Single Correct Answer Type

1. If $\tan \theta, \cos \theta, \frac{1}{6} \sin \theta$ are in G.P., then general value of θ is
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
b) $2 n \pi \pm \frac{\pi}{6}, n \in Z$
c) $n \pi+(-1)^{n} \frac{\pi}{3}, n \in Z$
d) $n \pi+\frac{\pi}{3}, n \in Z$
2. $\sin 47^{\circ}+\sin 61^{\circ}-\sin 11^{\circ}-\sin 25^{\circ}$ is equal to
a) $\sin 7^{\circ}$
b) $\cos 7^{\circ}$
c) $\sin 36^{\circ}$
d) $\cos 36^{\circ}$
3. The number of values of x in the interval $[0,3 \pi]$ satisfying the equation $2 \sin ^{2} x+5 \sin x-3=0$ is
a) 6
b) 1
c) 2
d) 4
4. If $\sec \theta \tan \theta=\sqrt{2}$, then $\theta=$
a) $n \pi+(-1)^{n} \frac{\pi}{4}, n \in Z$
b) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
c) $n \pi \pm \frac{2 \pi}{3}, n \in Z$
d) $n \pi-\frac{\pi}{4}, n \in Z$
5. If $\cos (\theta+\phi)=m \cos (\theta-\phi)$, then $\tan \theta$ is equal to
a) $\frac{1+m}{1-m} \tan \phi$
b) $\frac{1-m}{1+m} \tan \phi$
c) $\frac{1-m}{1+m} \cot \phi$
d) $\frac{1+m}{1-m} \sec \phi$
6. If $\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$, then which of the following is correct?
a) $\cos \theta=\frac{3}{2 \sqrt{2}}$
b) $\cos \left(\theta-\frac{\pi}{2}\right)=\frac{1}{2 \sqrt{2}}$
c) $\cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}$
d) $\cos \left(\theta+\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}$
7. $\sec \theta=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$, where $a, b, \in R$ gives real values of θ if and only if
a) $a=b \neq 0$
b) $|a| \neq|b| \neq 0$
c) $a+b=0, a \neq 0$
d) None of these
8. If $\sin A=\frac{1}{\sqrt{10}}$ and $\sin B=\frac{1}{\sqrt{5}}$, where A and B are positive acute angles, then $(A+B)$ is equal to
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$
9. The number of values of x lying in the interval $(-\pi, \pi)$ which satisfy the equation $8^{\left(1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\ldots \infty\right)}=4^{3}$, is
a) 3
b) 4
c) 5
d) 6
10. The value of $\sin \frac{15 \pi}{32} \sin \frac{7 \pi}{16} \sin \frac{3 \pi}{8}$ is
a) $\frac{1}{8 \sqrt{2} \cos \left(\frac{15 \pi}{32}\right)}$
b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$
c) $\frac{1}{4 \sqrt{2}} \operatorname{cosec}\left(\frac{\pi}{16}\right)$
d) None of these
11. If $\alpha, \beta, \gamma \in\left[0, \frac{\pi}{2}\right]$, then the value of $\frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}$ is
a) <1
b) $=-1$
c) <0
d) None of these
12. The expression $\cos \frac{10 \pi}{13}+\cos \frac{8 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$ is equal to
a) -1
b) 0
c) 1
d) None of these
13. $\sin 120^{\circ} \cos 150^{\circ}-\cos 240^{\circ} \sin 330^{\circ}$ is equal to
a) 1
b) -1
c) $\frac{2}{3}$
d) $-\left(\frac{\sqrt{3}+1}{4}\right)$
14. If $A=30^{\circ}, a=7, b=8$ in $\triangle A B C$, then B has
a) One solution
b) Two solutions
c) No solution
d) None of these
15. If $\cos (\theta-\alpha), \cos \theta$ and $\cos (\theta+\alpha)$ are in HP , then $\cos \theta \sec \frac{\alpha}{2}$ is equal to
a) $\pm \sqrt{2}$
b) $\pm \sqrt{3}$
c) $\pm \frac{1}{\sqrt{2}}$
d) None of these
16. The number of values of x for which $\sin 2 x+\cos 4 x=2$, is
a) 0
b) 1
c) 2
d) infinite
17. The value of $\operatorname{cosec}^{2} \frac{\pi}{2}+\operatorname{cosec}^{2} \frac{2 \pi}{7}+\operatorname{cosec}^{2} \frac{3 \pi}{7}$ is
a) 2°
b) 2
c) 2^{2}
d) 2^{3}
18. The maximum value of $4 \sin ^{2} x+3 \cos ^{2} x$ is
a) 4
b) 3
c) 7
d) 5
19.

a) $2 \cos \left(\frac{\theta}{2^{n}}\right)$
b) $2 \cos \left(\frac{\theta}{2^{n-1}}\right)$
c) $2 \cos \left(\frac{\theta}{2^{n+1}}\right)$
d) None of these
20. If $S_{n}=\cos ^{n} \theta+\sin ^{n} \theta$, then the value of $3 S_{4}-2 S_{6}$ is given by
a) 4
b) 0
c) 1
d) 7
21. If $\tan 2 x=\tan \frac{2}{x}$, then the value of x is
a) $\frac{n \pi \pm \sqrt{n^{2} \pi^{2}+16}}{4}$
b) $\frac{n \pi}{4}$
c) $\frac{n \pi \pm \sqrt{n^{2} \pi^{2}-16}}{4}$
d) None of these
22. The set of values of x for which $\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \tan 2 x}=1$ is
a) Φ
b) $\left\{\frac{\pi}{4}\right]$
c) $\left\{n \pi+\frac{\pi}{4}, n=1,2,3, \ldots\right\}$
d) $\left\{2 n \pi+\frac{\pi}{4}, n=1,2,3, \ldots\right\}$
23. The maximum value of $\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)$ under the restriction
$0 \leq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \leq \frac{\pi}{2}$ and $\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)=1$, is
a) $\frac{1}{2^{n / 2}}$
b) $\frac{1}{2^{n}}$
c) $\frac{1}{2 n}$
d) 1
24. If A, B, C are angles of a triangle, then the minimum value of $\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}$, is
a) 0
b) 1
c) $1 / 2$
d) None of these
25. If the interior angles of a polygon are in A.P. with common difference 5° and the smallest angle 120°, then the number of sides of the polygon is
a) 9 or 16
b) 9
c) 13
d) 16
26. The number of values of x in the interval $[0,5 \pi]$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2=0$ is
a) 0
b) 5
c) 6
d) 10
27. If $\tan (A+B)=p$ and $\tan (A-B)=q$, then the value of $\tan 2 A$ is
a) $\frac{p+q}{p-q}$
b) $\frac{p-q}{1+p q}$
c) $\frac{1+p q}{1-p}$
d) $\frac{p+q}{1-p q}$
28. If $\sin \theta=\sqrt{3} \cos \theta, \pi<\theta<0$, then θ is equal to
a) $-\frac{5 \pi}{6}$
b) $-\frac{4 \pi}{6}$
c) $\frac{4 \pi}{6}$
d) $\frac{5 \pi}{6}$
29. The general value of θ satisfying $\sin ^{2} \theta+\sin \theta=2$ is
a) $n \pi+(-1)^{n} \frac{\pi}{6}$
b) $2 n \pi+\frac{\pi}{4}$
c) $n \pi+(-1)^{n} \frac{\pi}{2}$
d) $n \pi+(-1)^{n} \frac{\pi}{3}$
30. The number of solutions of the equation $\tan x+\sec x=2 \cos x$ lying in the interval $[0,2 \pi]$ is
a) 0
b) 1
c) 2
d) 3
31. $\frac{\tan 80^{\circ}-\tan 10^{\circ}}{\tan 70^{\circ}}=$
a) 0
b) 1
c) 2
d) 3
32. If $2 \cos ^{2} x+3 \sin x-3=0,0 \leq x \leq 180^{\circ}$, then the value of x is
a) $30^{\circ}, 90^{\circ}, 150^{\circ}$
b) $60^{\circ}, 120^{\circ}, 180^{\circ}$
c) $0^{\circ}, 30^{\circ}, 150^{\circ}$
d) $45^{\circ}, 90^{\circ}, 135^{\circ}$
33. If $\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$ then $x+y+z=$
a) 1
b) 0
c) -1
d) 2
34. If $a \sec \alpha-c \tan \alpha=d$ and $b \sec \alpha+d \tan \alpha=c$, then
a) $a^{2}+c^{2}=b^{2}+d^{2}$
b) $a^{2}+d^{2}=b^{2}+c^{2}$
c) $a^{2}+b^{2}=c^{2}+d^{2}$
d) $a b=c d$
35. The value of $\cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \ldots \cos \frac{32 \pi}{65}$ is
a) $\frac{1}{32}$
b) $\frac{1}{64}$
c) $-\frac{1}{32}$
d) $-\frac{1}{64}$
36. The number of solutions of $2 \cos ^{2}\left(\frac{x}{2}\right) \sin ^{2} x=x^{2}+\frac{1}{x^{2}}, 0 \leq x \leq \frac{\pi}{2}$ is
a) 0
b) 1
c) Infinite
d) None of these
37. If $\sin A=\sin B, \cos A=\cos B$, then the value of A in terms of B is
a) $n \pi+B$
b) $n \pi+(-1)^{n} B$
c) $2 n \pi+B$
d) $2 n \pi-B$
38. The value of $\frac{\left(3+\cot 76^{\circ} \cot 16^{\circ}\right)}{\cot 76^{\circ}+\cot 16^{\circ}}$ is
a) $\cot 44^{\circ}$
b) $\tan 44^{\circ}$
c) $\tan 2^{\circ}$
d) $\cot 46^{\circ}$
39. The largest positive solution of $1+\sin ^{4} x=\cos ^{2} 3 x$ in $[-5 \pi / 2,5 \pi / 2]$ is
a) π
b) 2π
c) $\frac{5 \pi}{2}$
d) None of these
40. If in a $\triangle A B C, \cos A+2 \cos B+\cos C=2$, then a, b, c are in
a) A.P.
b) H.P.
c) G.P
d) None of these
41. If $\cos \theta-4 \sin \theta=1$, then $\sin \theta+4 \cos \theta=$
a) ± 1
b) 0
c) ± 2
d) ± 4
42. Given $\tan A$ and $\tan B$ are the roots of $x^{2}-a x+b=0$. The value of $\sin ^{2}(A+B)$ is
a) $\frac{a^{2}}{a^{2}(1-b)^{2}}$
b) $\frac{a^{2}}{a^{2}+b^{2}}$
c) $\frac{a^{2}}{(a+b)^{2}}$
d) $\frac{b^{2}}{a^{2}(a-b)^{2}}$
43. If $(a-b) \sin (\theta+)=(a+b) \sin (\theta-\phi)$ and $a \tan \frac{\theta}{2}-b \tan \frac{\phi}{2}=c$, then the value of $\sin \phi$ is equal to
a) $\frac{2 a b}{a^{2}-b^{2}-c^{2}}$
b) $\frac{2 b c}{a^{2}-b^{2}-c^{2}}$
c) $\frac{2 b c}{a^{2}-b^{2}+c^{2}}$
d) $\frac{2 a b}{a^{2}-b^{2}+c^{2}}$
44. The number of solutions of the equation $\sin x \cos 3 x=\sin 3 x \cos 5 x$ in $\left[0, \frac{\pi}{2}\right]$ is
a) 3
b) 4
c) 5
d) 6
45. $A+B=C \Rightarrow \cos ^{2} A+\cos ^{2} B+\cos ^{2} C-2 \cos A \cos B \cos C$ is equal to
a) 1
b) 2
c) 0
d) 3
46. If $0<x<\pi$ and $\cos x+\sin x=\frac{1}{2}$, then the value of $\tan x$ is
a) $\frac{2-\sqrt{7}}{3}$
b) $-\frac{4+\sqrt{7}}{3}$
c) $-\frac{1+\sqrt{7}}{3}$
d) $-\frac{2+\sqrt{7}}{3}$
47. If α and β be between 0 and $\frac{\pi}{2}$ and if $\cos (\alpha+\beta)=\frac{12}{13}$ and $\sin (\alpha-\beta)=\frac{3}{5}$, then $\sin 2 \alpha$ is equal to
a) $64 / 65$
b) $56 / 65$
c) 0
d) $16 / 15$
48. The solution of the equation $\sin ^{10} 2 x=1+\cos ^{10} x$ is
a) $x=(2 n+1) \frac{\pi}{2}$
b) $x=n \pi$
c) $x=(2 n+1) \frac{\pi}{4}$
d) None of these
49. In a $\triangle P Q R, \angle R=\frac{\pi}{2}$. If $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of the equation $a x^{2}+b x+c=0(a \neq 0)$, then
a) $a+b=c$
b) $b+c=a$
c) $c+a=b$
d) $b=c$
50. The equation $\sqrt{3} \sin x+\cos x=4$ has
a) Infinity many solutions
b) No solution
c) Two solutions
d) Only one solution
51. If $\frac{\cos \theta}{a}=\frac{\sin \theta}{b}$, then $\frac{a}{\sec 2 \theta}+\frac{b}{\operatorname{cosec} 2 \theta}$ is equal to
a) a
b) b
c) $\frac{a}{b}$
d) $a+b$
52. The maximum value of $(x+\pi / 6)+\cos (x+\pi / 6)$ in the interval $(0, \pi / 2)$ is attained at
a) $\pi / 12$
b) $\pi / 6$
c) $\pi / 3$
d) $\pi / 2$
53. If $\tan x=\frac{2 b}{a-c}, a \neq c$; and $y=a \cos ^{2} x+2 b \sin x \cos x+c \sin ^{2} x$
$z=a \sin ^{2} x-2 b \sin x \cos x+c \cos ^{2} x$, then
a) $y=z$
b) $y+z=a-c$
c) $y-z=a-c$
d) $(y-z)=(a-c)^{2}+4 b^{2}$
54. If $\frac{1}{6} \sin x, \cos x, \tan x$ are in G.P., then x is equal to
a) $n \pi \pm \frac{\pi}{3}, n \in Z$
b) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
c) $n \pi+(-1)^{n} \frac{\pi}{3}, n \in Z$
d) None of these
55. In a $\triangle A B C, a^{2} \sin 2 C+c^{2} \sin 2 A=$
a) Δ
b) 2Δ
c) 3Δ
d) 4Δ
56. $e^{\log \left(\cosh ^{-1} 2\right)}$ is equal to
a) $\log (2-\sqrt{3})$
b) $\log (\sqrt{3}-2)$
c) $\log (2+\sqrt{3})$
d) $\log (2+\sqrt{5})$
57. If $x+\frac{1}{x}=2 \cos \theta$, then $x^{3}+\frac{1}{x^{3}}$ id equal to
a) $\sin 3 \theta$
b) $2 \sin 3 \theta$
c) $\cos 3 \theta$
d) $2 \cos 3 \theta$
58. If $A+B=\frac{\pi}{4}$, then $(\tan A+1)(\tan B+1)$ equals
a) 1
b) $\sqrt{3}$
c) 2
d) $\frac{1}{\sqrt{3}}$
59. The maximum value of $\cos x\left\{\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}\right\}$, is
a) 1
b) 3
c) 2
d) 4
60. The value of $\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{3 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{5 \pi}{15} \cos \frac{6 \pi}{15} \cos \frac{7 \pi}{15}$, is
a) $1 / 128$
b) $1 / 64$
c) $1 / 16$
d) None of these
61. The side of a triangle are $a, b, \sqrt{a^{2}+b^{2}+a b}$, then the greatest angle is
a) 60°
b) 90°
c) 120°
d) 135°
62. If $\alpha, \beta, \gamma, \delta$ are four solutions of the equation $\tan \left(\theta+\frac{\pi}{4}\right)=3 \tan 3 \theta$, then $\tan \alpha \tan \beta \tan \gamma \tan \delta$ equals
a) 3
b) $1 / 3$
c) $-\frac{1}{3}$
d) None of these
63. In a $\triangle A B C$ if $a=5, b=4$ and $\tan \frac{C}{2}=\frac{\sqrt{7}}{3}$, then $c=$
a) $\sqrt{6}$
b) $\sqrt{5}$
c) 6
d) 5
64. $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$ is equal to
a) $\tan 16 \alpha$
b) 0
c) $\cot \alpha$
d) None of these
65. The most general value of θ for which
$\sin \theta-\cos \theta=\min _{x \in R}\left\{1, x^{2}-4 x+6\right\}$ are given by
a) $\theta=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}, n \in Z$
b) $\theta=n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{4}, n \in Z$
c) $\theta=2 n \pi+\frac{\pi}{4}, n \in Z$
d) None of these
66. If $\tan \frac{x}{2}=\operatorname{cosec} x-\sin x$, then the value of $\tan ^{2} \frac{x}{2}$, is
a) $2-\sqrt{5}$
b) $2+\sqrt{5}$
c) $-2-\sqrt{5}$
d) $-2+\sqrt{5}$
67. In a $\triangle A B C, \frac{\cos C+\cos A}{c+a}+\frac{\cos B}{b}=$
a) $\frac{1}{a}$
b) $\frac{1}{b}$
c) $\frac{1}{c}$
d) $\frac{c+a}{b}$
68. $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$ is equal to
a) $1 / 16$
b) $1 / 32$
c) $1 / 8$
d) $1 / 4$
69. If $\sin \alpha=\sin \beta$ and $\cos \alpha=\cos \beta$, then
a) $\sin \frac{\alpha+\beta}{2}=0$
b) $\cos \frac{\alpha+\beta}{2}=0$
c) $\sin \frac{\alpha-\beta}{2}=0$
d) $\cos \left(\frac{\alpha-\beta}{2}\right)=0$
70. In triangle $A B C, A=30^{\circ}, b=8, a=6$, then $B=\sin ^{-1} x$, where $x=$
a) $1 / 2$
b) $1 / 3$
c) $2 / 3$
d) 1
71. Consider the following statements :

1. If $\operatorname{cosec} x=1+\cot x$, then $x=2 n \pi+\frac{3 \pi}{4}$
2. General value of θ satisfying $\tan ^{2} \theta+\sec 2 \theta=1$ is $n \pi+\frac{\pi}{2}$

Which of the statements given above is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) Neither (1) nor (2)
72. If $\cos A=\frac{3}{4}$, then $32 \sin \left(\frac{A}{2}\right) \sin \left(\frac{5 A}{2}\right)=$
a) 7
b) 8
c) 11
d) None of these
73. In any $\triangle A B C$, the distance of the orthocentre from the vertices A, B, C are in the ratio
a) $\sin A: \sin B: \sin C$
b) $\cos A: \cos B: \cos C$
c) $\tan A: \tan B: \tan C$
d) None of these
74. If $\tan \alpha=\left(1+2^{-x}\right)^{-1}, \tan \beta=\left(1+2^{x+1}\right)^{-1}$, then $\alpha+\beta$ equals
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{2}$
75. If $\cos \theta=\cos \alpha \cos \beta$, then $\tan \left(\frac{\theta+\alpha}{2}\right) \tan \left(\frac{\theta-\alpha}{2}\right)$ is equal to
a) $\tan ^{2} \frac{\alpha}{2}$
b) $\tan ^{2} \frac{\beta}{2}$
c) $\tan ^{2} \frac{\theta}{2}$
d) $\cot ^{2} \frac{\beta}{2}$
76. Consider the following statements :

1. $\cot \theta-\tan \theta$, then $\theta=(4 n+1) \frac{\pi}{8}$
2. $\sin 2 x+\cos 2 x+\sin x+\cos x+1=0$ has no solution in the Ist quadrant.

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both of these
d) None of these
77. The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is equal to
a) $\frac{1}{2}$
b) $\frac{1}{4}$
c) $\frac{1}{8}$
d) $\frac{1}{16}$
78. $\frac{1-\tan ^{2}\left(45^{\circ}-A\right)}{1+\tan ^{2}\left(45^{\circ}-A\right)}$ is equal to
a) $\sin 2 A$
b) $\cos 2 A$
c) $\tan 2 A$
d) $\cot 2 \mathrm{~A}$
79. If $\tan \alpha=\frac{\mathrm{m}}{\mathrm{m}+1}$ and $\tan \beta=\frac{1}{2 \mathrm{~m}+1}$, then $\alpha+\beta$ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) None of these
80. If $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$, then θ is equal to
a) $2 n \pi+\frac{\pi}{4}$
b) $2 n \pi \pm \frac{\pi}{4}$
c) $2 n \pi-\frac{\pi}{4}$
d) $n \pi+\frac{\pi}{4}$
81. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$, then $\frac{\tan x}{\tan y}$ is equal to
a) $\frac{a^{2}}{b^{2}}$
b) $\frac{a}{b}$
c) $\frac{b}{a}$
d) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
82. If $\cos \theta-4 \sin \theta=1$, then $\sin \theta+4 \cos \theta$ is equal to
a) ± 1
b) 0
c) ± 2
d) ± 4
83. If $\frac{\cos \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{1}+\theta_{2}\right)}+\frac{\cos \left(\theta_{3}+\theta_{4}\right)}{\cos \left(\theta_{3}-\theta_{4}\right)}=0$, then $\tan \theta_{1} \tan \theta_{2} \tan \theta_{3} \tan \theta_{4}=$
a) 1
b) 2
c) -1
d) None of these
84. General solution of the equation $\cot \theta-\tan \theta=2$ is
a) $n \pi+\frac{\pi}{4}$
b) $\frac{n \pi}{2}+\frac{\pi}{8}$
c) $\frac{n \pi}{2} \pm \frac{\pi}{8}$
d) None of these
85. The value of $\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$ is equal to
a) $\frac{1}{4}$
b) $\frac{1}{16}$
c) $\frac{3}{4}$
d) $\frac{5}{16}$
86. The equation $\sin \theta=x+\frac{p}{x}$ for real values of x is possible when
a) $p \geq 0$
b) $p \leq 0$
c) $p \leq \frac{1}{4}$
d) $p \geq \frac{1}{2}$
87. The number of values of x in $[0,5 \pi]$ satisfying the equation $3 \cos 2 x-10 \cos x+7=0$, is
a) 5
b) 6
c) 8
d) 10
88. $\sum_{r=1}^{n-1} \cos ^{2} \frac{r \pi}{n}$ is equal to
a) $\frac{n}{2}$
b) $\frac{n-1}{2}$
c) $\frac{n}{2}-1$
d) None of these
89. The solution of the equation $1-\cos \theta=\sin \theta \sin \frac{\theta}{2}$ is
a) $n \pi, n \in Z$
b) $2 n \pi, n \in Z$
c) $\frac{n \pi}{2}, n \in Z$
d) None of these
90. The greatest value of $\cos \theta$ for which $\cos 5 \theta=0$, is
a) 0
b) $\frac{1+\sqrt{5}}{4}$
c) $\sqrt{\frac{5+\sqrt{5}}{8}}$
d) $\sqrt{\frac{\sqrt{5}+1}{4}}$
91. The solution of equation $\cos ^{2} \theta+\sin \theta+1=0$ lies in the interval
a) $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
b) $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
c) $\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$
d) $\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right)$
92. The circular wire of diameter 10 cm is cut and placed along the circumference of a circle of diameter 1 m . The angle subtended by the wire at the center of the circle is equal to
a) $\frac{\pi}{4} \mathrm{rad}$
b) $\frac{\pi}{3} \mathrm{rad}$
c) $\frac{\pi}{5} \mathrm{rad}$
d) $\frac{\pi}{10} \mathrm{rad}$
93. If $\cos A=\tan B, \cos B=\tan C, \cos C=\tan A$, then $\sin A$ is equal to
a) $\sin 18^{\circ}$
b) $2 \sin 18^{\circ}$
c) $2 \cos 18^{\circ}$
d) $2 \cos 36^{\circ}$
94. $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\cdots+\cos 180^{\circ}=$
a) 1
b) 0
c) 2
d) -1
95. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
a) no solution
b) two solution
c) three solution
d) None of these
96. In a triangle $A B C, \cos A+\cos B+\cos C=$
a) $1+\frac{r}{R}$
b) $1-\frac{r}{R}$
c) $1-\frac{R}{r}$
d) $1+\frac{R}{r}$
97. $\frac{1}{\cos 80^{\circ}}-\frac{\sqrt{3}}{\sin 80^{\circ}}$ is equal to
a) $\sqrt{2}$
b) $\sqrt{3}$
c) 2
d) 4
98. If $\sin A+\cos B=a$ and $\sin B+\cos A=b$, then $\sin (A+B)$ is equal to
a) $\frac{a^{2}+b^{2}}{2}$
b) $\frac{a^{2}-b^{2}+2}{2}$
c) $\frac{a^{2}+b^{2}-2}{2}$
d) None of these
99. If in a $\triangle A B C, 3 a=b+c$, then the value of $\cot \frac{B}{2} \cot \frac{C}{2}$ is
a) 1
b) $\sqrt{3}$
c) 2
d) None of these
100. If p_{1}, p_{2}, p_{3} are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then $\frac{\cos A}{p_{1}}+\frac{\cos B}{p_{2}}+\frac{\cos C}{p_{3}}$ is equal to
a) $\frac{1}{r}$
b) $\frac{1}{R}$
c) $\frac{1}{\Delta}$
d) None of these
101. In a triangle $A B C, \cos A+\cos B+\cos C=\frac{3}{2}$, then the triangle is
a) Isosceles
b) Right angled
c) Equilateral
d) None of these
102. If $\sin A=\frac{336}{625}$ where $450^{\circ}<A<540^{\circ}$, then $\sin \frac{A}{4}=$
a) $\frac{3}{5}$
b) $-\frac{3}{5}$
c) $\frac{4}{5}$
d) $-\frac{4}{5}$
103. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta), 0<\theta<\frac{3 \pi}{4}$, then $\sin \left(\theta+\frac{\pi}{4}\right)$ equals
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) $\frac{1}{2 \sqrt{2}}$
d) $\sqrt{2}$
104. The number of ordered pairs (α, β), where $\alpha, \beta \in(-\pi, \pi)$ satisfying $\cos (\alpha-\beta)=1$ and $\cos (\alpha+\beta)=\frac{1}{e}$, is
a) 0
b) 1
c) 2
d) 4
105. If $x+\frac{1}{x}=2 \cos \theta$, then $x^{n}+\frac{1}{x^{n}}$ is equal to
a) $2 \sin n \theta$
b) $2 \cos n \theta$
c) $\sin (2 n \theta)$
d) $\cos (2 n \theta)$
106. In a $\triangle A B C, \cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=$
a) $2-\frac{r}{R}$
b) $2-\frac{r}{2 R}$
c) $2+\frac{r}{2 R}$
d) None of these
107. The value of $\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{3 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{5 \pi}{15} \cos \frac{6 \pi}{15} \cos \frac{7 \pi}{15}$ is
a) $\frac{1}{2^{6}}$
b) $\frac{1}{2^{7}}$
c) $\frac{1}{2^{8}}$
d) None of these
108. If $\tan A$ and $\tan B$ are the roots of $a b x^{2}-c^{2} x+a b=0$ where a, b, c are the sides of the triangles $A B C$, then the value of $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is
a) 1
b) 3
c) 4
d) 2
109. If $x=\tan 15^{\circ}, y=\operatorname{cosec} 75^{\circ}, z=4 \sin 18^{\circ}$
a) $x<y<z$
b) $y<z<x$
c) $z<x<y$
d) $x<z<y$
110. If $P=\frac{1}{2} \sin ^{2} \theta+\frac{1}{3} \cos ^{2} \theta$, then
a) $\frac{1}{3} \leq P \leq \frac{1}{2}$
b) $P \geq \frac{1}{2}$
c) $2 \leq P \leq 3$
d) $-\frac{\sqrt{13}}{6} \leq P \leq \frac{\sqrt{13}}{6}$
111. If $|k|=5$ and $0^{\circ} \leq \theta \leq 360^{\circ}$, then the number of different solutions of $3 \cos \theta+4 \sin \theta=k$ is
a) Zero
b) Two
c) One
d) Infinite
112. If $p=\cos 55^{\circ}, q=\cos 65^{\circ}$ and $r=\cos 175^{\circ}$, then the value of $\frac{1}{p}+\frac{1}{q}+\frac{r}{p q}$ is
a) 0
b) -1
c) 1
d) None of these
113. If $\sin x+\operatorname{cosec} x=2$, then $\sin ^{n} x+\operatorname{cosec}^{n} x$ is equal to
a) 2
b) 2^{n}
c) 2^{n-1}
d) 2^{n-2}
114. In a right-angled triangle if the sides are in A.P., then their ratio is
a) $3: 4: 5$
b) $4: 5: 6$
c) $3: 4: 6$
d) None of these
115. If $\alpha, \beta(\alpha \neq \beta)$ satisfies the equation $a \cos \theta+b \sin \theta=c$, then the value of $\tan \left(\frac{\alpha+\beta}{2}\right)$ is
a) b / a
b) c / a
c) a / b
d) c / b
116. In a $\triangle A B C$, if $\frac{a}{b^{2}-c^{2}}+\frac{c}{b^{2}-a^{2}}=0$, then $\angle B=$
a) $\frac{\pi}{2}$
b) $\frac{\pi}{4}$
c) $\frac{2 \pi}{3}$
d) $\frac{\pi}{3}$
117. $\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\ldots+\sin ^{2} 90^{\circ}$ is equal to
a) $8 \frac{1}{2}$
b) 9
c) $9 \frac{1}{2}$
d) $4 \frac{1}{2}$
118. In a $\triangle A B C$, if $C=60^{\circ}$, then $\frac{a}{b+c}+\frac{b}{c+a}=$
a) 2
b) 1
c) 4
d) None of these
119. The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}$ is
a) $1 / 16$
b) $1 / 8$
c) $1 / 2$
d) $1 / 4$
120. The area of a $\triangle A B C$ is $b^{2}-(c-a)^{2}$. Then, $\tan B=$
a) $\frac{4}{3}$
b) $\frac{3}{4}$
c) $\frac{8}{15}$
d) None of these
121. The value of $\cos ^{2} 76^{\circ}+\cos ^{2} 16-\cos 76^{\circ} \cos 16^{\circ}$, is
a) $1 / 2$
b) 0
c) $-1 / 4$
d) $3 / 4$
122. If $\sec \theta+\tan \theta=k, \cos \theta$ equals to
a) $\frac{k^{2}+1}{2 k}$
b) $\frac{2 k}{k^{2}+1}$
c) $\frac{k}{k^{2}+1}$
d) $\frac{k}{k^{2}-1}$
123. Let n be an odd integer. If $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$ for all real θ, then
a) $b_{0}=1, b_{1}=3$
b) $b_{0}=0, b_{1}=n$
c) $b_{0}=-1, b_{1}=n$
d) $b_{0}=0, b_{1}=n^{2}-3 n-3$
124. $\left\{x \in R: \cos 2 x+2 \cos ^{2} x=2\right\}$ is equal to
a) $\left\{2 n \pi+\frac{\pi}{3}: n \in Z\right\}$
b) $\left\{n \pi \pm \frac{\pi}{6}: n \in Z\right\}$
c) $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$
d) $\left\{2 n \pi-\frac{\pi}{3}: n \in Z\right\}$
125. $1+\sin x+\sin ^{2} x+\cdots$ to $\infty=4+2 \sqrt{3}$, if
a) $x=\frac{2 \pi}{3}$ or, $\frac{\pi}{3}$
b) $x=\frac{7 \pi}{6}$
c) $x=\frac{\pi}{6}$
d) $x=\frac{\pi}{4}$
126. The number of solutions of $\sin x=\sin 2 x$ between $\frac{-\pi}{2}$ and $\frac{\pi}{2}$ is
a) 3
b) 2
c) 1
d) 0
127. If $\sin (\pi \cot \theta)=\cos (\pi \tan \theta)$, then
a) $\cot 2 \theta= \pm \frac{1}{4},-\frac{3}{4}$
b) $\cot 2 \theta=4, \frac{4}{3}$
c) $\cot 2 \theta=-\frac{3}{4},-\frac{1}{4}$
d) None of these
128. The value of $\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{14 \pi}{15}$ is
a) $\frac{1}{16}$
b) $\frac{1}{8}$
c) $\frac{1}{12}$
d) $\frac{1}{4}$
129. The equation $3 \sin ^{2} x+10 \cos x-6=0$ is satisfied, if
a) $x=n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
b) $x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
c) $x=n \pi \pm \cos ^{-1}\left(\frac{1}{6}\right)$
d) $x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{6}\right)$
130. Let α, β be any two positive values of x for which $2 \cos x,|\cos x|$ and $1-3 \cos ^{2} x$ are in GP. The minimum value of $|\alpha-\beta|$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) None of these
131. If $\cos \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$, then the general value of θ is
a) $2 n \pi+\frac{\pi}{4}$
b) $2(n+1) \pi+\frac{\pi}{4}$
c) $n \pi+\frac{\pi}{4}$
d) $n \pi \pm \frac{\pi}{4}$
132. In any triangle $A B C, \sum \frac{\sin ^{2} A+\sin A+1}{\sin A}$ is always greater than
a) 9
b) 3
c) 27
d) None of these
133. If $\alpha+\beta+\gamma=2 \theta$, then $\cos \theta+\cos (\theta-\alpha)+\cos (\theta-\beta)+\cos (\theta-\gamma)$ is equal to
a) $4 \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$
b) $4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
c) $4 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$
d) $4 \sin \alpha \sin \beta \sin \gamma$
134. If the data given to construct a triangle $A B C$ are $a=5, b=7, \sin A=3 / 4$, then it is possible to construct
a) Only one triangle
b) Two triangles
c) Infinitely many triangles
d) No triangles
135. If in a $\triangle A B C, \angle A=\pi / 3$ and $A D$ is a median, then
a) $2 A D^{2}=b^{2}+c^{2}+b c$
b) $4 A D^{2}=b^{2}+c^{2}+b c$
c) $6 A D^{2}=b^{2}+c^{2}+b c$
d) None of these
136. If $\tan \theta=\frac{1}{2}$ and $\tan \phi=\frac{1}{3}$, then the value of $\theta+\phi$, is
a) $\pi / 6$
b) π
c) Zero
d) $\pi / 4$
137. If $a=\tan 27 \theta-\tan \theta$ and $b=\frac{\sin \theta}{\cos 3 \theta}+\frac{\sin 3 \theta}{\cos 9 \theta}+\frac{\sin 9 \theta}{\cos 27 \theta}$, then
a) $a=b$
b) $a=2 b$
c) $b=2 a$
d) $a+b=2$
138. If in a triangle $A B C$, right angled at $B, s-a=3, s-c=2$, then the values of a and c are respectively
a) 2,3
b) 3,4
c) 4,3
d) 6,8
139. If $\frac{\pi}{2}<\alpha<\pi, \pi<\beta<\frac{3 \pi}{2} ; \sin \alpha=\frac{15}{17}$ and $\tan \beta=\frac{12}{5}$, then the value of $\sin (\beta-\alpha)$ is
a) $-\frac{171}{221}$
b) $-\frac{21}{221}$
c) $\frac{21}{221}$
d) $\frac{171}{221}$
140. If $\tan 2 \theta \tan \theta=1$, then $\theta=$
a) $n \pi+\frac{\pi}{6}, n \in Z$
b) $n \pi \pm \frac{\pi}{6}, n \in Z$
c) $2 n \pi \pm \frac{\pi}{6}, n \in Z$
d) None of these
141. The value of $\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}$, is
a) $\sqrt{7} / 8$
b) $1 / 8$
c) $\sqrt{7} / 2$
d) $-\sqrt{7} / 2$
142. The perimeter of a triangle is 16 cm . One of the sides is of length 6 cm . If the area of the triangle is $12 \mathrm{~cm}^{2}$, then the triangle is
a) Right angled
b) Isosceles
c) Equilateral
d) Scalene
143. If $\sin \alpha+\cos \alpha=m$, then $\sin ^{6} \alpha+\cos ^{6} \alpha$ is equal to
a) $\frac{4-3\left(m^{2}-1\right)^{2}}{4}$
b) $\frac{4+3\left(m^{2}-1\right)^{2}}{4}$
c) $\frac{3+4\left(m^{2}-1\right)^{2}}{4}$
d) None of these
144. For $x \in R$, $\tan x+\frac{1}{2} \tan \frac{x}{2}+\frac{1}{2^{2}} \tan \frac{x}{2^{2}}+\cdots+\frac{1}{2^{n-1}} \tan \left(\frac{x}{2^{n-1}}\right)$ is equal to
a) $2 \cot 2 x-\frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}}\right)$
b) $\frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}}\right)-2 \cot 2 x$
c) $\cot \left(\frac{x}{2^{n-1}}\right)-\cot 2 x$
d) None of these
145. The value of expression $\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}$ is equal to
a) $\frac{\sqrt{3}}{4}$
b) $\frac{4}{\sqrt{3}}$
c) $\frac{2}{\sqrt{3}}$
d) $\frac{\sqrt{3}}{2}$
146. If $A=\sin ^{2} \theta+\cos ^{4} \theta$, then for all real values of θ
a) $1 \leq A \leq 2$
b) $\frac{3}{4} \leq A \leq 1$
c) $\frac{13}{16} \leq A \leq 1$
d) $\frac{3}{4} \leq A \leq \frac{13}{16}$
147. If $12 \cot ^{2} \theta-31 \operatorname{cosec} \theta+32=0$, then the value of $\sin \theta$ is
a) $\frac{3}{5}$ or 1
b) $\frac{2}{3}$ or $-\frac{2}{3}$
c) $\frac{4}{5}$ or $\frac{3}{4}$
d) $\pm \frac{1}{2}$
148. The value of $\sin 20^{\circ}\left(4+\sec 20^{\circ}\right)$ is
a) 0
b) 1
c) $\sqrt{2}$
d) $\sqrt{3}$
149. The angle θ whose cosine equals to its tangent is given by
a) $\cos \theta=2 \cos 18^{\circ}$
b) $\cos \theta=2 \sin 18^{\circ}$
c) $\sin \theta=2 \sin 18^{\circ}$
d) $\sin \theta=2 \cos 18^{\circ}$
150. The value of $3\left[\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-2\left[\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]$ is equal to
a) 0
b) 1
c) 3
d) $\sin 4 \alpha+\sin 6 \alpha$
151. The most general value of θ satisfying $\tan \theta+\tan \left(\frac{3 \pi}{4}+\theta\right)=2$ are
a) $n \pi \pm \frac{\pi}{3}, n \in Z$
b) $2 n \pi+\frac{\pi}{3}, n \in Z$
c) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
d) $n \pi+(-1)^{n} \frac{\pi}{3}, n \in Z$
152. If angle θ be divided into two parts such that the tangent of one part is k times the tangent of the other and ϕ is their difference, then $\sin \theta$ is equal to
a) $\frac{k+1}{k-1} \sin \phi$
b) $\frac{k-1}{k+1} \sin \phi$
c) $\frac{2 k-1}{2 k+1} \sin \phi$
d) None of these
153. If A, B, C, D are the angles of a cyclic quadrilateral, then $\cos A+\cos B+\cos D$ is equal to
a) $2(\cos A+\cos C)$
b) $2(\cos A+\cos B)$
c) $2(\cos A+\cos D)$
d) 0
154. If $\cos (\theta-\alpha)=a, \cos (\theta-\beta)=b$, then $\sin ^{2}(\alpha-\beta)+2 a b \cos (\alpha-\beta)=$
a) $a^{2}+b^{2}$
b) $a^{2}-b^{2}$
c) $b^{2}-a^{2}$
d) $-a^{2}-b^{2}$
155. If $0<x<\pi$ and $\cos x+\sin x=\frac{1}{2}$, then $\tan x$ is
a) $\frac{(4-\sqrt{7})}{3}$
b) $-\frac{(4+\sqrt{7})}{3}$
c) $\frac{(1+\sqrt{7})}{4}$
d) $\frac{(1-\sqrt{7})}{4}$
156. If the equation $\sec \theta+\operatorname{cosec} \theta=c$ has real roots between 0 and 2π, then
a) $c^{2}<8$
b) $c^{2}>8$
c) $c^{2}=8$
d) None of these
157. The set of values of θ satisfying the inequation $2 \sin ^{2} \theta-5 \sin \theta+2>0$, where $0<\theta<2 \pi$, is
a) $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
b) $\left[0, \frac{\pi}{6}\right] \cup\left[\frac{5 \pi}{6}, 2 \pi\right]$
c) $\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, 2 \pi\right]$
d) None of these
158. In a $\triangle A B C, B=\frac{\pi}{8}$ and $C=\frac{5 \pi}{8}$. The altitude from A to the side $B C$, is
a) $\frac{a}{2}$
b) $2 a$
c) $\frac{1}{2}(b+c)$
d) $b+c$
159. The solution set of $(5+4 \cos \theta)(2 \cos \theta+1)=0$ in the interval $[0,2 \pi]$ is
a) $\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
b) $\left\{\frac{\pi}{3}, \pi\right\}$
c) $\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
d) $\left\{\frac{2 \pi}{3}, \frac{5 \pi}{3}\right\}$
160. If $\cos 3 x+\sin \left(2 c-\frac{7 \pi}{6}\right)=-2$, then $x=$
a) $\frac{\pi}{3}(6 k+1), k \in Z$
b) $\frac{\pi}{3}(6 k-1), k \in Z$
c) $\frac{\pi}{3}(2 k+1), k \in Z$
d) None of these
161. The maximum value of $\cos ^{2}\left(\frac{\pi}{3}-x\right)-\cos ^{2}\left(\frac{\pi}{3}+x\right)$ is
a) $-\frac{\sqrt{3}}{2}$
b) $\frac{1}{2}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{3}{2}$
162. If $\alpha, \beta, \gamma \in(0, \pi / 2)$, then the value of $\frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}$, is
a) <1
b) >1
c) $=1$
d) $=-1$
163. If $\tan \theta \tan \left(\frac{\pi}{3}+\theta\right) \tan \left(-\frac{\pi}{3}+\theta\right)=k \tan 3 \theta$, then the value of k is
a) 1
b) $1 / 3$
c) 3
d) None of these
164. If $4 n \alpha=\pi$, then the value of $\tan \alpha \tan 2 \alpha \tan 3 \alpha \tan 4 \alpha \ldots \tan (2 n-2) \alpha \tan (2 n-1) \alpha$, is
a) 0
b) 1
c) -1
d) None of these
165. If $\alpha, \beta, \gamma \in\left(0, \frac{\pi}{2}\right)$, then the value of $\frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}$ is
a) <1
b) >1
c) 1
d) None of these
166. Total number of solutions of the equation $3 x+2 \tan x=\frac{5 \pi}{2}$ in $x \in[0,2 \pi]$, is equal to
a) 1
b) 2
c) 3
d) 4
167. If $A+B+C=180^{\circ}$, then $\sum \tan \frac{A}{2} \tan \frac{B}{2}$ is
a) 0
b) 1
c) 2
d) 3
168. If $\tan \alpha=\frac{m}{m+1}$ and $\tan \beta=\frac{1}{2 m+1}$, then $\alpha+\beta$ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) 0
d) $\frac{\pi}{2}$
169. If $\tan A=2 \tan B+\cot B$, then $2 \tan (A-B)$ is equal to
a) $\tan B$
b) $2 \tan B$
c) $\cot B$
d) $2 \cot B$
170. If $\sin \theta+\operatorname{cosec} \theta=2$, the value of $\sin ^{10} \theta+\operatorname{cosec}^{10} \theta$ is
a) 2
b) 2^{10}
c) 2^{9}
d) 10
171. If $\cos x \neq-\frac{1}{2}$, then the solutions of $\cos x+\cos 2 x+\cos 3 x=0$ are
a) $2 n \pi \pm \frac{\pi}{4}, n \in Z$
b) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
c) $2 n \pi \pm \frac{\pi}{6}, n \in Z$
d) $2 n \pi \pm \frac{\pi}{2}, n \in Z$
172. If $\cosh ^{-1} x=\log (2+\sqrt{3})$, then x is equal to
a) 2
b) 1
c) 3
d) 5
173. The number of distinct roots of the equation $A \sin ^{3} x+B \cos ^{3} x+C=0$ no two of which differ by 2π is
a) 3
b) 4
c) Infinite
d) 6
174. The value of
$\cos \left(270^{\circ}+\theta\right) \cos \left(90^{\circ}-\theta\right)-\sin \left(270^{\circ}-\theta\right) \cos \theta$ is
a) 0
b) -1
c) $1 / 2$
d) 1
175. If $2 \cos \frac{A}{2}=\sqrt{1+\sin A}+\sqrt{1-\sin A}$, then $\frac{A}{2}$ lies between, $(n \in Z)$
a) $2 n \pi+\frac{\pi}{4}$ and $2 n \pi+\frac{3 \pi}{4}$
b) $2 n \pi-\frac{\pi}{4}$ and $2 n \pi+\frac{\pi}{4}$
c) $2 n \pi-\frac{3 \pi}{4}$ and $2 n \pi-\frac{\pi}{4}$
d) $-\infty$ and $+\infty$
176. If $\tan x=\frac{b}{a}$, then the value of $a \cos 2 x+b \sin 2 x$ is
a) 1
b) $a b$
c) b
d) a
177. The maximum value of $1+8 \sin ^{2} x^{2} \cos ^{2} x^{2}$, is
a) 3
b) -1
c) -8
d) 9
178. If in a $\triangle A B C$,
$\sin ^{3} A+\sin ^{3} B+\sin ^{3} C=3 \sin A \sin B \sin C$, then
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=$
a) 0
b) $(a+b+c)^{3}$
c) $(a+b+c)(a b+b c+c a)$
d) None of these
179. The minimum value of $9 \tan ^{2} \theta+4 \cot ^{2} \theta$ is
a) 13
b) 9
c) 6
d) 12
180. The maximum value of $4 \sin ^{2} x-12 \sin x+7$ is
a) 25
b) 4
c) Does not exist
d) None of these
181. If $f: R \rightarrow S$ defined by $f(x)=\sin x-\sqrt{3} \cos x+1$, is onto, then the interval of S is
a) $[0,3]$
b) $[-1,1]$
c) $[0,1]$
d) $[-1,3]$
182. If $y=\frac{\sec ^{2} \theta-\tan \theta}{\sec ^{2} \theta+\tan \theta}$, then
a) $\frac{1}{3}<y<3$
b) $y \notin[1 / 3,3]$
c) $-3<y<-\frac{1}{3}$
d) None of these
183. If $\sin \theta, \cos \theta$ are the roots of $a x^{2}-b x+c=0$ then
a) $a^{2}+b^{2}=2 a c$
b) $a^{2}-b^{2}=2 a c$
c) $a^{2}+b^{2}=c^{2}$
d) $b^{2}+a^{2}=2 a c$
184. If $\sqrt{2} \sec \theta+\tan \theta=1$, then the general value of θ is
a) $n \pi+\frac{3 \pi}{4}$
b) $2 n \pi+\frac{\pi}{4}$
c) $2 n \pi-\frac{\pi}{4}$
d) $2 n \pi \pm \frac{\pi}{4}$
185. The number of ordered pairs (x, y) where $x, y \in[0,10]$ satisfying $\left(\sqrt{\sin ^{2}-\sin x+\frac{1}{2}}\right) \cdot 2^{\sec ^{2} y} \leq 1$ is
a) 0
b) 16
c) Infinite
d) 12
186. The value of the series $\cos 12^{\circ}+\cos 84^{\circ}+\cos 132^{\circ}+\cos 156^{\circ}$ is
a) $\frac{1}{2}$
b) $\frac{1}{4}$
c) $-\frac{1}{4}$
d) $-\frac{1}{2}$
187. The equation $\cos ^{4} x-(\lambda+2) \cos ^{2} x-(\lambda+3)=0$ possesses a solution, if
a) $\lambda>-3$
b) $\lambda<-2$
c) $-3 \leq \lambda \leq-2$
d) λ is any positive integer
188. If $\sin 5 x+\sin 3 x+\sin x=0$, then the value of x other than zero, lying between $0 \leq x \leq \frac{\pi}{2}$ is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{12}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$
189. If $0 \leq x \leq \pi / 2$ and $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$, then x is equal to
a) $\frac{\pi}{6}, \frac{\pi}{3}$
b) $\frac{\pi}{3}, \frac{5 \pi}{2}$
c) $\frac{5 \pi}{6}, \frac{\pi}{6}$
d) $\frac{2 \pi}{3}, \frac{\pi}{3}$
190. In a $\triangle A B C$, if $c=2, A=120^{\circ}, a=\sqrt{6}$, then $C=$
a) 30°
b) 60°
c) 45°
d) None of these
191. If $\sin 6 \theta=32 \cos ^{5} \theta \sin \theta-32 \cos ^{3} \theta \sin \theta+3 x$, then x is equal to
a) $\cos \theta$
b) $\cos 2 \theta$
c) $\sin \theta$
d) $\sin 2 \theta$
192. If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$, then the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is equal to
a) 1
b) 2
c) 0
d) $3 \cos \theta$
193. Let A and B denote the statements
$A: \cos \alpha+\cos \beta+\cos \gamma=0$
$B: \sin \alpha+\sin \beta+\sin \gamma=0$
If $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2}$, then
a) A is true and B is false
b) A is false and B is true
c) Both A and B are true
d) Both A and B are false
194. If $\sin x \cos x \cos 2 x=\lambda$ has a solution, then λ lies in the interval
a) $[-1 / 4,1 / 4]$
b) $[-1 / 2,1 / 2]$
c) $(-\infty,-1 / 4] \cup[1 / 4, \infty)$
d) $(-\infty,-1 / 2] \cup[1 / 2, \infty)$
195. The value of $1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$ is equal to
a) $2 \cos 28^{\circ} \cos 29^{\circ} \cos 33^{\circ}$
b) $4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
c) $4 \cos 28^{\circ} \cos 29^{\circ} \cos 33^{\circ}$
d) $2 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
196. Consider the following statements:
1.Ifsin $A=\sin B$, then we have $\sin 2 A=\sin 2 B$ always
2.The value of $\cos \frac{\pi}{7} \cos \frac{4 \pi}{7} \cos \frac{5 \pi}{7}$ is $\frac{1}{4}$

Which of the statements given above is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) Neither (1)nor(2)
197. $\cos 2 x+k \sin x=2 k-7$ has a solution for
a) $2 \leq k \leq 6$
b) $1<k<7$
c) $4<k<7$
d) None of these
198. If $A+B+C=\frac{3 \pi}{2}$, then $\cos 2 A+\cos 2 B+\cos 2 C=$
a) $1-4 \cos A \cos B \cos C$
b) $4 \sin A \sin B \sin C$
c) $1+2 \cos A \cos B \cos C$
d) $1-4 \sin A \sin B \sin C$
199. The sides of a triangle are $13,14,15$ then the radius of its in-circle is
a) $67 / 8$
b) $65 / 4$
c) 4
d) 24
200. For $x \in I R, 3 \cos (4 x-5)+4$ lies in the interval
a) $[1,7]$
b) $[4,7]$
c) $[0,7]$
d) $[2,7]$
201. If $\cos x-\sin \alpha \cot \beta \sin x=\cos \alpha$, then $\tan \frac{x}{2}$ is equal to
a) $\cot \frac{\alpha}{2} \tan \frac{\beta}{2}$
b) $-\tan \frac{\alpha}{2} \cot \frac{\beta}{2}$
c) $-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
d) $\cot \frac{\alpha}{2} \cot \frac{\beta}{2}$
202. The value of $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$ is equal to
a) $-\frac{3}{16}$
b) $\frac{5}{16}$
c) $\frac{3}{16}$
d) $-\frac{5}{16}$
203. The value of $\sin (\pi+\theta) \sin (\pi-\theta) \operatorname{cosec}^{2} \theta$ is equal to
a) -1
b) 0
c) $\sin \theta$
d) None of these
204. If the equation $\sin \theta(\sin \theta+2 \cos \theta)=a$ has a real solution, then the shortest interval containing ' a^{\prime} is
а) $\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]$
b) $\left(\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}+1}{2}\right)$
c) $(-1 / 2,1 / 2)$
d) None of these
205. If $\tan \theta, 2 \tan \theta+2,3 \tan \theta+3$ are in GP, then the value of $\frac{7-5 \cot \theta}{9-4 \sqrt{\sec ^{2} \theta-1}}$ is
a) $\frac{12}{5}$
b) $-\frac{33}{28}$
c) $\frac{33}{100}$
d) $\frac{12}{13}$
206. If $\cos A=\frac{3}{4}$, then the value of $\sin \frac{A}{2} \sin \frac{5 A}{2}$ is
a) $\frac{1}{32}$
b) $\frac{11}{8}$
c) $\frac{11}{32}$
d) $\frac{11}{16}$
207. If $\cos A+\cos B+\cos C=0$, then $\cos 3 A+\cos 3 B+\cos 3 C$ is equal to
a) $\cos A \cos B \cos C$
b) $12 \cos A \cos B \cos C$
c) 0
d) $8 \cos ^{3} A \cos ^{3} B \cos ^{3} C$
208. The value of $\tan 82 \frac{1^{\circ}}{2}$, is
a) $\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}$
b) $(\sqrt{3}+\sqrt{2})(\sqrt{2}-1)$
c) $-(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)$
d) None of these
209. If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and $z=r \cos \theta$, then the value of $x^{2}+y^{2}+z^{2}$ is independent of
a) θ, ϕ
b) r, θ
c) r, ϕ
d) r
210. If $A B C D$ is a cyclic quadrilateral such that $12 \tan A-5=0$ and $5 \cos B+3=0$, then the quadratic equation whose roots are $\cos C$ and $\tan D$, is
a) $39 x^{2}-16 x-48=0$
b) $39 x^{2}+88 x+48=0$
c) $39 x^{2}-88 x+48=0$
d) None of these
211. The ex-radii of a triangle r_{1}, r_{2}, r_{3} are in harmonic progression, then the sides a, b, c are
a) In H.P.
b) In A.P.
c) In G.P
d) None of these
212. Given both θ and \emptyset are the acute angles $\sin \theta=\frac{1}{2}, \cos \emptyset=\frac{1}{3}$, then the value of $\theta+\emptyset$ belongs to
a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$
b) $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
c) $\left(\frac{2 \pi}{3}, \frac{5 \pi}{6}\right]$
d) $\left(\frac{5 \pi}{6}, \pi\right]$
213. If $\sin 4 A-\cos 2 A=\cos 4 A-\sin 2 A,\left(0<A<\frac{\pi}{2}\right)$, then the value of $\tan 4 A$ is
a) 1
b) $\frac{1}{\sqrt{3}}$
c) $\sqrt{3}$
d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
214. If the ex-radii of a triangle are in H.P., then the corresponding sides are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
215. If $1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$, then $\lambda=$
a) 2
b) 3
c) 4
d) None of these
216. $\triangle A B C$ is right angled at C, then $\tan A+\tan B$ is equal to
a) $\frac{b^{2}}{a c}$
b) $a+b$
c) $\frac{a^{2}}{b c}$
d) $\frac{c^{2}}{a b}$
217. If r is the radius of inscribed circle of a regular polygon of n-sides, then r is equal to
a) $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$
b) $\frac{a}{2} \cot \left(\frac{\pi}{n}\right)$
c) $\frac{a}{2} \tan \left(\frac{\pi}{n}\right)$
d) $\frac{a}{2} \cos \left(\frac{\pi}{n}\right)$
218. $\sinh ^{-1}\left(2^{3 / 2}\right)$ is equal to
a) $\log (3+\sqrt{8})$
b) $\log (3-\sqrt{8})$
c) $\log (2+\sqrt{18})$
d) $\log (\sqrt{8}+\sqrt{27})$
219. If $\tan 2 \theta \tan \theta=1$, then the general value of θ is
a) $\left(n+\frac{1}{2}\right) \frac{\pi}{3}$
b) $\left(n+\frac{1}{2}\right) \pi$
c) $\left(2 n \pm \frac{1}{2}\right) \frac{\pi}{3}$
d) None of these
220. The maximum value of $\cos ^{2} A+\cos ^{2} B-\cos ^{2} C$, is
a) 0
b) 1
c) 3
d) 2
221. Value of $\cos ^{2}(A-B)+\cos ^{2} B-2 \cos (A-B) \cos A \cos B$ is
a) $\sin A$
b) $\sin ^{2} A$
c) $\cos ^{2} A$
d) $\cos A$
222. The value of $\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$ is
a) $\frac{1}{4}$
b) $\frac{1}{16}$
c) $\frac{3}{4}$
d) $\frac{5}{16}$
223. The expression $\left(1+\tan x+\tan ^{2} x\right)\left(1-\cot x+\cot ^{2} x\right)$ has the positive value for x given by
a) $0 \leq x \leq \frac{\pi}{2}$
b) $0 \leq x \leq \pi$
c) For all $x \in R$
d) $x \geq 0$
224. The value of the series $x \log _{e} a+\frac{x^{3}}{3!}\left(\log _{e} a\right)^{3}+\frac{x^{5}}{5!}\left(\log _{e} a\right)^{5}+\ldots$ is
a) $\cosh \left(x \log _{e} a\right)$
b) $\operatorname{coth}\left(x \log _{e} a\right)$
c) $\sinh \left(x \log _{e} a\right)$
d) $\tanh \left(x \log _{e} a\right)$
225. If $3 \tan \left(\theta-15^{\circ}\right)=\tan \left(\theta+15^{\circ}\right), 0<\theta<\pi$, then $\theta=$
a) $\frac{\pi}{2}$
b) $\frac{\pi}{4}$
c) $\frac{3 \pi}{4}$
d) $\frac{\pi}{6}$
226. If $A B C D$ is a convex quadrilateral such that $4 \sec A+5=0$ then the quadratic equation whose roots are $\tan A$ and $\operatorname{cosec} A$ is
a) $12 x^{2}-29 x+15=0$
b) $12 x^{2}-11 x-15=0$
c) $12 x^{2}+11 x-15=0$
d) None of these
227. The smallest value of $5 \cos \theta+12$ is
a) 5
b) 12
c) 7
d) 17
228. The values of x satisfying the system of equations $2^{\sin x+\cos y}=1,16^{\sin ^{2} x+\cos ^{2} y}=4$ are given by
a) $x=n \pi+(-1)^{n} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{\pi}{3}, n \in Z$
b) $x=n \pi+(-1)^{n+1} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
c) $x=n \pi+(-1)^{n} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
d) $x=n \pi+(-1)^{n+1} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
229. If $\cos \theta=-\frac{\sqrt{3}}{2}$ and $\sin \alpha=-\frac{3}{5}$, where θ does not lie in the third quadrant, then $\frac{2 \tan \alpha+\sqrt{3} \tan \theta}{\cot ^{2} \theta+\cos \alpha}$ is equal to
a) $\frac{7}{22}$
b) $\frac{5}{22}$
c) $\frac{9}{22}$
d) $\frac{22}{5}$
230. The expression $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$ is equal to
a) -1
b) 0
c) 1
d) None of these
231. In a $\triangle A B C$, if $b=20, c=21$ and $\sin A=\frac{3}{5}$, then $a=$
a) 12
b) 13
c) 14
d) 15
232. The value of $\cos ^{2} \frac{\pi}{16}+\cos ^{2} \frac{3 \pi}{16}+\cos ^{2} \frac{5 \pi}{16}+\cos ^{2} \frac{7 \pi}{16}$
a) 2
b) 1
c) 0
d) None of these
233. If $\cos (\alpha+\beta)=\frac{4}{5}, \sin (\alpha-\beta)=5 / 13$ and α, β lies between 0 and $\pi / 4$, then $\tan 2 \alpha$ is equal to
a) $\frac{16}{63}$
b) $\frac{56}{33}$
c) $\frac{28}{33}$
d) None of these
234. $\cos 2 \theta+2 \cos \theta$ is always
a) Greater than $-\frac{3}{2}$
b) Less than or equal to $\frac{3}{2}$
c) Greater than or equal to $-\frac{3}{2}$ and less than or equal to 3
d) None of the above
235. If $A=130^{\circ}$ and $x=\sin A+\cos A$, then
a) $x>0$
b) $x<0$
c) $x=0$
d) $x \geq 0$
236. The set of values of x in $(-\pi, \pi)$ satisfying the inequation $|4 \sin x-1|<\sqrt{5}$ is
a) $(-\pi / 10,3 \pi / 10)$
b) $(-\pi / 10, \pi)$
c) $(-\pi, \pi)$
d) $(-\pi, 3 \pi / 10)$
237. If $\sin A=n \sin B$, then $\frac{n-1}{n+1} \tan \frac{A+B}{2}$ is equal to
a) $\sin \frac{A-B}{2}$
b) $\tan \frac{A-B}{2}$
c) $\cot \frac{A-B}{2}$
d) None of these
238. In a $\triangle A B C, \frac{s}{R}=$
a) $\sin A+\sin B+\sin C$
b) $\cos A+\cos B+\cos C$
c) $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}$
d) None of these
239. Which of the following relations is possible?
a) $\sin \theta=\frac{5}{3}$
b) $\tan \theta=100^{2}$
c) $\cos \theta=\frac{1+p^{2}}{1-p^{2}},(p \neq \pm 1)$
d) $\sec \theta=\frac{1}{2}$
240. The value of $\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}$, is
a) $\frac{1}{8}$
b) $-\frac{1}{8}$
c) 1
d) 0
241. The number of solutions of the given equation $\tan \theta+\sec \theta=\sqrt{3}$, where $0<\theta<2 \pi$ is
a) 0
b) 1
c) 2
d) 3
242. The value of $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$ is equal to
a) $\frac{1}{16}$
b) $\frac{1}{32}$
c) $\frac{1}{8}$
d) $\frac{1}{4}$
243. If p is the product of the sines of angles of a triangle, and q the product of their cosines, then tangents of the angles are roots of the equation
a) $q x^{3}-p x^{3}+(1+q) x-p=0$
b) $p x^{3}-q x^{2}+(1+p) x-q=0$
c) $(1+q) x^{3}-p x^{2}+q x-p=0$
d) None of these
244. The value of $\cos 480^{\circ} \cdot \sin 150^{\circ}+\sin 600^{\circ} \cdot \operatorname{soc} 390^{\circ}$ is equal to
a) 0
b) 1
c) $\frac{1}{2}$
d) -1
245. If $\cos p \theta=\cos q \theta, p \neq q$, then
a) $\theta=2 n \pi, n \in Z$
b) $\theta=\frac{2 n \pi}{p \pm q}, n \in Z$
c) $\theta=\frac{n \pi}{p+q}, n \in Z$
d) None of these
246. The most general solutions of the equation $\sec x-1=(\sqrt{2}-1) \tan x$ are given by
a) $n \pi+\frac{\pi}{8}$
b) $2 n \pi, 2 n \pi+\frac{\pi}{4}$
c) $2 n \pi$
d) None of these
247. If $x=\tan 15^{\circ}, y=\operatorname{cosec} 75^{\circ}$ and $z=4 \sin 18^{\circ}$, then
a) $x<y<z$
b) $y<z<x$
c) $z<x<y$
d) $x<z<y$
248. The number of points of intersection of $2 y=1$ and $y=\sin x$, in $-2 \pi \leq x \leq 2 \pi$ is
a) 1
b) 2
c) 3
d) 4
249. If $A+B=C$, then $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C-2 \cos A \cos B \cos C=$
a) 1
b) 2
c) 0
d) 3
250. The number of solutions of the equation $|\cos x|=2[x]$, where $[\cdot]$ is the greatest integer, is
a) One
b) Two
c) Infinite
d) nil
251. The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the equation $(\sqrt{3})^{\sec ^{2} \theta}=\tan ^{4} \theta+2 \tan ^{2} \theta$ is
a) 1
b) 2
c) 3
d) None of these
${ }^{252}$ Let n be a positive integer such that $\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}$. Then
a) $n=6$
b) $n=1,2,3, \ldots, 8$
c) $n=5$
d) None of these
253. If $\cos 2 x=(\sqrt{2}+1)\left(\cos x-\frac{1}{\sqrt{2}}\right), \cos x \neq \frac{1}{2}$, then $x \in I$
a) $\left\{2 n \pi \pm \frac{\pi}{3}: n \in Z\right\}$
b) $\left\{2 n \pi \pm \frac{\pi}{6}: n \in Z\right\}$
c) $\left\{2 n \pi \pm \frac{\pi}{2}: n \in Z\right\}$
d) $\left\{2 n \pi \pm \frac{\pi}{4}: n \in Z\right\}$
254. $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$ is equal to
a) $\tan 16 \alpha$
b) 0
c) $\cot \alpha$
d) None of these
255. In a triangle $A B C$, if $a=2, B-60^{\circ}$ and $C=75^{\circ}$, then $b=$
a) $\sqrt{3}$
b) $\sqrt{6}$
c) $\sqrt{9}$
d) $1+\sqrt{2}$
256. The smallest positive values of x and y which satisfy $\tan (x-y)=1, \sec (x+y)=\frac{2}{\sqrt{3}}$ are
a) $x=\frac{25 \pi}{24}, y=\frac{7 \pi}{24}$
b) $x=\frac{37 \pi}{24}, y=\frac{19 \pi}{24}$
c) $x=\frac{\pi}{4}, y=\frac{\pi}{2}$
d) $x=\frac{\pi}{3}, y=\frac{7 \pi}{12}$
257. If $\sqrt{3} \sin \theta+\cos \theta>0$, then θ lies in the interval
a) $(-\pi / 3, \pi / 2)$
b) $(-\pi / 6,5 \pi / 6)$
c) $(\pi / 4, \pi / 3)$
d) None of these
258. If $\frac{\cos A}{3}=\frac{\cos B}{4}=\frac{1}{5},-\frac{\pi}{2}<A<0,-\frac{\pi}{2}<B<0$ then the value of $2 \sin A+4 \sin B$ is
a) 4
b) -2
c) -4
d) 0
259. The smallest positive root of the equation $\tan x-x=0$ is in
a) $\left(0, \frac{\pi}{2}\right)$
b) $\left(\pi, \frac{3 \pi}{2}\right)$
c) $\left(\frac{\pi}{2}, \pi\right)$
d) $\left(\frac{3 \pi}{2}, 2 \pi\right)$
260. The expression $\tan ^{2} \alpha+\cot ^{2} \alpha$, is
a) ≥ 2
b) ≤ 2
c) ≥-2
d) None of these
261. The most general solution of $\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}$ is
a) $\theta=n \pi \pm \frac{\pi}{4}+\frac{\pi}{6}$
b) $\theta=n \pi \pm \frac{\pi}{4}-\frac{\pi}{6}$
c) $\theta=2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{6}$
d) $\theta=2 n \pi \pm \frac{\pi}{4}-\frac{\pi}{6}$
262. The value of $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}$ is
a) 0
b) 1
c) $\frac{1}{2}$
d) $\frac{1}{\sqrt{2}}$
263. In a triangle $A B C, \sin A-\cos B=\cos C$, then angle B is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
264. The solution of the equation $4 \sin ^{4} x+\cos ^{4} x=1$ is
a) $x=2 n \pi$
b) $x=n \pi+1$
c) $x=(n+2) \pi$
d) None of the above
265. In a $\triangle A B C$,
$\sin A+\sin B+\sin C=1+\sqrt{2}$
and, $\cos A+\cos B+\cos C=\sqrt{2}$
if, the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) Right angled isosceles
266. $\tan \frac{2 \pi}{5}-\tan \frac{\pi}{15}-\sqrt{3} \tan \frac{2 \pi}{5} \tan \frac{\pi}{15}$ is equal to
a) $-\sqrt{3}$
b) $\frac{1}{\sqrt{3}}$
c) 1
d) $\sqrt{3}$
267. The general solution of the equation $\tan 3 x=\tan 5 x$ is
a) $x=\frac{n \pi}{2}, n \in Z$
b) $x=n \pi, n \in Z$
c) $x=(2 n+1) \pi, n \in Z$
d) None of these
268. If $\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta$, then $\theta=$
a) $\frac{n \pi}{4}, n \in Z$
b) $\frac{n \pi}{7}, n \in Z$
c) $\frac{n \pi}{12}, n \in Z$
d) $n \pi, n \in Z$
269. $\frac{\sin ^{2} 3 A}{\sin ^{2} A}-\frac{\cos ^{2} 3 A}{\cos ^{2} A}=$
a) $\cos 2 A$
b) $8 \cos 2 A$
c) $1 / 8 \cos 2 A$
d) None of these
270. If in a $\triangle A B C, 3 \sin A=6 \sin B=2 \sqrt{3} \sin C$, then angle A is
a) 0°
b) 30°
c) 60°
d) 90°
271. If $x=y \cos \frac{2 \pi}{3}=z \cos \frac{4 \pi}{3}$, then $x y+y z+z x=$
a) -1
b) 0
c) 1
d) 2
272. If $\alpha+\beta-\gamma=\pi$, then $\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma$ is equal to
a) $2 \sin \alpha \sin \beta \cos \gamma$
b) $2 \cos \alpha \cos \beta \cos \gamma$
c) $2 \sin \alpha \sin \beta \sin \gamma$
d) None of these
273. If $0<A<\frac{\pi}{6}$ and $\sin A+\cos A=\frac{\sqrt{7}}{2}$, then $\tan \frac{A}{2}=$
a) $\frac{\sqrt{7}-2}{3}$
b) $\frac{\sqrt{7}+2}{3}$
c) $\frac{\sqrt{7}}{3}$
d) None of these
274. If $A+B+C=0$, then the value of $\sum \cot (B+C-A) \cot (C+A-B)$ is equal to
a) 0
b) 1
c) -1
d) 2
275. If $A+B=\frac{\pi}{4}$, then $(\tan A+1)(\tan B+1)$ is equal to
a) 1
b) 2
c) $\sqrt{3}$
d) -1
276. If $\cos x+\cos y+\cos \alpha=0$ and $\sin x+\sin y+\sin \alpha=0$, then $\cot \left(\frac{x+y}{2}\right)$ is equal to
a) $\sin \alpha$
b) $\cos \alpha$
c) $\cot \alpha$
d) $\sin \left(\frac{x+y}{2}\right)$
277. In a $\triangle A B C$, if $a=8, b=10$ and $c=12$, then C is equal to
a) $\frac{A}{2}$
b) $2 A$
c) 3 A
d) None of these
278. If $-\frac{\pi}{2}<x<\frac{\pi}{2}$, then the value of $\log \sec x$ is
a) $2 \operatorname{coth}^{-1}\left(\operatorname{cosec}^{2} \frac{x}{2}-1\right)$
b) $2 \operatorname{coth}^{-1}\left(\operatorname{cosec}^{2} \frac{x}{2}+1\right)$
c) $2 \operatorname{cosech}^{-1}\left(\cot ^{2} \frac{x}{2}-1\right)$
d) $2 \operatorname{cosech}^{-1}\left(\cot ^{2} \frac{x}{2}+1\right)$
279. The most general value of θ satisfying the equations $\sin \theta=\sin \alpha$ and $\cos \theta=\cos \alpha$ is
a) $2 n \pi+\alpha$
b) $2 n \pi-\alpha$
c) $n \pi+\alpha$
d) $n \pi-\alpha$
280. If in a $\triangle A B C$, sides a, b, c are in A.P., then $\tan \frac{A}{2} \tan \frac{c}{2}=$
a) $1 / 4$
b) $1 / 3$
c) 3
d) 4
281. The number of solutions of the pair of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is
a) Zero
b) One
c) Two
d) Four
282. If $A=\tan 6^{\circ} \tan 42^{\circ}$ and $B=\cot 66^{\circ} \cot 78^{\circ}$, then
a) $A=2 B$
b) $A=\frac{1}{3}$
c) $A=B$
d) $3 A=2 B$
283. If in a $\triangle A B C, \Delta=a^{2}-(b-c)^{2}$, then $\tan A=$
a) $15 / 16$
b) $8 / 15$
c) $8 / 17$
d) $1 / 2$
284. $\sin 47^{\circ}-\sin 25^{\circ}+\sin 61^{\circ}-\sin 11^{\circ}=$
a) $\cos 7^{\circ}$
b) $\sin 7^{\circ}$
c) $2 \cos 7^{\circ}$
d) $2 \sin 7^{\circ}$
285. If $\sin ^{3} x \sin 3 x=\sum_{m=0}^{n} C_{m} \cos m x$ is an identity in x, where $C_{0}, C_{1}, \ldots, C_{n}$ are constants and $C_{n} \neq 0$, then the value of n equals
a) 2
b) 4
c) 6
d) 8
286. If $\cos x=\tan y, \cos y=\tan z, \cos z=\tan x$, then the value of $\sin x$ is
a) $2 \cos 18^{\circ}$
b) $\cos 18^{\circ}$
c) $\sin 18^{\circ}$
d) $2 \sin 18^{\circ}$
287. The value of $\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}$ is
a) 0
b) 2
c) 3
d) 1
288. The value of $\frac{\cot x-\tan x}{\cot 2 x}$ is
a) 1
b) 2
c) -1
d) 4
289. If $3 \cos x \neq 2 \sin x$, then the general solution of $\sin ^{2} x-\cos 2 x=2-\sin 2 x$ is
a) $n \pi+(-1)^{n} \frac{\pi}{2}, n \in Z$
b) $\frac{n \pi}{2}, n \in Z$
c) $(4 n \pm 1) \frac{\pi}{2}, n \in Z$
d) $(2 n-1) \pi, n \in Z$
290. $\frac{1+\tanh \frac{x}{2}}{1-\tanh \frac{x}{2}}$ is equal to
a) e^{-x}
b) e^{x}
c) $2 e^{x / 2}$
d) $2 e^{-x / 2}$
291. $2 \tanh ^{-1} \frac{1}{2}$ is equal to
a) 0
b) $\log 2$
c) $\log 3$
d) $\log 4$
292. If $\cos (\alpha+\beta) \sin (\gamma+\delta)=\cos (\alpha-\beta) \sin (\gamma-\delta)$, then the value of $\cot \alpha \cot \beta \cot \gamma$ is
a) $\cot \alpha$
b) $\cot \beta$
c) $\cot \delta$
d) $\cot (\alpha+\beta+\gamma+\delta)$
293. If $a \cos ^{3} \alpha+3 a \cos \alpha \sin ^{2}=m$ and $a \sin ^{3} \alpha+3 a \cos ^{2} \alpha \sin \alpha=n$, then $(m+n)^{2 / 3}+(m-n)^{2 / 3}$ is equal to
a) $2 a^{2}$
b) $2 a^{1 / 3}$
c) $2 a^{2 / 3}$
d) $2 a^{3}$
294. If $x \sin \theta=y \cos \theta=\frac{2 z \tan \theta}{1-\tan ^{2} \theta}$, then $4 z^{2}\left(x^{2}+y^{2}\right)$ is equal to
a) $\left(x^{2}+y^{2}\right)^{3}$
b) $\left(x^{2}-y^{2}\right)^{3}$
c) $\left(x^{2}-y^{2}\right)^{2}$
d) $\left(x^{2}+y^{2}\right)^{2}$
295. The solution of $\tan 2 \theta \tan \theta=1$ is 22
a) $\frac{\pi}{3}$
b) $(6 n \pm 1) \frac{\pi}{6}$
c) $(4 n \pm 1) \frac{\pi}{6}$
d) $(2 n+\pi) \frac{\pi}{6}$
296. Set of values of x lying in $[0,2 \pi]$ satisfying the inequality $|\sin x|>2 \sin ^{2} x$ contains
a) $\left(0, \frac{\pi}{6}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
b) $\left(0, \frac{7 \pi}{6}\right)$
c) $\frac{\pi}{6}$
d) None of these
297. If $\tan \left(\frac{x}{2}\right)=\operatorname{cosec} x-\sin x$, then the value of $\tan ^{2}\left(\frac{x}{2}\right)$ is
a) $2-\sqrt{5}$
b) $2+\sqrt{5}$
c) $-2-\sqrt{5}$
d) $-2+\sqrt{5}$
298. If $5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$, when $(0<\theta<\pi)$, then the values of θ are
a) $\frac{\pi}{3} \pm \pi$
b) $\frac{\pi}{3}, \cos ^{-1}\left(\frac{3}{5}\right)$
c) $\cos ^{-1}\left(\frac{3}{5}\right) \pm \pi$
d) $\frac{\pi}{3}, \pi-\cos ^{-1}\left(\frac{3}{5}\right)$
299. If $\tan \alpha, \tan \beta, \tan \gamma$ are the roots of the equation $x^{3}-p x^{2}-r=0$, then the value of $\left(1+\tan ^{2} \alpha\right)(1+$ $\tan 2 \beta 1+\tan 2 \gamma$ is equal to
a) $(p-r)^{2}$
b) $1+(p-r)^{2}$
c) $1-(p-r)^{2}$
d) None of these
300. $\cos ^{4} \theta-\sin ^{4} \theta$ is equal to
a) $1+2 \sin ^{2} \frac{\theta}{2}$
b) $2 \cos ^{2} \theta-1$
c) $1-2 \sin ^{2} \frac{\theta}{2}$
d) $1+2 \cos ^{2} \theta$
301. The value of $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
a) 2
b) 1
c) 4
d) -4
302. If θ lies in the first quadrant which of the following is not true
a) $\frac{\theta}{2}<\tan \left(\frac{\theta}{2}\right)$
b) $\frac{\theta}{2}<\sin \frac{\theta}{2}$
c) $\theta \cos ^{2}\left(\frac{\theta}{2}\right)<\sin \theta$
d) $\theta \sin \frac{\theta}{2}<2 \sin \frac{\theta}{2}$
303. Number of solutions of $|x-1|=\cos x$ is
a) 2
b) 3
c) 4
d) None of these
304. If $5 \cos x+12 \cos y=13$, then the maximum value of $5 \sin x+12 \sin y$ is
a) 12
b) $\sqrt{120}$
c) $\sqrt{20}$
d) 13
305. If $\cos \theta=\frac{8}{17}$ and θ lies in the I st quadrant, then the value of $\cos \left(30^{\circ}+\theta\right)+\cos \left(45^{\circ}-\theta\right)+\cos \left(120^{\circ}-\theta\right)$ is
a) $\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$
b) $\frac{23}{17}\left(\frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}}\right)$
c) $\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}-\frac{1}{\sqrt{2}}\right)$
d) $\frac{23}{17}\left(\frac{\sqrt{3}+1}{2}-\frac{1}{\sqrt{2}}\right)$
306. $\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\ldots+\cos 180^{\circ}$ is equal to
a) 1
b) 0
c) 2
d) -1
307. In any $\triangle A B C$, if $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in A.P., then a, b, c are in
a) A. P.
b) G. P.
c) H.P.
d) None of these
308. The expression $\left(1+\tan x+\tan ^{2} x\right)\left(1-\cot x+\cot ^{2} x\right)$ has the positive values for x, given by
a) $0 \leq x \leq \frac{\pi}{2}$
b) $0 \leq x \leq \pi$
c) For all $x \in R$
d) $x \geq 0$
309. The value of $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}$, is
a) 0
b) $\frac{1}{2}$
c) $\frac{3}{2}$
d) 1
310. If $\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$, then $\cos \left(\theta \pm \frac{\pi}{4}\right)$ is equal to
a) $\cos \frac{\pi}{4}$
b) $\frac{1}{2} \cos \frac{\pi}{4}$
c) $\cos \frac{\pi}{8}$
d) None of these
311. If the angles A, B, C of a triangle are in A.P. and sides a, b, c are in G.P, then a^{2}, b^{2}, c^{2} are in
a) A.P.
b) H.P.
c) G.P.
d) None of these
312. If the complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other, then x is equal to
a) $n \pi$
b) $\left(n+\frac{1}{2}\right) \pi, n \in Z$
c) 0
d) None of these
313. The most general solutions of the equation $\sec x-1=(\sqrt{2}-1) \tan x$ are given by
a) $n \pi+\frac{\pi}{8}$
b) $2 n \pi, 2 n \pi+\frac{\pi}{4}$
c) $2 n \pi$
d) None of these
314. If $\tan A=2 \tan B+\cot B$, then $2 \tan (A-B)$ is equal to
a) $\tan B$
b) $2 \tan B$
c) $\cot B$
d) $2 \cot B$
315. If $n=1,2,3, \ldots$, then $\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{n-1} \alpha$ is equal to
a) $\frac{\sin 2 n \alpha}{2 n \sin \alpha}$
b) $\frac{\sin 2^{n} \alpha}{2^{n} \sin 2^{n-1} \alpha}$
c) $\frac{\sin 4^{n-1} \alpha}{4^{n-1} \sin \alpha}$
d) $\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha}$
316. If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, then $x^{2}+y^{2}$ is
a) 2
b) 0
c) 3
d) 1
317. If $\tan \alpha / 2$ and $\tan \beta / 2$ are the roots of the equation $8 x^{2}-26 x+15=0$ then $\cos (\alpha+\beta)$ is equal to
a) $-\frac{627}{725}$
b) $\frac{627}{725}$
c) -1
d) None of these
318. If $0 \leq x \leq \pi$ and $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$, then x is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{3 \pi}{4}$
319. If $32 \tan ^{8} \theta=2 \cos ^{2} \alpha-3 \cos \alpha$ and $3 \cos 2 \theta=1$, then $\alpha=$
a) $2 n \pi, n \in Z$
b) $2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
c) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
d) $n \pi \pm \frac{\pi}{3}, n \in Z$
320. $\frac{\cos x}{\cos (x-2 y)}=\lambda \Rightarrow \tan (x-y) \tan y$ is equal to
a) $\frac{1+\lambda}{1-\lambda}$
b) $\frac{1-\lambda}{1+\lambda}$
c) $\frac{\lambda}{1+\lambda}$
d) $\frac{\lambda}{1-\lambda}$
321. If $\sin 3 \theta=4 \sin \theta\left(\sin ^{2} x-\sin ^{2} \theta\right), \theta \neq n \pi, n \in Z$. Then, the set of values of x is
a) $\left\{n \pi \pm \frac{\pi}{3}: n \in Z\right\}$
b) $\left\{n \pi \pm \frac{2 \pi}{3}: n \in Z\right\}$
c) $\left\{n \pi \pm \frac{\pi}{2}: n \in Z\right\}$
d) $\left\{n \pi \pm \frac{\pi}{4}: n \in Z\right\}$
322. If in a triangle $A B C, b+c=3 a$, then $\tan \left(\frac{B}{2}\right) \tan \left(\frac{C}{2}\right)$ is equal to
a) 1
b) -1
c) 2
d) None of these
323. If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$ then $\cos \theta-\sin \theta$ is equal to
a) $\sqrt{2} \cos \theta$
b) $\sqrt{2} \sin \theta$
c) $\sqrt{2}(\cos \theta+\sin \theta)$
d) None of these
324. The equation $\sin x+\sin y+\sin z=-3$ for $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi, 0 \leq z \leq 2 \pi$ has
a) One solution
b) Two sets of solution
c) Four sets of solution
d) No solution
325. The value of $\sin \frac{\pi}{16} \sin \frac{3 \pi}{16} \sin \frac{5 \pi}{16} \sin \frac{7 \pi}{16}$ is
a) $\frac{\sqrt{2}}{16}$
b) $\frac{1}{8}$
c) $\frac{1}{16}$
d) $\frac{\sqrt{2}}{32}$
326. The equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$, where x is a variable, has real roots. Then, the interval of p may be any one of the following:
a) $(0,2 \pi)$
b) $(-\pi, 0)$
c) $(-\pi / 2, \pi / 2)$
d) $(0, \pi)$
327. If $\tan \left(\frac{\theta}{2}\right)=\frac{5}{2}$ and $\tan \left(\frac{\phi}{2}\right)=\frac{3}{4}$, the value of $\cos (\theta+\phi)$ is
a) $-\frac{364}{725}$
b) $-\frac{627}{725}$
c) $-\frac{240}{339}$
d) $-\frac{339}{725}$
328. If in a triangle $A B C, \sin A=\sin ^{2} B$ and $2 \cos ^{2} A=\cos ^{2} B$, then the $\triangle A B C$ is
a) Right angled
b) Obtuse angled
c) Isosceles
d) Equilateral
329. If α and β are acute angles $\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$, then $\tan \alpha \cot \beta=$
a) $\sqrt{3}$
b) $\sqrt{2}$
c) 1
d) None of these
330. If $\sin 2 x, \frac{1}{2}$ and $\cos 2 x$ are in A.P., then the general values of x are given by
a) $n \pi, n \pi+\frac{\pi}{2}, n \in Z$
b) $n \pi, n \pi+\frac{\pi}{4}, n \in Z$
c) $n \pi+\frac{\pi}{4}, n \in Z$
d) $n \pi, n \in Z$
331. The area of a regular polygon of n sides is
a) $\frac{n R^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
b) $n r^{2} \tan \left(\frac{2 \pi}{2 n}\right)$
c) $\frac{n r^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
d) $n R^{2} \tan \left(\frac{\pi}{n}\right)$
332. The base of a triangle is 80 cm and one of the base angles is 60°. If the sum of the lengths of the other two sides is 90 cm , then the length of the shortest side is
a) 15 cm
b) 19 cm
c) 21 cm
d) 17 cm
333. Total number of solutions of $\sin ^{4} x+\cos ^{4} x=\sin x \cdot \cos x$ in $[0,2 \pi]$ is equal to
a) 2
b) 4
c) 6
d) 8
334. If $\alpha, \beta, \gamma, \delta$ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then the value of
$4 \sin \frac{\alpha}{2}+3 \sin \frac{\beta}{2}+2 \sin \frac{\gamma}{2}+\sin \frac{\delta}{2}$ is equal to
a) $2 \sqrt{1-k}$
b) $2 \sqrt{1+k}$
c) $\frac{\sqrt{1+k}}{2}$
d) $\sqrt{1+k}$
335. Maximum value of $\sin \theta+\cos \theta$ in $\left[0, \frac{\pi}{2}\right]$ is
a) $\sqrt{2}$
b) 2
c) 0
d) $-\sqrt{2}$
336. $\left\{x \in R: \cos 2 x+2 \cos ^{2} x=2\right\}$ is equal to
a) $\left\{2 n \pi+\frac{\pi}{3}: n \in Z\right\}$
b) $\left\{n \pi \pm \frac{\pi}{6}: n \in Z\right\}$
c) $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$
d) $\left\{2 n \pi-\frac{\pi}{3}: n \in Z\right\}$
337. The most general value of θ satisfying the equation $(1+2 \sin \theta)^{2}+(\sqrt{3} \tan \theta-1)^{2}=0$ are given by
a) $n \pi \pm \frac{\pi}{6}$
b) $n \pi+(-1)^{n} \frac{7 \pi}{6}$
c) $2 n \pi+\frac{7 \pi}{6}$
d) $2 n \pi+\frac{11 \pi}{6}$
338. The solution set of $(2 \cos x-1)(3+2 \cos x)=0$ in the interval $0 \leq x \leq 2 \pi$, is
a) $\left\{\frac{\pi}{3}\right\}$
b) $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
c) $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}, \cos ^{-1}\left(-\frac{3}{2}\right)\right\}$
d) None of these
339. In a $\triangle A B C$, if $B=90^{\circ}$, then the value of $\tan \frac{A}{2}$ in terms of the sides is
a) $\sqrt{\frac{b+c}{b-c}}$
b) $\sqrt{\frac{b-c}{b+c}}$
c) $\sqrt{\frac{a+c}{a-c}}$
d) $\sqrt{\frac{a-c}{a+c}}$
340. If $\cos (\theta+\emptyset)=m \cos (\theta-\emptyset)$, then $\tan \theta$ is equal to
a) $[(1+m) /(1-m)] \tan \emptyset$
b) $[(1-m) /(1+m)] \tan \emptyset$
c) $[(1-m) /(1+m)] \cot \emptyset$
d) $[(1+m) /(1-m)] \sec \emptyset$
341. In a triangle $A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. Let D divide $B C$ internally in the ratio $1: 3$. Then, $\frac{\sin \angle B A D}{\sin \angle C A D}$ equals
a) $\frac{1}{\sqrt{6}}$
b) $\frac{1}{3}$
c) $\frac{1}{\sqrt{3}}$
d) $\sqrt{\frac{2}{3}}$
342. If $\tan x=\frac{b}{a}$, then the value of $a \cos 2 x+b \sin 2 x$ is
a) a
b) $a-b$
c) $a+b$
d) b
343. In a $\triangle A B C, b=2, C=60^{\circ}, c=\sqrt{6}$, then $a=$
a) $\sqrt{3}-1$
b) $\sqrt{3}$
c) $\sqrt{3}+1$
d) None of these
344. If $A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular pentagon inscribed in a unit circle. Then $\left(A_{1} A_{2}\right)\left(A_{1} A_{3}\right)$ is equal to
a) 1
b) 3
c) 4
d) $\sqrt{5}$
345. If $x=\log \left[\cot \left(\frac{\pi}{4}+\theta\right)\right]$, then the value of $\sinh x$ is
a) $\tan 2 \theta$
b) $-\tan 2 \theta$
c) $\cot 2 \theta$
d) $-\cot 2 \theta$
346. The angle of a right angled triangle are in A.P. The ratio of the in-radius and the perimeter is
a) $(2-\sqrt{3}): 2 \sqrt{3}$
b) $1: 8 \sqrt{3}(2+\sqrt{3})$
c) $(2+\sqrt{3}): 4 \sqrt{3}$
d) None of these
347. The minimum value of $\cos 2 \theta+\cos \theta$ for real values of θ, is
a) $-9 / 8$
b) 0
c) -2
d) None of these
348. $3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$ is equal to
a) 12
b) 13
c) 14
d) 11
349. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$, where, $x, y>0$ then the triangle is
a) Right angled
b) Obtuse angled
c) Equilateral
d) None of these
350. If $\sin \beta$ is the GM between $\sin \alpha$ and $\cos \alpha$, then $\cos 2 \beta=$
a) $2 \sin ^{2}\left(\frac{3 \pi}{4}-\alpha\right)$
b) $2 \cos ^{2}\left(\frac{\pi}{4}-\alpha\right)$
c) $\cos ^{2}\left(\frac{\pi}{4}+\alpha\right)$
d) $2 \sin ^{2}\left(\frac{\pi}{4}+\alpha\right)$
351. If in a triangle $A B C, \cos A \cos B+\sin A \sin B \sin C=1$, then the triangle is
a) Isosceles
b) Right angled
c) Isosceles right angled
d) Equilateral
352. The solution of the equation $\cos ^{2} x-2 \cos x=4 \sin x-\sin 2 x(0 \leq x \leq \pi)$ is
a) $\pi-\cot ^{-1} \frac{1}{2}$
b) $\pi-\tan ^{-1} 2$
c) $\pi+\tan ^{-1}\left(-\frac{1}{2}\right)$
d) None of these
353. The area of the triangle $A B C$, in which $a=1, b=2, \angle C=60^{\circ}$, is
a) 4 sq. units
b) $\frac{1}{2}$ sq. unit
c) $\frac{\sqrt{3}}{2}$ sq. unit
d) $\sqrt{3}$ sq. units
354. If $\cos (A-B)=3 / 5$ andtan $A \tan B=2$, then which one of the following is true?
a) $\sin (A+B)=\frac{1}{5}$
b) $\sin (A+B)=-\frac{1}{5}$
c) $\cos (A-B)=\frac{1}{5}$
d) $\cos (A+B)=-\frac{1}{5}$
355. The value of $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{3 \pi}{9} \cos \frac{4 \pi}{9}$ is
a) $\frac{1}{8}$
b) $\frac{1}{16}$
c) $\frac{1}{64}$
d) $\frac{1}{4}$
356. If the equation $\sec \theta+\operatorname{cosec} \theta=c$ has four real roots between 0 and 2π, then
a) $c^{2}<8$
b) $c^{2}>8$
c) $c^{2}=8$
d) None of these
357. If $\frac{\tan 3 A}{\tan A}=k$, then $\frac{\sin 3 A}{\sin A}$ is equal to
a) $\frac{2 k}{k-1}, k \in R$
b) $\frac{2 k}{k-1}, k \in[1 / 3,3]$
c) $\frac{2 k}{k-1}, k \notin[1 / 3,3]$
d) $\frac{k-1}{2 k}, k \notin[1 / 3,3]$
358. If $\sin \theta-\cos \theta<0$, then θ lies between
a) $n \pi-\frac{3 \pi}{4}$ and $n \pi+\frac{\pi}{4}, n \in Z$
b) $n \pi-\frac{\pi}{4}$ and $n \pi+\frac{3 \pi}{4}, n \in Z$
c) $2 n \pi-\frac{3 \pi}{4}$ and $2 n \pi-\frac{\pi}{4}, n \in Z$
d) $2 n \pi-\frac{3 \pi}{4}$ and $2 n \pi+\frac{\pi}{4}, n \in Z$
359. If $y \tan (A+B+C)=x \tan (A+B-C)=\lambda$, then the $2 C=$
a) $\frac{\lambda(x+y)}{\lambda^{2}-x y}$
b) $\frac{\lambda(x+y)}{\lambda^{2}+x y}$
c) $\frac{\lambda(x-y)}{x y-\lambda^{2}}$
d) $\frac{\lambda(x-y)}{x y+\lambda^{2}}$
360. If $\alpha+\beta=\frac{\pi}{2}, \beta+\gamma=\alpha$, then the value of $\tan \alpha$ equals
a) $\tan \beta+\tan \gamma$
b) $2(\tan \beta+\tan \gamma)$
c) $\tan \beta+2 \tan \gamma$
d) $2 \tan \beta+\tan \gamma$
361. $\tan \frac{2 \pi}{5}-\tan \frac{\pi}{15}-\sqrt{3} \tan \frac{2 \pi}{5} \tan \frac{\pi}{15}$ is equal to
a) $-\sqrt{3}$
b) $1 / \sqrt{3}$
c) 1
d) $\sqrt{3}$
362. If $\frac{\cos A}{\cos B}=n$ and $\frac{\sin A}{\sin B}=m$, then $\left(m^{2}-n^{2}\right) \sin ^{2} B=$
a) $1-n^{2}$
b) $1+n^{2}$
c) $1-n$
d) $1+n$
363. If $A=130^{\circ}$ and $x=\sin A+\cos A$, then
a) $x>0$
b) $x<0$
c) $x=0$
d) $x \geq 0$
364. The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is
a) 2
b) 3
c) 4
d) 1
365. If $\pi<\alpha<\frac{3 \pi}{2}$, then the expression $\sqrt{4 \sin ^{4} \alpha+\sin ^{2} 2 \alpha}+4 \cos ^{2}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$ is equal to
a) $2+4 \sin \alpha$
b) $2-4 \sin \alpha$
c) 2
d) None of these
366. If $5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0,-\pi<\theta<\pi$, then θ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{3}, \cos ^{-1}\left(\frac{3}{5}\right)$
c) $\cos ^{-1}\left(\frac{3}{5}\right)$
d) $\frac{\pi}{3}, \pi-\cos ^{-1}\left(\frac{3}{5}\right)$
367. The equation $\sin ^{4} x+\cos ^{4} x=\alpha$ has a real solution, if
a) $0<a \leq 1$
b) $\frac{1}{2} \leq a \leq 1$
c) $\frac{1}{4} \leq a \leq \frac{1}{2}$
d) $-1 \leq a \leq 1$
368. If $x \sin a+y \sin 2 a+z \sin 3 a=\sin 4 a$
$x \sin b+y \sin 2 b+z \sin 3 b=\sin 4 b$
$x \sin c+y \sin 2 c+z \sin 3 c=\sin 4 c$
Then, the roots of the equation $t^{3}-\left(\frac{z}{2}\right) t^{2}-\left(\frac{y+2}{4}\right) t+\left(\frac{z-x}{8}\right)=0, a, b, c \neq n \pi$, are
a) $\sin a, \sin b, \sin c$
b) $\cos a, \cos b, \cos c$
c) $\sin 2 a, \sin 2 b, \sin 2 c$
d) $\cos 2 a, \cos 2 b, \cos 2 c$
369. If α, β are different values of x satisfying $a \cos x+b \sin x=c$, then $\tan \left(\frac{\alpha+\beta}{2}\right)$ is equal to
a) $(a+b)$
b) $(a-b)$
c) $\frac{b}{a}$
d) $\frac{a}{b}$
370. Let $A B$ and C be the angles of a plain triangle and $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$. Then, $\tan \frac{C}{2}$ is equal to
a) $7 / 9$
b) $2 / 9$
c) $1 / 3$
d) $2 / 3$
371. If $\tan \theta=\frac{1}{\sqrt{7}}$, then $\frac{\left(\operatorname{cosec}^{2} \theta-\sec ^{2} \theta\right)}{\left(\operatorname{cosec}^{2} \theta+\sec ^{2} \theta\right)}$ is equal to
a) $\frac{1}{2}$
b) $\frac{3}{4}$
c) $\frac{5}{4}$
d) 2
372. The general solution of $\tan 3 x=1$, is
a) $n \pi+\frac{\pi}{4}$
b) $\frac{n \pi}{3}+\frac{\pi}{12}$
c) $n \pi$
d) $n \pi \pm \frac{\pi}{4}$
373. If A lies in the third quadrant and $3 \tan A-4=0$, then $5 \sin 2 A+3 \sin A+4 \cos A=$
a) 0
b) $\frac{-24}{5}$
c) $\frac{24}{5}$
d) $\frac{48}{5}$
374. The number of solutions of $\cos 2 \theta=\sin \theta$ in $(0,2 \pi)$ is
a) 1
b) 2
c) 3
d) 4
375. The equation $\sin ^{4} x-2 \cos ^{2} x+a^{2}=0$ is solvable for
a) $-\sqrt{3} \leq a \leq \sqrt{3}$
b) $-\sqrt{2} \leq a \leq \sqrt{2}$
c) $-1 \leq a \leq 1$
d) None of these
376. Let A, B and C are the angles of a teiangle andtan $\left(\frac{A}{2}\right)=\frac{1}{3}, \tan \left(\frac{B}{2}\right)=\frac{2}{3}$. Then, $\tan \left(\frac{C}{2}\right)$ is equal to
a) $1 / 3$
b) $2 / 3$
c) $2 / 9$
d) $7 / 9$
377. If $x+\frac{1}{x}=2 \cos \alpha$, then $x^{n}+\frac{1}{x^{n}}$ is equal to
a) $2^{n} \cos \alpha$
b) $2^{n} \cos n \alpha$
c) $2 i \sin n \alpha$
d) $2 \cos n \alpha$
378. If $\tan \alpha=\frac{m}{m+1}$ and $\tan \beta=\frac{1}{2 m+1}$, then $\alpha+\beta$ is equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) 0
d) $\frac{\pi}{2}$
379. In a right angled triangle, the hypotenuse is four times as long as the perpendicular drawn to it from the opposite vertex. One of the acute angle is
a) 15°
b) 30°
c) 45°
d) None of these
380. If $\cot \theta \cot 7 \theta+\cot \theta \cot 4 \theta+\cot 4 \theta \cot 7 \theta=1$, then $\theta=$
a) $n \pi, n \in Z$
b) $(2 n+1) \frac{\pi}{2}, n \in Z$
c) $n \pi+(-1)^{n} \frac{\pi}{2}, n \in Z$
d) $\frac{n \pi}{12}, n \in Z$
381. If r, r_{1}, r_{2}, r_{3} have their usual meanings, the value of $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$, is
a) 1
b) 0
c) $1 / r$
d) None of these
382. If $A=35^{\circ}, B=15^{\circ}$ and $C=40^{\circ}$, then $\tan A \cdot \tan B+\tan B \cdot \tan C+\tan C \cdot \tan A$ is equal to
a) 0
b) 1
c) 2
d) 3
383. The value of $\cos 10^{\circ}-\sin 10^{\circ}$ is
a) Positive
b) Negative
c) 0
d) 1
384. The number of all possible triplets $\left(a_{1}, a_{2}, a_{3}\right)$ such that $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ for all x is
a) 0
b) 1
c) 3
d) None of these
385. The value of $\tan 40^{\circ}+\tan 20^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$ is equal to
a) $\sqrt{12}$
b) $\frac{1}{\sqrt{3}}$
c) 1
d) $\sqrt{3}$
386. The arithmetic mean of the roots of the equation $4 \cos ^{3} x-4 \cos ^{2} x-\cos (315 \pi+x)=1$ in the interval $(0,315)$ is equal to
a) 50π
b) 51π
c) 100π
d) 315π
387. The value of $\sum_{k=1}^{3} \cos ^{2}(2 k-1) \frac{\pi}{12^{2}}$, is
a) 0
b) $1 / 2$
c) $-1 / 2$
d) $3 / 2$
388. Total number of solutions of $\cos x=\sqrt{1-\sin 2 x}$ in $[0,2 \pi]$ is equal to
a) 2
b) 3
c) 5
d) None of these
389. If $\sin 2 x \cos 2 x \cos 4 x=\lambda$ has a solution, then λ lies in the interval
a) $[-1 / 2,1 / 2]$
b) $[-1 / 4,1 / 4]$
c) $[-1 / 3,1 / 3]$
d) None of these
390. If $\sin x+\sin y=3(\cos y-\cos x)$, then the value of $\frac{\sin 3 x}{\sin 3 y}$ is
a) 1
b) -1
c) 0
d) ± 1
391. If $\tan \alpha=k \cot \beta$, then $\frac{\cos (\alpha-\beta)}{\cos (\alpha+\beta)}$ is equal to
a) $\frac{1+k}{1-k}$
b) $\frac{1-k}{1+k}$
c) $\frac{k+1}{k-1}$
d) $\frac{k-1}{k+1}$
392. If $\theta=\frac{2 \sin x}{1+\sin x+\cos x^{\prime}}$, then $\frac{1+\sin x-\cos x}{1+\sin x}$ equals
a) 0
b) $-\theta$
c) θ
d) $-\theta / 2$
393. In $\triangle A B C$, if $\frac{s-a}{\Delta}=\frac{1}{8}, \frac{s-b}{\Delta}=\frac{1}{12}$ and $\frac{s-c}{\Delta}=\frac{1}{24}$, then $b=$
a) 16
b) 20
c) 24
d) 28
394. Solution of the equation $\cos ^{2}\left(\frac{1}{2} p x\right)+\cos ^{2}\left(\frac{1}{2} q x\right)=1$ form an arithmetic progression with common difference
a) $\frac{2}{p+q}$
b) $\frac{2}{p-q}$
c) $\frac{\pi}{p+q}$
d) None of these
395. If $\sec ^{2} \theta=\sqrt{2}\left(1-\tan ^{2} \theta\right)$, then $\theta=$
a) $n \pi+\frac{\pi}{8}, n \in Z$
b) $n \pi \pm \frac{\pi}{4}, n \in Z$
c) $n \pi \pm \frac{\pi}{8}, n \in Z$
d) None of these
396. If $\tanh ^{-1}(x+i y)=\frac{1}{2} \tanh ^{-1}\left(\frac{2 x}{1+x^{2}+y^{2}}\right)+\frac{i}{2} \tan ^{-1}\left(\frac{2 y}{1-x^{2}-y^{2}}\right), x, y \in R$, then $\tanh ^{-1}(i y)$ is
a) $i \tanh ^{-1}(y)$
b) $-i \tanh ^{-1}(y)$
c) $i \tan ^{-1} y$
d) $-i \tan ^{-1}(y)$
397. If $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, then the two curves $y=\cos x$ and $y=\sin 3 x$ intersect at
a) $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{\pi}{8}, \cos \frac{\pi}{8}\right)$
b) $\left(\frac{-\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{-\pi}{8}, \cos \frac{\pi}{8}\right)$
c) $\left(\frac{\pi}{4}, \frac{-1}{\sqrt{2}}\right)$ and $\left(\frac{\pi}{8},-\cos \frac{\pi}{8}\right)$
d) $\left(\frac{-\pi}{4}, \frac{1}{\sqrt{2}}\right)$
398. If $A=\cos ^{2} \theta+\sin ^{4} \theta$, then for all values of θ,
a) $1 \leq A \leq 2$
b) $\frac{13}{16} \leq A \leq 1$
c) $\frac{3}{4} \leq A \leq \frac{13}{16}$
d) $\frac{3}{4} \leq A \leq 1$
399. The value of $\sin 10^{\circ}+\sin 20^{\circ}+\sin 30^{\circ}+\cdots+\sin 360^{\circ}$ is
a) 1
b) 0
c) -1
d) $1 / 2$
400. The maximum value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ is
a) 5
b) 11
c) 10
d) -1
401. If $A=\left\{x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}\right\}$ and $f(x)=\cos x-x(1+x)$, then $f(A)$ is equal to
a) $\left[-\frac{\pi}{3},-\frac{\pi}{6}\right]$
b) $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
c) $\left[\frac{1}{2}-\frac{\pi}{3}\left(1+\frac{\pi}{3}\right), \frac{\sqrt{3}}{2}-\frac{\pi}{6}\left(1+\frac{\pi}{6}\right)\right]$
d) $\left[\frac{1}{2}+\frac{\pi}{3}\left(1-\frac{\pi}{3}\right), \frac{\sqrt{3}}{2}+\frac{\pi}{6}\left(1-\frac{\pi}{6}\right)\right]$
402. If $\frac{x}{a} \cos \alpha+\frac{y}{b} \sin \alpha=1, \frac{x}{a} \cos \beta+\frac{y}{b} \sin \beta=1$ and $\frac{\cos \alpha \cos \beta}{a^{2}}+\frac{\sin \alpha \sin \beta}{b^{2}}=0$, then
a) $\tan \alpha \tan \beta=\frac{b^{2}\left(x^{2}-a^{2}\right)}{a^{2}\left(y^{2}-b^{2}\right)}$ and $x^{2}+y^{2}=a^{2}-b^{2}$
b) $\tan \alpha \tan \beta=\frac{a^{2}}{b^{2}}$
c) $x^{2}+y^{2}=a^{2}-b^{2}$
d) None of these
403. The value of $\left(1+\cos \frac{\pi}{6}\right)\left(1+\cos \frac{\pi}{3}\right)\left(1+\cos \frac{2 \pi}{3}\right)\left(1+\cos \frac{7 \pi}{6}\right)$ is
a) $\frac{3}{16}$
b) $\frac{3}{8}$
c) $\frac{3}{4}$
d) $\frac{1}{2}$
404. If the solutions for $\theta, \cos p \theta+\cos q \theta=0, p>0, q>0$ are in AP , then the numerically smallest common difference of AP is
a) $\frac{\pi}{p+q}$
b) $\frac{2 \pi}{p+q}$
c) $\frac{\pi}{2(p+q)}$
d) $\frac{1}{p+q}$
405. The equation $\sin ^{4} \theta+\cos ^{4} \theta=a$ has a real solution if
a) $a \in[1 / 2,1]$
b) $a \in[1 / 4,1 / 2]$
c) $a \in[1 / 3,1]$
d) None of these
406. Which one of the following equations has no solution?
a) $\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta$
b) $\operatorname{cosec} \theta \cdot \sec \theta=1$
c) $\cos \theta+\sin \theta=\sqrt{2}$
d) $\sqrt{3} \sin \theta-\cos \theta=2$
407. For $-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}$ lies in the interval
a) $(-\infty, \infty)$
b) $(-2,2)$
c) $(0, \infty)$
d) $(-1,1)$
408. The number of integral values of k for which the equation $7 \cos \theta+5 \sin \theta=2 k+1$ has a solution is
a) 4
b) 8
c) 10
d) 12
409. The solution of the inequality $\log _{1 / 2} \sin x>\log _{1 / 2} \cos x$ in $(0,2 \pi)$ is
a) $x \in\left(\frac{5 \pi}{4}, 2 \pi\right)$
b) $x \in\left(0, \frac{\pi}{4}\right)$
c) $x \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right)$
d) None of these
410. The solution set of the inequation $\log _{1 / 2} \sin x>\log _{1 / 2} \cos x$ in $[0,2 \pi]$, is
a) $(0, \pi / 2)$
b) $(-\pi / 4, \pi / 4)$
c) $(0, \pi / 4)$
d) None of these
411. The value of $\cos ^{2}\left(\frac{\pi}{4}+\theta\right)-\sin ^{2}\left(\frac{\pi}{2}-\theta\right)$ is
a) 0
b) $\cos 2 \theta$
c) $\sin 2 \theta$
d) $\cos \theta$
412. The solution set of the inequality $\cos ^{2} \theta<\frac{1}{2}$, is
a) $\left\{\theta:(8 n+1) \frac{\pi}{4}<\theta<(8 n+3) \frac{\pi}{4}, n \in Z\right\}$
b) $\left\{\theta:(8 n-3) \frac{\pi}{4}<\theta<(8 n-1) \frac{\pi}{4}, n \in Z\right\}$
c) $\left\{\theta:(4 n+1) \frac{\pi}{4}<\theta<(4 n+3) \frac{\pi}{4}, n \in Z\right\}$
d) None of these
413. $\alpha, \beta(\alpha \neq \beta)$ satisfy the equation $a \cos \theta+b \sin \theta=c$, then the value of $\tan \left(\frac{\alpha+\beta}{2}\right)$, is
a) b / a
b) c / a
c) a / b
d) c / b
414. If the equation $\cos 3 x+\cos 2 x=\sin \frac{3 x}{2}+\sin \frac{x}{2}, 0 \leq x \leq 2 \pi$, then the number of values of x is
a) 6
b) 7
c) 4
d) 5
415. If the sides of a triangle are the roots of the equation $x^{3}-2 x^{2}-x-16=0$, then the product of the inradius and circum-radius of the triangle is
a) 3
b) 6
c) 4
d) 2
416. The values of θ lying between $\theta=0$ and $\theta=\frac{\pi}{2}$ and satisfying the equation $\left|\begin{array}{ccc}1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \sin 4 \theta \\ \cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \sin 4 \theta \\ \cos ^{2} \theta & \sin ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0$, is
a) $\frac{11 \pi}{24}, \frac{7 \pi}{24}$
b) $\frac{7 \pi}{24}, \frac{5 \pi}{24}$
c) $\frac{5 \pi}{24}, \frac{\pi}{24}$
d) $\frac{\pi}{24}, \frac{11 \pi}{24}$
417. The value of $\sqrt{3} \cot 20^{\circ}-4 \cos 20^{\circ}$ is
a) 1
b) -1
c) 0
d) None of these
418. The general solution of the equation $\cos x \cos 6 x=-1$ is
a) $x=(2 n+1) \pi, n \in Z$
b) $x=2 n \pi, n \in Z$
c) $x=(2 n-1) \pi, n \in Z$
d) None of these
419. The smallest angle of the triangle whose sides are $6+\sqrt{12}, \sqrt{48}, \sqrt{24}$ is
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 6$
d) None of these
420. The general solution of the equation $\tan 2 \theta \cdot \tan \theta=1$ for $n \in Z$ is
a) $(2 n+1) \frac{\pi}{4}$
b) $(2 n+1) \frac{\pi}{6}$
c) $(2 n+1) \frac{\pi}{2}$
d) $\frac{1}{1}(2 n+1) \frac{\pi}{3}$
421. If $\cot (\alpha+\beta)=0$, then $\sin (\alpha+2 \beta)$ is equal to
a) $\sin \alpha$
b) $\cos \alpha$
c) $\sin \beta$
d) $\cos 2 \beta$
422. The value of $6\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-9\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+4$ is
a) -3
b) 0
c) 1
d) 3
423. If $y=\cos ^{2} x+\sec ^{2} x$, then
a) $y \leq 2$
b) $y \leq 1$
c) $y \geq 2$
d) $1<y<2$
424. If $0<x<\frac{\pi}{2}$, then the largest angle of a triangle whose sides are $1, \sin x, \cos x$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) x
d) $\frac{\pi}{2}-x$
425. In a $\triangle A B C, \cos \left(\frac{B+2 C+3 A}{2}\right)+\cos \left(\frac{A-B}{2}\right)$ is equal to
a) -1
b) 0
c) 1
d) 2
426. If $\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$, then $\tan \alpha$ is equal to
a) $\sqrt{2} \tan \beta$
b) $\tan \beta$
c) $\sin 2 \beta$
d) $\sqrt{2} \cot \beta$
427. The value of the expression $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta$ equals
a) 0
b) 2
c) 3
d) 1
428. $\tan ^{6} \frac{\pi}{9}-33 \tan ^{4} \frac{\pi}{9}+27 \tan ^{2} \frac{\pi}{9}=$
a) 0
b) $\sqrt{3}$
c) 3
d) 9
429. General solution of $\sin x+\cos x=\min _{a \in R}\left\{1, a^{2}-4 a+6\right\}$ is
a) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}$
b) $2 n \pi+(-1)^{n} \frac{\pi}{4}$
c) $n \pi+(-1)^{n+1} \frac{\pi}{4}$
d) $n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
430. The value of $\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{2 \pi}{15} \cos \frac{8 \pi}{15}$ is
a) $\frac{1}{16}$
b) $-\frac{1}{16}$
c) 1
d) 0
431. If $A+C=2 B$, then $\frac{\cos C-\cos A}{\sin A-\sin C}=$
a) $\cot B$
b) $\cot 2 B$
c) $\tan 2 B$
d) $\tan B$
432. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of the equation $x^{2}-a x+b=0$, then
a) $a^{2}=b(b-2)$
b) $a^{2}=b(b+2)$
c) $a^{2}+b^{2}=2 b$
d) None of these
433. The number of solutions of the equation $1+\sin x \sin ^{2} \frac{x}{2}=0$ in $[-\pi, \pi]$ is
a) zero
b) one
c) two
d) three
434. The solution of $\sin x+\sin 5 x=\sin 3 x$ in $\left(0, \frac{\pi}{2}\right)$
a) $\frac{\pi}{4}, \frac{\pi}{10}$
b) $\frac{\pi}{6}, \frac{\pi}{3}$
c) $\frac{\pi}{4}, \frac{\pi}{2}$
d) $\frac{\pi}{8}, \frac{\pi}{16}$
435. In a $\triangle A B C$, the HM of the ex-radii is equal to
a) $3 r$
b) $2 R$
c) $R+r$
d) None of these
436. The value of the expression $3(\sin x-\cos x)^{4}+4\left(\sin ^{6} x+\cos ^{6} x\right)+6(\sin x+\cos x)^{2}$ is
a) 10
b) 12
c) 13
d) None of these
437. If $4 \cos \theta-3 \sec \theta=2 \tan \theta$, then θ is equal to
a) $n \pi+(-1)^{n} \frac{\pi}{10}$
b) $n \pi+(-1)^{n} \frac{\pi}{6}$
c) $n \pi+(-1)^{n} \frac{3 \pi}{10}$
d) $n \pi$
438. In a $\triangle A B C, A D$ is the altitude from A. Given $b>c, \angle C=23^{\circ}$ and $A D=\frac{a b c}{b^{2}-c^{2}}$, then $\angle B$ is equal to
a) 53°
b) 113°
c) 87°
d) None of these
439. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P., then $\left|\cos x \sec \frac{y}{2}\right|$ equals
a) 1
b) 2
c) $\sqrt{2}$
d) None of these
440. The maximum value of $\frac{1}{3 \sin \theta-4 \cos \theta+7}$, is
a) $\frac{1}{12}$
b) $\frac{5}{12}$
c) $\frac{7}{12}$
d) $\frac{1}{6}$
441. If $\frac{a^{2}+1}{2 a}=\cos \theta$, then $\frac{a^{6}+1}{2 a^{3}}=$
a) $\cos ^{2} \theta$
b) $\cos ^{3} \theta$
c) $\cos 2 \theta$
d) $\cos 3 \theta$
442. The value of $2 \cos x-\cos 3 x-\cos 5 x$ is equal to
a) $16 \cos ^{3} x \sin ^{2} x$
b) $16 \sin ^{3} x \cos ^{2} x$
c) $4 \cos ^{3} x \sin ^{2} x$
d) $4 \sin ^{3} x \cos ^{2} x$
443. If $\tan \left(\frac{\alpha \pi}{4}\right)=\cot \left(\frac{\beta \pi}{4}\right)$, then
a) $\alpha+\beta=0$
b) $\alpha+\beta=2 n$
c) $\alpha+\beta=2 n+1$
d) $\alpha+\beta=2(2 n+1), n \in Z$
444. The value of x in $\left(0, \frac{\pi}{2}\right)$ satisfying the equation $\sin x \cos x=\frac{1}{4}$ is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{8}$
d) $\frac{\pi}{12}$
445. If $\sin \theta+\operatorname{cosec} \theta=2$, then $\sin ^{2} \theta+\operatorname{cosec}^{2} \theta$ is equal to
a) 1
b) 4
c) 2
d) None of these
446. If $A+C=2 B$, then $\frac{\cos C-\cos A}{\sin A-\sin C}$ is equal to
a) $\cot B$
b) $\cot 2 B$
c) $\tan 2 B$
d) $\tan B$
447. If the median of $\triangle A B C$ through A is perpendicular to $A B$, then
a) $\tan A+\tan B=0$
b) $2 \tan A+\tan B=0$
c) $\tan A+2 \tan B=0$
d) None of these
448. In a $\triangle A B C$, if $a=(b-c) \sec \theta$, then $\frac{2 \sqrt{b c}}{b-c} \sin \frac{A}{2}=$
a) $\cos \theta$
b) $\cot \theta$
c) $\tan \theta$
d) $\sin \theta$
449. The value of $\cot 36^{\circ} \cot 72^{\circ}$ is
a) $\frac{1}{5}$
b) $\frac{1}{\sqrt{5}}$
c) 1
d) $\frac{1}{3}$
450. If θ lies in the first quadrant and $5 \tan \theta=4$, then $\frac{5 \sin \theta-3 \cos \theta}{\sin \theta+2 \cos \theta}$ is equal to
a) $\frac{5}{14}$
b) $\frac{3}{14}$
c) $\frac{1}{14}$
d) 0
451. Consider the following statements :

