

10.VECTOR ALGEBRA

Single Correct Answer Type

1. A unit vector in *xy*-plane that makes an angle 45° with the vector $(\hat{i} + \hat{j})$ and an angle of 60° with the vector $(3\hat{i} - 4\hat{j})$, is

a)
$$\hat{\mathbf{i}}$$
 b) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}} - \hat{\mathbf{j}})$ c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}} + \hat{\mathbf{j}})$ d) None of these

2. Let $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ be unit vectors inclined at an angle $2\alpha(0 \le \alpha \le \pi)$ each other, then $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| < 1$, if a) $\alpha = \frac{\pi}{2}$ b) $\alpha < \frac{\pi}{3}$ c) $\alpha > \frac{2\pi}{3}$ d) $\frac{\pi}{3} < \alpha < \frac{2\pi}{3}$ 3. The cartesian from of the plane $\vec{\mathbf{r}} = (s - 2t)\hat{\mathbf{i}} + (3 - t)\hat{\mathbf{j}} + (2s + t)\hat{\mathbf{k}}$ is a) 2x - 5y - z - 15 = 0 b) 2x - 5y + z - 15 = 0c) 2x - 5y - z + 15 = 0 d) 2x + 5y - z + 15 = 0

4. If $\vec{\mathbf{a}} = 4\hat{\mathbf{i}} + 6\hat{\mathbf{j}}$ and $\vec{\mathbf{b}} = 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, the vector form of the component of $\vec{\mathbf{a}}$ along $\vec{\mathbf{b}}$ is a) $\frac{18}{5}(3\hat{\mathbf{i}} + 4\hat{\mathbf{k}})$ b) $\frac{18}{25}(3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ c) $\frac{36}{25}(3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ d) $\frac{19}{18}(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}})$

5. A force $\vec{F} = 2\hat{i} + \hat{j} - \hat{k}$ acts at a point *A*, whose position vectors is $2\hat{i} - \hat{j}$. The moment of \vec{F} about the origin is

- a) $\hat{i} + 2\hat{j} 4\hat{k}$ b) $\hat{i} 2\hat{j} 4\hat{k}$ c) $\hat{i} + 2\hat{j} + 4\hat{k}$ d) $\hat{i} 2\hat{j} + 4\hat{k}$
- 6. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors, then $\frac{(\vec{a}+2\vec{b}) \times (2\vec{b}+\vec{c}) \cdot (5\vec{c}+\vec{a})}{\vec{a} \cdot (\vec{b} \times \vec{c})}$ is equal to
 - a) 10 b) 14 c) 18 d) 12 $b_{1}^{2} = b_{1}^{2} = b_{1}^{2} = b_{1}^{2} = b_{2}^{2} = b_{1}^{2} = b_{1}^{2} = b_{2}^{2} = b_{1}^{2} = b_{$

7. If \vec{a} , \vec{b} and \vec{c} are perpendicular to $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ and $\vec{a} + \vec{b}$ respectively and if $|\vec{a} + \vec{b}| = 6$, $|\vec{b} + \vec{c}| = 8$ and $|\vec{c} + \vec{a}| = 10$, then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to a) $5\sqrt{5}$ b) 50 c) $10\sqrt{2}$ d) 10

8. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, then the angle θ which $\vec{a} + \vec{b} + \vec{c}$ makes with any one of three given vectors is given by

a)
$$\cos^{-1}\frac{1}{\sqrt{3}}$$
 b) $\cos^{-1}\frac{1}{3}$ c) $\cos^{-1}\frac{2}{\sqrt{3}}$ d) None of these

9. Forces 3 OA, 5 OB act along OA and OB. If their resultant passes through C on AB, then a) C is a mid-point of AB

- b) *C* divides *AB* in the ratio 2 : 1
- c) 3 AC = 5 CB
- d) 2 *AC* = 3 *CB*

10. The centre of the circle given by $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 15$ and $\vec{\mathbf{r}} - (\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 4$ is a) (1,2,4) b) (3,1,4) c) (1,3,4) d) None of these

12. The volume of the tetrahedron having the edges $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \lambda \hat{\mathbf{k}}$ as coterminous is $\frac{2}{3}$ cu unit. Then, λ equals

13. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors then the vector equation $\vec{r} = (1 - p - q)\vec{a} + p\vec{b} + q\vec{c}$ represent a a) Straight line b) Plane

	c) Plane passing through		d) Sphere	
14.				oint of application from the
		t (5, 3, 7), then the work do		- 25
	-	5	c) $\frac{25}{3}$ units	d) $\frac{25}{4}$ units
15.	If $\vec{\alpha} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}, \ \vec{\beta} = -$	$\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}, \ \vec{\gamma} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}},$, then what is the value of ($\vec{\mathbf{a}} \times \vec{\mathbf{b}} \cdot (\vec{\alpha} \times \vec{\gamma})?$
	a) 47	b) 74	c) -74	d) None of these
16.				= 2 is parallel to the vector
	· ,		c) $-4\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 11\hat{\mathbf{k}}$	$\mathbf{d}) - 4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 11\hat{\mathbf{k}}$
17.		agon with centre at the ori	igin such that	
	$\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = \lambda \overrightarrow{ED}. T$	-		
10	a) 2	b) 4	c) 6	d) 3
18.		ro, non-collinear vectors, t		
		$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \hat{\mathbf{k}}] \hat{\mathbf{k}} + [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{a}}]$ is equal		
	a) $2(\vec{a} \times \vec{b})$			d) None of these
19.	. ,	1 and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$, then	b is	
	a) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$		c) î	d) 2î
20.	Let \vec{a} , \vec{b} and \vec{c} be three no	n-coplanar vectors and let	\vec{p} , \vec{q} and \vec{r} be vector defined	d by the relations.
	$\vec{\mathbf{p}} = \frac{\vec{\mathbf{b}} \times \vec{\mathbf{c}}}{[\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}]}, \vec{\mathbf{q}} = \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{[\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}]}$ and	$\vec{\mathbf{r}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{\left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right]}$. Then, the value	of the expression $(\vec{a} + \vec{b}) \cdot \vec{j}$	$\vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$
	is equal to			
	a) 0	b) 1	c) 2	d) 3
21.		respectively the magnitude		
		$-4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}, \overline{\mathbf{a}_3} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ an	d $\overrightarrow{\mathbf{a}_4} = \widehat{-\mathbf{i}} + 3\mathbf{\hat{j}} + \mathbf{\hat{k}}$, then th	e correct order of
	m_1, m_2, m_3 and m_4 is			
22			c) $m_3 < m_4 < m_1 < m_2$	
22.			nber, then $[\lambda(\vec{a} + \vec{b})\lambda^2 \vec{b} \lambda]$	-
	a) exactly two values of λc) no real values of λ		b) exactly three values ofd) exactly one values of λ	
23.		non-negative numbers. If t	he vectors $a\hat{\mathbf{i}} + a\hat{\mathbf{j}} + c\hat{\mathbf{k}}, \hat{\mathbf{i}} + \hat{\mathbf{k}}$	
	plane, then <i>c</i> is	non negative numbers. It e	ne vectors ar + aj + ek, r +	
	a) The harmonic mean of		b) Equal to zero	
	c) The arithmetic mean o		d) The geometric mean o	
24.				D such that $\vec{p} = \mu \vec{A}D$, then
25	a) $\mu = \lambda + 1$	b) $\lambda = \mu + 1$	c) $\lambda + \mu = 1$	d) $\mu = 2 + \lambda$
25.			nd $ \vec{a} = 2$, $ \vec{b} = 3$, $ \vec{c} = 4$,	then the value of
	$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is equal) 00 /0	1) 20 /2
26	a) 29	b) -29	c) 29/2	d) -29/2
20.			$\dot{\mathbf{p}}$ is perpendicular to $\mathbf{\vec{a}} - \lambda \mathbf{\vec{b}}$	
	a) $\frac{9}{16}$	b) $\frac{3}{4}$	c) $\frac{3}{2}$	d) $\frac{4}{3}$
27.	$\vec{\mathbf{u}} = \hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) + \hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}})$	$(\hat{\mathbf{j}}) + \hat{\mathbf{k}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{k}})$ is equal	L	5
	a) a	b) 2 a	c) 3 ā	d) None of these
28.	The locus of a point equic	listant from two points wh	ose position vectors are \vec{a} a	ınd İ , is
	a) $\left\{ \vec{\mathbf{r}} - \frac{1}{2} \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right) \right\} \left(\vec{\mathbf{a}} - \vec{\mathbf{b}} \right)$	$\mathbf{b} = 0$	b) { $\vec{\mathbf{r}} - (\vec{\mathbf{a}} + \vec{\mathbf{b}})$ } $\cdot \vec{\mathbf{b}} = 0$	
				i) o
	c) $\left\{ \vec{\mathbf{r}} - \frac{1}{2} \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right) \right\} \cdot \vec{\mathbf{a}} = 0$		d) $\left\{ \vec{\mathbf{r}} - \frac{1}{2} \left(\vec{\mathbf{a}} - \vec{\mathbf{b}} \right) \right\} \cdot \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right)$	
29.	If $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are two vectors	s such that $ \vec{\mathbf{a}} + 3\sqrt{3}$, $\vec{\mathbf{b}} = 4$	4 and $\left \vec{\mathbf{a}}+\vec{\mathbf{b}}\right =\sqrt{7}$, then th	e angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is

	a) 120°	b) 60°	c) 30°	d) 150°
30.	2	2	- $\hat{\mathbf{k}}$, then a vector perpendic	-
	containing $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is		, , ,	ľ
		b) 17 î + 21 ĵ – 123 k	c) $-17\hat{i} - 21\hat{j} + 97\hat{k}$	d) $-17\hat{i} - 21\hat{j} - 97\hat{k}$
31.			ach of magnitude unity, the	
	a) 3	b) 1	c) $\sqrt{3}$	d) None of these
32.	$(\vec{a}\cdot\hat{i})\hat{i}+(\vec{a}\cdot\hat{j})\hat{j}+(\vec{a}\cdot\hat{k})$	${f \hat k}$ is equal to	-	
	a) a	b) 2 a	c) 3 a	d) d
33.	If $\vec{\mathbf{a}} \cdot \hat{\mathbf{i}} = \vec{\mathbf{a}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}}) = \vec{\mathbf{a}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}})$	$\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$), then $ec{\mathbf{a}}$ is equal t	0	
	a) î	b) ƙ	c) ĵ	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
34.	Let $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$	$\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\vec{\mathbf{c}}$ be a unit vict	or perpendicular to $\vec{\mathbf{a}}$ and c	oplanar with $ec{\mathbf{a}}$ and $ec{\mathbf{b}}$, then $ec{\mathbf{c}}$
	is			
	a) $\frac{1}{\sqrt{2}}(\hat{\mathbf{j}} + \hat{\mathbf{k}})$	b) $\frac{1}{\sqrt{2}}(\hat{\mathbf{j}}-\hat{\mathbf{k}})$	c) $\frac{1}{\sqrt{6}}(\hat{\mathbf{i}}-2\hat{\mathbf{j}}+\hat{\mathbf{k}})$	d) $\frac{1}{\sqrt{c}}(2\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$
35.	v =	v =	vo aining the line of intersectio	VO
	$\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}}$			
			c) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 5\hat{\mathbf{k}}) = 0$	d) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$
36.	If a parallelogram is cons	tructed on the vectors $\vec{a} =$	$3\vec{\mu} - \vec{v}, \vec{b} = \vec{u} + 3\vec{v}$ and $ \vec{u} $	$ = \vec{v} = 2$ and the angle
		ne ratio of the lengths of the		
	a) √7: √13	b) $\sqrt{6}:\sqrt{2}$) 18:18	d) None of these
37.	Let $\vec{a}, \vec{b}, \vec{c}$ be the position	vectors of the vertices A, E	B, C respectively of ΔABC . T	The vector area of $\triangle ABC$ is
	a) $\frac{1}{2} \{ \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{a} \times \vec{c}) \}$	$\vec{c} \times \vec{a}$) + $\vec{c} \times (\vec{a} \times \vec{b})$		
	<u>L</u>			
	b) $\frac{1}{2} (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{c})$	a)		
	c) $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$			
	d) $\frac{1}{2}$ { $(\vec{b}.\vec{c})\vec{a} + (\vec{c}.\vec{a})\vec{b} + (\vec{c}.\vec{a})\vec{b}$	$(\vec{a}, \vec{b})\vec{c}$		
20			÷	→ · · · · · · · · · · · · · · · · · · ·
38.				ied force is $\vec{F} = 2\hat{\imath} - \hat{\jmath} - \hat{k}$ is
39	a) 12 units $\vec{\mathbf{a}} \times [\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})]$ is equa	b) 11 units	c) 10 units	d) 9 units
07.	a × $[\mathbf{a} \times (\mathbf{a} \times \mathbf{b})]$ is equa a) $(\mathbf{\vec{a}} \times \mathbf{\vec{a}}) \cdot (\mathbf{\vec{b}} \times \mathbf{\vec{a}})$	1 10	b) $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{a}}) - \vec{\mathbf{b}} (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$	
	a) $(\mathbf{a} \times \mathbf{a}) \cdot (\mathbf{b} \times \mathbf{a})$ c) $[\mathbf{\vec{a}} \cdot (\mathbf{\vec{a}} \times \mathbf{\vec{b}})]\mathbf{\vec{a}}$			
40.		$ \Rightarrow \Rightarrow \Rightarrow \vec{1}$	d) $(\vec{\mathbf{a}} \cdot \vec{\mathbf{a}})(\vec{\mathbf{b}} \times \vec{\mathbf{a}})$	
40.	If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are non-coplanal	$\frac{\vec{a} \cdot \vec{a}}{\vec{b} \cdot \vec{a}} = \vec{b} \cdot \vec{b}$ vectors, then $\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} \end{vmatrix}$	$\mathbf{a} \cdot \mathbf{c}$ $\mathbf{\vec{h}} \cdot \mathbf{\vec{c}}$ is equal to	
	, , 1	$\vec{c} \cdot \vec{a} \vec{c} \cdot \vec{b}$	$\vec{c} \cdot \vec{c}$	
	0		$\mathbf{c})\left[\vec{\mathbf{a}}\vec{\mathbf{b}}\vec{\mathbf{c}}\right]^{1/3}$	d) None of these
41.	L J	$\cdot \vec{\mathbf{b}} = 12$ then $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ is eq		
	a) 12	b) 14	c) 16	d) 18
42.	If $ \vec{a} = 4$, $ \vec{b} = 4$ and $ \vec{c} $	= 5 such that $\vec{a} \perp (\vec{b} + \vec{c})$,	$\vec{b} \perp (\vec{c} + \vec{a})$ and $\vec{c} \perp (\vec{a} + \vec{b})$	\vec{b}), then $\left \vec{a} + \vec{b} + \vec{c} \right $ is
	a) 7	b) 5	c) 13	d) √57
43.		nit vectors is a third unit ve	ector, then the modulus of t	he difference of the unit
	vectors is		<i>–</i>	n F
A A	a) $\sqrt{3}$		c) $1 + \sqrt{3}$	d) −√3
44.		vectors \vec{a} and \vec{b} such that \vec{a}		π
	a) $0 \le \theta \le \pi$	b) $\frac{\pi}{2} \le \theta \le \pi$	c) $0 \le \theta \le \frac{\pi}{2}$	d) $0 < \theta < \frac{\pi}{2}$

45.	terminate on one straigh	t line, is	nitial points at (1, 1). The va	
	a) 0	b) 3	c) 6	d) 9
46.			s a, b, c then angle between	the vectors $\log a^3 \mathbf{i} +$
	$\log b3\mathbf{j} + \log c3\mathbf{k}$ and $q - r\mathbf{i}$ π	$+r-p\mathbf{j}+(p-q)\mathbf{k}$ is	π	
	a) $\frac{\pi}{6}$		b) $\frac{\pi}{2}$	
	c) $\frac{\pi}{3}$		d) $\sin^{-1}\left(\frac{1}{\sqrt{a^2+b^2+c^2}}\right)$	
47.	The value of λ , for which	the four points $2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$	$(\hat{i} + 2\hat{j} + 3\hat{k}, 3\hat{i} + 4\hat{j} - 2\hat{k}, \hat{i})$	$-\lambda \hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ are coplanar, is
	a) –2	b) 8	c) 6	d) 0
48.	Given that $ \vec{\mathbf{a}} = 3$, $ \vec{\mathbf{b}} = -$	4, $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} = 10$, then $ \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} $	² equals	
	a) 88	b) 44	c) 22	d) None of these
49.			nd $\hat{i} - 3\hat{j} + 4\hat{k}$, then the len	
	a) $\sqrt{8}, \sqrt{10}$		c) $\sqrt{5}, \sqrt{12}$	d) None of these
50.	If $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{c}}$ and $\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{c}}$			
	•		c) $ \vec{\mathbf{b}} = 2, \vec{\mathbf{b}} = 2 \vec{\mathbf{a}} $	
51.			satisfying $\vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{c}} = \vec{0}$ and	
	-	-	c) $\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$	-
52.			$-6\hat{j}+3\hat{k},x\hat{i}+2\hat{j}+2cx\hat{k}$ n	
	-	b) $0 < c < 4/3$		d) $c > 0$
53.		_	en angle between \vec{a} and \vec{b} is	
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) π
54.	If $\vec{\mathbf{p}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{q}} = 4\hat{\mathbf{k}} - \hat{\mathbf{j}}$ and	$\mathbf{r} \mathbf{i} = \mathbf{i} + \mathbf{k}$, then the unit v	ector in the direction of $3\vec{\mathbf{p}}$	$+\vec{\mathbf{q}}-2\vec{\mathbf{r}}$ is
			c) $\frac{1}{3}(\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	
		5	5	
55.			\vec{p} and $X + 2Y = \vec{q}$, where \vec{p}	$\vec{b} = \vec{i} + \vec{j}$ and $\vec{q} = \hat{i} - \hat{j}$. If θ is
	the angle between \vec{X} and			2
	a) $\cos\theta = \frac{4}{5}$	b) $\sin \theta = \frac{1}{\sqrt{2}}$	c) $\cos\theta = -\frac{4}{5}$	d) $\cos \theta = -\frac{3}{r}$
56.	5	V Z	5	$\vec{\mathbf{q}} = 6, \vec{\mathbf{q}} + \vec{\mathbf{r}} = 4\sqrt{3} \text{ and}$
50.	$ \vec{\mathbf{r}} + \vec{\mathbf{p}} = 4$, then $ \vec{\mathbf{p}} + \vec{\mathbf{q}} $		+ q respectively and if p +	$[\mathbf{q}] = 0, \mathbf{q} + \mathbf{I} = 4\sqrt{3}$ and
	a) $5\sqrt{2}$	b) 10	c) 15	d) 5
57.	y = 1	-	intersection of the diagonal	-
	$\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D =$	•	U U	
	a) 3 <i>ÕM</i>	b) 4 <i>ÕM</i>	c) 2 <i>ÕM</i>	d) <i>ÕM</i>
58.	The work done by the for	$\vec{F} = 2\hat{i} - \hat{j} - \hat{k}$ in movin	g an object along the vector	$r 3\hat{i} + 2\hat{j} - 5\hat{k}$ is
	a) –9 units	b) 15 units	c) 9 units	d) None of these
59.	$[\hat{i}\hat{k}\hat{j}] + [\hat{k}\hat{j}\hat{i}] + [\hat{j}\hat{k}\hat{i}]$	is equal to		
	a) 1	b) 3	c) -3	d) -1
60.	If \vec{a} , \vec{b} , \vec{c} are the unit vector	ors such that $\vec{\mathbf{a}}$ is perpendic	cular to the plane $ec{f b}$, $ec{f c}$ and the	he angle between $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ is $\frac{\pi}{2}$
	then $ \vec{a} + \vec{b} + \vec{c} $ is equal			5
	a) 0	b) ±1	c) ±2	d) ±3
61.			$\vec{\alpha} - \vec{\beta}, \vec{\mathbf{b}} = \vec{\alpha} + 3\vec{\beta}, \text{ if } \vec{\alpha} =$	
		of diagonal of the parallelog		
		b) $4\sqrt{3}$	c) $4\sqrt{17}$	d) None of these
62	If $ \vec{\mathbf{a}} = \vec{\mathbf{b}} $, then $(\vec{\mathbf{a}} + \vec{\mathbf{b}})$		~) TVI/	
52.	$ \mathbf{a} - \mathbf{v} , \text{ unerf}(\mathbf{a} + \mathbf{b})$	$(\mathbf{a} - \mathbf{b})$ is		

a) Positive b) Negative c) Zero d) None of these
63. If
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$$
 and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, $\vec{a} \neq 0$, then
a) $\vec{b} = \vec{c}$ b) $\vec{b} - \vec{c} | | \vec{a} < c \rangle$, $\vec{b} - \vec{c} \perp \vec{a}$ d) None of these
64. If the volume of the tetrahedron whose vertices are $(1, -6, 10), (-1, -3.7), (5, -1.3)$ and $(7, -4.7)$ is 11
cubic units, then $\lambda =$
a) 2, 6 b) 3, 4 c) 1, 7 d) 5, 6
65. The vector $\frac{1}{3}(21 - 2j + k)$ is
a) Unit vector
b) Parallel to the vector $i + j - 1/2\hat{k}$
c) Perpendicular to the vector $3i + 2j - 2\hat{k}$
d) All the above
66. If $r \times \hat{s} = \hat{c} \times \hat{b}$ and \vec{r} , $\hat{a} = 0$ where $\vec{a} = 21 + 3j - \hat{k}$, $\vec{b} = 3i - j + \hat{k}$ and $\vec{c} = 1 + j + 3\hat{k}$, then $\vec{r} =$
a) $\frac{1}{2}(i + j + \hat{k})$ b) $2(i + j + \hat{k})$ c) $2(-i + j + \hat{k})$ d) $\frac{1}{2}(i - j + \hat{k})$
67. $(\vec{a} \cdot \hat{j}) + (\vec{a} \cdot \hat{j})\hat{k}, \hat{k}$ sequal to
a) \vec{a} b) $2\vec{a}$ c) $3\vec{a}$ d) $\vec{0}$
68. If $|\vec{a}| = 3, |\vec{b}| = 4$ and $|\vec{a} + \hat{b}| = 5$, then $|\vec{a} - \vec{b}| =$
a) 6 b) $\vec{5}$ c) 4 d) 3
69. If \vec{b} and \vec{c} are any two non-collinear unit vectors and \vec{a} is any vector, then
($\vec{a} \cdot \hat{b} + \hat{b}(\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\hat{b} \times \hat{c})}{(\vec{b} \times \vec{c}]} \cdot (\vec{b} \times \hat{c})$
is equal to
a) $\vec{0}$ b) \vec{a} c) \vec{b} d) \vec{c} t) \vec{b}
70. The unit vector prependicular to i - j and coplanar with i + 2j and $2i - 2j + 4k$ is
a) $\frac{1 + j + k}{\sqrt{3}}$ b) $\frac{1 - j + k}{\sqrt{3}}$ c) $\frac{i + j - k}{\sqrt{3}}$ d) $\frac{1 - i - k}{\sqrt{3}}$
71. Unit vector which is perpendicular to both the vectors $3i + j + 2k$ and $2i - 2j + 4k$ is
a) $\frac{3i - j + j + k}{\sqrt{3}}$ b) $\frac{1 - i + k}{\sqrt{3}}$ c) $\frac{i + j - k}{\sqrt{3}}$ d) $\frac{1 - i - k}{\sqrt{3}}$
72. If the position vector of the vertices, A, B, C of a $AABC$ are $7j + 10k$, $-i$ $6j + 6k$ and $-4i + 9j + 6k$
respectively, then triangle is
a) β fully intagled and isosceles also
73. If the vectors $\vec{a}(x, y) =$ d) $(-2, 3)$ c) $(-2, -3)$ d) $(2, 3)$
74. The vectors $\vec{a}(x) = \cos x i + (\sin x)j$ and $\vec{b}(x) = x i + \sin x j$ are collinear, for
a) U

	equal to			
	a) 4	b) —13	c) 13	d) 6
78.	The value of $\frac{(\vec{a} \times \vec{b})^2 + (\vec{a} \times \vec{b})^2}{2\vec{a}^2\vec{b}^2}$,	,
	The value of $2\vec{a}^2\vec{b}^2$	——is		
	a) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$	b) 1	c) 0	d) $\frac{1}{2}$
79.	The magnitude of cross p	roduct of two vectors is $\sqrt{3}$	times the dot product. The	angle between the vectors
	is π	π	π	π
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$
80.	If <i>G</i> is the intersection of a	diagonals of a parallelogram	n ABCD and O is any point,	then $O\vec{A} + O\vec{B} + O\vec{C} +$
	$O\vec{D} =$			
	a) 2 <i>OG</i>	b) 4 <i>ÖG</i>	c) 5 <i>ÖG</i>	d) 3 <i>ÖG</i>
81.		$(2, 0, 1)$, then the vector \vec{X} s	atisfying the conditions	
	(i) that it is coplanar with			
		Ir to \vec{b} , (iii) that $\vec{a} \cdot \vec{X} = 7$ is,		d) None of these
	a) $-3\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$	b) $-\frac{3}{2}\hat{\imath} + \frac{5}{2}\hat{\jmath} + 3\hat{k}$	c) $3\hat{\imath} + 16\hat{\jmath} - 6\hat{k}$	d) None of these
82.	If ABCDEF is a regular her	xagon, then $\vec{A}C + \vec{A}D + \vec{E}A$	$+\vec{F}A =$	
	a) 2 <i>ÅB</i>	b) 3 <i>ĀB</i>	c) <i>AB</i>	d) 0
83.	• • • • • •	$) \times (\vec{c} \times \vec{a}) \ (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$		
	a) $\left[\vec{a}\vec{b}\vec{c}\right]^2$	b) $\left[\vec{a}\vec{b}\vec{c}\right]^3$	c) $\left[\vec{a}\vec{b}\vec{c}\right]^4$	d) None of these
84.		k , $\mathbf{\dot{b}} = \lambda \mathbf{\hat{i}} + \mathbf{\hat{j}} + 2\lambda \mathbf{\hat{k}}$. If the a	angle between $ec{a}$ and $ec{b}$ is gr	ater than 90°, then λ
	satisfies the inequality			
85		b) $\lambda > 1$	c) $1 < \lambda < 7$	d) $-5 < \lambda < 1$ $\vec{a}, \vec{r_3} = \vec{c} + \vec{a} + \vec{b}, \vec{r} = 2\vec{a} - \vec{c}$
00.	$3\vec{b} + 4\vec{c}$		$1 - u - v + c, r_2 - v + c - c_1$	$u_1 v_3 - c + u + b_1 v - 2u - b_1 v_3 - c + u + b_1 v_3 - c + u + b_1 v_3 - c + u + b_1 v_3 - c + c + u + b_1 v_3 - c + c + u + b_1 v_3 - c + c + u + b_1 v_3 - c + c + u + b_1 v_3 - c + c + c + c + c + c + c + c + c + c$
	If $\vec{r} = \lambda_1 \vec{r_1} + \lambda_2 \vec{r_2} + \lambda_3 \vec{r_3}$,	then		
		b) $\lambda_1 + \lambda_3 = 3$	c) $\lambda_1 + \lambda_2 + \lambda_3 = 3$	d) $\lambda_3 + \lambda_2 = 2$
86.	If \vec{a} , \vec{b} , \vec{c} , \vec{d} are the position	n vectors of points A, B, C and	nd <i>D</i> respectively such that	$(\vec{a}-\vec{d})\cdot(\vec{b}-\vec{c}) =$
	$\left(\vec{b}-\vec{a}\right)\cdot\left(\vec{c}-\vec{a}\right)=0$, then	n D is the		
	a) Centroid of $\triangle ABC$			
	b) Circumcentre of $\triangle ABC$ c) Orthocenter of $\triangle ABC$			
	d) None of these			
87.		er, are the vertices of a regu		igin. If the position vectors
		$4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $-3\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$		
00		b) $-7\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$		$\mathbf{d}) - 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
88.	If $ \mathbf{a} \times \mathbf{b} = \mathbf{a} \cdot \mathbf{b} $, then the	the angle between \vec{a} and \vec{b} is		π
	а) П	b) $\frac{2\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{2}$
89.	The ratio in which $\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ -	+ 3 k divides the join of −2 i	$\mathbf{\hat{j}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and $7\hat{\mathbf{i}} - \hat{\mathbf{k}}$ is	
	a) 2:1	b) 2:3	c) 3:4	d) 1:4
90.				$= 2x\hat{\imath} - x\hat{\jmath} - \hat{k}$ is acute and
		is lies between $\pi/2$ and π a		
91	a) -1 The moment about the p	b) All $x > 0$ oint $M(-2, 4, -6)$ of the fo	c) 1 rce represented in magnit	d) All $x < 0$ ude and position \overrightarrow{AB} where
711	The moment about the p	$m_{1} 2, \pi, -0$ of the 10	i ce representeu în magint	aue and position AD where

			nd $(3, -4, 2)$ respectively, is	
	a) 8 î – 9 ĵ – 14 k		c) $-3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$	
92.	The angle between \vec{a} and	$\vec{\mathbf{b}}$ is $\frac{5\pi}{6}$ and the projection of	of \vec{a} in the direction of \vec{b} is $\frac{1}{2}$	$\frac{16}{\sqrt{3}}$, then $ \vec{a} $ is equal to
	a) 6	b) $\frac{\sqrt{3}}{2}$	c) 12	d) 4
93.	The equation of the line p	assing through the points of	$a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ and $b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}}$	$b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}}$ is
	a) $(a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}) + t($	$b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}})$	b) $\left(a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}\right) - t$	
	c) $a_1(1-t)\hat{i} + a_2(1-t)\hat{j} + b_3\hat{k})\hat{k}$	$\hat{\mathbf{k}} + a_3(1-t)\hat{\mathbf{k}} + (b_1\hat{\mathbf{i}} + b_2)$	$\hat{\mathbf{j}}$ d) None of the above	
94.				ector \vec{eta} perpendicular to \vec{a} .
		b) $\frac{2}{3}(\hat{\imath} + \hat{\jmath})$	c) $\frac{1}{2}(\hat{\imath} + \hat{\jmath})$	d) $\frac{1}{3}(\hat{\iota} + \hat{\jmath})$
95.	A parallelogram is constru- parallel, then the length o		$\mathbf{\dot{b}}$, where $ \mathbf{\vec{a}} = 6$ and $ \mathbf{\vec{b}} = 8$	B and \vec{a} and \vec{b} are anti-
	a) 40	b) 64	c) 42	d) 48
96.	•	,	<i>B</i> respectively of a triangle	,
	a) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{b}} = 0$		b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$	
	c) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = 0$		d) $\vec{a} \times \vec{a} + \vec{a} \times \vec{c} + \vec{c} \times \vec{a}$	
97.	-		-	respectively towards north-
		n, the magnitude of $\vec{a} - \vec{b}$ is		
	a) $3\sqrt{2}$	b) $2\sqrt{3}$	c) 2√5	d) 5√2
98.		y	$\vec{\mathbf{c}} = \hat{\mathbf{i}} + c\hat{\mathbf{j}} + c^2\hat{\mathbf{k}}$ are three	
				non copianar vectors and
	$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0, \text{ then}$			
	a) 0	b) 1	c) 2	d) –12
99.		$\mathbf{\hat{i}} + 5\mathbf{\hat{k}}$ and $\mathbf{\vec{c}} = 7\mathbf{\hat{i}} + 9\mathbf{\hat{j}} + 11$	l $\hat{\mathbf{k}}$ then the area of parallel	ogram having diagonals
	$\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is		_	
		b) $\frac{1}{2}\sqrt{21}$ sq units	Z	d) $\sqrt{6}$ sq units
100	is given by		r perpendicular to \vec{a} and co	pplanar with \vec{a} and \vec{b} , then it
	a) $\frac{1}{\sqrt{6}} \left(2\hat{\imath} - \hat{\jmath} + \hat{k} \right)$	b) $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$	c) $\frac{1}{\sqrt{6}} \left(\hat{\imath} - 2\hat{\jmath} + \hat{k} \right)$	d) $\frac{1}{2}(\hat{j}-\hat{k})$
101	If $\vec{a} \cdot \hat{\imath} = 4$, then $(\vec{a} \times \hat{\jmath}) \cdot (2)$.	$\hat{j} - 3\hat{k} =$		
	a) 12	b) 2	c) 0	d) -12
102	\cdot If $\vec{\mathbf{a}} + 2\vec{\mathbf{b}} + 4\vec{\mathbf{c}} = \vec{0}$ and $(\vec{\mathbf{a}})$	$(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) =$	= $\lambda(\mathbf{\vec{b}} \times \mathbf{\vec{c}})$, then λ is equal	to
	a) 4	b) 7	c) 8	d) 9
103		-	1 unit and act in the directi	
		$x \text{ and } 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\mathbf{k} \text{ respective} A(2, -1, -3) \text{ to } B(5, -1, 1)$	vely. They remain constant). The work done is	while the particle is
	a) 11 unit	b) 33 unit	c) 10 unit	d) 30 unit
104	. For any vector \vec{r} , the value			
	$\hat{\imath} \times (\vec{r} \times \hat{\imath}) + \hat{\jmath} \times (\vec{r} \times \hat{\jmath}) +$			
	a) $\vec{0}$	b) 2 <i>r</i>	c) $-2\vec{r}$	d) None of these
105	. The vector equation of the	e plane passing through the	e origin and the line of inte	rsection of the planes

$\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = \lambda$ and $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = \mu$, i	S		
a) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{a}} - \mu \vec{\mathbf{b}}) = 0$	b) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} - \mu \vec{\mathbf{a}}) = 0$	c) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}) = 0$	d) $\vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} + \mu \vec{\mathbf{a}}) = 0$
106. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are non-coplan	. ,	. ,	
a) 0	b) 1	c) 2	d) 3
107. If $\vec{\mathbf{a}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}), \vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$	= 1 and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$, then	Ď is	
· · ·	b) $2\hat{\mathbf{j}} - \hat{\mathbf{k}}$		d) 2î
108. A tetrahedron has vert	ces at O(0,0,0), A(1,2,1), B(2,1,3)and <i>C</i> (-1,1,2). Then,	the angle between the faces
OAB and ABC will be			
a) $\cos^{-1}\left(\frac{19}{35}\right)$	(01)	c) 30°	d) 90°
109. If $2\vec{a} + 3\vec{b} - 5\vec{c} = \vec{0}$,			
a) 3:2 internally	b) 3:2 externally	c) 2:3 internally	d) 2:3 externally
110. The perimeter of the tr		the position vectors $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$	$\mathbf{\hat{k}}$, 5 $\mathbf{\hat{i}}$ + 3 $\mathbf{\hat{j}}$ – 3 $\mathbf{\hat{k}}$ and
$2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 9\hat{\mathbf{k}}$ is given by		、 — —	"
	b) $15 - \sqrt{157}$		d) $\sqrt{15} - \sqrt{157}$
111. If $\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} = \vec{0}$ and $ \vec{\mathbf{a}} $	$= 5$, $ \mathbf{b} = 4$ and $ \mathbf{c} = 3$, the second s	hen the value of	
$ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} $ is) 07	
a) 25	b) 50	c) -25	d) 20
112. If \vec{a} is any vector, then	-		
a) \vec{a}^2	b) 2 <i>ā</i> ²	c) $3\vec{a}^{2}$	d) $4\vec{a}^2$
113. If $\vec{a}, \vec{b}, \vec{c}$ are three non-z and $(\vec{b} + \vec{c}, \vec{a})$ are collin		h are collinear), such that t	the pairs of vectors $(\vec{a} + \vec{b}, \vec{c})$
a) \vec{a}	b) <i>b</i>	c) <i>č</i>	d) 0
114. Let \vec{a} , \vec{b} , \vec{c} be three non-	coplanar vectors and $\vec{\mathbf{r}}$ be a	ny vector in space such tha	$\mathbf{t} \mathbf{\vec{r}} \cdot \mathbf{\vec{a}} = 1, \mathbf{\vec{r}} \cdot \mathbf{\vec{b}} = 2 \text{ and } \mathbf{\vec{r}} \cdot \mathbf{\vec{b}}$
$\vec{\mathbf{c}} = 3$. If $\left[\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} \right] = 1$, th		J	, <u> </u> ,
a) $\vec{a} + 2\vec{b} + 3\vec{c}$	1	b) b × c + 2 c × a + 3 a >	< Å
c) $(\vec{\mathbf{b}} \cdot \vec{\mathbf{c}})\vec{\mathbf{a}} + 2(\vec{\mathbf{c}} \cdot \vec{\mathbf{a}})\vec{\mathbf{b}}$	$+3(\vec{a}\cdot\vec{b})+\vec{c}$	d) None of these	
115. If $\vec{\mathbf{x}} + \vec{\mathbf{y}} + \vec{\mathbf{z}} = \vec{0}, \vec{\mathbf{x}} = $		-	value of $\cos^2\theta + \cot^2\theta$ is
equal to $y + z = 0$, $ x = 1$	$\mathbf{y}_1 + \mathbf{z}_1 - \mathbf{z}_2$, and 0 is angle t	fetween y and z, then the	
a) 4/3	b) 5/3	c) 1/3	d) 1
116. If $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = - \vec{\mathbf{a}} \vec{\mathbf{b}} $, then t	he angle between $ec{a}$ and $ec{b}$ is		
a) 45°	b) 180°	c) 90°	d) 60°
117. Let $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + \hat{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{k}}$	$\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$.	If $\vec{\mathbf{r}}$ is a vector such that $\vec{\mathbf{r}}$	$\times \vec{\mathbf{b}} = \vec{\mathbf{c}} \times \vec{\mathbf{b}}$ and $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0$,
then value of $ec{\mathbf{r}}\cdotec{\mathbf{b}}$ is			
a) 7	b) —7	c) -5	d) 5
118. If the vectors $\vec{\mathbf{a}} + \lambda \vec{\mathbf{b}} +$	$3\vec{\mathbf{c}}$. $-2\vec{\mathbf{a}}$ + $3\vec{\mathbf{b}}$ - $4\vec{\mathbf{c}}$ and $\vec{\mathbf{a}}$ -	$3\vec{\mathbf{b}}$ + 5 $\vec{\mathbf{c}}$ are coplanar, then	n the value of λ is
a) 2	b) —1	c) 1	d) -2
119. $\vec{\mathbf{A}}$, $\vec{\mathbf{B}}$, $\vec{\mathbf{C}}$ are three non-		hare parallel. If $\vec{\mathbf{A}} + \vec{\mathbf{B}}$ is col	llinear to \vec{C} and $\vec{B} + \vec{C}$ is
collinear to $\vec{A} + \vec{B} + \vec{C}$			
a) $\vec{\mathbf{A}}$	b) B	c) c	d) 0
		$37\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}, \hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 10\hat{\mathbf{k}},$	$-\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $5\hat{\mathbf{i}} - \hat{\mathbf{j}} + 5\hat{\mathbf{k}}$
respectively. Then, ABO			
a) Square	b) Rhombus $\vec{1}$	c) Rectangle	d) None of these
121. If $ \vec{a} = 7$, $ \vec{b} = 11$, $ \vec{a} = 12$			1) 20
a) 10	b) $\sqrt{10}$	c) $2\sqrt{10}$	d) 20
122. In a parallelogram ABC	$ D, \vec{A}B = a, \vec{A}D = b$ and $ \vec{A}D = b$	AC = c. The value of DB . A	IB is

a) $\frac{3a^2 + b^2 - c^2}{2}$	b) $\frac{a^2 + 3b^2 - c^2}{2}$	c) $\frac{a^2 - b^2 + 3c^2}{2}$	d) $\frac{a^2 + 3b^2 + c^2}{2}$
123. If θ be the angle betwe	en the vectors $\vec{a} = 2\hat{i} + 2\hat{j}$ -	$\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = 6\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, the second se	hen
123. If θ be the angle betwe a) $\cos \theta = \frac{4}{21}$	b) $\cos \theta = \frac{3}{19}$	c) $\cos \theta = \frac{2}{19}$	d) $\cos \theta = \frac{5}{21}$
124. Let $\vec{\mathbf{a}}, \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ be three	non-zero vectors such that	no two these are collinear	. If the vector $\vec{\mathbf{a}}$ +2 $\vec{\mathbf{b}}$ is
collinear with $ec{c}$ and $ec{b}$ -	+ 3 $\vec{\mathbf{c}}$ is collinear with $\vec{\mathbf{a}}(\lambda$ be	eing some non-zero scalar)	. Then $\vec{\mathbf{a}}$ + 2 $\vec{\mathbf{b}}$ + 6 $\vec{\mathbf{c}}$ equals
a) λ ā	b) λ b	c) λ č	d) 0
125. Let <i>ABC</i> be a triangle t	he position vectors of whose	e vertices are respectively	$7\hat{j} + 10\hat{k}, -\hat{\imath} + 6\hat{j} + 6\hat{k}$ and
$-4\hat{\imath}+9\hat{\jmath}+6\hat{k}$. Then, Δ			
a) Isosceles and right a	ngled		
b) Equilateral	· · · · · ·] · ·		
c) Right angled but not	ISOSCEIES		
d) None of these 126. $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) =$			
	ı、[→テ→]テ	v [→→→]→	$(\vec{1} \rightarrow)$
	b) $\left[\vec{a}\vec{b}\vec{c}\right]\vec{b}$		
127. If \vec{a} , \vec{b} , \vec{c} are non-coplar		umber, then the vectors \vec{a}	$+ 2\mathbf{b} + 3\mathbf{\tilde{c}}, \lambda \mathbf{b} + 4 \mathbf{\tilde{c}}$ and
$(2\lambda - 1)$ \vec{c} are non-cop	lanar for	b) All avaant on a valua	ofl
a) All values of λ c) All except two value	sof	b) All except one value d) No value of λ	διλ
128. The position vectors of			such that $\overrightarrow{\mathbf{DP}} = 5\overrightarrow{\mathbf{DO}}$ than
the position vector of <i>F</i>			y such that $\mathbf{I} \mathbf{K} = 5\mathbf{I} \mathbf{Q}$, then
-	b) $5\vec{\mathbf{b}} + 4\vec{\mathbf{a}}$	c) 4 h – 5 a	d) 4 b + 5 a
129. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vecto			
	b) $-2(\vec{b} \times \vec{c})$		
		ors of the points A and B , t	hen the position vector of the
points of trisection of A			
a) $\frac{4}{3}\hat{i} + \hat{j} + \frac{10}{3}\hat{k}, \frac{5}{3}\hat{i} + \frac{10}{3}\hat{k}$	$\frac{1}{3}\mathbf{\hat{k}}$		
b) $-\frac{4}{3}\hat{i} - \hat{j} - \frac{10}{3}\hat{k}, -\frac{5}{3}$	$\hat{\mathbf{i}} - \frac{11}{3}\hat{\mathbf{k}}$		
c) $\frac{4}{3}\hat{i} - \hat{j} - \frac{10}{3}\hat{k}, -\frac{5}{3}\hat{i} - \hat{j}$	5		
d) $-\frac{4}{3}\hat{i} + \hat{j} - \frac{10}{3}\hat{k}, \frac{5}{3}\hat{i} -$	$-\frac{11}{3}\mathbf{\hat{k}}$		
		and <i>AB</i> respectively of ΔAB	<i>C</i> and <i>G</i> is the centroid of the
triangle, then $\overrightarrow{GD} + \overrightarrow{GE}$			
a) 0	b) 2 <i>AB</i>	c) 2 <i>GA</i>	d) 2 <i>GC</i>
132. If <i>D</i> , <i>E</i> and <i>F</i> are respectively $$	ctively the mid points of <i>AB</i>	, AC and BC in ΔABC , then	
$\overrightarrow{\mathbf{BE}} + \overrightarrow{\mathbf{AF}}$ is equal to	1		2
a) DC	b) $\frac{1}{2} \overrightarrow{\mathbf{BF}}$	c) 2 $\overrightarrow{\mathbf{BF}}$	d) $\frac{3}{2} \overrightarrow{\mathbf{BF}}$
133. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} + \vec{b}$ m	hakes an angle of 30° with \vec{a}	, then	-
		c) $ \vec{a} = \sqrt{3} \vec{b} $	d) None of these
134. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, and	21.1.1.1.1	211 211	
$\vec{\mathbf{b}} = \hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) + \hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}})$	$\vec{\mathbf{a}} \times \hat{\mathbf{j}} + \hat{\mathbf{k}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{k}})$		
Then length of $\mathbf{\vec{b}}$ is equ			
a) $\sqrt{12}$	b) $2\sqrt{12}$	c) $3\sqrt{14}$	d) 2√ <u>14</u>
		· - · · · -	· ·

135. If a, b, c are different re $c\hat{\mathbf{i}} + a\hat{j} + b\hat{k}$ are position	al numbers and $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{j}}$ on vectors of three non-colli		
a) centroid of $\triangle ABC$ is			
b) $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ is not real c) Triangle <i>ABC</i> is a sca	lly inclined to three vectors dene triangle the origin to the plane of the	e triangle does not meet it a	at the centroid
a) $\sqrt{2}$	b) 1	c) $\sqrt{5}$	d) $\sqrt{3}$
137. If $\vec{a} = (1, -1)$ and $\vec{b} = (1, -1)$	-	y	
a) 2	b) 4	c) 3	d) 0
138. If <i>O</i> is origin of <i>C</i> is the	mid point of $A(2, -1)$ and E	3(-4,3). Then, the value of	
a) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$	b) $\hat{\mathbf{i}} - \hat{\mathbf{j}}$	c) $-\hat{i} + \hat{j}$	d) $-\hat{\mathbf{i}} - \hat{\mathbf{j}}$
139. The values of <i>x</i> for which	ch the angle between the ve	ctors $\vec{a} = x\hat{\imath} - 3\hat{\jmath} - \hat{k}$ and \bar{k}	$\vec{b} = 2x\hat{\imath} + x\hat{\jmath} - \hat{k}$ is acute and
	vector \vec{b} and the y-axis lies b		
a) 1, 2	b) -2, -3	c) All $x < 0$	d) All $x > 0$
140. If \vec{a} , \vec{b} and \vec{c} are position		•	
$\frac{\left (\vec{\mathbf{a}}-\vec{\mathbf{c}})\times(\vec{\mathbf{b}}-\vec{\mathbf{a}})\right }{(\vec{\mathbf{c}}-\vec{\mathbf{a}})\cdot(\vec{\mathbf{b}}-\vec{\mathbf{a}})}$ is e	qual to		
		c) — tan <i>C</i>	d) tan A
141. $\vec{\mathbf{a}} \cdot \hat{\mathbf{i}} = \vec{\mathbf{a}} \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}}) = \vec{\mathbf{a}} \cdot$,	u) tall A
	b) $(3\hat{i} + 3\hat{j} + \hat{k})/3$		d) $(3\hat{i} - 3\hat{i} + \hat{k})/3$
^{142.} If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$			
-	$- \mathbf{j} + 2\mathbf{K}$ and $\mathbf{c} = x \mathbf{l} + (x - x)$	$2)\mathbf{j} = \mathbf{k}$ and if the vector \mathbf{c} if	es in the plane of vectors a
and $\mathbf{\tilde{b}}$, then x equals a) 0	b) 1	c) -2	d) 2
143. The figure formed by th	<i>,</i>	,	u) 2
a) Trapezium	b) Rectangle	c) Parallelogram	d) None of these
144. If $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and \bar{k}			
is			······································
a) $7(\hat{\imath} \pm 2\hat{\imath} \pm 2\hat{k})$	b) $\frac{7}{9}(\hat{\imath}+2\hat{\jmath}+2\hat{k})$	7	d) None of these
)	(1 + 2j + 2k)	
145. If <i>I</i> is incentre of \triangle <i>ABC</i>			-
a) $\frac{a\vec{\mathbf{a}} + b\dot{\mathbf{b}} + c\vec{\mathbf{c}}}{\mathbf{c}}$	b) $\frac{a\vec{\mathbf{a}} + b\vec{\mathbf{b}} + c\vec{\mathbf{c}}}{\sqrt{a^2 + b^2 + c^2}}$	c) $\frac{1}{a}$ [$\vec{a} + \vec{b} + \vec{c}$]	d) $\frac{\vec{a} + \vec{b} + \vec{c}}{\underline{a}}$
	vaibic		
146. If \vec{a} and \vec{b} are unit vector			
a) √3	b) √3/2	c) $1/\sqrt{2}$	d) -1/2
147. The two vectors { $\vec{\mathbf{a}} = 2$			
a) 2	b) -3	c) 3	d) -2
		emain constant while the pa	the vectors $6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, article is displaced from the
a) 11 units	b) 33 units	c) 10 units	d) 30 units
149. If $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \cdot \vec{c}$	$= \vec{a} \times \vec{c}$, then		
a) Either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{a}$		c) $\vec{a} \perp (\vec{b} - \vec{c})$	d) None of these
150. The two vectors $\vec{a} = 2\hat{\imath}$,		
a) 2	b) -3	c) 3	d) —2
,	01-3	C 5	u) - 2
151. If \vec{a} , \vec{b} , \vec{c} are unit coplan	ar vectors, then $[2\vec{a} - \vec{b} \ 2 \vec{b}]$,	u) –2

a) 1 b) 0 c) $-\sqrt{3}$ d) $\sqrt{3}$ 152. The angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ when $\vec{a} = (1,1,4)$ and $\vec{b} = (1,-1,4)$ is a) 45° b) 90° c) 15° d) 30° 153. Let P(3,2,6) be a point in space and Q be a point on the line $\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \mu(-3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 5\hat{\mathbf{k}})$. Then, the value of μ for which the vector $\overrightarrow{\mathbf{PQ}}$ is parallel to the plane x - 4y + 3z = 1 is b) $-\frac{1}{4}$ a) $\frac{1}{4}$ c) $\frac{1}{2}$ d) $-\frac{1}{2}$ 154. The area of triangle having verities as $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}, -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}, 4\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ is a) 36 sq units b) 0 sq units c) 39 sq units d) 11 sq unit 155. If $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$; $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$; $\vec{a} \neq 0$; $\vec{b} \neq 0$; $\vec{a} \neq \lambda \vec{b}$, \vec{a} is not perpendicular to \vec{b} , then $\vec{r} =$ d) 11 sq units b) $\vec{a} + \vec{b}$ c) $\vec{a} \times \vec{b} + \vec{a}$ d) $\vec{a} \times \vec{b} + \vec{b}$ a) $\vec{a} - \vec{b}$ 156. If $\vec{a} + \vec{b} + \vec{c}$ are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, where $\vec{0}$ is null vector, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is c) $-\frac{3}{2}$ d) 0 a) –3 b) -2 ^{157.} The edges of a parallelopiped are unit length and are parallel to non-coplanar unit vectors \vec{a} , \vec{b} , \vec{c} such that $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \frac{1}{2}$ Then, the volume of the parallelopiped is b) $\frac{1}{2\sqrt{2}}$ cu unit c) $\frac{\sqrt{3}}{2}$ cu unit d) $\frac{1}{\sqrt{3}}$ cu unit a) $\frac{1}{\sqrt{2}}$ cu unit 158. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k})$, then length of \vec{b} is equal to b) $2\sqrt{12}$ c) $3\sqrt{14}$ a) √<u>12</u> d) $2\sqrt{14}$ 159. A vector \vec{a} has components 2 p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense, if this respect to new system \vec{a} has components p + 1 and 1, then b) p = 1 or $p = \frac{-1}{2}$ c) p = -1 d) p = 1 or p = -1a) p = 0160. If the vectors $\vec{r_1} = a\hat{i} + \hat{j} + \hat{k}$, $\vec{r_2} = \hat{i} + b\hat{j} + \hat{k}$, $\vec{r_3} = \hat{i} + \hat{j} + c\hat{k}$ ($a \neq 1, b \neq 1, c \neq 1$) are coplanar, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$, is c) 1 d) None of these 161. A non-zero vectors \vec{a} is such that its projection along the vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ and $\frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \vec{k} are equal, then unit vector along \vec{a} is a) $\frac{\sqrt{2}\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{2}}$ b) $\frac{\hat{\mathbf{j}} - \sqrt{2}\hat{\mathbf{k}}}{\sqrt{2}}$ c) $\frac{\sqrt{2}}{\sqrt{2}}\hat{\mathbf{j}} + \frac{\hat{\mathbf{k}}}{\sqrt{2}}$ d) $\frac{\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{2}}$ 162. Let *P*, *Q*, *R* and *S* be the points on the plane with position vectors $-2\hat{i} - \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must be a) Parallelogram, which is neither a rhombus nor a rectangle b) Square c) Rectangle, but not a square d) Rhombus, but not a square 163. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors and $\Delta = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a}. \vec{a} & \vec{a}. \vec{b} & \vec{a}. \vec{c} \\ \vec{a}. \vec{a} & \vec{b}. \vec{c} & \vec{a}. \vec{c} \end{bmatrix}$, then a) $\Delta = 0$ b) $\Delta = 1$ c) Δ = any non-zero value d) None of these 164. If $\vec{a} = -2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 5\hat{j}$ and $\vec{c} = 4\hat{i} + 4\hat{j} - 2\hat{k}$, then the projection of $3\vec{a} - 2\vec{b}$ on the axis of the vector *c* is

a) 11	b) —11	c) 33	d) -33
165. A tetrahedron has verti		2, 1, 3) and <i>C</i> (−1, 1, 2). The	n, the angle between the
faces OAB and ABC wil			
a) $\cos^{-1}\left(\frac{19}{35}\right)$	b) $\cos^{-1}(\frac{7}{31})$	c) 30°	d) 90°
166. If $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$ and	$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is equ	λ ($\vec{b} \times \vec{c}$), then $\lambda =$	
a) 3	b) 4	c) 5	d) None of these
167. $\vec{\mathbf{a}} \times [\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})]$ is equ	,	0,0	
a) $(\vec{\mathbf{a}} \times \vec{\mathbf{a}}) \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{a}})$		b) $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{a}}) - \vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{a}})$	(h)
c) $[\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}})]\vec{\mathbf{a}}$		d) $(\vec{\mathbf{a}} \cdot \vec{\mathbf{a}}) (\vec{\mathbf{b}} \times \vec{\mathbf{a}})$	
	$(\hat{x} + 2\hat{x} + \hat{k}) = \hat{x}$		
168. If \vec{a} is a unit vector such 1			
a) $-\frac{1}{3}(2\hat{\imath}+\hat{\jmath}+2\hat{k})$	b) <i>ĵ</i>	c) $\frac{1}{3}(\hat{\imath}+2\hat{\jmath}+2\hat{k})$	d) î
169. The medium <i>AD</i> of the	triangle ABC is bisected at I	E, BE meets AC in F, then A	F:AC =
a) 3/4	b) 1/3	c) 1/2	d) 1/4
170. Vectors \vec{a} and \vec{b} are inc	lined at an angle $\theta = 120^{\circ}$. I	f $ \vec{a} = 1$, $ \vec{b} = 2$, then [(\vec{a} -	$(3\vec{\mathbf{b}}) \times (3\vec{\mathbf{a}} + \vec{\mathbf{b}})^2$ is equal to
a) 190	b) 275	c) 300	d) 192
171. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are three non-c	oplanar vectors, then $(\vec{a} + \vec{b})$	$\vec{\mathbf{b}} + \vec{\mathbf{c}}) \cdot \left[\left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right) \times \left(\vec{\mathbf{a}} \times \vec{\mathbf{c}} \right) \right]$	is
a) 0		$\mathbf{C}) - [\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}]$	d) [a b c]
172. If $\vec{a} = \hat{\iota} + \hat{j} - \hat{k}, \vec{b} = \hat{\iota} - \hat{k}$	$\hat{j} + \hat{k}$ and \vec{c} is a unit vector	perpendicular to the vector	\vec{a} and coplanar with \vec{a} and
	perpendicular to both \vec{a} and		
a) $\frac{1}{2}(2\hat{\imath} - \hat{\imath} + \hat{k})$	b) $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$	c) $\frac{1}{(\hat{i} + \hat{i})}$	d) $\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{k})$
vo	V Z	V Z	$\sqrt{2}$
173. If G is the centroid of the			
a) 2 GB	b) 2 GA	c) 0	d) 2 BG
174. A non-zero vector \vec{a} is p			
	e vectors $\hat{\mathbf{i}} + \hat{\mathbf{j}}, \hat{\mathbf{i}} - \hat{\mathbf{k}}$. The an		
a) $\frac{\pi}{3}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) None of these
$175. \text{ If } \vec{\mathbf{a}} = 5, \vec{\mathbf{b}} = 6 \text{ and } \vec{\mathbf{a}}$	e e	•	
a) 25	b) $6\sqrt{11}$	c) 11√5	d) 5√ <u>11</u>
176. If <i>ABCDE</i> is a pentagon		y	y = ·
$\vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} +$			
a) 4 <i>ÅC</i>	b) 2 <i>ĀC</i>	c) 3 <i>ĀC</i>	d) 5 <i>ĀC</i>
177. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$	$\vec{c} = \vec{b} \times \vec{d}$, then		
	b) $\vec{a} + \vec{c} = \lambda(\vec{b} + \vec{d})$	c) $(\vec{a} - \vec{c}) = \lambda(\vec{c} + \vec{d})$	d) None of these
$178. \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b}))$ equa			
		$(\vec{t} \cdot \vec{t}) (\vec{t} \cdot \vec{t})$	$(\vec{r} \rightarrow \vec{r}) (\vec{r} \rightarrow \vec{r})$
	b) $(\vec{a} \cdot \vec{a}) (\vec{b} \times \vec{a})$	c) $(b \cdot b)(a \times b)$	d) $(b \cdot b)(b \times a)$
179. In a quadrilateral <i>ABCL</i>		\rightarrow \rightarrow	\rightarrow \rightarrow
		c) $\vec{A}C + \vec{D}B$	
180. Let $\vec{a} = x\hat{\imath} + y\hat{\imath} + z\hat{k}$, \vec{b}			
a) yî	b) $-3\hat{\imath} + x\hat{k}$	c) 0	d) $3\hat{\iota} - x\hat{k}$
181. If the position vector of			
a) $2\vec{a} - \vec{b}$,	c) $\vec{a} - 3\vec{b}$	d) \vec{b}
182. The value of a so that the value of a so the value of a		formed by $\hat{\mathbf{i}} + a\hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{j}} + a$	k and
$a\hat{\mathbf{i}} + \hat{\mathbf{k}}$ becomes minim	ım is		

a) —3	b) 3	c) $1/\sqrt{3}$	d) $\sqrt{3}$	
-	nitude 12 units perpendicula			
$3\hat{\mathbf{i}} + 8\hat{\mathbf{j}} + \hat{\mathbf{k}}$ is	intude 12 units perpendicula			
	k b) $8\hat{i} + 4\hat{j} + 8\hat{k}$	c) $8\hat{i} - 4\hat{i} + 8\hat{k}$	d) $8\hat{i} - 4\hat{i} - 8\hat{k}$	
			it vector \vec{c} be inclined at an angle θ	
	If $\vec{\mathbf{c}} = \alpha$, $\vec{\mathbf{a}} + \beta$, $\vec{\mathbf{b}} + \gamma (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$, v			
	$\sin \theta, \gamma^2 = \cos 2\theta$		$\cos \theta, \gamma^2 = \cos 2\theta$	
	$\sin \theta, \gamma^2 = \cos 2\theta$		$\cos \theta, \gamma^2 = \cos 2\theta$	
		, , ,	es is 40 cu units, then the volume of	
	ed having $\vec{\mathbf{b}} + \vec{\mathbf{c}}, \vec{\mathbf{c}} + \vec{\mathbf{a}}$ and $\vec{\mathbf{a}}$ -			
a) 80	b) 120	c) 160	d) 40	
-	,	,	nt <i>P</i> moves so that at any time <i>t</i> the	
			When <i>P</i> is farthest form origin <i>O</i> , le	t
	of $\overrightarrow{\mathbf{OP}}$ and $\widehat{\mathbf{u}}$ be the unit vector			L
^		. ^		
a) $\hat{\mathbf{u}} = \frac{\mathbf{u} + \mathbf{b}}{ \hat{\mathbf{a}} + \hat{\mathbf{b}} }$ ar	$\operatorname{nd} M = (1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1/2}$	b) $\hat{\mathbf{u}} = \frac{\mathbf{u} \cdot \mathbf{b}}{ \hat{\mathbf{a}} - \hat{\mathbf{b}} }$ ar	$\operatorname{ad} M = (1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1/2}$	
c) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{ \hat{\mathbf{a}} + \hat{\mathbf{b}} }$ ar	nd $M = (1 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1/2}$	d) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} - \hat{\mathbf{b}}}{ \hat{\mathbf{a}} - \hat{\mathbf{b}} }$ ar	and $M = (1 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{1/2}$	
		1 1	ose position vectors are $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$	
and $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$, is				
a) ĵ	b) î	c) k	d) o	
	tices of a triangle whose posi	,	<i>c</i> respectively and <i>G</i> is the centroid	
of $\triangle ABC$, then \vec{G}_A				
\rightarrow	\rightarrow	$\vec{a} + \vec{b} + \vec{c}$	$\vec{a} - \vec{b} - \vec{c}$	
a) 0	b) $\vec{a} + \vec{b} + \vec{c}$	c) $\frac{\vec{a} + \vec{b} + \vec{c}}{3}$	d) $\frac{\vec{a}-\vec{b}-\vec{c}}{3}$	
	-	5	d) $\frac{\vec{a} - \vec{b} - \vec{c}}{3}$ etermined by the vectors $\hat{\mathbf{i}}, \hat{\mathbf{i}} + \hat{\mathbf{j}}$ and	
189. A non-zero vecto	or $\vec{\mathbf{a}}$ is parallel to the line of in	ntersection of the plane d	etermined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and	
189. A non-zero vecto the plane determ	or \vec{a} is parallel to the line of in nined by the vectors $\hat{i} - \hat{j}, \hat{i} +$	ntersection of the plane d - $\mathbf{\hat{k}}$. The angle between $\mathbf{\vec{a}}$:	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is	
189. A non-zero vecto the plane determ a) $\frac{\pi}{2}$	for \vec{a} is parallel to the line of in nined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{b}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$	
189. A non-zero vecto the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{\mathbf{r}} \cdot ($	for $\vec{\mathbf{a}}$ is parallel to the line of in nined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}})\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda)$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{\mathbf{r}} \cdot (\mathbf{r})$ value of $\lambda^2 + \lambda$ is	for $\vec{\mathbf{a}}$ is parallel to the line of in nined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}})\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda)$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpe	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{\mathbf{r}} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0	for $\vec{\mathbf{a}}$ is parallel to the line of in nined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$, $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{b}})$ b) 2	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpective c) 1	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{\mathbf{r}} \cdot (\mathbf{r})$ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \overrightarrow{AC}	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$, $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{b}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equations	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpective c) 1 uals	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{\mathbf{r}} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \overrightarrow{AC} a) 5 \overrightarrow{OC}	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals $\hat{\mathbf{b}}) -\vec{\mathbf{OC}}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpective c) 1 uals c) $\overrightarrow{\mathbf{0C}}$	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot (v_{alue} \text{ of } \lambda^2 + \lambda \text{ is})$ a) 0 191. In $\triangle ABC$, if 2 \overrightarrow{AC} a) 5 \overrightarrow{OC} 192. If the vectors (see	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals $\hat{\mathbf{b}}) -\vec{\mathbf{OC}}$ $\hat{\mathbf{c}}^{2}A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{k}, \hat{\mathbf{i}} + (\sec^{2}B)\hat{\mathbf{j}}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpective c) 1 uals c) $\overrightarrow{\mathbf{0C}}$	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot (r)$ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (see cosec ² A + cosec	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals $\hat{\mathbf{b}}) - \vec{\mathbf{OC}}$ $(2\hat{\mathbf{c}}^2 A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $(2\hat{\mathbf{c}}^2 B + \csc^2 C \hat{\mathbf{c}})$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (see cosec ² A + cosec a) 1	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals $\hat{\mathbf{b}}) -\vec{\mathbf{OC}}$ $(2\hat{\mathbf{c}}^2 A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $(2\hat{\mathbf{c}}^2 B + \csc^2 C \hat{\mathbf{c}})$ $\hat{\mathbf{b}}) 2$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$) = 5 are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (see cosec ² A + cosec a) 1	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals $\hat{\mathbf{b}}) -\vec{\mathbf{OC}}$ $(2\hat{\mathbf{c}}^2 A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $(2\hat{\mathbf{c}}^2 B + \csc^2 C \hat{\mathbf{c}})$ $\hat{\mathbf{b}}) 2$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$) = 5 are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot (v_{alue of \lambda^2 + \lambda is})$ a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (secosec ² A + cosecosec ² A + cosecosecosecosecosecosecosecosecosecose	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals b) $-\vec{\mathbf{OC}}$ $ec^2 A \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{k}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $c^2 B + \csc^2 C$ is b) 2 pose position vectors are $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3 $\hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and 14 \hat{i} c) 6	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $x - 5\hat{j} + p\hat{k}$ are collinear, then $p =$ d) 8	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot (\alpha value of \lambda^2 + \lambda is)$ a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (secosec ² A + cosecosec ² A + cosecosecosecosecosecosecosecosecosecose	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals b) $-\vec{\mathbf{OC}}$ $ec^2 A \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{k}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $c^2 B + \csc^2 C$ is b) 2 pose position vectors are $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3 $\hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and 14 \hat{i} c) 6	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{i}} - 5\hat{j} + p\hat{k}$ are collinear, then $p =$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (secosec ² A + cosecosec ² A + cos ²	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals b) $-\vec{\mathbf{OC}}$ $ec^2 A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{k}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $c^2 B + \csc^2 C$ is b) 2 pose position vectors are $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$ b) 4 $\vec{\mathbf{\delta}}$ and $\vec{\mathbf{\beta}} + \vec{\mathbf{\gamma}} + \vec{\mathbf{\delta}} = b\vec{\alpha}$ and $\vec{\alpha}, \vec{\beta}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perpection c) 1 uals c) $\overrightarrow{\mathbf{OC}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3 $\hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and 14 \hat{i} c) 6	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{\mathbf{j}} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if $2 \vec{AC}$ a) $5 \vec{OC}$ 192. If the vectors (secosec ² A + cosecosec secosecosecosecosecosecosecose	by \vec{a} is parallel to the line of in hined by the vectors $\hat{i} - \hat{j}, \hat{i} + b$) $\frac{\pi}{3}$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\hat{s})$ (ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perposent c) 1 uals c) $\overrightarrow{\mathbf{0C}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3 $\hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and 14 \hat{a} c) 6 $\vec{\delta}, \vec{\gamma}$ are non-coplanar and c) 0	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{\mathbf{j}} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$ d) $(a + b)\vec{\gamma}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if $2 \vec{AC}$ a) $5 \vec{OC}$ 192. If the vectors (secosec ² A + cosecosec secosecosecosecosecosecosecose	for $\vec{\mathbf{a}}$ is parallel to the line of in hined by the vectors $\hat{\mathbf{i}} - \hat{\mathbf{j}}, \hat{\mathbf{i}} + \hat{\mathbf{b}}$) $\frac{\pi}{3}$ $(2\hat{\mathbf{i}} - \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (\lambda \hat{\mathbf{s}})$ $= 3\vec{\mathbf{CB}}$, then $2\vec{\mathbf{OA}} + 3\vec{\mathbf{OB}}$ equals b) $-\vec{\mathbf{OC}}$ $ec^2 A)\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{k}, \hat{\mathbf{i}} + (\sec^2 B)\hat{\mathbf{j}}$ $c^2 B + \csc^2 C$ is b) 2 pose position vectors are $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{j}}$ b) 4 $\vec{\delta}$ and $\vec{\beta} + \vec{\gamma} + \vec{\delta} = b\vec{\alpha}$ and $\vec{\alpha}, \vec{\beta}$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ a c) $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$ are perposent c) 1 uals c) $\overrightarrow{\mathbf{0C}}$ + $\hat{k}, \hat{\imath} + \hat{\jmath} + (\sec^2 c)\hat{k}$ are c) 3 $\hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k}$ and 14 \hat{a} c) 6 $\vec{\delta}, \vec{\gamma}$ are non-coplanar and c) 0	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{\mathbf{j}} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$ d) $(a + b)\vec{\gamma}$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if $2 \vec{AC}$ a) $5 \vec{OC}$ 192. If the vectors (secosec ² A + cosecosec ² A + cosecosec ² A + cosecosec ³ A + cosecosecosecosecosecosecosecosecosecose	for \vec{a} is parallel to the line of in hined by the vectors $\hat{i} - \hat{j}, \hat{i} + b$) $\frac{\pi}{3}$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{s}) = 0$ and $\vec{r} \cdot (\lambda \hat{s}) = 0$ and $\vec{r} $	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ and \mathbf{c} : $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: \mathbf{c} : \mathbf{c} : $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: \hat	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{j} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$ d) $(a + b)\vec{\gamma}$ ellinear, then $p =$ d) 37	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In $\triangle ABC$, if $2 \vec{AC}$ a) $5 \vec{OC}$ 192. If the vectors (secosec ² A + cosecosec ² A + cosecosec ² A + cosecosec ³ A + cosecosecosecosecosecosecosecosecosecose	for \vec{a} is parallel to the line of in hined by the vectors $\hat{i} - \hat{j}, \hat{i} + b$) $\frac{\pi}{3}$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \hat{k}) = 0$ $(2\hat{i} - k$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ and \mathbf{c} : $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: \mathbf{c} : \mathbf{c} : $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: \hat	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{j} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$ d) $(a + b)\vec{\gamma}$ ellinear, then $p =$	
189. A non-zero vector the plane determ a) $\frac{\pi}{2}$ 190. If the planes $\vec{r} \cdot ($ value of $\lambda^2 + \lambda$ is a) 0 191. In ΔABC , if 2 \vec{AC} a) 5 \vec{OC} 192. If the vectors (secosec ² A + cosecosec ² A + cosecosec ² A + cosecosec ³ A + cos ⁴ A	for \vec{a} is parallel to the line of in hined by the vectors $\hat{i} - \hat{j}, \hat{i} + b$) $\frac{\pi}{3}$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \lambda\hat{j} + 3\hat{k}) = 0$ and $\vec{r} \cdot (\lambda \hat{s})$ $(2\hat{i} - \hat{k}) = 0$ $(2\hat{i} - k$	ntersection of the plane d - $\hat{\mathbf{k}}$. The angle between $\vec{\mathbf{a}}$ and \mathbf{c} : $\frac{\pi}{6}$ $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - \hat{\mathbf{k}}$ = 5 are perperpending $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: 1 $\hat{\mathbf{c}}$: \mathbf{c} : \mathbf{c} : $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}}$: $\hat{\mathbf{c}$: $\hat{\mathbf{c}}$: \hat	etermined by the vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and and $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is d) $\frac{\pi}{4}$ endicular to each other, then the d) 3 d) 4 $\overrightarrow{\mathbf{OC}}$ coplanar, then the value of d) None of these $\hat{\mathbf{c}} - 5\hat{j} + p\hat{k}$ are collinear, then $p =$ d) 8 $\vec{\alpha}$ is not parallel to $\vec{\delta}$, then $\vec{\alpha} + \vec{\beta} + \vec{\beta}$ d) $(a + b)\vec{\gamma}$ ellinear, then $p =$ d) 37	

