarrow{\mathbf{p}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{p}}=x \overrightarrow{\mathbf{a}}+y \overrightarrow{\mathbf{b}}+z \overrightarrow{\mathbf{c}}$, then x, y, z are respectively
a) $\frac{3}{2}, \frac{1}{2}, \frac{5}{2}$
b) $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$
c) $\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$
d) $\frac{1}{2}, \frac{5}{2}, \frac{3}{2}$
427. If S is the circumcentre, O is the orthocentre of $\triangle A B C$, then $\overrightarrow{\mathbf{S A}}+\overrightarrow{\mathbf{S B}}+\overrightarrow{\mathbf{S C}}$ is equal to
a) $\overrightarrow{\mathbf{S O}}$
b) $2 \overrightarrow{\mathbf{S O}}$
c) $\overrightarrow{\mathbf{O S}}$
d) $2 \overrightarrow{\mathbf{O S}}$
428. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then
a) $\vec{a}|\mid \vec{b}$
b) $\vec{a} \perp \vec{b}$
c) Either \vec{a} and \vec{b} is a null
d) None of these
429. If a tetrahedron has vertices at $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then, the angle between the faces $O A B$ and $A B C$ will be
a) $\cos ^{-1}\left(\frac{19}{35}\right)$
b) $\cos ^{-1}\left(\frac{17}{31}\right)$
c) 30°
d) 90°
430. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are vectors such that the $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) 120°
b) 60°
c) 90°
d) 30°
431. If \vec{a} and \vec{b} are not perpendicular to each other and $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} . \vec{c}=0$, then \vec{r} is equal to
a) $\vec{a}-\vec{c}$
b) $\vec{b}+x \vec{a}$ for all scalars x
c) $\vec{b}-\frac{(\vec{b} \cdot \vec{c})}{(\vec{a} \cdot \vec{c})} \vec{a}$
d) None of these
432. Let $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ be the unit vectors such that $\vec{\alpha}$ and $\vec{\beta}$ are mutually perpendicular and $\vec{\gamma}$ is equally inclined to $\vec{\alpha}$ and $\vec{\beta}$ at an angle θ. If $\vec{\gamma}=x \vec{\alpha}+y \vec{\beta}+z(\vec{\alpha} \times \vec{\beta})$, then which one of the following is incorrect?
a) $z^{2}=1-2 x^{2}$
b) $z^{2}=1-2 y^{2}$
c) $z^{2}=1-x^{2}-y^{2}$
d) $x^{2}+y^{2}=1$
433. If $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}$, then
a) $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}})=\lambda(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})$
b) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{d}})=\lambda(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
c) $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})=\lambda(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{d}})$
d) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\lambda(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{d}})$
434. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar mutually perpendicular unit vectors, then $[\vec{a} \vec{b} \vec{c}]$, is
a) +1
b) 0
c) -2
d) 2
435. If P, Q, R and S are four points in space, then $|\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{R S}}+\overrightarrow{\mathbf{Q R}} \times \overrightarrow{\mathbf{S P}}+\overrightarrow{\mathbf{R S}} \times \overrightarrow{\mathbf{Q S}}|=k$ (area of $\triangle P Q R$). The value of k is
a) 0
b) 2
c) 4
d) 3
436. In a $\triangle A B C$, if $\vec{A} B=3 \hat{\imath}+4 \hat{k}, \vec{A} C=5 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}$, then the length of median through A, is
a) $3 \sqrt{2}$
b) $6 \sqrt{2}$
c) $5 \sqrt{2}$
d) $\sqrt{33}$
437. The vectors $\overrightarrow{\mathbf{A B}}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{A C}}=5 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ are the sides of a triangle $A B C$. The length of the median through A is
a) $\sqrt{13}$ units
b) $2 \sqrt{5}$ units
c) 5 units
d) 10 units
438. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar vectors and $(\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}+2 \overrightarrow{\mathbf{a}})=0$, then λ is equal to
a) 1
b) $1 / 4$
c) 0
d) $-1 / 4$
439. If \vec{a} is perpendicular to \vec{b} and \vec{r} is a non-zero vector such that, $p \vec{r}+(\vec{r} \cdot \vec{b}) \vec{a}=\vec{c}$, then $\vec{r}=$
a) $\frac{\vec{c}}{p}-\frac{(\vec{b} \cdot \vec{c}) \vec{a}}{p^{2}}$
b) $\frac{\vec{a}}{p}-\frac{(\vec{c} \cdot \vec{a}) \vec{b}}{p^{2}}$
c) $\frac{\vec{b}}{p}-\frac{(\vec{a} \cdot \vec{b}) \vec{c}}{p^{2}}$
d) $\frac{\vec{c}}{p^{2}}-\frac{(\vec{b} \cdot \vec{c}) \vec{a}}{p}$
440. Constant forces $\overrightarrow{\mathbf{P}}_{1}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{P}}_{2}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{P}}_{3}=\hat{\mathbf{j}}-\hat{\mathbf{k}}$ act on a particle at point A. The work done when the particle is displaced from the point A to B where $\overrightarrow{\mathbf{A}}=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{B}}=6 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ is
a) 3
b) 9
c) 20
d) None of these
441. The point of intersection of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}$ is
a) $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $3 \hat{\mathbf{i}}-\hat{\mathbf{k}}$
c) $3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) None of these
442. If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation, $\vec{r} \times \vec{a}=\vec{b}$ is given by
a) $\vec{r}=x \vec{a}+\frac{\vec{a} \times \vec{b}}{|\vec{a}|^{2}}$
b) $\vec{r}=x \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c) $\vec{r}=x(\vec{a} \times \vec{b})$
d) $\vec{r}=x(\vec{b} \times \vec{a})$
443. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices of a triangle $A B C$, then a unit vector perpendicular to its plane is
a) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$
b) $\frac{\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$ c) $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
d) None of these
444. If $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ are three non-coplanar vectors, then $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}) \cdot[(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}})]$ equals
a) 0
b) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$
c) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{v}}$
d) $3 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$
445. The resultant of $(\overrightarrow{\mathbf{p}}-2 \overrightarrow{\mathbf{q}})$ where. $\overrightarrow{\mathbf{p}}=7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{i}}$ and $\overrightarrow{\mathbf{q}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is
a) $\sqrt{29}$
b) 4
c) $\sqrt{62}-2 \sqrt{35}$
d) $\sqrt{66}$
446. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $m=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, then
a) $m<0$
b) $m>0$
c) $m=0$
d) $m=3$
447. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}$, then $\lambda+\mu$ is equal to
a) 0
b) 1
c) 2
d) 3
448. If $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \vec{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{c}=3 \hat{\imath}+\hat{\jmath}$ and $\vec{a}+t \vec{b}$ is normal to the vector \vec{c}, then the vector of t is
a) 8
b) 4
c) 6
d) 2
449. If \vec{a}, \vec{b} represent the diagonals of a rhombus, then
a) $\vec{a} \times \vec{b}=\overrightarrow{0}$
b) $\vec{a} \cdot \vec{b}=\overrightarrow{0}$
c) $\vec{a} \times \vec{b}=1$
d) $\vec{a} \times \vec{b}=\vec{a}$
450. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times \vec{b}=2 \vec{a} \times \vec{c},|\vec{a}|=|\vec{c}|=1$ and $|\vec{b}|=4$. If the angle between \vec{b} and \vec{c} is $\cos ^{-1}\left(\frac{1}{4}\right)$, then $\vec{b}-2 \vec{c}$ is equal to
a) $\pm 4 \vec{a}$
b) $\pm 3 \vec{a}$
c) $\pm 5 \vec{a}$
d) $\pm 4 \vec{a}$
451. $\hat{\imath} .(\hat{\jmath} \times \hat{k})+\hat{\jmath} \cdot(\hat{k} \times \hat{\imath})+\hat{k} .(\hat{\imath} \times \hat{\jmath})=$
a) 1
b) 3
c) -3
d) 0
452. If $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ and $\vec{b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$, then the angle between the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, is
a) 30°
b) 60°
c) 90°
d) 0°
453. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, then
a) $\vec{b}=\vec{c}$
b) $\vec{a} \perp \vec{b}, \vec{c}$
c) $\vec{a} \perp(\vec{b}-\vec{c})$
d) Either $\vec{a} \perp(\vec{b}-\vec{c})$ or $\vec{b}=\vec{c}$
454. The length of longer diagonal of the parallelogram constructed on $5 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$. If it is given that $|\overrightarrow{\mathbf{a}}|=2 \sqrt{2},|\overrightarrow{\mathbf{b}}|=3$ and angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{4}$, is
a) 15
b) $\sqrt{113}$
c) $\sqrt{593}$
d) $\sqrt{369}$
455. If the projection of the vector $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ is $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ and if $3 \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
456. The unit vector perpendicular to the plane passing through points $P(\hat{\imath}-\hat{\jmath}+2 \hat{k}), Q(2 \hat{\imath}-\hat{k})$ and $R(2 \hat{\jmath}+\hat{k})$ is
a) $2 \hat{\imath}+\hat{\jmath}+\hat{k}$
b) $\sqrt{6}(2 \hat{\imath}+\hat{\jmath}+\hat{k})$
c) $\frac{1}{\sqrt{6}}(2 \hat{\imath}+\hat{\jmath}+\hat{k})$
d) $\frac{1}{6}(2 \hat{\imath}+\hat{\jmath}+\hat{k})$
457. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}},, \overrightarrow{\mathbf{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ is collinear with $\overrightarrow{\mathbf{c}}$,then $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{c}}$ equals
a) $\lambda \overrightarrow{\mathbf{a}}(\lambda \neq 0$, a scalar $)$
b) $\lambda \overrightarrow{\mathbf{b}}(\lambda \neq 0$, a scalar $)$
c) $\lambda \overrightarrow{\mathbf{c}}(\lambda \neq 0$, a scalar $)$
d) 0
458. Let $\overrightarrow{\mathbf{u}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{v}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{w}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$. If $\widehat{\mathbf{n}}$ is a unit vector such that $\overrightarrow{\mathbf{u}} . \widehat{\mathbf{n}}=0$ and $\overrightarrow{\mathbf{v}} . \widehat{\mathbf{n}}=0$, then $|\vec{w} \cdot \widehat{\mathbf{n}}|$ is equal to
a) 0
b) 1
c) 2
d) 3
459. If position vector of point A is $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and any point $P(\overrightarrow{\mathbf{a})}$ divides $\overrightarrow{\boldsymbol{A B}}$ in the ratio of $2: 3$, then position vector of B is
a) $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
b) $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
c) $\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{b}}$
460. If $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{C}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}$, evaluate t, if the vector $(\overrightarrow{\mathbf{A}}+t \overrightarrow{\mathbf{B}})$ and $\overrightarrow{\mathbf{C}}$ are mutually perpendicular.
a) 5
b) 4
c) 1
d) 2
461. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them then $\left|\frac{\vec{a}-\vec{b}}{2}\right|$, is
a) $\sin \frac{\theta}{2}$
b) $\sin \theta$
c) $2 \sin \theta$
d) $\sin 2 \theta$
462. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-collinear vectors and $x \overrightarrow{\mathbf{a}}+y \overrightarrow{\mathbf{b}}=0$
a) $x=0$, but y is not necessarily zero
b) $y=0$, but x is not necessarily zero
c) $x=0, y=0$
d) None of the above
463. Two adjacent sides of a parallelogram $A B C D$ are given by $\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$ and
$\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angle α is given by
a) $\frac{8}{9}$
b) $\frac{\sqrt{17}}{9}$
c) $\frac{1}{9}$
d) $\frac{4 \sqrt{5}}{9}$
464. If the scalar projection of the vector $x \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ on the vector $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is $\frac{1}{\sqrt{30}}$ then the value of x is
a) $-3 / 2$
b) 6
c) -6
d) 3
465. If $\overrightarrow{\mathbf{a}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, then the angle between $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{3 \pi}{2}$
466. Let $\vec{a}, \vec{b}, \vec{c}$ three non-zero vectors such that no two of which are collinear and the vector $\vec{a}+\vec{b}$ is collinear with \vec{c} and $\vec{b}+\vec{c}$ is collinear with \vec{a}. Then, $\vec{a}+\vec{b}+\vec{c}=$
a) \vec{a}
b) \vec{b}
c) \vec{c}
d) $\overrightarrow{0}$
467. The value of $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]$ is
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
b) 0
c) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
468. If the points with position vectors $60 \hat{\imath}+3 \hat{\jmath}, 40 \hat{\imath}-8 \hat{\jmath}$ and $a \hat{\imath}-52 \hat{\jmath}$ are collinear, then $a=$
a) -40
b) 40
c) 20
d) 30
469. Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and a unit vector $\overrightarrow{\mathbf{c}}$ be coplanar. If $\overrightarrow{\mathbf{c}}$ is perpendicular to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is equal to
a) $\pm \frac{1}{\sqrt{2}}(-\hat{\mathbf{j}}+\hat{\mathbf{k}})$
b) $\pm \frac{1}{\sqrt{3}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
c) $\pm \frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}})$
d) $\pm \frac{1}{\sqrt{3}}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
470. If the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}$ are coplanar, then the value of λ is equal to
a) 2
b) 1
c) 3
d) -1
471. The vectors
$\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{\imath}+\left(a m+a_{1} m_{1}\right) \hat{\jmath}+\left(a n+a_{1} n_{1}\right) \hat{k}$,
$\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{\imath}+\left(b m+b_{1} m_{1}\right) \hat{\jmath}+\left(b n+b_{1} n_{1}\right) \hat{k}$,
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{\imath}+\left(c m+c_{1} m_{1}\right) \hat{\jmath}+\left(c n+c_{1} n_{1}\right) \hat{k}$
a) Form an equilateral triangle
b) Are coplanar
c) Are collinear
d) Are mutually perpendicular
472. If A, B, C, D are any four points in space, then $|A \vec{B} \times \vec{C} D+B \vec{C} \times \vec{A} D+C \vec{A} \times \vec{B} D|$ is equal to
a) 2Δ
b) 4Δ
c) 3Δ
d) 5Δ
473. If \vec{a} lies in the plane of vectors \vec{b} and \vec{c}, then which of the following is correct?
a) $[\vec{a} \vec{b} \vec{c}]=0$
b) $[\vec{a} \vec{b} \vec{c}]=1$
c) $[\vec{a} \vec{b} \vec{c}]=3$
d) $[\vec{b} \vec{c} \vec{a}]=1$
474. What is the value of $(\overrightarrow{\mathbf{d}}+\overrightarrow{\mathbf{a}}] \cdot[\overrightarrow{\mathbf{a}} \times\{\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})\}]$?
a) $(\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{a}}) \cdot[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
b) $(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
c) $(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
d) $(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}) \cdot[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{c}}]$
475. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and the angle
between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, then the angle of a diagonal of the parallelogram are
a) $4 \sqrt{5}, 4 \sqrt{3}$
b) $4 \sqrt{3}, 4 \sqrt{7}$
c) $4 \sqrt{7}, 4 \sqrt{5}$
d) None of these
476. If the vectors $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}},-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \lambda \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ are linearly dependent, then the value of λ is equal to
a) 0
b) 1
c) 2
d) 3
477. For any vector $\overrightarrow{\mathbf{a}}$, the value of $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^{2}$ is equal to
a) $4 \overrightarrow{\mathbf{a}}^{2}$
b) $2 \overrightarrow{\mathbf{a}}^{2}$
c) $\overrightarrow{\mathbf{a}}^{2}$
d) $3 \overrightarrow{\mathbf{a}}^{2}$
478. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{\imath}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{\imath}}+\lambda \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are coplanar, then the value of λ is
a) $\frac{5}{2}$
b) $\frac{3}{5}$
c) $\frac{7}{3}$
d) None of these
479. If the position vectors of P and Q are $\hat{\imath}+3 \hat{\jmath}-7 \hat{k}$ and $5 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ then the cosine of the angle between $\vec{P} Q$ and y-axis is
a) $\frac{5}{\sqrt{162}}$
b) $\frac{4}{\sqrt{162}}$
c) $-\frac{5}{\sqrt{162}}$
d) $\frac{11}{\sqrt{162}}$
480. The value of ' a ' so that volume of parallelopiped formed by $\hat{\mathbf{i}}+a \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \hat{\mathbf{\jmath}}+a \hat{\mathbf{k}}$ and $a \hat{\mathbf{1}}+\hat{\mathbf{k}}$ becomes minimum, is
a) -3
b) 3
c) $1 / \sqrt{3}$
d) $\sqrt{3}$
481. If C is the mid point of $A B$ and P is any point outside $A B$, then
a) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}=\overrightarrow{\mathbf{P C}}$
b) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}+2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
c) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}-2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
d) $\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}+2 \overrightarrow{\mathbf{P C}}=\overrightarrow{0}$
482. The vector equation of the line passing through the points $(3,2,1)$ and $(-2,1,3)$ is
a) $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
b) $\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
c) $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
d) $\overrightarrow{\mathbf{r}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
483. The angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{5 \pi}{6}$ and the projection of $\overrightarrow{\mathbf{a}}$ in the direction of $\overrightarrow{\mathbf{b}}$ is $\frac{-6}{\sqrt{3}}$ then $|\overrightarrow{\mathbf{a}}|$ is equal to
a) 6
b) $\sqrt{3} / 2$
c) 12
d) 4
484. When a right handed rectangular cartesian system $O X Y Z$ rotated about z-axis through $\pi / 4$ in the counter-clock-wise sense it is found that a vector \vec{r} has the components $2 \sqrt{2}, 3 \sqrt{2}$ and 4 . The components of \vec{a} in the OXYZ coordinate system are
a) $5,-1,4$
b) $5,-1,4 \sqrt{2}$
c) $-1,-5,4 \sqrt{2}$
d) None of these
485. If $\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{c}}=0$ where $\overrightarrow{\mathbf{x}}$ is a non-zero vector. Then, $[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]$ is equal to
a) $[\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]^{2}$
b) $[\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
c) $[\overrightarrow{\mathbf{X}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]^{2}$
d) 0
486. If $A B C D E F$ is regular hexagon, then $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}$ is equal to
a) 0
b) $2 \overrightarrow{\mathbf{A B}}$
c) $3 \overrightarrow{\mathbf{A B}}$
d) $4 \overrightarrow{\mathbf{A B}}$
487. The shortest distance between the straight lines through the points $A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions of $(1,-2,2)$ and $(3,-2,-2)$ is
a) 6
b) 8
c) 12
d) 9
488. A unit vector perpendicular to the plane of $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ is
a) $\frac{4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{26}}$
b) $\frac{2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}}{7}$
c) $\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}$
d) $\frac{2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}}{7}$
489. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a
a) Rhombus
b) Rectangle
c) Square
d) Parallelogram
490. If D, E, F are respectively the mid point of $A B, A C$ and $B C$ in $\triangle A B C$, then $\overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{A F}}$ is equal to
a) $\overrightarrow{\mathbf{D C}}$
b) $\frac{1}{2} \overrightarrow{\mathbf{B F}}$
c) $2 \overrightarrow{\mathbf{B F}}$
d) $\frac{3}{2} \overrightarrow{\mathbf{B F}}$
491. Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two unit vectors such that angle between them is 60°. Then, $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$ is equal to
a) $\sqrt{5}$
b) $\sqrt{3}$
c) 0
d) 1
492. If $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ is equal to
a) $6(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
b) $3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
c) $2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
d) $\overrightarrow{\mathbf{0}}$
493. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the three vectors mutually perpendicular to each other and $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$, then $[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$ is equal to
a) 0
b) -24
c) 3600
d) -215
494. If the area of the parallelogram with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ as two adjacent side is 15 sq units, then the area of the parallelogram having $3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}$ as two adjacent sides in sq units is
a) 120
b) 105
c) 75
d) 45
495. If $(\vec{a} \times \vec{b})+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|=$
a) 16
b) 8
c) 3
d) 12
496. If the vectors $\vec{c}, \vec{a}=x \hat{\imath}+y \hat{\imath}+z \hat{k}$ and $\vec{b}=\hat{\jmath}$ are such that \vec{a}, \vec{c} and \vec{b} form a right handed system, then \vec{c} is
a) $z \hat{\imath}-x \hat{k}$
b) $\overrightarrow{0}$
c) $y \hat{\imath}$
d) $-z \hat{\imath}+x \hat{k}$
497. The vectors $2 \hat{\imath}-m \hat{\jmath}+3 m \hat{k}$ and $(1+m) \hat{\imath}-2 m \hat{\jmath}+\hat{k}$ include an acute angle for
a) $m=-1 / 2$
b) $m \in[-2,-1 / 2]$
c) $m \in R$
d) $m \in(-\infty,-2) \cup(-1 / 2, \infty)$
498. If $|\overrightarrow{\mathbf{a}}|+3,|\overrightarrow{\mathbf{a}}|=4,|\overrightarrow{\mathbf{c}}|=5$ and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are such that each is perpendicular to the saum of other two, then $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|$ is
a) $5 \sqrt{2}$
b) $\frac{5}{\sqrt{2}}$
c) $10 \sqrt{2}$
d) $10 \sqrt{3}$
499. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, the vector $(\vec{b} \times \vec{c}) \times \vec{a}$ equals
a) $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}$
b) $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$
c) $(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b}$
d) None of these
500. The vector $\cos \alpha \cos \beta \hat{\imath}+\cos \alpha \sin \beta \hat{\jmath}+\sin \alpha \hat{k}$ is a
a) Null vector
b) Unit vector
c) Constant vector
d) None of these
501. Let $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ be such that $|\overrightarrow{\mathbf{u}}|=1,|\overrightarrow{\mathbf{v}}|=2, \overrightarrow{\mathbf{w}}=3$. If the projection $\overrightarrow{\mathbf{v}}$ along $\overrightarrow{\mathbf{u}}$ is equal to that of $\overrightarrow{\mathbf{w}}$ along $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ are perpendicular to each other, then $|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}|$ are equals
a) 2
b) $\sqrt{7}$
c) $\sqrt{14}$
d) 14
502. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be the position vectors of the vertices A, B, C respectively of $\triangle A B C$. The vector area of $\triangle A B C$ is
a) $\frac{1}{2}\{\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{c}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})\}$
b) $\frac{1}{2}\{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}$
c) $\frac{1}{2}\{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}\}$
d) $\frac{1}{2}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
503. IF $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are any three vectors such that $\overrightarrow{\mathbf{a}} . \overrightarrow{\mathbf{b}} \neq 0, \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \neq 0$, then $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ are
a) inclined at angle of $\frac{\pi}{6}$ between them
b) Perpendicular
c) Parallel
d) inclined at an angle of $\frac{\pi}{3}$ between them
504. A unit vector in the plane of $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and perpendicular to $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\hat{\mathbf{j}}-\hat{\mathbf{k}}$
b) $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}}$
c) $\frac{\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{2}}$
d) $\frac{\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{2}}$
505. The unit vectors \vec{a} and \vec{b} are perpendicular, and the unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. If $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then which one of the following is incorrect?
a) $\alpha \neq \beta$
b) $\gamma^{2}=1-2 \alpha^{2}$
c) $\gamma^{2}=-\cos 2 \theta$
d) $\beta^{2}=\frac{1+\cos 2 \theta}{2}$
506. A vector \vec{c} of magnitude $5 \sqrt{6}$ directed along the bisector of the angle between $\vec{a}=7 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}$ and $\vec{b}=-2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$, is
a) $\pm \frac{5}{3}(2 \hat{\imath}+7 \hat{\jmath}+\hat{k})$
b) $\pm \frac{3}{5}(\hat{\imath}+7 \hat{\jmath}+2 \hat{k})$
c) $\pm \frac{5}{3}(\hat{\imath}-2 \hat{\jmath}+7 \hat{k})$
d) $\pm \frac{5}{3}(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})$
507. If the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}$ are collinear and $|\overrightarrow{\mathbf{b}}|=21$, then $\overrightarrow{\mathbf{b}}$ is equal to
а) $\pm(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
b) $\pm 3(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
c) $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
d) $\pm 21(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
508. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{p}-\vec{q}, \vec{b}=\vec{p}+3 \vec{q}$ and also given that $|\vec{p}|=|\vec{q}|=2$. If the vectors \vec{p} and \vec{q} are inclined at an angle $\pi / 3$, then the ratio of the lengths of the diagonals of the parallelogram is
а) $\sqrt{6}: \sqrt{2}$
b) $\sqrt{3}: \sqrt{5}$
c) $\sqrt{7}: \sqrt{3}$
d) $\sqrt{6}: \sqrt{5}$
509. If $[2 \vec{a}+4 \vec{b} \vec{c} \vec{d}]=\lambda[\vec{a} \vec{c} \vec{d}]+\mu[\vec{b} \vec{c} \vec{d}]$, then $\lambda+\mu=$
a) 6
b) -6
c) 10
d) 8
510. If A, B and C are the vertices of a triangle whose position vectors are $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ respectively G is the centroid of the $\triangle A B C$, then $\overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{G B}}+\overrightarrow{\mathbf{G C}}$ is
a) $\overrightarrow{\mathbf{0}}$
b) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
c) $\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}$
d) $\frac{\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}}{3}$
511. A, B have position vectors \vec{a}, \vec{b} relative to the origin O and X, Y divide $\overrightarrow{A B}$ internally and externally respectively in the ratio $2: 1$. Then, $\overrightarrow{X Y}=$
a) $\frac{3}{2}(\vec{b}-\vec{a})$
b) $\frac{4}{3}(\vec{a}-\vec{b})$
c) $\frac{5}{6}(\vec{b}-\vec{a})$
d) $\frac{4}{3}(\vec{b}-\vec{a})$
512. If $\overrightarrow{\mathbf{a}}=(2,1,-1), \overrightarrow{\mathbf{b}}=(1,-1,0), \overrightarrow{\mathbf{c}}=(5-1,1)$, then unit vector parallel to $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}$ but in opposite direction is
a) $\frac{1}{3}(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
b) $\frac{1}{2}(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
c) $\frac{1}{3}(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
d) None of these
513. The number of vectors of unit length perpendicular to the two vectors $\overrightarrow{\mathbf{a}}=(1,1,0)$ and $\overrightarrow{\mathbf{b}}=(0,1,1)$ is
a) One
b) Two
c) Three
d) Infinite
514. A vector which is a linear combination of the vectors $3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $6 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and is perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ is
a) $3 \hat{\mathbf{i}}-11 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
b) $-3 \hat{\mathbf{i}}+11 \hat{\mathbf{j}}+87 \hat{\mathbf{k}}$
c) $-9 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
d) $9 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
515. If $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ are unit vectors and $\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{y}}=0$, then
a) $|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|=1$
b) $|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|=\sqrt{3}$
c) $|\vec{x}+\vec{y}|=2$
d) $|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|=\sqrt{2}$
516. If the volume of a parallelopiped with $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ as coterminous edges is 9 cu units, then the volume of the parallelopiped with
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}),(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}),(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$ as coterminous edges is
a) 9 cu units
b) 729 cu units
c) 81 cu units
d) 27 cu units
517. The non-zero vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are related by $\overrightarrow{\mathbf{a}}=8 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}=-7 \overrightarrow{\mathbf{b}}$. Then, the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is
a) π
b) 0
c) $\frac{\pi}{4}$
d) $\frac{\pi}{2}$
518.

For any three non-zero vectors $\overrightarrow{\mathbf{r}}_{1} \overrightarrow{\mathbf{r}}_{2}$ and $\overrightarrow{\mathbf{r}}_{3},\left|\begin{array}{lll}\overrightarrow{\mathbf{r}_{1}} \cdot \overrightarrow{\mathbf{r}}_{1} & \overrightarrow{\mathbf{r}}_{1} \cdot \overrightarrow{\mathbf{r}}_{2} & \overrightarrow{\mathbf{r}}_{1} \cdot \overrightarrow{\mathbf{r}}_{3} \\ \overrightarrow{\mathbf{r}}_{2} \cdot \overrightarrow{\mathbf{r}}_{1} & \overrightarrow{\mathbf{r}}_{2} \cdot \overrightarrow{\mathbf{r}}_{2} & \overrightarrow{\mathbf{r}}_{2} \cdot \overrightarrow{\mathbf{r}}_{3} \\ \overrightarrow{\mathbf{r}}_{3} \cdot \overrightarrow{\mathbf{r}}_{1} & \overrightarrow{\mathbf{r}}_{3} \cdot \overrightarrow{\mathbf{r}}_{2} & \overrightarrow{\mathbf{r}}_{3} \cdot \overrightarrow{\mathbf{r}}_{3}\end{array}\right|=0$, Then, which of the following is false?
a) All the three vectors are parallel to one and the
b) All the three vectors are linearly dependent same plane
c) This system of equation has a non-trivial solution
d) All the three vectors are perpendicular to each other
519. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{\imath}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}$, then $\lambda+\mu$ is equal to
a) 0
b) 1
c) 2
d) 3
520. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be three vector such that $\overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=2 \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}},|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{c}}|=1,|\overrightarrow{\mathbf{b}}|=4$ and $|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=\sqrt{15}$. If $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}$, then λ is equal to
a) 1
b) ± 4
c) 3
d) -2
521. If $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=0, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=0$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}=0$ for some non-zero vector $\overrightarrow{\mathbf{r}}$. Then, the value of $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ is
a) 0
b) $\frac{1}{2}$
c) 1
d) 2
522. If $\vec{a}, \vec{b}, \vec{c}$ are any three mutually perpendicular vectors of equal magnitude a, then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to
a) a
b) $\sqrt{2} a$
c) $\sqrt{3} a$
d) $2 a$
523. A unit vector perpendicular to both the vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
a) $\frac{-\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
b) $\frac{-\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{3}$
c) $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
d) $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
524. Let, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$. A vector coplanar to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ has a projection along $\overrightarrow{\mathbf{c}}$ of magnitude $\frac{1}{\sqrt{3}}$, then the vector is
a) $4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
b) $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
c) $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
d) None of these
525. Let $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are unit vectors such that $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{w}}$ and $\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$, then the value of $[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}]$ is
a) 1
b) -1
c) 0
d) None of these
526. The position vectors of the points A, B, C are $2 \hat{\imath}+\hat{\jmath}-\hat{k}, 3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $\hat{\imath}+4 \hat{\jmath}-3 \hat{k}$ respectively. These points
a) Form an isosceles triangle
b) Form a right triangle
c) Are collinear
d) Form a scalene triangle
527. If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and the orthogonal projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}$ is
$\frac{4}{3}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$ then λ is equal to
a) 0
b) 2
c) 12
d) -1
528. If three points A, B and C have position vectors $(1, x, 3),(3,4,7)$ and $(y,-2,-5)$ respectively and, if they are collinear, then (x, y) is equal to
a) $(2,-3)$
b) $(-2,3)$
c) $(2,3)$
d) $(-2,-3)$
529. $\overrightarrow{\mathbf{O A}}$ and $\overrightarrow{\mathbf{B O}}$ are two vectors of magnitude 5 and 6 respectively. If $\angle B O A=60^{\circ}$, then $\overrightarrow{\mathbf{O A}} \cdot \overrightarrow{\mathbf{O B}}$ is equal to
a) 0
b) 15
c) -15
d) $15 \sqrt{3}$
530. If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ such that $\vec{a}+\vec{b}$ is a unit vector, then θ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
531. $\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}=2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$, then the area of $\triangle A B C$ is
a) 3 sq units
b) 4 sq units
c) 16 sq units
d) 9 sq units
532. If the vectors $\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{a}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}$ are such that $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{b}}$ from right handed system, then $\overrightarrow{\mathbf{c}}$ is
a) $z \hat{\mathbf{i}}-x \hat{\mathbf{k}}$
b) $\overrightarrow{0}$
c) $y \hat{\mathbf{j}}$
d) $-z \hat{\mathbf{i}}-x \hat{\mathbf{k}}$
533. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be the vectors such that $\overrightarrow{\mathbf{a}} \neq 0$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=2 \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}},|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{c}}|=1,|\overrightarrow{\mathbf{b}}|=4$ and $|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=\sqrt{15}$. If $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}$, then λ is equal to
a) 1
b) -4
c) 3
d) -2
534. The position vectors of P and Q are respectively \vec{a} and \vec{b}. If R is a point on $\vec{P} Q$ such that $\vec{P} R=5 \vec{P} Q$, then the position vector of R, is
a) $5 \vec{b}-4 \vec{a}$
b) $5 \vec{b}+4 \vec{a}$
c) $4 \vec{a}-5 \vec{b}$
d) $4 \vec{b}+5 \vec{a}$
535. The vector \vec{c} is perpendicular to the vectors $\vec{a}=(2,-3,1), \vec{b}=(1,-2,3)$ and satisfies the condition $\vec{c} \cdot(\hat{\imath}+2 \hat{\jmath}-7 \hat{k})$. Then, $\vec{c}=$
a) $7 \hat{\imath}+5 \hat{\jmath}+\hat{k}$
b) $-7 \hat{\imath}-5 \hat{\jmath}-\hat{k}$
c) $\hat{\imath}+\hat{\jmath}-\hat{k}$
d) None of these
536. If $A B C D$ is a quadrilateral, then $\vec{B} A+\vec{B} C+\overrightarrow{C D}+\vec{D} A=$
a) $2 \vec{B} A$
b) $2 \vec{A} B$
c) $2 \vec{A} C$
d) $2 \vec{B} C$
537. The vector equation of the sphere whose centre is the point $(1,0,1)$ and radius is 4 , is
a) $|\overrightarrow{\mathbf{r}}-(\hat{\mathbf{i}}+\hat{\mathbf{k}})|=4$
b) $|\overrightarrow{\mathbf{r}}+(\hat{\mathbf{i}}+\hat{\mathbf{k}})|=4^{2}$
c) $|\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{k}})|=4$
d) $|\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{k}})|=4^{2}$
538. If three concurrent edges of a parallelopiped of volume V represent vectors $\vec{a}, \vec{b}, \vec{c}$ then the volume of the parallelopiped whose three concurrent edges are the three concurrent diagonals of the three faces of the given parallelopiped, is
a) V
b) 2 V
c) 3 V
d) None of these
539. A unit vector in $x y$-plane makes an angle of 45° with the vector $\hat{\imath}+\hat{\jmath}$ and an angle of 60° with the vector $3 \hat{\imath}-4 \hat{\jmath}$ is
a) $\hat{\imath}$
b) $\frac{\hat{\imath}+\hat{\jmath}}{\sqrt{2}}$
c) $\frac{\hat{\imath}-\hat{\jmath}}{\sqrt{2}}$
d) None of these
540. The equation $\mathbf{r}^{\overrightarrow{2}}-2 \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}+h=0,|\overrightarrow{\mathbf{c}}|>\sqrt{h}$, represent
a) Circle
b) Ellipse
c) Cone
d) Sphere
541. The points with position vectors $10 \hat{\imath}+3 \hat{\jmath}, 12 \hat{\imath}-5 \hat{\jmath}$ and $a \hat{\imath}+11 \hat{\jmath}$ are collinear if the value of a is
a) -8
b) 4
c) 8
d) 12
542. If $\vec{a} \times(\vec{a} \times \vec{b})=\vec{b} \times(\vec{b} \times \vec{c})$ and $\vec{a} . \vec{b} \neq 0$, then $[\vec{a} \vec{b} \vec{c}]=$
a) 0
b) 1
c) 2
d) 3
543. $[\vec{a} \vec{b} \vec{a} \times \vec{b}]+(\vec{a} \cdot \vec{b})^{2}=$
a) $|\vec{a}|^{2}|\vec{b}|^{2}$
b) $|\vec{a}+\vec{b}|^{2}$
c) $|\vec{a}|^{2}+|\vec{a}|^{2}$
d) None of these
544. If $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ are non-coplanar vectors and p, q are real numbers, then the equality $[3 \overrightarrow{\mathbf{u}} p \overrightarrow{\mathbf{v}} p \overrightarrow{\mathbf{w}}$] $[p \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}} q \overrightarrow{\mathbf{u}}]-[2 \overrightarrow{\mathbf{w}} q \overrightarrow{\mathbf{v}} q \overrightarrow{\mathbf{u}}]=0$ holds for
a) Exactly two value of (p, q)
b) More than two but not all values of (p, q)
c) All values of $(p . q)$
d) Exactly one value of (p, q)
545. $\overrightarrow{\mathbf{a}} \cdot[(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})]$ equals
a) 0
b) $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
c) $\overrightarrow{\boldsymbol{a}}$
d) $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
546. If the vectors $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}},-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ represent the diagonals of a parallelogram, them its area will be
a) 21
b) $\frac{\sqrt{21}}{2}$
c) $2 \sqrt{21}$
d) $\frac{\sqrt{21}}{4}$
547. Given $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}},|\overrightarrow{\mathbf{a}}|=1$ and if $(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}) \cdot(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})=-10$ then $|\overrightarrow{\mathbf{b}}|$ is equal to
a) 1
b) 3
c) 2
d) 4
548. If $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+\hat{\jmath}, \vec{c}=\hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$, then $\lambda+\mu=$
a) 0
b) 1
c) 2
d) 3
549. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}=\vec{b}+\vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{2}$, then
a) $a^{2}=b^{2}+c^{2}$
b) $b^{2}=c^{2}+a^{2}$
c) $c^{2}=a^{2}+b^{2}$
d) $2 a^{2}-b^{2}=c^{2}$
550. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are the unit vectors such that $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\frac{1}{2}$, then
a) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar
b) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are non-coplanar
c) $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are non-parallel
d) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{d}}$ are parallel and $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are parallel
551. The projection of the vector $2 \hat{\imath}+3 \hat{\jmath}-2 \hat{k}$ on the vector $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$, is
a) $\frac{2}{\sqrt{14}}$
b) $\frac{1}{\sqrt{14}}$
c) $\frac{3}{\sqrt{14}}$
d) None of these
552. If unit vector $\overrightarrow{\mathbf{c}}$ makes an angle $\frac{\pi}{3}$ with $\hat{\mathbf{i}}+\hat{\mathbf{\jmath}}$, then minimum and maximum values of $(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) \cdot \overrightarrow{\mathbf{c}}$ respectively are
a) $0, \frac{\sqrt{3}}{2}$
b) $-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}$
c) $-1, \frac{\sqrt{3}}{2}$
d) None of these
553. \hat{a} and \hat{b} are two mutually perpendicular unit vectors. If the vectors $x \hat{a}+x \hat{b}+z(\hat{a} \times \hat{b}), \hat{a}+(\hat{a} \times \hat{b})$ and $z \hat{a}+z \widehat{b}+y(\hat{a} \times \hat{b})$ lie in a plane, then z is
a) A.M. of x and y
b) G.M. of x and y
c) H.M. of x and y
d) Equal to zero
554. If $\overrightarrow{\mathbf{a}}=(1, p, 1), \overrightarrow{\mathbf{b}}=(q, 2,2), \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=r$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=(0,-3,3)$, then p, q, r are in that order
a) $1,5,9$
b) $9,5,1$
c) $5,1,9$
d) None of these
555. The vectors $3 \hat{\imath}-2 \hat{\jmath}+\hat{k}, \hat{\imath}-3 \hat{\jmath}+5 \hat{k}$ and $2 \hat{\imath}+\hat{\jmath}-4 \hat{k}$ form the sides of a triangle. This triangle is
a) An acute angled triangle
b) An obtuse angled triangle
c) A right angled triangle
d) An equilateral triangle
556. The vector $\hat{\mathbf{i}}+x \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{\mathbf{i}}+(4 x-2) \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$. The values of x is
a) $\left\{-\frac{2}{3}, 2\right\}$
b) $\left\{\frac{1}{3}, 2\right\}$
c) $\left\{\frac{2}{3}, 0\right\}$
d) $\{2,7\}$
557. If $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}, \vec{b}=3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\vec{c}=5 \hat{\imath}-3 \hat{\jmath}-2 \hat{k}$, then the volume of the parallelopiped with coterminus edges $a+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ is
a) 2
b) 1
c) -1
d) 0
558. Image of the point P with position vector $7 \hat{\mathbf{\imath}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ in the line whose vector equation is $\overrightarrow{\mathbf{r}}=(9 \hat{\mathbf{\imath}}+5 \hat{\mathbf{\jmath}}+$ $5 \mathbf{k}+\lambda(\mathbf{1}+3 \mathbf{j}+5 \mathbf{k})$ has position vector
a) $-9 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
b) $9 \mathbf{i}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
c) $9 \mathbf{i}+5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
d) $9 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
559. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are the p th, q th, nth terms of an HP and $\overrightarrow{\mathbf{u}}=(q-r) \hat{\mathbf{i}}+(r-p) \hat{\mathbf{j}}+(p-q) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{v}}=\frac{\hat{\mathbf{i}}}{a}+\frac{\hat{\mathbf{\jmath}}}{b}+\frac{\hat{\mathbf{k}}}{c}$, then
a) $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ are parallel vectors
b) $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ are orthogonal vectors
c) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=1$
d) $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}$
560. If $\hat{\mathbf{i}}-\hat{\mathbf{k}}, \lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-\lambda) \hat{\mathbf{k}}$ and $\mu \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+(1+\lambda \hat{\mathbf{j}}-\mu) \hat{\mathbf{k}}$ are three coterminal edges of a parallelopiped, then its volume depends on
a) only λ
b) Only μ
c) Both λ and μ
d) Neither λ nor μ
561. The vector $\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$ is equal to
a) $\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
b) $\overrightarrow{0}$
c) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
d) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}$
562. If $A B C D$ is a parallelogram, then $\vec{A} C-\vec{B} D=$
a) $4 \vec{A} B$
b) $3 \vec{A} B$
c) $2 \vec{A} B$
d) $\vec{A} B$
563. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, is
a) 1
b) 3
c) $-3 / 2$
d) None of these
564. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are vectors such that $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$, then
a) $a^{2}+b^{2}+c^{2}=0$
b) $a^{2}-b^{2}=c^{2}$
c) $a^{2}+b^{2}=c^{2}$
d) $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
565. If $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=5 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, then the projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}$ is
a) 3
b) 4
c) 5
d) 6
566. Forces of magnitudes 3 and 4 units acting along $6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ respectively act on a particle and displace it from $(2,2-1)$ to $(4,3,1)$. The work done is
a) $124 / 7$
b) $120 / 7$
c) $125 / 7$
d) $121 / 7$
567. The value of $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]$ is
a) $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
b) 0
c) $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
d) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$