1. If $\tan \alpha=\frac{m}{m+1}, \tan \beta=\frac{1}{2 m+1}$, then $\alpha+\beta=\frac{\pi}{4}$
2. If $3 \tan \left(\theta-15^{\circ}\right)=\tan \left(\theta+15^{\circ}\right), 0<\theta<\pi$, then $\theta=\frac{\pi}{4}$
3. If $\sin ^{2} a x-\sin ^{2}(a-1) x=\sin ^{2} x$, then x is equal to $\frac{n \pi}{a-1}$

Which of the statements given above are correct?
a) (1) and (2)
b) (2) and (3)
c) (3) and (1)
d) All (1), (2) and (3)
452. If $\cos (A-B)=\frac{3}{5}$ and $\tan A \tan B=2$, then
a) $\cos A \cos B=\frac{1}{5}$
b) $\sin A \sin B=-\frac{2}{5}$
c) $\cos (A+B)=-\frac{1}{5}$
d) None of these
453. If $\sin \theta=-\frac{4}{5}$ and θ lies in the third quadrant, then $\cos \frac{\theta}{2}$ is equal to
a) $\frac{1}{\sqrt{5}}$
b) $-\frac{1}{\sqrt{5}}$
c) $\sqrt{\frac{2}{5}}$
d) $-\sqrt{\frac{2}{5}}$
454. Let α, β be such that $\pi<\alpha-\beta<3 \pi$. If $\sin \alpha+\sin \beta=-\frac{21}{65}$ and $\cos \alpha+\cos \beta=-\frac{27}{65}$, then the value of $\cos \frac{(\alpha-\beta)}{2}$ is
a) $-\frac{3}{\sqrt{130}}$
b) $\frac{3}{\sqrt{130}}$
c) $\frac{6}{65}$
d) $-\frac{6}{65}$
455. If $\sin x+\sin ^{2} x=1$, then $\cos ^{8} x+2 \cos ^{6} x+\cos ^{4} x=$
a) 0
b) -1
c) 2
d) 1
456. If $\cos (\alpha+\beta) \sin (\gamma+\delta)=\cos (\alpha-\beta) \sin (\gamma-\delta)$, then $\cot \alpha \cot \beta \cot \gamma$ is equal to
a) $\cot \delta$
b) $-\cot \delta$
c) $\tan \delta$
d) $-\tan \delta$
457. If $A D, B E$ and $C F$ are the medians of a $\triangle A B C$, then $\left(A D^{2}+B E^{2}+C F^{2}\right):\left(B C^{2}+C A^{2}+A B^{2}\right)$ is equal to
a) $4: 3$
b) $3: 2$
c) $3: 4$
d) $2: 3$
458. The equation $a \cos \theta+b \sin \theta=c$ has a solution, when a, b and c are real numbers such that
a) $a<b<c$
b) $a=b=c$
c) $c^{2} \leq a^{2}+b^{2}$
d) $a^{2} \leq a^{2}-b^{2}$
459. If $\tan \left(\frac{\alpha \pi}{4}\right)=\cot \left(\frac{\beta \pi}{4}\right)$, then
a) $\alpha+\beta=0$
b) $\alpha+\beta=2 n$
c) $\alpha+\beta=2 n+1$
d) $\alpha+\beta=2(2 n+1), \forall n$ is an integer
460. If $\frac{2 \sin \alpha}{1+\cos \alpha+\sin \alpha}=x$, then $\frac{1-\cos \alpha-\sin \alpha}{\cos \alpha}$ is equal to
a) $\frac{1}{x}$
b) x
c) $1-x$
d) None of these
461. The area of the circle and the area of a regular polygon of n sides and of perimeter equal to that of the circle are in the ratio of
a) $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
b) $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
c) $\sin \frac{\pi}{n}: \frac{\pi}{n}$
d) $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
462. In a triangle $A B C, \frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to
a) $\frac{r}{R}$
b) $\frac{R}{r}$
c) $\frac{2 r}{R}$
d) $\frac{R}{2 r}$
463. From the identity $\sin 3 x=3 \sin x-4 \sin ^{3} x$ it follows that if x is real and $|x|<1$, then
a) $\left(3 x-4 x^{3}\right)>1$
b) $\left(3 x-4 x^{3}\right) \leq 1$
c) $\left(3 x-4 x^{3}\right)<1$
d) None of these
464. If $\tan (\cot x)=\cot (\tan x)$, then $\sin 2 x$ is equal to
a) $\frac{2}{(2 n+1) \pi}$
b) $\frac{4}{(2 n+1) \pi}$
c) $\frac{2}{n(n+1) \pi}$
d) $\frac{4}{n(n+1) \pi}$
465. If $\frac{\sin A}{\sin B}=\frac{\sqrt{3}}{2}$ and $\frac{\cos A}{\cos B}=\frac{\sqrt{5}}{2}, 0<A, B<\frac{\pi}{2}$, then
a) $\tan A=\frac{\sqrt{3}}{\sqrt{5}}$
b) $\tan A=\frac{\sqrt{5}}{\sqrt{3}}$
c) $\tan A=2$
d) $\tan B=2$
466. The expression $\cos ^{2}(A-B)+\cos ^{2} B-2 \cos (A-B) \cos A \cos B$ is
a) dependent on B
b) dependent on A and B
c) dependent on A
d) Independent of A and B
467. In a $\triangle A B C, \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$ is equal to
a) $\frac{1}{2 R}-\frac{1}{r}$
b) $2 R-r$
c) $r-2 R$
d) $\frac{1}{r}-\frac{1}{2 R}$
468. If $\sin A+\sin B=a$ and $\cos A+\cos B=b$, then $\cos (A+B)$
a) $\frac{a^{2}+b^{2}}{b^{2}-a^{2}}$
b) $\frac{2 a b}{a^{2}+b^{2}}$
c) $\frac{b^{2}-a^{2}}{a^{2}+b^{2}}$
d) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
469. The number of solutions of the equation $\tan x+\sec x=2 \cos x$ lying in the interval $[0,2 \pi]$ is
a) 0
b) 1
c) 2
d) 3
470. If $A+B+C=\pi, n \in Z$, then $\tan n A+\tan n B+\tan n C$ is equal to
a) 0
b) 1
c) $\tan n A \tan n B \tan n C$
d) None of these
471. If I is the incentre of a $\triangle A B C$, then $I A: I B: I C$ is equal to
a) $\operatorname{cosec} \frac{A}{2}: \operatorname{cosec} \frac{B}{2}: \operatorname{cosec} \frac{C}{2}$
b) $\sin \frac{A}{2}: \sin \frac{B}{2}: \sin \frac{C}{2}$
c) $\sec \frac{A}{2}: \sec \frac{B}{2}: \sec \frac{C}{2}$
d) None of these
472. The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}$ is
a) $1 / 16$
b) $1 / 64$
c) $1 / 128$
d) $1 / 32$
473. The general solution of $: \sin ^{2} \theta \sec \theta+\sqrt{3} \tan \theta=0$ is
a) $\theta=n \pi+(-1)^{n+1} \frac{\pi}{3}, \theta=n \pi, n \in Z$
b) $\theta=n \pi, n \in Z$
c) $\theta=n \pi+(-1)^{n+1} \frac{\pi}{3}, n \in Z$
d) $\theta=\frac{n \pi}{2}, n \in Z$
474. If in a $\triangle A B C, 2 a=\sqrt{3} b+c$, then
a) $c^{2}=a^{2}+b^{2}-a b$
b) $a^{2}=b^{2}+c^{2}$
c) $b^{2}=a^{2}+c^{2}-\sqrt{3} a c$
d) None of these
475. The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$ is
a) 1
b) 0
c) ∞
d) $1 / 2$
476. If $\tan \theta=\frac{a}{b}$, then $b \cos 2 \theta+a \sin 2 \theta=$
a) a
b) b
c) b / a
d) a / b
477. The general solution of $|\sin x|=\cos x$ is (when $n \in I$) given by
a) $n \pi+\frac{\pi}{4}$
b) $2 n \pi \pm \frac{\pi}{4}$
c) $n \pi \pm \frac{\pi}{4}$
d) $n \pi-\frac{\pi}{4}$
478. The expression $3\left\{\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi-\alpha)\right\}-2\left\{\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right\}$ is equal to
a) 0
b) 1
c) 3
d) $\sin 4 \alpha+\cos 6 \alpha$
479. The solution set of the equation
$4 \sin \theta \cos \theta-2 \cos \theta-2 \sqrt{3} \sin \theta+\sqrt{3}=0$ in the interval $(0,2 \pi)$ is
a) $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
b) $\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
c) $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{\pi}{3}, \frac{5 \pi}{3}\right\}$
d) $\left\{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}\right\}$
480. $\sum a^{3} \cos (B-C)=$
a) $3 a b c$
b) $3(a+b+c)$
c) $a b c(a+b+c)$
d) 0
481. If $\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$, then θ is equal to
a) $\frac{n \pi}{4}$ or $n \pi \pm \frac{\pi}{3}$
b) $\frac{n \pi}{4}$ or $n \pi \pm \frac{\pi}{6}$
c) $\frac{n \pi}{4}$ or $2 n \pi \pm \frac{\pi}{6}$
d) None of these
482. Which of the following number is rational?
a) $\sin 15^{\circ}$
b) $\cos 15^{\circ}$
c) $\sin 15^{\circ} \cos 15^{\circ}$
d) $\sin 15^{\circ} \cos 75^{\circ}$
483. The value of $\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8}{15} \cos \frac{14 \pi}{15}$ is
a) 1
b) $1 / 2$
c) $1 / 4$
d) $1 / 16$
484. If $\tan \theta \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)=\frac{1}{\sqrt{3}}$, then $\theta=$
a) $\frac{n \pi}{3}-\frac{\pi}{2}, n \in Z$
b) $\frac{n \pi}{3}-\frac{\pi}{18}, n \in Z$
c) $\frac{n \pi}{3}+\frac{\pi}{18}, n \in Z$
d) $\frac{n \pi}{3}+\frac{\pi}{12}, n \in Z$
485. The maximum value of $\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$ in the interval $\left(0, \frac{\pi}{2}\right)$ is attained at
a) $x=\frac{\pi}{12}$
b) $x=\frac{\pi}{6}$
c) $x=\frac{\pi}{3}$
d) $x=\frac{\pi}{2}$
486. If $\tan \alpha=\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}, \tan \beta=\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}$ and $\tan \gamma=\sqrt{x^{-3}+x^{-2}+x^{-1}}$, then $\alpha+\beta$ is
a) γ
b) 2γ
c) $-\gamma$
d) None of these
487. $A B C$ is a right angled isosceles triangle with $\angle B=90^{\circ}$. If D is a point on $A B$ so that $\angle C D B=15^{\circ}$ and, if $A D=35 \mathrm{~cm}$, then $C D$ equal to
a) $35 \sqrt{2} \mathrm{~cm}$
b) $70 \sqrt{2} \mathrm{~cm}$
c) $\frac{35 \sqrt{3}}{2} \mathrm{~cm}$
d) $35 \sqrt{6} \mathrm{~cm}$
488. If $4 n \alpha=\pi$, then the value of $\tan \alpha \cdot \tan 2 \alpha \cdot \tan 3 \alpha \cdot \tan 4 \alpha \ldots \tan (2 n-2) \alpha \tan (2 n-1) \alpha$ is
a) 0
b) 1
c) -1
d) None of these
489. In a $\triangle A B C$ if $r_{1}: r_{2}: r_{3}=2: 4: 6$, then $a: b: c=$
a) $3: 5: 7$
b) $1: 2: 3$
c) $5: 8: 9$
d) None of these
490. If in a $\triangle A B C, \cos A=\frac{\sin B}{2 \sin C}$, then the $\triangle A B C$ is
a) Equilateral
b) Isosceles
c) Right angled
d) None of these
491. The number of pairs (x, y) satisfying the equations $\sin x+\sin y=\sin (x+y)$ and $|x|+|y|=1$ is
a) 2
b) 4
c) 6
d) Infinite
492. The number of all possible ordered pairs $(x, y), x, y \in R$ satisfying the system of equations $x+y=\frac{2 \pi}{3}, \cos x+\cos y=\frac{3}{2}$, is
a) 0
b) 1
c) Infinite
d) None of these
493. If $p=\sin ^{2} x+\cos ^{4} x$, then
a) $\frac{3}{4} \leq p \leq 1$
b) $\frac{3}{16} \leq p \leq \frac{1}{4}$
c) $\frac{1}{4} \leq p \leq 1$
d) None of these
494. $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$ is equal to
a) 1
b) $\frac{1}{2}$
c) $\frac{1}{4}$
d) $\frac{1}{8}$
495. If $\cos x+\cos ^{2} x=1$, then the value of $\sin ^{12} x+3 \sin ^{10} x+3 \sin ^{8} x+\sin ^{6} x-1$, is equal to
a) 2
b) 1
c) -1
d) 0
496. The value of $\tan 20^{\circ}+2 \tan 50^{\circ}-\tan 70^{\circ}$, is
a) 1
b) 0
c) $\tan 50^{\circ}$
d) None of these
497. The value of $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \alpha$ is equal to
a) $\tan \alpha$
b) $\tan 2 \alpha$
c) $\cot \alpha$
d) $\cot 2 \alpha$
498. If $\tan ^{2} \alpha+\tan ^{2} \beta+\tan ^{2} \beta+\tan ^{2} \gamma+\tan ^{2} \gamma \tan ^{2} \alpha+2 \tan ^{2} \alpha \tan ^{2} \beta \tan ^{2} \gamma=1$, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is
a) 0
b) -1
c) 1
d) ± 1
499. If $\sqrt{\frac{1+\cos A}{1-\cos A}}=\frac{x}{y^{\prime}}$, then the value of $\tan A$ is equal to
a) $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
b) $\frac{2 x y}{x^{2}+y^{2}}$
c) $\frac{2 x y}{x^{2}-y^{2}}$
d) $\frac{2 x y}{y^{2}-x^{2}}$
500. Let $A B C$ be a triangle such that $\angle A=45^{\circ}, \angle B=75^{\circ}$, then $a+c \sqrt{2}$ is equal to
a) 0
b) b
c) $2 b$
d) $-b$
501. The minimum value of $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$ is
a) $\frac{1}{2 \sqrt{2}}$
b) $\frac{1}{4}$
c) $\frac{-1}{2}$
d) $\frac{1}{2}$
502. If θ is an acute angle and $\tan \theta=\frac{1}{\sqrt{7}}$, then the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$ is
a) $3 / 4$
b) $1 / 2$
c) 2
d) $5 / 4$
503. The value of $\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}$, is
a) 0
b) 1
c) -1
d) $1 / 8$
504. If $y=\sec ^{2} \theta+\cos ^{2} \theta, \theta \neq 0$, then
a) $y=0$
b) $y \leq 2$
c) $y \geq-2$
d) $y \neq 2$
505. If $\sec \theta=x+\frac{1}{4 x}$, then $\sec \theta+\tan \theta=$
a) $x, \frac{1}{x}$
b) $2 x, \frac{1}{2 x}$
c) $-2 x, \frac{1}{2 x}$
d) $-\frac{1}{x}, x$
506. If $\frac{\sin \theta}{6}, \cos \theta$ and $\tan \theta$ are in GP, then the general value of θ is
a) $2 n \pi \pm \frac{\pi}{3}, n \in I$
b) $2 n \pi \pm \frac{\pi}{6}, n \in I$
c) $2 n \pi+(-1)^{n} \frac{\pi}{3}, n \in I$
d) $n \pi+\frac{\pi}{3}, n \in I$
507. The number of roots of the equation $3 \sin ^{2} x=8 \cos x$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
a) 1
b) 2
c) 3
d) 4
508. The solution of the equation $\log _{\cos x} \sin x+\log _{\sin x} \cos x=2$ is given by
a) $x=2 n \pi+\frac{\pi}{4}, n \in Z$
b) $x=n \pi+\frac{\pi}{2}, n \in Z$
c) $x=n \pi+\frac{\pi}{8}, n \in Z$
d) $x=2 n \pi+\frac{\pi}{6}, n \in Z$
509. The value of $16 \sin 144^{\circ} \sin 108^{\circ} \sin 72^{\circ} \sin 36^{\circ}$ is equal to
a) 5
b) 4
c) 3
d) 1
510. In $(0, \pi / 2), \tan ^{m} x+\cot ^{m} x$ attains

Which one of the above statement is correct?
a) A minimum value which is independent of m
b) A minimum value which is a function of m
c) The minimum value of 2
d) The minimum value at the some point independent of m
511. If $7 \cos x-24 \sin x=\lambda \cos (x+\alpha), 0<\alpha<\frac{\pi}{2}$, be true for all $x \in R$, then
a) $\lambda=25$
b) $\alpha=\sin ^{-1} \frac{21}{25}$
c) $\lambda=-25$
d) $\alpha=\cos ^{-1} \frac{17}{25}$
512. Which one of the following is possible?
a) $\sin \theta=\frac{a^{2}+b^{2}}{a^{2}-b^{2}},(a \neq b)$
b) $\sec \theta=\frac{4}{5}$
c) $\tan \theta=45$
d) $\cos \theta=\frac{7}{3}$
513. If $y=(1+\tan A)(1-\tan B)$, where $A-B=\frac{\pi}{4}$, then $(y+1)^{y+1}$ is equal to
a) 9
b) 4
c) 27
d) 81
514. If $a \cos A=b \cos B$, then the triangle is
a) Equilateral
b) Right angled
c) Isosceles
d) Isosceles or right angled
515. If $-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$ and $\cos x+\cos y=2$, then the value of $\cos (x-y)$ is
a) -1
b) 0
c) 1
d) None of these
516. If $A+B+C=\pi$, then $\sin 2 A+\sin 2 B+\sin 2 C=$
a) $4 \sin A \sin B \sin C$
b) $4 \cos A \cos B \cos C$
c) $4 \cos A \cos B \cos C$
d) $2 \sin A \sin B \sin C$
517. The maximum value of $4 \sin ^{2} x+3 \cos ^{2} x+\sin \frac{x}{2}+\cos \frac{x}{2}$ is
a) $4+\sqrt{2}$
b) $3+\sqrt{2}$
c) 9
d) 4
518. If $\sin 3 \theta=\sin \theta$, how many solutions exist such that $0<\theta<2 \pi$?
a) 8
b) 9
c) 5
d) 7
519. The value of $\frac{\pi}{16} \sin \frac{3 \pi}{16} \sin \frac{5 \pi}{16} \sin \frac{7 \pi}{16}$, is
a) $\frac{\sqrt{2}}{16}$
b) $\frac{1}{8}$
c) $\frac{1}{16}$
d) $\frac{\sqrt{2}}{32}$
520. $\tan 25^{\circ}+\tan 20^{\circ}+\tan 25^{\circ} \tan 20^{\circ}$ is equal to
a) 1
b) 2
c) 3
d) 4
521. If $\sin ^{4} x+\cos ^{4} y+2=4 \sin x \cos y$ and $0 \leq x, y \leq \frac{\pi}{2}$, then $\sin x+\cos y$ is equal to
a) -2
b) 0
c) 2
d) $\frac{3}{2}$
522. In a right angled $\triangle A B C \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=$
a) 0
b) 1
c) -1
d) None of these
523. If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$, then the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is equal to
a) 1
b) 2
c) 0
d) $3 \cos \theta$
524. If $A+B+C=\frac{3 \pi}{2}$, then $\cos 2 A+\cos 2 B+\cos 2 C$ is equal to
a) $1-4 \cos A \cos B \cos C$
b) $4 \sin A \sin B \sin C$
c) $1+2 \cos A \cos B \cos C$
d) $1-4 \sin A \sin B \sin C$
525. If $A+B+C=\pi(A, B, C>0)$ and the angle C is obtuse, then
a) $\tan A \tan B>1$
b) $\tan A \tan B<1$
c) $\tan A \tan B=1$
d) None of these
526. If $\sec \theta+\tan \theta=1$, then root of the equation $(a-2 b+c) x^{2}+(b-2 c+a) x+(c-2 a+b)=0$ is
a) $\sec \theta$
b) $\tan \theta$
c) $\sin \theta$
d) $\cos \theta$
527. The area of the regular polygon of n sides is (where R is the radius of the circumpolygon),
a) $\frac{1}{2} R^{2} \sin \left(\frac{2 \pi}{n}\right)$
b) $\frac{n}{2} R^{2} \sin \left(\frac{\pi}{n}\right)$
c) $\frac{n}{2} R \sin \left(\frac{2 \pi}{n}\right)$
d) $\frac{n R^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
528. The number of all possible 5-tuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ such that $a_{1}+a_{2} \sin x+a_{3} \cos x+a_{4} \sin 2 x+$ $a 5 \cos 2 x=0$ holds for all x is
a) Zero
b) 1
c) 2
d) Infinite
529. The value of $\frac{\tan 70^{\circ}-\tan 20^{\circ}}{\tan 50^{\circ}}$ is equal to
a) 2
b) 1
c) 0
d) 3
530. If $\cos 20^{\circ}=k$ and $\cos x=2 k^{2}-1$, then the possible values of x between 0° and 360° are
a) 140° and 270°
b) 40° and 140°
c) 40° and 320°
d) 50° and 130°
531. The expression $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
a) 4
b) 3
c) 2
d) 1
532. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, then the value(s) of $\cos \left(\theta-\frac{\pi}{4}\right)$ is,(are)
a) $\frac{1}{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\pm \frac{1}{2 \sqrt{2}}$
d) None of these
533. If $b=3, c=4$ and $B=\pi / 3$, then the number of triangles that can be constructed is
a) Infinite
b) Two
c) One
d) Nil
534. In a $\triangle A B C, \sum(b+c) \tan \frac{A}{2} \tan \left(\frac{B-C}{2}\right)=$
a) a
b) b
c) c
d) 0
535. If the sides of a triangle are $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$, then the smallest angle of the triangle is
a) 15°
b) 45°
c) 30°
d) None of these
536. Set $a, b \in[-\pi, \pi]$ be such that $\cos (a-b)=1$ and $\cos (a+b)=\frac{1}{e}$. The number of pairs of a, b satisfying the above system of equations is
a) 0
b) 1
c) 2
d) 4
537. If $\tan (k+1) \theta=\tan \theta$, then θ belongs to the set
a) $\{n \pi: n \in I\}$
b) $\{n \pi / 2: n \in I\}$
c) $\{n \pi / k: n \in I\}$
d) $\{n \pi / 2 k: n \in I\}$
538. Let $\theta \in(0, \pi / 4)$ and $t_{1}=(\tan \theta)^{\tan \theta}, t_{2}=(\tan \theta)^{\cot \theta}, t_{3}=(\cot \theta)^{\tan \theta}$ and $t_{4}=(\cot \theta)^{\cot \theta}$. Then,
a) $t_{1}>t_{2}>t_{3}>t_{4}$
b) $t_{4}>t_{3}>t_{1}>t_{2}$
c) $t_{3}>t_{1}>t_{2}>t_{4}$
d) $t_{2}>t_{3}>t_{1}>t_{4}$
539. The value of $\cos 12^{\circ} \cos 24^{\circ} \cos 36^{\circ} \cos 48^{\circ} \cos 72^{\circ} \cos 84^{\circ}$, is
a) $1 / 64$
b) $1 / 32$
c) $1 / 16$
d) $1 / 128$
540. If $\tan A+\sin A=m$ and $\tan A-\sin A=n$, then $\frac{\left(m^{2}-n^{2}\right)^{2}}{m n}$ is equal to
a) 4
b) 3
c) 16
d) 9
541. If $A+B+C=270^{\circ}$, then
$\cos 2 A+\cos 2 B+\cos 2 C$ is equal to
a) $4 \sin A \sin B \sin C$
b) $4 \cos A \cos B \cos C$
c) $1-4 \sin A \sin B \sin C$
d) $1-4 \cos A \cos B \cos C$
542. If $\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$, then A, B, C are in
a) AP
b) GP
c) HP
d) None of these
543. If $\alpha+\beta+\gamma=2 \pi$, then
a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
b) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}=1$
c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
d) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}=0$
544. In a $\triangle A B C$, if the diameter of the incircle is $a+c-b$, then $\angle B=$
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) None of these
545. If $\sin ^{2} \theta=\frac{x^{2}+y^{2}+1}{2 x}$, then x must be
a) -3
b) -2
c) 1
d) None of these
546. If $1+\sin \theta+\sin ^{2} \theta+\cdots$ to $\infty=4+2 \sqrt{3}, 0<\theta<\pi, \theta \neq \frac{\pi}{2}$, then $\theta=$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{3}$ or, $\frac{\pi}{6}$
d) $\frac{\pi}{3}$ or, $\frac{2 \pi}{3}$
547. If $\cos 20^{\circ}-\sin 20^{\circ}=p$, then $\cos 40^{\circ}$ is equal to
a) $p^{2} \sqrt{2-p^{2}}$
b) $p \sqrt{2-p^{2}}$
c) $p+\sqrt{2-p^{2}}$
d) $p-\sqrt{2-p^{2}}$
548. If $c^{2}=a^{2}+b^{2}, 2 s=a+b+c$, then $4 s(s-a)(s-b)(s-c)=$
a) s^{4}
b) $b^{2} c^{2}$
c) $c^{2} a^{2}$
d) $a^{2} b^{2}$
549. The value of $\tan 20^{\circ}+2 \tan 50^{\circ}-\tan 70^{\circ}$ is
a) 1
b) 0
c) $\tan 50^{\circ}$
d) None of these
550. The solutions of the equation $4 \cos ^{2} x+6 \sin ^{2} x=5$ are
a) $x=n \pi \pm \frac{\pi}{4}$
b) $x=n \pi \pm \frac{\pi}{3}$
c) $x=n \pi \pm \frac{\pi}{2}$
d) $x=n \pi \pm \frac{2 \pi}{3}$
551. $\frac{\tan A}{1+\sec A}+\frac{1+\sec A}{\tan A}$ is equal to
a) $2 \sin A$
b) $2 \cos A$
c) $2 \operatorname{cosec} A$
d) $2 \sec A$
552. In $\triangle A B C$, if $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$, then the triangle is
a) Right angled, but need not be isosceles
b) Right angled and isosceles
c) Isosceles, but need not be right angled
d) Equilateral
553. If $\cos \theta+\cos 2 \theta+\cos 3 \theta=0$, the general value of θ is
a) $\theta=2 n \pi \pm \frac{\pi}{4}$
b) $\theta=n \pi+(-1)^{n} \frac{2 \pi}{3}$
c) $\theta=n \pi+(-1)^{n} \frac{\pi}{3}$
d) $\theta=2 n \pi \pm \frac{2 \pi}{3}$
554. If for real values of $x, \cos \theta=x+\frac{1}{x}$, then
a) θ is an acute angle
b) θ is a right angle
c) θ is an obtuse angle
d) No value of θ is possible
555. If $\sin x+\cos x=\frac{1}{5}$, then $\tan 2 x$ is
a) $\frac{25}{17}$
b) $\frac{24}{7}$
c) $\frac{7}{25}$
d) $\frac{25}{7}$
556. If θ is an acute angle and $\sin \frac{\theta}{2}=\sqrt{\frac{x-1}{2 x}}$, then $\tan \theta$ is equal to
a) $x^{2}-1$
b) $\sqrt{x^{2}-1}$
c) $\sqrt{x^{2}+1}$
d) $x^{2}+1$
557. In a $\triangle A B C, a, b, A$ are given and c_{2}, c_{2} are two values of the third side c. The sum of the areas of two triangles with sides a, b, c_{1} and a, b, c_{2} is
a) $(1 / 2) b^{2} \sin 2 A$
b) $(1 / 2) a^{2} \sin 2 A$
c) $b^{2} \sin 2 A$
d) None of these
558. The value of $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 179^{\circ}$ is
a) $\frac{1}{\sqrt{2}}$
b) 0
c) 1
d) None of these
559. In a right angled triangle the hypotenuse is $2 \sqrt{2}$ times the length of perpendicular drawn from the opposite vertex on the hypotenuse, then the other two angles are
а) $\frac{\pi}{3}, \frac{\pi}{6}$
b) $\frac{\pi}{4}, \frac{\pi}{4}$
c) $\frac{\pi}{8}, \frac{3 \pi}{8}$
d) $\frac{\pi}{12}, \frac{5 \pi}{12}$
560. If $12 \cot ^{2} \theta-31 \operatorname{cosec} \theta+32=0$, then the value of $\sin \theta$ is
a) $\frac{3}{5}$ or 1
b) $\frac{2}{3}$ or $-\frac{2}{3}$
c) $\frac{4}{5}$ or $\frac{3}{4}$
d) $\pm \frac{1}{2}$
561. If $T_{n}=\cos ^{n} \theta+\sin ^{n} \theta$, then $2 T_{6}-3 T_{4}+1=$
a) 2
b) 3
c) 0
d) 1
562. The general value of θ satisfying the equation $2 \sin ^{2} \theta-3 \sin \theta-2=0$ is
a) $n \pi+(-1)^{n+1} \frac{\pi}{6}$
b) $n \pi+(-1)^{n} \frac{\pi}{2}$
c) $n \pi+(-1)^{n} \frac{5 \pi}{6}$
d) $n \pi+(-1)^{n} \frac{7 \pi}{6}$
563. Which of the following statement is incorrect
a) $\sin \theta=-1 / 5$
b) $\cos \theta=1$
c) $\sec \theta=1 / 2$
d) $\tan \theta=20$
564. The expression $3\left\{\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi-\alpha)\right\}-2\left\{\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right\}$ is equal to
a) 0
b) 1
c) 3
d) $\sin 4 \alpha+\cos 6 \alpha$
565. If $\cot x+\operatorname{cosec} x=\sqrt{3}$, then the principle value of $\left(x-\frac{\pi}{6}\right)$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{6}$
566. If the equation $\cos 3 x \cos ^{3} x+\sin 3 x \sin ^{3} x=0$, then x is equal to
a) $(2 n+1) \frac{\pi}{4}$
b) $(2 n-1) \frac{\pi}{4}$
c) $\frac{n \pi}{4}$
d) None of these
567. In the ambiguous case, if a, b and A are given and c_{1}, c_{2} are two values of the third side c, then $c_{1}^{2}-2 c_{1} c_{2} \cos 2 A+c_{2}^{2}=$
a) $4 a^{2} \cos ^{2} A$
b) $4 a^{2} \cos A$
c) $4 a \cos ^{2} A$
d) None of these
568. If $A>0, B>0$ and $A+B=\frac{\pi}{3}$, then the maximum value of $\tan A \tan B$, is
a) $\frac{1}{3}$
b) 1
c) ∞
d) $\frac{1}{\sqrt{3}}$
569. The number of points of intersection of the curves $2 y=1$ and $y=\sin x,-2 \pi \leq x \leq 2 \pi$, is
a) 2
b) 3
c) 4
d) 1
570. The number of roots of the equation $x+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$, is
a) 1
b) 2
c) 3
d) Infinite
571. In a $\triangle A B C$ id $a=2, b=\sqrt{6}, c=\sqrt{3}+1$, then $\cos A=$
a) 30°
b) 45°
c) 60°
d) None of these
572. The value of $\frac{\cot ^{2} \theta+1}{\cot ^{2} \theta-1}$ is equal to
a) $\sin 2 \theta$
b) $\cos 2 \theta$
c) $\operatorname{cosec} 2 \theta$
d) $\sec 2 \theta$
573. The least value of $\operatorname{cosec}^{2} x+25 \sec ^{2} x$ is
a) 0
b) 26
c) 28
d) 36
574. If $\cos (\theta-\alpha), \cos \theta, \cos (\theta+\alpha)$ are in H.P., then $\cos \theta \sec \left(\frac{\alpha}{2}\right)$ is equal to
a) -1
b) $\pm \sqrt{2}$
c) ± 2
d) ± 3
575. $\tan 5 x \tan 3 x \tan 2 x=$
a) $\tan 5 x-\tan 3 x$
b) $\frac{\sin 5 x-\sin 3 x-\sin 2 x \mathrm{c})}{\cos 5 x-\cos 3 x-\cos 2 x} 0$
d) None of these
576. If $\sin x+\sin ^{2} x=1$, then value of $\cos ^{2} x+\cos ^{4} x$ is
a) 1
b) 2
c) 1.5
d) None of these
577. The value of the expression $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cdot \cos ^{2} \theta$ equals
a) 0
b) 2
c) 3
d) 1
578. If $\cos \theta=\frac{8}{17}$ and θ lies in the first quadrant, then the value of $\cos \left(30^{\circ}+\theta\right)+\cos \left(45^{\circ}-\theta\right)+\cos \left(120^{\circ}-\right.$ θ, is
a) $\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$
b) $\frac{23}{17}\left(\frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}}\right)$
c) $\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}-\frac{1}{\sqrt{2}}\right)$
d) $\frac{23}{17}\left(\frac{\sqrt{3}+1}{2}-\frac{1}{\sqrt{2}}\right)$
579. The number of real solutions of $2 \sin \left(e^{x}\right)=5^{x}+5^{-x}$ in [0,1] is /are
a) 0
b) 1
c) 2
d) 4
580. If the angles of a right angled triangle are in A.P., then the ratio of the in-radius and the perimeter is
a) $(2+\sqrt{3}): 2 \sqrt{3}$
b) $(2+\sqrt{3}): \sqrt{3}$
c) $(2-\sqrt{3}): 2 \sqrt{3}$
d) $(2-\sqrt{3}): 4 \sqrt{3}$
581. If $2 \sin ^{2} \theta+\sqrt{3} \cos \theta+1=0$, then the value of θ is
a) $\frac{\pi}{6}$
b) $\frac{2 \pi}{3}$
c) $\frac{5 \pi}{6}$
d) π
582. The general solution of $e^{-1 / \sqrt{2}}\left(e^{\sin x}+e^{\cos x}\right)=2$ is
a) $x=m \pi$
b) $x=\frac{(4 m+1) \pi}{4}$
c) $x=\frac{(4 m+1) \pi}{2}$
d) None of these
583. The most general value of θ which satisfy both the equations $\cos \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$, is
a) $2 n \pi+\frac{5 \pi}{4}, n \in I$
b) $2 n \pi+\frac{\pi}{4}, n \in I$
c) $2 n \pi+\frac{3 \pi}{4}, n \in I$
d) None of these
584. If $\alpha+\beta+\gamma=2 \theta$, then $\cos \theta+\cos (\theta-\alpha)+\cos (\theta-\beta)+\cos (\theta-\gamma)$ is equal to
a) $4 \sin \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$
b) $4 \cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$
c) $4 \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$
d) $4 \sin \alpha \cdot \sin \beta \cdot \sin \gamma$
585. The number of solutions of the equation $x^{3}+x^{2}+4 x+2 \sin x=0$ in $0 \leq x \leq 2 \pi$ is
a) Zero
b) One
c) Two
d) Four
586. The value of $\frac{\tan 70^{\circ}-\tan 20^{\circ}}{\tan 50^{\circ}}=$
a) 2
b) 1
c) 0
d) 3
587. The equation $\sin x+\sin y+\sin z=-3$ for $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi, 0 \leq z \leq 2 \pi$ has
a) One solution
b) Two sets of solutions
c) Four sets of solutions
d) No solution
588. If $\tan A=\frac{1-\cos B}{\sin B}$, then
a) $\tan 2 A=\tan B$
b) $\tan 2 A=\tan ^{2} B$
c) $\tan 2 A=\tan ^{2} B+2 \tan B$
d) None of the above
589. If α is an acute angle and $\sin \frac{\alpha}{2}=\sqrt{\frac{x-1}{2 x}}$, then $\tan \alpha$ is
a) $\sqrt{\frac{x-1}{x+1}}$
b) $\frac{\sqrt{x-1}}{x+1}$
c) $\sqrt{x^{2}-1}$
d) $\sqrt{x^{2}+1}$
590. If $\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$, then $\sin (\alpha+\beta)=$
a) $a b$
b) $a+b$
c) $\frac{2 a b}{a^{2}-b^{2}}$
d) $\frac{2 a b}{a^{2}+b^{2}}$
591. In $\tan \theta+\sec \theta=\sqrt{3}, 0<\theta<\pi$, then θ is equal to
a) $5 \pi / 6$
b) $2 \pi / 3$
c) $\pi / 6$
d) $\pi / 3$
592. If $\pi<\theta<2 \pi$, then $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is equal to
a) $\operatorname{cosec} \theta+\cot \theta$
b) $\operatorname{cosec} \theta-\cot \theta$
c) $-\operatorname{cosec} \theta+\cot \theta$
d) $-\operatorname{cosec} \theta-\cot \theta$
593. If $a \sin ^{2} x+b \cos ^{2} x=c, b \sin ^{2} y+a \cos ^{2} y=d$ and $a \tan x=b \tan y$, then $\frac{a^{2}}{b^{2}}$ is equal to
a) $\frac{(b-c)(d-b)}{(a-d)(c-a)}$
b) $\frac{(a-d)(c-a)}{(b-c)(d-b)}$
c) $\frac{(d-a)(c-a)}{(b-c)(d-b)}$
d) $\frac{(b-c)(b-d)}{(a-c)(a-d)}$
594. The value of $\frac{\cos 12^{\circ}-\sin 12^{\circ}}{\cos 12^{\circ}+\sin 12^{\circ}}+\frac{\sin 147^{\circ}}{\cos 147^{\circ}}$ is equal to
a) 1
b) -1
c) 0
d) None of these
595. In a $\triangle A B C$, if $A=30^{\circ}, b=2, c=\sqrt{3}+1$, then $\frac{c-B}{2}=$
a) 15°
b) 30°
c) 45°
d) None of these
596. If the expression $\frac{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x}{1+2 i \sin \frac{x}{2}}$ is real, then x is equal to
a) $2 n \pi+2 \tan ^{-1} k, k \in R, n \in Z$
b) $2 n \pi+2 \tan ^{-1} k$, where $k \in(0,1), n \in Z$
c) $2 n \pi+2 \tan ^{-1} k$, where $k \in(1,2), n \in Z$
d) $2 n \pi+2 \tan ^{-1} k, k \in(2,3), n \in Z$
597. In a $\triangle A B C, a=5, b=4$ and $\cos (A-B)=\frac{31}{32}$, then side c is
a) 6
b) 7
c) 9
d) None of these
598. The value of $\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}$ is equal to
a) 1
b) 2
c) 3
d) $\sqrt{\frac{3}{2}}$
599. If $5 \cos x+12 \cos y=13$, then the maximum value of $5 \sin x+12 \sin y$ is
a) 12
b) $\sqrt{120}$
c) $\sqrt{20}$
d) 13
600. The minimum value of $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$ is
a) $\frac{1}{2 \sqrt{2}}$
b) $\frac{1}{4}$
c) $-\frac{1}{2}$
d) $\frac{1}{2}$
601. $\cot \theta=\sin 2 \theta, \theta \neq n \pi, n \in Z$, if θ equals
a) 45° or 90°
b) 45° or 60°
c) 90° only
d) 45° only
602. If $\cos \theta=\cos \alpha \cos \beta$, then $\tan \left(\frac{\theta+\alpha}{2}\right) \tan \left(\frac{\theta-\alpha}{2}\right)$ is equal to
a) $\tan ^{2} \frac{\alpha}{2}$
b) $\tan ^{2} \frac{\beta}{2}$
c) $\tan ^{2} \frac{\theta}{2}$
d) $\cot ^{2} \frac{\beta}{2}$
603. In $\triangle A B C, \angle A=\frac{\pi}{3}$ and $b: c=2: 3, \tan \theta=\frac{\sqrt{3}}{5}, 0<\theta<\frac{\pi}{2}$, then
a) $B=60^{\circ}+\theta$
b) $C=60^{\circ}+\theta$
c) $B=60^{\circ}-\theta$
d) $C=60^{\circ}-\theta$
604. The value of $\cot 70^{\circ}+4 \cos 70^{\circ}$ is
a) $\frac{1}{\sqrt{3}}$
b) $\sqrt{3}$
c) $2 \sqrt{3}$
d) $1 / 2$
605. The general solution of $\sin x-\cos x=\sqrt{2}$, for any integer n is
a) $n \pi$
b) $2 n \pi+\frac{3 \pi}{4}$
c) $2 n \pi$
d) $(2 n+1) \pi$
606.