197. Le the vectors \vec{a} , \vec{b} , \vec{c} ar	nd $\vec{\mathbf{d}}$ be such that $\left(\vec{\mathbf{a}} \times \vec{\mathbf{b}}\right) \times$	$\left(\vec{\mathbf{c}} \times \vec{\mathbf{d}} \right) = 0$. Let P_1 and P_2	pe planes determined by pair
of vectors \vec{a} , \vec{b} and \vec{c} , \vec{d} i	respectively. Then, the angle	between P_1 and P_2 is	
a) 0	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
198. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplan	ar vectors then $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a})}{\vec{c} \cdot (\vec{a})}$	$\frac{(\times \vec{c})}{\times \vec{b}}$ is equal to	2
a) 0	b) 2	c) 1	d) None of these
199. Let $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}, \ \vec{\mathbf{b}} = 2\hat{\mathbf{k}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$	$=\hat{\mathbf{i}}+\hat{\mathbf{j}}$ If $\vec{\mathbf{c}}$ is a vector such t	hat $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \vec{\mathbf{c}} $ and $ \vec{\mathbf{c}} - \vec{\mathbf{a}} = 2$	$\sqrt{2}$ and angle between
$\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is 30°, then	$ (\vec{a} \times \vec{b}) \times \vec{c} $ is		
a) $\frac{3}{2}$	b) $\frac{2}{3}$	c) 2	d) $\frac{\sqrt{3}}{2}$
200. The area of the parallel	ogram whose diagonals are	the vectors $2\vec{a} - \vec{h}$ and $4\vec{a}$	$-5\vec{h}$ where \vec{a} and \vec{h} are the
unit vectors forming an			50 where a and b are the
a) 3√2	b) $3/\sqrt{2}$	c) √2	d) None of these
201. In a quadrilateral ABCL	<i>D</i> , the point <i>P</i> divides <i>DC</i> in	the ratio 1:2 <i>Q</i> is the mid p	oint of AC. If $\overrightarrow{\mathbf{AB}}$ + 2 $\overrightarrow{\mathbf{AD}}$ +
$\overrightarrow{\mathbf{BC}} - 2 \overrightarrow{\mathbf{DC}} = k \overrightarrow{\mathbf{PQ}}$, the			
a) -6	b) -4	c) 6	d) 4
202. If $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} $	$ =2$, then $ \vec{a} ^2 \vec{b} ^2$ is equal	to	
a) 6	b) 2	c) 20	d) 8
203. If $\vec{a}\vec{b}\vec{c}$ and \vec{p},\vec{q},\vec{r} are red	ciprocal system of vectors, th	nen $\vec{a} \times \vec{p} + \vec{b} \times \vec{q} + \vec{c} \times \vec{r}$ e	quals
a) $\left[\vec{a}\vec{b}\vec{c}\right]$	b) $(\vec{p} + \vec{q} + \vec{r})$	c) 0	d) $\vec{a} + \vec{b} + \vec{c}$
204. If the vectors $\vec{\mathbf{a}} = (c \log a)$	$(\mathbf{g}_2 x)\mathbf{\hat{i}} - 6\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$ and $\mathbf{\vec{b}} = (\log \mathbf{\vec{b}})$	$(g_2 x)\hat{i} + 2\hat{j} + (2c \log_2 x)\hat{k}$ m	ake an abtuse angle for any
	erval of which <i>c</i> belongs		
a) $\left(\frac{4}{2}, 0\right)$	b) $\left(-\infty,-\frac{4}{3}\right)$	$\left(\frac{3}{2}\right)$	d) $\left(-\frac{3}{4},0\right)$
	(B/		(
205. Let $\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}, \vec{b} = \hat{\imath}$		k be three vectors. A vector	in the plane of b and c
whose projection on \vec{a}	•		
	b) $2\hat{\imath} + 3\hat{\jmath} + 3\hat{k}$		
206. The angle between the $(8s - 1)\hat{\mathbf{k}}$ is	straight lines $\mathbf{r} = (2 - 3t)\mathbf{I}$	$+(1+2t)\mathbf{j}+(2+6t)\mathbf{k}$ and	$a \mathbf{r} = (1 + 4s)\mathbf{I} + (2 - s)\mathbf{J} +$
· · · ·	b) $\cos^{-1}\left(\frac{21}{34}\right)$	c) $\cos^{-1}(\frac{43}{4})$	d) $\cos^{-1}(\frac{34}{3})$
207. A vector which makes ϵ		•	
	b) $-5\hat{\imath} + \hat{\jmath} + 5\hat{k}$		d) $5\hat{\imath} + \hat{\jmath} - 5\hat{k}$
208. In a $\triangle ABC$, if $\vec{A}B = \hat{\iota} - \hat{\iota}$	$7\hat{j} + \hat{k}$ and $\vec{B}C = 3\hat{i} + \hat{j} + 2\hat{k}$	\vec{c} , then $\left \vec{C}A\right =$	
a) $\sqrt{61}$	b) √52	c) $\sqrt{51}$	d) $\sqrt{41}$
209. If $\hat{i}, \hat{j}, \hat{k}$ are unit orthonom			
a) 0	b) 1	c) -1	d) Arbitrary scalar
210. If the scalar product of of the value of <i>m</i> is	the vector $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ with the	he unit vector along $m\mathbf{i} + 2$	$\hat{\mathbf{j}}$ + 3 $\hat{\mathbf{k}}$ is equal to 2, then one
a) 3	b) 4	c) 5	d) 6
211. Let $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are non-col			
a) $\alpha = \beta \neq 0$	b) $\alpha + \beta = 0$	c) $\alpha = \beta = 0$	d) $\alpha \neq \beta$
212. The vector $\vec{a} = \hat{i} + \hat{j} + \eta$	$n\mathbf{k}, \mathbf{b} = \mathbf{i} + \mathbf{j} + (m+1)\mathbf{\hat{k}}$ and	d $\vec{\mathbf{c}} = \mathbf{i} - \mathbf{j} + m\mathbf{k}$ are coplan	har, if m is equal to
a) 1			
b) 4 c) 3			
CJ J			

d) No value of *m* for which vectors are coplanar

213. The unit vector in *XOY* plane and making angles 45° and 60° respectively with $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ and

$b = 0\hat{i} + \hat{j} - \hat{k}$, is	I plane and making angles 4	J and ob respectively wit	$\ln u = 2i + 2j = \kappa \operatorname{and}$
a) $-\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$			
• •			
b) $\frac{1}{\sqrt{2}}\hat{\imath} - \frac{1}{\sqrt{2}}\hat{k}$			
· · · · · · · · · · · · · · · · · · ·			
c) $\frac{1}{3\sqrt{2}}\hat{i} + \frac{4}{3\sqrt{2}}\hat{j} + \frac{1}{3\sqrt{2}}\hat{j}$	$\overline{\sqrt{2}}^{k}$		
d) None of these	-		
214. The value of λ , for wh	ich the four points		
$2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}, \ \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}$	$3\hat{\mathbf{k}}, 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 2\hat{\mathbf{k}}, \hat{\mathbf{i}} - 6\hat{\mathbf{j}} + \lambda\hat{\mathbf{k}}$	are coplanar, is	
a) 2	b) 4	c) 6	d) 8
215. If $ \vec{a} = \vec{b} $, then	_ `		
a) $(\vec{a} + \vec{b})$ is parallel			
b) $\vec{a} + \vec{b}$ is \perp to $\vec{a} - \vec{b}$			
c) $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) =$	$2 \vec{a} ^2$		
d) None of these			
=	ogram whose adjacent sides a	are given by the vectors	
	$2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ (in sq unit), is		1) (10
-	- 1	c) $\sqrt{80}$ sq unit	d) $\sqrt{40}$ sq unit
	in a triangle <i>ABC</i> , then $\overline{\mathbf{PA}}$ +		
a) $\overrightarrow{AC} + \overrightarrow{CB}$	b) $\overrightarrow{\mathbf{BC}} + \overrightarrow{\mathbf{BA}}$	c) $\overrightarrow{\mathbf{CB}} + \overrightarrow{\mathbf{AB}}$	d) $\overrightarrow{\mathbf{CB}} + \overrightarrow{\mathbf{BA}}$
	and \vec{b} be perpendicular to ea	ach other and the unit vecto	or \dot{c} be inclined at an angle θ
	$x\vec{a} + y\vec{b} + \vec{c}(\vec{a} \times \vec{b})$, then		
a) $x = \cos \theta$, $y = \sin \theta$ b) $x = \sin \theta$, $y = \cos \theta$			
c) $x = y = \cos \theta$, $z^2 = z^2$			
d) $x = y = \cos \theta$, $z^2 =$			
· ·	uch that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} + \vec{b} =$	\vec{c} , then	
	b) $ \vec{a} ^2 = \vec{b} ^2 + \vec{c} ^2$		d) None of these
	gram with $\vec{OC} = \vec{a}$ and $\vec{AB} =$		
			1
a) $\vec{a} + \vec{b}$	b) $\vec{a} - \vec{b}$	c) $\frac{1}{2}(\vec{b}-\vec{a})$	d) $\frac{1}{2}(a-b)$
221. Five points given by	A, B, C, D, E are in plane. T	Three forces \overrightarrow{AC} , \overrightarrow{AD} and	$\overrightarrow{\mathbf{AE}}$ act a A and three forces
$\overrightarrow{\mathbf{CB}}, \overrightarrow{\mathbf{DB}}, \overrightarrow{\mathbf{EB}}$ act at <i>B</i> . T	hen, their resultant is		
a) 2 AČ	b) 3 AB	c) 3 DB	d) 2 BC
222. The vector $\vec{\mathbf{a}} = \alpha \hat{\mathbf{i}} + 2$	^ _ ^ _ ^ _ .	\rightarrow \sim \sim	
11	$\beta \mathbf{k} + \beta \mathbf{k}$ lies in the plane of the	e vectors $\mathbf{\dot{b}} = \mathbf{\ddot{i}} + \mathbf{\ddot{j}}$ and $\mathbf{\vec{c}} = \mathbf{\ddot{j}}$	$\hat{\mathbf{j}} + \hat{\mathbf{k}}$
and bisects the angle	between $ec{f b}$ and $ec{f c}$ Then, which	n one of the following gives	s possible value of α and β ?
a) α=1, β = 1	between $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ Then, which b) $\alpha=2$, $\beta=2$	n one of the following gives c) $\alpha = 1, \beta = 2$	s possible value of α and β? d) α=2, $\beta = 1$
a) $\alpha = 1$, $\beta = 1$ 223. A unit vector perpend	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) α =2, β = 2 licular to the plane of $\mathbf{\vec{a}}$ = 2î ·	n one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is	s possible value of α and β ? d) $\alpha=2$, $\beta=1$
a) $\alpha = 1$, $\beta = 1$ 223. A unit vector perpend	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) α =2, β = 2 licular to the plane of $\mathbf{\vec{a}}$ = 2î ·	n one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is	s possible value of α and β ? d) $\alpha=2$, $\beta=1$
a) $\alpha = 1, \beta = 1$ 223. A unit vector perpend a) $\frac{4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{26}}$	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) $\alpha = 2$, $\beta = 2$ licular to the plane of $\mathbf{\vec{a}} = 2\mathbf{\hat{i}} \cdot \mathbf{\hat{j}}$ b) $\frac{2\mathbf{\hat{i}} - 6\mathbf{\hat{j}} - 3\mathbf{\hat{k}}}{7}$	n one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is c) $\frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7}$	s possible value of α and β? d) α=2, β = 1 d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$
a) $\alpha = 1, \beta = 1$ 223. A unit vector perpend a) $\frac{4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{26}}$	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) α =2, β = 2 licular to the plane of $\mathbf{\vec{a}}$ = 2î ·	n one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is c) $\frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7}$	s possible value of α and β? d) α=2, β = 1 d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$
a) $\alpha = 1, \beta = 1$ 223. A unit vector perpend a) $\frac{4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{26}}$ 224. Vectors \vec{a} and \vec{b} are in a) 300	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) $\alpha = 2$, $\beta = 2$ licular to the plane of $\mathbf{\vec{a}} = 2\mathbf{\hat{i}} + \mathbf{\hat{b}}$ b) $\frac{2\mathbf{\hat{i}} - 6\mathbf{\hat{j}} - 3\mathbf{\hat{k}}}{7}$ nclined at angle $\theta = 120^\circ$. If $ \mathbf{a} $ b) 325	n one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is c) $\frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7}$	s possible value of α and β? d) α=2, β = 1 d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$
a) $\alpha = 1, \beta = 1$ 223. A unit vector perpend a) $\frac{4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{26}}$ 224. Vectors \vec{a} and \vec{b} are in	between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ Then, which b) $\alpha = 2$, $\beta = 2$ licular to the plane of $\mathbf{\vec{a}} = 2\mathbf{\hat{i}} + \mathbf{\hat{b}}$ b) $\frac{2\mathbf{\hat{i}} - 6\mathbf{\hat{j}} - 3\mathbf{\hat{k}}}{7}$ nclined at angle $\theta = 120^\circ$. If $ \mathbf{a} $ b) 325	in one of the following gives c) $\alpha = 1, \beta = 2$ $- 6\hat{j} - 3\hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is c) $\frac{3\hat{i} - 2\hat{j} + 6\hat{k}}{7}$ $\vec{a} = 1, \vec{b} = 2$, then $[(\vec{a} + 3)]$	s possible value of α and β ? d) $\alpha = 2, \beta = 1$ d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$ $(3\vec{a} - \vec{b})^2$ is equal to

226. The volume (in cubic un $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ is	it) of the tetrahedron with	edges $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \ \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ as	nd
a) 4	b) $\frac{2}{3}$	c) $\frac{1}{6}$	d) $\frac{1}{3}$
227. If $ \vec{a} \times \vec{b} = 4$, $ \vec{a}.\vec{b} = 2$,	then $ \vec{a} ^2 + \vec{h} ^2 =$	0	5
a) 6	b) 2	c) 20	d) 8
228. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ be three unit ve	·-)		2
	angle between \vec{a} and \vec{c} , the		
	b) $\theta_1 = \frac{\pi}{3}, \theta_2 = \frac{\pi}{6}$		d) $\theta_{1} = \frac{\pi}{2} \theta_{2} = \frac{\pi}{2}$
0 0	0 0	1 0	0 1
229. If <i>P</i> , <i>Q</i> , <i>R</i> are the mid-po $\vec{O}A + \vec{O}B + \vec{O}C =$			
	b) $\vec{O}P + \vec{O}Q + \vec{O}R$	c) $4(\vec{O}P + \vec{O}Q + \vec{O}R)$	d) $6(\vec{O}P + \vec{O}Q + \vec{O}R)$
230. $(\vec{\mathbf{a}} \times \vec{\mathbf{b}})^2 + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2$ is eq	ual to		
a) $\vec{a} \ ^2 \vec{b} \ ^2$	b) $\vec{a}^{2} + \vec{b}^{2}$	c) 1	d) $2\vec{a}\cdot\vec{b}$
231. If \vec{a} is a vector of magnit	ude 50, collinear with the v	ector $\mathbf{\vec{b}} = 6\mathbf{\hat{i}} - 8\mathbf{\hat{j}} - \frac{15}{2}\mathbf{\hat{k}}$ and	nd makes an acute angle with
the positive direction of	\vec{z} -axis, then \vec{a} is equal to	-	
a) $-24\hat{i} + 32\hat{j} + 30\hat{k}$	b) 24 î – 32 ĵ – 30 ĥ	c) 12 î – 16 ĵ – 15 ĥ	d) $-12\hat{i} + 16\hat{j} - 15\hat{k}$
232. If ABCDEF is a regular l	nexagon with $\vec{A}B = \vec{a}$ and \vec{B}	$C = \vec{b}$, then $\vec{C}E$ equals	
a) $\vec{b} - \vec{a}$	b) $-\vec{b}$	c) $\vec{b} - 2\vec{a}$	d) $\vec{b} + \vec{a}$
233. If the vectors $2\hat{i} - 3\hat{j} + 4\hat{j}$	$\mathbf{\hat{k}}$ and $\mathbf{\hat{i}} + 2\mathbf{\hat{j}} - \mathbf{\hat{k}}$ and $m\mathbf{\hat{i}} - \mathbf{\hat{j}}$	$\hat{\mathbf{j}}+2\mathbf{\hat{k}}$ are coplanar, then the	ne value of <i>m</i> is
a) $\frac{5}{8}$	b) $\frac{8}{5}$	c) $-\frac{7}{4}$	d) $\frac{2}{3}$
234. If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are the three ve	ctors mutually perpendicula	ar to each other to form a r	ight handed system and
	= 5, then [$\vec{a} - 2\vec{b} \vec{b} - 3\vec{c} \vec{c}$ -		
a) 0	b) -24	c) 3600	d) —215
235. The value of $\mathbf{\hat{i}} \times (\mathbf{\hat{j}} \times \mathbf{\hat{k}})$	$+\hat{\mathbf{j}} \times (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}} \times (\hat{\mathbf{i}} \times \hat{\mathbf{j}})$ is	5	
a) o	b) î	c) ĵ	d) k
236. The number of the distin	nct real values of λ , for whic	h the vectors $-\lambda^2 \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$	$\hat{\mathbf{i}} - \lambda^2 \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \lambda^2 \hat{\mathbf{k}}$
are coplanar, is			1) 101
a) Zero	b) One	c) Two $\hat{i} + \hat{i} + 2\hat{k}$ and is d	d) Three
237. A particle is acted on by $3\hat{i} + 4\hat{i} = 15\hat{k}$ to the poi	nt 7 $\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$. The work d		isplaced from the point
a) 18	b) 15	c) 12	d) 9
238. If $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ unit vectors	,	,	,
a) Exactly two values of	_	b) More than two values	
c) No value of θ		d) Exactly one value of θ	
		$\mathbf{\hat{f}}_2 = 3\mathbf{\hat{i}} + 2\mathbf{\hat{j}} - \mathbf{\hat{k}}$ acting on a	particle when it is displaced
from the point $3\hat{i} + 2\hat{j} +$			
a) 8 units	b) 9 units	c) 10 units \vec{z}	d) 11 units
240. In a regular hexagon AB			
	b) $2\vec{a} + \vec{b} + \vec{c}$,	d) $\vec{a} + 2\vec{b} + 2\vec{c}$
241. If $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\hat{b} = \hat{\imath}$			
a) 8 242 Let $\vec{a} \cdot \vec{b}$ and \vec{a} be three n	b) 4	c) 6 $\vec{r} = \vec{a}$ and \vec{r} be vectors defined	d) 2
242. Let \vec{a}, \vec{b} and \vec{c} be three n the relations	on-copianar vectors, and le	t p, q and r be vectors defir	ieu by

$$\vec{\mathbf{p}} = \frac{\vec{\mathbf{b}} \times \vec{\mathbf{c}}}{|\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|}, \vec{\mathbf{q}} = \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{|\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|}, \vec{\mathbf{r}} \text{ is equal to} a) 0 b) \vec{\mathbf{r}} + (\vec{\mathbf{b}} + \vec{\mathbf{c}}) \cdot \vec{\mathbf{q}} + (\vec{\mathbf{c}} + \vec{\mathbf{a}}) \cdot \vec{\mathbf{r}} \text{ is equal to} a) 0 b) 1 c) 2 d) 3 \\ 243. If \vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}} \text{ are three non-zero, non-coplanar vectors and} $\vec{\mathbf{b}}_1 + \vec{\mathbf{b}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}} \\ And \\ \vec{\mathbf{c}}_1 + \vec{\mathbf{b}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_2 + \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_2 + \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_3 = \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_3 = \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ (\vec{\mathbf{c}} \cdot \vec{\mathbf{c}}_2) = \vec{\mathbf{c}} - |\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{b}}_1 \cdot \vec{\mathbf{c}}_2 = \vec{\mathbf{c}} - \frac{\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ (\vec{\mathbf{c}} \cdot \vec{\mathbf{c}}_2) = \vec{\mathbf{c}} - |\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_1 \cdot \vec{\mathbf{c}}_2 = \vec{\mathbf{c}} - |\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - |\vec{\mathbf{b}}|^2} \vec{\mathbf{b}}_1 \\ \vec{\mathbf{c}}_1 \cdot \vec{\mathbf{c}}_2 = \vec{\mathbf{c}} - |\vec{\mathbf{c}}|^2} \vec{\mathbf{a}} - |\vec{\mathbf{c}}|^2} \vec{\mathbf{b}}_1 \cdot \vec{\mathbf{c}}_2 \\ \vec{\mathbf{c}}_1 + \vec{\mathbf{c}}|^2 \vec{\mathbf{c}}_1 + |\vec{\mathbf{c}}|^2 \vec{\mathbf{c}}_1 + |\vec{\mathbf{c}}|^2} \vec{\mathbf{c}}_1 + |\vec{\mathbf{c}}|^2 \vec{\mathbf{c}}_1 + |\vec{$$$

Page | 17

the internal bisector of	$\angle ROA$ of $\triangle AOR$ is		
		20	$\sqrt{217}$
a) $\frac{\sqrt{136}}{9}$	b) $\frac{\sqrt{136}}{3}$	c) $\frac{20}{3}$	d) $\frac{\sqrt{217}}{9}$
255. Let $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = \hat{i}$,	$\vec{\mathbf{C}} = c_1\hat{\mathbf{i}} + c_2\hat{\mathbf{j}} + c_3\hat{\mathbf{k}}$. If $c_2 =$	-1 and $c_3 = 1$, then to mal	ke three vectors coplanar
a) $c_1 = 0$		b) $c_1 = 1$	
c) $c_1 = 2$		d) No value of c_1 can be f	found
256. If, in a right triangle AB		chen	
$A\vec{B}\cdot A\vec{C} + B\vec{C}\cdot B\vec{A} + C\vec{A}$	-		d) None of these
a) 2 <i>p</i> ²	b) $\frac{p^2}{2}$	c) p^{2}	d) None of these
257. If $\vec{a}, \vec{b}, \vec{c}$ are the position then	vectors of the vertices of a	n equilateral triangle whos	e orthocenter is at the origin,
	b) $ \vec{a} ^2 = \vec{b} ^2 + \vec{c} ^2$	c) $\vec{a} + \vec{b} = \vec{c}$	d) None of these
^{258.} If $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{a}} \cdot \vec{\mathbf{l}} $	1 1		
	$\mathbf{b} = 2$, then $ \mathbf{a} ^2 \mathbf{b} $ is equal b) 6		4) 20
a) 2 259. If <i>ABCDEF</i> is a regular	,	c) 8	d) 20
a) $2\vec{AB}$	b) $\vec{0}$	c) $3\vec{AB}$	d) 4 <i>AB</i>
$260. \text{ If } \vec{\mathbf{a}} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}, \vec{\mathbf{b}} =$	<i>y</i> -	,	,
coterminous edges \vec{a} +		$s_j - 2\kappa$, then the volume of	i the parahelopiped with
a) 4	b) 5	c) 63	d) 8
261. If $\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot$,	,	uj o
a) $\hat{i} + \hat{j}$	b) $\hat{\mathbf{i}} - \hat{\mathbf{k}}$	$c) \hat{i}$	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$
262. If \vec{a} and \vec{b} are unit vector	,	,	
a) 2	b) $2\sqrt{2}$	c) 4	d) None of these
263. If <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> are five co	, , , , , , , , , , , , , , , , , , ,	,	
a) $\overrightarrow{\mathbf{OE}}$	b) 3 \overrightarrow{DE}	c) $2 \overrightarrow{DE}$	d) 4 \overrightarrow{ED}
264. If $\vec{a} \cdot \hat{i} = \vec{a}(\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i}$		() <u></u>	
a) 0	b) î	c) ĵ	d) $\hat{\imath} + \hat{\jmath} + \hat{k}$
265. If the position vectors of	,	,,	
triangle <i>ABC</i> is		····	
a) Right angled and iso	sceles	b) Right angled, but not	isosceles
c) Isosceles but not right	-	d) Equilateral	
266. The volume of the para			
a) 4 cu unit	b) 3 cu unit	c) 2 cu unit	d) 8 cu unit
267. If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, the		→ →	
a) \vec{a} is parallel to \vec{b}		c) $ \vec{a} = \vec{b} $	d) None of these
268. If $ \vec{\mathbf{a}} + \vec{\mathbf{b}} = \vec{\mathbf{a}} - \vec{\mathbf{b}} $, the			π
a) $\frac{\pi}{3}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{2}$
269. If the vectors $\alpha \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$	$\hat{\mathbf{i}} + \hat{\mathbf{j}}\hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}} + \hat{\mathbf{j}} + \gamma \hat{\mathbf{k}}(\alpha, \beta)$	$\gamma \neq 1$) are coplanar, then t	he value of
$\frac{1}{1-\alpha} + \frac{1}{1-\beta} - \frac{1}{1-\gamma}$ i			
$1 - \alpha' 1 - \beta 1 - \gamma'$	5		
a) —1	b) 0	c) 1	d) 1/2
		•	$\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}} \text{ and } \vec{\mathbf{b}} = 0\hat{\mathbf{i}} + 1\hat{\mathbf{j}}$
$\hat{\mathbf{j}} - \hat{\mathbf{k}}$, is	plane and making angle 45°	and ou respectively with	$\mathbf{a} - 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \operatorname{and} \mathbf{b} = 0\mathbf{i} + \mathbf{k}$
j n , 13			

a) $-\frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{k}}$		b) $\frac{1}{\sqrt{2}}\hat{\mathbf{i}} - \frac{1}{\sqrt{2}}\hat{\mathbf{k}}$	
$\frac{\sqrt{2}}{1} \sqrt{2}$	۱.	d) None of these above	
c) $\frac{1}{3\sqrt{2}}\hat{i} + \frac{4}{3\sqrt{2}}\hat{j} + \frac{4}{3\sqrt{2}}\hat{j}$	$\frac{1}{\sqrt{2}}$ k	aj none of these above	
271. If the vectors			
$\vec{a} = \hat{\imath} + a\hat{\jmath} + a^2\hat{k}, \vec{b} =$	$= \hat{\iota} + b\hat{j} + b^2\hat{k}, \vec{c} = \hat{\iota} + c\hat{j} + c^2\hat{k}$	λ 2.	
are three non-coplan	ar vectors and $\begin{vmatrix} a & a^2 & 1+a \\ b & b^2 & 1+b \\ c & c^2 & 1+c \end{vmatrix}$	$\begin{vmatrix} 3\\3\\3 \end{vmatrix} = 0$, then the value of <i>al</i>	oc is
a) 0	b) 1	c) 2	d) —1
	vectors such that $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = 0$ If $\hat{\mathbf{r}}$	is any vector coplanar with	$\mathbf{\widehat{u}}$ and $\mathbf{\widehat{v}}$, then the magnitude
of the vector $\mathbf{\vec{r}} \times (\mathbf{\hat{u}} > \mathbf{a}) 0$	b) 1	c) $ \vec{\mathbf{r}} $	d) 2 r
2	vector $\hat{i} - 2\hat{j} + \hat{k}$ on the vector	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
_	b) $\frac{19}{9}$	c) $\frac{9}{10}$	d) $\frac{\sqrt{6}}{42}$
a) $\frac{5\sqrt{6}}{10}$	9	$\frac{19}{19}$	$\frac{19}{19}$
$\frac{274. \vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})}{\vec{\mathbf{b}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}})} + \frac{\vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{c}})}{\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})}$	$\frac{\langle \vec{\mathbf{b}} \rangle}{\langle \vec{\mathbf{c}} \rangle}$ is equal to		
a) 1	b) 2	c) 0	d) ∞
275. If $\vec{\mathbf{u}}_1$ and $\vec{\mathbf{u}}_2$ be vecto	rs of unit length and θ be the a	angle between them, then	
$\frac{1}{2} \vec{\mathbf{u}}_2 - \vec{\mathbf{u}}_1 $ is			2
a) sin θ	b) $\sin \frac{\theta}{2}$	c) cos θ	d) $\cos\frac{\theta}{2}$
276. Let $\vec{b} = 4\hat{\imath} + 3\hat{\jmath}$ be tw	o vectors perpendicular to ea	ch other in the <i>xy</i> -plane. T	hen, a vector in the same
	ions 1 and 2 along \vec{b} and \vec{c} , res		
a) $\hat{\iota} + 2\hat{j}$	b) $2\hat{\iota} - \hat{j}$	c) $2\hat{i} + \hat{j}$	d) None of these
=	the perpendicular drown from		-
a) $\vec{\mathbf{r}} = (2k, 5k, 4k)k$ c) $\vec{\mathbf{r}} = (2k, 4k, 5k)k$		b) $\vec{\mathbf{r}} = (2k, 4k, -5k)k \in$ d) None of these	K
	r with the vectors î and ĵ, perj	-	$=4\hat{i}-3\hat{i}+5\hat{k}$ such that
$ \vec{a} = \vec{b} $ is	i with the vectors t and j, perj		it of the such that
a) $\sqrt{2}(3\hat{i} + 4\hat{j})$ or, $-\sqrt{2}$	$\sqrt{2}(3\hat{\imath} + 4\hat{\imath})$		
b) $\sqrt{2}(4\hat{i} + 3\hat{j})$ or, $-\sqrt{2}$			
c) $\sqrt{3}(4\hat{\imath} + 5\hat{j})$ or, $-\sqrt{3}(4\hat{\imath} + 5\hat{j})$	$\sqrt{3}(4\hat{\imath}+5\hat{j})$		
d) $\sqrt{3}(5\hat{\imath} + 4\hat{j})$ or, $-\sqrt{3}$	$\sqrt{3}(5\hat{\imath}+4\hat{\jmath})$		
^{279.} Let \vec{a} , \vec{b} and \vec{c} be vec $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is	tors with magnitude 3,4 and 5	respectively and $\vec{a} + \vec{b} + \vec{c}$	$ec{\mathbf{c}}=ec{0}$, then the value of
a) 47	b) 25	c) 50	d) —25
280. If a , b , c are the posit origin, then	ion vectors of the vertices of a	n equilateral triangle, who	se orthocenter is at the
_	b) $\vec{\mathbf{a}}^2 = \vec{\mathbf{b}}^2 + \vec{\mathbf{c}}^2$	c) $\vec{\mathbf{a}} + \vec{\mathbf{b}} = \vec{\mathbf{c}}$	d) None of these
	$3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ are t gle <i>ABC</i> . The position vector of		
	b) $\frac{2}{3}(6\hat{i} + 12\hat{j} - 8\hat{k})$	-	-
	+ $3\hat{j}$ + $6\hat{k}$ are collinear and $ \vec{b} $	5	3
	b) $\pm (2\hat{\imath} + 3\hat{\jmath} - 6\hat{k})$		d) +21($\hat{i} + \hat{i} + \hat{k}$)
, , , ,	$\vec{b} - \vec{c}, \vec{c} - \vec{a}$], where $ \vec{a} = 1, \vec{b} $		-, <u></u> (· · , · · ·)
L .		-	

a) 0	b) 1	c) 6	d) None of these
284. The distance between the	$\text{ne line } \vec{\mathbf{r}} = 2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda$	$l(i - j + k)$ and the plane \bar{r}	$\mathbf{i} \cdot (\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = 5$ is
a) $\frac{10}{9}$	b) $\frac{3}{10}$	c) $\frac{10}{3\sqrt{3}}$	d) $\frac{10}{9}$
)	10	343	9
285. In a parallelogram ABC			
a) $\frac{3a^2 + b^2 - c^2}{2}$	b) $\frac{a^2 + 3b^2 - c^2}{2}$	c) $\frac{a^2 - b^2 + 3c^2}{2}$	d) $\frac{a^2 + 3b^2 + c^2}{2}$
			-
286. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ and $\vec{\mathbf{b}}$			
a) 60°	b) 90°	c) 45°	d) 55°
287. If $\vec{a} = \hat{\imath} + \hat{\jmath} - \hat{k}$, $\vec{b} = -\hat{\imath} - \hat{\imath}$	$+2\hat{j}+2k$ and $\vec{c}=-\hat{i}+2\hat{j}$	-k, then a unit vector norm	nal to the vectors $\vec{a} + b$ and
$\vec{b} - \vec{c}$ is			
a) î	b) <i>ĵ</i>	c) <i>k</i>	d) None of these
288. If \vec{a} , \vec{b} , \vec{c} and three vecto	rs such that $\vec{a} = \vec{b} + \vec{c}$ and	the angle between \vec{b} and \vec{c}	is
$\frac{\pi}{2}$ then			
L	b) $b^2 = c^2 + a^2$	2^{2} 2^{2} 1^{2}	
,	,	,	,
289. If the position vector of		$2\mathbf{j} + 4\mathbf{k}$ and $\mathbf{AB} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}$	k
-	r of <i>B</i> with respect to <i>O</i> is		
	b) $6\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$		d) $\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$
290. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$	3ĵ + 5 k and č = 7î + 9ĵ + 1	$11\hat{f k}$, then the area of the pa	rallelogram having diagonals
$\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is			
a) 4√6	b) $\frac{1}{2}\sqrt{21}$	c) $\frac{\sqrt{6}}{2}$	d) √6
a) 400	$0)\frac{1}{2}\sqrt{21}$	2	u) vo
291. The angle between the v	vectors $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ and $\vec{\mathbf{a}} - \vec{\mathbf{b}}$, wh	here $\vec{\mathbf{a}} = (1,1,4)$ and $\vec{\mathbf{b}} = (1,1,4)$,−1,4) is
a) 90°	b) 45°	c) 30°	d) 15°
292. Area of rhombus is	, where diagonals are $\vec{\mathbf{a}}=2$	$2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and $\hat{\mathbf{b}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}}$	$\hat{\mathbf{j}} + \hat{\mathbf{k}}$
a) √ <u>21.5</u>	b) √ <u>31.5</u>	c) $\sqrt{28.5}$	d) $\sqrt{38.5}$
293. If the vectors $\hat{i} - 2x \hat{j} - $	$3v\hat{k}$ and $\hat{i} + 3x\hat{i} + 2v\hat{k}$ ar	e orthogonal to each other.	, then the locus of the point
(x, y) is	-,		
a) A circle	b) An ellipse	c) A parabola	d) A straight line
294. If the position vectors of	-		, ,
triangle is	0	, , <u>,</u>	, , , , , , , , , , , , , , , , , , ,
a) Equilateral	b) Isosceles	c) Right angled isosceles	s d) Right angled
295. The two variable vector	-	, , ,	, , ,
(x, y)is	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	
a) Hyperbola	b) Circle	c) Straight line	d) Ellipse
296. If $ \vec{a} = \vec{b} = \vec{a} + \vec{b} =$	-	, 0	y 1
a) 1	b) $\sqrt{2}$	c) $\sqrt{3}$	d) None of these
297. The angle between the v	<i>, , , , , , , , , ,</i>) (=	uj none or these
a) $\pi/2$	b) $\pi/4$	c) $\pi/3$	d) None of these
	<i>, , ,</i>	<i>, , , , , , , , , ,</i>	
298. A unit vector coplanar v			
a) $\left(\frac{\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{2}}\right)$	b) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}\right)$	c) $\left(\frac{\mathbf{I}+\mathbf{J}+\mathbf{Z}\mathbf{K}}{\sqrt{\epsilon}}\right)$	d) $\left(\frac{\mathbf{I}+2\mathbf{J}+\mathbf{K}}{\sqrt{2}}\right)$
(12)			
			\vec{a} and $\vec{a} - 3\vec{b}$ if it is given that
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a	ingle between \vec{a} and \vec{b} is $\pi/$	4, is	
a) 15	b) $\sqrt{113}$	c) √593	d) √369
300. The position vector of the	ne point where the line $ec{\mathbf{r}}$ =	$\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} + t(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$ me	ets the plane $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) =$
- .			

5 is

-	b) $5\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$	-	d) $5\hat{i} + \hat{j} + \hat{k}$
	$3, \vec{b} = 5, \vec{c} = 7$, then the a		
a) $\pi/6$	b) $2\pi/3$	c) 5π/3	d) $\pi/3$
302 . If \vec{a} is perpendicular t	to b and $\vec{c} \vec{a} = 2$, $ \mathbf{b} = 3$, $ \vec{c} $	= 4 and the angle betwee	$\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is $\frac{2\pi}{3}$, then $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ is
equal to			
a) 4√3	b) 6√3	c) 12√3	d) 18√3
	of the points A, B, C are (2)	$2\hat{i} + \hat{j} - \hat{k}$, $(3\hat{i} - 2\hat{j} + \hat{k})$ a	nd $(\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}})$ respectively.
These points			
a) Form an isosceles t	riangle	b) Form a right angled	_
c) Are collinear 304. If $\vec{z} = 4\hat{z} + 6\hat{z}$ and $\vec{b} =$	$2\hat{i} + 4\hat{k}$ then the vector for	d) Form a scalene trian	0
	$3\hat{j} + 4\hat{k}$, then the vector for 18		
a) $\frac{10}{10\sqrt{3}}(3\hat{j}+4\hat{k})$	$\mathbf{b}\big)\frac{18}{25}\big(3\hat{j}+4\hat{k}\big)$	c) $\frac{10}{\sqrt{3}}(3\hat{j}+4\hat{k})$	d) $3\hat{j} + 4\hat{k}$
305. Two vectors \vec{a} and \vec{b} a	re non-collinear. If vectors $ec{c}$	$\vec{d} = (x - 2)\vec{a} + \vec{b}$ and $\vec{d} = (x - 2)\vec{a}$	$2x + 1)\vec{a} - \vec{b}$ are collinear,
then $x =$			
a) 1/3	b) 1/2	c) 1	d) 0
	(α, β, γ) a plane is drawn at right		e coordinate axes are A, B, C
respectively. If $OP = p$	then equation of plane $\overline{A, B}$		
a) $\alpha x + \beta y + \gamma z = p$		b) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = p$	
c) $2\alpha x + 2\beta y + 2\gamma z =$	p^{2}	d) $\alpha x + \beta y + \gamma z = p^2$	
307. If <i>ABCDEF</i> is a regula	r hexagon with $\overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{I}}$	$\overrightarrow{\mathbf{BC}} = \overrightarrow{\mathbf{b}}$, then $\overrightarrow{\mathbf{CE}}$ equals	
a) $\vec{\mathbf{b}} - \vec{\mathbf{a}}$	b) $-\vec{\mathbf{b}}$	c) $\vec{\mathbf{b}} - 2\vec{\mathbf{a}}$	d) None of these
308. A unit vector perpend	icular to both $\hat{\imath} + \hat{\jmath}$ and $\hat{\jmath} + \hat{k}$, is	
a) $\hat{\iota} - \hat{\jmath} + \hat{k}$	b) $\hat{\imath} + \hat{\jmath} + \hat{k}$	c) $\frac{\hat{\iota} + \hat{j} + \hat{k}}{\sqrt{3}}$	d) $\frac{\hat{\iota} - \hat{\jmath} + \hat{k}}{\sqrt{3}}$
309. Let ABCD be the para	allelogram whose sides AB a	and AD are represented by	y the vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and
a) $\frac{1}{2}(3\hat{i} - 6\hat{j} - 2\hat{k})$	ly. Then, if $\vec{\mathbf{a}}$ is a unit vector \mathbf{j} b) $\frac{1}{3}(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	c) $\frac{1}{7}(3\hat{i}-6\hat{j}-3\hat{k})$	d) $\frac{1}{7}(3\hat{\mathbf{i}}+6\hat{\mathbf{j}}-2\hat{\mathbf{k}})$
5	0	,	it vector parallel to the sum of
	$5\hat{k}$ and $b\hat{i} + 2\hat{j} + 3\hat{k}$ is one, is		
a) -2	b) -1	c) 0	d) 1
311. If \vec{a} , \vec{b} , \vec{c} are non-copla	nar vectors and $x\vec{a} + y\vec{b} + z$	$\vec{c} = 0$, then	
a) At least of one of <i>x</i> ,	<i>y, z</i> is zero		
b) <i>x, y, z</i> are necessari			
c) None of them are ze	ero		
d) None of these	2^{1} , 2^{1} , 1^{1} , 1^{1} , 1^{1} , 1^{1} , 1^{1} , 1^{1} , 1^{1}		
a) 1:2	$2\hat{j} + 3\hat{k}$ divides the join of – b) 2 : 3	-2i + 3j + 5k and /i - k, 19 c) 3:4	d) 1:4
-	$\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a} - \vec{b})$,	2
			d) None of these
a) $\left[\vec{a}\vec{b}\vec{c}\right]$	b) $2[\vec{a}\vec{b}\vec{c}]$	LJ	
314. The point of intersecting $2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is	ion of the lines $\vec{\mathbf{r}} = 7\hat{\mathbf{i}} + 10\hat{\mathbf{j}}$	$+ 3\mathbf{k} + s(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$ ar	$\mathbf{r} \mathbf{r} = 3\mathbf{i} + 5\mathbf{j} + 7\mathbf{k} + t(\mathbf{i} + \mathbf{k})$
	b) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$	c) $\hat{\mathbf{i}} - \hat{\mathbf{i}} + \hat{\mathbf{k}}$	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
, ,	tion vectors of <i>P</i> and <i>Q</i> resp	, ,	, ,
	PQ internally and externally		
-		L.	-

Page | 21

perpendicular, then			
a) $9p^2 = 4q^2$	b) $4p^2 = 9q^2$	c) $9p = 4q$	d) $4p = 9q$
316. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$ and $\vec{\mathbf{b}} = 2\hat{\mathbf{i}}$	$-{f \hat k}$ are two vectors, then th	ne point of intersection of tw	vo lines $\vec{\mathbf{r}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}}$ and $\vec{\mathbf{r}} \times \vec{\mathbf{a}}$
$\vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is			
	b) $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$		d) $3\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$
317. If $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = \vec{\mathbf{B}} \times (\vec{\mathbf{C}})$			
a) o	b) $\vec{\mathbf{A}} \times \vec{\mathbf{B}}$		d) $\vec{\mathbf{C}} \times \vec{\mathbf{A}}$
318. If \vec{a} and \vec{b} are two vector	ors, then the equality $ \vec{a}+\vec{b} $	$ \vec{a} = \vec{a} + \vec{b} $ holds	
a) Only if $\vec{a} = \vec{b} = \vec{0}$			
b) For all \vec{a}, \vec{b}			
c) Only if $\vec{a} = \lambda \vec{b}$, $\lambda > 0$) or $\vec{a} = \vec{b} = \vec{0}$		
d) None of these			
319. Let $\vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}, \vec{\mathbf{b}} = x\hat{\mathbf{i}} + \hat{\mathbf{k}}$			
a) neither x nor y	b) both x and y	c) only x	d) only y $4\hat{k}$ and $7\hat{k} + 4\hat{k} + 0\hat{k}$ then
	dicular to the plane of trian		$-4\hat{k}$ and $7\hat{i}+4\hat{j}+9\hat{k}$, then
	=	-	d) None of these
a) 31 <i>î –</i> 18 <i>ĵ –</i> 9 <i>k</i>	b) $\frac{31\hat{\iota} - 38\hat{\jmath} - 9\hat{k}}{\sqrt{2486}}$	c) $\frac{311+300+9\pi}{\sqrt{2486}}$	
321. For any three vectors \bar{a}	• • •	•	
	b) $[\vec{a} \vec{b} \vec{c}]$		d) 0
322. If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are unit coplar			
a) 1	b) 0	$c = \sqrt{3}$ $-\sqrt{3}$	d) √3
323. If \vec{a} and \vec{b} are two unit		y	y .
		t aniges 50° and 120°, then	d + b equals
a) $\sqrt{\frac{2}{3}}$	b) √2	c) √3	~) -
•			
324. If the vectors $\hat{i} - 2x\hat{j} + 2x\hat{j}$			
		c) A hyperbola	d) None of these
325. Let \vec{a}, \vec{b} and \vec{c} be non-zero $(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{c}$, → , ,	\rightarrow \rightarrow \rightarrow \rightarrow
	$ \mathbf{a} $ If θ is the acute angle be	tween vectors b and c , then	the angle between $ec{a}$ and $ec{c}$ is
equal to 2π	π	π	π
a) $\frac{2\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
326. A vector perpendicular	to both the vectors $\hat{i} + \hat{j} + \hat{j}$	$\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ is	
a) î + ĵ	b) î — ĵ	c) $c(\hat{\mathbf{i}} - \hat{\mathbf{j}}), c$ is a scalar	d) None of these
327. If $\vec{a}, \vec{b}, \vec{c}$ are non-colline	ear vectors such that $\vec{a} + \vec{b}$ i	s parallel to \vec{c} and $\vec{c} + \vec{a}$ is p	arallel to \vec{b} , then
a) $\vec{a} + \vec{b} = \vec{c}$			
b) $\vec{a}, \vec{b}, \vec{c}$ taken in order	from the sides of a triangle))	
c) $\vec{b} + \vec{c} = \vec{a}$			
d) None of these	_		
		ng the points $A(2, -1, 1)$ and	B(3,1,2) displaces a particle
from A to B. The work			d) 10
a) 6 220 A:t	b) $6\sqrt{6}$	c) √6	d) 12
329. A unit vector \vec{a} makes	1		
a) $\frac{\hat{\mathbf{i}}}{2} + \frac{\hat{\mathbf{j}}}{2} + \frac{\hat{\mathbf{k}}}{2}$	b) $\frac{\mathbf{i}}{2} + \frac{\mathbf{j}}{2} - \frac{\mathbf{k}}{5}$	c) $-\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}}$	d) $\frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} - \frac{\mathbf{k}}{5}$
2 2 2	∠ ∠ √2	∠ ∠ √2	∠ ∠ √2

$330 \text{ If } \vec{a} \times \vec{b} ^2 + \vec{a} \cdot \vec{b} ^2 = 1$	44 and $ \vec{\mathbf{a}} = 4$ then $ \vec{\mathbf{b}} $ is a	anal to	
a) 12	b) 3	c) 8	d) 4
331. If \vec{a} is non-zero vector o	,	n-zero scalar, then $m \vec{a}$ is a	5
a) $m = \pm 1$	b) $m = \vec{\mathbf{a}} $	c) $m = \frac{1}{ \vec{a} }$	d) $m = \pm 2$
332. If the constant forces $2\hat{i}$ point $A(4, -3, -2)$ to a p	$f - 5\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ point $B(6, 1, -3)$, then the v		ich it is displaced from a
a) 15 units	b) –15 units	c) 9 units	d) –9 units
333. If <i>P</i> , <i>Q</i> , <i>R</i> are three point are collinear, if	ts with respective position v	vectors $\hat{i} + \hat{j}$, $\hat{i} - \hat{j}$ and $a\hat{i} + \hat{j}$	$b\hat{j} + c\hat{k}$. The points P, Q, R
a) $a = b = c = 1$	b) $a = b = c = 0$	c) $a = 1, b, c \in R$	d) $a = 1, c = 0, b \in R$
334. The projection of the ve axes is	ector $\vec{a} = 4\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ on th	e axis making equal acute a	
a) 3	b) √ <u>3</u>	c) $\frac{3}{\sqrt{3}}$	d) None of these
335. The value of $[2 \hat{i} 3\hat{j} - 5\hat{k}]$	\mathbf{x}] is equal to	¥5	
a) -30		c) 0	d) 11
336. $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) \cdot \vec{d}$ eq	uals	2	
	b) $\left[\vec{a}\vec{b}\vec{c}\right](\vec{a}\cdot\vec{d})$	c) $[\vec{a}\vec{b}\vec{c}](\vec{c}\cdot\vec{d})$	d) None of these
			h it is displaced from a point
	B(6,1,-3) then the work do		
a) 10 units	b) –10 units	c) 9 units	d) None of these
338. If forces of magnitudes	6 and 7 units acting in the d	lirections $\hat{\iota} - 2\hat{j} + 2\hat{k}$ and 2	$\hat{\iota} - 3\hat{j} - 6\hat{k}$ respectively act
	splaced from the point $P(2)$	(-1, -3) to $Q(5, -1, 1)$, the	n the work done by the
forces is			
	•• •		
a) 4 units	b) –4 units	c) 7 units	d) –7 units
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is e	qual to		
a) 4 units 339. [$\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}$] is evaluated a) [$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}$]	qual to b) 2 [ā b̄ c ̄]	c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$	d) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$
a) 4 units ^{339.} [$\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}$] is evaluated a) [$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}$] 340. <i>ABCD</i> is a quadrilateral	qual to b) 2 [aੋ bੈ c ੋ] , <i>P</i> , <i>Q</i> are the mid points of	c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$	d) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$
a) 4 units 339. [$\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}$] is evaluated a) [$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}$]	qual to b) 2 [ā b̄ c ̄]	c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$	d) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$
a) 4 units ^{339.} [$\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}$] is evaluated a) [$\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}$] 340. <i>ABCD</i> is a quadrilateral	qual to b) 2 [ad b c] , <i>P</i> , <i>Q</i> are the mid points of b) QP ly the mid-points of <i>AB</i> , <i>AC</i>	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is evaluated a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) 3 $\overline{\mathbf{QP}}$	qual to b) 2 [c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) 3 $\overrightarrow{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectively a) \overrightarrow{DC}	qual to b) 2 [\vec{a} \vec{b} \vec{c}] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \overrightarrow{BC} and \overrightarrow{AD} , then $\overrightarrow{AB} + \overrightarrow{DC}$ c) $4\overrightarrow{QP}$ and <i>BC</i> respectively in a ΔA c) $2\overrightarrow{BF}$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) 3 $\overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectively	qual to b) 2 [\vec{a} \vec{b} \vec{c}] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \overrightarrow{BC} and \overrightarrow{AD} , then $\overrightarrow{AB} + \overrightarrow{DC}$ c) $4\overrightarrow{QP}$ and <i>BC</i> respectively in a ΔA c) $2\overrightarrow{BF}$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) 3 $\overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel a) \overline{DC} 342. $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perp a) $\sqrt{3}$	qual to b) 2 [\vec{a} \vec{b} \vec{c}] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2} \overrightarrow{BF}$ bendicular unit vectors, then b) 3	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and <i>BC</i> respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) $3 \ \overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel a) \overline{DC} 342. $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perp a) $\sqrt{3}$ 343. Let $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}, \vec{b} =$	qual to b) 2 [\vec{a} \vec{b} \vec{c}] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2} \overrightarrow{BF}$ bendicular unit vectors, then b) 3	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and <i>BC</i> respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) 3 $\overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel a) \overline{DC} 342. $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perp a) $\sqrt{3}$	qual to b) 2 [\vec{a} \vec{b} \vec{c}] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2} \overrightarrow{BF}$ bendicular unit vectors, then b) 3	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and <i>BC</i> respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) $3 \ \overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectively a) \overline{DC} 342. $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perpendicular a) $\sqrt{3}$ 343. Let $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}, \vec{b} = 1$ and \vec{b} , then $11d = 1$ a) 2 344. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are three non	qual to b) 2[$\vec{a} \vec{b} \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $= 3\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j}$ b) 1	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and <i>BC</i> respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a}
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each of the second state of the second stat	qual to b) 2[$\vec{a} \vec{b} \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $\vec{a} \cdot 3\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j}$ b) 1 -coplanar vectors and \vec{p}, \vec{q}	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and <i>BC</i> respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c, \vec{r} , are reciprocal vectors,	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{c})$
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) $3 \ \overline{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel a) \overline{DC} 342. $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are mutually perp a) $\sqrt{3}$ 343. Let $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}, \vec{b} =$ and \vec{b} , then $11d =$ a) 2 344. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are three non $m\vec{\mathbf{q}} + n\vec{\mathbf{r}}$) is a) $l + m + n$	qual to b) 2[$\vec{a} \vec{b} \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $(3\hat{i} + 3\hat{j} - \hat{k} \text{ and } \vec{c} = d\hat{i} + \hat{j})$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c, \vec{r} , are reciprocal vectors, c) $l^2 + m^2 + n^2$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each of the second state of the second stat	qual to b) 2[$\vec{a} \vec{b} \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $(3\hat{i} + 3\hat{j} - \hat{k} \text{ and } \vec{c} = d\hat{i} + \hat{j})$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c, \vec{r} , are reciprocal vectors, c) $l^2 + m^2 + n^2$	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these d
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each of the second state of the second stat	qual to b) 2[$\vec{a} \cdot \vec{b} \cdot \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $\vec{a} \cdot \vec{a} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j}$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$ rs, then $ \vec{a} - \vec{b} ^2 + \vec{b} - \vec{c} $ b) 9	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c, \vec{r} , are reciprocal vectors, c) $l^2 + m^2 + n^2$ $2 + \vec{c} - \vec{a} ^2$ does not excee c) 8	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these d d) 6
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each of the second state of the second stat	qual to b) 2[$\vec{a} \cdot \vec{b} \cdot \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $\vec{a} \cdot \vec{a} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j}$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$ rs, then $ \vec{a} - \vec{b} ^2 + \vec{b} - \vec{c} $ b) 9	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c) -1 c) $l^2 + m^2 + n^2$ c) $l^2 + m^2 + n^2$ c) 8 rticle such that the particle	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these d d) 6
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each of the second state of the second stat	qual to b) 2[$\vec{a} \vec{b} \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2}\vec{BF}$ bendicular unit vectors, then b) 3 $(3\hat{i} + 3\hat{j} - \hat{k} \text{ and } \vec{c} = d\hat{i} + \hat{j})$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$ rs, then $ \vec{a} - \vec{b} ^2 + \vec{b} - \vec{c} $ b) 9 $- 3\hat{j} + 2\hat{k}$ is acting on a par	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c) -1 c) $l^2 + m^2 + n^2$ c) $l^2 + m^2 + n^2$ c) 8 rticle such that the particle	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these d d) 6
a) 4 units 339. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is each a) $[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 340. <i>ABCD</i> is a quadrilateral a) $3 \ \vec{\mathbf{QP}}$ 341. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel a) \overrightarrow{DC} 342. $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are mutually perpending a) $\sqrt{3}$ 343. Let $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = \hat{\imath}$ and \vec{b} , then $11d = \hat{\imath}$ a) 2 344. If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ are three non $m\vec{\mathbf{q}} + n\vec{\mathbf{r}}$) is a) $l + m + n$ 345. If $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \vec{\mathbf{c}}$ are unit vector a) 4 346. A constant force $\vec{\mathbf{F}} = 2\hat{\imath}$ point(1,2,3) to the point a) 2 347. The value of <i>a</i> , for which	qual to b) 2[$\vec{a} \cdot \vec{b} \cdot \vec{c}$] , <i>P</i> , <i>Q</i> are the mid points of b) \vec{QP} by the mid-points of <i>AB</i> , <i>AC</i> b) $\frac{1}{2} \overrightarrow{BF}$ bendicular unit vectors, then b) 3 $\vec{a} \cdot 3\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = d\hat{i} + \hat{j}$ b) 1 -coplanar vectors and \vec{p}, \vec{q} b) $l^3 + m^3 + n^3$ rs, then $ \vec{a} - \vec{b} ^2 + \vec{b} - \vec{c} $ b) 9 $- 3\hat{j} + 2\hat{k}$ is acting on a part t (3,4,5). The work done by b) 3	c) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^2$ \vec{BC} and \vec{AD} , then $\vec{AB} + \vec{DC}$ c) $4\vec{QP}$ and BC respectively in a ΔA c) $2\vec{BF}$ in $ \vec{a} + \vec{b} + \vec{c} $ is equal to c) 1 + $(2d - 1)\hat{k}$. If \vec{c} is parallel c) -1 c, \vec{r} , are reciprocal vectors, c) $l^2 + m^2 + n^2$ $2 + \vec{c} - \vec{a} ^2$ does not excee c) 8 relice such that the particle is the force is c) 4 sition vectors	d) $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to d) $2\vec{QP}$ <i>ABC</i> , then $\vec{BE} + \vec{AF} =$ d) $\frac{3}{2}\vec{BF}$ d) 0 I to the plane of the vectors \vec{a} d) 0 then $(l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} +$ d) None of these d d) 6 is displaced from the

with $C = \frac{\pi}{2}$ are	
a) -2 and -1 b) -2 and 1 c) 2 and -1 d 348. If $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$, then	d) 2 and 1
a) $\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$ b) $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{0}$ c) $\vec{c} \times \vec{a} = \vec{a} \times \vec{b}$	d) $\vec{c} \times \vec{b} = \vec{b} \times \vec{a}$
349. If $\vec{a} + \vec{b} \neq 0$ and \vec{c} is a non-zero vector, then $(\vec{a} + \vec{b}) \times \{\vec{c} - (\vec{a} + \vec{b})\}$ is equal to	
a) $\vec{a} + \vec{b}$ b) $(\vec{a} + \vec{b}) \times \vec{c}$ c) $\lambda \vec{c}$, where $\lambda \neq 0$	d) $\lambda(\vec{a} \times \vec{b}), \lambda \neq 0$
350. If a force $\vec{\mathbf{F}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ is acting at the point <i>P</i> (1, -1,2) then the magnitude of	f moment of $ec{\mathbf{F}}$ about the
point $Q(2, -1, 3)$ is	71 (1
	d) 17
351. If $ \vec{\mathbf{a}} = \vec{\mathbf{b}} = 1$ and $ \vec{\mathbf{a}} + \vec{\mathbf{b}} = \sqrt{3}$, then the value of $(3\vec{\mathbf{a}} - 4\vec{\mathbf{b}}) \cdot (2\vec{\mathbf{a}} + 5\vec{\mathbf{b}})$ is a) -21 b) $-\frac{21}{21}$ c) 21	21
Z	d) $\frac{21}{2}$
352. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times (\hat{b} \times \hat{c})$	$=\frac{1}{2}\hat{b}$, then the angle
between \hat{a} and \hat{c} is	
a) 30° b) 45° c) 60° or 353 . If the vectors $3\hat{i} + \lambda\hat{j} + \hat{k}$ and $2\hat{i} - \hat{j} + 8\hat{k}$ are perpendicular, then λ is equal to	d) 90°
	d) 1/7
354. The equation of the plane perpendicular to the line	
$\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ and passing through the point(2,3,1) is	
a) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 1$ b) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 1$ c) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 7$ of	d) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}) = 10$
355. $(\vec{\mathbf{a}} - \vec{\mathbf{b}}) \cdot \{ (\vec{\mathbf{b}} - \vec{\mathbf{c}}) \times (\vec{\mathbf{c}} - \vec{\mathbf{a}}) \}$ is equal to	
	d) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$
356. If \hat{n}_1, \hat{n}_2 are two unit vectors and θ is the angle between them, then $\cos \theta/2 =$	
a) $\frac{1}{2} \hat{n}_1 + \hat{n}_2 $ b) $\frac{1}{2} \hat{n}_1 - \hat{n}_2 $ c) $\frac{1}{2} (\hat{n}_1 \cdot \hat{n}_2)$	d) $\frac{ \hat{n}_1 \times \hat{n}_2 }{2 \hat{n}_1 \hat{n}_2 }$
357. Let <i>ABCD</i> be the parallelogram whose sides <i>AB</i> and <i>AD</i> are represented by the v	vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and
$\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ respectively. Then if $\vec{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{AC}}$, then $\vec{\mathbf{a}}$ is equal to	
a) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}})/3$ b) $(3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}})/3$ c) $(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 3\hat{\mathbf{k}})/7$	
358. If the points with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i} - 8\hat{j}$ and $a\hat{i} - 52\hat{j}$ are collinear, th a) -40 b) -20 c) 20 c	en <i>a</i> is equal to d) 40
359 . If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$ and $\vec{b} + \vec{c} + \vec{d}$,
is equal to	
a) $\vec{0}$ b) $\alpha \vec{a}$ c) $\beta \vec{b}$	d) $(\alpha + \beta)\vec{c}$
360. The unit vector perpendicular to $\hat{i} - \hat{j}$ and coplanar with $\hat{i} + 2\hat{j}$ and $\hat{i} + 3\hat{j}$ is	
a) $\frac{2\hat{i} - 5\hat{j}}{\sqrt{29}}$ b) $2\hat{i} + 5\hat{j}$ c) $\frac{1}{\sqrt{2}}(\hat{i} + \hat{j})$ o	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
361. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for some non-zero vector \vec{r} , then the value of $[\vec{a}\vec{b}\vec{c}]$, is	
	d) None of these
362. If the angle between $\hat{\mathbf{i}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} + a\hat{\mathbf{k}}$ is $\frac{\pi}{3}$, then the value of a is	
	d) 2 or –2
363. A vector which makes equal angles with the vectors $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k}), \frac{1}{5}(-4\hat{i}-3\hat{k})$	
a) $5\hat{i} + \hat{j} + 5\hat{k}$ b) $-5\hat{i} + \hat{j} + 5\hat{k}$ c) $-5\hat{i} + \hat{j} + 5\hat{k}$ d	-
364. Which one of the following vectors is of magnitude 6 and perpendicular to both \bar{a}	$\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$
and $\vec{\mathbf{b}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$? a) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ b) $2(2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ c) $3(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$	d) 2(2 $\hat{i} - \hat{j} - 2\hat{k}$)