: ANSWER KEY :

1)	d	2)	d	3)	c	4)	b	189)	d	190)	a	191)	a	192)	b
5)	C	6)	d	7)	d	8)	a	193)	b	194)	C	195)	b	196)	d
9)	c	10)	c	11)	c	12)	a	197)	a	198)	a	199)	a	200)	b
13)	b	14)	b	15)	C	16)	b	201)	a	202)	C	203)	c	204)	b
17)	b	18)	a	19)	c	20)	d	205)	a	206)	d	207)	b	208)	a
21)	a	22)	C	23)	d	24)	a	209)	d	210)	d	211)	c	212)	d
25)	d	26)	b	27)	b	28)	a	213)	b	214)	C	215)	b	216)	a
29)	d	30)	d	31)	c	32)	a	217)	d	218)	d	219)	a	220)	d
33)	a	34)	d	35)	a	36)	a	221)	b	222)	a	223)	c	224)	a
37)	b	38)	d	39)	d	40)	a	225)	d	226)	b	227)	c	228)	C
41)	c	42)	d	43)	a	44)	c	229)	b	230)	a	231)	a	232)	C
45)	d	46)	b	47)	a	48)	b	233)	b	234)	d	235)	a	236)	c
49)	b	50)	d	51)	a	52)	c	237)	C	238)	d	239)	d	240)	c
53)	b	54)	a	55)	c	56)	a	241)	a	242)	d	243)	b	244)	c
57)	b	58)	C	59)	d	60)	c	245)	b	246)	a	247)	d	248)	b
61)	b	62)	C	63)	a	64)	a	249)	b	250)	d	251)	c	252)	C
65)	d	66)	C	67)	a	68)	b	253)	b	254)	b	255)	d	256)	C
69)	b	70)	C	71)	d	72)	d	257)	a	258)	d	259)	d	260)	d
73)	a	74)	b	75)	d	76)	a	261)	c	262)	C	263)	b	264)	b
77)	b	78)	d	79)	b	80)	b	265)	d	266)	d	267)	b	268)	d
81)	b	82)	b	83)	c	84)	a	269)	c	270)	b	271)	d	272)	C
85)	b	86)	c	87)	a	88)	c	273)	b	274)	a	275)	b	276)	b
89)	a	90)	d	91)	a	92)	d	277)	b	278)	a	279)	d	280)	a
93)	c	94)	a	95)	d	96)	b	281)	a	282)	a	283)	a	284)	C
97)	d	98)	d	99)	a	100)	a	285)	a	286)	b	287)	a	288)	a
101)	d	102)	b	103)	b	104)	b	289)	b	290)	a	291)	a	292)	c
105)	b	106)	C	107)	c	108)	a	293)	a	294)	d	295)	a	296)	c
109)	a	110)	a	111)	c	112)	b	297)	a	298)	a	299)	c	300)	b
113)	d	114)	b	115)	b	116)	b	301)	d	302)	c	303)	a	304)	b
117)	b	118)	d	119)	d	120)	d	305)	a	306)	a	307)	c	308)	c
121)	c	122)	a	123)	a	124)	d	309)	d	310)	d	311)	b	312)	a
125)	a	126)	a	127)	c	128)	a	313)	d	314)	d	315)	a	316)	c
129)	a	130)	a	131)	a	132)	a	317)	a	318)	c	319)	a	320)	b
133)	c	134)	d	135)	a	136)	d	321)	d	322)	b	323)	b	324)	b
137)	a	138)	C	139)	c	140)	d	325)	d	326)	C	327)	b	328)	a
141)	d	142)	C	143)	d	144)	c	329)	c	330)	b	331)	c	332)	b
145)	a	146)	a	147)	d	148)	b	333)	d	334)	b	335)	a	336)	b
149)	a	150)	d	151)	b	152)	b	337)	d	338)	a	339)	c	340)	d
153)	a	154)	b	155)	b	156)	C	341)	a	342)	a	343)	c	344)	c
157)	a	158)	d	159)	b	160)	c	345)	b	346)	a	347)	d	348)	a
161)	c	162)	a	163)	c	164)	b	349)	b	350)	a	351)	b	352)	C
165)	a	166)	d	167)	d	168)	a	353)	C	354)	b	355)	c	356)	a
169)	b	170)	d	171)	c	172)	b	357)	d	358)	a	359)	a	360)	c
173)	d	174)	c	175)	d	176)	c	361)	c	362)	b	363)	b	364)	d
177)	a	178)	b	179)	C	180)	b	365)	C	366)	d	367)	d	368)	b
181)	c	182)	C	183)	c	184)	b	369)	C	370)	b	371)	a	372)	a
185)	a	186)	a	187)	b	188)	a	373)	c	374)	c	375)	b	376)	c

377)	a	378)	b	379)	c	380) a
381)	b	382)	a	383)	d	384) d
385)	c	386)	a	387)	a	388) c
389)	a	390)	b	391)	b	392) a
393)	b	394)	d	395)	c	396) b
397)	a	398)	a	399)	c	400) d
401)	c	402)	a	403)	C	404) d
405)	b	406)	d	407)	a	408) b
409)	c	410)	c	411)	a	412) b
413)	c	414)	a	415)	a	416) b
417)	a	418)	a	419)	c	420) b
421)	d	422)	c	423)	a	424) a
425)	a	426)	b	427)	a	428) c
429)	a	430)	C	431)	c	432) d
433)	a	434)	a	435)	c	436) d
437)	c	438)	d	439)	a	440) d
441)	a	442)	a	443)	b	444) b
445)	d	446)	a	447)	a	448) a
449)	b	450)	a	451)	b	452) c
453)	d	454)	c	455)	a	456) c
457)	c	458)	d	459)	c	460) a
461)	a	462)	c	463)	b	464) a
465)	b	466)	d	467)	b	468) a
469)	a	470)	b	471)	b	472) b
473)	a	474)	c	475)	b	476) a
477)	b	478)	d	479)	C	480) c
481)	c	482)	a	483)	d	484) d
485)	d	486)	d	487)	d	488) c
489)	d	490)	a	491)	d	492) b
493)	d	494)	b	495)	C	496) a
497)	d	498)	a	499)	b	500) b
501)	c	502)	b	503)	c	504) d
505)	a	506)	d	507)	b	508) a
509)	a	510)	a	511)	d	512) a
513)	b	514)	b	515)	d	516) c
517)	a	518)	a	519)	a	520) b
521)	a	522)	c	523)	d	524) a
525)	a	526)	a	527)	b	528) a
529)	b	530)	d	531)	a	532) a
533)	b	534)	a	535)	a	536) a
537)	a	538)	b	539)	b	540) d
541)	c	542)	a	543)	a	544) d
545)	a	546)	b	547)	C	548) a
549)	a	550)	c	551)	a	552) b
553)	b	554)	d	555)	C	556) a
557)	d	558)	c	559)	b	560) d
561)	a	562)	c	563)	c	564) c
565)	a	566)	a	567)	b	

: HINTS AND SOLUTIONS :

1 (d)
Let the unit vector in $x y$-plane be $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}}$.
$\therefore \cos 45^{\circ}=\frac{(x \hat{\mathbf{1}}+y \hat{\mathbf{\jmath}})(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}})}{\sqrt{x^{2}+y^{2}} \sqrt{1^{2}+1^{2}}}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{x+y}{\sqrt{2} \sqrt{x^{2}+y^{2}}}$
$\Rightarrow 1=\frac{x+y}{\sqrt{x^{2}+y^{2}}}$
$\Rightarrow x+y=\sqrt{x^{2}+y^{2}}$
Since, $\overrightarrow{\mathrm{a}}$ is a unit vector.
$\therefore|\overrightarrow{\mathbf{a}}|=\sqrt{x^{2}+y^{2}}=1$
$\Rightarrow x+y=1$
Again $\cos 60^{\circ}=\frac{(x \hat{i}+y \hat{y}) \cdot(3 \hat{i}-\widehat{4}))}{\sqrt{x^{2}+y^{2}} \sqrt{3^{2}+4^{2}}}$
$\Rightarrow \frac{1}{2}=\frac{3 x-4 y}{1 \cdot 5} \Rightarrow \frac{5}{2}=3 x-4 y$
$5=6 x-8 y$
On solving Eqs. (i) and (ii), we get
$x=\frac{13}{14}, y=\frac{1}{14}$
$\therefore \overrightarrow{\mathbf{a}}=\frac{1}{14}(13 \hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}})$
No value in the given options satisfies the above relations.
Thus, option (d) is correct.
2 (d)
Given, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|<1$
$\Rightarrow \sqrt{1+1+2 \cos 2 \alpha}<1$
$\Rightarrow \sqrt{2(1+\cos 2 \alpha)}<1$
$\Rightarrow \sqrt{4 \cos ^{2} \alpha}<1$
$\Rightarrow|\cos \alpha|<\frac{1}{2}$
$\Rightarrow \frac{\pi}{3}<\alpha<\frac{2 \pi}{3}(\because 0 \leq \alpha \leq \pi)$
3 (c)
Given equation can be rewritten as
$\overrightarrow{\mathbf{r}}=3 \hat{\mathbf{j}}+(\hat{\mathbf{i}}+2 \hat{\mathbf{k}}) s+(-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) t$
which is a plane passing through $\overrightarrow{\mathbf{a}}=3 \hat{\mathbf{j}}$ and parallel to the vectors $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$.
Therefore, it is perpendicular to the vector $\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
Hence, its vector equation is $(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{n}}=0$
$\Rightarrow \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}$

$$
\begin{gathered}
\Rightarrow(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \\
=3 \hat{\mathbf{j}} \cdot(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \\
\Rightarrow 2 x-5 y-z+15=0
\end{gathered}
$$

(b)
$\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=18$ and $|\overrightarrow{\mathbf{b}}|=5$
\therefore Vector component of $\overrightarrow{\mathbf{a}}$ along $\overrightarrow{\mathbf{b}}$
$=\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|^{2}}\right) \overrightarrow{\mathbf{b}}=\frac{18}{25}(3 \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}})$
(c)

Given that, $(\overrightarrow{\mathbf{F}})=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and its position vector $2 \hat{\mathbf{i}}$ - $\hat{\mathbf{j}}$.
The position vector of a force about origin
$(\overrightarrow{\mathbf{r}})=(2 \hat{\mathbf{i}}-\hat{\mathbf{j}})$.
\therefore Moment of the force about origin
$=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ 2 & -1 & 0 \\ 2 & 1 & -1\end{array}\right|=\hat{\mathbf{i}}+2 \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}}$
7 (d)
Since, $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=0$
Similarly, $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}=0$
and $\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=0$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0$
Given, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=6$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=36$
Similarly, $|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=64 \ldots$ (iii)
and $|\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{a}}|^{2}+2 \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=100$
On adding Eqs. (ii),(iii) and (iv), we get

$$
\begin{aligned}
& 2|\overrightarrow{\mathbf{a}}|^{2}+2|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \\
& \quad=200 \\
& \Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}=100 \ldots(\mathrm{v})[\text { from Eqs. (i)] } \\
& \text { Now, }|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+ \\
& \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \\
& \Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=100 \text { [from Eqs. (i) and (v)] } \\
& \Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=10
\end{aligned}
$$

It is given that $|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda$ (say) and $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors. Therefore,
$|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} \lambda$
Let θ be the angle which $\vec{a}+\vec{b}+\vec{c}$ makes with \vec{a}.
Then,
$\cos \theta=\frac{\vec{a}(\vec{a}+\vec{b}+\vec{c})}{|\vec{a}||\vec{a}+\vec{b}+\vec{c}|}=\frac{|\vec{a}|^{2}}{|\vec{a}||\vec{a}+\vec{b}+\vec{c}|}$
$\Rightarrow \cos \theta=\frac{\lambda^{2}}{\lambda(\sqrt{3} \lambda)}=\frac{1}{\sqrt{3}} \Rightarrow \theta=\cos ^{-1}(1 / \sqrt{3})$
9 (c)
The resultant of forces $3 \vec{O} A$ and $5 \vec{O} B$ is $8 \vec{O} B$, where C divides $A B$ in the ratio 5:3 i.e.
$3 A C=5 C B$
10 (c)
The equation of a line passing through the centre ($\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$) and normal to the given plane is
$\overrightarrow{\mathbf{r}}=\hat{\mathbf{j}}+2 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
This meets the plane at a point for which we must have
$[(\hat{\mathbf{j}}+2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})] \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})=15$
$\Rightarrow 6+\lambda(9)=15 \Rightarrow \lambda=1$
\therefore From Eq. (i),
$\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
\therefore Coordinates of the centre of the circle are (1,3,4)
12 (a)
$\operatorname{Let} \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$
Since, volume of tetrahedron $=\frac{1}{6}[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$\Rightarrow \frac{2}{3}=\frac{1}{6}\left|\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & \lambda\end{array}\right|$
$\Rightarrow \frac{2}{3}=\frac{1}{6}[1(\lambda+1)-2(\lambda-1)-1(-1-1)]$
$\Rightarrow 4=[-\lambda+5]$
$\Rightarrow \lambda=1$
13 (b)
Given equation represents a plane.
15
$\because \vec{\alpha} \times \vec{\beta}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & -1 \\ -1 & 2 & -4\end{array}\right|=-10 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
$\therefore(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=\left|\begin{array}{ccc}-10 & 9 & 7 \\ 2 & 3 & -1 \\ 1 & 1 & 1\end{array}\right|$
$=-10(3+1)-9(2+1)+7(2-3)$
$=-74$
Alternate
$(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=\left|\begin{array}{ll}\vec{\alpha} \cdot \vec{\alpha} & \vec{\alpha} \cdot \vec{\gamma} \\ \vec{\beta} \cdot \vec{\alpha} & \vec{\beta} \cdot \vec{\gamma}\end{array}\right|$
$=\left|\begin{array}{cc}14 & 4 \\ 8 & -3\end{array}\right|=-42-32$
$=-74$
16
(b)

Given planes are
$\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})=1$
and $\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=2$
Now,
$(\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -3 & 1 \\ 2 & 5 & -3\end{array}\right|$
$=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
Hence, line of intersection of the planes is parallel to the vector $4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$.
17 (b)
Given, $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}=\lambda \overrightarrow{\mathbf{E D}}$

$\Rightarrow(\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{E D}})+(\overrightarrow{\mathbf{E D}}+\overrightarrow{\mathbf{D B}})+2 \overrightarrow{\mathbf{E D}}=\lambda \overrightarrow{\mathbf{E D}}$
$\Rightarrow 4 \overrightarrow{\mathbf{E D}}+(\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{D B}})=\lambda \overrightarrow{\mathbf{E D}}$
$\Rightarrow 4 \overrightarrow{\mathbf{E D}}=\lambda \overrightarrow{\mathbf{E D}} \quad(\because \overrightarrow{\mathbf{A E}}=-\overrightarrow{\mathbf{D B}})$

Alternate

Now, $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}=2(\overrightarrow{\mathbf{O D}}+\overrightarrow{\mathbf{E O}}+\overrightarrow{\mathbf{E D}})$
$=2(\overrightarrow{\mathbf{E D}}+\overrightarrow{\mathbf{E D}})=4 \overrightarrow{\mathbf{E D}} \therefore \lambda=4$
18 (a)
Let $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{b}}=b_{1} \hat{\mathbf{i}}+b_{2} \hat{\mathbf{j}}+b_{3} \hat{\mathbf{k}}$
Now, $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{i}}]=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ 1 & 0 & 0\end{array}\right|$
$=a_{1}(0-0)-a_{2}\left(0-b_{3}\right)+a_{3}\left(0-b_{2}\right)$

$$
=a_{2} b_{3}-a_{3} b_{2}
$$

$\therefore 2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{i}}] \hat{\mathbf{i}}=2\left[a_{2} b_{3}-a_{3} b_{2}\right] \hat{\mathbf{i}}$
Similarly, $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{j}}] \hat{\mathbf{j}}=2\left[a_{3} b_{1}-a_{1} b_{3}\right] \hat{\mathbf{j}}$
and $2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{k}}] \hat{\mathbf{k}}=2\left[a_{1} b_{2}-a_{2} b_{1}\right] \hat{\mathbf{k}}$
$\therefore 2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{i}}] \hat{\mathbf{i}}+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{j}}] \hat{\mathbf{j}}+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \hat{\mathbf{k}}] \hat{\mathbf{k}}+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]$
$=2\left[\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{\mathbf{i}}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \hat{\mathbf{j}}\right.$

$$
\left.+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{\mathbf{k}}\right]
$$

$=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
19 (c)
Given that, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=1$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\hat{\mathbf{\jmath}}-\hat{\mathrm{k}}$
As we know $\overrightarrow{\mathbf{a}}(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}$
$\Rightarrow(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{\jmath}}-\hat{\mathbf{k}})=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})-(\sqrt{3})^{2} \overrightarrow{\mathbf{b}}$
$\Rightarrow-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}=\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}-3 \overrightarrow{\mathbf{b}}$
$\Rightarrow 3 \overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\hat{\mathbf{1}}$

Given, $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ defined by the relations
$\overrightarrow{\mathbf{p}}=\frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}, \overrightarrow{\mathbf{c}}=\frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}$ and $\overrightarrow{\mathbf{r}}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}=\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{[\overrightarrow{\mathbf{a} b} \overrightarrow{\mathbf{c}}]}=1$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{a}} \cdot \frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}=0$
Similarly, $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}=1$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{r}}=0$
$\therefore(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{p}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{q}}+(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{r}}$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}$
$=1+1+1=3$
21 (a)
Given, $m_{1}=\left|\overrightarrow{\mathbf{a}_{1}}\right|=\sqrt{2^{2}+(-1)^{2}+(1)^{2}}=\sqrt{6}$
$m_{2}=\left|\overrightarrow{\mathbf{a}_{2}}\right|=\sqrt{3^{2}+(-4)^{2}+(-4)^{2}}=\sqrt{41}$
$m_{3}=\left|\overrightarrow{\mathbf{a}_{3}}\right|=\sqrt{1^{2}+1^{2}+(-1)^{2}=\sqrt{3}}$
and $m_{4}=\left|\overrightarrow{\mathbf{a}_{4}}\right|=\sqrt{(-1)^{2}+(3)^{2}+(1)^{2}}=\sqrt{11}$
$\therefore m_{3}<m_{1}<m_{4}<m_{2}$
22 (c)
Given, $\left[\lambda(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \lambda^{2} \overrightarrow{\mathbf{b}} \quad \lambda \overrightarrow{\mathbf{c}}\right]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]$
$\Rightarrow\left|\begin{array}{ccc}\lambda\left(a_{1}+b_{1}\right) & \lambda\left(a_{2}+b_{2}\right) & \lambda\left(a_{3}+b_{3}\right) \\ \lambda^{2} b_{1} & \lambda^{2} b_{2} & \lambda^{2} b_{3} \\ \lambda c_{1} & \lambda c_{2} & \lambda c_{3}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$\Rightarrow \lambda^{4}\left|\begin{array}{ccc}a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

[applying $R_{1} \rightarrow R_{1}-R_{2}$ in LHS and $R_{2} \rightarrow R_{2}-R_{3}$ in RHS]
$\Rightarrow \lambda^{4}\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=-\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$\Rightarrow \lambda^{4}=-1$
Hence, no real value of λ exists.
23 (d)
Since the given points lie in a plane.
$\therefore\left|\begin{array}{lll}a & a & c \\ 1 & 0 & 1 \\ c & c & b\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}-C_{2}$
$\Rightarrow\left|\begin{array}{lll}0 & a & c \\ 1 & 0 & 1 \\ 0 & c & b\end{array}\right|=0$
$\Rightarrow-1\left(a b-c^{2}\right)=0$
$\Rightarrow c^{2}=a b$

Hence, c is GM of a and b.
24 (a)
We have,
$\vec{P}=A \vec{C}+\vec{B} D$
$\Rightarrow \vec{p}=A \vec{C}+B \vec{C}+\vec{C} D$
$\Rightarrow \vec{p}=A \vec{C}+\lambda \vec{A} D+\vec{C} D$
$\Rightarrow \vec{p}=\lambda \vec{A} D+(A \vec{C}+\vec{C} D)$
$\Rightarrow \vec{p}=\lambda \vec{A} D+\vec{A} D=(\lambda+1) \vec{A} D$
$\therefore \vec{p}=\mu \vec{A} D \Rightarrow \mu=\lambda+1$
(d)

We have,
$\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=0$
$\Rightarrow(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=0$
$\Rightarrow 2(\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c})=-\left\{|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}\right\}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{29}{2}$
26 (b)
Since, $(\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}})=0$
$\Rightarrow(\overrightarrow{\mathbf{a}})^{2}-\lambda^{2}(\overrightarrow{\mathbf{b}})^{2}=0$
$\Rightarrow \lambda^{2} \frac{(\overrightarrow{\mathbf{a}})^{2}}{(\overrightarrow{\mathbf{b}})^{2}}=\left(\frac{3}{4}\right)^{2}$
$\Rightarrow \lambda=\frac{3}{4}$
(b)

Let $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{u}}=\hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})+\hat{\mathbf{j}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})+\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})$
$=\hat{\mathbf{i}} \times\left(-a_{2} \hat{\mathbf{k}}+a_{3} \hat{\mathbf{j}}\right)+\hat{\mathbf{j}} \times\left(a_{1} \hat{\mathbf{k}}-a_{3} \hat{\mathbf{i}}\right)+\hat{\mathbf{k}}$

$$
\times\left(-a_{1} \hat{\mathbf{j}}+a_{2} \hat{\mathbf{i}}\right)
$$

$=a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}+a_{1} \hat{\mathbf{i}}+a_{3} \hat{\mathbf{k}}+a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}$
$=2 \overrightarrow{\mathbf{a}}$
(d)

Since, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$\Rightarrow(\sqrt{7})^{2}=(3 \sqrt{3})^{2}+4^{2}+2(3 \sqrt{3})^{2}(4) \cos \theta$
$\Rightarrow 7=27+16+24 \sqrt{3} \cos \theta$
$\Rightarrow \cos \theta=-\sqrt{3} / 2$
$\Rightarrow \theta=150^{\circ}$
30 (d)
$\because \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & -5 \\ 3 & 5 & -1\end{array}\right|=23 \hat{\mathbf{i}}-14 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & -1 \\ 23 & -14 & -1\end{array}\right|$

$$
=-17 \hat{\mathbf{i}}-21 \hat{\mathbf{j}}-97 \hat{\mathbf{k}}
$$

31 (c)

We have,
$|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ and $\vec{a} \perp \vec{b} \perp \vec{c}$
$\Rightarrow \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
$\therefore|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})$
$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=3$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$
32 (a)
Let $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}}=[(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \cdot \hat{\mathbf{i}}] \hat{\mathbf{i}}=x \hat{\mathbf{i}}$
Similarly, $(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{i}}=y \hat{\mathbf{j}},(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) z \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}) \hat{\mathbf{i}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}}) \hat{\mathbf{j}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}=\overrightarrow{\mathbf{a}}$
33 (a)
Let $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{\imath}}=(x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}) \cdot \hat{\mathbf{\imath}}=x$
$\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{\jmath}})=(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+\hat{\mathbf{\jmath}})=x+y$
and $\overrightarrow{\mathbf{a}}(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})=(x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}) \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})=$ $x+y+z$
\because Given that, $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{\imath}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$
$\Rightarrow x=x+y=x+y+z$
Take $x=x+y \Rightarrow y=0$
and $x+y=x+y+z \Rightarrow z=0$
$\Rightarrow x$ has any real values.
Now, take $x=1 \therefore \overrightarrow{\mathbf{a}}=\hat{\mathbf{1}}$
34 (d)
Let $\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+\lambda+\overrightarrow{\mathbf{b}}=(1+\lambda) \hat{\mathbf{i}}+(1-\lambda) \hat{\mathbf{j}}+(\lambda-$

1) $\hat{\mathbf{k}}$

Also, $\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
$\Rightarrow[(1+\lambda) \hat{\mathbf{i}}+(1-\lambda) \hat{\mathbf{j}}+(\lambda-1) \hat{\mathbf{k}}] \cdot[\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}]$

$$
=0
$$

$\Rightarrow 1+\lambda+1-\lambda-\lambda+1=0$
$\Rightarrow \lambda=3$
$\therefore \quad \overrightarrow{\mathbf{c}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\Rightarrow \overrightarrow{\mathbf{c}}= \pm \frac{2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{6}}$
35 (a)
The cartesian form of an equation of planes are $x+3 y-z=0$ and $y+2 z=0$
The line of intersection of two planes is
$(x+3 y-z)+\lambda(y+2 z)=0$
Since, it is passing through $(-1,-1,-1)$
$\therefore(-1-3+1)+\lambda(-1-2)=0$
$\Rightarrow \lambda=-1$
On putting the value of λ in Eq. (i), we get $x+2 y-3 z=0$
Hence, vector equation of plane is
$\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=0$
$\overrightarrow{\mathbf{a}} \times[\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]=\overrightarrow{\mathbf{a}} \times\{(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}\}$
$=0-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$
40 (a)
$\left|\begin{array}{lll}\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} \\ \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \\ \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}\end{array}\right|$
$=\left\lvert\, \begin{array}{ccc}a_{1}^{2}+a_{2}^{2}+a_{3}^{2} & a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & a_{1} c_{1} \\ a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & b_{1}^{2}+b_{2}^{2}+b_{3}^{2} & b_{1} c_{1} \\ a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3} & b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3} & c_{1}^{2}\end{array}\right.$
$=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
41 (c)
Given, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=12$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta=12$
$\Rightarrow 10 \times 2 \times \cos \theta=12$
$\Rightarrow \cos \theta=\frac{3}{5}$
$\therefore \sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Now,
$|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta=10 \times 2 \times \frac{4}{5}=16$
42 (d)
We have,
$|\vec{a}+\vec{b}+\vec{c}|^{2}$
$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
It is given that $\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a})$ and $\vec{c} \perp$
$(\vec{a}+\vec{b})$
$\therefore \vec{a} \cdot(\vec{b}+\vec{c})=0, \vec{b} \cdot(\vec{c}+\vec{a})=0$ and $\vec{c} \cdot(\vec{a}+\vec{b})$

$$
=0
$$

$\Rightarrow 2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
$\therefore|\vec{a}+\vec{b}+\vec{c}|^{2}=16+16+25+0 \quad$ [From (i)]
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{57}$
43 (a)
Since, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \Rightarrow(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})^{2}=\overrightarrow{\mathbf{c}}^{2}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta=|\overrightarrow{\mathbf{c}}|^{2}$
$\Rightarrow 2(1+\cos \theta)=1 \Rightarrow \cos \theta=-\frac{1}{2} \quad[\therefore|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$
$=|\overrightarrow{\mathbf{c}}|=1$, given $]$
Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$=1+1+2 \cdot \frac{1}{2}=3$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=\sqrt{3}$
44 (c)
We have,
$\vec{a} \cdot \vec{b} \geq 0 \Rightarrow|\vec{a}||\vec{b}| \cos \theta \geq 0 \Rightarrow 0 \leq \theta \leq \frac{\pi}{2}$
45 (d)
Since the vectors $2 \hat{\imath}+3 \hat{\jmath}$ and $5 \hat{\imath}+6 \hat{\jmath}$ have $(1,1)$ as initial point. Therefore, their terminal points are $(3,4)$ ad $(6,7)$ respectively. The equation of the line joining these two points is $x-y+1=0$. The terminal point of $8 \hat{\imath}+\lambda \hat{\jmath}$ is $(9, \lambda+1)$. Since the vectors terminate on the same straight line.
Therefore, point $(9,(\lambda+1))$ lies on $x-y+1=0$ $\Rightarrow 9-(\lambda+1)+1=0 \Rightarrow \lambda=9$
47 (a)
Let $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
$\overrightarrow{\mathbf{B}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{C}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{\jmath}}-2 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{D}}=\hat{\mathbf{\imath}}-\lambda \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$
From Eq. (i) and (ii), we get
$\overrightarrow{\mathbf{A B}}=-\hat{\mathbf{\imath}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
\therefore From Eq. (i) and (iii), we get
$\overrightarrow{\mathbf{A C}}=\hat{\mathbf{\imath}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
Similarly, from Eqs.(i) and (iv), we get
$\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{\imath}}-(\lambda-3) \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
Now, using condition of coplanarity
$\left|\begin{array}{ccc}-1 & -1 & 4 \\ 1 & 1 & -1 \\ -1 & -(\lambda+3) & 7\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}+R_{2}$, we get
$\left|\begin{array}{ccc}0 & 0 & 3 \\ 1 & 1 & -1 \\ -1 & -(\lambda+3) & 7\end{array}\right|=0$
$\Rightarrow-\lambda-2=0 \Rightarrow \lambda=-2$
48
(b)

Since, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}$
$\Rightarrow(10)^{2}+|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=(3)^{2} \cdot(4)^{2}$
$\Rightarrow|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=44$
49
(b)

Let \vec{a}, \vec{b} be the sides of the given parallelogram.
Then, its diagonals are $\vec{a}+\vec{b}$ and $\pm(\vec{a}-\vec{b})$
We have,
$\vec{a}+\vec{b}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{a}-\vec{b}= \pm(\hat{\imath}-3 \hat{\jmath}+4 \hat{k})$
$\Rightarrow \vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
or $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ and $\vec{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\Rightarrow|\vec{a}|=\sqrt{6},|\vec{b}|=\sqrt{14}$ or $|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6}$
50 (d)
We have, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{c}}$ is perpendicular to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}$.
$\Rightarrow \overrightarrow{\mathbf{a}}$ is perpendicular to $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$.
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are mutually perpendicular.
Again $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$
$\Rightarrow|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|$
$=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cdot \sin 90^{\circ}=|\overrightarrow{\mathbf{c}}|$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|$
Also, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=|\overrightarrow{\mathbf{a}}|$
$|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cdot \sin 90^{\circ}=|\overrightarrow{\mathbf{a}}|$
$|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{a}}| \quad$....(ii)
From Eqs. (i) and (ii), we get
$|\overrightarrow{\mathbf{b}}|^{2}|\overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{c}}|$
$\therefore|\overrightarrow{\mathbf{b}}|^{2}=1(\because|\overrightarrow{\mathbf{c}}| \neq 0)$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=1$
$\Rightarrow|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{c}}|$
51 (a)
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 1 & -1 \\ 1 & -1 & -1\end{array}\right|$
$=\hat{\mathbf{i}}(-1-1)-\hat{\mathbf{j}}(0+1)+\hat{\mathbf{k}}(0-1)$
$=-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
Given,
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Longrightarrow(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow 3 \overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\frac{3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}}{2}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\frac{3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}}{2}$
$=\frac{-2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}}{2}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
53 (b)
Given $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{c}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta==|\overrightarrow{\mathbf{c}}|^{2}$
$\Rightarrow 9+25+2 \cdot 3 \cdot 5 \cos \theta=49$
$\Rightarrow \cos \theta=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{3}$
54 (a)
$3 \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}-2 \overrightarrow{\mathbf{r}}=3(\hat{\mathbf{i}}+\hat{\mathbf{j}})+(4 \hat{\mathbf{k}}-\hat{\mathbf{j}})-2(\hat{\mathbf{i}}+\hat{\mathbf{k}})$
$=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
\therefore Unit vector in the direction of $3 \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}-2 \overrightarrow{\mathbf{r}}$
$=\frac{1}{3}(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
(c)

Solving the two equations for \vec{X} and \vec{Y}, we get
$\vec{X}=\frac{1}{3}(\hat{\imath}+3 \hat{\jmath})$ and $\vec{Y}=\frac{1}{3}(\hat{\imath}-3 \hat{\jmath})$
$\therefore \cos \theta=\frac{\vec{X} \cdot \vec{Y}}{|\vec{X}||\vec{Y}|} \Rightarrow \cos \theta=-\frac{4}{5}$
56 (a)
$|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}|=6$
$\Rightarrow|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}|^{2}=36$
$\Rightarrow p^{2}+q^{2}+2 \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}=36$
Similarly, $q^{2}+r^{2}+2 \overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{r}}=48$
and $r^{2}+p^{2}+2 \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{p}}=16$
adding all, we get
$2\left(p^{2}+q^{2}+r^{2}+\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{p}}\right)$
$\Rightarrow 2\left(p^{2}+q^{2}+r^{2}\right)$ $=100 \quad(\because \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{p}}=0)$
$\Rightarrow p^{2}+q^{2}+r^{2}=50$
$\Rightarrow|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{r}}|^{2}=50$
$\Rightarrow|\overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{r}}|=5 \sqrt{2}$
57 (b)
In triangles $O A C$ and $O B D$, we have
$\vec{O} A+\overrightarrow{O C}=2 \vec{O} M$ and $\overrightarrow{O B}+\overrightarrow{O D}=2 \vec{O} M$
$\Rightarrow \vec{O} A+\vec{O} B+\vec{O} C+\overrightarrow{O D}=4 \vec{O} M$
58 (c)
The work done is given by
$W=\vec{F} \cdot \vec{d}=(2 \hat{\imath}-\hat{\jmath}-\hat{k}) \cdot(3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k})$

$$
=9 \text { units }
$$

59 (d)

$$
\begin{aligned}
& {[\hat{\mathbf{i}} \hat{\mathbf{k}} \hat{\mathbf{\jmath}}]+[\hat{\mathbf{k}} \hat{\mathbf{j}} \mathbf{\imath}]+[\hat{\mathbf{\jmath}} \hat{\mathbf{k}} \hat{\mathbf{i}}]} \\
& =[\hat{\mathbf{l}} \hat{\mathbf{k}} \mathbf{\jmath}]+[\hat{\mathbf{l}} \hat{\mathbf{k}} \hat{\mathbf{j}}]-[\hat{\mathbf{i}} \mathbf{k} \hat{\mathbf{j}}] \\
& =[\hat{\mathbf{l}} \hat{\mathbf{k}} \hat{\mathbf{\jmath}}]=\hat{\mathbf{\imath}} \cdot(\hat{\mathbf{k}} \times \hat{\mathbf{\jmath}}) \\
& =\hat{\mathbf{i}} \cdot(-\hat{\mathbf{1}})=-1
\end{aligned}
$$

60 (c)
Given, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=0$
Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$=(1)^{2}+(1)^{2}+(1)^{2}+2\left(0+|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \frac{\pi}{3}+0\right)$
$=3+2 \times 1 \times 1 \times \frac{1}{2}=4$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|= \pm 2$
61 (b)
Let $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{a}}=3 \vec{\alpha}-\vec{\beta}, \overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{b}}=\vec{\alpha}+3 \vec{\beta}$
Diagonal $\overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|=|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|=|4 \vec{\alpha}+2 \vec{\beta}|$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|^{2}=16 \vec{\alpha}^{2}+4 \vec{\beta}^{2}+16 \vec{\alpha} \cdot \vec{\beta}$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|^{2}=64+16+16|\vec{\alpha}||\vec{\beta}| \cos \frac{\pi}{3}$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|^{2}=80+16 \times 4 \times \frac{1}{2}=112$
$\Rightarrow|\overrightarrow{\mathbf{A C}}|=4 \sqrt{7}$
Other diagonal is $|\overrightarrow{\mathbf{B D}}=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$
$\Rightarrow|\overrightarrow{\mathbf{B D}}|^{2}=|2 \vec{\alpha}-4 \vec{\beta}|^{2}$
$=4|\vec{\alpha}|^{2}+16|\vec{\beta}|^{2}-16|\vec{\alpha}||\vec{\beta}| \cos \frac{\pi}{3}$
$=64+16-16 \times 4 \times \frac{1}{2}=48$
$\Rightarrow \mid \overrightarrow{\mathbf{B D}}=\sqrt{48}=4 \sqrt{3}$

