

2.UNITS AND MEASUREMENTS

Single Correct Answer Type

1. $1 Wb/m^2$ is equal to

2.

a) $10^4 gauss$ b) $4\pi \times 10^{-3} gauss$ c) $10^2 gauss$ d) $10^{-4} gauss$ The maximum static friction on a body is $F = \mu N$. Here, N = i normal reaction force on the body $\mu = i$ coefficient of static friction. The dimensions of μ are

a)
$$[MLT^{-2}]$$
 b) $[M^0L^0T^0\theta^{-1}]$ c) Dimensionless d) None of these

3. The dimensions of gravitational constant G and the moment of inertia are respectively

a)
$$ML^{3}T^{-2}; ML^{2}T^{0}$$
 b) $M^{-1}L^{3}T^{-2}; ML^{2}T^{0}$ c) $M^{-1}L^{3}T^{-2}; M^{-1}L^{2}T$ d) $ML^{3}T^{-2}; M^{-1}L^{2}T$

4. One femtometer is equivalent to

a)
$$10^{15}m$$
 b) $10^{-15}m$ c) $10^{-12}m$ d) $10^{12}m$

5. In the relation $x = \cos(\omega t + kx)$, the dimensions of ω are

a)
$${}_{\dot{c}}$$
 b) $[M^0 L^{-1} T^0]$ c) $[M^0 L^0 T^{-1}]$ d) $[M^0 {}_{\dot{c}}^{-1}]$

6. A physical parameter *a* can be determined by measuring the parameters b, c, d and e using the relation $a=b^{\alpha}c^{\beta}/d^{\gamma}e^{\delta}$. If the maximum errors in the measurement of b, c, d and e are $b_1\%$, $c_1\%$, $d_1\%$ and $e_1\%$, then the maximum error in the value of *a* determined by the experiment is a) $(b_1+c_1+d_1+e_1)\%$ b) $(b_1+c_1-d_1-e_1)\%$

c)
$$(\alpha b_1 + \beta c_1 - \gamma d_1 - \delta e_1)\%$$

d) $(\alpha b_1 + \beta c_1 + \gamma d_1 + \delta e_1)\%$

7. A student measures the distance traversed in free fall of a body, initially at rest in a given time. He uses this data to estimate g, the acceleration due to gravity. If the maximum percentage errors in measurement of the distance and the time are e_1 and e_2 respectively, the percentage error in the estimation of g is

a)
$$e_2 - e_1$$
 b) $e_1 + 2e_2$ c) $e_1 + e_2$ d) $e_1 - 2e_2$

8. A body travels uniformly a distance of $(13.8 \pm 0.2)m$ in a time $(4.0 \pm 0.3 is)$. The velocity of the body within error limits is

a)
$$(3.45 \pm 0.2)ms^{-1}$$
 b) $(3.45 \pm 0.3)ms^{-1}$ c) $(3.45 \pm 0.4)ms^{-1}$ d) $(3.45 \pm 0.5)ms^{-1}$

9. In a vernier callipers, one main scale division is $x \, cm$ and n division of the vernier scale coincide with (n-1) divisions of the main scale. The least count incm i of the callipers is

a)
$$\left(\frac{n-1}{n}\right)_X$$
 b) $\frac{nx}{(n-1)}$ c) $\frac{x}{n}$ d) $\frac{x}{(n-1)}$

- 10. The dimensions of surface tension are
 - a) $ML^{-1}T^{-2}$ b) MLT^{-2} c) $ML^{-1}T^{-1}$ d) MT^{-2}

11. The Vander Waal's equation of state for real gases is given as $\left(P + \frac{a}{V^2}\right)(V-b) = nRT$ which of the following

terms has dimensions different from that of energy

a)
$$PV$$
 b) $\frac{a}{V^2}$ c) $\frac{ab}{V^2}$ d) bP

- 12. Dimensional formula of magnetic flux is
 - a) $ML^2T^{-2}A^{-1}$ b) $ML^0T^{-2}A^{-2}$ c) $M^0L^{-2}T^{-2}A^{-3}$ d) $ML^2T^{-2}A^{-3}$

13.	If unit of length, mass and time each be doubled, the unit of work done is increased by				
	a) 4 times	b) 6 times	c) 8 times	d) 2 times	
14.	Taking frequency f , velocity momentum will be	ty v and density ρ to be the f	fundamental quantities, then	the dimensional formula for	
	a) $[\rho v^4 f^{-3}]$	b) $[\rho v^3 f^{-1}]$	c) $[\rho v f^2]$	d) $[\rho^2 v^2 f^2]$	
15.	The length, breadth and this	ckness of a block is measured	d to be 50 cm, 2.0 cm and 1.0	00 cm. The percentage error	
	in the measurement of volu a) 0.8%	ime is	c) 10%	d) 12 5%	
1(۸ ۸		aj 12.570	
10.	Two quantities A and B are	e related by the relation $\frac{A}{B}$ =1	m, where m is linear mass defined as $m = m + m + m + m + m + m + m + m + m + $	n sity and A is force. The	
	dimensions of B will be a) Mass as that of latent he	eat	b) Same a that of pressure		
	c) Same as that of work		d) Same as that of moment	um	
17.	The number of significant f	igures in the numbers 4.8000	0×10^4 and 48000.50 are res	pectively	
	a) 5 and 6	b) 5 and 7	c) 2 and 7	d) 2 and 6	
18.	The specific resistance ρ of	f a circular wire of radius r . I	Resistance R and and length	<i>l</i> is given by $\rho = \frac{\pi r^2 R}{l}$.	
	Given, $r=0:(24\pm0.02)$ cr a) 7%	n, $R = (30 \pm 1)\Omega$ and $l = (4.3)$ b) 9%	80±0.01)cm. The percentag c) 13%	ge error in ρ is nearly d) 20%	
19.	The dimensional formula o	f modulus of rigidity is			
	a) $[ML^{-2}T^{-2}]$	b) $\left[ML^{-3}T_{2} \right]$	c) $[ML^2 T^{-2}]$	$\mathrm{d} \mathbf{)} \left[M L^{-1} T^{-2} \right]$	
20.	Which of the following qua	antities is dimensionless			
	a) Gravitational constant		b) Planck's constant		
	c) Power of a convex lens		d) None		
21.	The respective number of s	ignificant figures for the num	bers 23.023, 0.0003 and 2.	1×10^{-3} are	
	^{a)} 4,4,2	b) _{5,1,2}	c) _{5,1,5}	d) _{5,5,2}	
22.	One slug is equivalent to 14	4.6 kg. A force of 10 pound i	s applied on a body of 1 kg.	The acceleration of the body	
	is a) $_{44.5} m s^{-2}$	b) $_{4.448ms^{-2}}$	c) $_{44.4ms^{-2}}$	d) None of these	
23.	The dimensions of magneti	c field in M, L, T and C (cou	lomb) is given as		
	a) $[MLT^{-1}C^{-1}]$	b) $[MT^2C^{-2}]$	c) $[MT^{-1}C^{-1}]$	$d)[MT^{-2}C^{-1}]$	
24.	In a system of units if force	e(F), acceleration (A) , and	time (T) are taken as fundamentation	nental units then the	
	dimensional formula of energy $A^2 T$	b) FAT^2	c) $F^2 AT$	d) _{FAT}	
25.	A calorie is a unit of heat a	nd equal 4.2 J. Suppose we e	mploy a system of units in w	hich the unit of mass is α kg,	
	the unit of length is β metr	e and the unit of time is γ see	c. In this new system. 1 calor	ie =	
26	$\int \alpha \beta \gamma^{2}$	$^{\prime}$ 4.2 $\alpha \beta^2 \gamma^2$	$\gamma \alpha \beta^2 \gamma^2$	$^{-9}$ 4.2 α $^{+}\beta$ $^{2}\gamma^{2}$	
20.	The dimensional formula f	or young's modulus is			

27.	a) $M L^{-1} T^{-2}$ The dimensional formula formula	b) $M^0 L T^{-2}$ or entropy is	c) $ML T^{-2}$	d) $M L^2 T^{-2}$
28.	a) $[MLT^{-2}K^{-1}]$ Dimensions of <i>CR</i> are thos	b) $[M L^2 T^{-2}]$ e of	c) $[ML^2T^{-2}K^{-1}]$	d) $[ML^{-2}T^{-2}K^{-1}]$
	a) Frequency	b) Energy	c) Time period	d) Current
29.	Which one of the following	pair of quantities has same	dimension?	
	a) Force and work done		b) Momentum and impulse	
	c) Pressure and force		d) Surface tension and stres	88
30.	Given $\pi = 3.14$. the value of	of π^2 with due regard for sign	nificant figures is	
	a) 9.86	b) 9.859	c) 9.8596	d) 9.85960
31.	Dimensions of frequency as	re		
	a) $M^0 L^{-1} T^0$	b) $M^0 L^0 T^{-1}$	c) $M^{0}L^{0}T$	d) $_{MT^{-2}}$
32.	Dimensional formula for an	ngular momentum is		
	a) ML^2T^{-2}	b) ML^2T^{-1}	c) MLT^{-1}	d) $M^0 L^2 T^{-2}$
33.	Which of the following qua	ntities has the same dimension	ons as that of energy	
	a) Power	b) Force	c) Momentum	d) Work
34.	If L and R are respectively	the inductance and resistanc	e, then the dimensions of $\frac{L}{R}$	
	will be a) $M^0 L^0 T^{-1}$		b) $M^0 < ^\circ$	
	c) $M^{0}L^{0}T$		d) Cannot be represented in	n terms of M , L and T
35.	The dimension of the ratio	of angular to linear momentu	ım is	
	a) $M^0 L^1 T^0$	b) $M^{1}L^{1}T^{-1}$	c) $M^{1}L^{2}T^{-1}$	d) $M^{-1}L^{-1}T^{-1}$
36.	The unit of Planck's constant	nt is		
	^{a)} Joule	b) Joule/s	c) Joule/m	d) _{Joule-s}
37.	$M L^3 T^{-1} Q^{-2}$ is dimension	s of		
	a) Resistivity	b) Conductivity	c) Resistance	d) None of these
38.	If force is proportional to se	quare of velocity, then the di	mensions of proportionality	constant are
	a) $[ML^{-1}T]$	b) $\left[ML^{-1}T^{0} \right]$	c) $[MLT^0]$	d) $[M^{0}\dot{c}^{-1}]$
39.	A unit of area, often used in consumes 75 hectares of lan	n measuring land areas, is the nd, down to a depth of 26m,	the hectare defined as $10^4 m^2$. A leach year. What volume of e	An open-pit coal mine earth, in cubic kilometre, is
	removed in this time? a) 0.01	b) 0.02	c) 0.03	d) 0.04
40.	A physical quantity is repre	sented by $X = M^{\alpha} L^{b} T^{-c}$. If	percentage errors in the mea	asurements of M , L and T

are α %, β % and γ % respectively, then total, percentage error is

	a) $(\alpha a + \beta b - \gamma c)$ %	b) $(\alpha a + \beta b + \gamma c)$ %	c) $(\alpha a - \beta b - \gamma c)$ %	d) 0%		
41.	The density of the material errors in the measurement of measurement of density is	of a cube is measured by me of mass and the length are 3%	easuring its mass and length o 6 and 2% respectively. The n	f its side. If the maximum naximum error in the		
	a) 1%	b) 5%	c) 7%	d) 9%		
42.	The sides of a rectangle are	6.01 m and 12m. taking the	significant figures into accou	nt, the area of the rectangle is		
	a) 7.2 m^2	b) 72.1 m^2	c) 72.00 m^2	d) $_{72.12} m^2$		
43.	Density of a liquid in CGS	system is $0.625 g/c m^3$. Wh	at is its magnitude in SI system	em		
	^{a)} 0.625	^{b)} 0.0625	c) 0.00625	d) ₆₂₅		
44.	The equation of state of sor	ne gases can be expressed as	$\left(P+\frac{a}{V^2}\right)(V-b)=RT$. Here	P is the pressure, V is the		
	volume, <i>T</i> is the absolute term a) ML^5T^{-2}	mperature and a, b, R are c b) $ML^{-1}T^{-2}$	onstants. The dimensions of ^{c)} $M^0 L^3 T^0$			
45.	A physical quantity u is giv	en by the relation $u = \frac{B^2}{2\mu_0}$				
	here, $B = i$ magnetic field st $\mu_0 = i$ magnetic permeability a) Energy	rength y of vacuum. b) Energy density	c) Pressure	d) None of these		
46.	A rectangular beam which is supported at its two ends and leaded in the middle with weight <i>w</i> sags by an amount					
	δ such that $\delta = \frac{w l^3}{4 Y d^3}$, where l, d and Y represent length, depth and elasticity respectively.					
	Guess the unknown factor u	using dimensional consideration	ions	d) Mass		
47	The dimension of quantity	(I/RCV) is	(breadth) ³	u j 191835		
17.	a) []	(L) (R, V) is		d) None of these		
48	[A] The pair baying the same di	$[A^2]$	$[A^{-1}]$	a) None of these		
10.	a) Angular momentum wo	rk	h) Work torque			
	 a) Angular momentum, wo c) Potential energy linear r 	nomentum	d) <i>V</i> : <i>v</i>			
10	The fundamental unit, which	homentum	dimensional formulae of sur	face tension and viscosity is		
47.	2) Mass	b) I spoth		d) Name of these		
FO			cj Time	a) None of these		
50.	which is not a unit of electr			D.		
	a) NC^{-1}	$V m^{-1}$	c) JC^{-1}	d) $JC^{-1}m^{-1}$		
51.	<i>newton</i> — <i>second</i> is the un	it of				
	a) Velocity	b) Angular momentum	c) Momentum	d) Energy		
52.	Student I, II and III perform pendulum. They use differe The observations are shown	n an experiment for measurir nt lengths of the pendulum a n in the table	ng the acceleration due to gra nd/or record time for differe	vity (g) using a simple nt number of oscillations.		

Least count for length = 0.1 cm.

Least count for time = 0.1 s.

Stu den t	Length of the pendul um (cm)	Number of oscillati ons (n)	Total time for (n) oscillatio ns (s)	Time perio d (s)
Ι	64.0	8	128.0	16.0
II	64.0	4	64.0	16.0
III	20.0	4	36.0	9.0

If E_1 , $E_{II} \wedge E_{III}$ are the percentage errors in g, ie, $\left(\frac{\Delta g}{g} \times 100\right)$, for students I, II and III respectively.

a)
$$E_I = 0$$

b) E_I is minimum

c) $E_I = E_{II}$

- d) E_{II} is maximum
- 53. Which of the following is not equal to watt

54.	a) <i>joule/second</i> Which is the correct unit fo	^{b)} ampere × volt r measuring nuclear radii	c) $(ampere)^2 \times ohm$	d) ampere/volt
	a) Micron	b) <i>Millimetre</i>	c) Angstrom	d) _{Fermi}
55.	The dimensions of electric of	dipole moment are		
	a) $[L^2 I]$	b)[<i>LI</i>]	c) [<i>LTI</i>]	d) $[T^{-2}]$
56.	The physical quantities not	having same dimensions are		
	a) Torque and work		b) Momentum and Planck's	constant
	c) Stress and Young's modu	ıles	d) Speed and $(\mu_0 \varepsilon_0)^{-1/2}$	
57.	In C.G.S. system the magning quantities are kilogram, <i>me</i>	tude of the force is 100 <i>dyne</i> <i>tre</i> and minute, the magnitud	2. In another system where fulle of the force is	ndamental physical
	a) 0.036	b) 0.36	c) 3.6	d) 36
58.	The mass and volume of a b	body are found to be 5.00 ± 0	$0.05 kg \wedge 1.00 \pm 0.05 m^3 \mathrm{resp}$	ectively. Then the maximum
	possible percentage error in a) 6%	its density is b) 3%	c) 10%	d) 5%
59.	Given that $2l\sqrt{\frac{m}{T}}$, where l	is the length of a string of lin	tear density m , under tension	T ha the same dimensional
	formula as that of a) Mass	b) Time	C) Length	d) Mole
60.	The dimensional formula of	f relative density is	-) 2011501	
	a) 2	b) 1		d) Dimensionless
(1	$^{a}JML^{-3}$	$^{0}LT^{-1}$	$^{\circ}J$ ML T^{-2}	
6				

61. If $F = 6 \pi \eta^a r^b v^c$, Where F = i viscous force $\eta = i$ coefficient of viscosity $r = \dot{\iota}$ radius of spherical body

 $v = \dot{c}$ terminal velocity of the body.

Find the values of a, b and c.

a)
$$a=1, b=2, c=1$$

b) $a=1, b=1, c=1$
c) $a=2, b=1, c=1$
d) $a=2, b=1, c=2$

62. If *L* denotes the inductance of an inductor through which a current *I* is flowing, then the dimensional formula of LI^2 is

a)
$$[MLT^{-2}]$$

b) $[ML^{2}T^{-2}]$
c) $[M^{2}L^{2}T^{-2}]$
d) Not expressible in terms of M, L, T

63. Dimensional formula for torque is

a)
$$L^2 M T^{-2}$$
 b) $L^{-1} M T^{-2}$ c) $L^2 M T^{-3}$ d) $L M T^{-2}$

64. If force (F), length (L) and time (T) are assumed to be fundamental units, then the dimensional formula of the mass will be

a)
$$FL^{-1}T^2$$
 b) $FL^{-1}T^{-2}$ c) $FL^{-1}T^{-1}$ d) FL^2T^2

65. Dimensions of ohm are same as (h - iPlanck's constant, e - icharge)

a)
$$h/e$$
 b) h^2/e c) h/e^2 d) h^2e^2

66. Dimensions of permeability are

a)
$$A^{-2}M^{1}L^{1}T^{-2}$$
 b) MLT^{-2} c) $ML^{0}T^{-1}$ d) $A^{-1}MLT^{2}$

67. The surface tension of mercury is 32 dyne $c m^{-1}$. Its value in SI units is

68. The internal and external diameters of a hollow cylinder are measured with the help of a vernier calipers. Their values are 4.23 ±0.01 cm and 3.87 ±0.01 cm respectively. The thickness of the wall of the cylinder is

a) 0.36±0.02 cm
b) 0.18±0.02 cm
c) 0.36±0.01 cm
d) 0.18±0.01 cm

69. Henry/ohm can be expressed in

^{a)} Second	^{b)} Coulomb	c) Mho	^{d)} Metre

70. Coefficient of thermal conductivity has the dimensions

a)
$$[MLT^{-3}K^{-1}]$$
 b) $[ML^{3}T^{3}K^{2}]$ c) $[ML^{3}T^{-3}K^{-2}]$ d) $[M^{2}L^{3}T^{-3}K^{2}]$

- 71. Tesla is a unit for measuring
 - a) Magnetic momentb) Magnetic inductionc) Magnetic intensityd) Magnetic pole strength
- 72. According to *Joule's* law of heating, heat produced $H = I^2 Rt$, where *I* is current, *R* is resistance and *t* is time. If the errors in the measurement of *I*, *R* and *t* are 3%, 4% and 6% respectively then error in the measurement of *H* is

a)
$$_{\pm 17\%}$$
 b) $_{\pm 16\%}$ c) $_{\pm 19\%}$ d) $_{\pm 25\%}$

73. In the equation $X = 3 Y Z^2$, X and Z have dimensions of capacitance and magnetic induction respectively. In MKSQ system, the dimensional formula of Y is

a)
$$[M^{-3}L^{-2}T^{-2}Q^{-4}]$$
 b) $[ML^{-2}]$ c) $[M^{-3}L^{-2}Q^{4}T^{8}]$ d) $[M^{-3}L^{-2}Q^{4}T^{4}]$

74. Which of the following system of units is not based on units of mass, length and time alone

75. The SI unit of momentum is

a)
$$\frac{kg}{m}$$
 b) $\frac{kg.m}{sec}$ c) $\frac{kg.m^2}{sec}$ d) $_{kg \times newton}$
76. The dimensions of resistance are same as those of Where *h* is the Planck's constant and *e* is the charge.

a)
$$\frac{h^2}{e^2}$$
 b) $\frac{h^2}{e}$ c) $\frac{h}{e^2}$ d) $\frac{h}{e}$

77. Which of the following is a derived unit

a) Unit of mass b) Unit of length c) Unit of time d) Unit of volume

78. In the relation $p = \frac{\alpha}{\beta} e^{\frac{-\alpha z}{k\theta}}$, *p* is the pressure, *z* the distance, *k* is Boltzmann constant and θ is the temperature, the dimensional formula of β will be a) $[M^0 L^2 T^0]$ b) $[ML^2 T]$ c) $[ML^0 T^{-1}]$ d) $[ML^2 T^{-1}]$

79. The dimensions of universal gravitational constant are

a)
$$M^{-2}L^2T^{-2}$$
 b) $M^{-1}L^3T^{-2}$ c) $ML^{-1}T^{-2}$ d) ML^2T^{-2}

80. If I is the moment of inertia and ω the angular velocity, what is the dimensional formula of rotational kinetic

energy
$$\frac{1}{2}I\omega^2$$
?
a) $[ML^2T^{-1}]$
b) $[M^2L^{-1}T^{-2}]$
c) $[ML^2T^{-2}]$
d) $[M^2L^{-1}T^{-2}]$

81. A screw gauge gives the following reading when used to measure the diameter of a wire Main scale reading : 0 mmCircular scale reading : 52 divisions

Given that 1 mm on main scale corresponds to 100 divisions on the circular scale.

The diameter of wire from the above data is

a)
$$0.52 \, cm$$
 b) $0.052 \, cm$ c) $0.026 \, cm$ d) $0.005 \, cm$

82. The dimensional formula of capacitance in terms of M, L, T and I is

a)
$$[ML^2T^2I^2]$$
 b) $[ML^{-2}T^4I^2]$ c) $[M^{-1}L^3T^3I]$ d) $[M^{-1}L^{-2}T^4I^2]$

83. *Volt/metre* is the unit of

```
a) Potential b) Work c) Force
```

84. The dimension of magnetic field in M, L, T and C (coulomb) is given as

a)
$$MT^{2}C^{-2}$$
 b) $MT^{-1}C^{-1}$ c) $MT^{-2}C^{-1}$ d) $MLT^{-1}C^{-1}$

85. The dimensional formula of electrical conductivity is

a) $[M^{-1}L^{-3}T^{3}A^{2}]$ b) $[ML\dot{i}\dot{i}3T^{3}A^{2}]\dot{i}$ c) $[M^{2}L\dot{i}\dot{i}3T^{-1}A^{2}]\dot{i}$	$^{-3}A^{2}]\dot{\iota}$ $^{d}[ML\dot{\iota}\dot{\iota}3T^{3}A^{-2}]\dot{\iota}$
--	--

- 86. The only mechanical quantity which has negative dimension of mass is
 - a) Angular momentum b) Torque
 - c) Coefficient of thermal conductivity d) Gravitational constant
- 87. The dimensional formula for impulse is

d) Electric intensity

	a) MLT^{-2}	b) MLT^{-1}	c) ML^2T^{-1}	d) $M^2 L T^{-1}$
88.	The physical quantities not	having same dimensions are		
	a) Speed and $(\mu_0 \varepsilon_0)^{-1/2}$		b) Torque and work	
	c) Momentum and Planck's constant		d) Stress and Young's modu	ılus
89.	Which unit is not for length	1		
	a) Parsec	b) Light year	c) Angstrom	d) Nano
90.	The surface tension is $T = -\frac{1}{2}$	$\frac{F}{l}$, then the dimensions of su	urface tension are	
	a) $[MLT^{-2}]$	b) $[MT^{-2}]$	c) $[M^0 L^0 T^0]$	d) None of these
91.	The thrust developed by a r	ocket-motor is given by $F =$	$mv + A(p_1 - p_2)$, where m is	s the mass of the gas ejected
	per unit time, <i>v</i> is velocity exhaust gas and surrounding a) Correct	of the gas, A is area of cross g atmosphere. The formula is	-section of the noszzle, $p_1 \cdot p_2$ s dimensionally b) Wrong	₂ are the pressures of the
	c) Sometimes wrong, some	times correct	d) Data is not adequate	
92.	What is the unit of k in the	relation $U = \frac{ky}{y^2 + a^2}$ where U	U represents the potential energy	ergy, y represents the
	displacement and <i>a</i> represe a) $m s^{-1}$	nts the maximum displaceme b) m s	ent <i>ie</i> , amplitude? c) J m	d) $_{\rm J \ S^{-1}}$
93.	The damping force of an os	scillating particle is observed	to be proportional to velocity	v. The constant of
	proportionality can be meas a) Kg s^{-1}	b) Kg s	c) Kg $m s^{-1}$	d) $Kg m^{-1} s^{-1}$
94.	The unit of self-inductance	is	0	<i></i>
	a) Weber ampere	b) <i>Weber</i> ⁻¹ ampere	c) Ohm second	d) Farad
95.	If $S = \frac{1}{3}ft^3$, f has the dime	ensions of		
	a) $[M^0 L^{-1} T^3]$	b) $[MLT^{-3}]$	c) $[M^0 L^1 T^{-3}]$	d) $[M^0 L^{-1} T^{-3}]$
96.	The unit of angular acceleration	ation in the SI system is		
	a) $N k g^{-1}$	b) $m s^{-2}$	c) rad s^{-2}	d) $m k g^{-1} K$
97.	If C, R, $L \wedge I$ denote capace same dimensions of time at (1)CR (2) $\frac{L}{R}$ (3) \sqrt{LC} (4) LI^2 a) (1) and (2) only	city, resistance, inductance ar	nd electric current respectivel	y, the quantities having the
	b) (1) and (3) only			

- c) (1) and (4) only
- d) (1), (2) and (3) only

force is kg wt? b) 9.8 sec d) $\frac{1}{\sqrt{98}}$ sec a) $(9.8)^2$ sec c) $\sqrt{9.8}$ sec 99. An athletic coach told his team that muscle times speed equals power. What dimensions does he view for muscle a) MLT^{-2} b) ML^2T^{-2} c) MLT^2 d) ₁ 100. The SI unit of universal gas constant (R) is b) Newton $K^{-1}mol^{-1}$ c) Joule $K^{-1}mol^{-1}$ d) $Era K^{-1}mol^{-1}$ a) Watt $K^{-1}mol^{-1}$ 101. Dimensions of luminous flux are c) ML^2T^{-1} b) ML^2T^{-3} d) $MI T^{-2}$ a) MI^2T^{-2} 102. The dimensional formula of $\frac{1}{\epsilon_0} \frac{e^2}{hc}$ is a) $[M^0L^0T^0A^0]$ b) $[M^{-1}L^3T^2A]$ c) $[ML^{3}T^{-4}A^{-2}]$ d) $[M^{-1}L^{-3}T^4]$ 103. Candela is the unit of a) Electric intensity b) Luminous intensity c) Sound intensity d) None of these 104. A highly rigid cubical block A of small mass M and side L is fixed rigidly on to another cubical block of same dimensions and of low modulus of rigidity η such that the lower face of A completely covers the upper face of B. The lower face of B is rigidly held on a horizontal surface. A small force F is applied perpendicular to one of the side faces of A. After the force is withdrawn, block A executes small oscillations, the time period o which is given by b) $2\pi \sqrt{\frac{M\eta}{I}}$ c) $2\pi\sqrt{\frac{ML}{n}}$ d) $2\pi\sqrt{\frac{M}{m}}$ a) $2\pi\sqrt{MnL}$ 105. The initial temperature of a liquid is $(80.0 \pm 0.1)^{0}$ C. After it has been cooled, its temperature is $(10.0 \pm 0.1)^{0}$ C. The fall in temperature in degree centigrade is a) 70.0 c) $_{700+02}$ d) 70.0 + 0.1b) 70.0 ± 0.3 106. The frequency f of vibration of mass m suspended from a spring of spring constant k is given by $f = c m^{x} k^{y}$ Where *c* is dimensionless constant. The values of $x \wedge y$ are respectively d) -1/2, -1/2 a) 1/2, 1/2 b) -1/2, 1/2 c) 1/2, -1/2 107. If the velocity of light c, gravitational constant G and Planck's constant h are chosen as fundamental units, the dimensions of length L in the new system is c) $[hc^{-3}G^{1}]$ d) $[h^{1/2}c^{-3/2}G^{1/2}]$ b) $[h^{1/2}c^{1/2}G^{-1/2}]$ a) $h c G^{-1}$ 108. SI unit of pressure is c) *cm* of *Ha* d) Atmosphere b) $dvnes/cm^2$ a) Pascal 109. Dimensions of strain are b) ML^2T^{-1} c) MLT^{-2} a) MLT^{-1} d) $M^0 L^0 T^0$ 110. Unit of surface tension is b) Nm^{-2} c) $N^2 m^{-1}$ d) Nm^{-3} a) Nm^{-1} 111. "Pascal-Second" has dimension of

98. What will be the unit of time in that system in which the unit of length is metre, unit of mass is kg and unit of

c) $M L^{-2} T^{-2} A^{-2}$ b) $ML^2T^{-4}A^{-3}$ d) $ML^2T^4A^3$ a) $MI^2T^{-2}A^{-2}$ 113. In the gas equation $\left(p + \frac{a}{V^2}\right)(V-b) = RT$, the dimensions of a are a) $[ML^{3}T^{-2}]$ b) $[M^{-1}L^3T^{-1}]$ c) $\left[ML^5T^{-2}\right]$ d) $[M^{-1}L^{-5}T^2]$ 114. $Erg - m^{-1}$ can be the unit of measure for a) Force b) Momentum c) Power d) Acceleration 115. If there is a positive error of 50% in the measurement of speed of a body, then the error in the measurement of kinetic energy is b) 50% c) 100% d) 125% a) 25% 116. The equation of a wave is given by $Y = A \sin \omega i$ where ω is the angular velocity and υ is the linear velocity. The dimension of k is b) _T c) T^{-1} d) T^{2} a) į 117. Which of the following pairs has same dimensions? a) Current density and charge density b) Angular momentum and momentum c) Spring constant and surface energy d) Force and torque 118. The equation of alternating current is $I = I_0 e^{-t/CR}$, where t is time, C is capacitance and R is resistance of coil, then the dimensions of CR is c) $[M^0 L^0 T]$ d) None of these a) $[MLT^{-1}]$ b); 119. The dimensions of power are a) $M^{1}I^{2}T^{-3}$ b) $M^2 I^1 T^{-2}$ c) $M^{1}I^{2}T^{-1}$ d) $M^{1}I^{1}T^{-2}$ 120. The concorde is the fastest airlines used for commercial service. It can cruise at 1450 mile per hour (about two times the speed of sound or in other words mach 2). What is it in m/s? a) 644.4m/s b) 80 m/s c) 40 m/s d) None of these 121. Faraday is the unit of a) Charge b) Emf c) Mass d) Energy 122. The dimensions of shear modulus are c) $M I^{-1} T^{-2}$ a) MLT^{-1} b) ML^2T^{-2} d) $MI T^{-2}$ 123. A force F is given by $F = at + bt^2$, where t is time. What are the dimensions of a and b a) MLT^{-3} and $ML^{2}T^{-4}$ b) MLT^{-3} and MLT^{-4} c) MLT^{-1} and MLT^{0} d) MLT^{-4} and MLT^{1} 124. Dimensional formula for volume elasticity is a) $M^1 I^{-2} T^{-2}$ b) $M^1 I^{-3} T^{-2}$ c) $M^1 I^2 T^{-2}$ d) $M^{1}I^{-1}T^{-2}$

b) Energy

d) Coefficient of viscosity

a) Force

c) Pressure

112. Inductance L can be dimensionally represented as

125.

The dimensional formula of coefficient of permittivity for free space (ε_0) in the equation $F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$, where

symbols have their usual meanings, is

b) $[M^{-1}L^{-3}T^{4}A^{2}]$ c) $[M^{-1}L^{-3}A^{-2}T^{-4}]$ d) $[ML^{3}A^{2}T^{-4}]$ a) $[ML^{3}A^{-2}T^{-4}]$

126. The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is 0.5 mm and there are 50 divisions on the circular scale. The reading on the main scale is 2.5 mm and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2%, the relative percentage error in the density is c) 3.1% d) 4.2% a) 0.9% b) 2.4%

127. The period of a body under SHM is represented by $T = P^a D^b S^c$; where P is pressure,

D is density and S is surface tension. The value of a, b and c are

a)
$$\frac{-3}{2}, \frac{1}{2}, 1$$
 b) $_{-1,-2,3}$ c) $\frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}$ d) $_{1,2}, \frac{1}{3}$

128. If C is the capacitance and V is the potential, the dimensional formula for CV^2 is

a)
$$[ML^2 T^{-1}]$$
 b) $[ML^{-2} T^{-3}]$ c) $[ML^2 T^{-2}]$ d) $[ML^{-2} T^{-2}]$

129. Out of the following pairs, which one does not have identical dimensions?

- a) Angular momentum and Planck's constant b) Impulse and momentum
- c) Moment of inertia and moment of a force d) Work and torque

130. Which one of the following represents the correct dimensions of the coefficient of viscosity?

- a) $[ML^{-1}T^{-2}]$ b) $[MLT^{-1}]$ c) $[ML^{-1}T^{-1}]$ d) $[ML^{-2}T^{-2}]$
- 131. The dimensions of coefficient of self inductance are

a) $[ML^2T^{-2}A^{-2}]$ b) $[ML^2T^{-2}A^{-1}]$ c) $[MLT^{-2}A^{-2}]$ d) $[MLT^{-2}A^{-1}]$

132. The time taken by an electron to go from ground state to excited state is one shake (one shake = 10^{-8} s). this time in nanosecond will be

b) 4 nsc) 2 ns a) 10 ns d) 25 ns

133. The values of two resistors are $R_1 = (6 \pm 0.3)k \Omega$ and $R_2 = (10 \pm 0.2)k \Omega$. The percentage error in the equivalent resistance when they are connected in parallel is c) 10 125% d) 7% ^{a)} 5.125% b) 2%

- 134. Which does not have the same unit as others
 - b) Kilowatt-hour c) $_{\rho V}$ a) Watt-sec d) *I-sec* In the determination of Young's modulus $\left(Y = \frac{4 MLg}{\pi l d^2}\right)$ by using Searle's method, a wire of length L = 2m and

135.

diameter d = 0.5 mm is used. For a load M = 2.5 kg, an extension l = 0.25 mm in the length of the wire is observed. Quantities d and l are measured using a screw gauge and a micrometer, respectively. They have the same pitch of 0.5 mm. The number of divisions on their circular scale is 100. The contributions to the maximum probable scale is 100. The contributions to the maximum probable error of the Y measurement

- a) Due to the errors in the measurements of d and l are the same
- b) Due to the error in the measurement of d is twice that due to the error in the measurement of l

c) Due to the error in the measurement of l is twice that due to the error in the measurement of d

d) Due to the error in the measurement of d is four time that due to the error in the measurement of l