If $0<\theta<\pi$, then $\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+2 \cos \theta}}}}$ there being n number of 2 's is equal to
a) $2 \cos \frac{\theta}{2^{n}}$
b) $2 \cos \frac{\theta}{2^{n-1}}$
c) $2 \cos \frac{\theta}{2^{n+1}}$
d) None of these
607. If $(\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C)=(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C)$ then each side is equal to
a) 0
b) 1
c) -1
d) ± 1
608. The value of $\frac{\sin 55^{\circ}-\cos 55^{\circ}}{\sin 10^{\circ}}$ is
a) $\frac{1}{\sqrt{2}}$
b) 2
c) 1
d) $\sqrt{2}$
609. If $\frac{\tan 3 A}{\tan A}=a$, then $\frac{\sin 3 A}{\sin A}$ is equal to
a) $\frac{2 a}{a+1}$
b) $\frac{2 a}{a-1}$
c) $\frac{a}{a+1}$
d) $\frac{a}{a-1}$
610. The value of $1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$ is
a) $4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ b) $\cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ} \quad$ c) $4 \cos 28^{\circ} \sin 29^{\circ} \cos 33^{\circ}$ d) $4 \cos 28^{\circ} \sin 29^{\circ} \sin 33^{\circ}$
611. If $x \cos \alpha+y \sin \alpha=2 a, x \cos \alpha+y \sin \beta=2 a$ and $2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2}=1$, then
a) $\cos \alpha+\cos \beta=\frac{2 a x}{x^{2}+y^{2}}$
b) $\cos \alpha \cos \beta=\frac{2 a^{2}-y^{2}}{x^{2}+y^{2}}$
c) $y^{2}=4 a(\alpha-x)$
d) $\cos \alpha+\cos \beta=2 \cos \alpha \cos \beta$
612. The value of $\log \tan 1^{\circ}+\log \tan 2^{\circ}+\cdots+\log \tan 89^{\circ}$, is
a) 0
b) -1
c) 1
d) ∞
613. The general value of θ in the equation $\cos \theta=\frac{1}{\sqrt{2}}, \tan \theta=-1$ is
a) $2 n \pi \pm \frac{\pi}{6}, n \in I$
b) $2 n \pi \pm \frac{7 \pi}{4}, n \in I$
c) $n \pi+(-1)^{n} \frac{\pi}{3}, n \in I$
d) $n \pi+(-1)^{n} \frac{\pi}{4}, n \in I$
614. The number of solutions of the equation $\sin x=\cos 3 x$ in $[0, \pi]$, is
a) 1
b) 2
c) 3
d) 4
615. If $\frac{\pi}{2}<\theta<\pi$, then $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$ is equal to
a) $2 \sec \theta$
b) $-2 \sec \theta$
c) $\sec \theta$
d) $-\sec \theta$
616. If $\sin \theta=\sin 15^{\circ}+\sin 45^{\circ}$, where $0^{\circ}<\theta<90^{\circ}$, then θ is equal to 0
a) 45°
b) 54°
c) 60°
d) 75°
617. $\sinh ^{-1} 2+\sinh ^{-1} 3=x \Rightarrow \cosh x$ is equal to
a) $\frac{1}{2}(3 \sqrt{5}+2 \sqrt{10})$
b) $\frac{1}{2}(3 \sqrt{5}-2 \sqrt{10})$
c) $\frac{1}{2}(12+2 \sqrt{50})$
d) $\frac{1}{2}(12-2 \sqrt{50})$
618. The values of θ satisfying $\sin 7 \theta=\sin 4 \theta-\sin \theta$ and $0<\theta<\frac{\pi}{2}$ are
a) $\frac{\pi}{9}, \frac{\pi}{4}$
b) $\frac{\pi}{3}, \frac{\pi}{9}$
c) $\frac{\pi}{6}, \frac{\pi}{9}$
d) $\frac{\pi}{3}, \frac{\pi}{4}$
619. In a triangle $A B C$, the line joining the circumcentre to the incentre is parallel to $B C$, the $\cos B+\cos C=$
a) $3 / 2$
b) 1
c) $3 / 4$
d) $1 / 2$
620. If $2 \sin ^{2} \theta=3 \cos \theta, 0 \leq \theta \leq 2 \pi$, then θ is equal to
a) $\frac{\pi}{6}, \frac{5 \pi}{6}$
b) $\frac{\pi}{3}, \frac{2 \pi}{3}$
c) $\frac{\pi}{3}, \frac{5 \pi}{3}$
d) $\frac{\pi}{2}, \pi$
621. Solution of the equation $3 \tan (\theta-15)=\tan (\theta+15)$ is
a) $\theta=n \pi-\frac{\pi}{3}$
b) $\theta=n \pi+\frac{\pi}{3}$
c) $\theta=n \pi-\frac{\pi}{4}$
d) $\theta=n \pi+\frac{\pi}{4}$
622. Number of solutions of $y=e^{x}$ and $y=\sin x$ is
a) 0
b) 1
c) 2
d) Infinite
623. The value of $\sin 10^{\circ}+\sin 20^{\circ}+\sin 30^{\circ}+\ldots+\sin 360^{\circ}$ is equal to
a) 0
b) 1
c) $\sqrt{3}$
d) 2
624. For any angle θ, the expression $\frac{2 \cos 8 \theta+1}{2 \cos \theta+1}$ is equal to
a) $(2 \cos \theta+1)(2 \cos 2 \theta+1)(2 \cos 4 \theta+1)$
b) $(\cos \theta-1)(\cos 2 \theta-1)(\cos 4 \theta-1)$
c) $(2 \cos \theta-1)(2 \cos 2 \theta-1)(2 \cos 4 \theta-1)$
d) $(2 \cos \theta+1)(2 \cos 2 \theta+1)(2 \cos 4 \theta+1)$
625. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the root of the equation $x^{2}-p x+q=0$,then
a) $p^{2}=q(q-2)$
b) $p^{2}=q(q+2)$
c) $p^{2}+q^{2}=2 q$
d) None of these
626. The value of $\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}$, is
a) $1 / 8$
b) $\sqrt{7} / 8$
c) $\sqrt{7} / 2$
d) $\sqrt{7} / 16$
627. If $\sin x+\sin ^{2} x=1$, then $\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x$ is equal to
a) 1
b) 2
c) 3
d) 0
628. If $A+C=B$, then $\tan A \tan B \tan C=$
a) $\tan A \tan B \tan C$
b) $\tan B-\tan C-\tan A$
c) $\tan A+\tan C-\tan B$
d) $-(\tan A \tan B+\tan C)$
629. If $\cos A+\cos B=m$ and $\sin A+\sin B=n$ where $m, n \neq 0$, then $\sin (A+B)$ is equal to
a) $\frac{m n}{m^{2}+n^{2}}$
b) $\frac{2 m n}{m^{2}+n^{2}}$
c) $\frac{m^{2}+n^{2}}{2 m n}$
d) $\frac{m n}{m+n}$
630. The solution set of $(5+4 \cos \theta)(2 \cos \theta+1)=0$ in the interval $[0,2 \pi]$ is
a) $\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$
b) $\left\{\frac{\pi}{3}, \pi\right\}$
c) $\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
d) $\left\{\frac{2 \pi}{3}, \frac{5 \pi}{3}\right\}$
631. The equation $\sin ^{6} x+\cos ^{6} x=\lambda$, has a solution if
a) $\lambda \in[1 / 2,1]$
b) $\lambda \in[1 / 4,1]$
c) $\lambda \in[-1,1]$
d) $\lambda \in[0,1 / 2]$
632. If $y=\frac{\sin 3 \theta}{\sin \theta}, \theta \neq n \pi$, then
a) $y \in[-1,3]$
b) $y \in[-\infty,-1]$
c) $y \in(3, \infty)$
d) $y \in[-1,3)$
633. If $\sin ^{2} \theta=\frac{1}{4}$, then the most general value of θ is
a) $2 n \pi \pm(-1)^{n} \frac{\pi}{6}$
b) $\frac{n \pi}{2} \pm(-1)^{n} \frac{\pi}{6}$
c) $n \pi \pm \frac{\pi}{6}$
d) $2 n \pi \pm \frac{\pi}{6}$
634. Let n be odd integer. If $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$ for every value of θ, then
a) $b_{0}=1, b_{1}=3$
b) $b_{0}=0, b_{1}=n$
c) $b_{0}=-1, b_{1}=n$
d) $b_{0}=0, b_{1}=n^{2}-3 n+3$
635. If $k=\sin ^{6} x+\cos ^{6} x$, then k belongs to the interval
a) $[7 / 8,5 / 4]$
b) $[1 / 2,5 / 8]$
c) $[1 / 4,1]$
d) None of these
636. The value of $\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}$ is equal to
a) $\sqrt{3} / 4$
b) $4 / 3$
c) $3 / 4$
d) $4 / \sqrt{3}$
637. If $0 \leq x \leq \pi$ and $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$, then x is equal to
a) $\frac{\pi}{6}, \frac{\pi}{3}$
b) $\frac{\pi}{3}, \frac{\pi}{2}$
c) $\frac{5 \pi}{6}, \frac{\pi}{3}$
d) $\frac{2 \pi}{3}, \frac{\pi}{3}$
638. The value of $\cos 9^{\circ}-\sin 9^{\circ}$ is
a) $\frac{5+\sqrt{5}}{4}$
b) $\frac{\sqrt{5-\sqrt{5}}}{2}$
c) $-\frac{\sqrt{5-\sqrt{5}}}{2}$
d) None of these
639. $\operatorname{sech}^{-1}\left(\frac{1}{2}\right)$ is
a) $\log (\sqrt{3}+\sqrt{2})$
b) $\log (\sqrt{3}+1)$
c) $\log (2+\sqrt{3})$
d) None of above
640. If a triangle is right angled at B, then the diameter of the incircle of the triangle is
a) $c+a-b$
b) $2(c+a-b)$
c) $c+a-2 b$
d) $c+a+2 b$
641. Let $\theta \in\left(0, \frac{\pi}{4}\right)$ and $t_{1}=(\tan \theta)^{\tan \theta}, t_{2}=(\tan \theta)^{\cot \theta}, t_{3}=(\cot \theta)^{\tan \theta}$ and $t_{4}=(\cot \theta)^{\tan \theta}$, then
a) $t_{1}>t_{2}>t_{3}>t_{4}$
b) $t_{4}>t_{3}>t_{1}>t_{2}$
c) $t_{3}>t_{1}>t_{2}>t_{4}$
d) $t_{2}>t_{3}>t_{1}>t_{4}$
642. If $\frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot \beta}+\{\cos (\alpha-\beta) \sec (\alpha+\beta)+1\}^{-1}=1$, then $\tan \alpha \tan \beta$ is equal to
a) 1
b) -1
c) 2
d) -2
643. The value of the expression $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4\left(\sin ^{6} \theta+\cos ^{6} \theta\right)$ is
a) 1
b) -1
c) 13
d) 0
644. One root of the equation $\cos \theta-\theta+\frac{1}{2}=0$ lies in the interval
a) $(0, \pi / 2)$
b) $(-\pi / 2,0)$
c) $(\pi / 2, \pi)$
d) $(\pi, 3 \pi / 2)$
645. If $\alpha-22^{\circ} 30^{\prime}$, then $(1+\cos \alpha)(1+\cos 3 \alpha) \times(1+\cos 5 \alpha)(1+\cos 7 \alpha)$ equals
a) $\frac{1}{8}$
b) $\frac{1}{4}$
c) $\frac{1+\sqrt{2}}{2 \sqrt{2}}$
d) $\frac{\sqrt{2}-1}{\sqrt{2}+1}$
646. The value of $\sin A \sin \left(60^{\circ}-A\right) \sin \left(60^{\circ}+A\right)$ is equal to
a) $\sin 3 A$
b) $\frac{\sin 3 A}{2}$
c) $\frac{\sin 3 A}{4}$
d) None of these
647. If $A+B+C=\pi$, then $\sin 2 A+\sin 2 B+\sin 2 C$ is equal to
a) $4 \sin A \sin B \sin C$
b) $4 \cos A \cos B \cos C$
c) $2 \cos A \cos B \cos C$
d) $2 \sin A \sin B \sin C$
648. If $x=h+a \sec \theta$ and $y=k+b \operatorname{cosec} \theta$. Then,
a) $\frac{a^{2}}{(x+h)^{2}}-\frac{b^{2}}{(y+k)^{2}}=1$
b) $\frac{a^{2}}{(x-h)^{2}}+\frac{b^{2}}{(y-k)^{2}}=1$
c) $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
d) $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
649. The maximum of the function $3 \cos x-4 \sin x$ is
a) 2
b) 3
c) 4
d) 5
650. The equation $3 \sin ^{2} x+10 \cos x-6=0$ is satisfied, if
a) $x=n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
b) $x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
c) $x=n \pi \pm \cos ^{-1}\left(\frac{1}{6}\right)$
d) $x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{6}\right)$
651. The number of solutions of the equation $1+\sin x \sin ^{2} \frac{x}{2}=0$, in $[-\pi, \pi]$ is
a) Zero
b) One
c) Two
d) Three
652. The root of the equation $1-\cos \theta=\sin \theta \cdot \sin \frac{\theta}{2}$ is
a) $k \pi, k \in I$
b) $2 k \pi, k \in I$
c) $k \frac{\pi}{2}, k \in I$
d) None of these
653. The maximum value of $\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$ in the interval $\left(0, \frac{\pi}{2}\right)$ is attained at
a) $x=\frac{\pi}{12}$
b) $x=\frac{\pi}{6}$
c) $x=\frac{\pi}{3}$
d) $x=\frac{\pi}{2}$
654. The values of α for which the equation $\sin ^{4} x+\cos ^{4} x+\sin 2 x+\alpha=0$ may be valid, are
a) $-\frac{3}{2} \leq \alpha \leq 1$
b) $0 \leq \alpha \leq \frac{1}{2}$
c) $-\frac{3}{2} \leq \alpha \leq \frac{1}{2}$
d) None of these
655. The value of $\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\cdots+\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ}$, is
a) $7 \frac{1}{2}$
b) $8 \frac{1}{2}$
c) $9 \frac{1}{2}$
d) None of these
656. If $1+\cos x=k$, where x is acute, then $\sin \frac{x}{2}$ is
a) $\sqrt{\frac{1-k}{2}}$
b) $\sqrt{2-k}$
c) $\sqrt{\frac{2+k}{2}}$
d) $\sqrt{\frac{2-k}{2}}$
657. If in a triangle $A B C, \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$, then the triangle is
a) Right angled
b) Obtuse angled
c) Equilateral
d) Isosceles
658. In a $\triangle A B C$ if $c=(a+b) \sin \theta$ and $\cos \theta=\frac{k \sqrt{a b}}{a+b}$, then $k=$
a) $2 \cos \frac{C}{2}$
b) $2 \cos \frac{B}{2}$
c) $2 \cos \frac{\mathrm{~A}}{2}$
d) $\cos \frac{C}{2}$
659. The value of $\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}+\cos \frac{7 \pi}{7}$, is
a) 1
b) -1
c) 0
d) -2
660. The number of ordered pairs (x, y) satisfying $y=2 \sin x$ and $y=5 x^{2}+2 x+3$ is
a) 0
b) 1
c) 2
d) ∞
661. If the angle of a triangle are in A.P. with common difference equal $\frac{1}{3}$ of the least angle, then the sides are in the ratio
a) $\sqrt{2}: 2 \sqrt{3}: \sqrt{6}+\sqrt{2}$
b) $2 \sqrt{2}: \sqrt{3}: \sqrt{6}-\sqrt{2}$
c) $2 \sqrt{2}: 2 \sqrt{3}: \sqrt{6}-\sqrt{2}$
d) $2 \sqrt{2}: 2 \sqrt{3}: \sqrt{6}+\sqrt{2}$
662. If $\operatorname{Max}_{x \in R}\{5 \sin x+3 \sin (x-\theta)\}=7$, then $\theta=$
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
b) $2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
c) $\frac{\pi}{3}, \frac{2 \pi}{3}$
d) None of these
663. If $\sin \theta+\cos \theta=m$ and $\sec \theta+\operatorname{cosec} \theta=n$, then $n(m+1)(m-1)$ is equal to
a) m
b) n
c) $2 m$
d) $2 n$
664. If $\tan ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}=0$, then the general value of θ is
a) $n \pi+\frac{\pi}{4}, n \pi+\frac{\pi}{3}$
b) $n \pi-\frac{\pi}{4}, n \pi+\frac{\pi}{3}$
c) $n \pi+\frac{\pi}{4}, n \pi-\frac{\pi}{3}$
d) $n \pi-\frac{\pi}{4}, n \pi-\frac{\pi}{3}$
665. If $\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$, then $x+y+z$ is equal to
a) 1
b) 0
c) -1
d) None of these
666. The value of $e^{\log _{10} \tan 1^{\circ}+\log _{10} \tan 2^{\circ}+\log _{10} 3^{\circ}+\cdots+\log _{10} \tan 89^{\circ}}$, is
a) 0
b) e
c) $1 / e$
d) 1
667. If $\sin ^{3} x \sin 3 x=\sum_{m=0}^{n} c_{m} \cos m x$, where $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$ are constants and $c_{n} \neq 0$, then the value of n is
a) 15
b) 6
c) 1
d) 0
668. The value of $\tan 67 \frac{1}{2}^{\circ}+\cot 67 \frac{1}{2}^{\circ}$ is
a) $\sqrt{2}$
b) $\begin{aligned} & 2 \\ & 3 \sqrt{2}\end{aligned}$
c) $2 \sqrt{2}$
d) $2-\sqrt{2}$
669. In any $\triangle A B C$, II $\left(\frac{\sin ^{2} A+\sin A+1}{\sin A}\right)$ is always greater than
a) 9
b) 3
c) 27
d) None of these
670. The number of solutions of the equation $2 \cos \left(e^{x}\right)=5^{x}+5^{-x}$ are
a) No solution
b) One solution
c) Two solutions
d) Infinity many solutions
671. If A_{1}, A_{2}, A_{3} denote respectively the areas of an inscribed polygon of $2 n$ sides, inscribed polygon of n sides and circumscribed polygon of n sides, then A_{2}, A_{1}, A_{3} are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
672. The most general values of θ satisfying $\tan \theta+\tan \left(\frac{3 \pi}{4}+\theta\right)=2$ is/are
a) $n \pi \pm \frac{\pi}{3}, n \in I$
b) $2 n \pi+\frac{\pi}{3}, n \in I$
c) $2 n \pi \pm \frac{\pi}{3}, n \in I$
d) $2 n \pi+(-1)^{n} \frac{\pi}{3}, n \in I$
673. The value of $\frac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$ is equal to
a) $\frac{\cos B+\sin B}{\cos B-\sin B}$
b) $\frac{\cos A+\sin A}{\cos A-\sin A}$
c) $\frac{\cos A-\sin A}{\cos A+\sin A}$
d) None of these
674. The maximum value of $3 \cos x+4 \sin x+5$ is
a) 5
b) 6
c) 7
d) None of these
675. $\sin A+\sin B=\sqrt{3}(\cos B-\cos A) \Rightarrow \sin 3 A+\sin 3 B$ is equal to
a) 0
b) 2
c) 1
d) -1
676. $3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$ is equal to
a) 11
b) 12
c) 13
d) 14
677. If $m \tan \left(\theta-30^{\circ}\right)=n \tan \left(\theta+120^{\circ}\right)$, then $\cos 2 \theta$ equals
a) $\frac{m+n}{m-n}$
b) $\frac{m-n}{m+n}$
c) $\frac{m-n}{2(m+n)}$
d) $\frac{m+n}{2(m-n)}$
678. $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
a) 2
b) $2 \sin 20^{\circ} \cdot \operatorname{cosec} 40^{\circ}$
c) 4
d) $4 \sin 20^{\circ} \cdot \operatorname{cosec} 40^{\circ}$
679. If $\left|\cos \theta\left\{\sin \theta+\sqrt{\sin ^{2} \theta+\sin ^{2} \alpha}\right\}\right| \leq k$, then the value of k is
a) $\sqrt{1+\cos ^{2} \alpha}$
b) $\sqrt{1+\sin ^{2} \alpha}$
c) $\sqrt{2+\sin ^{2} \alpha}$
d) $\sqrt{2+\cos ^{2} \alpha}$
680. General value of θ satisfying the equation $\tan ^{2} \theta+\sec 2 \theta=1$ is
a) $m \pi, n \pi+\frac{\pi}{3}$
b) $m \pi, n \pi \pm \frac{\pi}{3}$
c) $m \pi, n \pi \pm \frac{\pi}{6}$
d) None of these
681. If $2 \sec 2 \alpha=\tan \beta+\cot \beta$, then one of the values of $\alpha+\beta$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) π
d) $n \pi-\frac{\pi}{4}, n \in I$
682. The number of solutions of the equation $\tan x+\sec x=2 \cos x$ and $\cos x \neq 0$ lying in the interval $(0,2 \pi)$ is
a) 2
b) 1
c) 0
d) 3
683. The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$ is equal to
a) -1
b) 2
c) $\frac{\pi}{2}$
d) 1
684. The value of $\sin 12^{\circ} \sin 24^{\circ} \sin 48^{\circ} \sin 84^{\circ}$, is
a) $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$
b) $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$
c) $3 / 15$
d) None of these
685. The most general solution of the equation $8 \tan ^{2} \frac{\theta}{2}=1+\sec \theta$, is
a) $\theta=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
b) $\theta=2 n \pi \pm \frac{\pi}{6}$
c) $\theta=2 n \pi \pm \cos ^{-1}\left(\frac{-1}{3}\right)$
d) None of these
686. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$, then $\frac{\tan x}{\tan y}$ is equal to
a) $\frac{b}{a}$
b) $\frac{a}{b}$
c) $a b$
d) None of these
687. If $\alpha+\beta+\gamma=2 \pi$, then
a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}=1$
c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
d) None of the above
688. The most general solution of $\tan \theta=-1, \cos \theta=\frac{1}{\sqrt{2}}$ is
a) $n \pi+\frac{7 \pi}{4}, n \in Z$
b) $n \pi+(-1)^{n} \frac{7 \pi}{4}, n \in Z$
c) $2 n \pi+\frac{7 \pi}{4}, n \in Z$
d) None of these
689. In a $\triangle A B C$ if $C=60^{\circ}$, then $\frac{a}{b+c}+\frac{b}{c+a}=$
a) 2
b) 4
c) 3
d) 1
690. If x lies in IInd quadrant, then $\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}$ is equal to
a) $\sin \frac{x}{2}$
b) $\tan \frac{x}{2}$
c) $\sec \frac{x}{2}$
d) $\operatorname{cosec} \frac{x}{2}$
691. If $\cos (\alpha+\beta)=\frac{4}{5}, \sin (\alpha-\beta)=\frac{5}{13}$ and α, β lie between 0 and $\frac{\pi}{4}$, then $\tan 2 \alpha=$
a) $\frac{56}{33}$
b) $\frac{33}{56}$
c) $\frac{16}{65}$
d) $\frac{60}{61}$
692. If $\sin \theta+\operatorname{cosec} \theta=2$, then $\sin ^{2} \theta+\operatorname{cosec}^{2} \theta$ is equal to
a) 1
b) 4
c) 2
d) None of these
693. If $\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$,then the general value of θ is
a) $\frac{n \pi}{4}, n \pi \pm \frac{\pi}{3}$
b) $\frac{n \pi}{4}, n \pi \pm \frac{\pi}{6}$
c) $\frac{n \pi}{4}, 2 n \pi \pm \frac{\pi}{3}$
d) $\frac{n \pi}{4}, 2 n \pi \pm \frac{\pi}{6}$
694. The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is
a) $n \pi+\frac{\pi}{8}$
b) $\frac{n \pi}{2}+\frac{\pi}{8}$
c) $(-1)^{n} \frac{n \pi}{2}+\frac{\pi}{8}$
d) $2 n \pi+\cos ^{-1} \frac{3}{2}$
695. The equation $2 \cos ^{2} \frac{x}{2} \sin ^{2} x=x^{2}+^{-2}, x<\frac{\pi}{9}$ has
a) No real solution
b) One real solution
c) More than one real solutions
d) None of the above
696. If the angles of a triangle are 30° and 45° and the included side is $(\sqrt{3}+1) \mathrm{cms}$, then the area of the triangle is
a) $\frac{1}{\sqrt{3}-1}$
b) $\sqrt{3}+1$
c) $\frac{1}{\sqrt{3}+1}$
d) None of these
697. If n is any integer, then the general solution of the equation $\cos \theta-\sin \theta=\frac{1}{\sqrt{2}}$ is
a) $\theta=2 n \pi-\frac{\pi}{12}$ or $\theta=2 n \pi+\frac{7 \pi}{12}$
b) $\theta=n \pi+\frac{\pi}{12}$
c) $\theta=2 n \pi+\frac{\pi}{12}$ or $\theta=2 n \pi-\frac{7 \pi}{12}$
d) $\theta=2 n \pi+\frac{\pi}{12}$ or $\theta=2 n \pi+\frac{7 \pi}{12}$
698. We are given b, c and $\sin B$ such that B is acute and $b<c \sin B$. Then,
a) No triangle is possible
b) One triangle is possible
c) Two triangles are possible
d) A right-angled triangle is possible
699. The value of $\cot ^{2} \frac{\pi}{9}+\cot ^{2} \frac{2 \pi}{9}+\cot ^{2} \frac{4 \pi}{9}$, is
a) 0
b) 3
c) 9
d) $1 / 3$
700. If $\tan x+\cot x=2$, then $\sin ^{2 n} x+\cos ^{2 n} x$ is equal to
a) 2^{n}
b) $-\frac{1}{2}$
c) $\frac{1}{2}$
d) None of these
701. The most general value of θ which satisfies both the equations $\tan \theta=-1$ and $\cos \theta=1 / \sqrt{2}$ will be
a) $n \pi+\frac{7 \pi}{4}$
b) $n \pi+(-1)^{n} \frac{7 \pi}{4}$
c) $2 n \pi+\frac{7 \pi}{4}$
d) None of these
702. If $\sin x+\sin ^{2} x=1$, then the value of $\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x-1$ is equal to
a) 2
b) 1
c) 0
d) -1
703. The side of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x, y>0$. The triangle is
a) Right angled
b) Equilateral
c) Obtuse angled
d) None of these
704. If the sides of a triangle are $x^{2}+x+1, x^{2}-1,2 x+1$, where $x>1$, then the largest angle is
a) 120°
b) 60°
c) 40°
d) 30°
705. If p_{1}, p_{2}, p_{3} are altitudes of a triangle $A B C$ from the vertices A, B, C and Δ, the area of the triangle, then $p_{1}^{-1}+p_{2}^{-1}-p_{3}^{-1}$ is equal to
a) $\frac{s-a}{\Delta}$
b) $\frac{s-b}{\Delta}$
c) $\frac{s-c}{\Delta}$
d) $\frac{s}{\Delta}$
706. In a $\triangle A B C$ if $a=26, b=30$ and $\cos C=\frac{63}{65}$, then $r_{2}=$
a) 84
b) 45
c) 48
d) 24
707. The value of $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 100^{\circ}$ is equal to
a) 1
b) -1
c) 0
d) None of these
708. The value of $\sin \frac{\pi}{2}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}$ is
a) $\cot \frac{\pi}{14}$
b) $\frac{1}{2} \cot \frac{\pi}{14}$
c) $\tan \frac{\pi}{14}$
d) $\frac{1}{2} \tan \frac{\pi}{14}$
709. The value of x for the maximum value of $\sqrt{3} \cos x+\sin x$, is
a) 30°
b) 45°
c) 60°
d) 90°
710. $\sin ^{2} 17.5^{\circ}+\sin ^{2} 72.5^{\circ}$ is equal to
a) $\cos ^{2} 90^{\circ}$
b) $\tan ^{2} 45^{\circ}$
c) $\cos ^{2} 30^{\circ}$
d) $\sin ^{2} 45^{\circ}$
711. If in $\triangle A B C, a \sin A=b \sin B$, then the triangle is
a) Isosceles
b) Right angled
c) Equilateral
d) None of these
712. $\sin ^{2} \theta=\frac{4 x y}{(x+y)^{2}}$ is true if and only if
a) $x+y \neq 0$
b) $x=y, x \neq 0, y \neq 0$
c) $x=y$
d) $x \neq 0, y \neq 0$
713. If $\cos \theta=\frac{1}{2}\left(x+\frac{1}{x}\right)$, then $\frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right)$ is equal to
a) $\sin 2 \theta$
b) $\cos 2 \theta$
c) $\tan 2 \theta$
d) None of these
714. $\operatorname{sech}^{-1}(\sin \theta)$ is equal to
a) $\log \tan \frac{\theta}{2}$
b) $\log \sin \frac{\theta}{2}$
c) $\log \cos \frac{\theta}{2}$
d) $\log \cot \frac{\theta}{2}$
715. The number of solutions of the equation $2^{\cos x}=|\sin x|$ in $[-2 \pi, 2 \pi]$, is
a) 1
b) 2
c) 3
d) 4
716. If the equation $\cos (\lambda \sin \theta)=\sin (\lambda \cos \theta)$ has a solution in $[0,2 \pi]$, then the smallest positive value of λ is
a) $\frac{\pi}{\sqrt{2}}$
b) $\sqrt{2} \pi$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{2 \sqrt{2}}$
717. In the ambiguous case, given a, b and A. The difference between the two values of C is
a) $2 \sqrt{a^{2}-b^{2}}$
b) $\sqrt{a^{2}-b^{2} \sin ^{2} A}$
c) $2 \sqrt{a^{2}-b^{2} \sin ^{2} A}$
d) $\sqrt{a^{2}-b^{2}}$
718. If $\tan \alpha=\left(1+2^{-x}\right)^{-1}, \tan \beta=\left(1+2^{x+1}\right)^{-1}$, then $\alpha+\beta$ equals
a) $\pi / 6$
b) $\pi / 4$
c) $\pi / 3$
d) $\pi / 2$
719. The maximum value of $f(x)=\sin x(1+\cos x)$ is
a) $\frac{3 \sqrt{3}}{4}$
b) $\frac{3 \sqrt{3}}{2}$
c) $3 \sqrt{3}$
d) $\sqrt{3}$
720. The value of $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}$, is
a) 0
b) $\frac{-1}{2}$
c) $\frac{1}{2}$
d) 1
721. $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is equal to
a) $\frac{1}{2}$
b) $\cos \frac{\pi}{8}$
c) $\frac{1}{8}$
d) $\frac{1+\sqrt{2}}{2 \sqrt{2}}$
722. If $2 \sin \frac{A}{2}=\sqrt{1+\sin A}+\sqrt{1-\sin A}$, then $\frac{A}{2}$ lies between
a) $2 n \pi+\frac{\pi}{4}$ and $2 n \pi+\frac{3 \pi}{4}, n \in Z$
b) $2 n \pi-\frac{\pi}{4}$ and $2 n \pi+\frac{\pi}{4}, n \in Z$
c) $2 n \pi-\frac{3 \pi}{4}$ and $2 n \pi-\frac{\pi}{4}, n \in Z$
d) $-\infty$ and $+\infty$
723. In a $\triangle A B C$, if $a \cos ^{2} \frac{c}{2}+c \cos ^{2} \frac{A}{2}=\frac{3 b}{2}$, then a, b, c are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
724. The value of $\tan 5 \theta$ is
a) $\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$
b) $\frac{5 \tan \theta+10 \tan ^{3} \theta-\tan ^{5} \theta}{1+10 \tan ^{2} \theta-5 \tan ^{4} \theta}$
c) $\frac{5 \tan ^{5} \theta-10 \tan ^{3} \theta+\tan \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$
d) None of these
725. If the sides a, b and c of a $\triangle A B C$ are in A.P., then $\left(\tan \frac{A}{2}+\tan \frac{C}{2}\right): \cot \frac{B}{2}$, is
a) $3: 2$
b) $1: 2$
c) $3: 4$
d) None of these
726. If in a triangle $A B C$ $2 \frac{\cos A}{a}+\frac{\cos B}{b}+2 \frac{\cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$,
then the value of the angle A is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{6}$
727. The value of $\tan \alpha+2 \tan (2 \alpha)+4 \tan (4 \alpha)+\ldots+2^{n-1} \tan \left(2^{n-1} \alpha\right)+2^{n} \cot \left(2^{n} \alpha\right)$ is
a) $\cot \left(2^{n} \alpha\right)$
b) $2^{n} \tan \left(2^{n} \alpha\right)$
c) 0
d) $\cot \alpha$
728. The maximum value of $\cos ^{2}\left(\frac{\pi}{3}-x\right)-\cos ^{2}\left(\frac{\pi}{3}+x\right)$ is
a) $-\frac{\sqrt{3}}{2}$
b) $\frac{1}{2}$
c) $\frac{\sqrt{3}}{2}$
d) $\frac{3}{2}$
729. If $a=2, b=3, c=5$ in $\triangle A B C$, then $C=$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) None of these
730. If in a $\triangle A B C, \frac{a}{\cos A}=\frac{b}{\cos B^{\prime}}$, then
a) $2 \sin A \sin B \sin C=1$
b) $\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$
c) $2 \sin A \cos B=\sin C$
d) None of these
731. If $1+\sin \theta+\sin ^{2} \theta+\ldots \infty=4+2 \sqrt{3}, 0<\theta<\pi, \theta \neq \frac{\pi}{2}$, then
a) $\theta=\frac{\pi}{3}$
b) $\theta=\frac{\pi}{6}$
c) $\theta=\frac{\pi}{3}$ or $\frac{\pi}{6}$
d) $\theta=\frac{\pi}{3}$ or $\theta=\frac{2 \pi}{3}$
732. In a $\triangle A B C$,
$a\left(b^{2}+c^{2}\right) \cos A+b\left(c^{2}+a^{2}\right) \cos B+c\left(a^{2}+b^{2}\right) \cos C$ is equal to
a) $a b c$
b) $2 a b c$
c) $3 a b c$
d) $4 a b c$
733. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, then the value of $\cos \left(\theta-\frac{\pi}{4}\right)$ is equal to
a) $\frac{1}{2 \sqrt{2}}$
b) $\frac{1}{\sqrt{2}}$
c) $\frac{1}{3 \sqrt{2}}$
d) $\frac{1}{4 \sqrt{2}}$
734. The number of points of intersection of the two curves $y=2 \sin x$ and $y=5 x^{2}+2 x+3$, is
a) 0
b) 1
c) 2
d) ∞
735. If, in a $\triangle A B C,(a+b+c)(b+c-a)=\lambda b c$, then
a) $\lambda<0$
b) $\lambda>4$
c) $\lambda>0$
d) $0<\lambda<4$
736. The expression $\operatorname{cosec}^{2} A \cot ^{2} A-\sec ^{2} A \tan ^{2} A-\left(\cot ^{2} A-\tan ^{2} A\right)\left(\sec ^{2} A \operatorname{cosec}^{2} A-1\right)$ is equal to
a) 1
b) -1
c) 0
d) 2
737. The sides of a triangle are in A.P. and its area is $3 / 5$ times the area of an equilateral triangle of the same perimeter. Then, the ratio of the sides is
a) $1: 2: 3$
b) $3: 5: 7$
c) $1: 3: 5$
d) None of these
738. If $\tan \alpha=\frac{b}{a}, a>b>0$ and if $0<\alpha<\frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}}-\sqrt{\frac{a-b}{a+b}}$ is equal to
a) $\frac{2 \sin \alpha}{\sqrt{\cos 2 \alpha}}$
b) $\frac{2 \cos \alpha}{\sqrt{\cos 2 \alpha}}$
c) $\frac{2 \sin \alpha}{\sqrt{\sin 2 \alpha}}$
d) $\frac{2 \cos \alpha}{\sqrt{\sin 2 \alpha}}$
739. If $\sin \theta+\cos \theta=x$, then $\sin ^{6} \theta+\cos ^{6} \theta=\frac{1}{4}\left[4-3\left(x^{2}-1\right)^{2}\right]$ for
a) all real x
b) $x^{2} \leq 2$
c) $x^{2}>2$
d) None of these
740. If in a triangle $A B C, \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$, then
a) a, b, c are in A.P.
b) a^{2}, b^{2}, c^{2} are in A.P.
c) a, b, c are in H.P.
d) a^{2}, b^{2}, c^{2} are in H.P
741. In a $\triangle A B C$, angles A, B, C are in A.P., then $\lim _{A \rightarrow C} \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}$ is equal to
a) 1
b) 2
c) 3
d) 4
742. For all values of θ, the values of $3-\cos \theta+\cos \left(\theta+\frac{\pi}{3}\right)$ lie in the interval
a) $[-2,3]$
b) $[-2,1]$
c) $[2,4]$
d) $[1,5]$
743. If $\cos A=m \cos B$ and $\cot \frac{A+B}{2}=\lambda \tan \frac{B-A}{2}$, then λ is
a) $\frac{m}{m-1}$
b) $\frac{m+1}{m}$
c) $\frac{m+1}{m-1}$
d) None of these
744. The value of $\cos ^{4}\left(\frac{\pi}{8}\right)+\cos ^{4}\left(\frac{3 \pi}{8}\right)+\cos ^{4}\left(\frac{5 \pi}{8}\right)+\cos ^{4}\left(\frac{7 \pi}{8}\right)$ is
a) 0
b) $\frac{1}{2}$
c) $\frac{3}{2}$
d) 1
745. If $\sin \theta=\frac{12}{13},\left(0<\theta<\frac{\pi}{2}\right)$ and $\cos \phi=-\frac{3}{5}\left(\pi<\phi<\frac{3 \pi}{2}\right)$, then $\sin (\theta+\phi)$ will be
a) $-56 / 61$
b) $-56 / 65$
c) $1 / 65$
d) -56
746. The quadratic equation whose roots are $\sec ^{2} \theta$ and $\operatorname{cosec}^{2} \theta$ can be
a) $x^{2}-2 x+2=0$
b) $x^{2}+5 x+5=0$
c) $x^{2}-4 x+4=0$
d) None of these
747. If $\sec \theta=m$ and $\tan \theta=n$, then $\frac{1}{m}\left[(m+n)+\frac{1}{(m+n)}\right]$ is
a) 2
b) $2 m$
c) $2 n$
d) $m n$
748. If in a $\triangle A B C, \angle C=90^{\circ}$, then the maximum value of $\sin A \sin B$ is
a) $\frac{1}{2}$
b) 1
c) 2
d) None of these
749. In a cyclic quadrilateral $A B C D$, he value of $\cos A+\cos B+\cos C+\cos D$, is
a) 1
b) 0
c) -1
d) None of these
750. If the angles of a triangle are in the ratio $1: 2: 3$, the corresponding sides are in the ratio
a) $2: 3: 1$
b) $\sqrt{3}: 2: 1$
c) $2: \sqrt{3}: 1$
d) $1: \sqrt{3}: 2$
751. If $\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$, then the value of $\cos \left(\theta+\frac{\pi}{4}\right)$ equals
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2 \sqrt{2}}$
c) $-\frac{1}{2 \sqrt{2}}$
d) $-\frac{1}{\sqrt{2}}$
752. The most general solution of
$2^{1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\cdots \infty}=4$ is given by
a) $x=n \pi \pm \frac{\pi}{3}, n \in Z$
b) $x=2 n \pi \pm \frac{\pi}{3}, n \in Z$
c) $x=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
d) None of these
753. If $\cos \alpha+\cos \beta=0=\sin \alpha+\sin \beta$, then $\cos 2 \alpha+\cos 2 \beta=$
a) $-2 \sin (\alpha+\beta)$
b) $-2 \cos (\alpha+\beta)$
c) $2 \sin (\alpha+\beta)$
d) $2 \cos (\alpha+\beta)$
754. The value of the expression $1-\frac{\sin ^{2} y}{1+\cos y}+\frac{1+\cos y}{\sin y}-\frac{\sin y}{1-\cos y}$ is equal to
a) 0
b) 1
c) $\sin y$
d) $\cos y$
755. In a $\triangle A B C, a=2 b$ and $A=3 B$, the $A=$
a) 90°
b) 60°
c) 30°
d) 45°
756. If in a $\triangle A B C, A=\frac{\pi}{3}$ and $A D$ is the median, then
a) $2 A D^{2}=b^{2}+c^{2}+b c$
b) $4 A D^{2}=b^{2}+c^{2}+b c$
c) $6 A D^{2}=b^{2}+c^{2}+b c$
d) None of these
757. If $\cos (\theta-\alpha)=\alpha, \cos (\theta-\beta)=b$, then $\sin ^{2}(\alpha-\beta)+2 a b \cos (\alpha-\beta)$ is equal to
a) $a^{2}+b^{2}$
b) $a^{2}-b^{2}$
c) $b^{2}-a^{2}$
d) $-a^{2}-b^{2}$
758. If $\cos \frac{x}{2} \cdot \cos \frac{x}{2^{2}} \ldots . \cos \frac{x}{2^{n}}=\frac{\sin x}{2^{n} \sin \frac{x}{2^{n}}}$, then $\frac{1}{2} \tan \frac{x}{2}+\frac{1}{2^{2}} \tan \frac{x}{2^{2}}+\ldots+\frac{1}{2^{n}} \tan \frac{x}{2^{n}}$ is
a) $\cot x-\cot \frac{x}{2^{n}}$
b) $\frac{1}{2^{n}} \cot \left(\frac{x}{2^{n}}\right)-\cot x$
c) $\frac{1}{2^{n}} \tan \left(\frac{1}{2^{n}}\right)-\tan x$
d) $\frac{1}{2} \cot x-\frac{1}{2^{n}} \cot \left(\frac{x}{2^{n}}\right)$
759. In triangles $A B C$ and $D E F, A B=D E, A C=E F$ and $\angle A=2 \angle E$. Two triangles will have the same area if angle A is equal to
a) $\pi / 3$
b) $\pi / 2$
c) $2 \pi / 3$
d) $5 \pi / 6$
760. The value of $\sin \left(\frac{\pi}{18}\right) \sin \left(\frac{5 \pi}{18}\right) \sin \left(\frac{7 \pi}{18}\right)$, is
a) $1 / 2$
b) $1 / 4$
c) $1 / 8$
d) $1 / 16$
761. If the equation $\sin ^{4} \theta+\cos ^{4} \theta=a$ has a real solution then
a) $a \leq \frac{1}{2}$
b) $a \geq \frac{1}{2}$
c) $\frac{1}{2} \leq a \leq 1$
d) $a \geq 0$
762. The general solution of the equation $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is
a) $2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
b) $n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{12}$
c) $2 n \pi \pm \frac{\pi}{4}-\frac{\pi}{12}$
d) $n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{12}$
763. If $\sin A=\frac{1}{\sqrt{10}}$ and $\sin B=\frac{1}{\sqrt{5}}$, where A and B are positive acute angles, then $A+B$ is equal to
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$
764. The general solution of $\sin ^{2} \theta \sec \theta+\sqrt{3} \tan \theta=0$ is
a) $\theta=n \pi+(-1)^{n+1} \frac{\pi}{3}, \theta=n \pi, n \in I$
b) $\theta=n \pi, n \in I$
c) $\theta=n \pi+(-1)^{n+1} \frac{\pi}{3}, n \in I$
d) $\theta=\frac{n \pi}{2}, n \in I$
765. If $y+\cos \theta=\sin \theta$ has a real solution, then
a) $-\sqrt{2} \leq y \leq \sqrt{2}$
b) $y>\sqrt{2}$
c) $y \leq-\sqrt{2}$
d) None of these
766. If $\cos (\theta-\alpha)=a, \sin (\theta-\beta)=b$, then $\cos ^{2}(\alpha-\beta)+2 a b \sin (\alpha-\beta)$ is equal to
a) $4 a^{2} b^{2}$
b) $a^{2}-b^{2}$
c) $a^{2}+b^{2}$
d) $-a^{2} b^{2}$
767. The equation $8 \sec ^{2} \theta-6 \sec \theta+1=0$ has
a) Exactly two roots
b) Exactly four roots
c) Infinitely many roots
d) No roots
768. If the sides a, b, c of a triangle $A B C$ are the roots of the equation $x^{3}-13 x^{2}+54 x-72=0$, then the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$ is equal to
a) $\frac{169}{144}$
b) $\frac{61}{72}$
c) $\frac{61}{144}$
d) $\frac{169}{72}$
769. $\cos ^{4} \theta-\sin ^{4} \theta$ is equal to
a) $1+2 \sin ^{2}\left(\frac{\theta}{2}\right)$
b) $2 \cos ^{2} \theta-1$
c) $1-2 \sin ^{2}\left(\frac{\theta}{2}\right)$
d) $1+2 \cos ^{2} \theta$
770. The value of $\cos 15^{\circ} \cos 7 \frac{1}{2}^{\circ} \sin 7 \frac{1}{2}^{\circ}$ is
a) $\frac{1}{2}$
b) $\frac{1}{8}$
c) $\frac{1}{4}$
d) $\frac{1}{16}$
771. If θ lies in the second quadrant, then the value of $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$ is equal to
a) $2 \sec \theta$
b) $-2 \sec \theta$
c) $2 \operatorname{cosec} \theta$
d) None of these
772. The value of $\cos ^{2} A\left(3-4 \cos ^{2} A\right)^{2}+\sin ^{2} A\left(3-4 \sin ^{2} A\right)^{2}$ is equal to
a) $\cos 4 A$
b) $\sin 4 A$
c) 1
d) None of these
773. Let the angles A, B, C of $\triangle A B C$ be in A.P. and let
a) 75°
b) 45°
c) 60°
d) 15°
774. If $\tan x=\frac{b}{a}$, then $\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}=$
a) $\frac{2 \sin x}{\sqrt{\sin 2 x}}$
b) $\frac{2 \cos x}{\sqrt{\cos 2 x}}$
c) $\frac{2 \cos x}{\sqrt{\sin 2 x}}$
d) $\frac{2 \sin x}{\sqrt{\cos 2 x}}$
775. If $\sin A+\cos A=m$ and $\sin ^{3} A+\cos ^{3} A=n$, then
a) $m^{3}-3 m+n=0$
b) $n^{3}-3 n+2 m=0$
c) $m^{3}-3 m+2 n=0$
d) $m^{3}+3 m+2 n=0$
776. The most general solutions of the equation $\sec x-1=(\sqrt{2}-1) \tan x$ are given by
a) $n \pi+\frac{\pi}{8}$
b) $2 n \pi, 2 n \pi+\frac{\pi}{4}$
c) $2 n \pi$
d) None of these
777. If $\cos (\theta-\alpha)=a, \cos (\theta-\beta)=b$, then $\sin ^{2}(\alpha-\beta)+2 a b \cos (\alpha-\beta)$ is equal to
a) $a^{2}+b^{2}$
b) $a^{2}-b^{2}$
c) $b^{2}-a^{2}$
d) $-a^{2}-b^{2}$
778. The sum $S=\sin \theta+\sin 2 \theta+\ldots+\sin n \theta$ equals
a) $\sin \frac{1}{2}(n+1) \theta \sin \frac{n \theta}{2} / \sin \frac{\theta}{2}$
b) $\cos \frac{1}{2}(n+1) \theta \sin \frac{n \theta}{2} / \sin \frac{\theta}{2}$
c) $\sin \frac{1}{2}(n+1) \theta \cos \frac{n \theta}{2} / \sin \frac{\theta}{2}$
d) $\cos \frac{1}{2}(n+1) \theta \cos \frac{n \theta}{2} / \sin \frac{\theta}{2}$
779. The sides of an equilateral triangle, a square and a regular hexagon circumscribed in a circle are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
780. If $\frac{\tan 3 \theta-1}{\tan 3 \theta+1}=\sqrt{3}$, then the general value of θ is
a) $\frac{n \pi}{3}-\frac{\pi}{12}$
b) $n \pi+\frac{7 \pi}{12}$
c) $\frac{n \pi}{3}+\frac{7 \pi}{36}$
d) $n \pi+\frac{\pi}{12}$
781. If $\theta \in[0,5 \pi]$ and $r \in R$ such that $2 \sin \theta=r^{4}-2 r^{2}+3$, then the maximum number of values of the pair (r, θ) is
a) 6
b) 8
c) 10
d) None of these
782. In a triangle $A B C, r=$
a) $(s-a) \tan \frac{B}{2}$
b) $(s-b) \tan \frac{B}{2}$
c) $(s-b) \tan \frac{C}{2}$
d) $(s-a) \tan \frac{C}{2}$
783. If p_{1}, p_{2}, p_{3} are altitude of a triangle $A B C$ from the vertices A, B, C and Δ, the area of the triangle, then $\frac{1}{p_{1}^{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{3}^{2}}=$
a) $\frac{\cot A+\cos B+\cot C}{\Delta}$
b) $\frac{\Delta}{\cot A+\cot B+\cot C}$
c) $\Delta(\cot A+\cot B+\cot C)$
d) None of these
784. Number of solutions of the equation $\sin 2 \theta+2=4 \sin \theta+\cos \theta$ lying in the interval $[\pi, 5 \pi]$, is
a) 0
b) 2
c) 4
d) 5
785. If twice the square of the diameter of a circle is equal to half the sum of the squares of the sides of incribed triangle $A B C$, then $\sin ^{2} A+\sin ^{2} C$ is equal to
a) 1
b) 2
c) 4
d) 8
786. $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
a) 0
b) 1
c) -1
d) 4
787. If $\sin 4 A-\cos 2 A=\cos 4 A-\sin 2 A,\left(0<A<\frac{\pi}{4}\right)$, then the value of $\tan 4 A$ is
a) 1
b) $\frac{1}{\sqrt{3}}$
c) $\sqrt{3}$
d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
788. In a $\triangle A B C, \sin A$ and $\sin B$ are the roots of the equation $c^{2} x^{2}-c(a+b) x+a b=0$, then $\sin C=$
a) $1 / \sqrt{2}$
b) $1 / 2$
c) 1
d) 0
789. If $\sin (\alpha+\beta)=1, \sin (\alpha-\beta)=1 / 2 ; \alpha, \beta \in[0, \pi / 2]$, then $\tan (\alpha+2 \beta) \tan (2 \alpha+\beta)$ is equal to
a) 1
b) -1
c) 0
d) $1 / 2$
790.

If $a_{n+1}=\sqrt{\frac{1}{2}\left(1+a_{n}\right)}$, then $\cos \left(\frac{\sqrt{1-a_{0}^{2}}}{a_{1} a_{2} a_{3} \ldots \text { to } \infty}\right)=$
a) 1
b) -1
c) a_{0}
d) $1 / a_{0}$
791. If the angles of a triangle are in the ratio $1: 2: 7$, then the ratio of the greatest side to the least side is
a) $(\sqrt{5}-1):(\sqrt{5}+1)$
b) $(\sqrt{5}+1):(\sqrt{5}-1)$
c) $(\sqrt{5}+2):(\sqrt{5}-2)$
d) $(\sqrt{5}-2):(\sqrt{5}+2)$
792. In a $\triangle A B C, A=\frac{2 \pi}{3}, b-c=3 \sqrt{3} \mathrm{~cm}$ and $\Delta=\frac{9 \sqrt{3}}{2} \mathrm{~cm}^{2}$. Then, $a=$
a) $6 \sqrt{3} \mathrm{~cm}$
b) 9 cm
c) 18 cm
d) 12 cm
793. If the radius of the incircle of a triangle with its sides $5 k, 6 k$, and $5 k$ is 6 , then k is equal to
a) 3
b) 4
c) 5
d) 6
794. The minimum value of $2^{\sin x}+2^{\cos x}$, is
a) 1
b) 2
c) $2^{-\frac{1}{\sqrt{2}}}$
d) $2^{1-\frac{1}{\sqrt{2}}}$
795. Minimum value of $\frac{1}{3 \sin \theta-4 \cos \theta+7}$ is
a) $\frac{1}{12}$
b) $\frac{5}{12}$
c) $\frac{7}{12}$
d) $\frac{1}{6}$
796. If $\operatorname{cosec} \theta=\frac{p+q}{p-q}$, then $\cot (\pi / 4+\theta / 2)=$
a) $\sqrt{\frac{p}{q}}$
b) $\sqrt{\frac{q}{p}}$
c) $\sqrt{p q}$
d) $p q$
797. Suppose $0<t<\pi$ andsin $t+\cos t=\frac{1}{5}$. Then, $\tan \frac{t}{2}$ is equal to
a) 2
b) 3
c) $\frac{1}{3}$
d) 5
798. For what and only what values of α lying between 0 and π is the inequality $\sin \alpha \cos ^{3} \alpha>\sin ^{3} \alpha \cos \alpha$ valid?
a) $\alpha \in(0, \pi / 4)$
b) $\alpha \in(0, \pi / 2)$
c) $\alpha \in(\pi / 4, \pi / 2)$
d) None of these
799. If $\alpha+\beta-\gamma=\pi$, then $\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma$ is equal to
a) $2 \sin \alpha \sin \beta \cos \gamma$
b) $2 \cos \alpha \cos \beta \cos \gamma$
c) $2 \sin \alpha \sin \beta \sin \gamma$
d) None of these
800. If $\sec x \cos 5 x+1=0$, where $0<x<2 \pi$, then x is equal to
a) $\frac{\pi}{5}, \frac{\pi}{4}$
b) $\frac{\pi}{5}$
c) $\frac{\pi}{4}$
d) None of these
801. If $\alpha, \beta \in\left(0, \frac{\pi}{2}\right), \sin \alpha=\frac{4}{5}$ and $\cos (\alpha+\beta)=-\frac{12}{13}$, then $\sin \beta$ is equal to
a) $\frac{63}{65}$
b) $\frac{61}{65}$
c) $\frac{3}{5}$
d) $\frac{5}{13}$
802. The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14}$, is
a) 1
b) $1 / 4$
c) $1 / 8$
d) $\sqrt{2} / 7$
803. If $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are roots of the equation $\sin (\theta+\alpha)=k \sin 2 \theta$ no two of which differ by a multiple of 2π, then $\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$ is equal to
a) $2 n \pi, n \in Z$
b) $(2 n+1) \pi, n \in Z$
c) $n \pi, n \in Z$
d) None of these
804. The radius of the circle whose arc of length $15 \pi \mathrm{~cm}$ makes an angle of $\frac{3 \pi}{4}$ radian at the centre is
a) 10 cm
b) 20 cm
c) $11 \frac{1}{4} \mathrm{~cm}$
d) $22 \frac{1}{2} \mathrm{~cm}$
805. The value of $\cot \theta-\tan \theta-2 \tan 2 \theta-4 \tan 4 \theta-8 \cot 8 \theta$, is
a) 0
b) 1
c) -1
d) None of these
806. In a triangle $A B C, b=\sqrt{3}, c=1$ and $\angle A=30^{\circ}$, then the measure of the largest angle of the triangle is
a) 60°
b) 135°
c) 90°
d) 120°
807. The maximum value of $3 \cos \theta+4 \sin \theta$ is
a) 3
b) 4
c) 5
d) None of these
808. If the sides of a triangle are proportional to $2, \sqrt{6}$ and $\sqrt{3}-1$, the greatest and the least angles of the triangle are
a) $120^{\circ}, 15^{\circ}$
b) $90^{\circ}, 15^{\circ}$
c) $75^{\circ}, 45^{\circ}$
d) $150^{\circ}, 15^{\circ}$
809. In a $\triangle A B C$ if $r_{1}=16, r_{2}=48$ and $r_{3}=24$, then its in-radius is
a) 7
b) 8
c) 6
d) None of these
810. The number of values of x in the interval $[0,5 \pi]$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2=0$ is
a) 0
b) 5
c) 6
d) 10
811. If $\cos ^{2} \theta=\cos 2 \theta$, then the general value of θ is
a) $n \pi$
b) $2 n \pi$
c) $\frac{n \pi}{3}$
d) $\frac{n \pi}{2}$
812. The equation $3^{\sin 2 x+2 \cos ^{2} x}+3^{1-\sin 2 x+2 \sin ^{2} x}=28$ is satisfied for the values of x given by
a) $\cos x=0, \tan x=-1$
b) $\tan x=-1, \cos x=1$
c) $\tan x=1, \cos x=0$
d) None of these
813. The minimum value of $27^{\cos 2 x} 81^{\sin 2 x}$ is
a) -5
b) $\frac{1}{5}$
c) $\frac{1}{243}$
d) $\frac{1}{27}$
814. Let $0<x \leq \pi / 4$, then $(\sec 2 x-\tan 2 x)$ equals
a) $\tan ^{2}(x+\pi / 4)$
b) $\tan (x+\pi / 4)$
c) $\tan (\pi / 4-x)$
d) $\tan (x-\pi / 4)$
815. The number of solutions of the equation $\sin ^{5} x-\cos ^{5} x=\frac{1}{\cos x}-\frac{1}{\sin x}(\sin x \neq \cos x)$ is
a) 0
b) 1
c) Infinite
d) None of these
816. Let $\cos (\alpha+\beta)=\frac{4}{5}$ and let $\sin (\alpha-\beta)=\frac{5}{13}$, where $0 \leq \alpha, \beta \leq \frac{\pi}{4}$. Then $\tan 2 \alpha$ is equal to
a) $\frac{25}{16}$
b) $\frac{56}{33}$
c) $\frac{19}{12}$
d) $\frac{20}{7}$
817. The value of $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}$, is
a) 1
b) -1
c) $1 / 2$
d) $-1 / 2$
818. If in a triangle $a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides of the triangle are in
a) AP
b) GP
c) HP
d) None of these
819. If $\frac{1-\cos 2 \theta}{1+\cos 2 \theta}=3$, then the general value of θ is
a) $2 n \pi \pm \frac{\pi}{6}$
b) $n \pi \pm \frac{\pi}{6}$
c) $2 n \pi \pm \frac{\pi}{3}$
d) $n \pi \pm \frac{\pi}{3}$
820. In a $\triangle A B C$, if $a=5 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $\cos (A-B)=\frac{31}{32}$, then $\cos C=$
a) $1 / 4$
b) $1 / 8$
c) $1 / 6$
d) $1 / 2$
821. The number of solutions for the equation $\sin 2 x+\cos 4 x=2$ is
a) 0
b) 1
c) 2
d) ∞
822. If $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$, then $\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=$
a) 3
b) 2
c) 1
d) 0
823. The equation $k \sin x+\cos 2 x=2 k-7$ possesses solution, if
a) $k>6$
b) $2 \leq k \leq 6$
c) $k>2$
d) None of these
824. If $\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$, then $\tan A, \tan B, \tan C$ are in
a) AP
b) GP
c) HP
d) None of these
825. If n is an odd positive integer, then $\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}=$
a) -1
b) 1
c) 0
d) None of these
826. If α, β are the solutions of $a \tan \theta+b \sec \theta=c$, then $\tan (\alpha+\beta)=$
a) $\frac{2 a c}{a^{2}-c^{2}}$
b) $\frac{2 a c}{c^{2}-a^{2}}$
c) $\frac{2 a c}{a^{2}+c^{2}}$
d) $\frac{a c}{a^{2}+c^{2}}$
827. If $\tan \theta+\tan \left(\theta+\frac{\pi}{3}\right)+\tan \left(\theta+\frac{2 \pi}{3}\right)=3$, then which of the following is equal to 1 ?
a) $\tan 2 \theta$
b) $\tan 3 \theta$
c) $\tan ^{2} \theta$
d) $\tan ^{3} \theta$
828. If $y=1+4 \sin ^{2} x \cos ^{2} x$, then
a) $1 \leq y \leq 2$
b) $-1 \leq y \leq 1$
c) $-3 \leq y \leq 3$
d) None of these
829. If $\alpha+\beta-\gamma=\pi$, then $\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma$ is equal to
a) $2 \sin \alpha \sin \beta \cos \gamma$
b) $2 \cos \alpha \cos \beta \cos \gamma$
c) $2 \sin \alpha \sin \beta \sin \gamma$
d) None of the above
830. In a $\triangle A B C, \frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}=$
a) $\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$
b) $\frac{a^{2}+b^{2}+c^{2}}{(a+b+c)^{2}}$
c) s
d) Δ
831. The expression $\tan ^{2} \alpha+\cot ^{2} \alpha$ is
a) ≥ 2
b) ≤ 2
c) ≥-2
d) None of these
832. For $m \neq n$, if $\tan m \theta=\tan n \theta$, the different values of θ are in
a) A.P.
b) H.P.
c) G.P.
d) No particular sequence
833. If in a triangle $A B C$,
$\sin A: \sin C=\sin (A-B): \sin (B-C)$ then, $a^{2}: b^{2}: c^{2}$ are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
834. If $\tan \theta=x-\frac{1}{4 x}$, then $\sec \theta-\tan \theta$ is equal to
a) $-2 x, \frac{1}{2 x}$
b) $-\frac{1}{2 x}, 2 x$
c) $2 x$
d) $2 x, \frac{1}{2 x}$
835. The number of values of $x \in[0,2 \pi]$ that satisfy $\cot x-\operatorname{cosec} x=2 \sin x$, is
a) 3
b) 2
c) 1
d) 0
836. If R is the radius of circumscribing circle of a regular polygon of n-sides, then $R=$
a) $\frac{a}{2} \sin \left(\frac{\pi}{n}\right)$
b) $\frac{a}{2} \cos \left(\frac{\pi}{n}\right)$
c) $\frac{a}{2} \operatorname{cosec}\left(\frac{\pi}{n}\right)$
d) $\frac{a}{2} \operatorname{cosec}\left(\frac{\pi}{2 n}\right)$
837. If $\frac{\sin x}{\sin y}=\frac{1}{2}, \frac{\cos x}{\cos y}=\frac{3}{2}$, where $x, y \in\left(0, \frac{\pi}{2}\right)$, then the value of $\tan (x+y)$ is equal to
a) $\sqrt{13}$
b) $\sqrt{14}$
c) $\sqrt{17}$
d) $\sqrt{15}$
838. If $\sin A+\sin B=\sqrt{3}(\cos B \cos A)$, then $\sin 3 A+\sin 3 B=$
a) 0
b) 2
c) 1
d) -1
839. If $\tan \beta=\cot \theta \tan \alpha$, then $\cot ^{2}\left(\frac{\theta}{2}\right)$ is equal to
a) $\frac{\sin (\alpha+\beta)}{\sin (\alpha-\beta)}$
b) $\frac{\sin (\alpha-\beta)}{\sin (\alpha+\beta)}$
c) $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}$
d) $\frac{\cos (\alpha-\beta)}{\cos (\alpha+\beta)}$
840. $\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}$ is equals to
a) $\tan 26^{\circ}$
b) $\tan 81^{\circ}$
c) $\tan 51^{\circ}$
d) $\tan 54^{\circ}$
841. In a $\triangle A B C$, if $A=45^{\circ}, b=\sqrt{6}, a=2$, then $B=$
a) 30° or 150°
b) 60° or 120°
c) 45° or 135°
d) None of these
842. Two sides of a triangle are $2 \sqrt{2} \mathrm{~cm}$ and $2 \sqrt{3} \mathrm{~cm}$ and the angle opposite to the shorter side of the two is $\frac{\pi}{4}$. The largest possible length of the third side is
a) $(\sqrt{6}+\sqrt{2}) \mathrm{cm}$
b) $(6+\sqrt{2}) \mathrm{cm}$
c) $(\sqrt{6}-\sqrt{2}) \mathrm{cm}$
d) None of these
843. The total number of ordered pairs (r, θ) satisfying $r \sin \theta=3, r=4(1+\sin \theta)$, where $r>0$ and $\theta \in[-\pi, \pi]$ is
a) 0
b) 2
c) 4
d) None of these
844. $\sin 65^{\circ}+\sin 43^{\circ}-\sin 29^{\circ}-\sin 7^{\circ}$ is equal to
a) $\cos 36^{\circ}$
b) $\cos 18^{\circ}$
c) $\cos 9^{\circ}$
d) None of these
845. If $\sin B=\frac{1}{5} \sin (2 A+B)$, then $\frac{\tan (A+B)}{\tan A}$ is equal to
a) $5 / 3$
b) $2 / 3$
c) $3 / 2$
d) $3 / 5$
846. If $A+B+C=\pi$ and $\cos A=\cos B \cos C$, then $\tan B \tan C$ is equal to
a) $\frac{1}{2}$
b) 2
c) 1
d) $-\frac{1}{2}$
847. If $\sin x+\operatorname{cosec} x=2$ then, $\sin ^{n} x+\operatorname{cosec}^{n} x$ is equal to
a) 2
b) 2^{n}
c) 2^{n-1}
d) 2^{n-2}
848. If in a triangle $A B C, \frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then the triangle is
a) Right angled or isosceles
b) Right angled and isosceles
c) Equilateral
d) None of these
849. In a $\triangle A B C, \cos A=\cos B \cos C$, then $\cot B \cot C$ is equal to
a) 2
b) 3
c) $1 / 2$
d) 5
850. In a $\triangle A B C$ if $a=13, b=14$ and $c=15$, then reciprocals of r_{1}, r_{2} and r_{3} are in the ratio
a) $6: 7: 8$
b) $6: 8: 7$
c) $8: 7: 6$
d) None of these
851. $\frac{\sin 7 \theta+6 \sin 5 \theta+17 \sin 3 \theta+12 \sin \theta}{\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta}$ is equal to
a) $2 \cos \theta$
b) $\cos \theta$
c) $2 \sin \theta$
d) $\sin \theta$
852. In a triangle the angles are in A.P. and the lengths of the two larger sides are 10 and 9 respectively, then the length of the third side can be
a) $5 \pm \sqrt{6}$
b) 0.7
c) $\sqrt{5}+6$
d) None of these
853. The general value of x for which $\cos 2 x, \frac{1}{2}$ and $\sin 2 x$ are in AP, are given by
a) $n \pi, n \pi+\frac{\pi}{2}$
b) $n \pi, n \pi+\frac{\pi}{4}$
c) $n \pi+\frac{\pi}{4}, \frac{3 n \pi}{4}$
d) None of these
854. If $a=\frac{\pi}{18} \mathrm{rad}$, then $\cos a+\cos 2 a+\ldots+\cos 18 a$ is equal to
a) 0
b) -1
c) 1
d) ± 1
855. If $\sin \theta+\cos \theta=1$, then the general value of θ is
a) $2 n \pi$
b) $n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
c) $2 n \pi+\frac{\pi}{2}$
d) None of these
856. If $1+\sin x+\sin ^{2} x+\sin ^{3} x+\cdots+\cdots \infty$ is equal to $4+2 \sqrt{3}, 0<x<\pi$, then $x=$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$ or $\frac{\pi}{6}$
d) $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
857. If $\sin x+\sin y=a$ and $\cos x+\cos y=b$, then $\tan \left(\frac{a+y}{2}\right)$ is equal to
a) $\frac{a b}{a+b}$
b) $\frac{a}{b}$
c) $\frac{b}{a}$
d) None of these
858. If $\sin (\pi \cot \theta)=\cos (\pi \tan \theta)$, then $\cot 2 \theta$ is equal to where $n \in Z$
a) $n-\frac{1}{4}$
b) $n+\frac{1}{4}$
c) $4 n+1$
d) $4 n-1$
859. If the altitudes of a triangle are in AP , then the sides of the triangle are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
860. The value of $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}$ is equal to
a) $\frac{1}{16}$
b) 0
c) $-\frac{1}{8}$
d) $-\frac{1}{16}$
861. $\operatorname{cosec} 15^{\circ}+\sec 15^{\circ}$ is equal to
a) $2 \sqrt{2}$
b) $\sqrt{6}$
c) $2 \sqrt{6}$
d) $\sqrt{6}+\sqrt{2}$
862. If $\sin A=\frac{4}{5}$ and $\cos B=-\frac{12}{13}$, where A and B lie in first and third quadrant respectively, then $\cos (A+B)$ is equal to
a) $\frac{56}{65}$
b) $-\frac{56}{65}$
c) $\frac{16}{65}$
d) $-\frac{16}{65}$
863. If $\cot \theta+\tan \theta=m$ and $\sec \theta-\cos \theta=n$, then which of the following is correct?
a) $m\left(m n^{2}\right)^{1 / 3}-n\left(n m^{2}\right)^{1 / 3}=1$
b) $m\left(m^{2} n\right)^{1 / 3}-n\left(m n^{2}\right)^{1 / 3}=1$
c) $n\left(m n^{2}\right)^{1 / 3}-m\left(n m^{2}\right)^{1 / 3}=1$
d) $n\left(m^{2} n\right)^{1 / 3}-m\left(m n^{2}\right)^{1 / 3}=1$
864. If in a $\triangle A B C$,
$(\sin A+\sin B+\sin C)(\sin A+\sin B-\sin C)=3 \sin A \sin B$, then
a) $A=60^{\circ}$
b) $B=60^{\circ}$
c) $C=60^{\circ}$
d) None of these
865. Equation $\cos 2 x+7=a(2-\sin x)$ can have a real solution for
a) All values of a
b) $a \in[2,6]$
c) $a \in(-\infty, 2)$
d) $a \in(0, \infty)$
866. In a $\triangle A B C, \angle A=\frac{\pi}{2}$, then $\cos ^{2} B+\cos ^{2} C$ equals
a) -2
b) -1
c) 1
d) 0
867. In any $\triangle A B C, b^{2} \sin 2 C+c^{2} \sin 2 B$
a) Δ
b) 2Δ
c) 3Δ
d) 4Δ
868. In a triangle the length of the two larger sides are 24 and 22 , respectively. If the angles are in AP , then the third side is
a) $12+2 \sqrt{13}$
b) $12-2 \sqrt{13}$
c) $2 \sqrt{13}+2$
d) $2 \sqrt{13}-2$
869. If in a $\triangle A B C, A D, B E$ and $C F$ are the altitudes and R is the circum-radius, then radius of the circumcircle $D E F$ is
a) $\frac{R}{2}$
b) $2 R$
c) R
d) $\frac{3}{2} R$
870. If a, b, c denote the sides of a $\triangle A B C$ and the equations $a x^{2}+b x+c=0$ and $x^{2}+\sqrt{2} x+1=0$ have a common root, then $\angle C=$
a) 30°
b) 45°
c) 90°
d) 60°
871. If a circle is inscribed in an equilateral triangle of side a, then area of the square inscribed in the circle is
a) $\frac{a^{2}}{6}$
b) $\frac{a^{2}}{3}$
c) $\frac{2 a^{2}}{5}$
d) $\frac{2 a^{2}}{3}$
872. The value of the expression $\cos 1^{\circ} \cdot \cos 2^{\circ} \ldots . \cos 179^{\circ}$ equals
a) 0
b) 1
c) $1 / \sqrt{2}$
d) -1
873. The general solution of the equation $2^{\cos 2 x}+1=3.2^{-\sin x}$ is
a) $n \pi$
b) $n \pi-\pi$
c) $n \pi+\pi$
d) None of these
874. If $\sin A-\sqrt{6} \cos A=\sqrt{7} \cos A$, then $\cos A+\sqrt{6} \sin A$ is equal to
a) $\sqrt{6} \sin A$
b) $-\sqrt{7} \sin A$
c) $\sqrt{6} \cos A$
d) $\sqrt{7} \cos A$
875. If $y=\frac{\tan x}{\tan 3 x}$, then
a) $y \in[1 / 3,3]$
b) $y \notin[1 / 3,3]$
c) $y \in[-3,-1 / 3]$
d) $y \notin[-3,-1 / 3]$
876. If $\frac{3 \pi}{4}<\alpha<\pi$, then $\sqrt{\operatorname{cosec}^{2} \alpha+2 \cot \alpha}$ is equal to
a) $1+\cot \alpha$
b) $1-\cot \alpha$
c) $-1-\cot \alpha$
d) $-1+\cot \alpha$
877. The equation $a \sin x+b \cos x=c$, where $|c|>\sqrt{a^{2}+b^{2}}$ has
a) A unique solution
b) Infinite no. of solutions
c) No solution
d) None of these
878. The number of solutions of the equation $\tan \theta+\sec \theta=2 \cos \theta$ lying in the interval $[0,2 \pi]$, is
a) 0
b) 1
c) 2
d) 3
879. The least positive non-integral solution of $\sin \pi\left(x^{2}+x\right)-\sin \pi x^{2}=0$, is
a) Rational
b) Irrational of the form \sqrt{p}
c) Irrational of the form $\frac{\sqrt{p}-1}{4}$, when p is an odd integer
d) Irrational of the form $\frac{\sqrt{p}+1}{4}$, where p is an even integer
880. If A and B are acute positive angles satisfying the equations $3 \sin ^{2} A+2 \sin ^{2} B=1$ and $3 \sin 2 A-$ $2 \sin 2 B=0$, then $A+2 B$ is equal to
a) 0
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{3}$
881. The greatest and least value of $\sin x \cos x$ are respectively
a) $1,-1$
b) $\frac{1}{2},-\frac{1}{2}$
c) $\frac{1}{4},-\frac{1}{4}$
d) $2,-2$
882. If $x=X \cos \theta-Y \sin \theta, y=X \sin \theta+Y \cos \theta$ and $x^{2}+4 x y+y^{2}=A X^{2}+B Y^{2}, 0 \leq \theta \leq \frac{\pi}{2}, n \in Z$, then
a) $\theta=\frac{\pi}{6}, A=3, B=1$
b) $\theta=\frac{\pi}{2}, A=3, B=1$
c) $A=3, B=-1, \theta=\frac{\pi}{4}$
d) $A=-3, B=1, \theta=\frac{\pi}{4}$
883. The number of values of x in $[0,2 \pi]$ satisfying the equation $3 \cos 2 x-10 \cos x+7=0$ is
a) 1
b) 2
c) 3
d) 4
884. $\cos \alpha \sin (\beta-\gamma)+\cos \beta \sin (\gamma-\alpha)+\cos \gamma \sin (\alpha-\beta)$ is equal to
a) 0
b) $\frac{1}{2}$
c) 1
d) $4 \cos \alpha \cos \beta \cos \gamma$
885. If $A+B=45^{\circ}$, then $(\cot A-1)(\cot B-1)$ is equal to
a) 1
b) $\frac{1}{2}$
c) -1
d) 2
886. The solution of the equation $[\sin x+\cos x]^{1+\sin 2 x}=2,-\pi \leq x \leq \pi$ is
a) $\frac{\pi}{2}$
b) π
c) $\frac{\pi}{4}$
d) $\frac{3 \pi}{4}$
887. If $\sin x+\sin ^{2} x=1$, then the value of $\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x+2 \cos ^{4} x+\cos ^{2} x-2$, is equal to
a) 0
b) 1
c) 2
d) $\sin ^{2} x$
888. $\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}$ is equal to
a) 1
b) $3 / 2$
c) 2
d) $1 / 4$
889. If $\sin (x+3 \alpha)=3 \sin (\alpha-x)$, then
a) $\tan x=\tan \alpha$
b) $\tan x=\tan ^{2} \alpha$
c) $\tan x=\tan ^{3} \alpha$
d) $\tan x=3 \tan \alpha$
890. $\cos \alpha \sin (\beta-\gamma)+\cos \beta \sin (\gamma-\beta)+\cos \gamma \sin (\alpha-\beta)=$
a) 0
b) $1 / 2$
c) 1
d) $4 \cos \alpha \cos \beta \cos \gamma$
891. If $\sin A+\cos A=m$ and $\sin ^{3} A+\cos ^{3} A=n$, then
a) $m^{3}-3 m+n=0$
b) $n^{3}-3 n+2 m=0$
c) $m^{3}-3 m+2 n=0$
d) $m^{3}+3 m+2 n=0$
892. If $(\sec \theta-1)=(\sqrt{2}-1) \tan \theta$, then $\theta=$
a) $n \pi+\frac{\pi}{8}, n \in Z$
b) $2 n \pi, 2 n \pi+\frac{\pi}{4}, n \in Z$
c) $2 n \pi, n \in Z$
d) None of these
893. The number of values of θ in the interval $[-\pi, \pi]$ satisfying the equation $\cos \theta+\sin 2 \theta=0$ is
a) 1
b) 2
c) 3
d) 4
894. The general solution of $\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right)$ is
a) $\theta=2 r \pi+\frac{\pi}{2}, r \in Z$
b) $\theta=2 r \pi, r \in Z$
c) $\theta=2 r \pi+\frac{\pi}{2}$ and $\theta=2 r \pi, r \in Z$
d) None of these
895. The most general values of θ satisfying $\tan \theta+\tan \left(\frac{3 \pi}{4}+\theta\right)=2$ are given by
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$
b) $n \pi+\frac{\pi}{3}, n \in Z$
c) $2 n \pi \pm \frac{\pi}{6}, n \in Z$
d) $n \pi \pm \frac{\pi}{6}, n \in Z$
896. If $(1+\tan \theta)(1+\tan \phi)=2$, then $\theta+\phi=$
a) 30°
b) 45°
c) 60°
d) 75°
897. If α and β satisfying $2 \sec 2 \alpha=\tan \beta+\cot \beta$, then $\alpha+\beta$ is equal to
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) π
898. If $0<\theta<2 \pi$, then the intervals of values of θ for which $2 \sin ^{2} \theta-5 \sin \theta+2>0$, is
a) $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
b) $\left(\frac{\pi}{8}, \frac{5 \pi}{6}\right)$
c) $\left(0, \frac{\pi}{8}\right) \cup\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
d) $\left(\frac{41 \pi}{48}, \pi\right)$
899. If $\tan A-\tan B=x$ and $\cot B-\cot A=y$, then $\cot (A-B)$ is equal to
a) $\frac{1}{x}+y$
b) $\frac{1}{x y}$
c) $\frac{1}{x}-\frac{1}{y}$
d) $\frac{1}{x}+\frac{1}{y}$
900. In a $\triangle A B C$, if a, c, b are in A.P., then the value of $\frac{a \cos B-b \cos A}{a-b}$, is
a) 3
b) 2
c) 1
d) None of these
901. $\tan 10^{\circ}+\tan 35^{\circ}+\tan 10^{\circ} \tan 35^{\circ}$ is equal to
a) 0
b) $\frac{1}{2}$
c) -1
d) 1
902. The value of $\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}$ (where n is an even) is
a) $2 \tan ^{n}\left(\frac{A-B}{2}\right)$
b) $2 \cot ^{n}\left(\frac{A-B}{2}\right)$
c) 0
d) None of these
903. If $\sin (x-y)=\cos (x+y)=\frac{1}{2}$, the values of x and y lying between 0° and 90° are given by
a) $x=15^{\circ}, y=25^{\circ}$
b) $x=65^{\circ}, y=15^{\circ}$
c) $x=45^{\circ}, y=45^{\circ}$
d) $x=45^{\circ}, y=15^{\circ}$
904. If $5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0,-\pi<\theta<\pi$, then $\theta=$
a) $\frac{\pi}{3}$
b) $\frac{\pi}{3}, \cos ^{-1}(3 / 5)$
c) $\cos ^{-1}(3 / 5)$
d) $\frac{\pi}{3}, \pi-\cos ^{-1}(3 / 5)$
905. The value of $\cos x \cos y \sin (x-y)+\cos y \cos z \sin (y-z)$ $+\cos z \cos x \sin (z-x)+\sin (x-y) \sin (y-z) \sin (z-x)$, is
a) 0
b) 1
c) 2
d) -1
906. In any $\triangle A B C$ if $2 \cos B=\frac{a}{c}$, then the triangle is
a) Right angled
b) Equilateral
c) Isosceles
d) None of these
907. The equation $\sin x \cos x=2$ has
a) One solution
b) Two solutions
c) Infinite solutions
d) No solution
908. If the equation $\sin ^{2} \theta-\cos \theta=\frac{1}{4}$, then the value of θ lying in the interval $0 \leq \theta \leq 2 \pi$ is
a) $\frac{\pi}{3}, \frac{5 \pi}{3}$
b) $\frac{\pi}{3}, \frac{2 \pi}{3}$
c) $\frac{4 \pi}{3}, \frac{5 \pi}{3}$
d) $\frac{3 \pi}{5}, \frac{\pi}{5}$
909. If in a triangle $A B C, \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$ then $\cos A$ is equal to
a) $1 / 5$
b) $5 / 7$
c) $19 / 35$
d) None of these
910. If $f(x)=\cos ^{2} x+\sec ^{2} x$, its value always is
a) $f(x)<1$
b) $f(x)=1$
c) $2>f(x)>1$
d) $f(x) \geq 2$
911. The values of x between 0 and 2π which satisfy the equation $\sin x \sqrt{8 \cos ^{2} x}=1$ are in AP. The common difference of the AP is
a) $\frac{\pi}{8}$
b) $\frac{\pi}{4}$
c) $\frac{3 \pi}{8}$
d) $\frac{5 \pi}{8}$
912. The maximum value of $12 \sin \theta-9 \sin ^{2} \theta$ is
a) 3
b) 4
c) 5
d) None of these
913. $\tan |x|=|\tan x|$, if
a) $x \in\left(-k \pi,(2 k-1) \frac{\pi}{2}\right), k \in Z$
b) $x \in\left((2 k-1) \frac{\pi}{2}, k \pi\right), k \in Z$
c) $x \in\left(-(2 k+1) \frac{\pi}{2},-k \pi\right) \cup\left(k \pi,(2 k+1) \frac{\pi}{2}\right), k \in Z$
d) None of these
914. If $\tan \theta+\tan 2 \theta+\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3}$, then
a) $\theta=\frac{(6 n+1) \pi}{18}, \forall n \in I$
b) $\theta=\frac{(6 n+1) \pi}{9}, \forall n \in I$
c) $\theta=\frac{(3 n+1) \pi}{9}, \forall n \in I$
d) None of these
915. If in a $\triangle A B C$, we define $x=\tan \frac{B-C}{2} \tan \frac{A}{2}, y=\tan \frac{C-A}{2} \tan \frac{B}{2}$ and $z=\tan \frac{A-B}{2} \tan \frac{C}{2}$, then $x+y+z=$
a) $x y z$
b) $x^{2} y z$
c) $x^{2} y^{2} z^{2}$
d) None of these
916. If $\cos x=3 \cos y$, then $2 \tan \frac{y-x}{2}$ is equal to
a) $\cot \left(\frac{y-x}{2}\right)$
b) $\cot \left(\frac{x+y}{4}\right)$
c) $\cot \left(\frac{y-x}{4}\right)$
d) $\cot \left(\frac{x+y}{2}\right)$
917. The value of $\frac{\sin 85^{\circ}-\sin 35^{\circ}}{\cos 65^{\circ}}$ is
a) 2
b) -1
c) 1
d) 0
918. $\frac{\tan 80^{\circ}-\tan 10^{\circ}}{\tan 70^{\circ}}$ is equal to
a) 0
b) 1
c) 2
d) 3
919. If $\tan ^{2} \theta=2 \tan ^{2} \phi+1$, then $\cos 2 \theta+\sin ^{2} \phi$ equals
a) -1
b) 0
c) 1
d) None of these
920. Simplest form of $\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 4 x}}}}$ is
a) $\sec \frac{x}{2}$
b) $\sec x$
c) $\operatorname{cosec} x$
d) 1
: ANSWER KEY :

1)	a	2)	b	3)	d	4)	a	189)	a	190)	c	191)	d	192)
5)	c	6)	c	7)	b	8)	d	193)	c	194)	a	195)	b	196)
9)	b	10)	a	11)	a	12)	b	197)	a	198)	d	199)	c	200)
13)	b	14)	b	15)	a	16)	a	201)	b	202)	c	203)	a	204)
17)	d	18)	a	19)	a	20)	c	205)	c	206)	c	207)	b	208)
21)	a	22)	a	23)	a	24)	b	209)	a	210)	a	211)	b	212)
25)	b	26)	c	27)	d	28)	b	213)	c	214)	a	215)	c	216)
29)	c	30)	c	31)	c	32)	a	217)	b	218)	a	219)	a	220)
33)	b	34)	c	35)	b	36)	a	221)	b	222)	d	223)	c	224)
37)	c	38)	a	39)	b	40)	a	225)	b	226)	b	227)	c	228)
41)	d	42)	a	43)	b	44)	c	229)	b	230)	b	231)	b	232)
45)	a	46)	b	47)	b	48)	d	233)	b	234)	c	235)	a	236)
49)	a	50)	b	51)	a	52)	a	237)	b	238)	a	239)	b	240)
53)	c	54)	b	55)	d	56)	c	241)	c	242)	c	243)	a	244)
57)	d	58)	c	59)	c	60)	a	245)	b	246)	b	247)	a	248)
61)	c	62)	c	63)	c	64)	c	249)	a	250)	d	251)	b	252)
65)	b	66)	d	67)	b	68)	c	253)	d	254)	a	255)	b	256)
69)	c	70)	c	71)	d	72)	c	257)	b	258)	c	259)	b	260)
73)	b	74)	b	75)	b	76)	c	261)	d	262)	a	263)	a	264)
77)	c	78)	a	79)	b	80)	d	265)	d	266)	d	267)	b	268)
81)	b	82)	d	83)	c	84)	b	269)	b	270)	d	271)	b	272)
85)	d	86)	c	87)	c	88)	c	273)	a	274)	b	275)	b	276)
89)	b	90)	c	91)	d	92)	c	277)	b	278)	a	279)	c	280)
93)	b	94)	d	95)	a	96)	a	281)	c	282)	c	283)	b	284)
97)	d	98)	c	99)	c	100)	b	285)	c	286)	d	287)	b	288)
101)	c	102)	c	103)	c	104)	d	289)	c	290)	b	291)	c	292)
105)	b	106)	c	107)	b	108)	d	293)	c	294)	c	295)	b	296)
109)	a	110)	a	111)	b	112)	a	297)	d	298)	d	299)	b	300)
113)	a	114)	a	115)	a	116)	d	301)	c	302)	b	303)	a	304)
117)	c	118)	b	119)	b	120)	c	305)	a	306)	d	307)	a	308)
121)	d	122)	b	123)	b	124)	b	309)	c	310)	b	311)	a	312)
125)	a	126)	a	127)	a	128)	a	313)	b	314)	c	315)	d	316)
129)	b	130)	d	131)	b	132)	a	317)	a	318)	a	319)	b	320)
133)	b	134)	d	135)	b	136)	d	321)	a	322)	d	323)	b	324)
137)	b	138)	c	139)	d	140)	b	325)	a	326)	d	327)	c	328)
141)	c	142)	b	143)	a	144)	b	329)	b	330)	b	331)	a	332)
145)	b	146)	b	147)	c	148)	d	333)	a	334)	b	335)	a	336)
149)	c	150)	b	151)	a	152)	a	337)	c	338)	b	339)	b	340)
153)	d	154)	a	155)	b	156)	a	341)	a	342)	a	343)	c	344)
157)	a	158)	a	159)	c	160)	a	345)	b	346)	a	347)	a	348)
161)	c	162)	a	163)	d	164)	b	349)	b	350)	c	351)	c	352)
165)	a	166)	c	167)	b	168)	b	353)	c	354)	d	355)	b	356)
169)	c	170)	a	171)	a	172)	a	357)	c	358)	d	359)	d	360)
173)	d	174)	d	175)	b	176)	d	361)	d	362)	a	363)	a	364)
177)	a	178)	a	179)	d	180)	d	365)	c	366)	d	367)	b	368)
181)	d	182)	a	183)	d	184)	c	369)	c	370)	a	371)	b	372)
185)	b	186)	d	187)	c	188)	c	373)	a	374)	c	375)	b	376)

377)	d	378)	b	379)	a	380)	d	581)	c	582)	b	583)	a	584)
381)	c	382)	b	383)	a	384)	d	585)	b	586)	a	587)	a	588)
385)	d	386)	b	387)	d	388)	a	589)	c	590)	d	591)	c	592)
389)	b	390)	b	391)	a	392)	c	593)	b	594)	c	595)	b	596)
393)	a	394)	d	395)	c	396)	c	597)	a	598)	c	599)	b	600)
397)	a	398)	d	399)	b	400)	c	601)	a	602)	b	603)	b	604)
401)	c	402)	a	403)	a	404)	b	605)	b	606)	a	607)	d	608)
405)	a	406)	b	407)	a	408)	b	609)	b	610)	a	611)	c	612)
409)	b	410)	c	411)	a	412)	c	613)	b	614)	c	615)	b	616)
413)	a	414)	d	415)	c	416)	a	617)	c	618)	a	619)	b	620)
417)	a	418)	a	419)	c	420)	b	621)	d	622)	d	623)	a	624)
421)	a	422)	c	423)	c	424)	b	625)	b	626)	b	627)	a	628)
425)	b	426)	a	427)	d	428)	c	629)	b	630)	c	631)	b	632)
429)	d	430)	b	431)	d	432)	b	633)	c	634)	b	635)	c	636)
433)	a	434)	b	435)	a	436)	c	637)	a	638)	b	639)	c	640)
437)	a	438)	b	439)	c	440)	b	641)	b	642)	a	643)	c	644)
441)	d	442)	a	443)	d	444)	d	645)	a	646)	c	647)	a	648)
445)	c	446)	d	447)	c	448)	c	649)	d	650)	b	651)	a	652)
449)	b	450)	a	451)	a	452)	a	653)	a	654)	a	655)	c	656)
453)	b	454)	a	455)	d	456)	a	657)	c	658)	a	659)	b	660)
457)	c	458)	c	459)	d	460)	d	661)	d	662)	a	663)	c	664)
461)	a	462)	a	463)	d	464)	b	665)	b	666)	d	667)	b	668)
465)	a	466)	c	467)	d	468)	a	669)	c	670)	a	671)	b	672)
469)	c	470)	c	471)	a	472)	b	673)	b	674)	d	675)	a	676)
473)	b	474)	b	475)	a	476)	b	677)	d	678)	c	679)	b	680)
477)	b	478)	b	479)	d	480)	a	681)	a	682)	a	683)	d	684)
481)	a	482)	c	483)	d	484)	c	685)	a	686)	b	687)	a	688)
485)	a	486)	a	487)	a	488)	b	689)	d	690)	b	691)	a	692)
489)	c	490)	b	491)	c	492)	a	693)	a	694)	b	695)	a	696)
493)	a	494)	a	495)	d	496)	b	697)	c	698)	a	699)	b	700)
497)	c	498)	c	499)	c	500)	c	701)	c	702)	c	703)	c	704)
501)	d	502)	a	503)	d	504)	d	705)	c	706)	c	707)	c	708)
505)	b	506)	a	507)	a	508)	a	709)	a	710)	b	711)	a	712)
509)	a	510)	b	511)	a	512)	c	713)	b	714)	d	715)	d	716)
513)	c	514)	d	515)	c	516)	a	717)	c	718)	b	719)	a	720)
517)	a	518)	c	519)	a	520)	a	721)	c	722)	a	723)	a	724)
521)	c	522)	d	523)	c	524)	d	725)	d	726)	c	727)	d	728)
525)	b	526)	a	527)	a	528)	b	729)	d	730)	c	731)	d	732)
529)	a	530)	c	531)	a	532)	c	733)	a	734)	a	735)	d	736)
533)	d	534)	d	535)	c	536)	d	737)	b	738)	a	739)	b	740)
537)	c	538)	b	539)	a	540)	c	741)	a	742)	c	743)	c	744)
541)	c	542)	a	543)	a	544)	c	745)	b	746)	c	747)	a	748)
545)	d	546)	d	547)	b	548)	d	749)	b	750)	d	751)	b	752)
549)	b	550)	a	551)	c	552)	a	753)	b	754)	d	755)	a	756)
553)	d	554)	d	555)	b	556)	b	757)	a	758)	b	759)	c	760)
557)	a	558)	b	559)	c	560)	c	761)	c	762)	a	763)	d	764)
561)	c	562)	a	563)	c	564)	b	765)	a	766)	c	767)	d	768)
565)	d	566)	a	567)	a	568)	a	769)	b	770)	b	771)	b	772)
569)	c	570)	c	571)	b	572)	d	773)	a	774)	b	775)	c	776)
573)	d	574)	b	575)	a	576)	a	777)	a	778)	a	779)	c	780)
577)	d	578)	a	579)	a	580)	c	781)	a	782)	b	783)	a	784)

785)	c	786)	d	787)	c	788)	c	857)	b	858)	b	859)	c	860)
789)	a	790)	c	791)	b	792)	b	861)	c	862)	d	863)	a	864)
793)	b	794)	d	795)	a	796)	b	865)	b	866)	c	867)	d	868)
797)	a	798)	a	799)	a	800)	c	869)	a	870)	b	871)	a	872)
801)	a	802)	c	803)	b	804)	b	873)	a	874)	b	875)	b	876)
805)	a	806)	d	807)	c	808)	a	877)	c	878)	c	879)	c	880)
809)	b	810)	c	811)	a	812)	a	881)	b	882)	b	883)	d	884)
813)	c	814)	c	815)	a	816)	b	885)	d	886)	c	887)	d	888)
817)	d	818)	a	819)	d	820)	b	889)	c	890)	a	891)	c	892)
821)	a	822)	d	823)	b	824)	b	893)	d	894)	b	895)	b	896)
825)	c	826)	a	827)	b	828)	a	897)	c	898)	a	899)	d	900)
829)	a	830)	a	831)	a	832)	a	901)	d	902)	b	903)	d	904)
833)	a	834)	a	835)	d	836)	c	905)	a	906)	c	907)	d	908)
837)	d	838)	a	839)	a	840)	d	909)	a	910)	d	911)	b	912)
841)	b	842)	a	843)	b	844)	d	913)	c	914)	c	915)	d	916)
845)	c	846)	b	847)	a	848)	a	917)	c	918)	c	919)	c	920)
849)	c	850)	c	851)	a	852)	a							
853)	b	854)	b	855)	b	856)	d							

: HINTS AND SOLUTIONS :

1 (a)
It is given that $\tan \theta, \cos \theta, \frac{1}{6} \sin \theta$ are in G.P.
$\therefore \cos ^{2} \theta=\tan \theta \times \frac{1}{6} \sin \theta$
$\Rightarrow 6 \cos ^{3} \theta=\sin ^{2} \theta$
$\Rightarrow 6 \cos ^{3} \theta+\cos ^{2} \theta-1=0$
$\Rightarrow(2 \cos \theta-1)\left(3 \cos ^{2} \theta+2 \cos \theta+1\right)=0$
$\Rightarrow \cos \theta=\frac{1}{2} \quad\left[\because 3 \cos ^{2} \theta\right.$ $+2 \cos \theta+1 \neq 0$ for real $\theta]$
$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{3}, n \in Z$
2 (b)
$\sin 47^{\circ}-\sin 25^{\circ}+\sin 61^{\circ}-\sin 11^{\circ}$
$=2 \cos 36^{\circ} \sin 11^{\circ}+2 \cos 36^{\circ} \sin 25^{\circ}$
$=2 \cos 36^{\circ}\left[\sin 11^{\circ}+\sin 25^{\circ}\right]$
$=2 \cos 36^{\circ}\left[2 \sin \left(\frac{25^{\circ}+11^{\circ}}{2}\right) \cos \left(\frac{25^{\circ}-11^{\circ}}{2}\right)\right]$
$=4 \cos 36^{\circ} \sin 18^{\circ} \cos 7^{\circ}$
$=4\left(\frac{\sqrt{5}+1}{4}\right)\left(\frac{\sqrt{5}-1}{4}\right) \cos 7^{\circ}=\frac{5-1}{4} \cos 7^{\circ}$
$=\cos 7^{\circ}$
3 (d)
Given, $2 \sin ^{2} x+5 \sin x-3=0$
$\Rightarrow(2 \sin x-1)(\sin x+3)=0$
$\Rightarrow \sin x=\frac{1}{2} \quad[\because \sin x \neq-3]$

It is clear from figure that the curve intersect the line at four points in the given interval Hence, number of solutions are 4
4 (a)
We have,
$\sec \theta \tan \theta=\sqrt{2}$
$\Rightarrow \sin \theta=\sqrt{2} \cos ^{2} \theta$
$\Rightarrow \sin \theta=\sqrt{2}-\sqrt{2} \sin ^{2} \theta$
$\Rightarrow \sqrt{2} \sin ^{2} \theta+\sin \theta-\sqrt{2}=0$
$\Rightarrow(\sqrt{2} \sin \theta-1)(\sin \theta+\sqrt{2})=0$
$\Rightarrow \sqrt{2} \sin \theta-1=0$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4} \Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{4}, n \in Z$
(c)

We have,
$\cos (\theta+\phi)=m \cos (\theta-\phi)$
$\Rightarrow \frac{1}{m}=\frac{\cos (\theta-\phi)}{\cos (\theta+\phi)}$
$\Rightarrow \frac{1+m}{1-m}=\frac{2 \cos \theta \cos \phi}{2 \sin \theta \sin \phi}$
$\Rightarrow \tan \theta \tan \phi=\frac{1-m}{1+m} \Rightarrow \tan \theta=\frac{1-m}{1+m} \cot \phi$
6 (c)
We have,
$\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$
$\Rightarrow \sin (\pi \cos \theta)=\sin \left(\frac{\pi}{2}-\pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta=\frac{\pi}{2}-\pi \sin \theta$
$\Rightarrow \cos \theta+\sin \theta=\frac{1}{2}$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2 \sqrt{2}}$

$$
\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}
$$

(b)

Clearly,
$a^{2}+b^{2} \geq a^{2}-b^{2}$ for all $|a| \neq|b| \neq 0$
$\Rightarrow \frac{a^{2}+b^{2}}{a^{2}-b^{2}} \geq 1$ or, $\frac{a^{2}+b^{2}}{a^{2}-b^{2}} \leq-1$
$\therefore \sec \theta=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$ is meaningful
Thus, $\sec \theta=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$ gives real values of θ if and only if
$|a| \neq|b| \neq 0$
8 (d)
Given that, $\sin A=\frac{1}{\sqrt{10}}$ and $\sin B=\frac{1}{\sqrt{5}}$
We know that,
$\sin (A+B)=\sin A \cos B+\sin B \cos A$
$=\frac{1}{\sqrt{10}} \sqrt{1-\frac{1}{5}}+\frac{1}{\sqrt{5}} \sqrt{1-\frac{1}{10}}$
$=\frac{1}{\sqrt{10}} \sqrt{\frac{4}{5}}+\frac{1}{\sqrt{5}} \sqrt{\frac{9}{10}}$
$=\frac{1}{\sqrt{50}}(2+3)=\sqrt{\frac{5}{\sqrt{50}}}=\frac{1}{\sqrt{2}}$
$\Rightarrow \sin (A+B)=\sin \frac{\pi}{4}$
$\Rightarrow A+B=\frac{\pi}{4}$

9 (b)
Now, $1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\ldots \infty=$ 11-/ $\cos x \mid$
$\therefore \frac{1}{8^{1-|\cos x|}}=4^{3}$
$\Rightarrow \frac{3}{2^{1-|\cos x|}}=2^{6} \Rightarrow 1=2-2|\cos x|$
$\Rightarrow|\cos x|=\frac{1}{2}$
$\Rightarrow \cos x= \pm \frac{1}{2}$
$\Rightarrow x=\frac{\pi}{3},-\frac{\pi}{3}, \frac{2 \pi}{3},-\frac{2 \pi}{3}$
\therefore Number of solutions $=4$
10 (a)
We have,
$\sin \frac{15 \pi}{32} \sin \frac{7 \pi}{16} \sin \frac{3 \pi}{8}$
$=\sin \frac{15 \pi}{32} \sin \frac{14 \pi}{32} \sin \frac{12 \pi}{32}$
$=\cos \frac{\pi}{32} \cos \frac{2 \pi}{32} \cos \frac{4 \pi}{32}$
$=\frac{\sin \left(2^{3} \times \frac{\pi}{32}\right)}{2^{3} \sin \frac{\pi}{32}}=\frac{1}{8 \sqrt{2} \cos \left(\frac{15 \pi}{32}\right)}$
11 (a)
$\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)$
$=\sin \alpha+\sin \beta+\sin \gamma$
$-\sin \alpha \cos \beta \cos \gamma$
$-\cos \alpha \sin \beta \cos \gamma$
$-\cos \alpha \cos \beta \sin \gamma$
$+\sin \alpha \sin \beta \sin \gamma$
$=\sin \alpha(1-\cos \beta \cos \gamma)+\sin \beta(1-\cos \alpha \cos \gamma)$
$+\sin \gamma(1-\cos \alpha \cos \beta)$
$+\sin \alpha \sin \beta \sin \gamma$
$\therefore \sin \alpha+\sin \beta+\sin \gamma>\sin (\alpha+\beta+\gamma)$
$\Rightarrow \frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}<1$
12
(b)
$\left(\cos \frac{10 \pi}{13}+\cos \frac{3 \pi}{13}\right)+\left(\cos \frac{8 \pi}{13}+\cos \frac{5 \pi}{13}\right)$
$=2 \cos \left(\frac{13 \pi}{2 \times 13}\right) \cdot \cos \left(\frac{7 \pi}{2 \times 13}\right)$

$$
+2 \cos \left(\frac{13 \pi}{2 \times 13}\right) \cdot \cos \left(\frac{3 \pi}{2 \times 13}\right)
$$

$=2 \cos \frac{\pi}{2}\left(\cos \frac{7 \pi}{26}+\cos \frac{3 \pi}{26}\right)=0$
13 (b)
$\sin 120^{\circ} \cos 150^{\circ}-\cos 240^{\circ} \sin 330^{\circ}$
$=-\cos 30^{\circ} \sin 60^{\circ}-\cos 60^{\circ} \sin 30^{\circ}$
$=-\sin \left(60^{\circ}+30^{\circ}\right)=-1$

14 (b)
We have,
$\frac{a}{\sin A}=\frac{b}{\sin B}$
$\Rightarrow \sin B=\frac{b \sin A}{a}=\frac{8 \sin 30^{\circ}}{7}=\frac{4}{7}$
Thus, we have, $b>a>b \sin A$
Hence, angle B has two values given by $\sin B=4 / 7$
15 (a)
Given, $\cos (\theta-\alpha), \cos \theta$ and $\cos (\theta+\alpha)$ are in HP
$\Rightarrow \frac{1}{\cos (\theta-\alpha)}, \frac{1}{\cos \theta}, \frac{1}{\cos (\theta+\alpha)}$ will be in AP
$\Rightarrow \frac{2}{\cos \theta}=\frac{1}{\cos (\theta-\alpha)}+\frac{1}{\cos (\theta+\alpha)}$
$=\frac{\cos (\alpha+\theta)+\cos (\theta-\alpha)}{\cos ^{2} \theta-\sin ^{2} \alpha}$
$\Rightarrow \frac{2}{\cos \theta}=\frac{2 \cos \theta \cos \alpha}{\cos ^{2} \theta-\sin ^{2} \alpha}$
$\Rightarrow \cos ^{2} \theta-\sin ^{2} \alpha=\cos ^{2} \theta \cos \alpha$
$\Rightarrow \cos ^{2} \theta(1-\cos \alpha)=\sin ^{2} \alpha$
$\Rightarrow \cos ^{2} \theta\left(2 \sin ^{2} \frac{\alpha}{2}\right)=4 \sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2}$
$\Rightarrow \cos ^{2} \theta \sec ^{2} \frac{\alpha}{2}=2 \Rightarrow \cos \theta \sec \frac{\alpha}{2}= \pm \sqrt{2}$
16 (a)
$\because \sin 2 x+\cos 4 x=2$
It is possible only when
$\sin 2 x=1$ and $\cos 4 x=1$
$\Rightarrow 2 x=2 n \pi+\frac{\pi}{2}$ and $2 x=2 m \pi$
$\therefore x=n \pi+\frac{\pi}{4}$ and $x=m \pi, n \in I$
Then, solution $=\left(n \pi+\frac{\pi}{4}, n \in I\right) \cap(m \pi, m \in I)=$ ϕ
(d)

We have,
$\operatorname{cosec}^{2} \theta=\frac{2}{1-\cos 2 \theta}$
$\therefore \operatorname{cosec}^{2} \frac{\pi}{7}+\operatorname{cosec}^{2} \frac{2 \pi}{7}+\operatorname{cosec}^{2} \frac{3 \pi}{7}$
$=\frac{2}{1-\cos \frac{2 \pi}{7}}+\frac{2}{1-\cos \frac{4 \pi}{7}}+\frac{2}{1-\cos \frac{6 \pi}{7}}$
$=\frac{2}{1-a}+\frac{2}{1-b}+\frac{2}{1-c}$, where
$a=\cos \frac{2 \pi}{7}, b=\cos \frac{4 \pi}{7}, c=\cos \frac{6 \pi}{7}$
$=2\left\{\frac{3-2(a+b+c)+a b+b c+c a}{1-a b c+a b+b c+c a-(a+b+c)}\right\}$
We know that
$\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}+\cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}+\cos \frac{6 \pi}{7} \cos \frac{2 \pi}{7}$
$=\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$
and, $\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}=18$
i.e. $a b+b c+c a=a+b+c=-\frac{1}{2}$ and $a b c=\frac{1}{8}$
$\therefore \operatorname{cosec}^{2} \frac{\pi}{7}+\operatorname{cosec}^{2} \frac{2 \pi}{7}+\operatorname{cosec}^{2} \frac{3 \pi}{7}$
$=\frac{2\left\{3-2\left(\frac{1}{2}\right)+\frac{-1}{2}\right\}}{1-\frac{1}{8}-\frac{1}{2}+\frac{1}{2}}=8$
18 (a)
$4 \sin ^{2} x+3 \cos ^{2} x=4 \sin ^{2} x+3-3 \sin ^{2} x$
$=\sin ^{2} x+3$
Maximum value of $\sin x$ is 1 at $x=\frac{\pi}{2}$
Maximum value $=(1)^{2}+3=4$
19 (a)
$\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2(1+\cos \theta)}}}}$ (n numbers
of 2"s)
$=\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\sqrt{\left(2+2 \cos \frac{\theta}{2}\right)}}}[(n)}$
$-1)$ numbers of 2 's]
\qquad
...
$=\sqrt{2+2 \cos \left(\theta / 2^{n-1}\right)}$
$=\sqrt{2\left\{1+2 \cos ^{2}\left(\theta / 2^{n}\right)-1\right\}}=2 \cos \left(\theta / 2^{n}\right)$

20 (c)
Given, $S_{n}=\cos ^{n} \theta+\sin ^{n} \theta$
$\therefore 3 S_{4}-2 S_{6}=3\left[\left(\cos ^{4} \theta+\sin ^{4} \theta\right)\right]$
$-2\left[\cos ^{6} \theta+\sin ^{6} \theta\right]$
$=3\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta\right]$
$-2\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{4} \theta\right.\right.$ $\left.\left.+\sin ^{4} \theta-\cos ^{2} \theta \sin ^{2} \theta\right)\right]$
$=3\left[1-2 \sin ^{2} \theta \cos ^{2} \theta\right]-2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-3 \cos ^{2} \theta \sin ^{2} \theta\right]$
$=3-6 \sin ^{2} \theta \cos ^{2} \theta-2+6 \cos ^{2} \theta \sin ^{2} \theta$
$=1$
$21 \quad$ (a)
Since, $\tan 2 x=\tan \frac{2}{x}$
$\Rightarrow 2 x=n \pi+\frac{2}{x} \Rightarrow 2 x^{2}-n \pi x-2=0$
$\Rightarrow x=\frac{n \pi \pm \sqrt{n^{2} \pi^{2}+16}}{4}$
22 (a)
We have,
$\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \tan 2 x}=1$
$\Rightarrow \tan (3 x-2 x)=1 \Rightarrow \tan x=1 \Rightarrow x=n \pi+\frac{\pi}{4}$
But, for this value of x, we have
$\tan 2 x=\tan (2 n \pi+\pi / 2)=\infty$
Which does not satisfy the given equation as it reduces to an indeterminate form
(a)

Since, $\left(\cot \alpha_{1}\right)\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1$

$$
\begin{aligned}
& \Rightarrow\left(\cos \alpha_{1}\right)\left(\cos \alpha_{1}\right) \ldots\left(\cos \alpha_{n}\right) \\
& \quad=\left(\sin \alpha_{1}\right)\left(\sin \alpha_{2}\right) \ldots\left(\sin \alpha_{n}\right) \\
& \Rightarrow \cos ^{2} \alpha_{1} \cos ^{2} \alpha_{2 \ldots} \cos ^{2} \alpha_{n} \\
& \quad=\frac{\sin 2 \alpha_{1} \sin 2 \alpha_{2} \ldots \sin 2 \alpha_{n}}{2^{n}}
\end{aligned}
$$