(c)

Given that, $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$
Now, $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}$ $=0(\because|\overrightarrow{\mathbf{a} \mid}=|\overrightarrow{\mathbf{b}}|)$
(a)

We have,
$\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$
$\Rightarrow \vec{a} \cdot(\vec{b}-\vec{c})=0$ and $\vec{a} \times(\vec{b}-\vec{c})=0$
$\Rightarrow(\vec{b}-\vec{c}=0$ or, $\vec{b}-\vec{c} \perp \vec{a})$ and $(\vec{b}-\vec{c}$

$$
=0 \text { or, } \vec{b}-\vec{c} \| \vec{a})
$$

$\Rightarrow \vec{b}-\vec{c}=0 \Rightarrow \vec{b}=\vec{c}$
67 (a)
We know that, any vector $\overrightarrow{\mathbf{a}}$ can be uniquely expressed in terms of three non-coplanar vectors as $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{1}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ multiply in succession by $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$, we get
$x=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}, y=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{\jmath}}, z=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{1}}) \hat{\mathbf{i}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{\jmath}}) \hat{\mathbf{j}}+(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}) \hat{\mathbf{k}}=x \hat{\mathbf{i}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}=\overrightarrow{\mathbf{a}}$
69 (b)
Let $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{j}}$
$\therefore|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=|\hat{\mathbf{k}}|=1$
Let $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \hat{\mathbf{i}}=a_{1}, \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{j}}=a_{2}$
and $\overrightarrow{\mathbf{a}} \cdot \frac{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{k}}=a_{3}$
$\therefore(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{b}}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{c}}+\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$=a_{1} \overrightarrow{\mathbf{b}}+a_{2} \overrightarrow{\mathbf{c}}+a_{3}(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}=\overrightarrow{\mathbf{a}}$
$70 \quad$ (c)
Let the unit vector $\frac{\hat{\mathbf{1}}-\hat{\mathbf{1}}}{\sqrt{2}}$ is perpendicular to $\hat{\mathbf{1}}-\hat{\mathbf{j}}$,
then we get
$\frac{(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}) \cdot(\hat{\mathbf{1}}-\hat{\mathbf{\jmath}})}{\sqrt{2}}=\frac{1-1}{\sqrt{2}}=0$
$\therefore \frac{\hat{1}+\hat{\mathbf{\jmath}}}{\sqrt{2}}$ is the required unit vector.
71 (d)

Let the unit vector be $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{r}} \cdot(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=0$ and $\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+$
$4 \mathbf{k}=0$
$\Rightarrow 3 x+y+2 z=0$ and $2 x-2 y+4 z=0$
On solving, we get $x=1, y=-1$ and $z=-1$
\therefore Required unit vector $=\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{1^{2}+1^{2}+1^{2}}}$

$$
=\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}
$$

72 (d)
The position vector of the vertices A, B, C of $\triangle A B C$ $\operatorname{are} 7 \hat{\mathbf{\jmath}}+10 \hat{\mathbf{k}},-\hat{\mathbf{\imath}}+6 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $-4 \hat{\mathbf{\imath}}+9 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ respectively.
$\therefore \overrightarrow{\mathbf{A B}}=-\hat{\mathbf{\imath}}-\hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B C}}=-3 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}$
And $\overrightarrow{\mathbf{C A}}=4 \hat{\mathbf{\imath}}-2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{A B}}|=\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}}=\sqrt{18}$

$$
=3 \sqrt{2}
$$

$|\overrightarrow{\mathbf{B C}}|=\sqrt{(-3)^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$
and $|\overrightarrow{\mathbf{C A}}|=\sqrt{4^{2}+(-2)^{2}+(-4)^{2}}=\sqrt{36}=6$
It is clear from these values that
$|\overrightarrow{\mathbf{A B}}|^{2}+|\overrightarrow{\mathbf{B C}}|^{2}=|\overrightarrow{\mathbf{C A}}|^{2}$
Hence, $\triangle A B C$ is right angled and isosceles also.
74 (b)
For collinearity, $\cos x \hat{\mathbf{\imath}}+\sin x \hat{\mathbf{\jmath}}=\lambda(x \hat{\mathbf{\imath}}+\sin x \hat{\mathbf{j}})$
$\Rightarrow \cos x=x$
Let $f(x)=\cos x-x$
$\Rightarrow f^{\prime}(x)=-\sin x-1<0$
$f(x)$ is decreasing function and for $x \geq \frac{\pi}{3}, f(x)<$
0 and for $\frac{\pi}{3}<x<\frac{\pi}{6}, f(x)>0$.
Hence, unique solution exist.
75 (d)
Let the required unit vector be $\overrightarrow{\mathbf{r}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}$
Then, $|\overrightarrow{\mathbf{r}}|=1$
$\Rightarrow a^{2}+b^{2}=1 \ldots$ (i)
Since, $\overrightarrow{\mathbf{r}}$ makes an angle of 45° with $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and an
angle of 60° with $3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}$, therefore
$\cos \frac{\pi}{4}=\frac{\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{|\overrightarrow{\mathbf{r}}||\hat{\mathbf{i}}+\hat{\mathbf{j}}|}$
and $\cos \frac{\pi}{3}=\frac{\overrightarrow{\mathbf{r}} \cdot(3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}})}{|\overrightarrow{\mathbf{r}}||3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}|}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{a+b}{\sqrt{2}}$
and $\frac{1}{2}=\frac{3 a-4 b}{5}$
$\Rightarrow a+b=1$
and $3 a-4 b=\frac{5}{2}$
$\Rightarrow a=\frac{13}{14}, b=\frac{1}{14}$
$\therefore \overrightarrow{\mathbf{r}}=\frac{13}{14} \hat{\mathbf{i}}+\frac{1}{14} \hat{\mathbf{j}}$
(b)

Since, volume of parallelopiped $=34$
$\therefore\left|\begin{array}{ccc}4 & 5 & 1 \\ 0 & -1 & 1 \\ 3 & 9 & p\end{array}\right|=34$
$\Rightarrow 4(-p-9)-5(-3)+1(3)=34$
$\Rightarrow-4 p-36+15+3=34$
$\Rightarrow 4 p=-52$
$\Rightarrow p=-13$
78 (d)
$\frac{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}}{2 \overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2}}=\frac{\overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2} \sin ^{2} \theta+\overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2} \cos ^{2} \theta}{2 \overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2}}$

$$
=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{2}=\frac{1}{2}
$$

79 (b)
Let two vectors are $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$
Given, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{3}|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|$
$\Rightarrow|\overrightarrow{\mathbf{a}}| \cdot|\overrightarrow{\mathbf{b}}| \sin \theta=\sqrt{3}|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \theta=\frac{\pi}{3}$
82 (b)
We have,
$\vec{A} C=\vec{a}+\vec{b}, \vec{A} D=2 \vec{b}$

In $\triangle A D E$, we have
$\vec{A} D=\vec{D} E=\vec{A} E \Rightarrow 2 \vec{b}-\vec{a}=\vec{A} E \Rightarrow \vec{E} A=\vec{a}-2 \vec{b}$
In $\triangle A C D$, we have
$\vec{A} C+\vec{C} D=\vec{A} D \Rightarrow \vec{a}+\vec{b}+\vec{C} D=2 \vec{b} \Rightarrow \vec{C} D$

$$
=\vec{b}-\vec{a}
$$

$\therefore \vec{F} A=-\vec{C} D=\vec{a}-\vec{b}$
Hence, $\vec{A} C+\vec{A} D+\vec{E} A+\vec{F} A$
$=\vec{a}+\vec{b}+2 \vec{b}+\vec{a}-2 \vec{b}+\vec{a}-\vec{b}=3 \vec{a}=3 \vec{A} B$
83 (c)
We have,
$(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\{(\vec{a} \times \vec{b}) \cdot \vec{c}\} \vec{b}-\{(\vec{a} \times \vec{b}) \cdot \vec{b}\} \vec{c}$
$=[\vec{a} \vec{b} \vec{c}] \vec{b}$
$(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$

$$
=\{(\vec{b} \times \vec{c}) \cdot \vec{a}\} \cdot \vec{c}-\{(\vec{b} \times \vec{c}) \cdot \vec{c}\} \vec{a}
$$

$=\left[\begin{array}{ll}\vec{b} & \vec{c} \\ \vec{a}\end{array}\right] \vec{c}$
and,
$(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})=\{(\vec{c} \times \vec{a}) \cdot \vec{b}\} \vec{a}-\{(\vec{c} \times \vec{a}) \cdot \vec{a}\} \vec{b}$
$=\left[\begin{array}{lll}\vec{c} & \vec{a} & \vec{b}\end{array}\right] \vec{a}$
$\therefore[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a})$

$$
\times(\vec{a} \times \vec{b})]
$$

$=\left[[\vec{a} \vec{b} \vec{c}] \vec{a}\left[\begin{array}{ll}\vec{a} & \vec{b} \vec{c}] \vec{b}[\vec{a} \vec{b} \vec{c}] \vec{c}]\end{array}\right.\right.$
$=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{3}\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{4}$
84 (a)
Given, $\overrightarrow{\mathbf{a}}=\lambda \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \lambda \hat{\mathbf{k}}$
$\therefore \cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$
$=\frac{\lambda^{2}-7+6 \lambda}{\sqrt{\lambda^{2}+49+9} \sqrt{\lambda^{2}+1+4 \lambda^{2}}}<0$
$\Rightarrow(\lambda+7)(\lambda-1)<0$
$\Rightarrow-7<\lambda<1$
85 (b)
We have,
$\vec{r}=\lambda_{1} \overrightarrow{r_{1}}+\lambda_{2} \overrightarrow{r_{2}}+\lambda_{3} \overrightarrow{r_{3}}$
$\Rightarrow 2 \vec{a}-3 \vec{b}+4 \vec{c}$

$$
\begin{aligned}
& =\left(\lambda_{1}-\lambda_{2}+\lambda_{3}\right) \vec{a} \\
& +\left(-\lambda_{1}+\lambda_{2}-\lambda_{3}\right) \vec{b} \\
& +\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \vec{c} \\
& =2,-\lambda_{1}+\lambda_{2}-\lambda_{3} \\
& =-3, \lambda_{1}+\lambda_{2}+\lambda_{3}=4
\end{aligned}
$$

$\Rightarrow \lambda_{1}-\lambda_{2}+\lambda_{3}=2,-\lambda_{1}+\lambda_{2}-\lambda_{3}$
$[\because \vec{a}, \vec{b}, \vec{c}$ are non - coplanar $]$
$\Rightarrow \lambda_{1}=\frac{7}{2}, \lambda_{2}=1, \lambda_{3}=-\frac{1}{2}$
86 (c)
We have,
$(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$
$\Rightarrow \vec{D} A \cdot \vec{B} C=0$ and $\vec{D} B \cdot \vec{A} C=0$
$\Rightarrow A D \perp B C$ and $D B \perp A C$
$\Rightarrow D$ is the orthocenter of $\triangle A B D$
87 (a)
Given $\overrightarrow{\mathbf{O A}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
$\overrightarrow{\mathbf{O B}}=-3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{O B}}-\overrightarrow{\mathbf{O A}}=-7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{D E}}=-\overrightarrow{\mathbf{A B}}=7 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
88
(c)

Given, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|$
$\Longrightarrow|\overrightarrow{\mathbf{a}}| \cdot|\overrightarrow{\mathbf{b}}| \sin \theta=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$\Rightarrow \sin \theta=\cos \theta \Rightarrow \theta=\frac{\pi}{4}$

89 (a)
Let the line joining the points with position vectors $-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ be Divide in the ratio $\lambda: 1$ by $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$

$$
\begin{gathered}
\therefore \frac{\lambda(7 \hat{\mathbf{i}}-\hat{\mathbf{k}})+(-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})}{\lambda+1}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \\
\Rightarrow(7 \lambda-2) \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+(5-\lambda) \hat{\mathbf{k}} \\
\quad=(\lambda+1) \hat{\mathbf{i}}+2(\lambda+1) \hat{\mathbf{j}}+3(\lambda \\
\quad+1) \hat{\mathbf{k}}
\end{gathered}
$$

On equating the coefficient of $\hat{\mathbf{i}}$, we get
$7 \lambda-2=\lambda+1 \Rightarrow \lambda=2$
Hence, required ratio $=\lambda: 1=2: 1$
(a)

Force $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{A B}}=(3-1) \hat{\mathbf{\imath}}+(-4-2) \hat{\mathbf{\jmath}}+(2+3) \hat{\mathbf{k}}$ $=2 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
Moment of force $\overrightarrow{\mathbf{F}}$ with respect to $M=\overrightarrow{\mathbf{M A}} \times \overrightarrow{\mathbf{F}}$
$\because \overrightarrow{\mathbf{M A}}=(1+2) \hat{\mathbf{\imath}}+(2-4) \hat{\mathbf{j}}+(-3+6) \hat{\mathbf{k}}$ $=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{M A}} \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ 3 & -2 & 3 \\ 2 & -6 & 5\end{array}\right|$
$=\hat{\mathbf{1}}(-10+18)+\hat{\mathbf{j}}(6-15)+\hat{\mathbf{k}}(-18+4)$
$=8 \hat{\mathbf{i}}-9 \hat{\mathbf{j}}-14 \hat{\mathbf{k}}$
92 (d)
$\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \frac{5 \pi}{6}=-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2}$
$\therefore-\frac{6}{\sqrt{3}}=-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2|\overrightarrow{\mathbf{b}}|}$ (given condition)
$\Rightarrow|\overrightarrow{\mathbf{a}}|=\frac{6 \times 2}{3}=4$
93 (c)
Equation of straight line passing through the points
$a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}+a_{3} \hat{\mathbf{k}}$ and $b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}+b_{3} \hat{\mathbf{k}}$ is
$a_{1}(1-t) \hat{\mathbf{\imath}}+a_{2}(1-t) \hat{\mathbf{\jmath}}+a_{3}(1-t) \hat{\mathbf{k}}$

$$
+\left(b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{\jmath}}+b_{3} \hat{\mathbf{k}}\right) t
$$

95 (d)
$(3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}})=3|\overrightarrow{\mathbf{a}}|^{2}-11 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-4|\overrightarrow{\mathbf{b}}|^{2}$
$=3 \cdot 36-11 \cdot 6 \cdot 8 \cos \pi-4 \cdot 64>0$
\therefore Angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is acute angle.
\therefore The longer diagonal is given by
$\vec{\alpha}=(3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}})=4 \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$
Now, $|\vec{\alpha}|^{2}=|4 \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}|^{2}$
$=16|\overrightarrow{\mathbf{a}}|^{2}+9|\overrightarrow{\mathbf{b}}|^{2}-24 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
$=16 \cdot 36+9 \cdot 64-24 \cdot 6 \cdot 8 \cos \pi$
$=16 \times 144$
$|4 \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}|=48$
(b)

Given, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}} \Rightarrow \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
Similarly, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
Hence, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
97 (d)
$|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos 90^{\circ}$
$25+25-2 \times 0=50$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=5 \sqrt{2}$
98 (d)
Given vectors are non-coplanar, if
$\Delta=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right| \neq 0$
Now, $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|=0$
$\Rightarrow \Delta(1+a b c)=0 \Rightarrow a b c=-1$
99 (a)
Let $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})+(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$
$=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})+(7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}})$
$=8 \hat{\mathbf{i}}+12 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}$
\therefore Area of parallelogram $=\frac{1}{2}\|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}\|$
$=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 4 & 6 \\ 8 & 12 & 16\end{array}\right\|$
$=\frac{1}{2}|-8 \hat{\mathbf{i}}+16 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}|$
$=\sqrt{(-4)^{2}+(8)^{2}+(-4)^{2}}$
$=4 \sqrt{6}$ sq units
100 (a)
Clearly, \vec{c} is a unit vector parallel to the vector $\vec{a} \times(\vec{a} \times \vec{b})$
i. e. $\vec{c}= \pm \frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a} \times(\vec{a} \times \vec{b})|}$

We have,
$\vec{a}=\hat{\imath}+\hat{\jmath}-\hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\therefore \vec{a} \times(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}$
$\Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=-\vec{a}-3 \vec{b}=-4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
$\therefore \vec{c}= \pm \frac{(-4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k})}{\sqrt{16+4+4}}= \pm \frac{1}{\sqrt{6}}(-2 \hat{\imath}+\hat{\jmath}-\hat{k})$

102 (b)
Given, $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
Now, $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
$\Rightarrow 2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+4(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
$\Rightarrow \frac{(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{4}=\frac{(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})}{2}$
Again, $\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+4 \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+4(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) / 4$
From Eqs. (i) and (ii)
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) / 4=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) / 2=\overrightarrow{\mathbf{p}}$
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=4 \overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{p}}$
and $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=2 \overrightarrow{\mathbf{p}}$
$\therefore(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=4 \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{p}}+2 \overrightarrow{\mathbf{p}}$
$=7 \overrightarrow{\mathbf{p}}=7(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$\therefore \lambda=7$
103 (b)
$\because \overrightarrow{\mathbf{F}}_{1}=\frac{5(6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})}{7}, \overrightarrow{\mathbf{F}}_{2}=\frac{3(3 \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+6 \hat{\mathbf{k}})}{7}$
$\overrightarrow{\mathbf{F}}_{3}=\frac{1(2 \hat{\mathbf{i}}-3 \hat{\mathbf{\jmath}}-6 \hat{\mathbf{k}})}{7}$
And $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}$
$=\frac{1}{7}(30 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+15 \hat{\mathbf{k}}+9 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+18 \hat{\mathbf{k}}+2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}$ $-6 \hat{\mathbf{k}})$
$=\frac{1}{7}(41 \hat{\mathbf{i}}+\hat{\mathbf{j}}+27 \hat{\mathbf{k}})$
and $\overrightarrow{\mathbf{A B}}=5 \hat{\mathbf{\imath}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$=3 \hat{i}+4 \hat{\mathbf{k}}$
\therefore Work done $=\frac{1}{7}[41 \hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+27 \hat{\mathbf{k}}] \cdot[3 \hat{\mathbf{\imath}}+4 \hat{\mathbf{k}}]$
$=\frac{1}{7}[123+108]=33$ unit
104 (b)
Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$. Then,
$\hat{\imath} \times(\vec{r} \times \hat{\imath})+\hat{\jmath} \times(\vec{r} \times \hat{\jmath})+\hat{k} \times(\vec{r} \times \hat{k})$
$=(\hat{\imath} \cdot \hat{\imath}) \vec{r}-(\hat{\imath} \cdot \vec{r}) \hat{\imath}+(\hat{\jmath} \cdot \hat{\jmath}) \vec{r}-(\hat{\jmath} \cdot \vec{r}) \hat{\jmath}+(\hat{k} \cdot \hat{k}) \vec{r}$ $-(\hat{k} \cdot \vec{r}) \hat{k}$
$=\vec{r}-x \hat{\imath}+\vec{r}-y \hat{\jmath}+\vec{r}-z \hat{k}$
$=3 \vec{r}-(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=3 \vec{r}-\vec{r}=2 \vec{r}$
105 (b)
The equation of the plane through the line of intersection of given plane is
$(\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}-\lambda)+k(\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}-\mu)=0$
or $\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}})=\lambda+k \mu$
this passes through the origin, therefore
$0 \cdot(\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}})=\lambda+k \mu$
$\Rightarrow k=-\frac{\lambda}{\mu}$

On putting the value of k in Eq. (i), we get the equation of the required plane as
$\overrightarrow{\mathbf{r}} \cdot(\mu \overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}})=0$
$0 \Rightarrow \overrightarrow{\mathbf{r}} \cdot(\lambda \overrightarrow{\mathbf{b}}-\mu \overrightarrow{\mathbf{a}})=0$
106 (c)
By the properties of scalar triple product
$[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}]=2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$\therefore k=2$
107 (c)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=1+1+1=3$
Using,
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}$
$\therefore(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{j}}-\hat{\mathbf{k}})=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})-3 \overrightarrow{\mathbf{b}}$
$\Rightarrow-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}-3 \overrightarrow{\mathbf{b}}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}$
108 (a)
Vector perpendicular to face $O A B$ is $\overrightarrow{\mathbf{n}}_{1}$
$=\overrightarrow{\mathbf{O A}} \times \overrightarrow{\mathbf{0 B}}=\left|\begin{array}{lll}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right|$
$=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
Vector perpendicular to face $A B C$ is $\overrightarrow{\mathbf{n}}_{2}$
$=\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 2 \\ -2 & -1 & 1\end{array}\right|$
$=\hat{\mathbf{i}}-5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
$\therefore \cos \theta=\frac{\overrightarrow{\mathbf{n}}_{1} \cdot \overrightarrow{\mathbf{n}}_{2}}{\left|\overrightarrow{\mathbf{n}}_{1}\right|\left|\overrightarrow{\mathbf{n}}_{2}\right|}$
$=\frac{5 \times 1+(-1) \times(-5)+(-3) \times(-3)}{\sqrt{5^{2}+(-1)^{2}+(-3)^{2}} \sqrt{1^{2}+(-5)^{2}+(-3)^{2}}}$
$=\frac{5+5+9}{\sqrt{35} \sqrt{35}}=\frac{19}{35}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{19}{35}\right)$

109 (a)
Given, $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}-5 \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \frac{2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}}{5}=\overrightarrow{\mathbf{c}}$
$\Rightarrow \frac{2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}}{2+3}=\overrightarrow{\mathbf{c}}$
$\Rightarrow \frac{\overrightarrow{\mathbf{a}}+\frac{3}{2} \overrightarrow{\mathbf{b}}}{1+\frac{3}{2}}=\overrightarrow{\mathbf{c}}$
Let $\overrightarrow{\mathbf{c}}$ divides $\overrightarrow{\mathbf{A B}}$ in the ratio $\lambda: 1$
Then, $\quad \overrightarrow{\mathbf{c}} \frac{\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}}{1+\lambda}$
On comparing Eqs.(i)and (ii), we get
$\lambda=\frac{3}{2}$
\therefore Required ratio is 3:2 internally.

110 (a)
Let $\overrightarrow{\mathbf{O A}}=\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{0 B}}=5 \hat{\mathbf{\imath}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and
$\overrightarrow{\mathbf{O C}}=2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{A B}}=4 \hat{\mathbf{\imath}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B C}}=-3 \hat{\mathbf{\imath}}+2 \hat{\mathbf{j}}+12 \hat{\mathbf{k}} \quad$ and $\overrightarrow{\mathbf{A C}}=\hat{\mathbf{1}}+4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
$\Rightarrow A B=6, B C=\sqrt{157}, A C=9$
\therefore Perimeter of $\triangle A B C=15+\sqrt{157}$
111 (c)
Given, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\therefore|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2[\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}]=0$
$\Rightarrow 25+16+9+2[\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}]=0$
$\Rightarrow 2[\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}]=-50$
$\Rightarrow[\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}]=-25$
113 (d)
It is given that $\vec{a}+\vec{b}$ is collinear with \vec{c} and $\vec{b}+\vec{c}$ is collinear with \vec{a}
$\therefore \vec{a}+\vec{b}=\lambda \vec{c}$ and $\vec{b}+\vec{c}=\mu \vec{a}$ for some scalars λ
and μ
$\Rightarrow \vec{b}+\vec{c}=\mu(\lambda \vec{c}-\vec{b}) \quad$ [On eliminating $\vec{a}]$
$\Rightarrow(\mu+1) \vec{b}+(1-\mu \lambda) \vec{c}=\overrightarrow{0}$
$\Rightarrow \mu+1=0$ and $\mu \lambda=1 \quad[\because \vec{b}$ and \vec{c} are noncollinear]
$\Rightarrow \mu=-1$ and $\lambda=-1$
$\therefore \vec{a}+\vec{b}+\vec{c}=0 \quad$ [Putting $\lambda=-1$ in $\vec{a}+\vec{b}=\lambda \vec{c}]$
114 (b)

Let $\overrightarrow{\mathbf{r}}=l(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+m(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})+n(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=l[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$\Rightarrow l=1$
Similarly, $m=2, n=3$
115 (b)
Given, $|\overrightarrow{\mathbf{x}}|=|\overrightarrow{\mathbf{y}}|=|\overrightarrow{\mathbf{z}}|=2$
and $\overrightarrow{\mathbf{x}}=-\overrightarrow{\mathbf{y}}-\overrightarrow{\mathbf{z}}$
$\Rightarrow|\overrightarrow{\mathbf{x}}|^{2}=|\overrightarrow{\mathbf{y}}|^{2}+|\overrightarrow{\mathbf{z}}|^{2}+2|\overrightarrow{\mathbf{y}}||\overrightarrow{\mathbf{z}}| \cos \theta$
$\Rightarrow 4=4+4+2 \times 2 \times 2 \cos \theta$
$\Rightarrow \cos \theta=-\frac{1}{2}$
$\Rightarrow \theta=120^{\circ}$
Now, $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta=\operatorname{cosec}^{2} 120^{\circ}+\cot ^{2} 120^{\circ}$
$=\left(\frac{2}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}=\frac{5}{3}$
116 (b)
Given, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=-|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta=-|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|$
$\Rightarrow \cos \theta=-1$
$\Rightarrow \theta=180^{\circ}$
117 (b)
Let $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
Given, $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}$
$\Rightarrow(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
$=(4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
$\Rightarrow(y-z) \hat{\mathbf{i}}-(x-z) \hat{\mathbf{j}}+(x-y) \hat{\mathbf{k}}$
$=-10 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
$\Rightarrow y-z=-10,-(x-z)=3, x-y=7$
$\Rightarrow y-z=-10,-x+z=3, x-y=7$
and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}}=0$
$\Rightarrow(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{k}})$
$\Rightarrow 2 x+z=0$
From Eqs. (i) and (ii), we get
$x=-1, y=-8, z=2$
$\therefore \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}=(-\hat{\mathbf{i}}-8 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
$=-1-8+2$
$=-7$
118 (d)
Since, given vectors are coplanar so it can be written as
$\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}=x(-2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}-4 \overrightarrow{\mathbf{c}})$

$$
+y(\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}+5 \overrightarrow{\mathbf{c}})
$$

On comparing the coefficient of $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ on both sides, we get
$-2 x+y=1 ; 3 x-3 y=\lambda$ and $-4 x+5 y=3$
On solving, we get
$x=-\frac{1}{3}, y=\frac{1}{3}, \lambda=-2$

119 (d)
Since, $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ is collinear to $\overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}$ is collinear to $\overrightarrow{\mathbf{A}}$
$\therefore \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\lambda \overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\mu \overrightarrow{\mathbf{A}}$
Where λ and μ are scalars.
$\Rightarrow \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=(\lambda+1) \overrightarrow{\mathbf{C}}$
and $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=(\mu+1) \overrightarrow{\mathbf{A}}$
$\Rightarrow(\lambda+1) \overrightarrow{\mathbf{C}}=(\mu+1) \overrightarrow{\mathbf{A}}$
If $\lambda \neq-1$, then
$\overrightarrow{\mathbf{C}}=\frac{\mu+1}{\lambda+1} \overrightarrow{\mathbf{A}}$
$\Rightarrow \overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{A}}$ are collinear.
This is a contradiction to the given condition.
$\therefore \lambda=-1$
$\therefore \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{0}}$
120 (d)
$|\overrightarrow{\mathbf{A B}}|=\sqrt{(7-1)^{2}+(-4+6)^{2}+(7-10)^{2}}=7$
$|\overrightarrow{\mathbf{B C}}|=\sqrt{(1+1)^{2}+(-6+3)^{2}+(10-4)^{2}}=7$
$|\overrightarrow{\mathbf{C D}}|=\sqrt{(-1-5)^{2}+(-3+1)^{2}+(4-5)^{2}}$

$$
=\sqrt{41}
$$

and $|\overrightarrow{\mathbf{D A}}|=\sqrt{(5-7)^{2}+(-1+4)^{2}+(5-7)^{2}}=$ $\sqrt{17}$
121 (c)
We have,

$$
\begin{aligned}
& |\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2\left\{|\vec{a}|^{2}+|\vec{b}|^{2}\right\} \\
& \Rightarrow 300+|\vec{a}-\vec{b}|^{2}=2(49+121) \\
& \Rightarrow|\vec{a}-\vec{b}|=2 \sqrt{10}
\end{aligned}
$$

123 (a)
We know, if θ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, then $\cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$
$=\frac{(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \cdot(6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{\sqrt{2^{2}+2^{2}+(-1)^{2}} \sqrt{6^{3}+(-3)^{2}+2^{2}}}$
$=\frac{12-6-2}{\sqrt{4+4+1} \sqrt{36+9+4}}$
$=\frac{4}{\sqrt{9} \sqrt{49}}=\frac{4}{21}$

124 (d)
If $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ is collinear with $\overrightarrow{\mathbf{c}}$, then
$\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}=t \overrightarrow{\mathbf{c}}$
Also, if $\overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}$ is collinear with $\overrightarrow{\mathbf{a}}$ then
$\overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}$
$\Rightarrow \overrightarrow{\mathbf{b}}=\lambda \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{c}}$
On putting the value of $\overrightarrow{\mathbf{b}}$ in Eq. (i), we get
$\overrightarrow{\mathbf{a}}+2(\lambda \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{c}})=t \overrightarrow{\mathbf{c}}$
$\Rightarrow(\overrightarrow{\mathbf{a}}-6 \overrightarrow{\mathbf{c}})=t \overrightarrow{\mathbf{c}}-2 \lambda \overrightarrow{\mathbf{a}}$
On comparing, we get $1=-2 \lambda$ and $-6=t$
$\Rightarrow \lambda=-\frac{1}{2}$ and $t=-6$
From Eq. (i)
$\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}=-6 \overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
125 (a)
We have,
$A \vec{B}=-\hat{\imath}-\hat{\jmath}-4 \hat{k}, B \vec{C}=-3 \hat{\imath}+3 \hat{\jmath}$ and,
$C \vec{A}=4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$
$\therefore|A \vec{B}|=|B \vec{C}|=3 \sqrt{2}$ and $|C \vec{A}|=6$
Clearly, $|A \vec{B}|^{2}+|B \vec{C}|^{2}=|A \vec{C}|^{2}$
Hence, the triangle is right angled isosceles triangle
127 (c)
Since, three vectors $(\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}),(\lambda \overrightarrow{\mathbf{b}}+$
$4 \mathbf{c}$ and $(2 \lambda-1) \mathbf{c}$ are non-coplanar
$\therefore\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & 2 \lambda-1\end{array}\right| \neq 0$
$\Rightarrow(2 \lambda-1)(\lambda) \neq 0$
$\Rightarrow \lambda \neq 0, \frac{1}{2}$
Hence, these three vectors are non-coplanar for all except two values of λ.
128 (a)
Given $\overrightarrow{\mathbf{P R}}=5 \overrightarrow{\mathbf{P Q}}$
It means R divides $P Q$ extrenally in the ratio 5:4
\therefore Position vector of $R \frac{5 \overrightarrow{\mathbf{b}}-4 \overrightarrow{\mathbf{a}}}{5-4}$
$=5 \overrightarrow{\mathbf{b}}-4 \overrightarrow{\mathbf{a}}$
130 (a)
Let $\overrightarrow{\mathbf{O A}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{O B}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
Let point $C\left(x_{1}, y_{1}, z_{1}\right)$ divide $A B$ in the ratio 1:2
$\therefore x_{1}=\frac{2+2}{1+2}=\frac{4}{3}, \quad y_{1}=\frac{-1+4}{1+2}=\frac{3}{3}=1$
and $z_{1}=\frac{4+6}{1+2}=\frac{10}{3}$
Again let point $D\left(x_{2}, y_{2}, z_{2}\right)$ divides $A B$ in the ratio 2:1, then
$x_{2}=\frac{4+1}{2+1}=\frac{5}{3}, \quad y_{2}=\frac{-2+2}{2+1}=0$
and $z_{2}=\frac{8+3}{2+1}=\frac{11}{3}$
So, position vector of the points of trisection of $A B$ are position vector of
$C=-\frac{4}{3} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\frac{10}{3} \hat{\mathbf{k}}$
and position vector of
$D=\frac{5}{3} \hat{\mathbf{i}}+\frac{11}{3} \hat{\mathbf{k}}$
131 (a)
Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors A, B and C respectively. Then, the position vector of G is
$\frac{\vec{a}+\vec{b}+\vec{c}}{3}$ and the position vectors of D, E and F are $\frac{\vec{b}+\vec{c}}{2}, \frac{\vec{c}+\vec{a}}{2}$ and $\frac{\vec{a}+\vec{b}}{2}$ respectively
$\therefore \vec{G} D+\vec{G} E+\vec{G} F$
$=\left(\frac{\vec{b}+\vec{c}}{2}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)+\left(\frac{\vec{c}+\vec{a}}{2}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)$
$+\left(\frac{\vec{a}+\vec{b}}{2}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)$
$=(\vec{a}+\vec{b}+\vec{c})-(\vec{a}+\vec{b}+\vec{c})=\overrightarrow{0}$
132 (a)
Let $\overrightarrow{\mathbf{O A}}=\vec{a}, \overrightarrow{\mathbf{O B}}=\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{O C}}=\overrightarrow{\mathbf{c}}$, then
$\overrightarrow{\mathbf{O D}}=\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}}{2}, \overrightarrow{\mathbf{O E}}=\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}}}{2}, \overrightarrow{\mathbf{O F}}=\frac{\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{2}$
Now, $\overrightarrow{\mathbf{A F}}=\frac{1}{2}(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{B E}}=\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{b}}$
and $\overrightarrow{\mathbf{C D}}=\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})-\overrightarrow{\mathbf{c}}$
$\therefore \overrightarrow{\mathbf{A F}}+\overrightarrow{\mathbf{B E}}=\frac{1}{2}(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{a}}+\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{b}}$
$=\overrightarrow{\mathbf{c}}-\frac{1}{2}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{D C}}$
133 (c)
We have,
$\vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \perp \vec{b}$
So, vectors \vec{a}, \vec{b} and $\vec{a}+\vec{b}$ form a right angled triangle

In $\triangle P Q R$, we have
$\tan 30^{\circ}=\frac{|\vec{b}|}{|\vec{a}|} \Rightarrow|\vec{a}|=3|\vec{b}|$
134 (d)
We have, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})+\hat{\mathbf{j}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})+\hat{\mathbf{k}}$

$$
\times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}}) \ldots \ldots \text { (i) }
$$

Now, $\quad \hat{\mathbf{i}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})=(\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}) \overrightarrow{\mathbf{a}}-(\hat{\mathbf{i}} \cdot \overrightarrow{\mathbf{a}}) \hat{\mathbf{i}}$
$=1(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})-(1) \hat{\mathbf{i}}$
$=2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
Similarly, $\hat{\mathbf{j}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})=\hat{\mathbf{i}}+3 \hat{\mathbf{k}}$
and $\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$
\therefore From Eq. (i),
$\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\hat{\mathbf{i}}+3 \hat{\mathbf{k}}+\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$
$=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=\sqrt{4+16+36}=2 \sqrt{14}$
135 (a)
The centroid of triangle
$=\frac{(a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}})+(b \hat{\mathbf{i}}+c \hat{\mathbf{j}}+a \hat{\mathbf{k}})+(c \hat{\mathbf{i}}+a \hat{\mathbf{j}}+b \hat{\mathbf{k}}}{3}$
$=\frac{a+b+c}{3}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$
136 (d)
Given, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=1,|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|=1$
$\Rightarrow 2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|=-1 \quad \ldots$ (i)
Now, $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|$
$=1^{2}+1^{2}-(-1)=3$ [from Eq. (i)
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{3}$
137 (a)
Since, $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are collinear vectors.
$\therefore \overrightarrow{\mathbf{a}}=\lambda \overrightarrow{\mathbf{b}}$
$\Rightarrow \hat{\mathbf{i}}-\hat{\mathbf{j}}=\lambda(-2 \hat{\mathbf{i}}+m \hat{\mathbf{j}})$
$\Rightarrow 1=-2 \lambda,-1=\lambda m$
$\Rightarrow \lambda=-\frac{1}{2}, m=-\frac{1}{\lambda}$
$\Rightarrow m=2$
138 (c)
Since, C is the mid point of $A(2,-1)$ and $B(-4,3)$.
\therefore Coordinates of C is $\left(\frac{2-4}{2}, \frac{-1+3}{2}\right)=(-1,1)$
$\therefore \overrightarrow{\mathbf{O C}}=-\hat{\mathbf{1}}+\hat{\mathbf{j}}$
139 (c)
According to the given conditions, we have
$\vec{a} . \vec{b}>0$ and $\vec{b} \cdot \hat{\jmath}<0$
$\Rightarrow 2 x^{2}-3 x+1>0$ and $x<0$
$\Rightarrow(x<1 / 2$ or $x>1)$ and $x<0 \Rightarrow x<0$
(d)
$\frac{|(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}})|}{(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}})}=\frac{|\overrightarrow{\mathbf{A C}} \times \overrightarrow{\mathbf{B A}}|}{\overrightarrow{\mathbf{A C}} \cdot \overrightarrow{\mathbf{B A}}}$

141 (d)
Let, $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
$\because \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=1 \Rightarrow a_{1}=1$
Since, $\overrightarrow{\mathbf{a}} \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{j}})=1$
$\Rightarrow 2 a_{1}+a_{2}=1$
$\Rightarrow a_{2}=1-2$
$\Rightarrow a_{2}=-1$
and $\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})=1$
$\Rightarrow a_{1}+a_{2}+3 a_{3}=1$
$\Rightarrow 1-1+3 a_{3}=1$
$\Rightarrow a_{3}=\frac{1}{3}$
$\therefore \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\frac{1}{3} \hat{\mathbf{k}}=\frac{1}{3}(3 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})$
142 (c)
Given, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{c}}=x \hat{\mathbf{i}}+(x-2) \hat{\mathbf{j}}-\hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{c}}$ lies in the plane of vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ therefore $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are coplanar.
$\therefore\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 2 \\ x & (x-2) & -1\end{array}\right|=0$
$\Rightarrow 1(1-2 x+4)-1(-1-2 x)+1(x-2+x)$

$$
=0
$$

$\Rightarrow 5-2 x+1+2 x+2 x-2=0$
$\Rightarrow x=-2$
143 (d)
Let $\overrightarrow{\mathbf{P}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{Q}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}, \quad \overrightarrow{\mathbf{R}}=5 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{S}}=-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{P Q}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{P Q}}|=\sqrt{6}$
$\overrightarrow{\mathbf{Q R}}=-2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{Q R}}|=\sqrt{12}$
and $\overrightarrow{\mathbf{R S}}=-6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{R S}}|=\sqrt{45}$
and $\overrightarrow{\mathbf{S P}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} \quad \Rightarrow|\overrightarrow{\mathbf{S P}}|=3$
Which are not satisfied the conditions of any of the following. Trapezium, rectangle and parallelogram.
144 (c)
Clearly,
Required vector $=|\vec{b}| \hat{a}=\frac{|\vec{b}|}{|\vec{a}|} \vec{a}=\frac{7}{3}(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
145 (a)