136. Out of following four dimensional quantities , which one quantity is to be called a dimensional constant

	a) Acceleration due to gravity		b) Surface tension of water	
	c) Weight of a standard kilogram mass		d) The velocity of light in vacuum	
137	• A pressure of 10^6 dyne <i>c</i> m	e^{-2} is equivalent to		
	a) $10^5 N m^{-2}$	b) $10^4 N m^{-2}$	c) $10^6 N m^{-2}$	d) $10^7 N m^{-2}$
138	The dimensional formula o	f magnetic permeability is		
	a) $[M^0L^{-1}T]$	b) $[M^0 L^2 T^{-1}]$	c) $[M^0 L^2 T^{-1} A^2]$	d) $[MLT^{-2}A^{-2}]$
139	The speed of light (<i>C</i>), grave system. The dimension of t a) $C^{1/2} h^{1/2} c^{-5/2}$	itational constant (<i>G</i>) and Pl ime in this new system shoul b) $C^{-1/2} h^{1/2} c^{1/2}$	anck's constant (<i>h</i>) are taken d be c) $C^{1/2} h^{1/2} c^{-3/2}$	as the fundamental units in a d) $C^{1/2} h^{1/2} c^{1/2}$
140	One yard in SI units is equa	l	0 // 0	
	^{a)} 1.9144 metre	^{b)} 0.9144 metre	^{c)} 0.09144 kilometre	d) 1.0936 kilometre
141	. Let L denote the self-induc following has the unit second	tance of coil which is in serie	es with a capacitor of capacita	ance C . Which of the
	a) \sqrt{LC}	b) <i>C/L</i>	c) CL	d) $L^2 i C^2$
142	The value of $0.99 - \dot{c} 0.989$	is		
	a) 0.001	b) 0.010×10^{-1}	c) 0.01×10^{-1}	d) 0.1×10^{-3}
143	. Universal time is based on			
				1.1 0
	a) Rotation of the earth on	its axis	b) Earth's orbital motion are	ound the Sun
	a) Rotation of the earth onc) Vibrations of cesium at	its axis	d) Oscillations of quartz cr	ystal
144	a) Rotation of the earth onc) Vibrations of cesium at. Which of the following is n	its axis om ot the unit of energy	d) Oscillations of quartz cr	ystal
144	 a) Rotation of the earth on c) Vibrations of cesium at Which of the following is n a) <i>Calorie</i> 	om ot the unit of energy b) <i>Joule</i>	 b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> 	ystal d) <i>Watt</i>
144 145	 a) Rotation of the earth on c) Vibrations of cesium at Which of the following is n a) Calorie The dimensions of calorie 	 its axis om ot the unit of energy b) <i>Joule</i> e are 	 b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> 	ystal d) <i>Watt</i>
144 145	a) Rotation of the earth on c) Vibrations of cesium at . Which of the following is n a) <i>Calorie</i> . The dimensions of <i>calorie</i> a) ML^2T^{-2}	 axis b) <i>Joule</i> b) <i>ML T⁻²</i> 	b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> c) $M L^2 T^{-1}$	bund the Sun ystal d) $Watt$ d) $M L^2 T^{-3}$
144 145 146	a) Rotation of the earth on c) Vibrations of cesium at . Which of the following is n a) <i>Calorie</i> . The dimensions of <i>calorie</i> a) ML^2T^{-2} . If the acceleration due to gr respectively, the numerical a) 20000	The axis form for the unit of energy b) <i>Joule</i> e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the unitivalue of the acceleration is b) 72,000	b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> c) ML^2T^{-1} ts of length and time are char	bund the Sun ystal d) $Watt$ d) ML^2T^{-3} nged in kilometer and hour d) 120000
144 145 146 147	a) Rotation of the earth on c) Vibrations of cesium at which of the following is n a) <i>Calorie</i> The dimensions of <i>calorie</i> a) ML^2T^{-2} If the acceleration due to gr respectively, the numerical a) 360000	its axis form b) Joule e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the univalue of the acceleration is b) 72,000 ignificant figures for the num	b) Earth's orbital motion are d) Oscillations of quartz cr c) Electron volt c) ML^2T^{-1} ts of length and time are char c) 36,000 obers 23.02310.0003 and 2.1	bund the Sun ystal d) $Watt$ d) ML^2T^{-3} nged in kilometer and hour d) 129600 × 10^{-3} are
144 145 146 147	a) Rotation of the earth on c) Vibrations of cesium at . Which of the following is n a) <i>Calorie</i> . The dimensions of <i>calorie</i> a) ML^2T^{-2} . If the acceleration due to gr respectively, the numerical a) 360000 . The respective number of s a) 5, 1, 2	Its axis form for the unit of energy b) <i>Joule</i> e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the unitivalue of the acceleration is b) 72,000 ignificant figures for the numble 5, 1, 5	b) Earth's orbital motion are d) Oscillations of quartz cr c) Electron volt c) ML^2T^{-1} ts of length and time are char c) 36,000 abers 23.02310.0003 and 2.1 c) 5, 5, 2	bund the Sun ystal d) Watt d) ML^2T^{-3} nged in kilometer and hour d) 129600 × 10 ⁻³ are d) 4, 4, 2
144 145 146 147	a) Rotation of the earth on c) Vibrations of cesium at which of the following is n a) <i>Calorie</i> The dimensions of <i>calorie</i> a) ML^2T^{-2} If the acceleration due to gr respectively, the numerical a) 360000 The respective number of s a) 5, 1, 2	Its axis form for the unit of energy b) <i>Joule</i> e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the unitivalue of the acceleration is b) 72,000 ignificant figures for the numble b) 5, 1, 5 essure C represents speed of the speed o	b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> c) ML^2T^{-1} ts of length and time are char c) 36,000 abers 23.02310.0003 and 2.1 c) 5, 5, 2 f light and <i>a</i> represents radiat	bund the Sun ystal d) Watt d) ML^2T^{-3} nged in kilometer and hour d) 129600 × 10 ⁻³ are d) 4, 4, 2 ion energy striking a unit
144 145 146 147 148	a) Rotation of the earth on c) Vibrations of cesium ato Which of the following is m a) <i>Calorie</i> The dimensions of <i>calorie</i> a) ML^2T^{-2} If the acceleration due to gr respectively, the numerical a) 360000 The respective number of s a) 5, 1, 2 If <i>p</i> represents radiation pr area per second, then non-z a) $a=1, b=1, c=-1$	its axis form b) Joule e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the univalue of the acceleration is b) 72,000 ignificant figures for the numble b) 5, 1, 5 essure, C represents speed of ero integers a, b and c are super-	b) Earth's orbital motion are d) Oscillations of quartz cr c) Electron volt c) ML^2T^{-1} ts of length and time are char c) 36,000 abers 23.02310.0003 and 2.1 c) 5, 5, 2 f light and q represents radiat uch that $p^a q^b C^c$ is dimension b) $q=1, b=-1, c=1$	bund the Sun ystal d) <i>Watt</i> d) ML^2T^{-3} nged in kilometer and hour d) 129600 × 10 ⁻³ are d) 4, 4, 2 tion energy striking a unit hess, then
144 145 146 147 148	a) Rotation of the earth on c) Vibrations of cesium ato Which of the following is m a) <i>Calorie</i> The dimensions of <i>calorie</i> a) ML^2T^{-2} If the acceleration due to gravely, the numerical a) 360000 The respectively, the numerical a) 360000 The respective number of s a) 5, 1, 2 If <i>p</i> represents radiation prarea per second, then non-z a) $a=1, b=1, c=-1$ c) $a=-1, b=1, c=1$	Its axis form Not the unit of energy b) <i>Joule</i> e are b) MLT^{-2} ravity is $10 m s^{-2}$ and the unitivative of the acceleration is b) 72,000 ignificant figures for the numble b) 5, 1, 5 essure, <i>C</i> represents speed of ero integers <i>a</i> , <i>b</i> and <i>c</i> are set	b) Earth's orbital motion are d) Oscillations of quartz cr c) <i>Electron volt</i> c) ML^2T^{-1} ts of length and time are char c) 36,000 abers 23.02310.0003 and 2.1 c) 5, 5, 2 f light and q represents radiat uch that $p^a q^b C^c$ is dimension b) $a=1, b=-1, c=1$ d) $a=1, b=1, c=1$	bund the Sun ystal d) Watt d) WL^2T^{-3} hged in kilometer and hour d) 129600 × 10 ⁻³ are d) 4, 4, 2 tion energy striking a unit hless, then

dimensional formula for B is

a) $[M^0 L^2 T^{-1}]$	$b)[M^0L^{-2}T^0]$	c) $[M^0 L^2 T^{-2}]$	$d)\big[{}_{M^0L^2T^0}\big]$
150. Which of the f	ollowing is not the unit of time		
a) _{Micro} secor	b) Leap year	c) Lunar month	d) Parallactic second
151. How many wav	elengths of Kr^{86} are there in one m_{0}	etre	
a) 1553164.13	b) 1650763.73	c) 652189.63	d) 2348123.73
152. The Martians us dimensions of 1	se force (F) , acceleration (A) and the ength on Martians system are	ime (T) as their fundamental	l physical quantities. The
a) FT^2	b) $F^{-1}T^2$	c) $F^{-1}A^2T^{-1}$	d) AT^2
153. Assuming the n (atomic mass un a)	hass of Earth as $6.64 \times 10^{24} kg$ and t nit), the number of atoms in the Eart	the average mass of the atoms h are approximately $(1) + c^{50}$	s that make up earth as $40u$
154, the dimensional	formula of latent heat is	⁵ 10 ⁵⁵	u) 10 ³³
a b c b c $-2a$	h h h h		d) 11
$\begin{bmatrix} a \\ M^{0} L^{2} T^{-2} \end{bmatrix}$	$[MLT^2]$	$[ML^2T^{-2}]$	$M \int [MLT^{-1}]$
If $v = \frac{A}{t} + Bt^2$	+ Ct^3 where v is velocity, t is time a	nd A, B and C are constants	, then the dimensional formula of
B is $a_1 = a_2 = a_1$	b) [0 - 01		d) [03]
$[M^*LT^*]$	$[ML^*T^*]$	$[M^*L^*T]$	of $[M^{*}LT^{*}]$
a) Length	b) Mass	c) Time	d) No dimension
157 Which of the fo	slowing is not represented in correct	t unit	a) i to unitension
-> Stress			
a) $\frac{Stress}{Strain} = N$	/ m ²	^{DJ} Surface tension $i N$	/ m
c) _{Energy} ¿kg	-m/sec	d) Pressure $\frac{1}{N}/m^2$	
158. The expression	$[ML^{-1}T^{-1}]$ represents		
a) Momentum		b) Force	
c) Pressure		d) Coefficient of viscos	sity
159. The frequency	of vibration f of a mass m suspended	d from a spring of spring con	stant k is given by relation of the
a) $1/2$, $1/2$	b) $-i1/2$ $-i1/2$	c) $\frac{1}{2} - \frac{3}{6}\frac{1}{2}$	d) $-\frac{1}{6}\frac{1}{2}$ $\frac{1}{2}$
160. $E, m, I \wedge G$ de	note energy, mass, angular momentu	m and gravitational constant	respectively, then the dimensions
of $\frac{EI^2}{m^5G^2}$ are			
a) Angle	b) Length	c) Mass	d) Time
161. If the time period	od (T) of vibration of a liquid drop	depends on surface tension ((S), radius (r) of the drop and
density (ρ) of t a) $T = k \sqrt{2r^3/2}$	the liquid, then the expression of T b) $T = k_0 \sqrt{a^{1/2} r^3 / S}$	is c) $T = k \sqrt{2 r^3 / s^{1/2}}$	d) None of these
$1 - \kappa \sqrt{pr}$ 162. The dimensional	al formula of self-inductance is	1 - K \ p1 / 5	
a) $[MLT^{-2}]$	b) $[ML^2T^{-1}A^{-2}]$	c) $[ML^2T^{-2}A^{-2}]$	d) $[ML^2T^{-2}A^{-1}]$

100	maaninaful		· · · · ·	Iven below is physically
	a) A/B	b) A+B	c) _{A-B}	d) None
164	. Size of universe is about			
	a) Ten million light years		b) Million light years	
	c) Hundred million light ye	ears	d) 10 million light years	
165	The dimension of $\frac{1}{\sqrt{\varepsilon_0 \mu_0}}$ is	s that of		
	a) Velocity	b) Time	c) Capacitance	d) Distance
166	. If $X = A \times B$ and ΔX and maximum relative error in	ΔA and ΔB are maximum a X is given by	absolute errors in X , A and	B respectively, then the
	a) $\Delta X = \Delta A + \Delta B$	b) $\Delta X = \Delta A - \Delta B$	c) $\frac{\Delta X}{X} = \frac{\Delta A}{A} - \frac{\Delta B}{B}$	d) $\frac{\Delta X}{X} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$
167	• The fundamental physical of angular momentum are	quantities that have same dim	nensions in the dimensional f	ormulae of torque and
	a) Mass, time	b) Time, length	c) Mass, length	d) Time, mole
168	In an experiment the angles exactly coincide with the 30 degree $(\&0.5^\circ)$, then the le	s are required to be measured 0 divisions of the vernier sca ast count of the instrument is	l using an instrument. 29 divi le. If the smallest division of s	sions of the main scale the main scale is half-a-
1.00	a) One minute	b) Half minute	c) One degree	d) Half degree
169	. What is the SI unit of perm	leability		
	^{a)} Henry per metre		b) _{Tesla} metre per ampere	2
	c) Weber per ampere met	re	d) All the above units are c	orrect
170	\cdot If L denotes the inductance	e of an inductor through whic	ch a current i is flowing, the c	limensions of Li^2 are
	a) ML^2T^{-2}		b) Not expressible in MLT	1
	a) $M L^2 T^{-2}$ c) $ML T^{-2}$		b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$	
171	a) ML^2T^{-2} c) MLT^{-2} . If V denotes the potential	difference across the plates o	b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance	, C , the dimensions of CV^2
171	a) $ML^{2}T^{-2}$ c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT	difference across the plates o	b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) MLT^{-2}	, C , the dimensions of CV^2
171	a) $M L^2 T^{-2}$ c) $ML T^{-2}$ · If V denotes the potential are a) Not expressible in MLT c) $M^2 L T^{-1}$	difference across the plates o	b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $ML T^{-2}$, C , the dimensions of CV^2
171	a) ML^2T^{-2} c) MLT^{-2} · If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} $S = A(1 - e^{-Bxt})$ where S	difference across the plates o	b) Not expressible in <i>MLT</i> d) $M^2L^2T^{-2}$ of a capacitor of capacitance b) MLT^{-2} d) ML^2T^{-2} pt. The unit of <i>B</i> is	, C , the dimensions of CV^2
171 172	a) ML^2T^{-2} c) MLT^{-2} · If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} · $S = A(1 - e^{-Bxt})$, where S	difference across the plates c_{x} is speed and x is displaceme	b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $M L^2 T^{-2}$ nt. The unit of <i>B</i> is	, C , the dimensions of CV^2
171 172	a) ML^2T^{-2} c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} · $S = A(1 - e^{-Bxt})$, where S a) $m^{-1}s^{-1}$	difference across the plates of r , is speed and x is displaceme b) $m^{-2}s$	b) Not expressible in <i>MLT</i> d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $M L^2 T^{-2}$ nt. The unit of <i>B</i> is c) s^{-2}	, the dimensions of CV^2
171 172 173	a) ML^2T^{-2} c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} · $S = A(1 - e^{-Bxt})$, where S a) $m^{-1}s^{-1}$ · The quantity $X = \frac{\varepsilon_0 LV}{t}$: ε	difference across the plates of x is speed and x is displaceme b) $m^{-2}s$	b) Not expressible in MLT d) $M^2L^2T^{-2}$ of a capacitor of capacitance b) MLT^{-2} d) ML^2T^{-2} nt. The unit of <i>B</i> is c) s^{-2} pace, <i>L</i> is length, <i>V</i> is potent	, the dimensions of CV^2 d) s^{-1} ial difference and t is time
171 172 173	a) ML^2T^{-2} c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} · $S = A(1 - e^{-Bxt})$, where S a) $m^{-1}s^{-1}$ · The quantity $X = \frac{\varepsilon_0 LV}{t}$: ε The dimensions of X are s a) Resistance	difference across the plates of is speed and x is displaceme b) $m^{-2}s$ o is the permittivity of free s ame as that of b) Charge	b) Not expressible in MLT d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $M L^2 T^{-2}$ nt. The unit of <i>B</i> is c) s^{-2} pace, <i>L</i> is length, <i>V</i> is potent c) Voltage	, C, the dimensions of CV^2 d) s^{-1} ial difference and t is time d) Current
171 172 173 174	a) ML^2T^{-2} c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} $S = A(1 - e^{-Bxt})$, where S a) $m^{-1}s^{-1}$ The quantity $X = \frac{\varepsilon_0 LV}{t}$; ε The dimensions of X are s a) Resistance $Newton/metre^2$ is the unit	difference across the plates of is speed and x is displaceme b) $m^{-2}s$ $_0$ is the permittivity of free s ame as that of b) Charge	b) Not expressible in MLT d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $M L^2 T^{-2}$ nt. The unit of <i>B</i> is c) s^{-2} pace, <i>L</i> is length, <i>V</i> is potent c) Voltage	, C, the dimensions of CV^2 d) s^{-1} ial difference and t is time d) Current
171 172 173 174	a) ML^2T^{-2} c) MLT^{-2} If V denotes the potential are a) Not expressible in MLT c) M^2LT^{-1} $S = A(1 - e^{-Bxt})$, where S a) $m^{-1}s^{-1}$ The quantity $X = \frac{\varepsilon_0 LV}{t}$: ε The dimensions of X are s a) Resistance $Newton/metre^2$ is the unit a) Energy	difference across the plates of is speed and x is displaceme b) $m^{-2}s$ $_0$ is the permittivity of free s ame as that of b) Charge to of b) Momentum	b) Not expressible in MLT d) $M^2 L^2 T^{-2}$ of a capacitor of capacitance b) $ML T^{-2}$ d) $M L^2 T^{-2}$ nt. The unit of <i>B</i> is c) s^{-2} pace, <i>L</i> is length, <i>V</i> is potent c) Voltage c) Force	, <i>C</i> , the dimensions of CV^2 d) s^{-1} ial difference and <i>t</i> is time d) Current d) Pressure

current I, would be

Page | **14**

a) $[ML^2 T^{-3} I^{-1}]$	b) $\left[ML^2 T^{-2} \right]$	c) $[ML^2 T^{-1} I^{-1}]$	d) $[ML^2 T^{-3} I^{-2}]$			
176. The density of a material and unit of mass is $100 g$	in CGS system of units is $4g$, the value of density of mate	$1/c m^3$, In a system of units wrial will be	which unit of length is 10 cm			
^{a)} 400	^{b)} 0.04	^{c)} 0.4	d) ₄₀			
177. The value of Planck's con	177. The value of Planck's constant is					
a) $6.63 \times 10^{-34} J$ -sec 178. Which relation is wrong	b) $6.63 \times 10^{34} J$ -sec	c) $6.63 \times 10^{-34} kg \cdot m^2$	d) 6.63 × 10 ³⁴ kg-sec			
^{a)} 1 <i>calorie</i> =4.18 joule		b) $1 \text{\AA} = 10^{-10} m$				
c) $1 MeV = 1.6 \times 10^{-13}$	ioule	d) $1 newton = 10^{-5} dyne$				
179. A plate has a length (5 ± 0)	(2 ± 0.01) cm and breadth (2 ± 0.01)	<i>cm</i> . Then the area of the pla	te is			
a) $(10 \pm 0.2)c m^2$	b) $(10 \pm 0.01)c m^2$	c) $(10 \pm 0.001)c m^2$	d) $(10 \pm 1)c m^2$			
180. Given $X = (Gh i c^3)^{1/2}$, w	here G , h and c are gravitatio	nal constant, Planck's constar	nt and the velocity of light			
respectively. Dimensions a) Mass	of <i>X</i> are the same as those of b) Time	c) Length	d) Acceleration			
181. The dimensions of farad	are					
a) $M^{-1}L^{-2}T^2Q^2$	b) $M^{-1}L^{-2}TQ$	c) $M^{-1}L^{-2}T^{-2}Q$	d) $M^{-1}L^{-2}TQ^2$			
182. Number of particles is given	ven by $n = -D \frac{n_2 - n_1}{x_2 - x_1} \operatorname{crossin}_{n_1}$	g a unit area perpendicular to	X-axis in unit time, where n_1			
and n_2 are number of part	ticles per unit volume for the	value of <i>x</i> meant to x_2 and x_1	• Find dimensions of D called			
as diffusion constant a) $M^0 L T^2$	b) $M^0 L^2 T^{-4}$	c) $M^0 L T^{-3}$	d) $M^0 L^2 T^{-1}$			
183. If the unit of force is 1 kl	N, the length is 1 km and time	is 100 s, what will be the uni	t of mass?			
a) 1 kg	b) 100 kg	c) 1000 kg	d) 10000 kg			
184. One femtometre is equiva	alent to					
a) $10^{15} m$	b) $10^{-15} m$	c) $10^{-12} m$	d) $10^{12} m$			
185. Parsec is a unit of						
a) Distance	b) Velocity	c) Time	d) Angle			
186. Length cannot be measured	ed by					
^{a)} Fermi	^{b)} Debye	c) Micron	^{d)} Light year			
187. A vernier callipers has 1 <i>n</i> with 16 main scale division	<i>nm</i> marks on the main scale. I ons. For this Vernier callipers	It has 20 equal divisions on th , the least count is	ne Vernier scale which match			
^{a)} 0.02 mm	^{b)} 0.05 mm	c) 0.1 <i>mm</i>	d) 0.2 mm			
188. If the value of the resistan	nce is 10.845Ω and the value	of the current is 3.23 A, ther	the potential difference is			
35.02935 V. its value in c a) 35 V	b) 35.0 V	d be c) 35.03 V	d) 35.029 V			
189. A student performs an experiment to determine the Young's modulus of a wire, exactly 2 m long, by Searle's						

method. In a particular reading, the student measures the extension in the length of the wire to be 0.8 mm with an

	uncertainty of $\pm 0.05 mm$ at a load of exactly 1.0 kg. The student also measures the diameter of the wire to be 0.4mm with an uncertainty of $\pm 0.01 mm$. Take $g = 9.8 ms^{-2}$ (exact). The Young's modulus obtained from the			
	reading is		· · · · · · · · · · · · · · · · · · ·	
	a) $(2.0 \pm 0.3) \times 10^{11} Nm^{-2}$		b) $(2.0 \pm 0.2) \times 10^{11} Nm^{-2}$	
	c) $(2.0 \pm 0.1) \times 10^{11} Nm^{-2}$		d) $(2.0 \pm 0.05) \times 10^{11} Nm^{-2}$	2
190	• If the speed of light (<i>C</i>), act	celeration due to gravity (g)	and pressure (p) are taken as	s the fundamental quantities,
	a) $c^2 g^0 p^{-2}$	b) $c^0 g^2 p^{-1}$	c) $c g^{3} p^{-2}$	d) $c^{-1}g^0p^{-1}$
191	A wire has a mass 0.3 ± 0.0	$003g$, radius $0.5\pm0.005mn$	n and length $6 \pm 0.06 cm$. Th	e maximum percentage error
	in the measurement of its d a) 1	ensity is b) 2	c) 3	d) 4
192	Which of the following sets	s have different dimensions?		
	a) Pressure, Young's modul	lus, Stress	b) Emf, Potential difference	e, Electric potential
	c) Heat, Work done, Energ	у	d) Dipole moment, Electric	flux, Electric field
193	In an experiment, we measu	are quantities a, b and c . The	en x is calculated from the fo	formula $x = \frac{ab^2}{c^3}$. The
	percentage errors in a, b, c a) $\pm 1\%$	are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$	c) $_{7\%}$ respectively. The percentage	e error in x can be d) $\pm 13\%$
194	. Which of the following is/a	re the units of strength of ma	agnetic field at a point?	
	a) NAm^{-1}	b) _{NA m}	c) $NA^{-1}m^{-1}$	d) $NA^{-2}m^{-2}$
195	Given, potential difference	$V = (8 \pm 0.5)$ volt and current	$I = (2 \pm 0.2) A$. The value of	f resistance R is
	a) 4±16.25%	b) _{4±6.25%}	c) _{4±10%}	d) _{4 ± 8 %}
196	The modulus of elasticity is	dimensionally equivalent to		
	a) Strain		b) Force	
	c) Stress		d) Coefficient of viscosity	
197	The dimensions of $\frac{R}{L}$ are			
	[here, $R = \dot{\iota}$ electric resistan a) $[T^{-2}]$	ce, $L = i$ self inductance] b) $[T^{-1}]$	c) $[ML^{-1}]$	d) [T]
198	According to Newton, the v	viscous force acting between	liquid layers of area A and v	elocity gradient $\Delta v / \Delta z$ is
	given by $F = -\eta A \frac{\Delta v}{\Delta x}$ where	ere η is constant called coeffic	cient of viscosity. The dimen	sions of η are
	a) $[ML^2T^{-2}]$	b) $[ML^{-1}T^{-1}]$	c) $[ML^{-2}T^{-2}]$	d) $[M^{0}L^{0}T^{0}]$
199	. Surface tension has the same	e dimensions as that of		
	a) Coefficient of viscosity		b) Impulse	
	c) Momentum		d) Spring constant	
200	Density of wood is $0.5 gm$	<i>lcc</i> in the CGS system of un	its. The corresponding value	in MKS units is
	a) 500	b) 5	c) 0.5	d) 5000

201. In an experiment, to measure the height of a bridge by dropping stone into water underneath, if the error in measurement of time is 0.1s at the end of 2s, then the error in estimation of height of bridge will be a) 0.49mb) 0.98mc) 1.96md) 2.12m

The dimension of k in the equation
$$W = \frac{1}{2} k x$$
 is
a) $[ML^0 T^{-2}]$
b) $[M^0 z^{-1}]$
c) $[MLT^{-2}]$

203. A body of mass m=3.513 kg is moving along the x-i axis with a speed of $5.00 ms^{-1}$. The magnitude of its momentum is recorded as

d) $[ML^0 T^{-1}]$

- a) $17.6 kg ms^{-1}$ b) $17.565 kg ms^{-1}$ c) $17.56 kg ms^{-1}$ d) $17.57 kg ms^{-1}$
- 204. The dimensional formula for the modulus of rigidity is

a)
$$ML^2T^{-2}$$
 b) $ML^{-1}T^{-3}$ c) $ML^{-2}T^{-2}$ d) $ML^{-1}T^{-2}$

205. The unit of physical quantity obtained by the line intergral of electric field is

a)
$$NC^{-1}$$
 b) Vm^{-1} c) JC^{-1} d) $C^2N^{-1}m^{-2}$

206. The dimensions of gravitational constant G and the moment of inertia are respectively

a)
$$[ML^{3}T^{-2}]; [ML^{2}T^{0}]$$
 b) $[M^{-1}L^{3}T^{-2}]; [ML^{2}T^{0}]$ c) $[M^{-1}L^{3}T^{-2}]; [M^{-1}L^{2}T]^{d} [ML^{3}T^{-2}]; [M^{-1}L^{2}T]^{d}$.
Unit of stress is

207

a)
$$N/m$$
 b) $N-m$ c) N/m^2 d) $N-m^2$

208. Crane is British unit of volume (one crane = 170.4742). convert crane into SI units.

a) $_{0.170474} m^3$ b) $_{17.0474} m^3$ c) $_{0.00170474} m^3$ d) $_{1704.74} m^3$

209. SI unit of intensity of wave is

a)
$$Jm^{-2}s^{-1}$$
 b) $Jm^{-1}s^{-2}$ c) Wm^{-2} d) Jm^{-2}

210. If F denotes force and t time, then in equation $F = at^{-1} + bt^2$, the dimensions of a and b respectively are

a)
$$[\dot{\iota}^{-4}] \wedge [\dot{\iota}^{-1}]$$
 b) $[\dot{\iota}^{-1}] \wedge [\dot{\iota}^{-4}]$ c) $[MLT^{-4}] \wedge [MLT^{-1}]$ d) $[MLT^{-1}] \wedge [MLT^{-4}]$

211. If the constant of gravitation (*G*), Plank's constant (*h*) and the velocity of light (*c*) be chosen as fundamental units. The dimension of the radius of gyration is a) $h^{1/2}c^{-3/2}G^{1/2}$ b) $h^{1/2}c^{3/2}G^{1/2}$ c) $h^{1/2}c^{-3/2}G^{-1/2}$ d) $h^{-1/2}c^{-3/2}G^{1/2}$

212. The mass and volume of a body are found to be $500 \pm 0.05 kg$ and $1.00 \pm 0.05 m^3$ respectively. Then the maximum possible percentage error in its density is a) 6% b) 3% c) 10% d) 5%

213. The unit of Stefan's constant σ is

a)
$$W m^{-2} K^{-1}$$
 b) $W m^{2} K^{-4}$ c) $W m^{-2} K^{-4}$ d) $W m^{-2} K^{-4}$

214. In the equation $y = a \sin(\omega t + kx)$, the dimensional formula of ω is

a)
$$[M^{0}L^{0}T^{-1}]$$
 b) $[M^{0}LT^{-1}]$ c) $[ML^{0}T^{0}]$ d) $[M^{0}L^{-1}T^{0}]$

215. The following observations were take for determining surface tension of water by capillary tube method. Diameter of capillary, $D=1.25 \times 10^{-2}$ m and rise of water in capillary. $h=1.46 \times 10^{-2}$ m Taking $g=9.80 \, m \, s^{-2}$ and using the relation $T=(r \, g \, h/2) \times 103 \, N \, m^{-1}$, what is the possible error in surface tension T?

a) 2.4%	b) 15%	c) 1.6%	d) 0.15%
---------	--------	---------	----------

- 216. *R* and *L* represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency
 - a) $\frac{R}{L}$ b) $\frac{L}{R}$ c) $\sqrt{\frac{R}{L}}$ d) $\sqrt{\frac{L}{R}}$
- 217. The random error in the arithmetic mean of 100 observations is x; then random error in the arithmetic mean of 4000 observations would be

c) _{2x}

d) $\frac{1}{2}x$

- 218. Which of the following is dimensionally correct
 - a) Pressure = Energy per unit area
 - b) Pressure = Energy per unit volume
 - c) Pressure = Force per unit volume
 - d) Pressure = Momentum per unit volume per unit time

b) $\frac{1}{4}x$

- 219. *R*, $L \wedge C$ represent the physical quantities resistance, inductance and capacitance respectively. Which one of the following combination has dimension of frequency?
 - a) $\frac{1}{\sqrt{RC}}$ b) $\frac{R}{L}$ c) $\frac{1}{LC}$ d) $\frac{C}{L}$
- 220. If the length of a rectangle l=10.5 cm, breadth b=2.1 cm and minimum possible measurement by scale = 0.1 cm, then the area is
 - a) $22.0 cm^2$ b) $22.1 cm^2$ c) $22.05 cm^2$ d) $22 cm^2$

221. When a wave traverses a medium, the displacement of a particle located at x at a time t is given by $y = a \sin(bt - cx)$, where a, b and c are constants of the wave. Which of the following is a quantity with dimensions

- a) $\frac{y}{a}$ b) bt c) cx d) $\frac{b}{c}$
- 222. Identify the pair whose dimensions are equal
 - a) Torque and work b) Stress and energy c) Force and stress d) Force and work
- 223. The equation $\left(P + \frac{a}{V^2}\right)$. (V b) = i constant. The unit of a is a) $Dyne \times c m^5$ b) $Dyne \times cm^4$ c) $Dyne \times cm^3$ d) $Dyne \times cm^2$

224. If L, C and R represent inductance, capacitance and resistance respectively, then which of the following does not represent dimensions of frequency

a)
$$\frac{1}{RC}$$
 b) $\frac{R}{L}$ c) $\frac{1}{\sqrt{LC}}$ d) $\frac{C}{L}$

225. If the units of mass, length and time are doubled, unit of angular momentum will be

- a) Doubled b) Tripled
- c) Quadrupled d) 8 times the original value

226. The length of a simple pendulum is about 100 cm known to an accuracy of 1 mm. Its period of oscillation is 2s determined by measuring the time for 100 oscillations using a clock of 0.1 s resolution. What is the accuracy in the determined value of g?
a) 0.2%
b) 0.5%
c) 0.1%
d) 2%

227. Temperature can be expressed as a derived quantity in terms of any of the following

a) Length and r	mass
-----------------	------

c) Length, mass and time

b) Mass and timed) None of these

228	28. A small steel ball of radius <i>r</i> is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity η . After some time the velocity of the ball attains a constant value known as terminal velocity v_T . The terminal velocity depends on (i) the mass of the ball <i>m</i> , (ii) η , (iii) <i>r</i> and (iv) acceleration due to gravity <i>g</i> .				
	Which of the following rela	tions is dimensionally correc	t		
	a) $v_T \propto \frac{mg}{nr}$	b) $v_T \propto \frac{\eta r}{ma}$	c) _{υ_T} ∝ ηrmg	d) $v_T \propto \frac{mgr}{n}$	
229	• The measured mass and vol	ume of a body are 23.42 g ar	nd 4.9 $c m^3$ respectively with	possible error 0.01 g and 0.1	
	$c m^3$. The maximum error in	n density is nearly			
	a) 0.2%	b) 2%	c) 5%	d) 10%	
230	A physical quantity A is rel	ated to four observations a,	b, c and d as follows, $A = \frac{d^2}{c}$	$\frac{b^2}{\sqrt{d}}$. The percentage error of	
	measurement in a, b, c and quantity A	d are 1%, 3%, 2% and 2%	% respectively. What is the p	ercentage error in the	
	a) _{12%}	b) _{7%}	c) _{5%}	d) _{14%}	
231	. The unit of Wien's constant	b is			
	a) $Wm^{-2}K^{-4}$	b) $m^{-1}K^{-1}$	c) Wm^2	d) _{<i>MK</i>}	
232	. Young's modulus of a mate	rial has the same units as			
	a) Pressure	b) Strain	c) Compressibility	d) Force	
233	Which of the following phy	sical quantities has neither d	imensions nor unit?		
	a) Angle		b) Luminous intensity		
	c) Coefficient of friction		d) Current		
234	In the relation $y = a \cos(\omega t)$	(t-kx), the dimensional form	nula for k is		
	a) $[M^0L^{-1}T^{-1}]$	b) $[M^0 L T^{-1}]$	c) $[M^0 L^{-1} T^0]$	d) ن	
235	The dimensional formula formula	or the magnetic field is			
	a) $\left[MT^{-2}A^{-1}\right]$	b) $[ML^2 T^{-1} A^{-2}]$	c) $[MT^{-2}A^{-2}]$	$d)[MT^{-1}A^{-2}]$	
236	\cdot Dyne/c m ² is not a unit of				
	a) Pressure	b) Stress	c) Strain	d) Young's modulus	
237	One side of a cubical block comes out to be 1.23 cm. W	is measured with the help of hat is the percentage error in	a vernier callipers of vernier the measurement of area?	constant 0.01 cm. This side	
	a) $\frac{1.23}{0.01} \times 100$	b) $\frac{0.01}{1.23} \times 100$	c) $2 \times \frac{0.01}{1.23} \times 100$	d) $3 \times \frac{0.01}{1.23} \times 100$	
238	Ampere-hour is a unit of	f	1.20	1.20	
	a) Quantity of electricity		b) Strength of electric curre	ent	
	c) Power		d) Energy		
239	The velocity v (in cm/sec)	of a particle is given in term	is of time $t(\text{in } sec)$ by the rel	ation $v = at + \frac{b}{t+c}$; the	
	dimensions of a, b and c are				

	a) $a = L^2, b = T, c = LT^2$		b) $a = LT^2, b = i, c = L$	
	c) $a=LT^2, b=L, c=T$		d) $a=L, b=i, c=T^2$	
240	The potential energy of a pa	article varies with distance x	from a fixed origin as $U = \left(\frac{1}{2}\right)^2$	$\left(\frac{A\sqrt{X}}{x+B}\right)$; where $A \wedge B$ are
	constants. The dimensions of	of AB are		
	a) $[ML^{5/2}T^{-2}]$	b) $\left[ML^2 T^{-2} \right]$	c) $\left[M^{3/2}L^{3/2}T^{-2}\right]$	d) $[ML^{7/2}T^{-2}]$
241.	The dimensions of $\frac{a}{b}$ in the	equation $p = \frac{a - t^2}{bx}$ where p	\mathcal{O} is pressure, x is distance and	d t is time, are
	a) $\left[M^2\dot{c}^{-3}\right]$	b) $[MT^{-2}]$	c) [;-3]	$d)[ML^3T^{-1}]$
242.	The focal length of a mirror	t is given by $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ where	e <i>u</i> and <i>v</i> represent object an	d image distances
	respectively. The maximum a) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v}$ c) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} - \frac{\Delta (u+u)}{u+v}$	relative error in f is	b) $\frac{\Delta f}{f} = \frac{1}{\Delta u/u} + \frac{1}{\Delta v/v}$ d) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u}{u+v}$	$+\frac{\Delta v}{u+v}$
243	Which of the following rela	tion is wrong		
	a) $1 ampere \times 1 ohm = 1 volume 1$	olt	b) 1 watt × 1 sec = 1 joule	
	c) $1 \times newton per coulom$	b=1 volt per meter	d) $1 coulomb \times 1 volt = 1 v$	watt
244	The unit of self inductance	of a coil is		
	^{a)} Farad	^{b)} Henry	c) _{Weber}	d) _{Tesla}
245.	Out of the following four di	imensional quantities, which	one qualifies to be called a d	imensional constant?
	a) Acceleration due to grav	ity	b) Surface tension of water	
	c) Weight of a standard kild	ogram mass	d) The velocity of light in v	vacuum
246	The radius of the proton is a which is half-way between	about 10^{-15} m. The radius of these two extremes on a loga	the observable universe is 1(rithmic scale.) ²⁶ m. identify the distance

a) 10^{21} m b) 10⁶m c) 10^{-6} m d) 10^{0} m

247. The position of a particle at time t is given by the equation $x(t) = \frac{v_0}{A} (1 - e^{At})$, $v_0 = i$ constant and A > 0.