365. In a right angled triangle *ABC*, the hypotenuse Ab = p, then $\vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB}$ is equal to d) None of these b) $\frac{p^2}{2}$ a) $2p^2$ c) p^2 366. Which one of the following is not correct? a) If $\vec{\mathbf{p}} \cdot \vec{\mathbf{a}} = \vec{\mathbf{p}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{p}} \cdot \vec{\mathbf{c}}$ for some non-zero vector $\vec{\mathbf{p}}$ b) The vectors $\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$, $2\hat{\mathbf{i}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{j}} + \hat{\mathbf{k}}$ are coplanar then \vec{a} , \vec{b} , \vec{c} are coplanar If \vec{a} , \vec{b} are unit vectors and angle between \vec{a} and \vec{b} c) The vector $\vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with \vec{a} and \vec{b} d) is $\frac{\pi}{3}$, then $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| < 1$ 367. The length of the shortest distance between the two lines $\vec{\mathbf{r}} = (-3\hat{\mathbf{i}} + 6\hat{\mathbf{j}}) + s(-4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and $\vec{\mathbf{r}} = (-2\hat{\mathbf{i}} + 7\hat{\mathbf{k}}) + t(-4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ is a) 7 units b) 13 units c) 8 units d) 9 units 368. A vector perpendicular to the plane containing the points A(1, -1, 2), B(2, 0, -1), C(0, 2, 1) is a) $4\hat{i} + 8\hat{j} - 4\hat{k}$ b) $8\hat{i} + 4\hat{j} + 4\hat{k}$ c) $3\hat{i} + \hat{j} + 2\hat{k}$ d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 369. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}] = \frac{1}{4}$, then angle between \vec{a} and \vec{b} is a) $\frac{\pi}{3}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{2}$ 370. If $|\vec{\mathbf{a}}| = 3$, $|\vec{\mathbf{b}}| = 4$, then a value of λ for which $\vec{\mathbf{a}} + \lambda \vec{\mathbf{b}}$ is perpendicular to $\vec{\mathbf{a}} - \lambda \vec{\mathbf{b}}$, is b) 3 c) $\frac{3}{2}$ a) $\frac{9}{16}$ d) $\frac{4}{2}$ 371. $(\vec{\mathbf{x}} - \vec{\mathbf{y}}) \times (\vec{\mathbf{x}} + \vec{\mathbf{y}}) = \dots$ where $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^3$ c) $\frac{1}{2}(\vec{\mathbf{x}} \times \vec{\mathbf{y}})$ d) None of these b) $|\vec{\mathbf{x}}|^2 - |\vec{\mathbf{y}}|^2$ a) $2(\vec{\mathbf{x}} \times \vec{\mathbf{y}})$ 372. If the vectors $\vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \lambda\hat{\mathbf{i}} + \hat{\mathbf{j}} + \mu\hat{\mathbf{k}}$ are mutually orthogonal, then (λ, μ) is equal to b) (2, -3)c) (-2.3) d) (3, -2)a) (-3,2) 373. Given that $\vec{a} = (1, 1, 1)$, $\vec{c} = (0, 1, -1)$ and $\vec{a} \cdot \vec{b} = 3$. If $\vec{a} \times \vec{b} = \vec{c}$, then $\vec{b} = a$, $\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$ b) $\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)$ c) $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$ d) None of these 374. If \hat{a} , \hat{b} and \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector and θ_1 , θ_2 and θ_3 are the angles between the vectors \hat{a} , \hat{b} ; \hat{b} , \hat{c} and \hat{c} , \hat{a} respectively, then among θ_1 , θ_2 and θ_3 a) All are acute angles b) All are right angles c) At least one is obtuse angle d) None of these 375. Given vectors $\vec{x} = 3\hat{\imath} - 6\hat{\jmath} - \hat{k}$, $\vec{y} = \hat{\imath} + 4\hat{\jmath} - 3\hat{k}$ and $\vec{z} = 3\hat{\imath} + 4\hat{\jmath} + 12\hat{k}$, then the projection of $\vec{x} \times \vec{y}$ on vector \vec{z} is d) 15 a) 14 b) -14 c) 12 376. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times \{\vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\}\}$ is equal to d) None of these b) $|\vec{a}|^3 \vec{b}$ c) $|\vec{a}|^4 \vec{b}$ a) $|\vec{a}|^2 \vec{b}$ 377. Let *G* be the centroid of $\triangle ABC$. If $\vec{AB} = \vec{a}, \vec{AC} = \vec{b}$, then the \vec{AG} , in terms of \vec{a} and \vec{b} is b) $\frac{1}{6}(\vec{a} + \vec{b})$ c) $\frac{1}{2}(\vec{a} + \vec{b})$ d) $\frac{1}{2}(\vec{a} + \vec{b})$ a) $\frac{2}{2}(\vec{a}+\vec{b})$ 378. The moment of the couple formed by the forces $5\hat{i} + \hat{k}$ and $-5\hat{i} - \hat{k}$ acting at the point (9, -1, 2) and (3, -2, 1) respectively is b) $\hat{\imath} - \hat{\jmath} - 5\hat{k}$ c) $2\hat{\imath} - 2\hat{\jmath} - 10\hat{k}$ a) $-\hat{\imath} + \hat{\jmath} + 5\hat{k}$ d) $-2\hat{\imath} + 2\hat{\jmath} + 10\hat{k}$ 379. The value of *c* so that for all real *x*, then vectors $\mathbf{o}cx\,\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}, x\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2cx\hat{\mathbf{k}}$ make an obtuse angle are c) $-\frac{4}{3} < c < 0$ b) $0 < c < \frac{4}{2}$ d) c > 0a) *c* < 0

380. If θ be the angle between the vectors $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}$, then

a) $\cos \theta = \frac{4}{2}$	b) $\cos \theta = \frac{3}{19}$	c) $\cos = \frac{2}{2}$	d) $\cos \theta = \frac{5}{21}$
21 381. The vectors $2\hat{i} + 3\hat{j} - 4\hat{k}$	17	1)	21
		c) $a = 4, b = 4, c = -2$	d) None of these
382. If $\vec{\alpha} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{a})$			
	b) $\vec{\alpha} \cdot (\vec{a} + \vec{b} + \vec{c})$		d) None of these
383. If vectors $3\hat{i} + \hat{j} - 5\hat{k}$ and	· · ·		
,		c) $a = 3, b = 3$	
384 . Let \vec{a} and \vec{b} be two unit v			
a) $\sqrt{5}$	b) $\sqrt{3}$	c) 0	d) 1
385. The point collinear with a) (0,4,6)		c) $(0, -4, -6)$	d) (0, -4,6)
386. If \vec{a} and \vec{b} are unit vector			
a) a – b		c) $2\vec{a} - \vec{b}$	
387. If θ is the angle between	the lines AB and AC when	e A, B and C are the three p	oints with coordinates
(1,2,-1), (2,0,3), (3,-1,	2) respectively, then $\sqrt{462}$		
a) 20	b) 10	c) 30	d) 40
388. Let $\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\overline{\mathbf{w}}$ [$\vec{\mathbf{u}} \vec{\mathbf{v}} \vec{\mathbf{w}}$] is	$\dot{t} = \hat{\mathbf{i}} + 3\mathbf{k}$, If $\mathbf{\vec{u}}$ is a unit vec	tor, then maximum value of	the scalar triple product
[u v w] is a) -1	b) $\sqrt{10} + \sqrt{6}$	c) √ <u>59</u>	d) $\sqrt{60}$
389. Each of the angle betwee	-		, , , , , , , , , , , , , , , , , , ,
modulus of $\vec{a} + \vec{b} + \vec{c}$, is			
a) 10	b) 15	c) 12	d) None of these
390. A force of magnitude 5 u	init acting along the vector	$2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ displaces the p	oint of applications from
(1,2,3) to (5,3,7) then th			
a) $50/7$ unit		c) 25/3 unit	d) 25/4 unit
391. The equation of the plan a) $\vec{r} \cdot (\vec{h} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a})$		b) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}})$	$(\mathbf{x} \cdot \mathbf{\hat{h}}) - [\mathbf{\hat{a}} \cdot \mathbf{\hat{h}} \cdot \mathbf{\hat{c}}]$
c) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})) = [\vec{\mathbf{a}}]$	•	d) $\vec{\mathbf{r}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0$	$\langle \mathbf{b} \rangle = [\mathbf{a} \mathbf{b} \mathbf{c}]$
			→^
392. If a vector \vec{r} of magnitud $4\hat{j} - 4\hat{k}$ and $\vec{b} = -2\hat{i} - \hat{j}$		e disector of the angle betwo	een the vectors $a = 71 - 10^{-10}$
a) $\hat{i} - 7\hat{j} + 2\hat{k}$		c) $-\hat{\imath} + 7\hat{\jmath} + 2\hat{k}$	d) $\hat{i} - 7\hat{i} - 2\hat{k}$
393. If the point whose positi	-	-	-
value of <i>p</i> is			-
a) 2	b) 4	c) 6	d) 8
^{394.} Let $\vec{a} \cdot \vec{b}$ and \vec{c} be non-ze	ro vectors such that		
$(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \frac{1}{3} \vec{\mathbf{b}} \vec{\mathbf{c}} \vec{\mathbf{a}} $			
If θ is the acute angle be	tween the vectors $ec{b}$ and $ec{c}$	then sin θ equals	
a) $\frac{1}{2}$	b) $\frac{\sqrt{2}}{2}$	c) $\frac{2}{3}$	d) $\frac{2\sqrt{2}}{2}$
3	5	5	5
395. Let <i>ABC</i> be a triangle, th $-4\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ Then, the		e vertices are respectively a	(1 + 10k, -1 + 6j + 6k and
$-4\mathbf{i} + 9\mathbf{j} + 6\mathbf{k}$ Then, the a) isosceles	DADU IS	b) Equilateral	
c) Right angled isosceles	5	d) None of these	
396. If C is the middle point of \vec{r}			
a) $P\vec{A} + P\vec{B} = P\vec{C}$	b) $P\vec{A} + P\vec{B} = 2P\vec{C}$	c) $P\vec{A} + P\vec{B} + P\vec{C} = \vec{0}$	d) $P\vec{A} + P\vec{B} + 2P\vec{C} = \vec{0}$

397. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}$ are any two vwc	tors, then $(2\vec{a} + 3\vec{b}) \times (5\vec{a} \cdot \vec{b})$	$(+7\mathbf{\vec{b}}) + \mathbf{\vec{a}} \times \mathbf{\vec{b}}$ is equal to	
a) d	b) 0	c) $\vec{a} \times \vec{b}$	d) $\vec{\mathbf{b}} \times \vec{\mathbf{a}}$
398. The moment about the	point $M(-2, 4, -6)$ of the fo	rce represented in magnitu	ide and position by AB
	<i>B</i> have the coordinates (1, 2)		
a) $8\hat{\iota} - 9\hat{j} - 14\hat{k}$	<i>, ,</i>	, ,	d) $-5\hat{\imath} + 8\hat{\jmath} - 8\hat{k}$
^{399.} If the position vectors of	of A, B and Care respectively	$2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}, \hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and	$3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ then $\cos^2 A$ is
equal to	(25	
a) 0	b) $\frac{6}{41}$	c) $\frac{35}{41}$	d) 1
400. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} =$	41	41	
	b) $\vec{r} \perp \vec{a} \times \vec{b}$		d) $\vec{r} = \vec{0}$
401. If \vec{a} , \vec{b} , \vec{c} be three non-co			,
vectors then for any ar			S recipioear by been of
a) $\vec{\alpha} = (\vec{\alpha} \cdot \vec{a})\vec{a} + (\vec{\alpha} \cdot \vec{l})\vec{a}$	=	b) $\vec{\alpha} = (\vec{\alpha} \cdot \vec{p})\vec{p} + (\vec{\alpha} \cdot \vec{q})$	$\vec{\mathbf{q}} + (\vec{\alpha} \cdot \vec{\mathbf{r}})\mathbf{r}$
c) $\vec{\alpha} = (\vec{\alpha} \cdot \vec{p})\vec{a} + (\vec{\alpha} \cdot \vec{p})\vec{a}$		d) None of the above	
402. The vector $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$			
a) b , c	b) \vec{a} , \vec{b}	c) a , c	d) a , b , c
403. If $\vec{\mathbf{b}}$ is a unit vector, the			
	b) $ \vec{a} \cdot \vec{b} \vec{a}$	c) a	d) b
404. If $\sum_{i=1}^{n} \vec{\mathbf{a}_i} = \vec{0}$, where		,	-) 0
			n
a) <i>n</i> ²	b) $-n^2$	c) <i>n</i>	d) $-\frac{n}{2}$
405. If the vector $3\hat{i} - 2\hat{j} - 5\hat{j}$			
a) 3	b) 4	c) 5	d) 6
406. If $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{0}$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} =$	->		
a) $\vec{a} \perp \vec{b}$	b) \vec{a} \vec{b}	c) $\vec{\mathbf{a}} = \vec{0}$ and $\vec{\mathbf{b}} = \vec{0}$	-
407. If $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + \hat{j}$			
	b) $6,\sqrt{59}$		
408. Let \vec{a} , \vec{b} , \vec{c} be unit vecto			
a) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{c}$		b) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{c}} \times \vec{\mathbf{a}}$	
c) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{a} \times \vec{c}$			mutually perpendicular
409. If <i>G</i> is the centre of a re			
a) $3\vec{A}G$	b) $2\vec{A}G$	c) $6\vec{A}G$	d) 4 <i>ĀG</i>
410. I. Two non-zero. Non-c	ectors are linearly depende		ements is /are true?
a) Only I	b) Only II	c) Both I and II	d) Neither I nor II
411. If \vec{a} , \vec{b} and \vec{c} are unit co		,	,
$[2\vec{a} - 3\vec{b}\ 7\vec{b} - 9\vec{c}\ 12\vec{c}$ -			
a) 0	b) 1/2	c) 24	d) 32
412. $\left[\vec{\mathbf{a}} + \vec{\mathbf{b}} \ \vec{\mathbf{b}} + \vec{\mathbf{c}} \ \vec{\mathbf{c}} + \vec{\mathbf{a}}\right] = \left[\vec{\mathbf{a}} + \vec{\mathbf{b}} \ \vec{\mathbf{b}} + \vec{\mathbf{c}} \ \vec{\mathbf{c}} + \vec{\mathbf{a}}\right]$	$[\vec{a} \vec{b} \vec{c}]$, then		
a) $\left[\vec{a} \ \vec{b} \ \vec{c}\right] = 1$	-	b) a , b , c are coplanar	
c) $[\vec{a} \ \vec{b} \ \vec{c}] = -1$		d) \vec{a} , \vec{b} , \vec{c} are mutually pe	erpendicular
413. If $\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} = \vec{0}$ and $ \vec{\mathbf{a}} $	$ =\sqrt{37}, \vec{\mathbf{b}} =3, \vec{\mathbf{c}} =4$. the		-
a) 30°	b) 45°	c) 60°	d) 90°
414. A unit vector coplanar	,	,	5

a) $\left(\frac{\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{2}}\right)$	b) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}\right)$	c) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{\sqrt{6}}\right)$	d) $\left(\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{6}}\right)$
415. The projection of the ve	ector $\hat{\imath} + \hat{\jmath} + \hat{k}$ along the vec	tor of ĵ, is	
a) 1	b) 0	c) 2	d) —1
416. Volume of the parallelo $B \equiv (5, -4, 4)$ and $C \equiv$		\equiv (0,0,0), $A \equiv$ (2, -2,4),	
a) 5 cu units	b) 10 cu units	c) 15 cu units	d) 20 cu units
417. The area of parallelogra vectors forming an ang		ors $\vec{a} = \vec{p} + 2\vec{q}$ and $\vec{b} = 2\vec{p}$.	+ $ec{q}$, where $ec{p}$ and $ec{q}$ are unit
a) 3/2	b) 5/2	c) 7/2	d) None of these
418. If \vec{a} is a vector perpend condition \vec{a} . $(\hat{i} - 2\hat{j} + \hat{k})$	$(\dot{a}) = -6$, then $\vec{a} =$		
a) $5\hat{\imath} + \frac{7}{2}\hat{\jmath} - 4\hat{k}$	b) $10\hat{i} + 7\hat{j} - 8\hat{k}$	c) $5\hat{\imath} - \frac{7}{2}\hat{\jmath} + 4\hat{k}$	d) None of these
419. The projection of $\vec{a} = 3$		2	
a) $\frac{8}{\sqrt{35}}$	b) $\frac{9}{\sqrt{39}}$	c) $\frac{8}{\sqrt{14}}$	d) $\sqrt{14}$
420. Let <i>ABCDEF</i> be a regul	ar hexagon and $\overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{BC}}$	$\vec{b} = \vec{b}, \vec{CD} = \vec{c}, \text{ then } \vec{AE} \text{ is equal}$	ual to
a) $\vec{a} + \vec{b} + \vec{c}$	b) $\vec{\mathbf{b}} + \vec{\mathbf{c}}$	c) $\vec{a} + \vec{b}$	d) $\vec{a} + \vec{c}$
421. Three vectors $7\hat{i} - 11\hat{j}$	$+\hat{k},5\hat{i}+3\hat{j}-2\hat{k}$ and $12\hat{i}-$	- 8 ĵ – 	
a) an equilateral triang	le	b) an isosceles triangle	
c) a right angled triang		d) Collinear	
422. If $ \vec{a} = 2$, $ \vec{b} = 3$, and \vec{a}	$ec{\mathbf{a}},ec{\mathbf{b}}$ are mutually perpendic	ular, then the area of triang	le whose vertices are
$\vec{0}$, $\vec{\mathbf{a}}$ + $\vec{\mathbf{b}}$, $\vec{\mathbf{a}}$ - $\vec{\mathbf{b}}$ is			
a) 5	b) 1	c) 6	d) 8
423. If V is the volume of the	e parallelopiped having thre	ee coterminus edges as \vec{a}, \vec{b}	and \vec{c} , then the volume of the
	hree coterminus edges as		
$\vec{\alpha} = (\vec{a} \cdot \vec{a})\vec{a} + (\vec{a} \cdot \vec{b})\vec{b}$	$+ (\vec{a} \cdot \vec{c})\vec{c}$		
$\vec{eta} = (\vec{a} \cdot \vec{b})\vec{a} + (\vec{b} \cdot \vec{b})\vec{b}$	$+(\vec{b}\cdot\vec{c})\vec{c}$		
$\vec{\gamma} = (\vec{a} \cdot \vec{c})\vec{a} + (\vec{b} \cdot \vec{c})\vec{b}$	$+ (\vec{c} \cdot \vec{c})\vec{c}$, is		
a) <i>V</i> ³	b) 3 <i>V</i>	c) <i>V</i> ²	d) 2 <i>V</i>
424. The unit vectors orthog	gonal to the vector $-\hat{\iota} + 2\hat{j}$ -	+ 2 \hat{k} and making equal angl	es with the X and Y axes is
(are)	_		
a) $\pm \frac{1}{3}(2\hat{\imath}+2\hat{\jmath}-\hat{k})$	b) $\pm \frac{1}{3}(\hat{\imath} + \hat{\jmath} - \hat{k})$	c) $\pm \frac{1}{3}(2\hat{\imath}-2\hat{\jmath}-\hat{k})$	d) None of these
425. The unit vector perpen	dicular to vectors $\hat{\iota} - \hat{j}$ and		
a) <i>ƙ</i>	b) $-\hat{k}$	c) $\frac{1}{\sqrt{2}}(\hat{\iota} - \hat{j})$	d) $\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath})$
			, then x, y, z are respectively
a) $\frac{3}{2}$, $\frac{1}{2}$, $\frac{5}{2}$	b) $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$	c) $\frac{3}{2}$, $\frac{3}{2}$, $\frac{1}{2}$	d) $\frac{1}{2}$, $\frac{3}{2}$, $\frac{3}{2}$
427. If <i>S</i> is the circumcentre	, <i>O</i> is the orthocentre of ΔAB	BC, then $\overrightarrow{\mathbf{SA}} + \overrightarrow{\mathbf{SB}} + \overrightarrow{\mathbf{SC}}$ is eq	ual to
a) SO	b) 2 SO	c) \overrightarrow{OS}	d) 2 0 \$
428. If \vec{a} and \vec{b} are two vector	-	$\times \vec{b} = \vec{0}$, then	
a) $\vec{a} \vec{b}$	$1 \rightarrow \overline{2}$	c) Either \vec{a} and \vec{b} is a null	l] d) None of these
	b) $\vec{a} \perp \vec{b}$	c) vector	

faces OAB and ABC will be

a)
$$\cos^{-1}\left(\frac{19}{35}\right)$$
 b) $\cos^{-1}\left(\frac{17}{31}\right)$ c) 30° d) 90°

430. If $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are vectors such that the $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| = |\vec{\mathbf{a}} - \vec{\mathbf{b}}|$, then the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is a) 120° b) 60° c) 90° d) 30°

431. If \vec{a} and \vec{b} are not perpendicular to each other and $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$, \vec{r} . $\vec{c} = 0$, then \vec{r} is equal to a) $\vec{a} - \vec{c}$

b) $\vec{b} + x \vec{a}$ for all scalars x

c)
$$\vec{b} = \frac{(\vec{b},\vec{c})}{(\vec{a},\vec{c})}\vec{a}$$

d) None of these

432. Let $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ be the unit vectors such that $\vec{\alpha}$ and $\vec{\beta}$ are mutually perpendicular and $\vec{\gamma}$ is equally inclined to $\vec{\alpha}$ and $\vec{\beta}$ at an angle θ . If $\vec{\gamma} = x\vec{\alpha} + y\vec{\beta} + z(\vec{\alpha} \times \vec{\beta})$, then which one of the following is incorrect? a) $z^2 = 1 - 2x^2$ b) $z^2 = 1 - 2y^2$ c) $z^2 = 1 - x^2 - y^2$ d) $x^2 + y^2 = 1$ 433. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then a) $(\vec{a} - \vec{d}) = \lambda(\vec{b} - \vec{c})$ b) $(\vec{a} + \vec{d}) = \lambda(\vec{b} + \vec{c})$ c) $(\vec{a} - \vec{b}) = \lambda(\vec{c} + \vec{d})$ d) $(\vec{a} + \vec{b}) = \lambda(\vec{c} - \vec{d})$

434. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar mutually perpendicular unit vectors, then $[\vec{a}\vec{b}\vec{c}]$, is

a) +1 b) 0 c) -2 d) 2 435. If *P*, *Q*, *R* and *S* are four points in space, then $|\overrightarrow{PQ} \times \overrightarrow{RS} + \overrightarrow{QR} \times \overrightarrow{SP} + \overrightarrow{RS} \times \overrightarrow{QS}| = k$ (area of ΔPQR). The value of *k* is

a) 0 b) 2 c) 4 d) 3 436. In a $\triangle ABC$, if $\vec{AB} = 3\hat{\imath} + 4\hat{k}$, $\vec{AC} = 5\hat{\imath} + 2\hat{\jmath} + 4\hat{k}$, then the length of median through *A*, is a) $3\sqrt{2}$ b) $6\sqrt{2}$ c) $5\sqrt{2}$ d) $\sqrt{33}$

437. The vectors $\overrightarrow{AB} = 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 5\hat{j} + 2\hat{k}$ are the sides of a triangle *ABC*. The length of the median through *A* is

a) $\sqrt{13}$ units b) $2\sqrt{5}$ units c) 5 units d) 10 units 438. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and $(\vec{a} - \lambda \vec{b}) \cdot (\vec{b} - 2\vec{c}) \times (\vec{c} + 2\vec{a}) = 0$, then λ is equal to a) 1 b) 1/4 c) 0 d) -1/4

439. If \vec{a} is perpendicular to \vec{b} and \vec{r} is a non-zero vector such that, $p\vec{r} + (\vec{r}.\vec{b})\vec{a} = \vec{c}$, then $\vec{r} =$

a)
$$\frac{\vec{c}}{p} - \frac{(\vec{b}.\vec{c})\vec{a}}{p^2}$$
 b) $\frac{\vec{a}}{p} - \frac{(\vec{c}.\vec{a})\vec{b}}{p^2}$ c) $\frac{\vec{b}}{p} - \frac{(\vec{a}.\vec{b})\vec{c}}{p^2}$ d) $\frac{\vec{c}}{p^2} - \frac{(\vec{b}.\vec{c})\vec{a}}{p}$

440. Constant forces $\vec{P}_1 = \hat{i} - \hat{j} + \hat{k}$, $\vec{P}_2 = -\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{P}_3 = \hat{j} - \hat{k}$ act on a particle at point *A*. The work done when the particle is displaced from the point *A* to *B* where $\vec{A} = 4\hat{i} - 3\hat{j} - 2\hat{k}$ and $\vec{B} = 6\hat{i} + \hat{j} - 3\hat{k}$ is a) 3 b) 9 c) 20 d) None of these

441. The point of intersection of $\vec{\mathbf{r}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}}$ and $\vec{\mathbf{r}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$, where $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$ and $\vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$ is a) $3\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ b) $3\hat{\mathbf{i}} - \hat{\mathbf{k}}$ c) $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ d) None of these

442. If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation, $\vec{r} \times \vec{a} = \vec{b}$ is given by

a)
$$\vec{r} = x\vec{a} + \frac{\vec{a} \times \vec{b}}{|\vec{a}|^2}$$
 b) $\vec{r} = x\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$ c) $\vec{r} = x(\vec{a} \times \vec{b})$ d) $\vec{r} = x(\vec{b} \times \vec{a})$

443. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices of a triangle *ABC*, then a unit vector perpendicular to its plane is

a)
$$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 b) $\frac{\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$ c) $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ d) None of these
. If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} - \vec{w}) \cdot [(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]$

444. If $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ are three non-coplanar vectors, then $(\vec{\mathbf{u}} + \vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot [(\vec{\mathbf{u}} - \vec{\mathbf{v}}) \times \text{equals}]$

a) 0 b) $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$ c) $\vec{\mathbf{u}} \cdot \vec{\mathbf{w}} \times \vec{\mathbf{v}}$ d) $3\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$

445 . The resultant of $(\vec{\mathbf{p}} - 2)$	$\vec{\mathbf{a}}$) where, $\vec{\mathbf{p}} = 7\hat{\mathbf{i}} - 2\hat{\mathbf{i}} + 3\hat{\mathbf{k}}$	and $\vec{\mathbf{a}} = 3\hat{\mathbf{i}} + \hat{\mathbf{i}} + 5\hat{\mathbf{k}}$ is	
a) $\sqrt{29}$	b) 4	c) $\sqrt{62} - 2\sqrt{35}$	d) √ <u>66</u>
446. If \vec{a} , \vec{b} , \vec{c} are three non-z	zero vectors such that $\vec{a} + \vec{b}$	$+\vec{c}=\vec{0}$ and $m=\vec{a}.\vec{b}+\vec{b}.$	$\vec{c} + \vec{c} \cdot \vec{a}$, then
a) <i>m</i> < 0	b) <i>m</i> > 0	c) $m = 0$	d) $m = 3$
447. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$	$\hat{\mathbf{j}}, \ \mathbf{\vec{c}} = \hat{\mathbf{i}} \text{ and } (\mathbf{\vec{a}} \times \mathbf{\vec{b}}) \times \mathbf{\vec{c}} = \mathbf{\vec{b}}$	$\lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equa	ll to
a) 0	b) 1	c) 2	d) 3
448. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} =$	$\hat{c} - \hat{i} + 2\hat{j} + \hat{k}, \vec{c} = 3\hat{i} + \hat{j}$ and	$\vec{a} + t\vec{b}$ is normal to the vec	ctor \vec{c} , then the vector of t is
a) 8	b) 4	c) 6	d) 2
449. If \vec{a}, \vec{b} represent the dia	gonals of a rhombus, then		
	b) $\vec{a} \cdot \vec{b} = \vec{0}$		
450. Three vectors \vec{a} , \vec{b} , \vec{c} are	e such that $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$,	$\vec{a} = \vec{c} = 1$ and $ \vec{b} = 4$. If	the angle between \vec{b} and \vec{c} is
$\cos^{-1}\left(\frac{1}{4}\right)$, then $\vec{b} - 2\vec{c}$ i	s equal to		
a) $\pm 4\vec{a}$	b) ±3 <i>ā</i>	c) ±5 <i>ā</i>	d) ±4 <i>ā</i>
$451. \hat{\imath}. \left(\hat{\jmath} \times \hat{k}\right) + \hat{\jmath}. \left(\hat{k} \times \hat{\imath}\right) + \hat{\jmath}$	$\hat{k}.(\hat{\iota} \times \hat{j}) =$		
a) 1	b) 3	c) -3	d) 0
452. If $\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and \bar{k}	$\vec{p} = 3\hat{i} - \hat{j} + 2\hat{k}$, then the ang	gle between the vectors $ec{a}$ +	$-\vec{b}$ and $\vec{a}-\vec{b}$, is
a) 30°	b) 60°	c) 90°	d) 0°
453. If \vec{a} , \vec{b} , \vec{c} are three non-z	zero vectors such that $\vec{a} \cdot \vec{b}$:	$= \vec{a} \cdot \vec{c}$, then	
a) $\vec{b} = \vec{c}$			
b) $\vec{a} \perp \vec{b}, \vec{c}$			
c) $\vec{a} \perp (\vec{b} - \vec{c})$			
d) Either $\vec{a} \perp (\vec{b} - \vec{c})$ or	$\vec{b} = \vec{c}$		
454. The length of longer dia $ \vec{\mathbf{a}} = 2\sqrt{2}, \vec{\mathbf{b}} = 3$ and a			d $\vec{\mathbf{a}}$ – 3 $\vec{\mathbf{b}}$. If it is given that
$ \vec{\mathbf{a}} = 2\sqrt{2}, \vec{\mathbf{b}} = 3$ and a	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$,	is	
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$	is c) √593	d) √369
$ \vec{\mathbf{a}} = 2\sqrt{2}, \vec{\mathbf{b}} = 3$ and a a) 15 455. If the projection of the v	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i	is c) $\sqrt{593}$ f 3 $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15 455. If the projection of the v a) $\frac{\pi}{3}$	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15 455. If the projection of the v a) $\frac{\pi}{3}$ 456. The unit vector perpend	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15 455. If the projection of the v a) $\frac{\pi}{3}$ 456. The unit vector perpendis	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15 455. If the projection of the v a) $\frac{\pi}{3}$ 456. The unit vector perpendis	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the v a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{i} - \hat{k})$ and $R(2\hat{j} + \hat{k})$ d) $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3$ and a a) 15 455. If the projection of the v a) $\frac{\pi}{3}$ 456. The unit vector perpendis	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{i} - \hat{k})$ and $R(2\hat{j} + \hat{k})$ d) $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a}	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear.	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{i} - \hat{k})$ and $R(2\hat{j} + \hat{k})$ d) $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a}	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}}$ ($\lambda \neq 0$, a scalar)	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear. c) $\lambda \vec{\mathbf{c}} (\lambda \neq 0, \text{a scalar})$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{i} - \hat{k})$ and $R(2\hat{j} + \hat{k})$ d) $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$ If the vector $\vec{a} + 2\vec{b}$ is d) 0
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let $\vec{a}, \vec{b}, \vec{c}$ be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a} (\lambda \neq 0, \text{ a scalar})$	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and i b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}}$ ($\lambda \neq 0$, a scalar)	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear. c) $\lambda \vec{\mathbf{c}} (\lambda \neq 0, \text{a scalar})$	d) $\sqrt{369}$ ngle between \vec{a} and \vec{b} is d) $\frac{\pi}{6}$ \hat{k} , $Q(2\hat{i} - \hat{k})$ and $R(2\hat{j} + \hat{k})$ d) $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$ If the vector $\vec{a} + 2\vec{b}$ is d) 0
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a}$ ($\lambda \neq 0$, a scalar) 458. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ is equal to a) 0	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and $\vec{\mathbf{b}}$ b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}}$ ($\lambda \neq 0$, a scalar) and $\vec{\mathbf{w}} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If $\hat{\mathbf{n}}$ is a b) 1	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear. c) $\lambda \vec{\mathbf{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\vec{\mathbf{u}} \cdot \hat{\mathbf{n}}$ c) 2	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $ d) 3
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a}$ ($\lambda \neq 0$, a scalar) 458. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ is equal to a) 0	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and $\vec{\mathbf{b}}$ b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}}$ ($\lambda \neq 0$, a scalar) and $\vec{\mathbf{w}} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If $\hat{\mathbf{n}}$ is a b) 1	is c) $\sqrt{593}$ f $3\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear. c) $\lambda \vec{\mathbf{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\vec{\mathbf{u}} \cdot \hat{\mathbf{n}}$ c) 2	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a}$ ($\lambda \neq 0$, a scalar) 458. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}\hat{a}$ is equal to a) 0 459. If position vector of por vector of <i>B</i> is	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and $\vec{\mathbf{b}}$ b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}}$ ($\lambda \neq 0$, a scalar) and $\vec{\mathbf{w}} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If $\hat{\mathbf{n}}$ is a b) 1	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{\imath} - \hat{\jmath} + 2$ c) $\frac{1}{\sqrt{6}}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ two of these are collinear. c) $\lambda \vec{\mathbf{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\vec{\mathbf{u}} \cdot \hat{\mathbf{n}}$ c) 2 int $P(\vec{\mathbf{a}})$ divides \vec{AB} in the	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $ d) 3
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a}$ ($\lambda \neq 0$, a scalar) 458. Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} - \hat{j}\hat{a}$ is equal to a) 0 459. If position vector of porvector of <i>B</i> is a) $2\vec{a} - \vec{b}$ 460. If $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{B} =$	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and is b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}} (\lambda \neq 0, \text{a scalar})$ and $\vec{\mathbf{w}} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If $\hat{\mathbf{n}}$ is a b) 1 bint <i>A</i> is $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ and any po b) $\vec{\mathbf{b}} - 2\vec{\mathbf{a}}$	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\mathbf{\hat{i}} - \mathbf{\hat{j}} + 2\mathbf{\hat{k}})$ through points $P(\mathbf{\hat{i}} - \mathbf{\hat{j}} + 2\mathbf{\hat{k}})$ c) $\frac{1}{\sqrt{6}}(2\mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}})$ two of these are collinear. c) $\lambda \mathbf{\vec{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\mathbf{\vec{u}} \cdot \mathbf{\hat{n}}$ c) 2 int $P(\mathbf{\vec{a}})$ divides \overline{AB} in the c) $\mathbf{\vec{a}} - 3\mathbf{\vec{b}}$	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $ d) 3 the ratio of $2: 3$, then position d) $\vec{\mathbf{b}}$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpendis a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a} (\lambda \neq 0, \text{ a scalar})$ 458. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j} \hat{a}$ is equal to a) 0 459. If position vector of por vector of <i>B</i> is a) $2\vec{a} - \vec{b}$	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and is b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}} (\lambda \neq 0, \text{a scalar})$ and $\vec{\mathbf{w}} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. If $\hat{\mathbf{n}}$ is a b) 1 bint <i>A</i> is $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ and any po b) $\vec{\mathbf{b}} - 2\vec{\mathbf{a}}$	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\mathbf{\hat{i}} - \mathbf{\hat{j}} + 2\mathbf{\hat{k}})$ through points $P(\mathbf{\hat{i}} - \mathbf{\hat{j}} + 2\mathbf{\hat{k}})$ c) $\frac{1}{\sqrt{6}}(2\mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}})$ two of these are collinear. c) $\lambda \mathbf{\vec{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\mathbf{\vec{u}} \cdot \mathbf{\hat{n}}$ c) 2 int $P(\mathbf{\vec{a}})$ divides \overline{AB} in the c) $\mathbf{\vec{a}} - 3\mathbf{\vec{b}}$	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $ d) 3 the ratio of $2: 3$, then position d) $\vec{\mathbf{b}}$
$ \vec{a} = 2\sqrt{2}, \vec{b} = 3 \text{ and } \vec{a}$ a) 15 455. If the projection of the \vec{v} a) $\frac{\pi}{3}$ 456. The unit vector perpending is a) $2\hat{i} + \hat{j} + \hat{k}$ 457. Let \vec{a} , \vec{b} , \vec{c} be three not collinear with \vec{c} , then \vec{a} a) $\lambda \vec{a}$ ($\lambda \neq 0$, a scalar) 458. Let $\vec{u} = \hat{i} + \hat{j}, \vec{v} = \hat{i} - \hat{j}$ is equal to a) 0 459. If position vector of por vector of <i>B</i> is a) $2\vec{a} - \vec{b}$ 460. If $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{B} =$ perpendicular.	angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{4}$, b) $\sqrt{113}$ vector $\vec{\mathbf{a}}$ on $\vec{\mathbf{b}}$ is $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ and $\vec{\mathbf{b}}$ b) $\frac{\pi}{2}$ dicular to the plane passing b) $\sqrt{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ on-zero vectors such that no $\vec{\imath} + 2\vec{\mathbf{b}} + 6\vec{\mathbf{c}}$ equals b) $\lambda \vec{\mathbf{b}} (\lambda \neq 0, \text{a scalar})$ and $\vec{\mathbf{w}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$. If $\hat{\mathbf{n}}$ is a b) 1 bint A is $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ and any po b) $\vec{\mathbf{b}} - 2\vec{\mathbf{a}}$ $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{C}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}}$, ev b) 4	is c) $\sqrt{593}$ f $3\mathbf{\vec{b}} = \mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the a c) $\frac{\pi}{4}$ through points $P(\hat{i} - \hat{j} + 2)$ c) $\frac{1}{\sqrt{6}}(2\hat{i} + \hat{j} + \hat{k})$ two of these are collinear. c) $\lambda \mathbf{\vec{c}} (\lambda \neq 0, \text{a scalar})$ a unit vector such that $\mathbf{\vec{u}} \cdot \mathbf{\hat{n}}$ c) 2 int $P(\mathbf{\vec{a}})$ divides \overline{AB} in the c) $\mathbf{\vec{a}} - 3\mathbf{\vec{b}}$ valuate <i>t</i> , if the vector ($\mathbf{\vec{A}} + \mathbf{c}$) 1	d) $\sqrt{369}$ ngle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is d) $\frac{\pi}{6}$ \hat{k}), $Q(2\hat{\imath} - \hat{k})$ and $R(2\hat{\jmath} + \hat{k})$ d) $\frac{1}{6}(2\hat{\imath} + \hat{\jmath} + \hat{k})$ If the vector $\vec{\mathbf{a}} + 2\vec{\mathbf{b}}$ is d) 0 = 0 and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $ \vec{w} \cdot \hat{\mathbf{n}} $ d) 3 the ratio of $2:3$, then position d) $\vec{\mathbf{b}}$ t $\vec{\mathbf{B}}$) and $\vec{\mathbf{C}}$ are mutually

a) $\sin \frac{\theta}{2}$	b) sin <i>θ</i>	c) 2 sin θ	d) sin 2 <i>θ</i>	
	ion-collinear vectors and $x \vec{a}$ +	$-v \vec{\mathbf{b}} = 0$		
a) $x = 0$, but y is not		b) $y = 0$, but x is not n	ecessarily zero	
c) $x = 0, y = 0$				
	of a parallelogram ABCD are g			
			of the parallelogram so that AD	
	' makes a right angle with the			
a) 8	b) $\frac{\sqrt{17}}{9}$	c) $\frac{1}{9}$	d) $\frac{4\sqrt{5}}{9}$	
9	ion of the vector $x\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ on	9	9	
$\frac{1}{\sqrt{30}}$ then the value	of <i>x</i> is			
V 00	b) 6	c) -6	d) 3	
, ,	$\vec{\mathbf{b}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = -2\hat{\mathbf{i}} + \hat{\mathbf{j}}$,	5	
$2\vec{a} - \vec{c}$ and $\vec{a} + \vec{b}$ is		, · · · · , · · · · · · · · · · · · · ·		
	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) $\frac{3\pi}{2}$	
4	5	2	L	
	n-zero vectors such that no two		I the vector $\vec{a} + \vec{b}$ is collinear	
with \vec{c} and $\vec{b} + \vec{c}$ is	collinear with \vec{a} . Then, $\vec{a} + \vec{b}$ +	$\vec{c} =$		
a) <i>ā</i>	b) \vec{b}	c) <i>č</i>	d) 0	
467. The value of [$\vec{a} \cdot \vec{b}$ +				
a) [ā b č]	b) 0	c) 2[ā b č]		
	osition vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 1\hat{j}$			
a) -40	b) 40	c) 20	d) 30	
^{469.} Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a} and \vec{c} is equal				
to 1 , ,	1	1	1	
a) $\pm \frac{1}{\sqrt{2}}(-\mathbf{j} + \mathbf{k})$	b) $\pm \frac{1}{\sqrt{3}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$	c) $\pm \frac{1}{\sqrt{5}}(i-2j)$	d) $\pm \frac{1}{\sqrt{3}}(\mathbf{i} - \mathbf{j} - \mathbf{k})$	
	$\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}}, \vec{\mathbf{b}} = 4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ ar			
equal to				
a) 2	b) 1	c) 3	d) —1	
471. The vectors		、		
· · · · · · · · · · · · · · · · · · ·	$(am + a_1m_1)\hat{j} + (an + a_1n_1)\hat{k}$			
$\vec{v} = (bl + b_1 l_1)\hat{\iota} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k},$ $\vec{v} = (bl + b_1 l_1)\hat{\iota} + (bm + b_1 m_1)\hat{j} + (bm + b_1 m_1)\hat{k},$				
$\vec{w} = (cl + c_1l_1)\hat{i} + (cm + c_1m_1)\hat{j} + (cn + c_1n_1)\hat{k}$ a) Form an equilateral triangle				
b) Are coplanar				
c) Are collinear				
d) Are mutually per	rpendicular			
472. If A, B, C, D are any four points in space, then $ A\vec{B} \times \vec{C}D + B\vec{C} \times \vec{A}D + C\vec{A} \times \vec{B}D $ is equal to				
a) 2∆	b) 4Δ	c) 3∆	d) 5Δ	
473. If \vec{a} lies in the plane	e of vectors \vec{b} and \vec{c} , then which		?	
a) $\left[\vec{a}\vec{b}\vec{c}\right] = 0$	b) $\left[\vec{a}\vec{b}\vec{c}\right] = 1$	c) $\left[\vec{a}\vec{b}\vec{c}\right] = 3$	d) $\left[\vec{b}\vec{c}\vec{a}\right] = 1$	
474. What is the value o	$f\left(\vec{d} + \vec{a}\right] \cdot \left[\vec{a} \times \{\vec{b} \times (\vec{c} \times \vec{d})\}\right]$)}]?		
a) $\left(\vec{\mathbf{d}} \cdot \vec{\mathbf{a}} \right) \cdot \left[\vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}} \right]$	b) $\left(\vec{\mathbf{a}} \cdot \vec{\mathbf{d}} \right) \cdot \left[\vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}} \right]$	c) $(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) \cdot [\vec{\mathbf{a}} \vec{\mathbf{c}} \vec{\mathbf{d}}]$	d) $\left(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}} \right) \cdot \left[\vec{\mathbf{a}} \vec{\mathbf{d}} \vec{\mathbf{c}} \right]$	
475. A parallelogram is	constructed on the vectors \vec{a} =	$\vec{a} = 3\vec{\alpha} - \vec{\beta}, \vec{b} = \vec{\alpha} + 3\vec{\beta}.$ If $ \vec{\alpha} $	$= \left \vec{\beta} \right = 2$ and the angle	

between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$, th	en the angle of a diagonal o	f the parallelogram are	
5	b) 4√3, 4√7		d) None of these
476. If the vectors $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{j}}$			hen the value of λ is equal to
a) 0	b) 1	c) 2	d) 3
477. For any vector \vec{a} , the val	lue of $(\vec{\mathbf{a}} \times \hat{\mathbf{i}})^2 + (\vec{\mathbf{a}} \times \hat{\mathbf{j}})^2	$(\vec{\mathbf{a}} \times \hat{\mathbf{k}})^2$ is equal to	
a) 4 ā ²	b) 2 ā ²		d) 3 ā ²
478. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{k}$	- 4 $\hat{\mathbf{k}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}} + \lambda \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ are cop	planar, then the value of λ is	5
a) $\frac{5}{2}$	b) $\frac{3}{5}$	$\frac{7}{-}$	d) None of these
<u>L</u>	J	5	\rightarrow
479. If the position vectors o	$f P$ and Q are $\hat{\imath} + 3\hat{\jmath} - 7k$ and	d 5 $\hat{i} - 2\hat{j} + 4k$ then the cos	sine of the angle between PQ
and <i>y</i> -axis is	А.	5	11
a) $\frac{5}{\sqrt{162}}$	b) $\frac{4}{\sqrt{162}}$	c) $-\frac{5}{\sqrt{162}}$	d) $\frac{11}{\sqrt{162}}$
480. The value of a' so that v	V 102	V102	V 102
minimum, is	fortune of parametopiped for	incu by i + aj + k, j + ak t	
a) -3	b) 3	c) $1/\sqrt{3}$	d) $\sqrt{3}$
481. If <i>C</i> is the mid point of <i>A</i>	<i>B</i> and <i>P</i> is any point outsid	, , , , , , , , , , , , , , , , , , ,) (2
-	b) $\overrightarrow{\mathbf{PA}} + \overrightarrow{\mathbf{PB}} + 2\overrightarrow{\mathbf{PC}} = \overrightarrow{0}$		d) $\overrightarrow{\mathbf{PA}} + \overrightarrow{\mathbf{PB}} + 2\overrightarrow{\mathbf{PC}} = \overrightarrow{0}$
482. The vector equation of t	he line passing through the	points (3,2,1) and (-2,1,3)) is
	$-5\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}})$		
	$(5\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$		
$^{483.}$ The angle between \vec{a} an	d $\vec{\mathbf{b}}$ is $\frac{5\pi}{6}$ and the projection	of \vec{a} in the direction of \vec{b} is	$\frac{-6}{\sqrt{3}}$ then $ \vec{a} $ is equal to
a) 6	b) $\sqrt{3}/2$	c) 12	d) 4
484. When a right handed re	ctangular cartesian system	OXYZ rotated about z-axis	through $\pi/4$ in the counter-
clock-wise sense it is found that a vector \vec{r} has the components $2\sqrt{2}$, $3\sqrt{2}$ and 4. The components of \vec{a} in the <i>OXYZ</i> coordinate system are			
a) 5, -1,4	b) 5, −1,4√2	c) $-1, -5, 4\sqrt{2}$	d) None of these
485. If $\vec{\mathbf{x}} \cdot \vec{\mathbf{a}} = \vec{\mathbf{x}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{x}} \cdot \vec{\mathbf{c}} =$	0 where $\vec{\mathbf{x}}$ is a non-zero vec	tor. Then, [$\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times$	\vec{a}] is equal to
a) $\left[\vec{\mathbf{x}} \vec{\mathbf{a}} \vec{\mathbf{b}}\right]^2$	b) $\left[\vec{\mathbf{x}} \vec{\mathbf{b}} \vec{\mathbf{c}} \right]^2$	c) $[\vec{\mathbf{x}} \vec{\mathbf{c}} \vec{\mathbf{a}}]^2$	d) 0
486. If <i>ABCDEF</i> is regular he	exagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$	is equal to	
a) 0	b) 2 \overrightarrow{AB}	c) $3\overline{\mathbf{AB}}$	d) $4 \overrightarrow{AB}$
487. The shortest distance be	etween the straight lines th	rough the points	-
$A_1 = (6,2,2)$ and $A_2 = 0$	(-4,0,-1) in the directions	of (1, -2,2) and (3, -2, -2) is
a) 6	b) 8	c) 12	d) 9
488. A unit vector perpendic			
a) $\frac{4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{26}}$	b) $\frac{2\hat{\mathbf{i}}-6\hat{\mathbf{j}}-3\hat{\mathbf{k}}}{7}$	c) $\frac{3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}}{7}$	d) $\frac{2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}}{7}$
489. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the point of \vec{d}	osition vectors of points A, E	B, C, D such that no three of	them are collinear and
$\vec{a} + \vec{c} = \vec{b} + \vec{d}$, then ABC			
a) Rhombus	b) Rectangle	c) Square	d) Parallelogram
490. If <i>D</i> , <i>E</i> , <i>F</i> are respectivel	y the mid point of AB, AC an	nd <i>BC</i> in ΔABC , then $\overrightarrow{\mathbf{BE}}$ +	$\overrightarrow{\mathbf{AF}}$ is equal to
a) DC	b) $\frac{1}{2} \overrightarrow{\mathbf{BF}}$	c) 2 BF	d) $\frac{3}{2} \overrightarrow{\mathbf{BF}}$
491. Let \vec{a} and \vec{b} be two unit	vectors such that angle betw	veen them is 60°. Then, $ \vec{a} $	$-\vec{\mathbf{b}} $ is equal to
a) √5	b) √3	c) 0	d) 1
492. If $2\vec{a} + 3\vec{b} + \vec{c} = \vec{0}$, then	$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is eq	ual to	
a) $6(\vec{\mathbf{b}} \times \vec{\mathbf{c}})$		c) $2(\vec{\mathbf{b}} \times \vec{\mathbf{c}})$	d) o

493. If \vec{a} , \vec{b} , \vec{c} are the three ve			
$ \mathbf{a} = 1, \mathbf{b} = 3 \text{ and } \mathbf{c} $ a) 0	= 5, then $[\vec{a} - 2 \vec{b} \vec{b} - 3\vec{c} \vec{c}]$ b) -24	c) 3600	d) —215
494. If the area of the paralle		,	,
	$\vec{a} + 2\vec{b}$ and $\vec{a} + 3\vec{b}$ as two ad		,
a) 120	b) 105	c) 75	d) 45
495. If $(\vec{a} \times \vec{b}) + (\vec{a}.\vec{b})^2 = 1$	44 and $ \vec{a} = 4$, then $ \vec{b} =$		
a) 16	b) 8	c) 3	d) 12
496. If the vectors \vec{c} , $\vec{a} = x\hat{\iota}$	$+ y\hat{i} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such	h that \vec{a}, \vec{c} and \vec{b} form a righ	t handed system, then \vec{c} is
a) $z\hat{\iota} - x\hat{k}$	b) 0	c) <i>y</i> î	d) $-z\hat{\imath} + x\hat{k}$
497. The vectors $2\hat{\imath} - m\hat{j} + 3\hat{\imath}$ a) $m = -1/2$ b) $m \in [-2, -1/2]$ c) $m \in R$ d) $m \in (-\infty, -2) \cup (-1)$ 498. If $ \vec{a} + 3, \vec{a} = 4, \vec{c} = 1$			
$ \vec{a} + \vec{b} + \vec{c} $ is	_	ach is perpendicular to the	saum of other two, then
a) 5√2	b) $\frac{5}{\sqrt{2}}$	c) $10\sqrt{2}$	d) 10√3
499. For any three vectors \vec{a}	V Z	equals	
	b) $(\vec{a} \cdot \vec{b})\vec{c} - (\vec{a} \cdot \vec{c})\vec{b}$		d) None of these
500. The vector $\cos \alpha \cos \beta \hat{\iota}$	$+\cos\alpha\sin\beta\hat{j} + \sin\alpha\hat{k}$ is a		
a) Null vector 501. Let $\vec{u}, \vec{v}, \vec{w}$ be such that \vec{v}, \vec{w} are perpendicular	b) Unit vector $ \vec{\mathbf{u}} = 1, \vec{\mathbf{v}} = 2, \vec{\mathbf{w}} = 3.$ If th to each other, then $ \vec{\mathbf{u}} - \vec{\mathbf{v}} +$		
a) 2	b) √7	c) $\sqrt{14}$	d) 14
502 . Let \vec{a} , \vec{b} , \vec{c} be the positio			
-	$(\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + \vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$		
c) $\frac{1}{2} \{ \vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} \}$		d) $\frac{1}{2}(\vec{\mathbf{b}}\cdot\vec{\mathbf{c}})\vec{\mathbf{a}}+(\vec{\mathbf{c}}\cdot\vec{\mathbf{a}})\vec{\mathbf{b}}$	
503. IF $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$ $\vec{\mathbf{a}}$ and $\vec{\mathbf{c}}$ are) × $\vec{\mathbf{c}}$, where $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are a	ny three vectors such that	$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \neq 0, \ \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} \neq 0, \text{ then}$
a) inclined at angle of $\frac{\pi}{6}$	between them	b) Perpendicular	
c) Parallel		d) inclined at an angle o	$f\frac{\pi}{3}$ between them
504. A unit vector in the plane of $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and perpendicular to $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is			
a) $\hat{\mathbf{j}} - \hat{\mathbf{k}}$	b) $\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}}}{\sqrt{2}}$	c) $\frac{\hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{2}}$	d) $\frac{\hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{2}}$
505. The unit vectors \vec{a} and \vec{b} are perpendicular, and the unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$, then which one of the following is incorrect?			
a) $\alpha \neq \beta$	b) $\gamma^2 = 1 - 2 \alpha^2$	c) $\gamma^2 = -\cos 2\theta$	d) $\beta^2 = \frac{1 + \cos 2\theta}{2}$
506. A vector \vec{c} of magnitude $5\sqrt{6}$ directed along the bisector of the angle between $\vec{a} = 7\hat{\iota} - 4\hat{j} - 4\hat{k}$ and $\vec{b} = -2\hat{\iota} - \hat{j} + 2\hat{k}$, is			
a) $\pm \frac{5}{3}(2\hat{\imath}+7\hat{\jmath}+\hat{k})$	b) $\pm \frac{3}{5}(\hat{\imath}+7\hat{\jmath}+2\hat{k})$	c) $\pm \frac{5}{3}(\hat{\imath} - 2\hat{\jmath} + 7\hat{k})$	d) $\pm \frac{5}{3}(\hat{\imath} - 7\hat{\jmath} + 2\hat{k})$
507. If the vectors $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + \hat{\mathbf{i}}$			0

	b) $\pm 3(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})$		
508. A parallelogram is cons	structed on the vectors $\vec{a} = \vec{a}$	$3\vec{p} - \vec{q}, \vec{b} = \vec{p} + 3\vec{q}$ and also	b given that $ \vec{p} = \vec{q} = 2$. If
the vectors \vec{p} and \vec{q} are	inclined at an angle $\pi/3$, the	en the ratio of the lengths of	f the diagonals of the
parallelogram is			
a) $\sqrt{6}:\sqrt{2}$		c) $\sqrt{7}:\sqrt{3}$	d) $\sqrt{6}$: $\sqrt{5}$
509. If $\left[2\vec{a} + 4\vec{b}\vec{c}\vec{d}\right] = \lambda \left[\vec{a}\vec{c}\vec{d}\right]$	\vec{l}] + μ [$\vec{b}\vec{c}\vec{d}$], then $\lambda + \mu =$		
	b) -6	c) 10	d) 8
510. If A, B and C are the ver	tices of a triangle whose po	sition vectors are \vec{a} , \vec{b} and \bar{c}	respectively <i>G</i> is the
centroid of the $\triangle ABC$, t	hen $\overrightarrow{\mathbf{GA}} + \overrightarrow{\mathbf{GB}} + \overrightarrow{\mathbf{GC}}$ is		
		c) $\frac{\vec{a} + \vec{b} + \vec{c}}{2}$	$\vec{a} - \vec{b} - \vec{c}$
a) d	(b) a + b + c	$\frac{c}{3}$	d) <u> </u>
511. A, B have position vector	ors \vec{a}, \vec{b} relative to the origin	O and X, Y divide \overrightarrow{AB} interview.	nally and externally
respectively in the ratio	$02:1$. Then, $\overrightarrow{XY} =$		
$a) \frac{3}{2} (\vec{h} - \vec{a})$	b) $\frac{4}{3}(\vec{a}-\vec{b})$	$(1) = (\vec{b} - \vec{a})$	$d = (\vec{b} - \vec{a})$
4	5	0	0
512. If $\vec{\mathbf{a}} = (2,1,-1), \vec{\mathbf{b}} = (1,1,-1)$	$(-1,0), \vec{c} = (5-1,1),$ then u	unit vector parallel to $\vec{\mathbf{a}} + \vec{\mathbf{b}}$	$-\vec{c}$ but in opposite direction
is	1	1	
a) $\frac{1}{2}(2\hat{i} - \hat{j} + 2\hat{k})$	b) $\frac{1}{2}(2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	c) $\frac{1}{2}(2\hat{i} - \hat{j} - 2\hat{k})$	d) None of these
5 513. The number of vectors	2	5	
$\vec{\mathbf{a}} = (1,1,0)$ and $\vec{\mathbf{b}} = (0,1,1,0)$			
a) One	b) Two	c) Three	d) Infinite
5	2	2	$- 3\mathbf{\hat{k}}$ and is perpendicular to
the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ is			
	b) $-3\hat{\mathbf{i}} + 11\hat{\mathbf{j}} + 87\hat{\mathbf{k}}$	c) $-9\hat{i} + 3\hat{j} - 2\hat{k}$	d) $9\hat{i} - 3\hat{j} + 2\hat{k}$
515. If $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are unit vector		, , , , , , , , , , , , , , , , , , ,	, ,
a) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = 1$	b) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \sqrt{3}$	c) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = 2$	d) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \sqrt{2}$
516. If the volume of a paral			-
volume of the parallelo		0	,
_	\vec{c}) × (\vec{c} × \vec{a}),(\vec{c} × \vec{a}) × (\vec{a} × \vec{l}	$\dot{\mathbf{b}}$) as coterminous edges is	
a) 9 cu units	b) 729 cu units	c) 81 cu units	d) 27 cu units
517. The non-zero vectors \vec{a}	$\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are related by $\vec{\mathbf{a}} =$	-	-
a) <i>π</i>	b) 0	$\frac{\pi}{2}$	d) $\frac{\pi}{2}$
,	-	c) $\frac{\pi}{4}$	
518.	$\mathbf{\dot{r}}_1 \cdot \mathbf{\dot{r}}_1$	$\vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_2 \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_3$	
For any three non-zero	vectors $\vec{r}_1 \vec{r}_2$ and \vec{r}_3 , $\begin{vmatrix} \vec{r}_1 \cdot \vec{r}_1 \\ \vec{r}_2 \cdot \vec{r}_1 \\ \vec{r}_3 \cdot \vec{r}_1 \end{vmatrix}$	$\mathbf{r}_2 \cdot \mathbf{r}_2 \mathbf{r}_2 \cdot \mathbf{r}_3 = 0$, Then,	which of the following is
false?		$\mathbf{I}_3 \cdot \mathbf{I}_2 \mathbf{I}_3 \cdot \mathbf{I}_3$	
	are parallel to one and the	h) All the three vectors a	re linearly dependent
a) All the three vectors are parallel to one and the b) All the three vectors are linearly dependent same plane			
-	ion has a non-trivial solutio	n d) All the three vectors a	re perpendicular to each
		other	
519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{k}$	$\hat{\mathbf{j}}, \vec{\mathbf{c}} = \hat{\mathbf{i}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \lambda$	$\vec{\mathbf{a}} + \mu \vec{\mathbf{b}}$, then $\lambda + \mu$ is equal	to
a) 0	b) 1	c) 2	d) 3
	or such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{k}$	$\mathbf{\vec{b}} = 2\mathbf{\vec{a}} \times \mathbf{\vec{c}}, \mathbf{\vec{a}} = \mathbf{\vec{c}} = 1, \mathbf{\vec{b}} $	$ $ = 4 and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If
520. Let $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}, \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1, \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If $\vec{\mathbf{b}} - 2\vec{\mathbf{c}} = \lambda \vec{\mathbf{a}}$, then λ is equal to			
a) 1	b) ± 4	c) 3	d) -2
521. If $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0$, $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = 0$ and	-	,	5

a) 0 b)
$$\frac{1}{2}$$
 c) 1 d) 2

	$\frac{0}{2}$			
522. If $\vec{a}, \vec{b}, \vec{c}$ are any three mutually perpendicular vectors of equal magnitude a , then $ \vec{a} + \vec{b} + \vec{c} $ is equal to				
a) <i>a</i>	b) √2 <i>a</i>	c) $\sqrt{3} a$	d) 2 <i>a</i>	
	dicular to both the vectors $\hat{\mathbf{i}}$ +			
a) $\frac{-\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}$	b) $\frac{-\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{3}$	c) $\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$	d) $\frac{\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$	
524. Let, $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, \bar{l}	$\mathbf{\dot{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}, \mathbf{\ddot{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}. \mathbf{A}^{T}$	vector coplanar to $ec{a}$ and $ec{b}$	has a projection along $ec{\mathbf{c}}$ of	
magnitude $\frac{1}{\sqrt{3}}$, then t				
a) $4\mathbf{i} - \mathbf{j} + 4\mathbf{k}$	b) $4\hat{\mathbf{i}} + \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$	c) $2\mathbf{i} + \mathbf{j} + \mathbf{k}$	d) None of these	
a) 1	vectors such that $\vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} =$ b) -1	w and $\mathbf{w} \times \mathbf{u} = \mathbf{v}$, then the c) 0	d) None of these	
	of the points A, B, C are $2\hat{i} + \hat{j}$	-	-	
points	of the points n, b, c are $2t + j$	f $k, 5t$ $2f$ k and t 1	j skrespectively. mese	
a) Form an isosceles	triangle			
b) Form a right trian	•			
c) Are collinear				
d) Form a scalene tri	0			
-	$\mathbf{b} = \lambda \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and the orthog	gonal projection of $ec{f b}$ on $ec{f a}$ is	S	
$\frac{4}{3}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$ then λ is	equal to			
a) 0	b) 2	c) 12	d) —1	
528. If three points A, B a	nd C have position vectors (1	(x, 3), (3, 4, 7) and (y, -2, -	5) respectively and, if they are	
collinear, then (x, y)	-			
a) $(2, -3)$	b) (-2,3)	, , ,	d) $(-2, -3)$	
	vectors of magnitude 5 and 6			
a) 0	b) 15	c) −15	d) 15√3	
	it vectors inclined at an angle π^{π}			
a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{2\pi}{3}$	
531. $\overrightarrow{\mathbf{AB}} \times \overrightarrow{\mathbf{AC}} = 2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} +$	- 4 ${f \hat k}$, then the area of Δ <i>ABC</i> is			
a) 3 sq units	b) 4 sq units	c) 16 sq units	d) 9 sq units	
_	$x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = \hat{\mathbf{j}}$ are suc			
a) $z\hat{\mathbf{i}} - x\hat{\mathbf{k}}$	b) 0	c) yĵ	d) $-z\hat{\mathbf{i}} - x\hat{\mathbf{k}}$	
533. Let \vec{a} , \vec{b} , \vec{c} be the vect	cors such that $\vec{\mathbf{a}} \neq 0$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$	$\mathbf{\vec{a}} = 2\mathbf{\vec{a}} \times \mathbf{\vec{c}}, \mathbf{\vec{a}} = \mathbf{\vec{c}} = 1, \mathbf{\vec{b}} $	$ =4 \text{ and } \mathbf{\dot{b}} \times \mathbf{\ddot{c}} = \sqrt{15}.$ If	
$\mathbf{\vec{b}} - 2\mathbf{\vec{c}} = \lambda \mathbf{\vec{a}}$, then λ	-			
a) 1	b) -4	c) 3	d) -2	
534. The position vectors the position vector o	of <i>P</i> and <i>Q</i> are respectively \vec{a} f <i>R</i> , is	and \dot{b} . If R is a point on $\dot{P}Q$	Q such that $PR = 5 PQ$, then	
	b) $5\vec{b} + 4\vec{a}$		d) $4\vec{b} + 5\vec{a}$	
535. The vector \vec{c} is perpe $\vec{c}.(\hat{\iota}+2\hat{\jmath}-7\hat{k})$. The	endicular to the vectors $\vec{a} = (\vec{a}, \vec{c})$	$(2, -3, 1), \vec{b} = (1, -2, 3)$ and	l satisfies the condition	
	b) $-7\hat{\imath} - 5\hat{\jmath} - \hat{k}$	c) $\hat{\iota} + \hat{j} - \hat{k}$	d) None of these	
-	iteral, then $\vec{B}A + \vec{B}C + \vec{C}D + \vec{D}$	-		
a) $2\vec{B}A$	b) 2 <i>ĀB</i>	c) 2 <i>ÃC</i>	d) 2 <i>BC</i>	
	of the sphere whose centre is	the point (1,0,1)and radiu		
	$\mathbf{\hat{b})} \mathbf{\vec{r}} + (\mathbf{\hat{i}} + \mathbf{\hat{k}}) = 4^2$			