If I is incentre of $\triangle A B C$. Then,
I is $\frac{a \overrightarrow{\mathbf{a}}+b \overrightarrow{\mathbf{b}}+c \overrightarrow{\mathbf{c}}}{a+b+c}$
147 (d)
For a parallel $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=0$
$\left|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ 2 & 1 & 3 \\ 4 & -\lambda & 6\end{array}\right|=0$
$\Rightarrow \hat{\mathbf{i}}(6+3 \lambda)-\hat{\mathbf{\jmath}}(0)+\hat{\mathbf{k}}(-2 \lambda-4)=0$
$=0 \cdot \hat{\mathbf{i}}+0 \cdot \hat{\mathbf{j}}+0 \cdot \hat{\mathbf{k}}$
$\therefore 6+3 \lambda=0 \Rightarrow \lambda=-2$
148 (b)
Total force,
$\overrightarrow{\mathbf{F}}=\frac{5(6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})}{7}+\frac{3(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})}{7}$

$$
+\frac{1(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})}{7}
$$

$=\frac{1}{7}(41 \hat{\mathbf{i}}+\hat{\mathbf{j}}+27 \hat{\mathbf{k}})$
and $\overrightarrow{\mathbf{A B}}=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$=3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$
\therefore Work done $=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{A B}}$
$=\frac{1}{7}[41 \hat{\mathbf{i}}+\hat{\mathbf{j}}+27 \hat{\mathbf{k}}] \cdot[3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}]$
$=\frac{1}{7}[123+108]=33$ units
150 (d)
Since vectors $\vec{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$ and $\vec{b}=4 \hat{\imath}-\lambda \hat{\jmath}+$ $6 \hat{k}$ are parallel
$\therefore \frac{2}{4}=\frac{1}{-\lambda}=\frac{3}{6} \Rightarrow \lambda=-2$
151 (b)
If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are coplanar vectors, then
$2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}, 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}$ and $2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}$ are also coplanar.
$\therefore[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]=0$
152 (b)
Here, $|\overrightarrow{\mathbf{a}}|=\sqrt{1+1+(4)^{2}}=3 \sqrt{2}$
and $|\overrightarrow{\mathbf{b}}|=\sqrt{1+(-1)^{2}+(4)^{2}}=3 \sqrt{2}$
$\therefore|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|$
Now, $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})=|\overrightarrow{\mathbf{a}}|^{2}-|\overrightarrow{\mathbf{b}}|^{2}=0$
Hence, angle between them is 90°
153 (a)
Given,
$\overrightarrow{\mathbf{0 Q}}=(1-3 \mu) \hat{\mathbf{i}}+(\mu-1) \hat{\mathbf{j}}+(5 \mu+2) \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{O P}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ (where O is origin)

Now,
$\overrightarrow{\mathbf{P Q}}=(1-3 \mu-3) \hat{\mathbf{i}}+(\mu-1-2) \hat{\mathbf{j}}$ $+(5 \mu+2-6) \hat{k}$
$=(-2-3 \mu) \hat{\mathbf{i}}+(\mu-3) \hat{\mathbf{j}}+(5 \mu-4) \hat{\mathbf{k}}$
$\because \overrightarrow{\mathbf{P Q}}$ is parallel to the plane $x-4 y+3 z=1$
$\therefore-2-3 \mu-4 \mu+12+15 \mu-12=0$
$\Rightarrow 8 \mu=2$
$\Rightarrow \mu=\frac{1}{4}$
154 (b)
Let $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B}}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{C}}=4 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
$\therefore \quad \overrightarrow{\mathbf{A B}}=-3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{A C}}=3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
\therefore Area of $\triangle A B C=\frac{1}{2}\|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}\|$
$=\frac{1}{2}\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -3 & 5 & -4 \\ 3 & -5 & 4\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -3 & 5 & -4 \\ 0 & 0 & 0\end{array}\right|$
[operating $R_{2} \rightarrow R_{2}+R_{3}$]
$=\frac{1}{2}[0]=0$
155
(b)

We have,
$\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$
$\Rightarrow(\vec{r}-\vec{b}) \times \vec{a}=0$ and $(\vec{r}-\vec{a}) \times \vec{b}=0$
$\Rightarrow \vec{r}-\vec{b} \| \vec{a}$ and $\vec{r}-\vec{a} \| \vec{b}$
$\Rightarrow \vec{r}-\vec{b}=\lambda \vec{a}$ and $\vec{r}-\vec{a}=\mu \vec{b}$ for some $\lambda, \mu \in R$
$\Rightarrow \vec{r}=\vec{b}+\lambda \vec{a}$ and $\vec{r}=\vec{a}+\mu \vec{b}$ for some $\lambda, \mu \in R$
$\Rightarrow \vec{b}+\lambda \vec{a}=\vec{a}+\mu \vec{b}$
$\Rightarrow \lambda=\mu=1 \quad[\because \vec{a}, \vec{b}$ are non - collinear $]$
$\therefore \vec{r}=\vec{a}+\vec{b}$
156 (c)
$|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}$
$=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+2 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+2 \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$
$\Rightarrow 0=1+1+1+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$[\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=1$, given $]$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=-\frac{3}{2}$
157 (a)
The volume of the parallelepiped with
coterminous edges as $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}$ is given by
$[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]=\hat{\mathbf{a}} \cdot(\hat{\mathbf{b}} \times \hat{\mathbf{c}})$

Now, $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]^{2}=\left|\begin{array}{lll}\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{b}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{c}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{c}}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1\end{array}\right|=\frac{1}{2}$
$[\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=1]$
$\Rightarrow[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]^{2}=\frac{1}{2}$
Thus, the required volume of the parallelopiped $=\frac{1}{\sqrt{2}} \mathrm{cu}$ unit
158 (d)
We have, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{\imath}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{\imath}})+\hat{\mathbf{\jmath}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{\jmath}})+\hat{\mathbf{k}} \times(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})$
$=3 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{a}}=2 \overrightarrow{\mathbf{a}}$
$=2(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=\sqrt{4+16+36}=\sqrt{56}=2 \sqrt{14}$
159 (b)
Let, $\overrightarrow{\mathbf{a}}=2 p \hat{\mathbf{i}}+\hat{\mathbf{j}}, \overrightarrow{\mathbf{b}}=(p+1) \hat{\mathbf{i}}+\hat{\mathbf{j}}$
Given, $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}| \Rightarrow 4 p^{2}+1=(p+1)^{2}+1$
$\Rightarrow 3 p^{2}-2 p-1=0 \Rightarrow p=1,-\frac{1}{3}$
160 (c)
Since $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \overrightarrow{r_{3}}$ are coplanar
$\therefore\left[\overrightarrow{r_{1}} \overrightarrow{r_{2}} \overrightarrow{r_{3}}\right]=0$
$\Rightarrow\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|=0 \Rightarrow a b c=a+b+c-2$
$\therefore \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$
$=\frac{3-2(a+b+c)+a b+b c+c a}{1-(a+b+c)+a b+b c+c a-a b c}$
$=\frac{3-2(a+b+c)+a b+b c+c a}{1-(a+b+c)+a b+b c+c a-a-b-c+2}$
$=\frac{3-2(a+b+c)+a b+b c+c a}{3-2(a+b+c)+a b+b c+c a}=1$
161 (c)
Let projection be x, then
$\overrightarrow{\mathbf{a}}=\frac{x(\hat{\mathbf{l}}+\hat{\mathbf{\jmath}})}{\sqrt{2}}+\frac{x(-\hat{\mathbf{1}}+\hat{\mathbf{\jmath}})}{\sqrt{2}}+x \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}}=\frac{2 x \hat{\mathbf{j}}}{\sqrt{2}}+x \hat{\mathbf{k}}$
$\Rightarrow \overrightarrow{\mathbf{a}}=\frac{\sqrt{2}}{\sqrt{3}} \hat{\mathbf{j}}+\frac{\hat{\mathbf{k}}}{\sqrt{3}}$
162 (a)
$\overrightarrow{\mathbf{P Q}}=6 \hat{\mathbf{i}}+\hat{\mathbf{j}}$
$\overrightarrow{\mathbf{Q R}}=-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}$
$\overrightarrow{\mathbf{R S}}=-6 \hat{\mathbf{i}}-\hat{\mathbf{j}}$
$\overrightarrow{\mathbf{S P}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}$
$|\overrightarrow{\mathbf{P Q}}|=\sqrt{37}=|\overrightarrow{\mathbf{R S}}|$
$|\overrightarrow{\mathbf{Q R}}|=\sqrt{10}=|\overrightarrow{\mathbf{S P}}|$
$\overrightarrow{\mathbf{P Q}} \cdot \overrightarrow{\mathbf{Q R}}=-6+3=-3 \neq 0$
$\overrightarrow{\mathbf{P Q}}=$ is not parallel to $\overrightarrow{\mathbf{R S}}$ and their magnitude are equal.
\Rightarrow Quadrilateral $P Q R S$ must be a parallelogram, which is neither a rhombus nor a rectangle.
163 (c)
If $\Delta=0$, then
$\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} . \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|=0$
$\Rightarrow \lambda \vec{a}+\mu \vec{b}+v \vec{c}=0$
$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are $L . D$., which is a contradiction
Hence, Δ can take any non-zero real values
164 (b)
We have,
$(3 \vec{a}-2 \vec{b})=-8 \hat{\imath}-7 \hat{\jmath}+3 \hat{k}$ and $\vec{c}=\frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-$ k
\therefore Required projection $=(3 \vec{a}-2 \vec{b}) \cdot \hat{c}$
$=(=-8 \hat{\imath}-7 \hat{\jmath}+3 \hat{k}) \cdot \frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-\hat{k})$

$$
=\frac{1}{3}(-16-14-3)=-11
$$

165 (a)
Angle between the faces $O A B$ and $A B C$ is same as angle between normals of faces $O A B$ and $A B C$.
Vector along the normals of $O A B$
$=\left|\begin{array}{lll}\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ 1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right|=5 \hat{\mathbf{\imath}}-\hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}}=\overrightarrow{\mathbf{a}}$ (let)
Vector along normals of $A B C$
$=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\ 1 & -1 & 2 \\ -2 & -1 & 1\end{array}\right|=\hat{\mathbf{i}}-5 \hat{\mathbf{\jmath}}-3 \hat{\mathbf{k}}=\overrightarrow{\mathbf{b}}$ (let)
$\therefore \cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}=\frac{5+5+9}{\sqrt{35} \sqrt{35}}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{19}{35}\right)$
167 (d
(d)
$\overrightarrow{\mathbf{a}} \times[\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]=\overrightarrow{\mathbf{a}} \times\{(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}\}$
(Expanding by vector triple product)
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}})-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}})(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})(\because(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}})=0)$
169 (b)
Taking A as the origin let the position vectors of B and C be \vec{b} and \vec{c} respectively
Equations of lines $B F$ and $A C$ are
$\vec{r}=\vec{b}+\lambda\left(\frac{\vec{b}+\vec{c}}{4}-\vec{b}\right)$ and $\vec{r}=\overrightarrow{0}+\mu \vec{c}$ respectively
For the point of intersection F, we have
$\vec{b}+\lambda\left(\frac{\vec{c}-3 \vec{b}}{4}\right)=\mu \vec{c}$
$\Rightarrow 1-\frac{3 \lambda}{4}=0$ and $\frac{\lambda}{4}=\mu \Rightarrow \lambda=\frac{4}{3}$ and $\mu=\frac{1}{3}$
So, the position vector of \vec{F} is $\vec{r}=\frac{1}{3} \vec{c}$
Now, $\vec{A} F=\frac{1}{3} \vec{c} \Rightarrow \vec{A} F=\frac{1}{3} A \vec{C}$
Hence, $A F: A C=\frac{1}{3}: 1=\frac{1}{3}$
170 (d)
Given, $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=2$
$\therefore[(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}) \times(3 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})]^{2}$
$=[0+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+9 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+0]^{2}$
$=[-8 \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]^{2}$
$=64\left[|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2} \sin ^{2} \theta\right]$
$=64\left[1 \times 4 \times \sin ^{2} 120^{\circ}\right]$
$=64 \times 4 \times \frac{3}{4}=192$
171 (c)
$(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot[(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}})]$
$=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}]$
$0+0+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]+[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}}]+0+0+0+[\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]+0$
$=-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
172
(b)

Clearly, $\vec{c}= \pm \frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a} \times(\vec{a} \times \vec{b})|}$
Now,
$\vec{a} \times(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}$
$\Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=-\hat{\imath}-\hat{\jmath}+\hat{k}-3(\hat{\imath}-\hat{\jmath}+\hat{k})$

$$
=-4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}
$$

$\therefore \vec{c}= \pm \frac{1}{\sqrt{6}}(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
Since \vec{d} is a unit vector perpendicular to both \vec{a} and \vec{c}
$\therefore \vec{d}= \pm \frac{\vec{a} \times \vec{c}}{|\vec{b} \times \vec{c}|}$

Now, $\vec{a} \times \vec{c}= \pm \frac{1}{\sqrt{6}}\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & -1 \\ 2 & -1 & 1\end{array}\right|$

$$
= \pm \frac{1}{\sqrt{6}}(-3 \hat{\jmath}-3 \hat{k})
$$

$\therefore \vec{d}= \pm \frac{1}{\sqrt{2}}(-\hat{\jmath}-\hat{k})= \pm \frac{1}{\sqrt{2}}(\hat{\jmath}+\hat{k})$
173 (d)
Since, G is the centroid of a triangle, then
$\overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{G B}}+\overrightarrow{\mathbf{G C}}=\overrightarrow{\mathbf{0}} \Rightarrow \overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{G C}}=-\overrightarrow{\mathbf{G B}}$
Now, $\overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{B G}}+\overrightarrow{\mathbf{G C}}=-\overrightarrow{\mathbf{G B}}+\overrightarrow{\mathbf{B G}}=2 \overrightarrow{\mathbf{B G}}$
[from Eq. (i)]
174 (c)
Let $\overrightarrow{\mathbf{n}}_{1}$ and $\overrightarrow{\mathbf{n}}_{2}$ be the vectors normal to the plane determined by $\hat{\mathbf{i}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}, \hat{\mathbf{i}}-\mathbf{k}$ respectively
$\therefore \overrightarrow{\mathbf{n}}_{1}=\hat{\mathbf{i}} \times(\hat{\mathbf{i}}-\hat{\mathbf{j}})=-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{n}}_{2}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}) \times(\hat{\mathbf{i}}-\hat{\mathbf{k}})=-\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{a}}$ is parallel to the line of intersection of the planes determined by the given planes.
$\therefore \overrightarrow{\mathbf{a}}\left|\mid\left(\overrightarrow{\mathbf{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}\right)\right.$
$\Rightarrow \overrightarrow{\mathbf{a}}=\lambda\left(\overrightarrow{\mathbf{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}\right)=\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}})$
Let θ be the angle between $\overrightarrow{\mathbf{a}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\therefore \cos \theta=\frac{\lambda((\hat{\mathbf{i}}+\hat{\mathbf{j}}) \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})}{\sqrt{\lambda^{2}+\lambda^{2}} \sqrt{1+4+4}}$
$=\frac{\lambda(1+2)}{\sqrt{2} \lambda \times 3}=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
175 (d)
$|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}=|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}$
$\Rightarrow|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}=25 \times 36-(25)^{2}$
$=25(36-25)$
$=25 \times 11$
$\Rightarrow|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=5 \sqrt{11}$
176 (c)
$\vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C$
$=(\vec{A} B+\vec{B} C)+(\vec{A} E+\vec{E} D)+\vec{D} C+\vec{A} C$
$=\vec{A} C+(\vec{A} D+\vec{D} C)+\vec{A} C$
$=\vec{A} C+\vec{A} C+\vec{A} C=3 \vec{A} C$

177 (a)
We have,
$(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})$

$$
=\vec{a} \times \vec{b}-\vec{a} \times \vec{c}-\vec{d} \times \vec{b}+\vec{d} \times \vec{c}
$$

$\Rightarrow(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})$

$$
=\vec{c} \times \vec{d}-\vec{b} \times \vec{d}-\vec{d} \times \vec{b}+\vec{d} \times \vec{c}
$$

$\Rightarrow(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})$

$$
\begin{aligned}
& =0[\because \vec{a} \times \vec{b}=\vec{c} \times \vec{d}, \vec{a} \times \vec{c} \\
& =\vec{b} \times \vec{d}]
\end{aligned}
$$

$\Rightarrow(\vec{a}-\vec{d}) \|(\vec{b}-\vec{c})$
$\Rightarrow \vec{a}-\vec{d}=\lambda(\vec{b}-\vec{c})$
Similarly, we have

$$
\begin{gathered}
(\vec{a}+\vec{d}) \times(\vec{b}+\vec{c})=\overrightarrow{0} \Rightarrow \vec{a}+\vec{d}| | \vec{b}+\vec{c} \Rightarrow \vec{a}+\vec{d} \\
=\lambda(\vec{b}+\vec{c})
\end{gathered}
$$

178 (b)
We have,
$\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}=\vec{a} \times\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\}$
$\Rightarrow \vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}=-(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$

$$
=(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})
$$

179 (c)
We have,
$\vec{A} B+\vec{D} C=\vec{A} B+\vec{B} C-\vec{B} C+\vec{D} C$
$\Rightarrow \vec{A} B+\vec{D} C=(\vec{A} B+\vec{B} C)-\vec{B} C+\vec{C} D$
$\Rightarrow \vec{A} B+\vec{D} C=(\vec{A} B+\vec{B} C)-(\vec{B} C+\vec{C} D)$
$\Rightarrow \vec{A} B+\vec{D} C=\vec{A} C-\vec{B} D=\vec{A} C+\vec{D} B$

182 (c)
Volume of parallelopiped,
$f(a)=\left|\begin{array}{lll}1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right|=1+a^{3}-a$
Now, $f^{\prime}(a)=3 a^{2}-1$
$\Rightarrow f^{\prime \prime}(a)=6 a$
Put $f^{\prime}(a)=0$
$\Rightarrow a \neq \pm \frac{1}{\sqrt{3}}$
Which shows $f(a)$ is maximum at
$a=\frac{1}{\sqrt{3}}$ and maximum at
$a=-\frac{1}{\sqrt{3}}$
183 (c)
Let $\overrightarrow{\mathbf{a}}=4 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 4 & 6 & -1 \\ 3 & 8 & 1\end{array}\right|=14 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+14 \hat{\mathbf{k}}$
$\Rightarrow \hat{\mathbf{c}}=\frac{14 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+14 \hat{\mathbf{k}}}{\sqrt{14^{2}+7^{2}+14^{2}}}=\frac{14 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+14 \hat{\mathbf{k}}}{21}$
\therefore Required vector
$=12 \cdot \frac{(14 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+14 \hat{\mathbf{k}})}{21}=8 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
184 (b)
Since, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
Also, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\cos \theta$
Now, $\overrightarrow{\mathbf{c}}=\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}+\gamma(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\alpha \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\gamma \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{c}}| \cos \theta=\alpha+0+0$

$$
\Rightarrow \cos \theta=\alpha \quad[\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0]
$$

and $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\alpha \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\beta \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}+\gamma(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{b}}$
$\Rightarrow|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \theta=\beta \Rightarrow \cos \theta=\beta$
185 (a)
Given volume of parallelopiped
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=40$
\therefore Volume of parallelopiped
$=[\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}]=2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$=2 \times 40=80$ cu units
186 (a)
Given, $\overrightarrow{\mathbf{O P}}=\hat{\mathbf{a}} \cos t+\hat{\mathbf{b}} \sin t$
$\Rightarrow|\overrightarrow{\mathbf{O P}}|$
$=\sqrt{\left(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} \cos ^{2} t+\hat{\mathbf{b}} \cdot \hat{\mathbf{b}} \sin ^{2} t+2 \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \sin t \cos t\right.}$
$\Rightarrow|\overrightarrow{\mathbf{O P}}|=\sqrt{1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \sin 2 t}$
$\Rightarrow|\overrightarrow{\mathbf{0 P}}|_{\text {maxx }}=\sqrt{1+\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}}$
$\left[\operatorname{Max}(\sin 2 t)=1 \Rightarrow t=\frac{\pi}{4}\right]$
$\Rightarrow \overrightarrow{\mathbf{O P}}\left(\right.$ at $\left.t=\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}(\hat{\mathbf{a}}+\hat{\mathbf{b}})$
\therefore Unit vector along $\overrightarrow{\mathbf{O P}}$ at $\left(t=\frac{\pi}{4}\right)=\frac{\hat{\mathbf{a}}+\hat{\mathbf{b}}}{|\hat{\mathbf{a}}+\hat{\mathbf{b}}|}$
187 (b)
The position vector of midpoint of line joining the points whose position vector are $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and
$\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
$=\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}+\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{2}=\hat{\mathbf{i}}$
188 (a)
The position vector of G is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
$\therefore \vec{G} A+\vec{G} B+\vec{G} C$

$$
\begin{aligned}
=\left(\vec{a}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right) & \left(\vec{b}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right) \\
+ & \left(\vec{c}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)=\overrightarrow{0}
\end{aligned}
$$

189 (d)
A vector normal to first plane is $\overrightarrow{\mathbf{n}}_{1}=\hat{\mathbf{i}} \times(\hat{\mathbf{i}}+\hat{\mathbf{j}})=$ k
A vector normal to second plane is $\overrightarrow{\mathbf{n}}_{2}$
$=(\hat{\mathbf{i}}-\hat{\mathbf{j}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{k}})=-\hat{\mathbf{j}}+\hat{\mathbf{k}}-\hat{\mathbf{i}}$
Since, $\overrightarrow{\mathbf{a}}$ will be parallel to $\overrightarrow{\mathbf{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$
Let θ be the angle between $\overrightarrow{\mathbf{a}}$ and $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\therefore \cos \theta \frac{(\hat{\mathbf{i}}-\hat{\mathbf{j}}) \cdot(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{\sqrt{1^{2}+1^{2}} \sqrt{1^{2}+2^{2}+2^{2}}}$
$=\frac{1+2}{\sqrt{2} \cdot 3}=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
190 (a)
Since, given planes are perpendicular, it means its normal are perpendicular.
$\therefore 2(\lambda)-\lambda(5)+3(-1)=0$
$\Rightarrow-3 \lambda-3=0$
$\Rightarrow \lambda=-1$
$\therefore \lambda^{2}+\lambda=(-1)^{2}-1=0$
191 (a)
$2 \overrightarrow{\mathbf{O A}}+3 \overrightarrow{\mathbf{O B}}=2(\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{C A}})+3(\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{C B}})$
$=5 \overrightarrow{\mathbf{O C}}+2 \overrightarrow{\mathbf{C A}}+3 \overrightarrow{\mathbf{C B}}$
$=5 \overrightarrow{\mathbf{O C}} \quad[\because 2 \overrightarrow{\mathbf{C A}}=-3 \overrightarrow{\mathbf{C B}}]$
192 (b)
If the vectors $\left(\sec ^{2} A\right) \hat{\imath}+\hat{\jmath}+\hat{k}, \hat{\imath}+\left(\sec ^{2} B\right) \hat{\jmath}+\hat{k}$
and $\hat{\imath}+\hat{\jmath}+\left(\sec ^{2} C\right) \hat{k}$ are coplanar, then
$\left|\begin{array}{ccc}\sec ^{2} A & 1 & 1 \\ 1 & \sec ^{2} B & 1 \\ 1 & 1 & \sec ^{2} C\end{array}\right|=0$
$\Rightarrow \sec ^{2} A \sec ^{2} B \sec ^{2} C-\sec ^{2} A$
$-\sec ^{2} B-\sec ^{2} C+2=0$
$\Rightarrow\left(1+\tan ^{2} A\right)\left(1+\tan ^{2} B\right)\left(1+\tan ^{2} C\right)$
$-\left(1+\tan ^{2} A\right)$
$-\left(1+\tan ^{2} B\right)-\left(1+\tan ^{2} C\right)+2=0$
$\Rightarrow \tan ^{2} A \tan ^{2} B \tan ^{2} C+\tan ^{2} A \tan ^{2} B$
$+\tan ^{2} B \tan ^{2} C+\tan ^{2} C \tan ^{2} A$
$=0$
$\Rightarrow \cot ^{2} A+\cot ^{2} B+\cot ^{2} C+1=0$
$\Rightarrow \operatorname{cosec}^{2} A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C-2=0$
$\Rightarrow \operatorname{cosec}^{2} A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C=2$
193 (b)
It is given that the points P, Q and R with position vectors $2 \hat{\imath}+\hat{\jmath}+\hat{k}, 6 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $14 \hat{\imath}-5 \hat{\jmath}+p k$ respectively are collinear
$\therefore \vec{P} Q=\lambda \vec{Q} R$ for some scalar λ
$\Rightarrow 4 \hat{\imath}-2 \hat{\jmath}+\hat{k}=\lambda\{8 \hat{\imath}-4 \hat{\jmath}(p-2) \hat{k}\}$
$\Rightarrow 4=8 \lambda,-2=-4 \lambda$ and $\lambda(p-2)=1 \Rightarrow p=4$
(c)

Given, $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta}$
$\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}$
From Eq. (i)
$\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=(a+1) \vec{\delta}$
From Eq. (ii)
$\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=(b+1) \vec{\alpha}$
From Eq. (iii) and (iv),
$(a+1) \vec{\delta}=(b+1) \vec{\alpha}$
Since, $\vec{\alpha}$ is not parallel to $\vec{\delta}$.
\therefore From Eq. (v),
$a+1=0$ and $b+1=0$
\therefore From Eq. (iii),
$\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}=\overrightarrow{0}$
196 (d
We have,
$\begin{aligned} {[2 \vec{a}+\vec{b} 2 \vec{b}+\vec{c} 2 \vec{c}+\vec{a}] } & =\left|\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right|\left[\begin{array}{ll}\vec{a} & \vec{b}\end{array} \vec{c}\right] \\ & =9 \times 3\end{aligned}$
Hence, required volume $=27$ cubic units
197 (a)
In plane P_{1}, a vector is perpendicular to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$.
In plane P_{2}, a vector is perpendicular to $\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ is
$\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=0$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \|(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
The angle between the planes is 0 .
198 (a)
We have,

$=\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}-\frac{\left[\begin{array}{l}\vec{a}\end{array} \vec{b} \vec{c}\right]}{[\vec{a} \vec{b} \vec{c}]}=1-1=0$
199 (a)
Given, $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$,
Now, $|\overrightarrow{\mathbf{a}}|=\sqrt{4+1+4}=3$
Since, $|\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}|=2 \sqrt{2}$
$\Rightarrow|\overrightarrow{\mathbf{c}}|^{2}+|\overrightarrow{\mathbf{a}}|^{2}-2 \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=8$
$\Rightarrow|\overrightarrow{\mathbf{c}}|^{2}+9-2|\overrightarrow{\mathbf{c}}|=8$
$\Rightarrow|\overrightarrow{\mathbf{c}}|^{2}-2|\overrightarrow{\mathbf{c}}|+1=0$
$\Rightarrow|\overrightarrow{\mathbf{c}}|=1$
Now, $|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin 30^{\circ}$

Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 1 & -2 \\ 1 & 1 & 0\end{array}\right|$
$=\hat{\mathbf{i}}(0+2)-\hat{\mathbf{j}}(0+2)+\hat{\mathbf{k}}(2-1)$
$=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{4+4+1}=3$
\therefore From Eq. (i),
$|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}|=3 \cdot 1 \cdot \frac{1}{2}=\frac{3}{2}$
201 (a)
Now, $\overrightarrow{\mathbf{A B}}+2 \overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{B C}}-2 \overrightarrow{\mathbf{D C}}$
$=\overrightarrow{\mathbf{A C}}+2 \overrightarrow{\mathbf{A D}}-2 \overrightarrow{\mathbf{D C}}$
$=\overrightarrow{\mathbf{A C}}+2(\overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{C D}})-2 \overrightarrow{\mathbf{D C}}$
$=3 \overrightarrow{\mathbf{A C}}-4 \overrightarrow{\mathbf{D C}}$
$=3(2 \overrightarrow{\mathbf{Q C}})-4\left(\frac{3}{2} \overrightarrow{\mathbf{P C}}\right)$
$=6 \overrightarrow{\mathbf{Q C}}-6 \overrightarrow{\mathbf{P C}}=6(\overrightarrow{\mathbf{Q C}}+\overrightarrow{\mathbf{C P}})$
$\Rightarrow k \overrightarrow{\mathbf{P Q}}=6 \overrightarrow{\mathbf{Q P}}=-6 \overrightarrow{\mathbf{P Q}}$ (given)
$\Rightarrow k=-6$

202 (c)
Given, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=4 \Longrightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta=4$
$\Rightarrow \sin \theta=\frac{4}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$
Alos, $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|=2 \Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta=2$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}\left(1-\sin ^{2} \theta\right)=4$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}\left(1-\frac{16}{|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}}\right)=4 \quad$ [From Eq. 1]
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}=20$
203 (c)
We have,
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$
$\therefore \vec{a} \times \vec{p}=\frac{1}{[\vec{a} \vec{b} \vec{c}]} \vec{a} \times(\vec{b} \times \vec{c})$,
$\vec{b} \times \vec{q}=\frac{1}{[\vec{a} \vec{b} \vec{c}]} \vec{b} \times(\vec{c} \times \vec{a})$
$\vec{c} \times \vec{r}=\frac{1}{[\vec{a} \vec{b} \vec{c}]} \vec{c} \times(\vec{a} \times \vec{b})$
$\therefore \vec{a} \times \vec{p}+\vec{b} \times \vec{q}+\vec{c} \times \vec{r}$
$=\frac{1}{[\vec{a} \vec{b} \vec{c}]}\{\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c}$

$$
\times(\vec{a} \times \vec{b})\}
$$

$=\overrightarrow{0}$
204 (b)
Since, $\cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{\overrightarrow{\mathbf{a}| | \overrightarrow{\mathbf{b}} \mid}}$
$=\frac{c\left(\log _{2} x\right)^{2}-12+6 c \log _{2} x}{\left[\sqrt{\left(c \log _{2} x\right)^{2}+36+9} \times \sqrt{\left(\log _{2} x\right)^{2}+4+4(c) c}\right.}$
For obtuse angle,
$\cos \theta<0$
$\Rightarrow c\left(\log _{2} x\right)^{2}-12+6 c \log _{2} x<0$
$\Rightarrow c<0$ and $D<0$
$\Rightarrow c<0$ and $(6 c)^{2}+48 c<0$
$\Rightarrow c<0$ and $c<-\frac{4}{3}$
$\therefore c \in\left(-\frac{4}{3}, 0\right)$
206 (d)
Given lines can be rewritten as
$\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}+t(-3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
and $\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}+s(4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+8 \hat{\mathbf{k}})$
here, $a_{1}=-3, b_{1}=2, c_{1}=6$
and $a_{2}=4, b_{2}=-1, c_{2}=8$
$\therefore \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{-3 \times 4+2 \times(-1)+6 \times 8}{\sqrt{9+4+36} \sqrt{16+1+64}}=\frac{34}{7 \times 9}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{34}{63}\right)$
208 (a)
We have,
$\vec{A} B=\hat{\imath}-7 \hat{\jmath}+\hat{k}$ and, $\vec{B} C=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
$\therefore \vec{A} C=\vec{A} B+\vec{B} C=4 \hat{\imath}-6 \hat{\jmath}+3 \hat{k}$
$\Rightarrow|\vec{A} C|=\sqrt{16+36+9}=\sqrt{61}$
210 (d)

$$
\begin{aligned}
& (\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot\left(\frac{m \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}}{\sqrt{13+m^{2}}}\right)=2 \\
& \Rightarrow m+2+6=2 \sqrt{13+m^{2}} \\
& \Rightarrow(m+8)^{2}=4\left(13+m^{2}\right) \\
& \Rightarrow m^{2}+16 m+64=4 m^{2}+52 \\
& \Rightarrow 3 m^{2}-16 m-12=0 \\
& \Rightarrow(3 m+2)(m-6)=0 \\
& \Rightarrow m=6,-\frac{2}{3}
\end{aligned}
$$

211 (c)
If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non-zero and non-collinear vectors and there exists α and β such that $\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$,
then $\alpha=\beta=0$
212 (d)
Given vectors are coplanar, if
$\left|\begin{array}{ccc}1 & 1 & m \\ 1 & 1 & m+1 \\ 1 & -1 & m\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}0 & 0 & -1 \\ 1 & 1 & m+1 \\ 1 & -1 & m\end{array}\right|=0 \quad\left[R_{1} \rightarrow R_{1}-R_{2}\right]$
$\Rightarrow-1(-1-1)=0$
$\Rightarrow 2 \neq 0$
\therefore Now value of m for which vectors are coplanar.
213 (b)
Let the required unit vector $\vec{c}=x \hat{\imath}+y \hat{k}$
We have,
$|\vec{c}|=1 \Rightarrow x^{2}+y^{2}=1$
Vectors \vec{a} and \vec{c} are inclined at an angle of 45°
$\therefore \cos 45^{\circ}=\frac{2 x-y}{\sqrt{4+4+1}} \Rightarrow 2 x-y=\frac{3}{\sqrt{2}}$
Vectors \vec{b} and \vec{c} are inclined at an angle of 60°
$\therefore-\frac{y}{\sqrt{2}}=\cos 60^{\circ} \Rightarrow y=-\frac{1}{\sqrt{2}}$
From (ii) and (iii), we get $x=1 / \sqrt{2}$
Hence, the required unit vector is $\frac{1}{\sqrt{2}} \hat{\imath}-\frac{1}{\sqrt{2}} \widehat{k}$
214 (c)
Let $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$,
$\overrightarrow{\mathbf{C}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{D}}=\hat{\mathbf{i}}-6 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{A B}}=-\hat{\mathbf{i}}-5 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{A}} C=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}-9 \hat{\mathbf{j}}+(\lambda+1) \hat{\mathbf{k}}$
These will be coplanar, if $[\overrightarrow{\mathbf{A B}} \overrightarrow{\mathbf{A C}} \overrightarrow{\mathbf{A D}}]=0$
$\therefore\left|\begin{array}{ccc}-1 & -5 & 4 \\ 1 & 1 & -1 \\ -1 & -9 & (\lambda+1)\end{array}\right|=0$
$\Rightarrow-1(\lambda+1-9)+5(\lambda+1-1)+4(-9+1)$

$$
=0
$$

$\Rightarrow \lambda=6$
215 (b)
We have,
$|\vec{a}|=|\vec{b}|$
Now,
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}-|\vec{b}|^{2}$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0 \quad[\because|\vec{a}|=|\vec{b}|]$
$\Rightarrow(\vec{a}+\vec{b}) \perp(\vec{a}-\vec{b})$
216 (a)
Adjacent sides of parallelogram are $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+$
$3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 3 \\ -3 & -2 & 1\end{array}\right|$
$=\hat{\mathbf{1}}(2+6)-\hat{\mathbf{j}}(1+9)+\hat{\mathbf{k}}(-2+6)$
$=8 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$

Therefore, area of parallelogram
$=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$=\sqrt{(8)^{2}+(-10)^{2}+(4)^{2}}$
$=\sqrt{64+100+16}=\sqrt{180}$ sq unit
217 (d)
$\therefore \overrightarrow{\mathbf{C P}}+\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{B A}}$

By triangle law,
$\overrightarrow{\mathbf{C A}}=\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{B A}}$
$\therefore \overrightarrow{\mathbf{C P}}+\overrightarrow{\mathbf{P A}}=\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{B A}}$
218 (d)
We have,
$\vec{c}=x \vec{a}+y \vec{b}+\vec{c}(\vec{a} \times \vec{b})$
$\Rightarrow \vec{c} \cdot \vec{a}=x$ and $\vec{c} \cdot \vec{b}=y \Rightarrow x=y=\cos \theta$
Now,
$\vec{c} \cdot \vec{c}=|\vec{c}|^{2}$
$\Rightarrow\{x \vec{a}+y \vec{b}+z(\vec{a} \times \vec{b})\} \cdot\{x \vec{a}+y \vec{b}+z(\vec{a} \times \vec{b})\}$

$$
=|\vec{c}|^{2}
$$

$\Rightarrow 2 x^{2}+x^{2}|\vec{a} \times \vec{b}|^{2}=1$
$\Rightarrow 2 x^{2}+z^{2}\left\{|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}\right\}=1$
$\Rightarrow 2 x^{2}+z^{2}=1\left[\because|\vec{a}|^{2}=1,|\vec{b}|=1\right.$ and $\vec{a} \cdot \vec{b}$ $=0$]
$\Rightarrow z^{2}=1-2 \cos ^{2} \theta=-\cos 2 \theta$
219 (a)
We have,
$\vec{a}+\vec{b}=\vec{c}$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \times 0 \quad[\because \vec{a} \cdot \vec{b}=0]$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}$
221 (b)
All points A, B, C, D, E are in a plane.
\therefore Resultant $=(\overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{A E}})+(\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{D B}}+$
EB
$=(\overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{C B}})+(\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{D B}})+(\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{E B}})$
$=\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{A B}}=3 \overrightarrow{\mathbf{A B}}$
222 (a)
Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar.
$\Rightarrow\left|\begin{array}{lll}\alpha & 2 & \beta \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=0$
$\Rightarrow \alpha(1-0)-2(1-0)+\beta(1-0)=0$
$\Rightarrow \alpha+\beta=2$ Which is possible for $\alpha=1, \beta=1$