Dimensions of $v_0 \wedge A$ respectively are

a)
$$[M^{0}\dot{\iota}^{0}] \wedge [M^{0}L^{0}T^{-1}]$$

b) $[M^{0}\dot{\iota}^{-1}] \wedge [M^{0}\dot{\iota}^{-2}]$
c) $[M^{0}\dot{\iota}^{-1}] \wedge [M^{0}L^{0}T]$
d) $[M^{0}\dot{\iota}^{-1}] \wedge [M^{0}L^{0}T^{-1}]$

248. One nanometre is equal to

b) 10^{-6} cm a) $10^9 mm$

249. $[ML^2T^{-3}A^{-2}]$ is the dimensional formula of

a) Electric resistance b) Capacity

250. The dimensions of Planck's constant are

a)
$$[M^2 L^2 T^{-2}]$$
 b) $[MLT^{-2}]$

$$\begin{bmatrix} M^{0} i^{-1} \end{bmatrix} \wedge \begin{bmatrix} M^{0} L^{0} T^{-1} \end{bmatrix}$$

$$\begin{bmatrix} M^{0} i^{-1} \end{bmatrix} = \begin{bmatrix} M^{0} L^{0} T^{-1} \end{bmatrix}$$

$$\begin{bmatrix} M^{0} i^{-1} \end{bmatrix} = \begin{bmatrix} M^{0} i^{-1} \end{bmatrix} = \begin{bmatrix} M^{0} i^{-1} \end{bmatrix}$$

c) Electric potential

c) 10^{-7} cm

d) Specific resistance

d) $[ML^2 T^{-1}]$ c) $[ML^2 T^{-2}]$

251. I	251. If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A by						
а	$(0.94 \pm 0.00 cm)$	b) $0.94 \pm 0.01 cm$	c) $0.94 \pm 0.02 cm$	d) $0.94 \pm 0.005 cm$			
ך 252.	252. The dimensions of $e^2/4\pi\varepsilon_0 hc$, where e , ε_0 , $h\wedge c$ are electronic charge, electric permittivity, Planck's constant						
a a	and velocity of light in vacu $M^{0} [M^{0}L^{0}T^{0}]$	um respectively, are b) $[ML^0T^0]$	c) $\left[M^{0} \dot{\iota}^{0} \right]$	$^{\mathbf{d})}[M^{0}L^{0}T^{1}]$			
253. T	The length, breadth and thic	kness of a block are given b	$l=12 cm$, $b=6 cm_{and}t=2$	2.45 cm			
Т	The volume of block accord	ling to the idea of significant	figures should be				
а	$11 \times 10^2 c m^3$	^b $2 \times 10^2 c m^3$	c) $1.763 \times 10^2 c m^3$	d) None of tehse			
254. A	A physical quantity A is related as $A = \frac{a^2 b^3}{c \sqrt{d}}$	ated to four observables a, b	, $c \wedge d$ as follows				
T	The percentage errors of me	easurement in $a, b, c \wedge d$ are	1%, 3%, 2% and 2% respec	tively. What is the percentage			
a	a) 12%	b) 7%	c) 5%	d) 14%			
255. A	Ampere-hour is the unit of						
а) Quantity of charge	b) Potential	c) Energy	d) Current			
256. Ţ	The dimensions of $1/2 \epsilon E^2$	are same as					
а	a) Energy density (energy p	er unit volume)	b) Energy				
С	e) Power		d) None of the above				
ך 257. _T	257. The velocity of a particle (v) at an instant t is given by $v=at+bt^2$ the dimension of b is						
а) _L	b) LT^{-1}	c) LT ⁻ⁱ²ⁱ	d) $_{LT^{-3}}$			
258. V	Wavelength of ray of light i	s $0.00006 m$. It is equal to					
а	¹⁾ 6 micron	b) 60 micron	c) 600 micron	d) 0.6 micron			
259. 1	The unit of surface tension	in SI system is					
а) Dyne/c m^2	b) _{Newton/m}	c) _{Dyne} /cm	d) Newton/ m^2			
260. E	Dimensions of $\frac{1}{\mu_0 \epsilon_0}$, where	e symbols have their usual me	eaning, are				
а	$(lT^{-1}]$	b) $[L^{-1}T]$	c) $[L^{-2}T^2]$	d) $[L^2 T^{-2}]$			
261. <u>r</u>	Dimensional formula for fo	rce is					
а	$ML^2 T^{-2}$	b) $[MLT^{-2}]$	c) $[ML^{-1}T^{-2}]$	$d)[ML^2T^{-2}]$			
262.[$M L^{-2} T^{-2}$] represents dim	ensional formula of which o	f the following physical quar	tities?			
а) Energy	b) pressure	c) Torque	d) Pressure gradient			
263. T d a	263. The velocity of water waves v may depend upon their wavelength λ , the density of water ρ and the acceleration due to gravity g . The method of dimensions gives the relation between these quantities as a) $v^2 \propto \lambda q^{-1} \rho^{-1}$ b) $v^2 \propto q\lambda \rho$ c) $v^2 \propto q\lambda$ d) $v^2 \propto a^{-1} \lambda^{-3}$						
264. A d	A gas bubble from an explo lensity of water ρ and the t	sion under water oscillates would be observed as E and E .	ith a time period T , depends Find the expression for the time	upon static pressure p , ne period T .(where, k is a			

dimensionless constant)

a) $T = k$	$p^{-5/6} ho^{1/2} E^{1/3}$	b) $T = k p^{-4/7} \rho^{1/2} E^{1/3}$	c) $T = k p^{-5/6} \rho^{1/2} E^{1/2}$	d) $T = k p^{-4/7} \rho^{1/3} E^{1/2}$
265. The perio	od of oscillation of	f a simple pendulum in the exercise absolute error is	xperiment is recorded as 2.63	s, 2.56 s, 2.42 s, 2.71 s and
a) 0.1 s	peenvery. The av	b) 0.11 s	c) 0.01 s	d) 1.0 s
266. In an exp D = 0.04	eriment, the follo 1 <i>cm</i> . Taking <i>g</i> =	wing observation's were records $9.81 \ m/s^2$ using the formula	rded: L=2.820 <i>m</i> , M=3.00 a,	kg, $l = 0.087 cm$, diameter
$Y = \frac{4 M_0}{\pi D}$	$\frac{gL}{l}$, the maximum	permissible error in Y is		
a) 7.96%		b) 4.56%	c) 6.50%	d) 8.42%
267. Joule-se	<i>cond</i> is the unit c	of		
a) Work		b) Momentum	c) Pressure	d) Angular momentum
268. If <i>C</i> and <i>I</i>	L denote capacita	nce and inductance respective	ely, then the dimensions of L	<i>C</i> are
a) M^0L^0	T^{0}	b) $M^0 L^0 T^2$	c) $M^2 L^0 T^2$	d) MLT^2
269. The dime	ensional formula o	of the ratio of angular to linea	r momentum is	
a) $[M^0L$	$T^0]$	b) [<i>MLT</i>]	c) $[ML^2T^{-1}]$	d) $[M^{-1}L^{-1}T^{-1}]$
270. The dime	ensions of $e^2/4\pi a$	$\varepsilon_0 h c$, where e , ε_0 , h and c a	re electronic charge, electric	permittivity, Planck's
a)	and velocity of lig	ht in vacuum respectively b) $[1, 1] = 0$	$c)$ [$c^{0} = 1 = 0$]	d) $[1, 0, 0, 0, 0, -1]$
271. Which on	T]	$\begin{bmatrix} M & L & T \end{bmatrix}$ g is not a unit of young's more	$M^{T}L^{T}$	$[M^*L^*T]$
		b) = 2	() _2	d) v – v
$^{"}Nm$	h breadth and thi	Nm^2	Dyne c m ² $Dyne c m^2$	-2.45 cm. The volume of
the block	is	exiless of a metal block is gr	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
^{a)} 2×10	$^{2}cm^{3}$	b) $1.8 \times 10^2 c m^3$	c) $1.77 \times 10^2 c m^3$	d) $1.764 \times 10^2 c m^3$
273. The veloc	city of a freely fal	ling body changes as $g^p h^q$ w	here g is acceleration due to	gravity and h is the height.
a) $1, \frac{1}{2}$	es or p and q are	b) $\frac{1}{2}, \frac{1}{2}$	c) $\frac{1}{2}$, 1	d) 1, 1
274. Which ph	nysical quantities l	have same dimensions	_	
a) Force	and power	b) Torque and energy	c) Torque and power	d) Force and torque
275. Electron	volt is a unit of			
a) Charge	2	b) Potential difference	c) Momentum	d) Energy
276. Position of	of a body with acc	celeration <i>a</i> is given by $x = k$	$a^m t^n$. Here t is time. Find the	the dimensions of $m \wedge n$.
a) _{m=1} ,	n=1	b) $m=1, n=2$	c) $m=2, n=1$	d) $m=2, n=2$
277. The dime	ensions of universa	al gas constant is		
a) $[ML^2]$	$T^{-2} heta^{-1}]$	b) $[M^2 L T^{-2} \theta]$	c) $[ML^3T^{-1}\theta^{-1}]$	d) None of these
278. Which of	the following is t	he unit of specific heat?	-	
a) Jkg°(2^{-1}	b) $Jkg^{-1} \circ C^{-1}$	c) $kg \circ CJ^{-1}$	d) $J/kg^{-1} \circ C^{-2}$

279. The dimensions of inter atomic force constant are

a)
$$MT^{-2}$$
 b) MLT^{-1} c) MLT^{-2} d) $ML^{-1}T^{-1}$

280. Which physical quantities have the same dimension

- a) Couple of force and work
- c) Latent heat and specific heat d) Work and power
- 281. What is the power of a 100 W bulb in CGS units?

a)
$$10^{6} erg s^{-1}$$

b) $10^{7} erg s^{-1}$
c) $10^{9} erg s^{-1}$
d) $10^{11} erg s^{-1}$
e. $n_{2} - n_{1}$

282. The number of particles given by $n = -D \frac{n_2 - n_1}{x_2 - x_1}$ are crossing a unit area perpendicular to x-axis in unit time,

where n_1 and n_2 are the number of particles per unit volume for the values x_1 and x_2 of x respectively. Then the dimensional formula of diffusion constant D is

b) Force and power

a)
$$[M^0 L T^0]$$
 b) $[M^0 L^2 T^{-4}]$ c) $[M^0 L T^{-3}]$ d) $[M^0 L^2 T^{-1}]$

283. If C the restoring couple per unit radian twist and I is the moment of inertia, then the dimensional representation

of
$$2\pi \sqrt{\frac{I}{C}}$$
 will be
a) $[M^0 L^0 T^{-1}]$
b) $[M^0 L^0 T]$
c) $[M^0 L T^{-1}]$
d) $[M L^2 T^{-2}]$

284. The dimensions of electric potential are

a) $[ML^2 T^{-2} Q^{-1}]$ b) $[MLT^{-2} Q^{-1}]$ c) $[ML^2 T^{-1} Q]$ d) $[ML^2 T^{-2} Q]$ Dimension of **R** is

285. Dimension of R is

a)
$$ML^2T^{-1}$$
 b) $ML^2T^{-3}A^{-2}$ c) $ML^{-1}T^{-2}$ d) None of these

286. What is dimensional formula of thermal conductivity?

a)
$$[MLT^{-1}\theta^{-1}]$$
 b) $[MLT^{-3}\theta^{-1}]$ c) $[M^{2}\dot{c}^{-3}\theta^{-2}]$ d) $[ML^{2}T^{-2}\theta]$

287. The temperature of a body on Kelvin scale is found to be X K. When it is measured by a Fahrenheit thermometer, it is found to be $X^0 F$. Then X is a) 301.25 b) 574.25 c) 313 d) 40

288. Which of the following is the smallest unit

^{a)} Millimetre	b) Angstrom	^{c)} Fermi	d) Metre
	J	-	

289. Which one of the following does not have the same dimensions

- a) Work and energy b) Angle and strain
- c) Relative density and refractive index d) Planck constant and energy
- 290. The physical quantity which is not a unit of energy is
 - a) Volt-coulomb b) MeV-sec

291. The dimensions of permittivity ε_0 are

a) $A^{2}T^{2}M^{-1}L^{-3}$ b) $A^{2}T^{4}M^{-1}L^{-3}$ c) $A^{-2}T^{-4}ML^{3}$ d) $A^{2}T^{-4}M^{-1}L^{-3}$ The second second

c) Henry $(ampere)^2$ d) Farad- $(volt)^2$

292. The values of two resistors are $R_1 = (6 \pm 0.3) k\Omega$ and $R_2 = (10 \pm 0.2) k\Omega$. The percentage error in the equivalent resistance when they are connected in parallel is

a) 5.125%	b) 2%	c) 3.125%	d) 10.125%
			-

293. The dimensional formula of magnetic induction B is

a)
$$[M^{0}ALT^{0}]$$
 b) $[M^{0}AL^{-1}T^{0}]$ c) $[M^{0}AL^{2}T^{0}]$ d) $[ML^{2}T^{-2}A^{-1}]$

294. The value of universal gas constant is R = 8.3 J/K-mol. The value of R in atmosphere litre per Kelvin mol

295. A physical quantity is measured and its value is found to be nu where n = i numerical value and u = i unit. Then which of the following relations is true

a)
$$n \propto u^2$$
 b) $n \propto u$ c) $n \propto \sqrt{u}$ d) $n \propto \frac{1}{u}$

296. SI unit of permittivity is

a)
$$C^2 m^2 N^2$$
 b) $C^2 m^{-2} N^{-1}$ c) $C^2 m^2 N^{-1}$ d) $C^{-1} m^2 N^{-2}$

297. The work done by a battery is $W = \varepsilon \Delta q$, where Δq change transferred by battery, $\varepsilon = i$ emf of the battery. What are dimensions of emf of battery?

a) $[M^0 L^0 T^{-2} A^{-2}]$ b) $[M L^2 T^{-3} A^{-2}]$ c) $[M^2 L^0 T^{-3} A^0]$ d) $[M L^2 T^{-3} A^{-1}]$

298. If x=a-b, then the maximum percentage error in the measurement of x will be

a)
$$\left(\frac{\Delta a + \Delta b}{a - b}\right) \times 100\%$$

b) $\left(\frac{\Delta a}{a} - \frac{\Delta b}{b}\right) \times 100\%$
c) $\left(\frac{\Delta a}{a - a} + \frac{\Delta b}{a - b}\right) \times 100\%$
d) $\left(\frac{\Delta a}{a - a} - \frac{\Delta b}{a - b}\right) \times 100\%$

299. The unit of potential energy is

a)
$$g(cm/sec)^2$$
 c) $g(cm^2/sec)$ d) $g(cm/sec)$

300. The physical quantity having the dimensions $\left[M^{-1}L^{-3}A^{2}\right]$ is

a) Resistance

c) Electrical conductivity

301. Dimensions of bulk modulus are

a) $[M^{-1}\dot{c}^{-2}]$ b) $[ML^{-1}T^{-2}]$ c) $[ML^{-2}T^{-2}]$ d) $[M^{2}L^{2}T^{-1}]$

302. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is a) 6% b) Zero c) 1% d) 3%

b) Resistivity

d) Electromotive force

303. 'Torr' is the unit of

a) Pressure b) Volume c) Density	lume	Pressure	c) Density	d)
----------------------------------	------	----------	------------	----

304. The SI unit of length is the metre. Suppose we adopt a new unit of length which equal x metre. The area of $1 m^2$ expressed in terms of the new unit has a magnitude

a)
$$_{x}$$
 b) $_{x^{2}}$ c) $_{x^{-1}}$ d) $_{x^{-2}}$

305. The velocity of a particle v at an instant t is given by $v=at+bt^2$ the dimension of b is

a)
$$[L]$$
 b) $[i^{-1}]$ c) $[i^{-2}]$ d) $[i^{-3}]$

306. The dimensions of electric potential are

Flux

.	a) $[ML^2T^{-2}Q^{-1}]$	b) $[MLT^{-2}Q^{-1}]$	c) $[ML^2T^{-1}Q]$	$d)[ML^2T^{-2}Q]$		
307	307. If the radius of the sphere is (5.3 ± 0.1) cm. Then percentage error in its volume will be					
	a) $3+6.01 \times \frac{100}{5.3}$	b) $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$	c) _¿	d) $\frac{0.1}{5.3} \times 100$		
308	If the velocity $v(is cms^{-1})$	of a particle is given in terms	of t (in second) by the relati	on $v = at + \frac{b}{t+c}$		
	then, the dimensions of a , b	$b \wedge c$ are				
200	$\begin{array}{ccc} a & b & c \\ a & [L][i][T^2] \end{array}$	$\mathbf{b} \mathbf{L}^2] [\mathbf{T}] [\boldsymbol{\zeta}^{-2}]$	c) $[\dot{\boldsymbol{\zeta}}^2][\dot{\boldsymbol{\zeta}}][\boldsymbol{L}]$	$d(\mathbf{c}^{-2}][L][T]$		
309	$\frac{n}{2\pi}$ is the dimension of					
	a) Velocity	b) Momentum	c) Energy	d) Angular momentum		
310	If $E = i$ energy, $G = i$ grave	itational constant, $I = i$ impu	lse and $M = i$ mass, then dim	then the measurements of $\frac{GIM^2}{E^2}$ are same		
	as that of a) Time	b) Mass	c) Length	d) Force		
311	311. A public park, in the form of a square, has an area of $(100 \pm 0.2)m^2$. The side of park is					
	a) (10 ± 0.01) m	b) (10 ± 0.1) m	c) (10.0 ± 0.1) m	d) (10.0 ± 0.2) m		
312	. Ins is defined as		· · · · ·	· · · ·		
	a) 10^{-9} s of $Kr - clock of 165076373$ oscillations					
	b) 10^{-9} sof Kr – clock of	6521389.63 oscillations				
	$^{\rm c)}$ 10 ⁻⁹ s of Cs - clock of	1650763 73 oscillations				
	d^{-9} sof Cs - clock of S	9192631770 oscillations				
313	If the dimensions of a physic	ical quantity are given by M°	$^{a}L^{b}T^{c}$, then the physical quart	ntity will be		
	a) Pressure if $a=1, b=-1$., <i>c</i> =−2	b) Velocity if $a=1, b=0, b=1, b=1, b=1, b=1, b=1, b=1, b=1, b=1$	c = -1		
	c) Acceleration if $a=1,b$	=1.c=-2	d) Force if $a=0, b=-1, c$	=-2		
314	314. The relative density of material of a body is found by weighing it first in air and then in water. If the weight in air is (5.00 ± 0.05) newton and weight in water is (4.00 ± 0.05) newton. Then the relative density along with the					
	a) $5.0\pm11\%$	b) $5.0\pm1\%$	c) 5.0±6%	d) 1.25±5%		
315	Identify the pair which has	different dimensions				
	a) Planck's constant and an	gular momentum	b) Impulse and linear mome	entum		
	c) Angular momentum and	frequency	d) Pressure and Young's mo	odulus		
316	In which of the following s	ystem of units, weber is the	unit of magnetic flux			
	a) CGS	b) MKS	c) SI	d) None of these		
317	The equation of state of sor	ne gases can be expressed as	$\left(P + \frac{a}{V^2}\right) = \frac{R\theta}{V}$. Where P is	s the pressure, V the		

volume, θ the absolute temperature and a and b are constants. The dimensional formula of a is

a) $[ML^5T^{-2}]$	b) $[M^{-1}L^5T^{-2}]$	c) $[ML^{-1}T^{-2}]$	d) $[ML^{-5}T^{-2}]$		
318. If E , M , L and G denote	energy, mass, angular momen	ntum and gravitational constant	nt respectively, then the		
quantity $(E L^2 / M^5 G^2)$ hat a) Angle	as the dimensions of b) Length	c) Mass	d) Time		
319. The physical quantity which	ch has the dimensional formu	la $\left[M^{1}T^{-3}\right]$ is			
a) Surface tension	b) Density	c) Solar constant	d) Compressibility		
320. The percentage errors in the maximum error in the estia)a) 11%	he measurement of a mass and mate of kinetic energy obtain b) 8%	d speed are 2% and 3% respe ed by measuring mass and sp c) 5%	ectively. How much will be the beed? d) 1%		
321. What is the area of a disc	of radius 1.1 cm?				
a) $_{3.8028571} c m^2$	b) $3.8029 c m^2$	c) $3.803 c m^2$	d) $3.8 c m^2$		
322. The physical quantity havi	ng the dimensions $\left[M^{-1}L^{-3}\right]$	$T^{3}A^{2}$ is			
a) Resistance		b) Resistivity			
c) Electrical conductivity		d) Electromotive force			
323. Dimensions of magnetic fi	eld intensity is				
a) $[M^0 L^{-1} T^0 A^1]$	$b)[MLT^{-1}A^{-1}]$	c) $[ML^0T^{-2}A^{-1}]$	d) $[MLT^{-2}A]$		
Main scale reading : 58.5 Vernier scale reading : 09 Given that 1 division on m match with 29 divisions or a) 58.59 <i>Degree</i> 325. Find the dimensions of ele	degree divisions nain scale corresponds to 0.5 f the main scale. The angle of b) 58.77 <i>Degree</i> ectric permittivity	degree. Total divisions on the the prism from the above da c) 58.65 <i>Degree</i>	e vernier scale is 30 and tta d) 59 <i>Degree</i>		
a) $\left[A^2 M^{-1} L^{-3} T^4\right]$	b) $[A^2 M^{-1} L^{-3} T^0]$	c) $[AM^{-1}L^{-3}T^4]$	d) $[A^2 M^0 L^{-3} T^4]$		
326. The radius of the sphere I	(4.3 ± 0.1) cm. The percentage	ge error in its volume is			
a) $\frac{0.1}{4.2} \times 100$	b) $_{3 \times \frac{0.1 \times 100}{12}}$	c) $\frac{1}{2} \times \frac{0.1 \times 100}{12}$	d) $_{3+}\frac{0.1 \times 100}{12}$		
4.3 327. The dimensions of a rectative × 5 mm. The maximum p a) 5%	4.3 ngular block measured with c ercentage error in the measur b) 10%	3 4.3 alipers having least count of (ement of the volume of the b c) 15%	4.3 0.01 cm are 5 mm × 10 mm block is d) 20%		
328. In a new system of units, unit f mass is 10 kg, unit of length is 1 km and unit of time is 1 min. The value of 1					
a) 3.6×10^{-4} new units	b) 6×10^7 new units	c) 10^{11} new units	d) 1.67×10^4 new units		
329. The wavelength associated v and rth power of planck a) $p=1, a=-1, r=1$	I with a moving particle dependent of the second seco	nds upon power p of its mass ct set of values of p,q and r b) $p=1, q=1, r=1$	s <i>m</i> , <i>q</i> th power of its velocity is		
c) $p=-1, a=-1, r=-1$	1	d) $p=-1, a=-1, r=1$			
 330. The circular scale of a screw gauge has 50 divisions and pitch of 0.5 mm. Find the diameter of sphere. Main scale reading is 2. 					

		R		
		R		
	a) 1.2	b) 1.25	c) 2.20	d) 2.25
331	. The length of a cylinder is n Its diameter is measured wi is 2.0 <i>cm</i> . The percentage of a) 1%	neasured with a meter rod ha th vernier callipers having lea error in the calculated value of b) 2%	aving least count 0.1 <i>cm</i> . ast count 0.01 <i>cm</i> . Given that of the volume will be c) 3%	at length is 5.0 <i>cm</i> . and radius d) 4%
332	. The energy $(oldsymbol{E})$, andgular m	nomentum (L) and universal g	gravitational constant (G) are	chosen as fundamental
	quantities. The dimensions	of universal gravitational co	nstant in the dimensional for	mula of Planck's constant (h)
	is a) Zero	b) -1	c) <u>5</u> 3	d) 1
333	Density of liquid in CGS sy	$stem is 0.625 g cm^{-3}$. What	t is its magnitude in SI syster	n?
	a) 0.625	b) 0.0625	c) 0.00625	d) 625
334	•. Which of the following is d	imensionless?		
	a) $\frac{v^2}{rg}$	b) $\frac{v^2g}{r}$	c) <u>vg</u> r	d) $v^2 r g$
335	. The unit of magnetic mome	ent is		
	a) TJ^{-1}	b) JT^{-1}	c) Am^{-2}	d) Am^{-1}
336	The unit of reduction factor	r of tangent galvanometer is		
	^{a)} Ampere	^{b)} Gauss	^{c)} Radian	d) None of these
337	If pressure P , velocity V a	nd time T are taken as funda	mental physical quantities, the	he dimensional formula of
	force is a) PV^2T^2	b) $P^{-1}V^2T^{-2}$	c) PVT^2	d) $P^{-1}VT^{2}$
338	Which of the following qua	ntity is expressed as force pe	er unit area	
	a) Work	b) Pressure	c) Volume	d) Area
339	. Which of the following can	not be regarded as an essenti	al characteristic of a unit of	measurement?
	a) Inaccessibility		b) Indenstructibility	
	c) Invariability		d) Reproductibility	
340	. If the unit of length and for	ce be increased four times, the	hen the unit of energy is	
	a) Increased 4 times	b) Increased 8 times	c) Increased 16 times	d) Decreased 16 times
341	. The dimensional formula of	f magnetic flux is		
	a) $[MLT^{-2}A^{-1}]$	$b)[ML^2T^{-1}A^{-1}]$	c) $[ML^2 T^{-1} A^{-2}]$	d) $[ML^2 T^{-2} A^{-1}]$

342. Which one of the following is not a fundamental SI unit?					
a) Ampere	b) Candela	c) Newton	d) Kelvin		
343. The dimensional formula	for areal velocity is				
a) $[M^0 L^{-2} T]$	b) $[M^0 L^{-2} T^{-1}]$	c) $[M^0 L^2 T^{-1}]$	d) $[M^0 L^2 T]$		
344. What are the units of $K =$	$1/4\pi\varepsilon_0$				
a) $C^2 N^{-1} m^{-2}$	b) Nm^2C^{-2}	c) Nm^2C^2	d) Unitless		
345. The dimensions of potenti	al are the same as that of				
a) Work		b) Electric field per unit ch	arge		
c) Work per unit charge		d) Force per unit charge			
346. The unit of L/R is (where	L = i inductance and $R = i$	Resistance)			
a) Sec	b) Sec^{-1}	c) _{Volt}	d) <i>Ampere</i>		
347. The unit of specific resista	nce is				
a) Ohm/cm ²	b)Ohm/cm	c) Ohm-cm	d) $(Ohm - cm)^{-1}$		
348. Frequency is the function	of density $(oldsymbol{ ho})$, length (a) an	d surface tension (T) . Then	its value is		
a) $k \rho^{1/2} a^{3/2} / \sqrt{T}$	b) $k \rho^{3/2} a^{3/2} / \sqrt{T}$	c) $k \rho^{1/2} a^{3/2} / T^{3/4}$	d) None of these		
349. The units of modulus rigid	lity are				
a) $N-m$	b) _{N/m}	c) $N - m^2$	d) $_{N/m^{2}}$		
 350. A screw gauge gives the following reading when used to measure the diameter of a wire. Main scale reading : 0 mm Circular scale reading : 52 divisions Given that 1 mm on main scale corresponds to 100 divisions of the circular scale. The diameter of wire from the above data is a) 0.052 cm b) 0.026 cm c) 0.005 cm d) 0.52 cm 					
351. The unit of the coefficient	of viscosity in S.I. system is				
a) $m/kg - s$ 352. A suitable unit for gravitation	b) $m - s/kg^2$ tional constant is	c) $kg/m-s^2$	d) kg/m-s		
a) kg -m sec ⁻¹ 353. The correct value of 0° C	b) $N m^{-1} sec$ on the Kelvin scale is	c) Nm^2kg^{-2}	d) kg msec ⁻¹		
^{a)} 273.15 K	b) _{272.85} K	c) _{273 K}	d) _{273.2} <i>K</i>		
354. The dimensional formula	for Boltzmann's constant is				
a) $[ML^2T^{-2}\theta^{-1}]$	b) $[ML^2T^{-2}]$	c) $[ML^0T^{-2}\theta^{-1}]$	d) $[ML^{-2}T^{-1}\theta^{-1}]$		
355. Energy per unit volume re	presents				
a) Pressure	b) Force	c) Thrust	d) Work		
356. Which of the following g	coups have different dimensio	ns			

a) Potential difference, EMF, voltage

b) Pressure, stress, young's modulus

c) Heat, energy, work-done

d) Dipole moment, electric flux, electric field

357. Farad is not equivalent to

a) $\frac{q}{V}$ b) qv^2 c) $\frac{q^2}{J}$ d) $\frac{J}{V^2}$

358. The velocity v of water waves may depend on their wavelength (λ), the density of water (ρ) and the acceleration due to gravity (g). The method of dimensions gives the relation between these quantities as

a)
$$v^2 \propto \lambda^{-1} \rho^{-1}$$
 b) $v^2 \propto g \lambda$ c) $v^2 \propto g \lambda \rho$ d) $g^{-1} \propto \lambda^3$

359. The dimensional formula for impulse is

a)
$$[MLT^{-1}]$$
 b) $[ML^{-1}T]$ c) $[M^{-1}\dot{c}^{-1}]$ d) $[ML^{-1}T^{-1}]$

360. A physical quantity is given by $X = [M^a L^b T^c]$. The percentage error in measurement of $M, L \wedge T$ are $\alpha, \beta \wedge \gamma$ respectively. Then, the maximum % error in the quantity X is

a)
$$a\alpha + b\beta + c\gamma$$
 b) $a\alpha + b\beta - c\gamma$ c) $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma}$ d) None of these

361. Dimensional formula for the universal gravitational constant G is

a)
$$[M^{-1}L^2T^{-2}]$$
 b) $[M^0L^0T^0]$ c) $[M^{-1}L^3T^{-2}]$ d) $[M^{-1}L^3T^{-1}]$

362. Number of base SI unit is

a) 4 b) 7 c) 3 d) 5

363. Dimensional formula of capacitance (or farad) is

a)
$$M^{-1}L^{-2}T^{4}A^{2}$$
 b) $ML^{2}T^{4}A^{-2}$ c) $MLT^{-4}A^{2}$ d) $M^{-1}L^{-2}T^{-4}A^{-2}$

364. The dimensional formula of angular velocity is

a) $M^0 L^0 T^{-1}$ b) $ML T^{-1}$ c) $M^0 L^0 T^1$ d) $ML^0 T^{-2}$

365. If the length of rod A is $(3.25 \pm 0.01)cm$ and that of B is $(4.19 \pm 0.01)cm$, then the rod B is longer than rod A by

a) $(0.94 \pm 0.00) cm$ b) $(0.94 \pm 0.01) cm$ c) $(0.94 \pm 0.02) cm$ d) $(0.94 \pm 0.005) cm$

366. Electric displacement is given by $D = \varepsilon E$,

Here, $\varepsilon = \dot{c}$ electric permittivity

 $E = \dot{c}$ electric field strength

The dimensions of electric displacement are

a) $[ML^{-2}TA]$ b) $[L^{-2}T^{-1}A]$ c) $[L^{-2}TA]$ d) None of these 367. Unit of electric flux is

a) Vm b) Nm/C^{-1} c) Vm^{-1} d) CNm^{-1}

368. Two full turns of the circular scale of a screw gauge cover a distance of 1 mm on its main scale. The total number of divisions on the circular scale is 50. Further, it is found that the screw gauge has a zero error of -0.03 mm. While measuring the diameter of a thin wire, a student notes the main scale reading of 3 mm and the number of circular scale divisions in line with the main scale as 35. The diameter of the wire is

a) 3.32 mm
b) 3.73 mm
c) 3.67 mm
d) 3.38 mm

369. Dimensions of coefficient of viscosity are

a) ML^2T^{-2} b) ML^2T^{-1} c) $ML^{-1}T^{-1}$ d) MLT

370. Out of the following which pair of quantities do not have same dimensions

- a) Planck's constant and angular momentum b) Work and energy
- c) Pressure and Young's modulus

371. The force F on the sphere of radius 'a' moving in a medium with velocity 'v' is given by $F = 6 \pi \eta a v$. The dimensions of η are

d) Torque and moment of inertia

d) Pressure, stress, coefficient of elasticity

a)
$$ML^{-1}T^{-1}$$
 b) MT^{-1} c) MLT^{-2} d) ML^{-3}

372. If $f = x^2$, then the relative error in f is

a)
$$\frac{2\Delta x}{x}$$
 b) $\frac{(\Delta x)^2}{x}$ c) $\frac{\Delta x}{x}$ d) $(\Delta x)^2$

373. In the context of accuracy of measurement and significant figures in expressing results of experiment, which of the following is/are correct

- (1) Out of the two measurements 50.14 cm and 0.00025 ampere, the first one has greater accuracy
- (2) If one travels 478 km by rail and 397 m by road, the total distance travelled is 478 km b) Only (2) is correct
- a) Only (1) is correct
- c) Both are correct d) None of them is correct
- 374. Dimensions of kinetic energy are
 - b) $M^2 L T^{-1}$ d) $M L^3 T^{-1}$ a) $M L^2 T^{-2}$ c) $M L^2 T^{-1}$
- 375. Given that $r = m^2 \sin pt$, where t represents time. If the unit of m is N, then the unit of r is
 - b) N^{2} c) N s a) N d) N^2

376. In an experiment the angles are required to be measured using an instrument. 29 divisions of the main scale exactly coincide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half-adegree $(i 0.5^{\circ})$ then the least count of the instrument is c) One degree a) One minute b) Half minute d) Half-degree

377. Dimensions of the following three quantities are the same

- b) Velocity, momentum, impulse a) Work, energy, force
 - c) Potential energy, kinetic energy, momentum
- 378. Dimension of electric current is

	^{a)} $[M^0 L^0 T^{-1} Q]$	b) $[ML^2T^{-1}Q]$	$^{C)}\left[M^{2}LT^{-1}Q\right]$	$^{\mathbf{d}}[M^{2}L^{2}T^{-1}Q]$
379	The period of oscillation of	f a simple pendulum is giver	by $T = 2\pi \sqrt{\frac{l}{g}}$ where <i>l</i> is about	out 100 <i>cm</i> and is known to
	have 1 mm accuracy. The p	period is about $2s$. The time	of 100 oscillations is measured	ed by a stop watch of least
	count 0.1 s . The percentage	ge error in gis		
	a) 0.1%	b) _{1%}	c) 0.2%	d) _{0.8 %}
380	. The percentage errors in th	e measurement of length an	d time period of a simple pend	lulum are 1% and 2%
	respectively. Then the max	imum error in the measuren	nent of acceleration due to gra-	vity is
	a) 8%	b) 3%	c) 4%	d) 5%
381	. A resistor of 4 k Ω with tol	erance 10% is connected in	parallel with a resistor of 6 kW	W with tolerance 100%. The
	tolerance of the parallel co	mbination is nearly		
	a) 10%	b) 20%	c) 30%	d) 40%

382. An important milestone in the evolution of the universe just after the Big Bang is the Planck time t_P , the value of

which depends on three fundamental constants-speed *c* of light in vacuum, gravitational constant *G* and Planck's constant *h*. Then, $t_P \propto$

a)
$$_{Ghc^5}$$
 b) $\frac{c^5}{Gh}$ c) $\frac{Gh}{c^5}$ d) $\left(\frac{Gh}{c^5}\right)^{1/2}$

383. IF L, C and R denote the inductance, capacitance and resistance respectively, the dimensional formula for $C^2 LR$

is
a)
$$[ML^{-2}T^{-1}I^0]$$
 b) $[M^0L^0T^3I^0]$ c) $[M^{-1}L^{-2}T^6I^2]$ d) $[M^0L^0T^2I^0]$
The is form for

384. The unit of $e \cdot m \cdot f$ is

a) Joule b) Joule–coulomb c) Volt–coulomb d) Joule/coulomb

385. Students I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table

Least count for length $\stackrel{.}{\iota} 0.1 \, cm$

Least count for time &0.1s

Stud	Length	Number	Total	Time
ent	of	of	time	period
	the	oscilla	for (n)	(s)
	pend	tion	oscilla	
	ulum	(<i>n</i>)	tions	
	(<i>cm</i>)		(<i>s</i>)	
Ι	64.0	8	128.0	16.0
Ι	64.0	4	64.0	16.0
III	20.0	4	36.0	9.0

If E_I, E_{II} and E_{III} are the percentage errors in $g, i.e., \left(\frac{\Delta g}{g} \times 100\right)$ for students I, II and III, respectively a) $E_I = 0$ b) E_I is minimum c) $E_I = E_{II}$ d) E_{II} is maximum

386. One million electron volt(1 MeV) is equal to

a) $10^5 eV$ b) $10^6 eV$ c) $10^4 eV$ d) $10^7 eV$

387. If the units of M and L are increased three times, then the unit of energy will be increased by

a) 3 times b) 6 times c) 27 times d) 81 times

388. The velocity of a body is given by the equation $v = \frac{b}{t} + ct^2 + dt^2$

The dimensional formula of b is

a)
$$[M^0LT^0]$$
 b) $[ML^0T^0]$ c) $[M^0L^0T]$ d) $[MLT^{-1}]$

389. Unit of magnetic moment is

a) $Ampere-metre^2$ b) Ampere-metre c) $Weber-metre^2$ d) Weber/metre390. The resistance $R = \frac{V}{i}$ where $V = 100 \pm 5$ volts and $i = 10 \pm 0.2$ amperes. What is the total error in Ra) 5% b) 7% c) 5.2% d) $\frac{5}{2}$ %

391. The least count of a stop watch is 0.2 s. The time of 20 oscillations of a pendulum is measured to be 25 s. The percentage error in the measurement of time will be

	a) 8%			b) 1.8%	c) 0.8%	d) 0.1%
392	392. If C is capacitance and q is charge, then the dimension of q^2/C is same as that of					
	a) Work			b) Angular momentum	c) Force	d) Torque
393	The dime	nsion of $\frac{1}{2}$	$\frac{1}{2}\epsilon_0 E^2$, where ϵ_0 is permittivity of	free space and E is electric fi	eld, is
	a) MLT^1			b) $M L^2 T^{-2}$	c) $ML^{-1}T^{-2}$	d) $M L^2 T^{-1}$
394	If $L, C \land$ has the difference of the differenc	R denote i mension of	nducta f time?	nce, capacitance and resista	nce respectively, then which o	of the following combination
	a) <u>C</u>			b) $\frac{1}{PC}$	c) $\frac{L}{R}$	d) <u><i>RL</i></u>
395	L . If E, m, J	I and G re	presen	RC t energy, mass, angular mon	R nentum and gravitational cons	tant respectively, then the
	dimensior	nal formula	f of E .	J^2/m^5G^2 is	C C	
	a) [<i>MLT</i>	-2]		b) $[M^{0}L^{0}T]$	c) $[M^0 L^2 T^0]$	d) Dimensionless
396	If the erro	or in the mo	easurei	ment of radius of a sphere is	2%, then the error in the de	termination of volume of the
	a) _{8%}			b) _{2 %}	c) _{4%}	d) _{6%}
397	397. The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is 0.5 <i>mm</i> and there are 50 divisions on the circular scale. The reading on the main scale is 2.5 <i>mm</i> and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2%, the relative percentage error in the density is					
	^a 0.9%			^{b)} 2.4%	^{c)} 3.1%	uJ 4.2%
398	• If force <i>I</i> the mass y	F),length (will be	L) and	time (T) are assumed to b	e the fundamental units, then	the dimensional formula of
	a) $[FL^{-1}]$	Γ^2]		b) $[FL^{-1}T^{-2}]$	c) $[FL^{-1}T^{-1}]$	d) $[FL^2T^{-2}]$
399	99. A student performs an experiment for determination of $g = \frac{4\pi^2 l}{T^2}$ and he commits an error of Δl . For that he					
	takes the time of <i>n</i> oscillations with the stop watch of least count ΔT and he commits a human error of 0.1 sec. For which of the following data, the measurement of <i>g</i> will be most accurate Δl ΔT <i>n</i> Ampli. of					
	a) _{5 mm}	0.2 sec	10	5 mm		
	b) _{5 mm}	0.23ec	20	5 mm		
	c) $_{5mm}$	0.2 sec	20 20	1 mm		
	2 JIIIII	0.1 Sec	20	± /////		

d) 1 mm 0.1 sec 50 1 mm

400. Write dimensional formula for the intensity of radiation

$M^{T}L^{0}T^{3}$ $M^{T}L^{0}T^{-3}$ $M^{T}L^{2}T^{-2}$ $M^{T}L^{2}T^{-2}$	$\overset{\text{a)}}{=} M^1 L^0 T^3$	b) $M^{1}L^{0}T^{-3}$	c) $M^{1}L^{2}T^{-2}$	d) $M^{1}L^{2}T$
--	--------------------------------------	-----------------------	-----------------------	------------------