538. If three concurrent edges of a parallelopiped of volume V represent vectors $\vec{a}, \vec{b}, \vec{c}$ then the volume of the parallelopiped whose three concurrent edges are the three concurrent diagonals of the three faces of the given parallelopiped, is a) V b) 2 V c) 3 V d) None of these 539. A unit vector in xy-plane makes an angle of 45° with the vector $\hat{i} + \hat{j}$ and an angle of 60° with the vector $3\hat{\iota} - 4\hat{j}$ is d) None of these b) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ c) $\frac{\hat{i} - \hat{j}}{\sqrt{2}}$ a) î 540. The equation $\mathbf{r}^2 - 2 \mathbf{\vec{r}} \cdot \mathbf{\vec{c}} + h = 0$, $|\mathbf{\vec{c}}| > \sqrt{h}$, represent b) Ellipse c) Cone a) Circle d) Sphere 541. The points with position vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear if the value of *a* is a) –8 b) 4 c) 8 d) 12 542. If $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{b} \times (\vec{b} \times \vec{c})$ and $\vec{a} \cdot \vec{b} \neq 0$, then $[\vec{a}\vec{b}\vec{c}] =$ b) 1 d) 3 c) 2 ^{543.} $[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}] + (\vec{a} . \vec{b})^2 =$ b) $\left| \vec{a} + \vec{b} \right|^2$ d) None of these a) $|\vec{a}|^2 |\vec{b}|^2$ c) $|\vec{a}|^2 + |\vec{a}|^2$ 544. If $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ are non-coplanar vectors and p, q are real numbers, then the equality $[3\vec{\mathbf{u}} \ p \ \vec{\mathbf{v}} \ p \ \vec{\mathbf{w}}] [p \vec{\mathbf{v}} \vec{\mathbf{w}} q \vec{\mathbf{u}}] - [2 \vec{\mathbf{w}} q \vec{\mathbf{v}} q \vec{\mathbf{u}}] = 0$ holds for a) Exactly two value of (*p*, *q*) b) More than two but not all values of (*p*, *q*) c) All values of (p,q)d) Exactly one value of (p, q)545. $\vec{\mathbf{a}} \cdot [(\vec{\mathbf{b}} + \vec{\mathbf{c}}) \times (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}})]$ equals a) 0 d) $\vec{a} \cdot (\vec{b} + \vec{c})$ b) $\vec{a} + \vec{b} + \vec{c}$ c) **a** 546. If the vectors $\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $-\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ represent the diagonals of a parallelogram, them its area will be b) $\frac{\sqrt{21}}{2}$ d) $\frac{\sqrt{21}}{4}$ c) 2√21 a) 21 547. Given $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$, $|\vec{\mathbf{a}}| = 1$ and if $(\vec{\mathbf{a}} + 3\vec{\mathbf{b}}) \cdot (2\vec{\mathbf{a}} - \vec{\mathbf{b}}) = -10$ then $|\vec{\mathbf{b}}|$ is equal to b) 3 a) 1 c) 2 d) 4 548. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu =$ b) 1 d) 3 a) 0 c) 2 549. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} = \vec{b} + \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{2}$, then b) $b^2 = c^2 + a^2$ c) $c^2 = a^2 + b^2$ d) $2a^2 - b^2 = c^2$ a) $a^2 = b^2 + c^2$ 550. If $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ and $\vec{\mathbf{d}}$ are the unit vectors such that $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = \frac{1}{2}$, then a) \vec{a} , \vec{b} , \vec{c} are non-coplanar b) \vec{a} , \vec{b} , \vec{d} are non-coplanar d) \vec{a} , \vec{d} are parallel and \vec{b} , \vec{c} are parallel c) $\vec{\mathbf{b}}$, $\vec{\mathbf{d}}$ are non-parallel 551. The projection of the vector $2\hat{i} + 3\hat{j} - 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} + 3\hat{k}$, is b) $\frac{1}{\sqrt{14}}$ c) $\frac{3}{\sqrt{14}}$ d) None of these a) $\frac{2}{\sqrt{14}}$ 552. If unit vector \vec{c} makes an angle $\frac{\pi}{3}$ with $\hat{i} + \hat{j}$, then minimum and maximum values of $(\hat{i} \times \hat{j}) \cdot \vec{c}$ respectively are b) $-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}$ c) $-1, \frac{\sqrt{3}}{2}$ d) None of these a) $0, \frac{\sqrt{3}}{2}$ 553. \hat{a} and \hat{b} are two mutually perpendicular unit vectors. If the vectors $x \hat{a} + x\hat{b} + z(\hat{a} \times \hat{b}), \hat{a} + (\hat{a} \times \hat{b})$ and $z\hat{a} + z\hat{b} + y(\hat{a} \times \hat{b})$ lie in a plane, then z is a) A.M. of x and yb) G.M. of x and yc) H.M. of x and yd) Equal to zero 554. If $\vec{a} = (1, p, 1)$, $\vec{b} = (q, 2, 2)$, $\vec{a} \cdot \vec{b} = r$ and $\vec{a} \times \vec{b} = (0, -3, 3)$, then p, q, r are in that order

a) An acute angled t b) An obtuse angled c) A right angled tria d) An equilateral tria	triangle angle angle 3 k is rotated through an angl								
		(2)							
a) $\left\{-\frac{2}{3}, 2\right\}$	b) $\left\{\frac{1}{3}, 2\right\}$	c) $\{\frac{1}{3}, 0\}$	d) {2,7}						
557. If $\vec{a} = 2\hat{\imath} - 3\hat{\jmath} + 5\hat{k}$, $\vec{b} = 3\hat{\imath} - 4\hat{\jmath} + 5\hat{k}$ and $\vec{c} = 5\hat{\imath} - 3\hat{\jmath} - 2\hat{k}$, then the volume of the parallelopiped with									
coterminus edges a	$(\vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a})$ is								
a) 2	b) 1	c) -1	d) 0						
	with position vector $7\hat{i} - \hat{j} +$	$-2\mathbf{\dot{k}}$ in the line whose vector	or equation is $\vec{\mathbf{r}} = (9\hat{\mathbf{i}} + 5\hat{\mathbf{j}} +$						
$5\mathbf{k} + \lambda(\mathbf{i+3j+5k})$ has									
-	b) $9\hat{i} + 5\hat{j} + 2\hat{k}$	-	-						
559. If $\vec{\mathbf{a}}, \mathbf{\dot{b}}, \vec{\mathbf{c}}$ are the <i>p</i> th,	qth, nth terms of an HP and บี	$\mathbf{\hat{i}} = (q-r)\mathbf{\hat{i}} + (r-p)\mathbf{\hat{j}} + (p-r)\mathbf{\hat{j}} + (p-r)\hat{$	$(p-q)\hat{\mathbf{k}}$ and $\vec{\mathbf{v}} = \frac{\hat{\mathbf{i}}}{a} + \frac{\hat{\mathbf{j}}}{b} + \frac{\hat{\mathbf{k}}}{c}$, then						
a) $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ are parallel v	ectors	,	b) $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ are orthogonal vectors						
c) $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 1$		d) $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$							
		$-\mu$) k are three coterminal	l edges of a parallelopiped, then						
its volume depends a) only λ	b) Only µ	c) Both λ and μ	d) Neither λ nor μ						
•	$(\vec{a} + \vec{b} + \vec{c})$ is equal to	oj bournana µ							
a) $\vec{\mathbf{c}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{a}}$	b) 0	c) $\vec{a} \cdot \vec{a} \times \vec{b}$	d) $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} \times \vec{\mathbf{b}}$						
562. If <i>ABCD</i> is a parallel	, -								
a) $4\vec{A}B$	b) $3\vec{AB}$	c) 2 <i>ÅB</i>	d) <i>AB</i>						
-	tors such that $\vec{a} + \vec{b} + \vec{c} = 0$,	,	$\vec{c} + \vec{c} \cdot \vec{a}$ is						
	b) 3								
564. If \vec{a} , \vec{b} , \vec{c} are vectors s	-		-						
	such that $\mathbf{c} = \mathbf{a} + \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{b}$	= 0, then							
a) $a^2 + b^2 + c^2 = 0$	such that $\mathbf{\dot{c}} = \mathbf{\dot{a}} + \mathbf{b}$ and $\mathbf{\dot{a}} \cdot \mathbf{b}$ b) $a^2 - b^2 = c^2$		d) $\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$						
	b) $a^2 - b^2 = c^2$	c) $a^2 + b^2 = c^2$	d) $\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$						
		c) $a^2 + b^2 = c^2$	d) $\vec{c} = \vec{a} \times \vec{b}$ d) 6						
565. If a ̈ = 2 î + ĵ + 2 k an a) 3 566. Forces of magnitude	b) $a^2 - b^2 = c^2$ and $\mathbf{\vec{b}} = 5\mathbf{\hat{i}} - 3\mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the p b) 4 es 3 and 4 units acting along 6	c) $a^2 + b^2 = c^2$ rojection of $\vec{\mathbf{b}}$ on $\vec{\mathbf{a}}$ is c) 5 $5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$	-						
565. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and a) 3 566. Forces of magnitude and displace it from	b) $a^2 - b^2 = c^2$ ad $\mathbf{\vec{b}} = 5\mathbf{\hat{i}} - 3\mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the p b) 4 es 3 and 4 units acting along 6 (2,2 - 1) to (4,3,1). The wor	c) $a^2 + b^2 = c^2$ projection of $\mathbf{\vec{b}}$ on $\mathbf{\vec{a}}$ is c) 5 $b\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$ and $3\mathbf{\hat{i}} - 2\mathbf{\hat{j}} + b^2$ k done is	d) 6 6 k respectively act on a particle						
565. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and a) 3 566. Forces of magnitude and displace it from a) 124/7	b) $a^2 - b^2 = c^2$ ad $\mathbf{\vec{b}} = 5\mathbf{\hat{i}} - 3\mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the p b) 4 es 3 and 4 units acting along 6 (2,2 - 1) to (4,3,1). The wor b) 120/7	c) $a^2 + b^2 = c^2$ rojection of $\vec{\mathbf{b}}$ on $\vec{\mathbf{a}}$ is c) 5 $5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$	d) 6						
565. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and a) 3 566. Forces of magnitude and displace it from	b) $a^2 - b^2 = c^2$ ad $\mathbf{\vec{b}} = 5\mathbf{\hat{i}} - 3\mathbf{\hat{j}} + \mathbf{\hat{k}}$, then the p b) 4 es 3 and 4 units acting along 6 (2,2 - 1) to (4,3,1). The wor b) 120/7	c) $a^2 + b^2 = c^2$ projection of $\mathbf{\vec{b}}$ on $\mathbf{\vec{a}}$ is c) 5 $b\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$ and $3\mathbf{\hat{i}} - 2\mathbf{\hat{j}} + b^2$ k done is	d) 6 6 k respectively act on a particle						

10.VECTOR ALGEBRA

: ANSWER KEY :													
1)	d	2)	d	2)	9						0	101)	102)
1) 5)	d c	2) 6)	d d	3) 7)	c d	4) 8)	b		d b	190) 194)	a c	191) a 195) b	-
5) 9)	C C	0) 10)		7) 11)		8) 12)	a	193)		194) 198)	C	400	
•) 13)	с b	10) 14)	с b	11) 15)	с с	12) 16)	a b	-	a a	198) 202)	a c	199) a 203) c	
13) 17)	b	14) 18)	a	13) 19)	c	10) 20)	d	-	a	202)	c d	203) C 207) b	
21)	a	10) 22)	a C	23)	d	20) 24)	u a		a d	200) 210)	u d	207) b 211) c	
21) 25)	a d	22) 26)	b	23) 27)	u b	24) 28)	a a		u b	210) 214)	u C	211) C 215) b	
23) 29)	u d	20) 30)	d	27) 31)	c	20) 32)	a a	·	d	214) 218)	d		
33)	u a	30) 34)	d	31) 35)	a	32) 36)	a a	224	u b	210)	u a	219) a 223) c	
37)	a b	34) 38)	d	39)	d	30) 40)	a		d	226)	a b	223) c	
41)	C	30) 42)	d	43)	u a	40) 44)	a C	223)	u b	220)	a	227) c 231) a	
45)	d	42) 46)	u b	43) 47)	a	48)	b	-	b	230) 234)	d	231) a 235) a	
49)	u b	4 0) 50)	d	51)	a	40) 52)	c	235)	c	234) 238)	d	233) d	-
53)	b	50) 54)	a	55)	a C	52) 56)	a		a	230) 242)	d	237) d 243) b	-
57)	b	54) 58)	c c	59)	d	60)	u C	245)	b	242) 246)	a	243) d	-
61)	b	62)	c c	63)	a	64)	a		b	240) 250)	d	247) a 251) c	
65)	d	66)	c c	67)	a	68)	b b	-	b	250) 254)	u b	251) c 255) d	-
69)	b	70)	c c	07) 71)	d	72)	d	-	a	254) 258)	d	255) d	-
73)	a	70) 74)	b	75)	d	76)	a		C C	262)	u C	263) b	-
73) 77)	b b	74) 78)	d	79)	b	80)	b b	-	d	262)	d	263) b	-
81)	b	82)	b	83)	c	84)	a		u C	200) 270)	u b	207) d	-
85)	b	86)	c	87)	a	88)	c c	273)	b	270) 274)	a	271) a 275) b	-
89)	a	90)	d	91)	a	92)	d	-	b	278)	a	279) d	-
93)	C	94)	a	95)	d	96)	b	281)	a	282)	a	283) a	
97)	d	98)	d	99)	a	100)	a		a	286)	b	287) a	
101)	d	102)	b	103)	b	100)	b	_	b	200) 290)	a	207) a 291) a	
105)	b	106)	c	107)	c	101)	a		a	<u> </u>	d	295) a	
109)	a	110)	a	111)	c	112)		297)	a	298)	a	299) c	
113)	d	114)	b	115)	b	116)		301)	d	302)	c	303) a	
117)	b	118)	d	119)	d	120)		305)	a	30 <u>6</u>)	a	307) c	
121)	c	122)	a	123)	a	124)		309)	d	310)	d	311) b	-
125)	a	126)	a	127)	c	128)		313)	d	314)	d	315) a	
129)	a	130)	a	131)	a	132)		317)	a	318)	c	319) a	
133)	c	134)	d	135)	a	136)		321)	d	322)	b	323) b	-
137)	a	138)	С	139)	с	140)		325)	d	326)	c	327) b	-
141)	d	142)	c	143)	d	144)		329)	c	330)	b	331) c	
145)	a	146)	a	147)	d	148)		333)	d	334)	b	335) a	
149)	a	150)	d	151)	b	152)		337)	d	338)	a	339) c	
153)	a	154)	b	155)	b	156)		341)	a	342)	a	343) c	
157)	a	158)	d	159)	b	160)		345)	b	346)	a	347) d	-
161)	c	162)	a	163)	c	164)		349)	b	350)	a	351) b	-
165)	a	166)	d	167)	d	168)		353)	c	354)	b	355) c	
169)	b	170)	d	171)	c	172)		357)	d	358)	a	359) a	
173)	d	174)	c	175)	d	176)		361)	c	362)	b	363) b	-
177)	a	171)	b	179)	c	180)		365)	c	366)	d	367) d	-
181)	C L	182)	c	183)	c	180) 184)		369)	c	370)	b	371) a	
185)	a	186)	a	185) 187)	b	181)		373)	c	374)	c	375) b	-
	~	1001	~	2013	~	2007		2.51	•	57 17	-	5.55	<i></i> ,

377)	а	378)	b	379)	С	380)	а
381)	b	382)	а	383)	d	384)	d
385)	С	386)	а	387)	а	388)	С
389)	а	390)	b	391)	b	392)	а
393)	b	394)	d	395)	С	396)	b
397)	а	398)	а	399)	С	400)	d
401)	С	402)	а	403)	С	404)	d
405)	b	406)	d	407)	а	408)	b
409)	С	410)	С	411)	а	412)	b
413)	С	414)	а	415)	а	416)	b
417)	а	418)	а	419)	С	420)	b
421)	d	422)	С	423)	а	424)	а
425)	а	426)	b	427)	а	428)	С
429)	а	430)	С	431)	С	432)	d
433)	а	434)	а	435)	С	436)	d
437)	С	438)	d	439)	а	440)	d
441)	а	442)	а	443)	b	444)	b
445)	d	446)	а	447)	а	448)	а
449)	b	450)	а	451)	b	452)	с
453)	d	454)	С	455)	а	456)	с
457)	С	458)	d	459)	С	460)	а
461)	а	462)	С	463)	b	464)	а
465)	b	466)	d	467)	b	468)	а
469)	а	470)	b	471)	b	472)	b
473)	а	474)	С	475)	b	476)	а
477)	b	478)	d	479)	С	480)	с
481)	С	482)	а	483)	d	484)	d
485)	d	486)	d	487)	d	488)	С
489)	d	490)	а	491)	d	492)	b
493)	d	494)	b	495)	С	496)	а
497)	d	498)	а	499)	b	500)	b
501)	С	502)	b	503)	С	504)	d
505)	a	506)	d	507)	b	508)	а
509)	а	510)	а	511)	d	512)	а
513)	b	514)	b	515)	d	516)	С
517)	а	518)	а	519)	а	520)	b
521)	а	522)	С	523)	d	524)	а
525)	а	526)	а	527)	b	528)	а
529)	b	530)	d	531)	а	532)	а
533)	b	534)	а	535)	а	536)	а
537)	а	538)	b	539)	b	540)	d
541)	С	542)	а	543)	a	544)	d
545)	а	546)	b	547)	С	548)	а
549)	а	550)	С	551)	а	552)	b
553)	b	554)	d	555)	С	556)	а
557)	d	558)	С	559)	b	560)	d
561)	а	562)	С	563)	С	564)	С
565)	а	566)	а	567)	b		

: HINTS AND SOLUTIONS :

4

5

7

1 **(d)**

2

3

Let the unit vector in *xy*-plane be $\vec{a} = x\hat{i} + y\hat{j}$. $\therefore \cos 45^{\circ} = \frac{(x\hat{i} + y\hat{j})(\hat{i} + \hat{j})}{\sqrt{x^2 + y^2}\sqrt{1^2 + 1^2}}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{x+y}{\sqrt{2}\sqrt{x^2+v^2}}$ $\Rightarrow 1 = \frac{x+y}{\sqrt{x^2+y^2}}$ $\Rightarrow x + y = \sqrt{x^2 + y^2}$ Since, \vec{a} is a unit vector. $|\vec{\mathbf{a}}| = \sqrt{x^2 + y^2} = 1$ $\Rightarrow x + y = 1$...(i) Again cos 60° = $\frac{(x\hat{i}+y\hat{j})\cdot(3\hat{i}-\hat{4}\hat{j})}{\sqrt{x^2+y^2}\sqrt{3^2+4^2}}$ $\Rightarrow \frac{1}{2} = \frac{3x - 4y}{1 \cdot 5} \Rightarrow \frac{5}{2} = 3x - 4y$ 5 = 6x - 8y....(ii) On solving Eqs. (i) and (ii), we get $x = \frac{13}{14}, y = \frac{1}{14}$ $\therefore \vec{\mathbf{a}} = \frac{1}{14} (13\hat{\mathbf{i}} + \hat{\mathbf{j}})$ No value in the given options satisfies the above relations. Thus, option (d) is correct. (d) Given, $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| < 1$ $\Rightarrow \sqrt{1+1+2\cos 2\alpha} < 1$ $\Rightarrow \sqrt{2(1+\cos 2\alpha)} < 1$ $\Rightarrow \sqrt{4\cos^2\alpha} < 1$ $\Rightarrow |\cos \alpha| < \frac{1}{2}$ $\Rightarrow \frac{\pi}{3} < \alpha < \frac{2\pi}{3} \quad (\because 0 \le \alpha \le \pi)$ (c) Given equation can be rewritten as $\vec{\mathbf{r}} = 3\hat{\mathbf{j}} + (\hat{\mathbf{i}} + 2\hat{\mathbf{k}})s + (-2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}})t$

which is a plane passing through $\vec{a} = 3\hat{j}$ and parallel to the vectors $\vec{b} = \hat{i} + 2\hat{k}$ and $\vec{c} = -2\hat{i} - \hat{j} + \hat{k}$. Therefore, it is perpendicular to the vector $\vec{n} = \vec{b} \times \vec{c} = 2\hat{i} - 5\hat{j} - \hat{k}$ Hence, its vector equation is $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ $\Rightarrow \vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$

 \Rightarrow $(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} - 5\hat{\mathbf{j}} - \hat{\mathbf{k}})$ $=3\hat{\mathbf{j}}\cdot(2\hat{\mathbf{i}}-5\hat{\mathbf{j}}-\hat{\mathbf{k}})$ $\Rightarrow 2x - 5y - z + 15 = 0$ (b) $\vec{a} \cdot \vec{b} = 18 \text{ and } |\vec{b}| = 5$ \therefore Vector component of \vec{a} along \vec{b} $= \left(\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{b}}|^2}\right)\vec{\mathbf{b}} = \frac{18}{25} \left(3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}\right)$ (c) Given that, $(\vec{\mathbf{F}}) = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and its position vector $2\hat{i} - \hat{j}$. The position vector of a force about origin $(\vec{r}) = (2\hat{i} - \hat{j}).$: Moment of the force about origin $= \vec{\mathbf{r}} \times \vec{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -1 & 0 \\ 2 & 1 & -1 \end{vmatrix} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ (d) Since, $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$ Similarly, $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{a}} = 0$ and $\vec{\mathbf{c}} \cdot \vec{\mathbf{a}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{b}} = 0$ $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \dots (i)$ Given, $|\vec{a} + \vec{b}| = 6$ \Rightarrow $|\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = 36$ (ii) Similarly, $|\mathbf{\vec{b}}|^2 + |\mathbf{\vec{c}}|^2 + 2\mathbf{\vec{b}} \cdot \mathbf{\vec{c}} = 64$...(iii) and $|\vec{c}|^2 + |\vec{a}|^2 + 2\vec{c} \cdot \vec{a} = 100$ (iv) On adding Eqs. (ii),(iii) and (iv), we get $2|\vec{\mathbf{a}}|^2 + 2|\vec{\mathbf{b}}|^2 + 2|\vec{\mathbf{c}}|^2 + 2(\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} + \vec{\mathbf{b}}\cdot\vec{\mathbf{c}} + \vec{\mathbf{c}}\cdot\vec{\mathbf{a}})$ = 200 $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 100...(v)$ [from Eqs. (i)] Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{c})^2$ $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}$ \Rightarrow $|\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}|^2 = 100$ [from Eqs. (i) and (v)] $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = 10$

(a)

8

It is given that $|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda$ (say) and $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors. Therefore, $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{3} \lambda$ Let θ be the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} . Then,

$$\cos \theta = \frac{\vec{a}(\vec{a} + \vec{b} + \vec{c})}{|\vec{a}||\vec{a} + \vec{b} + \vec{c}|} = \frac{|\vec{a}|^2}{|\vec{a}||\vec{a} + \vec{b} + \vec{c}|}$$

$$\Rightarrow \cos \theta = \frac{\lambda^2}{\lambda(\sqrt{3}\lambda)} = \frac{1}{\sqrt{3}} \Rightarrow \theta = \cos^{-1}(1/\sqrt{3})$$
9 (c)
The resultant of forces 3 $\vec{O}A$ and 5 $\vec{O}B$ is 8 $\vec{O}B$, where *C* divides *AB* in the ratio 5 : 3 i.e.
 $3AC = 5CB$
10 (c)
The equation of a line passing through the centre $(\hat{j} + 2\hat{k})$ and normal to the given plane is
 $\vec{r} = \hat{j} + 2\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) \dots(\hat{i})$
This meets the plane at a point for which we must have
 $[(\hat{j} + 2\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})] \cdot (\hat{i} + 2\hat{j} + 2\hat{k}) = 15$
 $\Rightarrow 6 + \lambda(9) = 15 \Rightarrow \lambda = 1$
 \therefore From Eq. (i),
 $\vec{r} = \hat{i} + 3\hat{j} + 4\hat{k}$
 \therefore Coordinates of the centre of the circle are (1,3,4)
12 (a)
Let $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = \hat{i} + \hat{j} + \hat{k}$
and $\vec{c} = \hat{i} - \hat{j} + \lambda\hat{k}$
Since, volume of tetrahedron $= \frac{1}{6}[\vec{a} \cdot \vec{b} \cdot \vec{c}]$
 $\Rightarrow \frac{2}{3} = \frac{1}{6}[1(\lambda + 1) - 2(\lambda - 1) - 1(-1 - 1)]$
 $\Rightarrow 4 = [-\lambda + 5]$
 $\Rightarrow \lambda = 1$
13 (b)
Given equation represents a plane.
15 (c)
 $\because \vec{\alpha} \times \vec{\beta} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & 1 & 1 \end{vmatrix} = -10(3 + 1) - 9(2 + 1) + 7(2 - 3) = -74$
Alternate
 $(\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = \begin{vmatrix} \vec{\alpha} \cdot \vec{\alpha} \cdot \vec{\gamma} \\ \vec{\beta} \cdot \vec{\alpha} & \vec{\beta} \cdot \vec{\gamma} \end{vmatrix}$
 $= \begin{vmatrix} 14 & 4 \\ 8 & -3 \end{vmatrix} = -42 - 32 = -74$
16 (b)
Given planes are

 $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 1 \dots (\mathbf{i})$ and $\vec{\mathbf{r}} \cdot (2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = 2$ (ii) Now, $(\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -3 & 1 \\ 2 & 5 & -3 \end{vmatrix}$ $= 4\hat{i} + 5\hat{j} + 11\hat{k}$ Hence, line of intersection of the planes is parallel to the vector $4\hat{i} + 5\hat{j} + 11\hat{k}$. 17 **(b)** Given, $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = \lambda \overrightarrow{ED}$ ED $\Rightarrow (\overrightarrow{\mathbf{AE}} + \overrightarrow{\mathbf{ED}}) + (\overrightarrow{\mathbf{ED}} + \overrightarrow{\mathbf{DB}}) + 2\overrightarrow{\mathbf{ED}} = \lambda \overrightarrow{\mathbf{ED}}$ $\Rightarrow 4\overrightarrow{\mathbf{ED}} + (\overrightarrow{\mathbf{AE}} + \overrightarrow{\mathbf{DB}}) = \lambda \overrightarrow{\mathbf{ED}}$ $\Rightarrow 4\overrightarrow{\mathbf{ED}} = \lambda \overrightarrow{\mathbf{ED}}$ $(:: \overrightarrow{\mathbf{AE}} = -\overrightarrow{\mathbf{DB}})$ Alternate Now, $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2(\overrightarrow{OD} + \overrightarrow{EO} + \overrightarrow{ED})$ $= 2(\overrightarrow{\mathbf{ED}} + \overrightarrow{\mathbf{ED}}) = 4\overrightarrow{\mathbf{ED}} \therefore \lambda = 4$ 18 (a) Let $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{j}} + b_3 \hat{\mathbf{k}}$ Now, $[\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \hat{\mathbf{i}}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ 1 & 0 & 0 \end{vmatrix}$ $= a_1(0-0) - a_2(0-b_3) + a_3(0-b_2)$ $=a_2b_3-a_3b_2$ $\therefore 2[\vec{\mathbf{a}}\,\vec{\mathbf{b}}\,\hat{\mathbf{i}}]\hat{\mathbf{i}} = 2[a_2b_3 - a_3b_2]\hat{\mathbf{i}}$ Similarly, $2[\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \hat{\mathbf{j}}]\hat{\mathbf{j}} = 2[a_3b_1 - a_1b_3]\hat{\mathbf{j}}$ and $2[\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \hat{\mathbf{k}}]\hat{\mathbf{k}} = 2[a_1b_2 - a_2b_1]\hat{\mathbf{k}}$ $\therefore 2\left[\vec{a}\,\vec{b}\,\hat{i}\right]\hat{i} + 2\left[\vec{a}\,\vec{b}\,\hat{j}\right]\hat{j} + 2\left[\vec{a}\,\vec{b}\,\hat{k}\right]\hat{k} + \left[\vec{a}\,\vec{b}\,\vec{a}\right]$ $= 2 [(a_2b_3 - a_3b_2)\hat{\mathbf{i}} + (a_3b_1 - a_1b_3)\hat{\mathbf{j}}]$ $+(a_1b_2-a_2b_1)\hat{\mathbf{k}}$] $= (\vec{a} \times \vec{b})$ 19 (c) Given that, $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$ As we know $\vec{a}(\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ $\Rightarrow (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (\hat{\mathbf{j}} - \hat{\mathbf{k}}) = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) - (\sqrt{3})^2 \hat{\mathbf{b}}$ $\Rightarrow -2\hat{i} + \hat{j} + \hat{k} = \hat{i} + \hat{j} + \hat{k} - 3\vec{b}$ $\Rightarrow 3\mathbf{\vec{b}} = 3\mathbf{\hat{i}}$ $\Rightarrow \vec{\mathbf{b}} = \hat{\mathbf{i}}$ 20 (d)

Given, \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ defined by the relations $\vec{\mathbf{p}} = \frac{\vec{\mathbf{b}} \times \vec{\mathbf{c}}}{\left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right]}, \vec{\mathbf{q}} = \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{\left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right]} \text{ and } \vec{\mathbf{r}} = \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{\left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right]}$ $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{p}} = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}}{\left[\vec{\mathbf{ab}} \cdot \vec{\mathbf{c}}\right]} = \frac{\vec{\mathbf{a}} \cdot \left(\vec{\mathbf{b}} \times \vec{\mathbf{c}}\right)}{\left[\vec{\mathbf{ab}} \cdot \vec{\mathbf{c}}\right]} = 1$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{a}} \cdot \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]} = \frac{\vec{\mathbf{a}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}})}{[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]} = 0$ Similarly, $\vec{\mathbf{b}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{r}} = 1$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{r}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{p}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{p}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{r}} = 0$ $\therefore (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$ $= \vec{a} \cdot \vec{p} + \vec{b} \cdot \vec{p} + \vec{b} \cdot \vec{q} + \vec{c} \cdot \vec{q} + \vec{c} \cdot \vec{r} + \vec{a} \cdot \vec{r}$ = 1 + 1 + 1 = 321 (a) Given, $m_1 = |\vec{\mathbf{a}_1}| = \sqrt{2^2 + (-1)^2 + (1)^2} = \sqrt{6}$ $m_{2} = |\overline{\mathbf{a}_{2}}| = \sqrt{3^{2} + (-4)^{2} + (-4)^{2}} = \sqrt{41}$ $m_{3} = |\overline{\mathbf{a}_{3}}| = \sqrt{1^{2} + 1^{2} + (-1)^{2}} = \sqrt{3}$ and $m_4 = |\vec{\mathbf{a}_4}| = \sqrt{(-1)^2 + (3)^2 + (1)^2} = \sqrt{11}$ $\therefore m_3 < m_1 < m_4 < m_2$ 22 (c) Given, $[\lambda(\vec{a} + \vec{b}) \lambda^2 \vec{b} \ \lambda \vec{c}] = [\vec{a} \ \vec{b} + \vec{c} \ \vec{b}]$ Given, $[\lambda(\mathbf{a} + \mathbf{b}) \lambda^2 \mathbf{b} \lambda \mathbf{c}] = [\mathbf{a} \mathbf{b} + \mathbf{c} \mathbf{b}]$ $\Rightarrow \begin{vmatrix} \lambda(a_1 + b_1) & \lambda(a_2 + b_2) & \lambda(a_3 + b_3) \\ \lambda^2 b_1 & \lambda^2 b_2 & \lambda^2 b_3 \\ \lambda c_1 & \lambda c_2 & \lambda c_3 \end{vmatrix}$ $= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ $\Rightarrow \lambda^4 \begin{vmatrix} a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ $= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ [applying $R_1 \rightarrow R_1 - R_2$ in LHS and $R_2 \rightarrow R_2 - R_3$] [applying $R_1 \rightarrow R_1 - R_2$ in LHS and $R_2 \rightarrow R_2 - R_3$ in RHS] $\Rightarrow \lambda^{4} \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = - \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix}$ $\Rightarrow \lambda^4 = -1$ Hence, no real value of λ exists. 23 (d) Since the given points lie in a plane. $\therefore \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$ Applying $C_1 \rightarrow C_1 - C_2$ $\Rightarrow \begin{vmatrix} 0 & a & c \\ 1 & 0 & 1 \\ 0 & c & b \end{vmatrix} = 0$ $\Rightarrow -1(ab - c^2) = 0$ $\Rightarrow c^2 = ab$

Hence, *c* is GM of *a* and *b*. 24 (a) We have, $\vec{P} = A\vec{C} + \vec{B}D$ $\Rightarrow \vec{p} = A\vec{C} + B\vec{C} + \vec{C}D$ $\Rightarrow \vec{p} = A\vec{C} + \lambda \vec{A}D + \vec{C}D$ $\Rightarrow \vec{p} = \lambda \vec{A}D + (A\vec{C} + \vec{C}D)$ $\Rightarrow \vec{p} = \lambda \vec{A}D + \vec{A}D = (\lambda + 1)\vec{A}D$ $\therefore \vec{p} = \mu \, \vec{A} D \Rightarrow \mu = \lambda + 1$ 25 (d) We have, $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \left| \vec{a} + \vec{b} + \vec{c} \right|^2 = 0$ $\Rightarrow \left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \left(\vec{a} + \vec{b} + \vec{c}\right) = 0$ $\Rightarrow 2\left(\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c}\right) = -\left\{|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\right\}$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{29}{2}$ 26 **(b)** Since, $(\vec{\mathbf{a}} + \lambda \vec{\mathbf{b}}) \cdot (\vec{\mathbf{a}} - \lambda \vec{\mathbf{b}}) = 0$ \Rightarrow $(\vec{\mathbf{a}})^2 - \lambda^2 (\vec{\mathbf{b}})^2 = 0$ $\implies \lambda^2 \frac{(\vec{\mathbf{a}})^2}{\left(\vec{\mathbf{b}}\right)^2} = \left(\frac{3}{4}\right)^2$ $\Rightarrow \lambda = \frac{3}{4}$ 27 (b) Let $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{u}} = \hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) + \hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{j}}) + \hat{\mathbf{k}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{k}})$ $= \hat{\mathbf{i}} \times (-a_2\hat{\mathbf{k}} + a_3\hat{\mathbf{j}}) + \hat{\mathbf{j}} \times (a_1\hat{\mathbf{k}} - a_3\hat{\mathbf{i}}) + \hat{\mathbf{k}}$ $\times (-a_1\hat{\mathbf{j}} + a_2\hat{\mathbf{i}})$ $= a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}} + a_1\hat{\mathbf{i}} + a_3\hat{\mathbf{k}} + a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}}$ $= 2\vec{a}$ 29 (d) Since, $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 |\vec{a}| |\vec{b}| \cos \theta$ $\Rightarrow (\sqrt{7})^2 = (3\sqrt{3})^2 + 4^2 + 2(3\sqrt{3})^2(4)\cos\theta$ \Rightarrow 7 = 27 + 16 + 24 $\sqrt{3}\cos\theta$ $\Rightarrow \cos \theta = -\sqrt{3}/2$ $\Rightarrow \theta = 150^{\circ}$ 30 (d) $\therefore \mathbf{\vec{b}} \times \mathbf{\vec{c}} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ 1 & 2 & -5 \\ 3 & 5 & -1 \end{vmatrix} = 23\mathbf{\hat{i}} - 14\mathbf{\hat{j}} - \mathbf{\hat{k}}$ $\therefore \vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & -1 \\ 23 & -14 & -1 \end{vmatrix}$ 31 (c)

We have,

$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \text{ and } \vec{a} \perp \vec{b} \perp \vec{c}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

$$\therefore |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{c} \cdot \vec{a} = 3$$

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$$
32 (a)
Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\therefore (\vec{a} \cdot \hat{i})\hat{i} = [(x\hat{i} + y\hat{j} + z\hat{k}) \cdot \hat{i}]\hat{i} = x\hat{i}$$
Similarly, $(\vec{a} \cdot \hat{j})\hat{i} = y\hat{j}, (\vec{a} \cdot \hat{k})\hat{k} = x\hat{i} + y\hat{j} + z\hat{k} = \vec{a}$
33 (a)
Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\therefore (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k} = x\hat{i} + y\hat{j} + z\hat{k} = \vec{a}$$
33 (a)
Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\therefore (\hat{i} + \hat{j}) = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + \hat{j}) = x + y$$
and $\vec{a}(\hat{i} + \hat{j} + \hat{k}) = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) = x + y + z$

$$\therefore Given that, \vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k})$$

$$\Rightarrow x = x + y = x + y + z$$
Take $x = x + y \Rightarrow y = 0$
and $x + y = x + y + z \Rightarrow z = 0$

$$\Rightarrow x has any real values.$$
Now, take $x = 1 \therefore \vec{a} = \hat{i}$
34 (d)
Let $\vec{c} = \vec{a} + \lambda + \vec{b} = (1 + \lambda)\hat{i} + (1 - \lambda)\hat{j} + (\lambda - 1)\hat{k}] \cdot [\hat{i} + \hat{j} - \hat{k}]$

$$= 0$$

$$\Rightarrow 1 + \lambda + 1 - \lambda - \lambda + 1 = 0$$

$$\Rightarrow \lambda = 3$$

$$\therefore \vec{c} = 4\hat{i} - 2\hat{j} + 2\hat{k}$$

$$\Rightarrow \vec{c} = \pm \frac{2\hat{i} - \hat{j} + \hat{k}}{\sqrt{6}}$$
35 (a)
The cartesian form of an equation of planes are $x + 3y - z = 0$ and $y + 2z = 0$
The line of intersection of two planes is $(x + 3y - z) + \lambda(y + 2z) = 0 \dots(i)$
Since, it is passing through $(-1, -1, -1)$
 $\therefore (-1 - 3 + 1) + \lambda(-1 - 2) = 0$

$$\Rightarrow \lambda = -1$$
On putting the value of λ in Eq. (i), we get $x + 2y - 3z = 0$
Hence, vector equation of plane is $\vec{i} \cdot (\hat{i} + 2\hat{j} - 3\hat{k}) = 0$
39 (d)

 $\vec{a} \times [\vec{a} \times (\vec{a} \times \vec{b})] = \vec{a} \times \{ (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \}$ $= 0 - (\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$ $= (\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$ 40 **(a)** $\vec{a} \cdot \vec{a} \quad \vec{a} \cdot \vec{b} \quad \vec{a} \cdot \vec{c}$ $\vec{\mathbf{b}} \cdot \vec{\mathbf{a}} \quad \vec{\mathbf{b}} \cdot \vec{\mathbf{b}} \quad \vec{\mathbf{b}} \cdot \vec{\mathbf{c}}$ $\begin{vmatrix} \mathbf{\vec{c}} \cdot \mathbf{\vec{a}} & \mathbf{\vec{c}} \cdot \mathbf{\vec{b}} & \mathbf{\vec{c}} \cdot \mathbf{\vec{c}} \\ \mathbf{\vec{c}} \cdot \mathbf{\vec{a}} & \mathbf{\vec{c}} \cdot \mathbf{\vec{b}} & \mathbf{\vec{c}} \cdot \mathbf{\vec{c}} \end{vmatrix}$ = $\begin{vmatrix} a_1^2 + a_2^2 + a_3^2 & a_1 b_1 + a_2 b_2 + a_3 b_3 & a_1 c_1 \\ a_1 b_1 + a_2 b_2 + a_3 b_3 & b_1^2 + b_2^2 + b_3^2 & b_1 c_1 \end{vmatrix}$ $\begin{vmatrix} a_1c_1 + a_2c_2 + a_3c_3 & b_1c_1 + b_2c_2 + b_3c_3 \\ a_1c_1 + a_2c_2 + a_3c_3 & b_1c_1 + b_2c_2 + b_3c_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ C_1^{\prime} $= \left[\vec{a} \, \vec{b} \, \vec{c} \, \right]^2$ 41 (c) Given, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 12$ $\Rightarrow |\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta = 12$ $\Rightarrow 10 \times 2 \times \cos \theta = 12$ $\Rightarrow \cos \theta = \frac{3}{5}$ $\therefore \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$ Now, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}||\vec{\mathbf{b}}| \sin \theta = 10 \times 2 \times \frac{4}{5} = 16$ 42 (d) We have, $\left|\vec{a} + \vec{b} + \vec{c}\right|^2$ $= |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \quad \dots (i)$ It is given that $\vec{a} \perp (\vec{b} + \vec{c})$, $\vec{b} \perp (\vec{c} + \vec{a})$ and $\vec{c} \perp$ $(\vec{a} + \vec{b})$ $\therefore \vec{a} \cdot (\vec{b} + \vec{c}) = 0, \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \text{ and } \vec{c} \cdot (\vec{a} + \vec{b})$ $\Rightarrow 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ $\therefore |\vec{a} + \vec{b} + \vec{c}|^2 = 16 + 16 + 25 + 0$ [From (i)] $\Rightarrow \left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{57}$ 43 (a) Since, $\vec{\mathbf{a}} + \vec{\mathbf{b}} = \vec{\mathbf{c}} \implies (\vec{\mathbf{a}} + \vec{\mathbf{b}})^2 = \vec{\mathbf{c}}^2$ $\Rightarrow |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta = |\vec{\mathbf{c}}|^2$ $\Rightarrow 2(1 + \cos \theta) = 1 \Rightarrow \cos \theta = -\frac{1}{2} \quad [\because |\vec{\mathbf{a}}| = |\vec{\mathbf{b}}|$ $= |\vec{\mathbf{c}}| = 1$, given] Now, $|\vec{\mathbf{a}} + \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta$ $= 1 + 1 + 2 \cdot \frac{1}{2} = 3$

	$\Rightarrow \vec{\mathbf{a}} - \vec{\mathbf{b}} = \sqrt{3}$	
44	(c)	
	We have,	
	$\vec{a}.\vec{b} \ge 0 \Rightarrow \vec{a} \vec{b} \cos\theta \ge 0 \Rightarrow 0 \le \theta \le \frac{\pi}{2}$	
45	(d)	
	Since the vectors $2\hat{i} + 3\hat{j}$ and $5\hat{i} + 6\hat{j}$ have (1, 1) as initial point. Therefore, their terminal points are (3, 4) ad (6, 7) respectively. The equation of the	
	line joining these two points is $x - y + 1 = 0$. The terminal point of $8\hat{i} + \lambda\hat{j}$ is $(9, \lambda + 1)$. Since the vectors terminate on the same straight line.	
	Therefore, point $(9, (\lambda + 1))$ lies on $x - y + 1 = 0$	
	$\Rightarrow 9 - (\lambda + 1) + 1 = 0 \Rightarrow \lambda = 9$	
47	(a)	
	Let $\vec{\mathbf{A}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$ (i)	
	$\vec{\mathbf{B}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ (ii)	- 4
	$\vec{\mathbf{C}} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ (iii)	51
	$\vec{\mathbf{D}} = \hat{\mathbf{i}} - \lambda \hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ (iv)	
	From Eq. (i) and (ii), we get	
	$\overrightarrow{\mathbf{AB}} = -\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$	
	∴ From Eq. (i) and (iii), we get	
	$\overrightarrow{AC} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$	
	Similarly, from Eqs.(i) and (iv), we get	
	$\overrightarrow{\mathbf{AD}} = -\hat{\mathbf{i}} - (\lambda - 3)\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$	
	Now, using condition of coplanarity	
	$\begin{vmatrix} -1 & -1 & 4 \\ 1 & 1 & -1 \\ -1 & -(\lambda+3) & 7 \end{vmatrix} = 0$	
	Applying $R_1 \rightarrow R_1 + R_2$, we get	
	$\begin{vmatrix} 0 & 0 & 3 \\ 1 & 1 & -1 \\ -1 & -(\lambda+3) & 7 \end{vmatrix} = 0$	
4.0	$\Rightarrow -\lambda - 2 = 0 \Rightarrow \lambda = -2$	53
48	(b) $(\overrightarrow{b}) \rightarrow \overrightarrow{c} + 2 \rightarrow \overrightarrow{c} + \overrightarrow{c} + 2 \rightarrow \overrightarrow{c} + 2 $	55
	Since, $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} ^2 + \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} ^2 = \vec{\mathbf{a}} ^2 \vec{\mathbf{b}} ^2$	
	$\Rightarrow (10)^2 + \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} ^2 = (3)^2 \cdot (4)^2$	
40	$\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} ^2 = 44$	
49	(b) $(\cdot, \cdot, \cdot$	
	Let \vec{a}, \vec{b} be the sides of the given parallelogram.	
	Then, its diagonals are $\vec{a} + \vec{b}$ and $\pm (\vec{a} - \vec{b})$	54
	We have, $\vec{z} + \vec{k} = 2\hat{c} + \hat{c} = 2\hat{c} + 4\hat{c}$	51
	$\vec{a} + \vec{b} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k} \text{ and } \vec{a} - \vec{b} = \pm(\hat{\imath} - 3\hat{\jmath} + 4\hat{k})$ $\Rightarrow \vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}, \vec{b} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$	
	or $\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and $\vec{b} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$	
F 0	$\Rightarrow \vec{a} = \sqrt{6}, \vec{b} = \sqrt{14} \text{ or } \vec{a} = \sqrt{14}, \vec{b} = \sqrt{6}$	
50	(d) We have $\vec{z} \times \vec{k} = \vec{z}$	55
	We have, $\vec{a} \times \vec{b} = \vec{c}$	
	$\Rightarrow \vec{c}$ is perpendicular to \vec{a} and \vec{b} and $\vec{b} \times \vec{c} = \vec{a}$.	

 \Rightarrow \vec{a} is perpendicular to \vec{b} and \vec{c} . $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular. Again $\vec{a} \times \vec{b} = \vec{c}$ $\Rightarrow |\vec{a} \times \vec{b}| = |\vec{c}|$ $= |\vec{\mathbf{a}}||\vec{\mathbf{b}}| \cdot \sin 90^\circ = |\vec{\mathbf{c}}|$ $\Rightarrow |\vec{a}||\vec{b}| = |\vec{c}|$...(i) Also, $\vec{\mathbf{b}} \times \vec{\mathbf{c}} = |\vec{\mathbf{a}}|$ $|\vec{\mathbf{b}}||\vec{\mathbf{c}}| \cdot \sin 90^\circ = |\vec{\mathbf{a}}|$ $|\vec{\mathbf{b}}||\vec{\mathbf{c}}| = |\vec{\mathbf{a}}|$ (ii) From Eqs. (i) and (ii), we get $|\vec{\mathbf{b}}|^2 |\vec{\mathbf{c}}| = |\vec{\mathbf{c}}|$ $\therefore \left| \vec{\mathbf{b}} \right|^2 = 1 \ (\because \left| \vec{\mathbf{c}} \right| \neq 0)$ $\Rightarrow |\vec{\mathbf{b}}| = 1$ \Rightarrow $|\vec{a}| = |\vec{c}|$ (a) $\vec{\mathbf{a}} \times \vec{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 1 & -1 \\ 1 & -1 & -1 \end{vmatrix}$ $= \hat{\mathbf{i}}(-1-1) - \hat{\mathbf{j}}(0+1) + \hat{\mathbf{k}}(0-1)$ $= -2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ Given. $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ $\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) + \vec{a} \times \vec{c} = \vec{0}$ $\Rightarrow (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} = -\vec{a} \times \vec{c}$ $\Rightarrow 3\vec{a} - 2\vec{b} = -\vec{a} \times \vec{c}$ $\Rightarrow \vec{\mathbf{b}} = \frac{3\vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{c}}}{2}$ $\Rightarrow \vec{\mathbf{b}} = \frac{3\hat{\mathbf{j}} - 3\hat{\mathbf{k}} - 2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}}{2}$ $=\frac{-2\hat{\mathbf{i}}+2\hat{\mathbf{j}}-4\hat{\mathbf{k}}}{2}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}-2\hat{\mathbf{k}}$ 3 **(b)** Given $\vec{a} + \vec{b} = -\vec{c}$ \Rightarrow $|\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2 |\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta == |\vec{\mathbf{c}}|^2$ $\Rightarrow 9 + 25 + 2 \cdot 3 \cdot 5 \cos \theta = 49$ $\Rightarrow \cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}$ 4 (a) $3\vec{\mathbf{p}} + \vec{\mathbf{q}} - 2\vec{\mathbf{r}} = 3(\hat{\mathbf{i}} + \hat{\mathbf{j}}) + (4\hat{\mathbf{k}} - \hat{\mathbf{j}}) - 2(\hat{\mathbf{i}} + \hat{\mathbf{k}})$ $=\hat{\mathbf{i}}+2\hat{\mathbf{j}}+2\hat{\mathbf{k}}$ \therefore Unit vector in the direction of $3\vec{\mathbf{p}} + \vec{\mathbf{q}} - 2\vec{\mathbf{r}}$ $=\frac{1}{2}(\hat{\mathbf{i}}+2\hat{\mathbf{j}}+2\hat{\mathbf{k}})$ 5 (c) Solving the two equations for \vec{X} and \vec{Y} , we get

 $\Rightarrow \left| \overrightarrow{AC} \right|^2 = 80 + 16 \times 4 \times \frac{1}{2} = 112$ \Rightarrow $|\overrightarrow{AC}| = 4\sqrt{7}$ Other diagonal is $|\vec{\mathbf{BD}} = |\vec{\mathbf{a}} - \vec{\mathbf{b}}|$ $\Rightarrow \left| \overrightarrow{\mathbf{BD}} \right|^2 = |2\overrightarrow{\alpha} - 4\overrightarrow{\beta}|^2$ $=4|\vec{\alpha}|^2+16|\vec{\beta}|^2-16|\vec{\alpha}||\vec{\beta}|\cos\frac{\pi}{3}$ $= 64 + 16 - 16 \times 4 \times \frac{1}{2} = 48$ \Rightarrow | $\overrightarrow{\mathbf{BD}} = \sqrt{48} = 4\sqrt{3}$ 62 (c) Given that, $|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}|$ Now, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} - \vec{b} \vec{a} - \vec{b} \vec{b}$ $= 0 (: |\vec{\mathbf{a}}| = |\vec{\mathbf{b}}|)$ 63 (a) We have, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ $\Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0$ and $\vec{a} \times (\vec{b} - \vec{c}) = 0$ \Rightarrow $(\vec{b} - \vec{c} = 0 \text{ or}, \vec{b} - \vec{c} \perp \vec{a}) \text{ and } (\vec{b} - \vec{c})$ $= 0 \text{ or, } \vec{b} - \vec{c} ||\vec{a})$ $\Rightarrow \vec{b} - \vec{c} = 0 \Rightarrow \vec{b} = \vec{c}$ 67 (a) We know that, any vector \vec{a} can be uniquely expressed in terms of three non-coplanar vectors as $\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ multiply in succession by î, ĵ and **ĥ**, we get $x = \vec{\mathbf{a}} \cdot \hat{\mathbf{i}}, y = \vec{\mathbf{a}} \cdot \vec{\mathbf{j}}, z = \vec{\mathbf{a}} \cdot \hat{\mathbf{k}}$ $\therefore (\vec{\mathbf{a}} \cdot \hat{\mathbf{i}})\hat{\mathbf{i}} + (\vec{\mathbf{a}} \cdot \hat{\mathbf{j}})\hat{\mathbf{j}} + (\vec{\mathbf{a}} \cdot \hat{\mathbf{k}})\hat{\mathbf{k}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} = \vec{\mathbf{a}}$ 69 **(b)** Let $\vec{\mathbf{b}} = \hat{\mathbf{i}}$ and $\vec{\mathbf{c}} = \hat{\mathbf{j}}$ $|\mathbf{i}\mathbf{b} \times \mathbf{i}\mathbf{c}| = |\mathbf{k}| = 1$ Let $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ Now, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{a}} \,\hat{\mathbf{i}} = a_1, \vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{a}} \cdot \hat{\mathbf{j}} = a_2$ and $\vec{\mathbf{a}} \cdot \frac{\vec{\mathbf{b}} \times \vec{\mathbf{c}}}{|\vec{\mathbf{b}} \times \vec{\mathbf{c}}|} = \vec{\mathbf{a}} \cdot \hat{\mathbf{k}} = a_3$ $\therefore \left(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}\right) + \vec{\mathbf{b}} + \left(\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}\right)\vec{\mathbf{c}} + \frac{\vec{\mathbf{a}} \cdot \left(\vec{\mathbf{b}} \times \vec{\mathbf{c}}\right)}{\left|\vec{\mathbf{b}} \times \vec{\mathbf{c}}\right|} \cdot \left(\vec{\mathbf{b}} \times \vec{\mathbf{c}}\right)$ $= a_1 \vec{\mathbf{b}} + a_2 \vec{\mathbf{c}} + a_3 (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ $= a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}} = \vec{\mathbf{a}}$ 70 **(c)** Let the unit vector $\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}}{\sqrt{2}}$ is perpendicular to $\hat{\mathbf{i}}-\hat{\mathbf{j}}$, then we get $\frac{(\hat{\mathbf{i}} + \hat{\mathbf{j}}) \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}})}{\sqrt{2}} = \frac{1 - 1}{\sqrt{2}} = 0$ $\therefore \frac{\hat{i}+\hat{j}}{\sqrt{2}}$ is the required unit vector. 71 (d)

Let the unit vector be $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ Since, $\vec{\mathbf{r}} \cdot (3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 0$ and $\vec{\mathbf{r}} \cdot (2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ $4\mathbf{k}=0$ \Rightarrow 3x + y + 2z = 0 and 2x - 2y + 4z = 0 On solving, we get x = 1, y = -1 and z = -1 $\therefore \text{ Required unit vector} = \frac{\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{1^2 + 1^2 + 1^2}}$ $=\frac{\mathbf{i}-\mathbf{j}-\mathbf{\hat{k}}}{\sqrt{2}}$ 72 (d) The position vector of the vertices A, B, C of $\triangle ABC$ are $7\hat{i} + 10\hat{k}, -\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$ respectively. $\therefore \overrightarrow{\mathbf{AB}} = -\hat{\mathbf{i}} - \hat{\mathbf{j}} - 4\hat{\mathbf{k}}, \overrightarrow{\mathbf{BC}} = -3\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ And $\overrightarrow{\mathbf{CA}} = 4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ $\Rightarrow |\vec{\mathbf{AB}}| = \sqrt{(-1)^2 + (-1)^2 + (-4)^2} = \sqrt{18}$ $= 3\sqrt{2}$ $|\vec{\mathbf{BC}}| = \sqrt{(-3)^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$ and $|\vec{\mathbf{CA}}| = \sqrt{4^2 + (-2)^2 + (-4)^2} = \sqrt{36} = 6$ It is clear from these values that $|\overrightarrow{\mathbf{AB}}|^2 + |\overrightarrow{\mathbf{BC}}|^2 = |\overrightarrow{\mathbf{CA}}|^2$ Hence, $\triangle ABC$ is right angled and isosceles also. 74 **(b)** For collinearity, $\cos x \hat{\mathbf{i}} + \sin x \hat{\mathbf{j}} = \lambda (x \hat{\mathbf{i}} + \sin x \hat{\mathbf{j}})$ $\Rightarrow \cos x = x$ Let $f(x) = \cos x - x$ $\Rightarrow f'(x) = -\sin x - 1 < 0$ f(x) is decreasing function and for $x \ge \frac{\pi}{3}$, $f(x) < \frac{\pi}{3}$ 0 and for $\frac{\pi}{3} < x < \frac{\pi}{6}$, f(x) > 0. Hence, unique solution exist. 75 (d) Let the required unit vector be $\vec{\mathbf{r}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$ Then, $|\vec{\mathbf{r}}| = 1$ $\Rightarrow a^2 + b^2 = 1$...(i) Since, $\vec{\mathbf{r}}$ makes an angle of 45° with $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and an angle of 60° with $3\hat{i} - 4\hat{j}$, therefore $\cos\frac{\pi}{4} = \frac{\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}})}{|\vec{\mathbf{r}}||\hat{\mathbf{i}} + \hat{\mathbf{i}}|}$ and $\cos\frac{\pi}{3} = \frac{\vec{\mathbf{r}} \cdot (3\hat{\mathbf{i}} - 4\hat{\mathbf{j}})}{|\vec{\mathbf{r}}||3\hat{\mathbf{i}} - 4\hat{\mathbf{j}}|}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{a+b}{\sqrt{2}}$ and $\frac{1}{2} = \frac{3a - 4b}{5}$ $\Rightarrow a + b = 1$ and $3a - 4b = \frac{5}{2}$

 $\Rightarrow a = \frac{13}{14}, b = \frac{1}{14}$ $\therefore \vec{\mathbf{r}} = \frac{13}{14}\hat{\mathbf{i}} + \frac{1}{14}\hat{\mathbf{j}}$ 77 **(b)** Since, volume of parallelopiped = 34 $\therefore \begin{vmatrix} 4 & 5 & 1 \\ 0 & -1 & 1 \\ 3 & 9 & p \end{vmatrix} = 34$ $\Rightarrow 4(-p-9) - 5(-3) + 1(3) = 34$ $\Rightarrow -4p - 36 + 15 + 3 = 34$ $\Rightarrow 4p = -52$ $\Rightarrow p = -13$ 78 (d) $\frac{\left(\vec{\mathbf{a}}\times\vec{\mathbf{b}}\right)^2 + \left(\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}\right)^2}{2\vec{\mathbf{a}}^2\vec{\mathbf{b}}^2} = \frac{\vec{\mathbf{a}}^2\vec{\mathbf{b}}^2\sin^2\theta + \vec{\mathbf{a}}^2\vec{\mathbf{b}}^2\cos^2\theta}{2\vec{\mathbf{a}}^2\vec{\mathbf{b}}^2}$ $=\frac{\cos^2\theta+\sin^2\theta}{2}=\frac{1}{2}$ 79 **(b)** Let two vectors are \vec{a} and \vec{b} Given, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{3} |\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|$ \Rightarrow $|\vec{a}| \cdot |\vec{b}| \sin \theta = \sqrt{3} |\vec{a}| |\vec{b}| \cos \theta$ $\Rightarrow \tan \theta = \sqrt{3}$ $\Rightarrow \theta = \frac{\pi}{2}$ 82 **(b)** We have, $\vec{A}C = \vec{a} + \vec{b}, \vec{A}D = 2\vec{b}$ В A \overrightarrow{a} In $\triangle ADE$, we have $\vec{A}D = \vec{D}E = \vec{A}E \Rightarrow 2\vec{b} - \vec{a} = \vec{A}E \Rightarrow \vec{E}A = \vec{a} - 2\vec{b}$ In $\triangle ACD$, we have $\vec{A}C + \vec{C}D = \vec{A}D \Rightarrow \vec{a} + \vec{b} + \vec{C}D = 2 \vec{b} \Rightarrow \vec{C}D$ $= \vec{h} - \vec{a}$ $\therefore \vec{F}A = -\vec{C}D = \vec{a} - \vec{b}$ Hence, $\vec{A}C + \vec{A}D + \vec{E}A + \vec{F}A$ $= \vec{a} + \vec{b} + 2\vec{b} + \vec{a} - 2\vec{b} + \vec{a} - \vec{b} = 3\vec{a} = 3\vec{A}B$ 83 (c) We have, $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \{(\vec{a} \times \vec{b}) \cdot \vec{c}\}\vec{b} - \{(\vec{a} \times \vec{b}) \cdot \vec{b}\}\vec{c}$ $= [\vec{a} \ \vec{b} \ \vec{c}]\vec{b}$

 $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ $= \{ (\vec{b} \times \vec{c}) \cdot \vec{a} \} \cdot \vec{c} - \{ (\vec{b} \times \vec{c}) \cdot \vec{c} \} \vec{a}$ = $\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} \vec{c}$ and, $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = \{(\vec{c} \times \vec{a}) \cdot \vec{b}\}\vec{a} - \{(\vec{c} \times \vec{a}) \cdot \vec{a}\}\vec{b}$ $= [\vec{c} \ \vec{a} \ \vec{b}] \vec{a}$ $\therefore [(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})(\vec{c} \times \vec{a})$ $\times (\vec{a} \times \vec{b})$ $= \left[\left[\vec{a} \ \vec{b} \ \vec{c} \right] \vec{a} \left[\vec{a} \ \vec{b} \ \vec{c} \right] \vec{b} \left[\vec{a} \ \vec{b} \ \vec{c} \right] \vec{c} \right]$ $= \left[\vec{a} \ \vec{b} \ \vec{c}\right]^3 \left[\vec{a} \ \vec{b} \ \vec{c}\right] = \left[\vec{a} \ \vec{b} \ \vec{c}\right]^4$ 84 (a) Given, $\vec{\mathbf{a}} = \lambda \hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 3\hat{\mathbf{k}}, \vec{\mathbf{b}} = \lambda \hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\lambda \hat{\mathbf{k}}$ $\therefore \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$ $=\frac{\lambda^2-7+6\lambda}{\sqrt{\lambda^2+49+9}\sqrt{\lambda^2+1+4\lambda^2}}<0$ $\Rightarrow (\lambda + 7)(\lambda - 1) < 0$ $\Rightarrow -7 < \lambda < 1$ 85 **(b)** We have, $\vec{r} = \lambda_1 \vec{r_1} + \lambda_2 \vec{r_2} + \lambda_3 \vec{r_3}$ $\Rightarrow 2\vec{a} - 3\vec{b} + 4\vec{c}$ $= (\lambda_1 - \lambda_2 + \lambda_3)\vec{a}$ $+(-\lambda_1+\lambda_2-\lambda_3)\vec{b}$ $+(\lambda_1+\lambda_2+\lambda_3)\vec{c}$ $\Rightarrow \lambda_1 - \lambda_2 + \lambda_3 = 2, -\lambda_1 + \lambda_2 - \lambda_3$ =-3, $\lambda_1 + \lambda_2 + \lambda_3 = 4$ $[: \vec{a}, \vec{b}, \vec{c} \text{ are non} - \text{coplanar}]$ $\Rightarrow \lambda_1 = \frac{7}{2}, \lambda_2 = 1, \lambda_3 = -\frac{1}{2}$ 86 (c) We have, $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$ $\Rightarrow \vec{D}A \cdot \vec{B}C = 0$ and $\vec{D}B \cdot \vec{A}C = 0$ \Rightarrow AD \perp BC and DB \perp AC \Rightarrow *D* is the orthocenter of $\triangle ABD$ 87 (a) Given $\overrightarrow{\mathbf{OA}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$ $\overrightarrow{\mathbf{OB}} = -3\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ $\therefore \overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{OB}} - \overrightarrow{\mathbf{OA}} = -7\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $\therefore \ \overrightarrow{\mathbf{DE}} = -\overrightarrow{\mathbf{AB}} = 7\widehat{\mathbf{i}} + 2\widehat{\mathbf{j}} - 2\widehat{\mathbf{k}}$ 88 (c) Given, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|$ \Rightarrow $|\vec{a}| \cdot |\vec{b}| \sin \theta = |\vec{a}| |\vec{b}| \cos \theta$ $\Rightarrow \sin \theta = \cos \theta \Rightarrow \theta = \frac{\pi}{4}$