$\Rightarrow \cos \alpha_{1} \cos \alpha_{2 \ldots} \cos \alpha_{n}$

$$
=\left(\frac{\sin 2 \alpha_{1} \sin 2 \alpha_{2 \ldots} \sin 2 \alpha_{n}}{2^{n}}\right)^{1 / 2}
$$

Since, maximum value of $\sin \alpha=1$
\therefore Maximum value of $\cos \alpha_{1} \ldots \cos \alpha_{n}=\frac{1}{2^{n / 2}}$

24 (b)
We have, $A+B+C=\pi$
$\therefore \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2}+\tan \frac{A}{2}=1$
$\Rightarrow x y+y z+z x=1$
Where $x=\tan \frac{A}{2}, y=\tan \frac{B}{2}, z=\tan \frac{C}{2}$
Now, $(x-y)^{2}+(y-z)^{2}+(z-x)^{2} \geq 0$
$\Rightarrow 2 \sum x^{2} \geq 2 \sum x y$
$\Rightarrow \sum x^{2} \geq \sum x y$
$\Rightarrow \sum x^{2} \geq 1 \quad\left[\because \sum x y=1(\right.$ From (i) $\left.)\right]$
$\Rightarrow \tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2} \geq 1$
Thus, the minimum value of $\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+$ $\tan 2 C 2$ is 1

Let a be the first term and d be the common
difference of the A.P. Then, $\mathrm{d}=5^{\circ}, \mathrm{a}=120^{\circ}$.
Since the sum of all interior angles of a polygon of n sides is
$(2 n-4) \times 90^{\circ}=\left(180 n-360^{\circ}\right)$
$\therefore \frac{n}{2}\{240+(n-1) 5\}=180 n-360$
$\Rightarrow \frac{n}{2}[48+n-1]=36 n-72$
$\Rightarrow n^{2}+47 n=72 n-144$
$\Rightarrow n^{2}-25 n+144=0 \Rightarrow n=16,9$
For $n=16$, the last term of the A.P. is more than
180°. Therefore, $n \neq 16$. Hence, $\mathrm{n}=9$
26 (c)
$3 \sin ^{2} x-7 \sin x+2=0$
$\Rightarrow 3 \sin ^{2} x-6 \sin x-\sin x+2=0$
$\Rightarrow 3 \sin x(\sin x-2)-1(\sin x-2)=0$
$\Rightarrow(3 \sin x-1)(\sin x-2)=0$
$\Rightarrow \sin x=\frac{1}{2}$ or 2
$\Rightarrow \sin x=\frac{1}{3} \quad(\because \sin x \neq 2)$
Let $\sin ^{-1} \frac{1}{3}=\alpha, 0<\alpha<\frac{\pi}{2}$
Then, $\alpha, \pi-\alpha, 2 \pi+\alpha, 3 \pi-\alpha, 4 \pi+\alpha, 5 \pi-\alpha$ are the solutions in $[0,5 \pi]$
\therefore Required number of solutions $=6$
27 (d)
We have,
$\tan (A+B)=p$ and $\tan (A-B)=q$
$\therefore \tan 2 A=\tan \{(A+B)+(A-B)\}$
$\Rightarrow \tan 2 A=\frac{\tan (A+B)+\tan (A-B)}{1-\tan (A+B) \tan (A-B)}=\frac{p+q}{1-p q}$
28 (b)
Given that, $\tan \theta=\sqrt{3}=\tan \frac{\pi}{3} \Rightarrow \theta=n \pi+\frac{\pi}{3}$
For $-\pi<\theta<0$ put $n=-1$, we get
$\theta=-\pi+\frac{\pi}{3}=\frac{-2 \pi}{3}$ or $\frac{-4 \pi}{6}$
29 (c)
We have, $\sin ^{2} \theta+\sin \theta-2=0$
$\Rightarrow(\sin \theta-1)(\sin \theta+2)=0$
$\Rightarrow \sin \theta=1, \sin \theta=-2$
But $\sin \theta \neq-2$
$\therefore \sin \theta=1=\sin \frac{\pi}{2}$
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{2}$
30 (c)
Given, $\tan x+\sec x=2 \cos x$
On multiplying by $\cos x \neq 0$, we get
$\sin x+1=2 \cos ^{2} x$
$\Rightarrow \sin x+1=2(1-\sin x)(1+\sin x)$
$\Rightarrow(\sin x+1)(2 \sin x-1)=0$
$\Rightarrow \sin x=-1$ and $\sin x=\frac{1}{2}$
$\because \sin x \neq-1 \quad(\because \cos x \neq 0)$
$\therefore \sin x=\frac{1}{2}$
$\Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}$
32 (a)
We have, $2 \cos ^{2} x+3 \sin x-3=0$
$\Rightarrow 2-2 \sin ^{2} x+3 \sin x-3=0$
$\Rightarrow(2 \sin x-1)(\sin x-1)=0$
$\Rightarrow \sin x=\frac{1}{2}$ or $\sin x=1$
$\Rightarrow x=30^{\circ}, 150^{\circ}, 90^{\circ}$
33 (b)
We have,
$\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$
Therefore, each ratio is equal to
$\frac{x+y+z}{\cos \theta+\cos \left(\theta-\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{2 \pi}{3}\right)}=\frac{x+y+z}{0}$
$\Rightarrow x+y+z=0$
34 (c)
Given, $a \sec \alpha=d+c \tan \alpha \quad$...(i)
and $b \sec \alpha=c-d \tan \alpha$
On squaring and adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) \sec ^{2} \alpha \\
& =d^{2} \\
& +c^{2} \tan ^{2} \alpha \\
& +2 d c \tan \alpha+c^{2} \\
& +d^{2} \tan ^{2} \alpha-2 d c \tan \alpha \\
& \Rightarrow\left(a^{2}+b^{2}\right) \sec ^{2} \alpha \\
& =c^{2}\left(\tan ^{2} \alpha+1\right)+d^{2}\left(1+\tan ^{2} \alpha\right) \\
& =\left(c^{2}+d^{2}\right) \sec ^{2} \alpha \\
& \therefore a^{2}+b^{2}=c^{2}+d^{2}
\end{aligned}
$$

35 (b)
$\cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \ldots \cos \frac{32 \pi}{65}$

$$
=\cos \frac{\pi}{65} \cdot \cos \frac{2 \pi}{65} \ldots \cos \frac{2^{5} \pi}{65}
$$

$=\frac{\sin \frac{2^{6} \pi}{65}}{2^{6} \sin \frac{\pi}{65}}=\frac{\sin \frac{65 \pi}{65}}{64 \sin \frac{\pi}{65}}$
$=\frac{\sin \left(\pi-\frac{\pi}{65}\right)}{64 \sin \frac{\pi}{65}}=\frac{1}{64}$
36 (a)
The LHS of the given equation is less than 2 and RHS is greater than or equal to 2 . Therefore, the equation has no solution
37 (c)
We have,
$\sin A=\sin B, \cos A=\cos B \Rightarrow A=2 n \pi+B$
Clearly, this satisfies both the relations for all $n \in Z$
38 (a)
We have,
$3+\cot 76^{\circ} \cot 16^{\circ}$
$\cot 76^{\circ}+\cot 16^{\circ}$
$=\frac{3 \sin 76^{\circ} \sin 16^{\circ}+\cos 76^{\circ} \cos 16^{\circ}}{\cos 76^{\circ} \sin 16^{\circ}+\sin 76^{\circ} \cos 16^{\circ}}$
$=\frac{2 \sin 76^{\circ} \sin 16^{\circ}+\left(\cos 76^{\circ} \cos 16^{\circ}+\sin 76^{\circ} \sin \right.}{\sin 76^{\circ} \cos 16^{\circ}+\cos 76^{\circ} \sin 16^{\circ}}$
$=\frac{\cos 60^{\circ}-\cos 92^{\circ}+\cos 60^{\circ}}{\sin 92^{\circ}}$
$=\frac{1-\cos 92^{\circ}}{\sin 92^{\circ}}=\frac{2 \sin ^{2} 46^{\circ}}{2 \sin 46^{\circ} \cos 46^{\circ}}=\tan 46^{\circ}$

$$
=\cot 44^{\circ}
$$

39 (b)
We have,
$1+\sin ^{4} x=\cos ^{2} 3 x$
$\Rightarrow \sin ^{2} 3 x+\sin ^{4} x=0$
$\Rightarrow \sin 3 x=0$ and $\sin 4 x=0$
$\Rightarrow 3 x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \pm 4 \pi, \pm 5 \pi, \pm 6 \pi, \pm 7 \pi$
and,
$4 x= \pm n \pi, n=0,1,2, \ldots, 10 \Rightarrow x=0, \pm \pi, \pm 2 \pi$
The largest positive value of x is 2π
40 (a)
We have,
$\cos A+2 \cos B+\cos C=2$
$\Rightarrow \cos A+\cos C=2(1-\cos B)$
$\Rightarrow 2 \cos \frac{A+C}{2} \cos \frac{A-C}{2}=4 \sin ^{2} \frac{B}{2}$
$\Rightarrow 2 \cos \left(\frac{A-C}{2}\right)=4 \sin \frac{B}{2}$
$\Rightarrow 2 \cos \frac{B}{2} \cos \left(\frac{A-C}{2}\right)=2\left(2 \sin \frac{B}{2} \cos \frac{B}{2}\right)$
$\Rightarrow 2 \sin \left(\frac{A+C}{2}\right) \cos \left(\frac{A-C}{2}\right)=2\left(2 \sin \frac{B}{2} \cos \frac{B}{2}\right)$
$\Rightarrow \sin A+\sin C=2 \sin B$
$\Rightarrow a+c=2 b \Rightarrow a, b, c$ are in A.P.
42 (a)
$\tan A+\tan B=a$ andtan $A \tan B=b$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{a}{1-b}$

Now, $\sin ^{2}(A+B)=\frac{1}{2}[1-\cos 2(A+B)]$

$$
=\frac{1}{2}\left[1-\frac{1-\tan ^{2}(A+B)}{1+\tan ^{2}(A+B)}\right]
$$

$=\left[\frac{\tan ^{2}(A+B)}{1+\tan ^{2}(A+B)}\right]$
$=\frac{a^{2} /(1-b)^{2}}{\frac{a^{2}+(1-b)^{2}}{(1-b)^{2}}}$
$=\frac{a^{2}}{a^{2}+(1-b)^{2}}$
(b)

Since, $(a-b) \sin (\theta+\phi)=(a+b) \sin (\theta-\phi)$

$$
\begin{aligned}
\Rightarrow a\{\sin (\theta+\phi) & -\sin (\theta-\phi)\} \\
& =b\{\sin (\theta-\phi)+\sin (\theta+\phi)\}
\end{aligned}
$$

$\Rightarrow 2 a \sin \phi \cos \theta=2 b \sin \theta \cos \phi$
$\Rightarrow a \tan \phi=b \tan \theta$
$\Rightarrow \frac{2 a \tan \frac{\phi}{2}}{1-\tan ^{2} \frac{\phi}{2}}=\frac{2 b \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$
Since, $a \tan \frac{\theta}{2}-b \tan \frac{\phi}{2}=c \quad$ (given)

$$
\begin{equation*}
\Rightarrow \tan \frac{\theta}{2}=\frac{b \tan \frac{\phi}{2}+c}{a} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get
$\frac{a \tan \frac{\phi}{2}}{1-\tan ^{2} \frac{\phi}{2}}=\frac{b \frac{\left(b \tan \frac{\phi}{2}+c\right)}{a}}{1-\frac{\left(b \tan \frac{\phi}{2}+c\right)^{2}}{a^{2}}}$
$\Rightarrow \tan \frac{\phi}{2}\left(a^{2}-b^{2}-c^{2}\right)=b c\left(1+\tan ^{2} \frac{\phi}{2}\right)$
Now, $\sin \phi=\frac{2 \tan \frac{\phi}{2}}{1+\tan ^{2} \frac{\phi}{2}}=\frac{2 b c}{a^{2}-b^{2}-c^{2}}$
44 (c)
Given equation is
$\sin x \cos 3 x=\sin 3 x \cos 5 x$
$\Rightarrow 2 \sin x \cos 3 x-2 \sin 3 x \cos 5 x=0$
$\Rightarrow \sin (3 x+x)-\sin (3 x-x)-\sin (3 x+5 x)$

$$
+\sin (5 x-3 x)=0
$$

$\Rightarrow \sin 4 x-\sin 2 x-\sin 8 x+\sin 2 x=0$
$\sin 4 x-\sin 8 x=0$
$\Rightarrow 2 \cos \left(\frac{4 x+8 x}{2}\right) \sin \left(\frac{8 x-4 x}{2}\right)=0$
$\Rightarrow 2 \cos 6 x \sin 2 x=0$
$\Rightarrow \cos 6 x=0$ or $\sin 2 x=0$
$\Rightarrow \quad 6 x=(2 n+1) \frac{\pi}{2}$ or $x=\frac{n \pi}{2}$
$\Rightarrow \quad x=(2 n+1) \frac{\pi}{12}$ or $x=\frac{n \pi}{2}$
$\Rightarrow \quad x=0, \frac{\pi}{2}, \frac{\pi}{12}, \frac{3 \pi}{12}, \frac{5 \pi}{12} \in\left[0, \frac{\pi}{2}\right]$
\therefore Number of solutions is 5
45 (a)
$\cos ^{2} A+\cos ^{2} B+\cos ^{2} C$
$=\frac{1+\cos 2 A}{2}+\frac{1+\cos 2 B}{2}+\cos ^{2} C$
$=1+\frac{1}{2}(\cos 2 A+\cos 2 B)+\cos ^{2} C$
$=1+\frac{2}{2}[\cos (A+B) \cos (A-B)]+\cos ^{2} C$
$=1+\cos C \cos (A-B)+\cos C \cos (A+B)$
$=1+\cos C[\cos (A-B)+\cos (A+B)]$
$=1+2 \cos C \cos B \cos A$
$\Rightarrow \cos ^{2} A+\cos ^{2} B$

$$
+\cos ^{2} C-2 \cos A \cos B \cos C=1
$$

(b)

Given, $\cos x+\sin x=\frac{1}{2}$
$\Rightarrow 1+\sin 2 x=\frac{1}{4}$
$\Rightarrow \frac{2 \tan x}{1+\tan x}=\frac{-3}{4}$
$\Rightarrow 8 \tan x=-3-3 \tan ^{2} x$
$\Rightarrow 3 \tan ^{2} x+8 \tan x+3=0$
$\Rightarrow \tan x=\frac{-8 \pm \sqrt{64-36}}{6}=\frac{-8 \pm 2 \sqrt{7}}{6}$
$\Rightarrow=-\left(\frac{4 \pm \sqrt{7}}{3}\right)$
47 (b)

We have,

$\cos (\alpha+\beta)=\frac{12}{13}$ and $\sin (\alpha-\beta)=\frac{3}{5}$
$\Rightarrow \sin (\alpha+\beta)=\frac{5}{13}$ and $\cos (\alpha-\beta)=\frac{4}{5}$
Now,
$\sin 2 \alpha=\sin \{(\alpha+\beta)+(\alpha-\beta)\}$
$\Rightarrow \sin 2 \alpha=\sin (\alpha+\beta) \cos (\alpha-\beta)$

$$
+\cos (\alpha+\beta) \sin (\alpha-\beta)
$$

$\Rightarrow \sin 2 \alpha=\frac{5}{13} \times \frac{4}{5}+\frac{12}{13} \times \frac{3}{5}=\frac{56}{65}$
48 (d)
We have, $\sin ^{10} 2 x=1+\cos ^{10} x$
Minimum value of RHS $=1$ and maximum values of LHS $=1$. Therefore, solution is possible only when $\sin ^{10} 2 x=1$ and $\cos ^{10} x=0$. But this is not possible. Therefore, it has no solution.
49 (a)
We have,
$P+Q+R=\pi$ and $R=\frac{\pi}{2}$
$\therefore P+Q=\frac{\pi}{2}$
$\Rightarrow \frac{P}{2}+\frac{Q}{2}=\frac{\pi}{4}$
$\Rightarrow \tan \left(\frac{P}{2}+\frac{Q}{2}\right)=1$
$\Rightarrow \tan \frac{P}{2}+\tan \frac{Q}{2}=1-\tan \frac{P}{2} \tan \frac{Q}{2}$
It is given that $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of the equation $a x^{2}+b x+c=0$
$\therefore \tan \frac{P}{2}+\tan \frac{Q}{2}=-\frac{b}{a}$ and $\tan \frac{P}{2} \tan \frac{Q}{2}=\frac{c}{d}$
Substituting these values in (i), we get $-\frac{b}{a}=1-\frac{c}{a} \Rightarrow-b=a-c \Rightarrow a+b=c$
50 (b)
We know that,
$-\sqrt{a^{2}+b^{2}} \leq a \cos \theta+b \sin \theta \leq \sqrt{a^{2}+b^{2}}$
$\therefore-\sqrt{3}+1 \leq \sqrt{3} \sin x+\cos x \leq \sqrt{3+1}$
$\Rightarrow-2 \leq \sqrt{3} \sin x+\cos x \leq 2$
But, $\sqrt{3} \sin x+\cos x=4$
Hence, given equation has no solution
51 (a)
We have,
$\frac{\cos \theta}{a}=\frac{\sin \theta}{b}$
$\Rightarrow \frac{\cos \theta}{a}=\frac{\sin \theta}{b}=\sqrt{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{a^{2}+b^{2}}}$
$\Rightarrow \cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}$ and $\sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$
$\therefore \frac{a}{\sec 2 \theta}+\frac{b}{\operatorname{cosec} 2 \theta}=\operatorname{acos} 2 \theta+b \sin 2 \theta$
$\Rightarrow \frac{a}{\sec 2 \theta}+\frac{b}{\operatorname{cosec} 2 \theta}$
$=a\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
$+2 b \sin \theta \cos \theta$
$\Rightarrow \frac{a}{\sec 2 \theta}+\frac{b}{\operatorname{cosec} 2 \theta}=a \frac{\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}+\frac{2 a b^{2}}{a^{2}+b^{2}}=a$
52 (a)
We have,
$y=\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$

$$
=\sqrt{2} \cos \left(x+\frac{\pi}{6}-\frac{\pi}{4}\right)
$$

$\Rightarrow y=\sqrt{2} \cos \left(x-\frac{\pi}{12}\right)$
$\Rightarrow y$ is maximum for $x-\frac{\pi}{12}=0$ i.e. $x=\frac{\pi}{12}$
(c)

We have,
$y-z=a\left(\cos ^{2} x-\sin ^{2} x\right)+2 b \sin 2 x$

$$
+c\left(\sin ^{2} x-\cos ^{2} x\right)
$$

$\Rightarrow y-z=a \cos 2 x+2 b \sin 2 x-c \cos 2 x$
$\Rightarrow y-z=(a-c) \cos 2 x+2 b \sin 2 x$
Now,
$\cos 2 x+\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\frac{(a-c)^{2}-4 b^{2}}{(a-c)^{2}+4 b^{2}}$
And,
$\sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x}=\frac{4 b(a-c)}{(a-c)^{2}+4 b^{2}}$
$\therefore y-z=\frac{(a-c)\left[(a-c)^{2}-4 b^{2}\right]+8 b^{2}(a-c)}{(a-c)^{2}+4 b^{2}}$

$$
=a-c
$$

54 (b)
It is given that $\frac{1}{6} \sin x, \cos x, \tan x$ are in GP
$\therefore \cos ^{2} x=\frac{1}{6} \sin x \tan x$
$\Rightarrow 6 \cos ^{2} x=\sin x \tan x$
$\Rightarrow 6 \cos ^{3} x+\cos ^{2} x-1=0$
$\Rightarrow\left(\cos x-\frac{1}{2}\right)\left(6 \cos ^{2} x+4 \cos x+2\right)=0$
$\Rightarrow \cos x=\frac{1}{2}\left[\because \cos ^{2} x\right.$

$$
+4 \cos x+2
$$

$=0$ has imaginary roots]
$\Rightarrow \cos x=\cos \frac{\pi}{3}$
$\Rightarrow x=2 n \pi \pm \frac{\pi}{3}, n \in Z$
55 (d)
We have,
$a^{2} \sin 2 C+c^{2} \sin 2 A$
$=2 a^{2} \sin C \cos C+2 c^{2} \sin A \cos A$
$=2(2 R \sin A)^{2} \sin C \cos C$

$$
+2(2 R \sin C)^{2} \sin A \cos A
$$

$=8 R^{2} \sin ^{2} A \sin C \cos C+8 R^{2} \sin ^{2} C \sin A \cos A$
$=8 R^{2} \sin A \sin C \sin (A+C)$
$=8 R^{2} \sin A \sin B \sin C$

$$
[\because A+C=\pi-B]
$$

$=8 R^{2} \times \frac{a}{2 R} \times \frac{b}{2 R}$

$$
\times \frac{c}{2 R}\left[\begin{array}{c}
\because \sin A=\frac{a}{2 R}, \sin B=\frac{b}{2 R}, \\
\text { and } \sin C=\frac{c}{2 R}
\end{array}\right]
$$

$=\frac{a b c}{R}=4 \Delta$
56 (c)
$e^{\log \left(\cosh ^{-1} 2\right)}=\cosh ^{-1}(2)=\log \left(2+\sqrt{2^{2}}-1\right)$
$=\log (2+\sqrt{3})$
(d)

We have, $x+\frac{1}{x}=2 \cos \theta$
$\Rightarrow\left(x+\frac{1}{x}\right)^{3}=(2 \cos \theta)^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)=8 \cos ^{3} \theta$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3.2 \cos \theta=8 \cos ^{3} \theta$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=2\left(4 \cos ^{3} \theta-3 \cos \theta\right)$
$=2 \cos 3 \theta$
58 (c)
$A+B=\frac{\pi}{4} \Rightarrow \tan (A+B)=1$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=1$
$\Rightarrow \tan A+\tan B+\tan A \tan B=1$
$\Rightarrow \quad(1+\tan A)(1+\tan B)=1+1=2$
59 (c)
We have,
$\cos x\left\{\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}\right\}$
$=\cos x\left\{\frac{\cos ^{2} x+(1-\sin x)^{2}}{(1-\sin x) \cos x}\right\}=\frac{2-2 \sin x}{1-\sin x}$
$=2$ for all $x \in R$
Hence, required value $=2$
60 (a)
We have,
$\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{3 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{5 \pi}{15} \cos \frac{6 \pi}{15} \cos \frac{7 \pi}{15}$
$=\left\{-\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15}\right\}\left\{\cos \frac{3 \pi}{15} \cos \frac{6 \pi}{15}\right\} \mathrm{cc}$
$=-\frac{\sin \left(2^{4} \frac{\pi}{15}\right)}{2^{4} \sin \frac{\pi}{15}} \times \frac{\sin \left(2^{2} \times \frac{3 \pi}{15}\right)}{2^{2} \sin \frac{3 \pi}{15}} \times \frac{1}{2}$
$=-\frac{\sin \frac{16 \pi}{15}}{16 \sin \frac{\pi}{15}} \times \frac{\sin \frac{12 \pi}{15}}{4 \sin \frac{3 \pi}{15}} \times \frac{1}{2}=\frac{1}{16} \times \frac{1}{4} \times \frac{1}{2}=\frac{1}{128}$
62 (c)
$\frac{1+\tan \theta}{1-\tan \theta}=3\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right)$
On simplification, we get
$3 \tan ^{4} \theta-6 \tan ^{2} \theta+8 \tan \theta-1=0$
\therefore Product of roots $=\tan \alpha \cdot \tan \beta \cdot \tan \gamma$.
$\tan \delta=-13$

63 (c)
We have,
$\tan \frac{C}{2}=\frac{\sqrt{7}}{3}$
$\therefore \cos C=\frac{1-\tan ^{2} \frac{C}{2}}{1+\tan ^{2} \frac{C}{2}} \Rightarrow \cos C=\frac{1-\frac{7}{9}}{1+\frac{7}{9}}=\frac{1}{8}$
Now,
$c^{2}=a^{2}+b^{2}-2 a b \cos C=25+16-40 \times \frac{1}{8}$

$$
=36
$$

$\Rightarrow c=6$
64 (c)
$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+\frac{8}{\tan 8 \alpha}$
$=\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+\frac{4\left(1-\tan ^{2} 4 \alpha\right)}{\tan 4 \alpha}$
$\left[\because \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right]$
$=\tan \alpha+2 \tan 2 \alpha+\frac{4 \tan ^{2} 4 \alpha+4-4 \tan ^{2} 4 \alpha}{\tan 4 \alpha}$
$=\tan \alpha+2 \tan 2 \alpha+\frac{4\left(1-\tan ^{2} 2 \alpha\right)}{2 \tan 2 \alpha}$
$=\tan \alpha+\frac{2 \tan ^{2} 2 \alpha+2-2 \tan ^{2} 2 \alpha}{\tan 2 \alpha}$
$=\tan \alpha+\frac{2\left(1-\tan ^{2} \alpha\right)}{2 \tan \alpha}$
$=\frac{\tan ^{2} \alpha+1-\tan ^{2} \alpha}{\tan \alpha}=\frac{1}{\tan \alpha}=\cot \alpha$
65 (b)

We have,

$\sin \theta-\cos \theta=\operatorname{Min}_{x \in R}\left\{1, x^{2}-4 x+6\right\}$
$\Rightarrow \sin \theta-\cos \theta$
$=1\left[\begin{array}{c}\because x^{2}-4 x+6 \\ =(x-2)^{2}+2 \geq 2 \text { for all } x\end{array}\right]$
$\Rightarrow \sin \left(\theta-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \sin \left(\theta-\frac{\pi}{4}\right)=\sin \frac{\pi}{4}$
$\Rightarrow \theta-\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{4}, n \in Z$
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{4}, n \in Z$
66 (d)
We have,
$\tan \frac{x}{2}=\operatorname{cosec} x-\sin x$
$\Rightarrow \tan \frac{x}{2}=\frac{1+\tan ^{2} \frac{x}{2}}{2 \tan \frac{x}{2}}-\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
$\Rightarrow 2 t(1+t)=(1-t)^{2}$, where $t=\tan ^{2} \frac{x}{2}$
$\Rightarrow t^{2}+4 t-1=0 \Rightarrow t$

$$
=-2+\sqrt{5} \quad\left[\because t=\tan ^{2} \frac{x}{2}>0\right]
$$

67 (b)
We have,
$\frac{\cos C+\cos A}{c+a}+\frac{\cos B}{b}$
$=\frac{b \cos C+b \cos A+c \cos B+a \cos B}{(c+a) b}$

$$
\begin{gathered}
=\frac{(b \cos C+c \cos B)+(a \cos B+b \cos A)}{(c+a) b} \\
=\frac{a+c}{(c+a) b}=\frac{1}{b}
\end{gathered}
$$

68 (c)
$\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$
$=\frac{1}{2}\left[\cos 36^{\circ}-\cos 60^{\circ}\right] \cos 36^{\circ}$
$=\frac{1}{2}\left[\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right]\left[\frac{\sqrt{5}+1}{4}\right]=\frac{1}{8}$
69 (c)
We have,
$\sin \alpha=\sin \beta, \cos \alpha=\cos \beta$
$\Rightarrow \sin \alpha-\sin \beta=\cos \alpha-\cos \beta=0$
$\Rightarrow 2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$

$$
=0
$$

$\Rightarrow \sin \frac{\alpha-\beta}{2}=0$
(c)

We have,
$\frac{\sin B}{b}=\frac{\sin A}{a} \Rightarrow \sin B=\frac{b \sin A}{a}=\frac{8 \sin 30^{\circ}}{6}=\frac{2}{3}$
$72 \quad$ (c)
We have,
$32 \sin \frac{A}{2} \sin \frac{5 A}{2}$
$=16(\cos 2 A-\cos 3 A)$
$=16\left(2 \cos ^{2} A-1-4 \cos ^{3} A+3 \cos A\right)$
$=16\left(2 \times \frac{9}{16}-1-4-\frac{27}{64}+3 \times \frac{3}{4}\right)=11$
73 (b)
We know that the distance of the orthocentre O of
$\triangle A B C$ from the vertices are given by
$O A=2 R \cos A, O B=2 R \cos B$ and $O C=2 R \cos C$
$\Rightarrow O A: O B: O C=\cos A: \cos B: \cos C$

74 (b)
We have, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\because \tan \alpha=\frac{1}{1+2^{-x}}$ and $\tan \beta=\frac{1}{1+2^{x+1}}$
$\therefore \tan (\alpha+\beta)=\frac{\frac{1}{1+\frac{1}{2^{x}}}+\frac{1}{1+2^{x+1}}}{1-\frac{1}{1+\frac{1}{2^{x}}} \cdot \frac{1}{1+2^{x+1}}}$
$\Rightarrow \tan (\alpha+\beta)=\frac{2^{x}+2 \cdot 2^{2 x}+2^{x}+1}{1+2^{x}+2 \cdot 2^{x}+2 \cdot 2^{2 x}-2^{x}}$
$\Rightarrow \tan (\alpha+\beta)=1$
$\Rightarrow \alpha+\beta=\frac{\pi}{4}$
75 (b)

We have,

$\tan \left(\frac{\theta+\alpha}{2}\right) \tan \left(\frac{\theta-\alpha}{2}\right)$
$=\frac{2 \sin \left(\frac{\theta+\alpha}{2}\right) \sin \left(\frac{\theta-\alpha}{2}\right)}{2 \cos \left(\frac{\theta+\alpha}{2}\right) \cos \left(\frac{\theta-\alpha}{2}\right)}$
$=-\frac{(\cos \theta-\cos \alpha)}{\cos \theta+\cos \alpha}$
$=-\frac{(\cos \alpha \cos \beta-\cos \alpha)}{\cos \alpha \cos \beta+\cos \alpha}=-\frac{\cos \alpha(\cos \beta-1)}{\cos \alpha(\cos \beta+1)}$
$=\frac{1-\cos \beta}{1+\cos \beta}=\tan ^{2} \frac{\beta}{2}$
76 (c)
(1) $\cot \theta-\tan \theta=2$
$\Rightarrow 2 \cot 2 \theta+2 \Rightarrow \tan 2 \theta=1$
$\Rightarrow 2 \theta=n \pi+\frac{\pi}{4} \Rightarrow \theta=(4 n+1) \frac{\pi}{8}$
(2) The given equation can be written as
$2 \sin x \cos x+2 \cos ^{2} x-1+\sin x+\cos x+1=0$
$\Rightarrow(2 \cos x+1)(\sin x+\cos x)=0$
$\Rightarrow \cos x=-\frac{1}{2}$ or $\sin x+\cos x=0$
$\Rightarrow \cos x=-\frac{1}{2}$ or $\tan x=-1$
But $\cos x$ and $\tan x$ are positive in Ist quadrant.
Therefore, the equation has no solution in the Ist quadrant. Hence, both of statements are correct.
77 (c)
Given equation can be written as

$$
\begin{aligned}
\left(1+\cos \frac{\pi}{8}\right)(1 & \left.+\cos \frac{7 \pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)(1 \\
& \left.+\cos \frac{5 \pi}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1+\cos \frac{\pi}{8}+\cos \frac{7 \pi}{8}+\cos \frac{\pi}{8} \cos \frac{7 \pi}{8}\right)(1 \\
& +\cos \frac{3 \pi}{8} \\
& \left.+\cos \frac{5 \pi}{8}+\cos \frac{3 \pi}{8} \cos \frac{5 \pi}{8}\right) \\
& =\left(1+\cos \frac{\pi}{8}-\cos \frac{\pi}{8}+\cos \frac{\pi}{8} \cos \frac{7 \pi}{8}\right)(1 \\
& -\cos \frac{5 \pi}{8} \\
& \left.+\cos \frac{5 \pi}{8}+\cos \frac{3 \pi}{8} \cos \frac{5 \pi}{8}\right) \\
& =\left(1+\cos \frac{\pi}{8} \cos \frac{7 \pi}{8}\right)\left(1+\cos \frac{3 \pi}{8} \cos \frac{5 \pi}{8}\right) \\
& =\frac{1}{4}\left(2+2 \cos \frac{\pi}{8} \cos \frac{7 \pi}{8}\right)\left(2+2 \cos \frac{3 \pi}{8} \cos \frac{5 \pi}{8}\right) \\
& =\frac{1}{4}\left(2+\cos \frac{3 \pi}{4}+\cos \pi\right)\left(2+\cos \frac{\pi}{4} \cos \pi\right) \\
& =\frac{1}{4}\left(1+\cos \frac{3 \pi}{4}\right)\left(1+\cos \frac{\pi}{4}\right) \\
& =\frac{1}{4}\left(1-\cos \frac{\pi}{4}\right)\left(1+\cos \frac{\pi}{4}\right) \\
& =\frac{1}{4}\left(1-\cos ^{2} \frac{\pi}{4}\right)=\frac{1}{4}\left(1-\frac{1}{2}\right)=\frac{1}{8}
\end{aligned}
$$

78 (a)
$\frac{1-\tan ^{2}\left(45^{\circ}-A\right)}{1+\tan ^{2}\left(45^{\circ}-A\right)}$
$=\frac{\cos ^{2}\left(45^{\circ}-A\right)-\sin ^{2}\left(45^{\circ}-A\right)}{\cos ^{2}\left(45^{\circ}-A\right)+\sin ^{2}\left(45^{\circ}-A\right)}$
$=\frac{\cos 2\left(45^{\circ}-A\right)}{1}$
$=\sin 2 A$
(b)

We have, $\tan \alpha=\frac{m}{m+1}$ and $\tan \beta=\frac{1}{2 m+1}$
We know that, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{(m+1)} \cdot \frac{1}{(2 m+1)}}$
$=\frac{2 m^{2}+m+m+1}{2 m^{2}+m+2 m+1-m}$
$=\frac{2 m^{2}+2 m+1}{2 m^{2}+2 m+1}=1$
$\Rightarrow \tan (\alpha+\beta)=\tan \frac{\pi}{4}$
$\Rightarrow \alpha+\beta=\frac{\pi}{4}$
80 (d)
Given, $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$
$\Rightarrow \sin \left(\frac{\pi}{4} \cot \theta\right)=\sin \left(\frac{\pi}{2}-\frac{\pi}{4} \tan \theta\right)$
$\Rightarrow \frac{\pi}{4}(\tan \theta+\cot \theta)=\frac{\pi}{2}$
$\Rightarrow(\tan \theta-1)^{2}=0 \Rightarrow \tan \theta=1=\tan \frac{\pi}{4}$
$\therefore \quad \theta=n \pi+\frac{\pi}{4}$
81 (b)
$\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$
$\Rightarrow \frac{\sin (x+y)+\sin (x-y)}{\sin (x+y)-\sin (x-y)}=\frac{(a+b)+(a-b)}{(a+b)-(a-b)}$
$\Rightarrow \frac{2 \sin x \cos y}{2 \cos x \sin y}=\frac{2 a}{2 b}$
$\Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b}$
82 (d)
Given, $\cos \theta-4 \sin \theta=1$
$\cos ^{2} \theta+16 \sin ^{2} \theta-8 \sin \theta \cos \theta=1 \quad[o n$
squaring]
$\Rightarrow 15 \sin ^{2} \theta-8 \sin \theta \cos \theta=0$
$\Rightarrow \sin \theta(15 \sin \theta-8 \cos \theta)=0$
$\Rightarrow \sin \theta=0$ or $\tan \theta=\frac{8}{15}$
But $\tan \theta$ is not satisfy the Eq. (i),
$\therefore \sin \theta=0 \Rightarrow \theta=0, \pi$
At $\theta=0, \sin \theta+4 \cos \theta=0+4=4$
At $\theta=\pi, \sin \theta+4 \cos \theta=0-4=-4$
83 (c)
We have,

$$
\begin{aligned}
& \frac{\cos \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{3}+\theta_{2}\right)}+\frac{\cos \left(\theta_{3}+\theta_{4}\right)}{\cos \left(\theta_{3}-\theta_{4}\right)}=0 \\
& \Rightarrow \frac{\cos \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{1}+\theta_{2}\right)}=\frac{\cos \left(\theta_{3}+\theta_{4}\right)}{-\cos \left(\theta_{3}-\theta_{4}\right)} \\
& \Rightarrow \frac{\cos \left(\theta_{1}-\theta_{2}\right)-\cos \left(\theta_{1}+\theta_{2}\right)}{\cos \left(\theta_{1}-\theta_{2}\right)+\cos \left(\theta_{1}+\theta_{2}\right)} \\
& \quad=\frac{\cos \left(\theta_{3}+\theta_{4}\right)+\cos \left(\theta_{3}-\theta_{4}\right)}{\cos \left(\theta_{3}+\theta_{4}\right)-\cos \left(\theta_{3}-\theta_{4}\right)} \\
& \Rightarrow \frac{2 \sin \theta_{1} \sin \theta_{2}}{2 \cos \theta_{1} \cos \theta_{2}}=\frac{2 \cos \theta_{3} \cos \theta_{4}}{-2 \sin \theta_{3} \sin \theta_{4}} \\
& \Rightarrow \tan \theta_{1} \tan \theta_{2} \tan \theta_{3} \tan \theta_{4}=-1
\end{aligned}
$$

84 (b)
We have, $\cot \theta-\tan \theta=2$
$\Rightarrow \cos ^{2} \theta-\sin ^{2} \theta=2 \sin \theta \cos \theta$
$\Rightarrow \cos 2 \theta=\sin 2 \theta$
$\Rightarrow \tan 2 \theta=\tan \frac{\pi}{4} \Rightarrow 2 \theta=n \pi+\frac{\pi}{4}$
$\Rightarrow \theta=\frac{n \pi}{2}+\frac{\pi}{8}$
85 (d)
$\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$
$=\sin ^{2} 36^{\circ} \sin ^{2} 72^{\circ}$
$=\frac{1}{4}\left[\left(2 \sin ^{2} 36^{\circ}\right)\left(2 \sin ^{2} 72^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\cos 72^{\circ}\right)\left(1-\cos 144^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\sin 18^{\circ}\right)\left(1+\cos 36^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\frac{\sqrt{5}-1}{4}\right)\left(1+\frac{\sqrt{5}+1}{4}\right)\right]$
$=\frac{1}{4}\left[1+\left(\frac{\sqrt{5}+1}{4}\right)-\left(\frac{\sqrt{5}-1}{4}\right)-\left(\frac{4}{16}\right)\right]$
$=\frac{1}{4}\left[1+\frac{1}{2}-\frac{1}{4}\right]=\frac{5}{16}$
86 (c)
We have,
$\sin \theta=x+\frac{p}{x}$
$\Rightarrow x^{2}-x \sin \theta+p=0$
$\Rightarrow \sin ^{2} \theta-4 p \geq 0 \quad[\because x$ is real $]$
$\Rightarrow 4 p \leq \sin ^{2} \theta$
$\Rightarrow 4 p \leq 1 \Rightarrow p \leq \frac{1}{4} \quad\left[\because \sin ^{2} \theta \leq 1\right]$
87 (c)
We have,
$3 \cos 2 x-10 \cos x+7=0$
$\Rightarrow 3\left(2 \cos ^{2} x-1\right)-10 \cos x+7=0$
$\Rightarrow 6 \cos ^{2} x-10 \cos x+1=0$
$\Rightarrow(3 \cos x-2)(\cos x-1)=0$
$\Rightarrow \cos x=\frac{2}{3}$
Now, $\cos x=1 \Rightarrow x=0,2 \pi, 4 \pi$
and, $\cos x=\frac{2}{3} \Rightarrow x$

$$
\begin{aligned}
& =\cos ^{-1} \frac{2}{3}, 2 \pi \\
& \pm \cos ^{-1} \frac{2}{3}, 4 \pi \pm \cos ^{-1} \frac{2}{3}
\end{aligned}
$$

Thus, there are 8 solutions of the given equation $[0, \pi]$
88 (c)
We have,
$\sum_{r=1}^{n-1} \cos ^{2} \frac{r \pi}{n}$
$=\frac{1}{2} \sum_{r=1}^{n-1}\left\{1+\cos \frac{2 r \pi}{n}\right\}$
$=\frac{1}{2}\left(\sum_{r=1}^{n-1} 1\right)+\frac{1}{2}\left(\sum_{r=1}^{n-1} \cos \frac{2 r \pi}{n}\right)$
$=\frac{(n-1)}{2}+\frac{1}{2}\left\{\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}+\ldots\right.$
$\left.+\cos \frac{2(n-1) \pi}{n}\right\}$
$=\frac{(n-1)}{2}+\frac{1}{2} \times \frac{\cos \left\{\frac{2 \pi}{n}+(n-2) \frac{\pi}{n}\right\} \sin (n-1) \frac{\pi}{n}}{\sin \frac{\pi}{n}}$
$=\frac{(n-1)}{2}+\frac{1}{2} \cos \pi=\left(\frac{n-1}{2}\right)-\frac{1}{2}=\frac{n}{2}-1$
89 (b)
We have,
$1-\cos \theta=\sin \theta \sin \frac{\theta}{2}$
$\Rightarrow 2 \sin ^{2} \frac{\theta}{2}=2 \sin ^{2} \frac{\theta}{2} \cos \frac{\theta}{2}$
$\Rightarrow 2 \sin ^{2} \frac{\theta}{2}\left(1-\cos \frac{\theta}{2}\right)=0$
$\Rightarrow \sin \frac{\theta}{2}=0, \cos \frac{\theta}{2}=1$
$\Rightarrow \frac{\theta}{2}=n \pi$, or, $\frac{\theta}{2}=2 n \pi, n \in Z$
$\Rightarrow \theta=2 n \pi, n \in Z$
90 (c)
Given, $\cos 5 \theta=0$
$\Rightarrow 5 \theta=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{10}$
$\therefore \cos \theta=\cos \left(\frac{\pi}{10}\right)=\sqrt{\frac{10+2 \sqrt{5}}{16}}$
$=\sqrt{\frac{5+\sqrt{5}}{8}}$
91 (d)
Given, $\cos ^{2} \theta+\sin ^{2} \theta+1=0$
$\Rightarrow \sin ^{2} \theta-\sin \theta-2=0$
$\Rightarrow(\sin \theta+1)(\sin \theta-2)=0$
$\Rightarrow \sin \theta=-1=\sin \frac{3 \pi}{2} \quad[\because \sin \theta \geq 1]$
$\therefore \quad \theta=\frac{3 \pi}{2} \in\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right)$
92 (c)
Given that, diameter of circular wire $=10 \mathrm{~cm}$
\therefore Length of wire $=10 \pi$
Hence, required angle $=\frac{\text { length of arc }}{\text { radius of big circle }}$
$=\frac{10 \pi}{50}=\frac{\pi}{5} \mathrm{rad}$
93
(b)

Let $\sin A=x$
Then, $\cos A=\tan B$
$\Rightarrow \sqrt{1-\sin ^{2} A}=\tan B$
$\Rightarrow \sqrt{1-x^{2}}=\tan B$
and,
$\cos B=\tan C$
$\Rightarrow \frac{1}{\sqrt{1+\tan ^{2} B}}=\tan C$
$\Rightarrow \frac{1}{\sqrt{2-x^{2}}}=\tan C$
$\Rightarrow \cos C=\frac{1}{\sqrt{1+\tan ^{2} C}}=\sqrt{\frac{2-x^{2}}{3-x^{2}}}$
Now,
$\cos C=\tan A$
$\Rightarrow \sqrt{\frac{2-x^{2}}{3-x^{2}}}=\frac{x}{\sqrt{1-x^{2}}}$ [From (i) and (ii)]
$\Rightarrow x^{2}=\frac{(1 \pm \sqrt{5})^{2}}{4} \Rightarrow x=\frac{\sqrt{5}-1}{2}=2 \sin 18^{\circ}$
94 (d)
We have,
$\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\cdots+\cos 180^{\circ}$
$=\sum_{\theta=1}^{90^{\circ}}\left\{\cos \theta+\cos \left(180^{\circ}\right)-\theta\right\}+\cos 180^{\circ}$
$=\sum_{\theta=1}^{90^{\circ}}(\cos \theta-\cos \theta)-1=-1$
95 (a)
Given, $e^{\sin x}-e^{-\sin x}-4=0$
$\Rightarrow e^{2 \sin x}-4 e^{\sin x}-1=0$
$\Rightarrow e^{\sin x}=\frac{4 \pm \sqrt{16+4}}{2}=2+\sqrt{5}$
$\Rightarrow \sin x=\log (2+\sqrt{5}) \quad[$
$\because \log (2-\sqrt{5})$ is not defined]
Since, $2+\sqrt{5}>e \Rightarrow(2+\sqrt{5})>1$
$\Rightarrow \sin x>1$, which is not possible
Hence, no solution exist
96 (a)
We have,
$\cos A+\cos B+\cos C=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}+1$
$\Rightarrow \cos A+\cos B+\cos C$

$$
\begin{aligned}
& =\frac{r}{R} \\
& +1\left[\because r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right]
\end{aligned}
$$

97 (d)
$\frac{2\left[\frac{1}{2} \sin 80^{\circ}-\frac{\sqrt{3}}{2} \cos 80^{\circ}\right]}{\sin 80^{\circ} \cos 80^{\circ}}=\frac{4\left[\sin \left(80^{\circ}-60^{\circ}\right)\right]}{2 \sin 80^{\circ} \cos 80^{\circ}}$
$=\frac{4 \sin 20^{\circ}}{\sin 160^{\circ}}$
$=\frac{4 \sin 20^{\circ}}{\sin \left(180^{\circ}-20^{\circ}\right)}=4$
98 (c)
On squaring and adding the given equations, we
get
$\sin ^{2} A+\cos ^{2} B+2 \sin A \cos B$

$$
+\sin ^{2} B
$$

$$
+\cos ^{2} A+2 \sin B \cos A=a^{2}+b^{2}
$$

$\Rightarrow 2 \sin (A+B)+2=a^{2}+b^{2}$
$\Rightarrow \sin (A+B)=\frac{a^{2}+b^{2}-2}{2}$
99 (c)
We have,
$\cot \frac{B}{2} \cot \frac{C}{2}$
$=\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} \times \sqrt{\frac{s(s-c)}{(s-b)(s-a)}}$
$=\frac{s}{s-a}=\frac{2 s}{2 s-2 a}=\frac{a+b+c}{b+c-a}=\frac{4 a}{2 a}=2$

$$
\because b+c=3 a]
$$

100 (b)

We have,

$\frac{\cos A}{p_{1}}+\frac{\cos B}{p_{2}}+\frac{\cos C}{p_{3}}$
$=\frac{1}{2 \Delta}(a \cos A+b \cos B+c \cos C)$
$=\frac{R}{\Delta}(\sin A \cos A+\sin B \cos B+\sin C \cos C)$
$=\frac{R}{2 \Delta}(\sin 2 A+\sin 2 B+\sin 2 C)$
$=R \frac{4 \sin A \sin B \sin C}{2 \Delta}=\frac{2 R \sin A \sin B \sin C}{\Delta}$
$=\frac{2 R}{\Delta} \times \frac{2 \Delta}{b c} \times \frac{2 \Delta}{c a} \times \frac{2 \Delta}{a b}=\frac{16 R \Delta^{2}}{a^{2} b^{2} c^{2}}=\frac{16 R \Delta^{2}}{(4 R \Delta)^{2}}=\frac{1}{R}$
101 (c)
We have,
$\cos A+\cos B+\cos C=\frac{3}{2}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}+\frac{c^{2}+a^{2}-b^{2}}{2 a c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$-\frac{3}{2}=0$
$\Rightarrow a\left(b^{2}+c^{2}\right)+b\left(c^{2}+a^{2}\right)+c\left(a^{2}+b^{2}\right)$

$$
=a^{3}+b^{3}+c^{3}+3 a b c
$$

$\Rightarrow a(b-c)^{2}+b(c-a)^{2}+c(a-b)^{2}$ $=a^{3}+b^{3}+c^{3}-3 a b c$
$\Rightarrow a(b-c)^{2}+b(c-a)^{2}+c(a-b)^{2}$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$\Rightarrow 2 a(b-c)^{2}+2 b(c-a)^{2}+2 c(a-b)^{2}$
$=(a+b+c)\left\{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}\right\}$
$\Rightarrow(b-c)^{2}(b+c-a)+(c-a)^{2}(a+c-b)$

$$
+(a-b)^{2}(a+b-c)=0
$$

$\Rightarrow(b-c)^{2}(b+c-a)=0,(c-a)^{2}(a+c-b)$

$$
=0,(a-b)^{2}(a+b-c)=0
$$

$\Rightarrow a=b=c$
Hence, the triangle is an equilateral triangle
102 (c)
We have,
$\sin A=\frac{336}{625}$
$\Rightarrow \cos A=-\sqrt{1-\sin ^{2} A}$
$=-\sqrt{1-\left(\frac{336}{625}\right)^{2}} \quad[\because \mathrm{~A}$ is in II quad. $]$
Now,
$\cos \frac{A}{2}=-\sqrt{\frac{1+\cos A}{2}}$
$=-\frac{7}{25} \quad\left[\because \frac{\mathrm{~A}}{2}\right.$ is in II quad. $]$
$\therefore \sin \frac{A}{4}=+\sqrt{\frac{1-\cos \frac{A}{2}}{2}} \quad\left[\because \frac{A}{4}\right.$ is in II, quad. $]$
$\Rightarrow \sin \frac{A}{4}=\sqrt{\frac{1+\frac{7}{25}}{2}}=\frac{4}{5}$
103 (c)
We have,
$\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$
$\Rightarrow \tan (\pi \cos \theta)=\tan \left(\frac{\pi}{2}-\pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta=\frac{\pi}{2}-\pi \sin \theta$
$\Rightarrow \sin \theta+\cos \theta=\frac{1}{2}$

$$
\begin{gathered}
\Rightarrow \frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta=\frac{1}{2 \sqrt{2}} \Rightarrow \sin \left(\theta+\frac{\pi}{4}\right) \\
=\frac{1}{2 \sqrt{2}}
\end{gathered}
$$

104 (d)
We have,
$\cos (\alpha-\beta)=1$
$\Rightarrow \alpha-\beta=0 \quad[\because \alpha, \beta \in(-\pi, \pi) \Rightarrow-2 \pi<\alpha-\beta$ $<2 \pi$]
$\Rightarrow \alpha=\beta$
Now, $\cos (\alpha+\beta)=\frac{1}{e} \Rightarrow \cos 2 \alpha=\frac{1}{e}$
Clearly, there are 4 values of $\alpha \in(-2 \pi, 2 \pi)$
satisfying $\cos 2 \alpha=\frac{1}{e}$
Hence, there are four ordered pairs (α, β)
satisfying the given conditions
105 (b)
$x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=4 \cos ^{2} \theta-2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=2 \cos 2 \theta$
Again $x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=8 \cos ^{3} \theta$
$x^{2}+\frac{1}{x^{3}}=8 \cos ^{3} \theta-6 \cos \theta=\cos 3 \theta$
Similarly, $x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$
106 (c)
We have,
$\cos ^{2} \frac{A}{2} \cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}$
$=\frac{1}{2}\{(1+\cos A)+(1+\cos B)+(1+\cos C)\}$
$=\frac{1}{2}\{3+\cos A+\cos B+\cos C\}$
$=\frac{1}{2}\left\{3+1+\frac{r}{R}\right\} \quad[\because \cos A$ $\left.+\cos B+\cos C=1+\frac{r}{R}\right]$
$=2+\frac{r}{2 R}$
107 (b)
We have,
$\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{3 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{5 \pi}{15} \cos \frac{6 \pi}{15} \cos \frac{7 \pi}{15}$
$=\left(\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{7 \pi}{15}\right) \times\left(\cos \frac{3 \pi}{15} \cos \frac{6 \pi}{15}\right)$

$$
\times \cos \frac{5 \pi}{15}
$$

$=\left\{\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{7 \pi}{15}(\pi\right.$

$$
\left.\left.-\frac{8 \pi}{15}\right)\right\}\left(\cos \frac{3 \pi}{15} \cos \frac{6 \pi}{15}\right) \times \cos \frac{\pi}{3}
$$

$=\left(-\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15}\right)$

$$
\times\left(\cos \frac{3 \pi}{15} \cos \frac{6 \pi}{15}\right) \times \frac{1}{2}
$$

$=-\frac{\sin \left(2^{4} \times \frac{\pi}{15}\right)}{2^{4} \sin \frac{\pi}{15}} \times \frac{\sin \left(2^{2} \times \frac{3 \pi}{15}\right)}{2^{2} \sin \frac{3 \pi}{15}} \times \frac{1}{2}$
$=-\frac{\sin \frac{16 \pi}{15}}{16 \sin \frac{\pi}{15}} \times \frac{\sin \left(\frac{12 \pi}{15}\right)}{4 \sin \frac{3 \pi}{15}} \times \frac{1}{2}=\frac{1}{16} \times \frac{1}{4} \times \frac{1}{2}=\frac{1}{2^{7}}$
(d)

Given, $\tan A$ and $\tan B$ are the roots of the equation
$a b x^{2}-c^{2} x+a b=0$
$\therefore \tan A+\tan B=\frac{c^{2}}{a b}, \tan A \tan B=1$
Now, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{\frac{c^{2}}{a b}}{1-1}=\infty$
$\Rightarrow A+B=\frac{\pi}{2} \Rightarrow C=\frac{\pi}{2}$
$\therefore \sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
$=\sin ^{2}\left(\frac{\pi}{2}-B\right)+\sin ^{2} B+\sin ^{2} \frac{\pi}{2}$
$=\cos ^{2} B+\sin ^{2} B+1=2$
110 (a)
Given, $P=\frac{1}{2} \sin ^{2} \theta+\frac{1}{3} \cos ^{2} \theta$
$=\frac{1}{2}\left(1-\cos ^{2} \theta\right)+\frac{1}{3} \cos ^{2} \theta$
$=\frac{1}{2}-\frac{1}{6} \cos ^{2} \theta$
Since, $0 \leq \cos ^{2} \theta \leq 1$
$\Rightarrow-\frac{1}{6} \leq-\frac{1}{6} \cos ^{2} \theta \leq 0$
$\Rightarrow \frac{1}{3} \leq \frac{1}{2}-\frac{1}{6} \cos ^{2} \theta \leq \frac{1}{2}$
$\Rightarrow \frac{1}{3} \leq P \leq \frac{1}{2}$
111 (b)
We have,
$3 \cos \theta+4 \sin \theta$
$=5\left\{\frac{3}{5} \cos \theta+\frac{4}{5} \sin \theta\right\}$
$=5 \cos (\theta-\alpha)$, where $\cos \alpha=\frac{3}{5}, \sin \alpha=\frac{4}{5}$
$\therefore 3 \cos \theta+4 \sin \theta=k$
$\Rightarrow 5 \cos (\theta-\alpha)=k$
$\Rightarrow \cos (\theta-\alpha)= \pm 1 \quad[\because k=5]$
$\Rightarrow \theta-\alpha=0^{\circ}, 180^{\circ} \Rightarrow \theta=\alpha, 180^{\circ}+\alpha$
112 (a)
$\frac{1}{p}+\frac{1}{q}+\frac{r}{p q}=\frac{p+q+r}{p q}$
$=\frac{\cos 55^{\circ}+\cos 65^{\circ}+\cos 175^{\circ}}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\cos 55^{\circ}+2 \cos \frac{175^{\circ}+65^{\circ}}{2} \cos \frac{175^{\circ}-65^{\circ}}{2}}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\cos 55^{\circ}+2 \cos 120^{\circ} \cos 55^{\circ}}{\cos 55^{\circ} \cos 65^{\circ}}=\frac{1-2 \times \frac{1}{2}}{\cos 65^{\circ}}=0$
113 (a)
Since, $\sin x+\operatorname{cosec} x=2$
$\Rightarrow \sin x+\frac{1}{\sin x}=2$
$\Rightarrow \sin ^{2} x-2 \sin x+1=0$
$\Rightarrow(\sin x-1)^{2}=0 \Rightarrow \sin x=1$
Now, $\sin ^{n} x+\operatorname{cosec}^{n} x=\sin ^{n} x+\frac{1}{\sin ^{n} x}$
$=1+1=2$
114 (a)
Let $A B C$ be a right angled triangle such that the sides a, b, c are in A.P. Then,
$2 b=a+c$
Let c be the largest side. Then,
$c^{2}=a^{2}+b^{2}$
From (i) and (ii), we have
$(2 b-a)^{2}=a^{2}+b^{2}$
$\Rightarrow 3 b^{2}-4 a b=0 \Rightarrow 3 b=4 a \Rightarrow \frac{a}{3}=\frac{b}{4}$
From (i) and (iii), we get
$5 b=4 c$ i.e. $\frac{b}{4}=\frac{c}{5}$
$\therefore \frac{a}{3}=\frac{b}{4}=\frac{c}{5} \Rightarrow a: b: c=3: 4: 5$
115 (a)
$a \cos \theta+b \sin \theta=c$
$\because \alpha$ and $\beta(\alpha \neq \beta)$ satisfy the Eq. (i)
$\Rightarrow a \cos \alpha+b \sin \alpha=c \quad$...(ii)
And $a \cos \beta+b \sin \beta=c \quad$...(iii)
On, subtracting Eq. (iii) from Eq.; (ii), we get
$a \cos \alpha+b \sin \alpha-a \cos \beta-b \sin \beta=0$
$\Rightarrow a(\cos \alpha-\cos \beta)=-b(\sin \alpha-\sin \beta)$
$\Rightarrow a \sin \frac{\alpha+\beta}{2}=-b\left[-\cos \left(\frac{\alpha+\beta}{2}\right)\right]$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{b}{a}$
116 (d)
We have,
$\frac{a}{b^{2}-c^{2}}+\frac{c}{b^{2}-a^{2}}=0$
$\Rightarrow a b^{2}-a^{3}+b^{2} c-c^{3}=0 \quad[\because a \neq b \neq c]$
$\Rightarrow(a+c) b^{2}-\left(a^{3}+c^{3}\right)=0$
$\Rightarrow(a+c)\left(b^{2}-a^{2}-c^{2}+a c\right)=0$
$\Rightarrow b^{2}-a^{2}-c^{2}+a c=0 \quad[\because a+c \neq 0]$
$\Rightarrow a^{2}+c^{2}-a c=b^{2}$
$\Rightarrow a^{2}+c^{2}-a c=c^{2}+a^{2}-2 a c \cos B$
$\Rightarrow \cos B=\frac{1}{2} \Rightarrow B=\frac{\pi}{3}$
117 (c)
$\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\ldots+\sin ^{2} 90^{\circ}$
$=\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}$

$$
\begin{aligned}
& +\ldots+\sin ^{2} 45^{\circ}+\ldots+\sin ^{2} 80^{\circ} \\
& +\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ}
\end{aligned}
$$

$=\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\ldots+\frac{1}{2}$

$$
+\ldots+\cos ^{2} 10^{\circ}+\cos ^{2} 5^{\circ}
$$

$$
+\sin ^{2} 90^{\circ}
$$

$=\left(\sin ^{2} 5^{\circ}+\cos ^{2} 5^{\circ}\right)+\left(\sin ^{2} 10^{\circ}+\cos ^{2} 10^{\circ}\right)+\cdots$
$\left(\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}\right)+\sin ^{2} 45^{\circ}+\sin ^{2} 90^{\circ}$
$=1+1+1+1+1+1+1+1+\frac{1}{2}+1=9 \frac{1}{2}$
118 (b)
We have,
$C=60^{\circ}$
$\Rightarrow \cos C=\frac{1}{2} \Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{1}{2} \Rightarrow a^{2}+b^{2}-c^{2}$
$=a b \ldots$ (i)
Now,
$\frac{a}{b+c}+\frac{b}{c+a}$
$=\frac{a c+a^{2}+b^{2}+b c}{b c+a b+c^{2}+a c}=\frac{c^{2}+a c+b c+a b}{c^{2}+a c+b c+a b}$
$=1$ [Using : (i)]

120 (c)

We have,
$\Delta=b^{2}-(c-a)^{2}$
$\Rightarrow \Delta=(b-c+a)(b+c-a)$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=(2 s-2 c)(2 s-2 a)$
$\Rightarrow \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}=\frac{1}{4} \Rightarrow \tan \frac{B}{2}=\frac{1}{4}$
$\therefore \tan B=\frac{2 \tan \frac{B}{2}}{1-\tan ^{2} \frac{B}{2}}=\frac{2 / 4}{1-\frac{1}{16}}=\frac{8}{15}$
121 (d)
We have,
$\cos ^{2} 76^{\circ}+\cos ^{2} 16^{\circ}-\cos 76^{\circ} \cos 16^{\circ}$
$\left.=\frac{1}{2} \right\rvert\,\left(1+\cos 152^{\circ}\right)+\left(1+\cos 32^{\circ}\right)$
$-\left(\cos 92^{\circ}+\cos 60^{\circ}\right) \mid$
$=\frac{1}{2}\left\{\frac{3}{2}+\cos 152^{\circ}+\cos 32^{\circ}-\cos 92^{\circ}\right\}$
$=\frac{1}{2}\left\{\frac{3}{2}+2 \cos 92^{\circ} \cos 60^{\circ}-\cos 92^{\circ}\right\}=\frac{3}{4}$
122 (b)
$\sec \theta+\tan \theta=k$
$\Rightarrow \frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}=k$
$\Rightarrow \sec \theta-\tan \theta=\frac{1}{k}$
On adding Eqs. (i) and (ii), we get
$2 \sec \theta=k+\frac{1}{k}=\frac{k^{2}+1}{k}$
$\Rightarrow \cos \theta=\frac{2 k}{k^{2}+1}$
123 (b)
Given, $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta=b_{0}+b_{1} \sin \theta+$ $b 2 \sin 2 \theta+\ldots+b n \sin n \theta \ldots$ (1)

Putting $\theta=0$ in Eq.(i), we get $0=b_{0}$
Again, Eq. (i)can be written as $\sin n \theta=$ $\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$
$\frac{\sin n \theta}{\sin \theta}=\sum_{r=1}^{n} b_{r} \sin ^{r-1} \theta$
Taking limit as $\theta \rightarrow 0$, we get $\lim _{\theta \rightarrow 0} \frac{\sin n \theta}{\sin \theta}=b_{1}$
$\Rightarrow \lim _{\theta \rightarrow 0} n\left(\frac{\sin n \theta}{n \theta}\right)\left(\frac{\theta}{\sin \theta}\right)=b_{1}$
$\Rightarrow n=b_{1}$ Hence, $b_{0=0} 0 ; b_{1}=n$
124 (b)
We have,
$\cos 2 x+2 \cos ^{2} x=2$
$\Rightarrow 4 \cos ^{2} x=3 \Rightarrow \cos ^{2} x=\cos ^{2} \frac{\pi}{6} \Rightarrow x$ $=n \pi \pm \frac{\pi}{6}, n \in Z$

125 (a)

We have,
$1+\sin x+\sin ^{2} x+\cdots+$ to $\infty=(\sqrt{3}+1)^{2}$
$\Rightarrow \frac{1}{1-\sin x}=(\sqrt{3}+1)^{2}$
$\Rightarrow 1-\sin x=\frac{1}{(\sqrt{3}-1)^{2}}$
$\Rightarrow 1-\sin x=\frac{(\sqrt{3}-1)^{2}}{4}$
$\Rightarrow \sin x=1-\left(\frac{4-2 \sqrt{3}}{4}\right)$
$\Rightarrow \sin x=\frac{\sqrt{3}}{2} \Rightarrow x=\frac{\pi}{3}$ or, $\frac{2 \pi}{3}$
126 (a)
Given, $\sin x=2 \sin x \cos x$
$\Rightarrow \sin x(1-2 \cos x)=0$
$\Rightarrow \sin x=0$ or $\cos x=\frac{1}{2}$
$\Rightarrow x=0^{\circ}$ or $x=60^{\circ},-60^{\circ}$
Hence, number of solution is 3
127 (a)
We have,
$\sin (\pi \cot \theta)=\cos (\pi \tan \theta)$
$\Rightarrow \sin (\pi \cot \theta)=\sin \left(\frac{\pi}{2} \pi \tan \theta\right)$
or, $\cos (\pi \tan \theta)=\cos \left(\frac{3 \pi}{2}+\pi \cot \theta\right)$
$\Rightarrow \pi \cot \theta=\frac{\pi}{2}+\pi \tan \theta$ or, $\pi \tan \theta=\frac{3 \pi}{2}+\pi \cot \theta$
$\Rightarrow \cot \theta-\tan \theta=\frac{1}{2}$ or, $\cot \theta-\tan \theta=-\frac{3}{2}$
$\Rightarrow \frac{1-\tan ^{2} \theta}{2 \tan \theta}=\frac{1}{4}$ or, $\frac{1-\tan ^{2} \theta}{2 \tan \theta}=-\frac{3}{4}$
$\Rightarrow \cot 2 \theta=\frac{1}{4}$ or, $\cot 2 \theta=-\frac{3}{4}$

128 (a)

Given, $\cos 24^{\circ} \cos 48^{\circ} \cos 96^{\circ} \cos 168^{\circ}$
$=-\cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 96^{\circ}$
$=-\frac{16 \sin 12^{\circ}}{16 \sin 12^{\circ}} \cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 96^{\circ}$
$=\frac{-8 \sin 24^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 96^{\circ}}{16 \sin 12^{\circ}}$
$=\frac{-4 \sin 48^{\circ} \cos 48^{\circ} \cos 96^{\circ}}{16 \sin 12^{\circ}}=-\frac{\sin 192^{\circ}}{16 \sin 12^{\circ}}$
$=\frac{\sin 12^{\circ}}{16 \sin 12^{\circ}}=\frac{1}{16}$
129 (b)
We have, $3 \sin ^{2} x+10 \cos x-6=0$
$\Rightarrow(\cos x-3)(3 \cos x-1)=0$
$\Rightarrow \cos x \neq 3$ or $\cos x=\frac{1}{3}$
$\Rightarrow x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
130 (d)
$\because 2 \cos x,|\cos x|, 1-3 \cos ^{2} x$ are in GP
$\therefore \cos ^{2} x=2 \cos x \cdot\left(1-3 \cos ^{2} x\right)$
$\Rightarrow 6 \cos ^{3} x+\cos ^{2} x-2 \cos x=0$
$\therefore \cos x=0, \frac{1}{2},-\frac{2}{3}$
$\therefore x=\frac{\pi}{2}, \frac{\pi}{3}, \cos ^{-1}\left(-\frac{2}{3}\right)(\because \alpha, \beta$ are positive $)$
If $\alpha=\frac{\pi}{2}, \beta=\frac{\pi}{3}$
Then, $|\alpha-\beta|=\frac{\pi}{6}$
131 (b)
$\because \cos \theta=-\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{3 \pi}{4}, \frac{5 \pi}{4}$
and $\tan \theta=1 \Rightarrow \theta=\frac{\pi}{4}, \frac{5 \pi}{4}$
\therefore The general value is $2 n \pi+\frac{5 \pi}{4}$ or $(2 n+1) \pi+\frac{\pi}{4}$
132 (a)

We have,
$\underline{\sin ^{2} A+\sin A+1}$
$=\sin A+1+\frac{1}{\sin A}$
$=\left(\sin A+\frac{1}{\sin A}\right)+1 \geq 2+1=3\left[\because x+\frac{1}{x} \geq 2\right]$
$\therefore \sum \frac{\sin ^{2} A+\sin A+1}{\sin A} \geq 3+3+3=9$
134
(d)

We have,
$\frac{\sin A}{a}=\frac{\sin B}{b} \Rightarrow \frac{3 / 4}{5}=\frac{\sin B}{7} \Rightarrow \sin B=21 / 20>1$
Which is impossible. Hence, no triangle is possible 135
(b)

We have,
$A D^{2}=\frac{1}{4}\left(b^{2}+c^{2}+2 b c \cos A\right)$
$\Rightarrow 4 A D^{2}=b^{2}+c^{2}+2 b c \cos \pi / 3$
$\Rightarrow 4 A D^{2}=b^{2}+c^{2}+b c$
136
(d)

We have,
$\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{1 / 2+1 / 3}{1-1 / 2 \times 1 / 3}$

$$
=1
$$

$\Rightarrow \theta+\phi=\frac{\pi}{4}$
(b)

We have,
$a=\tan 27 \theta-\tan \theta$
$\Rightarrow a=\tan 27 \theta-\tan 9 \theta+\tan 9 \theta-\tan 3 \theta$

$$
+\tan 3 \theta-\tan \theta
$$

$\Rightarrow a=\frac{\sin 18 \theta}{\cos 27 \theta \cos 9 \theta}+\frac{\sin 6 \theta}{\cos 9 \theta \cos 3 \theta}$

$$
+\frac{\sin 2 \theta}{\cos 3 \theta \cos 2 \theta}
$$

$\Rightarrow a=2\left(\frac{\sin 9 \theta}{\cos 27 \theta}+\frac{\sin 3 \theta}{\cos 9 \theta}+\frac{\sin \theta}{\cos 3 \theta}\right) \Rightarrow a=2 b$
138 (c)
We have,
$s-a=3 \Rightarrow b+c-a=6$
and, $s-c=2 \Rightarrow a+b-c=4$
Adding these two equations, we get $b=5$
Since B is a right angle
$\therefore b^{2}=a^{2}+c^{2} \Rightarrow a^{2}+c^{2}=25$
Multiplying (i) and (ii), we get
$[(b-c)+a][(b+c)-a]=24$
$\Rightarrow b^{2}-c^{2}+2 a c-a^{2}=24$
$\Rightarrow a^{2}+2 a c-a^{2}=24 \quad\left[\because b^{2}=a^{2}+c^{2}\right]$
$\Rightarrow a c=12$
From (iii) and (iv), we have
$a+c=7$ and $a-c=1 \Rightarrow a=4, c=3$

139 (d)
Given, $\sin \alpha=\frac{15}{17}, \tan \beta=\frac{12}{5}$
Since, $\frac{\pi}{2}<\alpha<\pi, \pi<\beta<\frac{3 \pi}{2}$
$\therefore \cos \alpha=-\frac{8}{17}, \sin \beta=-\frac{12}{13}$
and $\cos \beta=-\frac{5}{13}$
Now, $\sin (\beta-\alpha)=\sin \beta \cos \alpha-\cos \beta \sin \alpha$
$=-\frac{12}{13}\left(\frac{-8}{17}\right)-\left(\frac{-5}{13}\right)\left(\frac{15}{17}\right)$
$=\frac{96}{221}+\frac{75}{221}=\frac{171}{221}$
140 (b)
We have,
$\tan 2 \theta \tan \theta=1$
$\Rightarrow \frac{2 \tan ^{2} \theta}{1-\tan ^{2} \theta} 1$
$\Rightarrow \tan ^{2} \theta=\frac{1}{3} \Rightarrow \tan ^{2} \theta=\tan ^{2} \frac{\pi}{6} \Rightarrow \theta=n \pi \pm \frac{\pi}{6}, n$

$$
\in Z
$$

142 (b)
Let a, b, c be the lengths of the sides of $\triangle A B C$ such that $a=6 \mathrm{~cm}$
We have,
$2 s=16 \Rightarrow a+b+c=16 \Rightarrow 6+b+c=16$

$$
\Rightarrow b+c=10
$$

Also,
$\Delta=12 \mathrm{~cm}^{2}$
$\Rightarrow s(s-a)(s-b)(s-c)=12^{2}$
$\Rightarrow 8(8-6)(8-b)(8-c)=144$
$\Rightarrow 64-8(b+c)+b c=9$
$\Rightarrow 64-80+b c=9$
$\Rightarrow b c=25$
$\therefore(b-c)^{2}=(b+c)^{2}-4 b c=100-100=0$

$$
\Rightarrow b=c
$$

Hence, $\triangle A B C$ is isosceles
143 (a)
We have,
$\sin \alpha+\cos \alpha=m \Rightarrow 1+\sin 2 \alpha=m^{2} \Rightarrow \sin 2 \alpha$

$$
=m^{2}-1
$$

Now,
$\sin ^{6} \alpha+\cos ^{6} \alpha$

$$
\begin{aligned}
& =\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{3} \\
& \quad-3 \sin ^{2} \alpha \cos ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) \\
& =1-3 \frac{\left(-1+m^{2}\right)^{2}}{4}=\frac{4-3\left(m^{2}-1\right)^{2}}{4}
\end{aligned}
$$

144 (b)
We have,
$\tan x=\cot x-2 \cot 2 x$
$\Rightarrow \frac{1}{2} \tan \frac{x}{2}=\frac{1}{2} \cot \frac{x}{2}-\cot x$
$\Rightarrow \frac{1}{2} \tan \frac{x}{2^{2}}=\frac{1}{2} \cot \left(\frac{x}{2^{2}}\right)-\cot \left(\frac{x}{2}\right)$
$\Rightarrow \frac{1}{2^{2}} \tan \left(\frac{x}{2^{2}}\right)=\frac{1}{2^{2}} \cot \left(\frac{x}{2^{2}}\right)-\frac{1}{2} \cot \left(\frac{x}{2}\right)$
Similarly, we have
$\frac{1}{2^{3}} \tan \left(\frac{x}{2^{3}}\right)=\frac{1}{2^{3}} \cot \left(\frac{x}{2^{3}}\right)-\frac{1}{2^{2}} \cot \left(\frac{x}{2^{2}}\right)$
$\frac{1}{2^{n-1}} \tan \left(\frac{x}{2^{n-1}}\right)$

$$
\begin{aligned}
& =\frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}}\right) \\
& -\frac{1}{2^{n-2}} \cot \left(\frac{x}{2^{n-2}}\right)
\end{aligned}
$$

Adding all the above results, we get
$\tan x+\frac{1}{2} \tan \frac{x}{2}+\frac{1}{2^{2}} \tan \left(\frac{x}{x^{2}}\right)+\cdots$

$$
+\frac{1}{2^{n-1}} \tan \left(\frac{x}{2^{n-1}}\right)
$$

$=\frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}}\right)-2 \cot 2 x$
145 (b)

$$
\begin{aligned}
& \frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}} \\
& =\frac{1}{\cos 70^{\circ}}-\frac{1}{\sqrt{3} \sin 110^{\circ}} \\
& =\frac{\sqrt{3} \sin 110^{\circ}-\cos 70^{\circ}}{\sqrt{3} \sin 110^{\circ} \cos 70^{\circ}} \\
& =\frac{\sqrt{3} \sin \left(180^{\circ}-70^{\circ}\right)-\cos 70^{\circ}}{\sqrt{3} \sin \left(180^{\circ}-70^{\circ}\right) \cos 70^{\circ}} \\
& =\frac{\frac{\sqrt{3}}{2} \sin 70^{\circ}-\frac{1}{2} \cos 70^{\circ}}{\frac{\sqrt{3}}{2} \sin 70^{\circ} \cos 70^{\circ}} \\
& =\frac{\cos 30^{\circ} \sin 70^{\circ}-\sin 30^{\circ} \cos 70^{\circ}}{\frac{\sqrt{3}}{2} \cdot \frac{1}{2} \sin 140^{\circ}} \\
& =\frac{\sin \left(70^{\circ}-30^{\circ}\right)}{\frac{\sqrt{3}}{2} \sin \left(180^{\circ}-40^{\circ}\right)} \\
& =\frac{\sin 40^{\circ}}{\frac{\sqrt{3}}{4} \sin 40^{\circ}}=\frac{4}{\sqrt{3}}
\end{aligned}
$$

146 (b)
We have, $A=\sin ^{2} \theta+\cos ^{4} \theta$

$$
\begin{aligned}
=\sin ^{2} \theta+\cos ^{2} \theta & \cos ^{2} \theta \\
& \leq \sin ^{2} \theta \\
& +\cos ^{2} \theta\left(\text { since } \cos ^{2} \theta \leq 1\right)
\end{aligned}
$$

$\Rightarrow \sin ^{2} \theta+\cos ^{4} \theta \leq 1 \Rightarrow A \leq 1$
Again, $\sin ^{2} \theta+\cos ^{4} \theta=1-\cos ^{2} \theta+$
$\cos 2 \theta+\cos 4 \theta$
$=\cos ^{4} \theta-\cos ^{2} \theta+\cos ^{4} \theta$
$=\cos ^{4} \theta-\cos ^{2} \theta+1$
$=\left(\cos ^{2} \theta-\frac{1}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}$
Hence, $\frac{3}{4} \leq A \leq 1$

147 (c)

$12 \cot ^{2} \theta-31 \operatorname{cosec} \theta+32=0$
$\Rightarrow 12 \cos ^{2} \theta-31 \sin \theta+32 \sin ^{2} \theta=0$
$\Rightarrow 20 \sin ^{2} \theta-31 \sin \theta+12$

$$
=0 \quad\left[\because \cos ^{2} \vartheta=1-\sin ^{2} \theta\right]
$$

$\therefore \sin 3 \theta=\frac{31 \pm \sqrt{31^{2}-4.20 .12}}{2.20}$
$=\frac{31 \pm \sqrt{961-960}}{40}=\frac{31 \pm 1}{40}$
$\Rightarrow \sin \theta=\frac{4}{5}, \frac{3}{4}$
148 (d)
$\sin 20^{\circ}\left(4+\frac{1}{\cos 20^{\circ}}\right)=\frac{4 \sin 20^{\circ} \cos 20^{\circ}+\sin 20^{\circ}}{\cos 20^{\circ}}$
$=\frac{\sin 40^{\circ}+\sin 40^{\circ}+\sin 20^{\circ}}{\cos 20^{\circ}}$
$=\frac{\sin 40^{\circ}+2 \sin 30^{\circ} \cos 10^{\circ}}{\cos 20^{\circ}}$
$=\frac{\cos 50^{\circ}+\cos 10^{\circ}}{\cos 20^{\circ}}$
$\left[\because \sin 40^{\circ}=\cos \left(90^{\circ}-40^{\circ}\right)\right]$
$=\frac{2 \cos 30^{\circ} \cos 20^{\circ}}{\cos 20^{\circ}}=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$
149 (c)
Let θ be the required angle. Then,
$\cos \theta=\tan \theta$
$\Rightarrow \cos ^{2} \theta=\sin \theta$
$\Rightarrow \sin ^{2} \theta+\sin \theta-1=0 \Rightarrow \sin \theta=\frac{\sqrt{5}-1}{2}$

$$
=2 \sin 18^{\circ}
$$

150 (b)
We have, $3\left[\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-$
$2\left[\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]$
$=3\left[(-\cos \alpha)^{4}+(-\sin \alpha)^{4}\right]-2\left[\cos ^{6} \alpha+\sin ^{6} \alpha\right]$
$=3\left[\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right]$
$-2\left[\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{3}\right.$
$\left.-3 \cos ^{2} \alpha \sin ^{2} \alpha\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)\right]$
$=3-6 \sin ^{2} \alpha \cos ^{2} \alpha-2+6 \sin ^{2} \alpha \cos ^{2} \alpha$
$=3-2=1$
151 (a)
We have,
$\tan \theta+\tan \left(\theta+\frac{3 \pi}{4}\right)=2$
$\Rightarrow \tan \theta+\frac{\tan \theta-1}{1+\tan \theta}=2$
$\Rightarrow \tan ^{2} \theta+2 \tan \theta-1=2+2 \tan \theta$
$\Rightarrow \tan ^{2} \theta=3$
$\Rightarrow \tan ^{2} \theta=\tan ^{2} \frac{\pi}{3} \Rightarrow \theta=n \pi \pm \frac{\pi}{3}, n \in Z$
152 (a)
Let $A+B=\theta$ and $\mathrm{A}-\mathrm{B}=\phi$
Then, $\tan A=k \tan B \Rightarrow \frac{\tan A}{\tan B}=\frac{k}{1}$
$\Rightarrow \frac{k}{1}=\frac{\sin A \cos B}{\cos A \sin B}$
Applying componendo and dividend rule, we get
$\Rightarrow \frac{k+1}{k-1}=\frac{\sin A \cos B+\cos A \sin B}{\sin A \cos B-\cos A \sin B}$
$=\frac{\sin (A+B)}{\sin (A-B)}=\frac{\sin \theta}{\sin \phi}$
$\Rightarrow \sin \theta=\frac{k+1}{k-1} \sin \phi$
153 (d)
Given that, $A B C D$ is a cyclic quadrilateral
So, $A+C=180^{\circ} \Rightarrow A=180^{\circ}-C$
$\Rightarrow \cos A=\cos \left(180^{\circ}-C\right)=-\cos C$
$\Rightarrow \cos A+\cos C=0$
Similarly, $\cos B+\cos D=0$.
On adding Eqs. (i) and (ii), we get
$\cos A+\cos B+\cos C+\cos D=0$

We have,
$\alpha-\beta=(\theta-\beta)-(\theta-\alpha)$
$\therefore \cos (\alpha-\beta)=\cos (\theta-\beta) \cos (\theta-\alpha)$

$$
+\sin (\theta-\beta) \sin (\theta-\alpha)
$$

$\Rightarrow \cos (\alpha-\beta)=a b+\sqrt{1-a^{2}} \sqrt{1-b^{2}}$
$\Rightarrow \sin (\alpha-\beta)= \pm\left\{a \sqrt{1-b^{2}}-b \sqrt{1-a^{2}}\right\}$
$\Rightarrow \sin ^{2}(\alpha-\beta)=a^{2}+b^{2}-2 a^{2} b^{2}$

$$
-2 a b \sqrt{1-a^{2}} \sqrt{1-b^{2}}
$$

$\Rightarrow \sin ^{2}(\alpha-\beta)=a^{2}+b^{2}-2 a^{2} b^{2}$
$-2 a b\{\cos (\alpha-\beta)-a b\}$
$\Rightarrow \sin ^{2}(\alpha-\beta)=a^{2}+b^{2}-2 a b \cos (\alpha-\beta)$
$\Rightarrow \sin ^{2}(\alpha-\beta)+2 a b \cos (\alpha-\beta)=a^{2}+b^{2}$
155 (b)
Given, $\cos x+\sin x=\frac{1}{2}$
$\Rightarrow \frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}+\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1}{2}$
Let $\tan \frac{x}{2}=t$, then
$\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}=\frac{1}{2}$
$\Rightarrow 3 t^{2}-4 t-1=0 \Rightarrow t=\frac{2 \pm \sqrt{7}}{3}$
$\Rightarrow t=\tan \frac{x}{2}=\frac{2+\sqrt{7}}{3} \quad\left[\because 0<\frac{x}{2}\right.$

$$
\left.<\frac{\pi}{2}, \tan \frac{x}{2} \text { is positive }\right]
$$

Now, $\tan x=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}$

$$
\begin{aligned}
& =\frac{2\left(\frac{2+\sqrt{7}}{3}\right)}{1-\left(\frac{2+\sqrt{7}}{3}\right)^{2}}=-\frac{3(2+\sqrt{7})}{1+2 \sqrt{7}} \times \frac{1-2 \sqrt{7}}{1-2 \sqrt{7}} \\
& \Rightarrow \tan x=-\left(\frac{4+\sqrt{7}}{3}\right)
\end{aligned}
$$

156 (a)

We have,
$\sec \theta+\operatorname{cosec} \theta=c$
$\Rightarrow \sqrt{1+\tan ^{2} \theta}+\sqrt{1+\cot ^{2} \theta}=c$
$\Rightarrow \sqrt{1+t^{2}}+\sqrt{1+\frac{1}{t^{2}}}=c$, where $\tan \theta=t$
$\Rightarrow \sqrt{1+t^{2}} \frac{(t+1)}{t}=c$
$\Rightarrow\left(t^{2}+1\right)\left(t^{2}+2 t+1\right)=c^{2} t^{2}$
$\Rightarrow\left(t^{2}+t+1\right)^{2}=\left(c^{2}+1\right) t^{2}$
$\Rightarrow t^{2}+t+1 \mp t \sqrt{\left(c^{2}+1\right)}=0$
$\Rightarrow t^{2}+t+1+t \sqrt{c^{2}+1}$

$$
=0 \text { or, } t^{2}+t+1-t \sqrt{c^{2}+1}=0
$$

Now, discriminant of

$$
\begin{aligned}
& t^{2}+t\left(1-\sqrt{c^{2}+1}\right)+1=0 \text { is } D_{1} \\
& =\left\{1-\sqrt{c^{2}+1}\right\}^{2}-4
\end{aligned}
$$

and, discriminant of

$$
\begin{aligned}
& t^{2}+t\left(1+\sqrt{c^{2}+1}\right)+1=0 \text { is } D_{2} \\
&=\left\{1+\sqrt{c^{2}+1}\right\}^{2}-4
\end{aligned}
$$

Now, $D_{1}>0$
$\Rightarrow\left(1-\sqrt{c^{2}+1}\right)^{2}>4 \Rightarrow 1+c^{2}+1-2 \sqrt{c^{2}+1}$
>4
$\Rightarrow c^{2}-2>2 \sqrt{c^{2}+1} \Rightarrow c^{4}-4 c^{2}+4>4 c^{2}++4$
$\Rightarrow c^{4}-8 c^{2}>0 \quad \Rightarrow c^{2}>8$
Similarly, we have $D_{2}>0$
$\therefore c^{2}>8$
Thus, the equation has two real roots, if $c^{2}>8$
157 (a)
Given, $2 \sin ^{2} \theta-5 \sin \theta+2>0$
$\Rightarrow(2 \sin \theta-1)(\sin \theta-2)>0$
[where, $(\sin \theta-2)<0$ for all $\theta \in R$]