401. If 3.8×10^{-6} is added to 4.2×10^{-5} giving due regard to significant figures, then the result will be

a) $_{458 \times 10^{-5}}$ b) $_{4.6 \times 10^{-5}}$ c) $_{4.5 \times 10^{-5}}$ d) None of the above

402. If the velocity of light (c), gravitational constant (G) and Planck's constant (h) are chosen as fundamental units, then the dimensions of mass in new system is

a)
$$c^{1/2}G^{1/2}h^{1/2}$$
 b) $c^{1/2}G^{1/2}h^{-1/2}$ c) $c^{1/2}G^{-1/2}h^{1/2}$ d) $c^{-1/2}G^{1/2}h^{1/2}$

403	403. An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity.					
	a) $ML^{-1}T^{-1}$	b) MLT^{-1}	c) $M^0 L T^{-1}$	d) $_{ML^{0}T^{-1}}$		
404	Out of the following pairs,	which one does not have iden	tical dimensions			
	a) Moment of inertia and n	noment of force	b) Work and torque			
	c) Angular momentum and	Planck's constant	d) Impulse and momentum			
405	. The dimensions of potentia	l are the same as that of				
	a) Work		b) Electric field per unit cha	arge		
	c) Work per unit charge		d) Force per unit charge			
406	. Select the pair whose dimen	nsions are same				
	a) Pressure and stress	b) Stress and strain	c) Pressure and force	d) Power and force		
407	. <i>Kilowatt – hour</i> is a unit	of				
	a) Electrical charge	b) Energy	c) Power	d) Force		
408	The radius of a wire is 0.24	mm. Then its area of cross s	ection by taking significant fi	gures into consideration is		
	a) $0.1 m m^2$	b) $0.2 mm^2$	c) $0.18 m m^2$	d) $0.180 m m^2$		
409	Electron – volt is the unit of	f energy (1 eV = 1.6×10^{-19} .	J). in H-atom, the binding er	nergy of electron in first orbit		
	is 13.6 eV. The same in jou a) $_{10 \times 10^{-19}}$ I	le (J) is b) $_{21.76 \times 10^{-19} \text{J}}$	c) $_{13.6\times10^{-19}I}$	d) None of these		
410	• A student has measured the	length of a wire equal to 0.0	4580 m. This value of length	has the number of significant		
	figures equal to a) Five	b) Four	c) Six	d) None of these		
411	. Force constant has the same	e dimensions as				
	a) Coefficient of viscosity		b) Surface tension			
	c) Frequency		d) Impulse			
412	The dimensional formula formula	or Planck's constant (h) is				
	a) $ML^{-2}T^{-3}$	b) ML^2T^{-2}	c) ML^2T^{-1}	d) $ML^{-2}T^{-2}$		
413	The dimensions of physical	quantity X in the equation				
	$Force = \frac{X}{Density}$ is given	by				
	a) $M^1 L^4 T^{-2}$	b) $M^2 L^{-2} T^{-1}$	c) $M^2 L^{-2} T^{-2}$	d) $M^{1}L^{-2}T^{-1}$		
414	Dimensional formula for fo	orce is				
	a) $[M^1L^2T^{-2}]$	b) $[M^1L^1T^{-2}]$	c) $[M^1 L^{-1} T^{-2}]$	d) $[M^1 L^{-2} T^{-2}]$		
415	The constant of proportiona	ality $\frac{1}{4\pi\varepsilon_0}$ in Coulomb's law	has the following units			
	a) $C^{-2}Nm^2$	b) $C^2 N^{-1} m^{-2}$	c) $C^2 N m^2$	d) $C^{-2}N^{-1}m^{-2}$		
416	Universal time is based on					

a) Rotation of earth on its axis

	b) Oscillations of quartz cry	/stal				
	c) Vibrations of cesium atom					
	d) Earth's orbital motion around the sun					
417.	Planck's constant has the di	mensions (unit) of				
	a) Energy	b) Linear momentum	c) Work	d) Angular momentum		
418	A resistor of 10 k Ω having 20%. The tolerance of the c a) 10%	tolerance 10% is connected combination will be approxim b) 13%	in series with another resistor nately c) 17%	of $20k\Omega$ having tolerance d) 20%		
419	A cube has a side of length	$1.2 \times 10^{-2} m$. Calculate its v	volume.			
	a) $1.7 \times 10^{-6} m^3$	b) $1.73 \times 10^{-6} m^3$	c) $1.70 \times 10^{-6} m^3$	d) $1.732 \times 10^{-6} m^3$		
420.	The speed (v) of ripples on The square of speed (v) is p a) $\frac{\sigma}{2}$	the surface of water depend proportional to b) $\underline{\rho}_{\underline{\rho}}$	ls on surface tension (σ), den c) $\underline{\lambda}$	hisity (ρ) and wavelength (λ) . d) $_{\rho\lambda\sigma}$		
421.	ρλ	σλ 1	σρ	,		
	The constant of proportiona	lity $\overline{4\pi\varepsilon_0}$ in Coulomb's law	v has the following dimension	IS		
	a) $C^{-2}Nm^2$	b) $C^2 N^{-1} m^{-2}$	c) $C^2 N m^2$	d) $C^{-2}N^{-1}m^{-2}$		
422.	Unit of power is					
	^{a)} Kilowatt	^{b)} Kilowatt-hour	^{c)} Dyne	d) Joule		
423.	The dimensions of coefficie	nt of thermal conductivity is				
	a) $ML^2T^{-2}K^{-1}$	b) $MLT^{-3}K^{-1}$	c) $MLT^{-2}K^{-1}$	d) $MLT^{-3}K$		
424.	24. A physical quantity P is given by $P = \frac{A^3 B^{\frac{1}{2}}}{C^{-4} D^{\frac{3}{2}}}$. The quantity which brings in the maximum percentage error in P					
	is a) _A	b) _B	c) <i>C</i>	d) _D		
425.	In the following list, the onl	y pair which have different o	limensions, is			
	a) Linear momentum and n	noment of a force				
	b) Planck's constant and ang	gular momentum				
	c) Pressure and modulus of	electricity				
	d) Torque and potential ene	orgy				
426	Which one of the following	is not a unit of Young's mod	dulus?			
427	a) Nm^{-1} Which of the following is n	b) Nm^{-2} ot a unit of energy	c) Dyne cm^{-2}	d) Mega pascal		
	a) w	b) ka m/acc	C) N	d) Ioula		
428	W = S The speed (v) of ripples on	$\sim KG - M/SeC$	$\sim IN - m$	\rightarrow Joule		
120	The square of speed (v) is p	roportional to		Ity (p) and wavelength (n) .		

	a) <u>σ</u> <i>ρλ</i>	b) <u>ρ</u> σλ	c) $\frac{\lambda}{\sigma\rho}$	d) _{Pλσ}		
429.	If error in radius is 3%, what	at is error in volume of spher	e?			
	a) 3%	b) 27%	c) 9%	d) 6%		
430.	Oersted is a unit of					
	a) Dip	b) Magnetic intensity	c) Magnetic moment	d) Pole strength		
431.	The unit of reactance is					
	a) Ohm	b) _{Volt}	c) _{Mho}	d) _{Newton}		
432.	What is the dimensional for	rmula of mc^2 , where the letter	ers have their usual meanings	?		
	a) $[MLT^{-1}]$	b) $[ML^{0}T^{0}]$	c) $[ML^2T^{-2}]$	d) $[M^{-1}L^3T^6]$		
433.	For the equation $F \propto A^a v^b$	d^c , where F is the force, A is	s the area v is the velocity an	d d is the density, the value		
	of a , b and c are respective	ly b) 2 1 1	c) 1 1 2	d) 0 1 1		
121	1	0 2,1,1	cj 1,1,2	uj 0,1,1		
434.	Dimensions of $\frac{1}{\mu_0 \varepsilon_0}$, where	e symbols have their usual m	eaning, are			
	a) $\left[L^{-1}T\right]$	b) $\left[L^2 T^2 \right]$	c) $[L^2 T^{-2}]$	d) $\left[\zeta^{-1} \right]$		
435.	If $L=2.331 cm$, $B=2.1 cm$	n, then $L + B = i$				
	a) _{4.431} cm	b) 4.43 cm	c) 4.4 cm	d) _{4 cm}		
436.	A student performs an expe	riment for determination of	$g\left(\frac{i}{T^2}\frac{4\pi^2 l}{T^2}\right), l \approx 1m$, and he c	commits an error of Δl . For		
	T he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human error of 0.1					
	s. For which of the following $A I = 0 = A T = 0.1$ m	ng data, the measurement of	g will be most accurate? b) $A I = 0 E A T = 0.1 m^{-1}$	- 50		
	$\Delta L = 0.5, \Delta T = 0.1, n = 0.1$	-20	$\Delta L = 0.3, \Delta T = 0.1, n = 0.1$	-50		
127	$\Delta L = 0.5, \Delta I = 0.01, n$	=20	$\Delta L = 0.5, \Delta T = 0.05, n$	=50		
437.	which of the following pan	is does not have similar dime				
	a) Stress and pressure		b) Angle and strain			
	c) Tension and surface tens	ion	d) Planck's constant and ang	gular momentum		
438.	The mean time period of se	cond's pendulum is 2.00s an	d mean absolute error in the t	time period is 0.05 <i>s</i> . To		
	express maximum estimate a) $(2 00 + 0.01)$ s	b) (2.00 ± 0.025) s	c) (2.00 ± 0.05) s	d) (2.00 ± 0.10) s		
439.	Given, Force $\frac{\lambda}{\alpha}$	3	(2.00±0.05)3	(2.00±0.10)3		
	$density + \beta^{2}$ What are the dimensions of	α β?				
	a) $[ML^2T^{-2}], [ML^{-1/3}]$	b) $[M^2 L^4 T^{-2}], [M^{1/3} L^{-1}]$	c) $[M^2 L^{-2} T^{-2}], [M^{1/3} L^{-1}]$	d) $[M^2 L^{-2} T_2], [ML^{-3}]$		
440.	One light year is defined as	the distance travelled by ligh	t in one year. The speed of li	ght is $3 \times 10^8 m s^{-1}$. The		
	same in metre is	h) r		d) None of these		
4 4 4	49 3 × 10 ¹² m	9.461×10^{15} m	5 3 × 10 ¹⁵ m			
441.	+1. which of the following sets of quantities have same dimensional formula?					

	a) Frequency, angular frequency and angular momentum					
	b) Surface tension, stress and spring constant					
	c) Acceleration, momentum	and retardation				
	d) Work, energy and torque	;				
442.	The frequency of vibration	of string is given by $v = \frac{P}{2l}$	$\left[\frac{F}{m}\right]^{1/2}$. Here <i>p</i> is number of a	segments in the string and l is		
	the length. The dimensional a) $[M^0 L T^{-1}]$	formula for m will be b) $[ML^0T^{-1}]$	c) $[ML^{-1}T^{0}]$	d) $[M^0 L^0 T^0]$		
443.	Length is measured in metro unit of mass is equal to a) 1.5×10^7 kg	e and time in second as usual b) 1.5×10^{10} kg	. But a new unit of mass is so c) 6.67×10^{-11} kg	b chosen that $G=1$. This new d) 6.67×10^{-8} kg		
444.	The mass of a box is 2.3 g.	Two gold pieces, each of mas	ss 0.035 g, are placed in it. T	the total mass of the box and		
	a) 2.3 g	b) 2.4 g	c) 2.37 g	d) 2.370 g		
445.	Which one of the following	units is not that of mutual in	ductance?			
	a) Henry		b) $(Weber)^{-1}$			
	c) Ohm second d $Volt second (ampere)^{-1}$					
446.	Hertz is the unit for					
	a) Frequency	b) Force	c) Electric charge	d) Magnetic flux		
447.	Which one has the dimensio	ons different from the remain	ning three			
	a) Power	b) Work	c) Torque	d) Energy		
448.	The pressure on a square pla plate. If the maximum error error in the measurement of	ate is measured by measuring in the measurement of force pressure is	g the force on the plate and the and length are respectively	the length of the sides of the 4% and 2% , the maximum		
440	a) 1%	DJ 2%	CJ 0%	u) 8%		
449.	The physical quantity which	has dimensional formula as	that of $\frac{Energy}{Mass \times Length}$ is			
	a) Force	b) Power	c) Pressure	d) Acceleration		
450.	A thin copper wire of length percentage increase in area a) 4%	n <i>l metre</i> increases in length when a square copper sheet o b) 8%	by 2% when heated through of length <i>l metre</i> is heated th c) 16%	$10^{\circ}C$. What is the brough $10^{\circ}C$ d) None of the above		
451.	The pressure on a square pla	ate is measured by measuring	g the force on the plate and the	ne length of the sides of the		
	plate by using the formula <i>I</i>	$p = \frac{F}{l^2}$. If the maximum error	rs in the measurement of force	the and length are 4% and 2%		
	respectively, then the maxima) 1%	num error in the measuremen b) 2%	nt of pressure is c) 8%	d) 10%		
452.	Unit of impulse is					
	a) _{Newton}	b) <i>kg</i> - <i>m</i>	c) $kg-m/s$	d) _{Joule}		

453. The surface tension of a liquid is 70 dyne/cm, in MKS system value is
| | a) 70 N/m | b) $_{7 \times 10^{-2}} N/m$ | c) $_{7 \times 10^{3} N/m}$ | d) $_{7 \times 10^{2} N/m}$ | | | | |
|------|---|--|--|--------------------------------------|--|--|--|--|
| 454 | Given that : $y = A \sin\left[\left(\frac{2\pi}{\lambda}\right)\right]$ | $\left(ct-x\right)$ where, $y \wedge x$ are r | neasured in metre. Which of | the following statements is | | | | |
| | true?
a) The unit of λ is same as | that of x and A | b) The unit of λ is same as that of x but not of A | | | | | |
| | c) The unit of c is same as | that of $\frac{2\pi}{\lambda}$ | d) The unit of $(ct-x)$ is sat | me as that of $\frac{2\pi}{\lambda}$ | | | | |
| 455 | If K denotes coefficient of K | thermal conductivity, d the d | ensity and <i>c</i> the specific heat | t, the unit of X , where | | | | |
| | $ \begin{array}{l} X = K / dC \text{ will be} \\ a \\ Cm Sec^{-1} \end{array} \end{array} $ | b) $cm^{2}sec^{-2}$ | c) _{cm sec} | d) $cm^2 sec^{-1}$ | | | | |
| 456 | Dimensions of impulse are | same as that of | | | | | | |
| | a) Force | b) Momentum | c) Energy | d) Acceleration | | | | |
| 457 | In the relation $y = r \sin(\omega t)$ | $(-kx)$, the dimensions of ω/k | k are | | | | | |
| | a) $[M^0 L^0 T^0]$ | b) $[M^0 L^1 T^{-1}]$ | c) $[M^0 L^0 T^1]$ | d) $\left[M^{0}L^{1}T^{0}\right]$ | | | | |
| 458 | Which of the following five (A) Energy density (B) Refr (E) Magnetic field (A) and (D) | physical parameters have the
ractive index (C) Dielectric c | e same dimensions
constant (D) Young's modulus | d (C) and (E) | | | | |
| 459 | The unit of percentage error | r is | | | | | | |
| 10 7 | a) Same as that of physical | quantity | | | | | | |
| | b) Different from that of ph | usical quantity | | | | | | |
| | c) Percentage error is unit 1 | ess | | | | | | |
| | d) Errors have got their own | n units which are different fro | om that of physical quantity i | neasured | | | | |
| 460 | • The physical quantity which | has the dimensional formula | a M^1T^{-3} is | | | | | |
| | a) Surface tension | b) Solar constant | c) Density | d) Compressibility | | | | |
| 461 | The SI unit of electrochemi | cal equivalent is | | | | | | |
| | a) Kg C | b) $C k a^{-1}$ | c) Kg C^{-1} | d) $k a^2 C^{-1}$ | | | | |
| 462 | Curie is a unit of | | 60 | | | | | |
| 463 | a) Energy of γ -rays
• $M L^{-1} T^{-2}$ represents | b) Half life | c) Radioactivity | d) Intensity of γ -rays | | | | |
| | a) Stress | | b) Young's Modulus | | | | | |
| | c) Pressure | | d) All of the above three qu | antities | | | | |
| 464 | . The dimensions of pressure | is equal to | | | | | | |
| | a) Force per unit volume | | b) Energy per unit volume | | | | | |
| | c) Force | | d) energy | | | | | |
| 465 | . Which pair has the same di | mensions | | | | | | |

	a) Work and power		b) Density and relative density					
	c) Momentum and impulse		d) Stress and strain					
466	$b \left[ML^2 L^{-2} \right]$ are dimensions of	of						
	a) Force	b) Moment of force	c) Momentum	d) Power				
467	The ratio of 1 kWh to 1 M	eV is						
	a) 2.25×10^{17}	b) 2.25×10^{19}	c) 2.25×10^{23}	d) $2.25 \times 4.4 \times 10^9$				
468	B. In the equation S_{nth} the $=u^{-1}$	$+\frac{a}{2}(2n-1)$, the letters have	e their usual meanings. The c	limensional formula of S_{nth} is				
	a) $[ML^0T]$	\bar{b} [$ML^{-1}T^{-1}$]	c) $[M^0 L T^{-1}]$	d) $[M^{0}LT^{0}]$				
469	. The unit of Stefan's constant	nt is						
	a) $Wm^{-2}K^{-1}$	b) $Wm K^{-4}$	c) $Wm^{-2}K^{-4}$	d) $Nm^{-2}K^{-4}$				
470). Light year is a unit of							
	a) Time	b) Mass	c) Distance	d) Energy				
471	With the usual notations, th	ne following equation						
	$S_t = u + \frac{1}{2}a(2t-1)$ is							
	a) Only numerically correc	et	b) Only dimensionally con	rect				
	c) Both numerically and di	mensionally correct	d) Neither numerically no	r dimensionally correct				
472	2. The ratio of the dimension	of Planck's constant and that	at of moment of inertia is the	e dimension of				
	a) Frequency	b) Velocity	c) Angular momentum	d) Time				
473	B. Which has not the same un	it as other?						
	a) Watt-sec	b) Kilowatt-hour	c) eV	d) Js				
474	The SI unit of gravitational	potential is						
	a) J	b) Jkg^{-1}	c) _{Jkg}	d) $_{Jkg^2}$				
475	5. Which one of the following	g pairs of quantities and thei	r units is a proper match					
	a) Electric field-coulomb/	' <i>m</i>	b) Magnetic flux-weber					
	c) Power-farad		d) Capacitance- <i>h enry</i>					
476	Error in the measurement of	of radius of sphere is 2%. The second s	he error in the measurement	of volume is				
	a) 1%	b) 5%	c) 3% d) 6%					
477	The length of a cube is 2.1	$\times 10^{-2}$ m. the volume in sig	nificant figures will be					
	a) $9.2 \times 10^{-6} m^3$	b) $9.3 \times 10^{-6} m^3$	c) $9.26 \times 10^{-6} m^3$	d) $9.261 \times 10^{-6} m^3$				
478	3. Which one of the following	g pairs of quantities and thei	r unit is proper match?					
	a) Electric field-coulomb/r	n	b) Magnetic flux-weber					
	c) Power-farad		d) Capacitance-henry					

479. $[ML^2T^{-3}]$ is the dimension of

	a) Work	b) Power	c) Force	d) Momentum				
480	A wire has a mass 0.3 ± 0.0 in the measurement of its d	$03g$, radius $0.5\pm0.005m$ ensity is	<i>n</i> and length $6 \pm 0.06 cm$. The	e maximum percentage error				
	a) 1	b) 2	c) 3	d) 4				
481	A quantity X is given by ε_0	$L\frac{\Delta V}{\Delta t}$, where ε_0 is the perm	ittivity of free space, L is a le	ength, ΔV is a potential				
	difference and Δt is a time a) Electrical resistance	interval. The dimensional fo b) Electric charge	ormula for <i>X</i> is the same as the c) Electric voltage	hat of d) Electric current				
482	The dimensional formula formula	or $r.m.s.$ (root mean square	e) velocity is					
	a) $M^0 L T^{-1}$	b) $M^0 L^0 T^{-2}$	c) $M^0 L^0 T^{-1}$	d) $_{MLT^{-3}}$				
483	If C be the capacitance and	V be the electric potential, t	hen the dimensional formula	of CV^2 is				
404	a) $[ML^{-3}TA]$	$b)[K^0\dot{c}^{-2}A^0]$	$^{c)}\left[ML^{1}T^{-2}A^{-1}\right]$	$d) \left[ML^2 T^{-2} A^0 \right]$				
404	If I g cm $s^{-1} = x$ newton-se	cond, then the number X is e	qual to					
405	^{a)} 1×10^{-3}	^{bJ} 3.6×10^{-3}	$^{\rm CJ}$ 1×10 ⁻⁵	a 6×10 ⁻⁴				
485	The dimensions of emf in N	AKS 18						
486	a) $[ML^{-1}T^{-2}Q^{-2}]$ Which of the two have sam	b) $[ML^{-2}T^{-2}Q^{-2}]$ e dimensions	c) $[MLT^{-2}Q^{-1}]$ d) $[ML^{2}T^{-2}Q^{-1}]$					
	a) Force and strain		b) Force and stress					
	c) Angular velocity and free	quency	d) Energy and strain					
487	Which is different from oth	ers by units						
	a) Phase difference		b) Mechanical equivalent					
	c) Loudness of sound		d) Poisson's ratio					
488	$1 kW h = \frac{1}{6}$							
	a) 1000 W	b) $_{36} \times 10^5 J$	c) 1000 <i>J</i>	d) 3600 J				
489	There are atomic clocks cap operated with precision, the a) A difference of nearly 1	bable of measuring time with on after running for 5000 yea s	an accuracy of 1 part in 10 ¹¹ rs, these will record b) A difference of 1 day	¹ . If two such clocks are				
	c) A difference of 10^{11} s		d) A difference of 1 year					
490	If C and R represent capac	citance and resistance respect	tively, then the dimensions of	RC are				
	a) $M^0 L^0 T^2$	b) $M^{0}L^{0}T$	c) $_{ML^{-1}}$	d) None of these above				
491	From the equation $\tan\theta = \frac{r_0}{v}$	$\frac{9}{2}$, one can obtain the angle c	of banking $ heta$ for a cyclist takin	ng a curve (the symbols have				
	their usual meanings). Then a) Both dimensionally and the second	say it is, numerically correct	b) Neither numerically nor	dimensionally correct				

c) Dimensionally correct only

d) Numerically correct only

492.	A physical quantity is given γ respectively. The maximum	by $X = M^a L^b T^c$. The perce m percentage error in the qu	ntage error in measurement of antity X is	of M , L and T are $lpha$, eta and								
	a) $a\alpha + b\beta + c\gamma$	b) $a\alpha + b\beta - c\gamma$	c) $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma}$	d) None of these								
493.	The dimensions of couple a	re	αργ									
	a) ML^2T^{-2}	b) $_{MLT^{-2}}$	c) $ML^{-1}T^{-3}$	d) $ML^{-2}T^{-2}$								
494.	The velocity of transverse v	vave in a string is $v = \sqrt{\frac{T}{m}}$, wh	here T is the tension in the st	ring and <i>m</i> is mass per unit								
	length. If $T=3.0$ kgf, mass	of string is 2.5 g and length	of string is 1.00m, then the p	ercentage error in the								
	a) 0.5	b) 0.7	c) 2.3	d) 3.6								
495.	5. If voltage $V = (100 \pm 5)$ volt and current $I = (10 \pm 0.2) A$, the percentage error in resistance R is											
	a) 5.2%	b) 25%	c) 7%	d) 10%								
496.	496. If <i>P</i> represents radiations pressure, <i>c</i> represents speed of light and <i>Q</i> represents radiation energy striking a unit area per <i>second</i> , the non-zero integers <i>x</i> , <i>y</i> and <i>z</i> such that $P^{x}Q^{y}c^{z}$ is dimensionless, are											
	a) $x=1, y=1, z=-1$	b) $x=1, y=-1, z=1$	c) $x = -1, y = 1, z = 1$	d) $x=1, y=1, z=1$								
497.	Solar constant is defined as	energy received by earth per	$c m^2$ per minute. The dimension	sions of solar constant are								
	a) $[ML^2T^{-3}]$	b) $[M^2 L^0 T^{-1}]$	c) $[ML^{0}T^{-3}]$	d) $[MLT^{-2}]$								
498.	The dimensions of $\frac{a}{b}$ in the	equation $P = \frac{a - t^2}{bx}$, where B	P is pressure, x is distance ar	and t is time, are								
	a) MT^{-2}	b) $M^2 L T^{-3}$	c) $M L^3 T^{-1}$	d) LT^{-3}								
499.	The dimensions of CV^2 matrix	atches with the dimensions of										
	a) $L^2 I$	b) $L^2 I^2$	c) $_{LI^{2}}$	d) $\frac{1}{LI}$								
500.	If energy (E) , velocity (v) a	and force (F) be taken as fun	damental quantity, then wha	t are the dimensions of mass								
	a) Ev^2	b) $E v^{-2}$	c) Fv^{-1}	d) Fv^{-2}								
501.	Position of body with accele	eration 'a' is given by $x = K a$	$a^m t^n$, here t is time. Find dim	nensions of <i>m</i> and <i>n</i>								
	a) m=1,n=1	b) $m=1, n=2$	c) $m=2, n=1$	d) $m=2, n=2$								
502.	If $E = i$ energy, $G = i$ gravit	tational constant, $I = i$ impuls	se and $M = i$ mass, the dime	nsions of $\frac{GIM^2}{E^2}$ are same as								
	that of a) Time	b) Mass	c) Length	d) Force								
503.	Two full turns of the circular of divisions on the circular While measuring the diame circular scale divisions in lin	ar scale of a screw gauge coverscale is 50. Further, it is four ter of a thin wire, a student n ne with the main scale as 35.	er a distance of $1 mm$ on its ad that the screw gauge has a otes the main scale reading o The diameter of the wire is	main scale. The total number zero error of $-0.03 mm$. f $3mm$ and the number of								
	^a) 3.73 mm	^{b]} 3.67 mm	^c) 3.38 mm	^d) 3.32 mm								
504.	The air bubble formed by e proportional to $p^a d^b E^c$, we values of $a, b \land c$ will be	xplosion inside water perform here p is the pressure, d is the	ned oscillation with time period E is the energy	iod T that is directly q due to explosion. The								
	a) -5/6, 1/2, 1/3	b) 5/6, 1/3, 1/2	c) 5/6, 1/2, 1/3	d) None of these								

505.	The expression for centripe path. Find the expression for	tal force depends upon mass or centripetal force	of body, speed of the body a	nd the radius of circular								
	a) $F = \frac{mv^2}{2r^3}$	b) $F = \frac{mv^2}{r}$	c) $F = \frac{mv^2}{r^2}$	d) $F = \frac{m^2 v^2}{2r}$								
506	How many wavelengths of	the Kr^{89} are there in one me	tre?									
	a) 658189.63	b) 2348123.73	c) 1650763.73	d) 1553164.12								
507.	The unit of permittivity of	free space \mathcal{E}_0 is										
	a) Coulomb/newton-me	etre	b) Newton – metr e^2 / could	$om b^2$								
	c) $Coulomb^2/(newton-r)$	$netre)^2$	d) $Coulom b^2/newton-m$	$etr e^2$								
508	The difference in the length	s of a mean solar day and a s	sidereal day is about									
	a) _{1 min}	b) _{4 min}	c) _{15 min}	d) 56 min								
509.	To determine the Young's r	nodulus of a wire, the formu	la is $Y = \frac{F}{A} \times \frac{L}{\Delta L}$; where L:	$=\dot{\iota}$ length, $A=\dot{\iota}$ area of								
	cross-section of the wire, Δ factor to change it from CC	L = i change in length of the SS to MKS system is	e wire when stretched with a f	Force F . The conversion								
	a) 1	b) 10	c) 0.1	d) 0.01								
510.	.0. The dimensions of Planck's constant is same as that of											
	a) Angular momentum		b) Linear momentum									
	c) Work		d) Coefficient of viscosity									
511.	From the dimensional const	ideration, which of the follow	wing equation is correct									
	a) $T = 2\pi r \sqrt{\frac{R^3}{GM} i}$	b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$	c) $T = 2\pi \sqrt{\frac{GM}{GR^2 i}}$	d) $T = 2\pi \sqrt{\frac{R^2}{GM} \dot{c}}$								
512	$InS = a + bt + ct^2$. S is meas	ured in metre and t in secon	d. The unit of c is									
	a) None	b) _m	c) $m s^{-1}$	d) $m s^{-2}$								
513	A weber is equivalent to											
	a) $A m^{-2}$	b) A m^{-1}	c) $A m^2$	d) T m^2								
514	The percentage error in the	above problem is										
	a) 7%	b) 5.95%	c) 8.95%	d) 9.85%								
515.	The circular divisions of sh of the ball is	own screw gauge are 50. It n	noves 0.5 mm on main scale i	in one rotation. The diameter								
	^{a)} 2.25 <i>mm</i>	^{b)} 2.20 mm	c) 1.20 mm	d) _{1.25} mm								
516	The physical quantity angul	ar momentum has the same of	dimensions as that of									
	a) Work	b) Force	c) Momentum	d) Planck's constant								
517.	If the acceleration due to gr respectively, the numerical	eavity is $10m \text{s}^{-2}$ and the unit value of acceleration is	s of length and time are chan	ged in kilometer and hour								

a) 360000	b) 72000	c) 36000	d) 129600
518. The physical quantity that	has no dimensions is		
a) Angular Velocity	b) Linear momentum	c) Angular momentum	d) Strain
519. The time dependence of a	physical quantity P is given t	by $P = P_0 e^{at^2} - at^2$ where α	is a constant and t is time.
Then constant α is a) Dimensionless		b) Dimensionless of T^{-2}	
c) Dimensionless of P		d) Dimensionless of T^2	
520. The unit of momentum is			
a) N s	b) Ns^{-1}	c) N m	d) $_{Nm^{-1}}$
521. A dimensionally consistent	relation for the volume V of	a liquid of coefficient of vise	cosity η flowing per second
through a tube of radius r a -1	and length l and having pressumed πnl	are p across its end, is	πηη
a) $V = \frac{\pi p r}{8 \eta l}$	b) $V = \frac{\pi n \mu}{8 p r^4}$	c) $V = \frac{\sigma p \eta r}{\pi r^4}$	d) $V = \frac{\eta \rho \eta}{8 l r^4}$
522. The S.I. unit of gravitation	al potential is		
a) ₁	b) $t = t e^{-1}$	c) I_{-ka}	d) $L h e^{-2}$
523.	J - Kg	5 J - Kg	² J — к <u>g</u>
The dimensions of K in th	e equation $W = \frac{1}{2}Kx^2$ is		
a) $M^{1}L^{0}T^{-2}$	b) $M^0 L^1 T^{-1}$	c) $M^{1}L^{1}T^{-2}$	d) $M^{1}L^{0}T^{-1}$
524. Given that v is speed, r is to dimensionless	the radius and g is the accele	ration due to gravity. Which	of the following is
a) v^2/rg	b) $v^2 r/g$	c) $v^2 g/r$	d) $v^2 rg$
525. In the formula, $a=3bc^2$,	a and c have dimensions of e	electric capacitance and magr	netic induction respectively.
What are dimensions of b	in MKS system?		d)
$M^{-3}L^{-2}T^4Q^4$	$DJ[M^{-3}T^4Q^4]$	$[M^{-3}T^{3}Q]$	$^{\mathrm{u}}\mathrm{J}\left[M^{-3}L^{2}T^{4}Q^{-4}\right]$
526. The dimensions of stress a	re equal to		
a) Force	b) Pressure	c) Work	d) <u>1</u> Pressure
527. 1 a . m . u . is equivalent to			Tressure
a) $1.6 \times 10^{-27} kg$	b) _{934 MeV}	c) $1.6 \times 10^{-24} gm$	d) All above
528. Dimensional formula of St	efan's constant is		
a) $MT^{-3}K^{-4}$	b) $ML^2T^{-2}K^{-4}$	c) $M L^2 T^{-2}$	d) $MT^{-2}L^{0}$
529. Which of the following un	its denotes the dimensions $[N]$	$(L^2/Q^2]$, where Q denotes the	ne electric charge?
a) Wbm^{-2}	b) Henry (H)	c) Hm^{-2}	d) Weber (Wb)
530. The damping force on an opportionality are	scillator is directly proportio	nal to the velocity. The units	s of the constant of
a) $kgm s^{-1}$	b) $kgm s^{-2}$	c) $kg s^{-1}$	d) _{kgs}
531. The dimensions of resistivity	ity in terms of M, L, T and	Q where Q stands for the dim	mensions of charge, is

a) $ML^{3}T^{-1}Q^{-2}$ b) $ML^{3}T^{-2}Q^{-1}$ c) $ML^{2}T^{-1}Q^{-1}$ d) $MLT^{-1}Q^{-1}$

532. The dimensional formula for impulse is same as the dimensional formula for

- a) Momentum b) Force
- c) Rate of change of momentum d) Torque

533. Dimensions of potential energy are

a) MLT^{-1} b) ML^2T^{-2} c) $ML^{-1}T^{-2}$ d) $ML^{-1}T^{-2}$

534. In the relation $P = \frac{\alpha}{\beta} e^{\frac{\alpha Z}{k\theta}} P$ is pressure, Z is the distance, k is Boltzmann's constant and θ is the temperature. The dimensional formula of β will be

a)
$$[M^{0}L^{2}T^{0}]$$
 b) $[M^{1}L^{2}T^{1}]$ c) $[M^{1}L^{0}T^{-1}]$ d) $[M^{0}L^{2}T^{-1}]$

535. If $x = at + bt^2$, where x is the distance travelled by the body in kilometre while t is the time in second, then the units of b are

a) km/s b) km-s c) km/s^2 d) $km-s^2$

536. Choose the incorrect statement out of the following

a) Every measurement by any measuring instrument has some error

b) Every calculated physical quantity that is based on measured values has some error

c) A measurement can have more accuracy but less precision and vice versa

d) The percentage error is different from relative error

537. Consider a new system of units in which c(speed of light in vacuum), h(Planck's constant) and G(gravitational constant) are taken as fundamental units. Which of the following would correctly represent mass in this new system?

a)
$$\sqrt{\frac{hc}{G}}$$
 b) $\sqrt{\frac{Gc}{h}}$ c) $\sqrt{\frac{hG}{c}}$ d) \sqrt{hGc}

538. If velocity v, acceleration A and force F are chosen a fundamental quantities, then the dimensional formula of angular momentum in terms of v, A and F would be

a)
$$F A^{-1} v$$
 b) $F v^3 A^{-2}$ c) $F v^2 A^{-1}$ d) $F^2 v^2 A^{-1}$

- 539. The number of significant figures in all the given numbers 25.12, 2009, 4.156 and 1.217×10^{-4} is
 - a) $_{1}$ b) $_{2}$ c) $_{3}$ d) $_{4}$

540. Linear momentum and angular momentum have the same dimensions in

- a) Mass and length b) Length and time
- c) Mass and time d) Mass, length and time