89 (a) Let the line joining the points with position vectors $-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and $7\hat{\mathbf{i}} - \hat{\mathbf{k}}$ be Divide in the ratio λ :1 by $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\therefore \frac{\lambda (7\hat{\mathbf{i}} - \hat{\mathbf{k}}) + (-2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}})}{\lambda + 1} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\Rightarrow (7\lambda - 2)\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + (5 - \lambda)\hat{\mathbf{k}}$ $= (\lambda + 1)\hat{\mathbf{i}} + 2(\lambda + 1)\hat{\mathbf{j}} + 3(\lambda$ $(+1)\hat{k}$ On equating the coefficient of \hat{i} , we get $7\lambda - 2 = \lambda + 1 \Longrightarrow \lambda = 2$ Hence, required ratio = λ : 1 = 2: 1 91 (a) Force $\vec{\mathbf{F}} = \overline{\mathbf{AB}} = (3-1)\hat{\mathbf{i}} + (-4-2)\hat{\mathbf{j}} + (2+3)\hat{\mathbf{k}}$ $= 2\hat{i} - 6\hat{j} + 5\hat{k}$ Moment of force \vec{F} with respect to $M = \overline{MA} \times \vec{F}$ $: \overrightarrow{\mathbf{MA}} = (1+2)\mathbf{\hat{i}} + (2-4)\mathbf{\hat{j}} + (-3+6)\mathbf{\hat{k}}$ $= 3\hat{i} - 2\hat{j} + 3\hat{k}$ Now, $\overrightarrow{\mathbf{MA}} \times \vec{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & -2 & 3 \\ 2 & 6 & 5 \end{vmatrix}$ $=\hat{i}(-10+18)+\hat{j}(6-15)+\hat{k}(-18+4)$ $= 8\hat{i} - 9\hat{j} - 14\hat{k}$ 92 (d) $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \frac{5\pi}{6} = -\frac{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sqrt{3}}{2}$ $\therefore -\frac{6}{\sqrt{3}} = -\frac{|\vec{\mathbf{a}}||\vec{\mathbf{b}}|\sqrt{3}}{2|\vec{\mathbf{b}}|} \quad \text{(given condition)}$ $\Rightarrow |\vec{\mathbf{a}}| = \frac{6 \times 2}{2} = 4$ 93 (c) Equation of straight line passing through the points $a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ and $b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}}$ is $a_1(1-t)\hat{\mathbf{i}} + a_2(1-t)\hat{\mathbf{j}} + a_3(1-t)\hat{\mathbf{k}}$ $+(b_1\hat{i}+b_2\hat{j}+b_3\hat{k})t$ 95 (d) $(3\vec{\mathbf{a}}+\vec{\mathbf{b}})\cdot(\vec{\mathbf{a}}-4\vec{\mathbf{b}})=3|\vec{\mathbf{a}}|^2-11\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}-4|\vec{\mathbf{b}}|^2$ $= 3 \cdot 36 - 11 \cdot 6 \cdot 8 \cos \pi - 4 \cdot 64 > 0$ \therefore Angle between \vec{a} and \vec{b} is acute angle. ∴ The longer diagonal is given by $\vec{\alpha} = (3\vec{a} + \vec{b}) + (\vec{a} - 4\vec{b}) = 4\vec{a} - 3\vec{b}$ Now, $|\vec{\alpha}|^2 = |4\vec{a} - 3\vec{b}|^2$ $= 16|\vec{\mathbf{a}}|^2 + 9|\vec{\mathbf{b}}|^2 - 24\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}$ $= 16 \cdot 36 + 9 \cdot 64 - 24 \cdot 6 \cdot 8 \cos \pi$ $= 16 \times 144$ $|4\vec{a} - 3\vec{b}| = 48$ 96 **(b)**

Given, $\vec{a} + \vec{b} = -\vec{c}$ $\Rightarrow \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = \vec{0} \Rightarrow \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ Similarly, $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$ Hence, $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ 97 (d) $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos 90^\circ$ $25 + 25 - 2 \times 0 = 50$ $\Rightarrow \left| \vec{\mathbf{a}} - \vec{\mathbf{b}} \right| = 5\sqrt{2}$ 98 (d) Given vectors are non-coplanar, if $\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0$ $|1 \ c \ c^{-1}|$ Now, $\begin{vmatrix} a \ a^{2} \ 1 + a^{3} \\ b \ b^{2} \ 1 + b^{3} \\ c \ c^{2} \ 1 + c^{3} \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} a \ a^{2} \ 1 \\ b \ b^{2} \ 1 \\ c \ c^{2} \ 1 \end{vmatrix} + \begin{vmatrix} a \ a^{2} \ a^{3} \\ b \ b^{2} \ b^{3} \\ c \ c^{2} \ c^{3} \end{vmatrix} = 0$ $\Rightarrow \Delta(1 + abc) = 0 \Rightarrow abc = -1$ 99 (a) Let $\vec{\mathbf{A}} = \vec{\mathbf{a}} + \vec{\mathbf{b}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) + (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$ $= 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ and $\vec{\mathbf{B}} = \vec{\mathbf{b}} + \vec{\mathbf{c}} = (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) + (7\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 11\hat{\mathbf{k}})$ $= 8\hat{\mathbf{i}} + 12\hat{\mathbf{j}} + 16\hat{\mathbf{k}}$ \therefore Area of parallelogram $=\frac{1}{2}||\vec{\mathbf{A}}\times\vec{\mathbf{B}}||$ $=\frac{1}{2} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 4 & 6 \\ 8 & 12 & 16 \end{vmatrix}$ $=\frac{1}{2}|-8\hat{i}+16\hat{j}-8\hat{k}|$ $=\sqrt{(-4)^2+(8)^2+(-4)^2}$ $=4\sqrt{6}$ sq units 10 100 (a) Clearly, \vec{c} is a unit vector parallel to the vector $\vec{a} \times (\vec{a} \times \vec{b})$ i. e. $\vec{c} = \pm \frac{\vec{a} \times (\vec{a} \times \vec{b})}{|\vec{a} \times (\vec{a} \times \vec{b})|}$ We have, $\vec{a} = \hat{\imath} + \hat{\jmath} - \hat{k}$ and $\vec{b} = \hat{\imath} - \hat{\jmath} + \hat{k}$ $\therefore \vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}$ $\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) = -\vec{a} - 3\vec{b} = -4\hat{\iota} + 2\hat{\iota} - 2\hat{k}$ $\therefore \vec{c} = \pm \frac{\left(-4\hat{\imath} + 2\hat{\jmath} - 2\hat{k}\right)}{\sqrt{16 + 4 + 4}} = \pm \frac{1}{\sqrt{6}} \left(-2\hat{\imath} + \hat{\jmath} - \hat{k}\right)$

102 (b)
Given,
$$\vec{a} + 2\vec{b} + 4\vec{c} = \vec{0}$$

Now, $\vec{a} \times (\vec{a} + 2\vec{b} + 4\vec{c}) = \vec{0}$
 $\Rightarrow 2(\vec{a} \times \vec{b}) + 4(\vec{a} \times \vec{c}) = \vec{0}$
 $\Rightarrow (\vec{a} \times \vec{b}) = (\vec{c} \times \vec{a})$
 $\Rightarrow \vec{b} \times \vec{a} + 4(\vec{b} \times \vec{c}) = \vec{0}$
 $\Rightarrow \vec{b} \times \vec{a} + 4(\vec{b} \times \vec{c}) = \vec{0}$
 $\Rightarrow \vec{b} \times \vec{c} = (\vec{a} \times \vec{b})/4 \dots$ (ii)
From Eqs. (i) and (ii)
 $(\vec{a} \times \vec{b})/4 = \vec{b} \times \vec{c} = (\vec{c} \times \vec{a})/2 = \vec{p}$
 $\therefore \vec{a} \times \vec{b} = 4\vec{p}, \vec{b} \times \vec{c} = \vec{p}$
and $\vec{c} \times \vec{a} = 2\vec{p}$
 $\therefore (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = 4\vec{p} + \vec{p} + 2\vec{p}$
 $= 7\vec{p} = 7(\vec{b} \times \vec{c})$
 $\therefore \lambda = 7$
103 (b)
 $\therefore \vec{F}_1 = \frac{5(6\vec{i} + 2\vec{j} + 3\vec{k})}{7}, \vec{F}_2 = \frac{3(3\vec{i} - 2\vec{j} + 6\vec{k})}{7}$
And $\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$
 $= \frac{1}{7}(30\vec{i} + 10\vec{j} + 15\vec{k} + 9\vec{i} - 6\vec{j} + 18\vec{k} + 2\vec{i} - 3\vec{j})$
 $- 6\vec{k}$)
 $= \frac{1}{7}(41\vec{i} + \vec{j} + 27\vec{k})$
and $\vec{AB} = 5\vec{i} - \vec{j} + \vec{k} - 2\vec{i} + \vec{j} + 3\vec{k}$
 $= 3\vec{i} + 4\vec{k}$
 \therefore Work done $= \frac{1}{7}[41\vec{i} + \vec{j} + 27\vec{k}] \cdot [3\vec{i} + 4\vec{k}]$
 $= \frac{1}{7}[123 + 108] = 33$ unit
104 (b)
Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Then,
 $\vec{i} \times (\vec{r} \times i) + \vec{j} \times (\vec{r} \times j) + \vec{k} \times (\vec{r} \times \vec{k})$
 $= (\vec{i} \cdot i)\vec{r} - (\vec{i} \cdot \vec{r})\vec{k} + (\vec{r} \cdot \vec{k}) = -(\vec{k} \cdot \vec{r})\vec{k}$
 $= \vec{3} - (x\vec{i} + y\vec{j} + z\vec{k})$. Then,
 $\vec{i} \times (\vec{r} \times i) + \vec{j} \times (\vec{r} \times j) + \vec{k} \times (\vec{r} \times \vec{k})$
 $= (\vec{i} \cdot i)\vec{r} - (x\vec{i} + y\vec{j} + z\vec{k})$. Then,
 $\vec{i} \times (\vec{r} \times i) + \vec{j} \times (\vec{r} \times j) + \vec{k} \times (\vec{r} \times \vec{k})$
 $= (\vec{i} \cdot i)\vec{r} - (\vec{i} \cdot \vec{r})\vec{k} = 3\vec{r} - \vec{r} = 2\vec{r}$
105 (b)
The equation of the plane through the line of intersection of given plane is
 $(\vec{r} \cdot \vec{a} - \lambda) + k(\vec{r} \cdot \vec{b} - \mu) = 0$
or $\vec{r} \cdot (\vec{a} + k\vec{b}) = \lambda + k\mu \dots (i)$
this passes through the origin, therefore
 $0 \cdot (\vec{a} + k\vec{b}) = \lambda + k\mu$
 $\Rightarrow k = -\frac{\lambda}{\mu}$

On putting the value of *k* in Eq. (i), we get the 10 equation of the required plane as $\vec{\mathbf{r}} \cdot (\mu \vec{\mathbf{a}} - \lambda \vec{\mathbf{b}}) = 0$ $0 \Longrightarrow \vec{\mathbf{r}} \cdot (\lambda \vec{\mathbf{b}} - \mu \vec{\mathbf{a}}) = 0$ 106 (c) By the properties of scalar triple product $\begin{bmatrix} \vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a} \end{bmatrix} = 2\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ $\therefore k = 2$ 107 (c) $\vec{a} \cdot \vec{a} = 1 + 1 + 1 = 3$ Using, $\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{a}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{a}})\vec{\mathbf{b}}$ $\therefore (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (\hat{\mathbf{j}} - \hat{\mathbf{k}}) = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) - 3\vec{\mathbf{b}}$ $\Rightarrow -2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} - 3\vec{\mathbf{b}}$ $\Rightarrow \vec{\mathbf{b}} = \hat{\mathbf{i}}$ 108 (a) Vector perpendicular to face *OAB* is $\vec{\mathbf{n}}_1$ $= \overrightarrow{\mathbf{OA}} \times \overrightarrow{\mathbf{OB}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix}$ $=5\hat{i}-\hat{j}-3\hat{k}$ Vector perpendicular to face *ABC* is \vec{n}_2 $= \overrightarrow{\mathbf{AB}} \times \overrightarrow{\mathbf{AC}} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \end{vmatrix}$ 11 $=\hat{\mathbf{i}}-5\hat{\mathbf{j}}-3\hat{\mathbf{k}}$ $\therefore \cos \theta = \frac{\vec{\mathbf{n}}_1 \cdot \vec{\mathbf{n}}_2}{|\vec{\mathbf{n}}_1||\vec{\mathbf{n}}_2|}$ $=\frac{5 \times 1 + (-1) \times (-5) + (-3) \times (-3)}{\sqrt{5^2 + (-1)^2 + (-3)^2} \sqrt{1^2 + (-5)^2 + (-3)^2}}$ 11 $=\frac{5+5+9}{\sqrt{35}\sqrt{35}}=\frac{19}{35}$ $\Rightarrow \theta = \cos^{-1}\left(\frac{19}{35}\right)$ 11

109 (a)
Given,
$$2\vec{a} + 3\vec{b} - 5\vec{c} = \vec{0}$$

 $\Rightarrow \frac{2\vec{a} + 3\vec{b}}{5} = \vec{c}$
 $\Rightarrow \frac{2\vec{a} + 3\vec{b}}{2 + 3} = \vec{c}$
 $\Rightarrow \frac{\vec{a} + \frac{2}{2}\vec{b}}{1 + \frac{3}{2}} = \vec{c}$ (*i*)
Let \vec{c} divides \vec{AB} in the ratio λ :1
Then, $\vec{c} \frac{\vec{a} + \lambda \vec{b}}{1 + \lambda}$ (*ii*)
On comparing Eqs.(*i*) and (*ii*), we get
 $\lambda = \frac{3}{2}$
 \therefore Required ratio is 3:2 internally.
 $\vec{A} = \frac{3}{2}$
 \therefore Required ratio is 3:2 internally.
 $\vec{A} = \frac{3}{2}$
 \therefore Required ratio is $3:2$ internally.
 $\vec{A} = \frac{3}{2}$
 \therefore Required ratio is $3:2$ internally.
 $\vec{A} = 1 + j + k$, $\vec{OB} = 5i + 3j - 3k$ and
 $\vec{OC} = 2i + 5j + 9k$
 $\therefore \vec{AB} = 4i + 2j - 4k$, $\vec{BC} = -3i + 2j + 12k$ and
 $\vec{AC} = i + 4j + 8k$
 $\Rightarrow AB = 6, BC = \sqrt{157}, AC = 9$
 \therefore Perimeter of $\triangle ABC = 15 + \sqrt{157}$
111 (c)
Given, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$
 $\therefore |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2[\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = 0$
 $\Rightarrow 25 + 16 + 9 + 2[\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = 0$
 $\Rightarrow 2[\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = -50$
 $\Rightarrow [\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = -25$
113 (d)
It is given that $\vec{a} + \vec{b}$ is collinear with \vec{c} and $\vec{b} + \vec{c}$
is collinear with \vec{a}
 $\therefore \vec{a} + \vec{b} = \lambda \vec{c}$ and $\vec{b} + \vec{c} = \mu \vec{a}$ for some scalars λ
and μ
 $\Rightarrow \vec{b} + \vec{c} = \mu (\lambda \vec{c} - \vec{b})$ [On eliminating \vec{a}]
 $\Rightarrow (\mu + 1)\vec{b} + (1 - \mu \lambda)\vec{c} = \vec{0}$
 $\Rightarrow \mu = -1$ and $\lambda = -1$
 $\therefore \vec{a} + \vec{b} + \vec{c} = 0$ [Putting $\lambda = -1$ in $\vec{a} + \vec{b} = \lambda \vec{c}$]
114 (b)

Let $\vec{\mathbf{r}} = l(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + m(\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + n(\vec{\mathbf{a}} \times \vec{\mathbf{b}})$ $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = l [\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}]$ $\Rightarrow l = 1$ Similarly, m = 2, n = 3115 **(b)** Given, $|\vec{x}| = |\vec{y}| = |\vec{z}| = 2$ and $\vec{\mathbf{x}} = -\vec{\mathbf{y}} - \vec{\mathbf{z}}$ $\implies |\vec{\mathbf{x}}|^2 = |\vec{\mathbf{y}}|^2 + |\vec{\mathbf{z}}|^2 + 2|\vec{\mathbf{y}}||\vec{\mathbf{z}}|\cos\theta$ $\Rightarrow 4 = 4 + 4 + 2 \times 2 \times 2 \cos \theta$ $\Rightarrow \cos \theta = -\frac{1}{2}$ $\Rightarrow \theta = 120^{\circ}$ Now, $\csc^2\theta + \cot^2\theta = \csc^2 120^\circ + \cot^2 120^\circ$ $=\left(\frac{2}{\sqrt{3}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right)^2 = \frac{5}{3}$ 116 **(b)** Given, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = -|\vec{\mathbf{a}}||\vec{\mathbf{b}}|$ $\Rightarrow |\vec{a}||\vec{b}|\cos\theta = -|\vec{a}||\vec{b}|$ $\Rightarrow \cos \theta = -1$ $\Rightarrow \theta = 180^{\circ}$ 117 (b) Let $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ Given. $\vec{\mathbf{r}} \times \vec{\mathbf{b}} = \vec{\mathbf{c}} \times \vec{\mathbf{b}}$ \Rightarrow $(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) \times (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $= (4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}}) \times (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $\Rightarrow (y-z)\hat{\mathbf{i}} - (x-z)\hat{\mathbf{j}} + (x-y)\hat{\mathbf{k}}$ $= -10\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ \Rightarrow y - z = -10, -(x - z) = 3, x - y = 7 $\Rightarrow y - z = -10, -x + z = 3, x - y = 7$ (i) and $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0$ \Rightarrow $(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{k}})$ $\Rightarrow 2x + z = 0$ (ii) From Eqs. (i) and (ii), we get x = -1, y = -8, z = 2 $\therefore \vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = (-\hat{\mathbf{i}} - 8\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ = -1 - 8 + 2= -7118 (d) Since, given vectors are coplanar so it can be written as $\vec{\mathbf{a}} + \lambda \, \vec{\mathbf{b}} + 3\vec{\mathbf{c}} = x(-2\vec{\mathbf{a}} + 3\vec{\mathbf{b}} - 4\vec{\mathbf{c}})$ $+ \gamma (\vec{a} - 3\vec{b} + 5\vec{c})$ On comparing the coefficient of \vec{a} , \vec{b} and \vec{c} on both sides, we get -2x + y = 1; $3x - 3y = \lambda$ and -4x + 5y = 3On solving, we get $x = -\frac{1}{3}, y = \frac{1}{3}, \lambda = -2$

119 (d) Since, $\vec{A} + \vec{B}$ is collinear to \vec{C} and $\vec{B} + \vec{C}$ is collinear to **A** $\therefore \vec{\mathbf{A}} + \vec{\mathbf{B}} = \lambda \vec{\mathbf{C}}$ and $\vec{\mathbf{B}} + \vec{\mathbf{C}} = \mathbf{u} \vec{\mathbf{A}}$ Where λ and μ are scalars. $\Rightarrow \vec{\mathbf{A}} + \vec{\mathbf{B}} + \vec{\mathbf{C}} = (\lambda + 1)\vec{\mathbf{C}}$ and $\vec{\mathbf{A}} + \vec{\mathbf{B}} + \vec{\mathbf{C}} = (\mu + 1)\vec{\mathbf{A}}$ $\Rightarrow (\lambda + 1)\vec{\mathbf{C}} = (\mu + 1)\vec{\mathbf{A}}$ If $\lambda \neq -1$, then $\vec{\mathbf{C}} = \frac{\mu + 1}{\lambda + 1} \vec{\mathbf{A}}$ \Rightarrow \vec{C} and \vec{A} are collinear. This is a contradiction to the given condition. $\therefore \lambda = -1$ $\therefore \vec{A} + \vec{B} + \vec{C} = \vec{0}$ 120 (d) $|\vec{\mathbf{AB}}| = \sqrt{(7-1)^2 + (-4+6)^2 + (7-10)^2} = 7$ $|\overrightarrow{\mathbf{BC}}| = \sqrt{(1+1)^2 + (-6+3)^2 + (10-4)^2} = 7$ $\left| \overrightarrow{\mathbf{CD}} \right| = \sqrt{(-1-5)^2 + (-3+1)^2 + (4-5)^2}$ $= \sqrt{41}$ and $|\overrightarrow{\mathbf{DA}}| = \sqrt{(5-7)^2 + (-1+4)^2 + (5-7)^2} =$ $\sqrt{17}$ 121 (c) We have, $\left|\vec{a} + \vec{b}\right|^{2} + \left|\vec{a} - \vec{b}\right|^{2} = 2\left\{\left|\vec{a}\right|^{2} + \left|\vec{b}\right|^{2}\right\}$ $\Rightarrow 300 + |\vec{a} - \vec{b}|^2 = 2(49 + 121)$ $\Rightarrow |\vec{a} - \vec{b}| = 2\sqrt{10}$ 123 (a) We know, if θ is the angle between \vec{a} and \vec{b} , then $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}||\vec{\mathbf{b}}|}$ $=\frac{\left(2\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}}\right)\cdot(6\hat{\mathbf{i}}-3\hat{\mathbf{j}}+2\hat{\mathbf{k}})}{\sqrt{2^{2}+2^{2}+(-1)^{2}}\sqrt{6^{3}+(-3)^{2}+2^{2}}}$ $=\frac{12-6-2}{\sqrt{4+4+1}\sqrt{36+9+4}}$ $=\frac{4}{\sqrt{9}\sqrt{49}}=\frac{4}{21}$

124 (d) If $\vec{a} + 2\vec{b}$ is collinear with \vec{c} , then $\vec{\mathbf{a}} + 2\vec{\mathbf{b}} = t\vec{\mathbf{c}}$ (i) Also, if $\vec{\mathbf{b}} + 3\vec{\mathbf{c}}$ is collinear with $\vec{\mathbf{a}}$ then $\vec{\mathbf{b}} + 3\vec{\mathbf{c}} = \lambda\vec{\mathbf{a}}$ $\Rightarrow \vec{\mathbf{b}} = \lambda \vec{\mathbf{a}} - 3\vec{\mathbf{c}}$...(ii) On putting the value of $\vec{\mathbf{b}}$ in Eq. (i), we get $\vec{\mathbf{a}} + 2(\lambda \vec{\mathbf{a}} - 3\vec{\mathbf{c}}) = t\vec{\mathbf{c}}$ $\Rightarrow (\vec{\mathbf{a}} - 6\vec{\mathbf{c}}) = t\vec{\mathbf{c}} - 2\lambda \vec{\mathbf{a}}$ On comparing, we get $1 = -2\lambda$ and -6 = t $\Rightarrow \lambda = -\frac{1}{2} \text{ and } t = -6$ From Eq. (i) $\vec{a} + 2\vec{b} = -6\vec{c}$ $\Rightarrow \vec{a} + 2\vec{b} + 6\vec{c} = \vec{0}$ 125 (a) We have, $A\vec{B} = -\hat{\imath} - \hat{\imath} - 4\hat{k}, B\vec{C} = -3\hat{\imath} + 3\hat{\imath}$ and, $C\vec{A} = 4\hat{\imath} - 2\hat{\imath} + 4\hat{k}$ $\therefore |A\vec{B}| = |B\vec{C}| = 3\sqrt{2} \text{ and } |C\vec{A}| = 6$ Clearly, $\left|A\vec{B}\right|^2 + \left|B\vec{C}\right|^2 = \left|A\vec{C}\right|^2$ Hence, the triangle is right angled isosceles triangle 127 (c) Since, three vectors $(\vec{a} + 2\vec{b} + 3\vec{c}), (\lambda \vec{b} + 3\vec{c})$ 4**c** and $(2\lambda - 1)$ **c** are non-coplanar $\therefore \begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & 2\lambda - 1 \end{vmatrix} \neq 0$ $\Rightarrow (2\lambda - 1)(\lambda) \neq 0$ $\Rightarrow \lambda \neq 0, \frac{1}{2}$ Hence, these three vectors are non-coplanar for all except two values of λ . 128 (a) Given $\overrightarrow{\mathbf{PR}} = 5\overrightarrow{\mathbf{PQ}}$ It means *R* divides *PQ* extrenally in the ratio 5:4 \therefore Position vector of $R \frac{5\mathbf{b} - 4\mathbf{a}}{5 - 4}$ $= 5\mathbf{\vec{b}} - 4\mathbf{\vec{a}}$ 130 (a)

Let $\overrightarrow{\mathbf{OA}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{OB}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ Let point $C(x_1, y_1, z_1)$ divide *AB* in the ratio 1:2 $\therefore x_1 = \frac{2+2}{1+2} = \frac{4}{3}, \quad y_1 = \frac{-1+4}{1+2} = \frac{3}{3} = 1$ and $z_1 = \frac{4+6}{1+2} = \frac{10}{3}$ Again let point $D(x_2, y_2, z_2)$ divides *AB* in the ratio 2:1, then

 $x_2 = \frac{4+1}{2+1} = \frac{5}{3}, \ y_2 = \frac{-2+2}{2+1} = 0$ and $z_2 = \frac{8+3}{2+1} = \frac{11}{3}$ So, position vector of the points of trisection of AB are position vector of $C = -\frac{4}{3}\hat{\mathbf{i}} + \hat{\mathbf{j}} + \frac{10}{3}\hat{\mathbf{k}}$ and position vector of $D = \frac{5}{2}\hat{i} + \frac{11}{2}\hat{k}$ 131 (a) Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors A, B and C respectively. Then, the position vector of *G* is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$ and the position vectors of *D*, *E* and *F* are $\frac{\vec{b}+\vec{c}}{2}$, $\frac{\vec{c}+\vec{a}}{2}$ and $\frac{\vec{a}+\vec{b}}{2}$ respectively $\therefore \vec{G}D + \vec{G}E + \vec{G}F$ $= \left(\frac{\vec{b} + \vec{c}}{2} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) + \left(\frac{\vec{c} + \vec{a}}{2} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$ $+\left(\frac{\vec{a}+\vec{b}}{2}-\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)$ $= (\vec{a} + \vec{b} + \vec{c}) - (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$ 132 (a) Let $\overrightarrow{\mathbf{OA}} = \vec{a}$, $\overrightarrow{\mathbf{OB}} = \vec{b}$ and $\overrightarrow{\mathbf{OC}} = \vec{c}$, then $\overrightarrow{OD} = \frac{\overrightarrow{a} + \overrightarrow{b}}{2}, \overrightarrow{OE} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2}, \overrightarrow{OF} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2}$ Now, $\overrightarrow{AF} = \frac{1}{2} (\vec{b} + \vec{c}) - \vec{a}$, $\overrightarrow{BE} = \frac{1}{2} (\vec{a} + \vec{c}) - \vec{b}$ and $\overrightarrow{\textbf{CD}} = \frac{1}{2} (\vec{\textbf{a}} + \vec{\textbf{b}}) - \vec{\textbf{c}}$ $\therefore \overrightarrow{\mathbf{AF}} + \overrightarrow{\mathbf{BE}} = \frac{1}{2} (\overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}) - \overrightarrow{\mathbf{a}} + \frac{1}{2} (\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{c}}) - \overrightarrow{\mathbf{b}}$ $= \vec{c} - \frac{1}{2} (\vec{a} + \vec{b}) = \overrightarrow{DC}$ 133 (c) We have, $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$ So, vectors \vec{a} , \vec{b} and $\vec{a} + \vec{b}$ form a right angled triangle $\overrightarrow{a} + \overrightarrow{b}$ **≯** h

 $\tan 30^\circ = \frac{|\vec{b}|}{|\vec{a}|} \Rightarrow |\vec{a}| = 3|\vec{b}|$ $\frac{\left| (\vec{\mathbf{a}} - \vec{\mathbf{c}}) \times (\vec{\mathbf{b}} - \vec{\mathbf{a}}) \right|}{(\vec{\mathbf{c}} - \vec{\mathbf{a}}) \cdot (\vec{\mathbf{b}} - \vec{\mathbf{a}})} = \frac{\left| \overrightarrow{\mathbf{AC}} \times \overrightarrow{\mathbf{BA}} \right|}{\overrightarrow{\mathbf{AC}} \cdot \overrightarrow{\mathbf{BA}}}$ 134 (d) $= \frac{||\overrightarrow{\mathbf{AC}}||\overrightarrow{\mathbf{BA}}| \ln A\widehat{\mathbf{n}}|}{|\overrightarrow{\mathbf{AC}}||\overrightarrow{\mathbf{BA}}| \cos A} = \tan A$ We have, $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{b}} = \hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) + \hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{j}}) + \hat{\mathbf{k}}$ 141 (d) $\times (\vec{a} \times \hat{k}) \dots \dots (i)$ Let, $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ $\hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) = (\hat{\mathbf{i}} \cdot \hat{\mathbf{i}})\vec{\mathbf{a}} - (\hat{\mathbf{i}} \cdot \vec{\mathbf{a}})\hat{\mathbf{i}}$ Now, $: \vec{\mathbf{a}} \cdot \hat{\mathbf{i}} = 1 \implies a_1 = 1$ $= 1(\hat{i} + 2\hat{j} + 3\hat{k}) - (1)\hat{i}$ Since, $\vec{\mathbf{a}} \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}}) = 1$ $= 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\Rightarrow 2a_1 + a_2 = 1$ Similarly, $\hat{\mathbf{j}} \times (\mathbf{\vec{a}} \times \hat{\mathbf{j}}) = \hat{\mathbf{i}} + 3\hat{\mathbf{k}}$ $\implies a_2 = 1 - 2$ and $\mathbf{\hat{k}} \times (\mathbf{\vec{a}} \times \mathbf{\hat{k}}) = \mathbf{\hat{i}} + 2\mathbf{\hat{j}}$ $\Rightarrow a_2 = -1$ and $\vec{\mathbf{a}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 1$ ∴ From Eq. (i), $\Rightarrow a_1 + a_2 + 3a_3 = 1$ $\mathbf{\tilde{b}} = 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}} + \mathbf{\hat{i}} + 3\mathbf{\hat{k}} + \mathbf{\hat{i}} + 2\mathbf{\hat{j}}$ $\Rightarrow 1 - 1 + 3a_3 = 1$ $= 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ $\Rightarrow a_3 = \frac{1}{2}$ $\Rightarrow \left| \vec{\mathbf{b}} \right| = \sqrt{4 + 16 + 36} = 2\sqrt{14}$ 135 (a) $\therefore \vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \frac{1}{2}\hat{\mathbf{k}} = \frac{1}{2}(3\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}})$ The centroid of triangle $=\frac{\left(a\hat{\mathbf{i}}+b\hat{\mathbf{j}}+c\hat{\mathbf{k}}\right)+\left(b\hat{\mathbf{i}}+c\hat{\mathbf{j}}+a\hat{\mathbf{k}}\right)+\left(c\hat{\mathbf{i}}+a\hat{\mathbf{j}}+b\hat{\mathbf{k}}\right)}{3}\left|142 \text{ (c)}\right|^{3}$ Given, $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $=\frac{a+b+c}{3}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $\vec{\mathbf{c}} = x\,\hat{\mathbf{i}} + (x-2)\hat{\mathbf{j}} - \hat{\mathbf{k}}$ Since, \vec{c} lies in the plane of vectors \vec{a} and \vec{b} 136 (d) therefore \vec{a} , \vec{b} and \vec{c} are coplanar. Given, $|\vec{a} + \vec{b}| = 1$, $|\vec{a}| = |\vec{b}| = 1$ $\therefore \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & (x-2) & -1 \end{vmatrix} = 0$ $\Rightarrow |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}| = 1$ $\Rightarrow 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}| = -1 \dots (i)$ $\Rightarrow 1(1 - 2x + 4) - 1(-1 - 2x) + 1(x - 2 + x)$ Now, $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|$ = 0 $= 1^{2} + 1^{2} - (-1) = 3$ [from Eq. (i) $\Rightarrow 5 - 2x + 1 + 2x + 2x - 2 = 0$ \Rightarrow $|\vec{a} + \vec{b}| = \sqrt{3}$ $\Rightarrow x = -2$ 137 (a) 143 (d) Since, \vec{a} and \vec{b} are collinear vectors. Let $\vec{\mathbf{P}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}, \ \vec{\mathbf{Q}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}, \ \vec{\mathbf{R}} = 5\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{a}} = \lambda \vec{\mathbf{b}}$ and $\vec{\mathbf{S}} = -\hat{\mathbf{j}} + \hat{\mathbf{k}}$ $\Rightarrow \hat{\mathbf{i}} - \hat{\mathbf{j}} = \lambda (-2\hat{\mathbf{i}} + m\hat{\mathbf{j}})$ $\therefore \overrightarrow{\mathbf{PQ}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ $\Rightarrow 1 = -2\lambda, -1 = \lambda m$ $\Rightarrow |\overrightarrow{\mathbf{PQ}}| = \sqrt{6}$ $\Rightarrow \lambda = -\frac{1}{2}, m = -\frac{1}{\lambda}$ $\overrightarrow{\mathbf{QR}} = -2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ $\Rightarrow |\overrightarrow{\mathbf{QR}}| = \sqrt{12}$ $\Rightarrow m = 2$ and $\overrightarrow{\mathbf{RS}} = -6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ 138 (c) \Rightarrow $|\vec{RS}| = \sqrt{45}$ Since, *C* is the mid point of A(2, -1) and B(-4, 3). $\therefore \text{ Coordinates of } C \text{ is } \left(\frac{2-4}{2}, \frac{-1+3}{2}\right) = (-1, 1)$ and $\overrightarrow{\mathbf{SP}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}} \implies |\overrightarrow{\mathbf{SP}}| = 3$ Which are not satisfied the conditions of any of $\therefore \overrightarrow{\mathbf{OC}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}}$ the following. Trapezium, rectangle and 139 (c) parallelogram. According to the given conditions, we have 144 (c) \vec{a} . $\vec{b} > 0$ and \vec{b} . $\hat{j} < 0$ Clearly, $\Rightarrow 2x^2 - 3x + 1 > 0 \text{ and } x < 0$ Required vector = $|\vec{b}|\hat{a} = \frac{|\vec{b}|}{|\vec{a}|}\hat{a} = \frac{7}{3}(\hat{i} + 2\hat{j} + 2\hat{k})$ \Rightarrow (x < 1/2 or x > 1) and $x < 0 \Rightarrow x < 0$ 140 (d) 145 (a)

If *I* is incentre of $\triangle ABC$. Then, *I* is $\frac{a\vec{\mathbf{a}} + b\vec{\mathbf{b}} + c\vec{\mathbf{c}}}{a+b+c}$ 147 (d) For a parallel $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 0$ $\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 1 & 3 \\ 4 & -\lambda & 6 \end{vmatrix} = 0$ $\Rightarrow \hat{\mathbf{i}}(6+3\lambda) - \hat{\mathbf{j}}(0) + \hat{\mathbf{k}}(-2\lambda - 4) = 0$ $= 0 \cdot \hat{\mathbf{i}} + 0 \cdot \hat{\mathbf{j}} + 0 \cdot \hat{\mathbf{k}}$ $\therefore 6 + 3\lambda = 0 \Rightarrow \lambda = -2$ 148 **(b)** Total force, $\vec{\mathbf{F}} = \frac{5(6\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})}{7} + \frac{3(3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}})}{7}$ $+\frac{1(2\hat{\mathbf{i}}-3\hat{\mathbf{j}}-6\hat{\mathbf{k}})}{7}$ $=\frac{1}{7}\left(41\hat{\mathbf{i}}+\hat{\mathbf{j}}+27\hat{\mathbf{k}}\right)$ and $\overrightarrow{\mathbf{AB}} = 5\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} - 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $= 3\hat{\mathbf{i}} + 4\hat{\mathbf{k}}$ $\therefore \text{ Work done} = \vec{F} \cdot \overrightarrow{AB}$ $=\frac{1}{7}\left[41\hat{\mathbf{i}}+\hat{\mathbf{j}}+27\hat{\mathbf{k}}\right]\cdot\left[3\hat{\mathbf{i}}+4\hat{\mathbf{k}}\right]$ $=\frac{1}{7}[123+108]=33$ units 150 (d) Since vectors $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 4\hat{\imath} - \lambda\hat{\jmath} + \hat{\imath}$ $6\hat{k}$ are parallel $\therefore \frac{2}{4} = \frac{1}{-\lambda} = \frac{3}{6} \Rightarrow \lambda = -2$ 151 (b) If \vec{a} , \vec{b} and \vec{c} are coplanar vectors, then $2\vec{a} - \vec{b}$, $2\vec{b} - \vec{c}$ and $2\vec{c} - \vec{a}$ are also coplanar. $\therefore \left[2\vec{\mathbf{a}} - \vec{\mathbf{b}} 2 \, \vec{\mathbf{b}} - \vec{\mathbf{c}} \, 2 \, \vec{\mathbf{c}} - \vec{\mathbf{a}} \right] = 0$ 152 **(b)** Here, $|\vec{a}| = \sqrt{1 + 1 + (4)^2} = 3\sqrt{2}$ and $|\vec{\mathbf{b}}| = \sqrt{1 + (-1)^2 + (4)^2} = 3\sqrt{2}$ $|\vec{a}| = |\vec{b}|$ Now, $(\vec{\mathbf{a}} + \vec{\mathbf{b}}) \cdot (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) = |\vec{\mathbf{a}}|^2 - |\vec{\mathbf{b}}|^2 = 0$ Hence, angle between them is 90° 153 (a) Given, $\overrightarrow{\mathbf{OQ}} = (1 - 3\mu)\hat{\mathbf{i}} + (\mu - 1)\hat{\mathbf{j}} + (5\mu + 2)\hat{\mathbf{k}}$ $\overrightarrow{\mathbf{OP}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ (where *O* is origin)

PO $\hat{\mathbf{i}}_{-} 4\hat{\mathbf{j}}_{+} 3\hat{\mathbf{k}}$ x - 4y + 3z = 1Now. $\vec{PQ} = (1 - 3\mu - 3)\hat{i} + (\mu - 1 - 2)\hat{j}$ $+(5\mu + 2 - 6)\hat{k}$ $= (-2 - 3\mu)\hat{i} + (\mu - 3)\hat{j} + (5\mu - 4)\hat{k}$ $\therefore \overrightarrow{\mathbf{PQ}}$ is parallel to the plane x - 4y + 3z = 1 $\therefore -2 - 3\mu - 4\mu + 12 + 15\mu - 12 = 0$ $\Rightarrow 8\mu = 2$ $\Rightarrow \mu = \frac{1}{4}$ 154 **(b)** Let $\vec{\mathbf{A}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}, \ \vec{\mathbf{B}} = -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\vec{\mathbf{C}} = 4\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ $\therefore \overrightarrow{\mathbf{AB}} = -3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ and $\overrightarrow{AC} = 3\hat{i} - 5\hat{j} + 4\hat{k}$ $\therefore \text{ Area of } \Delta ABC = \frac{1}{2} ||\overrightarrow{\mathbf{AB}} \times \overrightarrow{\mathbf{AC}}||$ $=\frac{1}{2}\begin{vmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -3 & 5 & -4 \\ 3 & -5 & 4\end{vmatrix} = \frac{1}{2}\begin{vmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -3 & 5 & -4 \\ 0 & 0 & 0\end{vmatrix}$ [operating $R_2 \rightarrow R_2 + R_3$] $=\frac{1}{2}[0]=0$ 155 (b) We have, $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ \Rightarrow $(\vec{r} - \vec{b}) \times \vec{a} = 0$ and $(\vec{r} - \vec{a}) \times \vec{b} = 0$ $\Rightarrow \vec{r} - \vec{b} \parallel \vec{a} \text{ and } \vec{r} - \vec{a} \parallel \vec{b}$ $\Rightarrow \vec{r} - \vec{b} = \lambda \vec{a}$ and $\vec{r} - \vec{a} = \mu \vec{b}$ for some $\lambda, \mu \in R$ $\Rightarrow \vec{r} = \vec{b} + \lambda \vec{a}$ and $\vec{r} = \vec{a} + \mu \vec{b}$ for some $\lambda, \mu \in R$ $\Rightarrow \vec{b} + \lambda \vec{a} = \vec{a} + \mu \vec{b}$ $\Rightarrow \lambda = \mu = 1$ [:: \vec{a}, \vec{b} are non – collinear] $\therefore \vec{r} = \vec{a} + \vec{b}$ 156 (c) $|\vec{a} + \vec{b} + \vec{c}|^2$ $= |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + |\vec{\mathbf{c}}|^2 + 2\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} + 2\vec{\mathbf{b}}\cdot\vec{\mathbf{c}} + 2\vec{\mathbf{c}}\cdot\vec{\mathbf{a}}$ $\Rightarrow 0 = 1 + 1 + 1 + 2(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}})$ $\left[\because |\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = |\vec{\mathbf{c}}| = 1$, given $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = -\frac{3}{2}$ 157 (a) The volume of the parallelepiped with

coterminous edges as $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}$ is given by $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}] = \hat{\mathbf{a}} \cdot (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$ ĉ Now, $\begin{bmatrix} \hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}} \end{bmatrix}^2 = \begin{vmatrix} \hat{\mathbf{a}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{a}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{b}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \cdot \hat{\mathbf{c}} \\ \hat{\mathbf{c}} \cdot \hat{\mathbf{a}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{b}} & \hat{\mathbf{c}} \cdot \hat{\mathbf{c}} \end{vmatrix}$ $= \begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{vmatrix} = \frac{1}{2}$ $[: |\vec{a}| = |\vec{b}| = |\vec{c}| = 1]$ \Rightarrow $[\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{c}}]^2 = \frac{1}{2}$ Thus, the required volume of the parallelopiped $=\frac{1}{\sqrt{2}}$ cu unit 158 (d) We have, $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\mathbf{\vec{b}} = \mathbf{\hat{i}} \times (\mathbf{\vec{a}} \times \mathbf{\hat{i}}) + \mathbf{\hat{j}} \times (\mathbf{\vec{a}} \times \mathbf{\hat{j}}) + \mathbf{\hat{k}} \times (\mathbf{\vec{a}} \times \mathbf{\hat{k}})$ $= 3\vec{a} - \vec{a} = 2\vec{a}$ $= 2(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ $\Rightarrow |\mathbf{\vec{b}}| = \sqrt{4 + 16 + 36} = \sqrt{56} = 2\sqrt{14}$ 159 (b) Let $\vec{\mathbf{a}} = 2p\hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{b}} = (p+1)\hat{\mathbf{i}} + \hat{\mathbf{j}}$ Given, $|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| \Longrightarrow 4p^2 + 1 = (p+1)^2 + 1$ $\Rightarrow 3 p^2 - 2p - 1 = 0 \Rightarrow p = 1, -\frac{1}{2}$ 160 (c) Since $\vec{r_1}, \vec{r_2}, \vec{r_3}$ are coplanar $\therefore [\overrightarrow{r_1} \, \overrightarrow{r_2} \, \overrightarrow{r_3}] = 0$ $\Rightarrow \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Rightarrow abc = a + b + c - 2 \dots (i)$ $\therefore \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ $=\frac{3-2(a+b+c)+ab+bc+ca}{1-(a+b+c)+ab+bc+ca-abc}$ $=\frac{3-2(a+b+c)+ab+bc+ca}{1-(a+b+c)+ab+bc+ca-a-b-c+2}$ $=\frac{3-2(a+b+c)+ab+bc+ca}{3-2(a+b+c)+ab+bc+ca}=1$ 161 (c) Let projection be *x*, then $\vec{\mathbf{a}} = \frac{x(\hat{\mathbf{i}} + \hat{\mathbf{j}})}{\sqrt{2}} + \frac{x(-\hat{\mathbf{i}} + \hat{\mathbf{j}})}{\sqrt{2}} + x\,\hat{\mathbf{k}}$

 $\therefore \vec{\mathbf{a}} = \frac{2x\hat{\mathbf{j}}}{\sqrt{2}} + x\hat{\mathbf{k}}$ $\Rightarrow \vec{a} = \frac{\sqrt{2}}{\sqrt{2}}\hat{j} + \frac{\hat{k}}{\sqrt{2}}$ 162 (a) $\overrightarrow{PQ} = 6\hat{i} + \hat{j}l$ $\overrightarrow{\mathbf{OR}} = -\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ $\overrightarrow{\mathbf{RS}} = -6\hat{\mathbf{i}} - \hat{\mathbf{i}}$ $\overrightarrow{SP} = \hat{i} - 3\hat{i}$ $|\overrightarrow{PQ}| = \sqrt{37} = |\overrightarrow{RS}|$ $|\overrightarrow{\mathbf{QR}}| = \sqrt{10} = |\overrightarrow{\mathbf{SP}}|$ $\overrightarrow{\mathbf{PQ}} \cdot \overrightarrow{\mathbf{QR}} = -6 + 3 = -3 \neq 0$ \overrightarrow{PQ} = is not parallel to \overrightarrow{RS} and their magnitude are equal. \Rightarrow Quadrilateral *PQRS* must be a parallelogram, which is neither a rhombus nor a rectangle. 163 (c) If $\Delta = 0$, then $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{a}.\vec{c} & \vec{b}.\vec{c} & \vec{c}.\vec{c} \end{vmatrix} = 0$ $\Rightarrow \lambda \vec{a} + \mu \vec{b} + \nu \vec{c} = 0$ $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are *L*. *D*., which is a contradiction Hence, Δ can take any non-zero real values 164 **(b)** We have, $(3\vec{a}-2\vec{b}) = -8\hat{\imath}-7\hat{\jmath}+3\hat{k}$ and $\vec{c} = \frac{1}{3}(2\hat{\imath}+2\hat{\jmath} \therefore$ Required projection = $(3\vec{a} - 2\vec{b}) \cdot \hat{c}$ $= (= -8\hat{\imath} - 7\hat{\jmath} + 3\hat{k}) \cdot \frac{1}{2}(2\hat{\imath} + 2\hat{\jmath} - \hat{k})$ $=\frac{1}{3}(-16-14-3)=-11$ 165 (a) Angle between the faces OAB and ABC is same as angle between normals of faces OAB and ABC. Vector along the normals of OAB $= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 5\hat{\mathbf{i}} - \hat{\mathbf{j}} - 3\hat{\mathbf{k}} = \vec{\mathbf{a}} \text{ (let)}$ Vector along normals of ABC $= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \end{vmatrix} = \hat{\mathbf{i}} - 5\hat{\mathbf{j}} - 3\hat{\mathbf{k}} = \vec{\mathbf{b}} \text{ (let)}$ $\therefore \cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}||\vec{\mathbf{b}}|} = \frac{5+5+9}{\sqrt{35}\sqrt{35}}$ $\Rightarrow \theta = \cos^{-1}\left(\frac{19}{35}\right)$ 167 (d)

 $\vec{\mathbf{a}} \times [\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})] = \vec{\mathbf{a}} \times \{ (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \vec{\mathbf{a}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \vec{\mathbf{b}} \}$ (Expanding by vector triple product) $= (\vec{a} \cdot \vec{b})(\vec{a} \times \vec{a}) - (\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$ $= (\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a}) \quad (\because (\vec{a} \times \vec{a}) = 0)$ 169 (b) Taking *A* as the origin let the position vectors of *B* and *C* be \vec{b} and \vec{c} respectively Equations of lines BF and AC are $\vec{r} = \vec{b} + \lambda \left(\frac{\vec{b} + \vec{c}}{4} - \vec{b} \right)$ and $\vec{r} = \vec{0} + \mu \vec{c}$ respectively For the point of intersection *F*, we have $\vec{b} + \lambda \left(\frac{\vec{c} - 3\vec{b}}{4}\right) = \mu \vec{c}$ $\Rightarrow 1 - \frac{3\lambda}{4} = 0$ and $\frac{\lambda}{4} = \mu \Rightarrow \lambda = \frac{4}{3}$ and $\mu = \frac{1}{3}$ So, the position vector of \vec{F} is $\vec{r} = \frac{1}{3}\vec{c}$ Now, $\vec{A}F = \frac{1}{3}\vec{c} \Rightarrow \vec{A}F = \frac{1}{3}\vec{A}\vec{C}$ Hence, $AF: AC = \frac{1}{3}: 1 = \frac{1}{3}$ 170 (d) Given, $|\vec{a}| = 1$, $|\vec{b}| = 2$ $\therefore [(\vec{a} + 3\vec{b}) \times (3\vec{a} + \vec{b})]^2$ $= [0 + \vec{\mathbf{a}} \times \vec{\mathbf{b}} + 9\vec{\mathbf{b}} \times \vec{\mathbf{a}} + 0]^2$ $= [-8\vec{a} \times \vec{b}]^2$ $= 64 \left[|\vec{\mathbf{a}}|^2 \, |\vec{\mathbf{b}}|^2 \sin^2 \theta \right]$ $= 64[1 \times 4 \times \sin^2 120^\circ]$ $= 64 \times 4 \times \frac{3}{4} = 192$ 171 (c) $(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ $= (\vec{a} + \vec{b} + \vec{c}) \cdot [\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$ $0 + 0 + [\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}] + [\vec{\mathbf{b}} \, \vec{\mathbf{a}} \, \vec{\mathbf{c}}] + 0 + 0 + 0 + [\vec{\mathbf{c}} \, \vec{\mathbf{b}} \, \vec{\mathbf{a}}] + 0$ $= -[\vec{a} \, \vec{b} \, \vec{c}]$ 172 **(b)** Clearly, $\vec{c} = \pm \frac{\vec{a} \times (\vec{a} \times \vec{b})}{|\vec{a} \times (\vec{a} \times \vec{b})|}$ Now, $\vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}$ $\Rightarrow \vec{a} \times \left(\vec{a} \times \vec{b}\right) = -\hat{\imath} - \hat{\jmath} + \hat{k} - 3(\hat{\imath} - \hat{\jmath} + \hat{k})$ $=-4\hat{\imath}+2\hat{\jmath}-2\hat{k}$ $\therefore \vec{c} = \pm \frac{1}{\sqrt{6}} (2\hat{\imath} - \hat{\jmath} + \hat{k})$ Since \vec{d} is a unit vector perpendicular to both \vec{a} and \vec{c} $\therefore \vec{d} = \pm \frac{\vec{a} \times \vec{c}}{|\vec{b} \times \vec{c}|}$

Now,
$$\vec{a} \times \vec{c} = \pm \frac{1}{\sqrt{6}} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 2 & -1 & 1 \end{vmatrix}$$

$$= \pm \frac{1}{\sqrt{6}} (-3\hat{j} - 3\hat{k})$$

$$\therefore \vec{d} = \pm \frac{1}{\sqrt{2}} (-\hat{j} - \hat{k}) = \pm \frac{1}{\sqrt{2}} (\hat{j} + \hat{k})$$
173 (d)
Since, \vec{c} is the centroid of a triangle, then
 $\vec{CA} + \vec{BB} + \vec{CC} = \vec{0} \Rightarrow \vec{CA} + \vec{CC} = -\vec{CB} \dots (i)$
Now, $\vec{CA} + \vec{BG} + \vec{CC} = -\vec{CB} + \vec{BG} = 2\vec{BG}$
[from Eq. (i)]
174 (c)
Let $\vec{n}_1 = \hat{n} \times (\hat{i} - \hat{j}) = -\hat{k}$
and $\vec{n}_2 = (\hat{i} + \hat{j}) \times (\hat{i} - \hat{k}) = -\hat{i} + \hat{j} - \hat{k}$
Since, \vec{a} is parallel to the line of intersection of the
planes determined by the given planes.
 $\therefore \vec{a} \parallel |(\vec{n}_1 \times \vec{n}_2) = \lambda(\hat{i} + \hat{j})$
Let θ be the angle between \vec{a} and $\hat{i} + 2\hat{j} - 2\hat{k}$
 $\therefore \cos \theta = \frac{\lambda((\hat{i} + \hat{j}) \cdot (\hat{i} + 2\hat{j} - 2\hat{k})}{\sqrt{\lambda^2 + \lambda^2} \sqrt{1 + 4 + 4}}$
 $= \frac{\lambda(1 + 2)}{\sqrt{2\lambda} \times 3} = \frac{1}{\sqrt{2}}$
 $\Rightarrow \theta = \frac{\pi}{4}$
175 (d)
 $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$
 $\Rightarrow |\vec{a} \times \vec{b}| = 5\sqrt{11}$
176 (c)
 $\vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} + \vec{ED} + \vec{AC}$
 $= (\vec{AB} + \vec{BC}) + (\vec{AE} + \vec{ED}) + \vec{DC} + \vec{AC}$
 $= \vec{AC} + (\vec{AD} + \vec{DC}) + \vec{AC}$
 $= \vec{AC} + \vec{AC} + \vec{AC} = 3\vec{AC}$
 \vec{D}
 \vec{AC}
 $\vec{AC} + \vec{AC} + \vec{AC} = 3\vec{AC}$
 $\vec{AC} + \vec{AC} + \vec{AC} = 3\vec{AC}$
 $\vec{AC} + \vec{AC} + \vec{AC} = 3\vec{AC}$

$$(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$$

$$= \vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} + \vec{d} \times \vec{c}$$

$$\Rightarrow (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$$

$$= \vec{c} \times \vec{d} - \vec{b} \times \vec{d} - \vec{d} \times \vec{b} + \vec{d} \times \vec{c}$$

$$\Rightarrow (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$$

$$= 0 [\because \vec{a} \times \vec{b} = \vec{c} \times \vec{d}, \vec{a} \times \vec{c}$$

$$= \vec{b} \times \vec{d}]$$

$$\Rightarrow (\vec{a} - \vec{d}) || (\vec{b} - \vec{c})$$

$$\Rightarrow \vec{a} - \vec{d} = \lambda (\vec{b} - \vec{c})$$
Similarly, we have
$$(\vec{a} + \vec{d}) \times (\vec{b} + \vec{c}) = \vec{0} \Rightarrow \vec{a} + \vec{d} || \vec{b} + \vec{c} \Rightarrow \vec{a} + \vec{d}$$

$$= \lambda (\vec{b} + \vec{c})$$
178 (b)
We have,
$$\vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\} = \vec{a} \times \{(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}\}$$

 $\Rightarrow \vec{a} \times \{\vec{a} \times (\vec{a} \times \vec{b})\} = -(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})$ $= (\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$

179 **(c)**

A

we have,

$$\vec{AB} + \vec{DC} = \vec{AB} + \vec{BC} - \vec{BC} + \vec{DC}$$

 $\Rightarrow \vec{AB} + \vec{DC} = (\vec{AB} + \vec{BC}) - \vec{BC} + \vec{CD}$
 $\Rightarrow \vec{AB} + \vec{DC} = (\vec{AB} + \vec{BC}) - (\vec{BC} + \vec{CD})$
 $\Rightarrow \vec{AB} + \vec{DC} = \vec{AC} - \vec{BD} = \vec{AC} + \vec{DB}$

B

182 (c) Volume of parallelopiped, $|1 \ a \ 1|$

$$f(a) = \begin{vmatrix} 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 + a^{3} - a$$

Now, $f'(a) = 3a^{2} - 1$
 $\Rightarrow f''(a) = 6a$
Put $f'(a) = 0$
 $\Rightarrow a \neq \pm \frac{1}{\sqrt{3}}$
Which shows $f(a)$ is maximum at
 $a = \frac{1}{\sqrt{3}}$ and maximum at
 $a = -\frac{1}{\sqrt{3}}$
183 (c)
Let $\vec{a} = 4\hat{i} + 6\hat{j} - \hat{k}$

and $\mathbf{\vec{b}} = 3\mathbf{\hat{i}} + 8\mathbf{\hat{j}} + \mathbf{\hat{k}}$

 $\therefore \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 4 & 6 & -1 \\ 3 & 8 & 1 \end{vmatrix} = 14\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 14\hat{\mathbf{k}}$ $\implies \hat{\mathbf{c}} = \frac{14\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 14\hat{\mathbf{k}}}{\sqrt{14^2 + 7^2 + 14^2}} = \frac{14\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 14\hat{\mathbf{k}}}{21}$ ∴Required vector $= 12 \cdot \frac{(14\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 14\hat{\mathbf{k}})}{21} = 8\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$ 184 (b) Since, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ Also, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \cos \theta$ Now, $\vec{\mathbf{c}} = \alpha \vec{\mathbf{a}} + \beta \vec{\mathbf{b}} + \gamma (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$ $\vec{a} \cdot \vec{c} = \alpha \vec{a} \cdot \vec{a} + \beta \vec{a} \cdot \vec{b} + \gamma \vec{a} \cdot (\vec{a} \cdot \vec{b})$ \Rightarrow $|\vec{a}||\vec{c}|\cos\theta = \alpha + 0 + 0$ $\Rightarrow \cos \theta = \alpha \quad [\because \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0]$ and $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \alpha \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \beta \vec{\mathbf{b}} \cdot \vec{\mathbf{b}} + \gamma (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \cdot \vec{\mathbf{b}}$ $\Rightarrow |\vec{\mathbf{b}}||\vec{\mathbf{c}}|\cos\theta = \beta \Rightarrow \cos\theta = \beta$ 185 (a) Given volume of parallelopiped $\left[\vec{a}\,\vec{b}\,\vec{c}\right] = 40$ ∴ Volume of parallelopiped $= \left[\vec{\mathbf{b}} + \vec{\mathbf{c}} \, \vec{\mathbf{c}} + \vec{\mathbf{a}} \, \vec{\mathbf{a}} + \vec{\mathbf{b}} \right] = 2 \left[\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}} \right]$ $= 2 \times 40 = 80$ cu units 186 (a) Given, $\overrightarrow{\mathbf{OP}} = \hat{\mathbf{a}} \cos t + \hat{\mathbf{b}} \sin t$ $\Rightarrow |\vec{OP}|$ $= \sqrt{(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} \cos^2 t + \hat{\mathbf{b}} \cdot \hat{\mathbf{b}} \sin^2 t + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \sin t \cos t)}$ $\Rightarrow |\overrightarrow{\mathbf{OP}}| = \sqrt{1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}}} \sin 2t$ $\Rightarrow \left| \overrightarrow{\mathbf{OP}} \right|_{\max} = \sqrt{1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}}}$ $\left[\text{Max}\left(\sin 2t\right) = 1 \Longrightarrow t = \frac{\pi}{4} \right]$ $\Rightarrow \overrightarrow{\mathbf{OP}}\left(\operatorname{at} t = \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(\widehat{\mathbf{a}} + \widehat{\mathbf{b}}\right)$ $\therefore \text{ Unit vector along } \overrightarrow{\mathbf{OP}} \text{ at } \left(t = \frac{\pi}{4}\right) = \frac{\widehat{\mathbf{a}} + \widehat{\mathbf{b}}}{|\widehat{\mathbf{a}} + \widehat{\mathbf{b}}|}$ 187 (b) The position vector of midpoint of line joining the points whose position vector are $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ $=\frac{\hat{i}+\hat{j}-\hat{k}+\hat{i}-\hat{j}+\hat{k}}{2}=\hat{i}$ 188 (a) The position vector of *G* is $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$ $\therefore \vec{G}A + \vec{G}B + \vec{G}C$

$$= \left(\vec{a} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) \left(\vec{b} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$$
$$+ \left(\vec{c} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) = \vec{0}$$

189 **(d)**

A vector normal to first plane is $\vec{n}_1 = \hat{i} \times (\hat{i} + \hat{j}) = \hat{k}$ A vector normal to second plane is \vec{n}_2 $= (\hat{i} - \hat{j}) \times (\hat{i} + \hat{k}) = -\hat{j} + \hat{k} - \hat{i}$ Since, \vec{a} will be parallel to $\vec{n}_1 \times \vec{n}_2 = \hat{i} - \hat{j}$ Let θ be the angle between \vec{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ $\therefore \cos \theta \frac{(\hat{i} - \hat{j}) \cdot (\hat{i} - 2\hat{j} + 2\hat{k})}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 2^2 + 2^2}}$ $= \frac{1+2}{\sqrt{2} \cdot 3} = \frac{1}{\sqrt{2}}$ $\Rightarrow \theta = \frac{\pi}{4}$

190 (a)

Since, given planes are perpendicular, it means its normal are perpendicular. $\therefore 2(\lambda) - \lambda(5) + 3(-1) = 0$ $\Rightarrow -3\lambda - 3 = 0$ $\Rightarrow \lambda = -1$ $\therefore \lambda^2 + \lambda = (-1)^2 - 1 = 0$

191 (a)

 $2\overrightarrow{\mathbf{OA}} + 3\overrightarrow{\mathbf{OB}} = 2(\overrightarrow{\mathbf{OC}} + \overrightarrow{\mathbf{CA}}) + 3(\overrightarrow{\mathbf{OC}} + \overrightarrow{\mathbf{CB}})$ $= 5\overrightarrow{\mathbf{OC}} + 2\overrightarrow{\mathbf{CA}} + 3\overrightarrow{\mathbf{CB}}$ $= 5\overrightarrow{\mathbf{OC}} \quad [\because 2\overrightarrow{\mathbf{CA}} = -3\overrightarrow{\mathbf{CB}}]$

192 **(b)**

```
If the vectors (\sec^2 A)\hat{\imath} + \hat{\jmath} + \hat{k}, \hat{\imath} + (\sec^2 B)\hat{\jmath} + \hat{k}
        and \hat{i} + \hat{j} + (\sec^2 C)\hat{k} are coplanar, then
                       \begin{array}{ccc} 1 & 1 \\ \sec^2 B & 1 \end{array}
        |\sec^2 A|
                                                 | = 0
             1
                                      \sec^2 C
             1
                           1
        \Rightarrow sec<sup>2</sup> A sec<sup>2</sup> B sec<sup>2</sup> C - sec<sup>2</sup> A
                                  -\sec^2 B - \sec^2 C + 2 = 0
        \Rightarrow (1 + \tan^2 A)(1 + \tan^2 B)(1 + \tan^2 C)
                                  -(1 + \tan^2 A)
        -(1 + \tan^2 B) - (1 + \tan^2 C) + 2 = 0
        \Rightarrow \tan^2 A \tan^2 B \tan^2 C + \tan^2 A \tan^2 B
                                  + \tan^2 B \tan^2 C + \tan^2 C \tan^2 A
                                  = 0
        \Rightarrow \cot^2 A + \cot^2 B + \cot^2 C + 1 = 0
        \Rightarrow cosec<sup>2</sup> A + cosec<sup>2</sup> B + cosec<sup>2</sup> C - 2 = 0
        \Rightarrow cosec<sup>2</sup> A + cosec<sup>2</sup> B + cosec<sup>2</sup> C = 2
193 (b)
        It is given that the points P, Q and R with position
        vectors 2\hat{\imath} + \hat{\jmath} + \hat{k}, 6\hat{\imath} - \hat{\jmath} + 2\hat{k} and 14\hat{\imath} - 5\hat{\jmath} + p\hat{k}
```

respectively are collinear

 $\therefore \vec{P}Q = \lambda \vec{Q}R$ for some scalar λ $\Rightarrow 4\hat{\imath} - 2\hat{\jmath} + \hat{k} = \lambda \{8\hat{\imath} - 4\hat{\jmath}(p-2)\hat{k}\}$ $\Rightarrow 4 = 8 \lambda, -2 = -4\lambda$ and $\lambda(p-2) = 1 \Rightarrow p = 4$ 194 (c) Given, $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}$ (i) $\vec{\beta} + \vec{\gamma} + \vec{\delta} = b\vec{\alpha}$ (ii) From Eq. (i) $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = (a+1)\vec{\delta}$...(iii) From Eq. (ii) $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = (b+1)\vec{\alpha}$...(iv) From Eq. (iii) and (iv), $(a+1)\vec{\delta} = (b+1)\vec{\alpha} \quad ...(v)$ Since, $\vec{\alpha}$ is not parallel to $\vec{\delta}$. \therefore From Eq. (v), a + 1 = 0 and b + 1 = 0∴ From Eq. (iii), $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta} = \vec{0}$ 196 (d) We have, $\begin{bmatrix} 2\vec{a} + \vec{b} \ 2\vec{b} + \vec{c} \ 2\vec{c} + \vec{a} \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ $= 9 \times 3 = 27$ Hence, required volume = 27 cubic units 197 (a) In plane P_1 , a vector is perpendicular to \vec{a} and \vec{b} is $\vec{a} \times \vec{b}$. In plane P_2 , a vector is perpendicular to \vec{c} and \vec{d} is $\vec{c} \times \vec{d}$ $\Rightarrow (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 0$ $\Rightarrow (\vec{a} \times \vec{b}) || (\vec{c} \times \vec{d})$ The angle between the planes is 0. 198 (a) We have, $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})} = \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{b} \ \vec{c} \ \vec{a}]} + \frac{[\vec{b} \ \vec{a} \ \vec{c}]}{[\vec{c} \ \vec{a} \ \vec{b}]}$ $= \frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]} - \frac{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]} = 1 - 1 = 0$ 199 (a) Given, $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}, \ \vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}},$ Now, $|\vec{a}| = \sqrt{4 + 1 + 4} = 3$ Since, $|\vec{\mathbf{c}} - \vec{\mathbf{a}}| = 2\sqrt{2}$ $\Rightarrow |\vec{\mathbf{c}}|^2 + |\vec{\mathbf{a}}|^2 - 2\vec{\mathbf{c}}\cdot\vec{\mathbf{a}} = 8$ \Rightarrow $|\vec{\mathbf{c}}|^2 + 9 - 2|\vec{\mathbf{c}}| = 8$ \Rightarrow $|\vec{\mathbf{c}}|^2 - 2|\vec{\mathbf{c}}| + 1 = 0$ $\Rightarrow |\vec{c}| = 1$ Now, $|(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}}| = |\vec{\mathbf{a}} \times \vec{\mathbf{b}}| |\vec{\mathbf{c}}| \sin 30^\circ \dots (i)$