$(2 \sin \theta-1)<0 \Rightarrow \sin \theta<\frac{1}{2}$
It is clear from the figure
$\theta \in\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
158 (a)
We have,
$B=\frac{\pi}{8}, c=\frac{5 \pi}{8} \Rightarrow A=\pi-\left(\frac{\pi}{8}+\frac{5 \pi}{8}\right)=\frac{\pi}{4}$
Now,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow \frac{a}{\sin \frac{\pi}{4}}=\frac{b}{\sin \frac{\pi}{8}}=\frac{c}{\sin \frac{5 \pi}{8}}$
$\Rightarrow b=\sqrt{2} a \sin \frac{\pi}{8}$ and $c=\sqrt{2} a \sin \frac{5 \pi}{8}$
$\therefore \Delta=\frac{1}{2} b c \sin A$
$\Rightarrow \Delta=\frac{1}{2}\left(\sqrt{2} a \sin \frac{\pi}{8}\right)\left(\sqrt{2} a \sin \frac{5 \pi}{8}\right) \sin \frac{\pi}{4}$
$\Rightarrow \Delta=\frac{a^{2}}{\sqrt{2}} \sin \frac{\pi}{8} \sin \frac{5 \pi}{8}$
$\Rightarrow \Delta=\frac{a^{2}}{2 \sqrt{2}}\left(\cos \frac{\pi}{2}-\cos \frac{6 \pi}{8}\right)$
$\Rightarrow \Delta=-\frac{a^{2}}{2 \sqrt{2}} \cos \frac{3 \pi}{4}=\frac{a^{2}}{4}$
Also,
$\Delta=\frac{1}{2} a \times($ Altitude from A to $B C)$
$\Rightarrow \frac{a^{2}}{4}=\frac{a}{2} \times($ Altitude from A to $B C)$
\Rightarrow Altitude from A to $B c=\frac{a}{2}$
159 (c)
We have, $(5+4 \cos \theta)(2 \cos \theta+1)=0$
$\Rightarrow \cos \theta=-\frac{5}{4}$ which is not possible
$\therefore 2 \cos \theta+1=0 \Rightarrow \cos \theta=-\frac{1}{2}$
$\Rightarrow \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
\therefore Solution set is $\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\} \in[0,2 \pi]$
160 (a)
We have,
$\cos 3 x+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2$
$\Rightarrow 1+\cos 3 x+1+\sin \left(2 x-\frac{7 \pi}{6}\right)=0$
$\Rightarrow(1+\cos 3 x)+1-\cos \left(2 x-\frac{2 \pi}{3}\right)=0$
$\Rightarrow 2 \cos ^{2} \frac{3 x}{2}+2 \sin ^{2}\left(x-\frac{\pi}{3}\right)=0$
$\Rightarrow \cos \frac{3 x}{2}=0$ and $\sin \left(x-\frac{\pi}{3}\right)=0$
$\Rightarrow \frac{3 x}{2}=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$ and $x-\frac{\pi}{3}=0, \pi, 2 \pi \ldots$
$\Rightarrow x=\frac{\pi}{3}$
Therefore, the general solution is given by $x=2 k \pi+\frac{\pi}{3}=\frac{\pi}{3}(6 k+1)$, where $k \in Z$
161 (c)
$\cos ^{2}\left(\frac{\pi}{3}-x\right)-\cos ^{2}\left(\frac{\pi}{3}+x\right)$
$=\sin \left(\frac{\pi}{3}-x+\frac{\pi}{3}+x\right)\left(\frac{\pi}{3}+x-\frac{\pi}{3}+x\right)$
$=\sin \frac{2 \pi}{3} \sin 2 x=\frac{\sqrt{3}}{2} \sin 2 x$
[since, maximum value of $\sin 2 x$ is 1]
Its maximum value is $\frac{\sqrt{3}}{2}$
162 (a)
We have,
$\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)$
$=\sin \alpha+\sin \beta+\sin \gamma-\sin \alpha \cos \beta \cos \gamma$
$-\cos \alpha \sin \beta \cos \gamma-\cos \alpha \cos \beta \sin \gamma$ $+\sin \alpha \sin \beta \sin \gamma$
$=\sin \alpha(1-\cos \beta \cos \gamma)+\sin \beta(1-\cos \alpha \cos \gamma)$
$+\sin \gamma(1-\cos \alpha \cos \beta)+\sin \alpha \sin \beta \sin \gamma$
$\therefore \sin \alpha+\sin \beta+\sin \gamma>\sin (\alpha+\beta+\gamma)$
$\Rightarrow \frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}<1$
163 (d)
We have,
$\tan \theta \tan \left(\frac{\pi}{3}+\theta\right) \tan \left(-\frac{\pi}{3}+\theta\right)=k \tan 3 \theta$
$\Rightarrow \tan \theta\left(\frac{\tan \theta+\sqrt{3}}{1-\sqrt{3} \tan \theta}\right)\left(\frac{\tan \theta-\sqrt{3}}{1+\sqrt{3} \tan \theta}\right)=k \tan 3 \theta$
$\Rightarrow \frac{\tan ^{3} \theta-3 \tan \theta}{1-3 \tan ^{2} \theta}=k \tan 3 \theta$
$\Rightarrow-\tan 3 \theta=k \tan 3 \theta \Rightarrow k=-1$
164 (b)
We have,
$\tan \alpha \tan 2 \alpha \tan 4 \alpha \ldots \cdot \tan (2 n-2) \alpha \tan (2 n-1) \alpha$
$=\{\tan \alpha \tan (2 n-1) \alpha\}\{\tan 2 \alpha \tan (2 n-2) \alpha\} \ldots .$.
$\ldots .\{\tan (n-1) \alpha \tan (n+1) \alpha\} \cdot \tan n \alpha$
$=\left\{\tan \alpha \tan \left(\frac{\pi}{2}-\alpha\right)\right\}\left\{\tan 2 \alpha \tan \left(\frac{\pi}{2}\right.\right.$
$-2 \alpha)\} \ldots \tan \frac{\pi}{4}=1$
165 (a)
$\sin (\alpha+\beta+\gamma)=\sin \alpha \cos \beta \cos \gamma$
$+\cos \alpha \sin \beta \cos \gamma$
$+\cos \alpha \cos \beta \sin \gamma$
$-\sin \alpha \sin \beta \sin \gamma$
$\Rightarrow \sin (\alpha+\beta+\gamma)-\sin \alpha-\sin \beta-\sin \gamma$
$=\sin \alpha(\cos \beta \cos \gamma-1)+\sin \beta(\cos \alpha \cos \gamma-1)$
$+\sin \gamma(\cos \alpha \cos \beta-1) \sin \alpha \sin \beta \sin \gamma$
$\Rightarrow \sin (\alpha+\beta+\gamma)-\sin \alpha-\sin \beta-\sin \gamma<0$
$\Rightarrow \sin (\alpha+\beta+\gamma)<\sin \alpha+\sin \beta-\sin \gamma$
$\Rightarrow \frac{\sin (\alpha+\beta+\gamma)}{\sin \alpha+\sin \beta+\sin \gamma}<1$
167 (b)
Given, $A+B=180^{\circ}-C$
$\Rightarrow \frac{A}{2}+\frac{B}{2}=90^{\circ}-\frac{C}{2}$
$\Rightarrow \tan \left(\frac{A}{2}+\frac{B}{2}\right)=\tan \left(90^{\circ}-\frac{C}{2}\right)$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\cot \frac{C}{2}$
$\Rightarrow\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \tan \frac{C}{2}=1-\tan \frac{A}{2} \tan \frac{B}{2}$
$\Rightarrow \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{A}{2} \tan \frac{C}{2}=1$

168 (b)
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{m+1} \cdot \frac{1}{2 m+1}}$
$=\frac{2 m^{2}+m+m+1}{2 m^{2}+3 m+1-m}=1=\tan \frac{\pi}{4}$
$\therefore \quad \alpha+\beta=\frac{\pi}{4}$

169 (c)

Given that,
$\tan A=2 \tan B+\cot B$
Now, $2 \tan (A-B)=2\left(\frac{\tan A-\tan B}{1+\tan A \tan B}\right)$
$=2 \frac{(2 \tan B+\cot B-\tan B)}{1+(2 \tan B+\cot B) \tan B}$ [from Eq.(i)]
$=2 \frac{\tan B+\cot B}{2\left(1+\tan ^{2} B\right)}=\frac{\cot B\left(\tan ^{2} B+1\right)}{\left(1+\tan ^{2} B\right)}=\cot B$
170 (a)
Given, $\sin \theta+\operatorname{cosec} \theta=2$
$\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2=4$
$\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta=2$
$\therefore \sin ^{4} \theta+\operatorname{cosec}^{4} \theta=2$
And $\left(\sin ^{2} \theta+\operatorname{cosec}^{2} \theta\right)^{3}=2^{3}$
$\Rightarrow \sin ^{6} \theta+\operatorname{cosec}^{6} \theta$

$$
\begin{aligned}
& +3 \sin ^{2} \theta \operatorname{cosec}^{2} \theta\left(\sin ^{2} \theta\right. \\
& \left.+\operatorname{cosec}^{2} \theta\right)=8
\end{aligned}
$$

$\Rightarrow \sin ^{6}+\operatorname{cosec}^{6} \theta+3.2=8$
$\Rightarrow \sin ^{6} \theta+\operatorname{cosec}^{6} \theta=2$...(iv)
On multiplying Eqs. (iv) and (iii), we get
$\left(\sin ^{4} \theta+\operatorname{cosec}^{4} \theta\right)\left(\sin ^{6} \theta+\operatorname{cosec}^{6} \theta\right)=4$
$\Rightarrow \sin ^{10} \theta+\sin ^{4} \theta \operatorname{cosec}^{4} \theta\left(\sin ^{2} \theta+\operatorname{cosec}^{2} \theta\right)$ $+\operatorname{cosec}^{10} \theta=4$
$\Rightarrow \sin ^{10} \theta+\operatorname{cosec}^{10} \theta=4-2=2$
171 (a)
Given, $\cos x+\cos 3 x+\cos 2 x=0$
$\Rightarrow 2 \cos 2 x \cos x+\cos 2 x=0$
$\Rightarrow \cos 2 x(2 \cos x+1)=0$
$\Rightarrow \cos 2 x=0 \quad\left[\because \cos x \neq-\frac{1}{2}\right]$
$\Rightarrow \quad x=\frac{\pi}{4}$
\therefore General value is $2 n \pi \pm \frac{\pi}{4}, n \in Z$
172 (a)
$\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)=\log (2+\sqrt{3})$
$\therefore \quad x=2$
(d)

If $\tan \frac{x}{2}=t$, the given equation becomes

$$
\begin{gathered}
A\left(\frac{2 t}{1+t^{2}}\right)^{2}+B\left(\frac{1-t^{2}}{1+t^{2}}\right)^{3}+C=0 \\
\Rightarrow t^{6}(C-B)+3 t^{4}(B+C)+8 A t^{3}+3 t^{2}(C-B) \\
\quad+(C+B)=0
\end{gathered}
$$

This is an equation with six different roots
174 (d)
$\cos \left(270^{\circ}+\theta\right)\left(\cos 90^{\circ}-\theta\right)-\sin \left(270^{\circ}-\theta\right) \cos \theta$
$=\sin \theta \cdot \sin \theta+\cos \theta \cdot \cos \theta$
$=\sin ^{2} \theta+\cos ^{2} \theta=1$
175
(b)

We have,
$2 \sin \frac{A}{2}=\sqrt{1+\sin A}+\sqrt{1-\sin A}$
$\Rightarrow 2 \cos \frac{A}{2}=\sqrt{\left(\cos \frac{A}{2}+\sin \frac{A}{2}\right)^{2}}$

$$
+\sqrt{\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)^{2}}
$$

$\Rightarrow 2 \cos \frac{A}{2}=\left|\cos \frac{A}{2}+\sin \frac{A}{2}\right|+\left|\cos \frac{A}{2}-\sin \frac{A}{2}\right|$
$\Rightarrow \cos \frac{A}{2}+\sin \frac{A}{2} \geq 0$ and $\cos \frac{A}{2}-\sin \frac{A}{2} \geq 0$
$\Rightarrow-\frac{3 \pi}{4} \leq \frac{A}{2} \leq \frac{3 \pi}{4}$ and $-\frac{\pi}{4} \leq \frac{A}{2} \leq \frac{\pi}{4}$
$\Rightarrow-\frac{\pi}{4} \leq \frac{A}{2} \leq \frac{\pi}{4}$
$\Rightarrow 2 n \pi-\frac{\pi}{4} \leq \frac{A}{2} \leq 2 n \pi+\frac{\pi}{4}, n \in Z$
176
(d)

Given, $\tan x=\frac{b}{a}$
$\therefore \operatorname{acos} 2 x=b \sin 2 x$

$$
=a \times \frac{1-\tan ^{2} x}{1+\tan ^{2} x}+b \times \frac{2 \tan x}{1+\tan ^{2} x}
$$

$=a \times \frac{1-\frac{b^{2}}{a^{2}}}{1+\frac{b^{2}}{a^{2}}}+b \times \frac{2 \frac{b}{a}}{1+\frac{b^{2}}{a^{2}}}$
$=\frac{a\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}+\frac{2 a b^{2}}{a^{2}+b^{2}}$
$=\frac{a\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}=a$
177 (a)
We have,
$1+8 \sin ^{2} x^{2} \cos ^{2} x^{2}$
$=1+2\left(2+\sin x^{2} \cos x^{2}\right)^{2}$
$=1+2\left(\sin 2 x^{2}\right)^{2}$
$=1+2 \sin ^{2} 2 x^{2}=1+\left(1-\cos 4 x^{2}\right)$

$$
=2-\cos 4 x^{2}
$$

Now,
$-1 \leq \cos 4 x^{2} \leq 1$
$\Rightarrow 1 \leq 2-\cos 4 x^{2} \leq 3$
$\Rightarrow 1 \leq 1+8 \sin ^{2} x^{2} \cos x^{2} \leq 3$
Hence, the required maximum value is 3
(a)

We have,
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
$=(a+b$
$+c)\left|\begin{array}{lll}1 & 1 & 1 \\ b & c & a \\ c & a & b\end{array}\right| \quad \begin{gathered}\left.\text { Applying } R_{1} \rightarrow R_{1}+R_{2}+R_{3} \text { and t }\right] \\ \text { taking }(a+b+c) \text { common from }\end{gathered}$
$=(a+b+c)\left(a b+b c+c a-a^{2}-b^{2}-c^{2}\right)$
$=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$
$=-8 R^{3}\left(\sin ^{3} A+\sin ^{3} B\right.$

$$
\left.+\sin ^{3} C-3 \sin A \sin B \sin C\right)
$$

$=-8 R^{3} \times 0=0$
179 (d)
We have,
$A M \geq G M$
$\Rightarrow \frac{9 \tan ^{2} \theta+4 \cot ^{2} \theta}{2} \geq \sqrt{4 \cot ^{2} \theta .9 \tan ^{2} \theta}$
$\Rightarrow 9 \tan ^{2} \theta+4 \cot ^{2} \theta \geq 12$
Hence, the minimum value is 12
180 (d)
Given, $4\left(\sin ^{2} x-3 \sin x\right)+7$
$=4\left[\left(\sin x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+7$
$=4\left(\sin x-\frac{3}{2}\right)^{2}-2$
Now, $-1 \leq \sin x \leq 1$
$\Rightarrow-\frac{5}{2} \leq \sin x-\frac{3}{2} \leq-\frac{1}{2}$
$\Rightarrow \frac{1}{4} \leq\left(\sin x-\frac{3}{2}\right)^{2} \leq \frac{25}{4}$
$\Rightarrow 1 \leq 4\left(\sin x-\frac{3}{2}\right)^{2} \leq 25$
$\Rightarrow-1 \leq 4\left(\sin x-\frac{3}{2}\right)^{2}-2 \leq 23$
181 (d)
Since, $-2 \leq \sin x-\sqrt{3} \cos x \leq 2$
$\Rightarrow-1 \leq \sin x-\sqrt{3} \cos x+1 \leq 3$
\therefore Range of $f(x)=[-1,3]$
182 (a)
We have,
$\frac{\sec ^{2} \theta-\tan \theta}{\sec ^{2} \theta+\tan \theta}=y$
$\Rightarrow \frac{1+x^{2}-x}{1+x^{2}+x}=y$, where $\tan \theta=x$
$\Rightarrow x^{2}(y-1)+x(y+1)+y-1=0$
$\Rightarrow(y+1)^{2}-4(y-1)^{2}$

$$
\geq 0 \quad\left[\begin{array}{c}
\because x=\tan \theta \text { is real } \\
\therefore \text { Disc } \geq 0
\end{array}\right]
$$

$\Rightarrow-3 y^{2}+10 y-3 \geq 0$
$\Rightarrow 3 y^{2}-10 y+3 \leq 0 \Rightarrow y \in(1 / 3,3)$
183 (d)
Since $\sin \theta, \cos \theta$ are the roots of $a x^{2}-b x+c=0$
$\therefore \sin \theta+\cos \theta=\frac{b}{a}$
and $\sin \theta \cos \theta=\frac{c}{a}$
$\Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=\frac{b^{2}}{a^{2}}$
and $\sin \theta \cos \theta=\frac{c}{a}$
$\Rightarrow 1+2\left(\frac{c}{a}\right)=\frac{b^{2}}{a^{2}}$
$\Rightarrow b^{2}-a^{2}=2 a c$

184 (c)
We have, $\sqrt{2} \sec \theta+\tan \theta=1$
$\Rightarrow \frac{\sqrt{2}}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=1$
$\Rightarrow \sin \theta-\cos \theta=-\sqrt{2}$
$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta-\frac{1}{\sqrt{2}} \cos \theta=-1$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta=1$
$\Rightarrow \cos \frac{\pi}{4} \cos \theta-\sin \frac{\pi}{4} \sin \theta=1$
$\Rightarrow \cos \left(\theta+\frac{\pi}{4}\right)=\cos \theta$
$\Rightarrow \theta+\frac{\pi}{4}=2 n \pi \pm 0$
$\Rightarrow \theta=2 n \pi-\frac{\pi}{4}$
185 (b)
$\sqrt{\sin ^{2} x-\sin x+\frac{1}{2}}=\sqrt{\left(\sin x-\frac{1}{2}\right)^{2}+\frac{1}{4}} \geq \frac{1}{2}, \forall x$
and $\sec ^{2} y \geq 1, \forall y$, so $2^{\sec ^{2} y} \geq 2$. Hence, the above inequality holds only for those values of x and y for which $\sin x=\frac{1}{2}$ and $\sec ^{2} y=1$. Hence, $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}$ and $y=0, \pi, 2 \pi, 3 \pi$. Hence, required number of ordered pairs are 16
186 (d)
$\cos 132^{\circ}+\cos 12^{\circ}+\cos 156^{\circ}+\cos 84^{\circ}$
$=2 \cos 72^{\circ} \cos 60^{\circ}+2 \cos 120^{\circ} \cos 36^{\circ}$
$=2\left(\frac{\sqrt{5}-1}{4}\right) \frac{1}{2}+2\left(\frac{-1}{2}\right)\left(\frac{\sqrt{5}+1}{4}\right)=\frac{-1}{2}$
187
(c)
$\cos ^{4} x-(\lambda+2) \cos ^{2} x-(\lambda+3)=0$
$\Rightarrow\left(\cos ^{2} x\right)^{2}-(\lambda+2) \cos ^{2} x-(\lambda+3)=0$
$\therefore \cos ^{2} x=\frac{(\lambda+2) \pm \sqrt{(\lambda+2)^{2}+4(\lambda+3)}}{2}$
$=\frac{(\lambda+2) \pm(\lambda+4)}{2}$
$=\lambda+3,-1$
$\Rightarrow \cos ^{2} x=\lambda+3\left(\because \cos ^{2} x \neq-1\right)$
But $0 \leq \cos ^{2} x \leq 1$
$\Rightarrow 0 \leq \lambda+3 \leq 1$
$\Rightarrow-3 \leq \lambda \leq-2$
188 (c)
We have,
$\sin 5 x+\sin 3 x+\sin x=0$
$\Rightarrow(\sin 5 x+\sin x)+\sin 3 x=0$
$\Rightarrow 2 \sin 3 x \cos x+\sin 3 x=0$
$\Rightarrow \sin 3 x(2 \cos 2 x+1)=0$
$\Rightarrow \sin 3 x=0, \cos 2 x=-\frac{1}{2}$
$\Rightarrow 3 x=n \pi, 2 x=2 n \pi \pm \frac{2 \pi}{3}$
$\Rightarrow x=\frac{n \pi}{3}, x=n \pi \pm \frac{\pi}{3}$
The value of x given by the above expressions and lying between 0 and $\frac{\pi}{2}$ is $\frac{\pi}{3}$
189 (a)
Let $81^{\sin ^{2} x}=y$. Then,
$81^{\cos ^{2} x}-81^{1-\sin ^{2} x}=81 y^{-1}$
$\Rightarrow y^{2}-30 y+81=0$
$\Rightarrow y=3$ or, $y=27$
$\Rightarrow 81^{\sin ^{2} x}=3$ or, 27
$\Rightarrow 3^{4 \sin ^{2} x}=3^{1}$ or, 3^{3}
$\Rightarrow 4 \sin ^{2} x=1$ or, 3
$\Rightarrow \sin ^{2} x=\frac{1}{4}$ or, $\frac{3}{4}$
$\Rightarrow \sin x= \pm \frac{1}{2}$ or, $\pm \frac{\sqrt{3}}{2} \Rightarrow x=\frac{\pi}{6}$ or, $\frac{\pi}{3}$
190 (c)
We have,
$\frac{c}{\sin C}=\frac{a}{\sin A}$
$\Rightarrow \sin C=\frac{c \sin A}{a}=\frac{2 \sin 120^{\circ}}{\sqrt{6}}=\frac{1}{\sqrt{2}}$
$\Rightarrow C=45^{\circ}$ or 135°
But, in a triangle there cannot be two obtuse angle $\therefore C=45^{\circ}$

191 (d)
$\sin 6 \theta=3 \sin 2 \theta-4 \sin ^{3} 2 \theta$
$=3 \sin 2 \theta-4.8 \cos ^{3} \theta \sin ^{3} \theta$
$=3 \sin 2 \theta-32 \cos ^{3} \theta \sin \theta\left(1-\cos ^{2} \theta\right)$
$\Rightarrow \sin 6 \theta=32 \cos ^{5} \theta \cdot \sin \theta-32 \cos ^{3} \theta \sin \theta+$
$3 \sin 2 \theta \ldots$ (i)
But $\sin 6 \theta=32 \cos ^{5} \theta \sin \theta-32 \cos ^{3} \theta \sin \theta+3 x$ [given]
On comparing Eqs. (i) and (ii), we get
$3 x=3 \sin 2 \theta \Rightarrow x=\sin 2 \theta$
192 (c)
$x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)$
$=z \cos \left(\theta+\frac{4 \pi}{3}\right)=k$ (say)
$\Rightarrow \cos \theta=\frac{k}{x}, \cos \left(\theta+\frac{2 \pi}{3}\right)=\frac{k}{y}$
And $\cos \left(\theta+\frac{4 \pi}{3}\right)=\frac{k}{z}$
Hence, $\quad \frac{k}{x}+\frac{k}{y}+\frac{k}{z}=\cos \theta+\cos \left(\theta+\frac{2 \pi}{3}\right)+$ $\cos \theta+4 \pi 3$
$=\cos \theta-\cos \left(\frac{\pi}{3}-\theta\right)-\cos \left(\frac{\pi}{3}+\theta\right)$
$=\cos \theta-2 \cos \frac{\pi}{3} \cos \theta=0$
193 (c)
$\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2}$
$\Rightarrow 2[\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)]+3$ $=0$
$\Rightarrow 2[\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)]$
$+\sin ^{2} \alpha+\cos ^{2} \alpha+\sin ^{2} \beta+\cos ^{2} \beta+$
$\sin 2 \gamma+\cos 2 \gamma=0$
$\Rightarrow(\sin \alpha+\sin \beta+\sin \gamma)^{2}$

$$
+(\cos \alpha+\cos \beta+\cos \gamma)^{2}=0
$$

194 (a)
We have,
$\sin x \cos x \cos 2 x=\lambda \Rightarrow \sin 4 x=4 \lambda$
Clearly, this equation will have a solution if
$|4 \lambda| \leq 1 \Rightarrow \lambda \in[-1 / 4,1 / 4]$
195 (b)
$1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$
$=2 \cos ^{2} 28^{\circ}+2 \sin 62^{\circ} \sin 4^{\circ}$
$=2 \cos ^{2} 28^{\circ}+2 \cos 28^{\circ} \cos 86^{\circ}$
$=2 \cos 28^{\circ}\left(\cos 28^{\circ}+\cos 86^{\circ}\right)$
$=2 \cos 28^{\circ}\left(2 \cos 57^{\circ} \cos 29^{\circ}\right)$
$=4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$

196 (d)
(1) We have, $\sin A=\sin B$
$\Rightarrow A=B$ or $A=\pi-B$
Now, $\sin 2 A=\sin 2 B$ is satisfied by $A=B$ but it is not satisfied by $A=\pi-B$
(2) $\cos \frac{\pi}{7} \cos \frac{4 \pi}{7} \cos \frac{5 \pi}{7}=\cos \frac{\pi}{7} \cos \frac{4 \pi}{7} \cos \left(\pi-\frac{2 \pi}{7}\right)$
$=-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}$
$=-\frac{\sin \left(2^{3} \frac{\pi}{7}\right)}{2^{3} \sin \frac{\pi}{7}}=-\frac{\sin \frac{8 \pi}{7}}{8 \sin \frac{\pi}{7}}=\frac{1}{8}$
197 (a)
Given, $\cos 2 x+k \sin x=2 k-7$
$\Rightarrow 1-2 \sin ^{2} x+k \sin x=2 k-7$
$\Rightarrow 2 \sin ^{2} x-k \sin x+2 k-8=0$
$\Rightarrow \sin x=\frac{+k \pm \sqrt{k^{2}-8(2 k-8)}}{4}$
$\Rightarrow \sin x=\frac{k \pm(k-8)}{4}$
$\Rightarrow \sin x=\frac{k-4}{2}$
(\because for ${ }^{\prime}-$ ' $\operatorname{sign} \sin x=2$, which is not possible)
$\because-1 \leq \sin x \leq 1 \Rightarrow-1 \leq \frac{k-4}{2} \leq 1$
$\Rightarrow-2 \leq k-4 \leq 2 \Rightarrow 2 \leq k \leq 6$
198 (d)
We have,
$\cos 2 A+\cos 2 B+\cos 2 C$
$=2 \cos (A+B) \cos (A-B)+\cos 2 C$
$=2 \cos \left(\frac{3 \pi}{2}-C\right) \cos (A-B)+\cos 2 C$
$=-2 \sin C \cos (A-B)+1-2 \sin ^{2} C$
$=1-2 \sin C\{\cos (A-B)+\sin C\}$
$=1-2 \sin C\{\cos (A-B)+\sin (3 \pi / 2-(A+B))\}$
$=1-2 \sin C\{\cos (A-B)-\cos (A+B)\}$
$=1-4 \sin A \sin B \sin C$
200 (a)
Since, $-1 \leq \cos \theta \leq 1$
$\therefore-1 \leq \cos (4 x-5) \leq 1$
$\Rightarrow-3 \leq 3 \cos (4 x-5) \leq 3$
$\Rightarrow 4-3 \leq 3 \cos (4 x-5)+4 \leq 3+4$
$\Rightarrow 1 \leq 3 \cos (4 x-5)+4 \leq 7$
201 (b)
We have,
$\cos x=\sin \alpha \cot \beta \sin x=\cos \alpha$
$\Rightarrow \frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}-\sin \alpha \cot \beta \frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\cos \alpha$
$\Rightarrow \tan ^{2} \frac{x}{2}+\frac{2 \sin \alpha \cot \beta}{1+\cos \alpha} \tan \frac{x}{2}-\frac{1-\cos \alpha}{1+\cos \alpha}=0$
$\Rightarrow \tan ^{2} \frac{x}{2}+2 \tan \frac{\alpha}{2} \cot \beta \tan \frac{x}{2}-\tan ^{2} \frac{\alpha}{2}=0$
$\Rightarrow \tan ^{2} \frac{x}{2}+\left\{\cot \frac{\beta}{2}-\tan \frac{\beta}{2}\right\} \tan \frac{\alpha}{2} \tan \frac{x}{2}-\tan ^{2} \frac{\alpha}{2}$

$$
=0
$$

$\Rightarrow\left(\tan \frac{x}{2}+\cot \frac{\beta}{2} \tan \frac{\alpha}{2}\right)\left(\tan \frac{x}{2}-\tan \frac{\beta}{2} \tan \frac{\alpha}{2}\right)=0$
$\Rightarrow \tan \frac{x}{2}=-\cot \frac{\beta}{2} \tan \frac{\alpha}{2}, \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
202 (c)
$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$
$=\frac{1}{2} \sin 20^{\circ} \sin 60^{\circ}\left(2 \sin 40^{\circ} \sin 80^{\circ}\right)$
$=\frac{1}{2} \sin 20^{\circ} \sin 60^{\circ}\left(\cos 40^{\circ}-\cos 120^{\circ}\right)$
$=\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \sin 20^{\circ}\left(1-2 \sin ^{2} 20^{\circ}+\frac{1}{2}\right)$
$=\frac{\sqrt{3}}{4} \sin 20^{\circ}\left(\frac{3}{2}-2 \sin ^{2} 20^{\circ}\right)$
$=\frac{\sqrt{3}}{8}\left(3 \sin 20^{\circ}-4 \sin ^{3} 20^{\circ}\right)$
$=\frac{\sqrt{3}}{8} \sin 60^{\circ}=\frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2}=\frac{3}{16}$
203 (a)
We have,
$\sin (\pi+\theta) \sin (\pi-\theta) \operatorname{cosec}^{2} \theta$
$=-\sin \theta \sin \theta \operatorname{cosec}^{2} \theta=-1$
204 (a)
We have,
$\sin \theta(\sin \theta+2 \cos \theta)=a$
$\Rightarrow 1-\cos 2 \theta+2 \sin 2 \theta=2 a$
$\Rightarrow 2 \sin 2 \theta-\cos 2 \theta=2 a-1$
This equation will have a solution if
$|2 a-1| \leq \sqrt{2^{2}+(-1)^{2}}$
$\Rightarrow 1-\sqrt{5} \leq 2 a \leq 1+\sqrt{5} \Rightarrow a \in\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]$
205 (c)
Since, $(2 \tan \theta+2)^{2}=\tan \theta(3 \tan \theta+3)$
$\Rightarrow 4 \tan ^{2} \theta+8 \tan \theta+4=3 \tan ^{2} \theta+3 \tan \theta$
$\Rightarrow \tan ^{2} \theta+5 \tan \theta+4=0$
$\Rightarrow(\tan \theta+4)(\tan \theta+1)=0$
$\Rightarrow \tan \theta=-4(\because \tan \theta \neq-1)$
$\therefore \frac{7-5 \cot \theta}{9-4 \sqrt{\tan ^{2} \theta}}=\frac{7+\frac{5}{4}}{9-4(-4)}=\frac{33}{100}$
206 (c)
We have,
$\sin \frac{A}{2} \sin \frac{5 A}{2}$
$=\frac{1}{2}\left(2 \sin \frac{A}{2} \sin \frac{5 A}{2}\right)$
$=\frac{1}{2}(\cos 2 A-\cos 3 A)$
$=\frac{1}{2}\left\{2 \cos ^{2} A-1-4 \cos ^{3} A+3 \cos A\right\}$
$=\frac{1}{2}\left\{2 \times \frac{9}{16}-1-4 \times \frac{27}{64}+3 \times \frac{3}{4}\right\}=\frac{11}{32}$
(b)

We have,
$\cos A+\cos B+\cos C=0$
$\Rightarrow \cos ^{3} A+\cos ^{3} B+\cos ^{3} C=3 \cos A \cos B \cos C$
$\Rightarrow \frac{\cos 3 A+3 \cos A}{4}+\frac{\cos 3 B+3 \cos B}{4}$

$$
+\frac{\cos 3 C+3 \cos C}{4}
$$

$=3 \cos A \cos B \cos C$
$\Rightarrow \cos 3 A+\cos 3 B+\cos 3 C=12 \cos A \cos B \cos C$
208 (a)
We have,
$\tan 82 \frac{1^{\circ}}{2}=\cot 7 \frac{1}{2^{\circ}}=\frac{\cos 7 \frac{1^{\circ}}{2}}{\sin 7 \frac{1^{\circ}}{2}}$
$=\frac{2 \cos ^{2} 7 \frac{1^{\circ}}{2}}{2 \sin 7 \frac{1^{\circ}}{2} \cos 7 \frac{1^{\circ}}{2}}=\frac{1+\cos 15^{\circ}}{\sin 15^{\circ}}$
$=\frac{1+\frac{\sqrt{3}+1}{2 \sqrt{2}}}{\frac{\sqrt{3}-1}{2 \sqrt{2}}}$
$=\frac{2 \sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}$
$=\frac{(2 \sqrt{2}+\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$
$=\frac{2 \sqrt{6}+2 \sqrt{2}+3+\sqrt{3}+\sqrt{3}+1}{2}$
$=\sqrt{6}+\sqrt{2}+\sqrt{4}+\sqrt{3}=\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}$

209 (a)
$x^{2}+y^{2}+z^{2}=r^{2} \sin ^{2} \theta \cos ^{2} \phi$

$$
+r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \cos ^{2} \theta
$$

$=r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+r^{2} \cos ^{2} \theta$
$=r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta$
$=r^{2}$
210 (a)
Since $A B C D$ is a cyclic quadrilateral. Therefore,
$A+C=\pi$ and $B+D=\pi$
Now,
$12 \tan A-5=0$ and $5 \cos B+3=0$
$\Rightarrow \tan A=\frac{5}{12}$ and $\cos B=-\frac{3}{5}$
$\Rightarrow \tan C=-\frac{5}{12}$ and $\cos D=\frac{3}{5}[\because A=\pi-$
C and $B=\pi-D$
$\Rightarrow \cos C=-\frac{12}{13}$ and $\tan D=\frac{4}{3}$
$\left[\begin{array}{ll}\tan A>0 & \therefore 0<A<\frac{\pi}{2} \Rightarrow \frac{\pi}{2}<C<\pi \\ \cos B<0 & \therefore \frac{\pi}{2}<B<\pi \Rightarrow 0<D<\frac{\pi}{2}\end{array}\right]$
The equation having $\cos C$ and $\tan D$ as its roots is
$x^{2}-x(\cos C+\tan D)+\cos C \tan D=0$
or, $x^{2}-x\left(-\frac{12}{13}+\frac{4}{3}\right)+\left(-\frac{12}{13} \times \frac{4}{3}\right)=0$
or, $39 x^{2}-16 x-48=0$
211 (b)
It is given that
r_{1}, r_{2}, r_{3} are in H.P.
$\Rightarrow \frac{2}{r_{2}}=\frac{1}{r_{1}}+\frac{1}{r_{3}}$
$\Rightarrow \frac{2(s-b)}{\Delta}=\frac{s-a}{\Delta}+\frac{s-c}{\Delta}$
$\Rightarrow 2 s-2 b=2 s-a-c \Rightarrow 2 b=a+c \Rightarrow a, b, c$ are in A.P.
212 (b)
As $\sin \theta=\frac{1}{2}$ and $\cos \phi=\frac{1}{3}$
$\Rightarrow \theta=\frac{\pi}{6}$ and $0<\left(\cos \phi=\frac{1}{3}\right)<\frac{1}{2}$
$\left[\right.$ as, $\left.0<\frac{1}{3}<\frac{1}{2}\right]$
$\Rightarrow \theta=\frac{\pi}{6}$ and $\cos ^{-1}(0)>\phi>\cos ^{-1}\left(\frac{1}{2}\right)$
[the sign changed as $\cos x$ is decreasing between
$\Rightarrow \theta=\frac{\pi}{6}$ and $\frac{\pi}{3}<\phi<\frac{\pi}{2}$
$\Rightarrow \frac{\pi}{2}<\theta+\phi<\frac{2 \pi}{3}$
$\therefore \phi+\theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$
213 (c)
$\sin 4 A-\cos 4 A=\cos 2 A-\sin 2 A$
On squaring, we get
$1-2 \sin 4 A \cos 4 A=1-2 \sin 2 A \cos 2 A$
$\Rightarrow \cos 4 A=\frac{1}{2}$
$\Rightarrow \tan 4 A=\sqrt{3}$

Alternate

Let $\tan 4 A=\sqrt{3}=\tan \frac{\pi}{3}$
$\Rightarrow A=\frac{\pi}{12}$
$\therefore \sin 4 A-\cos 2 A=\sin \frac{\pi}{3}-\cos \frac{\pi}{6}=0$
And $\cos 4 A-\sin 2 A=\cos \frac{\pi}{3}-\sin \frac{\pi}{6}=0$
$\therefore \sin 4 A-\cos 2 A=\cos 4 A-\sin 2 A$
Hence, our assumption is true.
214 (a)
It is given that r_{1}, r_{2}, r_{3} are in H.P.
$\therefore \frac{\Delta}{s-a}, \frac{\Delta}{s-b}, \frac{\Delta}{s-c}$ are in H.P.
$\Rightarrow \frac{s-a}{\Delta}, \frac{s-b}{\Delta}, \frac{s-c}{\Delta}$ are in A.P.
$\Rightarrow s-a, s-b, s-c$ are in A.P.
$\Rightarrow a, b, c$ are in A.P.
215 (c)
We have,
$1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$
$=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow\left(1-\cos 66^{\circ}\right)+\left(\cos 56^{\circ}+\cos 58^{\circ}\right)$
$=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow 2 \sin ^{2} 33^{\circ}+2 \cos 57^{\circ} \cos 1^{\circ}$ $=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow 2 \sin 33^{\circ}\left(\sin 33^{\circ}+\sin 89^{\circ}\right)$
$=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow 2 \sin 33^{\circ} \times 2 \sin 61^{\circ} \cos 28^{\circ}$
$=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow 4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$=\lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow \lambda=4$
216 (d)
$\tan A=\frac{a}{b}, \tan B=\frac{b}{a}$

$\therefore \tan A+\tan B=\frac{a^{2}+b^{2}}{a b}$
Since, $a^{2}+b^{2}=c^{2}$
$\therefore \tan A+\tan B=\frac{c^{2}}{a b}$
218 (a)
$\sinh ^{-1}(2)^{3 / 2}=\log \left(2^{3 / 2}+\sqrt{\left(2^{3 / 2}\right)^{2}+1}\right)$
$=\log (\sqrt{8}+\sqrt{8+1})$
$=\log (3+\sqrt{8})$
219 (a)
We have, $\tan 2 \theta \tan \theta=1 \Rightarrow \tan 2 \theta=\cot \theta$
$=\tan \left(\frac{\pi}{2}-\theta\right)$
$\Rightarrow 2 \theta=n \pi+\frac{\pi}{2}-\theta$
$\Rightarrow \theta=\frac{n \pi}{3}+\frac{\pi}{6}$
220 (d)
For varying values of A, B and C the expression will attain the maximum value when
$\cos ^{2} A, \cos ^{2} B$ attain their maximum values each equal to 1 and $\cos ^{2} C$ is least i.e. 0
Hence, required maximum value $=1+1-0=2$
221 (b)
$\cos ^{2}(A-B)+\cos ^{2} B-2 \cos (A-B) \cos A \cos B$
$=\cos ^{2}(A-B)+\cos ^{2} B$

$$
-\cos (A-B)[\cos (A-B)
$$

$$
+\cos (A+B)]
$$

$=\cos ^{2} B-\cos (A-B) \cos (A+B)$
$=\cos ^{2} B-\left(\cos ^{2} A\right.$

$$
\left.-\sin ^{2} B\right)=1-\cos ^{2} A=\sin ^{2} A
$$

222 (d)
$\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$
$=\sin ^{2} 36^{\circ} \sin ^{2} 72^{\circ}$
$=\frac{1}{4}\left[\left(2 \sin ^{2} 36^{\circ}\right)\left(2 \sin ^{2} 72^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\cos 72^{\circ}\right)\left(1-\cos 144^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\sin 18^{\circ}\right)\left(1+\cos 36^{\circ}\right)\right]$
$=\frac{1}{4}\left[\left(1-\frac{\sqrt{5}-1}{4}\right)\left(1+\frac{\sqrt{5}+1}{4}\right)\right]=\frac{5}{16}$
223 (c)
$\frac{\left.1+\tan x+\tan ^{2} x\right)\left(1+\tan ^{2} x-\tan x\right)}{\tan ^{2} x}$
$=\frac{\left(1+\tan ^{2} x\right)^{2}-\tan ^{2} x}{\tan ^{2} x}$
Since, $1+\tan ^{2} x \geq \tan ^{2} x, \forall x$. Hence, it is positive for all values of x
224 (c)
$x \log _{e} a+\frac{x^{3}}{3!}\left(\log _{e} a\right)^{3}+\frac{x^{5}}{5!}\left(\log _{e} a\right)^{5}+\ldots$
$=\frac{e^{x} \log _{e} a-e^{-x} \log _{e} a}{2} \quad\left[\because \frac{e^{x}-e^{-x}}{2}\right.$

$$
\left.=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots\right]
$$

$=\sinh \left(x \log _{e} a\right)$
225 (b)
We have,
$\frac{\tan \left(\theta+15^{\circ}\right)}{\tan \left(\theta-15^{\circ}\right)}=\frac{1}{3}$
$\Rightarrow \frac{\tan \left(\theta+15^{\circ}\right)+\tan \left(\theta-15^{\circ}\right)}{\tan \left(\theta+15^{\circ}\right)-\tan \left(\theta-15^{\circ}\right)}=\frac{3+1}{3-1}$
$\Rightarrow \frac{\sin \left\{\left(\theta+15^{\circ}\right)+\left(\theta-15^{\circ}\right)\right\}}{\sin \left\{\left(\theta+15^{\circ}\right)-\left(\theta-15^{\circ}\right)\right\}}=2$
$\Rightarrow \sin 2 \theta=2 \sin 30^{\circ}=1 \Rightarrow 2 \theta=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{4}$
226 (b)
In a convex quadrilateral each angle is less than 180°
We have,
$4 \sec A+5=0 \Rightarrow \sec A=-\frac{5}{4} \Rightarrow \frac{\pi}{2}<A<\pi$
$\therefore \tan A=-\frac{3}{4}$ and $\operatorname{cosec} A=\frac{5}{3}$
The quadratic equation having $\tan A$ and $\operatorname{cosec} A$ as its roots is

$$
\begin{aligned}
x^{2}-x\left(-\frac{3}{4}+\frac{5}{3}\right)+\left(-\frac{3}{4} \times \frac{5}{3}\right) & =0 \\
\Rightarrow & 12 x^{2}-11 x-15=0
\end{aligned}
$$

227 (c)
Since, $-1 \leq \cos \theta \leq 1$
$\Rightarrow-5 \leq 5 \cos \theta \leq 5$
$\Rightarrow-5+12 \leq 5 \cos \theta+12<5+12$
$\Rightarrow 7 \leq 5 \cos \theta+12<17$
Hence, minimum value is 7 .

Alternate

For minimum value of given expression, we take $\cos \theta=-1$

228 (c)

We have,
$2^{\sin x+\cos y}=1=2^{0} \Rightarrow \sin x+\cos y=0$
It is given that
$16^{\sin ^{2} x+\cos ^{2} y}=4=16^{1 / 2}$

$$
\Rightarrow \sin ^{2} x+\cos ^{2} y=\frac{1}{2} \ldots \text { (ii) }
$$

Eliminating $\cos y$ from (i) and (ii), we get
$2 \sin ^{2} x=\frac{1}{2} \Rightarrow \sin x= \pm \frac{1}{2}$
Now, $\sin x=\frac{1}{2}$
$\Rightarrow \cos y=-\frac{1}{2}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$ and, $\sin x=-\frac{1}{2}$
$\Rightarrow \cos y=\frac{1}{2}$
$\Rightarrow x=n \pi+(-1)^{n+1} \frac{\pi}{6}$ and $y=2 n \pi \pm \frac{\pi}{3}, n \in Z$
229 (b)
Given, $\cos \theta=-\frac{\sqrt{3}}{2}<0$ and θ does not lie in third quadrant.
$\therefore \theta$ must be lying in 2nd quadrant
$\Rightarrow \tan \theta=-\frac{1}{\sqrt{3}}$ and $\cot \theta=-\sqrt{3}$
Also, α lies in 3rd quadrant and $\sin \alpha=-\frac{3}{5}$
$\therefore \tan \alpha=\frac{3}{4}$ and $\cos \alpha=-\frac{4}{5}$
$\therefore \frac{2 \tan \alpha+\sqrt{3} \tan \theta}{\cot ^{2} \theta+\cos \alpha}=\frac{2 \cdot \frac{3}{4}-\sqrt{3}-\frac{1}{\sqrt{3}}}{3-\frac{4}{5}}=\frac{5}{22}$
230 (b)
$2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$
$=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cdot \cos \frac{5 \pi}{26}\right]$
$=0$
231 (b)
We have, $\sin A=\frac{3}{5}$
$\therefore \cos A=\frac{4}{5}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{4}{5}$
$\Rightarrow \frac{400+441-a^{2}}{2 \times 20 \times 21}=\frac{4}{5}$
$\Rightarrow 841-a^{2}=32 \times 21 \Rightarrow a^{2}=841-672=169$

$$
\Rightarrow a=13
$$

232 (a)
$\cos ^{2} \frac{\pi}{16}+\cos ^{2} \frac{3 \pi}{16}+\cos ^{2} \frac{5 \pi}{16}+\cos ^{2} \frac{7 \pi}{16}$
$=\cos ^{2} \frac{\pi}{16}+\cos ^{2} \frac{3 \pi}{16}$

$$
+\cos ^{2}\left(\frac{\pi}{2}-\frac{3 \pi}{16}\right)+\cos ^{2}\left(\frac{\pi}{2}-\frac{\pi}{16}\right)
$$

$=\cos ^{2} \frac{\pi}{16}+\cos ^{2} \frac{3 \pi}{16}$

$$
+\sin ^{2} \frac{3 \pi}{16}+\sin ^{2} \frac{\pi}{16}=1+1=2
$$

233 (b)
We have, $\cos (\alpha+\beta)=\frac{4}{5}$ and $\sin (\alpha-\beta)=\frac{5}{13}$
$\Rightarrow \sin (\alpha+\beta)=\frac{3}{5}$ and $\cos (\alpha-\beta)=\frac{12}{13}$
$\Rightarrow(\alpha+\beta)=\sin ^{-1} \frac{3}{5}$ and $(\alpha-\beta)=\sin ^{-1} \frac{5}{13}$
$\therefore 2 \alpha=\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}$
$=\sin ^{-1}\left[\frac{3}{5} \sqrt{1-\frac{25}{169}+\frac{5}{13}} \sqrt{1-\frac{9}{25}}\right]$
$=\sin ^{-1}\left(\frac{3}{5} \times \frac{12}{13}+\frac{5}{13} \times \frac{4}{5}\right)=\sin ^{-1}\left(\frac{36}{65}+\frac{20}{65}\right)$
$\Rightarrow \sin 2 \alpha=\frac{56}{65}$
$\therefore \tan 2 \alpha=\frac{56}{33}$
234 (c)
$\cos 2 \theta+2 \cos \theta=2 \cos ^{2} \theta-1+2 \cos \theta$
$=2\left(\cos \theta+\frac{1}{2}\right)^{2}-\frac{3}{2}$

$$
\geq-\frac{3}{2}\left[\because 2\left(\cos \theta+\frac{1}{2}\right)^{2} \geq 0, \forall \theta\right]
$$

Then maximum value of $\cos 2 \theta+2 \cos \theta$ is 3

235 (a)

We have,
$x=\sin 130^{\circ}+\cos 130^{\circ}$

$$
\begin{aligned}
& =\sin \left(180^{\circ}-50^{\circ}\right) \\
& +\cos \left(90^{\circ}+40^{\circ}\right)
\end{aligned}
$$

$\Rightarrow x=\sin 50^{\circ}-\sin 40^{\circ}>0 \quad[$
$\left.\because \sin 50^{\circ}>\sin 40^{\circ}\right]$

236 (a)

We have,
$|4 \sin x-1|<\sqrt{5}$
$\Rightarrow 1-\sqrt{5}<4 \sin x<1+\sqrt{5}$
$\Rightarrow-\frac{\sqrt{5}-1}{4}<\sin x<\frac{\sqrt{5}+1}{4}$
$\Rightarrow-\sin \frac{\pi}{10}<\sin x<\cos \frac{\pi}{10}$
$\Rightarrow \sin \left(-\frac{\pi}{10}\right)<\sin x<\sin \left(\frac{\pi}{2}-\frac{\pi}{10}\right)$
$\Rightarrow \sin \left(-\frac{\pi}{10}\right)<\sin x<\sin \frac{3 \pi}{10}$
$\Rightarrow-\frac{\pi}{10}<x<\frac{3 \pi}{10} \quad\left[\begin{array}{c}\because \sin x \text { is increasing on } \\ (-\pi / 2, \pi / 2)\end{array}\right]$
$\Rightarrow x \in(-\pi / 10,3 \pi / 10)$
(b)

Given, $\sin A=n \sin B \quad \Rightarrow \frac{n}{1}=\frac{\sin A}{\sin B}$
Applying componendo and dividend, we get
$\frac{n-1}{n+1}=\frac{\sin A-\sin B}{\sin A+\sin B}$
$=\frac{2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}$
$\Rightarrow \frac{n-1}{n+1}=\tan \left(\frac{A-B}{2}\right) \cot \left(\frac{A+B}{2}\right)$
$\Rightarrow \frac{n-1}{n+1} \tan \left(\frac{A+B}{2}\right)=\tan \left(\frac{A-B}{2}\right)$
238 (a)
We have,
$\frac{s}{R}=\frac{a+b+c}{2 R}=\frac{a}{2 R}+\frac{b}{2 R}+\frac{c}{2 R}$

$$
=\sin A+\sin B+\sin C
$$

239 (b)
(a) $\sin \theta=\frac{5}{3}$ is not possible, because the value of $\sin \theta$ lies in $[-1,1]$
(b) $\tan \theta=100^{2}$. This is possible
(c) $\cos =\frac{1+p^{2}}{1-p^{2}},[p \neq \pm 1]$ this is not possible,
because here, $\cos \theta$ is greater than one
(d) $\sec \theta=\frac{1}{2}$, this is not possible because $\sec \theta$ is not less than one
\therefore Option (b) is true
240 (a)
We have,
$\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}$
$=\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \left(\pi-\frac{4 \pi}{7}\right)$
$=-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}$
$=-\left\{\frac{\sin \left(2^{3} \times \frac{\pi}{7}\right)}{2^{3} \sin \frac{\pi}{7}}\right\}=-\frac{\sin \frac{8 \pi}{7}}{8 \sin \frac{\pi}{7}}=\frac{1}{8}$
241
(c)
$\because \sec \theta+\tan \theta=\sqrt{3}$

Also, we have
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$
$\Rightarrow \sec \theta-\tan \theta=\frac{1}{\sqrt{3}}$
From Eqs. (i) and (iii), we get
$\tan \theta=\frac{1}{2}\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=\frac{1}{\sqrt{3}}=\tan \frac{\pi}{6}$
$\Rightarrow \theta=n \pi+\frac{\pi}{6}$
\therefore Solutions for $0<\theta<2 \pi$ are $\frac{\pi}{6}$ and $\frac{7 \pi}{6}$
Hence, there are two solutions
242 (c)
Now, $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$
$=\frac{1}{2}\left(\cos 36^{\circ}-\cos 60^{\circ}\right) \cos 36^{\circ}$
$=\frac{1}{2}\left[\frac{\sqrt{5}+1}{4}-\frac{1}{2}\right]\left[\frac{\sqrt{5}+1}{4}\right]$
$=\frac{1}{2}\left[\frac{\sqrt{5}-1}{4}\right]\left[\frac{\sqrt{5}+1}{4}\right]$
$=\frac{5-1}{32}=\frac{4}{32}=\frac{1}{8}$
243 (a)
We have,
$\sin A \sin B \sin C=p$ and, $\cos A \cos B \cos C=q$
$\Rightarrow \tan A \tan B \tan C=\frac{p}{q} \Rightarrow S_{3}=\frac{p}{q}$
In a triangle $A B C$, we have
$\tan A+\tan B+\tan C=\tan A \tan B \tan C$
$\therefore \tan A+\tan B+\tan C=\frac{p}{q} \Rightarrow S_{1}=\frac{p}{q}$
Now,
$S_{2}=\tan A \tan B+\tan B \tan C+\tan C \tan A$
$\Rightarrow S_{2}=\frac{-\cos (A+B+C)+\cos A \cos B \cos C}{\cos A \cos B \cos C}$
$=\frac{1+q}{q}$
Hence, $\tan A, \tan B, \tan C$ are roots of
$x^{3}-S_{1} x^{2}+S_{2} x-S_{3}=0$
or, $x^{3}-\frac{p}{q} x^{2}+\frac{1+q}{q} x-\frac{p}{q}=0$
244 (d)
$\cos 480^{\circ} \cdot \sin 150^{\circ}+\sin 600^{\circ} \cdot \cos 390^{\circ}$
$=\left[\cos \left(3 \pi-60^{\circ}\right) \sin \left(\pi-30^{\circ}\right)\right.$

$$
\left.+\sin \left(3 \pi+60^{\circ}\right) \times \cos \left(2 \pi+30^{\circ}\right)\right]
$$

$=-\cos 60^{\circ} \sin 30^{\circ}+\left(-\sin 60^{\circ}\right) \cos 30^{\circ}$
$=-\frac{1}{2} \cdot \frac{1}{2}+\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$
$=-\frac{1}{4}-\frac{3}{4}=-1$
245 (b)
We have,
$\cos p \theta=\cos q \theta$
$\Rightarrow P \theta=2 n \pi \pm q \theta$, where $n \in Z$
$\Rightarrow \theta=\frac{2 n \pi}{p \pm q}, n \in Z$
246 (b)
Given, $\sec x-1=(\sqrt{2}-1) \tan x$
$\Rightarrow \frac{1-\cos x}{\cos x}=(\sqrt{2}-1) \frac{\sin x}{\cos x}$
$\Rightarrow 2 \sin ^{2} \frac{x}{2}-(\sqrt{2}-1) 2 \sin \frac{x}{2} \cos \frac{x}{2}=0$
$\Rightarrow \sin \frac{x}{2}\left[\sin \frac{x}{2}-(\sqrt{2}-1) \cos \frac{x}{2}\right]=0$
$\Rightarrow \sin \frac{x}{2}=0$ or $\sin \frac{x}{2}-(\sqrt{2}-1) \cos \frac{x}{2}=0$
$\Rightarrow \frac{x}{2}=n \pi$ or $\tan \frac{x}{2}=(\sqrt{2}-1)=\tan \frac{45^{\circ}}{2}$
$\Rightarrow x=2 n \pi$ or $\frac{x}{2}=\frac{45^{\circ}}{2}+n \pi$
$\Rightarrow x=2 n \pi$ or $2 n \pi+\frac{\pi}{4}$
247 (a)
$x=\tan 15^{\circ}$
$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{\tan 45^{\circ} \cdot \tan 30^{\circ}}$
$=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{3-1}=2-\sqrt{3}$
And $y=\operatorname{cosec} 75^{\circ}=\frac{1}{\sin \left(45^{\circ}+30^{\circ}\right)}$
$=\frac{1}{\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}}$
$=\frac{1}{\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}}=\frac{2 \sqrt{2}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\sqrt{6}-\sqrt{2}$
And $z=4 \sin 18^{\circ}=4\left(\frac{\sqrt{5}-1}{4}\right)=\sqrt{5}-1$
It is clear from above that
$(2-\sqrt{3})<(\sqrt{6}-\sqrt{2})<(\sqrt{5}-1)$
$\Rightarrow \quad x<y<z$
248 (d)
$\sin x=\frac{1}{2}$
$\Rightarrow \sin x=\sin \frac{\pi}{6}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{\pi}{6}$
For $-2 \pi \leq x \leq 2 \pi$
$x=\frac{\pi}{6}, \frac{5 \pi}{6},-\frac{7 \pi}{6},-\frac{11 \pi}{6}$
\therefore Number of points of intersection of two given curves $=4$
Alternate

The number of points of intersection are 4
252 (a)
$\because \sin \left(\frac{\pi}{2 n}\right)+\cos \left(\frac{\pi}{2 n}\right)=\frac{\sqrt{n}}{2}$
On squaring both sides, we get
$\sin ^{2}\left(\frac{\pi}{2 n}\right)+\cos ^{2}\left(\frac{\pi}{2 n}\right)+\sin \left(\frac{\pi}{n}\right)=\frac{n}{4}$
$\Rightarrow \sin \left(\frac{\pi}{n}\right)=\frac{n}{4}-1$
$\Rightarrow \sin \left(\frac{\pi}{n}\right)=\frac{n-4}{4}$
$\Rightarrow n=6$ only
253 (d)
Given, $\cos 2 x=\sqrt{2} \cos x-1+\cos x-\frac{1}{\sqrt{2}}$
$\Rightarrow 1+\cos 2 x=\cos x(\sqrt{2}+1)-\frac{1}{\sqrt{2}}$
$\Rightarrow 2 \cos ^{2} x-\cos x(\sqrt{2}+1)+\frac{1}{\sqrt{2}}=0$
$\Rightarrow \cos x=\frac{(\sqrt{2}+1) \pm \sqrt{(\sqrt{2}+1)^{2}-\frac{8}{\sqrt{2}}}}{2(2)}$
$=\frac{(\sqrt{2}+1) \pm \sqrt{3+2 \sqrt{2}-4 \sqrt{2}}}{4}$
$=\frac{\sqrt{2}+1 \pm(\sqrt{2}-1)}{4}$
$\Rightarrow \cos x=\frac{\sqrt{2}+1+\sqrt{2}-1}{4}=\frac{1}{\sqrt{2}}\left[\because \cos x \neq \frac{1}{2}\right]$
$\Rightarrow x=2 n \pi \pm \frac{\pi}{4}, \forall n \in Z$
254 (a)
We have,
$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$
$=\cot \alpha-\{\cot \alpha-\tan \alpha-2 \tan 2 \alpha-4 \tan 4 \alpha$
$-8 \cot 8 \alpha\}$
$=\cot \alpha-\{2 \cot 2 \alpha-2 \tan 2 \alpha-4 \tan 4 \alpha$ $-8 \cot 8 \alpha\}$
$=\cot \alpha-\{4 \cot 4 \alpha-4 \tan 4 \alpha-8 \cot 8 \alpha\}$
$=\cot \alpha-\{8 \cot 8 \alpha-8 \cot 8 \alpha\}=\cot \alpha$
255 (b)
We have,
$B=60^{\circ}, C=75^{\circ} \Rightarrow A=180-60^{\circ}-75^{\circ}=45^{\circ}$
Now, $\frac{b}{\sin B}=\frac{a}{\sin A} \Rightarrow \frac{b}{\sin 60^{\circ}}=\frac{2}{\sin 45^{\circ}} \Rightarrow b=\sqrt{6}$
256 (a)

We have,
$\tan (x-y)=1 \Rightarrow x-y=\frac{\pi}{4}, \frac{5 \pi}{4}$
$\sec (x+y)=\frac{2}{\sqrt{3}} \Rightarrow \cos (x+y)=\frac{\sqrt{3}}{2}$
$\Rightarrow x+y=\frac{\pi}{6}, \frac{11 \pi}{6}$
Since x, y are positive. Therefore, $x+y>x-y$ Thus, we have
$x+y=\frac{11 \pi}{6}$ and $x-y=\frac{\pi}{4}$
or
$x+y=\frac{11 \pi}{6}$ and $x-y=\frac{5 \pi}{4}$
Solving these two systems of equations, we get
$x=\frac{25 \pi}{4}$ and $y=\frac{19 \pi}{24}$ or, $x=\frac{37 \pi}{24}$ and $y=\frac{7 \pi}{24}$
257 (b)
We have,
$\sqrt{3} \sin \theta+\cos \theta>0$
$\Rightarrow \frac{\sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta>0$
$\Rightarrow \sin \theta \cos \frac{\pi}{6}+\cos \theta \sin \frac{\pi}{6}>0$
$\Rightarrow \sin \left(\theta+\frac{\pi}{6}\right)>0 \Rightarrow 0<\theta+\pi / 6<\pi \Rightarrow-\frac{\pi}{6}<\theta$ $<\frac{5 \pi}{6}$
258 (c)
$\cos A=\frac{3}{5}, \cos B=\frac{4}{5}$
$\because \angle A$ and $\angle B$ lie on $4^{\text {th }}$ quadrant
$\therefore \sin A=-\sqrt{1-\frac{9}{25}}, \sin B=-\sqrt{1-\frac{16}{25}}$
$\Rightarrow \sin A=-\frac{4}{5}, \sin B=-\frac{3}{5}$
$\therefore 2 \sin A+4 \sin B$
$=2\left(-\frac{4}{5}\right)+4\left(-\frac{3}{5}\right)$
$=-\frac{8}{5}-\frac{12}{5}$
$=-\frac{20}{5}=-4$
260 (a)
We have,
$\tan ^{2} \alpha+\cot ^{2} \alpha=(\tan \alpha-\cot \alpha)^{2}+2 \geq 2$
261 (d)
Given equation can be rewritten as
$\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta=\frac{\sqrt{2}}{2}$
$\Rightarrow \cos \left(\theta+\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4}$
$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{4}-\frac{\pi}{6}$
262 (a)
$\sin 50^{\circ}+\sin 10^{\circ}-\sin 70^{\circ}$
$=2 \sin 30^{\circ} \cos 20^{\circ}-\cos 20^{\circ}$
$=\cos 20^{\circ}\left(2 \times \frac{1}{2}-1\right)=0$
263 (a)
Given, $\sin A-\cos B=\cos C$
$\Rightarrow \sin A=\cos B+\cos C$
$\Rightarrow 2 \sin \frac{A}{2} \cos \frac{A}{2}=2 \cos \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)$
$\Rightarrow 2 \sin \frac{A}{2} \cos \frac{A}{2}=2 \sin \frac{A}{2} \cos \left(\frac{B-C}{2}\right)$
$\Rightarrow \cos \frac{A}{2}=\cos \left(\frac{B-C}{2}\right) \quad\left[\because \sin \left(\frac{A}{2}\right) \neq 0\right]$
$\Rightarrow \frac{A}{2}=\frac{B-C}{2} \Rightarrow A=B-C$
But $A+B+C=\pi$, therefore
$2 B=\pi$
$\Rightarrow \quad B=\frac{\pi}{2}$
264 (d)
Given, $4 \sin ^{4} x+\cos ^{4} x-1=0$
$\Rightarrow 4 \sin ^{4} x+\left(\cos ^{2} x-1\right)\left(\cos ^{2} x+1\right)=0$
$\Rightarrow 4 \sin ^{4} x-\sin ^{2} x\left(1-\sin ^{2}+1\right)=0$
$\Rightarrow \sin ^{2} x\left(5 \sin ^{2} x-2\right)=0$
$\Rightarrow \sin x=0$ or $\pm \sqrt{\frac{2}{5}}$
Hence, $x=n \pi$ is the required solution
265 (d)
If the triangle is equilateral
$\sin A+\sin B+\sin C=\frac{3 \sqrt{3}}{2}$
If the triangle is isosceles, let
$A=30^{\circ}, B=30^{\circ}, C=120^{\circ}$
Then, $\sin A+\sin B+\sin C=1+\frac{\sqrt{3}}{2}$
If the triangle is right angled, let $A=90^{\circ}, B=$ $30^{\circ}, C=60^{\circ}$
Then,
$\sin A+\sin B+\sin C=\frac{3+\sqrt{3}}{2}$
If the triangle is right angled isosceles, then one of the angles is 90° and the remaining two are 45° each, so that
$\sin A+\sin B+\sin C=1+\sqrt{2}$
and, $\cos A+\cos B+\cos C=\sqrt{2}$
266 (d)
Now, $\tan \frac{\pi}{3}=\tan \left(\frac{6 \pi}{15}-\frac{\pi}{15}\right)=\frac{\tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}}{1+\tan \frac{6 \pi}{15} \tan \frac{\pi}{15}}$
$\Rightarrow \tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}=\sqrt{3}+\sqrt{3} \tan \frac{6 \pi}{15} \tan \frac{\pi}{15}$
$\Rightarrow \tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}-\sqrt{3} \tan \frac{6 \pi}{15} \tan \frac{\pi}{15}=\sqrt{3}$
$=\tan \frac{2 \pi}{5}-\tan \frac{\pi}{15}-\sqrt{3} \tan \frac{2 \pi}{5} \tan \frac{\pi}{15}=\sqrt{3}$
267 (b)
We have,
$\tan 3 x=\tan 5 x$
$\Rightarrow 5 x=n \pi+3 x, n \in Z$
$\Rightarrow x=\frac{n \pi}{2}, n \in Z$
If n is odd, then $x=\frac{n \pi}{2}$ gives extraneous solutions
Thus, the solution of the given equation will be
given by $x=\frac{n \pi}{2}$, where n is even, say
$n=2 m, m \in Z$
Hence, the required solution is $x=m \pi, m \in Z$
268 (c)
We have,
$\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta$
$\Rightarrow \tan \theta+\tan 4 \theta=-\tan 7 \theta(1-\tan \theta \tan 4 \theta)$
$\Rightarrow \frac{\tan \theta+\tan 4 \theta}{1-\tan \theta \tan 4 \theta}=\tan (-7 \theta)$
$\Rightarrow \tan 5 \theta=\tan (-7 \theta)$
$\Rightarrow 5 \theta=n \pi+(-7 \theta), n \in Z \Rightarrow \theta=\frac{n \pi}{12}, n \in Z$
269 (b)
We have,
$\frac{\sin ^{2} 3 A}{\sin ^{2} A}-\frac{\cos ^{2} 3 A}{\cos ^{2} A}$
$=\frac{\sin ^{2} 3 A \cos ^{2} A-\cos ^{2} 3 A \sin ^{2} A}{\sin ^{2} A \cos ^{2} A}$
$=\frac{\sin ^{2} 3 A\left(1-\sin ^{2} A\right)-\cos ^{2} 3 A \sin ^{2} A}{\sin ^{2} A \cos ^{2} A}$
$=\frac{\sin ^{2} 3 A-\sin ^{2} A\left(\cos ^{2} 3 A \sin ^{2} 3 A\right)}{\sin ^{2} A \cos ^{2} A}$
$=\frac{\sin (3 A+A) \sin (3 A-A)}{\sin ^{2} A \cos ^{2} A}$
$=\frac{(4 \sin A \cos A \cos 2 A)(2 \sin A \cos A)}{\sin ^{2} A \cos ^{2} A}=8 \cos 2 A$
270 (d)
We have,
$3 \sin A=6 \sin B=2 \sqrt{3} \sin C$
$\Rightarrow \frac{\sin A}{2}=\frac{\sin B}{1}=\frac{\sin C}{\sqrt{3}}$
$\Rightarrow \frac{\sin A}{1}=\frac{\sin B}{\frac{1}{2}}=\frac{\sin C}{\frac{\sqrt{3}}{2}} \Rightarrow A=\frac{\pi}{2}, B=\frac{\pi}{6}$ and C

$$
=\frac{\pi}{3}
$$

271

(b)

We have,
$x=y \cos \frac{2 \pi}{3}=z \cos \frac{4 \pi}{3}$
$\Rightarrow x=-\frac{y}{2}=-\frac{z}{2}$
$\Rightarrow \frac{x}{1}=\frac{y}{-2}=\frac{z}{-2}=\lambda$ (say)
$\Rightarrow x=\lambda, y=-2 \lambda, z=-2 \lambda$
$\Rightarrow x y+y z+z x=-2 \lambda^{2}+4 \lambda^{2}-2 \lambda^{2}=0$
272 (a)
$\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma$
$=\sin ^{2} \alpha+\sin (\beta-\gamma) \sin (\beta+\gamma)$
$=\sin ^{2} \alpha+\sin (\pi-\alpha) \sin (\beta+\gamma) \quad[\because \alpha+\beta+\gamma$ $=\pi]$
$=\sin ^{2} \alpha\{\sin \alpha+\sin (\beta+\gamma)\}$
$=\sin \alpha\{\sin (\beta-\gamma)+\sin (\beta+\gamma)\} \quad[\because \alpha$

$$
=\pi-(\beta-\gamma)]
$$

$=2 \sin \alpha \sin \beta \cos \gamma$
273 (a)
We have,
$\sin A+\cos A=\frac{\sqrt{7}}{2}$
$\Rightarrow \frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}+\frac{1-\tan ^{2} \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}=\frac{\sqrt{7}}{2}$
$\Rightarrow 4 \tan \frac{A}{2}+2-2 \tan ^{2} \frac{A}{2}=\sqrt{7}+\sqrt{7} \tan ^{2} \frac{A}{2}$
$\Rightarrow(\sqrt{7}+2) \tan ^{2} \frac{A}{2}-4 \tan \frac{A}{2}+(\sqrt{7}-2)=0$
$\Rightarrow \tan \frac{A}{2}=\frac{4 \pm \sqrt{16-4(\sqrt{7}+2)(\sqrt{7}-2)}}{2(\sqrt{7}+2)}$
$\Rightarrow \tan \frac{A}{2}=\frac{4 \pm 2}{2(\sqrt{7}+2)}$
$\Rightarrow \tan \frac{A}{2}=\frac{3}{\sqrt{7}+2}, \frac{1}{\sqrt{7}+2}$
$\Rightarrow \tan \frac{A}{2}=\sqrt{7}-2, \frac{\sqrt{7}-2}{3}$
$\Rightarrow \tan \frac{A}{2}=\frac{\sqrt{7}-2}{3} \quad\left[\because 0<A<\pi / 6 \quad \therefore \tan \frac{A}{2}<1\right]$

274 (b)
We have,
$\sum \cot (B+C-A) \cot (C+A-B)$
$=\sum \cot 2 A \cot 2 B \quad[\because A+B+C=0]$
$=\cot 2 A \cot 2 B+\cot 2 B \cot 2 C+\cot 2 C \cot 2 A$
Now,
$A+B+C=0$
$\Rightarrow 2 A+2 B+2 C=0$
$\Rightarrow \tan (2 A+2 B+2 C)=0$
$\Rightarrow \tan 2 A+\tan 2 B+\tan 2 C$

$$
=\tan 2 A \tan 2 B \tan 2 C
$$

$\Rightarrow \cot 2 A \cot 2 B+\cot 2 B \cot 2 C+\cot 2 C \cot 2 A$ $=1$
$\Rightarrow \sum \cot (B+C-A) \cot (C+A-B)=1$
275

(b)

We have,
$A+B=\frac{\pi}{4}$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=1$
$\Rightarrow \tan A+\tan B+\tan A \tan B=1$
$\Rightarrow(1+\tan A)(1+\tan B)=1+1=2$
276 (c)
Given equations may be written as
$\cos x+\cos y=-\cos \alpha$
and $\sin x+\sin y=-\sin \alpha$
$\Rightarrow 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)=-\cos \alpha$
and $2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)=-\sin \alpha \ldots$ (ii)
From Eqs.(i)and (ii), we get
$\frac{2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}{2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}=\frac{\cos \alpha}{\sin \alpha}$
$\Rightarrow \cot \left(\frac{x+y}{2}\right)=\cot \alpha$

277 (b)

We have,
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{8^{2}+10^{2}-12^{2}}{2 \times 8 \times 10}=\frac{1}{8}$
And,
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{10^{2}+12^{2}-8^{2}}{2 \times 10 \times 12}=\frac{3}{4}$
$\therefore \cos 2 A=2 \cos ^{2} A-1=2 \times \frac{9}{16}-1=\frac{1}{8}$

Thus, we have
$\cos 2 A=\cos C \Rightarrow 2 A=C$
278 (a)
Let $\log \sec x=y$
$\Rightarrow \frac{1}{\cos x}=e^{y}=e^{y / 2+y / 2}=e^{y / 2 . e^{y} / 2}$
$\therefore \frac{1}{\cos x}=\frac{e^{y / 2}}{e^{-y / 2}}$
By componendo and Dividendo rule
$\frac{1+\cos x}{1-\cos x}=\frac{e^{y / 2}+e^{-y / 2}}{e^{y / 2}-e^{-y / 2}}$
$\Rightarrow \cot ^{2}\left(\frac{x}{2}\right)=\operatorname{coth}\left(\frac{y}{2}\right)$
$\Rightarrow y=2 \operatorname{coth}^{-1}\left(\operatorname{cosec}^{2} \frac{x}{2}-1\right)$
279 (c)
Since, $\sin \theta=\sin \alpha$
And $\cos \theta=\cos \alpha$
[divided Eq. (i) by Eq. (ii)]
$\therefore \tan \theta=\tan \alpha$
$\Rightarrow \theta=n \pi+\alpha$
(b)

We have,
$2 b=a+c \Rightarrow a+b+c=3 b \Rightarrow 2 s=3 b$
Now,
$\tan \frac{A}{2} \tan \frac{C}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \times \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$
$\Rightarrow \tan \frac{A}{2} \tan \frac{C}{2}=\frac{s-b}{s}=\frac{2 s-2 b}{2 s}=\frac{3 b-2 b}{3 b}=\frac{1}{3}$
281 (c)
$2 \sin ^{2} \theta-\cos 2 \theta=0 \Rightarrow \sin ^{2} \theta=\frac{1}{4} \Rightarrow$
$\sin \theta= \pm 12 \quad$...(i)
Also, $2 \cos ^{2} \theta=3 \sin \theta \Rightarrow 2 \sin ^{2} \theta+$
$3 \sin \theta-2=0$
$\Rightarrow \sin \theta=\frac{1}{2}$
From Eqs. (i) and (ii), $\sin \theta=\frac{1}{2}$
Two solutions exist in $[0,2 \pi]$
282 (c)
We have,
$\frac{A}{B}=\frac{\tan 6^{\circ} \tan 42^{\circ}}{\cot 66^{\circ} \cot 78^{\circ}}$
$\Rightarrow \frac{A}{B}=\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$
$\Rightarrow \frac{A}{B}=\frac{\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ}}{\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ}}=1 \Rightarrow A=B$
283 (b)
We have,
$\Delta=a^{2}-(b-c)^{2}$
$\Rightarrow \Delta=(a+b-c)(a-b+c)$
$\Rightarrow \Delta=(2 s-2 c)(2 s-2 b)$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=4(s-b)(s-c)$
$\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}=\frac{1}{4} \Rightarrow \tan \frac{A}{2}=\frac{1}{4}$
Now,
$\tan A=\frac{2 \tan A / 2}{1-\tan ^{2} A / 2} \Rightarrow \tan A=\frac{1 / 2}{1-1 / 16}=\frac{8}{15}$
284 (a)
We have,
$\sin 47^{\circ}-\sin 25^{\circ}+\sin 61^{\circ}-\sin 11^{\circ}$
$=2 \sin 11^{\circ} \cos 36^{\circ}+2 \sin 25^{\circ} \cos 36^{\circ}$
$=2 \cos 36^{\circ}\left(\sin 25^{\circ}+\sin 11^{\circ}\right)$
$=2 \cos 36^{\circ} \times 2 \sin 18^{\circ} \cos 7^{\circ}$
$=4\left(\frac{\sqrt{5}+1}{4}\right)\left(\frac{\sqrt{5}-1}{4}\right) \cos 7^{\circ}=\cos 7^{\circ}$

285 (c)

Given, $\sin ^{3} x \sin 3 x=\sum_{m=0}^{n} C_{m} \cos m x$
$\Rightarrow\left(\frac{3 \sin x-\sin 3 x}{4}\right) \sin 3 x=\sum_{m=0}^{n} C_{m} \cos m x$
$\Rightarrow \frac{3}{8}(2 \sin 3 x \sin x)-\frac{1}{8}\left(2 \sin ^{2} 3 x\right)$

$$
=\sum_{m=0}^{n} C_{m} \cos m x
$$

$$
\Rightarrow \frac{3}{8}(\cos 2 x-\cos 4 x)-\frac{1}{8}(1-\cos 6 x)
$$

$$
=\sum_{m=0}^{n} C_{m} \cos m x
$$

$\Rightarrow \frac{1}{8} \cos 6 x+\frac{3}{8}(\cos 2 x-\cos 4 x)-\frac{1}{8}$
$=C_{0} \cos 0+C_{1} \cos x+C_{2} \cos 2 x+\ldots+C_{n} \cos n x$
$\therefore \quad n=6$
286 (d)
We have,
$\cos x=\tan y$
$\Rightarrow \cos ^{2} x=\tan ^{2} y$
$\Rightarrow \cos ^{2} x=\sec ^{2} y-1$
$\Rightarrow \cos ^{2} x=\cot ^{2} z$
$-1 \quad[\because \cos y=\tan z \quad \therefore \sec y$
$=\cot z]$
$\Rightarrow 1+\cos ^{2} x=\cot ^{2} z$
$\Rightarrow 1+\cos ^{2} x=\frac{\tan ^{2} x}{1-\tan ^{2} x} \quad[\because \cos z=\tan x]$
$\Rightarrow 1+\cos ^{2} x=\frac{\sin ^{2} x}{\cos ^{2} x-\sin ^{2} x}$
$\Rightarrow 2 \sin ^{4} x-6 \sin ^{2} x+2=0$
$\Rightarrow \sin ^{2} x=\frac{3-\sqrt{5}}{2}$
$\Rightarrow \sin ^{2} x=\left(\frac{\sqrt{5}-1}{2}\right)^{2} \Rightarrow \sin x=\frac{\sqrt{5}-1}{2}$

$$
=2 \sin 18^{\circ}
$$

287 (b)
$\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}$
$=\frac{\tan 36^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\tan 20^{\circ}}$
$=1+1=2$
288 (b)
$\frac{\cot x-\tan x}{\cot 2 x}$
$=\tan 2 x\left(\cot x-\frac{1}{\cot x}\right)$
$=\tan 2 x\left(\frac{\cot ^{2} x-1}{\cot x}\right)$
$=\tan 2 x\left(\frac{\cot ^{2} x-1}{2 \cot x}\right) \cdot 2$
$=\tan 2 x \cdot \cot 2 x .2$
$=2$
289 (c)
$\sin ^{2} x-\cos 2 x=2-\sin 2 x$
$\Rightarrow 1-\cos ^{2} x-\left(2 \cos ^{2} x-1\right)=2-2 \sin x \cos x$
$\Rightarrow-3 \cos ^{2} x+2 \sin x \cos x=0$
$\Rightarrow \cos x(2 \sin x-3 \cos x)=0$
$\Rightarrow \cos x=0, \quad(\because 2 \operatorname{si} 9 n x-3 \cos x \neq 0)$
$\Rightarrow \quad x=2 n \pi \pm \frac{\pi}{2}$
$\Rightarrow \quad x=(4 n \pm 1) \frac{\pi}{2}$
290 (b)
$\frac{1+\tanh \frac{x}{2}}{1-\tanh \frac{x}{2}}=\frac{\cosh \frac{x}{2}+\sinh \frac{x}{2}}{\cosh \frac{x}{2}-\sinh \frac{x}{2}}=\frac{e^{x / 2}}{e^{-x / 2}}=e^{x}$
291 (c)
$2 \tanh ^{-1}\left(\frac{1}{2}\right)=\tanh ^{-1} \frac{2\left(\frac{1}{2}\right)}{1+\left(\frac{1}{2}\right)^{2}}=\tanh ^{-1} \frac{4}{5}$
$\left[\because 2 \tanh ^{-1} x=\tanh ^{-1} \frac{2 x}{1+x^{2}}\right]$
$=\frac{1}{2} \log \left(\frac{1+\frac{4}{5}}{1-\frac{4}{5}}\right)=\frac{1}{2} \log 3^{2}$
$=\log 3$
292 (c)
We have,
$\cos (\alpha+\beta) \sin (\gamma+\delta)=\cos (\alpha-\beta) \sin (\gamma-\delta)$
$\Rightarrow \frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{\sin (\gamma-\delta)}{\sin (\gamma+\delta)}$

$$
\begin{aligned}
& \Rightarrow \frac{\cos (\alpha+\beta)-\cos (\alpha-\beta)}{\cos (\alpha+\beta)+\cos (\alpha-\beta)} \\
& \quad=\frac{\sin (\gamma-\delta)-\sin (\gamma+\delta)}{\sin (\gamma-\delta)+\sin (\gamma+\delta)} \\
& \Rightarrow \frac{-2 \sin \alpha \sin \beta}{2 \cos \alpha \cos \beta}=\frac{-2 \cos \gamma \sin \delta}{2 \sin \gamma \cos \delta} \\
& \Rightarrow-\tan \alpha \tan \beta=-\cot \gamma \tan \delta \Rightarrow \cot \alpha \cot \beta \cot \gamma \\
& \quad=\cot \delta
\end{aligned}
$$

293 (c)
Given, $a \cos ^{3} \alpha+3 a \cos \alpha \sin ^{2} \alpha=m$
and $a \sin ^{3} \alpha+3 a \cos ^{2} \alpha \sin ^{2} \alpha=n$
$\therefore(m+n)=a \cos ^{3} \alpha$
$+3 a \cos \alpha \sin ^{2}+3 a \cos ^{2} \alpha \sin \alpha$
$+a \sin ^{3} \alpha$
$=a(\cos \alpha+\sin \alpha)^{3}$
and similarly, $(m-n)=a(\cos \alpha-\sin \alpha)^{3}$
$\therefore(m+n)^{2 / 3}+(m-n)^{2 / 3}$
$=a^{2 / 3}\left\{(\cos \alpha+\sin \alpha)^{2}+(\cos \alpha-\sin \alpha)^{2}\right\}$
$=a^{2 / 3}\left\{2\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)\right\}=2 a^{2 / 3}$
294 (c)
Given, $\frac{x}{\operatorname{cosec} \theta}=\frac{y}{\sec \theta}=\frac{z}{\cot 2 \theta}=k \quad[\operatorname{say}]$
$\therefore \quad 4 z^{2}\left(x^{2}+y^{2}\right)$

$$
\begin{aligned}
& =4 k^{2} \cot ^{2} 2 \theta\left(k^{2} \operatorname{cosec}^{2} \theta\right. \\
& \left.+k^{2} \sec ^{2} \theta\right)
\end{aligned}
$$

$=4 k^{4} \cot ^{2} 2 \theta\left(\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}\right) \quad\left[\because \sin ^{2} \theta+\right.$ $\cos 2 \theta=1]$
$=\frac{4 k^{4}}{4}\left(\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}\right)^{2}$
$=\left(k^{2} \operatorname{cosec}^{2} \theta-k^{2} \sec ^{2} \theta\right)^{2}$
$=\left(x^{2}-y^{2}\right)^{2}$
295
(b)

Given, $\tan 2 \theta \tan \theta=1$
$\therefore \frac{2 \tan ^{2} \theta}{1-\tan ^{2} \theta}=1 \Rightarrow \tan ^{2} \theta=\frac{1}{3}$
$\Rightarrow \tan ^{2} \theta=\tan ^{2} \frac{\pi}{6} \Rightarrow \theta=n \pi \pm \frac{\pi}{6}$
296 (a)
$|\sin x|>2 \sin ^{2} x$
$\Rightarrow|\sin x|(2|\sin x|-1)<0$
$\Rightarrow 0<|\sin x|<\frac{1}{2}$
$\Rightarrow x \in\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, \pi\right) \cup\left(\pi, \frac{7 \pi}{6}\right) \cup\left(\frac{11 \pi}{6}, 2 x\right)$
(d)

Given, $\tan \left(\frac{x}{2}\right)=\operatorname{cosec} x-\sin x$
$=\frac{1+\tan ^{2} \frac{x}{2}}{2 \tan \frac{x}{2}}-\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$
$=\frac{\left(1+\tan ^{2} \frac{x}{2}\right)-4 \tan ^{2} \frac{x}{2}}{2 \tan \frac{x}{2}\left(1+\tan ^{2} \frac{x}{2}\right)}$
$\Rightarrow 2 \tan ^{2}\left(\frac{x}{2}\right)\left(1+\tan ^{2} \frac{x}{2}\right)=\left(1-\tan ^{2} \frac{x}{2}\right)^{2}$
$\Rightarrow \tan ^{4} \frac{x}{2}+4 \tan ^{2} \frac{x}{2}-1=0$
$\Rightarrow \tan ^{2} \frac{x}{2}=\frac{-4 \pm \sqrt{16+4}}{2 \times 1}=-2 \pm \sqrt{5}$
$\Rightarrow \tan ^{2} \frac{x}{2}=-2+\sqrt{5}$
$\left(\because \tan ^{2} \frac{x}{2} \neq-2-\sqrt{5}\right)$
298 (d)
Given equation is
$5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$
$\Rightarrow 5\left(2 \cos ^{2} \theta-1\right)+1+\cos \theta+1=0$
$\Rightarrow 10 \cos ^{2} \theta+\cos \theta-3=0$
$\Rightarrow(2 \cos \theta-1)(5 \cos \theta+3)=0$
$\Rightarrow \cos \theta=\frac{1}{2}$ or $\cos \theta=-\frac{3}{5}$
$\Rightarrow \theta=\frac{\pi}{3}$ or $\theta=\pi-\cos ^{-1}\left(\frac{3}{5}\right)$
299 (b)
From the given equations we have $\sum \tan \alpha=p$
$\Sigma \tan \alpha \tan \beta=0$ and $\tan \alpha \tan \beta \tan \gamma=r$

$$
\begin{aligned}
& \therefore\left(1+\tan ^{2} \alpha\right)\left(1+\tan ^{2} \beta\right)\left(1+\tan ^{2} \gamma\right) \\
&=1+\Sigma \tan ^{2} \alpha+\Sigma \tan ^{2} \alpha \tan ^{2} \beta \\
&+\tan ^{2} \alpha \tan ^{2} \beta \tan ^{2} \gamma
\end{aligned}
$$

$=1+(\Sigma \tan \alpha)^{2}$
$-2 \Sigma \tan \alpha \tan \beta+(\Sigma \tan \alpha \tan \beta)^{2}$
$-2 \tan \alpha \tan \beta \tan \gamma \Sigma \tan \alpha$
$+\tan ^{2} \alpha \tan ^{2} \beta \tan ^{2} \gamma$
$=1+p^{2}-2 p r+r^{2}=1+(p-r)^{2}$
300 (b)
We have,

$$
\begin{aligned}
& \cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta\right. \\
& \left.\quad+\sin ^{2} \theta\right) \\
& =\cos 2 \theta=2 \cos ^{2} \theta-1
\end{aligned}
$$

301 (c)
We have,
$\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
$=\tan 60^{\circ} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
$=\frac{\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}}$
$=\frac{\sin 40^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}}=\frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\frac{1}{2} \sin 20^{\circ} \cos 20^{\circ}}=4$
302 (b)
Consider the function $f(\theta)$ given by
$f(\theta)=\frac{\theta}{2}-\sin \frac{\theta}{2}$, where $0 \leq \theta \leq \frac{\pi}{2}$
We have,
$f^{\prime}(\theta)=\frac{1}{2}\left(1-\cos \frac{\theta}{2}\right)>0\left[\because 0 \leq \theta \leq \frac{\pi}{2}\right]$
$\Rightarrow f(\theta)$ is increasing on $[0, \pi / 2]$
$\Rightarrow f(\theta)>f(0)$ for $0 \leq \theta \leq \frac{\pi}{2}$
$\Rightarrow \frac{\theta}{2}-\sin \frac{\theta}{2}>0$ for $0 \leq \theta \leq \frac{\pi}{2}$
$\Rightarrow \frac{\theta}{2}>\sin \frac{\theta}{2}$ for $0 \leq \theta \leq \frac{\pi}{2}$
On the same lines it can be seen that all other conditions are true except condition given in option (b)
303 (a)
Let $y=|x-1|=\cos x$
It is clear from the graph that two curves intersect at two points.