541. Which of the following units denotes the dimensions $M L^2/Q^2$, where Q denotes the electric charge

a) Henry (H) b) H/m^2 c) Weber (Wb) d) Wb/m^2

542. What is the dimensional formula of $\frac{planc k's constant}{linear momentum}$?

a)
$$[M^{0}L^{0}T^{0}]$$
 b) $[M^{0}L^{0}T]$ c) $[M^{0}LT^{0}]$ d) $[MLT^{-1}]$

543. SI unit of electric intensity is

a) Coulomb b) $_{Coulomb/m^2}$ c) Newton d) Newton/ coulomb

544. The unit of nuclear dose given to a patient is

	^{a)} Fermi	b) Rutherford	c) Curie	d) Roentgen				
545	The dimensional formula of	f universal gas constant is						
	a) $\left[ML^2T^{-2}\theta^{-1}\right]$	b) $[M^2 \dot{\iota}^{-2} \theta]$	c) $[ML^3T^{-1}\theta^{-1}]$	d) None of these				
546	Let us choose a new unit of	length such that the velocity	of light in vacuum is unity. I	f light takes 8 min and 20 sec				
	a) 5	b) 50	c) 500	d) $_{3 \times 10^8}$				
547.	. Which of the following rep	resents a volt						
	^{a)} Joule/second	^{b)} Watt/ampere	c) Watt/coulomb	^{d)} Coulomb/ joule				
548	Dimensional formula of Ste	efan's constant is						
	a) $\left[MT^{-3}K^{-4}\right]$	$b)\left[ML^2T^{-2}K^{-4}\right]$	c) $[ML^2 T^{-2}]$	d) $[MT^{-2}L^0]$				
549.	The relative density of the rusing a spring balance, the water is measured to be 4.0 a) 11%	material of a body I the ratio weight of the body in air in m 00 ± 0.05 N. Then the maximum b) 10%	of its weight in air and the lo leasured to be 5.00 ± 0.05 N. um possible percentage error c) 9%	ss of its weight in water. By The weight of the body in in relative density is d) 7%				
550	$X = 3 Y Z^2$ find dimension of	of Y in $(MKSA)$ system, If Z	X and Z are the dimensions of	of capacity and magnetic				
	field respectively a) $M^{-3} I^{-2} T^{-4} A^{-1}$	b) _{M I} ⁻²	c) $M^{-3} I^{-2} T^4 A^4$	d) $M^{-3}L^{-2}T^8A^4$				
551.	The percentage errors in the respectively. Then the maximal 8%	e measurement of length and imum error in the measureme b) 3%	time period of a simple pend ent of acceleration due to gravely $c_{4\%}$	lulum are 1% and 2% vity is d) $_{5\%}$				
552	The unit of absolute permi	ttivity is						
	a) <i>Fm</i> (<i>farad</i> - <i>metre</i>)		b) $Fm^{-1}(farad/metre)$					
	c) $Fm^{-2}(farad/metr e^2)$		d) F (farad)					
553.	Dimensional formula of hea	at energy is						
	a) ML^2T^{-2}	b) $_{MLT^{-1}}$	c) $M^0 L^0 T^{-2}$	d) None of these				
554	. Which of the following qua	intities has not been expressed	d in proper unit					
	a) Torque : Newton metre		b) Stress : Newton metr e^{-2}	2				
	c) Modulus of elasticity : N	lewton metr e^{-2}	d) Surface tension : Newtor	$h metr e^{-2}$				
555.	If the units of mass, length	and time are doubled unit of	angular momentum will be					
	a) Doubled		b) Tripled					
	c) Quadrupled		d) Eight times the original v	alue				
556	Unit of moment of inertia i	n MKS system						
557.	a) $kg \times c m^2$ The dimensions of emf in <i>I</i>	^{b)} k g/c m ² MKS is	c) $kg \times m^2$	d) Joule×m				
	a) $ML^{-1}T^{-2}Q^{-2}$	b) $ML^2T^{-2}Q^{-2}$	c) $ML T^{-2} Q^{-1}$	d) $M L^2 T^{-2} Q^{-1}$				

558	58. The length <i>l</i> , breadth <i>b</i> and thickness <i>t</i> of a block are measured with the help of a metre scale. Given $l=15.12\pm0.01$ cm, $b=10.15\pm0.01$ cm, $t=5.28\pm0.01$ cm.									
	The percentage error in volution a) 0.64%	ume is b) 0.28%	c) 0.37%	d) 0.48%						
559.	A sextant is used to measur	e								
	a) Area of hill		b) Height of an object							
	c) Breadth of a tower		d) Volume of the building							
560	$[ML^3T^{-1}Q^{-2}]$ is the dime	nsional formula of								
	a) Resistance	b) Resistivity	c) Conductance	d) Conductivity						
561	A current of 234 A flows i	in a resistance of 11.111111	2. The potential difference ac	ross the given resistance						
	with due regard for significa a) 26.000 V	ant figure is b) 26.00 V	c) 26.0 V	d) 26 V						
562	Dimensions of charge are									
	a) $M^0 L^0 T^{-1} A^{-1}$	b) $MLT A^{-1}$	c) $T^{-1}A$	d)						
563	The dimensions of time cor	istant are								
	a) $[M^0 L^0 T^0]$	b) $[M^{0}L^{0}T]$	c) [<i>MLT</i>]	d) None of these						
564	Which physical quantities h	ave same dimensions?								
	a) Force and power	b) Torque and energy	c) Torque and power	d) Force and torque						
565.	The number of significant f	igures in all the given number	rs 25.12, 2009, 4.156 and 1.2	17×10^{-4} is						
	a) 1	b) 2	c) 3	d) 4						
566	The power of lens is $P = \frac{1}{f}$	where f is focal length of th	e lens . The dimensions of po	ower of lens are						
	a) $[LT^{-2}]$	b) $[M^0L^{-1}T^0]$	c) $[M^0 L^0 T^0]$	d) None of these						
567.	The position of a particle at of v_0 and α are respectively	t time t is given by the relatio	n $x(t) = \dot{c}$ where v_0 is constant	t and $\alpha > 0$. The dimensions						
	a) $M^0 L^1 T^{-1}$ and T^{-1}	b) $M^0 L^1 T^0$ and T^{-1}	c) $M^0 L^1 T^{-1}$ and $L T^{-2}$	d) $M^{0}L^{1}T^{-1}$ and T						
568	The dimensions of kinetic e	energy are								
	a) $[M^2L^2T]$	b) $[ML^2T]$	c) $[ML^2 T^{-2}]$	$d)_{\left[ML^2T^{-1}\right]}$						
569.	If u_1 and u_2 are the units set	elected in two systems of mea	asurement and n_1 and n_2 their	numerical values, then						
	a) $n_1 u_1 = n_2 u_2$		b) $n_1 u_1 + n_2 u_2 = 0$							
	c) $n_1 n_2 = u_1 u_2$		d) $(n_1 + u_1) = (n_2 + u_2)$							
570	Which of the following pair	rs is wrong								
	a) Pressure-Barometer		b) Relative density-Pyromet	ter						
	c) Temperature-Thermome	eter	d) Earthquake-Seismograph							

571	The magnetic force on a po	int moving charge is $\vec{F} = q(\vec{N})$	$\vec{V} \times \vec{B}$).									
	Here, $q = \dot{\iota}$ electric charge											
	$\vec{V} = \vec{c}$ velocity of the point charge											
	$\vec{B} = i$ magnetic field											
	The dimensions of \vec{B}											
	a) $[MLT^{-1}A]$	b) $[MLT^{-2}A^{-1}]$	c) $[MT^{-1}A^{-1}]$	d) None of these								
572	Pressure gradient has the sa	me dimension as that of										
	a) Velocity gradient	b) Potential gradient	c) Energy gradient	d) None of these								
573	A cube has numerically equ	al volume and surface area.	The volume of such a cube is									
	a) 216 units	b) 1000 units	c) 2000 units	d) 3000 units								
574	If $L = 2.331 cm$, $B = 2.1 cr$	n, then $L + B$ is equal to										
	a) 4.431 cm	b) 4.43 cm	c) 4.4 cm	d) 4 cm								
575	One is equivalent to 931 Me	eV energy. The rest mass of e	electron is 9.1 $\times 10^{-31}$ kg. the	•								
	Mass equivalent energy is											
	$(1 \text{ amu } .1.67 \times 10^{-17} \text{kg})$											
	a) 0.5073 MeV	b) 0.693 MeV	c) 4.0093 MeV	d) None of these								

2.UNITS AND MEASUREMENTS

: ANSWER KEY :

1)	а	2)	С	3)	b	4)	b	169)	d	170)	а	171)	d	172)	a
5)	С	6)	d	7)	b	8)	b	173)	d	174)	d	175)	d	176)	d
9)	С	10)	d	11)	b	12)	а	177)	а	178)	d	179)	а	180)	С
13)	d	14)	а	15)	b	16)	а	181)	а	182)	d	183)	b	184)	b
17)	b	18)	d	19)	d	20)	d	185)	а	186)	b	187)	d	188)	b
21)	b	22)	а	23)	С	24)	b	189)	b	190)	b	191)	d	192)	d
25)	d	26)	а	27)	С	28)	С	193)	d	194)	С	195)	а	196)	С
29)	b	30)	а	31)	b	32)	b	197)	b	198)	b	199)	d	200)	а
33)	d	34)	С	35)	а	36)	d	201)	С	202)	а	203)	а	204)	d
37)	а	38)	b	39)	b	40)	b	205)	С	206)	b	207)	С	208)	а
41)	d	42)	а	43)	d	44)	а	209)	С	210)	d	211)	а	212)	а
45)	b	46)	а	47)	С	48)	b	213)	С	214)	а	215)	С	216)	а
49)	а	50)	С	51)	С	52)	b	217)	b	218)	b	219)	b	220)	а
53)	d	54)	d	55)	С	56)	b	221)	d	222)	а	223)	b	224)	d
57)	С	58)	а	59)	b	60)	d	225)	С	226)	а	227)	d	228)	а
61)	b	62)	b	63)	а	64)	а	229)	b	230)	d	231)	d	232)	а
65)	С	66)	а	67)	а	68)	b	233)	С	234)	С	235)	а	236)	С
69)	а	70)	а	71)	b	72)	b	237)	С	238)	а	239)	С	240)	d
73)	d	74)	а	75)	b	76)	С	241)	b	242)	d	243)	d	244)	b
77)	d	78)	а	79)	b	80)	С	245)	d	246)	b	247)	d	248)	С
81)	b	82)	d	83)	d	84)	b	249)	С	250)	d	251)	С	252)	а
85)	а	86)	d	87)	b	88)	С	253)	b	254)	d	255)	а	256)	а
89)	d	90)	b	91)	а	92)	С	257)	d	258)	b	259)	b	260)	d
93)	а	94)	С	95)	а	96)	С	261)	b	262)	d	263)	С	264)	а
97)	d	98)	d	99)	а	100)	С	265)	b	266)	С	267)	d	268)	b
101)	b	102)	а	103)	b	104)	d	269)	а	270)	а	271)	а	272)	а
105)	С	106)	b	107)	d	108)	а	273)	b	274)	b	275)	d	276)	b
109)	d	110)	а	111)	d	112)	а	277)	а	278)	b	279)	а	280)	а
113)	С	114)	а	115)	d	116)	b	281)	С	282)	d	283)	b	284)	а
117)	С	118)	С	119)	а	120)	а	285)	b	286)	b	287)	b	288)	С
121)	а	122)	С	123)	b	124)	d	289)	d	290)	b	291)	b	292)	d
125)	b	126)	С	127)	а	128)	С	293)	d	294)	d	295)	d	296)	b
129)	С	130)	С	131)	а	132)	а	297)	d	298)	а	299)	b	300)	С
133)	С	134)	d	135)	а	136)	d	301)	b	302)	а	303)	а	304)	d
137)	а	138)	d	139)	а	140)	b	305)	d	306)	а	307)	С	308)	d
141)	а	142)	С	143)	С	144)	d	309)	d	310)	а	311)	а	312)	d
145)	а	146)	d	147)	а	148)	b	313)	а	314)	а	315)	С	316)	С
149)	d	150)	d	151)	b	152)	d	317)	а	318)	а	319)	С	320)	b
153)	С	154)	а	155)	d	156)	С	321)	d	322)	С	323)	С	324)	С
157)	С	158)	d	159)	d	160)	а	325)	а	326)	а	327)	а	328)	а
161)	а	162)	С	163)	a	164)	d	329)	d	330)	а	331)	С	332)	а
165)	а	166)	d	167)	С	168)	а	333)	d	334)	а	335)	b	336)	а

337)	а	338)	h	339)	а	340) (: 53	7) 🤉	a	538)	b	539)	d	540)	C
341)	d	342)	c	343)	c	344) I	54	1) a	a	542)	c	543)	d	544)	d
345)	c	346)	a	347)	c	348)	54	-) (5) (a	546)	c	547)	h	548)	h
349)	d	350)	a	351)	d	352)	549	9) a	a	550)	d	551)	d	552)	b
353)	a	354)	a	355)	a	356)	1 553	3) 2	a	554)	d	555)	c	556)	c
357)	h	358)	h	359)	a	360)	55	7) (d	558)	c	559)	h	560)	h
361)	c	362)	h	363)	a	364)	56	1) d	r r	562)	d	563)	h	564)	h
365)	c c	366)	C	367)	a	368)	1 56	5) (d d	566)	u h	567)	2	568)	C
360)	c c	370)	L d	307)	a n	372)	560	ינכ	u a	570)	b h	571)	a	500)	d d
373)	c c	370)	u o	371)	a h	376)	57	2) 2	a o	570) 574)	h	575)	с э	5725	u
373)	d	379)	a a	373)	C	380)	1 J7.	5) (a	5745	U	5755	а		
377)	u c	370)	a d	383)	t h	384)	4								
201) 205)	L h	296)	u h	207)	U C	299)									
200J	U A	200)	U h	307J 201)	C C	202) a									
309J 202)	d	390J 204)	U	391J 205)	L d	392J a	1								
393)	C	394J 200)	C	395J 200)	a d	390) (1								
397	C L	398)	a	399)	a	400) (
401)	D	402)	С	403)	a L	404) a	1								
405)	C	406)	a	407)	D	408) (;								
409)	b	410)	b	411)	b	412) (2								
413)	C	414)	b	415)	а	416) a	1								
417)	d	418)	С	419)	a	420) a	1								
421)	а	422)	a	423)	b	424) (:								
425)	а	426)	a	427)	b	428) a	1								
429)	С	430)	b	431)	а	432) 0									
433)	а	434)	С	435)	С	436) o	1								
437)	С	438)	С	439)	d	440) l	ו								
441)	d	442)	С	443)	b	444) l	ו								
445)	b	446)	а	447)	а	448) (1								
449)	d	450)	а	451)	С	452) o	:								
453)	b	454)	а	455)	d	456) l)								
457)	b	458)	а	459)	С	460) l)								
461)	С	462)	С	463)	d	464) l)								
465)	С	466)	b	467)	b	468) o	:								
469)	С	470)	С	471)	С	472) a	1								
473)	d	474)	b	475)	b	476) o	1								
477)	b	478)	b	479)	b	480) o	1								
481)	d	482)	а	483)	d	484) o	:								
485)	d	486)	С	487)	d	488) l)								
489)	а	490)	b	491)	С	492) a	1								
493)	а	494)	d	495)	С	496) l)								
497)	С	498)	а	499)	С	500) l)								
501)	b	502)	а	503)	С	504) a	1								
505)	b	506)	С	507)	d	508) l)								
509)	С	510)	а	511)	а	512) o	1								
513)	d	514)	С	515)	С	516) o	1								
517)	d	518)	d	519)	b	520) a	1								
521)	а	522)	b	523)	а	524) a	1								
525)	а	526)	b	527)	d	528) a	1								
529)	b	530)	с	531)	а	532) a	1								
533)	b	534)	а	535)	С	536) (1								
							1								

: HINTS AND SOLUTIONS :

1 (a)

If a charge of 1 C moving with a velocity of $1 ms^{-1}$ perpendicular to a uniform magnetic field experiences a force of 1 N, then the magnitude of the field is 1 T. The SI unit of magnetic field is Wbm^{-2} . Thus,

$$1T = 1NA^{-1}m^{-1} = 1Wbm^{-2}$$

In CGS systems

 $1 tesla = 10^4 gauss = 1 Wbm^{-2}$

2 (c)

Friction $F = \mu N$ $\mu = \frac{F}{N}$ $\therefore i = \left[\frac{F}{N}\right] = \frac{[ML T^{-2}]}{[ML T^{-2}]} = i \text{ dimensionsless}$

5 **(c)**

Given,

 $x = \cos(\omega t + kx)$

Here, $(\omega t + kx)$ is an angle so the dimension of

$$(\omega t + kx) = [M^0 L^0 T^0]$$

Or dimensions of $\omega t = \left[M^0 L^0 T^0 \right]$

Or dimensions of $\omega = \frac{\left[M^0 L^0 T^0\right]}{\left[T\right]}$

Or
$$\mathbf{\dot{c}} M^0 L^0 T^{-1}$$

6 **(d)**

 $a = b^{\alpha} c^{\beta} / d^{\gamma} e^{\delta}$ So maximum error in *a* is given by *ii* $i(\alpha b_1 + \beta c_1 + \gamma d_1 + \delta e_1)\%$

7 **(b)**

 $\ln g = \ln h - 2\ln t$

$$\left(\frac{\Delta g}{g} \times 100\right)_{max} = \frac{\Delta h}{h} \times 100 + 2\frac{\Delta t}{t} \times 100 = e_1 + 2e_2$$

(b)

Here, $S = (13.8 \pm 0.2) m$ and $t = (4.0 \pm 0.3) sec$ Expressing it in percentage error, we have, $S = 13.8 \pm \frac{0.2}{13.8} \times 100\% = 13.8 \pm 1.4\%$ and $t = 4.0 \pm \frac{0.3}{4} \times 100\% = 4 \pm 7.5\%$ $\therefore V = \frac{s}{t} = \frac{13.8 \pm 1.4}{4 \pm 7.5} = (3.45 \pm 0.3) m/s$

9 **(c)**

One main scale division, 1 M.S.D.=x cmOne vernier scale division, $1 V.S.D.=\frac{(n-1)x}{n}$ Least count i 1 M.S.D.-1V.S.D. $i \frac{nx-nx+x}{n} = \frac{x}{n} cm$

10 **(d)**

Surface tension
$$\dot{c} \frac{Force}{Length} = \frac{[MLT^{-2}]}{L} = [MT^{-2}]$$

11 **(b)**

PV = i [energy]

Vander Waal's equation is
$$\left(P + \frac{a}{V^2}\right)(V - b) = nRT$$

The dimensions of $\frac{a}{V^2}$ should be that of *P* and *b* is that of volume

Work done (or energy) should have the dimensions of PV

$$\left[\frac{a}{V^{2}} \times b\right] = i \text{ [Energy]}$$

$$\left[bP\right] = i \text{ [Energy]}$$

$$\left[\frac{a}{V^{2}}\right] = [P] \text{ is having dimensions different from energy}$$

12 (a)

$$\phi = BA = \frac{F}{I \times L} A = \frac{[ML T^{-2}][L^{2}]}{[A][L]} = [M L^{2} T^{-2} A^{-1}]$$

13 **(d)**

$$n_2 = n_1 \left[\frac{M_2}{M_1} \right]^1 \left[\frac{L_2}{L_1} \right]^2 \left[\frac{T_2}{T_1} \right]^{-2}$$

Given,
$$M_2 = 2M_1, L_2 = 2L_1, T_2 = 2T$$

$$:n_2 = n_1 [2]^1 [2]^2 [2]^{-2} = 2n_1$$

14 **(a)**

Momentum
$$p \propto f^a v^b \rho^c$$

 $[ML T^{-1}] = [T^{-1}]^a [L T^{-1}]^b [M L^{-3}]^c$
 $[ML T^{-1}] = [M^c L^{b-3c} T^{-a-b}]$
 $\implies c = 1.$
 $b - 3c = 1 \implies b = 4$
 $-a - b = -1$
 $a + b = 1, a = -3$
 $\therefore [p] = [f^{-3} v^4 \rho]$

15 **(b)**

Percentage error in length $i \frac{1}{50} \times 100 = 2$ Percentage error in breadth $i \frac{0.1}{2.0} \times 100 = 5$ Percentage error in thickness $i \frac{0.1}{1.00} \times 100 = 1$ Percentage error in volume i 2+5+1=8

16 **(a)**

$$[B] = \left[\frac{force \times length}{mass}\right] = \left[\frac{energy}{mass}\right] = \dot{c}[latent heat]$$

17 **(b)**

Time period of simple pendulum is

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Or
$$\frac{\Delta T}{T} = \frac{1}{2} \left(\frac{\Delta l}{l} - \frac{\Delta g}{g} \right)$$

Or $\frac{\Delta g}{g} = \frac{\Delta l}{l} - \frac{2\Delta T}{T}$ \therefore Maximum percentage error in equation

$$\frac{\Delta g}{g} \times 100 = \frac{\Delta l}{l} \times 100 + \frac{2\Delta T}{T} \times 100$$
$$\downarrow 1 \times 100 + 2 \times 2 \times 100$$
$$\downarrow 5 \times 100 = 5\%$$

18 **(d)**

Required percentage

$$\dot{c} \frac{2 \times 0.02}{0.24} \times 100 + \frac{1}{30} \times 100 + \frac{0.01}{4.80} \times 100$$
 $\dot{c} 16.7 + 3.3 + 0.2$
 $\dot{c} 20\%$

19 **(d)**

Modulus of rigidity $\eta = \frac{F/A}{\phi}$

Dimensions of
$$\eta = \frac{[MLT^{-2}]}{[L^2]}$$

$$\frac{\partial}{\partial t} \left[M L^{-1} T^{-2} \right]$$

20 (d)

$$[G] = [M^{-1}L^{3}T^{-2}]; [h] = [ML^{2}T^{-1}]$$
Power $\& \frac{1}{focal \, length} = [L^{-1}]$

All quantities have dimensions

21 **(b)**

In 23.023 number of significant figures will be 5 because all the zero's between non zero digits are significant. In 0.0003, number of significant figures will be one because all the zero's before and after decimal point are insignificant if the number is less then one. In 2.1×10^{-3} number of significant figure are to because power of 10 is not considered as significant figure

22 **(a)**

Force,
$$F = ma$$

$$\therefore a = \frac{F}{m} = \frac{10 \text{ pound}}{kg}$$

$$\therefore 10 \frac{\text{pound}}{kg} = \frac{10 \text{ slug ft}}{kg s^2} = 146 \frac{ft}{s^2}$$

$$\therefore 146 \times 0.30 \text{ m s}^{-2}$$

$$\therefore 44.5 \text{ m s}^{-2}$$

Force
$$F = qvB$$

$$[MLT^{-2}] = [C][LT^{-1}][B]$$
$$\Rightarrow [B] = [MC^{-1}T^{-1}]$$

24 **(b)**

$$E = K F^{a} A^{b} T^{c}$$

$$[M L^{2} T^{-2}] = [ML T^{-2}]^{a} [LT^{-2}]^{b} [T]^{c}$$

$$[M L^{2} T^{-2}] = [M^{a} L^{a+b} T^{-2a-2b+c}]$$

$$\therefore a = 1, a+b=2 \Rightarrow b=1$$
And $-2a-2b+c=-2 \Rightarrow c=2$

$$\therefore E = KFA T^{2}$$

25 **(d)**

[Calorie]=[$M L^2 T^{-2}$] Comparing with general dimensional formula $[M^a L^b T^c]$, we get a=1, b=2, c=-2. $n_2=4.2 \left[\frac{1 kg}{\alpha kg}\right]^1 \left[\frac{1 m}{\beta m}\right]^2 \left[\frac{1 s}{\gamma s}\right]^{-2} = 4.2 \alpha^{-1} \beta^{-2} \gamma^2$

27 **(c)**

[Entropy]=
$$\frac{Q}{T} = \frac{[M L^2 T^{-2}]}{[K]} = [M L^2 T^{-2} K^{-1}]$$

28 **(c)**

 $Capacity \times Resistance = \frac{Charge}{Potential} \times \frac{Volt}{amp}$ $i \frac{amp \times second \times Volt}{Volt \times amp} = Second$

31 **(b)**

Frequency = $\frac{1}{T} = [M \dot{\iota} \dot{\iota} 0 L^0 T^{-1}] \dot{\iota}$

32 **(b)**

Angular momentum = mvr= $[MLT^{-1}][L] = [ML^2T^{-1}]$

33 **(d)**

Energy = Work done [Dimensionally]

34 (c) L_T

 $\frac{L}{R}$ = Time constant

35 **(a)**

 $\frac{Angular momentum}{Linear momentum} = \frac{mvr}{mv} = r = [M^0 L^1 T^0]$

37 **(a)**

Resistivity $[\rho] = \frac{[R].[A]}{[I]}$ where $[R] = [M L^2 T^{-1} Q^{-2}]$

$$\therefore [\rho] = [M L^3 T^{-1} Q^{-2}]$$

38 **(b)**

Or

Given, $F \propto v^2$

$$F = k$$

$$\therefore k = \frac{F}{v^2}$$
$$[k] = \frac{[F]}{[v^2]} = \frac{[MLT^{-2}]}{[L^2T^{-2}]}$$
$$\& [ML^{-1}T^0]$$

39 **(b)**

Required volume $\frac{10^{3} \times 10^{4} \times 26}{10^{3} \times 10^{3} \times 10^{3}} (km)^{3}$

40 **(b)**

$$X = M^{a}L^{b}T^{-c}$$

$$\therefore \frac{\Delta X}{X} = \pm \left[\alpha \frac{\Delta M}{M} + b \frac{\Delta L}{L} + c \frac{\Delta T}{T}\right]$$

$$\dot{\iota} \pm \left[a\alpha + \beta b + \gamma c\right]\%$$

41 **(d)**

Required error in density $i 3\% + 3 \times 2\% = 9\%$.

42 **(a)**

Result should have only two significant numbers (same as in 12 m).

43 **(d)**

1 CGS SI

$$N_1 U_1 = N_2 U_2$$

 $N_1 [M_1 L_1^{-3}] = N_2 [M_2 L_2^{-3}]$
 $\therefore N_2 = N_1 \left[\frac{M_1}{M_2}\right] \times \left[\frac{L_1}{L_2}\right]^{-3} = 0.625 \left[\frac{1 g}{1 kg}\right] \times \left[\frac{1 cm}{1m}\right]^{-3}$
 $\therefore 0.625 \times 10^{-3} \times 10^6 = 625$

44 **(a)**

By principle of dimensional homogenity $\left[\frac{a}{V^2}\right] = [P]$

$$::[a] = [P][V^{2}] = [M L^{-1}T^{-2}] \times [L^{6}] = [M L^{5}T^{-2}]$$

45 **(b)**

Physical quantity $u = \frac{B^2}{2\mu_0}$

Unit of
$$u = \frac{(N/Am)^2}{N/A^2} = \frac{N^2 A^2}{N A^2 m^2}$$

 $i \frac{N}{m^2} = \frac{Nm}{m^3} = \frac{J}{m^3}$

 $\dot{\iota}$ energy per unit volume = energy density

46 **(a)**

$$[?] = \frac{[Sl^3]}{[4yd^3\delta]} = \frac{[MLT^{-2}][L^3][L^2]}{[MLT^{-2}][L^3][L]} = [L]$$

47 **(c)**

$$\frac{L}{RCV} = \left[\frac{L}{R}\right] \frac{1}{CV} = \frac{T}{Q} = [A^{-1}]$$

48 **(b)**

Dimension of work and torque $i[M L^2 T^{-2}]$

49 **(a)**

[surface tension]=[$M L^0 T^{-2}$], [viscosity]= [$M L^{-1} T^{-1}$].

Clearly, mass has the same power in the two physical quantities.

51 **(c)**

Impulse = change in momentum = $F \times t$ So the unit of momentum will be equal to *Newton-sec*

52 **(b)**

Time period
$$T = 2\pi \sqrt{\frac{l}{g}}$$

Or $\frac{t}{n} = 2\pi \sqrt{\frac{l}{g}}$
 $\therefore g = \frac{(4\pi^2)(n^2)l}{t^2}$
% $error \in g = \frac{\Delta g}{g} \times 100 = \left(\frac{\Delta l}{l} + \frac{2\Delta t}{t}\right) \times 100$
 $E_I = \left(\frac{0.1}{64} + \frac{2 \times 0.1}{128}\right) \times 100 = 0.3125\%$
 $E_{II} = \left(\frac{0.1}{64} + \frac{2 \times 0.1}{64}\right) \times 100 = 0.46875\%$
 $E_{III} = \left(\frac{0.1}{20} + \frac{2 \times 0.1}{36}\right) \times 100 = 1.055\%$

Hence, E_I is minimum.

53 **(d)**

 $Watt = Joule / second = Ampere \times volt = Ampere^{2}$

Electric dipole moment

$$p = q(2l) = it(2l)$$

The dimensions of electric dipole moment is

$$[p] = [i][t][l]$$
$$\vdots [I][T][L]$$
$$\vdots [LTI]$$

56 **(b)**

Planck's constant $(h) = J - s = [ML^2T^{-2}][T] = [ML^2T^{-1}]$

Linear momentum $(p) = kg - ms^{-1}$

$$[L][T]^{-1} = [MLT^{-1}]$$

58

р

$$n_{2} = n_{1} \left(\frac{M_{1}}{M_{2}}\right)^{1} \left(\frac{L_{1}}{L_{2}}\right)^{1} \left(\frac{T}{T_{2}}\right)^{-2}$$

$$i \, 100 \left(\frac{gm}{kg}\right)^{1} \left(\frac{cm}{m}\right)^{1} \left(\frac{sec}{min}\right)^{-2}$$

$$i \, 100 \left(\frac{gm}{10^{3}gm}\right)^{1} \left(\frac{cm}{10^{2}cm}\right)^{1} \left(\frac{sec}{60 \, sec}\right)^{-2}$$

$$n_{2} = \frac{3600}{10^{3}} = 3.6$$

(a)

$$\frac{\Delta p}{p} = \frac{\Delta m}{m} + \frac{\Delta V}{V}$$

$$\frac{2}{5} \frac{0.05}{5} \times 100 + \frac{0.05}{1} \times 100$$

$$\frac{2}{5} 6$$

$$\frac{\Delta p}{0.05} = 6\%$$

59 **(b)**
$$v = \frac{1}{2l} \sqrt{\frac{T}{m}} \Rightarrow \frac{1}{v} = T = 2l \sqrt{\frac{m}{T}}$$
 has the dimensions of time.

60 **(d)**

Relative density

$$i \frac{Density of substance}{Density of water} = [M^0 L^0 T^0]$$

61 **(b)**

According to homogeneity principle LHS=RHS Or $F = 6 \pi \eta^a r^b v^c$ Or $[MLT^{-2}] = [ML^{-1}T^{-1}]^a [L]^b [LT^{-1}]^c$ Or $[M^1L^1T^{-2}] = [M^0L^{-a+b+c}T^{-a-c}]$ $\therefore a = 1, -a+b+c = 1$ and -a-c = -2After solving, we get a = 1, b = 1, c = 1

62 **(b)**

Both $\frac{1}{2}LI^2$ and $\frac{1}{2}CV^2$ represent energy.

63 **(a)**

Torque \dot{c} force × distance $\dot{c} [M L^2 T^{-2}]$

64 **(a)**

Let $m = K F^a L^b T^c$ Substituting the dimension of $[F] = [ML T^{-2}], [C] = [L]$ and [T] = [T]And comparing both sides, we get $m = F L^{-1} T^2$

65 **(c)**

Dimensional formula of $ohm = [ML^2T^{-3}A^{-2}]$ and that of $\frac{h}{e^2} = \frac{[ML^2T^{-1}]}{A^2T^2} = [ML^2T^{-3}A^{-2}]$

66 **(a)**

$$F = \frac{\mu_0}{4\pi} \frac{2I_1 I_2 I}{r} \Rightarrow \mu_0 = [F][A]^{-2} = [MLT^{-2}A^2]$$

67 (a)

$$T = \frac{32 \times 10^{-5}}{(10)^{-2}}$$

$$32 \times 10^{-3} N m^{-1} = 0.032 N m^{-1}.$$

68 **(b)**

Subtract 3.87 from 4.23 and then divide by 2.

69 **(a)**

70 (a)

 $\frac{L}{R}$ is a time constant of *L*-*R*circuit so *Henry/ohm* can be expressed as *second*

Heat $Q = \frac{KA(\theta_1 - \theta_2)t}{d}$ or $K = \frac{Qd}{A(\theta_1 - \theta_2)t}$ $[k] = \frac{[ML^2T^{-2}][L]}{[L]^2[K][T]} = [MLK^{-1}T^{-3}]$

72 **(b)** $H = I^2 Rt$ $\therefore \frac{\Delta H}{H} \times 100 = \left(\frac{2\Delta I}{I} + \frac{\Delta R}{R} + \frac{\Delta t}{t}\right) \times 100$

$$\frac{1}{6}(2 \times 3 + 4 + 6)\% = 16\%$$

73 **(d)**

[capacitance X]=[
$$M^{-1}L^{-2}T^{2}Q^{2}$$
]
[Magnetic induction Z] = [$MT^{-1}Q^{-1}$]
[Z^{2}]=[$M^{2}T^{-2}Q^{-2}$]
Given, X = 3 Y Z² or Y = $\frac{X}{3Z^{2}}$ or [Y]= $\frac{[X]}{[Z]^{2}}$
∴[Y] = $\frac{[M^{-1}L^{-2}T^{2}Q^{2}]}{[M^{2}T^{-2}Q^{-2}]}$ =[$M^{-3}L^{-2}T^{4}Q^{4}$]

74 **(a)**

Because in S.I. system there are seven fundamental quantities

75 **(b)**

mv=kg <mark>i</mark>

76 **(c)**

Resistance,
$$R = \frac{V}{i} = \frac{W}{qi}$$

$$\dot{c} \frac{\left[ML^2 T^{-2}\right]}{\left[A^2 T\right]}$$

$$R = \left[ML^2 T^{-3} A^{-2}\right]$$

$$\left[\frac{h}{e^2}\right] = \frac{\left[ML^2 T^{-1}\right]}{\left[AT\right]^2}$$

$$\dot{c} \left[ML^2 T^{-3} A^{-2}\right]$$

78 **(a)**

In given equation, $\frac{az}{k\theta}$ should be dimensionless

$$\alpha = \frac{k\theta}{z}$$

$$\Rightarrow [\alpha] = \frac{\left[ML^2T^{-2}K^{-1} \times K\right]}{\left[L\right]} = \left[MLT^{-2}\right]$$

And
$$p = \frac{\alpha}{\beta}$$

$$\Rightarrow [\beta] = \left[\frac{\alpha}{p}\right] = \frac{[MLT^{-2}]}{[ML^{-1}T^{-2}]} = [M^0L^2T^0]$$

79 **(b)**

$$F = \frac{Gm_1m_2}{d^2} \Rightarrow G = \frac{Fd^2}{m_1m_2}$$

$$\therefore [G] = \frac{[MLT^{-2}][L^2]}{[M^2]} = [Mii - 1L^3T^{-2}]i$$

80 (c)

Do not think in terms of I and ω . Remember; kinetic energy is fundamentally 'work'

 $W = \& \text{Force} \times \text{distance}$ $\& [ML T^{-2}] \times [L]$ $\& [M L^2 T^{-2}]$

81 **(b)**

Least count of screw gauge $i \frac{1}{100} mm = 0.01 mm$

Diameter \dot{c} Divisions on circular scale × least count + \dot{c}

$$\frac{1}{52} \times \frac{1}{100} + 0 = 0.52 \, mm$$

Diameter ¿0.052 cm

82 **(d)**

Capacitances
$$C = \frac{Q}{V} = \frac{QQ}{W} = \frac{Q^2}{W} = \frac{I^2 t^2}{W}$$
,
 $[C] = \frac{[I^2 T^2]}{[M L^2 T^{-2}]} = [M^{-1} L^{-2} T^4 I^2]$

83 **(d)**

$$E = \frac{-dV}{dx}$$

$$B] = \frac{[F]}{[I][L]} = \frac{[MLT^{-2}]}{[CT^{-1}][L]} = [MT^{-1}C^{-1}]$$

85 **(a)**

(d)

86

Conductivity
$$\left(\frac{1}{\rho}\right) = \frac{1}{aR} = \frac{[L]}{[L^2][ML^2T^{-3}A^{-2}]}$$

 $\dot{c}[M^{-1}L^{-3}T^3A^2]$

Dimensional formula of angular momentum $(L) = [M L^2 T^{-1}]$

Torque
$$(\tau) = [M L^2 T^{-2}]$$

Coefficient of thermal conductivity

$$(\mathbf{K}) = [\mathbf{M}\mathbf{L}\,\mathbf{T}^{-3}\,\mathbf{K}^{-1}]$$

Gravitational constant $(G) = [M^{-1}L^3T^{-2}]$

Thus, gravitational constant has negative dimension of mass.

87 **(b)**

Impulse =Force × Time = $[MLT^{-2}][T] = [MLT^{-1}]$

88 **(c)**

Momentum $[MLT^{-1}]$, Plank's constant $[ML^{2}T^{-1}]$

90 **(b)**

Surface tension,
$$T = \frac{F}{I}$$

$$\therefore [T] = \frac{[F]}{[l]}$$
$$i \frac{[MLT^{-2}]}{[L]} = [ML^0T^{-2}] = [MT^{-2}]$$

91 **(a)**

Each of three terms in the given equation has the dimensional formula of force.

92 (c)

The right hand side of the given relation is basically $\frac{k}{metre}$. But, since the left hand side is joule, therefore k should be J m.