223 (c)
A unit perpendicular to the plane $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}$
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -6 & -3 \\ 4 & 3 & -1\end{array}\right|$
$=\hat{\mathbf{i}}(6+9)-\hat{\mathbf{j}}(-2+12)+\hat{\mathbf{k}}(6+24)$
$=15 \hat{\mathbf{l}}-10 \hat{\mathbf{j}}+30 \hat{\mathbf{k}}$
and $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{15^{2}+(-10)^{2}+(30)^{2}}$
$=\sqrt{1225}=35$
\therefore Required vector $=\frac{15 \hat{\mathbf{1}}-10 \hat{0}+30 \hat{\mathbf{k}}}{35}=\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}$
225 (d)
$(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}}) \cdot(2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=\overrightarrow{\mathbf{a}} \cdot\{\hat{\mathbf{j}} \times(2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})\}$
$=\overrightarrow{\mathbf{a}} \cdot\{-3(\hat{\mathbf{j}} \times \hat{\mathbf{k}})\}=-3(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}})$
$=-12 \quad[\because \overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=4$, given $]$
226 (b)
Volume of tetrahedron
$=\frac{1}{6}[\overrightarrow{\mathbf{A B}} \overrightarrow{\mathbf{A C}} \overrightarrow{\mathbf{A D}}]$
$=\frac{1}{6}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1\end{array}\right|$
$=\frac{1}{6}[-1+2+3]=\frac{2}{3}$ cu unit
228 (c)
Since, $\quad \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\frac{1}{2} \overrightarrow{\mathbf{b}}$
$\Rightarrow(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}=\frac{1}{2} \overrightarrow{\mathbf{b}}$
On comparing both sides, we get
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=\frac{1}{2}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{c}}|\left|\cos \theta_{2}\right|=\frac{1}{2} \Rightarrow \cos \theta_{2}=\frac{1}{2} \Rightarrow \theta_{2}=\frac{\pi}{3}$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\Rightarrow|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta_{1}=0$
$\Rightarrow \cos \theta_{1}=\cos \frac{\pi}{2}$
$\Rightarrow \theta_{1}=\frac{\pi}{2}$
229 (b)
$\vec{O} A+\vec{O} B+\vec{O} C$
$=\frac{1}{2}(2 \vec{O} A+2 \vec{O} B+2 \vec{O} C)$
$=\frac{1}{2}\{(\vec{O} A+\vec{O} B)+(\vec{O} B+\vec{O} C)+(\vec{O} C+\vec{O} A)\}$
$=\frac{1}{2}\{2 \vec{O} P+2 \vec{O} Q+2 \vec{O} R\}$
$=\vec{O} P+\vec{O} Q+\vec{O} R$
230 (a)
Given, $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}=\overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2} \sin ^{2} \theta+$

$$
\overrightarrow{\mathbf{a}}_{2} \overrightarrow{\mathbf{b}}_{2} \cos ^{2} \theta=\overrightarrow{\mathbf{a}}^{2} \overrightarrow{\mathbf{b}}^{2}
$$

231 (a)
Since, $\overrightarrow{\mathbf{a}}=m \overrightarrow{\mathbf{b}}$ for some scalar m ie,
$\overrightarrow{\mathbf{a}}=m\left(6 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-\frac{15}{2} \hat{\mathbf{k}}\right)$
$\Rightarrow|\overrightarrow{\mathbf{a}}|=|m| \sqrt{36+64+\frac{225}{4}}$
$\Rightarrow 50=\frac{25}{2}|m| \Rightarrow|m|=4$
$\Rightarrow m= \pm 4$
Since, $\overrightarrow{\mathbf{a}}$ makes an acute angle with the positive direction of z-axis, so its z componant must be positive and hence, m must be -4
$\therefore \overrightarrow{\mathbf{a}}=-4\left(6 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-\frac{15}{2} \hat{\mathbf{k}}\right)$
$=-24 \hat{\mathbf{i}}+32 \hat{\mathbf{j}}+30 \hat{\mathbf{k}}$
232 (c)
In $\triangle A B C$, we have
$\vec{A} C=\vec{a}+\vec{b}$
In $\triangle A C D$, we have
$\vec{A} C+\vec{C} D=\vec{A} D \Rightarrow \overrightarrow{C D}=2 \vec{b}-\vec{a}-\vec{b}=\vec{b}-\vec{a}$

In $\triangle C D E$, we have
$\overrightarrow{C D} D+\vec{D} E=\vec{C} E \Rightarrow \vec{b}-\vec{a}-\vec{a}=\vec{C} E \Rightarrow \vec{C} E$

$$
=\vec{b}-2 \vec{a}
$$

233 (b)
Given vectors will be coplanar, if $\left|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 2 & -1 \\ m & -1 & 2\end{array}\right|=$ 0
$\Rightarrow 2(4-1)+3(2+m)+4(-1-2 m)=0$
$\Rightarrow m=\frac{8}{5}$
234 (d)
Given that, $|\overrightarrow{\mathbf{a}}|=1,|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$
$\therefore[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{(\overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}})\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+12 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}+4 \overrightarrow{\mathbf{c}}+12 \overrightarrow{\mathbf{b}})$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}-24 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}=1-24 \times 9$
$=1-216=-215$
235 (a)

Now, $\hat{\mathbf{i}} \times(\hat{\mathbf{j}} \times \hat{\mathbf{k}})=\hat{\mathbf{i}} \times \hat{\mathbf{i}}=\overrightarrow{\mathbf{0}}$
$\hat{\mathbf{j}} \times(\hat{\mathbf{k}} \times \hat{\mathbf{i}})=\hat{\mathbf{j}} \times \hat{\mathbf{j}}=\overrightarrow{\mathbf{0}}$
and $\hat{\mathbf{k}} \times(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) \hat{\mathbf{k}} \times \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$
$\therefore \hat{\mathbf{i}} \times(\hat{\mathbf{j}} \times \hat{\mathbf{k}})+\hat{\mathbf{j}} \times(\hat{\mathbf{k}} \times \hat{\mathbf{i}})+\hat{\mathbf{k}} \times(\hat{\mathbf{i}} \times \hat{\mathbf{j}})=\overrightarrow{\mathbf{0}}$
236 (c)
Given vectors will be coplanar, if
$\left|\begin{array}{ccc}-\lambda^{2} & 1 & 1 \\ 1 & -\lambda^{2} & 1 \\ 1 & 1 & -\lambda^{2}\end{array}\right|=0$
$\Rightarrow \lambda^{6}-3 \lambda^{2}-2=0$
$\Rightarrow\left(1+\lambda^{2}\right)^{2}\left(\lambda^{2}-2\right)=0 \Rightarrow \lambda= \pm \sqrt{2}$
237 (c)
Here, force $\overrightarrow{\mathbf{F}}=6 \times \frac{(9 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{\sqrt{81+36+4}}$
$=\frac{6(9 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{11}$
Displacement vector $\overrightarrow{\mathbf{d}}$
$=(7-3) \hat{\mathbf{i}}+(-6-4) \hat{\mathbf{j}}+(8+15) \hat{\mathbf{k}}$
$=4 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+23 \hat{\mathbf{k}}$
\therefore Work done $=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$
$=\frac{6}{16}(9 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot(4 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+23 \hat{\mathbf{k}})$
$=\frac{6}{11}(36-60+46)=12$
238 (d)
Since, $|2 \widehat{\mathbf{u}} \times 3 \hat{\mathbf{v}}|=1$
$\Rightarrow 6|\widehat{\mathbf{u}}||\hat{\mathbf{v}}||\sin \theta|=1$
$\Rightarrow \sin \theta=\frac{1}{6} \quad[\because|\widehat{\mathbf{u}}|=|\widehat{\mathbf{u}}|=1]$
Since, θ is an acute angle, then there is exactly one value of θ for which ($2 \widehat{\mathbf{u}} \times 3 \widehat{\mathbf{v}}$) is a unit vector.
239 (d)
\therefore Total force, $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}$
$=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
and displacement, $\overrightarrow{\mathbf{d}}=(5-3) \hat{\mathbf{i}}+(5-2) \hat{\mathbf{j}}+(3-$

1) \mathbf{k}
$=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\therefore W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$
$=(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=11$ units
241 (a)
We have,
$\vec{a}+t \vec{b} \perp \vec{c}$
$\Rightarrow(\vec{a}+t \vec{b}) \cdot \vec{c}=0$
$\Rightarrow \vec{a} \cdot \vec{c}+t \vec{b} \cdot \vec{c}=0 \Rightarrow t=-\frac{\vec{a} \cdot \vec{c}}{\vec{b} \cdot \vec{c}}=-\frac{6+2+0}{-3+2+0}$

$$
=8
$$

242
(d)

Given, $\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}=1$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{a}} \frac{\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}=0$
Similarly, $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}=1$,
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{r}}=0$
$\therefore(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{p}}(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{q}}+(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{r}}$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{q}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{r}}$
$=1+1+1=3$
243 (b)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}_{1}+\overrightarrow{\mathbf{a}} \cdot\left(\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}} \overrightarrow{\mathbf{a}}\right)$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-\frac{|\overrightarrow{\mathbf{a}}|^{2}(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}})}{|\overrightarrow{\mathbf{a}}|^{2}}$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}=0$
Similarly, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}_{2}=\overrightarrow{\mathbf{b}}_{1} \cdot \overrightarrow{\mathbf{c}}_{2}=0$
Hence, $\left\{\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{c}}_{2}\right\}$ are mutually orthogonal vectors.
244 (c)
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}=\overrightarrow{0}$,
$[\because \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{c}}]$
245 (b)
Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of A, B and C respectively. Then, the position vector of G is
$\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
Let the position vectors of A^{\prime}, B^{\prime} and C^{\prime} be
$\vec{a}, \vec{b}^{\prime}$ and \vec{c} respectively. Then, the position vectors
of G^{\prime} is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
$\therefore A \vec{A}^{\prime}+B \vec{B}^{\prime}+C \vec{C}^{\prime}$

$$
=(\vec{a}-\vec{a})+\left(\overrightarrow{b^{\prime}}-\vec{b}\right)+(\vec{c}-\vec{c})
$$

$\Rightarrow A \vec{A}^{\prime}+B \vec{B}^{\prime}+C \vec{C}^{\prime}$

$$
=\left(\overrightarrow{a^{\prime}}+\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}}\right)-(\vec{a}+\vec{b}+\vec{c})
$$

$\Rightarrow A \vec{A}^{\prime}+B \vec{B}^{\prime}+C \vec{C}^{\prime}$

$$
\begin{aligned}
& =3\left\{\frac{\overrightarrow{a^{\prime}}+\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}}}{3}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right\} \\
& =3 G \vec{G}^{\prime}
\end{aligned}
$$

246 (a)
We have,
$\vec{u}=\vec{a}-\vec{b}, \vec{u}=\vec{a}+\vec{b}$
$\Rightarrow \vec{u} \times \vec{v}=(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
$\Rightarrow|\vec{u} \times \vec{v}|=2|\vec{a} \times \vec{b}|$
$\Rightarrow|\vec{u} \times \vec{v}|=2 \sqrt{|\vec{a} \times \vec{b}|}$
$\Rightarrow|\vec{u} \times \vec{v}|=2 \sqrt{|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}}$
$\Rightarrow|\vec{u} \times \vec{v}|=2 \sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
248 (b)
Let $\overrightarrow{\mathbf{d}}=d_{1} \hat{\mathbf{i}}+d_{2} \hat{\mathbf{j}}+d_{3} \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d}}=d_{1}-d_{2}=0 \Rightarrow d_{1}=d_{2}$
Also, $\overrightarrow{\mathbf{d}}$ is a unit vector.
$\Rightarrow d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=1 \quad \ldots$ (ii)
Also, $[\overrightarrow{\mathbf{b}} \quad \overrightarrow{\mathbf{c}} \quad \overrightarrow{\mathbf{d}}]=0 \Rightarrow\left|\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ d_{1} & d_{2} & d_{3}\end{array}\right|=0$
$\Rightarrow-1\left(-d_{3}-d_{1}\right)-1\left(-d_{2}\right)=0$
$\Rightarrow d_{1}+d_{2}+d_{3}=0 \Rightarrow 2 d_{1}+d_{3}=0$ [from Eq.
(i)]
$\Rightarrow d_{3}=-2 d_{1}$
Using Eqs. (iii) and (i) in Eq. (ii), we get
$d_{1}^{2}+d_{1}^{2}+4 d_{1}^{2}=1 \Rightarrow d_{1}= \pm \frac{1}{\sqrt{6}}$
$\therefore \quad d_{2}= \pm \frac{1}{\sqrt{6}}$
and $d_{3}=\mp \frac{2}{\sqrt{6}}$
Hence, required vector is
$\pm \frac{1}{\sqrt{6}}(\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
249 (b)
Since \vec{a} is collinear to vector \vec{b}. Therefore,
$\vec{a}=m \vec{b}$ for some scalar m
$\Rightarrow \vec{a}=m\left(6 \hat{\imath}-8 \hat{\jmath}-\frac{15}{2} \hat{k}\right)$
$\Rightarrow|\vec{a}|=\frac{25}{2}|m|$
$\Rightarrow 50=\frac{25}{2}|m| \Rightarrow|m|=4 \Rightarrow m$

$$
= \pm 4[\because|\vec{a}|=50]
$$

Since \vec{a} makes an acute angle with the positive direction of z-axis. So, its z-component must be positive, and hence ' m ' must be -4
$\therefore \vec{a}=-4\left(6 \hat{\imath}-8 \hat{\jmath}-\frac{15}{2} \hat{k}\right)=-24 \hat{\imath}+32 \hat{\jmath}+30 \hat{k}$
251 (c)
Since \vec{a} and \vec{b} are coplanar. Therefore, $\vec{a} \times \vec{b}$ is a vector perpendicular to the plane containing \vec{a} and \vec{b}
Similarly, $\vec{c} \times \vec{d}$ is a vector perpendicular to the plane containing \vec{c} and \vec{d}
Two planes will be parallel if their normal i.e.
$\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ are parallel
$\therefore(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$
252 (c)
Since, $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0$
$\Longrightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
Similarly, $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
and $\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0 \ldots$ (iii)
On adding Eqs. (i),(ii) and (iii), we get
$2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})=0$
Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+$ $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}$
$=9+16+25=50$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=5 \sqrt{2}$
253 (b)
We know that the diagonals of a parallelogram bisect each other. Therefore, M is the mid point of $A C$ and $B D$ both.
$\therefore \overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O C}}=2 \overrightarrow{\mathbf{O M}}$
and $\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O D}}=2 \overrightarrow{\mathbf{O M}}$
$\Rightarrow \overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O C}}+\overrightarrow{\mathbf{O D}}=4 \overrightarrow{\mathbf{O M}}$
254 (b)
$|\overrightarrow{\mathbf{O A}}|=\sqrt{4+4+1}=3$
and $|\overrightarrow{\mathbf{O B}}|=\sqrt{4+16+16}=6$
\therefore Required vector $=\lambda(\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{0 B}})$
$=\lambda\left[\frac{1}{3}(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})+\frac{1}{6}(2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})\right]$
$=\frac{\lambda}{3}(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
\therefore Length of vector $=\frac{\lambda}{3} \sqrt{9+16+9}=\frac{\lambda}{3} \sqrt{34}$
Take $\lambda=2$
\therefore Required length of a vector is $\frac{\sqrt{136}}{3}$
255 (d)
Given that, $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=\hat{\mathbf{1}}, \overrightarrow{\mathbf{C}}=c_{1} \hat{\mathbf{\imath}}+c_{2} \hat{\mathbf{\jmath}}+$ $c_{3} \hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ are coplanar.
$\therefore[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \mathbf{C}]=0$
Now, $\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=-c_{3} \hat{\mathbf{j}}+c_{2} \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}) \cdot\left(-c_{3} \hat{\mathbf{\jmath}}+c_{2} \hat{\mathbf{k}}\right)=0$
\Rightarrow No value of c_{1} can be found.
256 (c)
We have,
$A \vec{B} \cdot A \vec{C}+B \vec{C} \cdot B \vec{A}+C \vec{A} \cdot C \vec{B}$
$=(A B)(A C) \cos \theta+(B C)(B A) \sin \theta+0$
$=A B(A C \cos \theta+B C \sin \theta)$
$=A B\left\{\frac{(A C)^{2}}{A B}+\frac{(B C)^{2}}{A B}\right\} \quad\left[\because \cos \theta=\frac{A C}{A B}, \sin \theta\right.$

$$
\left.=\frac{B C}{A B}\right]
$$

$=A C^{2}+B C^{2}=A B^{2}=p^{2}$

257 (a)
The position vector of the centroid of the triangle is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
Since the triangle is an equilateral. Therefore, the orthocenter coincides with the centroid and hence
$\frac{\vec{a}+\vec{b}+\vec{c}}{3}=\overrightarrow{0} \Rightarrow \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
258 (d)
Given, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=4$
$\Rightarrow||\overrightarrow{\mathbf{a}}|| \overrightarrow{\mathbf{b}}|\sin \theta \widehat{\mathbf{n}}|=4$
$\Rightarrow||\overrightarrow{\mathbf{a}}|| \overrightarrow{\mathbf{b}}|\sin \theta|=4 \quad[\because|\widehat{\mathbf{n}}|=1]$
Also, $|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|=2$
$\Rightarrow||\overrightarrow{\mathbf{a}}|| \overrightarrow{\mathbf{b}}|\cos \theta|=2$
On squaring and then on adding Eqs.(i) and (ii), we get
$|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2} \sin ^{2} \theta+|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2} \cos ^{2} \theta=4^{2}+2^{2}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=16+4$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}|\overrightarrow{\mathbf{b}}|^{2}=20$
260 (d)
Given that, $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=5 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
\therefore Volume of parallelopiped where sides are
$\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}$, is
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\left|\begin{array}{ccc}2 & -3 & 5 \\ 3 & -4 & 5 \\ 5 & -3 & -2\end{array}\right|$
$=[2(8+15)+3(-6-25)+5(-9+20)]$
$=46-93+55=8$
261 (c)
Let $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
Given, $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=1$
$\therefore a_{1}=a_{1}+a_{2}=a_{1}+a_{2}+a_{3}=1$
$\Rightarrow a_{1}=1, a_{2}=0, a_{3}=0$
$\therefore \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}$
263 (b)
$\overrightarrow{\mathbf{D A}}+\overrightarrow{\mathbf{D B}}+\overrightarrow{\mathbf{D C}}+\overrightarrow{\mathbf{A E}}+\overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{C E}}$
$=(\overrightarrow{\mathbf{D A}}+\overrightarrow{\mathbf{A E}})+(\overrightarrow{\mathbf{D B}}+\overrightarrow{\mathbf{B E}})+(\overrightarrow{\mathbf{D C}}+\overrightarrow{\mathbf{C E}})$
$=\overrightarrow{\mathbf{D E}}+\overrightarrow{\mathbf{D E}}+\overrightarrow{\mathbf{D E}}$
$=3 \overrightarrow{\mathbf{D E}}$
265 (d)
Given vertices are
$A(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}), B(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})$ and $C(-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$

$$
+5 \hat{\mathbf{k}})
$$

Now, $\overrightarrow{\mathbf{A B}}=(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})-(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=-2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
$\therefore|\overrightarrow{\mathbf{A B}}|=\sqrt{4+9+25}=\sqrt{38}$
Similarly, $|\overrightarrow{\mathbf{B C}}|=|\overrightarrow{\mathbf{C A}}|=\sqrt{38}$
$\therefore|\overrightarrow{\mathbf{A B}}|=|\overrightarrow{\mathbf{B C}}|=|\overrightarrow{\mathbf{C A}}|=\sqrt{38}$
\therefore Hence, triangle is an equilateral triangle.
267 (b)
We have,
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
$\Rightarrow|\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2}$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}$
$\Rightarrow 4 \vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \perp \vec{b}$
268 (d)
$\because|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}$
$\Rightarrow a^{2}+b^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a^{2}+b^{2}-2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
$\Rightarrow 4 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
\therefore Angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{2}$.
269 (c)
Given vectors are coplanar, if $\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & \beta & 1 \\ 0 & c & \gamma\end{array}\right|=0$
Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{2}$
$\Rightarrow\left|\begin{array}{ccc}\alpha & 1-\alpha & 0 \\ 1 & \beta-1 & 1-\beta \\ 1 & 0 & \gamma-1\end{array}\right|=0$
$\Rightarrow(1-\alpha)(1-\beta)(1-\gamma)\left|\begin{array}{ccc}\frac{\alpha}{1-\alpha} & 1 & 0 \\ \frac{1}{1-\beta} & -1 & 1 \\ \frac{1}{1-\gamma} & 0 & -1\end{array}\right|=0$
$\Rightarrow(1-\alpha)(1-\beta)(1-\gamma)\left[\frac{\alpha}{1-\alpha}(1)\right.$
$\left.-1\left(-\frac{1}{1-\beta}-\frac{1}{1-\gamma}\right)\right]=0$
But $\alpha \neq 1, \beta \neq 1$ and $\gamma \neq 1$
$\therefore \frac{1}{(1-\alpha)}-1+\frac{1}{1-\beta}+\frac{1}{1-\gamma}=0$
$\Rightarrow \frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}=1$
270 (b)
Let the required vector be $\overrightarrow{\mathbf{c}}=x \hat{\mathbf{i}}+z \hat{\mathbf{k}}$
Since, $|\overrightarrow{\mathbf{c}}|=1 \Longrightarrow x^{2}+z^{2}=1$
$\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ are inclined at the angle 45°
$\therefore \cos 45^{\circ}=\frac{2 x-z}{\sqrt{4+4+1}} \Rightarrow 2 x-z=\frac{3}{\sqrt{2}}$
$\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are inclined at an angle 60°
$\therefore-\frac{z}{\sqrt{2}}=\cos 60^{\circ} \Rightarrow z=-\frac{1}{\sqrt{2}}$
From Eqs. (ii) and (iii), we get $x=\frac{1}{\sqrt{2}}$
Hence, the required ector is $\frac{1}{\sqrt{2}} \hat{\mathbf{i}}-\frac{1}{\sqrt{2}} \hat{\mathbf{k}}$

271 (d)
Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors. Therefore, $[\vec{a} \vec{b} \vec{c}] \neq 0$
$\Rightarrow\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right| \neq 0 \Rightarrow \Delta \neq 0$, where $\Delta=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
Now,
$\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|+\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|=0$
$\Rightarrow \Delta(1+a b c)=0 \Rightarrow a b c=-1 \quad[\because \Delta \neq 0]$
272 (c)
$\widehat{\mathbf{u}} \cdot \hat{\mathbf{v}}=0$
$\Longrightarrow|\widehat{\mathbf{u}}||\hat{\mathbf{v}}| \cos \theta=0$
$\Rightarrow 1 \times 1 \times \cos \theta=0 \quad(\because|\widehat{\mathbf{u}}|=|\hat{\mathbf{v}}|=1)$
$\Rightarrow \cos \theta=0$
$\Rightarrow \theta=90^{\circ}$
Let $\widehat{\mathbf{n}}$ be a unit vector perpendicular to the plane of vectors $\widehat{\mathbf{u}}$ and $\hat{\mathbf{v}}$.
$\Longrightarrow \widehat{\mathbf{u}} \times \widehat{\mathbf{v}}=|\widehat{\mathbf{u}}||\hat{\mathbf{v}}| \sin 90^{\circ} \cdot \widehat{\mathbf{n}}=\widehat{\mathbf{n}}$
Since, $\overrightarrow{\mathbf{r}}$ is coplanar with $\widehat{\mathbf{u}}$ and $\hat{\mathbf{v}}$
$\therefore \widehat{\mathbf{n}}$ is perpendicular to $\overrightarrow{\mathbf{r}}$
Let Φ be the angle between $\widehat{\mathbf{n}}$ and $\overrightarrow{\mathbf{r}}$
$\Rightarrow \Phi=90^{\circ}$
$\therefore \mid \overrightarrow{\mathbf{r}} \times(\widehat{\mathbf{u}} \times \hat{\mathbf{v}}))|=|\overrightarrow{\mathbf{r}} \times \widehat{\mathbf{n}}|=|\overrightarrow{\mathbf{r}}|| \widehat{\mathbf{n}} \mid \sin \Phi$
$=|\overrightarrow{\mathbf{r}}| \times 1 \times \sin 90^{\circ}$
$=|\overrightarrow{\mathbf{r}}|$
273
(b)

Let $\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}, \vec{b}=4 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$. Then,
Projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{4+8+7}{\sqrt{16+16+49}}=\frac{19}{9}$

274 (a)
$\frac{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}{\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})}+\frac{\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})}$
$=\frac{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}{[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]}+\frac{[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}]}{[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]}=1+0=1$
275 (b)
$\left[\frac{1}{2}\left|\overrightarrow{\mathbf{u}}_{2}-\overrightarrow{\mathbf{u}}_{1}\right|\right]^{-2}=\frac{1}{4}\left[\left|\overrightarrow{\mathbf{u}}_{2}\right|^{2}+\left|\overrightarrow{\mathbf{u}}_{1}\right|^{2}-2 \overrightarrow{\mathbf{u}}_{2} \cdot \overrightarrow{\mathbf{u}}_{1}\right]$
$=\frac{1}{4}\left[1+1-2\left|\overrightarrow{\mathbf{u}}_{2}\right|\left|\overrightarrow{\mathbf{u}}_{1}\right| \cos \theta\right]$
$=\frac{1}{4}[2-2 \cos \theta]=\sin ^{2} \frac{\theta}{2}$
$\Rightarrow \frac{1}{2}\left|\overrightarrow{\mathbf{u}}_{2}-\overrightarrow{\mathbf{u}}_{1}\right|=\sin \frac{\theta}{2}$
276
(b)

Let $\vec{c}=x \hat{\imath}+y \hat{\jmath}$. Then,
$\vec{b} \perp \vec{c}$
$\Rightarrow \vec{b} \cdot \vec{c}=0$
$\Rightarrow 4 x+3 y=0 \Rightarrow \frac{x}{3}=\frac{y}{-4}=\lambda \Rightarrow x=3 \lambda, y=-4 \lambda$
$\therefore \vec{c}=\lambda(3 \hat{\imath}-4 \hat{\jmath})$
Let the required vector be $\alpha=p \hat{\imath}+q \hat{\jmath}$. Then the projections of $\vec{\alpha}$ on \vec{b} and \vec{c} are $\frac{\vec{\alpha} \cdot \vec{b}}{|\vec{c}|}$ respectively
$\therefore \frac{\vec{\alpha} \cdot \vec{b}}{|\vec{b}|}=1$ and $\frac{\vec{\alpha} \cdot \vec{c}}{|\vec{c}|}=2$
$\Rightarrow 4 p+3 q=5$ and $3 p-4 q=10 \Rightarrow p=2, q=$
-1
Hence, the required vector $=2 \hat{\imath}-\hat{\jmath}$
277 (b)
Given equation of plane is
$2 x+4 y-5 z=10$
Here, $a=2, b=4, c=-5$
Let $O P$ be the perpendicular from O to the plane, then its equation is
$\frac{x-0}{2}=\frac{y-0}{4}=\frac{z-0}{-5}$
Here, direction ratio are $(2,4,-5)$.
Now, equation of line in vector form is
$\overrightarrow{\mathbf{r}}=0+k(2,4,-5)$
$=(2 k, 4 k,-5 k), k \in R$
$[\because$ equation of line is $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}]$
278 (a)
We have,
$\vec{a}=\lambda\{\vec{b} \times(\hat{\imath} \times \hat{\jmath})\}=\lambda\{\vec{b} \cdot \hat{\jmath}) \hat{\imath}-(\vec{b} \cdot \hat{\imath}) \hat{\jmath}\}$

$$
=\lambda(-3 \hat{\imath}-4 \hat{\jmath})
$$

Now, $|\vec{a}|=|\vec{b}| \Rightarrow 25 \lambda^{2}=16+9+25 \Rightarrow \lambda= \pm \sqrt{2}$
Hence, $\vec{a}= \pm \sqrt{2}(3 \hat{\imath}+4 \hat{\jmath})$
279
(d)

Given $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{0}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})=0$
$\Rightarrow 3^{2}+4^{2}+5^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=-25$
280 (a)
We know that the position vector of the centroid of the triangle is
$\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}$
Since, the triangle is an equilateral, therefore the orthocentre coincides
With the centroid and hence,
$\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
281 (a)
$\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}-4 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$

$$
=-2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}
$$

and $\overrightarrow{\mathbf{A C}}=2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}-4 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}=-2 \hat{\mathbf{i}}-$ $2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
$\therefore|\overrightarrow{\mathbf{A B}}|=6$ and $|\overrightarrow{\mathbf{A C}}|=3$
\therefore Position vector of required bisector
$=\frac{6(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+3(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})}{6+3}$
$=\frac{1}{3}(6 \hat{\mathbf{i}}+13 \hat{\mathbf{j}}+18 \hat{\mathbf{k}})$
282 (a)
Since \vec{a} and \vec{b} are collinear vectors. Therefore,
$\vec{b}=\lambda \vec{a}$
$\Rightarrow \vec{b}=\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\Rightarrow|\vec{b}|=|\lambda| \sqrt{4+9+36} \Rightarrow 21=7|\lambda| \Rightarrow \lambda= \pm 3$
$\therefore \vec{b}= \pm 3 \vec{a}= \pm(6 \hat{\imath}+9 \hat{\jmath}+18 \hat{k})$
283 (a)
We have,
$\vec{a}-\vec{b}+\vec{b}-\vec{c}+\vec{c}-\vec{a}=0$
$\Rightarrow \vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$ are coplanar
$\Rightarrow[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
284 (c)
Here, $(\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}})=0$
It means line is parallel to the plane
General point on the line is $(\lambda+2,-\lambda-2,4 \lambda+3)$
For $\lambda=0$, point on this line is $(2,-2,3)$ and
distance from
$\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ is
$d=\left|\frac{2+5(-2)+3-5}{\sqrt{(1)^{2}+(5)^{2}+(1)^{2}}}\right|=\frac{10}{3 \sqrt{3}}$
286
(b)
$\therefore \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}+3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$=4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})-(3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
$\therefore \cos \theta=\frac{(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})}{|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|}$
$=\frac{(4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) \cdot(-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}})}{|4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}||-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}|}$
$=\frac{-8+3+5}{\sqrt{16+1+1} \sqrt{4+9+25}}=0$
$\Rightarrow \theta=90^{\circ}$
288 (a)
Given, $\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}$
and $\overrightarrow{\mathbf{b}} \perp \overrightarrow{\mathbf{c}}$
then $|\overrightarrow{\mathbf{a}}|^{2}=|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$
$\Rightarrow a^{2}=b^{2}+c^{2}(\because \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0)$
289 (b)
$\therefore \overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{O B}}-\overrightarrow{\mathbf{O A}}$
$\therefore \overrightarrow{\mathbf{O B}}=\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{O A}}$
$=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}+3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
$=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
290 (a)
Given that,
$\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{c}}=7 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
Let $\quad \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=(\hat{\mathbf{1}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})+(\hat{\mathbf{i}}+3 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}})=$
$2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$
And $\quad \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=(\hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}+5 \hat{\mathbf{k}})+(7 \hat{\mathbf{\imath}}+9 \hat{\mathbf{j}}+$
$11 \mathbf{k}=8 \mathbf{i}+12 \mathbf{j}+16 \mathbf{k}$
If $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are diagonals, then area of parallelogram
$=\frac{1}{2}|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\frac{1}{2}\left\|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 4 & 6 \\ 8 & 12 & 16\end{array}\right\|$
$=\frac{1}{2}|\hat{\mathbf{i}}(64-72)-\hat{\mathbf{\jmath}}(32-48)+\hat{\mathbf{k}}(24-32)|$
$=\frac{1}{2}|-8 \hat{\mathbf{l}}+16 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}|$
$=|-4 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}|$
$=\sqrt{(-4)^{2}+(8)^{2}+(-4)^{2}}$
$=\sqrt{16+64+16}=\sqrt{96}=4 \sqrt{6}$
291 (a)
Given that, $\overrightarrow{\mathbf{a}}=(1,1,4)=\hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{b}}=(1,-1,4)=\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \widehat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+8 \hat{\mathbf{k}}$
$\Rightarrow \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{j}}$
Let θ be the angle between $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$, then
$\cos \theta=\frac{(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})}{|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|}$
$=\frac{(2 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}) \cdot(0 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+0 \hat{\mathbf{k}})}{\sqrt{2^{2}+0^{2}+8^{2}} \sqrt{0^{2}+2^{2}+0^{2}}}$
$=\frac{0+0+0}{\sqrt{4+64} \sqrt{4}}=0$
$\Rightarrow \cos \theta=\cos \theta^{\circ} \Rightarrow \theta=\frac{\pi}{2}=90^{\circ}$
292
(c)

Area of rhombus $=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$=\frac{1}{2}|(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \times(-\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})|$
$=\frac{1}{2}|-8 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-\hat{\mathbf{k}}|=\frac{1}{2} \sqrt{144}$
$=\sqrt{28.5}$
293 (a)
It is given that the vectors $\hat{\imath}-2 x \hat{\jmath}-3 y \hat{k}$ and $\hat{\imath}+3 x \hat{\jmath}+2 y \hat{k}$ are orthogonal
$\therefore(\hat{\imath}-2 x \hat{\jmath}-3 y \hat{k}) \cdot(\hat{\imath}+3 x \hat{\jmath}+2 y \hat{k})=0$
$\Rightarrow 1-6 x^{2}-6 y^{2}=0 \Rightarrow 6 x^{2}+6 y^{2}=1$
Clearly, it represents a circle
295 (a)
Given vectors are orthogonal.
$\therefore(3 x \hat{\mathbf{i}}+y \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \cdot(x \hat{\mathbf{i}}-4 y \hat{\mathbf{j}}+4 \hat{\mathbf{k}})=0$
$\Rightarrow 3 x^{2}-4 y^{2}-12=0$
$\Rightarrow \frac{x^{2}}{4}-\frac{y^{2}}{3}=1$
Hence, it represent a hyperbola.
296 (c)
We have, $|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=1$
Now,
$|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2\left\{|\vec{a}|^{2}+|\vec{b}|^{2}\right\}$
$\Rightarrow 1+|\vec{a}-\vec{b}|^{2}=4$
$\Rightarrow|\vec{a}-\vec{b}|=\sqrt{3}$
298 (a)
Let unit vector is $a \hat{\mathbf{1}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}}$.
$\because a \hat{\mathbf{\imath}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}}$ is perpendicular to $\hat{\mathbf{1}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$.
Then, $a+b+c=0$
and $a \hat{\mathbf{\imath}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}},(\hat{\mathbf{1}}+\hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})$ and $(\hat{\mathbf{i}}+2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$ are coplanar.
$\therefore\left|\begin{array}{lll}a & b & c \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right|=0$
$\Rightarrow-3 a+b+c=0$
From Eqs. (i) and (ii), we get
$a=0$ and $c=-b$
$\because a \hat{\mathbf{1}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}}$ is a unit vector, then
$a^{2}+b^{2}+c^{2}=1$
$\Rightarrow 0+b^{2}+b^{2}=1$
$\Rightarrow b=\frac{1}{\sqrt{2}}$
$\therefore a \hat{\mathbf{1}}+b \hat{\mathbf{\jmath}}+c \hat{\mathbf{k}}=\frac{1}{\sqrt{2}} \hat{\mathbf{\jmath}}-\frac{1}{\sqrt{2}} \hat{\mathbf{k}}=\frac{\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{2}}$
300 (b)
Given, $\overrightarrow{\mathbf{r}}=(1+t) \hat{\mathbf{i}}-(1-t) \hat{\mathbf{j}}+(1-t) \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$
Since, they intersect, therefore
$(1+t)-(1-t)+(1-t)=5$
$\Rightarrow t=4$
$\therefore \overrightarrow{\mathbf{r}}=(1+4) \hat{\mathbf{i}}-(1-4) \hat{\mathbf{j}}+(1-4) \hat{\mathbf{k}}$
$=5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
301 (d)
We have,
$|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$
Let θ be the angle between \vec{a} and \vec{b}
Now, $\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}+\vec{b}|$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$
$\Rightarrow|\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}=2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow 49=9+25+2 \times 3 \times 5 \cos \theta$
$\Rightarrow 15=30 \cos \theta \Rightarrow \cos \theta=1 / 2 \Rightarrow \theta=\pi / 3$
302 (c)
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\overrightarrow{\mathbf{a}} \cdot\left(|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin \frac{2 \pi}{3} \widehat{\mathbf{n}}\right)$
$=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}|\left(\sin \frac{2 \pi}{3}\right)$
$\left[\because \overrightarrow{\mathbf{a}} \cdot \widehat{\mathbf{n}}=|\overrightarrow{\mathbf{a}}| \widehat{\mathbf{n}}\left|\cos 0^{\circ}=|\overrightarrow{\mathbf{a}}|\right]\right.$
$=2 \times 3 \times 4 \times \frac{\sqrt{3}}{2}=12 \sqrt{3}$
303 (a)
Given that, $\overrightarrow{\mathbf{O A}}=2 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{O B}}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}$ and
$\overrightarrow{\mathbf{O C}}=\hat{\mathbf{1}}+4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{O B}}-\overrightarrow{\mathbf{O A}}$
$=(3-2) \hat{\mathbf{i}}+(-2-1) \hat{\mathbf{j}}+(1+1) \hat{\mathbf{k}}$
$=\hat{\mathbf{1}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$

$$
\begin{aligned}
& |\overrightarrow{\mathbf{A B}}|=\sqrt{1^{2}+(-3)^{2}+2^{2}} \\
& =\sqrt{1+9+4}=\sqrt{14} \\
& \overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{O C}}-\overrightarrow{\mathbf{O B}} \\
& =(1-3) \hat{\mathbf{i}}+(4+2) \hat{\mathbf{j}}+(-3-1) \hat{\mathbf{k}} \\
& =-2 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}
\end{aligned}
$$

$$
|\overrightarrow{\mathbf{B C}}|=\sqrt{(-2)^{2}+6^{2}+(-4)^{2}}
$$

$$
=\sqrt{4+36+16}=\sqrt{56}
$$

$$
\overrightarrow{\mathbf{C A}}=\overrightarrow{\mathbf{O A}}-\overrightarrow{\mathbf{O C}}
$$

$$
=(2-1) \hat{\mathbf{\imath}}+(1-4) \hat{\mathbf{\jmath}}+(-1+3) \hat{\mathbf{k}}
$$

$$
=\hat{\mathbf{\imath}}-3 \hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}}
$$

$|\overrightarrow{\mathbf{C A}}|=\sqrt{1^{2}+(-3)^{2}+(2)^{2}}$
$=\sqrt{1+9+4}=\sqrt{14}$
It is clear that two sides of a triangle are equal.
\therefore Points A, B, C from an isosceles triangle.
304 (b)
The component of \vec{a} along \vec{b} is given by
$\left\{\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right\}=\frac{18}{25}(3 \hat{\jmath}+4 \hat{k})$
305 (a)
It is given that \vec{c} and \vec{d} are collinear vectors
$\therefore \vec{c}=\lambda \vec{d}$ for some scalar λ
$\Rightarrow(x-2) \vec{a}+\vec{b}=\lambda\{(2 x+1) \vec{a}-\vec{b}\}$
$\Rightarrow\{x-2-\lambda(2 x+1)\} \vec{a}+(\lambda+1) \vec{b}=\overrightarrow{0}$
$\Rightarrow \lambda+1=0$ and $x-2-\lambda(2 x+1)=0[\because \vec{a}, \vec{b}$
are non-collinear]
$\Rightarrow \lambda=-1$ and $x=\frac{1}{3}$
306 (a)
Equation of plane is $\overrightarrow{\mathbf{r}} \cdot \widehat{\mathbf{n}}=d$,
where d is the perpendicular distance of the plane from origin
\therefore Required plane is $(\alpha x+\beta y+\gamma z)=p$
307 (c)
In $\triangle A B C, \overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}+\overrightarrow{\mathbf{A C}}$
$\Rightarrow \overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
$A D$ is parallel to $B C$ and $A D=2 B C$