Hence, number of solutions are 2.
304 (b)
Since, $5 \cos x+12 \cos y=13$
$\Rightarrow(5 \cos x+12 \cos y)^{2}+(5 \sin x+12 \sin y)^{2}$
$=(13)^{2}+(5 \sin x+12 \sin y)^{2}$
$\Rightarrow 25+144+120(\sin x \sin y+\cos x \cos y)$
$=169+(5 \sin x+12 \sin y)^{2}$
$\Rightarrow(5 \sin x+12 \sin y)^{2}=120 \cos (x-y)$
$\because-1 \leq \cos (x-y) \leq 1$
$\Rightarrow-120 \leq 120 \cos (x-y) \leq 120$
$\therefore \quad$ Maximum value of $5 \sin x+12 \sin y=\sqrt{120}$
305 (a)
Since, $\cos \theta=\frac{8}{17}$ and $0<\theta<\frac{\pi}{2}$
$\Rightarrow \sin \theta=\sqrt{1-\frac{8^{2}}{17^{2}}}=\frac{15}{17}$
Now, $\cos \left(30^{\circ}+\theta\right)+\cos \left(45^{\circ}-\theta\right)+\cos \left(120^{\circ}-\right.$ $\theta)$

$$
\begin{aligned}
&=\cos 30^{\circ} \cos \theta-\sin 30^{\circ} \sin \theta \\
&+\cos 45^{\circ} \cos \theta \\
&+\sin 45^{\circ} \sin \theta \\
&+\cos 120^{\circ} \cos \theta+\sin 120^{\circ} \sin \theta \\
&=\cos \theta\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)-\sin \theta\left(\frac{1}{2}-\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2}\right) \\
&= \frac{8}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)+\frac{15}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right) \\
&= \frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

$\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\ldots+\cos 89^{\circ}$
$+\cos 90^{\circ}$
$+\cos 91^{\circ}$
$+\cos 92^{\circ}+\cos 93^{\circ}+\ldots+\cos 179^{\circ}$
$+\cos 180^{\circ}$
$=\cos 1^{\circ}+\cos 2^{\circ}+\cos 3^{\circ}+\ldots+\cos 89^{\circ}+0$
$+\cos \left(180^{\circ}-89^{\circ}\right)$
$+\cos \left(180^{\circ}-88^{\circ}\right)+\ldots+\cos \left(180^{\circ}-1^{\circ}\right)-1$
$=\cos 1^{\circ}+\cos 2^{\circ}$
$+\cos 3^{\circ}+\ldots \cos 89^{\circ}$
$-\cos 89^{\circ}$
$-\cos 88^{\circ}-\ldots-\cos 1^{\circ}-1$
$=-1$
307 (a)
We have,
$\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in A.P.
$\Rightarrow 2 \cot \frac{B}{2}=\cot \frac{A}{2}+\cot \frac{C}{2}$
$\Rightarrow 2 \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}$

$$
\begin{aligned}
& =\sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \\
& +\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}
\end{aligned}
$$

$\Rightarrow 2(s-b)=s-a+s-c \Rightarrow 2 b=a+c \Rightarrow$ a, b, c are in A.P.
308 (c)
$\left(1+\tan x+\tan ^{2} x\right)\left(1-\cot x+\cot ^{2} x\right)$
$=\frac{\left(1+\tan x+\tan ^{2} x\right)\left(1+\tan ^{2} x-\tan x\right)}{\tan ^{2} x}$
$=\frac{\left(1+\tan ^{2} x\right)^{2}-\tan ^{2} x}{\tan ^{2} x}$
Obviously, $1+\tan ^{2} x \geq \tan ^{2} x, \forall x \in R$
309 (c)
We have,
$\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}$
$=2 \cos ^{4} \frac{\pi}{8}+2 \cos ^{4} \frac{3 \pi}{8}\left[\because \cos \frac{5 \pi}{8}\right.$

$$
\left.=-\cos \frac{3 \pi}{8}, \cos \frac{7 \pi}{8}=-\cos \frac{\pi}{8}\right]
$$

$=\frac{1}{2}\left\{\left(2 \cos ^{2} \frac{\pi}{8}\right)^{2}\left(2 \cos ^{2} \frac{3 \pi}{8}\right)^{2}\right\}$
$=\frac{1}{2}\left\{\left(1+\cos \frac{\pi}{4}\right)^{2}+\left(1+\cos \frac{3 \pi}{8}\right)^{2}\right\}$
$=\frac{1}{2}\left\{\left(1+\frac{1}{\sqrt{2}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}\right\}=\frac{3}{2}$
310 (b)
We have,
$\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$
$\Rightarrow \sin (\pi \cos \theta)=\sin \left(\frac{\pi}{2} \pm \pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta=\frac{\pi}{2} \pm \pi \sin \theta$
$\Rightarrow \cos \theta \mp \sin \theta=\frac{1}{2}$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta \mp \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2 \sqrt{2}}$
$\Rightarrow \cos \left(\theta \pm \frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}} \Rightarrow \cos \left(\theta \pm \frac{\pi}{4}\right)=\frac{1}{2} \cos \frac{\pi}{4}$
311 (a)
Since the angle of $\triangle A B C$ are in A.P.
$2 B=A+C$
$\Rightarrow 3 B=A+B+C$
$\Rightarrow 3 B=180^{\circ}$
$\Rightarrow B=60^{\circ}$
$\Rightarrow \cos B=\frac{1}{2}$
$\Rightarrow \frac{c^{2}+a^{2}-b^{2}}{2 a c}=\frac{1}{2}$
$\Rightarrow c^{2}+a^{2}-b^{2}=a c$
$\Rightarrow c^{2}+a^{2}-b^{2}=b^{2} \quad\left[\because a, b, c\right.$ are in G. P. $\therefore b^{2}$ $=a c]$
$\Rightarrow c^{2}+a^{2}=2 b^{2}$
$\Rightarrow a^{2}, b^{2}, c^{2}$ are in A.P.
312 (d)
Since $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other
$\therefore \sin x+i \cos 2 x=\cos x+i \sin 2 x$
$\Rightarrow \sin x=\cos x$ and $\cos 2 x=\sin 2 x$
$\Rightarrow \sin x=\cos x$ and $2 \cos ^{2} x-1=2 \sin x \cos x$
$\Rightarrow 2 \cos ^{2} x-1=2 \cos ^{2} x$
$[\because \sin x=\cos x]$
This is an absurd result. Therefore, no value of x satisfy these two equations
(b)

Given, $1-\cos x=(\sqrt{2}-1) \sin x$
$\Rightarrow 2 \sin \frac{x}{2}\left(\sin \frac{x}{2}-(\sqrt{2}-1) \cos \frac{x}{2}\right)=0$
$\Rightarrow \sin \frac{x}{2}=0$ or $\tan \frac{x}{2}=\sqrt{2}-1=\tan \frac{45^{\circ}}{2}$
$\Rightarrow \frac{x}{2}=n \pi, \quad \frac{x}{2}=n \pi+\frac{\pi}{8}$
$\Rightarrow x=2 n \pi, \quad 2 n \pi+\frac{\pi}{4}$
314 (c)
$2 \tan (A-B)=2\left(\frac{\tan A-\tan B}{1+\tan A \tan B}\right)$
$=2\left(\frac{2 \tan B+\cot B-\tan B}{1+(2 \tan B+\cot B) \tan B}\right)$
$[\because \tan A=2 \tan B+\cot B]$
$=\frac{2(\tan B+\cot B)}{2\left(1+\tan ^{2} B\right)}=\cot B$
315 (d)
$\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{n-1} \alpha$
$=\frac{1}{2 \sin \alpha}[2 \sin \alpha \cos \alpha$
$\left.\times \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{n-1} \alpha\right]$
$=\frac{1}{2 \sin \alpha}\left[\frac{2}{2} \sin 2 \alpha \cos 2 \alpha \cos 4 \alpha \ldots \cos 2^{n-1} \alpha\right]$
$=\frac{1}{2^{2} \sin \alpha}\left[\frac{2}{2} \sin 4 \alpha \cos 4 \alpha \ldots \cos 2^{n-1} \alpha\right]$
$=\frac{1}{2^{3} \sin \alpha}\left[\sin 8 \alpha \cos 8 \alpha \ldots \cos 2^{n-1} \alpha\right]$
Similarly, we can write
$=\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha}$
316 (d)
Given, $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$[\because x \sin \theta=y \cos \theta]$
$\Rightarrow y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$\Rightarrow y=\sin \theta$
Now, $x \sin \theta=\sin \theta \cos \theta \Rightarrow x=\cos \theta$
$\therefore \quad x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$
317 (a)
$\because \tan \alpha / 2+\tan \beta / 2=\frac{26}{8}=\frac{13}{4}$
and $\tan \alpha / 2 \tan \beta / 2=\frac{15}{8}$
$\therefore \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{\tan \alpha / 2+\tan \beta / 2}{1-\tan \alpha / 2 \tan \beta / 2}$
$=\frac{\frac{13}{4}}{1-\frac{15}{8}}=-\frac{26}{7}$
Now, $\cos (\alpha+\beta)=\frac{1-\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}$
$=\frac{1-\left(-\frac{26}{7}\right)^{2}}{1+\left(-\frac{26}{7}\right)^{2}}=\frac{49-676}{49+676}$
$=-\frac{627}{725}$
318 (a)
Given, $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$
$\Rightarrow 81^{\sin ^{2} x}+81^{1-\sin ^{2} x}=30$
$\Rightarrow 81^{\sin ^{2} x}+\frac{81}{81^{\sin ^{2} x}}=30$
$\Rightarrow y+\frac{81}{y}=30 \quad\left[\right.$ put $\left.81^{\sin ^{2} x}=y\right]$
$\Rightarrow y^{2}-30 y+81=0$
$\Rightarrow(y-27)(y-3)=0$
$\Rightarrow 81^{\sin ^{2} x}=27$ or $81^{\sin ^{2} x}=3$
$\Rightarrow 3^{4 \sin ^{2} x}=3^{3}$ or $3^{4 \sin ^{2} x}=3$
$\Rightarrow \sin ^{2} x=\frac{3}{4}$ or $\sin ^{2} x=\frac{1}{4}$
$\Rightarrow \sin x=\frac{\sqrt{3}}{2}$ or $\sin x=\frac{1}{2}$
$\Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}$ or $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
319 (b)
We have,
$32 \tan ^{8} \theta=2 \cos ^{2} \alpha-3 \cos \alpha$ and $\cos 2 \theta=\frac{1}{3}$
Now,
$\cos 2 \theta=\frac{1}{3} \Rightarrow \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1}{3} \Rightarrow \tan ^{2} \theta=\frac{1}{2}$
$\therefore 32 \tan ^{8} \theta=2 \cos ^{2} \alpha-3 \cos \alpha$
$\Rightarrow 32 \times \frac{1}{16}=2 \cos ^{2} \alpha-3 \cos \alpha$
$\Rightarrow 2=2 \cos ^{2} \alpha-3 \cos \alpha$
$\Rightarrow 2 \cos ^{2} \alpha-3 \cos \alpha-2=0$
$\Rightarrow(2 \cos \alpha+1)(\cos \alpha-2)$

$$
=0 \quad[\because \cos \alpha-2 \neq 0]
$$

$\Rightarrow 2 \cos \alpha+1=0$
$\Rightarrow \cos \alpha=-\frac{1}{2} \Rightarrow \cos \alpha=\cos \frac{2 \pi}{3} \Rightarrow \alpha$

$$
=2 n \pi \pm \frac{2 \pi}{3}, n \in Z
$$

320 (b)
Now, $\tan (x-y) \tan y=\frac{\sin (x-y) \sin y}{\cos (x-y) \cos y} \times \frac{2}{2}$
$=\frac{\cos (x-2 y)-\cos (x)}{\cos (x-2 y)+\cos (x)}=\frac{1-\frac{\cos x}{\cos (x-2 y)}}{1+\frac{\cos (x)}{\cos (x-2 y)}}$
$=\frac{1-\lambda}{1+\lambda} \quad\left[\right.$ Given, $\left.\lambda=\frac{\cos x}{\cos (x-2 y)}\right]$
321 (a)
We have,
$\sin 3 \theta=4 \sin \theta \sin ^{2} x-4 \sin ^{3} \theta$
$\Rightarrow 3 \sin \theta-4 \sin ^{3} \theta=4 \sin \theta \sin ^{2} x-4 \sin ^{3} \theta$
$\Rightarrow 3 \sin \theta=4 \sin \theta \sin ^{2} x$
$\Rightarrow \sin ^{2} x=\frac{3}{4} \quad[\because \theta \neq n \pi \quad \therefore \sin \theta \neq 0]$
$\Rightarrow \sin ^{2} x=\sin ^{2} \frac{\pi}{3} \Rightarrow x=n \pi \pm \frac{\pi}{3}, n \in Z$
322 (d)
We have,
$b+c=3 a$
$\Rightarrow \sin B+\sin C=3 \sin A$
$\Rightarrow 2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)=6 \sin \frac{A}{2} \cos \frac{A}{2}$
$\Rightarrow \cos \left(\frac{B-C}{2}\right)=3 \cos \left(\frac{B+C}{2}\right)$
$\Rightarrow \cos \frac{B}{2} \cos \frac{C}{2}=2 \sin \frac{B}{2} \sin \frac{C}{2}$
$\Rightarrow \cot \frac{B}{2} \cot \frac{C}{2}=2 \Rightarrow \tan \frac{B}{2} \tan \frac{C}{2}=\frac{1}{2}$
323 (b)
We have,
$\sin \theta+\cos \theta=\sqrt{2} \cos \theta$
$\Rightarrow 1+\sin 2 \theta=2 \cos ^{2} \theta$
$\Rightarrow 1-\sin 2 \theta=2-2 \cos ^{2} \theta$
$\Rightarrow(\cos \theta-\sin \theta)^{2}=2 \sin ^{2} \theta$
$\Rightarrow \cos \theta-\sin \theta=\sqrt{2} \sin \theta$
324 (a)
Given, $\sin x+\sin y+\sin z=-3$ and
$x, y, z \in[0,2 \pi]$
\because The minimum value of \sin is -1
\therefore In between 0 to 2π, the given equation is satisfied at $x=\frac{3 \pi}{2}$
$y=\frac{3 \pi}{2}, z=\frac{3 \pi}{2}$ and having only one solution
$\sin \frac{\pi}{16} \cdot \sin \frac{3 \pi}{16} \cdot \sin \frac{5 \pi}{16} \cdot \sin \frac{7 \pi}{16}$
$=\frac{1}{2}\left[2 \sin \frac{5 \pi}{16} \sin \frac{3 \pi}{16}\right] \times \frac{1}{2}\left[2 \sin \frac{7 \pi}{16} \sin \frac{\pi}{16}\right]$
$=\frac{1}{4}\left[\left(\cos \frac{\pi}{8}-\cos \frac{\pi}{2}\right)\left(\cos \frac{3 \pi}{8}-\cos \frac{\pi}{2}\right)\right]$
$=\frac{1}{4 \times 2}\left(\cos \frac{\pi}{2}+\cos \frac{\pi}{4}\right)$
$=\frac{1}{8 \sqrt{2}}=\frac{\sqrt{2}}{16} \quad\left[\because \cos \frac{\pi}{2}=0\right]$

(d)

For the quadratic equation to have real roots, we must have
$\cos ^{2} p-4 \sin p(\cos p-1) \geq 0$
$\Rightarrow(\cos p-2 \sin p)^{2}-4 \sin ^{2} p+4 \sin p \geq 0$
$\Rightarrow(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$
Now, $0<p<\pi$
$\Rightarrow 4 \sin p(1-\sin p)>0$ and, $(\cos p-2 \sin p)^{2} \geq$ 0

Thus, $(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$ for $0<p<\pi$
Hence, the equation has real roots for $0<p<\pi$
327 (c)
We have,
$\cos (\theta+\phi)=\frac{1-\tan ^{2}\left(\frac{\theta+\phi}{2}\right)}{1+\tan ^{2}\left(\frac{\theta+\phi}{2}\right)}$
Also,
$\tan \left(\frac{\theta+\phi}{2}\right)=\frac{\tan \frac{\theta}{2}+\tan \frac{\phi}{2}}{1-\tan \frac{\theta}{2} \tan \frac{\phi}{2}}=\frac{\frac{5}{2}+\frac{3}{4}}{1-\frac{15}{8}}=-\frac{26}{7}$
$\therefore \cos (\theta+\phi)=\frac{1-\frac{676}{49}}{1+\frac{676}{49}}=-\frac{627}{425}$
328 (b)
We have,
$2 \cos ^{2} A=3 \cos ^{2} B$
$\Rightarrow 2\left(1-\sin ^{2} A\right)=3\left(1-\sin ^{2} B\right)$
$\Rightarrow 2-2 \sin ^{2} A=3(1-\sin A) \quad\left[\because \sin ^{2} B=\sin A\right]$
$\Rightarrow 2 \sin ^{2} A-3 \sin A+1=0 \Rightarrow \sin A=\frac{1}{2}, 1$
Now,
$\sin A=1 \Rightarrow \sin B=1$, which is not possible
$\therefore \sin A=\frac{1}{2}$ and $\sin B= \pm \frac{1}{\sqrt{2}}$
$\Rightarrow A=30^{\circ}, B=135^{\circ}, C=15^{\circ}$
or, $A=30^{\circ}, B=45^{\circ}, C=105^{\circ}$
In each case the triangle $A B C$ is an obtuse angled triangle
329 (b)
We have,
$\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$
$\Rightarrow \frac{1-\cos 2 \alpha}{1+\cos 2 \alpha}=\frac{3-\cos 2 \beta-3 \cos 2 \beta+1}{3-\cos 2 \beta+3 \cos 2 \beta-1}$
[Applying componendo and dividendo]
$\Rightarrow \frac{2 \sin ^{2} \alpha}{2 \cos ^{2} \alpha}=\frac{4(1-\cos 2 \beta)}{2(1+\cos 2 \beta)}$
$\Rightarrow \tan ^{2} \alpha=\frac{2 \times 2 \sin ^{2} \beta}{2 \cos ^{2} \beta}$
$\Rightarrow \tan ^{2} \alpha=2 \tan ^{2} \beta \Rightarrow \tan \alpha \cot \beta=\sqrt{2}$
330 (b)
It is given that
$\sin 2 x, \frac{1}{2}$ and $\cos 2 x$ are in A.P.
$\therefore 1=\sin 2 x+\cos 2 x$
$\Rightarrow \cos \left(2 x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow 2 x-\frac{\pi}{4}=2 n \pi \pm \frac{\pi}{4}$
$\Rightarrow 2 x=2 n \pi, 2 n \pi+\frac{\pi}{2}$
$\Rightarrow x=n \pi, n \pi+\frac{\pi}{4}, n \in Z$
332 (d)
Let $A B C$ be a triangle such that $B C=80 \mathrm{~cm}, \angle B=$ 60° and $b+c=90 \mathrm{~cm}$
Now,
$b^{2}=c^{2}+a^{2}=2 a c \cos B$
$\Rightarrow(90-c)^{2}=c^{2}+80^{2}-2 \times 80$

$$
\times(90-c) \cos 60^{\circ}
$$

$\Rightarrow 8100-180 c+c^{2}=c^{2}+6400-7200+80 c$
$\Rightarrow c=17$
$\therefore b+c=90 \Rightarrow b=73$
Hence, the length of the shortest side is 17 cm
333 (a)
Given, $\sin ^{4} x+\cos ^{4} x=\sin x \cdot \cos x$
$\Rightarrow\left(\sin ^{2} x+\cos ^{2} x\right)^{2}$

$$
-2 \sin ^{2} x \cdot \cos ^{2} x=\sin x \cdot \cos x
$$

$\Rightarrow 1-\frac{\sin ^{2} 2 x}{2}=\frac{\sin 2 x}{2}$
$\Rightarrow \sin ^{2} 2 x+\sin 2 x-2=0$
$\Rightarrow(\sin 2 x+2)(\sin 2 x-1)=0$
$\Rightarrow \sin 2 x=1(\because \sin 2 x \geq-1)$
$\therefore 2 x=(4 n+1) \frac{\pi}{2}$
$\Rightarrow x=(4 n+1) \frac{\pi}{4}$
$\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4}$
Hence, two solutions exist
334 (b)
Given, $\alpha<\beta<\gamma<\delta$
Also, $\sin \alpha=\sin \beta=\sin \gamma=\sin \delta=k$
$\therefore \quad \beta=\pi-\alpha, \quad \gamma=2 \pi+\alpha, \quad \delta=3 \pi-\alpha$
Now, $4 \sin \frac{\alpha}{2}+3 \sin \frac{\beta}{2}+2 \sin \frac{\gamma}{2}+\sin \frac{\delta}{2}$
$4 \sin \frac{\alpha}{2}+3 \sin \left(\frac{\pi-\alpha}{2}\right)+2 \sin \left(\frac{2 \pi+\alpha}{2}\right)+$
$\sin (3 \pi-\alpha) 2$
$=4 \sin \frac{\alpha}{2}+3 \cos \frac{\alpha}{2}-2 \sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}$
$=2 \sin \frac{\alpha}{2}+2 \cos \frac{\alpha}{2}$
$=2 \sqrt{\left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)^{2}}$
$=2 \sqrt{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}$
$=2 \sqrt{1+\sin \alpha}=2 \sqrt{1+k}$
335 (a)
Maximum value of $\sin \theta+\cos \theta=\sqrt{1+1}=\sqrt{2}$
336 (b)

Given, $2 \cos ^{2} x-1+2 \cos ^{2} x=2$
$\Rightarrow \quad \cos x= \pm \frac{\sqrt{3}}{2} \quad \therefore x=n \pi \pm \frac{\pi}{6}: n \in Z$
337 (c)
$(1+2 \sin \theta)^{2}+(\sqrt{3} \tan \theta-1)^{2}=0$
$\Rightarrow 1+2 \sin \theta=0$ and $\sqrt{3} \tan \theta-1=0$
$\therefore \sin \theta=-\frac{1}{2} \Rightarrow \theta=m \pi+(-1)^{m}\left(-\frac{\pi}{6}\right)$
and $\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=m \pi+\frac{\pi}{6}$
For common values, m must be odd
$i e, m=2 n+1$
$\Rightarrow \theta=2 n \pi+\frac{7 \pi}{6}$
338 (b)
We have,
$(2 \cos x-1)(3+2 \cos x)=0$
$\Rightarrow 2 \cos x-1=0 \quad[\because \cos x \neq-3 / 2]$
$\Rightarrow \cos x=\frac{1}{2} \Rightarrow x=\frac{\pi}{3}, \frac{5 \pi}{3} \in[0,2 \pi]$
339 (b)
We have,
$B=90^{\circ}$
$\therefore A+B+C=180^{\circ}$
$\Rightarrow A+C=90^{\circ} \Rightarrow B=A+C \Rightarrow B-C=A$
Now,
$\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$
$\Rightarrow \tan \frac{A}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}=\sqrt{\frac{b-c}{b+c}}$
340 (c)
$\cos (\theta+\phi)=m \cos (\theta-\phi)$
$\Rightarrow \cos \theta \cos \phi-\sin \theta \sin \phi$

$$
=m \cos \theta \cos \phi+m \sin \theta \sin \phi
$$

$\Rightarrow \cos \theta \cos \phi(1-m)=\sin \theta \sin \phi(1+m)$
$\Rightarrow \tan \theta=\left[\frac{1-m}{1+m}\right] \cot \phi$
341 (a)
In triangles $A B D$ and $A C D$, we have
$\frac{A B}{\sin B}=\frac{B D}{\sin \angle B A D}$ and $\frac{A D}{\sin C}=\frac{C D}{\sin \angle C A D}$
$\Rightarrow \frac{\sin C}{\sin B}=\frac{\sin \angle C A D}{\sin \angle B A D} \times \frac{B D}{C D}$
$\Rightarrow \frac{\sin \pi / 4}{\sin \pi / 3}=\frac{\sin \angle C A D}{\sin \angle B A D} \times \frac{1}{3} \Rightarrow \frac{\sin \angle B A D}{\sin \angle C A D}$

$$
=\frac{1}{3} \times \frac{\sqrt{3} / 2}{1 / \sqrt{2}}=\frac{1}{\sqrt{6}}
$$

342 (a)
$a \cos 2 x+b \sin 2 x$
$=a \cdot \frac{1-\tan ^{2} x}{1+\tan ^{2} x}+b \cdot \frac{2 \tan x}{1+\tan ^{2} x}$
$=a \cdot \frac{1-\frac{b^{2}}{a^{2}}}{1+\frac{b^{2}}{a^{2}}}+b \cdot \frac{2 \cdot \frac{b}{a}}{1+\frac{b^{2}}{a^{2}}} \quad\left[\because \tan x=\frac{b}{a}\right]$
$=\frac{a\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)}+\frac{2 b^{2} a}{a^{2}+b^{2}}$
$=\frac{a^{3}-a b^{2}+2 a b^{2}}{a^{2}+b^{2}}=\frac{a^{3}+a b^{2}}{a^{2}+b^{2}}=a$
343 (c)
We have,
$\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow \sin B=\frac{b \sin C}{c}$
$\Rightarrow \sin B=\frac{2 \sin 60^{\circ}}{\sqrt{6}}=\frac{2}{\sqrt{6}} \cdot \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{2}}$
$\Rightarrow B=45^{\circ} \quad\left[\because B \neq 135^{\circ}\right]$
$\therefore A=180^{\circ}-(B+C)=75^{\circ}$
Now,
$\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow a=\frac{b \sin A}{\sin B}=\frac{2 \sin 75^{\circ}}{\sin 45^{\circ}}=\sqrt{3}+1$
344 (d)
Let O be the centre of the pentagon. Then,
$\angle A_{1} O A_{2}=\angle A_{2} O A_{3}=\cdots \angle A_{5} O A_{1}=\frac{360^{\circ}}{5}=72^{\circ}$
In $\Delta A_{1} O A_{2}$, we have,
$A_{1} A_{2}^{2}=1^{2}+1^{2}-2 \times 1 \times 1 \times \cos 72^{\circ}$
In $\Delta A_{1} O A_{3}$, we have
$A_{1} A_{3}^{2}=1^{2}+1^{2}-2 \times 1 \times 1 \times \cos 144^{\circ}$
$\therefore\left(A_{1} A_{2}\right)\left(A_{1} A_{3}\right)$
$=\sqrt{2-2 \cos 72^{\circ}} \times \sqrt{2-2 \cos 144^{\circ}}$
$=2 \sqrt{1-\sin 18^{\circ}} \times \sqrt{1-\cos 36^{\circ}}$
$=2 \sqrt{1-\frac{\sqrt{5}-1}{4}} \times \sqrt{1-\frac{\sqrt{5}+1}{4}}=5$
345 (b)
Given, $x=\log \left[\cot \left(\frac{\pi}{4}+\theta\right)\right]$
$\Rightarrow \quad e^{x}=\left[\cot \left(\frac{\pi}{4}+\theta\right)\right]$
And $e^{-x}=\frac{1}{\cot \left(\frac{\pi}{4}+\theta\right)}=\tan \left(\frac{\pi}{4}+\theta\right)$

Now, $\sinh x=\frac{e^{x}-e^{-x}}{2}$
$=\frac{\cot \left(\frac{\pi}{4}+\theta\right)-\tan \left(\frac{\pi}{4}+\theta\right)}{2}$
$=\frac{1-\tan ^{2}\left(\frac{\pi}{4}+\theta\right)}{2 \tan \left(\frac{\pi}{4}+\theta\right)}=\frac{1}{\tan 2\left(\frac{\pi}{4}+\theta\right)}$
$=-\frac{1}{\cot 2 \theta}=-\tan 2 \theta$
346 (a)
Let $A B C$ be the right angled triangle whose angles are in A.P. Then,
$2 B=A+C$
Now, $A+B+C=180^{\circ} \Rightarrow 3 B=180^{\circ} \Rightarrow B=60^{\circ}$
So, let the angles be $A=30^{\circ}, B=60^{\circ}$ and $C=90^{\circ}$
$\therefore \frac{a}{\sin 30^{\circ}}=\frac{b}{\sin 60^{\circ}}=\frac{c}{\sin 90^{\circ}}=2 R$
$\Rightarrow a=R, b=\sqrt{3} R$ and $c=2 R$
Also,
$\Delta=\frac{1}{2} a b \sin 90^{\circ}=\frac{1}{2} a b=\frac{\sqrt{3}}{2} R^{2}$
$\therefore \frac{r}{s}=\frac{\Delta}{s^{2}}$
$\Rightarrow \frac{r}{S}=\frac{\frac{\sqrt{3}}{2} R^{2}}{\left(\frac{R+\sqrt{3} R+2 R}{2}\right)^{2}}=\frac{\sqrt{3}}{2} \times \frac{4}{(\sqrt{3}+3)^{2}}$

$$
=\frac{2 \sqrt{3}}{(\sqrt{3}+3)^{2}}
$$

$\Rightarrow \frac{r}{s}=\frac{2 \sqrt{3}(\sqrt{3}-3)^{2}}{(9-3)^{2}}=\frac{6 \sqrt{3}(\sqrt{3}-1)^{2}}{36}$
$\Rightarrow \frac{r}{s}=\frac{\sqrt{3}(4-2 \sqrt{3})}{6}=\frac{2-\sqrt{3}}{\sqrt{3}} \Rightarrow \frac{r}{2 s}=\frac{2-\sqrt{3}}{2 \sqrt{3}}$
347 (a)
Let $x=\cos 2 \theta+\cos \theta$. Then,
$x=2 \cos ^{2} \theta+\cos \theta-1$
$\Rightarrow x=-1+2\left(\cos ^{2} \theta+\frac{1}{2} \cos \theta\right)$
$\Rightarrow x=-1+2\left\{\left(\cos \theta+\frac{1}{4}\right)^{2}-\frac{1}{16}\right\}$
$\Rightarrow x=-\frac{9}{8}+2\left(\cos \theta+\frac{1}{4}\right)^{2}$
$\Rightarrow x \geq-\frac{9}{8} \quad\left[\because 2\left(\cos \theta+\frac{1}{4}\right)^{2} \geq 0\right]$
Hence, the minimum value of x is $-\frac{9}{8}$
348 (b)
$3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}$
$+4\left(\sin ^{6} x+\cos ^{6} x\right)$
$=3(1-2 \sin x \cos x)^{2}+6(1+2 \sin x \cos x)$
$+4\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x+\cos ^{4} x\right.$

$$
\left.-\sin ^{2} x \cos ^{2} x\right)
$$

$=3\left[1+4 \sin ^{2} x \cos ^{2} x-4 \sin x \cos x\right]$
$+6+12 \sin x \cos x+4\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}\right.$
$\left.-2 \sin ^{2} x \cos ^{2} x-\sin ^{2} x \cos ^{2} x\right]$
$=3+12 \sin ^{2} x \cos ^{2} x+6+4-12 \sin ^{2} x \cos ^{2} x$
$=13$
349 (b)
Let $a=3 x+4 y, b=4 x+3 y$ and $c=5 x+5 y$.
Then,
$c-a=2 x+y>0, c-b=x+2 y>0$
$\Rightarrow c>a$ and $c>b$
\Rightarrow Side c is the largest side
Now,
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos C=\frac{(3 x+4 y)^{2}(4 x+3 y)^{2}-(5 x+5 y)^{2}}{2(3 x+4 y)(4 x+3 y)}$
$\Rightarrow \cos C=-\frac{x y}{(3 x+4 y)(4 x+3 y)}<0$
$\Rightarrow C$ is an obtuse angle
Hence, the triangle is obtuse angled triangle
350 (c)
We have,
$\sin \beta=\sqrt{\sin \alpha \cos \alpha} \Rightarrow \sin ^{2} \beta=(1 / 2) \sin 2 \alpha$
Now,
$\Rightarrow \cos 2 \beta=1-2 \sin ^{2} \beta$
$\Rightarrow \cos 2 \beta=1-\sin 2 \alpha$
$\Rightarrow \cos 2 \beta=1+\cos \left(\frac{\pi}{2}+2 \alpha\right)=2 \cos ^{2}\left(\frac{\pi}{4}+\alpha\right)$
Again,
$\Rightarrow \cos 2 \beta=1-\sin 2 \alpha$
$\Rightarrow \cos 2 \beta=1-\cos \left(\frac{\pi}{2}-2 \alpha\right)=2 \sin ^{2}\left(\frac{\pi}{4}-\alpha\right)$
351 (c)
We have,
$\cos A \cos B+\sin A \sin B \sin C=1$
$\Rightarrow 2 \cos A \cos B+2 \sin A \sin B \sin C=2$
$\Rightarrow 2 \cos A \cos B+2 \sin A \sin B \sin C$

$$
=\cos ^{2} A
$$

$$
+\sin ^{2} A+\cos ^{2} B+\sin ^{2} B
$$

$\Rightarrow(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}$

$$
+2 \sin A \sin B(1-\sin C)=0
$$

$\Rightarrow \cos A-\cos B=0, \sin A-\sin B=0$ and
$1-\sin C=0$
$\Rightarrow A=B$ and $C=90^{\circ} a=b$ and $C=90^{\circ}$
Hence, the triangle is an isosceles right angled triangle
(c)

We have,
$\cos ^{2} x-2 \cos x=4 \sin x-\sin 2 x$
$\Rightarrow \cos x(\cos x-2)=-2 \sin x(\cos x-2)$
$\Rightarrow \cos x=-2 \sin x \quad[\because \cos x-2 \neq 0]$
$\Rightarrow \tan x=-\frac{1}{2} \Rightarrow x=\pi+\tan ^{-1}\left(-\frac{1}{2}\right)$
353 (c)
Area of
$\triangle A B C=\frac{1}{2} a b \sin C=\frac{1}{2} \times 1 \times 2 \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$
354 (d)
$\tan A \tan B=2$
$\Rightarrow \frac{\sin A \sin B}{\cos A \cos B}=2$
Using componendo and dividendo, we get
$\frac{\sin A \sin B+\cos A \cos B}{\sin A \sin B-\cos A \cos B}=\frac{2+1}{2-1}$
$\Rightarrow \frac{\cos (A-B)}{-\cos (A+B)}=\frac{3}{1}$
$\Rightarrow \frac{3 / 5}{-\cos (A+B)}$ $=\frac{3}{1} \quad\left[\because \cos (A-B)=\frac{3}{5}\right.$, given $]$
$\Rightarrow \cos (A+B)=-\frac{1}{5}$
355 (b)
We have,
$\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{3 \pi}{9}$
$=\left\{\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}\right\} \times \cos \frac{3 \pi}{9}$
$=\frac{\sin \left(2^{3} \pi / 9\right)}{2^{3} \times \sin \pi / 9} \times \cos \pi / 3=\frac{\sin 8 \pi / 9}{8 \sin \pi / 9} \times \frac{1}{2}=\frac{1}{8} \times \frac{1}{2}$

$$
=\frac{1}{16}
$$

357 (c)
We have,
$\frac{\tan 3 A}{\tan A}=k \Rightarrow \frac{3-1 \tan ^{2} A}{1-3 \tan ^{2} A}=k \Rightarrow \tan ^{2} A$

$$
=\frac{k-3}{3 k-1}
$$

Now,
$\frac{\sin 3 A}{\sin A}=3-4 \sin ^{2} A=3-\frac{4}{1+\cot ^{2} A}$
$=3-\frac{4}{1+\frac{3 k-1}{k-3}}=\frac{2 k}{k-1}$
Again, $\frac{\sin 3 A}{\sin A}=3-4 \sin ^{2} A$
$\Rightarrow \frac{2 K}{k-1}=3-4 \sin ^{2} A$
$\Rightarrow 4 \sin ^{2} A=3-\frac{2 k}{k-1}$
$\Rightarrow \sin ^{2} A=\frac{k-3}{4(k-1)}$
$\Rightarrow 0 \leq \frac{k-3}{4(k-1)} \leq 1 \quad\left[\because 0 \leq \sin ^{2} A \leq 1\right]$
$\Rightarrow k<\frac{1}{3}$ or, $k>3$
Hence, $\frac{\sin 3 A}{\sin A}=\frac{2 k}{k-1}$, where $k<\frac{1}{3}$ or, $k>3$
358 (d)
We have,
$\sin \theta-\cos \theta=\sqrt{2} \sin \left(\theta-\frac{\pi}{4}\right)$
$\therefore \sin \theta-\cos \theta<0$
$\Rightarrow \sin \left(\theta-\frac{\pi}{4}\right)<0$
$\Rightarrow 2 n \pi-\pi<\theta-\frac{\pi}{4}<2 n \pi, n \in Z$
$\Rightarrow 2 n \pi-\frac{3 \pi}{4}<\theta<2 n \pi+\frac{\pi}{4}, n \in Z$
359 (d)
We have,
$\tan 2 C=\tan \{(A+B+C)-(A+B-C)\}$
$\Rightarrow \tan 2 C=\frac{\tan (A+B+C)-\tan (A+B-C)}{1+\tan (A+B+C) \tan (A+B-C)}$
$\Rightarrow \tan 2 C=\frac{\frac{\lambda}{y}-\frac{\lambda}{x}}{1+\frac{\lambda}{y} \times \frac{\lambda}{x}}=\frac{\lambda(x-y)}{\lambda^{2}+x y}$
360 (c)
Given, $\alpha+\beta=\frac{\pi}{2}, \beta+\gamma=\alpha$
$\Rightarrow \beta=\frac{\pi}{2}-\alpha, \quad \beta+\gamma=\alpha$
$\Rightarrow \tan \beta=\tan \left(\frac{\pi}{2}-\alpha\right)$ and $\tan (\beta+\gamma)=\tan \alpha$
$\Rightarrow \tan \beta=\cot \alpha$
And $\frac{\tan \beta+\tan \gamma}{1-\tan \beta \tan \gamma}=\tan \alpha$
$\Rightarrow \frac{\tan \beta+\tan \gamma}{1-\cot \alpha \tan \gamma}=\frac{\tan \alpha}{1} \quad$ [from Eq. (i)]

$$
\begin{aligned}
& \Rightarrow \tan \beta+\tan \gamma=\tan \alpha-\tan \gamma \\
& \Rightarrow \tan \alpha=\tan \beta+2 \tan \gamma
\end{aligned}
$$

361 (d)
We have,
$\frac{\tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}}{1+\tan \frac{6 \pi}{15} \tan \frac{\pi}{15}}=\tan \frac{\pi}{3}$
$\Rightarrow \tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}=\sqrt{3}+\sqrt{3} \tan \frac{6 \pi}{15} \tan \frac{\pi}{15}$
$\Rightarrow \tan \frac{6 \pi}{15}-\tan \frac{\pi}{15}-\sqrt{3} \tan \frac{6 \pi}{15} \tan \frac{\pi}{15}=\sqrt{3}$
362 (a)
$\frac{\cos A}{\cos B}=n$ and $\frac{\sin A}{\sin B}=m$
$\therefore m^{2}-n^{2}=(m+n)(m-n)$
$=\frac{\sin (A+B) \sin (A-B)}{\cos ^{2} B \sin ^{2} B}$
$\Rightarrow m^{2}-n^{2}=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} B \sin ^{2} B}$
$\Rightarrow\left(m^{2}-n^{2}\right) \sin ^{2} B=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} B}$

$$
=\frac{\cos ^{2} B-\cos ^{2} A}{\cos ^{2} B}
$$

$\Rightarrow\left(m^{2}-n^{2}\right) \sin ^{2} B=1-\frac{\cos ^{2} A}{\cos ^{2} B}=1-n^{2}$
363 (a)
$x=\sin 130^{\circ}+\cos 130^{\circ}$
$=\sin 50^{\circ}-\sin 40^{\circ}>0$
$\left[\because \sin x\right.$ is increasing for $\left.0<x<\frac{\pi}{2}\right]$
364 (c)
We have,
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$
$=\left(\tan 9^{\circ}+\tan 81^{\circ}\right)-\left(\tan 27^{\circ}+\tan 63^{\circ}\right)$
$=\frac{1}{\cos 9^{\circ} \cos 81^{\circ}}-\frac{1}{\cos 27^{\circ} \cos 63^{\circ}}$
$=\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$
$=2\left\{\frac{\sin 54-\sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}}\right\}=2\left\{\frac{2 \cos 36^{\circ} \sin 18^{\circ}}{\sin 18^{\circ} \cos 36^{\circ}}\right\}=4$
365 (c)
We have,
$\sqrt{4 \sin ^{4} \alpha+\sin ^{2} 2 \alpha}+4 \cos ^{2}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$
$=\sqrt{4 \sin ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)}$

$$
+4\left\{\frac{1+\cos \left(\frac{\pi}{2}-\alpha\right)}{2}\right\}
$$

$=2|\sin \alpha|+2(1+\sin \alpha)$
$=-2 \sin \alpha+2(1+\sin \alpha)=2$
$[\because \sin \alpha<0$
for $\alpha \in 3 \pi / 2$]
366 (d)
$5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$
$\Rightarrow 5\left(2 \cos ^{2} \theta-1\right)+(1+\cos \theta)+1=0$
$\Rightarrow 10 \cos ^{2} \theta+\cos \theta-3=0$
$\Rightarrow(5 \cos \theta+3)(2 \cos \theta-1)=0$
$\Rightarrow \cos \theta=\frac{1}{2}, \cos \theta=-\frac{3}{5} \Rightarrow \theta$

$$
=\frac{\pi}{3}, \pi-\cos ^{-1}\left(\frac{3}{5}\right)
$$

367
(b)

Given, $\sin ^{4} x+\cos ^{4} x=a$
$\Rightarrow \sin ^{4} x+\left(1-\sin ^{2} x\right)^{4}=a$
$2 \sin ^{4} x-2 \sin ^{2} x+(1-a)=0$
For real solution, $D \geq 0$
$\Rightarrow(-2)^{2}-4 \times 2(1-a) \geq 0$
$\Rightarrow 1-2+2 a \geq 0$
$\Rightarrow a \geq \frac{1}{2}$
Hence, option (b) is true
368 (b)
Equation first can be written as

$$
\begin{aligned}
x \sin a+y \times 2 & \sin a \cos a+z \\
& \times \sin a\left(3-4 \sin ^{2} a\right) \\
& =2 \times 2 \sin a \cos a \cos 2 a
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow x+2 y \cos a & +z\left(3+4 \cos ^{2} a-4\right) \\
& =4 \cos a\left(2 \cos ^{2} a-1\right) \text { as } \sin a \\
& \neq 0
\end{aligned}
$$

$$
\Rightarrow 8 \cos ^{3} a-4 z \cos ^{2} a
$$

$$
-(2 y+4) \cos a+(z-x)=0
$$

$$
\Rightarrow \cos ^{3} a-\left(\frac{z}{2}\right) \cos ^{2} a
$$

$$
-\left(\frac{y+2}{4}\right) \cos a+\left(\frac{z-x}{8}\right)=0
$$

Which shows that $\cos a$ is a root of the equation

$$
t^{3}-\left(\frac{z}{2}\right) t^{2}-\left(\frac{y+2}{4}\right) t+\left(\frac{z-x}{8}\right)=0
$$

Similarly, from second and third equation we can verify that $\cos b$ and $\cos c$ are the roots of the given equation

369 (c)
Since, $a \cos x+b \sin x=c$
$\therefore a \frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}+b \frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=c$
$\Rightarrow a-a \tan ^{2} \frac{x}{2}+2 b \tan \frac{x}{2}=c\left(1+\tan ^{2} \frac{x}{2}\right)$
$\Rightarrow(c+a) \tan ^{2} \frac{x}{2}-2 b \tan \frac{x}{2}+c-a=0$
Since, α, β are both roots of the given equation
$\therefore \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}=\frac{2 b}{c+a}$
and $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}=\frac{c-a}{c+a}$
Now, $\tan \left(\frac{\alpha+\beta}{2}\right)=\frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}}{1-\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2}}$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{\frac{2 b}{c+a}}{1-\frac{c-a}{c+a}}$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{b}{a}$
370 (a)

In a $\triangle A B C$, we have
$\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1$
$\Rightarrow \frac{1}{3} \times \frac{2}{3}+\frac{2}{3} \tan \frac{C}{2}+\frac{1}{3} \tan \frac{C}{2}=1 \Rightarrow \tan \frac{C}{2}=\frac{7}{9}$
(b)

Given, $\tan \theta=\frac{1}{\sqrt{7}} \Rightarrow \cot \theta=\sqrt{7}$
Now, $\frac{\left(\operatorname{cosec}^{2} \theta-\sec ^{2} \theta\right)}{\left(\operatorname{cosec}^{2}+\sec ^{2} \theta\right)}=\frac{\left(1+\cot ^{2} \theta-1-\tan ^{2} \theta\right.}{1+\cot ^{2} \theta+1+\tan ^{2} \theta}$
$=\frac{\cot ^{2} \theta-\tan ^{2} \theta}{2+\cot ^{2} \theta+\tan ^{2} \theta}$
$=\frac{(\sqrt{7})^{2}-\left(\frac{1}{\sqrt{7}}\right)^{2}}{2+(\sqrt{7})^{2}+\left(\frac{1}{\sqrt{7}}\right)^{2}}$
$=\frac{49-1}{7} \times \frac{7}{63+1}=\frac{48}{64}=\frac{3}{4}$
372 (b)
We have,
$\tan 3 x=1$
$\Rightarrow \tan 3 x=\tan \frac{\pi}{4}$
$\Rightarrow 3 x=n \pi+\frac{\pi}{4} \Rightarrow x=\frac{n \pi}{3}+\frac{\pi}{12}, n \in Z$
373 (a)
We have,
$3 \tan A-4=0$
$\Rightarrow \tan A=\frac{4}{3}$
$\Rightarrow \sin A=-\frac{4}{5}, \cos A=-\frac{3}{5}\left[\because \pi<A<\frac{3 \pi}{2}\right]$
$\therefore 5 \sin 2 A+3 \sin A+4 \cos A$
$=10 \sin A \cos A+3 \sin A+4 \cos A$

$$
=10\left(\frac{12}{25}\right)-\frac{12}{5}-\frac{12}{5}=0
$$

374 (c)
$\cos 2 \theta=\sin \theta$
$\Rightarrow 1-2 \sin ^{2} \theta=\sin \theta$
$\Rightarrow 2 \sin ^{2} \theta+\sin \theta-1=0$
$\Rightarrow 2 \sin ^{2} \theta+2 \sin \theta-\sin \theta-1=0$
$\Rightarrow 2 \sin \theta(\sin \theta+1)-(\sin \theta+1)=0$
$\Rightarrow(\sin \theta+1)(2 \sin \theta-1)=0$
$\Rightarrow \sin \theta=-1, \quad \sin \theta=\frac{1}{2}$
$\Rightarrow \sin \theta=\sin \frac{3 \pi}{2}, \sin \theta=\sin \frac{\pi}{6}$
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{3 \pi}{2}$,
$\Rightarrow \quad \theta=m \pi+(-1)^{m} \frac{\pi}{6}$
For $\theta \in(0,2 \pi)$
$\theta=\frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$
Hence number of solutions $=3$
(b)

We have,
$\sin ^{4} x-2 \cos ^{2} x+a^{2}=0$
$\Rightarrow y^{2}-2(1-y)+a^{2}=0$, where $\sin ^{2} x=y$
$\Rightarrow y^{2}+2 y+a^{2}-2=0$
$\Rightarrow y=-1 \pm \sqrt{3-a^{2}}$
For y to be real, we must have
Disc. $\geq 0 \Rightarrow 4-4\left(a^{2}-2\right) \geq 0 \Rightarrow a^{2} \leq 3 \ldots$ (i)
But, $\sin ^{2} x=y$. Therefore,
$0 \leq y \leq 1$
$\Rightarrow 0 \leq-1+\sqrt{3-a^{2}} \leq 1$
$\Rightarrow 1 \leq \sqrt{3-a^{2}} \leq 2$
$\Rightarrow 1 \leq 3-a^{2} \leq 4$
$\Rightarrow 2-a^{2} \geq 0 \Rightarrow a^{2} \leq 2$
From (i) and (ii), we have
$a^{2} \leq 2 \Rightarrow-\sqrt{2} \leq a \leq \sqrt{2}$
(d)

Given, $A+B+C=\pi$
$\Rightarrow \frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}$
$\Rightarrow \tan \left(\frac{A+B}{2}\right)=\tan \left(\frac{\pi}{2}-\frac{C}{2}\right)=\cot \frac{C}{2}$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\cot \frac{C}{2}$
$\Rightarrow \frac{\frac{1}{3}+\frac{2}{3}}{1-\frac{1}{3} \times \frac{2}{3}}=\cot \frac{C}{2}$
$\left[\because \tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}\right.$ (given) $]$
$\Rightarrow \cot \frac{C}{2}=\frac{9}{7}$
$\Rightarrow \tan \frac{C}{2}=\frac{7}{9}$
377 (d)
Given, $x+\frac{1}{x}=2 \cos \alpha$
$\Rightarrow x^{2}-2 x \cos \alpha+1=0$
$\Rightarrow x=\frac{2 \cos \alpha \pm \sqrt{4 \cos ^{2} \alpha-4}}{2}$
$\Rightarrow x=\cos \alpha+i \sin \alpha$
Now, $x^{n}=(\cos \alpha+i \sin \alpha)^{n}=\cos n \alpha+i \sin n \alpha$
And $\frac{1}{x^{n}}=(\cos \alpha-i \sin \alpha)^{n}=\cos n \alpha-i \sin n \alpha$
$\therefore \quad x^{n}+\frac{1}{x^{n}}=\cos n \alpha$ $+i \sin n \alpha+\cos n \alpha-i \sin n \alpha$
$=2 \cos n \alpha$
378 (b)
We have,
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{m+1} \times \frac{1}{2 m+1}}$
$\Rightarrow \tan (\alpha+\beta)=\frac{2 m^{2}+2 m+1}{2 m^{2}+2 m+1}=1 \Rightarrow \alpha+\beta=\frac{\pi}{4}$
379 (a)
Let $A M$ be perpendicular from A on $B C$ such that
$A M=p$. Then, $B C=4 p$. Let $A B=x$ and $A C=y$
Then,
$\Rightarrow x^{2}+y^{2}=(4 p)^{2}$
In $\triangle A B M$, we have
$p^{2}+B M^{2}=x^{2}$
$\Rightarrow p^{2}+(49-k)^{2}=x^{2}$, where $k=C M$

In $\triangle A C M$, we have
$p^{2}=C M^{2}=y^{2} \Rightarrow p^{2}+k^{2}=y^{2}$
Adding (i) and (ii), we get
$2 p^{2}+(4 p-k)^{2}=x^{2}+y^{2}$
$\Rightarrow 2 p^{2}+(4 p-k)^{2}=(4 p)^{2} \quad\left[\because x^{2}+y^{2}=(4 p)^{2}\right]$
$\Rightarrow k=2 p-\sqrt{3} p$
$\Rightarrow B M=B C-C M \Rightarrow B M=4 p-(2 p-\sqrt{3} p)$
$=2 p+\sqrt{3} p$
$\therefore \tan B=\frac{A M}{B M} \Rightarrow \tan B=\frac{p}{(2+\sqrt{3}) p}=2-\sqrt{3}$ $\Rightarrow B=15^{\circ}$
380 (d)
We have,
$\cot \theta \cot 7 \theta+\cot \theta \cot 4 \theta+\cot 4 \theta \cot 7 \theta=1$
$\Rightarrow \cos \theta \cos 4 \theta \sin 7 \theta+\cos 4 \theta \cos 7 \theta \sin \theta$
$+\cos 7 \theta \cos \theta \sin 4 \theta-\sin \theta \sin 4 \theta \sin 7 \theta=0$
$\Rightarrow \sin (\theta+4 \theta+7 \theta)=0$
$\Rightarrow \sin 12 \theta=0 \Rightarrow 12 \theta=n \pi, n \in Z \Rightarrow \theta=\frac{n \pi}{12}, n$ $\in Z$
381 (c)
We have
$\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{s-a}{\Delta}+\frac{s-b}{\Delta}+\frac{s-c}{\Delta}=\frac{s}{\Delta}=\frac{1}{r}$
382 (b)
$\tan (A+B+C)$
$=\frac{[\tan A+\tan B+\tan C-\tan A \tan B \tan C]}{[1-\tan A \tan B-\tan B \tan C-\tan C \tan A]}$
$\Rightarrow \tan \left(90^{\circ}\right)$
$=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$
$\Rightarrow \tan A \tan B+\tan B \tan C+\tan C \tan A=1$

383 (a)
We have,
$\cos x>\sin x$ for $0<x<\pi / 4$
$\Rightarrow \cos 10^{\circ}>\sin 10^{\circ} \Rightarrow \cos 10^{\circ}-\sin 10^{\circ}>0$
384 (d)
We have, $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$, for all x
$\Rightarrow a_{1}+a_{2} \cos 2 x+a_{3}\left(\frac{1-\cos 2 x}{2}\right)=0$, for all x
$\Rightarrow\left(a_{1}+\frac{a_{3}}{2}\right)+\left(a_{2}-\frac{a_{3}}{2}\right) \cos 2 x=0, \forall x$
$\Rightarrow a_{1}+\frac{a_{3}}{2}=0$ and $a_{2}-\frac{a_{3}}{2}=0$
$\Rightarrow a_{1}=-\frac{k}{2}, a_{2}=\frac{k}{2}, a_{3}=k$, where, $k \in R$
Hence, the solutions are $\left(-\frac{k}{2}, \frac{k}{2}, k\right)$, where k is any real number
Thus, the number of triplets is infinite
385 (d)
$\tan 60^{\circ}=\tan \left(40^{\circ}+20^{\circ}\right)$
$\Rightarrow \sqrt{3}=\frac{\tan 40^{\circ}+\tan 20^{\circ}}{1-\tan 40^{\circ} \cdot \tan 20^{\circ}}$
$\Rightarrow \sqrt{3}-\sqrt{3} \tan 40^{\circ} \tan 20^{\circ}=\tan 40^{\circ}+\tan 20^{\circ}$
$\Rightarrow \tan 40^{\circ}+\tan 20^{\circ}+\sqrt{3} \tan 40^{\circ} \tan 20^{\circ}=\sqrt{3}$
386 (b)
$\because \cos (315 \pi+x)=(-1)^{315} \cos x=-\cos x$
$\therefore 4 \cos ^{3} x-4 \cos ^{2} x-\cos (315 \pi+x)=1$
$\Rightarrow 4 \cos ^{3} x-4 \cos ^{2} x+\cos x-1=0$
$\Rightarrow\left(4 \cos ^{2} x+1\right)(\cos x-1)=0$
$\Rightarrow \cos x=1,4 \cos ^{2} x+1 \neq 0$
$\Rightarrow \cos x=\cos 0$
$\Rightarrow x=2 n \pi, n \in I$
$\therefore x=2 \pi, 4 \pi, 6 \pi, 8 \pi, \ldots, 100 \pi(\because 0<x<315)$
(ie, $100 \pi<315<101 \pi$)
Required arithmetic mean
$=\frac{2 \pi+4 \pi+6 \pi+8 \pi+\ldots+100 \pi}{50}$
$=\frac{2 \pi(1+2+3+4+\ldots+50)}{50}$
$=\frac{2 \pi \cdot \frac{50}{2} \cdot 51}{50}=51 \pi$
387 (d)
We have,
$\sum_{k=1}^{3} \cos ^{2}(2 k-1) \frac{\pi}{12}$
$=\cos ^{2} \frac{\pi}{12}+\cos ^{2} \frac{3 \pi}{12}+\cos ^{2} \frac{5 \pi}{12}$
$=\sin ^{2}\left(\frac{\pi}{2}-\frac{\pi}{12}\right)+\cos ^{2} \frac{5 \pi}{12}+\cos ^{2} \frac{\pi}{4}$
$=\sin ^{2} \frac{5 \pi}{12}+\cos ^{2} \frac{5 \pi}{12}+\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2}$
388 (a)
$\because \cos x=\sqrt{1-\sin 2 x}$
$\Rightarrow \cos x=|\sin x-\cos x|$
There are two cases arise.
Case I $\sin x \leq \cos x$
$\Rightarrow \cos x=\cos x-\sin x$
$\Rightarrow \sin x=0$
where, $x \in\left[0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right]$
$\Rightarrow x=2 \pi$, neglecting $x=\pi$
Case II $\sin x>\cos x$
$\Rightarrow \tan x=2$
where, $x \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
$\because \tan x=2$
$\Rightarrow x=\tan ^{-1}(2)$
Thus, the given equation has two solutions
389 (b)
We have,
$\sin 2 x \cos 2 x \cos 4 x=\lambda \Rightarrow \sin 8 x=4 \lambda$
This equation will have a solution if
$|4 \lambda| \leq 1 \Rightarrow \lambda \in[-1 / 4,1 / 4]$
390 (b)
We have,
$\sin x+\sin y=3(\cos y-\cos x)$
$\Rightarrow \sin x+3 \cos x=3 \cos y-\sin y$
$\Rightarrow r \cos (x-\alpha)=r \cos (y+\alpha)$, where
$r=\sqrt{10}, \tan \alpha=\frac{1}{3}$
$\Rightarrow x-\alpha= \pm(y+\alpha)$
$\Rightarrow x=-y$ or $x-y=2 \alpha$
Clearly, $x=-y$ satisfies equation (i).
$\therefore \frac{\sin 3 x}{\sin 3 y}=-\frac{\sin 3 y}{\sin 3 y}=-1$
391 (a)
Since, $\tan \alpha=k \cot \beta$ or $\tan \alpha \tan \beta=k$
Now, $\frac{\cos (\alpha-\beta)}{\cos (\alpha+\beta)}=\frac{\cos \alpha \cos \beta+\sin \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta}$
$=\frac{1+\tan \alpha \tan \beta}{1-\tan \alpha \tan \beta}=\frac{1+k}{1-k}$
392
Given, $\theta=\frac{2 \sin x}{1+\sin x+\cos x}$
$\Rightarrow \theta=\frac{4 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$\Rightarrow \theta=\frac{2 \sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}} \times \frac{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)}{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)}$
$\Rightarrow \theta=\frac{1-\cos x+\sin x}{1+\sin x}$
393 (a)
We have,
$\frac{s-a}{\Delta}=\frac{1}{8}, \frac{s-b}{\Delta}=\frac{1}{12}$ and $\frac{s-c}{\Delta}=\frac{1}{24}$
$\Rightarrow r_{1}=8, r_{2}=12$ and $r_{3}=24$
$\therefore r=\frac{\sum r_{1} r_{2}}{r_{1} r_{2} r_{3}} \Rightarrow r=\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}} \Rightarrow r=4$
Now, $b=\sqrt{\left(r_{2}-r\right)\left(r_{1}+r_{3}\right)} \Rightarrow b$

$$
=\sqrt{(12-8) \times(8 \times 24)}=16
$$

394 (d)
We have,
$\cos ^{2}\left(\frac{1}{2} p x\right)+\cos ^{2}\left(\frac{1}{2} q x\right)=1$
$\Rightarrow 1+\cos p x+1+\cos q x=2$
$\Rightarrow \cos p x+\cos q x=0$
$\Rightarrow \cos p x=\cos (\pi-q x)$
$\Rightarrow p x=2 n \pi \pm \pi-q x, n \in Z$
$\Rightarrow x=\frac{(2 n+1) \pi}{p+q}, \frac{(2 n-1) \pi}{p-q}, n \in Z$
Clearly, the values given by $x=\frac{(2 n+1) \pi}{p+q}, n \in Z$
form an A.P. with common difference $\frac{2 \pi}{p+q}$ and the values given by $x=\frac{(2 n-1) \pi}{p-q}, n \in Z$ form an A.P.
with common difference $\frac{2 \pi}{p-q}$
395 (c)
We have,
$\sec ^{2} \theta=\sqrt{2}\left(1-\tan ^{2} \theta\right)$
$\Rightarrow\left(1+\tan ^{2} \theta\right)=\sqrt{2}\left(1-\tan ^{2} \theta\right)$
$\Rightarrow \cos 2 \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \cos 2 \theta=\cos \frac{\pi}{4}$
$\Rightarrow 2 \theta=2 n \pi \pm \frac{\pi}{4}, n \in Z \Rightarrow \theta=n \pi \pm \frac{\pi}{8}, n \in Z$
396 (c)
Given, $\tanh ^{-1}(x+i y)=\frac{1}{2} \tanh ^{-1}\left(\frac{2 x}{1+x^{2}+y^{2}}\right)+$ $\frac{i}{2} \tan ^{-1}\left(\frac{2 y}{1-x^{2}-y^{2}}\right) ; x, y \in R$
Put $x=0$,
$\tanh ^{-1}(i y)=\frac{1}{2} \tanh ^{-1}(0)+\frac{i}{2} \tan ^{-1}\left(\frac{2 y}{1-y^{2}}\right)$
$=0+\frac{i}{2} \tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right) \quad($ put $y=\tan \theta)$
$=\frac{i}{2} \tan ^{-1}(\tan 2 \theta)$
$=\frac{i}{2} 2 \theta$
$=i \tan ^{-1} y$
397 (a)
At the intersection point of $y=\cos x$ and $y=\sin 3 x$, we have
$\cos x=\sin 3 x$
$\Rightarrow \cos x=\cos \left(\frac{\pi}{2}-3 x\right)$
$\Rightarrow x=2 n \pi \pm\left(\frac{\pi}{2}-3 x\right)$
$\Rightarrow x=\frac{\pi}{4}, \frac{\pi}{8} \quad[\because-\pi / 2 \leq x \leq \pi / 2]$
So, $y=\cos \frac{\pi}{4}$ at $x=\frac{\pi}{4}$ and $y=\cos \frac{\pi}{8}$, at $x=\frac{\pi}{8}$
Thus, the points are $(\pi / 4,1 / \sqrt{2})$ and $(\pi /$
$8, \cos \pi / 8)$
398 (d)
We have,
$A=\cos ^{2} \theta+\sin ^{4} \theta$
$\Rightarrow A=\cos ^{2} \theta+\sin ^{2} \theta \cdot \sin ^{2} \theta$
$\Rightarrow A \leq \cos ^{2} \theta+\sin ^{2} \theta \Rightarrow A \leq 1 \quad\left[\because \sin ^{2} \theta \leq 1\right]$
Again,
$A=\cos ^{2} \theta+\sin ^{4} \theta=\left(1-\sin ^{2} \theta\right)+\sin ^{4} \theta$
$\Rightarrow A=\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2}+\frac{3}{4}$

$$
\geq \frac{3}{4} \quad\left[\because\left(\sin ^{2} \theta-1 / 2\right)^{2} \geq 0\right]
$$

Hence, $\frac{3}{4} \leq A \leq 1$
399 (b)
We have, $\sin (\pi+\theta)=-\sin \theta$
$\therefore \sin 190^{\circ}=-\sin 10^{\circ}, \sin 200^{\circ}=-\sin 20^{\circ}$,
$\sin 210^{\circ}=-\sin 30^{\circ}, \sin 360^{\circ}=\sin 180^{\circ}=0$
Thus, all the terms in the given series cancel with each other. Consequently, the sum is zero
400 (c)
$5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$
$=5 \cos \theta+3\left(\cos \theta \cos \frac{\pi}{3}-\sin \theta \sin \frac{\pi}{3}\right)+3$
$=5 \cos \theta+\frac{3}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3$
$=\frac{13}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3$
\therefore maximum value $=3+\sqrt{\left(\frac{13}{2}\right)^{2}+\left(-\frac{3 \sqrt{3}}{2}\right)^{2}}$
$=3+\sqrt{\frac{196}{4}}=3+7=10$
401 (c)
Since, $f(x)$ is a continuous decreasing function on $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
$\therefore f(x)$ attains every value between $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
Its minimum value
$f\left(\frac{\pi}{3}\right)=\frac{1}{2}-\frac{\pi}{3}\left(1+\frac{\pi}{3}\right)$
And maximum value
$f\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{\pi}{6}\left(1+\frac{\pi}{6}\right)$

402 (a)
We have,
$\frac{x}{a} \cos \alpha+\frac{y}{b} \sin \alpha=1$
$\frac{x}{a} \cos \beta+\frac{y}{b} \sin \beta=1$
By cross-multiplication, we have
$\frac{\frac{x}{a}}{\sin \beta-\sin \alpha}=\frac{\frac{y}{b}}{\cos \alpha-\cos \beta}=\frac{1}{\sin (\beta-\alpha)}$
$=\frac{x}{a}=\frac{\sin \beta-\sin \alpha}{\sin (\beta-\alpha)}$ and $\frac{y}{b}=\frac{\cos \alpha-\cos \beta}{\sin (\beta-\alpha)}$
$\Rightarrow \frac{x}{a}=\frac{\left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\beta-\alpha}{2}\right)}$ and $\frac{y}{b}=\frac{\sin \left(\frac{\alpha+\beta}{2}\right)}{\cos \left(\frac{\beta-\alpha}{2}\right)}$
$\Rightarrow \frac{x^{2}}{a^{2}}-1=\frac{\cos ^{2}\left(\frac{\alpha+\beta}{2}\right)-\cos ^{2}\left(\frac{\beta-\alpha}{2}\right)}{\cos ^{2}\left(\frac{\beta-\alpha}{2}\right)}$
And,
$\frac{y^{2}}{b^{2}}-1=\frac{\sin ^{2}\left(\frac{\alpha+\beta}{2}\right)-\cos ^{2}\left(\frac{\beta-\alpha}{2}\right)}{\cos ^{2}\left(\frac{\beta-\alpha}{2}\right)}$
$\Rightarrow \frac{x^{2}}{a^{2}}-1=\frac{\sin ^{2}\left(\frac{\alpha-\beta}{2}\right)-\sin ^{2}\left(\frac{\alpha+\beta}{2}\right)}{\cos ^{2}\left(\frac{\alpha-\beta}{2}\right)}$
And,

$$
\begin{aligned}
& \frac{y^{2}}{b^{2}}-1=\frac{\cos ^{2}\left(\frac{\alpha-\beta}{2}\right)-\sin ^{2}\left(\frac{\alpha+\beta}{2}\right)}{\cos ^{2}\left(\frac{\alpha-\beta}{2}\right)} \\
& \Rightarrow \frac{x^{2}}{a^{2}}-1=\frac{-\sin \alpha \sin \beta}{\cos ^{2}\left(\frac{\alpha-\beta}{2}\right)} \text { and } \frac{y^{2}}{b^{2}}-1 \\
& =-\frac{\cos \alpha \cos \beta}{\cos ^{2}\left(\frac{\alpha-\beta}{2}\right)} \\
& \Rightarrow \frac{\frac{x^{2}}{a^{2}}-1}{\frac{y^{2}}{b^{2}}-1}=\tan \alpha \tan \beta \\
& \Rightarrow \frac{b^{2}\left(x^{2}-a^{2}\right)}{a^{2}\left(y^{2}-b^{2}\right)}=\frac{\frac{\sin \alpha \sin \beta}{b^{2}}}{\frac{\cos \alpha \cos \beta}{a^{2}}} \\
& \Rightarrow \frac{x^{2}-a^{2}}{y^{2}-b^{2}}=-1 \quad\left[\because \frac{\cos \alpha \cos \beta}{a^{2}}+\frac{\sin \alpha \sin \beta}{b^{2}}\right. \\
& =0 \text {] } \\
& \Rightarrow x^{2}+y^{2}=a^{2}+b^{2}
\end{aligned}
$$

Hence, option (a) is correct
403 (a)
$\left(1+\cos \frac{\pi}{6}\right)\left(1+\cos \frac{\pi}{3}\right)\left(1+\cos \frac{2 \pi}{3}\right)\left(1+\cos \frac{7 \pi}{6}\right)$
$=\left(1+\frac{\sqrt{3}}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)$
$=\left(1-\frac{3}{4}\right)\left(1-\frac{1}{4}\right)=\frac{1}{4} \times \frac{3}{4}=\frac{3}{16}$

404 (b)
Given, $\cos p \theta=-\cos q \theta=\cos (\pi+q \theta)$
$\Rightarrow p \theta=2 n \pi \pm(\pi+q \theta), n \in I$
$\Rightarrow \theta=\frac{(2 n+1) \pi}{p-q}$ or $\frac{(2 n-1) \pi}{p+q}, n \in I$
Angle $\theta=\frac{(2 n+1) \pi}{p-q}$ gives an AP with common
difference $\frac{2 \pi}{p-q}$ and $\theta=\frac{(2 n-1) \pi}{p-q}$ gives also an AP with common difference $\frac{2 \pi}{p+q}$
Certainly, $\frac{2 \pi}{p+q}<\left|\frac{2 \pi}{p-q}\right|$
\therefore The smallest common difference is $\frac{2 \pi}{p+q}$

405 (a)

We have,
$\sin ^{4} \theta+\cos ^{4} \theta=a$
$\Rightarrow\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta=a$
$\Rightarrow 1-\frac{1}{2} \sin ^{2} 2 \theta=a$
$\Rightarrow 1-\frac{1}{2}\left(\frac{1-\cos 4 \theta}{2}\right)=a$
$\Rightarrow \frac{3}{4}+\frac{1}{4} \cos 4 \theta=a$
$\Rightarrow \cos 4 \theta=4 a-3$
Now,
$-1 \leq \cos 4 \theta \leq 1 \Rightarrow-1 \leq 4 a-3 \leq 1 \Rightarrow 2 \leq 4 a$

$$
\leq 4 \Rightarrow \frac{1}{2} \leq a \leq 1
$$

406 (b)

1. Given, $\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta$
$\Rightarrow \frac{\cos \theta-\sin \theta}{\cos \theta \sin \theta}=\frac{1}{\cos \theta \sin \theta}$
$\Rightarrow \cos \theta-\sin \theta=1 \Rightarrow \cos \left(\frac{\pi}{4}+\theta\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\pi}{4}+\theta=2 n \pi \pm \frac{\pi}{4} \Rightarrow$ Solution exist
2. $\operatorname{cosec} \theta \cdot \sec \theta=1$
$\Rightarrow \sin \theta \cos \theta=1$
$\Rightarrow 2 \sin \theta \cos \theta=2$
$\Rightarrow \sin 2 \theta=2$
As we know $\sin \theta$ is not greater than 1
\therefore The above equation has no solution exist
407 (a)
We have,

$$
\begin{aligned}
& \begin{array}{l}
y=\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\frac{\sin \theta(1+2 \cos \theta)}{\cos \theta(1+2 \cos \theta)} \\
\quad=\tan \theta
\end{array} \\
& \therefore y \in(-\infty, \infty)
\end{aligned}
$$

408 (b)
The equation $7 \cos \theta+5 \sin \theta=2 k+1$ possesses a solution, if
$-\sqrt{7^{2}+5^{2}} \leq 2 k+1 \leq \sqrt{7^{2}+5^{2}}$
$\Rightarrow-\sqrt{74} \leq 2 k+1 \leq \sqrt{74}$
$\Rightarrow-8 \leq 2 k+1 \leq 8 \quad[$ For integral values of k]
$\Rightarrow-4 \leq k \leq 3 \Rightarrow k=-4, \pm 3, \pm 2, \pm 1,0$
409 (b)
$\sin x>0 \Rightarrow x \in(0, \pi)$
$\cos x>0 \Rightarrow x \in\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$
From relations (i) and (ii), we get
$x \in\left(0, \frac{\pi}{2}\right)$
Now, $\log _{1 / 2} \sin x>\log _{1 / 2} \cos x$
$\Rightarrow \sin x<\cos x$ in $x \in\left(0, \frac{\pi}{4}\right) \ldots$ (iv)
From relations Eqs. (iii) and (iv), we get
$x \in\left(0, \frac{\pi}{4}\right)$
410 (c)
We have,
$\log _{1 / 2} \sin x>\log _{1 / 2} \cos x$
$\Rightarrow \sin x<\cos x$
$\Rightarrow x$
$\in(0, \pi 4)$
$\cup(3 \pi 2,2 \pi)\left[\begin{array}{c}\text { Draw graphs of } y=\sin x \\ \text { and } y=\cos x \text { and compare }\end{array}\right]$
411 (a)
$\cos ^{2}\left(\frac{\pi}{4}+\theta\right)-\sin ^{2}\left(\frac{\pi}{4}-\theta\right)$
$=\cos \left(\frac{\pi}{4}+\theta+\frac{\pi}{4}-\theta\right) \cos \left(\frac{\pi}{4}+\theta-\frac{\pi}{4}+\theta\right)$
$=\cos \left(\frac{\pi}{2}\right) \cos (2 \theta)=0$
413 (a)
It is given that α and β are the roots of the equation $a \cos \theta+b \sin \theta=c$
or, $a\left(\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)+\frac{2 b \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=c$
or, $\tan ^{2} \frac{\theta}{2}(a+c)-2 b \tan \frac{\theta}{2}+(c-a)=0$
This equation has
$\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ as its roots
$\therefore \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}=\frac{2 b}{a+c}$ and, $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{c-a}{c+a}$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{2 b}{(c+a)-(c-a)}=\frac{b}{a}$
414 (d)

We have, $\cos 3 x+\cos 2 x=\sin \frac{3 x}{2}+\sin \frac{x}{2}$
$\Rightarrow 2 \cos \frac{5 x}{2} \cos \frac{x}{2}=2 \sin x \cos \frac{x}{2}$
Either $\cos \frac{x}{2}=0$
$\Rightarrow \frac{x}{2}=(2 n+1) \frac{\pi}{2}$
$\Rightarrow x=(2 n+1) \pi$
or $\cos \frac{5 x}{2}=\sin x$
$\Rightarrow \cos \frac{5 x}{2}=\cos \left(\frac{\pi}{2}-x\right)$
$\Rightarrow \frac{5 x}{2}=2 n \pi \pm\left(\frac{\pi}{2}-x\right)$
Taking the $+\mathrm{ve} \operatorname{sign} \frac{7 x}{2}=2 n \pi+\frac{\pi}{2}$
$\Rightarrow x=\frac{4 n \pi}{7}+\frac{\pi}{7}$
Taking -ve sign
$\frac{3 x}{2}=2 n \pi-\frac{\pi}{2} \Rightarrow x=\frac{4 n \pi}{3}-\frac{\pi}{3}$
For $0 \leq x \leq 2 \pi$
$x=\frac{\pi}{7}, \frac{5 \pi}{7}, \frac{9 \pi}{7}, \frac{13 \pi}{7}, \pi$
Thus, number of solutions $=5$
415 (c)
Let a, b, c be the lengths of the sides of $\triangle A B C$. It is given that a, b, c are the roots of the equation $x^{3}-2 x^{2}-x-16=0$
$\therefore a+b+c=2$ and $a b c=16$
Now,
$R r=\frac{a b c}{4 \Delta} \times \frac{\Delta}{s}=\frac{a b c}{4 s}=\frac{a b c}{2(a+b+c)}=\frac{16}{2 \times 2}=4$
416 (a)
Applying $R_{3} \rightarrow R_{3}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{1}$, we get $\left|\begin{array}{ccc}1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \sin 4 \theta \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}2 & \sin ^{2} \theta & 4 \sin 4 \theta \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right|=0$,
[Applying $C_{1} \rightarrow C_{1}+C_{2}$]
$\Rightarrow 2+4 \sin 4 \theta=0$
$\Rightarrow \sin 4 \theta=-\frac{1}{2}$
$\Rightarrow 4 \theta=n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right), n \in Z$
$\Rightarrow \theta=\frac{n \pi}{4}+(-1)^{n+1} \frac{\pi}{24}, n \in Z$
Clearly, $\theta=\frac{7 \pi}{24}, \frac{11 \pi}{24}$ are two values of θ lying
between 0 and $\frac{\pi}{2}$ given by the above relation
417 (a)
We have,
$\sqrt{3} \cot 20^{\circ}-4 \cos 20^{\circ}$
$=\frac{\sqrt{3} \cot 20^{\circ}}{\sin 20^{\circ}}-4 \cos 20^{\circ}$
$=\frac{\sqrt{3} \cot 20^{\circ}-4 \sin 20^{\circ} \cos 20^{\circ}}{\sin 20^{\circ}}$
$=\frac{2 \sin 60^{\circ} \cos 20^{\circ}-2 \sin 40^{\circ}}{\sin 20^{\circ}}$
$=\frac{\sin 80^{\circ}+\sin 40^{\circ}-2 \sin 40^{\circ}}{\sin 20^{\circ}}=\frac{\sin 80^{\circ}-\sin 40^{\circ}}{\sin 20^{\circ}}$
$=\frac{2 \cos 60^{\circ} \sin 20^{\circ}}{\sin 20^{\circ}}=1$
418 (a)
We have,
$\cos x \cos 6 x=-1$
$\Rightarrow 2 \cos x \cos 6 x=-2$
$\Rightarrow \cos 7 x+\cos 5 x=-2 \Rightarrow \cos 7 x=-1$ and $\cos 5 x=-1$
The value of x satisfying these two equations simultaneously and lying between 0 and 2π is π. Therefore, the general solution is given by $x=2 n \pi+\pi, n \in Z \Rightarrow x=(2 n+1) \pi, n \in Z$
419 (c)
Let $a=6+\sqrt{12}, b=\sqrt{48}, c=\sqrt{24}$
Clearly, c is the smallest side. Therefore, the smallest angle C is given by
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{\sqrt{3}}{2} \Rightarrow C=\frac{\pi}{6}$
420 (b)
Given, $\tan 2 \theta=\frac{1}{\tan \theta}$

$$
\begin{aligned}
& \Rightarrow \tan 2 \theta=\tan \left(\frac{\pi}{2}-\theta\right) \\
& \Rightarrow 2 \theta=n \pi+\frac{\pi}{2}-\theta \\
& \Rightarrow \quad \theta=\frac{\pi}{6}(2 n+1)
\end{aligned}
$$

421 (a)
Given, $\cot (\alpha+\beta)=0 \Rightarrow \cos (\alpha+\beta)=0$
$\Rightarrow \alpha+\beta=(2 n+1) \frac{\pi}{2}, n \in I$
$\therefore \sin (\alpha+2 \beta)=\sin (2 \alpha+2 \beta-\alpha)$
$=\sin [(2 n+1) \pi-\alpha]$
$=\sin (2 n \pi+\pi-\alpha)$
$=\sin (\pi-\alpha)=\sin \alpha$
422 (c)
$6\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-9\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+4$
$=6\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}\right.$
$\left.-3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right]$
$-9\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}\right.$
$\left.-2 \sin ^{2} \theta \cos ^{2} \theta\right]+4$
$=-6\left[1-3 \sin ^{2} \theta \cos ^{2} \theta\right]-9\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)$
$+4$
$=6-9+4=1$

423 (c)
We have, $y=\cos ^{2} x+\sec ^{2} x$
$\Rightarrow y=(\cos x-\sec x)^{2}+2 \geq 2$
$\Rightarrow y \geq 2$
424 (b)
Since $0<\sin x<1$ and $0<\cos x<1$ for all
$x \in(0, \pi / 2)$. Therefore, angle opposite to the side of one unit length is the largest angle and is given by
$\cos \theta=\frac{\sin ^{2} x+\cos ^{2} x-1}{2 \sin x \cos x}=0 \Rightarrow \theta=\frac{\pi}{2}$
425 (b)
In a $\triangle A B C$
$A+B+C=\pi$
$\therefore \cos \left(\frac{B+2 C+3 A}{2}\right)+\cos \left(\frac{A-B}{2}\right)$
$=2 \cos \left(\frac{2 C+4 A}{4}\right) \cos \left(\frac{2 A+2 B+2 C}{4}\right)$
$=2 \cos \left(\frac{C+2 A}{2}\right) \cos \left(\frac{\pi}{2}\right)=0$
426 (a)
Given, $\cos 2 \alpha=\frac{2 \cos 2 \beta-1}{3-\cos 2 \beta}$
$\Rightarrow \frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{3\left(\frac{1-\tan ^{2} \beta}{1+\tan ^{2} \beta}\right)-1}{3-\left(\frac{1-\tan ^{2} \beta}{1+\tan ^{2} \beta}\right)}$
$\Rightarrow \frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{2-4 \tan ^{2} \beta}{2+4 \tan ^{2} \beta}=\frac{1-2 \tan ^{2} \beta}{1+2 \tan ^{2} \beta}$
Applying componendo and dividendo, we get
$\frac{1}{\tan ^{2} \alpha}=\frac{1}{2 \tan ^{2} \beta}$
$\Rightarrow \tan \alpha=\sqrt{2} \tan \beta$
427 (d)
We have,
$\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta$
$=\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}$

$$
+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
$$

$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=1$
428 (c)
Putting $\theta=\frac{\pi}{9}$, in $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
We get
$\tan \frac{\pi}{3}=\frac{3 \tan \frac{\pi}{9}-\tan ^{3} \frac{\pi}{9}}{1-3 \tan ^{2} \frac{\pi}{9}}$
$\Rightarrow 3\left(1-3 \tan ^{2} \frac{\pi}{9}\right)^{2}=\left(3 \tan \frac{\pi}{9}-\tan ^{3} \frac{\pi}{9}\right)^{2}$
$\Rightarrow \tan ^{6} \frac{\pi}{9}-33 \tan ^{4} \frac{\pi}{9}+27 \tan ^{2} \frac{\pi}{9}=3$
429 (d)
Given that,
$\sin x+\cos x=\min _{a \in R}\left\{1, a^{2}-4 a+6\right\}$
Now, $a^{2}-4 a+6=(a-2)^{2}+2$
$\therefore \quad \min _{a \in R}\left\{1, a^{2}-4 a+6\right\}=\min \{1,2\}=1$
$\therefore \sin x+\cos =1$
$\Rightarrow \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow x+\frac{\pi}{4}=n \pi+(-1)^{n} \cdot \frac{\pi}{4}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
430 (b)
$\cos \frac{\pi}{15} \cdot \cos \frac{2 \pi}{15} \cdot \cos \frac{4 \pi}{15} \cdot \cos \frac{8 \pi}{15}$
$=\frac{1}{4}\left(2 \cos \frac{4 \pi}{15} \cos \frac{\pi}{15}\right)\left(2 \cos \frac{8 \pi}{15} \cos \frac{2 \pi}{15}\right)$
$=\frac{1}{4}\left(\cos 60^{\circ}+\cos 36^{\circ}\right)\left(\cos 120^{\circ}+\cos 72^{\circ}\right)$
$=\frac{1}{4}\left(\frac{1}{2}+\frac{\sqrt{5}+1}{4}\right)\left(-\frac{1}{2}+\frac{\sqrt{5}-1}{4}\right)$
$=\frac{1}{4}\left[-\frac{1}{4}+\frac{1}{2}\left(\frac{\sqrt{5}-1}{4}-\frac{\sqrt{5}+1}{4}\right)+\frac{5-1}{16}\right]=-\frac{1}{16}$
432 (b)
Since $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of the equation
$x^{2}-a x+b=0$
$\therefore \sec \alpha+\operatorname{cosec} \alpha=a$ and $\sec \alpha \operatorname{cosec} \alpha=b$
$\Rightarrow \sin \alpha+\cos \alpha=a \sin \alpha \cos \alpha$ and $\sin \alpha \cos \alpha=\frac{1}{b}$
$\Rightarrow \sin \alpha+\cos \alpha=\frac{a}{b}$ and $\sin \alpha \cos \alpha=\frac{1}{b}$
Now,
$(\sin \alpha+\cos \alpha)^{2}=1+2 \sin \alpha \cos \alpha$
$\Rightarrow \frac{a^{2}}{b^{2}}=1+\frac{2}{3} \Rightarrow a^{2}=b(b+2)$
433 (a)
Since, $1+\sin x \sin ^{2} \frac{x}{2}=0$
$\therefore 1+\sin x\left(\frac{1-\cos x}{2}\right)=0$
$\Rightarrow 2+\sin x-\sin x \cos x=0$
$\Rightarrow \sin 2 x-2 \sin x=4$
Which is not possible for any x in $[-\pi, \pi]$
434 (b)
Given, $\sin x+\sin 5 x=\sin 3 x$
$\Rightarrow 2 \sin 3 x+\cos 2 x=\sin 3 x$
$\Rightarrow \sin 3 x(2 \cos 2 x-1)=0$
$\Rightarrow \sin 3 x=0$
Or $2 \cos 2 x-1=0$
$\Rightarrow 3 x=0, \pi$ or $2 x=\frac{\pi}{3}$
$\Rightarrow x=0, x=\frac{\pi}{3}$ or $x=\frac{\pi}{6}$
\therefore Solutions in $\left(0, \frac{\pi}{2}\right)$ are $\frac{\pi}{3}, \frac{\pi}{6}$

435 (a)
We have,
H.M. of ex-radii
$=\frac{3}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}}=\frac{3 \Delta}{s-a+s-b+s-c}=\frac{3 \Delta}{s}=3 r$
436 (c)
We have,
$3(\sin x-\cos x)^{4}+4\left(\sin ^{6} x+\cos ^{6} x\right)$

$$
+6(\sin x+\cos x)^{2}
$$

$=3\left\{(\sin x-\cos x)^{2}\right\}^{2}+4\left\{\left(\sin ^{2} x\right)^{3}+\left(\cos ^{2} x\right)^{3}\right\}$ $+6(1+\sin 2 x)$
$=3(1-\sin 2 x)^{2}$

$$
\begin{aligned}
& +4\left(\sin ^{4} x+\cos ^{4} x\right. \\
& \left.-\sin ^{2} x \cos ^{2} x\right)+6(1+\sin 2 x)
\end{aligned}
$$

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x\right)+4\left(1-\frac{3}{4} \sin ^{2} 2 x\right)$

$$
+6(1+\sin 2 x)
$$

437 (a)
Since, $4 \cos \theta-3 \sec \theta=2 \tan \theta$
$\Rightarrow 4 \cos \theta-\frac{3}{\cos \theta}=2 \frac{\sin \theta}{\cos \theta}$
$\Rightarrow 4 \cos ^{2} \theta-3=2 \sin \theta$
$\Rightarrow 4-4 \sin ^{2} \theta-3=2 \sin \theta$
$\Rightarrow 4 \sin ^{2} \theta+2 \sin \theta-1=0$
$\Rightarrow \sin \theta=\frac{-1 \pm \sqrt{5}}{4}$
Either $\sin \theta=\frac{-1+\sqrt{5}}{4}$ or $\sin \theta=\frac{-1-\sqrt{5}}{4}$
$\Rightarrow \sin \theta=\sin \frac{\pi}{10}$ or $\sin \theta=\sin \left(-\frac{3 \pi}{10}\right)$
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{10}$ or $\theta=n \pi+(-1)^{n}\left(-\frac{3 \pi}{10}\right)$

438 (b)

In $\triangle A D C$, we have
$\sin C=\frac{A D}{b} \Rightarrow A D=b \sin C$

Also, $A D=\frac{a b c}{b^{2}-c^{2}}$
$\therefore \frac{a b c}{b^{2}-c^{2}}=b \sin C$
$\Rightarrow \frac{a c}{b^{2}-c^{2}}=\sin C$
$\Rightarrow \frac{\sin A \sin C}{\sin ^{2} B-\sin ^{2} C}=\sin C \quad$ [Using Sine rule]
$\Rightarrow \frac{\sin A \sin C}{\sin (B+C) \sin (B-C)}=\sin C$
$\Rightarrow \sin (B-C)=1 \Rightarrow B-C=90^{\circ}$
$\Rightarrow B=90^{\circ}+C \Rightarrow B=113^{\circ}$
439 (c)
It is given that
$\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P.
$\therefore \frac{2}{\cos x}=\frac{1}{\cos (x-y)}+\frac{1}{\cos (x+y)}$
$\Rightarrow \frac{2}{\cos x}=\frac{2 \cos x \cos y}{\cos ^{2} x-\sin ^{2} y}$
$\Rightarrow \cos ^{2} x \cos y=\cos ^{2} x-\sin ^{2} y$
$\Rightarrow \cos ^{2} x(1-\cos y)=\sin ^{2} y$
$\Rightarrow 2 \cos ^{2} x \sin ^{2} \frac{y}{2}=4 \sin ^{2} \frac{y}{2} \cos ^{2} \frac{y}{2}$
$\Rightarrow \cos ^{2} x \sec ^{2} \frac{y}{2}=2$
$\Rightarrow\left|\cos x \sec \frac{y}{2}\right|=\sqrt{2}$
440 (b)
We have,
$-5 \leq 3 \sin \theta-4 \cos \theta \leq 5$ for all θ
$\Rightarrow 2 \leq 3 \sin \theta-4 \cos \theta+7 \leq 12$ for all θ
$\Rightarrow \frac{1}{12} \leq \frac{1}{3 \sin \theta-4 \cos \theta+7} \leq \frac{1}{2}$ for all θ
441 (d)
We have,
$\frac{a^{2}+1}{2 a}=\cos \theta$
$\Rightarrow a+\frac{1}{a}=2 \cos \theta$
$\Rightarrow\left(a+\frac{1}{a}\right)^{3}=8 \cos ^{3} \theta$
$\Rightarrow a^{3}+\frac{1}{a^{3}}+3\left(a+\frac{1}{a}\right)=8 \cos ^{3} \theta$
$\Rightarrow a^{3}+\frac{1}{a^{3}}+6 \cos \theta=8 \cos ^{3} \theta$
$\Rightarrow \frac{a^{6}+1}{2 a^{3}}=4 \cos ^{3} \theta-3 \cos \theta \Rightarrow \frac{a^{6}+1}{2 a^{3}}=\cos 3 \theta$
442 (a)
$2 \cos x-\cos 3 x$

$$
-\cos 5 x=2 \cos x-2 \cos x \cos 4 x
$$

$=2 \cos x(1-\cos 4 x)$
$=2 \cos x 2 \sin ^{2} 2 x$
$=4 \cos x(2 \sin x \cos x)^{2}$
$=16 \sin ^{2} x \cos ^{3} x$

443 (d)

We have,
$\tan \left(\frac{\alpha \pi}{4}\right)=\cot \left(\frac{\beta \pi}{4}\right)$
$\Rightarrow \tan \left(\frac{\alpha \pi}{4}\right)=\tan \left(\frac{\pi}{2}-\frac{\beta \pi}{4}\right)$
$\Rightarrow \alpha \frac{\pi}{4}=n \pi+\left(\frac{\pi}{2}-\beta \frac{\pi}{4}\right)$
$\Rightarrow \alpha=2(2 n+1)-\beta \Rightarrow \alpha+\beta=2(2 n+1)$
444 (d)
$2 \sin x \cos x=\frac{1}{2}$
$\Rightarrow \sin 2 x=\frac{1}{2}=\sin \frac{\pi}{6}$
$\Rightarrow 2 x=n \pi+(-1)^{n} \frac{\pi}{6}$
$\Rightarrow x=\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{12}$
For $x \in\left(0, \frac{\pi}{2}\right)$
$x=\frac{\pi}{12} \quad(n=0)$
445 (c)
Given that, $\sin \theta+\operatorname{cosec} \theta=2$
On squaring both sides, we get
$\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2=4$
$\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta=2$

446 (d)
$\frac{\cos C-\cos A}{\sin A-\sin C}=\frac{2 \sin \left(\frac{A+C}{2}\right) \sin \left(\frac{A-C}{2}\right)}{2 \cos \left(\frac{A+C}{2}\right) \sin \left(\frac{A-C}{2}\right)}$
$=\frac{2 \sin B}{2 \cos B}=\tan B \quad[\because A+C=2 B$, given $]$
447 (c)
We have, $B D=D C$ and $\angle D A B=90^{\circ}$
Draw $C N \perp$ to $B A$ produced. Then, in $\triangle B C N$, we have
$D A=\frac{1}{2} C N$ and $A B=A N$
Let $\angle C A N=\alpha$
$\therefore \tan A=\tan (\pi-\alpha)$
$\Rightarrow \tan A=-\tan \alpha$