93 (a)

Force,
$$F = kv$$
, $[k] = \frac{[F]}{[v]} = \frac{[MlT^{-2}]}{[LT^{-1}]} = [MT^{-1}].$

So, unit is $kg s^{-1}$

94 **(c)**

The magnitude of induced *emf* is $|\varepsilon| = L \frac{dI}{dt} \downarrow L = \frac{|\varepsilon| dt}{dI}$ $L = \frac{volt \times second}{ampere} = ohmsecond$

Here,
$$[f] = \frac{[S]}{[t^3]} = [M^0 L T^{-3}].$$

96 (c) Angular acceleration = $\frac{Angular \ velocity}{Time} = \frac{rad}{sec^2}$ 97 (d) $[C] = [M^{-1}L^{-2}T^{4}A^{2}], [R] = [ML^{2}T^{-3}A^{-2}]$ $[L] = [ML^2 T^{-2} A^{-2}] \land [I] = [M^0 L^0 T^0 A]$ $[CR] = [M^{-1}L^{-2}T^{4}A^{2}][ML^{2}T^{-3}A^{-2}]$ 1. $i M^0 L^0 T A^0$ $\frac{[L]}{[R]} = \frac{[ML^2T^{-2}A^{-2}]}{[ML^2T^{-3}A^{-2}]} = [M^0L^0TA^0]$ 2. $(\sqrt{LC}) = ([M L^2 T^{-2} A^{-2}] \times [M^{-1} L^{-2} A^2])^{1/2}$ 3. $\frac{\partial}{\partial t} M^0 L^0 T A^0$ $[LI^{2}] = [ML^{2}T^{-2}A^{-2}][M^{0}L^{0}T^{0}A^{1}]^{2}$ 4. $\mathbf{\dot{c}}\left[ML^{2}T^{-2}A^{0}\right]$

98 **(d)**

We know
$$[F] = [MLT^{-2}]$$

 $T^{2} = \frac{ML}{F} = \frac{1 kg \times 1 m}{1 kg - wt} = \frac{1 kg \times 1 m}{9.8 N}$
 $T = \frac{1}{\sqrt{9.8}} \sec$

99 (a)

According to problem muscle × *speed* = *power*

$$\therefore muscle = \frac{power}{speed} = \frac{ML^2 T^{-3}}{L T^{-1}} = ML T^{-2}$$

100 (c)

$$PV = nRT \Rightarrow R = \frac{PV}{nT} = \frac{joule}{mole \times kelvin} = J K^{-1} mol^{-1}$$

102 **(a)**

The formula for fine structure constant is

$$\dot{c} \frac{e^2}{4\pi\varepsilon_0 \left(\frac{h}{2\pi}\right)c}$$

104 **(d)**

$$[\eta] = [M L^{-1} T^{-2}] \text{ or } [T] = \left[\frac{M}{L \eta}\right]^{1/2}$$

Time period $\& 2\pi \sqrt{\frac{M}{L \eta}}$

105 **(c)**

When quantities are subtracted, their maximum absolute errors are added up.

106 **(b)**

Frequency $f = c m^{x} k^{y}$, k = Force / Length

$$[M^{0}L^{0}T^{-1}] = [M]^{x}[ML^{0}T^{-2}]$$
$$\dot{c}[M]^{x+y}[L]^{0}[T]^{-2y}$$

Comparing the powers on M, L and T

$$-2y = -1$$

$$\Rightarrow y = \frac{1}{2}$$

And $x + y = 0$

$$\therefore x = -y = \frac{-1}{2}$$

Let
$$L = [h^a c^b G^c]$$

 $\therefore [L'] = [M L^2 T^{-1}]^a [L T^{-1}]^b [M^{-1} L^3 T^{-2}]^c$
 $\Rightarrow a = \frac{1}{2}, b = \frac{-3}{2}, c = \frac{1}{2}$
Hence, $L = [h^{1/2} c^{-3/2} G^{1/2}]$

109 (d) Strain is dimensionless

111 (d)
$$NSm^{-2} = Nm^{-2} \times S = i$$
 Pascal-second

112 (a)

$$E = \frac{1}{2} L i^{2} hence L = [M L^{2} T^{-2} A^{-2}]$$

113 **(c)**

Given,
$$\left(p + \frac{a}{V^2}\right)(V-b) = RT$$

According to principle of homogeneity

Dimension of $\frac{a}{V^2} = i$ dimension of p

Dimension of $a = \dot{c}$ dimension of $p \times$ dimension of V^2

$$L[ML^{-1}T^{-2}][L^3]^2 = [ML^5T^{-2}]$$

114 **(a)**

 $Energy(E) = F \times d \Rightarrow F = \frac{E}{d}$

So Erg/metre can be the unit of force

115 (d)

Kinetic energy,
$$E = \frac{1}{2} m v^2$$

$$\therefore \frac{\Delta E}{E} \times 100 = \frac{v^2 - v^2}{v^2} \times 100$$

$$\& [(1.5)^2 - 1] \times 100$$

$$\& 125\%$$

116 **(b)**

From the principle of homogenity $\left(\frac{x}{v}\right)$ has dimensions of *T*

117 **(c)**

Spring constant $i \frac{F}{l} = [ML^0T^{-2}].$ Surface energy $i \frac{Energy}{Area} = [ML^0T^{-2}]$

118 **(c)**

CR is known as time constant *CR*=[*T*]

119 (a)

Power = $\frac{Work\,done}{Time} = i$

120 (a)

$$n_{1}u_{1}=n_{2}u_{2}$$

$$n_{2}=\frac{n_{1}u_{1}}{u_{2}}$$

$$i\frac{1450\,mile/h}{m/s}=\frac{1450\,s/mile}{mh}$$

$$i\frac{1450\,s\times1.6\,km}{10^{-3}km\,60\times60\,s}=644.4$$
1450 mile/h=644.4m/s

121 (a)

1 Faraday = 96500 coulomb

122 **(c)**

Shear modulus

$$i \frac{Shearing stress}{Shearing strain} = \frac{F}{A\theta} = [M L^{-1} T^{-2}]$$

123 **(b)**

From the principle of dimensional homogeneity

$$[a] = \left[\frac{F}{t}\right] = [MLT^{-3}] \text{ and } [b] = \left[\frac{F}{t^2}\right] = [MLT^{-4}]$$

124 (d)

Volume elasticity =
$$\frac{Force / Area}{Volume strain}$$

Strain is dimensionless, so

$$i \frac{Force}{Area} = \frac{MLT^{-2}}{L^2} = [ML^{-1}T^{-2}]$$

125 **(b)**
$$[\varepsilon_0] = \frac{[A^2 T^2]}{[ML^3 T^{-2}]} = [M^{-1}L^{-3}T^4 A^2]$$

126 **(c)**

Least count of screw gauge $i \frac{0.5}{50}$

$$.0.01 mm = \Delta r$$

Diameter
$$r = 2.5 \, mm + 20 \times \frac{0.5}{50} = 2.70 \, mm$$

$$\frac{\Delta r}{r} = \frac{0.01}{2.70}$$

$$\operatorname{Or} \frac{\Delta r}{r} \times 100 = \frac{1}{2.7}$$

Now density
$$d = \frac{m}{V} = \frac{m}{\frac{4}{3}\pi \left(\frac{r}{2}\right)^3}$$

Here, r is the diameter.

$$\therefore \frac{\Delta d}{d} \times 100 = \left\{ \frac{\Delta m}{m} + 3\left(\frac{\Delta r}{r}\right) \right\} \times 100$$
$$\frac{\Delta m}{m} \times 100 + 3 \times \left(\frac{\Delta r}{r}\right) \times 100$$
$$\frac{1}{20} \times 100 + 3 \times \frac{1}{2.7}$$

127 **(a)**

By submitting the dimensions of each quantity we get $T = \left[ML^{-1}T^{-2}\right]^{a} \left[L^{-3}M\right]^{b} \left[MT^{-2}\right]^{c}$

$$[C] = [M^{-1}L^{-2}T^{4}A^{2}]$$

$$[V] = [ML^{2}T^{-3}A^{-1}]$$

$$\therefore [CV^{2}] = [M^{-1}L^{-2}T^{4}A^{2}][ML^{2}T^{-3}A^{-1}]^{2}$$

$$\dot{c}[ML^{2}T^{-2}]$$

129 **(c)**

Moment of inertia $I = m r^2$

$$\therefore [I] = [ML^2]$$

And $\tau = moment of force = r \times F$

$$\therefore [\tau] = [L] [MLT^{-2}] = [M L^2 T^{-2}]$$

130 **(c)**

By Newton's formula

 $\eta = \frac{F}{A(\Delta v_x / \Delta z)}$

 \therefore Dimensions of η

$$\frac{U}{L^2} \frac{[MLT^{-2}]}{[L^2][T^{-1}]} = [ML^{-1}T^{-1}]$$

131 **(a)**

Energy
$$U = \frac{1}{2}LI^2$$

$$\Rightarrow L = \frac{2U}{I^2}$$

$$\therefore [L] = \frac{[U]}{[I]^2} = \frac{[ML^2T^{-2}]}{[A]^2} = [ML^2T^{-2}A^{-2}]$$

132 **(a)**

 $n_{1}u_{1}=n_{2}u_{2}$ $n_{2}=\frac{1 \, shake}{1 \, ns}$ $\dot{c} \, \frac{10^{-8} s}{10^{-9} s}$

$$\therefore n_{2} = 10$$
133 (c)

$$R_{i} = \frac{R_{1}R_{2}}{(R_{1} + R_{2})}$$

$$\Rightarrow \frac{\Delta R_{p}}{R_{p}} = \frac{\Delta R_{1}}{R_{1}} + \frac{\Delta R_{2}}{R_{2}} + \frac{\Delta (R_{1} + R_{2})}{R_{1} + R_{2}}$$

$$\Rightarrow \frac{\Delta R_{p}}{R_{p}} = \frac{0.3}{6} + \frac{0.2}{10} + \frac{(0.3 + 0.2)}{10 + 6}$$

$$\therefore 0.05 + 0.02 + 0.03125 = 0.10125$$

$$\therefore \frac{\Delta R_{p}}{R_{p}} \times 100 = 10.125 \text{ or } 10.125\%$$

134 **(d)**

Joule-sec is the unit of angular momentum where as other units are of energy

135 (a)

Least count of both instrument

$$\Delta d = \Delta l = \frac{0.5}{100} mm = 5 \times 10^{-3} mm$$
$$Y = \frac{4 MLg}{\pi l d^2}$$
$$\left(\frac{\Delta Y}{Y}\right)_{max} = \frac{\Delta l}{l} + 2 \frac{\Delta d}{d}$$

Error due to l measurement

$$\frac{\Delta l}{l} = \frac{0.5/100 \, mm}{0.25 \, mm} = 2\%$$

Error due to *d* measurement $2\frac{\Delta d}{d} = \frac{2 \times \frac{0.5}{100}}{0.5 mm}$

$$\frac{0.5/100}{0.25} = 2\%$$

Hence due to the errors in the measurements of d and l are the same

137 **(a)**

1 Newton = 10^5 dyne and 1m=100 cm

From the expression
$$i \frac{Power}{Area} \left(\because \frac{Energy}{time} = power \right)$$

$$\frac{W}{m^2} = W m^{-2}$$

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$$
Or $[\mu_0] = \frac{[F]}{[I_1 I_2]} = \frac{[MLT^{-2}]}{[A^2]} = [MLT^{-2}A^{-2}].$
139 (a)

Time
$$\propto c^x G^y h^z \Rightarrow T = kc^x G^y h^z$$

Putting the dimensions in the above relation
 $\Rightarrow [M^0 L^0 T^1] = [LT^{-1}]^x [M^{-1}L^3 T^{-2}]^y [ML^2 T^{-1}]^z$
 $\Rightarrow [M^{i}i 0 L^0 T^{-1}] = [M^{-y+z} L^{x+3y+2z} T^{-x-2y-z}]i$
Comparing the powers of M , Land T
 $-y+z=0$...(i)
 $x+3y+2z=0$...(ii)
 $-x-2y-z=1$...(iii)
On solving equations (i) and (ii) and (iii)
 $x = \frac{-5}{2}, y = z = \frac{1}{2}$

Hence dimension of time are \dot{c}]

140 **(b)**

 $1 yard = 36 inch = 36 \times 2.54 cm = 0.9144 m$

141 **(a)**

Time $T = 2\pi \sqrt{LC}$.

142 **(c)**

The result should have two decimal places (same as 0.99)ie, 0.010×10^{-1}

143 **(c)**

According to the definition

144 **(d)**

Watt is a unit of power

145 **(a)**

Calorie is the unit of heat *i.e.*, energy So dimensions of energy = $M L^2 T^{-2}$

146 **(d)**

$$n_{2} = n_{1} \left[\frac{L_{1}}{L_{2}} \right]^{1} \left[\frac{T_{1}}{T_{2}} \right]^{-2} = 10 \left[\frac{m}{km} \right]^{1} \left[\frac{\sec}{hr} \right]^{-2}$$
$$n_{2} = 10 \left[\frac{m}{10^{3} m} \right]^{1} \left[\frac{\sec}{3600 \sec} \right]^{-2} = 129600$$

147 (a)

The number of significant figures in 23.023 = 5.

The number of significant figures in 0.0003 = 1

(Zeros after decimal and before a non-zero number are not significant.)

The number of significant figures in $2.1 \times 10^{-3} = 2$ (zero in powers of are not counted)

(All the zeros between two non-zero numbers are significant).

Here,
$$[M^{0}L^{0}T^{0}] = [ML^{-1}T^{-2}]^{a} [MT^{-3}]^{b} [LT^{-1}]^{c}$$

Or $[M^{0}L^{0}T^{0}] = i i$
Comparing powers of M , L and T , we get
 $a+b=0, -a+c=0, -2a-3b=0$
Solving $a=1, b=-1, c=1$

149 **(d)**

The given equation is

$$n = \frac{A + B}{\lambda^2}$$

Where $A \wedge B$ are constants.

By homogeneity principle the dimensions of all the terms on both sides should be same

$$ie, [B] = [A] = [n \lambda^{2}]$$
$$\therefore [B] = [M^{0}L^{0}T^{0}][L^{2}]$$
$$\vdots [M^{0}L^{2}T^{0}]$$

151 **(b)**

According to the definition

152 (d)

Acceleration =
$$\frac{Distance}{tim e^2} \Rightarrow A = LT^{-2} \Rightarrow L = AT^2$$

153 **(c)**

$$n \times 40 amu = 6.64 \times 10^{24}$$

$$n \times 40 \times 1.6 \times 10^{-27} = 6.64 \times 10^{24}$$

$$n = 10^{50}$$

154 **(a)**
$$\frac{Heat}{Mass} = \frac{[M L^2 T^{-2}]}{[M]} = [M^0 L^2 T^{-2}]$$

155 (d)
Velocity v=Bt²
∴B=
$$\frac{v}{t^2} = \frac{[LT^{-1}]}{[T^2]} = [LT^{-3}]$$

156 **(c)**

We know,
$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$Or \sqrt{LC} = \frac{1}{2\pi f} = time$$

Thus, \sqrt{LC} has the dimension of time.

157 (c) Unit of energy will be $kg - m^2/sec^2$

Coefficient of viscosity
$$i \frac{F \times r}{A \times v} = \frac{[MLT^{-2}] \times [L]}{[L^2] \times [LT^{-1}]}$$

 $i [ML^{-1}T^{-1}]$

159 (d)

$$[M^{0}L^{0}T^{-1}] = [M^{x}][M^{y}T^{2y}] = [M^{x+y}T^{-2y}]$$

Equating powers of M and T.
 $x+y=0, -2y=-1$
Or $y=\frac{1}{2}, x+\frac{1}{2}=0$ or $x=\frac{-1}{2}$

160 (a)

 $[E] = [M L^2 T^{-2}], [m] = [M], [l] = [M L^2 T^{-1}]$ and $[G] = [M^{-1}L^3T^{-2}]$ Substituting the dimensions of above quantities in the given formula:

$$\frac{E l^2}{m^5 G^2} \frac{\left|M L^2 T^{-2}\right| \left|M L^2 T^{-1}\right|^2}{\left[M^5\right] \left[M^{-1} L^3 T^{-2}\right]^2} = \frac{M^3 L^6 T^{-4}}{M^3 L^6 T^{-4}} = \left[M^0 L^0\right]^1$$

161 (a)

Let $T \propto S^x r^y p^z$ By substituting the dimensions of [T] = [T] $[S] = [MT^{-2}], [r] = [L], [\rho] = [ML^{-3}]$ and by comparing the power of both the sides x = -1/2, y = 3/2, z = 1/2so $T \propto \sqrt{\rho r^3/S} \Rightarrow T = k \sqrt{\frac{\rho r^3}{S}}$

162 (c)

Energy

$$E = \frac{1}{2}LI^{2} \Rightarrow [L] = \frac{[E]}{[I]^{2}} = \frac{[ML^{2}T^{-2}]}{[A^{2}]} = [ML^{2}T^{-2}A^{-1}]$$

163 (a)

Quantities having different dimensions can only be divided or multiplied but they cannot be added or subtracted

164 (d)

Size of universe is about $10^{26} m = 10^{6} \times (9.46 \times 10^{15})$ 176 m $i 10^{10}$ ly

165 (a)

$$\frac{1}{\sqrt{\varepsilon_0 \mu_0}} = C = i_{\text{velocity of light}}$$

166 (d)

When two quantities are multiplied, their maximum

relative errors are added up.

167 (c) Torque = $[M L^2 T^{-2}]$, Angular momentum = $\left[ML^2T^{-1}\right]$ So mass and length have the same dimensions

168 (a)

$$Least \ count = \frac{Value \ of \ main \ scale \ division}{No \ . \ of \ divisions \ on \ vernier \ scale}$$

$$\dot{c} \frac{1}{30} MSD = \frac{1}{30} \times \frac{1^{\circ}}{2} = \frac{1^{\circ}}{60} = 1 min$$

170 (a) $\frac{1}{2}Li^2 = i$ Stored energy in an inductor $i[ML^2T^{-2}]$

71 (d)

$$\frac{1}{2}CV^2$$
 = Stored energy in a capacitor = $[ML^2T^{-2}]$

172 (a) Bxt is unitless. \therefore Unit of B is $m^{-1}s^{-1}$

173 **(d)**
$$[\varepsilon_0 L] = [C] \therefore X = \frac{\varepsilon_0 LV}{t} = \frac{C \times V}{t} = \frac{Q}{t} = current$$

175 (d)

Resistance,
$$R = \frac{Potential \, difference}{Current} = \frac{V}{i} = \frac{W}{q^i}$$

: Potential difference is equal i work doen per uni

So, dimensions of R

$$i \frac{[M L^2 T^{-2}]}{[IT][I]} = [M L^2 T^{-3} I^{-2}]$$

5 (d)

$$n_2 = n_1 \left[\frac{m_1}{m_2} \right] \left[\frac{L_1}{L_2} \right]^{-3}$$

 $i \cdot 4 \left[\frac{1 gm}{100 gm} \right] \left[\frac{cm}{10 cm} \right]^{-3} = 4 \times \frac{1}{100} \times 10^3$
 $i \cdot 40$ units

178 (d) $1 \, newton = 10^{-5} \, dyne$ 180 (c)

$$X] = \left[\frac{M^{-1}L^{3}T^{-2} \times ML^{2}T^{-1}}{L^{3}T^{-3}}\right]^{-1/2} = [L]$$

181 (a)

Farad is the unit of capacitance and

$$C = \frac{Q}{V} = \left[\frac{Q}{\left[M L^2 T^{-2} Q^{-1}\right]}\right] = M^{-1} L^{-2} T^2 Q^2$$

182 **(d)**

[n] = i Number of particles crossing a unit area inunit time= $[L^{-2}T^{-1}]$ $[n_2] = [n_1] = i \text{ number of particles per unit volume} =$ $[L^{-3}]$ $[x_2] = [x_1] = \text{positions}$ $\therefore D = \frac{[n][x_2 - x_1]}{[n_2 - n_1]} = \frac{[L^{-2}T^{-1}] \times [L]}{[L^{-3}]} = [L^2T^{-1}]$

184 **(b)**

One femtometre is equivalent to $10^{-15} m$

ie, $1 fm = 10^{-15} m$

185 **(a)**

Astronomical unit of distance

187 **(d)**

20 VSD = 16 MSD 1 VSD = 0.8 MSDMain scale $0 \underbrace{0.8mm \ 1 \ nm}_{10}$

Least count i MSD - VSDi 1 mm - 0.8 mm = 0.2 mm

188 **(b)**

We have to retain three significant figures in the result.

189 **(b)**

Young's modulus
$$Y = \frac{FL}{Al} = \frac{4 FL}{\pi d^2 l}$$

 $i \frac{(4)(1.0 \times 9.8)(2)}{\pi (0.4 \times 10^{-3})^2 (0.8 \times 10^{-3})}$
 $i 2.0 \times 10^{11} Nm^{-2}$

Further,

$$\Delta Y = \left\{ 2 \left(\frac{\Delta d}{d} \right) + \left(\frac{\Delta l}{l} \right) \right\} Y$$

 $\frac{\Delta Y}{Y} = 2\left(\frac{\Delta d}{d}\right) + \left(\frac{\Delta l}{l}\right)$

$$i \left\{ 2 \times \frac{0.01}{0.4} + \frac{0.05}{0.8} \right\} \times 2.0 \times 10^{11}$$

 $i 0.2 \times 10^{11} Nm^{-2}$

$$Or(Y + \Delta Y) = (2 + 0.2) \times 10^{11} Nm^{-2}$$

190 **(b)**

Let
$$[G] \propto c^x g^y p^z$$

By substituting the following dimensions:
 $[G] = [M^{-1}L^3T^{-2}], [c] = [i^{-1}], [g] = [i^{-2}]$
 $[p] = [ML^{-1}T^{-2}]$
and by comparing the powers of both sides
we can get $x=0, y=2, z=-1$
 $\therefore [G] \propto c^0 g^2 p^{-1}$

191 **(d)**

Density

$$\rho = \frac{m}{\pi r^2 L}$$

$$\therefore \frac{\Delta \rho}{\rho} \times 100 = \left(\frac{\Delta m}{m} + 2\frac{\Delta r}{r} + \frac{\Delta L}{L}\right) \times 100$$

After substituting the values we get the maximum percentage error in density =4%

192 **(d)**

 $Dipole momen = (charge) \times (distance)$

 $Electric flux = (electric field) \times (area)$

193 **(d)**

Percentage error in $x=1\%+2\times3\%+3\times2\%=13\%$. The sign± has been used because the words `maximum percentage error' have not been used. Note percentage error is $\pm \frac{\Delta A}{A} \times 100$ Maximum percentage error is $\frac{\Delta A}{A} \times 100$

194 **(c)**

Magnetic field
$$B = \frac{F}{qv \sin \theta}$$

Hence, $1T = \frac{1N}{1C \times 1ms^{-1}}$
 $i \frac{1N}{1As \times 1ms^{-1}} (\because 1C = 1 \text{ ampere } \times 1 \text{ second})$
 $i 1NA^{-1}m^{-1}$
195 (a)
 $V = (8 + 0.5)$
 $I = (2 + 0.2)$
 $R = \frac{8}{2} = 4$
 $\frac{\Delta R}{R} \% = \left(\frac{\Delta V}{V} + \frac{\Delta I}{I}\right)$
 $i \left(\frac{0.5}{8} + \frac{0.2}{2}\right) \times 100 = 16.25\%$
 $\therefore R = (4 \pm 16.25\%)$

197 **(b)**

Time constant $i \frac{L}{R}$ $\therefore \left[\frac{L}{R}\right] = [T]$ $\therefore \left[\frac{R}{L}\right] = [T^{-1}]$

198 **(b)**

$$F = -\eta A \frac{\Delta v}{\Delta z} \Rightarrow [\eta] = [M L^{-1} T^{-1}]$$

As $F = [ML T^{-2}], A = [L^2], \frac{\Delta v}{\Delta z} = [T^{-1}]$

 \therefore Dimensions of

$$\eta = \frac{F}{A} \frac{\Delta z}{\Delta v} = \frac{MLT^{-2}}{L^2} \cdot \frac{1}{T^{-1}} = [ML^{-1}T^{-1}]$$

199 **(d)**

Surface Tension =
$$\frac{Force}{Length}$$

 $i \frac{[ML T^{-2}]}{[L]} = [M L^0 T^{-2}]$
Spring constant = $\frac{Force}{Length}$
 $i \frac{[ML T^{-2}]}{[L]} = [M L^0 T^{-2}]$

200 **(a)** 1 C.G.S. unit of density = 1000 M.K.S. unit of

density

$$\Rightarrow 0.5 gm/cc = 500 kg/m^3$$

201 **(c)**

From
$$h = ut + \frac{1}{2}gt^2$$

 $h = 0 + \frac{1}{2} \times 9.8 \times (2)^2 = 19.6 m$
 $\frac{\Delta h}{h} = \pm 2 \frac{\Delta t}{t} [\because a = g = constant]$
 $i \pm 2 \left(\frac{0.1}{2}\right) = \pm \frac{1}{10}$
 $\therefore \Delta h = \pm \frac{h}{10} = \pm \frac{19.6}{10} = \pm 1.96 m$

202 **(a)**

Given,
$$W = \frac{1}{2}kx^2$$

Writing the dimensions on both sides

$$[ML^2T^{-2}] = k[M^0L^2T^0]$$

 \therefore Dimensions of $k = [MT^{-2}] = [ML^0T^{-2}]$

203 **(a)**

Given, m = 3.513 kg and $v = 5.00 ms^{-1}$

So, momentum, p = mv = 17.565

As the number of significant digits in m is 4 and v is 3, so, p must have 3 significant digits

$$p = 17.6 \, kgms^{-1}$$

204 **(d)**

Modulas of rigidity =
$$\frac{Shear stress}{Shear strain} = [ML^{-1}T^{-2}]$$

205 **(c)**

The unit of physical quantity obtained by the line integral of electric field is JC^{-1} .

206 **(b)**

$$F = \frac{Gm_1m_2}{d^2}$$
$$\Rightarrow G = \frac{Fd^2}{m_1m_2}$$

$$[G] = \frac{[MLT^{-2}][L^{2}]}{[M^{2}]} = [M^{-1}L^{3}T^{2}]$$

Moment of inertia $I = m K^2 = [ML^2]$

207 (c)
Stress =
$$\frac{Force}{Area} = \frac{N}{m^2}$$

208 (a)

$$n_1 u_1 = n_2 u_2$$

 $n_2 = \frac{n_1 u_1}{u_2}$
 $\delta \frac{170.474 L}{M^3}$
 $\delta \frac{170.474 \times 10^{-3} M^3}{M^3}$
 $\delta 0.170474$

209 (c)

Intensity $(I) = \frac{Energy}{Area \times time}$

210 (d)

By the principle of dimensions homogeneity

$$F = a t^{-1}$$
$$[MLT^{-2}] = a[T^{-1}]$$
$$a = [MLT^{-1}]$$

Similarly for $b = [MLT^{-4}]$

211 **(a)**

Let radius of gyration $[k] \propto [h]^{x} [c]^{y} [G]^{z}$ By substituting the dimension of [k]=[L] $[h]=[M L^{2}T^{-1}]$ $[c]=[L T^{-1}]$ $[G]=[M^{-1}L^{3}T^{-2}]$ And by comparing the power of both sides We can get x=1/2, y=-3/2, z=1/2Therefore dimension of radius of gyration is $[h]^{1/2} [c]^{-3/2} [G]^{1/2}$

212 **(a)**

Here, Mass of a body, $M = 5.00 \pm 0.05 \, kg$ Volume of a body, $V = 1.00 \pm 0.05 \, m^3$ Density, $\rho = \frac{M}{V}$

Relative error in density is $\frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + \frac{\Delta V}{V}$

Percentage error in density is A = A M = A M

$$\frac{\Delta \rho}{\rho} \times 100 = \frac{\Delta M}{M} \times 100 + \frac{\Delta V}{V} \times 100$$

$$i\left(\frac{0.05}{5} \times 100\right) + \left(\frac{0.05}{1} \times 100\right) = 1\% + 5\% = 6\%$$

213 (c) Stefan's law is $E = \sigma(T^4) \Rightarrow \sigma - \frac{E}{T^4}$ where, $E = \frac{Energy}{Area \times Time} = \frac{Watt}{m^2}$ $\sigma = \frac{Watt - m^{-2}}{K^4} = Watt - m^{-2}K^{-4}$ 214 (a) $y = a \sin(\omega t + kx)$. Here, ωt should be dimensionless $\therefore [\omega] = \left[\frac{1}{t}\right]$ $[\omega] = [M^0 L^0 T^{-1}]$

215 (c)

Percentage error in
$$T = \frac{0.01}{1.26} \times 100 + \frac{0.01}{9.80} \times 100$$

 $\frac{+0.01}{1.45} \times 100$
 $60.8 + 0.1 + 0.7 = 1.6$

216 (a)

$$\frac{R}{L} = \frac{V/I}{V \times T/I} = \frac{1}{T} = Frequency$$

$$Pressure = \frac{Force}{Area} = \frac{Energy}{Volume} = M L^{-1} T^{-2}$$

219 **(b)**

The dimension of frequency $(f) = [T^{-1}]$

The dimension of
$$\left(\frac{R}{L}\right) = \frac{\left[ML^2 T^{-3} A^{-2}\right]}{\left[ML^2 T^2 A^{-2}\right]}$$

 $i \left[\frac{1}{T}\right]$
 $i \left[T^{-1}\right]$
220 (a)
Area of rectangle

A = lb

<mark>¿</mark>10.5 × 2.1

$\frac{1}{2}$ 22.05 c m²

Minimum possible measurement of scale =0.1 cm

So, area measured by scale = $22.0 c m^2$

221 (d)

Given equation, $y = a \sin(bt - cx)$ Comparing the given equation with general wave equation

$$y = a \sin\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda}\right),$$

We get $b = \frac{2\pi}{T}, c = \frac{2\pi}{\lambda}$
Dimension of $\frac{b}{c}$
 $\partial \frac{2\pi/T}{2\pi/\lambda} = [LT^{-1}]$, and other three quantity is dimensionless

223 **(b)**

Units of *a* and PV^2 are same and equal to $dyne \times c m^4$

224 (d)

 $f = \frac{1}{2\pi\sqrt{LC}}$

 $\therefore \dot{c}$ does not represent the dimensions of frequency

225 **(c)**

$$P_1 = [M L^2 T^{-1}]$$

$$D_2 = [(2M)(2L)^2 (2T)^{-1}]$$

$$P_2 = 4[M L^2 T^{-1}] = 4P_1$$

226 **(a)**

Time period of a simple pendulum

$$T = 2\pi \sqrt{\frac{L}{8}}$$

$$\frac{i}{T}g = \frac{4\pi^2 L}{T^2} \dots (i)$$

Differentiating Eq. (i), we have

$$\frac{\Delta g}{g} = \frac{\Delta L}{L} + \frac{2\Delta T}{T} \dots \dots \dots (ii)$$

Given, L=100 cm, T=2s,

$$\Delta T = \frac{0.1}{100} = 0.001 \, \text{s}$$

 $\Delta L = 1 mm = 0.1 cm$

Substituting the in Eq. (ii), we have

$$\left. \left| \frac{\Delta g}{g} \right|_{max} = \frac{\Delta L}{L} + \frac{2\Delta T}{T}$$
$$i \frac{0.1}{100} + 2 \times \frac{0.001}{2}$$

Thus, maximum percentage eror

$$\left|\frac{\Delta g}{g}\right|_{max} \times 100 = \left(\frac{0.1}{100} \times 100\right) + \left(\frac{2 \times 0.001}{2} \times 100\right)$$

.0.1% + 0.1% = 0.2%

227 **(d)**

Because temperature is a fundamental quantity

228 **(a)**

By submitting dimension of each quantity in R.H.S. of option (a) we get

This option gives the dimension of velocity

229 **(b)**

i

Percentage error in mass $\dot{c} \frac{0.01}{23.42} \times 100 = 0.04$ Percentage error in volume $\dot{c} \frac{0.1}{4.9} \times 100 = 2.04$ Adding up the percentage errors, we get nearly 2%.

230 **(d)**

Percentage error in A $\dot{c}\left(2 \times 1 + 3 \times 3 + 1 \times 2 + \frac{1}{2} \times 2\right)\% = 14\%$

231 **(d)**

According to Wien's law the product of wavelength corresponding to maximum intensity of radiation and temperature of body (in Kelvin) is constant *ie*, $\lambda_m T = b = constant$, where *b* is Wien's constant and has value $2.89 \times 10^{-3} m - K$.

232 **(a)** *Stress*

$$Y = \frac{Stress}{Strain} = \frac{Force / Area}{Dimensionless} \Rightarrow Y \equiv Pressure$$

233 **(c)**

Coefficient o friction
$$i \frac{Applied force}{Normal reaction_{i}}$$

 $i \frac{[ML T^{-2}]}{[ML T^{-2}]} = i$ no dimensions
Unit $i \frac{N}{N} = i$ no unit

234 (c)

 $[kx] = \dot{\iota}$ Dimension of $\omega t = \dot{\iota}$ (dimensionless) Hence $K = \frac{1}{X} = \frac{1}{L} = [L^{-1}] \therefore [K] = [L^{-1}]$

235 (a)

Magnetic field
$$\frac{i}{Charge \times velocity}$$

$$\dot{\boldsymbol{\iota}} \frac{\left[\boldsymbol{M}\boldsymbol{L}\boldsymbol{T}^{-2}\right]}{\left[\boldsymbol{A}\boldsymbol{T}\right]\left[\boldsymbol{\dot{\iota}}^{-1}\right]} = \left[\boldsymbol{M}\boldsymbol{A}^{-1}\boldsymbol{T}^{-2}\right]$$

237 (c)

Percentage error in measurement of a side

$$\frac{0.01}{1.23} \times 100$$

Percentage error in measurement of area $\frac{1}{2} \times \frac{0.01}{\times 100}$

 $\frac{.}{.2} \times \frac{0.01}{1.23} \times 100$

238 (a) Charge *i* current × time

239 (c)

From the principle of dimensional homogenity $[v] = [at] \Rightarrow [a] = [LT^{-2}]$. Similarly [b] = [L] and [c] = [T]

240 (d)

Given,

$$U = \frac{A\sqrt{x}}{x+B} \dots (i)$$

Dimensions of $U = \dot{\iota}$ dimensions of potential energy

$$i \left[M L^2 T^{-2} \right]$$

From Eq. (i),

Dimensions of B = i dimensions of $x = [M^0 L T^0]$

 \therefore Dimensions of A

$$\frac{dimensions of U \times dimensions of (x+B)}{dimension of \sqrt{x}}$$

$$\dot{c} \frac{\left[M L^2 T^{-2}\right] \left[M^0 L T^0\right]}{\left[M^0 L^{1/2} T^0\right]}
 \dot{c} \left[M L^{5/2} T^{-2}\right]$$

Hence, dimensions of AB

$$\hat{c} \left[M L^{5/2} T^{-2} \right] \left[M^0 L T^0 \right]$$
$$\hat{c} \left[M L^{7/2} T^{-2} \right]$$

241 **(b)**

Given,
$$p = \frac{a - t^2}{bx}$$
 or $pbx = a - t^2$

By the law of homogeneity of dimensional equation.

Dimensions of
$$a = \dot{c}$$
 dimensions of $t^2 = [T^2]$

Dimensions of b = i dimensions of $\frac{t^2}{px} = [M^{-1}T^4]$

So, dimensions of $\frac{a}{b}is[MT^{-2}]$.