Eq. 1]

 $= \frac{1}{\left[\vec{a}\ \vec{b}\ \vec{c}\right]} \left\{ \vec{a} \times \left(\vec{b} \times \vec{c}\right) + \vec{b} \times \left(\vec{c} \times \vec{a}\right) + \vec{c} \right\}$ $\times (\vec{a} \times \vec{b})$ $= \vec{0}$ 204 **(b)** Since, $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}||\vec{\mathbf{b}}|}$ $=\frac{c(\log_2 x)^2 - 12 + 6c\log_2 x}{[\sqrt{(c\log_2 x)^2 + 36 + 9} \times \sqrt{(\log_2 x)^2 + 4 + 4(c\log_2 x)^2}]}$ For obtuse angle, $\cos\theta < 0$ $\Rightarrow c(\log_2 x)^2 - 12 + 6c \log_2 x < 0$ $\Rightarrow c < 0 \text{ and } D < 0$ $\Rightarrow c < 0$ and $(6c)^2 + 48c < 0$ $\Rightarrow c < 0 \text{ and } c < -\frac{4}{3}$ $\therefore c \in \left(-\frac{4}{3}, 0\right)$ 206 (d) Given lines can be rewritten as $\vec{\mathbf{r}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}} + t(-3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}})$ and $\vec{r} = \hat{i} + 2\hat{j} - \hat{k} + s(4\hat{i} - \hat{j} + 8\hat{k})$ here, $a_1 = -3$, $b_1 = 2$, $c_1 = 6$ and $a_2 = 4$, $b_2 = -1$, $c_2 = 8$ $\therefore \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ $=\frac{-3\times4+2\times(-1)+6\times8}{\sqrt{9+4+36}\sqrt{16+1+64}}=\frac{34}{7\times9}$ $\Rightarrow \theta = \cos^{-1}\left(\frac{34}{63}\right)$ 208 (a) We have. $\vec{AB} = \hat{\imath} - 7\hat{\imath} + \hat{k}$ and, $\vec{BC} = 3\hat{\imath} + \hat{\imath} + 2\hat{k}$ $\therefore \vec{A}C = \vec{A}B + \vec{B}C = 4\hat{\imath} - 6\hat{\imath} + 3\hat{k}$ $\Rightarrow \left| \vec{AC} \right| = \sqrt{16 + 36 + 9} = \sqrt{61}$ 210 (d) $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot \left(\frac{m\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}}{\sqrt{13 + m^2}}\right) = 2$ \Rightarrow m + 2 + 6 = 2 $\sqrt{13 + m^2}$ $\Rightarrow (m+8)^2 = 4(13+m^2)$ $\Rightarrow m^2 + 16m + 64 = 4m^2 + 52$ $\Rightarrow 3m^2 - 16m - 12 = 0$ $\Rightarrow (3m+2)(m-6) = 0$ $\Rightarrow m = 6, -\frac{2}{3}$ 211 (c) If \vec{a} and \vec{b} are non-zero and non-collinear vectors

and there exists α and β such that $\alpha \vec{a} + \beta \vec{b} = \vec{0}$,

then $\alpha = \beta = 0$ 212 (d) Given vectors are coplanar, if 1 т $1 \quad m+1 = 0$ 1 1 $\begin{vmatrix} 1 & -1 & m \\ -1 & m \\ \end{vmatrix} \begin{vmatrix} 0 & 0 & -1 \\ 1 & 1 & m+1 \\ 1 & -1 & m \end{vmatrix} = 0 \ [R_1 \to R_1 - R_2]$ $\Rightarrow -1(-1-1) = 0$ $\Rightarrow 2 \neq 0$ \therefore Now value of *m* for which vectors are coplanar. 213 **(b)** Let the required unit vector $\vec{c} = x\hat{\imath} + y\hat{k}$ We have. $|\vec{c}| = 1 \Rightarrow x^2 + y^2 = 1$ (i) Vectors \vec{a} and \vec{c} are inclined at an angle of 45° $\therefore \cos 45^\circ = \frac{2x - y}{\sqrt{4 + 4 + 1}} \Rightarrow 2x - y = \frac{3}{\sqrt{2}} \quad \dots (ii)$ Vectors \vec{b} and \vec{c} are inclined at an angle of 60° $\therefore -\frac{y}{\sqrt{2}} = \cos 60^\circ \Rightarrow y = -\frac{1}{\sqrt{2}} \quad \dots(\text{iii})$ From (ii) and (iii), we get $x = 1/\sqrt{2}$ Hence, the required unit vector is $\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{k}$ 214 (c) Let $\vec{\mathbf{A}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\vec{\mathbf{B}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, $\vec{\mathbf{C}} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ and $\vec{\mathbf{D}} = \hat{\mathbf{i}} - 6\hat{\mathbf{j}} + \lambda\hat{\mathbf{k}}$ Now, $\overrightarrow{\mathbf{AB}} = -\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 4\hat{\mathbf{k}}, \overrightarrow{\mathbf{AC}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{AD}} = -\hat{\mathbf{i}} - 9\hat{\mathbf{j}} + (\lambda + 1)\hat{\mathbf{k}}$ These will be coplanar, if $\left[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}\right] = 0$ $\therefore \begin{vmatrix} -1 & -5 & 4 \\ 1 & 1 & -1 \\ -1 & -9 & (\lambda + 1) \end{vmatrix} = 0$ $\Rightarrow -1(\lambda + 1 - 9) + 5(\lambda + 1 - 1) + 4(-9 + 1)$ $\Rightarrow \lambda = 6$ 215 **(b)** We have, $|\vec{a}| = |\vec{b}|$ Now, $\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$ $\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0 \quad [\because |\vec{a}| = |\vec{b}|]$ $\Rightarrow (\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b})$ 216 (a) Adjacent sides of parallelogram are $\vec{a} = \hat{i} + 2\hat{j} + \hat{j}$ $3\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = -3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ Now, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix}$ $= \hat{\mathbf{i}}(2+6) - \hat{\mathbf{j}}(1+9) + \hat{\mathbf{k}}(-2+6)$ $= 8\hat{i} - 10\hat{j} + 4\hat{k}$

Therefore, area of parallelogram $= |\vec{a} \times \vec{b}|$ $=\sqrt{(8)^2+(-10)^2+(4)^2}$ $=\sqrt{64+100+16}=\sqrt{180}$ sq unit 217 (d) $\therefore \overrightarrow{CP} + \overrightarrow{PA} + \overrightarrow{BA}$ By triangle law, $\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{BA}$ $\therefore \overrightarrow{\mathbf{CP}} + \overrightarrow{\mathbf{PA}} = \overrightarrow{\mathbf{CB}} + \overrightarrow{\mathbf{BA}}$ 218 (d) We have, $\vec{c} = x\vec{a} + y\vec{b} + \vec{c}(\vec{a} \times \vec{b})$ $\Rightarrow \vec{c} \cdot \vec{a} = x \text{ and } \vec{c} \cdot \vec{b} = y \Rightarrow x = y = \cos \theta$ Now, $\vec{c} \cdot \vec{c} = |\vec{c}|^2$ $\Rightarrow \{x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})\} \cdot \{x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})\}$ $= |\vec{c}|^2$ $\Rightarrow 2x^2 + x^2 \left| \vec{a} \times \vec{b} \right|^2 = 1$ $\Rightarrow 2x^{2} + z^{2} \left\{ |\vec{a}|^{2} |\vec{b}|^{2} - (\vec{a} \cdot \vec{b})^{2} \right\} = 1$ $\Rightarrow 2x^2 + z^2 = 1$ [: $|\vec{a}|^2 = 1$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b}$ = 0 $\Rightarrow z^2 = 1 - 2\cos^2\theta = -\cos 2\theta$ 219 (a) We have. $\vec{a} + \vec{b} = \vec{c}$ $\Rightarrow |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$ $\Rightarrow |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 \times 0 \quad [\because \vec{a} \cdot \vec{b} = 0]$ $\Rightarrow |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2$ 221 (b) All points *A*, *B*, *C*, *D*, *E* are in a plane. $\therefore \text{Resultant} = \left(\overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} \right) + \left(\overrightarrow{CB} + \overrightarrow{DB} + \right)$ EB $= \left(\overrightarrow{AC} + \overrightarrow{CB} \right) + \left(\overrightarrow{AD} + \overrightarrow{DB} \right) + \left(\overrightarrow{AE} + \overrightarrow{EB} \right)$ $= \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} = 3\overrightarrow{AB}$ 222 (a) Since, \vec{a} , \vec{b} , \vec{c} are coplanar. $\Rightarrow \begin{vmatrix} \alpha & 2 & \beta \\ 1 & 1 & 0 \end{vmatrix} = 0$ $\Rightarrow \alpha(1-0) - 2(1-0) + \beta(1-0) = 0$ $\Rightarrow \alpha + \beta = 2$ Which is possible for $\alpha = 1, \beta = 1$

223 **(c)**

A unit perpendicular to the plane \vec{a} and $\vec{b} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

Now,
$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix}$$

= $\hat{\mathbf{i}}(6+9) - \hat{\mathbf{j}}(-2+12) + \hat{\mathbf{k}}(6+24)$
= $15\hat{\mathbf{i}} - 10\hat{\mathbf{j}} + 30\hat{\mathbf{k}}$
and $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{15^2 + (-10)^2 + (30)^2}$
= $\sqrt{1225} = 35$
 \therefore Required vector = $\frac{15\hat{\mathbf{i}} - 10\hat{\mathbf{j}} + 30\hat{\mathbf{k}}}{35} = \frac{3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}}{7}$

225 **(d)**

$$(\vec{\mathbf{a}} \times \hat{\mathbf{j}}) \cdot (2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}) = \vec{\mathbf{a}} \cdot \{\hat{\mathbf{j}} \times (2\hat{\mathbf{j}} - 3\hat{\mathbf{k}})\}\$$

= $\vec{\mathbf{a}} \cdot \{-3(\hat{\mathbf{j}} \times \hat{\mathbf{k}})\} = -3(\vec{\mathbf{a}} \cdot \hat{\mathbf{i}})\$
= $-12 \quad [\because \vec{\mathbf{a}} \cdot \hat{\mathbf{i}} = 4, \text{given}]$

226 **(b)**

Volume of tetrahedron

$$= \frac{1}{6} [\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}]$$

= $\frac{1}{6} \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$
= $\frac{1}{6} [-1 + 2 + 3] = \frac{2}{3}$ cu unit

228 **(c)**

Since,
$$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \frac{1}{2}\vec{\mathbf{b}}$$

 $\Rightarrow (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{b}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{c}} = \frac{1}{2}\vec{\mathbf{b}}$
On comparing both sides, we get
 $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = \frac{1}{2}$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$
Now, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$
 $\Rightarrow |\vec{\mathbf{a}}||\vec{\mathbf{c}}||\cos\theta_2| = \frac{1}{2} \Rightarrow \cos\theta_2 = \frac{1}{2} \Rightarrow \theta_2 = \frac{\pi}{3}$
and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$
 $\Rightarrow |\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta_1 = 0$
 $\Rightarrow \cos\theta_1 = \cos\frac{\pi}{2}$
 $\Rightarrow \theta_1 = \frac{\pi}{2}$
229 (b)
 $\vec{O}A + \vec{O}B + \vec{O}C$
 $= \frac{1}{2}(2\vec{O}A + 2\vec{O}B + 2\vec{O}C)$
 $= \frac{1}{2}\{(\vec{O}A + \vec{O}B) + (\vec{O}B + \vec{O}C) + (\vec{O}C + \vec{O}A)\}$
 $= \frac{1}{2}\{2\vec{O}P + 2\vec{O}Q + 2\vec{O}R\}$
 $= \vec{O}P + \vec{O}Q + \vec{O}R$
230 (a)
Given, $(\vec{\mathbf{a}} \times \vec{\mathbf{b}})^2 + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2 = \vec{\mathbf{a}}^2\vec{\mathbf{b}}^2\sin^2\theta + \vec{O}C$

$$\vec{a}_{2}\mathbf{b}_{2}\cos^{2}\theta = \vec{a}^{2}\mathbf{b}^{2}$$
231 (a)
Since, $\vec{a} = m\vec{b}$ for some scalar *m ie*,
 $\vec{a} = m\left(6\hat{i} - 8\hat{j} - \frac{15}{2}\hat{k}\right)$
 $\Rightarrow |\vec{a}| = |m|\sqrt{36 + 64 + \frac{225}{4}}$
 $\Rightarrow 50 = \frac{25}{2}|m| \Rightarrow |m| = 4$
 $\Rightarrow m = \pm 4$
Since, \vec{a} makes an acute angle with the positive
direction of *z*-axis, so its *z* componant must be
positive and hence, *m* must be -4
 $\therefore \vec{a} = -4\left(6\hat{i} - 8\hat{j} - \frac{15}{2}\hat{k}\right)$
 $= -24\hat{i} + 32\hat{j} + 30\hat{k}$
232 (c)
In ΔABC , we have
 $\vec{A}C = \vec{a} + \vec{b}$
In ΔACD , we have
 $\vec{A}C + \vec{C}D = \vec{A}D \Rightarrow \vec{C}D = 2\vec{b} - \vec{a} - \vec{b} = \vec{b} - \vec{a}$
 \vec{E}
 $\vec{C}D = \vec{D} \vec{D} = \vec{C}E \Rightarrow \vec{b} - \vec{a} - \vec{a} = \vec{C}E \Rightarrow \vec{C}E$
 $= \vec{b} - 2\vec{a}$
233 (b)
Given vectors will be coplanar, if $\begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ m & -1 & 2 \end{vmatrix} = 0$
 $\Rightarrow 2(4 - 1) + 3(2 + m) + 4(-1 - 2m) = 0$
 $\Rightarrow m = \frac{8}{5}$
234 (d)
Given that, $|\vec{a}| = 1, |\vec{b}| = 3$ and $|\vec{c}| = 5$
 $\therefore [\vec{a} - 2\vec{b} \cdot \vec{b} - 3\vec{c} \vec{c} - 4\vec{a}]$
 $= (\vec{a} - 2\vec{b}) \cdot \{\vec{b} \times \vec{c} - 4\vec{b} \times \vec{a} + 12\vec{c} \times \vec{a}\}$
 $= (\vec{a} - 2\vec{b}) \cdot \{\vec{b} \times \vec{c} - 4\vec{b} \times \vec{a} + 12\vec{c} \times \vec{a}\}$
 $= (\vec{a} - 2\vec{b}) \cdot (\vec{a} + 4\vec{c} + 12\vec{b})$
 $= \vec{a} \cdot \vec{a} - 24\vec{b} \cdot \vec{b} = 1 - 24 \times 9$
 $= 1 - 216 = -215$

Now, $\mathbf{\hat{i}} \times (\mathbf{\hat{j}} \times \mathbf{\hat{k}}) = \mathbf{\hat{i}} \times \mathbf{\hat{i}} = \mathbf{\vec{0}}$ $\hat{\mathbf{i}} \times (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) = \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \vec{\mathbf{0}}$ and $\hat{\mathbf{k}} \times (\hat{\mathbf{i}} \times \hat{\mathbf{j}}) \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \vec{\mathbf{0}}$ $\therefore \hat{\mathbf{i}} \times (\hat{\mathbf{j}} \times \hat{\mathbf{k}}) + \hat{\mathbf{j}} \times (\hat{\mathbf{k}} \times \hat{\mathbf{i}}) + \hat{\mathbf{k}} \times (\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = \vec{\mathbf{0}}$ 236 (c) Given vectors will be coplanar, if $\begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0$ $\Rightarrow \lambda^6 - 3\lambda^2 - 2 = 0$ $\Rightarrow (1 + \lambda^2)^2 (\lambda^2 - 2) = 0 \Rightarrow \lambda = \pm \sqrt{2}$ 237 (c) Here, force $\vec{F} = 6 \times \frac{(9\hat{i} + 6\hat{j} + 2\hat{k})}{\sqrt{81 + 36 + 4}}$ $=\frac{6(9\hat{\mathbf{i}}+6\hat{\mathbf{j}}+2\hat{\mathbf{k}})}{11}$ Displacement vector \vec{d} $= (7-3)\hat{\mathbf{i}} + (-6-4)\hat{\mathbf{j}} + (8+15)\hat{\mathbf{k}}$ $=4\hat{i}-10\hat{j}+23\hat{k}$ \therefore Work done = $\vec{\mathbf{F}} \cdot \vec{\mathbf{d}}$ $= \frac{6}{16} (9\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot (4\hat{\mathbf{i}} - 10\hat{\mathbf{j}} + 23\hat{\mathbf{k}})$ $=\frac{6}{11}(36-60+46)=12$ 238 (d) Since, $|2\hat{\mathbf{u}} \times 3\hat{\mathbf{v}}| = 1$ $\Rightarrow 6|\hat{\mathbf{u}}||\hat{\mathbf{v}}||\sin\theta| = 1$ $\Rightarrow \sin \theta = \frac{1}{c}$ $[\because |\widehat{\mathbf{u}}| = |\widehat{\mathbf{u}}| = 1]$ Since, θ is an acute angle, then there is exactly one value of θ for which $(2\hat{\mathbf{u}} \times 3\hat{\mathbf{v}})$ is a unit vector. 239 (d) \therefore Total force , $\vec{\mathbf{F}} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2$ $=5\hat{i}+\hat{j}-\hat{k}$ and displacement, $\vec{d} = (5-3)\hat{i} + (5-2)\hat{j} + (3-3)\hat{j} + (3-$ 1)**k** $= 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $\therefore W = \vec{\mathbf{F}} \cdot \vec{\mathbf{d}}$ $= (5\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ = 11 units 241 (a) We have, $\vec{a} + t \vec{b} \perp \vec{c}$ $\Rightarrow (\vec{a} + t \vec{b}) \cdot \vec{c} = 0$ $\Rightarrow \vec{a}.\vec{c} + t\,\vec{b}.\vec{c} = 0 \Rightarrow t = -\frac{\vec{a}.\vec{c}}{\vec{b}.\vec{c}} = -\frac{6+2+0}{-3+2+0}$ = 8242 (d)

Given, $\vec{\mathbf{a}} \cdot \vec{\mathbf{p}} = \frac{\vec{\mathbf{a}} \cdot \mathbf{b} \times \vec{\mathbf{c}}}{\left[\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \vec{\mathbf{c}}\right]} = 1$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{a}} \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]} = 0$ Similarly, $\vec{\mathbf{b}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{r}} = 1$, and $\vec{\mathbf{a}} \cdot \vec{\mathbf{r}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{p}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{p}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{r}} = 0$ \therefore $(\vec{a} + \vec{b}) \cdot \vec{p}(\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$ $\vec{a} \cdot \vec{p} + \vec{b} \cdot \vec{p} + \vec{b} \cdot \vec{q} + \vec{c} \cdot \vec{q} + \vec{c} \cdot \vec{r} + \vec{a} \cdot \vec{r}$ = 1 + 1 + 1 = 3243 (b) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}_1 + \vec{\mathbf{a}} \cdot \left(\vec{\mathbf{b}} - \frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{|\vec{\mathbf{a}}|^2} \vec{\mathbf{a}}\right)$ $= \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} - \frac{|\vec{\mathbf{a}}|^2 (\vec{\mathbf{b}} \cdot \vec{\mathbf{a}})}{|\vec{\mathbf{a}}|^2}$ $=\vec{a}\cdot\vec{b}-\vec{b}\cdot\vec{a}=0$ Similarly, $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}_2 = \vec{\mathbf{b}}_1 \cdot \vec{\mathbf{c}}_2 = 0$ Hence, $\{\vec{a}, \vec{b}_1, \vec{c}_2\}$ are mutually orthogonal vectors. 244 (c) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}})\vec{\mathbf{b}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{c}} = \vec{\mathbf{0}},$ $[\because \vec{a} \perp \vec{b} \text{ and } \vec{a} \perp \vec{c}]$ 245 (b) Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of A, B and C respectively. Then, the position vector of G is $\vec{a} + \vec{b} + \vec{c}$ 3 Let the position vectors of A', B' and C' be \vec{a}, \vec{b}' and \vec{c} respectively. Then, the position vectors of G' is $\frac{\vec{a} + \vec{b}' + \vec{c}}{3}$ $\therefore A\vec{A}' + B\vec{B}' + C\vec{C}'$ $= (\vec{a} - \vec{a}) + \left(\vec{b'} - \vec{b}\right) + (\vec{c} - \vec{c})$ $\Rightarrow A\vec{A}' + B\vec{B}' + C\vec{C}'$ $= \left(\vec{a'} + \vec{b'} + \vec{c'}\right) - \left(\vec{a} + \vec{b} + \vec{c}\right)$ $\Rightarrow A\vec{A}' + B\vec{B}' + C\vec{C}$ $= 3\left\{\frac{\overrightarrow{a'} + \overrightarrow{b'} + \overrightarrow{c'}}{3} - \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3}\right\}$ $= 3G\vec{G}'$ 246 (a) We have, $\vec{u} = \vec{a} - \vec{b}, \vec{u} = \vec{a} + \vec{b}$ $\Rightarrow \vec{u} \times \vec{v} = (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$ $\Rightarrow |\vec{u} \times \vec{v}| = 2|\vec{a} \times \vec{b}|$ $\Rightarrow |\vec{u} \times \vec{v}| = 2 \sqrt{\left|\vec{a} \times \vec{b}\right|}$ $\Rightarrow |\vec{u} \times \vec{v}| = 2\sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}$ Page | 61

$$\Rightarrow |\vec{u} \times \vec{v}| = 2\sqrt{16 - \left(\vec{a} \cdot \vec{b}\right)^2}$$

248 (b) Let $\vec{\mathbf{d}} = d_1 \hat{\mathbf{i}} + d_2 \hat{\mathbf{j}} + d_3 \hat{\mathbf{k}}$ $\vec{\mathbf{a}} \cdot \vec{\mathbf{d}} = d_1 - d_2 = 0 \implies d_1 = d_2$ (i) Also, $\mathbf{\vec{d}}$ is a unit vector. $\Rightarrow d_1^2 + d_2^2 + d_3^2 = 1$ (ii) Also, $\begin{bmatrix} \vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}} \end{bmatrix} = 0 \Longrightarrow \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ d_1 & d_2 & d_3 \end{vmatrix} = 0$ $\Rightarrow -1(-d_3 - d_1) - 1(-d_2) = 0$ $\Rightarrow d_1 + d_2 + d_3 = 0 \Rightarrow 2d_1 + d_3 = 0$ [from Eq. (i)] $\Rightarrow d_3 = -2d_1$ (iii) Using Eqs. (iii) and (i) in Eq. (ii), we get $d_1^2 + d_1^2 + 4d_1^2 = 1 \implies d_1 = \pm \frac{1}{\sqrt{6}}$ $\therefore d_2 = \pm \frac{1}{\sqrt{6}}$ and $d_3 = \mp \frac{2}{\sqrt{6}}$ Hence, required vector is $\pm \frac{1}{\sqrt{6}}(\hat{\mathbf{i}}+\hat{\mathbf{j}}-2\hat{\mathbf{k}})$

249 (b)

Since \vec{a} is collinear to vector \vec{b} . Therefore, $\vec{a} = m \vec{b}$ for some scalar m

$$\Rightarrow \vec{a} = m \left(6\hat{i} - 8\hat{j} - \frac{13}{2}\hat{k} \right)$$
$$\Rightarrow |\vec{a}| = \frac{25}{2} |m|$$
$$\Rightarrow 50 = \frac{25}{2} |m| \Rightarrow |m| = 4 \Rightarrow m$$
$$= \pm 4 \quad [\because |\vec{a}| = 50]$$

Since \vec{a} makes an acute angle with the positive direction of *z*-axis. So, its *z*-component must be positive, and hence '*m*' must be -4

$$\therefore \vec{a} = -4\left(6\hat{\imath} - 8\hat{\jmath} - \frac{15}{2}\hat{k}\right) = -24\hat{\imath} + 32\hat{\jmath} + 30\hat{k}$$

251 **(c)**

Since \vec{a} and \vec{b} are coplanar. Therefore, $\vec{a} \times \vec{b}$ is a vector perpendicular to the plane containing \vec{a} and \vec{b}

Similarly, $\vec{c} \times \vec{d}$ is a vector perpendicular to the plane containing \vec{c} and \vec{d}

Two planes will be parallel if their normal i.e.

 $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ are parallel

$$\therefore (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$$
252 (c)

Since, $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0$

 $\Rightarrow \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{a} = 0$ (i) Similarly, $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ (ii) and $\vec{\mathbf{c}} \cdot \vec{\mathbf{a}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 0$ (iii) On adding Eqs. (i),(ii) and (iii), we get $2(\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}+\vec{\mathbf{b}}\cdot\vec{\mathbf{c}}+\vec{\mathbf{c}}\cdot\vec{\mathbf{a}})=0$ Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{c})^2$ $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}$ $= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$ = 9 + 16 + 25 = 50 $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$ 253 (b) We know that the diagonals of a parallelogram bisect each other. Therefore, *M* is the mid point of AC and BD both. $\therefore \overrightarrow{\mathbf{OA}} + \overrightarrow{\mathbf{OC}} = 2\overrightarrow{\mathbf{OM}}$ and $\overrightarrow{\mathbf{OB}} + \overrightarrow{\mathbf{OD}} = 2 \overrightarrow{\mathbf{OM}}$ $\Rightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4 \overrightarrow{OM}$ 254 **(b)** $|\overrightarrow{\mathbf{OA}}| = \sqrt{4+4+1} = 3$ and $|\vec{OB}| = \sqrt{4 + 16 + 16} = 6$ $\therefore \text{ Required vector} = \lambda (\overrightarrow{\mathbf{OA}} + \overrightarrow{\mathbf{OB}})$ $= \lambda \left[\frac{1}{3} \left(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} \right) + \frac{1}{6} \left(2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \right) \right]$ $=\frac{\lambda}{2}(3\hat{\mathbf{i}}+4\hat{\mathbf{j}}+3\hat{\mathbf{k}})$ \therefore Length of vector $=\frac{\lambda}{2}\sqrt{9+16+9}=\frac{\lambda}{2}\sqrt{34}$ Take $\lambda = 2$ \therefore Required length of a vector is $\frac{\sqrt{136}}{3}$ 255 (d) Given that, $\vec{\mathbf{A}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{B}} = \hat{\mathbf{i}}$, $\vec{\mathbf{C}} = c_1\hat{\mathbf{i}} + c_2\hat{\mathbf{j}} + c_2\hat{\mathbf{j}}$ $c_3 \mathbf{\hat{k}}$ Since, $\vec{\mathbf{A}}$, $\vec{\mathbf{B}}$, $\vec{\mathbf{C}}$ are coplanar. $\therefore [\vec{\mathbf{A}} \, \vec{\mathbf{B}} \, \vec{\mathbf{C}}] = 0$ Now, $\vec{\mathbf{B}} \times \vec{\mathbf{C}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = -c_3\hat{\mathbf{j}} + c_2\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{A}} \cdot (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (-c_3\hat{\mathbf{j}} + c_2\hat{\mathbf{k}}) = 0$ \Rightarrow No value of c_1 can be found. 256 (c) We have, $A\vec{B} \cdot A\vec{C} + B\vec{C} \cdot B\vec{A} + C\vec{A} \cdot C\vec{B}$ $= (AB)(AC)\cos\theta + (BC)(BA)\sin\theta + 0$ $= AB(AC\cos\theta + BC\sin\theta)$

$$= AB \left\{ \frac{(AC)^2}{AB} + \frac{(BC)^2}{AB} \right\} \quad \left[\because \cos \theta = \frac{AC}{AB}, \sin \theta \right]$$

$$= \frac{BC}{AB} = p^2$$

$$= AC^2 + BC^2 = AB^2 = p^2$$

$$= B^2$$

$$= AC^2 + BC^2 = AB^2 = p^2$$

$$= B^2$$

$$= B$$

 $\therefore \vec{a} = \hat{i}$ 3 **(b)** $\overrightarrow{\mathbf{DA}} + \overrightarrow{\mathbf{DB}} + \overrightarrow{\mathbf{DC}} + \overrightarrow{\mathbf{AE}} + \overrightarrow{\mathbf{BE}} + \overrightarrow{\mathbf{CE}}$ $= (\overrightarrow{\mathbf{DA}} + \overrightarrow{\mathbf{AE}}) + (\overrightarrow{\mathbf{DB}} + \overrightarrow{\mathbf{BE}}) + (\overrightarrow{\mathbf{DC}} + \overrightarrow{\mathbf{CE}})$ $= \overrightarrow{\mathbf{DE}} + \overrightarrow{\mathbf{DE}} + \overrightarrow{\mathbf{DE}}$ $= 3 \overrightarrow{\mathbf{DE}}$ 5 (d) Given vertices are $A(3\hat{\mathbf{i}}+\hat{\mathbf{j}}+2\hat{\mathbf{k}}), B(\hat{\mathbf{i}}-2\hat{\mathbf{j}}+7\hat{\mathbf{k}})$ and $C(-2\hat{\mathbf{i}}+3\hat{\mathbf{j}})$ $+5\hat{k}$). Now, $\overrightarrow{\mathbf{AB}} = (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 7\hat{\mathbf{k}}) - (3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ $= -2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ $\therefore |\overrightarrow{\mathbf{AB}}| = \sqrt{4+9+25} = \sqrt{38}$ Similarly, $|\overrightarrow{\mathbf{BC}}| = |\overrightarrow{\mathbf{CA}}| = \sqrt{38}$ \therefore $|\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{CA}| = \sqrt{38}$: Hence, triangle is an equilateral triangle. 7 (b) We have, $\left|\vec{a} + \vec{b}\right| = \left|\vec{a} - \vec{b}\right|$ $\Rightarrow \left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} - \vec{b} \right|^2$ $\Rightarrow |\vec{a}|^{2} + |\vec{b}|^{2} + 2\vec{a}.\vec{b} = |\vec{a}|^{2} + |\vec{b}|^{2} - 2\vec{a}.\vec{b}$ $\Rightarrow 4\vec{a}, \vec{b} = 0 \Rightarrow \vec{a}, \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$ 8 (d) $\therefore |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ $\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$ $\Rightarrow a^2 + b^2 + 2\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a^2 + b^2 - 2\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$ $\Rightarrow 4\vec{a}\cdot\vec{b}=0$ $\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ \therefore Angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$. 9 (c) Given vectors are coplanar, if $\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \beta & 1 \\ 0 & c & y \end{vmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_2$ $\Rightarrow \begin{vmatrix} \alpha & 1 - \alpha & 0 \\ 1 & \beta - 1 & 1 - \beta \\ 1 & 0 & \gamma - 1 \end{vmatrix} = 0$ $\Rightarrow (1 - \alpha)(1 - \beta)(1 - \gamma) \begin{vmatrix} \frac{\alpha}{1 - \alpha} & 1 & 0 \\ \frac{1}{1 - \beta} & -1 & 1 \\ \frac{1}{1 - \gamma} & 0 & -1 \end{vmatrix} = 0$ $\Rightarrow (1-\alpha)(1-\beta)(1-\gamma)\left[\frac{\alpha}{1-\alpha}(1)\right]$ $-1\left(-\frac{1}{1-\beta}-\frac{1}{1-\gamma}\right) = 0$ But $\alpha \neq 1$, $\beta \neq 1$ and $\gamma \neq 1$

$$\therefore \frac{1}{(1-\alpha)} - 1 + \frac{1}{1-\beta} + \frac{1}{1-\gamma} = 0$$

$$\Rightarrow \frac{1}{1-\alpha} + \frac{1}{1-\beta} + \frac{1}{1-\gamma} = 1$$

270 **(b)**
Let the required vector be $\vec{\mathbf{c}} = x\hat{\mathbf{i}} + z\hat{\mathbf{k}}$
Since $|\vec{z}| = 1$ (i)

Since, $|\vec{c}| = 1 \implies x^2 + z^2 = 1$ (i) \vec{a} and \vec{c} are inclined at the angle 45° $\therefore \cos 45^\circ = \frac{2x - z}{\sqrt{4 + 4 + 1}} \implies 2x - z = \frac{3}{\sqrt{2}}$ (ii) \vec{b} and \vec{c} are inclined at an angle 60° $\therefore -\frac{z}{\sqrt{2}} = \cos 60^\circ \implies z = -\frac{1}{\sqrt{2}}$ (iii) From Eqs. (ii) and (iii), we get $x = \frac{1}{\sqrt{2}}$ Hence, the required ector is $\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{k}$

271 (d)

Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors. Therefore, $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} \neq 0$ $\Rightarrow \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0 \Rightarrow \Delta \neq 0, \text{ where } \Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ Now, $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + \begin{vmatrix} a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3 \end{vmatrix} = 0$ $\Rightarrow \Delta(1 + abc) = 0 \Rightarrow abc = -1$ $[:: \Delta \neq 0]$ 272 (c) $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = 0$ $\Rightarrow |\hat{\mathbf{u}}||\hat{\mathbf{v}}|\cos\theta = 0$ $\Rightarrow 1 \times 1 \times \cos \theta = 0$ (: $|\hat{\mathbf{u}}| = |\hat{\mathbf{v}}| = 1$) $\Rightarrow \cos \theta = 0$ $\Rightarrow \theta = 90^{\circ}$ Let $\hat{\mathbf{n}}$ be a unit vector perpendicular to the plane of vectors $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$. $\Rightarrow \hat{\mathbf{u}} \times \hat{\mathbf{v}} = |\hat{\mathbf{u}}| |\hat{\mathbf{v}}| \sin 90^{\circ} \cdot \hat{\mathbf{n}} = \hat{\mathbf{n}}$ Since, $\vec{\mathbf{r}}$ is coplanar with $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ $\hat{\mathbf{n}}$ is perpendicular to $\mathbf{\vec{r}}$ Let Φ be the angle between $\hat{\mathbf{n}}$ and $\vec{\mathbf{r}}$ $\Rightarrow \Phi = 90^{\circ}$ $\therefore |\vec{\mathbf{r}} \times (\hat{\mathbf{u}} \times \hat{\mathbf{v}}))| = |\vec{\mathbf{r}} \times \hat{\mathbf{n}}| = |\vec{\mathbf{r}}||\hat{\mathbf{n}}| \sin \Phi$ $= |\vec{\mathbf{r}}| \times 1 \times \sin 90^{\circ}$ $= |\vec{\mathbf{r}}|$ 273 **(b)** Let $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$. Then, Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{4+8+7}{\sqrt{16+16+49}} = \frac{19}{9}$

274 (a)

$$\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot (\vec{c} \times \vec{a})} + \frac{\vec{b} \cdot (\vec{a} \times \vec{b})}{\vec{a} \cdot (\vec{b} \times \vec{c})}$$

$$= \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{b} \ \vec{c} \ \vec{a}]} + \frac{[\vec{b} \ \vec{a} \ \vec{b}]}{[\vec{a} \ \vec{b} \ \vec{c}]} = 1 + 0 = 1$$
275 (b)

$$\left[\frac{1}{2} |\vec{u}_2 - \vec{u}_1|\right]^{-2} = \frac{1}{4} [|\vec{u}_2|^2 + |\vec{u}_1|^2 - 2\vec{u}_2 \cdot \vec{u}_1]$$

$$= \frac{1}{4} [1 + 1 - 2|\vec{u}_2||\vec{u}_1| \cos \theta]$$

$$= \frac{1}{4} [2 - 2 \cos \theta] = \sin^2 \frac{\theta}{2}$$

$$\Rightarrow \frac{1}{2} |\vec{u}_2 - \vec{u}_1| = \sin \frac{\theta}{2}$$
276 (b)
Let $\vec{c} = x\hat{i} + y\hat{j}$. Then,
 $\vec{b} \perp \vec{c}$

$$\Rightarrow \vec{b} \cdot \vec{c} = 0$$

$$\Rightarrow 4x + 3y = 0 \Rightarrow \frac{x}{3} = \frac{y}{-4} = \lambda \Rightarrow x = 3\lambda, y = -4\lambda$$

$$\therefore \vec{c} = \lambda(3\hat{i} - 4\hat{j})$$
Let the required vector be $\alpha = p\hat{i} + q\hat{j}$. Then the
projections of \vec{a} on \vec{b} and \vec{c} are $\frac{\vec{a} \cdot \vec{b}}{|\vec{c}|}$ respectively

$$\therefore \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = 1 \text{ and } \frac{\vec{a} \cdot \vec{c}}{|\vec{c}|} = 2$$

$$\Rightarrow 4p + 3q = 5 \text{ and } 3p - 4q = 10 \Rightarrow p = 2, q = -1$$
Hence, the required vector $= 2\hat{i} - \hat{j}$
277 (b)
Given equation of plane is
 $2x + 4y - 5z = 10$
Here, $a = 2, b = 4, c = -5$
Let OP be the perpendicular from O to the plane,
then its equation is
 $\frac{x - 0}{2} = \frac{y - 0}{4} = \frac{z - 0}{-5}$
Here, direction ratio are $(2,4,-5)$.
Now, equation of line in vector form is
 $\vec{r} = 0 + k(2,4,-5)$
 $= (2k, 4k, -5k), k \in R$
[: equation of line is $\vec{r} = \vec{a} + \lambda \vec{b}$]
278 (a)
We have,
 $\vec{a} = \lambda\{\vec{b} \times (i \times j)\} = \lambda\{\vec{b} \cdot j\}i - (\vec{b} \cdot i)j\}$
 $= \lambda(-3i - 4j)$
Now, $|\vec{a}| = |\vec{b}| \Rightarrow 25\lambda^2 = 16 + 9 + 25 \Rightarrow \lambda = \pm\sqrt{2}$
Hence, $\vec{a} = \pm\sqrt{2}(3i + 4j)$
279 (d)
Given $\vec{a} + \vec{b} + \vec{c} + \vec{0}$

 $\Rightarrow |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + |\vec{\mathbf{c}}|^2 + 2(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}) = 0$ $\Rightarrow 3^2 + 4^2 + 5^2 + 2(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -25$ 280 (a) We know that the position vector of the centroid of the triangle is $\vec{a} + \vec{b} + \vec{c}$ Since, the triangle is an equilateral, therefore the orthocentre coincides With the centroid and hence, $\frac{\vec{a}+\vec{b}+\vec{c}}{3}=\vec{0}$ $\Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0}$ 281 (a) $\overrightarrow{\mathbf{AB}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}} - 4\hat{\mathbf{i}} - 7\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$ $= -2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{AC}} = 2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} - 4\hat{\mathbf{i}} - 7\hat{\mathbf{j}} - 8\hat{\mathbf{k}} = -2\hat{\mathbf{i}} - 2\hat{\mathbf{k}}$ $2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ $\therefore |\overrightarrow{\mathbf{AB}}| = 6 \text{ and } |\overrightarrow{\mathbf{AC}}| = 3$: Position vector of required bisector $=\frac{6(2\hat{i}+5\hat{j}+7\hat{k})+3(2\hat{i}+3\hat{j}+4\hat{k})}{6+3}$ $=\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})$ 282 (a) Since \vec{a} and \vec{b} are collinear vectors. Therefore, $\vec{b} = \lambda \vec{a}$ $\Rightarrow \vec{b} = \lambda(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$ $\Rightarrow |\vec{b}| = |\lambda|\sqrt{4+9+36} \Rightarrow 21 = 7|\lambda| \Rightarrow \lambda = \pm 3$ $\therefore \vec{b} = \pm 3\vec{a} = \pm (6\hat{\imath} + 9\hat{\jmath} + 18\hat{k})$ 283 (a) We have, $\vec{a} - \vec{b} + \vec{b} - \vec{c} + \vec{c} - \vec{a} = 0$ $\Rightarrow \vec{a} - \vec{b}, \vec{b} - \vec{c}$ and $\vec{c} - \vec{a}$ are coplanar $\Rightarrow \left[\vec{a} - \vec{b} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a} \right] = 0$ 284 (c) Here, $(\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 0$ It means line is parallel to the plane General point on the line is $(\lambda + 2, -\lambda - 2, 4\lambda + 3)$ For $\lambda = 0$, point on this line is (2, -2, 3) and distance from $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$ is $d = \left| \frac{2 + 5(-2) + 3 - 5}{\sqrt{(1)^2 + (5)^2 + (1)^2}} \right| = \frac{10}{3\sqrt{3}}$ 286 (b) $\therefore \vec{\mathbf{a}} + \vec{\mathbf{b}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}} + 3\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$

 $=4\hat{i}+\hat{j}-\hat{k}$ and $\vec{a} - \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + 2\hat{k})$ $= -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ $\therefore \cos \theta = \frac{\left(\vec{a} + \vec{b}\right) \cdot \left(\vec{a} - \vec{b}\right)}{\left|\vec{a} + \vec{b}\right| \left|\vec{a} - \vec{b}\right|}$ $=\frac{(4\hat{i}+\hat{j}-\hat{k})\cdot(-2\hat{i}+3\hat{j}-5\hat{k})}{|4\hat{i}+\hat{j}-\hat{k}||-2\hat{i}+3\hat{j}-5\hat{k}|}$ $=\frac{-8+3+5}{\sqrt{16+1+1}\sqrt{4+9+25}}=0$ $\Rightarrow \theta = 90^{\circ}$ 288 (a) Given, $\vec{a} = \vec{b} + \vec{c}$ and $\vec{\mathbf{b}} \perp \vec{\mathbf{c}}$ then $|\vec{\mathbf{a}}|^2 = |\vec{\mathbf{b}}|^2 + |\vec{\mathbf{c}}|^2 + 2\vec{\mathbf{b}}\cdot\vec{\mathbf{c}}$ $\Rightarrow a^2 = b^2 + c^2 (\because \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 0)$ 289 (b) $\therefore \ \overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{OB}} - \overrightarrow{\mathbf{OA}}$ $\therefore \overrightarrow{\mathbf{OB}} = \overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{OA}}$ $= 3\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}} + 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ $= 6\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ 290 (a) Given that, $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{c} = 7\hat{i} + 9\hat{j} + 11\hat{k}$ $\vec{\mathbf{A}} = \vec{\mathbf{a}} + \vec{\mathbf{b}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) + (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) =$ Let $2\hat{i} + 4\hat{j} + 6\hat{k}$ $\vec{\mathbf{B}} = \vec{\mathbf{b}} + \vec{\mathbf{c}} = (\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) + (7\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ And 11k=8i+12j+16k If \vec{A} and \vec{B} are diagonals, then area of parallelogram $=\frac{1}{2}\left|\vec{\mathbf{A}}\times\vec{\mathbf{B}}\right|=\frac{1}{2}\left|\begin{vmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k}\\ 2 & 4 & 6\\ 8 & 12 & 16\end{vmatrix}\right|$ $= \frac{1}{2} \left| \hat{\mathbf{i}}(64 - 72) - \hat{\mathbf{j}}(32 - 48) + \hat{\mathbf{k}}(24 - 32) \right|$ $=\frac{1}{2}\left|-8\hat{i}+16\hat{j}-8\hat{k}\right|$ $= \left|-4\hat{\mathbf{i}}+8\hat{\mathbf{j}}-4\hat{\mathbf{k}}\right|$ $=\sqrt{(-4)^2+(8)^2+(-4)^2}$ $=\sqrt{16+64+16} = \sqrt{96} = 4\sqrt{6}$ 291 (a) Given that, $\vec{a} = (1,1,4) = \hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = (1, -1, 4) = \hat{i} - \hat{j} + 4\hat{k}$ $\therefore \vec{a} + \vec{b} = 2\hat{i} + 8\hat{k}$ $\Rightarrow \vec{a} - \vec{b} = 2\hat{i}$ Let θ be the angle between $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, then

$$\cos \theta = \frac{(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})}{|\vec{a} + \vec{b}| |\vec{a} - \vec{b}|}$$

$$= \frac{(2\hat{i} + 0\hat{j} + 8\hat{k}) \cdot (0\hat{i} + 2\hat{j} + 0\hat{k})}{\sqrt{2^2 + 0^2 + 8^2}\sqrt{0^2 + 2^2 + 0^2}}$$

$$= \frac{0 + 0 + 0}{\sqrt{4 + 64}\sqrt{4}} = 0$$

$$\Rightarrow \cos \theta = \cos \theta^\circ \Rightarrow \theta = \frac{\pi}{2} = 90^\circ$$
292 (c)
Area of rhombus $= \frac{1}{2} |\vec{a} \times \vec{b}|$

$$= \frac{1}{2} |(2\hat{i} - 3\hat{j} + 5\hat{k}) \times (-\hat{i} + \hat{j} + \hat{k})|$$

$$= \frac{1}{2} |-8\hat{i} - 7\hat{j} - \hat{k}| = \frac{1}{2}\sqrt{144}$$

$$= \sqrt{28.5}$$
293 (a)
It is given that the vectors $\hat{i} - 2x \hat{j} - 3y \hat{k}$ and $\hat{i} + 3x \hat{j} + 2y \hat{k}$ are orthogonal
$$\therefore (\hat{i} - 2x \hat{j} - 3y \hat{k}) \cdot (\hat{i} + 3x \hat{j} + 2y \hat{k}) = 0$$

$$\Rightarrow 1 - 6x^2 - 6y^2 = 0 \Rightarrow 6x^2 + 6y^2 = 1$$
Clearly, it represents a circle
295 (a)
Given vectors are orthogonal.
$$\therefore (3x\hat{i} + y\hat{j} - 3\hat{k}) \cdot (x\hat{i} - 4y\hat{j} + 4\hat{k}) = 0$$

$$\Rightarrow 3x^2 - 4y^2 - 12 = 0$$

$$\Rightarrow \frac{x^2}{4} - \frac{y^2}{3} = 1$$
Hence, it represent a hyperbola.
296 (c)
We have, $|\vec{a}| = 1, |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = 1$

Now,

$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2\{|\vec{a}|^2 + |\vec{b}|^2\}$$

 $\Rightarrow 1 + |\vec{a} - \vec{b}|^2 = 4$
 $\Rightarrow |\vec{a} - \vec{b}| = \sqrt{3}$

298 **(a)**

Let unit vector is $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$. $\Rightarrow a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is perpendicular to $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$. Then, a + b + c = 0 ...(i) and $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$, $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and $(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ are coplanar. $\Rightarrow \begin{vmatrix} a & b & c \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0$ $\Rightarrow -3a + b + c = 0$ (ii) From Eqs. (i) and (ii), we get a = 0 and c = -b $\Rightarrow a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is a unit vector, then $a^2 + b^2 + c^2 = 1$

 $\Rightarrow 0 + b^2 + b^2 = 1$ $\Rightarrow b = \frac{1}{\sqrt{2}}$ $\therefore a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}} = \frac{1}{\sqrt{2}}\hat{\mathbf{j}} - \frac{1}{\sqrt{2}}\hat{\mathbf{k}} = \frac{\hat{\mathbf{j}} - \mathbf{k}}{\sqrt{2}}$ 300 **(b)** Given, $\vec{\mathbf{r}} = (1+t)\hat{\mathbf{i}} - (1-t)\hat{\mathbf{j}} + (1-t)\hat{\mathbf{k}}$ and $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$ Since, they intersect, therefore (1+t) - (1-t) + (1-t) = 5 $\Rightarrow t = 4$ $\vec{\mathbf{r}} = (1+4)\hat{\mathbf{i}} - (1-4)\hat{\mathbf{j}} + (1-4)\hat{\mathbf{k}}$ $=5\hat{i}+3\hat{j}-3\hat{k}$ 301 (d) We have. $|\vec{a}| = 3, |\vec{b}| = 5$ and $|\vec{c}| = 7$ Let θ be the angle between \vec{a} and \vec{b} Now, $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow |\vec{c}|^2 = |\vec{a} + \vec{b}|$ $\Rightarrow |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$ $\Rightarrow |\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 = 2|\vec{a}||\vec{b}|\cos\theta$ $\Rightarrow 49 = 9 + 25 + 2 \times 3 \times 5 \cos \theta$ $\Rightarrow 15 = 30 \cos \theta \Rightarrow \cos \theta = 1/2 \Rightarrow \theta = \pi/3$ 302 (c) $\therefore \left[\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}\right] = \vec{\mathbf{a}} \cdot \left(\left|\vec{\mathbf{b}}\right| |\vec{\mathbf{c}}| \sin \frac{2\pi}{3} \, \widehat{\mathbf{n}}\right)$ $= |\vec{\mathbf{a}}||\vec{\mathbf{b}}||\vec{\mathbf{c}}|\left(\sin\frac{2\pi}{3}\right)$ $[: \vec{\mathbf{a}} \cdot \hat{\mathbf{n}} = |\vec{\mathbf{a}}|\hat{\mathbf{n}}| \cos 0^\circ = |\vec{\mathbf{a}}|]$ $= 2 \times 3 \times 4 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$ 303 (a) Given that, $\overrightarrow{\mathbf{OA}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\overrightarrow{\mathbf{OB}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{OC}} = \hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $= (3-2)\hat{\mathbf{i}} + (-2-1)\hat{\mathbf{j}} + (1+1)\hat{\mathbf{k}}$ $=\hat{\mathbf{i}}-3\hat{\mathbf{j}}+2\hat{\mathbf{k}}$ $|\overrightarrow{\mathbf{AB}}| = \sqrt{1^2 + (-3)^2 + 2^2}$ $=\sqrt{1+9+4}=\sqrt{14}$ $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$ $= (1-3)\hat{\mathbf{i}} + (4+2)\hat{\mathbf{j}} + (-3-1)\hat{\mathbf{k}}$ $= -2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ $|\vec{\mathbf{BC}}| = \sqrt{(-2)^2 + 6^2 + (-4)^2}$ $=\sqrt{4+36+16}=\sqrt{56}$ $\overrightarrow{\mathbf{CA}} = \overrightarrow{\mathbf{OA}} - \overrightarrow{\mathbf{OC}}$ $= (2-1)\hat{i} + (1-4)\hat{j} + (-1+3)\hat{k}$ $= \hat{i} - 3\hat{j} + 2\hat{k}$

 $|\vec{\mathbf{CA}}| = \sqrt{1^2 + (-3)^2 + (2)^2}$ $=\sqrt{1+9+4}=\sqrt{14}$ It is clear that two sides of a triangle are equal. ∴ Points *A*, *B*, *C* from an isosceles triangle. 304 (b) The component of \vec{a} along \vec{b} is given by $\left\{\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^{2}}\right\} = \frac{18}{25}\left(3\hat{j} + 4\hat{k}\right)$ 305 (a) It is given that \vec{c} and \vec{d} are collinear vectors $\therefore \vec{c} = \lambda \vec{d}$ for some scalar λ $\Rightarrow (x-2)\vec{a} + \vec{b} = \lambda \{(2x+1)\vec{a} - \vec{b}\}$ $\Rightarrow \{x - 2 - \lambda(2x + 1)\}\vec{a} + (\lambda + 1)\vec{b} = \vec{0}$ $\Rightarrow \lambda + 1 = 0$ and $x - 2 - \lambda(2x + 1) = 0$ [:: \vec{a}, \vec{b}] are non-collinear] $\Rightarrow \lambda = -1 \text{ and } x = \frac{1}{3}$ 306 (a) Equation of plane is $\vec{\mathbf{r}} \cdot \hat{\mathbf{n}} = d$, where *d* is the perpendicular distance of the plane from origin \therefore Required plane is $(\alpha x + \beta y + \gamma z) = p$ 307 (c) In $\Delta A BC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC}$ $\Rightarrow \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$ AD is parallel to BC and AD = 2 BC $\therefore \overrightarrow{\mathbf{AD}} = 2\overrightarrow{\mathbf{b}}$ In $\triangle ACD$, $\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$ $\Rightarrow \vec{CD} = 2\vec{b} - (\vec{a} + \vec{b}) = \vec{b} - \vec{a}$ Now, $\overrightarrow{\mathbf{CE}} = \overrightarrow{\mathbf{CD}} + \overrightarrow{\mathbf{DE}} = \overrightarrow{\mathbf{b}} - 2\overrightarrow{\mathbf{a}}$ 309 (d) Let $\vec{\mathbf{R}}_1 = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $\mathbf{\vec{R}}_2 = \mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$ R_2 $\therefore \vec{\mathbf{R}} (\text{along } \vec{\mathbf{AC}}) = \vec{\mathbf{R}}_1 + \vec{\mathbf{R}}_2 = 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{a}} (\text{unit vector angle } \vec{AC}) = \frac{\vec{R}}{|\vec{R}|} = \frac{3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}}{\sqrt{9 + 36 + 4}}$

 $=\frac{1}{7}\left(3\hat{\mathbf{i}}+6\hat{\mathbf{j}}-2\hat{\mathbf{k}}\right)$ 311 (b) Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors. Therefore, $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors $\therefore x\vec{a} + y\vec{b} + z\vec{c} = \vec{0} \Rightarrow x = y = z = 0$ 312 (a) Suppose point $\hat{i} + 2\hat{j} + 3\hat{k}$ divides the join of points $-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ and $7\hat{\imath} - \hat{k}$ in the ratio $\lambda : 1$. Then. $\hat{i} + 2\hat{j} + 3\hat{k} = \frac{\lambda(7\hat{i} - \hat{k}) + (-2\hat{i} + 3\hat{j} + 5\hat{k})}{\lambda + 1}$ $\Rightarrow (\lambda + 1)\hat{\imath} + 2(\lambda + 1)\hat{\jmath} + 3(\lambda + 1)\hat{k}$ $= (7\lambda - 2)\hat{\imath} + 3\hat{\jmath} + (-\lambda + 5)\hat{k}$ $\Rightarrow \lambda + 1 = 7\lambda - 2, 2(\lambda + 1) = 3 \text{ and } 3(\lambda + 1) =$ $-\lambda + 5$ $\Rightarrow \lambda = \frac{1}{2}$ Hence, required ratio is 1 : 2 313 (d) Clearly, $\vec{a} - \vec{b} + \vec{b} - \vec{c} + \vec{c} - \vec{a} = \vec{0}$ $\therefore \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}$ are coplanar $\Rightarrow \left(\vec{a} - \vec{b}\right) \cdot \left\{ \left(\vec{b} \cdot \vec{c}\right) \times \left(\vec{c} - \vec{a}\right) \right\} = 0$ 314 (d) Two given lines intersect, if $7\hat{i} + 10\hat{j} + 13\hat{k} + s(2\hat{i} + 3\hat{j} + 4\hat{k})$ $= 3\hat{i} + 5\hat{j} + 7\hat{k} + t(\hat{i} + 2\hat{j} + 3\hat{k})$ $\Rightarrow (7+2s)\hat{\mathbf{i}} + (10+3s)\hat{\mathbf{j}} + (13+4s)\hat{\mathbf{k}}$ $= (3 + t)\hat{\mathbf{i}} + (5 + 2t)\hat{\mathbf{j}} + (7 + 3t)\hat{\mathbf{k}}$ \Rightarrow 7 + 2s = 3 + t $\Rightarrow 2s - t = -4$...(i) 10 + 3s = 5 + 2t \Rightarrow 3s - 2t = -5 ...(ii) and 13 + 4s = 7 + 3t \Rightarrow 4s - 3t = -6 ...(iii) On solving Eqs. (i) and (iii), we get s = -3, t = -2∴ Required line is $7\hat{i} + 10\hat{j} + 13\hat{k} + (-3)[2\hat{i} + 3\hat{j} + 4\hat{k}]$ $\Rightarrow \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is the required line. 316 (c) Given that, $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$ Let $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then $\vec{\mathbf{r}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}} \Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{b}}) \times \vec{\mathbf{a}} = \vec{\mathbf{0}}$ Now, $\vec{\mathbf{r}} - \vec{\mathbf{b}} = (x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) - (2\hat{\mathbf{i}} - \hat{\mathbf{k}})$ $= (x-2)\hat{i} + y\hat{j} + (z+1)\hat{k}$

 $\therefore (\vec{\mathbf{r}} - \vec{\mathbf{b}}) \times \vec{\mathbf{a}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x - 2 & y & z + 1 \\ 1 & 1 & 0 \end{vmatrix} = \vec{\mathbf{0}}$ $\Rightarrow -(z+1)\hat{\mathbf{i}} + (z+1)\hat{\mathbf{j}} + (x-2-y)\hat{\mathbf{k}} = \vec{\mathbf{0}}$ On equating the coefficient of \hat{i} , \hat{j} and \hat{k} , we get z = -1, x - y = 2....(i) Now, $\vec{\mathbf{r}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} \Rightarrow (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \vec{\mathbf{0}}$ And $\vec{r} - \vec{a} = (x - 1)\hat{i} + (y - 1)\hat{j} + z\hat{k}$ $\therefore (\vec{\mathbf{r}} - \vec{\mathbf{a}}) \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x - 1 & y - 1 & z \\ 2 & 0 & 1 \end{vmatrix} = \vec{\mathbf{0}}$ $\Rightarrow (-y+1)\hat{\mathbf{i}} - \hat{\mathbf{j}}(-x+1-2z) + (-2y+2)\hat{\mathbf{k}} = \vec{\mathbf{0}}$ \Rightarrow y = 1, x + 2z = 1 ...(ii) From Eqs. (i) and (ii), we get x = 3, y = 1 z = -1 $\therefore \vec{\mathbf{r}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 317 (a) Given, $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = \vec{\mathbf{B}} \times (\vec{\mathbf{C}} \times \vec{\mathbf{A}}) \dots (i)$ Also, $[\vec{A} \ \vec{B} \ \vec{C}] \neq 0$ *ie*. $\vec{A}, \vec{B}, \vec{C}$ are not coplanar. ∴From Eq. (i) $(\vec{\mathbf{A}} \cdot \vec{\mathbf{C}}) - (\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})\vec{\mathbf{C}} = (\vec{\mathbf{B}} \cdot \vec{\mathbf{A}})\vec{\mathbf{C}} - (\vec{\mathbf{B}} \cdot \vec{\mathbf{C}})\vec{\mathbf{A}}$ $\Rightarrow (\vec{B} \cdot \vec{C})\vec{A} + (\vec{A} \cdot \vec{C})\vec{B} - [(\vec{A} \cdot \vec{B}) + (\vec{B} \cdot \vec{C})]\vec{C} = \vec{0}$ $\Rightarrow \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{C} = \vec{A} \cdot \vec{B} = \vec{0}$ $\left[\because \left[\vec{\mathbf{A}} \ \vec{\mathbf{B}} \ \vec{\mathbf{C}} \right] \neq 0 \right]$ Now, consider $\vec{\mathbf{A}} \times (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = (\vec{\mathbf{A}} \cdot \vec{\mathbf{C}})\vec{\mathbf{B}} - (\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})\vec{\mathbf{C}}$ $= 0 \cdot \vec{\mathbf{B}} - 0 \cdot \vec{\mathbf{C}} = \vec{\mathbf{0}}$ 319 (a) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix}$ Applying $C_3 \to C_3 + C_1$ = $\begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1 + x \end{vmatrix}$ = 1[1 + x - x] = 1 Hence, $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ does not depend upon neither x nor y. 320 **(b)** The required vector is given by $\hat{n} = \frac{A\vec{B} \times A\vec{C}}{|A\vec{B} \times A\vec{C}|} = \frac{\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$ 321 (d) $(\vec{a} - \vec{b}) \cdot (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})$ $= (\vec{a} - \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a}]$ $= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) - \vec{b}$ $\cdot (\mathbf{\vec{b}} \times \mathbf{\vec{c}}) - \mathbf{\vec{b}} \cdot (\mathbf{\vec{b}} \times \mathbf{\vec{a}}) - \mathbf{\vec{b}} \cdot (\mathbf{\vec{c}} \times \mathbf{\vec{a}})$ $= \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{a} \cdot (\vec{b} \times \vec{c})$ $= \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$

322 (b) \vec{a} , \vec{b} and \vec{c} are coplanar vectors, so $2\vec{a} - \vec{b} 2\vec{b} - \vec{b} \vec{c}$ \vec{c} and $2\vec{c} - \vec{a}$ are also coplanar. Thus $\begin{bmatrix} 2 \vec{\mathbf{a}} - \vec{\mathbf{b}} \ 2 \vec{\mathbf{b}} \ - \vec{\mathbf{c}} \ 2 \vec{\mathbf{c}} - \vec{\mathbf{a}} \end{bmatrix} = 0$ 323 **(b)** Clearly, angle between \vec{a} and $\vec{b} = \frac{\pi}{2}$ $\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ $\therefore \left| \vec{\mathbf{a}} + \vec{\mathbf{b}} \right|^2 = a^2 + b^2 + 2\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$ = 1 + 1 + 0 = 2 \Rightarrow $|\vec{a} + \vec{b}| = \sqrt{2}$ 325 (d) Given, $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = -\frac{1}{\Lambda} |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \vec{\mathbf{a}}$ $\Rightarrow (\vec{\mathbf{c}} \cdot \vec{\mathbf{a}})\vec{\mathbf{b}} - (\vec{\mathbf{c}} \cdot \vec{\mathbf{b}})\vec{\mathbf{a}} = -\frac{1}{4}|\vec{\mathbf{b}}||\vec{\mathbf{c}}|\vec{\mathbf{a}}$ On comparing both sides, we get $(\vec{\mathbf{c}}\cdot\vec{\mathbf{a}})\vec{\mathbf{b}}=0$ $|\vec{\mathbf{c}}|\vec{\mathbf{a}}|\cos\theta = 0$ $\Rightarrow \theta = \frac{\pi}{2}$ 326 (c) Now, $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \times (\hat{\mathbf{i}} + \hat{\mathbf{j}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$ $=\hat{i}(-1) + \hat{j}(1) + \hat{k}(0) = -\hat{i} + \hat{j}$ and $|(\hat{i} + \hat{j} + \hat{k}) \times (\hat{i} + \hat{j})| = \sqrt{1^2 + 1^2} = \sqrt{2}$ Vector perpendicular to both of the vectors $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ $=\frac{\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\right)\times\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}\right)}{\left|\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\right)\times\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}\right)\right|}$ $=\frac{-\hat{i}+\hat{j}}{\sqrt{2}}=\frac{-1}{\sqrt{2}}(\hat{i}-\hat{j})$ $= c(\hat{\mathbf{i}} - \hat{\mathbf{j}}), c$ is a scalar. 327 (b) It is given that $(\vec{a} + \vec{b}) || \vec{c}$ and $(\vec{c} + \vec{a}) || \vec{b}$ $\therefore (\vec{a} + \vec{b}) \times \vec{c} = 0$ and $(\vec{c} + \vec{a}) \times \vec{b} = 0$ $\Rightarrow \vec{a} \times \vec{c} + \vec{b} \times \vec{c} = 0$ and $\vec{c} \times \vec{b} + \vec{a} \times \vec{b} = 0$ $\Rightarrow \vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ Hence, \vec{a} , \vec{b} , \vec{c} form the sides of a triangle 328 (a) \therefore Displacement, $\overrightarrow{AB} = (3-2)\hat{i} + (1+1)\hat{j} + (1+1)\hat{j}$ $(2-1)\hat{k}$ $=\hat{\mathbf{i}}+2\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and force, $\vec{\mathbf{F}} = \frac{\sqrt{6}(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})}{\sqrt{6}}$ $=(\hat{\mathbf{i}}+2\hat{\mathbf{j}}+\hat{\mathbf{k}})$ $\therefore \text{ Work done} = \vec{\mathbf{F}} \cdot \vec{\mathbf{AB}} = (1 + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot \vec{\mathbf{k}}$