$\Rightarrow \tan A=-\frac{C N}{N A}=-2 \frac{A D}{A B}=-2 \tan B$
$\Rightarrow \tan A+2 \tan B=0$
448 (c)
We have,
$a=(b-c) \sec \theta$
$\Rightarrow a^{2}=(b-c)^{2} \sec ^{2} \theta$
$\Rightarrow b^{2}+c^{2}-2 b c \cos A=\left(b^{2}+c^{2}-2 b c\right)(1$

$$
\left.+\tan ^{2} \theta\right)
$$

$\Rightarrow 2 b c(1-\cos A)=\left(b^{2}+c^{2}-2 b c\right) \tan ^{2} \theta$
$\Rightarrow 4 b c \sin ^{2} \frac{A}{2}=\left(b^{2}+c^{2}-2 b c\right) \tan ^{2} \theta$
$\Rightarrow \frac{4 b c \sin ^{2} \frac{A}{2}}{(b-c)^{2}}=\tan ^{2} \theta \Rightarrow \frac{2 \sqrt{b c}}{b-c} \sin \frac{A}{2}=\tan \theta$
449 (b)
We have,
$\cot ^{2} 36^{\circ} \cot ^{2} 72^{\circ}$
$=\frac{\cos ^{2} 36^{\circ} \cos ^{2} 72^{\circ}}{\sin ^{2} 36^{\circ} \sin ^{2} 72^{\circ}}$
$=\frac{\left(1+\cos 72^{\circ}\right)\left(1+\cos 144^{\circ}\right)}{\left(1-\cos 72^{\circ}\right)\left(1-\cos 144^{\circ}\right)}$
$=\frac{\left(1+\cos 72^{\circ}\right)\left(1-\cos 36^{\circ}\right)}{\left(1-\cos 72^{\circ}\right)\left(1+\cos 36^{\circ}\right)}$
$=\frac{1+\cos 72^{\circ}-\cos 36^{\circ}-\cos 72^{\circ} \cos 36^{\circ}}{1-\cos 72^{\circ}+\cos 36^{\circ}-\cos 72^{\circ} \cos 36^{\circ}}$
$=\frac{1-\left(\cos 36^{\circ}-\cos 72^{\circ}\right)-\cos 72^{\circ} \cos 36^{\circ}}{1+\cos 36^{\circ}-\cos 72^{\circ}-\cos 72^{\circ} \cos 36^{\circ}}$
$=\frac{1-\frac{1}{2}-\frac{1}{4}}{1+\frac{1}{2}-\frac{1}{4}}=\frac{1}{5}\left[\begin{array}{l}\because \cos 36^{\circ}-\cos 72^{\circ}=\frac{1}{2} \\ \text { and, } \cos 36^{\circ} \cos 72^{\circ}=\frac{1}{4}\end{array}\right]$
$\Rightarrow \cot ^{2} 36^{\circ} \cot ^{2} 72^{\circ}=\frac{1}{5} \Rightarrow \cot 36^{\circ} \cot 72^{\circ}=\frac{1}{\sqrt{5}}$
450 (a)
$\tan \theta=\frac{4}{5}$
$\therefore \sin \theta=\frac{4}{\sqrt{41}}, \cos \theta=\frac{5}{\sqrt{41}}$
Now, $\frac{5 \sin \theta-3 \cos \theta}{\sin \theta+2 \cos \theta}=\frac{5 \times \frac{4}{\sqrt{41}}-\frac{3 \times 5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}+2 \times \frac{5}{\sqrt{41}}}=\frac{5}{14}$
451 (a)
(1) $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{m+1} \cdot \frac{1}{2 m+1}}$
$=\frac{2 m^{2}+2 m+1}{2 m^{2}+2 m+1}=1$
$\Rightarrow \alpha+\beta=\frac{\pi}{4}$
(2) At $\theta=\frac{\pi}{4}$,

LHS $=3 \tan \left(45^{\circ}-15^{\circ}\right)=3 \tan 30^{\circ}=\sqrt{3}$
RHS $=\tan \left(45^{\circ}+15^{\circ}\right)=\tan 60^{\circ}=\sqrt{3}$
\therefore LHS $=$ RHS
(3) Given $\sin ^{2} a x-\sin ^{2}(a-1) x=\sin ^{2} x$
$\Rightarrow \sin (2 a-1) x \sin (x)=\sin ^{2} x$
$\Rightarrow \sin x=0$ and $\sin (2 a-1) x=\sin x$
$\Rightarrow x=n \pi$ and $(2 a-1) x=n \pi+(-1)^{n} x$

Hence, option (a) is correct
452 (a)
We have,
$\tan A \tan B=2$
and, $\cos (A-B)=\frac{3}{5}$
From (ii), we have
$\Rightarrow \tan (A-B)=\frac{4}{3}$
$\Rightarrow \frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{4}{3}$
$\Rightarrow \frac{\tan A-\tan B}{1+2}=\frac{4}{3} \quad$ [Using (i)]
$\Rightarrow \tan A-\tan B=4$
$\Rightarrow(\tan A+\tan B)^{2}=16+8$
$\Rightarrow \tan A+\tan B=2 \sqrt{6}$
From (iii) and (iv), we get
$\tan A=2+\sqrt{6}, \tan B=\sqrt{6}-2$
$\Rightarrow \cos A=\frac{1}{\sqrt{1+4 \sqrt{6}}}$ and, $\sin A=\frac{\sqrt{6}-2}{\sqrt{11+4 \sqrt{6}}}$
$\cos B=\frac{1}{\sqrt{11-4 \sqrt{6}}}$ and, $\sin B=\frac{\sqrt{6}-2}{\sqrt{11-4 \sqrt{6}}}$
$\Rightarrow \cos A \cos B=\frac{1}{5}$ and, $\sin A \sin B=\frac{2}{5}$
$\Rightarrow \cos (A+B)=-\frac{1}{5}$
453 (b)
Given that, $\sin \theta=-\frac{4}{5}$ and θ lies in the IIIrd quadrant
$\Rightarrow \cos \theta-\sqrt{1-\frac{16}{25}}=-\frac{3}{5}$
Now, $\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}= \pm \sqrt{\frac{1-\frac{3}{5}}{2}}= \pm \sqrt{\frac{1}{5}}$
But we take
$\cos \frac{\theta}{2}=$
$-15 . S i n c e$, if θ lies in IIIrd quadrant, then $\theta 2$ will be in IInd quadrant

Hence, $\cos \frac{\theta}{2}=-\frac{1}{\sqrt{5}}$
454 (a)
On squaring an adding given equations, we get
$(\sin \alpha+\sin \beta)^{2}+(\cos \alpha+\cos \beta)^{2}$

$$
=\left(-\frac{21}{65}\right)^{2}+\left(-\frac{27}{65}\right)^{2}
$$

$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta$

$$
\begin{aligned}
& +2 \sin \alpha \sin \beta \\
& +\cos ^{2} \alpha \\
& +\cos ^{2} \beta+2 \cos \alpha \cos \beta=\frac{1170}{4225}
\end{aligned}
$$

$\Rightarrow 2+2 \cos (\alpha-\beta)=\frac{1170}{4225}$
$\Rightarrow 2\left[2 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)\right]=\frac{1170}{4225}$
$\Rightarrow \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)=\frac{1170}{4 \times 4225}=\frac{9}{130}$
$\Rightarrow \cos \left(\frac{\alpha-\beta}{2}\right)=-\frac{3}{\sqrt{130}} \quad[\because \pi<\alpha-\beta<3 \pi]$
455 (d)
We have,
$\sin x+\sin ^{2} x=1 \Rightarrow \sin x=1-\sin ^{2} x \Rightarrow \sin x$

$$
=\cos ^{2} x
$$

$\therefore \cos ^{8} x+2 \cos ^{6} x+\cos ^{4} x$
$=\sin ^{4} x+2 \sin ^{3} x+\sin ^{2} x=\left(\sin x+\sin ^{2} x\right)^{2}$

$$
=1
$$

456 (a)
We have,
$\cos (\alpha+\beta) \sin (\gamma+\delta)=\cos (\alpha-\beta) \sin (\gamma-\delta)$
$\Rightarrow \frac{\cos (\alpha+\beta)}{\sin (\alpha-\beta)}=\frac{\sin (\gamma-\delta)}{\sin (\gamma+\delta)}$
$\Rightarrow \frac{\cos (\alpha+\beta)+\cos (\alpha-\beta)}{\cos (\alpha+\beta)-\cos (\alpha-\beta)}$
$=\frac{\sin (\gamma-\delta)+\sin (\gamma+\delta)}{\sin (\gamma-\delta)-\sin (\gamma+\delta)}$
$\Rightarrow \frac{2 \cos \alpha \cos \beta}{-2 \sin \alpha \sin \beta}=\frac{2 \sin \gamma \cos \delta}{-2 \sin \delta \cos \gamma}$
$\Rightarrow \cot \alpha \cot \beta=\tan \gamma \cot \delta$
$\Rightarrow \cot \alpha \cot \beta \cot \gamma=\cot \delta$
457 (c)
We have,
$A D^{2}+B E^{2}+C F^{2}$
$=\frac{1}{4}\left(2 b^{2}+2 c^{2}-a^{2}+2 c^{2}+2 a^{2}-b^{2}+2 a^{2}\right.$

$$
\left.+2 b^{2}-c^{2}\right)
$$

$=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)=\frac{3}{4}\left(B C^{2}+C A^{2}+A B^{2}\right)$
$\therefore\left(A D^{2}+B E^{2}+C F^{2}\right):\left(B C^{2}+C A^{2}+A B^{2}\right)=3$

$$
: 4
$$

458 (c)
The given equation is
$a \cos \theta+b \sin \theta=c$
Since, $\sqrt{a^{2}-b^{2}} \leq a \cos \theta+b \sin \theta \leq \sqrt{a^{2}+b^{2}}$
$\Rightarrow c^{2} \leq a^{2}+b^{2}$
459 (d)
Given, $\tan \left(\frac{\alpha \pi}{4}\right)=\tan \left(\frac{\pi}{2}-\frac{\beta \pi}{4}\right)$
$\Rightarrow \frac{\alpha \pi}{4}=n \pi+\frac{\pi}{2}-\frac{\beta \pi}{4}$
$\Rightarrow(\alpha+\beta) \frac{\pi}{4}=\left(\frac{2 n+1}{2}\right) \pi$
$\Rightarrow \quad \alpha+\beta=2(2 n+1), \forall n \in I$
460 (d)
Given, $\frac{2 \sin \alpha}{1+\cos \alpha+\sin \alpha}=x$
$\Rightarrow \frac{2 \sin \alpha(1-\cos \alpha-\sin \alpha)}{(1+\cos \alpha+\sin \alpha)(1-\cos \alpha-\sin \alpha)}=x$
$\Rightarrow \frac{2 \sin \alpha(1-\cos \alpha-\sin \alpha)}{1-\sin ^{2} \alpha-\cos ^{2} \alpha-2 \sin \alpha \cos \alpha}=x$
$\Rightarrow \frac{1-\cos \alpha-\sin \alpha}{\cos \alpha}=-x$
461 (a)
Let r be the radius of the circle and A_{1} be its area.
Then, $A_{1}=\pi r^{2}$
Since the perimeter of the circle is same as the perimeter of a regular polygon of n sides
$\therefore 2 \pi r=n a$, when ' a ' is the length of one side of the regular polygon
$\Rightarrow a=\frac{2 \pi r}{n}$
Let A_{2} be the area of the polygon. Then,
$A_{2}=\frac{1}{4} \pi a^{2} \cot \left(\frac{\pi}{n}\right)=\frac{\pi^{2} r^{2}}{n} \cot \left(\frac{\pi}{n}\right)$
$\therefore A_{1}: A_{2}=\pi r^{2}: \frac{\pi^{2} r^{2}}{n} \cot \left(\frac{\pi}{n}\right)=\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
462 (a)
We have
$\underline{a \cos A+b \cos B+c \cos C}$ $a+b+c$
$=\frac{R(\sin 2 A+\sin 2 B+\sin 2 C)}{2 R(\sin A+\sin B+\sin C)}$
$=\frac{4 \sin A \sin B \sin C}{2\left(4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\right)}=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{R}$
464 (b)
We have,
$\tan (\cot x)=\cot (\tan x)$
$\Rightarrow \tan (\cot x)=\tan \left(\frac{\pi}{2}-\tan x\right)$
$\Rightarrow \cot x=n \pi+\frac{\pi}{2}-\tan x, n \in Z$
$\Rightarrow \cot x+\tan x=n \pi+\frac{\pi}{2}$
$\Rightarrow \frac{1}{\sin x \cos x}=(2 n+1) \frac{\pi}{2}$
$\Rightarrow \sin 2 x=\frac{4}{(2 n+1) \pi}, n \in Z$
465 (a)
Given that, $2 \sin A=\sqrt{3} \sin B$
$\Rightarrow 2 \sqrt{5} \sin A=\sqrt{15} \sin B$
and $2 \cos A=\sqrt{5} \cos B$
$\Rightarrow 2 \sqrt{3} \cos A=\sqrt{15} \cos B$

On squaring and adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& 20 \sin ^{2} A+12 \cos ^{2} A=15 \\
& \Rightarrow 8 \sin ^{2} A=3 \Rightarrow \sin ^{2} A=\frac{3}{8} \\
& \Rightarrow \cos ^{2} A=\frac{5}{8} \\
& \therefore \frac{\sin ^{2} A}{\cos ^{2} A}=\frac{3}{5} \Rightarrow \tan A=\sqrt{\frac{3}{5}}
\end{aligned}
$$

466 (c)
We have,
$\cos ^{2}(A-B)+\cos ^{2} B-2 \cos (A-B) \cos A \cos B$
$=\cos ^{2}(A-B)+\cos ^{2} B$

$$
\begin{aligned}
& \quad-\cos (A-B) \\
& \quad \times[\cos (A-B)+\cos (A+B)] \\
& =\cos ^{2} B-\cos (A-B) \cos (A+B) \\
& =\cos ^{2} B-\left(\cos ^{2} A-\sin ^{2} B\right) \\
& = \\
& 1-\cos ^{2} A=\sin ^{2} A
\end{aligned}
$$

Hence, it depends on A

467 (d)
We have,
$r_{1}=4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}, b=2 R \sin B$ and c

$$
=2 R \sin C
$$

$\therefore \frac{r_{1}}{b c}=\frac{4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}{4 R^{2} \sin B \sin C}$
$\Rightarrow \frac{r_{1}}{b c}=\frac{\sin \frac{A}{2}}{4 R \sin \frac{B}{2} \sin \frac{C}{2}} \Rightarrow \frac{r_{1}}{b c}=\frac{\sin ^{2} \frac{A}{2}}{4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}$
$\Rightarrow \frac{r_{1}}{b c}=\frac{\sin ^{2} \frac{A}{2}}{r}$
Similarly, $\frac{r_{2}}{c a}=\frac{\sin ^{2} \frac{B}{2}}{r}$ and $\frac{r_{3}}{a b}=\frac{\sin ^{2} \frac{C}{2}}{r}$
$\therefore \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{r}\left\{\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}\right\}$
$\Rightarrow \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$

$$
=\frac{1}{2 r}\{1
$$

$$
-\cos A+1-\cos B+1-\cos C\}
$$

$\Rightarrow \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$

$$
=\frac{1}{2 r}\{3-(\cos A+\cos B+\cos C)\}
$$

$\Rightarrow \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$

$$
=\frac{1}{2 r}\left\{3-\left(1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)\right\}
$$

$\Rightarrow \frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{2 r}\left(2-\frac{r}{R}\right)=\frac{1}{r}-\frac{1}{2 R}$
468 (a)
We have,
$a=\sin A+\sin B, b=\cos A+\cos B$
$\Rightarrow a^{2}+b^{2}=2+2 \cos (A-B)$
and,
$b^{2}-a^{2}=\cos 2 A+\cos 2 B+2 \cos (A+B)$
$\Rightarrow b^{2}-a^{2}=2 \cos (A+B)\{\cos (A-B)+1\}$
$\Rightarrow b^{2}-a^{2}=2 \cos (A+B)\left(\frac{a^{2}+b^{2}}{2}\right)$
[Using (i)]
$\Rightarrow \cos (A+B)=\frac{b^{2}-a^{2}}{a^{2}+b^{2}}$
469 (c)
Clearly, the given equation is not meaningful at odd multiples of $\frac{\pi}{2}$
We have,
$\tan x+\sec x=2 \cos x$
$\Rightarrow 1+\sin x=2\left(1-\sin ^{2} x\right)$
$\Rightarrow 2 \sin ^{2} x+\sin x-1=0$
$\Rightarrow \sin x=\frac{1}{2},-1 \Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}$
We have,
$A+B+C=\pi \Rightarrow n A+n B+n C=n \pi$
$\therefore \tan (n A+n B+n C)=\tan n \pi \Rightarrow \frac{S_{1}-S_{3}}{1-S_{2}}=0$

$$
\Rightarrow S_{1}=S_{3}
$$

$\Rightarrow \tan n A+\tan n B$

$$
+\tan n C=\tan n A \tan n B \tan n C
$$

471 (a)

We know that
$I A=\frac{r}{\sin A / 2}, I B=\frac{r}{\sin B / 2}$ and $I C=\frac{r}{\sin C / 2}$
$\therefore I A: I B: I C=\operatorname{cosec} \frac{A}{2}: \operatorname{cosec} \frac{B}{2}: \operatorname{cosec} \frac{C}{2}$
472 (b)
We have,
$\sin \frac{13 \pi}{14}=\sin \left(\pi-\frac{\pi}{14}\right)=\sin \frac{\pi}{14}$
$\sin \frac{11 \pi}{14}=\sin \left(\pi-\frac{3 \pi}{14}\right)=\sin \frac{3 \pi}{14}$
$\sin \frac{9 \pi}{14}=\sin \left(\pi-\frac{5 \pi}{14}\right)=\sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14}=\sin \frac{\pi}{2}=1$
$\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}$
$=\left\{\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}\right\}^{2}$
$=\left\{\cos \left(\frac{\pi}{2}-\frac{\pi}{14}\right) \cos \left(\frac{\pi}{2}-\frac{3 \pi}{2}\right) \cos \left(\frac{\pi}{2}-\frac{5 \pi}{14}\right)\right\}^{2}$
$=\left\{\cos \frac{6 \pi}{14} \cos \frac{4 \pi}{14} \cos \frac{2 \pi}{14}\right\}^{2}$
$=\left\{\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}\right\}^{2}$
$=\left\{-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}\right\}^{2}$
$=\left\{\frac{-\sin \left(2^{3} \pi / 7\right)}{2^{3} \sin \pi / 7}\right\}^{2}=\left\{\frac{-\sin 8 \pi / 7}{8 \sin \pi / 7}\right\}^{2}=\left(\frac{1}{8}\right)^{2}=\frac{1}{64}$
473 (b)
The given equation can be written as
$(\sin \theta+\sqrt{3}) \tan \theta=0$
$\Rightarrow \tan \theta=0 \Rightarrow \theta=n \pi, \quad n \in Z$
474 (b)
We have,
$2 a=\sqrt{3} b+c$
$\Rightarrow 2 \sin A=\sqrt{3} \sin B+\sin C\left[\because \frac{a}{\sin A}=\frac{b}{\sin B}\right.$

$$
\left.=\frac{c}{\sin C}\right]
$$

$\Rightarrow 2 \sin (B+C)=\sqrt{3} \sin B+\sin C$
$\Rightarrow \sin B \cos C+\cos B \sin C=\frac{\sqrt{3}}{2} \sin B+\frac{1}{2} \sin C$
$\Rightarrow \cos C=\frac{\sqrt{3}}{2}$ and $\cos B$
$=\frac{1}{2}$ [By comparing two sides]
$\Rightarrow C=\frac{\pi}{6}$ and $B=\frac{\pi}{3} \Rightarrow A=\frac{\pi}{2} \Rightarrow a^{2}=b^{2}+c^{2}$
475 (a)
We have,
$\tan 89^{\circ}=\tan \left(90^{\circ}-1^{\circ}\right)=\cot 1^{\circ}$
$\tan 88^{\circ}=\tan \left(90^{\circ}-2^{\circ}\right)=\cot 2^{\circ}$ etc
$\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 88^{\circ} \tan 89^{\circ}$
$=\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 45^{\circ} \cot 44^{\circ} \cot 43^{\circ} \ldots \mathrm{cc}$
$=1$
476 (b)
We have,
$b \cos 2 \theta+a \sin 2 \theta$
$=b\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)+\frac{2 a \tan \theta}{1+\tan ^{2} \theta}$
$=b \frac{\left(1-a^{2} / b^{2}\right)}{\left(1+a^{2} / b^{2}\right)}+\frac{2 a(a / b)}{1+\left(a^{2} / b^{2}\right)}$

$$
=\frac{b\left(b^{2}-a^{2}\right)+2 a^{2} b}{a^{2}+b^{2}}=b
$$

477 (b)
Given, $|\sin x|=\cos x$
$\therefore \sin ^{2} x=\cos ^{2} x$
$\Rightarrow 2 \cos ^{2} x=1$
$\Rightarrow \cos x=+\frac{1}{\sqrt{2}} \quad[\because \cos x$ cannot be negative $]$
$\Rightarrow \quad x=2 n \pi \pm \frac{\pi}{4}$
478 (b)
We have,
$3\left\{\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi-\alpha)\right\}$
$-2\left\{\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right\}$
$=3\left[\cos ^{4} \alpha+\sin ^{4} \alpha\right]-2\left[\cos ^{6} \alpha+\sin ^{6} \alpha\right]$
$=3\left[1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right]-2\left[1-3 \sin ^{2} \alpha \cos ^{2} \alpha\right]$
$=3-6 \sin ^{2} \alpha \cos ^{2} \alpha-2+6 \sin ^{2} \alpha \cos ^{2} \alpha=1$
479 (d)
We have,
$4 \sin \theta \cos \theta-2 \cos \theta-2 \sqrt{3} \sin \theta+\sqrt{3}=0$
$\Rightarrow 2 \sin \theta(2 \cos \theta-\sqrt{3})-1(2 \cos \theta-\sqrt{3})=0$
$\Rightarrow(2 \cos \theta-\sqrt{3})(2 \sin \theta-1)=0$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$ or, $\sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{11 \pi}{6}$
480 (a)
We have,
$\sum a^{3} \cos (B-C)$
$=\sum k^{3} \sin ^{3} A \cos (B-C)$
$=k^{3} \sum \sin ^{2} A \sin (B+C) \cos (B-C)$
$=\frac{k^{3}}{2} \sum \sin ^{2} A(\sin 2 B+\sin 2 C)$
$=\frac{k^{3}}{2} \sum\left[\sin ^{2} A(\sin 2 B+\sin 2 C)\right.$
$+\sin ^{2} B(\sin 2 C+\sin 2 A)$

$$
+\sin ^{2} C(\sin 2 A+\sin 2 B)
$$

$=k^{3} \sum\left[\sin ^{2} A \sin B \cos B+\sin ^{2} B \sin A \cos A\right]$
$=k^{3} \sum \sin A \sin B \sin (A+B)$
$=k^{3}[\sin A \sin B \sin C+\sin B \sin C \sin A$ $+\sin C \sin A \sin B]$
$=3(k \sin A)(k \sin B)(k \sin C)=3 a b c$
481 (a)
$\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$
$\Rightarrow \sin 6 \theta+\sin 2 \theta+\sin 4 \theta=0$
$\Rightarrow 2 \sin 4 \theta \cos 2 \theta+\sin 4 \theta=0$
$\Rightarrow \sin 4 \theta(2 \cos 2 \theta+1)=0$
$\Rightarrow 2 \cos 2 \theta=-1 \Rightarrow \cos 2 \theta=-\frac{1}{2}$
$\Rightarrow \cos 2 \theta=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 \theta=2 n \pi \pm \frac{2 \pi}{3} \Rightarrow \theta=n \pi \pm \frac{\pi}{3}$
and $\sin 4 \theta=0 \Rightarrow 4 \theta=n \pi \Rightarrow \theta=\frac{n \pi}{4}$
$\Rightarrow \theta=\frac{n \pi}{4}$ or $n \pi \pm \frac{\pi}{3}$
482 (c)
Now, on taking option one by one, we get
(a) $\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}=$ irrational
(b) $\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)=\frac{\sqrt{3}+1}{2 \sqrt{2}}=$ irrational
(c) $\sin 15^{\circ} \cos 15^{\circ}=\frac{1}{2}\left(2 \sin 15^{\circ} \cos 15^{\circ}\right)$
$=\frac{1}{2} \sin 30^{\circ}=\frac{1}{4}=$ rational
(d) $\sin 15^{\circ} \cos 75^{\circ}=\sin 15^{\circ} \sin 15^{\circ}=\sin ^{2} 15^{\circ}$ $=\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}=\frac{4-2 \sqrt{3}}{8}=$ irrational

483 (d)
We have,
$\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8}{15} \cos \frac{14 \pi}{15}$
$=-\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15}$
$=-\frac{\sin \left(2^{4} \cdot \frac{\pi}{15}\right)}{2^{4} \sin \frac{\pi}{15}}=-\frac{\sin \frac{16 \pi}{15}}{16 \sin \frac{\pi}{15}}=-\frac{\sin \frac{16 \pi}{15}}{16 \sin \frac{\pi}{15}}=\frac{1}{16}$
484 (c)
We have,
$\tan \theta \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta \tan \left(60^{\circ}+\theta\right) \tan \left(60^{\circ}-\theta\right)=\frac{1}{\sqrt{3}}$
$\left[\because \tan \theta \tan \left(60^{\circ}-\theta\right) \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta\right]$
$\Rightarrow \tan 3 \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan 3 \theta=\tan \frac{\pi}{6}$
$\Rightarrow 3 \theta=n \pi+\frac{\pi}{6}, n \in Z \Rightarrow \theta=\frac{n \pi}{3}+\frac{\pi}{18}, n \in Z$
485 (a)
$\cos \left(x+\frac{\pi}{6}\right)+\sin \left(x+\frac{\pi}{6}\right)$
$=\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos \left(x+\frac{\pi}{6}\right)+\frac{1}{\sqrt{2}} \sin \left(x+\frac{\pi}{6}\right)\right]$
$=\sqrt{2} \cos \left(x+\frac{\pi}{6}-\frac{\pi}{4}\right)=\sqrt{2} \cos \left(x-\frac{\pi}{12}\right)$
\therefore For maximum value $x=\frac{\pi}{12}$
486 (a)
We have, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$

$$
\begin{aligned}
& =\frac{\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}+\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}}{1-\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}} \cdot \frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}} \\
& =\frac{(1+x) \sqrt{x^{2}+x+1}}{\sqrt{x} \cdot x(x+1)} \\
& =\sqrt{x^{-3}+x^{-2}+x^{-1}}=\tan \gamma \text { (given) } \\
& \therefore \alpha+\beta=\gamma
\end{aligned}
$$

487 (a)

In $\triangle B C D, \tan 15^{\circ}=\frac{B C}{B D}$
$\Rightarrow \frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{x}{x+35}$
$\Rightarrow \frac{\sqrt{3-1}}{\sqrt{3}+1}=\frac{x}{x+35}$
$\Rightarrow \sqrt{3} x+35 \sqrt{3}-x-35=\sqrt{3} x+x$
$\Rightarrow x=\frac{35(\sqrt{3}-1)}{2}$
$\therefore C D=\sqrt{\left(\frac{35}{2}\right)^{2}\left\{(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2}\right\}}$
$=\frac{35}{2} \times 2 \sqrt{2}=35 \sqrt{2} \mathrm{~cm}$

488 (b)
$\tan \alpha \tan 2 \alpha \ldots \tan (2 n-1) \alpha \tan (2 n-1) \alpha$
$=\{\tan \alpha \tan (2 n-1) \alpha\}\{\tan 2 \alpha \tan (2 n$
$-2) \alpha\} \ldots\{\tan (n-1) \alpha \tan (n$
+1) $\alpha\} \tan n \alpha$
$=\left\{\tan \alpha \tan \left(\frac{\pi}{2}-\alpha\right)\right\}\left\{\tan 2 \alpha \tan \left(\frac{\pi}{2}\right.\right.$
$-2 \alpha)\} \ldots \tan \frac{\pi}{4}\left(\because n \alpha=\frac{\pi}{4}\right)$
$=1$

489 (c)
We have,
$r_{1}: r_{2}: r_{3}=2: 4: 6$
$\Rightarrow \frac{\Delta}{s-a}: \frac{\Delta}{s-b}: \frac{\Delta}{s-c}=2: 4: 6$
$\Rightarrow s-a: s-b: s-c=\frac{1}{2}: \frac{1}{4}: \frac{1}{6}$
$\Rightarrow s-a=\frac{\lambda}{2}, s-b=\frac{\lambda}{4}$ and $s-c=\frac{\lambda}{6}$
Now,
$a=(s-b)+(s-c)=\frac{\lambda}{4}+\frac{\lambda}{6}=\frac{5 \lambda}{12}$
$b=(s-c)+(s-a)=\frac{\lambda}{6}+\frac{\lambda}{2}=\frac{8 \lambda}{12}$
$c=(s-a)+(s-b)=\frac{\lambda}{2}+\frac{\lambda}{4}=\frac{9 \lambda}{12}$
$\therefore a: b: c=5: 8: 9$
490 (b)
We have,
$\cos A=\frac{\sin B}{2 \sin C}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{b}{2 c} \Rightarrow c^{2}=a^{2} \Rightarrow c=a$
So, the triangle is an isosceles triangle
491 (c)
We have,
$\sin x+\sin y=\sin (x+y)$
$\Rightarrow 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
$-2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x+y}{2}\right)=0$
$\Rightarrow 2 \sin \left(\frac{x+y}{2}\right)\left\{\cos \left(\frac{x-y}{2}\right)-\cos \left(\frac{x+y}{2}\right)\right\}=0$
$\Rightarrow 4 \sin \left(\frac{x+y}{2}\right) \sin \frac{x}{2} \sin \frac{y}{2}=0$
$\Rightarrow \sin \left(\frac{x+y}{2}\right)=0$ or, $\sin \frac{x}{2}=0, \sin \frac{y}{2}=0$
Now, $|x|+|y|=1 \Rightarrow|x| \leq 1$ and $|y| \leq 1$
Hence, the only solution of equations in (i), can be taken as
$x+y=0, x=0, y=0$
Putting $x=0$ in $|x|+|y|=1$, we get $y= \pm 1$
Putting $y=0$ in $|x|+|y|=1$, we obtain $x= \pm 1$
Finally, putting $x+y=0$ i.e. $y=-x$ in
$|x|+|y|=1$, we obtain
$2|x|=1 \Rightarrow|x|=\frac{1}{2} \Rightarrow c= \pm \frac{1}{2}$
Hence, we obtain the following six pairs of (x, y) i.e. $(0, \pm 1),(\pm 1,0),(1 / 2,-1 / 2),(-1 / 2,1 / 2)$

492 (a)
We have,
$\cos x+\cos y=\frac{3}{2}$
$\Rightarrow 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)=\frac{3}{2}$
$\Rightarrow 2 \cos \frac{\pi}{3} \cos \left(\frac{x-y}{2}\right)=\frac{3}{2} \quad\left[\right.$ Using $\left.: x+y=\frac{2 \pi}{3}\right]$
$\Rightarrow \cos \left(\frac{x-y}{2}\right)=\frac{3}{2}$, which is not possible
Hence, the system of equations has no solution
493 (a)
$p=\sin ^{2} x+\cos ^{2} x\left(1-\sin ^{2} x\right)$
$\Rightarrow p=\left(\sin ^{2} x+\cos ^{2} x\right)-\sin ^{2} x \cos ^{2} x$
$=1-\sin ^{2} x \cos ^{2} x \quad \ldots$ (i)
Which shows $p \leq 1$
Again, $p=1-\cos ^{2} x+\cos ^{4} x$
$p=\left(\cos ^{2} x-\frac{1}{2}\right)^{2}+\frac{3}{4}$
Which shows
$p \geq \frac{3}{4}$
From Eqs. (i) and (ii), we get
$\frac{3}{4} \leq p \leq 1$
494 (a)
$\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$
$=\tan 6^{\circ} \tan \left(60^{\circ}\right.$

$$
\begin{aligned}
& \left.-18^{\circ}\right) \tan \left(60^{\circ}\right. \\
& \left.+6^{\circ}\right) \tan \left(60^{\circ}+18^{\circ}\right)
\end{aligned}
$$

$\tan 6^{\circ} \tan \left(60^{\circ}+6^{\circ}\right) \tan 18^{\circ}$
$=\frac{\tan \left(60^{\circ}-18^{\circ}\right) \tan \left(60^{\circ}+18^{\circ}\right)}{\tan 18^{\circ}}$
$=\frac{\tan 6^{\circ} \tan \left(60^{\circ}+6^{\circ}\right) \tan \left(3 \times 18^{\circ}\right)}{\tan 18^{\circ}}$
$=\frac{\tan 6^{\circ} \tan \left(60^{\circ}-6^{\circ}\right) \tan \left(60^{\circ}+6^{\circ}\right)}{\tan 18^{\circ}}$
$=\frac{\tan 18^{\circ}}{\tan 18^{\circ}}=1$

495 (d)
$\cos x+\cos ^{2} x=1 \Rightarrow \cos x=\sin ^{2} x$
Now, $\sin ^{12} x+3 \sin ^{10} x+3 \sin ^{8} x+\sin ^{6} x-1$
$=\cos ^{6} x+3 \cos ^{5} x+3 \cos ^{4} x+\cos ^{3} x-1$
$=\left(\cos ^{2} x+\cos x\right)^{3}-1=1-1=0$
496 (b)
We have,
$\tan 20^{\circ}+2 \tan 50^{\circ}-\tan 70^{\circ}$

$$
\begin{aligned}
& =2 \tan 50^{\circ}-\left(\tan 70^{\circ}-\tan 20^{\circ}\right) \\
& =2 \tan 50^{\circ}-\frac{\sin 50^{\circ}}{\cos 70^{\circ} \cos 20^{\circ}} \\
& =2 \tan 50^{\circ}-\frac{2 \sin 50^{\circ}}{2 \sin 20^{\circ} \cos 20^{\circ}} \\
& =2 \tan 50^{\circ}-\frac{2 \sin 50^{\circ}}{\sin 40^{\circ}} \\
& =2 \tan 50^{\circ}-\frac{2 \sin 50^{\circ}}{\cos 50^{\circ}}=2 \tan 50^{\circ}-2 \tan 50^{\circ} \\
& =0
\end{aligned}
$$

497 (c)
$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha$
$=\tan \alpha+2 \tan 2 \alpha+4\left[\frac{\sin 4 \alpha}{\cos 4 \alpha}+2 \frac{\cos 8 \alpha}{\sin 8 \alpha}\right]$
$=\tan \alpha$
$+2 \tan 2 \alpha$
$+4\left[\frac{\cos 4 \alpha \cos 8 \alpha+\sin 4 \alpha \sin 8 \alpha+\cos 4 \alpha \cos 8 \alpha}{\sin 8 \alpha \cos 4 \alpha}\right]$
$=\tan \alpha+2 \tan 2 \alpha+4\left[\frac{\cos 4 \alpha+\cos 4 \alpha \cos 8 \alpha}{\sin 8 \alpha \cos 4 \alpha}\right]$
$=\tan \alpha+2 \tan 2 \alpha+4\left[\frac{\cos 4 \alpha(1+\cos 8 \alpha)}{\cos 4 \alpha \sin 8 \alpha}\right]$
$=\tan \alpha+2 \tan 2 \alpha+4\left[\frac{2 \cos ^{2} 4 \alpha}{2 \sin 4 \alpha \cos 4 \alpha}\right]$
$=\tan \alpha+2(\tan 2 \alpha+2 \cot 4 \alpha)$
$=\tan \alpha+2\left[\frac{\sin 2 \alpha}{\cos 2 \alpha}+2 \frac{\cos 4 \alpha}{\sin 4 \alpha}\right]$
$=\tan \alpha$
$+2\left[\frac{\sin 2 \alpha \sin 4 \alpha+\cos 4 \alpha \cos 2 \alpha+\cos 4 \alpha \cos 2 \alpha}{\sin 4 \alpha \cos 2 \alpha}\right]$
$=\tan \alpha+2\left[\frac{\cos 2 \alpha+\cos 2 \alpha \cos 4 \alpha}{\sin 4 \alpha \cos 2 \alpha}\right]$
$=\tan \alpha+2\left[\frac{\cos 2 \alpha(1+\cos 4 \alpha)}{\sin 4 \alpha \cos 2 \alpha}\right]$
$=\frac{\sin \alpha}{\cos \alpha}+\frac{2 \cos 2 \alpha}{\sin 2 \alpha}$
$=\frac{\cos \alpha+\cos \alpha \cos 2 \alpha}{\sin 2 \alpha \cos \alpha}$
$=\frac{1+\cos 2 \alpha}{\sin 2 \alpha}$
$=\frac{2 \cos ^{2} \alpha}{2 \sin \alpha \cos \alpha}=\cot \alpha$
498 (c)
We have,
$\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
$=\frac{\tan ^{2} \alpha}{1+\tan ^{2} \alpha}+\frac{\tan ^{2} \beta}{1+\tan ^{2} \beta}+\frac{\tan ^{2} \gamma}{1+\tan ^{2} \gamma}$
$=\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}$,

$$
\left[\begin{array}{c}
\text { where } x=\tan ^{2} \alpha \\
y=\tan ^{2} \beta, z=\tan ^{2} \gamma
\end{array}\right]
$$

$=\frac{(x+y+z)(x y+y z+z x+2 x y z)+x y+y z+}{(1+x)(1+y)(1+z)}$
$=\frac{1+x+y+z+x y+y z+z x}{(1+x)(1+y)(1+z)}$
$=1 \quad[\because x y+y z+z x+2 x y z=1]$
499 (c)
$\sqrt{\frac{1+\cos A}{1-\cos A}}=\sqrt{\frac{2 \cos ^{2} \frac{A}{2}}{2 \sin ^{2} \frac{A}{2}}}=\frac{x}{y}$
$\Rightarrow \tan \frac{A}{2}=\frac{y}{x}$
Now, $\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}$
$=\frac{2 x y}{x^{2}-y^{2}}$
500 (c)
We have, $\angle A=45^{\circ}, \angle B=75^{\circ}$
$\therefore \angle C=180^{\circ}-\left(45^{\circ}+75^{\circ}\right)=60^{\circ}$
Now,
$a+c \sqrt{2}=k(\sin A+\sqrt{2} \sin C)$
$\Rightarrow a+c \sqrt{2}=k\left(\sin 45^{\circ}+\sqrt{2} \sin 60^{\circ}\right)$

$$
\begin{equation*}
=k\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right) \tag{i}
\end{equation*}
$$

And,
$b=k \sin B$
$\Rightarrow b=k \sin 75^{\circ}=k \frac{(\sqrt{3}+1)}{2 \sqrt{2}}$
$\Rightarrow 2 b=k \frac{(\sqrt{3}+1)}{\sqrt{2}}$
From (i) and (ii), we get
$a+c \sqrt{2}=2 b$
(d)

Given, $f(x)=\sin ^{4} x+\cos ^{4} x$
$=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x$
$\Rightarrow f(x)=1-\frac{1}{2} \sin ^{2} 2 x$
Also, $0 \leq \sin ^{2} 2 x \leq 1$
\therefore Minimum value of $f(x)$ is $1-\frac{1}{2}=\frac{1}{2}$
502 (a)
Given, $\tan \theta=\frac{1}{\sqrt{7}}$
$\therefore \frac{\operatorname{cosec}^{2}-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{\left(1+\cot ^{2} \theta\right)-\left(1+\tan ^{2} \theta\right)}{\left(1+\cot ^{2} \theta\right)+\left(1+\tan ^{2} \theta\right)}$
$=\frac{\left(\cot ^{2} \theta-\tan ^{2} \theta\right)}{2+\tan ^{2} \theta+\cot ^{2} \theta}$
$=\frac{7-\frac{1}{7}}{2+\frac{1}{7}+7}=\frac{48}{64}=\frac{3}{4}$
504
(d)

Since the sum of a positive number and its reciprocal is always greater than or equal to 2 .
Therefore, $y \geq 2$. But, $y=2$ only when $\theta=0$.
Hence, $y>2$
505 (b)
We have, $\sec \theta=x+\frac{1}{4 x}$
Let $\sec \theta+\tan \theta=\lambda$
Then,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1$
$\Rightarrow \sec \theta-\tan \theta=\frac{1}{\lambda}$
Adding (i) and (ii), we get
$2 \sec \theta \Rightarrow \lambda+\frac{1}{\lambda} \Rightarrow 2 x+\frac{1}{2 x}=\lambda+\frac{1}{\lambda} \Rightarrow \lambda=2 x, \frac{1}{2 x}$
506 (a)
Since, $\cos ^{2} \theta=\frac{1}{6} \sin \theta \cdot \tan \theta$
$\Rightarrow 6 \cos ^{3} \theta+\cos ^{2} \theta-1=0$
As $\cos \theta=\frac{1}{2}$ satisfied the equation.
$\therefore(2 \cos \theta-1)\left(3 \cos ^{2} \theta+2 \cos \theta+1\right)=0$
$\Rightarrow \cos \theta=\frac{1}{2}$ (other values of $\cos \theta$ are imaginary)
$\therefore \theta=2 n \pi \pm \frac{\pi}{3}, n \in I$
507 (a)
Given, $3 \sin ^{2} x=8 \cos x$
$\Rightarrow 3\left(1-\cos ^{2} x\right)=8 \cos x$
$\Rightarrow 3 \cos ^{2} x-8 \cos x-3=0$
$\Rightarrow(3 \cos x+1)(\cos x-3)=0$
$\Rightarrow \cos x=-\frac{1}{3} \quad(\because \cos x \not \geq 1)$
In the given interval only one value of x is exist
508 (a)

We have,
$\log _{\cos x} \sin x+\log _{\sin x} \cos x=2$
$\Rightarrow \log _{\cos x} \sin x+\frac{1}{\log _{\cos x} \sin x}=2$
Clearly, this equation is meaningful for
$0<\sin x<1$ and $0<\cos x<1$ i.e. for
$0<x<\pi / 2$
Now,
$\log _{\cos x} \sin x+\frac{1}{\log _{\cos x} \sin x}=2$
$\Rightarrow \log _{\cos x} \sin x=1$
$\Rightarrow \sin x=\cos x$
$\Rightarrow \tan x=1$
$\Rightarrow \tan x=\tan \frac{\pi}{4}$
$\Rightarrow x \geq 2 n \pi+\frac{\pi}{4}, n$

$$
\in Z \quad[\because \sin x>0 \text { and } \cos x>0]
$$

509 (a)
We have,
$16 \sin 144^{\circ} \sin 108^{\circ} \sin 72^{\circ} \sin 36^{\circ}$
$=16 \sin 36^{\circ} \cos 18^{\circ} \cos 18^{\circ} \sin 36^{\circ}$
$=16 \cos ^{2} 18^{\circ} \sin ^{2} 36^{\circ}=16\left(\sin 36^{\circ} \cos 18^{\circ}\right)^{2}$
$=16\left\{\frac{\sqrt{10-2 \sqrt{5}}}{4} \times \frac{\sqrt{10+2 \sqrt{5}}}{4}\right\}^{2}=5$
510 (b)
We have,
$f(x)=\tan ^{m} x+\cot ^{m} x$

$$
=\left(\tan ^{m / 2} x-\cot ^{m / 2} x\right)^{2}+2 \geq 2
$$

Thus, $f(x)$ attains the minimum value of 2 at points given by $\tan ^{m / 2} x=\cot ^{m / 2} x$ i.e. at $x=\frac{\pi}{4}$
ALITER Using A.M. \geq G.M., we have
$\frac{\tan ^{m} x+\cot ^{m} x}{2} \geq \sqrt{\tan ^{m} x \times \cot ^{m} x}$
$\Rightarrow \tan ^{m} x+\cot ^{m} x \geq 2$
511 (a)
Given, $7 \cos x-24 \sin x=\lambda \cos (x+\alpha)$
$\Rightarrow 25\left(\frac{7}{25} \cos x-\frac{24}{25} \sin x\right)=\lambda \cos (x+\alpha)$
$\Rightarrow 25[\cos (\beta+x)=\lambda \cos (x+\alpha)$
Where $\cos \beta=\frac{7}{25}$
$\Rightarrow \lambda=25$
512 (c)
3. Suppose $a=2, b=1$
$\sin \theta=\frac{2^{2}+1^{2}}{2^{2}-1}=\frac{5}{3}>1$, which is not possible
4. $\sec \theta=\frac{4}{5}<1$, which is not possible
5. $\tan \theta=45$, which is possible
6. $\cos \theta=\frac{7}{3}>1$, which is not possible

513 (c)
$\tan (A-B)=\tan \frac{\pi}{4}=1$
$\Rightarrow \frac{\tan A-\tan B}{1+\tan A \tan B}=1$
$\Rightarrow \tan A-\tan B-\tan A \tan B=1$
Now, $y=(1+\tan A)(1-\tan B)$
$=(1-\tan B+\tan A-\tan A \tan B)$
$=(1+1)=2 \quad[$ from Eq. (i) $]$
$\therefore \quad(y+1)^{y+1}=(2+1)^{2+1}=3^{3}=27$
514 (d)
We have,
$a \cos A=b \cos B$
$\Rightarrow a\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)=b\left(\frac{c^{2}+a^{2}-b^{2}}{2 a c}\right)$
$\Rightarrow a^{2} b^{2}+a^{2} c^{2}-a^{4}=b^{2} c^{2}+b^{2} a^{2}-b^{4}$
$\Rightarrow c^{2}\left(a^{2}-b^{2}\right)-\left(a^{4}-b^{4}\right)=0$
$\Rightarrow a=b$ or, $c^{2}=a^{2}+b^{2}$
$\Rightarrow \triangle A B C$ is isosceles or right angled
515 (c)
Maximum value of $\cos \theta=1$
So, the equation can have solution only when
$\cos x=1, \cos y=1$
$\Rightarrow x=0, y=0$
$\Rightarrow \cos (x-y)=\cos 0=1$
516 (a)
$\sin 2 A+\sin 2 B+\sin 2 C$
$=2 \sin (A+B) \cos (A-B)+2 \sin C \cos C$
$=2 \sin (\pi-C) \cos (A-B)$

$$
+2 \sin C \cos \{\pi-(A+B)\}
$$

$=2 \sin C\{\cos (A-B)-\cos (A+B)\}$
$=4 \sin A \sin B \sin C$
517 (a)
Maximum value of $4 \sin ^{2} x+3 \cos ^{2} x i e, \sin ^{2} x+$ 3 is 4 and that of $\sin x 2+\cos x 2$ is $12+12=2$, both attained at $x=\frac{\pi}{2}$. Hence, the given function has maximum value $4+\sqrt{2}$

518 (c)
Given, $\sin 3 \theta-\sin \theta=0$
$\Rightarrow 2 \cos \left(\frac{3 \theta+\theta}{2}\right) \sin \left(\frac{3 \theta-\theta}{2}\right)=0$
$\Rightarrow \cos 2 \theta \cdot \sin \theta=0$
$\Rightarrow \cos 2 \theta=0$ or $\sin \theta=0, \pi, 2 \pi$
$\Rightarrow 2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}$ or $\theta=\pi \quad(\because \theta \in(0,2 \pi))$
$\Rightarrow \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$ or $\theta=\pi$

Hence, total number of solutions are 5
519 (a)
We have,
$\sin \frac{\pi}{16} \sin \frac{3 \pi}{16} \sin \frac{5 \pi}{16} \sin \frac{7 \pi}{16}$
$=\frac{1}{4}\left\{\left(2 \sin \frac{7 \pi}{16} \sin \frac{\pi}{16}\right)\left(2 \sin \frac{5 \pi}{16} \sin \frac{3 \pi}{16}\right)\right\}$
$=\frac{1}{4}\left\{\left(\cos \frac{3 \pi}{8}-\cos \frac{\pi}{2}\right)\left(\cos \frac{\pi}{8}-\cos \frac{\pi}{2}\right)\right\}$
$=\frac{1}{8}\left(2 \cos \frac{3 \pi}{8} \cos \frac{\pi}{8}\right)=\frac{1}{8}\left(\cos \frac{\pi}{2}+\cos \frac{\pi}{4}\right)=\frac{1}{8 \sqrt{2}}$

$$
=\frac{\sqrt{2}}{16}
$$

520 (a)
$\tan 45^{\circ}=\tan \left(25^{\circ}+20^{\circ}\right)$
$\Rightarrow 1=\frac{\tan 25^{\circ}+\tan 20^{\circ}}{1-\tan 25^{\circ} \tan 20^{\circ}}$
$\Rightarrow \tan 25^{\circ}+\tan 20^{\circ}+\tan 25^{\circ} \tan 20^{\circ}=1$
521 (c)
The given equation is
$\sin ^{4} x+\cos ^{4} y+2=4 \sin x \cos y$
$\Rightarrow\left(\sin ^{2} x-1\right)^{2}+\left(\cos ^{2} y-1\right)^{2}$

$$
\begin{aligned}
& +2 \sin ^{2} x \\
& +2 \cos ^{2} y-4 \sin x \cos y=0
\end{aligned}
$$

$\Rightarrow\left(\sin ^{2} x-1\right)^{2}+\left(\cos ^{2} y-1\right)^{2}$

$$
+2(\sin x-\cos y)^{2}=0
$$

Which is possible only when
$\sin ^{2} x-1=0, \cos ^{2} y-1=0, \sin x-\cos y=0$
$\Rightarrow \sin ^{2} x=1, \cos ^{2} y=1, \sin x=\cos y$
As $0 \leq x, y \leq \frac{\pi}{2}$
We get $\sin x=\cos y=1$
$\therefore \sin x+\cos y=1+1=2$
522 (d)
Let $C=90^{\circ}$. Then,
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
$=\sin ^{2} A+\sin ^{2} B+1$
$=\sin ^{2} A+\sin ^{2}\left(\frac{\pi}{2}-A\right)+1$

$$
=\sin ^{2} A+\cos ^{2} A+1=2
$$

523 (c)
We have, $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)$
$=z \cos \left(\theta+\frac{4 \pi}{3}\right)=k \quad$ (say)
$\Rightarrow \cos \theta=\frac{k}{x}, \cos \left(\theta+\frac{2 \pi}{3}\right)=\frac{k}{y}$
and $\cos \left(\theta+\frac{4 \pi}{3}\right)=\frac{k}{z}$
$\therefore \frac{k}{x}+\frac{k}{y}+\frac{k}{z}=\cos \theta$

$$
\begin{aligned}
& \quad+\cos \left(\theta+\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{4 \pi}{3}\right) \\
& =\cos \theta-\cos \left(\frac{\pi}{3}-\theta\right)-\cos \left(\frac{\pi}{3}+\theta\right) \\
& =\cos \theta-2 \cos \frac{\pi}{3} \cos \theta=0 \\
& \Rightarrow
\end{aligned}
$$

524 (d)
Since, $A+B+C=\frac{3 \pi}{2}$
$\therefore \cos 2 A+\cos 2 B+\cos 2 C$
$=2 \cos (A+B) \cos (A-B)+\cos 2 C$
$=2 \cos \left(\frac{3 \pi}{2}-C\right) \cos (A-B)+1-2 \sin ^{2} C$
$=1-2 \sin C\left[\cos (A-B)+\sin \left(\frac{3 \pi}{2}-(A+B)\right)\right]$
$=1-2 \sin C[\cos (A-B)-\cos (A+B)]$
$=1-4 \sin A \sin B \sin C$
525 (b)
We have,

$$
\begin{aligned}
& A+B+C=\pi \\
& \Rightarrow A+B=\pi-C \\
& \Rightarrow \tan (A+B)=\tan (\pi-C) \\
& \Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=\tan (\pi-C) \Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \quad=-\tan C
\end{aligned}
$$

Now,
C is an obtuse angle
$\Rightarrow \tan C<0$
$\Rightarrow-\tan C>0$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}>0$
$\Rightarrow 1-\tan A \tan B>0 \quad\left[\begin{array}{l}\because A, B \text { are acute angles } \\ \therefore \tan A>0, \tan B>0\end{array}\right]$
$\Rightarrow \tan A \tan B<1$
526 (a)
The given equation is

$$
\begin{gathered}
(a-2 b+c) x^{2}+(b-2 c+a) x+(c-2 a+b) \\
=0 \\
\because \sum(a-2 b+c)=0
\end{gathered}
$$

\therefore One root of this equation is 1
Now, $\sec \theta+\tan \theta=1$
We know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow \sec \theta-\tan \theta=1$
On solving Eqs.(i) and (ii), we get
$\sec \theta=1$
\therefore One root of given equation is $\sec \theta$

528 (b)

The equation
$a_{1}+a_{2} \sin x+a_{3} \cos x+a_{4} \sin 2 x+$
$a 5 \cos 2 x=0$ holds for all values of x. Therefore,
$a_{1}+a_{3}+a_{5}=0 \quad[$ On putting $x=0]$
$a_{1}-a_{3}+a_{5}=0 \quad[$ On putting $x=\pi]$
$\Rightarrow a_{3}=0$ and $a_{1}+a_{5}=0$
Putting $x=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$, we get
$a_{1}+a_{2}-a_{5}=0$ and $a_{1}-a_{2}-a_{5}=0$
$\Rightarrow a_{2}=0$ and $a_{1}-a_{5}=0$
Equations (i) and (ii) give
$a_{1}=a_{2}=a_{3}=a_{5}=0$
The given equation reduces to $a_{4} \sin 2 x=0$. This is true for all values of x. Therefore, $a_{4}=0$
Hence, $a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=0$
Thus, the number of 5 -tuples is one
529 (a)
$\tan \left(70^{\circ}\right)=\tan \left(50^{\circ}+20^{\circ}\right)=\frac{\tan 50^{\circ}+\tan 20^{\circ}}{1-\tan 50^{\circ} \tan 20^{\circ}}$
$\Rightarrow \tan 70^{\circ}-\left(\tan 50^{\circ} \tan 20^{\circ}\right) \tan 70^{\circ}$

$$
=\tan 50^{\circ}+\tan 20^{\circ}
$$

$\Rightarrow \tan 70^{\circ}-\cot 20^{\circ} \tan 20^{\circ} \tan 50^{\circ}$ $=\tan 50^{\circ}+\tan 20^{\circ}$
[using, $\tan \left(90^{\circ}-\theta=\cot \theta\right)$]
$\Rightarrow \tan 70^{\circ}-\tan 50^{\circ}=\tan 50^{\circ}+\tan 20^{\circ}$
$\Rightarrow \tan 70^{\circ}-\tan 20^{\circ}=2 \tan 50^{\circ}$
$\Rightarrow \frac{\tan 70^{\circ}-\tan 20^{\circ}}{\tan 50^{\circ}}=2$
530 (c)
Given, $k=\cos 20^{\circ}$
And $2 k^{2}-1=\cos x$
$\therefore 2 \cos ^{2} 20^{\circ}-1=\cos x$
$\Rightarrow \cos x=\cos 40^{\circ}$
$\Rightarrow x=40^{\circ}$
or $x=360^{\circ}-40^{\circ}=320^{\circ}$
531 (a)
$\tan 9^{\circ}-\tan 27^{\circ}-\cot 27^{\circ}+\cot 9^{\circ}$
$=\left(\frac{\sin ^{2} 9^{\circ}+\cos ^{2} 9^{\circ}}{\cos 9^{\circ} \sin 9^{\circ}}\right)-\left(\frac{\sin ^{2} 27^{\circ}+\cos ^{2} 27^{\circ}}{\cos 27^{\circ} \sin 27^{\circ}}\right)$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$
$=\frac{2}{\frac{\sqrt{5}-1}{4}}-\frac{2}{\frac{\sqrt{5}+1}{4}}$
$=\frac{16}{5-1}=4$
532 (c)
We have,
$\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$
$\Rightarrow \tan (\pi \cos \theta)=\tan \left(\frac{\pi}{2}-\pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta=\left(\frac{\pi}{2}-\pi \sin \theta\right)+n \pi, n \in Z$
$\Rightarrow \cos \theta+\sin \theta=\frac{1}{2}+n, n \in Z$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta=\frac{2 n+1}{2 \sqrt{2}}, n \in Z$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{2 n+1}{2 \sqrt{2}}, n \in Z$
$\begin{aligned} \Rightarrow \cos \left(\theta-\frac{\pi}{4}\right) & = \pm \frac{1}{2 \sqrt{2}} \quad[\text { For } n=0 \text { and } n \\ & =-1]\end{aligned}$

$$
=-1]
$$

533 (d)
We have,
$\frac{\sin B}{b}=\frac{\sin C}{c} \Rightarrow \frac{\sin \pi / 3}{3}=\frac{\sin C}{4}$
$\Rightarrow \sin c=\frac{2}{\sqrt{3}}>1$, which is impossible
Hence, no triangle is possible
535 (c)
Let $a=7 \mathrm{~cm}, b=4 \sqrt{3} \mathrm{~cm}$ and $c=\sqrt{13} \mathrm{~cm}$. Since c is the smallest side. Therefore, the smallest angle is C and is given by
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{\sqrt{3}}{2} \Rightarrow C=30^{\circ}$
537 (c)
Given, $\tan (k+1) \theta=\tan \theta$
$\Rightarrow(k+1) \theta=n \pi+\theta \Rightarrow k \theta=n \pi$
$\Rightarrow \theta=\frac{n \pi}{k} \quad \therefore \theta \in\left\{\frac{n \pi}{k}: n \in I\right\}$

538 (b)

It is given that $\theta \in(0, \pi / 4)$. Therefore,
$0<\tan \theta<1$ and $\cot \theta>1$. Let $\tan \theta=1-a$ and
$\cot \theta=1+b$ where $0<a<1$ and $b>1$
$\therefore t_{1}=(1-a)^{1-a}, t_{2}=(1-a)^{1+b}, t_{3}=$ $(1+b)^{1-a}$ and, $t_{4}=(1+b)^{1+b}$
Now,
$1-a<1+b$ and $0<1-a<1$
$\therefore(1-a)^{1-a}>(1-a)^{1+b}$ and $(1+b)^{1+b}>$
$(1+b)^{1-a}$
$\Rightarrow t_{1}>t_{2}$ and $t_{4}>t_{3}$
Also, $(1+b)^{1-a}>(1-a)^{1-a}$
$\Rightarrow t_{3}>t_{1}$
From (i) and (ii), we get $t_{4}>t_{3}>t_{1}>t_{2}$
539 (a)
We have,
$\cos 12^{\circ} \cos 24^{\circ} \cos 36^{\circ} \cos 48^{\circ} \cos 72^{\circ} \cos 84^{\circ}$
$=\left\{-\cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 96^{\circ}\right\}\left\{\cos 36^{\circ} \cos 72\right.$
$=-\frac{\sin 2^{4} \times 12^{\circ}}{2^{4} \sin 12^{\circ}} \times\left(\cos 36^{\circ} \sin 18^{\circ}\right)$
$=-\frac{\sin 192^{\circ}}{16 \sin 12^{\circ}} \times\left(\frac{\sqrt{5}+1}{4} \times \frac{\sqrt{5}-1}{4}\right)=\frac{1}{16} \times \frac{1}{4}$
$=\frac{1}{64}$
540 (c)
Since, $\tan A+\sin A=m$
and $\tan A-\sin A=n$
$\therefore m+n=2 \tan A$
and $m-n=2 \sin A$
Also, $m n=(\tan A+\sin A)(\tan A-\sin A)=$ $\tan 2 A-\sin 2 A$

Now, $\frac{\left(m^{2}-n^{2}\right)^{2}}{m n}=\frac{(m+n)^{2}(m-n)^{2}}{m n}$
$=\frac{(2 \tan A)^{2}(2 \sin A)^{2}}{\tan ^{2} A-\sin ^{2} A}$
$=\frac{16 \tan ^{2} A \sin ^{2} A}{\sin ^{2} A \tan ^{2} A}=16$
541 (c)
$\cos 2 A+\cos 2 B+\cos 2 C$
$=2 \cos (A+B) \cos (A-B)+1-2 \sin ^{2} C$
$=2 \cos \left(\frac{3 \pi}{2}-C\right) \cos (A-B)+1-2 \sin ^{2} C$
$\left[\because A+B+C=270^{\circ} \Rightarrow B+A=\frac{3 \pi}{2}-C\right]$
$=1-2 \sin C[\cos (A-B)+\sin C]$
$=1-2 \sin C[\cos (A-B)-\cos (A+B)]$
$=1-4 \sin A \sin B \sin C$
542 (a)
Given, $\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$
$\Rightarrow \frac{2 \cos \left(\frac{A+C}{2}\right) \sin \left(\frac{A-C}{2}\right)}{2 \sin \left(\frac{A+C}{2}\right) \sin \left(\frac{A-C}{2}\right)}=\cot B$
$\Rightarrow \cot \left(\frac{A+C}{2}\right) \cot B$
$\Rightarrow B=\frac{A+C}{2}$
Hence, A, B and C will be in AP

543 (a)

We have,
$\alpha+\beta+\gamma=2 \pi$
$\Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=\pi$
$\Rightarrow \tan \left(\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}\right)=\tan \pi=0$
$\Rightarrow \frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}-\tan \frac{\beta}{2} \tan \frac{\gamma}{2}-\tan \frac{\gamma}{2} \tan \frac{\alpha}{2}}$
$\Rightarrow \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
544 (c)
We have,
$2 r=a+c-b$
$\Rightarrow 2 r=2 s-2 b$
$\Rightarrow r=s-b$
$\Rightarrow \frac{\Delta}{s}=s-b$
$\Rightarrow \Delta=s(s-b)$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=s(s-b)$
$\Rightarrow \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}=1 \Rightarrow \tan \frac{B}{2}=\tan \frac{\pi}{4} \Rightarrow B=\frac{\pi}{2}$
545 (d)
Since, $\sin ^{2} \theta \leq 1$
$\Rightarrow \frac{x^{2}+y^{2}+1}{2 x} \leq 0$
$\Rightarrow(x-1)^{2}+y^{2} \leq 0$
Which is possible only when $x=1, y=0$
Hence, it also depends on value of y.
546 (d)
We have,
$1+\sin \theta+\sin ^{2} \theta+\cdots \infty=4+2 \sqrt{3}$
$\Rightarrow \frac{1}{1-\sin \theta}=4+2 \sqrt{3}$
$\Rightarrow 1-\sin \theta=\frac{1}{2(2+\sqrt{3})}$
$\Rightarrow 1-\sin \theta=\frac{1}{2}(2-\sqrt{3})$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{3}, \frac{2 \pi}{3}$

547 (b)

Given, $\cos 20^{\circ}-\sin 20^{\circ}=p$
$\Rightarrow \cos ^{2} 20^{\circ}+\sin ^{2} 20^{\circ}-2 \sin 20^{\circ} \cos 20^{\circ}=p^{2}$
$\Rightarrow 1-p^{2}=\sin 40^{\circ}$
$\Rightarrow 1-p^{2}=\sqrt{1-\cos ^{2} 40^{\circ}}$
$\Rightarrow\left(1-p^{2}\right)^{2}=1-\cos ^{2} 40^{\circ}$
$\Rightarrow \cos ^{2} 40^{\circ}=1-\left(1+p^{4}-2 p^{2}\right)$
$\Rightarrow \cos 40^{\circ}=\sqrt{2 p^{2}-p^{4}}$
$\Rightarrow \cos 40^{\circ}=p \sqrt{2-p^{2}}$
548 (d)
We have,
$c^{2}=a^{2}+b^{2} \Rightarrow \angle C=\frac{\pi}{2}$
$\therefore \Delta=\frac{1}{2} a b \sin C=\frac{1}{2} a b$
$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} a b$
$\Rightarrow 4 s(s-a)(s-b)(s-c)=a^{2} b^{2}$
549 (b)
$\tan \left(70^{\circ}-20^{\circ}\right)=\frac{\tan 70^{\circ}-\tan 20^{\circ}}{1+\tan 70^{\circ} \tan 20^{\circ}}$
$\Rightarrow \tan 50^{\circ}\left(1+\tan 70^{\circ} \tan 20^{\circ}\right)=\tan 70^{\circ}-$
$\tan 20^{\circ} \ldots$ (i)
Now, $\tan \left(70^{\circ}+20^{\circ}\right)=\frac{\tan 70^{\circ}+\tan 20^{\circ}}{1-\tan 20^{\circ} \tan 70^{\circ}}$
$\Rightarrow \tan 20^{\circ} \tan 70^{\circ}=1 \quad\left[\because \tan 90^{\circ}=\infty\right]$
On putting in Eq. (i), we get
$\tan 50^{\circ}(1+1)=\tan 70^{\circ}-\tan 20^{\circ}$
$\Rightarrow \tan 20^{\circ}+2 \tan 50^{\circ}-\tan 70^{\circ}=0$
550 (a)
Given, $4 \cos ^{2} x+6 \sin ^{2} x=5$
$\Rightarrow 4\left(\cos ^{2} x+\sin ^{2} x\right)+2 \sin ^{2} x=5$
$\Rightarrow 2 \sin ^{2} x=5-4$
$\Rightarrow \sin x= \pm \frac{1}{\sqrt{2}}$
$\therefore \quad x=n \pi \pm \frac{\pi}{4}$
551 (c)
$\frac{\tan A}{1+\sec A}+\frac{1+\sec A}{\tan A}$

$$
=\frac{\tan ^{2} A+1+\sec ^{2} A+2 \sec A}{\tan A(1+\sec A)}
$$

$=\frac{2 \sec ^{2} A+2 \sec A}{\tan A(1+\sec A)}=\frac{2 \sec A}{\tan A}$
$=\frac{2 \cos A}{\cos A \cdot \sin A}=2 \operatorname{cosec} \mathrm{~A}$
552 (a)
Given, $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$
$\Rightarrow 1-\cos ^{2} A+1-\cos ^{2} B+1-\cos ^{2} C=2$
$\Rightarrow 1=\cos ^{2} A+\cos ^{2} B+\cos ^{2} C$
$\Rightarrow 1=1-2 \cos A \cos B \cos C$
$\Rightarrow \cos A \cos B \cos C=0$
At least one should be 90° and sum of two angles should be 90°
553 (d)
Given, $(\cos \theta+\cos 3 \theta)+\cos 2 \theta=0$
$\Rightarrow 2 \cos 2 \theta \cos \theta+\cos 2 \theta=0$
$\Rightarrow \cos 2 \theta(2 \cos \theta+1)=0$
$\Rightarrow \cos 2 \theta=0$ or $2 \cos \theta+1=0$
$\Rightarrow 2 \theta=(2 n+1) \frac{\pi}{2}$ or $\theta=2 n \pi \pm \frac{2 \pi}{3}$
$\Rightarrow \theta=(2 n+1) \frac{\pi}{4}$ or $\theta=2 n \pi \pm \frac{2 \pi}{3}$
554 (d)
The quadratic equation is $x^{2}-x \cos \theta+1=0$
Since, x is real, therefore discriminant ≥ 0
$\Rightarrow B^{2} 4 A C \geq 0 \Rightarrow \cos ^{2} \theta \geq 4(1)(1) \Rightarrow \cos ^{2} \theta \geq 4$
Which is impossible because $\cos ^{2} \theta$ is not greater than 1

555 (b)
$(\sin x+\cos x)^{2}=\frac{1}{25}$
$\Rightarrow \sin ^{2} x+\cos ^{2} x+2 \sin x \cos x=\frac{1}{25}$
$\Rightarrow \sin 2 x=\frac{1}{25}-1=-\frac{24}{25}$
$\Rightarrow \cos 2 x=\sqrt{1-\sin ^{2} 2 x}=-\frac{\sqrt{49}}{25}$
Now, $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}=-\frac{24}{25} \times\left(-\frac{25}{\sqrt{49}}\right)=\frac{24}{7}$
556 (b)
Given, $\sin \frac{\theta}{2}=\sqrt{\frac{x-1}{2 x}}$
$\therefore \tan \frac{\theta}{2}=\sqrt{\frac{x-1}{x+1}}$
$\therefore \tan \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$
$=\frac{2 \sqrt{\frac{x-1}{x+1}}}{1-\frac{x-1}{x+1}}=\frac{2 \sqrt{\frac{x-1}{x+1}}}{\frac{2}{x+1}}=\sqrt{x^{2}-1}$

558 (b)
We have,
$\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 179^{\circ}$
$=\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 90^{\circ} \ldots \cos 179^{\circ}$
$=0 \quad\left[\because \cos 90^{\circ}=0\right]$
559 (c)
Given, $A D=p$ and $B C=2 \sqrt{2} p$
Clearly, $p=\mathrm{a} \sin \theta=b \cos \theta$

Since, $a^{2}+b^{2}=(2 \sqrt{2} p)^{2}$
$\Rightarrow p^{2}\left[\frac{1}{\sin ^{2} \theta}+\frac{1}{\cos ^{2} \theta}\right]=8 p^{2}$
$\Rightarrow 1=2 \sin ^{2} 2 \theta \Rightarrow \sin 2 \theta= \pm \frac{1}{\sqrt{2}}$
$\Rightarrow \sin 2 \theta=\frac{1}{\sqrt{2}} \Rightarrow 2 \theta=\frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{8}$
So, the other angle is $\frac{\pi}{2}-\theta=\frac{\pi}{2}-\frac{\pi}{8}=\frac{3 \pi}{8}$
560 (c)
$12 \cot ^{2} \theta-31 \operatorname{cosec} \theta+32=0$
$\Rightarrow 12 \cos ^{2} \theta-31 \sin \theta+32 \sin ^{2} \theta=0$
$\Rightarrow 20 \sin ^{2} \theta-31 \sin \theta+12=0 \quad[$ $\left.\because \cos ^{2} \theta=1-\sin ^{2} \theta\right]$
This is a quadratic equation in $\sin \theta$
$\therefore \sin \theta=\frac{31 \pm \sqrt{31^{2}-4.20 .12}}{2.20}=\frac{31 \pm 1}{40}$

$$
\Rightarrow \sin \theta=\frac{4}{5}, \frac{3}{4}
$$

561 (c)
We have,
$T_{n}=\cos ^{n} \theta+\sin ^{n} \theta$
$\therefore T_{n+2}=\cos ^{n+2} \theta+\sin ^{n+2} \theta$
$\Rightarrow T_{n}-T_{n+2}=\left(\cos ^{n} \theta+\sin ^{n} \theta\right)$

$$
-\left(\cos ^{n+2} \theta+\sin ^{n+2} \theta\right)
$$

$\Rightarrow T_{n}-T_{n+2}=\cos ^{n} \theta\left(1-\cos ^{2} \theta\right)$

$$
+\sin ^{n} \theta\left(1-\sin ^{2} \theta\right)
$$

$\Rightarrow T_{n}-T_{n+2}=\cos ^{n} \theta \sin ^{2} \theta+\sin ^{n} \theta \cos ^{2} \theta$
$\Rightarrow T_{n}-T_{n+2}=\cos ^{2} \theta \sin ^{2} \theta\left(\cos ^{n-2} \theta+\sin ^{n-2} \theta\right)$
$\Rightarrow T_{n}-T_{n+2}=\cos ^{2} \theta \sin ^{2} \theta T_{n-2}$
Now,
$\left(2 T_{6}-3 T_{4}+1\right)$
$=2\left(T_{6}-T_{4}\right)-T_{4}+T_{2}$
$=-2\left(T_{4}-T_{6}\right)+\left(T_{2}-T_{4}\right)$
$=-2 \cos ^{2} \theta \sin ^{2} \theta T_{2}+\cos ^{2} \theta \sin ^{2} \theta T_{0}$
$=-2 \cos ^{2} \theta \sin ^{2} \theta+2 \cos ^{2} \theta \sin ^{2} \theta$

$$
=0\left[\because T_{2}=1 \& T_{0}=2\right]
$$

562 (a)
$2 \sin ^{2} \theta-3 \sin \theta-2=0$
$\Rightarrow(2 \sin \theta+1)(\sin \theta-2)=0$
$\Rightarrow \sin \theta=-\frac{1}{2} \quad[\because \sin \theta \neq 2]$
$\Rightarrow \sin \theta=\sin \left(-\frac{\pi}{6}\right)$
$\Rightarrow \quad \theta=n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right)$
$\Rightarrow \theta=n \pi+(-1)^{n+1} \frac{\pi}{6}$
563 (c)
We have,
$\alpha+\beta+\gamma=\pi$
$\therefore \sin \alpha+\sin \beta+\sin \gamma=4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
Clearly, $\cos \frac{\alpha}{2}>0, \cos \frac{\beta}{2}>0, \cos \frac{\gamma}{2}>0$
$\therefore 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}>0$
\Rightarrow Minimum value of $\sin \alpha+\sin \beta+\sin \gamma$ is
positive
564 (b)
We have,
$3\left\{\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi-\alpha)\right\}$
$-2\left\{\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right\}$
$=3\left\{\cos ^{4} \alpha+\sin ^{4} \alpha\right\}-2\left\{\cos ^{6} \alpha+\sin ^{6} \alpha\right\}$
$=3\left\{\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right\}$
$-2\left\{\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{3}-3 \cos ^{2} \alpha \sin ^{2} \alpha\left(\cos ^{2} \alpha\right.\right.$

$$
\left.\left.+\sin ^{2} \alpha\right)\right\}
$$

$=3\left\{1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right\}-2\left\{1-3 \cos ^{2} \alpha \sin ^{2} \alpha\right\}$

$$
=1
$$

565 (d)
Given, $\cot x+\operatorname{cosec} x=\sqrt{3}$
$\Rightarrow \frac{\cos x+1}{\sin x}=\sqrt{3}$
$\Rightarrow \frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}=\sqrt{3} \Rightarrow \tan \frac{x}{2}=\frac{1}{\sqrt{3}}$
$\therefore \frac{x}{2}=n \pi+\frac{\pi}{6} \Rightarrow x=2 n \pi+\frac{\pi}{3}$
$\Rightarrow \quad x-\frac{\pi}{6}=2 n \pi+\frac{\pi}{6}$
For $n=0$, principle value of $x-\frac{\pi}{6}$ is $\frac{\pi}{6}$
566 (a)
$\because \sin 3 x=3 \sin x-4 \sin ^{3} x$
$\therefore \sin ^{3} x=\frac{1}{4}(3 \sin x-\sin 3 x)$
and $\cos 3 x=4 \cos ^{3} x-3 \cos x$
$\Rightarrow \cos ^{3} x=\frac{1}{4}(\cos 3 x+3 \cos x)$
$\therefore \cos 3 x \cos ^{3} x+\sin 3 x \sin ^{3} x$
$=\frac{1}{4}\left[\cos ^{2} 3 x+3 \cos x \cos 3 x\right.$

$$
\left.+3 \sin x \sin 3 x-\sin ^{2} 3 x\right]
$$

$=\frac{1}{4}[3 \cos 2 x+\cos 6 x]=\cos ^{3} 2 x$
$\Rightarrow \cos 2 x=0 \Rightarrow 2 x=(2 n+1) \frac{\pi}{2}$
$\Rightarrow x=(2 n+1) \frac{\pi}{4}$
567 (a)
We have,
$c_{1}+c_{2}=2 b \cos A$ and $c_{1} c_{2}=b^{2}-a^{2}$
$\therefore c_{1}^{2}-2 c_{1} c_{2} \cos 2 A+c_{2}^{2}$
$=\left(c_{1}+c_{2}\right)^{2}-2 c_{1} c_{2}(1+\cos 2 A)$
$=4 b^{2} \cos ^{2} A-4\left(b^{2}-a^{2}\right) \cos ^{2} A=4 a \cos ^{2} A$
568 (a)
Let $y=\tan A \tan B$. Then,
$A+B=\frac{\pi}{3}$
$\Rightarrow y=\tan A \tan \left(\frac{\pi}{3}-A\right)$
$\Rightarrow y=\frac{\tan A(\sqrt{3}-\tan A)}{1+\sqrt{3} \tan A}=\frac{\sqrt{3} x-x^{2}}{1+\sqrt{3} x}$, where x

$$
=\tan A
$$

For maximum or minimum values of y, we must have
$\frac{d y}{d x}=0 \Rightarrow x=\frac{1}{\sqrt{3}}$ or, $x=-\sqrt{3}$
But, $x=\tan A>0$. Therefore, $x=\frac{1}{\sqrt{3}}$
For this value of x, we have $y=\frac{1}{3}$
569 (c)
We have,
$2 y=1$ and $y=\sin x$
$\Rightarrow y=\frac{1}{2}$ and $y=\sin x$

Clearly, these two curves intersect at 4 points in $[-2 \pi, 2 \pi]$
570 (c)
We have,
$x+2 \tan x=\frac{\pi}{2} \Rightarrow \tan x=\frac{\pi}{4}-\frac{x}{2}$
It can be easily seen from the graphs of the curves $y=\tan x$ and $y=\frac{\pi}{4}-\frac{x}{2}$, in the interval $[0,2 \pi]$, that they intersect at three points. The abscissa of these three points are roots of the equation

572 (d)
$\frac{\cot ^{2} \theta+1}{\cot ^{2} \theta-1}=\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}$
$=\frac{1}{\cos 2 \theta}=\sec 2 \theta$
573 (d)
$\operatorname{cosec}^{2} x+25 \sec ^{2} x=26+\cot ^{2} x+25 \tan ^{2} x$
$=26+10+(\cot x-5 \tan x)^{2} \geq 36$
574 (b)
We are given that
$\cos \theta=\frac{2 \cos (\theta-\alpha) \cos (\theta+\alpha)}{\cos (\theta-\alpha)+\cos (\theta+\alpha)}$
$\Rightarrow \cos \theta=\frac{2\left(\cos ^{2} \theta-\sin ^{2} \alpha\right)}{2 \cos \theta \cos \alpha}$
$\Rightarrow \cos ^{2} \theta \cos \alpha=\cos ^{2} \theta-\sin ^{2} \alpha$
$\Rightarrow \cos ^{2} \theta=\frac{\sin ^{2} \alpha}{1-\cos \alpha}$
$\Rightarrow \cos \theta=\frac{4 \sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2}}{2 \sin ^{2} \frac{\alpha}{2}}$
$\Rightarrow \cos ^{2} \theta \sec ^{2} \frac{\alpha}{2}=2 \Rightarrow \cos \theta \sec \frac{\alpha}{2}= \pm \sqrt{2}$
575 (a)
We have,
$5 x=3 x+2 x$
$\Rightarrow \tan 5 x=\tan (3 x+2 x)$
$\Rightarrow \tan 5 x=\frac{\tan 3 x+\tan 2 x}{1-\tan 3 x \tan 2 x}$
$\Rightarrow \tan 5 x-\tan 5 x \tan 3 x \tan 2 x=\tan 3 x+\tan 2 x$
$\Rightarrow \tan 5 x \tan 3 x \tan 2 x=\tan 5 x-\tan 3 x-\tan 2 x$
576 (a)
We have,
$\sin x+\sin ^{2} x=1$
$\Rightarrow \sin x=1-\sin ^{2} x \Rightarrow \sin x=\cos ^{2} x$
$\therefore \cos ^{2} x+\cos ^{4} x=\sin x+\sin ^{2} x=1$
577 (d)
$\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta\right.$

$$
\left.-\sin ^{2} \theta \cos ^{2} \theta\right)+3 \sin ^{2} \theta \cos ^{2} \theta
$$

$=1\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-3 \sin ^{2} \theta \cos ^{2} \theta\right]$ $+3 \sin ^{2} \theta \cos ^{2} \theta=1$
$=1-3 \sin ^{2} \theta \cos ^{2} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$
(a)

We have,
$\cos \theta=\frac{8}{17} \Rightarrow \sin \theta=\frac{15}{17} \quad\left[\because \theta<\frac{\pi}{2}<\theta\right]$
$\therefore \cos \left(30^{\circ}+\theta\right)+\cos \left(45^{\circ}-\theta\right)+\cos \left(120^{\circ}-\theta\right)$
$=\left(\cos 30^{\circ}+\cos 45^{\circ}+\cos 120^{\circ}\right) \cos \theta$
$+\left(-\sin 30^{\circ}+\sin 45^{\circ}\right.$
$\left.+\sin 120^{\circ}\right) \sin \theta$
$=\frac{8}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}\right) \frac{15}{17}$
$=\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$
579 (a)
Since, $\frac{5^{x}+5^{-x}}{2} \geq \sqrt{5^{x} .5^{-x}}$
$\Rightarrow 5^{x}+5^{-x} \geq 2$
But $\sin \left(e^{x}\right) \leq 1 \Rightarrow 2 \sin \left(e^{x}\right) \leq 2$
At $x=0,5^{x}+5^{-x}=2$
Bit $2 \sin \left(e^{0}\right) \neq 2$
Hence, no solution exist
580 (c)
Let $A B C$ be a right angled triangle right angled at B.
Let the other angles be $A=90^{\circ}-d$ and
$C=90^{\circ}-2 d$. Then,
$A+B+C=180^{\circ} \Rightarrow 270^{\circ}-3 d=180^{\circ} \Rightarrow d$

$$
=30^{\circ}
$$

$\therefore A=60^{\circ}$ and $C=30^{\circ}$
Let $A C=b$. Then,
$c=A B=A C \cos 60^{\circ}=\frac{b}{2}$ and $a=B C$

$$
=b \cos 30^{\circ}=\frac{\sqrt{3} b}{2}
$$

$\therefore 2 s=a+b+c=\frac{\sqrt{3} b}{2}+b+\frac{b}{2}=\frac{(3+\sqrt{3}) b}{2}$
Also,
$\Delta=\frac{1}{2}(B C \times A B)=\frac{1}{2}\left(\frac{\sqrt{3} b}{2} \times \frac{b}{2}\right)=\frac{\sqrt{3} b^{2}}{8}$
\therefore Required ratio $=\frac{r}{2 s}=\frac{\Delta}{2 s^{2}}$

$$
\begin{aligned}
& =\frac{\frac{\sqrt{3} b^{2}}{8}}{2\left\{\frac{(3+\sqrt{3})^{2}}{4} b^{2}\right\}}=\frac{\sqrt{3}}{(3+\sqrt{3})^{2}}=\frac{\sqrt{3}}{3(\sqrt{3}+1)^{2}} \\
& =\frac{(\sqrt{3}-1)^{2}}{4 \sqrt{3}}=\frac{4-2 \sqrt{3}}{4 \sqrt{3}}=\frac{2-\sqrt{3}}{2 \sqrt{3}}
\end{aligned}
$$

581 (c)
Given, $2 \sin ^{2} \theta+\sqrt{3} \cos \theta+1=0$
$\Rightarrow 2 \cos ^{2} \theta-\sqrt{3} \cos \theta-3=0$
$\therefore \quad \cos \theta=\frac{\sqrt{3} \pm \sqrt{3+4 \times 3 \times 2}}{2 \times 2}$
$=\frac{\sqrt{3} \pm 3 \sqrt{3}}{4}$
$\Rightarrow \cos \theta=-\frac{\sqrt{3}}{2} \quad[\because \cos \theta \neq \sqrt{3}]$
$\Rightarrow \quad \theta=\frac{5 \pi}{6}$
582 (b)
$e^{\sin x}+e^{\cos x}=2 e^{1 / 2}$
$\Rightarrow e^{\sin x}>0$ and $e^{\cos x}>0$
$\therefore e^{\sin x}+e^{\cos x} \geq 2 \sqrt{e^{\sin x+\cos x}} \quad(\because \mathrm{AM} \geq \mathrm{GM})$
$\Rightarrow e^{\sin x}+e^{\cos x} \geq 2 e^{1 / \sqrt{2}}$...(ii)
Since, equality holds
$\Rightarrow e^{\sin x}=e^{\cos x}$
$\Rightarrow \sin x=\cos x$
$\Rightarrow \tan x=1 \Rightarrow x=m \pi+\frac{\pi}{4}$
$\Rightarrow x=(4 m+1) \frac{\pi}{4}$
583 (a)
Since, $\cos \theta$ is negative and $\tan \theta$ is positive which lies in IIIrd quadrant
$\therefore \quad \theta=\frac{5 \pi}{4}$ satisfies
Hence, general value of θ is $2 n \pi+\frac{5 \pi}{4}$
584 (b)
$\cos (\theta-\alpha)+\cos (\theta-\beta)+\cos \theta+\cos (\theta-\gamma)$
$=2 \cos \left(\theta-\left(\frac{\alpha+\beta}{2}\right)\right) \cos \left(\frac{\beta-\alpha}{2}\right)$
$+2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\theta-\frac{\gamma}{2}\right)$
$=2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\frac{\beta-\alpha}{2}\right)+2 \cos \left(\frac{\gamma}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)$
$=[\because 2 \theta=\alpha+\beta+\gamma]$
$=2 \cos \left(\frac{\gamma}{2}\right)\left[2 \cos \frac{\alpha}{2} \cos \frac{\beta}{2}\right]$
$=4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
585 (b)
$\because x^{3}+x^{2}+4 x+2 \sin x=0$
$\Rightarrow x^{3}+(x+2)^{2}+2 \sin x=4$
$x=0$, satisfies this equation.
Now, in $0<x \leq \pi, x^{3}+(x+2)^{2}+2 \sin x>4$
and in $\pi<x \leq 2 \pi, x^{3}+(x+2)^{2}+2 \sin x>27+$ $25-2=50$
Hence, $x=0$ is the only solution
586 (a)
We have,
$\tan 70^{\circ}-\tan 20^{\circ}$

$$
\begin{aligned}
& \tan 50^{\circ} \\
= & \frac{\sin \left(70^{\circ}-20^{\circ}\right)}{\cos 70^{\circ} \cos 20^{\circ}} \times \frac{\cos 50^{\circ}}{\sin 50^{\circ}} \\
= & \frac{2 \cos 50^{\circ}}{2 \cos 70^{\circ} \cos 20^{\circ}}=\frac{2 \cos 50^{\circ}}{\cos 90^{\circ}+\cos 50^{\circ}}=2
\end{aligned}
$$

587 (a)
Given equation, $\sin x+\sin y+\sin z=-3$ is satisfied only when $x=y=z=\frac{3 \pi}{2}$ for
$x, y, z \in[0,2 \pi]$
588 (a)
$\tan A=\frac{1-\cos B}{\sin B}$
$=\frac{2 \sin ^{2}(B / 2)}{2 \sin \left(\frac{B}{2}\right) \cos (B / 2)}$
$\Rightarrow \tan A=\tan \frac{B}{2}$
Now, $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}=\frac{2 \tan (B / 2)}{1-\tan ^{2}(B / 2)}$
$=\frac{2 \sin (B / 2) \cos (B / 2)}{\cos ^{2}(B / 2)-\sin ^{2}(B / 2)}$
$=\frac{\sin B}{\cos B}$
$\Rightarrow \tan 2 A=\tan B$
589 (c)
We have,
$\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{1-2 \sin ^{2} \frac{\alpha}{2}}$
$=\frac{2 \sqrt{\frac{x-1}{2 x}} \sqrt{1-\left(\frac{x-1}{2 x}\right)^{2}}}{1-2\left(\frac{x-1}{2 x}\right)}=\sqrt{x^{2}-1}$
590 (d)
We have,
$\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$
$\Rightarrow 2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)=a$
and,
$2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)=b$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{a}{b}$
$\therefore \sin (\alpha+\beta)=\frac{2 \tan \left(\frac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}$
$\Rightarrow \sin (\alpha+\beta)=\frac{\frac{2 a}{b}}{1+\frac{a^{2}}{b^{2}}}=\frac{2 a b}{a^{2}+b^{2}}$
591 (c)
We have,
$\tan \theta+\sec \theta=\sqrt{3}$, where $0<\theta<\pi$
$\Rightarrow \sec \theta-\tan \theta$

$$
\begin{aligned}
& =\frac{1}{\sqrt{3}}[\because \sec \theta-\tan \theta \\
& \left.=\frac{1}{\sec \theta+\tan \theta}\right] \\
\therefore 2 \tan \theta=\sqrt{3} & -\frac{1}{\sqrt{3}} \\
\Rightarrow 2 \tan \theta=\frac{2}{\sqrt{3}} & \Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\pi / 6
\end{aligned}
$$

$\therefore 2 \tan \theta=\sqrt{3}-\frac{1}{\sqrt{3}}$

592 (d)