242 (d)

$$f = \frac{uv}{u+v}, \frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{(u+v)}{u+v}$$

244 **(b)**
$$L = \frac{\emptyset}{I} = \frac{Wb}{A} = Henry$$

246 **(b)**

$$r_{1} = 10^{-15} m, r_{2} = 10^{20} m$$

$$Log \ r = \frac{1}{2} [log \ 10^{-15} + log \ 10^{26}]$$

$$= \frac{1}{2} [-15 + 26] = 5.5 \approx 6 \Rightarrow r = 10^{6} m$$

247 **(d)**

The dimensions of x = i dimensions of $\frac{v_0}{A}$

าด

Therefore, out of the given options V_0 has dimensions equal to $[M^0 L T^{-1}]$ and A has dimensions equal to $[M^0 L^0 T^{-1}]$

So, that
$$\frac{[v_0]}{[A]} = \frac{[M^0 L T^{-1}]}{[M^0 L^0 T^{-1}]} = [L]$$

 $\mathbf{\dot{c}}$ dimension of x

248 (c) $1 nm = 10^{-9} m = 10^{-7} cm$ 249 (c)

Electric potential
$$V = IR$$
, $[R] = \left[\frac{V}{I}\right] = \left[\frac{Work \, done}{Charge \times I}\right]$
 $\therefore \frac{[ML^2T^{-2}]}{[A^2T]} = [ML^2T^{-3}A^{-2}]$

250 (d)

According to Planck's hypothesis

$$E = hv$$

Or $h = \frac{E}{v}$

Substituting the dimensions of energy E and frequency v, we get

$$[h] = \frac{\left[ML^2 T^{-2}\right]}{\left[T^{-1}\right]}$$
$$\therefore [h] = \left[M L^2 T^{-1}\right]$$

252 **(a)**

The dimension of $y = \frac{e^2}{4\pi \varepsilon_0 hc}$

Putting the dimensions of

$$[e] = [Q] = [AT]$$

$$[\varepsilon_0] = [M^{-1}L^{-3}T^4A^2], h = [ML^2T^{-1}], c = [LT^{-1}]$$

$$y = \frac{[A^2T^2]}{[M^{-1}L^{-3}T^4A^2][ML^2T^{-1}][LT^{-1}]}$$

$$y = [M^0L^0T^0]$$

253 **(b)**

Volume
$$V = l \times b \times t$$

 $k \cdot 12 \times 6 \times 2.45 = 176.4 c m^3$
 $V = 1.764 \times 10^2 c m^3$

Since, the minimum number of significant figure is one in breadth, hence volume will also contain only one significant figure. Hence, $V = 2 \times 10^2 c m^3$

254 (d)

Percentage error in

$$A = \left(2\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + \frac{\Delta c}{c} + \frac{1}{2}\frac{\Delta d}{d}\right) \times 100\%$$

$$\frac{1}{2} \times 1 + 3 \times 3 + 2 + \frac{1}{2} \times 2$$

¿2+9+2+1=14%

256 **(a)**

The unit of
$$\frac{1}{2} \varepsilon E^2 = \frac{C^2}{N m^2} \left(\frac{N}{C}\right)^2$$

 $i \frac{C^2}{N m^2} \frac{N^2}{C^2} = \frac{N}{m^2} = \frac{Nm}{m^3}$
 $i \frac{J}{m^3} = i$ energy density

257 (d)

$$v = at + bt^{2}$$

 $[v] = [bt^{2}] \text{ or } LT^{-1} = bT^{2} \Rightarrow [b] = [LT^{-3}]$

258 **(b)**

$$6 \times 10^{-5} = 60 \times 10^{-6} = 60$$
 microns

259 **(b)**

$$Surface tension = \frac{Force}{Length} = newton / metre$$

$$C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \Rightarrow \frac{1}{\mu_0 \varepsilon_0} = c^2 = [L^2 T^{-2}]$$

261 **(b)**

```
Force=mass × acceleration

Or F=ma

\therefore [F]=[m][a]

\delta[M][LT^{2}]

\delta[MLT^{-2}]

262 (d)

[MLT^{-2}] = [MLT^{-2}]
```

$$[ML^{2}T^{2}] = \frac{[L^{2}]}{[L][L^{2}]}$$

$$\delta \frac{Force}{distance \times area} = \frac{pressure}{distance}$$

$$\delta pressure gradient.$$

263 **(c)**

Let $v^{x} = k g^{y} \lambda^{z} \rho^{\delta}$. Now by submitting the dimensions of each quantities and equating the powers of *M*, *L* and *T* we get $\delta = 0 \land x = 2$, y = 1, z = 1

264 (a)

Time period $T \propto p^a \rho^b E^c$ Or, $T = k p^a \rho^b E^c$ k, is a dimensionless constant. According to homogeneity of dimensions, LHS=RHS $\therefore [T] = [M L^{-1} T^{-2}]^a [M L^{-3}]^b [M L^2 T^{-2}]^c$ $[T] = [M^{a+b+c}] [L^{-a-3b+2c}] [T^{-2a-2c}]$ Comparing the powers, we obtain a+b+c=0 -a-3b+2c=0 -2a-2c=1On solving, we get $a = \frac{-5}{6}, b = \frac{1}{2}, c = \frac{1}{3}$

265 **(b)**

Average value = $\frac{2.63 + 2.56 + 2.42 + 2.71 + 2.80}{5}$ $i \cdot 2.62 \, sec$ Now $|\Delta T_1| = 2.63 - 2.62 = 0.01$ $|\Delta T_2| = 2.62 - 2.56 = 0.06$ $|\Delta T_1| = 2.62 - 2.42 = 0.20$

$$|\Delta T_{4}| = 2.52 - 2.42 = 0.20$$

$$|\Delta T_{4}| = 2.71 - 2.62 = 0.09$$

$$|\Delta T_{5}| = 2.80 - 2.62 = 0.18$$
Mean absolute error
$$\Delta T = \frac{|\Delta T_{1}| + |\Delta T_{2}| + |\Delta T_{3}| + |\Delta T_{4}| + |\Delta T_{5}|}{5}$$

$$\dot{c} \frac{0.54}{5} = 0.108 = 0.11 \, sec$$

266 **(c)**

$$Y = \frac{4 MgL}{\pi D^2 I} \text{ so maximum permissible error in } Y$$

$$\frac{\Delta Y}{Y} \times 100 = \left(\frac{\Delta M}{M} + \frac{\Delta g}{g} + \frac{\Delta L}{L} + \frac{2\Delta D}{D} + \frac{\Delta l}{l}\right) \times 100$$

$$\frac{\lambda}{2} \left(\frac{1}{300} + \frac{1}{981} + \frac{1}{2820} + 2 \times \frac{1}{41} + \frac{1}{87}\right) \times 100$$

$$\frac{\lambda}{2} 0.065 \times 100 = 6.5\%$$

267 (d)

 $\tau = \frac{dL}{dt} \Rightarrow dL = \tau \times dt = r \times F \times dt$ *i.e.*, the unit of angular momentum is *joule*-

second

$$f = \frac{1}{2\pi\sqrt{LC}} \Rightarrow LC = \frac{1}{f^2} = [M^0 L^0 T^2]$$

269 **(a)**

$$\frac{\text{angular momentum}}{\text{linear momentum}} = \frac{\left[ML^2 T^{-1}\right]}{\left[ML T^{-1}\right]} = \left[M^0 L T^0\right]$$

270 (a)

$$[e] = [AT], \epsilon_0 = [M^{-1}L^{-3}T^4A^2], [h] = [ML^2T^{-1}]$$
And $[c] = [LT^{-1}]$
 $\therefore \left[\frac{e^2}{4\pi\epsilon_0 hc}\right] = \left[\frac{A^2T^2}{M^{-1}L^{-3}T^4A^2 \times ML^2T^{-1} \times LT^{-1}}\right]$
 $\delta[M^0L^0T^0]$

272 (a)

The result has to be in one significant umber only.

273 **(b)**

 $v \propto g^p h^q$ (given) By submitting the dimension of each quantity and comparing the powers on both sides we get

$$[LT^{-1}] = [LT^{-2}]^{p} [L]^{q}$$

 $\Rightarrow p+q=1, -2p=-1, \therefore p=\frac{1}{2}, q=\frac{1}{2}$

274 **(b)**

276 **(b)**

Positions
$$x = k a^m t^n$$

 $[M^0 L T^0] = [L T^{-2}]^m [T]^n$
 $\dot{c} [M^0 L^m T^{-2m+n}]$

On comparing both sides

$$m=1$$

-2m+n=0
$$n=2m$$

$$n=2 \times 1=2$$

277 (a)

$$\therefore R = \frac{PV}{T} = \left[\frac{ML^{-1}T^{-2} \times L^{3}}{\theta}\right] = [ML^{2}T^{-2}\theta^{-1}]$$

278 **(b)**

We know that

Specific heat
$$\frac{Q}{m\Delta t}$$

Unit of specific heat = $\frac{\text{unit of heat}}{\text{unit of mass} \times \text{unit of tempe}}$

:. Unit of specific heat =
$$\frac{J}{kg \circ C} = Jkg^{-1} \circ C^{-1}$$

$$K = Y \times r_0 = [M L^{-1} T^{-2}] \times [L] = [M T^{-2}]$$

Y=Young's modulus and $r_0 = i$ Interatomic distance

280 **(a)**

Couple of force = $|\vec{r} \times \vec{F}| = [ML^2T^{-2}]$ Work $i[\vec{F} \cdot \vec{d}] = [ML^2T^{-2}]$

281 (c) 100 W= 100 J $s^{-1} = 10^9 \text{ erg } s^{-1}$

282 **(d)**

From the given relation,
$$D = \frac{-n(x_2 - x_1)}{n_2 - n_1}$$

Here $[n] = \left[\frac{1}{area \times time}\right] = \frac{1}{[L^2 T]} = [L^{-2}T^{-1}]$
 $x_2 - x_1 = [L] \text{ and } n_2 - n_1 = \left[\frac{1}{volume}\right] = \left[\frac{1}{L^3}\right] = [L^{-3}]$
So, $[D] = \frac{[L^{-2}T^{-1}L]}{[L^{-3}]} = [L^2T^{-1}].$

283 **(b)**

Use formula for time period in angular SHM.

284 **(a)**

Electric potential

$$V = \frac{W}{q} = \frac{joule}{coulomb} = \frac{newton \times metre}{coulomb}$$
$$\vdots \frac{(kg - ms^{-2}) \times m}{coulomb}$$
$$\vdots kg - ms^{-2} \times m \times coulomb^{-1}$$
$$\therefore = [ML^2T^{-2}Q^{-1}]$$

285 **(b)**

$$R = \frac{V}{I} = \left[\frac{ML^2 T^{-3} A^{-1}}{A}\right] = \left[ML^2 T^{-3} A^{-2}\right]$$

286 **(b)**

Heat ΔQ transferred through a rod of length L and area A in time Δt is

$$\Delta Q = KA \left(\frac{T_1 - T_2}{L} \right) \Delta t$$
$$\therefore K = \frac{\Delta Q \times L}{A \left(T_1 - T_2 \right) \Delta t} \dots (i)$$

Substituting dimensions for corresponding quantities in Eq. (i), we have

$$[K] = \frac{[M L^2 T^{-2}][L]}{[L^2][\theta][T]}$$
$$\overset{\circ}{\iota}[ML T^{-3} \theta^{-1}]$$

287 **(b)**

$$\frac{F-32}{9} = \frac{K-273}{5} \Rightarrow \frac{x-32}{9} = \frac{x-273}{5} \Rightarrow x = 574.25$$

288 (c) 1 fermi $i 10^{-15}$ metre

289 (d) $[Planck constant] = [M L^2 T^{-1}]$ and $[Energy] = [M L^2 T^{-2}]$

290 **(b)**

MeV-sec is not a unit of energy. While others are units of energy.

291 **(b)**

$$F = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 q_2}{r^2}$$

$$\Rightarrow \varepsilon_0 = |q_1| \lor q_2 \lor \frac{i}{[F][r^2]} = \frac{[A^2 T^2]}{[MLT^{-2}][L^2]} = [A^2 T^4 M$$

292 **(d)**

$$R_1 = (6 \pm 0.3) k\Omega$$
 , $R_2 = (10 \pm 0.2) k\Omega$

$$\boldsymbol{R}_{i} = \frac{\boldsymbol{R}_{1}\boldsymbol{R}_{2}}{\left(\boldsymbol{R}_{1} + \boldsymbol{R}_{2}\right)}$$

Let $(R_1 + R_2) = x$

$$\Rightarrow R_P = \frac{R_1 R_2}{x}$$
Taking log of both sides

$$\ln R_p = \ln R_1 + \ln R_2 - \ln x$$

Differentiating,

$$\frac{\Delta R_P}{R_P} = \frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2} + \left(\frac{-\Delta x}{x}\right)$$
$$\Delta x_{mean} = \frac{0.3 + 0.2}{2} = 0.25 \,\Omega$$
$$R_{mean} = \frac{6 + 10}{2} = 8 \,\Omega$$
$$\therefore x = \frac{6 + 10}{2} = 8 \,\Omega$$
$$\Rightarrow \frac{\Delta x}{x} = \frac{0.25}{8}$$
$$\therefore Total \ error = \frac{0.3}{6} + \frac{0.2}{10} + \frac{0.25}{8}$$
$$\vdots 0.05 + 0.02 + 0.03125 = 0.10125$$
$$\therefore \frac{\Delta R_P}{R_P} = 10.125 \,\%$$

293 **(d)**

$$F_{m} = Bqv \text{ or } [B] = \left[\frac{F_{m}}{qv}\right] = \left[\frac{F_{m}}{Itv}\right]$$

$$\frac{[MLT^{-2}]}{[A][T][LT^{-1}]} = [ML^{0}T^{-2}A^{-1}]$$

Alternate
$$F = BIl \Rightarrow [B] = \left[\frac{F}{Il}\right] = [ML^{0}T^{-2}A^{-1}]$$

294 (d)

R=8.3 J/K-mol

$$n_1 u_1 = n_2 u_2$$

 $\therefore n_2 = \frac{n_1 u_1}{u_2}$
 $i \frac{8.3 J/K - mol}{atm L/K - mol}$
 $i \frac{8.3 J/K - mol}{(1.013 \times 10^5 N i m^2)(10^{-3} m^3)/K - mol}$
 $i \frac{8.12}{10^2} = 0.0812$
 $\therefore 8.3 J/K - mol = 0.0812$ atm L/K-mol

$$P = nu : n \propto \frac{1}{u}$$

296 **(b)**

From Coulomb's law

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$
Or $\varepsilon_0 = \frac{q_1 q_2}{4\pi F r^2}$

$$\therefore Units of \varepsilon_0 (permittivity)$$

$$\varepsilon \frac{C^2}{N - m^2} = C^2 N^{-1} m^{-2}$$
7 (d)
Work done $W = \varepsilon \Delta a$

Work done $W = \varepsilon \Delta q$ $\therefore \varepsilon = \frac{W}{\Delta q} = \frac{[M L^2 T^{-2}]}{[AT]}$ $\therefore [\varepsilon] = [M L^2 T^{-3} A^{-1}]$

298 **(a)**

29

Maximum absolute error is $\Delta a + \Delta b$. Now work out the relative error ad finally the percentage error.

299 **(b)**

Potential energy = mg h = g
$$\left(\frac{cm}{sec^2}\right) cm = g \left(\frac{cm}{sec}\right)^2$$

300 **(c)**

Resistivity,
$$\rho = \frac{m}{ne^2 \tau}$$

 $\therefore [\rho] = \frac{[M]}{[L^{-3}][AT][T^2]}$
 $\& [ML^3 A^{-2} T^{-3}]$

So, electrical conductivity

$$\sigma = \frac{1}{\rho}$$
$$\Rightarrow [\sigma] = \frac{1}{[\rho]} = [M^{-1}L^{-3}A^{2}T^{3}]$$

301 **(b)**

Bulk modulus
$$K = \frac{normal stress}{volumetric strain}$$

$$i \frac{F/A}{-\Delta V/V}$$
$$i - \frac{FV}{A\Delta V}$$

Now,
$$\frac{F}{A} = p$$

$$\therefore K = \frac{pV}{\Delta V}$$

As volumetric strain is dimensionless.

 \therefore Dimensions of K = dimensions of normal stress

$$\Rightarrow [K] = [M L^{-1} T^{-2}]$$

302 (a)

$$R = \frac{V}{I} \Longrightarrow \pm \frac{\Delta R}{R} = \pm \frac{\Delta V}{V} \pm \frac{\Delta I}{I}$$

$$\& 3 + 3 = 6\%$$

304 (d)

$$n(xm)^2 = 1m^2 \text{ or } n = \frac{1}{x^2}$$

305 (d)

Given, $v = at + bt^2$

Applying the law of homogeneity $[v] = [bt^2]$

Or
$$[LT^{-1}] = [bT^2]$$

Or $[b] = [LT^{-3}]$

306 (a)

$$V = \frac{W}{Q} = [M L^2 T^{-2} Q^{-1}]$$

307 **(c)**

Volume of sphere
$$(V) = \frac{4}{3}\pi r^3$$

% error in volume $\frac{1}{3} \times \frac{\Delta r}{r} \times 100 = \left(3 \times \frac{0.1}{5.3}\right) \times 100$

308 **(d)**

Given, $v = at + \frac{b}{t+c}$

Since, LHS is equal to velocity, so at and $\frac{b}{t+c}$ must have the dimensions of velocity.

:.
$$at = v$$

Or $a = \frac{v}{t} = \frac{[LT^{-1}]}{[T]} = [LT^{-2}]$

Now, c = time(:: like quantities are added)

$$\therefore c = t = |T|$$

Now,

$$\frac{b}{t+c} = v$$

$$\therefore b = v \times time = [\dot{c}^{-1}][T] = [L]$$

310 (a)

Dimensions of $E = [ML^2T^{-2}]$

Dimensions of $G = [M^{-1}L^3T^{-2}]$

Dimensions of $I = [MLT^{-1}]$

And dimension of M = [M]

:. Dimensions of
$$\frac{GIM^2}{E^2} = \frac{[M^{-1}L^3T^{-2}][MLT^{-1}][N}{[ML^2T^{-2}]^2}$$

 $\boldsymbol{\dot{\iota}}[T]$

- ¿Dimensions of time
- 311 (a) Percentage error inside $i \frac{1}{2} \left[\frac{0.2}{100} \times 100 \right] = 0.1$ Absolute error inside $i \frac{0.1}{100} \times 10 = 0.01$

312 **(d)**

The second is the duration of 9192631770 period of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium-133 atom. Therefore, 1 ns is 10^{-9} s of Cs-clock of 9192631770 oscillations.

314 **(a)**

Weight in air = $(5.00 \pm 0.05) N$ Weight in water = $(4.00 \pm 0.05) N$ Loss of weight in water = $(1.00 \pm 0.1) N$ Now relative density= $\frac{weight \in air}{weight loss \in water}$

$$i.e.R.D = \frac{5.00 \pm 0.05}{1.00 \pm 0.1}$$

Now relative density with max permissible error

 $i \frac{5.00}{1.00} \pm i$ $i 5.0 \pm 11\%$

315 **(c)**

Angular momentum = [$ML^2T^{-1}i$, Frequency = [Tii-1]i

317 **(a)**

By the principle of dimensional homogenity

$$[P] = \left[\frac{a}{V^2}\right] \Rightarrow [a] = [P] \times [V^2] = [ML^{-1}T^{-2}][L^6]$$
$$\mathcal{L}[ML^5T^{-2}]$$

318 **(a)**

$$[E] = [M L^{2} T^{-2}]$$

$$[M] = [M]$$

$$[L] = [M L^{2} T^{-1}]$$

$$[G] = [M^{-1} L^{3} T^{-2}]$$

$$\left[\frac{E L^{2}}{M^{5} G^{2}}\right] = \frac{[M L^{2} T^{-2}][M L^{2} T^{-1}]^{2}}{[M]^{5} [M^{-1} L^{3} T^{-2}]^{2}}$$

$$i \frac{[M L^{2} T^{-2}][M^{2} L^{4} T^{-2}]}{[M^{5}] [M^{-2} L^{6} T^{-4}]} = \frac{[M^{3} L^{6} T^{-4}]}{[M^{5} i (3 L^{6} T^{-4}] i i i i (M^{5} i (3 L^{6} T^{-4}))]}$$

$$i [m^{0} L^{0} T^{0}] = i \text{ Angle}$$

319 **(c)**

$$MT^{-3}] = \frac{[ML^2T^{-2}]}{[L^2][T]} = \dot{\iota}_{\text{energy /area}} \times$$

time=dimensions of solar constant.

320 **(b)**

We know that kinetic energy $i \frac{1}{2}mv^2$ Required percentage error is $2\%+2\times3\%$ ie,8%

321 **(d)**

Express the result in two significant figures.

323 **(c)**

$$B = \frac{F}{IL} = \frac{[MLT^{-2}]}{[A][L]} = [MT^{-2}A^{-2}]$$

324 **(c)**

30 VSD = 29 MSD $1 VSD = \frac{29}{30} MSD$

Least count of vernier i 1 M.S.D. - 1V.S.D.

$$10.5^{\circ} - \frac{29}{30} \times 0.5^{\circ} = \frac{0.5^{\circ}}{30}$$

Reading of vernier i M.S. reading +i V.S. reading \times L.C.

$$\frac{1}{58.5} + 9 \times \frac{0.5}{30} = 58.65$$

325 **(a)**

From Coulomb's law, the force of attraction/repulsion between two point charges $q \land q$ separated by distance r is

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{r^2}$$
$$\Rightarrow \varepsilon_0 = \frac{1}{4\pi} \cdot \frac{q^2}{Fr^2}$$

Where ε_0 is electric permittivity.

Dimensions of
$$\varepsilon_0 = \frac{[AT]^2}{[MLT^{-2}][L^2]}$$

 $[\varepsilon_0] = [A^2 M^{-1} L^{-3} T^{-4}]$

326 **(a)**

Percentage error in radius is $\frac{0.1}{4.3} \times 100$. again,

$$V \propto R$$

327 **(a)**

Required percentage error

$$i_{2} \times \frac{0.01}{15.12} \times 0 + \frac{0.001}{10.15} \times 10 = 4 + 1 = 5$$

328 **(a)**

We know that the dimensional formula of energy is $[ML^2T^{-2}]$ $n_2 = 1i$ $i \frac{1}{10} \times \frac{1}{10^6} \times \frac{1}{(60)^{-2}} = \frac{3600}{10^7} = 3.6 \times 10^{-4}$

 $\lambda = m^{p} v^{q} h^{r}$ $[M^{0}LT^{0}] = [M^{p}][LT^{-1}]^{q}[ML^{2}T^{-2}]^{r}$ $[M^{0}LT^{0}] = [M^{p+r}L^{q+2r}T^{-q-r}]$ $\therefore p+r=0, q+2r=1, -q-r=0$ After solving we get p=-1, q=-1, r=1

330 (a)

Least count LC

i Pitch Number of divisions on circular scale

$$\frac{0.5}{50} = 0.01 \, mm$$

Now, diameter of ball

$$i(2 \times 0.5 mm) + (25 - 5)(0.01) = 1.2 mm$$

331 (c)

Volume of cylinder $V = \pi r^2 l$ Percentage error in volume $\frac{\Delta V}{V} \times 100 = \frac{2\Delta r}{r} \times 100 + \frac{\Delta l}{l} \times 100$ $\dot{c}\dot{c}$

332 (a)

Let $h \propto G^x L^y E^z$

$$\begin{bmatrix} M L^{2} T^{-1} \end{bmatrix} \propto \begin{bmatrix} M^{-1} L^{3} T^{-2} \end{bmatrix}^{x} \begin{bmatrix} M L^{2} T^{-1} \end{bmatrix}^{y} \begin{bmatrix} M L^{2} T^{-2} \end{bmatrix}^{z}$$
$$\begin{bmatrix} M L^{2} T^{-1} \end{bmatrix} = k \begin{bmatrix} M^{-1} L^{3} T^{-2} \end{bmatrix}^{x} \begin{bmatrix} M L^{2} T^{-1} \end{bmatrix}^{y} \begin{bmatrix} M L^{2} T^{-2} \end{bmatrix}^{z}$$

Comparing the powers, we get

 $1 = -x + y + z \dots (i)$

$$2=3x+2y+2z...(ii)$$

 $-1 = -2x - y - 2z \dots (iii)$

On solving Eqs. (i), (ii) and (iii), we get

x = 0

 \therefore Gravitational constant has no dimensions

333 (d)

We know that

 $density = \frac{mass}{volume}$

In CGS units

 $d = 0.625 \, gcm^{-3}$

In SI units

$$d = \frac{0.625 \times 10^{-3} kg}{10^{-6} m^3} = 625 kgm^{-3}$$

334 **(a)**

The velocity of a body at highest point of vertical circle is,

$$v = \sqrt{rg}$$

Or $v^2 = rg$
Or $\frac{v^2}{rg} = constant$

Hence, $\frac{v^2}{r q}$ is dimensionless.

335 **(b)**

Magnetic moment is the strength of magnet. Its SI unit is $amp \times m^2 \vee N - m/telsa \vee JT^{-1}$.

337 **(a)**

Let $F \propto P^{x}V^{y}T^{z}$ By substituting the following dimensions: $[P] = [ML^{-1}T^{-2}][V] = [LT^{-1}], [T] = [T]$ and comparing the dimension of both sides $x=1, y=2, z=2, soF = PV^{2}T^{2}$

339 **(a)**

Indestructibility, invariability and reproductibility are essential characteristics of a unit of measurement.

340 **(c)**

Energy = force \times distance, so if both are increased by 4 times then energy will increase by 16 times

341 **(d)**

Dimensional formula of magnetic flux

$$\frac{\partial}{\partial M} L^2 T^{-2} A^{-1}$$

343 **(c)**

Area velocity is area covered per unit time.

344 **(b)**

Unit of $\varepsilon_0 = C^2 / N - m^2$. Unit of $K = N m^2 C^{-2}$

345 **(c)**

Potential can be written a potential energy per unit charge,

$$V = \frac{W}{q} = \frac{U}{q}$$

Hence, dimensions of potential are the same as that of work per unit charge.

346 (a) [L/R] is a time constant so its unit is second

347 (c)
$$R = \rho \frac{L}{A} \Rightarrow \rho = \frac{RA}{L} = ohm \times cm$$

348 (a)

Let
$$n = k \rho^a a^b T^c$$
 where $[\rho] = [M L^{-3}], [a] = [L]$ and
 $[T] = [M T^{-2}]$
Comparing dimensions both sides we get
 $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = \frac{1}{2} \therefore \eta = k \rho^{-1/2} a^{-3/2} T^{-1/2}$
 $i \frac{K \sqrt{T}}{\rho^{1/2} a^{3/2}}$

350 (a)

Diameter of wire,

$$d = MSR + CSR \times LC$$

$$\frac{1}{0+52} \times \frac{1}{100}$$

i 0.52 mm = 0.052 cm.

351 (d) $[\eta] = M L^{-1} T^{-1}$ so its unit will be *kg/m-sec*

352 **(c)**

$$F = \frac{Gm_1m_2}{d^2}; :: G = \frac{Fd^2}{m_1m_2} = Nm^2/kg^2$$

353 **(a)** *K*=*C*+273.15

354 (a)
$$k = \left[\frac{R}{N}\right] = \left[M L^2 T^{-2} \theta^{-1}\right]$$

355 **(a)**

$$\frac{[Energy]}{[Volume]} = \frac{[M L^2 T^{-2}]}{[L^3]} = [M L^{-1} T^{-2}]$$

[pressure]= $\frac{[ML T^{-2}]}{[L^2]} = [M L^{-1} T^{-2}]$

Capacitance
$$C = \frac{Charge}{potential} = \frac{q}{V}$$

Also potential $i \frac{work}{charge}$ $\left(\because V = \frac{W}{q} \right)$
 $\therefore C = \frac{q^2}{J}$ as well as $C = \frac{J}{V^2}$.

Thus, (a), (c), (d) are equivalent to farad but (b) is not

equivalent to farad.

358 **(b)**

Velocity

$$v = k \lambda^a \rho^b g^c \Longrightarrow [M^0 L T^{-1}] = [L^a] [M^b L^{-3b}] [L^c T^{-2c}]$$

Or $[M^0 L T^{-1}] = [M^b L^{a-3b+c} T^{-2c}]$
Equating powers of M , L and T , we get
 $-2c = -1$
Again, $a - 3b + c = 1, b = 0, c = \frac{1}{2}$
 $\therefore v = k \lambda^{1/2} \rho^0 g^{1/2}$ or $v^2 \propto g \lambda$

359 **(a)**

```
Impulse = force \times time
```

$$\mathbf{i} \left[ML T^{-2} \right] \left[T \right]$$

$$\frac{\mathbf{c}}{\mathbf{M}} ML T^{-1}$$

360 **(a)**

$$X = \left[M^a L^b T^c \right]$$

Maximum % error in $X = a\alpha + b\beta + c\gamma$

361 **(c)**

Gravitational force,
$$F = \frac{GM_1M_2}{R^2}$$

$$\Rightarrow G = \frac{FR^2}{M_1M_2}$$

$$[G] = \frac{[MLT^{-2}][L^2]}{[M^2]}$$

$$\delta[M^{-1}L^3T^{-2}]$$
363 (a)

$$[C] = \left(\frac{Q}{V}\right) = \delta$$
364 (a)
Angular velocity $= \frac{\theta}{t}, [\omega] = \frac{[M^0L^0T^0]}{[T]} = [T^{-1}]$

365 **(c)**

Given, length of rod A is

$$L_A = 3.25 \pm 0.01$$

Of B is $L_B = 4.19 \pm 0.01$

Then, the rod B is longer than rod A by a length

$$\Delta l = L_B - L_A$$

$$\Delta l = (4.19 \pm 0.01) - (3.25 \pm 0.01)$$

$$\Delta l = (0.94 \pm 0.02) cm$$

366 **(c)**

Electric displacement, $D = \varepsilon E$

Unit of
$$D = \frac{C^2}{Nm^2} \frac{N}{C}$$

 $\therefore [D] = \left(\frac{C}{m^2}\right) = \frac{[AT]}{[L^2]} = [L^{-2}TA]$

367 (a)

If **E** is the intensity of electric field over a small area element **dS** and θ is angle between **E** and outdrawn normal to area element. Therefore, electric flux through this element is

 $d\phi_E = (dS)(E\cos\theta)$

 $i E dS \cos \theta = E \cdot dS$

Hence, $\phi_E = E \cdot S$

$$\frac{i}{d} \frac{V}{d} \cdot S$$

 $\therefore Unit of \phi_E = \frac{volt \times metre^2}{metre}$

¿volt−metre

368 (d)

Diameter = Main scale reading

+Circular scale reading \times LC+Zero error

$$\frac{1}{2 \times 50} + 0.03 = 3.38 \, mm$$

369 **(c)**

$$F = -\eta \cdot A \frac{dv}{dx} \Rightarrow [\eta] = [M L^{-1} T^{-1}]$$

370 **(d)**

Torque = $[ML^2T^{-2}]$, Moment of inertia $[ML^2]$

371 (a)

$$\eta = \frac{F}{av} = \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$$

372 **(a)**

Required relative error=power×relative error in x.

373 **(c)**

Since for 50.14 *cm*, significant number = 4 and for 0.00025, significant number = 2

374 (a)

Kinetic energy =
$$\frac{1}{2}mv^2 = M[LT^{-1}]^2 = [ML^2T^{-2}]$$

375 **(b)**

T-ratios are dimensionless. So the unit of r is N^2 .

376 (a)
30 VSD=29 MSD

$$1 VSD = \frac{29}{30} MSD$$

 $L.C.=1 MSD - 1 VSD$
 $i \left(1 - \frac{29}{30} \right) MSD = \frac{1}{30} \times 0.5^\circ = 1$ minute

377 **(d)**

[Pressure]=[Stress]=[coefficient of elasticity] = $[ML^{-1}T^{-2}]$

378 **(a)**
$$I = \frac{Q}{t} = \frac{[Q]}{[T]} = [M^0 L^0 T^{-1} Q]$$

379 **(c)**

$$T = 2\pi\sqrt{l/g} \Rightarrow T^2 = 4\pi^2 l/g \Rightarrow g = \frac{4\pi^2 l}{T^2}$$

Here, % error in

$$l = \frac{1 \, mm}{100 \, cm} \times 100 = \frac{0.1}{100} \times 100 = 0.1 \,\%$$

And % in error in $T = \frac{0.1}{2 \times 100} \times 100 = 0.05 \,\%$
 $\therefore \%$ error in $g = \%$ error in $l + 2(\% \, error \in T)$
 $i = 0.1 + 2 \times 0.05 = 0.2 \,\%$

380 **(d)**

The number of significant figures in 4.8000×10^4 is 5 (zeros on right after decimal are counted while zeros in powers of 10 are not counted).

The number of significant figures in 48000.50 is 7 (all the zeros between two non-zero digits are significant).

381 **(c)**

$$R_{s} = \frac{R_{1}R_{2}}{R_{1}+R_{2}},$$

$$\frac{\Delta R_{s}}{R_{s}} \times 100$$

$$i \frac{\Delta R_{1}}{R_{1}} \times 100 + \frac{\Delta R_{2}}{R_{2}} \times 100 + \frac{\Delta (R_{1}+R_{2})}{R_{1}+R_{2}} = 100$$
Now, $\Delta R_{1} = \frac{10}{100} \times 4_{k}\Omega = 0.4_{k}\Omega,$

$$\Delta R_{2} = \frac{10}{100} \times 6_{k}\Omega = 0.6_{k}\Omega$$
Again, $\frac{\Delta R_{s}}{R_{s}} \times 100 = \frac{0.4}{4} \times 100 + \frac{0.6}{6} \times 100$

$$\frac{+0.4+0.6}{10} \times 100$$

$$i 10+10+10=30$$

382 (d)

Note carefully that every alterative has
$$Gh$$
 and c^5 .
 $[Gh] = [M^{-1}L^3T^{-2}][ML^2T^{-1}] = [M^0L^5T^3]$
 $[c] = [LT^{-1}]$
 $\therefore \left(\frac{Gh}{c^5}\right)^{1/2} = [T]$

383 **(b)**

$$C^{2}LR = [C^{2}L^{2}] \times \left[\frac{R}{L}\right] = [T^{4}] \times \left[\frac{1}{T}\right] = [T^{3}]$$

As $\left[\frac{L}{R}\right] = T$ and $\sqrt{LC} = T$

384 (d)

Unit of e.m.f.=i volt=i joule/coulomb

385 **(b)**

% error in

$$g = \frac{\Delta g}{g} \times 100 = \left(\frac{\Delta l}{l}\right) \times 100 + 2\left(\frac{\Delta T}{T}\right) \times 100$$
$$E_I = \frac{0.1}{64} \times 100 + 2\left(\frac{0.1}{128}\right) \times 100 = 0.3125\%$$
$$E_{II} = \frac{0.1}{64} \times 100 + 2\left(\frac{0.1}{64}\right) \times 100 = 0.4687\%$$
$$E_{III} = \frac{0.1}{20} \times 100 + 2\left(\frac{0.1}{36}\right) \times 100 = 1.055\%$$

386 **(b)**

$$1 MeV = 10^6 eV$$

387 **(c)**

[Energy] = $[ML^2T^{-2}]$. Increasing M and L by a factor of 3 energy is increased 27 times.

388 (a)
Dimensionally.
$$\left[\frac{b}{t}\right] = [v]$$
 or $[b] = [vt] = [L]$.

389 (a)

$$M = i$$
Pole strength × length
 $i amp - metre \times metre = amp - metre^{2}$

390 **(b)**

$$\therefore \left(\frac{\Delta R}{R} \times 100\right)_{max} = \frac{\Delta V}{V} \times 100 + \frac{\Delta I}{I} \times 100$$

$$\frac{1}{2} \cdot \frac{5}{100} \times 100 + \frac{0.2}{10} \times 100 = (5+2)\% = 7\%$$

391 (c)
$$\frac{0.2}{25} \times 100 = 0.8$$

393 (c)

$$\left[\frac{1}{2} \in_0 E^2\right] = i \text{ [Energy density]}$$

$$i \frac{ML^2 T^{-2}}{L^3} = ML^{-1}T^{-2}$$

394 **(c)**

Dimensions of
$$L \wedge R$$

 $[R] = [ML^2 T^{-3} A^{-2}]$
 $[L] = [M L^2 T^{-2} A^{-2}]$
 $\left[\frac{L}{R}\right] = \frac{[M L^2 T^{-2} A^{-2}]}{[M L^2 T^{-3} A^{-2}]}$
 $\dot{c}[T]$

395 **(d)**

$$\frac{[E][J]^2}{[M]^5[G]^2} \frac{[ML^2T^{-2}][ML^2T^{-1}]^2}{[M^5][M^{-1}L^3T^{-2}]^2} = [M^0L^0T^0]$$

396 **(d)**

As
$$v = \frac{4}{3}\pi r^3$$

 $\frac{dv}{v} = 3\left(\frac{dr}{r}\right)$

... Percentage error in determination of volume $\frac{1}{3}$ (Percentage error in measurement of radius) $\frac{1}{3}(2\%) = 6\%$

397 (c)
Least count
$$i \frac{0.5}{50} = 0.01 \, mm$$

Diameter of ball $D = 2.5 \, mm + (20)(0.01)$
 $D = 2.7 \, mm$
 $\rho = \frac{M}{vol} = \frac{M}{\frac{4}{3}\pi \left(\frac{D}{2}\right)^3} \Rightarrow \left(\frac{\Delta \rho}{\rho}\right)_{max} = \frac{\Delta M}{M} + 3\frac{\Delta D}{D}$
 $\left(\frac{\Delta \rho}{\rho}\right)_{max} = 2\% + 3\left(\frac{0.01}{2.7}\right) \times 100\% \Rightarrow \frac{\Delta \rho}{\rho} = 3.1\%$

398 (a)

From Newton's second law

 $Force(F) = Mass(M) \times acceleration$

Dimensions of $[F] = [MLT^{-2}]$

 $\therefore [M] = [FL^{-1}T^2]$

399 **(d)**

For best results amplitude of oscillation should be as small as possible and more oscillations should be taken

400 **(b)**

Intensity of radiation $\lambda \frac{Radiation Energy}{Area \times time}$

$$\Rightarrow I = \frac{[ML^2T^{-2}]}{[L^2 \times T]} = [ML^0T^{-3}]$$

402 (c)

Let
$$m \propto C^{x}G^{y}h^{z}$$

By substituting the following dimensions:
 $[C]=LT^{-1}; [G]=[M^{-1}L^{3}T^{-2}] \text{ and } [h]=[ML^{2}T^{-1}]$
Now comparing both sides we will get
 $x=1/2; y=-1/2, z=+1/2$
So $m \propto c^{1/2}G^{-1/2}h^{1/2}$

403 (d)

$$F \propto v \Rightarrow F = kv \Rightarrow [k] = \left[\frac{F}{v}\right] = \left[\frac{MLT^2}{LT^{-1}}\right] = [MT^{-1}]$$

405 **(c)**

According to definition of potential

406 **(a)**

$$Pressure = \frac{Force}{Area} = M L^{-1} T^{-2}$$

$$Stress = \frac{Restoring Force}{Area} = M L^{-1} T^{-2}$$

408 **(c)**

Area of cross section

$$\frac{i}{7} \times 0.24 \times 0.24 \,\mathrm{mm^2} = 0.18 \,\mathrm{mm^2}$$

409 **(b)**

Given, $1 \text{ eV}=1.6 \times 10^{-19} \text{ J}$ 13.6 eV=13.6 × 1.6 × 110⁻¹⁹ J \therefore 21.76 × 10⁻¹⁹ J

410 **(b)**

We will use the general rule of addition by making the powers same.

ie, we will add 3.8×10^{-6} and 42×10^{-6} we get

$$.45.8 \times 10^{-6} = 4.58 \times 10^{-5}$$

As least number of significant figures in given values are 2, so

We round off the result to 4.6×10^{-5} .

411 **(b)**

Both force constant and surface tension represent force per unit length.

412 **(c)**

$$E = hv \Rightarrow [ML^2T^{-2}] = [h][T^{-1}] \Rightarrow [h] = [ML^2T^{-1}]$$

- 413 (c) $[X] = [F] \times [\rho] = [MLT^{-2}] \times \mathcal{L}$
- 414 **(b)** [Force] i[M][Acceleration] $\Rightarrow [F] = [M^1 L^1 T^{-2}]$

From Coulomb's law

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$
$$\Rightarrow \left[\frac{1}{4\pi\varepsilon_0}\right] = \frac{[F \times r^2]}{[q]^2}$$
$$\vdots \frac{[newton][metre]^2}{[coulomb]^2}$$

 $i Nm^2 C^{-2}$

416 **(a)**

Time defined in terms of the rotation of the earth is called universal time (UT).