 $(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 6$ 329 (c) let $\vec{\mathbf{a}} = l\hat{\mathbf{i}} + m\hat{\mathbf{j}} + n\hat{\mathbf{k}}$ makes an angle $\frac{\pi}{4}$ with *z*-axis Also, $l^2 + m^2 + n^2 = 1$ Here, $n = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, $l^2 + m^2 = \frac{1}{2}$ (i) $\therefore \quad \vec{\mathbf{a}} = l\hat{\mathbf{i}} + m\hat{\mathbf{j}} + \frac{\hat{\mathbf{k}}}{\sqrt{2}}$ $\Rightarrow \vec{\mathbf{a}} + \hat{\mathbf{i}} + \hat{\mathbf{j}} = (l+1)\hat{\mathbf{i}}(m+1)\hat{\mathbf{j}} + \frac{\mathbf{k}}{\sqrt{2}}$ $\Rightarrow \left|\vec{\mathbf{a}} + \hat{\mathbf{i}} + \hat{\mathbf{j}}\right| = \sqrt{(l+1)^2 + (m+1)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}$ $\implies 1 = l^2 + m^2 + 2 + 2l + 2m + \frac{1}{2}$ $\Rightarrow l + m = -1$ (From Eq. (i) $\implies l^2 + m^2 + 2lm = 1$ $\Rightarrow 2lm = \frac{1}{2}$ $\Rightarrow l = m = -\frac{1}{2}$ $\left(: l = m = \frac{1}{2}\right)$, is not satisfied the given equition $\therefore \vec{\mathbf{a}} = -\frac{\hat{\mathbf{i}}}{2} - \frac{\hat{\mathbf{j}}}{2} + \frac{\hat{\mathbf{k}}}{\sqrt{2}}$ 330 (b) Given, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 + |\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|^2 = 144$ $\Rightarrow |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 (\sin^2\theta + \cos^2\theta) = 144$ $\Rightarrow 16 |\vec{\mathbf{b}}|^2 = 144$ $\Rightarrow |\mathbf{\vec{b}}| = 3$ 331 (c) Since, $m \vec{a}$ is a unit vector, if and only, if $|m \vec{\mathbf{a}}| = 1 \Rightarrow |m| |\vec{\mathbf{a}}| = 1 \Rightarrow m |\vec{\mathbf{a}}| = 1$ $\Rightarrow m = \frac{1}{|\vec{a}|}$ 332 (b) Resultant force \vec{F} is given by $\vec{F} = (2\hat{\imath} - 5\hat{\jmath} + 6\hat{k}) - (-\hat{\imath} + 2\hat{\jmath} - \hat{k}) = \hat{\imath} - 3\hat{\jmath} + 5\hat{k}$ Let \vec{d} be the displacement vector. Then, $\vec{d} = A\vec{B}$ $\Rightarrow \vec{d} = (6\hat{\imath} + \hat{\jmath} - 3\hat{k}) - (4\hat{\imath} - 3\hat{\jmath} - 2\hat{k})$ $=2\hat{\imath}+4\hat{\jmath}-\hat{k}$ $\therefore W =$ Work done $\Rightarrow W = \vec{F} \cdot \vec{d}$ $\Rightarrow W = (\hat{\imath} - 3\hat{\jmath} + 5\hat{k}) \cdot (2\hat{\imath} + 4\hat{\jmath} - \hat{k})$ $\Rightarrow W = 2 - 12 - 5 = -15$ units 333 (d) Since, P, Q, R are collinear. Therefore, $\vec{P}Q = m Q \vec{R}$ for same scalar m

 $\Rightarrow -2\hat{j} = m[(a-1)\hat{i} + (\vec{b}+1)\hat{j} + c\hat{k}]$ for some non-zero scalar m $\Rightarrow (a-1)m = 0, (b+1)m = -2, cm = 0$ $\Rightarrow a = 1, c = 0, b \in R$ 334 (b) The direction cosines of a vector making equal angles with the coordinate axes are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ Therefore, the unit vector along the vector making equal angles with the coordinate axes is $\vec{b} = \frac{1}{\sqrt{2}}\hat{\iota} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$ \therefore Projection of \vec{a} on $\vec{b} = \vec{a} \cdot \vec{b}$ $= (4\hat{\imath} - 3\hat{\jmath} + 2\hat{k}) \cdot \left(\frac{1}{\sqrt{3}}\hat{\imath} + \frac{1}{\sqrt{3}}\hat{\jmath} + \frac{1}{\sqrt{3}}\hat{k}\right)$ $=\frac{4-3+2}{\sqrt{2}}=\sqrt{3}$ 335 (a) $[2 \hat{i} 3\hat{j} - 5\hat{k}]$ $= -30 \left[\hat{\mathbf{i}} \; \hat{\mathbf{j}} \; \hat{\mathbf{k}} \right]$ = -30 (: $[\hat{\mathbf{i}} \ \hat{\mathbf{j}} \ \hat{\mathbf{k}}] = 1$) 336 (b) We have, $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) \cdot \vec{d}$ $= \left\{ \left(\left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right) \vec{a} - \left(\left(\vec{a} \times \vec{b} \right) \cdot \vec{a} \right) \vec{c} \right\} \cdot \vec{d}$ $= \{ [\vec{a} \ \vec{b} \ \vec{c}] \vec{a} - 0 \} \cdot \vec{d} = [\vec{a} \ \vec{b} \ \vec{c}] (\vec{a} \cdot \vec{d})$ 337 (d) Resultant force $\vec{\mathbf{F}} = (2\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 6\hat{\mathbf{k}}) +$ $(-\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}})$ $=\hat{\mathbf{i}}-3\hat{\mathbf{j}}+5\hat{\mathbf{k}}$ and displacement, $\vec{\mathbf{d}} = (6\hat{\mathbf{i}} + \hat{\mathbf{j}} - 3\hat{\mathbf{k}}) (4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 2\hat{\mathbf{k}})$ $= 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - \hat{\mathbf{k}}$ \therefore work done $W = \vec{\mathbf{F}} \cdot \vec{\mathbf{d}}$ $= (\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - \hat{\mathbf{k}})$ = -15= 15 units [neglecting - ve sign] 338 (a) The resultant force is given by $\vec{F} = 6\frac{\left(\hat{\iota} - 2\hat{j} + 2\hat{k}\right)}{\sqrt{1+4+4}} + 7\frac{\left(2\hat{\iota} - 3\hat{j} - 6\hat{k}\right)}{\sqrt{4+9+36}}$ $=4\hat{i}-7\hat{i}-2\hat{k}$ \vec{d} = Displacement = $\vec{P}Q$ $\vec{d} = (5\hat{\imath} - \hat{\jmath} + \hat{k}) - (2\hat{\imath} - \hat{\jmath} - 3\hat{k}) = 3\hat{\imath} + 4\hat{k}$ \therefore Work done = $\vec{F} \cdot \vec{d} = 12 + 0 - 8 = 4$ units 339 (c) We know, $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$

$$= (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \cdot [(\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}})]$$

$$= (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \cdot [((\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \cdot \vec{\mathbf{b}})\vec{\mathbf{a}} - ((\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \cdot \vec{\mathbf{a}})\vec{\mathbf{b}}]$$

$$= (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \cdot ([\vec{\mathbf{c}} \vec{\mathbf{a}} \vec{\mathbf{b}}]\vec{\mathbf{a}} - [\vec{\mathbf{c}} \vec{\mathbf{a}} \vec{\mathbf{a}}]\vec{\mathbf{b}})$$

$$= (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \cdot \vec{\mathbf{a}}[\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}] - 0$$

$$= [\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}][\vec{\mathbf{a}} \vec{\mathbf{b}} \vec{\mathbf{c}}]$$

340 **(d)**

 \therefore $\overrightarrow{\mathbf{QP}}$ is parallel to $\overrightarrow{\mathbf{AB}}$ and $\overrightarrow{\mathbf{DC}}$.

$$\therefore \ \overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{DC}} = \overrightarrow{\mathbf{QP}} + \overrightarrow{\mathbf{QP}} = 2\overrightarrow{\mathbf{QP}}$$

341 (a)

Taking *A* as the origin, let the position vectors of *B* and *C* be \vec{b} and \vec{c} respectively

$$\therefore \vec{B}E + \vec{A}F = \left(\frac{\vec{c}}{2} - \vec{b}\right) + \left(\frac{\vec{b} + \vec{c}}{2} - \vec{0}\right) = \vec{c} - \frac{\vec{b}}{2}$$
$$= \vec{D}C$$

342 (a)

Since, \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors. $\Rightarrow |\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ (i) Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$ $= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ = 1 + 1 + 1 + 0 = 3 [from Eq. (i)] $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$

343 **(c)**

Any vector lying in the plane of \vec{a} and \vec{b} is of the from $x\vec{a} + y\vec{b}$

It is given that \vec{c} is parallel to the plane of \vec{a} and \vec{b} $\therefore \vec{c} = \lambda(x\vec{a} + y\vec{b})$ for some scalar λ $\Rightarrow d\hat{\imath} + \hat{\jmath} + (2d - 1)\hat{k}$ $= \lambda \{ x(\hat{\imath} - 2\hat{\jmath} + 3\hat{k}) \}$ $+ y(3\hat{\imath} + 3\hat{\jmath} - \hat{k})$ $\Rightarrow d\hat{\imath} + \hat{\jmath} + (2d-1)\hat{k}$ $= \lambda \{ (x + 3y)\hat{i} + (-2x + 3y)\hat{j} \}$ $+(3x-y)\hat{k}$ $\Rightarrow \lambda(x + 3y) = d, \lambda(-2x + 3y) = 1$ and $\lambda(3x - y) = (2d - 1)$ $[: \hat{\imath}, \hat{\jmath}, \hat{k} \text{ are non} - \text{coplanar}]$ Solving $\lambda(x + 3y) = d$ and 3x - y = 2d - 1, we get $x = \frac{7d-3}{10\lambda}$ and $y = \frac{d+1}{10\lambda}$ Substituting these values in $\lambda(x + 3y) = d$, we get 11d = -1ALTER clearly, \vec{c} is perpendicular to $\vec{a} \times \vec{b}$

 $\therefore \vec{c} \cdot \left(\vec{a} \times \vec{b} \right) = 0$ $\Rightarrow \begin{bmatrix} \vec{c}\vec{a}\vec{b} \end{bmatrix} = 0 \Rightarrow \begin{vmatrix} d & 1 & 2d-1 \\ 1 & -2 & 3 \\ 3 & 3 & -1 \end{vmatrix} = 0 \Rightarrow 11d$ 344 (c) $\vec{\mathbf{p}}, \vec{\mathbf{q}}, \vec{\mathbf{r}}$ are reciprocal vectors $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ respectively. $\vec{\mathbf{p}} \cdot \vec{\mathbf{a}} = 1, \vec{\mathbf{p}} \cdot \vec{\mathbf{b}} = 0, \vec{\mathbf{p}} \cdot \vec{\mathbf{c}}$ etc. $\therefore (l\vec{\mathbf{a}} + m\vec{\mathbf{b}} + n\vec{\mathbf{c}}) \cdot (l\vec{\mathbf{p}} + m\vec{\mathbf{q}} + n\vec{\mathbf{r}})$ $= l^2 + m^2 + n^2$ 345 (b) Given expression = $2(1 + 1 + 1) - 2\sum (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$ $= 6 - 2\sum (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$...(i) But $(\vec{a} + \vec{b} + \vec{c})^2 \ge 0$ $\therefore (1+1+1) + 2\sum \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \ge 0$ $\therefore 3 \ge -2\sum \vec{a} \cdot \vec{b}$...(ii) From relations (i) and (ii), we get Given expression $\leq 6 + 3 = 9$ 346 (a) Let $\overrightarrow{\mathbf{OA}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{OB}} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ $\therefore \overrightarrow{\mathbf{AB}} = 2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ \therefore work don, $W = \vec{\mathbf{F}} \cdot \overrightarrow{\mathbf{AB}}$ $= (2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ = 4 - 6 + 4 = 2347 (d) $\overrightarrow{AC} = (a\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}) - (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}) = (a - 2)\hat{\mathbf{i}} - 2\hat{\mathbf{j}}$ and $\overrightarrow{BC} = (a\hat{i} - 3\hat{j} + \hat{k}) - (\hat{i} - 3\hat{j} - 5\hat{k}) =$ $(a-1)\hat{i} + 6\hat{k}$ Since, the $\triangle ABC$ is right angled at *C*, then $\overrightarrow{\mathbf{AC}} \cdot \overrightarrow{\mathbf{BC}} = 0$ $\Rightarrow \{(a-2)\hat{\mathbf{i}} - 2\hat{\mathbf{j}}\} \cdot \{(a-1)\hat{\mathbf{i}} + 6\hat{\mathbf{k}}\} = 0$ $\Rightarrow (a-2)(a-1) = 0 \Rightarrow a = 1$ and 2 348 (a) We have, $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ $\Leftrightarrow -\vec{c} \times (\vec{a} \times \vec{b}) = \vec{a} \times (\vec{b} \times \vec{c})$ $\Leftrightarrow -\{(\vec{c} \cdot \vec{b})\vec{a} - (\vec{c} \cdot \vec{a})\vec{b}\} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ $\Leftrightarrow (\vec{a} \cdot \vec{b})\vec{c} - (\vec{c} \cdot \vec{b})\vec{a} = 0$ $\Leftrightarrow (\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a} = 0$ $\Leftrightarrow \vec{b} \times (\vec{c} \times \vec{a}) = 0$ 349 (b) Clearly, $(\vec{a}+\vec{b})\times\{\vec{c}-(\vec{a}+\vec{b})\}$ $= (\vec{a} + \vec{b}) \times \vec{c} - (\vec{a} + \vec{b}) \times (\vec{a} + \vec{b}) = (\vec{a} + \vec{b}) \times \vec{c}$ 350 (a) $\overrightarrow{\mathbf{PQ}} = (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) - (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$

 $=\hat{i}+\hat{k}$ and $\vec{\mathbf{F}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ \therefore Moment = $|\vec{PQ} \times \vec{F}|$ $= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 1 \\ 3 & 2 & -4 \end{vmatrix}$ $= -2\hat{i} + 7\hat{j} + 2\hat{k}$: Magnitude of moment = $\sqrt{4 + 49 + 4} = \sqrt{57}$ 351 (b) Since, $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| = \sqrt{3}$ $\Rightarrow |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = 3$ $\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \frac{1}{2} \dots (i)$ \therefore $[|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = 1$, given] $\therefore (3\vec{\mathbf{a}} - 4\vec{\mathbf{b}}) \cdot (2\vec{\mathbf{a}} + 5\vec{\mathbf{b}}) = 6 + 7\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} - 20$ $=6+\frac{7}{2}-20$ $=-\frac{21}{2}$ [from Eq. (i)] 352 (c) We have, $\hat{a} \times \left(\hat{b} \times \hat{c}\right) = \frac{1}{2}\hat{b}$ $\Rightarrow (\hat{a} \cdot \hat{c})\hat{b} - (\hat{a} \cdot \hat{b})\hat{c} = \frac{1}{2}\hat{b}$ $\Rightarrow \left\{ (\hat{a} \cdot \hat{c}) - \frac{1}{2} \right\} \hat{b} - (\hat{a} \cdot \hat{b}) \hat{c} = 0$ $\Rightarrow \hat{a} \cdot \hat{c} - \frac{1}{2} = 0 \text{ and } \hat{a} \cdot \hat{b}$ $= 0 \left[\frac{\because \hat{b}, \hat{c}}{\text{are non} - \text{collinear vectors}} \right]$ $\Rightarrow \cos \theta = \frac{1}{2}$, where θ is the angle between \hat{a} and \hat{c} $\Rightarrow \theta = \pi/3$ 354 (b) The given line is parallel to the vector \vec{n} $=\hat{i}-\hat{i}$ + $2\hat{\mathbf{k}}$. The required plane passing through the point $(2, 3, 1)ie, 2\hat{i} + 3\hat{j}$ $+\hat{\mathbf{k}}$ and is perpendicular to the vector $\vec{\mathbf{n}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ ∴ Its equation is $\left[\left(\vec{\mathbf{r}} - (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}})\right] \cdot \left(\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) = 0$ $\Rightarrow \vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) = 1$ 355 (c) $(\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a})$ $= \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \times (\vec{c} \times \vec{a})$ $= \left[\vec{a} \, \vec{b} \, \vec{c} \right] - \left[\vec{b} \, \vec{c} \, \vec{a} \right] = 0$ 356 (a) We have,

 $|\hat{n}_1 + \hat{n}_2|^2 = |\hat{n}_1| + |\hat{n}_2| + 2\hat{n}_1 \cdot \hat{n}_2$ $\Rightarrow |\hat{n}_1 + \hat{n}_2|^2 = |\hat{n}_1|^2 + |\hat{n}_2|^2 + 2|\hat{n}_1| + |\hat{n}_2|\cos\theta$ $\Rightarrow |\hat{n}_1 + \hat{n}_2|^2 = 1 + 1 + 2\cos\theta = 4\cos^2\frac{\theta}{2}$ $\therefore \cos\frac{\theta}{2} = \frac{1}{2}|\hat{n}_1 + \hat{n}_2|$ 357 (d) Let $\vec{\mathbf{R}}_1 = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ R and $\vec{\mathbf{R}}_2 = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ \therefore $\vec{\mathbf{R}}$ (along $\vec{\mathbf{AC}}$) = $\vec{\mathbf{R}}_1 + \vec{\mathbf{R}}_2$ $= 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ \therefore $\vec{\mathbf{a}}$ (unit vector along AC) = $\frac{\mathbf{R}}{|\vec{\mathbf{R}}|}$ $=\frac{3\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{9+36+4}}$ $=\frac{1}{7}(3\hat{\mathbf{i}}+6\hat{\mathbf{j}}-2\hat{\mathbf{k}})$ 358 (a) Let $P(60\hat{i} + 3\hat{j})$, $Q(40\hat{i} - 8\hat{j})$ and $R(a\hat{i} - 52\hat{j})$ be the collinear points. Then $\overrightarrow{\mathbf{PQ}} = \lambda \overrightarrow{\mathbf{QR}}$ for some scalar λ $\Rightarrow (-20\hat{\mathbf{i}} - 11\hat{\mathbf{j}}) = \lambda [(a - 40)\hat{\mathbf{i}} - 44\hat{\mathbf{j}}]$ $\Rightarrow \lambda(a-40) = -20, -44\lambda = -11$ $\Rightarrow \lambda(a-40) = -20, \lambda = \frac{1}{4}$ $\therefore a - 40 = -20 \times 4 \Longrightarrow a = -40$ 359 (a) We have, $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$ and $\vec{b} + \vec{c} + \vec{d} = \beta \vec{a}$ $\Rightarrow \vec{a} + \vec{b} + \vec{c} + \vec{d} = (\alpha + 1)\vec{d}$ and $\vec{a} + \vec{b} + \vec{c} + \vec{c}$ $\vec{d} = (\beta + 1)\vec{a}$ $\Rightarrow (\alpha + 1)\vec{d} = (\beta + 1)\vec{a}$ If $\alpha \neq -1$, then $(\alpha+1)\vec{d} = (\beta+1)\vec{a} \Rightarrow \vec{d} = \frac{\beta+1}{\alpha+1}\vec{a}$ $\therefore \vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$ $\Rightarrow \vec{a} + \vec{b} + \vec{c} = \alpha \left(\frac{\beta + 1}{\alpha + 1}\right) \vec{a}$ $\Rightarrow \left\{1 - \frac{\alpha(\beta+1)}{\alpha+1}\right\}\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar It is a contradiction to the given condition $\therefore \alpha = -1 \Rightarrow \vec{a} + \vec{b} + \vec{c} = 0$ 360 (c)

Let the unit vector $\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}}}{\sqrt{2}}$ is perpendicular to $\hat{\mathbf{i}}$ $-\hat{\mathbf{j}}$, then we get $\frac{\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}\right)\cdot\left(\hat{\mathbf{i}}-\hat{\mathbf{j}}\right)}{\sqrt{2}} = \frac{1-1}{\sqrt{2}} = 0$ $\therefore \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$ is the unit vector 361 (c) We have. $\vec{r} \cdot \vec{a} = 0 \Rightarrow \vec{r} \perp \vec{a}$ $\vec{r} \cdot \vec{b} = 0 \Rightarrow \vec{r} \perp \vec{b}$ $\vec{r} \cdot \vec{c} = 0 \Rightarrow \vec{r} \perp \vec{c}$ $\Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$ Hence, $\left[\vec{a}\vec{b}\vec{c}\right] = 0$ 362 (b) $\cos\frac{\pi}{3} = \frac{\left(\hat{\mathbf{i}} + \hat{\mathbf{k}}\right) \cdot \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + a\hat{\mathbf{k}}\right)}{\sqrt{2}\sqrt{1 + 1 + a^2}}$ $\Rightarrow \frac{1}{2} = \frac{1+a}{\sqrt{2}\sqrt{2+a^2}}$ $\Rightarrow \frac{1}{4} = \frac{(1+a)^2}{2(2+a^2)}$ $\Rightarrow 2 + a^2 = 2(1 + a^2 + 2a)$ $\Rightarrow a^2 + 4a = 0$ $\Rightarrow a = 0, -4$ 363 **(b)** Let the required vector be $\vec{a} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ It makes equal angles with the unit vectors $\vec{b} = \frac{1}{3}(\hat{\imath} - 2\hat{\jmath} + 2\hat{k}), \vec{c} = \frac{1}{5}(-4\hat{\imath} - 3\hat{k}) \text{ and } \vec{d} = \hat{\jmath}$ $\therefore \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{d} \quad [\because \vec{b}, \vec{c}, \vec{d} \text{ are unit vectors}]$ $\Rightarrow \frac{1}{3}(x - 2y + 2z) = \frac{1}{5}(-4x - 3z) = y$ $\Rightarrow x - 2y + 2z = 3y$ and -4x - 5y - 3z = 0 $\Rightarrow x - 5y + 2z = 0$ and 4x + 5y + 3z = 0 $\Rightarrow \frac{x}{-5} = \frac{y}{1} = \frac{z}{5} = \lambda$ (say) $\Rightarrow x = -5\lambda, y = \lambda, z = 5\lambda$ for some scalar λ $\Rightarrow \vec{a} = \lambda (-5\hat{\imath} + \hat{\jmath} + 5\hat{k})$ Clearly, option (b) is true for $\lambda = 1$

364 (d) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{vmatrix}$ $= \hat{\mathbf{i}}(4+2) - \hat{\mathbf{j}}(4-1) + \hat{\mathbf{k}}(-4-2)$ $= 6\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$ \Rightarrow $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{36 + 9 + 36} = \sqrt{81} = 9$ ∴ Required vectors are $\pm 6 \left| \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \right|$ $=\pm\frac{6}{9}(6\hat{\mathbf{i}}-3\hat{\mathbf{j}}-6\hat{\mathbf{k}})$ $=\pm 2(2\hat{\mathbf{i}}-\hat{\mathbf{j}}-2\hat{\mathbf{k}})$ 366 (d) (a) Let $\vec{\mathbf{p}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ where at least one of x, y, z is non-zero. Let $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{l}} + a_3\hat{\mathbf{k}}$ $\vec{\mathbf{b}} = b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{l}} + b_3 \hat{\mathbf{k}}$ $\vec{\mathbf{c}} = c_1 \hat{\mathbf{i}} + c_2 \hat{\mathbf{l}} + c_3 \hat{\mathbf{k}}$ ∴ By given conditions $a_1x + a_2y + a_3z = 0$ $b_1 x + b_2 y + b_3 z = 0$ $c_1 x + c_2 y + c_3 z = 0$ $\Rightarrow \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_3 & c_3 \end{vmatrix} = 0$ $\Rightarrow \left[\vec{a} \, \vec{b} \, \vec{c} \right] = 0$ $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar. (b) Vectors are coplanar, if |1 3 0| $\begin{vmatrix} 2 & 0 & 1 \end{vmatrix} = 0$ 0 1 1 $ie_{1}-7=0$ Which is not possible. $(\mathbf{c}) \vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}) \vec{\mathbf{b}} - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \vec{\mathbf{c}}$ $\Rightarrow \vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with \vec{b} and \vec{c} . (d) $|\vec{a}| = |\vec{b}| = 1$ $\therefore \left| \vec{\mathbf{a}} + \vec{\mathbf{b}} \right|^2 = \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right) \cdot \left(\vec{\mathbf{a}} + \vec{\mathbf{b}} \right)$ $= |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + 2\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}$ $= 1 + 1 = 2 \cdot 1 \cdot 1 \cos \frac{\pi}{2} = 3$ \Rightarrow $|\vec{a} + \vec{b}| = \sqrt{3} > 1$ 367 (d) Here, $\vec{a}_1 = 3\hat{i} + 6\hat{j}$, $\vec{a}_2 = -2\hat{i} + 7\hat{k}$ $\mathbf{\vec{b}}_1 = -4\mathbf{\hat{i}} + 3\mathbf{\hat{j}} + 2\mathbf{\hat{k}}$ and $\mathbf{\vec{b}}_2 = -4\mathbf{\hat{i}} + \mathbf{\hat{j}} + \mathbf{\hat{k}}$ Now, $\vec{a}_2 - \vec{a}_1 = \hat{i} - 6\hat{j} + 7\hat{k}$ and

$$\vec{\mathbf{b}}_{1} \times \vec{\mathbf{b}}_{2} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -4 & 1 & 1 \\ -4 & 1 & 1 \end{vmatrix} = \hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$$

$$\Rightarrow |\vec{\mathbf{b}}_{1} \times \vec{\mathbf{b}}_{2}| = \sqrt{1 + 16 + 64} = 9$$
Now,
$$(\vec{\mathbf{a}}_{2} - \vec{\mathbf{a}}_{1}) \cdot (\vec{\mathbf{b}}_{1} \times \vec{\mathbf{b}}_{2})$$

$$= (\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 7\hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 8\hat{\mathbf{k}})$$

$$= 1 + 24 + 56 = 81$$

$$\therefore$$
 Shortest distance,
$$d = \left| \frac{(\vec{\mathbf{a}}_{2} - \vec{\mathbf{a}}_{1}) \cdot (\vec{\mathbf{b}}_{1} \times \vec{\mathbf{b}}_{2}) \right|$$

$$= \frac{81}{9} = 9 \text{ unit}$$
368 (b)
We know that a vector perpendicular to the plane containing the points $\vec{\mathbf{A}}, \vec{\mathbf{B}}, \vec{\mathbf{C}}$ is given by
$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} + \vec{\mathbf{B}} \times \vec{\mathbf{C}} + \vec{\mathbf{C}} \times \vec{\mathbf{A}}.$$
Given, $\vec{\mathbf{A}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}, \vec{\mathbf{B}} = 2\hat{\mathbf{i}} + 0\hat{\mathbf{j}} - \hat{\mathbf{k}}$
and $\vec{\mathbf{C}} = 0\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$
Now,
$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \hat{\mathbf{j}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -1 & 2 \\ 2 & 0 & -1 \end{vmatrix} = \hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$

$$\vec{\mathbf{B}} \times \vec{\mathbf{C}} = \begin{vmatrix} \hat{\mathbf{j}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 2 & 1 \end{vmatrix} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$
Now,
$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 2 & 1 \end{vmatrix} = 5\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$$
Thus,
$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} + \vec{\mathbf{B}} \times \vec{\mathbf{C}} + \vec{\mathbf{C}} \times \vec{\mathbf{A}}$$

$$= (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + (2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) + (5\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$$

$$= 8\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$
369 (c)
Given,
$$(\vec{\mathbf{a}} \times \vec{\mathbf{b}) \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = \frac{1}{4}$$

$$\Rightarrow 0 = \frac{\pi}{6}$$
370 (b)
Given that, $|\vec{\mathbf{a}}| = 3, |\vec{\mathbf{b}}| = 4 \text{ and } \vec{\mathbf{a}} + \lambda \vec{\mathbf{b}} \text{ is perpendicular to } \vec{\mathbf{a}} - \lambda \vec{\mathbf{b}} = 0$

$$\Rightarrow |\vec{\mathbf{a}}|^2 - \lambda^2|\vec{\mathbf{b}}|^2 = 0$$

 $\Rightarrow \lambda^{2} = \frac{|\vec{\mathbf{a}}|^{2}}{|\vec{\mathbf{b}}|^{2}} \Rightarrow \lambda = \frac{|\vec{\mathbf{a}}|}{|\vec{\mathbf{b}}|} = \frac{3}{4}$ 371 (a) $(\vec{x} - \vec{y}) \times (\vec{x} + \vec{y})$ $= \vec{\mathbf{x}} \times \vec{\mathbf{x}} + \vec{\mathbf{x}} \times \vec{\mathbf{y}} - \vec{\mathbf{y}} \times \vec{\mathbf{x}} - \vec{\mathbf{y}} \times \vec{\mathbf{y}}$ $= \vec{0} + \vec{x} \times \vec{y} + \vec{x} \times \vec{y} - \vec{0}$ $= 2(\vec{\mathbf{x}} \times \vec{\mathbf{y}})$ 372 (a) $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = 0$ $\Rightarrow \lambda - 1 + 2\mu = 0$ $\Rightarrow \lambda + 2\mu = 1$...(i) $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 0$ $\Rightarrow 2\lambda + 4 + \mu = 0$ $\Rightarrow 2\lambda + \mu = -4....(ii)$ On solving Eqs. (i) and (ii), we get $\lambda - 3, \mu = 2$ 375 (b) The projection $\vec{x} \times \vec{y}$ on \vec{z} is given by $\frac{(\vec{x} \times \vec{y}) \cdot \vec{z}}{|\vec{z}|} = \frac{1}{|\vec{z}|} [\vec{x} \ \vec{y} \ \vec{z}] = \frac{1}{13} \begin{vmatrix} 3 & -6 & -1 \\ 1 & 4 & -3 \\ 3 & -4 & -12 \end{vmatrix}$ = -14376 (c) We have. $\vec{a} \times \left\{ \vec{a} \times \left\{ \vec{a} \times \left(\vec{a} \times \vec{b} \right) \right\} \right\}$ $= \vec{a} \times \left\{ \vec{a} \times \left\{ \left(\vec{a} \cdot \vec{b} \right) \vec{a} - \left(\vec{a} \cdot \vec{a} \right) \vec{b} \right\} \right\}$ $= \vec{a} \times \{\vec{0} - |\vec{a}|^2 (\vec{a} \times \vec{b})\}$ $= -|\vec{a}|^2 \{ \vec{a} \times (\vec{a} \times \vec{b}) \} = -|\vec{a}|^2 \{ (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \}$ $= -|\vec{a}|^{2} \{0 - |\vec{a}|^{2}\vec{b}\} = |\vec{a}|^{4}\vec{b}$ 379 (c) For an abtuse angle $\left(cx\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right) \cdot \left(x\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2cx\hat{\mathbf{k}}\right) < 0$ $\Rightarrow cx^2 - 12 + 6cx < 0$ \Rightarrow cx² + 6cx - 12 < 0 $\therefore (6c)^2 - 4c(-12) < 0 \quad [\because f(x) < 0 \Longrightarrow D < 0]$ $\Rightarrow 36c \left(c + \frac{4}{3}\right) < 0$ $\Rightarrow -\frac{4}{3} < c < 0$ 380 (a) $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$ $=\frac{(2\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}})\cdot(6\hat{\mathbf{i}}-3\hat{\mathbf{j}}+2\hat{\mathbf{k}})}{\sqrt{2^{2}+2^{2}+(-1)^{2}}\sqrt{6^{2}+(-3)^{2}+2^{2}}}$ $=\frac{12-6-2}{\sqrt{4+4+1}\sqrt{36+9+4}}=\frac{4}{21}$ 381 (b) Given vectors $2\hat{i} + 3\hat{j} - 4\hat{k}$ and $a\hat{i} + b\hat{j} + c\hat{k}$ will

be perpendicular, if $(2\hat{\imath}+3\hat{\jmath}-4\hat{k}).(a\hat{\imath}+b\hat{\jmath}+c\hat{k})=0 \Rightarrow 2a+3b-c$ = 0Clearly, a = 4, b = 4, c = 5 satisfy the above equation 382 (a) We have $\vec{a} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a})$ Taking dot product with \vec{a} , \vec{b} , \vec{c} respectively, we get $\vec{\alpha} \cdot \vec{a} = y [\vec{a} \cdot \vec{b} \cdot \vec{c}] \implies y = 8(\vec{\alpha} \cdot \vec{a})$ $\vec{\alpha} \cdot \vec{\mathbf{b}} = z \left((\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \cdot \vec{\mathbf{b}} \right)$ $\Rightarrow \vec{\alpha} \cdot \vec{\mathbf{b}} = z [\vec{\mathbf{a}} \, \vec{\mathbf{b}} \, \vec{\mathbf{c}}] \Rightarrow z = 8 (\vec{\alpha} \cdot \vec{\mathbf{b}})$ and $\vec{\alpha} \cdot \vec{c} = x(\vec{a} \times \vec{b}, \vec{c})$ $\vec{\alpha} \cdot \vec{c} = x [\vec{a} \, \vec{b} \, \vec{c}] \Longrightarrow x = 8(\vec{\alpha} \cdot \vec{c})$ $\therefore x + y + z = 8\vec{\alpha} \cdot (\vec{a} + \vec{b} + \vec{c})$ 383 (d) Let $\vec{\mathbf{c}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $\vec{\mathbf{d}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} - 15\hat{\mathbf{k}}$ For collinears, $\vec{\mathbf{c}} \times \vec{\mathbf{d}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & 1 & -5 \\ a & b & 15 \end{vmatrix} = \vec{\mathbf{0}}$ $\Rightarrow \hat{\mathbf{i}}(-15+5b) - \hat{\mathbf{j}}(-45+5a) + \hat{\mathbf{k}}(3b-a) = \vec{\mathbf{0}}$ $\Rightarrow -15 + 5b = 0, -45 + 5a = 0,$ 3b - a = 0 $\Rightarrow b = 3, a = 9$ 384 (d) $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta$ $= 1^{2} + 1^{2} \cdot 1 \cdot 1 \cdot \cos 60^{\circ}$ [:: $|\vec{a}| = |\vec{b}| = 1$] $= 2 - 2 \cdot \frac{1}{2} = 1$ 385 (c) Let $\vec{\mathbf{a}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}, \ \vec{\mathbf{b}} = 2\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 0\hat{\mathbf{k}}$ Now take option (c). Let $\vec{\mathbf{c}} = 0\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$ $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \begin{vmatrix} 1 & -2 & -3 \\ 2 & 0 & 0 \\ 0 & -4 & -6 \end{vmatrix}$ Now, = 1(0) + 2(-12) - 3(-8) =386 (a) $(\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b})$ $= \vec{a} \times (\vec{a} \times \vec{b}) + \vec{b} \times (\vec{a} \times \vec{b})$ $= (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} + (\vec{b} \cdot \vec{b})\vec{a} - (\vec{b} \cdot \vec{a})\vec{b}$ $= (\vec{a} \cdot \vec{b})\vec{a} - \vec{b} + \vec{a} - (\vec{b} \cdot \vec{a})\vec{b}$ $= (\vec{\mathbf{a}} - \vec{\mathbf{b}})(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} - 1)$ \therefore Given vector is parallel to $(\vec{a} - \vec{b})$. 387 (a) $\overrightarrow{\mathbf{AB}} = (2-1)\hat{\mathbf{i}} + (0-2)\hat{\mathbf{j}} + (3+1)\hat{\mathbf{k}}$ $=\hat{\mathbf{i}}-2\hat{\mathbf{j}}+4\hat{\mathbf{k}}$

and $\vec{AC} = (3-1)\hat{i} + (-1-2)\hat{j} + (2+1)\hat{k}$ $= 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\cos \theta = \frac{(\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}})}{\sqrt{1 + 4 + 16}\sqrt{4 + 9 + 9}}$ $=\frac{2+6+12}{\sqrt{21}\sqrt{22}}=\frac{20}{\sqrt{462}}$ $\Rightarrow \sqrt{462} \cos \theta = 20$ 388 (c) $[\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{w}}] = |\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})|$ $= |\vec{\mathbf{u}} \cdot (3\hat{\mathbf{i}} - 7\hat{\mathbf{j}} - \hat{\mathbf{k}})|$ $= |\vec{\mathbf{u}}|\sqrt{59}\cos\theta$ \therefore Maximum value of $[\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{w}}] = \sqrt{59}$ ($\because |\vec{\mathbf{u}}| =$ $1, \cos \theta \leq 1$ 390 (b) Given, force = $5\left(\frac{2\hat{\imath}-2\hat{\jmath}+\hat{k}}{|2\hat{\imath}-2\hat{\imath}+\hat{k}|}\right) = \frac{5}{3}(2\hat{\imath}-2\hat{\jmath}+\hat{k})$ Displacement = $(5\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}}) - (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ $= (4\hat{i} + \hat{j} + 4\hat{k})$ \therefore Required work done = Force \cdot Displacement $=\frac{5}{2}[(2\hat{\mathbf{i}}-2\hat{\mathbf{j}}+\hat{\mathbf{k}})\cdot(4\hat{\mathbf{i}}+\hat{\mathbf{j}}+4\hat{\mathbf{k}})]$ $=\frac{5}{3}[8-2+4]=\frac{50}{3}$ unit 391 (b) We know that the equation of the plane passing through three non-collinear points \vec{a} , \vec{b} , \vec{c} is $\vec{\mathbf{r}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}) = [\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}]$ 392 (a) We have, Required vector $\vec{r} = \lambda(\hat{a} + \hat{b}), \lambda$ is a scalar $\Rightarrow \vec{r} = \lambda \left\{ \frac{1}{9} \left(7\hat{\imath} - 4\hat{\jmath} - 4\hat{k} \right) + \frac{1}{3} \left(-2\hat{\imath} - \hat{\jmath} + 2\hat{k} \right) \right\}$ $=\frac{\lambda}{\Omega}(\hat{\imath}-7\hat{\jmath}+2\hat{k})$ Now, $|\vec{r}| = 3\sqrt{6} \Rightarrow |\vec{r}|^2 = 54 \Rightarrow \frac{\lambda^2}{81}(1+49+4) = 54$ $\Rightarrow \lambda = +9$ Hence, required vector $\vec{r} = \pm (\hat{\iota} - 7\hat{\jmath} + 2\hat{k})$ Clearly, option (a) is true for $\lambda = 1$ 393 (b) Given vectors are collinear, if $\begin{vmatrix} 2 & 1 & 1 \\ 6 & -1 & 2 \\ 14 & -5 & p \end{vmatrix} = 0$ $\Rightarrow 2[-p+10] - 1[6p - 28] + 1[-30 + 14] = 0$ $\Rightarrow -8p + 32 = 0$ $\Rightarrow p = 4$ 394 (d) Given,

 $\frac{1}{2}|\vec{\mathbf{b}}||\vec{\mathbf{c}}||\vec{\mathbf{a}} = (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}}$ $\therefore \frac{1}{2} |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| |\vec{\mathbf{a}} = (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}) \vec{\mathbf{b}} - (\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}) \vec{\mathbf{a}}$ On comparing the coefficient of \vec{a} and \vec{b} , we get $\frac{1}{2} |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| = -\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} \text{ and } \vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = 0$ $\Rightarrow \frac{1}{3} |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| = -|\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \cos \theta \Rightarrow \cos \theta = -\frac{1}{3}$ $\Rightarrow 1 - \sin^2 \theta = \frac{1}{2} \Rightarrow \sin \theta = \frac{2\sqrt{2}}{2}$ 395 (c) Let $\vec{\mathbf{A}} = 7\hat{\mathbf{j}} + 10\hat{\mathbf{k}}$, $\vec{\mathbf{B}} = -\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$ and $\vec{\mathbf{C}} =$ $-4\hat{i} + 9\hat{j} + 6\hat{k}$ Now, $\overrightarrow{\mathbf{AB}} = -\hat{\mathbf{i}} - \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$, $\overrightarrow{BC} = -3\hat{i} + 3\hat{i}$ and $\overrightarrow{\mathbf{CA}} = 4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ Here, $|\overrightarrow{\mathbf{AB}}| = |\overrightarrow{\mathbf{BC}}| = 3\sqrt{2}$ and $|\overrightarrow{\mathbf{CA}}| = 6$ Now, $|\overrightarrow{\mathbf{AB}}|^2 + |\overrightarrow{\mathbf{BC}}|^2 = |\overrightarrow{\mathbf{AC}}|^2$ Hence, the triangle is right angled isosceles triangle. 396 (b) We know that if *A* and *B* are two points and *P* is any point on AB. Then, $m P\vec{A} + n P\vec{B} = (m + n)P\vec{C}$, where C divides AB in the ratio *n*: *m* Here, m = n = 1 $\therefore P\vec{A} + P\vec{B} = 2P\vec{C}$ 397 (a) $(2\vec{a}+3\vec{b}) \times (5\vec{a}+7\vec{b}) + \vec{a} \times \vec{b}$ $= \vec{\mathbf{0}} + 14(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) - 15(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + \vec{\mathbf{0}} + \vec{\mathbf{a}} \times \vec{\mathbf{b}}$ $= \vec{0}$ 399 (c) Let $\overrightarrow{\mathbf{OA}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}, \overrightarrow{\mathbf{OB}} = \hat{\mathbf{i}} - 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{OC}} = 3\hat{\mathbf{i}} - 4\hat{\mathbf{i}} - 4\hat{\mathbf{k}}$ $\therefore a = |\overrightarrow{\mathbf{OA}}| = \sqrt{6}, b = |\overrightarrow{\mathbf{OB}}| = \sqrt{35}$ and $\vec{\mathbf{c}} |\vec{\mathbf{OC}}| = \sqrt{41}$ $\therefore \cos A = \frac{b^2 + c^2 + a^2}{2bc}$ $=\frac{\left(\sqrt{35}\right)^2 + \left(\sqrt{41}\right)^2 - \left(\sqrt{6}\right)^2}{2\sqrt{35}\sqrt{41}}$ $\Rightarrow \cos A = \sqrt{\frac{35}{41}}$ $\Rightarrow \sin^2 A = \frac{35}{41}$ 400 (d) Let $\vec{p} \neq \vec{0}$. Then, $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar, which is a contradiction

Hence, $\vec{r} = \vec{0}$ 401 (c) Let $\vec{\alpha} = \lambda \vec{a} + \mu \vec{b} + t \vec{c}$...(i) Now, $\vec{\mathbf{a}} \cdot \vec{\mathbf{p}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{q}} = \vec{\mathbf{c}} \cdot \vec{\mathbf{r}} = 1$ $\Rightarrow \vec{\alpha} \cdot \vec{p} = \lambda (\vec{a} \cdot \vec{p}) + 0 + 0$ $\Rightarrow \lambda = \vec{\alpha} \cdot \vec{p}$ Similarly, $\mu = \vec{\alpha} \cdot \vec{q}$ and $t = \vec{\alpha} \cdot \vec{\mathbf{r}}$ From Eq. (i), we get $\vec{\alpha} = (\vec{\alpha} \cdot \vec{p})\vec{a} + (\vec{\alpha} \cdot \vec{q})\vec{b} + (\vec{\alpha} \cdot \vec{r})\vec{c}$ 402 (a) Since, $\mathbf{\vec{b}} \times \mathbf{\vec{c}}$ is a vector perpendicular to $\mathbf{\vec{b}}$, $\mathbf{\vec{c}}$. Therefore $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector again in plane of **b**. **c**. 403 (c) $(\vec{a} \cdot \vec{b})\vec{b} + \vec{b} \times (\vec{a} \times \vec{b})$ $= (\vec{a} \cdot \vec{b})\vec{b} + (\vec{b} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ $= \vec{a}$ [\because $|\vec{b}| = 1$] 404 (d) $\therefore \sum_{i=1}^{n} \vec{\mathbf{a}}_{i} = \vec{\mathbf{0}}$ $\therefore \left(\sum_{i=1}^{n} \vec{\mathbf{a}}_{i}\right) \left(\sum_{i=1}^{n} \vec{\mathbf{a}}_{j}\right)$ $=\sum_{i=1}^{\infty} |\vec{\mathbf{a}}_i|^2 + 2\sum_{1 \le i \le n} \sum_{i \le n} \vec{\mathbf{a}}_i \cdot \vec{\mathbf{a}}_j$ $\Rightarrow 0 = n + 2 \sum_{1 \leq i \leq n} \sum_{i \leq n} \vec{\mathbf{a}}_i \cdot \vec{\mathbf{a}}_j$ $\therefore \sum_{\mathbf{a}_i \neq i} \sum_{i \neq i} \vec{\mathbf{a}}_i \cdot \vec{\mathbf{a}}_j = -\frac{n}{2}$ 405 (b) Since, given vectors are perpendicular. $\therefore (3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 5\hat{\mathbf{k}}) \cdot (6\hat{\mathbf{i}} - \hat{\mathbf{j}} + c\hat{\mathbf{k}}) = 0$ $\Rightarrow 18 + 2 - 5c = 0 \Rightarrow c = 4$ 406 (d) Given, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{0}}$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ \Rightarrow \vec{a} is parallel to \vec{b} and \vec{a} is perpendicular to \vec{b} which is possible only if $\vec{\mathbf{a}} = \vec{\mathbf{0}}$ or $\vec{\mathbf{b}} = \vec{\mathbf{0}}$ 407 (a) Let $\vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ First diagonal, $\vec{\mathbf{a}} + \vec{\mathbf{b}} = 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ $\Rightarrow |\vec{a} + \vec{b}| = 7$ Second diagonal, $\vec{a} - \vec{b} = \hat{i} + 2\hat{j} - 8\hat{k}$ $\Rightarrow |\vec{a} - \vec{b}| = \sqrt{69}$ 408 **(b)**

Given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ $\Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = 0$ $\Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a}$ Similarly, $\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{c}} \times \vec{\mathbf{a}}$ $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$ Alternate: Since, \vec{a} , \vec{b} , \vec{c} are unit vectors and $\vec{a} + \vec{b} + \vec{a} + \vec{c} = \vec{0}.$ so \vec{a} , \vec{b} , \vec{c} represent an equilateral triangle. $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$ 409 (c) We have, $\vec{AB} + \vec{AC} + \vec{AD} + \vec{AE} + \vec{AF}$ $= \vec{E}D + \vec{A}C + \vec{A}D + \vec{A}E$ $+ \vec{C}D \quad [\because \vec{A}B = \vec{E}D \text{ and } \vec{A}F = \vec{C}D]$ $= (\vec{A}C + \vec{C}D) + (\vec{A}E + \vec{E}D) + \vec{A}D$ $= 3\vec{A}D = 6\vec{A}G \quad [\because \vec{A}D = 2\vec{A}G]$ 410 (c) I. It is true that non-zero, non-collinear vectors are linearly independent. II. It is also true that any three coplanar vectors are linearly dependent. ∴ Both I and II are true. 411 (a) Let $\vec{\alpha} = 2\vec{a} - 3\vec{b}$, $\vec{\beta} = 7\vec{b} - 9\vec{c}$ and $\vec{\gamma} = 12\vec{c} - 23\vec{a}$ Then, $\begin{bmatrix} \vec{a} \ \vec{\beta} \ \vec{\gamma} \end{bmatrix} = \begin{vmatrix} 2 & -3 & 0 \\ 0 & 7 & -9 \\ -23 & 0 & 12 \end{vmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ $\Rightarrow \left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}\right] = (168 + 3 \times -207) \left[\vec{a} \ \vec{b} \ \vec{c}\right]$ $\Rightarrow \left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}\right] = 0$ $\left[\because \left[\vec{a} \ \vec{b} \ \vec{c}\right] = 0\right]$ $\Rightarrow \vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar vectors 412 (b) Given, $[\vec{a} + \vec{b} \, \vec{b} + \vec{c} \, \vec{c} + \vec{a}] = [\vec{a} \, \vec{b} \, \vec{c}]$ $\Rightarrow 2[\vec{a} \, \vec{b} \, \vec{c}] = [\vec{a} \, \vec{b} \, \vec{c}]$ $= [\vec{a} \, \vec{b} \, \vec{c}] = 0$ Hence, \vec{a} , \vec{b} and \vec{c} are coplanar. 413 (c) $\left|\vec{\mathbf{a}}\right| = \sqrt{37}, \left|\vec{\mathbf{b}}\right| =$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ Given. 3, and $|\vec{c}| = 4$ Now, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ $\Rightarrow \vec{a} = -(\vec{b} + \vec{c})$ $\Rightarrow |\vec{a}|^2 = |-(\vec{b} + \vec{c})|^2$ $\Rightarrow |\vec{\mathbf{a}}|^2 = |\vec{\mathbf{b}}|^2 + |\vec{\mathbf{c}}|^2 + 2|\vec{\mathbf{b}}||\vec{\mathbf{c}}|\cos\theta$ $= 9 + 16 + 24 \cos \theta$ $\Rightarrow 37 = 25 + 24 \cos \theta$ $\Rightarrow 24 \cos \theta = 12 \Rightarrow \theta = 60^{\circ}$

414 (a) Let unit vector be $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ $\therefore a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is perpendicular to $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, Then a + b + c = 0(i) Since, $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$, $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$, $(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ are coplanar $\therefore \begin{vmatrix} a & b & c \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0$ $\Rightarrow -3a + b + c = 0$ (ii) From Eqs. (i) and (ii), we get a = 0 and c = -bAlso, $a^2 + b^2 + c^2 = 1$ $\Rightarrow 0 + b^2 + b^2 = 1$ $\Rightarrow b = \frac{1}{\sqrt{2}}$ $\therefore a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}} = \frac{1}{\sqrt{2}}\hat{\mathbf{j}} - \frac{1}{\sqrt{2}}\hat{\mathbf{k}}$ 416 (b) Given, $\overrightarrow{\mathbf{OA}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ $\overrightarrow{\mathbf{OB}} = 5\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{OC}} = \hat{\mathbf{i}} - 2\hat{\mathbf{i}} + 4\hat{\mathbf{k}}$ volume of parallelopiped $= [\overrightarrow{OA} \overrightarrow{OB} \overrightarrow{OC}]$ $= \begin{vmatrix} 2 & -2 & 1 \\ 5 & -4 & 4 \\ 1 & -2 & 4 \end{vmatrix}$ = 2(-16+8) + 2(20-4) + 1(-10+4)= 10 cu units 418 (a) We have, $\vec{a} = \lambda (\vec{b} \times \vec{c}) = \lambda \begin{vmatrix} \hat{i} & \hat{j} & k \\ 1 & 2 & 3 \\ -2 & 4 & 1 \end{vmatrix}$ $=\lambda(-10\hat{\imath}-7\hat{k}+8\hat{k})$ Now. $\vec{a} \cdot (\hat{\iota} - 2\hat{\jmath} + \hat{k}) = -6$ $\Rightarrow \lambda(-10 + 14 + 8) = -6 \Rightarrow \lambda = -\frac{1}{2}$ Hence, $\vec{a} = -\frac{1}{2} \left(-10\hat{i} - 7\hat{k} + 8\hat{k} \right) = 5\hat{i} + \frac{7}{2}\hat{j} - 4\hat{k}$ 419 (c) The projection of $\vec{\mathbf{a}} \text{ on } \vec{\mathbf{b}} = \frac{\vec{\mathbf{a}} \cdot \mathbf{b}}{|\vec{\mathbf{b}}|}$ $=\frac{(3\hat{i}-\hat{j}+5\hat{k})\cdot(2\hat{i}+3\hat{j}+\hat{k})}{\sqrt{2^2+2^2+1^2}}=\frac{8}{\sqrt{14}}$

421 (d) $\begin{array}{c|c} -11 & 1 \\ 3 & -2 \end{array}$ 5 12 -8 = 7(-3 - 16) + 11(-5 + 24) + 1(-40 - 36)= -133 + 209 - 76 = 0∴ Vector are collinear. 422 (c) Let the position vectors of the points A, B, C are $\vec{\mathbf{0}}, \vec{\mathbf{a}} + \vec{\mathbf{b}}, \vec{\mathbf{a}} - \vec{\mathbf{b}}$ respectively and $\theta = 90^{\circ}$ $\therefore \text{ Area of triangle} = \frac{1}{2} |\overrightarrow{\textbf{AB}} \times \overrightarrow{\textbf{AC}}|$ $=\frac{1}{2}|\left(\vec{a}+\vec{b}\right)\times\left(\vec{a}-\vec{b}\right)|$ $=\frac{1}{2}|2\vec{\mathbf{b}}\times\vec{\mathbf{a}}|$ $= |\vec{\mathbf{b}}| |\vec{\mathbf{a}}| \sin \theta = 3 \times 2 \sin 90^\circ = 6$ 423 (a) We have, $\left|\left[\vec{a} \ \vec{b} \ \vec{c}\right]\right| = V$ Let V_1 be the volume of the parallelopiped formed by the vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$. Then, $V_1 = \left| \left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma} \right] \right|$ Now. $\begin{bmatrix} \vec{\alpha} \ \vec{\beta} \ \vec{\gamma} \end{bmatrix} = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$ $\Rightarrow \left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}\right] = \left[\vec{a} \ \vec{b} \ \vec{c}\right]^2 \left[\vec{a} \ \vec{b} \ \vec{c}\right]$ $\Rightarrow \left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}\right] = \left[\vec{a} \ \vec{b} \ \vec{c}\right]^3$ $\therefore V_1 = \left| \begin{bmatrix} \vec{\alpha} \ \vec{\beta} \ \vec{\gamma} \end{bmatrix} \right| = \left| \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}^3 \right| = V^3$ 424 (a) Let *l*, *m*, *n* be the direction cosines of the required vector. As it makes equal angles with *X* and *Y* axes $\therefore l = m$: Required vector $\vec{r} = l\hat{\imath} + m\hat{\jmath} + n\hat{k} = l\hat{\imath} + l\hat{\jmath} + n\hat{k}$ Now, $l^2 + m^2 + n^2 = 1 \Rightarrow 2l^2 + n^2 = 1$...(i) Since, \vec{r} is perpendicular to $-\hat{\iota} + 2\hat{\jmath} + 2\hat{k}$ $\therefore \vec{r} \cdot (-\hat{\iota} + 2\hat{\jmath} + 2\hat{k}) = 0 \Rightarrow -l + 2l + 2n = 0 \Rightarrow$ l + 2n = 0(ii) From (i) and (ii), we get $n \pm \frac{1}{3}$, $l = \pm \frac{2}{3}$ Hence, $\vec{r} = \frac{1}{3} (\pm 2\hat{\imath} \pm 2\hat{\jmath} \mp \hat{k}) = \pm \frac{1}{3} (2\hat{\imath} + 2\hat{\jmath} - \hat{k})$ 425 (a) Let the required vector be \vec{a} . Then, $\hat{i} - \hat{j}$, $\hat{i} + \hat{j}$ and \vec{a} form a right handed system $\therefore \vec{a} = (\hat{\imath} - \hat{\jmath}) \times (\hat{\imath} + \hat{\jmath}) = \hat{k} + \hat{k} = 2\hat{k}$ Hence, the required unit vector $\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \hat{k}$ 426 (b) $\vec{\mathbf{p}} = x\vec{\mathbf{a}} + y\vec{\mathbf{b}} + z\vec{\mathbf{c}}$

 $\Rightarrow 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}} = x(\hat{\mathbf{i}} + \hat{\mathbf{j}}) + y(\hat{\mathbf{j}} + \hat{\mathbf{k}}) + z(\hat{\mathbf{i}} + \hat{\mathbf{k}})$ $\Rightarrow 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}} = (x+z)\hat{\mathbf{i}} + (x+y)\hat{\mathbf{j}} + (y+z)\hat{\mathbf{k}}$ On comparing both sides the coefficients of \hat{i} , \hat{j} , \hat{k} , we get $x + z = 3 \dots (i)$ $x + y = 2 \dots$ (ii) and y + z = 4 (iii) on solving Eqs. (i), (ii) and (iii), we get $x = \frac{1}{2}, y = \frac{3}{2}, z = \frac{5}{2}$ 427 (a) From geometry $\overrightarrow{AO} = 2\overrightarrow{SD}$ Where *D* is the mind point of *BC* $\therefore \overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}$ $= \overrightarrow{SA} + 2\overrightarrow{SD}$ ($: \overrightarrow{SB} + \overrightarrow{SC} = 2\overrightarrow{SD}$) $= \overrightarrow{\mathbf{SA}} + \overrightarrow{\mathbf{AO}}$ $= \overrightarrow{SO}$ 428 (c) We have, $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$ $\Rightarrow |\vec{a}||\vec{b}| \cos \theta = 0$ and $|\vec{a}||\vec{b}| \sin \theta = 0$ $\Rightarrow (|\vec{a}| = 0 \text{ or}, |\vec{b}| = 0 \text{ or}, \cos \theta = 0)$ And, $(|\vec{a}| = 0 \text{ or}, |\vec{b}| = 0 \text{ or}, \sin \theta = 0)$ $\Rightarrow |\vec{a}| = 0$ or, $|\vec{b}| = 0 \begin{bmatrix} \because \cos \theta \text{ and } \sin \theta \\ \operatorname{are not zero zimultaneously} \end{bmatrix}$ 430 (c) Given $|\vec{\mathbf{a}} + \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2$ $\Rightarrow 4\vec{a}\cdot\vec{b} = 0 \Rightarrow \vec{a}\cdot\vec{b} = 0$ So, angle between them is 90° 431 (c) We have, $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ $\Rightarrow (\vec{r} - \vec{b}) \times \vec{a} = 0$ $\Rightarrow \vec{r} - \vec{b}$ is parallel to \vec{a} $\Rightarrow \vec{r} - \vec{b} = \lambda \vec{a}$ for some scalar λ $\Rightarrow \vec{r} - \vec{b} + \lambda \vec{a}$ (i) Now, $\vec{r} \perp \vec{c}$ $\Rightarrow \vec{r} \cdot \vec{c} \cdot \vec{c} = 0$

$$\Rightarrow \vec{b} \cdot \vec{c} + \lambda(\vec{a} \cdot \vec{c}) = 0 \Rightarrow \lambda = -\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}}$$
Putting the value of λ in (i), we get
 $\vec{r} = \vec{b} - \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{c}}\right) \vec{a}$
432 (d)
We have, $|\vec{a}| = 1 = |\vec{\beta}|$ and $\vec{a} \cdot \vec{\beta} = 0$
Now,
 $\vec{\gamma} = x\vec{a} + y\vec{\beta} + z(\vec{a} \times \vec{\beta})$
 $\Rightarrow \vec{a} \cdot \vec{\gamma} = x(\vec{a} \cdot \vec{a}) + y(\vec{a} \cdot \vec{\beta}) + z\{\vec{a} \cdot (\vec{a} \times \vec{\beta})\}$
And,
 $(\vec{a} \times \vec{\beta}) \cdot \vec{\gamma} = x\{\vec{a} \cdot (\vec{a} \times \vec{\beta}) + y\{\vec{\beta} \cdot (\vec{a} \times \vec{\beta})\}$
 $\Rightarrow \cos\theta = x, \cos\theta = y \text{ and } [\vec{a} \vec{\beta} \vec{\gamma}] = z[\vec{a} \times \vec{\beta}]^2$
 $\Rightarrow x = \cos\theta, y = \cos\theta \text{ and } [\vec{a} \vec{\beta} \vec{\gamma}] = z |\vec{a} \times \vec{\beta}|^2$
 $\Rightarrow x = \cos\theta, y = \cos\theta \text{ and } [\vec{a} \vec{\beta} \vec{\gamma}] = z |\vec{a} \times \vec{\beta}|^2$
 $\Rightarrow x = \cos\theta, y = \cos\theta \text{ and } [\vec{a} \vec{\beta} \vec{\gamma}] = z |\vec{a} \times \vec{\beta}|^2$
 $\Rightarrow x = \cos\theta, y = \cos\theta \text{ and } [\vec{a} \vec{\beta} \vec{\gamma}] = z |\vec{a} \times \vec{\beta}|^2$
 $\Rightarrow z^2 = 1 - 2x^2$
Also, $z^2 = 1 - 2y^2$ and $z^2 = 1 - x^2 - y^2$
433 (a)
 $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$
 $= \vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{d} \times \vec{b} + \vec{d} \times \vec{c} = \vec{o}$
 $[\because \vec{a} \times \vec{b} = \vec{c} \times \vec{d}, \vec{a} \times \vec{c} = \vec{b} \times \vec{d}, \text{ given}]$
 $\Rightarrow (\vec{a} - \vec{d}) ||(\vec{b} - \vec{c})$
 $\Rightarrow \vec{a} - \vec{d} = \lambda(\vec{b} - \vec{c})$
434 (a)
Since $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar unit vectors
 $\therefore [\vec{a}\vec{b}\vec{c}] = \text{Volume of a parallelopiped whose each edge is of one unit length
 $\Rightarrow [\vec{a}\vec{b}\vec{c}] = \pm 1$
436 (d)
Let *D* be the mid-point of *BC*. Then,
 $\vec{AB} + \vec{AC} = 2\vec{AD}$
 $\Rightarrow 2\vec{AD} = 8\vec{i} + 2\vec{j} + 8\vec{k}$
 $\Rightarrow \vec{AD} = 4\vec{i} + \vec{j} + 4\vec{k}$
 $\Rightarrow |\vec{AD}| = \sqrt{16 + 1 + 16} = \sqrt{33}$
437 (c)$

 \therefore Median vector through $\vec{\mathbf{A}} = \frac{1}{2} (\vec{\mathbf{AB}} + \vec{\mathbf{AC}})$ $=\frac{1}{2}\left[\left(3\hat{\mathbf{i}}+5\hat{\mathbf{j}}+4\hat{\mathbf{k}}\right)+\left(5\hat{\mathbf{i}}-5\hat{\mathbf{j}}+2\hat{\mathbf{k}}\right)\right]$ $=4\hat{i}+3\hat{k}$: Length of the median = $\sqrt{4^2 + 3^2} = 5$ units 438 (d) Given, $(\vec{\mathbf{a}} - \lambda \vec{\mathbf{b}}) \cdot (\vec{\mathbf{b}} - 2\vec{\mathbf{c}}) \times (\vec{\mathbf{c}} + 2\vec{\mathbf{a}}) = 0$ $\Rightarrow (\vec{\mathbf{a}} - \lambda \, \vec{\mathbf{b}}) \cdot \{\vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{b}} \times 2\vec{\mathbf{a}} - 4(\vec{\mathbf{c}} \times \vec{\mathbf{a}})\} = 0$ $\Rightarrow \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times 2\vec{a}) - \vec{a} \cdot 4(\vec{c} \times \vec{a})$ $-\lambda \vec{\mathbf{b}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) - \lambda \vec{\mathbf{b}} \cdot (\vec{\mathbf{b}} \times 2\vec{\mathbf{a}}) + 4\lambda \vec{\mathbf{b}} \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = 0$ $\Rightarrow \vec{\mathbf{a}}(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + 4\lambda \vec{\mathbf{b}}.(\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = 0$ $\Rightarrow \{\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})\}(1+4\lambda) = 0$ $\Rightarrow \lambda = -\frac{1}{4} [:: \vec{\mathbf{a}}.(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \neq 0, \text{given}]$ 440 (d) \therefore Total force $\vec{\mathbf{P}} = \vec{\mathbf{P}}_1 + \vec{\mathbf{P}}_2 + \vec{\mathbf{P}}_3$ $=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}-\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}=2\hat{\mathbf{j}}$ and displacement $\overrightarrow{\textbf{AB}}=6\hat{\textbf{i}}+\hat{\textbf{j}}-3\hat{\textbf{k}} (4\hat{\mathbf{i}}+3\hat{\mathbf{j}}-2\hat{\mathbf{k}})$ $= 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - \hat{\mathbf{k}}$ $:: Work done = \vec{\mathbf{P}} \cdot \vec{\mathbf{AB}}$ $= 2\hat{\mathbf{j}}(2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - \hat{\mathbf{k}}) = 8$ 441 (a) The point of intersection of $\vec{\mathbf{r}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}}$ and $\vec{\mathbf{r}} \times \vec{\mathbf{b}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is $\vec{\mathbf{r}} = \vec{\mathbf{a}} + \vec{\mathbf{b}}$ $\therefore \vec{\mathbf{r}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}}) + (2\hat{\mathbf{i}} - \hat{\mathbf{k}}) = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ 442 (a) Since \vec{a}, \vec{b} and $a \times \vec{b}$ are non-coplanar vectors $\therefore \vec{r} = x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})$ for some scalars x, y, z ...(i) Now. $\vec{b} = \vec{r} \times \vec{a}$ $\Rightarrow \vec{b} = \{x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})\} \times \vec{a}$ $\Rightarrow \vec{b} = y(\vec{b} \times \vec{a}) + z((\vec{a} \times \vec{b}) \times \vec{a})$ $\Rightarrow \vec{b} = y(\vec{b} \times \vec{a}) - z(\vec{a} \times (\vec{a} \times \vec{b}))$ $\Rightarrow \vec{b} = y(\vec{b} \times \vec{a}) - z\{(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}\}$ $\Rightarrow \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a})\vec{b} \quad [\because \vec{a} \cdot \vec{b} = 0]$ Comparing the coefficients, we get $y = 0, z = \frac{1}{\vec{a} \cdot \vec{a}} = \frac{1}{|\vec{a}|^2}$ Putting the values of *y* and *z* in (i), we get $\vec{r} = x\vec{a} + \frac{1}{|\vec{a}|^2} (\vec{a} \times \vec{b})$ 444 (b) $(\vec{\mathbf{u}} + \vec{\mathbf{v}} - \vec{\mathbf{w}})$. $[(\vec{\mathbf{u}} - \vec{\mathbf{v}}) \times (\vec{\mathbf{v}} - \vec{\mathbf{w}})]$