$\therefore \overrightarrow{\mathbf{A D}}=2 \overrightarrow{\mathbf{b}}$
In $\triangle A C D, \overrightarrow{\mathbf{A C}}+\overrightarrow{\mathbf{C D}}=\overrightarrow{\mathbf{A D}}$
$\Rightarrow \overrightarrow{\mathbf{C D}}=2 \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$
Now, $\overrightarrow{\mathbf{C E}}=\overrightarrow{\mathbf{C D}}+\overrightarrow{\mathbf{D E}}=\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{a}}$
309 (d)
Let $\overrightarrow{\mathbf{R}}_{1}=2 \hat{\mathbf{\imath}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{R}}_{2}=\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$

$\therefore \overrightarrow{\mathbf{R}}$ (along $\overrightarrow{\mathbf{A C}})=\overrightarrow{\mathbf{R}}_{1}+\overrightarrow{\mathbf{R}}_{2}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}}$ (unit vector angle $\overrightarrow{\mathrm{AC}})=\frac{\overrightarrow{\mathbf{R}}}{|\overrightarrow{\mathbf{R}}|}=\frac{3 \hat{\mathbf{1}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{9+36+4}}$
$=\frac{1}{7}(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
311 (b)
Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors. Therefore,
$\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors
$\therefore x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0} \Rightarrow x=y=z=0$
312 (a)
Suppose point $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ divides the join of points $-2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ and $7 \hat{\imath}-\hat{k}$ in the ratio $\lambda: 1$.
Then,
$\hat{\imath}+2 \hat{\jmath}+3 \hat{k}=\frac{\lambda(7 \hat{\imath}-\hat{k})+(-2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k})}{\lambda+1}$
$\Rightarrow(\lambda+1) \hat{\imath}+2(\lambda+1) \hat{\jmath}+3(\lambda+1) \hat{k}$

$$
=(7 \lambda-2) \hat{\imath}+3 \hat{\jmath}+(-\lambda+5) \hat{k}
$$

$\Rightarrow \lambda+1=7 \lambda-2,2(\lambda+1)=3$ and $3(\lambda+1)=$
$-\lambda+5$
$\Rightarrow \lambda=\frac{1}{2}$
Hence, required ratio is $1: 2$
313 (d)
Clearly,
$\vec{a}-\vec{b}+\vec{b}-\vec{c}+\vec{c}-\vec{a}=\overrightarrow{0}$
$\therefore \vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are coplanar
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b} \cdot \vec{c}) \times(\vec{c}-\vec{a})\}=0$
314 (d)
Two given lines intersect, if
$7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}+s(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
$=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}+t(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
$\Rightarrow(7+2 s) \hat{\mathbf{i}}+(10+3 s) \hat{\mathbf{j}}+(13+4 s) \hat{\mathbf{k}}$
$=(3+t) \hat{\mathbf{i}}+(5+2 t) \hat{\mathbf{j}}+(7+3 t) \hat{\mathbf{k}}$
$\Rightarrow 7+2 s=3+t$
$\Rightarrow 2 s-t=-4$
$10+3 s=5+2 t$
$\Rightarrow 3 s-2 t=-5$
and $13+4 \mathrm{~s}=7+3 \mathrm{t}$
$\Rightarrow 4 s-3 t=-6 \ldots$ (iii)
On solving Eqs. (i) and (iii), we get
$s=-3, t=-2$
\therefore Required line is
$7 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}+(-3)[2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}]$
$\Rightarrow \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is the required line.
316 (c)
Given that, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{\imath}}-\hat{\mathbf{k}}$
Let $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$, then
$\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}} \Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
Now, $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}=(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}})-(2 \hat{\mathbf{i}}-\hat{\mathbf{k}})$
$=(x-2) \hat{\mathbf{i}}+y \hat{\mathbf{j}}+(z+1) \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{a}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x-2 & y & z+1 \\ 1 & 1 & 0\end{array}\right|=\overrightarrow{\mathbf{0}}$
$\Rightarrow-(z+1) \hat{\mathbf{i}}+(z+1) \hat{\mathbf{j}}+(x-2-y) \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$
On equating the coefficient of $\hat{1}, \hat{\jmath}$ and $\hat{\mathrm{k}}$, we get
$z=-1, x-y=2$
Now, $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \Rightarrow(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
And $\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}=(x-1) \hat{\mathbf{\imath}}+(y-1) \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}$
$\therefore(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x-1 & y-1 & z \\ 2 & 0 & -1\end{array}\right|=\overrightarrow{\mathbf{0}}$
$\Rightarrow(-y+1) \hat{\mathbf{i}}-\hat{\mathbf{j}}(-x+1-2 z)+(-2 y+2) \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow y=1, x+2 z=1$
From Eqs. (i) and (ii), we get
$x=3, y=1 z=-1$
$\therefore \overrightarrow{\mathbf{r}}=3 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
317 (a)
Given, $\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{B}} \times(\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}) \ldots(i)$
Also, $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \mathbf{C}] \neq$ ie. $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ are not coplanar.
\therefore From Eq. (i)
$(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}})-(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \overrightarrow{\mathbf{C}}=(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}) \overrightarrow{\mathbf{C}}-(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{A}}$
$\Rightarrow(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{A}}+(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{B}}-[(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}})+(\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}})] \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{0}}$
$[\because[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}] \neq 0]$
Now, consider
$\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}}) \overrightarrow{\mathbf{B}}-(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \overrightarrow{\mathbf{C}}$
$=0 \cdot \overrightarrow{\mathbf{B}}-0 \cdot \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{0}}$
319 (a)
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\left|\begin{array}{ccc}1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y\end{array}\right|$
Applying $C_{3} \rightarrow C_{3}+C_{1}$
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x\end{array}\right|=1[1+x-x]=1$
Hence, $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ does not depend upon neither x nor y.
320 (b)
The required vector is given by
$\hat{n}=\frac{A \vec{B} \times A \vec{C}}{|A \vec{B} \times A \vec{C}|}=\frac{\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
321 (d)
$(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}})$
$=(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot[\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]$
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}}$

$$
\cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})
$$

$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$

322 (b)
$\because \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are coplanar vectors, so $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-$
$\overrightarrow{\mathbf{c}}$ and $2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}$ are also coplanar. Thus
$[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]=0$
323 (b)
Clearly, angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}=\frac{\pi}{2}$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\therefore|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=a^{2}+b^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
$=1+1+0=2$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{2}$
325 (d)
Given, $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=-\frac{1}{4}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}}$
$\Rightarrow(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}=-\frac{1}{4}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}}$
On comparing both sides, we get
$(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}=0$
$|\overrightarrow{\mathbf{c}}| \overrightarrow{\mathbf{a}} \mid \cos \theta=0$
$\Rightarrow \theta=\frac{\pi}{2}$
326 (c)
Now, $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{j}})=\left|\begin{array}{lll}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|$
$=\hat{\mathbf{\imath}}(-1)+\hat{\mathbf{j}}(1)+\hat{\mathbf{k}}(0)=-\hat{\mathbf{i}}+\hat{\mathbf{j}}$
and $|(\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{\imath}}+\hat{\mathbf{j}})|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Vector perpendicular to both of the vectors
$\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
$=\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{|(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(\hat{\mathbf{i}}+\hat{\mathbf{j}})|}$
$=\frac{-\hat{\mathbf{l}}+\hat{\mathbf{j}}}{\sqrt{2}}=\frac{-1}{\sqrt{2}}(\hat{\mathbf{i}}-\hat{\mathbf{j}})$
$=c(\hat{\mathbf{1}}-\hat{\mathbf{j}}), c$ is a scalar.
327 (b
It is given that $(\vec{a}+\vec{b}) \| \vec{c}$ and $(\vec{c}+\vec{a}) \| \vec{b}$
$\therefore(\vec{a}+\vec{b}) \times \vec{c}=0$ and $(\vec{c}+\vec{a}) \times \vec{b}=0$
$\Rightarrow \vec{a} \times \vec{c}+\vec{b} \times \vec{c}=0$ and $\vec{c} \times \vec{b}+\vec{a} \times \vec{b}=0$
$\Rightarrow \vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
Hence, $\vec{a}, \vec{b}, \vec{c}$ form the sides of a triangle
328 (a)
\because Displacement, $\overrightarrow{\mathbf{A B}}=(3-2) \hat{\mathbf{i}}+(1+1) \hat{\mathbf{j}}+$
$(2-1) \hat{\mathbf{k}}$
$=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
and force, $\overrightarrow{\mathbf{F}}=\frac{\sqrt{6}(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{6}}$
$=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$
\therefore Work done $=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{A B}}=(1+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$.

$$
(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})=6
$$

329 (c)
let $\overrightarrow{\mathbf{a}}=l \hat{\mathbf{i}}+m \hat{\mathbf{j}}+n \hat{\mathbf{k}}$ makes an angle $\frac{\pi}{4}$ with z-axis Also, $l^{2}+m^{2}+n^{2}=1$
Here, $n=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad l^{2}+m^{2}=\frac{1}{2}$
$\therefore \quad \overrightarrow{\mathbf{a}}=l \hat{\mathbf{i}}+m \hat{\mathbf{j}}+\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
$\Rightarrow \overrightarrow{\mathbf{a}}+\hat{\mathbf{i}}+\hat{\mathbf{j}}=(l+1) \hat{\mathbf{i}}(m+1) \hat{\mathbf{j}}+\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\hat{\mathbf{i}}+\hat{\mathbf{j}}|=\sqrt{(l+1)^{2}+(m+1)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}$
$\Rightarrow 1=l^{2}+m^{2}+2+2 l+2 m+\frac{1}{2}$
$\Rightarrow l+m=-1$ (From Eq. (i)
$\Rightarrow l^{2}+m^{2}+2 l m=1$
$\Rightarrow 2 l m=\frac{1}{2}$
$\Rightarrow l=m=-\frac{1}{2}$
$\left(\because l=m=\frac{1}{2}\right.$, is not satisfied the given equition $)$
$\therefore \overrightarrow{\mathbf{a}}=-\frac{\hat{\mathbf{i}}}{2}-\frac{\hat{\mathbf{j}}}{2}+\frac{\hat{\mathbf{k}}}{\sqrt{2}}$
330 (b)
Given, $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|^{2}=144$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=144$
$\Rightarrow 16|\overrightarrow{\mathbf{b}}|^{2}=144$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=3$
331 (c)
Since, $m \overrightarrow{\mathbf{a}}$ is a unit vector, if and only, if
$|m \overrightarrow{\mathbf{a}}|=1 \Rightarrow|m||\overrightarrow{\mathbf{a}}|=1 \Rightarrow m|\overrightarrow{\mathbf{a}}|=1$
$\Rightarrow m=\frac{1}{|\overrightarrow{\mathbf{a}}|}$
332 (b)
Resultant force \vec{F} is given by
$\vec{F}=(2 \hat{\imath}-5 \hat{\jmath}+6 \hat{k})-(-\hat{\imath}+2 \hat{\jmath}-\hat{k})=\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$
Let \vec{d} be the displacement vector. Then,
$\vec{d}=A \vec{B}$
$\Rightarrow \vec{d}=(6 \hat{\imath}+\hat{\jmath}-3 \hat{k})-(4 \hat{\imath}-3 \hat{\jmath}-2 \hat{k})$

$$
=2 \hat{\imath}+4 \hat{\jmath}-\hat{k}
$$

$\therefore W=$ Work done
$\Rightarrow W=\vec{F} \cdot \vec{d}$
$\Rightarrow W=(\hat{\imath}-3 \hat{\jmath}+5 \hat{k}) \cdot(2 \hat{\imath}+4 \hat{\jmath}-\hat{k})$
$\Rightarrow W=2-12-5=-15$ units
333 (d)
Since, P, Q, R are collinear. Therefore,
$\vec{P} Q=m Q \vec{R}$ for same scalar m
$\Rightarrow-2 \hat{\jmath}=m[(a-1) \hat{\imath}+(\vec{b}+1) \hat{\jmath}+c \hat{k}]$ for some non-zero scalar m
$\Rightarrow(a-1) m=0,(b+1) m=-2, c m=0$
$\Rightarrow a=1, c=0, b \in R$

The direction cosines of a vector making equal angles with the coordinate axes are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
Therefore, the unit vector along the vector making equal angles with the coordinate axes is
$\vec{b}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}$
\therefore Projection of \vec{a} on $\vec{b}=\vec{a} \cdot \vec{b}$

$$
\begin{gathered}
=(4 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}) \cdot\left(\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}\right) \\
=\frac{4-3+2}{\sqrt{3}}=\sqrt{3}
\end{gathered}
$$

335 (a)
$[2 \hat{\mathbf{i}} 3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}]$
$=-30[\hat{\mathbf{i}} \mathbf{~} \hat{\mathbf{k}}]$
$=-30 \quad(\because[\hat{\mathbf{l}} \hat{\mathbf{j}} \hat{\mathbf{k}}]=1)$
336 (b)
We have,
$(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c}) \cdot \vec{d}$
$=\{((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{a}-((\vec{a} \times \vec{b}) \cdot \vec{a}) \vec{c}\} \cdot \vec{d}$
$=\{[\vec{a} \vec{b} \vec{c}] \vec{a}-0\} \cdot \vec{d}=[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$
337
(d)

Resultant force $\overrightarrow{\mathbf{F}}=(2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})+$
$(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
$=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
and displacement, $\overrightarrow{\mathbf{d}}=(6 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})-$
$(4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
$=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
\therefore work done $W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$
$=(\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
$=-15$
$=15$ units [neglecting - ve sign]
338 (a)
The resultant force is given by
$\vec{F}=6 \frac{(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})}{\sqrt{1+4+4}}+7 \frac{(2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})}{\sqrt{4+9+36}}$

$$
=4 \hat{\imath}-7 \hat{\jmath}-2 \hat{k}
$$

$\vec{d}=$ Displacement $=\vec{P} Q$
$\vec{d}=(5 \hat{\imath}-\hat{\jmath}+\hat{k})-(2 \hat{\imath}-\hat{\jmath}-3 \hat{k})=3 \hat{\imath}+4 \hat{k}$
\therefore Work done $=\vec{F} \cdot \vec{d}=12+0-8=4$ units
339 (c)
We know, $[\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]$
$=(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cdot[(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]$
$=(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cdot[((\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-((\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}]$
$=(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cdot([\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}] \overrightarrow{\mathbf{a}}-[\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{a}}] \overrightarrow{\mathbf{b}})$
$=(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cdot \overrightarrow{\mathbf{a}}[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-0$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}][\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}$
340
(d)
$\because \overrightarrow{\mathbf{Q P}}$ is parallel to $\overrightarrow{\mathbf{A B}}$ and $\overrightarrow{\mathbf{D C}}$.
$\therefore \overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{D C}}=\overrightarrow{\mathbf{Q P}}+\overrightarrow{\mathbf{Q P}}=2 \overrightarrow{\mathbf{Q P}}$
341 (a)
Taking A as the origin, let the position vectors of B and C be \vec{b} and \vec{c} respectively
$\therefore \vec{B} E+\vec{A} F=\left(\frac{\vec{c}}{2}-\vec{b}\right)+\left(\frac{\vec{b}+\vec{c}}{2}-\overrightarrow{0}\right)=\vec{c}-\frac{\vec{b}}{2}$

$$
=\vec{D} C
$$

342 (a)
Since, $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors.
$\Rightarrow|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=1$
and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
$=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$=1+1+1+0=3$ [from Eq. (i)]
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=\sqrt{3}$
343 (c)
Any vector lying in the plane of \vec{a} and \vec{b} is of the from $x \vec{a}+y \vec{b}$
It is given that \vec{c} is parallel to the plane of \vec{a} and \vec{b}
$\therefore \vec{c}=\lambda(x \vec{a}+y \vec{b})$ for some scalar λ
$\Rightarrow d \hat{\imath}+\hat{\jmath}+(2 d-1) \hat{k}$

$$
\begin{aligned}
& =\lambda\{x(\hat{\imath}-2 \hat{\jmath}+3 \hat{k}) \\
& +y(3 \hat{\imath}+3 \hat{\jmath}-\hat{k})\}
\end{aligned}
$$

$\Rightarrow d \hat{\imath}+\hat{\jmath}+(2 d-1) \hat{k}$

$$
\begin{aligned}
& =\lambda\{(x+3 y) \hat{\imath}+(-2 x+3 y) \hat{\jmath} \\
& +(3 x-y) \hat{k}\}
\end{aligned}
$$

$\Rightarrow \lambda(x+3 y)=d, \lambda(-2 x+3 y)=1$ and
$\lambda(3 x-y)=(2 d-1)$
$[\because \hat{\imath}, \hat{\jmath}, \hat{k}$ are non - coplanar]
Solving $\lambda(x+3 y)=d$ and $3 x-y=2 d-1$, we get
$x=\frac{7 d-3}{10 \lambda}$ and $y=\frac{d+1}{10 \lambda}$
Substituting these values in $\lambda(x+3 y)=d$, we get $11 d=-1$
ALTER clearly, \vec{c} is perpendicular to $\vec{a} \times \vec{b}$
$\therefore \vec{c} \cdot(\vec{a} \times \vec{b})=0$
$\begin{aligned} \Rightarrow[\vec{c} \vec{a} \vec{b}]=0 \Rightarrow & \left|\begin{array}{ccc}d & 1 & 2 d-1 \\ 1 & -2 & 3 \\ 3 & 3 & -1\end{array}\right|=0 \Rightarrow 11 d \\ & =-1\end{aligned}$

(c)

$\because \overrightarrow{\mathbf{p}}, \overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{r}}$ are reciprocal vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ respectively.
$\therefore \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{a}}=1, \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{b}}=0, \overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathbf{c}}$ etc.
$\therefore(l \overrightarrow{\mathbf{a}}+m \overrightarrow{\mathbf{b}}+n \overrightarrow{\mathbf{c}}) \cdot(l \overrightarrow{\mathbf{p}}+m \overrightarrow{\mathbf{q}}+n \overrightarrow{\mathbf{r}})$

$$
=l^{2}+m^{2}+n^{2}
$$

345 (b)
Given expression $=2(1+1+1)-2 \sum(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$
$=6-2 \sum(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$
$\operatorname{But}(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})^{2} \geq 0$
$\therefore(1+1+1)+2 \sum \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \geq 0$
$\therefore 3 \geq-2 \sum \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
From relations (i) and (ii), we get
Given expression $\leq 6+3=9$
346 (a)
Let $\overrightarrow{\mathbf{O A}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{O B}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
\therefore work don, $W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{A B}}$
$=(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=4-6+4=2$
347 (d)
$\overrightarrow{\mathbf{A C}}=(a \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})-(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})=(a-2) \hat{\mathbf{i}}-2 \hat{\mathbf{j}}$
and $\overrightarrow{\mathbf{B C}}=(a \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})-(\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}})=$
$(a-1) \hat{\mathbf{i}}+6 \hat{\mathbf{k}}$
Since, the $\triangle A B C$ is right angled at C, then
$\overrightarrow{\mathbf{A C}} \cdot \overrightarrow{\mathbf{B C}}=0$
$\Rightarrow\{(a-2) \hat{\mathbf{i}}-2 \hat{\mathbf{j}}\} \cdot\{(a-1) \hat{\mathbf{i}}+6 \hat{\mathbf{k}}\}=0$
$\Rightarrow(a-2)(a-1)=0 \Rightarrow a=1$ and 2
348 (a)
We have,
$(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$
$\Leftrightarrow-\vec{c} \times(\vec{a} \times \vec{b})=\vec{a} \times(\vec{b} \times \vec{c})$
$\Leftrightarrow-\{(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b}\}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\Leftrightarrow(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{c} \cdot \vec{b}) \vec{a}=0$
$\Leftrightarrow(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}=0$
$\Leftrightarrow \vec{b} \times(\vec{c} \times \vec{a})=0$
349 (b)
Clearly,
$(\vec{a}+\vec{b}) \times\{\vec{c}-(\vec{a}+\vec{b})\}$
$=(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b}) \times(\vec{a}+\vec{b})=(\vec{a}+\vec{b}) \times \vec{c}$
350 (a)
$\overrightarrow{\mathbf{P Q}}=(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})-(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=\hat{\mathbf{i}}+\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
\therefore Moment $=|\overrightarrow{\mathbf{P Q}} \times \overrightarrow{\mathbf{F}}|$
$=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 1 \\ 3 & 2 & -4\end{array}\right|$
$=-2 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
\therefore Magnitude of moment $=\sqrt{4+49+4}=\sqrt{57}$
351 (b)
Since, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{3}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=3$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\frac{1}{2}$.
$\because[|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1$, given $]$
$\therefore(3 \overrightarrow{\mathbf{a}}-4 \overrightarrow{\mathbf{b}}) \cdot(2 \overrightarrow{\mathbf{a}}+5 \overrightarrow{\mathbf{b}})=6+7 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-20$
$=6+\frac{7}{2}-20$
$=-\frac{21}{2} \quad$ [from Eq. (i)]
352 (c)
We have,
$\hat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$
$\Rightarrow(\hat{a} \cdot \hat{c}) \hat{b}-(\hat{a} \cdot \hat{b}) \hat{c}=\frac{1}{2} \hat{b}$
$\Rightarrow\left\{(\hat{a} \cdot \hat{c})-\frac{1}{2}\right\} \hat{b}-(\hat{a} \cdot \hat{b}) \hat{c}=0$
$\Rightarrow \hat{a} \cdot \hat{c}-\frac{1}{2}=0$ and $\hat{a} \cdot \hat{b}$

$$
=0\left[\begin{array}{c}
\because \hat{b}, \hat{c} \\
\text { are non }- \text { collinear vectors }
\end{array}\right]
$$

$\Rightarrow \cos \theta=\frac{1}{2}$, where θ is the angle between \hat{a} and \hat{c}
$\Rightarrow \theta=\pi / 3$
(b)

The given line is parallel to the vector $\overrightarrow{\mathbf{n}}$

$$
\begin{aligned}
& =\hat{\mathbf{i}}-\hat{\mathbf{j}} \\
& +2 \hat{\mathbf{k}} . \text { The required plane passing }
\end{aligned}
$$

through the point $(2,3,1) i e, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$
$+\hat{\mathbf{k}}$ and is perpendicular to the vector
$\overrightarrow{\mathbf{n}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
\therefore Its equation is
$[(\overrightarrow{\mathbf{r}}-(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}})] \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=0$
$\Rightarrow \overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=1$
355 (c)
$(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]=0$
356 (a)
We have,
$\left|\hat{n}_{1}+\hat{n}_{2}\right|^{2}=\left|\hat{n}_{1}\right|+\left|\hat{n}_{2}\right|+2 \hat{n}_{1} \cdot \hat{n}_{2}$
$\Rightarrow\left|\hat{n}_{1}+\hat{n}_{2}\right|^{2}=\left|\hat{n}_{1}\right|^{2}+\left|\hat{n}_{2}\right|^{2}+2\left|\hat{n}_{1}\right|+\left|\hat{n}_{2}\right| \cos \theta$
$\Rightarrow\left|\hat{n}_{1}+\hat{n}_{2}\right|^{2}=1+1+2 \cos \theta=4 \cos ^{2} \frac{\theta}{2}$
$\therefore \cos \frac{\theta}{2}=\frac{1}{2}\left|\hat{n}_{1}+\hat{n}_{2}\right|$
357 (d)
Let $\overrightarrow{\mathbf{R}}_{1}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$

and $\overrightarrow{\mathbf{R}}_{2}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{R}}$ (along $\overrightarrow{\mathbf{A C}}$) $=\overrightarrow{\mathbf{R}}_{1}+\overrightarrow{\mathbf{R}}_{2}$
$=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{a}}$ (unit vector along $A C$) $=\frac{\overrightarrow{\mathbf{R}}}{|\overrightarrow{\mathbf{R}}|}$
$=\frac{3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{9+36+4}}$
$=\frac{1}{7}(3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
358 (a)
Let $P(60 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}), Q(40 \hat{\mathbf{i}}-8 \hat{\mathbf{j}})$ and $R(a \hat{\mathbf{i}}-52 \hat{\mathbf{j}})$ be the collinear points. Then $\overrightarrow{\mathbf{P Q}}=\lambda \overrightarrow{\mathbf{Q R}}$
for some scalar λ
$\Rightarrow(-20 \hat{\mathbf{i}}-11 \hat{\mathbf{j}})=\lambda[(a-40) \hat{\mathbf{i}}-44 \hat{\mathbf{j}}]$
$\Rightarrow \lambda(a-40)=-20,-44 \lambda=-11$
$\Rightarrow \lambda(a-40)=-20, \lambda=\frac{1}{4}$
$\therefore a-40=-20 \times 4 \Rightarrow a=-40$
359 (a)
We have,
$\vec{a}+\vec{b}+\vec{c}=\alpha \vec{d}$ and $\vec{b}+\vec{c}+\vec{d}=\beta \vec{a}$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}+\vec{d}=(\alpha+1) \vec{d}$ and $\vec{a}+\vec{b}+\vec{c}+$
$\vec{d}=(\beta+1) \vec{a}$
$\Rightarrow(\alpha+1) \vec{d}=(\beta+1) \vec{a}$
If $\alpha \neq-1$, then
$(\alpha+1) \vec{d}=(\beta+1) \vec{a} \Rightarrow \vec{d}=\frac{\beta+1}{\alpha+1} \vec{a}$
$\therefore \vec{a}+\vec{b}+\vec{c}=\alpha \vec{d}$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}=\alpha\left(\frac{\beta+1}{\alpha+1}\right) \vec{a}$
$\Rightarrow\left\{1-\frac{\alpha(\beta+1)}{\alpha+1}\right\} \vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar
It is a contradiction to the given condition
$\therefore \alpha=-1 \Rightarrow \vec{a}+\vec{b}+\vec{c}=0$

Let the unit vector $\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}}$ is perpendicular to $\hat{\mathbf{i}}$
$-\hat{\mathbf{j}}$, then we get
$\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}})}{\sqrt{2}}=\frac{1-1}{\sqrt{2}}=0$
$\therefore \frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}}{\sqrt{2}}$ is the unit vector
361 (c)
We have,
$\left.\begin{array}{l}\vec{r} \cdot \vec{a}=0 \Rightarrow \vec{r} \perp \vec{a} \\ \vec{r} \cdot \vec{b}=0 \Rightarrow \vec{r} \perp \vec{b}\end{array}\right\} \Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar
$\vec{r} \cdot \vec{c}=0 \Rightarrow \vec{r} \perp \vec{c}$
Hence, $[\vec{a} \vec{b} \vec{c}]=0$
362 (b)
$\cos \frac{\pi}{3}=\frac{(\hat{\mathbf{\imath}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+a \hat{\mathbf{k}})}{\sqrt{2} \sqrt{1+1+a^{2}}}$
$\Rightarrow \frac{1}{2}=\frac{1+a}{\sqrt{2} \sqrt{2+a^{2}}}$
$\Rightarrow \frac{1}{4}=\frac{(1+a)^{2}}{2\left(2+a^{2}\right)}$
$\Rightarrow 2+a^{2}=2\left(1+a^{2}+2 a\right)$
$\Rightarrow a^{2}+4 a=0$
$\Rightarrow a=0,-4$
363 (b)
Let the required vector be $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
It makes equal angles with the unit vectors
$\vec{b}=\frac{1}{3}(\hat{\imath}-2 \hat{\jmath}+2 \hat{k}), \vec{c}=\frac{1}{5}(-4 \hat{\imath}-3 \hat{k})$ and $\vec{d}=\hat{\jmath}$
$\therefore \vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=\vec{a} \cdot \vec{d}[\because \vec{b}, \vec{c}, \vec{d}$ are unit vectors $]$
$\Rightarrow \frac{1}{3}(x-2 y+2 z)=\frac{1}{5}(-4 x-3 z)=y$
$\Rightarrow x-2 y+2 z=3 y$ and $-4 x-5 y-3 z=0$
$\Rightarrow x-5 y+2 z=0$ and $4 x+5 y+3 z=0$
$\Rightarrow \frac{x}{-5}=\frac{y}{1}=\frac{z}{5}=\lambda$ (say)
$\Rightarrow x=-5 \lambda, y=\lambda, z=5 \lambda$ for some scalar λ
$\Rightarrow \vec{a}=\lambda(-5 \hat{\imath}+\hat{\jmath}+5 \hat{k})$
Clearly, option (b) is true for $\lambda=1$

364 (d)
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 2 & 1 \\ 1 & -2 & 2\end{array}\right|$
$=\hat{\mathbf{i}}(4+2)-\hat{\mathbf{j}}(4-1)+\hat{\mathbf{k}}(-4-2)$
$=6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{36+9+36}=\sqrt{81}=9$
\therefore Required vectors are
$\pm 6\left|\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}\right|$
$= \pm \frac{6}{9}(6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$
$= \pm 2(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
366 (d)
(a) Let $\overrightarrow{\mathbf{p}}=x \hat{\mathbf{1}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ where at least one of
x, y, z is non-zero. Let
$\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{l}}+a_{3} \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{b}}=b_{1} \hat{\mathbf{\imath}}+b_{2} \hat{\mathbf{l}}+b_{3} \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{c}}=c_{1} \hat{\mathbf{l}}+c_{2} \hat{\mathbf{l}}+c_{3} \hat{\mathbf{k}}$
\therefore By given conditions
$a_{1} x+a_{2} y+a_{3} z=0$
$b_{1} x+b_{2} y+b_{3} z=0$
$c_{1} x+c_{2} y+c_{3} z=0$
$\Rightarrow\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{3} & c_{3}\end{array}\right|=0$
$\Rightarrow[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar.
(b) Vectors are coplanar, if
$\left|\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right|=0$
ie, $-7=0$
Which is not possible.
(c) $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is coplanar with $\overrightarrow{\mathrm{b}}$ and \vec{c}.
(d) $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1$
$\therefore|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})$
$=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
$=1+1=2 \cdot 1 \cdot 1 \cos \frac{\pi}{3}=3$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=\sqrt{3}>1$
367
(d)

Here, $\overrightarrow{\mathbf{a}}_{1}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}, \quad \overrightarrow{\mathbf{a}}_{2}=-2 \hat{\mathbf{i}}+7 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{b}}_{1}=-4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}_{2}=-4 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}=\hat{\mathbf{i}}-6 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
and
$\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -4 & 3 & 2 \\ -4 & 1 & 1\end{array}\right|=\hat{\mathbf{i}}-4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
$\Rightarrow\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|=\sqrt{1+16+64}=9$
Now,

$$
\begin{aligned}
\left(\overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right) \cdot\left(\overrightarrow{\mathbf{b}}_{1}\right. & \left.\times \overrightarrow{\mathbf{b}}_{2}\right) \\
& =(\hat{\mathbf{i}}-6 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}-4 \hat{\mathbf{j}}+8 \hat{\mathbf{k}})
\end{aligned}
$$

$=1+24+56=81$
\therefore Shortest distance,
$d=\left|\frac{\left(\overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right) \cdot\left(\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right)}{\left|\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}\right|}\right|$
$=\frac{81}{9}=9$ unit
368
(b)

We know that a vector perpendicular to the plane containing the points $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{C}}$ is given by
$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}$.
Given, $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=2 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{C}}=0 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
Now,
$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 2 \\ 2 & 0 & -1\end{array}\right|=\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 0 & -1 \\ 0 & 2 & 1\end{array}\right|=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 2 & 1 \\ 1 & -1 & 2\end{array}\right|=5 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
Thus,
$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}$
$=(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})+(2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})+(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
$=8 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
369 (c)
Given,
$(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=\frac{1}{4}$
$\Rightarrow(|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta)^{2}=\frac{1}{4}$
$\Rightarrow \sin ^{2} \theta=\frac{1}{4}$
$\Rightarrow \theta=\frac{\pi}{6}$
370 (b)
Given that, $|\overrightarrow{\mathbf{a}}|=3,|\overrightarrow{\mathbf{b}}|=4$ and $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}$ is
perpendicular to $\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}$.
$\therefore(\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}})=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \lambda+\lambda \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}-\lambda^{2} \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}=0$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}-\lambda^{2}|\overrightarrow{\mathbf{b}}|^{2}=0$
$\Rightarrow \lambda^{2}=\frac{|\overrightarrow{\mathbf{a}}|^{2}}{|\overrightarrow{\mathbf{b}}|^{2}} \Rightarrow \lambda=\frac{|\overrightarrow{\mathbf{a}}|}{|\overrightarrow{\mathbf{b}}|}=\frac{3}{4}$
371 (a)
$(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{y}}) \times(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})$
$=\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}}-\overrightarrow{\mathbf{y}} \times \overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{y}} \times \overrightarrow{\mathbf{y}}$
$=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}}+\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}}-\overrightarrow{\mathbf{0}}$
$=2(\overrightarrow{\mathbf{x}} \times \overrightarrow{\mathbf{y}})$
372 (a)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=0$
$\Rightarrow \lambda-1+2 \mu=0$
$\Rightarrow \lambda+2 \mu=1$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0$
$\Rightarrow 2 \lambda+4+\mu=0$
$\Rightarrow 2 \lambda+\mu=-4$....(ii)
On solving Eqs. (i) and (ii), we get
$\lambda-3, \mu=2$
(b)

The projection $\vec{x} \times \vec{y}$ on \vec{z} is given by
$\frac{(\vec{x} \times \vec{y}) \cdot \vec{z}}{|\vec{z}|}=\frac{1}{|\vec{z}|}[\vec{x} \vec{y} \vec{z}]=\frac{1}{13}\left|\begin{array}{ccc}3 & -6 & -1 \\ 1 & 4 & -3 \\ 3 & -4 & -12\end{array}\right|$

$$
=-14
$$

376 (c)
We have,
$\vec{a} \times\{\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}\}$
$=\vec{a} \times\{\vec{a} \times\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\}\}$ $=\vec{a} \times\left\{\overrightarrow{0}-|\vec{a}|^{2}(\vec{a} \times \vec{b})\right\}$
$=-|\vec{a}|^{2}\{\vec{a} \times(\vec{a} \times \vec{b})\}=-|\vec{a}|^{2}\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\}$
$=-|\vec{a}|^{2}\left\{0-|\vec{a}|^{2} \vec{b}\right\}=|\vec{a}|^{4} \vec{b}$
(c)

For an abtuse angle
$(c x \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \cdot(x \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 c x \hat{\mathbf{k}})<0$
$\Rightarrow c x^{2}-12+6 c x<0$
$\Rightarrow c x^{2}+6 c x-12<0$
$\therefore(6 c)^{2}-4 c(-12)<0 \quad[\because f(x)<0 \Rightarrow D<0]$
$\Rightarrow 36 c\left(c+\frac{4}{3}\right)<0$
$\Rightarrow-\frac{4}{3}<c<0$
380 (a)
$\cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$
$=\frac{(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \cdot(6 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{\sqrt{2^{2}+2^{2}+(-1)^{2}} \sqrt{6^{2}+(-3)^{2}+2^{2}}}$
$=\frac{12-6-2}{\sqrt{4+4+1} \sqrt{36+9+4}}=\frac{4}{21}$
381
(b)

Given vectors $2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ and $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ will
be perpendicular, if

$$
\begin{gathered}
(2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}) \cdot(a \hat{\imath}+b \hat{\jmath}+c \hat{k})=0 \Rightarrow 2 a+3 b-c \\
=0
\end{gathered}
$$

Clearly, $a=4, b=4, c=5$ satisfy the above equation
382 (a)
We have,$\vec{\alpha}=x(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+y(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+z(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
Taking dot product with $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ respectively, we get
$\vec{\alpha} \cdot \overrightarrow{\mathbf{a}}=y[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \Rightarrow y=8(\vec{\alpha} \cdot \overrightarrow{\mathbf{a}})$
$\vec{\alpha} \cdot \overrightarrow{\mathbf{b}}=z((\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{b}})$
$\Rightarrow \vec{\alpha} \cdot \overrightarrow{\mathbf{b}}=z[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \Rightarrow z=8(\vec{\alpha} \cdot \overrightarrow{\mathbf{b}})$
and $\vec{\alpha} \cdot \overrightarrow{\mathbf{c}}=x(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} . \overrightarrow{\mathbf{c}})$
$\vec{\alpha} \cdot \overrightarrow{\mathbf{c}}=x[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \Rightarrow x=8(\vec{\alpha} \cdot \overrightarrow{\mathbf{c}})$
$\therefore x+y+z=8 \vec{\alpha} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
383 (d)
Let $\overrightarrow{\mathbf{c}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{d}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}-15 \hat{\mathbf{k}}$
For collinears, $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & 1 & -5 \\ a & b & -15\end{array}\right|=\overrightarrow{\mathbf{0}}$
$\Rightarrow \hat{\mathbf{i}}(-15+5 b)-\hat{\mathbf{j}}(-45+5 a)+\hat{\mathbf{k}}(3 b-a)=\overrightarrow{\mathbf{0}}$
$\Rightarrow-15+5 b=0, \quad-45+5 a=0$,

$$
3 b-a=0
$$

$\Rightarrow b=3, a=9$
384 (d)
$|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$=1^{2}+1^{2} 2 \cdot 1 \cdot 1 \cdot \cos 60^{\circ} \quad[\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=1]$
$=2-2 \cdot \frac{1}{2}=1$
385 (c)
Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+0 \hat{\mathbf{k}}$
Now take option (c).
Let $\overrightarrow{\mathbf{c}}=0 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$
Now, $\quad \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{ccc}1 & -2 & -3 \\ 2 & 0 & 0 \\ 0 & -4 & -6\end{array}\right|$
$=1(0)+2(-12)-3(-8)=0$
386 (a)
$(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$=\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}+(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}$
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}$
$=(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-1)$
\therefore Given vector is parallel to $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})$.
387 (a)
$\overrightarrow{\mathbf{A B}}=(2-1) \hat{\mathbf{i}}+(0-2) \hat{\mathbf{j}}+(3+1) \hat{\mathbf{k}}$
$=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
and
$\overrightarrow{\mathbf{A C}}=(3-1) \hat{\mathbf{i}}+(-1-2) \hat{\mathbf{j}}+(2+1) \hat{\mathbf{k}}$
$=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
$\cos \theta=\frac{(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})}{\sqrt{1+4+16} \sqrt{4+9+9}}$
$=\frac{2+6+12}{\sqrt{21} \sqrt{22}}=\frac{20}{\sqrt{462}}$
$\Rightarrow \sqrt{462} \cos \theta=20$
388 (c)
$[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}]=|\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})|$
$=|\overrightarrow{\mathbf{u}} \cdot(3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-\hat{\mathbf{k}})|$
$=|\overrightarrow{\mathbf{u}}| \sqrt{59} \cos \theta$
\therefore Maximum value of $[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}]=\sqrt{59} \quad(\because|\overrightarrow{\mathbf{u}}|=$
$1, \cos \theta \leq 1$)
390 (b)
Given, force $=5\left(\frac{2 \hat{\mathbf{1}}-2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}}{|2 \hat{\mathbf{1}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}|}\right)=\frac{5}{3}(2 \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}})$
Displacement $=(5 \hat{\mathbf{\imath}}+3 \hat{\mathbf{\jmath}}+7 \hat{\mathbf{k}})-(\hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}})$
$=(4 \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
\therefore Required work done $=$ Force \cdot Displacement
$=\frac{5}{3}[(2 \hat{\mathbf{\imath}}-2 \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}) \cdot(4 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}})]$
$=\frac{5}{3}[8-2+4]=\frac{50}{3}$ unit
391 (b)
We know that the equation of the plane passing through three non-collinear points $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is
$\overrightarrow{\mathbf{r}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
(a)