417 (d) $[h] = \dot{\iota}$ Angular momentum] = $[M L^2 T^{-1} \dot{\iota}]$

418 (c)

$$\Delta R_{s} = \Delta R_{1} + \Delta R_{2} = \left[\frac{10}{100} \times 10 + \frac{20}{100} \times 20\right] k\Omega = 5 k \delta \left[\frac{\Delta R_{s}}{R_{s}} \times 100 = \frac{5}{30} \times 100 = \frac{50}{3} = 17\right]$$

419 **(a)**

Volume $V = I^3 = (1.2 \times 10^{-2} m)^3 = 1.728 \times 10^{-6} m^3$

: length *l* has two significance figures. Therefore, the correct answer is

 $V = 1.7 \times 10^{-6} m^3$

420 (a)

Let $v \propto \sigma^a \rho^b \lambda^c$ Equating dimensions on both sides, $[M^0 L^1 T^{-1}] \propto [M T^{-2}]^a [M L^{-3}]^b [L]^c$ $\propto [M]^{a+b} [L]^{-3b+c} [T]^{-2a}$

 $\propto [M]$ [L] [I] Equating the powers of M, L, T on both sides, we get

$$a+b=0$$

$$-3b+c=1$$

$$-2a=-1$$

Solving, we get

$$a=\frac{1}{2}, b=\frac{-1}{2}, c=\frac{-1}{2}$$

$$\therefore v \propto \sigma^{1/2} \rho^{-1/2} \lambda^{-1/2}$$

$$\therefore v^{2} \propto \frac{\sigma}{\rho \lambda}$$

421 (a)

According to Coulombs law $F = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2}$ $\therefore \frac{1}{4\pi\varepsilon_0} = \frac{Fr^2}{q_1q_2} = \frac{(newton)(meter)^2}{(coulomb)(coulomb)}$ $\& \frac{Nm^2}{C^2} = C^{-2}Nm^2$

423 **(b)**

$$\frac{dQ}{dt} = -KA\left(\frac{d\theta}{dx}\right)$$
$$\Rightarrow [K] = \frac{[ML^2T^{-2}]}{[T]} \times \frac{[L]}{[L^2][K]} = MLT^{-3}K^{-1}$$

424 **(c)**

Quantity C has maximum power. So it brings maximum error in P

Linear momentum = $Mass \times Velocity = [MLT^{-1}]$ Moment of a force = Force $\times Distance = [ML^2T^{-2}]$

Young's modulus $Y = \frac{stress}{strain} = N/m^2$ or pascal (in SI system)

And
$$Y = \frac{dyne}{cm^2}$$
 (in CGS system)

Then, Nm^{-1} is not the unit of Young's modulus.

427 **(b)**

Kg-m/sec is the unit of linear momentum

428 **(a)**

Let
$$v \propto \sigma^a \rho^b \lambda^c$$

Equating dimensions on both sides.

$$\begin{bmatrix} M^0 L T^{-1} \end{bmatrix} \propto \begin{bmatrix} M T^{-2} \end{bmatrix}^a \begin{bmatrix} M L^{-3} \end{bmatrix}^b \begin{bmatrix} L \end{bmatrix}^c$$
$$\propto \begin{bmatrix} M \end{bmatrix}^{a+b} \begin{bmatrix} L \end{bmatrix}^{-3b+c} \begin{bmatrix} T \end{bmatrix}^{-2a}$$

Equating the powers of M, L, T on both sides, we get

$$a+b=0$$
$$-3b+c=1$$
$$-2a=-1$$

Solving, we get

$$a = \frac{1}{2}, b = \frac{-1}{2}, c = \frac{-1}{2}$$
$$\therefore v \propto \sigma^{1/2} \rho^{-1/2} \lambda^{-1/2}$$
$$\therefore v^2 \propto \frac{\sigma}{\rho \lambda}$$

429 **(c)**

Volume of sphere is given by

$$v = \frac{4}{3}\pi R^3$$

Where R is radius of sphere

 $\therefore \frac{\Delta V}{V} = 3 \frac{\Delta R}{R}$

Hence, percentage error in volume

 $\frac{\Delta V}{V} \times 100 = 3 \left(\frac{\Delta R}{R} \times 100 \right) \%$ $\therefore 3 \times 3 \% = 9 \%$

430 **(b)** $1 Oersted = 1 Gauss i 10^{-4} Tesla$

432 **(c)**

Einstein's mass-energy equivalence is $E = mc^2$.

433 (a)

$$[ML T^{-2}] = [L^{2a}] [L^{b} T^{b}] [M^{c} L^{-3c}] = [M^{c} L^{2a+c-3c} T^{-b}]$$

Comparing powers of M, L and T, we get
 $c=1, 2a+b-3c=1, -b=-2$ or $b=2$
 $2a+2-3(1)=1 \Rightarrow 2a=2$ or $a=1$.

434 **(c)**

Velocity is given by

$$v = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
$$\therefore v^2 = \frac{1}{\mu_0 \varepsilon_0} = [LT^{-1}]^2$$
$$\therefore \frac{1}{\mu_0 \varepsilon_0} = [L^2 T^{-2}]$$

435 **(c)**

Given, L=2.331 cm & 2.33 (correct up to two decimal places) And B=2.1 cm=2.10 cm $\therefore L+B=2.33+2.10=4.43 cm=4.4 cm$ Since minimum significant figure is 2

436 (d)

$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2\frac{\Delta T}{T}$$

In option (d) error in Δg is minimum and number of observations made are maximum. Hence, in this case error in g will be minimum.

Tension = $[M \zeta^{-2}]$, Surface Tension = $[M T^{-2}]$

438 **(c)**

Mean time period $T = 2.00 \ sec$ & Mean absolute error = $\Delta T = 0.05 \ sec$ To express maximum estimate of error, the time period should be written as $(2.00 \pm 0.05) \ sec$

439 (d)

Dimensions of
$$\beta^3 = dimensions of density = [ML^{-3}]$$

 $\alpha = force \times density$

$$\beta = [M^{1/3}L^{-1}]$$
Also
$$\delta [MLT^{-2}][ML^{-3}]$$

$$\frac{\partial}{\partial t} \left[M^2 L^{-2} T^{-2} \right]$$

440 **(b)**

One light year

$$i \cdot 3 \times 10^8$$
 m/s year
 $i \cdot \frac{3 \times 10^8}{s} \times 365 \times 24 \times 60 \times 60s$
 $i \cdot 3 \times 10^8 \times 365 \times 24 \times 60 \times 60m$
 $i \cdot 9.461 \times 10^{15}$ m

441 (d)

The dimensional formula of

$$Work = Energy = Torque = [ML^2 T^{-2}]$$

$$v = \frac{P}{2l} \left[\frac{F}{m} \right]^{1/2}$$

$$\Rightarrow v^2 = \frac{P^2}{4l^2} \left[\frac{F}{m} \right]$$

$$\therefore m \propto \frac{F}{l^2 v^2}$$

$$\Rightarrow [m] = \left[\frac{MLT^{-2}}{L^2T^{-2}} \right] = [ML^{-1}T^0]$$

443 **(b)**

New unit of mass is $\frac{1}{6.67 \times 10^{-11}}$ kg *ie*, 1.5×10^{10} kg.

444 **(b)**

(2.3+0.035+0.035)g=2.37 g But we have to retain only one decimal place.

437 **(c)**

So, the total mass is 2.4 g.

447 (a)

Power = $\frac{Energy}{Time}$

448 (d)

$$P = \frac{F}{A} = \frac{F}{l^2}, \text{ so maximum error in pressure } (P)$$

449 (d)

$$\frac{Energy}{mass \times length} = \frac{\left[M L^2 T^{-2}\right]}{\left[M\right] \left[L\right]} = \left[L T^{-2}\right]$$

450 (a)

Since percentage increase in length =2%Hence, percentage increase in area if square sheet $=2 \times 2\% = 4\%$

451 (c)

Maximum percentage error in $P = 4\% + 2 \times 2\%$.68%

452 **(c)**

 $Impulse = Force \times time = (kg - m/s^2) \times s = kg - m/s$

453 **(b)**

$$1 \, dyne = 10^{-5} \, newton, 1 \, cm = 10^{-2} \, m$$
$$70 \, \frac{dyne}{cm} = \frac{70 \times 10^{-5}}{10^{-2}} \frac{N}{m}$$
$$6.7 \times 10^{-2} \, N/m$$

454 **(a)**

Here, $\frac{2\pi}{\lambda}(ct-x)$ is dimensionless. Hence, $\frac{ct}{\lambda}$ is also dimensionless and unit of ct is same as that of x.

Therefore, unit of λ is same as that of x. Also unit of y is same as that of A, which is also the unit of x.

455 (d)

We know that

$$Q = \frac{KA(\theta_1 - \theta_2)t}{d}$$
$$\Rightarrow K = \frac{Qd}{A(\theta_1 - \theta_2)t}$$

So, the unit of $K = \frac{cal \times metre}{metre^2 \times K \times sec}$

$$\frac{cal}{m}$$
. K. sec ... (i)

And density $d = \frac{m}{V}$, where m = i mass, V = i volume.

So, the unit of
$$d = \frac{kg}{m^3} \dots (ii)$$

Also, we know that $Q = mc \Delta \theta$

$$\Rightarrow c = \frac{Q}{m \cdot \Delta \theta}$$

So, the unit of
$$c = \frac{cal}{kg.K}...(iii)$$

Hence, the unit of $X = \frac{K}{dc}$

On putting the values of unit from Eqs. (i), (ii) and (iii), the unit of

$$X = \frac{cal/mK - sec}{kg/m^3 \times cal/kg. K}$$
$$\Rightarrow = m^2/s$$

So, the unit of X in CGS system is $cm^2 s^{-1}$.

456 **(b)**

The action of impulse is to change the momentum of a body or particle and the impulse of force is equal to the change in momentum.

Thus, the dimensions of impulse are same as that of momentum.

457 **(b)**
$$y = r_{si}$$

 $y = r \sin(\omega t - kx)$ There $\omega t = i$ angle $\therefore \omega = \frac{1}{T} = T^{-1}$ Similarly k x = i angle $\therefore k = \frac{1}{x} = L^{-1}$ $\therefore \frac{\omega}{k} = \frac{[T^{-1}]}{[L^{-1}]} = [L T^{-1}]$

458 **(a)**

Energy density
$$\frac{L^2 E Rergy}{Volume} = \frac{M L^2 T^{-2}}{L^3} = [M L^{-1} T^{-2}]$$
 470

Young's modulus

$$\frac{Stress}{Strain} = \frac{ML^{-1}T^{-2}}{M^0L^0T^0} = [ML^{-1}T^{-2}]$$

Both have the same dimensions

460 **(b)**

Solar constant is energy received per unit area per

unit time i.e.
$$\frac{[ML^2T^{-2}]}{[L^2][T]} = [M\dot{i}\dot{i}1T^{-3}]\dot{i}$$

461 **(c)**

According to Faraday's first law of electrolysis,

$$m = Zq$$
 or $Z = \frac{m}{q}$, so, SI unit of Z is kg C^{-1}

462 **(c)**

Curie=disintegration/second

464 **(b)**

 $\frac{Energy}{Volume} = \frac{ML^2T^{-2}}{L^3} = [ML^{-1}T^{-2}] = \mathcal{L}$ Pressure

465 (c)

Impulse = change in momentum so dimensions of both quantities will be same and equal to MLT^{-1}

466 **(b)**

In general, moment (M) of force (F) is

 $M = r \times F$

 \therefore Dimensions of $M = [L] [MLT^{-2}]$

$$i M L^2 T^{-2}$$

468 **(c)**

 S_{nth} represents the distance covered in *n*th sec.

469 **(c)**

According to Stefan's law, the energy radiated per second or power radiated is given by

$$P = \sigma A T^{4}$$
$$\therefore \sigma = \frac{P}{A T^{4}}$$

Therefore, unit of $\sigma = \frac{W}{m^2 K^4} = W m^{-2} K^{-4}$

470 **(c)**

Light year is a distance which light travels in one year

471 **(c)**

We can derive this equation from equations of motion so it is numerically correct $S_1 = \dot{c}$ distance tryelled in t^{th} second =

$$\frac{Distance}{time} = [LT^{-1}]$$

$$u = i$$
 velocity = $[LT^{-1}]$ and $\frac{1}{2}a(2t-1) = [LT^{-1}]$

As dimensions of each term in the given equation are same, hence equation is dimensionally correct also

472 (a)
$$\frac{h}{I} = \left[\frac{ML^2 T^{-1}}{ML^2}\right] = [T^{-1}]$$

474 **(b)**

Gravitational potential
$$\frac{\dot{c}}{mass}$$

Hence, SI unit gravitational potential

$$\frac{J}{kg} = Jkg^{-1} \vee ms^{-2}$$

476 **(d)**

Volume $\times r^3$ So, error is $3 \times 2\% = 6\%$

477 **(b)**

Volume $i (2.1 \times 10^{-2})^3 m^3 = 9.261 \times 10^{-6} m^3$. Rounding off two significant figures, we get $9.3 \times 10^{-6} m^3$.

479 **(b)**

Power's
$$\frac{Work}{Time}$$

 \therefore [Power] $i \frac{[Work]}{[Time]} = \frac{[ML^2T^{-2}]}{[T]}$
 $i [ML^2T^{-3}]$

480 (d)

$$\therefore \text{ Density}, \rho = \frac{M}{V} = \frac{M}{\pi \gamma^2 L}$$
$$\Rightarrow \frac{\Delta \rho}{\rho} = \frac{\Delta M}{M} + 2\frac{\Delta r}{r} + \frac{\Delta L}{L}$$

$$\frac{20003}{0.3} + 2 \times \frac{0.005}{0.5} + \frac{0.06}{6}$$

$$\frac{20.01 + 0.02 + 0.01 = 0.04}{0.01 + 0.02 + 0.01 = 0.04} \times 100 = 0.04 \times 100 = 4\%$$

481 **(d)**

Dimensions of $\varepsilon_0 = [M^{-1}L^{-3}T^4A^2]$ Dimensions of L = [L]Dimensions of $\Delta V = [ML^2T^{-3}A^{-1}]$

Dimensions of $\Delta t = [T]$

As $X = \varepsilon_0 L \frac{\Delta V}{\Delta t}$

Dimensions of

$$X = \frac{\left[M^{-1}L^{-3}T^{4}A^{2}\right]\left[L\right]\left[ML^{2}T^{-3}A^{-1}\right]}{\left[T\right]}$$
$$\& [A]$$

483 (d)

 $CV^2 = Energy$

The dimensional formula is $[ML^2 T^{-2}]$.

484 **(c)**

$$x = \frac{1 g cm s^{-1}}{T^2} = \frac{1 g cm s^{-1}}{1 kg \times 1 m s^{-1} \times 1 s}$$
$$\frac{1 g cm s^{-1}}{10^3 g \times 10^2 cm s^2 \times 1 s} = 10^{-5}$$

485 **(d)**

$$e = \frac{Ldi}{dt} \Rightarrow [e] = [ML^2T^{-2}A^{-2}] \left\lfloor \frac{A}{T} \right\rfloor$$
$$[e] = [ML^2T^{-2}Q^{-1}]$$

486 **(c)**

$$\omega = \frac{d\theta}{dt} = [T^{-1}]$$
 and frequency $[n] = [T^{-1}]$

487 **(d)**

Poisson's ratio is a unitless quantity

488 **(b)**

 $1 kW h = 1 \times 10^3 \times 3600 W \times sec = 36 \times 10^5 J$

489 **(a)**

Required time $\frac{i}{10^{11}} \frac{5000 \times 86400 \times 365.25}{10^{11}} s = 1.6s$

490 **(b)** RC = T

$$::[R] = M L^2 T^{-3} A^{-2} i$$
 and $[C] = [M^{-1} L^{-2} T^4 A^2]$

491 **(c)**

Given equation is dimensionally correct because both sides are dimensionless but numerically wrong

because the correct equation is $\tan \theta = \frac{v^2}{rg}$

492 **(a)**

Percentage error in $X = a\alpha + b\beta + c\gamma$

493 **(a)**

Couple = Force × Arm length = $[MLT^{-2}][L] = [ML^2T^{-2}]$

494 **(d)**

$$v = \sqrt{\frac{T}{m}} = \left[\frac{m'g}{\frac{M}{t}}\right]^{1/2} = \left[\frac{m'lg}{M}\right]^{1/2}$$

It follows from here, $\frac{\Delta v}{v} = \frac{1}{2}\left[\frac{\Delta m'}{m} + \frac{\Delta l}{l} + \frac{\Delta M}{M}\right]$
 $i\frac{1}{2}\left[\frac{0.1}{3.0} + \frac{0.001}{1.000} + \frac{0.1}{2.5}\right]$
 $i\frac{1}{2}[0.03 + 0.001 + 0.04]$
 $i0.036$
Percentage error in the measurement=3.6

495 **(c)**

Given, voltage $V = (100 \pm 5) volt$,

Current $I = (10 \pm 0.2) A$

From Ohm's law V = IR

$$\therefore$$
 Resistance $R = \frac{V}{I}$

Maximum percentage error in resistance

$$\left(\frac{\Delta R}{R} \times 100\right) = \left(\frac{\Delta V}{V} \times 100\right) + \left(\frac{\Delta I}{I} \times 100\right)$$
$$\dot{c} \left(\frac{5}{100} \times 100\right) + \left(\frac{0.2}{10} \times 100\right)$$

496 **(b)**

By substituting the dimension of given quantities

 $\begin{bmatrix} M L^{-1} T^{-2} \end{bmatrix}^{x} \begin{bmatrix} M T^{-3} \end{bmatrix}^{y} \begin{bmatrix} L T^{-1} \end{bmatrix}^{z} = \begin{bmatrix} M L T \end{bmatrix}^{0}$ By comparing the power of M, L, T in both sides x + y = 0 ...(i) -x + z = 0 ...(ii) -2x - 3y - z = 0 ...(iii)

The only values of x, y, z satisfying (i), (ii) and (iii) corresponds to (b)

497 **(c)**

Solar constant
$$i \frac{energy}{cm^2 min}$$

... The dimensions of solar constant

$$i \frac{[M L^2 T^{-2}]}{[L^2 T]} = [M L^0 T^{-3}]$$

498 (a)

$$[a] = [T^{2}] \text{ and } [b] = \frac{[a-t^{2}]}{[P][X]} = \frac{T^{2}}{[ML^{-1}T^{-2}][L]}$$

$$\Rightarrow [b] = [M^{-1}T^{4}]$$

So $\left[\frac{a}{b}\right] = \frac{[T^{2}]}{[M^{-1}T^{4}]} = [MT^{-2}]$

499 (c)

Both are the formula of energy.

$$E = \frac{1}{2}CV^2 = \frac{1}{2}LI^2$$

500 **(b)**

Let
$$m \propto E^x v^y F^z$$

By substituting the following dimensions:
 $E = [ML^2T^{-2}], [v] = [LT^{-1}], [F] = [MLT^{-2}]$
and by equating the both sides
 $x=1, y=-2, z=0.$ So $[m] = [Ev^{-2}]$

501 **(b)**

As
$$x = k a^m \times t^n$$

 $[M^0 L T^0] = [LT^{-2}]^m [T]^n = [L^m T^{-2m+n}]$
 $\therefore m = 1 \text{ and } -2m+n=0 \Rightarrow n=2$

502 (a)

$$E = [ML^{2}T^{-2}], G = [M^{-1}L^{3}T^{-2}], I = [MLT^{-1}]$$

$$\therefore \frac{GIM^{2}}{E^{2}} = \frac{[M^{-1}L^{3}T^{-2}][MLT^{-1}][M^{2}]}{[ML^{2}T^{-2}]^{2}} = [T]$$

503 (c)

Least count
$$i \frac{Pitch}{No.of \div . \in circular scale}$$

 $i \frac{0.5}{50} = 0.01 \, mm$

Actual reading $i 0.01 \times 35 + 3 = 3.35 mm$ Taking error into consideration i 3.35 + 0.03 = 3.38 mm

504 (a)

Given that,

Time period, $T \propto p^a d^b E^c \dots (i)$

The dimensions of these quantities are given as

$$p = [M L^{-1} T^{-2}]$$
$$d = [M L^{-3}]$$
$$E = [M L^{2} T^{-2}]$$

In Eq. (i), on writing the dimensions on both sides.

$$\begin{bmatrix} M^{0}L^{0}T \end{bmatrix} \propto \begin{bmatrix} ML^{-1}T^{-2} \end{bmatrix}^{a} \begin{bmatrix} ML^{-3} \end{bmatrix}^{b} \begin{bmatrix} ML^{2}T^{-2} \end{bmatrix}^{c}$$
$$\Rightarrow \begin{bmatrix} M^{0}L^{0}T \end{bmatrix} \propto \begin{bmatrix} M^{a+b+c}L^{-a-3b+2c}T^{-2a-2c} \end{bmatrix}$$

On comparing the powers of M, L, T on both sides.

$$\Rightarrow a+b+c=0...(ii)$$
$$-a-3b+2c=0...(iii)$$
$$-2a-2c=1...(iv)$$

Solving, we get value of

$$a, b \wedge c, -\frac{5}{6}, \frac{\frac{1}{2} \wedge 1}{3}$$
 repectively.

505 **(b)**

a=1

According to question $F = \propto m^a v^b r^c$ $F = k m^a v^b r^c$ k, being a dimensionless constant. From homogeneity of dimensions, LHS=RHS $[ML T^{-2}] = [M]^a [LT^{-1}]^b [L]^c$ Or $[ML T^{-2}] = [M^a L^{b+c} T^{-b}]$ Comparing the powers, we obtain b+c=1 $-b=-2 \Rightarrow b=2$ $\therefore 2+c=1$ $\Rightarrow c=-1$ Therefore, $F=kmv^2r^{-1}=\frac{kmv^2}{r}$ The experimental value of k is for

The experimental value of k is found to be 1 here $\therefore F = \frac{mv^2}{r}$

507 (d)

$$F = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2}$$
$$\Rightarrow \varepsilon_0 \propto \frac{Q^2}{F \times r^2}$$

So ε_0 has units of coulom b^2 /newton $-m^2$

508 **(b)**

The difference in the sidereal year and solar year is about 1 day $(\&24 \times 60 = 1440 \text{ min})$

 \therefore Difference in sidereal day and solar day is about

$$\frac{1440}{365} \cong 4 \min$$

i.e., sidereal day is $4 \min$ smaller than the solar day

509 (c)
$$Y = \frac{F}{A} \cdot \frac{L}{\Delta L} = \frac{dyne}{c m^2} = \frac{10^{-5} N}{10^{-4} m^2} = 0.1 N/m^2$$

510 (a)

Dimensions of Planck's constant

$$h = Dimensions of \frac{E}{v}$$
$$\frac{[M L^2 T^{-2}]}{[T^{-1}]} = [M L^2 T^{-1}]$$

Dimensions of angular momentum

$$\mathcal{L}$$
 Dimension of mvr
 $\mathcal{L}[MLT^{-1}].[L]$
 $\mathcal{L}[ML^2T^{-1}]$

511 **(a)**

By substituting the dimensions in $T = 2\pi \sqrt{\frac{R^3}{GM}}$ we

$$get \sqrt{\frac{L^3}{M^{-1}L^3T^{-2} \times M} = Ti}_{i}$$

512 **(d)**

c t^2 must have dimensions of *L* ⇒ *c* must have dimensions of $L/T^2 i \cdot e \cdot L T^{-2}$

513 **(d)**

 $1T=1 Wbm^{-2}$

514 **(c)**

% error in velocity = % error in *L*+%error int $i \frac{0.2}{13.8} \times 100 + \frac{0.3}{4} \times 100$ i 1.44 + 7.5 = 8.94%

515 **(c)**

Zero error $i 5 \times \frac{0.5}{50} = 0.05 mm$ Actual measurement $i 2 \times 0.5 mm + 25 \times \frac{0.5}{50} - 0.05 mm$ i 1 mm + 0.25 mm - 0.05 mm = 1.20 mm

516 **(d)**

Angular momentum,

$$[J] = [I\omega] = [ML^2T^{-1}]$$

Planck's constant, $[h] = \frac{[E]}{[v]} = [ML^2T^{-1}]$

517 (d)

$$n_{2} = n_{1} \left[\frac{L_{1}}{L_{2}} \right]^{1} \left[\frac{T_{1}}{T_{2}} \right]^{-2} = 10 \left[\frac{m}{km} \right]^{2} \left[\frac{sec}{hr} \right]^{-2}$$
$$n_{2} = 10 \left[\frac{m}{10^{3}m} \right]^{1} \left[\frac{sec}{3600 sec} \right]^{-2} = 129600$$

518 **(d)**

Strain has no dimensions

519 **(b)**

Here αt^2 is a dimensionless. Therefore, $\alpha = \frac{1}{t^2}$ and has the dimension of $[T^{-2}]$.

520 **(a)**

$$F = \frac{dp}{dt} \Rightarrow dp = Fdt$$

521 **(a)**

- Formula for viscosity $\eta = \frac{\pi p r^4}{8 V l} \Rightarrow V = \frac{\pi p r^4}{8 \eta l}$
- 522 **(b)** $V = \frac{W}{m}$ so, SI unit = $\frac{joule}{kg}$
- 523 (a)

$$W = \frac{1}{2} k x^{2} \Rightarrow [k] = \frac{[W]}{[x^{2}]} = \left[\frac{M L^{2} T^{-2}}{L^{2}}\right] = [M T^{-2}]$$

524 **(a)**

Angle of banking:
$$\tan \theta = \frac{v^2}{rg}$$
. i.e. $\frac{v^2}{rg}$ is dimensionless

525 **(a)**

Given, $a=3bc^{2}$ $\implies b=\frac{a}{3c^{2}}$

Writing dimensions for *a* and *c*, we have $\begin{bmatrix} O \\ W \end{bmatrix} \begin{bmatrix} O \\ W \end{bmatrix} \begin{bmatrix} O \\ T \end{bmatrix} \begin{bmatrix} M \\ T \end{bmatrix} \begin{bmatrix} O \\ T \end{bmatrix}$

$$[b] = \frac{[Q/V]}{[B]^2} = \frac{[Q][ML^{-}T^{-}Q^{-1}]}{[MT^{-1}Q^{-1}]^2}$$

$$i[M^{-3}L^{-2}T^4Q^4]$$

526 **(b)**

 $[Pressure] = [stress] = [ML^{-1}T^{-2}]$

528 **(a)**

Stefan's constant

$$\sigma = \frac{Energy}{Area \times Time \times (Temperature)^4}$$

$$\therefore \sigma = \frac{[ML^2T^{-2}]}{[L^2][T][K]^4} = [ML^0T^{-3}K^{-4}] = [MT^{-3}K^{-4}]$$

529 **(b)**

Magnetic energy
$$i \frac{1}{2}Li^2 = \frac{LQ^2}{2t^2}$$

[L=inductance, i=current.]

Energy has the dimensions $\dot{c} [M L^2 T^{-2}]$.

Equate the dimensions, we have

$$[ML^{2}T^{-2}] = (henry) \times \frac{[Q^{2}]}{[T^{2}]}$$
$$\Rightarrow [henry] = \frac{[ML^{2}]}{[Q^{2}]}$$

530 (c)

$$F \propto v \Rightarrow F = kv$$

 $k = \frac{F}{v} \Rightarrow [k] = \frac{[kgm s^{-2}]}{[m s^{-1}]} = kg s^{-1}$

531 (a) $\rho = \frac{RA}{l} i.e.$ dimension of resistivity is [$ML^3T^{-1}O^{-2}i$

532 (a)

Momentum = $mv = [M LT^{-1}]$ Impulse = Force × Time = [$MLT^{-2} \wr \times [T] = [MLT^{-1}]$

534 **(a)**

In given equation, $\frac{\alpha z}{k\theta}$ should be dimensionless

$$\therefore \alpha = \frac{\kappa \theta}{z}$$

$$\Rightarrow [\alpha] = \frac{[ML^2 T^{-2} K^{-1} \times K]}{[L]} = [MLT^{-2}]$$
And $P = \frac{\alpha}{\beta}$

$$\Rightarrow [\beta] = \left[\frac{\alpha}{P}\right] = \frac{[MLT^{-2}]}{[ML^{-1}T^{-2}]}$$

$$\Rightarrow [\beta] = [M^0 L^2 T^0]$$

535 **(c)**

$$[x] = [bt^2] \Rightarrow [b] = [x/t^2] = km/s^2$$

537 **(a)**

 $[h] = [M L^{2} T^{-1}]$ $[c] = [L T^{-1}]$ $[G] = [M^{-1} L^{3} T^{-2}]$

538 **(b)**

 $L \propto v^{x} A^{y} F^{z} \Rightarrow L = k v^{x} A^{y} F^{z}$ Putting the dimensions in the above relation $\begin{bmatrix} M L^{2} T^{-1} \end{bmatrix} = k \begin{bmatrix} L T^{-1} \end{bmatrix}^{x} \begin{bmatrix} L T^{-2} \end{bmatrix}^{y} \begin{bmatrix} M L T^{-2} \end{bmatrix}^{z}$ $\Rightarrow \begin{bmatrix} M L^{2} T^{-2} \end{bmatrix} = k \begin{bmatrix} M^{z} L^{x+y+z} T^{-x-2y-2z} \end{bmatrix}$ Comparing the powers of M, L and T z=1 ...(i) x+y+z=2 ...(ii) -x-2 y-2 z=-1 ...(iii) On solving (i), (ii) and (iii) x=3, y=-2, z=1So dimension of L in terms of v, A and f $\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} F v^{3} A^{-2} \end{bmatrix}$ 539 **(d)**

The number of significant figures in all of the given number is 4

540 **(c)**

Linear momentum $i [ML T^{-1}]$ Angular momentum $i [M L^2 T^{-1}]$

541 **(a)**

Henry is a unit of coefficient of self induction (L)Dimension of coefficient of self induction $\lambda [ML^2T^{-2}A^{-2}] = [ML^2Q^{-2}]$

542 (c)

$$\frac{[planc k's constant]}{[linear momentum]} = \frac{[M L^2 T^{-1}]}{[M L T^{-1}]} = [M^0 L T^0]$$

543 (d)

E = F/q = Newton/coulomb

545 **(a)**

Using the relation $R = \frac{pV}{\theta}$

Dimensions of gas constant R

$$\frac{\lambda \left[M L^{-1} T^{-2}\right] \left[L^{3}\right]}{\theta}$$
$$\frac{\lambda \left[M L^{2} T^{-2} \theta^{-1}\right]}{\theta}$$

New unit of distance = speed in new units \times 500 s

547 **(b)** watt

$\frac{watt}{ampere} = volt$

548 **(b)**

By Stefan's law,

$$E = \sigma T^4$$

Where σ is the Stefan's constant

$$\sigma = \frac{E}{T^4}$$

$$[\sigma] = \frac{[E]}{T^4} = \frac{[ML^2T^{-2}]}{[K^4]}$$
$$\delta[ML^2T^{-2}K^{-4}]$$

549 (a)

$$RD\dot{c} \frac{w_{1}}{w_{1}-w_{2}}, \frac{\Delta(RD)}{RD} \times 100$$
$$\dot{c} \frac{\Delta w_{1}}{w_{1}} \times 100 + \frac{D(w_{1}-w_{2})}{w_{1}-w_{2}} \times 100$$
$$\dot{c} \frac{0.05}{5.00} \times 100 + \frac{0.05+0.05}{1.00} \times 100 = 1+10 = 11\%$$

550 (d)

$$Y = \frac{X}{3Z^{2}} = \frac{M^{-1}L^{-2}T^{4}A^{2}}{[MT^{-2}A^{-1}]^{2}} = [M^{-3}L^{-2}T^{8}A^{4}]$$

551 (d)

Time period of a simple pendulum is

$$T = 2\pi \sqrt{\frac{L}{g}} \Rightarrow g = \frac{4\pi^2 L}{T^2}$$

$$\therefore \frac{\Delta g}{g} \times 100 = \left(\frac{\Delta L}{L} + 2\frac{\Delta T}{T}\right) \times 100 = 1\% + 2 \times 2\% = \frac{1}{2}$$

553 (a)

 $Q = [ML^2T^{-2}]$ (All energies have same dimensions)

554 **(d)**

Surface tension is defined as the force per unit length and hence its unit is newton *metr* e^{-1} or $N m^{-1}$

555 **(c)**

The dimensions of angular momentum are

 $J = \left[M L^2 T^{-1} \right]$

When units of mass, length and time are doubled, than

$$J' = \left[2 M (2 L)^2 (2 T)^{-1} \right]$$

$$\Rightarrow J' = 4 \left[ML^2 T^{-1} \right] = 4 J$$

Unit of angular momentum is quadrupled.

556 (c)

As
$$I = M R^2 = kg - m^2$$

557 **(d)**

$$e = L \frac{di}{dt} \Rightarrow [e] = [M L^2 T^{-2} A^{-2}] \left[\frac{A}{T}\right]$$

$$[e] = \left[\frac{ML^2T^{-2}}{AT}\right] = [ML^2T^{-2}Q^{-1}]$$

$$\frac{\Delta l}{l} \times 100 = \frac{0.01}{15.12} \times 100 = 0.07,$$
$$\frac{\Delta b}{b} \times 100 = \frac{0.01}{10.15} \times 100 = 0.1,$$
$$\frac{\Delta t}{t} \times 100 = \frac{0.01}{5.28} \times 100 = 0.2$$

Required percentage i 0.07 + 0.1 + 0.2 = 0.37%

559 **(b)**

The height of a tree, building tower, hill etc, can be determined with the help of a sextant.

561 **(c)**

 $V = 2.34 \times 11.11111$ volt $\dot{c} 26.0$ volt. [Because the final result should contain three significant figure.]

562 **(d)**

Charge i Current \times Time = [AT]

563 **(b)**

Time constant in an R-C circuit $\tau = R-C$ $[\tau] = [R][C]$ $\delta [ML^2T^{-3}A^{-2}][M^{-1}L^{-2}T^4A^2]$ $\delta [M^0L^0T]$

Force = Mass × acceleration

 \therefore Dimensions of force $\frac{i}{M}[M][LT^{-2}] = [MLT^{-2}]$

$$\therefore$$
 Dimensions of power $i \frac{[M L^2 T^{-2}]}{[T]} = [M L^2 T^{-3}]$

Torque = *Force* × *displacement*

: Dimensions of torque

$$\frac{1}{L} [MLT^{-2}][L] = [ML^{2}T^{-2}]$$

And dimensions of energy $\lambda \left[M L^2 T^{-2} \right]$

Hence, torque and energy have same dimensions.

565 **(d)**

The number of significant figures in all of the given numbers is 4.

566 **(b)**

Power of lens
$$P = \frac{1}{f}$$

$$\therefore [P] = \frac{1}{[f]} = \frac{1}{[L]} = [M^0 L^{-1} T^0]$$

567 (a)

Dimension of
$$\alpha t = [M^0 L^0 T^0] \therefore [\alpha] = [T^{-1}]$$

Again $\left[\frac{v_0}{\alpha}\right] = [L]$ so $[v_0] = [LT^{-1}]$

568 **(c)**

 $KE = \frac{1}{2}mv^{2}$:.[KE]=[M][LT⁻¹]²=[ML²T⁻²]

569 **(a)**

Physical quantity (p) = i Numerical value $(n) \times Unit(u)$

If physical quantity remains constant then $n \propto 1/u$ $\therefore n_1 u_1 = n_2 u_2$

570 **(b)**

Pyrometer is used the for measurement for temperature

571 **(c)**

Force
$$\vec{F} = q \vec{v} \times \vec{B}$$

Or $F = qvB \sin \theta$
 $\therefore [B] = \left[\frac{F}{qv}\right] = \frac{[MLT^{-2}]}{[ATLT^{-1}]} = [MT^{-2}A^{-1}]$

572 **(d)**

Velocity gradient
$$\frac{i}{k} \frac{v}{x} = \frac{[LT^{-1}]}{[L]} = [T^{-1}]$$

Potential gradient

$$\frac{\partial V}{\partial x} = \frac{\left[ML^2T^{-3}A^{-1}\right]}{\left[L\right]} = \left[MLT^{-3}A^{-1}\right]$$

Energy gradient $\frac{\partial E}{\partial x} = \frac{\left[ML^2T^2\right]}{\left[L\right]} = \left[MLT^{-2}\right]$
And pressure gradient
 $\frac{\partial P}{\partial x} = \frac{\left[ML^{-1}T^{-2}\right]}{\left[L\right]} = \left[ML^{-2}T^{-2}\right]$

573 **(a)**

Volume of cube $=a^3$ Surface area of cube $= 6a^2$ according to problem $a^3 = 6a^2 \Rightarrow a = 6$ $\therefore V = a^3 = 216$ units

574 **(b)**

In mathematical operation, involving addition the result would be correct up to minimum number of decimal places in any of the quantity involve.

Given, L=2.3331 cm and B=2.10 cm.

Taking correct up to decimal places and since, can be rounded off less than 5, the preceding digit is unaffiliated.

 $\therefore L = 2.33 \, cm, B = 2.10 \, cm$

$$L + B = 2.33 + 2.10 = 4.43 \, cm$$

575 **(a)**

The mass of electron
$$i \frac{9.1 \times 10^{-31}}{1.67 \times 10^{-27}}$$

 $\therefore E = \frac{9.1 \times 10^{-31}}{1.67 \times 10^{-27}} \times 931 \text{MeV}$
 $i 0.5073 \text{ MeV}$

DCAM classes Dynamic Classes for Academic Mastery