 $= (\vec{u} + \vec{v} - \vec{w}) \cdot [\vec{u} \times \vec{v} - \vec{u} \times \vec{w} + \vec{v} \times \vec{w}]$ $= \vec{u} \cdot \vec{v} \times \vec{w} - \vec{v} \cdot \vec{u} \times \vec{w} - \vec{w} \cdot \vec{u} \times \vec{v}$ $= \vec{u} \cdot \vec{v} \times \vec{w} + \vec{w} \cdot \vec{u} \times \vec{v} - \vec{w} \cdot \vec{u} \times \vec{v}$ $= \vec{u} \cdot \vec{v} \times \vec{w}$ 445 (d) $\therefore \vec{\mathbf{p}} - 2\vec{\mathbf{q}} = 7\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} - 2(3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 5\hat{\mathbf{k}})$ $=\hat{\mathbf{i}}-4\hat{\mathbf{j}}-7\hat{\mathbf{k}}$ $\Rightarrow |\vec{\mathbf{p}} - 2\vec{\mathbf{q}}| = \sqrt{1^2 + (-4)^2 + (-7)^2} = \sqrt{66}$ 447 (a) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \mathbf{\tilde{i}} & \mathbf{\tilde{j}} & \mathbf{\hat{k}} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$ $= -\hat{i} + \hat{i}$ $\Rightarrow (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = -\hat{\mathbf{k}}$ Now, $\lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}} = \lambda(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) + \mu(\hat{\mathbf{i}} + \hat{\mathbf{j}})$ $= (\lambda + \mu)\hat{\mathbf{i}} + (\lambda + \mu)\hat{\mathbf{j}} + \lambda\hat{\mathbf{k}}$ $\therefore \lambda \vec{a} + \mu \vec{b} = (\vec{a} \times \vec{b}) \times \vec{c}$ $\Rightarrow (\lambda + \mu)\hat{\mathbf{i}} + (\lambda + \mu)\hat{\mathbf{j}} + \lambda\hat{\mathbf{k}} = -\hat{\mathbf{k}}$ On equating the coefficient of \hat{i} we get $\lambda + \mu = 0$ 453 (d) We have, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ $\Rightarrow \vec{a} \cdot (\vec{b} - \vec{c}) = 0$ $\Rightarrow \vec{a} \perp (\vec{b} - \vec{c}) \text{ or, } \vec{b} - \vec{c} = 0 \Rightarrow \vec{a} \perp (\vec{b} - \vec{c}) \text{ or,}$ $\vec{b} = \vec{c}$ 454 (c) Given that, $|\vec{\mathbf{a}}| = 2\sqrt{2}$, $|\vec{\mathbf{b}}| = 3$ The longer vectors is $5\vec{a} + 2\vec{b} + \vec{a} - 3\vec{b} = 6\vec{a} - \vec{b}$ Length of one diagonal $= |6\vec{a} - \vec{b}|$ $= \sqrt{36\vec{\mathbf{a}}^2 + \vec{\mathbf{b}}^2 - 2 \times 6|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos 45 \circ}$ $= \sqrt{36 \times 8 + 9 - 12 \times 2\sqrt{2} \times 3 \times \frac{1}{\sqrt{2}}}$ $=\sqrt{288+9-12\times 6}=\sqrt{225}=15$ Other diagonal is $4\vec{a} + 5\vec{b}$. Its length = $\sqrt{16 \times 8 + 25 \times 9 + 40 \times 6} = \sqrt{593}$ 455 (a) Given projection of \vec{a} on $\vec{b} = |\vec{a} \times \vec{b}|$ $\Rightarrow \frac{\vec{a} \cdot \mathbf{b}}{|\vec{\mathbf{b}}|} = |\vec{a} \times \vec{\mathbf{b}}|$ $\Rightarrow \frac{|\vec{\mathbf{a}}||\mathbf{b}|\cos\theta}{|\vec{\mathbf{b}}|} = |\vec{\mathbf{a}}||\vec{\mathbf{b}}|\sin\theta$ $\Rightarrow \tan \theta = \frac{1}{|\vec{\mathbf{h}}|}$

 $\Rightarrow \tan \theta = \frac{1}{\frac{1}{2}\sqrt{1^2 + 1^2 + 1^2}}$ $\Rightarrow \tan \theta = \sqrt{3}$ $\Rightarrow \theta = \frac{\pi}{2}$ 457 (c) Since, $\vec{a} + 2\vec{b} = k\vec{c}$ $\vec{a} + 2\vec{b} + 6\vec{c} = k\vec{c} + 6\vec{c}$ $= (k+6)\vec{\mathbf{c}} = \lambda\vec{\mathbf{c}} \ (\because \lambda \neq 0)$ 458 (d) $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = -2\hat{\mathbf{k}}$ $\therefore |\vec{\mathbf{w}} \cdot \hat{\mathbf{n}}| = \frac{|\vec{\mathbf{w}} \cdot \vec{\mathbf{u}} \times \vec{\mathbf{v}}|}{|\vec{\mathbf{u}} \times \vec{\mathbf{v}}|}$ $\Rightarrow |\vec{\mathbf{w}} \cdot \hat{\mathbf{n}}| = \frac{|-6\hat{\mathbf{k}}|}{|-2\hat{\mathbf{k}}|} = 3$ 459 (c) Let the position of *B* is $\vec{\mathbf{r}}$. $\therefore \vec{\mathbf{a}} = \frac{2\vec{\mathbf{r}} + 3(\vec{\mathbf{a}} + 2\vec{\mathbf{b}})}{2+3}$ $\begin{array}{c} 2 & 3 \\ \hline P & B \\ \hline A & (\vec{a}) \end{array}$ $(\overrightarrow{a}+2\overrightarrow{h})$ $\Rightarrow 5\vec{a} = 2\vec{r} + 3\vec{a} + 6\vec{b}$ $\Rightarrow 2\vec{\mathbf{r}} = 2\vec{\mathbf{a}} - 6\vec{\mathbf{b}}$ $\therefore \vec{\mathbf{r}} = \vec{\mathbf{a}} - 3\vec{\mathbf{b}}$ 460 (a) Since, $(\vec{\mathbf{A}} + t\vec{\mathbf{B}}) \cdot \vec{\mathbf{C}} = 0$ [given] $\Rightarrow \left[(1-t)\hat{\mathbf{i}} + (2+2t)\hat{\mathbf{j}} + (3+t)\hat{\mathbf{k}} \right] \cdot \left(3\hat{\mathbf{i}} + \hat{\mathbf{j}} \right) = 0$ $\Rightarrow 3(1-t) + (2+2t) = 0 \Rightarrow t = 5$ 461 (a) We have, $|\vec{a}| = 1, |\vec{b}| = 1$ and $\vec{a}, \vec{b} = \cos \theta$ Now, $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a}.\vec{b}$ $\Rightarrow \left|\vec{a} - \vec{b}\right|^2 = 1 + 1 - 2\left|\vec{a}\right| \left|\vec{b}\right| \cos \theta$ $\Rightarrow \left| \vec{a} - \vec{b} \right|^2 = 4 \sin^2 \frac{\theta}{2}$ $\Rightarrow \left|\frac{\vec{a} - \vec{b}}{2}\right|^2 = \sin^2 \frac{\theta}{2} \Rightarrow \left|\frac{\vec{a} - \vec{b}}{2}\right| = \sin \frac{\theta}{2}$ 462 (c) If \vec{a} , \vec{b} are two non-zero non-collinear vectors and x, y are two scalars such that $x\vec{a} + y\vec{b} =$ 0, then x = 0, y = 0. Because otherwise one will be a scalar multiple of

the other and hence collinear, which is a

contradiction

463 (b)

$$\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$$

 $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$
 $\overrightarrow{D} = -\hat{i} + 2\hat{j} + 2\hat{k}$
 $\overrightarrow{AB} \cdot \overrightarrow{AD} = -2 + 20 + 22 = 40$
 $|\overrightarrow{AB}| = \sqrt{4 + 100 + 120} = \sqrt{225} = 15$
 $|\overrightarrow{AD}| = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$
 $\therefore \cos \theta = \frac{40}{45} = \frac{8}{9}$
 $\therefore \theta + \alpha = 90^{\circ}$
 $\Rightarrow \alpha = 90^{\circ} - \theta$
 $\Rightarrow \cos \alpha = \sin \theta = \sqrt{1 - \frac{64}{81}} = \frac{\sqrt{17}}{9}$
464 (a)
Let $\vec{a} = x\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 5\hat{k}$
Sience, $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{1}{\sqrt{30}}$
 $\Rightarrow \frac{(x\hat{i} + \hat{j} + \hat{k}) \cdot (2\hat{i} - \hat{j} + 5\hat{k})}{|\sqrt{4 + 1 + 25}|} = \frac{1}{\sqrt{30}}$
 $\Rightarrow 2x - 1 + 5 = 1$
 $\Rightarrow x = -\frac{3}{2}$
465 (b)
Now, $2\vec{a} - \vec{c} = 2(-\hat{i} + \hat{j} + 2\hat{k}) - (2\hat{i} + \hat{j} + 3\hat{k})$
 $= \hat{j} + 3\hat{k}$
and $\vec{a} + \vec{b} = -\hat{i} + \hat{j} + 2\hat{k} + 2\hat{i} - \hat{j} - \hat{k}$
 $= \hat{i} + \hat{k}$
let θ be the angle between $2\vec{a} - \vec{c}$ and $\vec{a} + \vec{b}$.
 $\therefore \cos \theta = \frac{(\hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j})}{\sqrt{1^2 + 1^2}\sqrt{1^2 + 1^2}}$
 $\Rightarrow \cos \theta = \frac{1}{\sqrt{2\sqrt{2}}} = \frac{1}{2}$
 $\Rightarrow \theta = \frac{\pi}{3}$
466 (d)
Since $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ are collinear with \vec{c} and \vec{a}
 $\vec{b} = x\vec{c} \Rightarrow \vec{a} + \vec{b} + \vec{c} = (x + 1)\vec{c}$...(i)
and,
 $\vec{b} + c = y\vec{a} \Rightarrow \vec{a} + \vec{b} + \vec{c} = (y + 1)\vec{a}$(ii)
From (i) and (ii), we get

 $(x+1)\vec{c} = (y+1)\vec{a}$

If $x \neq -1$, then $(x+1)\vec{c} = (y+1)\vec{a} \Rightarrow \vec{c} = \frac{y+1}{x+1}\vec{a}$ $\Rightarrow \vec{c}$ and \vec{a} are collinear This is a contradiction to the given condition. Therefore, x = -1Putting x = -1 in $\vec{a} + \vec{b} = x\vec{c}$, we get $\vec{a} + \vec{b} + \vec{c} = (-1+1)\vec{c} = \vec{0}$ 467 (b) We have, $\begin{bmatrix} \vec{a} & \vec{b} + \vec{c} & \vec{a} + \vec{b} + \vec{c} \end{bmatrix}$ $= \vec{a} \cdot \left[(\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) \right]$ $= \vec{a} \cdot (\vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} + \vec{c} \times \vec{c}$ С $= \vec{a} \cdot (\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c})$ $= \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a})$ $= \left[\vec{a} \, \vec{b} \, \vec{c} \right] + \left[\vec{a} \, \vec{c} \, \vec{a} \right] = 0$ 468 (a) It is given that points *P*, *Q* and *R* with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i} - 8\hat{j}$ and $a\hat{i} - 52\hat{j}$ respectively are collinear $\therefore \vec{P}Q = \lambda \vec{Q}R$ for some scalar λ $\Rightarrow -20\hat{\imath} - 11\hat{\jmath} = \lambda\{(a - 40)\hat{\imath} - 44\hat{\jmath}\}$ $\Rightarrow \lambda(a-40) = -20, -11 = -44 \lambda$ $\Rightarrow \lambda = \frac{1}{4} \text{ and } a = -40$ 469 (a) Required unit vector $\vec{\mathbf{c}} = \frac{\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})}{|\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})|}$ Now, $\vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}$ $= 3(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) - 6(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}})$ $= -9\hat{\mathbf{j}} + 9\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{c}} = \frac{-9\hat{\mathbf{j}} + 9\hat{\mathbf{k}}}{\sqrt{9^2 + 9^2}} = \pm \frac{1}{\sqrt{2}}(-\hat{\mathbf{j}} + \hat{\mathbf{k}})$ 470 (b) $\begin{vmatrix} 2 & 1 & 4 \\ 4 & -2 & 3 \\ 2 & -3 & -\lambda \end{vmatrix} = 0$ $\Rightarrow 2(2\lambda + 9) - 1(-4\lambda - 6) + 4(-12 + 4) = 0$ $\Rightarrow 4\lambda + 18 + 4\lambda + 6 - 48 + 16 = 0$ $\Rightarrow 8\lambda = 8$ $\Rightarrow \lambda = 1$ 471 (b) We have, $[\vec{u} \ \vec{v} \ \vec{w}] = \begin{vmatrix} al + a_1 l_1 & am + a_1 m_1 & an + a_1 n_1 \\ bl + b_1 l_1 & bm + b_1 m_1 & bn + b_1 n_1 \\ cl + c_1 l_1 & cm + c_1 m_1 & cn + a_1 n_1 \end{vmatrix}$

 $\Rightarrow [\vec{u} \ \vec{v} \ \vec{w}] = \begin{vmatrix} a & a_1 & 0 \\ b & b_1 & 0 \\ c & c_1 & 0 \end{vmatrix} \begin{vmatrix} l & l_1 & 0 \\ m & m_1 & 0 \\ n & n_1 & 0 \end{vmatrix} = 0$ Hence, the given vectors are coplanar 473 (a) Given that $\vec{a}, \vec{b}, \vec{c}$ are coplanar $\therefore \vec{a} \perp \vec{b} \times \vec{c} \Rightarrow \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \Rightarrow [\vec{a}\vec{b}\vec{c}] = 0$ 474 (c) $(\vec{d} + \vec{a}) \cdot [\vec{a} \times \{\vec{b} \times (\vec{c} \times \vec{d})\}]$ $= (\vec{d} + \vec{a}) \cdot [\vec{a} \times \{\vec{b} \cdot \vec{d})\vec{c} - (\vec{b} \cdot \vec{c})\vec{d}\}]$ $= (\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) [\vec{\mathbf{d}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{c}})] - (\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}) [\vec{\mathbf{d}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{d}})]$ + $(\vec{\mathbf{b}} \cdot \vec{\mathbf{d}})[\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{c}})] - (\vec{\mathbf{b}} \cdot \vec{\mathbf{c}})[\vec{\mathbf{a}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{d}})]$ $= (\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) [\vec{\mathbf{d}} \ \vec{\mathbf{a}} \ \vec{\mathbf{c}}] = (\vec{\mathbf{b}} \cdot \vec{\mathbf{d}}) [\vec{\mathbf{a}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}}]$ 476 (a) Let $\vec{\mathbf{a}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}, \vec{\mathbf{b}} = -2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \lambda \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ \therefore $[\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}] = 0$ $\Rightarrow \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ \lambda & -1 & 2 \end{vmatrix} = 0$ $\Rightarrow 1(6-4) + 2(-4+4\lambda) + 3(2-3\lambda) = 0$ $\implies \lambda = 0$ 477 (b) Let $\vec{\mathbf{a}} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}$ $|\vec{\mathbf{a}}|^2 = a_1^2 + a_2^2 + a_2^2$ and $\vec{\mathbf{a}} \times \hat{\mathbf{i}} = (a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}) \times \hat{\mathbf{i}}$ $= -a_2 \mathbf{\hat{k}} + a_3 \mathbf{\hat{j}}$ $(\vec{a} \times \hat{i})^2 = a_2^2 + a_3^2$ Similarly, $(\vec{a} \times \hat{j})^2 = a_3^2 + a_1^2$ and $(\vec{a} \times \hat{k})^2 = a_1^2 + a_2^2$ Now, $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{k})^2$ $= a_2^2 + a_3^2 + a_3^2 + a_1^2 + a_1^2 + a_2^2$ $= 2(a_1^2 + a_2^2 + a_3^2) = 2(\vec{\mathbf{a}})^2$ 478 (d) $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \vec{\mathbf{b}} = 2\hat{\mathbf{i}} - 4\hat{\mathbf{k}}, \vec{\mathbf{c}} = \hat{\mathbf{i}} + \lambda\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ Since, are coplanar. $\therefore \begin{bmatrix} \vec{\mathbf{a}} & \vec{\mathbf{b}} & \vec{\mathbf{c}} \end{bmatrix} = 0 \implies \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & -4 \\ 1 & \lambda & 3 \end{vmatrix} = 0$ $\Rightarrow 4\lambda - 1(6+4) + 2\lambda$ $\Rightarrow 6\lambda = 10 \Rightarrow \lambda = \frac{5}{2}$ 480 (c) \vec{A} , \vec{B} and \vec{C} are three vectors, then volume of parallelepiped $V = \begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix}$ $= \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 + a^3 - a$ $\Rightarrow V = 1 + a^3 - a$

On differentiating with respect to a, we get $\frac{dV}{da} = 3a^2 - 1 = 0$ For maximum or minimum, put $\frac{dV}{d} = 0$ $\Rightarrow a = \pm \frac{1}{\sqrt{2}}$ $\frac{d^2V}{da^2} = 6a$, positive at $a = \frac{1}{\sqrt{3}}$ \therefore V is minimum at $a = \frac{1}{\sqrt{3}}$. 481 (c) By the properties of midpoint theorem, $\overrightarrow{\mathbf{PA}} + \overrightarrow{\mathbf{PB}} = 2\overrightarrow{\mathbf{PC}}$ 482 (a) The vector equation of line passing through points (3, 2, 1) and (-2, 1, 3) $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda [(-2 - 3)\hat{\mathbf{i}} + (1 - 2)\hat{\mathbf{j}}]$ $+(3-1)\hat{k}$] $= 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda(-5\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ 483 (d) $\therefore \quad \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \frac{5\pi}{6}$ $=-\frac{|\vec{a}||\vec{b}|\sqrt{3}}{2}$ Since, the projection of \vec{a} in the direction of $\vec{\mathbf{b}} = -\frac{6}{\sqrt{3}}$ $\Rightarrow -\frac{|\vec{\mathbf{a}}||\vec{\mathbf{b}}|\sqrt{3}}{2|\vec{\mathbf{b}}|} = -\frac{6}{\sqrt{3}}$ \Rightarrow $|\vec{a}| = \frac{6 \times 2}{3} = 4$ 484 (d) Let $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ in *OXYZ* system Also, let $\vec{r} = X\hat{\imath} + Y\hat{\jmath} + Z\hat{k}$ in the new coordinate system Since the right handed rectangular system OXYZ is rotated about *z*-axis through $\frac{\pi}{4}$ in anticlockwise direction. Therefore, $x = X \cos \theta - Y \sin \theta$ and $y = X \sin \theta + Y \cos \theta$ $\Rightarrow x = X \cos \frac{\pi}{4} - Y \sin \frac{\pi}{4}, y = X \sin \frac{\pi}{4} + Y \cos \frac{\pi}{4}$ and, z = ZIt is given that $X = 2\sqrt{2}$, $Y = 3\sqrt{2}$ and Z = 4 $\therefore x = 2 - 3 = -1, y = 5 \text{ and } z = 4$ Hence, $\vec{r} = -\hat{\imath} + 5\hat{\jmath} + 4\hat{k}$ <u>ALITER</u> Let $l_1, m_1, n_1; l_2, m_2, n_2$ and l_3, m_3, n_3 be the direction cosines of the new axes with respect to the old axes. Then,

$$l_{1} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, m_{1} = \cos \left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, n_{1}$$
$$= \cos \frac{\pi}{2} = 0$$
$$l_{2} = \cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}}, m_{2} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, n_{2}$$
$$= \cos \frac{\pi}{2} = 0, n_{3} = \cos 0 = 1$$
$$\text{Let } x', y', z' \text{ and } x, y, z \text{ be the components of the given vector with respect to new and old axes. Then,
$$\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \begin{bmatrix} l_{1} & l_{2} & l_{3}\\ m_{1} & n_{2} & n_{3} \end{bmatrix} \begin{bmatrix} x'\\ y'\\ z' \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2}\\ 3\sqrt{2}\\ 4\\ \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \begin{bmatrix} 2 & -3 & +0\\ 1 & \sqrt{2} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2\sqrt{2}\\ 3\sqrt{2}\\ 4\\ 4\\ \end{bmatrix}$$
Hence, the components of \vec{a} in the $Oxyz$ coordinate system are $-1,5,4$
485 (d)
 $\therefore \vec{x} \cdot \vec{a} = \vec{x} \cdot \vec{b} = \vec{x} \cdot \vec{c} = 0$
For non-zero vector \vec{x}
 $\begin{bmatrix} \vec{a} \ b \ \vec{c} \end{bmatrix} = 0$ (three vectors $\vec{a}, \ \vec{b}, \ \vec{c}$ are coplanar)
and $\begin{bmatrix} \vec{a} \times \vec{b} \ b \times \vec{c} \ \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \ b \ \vec{c} \end{bmatrix}^{2} = 0$
486 (d)
ABCDEF is a regular hexagon. We know from the hexagon that \overrightarrow{AD} is parallel to \overrightarrow{BC} .
 $\Rightarrow \overrightarrow{AD} = 2\overrightarrow{BC}$
Similarly, \overrightarrow{EB} is a parallel to \overrightarrow{FA}
 $\Rightarrow \overrightarrow{EB} = 2\overrightarrow{FA}$$$

and \overrightarrow{FC} is parallel to \overrightarrow{AB} . $\Rightarrow \overrightarrow{FC} = 2\overrightarrow{AB}$ Thus, $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2\overrightarrow{BC} + 2\overrightarrow{FA} + 2\overrightarrow{AB}$ $= 2(\overrightarrow{\mathbf{FA}} + \overrightarrow{\mathbf{AB}} + \overrightarrow{\mathbf{BC}})$ $= 2(\overrightarrow{\mathbf{FC}}) = 2(2\overrightarrow{\mathbf{AB}}) = 4\overrightarrow{\mathbf{AB}}$ 487 (d) Here, $\overrightarrow{\mathbf{a_1}} = 6\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $\overrightarrow{\mathbf{a_2}} = -4\hat{\mathbf{i}} + 0\hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\overrightarrow{\mathbf{b_1}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b_2}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ ∴Shortest distance $= \left| \frac{(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2})}{\left| \overrightarrow{b_1} \times \overrightarrow{b_2} \right|} \right|$ $= \left| \frac{\left(-10\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}\right) \cdot (8\hat{\mathbf{i}} + 8\hat{\mathbf{j}} + 4\hat{\mathbf{k}})}{\sqrt{64 + 64 + 16}} \right|$ $= \left| -\frac{108}{12} \right| = 9$ 488 (c) $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} = 15\hat{i} - 10\hat{j} + 30\hat{k}$ and $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{15^2 + (-10)^2 + (30)^2} = 35$ $\therefore \text{ Required vector} = \frac{3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}}{7}$ 490 (a) Let *O* be the origin RD $\therefore \ \overrightarrow{\textbf{BE}} + \overrightarrow{\textbf{AF}} = \overrightarrow{\textbf{OE}} - \overrightarrow{\textbf{OB}} + \overrightarrow{\textbf{OF}} - \overrightarrow{\textbf{OA}}$ $=\frac{\overrightarrow{\mathbf{OA}}+\overrightarrow{\mathbf{OC}}}{2}-\overrightarrow{\mathbf{OB}}+\frac{\overrightarrow{\mathbf{OB}}+\overrightarrow{\mathbf{OC}}}{2}-\overrightarrow{\mathbf{OA}}$ $=\frac{\overrightarrow{\mathbf{0C}}}{2}+\frac{\overrightarrow{\mathbf{0C}}}{2}+\frac{\overrightarrow{\mathbf{0A}}}{2}-\overrightarrow{\mathbf{0A}}+\frac{\overrightarrow{\mathbf{0B}}}{2}-\overrightarrow{\mathbf{0B}}$ $= \overrightarrow{\mathbf{OC}} - \frac{\overrightarrow{\mathbf{OA}} + \overrightarrow{\mathbf{OB}}}{2} = \overrightarrow{\mathbf{OC}} - \overrightarrow{\mathbf{OD}} = \overrightarrow{\mathbf{DC}}$ 491 (d) $\left|\vec{\mathbf{a}} - \vec{\mathbf{b}}\right|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 - 2|\vec{\mathbf{a}}||\vec{\mathbf{b}}|\cos\theta$ $\Rightarrow |\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2 = 1 + 1 - 2\cos 60^\circ = 2 - 1$ $\Rightarrow |\vec{\mathbf{a}} - \vec{\mathbf{b}}| = 1$ 492 (b)

Given, $2\vec{a} + 3\vec{b} + \vec{c} = \vec{0}$ $\Rightarrow 2\vec{a} + 3\vec{b} = -\vec{c}$ Taking cross product with \vec{a} and \vec{b} respectively, we get $2(\vec{\mathbf{a}} \times \vec{\mathbf{a}}) + 3(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = -\vec{\mathbf{a}} \times \vec{\mathbf{c}}$ $\Rightarrow 3(\vec{a} \times \vec{b}) = -\vec{c} \times \vec{a}$...(i) and $2(\mathbf{\vec{b}} \times \mathbf{\vec{a}}) + 3(\mathbf{\vec{b}} \times \mathbf{\vec{b}}) = -\mathbf{\vec{b}} \times \mathbf{\vec{c}}$ $\Rightarrow 2(\vec{a} \times \vec{b}) = \vec{b} \times \vec{c}$ (ii) Now, $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ $= \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + 3(\vec{a} \times \vec{b})$ [using Eq. (i)] $= 4(\vec{a} \times \vec{b}) + \vec{b} \times \vec{c}$ $= 2(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \vec{\mathbf{b}} \times \vec{\mathbf{c}}$ [using Eq. (ii)] $= 3(\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ 493 (d) $[\vec{\mathbf{a}} - 2\vec{\mathbf{b}}, \vec{\mathbf{b}} - 3\vec{\mathbf{c}}, \vec{\mathbf{c}} - 4\vec{\mathbf{a}}]$ $= (\vec{\mathbf{a}} - 2\vec{\mathbf{b}}) \cdot \{\vec{\mathbf{b}} - 3\vec{\mathbf{c}}\} \times (\vec{\mathbf{c}} - 4\vec{\mathbf{a}})\}$ $= (\vec{a} - 2\vec{b}) \cdot \{\vec{b} \times \vec{c} - 4\vec{b} \times \vec{a} + 12\vec{c} \times \vec{a}\}$ $= (\vec{\mathbf{a}} - 2\vec{\mathbf{b}}) \cdot (\vec{\mathbf{a}} + 4\vec{\mathbf{c}} + 12\vec{\mathbf{b}})$ $= \vec{a} \cdot \vec{a} - 24 \vec{b} \cdot \vec{b}$ $= 1 - 24 \times 9 = 1 - 216 = -215$ 494 **(b)** Given , area = $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = 15$ If the sides are $(3\vec{a} + 2\vec{b})$ and $(\vec{a} + 3\vec{b})$, then Area of parallelogram $= |(3\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b})| = 7|\vec{a} \times \vec{b}|$ $= 7 \times 15 = 105$ sq units 498 (a) Given, $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = 0 \implies \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = 0$ $\vec{\mathbf{b}} \cdot (\vec{\mathbf{c}} + \vec{\mathbf{a}}) = 0$ $\Rightarrow \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ and $\vec{\mathbf{c}} \cdot (\vec{\mathbf{a}} + \vec{\mathbf{b}}) = 0$ $\Rightarrow \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 0$ $\therefore \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = 0$ Now, $|\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}|^2 = |\vec{\mathbf{a}}|^2 + |\vec{\mathbf{b}}|^2 + |\vec{\mathbf{c}}|^2 + 2(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} + \vec{\mathbf{c}})$ $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} + \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}$ \Rightarrow $|\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}|^2 = 9 + 16 + 25 + 0 = 50$ \Rightarrow $|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$ 499 **(b)** We have. $(\vec{b} \times \vec{c}) \times \vec{a} = -\{\vec{a} \times (\vec{b} \times \vec{c})\}\$ $\Rightarrow (\vec{b} \times \vec{c}) \times \vec{a} = -\{(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}\}\$ $= (\vec{a} \cdot \vec{b})\vec{c} - (\vec{a} \cdot \vec{c})\vec{b}$ 501 (c) Since, $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$

The projection of $\vec{\mathbf{v}}$ along $\vec{\mathbf{u}} = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{u}}}{|\vec{\mathbf{u}}|}$ and the projection of $\vec{\mathbf{w}}$ along $\vec{\mathbf{u}} = \frac{\mathbf{w} \cdot \mathbf{u}}{|\vec{\mathbf{u}}|}$ according to given condition, $\frac{\vec{\mathbf{v}}\cdot\vec{\mathbf{u}}}{|\vec{\mathbf{u}}|} = \frac{\vec{\mathbf{w}}\cdot\vec{\mathbf{u}}}{|\vec{\mathbf{u}}|} \Longrightarrow \vec{\mathbf{v}}\cdot\vec{\mathbf{u}} = \vec{\mathbf{w}}\cdot\vec{\mathbf{u}}$(i) Also, $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 0$ Now, $|\vec{u} - \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2$ $-2\vec{\mathbf{u}}\cdot\vec{\mathbf{v}}-2\vec{\mathbf{v}}\cdot\vec{\mathbf{w}}+2\vec{\mathbf{u}}\cdot\vec{\mathbf{w}}$ $= 1 + 4 + 9 - 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$ [from Eq. (i) $\Rightarrow |\vec{\mathbf{u}} - \vec{\mathbf{v}} + \vec{\mathbf{w}}|^2 = 14 + 0$ $\Rightarrow |\vec{\mathbf{u}} - \vec{\mathbf{v}} + \vec{\mathbf{w}}| = \sqrt{14}$ 502 (b) Area of triangle = $\frac{1}{2} \{ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \}$ 503 (c) \therefore $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ $\Rightarrow (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$ \Rightarrow $(\vec{\mathbf{b}} \cdot \vec{\mathbf{c}})\vec{\mathbf{a}} = (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})\vec{\mathbf{c}}$ $\Rightarrow \vec{a}$ is parallel to \vec{c} 504 (d) Let $\vec{\mathbf{r}}$ be a unit vector such that $\vec{\mathbf{r}} = x(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) + y(\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ $= (x + y)\hat{i} + (2x + y)\hat{j} + (x + 2y)\hat{k}$ Since, $\vec{\mathbf{r}} \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 0$ $\Rightarrow 2x + 2y + 2x + y + x + 2y = 0$ $\Rightarrow y = -x$ $\therefore \vec{\mathbf{r}} = x\hat{\mathbf{i}} - x\hat{\mathbf{k}} \Longrightarrow \vec{\mathbf{r}} = \frac{\hat{\mathbf{i}} - \hat{\mathbf{k}}}{\sqrt{2}}$ 505 (a) Since \vec{a} , \vec{b} and \vec{c} are unit vectors inclined at an angle θ . Therefore, $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ and $\cos \theta = \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ Now, $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$...(i) $\Rightarrow \vec{a}.\vec{c} = \alpha(\vec{a}.\vec{a}) + \beta(\vec{a}\cdot\vec{b}) + \gamma\{\vec{a}\cdot(\vec{a}\times\vec{b})\}$ $\Rightarrow \cos \theta = \alpha |\vec{a}|^2 \quad \left[\because \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \right]$ $\Rightarrow \cos \theta = \alpha$ Similarly, by taking dot product on both sides of (i) by \vec{b} , we get, $\beta = \cos \theta$ $\therefore \alpha = \beta$ Thus, option (a) is incorrect Again, $\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ $\Rightarrow |\vec{c}|^2 = \left|\alpha\vec{a} + \beta\vec{b} + \gamma(\vec{a}\times\vec{b})\right|^2$

$$\Rightarrow |\vec{c}|^{2} = \alpha^{2} |\vec{a}|^{2} + \beta^{2} |\vec{b}|^{2} + \gamma^{2} |\vec{a} \times \vec{b}|^{2}$$

$$+ 2 \alpha \beta (\vec{a}.\vec{b}) + 2 \alpha \gamma \{\vec{a}.(\vec{a} \times \vec{b})\}$$

$$+ 2 \beta \gamma \{\vec{b}.(\vec{a} \times \vec{b})\}$$

$$\Rightarrow 1 = \alpha^{2} + \beta^{2} + \gamma^{2} |\vec{a} \times \vec{b}|^{2}$$

$$\Rightarrow 1 = 2 \alpha^{2} + \gamma^{2} \{|\vec{a}|^{2} |\vec{b}|^{2} \sin^{2} \frac{\pi}{2}\}$$

$$\Rightarrow 1 = 2 \alpha^{2} + \gamma^{2}$$

$$\Rightarrow \alpha^{2} = \frac{1 - \gamma^{2}}{2}$$
But, $\alpha = \beta = \cos \theta$

$$\therefore 1 = 2 \alpha^{2} + \gamma^{2} \Rightarrow \gamma^{2} = 1 - 2\cos^{2} \theta = -\cos 2 \theta$$

$$\therefore \alpha^{2} = \beta^{2} = \frac{1 - \gamma^{2}}{2} = \frac{1 + \cos 2 \theta}{2}$$
Thus, option (b), (c) and (d) are correct
506 (d)

Let $\vec{a} = 7\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$ and $\vec{b} = -2\hat{\imath} - \hat{\jmath} + 2\hat{k}$ be the position vectors of points *A* and *B* respectively. Then the bisector of $\angle AOB$ divides *AB* in the ratio OA : OB i.e. 9 : 3or 3 : 1. Therefore, the vector lying along the bisector is $3(-2\hat{\imath} - \hat{\jmath} + 2\hat{k}) + (7\hat{\imath} - 4\hat{\jmath} - 4\hat{k})$

$$3 + 1$$

$$= \frac{1}{4} (\hat{\imath} - 7\hat{\jmath} + 2\hat{k})$$

$$\therefore \text{ Required vector} = \pm 5\sqrt{6} \left(\frac{(\hat{\imath} - 7\hat{\jmath} + 2\hat{k})}{\sqrt{54}}\right) = \pm \frac{5}{3} (\hat{\imath} - 7\hat{\jmath} + 2\hat{k})$$
507 **(b)**

Since, \vec{a} and \vec{b} are collinear.

510 (a)

Position vectors of vertices A, B and C of the triangle ABC are \vec{a}, \vec{b} and \vec{c} \therefore Centroid of triangle

$$(G) = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

Now, $\vec{G}\vec{A} + \vec{G}\vec{B} + \vec{G}\vec{C}$
$$= \left(\vec{a} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) + \left(\vec{b} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$$
$$+ \left(\vec{c} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$$
$$= \vec{0}$$

Since *X* and *Y* divide $A\vec{B}$ internally and externally

in the ratio 2 : 1. Therefore, the position vectors of *X* and *Y* are given by $\frac{2\vec{b}+\vec{a}}{3}$ and $2\vec{b}-\vec{a}$ respectively Hence, $\vec{X}Y = (2\vec{b} - \vec{a}) - \frac{1}{2}(2\vec{b} + \vec{a}) = \frac{4}{2}(\vec{b} - \vec{a})$ 512 (a) Let $\vec{\mathbf{a}} = (2, 1, -1)$, $\vec{\mathbf{b}} = (1, -1, 0)$ and $\vec{\mathbf{c}} = (5, -1, 1)$ $\vec{a} + \vec{b} - \vec{c} = (2 + 1 - 5)\hat{i} + (1 - 1 + 1)\hat{j} + (-1)\hat{j}$ $(+0-1)\hat{k}$ $=-\left(2\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}}\right)$ ∴ Unit vector of $\left(\vec{\mathbf{a}}+\vec{\mathbf{b}}-\vec{\mathbf{c}}\right)=-\frac{\left(2\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}}\right)}{3}$ ∴ Required unit vector of $\left(\vec{\mathbf{a}}+\vec{\mathbf{b}}-\vec{\mathbf{c}}\right)=\frac{\left(2\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}}\right)}{2}$ 513 (b) $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ ∴ Unit vector $=\pm\frac{\vec{\mathbf{a}}\times\vec{\mathbf{b}}}{|\vec{\mathbf{a}}\times\vec{\mathbf{b}}|}=\pm\frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}}{1^2+1^2+1^2}$ $=\pm\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{2}}$ So, there are two perpendicular vectors of unit length. 514 (b) Let $\vec{\mathbf{r}} = (3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) + b(6\hat{\mathbf{i}} - 7\hat{\mathbf{j}} - 3\hat{\mathbf{k}})$

 $= (3+6b)\hat{\mathbf{i}} + (4-7b)\hat{\mathbf{j}} + (5-3b)\hat{\mathbf{k}}$ Since, $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 0$ $\Rightarrow (3+6b)1 + (4-7b)1 - (5-3b)1 = 0$ $\Rightarrow b = -1$ $\therefore \vec{\mathbf{r}} = -3\hat{\mathbf{i}} + 11\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$ 515 (d) Given $|\vec{\mathbf{x}}| = |\vec{\mathbf{y}}| = 1$ and $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = 0$ $|\vec{\mathbf{x}} + \vec{\mathbf{y}}|^2 = |\vec{\mathbf{x}}|^2 + |\vec{\mathbf{y}}|^2 + 2(\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})$ \Rightarrow $|\vec{\mathbf{x}} + \vec{\mathbf{y}}|^2 = 1 + 1 + 0$ $\Rightarrow |\vec{\mathbf{x}} + \vec{\mathbf{v}}| = \sqrt{2}$ 516 (c) Let $\vec{\mathbf{A}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$, $\vec{\mathbf{B}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}}$, $\vec{\mathbf{C}} = \vec{\mathbf{c}} \times \vec{\mathbf{a}}$ Given, $[\vec{\mathbf{A}} \ \vec{\mathbf{B}} \ \vec{\mathbf{C}}] = 9$ cu units Using the relation $[\vec{A} \times \vec{B} \vec{B} \times \vec{C} \vec{C} \times \vec{A}] =$ $\left[\vec{\mathbf{A}} \, \vec{\mathbf{B}} \, \vec{\mathbf{C}}\right]^2 = (9)^2 = 81 \text{ cu units}$ 517 (a) Since, $\vec{\mathbf{a}} = 8\vec{\mathbf{b}}$ and $\vec{\mathbf{c}} = -7\vec{\mathbf{b}}$ \therefore \vec{a} is parallel to \vec{b} and \vec{c} is anti-parallel to \vec{b} \Rightarrow \vec{a} and \vec{c} are anti-parallel

 \Rightarrow Angle between \vec{a} and \vec{c} is π 519 (a) $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot \hat{\mathbf{i}} = 1$ and $\mathbf{\vec{b}} \cdot \mathbf{\vec{c}} = (\mathbf{\hat{i}} + \mathbf{\hat{j}}) \cdot \mathbf{\hat{i}} = 1$ Now, $(\vec{a} \times \vec{b})\vec{c} = (\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a} = \mu \vec{b} + \lambda \vec{a}$ \Rightarrow u = $\vec{c} \cdot \vec{a}$ and $\lambda = -\vec{c} \cdot \vec{b}$ $\Rightarrow \mu = 1 \text{ and } \lambda = -1$ $\therefore \mu + \lambda = 1 - 1 = 0$ 520 (b) Let angle between $\mathbf{\vec{b}}$ and $\mathbf{\vec{c}}$ is α . Given, $|\vec{\mathbf{b}} \times \vec{\mathbf{c}}| = \sqrt{15}$ $\Rightarrow |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \sin \alpha = \sqrt{15}$ $\Rightarrow \sin \alpha = \frac{\sqrt{15}}{4}$ $\therefore \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{15}{16}}$ $=\frac{1}{4}$ $: \vec{\mathbf{b}} - 2\vec{\mathbf{c}} = \lambda \vec{\mathbf{a}}$ [given] \Rightarrow $(\vec{\mathbf{b}} - 2\vec{\mathbf{c}})^2 = \lambda^2 (\vec{\mathbf{a}})^2$ $\Rightarrow \vec{\mathbf{b}}^2 + 4\vec{\mathbf{c}}^2 - 4\vec{\mathbf{b}}\cdot\vec{\mathbf{c}} = \lambda^2\vec{\mathbf{a}}^2$ $\Rightarrow 16 + 4 \times 1 - 4(|\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \cos \alpha) = \lambda^2 \cdot 1^2$ $\Rightarrow 20 - 4 = \lambda^2$ $\Rightarrow \lambda = \pm 4$

521 **(a)**

523 (d)

52

The given condition mean that $\vec{\mathbf{r}}$ is perpendicular to all three vectors $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$. This is possible only if they are coplanar.

 $\therefore \quad \left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right] = 0$

Let
$$\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$$
 and $\vec{\mathbf{b}} = \hat{\mathbf{j}} + \hat{\mathbf{k}}$
Now, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$
 $= \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$
and $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$
 $\therefore Required unit vector$
 $= \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|} = \frac{\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$
Alternate Let $\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$
Since, $\vec{\mathbf{a}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}}) = 0$ and $\vec{\mathbf{a}} \cdot (\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 0$
 $\Rightarrow x + y = 0$ and $y + z = 0$
Also $x^2 + y^2 + z^2 = 1$
 $\Rightarrow x = 1, y = -1$ and $z = 1$
 $\therefore \vec{\mathbf{a}} = \frac{\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$
4 (a)

Let $\vec{\mathbf{r}} = \vec{\mathbf{a}} + t\vec{\mathbf{b}}$ $\Rightarrow \vec{\mathbf{r}} = \hat{\mathbf{i}}(1+t) + \hat{\mathbf{j}}(2-t) + \hat{\mathbf{k}}(1+t)$ Since, The projection of $\vec{\mathbf{r}}$ on $\vec{\mathbf{c}}$, $\frac{\vec{\mathbf{r}}\cdot\vec{\mathbf{c}}}{|\vec{\mathbf{c}}|} = \frac{|1|}{|\sqrt{3}|}$ [given] $\frac{1 \cdot (1+t) + 1 \cdot (2-t) - 1 \cdot (1+t)}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}}$ $\Rightarrow 2 - t = \pm 1$ \Rightarrow t = 1 or 3 When, t = 1, $\vec{r} = 2\hat{i} + \hat{j} + 2\hat{k}$ When, t = 3, $\vec{r} = 4\hat{i} - \hat{j} + 4\hat{k}$ 525 (a) Given, $\vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} = \vec{\mathbf{w}}$ and $\vec{\mathbf{w}} \times \vec{\mathbf{u}} = \vec{\mathbf{v}}$ \Rightarrow ($\vec{u} \times \vec{v} + \vec{u}$) $\times \vec{u} = \vec{v}$ $\Rightarrow (\vec{u} \times \vec{v}) \times \vec{u} = \vec{v}$ $\Rightarrow \vec{\mathbf{v}} - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) = \vec{\mathbf{v}}$ $\Rightarrow (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})\vec{\mathbf{u}} = 0$ \Rightarrow ($\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$) = 0 Now, $[\vec{u} \ \vec{v} \ \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w})$ $= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v} + \vec{u}))$ $= \vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) + \vec{\mathbf{v}} + \vec{\mathbf{u}})$ $= \vec{u} \cdot (\vec{v}^2 \times \vec{u} - (\vec{u} \cdot \vec{v}) \cdot \vec{v} + \vec{v} \times \vec{u}$ $= \vec{v}^2 \vec{u}^2 = 1$ 527 (b) Given, $\frac{(\hat{\mathbf{b}} \cdot \hat{\mathbf{a}}) \cdot \hat{\mathbf{a}}}{|\hat{\mathbf{a}}|^2} = \frac{4}{3} (\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$ $\Rightarrow \frac{\{(\lambda \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}).(\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}})\}(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})}{(1+1+1)}$ $=\frac{4}{2}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$ $\Rightarrow (\lambda + 3 - 1)(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 4(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$ $\Rightarrow (\lambda + 2)(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 4(\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$ On equating the coefficient of \hat{i} , we get $\lambda + 2 = 4 \Longrightarrow \lambda = 2$ 528 (a) Given that, $\overrightarrow{\mathbf{OA}} = \hat{\mathbf{i}} + x\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ $\overrightarrow{\mathbf{OB}} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ and $\vec{\mathbf{O}C} = y\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ Since *A*, *B*, *C* are collinear. Then $\vec{A} = \lambda \vec{BC}$ $\Rightarrow 2\hat{\mathbf{i}} + (4-x)\hat{\mathbf{j}} + 4\hat{\mathbf{k}} = \lambda \left[(y-3)\hat{\mathbf{i}} - 6\hat{\mathbf{j}} - 12\hat{\mathbf{k}} \right]$ On comparing the coefficient of \hat{i} , \hat{j} and \hat{k} , we get $2 = (y - 3)\lambda$...(i) $4 - x = -6\lambda$ (ii) and $4 = -12\lambda \Rightarrow \lambda = -\frac{1}{3}$ (iii) On putting the value of λ is Eqs. (i) and (ii), we get y = -3 and x = 2529 (b) Given have magnitude of \overrightarrow{OA} and \overrightarrow{OB} are 5 and 6

respectively
and
$$\angle BOA = 60^{\circ}$$

 $\therefore \overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}| |\overrightarrow{OB}| \cdot \cos 60^{\circ}$
 $\Rightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = 5 \cdot 6 \cos 60^{\circ}$
 $\Rightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = 5 \times 6 \times \frac{1}{2} = 15$
530 (d)
It is given that $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$
We have,
 $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}.\vec{b}$
 $\Rightarrow 1 = 1 + 1 + 2|\vec{a}||\vec{b}| \cos \theta$
 $\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}$
531 (a)
Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$
 $= \frac{1}{2}\sqrt{4 + 16 + 16} = 3$ sq units
532 (a)
Since, $\vec{a}, \vec{b}, \vec{c}$ from a right handed system
 $\therefore \vec{c} = \vec{b} \times \vec{a}$
 $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 0 \\ x & y & z \end{vmatrix} = z\hat{i} - x\hat{k}$
533 (b)
Given that, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$
Let angle between \vec{b} and \vec{c} is α , then
 $|\vec{b} \times \vec{c}| = \sqrt{15}$ (given)
 $\Rightarrow |\vec{b}||\vec{c}| \sin \alpha = \sqrt{15}$
 $\Rightarrow \sin \alpha = \frac{\sqrt{15}}{4 \times 1} = \frac{\sqrt{15}}{4}$
 $\therefore \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{4}$
We have, $\vec{b} = 2\vec{c} = \lambda \vec{a}$
On squaring both sides, we get
 $(\vec{b} - 2\vec{c})^2 = \lambda^2(\vec{a})^2$
 $\Rightarrow 16 + 4 - 4|\vec{b}||\vec{c}| \cos \alpha = \lambda^2$
 $\Rightarrow 16 + 4 - 4|\vec{b}||\vec{c}| \cos \alpha = \lambda^2$
 $\Rightarrow 16 + 4 - 4 = 16$
 $\Rightarrow \lambda = \pm 4$
534 (a)
We have,
 $\overrightarrow{P(\vec{a})}, Q(\vec{c}), R$
 $PR = 5PQ \Rightarrow PQ + QR = 5PQ \Rightarrow 4PQ = QR$
 $\therefore PR : QR = 5:4$
 $\Rightarrow R$ divides PQ externally in the ratio 5:4

 \Rightarrow Position vector of *R* is 5 \vec{b} – 4 \vec{a} 536 (a) We have, $\vec{B}A + \vec{B}C + \vec{C}D + \vec{D}A$ $= \vec{B}A + (\vec{B}C + \vec{C}D) + \vec{D}A = \vec{B}A + (\vec{B}D + \vec{D}A)$ $= \vec{B}A + \vec{B}A = 2\vec{B}A$ 537 (a) Given centre of sphere=(1, 0, 1) and radius=4 ∴Vector equation of sphere is $|\vec{\mathbf{r}} - \vec{\mathbf{a}}| = R$ Where $\vec{\mathbf{a}}$ centre of sphere and *R* radius of sphere. Hence, the vector equation of sphere is $\left|\vec{\mathbf{r}} - (\hat{\mathbf{i}} + \hat{\mathbf{k}})\right| = 4$ 538 **(b)** We have, $\left|\left[\vec{a} \ \vec{b} \ \vec{c}\right]\right| = V$ Volume V_1 of the parallelopiped having diagonals of the given parallelopiped as three concurrent edges is given by $V_1 = |[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]| = |2[\vec{a} \ \vec{b} \ \vec{c}]| = 2V$ $\overrightarrow{a} + \overrightarrow{c}$ $\overrightarrow{b} + \overrightarrow{c}$ **≯** h $\overrightarrow{a} + \overrightarrow{b}$ D 540 (d) The given equation is $\vec{\mathbf{r}^2} - 2\vec{\mathbf{r}}\cdot\vec{\mathbf{c}} + h = 0, |\vec{\mathbf{c}}| > \sqrt{h}$ This is the equation of sphere in diameter form. *ie*, $(\vec{\mathbf{r}} - \vec{\mathbf{a}}) \cdot (\vec{\mathbf{r}} - \vec{\mathbf{b}}) = 0$ 541 (c) Let the given points be A, B, C respectively. If *A*, *B*, *C* are collinear, then $A\vec{B} = \lambda B\vec{C}$ for some scalar λ $\Rightarrow 2\hat{\imath} - 8\hat{\imath} = \lambda \left\{ (a! - 12)\hat{\imath} + 16\hat{\jmath} \right\}$ $\Rightarrow \lambda(a-12) = 2$ and $16\lambda = -8$ $\Rightarrow a - 12 = -4 \Rightarrow a = 8$ 542 (a) We have, $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{b} \times (\vec{b} \times \vec{c})$ $\Rightarrow (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} = (\vec{b} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{b})\vec{c}$ Taking dot product on both sides by $\vec{b} \times \vec{c}$, we get $\Rightarrow (\vec{a} \cdot \vec{b}) \{ \vec{a} \cdot (\vec{b} \times \vec{c}) \} - (\vec{a} \cdot \vec{a}) \{ \vec{b} \cdot (\vec{b} \times \vec{c}) \}$ $= (\vec{b} \cdot \vec{c}) \{ \vec{b} \cdot (\vec{b} \times \vec{c}) \}$ $-(\vec{b}\cdot\vec{b})\{\vec{c}\cdot(\vec{b}\times\vec{c})\}$

 $\Rightarrow (\vec{a} \cdot \vec{b}) [\vec{a} \, \vec{b} \, \vec{c}] = 0$ $\Rightarrow \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0 \qquad \begin{bmatrix} \because \vec{a} & \cdot \vec{b} \neq 0 \end{bmatrix}$ 543 (a) We have, $\left[\vec{a}\,\vec{b}\,\vec{a}\times\vec{b}\right] + \left(\vec{a}\cdot\vec{b}\right)^2$ $= (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + (\vec{a} \cdot \vec{b})^{2}$ $\Rightarrow \left[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}\right] + \left(\vec{a} \cdot \vec{b}\right)^2 = \left|\vec{a} \times \vec{b}\right|^2 + \left(\vec{a} \cdot \vec{b}\right)^2$ $= |\vec{a}|^2 |\vec{b}|^2$ 544 (d) Since, $[3\vec{\mathbf{v}} p \vec{\mathbf{v}} p \vec{\mathbf{w}}] - [p \vec{\mathbf{v}} \vec{\mathbf{w}} q \vec{\mathbf{u}}] - [2 \vec{\mathbf{w}} q \vec{\mathbf{v}} q \vec{\mathbf{u}}] = 0$ $\therefore 3p^{2}[\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})] - pq[\vec{\mathbf{v}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{u}})]$ $-2q^2[\vec{\mathbf{w}}\cdot(\vec{\mathbf{v}}\times\vec{\mathbf{u}})]=0$ $\Rightarrow (3p^2 - pq + 2q^2)[\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})] = 0$ But $[\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{w}}] \neq 0$ $\Rightarrow 3p^2 - pq + 2q^2 = 0$ $\Rightarrow p = q = 0$ 545 (a) $\vec{a} \cdot [(\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})]$ $= \vec{a} \cdot [\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b})]$ $= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{b})$ $= \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a} \ \vec{c} \ \vec{b} \end{bmatrix} = 0 \qquad \begin{bmatrix} \because \begin{bmatrix} \vec{a} \ \vec{c} \ \vec{b} \end{bmatrix} = -\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} \end{bmatrix}$ 546 (b) Let , $\vec{\mathbf{a}} = \hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $\vec{\mathbf{b}} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ Now, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix} = -4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ \therefore Area of parallelogram $=\frac{1}{2}|\vec{a}\times\vec{b}|$ $=\frac{1}{2}\sqrt{16+4+1}=\frac{\sqrt{21}}{2}$ 547 (c) Since, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$...(i) Also, $(\vec{\mathbf{a}} + 3\vec{\mathbf{b}}) \cdot (2\vec{\mathbf{a}} - \vec{\mathbf{b}}) = -10$ $\Rightarrow 2|\vec{a}|^2 - \vec{a} \cdot \vec{b} + 6\vec{b} \cdot \vec{a} - 3|\vec{b}|^2 = -10$ $\Rightarrow 2 - 3|\vec{\mathbf{b}}|^2 = -10 \Rightarrow |\vec{\mathbf{b}}| = 2$ [from Eq. (i)] 548 (a) We have, $\vec{a} = \hat{\iota} + \hat{j} + \hat{k}$, $\vec{b} = \hat{\iota} + \hat{j}$, $\vec{c} = \hat{\iota}$ $\therefore (\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$ $\Rightarrow (\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a} = \lambda \vec{a} + \mu \vec{b}$ $\Rightarrow \vec{b} - \vec{a} = \lambda \vec{a} + \mu \vec{b}$ $\Rightarrow (\lambda + 1)\vec{a} + (\mu - 1)\vec{b} = \vec{0}$ $\Rightarrow \lambda + 1 = 0$ and $\mu - 1 = 0$ [$\because \vec{a}, \vec{b}, \text{ are non}$ collinear $\Rightarrow \lambda + \mu = 0$ 550 (c)

Let angle between \vec{a} and \vec{b} be θ_1 . \vec{c} and \vec{d} be θ_2 and $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ be θ Since, $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1$ $\Rightarrow \sin \theta_1 \cdot \sin \theta_2$ $\cdot \cos \theta$ = 1 (: $|\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{d}| = 1$) $\Rightarrow \theta_1 = 90^{\circ} \cdot \theta_2 = 90^{\circ}, \theta = 0^{\circ}$ $\Rightarrow \vec{a} \perp \vec{b}, \vec{c} \perp \vec{d}, (\vec{a} \times \vec{b}) || (\vec{c} \times \vec{d})$ So, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}})$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}})$ \Rightarrow ($\vec{\mathbf{a}} \times \vec{\mathbf{b}}$) $\cdot \vec{\mathbf{c}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}}) \cdot \vec{\mathbf{c}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot \vec{\mathbf{d}} = k(\vec{\mathbf{c}} \times \vec{\mathbf{d}}) \cdot \vec{\mathbf{d}}$ \Rightarrow [$\vec{a} \ \vec{b} \ \vec{c}$] = 0 and [$\vec{a} \ \vec{b} \ \vec{d}$] = 0 $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{d}$ are coplanar vector so option (A) and (B) are incorrect. Let $\vec{\mathbf{b}} || \vec{\mathbf{d}} \Rightarrow \vec{\mathbf{b}} = \pm \vec{\mathbf{d}}$ As $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = 1 \Longrightarrow (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{b}}) =$ +1 \Rightarrow [$\vec{a} \times \vec{b} \vec{c} \vec{b}$] = ±1 \Rightarrow [$\vec{c} \, \vec{b} \, \vec{a} \times \vec{b}$] = ±1 $\Rightarrow \vec{\mathbf{c}} \cdot [\vec{\mathbf{b}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})] = \pm 1$ $\Rightarrow \vec{\mathbf{c}} \cdot [\vec{\mathbf{a}} - (\vec{\mathbf{b}} \cdot \vec{\mathbf{a}})\vec{\mathbf{b}}] = \pm 1$ $\Rightarrow \vec{\mathbf{c}} \cdot \vec{\mathbf{a}} = \pm 1 \quad (\because \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0)$ Which is a contradiction so option (c) is correct. Let option (d) is correct

 $\vec{d} \qquad \vec{c}$ $\Rightarrow \vec{d} = \pm \vec{a} \text{ and } \vec{c} = \pm \vec{b}$ As $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ $\Rightarrow (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{a}) = \pm 1$

Which is a contradiction so option (d) is incorrect. **Alternate** Option (c) and (d) may be observed from given in figure.

552 **(b)**

 $(\mathbf{\hat{i}} \times \mathbf{\hat{j}}) \cdot \mathbf{\vec{c}} \le |\mathbf{\hat{i}} \times \mathbf{\hat{j}}| |\mathbf{\vec{c}}| \cos \frac{\pi}{6}$ $\Rightarrow -\frac{\sqrt{3}}{2} \le (\mathbf{\hat{i}} \times \mathbf{\hat{j}}) \cdot \mathbf{\vec{c}} \le \frac{\sqrt{3}}{2}$ 553 (b)

It is given that \hat{a} and \hat{b} are mutually perpendicular unit vectors. Therefore, \hat{a} , \hat{b} and $\hat{a} \times \hat{b}$ are non-

coplanar vectors. $\therefore \left[\hat{a} \ \hat{b} \ \hat{a} \times \hat{b} \right] \neq 0$ If the vectors $\vec{\alpha} = x\hat{a} + x\hat{b} + z(\hat{a} \times \hat{b}), \vec{\beta} = \hat{a} + \hat{b}$ $(\hat{a} \times \hat{b})$ and, $\vec{\gamma} = z\hat{a} + z\hat{b} + y(\hat{a} \times \hat{b})$ are coplanar, then $\left[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}\right] = 0$ $\Rightarrow \begin{vmatrix} x & x & z \\ 1 & 0 & 1 \\ z & z & y \end{vmatrix} \begin{bmatrix} \hat{a} \ \hat{b} \ \hat{a} \times \hat{b} \end{bmatrix} = 0$ $\Rightarrow \begin{vmatrix} x & x & z \\ 1 & 0 & 1 \\ z & z & y \end{vmatrix} = 0 \qquad \begin{bmatrix} \because \begin{bmatrix} \hat{a} \ \hat{b} \ \hat{a} \times \hat{b} \end{bmatrix} \neq 0 \end{bmatrix}$ $\Rightarrow x(0-z) - x(y-z) + z(z-0) = 0$ $\Rightarrow -xz - yx + xz + z^2 = 0$ $\Rightarrow z^2 = xv$ \Rightarrow *z* is the geometric mean of *x* and *y* 554 (d) Given, $\vec{\mathbf{a}} = (1, p, 1), \vec{\mathbf{b}} = (q, 2, 2)$ $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = r$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = (0, -3, -3)$ Now, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = (\hat{\mathbf{i}} + p\hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (q\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ \Rightarrow q + 2p + 2 = r [given]....(i) Now, $\vec{\mathbf{a}} \times \vec{\mathbf{b}} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & p & 1 \\ q & 2 & 2 \end{vmatrix}$ $\Rightarrow (2p-2)\hat{\mathbf{i}} + (q-2)\hat{\mathbf{j}} + (2-pq)\hat{\mathbf{k}}$ $= \{0\hat{i} + (-3)\hat{j} + (3)\hat{k} \text{ [given]} \}$ \Rightarrow 2p - 2 = 0; q - 2 = -3; 2 - pq = 3 $\Rightarrow p = 1, q = -1$ From Eqs. (i), -1 + 2 + 2 = r= r = 3555 (c) We have, $(3\hat{\imath} - 2\hat{\jmath} + \hat{k}) \cdot (2\hat{\imath} + \hat{\jmath} - 4\hat{k}) = 0$ So, the triangle is right angled 556 (a) Since, $2|\hat{\mathbf{i}} + x\hat{\mathbf{j}} + 3\hat{\mathbf{k}}| = |4\hat{\mathbf{i}} + (4x - 2)\hat{\mathbf{j}} + 2\hat{\mathbf{k}}|$ $\Rightarrow 2\sqrt{1+x^2+9} = \sqrt{4^2+(4x-2)^2+2^2}$ $\implies 12x^2 - 16x - 16 = 0$ $\Rightarrow (3x+2)(x-2) = 0$ $\Rightarrow x = 2, -\frac{2}{3}$ 559 **(b)** $: \vec{a}, \vec{b}$, and \vec{c} are the *p*th, *q*th, *n*th terms of an HP respectively. $\frac{1}{a} = A + (p-1)D, \frac{1}{b} = A + (q-1)D \text{ and } \frac{1}{c}$ = A + (r-1)D $\therefore q - r = \frac{c - b}{bcD}, r - p = \frac{a - c}{acD}$

And $q - r = \frac{b-a}{abD}$ $\Rightarrow \frac{(q-r)}{a} + \frac{(r-p)}{b} + \frac{(p-q)}{c} = 0$ $\Rightarrow \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$ 560 (d) Given edges are $\vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}, \vec{\mathbf{b}} = \lambda \hat{\mathbf{i}} + \hat{\mathbf{j}} + (1 - \lambda)\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \mu \,\hat{\mathbf{i}} + \lambda \,\hat{\mathbf{j}} + (1 + \lambda - \mu) \hat{\mathbf{k}}$ ∴ Volume of parallelopiped $= \left[\vec{a} \, \vec{b} \, \vec{c} \right]$ $= \begin{vmatrix} 1 & 0 & -1 \\ \lambda & 1 & 1-\lambda \\ \mu & \lambda & 1+\lambda-\mu \end{vmatrix}$ $= 1(1 + \lambda - \mu - \lambda + \lambda^2) - 0 - 1(\lambda^2 - \mu)$ $= 1 + \lambda^2 - \mu - \lambda^2 + \mu = 1$ Hence, volume depends on neither λ nor μ . 561 (a) $\vec{\mathbf{c}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}}) \times (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}})$ $= \vec{c} \cdot (\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b})$ $= \vec{c} \cdot \vec{b} \times \vec{a}$ 562 (c) $\vec{A}C - \vec{B}D$ $= (\vec{A}B + \vec{B}C) - (\vec{B}A + \vec{A}D)$ $= \vec{A}B + \vec{B}C + \vec{A}B - \vec{A}D = 2\vec{A}B$ B 563 (c) We have, $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \left| \vec{a} + \vec{b} + \vec{c} \right|^2 = 0$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + + \vec{c} \cdot \vec{a})$ = 0 $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + + \vec{c} \cdot \vec{a}$ $=-\frac{3}{2}[::|\vec{a}|=|\vec{b}|=|\vec{c}|=1]$ 565 (a) Given that, $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = 5\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ The projection of $\vec{\mathbf{b}}$ on $\vec{\mathbf{a}} = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}|}$ $=\frac{(2\hat{\mathbf{i}}+\hat{\mathbf{j}}+2\hat{\mathbf{k}})\cdot(5\hat{\mathbf{i}}-3\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}$ $=\frac{10-3+2}{\sqrt{9}}=\frac{9}{3}=3$ 566 **(a)** Total force,

$$\vec{\mathbf{F}} = 3\left(\frac{6\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}}{7}\right) + 4\left(\frac{3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}}{7}\right)$$
$$= \frac{(30\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 33\hat{\mathbf{k}})}{7}$$
$$\therefore \vec{\mathbf{d}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}} - (2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}})$$
$$= 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$
$$\therefore \text{ Work done } W = \vec{\mathbf{F}} \cdot \vec{\mathbf{d}}$$
$$= \left(\frac{30\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 33\hat{\mathbf{k}}}{7}\right) \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$$
$$= \frac{60 - 2 + 66}{7} = \frac{124}{7}$$
567 (b)
$$[\vec{\mathbf{a}} \, \vec{\mathbf{b}} + \vec{\mathbf{c}} \, \vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}] = \vec{\mathbf{a}} \cdot \{(\vec{\mathbf{b}} + \vec{\mathbf{c}}) \times (\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}})\}$$

 $= \vec{a} \cdot \{\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b}\}$ $= \vec{a} \cdot \{\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c}\}$ $= [\vec{a} \ \vec{b} \ \vec{a}] + [\vec{a} \ \vec{c} \ \vec{a}] = 0$

DCAM classes Dynamic Classes for Academic Mastery