We have,
Required vector $\vec{r}=\lambda(\hat{a}+\hat{b}), \lambda$ is a scalar

$$
\begin{gathered}
\Rightarrow \vec{r}=\lambda\left\{\frac{1}{9}(7 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})+\frac{1}{3}(-2 \hat{\imath}-\hat{\jmath}+2 \hat{k})\right\} \\
=\frac{\lambda}{9}(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})
\end{gathered}
$$

Now,

$$
\begin{gathered}
|\vec{r}|=3 \sqrt{6} \Rightarrow|\vec{r}|^{2}=54 \Rightarrow \frac{\lambda^{2}}{81}(1+49+4)=54 \\
\Rightarrow \lambda= \pm 9
\end{gathered}
$$

Hence, required vector $\vec{r}= \pm(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})$
Clearly, option (a) is true for $\lambda=1$
393 (b)
Given vectors are collinear, if $\left|\begin{array}{ccc}2 & 1 & 1 \\ 6 & -1 & 2 \\ 14 & -5 & p\end{array}\right|=0$
$\Rightarrow 2[-p+10]-1[6 p-28]+1[-30+14]=0$
$\Rightarrow-8 p+32=0$
$\Rightarrow p=4$
(d)

Given,
$\left.\frac{1}{3}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \right\rvert\, \overrightarrow{\mathbf{a}}=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$
$\left.\therefore \frac{1}{3}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \right\rvert\, \overrightarrow{\mathbf{a}}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{a}}$
On comparing the coefficient of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, we get
$\frac{1}{2}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}|=-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=0$
$\Rightarrow \frac{1}{3}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}|=-|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \theta \Rightarrow \cos \theta=-\frac{1}{3}$
$\Rightarrow 1-\sin ^{2} \theta=\frac{1}{9} \Rightarrow \sin \theta=\frac{2 \sqrt{2}}{3}$
395 (c)
Let $\overrightarrow{\mathbf{A}}=7 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{C}}=$
$-4 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{A B}}=-\hat{\mathbf{i}}-\hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B C}}=-3 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$
and $\overrightarrow{\mathbf{C A}}=4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
Here, $|\overrightarrow{\mathbf{A B}}|=|\overrightarrow{\mathbf{B C}}|=3 \sqrt{2}$ and $|\overrightarrow{\mathbf{C A}}|=6$
Now, $|\overrightarrow{\mathbf{A B}}|^{2}+|\overrightarrow{\mathbf{B C}}|^{2}=|\overrightarrow{\mathbf{A C}}|^{2}$
Hence, the triangle is right angled isosceles triangle.
396 (b)
We know that if A and B are two points and P is any point on $A B$. Then,
$m P \vec{A}+n P \vec{B}=(m+n) P \vec{C}$, where C divides $A B$ in the ratio $n: m$
Here, $m=n=1$
$\therefore P \vec{A}+P \vec{B}=2 P \vec{C}$
397 (a)
$(2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}) \times(5 \overrightarrow{\mathbf{a}}+7 \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
$=\overrightarrow{\mathbf{0}}+14(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})-15(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$
$=\overrightarrow{0}$
399 (c)
Let $\overrightarrow{\mathbf{O A}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{O B}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{O C}}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
$\therefore a=|\overrightarrow{\mathbf{O A}}|=\sqrt{6}, b=|\overrightarrow{\mathbf{O B}}|=\sqrt{35}$
and $\overrightarrow{\mathbf{c}}|\overrightarrow{\mathbf{O C}}|=\sqrt{41}$
$\therefore \cos A=\frac{b^{2}+c^{2}+a^{2}}{2 b c}$
$=\frac{(\sqrt{35})^{2}+(\sqrt{41})^{2}-(\sqrt{6})^{2}}{2 \sqrt{35} \sqrt{41}}$
$\Rightarrow \cos A=\sqrt{\frac{35}{41}}$
$\Rightarrow \sin ^{2} A=\frac{35}{41}$
400 (d)
Let $\vec{p} \neq \overrightarrow{0}$. Then,
$\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$
$\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar, which is a contradiction

Hence, $\vec{r}=\overrightarrow{0}$
401 (c)
Let $\vec{\alpha}=\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}+t \overrightarrow{\mathbf{c}}$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{q}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{r}}=1$
$\Rightarrow \vec{\alpha} \cdot \overrightarrow{\mathbf{p}}=\lambda(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{p}})+0+0$
$\Rightarrow \lambda=\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}$
Similarly, $\mu=\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}$
and $t=\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}$
From Eq. (i), we get
$\vec{\alpha}=(\vec{\alpha} \cdot \overrightarrow{\mathbf{p}}) \overrightarrow{\mathbf{a}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{q}}) \overrightarrow{\mathbf{b}}+(\vec{\alpha} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{c}}$
402 (a)
Since, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ is a vector perpendicular to $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$.
Therefore $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ is a vector again in plane of $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$.
403 (c)
$(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$
$=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}+(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{b}}$
$=\overrightarrow{\mathbf{a}} \quad[\because|\overrightarrow{\mathbf{b}}|=1]$
404 (d)

$$
\because \sum_{i=1}^{n} \overrightarrow{\mathbf{a}}_{i}=\overrightarrow{\mathbf{0}}
$$

$\therefore\left(\sum_{i=1}^{n} \overrightarrow{\mathbf{a}}_{i}\right)\left(\sum_{i=1}^{n} \overrightarrow{\mathbf{a}}_{j}\right)$
$=\sum_{i=1}^{n}\left|\overrightarrow{\mathbf{a}}_{i}\right|^{2}+2 \sum_{1 \leq i<} \sum_{j \leq n} \overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{a}}_{j}$
$\Rightarrow 0=n+2 \sum_{1 \leq i<} \sum_{j \leq n} \overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{a}}_{j}$
$\therefore \sum_{1 \leq i<} \sum_{j \leq n} \overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{a}}_{j}=-\frac{n}{2}$
405 (b)
Since, given vectors are perpendicular.
$\therefore(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}) \cdot(6 \hat{\mathbf{i}}-\hat{\mathbf{j}}+c \hat{\mathbf{k}})=0$
$\Rightarrow 18+2-5 c=0 \Rightarrow c=4$
406 (d)
Given, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
$\Rightarrow \overrightarrow{\mathbf{a}}$ is parallel to $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}$ is perpendicular to $\overrightarrow{\mathbf{b}}$ which is possible only if
$\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$ or $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
407 (a)
Let $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
First diagonal, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=7$
Second diagonal, $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-8 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=\sqrt{69}$
408 (b)

Given $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
Similarly, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
Alternate: Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit vectors and
$\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$,
so $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ represent an equilateral triangle.
$\therefore \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$
409 (c)
We have,
$\vec{A} B+\vec{A} C+\vec{A} D+\vec{A} E+\vec{A} F$
$=\vec{E} D+\vec{A} C+\vec{A} D+\vec{A} E$

$$
+\vec{C} D \quad[\because \vec{A} B=\vec{E} D \text { and } \vec{A} F=\vec{C} D]
$$

$=(\vec{A} C+\vec{C} D)+(\vec{A} E+\vec{E} D)+\vec{A} D$
$=3 \vec{A} D=6 \vec{A} G \quad[\because \vec{A} D=2 \vec{A} G]$
410 (c)
I. It is true that non-zero, non-collinear vectors are linearly independent.
II. It is also true that any three coplanar vectors are linearly dependent.
\therefore Both I and II are true.
411 (a)
Let $\vec{\alpha}=2 \vec{a}-3 \vec{b}, \vec{\beta}=7 \vec{b}-9 \vec{c}$ and $\vec{\gamma}=12 \vec{c}-23 \vec{a}$ Then,
$[\vec{\alpha} \vec{\beta} \vec{\gamma}]=\left|\begin{array}{ccc}2 & -3 & 0 \\ 0 & 7 & -9 \\ -23 & 0 & 12\end{array}\right|\left[\begin{array}{ll}\vec{a} & \vec{b}\end{array}\right]$
$\Rightarrow[\vec{\alpha} \vec{\beta} \vec{\gamma}]=(168+3 \times-207)[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0 \quad[\because[\vec{a} \vec{b} \vec{c}]=0]$
$\Rightarrow \vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar vectors
412 (b)
Given, $[\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$\Rightarrow 2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
Hence, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are coplanar.
413 (c)
Given, $\quad \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}} \quad$ and $\quad|\overrightarrow{\mathbf{a}}|=\sqrt{37},|\overrightarrow{\mathbf{b}}|=$
3 , and $|\overrightarrow{\mathbf{c}}|=4$
Now, $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow \overrightarrow{\mathbf{a}}=-(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}=|-(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})|^{2}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|^{2}=|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \theta$
$=9+16+24 \cos \theta$
$\Rightarrow 37=25+24 \cos \theta$
$\Rightarrow 24 \cos \theta=12 \Rightarrow \theta=60^{\circ}$

414 (a)
Let unit vector be $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$
$\therefore a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ is perpendicular to $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$,
Then $a+b+c=0$
Since, $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}},(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}),(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})$ are
coplanar
$\therefore\left|\begin{array}{lll}a & b & c \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right|=0$
$\Rightarrow-3 a+b+c=0$
From Eqs. (i) and (ii), we get
$a=0$ and $c=-b$
Also, $a^{2}+b^{2}+c^{2}=1$
$\Rightarrow 0+b^{2}+b^{2}=1$
$\Rightarrow b=\frac{1}{\sqrt{2}}$
$\therefore a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}=\frac{1}{\sqrt{2}} \hat{\mathbf{j}}-\frac{1}{\sqrt{2}} \hat{\mathbf{k}}$
416 (b)
Given, $\overrightarrow{\mathbf{O A}}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
$\overrightarrow{\mathbf{O B}}=5 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{O C}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
volume of parallelopiped
$=[\overrightarrow{\mathrm{OA}} \overrightarrow{\mathrm{OB}} \overrightarrow{\mathrm{OC}}]$
$=\left|\begin{array}{lll}2 & -2 & 1 \\ 5 & -4 & 4 \\ 1 & -2 & 4\end{array}\right|$
$=2(-16+8)+2(20-4)+1(-10+4)$
$=10 \mathrm{cu}$ units
418 (a)
We have,

$$
\begin{aligned}
\vec{a}=\lambda(\vec{b} \times \vec{c})= & \lambda\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 2 & 3 \\
-2 & 4 & 1
\end{array}\right| \\
& =\lambda(-10 \hat{\imath}-7 \hat{k}+8 \hat{k})
\end{aligned}
$$

Now,
$\vec{a} \cdot(\hat{\imath}-2 \hat{\jmath}+\hat{k})=-6$
$\Rightarrow \lambda(-10+14+8)=-6 \Rightarrow \lambda=-\frac{1}{2}$
Hence, $\vec{a}=-\frac{1}{2}(-10 \hat{\imath}-7 \hat{k}+8 \hat{k})=5 \hat{\imath}+\frac{7}{2} \hat{\jmath}-4 \hat{k}$
419 (c)
The projection of
$\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}$
$=\frac{(3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{2^{2}+3^{2}+1^{2}}}=\frac{8}{\sqrt{14}}$

421 (d)
$\left|\begin{array}{ccc}7 & -11 & 1 \\ 5 & 3 & -2 \\ 12 & -8 & -1\end{array}\right|$
$=7(-3-16)+11(-5+24)+1(-40-36)$
$=-133+209-76=0$
\therefore Vector are collinear.
422 (c)
Let the position vectors of the points A, B, C are
$\overrightarrow{\mathbf{0}}, \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ respectively and $\theta=90^{\circ}$
\therefore Area of triangle $=\frac{1}{2}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|$
$=\frac{1}{2}|(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})|$
$=\frac{1}{2}|2 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}|$
$=|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}| \sin \theta=3 \times 2 \sin 90^{\circ}=6$
423 (a)
We have, $|[\vec{a} \vec{b} \vec{c}]|=V$
Let V_{1} be the volume of the parallelopiped formed by the vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$. Then,
$V_{1}=|[\vec{\alpha} \vec{\beta} \vec{\gamma}]|$
Now,
$[\vec{\alpha} \vec{\beta} \vec{\gamma}]=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow[\vec{\alpha} \vec{\beta} \vec{\gamma}]=[\vec{a} \vec{b} \vec{c}]^{2}[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow[\vec{\alpha} \vec{\beta} \vec{\gamma}]=[\vec{a} \vec{b} \vec{c}]^{3}$
$\therefore V_{1}=|[\vec{\alpha} \vec{\beta} \vec{\gamma}]|=\left|[\vec{a} \vec{b} \vec{c}]^{3}\right|=V^{3}$
424 (a)
Let l, m, n be the direction cosines of the required vector. As it makes equal angles with X and Y axes
$\therefore l=m$
\therefore Required vector $\vec{r}=l \hat{\imath}+m \hat{\jmath}+n \hat{k}=l \hat{\imath}+l \hat{\jmath}+n \hat{k}$
Now, $l^{2}+m^{2}+n^{2}=1 \Rightarrow 2 l^{2}+n^{2}=1$
Since, \vec{r} is perpendicular to $-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
$\therefore \vec{r} \cdot(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k})=0 \Rightarrow-l+2 l+2 n=0 \Rightarrow$ $l+2 n=0$
From (i) and (ii), we get $n \mp \frac{1}{3}, l=\mp \frac{2}{3}$
Hence, $\vec{r}=\frac{1}{3}(\pm 2 \hat{\imath} \pm 2 \hat{\jmath} \mp \hat{k})= \pm \frac{1}{3}(2 \hat{\imath}+2 \hat{\jmath}-\hat{k})$
425 (a)
Let the required vector be \vec{a}. Then, $\hat{\imath}-\hat{\jmath}, \hat{\imath}+\hat{\jmath}$ and \vec{a} form a right handed system
$\therefore \vec{a}=(\hat{\imath}-\hat{\jmath}) \times(\hat{\imath}+\hat{\jmath})=\hat{k}+\hat{k}=2 \hat{k}$
Hence, the required unit vector $\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\hat{k}$
426
(b)
$\overrightarrow{\mathbf{p}}=x \overrightarrow{\mathbf{a}}+y \overrightarrow{\mathbf{b}}+z \overrightarrow{\mathbf{c}}$
$\Rightarrow 3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}=x(\hat{\mathbf{i}}+\hat{\mathbf{j}})+y(\hat{\mathbf{j}}+\hat{\mathbf{k}})+z(\hat{\mathbf{i}}+\hat{\mathbf{k}})$
$\Rightarrow 3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}=(x+z) \hat{\mathbf{i}}+(x+y) \hat{\mathbf{j}}+(y+z) \hat{\mathbf{k}}$
On comparing both sides the coefficients of $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$, we get
$x+z=3$
$x+y=2$
and $y+z=4$ (iii)
on solving Eqs. (i), (ii) and (iii), we get
$x=\frac{1}{2}, y=\frac{3}{2}, z=\frac{5}{2}$
427 (a)
From geometry
$\overrightarrow{\mathbf{A O}}=2 \overrightarrow{\mathbf{S D}}$
Where D is the mind point of $B C$

$\therefore \overrightarrow{\mathbf{S A}}+\overrightarrow{\mathbf{S B}}+\overrightarrow{\mathbf{S C}}$
$=\overrightarrow{\mathbf{S A}}+2 \overrightarrow{\mathbf{S D}}(\because \overrightarrow{\mathbf{S B}}+\overrightarrow{\mathbf{S C}}=2 \overrightarrow{\mathbf{S D}})$
$=\overrightarrow{\mathbf{S A}}+\overrightarrow{\mathbf{A O}}$
$=\overrightarrow{\mathbf{S O}}$
428 (c)
We have,
$\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$
$\Rightarrow|\vec{a}||\vec{b}| \cos \theta=0$ and $|\vec{a}||\vec{b}| \sin \theta=0$
$\Rightarrow(|\vec{a}|=0$ or, $|\vec{b}|=0$ or, $\cos \theta=0)$
And,
($|\vec{a}|=0$ or, $|\vec{b}|=0$ or, $\sin \theta=0$)
$\Rightarrow|\vec{a}|=0$ or,
$|\vec{b}|=0\left[\begin{array}{c}\because \cos \theta \text { and } \sin \theta \\ \text { are not zero zimultaneously }\end{array}\right]$
430 (c)
Given $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}$
$\Rightarrow 4 \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \Rightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
So, angle between them is 90°
431 (c)
We have,
$\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$
$\Rightarrow(\vec{r}-\vec{b}) \times \vec{a}=0$
$\Rightarrow \vec{r}-\vec{b}$ is parallel to \vec{a}
$\Rightarrow \vec{r}-\vec{b}=\lambda \vec{a}$ for some scalar λ
$\Rightarrow \vec{r}-\vec{b}+\lambda \vec{a}$
Now,
$\vec{r} \perp \vec{c}$
$\Rightarrow \vec{r} \cdot \vec{c} \cdot \vec{c}=0$
$\Rightarrow \vec{b} \cdot \vec{c}+\lambda(\vec{a} \cdot \vec{c})=0 \Rightarrow \lambda=-\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}}$
Putting the value of λ in (i), we get
$\vec{r}=\vec{b}-\left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}}\right) \vec{a}$
432 (d)
We have, $|\vec{\alpha}|=1=|\vec{\beta}|$ and $\vec{\alpha} \cdot \vec{\beta}=0$
Now,
$\vec{\gamma}=x \vec{\alpha}+y \vec{\beta}+z(\vec{\alpha} \times \vec{\beta})$
$\Rightarrow \vec{\alpha} \cdot \vec{\gamma}=x(\vec{\alpha} \cdot \vec{\alpha})+y(\vec{\alpha} \cdot \vec{\beta})+z\{\vec{\alpha} \cdot(\vec{\alpha} \times \vec{\beta})\}$
$\vec{\beta} \cdot \vec{\gamma}=x(\vec{\beta} \cdot \vec{\alpha})+y(\vec{\beta} \cdot \vec{\beta})+z\{\vec{\beta} \cdot(\vec{\alpha} \times \vec{\beta})\}$
And,
$(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma}=x\{\vec{\alpha} \cdot(\vec{\alpha} \times \vec{\beta})+y\{\vec{\beta} \cdot(\vec{\alpha} \times \vec{\beta})\}$ $+z\{(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\beta})\}$
$\Rightarrow \cos \theta=x, \cos \theta=y$ and $[\vec{\alpha} \vec{\beta} \vec{\gamma}]=z|\vec{\alpha} \times \vec{\beta}|^{2}$
$\Rightarrow x=\cos \theta, y=\cos \theta$ and $[\vec{\alpha} \vec{\beta} \vec{\gamma}]=z$
$\left[\because|\vec{\alpha} \times \vec{\beta}|=|\vec{\alpha}||\vec{\beta}| \sin 90^{\circ}=1\right]$
Now,
$[\vec{\alpha} \vec{\beta} \vec{\gamma}]^{2}=\left|\begin{array}{lll}\vec{\alpha} \cdot \vec{\alpha} & \vec{\alpha} \cdot \vec{\beta} & \vec{\alpha} \cdot \vec{\gamma} \\ \vec{\beta} \cdot \vec{\alpha} & \vec{\beta} \cdot \vec{\beta} & \vec{\beta} \cdot \vec{\gamma} \\ \vec{\gamma} \cdot \vec{\alpha} & \vec{\gamma} \cdot \vec{\beta} & \vec{\gamma} \cdot \vec{\gamma}\end{array}\right|$
$\Rightarrow[\vec{\alpha} \vec{\beta} \vec{\gamma}]^{2}=\left|\begin{array}{ccc}1 & 0 & \cos \theta \\ 0 & 1 & \cos \theta \\ \cos \theta & \cos \theta & 1\end{array}\right|=1-2 \cos ^{2} \theta$
$\Rightarrow z^{2}=1-2 x^{2}$
Also, $z^{2}=1-2 y^{2}$ and $z^{2}=1-x^{2}-y^{2}$
433 (a)
$(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}) \times(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})$
$=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{c}}$
$=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}-\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$[\because \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}, \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}}$, given $]$
$\Rightarrow(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}) \|(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})$
$\Rightarrow \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{d}}=\lambda(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})$
434 (a)
Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar unit vectors
$\therefore[\vec{a} \vec{b} \vec{c}]=$ Volume of a parallelopiped whose each
edge is of one unit length
$\Rightarrow[\vec{a} \vec{b} \vec{c}]= \pm 1$
436 (d)
Let D be the mid-point of $B C$. Then,
$\vec{A} B+\vec{A} C=2 \vec{A} D$
$\Rightarrow 2 \vec{A} D=8 \hat{\imath}+2 \hat{\jmath}+8 \hat{k}$
$\Rightarrow \vec{A} D=4 \hat{\imath}+\hat{\jmath}+4 \hat{k}$
$\Rightarrow|\vec{A} D|=\sqrt{16+1+16}=\sqrt{33}$
\therefore Median vector through $\overrightarrow{\mathbf{A}}=\frac{1}{2}(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{A C}})$
$=\frac{1}{2}[(3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})+(5 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})]$
$=4 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}$
\therefore Length of the median $=\sqrt{4^{2}+3^{2}}=5$ units
438 (d)
Given, $(\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}+2 \overrightarrow{\mathbf{a}})=0$
$\Rightarrow(\overrightarrow{\mathbf{a}}-\lambda \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{b}} \times 2 \overrightarrow{\mathbf{a}}-4(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})\}=0$
$\Rightarrow \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times 2 \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{a}} .4(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
$-\lambda \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-\lambda \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times 2 \overrightarrow{\mathbf{a}})+4 \lambda \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=0$
$\Rightarrow \overrightarrow{\mathbf{a}}(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+4 \lambda \overrightarrow{\mathbf{b}} .(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=0$
$\Rightarrow\{\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})\}(1+4 \lambda)=0$
$\Rightarrow \lambda=-\frac{1}{4}[\because \overrightarrow{\mathbf{a}} .(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \neq 0$, given $]$
440 (d)
\therefore Total force $\overrightarrow{\mathbf{P}}=\overrightarrow{\mathbf{P}}_{1}+\overrightarrow{\mathbf{P}}_{2}+\overrightarrow{\mathbf{P}}_{3}$
$=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}=2 \hat{\mathbf{j}}$
and displacement $\overrightarrow{\mathbf{A B}}=6 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}}-$
$(4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
$=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
\therefore Work done $=\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{A B}}$
$=2 \hat{\mathbf{j}}(2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-\hat{\mathbf{k}})=8$
(a)

The point of intersection of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$ and
$\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$
$\therefore \overrightarrow{\mathbf{r}}=(\hat{\mathbf{i}}+\hat{\mathbf{j}})+(2 \hat{\mathbf{i}}-\hat{\mathbf{k}})=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
442 (a)
Since \vec{a}, \vec{b} and $a \times \vec{b}$ are non-coplanar vectors
$\therefore \vec{r}=x \vec{a}+y \vec{b}+z(\vec{a} \times \vec{b})$ for some scalars x, y, z
Now,
$\vec{b}=\vec{r} \times \vec{a}$
$\Rightarrow \vec{b}=\{x \vec{a}+y \vec{b}+z(\vec{a} \times \vec{b})\} \times \vec{a}$
$\Rightarrow \vec{b}=y(\vec{b} \times \vec{a})+z((\vec{a} \times \vec{b}) \times \vec{a})$
$\Rightarrow \vec{b}=y(\vec{b} \times \vec{a})-z(\vec{a} \times(\vec{a} \times \vec{b}))$
$\Rightarrow \vec{b}=y(\vec{b} \times \vec{a})-z\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\}$
$\Rightarrow \vec{b}=y(\vec{b} \times \vec{a})+z(\vec{a} \cdot \vec{a}) \vec{b} \quad[\because \vec{a} \cdot \vec{b}=0]$
Comparing the coefficients, we get
$y=0, z=\frac{1}{\vec{a} \cdot \vec{a}}=\frac{1}{|\vec{a}|^{2}}$
Putting the values of y and z in (i), we get
$\vec{r}=x \vec{a}+\frac{1}{|\vec{a}|^{2}}(\vec{a} \times \vec{b})$
444 (b)
$(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}) \cdot[(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}) \times(\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}})]$
$=(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}) .[\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}]$
$=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}-\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}-\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$
$=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}+\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$
$=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$
445 (d)
$\therefore \overrightarrow{\mathbf{p}}-2 \overrightarrow{\mathbf{q}}=7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}-2(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}})$
$=\hat{\mathbf{i}}-4 \hat{\mathbf{j}}-7 \hat{\mathbf{k}}$
$\Rightarrow|\overrightarrow{\mathbf{p}}-2 \overrightarrow{\mathbf{q}}|=\sqrt{1^{2}+(-4)^{2}+(-7)^{2}}=\sqrt{66}$
447 (a)
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|$
$=-\hat{\mathbf{i}}+\hat{\mathbf{j}}$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right|=-\hat{\mathbf{k}}$
Now, $\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}=\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})+\mu(\hat{\mathbf{i}}+\hat{\mathbf{j}})$
$=(\lambda+\mu) \hat{\mathbf{i}}+(\lambda+\mu) \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$
$\because \lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{b}}=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$
$\Rightarrow(\lambda+\mu) \hat{\mathbf{i}}+(\lambda+\mu) \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}=-\hat{\mathbf{k}}$
On equating the coefficient of $\hat{\mathbf{i}}$ we get $\lambda+\mu=0$
453 (d)
We have,
$\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$
$\Rightarrow \vec{a} \cdot(\vec{b}-\vec{c})=0$
$\Rightarrow \vec{a} \perp(\vec{b}-\vec{c})$ or, $\vec{b}-\vec{c}=0 \Rightarrow \vec{a} \perp(\vec{b}-\vec{c})$ or,
$\vec{b}=\vec{c}$
454 (c)
Given that, $|\overrightarrow{\mathbf{a}}|=2 \sqrt{2},|\overrightarrow{\mathbf{b}}|=3$
The longer vectors is $5 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}=6 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$
Length of one diagonal
$=|6 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|$
$=\sqrt{36 \overrightarrow{\mathbf{a}}^{2}+\overrightarrow{\mathbf{b}}^{2}-2 \times 6|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos 45 \circ}$
$=\sqrt{36 \times 8+9-12 \times 2 \sqrt{2} \times 3 \times \frac{1}{\sqrt{2}}}$
$=\sqrt{288+9-12 \times 6}=\sqrt{225}=15$
Other diagonal is $4 \overrightarrow{\mathbf{a}}+5 \overrightarrow{\mathbf{b}}$.
Its length $=\sqrt{16 \times 8+25 \times 9+40 \times 6}=\sqrt{593}$
455 (a)
Given projection of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$\Rightarrow \frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$\Rightarrow \frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta}{|\overrightarrow{\mathbf{b}}|}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta$
$\Rightarrow \tan \theta=\frac{1}{|\overrightarrow{\mathbf{b}}|}$
$\Rightarrow \tan \theta=\frac{1}{\frac{1}{3} \sqrt{1^{2}+1^{2}+1^{2}}}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \theta=\frac{\pi}{3}$
457 (c)
Since, $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}=k \overrightarrow{\mathbf{c}}$
$\therefore \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{c}}=k \overrightarrow{\mathbf{c}}+6 \overrightarrow{\mathbf{c}}$
$=(k+6) \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{c}}(\because \lambda \neq 0)$
458 (d)
$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|=-2 \hat{\mathbf{k}}$
$\therefore|\overrightarrow{\mathbf{w}} \cdot \widehat{\mathbf{n}}|=\frac{|\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}|}$
$\Rightarrow|\overrightarrow{\mathbf{w}} \cdot \widehat{\mathbf{n}}|=\frac{|-6 \hat{\mathbf{k}}|}{|-2 \hat{\mathbf{k}}|}=3$
(c)

Let the position of B is $\overrightarrow{\mathbf{r}}$.
$\therefore \overrightarrow{\mathbf{a}}=\frac{2 \overrightarrow{\mathbf{r}}+3(\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}})}{2+3}$

$\Rightarrow 5 \overrightarrow{\mathbf{a}}=2 \overrightarrow{\mathbf{r}}+3 \overrightarrow{\mathbf{a}}+6 \overrightarrow{\mathbf{b}}$
$\Rightarrow 2 \overrightarrow{\mathbf{r}}=2 \overrightarrow{\mathbf{a}}-6 \overrightarrow{\mathbf{b}}$
$\therefore \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$
460 (a)
Since, $(\overrightarrow{\mathbf{A}}+t \overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathbf{C}}=0$ [given]
$\Rightarrow[(1-t) \hat{\mathbf{i}}+(2+2 t) \hat{\mathbf{j}}+(3+t) \hat{\mathbf{k}}] \cdot(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})=0$
$\Rightarrow 3(1-t)+(2+2 t)=0 \Rightarrow t=5$
461 (a)
We have,
$|\vec{a}|=1,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=\cos \theta$
Now, $|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=1+1-2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=4 \sin ^{2} \frac{\theta}{2}$
$\Rightarrow\left|\frac{\vec{a}-\vec{b}}{2}\right|^{2}=\sin ^{2} \frac{\theta}{2} \Rightarrow\left|\frac{\vec{a}-\vec{b}}{2}\right|=\sin \frac{\theta}{2}$
462 (c)
If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ are two non-zero non-collinear vectors and
x, y are two scalars such that $x \overrightarrow{\mathbf{a}}+y \overrightarrow{\mathbf{b}}=$ 0 , then $x=0, y=0$.
Because otherwise one will be a scalar multiple of the other and hence collinear, which is a
contradiction

463 (b)
$\overrightarrow{\mathbf{A B}}=2 \hat{\mathbf{i}}+10 \hat{\mathbf{j}}+11 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{A D}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$

$\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A D}}=-2+20+22=40$
$|\overrightarrow{\mathbf{A B}}|=\sqrt{4+100+120}=\sqrt{225}=15$
$|\overrightarrow{\mathbf{A D}}|=\sqrt{1+4+4}=\sqrt{9}=3$
$\therefore \cos \theta=\frac{40}{45}=\frac{8}{9}$
$\therefore \theta+\alpha=90^{\circ}$
$\Rightarrow \alpha=90^{\circ}-\theta$
$\Rightarrow \cos \alpha=\sin \theta=\sqrt{1-\frac{64}{81}}=\frac{\sqrt{17}}{9}$
464 (a)
Let $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$
Sience, $\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{b}}|}=\frac{1}{\sqrt{30}}$
$\Rightarrow \frac{(x \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+5 \hat{\mathbf{k}})}{|\sqrt{4+1+25}|}=\frac{1}{\sqrt{30}}$
$\Rightarrow 2 x-1+5=1$
$\Rightarrow x=-\frac{3}{2}$
465 (b)
Now, $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}=2(-\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})-(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})$
$=\hat{\mathbf{j}}+3 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}+2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}}$
$=\hat{\mathbf{i}}+\hat{\mathbf{k}}$
let θ be the angle between $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$.
$\therefore \cos \theta=\frac{(\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{\sqrt{1^{2}+1^{2}} \sqrt{1^{2}+1^{2}}}$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{3}$
466 (d)
Since $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with \vec{c} and \vec{a} respectively. Therefore, there exist scalars x, y such that $\vec{a}+\vec{b}=x \vec{c}$ and $\vec{b}+\vec{c}=y \vec{a}$. Now,
$\vec{a}+\vec{b}=x \vec{c} \Rightarrow \vec{a}+\vec{b}+\vec{c}=(x+1) \vec{c}$
and,
$\vec{b}+c=y \vec{a} \Rightarrow \vec{a}+\vec{b}+\vec{c}=(y+1) \vec{a}$
From (i) and (ii), we get
$(x+1) \vec{c}=(y+1) \vec{a}$

If $x \neq-1$, then
$(x+1) \vec{c}=(y+1) \vec{a} \Rightarrow \vec{c}=\frac{y+1}{x+1} \vec{a}$
$\Rightarrow \vec{c}$ and \vec{a} are collinear
This is a contradiction to the given condition.
Therefore, $x=-1$
Putting $x=-1$ in $\vec{a}+\vec{b}=x \vec{c}$, we get
$\vec{a}+\vec{b}+\vec{c}=(-1+1) \vec{c}=\overrightarrow{0}$
467 (b)
We have, $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]$
$=\overrightarrow{\mathbf{a}} \cdot[(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})]$
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \times$
c
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]=0$
468 (a)
It is given that points P, Q and R with position
vectors $60 \hat{\imath}+3 \hat{\jmath}, 40 \hat{\imath}-8 \hat{\jmath}$ and $a \hat{\imath}-52 \hat{\jmath}$
respectively are collinear
$\therefore \vec{P} Q=\lambda \vec{Q} R$ for some scalar λ
$\Rightarrow-20 \hat{\imath}-11 \hat{\jmath}=\lambda\{(a-40) \hat{\imath}-44 \hat{\jmath}\}$
$\Rightarrow \lambda(a-40)=-20,-11=-44 \lambda$
$\Rightarrow \lambda=\frac{1}{4}$ and $a=-40$
469 (a)
Required unit vector
$\overrightarrow{\mathbf{c}}=\frac{\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})}{|\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})|}$
Now,
$\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}$
$=3(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})-6(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
$=-9 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathbf{c}}=\frac{-9 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}}{\sqrt{9^{2}+9^{2}}}= \pm \frac{1}{\sqrt{2}}(-\hat{\mathbf{j}}+\hat{\mathbf{k}})$
470 (b)
$\left|\begin{array}{ccc}2 & 1 & 4 \\ 4 & -2 & 3 \\ 2 & -3 & -\lambda\end{array}\right|=0$
$\Rightarrow 2(2 \lambda+9)-1(-4 \lambda-6)+4(-12+4)=0$
$\Rightarrow 4 \lambda+18+4 \lambda+6-48+16=0$
$\Rightarrow 8 \lambda=8$
$\Rightarrow \lambda=1$
471 (b)
We have,
$[\vec{u} \vec{v} \vec{w}]=\left|\begin{array}{lll}a l+a_{1} l_{1} & a m+a_{1} m_{1} & a n+a_{1} n_{1} \\ b l+b_{1} l_{1} & b m+b_{1} m_{1} & b n+b_{1} n_{1} \\ c l+c_{1} l_{1} & c m+c_{1} m_{1} & c n+a_{1} n_{1}\end{array}\right|$
$\Rightarrow[\vec{u} \vec{v} \vec{w}]=\left|\begin{array}{lll}a & a_{1} & 0 \\ b & b_{1} & 0 \\ c & c_{1} & 0\end{array}\right|\left|\begin{array}{ccc}c & l_{1} & 0 \\ m & m_{1} & 0 \\ n & n_{1} & 0\end{array}\right|=0$
Hence, the given vectors are coplanar
473 (a)
Given that $\vec{a}, \vec{b}, \vec{c}$ are coplanar
$\therefore \vec{a} \perp \vec{b} \times \vec{c} \Rightarrow \vec{a} \cdot(\vec{b} \times \vec{c})=0 \Rightarrow[\vec{a} \vec{b} \vec{c}]=0$
474 (c)
$(\overrightarrow{\mathbf{d}}+\overrightarrow{\mathbf{a}}) \cdot[\overrightarrow{\mathbf{a}} \times\{\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})\}]$
$=(\overrightarrow{\mathbf{d}}+\overrightarrow{\mathbf{a}}) \cdot[\overrightarrow{\mathbf{a}} \times\{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}}) \overrightarrow{\mathbf{c}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{d}}\}]$
$=(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})[\overrightarrow{\mathbf{d}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})]-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})[\overrightarrow{\mathbf{d}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{d}})]$
$+(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})]-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})[\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{d}})]$
$=(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})[\overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}}]=(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{d}})[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{d}}]$
476 (a)
Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{c}}=\lambda \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
$\therefore[\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}]=0$
$\Rightarrow\left|\begin{array}{ccc}1 & -2 & 3 \\ -2 & 3 & -4 \\ \lambda & -1 & 2\end{array}\right|=0$
$\Rightarrow 1(6-4)+2(-4+4 \lambda)+3(2-3 \lambda)=0$
$\Rightarrow \lambda=0$
477 (b)
Let $\overrightarrow{\mathbf{a}}=a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}$
$|\overrightarrow{\mathbf{a}}|^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$
and $\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}}=\left(a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{j}}+a_{3} \hat{\mathbf{k}}\right) \times \hat{\mathbf{i}}$
$=-a_{2} \hat{\mathbf{k}}+a_{3} \hat{\mathbf{j}}$
$(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^{2}=a_{2}^{2}+a_{3}^{2}$
Similarly, $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^{2}=a_{3}^{2}+a_{1}^{2}$
and $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^{2}=a_{1}^{2}+a_{2}^{2}$
Now, $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^{2}+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^{2}$
$=a_{2}^{2}+a_{3}^{2}+a_{3}^{2}+a_{1}^{2}+a_{1}^{2}+a_{2}^{2}$
$=2\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)=2(\overrightarrow{\mathbf{a}})^{2}$
478 (d)
Since, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=2 \hat{\mathbf{\imath}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\hat{\mathbf{\imath}}+\lambda \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$ are coplanar.
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0 \Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 0 & -4 \\ 1 & \lambda & 3\end{array}\right|=0$
$\Rightarrow 4 \lambda-1(6+4)+2 \lambda=0$
$\Rightarrow 6 \lambda=10 \Rightarrow \lambda=\frac{5}{3}$
480 (c)
$\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{C}}$ are three vectors, then volume of parallelepiped
$V=\left[\begin{array}{lll}\overrightarrow{\mathbf{A}} & \overrightarrow{\mathbf{B}} & \overrightarrow{\mathbf{C}}\end{array}\right]$
$=\left|\begin{array}{lll}1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right|=1+a^{3}-a$
$\Rightarrow V=1+a^{3}-a$

On differentiating with respect to a, we get
$\frac{d V}{d a}=3 a^{2}-1=0$
For maximum or minimum, put $\frac{d V}{a}=0$
$\Rightarrow a= \pm \frac{1}{\sqrt{3}}$
$\frac{d^{2} V}{d a^{2}}=6 a$, positive at $a=\frac{1}{\sqrt{3}}$.
$\therefore V$ is minimum at $a=\frac{1}{\sqrt{3}}$.
481 (c)
By the properties of midpoint theorem,
$\overrightarrow{\mathbf{P A}}+\overrightarrow{\mathbf{P B}}=2 \overrightarrow{\mathbf{P C}}$
482 (a)
The vector equation of line passing through points
$(3,2,1)$ and $(-2,1,3)$

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda[(-2-3) \hat{\mathbf{i}}+(1-2) \hat{\mathbf{j}} \\
&\quad+(3-1) \hat{\mathbf{k}}] \\
&=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}+\lambda(-5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})
\end{aligned}
$$

483 (d)
$\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \frac{5 \pi}{6}$
$=-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2}$
Since, the projection of $\overrightarrow{\mathbf{a}}$ in the direction of
$\overrightarrow{\mathbf{b}}=-\frac{6}{\sqrt{3}}$
$\Rightarrow-\frac{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sqrt{3}}{2|\overrightarrow{\mathbf{b}}|}=-\frac{6}{\sqrt{3}}$
$\Rightarrow|\overrightarrow{\mathbf{a}}|=\frac{6 \times 2}{3}=4$
484 (d)
Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ in $O X Y Z$ system
Also, let $\vec{r}=X \hat{\imath}+Y \hat{\jmath}+Z \hat{k}$ in the new coordinate system
Since the right handed rectangular system $O X Y Z$ is rotated about z-axis through $\frac{\pi}{4}$ in anticlockwise direction. Therefore,
$x=X \cos \theta-Y \sin \theta$ and $y=X \sin \theta+Y \cos \theta$
$\Rightarrow x=X \cos \frac{\pi}{4}-Y \sin \frac{\pi}{4}, y=X \sin \frac{\pi}{4}+Y \cos \frac{\pi}{4}$
and, $z=Z$
It is given that $X=2 \sqrt{2}, Y=3 \sqrt{2}$ and $Z=4$
$\therefore x=2-3=-1, y=5$ and $z=4$
Hence, $\vec{r}=-\hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
ALITER Let $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2}$ and l_{3}, m_{3}, n_{3} be the direction cosines of the new axes with respect to the old axes. Then,
$l_{1}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, m_{1}=\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, n_{1}$

$$
=\cos \frac{\pi}{2}=0
$$

$l_{2}=\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}, m_{2}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, n_{2}$

$$
=\cos \frac{\pi}{2}=0
$$

$l_{3}=\cos \frac{\pi}{2}=0, m_{3}=\cos \frac{\pi}{2}=0, n_{3}=\cos 0=1$
Let $x^{\prime}, y^{\prime}, z^{\prime}$ and x, y, z be the components of the given vector with respect to new and old axes. Then,
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right]\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \sqrt{2} \\ 3 \sqrt{2} \\ 4\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & +0 \\ 2 & +3 & +0 \\ 0 & 0 & +4\end{array}\right]=\left[\begin{array}{c}-1 \\ 5 \\ 4\end{array}\right]$
Hence, the components of \vec{a} in the $O x y z$ coordinate system are $-1,5,4$
(d)
$\because \overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{c}}=0$
For non-zero vector $\overrightarrow{\mathbf{x}}$
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0 \quad$ (three vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar)
and $[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \mathbf{c} \times \overrightarrow{\mathbf{a}}]$
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]^{2}=0$
486 (d)
$A B C D E F$ is a regular hexagon. We know from the hexagon that $\overrightarrow{\mathbf{A D}}$ is parallel to $\overrightarrow{\mathbf{B C}}$.
$\Rightarrow \overrightarrow{\mathbf{A D}}=2 \overrightarrow{\mathbf{B C}}$
Similarly, $\overrightarrow{\mathbf{E B}}$ is a parallel to $\overrightarrow{\mathbf{F A}}$

$\Rightarrow \overrightarrow{\mathbf{E B}}=2 \overrightarrow{\mathbf{F A}}$
and $\overrightarrow{\mathbf{F C}}$ is parallel to $\overrightarrow{\mathbf{A B}}$.
$\Rightarrow \overrightarrow{\mathbf{F C}}=2 \overrightarrow{\mathbf{A B}}$
Thus, $\overrightarrow{\mathbf{A D}}+\overrightarrow{\mathbf{E B}}+\overrightarrow{\mathbf{F C}}=2 \overrightarrow{\mathbf{B C}}+2 \overrightarrow{\mathbf{F A}}+2 \overrightarrow{\mathbf{A B}}$
$=2(\overrightarrow{\mathbf{F A}}+\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}})$
$=2(\overrightarrow{\mathbf{F C}})=2(2 \overrightarrow{\mathbf{A B}})=4 \overrightarrow{\mathbf{A B}}$
487 (d)
Here, $\overrightarrow{\mathbf{a}_{\mathbf{1}}}=6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{a}_{\mathbf{2}}}=-4 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}-\hat{\mathbf{k}}$,
$\overrightarrow{\mathbf{b}_{\mathbf{1}}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}_{2}}=3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
\therefore Shortest distance
$=\left|\frac{\left(\overrightarrow{\mathbf{a}_{2}}-\overrightarrow{\mathbf{a}_{1}}\right) \cdot\left(\overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}}\right)}{\left|\overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}}\right|}\right|$
$=\left|\frac{(-10 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \cdot(8 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})}{\sqrt{64+64+16}}\right|$
$=\left|-\frac{108}{12}\right|=9$
488 (c)
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -6 & -3 \\ 4 & 3 & -1\end{array}\right|=15 \hat{\mathbf{i}}-10 \hat{\mathbf{j}}+30 \hat{\mathbf{k}}$
and $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{15^{2}+(-10)^{2}+(30)^{2}}=35$
\therefore Required vector $=\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}$
490 (a)
Let O be the origin

$\therefore \overrightarrow{\mathbf{B E}}+\overrightarrow{\mathbf{A F}}=\overrightarrow{\mathbf{O E}}-\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O F}}-\overrightarrow{\mathbf{O A}}$
$=\frac{\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O C}}}{2}-\overrightarrow{\mathbf{O B}}+\frac{\overrightarrow{\mathbf{O B}}+\overrightarrow{\mathbf{O C}}}{2}-\overrightarrow{\mathbf{O A}}$
$=\frac{\overrightarrow{\mathbf{O C}}}{2}+\frac{\overrightarrow{\mathbf{O C}}}{2}+\frac{\overrightarrow{\mathbf{O A}}}{2}-\overrightarrow{\mathbf{O A}}+\frac{\overrightarrow{\mathbf{O B}}}{2}-\overrightarrow{\mathbf{O B}}$
$=\overrightarrow{\mathbf{O C}}-\frac{\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O B}}}{2}=\overrightarrow{\mathbf{O C}}-\overrightarrow{\mathbf{O D}}=\overrightarrow{\mathbf{D C}}$
491 (d)
$|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}-2|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=1+1-2 \cos 60^{\circ}=2-1$
$\Rightarrow|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|=1$
492 (b)

Given, $2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$
$\Rightarrow 2 \overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{c}}$
Taking cross product with $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ respectively, we get
$2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}})+3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow 3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
and $2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}})=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
$\Rightarrow 2(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
$=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+3(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \quad$ [using Eq. (i)]
$=4(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$
$=2(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}[$ using Eq. (ii)]
$=3(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
493 (d)
$[\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}}]$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}}-3 \overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{a}})\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+12 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}$
$=(\overrightarrow{\mathbf{a}}-2 \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}+4 \overrightarrow{\mathbf{c}}+12 \overrightarrow{\mathbf{b}})$
$=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}-24 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}$
$=1-24 \times 9=1-216=-215$
494 (b)
Given, area $=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=15$
If the sides are $(3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}})$ and $(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}})$, then
Area of parallelogram
$=|(3 \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}})|=7|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$=7 \times 15=105$ sq units
498
(a)

Given, $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=0 \Longrightarrow \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
$\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}})=0$
$\Rightarrow \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
and $\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=0$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0$
$\therefore \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
Now, $|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+|\overrightarrow{\mathbf{c}}|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+$
$\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}})$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^{2}=9+16+25+0=50$
$\Rightarrow|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|=5 \sqrt{2}$
499 (b)
We have,
$(\vec{b} \times \vec{c}) \times \vec{a}=-\{\vec{a} \times(\vec{b} \times \vec{c})\}$
$\Rightarrow(\vec{b} \times \vec{c}) \times \vec{a}=-\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\}$

$$
=(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}
$$

501 (c)
Since, $|\overrightarrow{\mathbf{u}}|=1,|\overrightarrow{\mathbf{v}}|=2,|\overrightarrow{\mathbf{w}}|=3$

The projection of $\overrightarrow{\mathbf{v}}$ along $\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}}{|\overrightarrow{\mathbf{u}}|}$ and the projection of $\overrightarrow{\mathbf{w}}$ along $\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}}}{|\overrightarrow{\mathbf{u}}|}$
according to given condition,
$\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}}{|\overrightarrow{\mathbf{u}}|}=\frac{\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}}}{|\overrightarrow{\mathbf{u}}|} \Rightarrow \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}}$
Also, $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}=0$
Now, $|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}|^{2}=|\overrightarrow{\mathbf{u}}|^{2}+|\overrightarrow{\mathbf{v}}|^{2}+|\overrightarrow{\mathbf{w}}|^{2}$
$-2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}-2 \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}+2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
$=1+4+9-2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}} \quad$ [from Eq. (i)
$\Rightarrow|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}|^{2}=14+0$
$\Rightarrow|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}|=\sqrt{14}$
502 (b
Area of triangle $=\frac{1}{2}\{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\}$
503 (c)
$\because(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
$\Rightarrow(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{a}}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
$\Rightarrow(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}) \overrightarrow{\mathbf{a}}=(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}$
$\Rightarrow \overrightarrow{\mathbf{a}}$ is parallel to $\overrightarrow{\mathbf{c}}$
504 (d)
Let $\overrightarrow{\mathbf{r}}$ be a unit vector such that
$\overrightarrow{\mathbf{r}}=x(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})+y(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=(x+y) \hat{\mathbf{i}}+(2 x+y) \hat{\mathbf{j}}+(x+2 y) \hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=0$
$\Rightarrow 2 x+2 y+2 x+y+x+2 y=0$
$\Rightarrow y=-x$
$\therefore \overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}-x \hat{\mathbf{k}} \Rightarrow \overrightarrow{\mathbf{r}}=\frac{\hat{\mathbf{i}}-\hat{\mathbf{k}}}{\sqrt{2}}$
505 (a)
Since \vec{a}, \vec{b} and \vec{c} are unit vectors inclined at an angle θ. Therefore,
$|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ and $\cos \theta=\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
Now,
$\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$
$\Rightarrow \vec{a} \cdot \vec{c}=\alpha(\vec{a} \cdot \vec{a})+\beta(\vec{a} \cdot \vec{b})+\gamma\{\vec{a} \cdot(\vec{a} \times \vec{b})\}$
$\Rightarrow \cos \theta=\alpha|\vec{a}|^{2} \quad[\because \vec{a} \cdot \vec{b}=0, \vec{a} \cdot(\vec{a} \times \vec{b})=0]$
$\Rightarrow \cos \theta=\alpha$
Similarly, by taking dot product on both sides of
(i) by \vec{b}, we get, $\beta=\cos \theta$
$\therefore \alpha=\beta$
Thus, option (a) is incorrect
Again,
$\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$
$\Rightarrow|\vec{c}|^{2}=|\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})|^{2}$
$\Rightarrow|\vec{c}|^{2}=\alpha^{2}|\vec{a}|^{2}+\beta^{2}|\vec{b}|^{2}+\gamma^{2}|\vec{a} \times \vec{b}|^{2}$

$$
\begin{aligned}
& +2 \alpha \beta(\vec{a} \cdot \vec{b})+2 \alpha \gamma\{\vec{a} \cdot(\vec{a} \times \vec{b})\} \\
& +2 \beta \gamma\{\vec{b} \cdot(\vec{a} \times \vec{b})\}
\end{aligned}
$$

$\Rightarrow 1=\alpha^{2}+\beta^{2}+\gamma^{2}|\vec{a} \times \vec{b}|^{2}$
$\Rightarrow 1=2 \alpha^{2}+\gamma^{2}\left\{|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \frac{\pi}{2}\right\}$
$\Rightarrow 1=2 \alpha^{2}+\gamma^{2}$
$\Rightarrow \alpha^{2}=\frac{1-\gamma^{2}}{2}$
But, $\alpha=\beta=\cos \theta$
$\therefore 1=2 \alpha^{2}+\gamma^{2} \Rightarrow \gamma^{2}=1-2 \cos ^{2} \theta=-\cos 2 \theta$
$\therefore \alpha^{2}=\beta^{2}=\frac{1-\gamma^{2}}{2}=\frac{1+\cos 2 \theta}{2}$
Thus, option (b), (c) and (d) are correct
506 (d)
Let $\vec{a}=7 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}$ and $\vec{b}=-2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ be the position vectors of points A and B respectively.
Then the bisector of $\angle A O B$ divides $A B$ in the ratio $O A: O B$ i.e. $9: 3$ or $3: 1$. Therefore, the vector lying along the bisector is
$\frac{3(-2 \hat{\imath}-\hat{\jmath}+2 \hat{k})+(7 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})}{3+1}$

$$
=\frac{1}{4}(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})
$$

\therefore Required vector $= \pm 5 \sqrt{6}\left(\frac{(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})}{\sqrt{54}}\right)=$
$\pm \frac{5}{3}(\hat{\imath}-7 \hat{\jmath}+2 \hat{k})$
507 (b)
Since, $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are collinear.
$\therefore \overrightarrow{\mathbf{b}}=m \overrightarrow{\mathbf{a}}$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=m|\overrightarrow{\mathbf{a}}|$
$\Rightarrow|\overrightarrow{\mathbf{b}}|=m \sqrt{4+9+36}= \pm 7 m$
$\Rightarrow 21= \pm 7 m \Rightarrow m= \pm 3$
$\therefore \overrightarrow{\mathbf{b}}= \pm 3 \overrightarrow{\mathbf{a}}= \pm(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
510 (a)
Position vectors of vertices A, B and C of the
triangle $A B C$ are $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$
\therefore Centroid of triangle
$(G)=\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}$
Now, $\overrightarrow{\mathbf{G A}}+\overrightarrow{\mathbf{G B}}+\overrightarrow{\mathbf{G C}}$
$=\left(\overrightarrow{\mathbf{a}}-\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}\right)+\left(\overrightarrow{\mathbf{b}}-\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}\right)$

$$
+\left(\overrightarrow{\mathbf{c}}-\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}}{3}\right)
$$

$=\overrightarrow{\mathbf{0}}$
511 (d)
Since X and Y divide $A \vec{B}$ internally and externally
in the ratio $2: 1$. Therefore, the position vectors of X and Y are given by $\frac{2 \vec{b}+\vec{a}}{3}$ and $2 \vec{b}-\vec{a}$ respectively Hence, $\vec{X} Y=(2 \vec{b}-\vec{a})-\frac{1}{3}(2 \vec{b}+\vec{a})=\frac{4}{3}(\vec{b}-\vec{a})$
512 (a)
Let $\overrightarrow{\mathbf{a}}=(2,1,-1), \overrightarrow{\mathbf{b}}=(1,-1,0)$ and $\overrightarrow{\mathbf{c}}=(5,-1,1)$
$\therefore \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}=(2+1-5) \hat{\mathbf{i}}+(1-1+1) \hat{\mathbf{j}}+(-1$

$$
+0-1) \hat{\mathbf{k}}
$$

$=-(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
\therefore Unit vector of
$(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})=-\frac{(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{3}$
\therefore Required unit vector of
$(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}})=\frac{(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})}{3}$
513 (b)
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
\therefore Unit vector
$= \pm \frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}= \pm \frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{1^{2}+1^{2}+1^{2}}$
$= \pm \frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
So, there are two perpendicular vectors of unit length.
514 (b)
Let $\overrightarrow{\mathbf{r}}=(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})+b(6 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$
$=(3+6 b) \hat{\mathbf{i}}+(4-7 b) \hat{\mathbf{j}}+(5-3 b) \hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})=0$
$\Rightarrow(3+6 b) 1+(4-7 b) 1-(5-3 b) 1=0$
$\Rightarrow b=-1$
$\therefore \overrightarrow{\mathbf{r}}=-3 \hat{\mathbf{i}}+11 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}$
515 (d)
Given $|\overrightarrow{\mathbf{x}}|=|\overrightarrow{\mathbf{y}}|=1$ and $\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{y}}=0$
$|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|^{2}=|\overrightarrow{\mathbf{x}}|^{2}+|\overrightarrow{\mathbf{y}}|^{2}+2(\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{y}})$
$\Rightarrow|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|^{2}=1+1+0$
$\Rightarrow|\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}|=\sqrt{2}$
516 (c)
Let $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
Given, $[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \mathbf{C}]=9$ cu units
Using the relation $[\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}} \overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}}]=$
$[\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}} \overrightarrow{\mathbf{C}}]^{2}=(9)^{2}=81$ cu units
517 (a)
Since, $\overrightarrow{\mathbf{a}}=8 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}=-7 \overrightarrow{\mathbf{b}}$
$\therefore \overrightarrow{\mathbf{a}}$ is parallel to $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is anti-parallel to $\overrightarrow{\mathbf{b}}$
$\Rightarrow \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ are anti-parallel
\Rightarrow Angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ is π
519 (a)
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=(\hat{\mathbf{\imath}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}}) \cdot \hat{\mathbf{\imath}}=1$
and $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=(\hat{\mathbf{i}}+\hat{\mathbf{\jmath}}) \cdot \hat{\mathbf{\imath}}=1$
Now, $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{c}}=(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}-(\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{a}}=\mu \overrightarrow{\mathbf{b}}+\lambda \overrightarrow{\mathbf{a}}$
$\Rightarrow \mu=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ and $\lambda=-\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}$
$\Rightarrow \mu=1$ and $\lambda=-1$
$\therefore \mu+\lambda=1-1=0$
520 (b)
Let angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is α.
Given, $|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=\sqrt{15}$
$\Rightarrow|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin \alpha=\sqrt{15}$
$\Rightarrow \sin \alpha=\frac{\sqrt{15}}{4}$
$\therefore \cos \alpha=\sqrt{1-\sin ^{2} \alpha}=\sqrt{1-\frac{15}{16}}$
$=\frac{1}{4}$
$\because \overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}} \quad$ [given]
$\Rightarrow(\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}})^{2}=\lambda^{2}(\overrightarrow{\mathbf{a}})^{2}$
$\Rightarrow \overrightarrow{\mathbf{b}}^{2}+4 \overrightarrow{\mathbf{c}}^{2}-4 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\lambda^{2} \overrightarrow{\mathbf{a}}^{2}$
$\Rightarrow 16+4 \times 1-4(|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \alpha)=\lambda^{2} \cdot 1^{2}$
$\Rightarrow 20-4=\lambda^{2}$
$\Rightarrow \lambda= \pm 4$
521 (a)
The given condition mean that $\overrightarrow{\mathbf{r}}$ is perpendicular to all three vectors $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$. This is possible only if they are coplanar.
$\therefore[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
523 (d)
Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}+\hat{\mathbf{k}}$
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|$
$=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$
and $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}=\sqrt{3}$
\therefore Required unit vector
$=\frac{\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}=\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$
Alternate Let $\overrightarrow{\mathbf{a}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
Since, $\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})=0$ and $\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{j}}+\hat{\mathbf{k}})=0$
$\Rightarrow x+y=0$ and $y+z=0$
Also $x^{2}+y^{2}+z^{2}=1$
$\Rightarrow x=1, y=-1$ and $z=1$
$\therefore \overrightarrow{\mathbf{a}}=\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$

Let $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{b}}$
$\Rightarrow \overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}(1+t)+\hat{\mathbf{j}}(2-t)+\hat{\mathbf{k}}(1+t)$
Since, The projection of $\overrightarrow{\mathbf{r}}$ on $\overrightarrow{\mathbf{c}}$,
$\frac{\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}}{|\overrightarrow{\mathbf{c}}|}=\frac{|1|}{|\sqrt{3}|} \quad$ [given]
$\Rightarrow \frac{1 \cdot(1+t)+1 \cdot(2-t)-1 \cdot(1+t)}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}}$
$\Rightarrow 2-t= \pm 1$
$\Rightarrow t=1$ or 3
When, $t=1, \overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
When, $t=3, \overrightarrow{\mathbf{r}}=4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
525 (a)
Given, $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{w}}$ and $\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$
$\Rightarrow(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$
$\Rightarrow(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \times \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$
$\Rightarrow \overrightarrow{\mathbf{v}}-(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{v}}$
$\Rightarrow(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{u}}=0$
$\Rightarrow(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})=0$
Now, $[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}]=\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$
$=\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}))$
$=\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}})$
$=\overrightarrow{\mathbf{u}} \cdot\left(\overrightarrow{\mathbf{v}}^{2} \times \overrightarrow{\mathbf{u}}-(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}\right.$
$=\overrightarrow{\mathbf{v}}^{2} \overrightarrow{\mathbf{u}}^{2}=1$
527 (b)
Given, $\frac{(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|^{2}}=\frac{4}{3}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
$\Rightarrow \frac{\{(\lambda \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})\}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})}{(1+1+1)}$
$=\frac{4}{3}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
$\Rightarrow(\lambda+3-1)(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})=4(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
$\Rightarrow(\lambda+2)(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})=4(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
On equating the coefficient of $\hat{\mathbf{i}}$, we get
$\lambda+2=4 \Rightarrow \lambda=2$
528 (a)
Given that, $\overrightarrow{\mathbf{0 A}}=\hat{\mathbf{\imath}}+x \hat{\mathbf{\jmath}}+3 \hat{\mathbf{k}}$
$\overrightarrow{\mathbf{O B}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{0}} \boldsymbol{C}=y \hat{\mathbf{1}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$
Since A, B, C are collinear. Then $\overrightarrow{\mathbf{A}}=\lambda \overrightarrow{\mathbf{B C}}$
$\Rightarrow 2 \hat{\mathbf{i}}+(4-x) \hat{\mathbf{\jmath}}+4 \hat{\mathbf{k}}=\lambda[(y-3) \hat{\mathbf{\imath}}-6 \hat{\mathbf{j}}-12 \hat{\mathbf{k}}]$
On comparing the coefficient of $\hat{1}, \hat{\jmath}$ and $\hat{\mathrm{k}}$, we get
$2=(y-3) \lambda$
$4-x=-6 \lambda$
and $4=-12 \lambda \Rightarrow \lambda=-\frac{1}{3}$
On putting the value of λ is Eqs. (i) and (ii),we get $y=-3$ and $x=2$

Given have magnitude of $\overrightarrow{\mathbf{O A}}$ and $\overrightarrow{\mathbf{O B}}$ are 5 and 6
respectively
and $\angle B O A=60^{\circ}$
$\therefore \overrightarrow{\mathbf{O A}} \cdot \overrightarrow{\mathbf{O B}}=|\overrightarrow{\mathbf{O A}}||\overrightarrow{\mathbf{O B}}| \cdot \cos 60^{\circ}$
$\Rightarrow \overrightarrow{\mathbf{O A}} \cdot \overrightarrow{\mathbf{O B}}=5 \cdot 6 \cos 60^{\circ}$
$\Rightarrow \overrightarrow{\mathbf{O A}} \cdot \overrightarrow{\mathbf{O B}}=5 \times 6 \times \frac{1}{2}=15$
530 (d)
It is given that $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$
We have,
$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$
$\Rightarrow 1=1+1+2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow \cos \theta=-\frac{1}{2} \Rightarrow \theta=\frac{2 \pi}{3}$
531 (a)
Area of $\triangle A B C=\frac{1}{2}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|$
$=\frac{1}{2} \sqrt{4+16+16}=3$ sq units
532 (a)
Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ from a right handed system
$\therefore \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
$=\left|\begin{array}{lll}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 1 & 0 \\ x & y & z\end{array}\right|=z \hat{\mathbf{i}}-x \hat{\mathbf{k}}$
(b)

Given that, $|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{c}}|=1,|\overrightarrow{\mathbf{b}}|=4$
Let angle between $\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ is α, then
$|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=\sqrt{15} \quad$ (given)
$\Rightarrow|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin \alpha=\sqrt{15}$
$\Rightarrow \sin \alpha=\frac{\sqrt{15}}{4 \times 1}=\frac{\sqrt{15}}{4}$
$\therefore \cos \alpha=\sqrt{1-\sin ^{2} \alpha}=\frac{1}{4}$
We have, $\overrightarrow{\mathbf{b}}=2 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}$
On squaring both sides, we get
$(\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}})^{2}=\lambda^{2}(\overrightarrow{\mathbf{a}})^{2}$
$\Rightarrow \overrightarrow{\mathbf{b}}^{2}+4 \overrightarrow{\mathbf{c}}^{2}-4 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\lambda^{2} \overrightarrow{\mathbf{a}}^{2}$
$\Rightarrow 16+4-4|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \alpha=\lambda^{2}$
$\Rightarrow 16+4-4 \times 4 \times 1 \times \frac{1}{4}=\lambda^{2}$
$\Rightarrow \lambda^{2}=16+4-4=16$
$\Rightarrow \lambda= \pm 4$
534 (a)
We have,
$P(\vec{a}) \quad Q(\vec{b}) \quad R$
$P R=5 P Q \Rightarrow P Q+Q R=5 P Q \Rightarrow 4 P Q=Q R$
$\therefore P R: Q R=5: 4$
$\Rightarrow R$ divides $P Q$ externally in the ratio $5: 4$
\Rightarrow Position vector of R is $5 \vec{b}-4 \vec{a}$
536 (a)
We have,
$\vec{B} A+\vec{B} C+\vec{C} D+\vec{D} A$
$=\vec{B} A+(\vec{B} C+\vec{C} D)+\vec{D} A=\vec{B} A+(\vec{B} D+\vec{D} A)$
$=\vec{B} A+\vec{B} A=2 \vec{B} A$
537 (a)
Given centre of sphere $=(1,0,1)$ and radius $=4$
\therefore Vector equation of sphere is
$|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}|=R$ Where $\overrightarrow{\mathbf{a}}$ centre of sphere and
R radius of sphere.
Hence, the vector equation of sphere is
$|\overrightarrow{\mathbf{r}}-(\hat{\mathbf{i}}+\hat{\mathbf{k}})|=4$
538 (b)
We have, $|[\vec{a} \vec{b} \vec{c}]|=V$
Volume V_{1} of the parallelopiped having diagonals of the given parallelopiped as three concurrent edges is given by
$V_{1}=|[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]|=|2[\vec{a} \vec{b} \vec{c}]|=2 V$

540 (d)
The given equation is
$\overrightarrow{\mathbf{r}^{2}}-2 \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}}+h=0,|\overrightarrow{\mathbf{c}}|>\sqrt{h}$
This is the equation of sphere in diameter form.
ie,$(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{b}})=0$
541 (c)
Let the given points be A, B, C respectively.
If A, B, C are collinear, then
$A \vec{B}=\lambda B \vec{C}$ for some scalar λ
$\Rightarrow 2 \hat{\imath}-8 \hat{\imath}=\lambda\{(a!-12) \hat{\imath}+16 \hat{\jmath}\}$
$\Rightarrow \lambda(a-12)=2$ and $16 \lambda=-8$
$\Rightarrow a-12=-4 \Rightarrow a=8$
542 (a)
We have,
$\vec{a} \times(\vec{a} \times \vec{b})=\vec{b} \times(\vec{b} \times \vec{c})$
$\Rightarrow(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=(\vec{b} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{c}$
Taking dot product on both sides by $\vec{b} \times \vec{c}$, we get

$$
\begin{aligned}
\Rightarrow(\vec{a} \cdot \vec{b})\{\vec{a} \cdot(\vec{b} & \times \vec{c})\}-(\vec{a} \cdot \vec{a})\{\vec{b} \cdot(\vec{b} \times \vec{c})\} \\
& =(\vec{b} \cdot \vec{c})\{\vec{b} \cdot(\vec{b} \times \vec{c})\} \\
& -(\vec{b} \cdot \vec{b})\{\vec{c} \cdot(\vec{b} \times \vec{c})\}
\end{aligned}
$$

$\Rightarrow(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{c}]=0$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=0 \quad[\because \vec{a} \cdot \vec{b} \neq 0]$
543 (a)
We have,

$$
\begin{aligned}
& {[\vec{a} \vec{b} \vec{a} \times \vec{b}]+(\vec{a} \cdot \vec{b})^{2}} \\
& =(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})+(\vec{a} \cdot \vec{b})^{2} \\
& \Rightarrow[\vec{a} \vec{b} \vec{a} \times \vec{b}]+(\vec{a} \cdot \vec{b})^{2}=|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2} \\
& =|\vec{a}|^{2}|\vec{b}|^{2}
\end{aligned}
$$

544 (d)
Since,
$[3 \overrightarrow{\mathbf{v}} p \overrightarrow{\mathbf{v}} p \overrightarrow{\mathbf{w}}]-[p \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}} q \overrightarrow{\mathbf{u}}]-[2 \overrightarrow{\mathbf{w}} q \overrightarrow{\mathbf{v}} q \overrightarrow{\mathbf{u}}]=0$
$\therefore 3 p^{2}[\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})]-p q[\overrightarrow{\mathbf{v}} \cdot(\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})]$
$-2 q^{2}[\overrightarrow{\mathbf{w}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}})]=0$
$\Rightarrow\left(3 p^{2}-p q+2 q^{2}\right)[\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})]=0$
But $[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{w}}] \neq 0$
$\Rightarrow 3 p^{2}-p q+2 q^{2}=0$
$\Rightarrow p=q=0$
545 (a)
$\overrightarrow{\mathbf{a}} \cdot[(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})]$
$=\overrightarrow{\mathbf{a}} \cdot[\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})]$
$=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})$
$=\left[\begin{array}{ll}\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \mathbf{c}]+[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]=0 \quad[\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]=-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]]\end{array}\right.$
546 (b)
Let, $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -3 & 2 \\ -1 & 2 & 0\end{array}\right|=-4 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$
\therefore Area of parallelogram $=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
$=\frac{1}{2} \sqrt{16+4+1}=\frac{\sqrt{21}}{2}$
547 (c)
Since, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \ldots$ (i)
Also, $(\overrightarrow{\mathbf{a}}+3 \overrightarrow{\mathbf{b}}) \cdot(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})=-10$
$\Rightarrow 2|\overrightarrow{\mathbf{a}}|^{2}-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+6 \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}-3|\overrightarrow{\mathbf{b}}|^{2}=-10$
$\Rightarrow 2-3|\overrightarrow{\mathbf{b}}|^{2}=-10 \Rightarrow|\overrightarrow{\mathbf{b}}|=2$ [from Eq. (i)]
548
(a)

We have, $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+\hat{\jmath}, \vec{c}=\hat{\imath}$
$\therefore(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$
$\Rightarrow(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{a}=\lambda \vec{a}+\mu \vec{b}$
$\Rightarrow \vec{b}-\vec{a}=\lambda \vec{a}+\mu \vec{b}$
$\Rightarrow(\lambda+1) \vec{a}+(\mu-1) \vec{b}=\overrightarrow{0}$
$\Rightarrow \lambda+1=0$ and $\mu-1=0 \quad[\because \vec{a}, \vec{b}$, are non collinear
$\Rightarrow \lambda+\mu=0$
(c)

Let angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be $\theta_{1} \cdot \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ be θ_{2}
and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}$ be θ
Since, $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$
$\Rightarrow \sin \theta_{1} \cdot \sin \theta_{2}$
$\cdot \cos \theta$
$=1 \quad(\because|\overrightarrow{\mathbf{a}}|=|\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{c}}|=|\overrightarrow{\mathbf{d}}|=1)$
$\Rightarrow \theta_{1}=90^{\circ} \cdot \theta_{2}=90^{\circ}, \theta=0^{\circ}$
$\Rightarrow \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \perp \overrightarrow{\mathbf{d}},(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \|(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
So, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}) \cdot \overrightarrow{\mathbf{c}}$
and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{d}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}) \cdot \overrightarrow{\mathbf{d}}$
$\Rightarrow[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$ and $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{d}}]=0$
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are coplanar vector so option
(A) and (B) are incorrect.

Let $\overrightarrow{\mathbf{b}} \| \overrightarrow{\mathbf{d}} \Rightarrow \overrightarrow{\mathbf{b}}= \pm \overrightarrow{\mathbf{d}}$
As $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1 \Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})=$
± 1
$\Rightarrow[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow[\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}= \pm 1 \quad(\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0)$
Which is a contradiction so option (c) is correct.
Let option (d) is correct

$\Rightarrow \overrightarrow{\mathbf{d}}= \pm \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}= \pm \overrightarrow{\mathbf{b}}$
As $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1$
$\Rightarrow(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})= \pm 1$
Which is a contradiction so option (d) is incorrect.
Alternate Option (c) and (d) may be observed from given in figure.

552 (b)
$(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) \cdot \overrightarrow{\mathbf{c}} \leq|\hat{\mathbf{\imath}} \times \hat{\mathbf{\jmath}}||\overrightarrow{\mathbf{c}}| \cos \frac{\pi}{6}$
$\Rightarrow-\frac{\sqrt{3}}{2} \leq(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) \cdot \overrightarrow{\mathbf{c}} \leq \frac{\sqrt{3}}{2}$
553 (b)
It is given that \hat{a} and \hat{b} are mutually perpendicular unit vectors. Therefore, \hat{a}, \hat{b} and $\hat{a} \times \hat{b}$ are non-
coplanar vectors.
$\therefore[\hat{a} \hat{b} \hat{a} \times \hat{b}] \neq 0$
If the vectors $\vec{\alpha}=x \hat{a}+x \hat{b}+z(\hat{a} \times \hat{b}), \vec{\beta}=\hat{a}+$ $(\hat{a} \times \hat{b})$
and, $\vec{\gamma}=z \hat{a}+z \hat{b}+y(\hat{a} \times \hat{b})$ are coplanar, then $[\vec{\alpha} \vec{\beta} \vec{\gamma}]=0$
$\Rightarrow\left|\begin{array}{lll}x & x & z \\ 1 & 0 & 1 \\ z & z & y\end{array}\right|[\hat{a} \hat{b} \hat{a} \times \hat{b}]=0$
$\Rightarrow\left|\begin{array}{ccc}x & x & z \\ 1 & 0 & 1 \\ z & z & y\end{array}\right|=0 \quad[\because[\hat{a} \hat{b} \hat{a} \times \hat{b}] \neq 0]$
$\Rightarrow x(0-z)-x(y-z)+z(z-0)=0$
$\Rightarrow-x z-y x+x z+z^{2}=0$
$\Rightarrow z^{2}=x y$
$\Rightarrow z$ is the geometric mean of x and y
554 (d)
Given, $\overrightarrow{\mathbf{a}}=(1, p, 1), \overrightarrow{\mathbf{b}}=(q, 2,2)$
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=r$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=(0,-3,-3)$
Now, $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=(\hat{\mathbf{i}}+p \hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(q \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$\Rightarrow q+2 p+2=r \quad$ [given]....(i)
Now, $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & p & 1 \\ q & 2 & 2\end{array}\right|$
$\Rightarrow(2 p-2) \hat{\mathbf{i}}+(q-2) \hat{\mathbf{j}}+(2-p q) \hat{\mathbf{k}}$
$=\{0 \hat{\mathbf{i}}+(-3) \hat{\mathbf{j}}+(3) \hat{\mathbf{k}}$ [given]
$\Rightarrow 2 p-2=0 ; q-2=-3 ; 2-p q=3$
$\Rightarrow p=1, q=-1$
From Eqs. (i),
$-1+2+2=r$
$=r=3$
555 (c)
We have,
$(3 \hat{\imath}-2 \hat{\jmath}+\hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath}-4 \hat{k})=0$
So, the triangle is right angled
556 (a)
Since, $2|\hat{\mathbf{i}}+x \hat{\mathbf{j}}+3 \hat{\mathbf{k}}|=|4 \hat{\mathbf{i}}+(4 x-2) \hat{\mathbf{j}}+2 \hat{\mathbf{k}}|$
$\Rightarrow 2 \sqrt{1+x^{2}+9}=\sqrt{4^{2}+(4 x-2)^{2}+2^{2}}$
$\Rightarrow 12 x^{2}-16 x-16=0$
$\Rightarrow(3 x+2)(x-2)=0$
$\Rightarrow x=2,-\frac{2}{3}$
(b)
$\because \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, and $\overrightarrow{\mathbf{c}}$ are the p th, q th, nth terms of an HP respectively.
$\frac{1}{a}=A+(p-1) D, \frac{1}{b}=A+(q-1) D$ and $\frac{1}{c}$

$$
=A+(r-1) D
$$

$\therefore q-r=\frac{c-b}{b c D}, r-p=\frac{a-c}{a c D}$

And $q-r=\frac{b-a}{a b D}$
$\Rightarrow \frac{(q-r)}{a}+\frac{(r-p)}{b}+\frac{(p-q)}{c}=0$
$\Rightarrow \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$
560 (d)
Given edges are
$\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-\lambda) \hat{\mathbf{k}}$
and $\overrightarrow{\mathbf{c}}=\mu \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+(1+\lambda-\mu) \hat{\mathbf{k}}$
\therefore Volume of parallelopiped
$=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$
$=\left|\begin{array}{ccc}1 & 0 & -1 \\ \lambda & 1 & 1-\lambda \\ \mu & \lambda & 1+\lambda-\mu\end{array}\right|$
$=1\left(1+\lambda-\mu-\lambda+\lambda^{2}\right)-0-1\left(\lambda^{2}-\mu\right)$
$=1+\lambda^{2}-\mu-\lambda^{2}+\mu=1$
Hence, volume depends on neither λ nor μ.
561 (a)
$\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})$
$=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})$
$=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}$
562 (c)
$\vec{A} C-\vec{B} D$
$=(\vec{A} B+\vec{B} C)-(\vec{B} A+\vec{A} D)$
$=\vec{A} B+\vec{B} C+\vec{A} B-\vec{A} D=2 \vec{A} B$

563 (c)
We have,
$\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=0$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}=2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}++\vec{c} \cdot \vec{a})$

$$
=0
$$

$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}++\vec{c} \cdot \vec{a}$

$$
=-\frac{3}{2}[\because|\vec{a}|=|\vec{b}|=|\vec{c}|=1]
$$

565 (a)
Given that, $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=5 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
The projection of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}$
$=\frac{(2 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}}) \cdot(5 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}$
$=\frac{10-3+2}{\sqrt{9}}=\frac{9}{3}=3$
566 (a)
Total force,
$\overrightarrow{\mathbf{F}}=3\left(\frac{6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}}{7}\right)+4\left(\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}}{7}\right)$
$=\frac{(30 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+33 \hat{\mathbf{k}})}{7}$
$\therefore \overrightarrow{\mathbf{d}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}-(2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})$
$=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
\therefore Work done $W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$
$=\left(\frac{30 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+33 \hat{\mathbf{k}}}{7}\right) \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
$=\frac{60-2+66}{7}=\frac{124}{7}$
567 (b)
$[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}]=\overrightarrow{\mathbf{a}} \cdot\{(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}) \times(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})\}$
$=\overrightarrow{\mathbf{a}} \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}\}$
$=\overrightarrow{\mathbf{a}} \cdot\{\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\}$
$=\left[\begin{array}{ll}\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{a}}]+[\overrightarrow{\mathbf{a}} \mathbf{c} \overrightarrow{\mathbf{a}}]=0\end{array}\right.$