We have,
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta}}$
$\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{|\sin \theta|}$
$\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{-\sin \theta}[\because \pi<\theta<2 \pi \Rightarrow \sin \theta$

$$
<0]
$$

$\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=-\operatorname{cosec} \theta-\cot \theta$
593 (b)
We have,
$a \sin ^{2} x+b \cos ^{2} x=c$
$\Rightarrow(b-a) \cos ^{2} x=c-a$
$\Rightarrow(b-a)=(c-a)\left(1+\tan ^{2} x\right)$
Now,
$b \sin ^{2} y+a \cos ^{2} y=d$
$\Rightarrow(a-b) \cos ^{2} y=d-b$
$\Rightarrow(a-b)=(d-b)\left(1+\tan ^{2} y\right)$
$\Rightarrow \tan ^{2} y=\frac{a-d}{d-b}$
$\therefore \tan ^{2} x=\frac{b-c}{c-a}$ and $\tan ^{2} y=\frac{a-d}{d-b}$
$\Rightarrow \frac{\tan ^{2} x}{\tan ^{2} y}=\frac{(b-c)(d-b)}{(c-a)(a-d)}$
But, $a \tan x=b \tan y \Rightarrow \frac{\tan x}{\tan y}=\frac{b}{a}$
From (i) and (ii), we get
$\frac{b^{2}}{a^{2}}=\frac{(b-c)(d-b)}{(c-a)(a-d)} \Rightarrow \frac{a^{2}}{b^{2}}=\frac{(c-a)(a-d)}{(b-c)(d-b)}$
(c)
$\frac{\cos 12^{\circ}-\sin 12^{\circ}}{\cos 12^{\circ}+\sin 12^{\circ}}+\frac{\sin 147^{\circ}}{\cos 147^{\circ}}$
$=\frac{1-\tan 12^{\circ}}{1+\tan 12^{\circ}}+\tan 147^{\circ}$
$=\tan \left(45^{\circ}-12^{\circ}\right)+\tan \left(180^{\circ}-33^{\circ}\right)$
$=\tan 33^{\circ}-\tan 33^{\circ}=0$
595 (b)
We have,

$$
\begin{aligned}
& \tan \frac{C-B}{2}=\frac{c-b}{c+b} \cot \frac{A}{2} \\
& \begin{aligned}
\therefore \tan \left(\frac{C-B}{2}\right) & =\frac{\sqrt{3}+1-2}{\sqrt{3}+1+2} \cot 15^{\circ} \\
& =\frac{\sqrt{3}-1}{\sqrt{3}+1} \frac{1}{\tan \left(45^{\circ}-30^{\circ}\right)}
\end{aligned}
\end{aligned}
$$

$\Rightarrow \tan \left(\frac{C-B}{2}\right)=\frac{\sqrt{3}-1}{\sqrt{3}+3} \cdot \frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$ $\Rightarrow \frac{C-B}{2}=30^{\circ}$
596 (c)
We have,
$\frac{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x}{1+2 i \sin \frac{x}{2}}$
$=\frac{\left(\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x\right)\left(1-2 i \sin \frac{x}{2}\right)}{1+4 \sin ^{2} \frac{x}{2}}$
$\left(\sin \frac{x}{2}+\cos \frac{x}{2}-2 \sin \frac{x}{2} \tan x\right)$
$=\frac{+i\left(-\tan x-2 \sin ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}\right)}{1+4 \sin ^{2} \frac{x}{2}}$
This will be real iff
$\frac{-\tan x-2 \sin ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}{1+4 \sin ^{2} \frac{x}{2}}=0$
$\Rightarrow-\tan x-2 \sin \frac{2 x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}=0$
$\Rightarrow \sin x+2 \cos x \sin \frac{x}{2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)=0$
$\Rightarrow 2 \sin \frac{x}{2}\left\{\cos \frac{x}{2}+\cos x\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)\right\}=0$
$\Rightarrow 2 \sin \frac{x}{2}\left\{\cos \frac{x}{2}\left(\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}\right)\right.$
$\left.+\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)\right\}=0$
$\Rightarrow \sin \frac{x}{2}=0$
or, $\cos \frac{x}{2}\left(\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}\right)$

$$
\begin{aligned}
& +\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right) \\
& =0
\end{aligned}
$$

Now, $\sin \frac{x}{2}=0 \Rightarrow \frac{x}{2}=n \pi \Rightarrow x=2 n \pi, n \in Z$
and,

$$
\begin{aligned}
\cos \frac{x}{2}\left(\cos ^{2} \frac{x}{2}+\right. & \left.\sin ^{2} \frac{x}{2}\right) \\
& +\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right) \\
& =0 \\
\Rightarrow\left(1+\tan ^{2} \frac{x}{2}\right) & +\left(1-\tan ^{2} \frac{x}{2}\right)\left(1+\tan \frac{x}{2}\right)=0
\end{aligned}
$$

[On dividing by $\cos ^{3} x / 2$]
$\Rightarrow \tan ^{3} \frac{x}{2}-\tan ^{2} \frac{x}{2}-2=0$
$\Rightarrow t^{3}-t^{2}-2=0$, where $t=\tan x / 2$
Let $f(t)=t^{3}-t^{2}-2$. Then,
$f(1)<0$ and $f(2)>0$
Therefore, a root of $f(t)=0$ lies between 1 and 2
Let the root be k. Then,
$1<k<2$ and $\tan \frac{x}{2}=k$
$\Rightarrow \frac{x}{2}=n \pi+\tan ^{-1} k, n \in Z$
$\Rightarrow x=2 n \pi+2 \tan ^{-1} k, n \in Z$ and $1<k<2$
597 (a)
We have,

$$
\begin{aligned}
\tan \left(\frac{A-B}{2}\right)= & \sqrt{\frac{1-\cos (A-B)}{1+\cos (A-B)}}=\sqrt{\frac{1-31 / 32}{1+31 / 32}} \\
& =\frac{1}{\sqrt{63}}
\end{aligned}
$$

$\Rightarrow \frac{a-b}{a+b} \cot \frac{C}{2}=\frac{1}{\sqrt{63}} \quad\left[\because \tan \frac{A-B}{2}\right.$

$$
\left.=\frac{a-b}{a+b} \cot \frac{C}{2}\right]
$$

$\Rightarrow \frac{1}{9} \cot \frac{C}{2}=\frac{1}{\sqrt{63}} \Rightarrow \tan \frac{C}{2}=\frac{\sqrt{7}}{3}$
Now,
$\cos C=\frac{1-\tan ^{2} C / 2}{1+\tan ^{2} C / 2} \Rightarrow \cos C=\frac{1-7 / 9}{1+7 / 9}=\frac{1}{8}$
$\therefore c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\Rightarrow c^{2}=25+16-40 \times 1 / 8=36 \Rightarrow c=6$
598 (c)
We have, $\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}=$ $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} \tan 60^{\circ}$

Here, numerator $=\left(\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}\right)$
$=\frac{\sin 20^{\circ}}{2}\left(2 \sin 40^{\circ} \sin 80^{\circ}\right)$
$=\frac{\sin 20^{\circ}}{2}\left(\cos 40^{\circ}-\cos 120^{\circ}\right)$
$=\frac{1}{2} \sin 20^{\circ}\left(1-2 \sin ^{2} 20^{\circ}+\frac{1}{2}\right)$
$=\frac{1}{2} \sin 20^{\circ}\left(\frac{3}{2}-2 \sin ^{2} 20^{\circ}\right)$
$=\frac{1}{4}\left[3 \sin 20^{\circ}-4 \sin ^{3} 20^{\circ}\right]$
$=\frac{\sin 60^{\circ}}{4}=\frac{\sqrt{3}}{8}$
Now, denominator $=\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$
$=\frac{\sin 2^{3} 20^{\circ}}{2^{3} \sin 20^{\circ}}=\frac{\sin 160^{\circ}}{8 \sin 20^{\circ}}$
$=\frac{\sin 20^{\circ}}{8 \sin 20^{\circ}}=\frac{1}{8}$

Hence, $\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ}=\frac{\frac{\sqrt{3}}{8}}{\frac{1}{8}}=\sqrt{3}$
$\Rightarrow \tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}=\sqrt{3} \cdot \sqrt{3}=3$
600 (d)
We have,
$f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$
$\Rightarrow f(x)=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-\frac{1}{2} \sin ^{2} 2 x$
$\Rightarrow f(x)=1-\frac{1}{4}(1-\cos 4 x)$
$\Rightarrow f(x)=\frac{3}{4}+\frac{1}{4} \cos 4 x$
$\because-1 \leq \cos 4 x \leq 1$ for $x \in[0, \pi / 2]$
$\therefore-\frac{1}{4} \leq \frac{1}{4} \cos 4 x \leq \frac{1}{4}$ for all $x \in[0, \pi / 2]$
$\Rightarrow \frac{1}{2} \leq \frac{3}{4}+\frac{1}{4} \cos 4 x \leq 1$ for all $x \in[0, \pi / 2]$
$\Rightarrow \frac{1}{2} \leq f(x) \leq 1$ for all $x \in[0, \pi / 2]$
601 (a)
We have,
$\cot \theta=\sin 2 \theta$
$\Rightarrow \cos \theta=2 \sin ^{2} \theta \cos \theta$
$\Rightarrow \cos \theta\left(1-2 \sin ^{2} \theta\right)=0$
$\Rightarrow \cos \theta=0$ or, $1-2 \sin ^{2} \theta=0$
$\Rightarrow \cos \theta=0$ or, $\sin ^{2} \theta=\left(\frac{1}{\sqrt{2}}\right)^{2}$
$\Rightarrow \theta=90^{\circ}$ or $\theta=45^{\circ}$
602 (b)
$\tan \left(\frac{\theta+\alpha}{2}\right) \cdot \tan \left(\frac{\theta-\alpha}{2}\right)$
$=\frac{\tan ^{2} \frac{\theta}{2}-\tan ^{2} \frac{\alpha}{2}}{1-\tan ^{2} \frac{\theta}{2} \tan ^{2} \frac{\alpha}{2}}$
$=\frac{\sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\alpha}{2} \sin ^{2} \frac{\theta}{2}}$
$=\frac{\cos ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\theta}{2} \cos ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\alpha}{2} \cos ^{2} \frac{\theta}{2}}$
$=\frac{\cos ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\alpha}{2}}=\frac{(\cos \alpha-\cos \theta)}{(\cos \alpha+\cos \theta)}$
$=\frac{\cos \alpha(1-\cos \beta)}{\cos \alpha(1+\cos \beta)}=\tan ^{2} \frac{\beta}{2}$
603 (b)
We have,
$\angle A=\frac{\pi}{3}, b: c=2: 3$ and $\tan \theta=\frac{\sqrt{3}}{5}$
Using Napier's analogy, we have
$\tan \left(\frac{B-C}{2}\right)=\frac{b-c}{b+c}=\cot \frac{A}{2}$
$\Rightarrow \tan \left(\frac{B-C}{2}\right)=-\frac{1}{5} \cot \frac{\pi}{6}=-\frac{\sqrt{3}}{5}$
$\Rightarrow \tan \left(\frac{B-C}{2}\right)=-\tan \theta$
$\Rightarrow \frac{B-C}{2}=-\theta$
$\Rightarrow C-B=2 \theta$
But, $C+B=120^{\circ} \quad\left[\because A=60^{\circ}\right.$ (given) $]$
$\therefore 2 C=120^{\circ}+2 \theta \Rightarrow C=60^{\circ}+\theta$
604 (b)
$\frac{\cos 70^{\circ}}{\sin 70^{\circ}}+4 \cos 70^{\circ}=\frac{\cos 70^{\circ}+4 \sin 70^{\circ} \cos 70^{\circ}}{\sin 70^{\circ}}$
$=\frac{\cos 70^{\circ}+2 \sin 140^{\circ}}{\sin 70^{\circ}}$
$=\frac{\sin 20^{\circ}+2 \sin 40^{\circ}}{\sin 70^{\circ}}$
$=\frac{2 \sin 30^{\circ} \cos 10^{\circ}+\sin 40^{\circ}}{\sin 70^{\circ}}$
$\sin 80^{\circ}+\sin 40^{\circ}$
$\sin 70^{\circ}$
$=\frac{2 \sin 60^{\circ} \cos 20^{\circ}}{\sin 70^{\circ}}$
$=\frac{2\left(\frac{\sqrt{3}}{2}\right) \sin 70^{\circ}}{\sin 70^{\circ}}=\sqrt{3}$
605 (b)
Given, $\frac{1}{\sqrt{2}} \sin x-\frac{1}{\sqrt{2}} \cos x=1$
$\Rightarrow \cos \left(x+\frac{\pi}{4}\right)=-1$
$\Rightarrow x+\frac{\pi}{4}=2 n \pi+\pi \Rightarrow x=2 n \pi+\frac{3 \pi}{4}$
606 (a)
Applying $1+\cos \theta=2 \cos ^{2} \frac{\theta}{2} n$ times, we get

$$
\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+2 \cos \theta}}}}=2 \cos \frac{\theta}{2^{n}}
$$

We have,

$$
\begin{aligned}
& (\sec A-\tan A)(\sec B-\tan B)(\sec C-\tan C) \\
& =(\sec A+\tan A)(\sec B \\
& +\tan B)(\sec C+\tan C) \\
& \Rightarrow\left(\sec ^{2} A-\tan ^{2} A\right)\left(\sec ^{2} B-\tan ^{2} B\right)\left(\sec ^{2} C\right. \\
& \left.-\tan ^{2} C\right) \\
& =\{(\sec A+\tan A)(\sec B+\tan B)(\sec C \\
& +\tan C)\}^{2} \\
& \Rightarrow 1=\{(\sec A+\tan A)(\sec B+\tan B)(\sec C \\
& +\tan C)\}^{2} \\
& \Rightarrow(\sec A+\tan A)(\sec B+\tan B)(\sec C+\tan C) \\
& = \pm 1 \\
& \text { Hence, LHS }=\text { RHS }= \pm 1
\end{aligned}
$$

608 (d)

$$
\begin{aligned}
\frac{\sin 55^{\circ}-\cos 55^{\circ}}{\sin 10^{\circ}} & =\frac{\sin 55^{\circ}-\sin 35^{\circ}}{\sin 10^{\circ}} \\
& =\frac{2 \cos 45^{\circ} \cdot \sin 10^{\circ}}{\sin 10^{\circ}}
\end{aligned}
$$

$=\sqrt{2}$
609 (b)
Given, $\frac{\tan 3 A}{\tan A}=a$
$\Rightarrow \frac{3 \tan A-\tan ^{3} A}{\tan A\left(1-3 \tan ^{2} A\right)}=a$
$\Rightarrow 3-\tan ^{2} A=a-3 a \tan ^{2} A$
$\Rightarrow \tan ^{2} A(3 a-1)=a-3$
$\Rightarrow \tan A= \pm \sqrt{\frac{a-3}{3 a-1}}$
Now, $\frac{\sin 3 A}{\sin A}=\frac{3 \sin A-4 \sin ^{3} A}{\sin A}$

$=3-4 \sin ^{2} A=3-4\left(\frac{a-3}{4(a-1)}\right)$
$=\frac{3 a-3-a+3}{(a-1)}=\frac{2 a}{(a-1)}$
610 (a)
Using the relation
$\cos A+\cos B-\cos C=-1+4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
Put $A=56^{\circ}, B=58^{\circ}, C=66^{\circ}$
$\therefore \cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$
$=-1+4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$
$\Rightarrow 1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}$
$=4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$

From the given relations, we can say that α and β are roots of the equation
$x \cos \theta+y \sin \theta=2 a$
$\Rightarrow 2 a-x \cos \theta=y \sin \theta$
$\Rightarrow(2 a-x \cos \theta)^{2}=y^{2} \sin ^{2} \theta$
$\Rightarrow\left(x^{2}+y^{2}\right) \cos ^{2} \theta-4 a x \cos \theta+4 a^{2}-y^{2}=0$
$\therefore \cos \alpha+\cos \beta=\frac{4 a x}{x^{2}+y^{2}}$, and $\cos \alpha \cos \beta$

$$
=\frac{4 a^{2}-y^{2}}{x^{2}+y^{2}}
$$

Now,
$2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2}=1$
$\Rightarrow 4 \sin ^{2} \frac{\alpha}{2} \sin ^{2} \frac{\beta}{2}=1$
$\Rightarrow(1-\cos \alpha)(1-\cos \beta)=1$
$\Rightarrow \cos \alpha+\cos \beta=\cos \alpha \cos \beta$
$\Rightarrow \frac{4 a x}{x^{2}+y^{2}}=\frac{4 a^{2}-y^{2}}{x^{2}+y^{2}}$
$\Rightarrow y^{2}=4 a(a-x)$
613 (b)
Since, $\cos \theta$ is positive and $\tan \theta$ is negative, which lies in IVth quadrant.
$\therefore \quad \theta=315^{\circ}=\frac{7 \pi}{4}$
\therefore The general value of θ is $2 n \pi+\frac{7 \pi}{4}, n \in I$
614 (c)
We have,
$\sin x=\cos 3 x$
$\Rightarrow \sin x=4 \cos ^{3} x-3 \cos x$
$\Rightarrow \tan x \sec ^{2} x=4-3 \sec ^{2} x$
$\Rightarrow \tan x\left(1+\tan ^{2} x\right)=4-3\left(1+\tan ^{2} x\right)$
$\Rightarrow \tan ^{3} x+3 \tan ^{2} x+\tan x-1=0$
$\Rightarrow(\tan x+1)\left(\tan ^{2} x+2 \tan x-1\right)=0$
$\Rightarrow \tan x+1=0$ or, $1-\tan ^{2} x=2 \tan x$
$\Rightarrow \tan x=-1$ or, $\tan 2 x=1$
$\Rightarrow x=\frac{3 \pi}{4}, \frac{\pi}{8}, \frac{5 \pi}{8}$
ALITER Graphs of $y=\sin x$ and $y=\cos 3 x$ intersect at three points between 0 and π
615 (b)
We have,
$\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$
$=\frac{1-\sin \theta+1+\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$
$=\frac{2}{|\cos \theta|}=\frac{2}{-\cos \theta}=-2 \sec \theta\left[\begin{array}{c}\because \pi / 2<\theta<\pi \\ \therefore \cos \theta<0\end{array}\right]$
616 (d)
$\sin \theta=\sin 15^{\circ}+\sin 45^{\circ}$
$=2 \sin 30^{\circ} \cos 15^{\circ}=2 \times \frac{1}{2} \times \cos \left(90^{\circ}-75^{\circ}\right)$
$\Rightarrow \sin \theta=\sin 75^{\circ} \Rightarrow \theta=75^{\circ}$
617 (c)
Given, $\sinh ^{-1} 2+\sinh ^{-1} 3=x$
$\Rightarrow \cosh \left(\sinh ^{-1} 2+\sinh ^{-1} 3\right)=\cosh x$
$\Rightarrow \cosh \left(\sinh ^{-1} 2\right) \cosh \left(\sinh ^{-1} 3\right)$

$$
+\sinh \left(\sinh ^{-1} 2\right) \sinh \left(\sinh ^{-1} 3\right)
$$

$=\cosh x$
$\Rightarrow \cosh x=\cosh \left(\cosh ^{-1} \sqrt{1+2^{2}}\right)$

$$
\times \cosh \left(\cosh ^{-1} \sqrt{1+3^{2}}\right)+2 \times 3
$$

$\Rightarrow \cosh x=(\sqrt{5} \sqrt{10}+6) \times \frac{2}{2}$
$=\frac{1}{2}(12+2 \sqrt{50})$
618 (a)
We have,
$\sin 7 \theta+\sin \theta-\sin 4 \theta=0$
$\Rightarrow 2 \sin 4 \theta \cos 3 \theta-\sin 4 \theta=0$
$\Rightarrow \sin 4 \theta(2 \cos 3 \theta-1)=0$

$$
\Rightarrow \sin 4 \theta=0, \cos 3 \theta=\frac{1}{2}
$$

Now, $\sin 4 \theta=0 \Rightarrow 4 \theta=\pi \Rightarrow \theta=\frac{\pi}{4}$
and, $\cos 3 \theta=\frac{1}{2} \Rightarrow 3 \theta=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{9}$
619 (b)
We have,
$O I \| B C \Rightarrow O L=I D \Rightarrow O L=r \quad[\because I D=r]$
In $\triangle B L O$, we have
$\cos A=\frac{O L}{O B} \Rightarrow \cos A=\frac{r}{R}$
We know that
$\cos A+\cos B+\cos C=1+\frac{r}{R}$

$\Rightarrow \frac{r}{R}+\cos B+\cos C=1+\frac{r}{R}$
$\Rightarrow \cos B+\cos C=1$
$\left[\because \cos A=\frac{r}{R}\right]$

620 (c)
Since, $2 \sin ^{2} \theta=3 \cos \theta$
$\Rightarrow 2-2 \cos ^{2} \theta=3 \cos \theta$
$\Rightarrow 2 \cos ^{2} \theta+3 \cos \theta-2=0$
$\Rightarrow(2 \cos \theta-1)(\cos \theta+2)=0$
$\Rightarrow \cos \theta=\frac{1}{2} \quad(\because \cos \theta \neq-2)$
$\therefore \quad \theta=\frac{\pi}{3}, \frac{5 \pi}{3} \quad(\because 0 \leq \theta \leq 2 \pi)$
621 (d)
Given, $3 \tan (\theta-15)=\tan (\theta+15)$
$\frac{\tan A}{\tan B}=\frac{3}{1}$, where $A=\theta+15^{\circ}, B=\theta-15^{\circ}$
$\Rightarrow \frac{\tan A+\tan B}{\tan A-\tan B}=\frac{3+1}{3-1}$
(Applying componendo and dividendo)
$\Rightarrow \frac{\sin (A+B)}{\sin (A-B)}=2$
$\Rightarrow \sin 2 \theta=2 \sin 30^{\circ}$
$\Rightarrow \sin 2 \theta=\frac{2.1}{2}=1=\sin \frac{\pi}{2}$
$\Rightarrow 2 \theta=2 n \pi+\frac{\pi}{2}$
$\Rightarrow \theta=n \pi+\frac{\pi}{4}$
622 (d)
Given equation of curves are $y=e^{x}$ and $y=\sin x$

It is clear from the figure that two curves intersect at infinite number of points.
623 (a)
Let $S=\sin 10^{\circ}+\sin 20^{\circ}+\sin 30^{\circ}+\ldots+\sin 360^{\circ}$
Here, the angles $10^{\circ}, 20^{\circ}, 30^{\circ}, \ldots, 360^{\circ}$ are in AP.
Where first term $(\alpha)=10^{\circ}$, Common difference
$(\beta)=10^{\circ}$
Let number of terms be n
$\therefore 360^{\circ}=10^{\circ}+(n-1) 10^{\circ}$
$\Rightarrow n-1=35 \Rightarrow n=36$
$\therefore S=\frac{\sin \frac{360^{\circ}}{2}}{\sin 5^{\circ}} \sin \left[10^{\circ}+(36-1) 5^{\circ}\right]$
$=\frac{\sin 180^{\circ}}{\sin 5^{\circ}} \times \sin \left(180^{\circ}+5^{\circ}\right)=-\sin 180^{\circ}=0$
624 (c)
$\frac{2 \cos 8 \theta+1}{2 \cos \theta+1}=\frac{2\left(2 \cos ^{2} 4 \theta-1\right)+1}{(2 \cos \theta+1)}$
$=\frac{(2 \cos 4 \theta-1)(2 \cos 4 \theta+1)}{(2 \cos \theta+1)}$
$=\frac{(2 \cos 4 \theta-1)(2 \cos 2 \theta-1)(2 \cos 2 \theta+1)}{(2 \cos \theta+1)}$
$=\frac{[(2 \cos 4 \theta-1)(2 \cos 2 \theta-1)(2 \cos \theta-1)(2 \cos }{(2 \cos \theta+1)}$
$=(2 \cos 4 \theta-1)(2 \cos 2 \theta-1)(2 \cos \theta-1)$
625 (b)
Since, $\sec \alpha, \operatorname{cosec} \alpha$ are the roots of the equation
$x^{2}-p x+q=0$
$\therefore \sec \alpha+\operatorname{cosec} \alpha=p, \sec \alpha \cdot \operatorname{cosec} \alpha=q$
$\Rightarrow \frac{\sin \alpha+\cos \alpha}{\sin \alpha \cos \alpha}=p, \sin \alpha \cos \alpha=\frac{1}{q}$
$\Rightarrow \sin \alpha+\cos \alpha=\frac{p}{q}$
$\Rightarrow \sin ^{2} \alpha+\cos ^{2} \alpha+2 \sin \alpha \cos \alpha=\frac{p^{2}}{q^{2}}$
$\Rightarrow 1+\frac{2}{q}=\frac{p^{2}}{q^{2}} \Rightarrow q(q+2)=p^{2}$
626 (b)
Let $S=\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}$. Then,
$S^{2}=\sin \frac{2 \pi}{7} \sin ^{2} \frac{2 \pi}{7} \sin ^{2} \frac{3 \pi}{7}$
$\Rightarrow S^{2}=\frac{1}{8}\left(1-\cos \frac{2 \pi}{7}\right)\left(1-\cos \frac{4 \pi}{7}\right)\left(1-\cos \frac{6 \pi}{7}\right)$
$\Rightarrow S^{2}=\left\{\left(1-\cos \frac{2 \pi}{7}\right)\left(1+\cos \frac{3 \pi}{7}\right)\left(1+\cos \frac{\pi}{7}\right)\right\}$
$\Rightarrow S^{2}=\frac{1}{8}\left\{1+\left(\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}-\cos \frac{2 \pi}{7}\right)\right.$

$$
-\cos \frac{\pi}{7} \cos \frac{3 \pi}{7}-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7}
$$

$$
-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7}
$$

$$
\left.-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}\right\}
$$

$\Rightarrow S^{2}=\frac{1}{8}\left\{1+\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}-\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}\right.$

$$
\left.-\cos \frac{3 \pi}{7}+\cos \frac{2 \pi}{7}-\frac{1}{8}\right\}
$$

$\Rightarrow S^{2}=\frac{7}{64}$
Hence, $S=\frac{\sqrt{7}}{8}$
627 (a)
$\because \sin x+\sin ^{2} x=1 \Rightarrow \sin x=\cos ^{2} x$
Now, $\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x$
$=\sin ^{6} x+3 \sin ^{5} x+3 \sin ^{4} x+\sin ^{3} x$
$=\left(\sin ^{2} x+\sin x\right)^{3}=1$
628
(b)

We have,
$B=A+C$
$\Rightarrow \tan B=\tan (A+C)$
$\Rightarrow \tan B=\frac{\tan A+\tan C}{1-\tan A \tan C}$
$\Rightarrow \tan A \tan B \tan C=\tan B-\tan A-\tan C$
629 (b)
We have,
$m n=(\cos A+\cos B)(\sin A+\sin B)$
$\Rightarrow m n=\cos A \sin A+\sin (A+B)+\sin B \cos B$
$\Rightarrow 2 m n=\sin 2 A+\sin 2 B+\sin (A+B)$
$\Rightarrow 2 m n=2 \sin (A+B) \cos (A-B)+\sin (A+B)$
...(i)
Also, we have,
$m^{2}+n^{2}=2+2 \cos (A-B)$
From (i) and (ii), we have,
$\sin (A+B)=\frac{2 m n}{m^{2}+n^{2}}$
630 (c)
Given, $(5+4 \cos \theta)(2 \cos \theta+1)=0$
Since, $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\frac{1-t^{2}}{1+t^{2}} \quad\left[\right.$ put $\left.\tan \frac{\theta}{2}=t\right]$
\therefore From Eq. (i),
$\left[5+4\left(\frac{1-t^{2}}{1-t^{2}}\right)\right]\left[2\left(\frac{1-t^{2}}{1+t^{2}}\right)+1\right]=0$
$\Rightarrow\left[5+5 t^{2}+4-4 t^{2}\right]\left[2-2 t^{2}+1+t^{2}\right]=0$
$\Rightarrow\left(t^{2}+9\right)\left(3-t^{2}\right)=0 \Rightarrow t= \pm \sqrt{3}$
$\therefore \tan \frac{\theta}{2}=\sqrt{3}$ or $\tan \frac{\theta}{2}=-\sqrt{3}$
$\Rightarrow \frac{\theta}{2}=\frac{\pi}{3}$ or $\frac{\theta}{2}=\frac{2 \pi}{3}$
$\therefore \quad \theta=\frac{2 \pi}{3}$ or $\frac{4 \pi}{3}$
631 (b)
We have,
$\sin ^{6} x+\cos ^{6} x=\lambda$
$\Rightarrow\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x\right.$

$$
\left.+\cos ^{4} x-\sin ^{2} x \cos ^{2} x\right)=\lambda
$$

$\Rightarrow\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-3 \sin ^{2} x \cos ^{2} x\right]=\lambda$
$\Rightarrow 1-\frac{3}{4} \sin ^{2} 2 x=\lambda$
$\Rightarrow \sin 2 x= \pm 2 \sqrt{\frac{1-\lambda}{3}}$
This equation has a solution if
$1-\lambda \geq 0$ and $-1 \leq 2 \sqrt{\frac{1-\lambda}{3}} \leq 1$
$\Rightarrow \lambda \leq 1$ and $\frac{4}{3}(1-\lambda) \leq 1$
$\Rightarrow \lambda \leq 1$ and $\lambda \geq \frac{1}{4} \Rightarrow \lambda \in[1 / 4,1]$
632 (d)
We have,
$y=\frac{\sin 3 \theta}{\sin \theta} \Rightarrow y=3-4 \sin ^{2} \theta \Rightarrow \sin ^{2} \theta=\frac{3-y}{4}$
Now,
$0<\sin ^{2} \theta \leq 1 \quad[\because \theta \neq n \pi]$
$\Rightarrow 0<\frac{3-y}{4} \leq 1$
$\Rightarrow 0<3-y \leq 4$
$\Rightarrow-3<-y \leq 1 \Rightarrow-1 \leq y<3 \Rightarrow y \in[-1,3)$
633 (c)
Since, $\sin ^{2} \frac{1}{4} \Rightarrow \sin ^{2} \theta=\sin ^{2} \frac{\pi}{6}$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{6}$
634 (b)
Given, $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$
$\Rightarrow \sin n \theta=b_{0} \cdot \sin ^{0} \theta+b_{1} \sin ^{1} \theta+b_{2}$
$\sin ^{2} \theta+\ldots+b_{n} \sin ^{n} \theta$
$\Rightarrow \sin n \theta=b_{0}+b_{1} \sin \theta+\ldots b_{n} \sin ^{n} \theta$
$\because \sin n \theta={ }^{n} C_{1} \sin \theta \cos ^{n-1} \theta-{ }^{n} C_{3}$
$\sin ^{3} \theta \cos ^{n-3} \theta+\ldots$
$={ }^{n} C_{1} \sin \theta\left(1-\sin ^{2} \theta\right)^{\frac{n-1}{2}-n} C_{3}$
$\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)^{(n-3) / 2}+\ldots$
$\therefore b_{0}=0$
$b_{1}=$ Coefficient of $\sin \theta={ }^{n} C_{1}=n$
$[\because n-1, n-3$ are all even integer]

Alternate

$\sin n \theta=b_{0}+b_{1} \sin \theta+b_{2} \sin ^{2} \theta+\ldots+b_{n} \sin ^{n} \theta$
Put $\theta=0$, we get $b_{0}=1$
Again, $\frac{\sin n \theta}{\sin \theta}=\sum_{r=1}^{n} b_{r} \sin ^{r-1} \theta$
Taking limit as $\theta \rightarrow 0$, we get
$\lim _{\theta \rightarrow 0} \frac{\sin n \theta}{\sin \theta}=b_{1}+0$
$\Rightarrow \quad n=b_{1}$
635 (c)
We have,
$k=\sin ^{6} x+\cos ^{6} x$
$\Rightarrow k=\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x+\cos ^{4} x\right.$ $\left.-\sin ^{2} x \cos ^{2} x\right)$
$\Rightarrow k=\left(1-3 \sin ^{2} x \cos ^{2} x\right)$
$\Rightarrow k=\left(1-\frac{3}{4} \sin ^{2} 2 x\right)$
Now,
$0 \leq \frac{3}{4} \sin ^{2} 2 x \leq \frac{3}{4}$, for all x
$\Rightarrow-\frac{3}{4} \leq-\frac{3}{4} \sin ^{2} 2 x \leq 0$, for all x
$\Rightarrow 1-\frac{3}{4} \leq 1-\frac{3}{4} \sin ^{2} 2 x \leq 1$, for all x
$\Rightarrow \frac{1}{4} \leq 1-\frac{3}{4} \sin ^{2} 2 x \leq 1$, for all x
$\Rightarrow \frac{1}{4} \leq k \leq 1$

636 (d)
We have,
$\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}$
$=\frac{\sqrt{3} \sin 250^{\circ}+\cos 290^{\circ}}{\sqrt{3} \sin 250^{\circ} \cos 290^{\circ}}$
$=\frac{-\sqrt{3} \cos 20^{\circ}+\sin 20^{\circ}}{-\sqrt{3} \cos 20^{\circ} \sin 20^{\circ}}$
$=\frac{2\left(\sin 20^{\circ}-\tan 60^{\circ} \cos 20^{\circ}\right)}{-\sqrt{3}\left(2 \sin 20^{\circ} \cos 20^{\circ}\right)}$
$=\frac{2\left(\sin 20^{\circ} \cos 60^{\circ}-\cos 20^{\circ} \sin 60^{\circ}\right)}{-\sqrt{3} \sin 40^{\circ} \cos 60^{\circ}}$
$=\frac{2 \sin \left(-40^{\circ}\right)}{-\sqrt{3} / 2 \sin 40^{\circ}}=\frac{4}{\sqrt{3}}$
637 (a)
Let $81^{\sin ^{2} x}=y$. Then,
$81^{\cos ^{2} x}=81^{1-\sin ^{2} x}=81 y^{-1}$
Now,
$81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$
$\Rightarrow y+\frac{81}{y}=30$
$\Rightarrow y^{2}-30 y+81=0$
$\Rightarrow y=3$ or, $y=27$
$\Rightarrow 81^{\sin ^{2} x}=3$ or, $81^{\sin ^{2} x}=27$
$\Rightarrow 3^{4 \sin ^{2} x}=3^{1}$ or, $3^{4 \sin ^{2} x}=3^{3}$
$\Rightarrow 4 \sin ^{2} x=1,4 \sin ^{2} x=3$
$\Rightarrow \sin x= \pm \frac{1}{\sqrt{2}}$ or, $\sin x= \pm \frac{\sqrt{3}}{2} \Rightarrow x=\frac{\pi}{6}$ or $\frac{\pi}{3}$
638 (b)
We have,
$\cos 9^{\circ}-\sin 9^{\circ}$
$=\sqrt{\left(\cos 9^{\circ}-\sin 9^{\circ}\right)^{2}} \quad\left[\because \cos 9^{\circ}>\sin 9^{\circ}\right]$
$=\sqrt{1-\sin 18^{\circ}}=\sqrt{1-\left(\frac{\sqrt{5}-1}{4}\right)}=\sqrt{\frac{5-\sqrt{5}}{2}}$
639 (c)
$\operatorname{sech}^{-1}\left(\frac{1}{2}\right)=\cosh ^{-1}(2)$
$=\log \left(2+\sqrt{2^{2}-1}\right)=\log (2+\sqrt{3})$
640 (a)
Since the triangle $A B C$ is right angled at B
$\therefore \tan \frac{B}{2}=1$

$$
\begin{gathered}
\Rightarrow \sqrt{\frac{(s-c)(s-c)}{s(s-b)}}=1 \Rightarrow(s-c)(s-a) \\
=s(s-b) \ldots \text { (i) }
\end{gathered}
$$

Now,
$r=\frac{\Delta}{S}$
$\Rightarrow r=\frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}$
$\Rightarrow r=\frac{s(s-b)}{s} \quad$ [Using : (i)]
$\Rightarrow 2 r=2 s-2 b \Rightarrow 2 r=a+c-b$
641 (b)
When, $\theta \in\left(0, \frac{\pi}{4}\right)$
$\tan \theta<\cot \theta$
Since, $\tan \theta<1$ and $\cot \theta>1$
$\therefore(\tan \theta)^{\cot \theta}<1$ and $(\cot \theta)^{\tan \theta}>1$
$\therefore \quad t_{4}>t_{1}$, which only holds in (b)
642 (a)
We have,
$\frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot \beta}+\{\cos (\alpha-\beta) \sec (\alpha+\beta)+1\}^{-1}$

$$
=1
$$

$\Rightarrow \frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta} \times \frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$

$$
+\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)+\cos (\alpha+\beta)}=1
$$

$\Rightarrow \tan \alpha \tan \beta+\frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{2 \cos \alpha \cos \beta}=1$
$=\frac{1}{2} \tan \alpha \tan \beta+\frac{1}{2}=1 \Rightarrow \tan \alpha \tan \beta=1$
643 (c)
We have,
$3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}$
$+4\left(\sin ^{6} \theta+\cos ^{6} \theta\right)$
$=3\left\{\sin ^{4} \theta+\cos ^{4} \theta-4 \sin ^{3} \theta \cos \theta\right.$

$$
\left.+6 \sin ^{2} \theta \cos ^{2} \theta-4 \sin \theta \cos ^{3} \theta\right\}
$$

$+6[1+2 \sin \theta \cos \theta]$
$+4\left[\sin ^{4} \theta+\cos ^{4} \theta\right.$
$\left.-\sin ^{2} \theta \cos ^{2} \theta\right]$
$=7\left[\sin ^{4} \theta+\cos ^{4} \theta\right]+14 \sin ^{2} \theta \cos ^{2} \theta$
$-12 \sin \theta \cos \theta+6$
$+12 \sin \theta \cos \theta$
$=7\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}+6=13$
644 (a)
Let $f(\theta)=\cos \theta-\theta+\frac{1}{2}$. Then,
$f(0)=1+\frac{1}{2}>0$ and $f\left(\frac{\pi}{2}\right)=\frac{1-\pi}{2}<0$
Clearly, $f(\theta)$ is a continuous function on $(0, \pi / 2)$
Hence, a root of $f(\theta)=0$ lies in the interval $(0, \pi / 2)$
645 (a)
We know that, $\sin 22 \frac{1^{\circ}}{2}=\frac{1}{2} \sqrt{2-\sqrt{2}}$
and $\cos 22 \frac{1^{\circ}}{2}=\frac{1}{2} \sqrt{2+\sqrt{2}}$

Since, $\alpha=22^{\circ} 30^{\prime}=22 \frac{1^{\circ}}{2}$

$$
\begin{aligned}
& \therefore\left(1+\cos 22 \frac{1^{\circ}}{2}\right)\left(1+\cos 67 \frac{1^{\circ}}{2}\right) \\
& \times\left(1+\cos 112 \frac{1^{\circ}}{2}\right)(1 \\
&\left.+\cos 157 \frac{1^{\circ}}{2}\right)
\end{aligned}
$$

$$
=\left(1+\frac{1}{2} \sqrt{2+\sqrt{2}}\right)\left(1+\frac{1}{2} \sqrt{2-\sqrt{2}}\right)
$$

$$
\times\left(1-\frac{1}{2} \sqrt{2-\sqrt{2}}\right)(1
$$

$$
\left.-\frac{1}{2} \sqrt{2+\sqrt{2}}\right)
$$

$$
=\left[1-\frac{1}{4}(2+\sqrt{2)}]\left[1-\frac{1}{4}(2-\sqrt{2)}]\right.\right.
$$

$$
=\frac{(2-\sqrt{2})(2+\sqrt{2})}{16}
$$

$$
=\frac{4-2}{16}=\frac{1}{8}
$$

646 (c)
$\sin A \sin \left(60^{\circ}-A\right) \sin \left(60^{\circ}+A\right)$
$=\sin A\left(\sin ^{2} 60^{\circ}-\sin ^{2} A\right)$
$=\sin A\left(\frac{3}{4}-\sin ^{2} A\right)$
$=\frac{3 \sin A-4 \sin ^{3} A}{4}=\frac{\sin 3 A}{4}$
647 (a)
$B+C=\pi-A$
$\Rightarrow \sin (B+C)=\sin (\pi-A)=\sin A$
$\therefore \sin 2 A+\sin 2 B+\sin 2 C$
$=2 \sin A \cos A+2 \sin (B+C) \cos (B-C)$
$=2 \sin A[\cos A+\cos (B-C)]$
$=2 \sin A[\cos (B-C)-\cos (B+C)]$
$=2 \sin A[2 \sin B \sin C]$
$=4 \sin A \sin B \sin C$
648 (b)
Given equations can be rewritten as
$\cos \theta=\frac{a}{x-h}, \quad \sin \theta=\frac{b}{y-k}$
Now, $\frac{a^{2}}{(x-h)^{2}}+\frac{b^{2}}{(y-k)^{2}}=1 \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
649 (d)
Here, $a=3$, and $b=4$
\therefore Maximum value $=\sqrt{3^{2}+4^{2}}=5$

650 (b)
Given, $3 \sin ^{2} x+10 \cos x-6=0$
$\Rightarrow 3\left(1-\cos ^{2} x\right)+10 \cos x-6=0$
$\Rightarrow-3 \cos ^{2} x+10 \cos x-3=0$
$\Rightarrow(\cos x-3)(1-3 \cos x)=0$
$\Rightarrow \cos x \neq 3$ or $\cos x=\frac{1}{3}$
$\Rightarrow x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right)$
651 (a)
Given, $1+\sin x\left(\frac{1-\cos x}{2}\right)=0$
$\Rightarrow \sin 2 x-2 \sin x=4$
Since, the maximum values of $\sin x$ and $\sin 2 x$ are 1 , which is not possible for any x in $[-\pi, \pi]$
652 (b)
Given, $2 \sin ^{2} \frac{\theta}{2}=2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2} \cdot \sin \frac{\theta}{2}$
$\Rightarrow 2 \sin ^{2} \frac{\theta}{2}\left[1-\cos \frac{\theta}{2}\right]=0$
$\Rightarrow \sin \frac{\theta}{2}=0$ or $2 \sin ^{2} \frac{\theta}{4}=0$
$\Rightarrow \frac{\theta}{2}=k \pi$ or $\frac{\theta}{4}=k \pi$
Hence, $\theta=2 k \pi$ or $\theta=4 k \pi, k \in I$
653 (a)
We have, $\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$
$=\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin \left(x+\frac{\pi}{6}\right)+\frac{1}{\sqrt{2}} \cos \left(x+\frac{\pi}{6}\right)\right]$
$=\sqrt{2} \cos \left[x+\frac{\pi}{6}-\frac{\pi}{4}\right]$
$=\sqrt{2} \cos \left(x-\frac{\pi}{12}\right)$
Hence, maximum value will be at $x=\frac{\pi}{12}$
654 (a)
We have,
$\sin ^{4} x+\cos ^{4} x+\sin 2 x+\alpha=0$
$\Rightarrow\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x+\sin 2 x+\alpha$ $=0$
$\Rightarrow 1-\frac{1}{2} \sin ^{2} 2 x+\sin 2 x+\alpha=0$
$\Rightarrow \sin ^{2} 2 x-2 \sin 2 x-2-2 \alpha=0$
$\Rightarrow(\sin 2 x-1)^{2}=3+2 \alpha$
$\Rightarrow \sin 2 x=1 \pm \sqrt{3+2 \alpha}$
This equation is meaningful if
$-1 \leq 1 \pm \sqrt{3+2 \alpha} \leq 1$
$\Rightarrow-2 \leq \pm \sqrt{3+2 \alpha} \leq 0$
$\Rightarrow 0 \leq 3+2 \alpha \leq 4$ and $3+2 \alpha \geq 0$
$\Rightarrow-3 \leq 2 \alpha \leq 1$ and $\alpha \geq-\frac{3}{2} \Rightarrow-\frac{3}{2} \leq \alpha \leq \frac{1}{2}$
655 (c)
We have,
$\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\cdots+\sin ^{2} 85^{\circ}$

$$
+\sin ^{2} 90^{\circ}
$$

$=\left(\sin ^{2} 5^{\circ}+\sin ^{2} 85^{\circ}\right)+\left(\sin ^{2} 10^{\circ}+\sin ^{2} 80^{\circ}\right)$

$$
+\left(\sin ^{2} 15^{\circ}+\sin ^{2} 75^{\circ}\right)+\cdots+
$$

$\left(\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}\right)+\left(\sin ^{2} 45^{\circ}+\sin ^{2} 90^{\circ}\right)$
$=8+\frac{1}{2}+1=9 \frac{1}{2}$
656 (d)
$1+\cos x=k$
$\Rightarrow 1+1-2 \sin ^{2} \frac{x}{2}=k$
$\Rightarrow 1-\sin ^{2} \frac{x}{2}=\frac{k}{2}$
$\Rightarrow \sin ^{2} \frac{x}{2}=1-\frac{k}{2}$
$\Rightarrow \sin \frac{x}{2}=\sqrt{\frac{2-k}{2}}$
657 (c)
We have,
$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$
$\Rightarrow \frac{\cos A}{R \sin A}=\frac{\cos B}{R \sin B}=\frac{\cos C}{R \sin C} \quad$ [Using : Sine rule]
$\Rightarrow \cot A=\cot B=\cot C$
$\Rightarrow A=B=C \Rightarrow \triangle A B C$ is equilateral
658 (a)
We have,
$c=(a+b) \sin \theta$
$\Rightarrow \sin \theta=\frac{c}{a+b}$
$\Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{c^{2}}{(a+b)^{2}}}$
$\Rightarrow \cos \theta=\sqrt{\frac{(a+b)^{2}-c^{2}}{(a+b)^{2}}}$
$\Rightarrow \cos \theta=\frac{\sqrt{(a+b+c)(a+b-c)}}{a+b}$
$\Rightarrow \cos \theta=\sqrt{\frac{2 s(2 s-2 c)}{(a+b)^{2}}}$
$\Rightarrow \cos \theta=2 \sqrt{\frac{s(s-c)}{a b}} \times \frac{\sqrt{a b}}{a+b}$
$\Rightarrow \frac{k \sqrt{a b}}{a+b}=2 \cos \frac{C}{2} \times \frac{\sqrt{a b}}{a+b} \Rightarrow k=2 \cos \frac{C}{2}$
659 (b)
We have,
$\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\frac{6 \pi}{7}$

$$
\begin{gathered}
+\cos \frac{7 \pi}{7} \\
=\left(\cos \frac{\pi}{7}+\cos \frac{6 \pi}{7}\right)+\left(\cos \frac{2 \pi}{7}+\cos \frac{5 \pi}{7}\right) \\
+\left(\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}\right)+\cos \pi \\
=\left(\cos \frac{\pi}{7}-\cos \frac{\pi}{7}\right)+\left(\cos \frac{2 \pi}{7}-\cos \frac{2 \pi}{7}\right) \\
\\
+\left(\cos \frac{3 \pi}{7}-\cos \frac{3 \pi}{7}\right)+\cos \pi
\end{gathered}
$$

$=\cos \pi=-1$
ALITER This can be done by using the fact that the sum of the roots of $x^{7}-1=0$ is zero
660 (a)
$2 \sin x=5 x^{2}+2 x+3$
$\Rightarrow 2 \sin x=4 x^{2}+(x+1)^{2}+2$
But $2 \sin x \leq 2$
and $4 x^{2}+(x+1)^{2}+2>2$, so it has no solution
661 (d)
Let $A B C$ be the triangle with A as the least angle.
Then, the other angles are
$B=A+\frac{A}{3}$ and $c=A+\frac{2 A}{3}$
Now,
$A+B+C=180^{\circ}$
$\Rightarrow A+\left(A+\frac{A}{3}\right)+\left(A+\frac{2 A}{3}\right)=180^{\circ} \Rightarrow A=45^{\circ}$
Thus, we have
$A=45^{\circ}, B=60^{\circ}$ and $C=75^{\circ}$
Now,
$a: b: c=\sin A: \sin B: \sin C$
$\Rightarrow a: b: c=\frac{1}{\sqrt{2}}: \frac{\sqrt{3}}{2}: \frac{\sqrt{3}+1}{2 \sqrt{2}}=2 \sqrt{2}: 2 \sqrt{3}$

$$
: \sqrt{2}+\sqrt{6}
$$

662 (a)
We have,
$5 \sin x+3 \sin (x-\theta)$
$=(5+3 \cos \theta) \sin x-3 \sin \theta \cos x$
$\leq \sqrt{(5+3 \cos \theta)^{2}+9 \sin ^{2} \theta}$
$\therefore \operatorname{Max}\{5 \sin x+3 \sin (x-\theta)\}$

$$
=\sqrt{(5+3 \cos \theta)^{2}+9 \sin ^{2} \theta}
$$

$\Rightarrow 7=\sqrt{34+30 \cos \theta}$
$\Rightarrow 34+30 \cos \theta=49 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta$

$$
\begin{equation*}
=2 n \pi \pm \frac{\pi}{3}, n \in Z \tag{i}
\end{equation*}
$$

663 (c)
Given that, $\sin \theta+\cos \theta=m$
and $\sec \theta+\operatorname{cosec} \theta=n$
Now, $n(m+1)(m-1)=n\left(m^{2}-1\right)$
$=(\sec \theta+\operatorname{cosec} \theta) 2 \sin \theta \cos \theta \quad\left(\because m^{2}=1+\right.$ $2 \sin \theta \cos \theta)$
$=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta} 2 \sin \theta \cos \theta$
$=2 m \quad[$ from Eq.(i) $]$
664 (a)
Given that, $\tan ^{2} \theta-\tan \theta-\sqrt{3} \tan \theta+\sqrt{3}=0$
$\Rightarrow \tan \theta(\tan \theta-1)-\sqrt{3}(\tan \theta-1)=0$
$\Rightarrow(\tan \theta-\sqrt{3})(\tan \theta-1)=0$
$\Rightarrow \theta=n \pi+\frac{\pi}{3}, n \pi+\frac{\pi}{4}$
665 (b)
We have, $\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$
Therefore, each ratio is equal

$$
\begin{aligned}
& \text { to } \frac{x+y+z}{\cos \theta+\cos \left(\theta-\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{2 \pi}{3}\right)} \\
& =\frac{x+y+z}{\cos \theta+2 \cos \theta \cos \frac{2 \pi}{3}} \\
& =\frac{x+y+z}{0} \\
& \Rightarrow x+y+z=0
\end{aligned}
$$

666 (d)
We have,
$e^{\log _{10} \tan 1^{\circ}+\log _{10} \tan 2^{\circ}+\log _{10} 3^{\circ}+\cdots+\log _{10} \tan 89^{\circ}}$
$=e^{\log _{10}\left(\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}\right)}=e^{\log _{10} 1}=e^{0}$

$$
=1
$$

667 (b)
We have, $\sin ^{3} x \sin 3 x=\sum_{m=0}^{n} c_{m} \cos m x$
Now, $\sin ^{3} x \sin 3 x=\frac{1}{4}(3 \sin x-\sin 3 x) \sin 3 x$
$=\frac{3}{8} \cdot 2 \sin x \sin 3 x-\frac{1}{8} \cdot 2 \sin ^{2} 3 x$
$=\frac{3}{8}(\cos 2 x-\cos 4 x)-\frac{1}{8}(1-\cos 6 x)$
$=-\frac{1}{8}+\frac{3}{8} \cos 2 x-\frac{3}{8} \cos 4 x+\frac{1}{8} \cos 6 x$
RHS $=\sum_{m=0}^{n} c_{m} \cos m x$
$=$
$c_{0}+$
$c_{1} \cos x+c_{2} \cos 2 x+c_{3} \cos 3 x+\ldots+c_{n} \cos n x$
...(ii)
On comparing Eqs.(i)and (ii), we get $n=6$
668 (c)
Given, $\tan \left(90^{\circ}-22 \frac{1}{2}^{\circ}\right)+\cot \left(90^{\circ}-22 \frac{1}{2}^{\circ}\right)$
$=\tan 22 \frac{1}{2}^{\circ}+\cot 22 \frac{1}{2}^{\circ}=\sqrt{2}-1+\sqrt{2}+1=2 \sqrt{2}$
669 (c)
We have
$\underline{\sin ^{2} A+\sin A+1}$
$=\sin A+1+\frac{1}{\sin A}$
$=\left(\sin A+\frac{1}{\sin A}\right)+1 \geq 2+1=3\left[\because x+\frac{1}{x} \geq 2\right]$
$\frac{\sin ^{2} A+\sin A+1}{\sin A} \geq 3$
$\therefore \prod \frac{\sin ^{2} A+\sin A+1}{\sin A} \geq 3 \times 3 \times 3=27$
670 (a)
Given, $2 \cos \left(e^{x}\right)=5^{x}+5^{-x}$
Since, $\cos e^{x} \leq 1 \Rightarrow 2 \cos e^{x} \leq 2$
And $\frac{5^{x}+5^{-x}}{2} \geq \sqrt{5^{x} .5^{-x}}$
$\Rightarrow 5^{x}+5^{-x} \geq 2$
\therefore LHS ≤ 2, RHS ≥ 2
Now, $5^{x}+\frac{1}{5^{x}}=2$ at $x=0$
But, at $x=0$
$2 \cos e^{x} \neq 2$
Hence, no solution will exist
671 (b)
Let r be the radius of the circle. Then,
$A_{1}=n r^{2} \sin \frac{\pi}{n}, A_{2}=\frac{n}{2} r^{2} \sin ^{2} \frac{\pi}{n}$ and A_{3}

$$
=n r^{2} \tan \frac{\pi}{n}
$$

Now, $A_{2} A_{3}=\frac{n^{2}}{2} r^{4} \sin \frac{2 \pi}{n} \frac{\sin \frac{\pi}{n}}{\cos \frac{\pi}{n}}$
$\Rightarrow A_{2} A_{3}=\frac{n^{2}}{2} r^{4}\left(2 \sin ^{2} \frac{\pi}{n}\right)=\left(n r^{2} \sin \frac{\pi}{n}\right)^{2}=A_{1}^{2}$
$\Rightarrow A_{2}, A_{2}, A_{3}$ are in G. P.
672 (a)
Since, $\tan \theta+\tan \left(\frac{3 \pi}{4}+\theta\right)=2$
$\therefore \tan \theta+\frac{-1+\tan \theta}{1+\tan \theta}=2$
$\Rightarrow \tan \theta+\tan ^{2} \theta-1+\tan \theta=2+2 \tan \theta$
$\Rightarrow \tan ^{2} \theta=3$
$\Rightarrow \tan ^{2} \theta=(\sqrt{3})^{2}=\tan ^{2} \frac{\pi}{3}$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{3}, n \in I$
673 (b)
$\frac{\sin (B+A)+\cos (B-A)}{\sin (B-A)+\cos (B+A)}$
$=\frac{\sin (B+A)+\sin \left(90^{\circ}-\overline{B-A}\right)}{\sin (B-A)+\sin \left(90^{\circ}-\overline{A+B}\right)}$
$=\frac{2 \sin \left(A+45^{\circ}\right) \cos \left(45^{\circ}-B\right)}{2 \sin \left(45^{\circ}-A\right) \cos \left(45^{\circ}-B\right)}$
$=\frac{\sin \left(A+45^{\circ}\right)}{\sin \left(45^{\circ}-A\right)}=\frac{\frac{1}{\sqrt{2}} \sin A+\frac{1}{\sqrt{2}} \cos A}{\frac{1}{\sqrt{2}} \cos A-\frac{1}{\sqrt{2}} \sin A}$
$=\frac{\cos A+\sin A}{\cos A-\sin A}$
(d)

Let $f(x)=3 \cos x+4 \sin x+5$
Since, $-\sqrt{3^{2}+4^{2}} \leq 3 \cos x+4 \sin x \leq \sqrt{3^{2}+4^{2}}$
$\Rightarrow-5 \leq 3 \cos x+4 \sin x \leq 5$
$\Rightarrow-5+5 \leq 3 \cos x+4 \sin x+5 \leq 5+5$
$\Rightarrow 0 \leq f(x) \leq 10$
Hence, maximum value of $f(x)$ is 10
675 (a)
$\sin A+\sqrt{3} \cos A=\sqrt{3} \cos B-\sin B$
$\Rightarrow \frac{1}{2} \sin A+\frac{\sqrt{3}}{2} \cos A=\frac{\sqrt{3}}{2} \cos B-\frac{1}{2} \sin B$
$\Rightarrow \cos \frac{\pi}{3} \sin A+\sin \frac{\pi}{3} \cos A$

$$
=\sin \frac{\pi}{3} \cos B-\cos \frac{\pi}{3} \sin B
$$

$\Rightarrow \sin \left(A+\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{3}-B\right)$
$\Rightarrow A+\frac{\pi}{3}=\frac{\pi}{3}-B$
$\Rightarrow A=-B$
Now, $\sin 3(A)+\sin 3 B=\sin (-3 B)+\sin 3 B$
$=-\sin 3 B+\sin 3 B=0$
676 (c)

$$
\begin{aligned}
& 3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2} \\
& +4\left(\sin ^{6} x+\cos ^{6} x\right) \\
& =3(1-\sin 2 x)^{2}+6(1+\sin 2 x) \\
& +4\left\{\left(\sin ^{2} x+\cos ^{2} x\right)^{3}\right. \\
& -3 \sin ^{2} x \cos ^{2} x \\
& \cdot
\end{aligned} \begin{aligned}
& \left.\left(\sin ^{2} x+\cos ^{2} x\right)\right\}
\end{aligned}
$$

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x\right)+6$

$$
+6 \sin 2 x+4\left\{1-3 \sin ^{2} x \cos ^{2} x\right\}
$$

$=3\left\{1-2 \sin 2 x+\sin ^{2} 2 x+2+2 \sin 2 x\right\}$

$$
+4\left\{1-\frac{3}{4} \sin ^{2} 2 x\right\}
$$

$=13+3 \sin ^{2} 2 x-3 \sin ^{2} 2 x=13$
677 (d)
$m \tan \left(\theta-30^{\circ}\right)=n \tan \left(\theta+120^{\circ}\right)$
$\Rightarrow m\left(\frac{\tan \theta-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}} \tan \theta}\right)=-n\left(\frac{-\tan \theta+\sqrt{3}}{1+\sqrt{3} \tan \theta}\right)$
$\Rightarrow m\left[(\sqrt{3} \tan \theta)^{2}-1\right]=-n\left(-\tan ^{2} \theta+3\right)$
$\Rightarrow 3 m \tan ^{2} \theta-m=n \tan ^{2} \theta-3 n$
$\Rightarrow \tan ^{2} \theta=\frac{m-3 n}{3 m-n}$
Now, $\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
$=\frac{1-\frac{m-3 n}{3 m-n}}{1+\frac{m-3 n}{3 m-n}}=\frac{3 m-n-m+3 n}{3 m-n+m-3 n}$
$=\frac{2(m+n)}{4(m-n)}=\frac{m+n}{2(m-n)}$
678 (c)
$\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
$=\frac{\tan 60^{\circ}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$
$=\frac{\sin 60^{\circ} \cos 20^{\circ}-\sin 20^{\circ} \cos 60^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}}$
$=\frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\frac{1}{2}\left(\sin 20^{\circ} \cos 20^{\circ}\right)}=4$
679 (b)
Let $u=\cos \theta\left\{\sin \theta+\sqrt{\sin ^{2} \theta+\sin ^{2} \alpha}\right\}$
$\Rightarrow(u-\sin \theta \cos \theta)^{2}=\cos ^{2} \theta\left(\sin ^{2} \theta+\sin ^{2} \alpha\right)$
$\Rightarrow u^{2} \tan ^{2} \theta-2 u \tan \theta+u^{2}-\sin ^{2} \alpha=0$
$\Rightarrow 4 u^{2}-4 u^{2}\left(u^{2}-\sin ^{2} \alpha\right)$
$\geq 0[\because \tan \theta$ is real \therefore Disc $\geq 0]$
$\Rightarrow u^{2}-\left(1+\sin ^{2} \alpha\right) \geq 0 \Rightarrow|u| \leq \sqrt{1+\sin ^{2} \alpha}$
680 (b)
$\because \sec 2 \theta=\frac{1}{\cos 2 \theta}=\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}$
$\therefore \tan ^{2} \theta+\sec 2 \theta=1$ (given)
$\Rightarrow \tan ^{2} \theta+\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=1$
$\Rightarrow \tan ^{2} \theta\left(1-\tan ^{2} \theta\right)+1+\tan ^{2} \theta=1-\tan ^{2} \theta$
$\Rightarrow 3 \tan ^{3} \theta-\tan ^{4} \theta=0$
$\Rightarrow \tan ^{2} \theta\left(3-\tan ^{2} \theta\right)=0$
$\Rightarrow \tan \theta=0$ or $\tan \theta= \pm \sqrt{3}$
Now, $\tan \theta=0 \Rightarrow \theta=m \pi$
where m is an integer
And $\tan \theta=(\pm \sqrt{3})=\tan \left(\pm \frac{\pi}{3}\right)$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{3}$
where n is an integer
Thus, $\theta=m \pi, n \pi \pm \frac{\pi}{3}$

681 (a)
Given, $2 \sec 2 \alpha=\tan \beta+\cot \beta$
$\Rightarrow 2 \sec 2 \alpha=\frac{1+\tan ^{2} \beta}{\tan \beta}=\frac{\sec ^{2} \beta}{\tan \beta}$
$=\frac{2}{2 \cos \beta \cdot \sin \beta}=2 \operatorname{cosec} 2 \beta$
$\therefore \sec 2 \alpha=\sec \left(\frac{\pi}{2}-2 \beta\right)$
$\Rightarrow 2 \alpha=2 n \pi \pm\left(\frac{\pi}{2}-2 \beta\right)$
Taking +ve sing, we have
$2(\alpha+\beta)=2 n \pi+\frac{\pi}{2}$
$\Rightarrow \alpha+\beta=n \pi+\frac{\pi}{4}, \quad n \in I$
For, $\quad n=0, \alpha+\beta=\frac{\pi}{4}$
682 (a)
Given, $\tan x+\sec x=2 \cos x$
$\Rightarrow 1+\sin x=2-2 \sin ^{2} x$
$\Rightarrow(2 \sin x-1)(\sin x+1)=0$
$\Rightarrow \sin x=-1, \frac{1}{2}$
$\Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
But at $x=\frac{3 \pi}{2}$ given equation does not exist
683 (d)
$\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$
$=\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 45^{\circ} \cot 44^{\circ} \ldots \cot 2^{\circ} \cot$
$=\left(\tan 1^{\circ} \cot 1^{\circ}\right)\left(\tan 2^{\circ} \cot 2^{\circ}\right) \ldots \tan 45^{\circ}$

$$
=1.1 \ldots .1=1
$$

684 (a)
We have,
$\sin 12^{\circ} \sin 24^{\circ} \sin 48^{\circ} \sin 84^{\circ}$
$=\frac{1}{4}\left(2 \sin 12^{\circ} \sin 48^{\circ}\right)\left(2 \sin 24^{\circ} \sin 48^{\circ}\right)$
$=\frac{1}{2}\left(\cos 36^{\circ}-\cos 60^{\circ}\right)\left(\cos 60^{\circ}-\cos 108^{\circ}\right)$
$=\frac{1}{4}\left(\cos 36^{\circ}-\frac{1}{2}\right)\left(\frac{1}{2}+\sin 18^{\circ}\right)$
$=\frac{1}{4}\left\{\frac{1}{4}(\sqrt{5}+1)-\frac{1}{2}\right\}\left\{\frac{1}{2}+\frac{1}{4}(\sqrt{5}-1)\right\}=\frac{1}{16}$
and, $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$
$=\frac{1}{2}\left[\cos \left(60^{\circ}-20^{\circ}\right) \cos 20^{\circ} \cos \left(60^{\circ}+20^{\circ}\right)\right]$
$=\frac{1}{2}\left\{\frac{1}{4} \cos 3\left(20^{\circ}\right)\right\}=\frac{1}{8} \cos 60^{\circ}=\frac{1}{2} \times \frac{1}{8}=\frac{1}{16}$
685 (a)
We have,
$8 \tan ^{2} \frac{\theta}{2}=1+\sec \theta$
$\Rightarrow 8\left(\frac{1-\cos \theta}{1+\cos \theta}\right)=\frac{1+\cos \theta}{\cos \theta}$
$\Rightarrow 8 \cos \theta(1-\cos \theta)=(1+\cos \theta)^{2}$
$\Rightarrow 9 \cos ^{2} \theta-6 \cos \theta+1=0$
$\Rightarrow \cos \theta=\frac{1}{3} \Rightarrow \theta=2 n \pi \pm \cos ^{-1}\left(\frac{1}{3}\right), n \in Z$
686 (b)
We have,
$\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$
$\Rightarrow \frac{\sin (x+y)+\sin (x-y)}{\sin (x-y)-\sin (x-y)}=\frac{(a+b)+(a-b)}{(a+b)-(a-b)}$
$\Rightarrow \frac{2 \sin x \cos y}{2 \cos x \sin y}=\frac{2 a}{2 b}$
$\Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b}$
687 (a)
We have, $\alpha+\beta+\gamma=2 \pi$
$\Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=\pi$
$\Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}=\pi-\frac{\gamma}{2}$
$\Rightarrow \tan \left(\frac{\alpha}{2}+\frac{\beta}{2}\right)=\tan \left(\pi-\frac{\gamma}{2}\right)$
$\Rightarrow \frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}}=-\tan \frac{\gamma}{2}$
$\Rightarrow \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
688 (c)
We have,
$\tan \theta=-1$ and $\cos \theta=\frac{1}{\sqrt{2}}$
The value of θ lying between 0 and 2π and satisfying these two is $\frac{7 \pi}{4}$. Therefore, the most general solution is
$\theta-2 n \pi+\frac{7 \pi}{4}$, where $n \in Z$
689 (d)
We have,
$c^{2}=a^{2}+b^{2}-2 a b \cos C \Rightarrow c^{2}=a^{2}+b^{2}-a b[$

$$
\left.\because C=60^{\circ}\right]
$$

Now,
$\frac{a}{b+c}+\frac{b}{c+a}=\frac{a c+a^{2}+b^{2}+b c}{b c+b a+c a+c^{2}}$
$\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}=\frac{a c+b c+\left(c^{2}+a b\right)}{b c+b a+c a+c^{2}}=1[$

$$
\left.\because a^{2}+b^{2}=c^{2}+a b\right]
$$

690 (b)

We have, $\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}$

$$
\begin{aligned}
& =\frac{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}+\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^{2}}}{\sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}-\sqrt{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^{2}}} \\
& =\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}=\tan \frac{x}{2}
\end{aligned}
$$

691 (a)
We have,
$\cos (\alpha+\beta)=\frac{4}{5}$ and $\sin (\alpha-\beta)=\frac{5}{13}$
$\Rightarrow \sin (\alpha+\beta)=\frac{3}{5}$ and $\cos (\alpha-\beta)=\frac{12}{13}$
$\Rightarrow \tan (\alpha+\beta)=\frac{3}{4}$ and $\tan (\alpha-\beta)=\frac{5}{12}$
Now,
$\tan 2 \alpha=\tan \{(\alpha+\beta)+(\alpha-\beta)\}$
$\Rightarrow \tan 2 \alpha=\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \tan (\alpha-\beta)}$

$$
=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}}=\frac{56}{33}
$$

692 (c)
We have,
$\sin \theta+\operatorname{cosec} \theta=2$
$\Rightarrow(\sin \theta+\operatorname{cosec} \theta)^{2}=4$
$\Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2=4 \Rightarrow \sin ^{2} \theta+\operatorname{cosec}^{2} \theta$

$$
=2
$$

693 (a)
$\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$
$\Rightarrow(\sin 6 \theta+\sin 2 \theta)+\sin 4 \theta=0$
$\Rightarrow 2 \sin 4 \theta \cos 2 \theta+\sin 4 \theta=0$
$\Rightarrow \sin 4 \theta(2 \cos 2 \theta+1)=0$
\therefore Either $\sin 4 \theta=0$ or $\cos 2 \theta=-\frac{1}{2}$
When $\sin 4 \theta=0$
$\Rightarrow 4 \theta=n \pi$
$\Rightarrow \quad \theta=\frac{n \pi}{4}$
And when $\cos 2 \theta=-\frac{1}{2}=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 \theta=2 n \pi \pm \frac{2 \pi}{3}$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{3}$
694 (b)
We have, $\quad \sin x-3 \sin 2 x+\sin 3 x=\cos x-$ $3 \cos 2 x+\cos 3 x$
$\Rightarrow \sin x+\sin 3 x$

$$
\begin{aligned}
& -3 \sin 2 x \\
& =\cos x+\cos 3 x-3 \cos 2 x
\end{aligned}
$$

$\Rightarrow 2 \sin 2 x \cos x$

$$
\begin{aligned}
& -3 \sin 2 x \\
& -2 \cos 2 x \cos x+3 \cos 2 x=0
\end{aligned}
$$

$\Rightarrow \sin 2 x(2 \cos x-3)-\cos 2 x(2 \cos x-3)=0$
$\Rightarrow(\sin 2 x-\cos 2 x)(2 \cos x-3)=0$
$\Rightarrow \sin 2 x=\cos 2 x \quad\left(\because \cos x \neq \frac{3}{2}\right)$
$\Rightarrow 2 x=2 n \pi \pm\left(\frac{\pi}{2}-2 x\right)$
Taking + ve sign
$x=\frac{n \pi}{2}+\frac{\pi}{8}$
695 (a)
Since, $2 \cos ^{2} \frac{x}{2} \sin ^{2} x<2$
But $x^{2}+\frac{1}{x^{2}} \geq 2$
Thus, the equation has no solution
696 (a)
Using sine formula, we have
$\frac{\sqrt{3}+1}{\sin 105^{\circ}}=\frac{b}{\sin 30^{\circ}}=\frac{c}{\sin 45^{\circ}}$
$\Rightarrow 2 \sqrt{2}=2 b=\sqrt{2} c \Rightarrow b=\sqrt{2}, c=2$
\therefore Area of $\triangle A B C=\frac{1}{2} b c \sin A$

$$
\begin{aligned}
\Rightarrow \text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} \times\left(2 \sqrt{2} \sin 105^{\circ}\right)=\frac{\sqrt{3}+1}{2} \\
& =\frac{1}{\sqrt{3}-1}
\end{aligned}
\end{aligned}
$$

697 (c)
Given, $\cos \theta-\sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \left(\theta+\frac{\pi}{4}\right)=\cos \frac{\pi}{3}$
$\Rightarrow \theta+\frac{\pi}{4}=2 n \pi \pm \frac{\pi}{3}$
$\Rightarrow \quad \theta=2 n \pi-\frac{7 \pi}{12}$ or $2 n \pi+\frac{\pi}{12}$
698 (a)
We have,
$\frac{\sin B}{b}=\frac{\sin C}{c} \Rightarrow \sin C$

$$
\begin{aligned}
& =\frac{c}{b} \sin B>1 \quad[\because b \\
& <\sin B \text { (Given) }]
\end{aligned}
$$

Which is impossible
Hence, no triangle is possible

699 (b)
We have,
$\cot ^{2} \frac{\pi}{9}+\cot ^{2} \frac{2 \pi}{9}+\cot ^{2} \frac{4 \pi}{9}$
$=\operatorname{cosec}^{2} \frac{\pi}{9}+\operatorname{cosec}^{2} \frac{2 \pi}{9}+\operatorname{cosec}^{2} \frac{4 \pi}{9}-3$
$=\frac{1}{1-\cos \frac{2 \pi}{9}}+\frac{1}{1-\cos \frac{4 \pi}{9}}+\frac{1}{1-\cos \frac{8 \pi}{9}}-3$
Let $a=\cos \frac{2 \pi}{9}, b=\cos \frac{4 \pi}{9}, c=\cos \frac{8 \pi}{9}$. Then,
$\frac{1}{1-\cos \frac{2 \pi}{9}}+\frac{1}{1-\cos \frac{4 \pi}{9}}+\frac{1}{1-\cos \frac{8 \pi}{9}}$
$=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$
$=\frac{3+(a b+b c+c a)-2(a+b+c)}{1-(a+b+c)+(a b+b c+c a)-a b c}$
Now,
$a+b+c=\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}$
$\Rightarrow a+b+c=2 \cos \frac{\pi}{3} \cos \frac{\pi}{9}+\cos \frac{8 \pi}{9}$
$\Rightarrow a+b+c=\cos \frac{\pi}{9}+\cos \left(\pi-\frac{\pi}{9}\right)$
$\Rightarrow a+b+c=\cos \frac{\pi}{9}-\cos \frac{\pi}{9}=0$,
$a b c=\cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9} \cos \frac{8 \pi}{9}$
$\Rightarrow a b c=\frac{1}{2}\left\{\cos \frac{2 \pi}{3}+\cos \frac{2 \pi}{9}\right\} \cos \frac{8 \pi}{9}$
$\Rightarrow a b c=\frac{1}{2}\left\{-\frac{1}{2} \cos \frac{8 \pi}{9}+\cos \frac{8 \pi}{9} \cos \frac{2 \pi}{9}\right\}$
$\Rightarrow a b c=\frac{1}{4}\left\{-\cos \frac{8 \pi}{9}+\cos \frac{10 \pi}{9}+\cos \frac{2 \pi}{3}\right\}=-\frac{1}{8}$,
and, $a b+b c+c a$
$=\cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}+\cos \frac{4 \pi}{9} \cos \frac{8 \pi}{9}+\cos \frac{8 \pi}{9} \cos \frac{2 \pi}{9}$
$=\frac{1}{2}\left\{\cos \frac{2 \pi}{3}+\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{3}+\cos \frac{4 \pi}{9}+\cos \frac{2 \pi}{3}\right.$

$$
\left.+\cos \frac{10 \pi}{9}\right\}
$$

$=\frac{1}{2}\left\{-\frac{3}{2}+\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{10 \pi}{9}\right\}$
$=\frac{1}{2}\left\{-\frac{3}{2}+2 \cos \frac{\pi}{3} \cos \frac{\pi}{9}-\cos \frac{\pi}{9}\right\}=-\frac{3}{4}$
$\therefore \frac{1}{1-\cos \frac{2 \pi}{9}}+\frac{1}{1-\cos \frac{4 \pi}{9}}+\frac{1}{1-\cos \frac{8 \pi}{9}}=\frac{7-\frac{3}{4}}{1-\frac{3}{4}+\frac{1}{8}}$

$$
=\frac{\frac{9}{4}}{\frac{3}{8}}=6
$$

$\Rightarrow \cot ^{2} \frac{\pi}{9}+\cot ^{2} \frac{2 \pi}{9}+\cot ^{2} \frac{4 \pi}{9}=6-3=3$
700 (d
Since, $\tan x+\frac{1}{\tan x}=2$
$\Rightarrow \tan x=1 \Rightarrow x=\frac{\pi}{4}$
$\therefore \sin x=\frac{1}{\sqrt{2}}$ and $\cos x=\frac{1}{\sqrt{2}}$
Hence, $\sin ^{2 n} x+\cos ^{2 n} x=\frac{1}{2^{n}}+\frac{1}{2^{n}}=\frac{1}{2^{n-1}}$
702 (c)
We have,
$\sin x+\sin ^{2} x=1 \Rightarrow \sin x=\cos ^{2} x$
Now,
$\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x-1$
$=\cos ^{6} x\left(\cos ^{6} x+3 \cos ^{4} x+3 \cos ^{2} x+1\right)-1$
$=\cos ^{6} x\left(\cos ^{2} x+1\right)^{3}-1$
$=\sin ^{3} x(\sin x+1)^{3}-1$
$=\left(\sin ^{2} x+\sin x\right)^{3}-1$
$=\left(\sin ^{2} x+\cos ^{2} x\right)^{3}-1 \quad\left[\because \sin x=\cos ^{2} x\right]$
$=1-1=0$
703 (c)
Let $a=3 x+4 y, b=4 x+3 y$ and $c=5 x+5 y$.
Clearly, c is the largest side and thus the largest angle C is given by
$\cos C \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{-2 x y}{2\left(12 x^{2}+25 x y+12 y^{2}\right)}$ <0
$\Rightarrow C$ is an obtuse angle
704 (a)
Let $a=x^{2}+x+1, b=x^{2}-1$ and $c=2 x+1$.
Then,
$a-b=x+2>0 \quad[\because x>1]$
$a-c=x^{2}-x>0 \quad[\because x>1]$
So, a is the largest side
Hence, the largest angle is given by

$$
\cos \theta=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$\Rightarrow \cos \theta=\frac{\left(x^{2}-1\right)^{2}+(2 x+1)^{2}-\left(x^{2}+x+1\right)^{2}}{2\left(x^{2}-1\right)(2 x+1)}$

$$
=-\frac{1}{2}
$$

$\Rightarrow \theta=2 \pi / 3=120^{\circ}$
705 (c)
We have,
$\frac{1}{2}$ a $p_{1}=\Delta, \frac{1}{2} b p_{2}=\Delta, \frac{1}{2}$ c $p_{3}=\Delta$
$\Rightarrow p_{1}=\frac{2 \Delta}{a}, p_{2}=\frac{2 \Delta}{b}, p_{3}=\frac{2 \Delta}{c}$
$\therefore \frac{1}{p_{1}^{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta^{2}}$
$\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p_{3}}=\frac{a}{2 \Delta}+\frac{b}{2 \Delta}-\frac{c}{2 \Delta}=\frac{a+b-c}{2 \Delta}$

$$
=\frac{2(s-c)}{2 \Delta}=\frac{s-c}{\Delta}
$$

706 (c)
We have,
$\cos C=\frac{63}{65} \Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{63}{65}$

$$
\Rightarrow \frac{26^{2}+30^{2}-c^{2}}{2 \times 26 \times 30}=\frac{63}{65}
$$

$\Rightarrow 676+900-c^{2}=1260 \Rightarrow c^{2}=64 \Rightarrow c=8$
Thus, we have
$a=26, b=30$ and $c=8$
$\therefore 2 s=a+b+c \Rightarrow 2 s=26+30+8=64 \Rightarrow s$

$$
=32
$$

Also,
$\Delta=\sqrt{s(s-a)(s-b)(s-c)}=$
$\sqrt{32 \times 6 \times 2 \times 24}=96$
Hence, $r_{2}=\frac{\Delta}{s-b}=\frac{96}{32-30}=48$
707 (c)
$\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots \cos 90^{\circ} \ldots \cos 100^{\circ}$
$=\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots 0 \ldots \cos 100^{\circ}=0$
708 (b)
We have,
$\sin \frac{\pi}{2}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}$
$=\frac{1}{2 \sin \frac{\pi}{7}}\left\{2 \sin ^{2} \frac{\pi}{7}+2 \sin \frac{\pi}{7} \sin \frac{2 \pi}{7}+2 \sin \frac{\pi}{7} \sin \frac{3 \pi}{7}\right\}$
$=\frac{1}{2 \sin \left(\frac{\pi}{7}\right)}\left\{1-\cos \frac{2 \pi}{7}+\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}+\cos \frac{2 \pi}{7}\right.$

$$
\left.-\cos \frac{4 \pi}{7}\right\}
$$

$=\frac{1}{2 \sin \frac{\pi}{7}}\left\{1+\cos \frac{\pi}{7}\right\}=\frac{2 \cos ^{2} \frac{\pi}{14}}{4 \sin \frac{\pi}{14} \cos \frac{\pi}{14}}=\frac{1}{2} \cot \frac{\pi}{14}$
709 (a)
Let $f(x)=\sqrt{3} \cos x+\sin x$
$\Rightarrow f(x)=2\left(\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x\right)=2 \sin \left(x+\frac{\pi}{3}\right)$
Since, $-1 \leq \sin \left(x+\frac{\pi}{3}\right) \leq 1$
Hence, $f(x)$ is maximum, if $x+\frac{\pi}{3}=\frac{\pi}{2}$
$\Rightarrow x=\frac{\pi}{6}=30^{\circ}$
$\sin ^{2} 17.5^{\circ}+\sin ^{2} 72.5^{\circ}$
$=\sin ^{2} 17.5^{\circ}+\cos ^{2} 17.5^{\circ}$

$$
\because \sin (9 \theta-\theta)=\cos \theta]
$$

$=1=\tan ^{2} 45^{\circ}$
711 (a)
We have,
$a \sin A=b \sin B$
$\Rightarrow a \cdot a k=b \cdot b k \Rightarrow a=b \Rightarrow \triangle A B C$ is isosceles
712 (b)
We know that $\sin ^{2} \theta \geq 1$
$\Rightarrow \frac{4 x y}{(x+y)^{2}} \geq 1$
$\Rightarrow \quad 4 x y \geq(x+y)^{2}$
$\Rightarrow(x-y)^{2} \leq 0$
$\Rightarrow x-y=0 \Rightarrow y=x$
And $x \neq 0, \quad y \neq 0$
713 (b)
Given that, $\cos \theta=\frac{1}{2}\left(x+\frac{1}{x}\right)$
$\Rightarrow x+\frac{1}{x}=2 \cos \theta$
We know that, $x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2$
$=(2 \cos \theta)^{2}-2=4 \cos ^{2} \theta-2$
$=2 \cos 2 \theta \quad$ [from Eq.(i)]
$\therefore \frac{1}{2}\left(x^{2}+\frac{1}{x^{2}}\right)=\frac{1}{2} \times 2 \cos 2 \theta=\cos 2 \theta$

714 (d)
$\operatorname{sech}^{-1}(\sin \theta)$
$=\cosh ^{-1}(\operatorname{cosec} \theta)$
$=\log \left[\operatorname{cosec} \theta+\sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)}\right]$
$=\log \left[\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\right]=\log \cot \frac{\theta}{2}$
715 (d)
Consider the curves $y=2^{\cos x}$ and $y=|\sin x|$.
Clearly, both the curves are symmetrical about y axis as $\cos x$ and $|\sin x|$ are even functions
Also, $y=2^{\cos x}$ and $y=|\sin x|$ intersect at two points in $[0,2 \pi]$
Hence, there are four solutions of the given equation
716 (d)
We have,
$\cos (\lambda \sin \theta)=\sin (\lambda \cos \theta)$
$\Rightarrow \cos (\lambda \sin \theta)=\cos \left(\frac{\pi}{2}-\lambda \cos \theta\right)$
$\Rightarrow \lambda \sin \theta=\frac{\pi}{2}-\lambda \cos \theta \Rightarrow \cos \theta+\sin \theta=\frac{\pi}{2 \lambda}$

This equation will have a solution if

$$
\begin{aligned}
\left|\frac{\pi}{2 \lambda} \leq \sqrt{2}\right| \quad & {[\because|a \cos \theta+b \sin \theta|} \\
& \left.\leq \sqrt{a^{2}+b^{2}}\right] \\
\Rightarrow \frac{\pi}{2 \lambda} \leq \sqrt{2} \Rightarrow & \lambda \geq \frac{\pi}{2 \sqrt{2}} \quad[\because \lambda>0]
\end{aligned}
$$

We have,
$c_{1}+c_{2}=2 b \cos A$ and $c_{1} c_{2}=b^{2}-a^{2}$
$\therefore c_{1}-c_{2}=\sqrt{\left(c_{1}+c_{2}\right)^{2}-4 c_{1} c_{2}}$
$\Rightarrow c_{1}-c_{2}=\sqrt{4 b^{2} \cos ^{2} A-4\left(b^{2}-a^{2}\right)}$

$$
=2 \sqrt{a^{2}-b^{2} \sin ^{2} A}
$$

718 (b)
We have,
$\tan \alpha=\left(1+2^{-x}\right)^{-1}=\frac{2^{x}}{2^{x}+1}$ and $\tan \beta$

$$
=\frac{1}{2^{x+1}+1}
$$

$\therefore \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\Rightarrow \tan (\alpha+\beta)=\frac{2^{x}\left(2^{x+1}+1\right)+\left(2^{x}+1\right)}{\left(2^{x}+1\right)\left(2^{x+1}+1\right)-2^{x}}$
$\Rightarrow \tan (\alpha+\beta)=\frac{2\left(2^{x}\right)^{2}+2.2^{x}+1}{2\left(2^{x}\right)^{2}+2.2^{x}+1}=1 \Rightarrow \alpha+\beta$

$$
=\pi / 4
$$

719 (a)
Given, $f(x)=\sin x(1+\cos x)$
It is minimum at $x=\frac{\pi}{3}$
$\therefore f\left(\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)\left(1+\cos \frac{\pi}{3}\right)$
$=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)=\frac{3 \sqrt{3}}{4}$

We have,
$\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11} \cos \frac{9 \pi}{11}$
$=\frac{\cos \left\{\frac{\pi}{11}+\left(\frac{5-1}{2}\right) \frac{2 \pi}{11}\right\} \sin \left(\frac{5 \pi}{11}\right)}{\sin \left(\frac{\pi}{11}\right)}$
$=\frac{\cos \frac{5 \pi}{11} \sin \frac{5 \pi}{11}}{\sin \frac{\pi}{11}}=\frac{1}{2} \frac{\sin \left(\frac{10 \pi}{11}\right)}{\sin \frac{\pi}{11}}=\frac{1}{2}$
721 (c)

$$
\begin{gathered}
\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)(1 \\
\left.+\cos \frac{7 \pi}{8}\right) \\
=\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1-\cos \frac{3 \pi}{8}\right) \\
\times\left(1-\cos \frac{\pi}{8}\right)
\end{gathered}
$$

$=\left(1-\cos ^{2} \frac{\pi}{8}\right)\left(1-\cos ^{2} \frac{3 \pi}{8}\right)$
$=\sin ^{2} \frac{\pi}{8} \cdot \sin ^{2} \frac{3 \pi}{8}=\frac{1}{4}\left[2 \sin \frac{\pi}{8} \sin \frac{3 \pi}{8}\right]^{2}$
$=\frac{1}{4}\left[\cos \frac{\pi}{4}-\cos \frac{\pi}{2}\right]^{2}=\frac{1}{4}\left[\frac{1}{\sqrt{2}}-0\right]^{2}=\frac{1}{8}$
722 (a)
We have,
$2 \sin \frac{A}{2}=\sqrt{1+\sin A}+\sqrt{1-\sin A}$
$\Rightarrow 2 \sin \frac{A}{2}-\sqrt{(\cos A / 2+\sin A / 2)^{2}}$

$$
+\sqrt{(\cos A / 2-\sin A / 2)^{2}}
$$

$\Rightarrow 2 \sin A / 2=|\cos A / 2+\sin A / 2|$

$$
+|\sin A 2 /-\sin A / 2|
$$

$\Rightarrow \cos A / 2+\sin A / 2 \geq 0$ and $\cos A / 2-\sin A / 2 \leq$ 0
$\Rightarrow \pi / 4 \leq A / 2 \leq 3 \pi / 4$ and $\pi / 4 \leq A \leq 5 \pi / 4$
$\Rightarrow \pi / 4 \leq A / 2 \leq 3 \pi / 4$
$\Rightarrow 2 n \pi+\pi / 4 \leq A / 2 \leq 2 n \pi+3 \pi / 4, n \in Z$
723 (a)
We have,
$a \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{A}{2}=\frac{3 b}{2}$
$\Rightarrow a\left\{\frac{s(s-c)}{a b}\right\}+c\left\{\frac{s(s-a)}{b c}\right\}=\frac{3 b}{2}$
$\Rightarrow \frac{s}{b}(2 s-a-c)=\frac{3 b}{2}$
$\Rightarrow 2 s=3 b \Rightarrow a+c=2 b \Rightarrow a, b, c$ are in A.P.
724 (a)
We have,
$\tan \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)=\frac{S_{1}-S_{3}+S_{5}-S_{7}+\cdots}{1-S_{2}+S_{4}-S_{6}+\cdots}$
$\therefore \tan 5 \theta=\frac{{ }^{5} C_{1} \tan \theta-{ }^{5} C_{3} \tan ^{3} \theta+{ }^{5} C_{5} \tan ^{5} \theta}{1-{ }^{5} C_{2} \tan ^{2} \theta+{ }^{5} C_{4} \tan ^{4} \theta}$
725 (d)
It is given that a, b, c are in A.P.
$\therefore 2 b=a+c$
Now,
$\frac{\tan \frac{A}{2}+\tan \frac{C}{2}}{\cot \frac{B}{2}}=\left(\tan \frac{A}{2}+\tan \frac{C}{2}\right) \tan \frac{B}{2}$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{C}{2}}{\cot \frac{B}{2}}=\left\{\frac{\Delta}{s(s-a)}+\frac{\Delta}{s(s-c)}\right\} \frac{\Delta}{s(s-b)}$
$\Rightarrow \frac{\tan \frac{A}{B}+\tan \frac{C}{2}}{\cot \frac{B}{2}}=\frac{\Delta^{2}}{s^{2}(s-b)}\left\{\frac{1}{s-a}+\frac{1}{s-c}\right\}$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{C}{2}}{\cot \frac{B}{2}}=\frac{\Delta^{2} b}{s \Delta^{2}}$
$\Rightarrow \frac{\tan \frac{A}{2}+\tan \frac{C}{2}}{\cot \frac{B}{2}}=\frac{2 b}{2 s}=\frac{2 b}{a+b+c}=\frac{2 b}{3 b}=\frac{2}{3}$ [

$$
\because a+c=2 b]
$$

(c)

We have,
$2 \frac{\cos A}{a}+\frac{\cos B}{b}+2 \frac{\cos C}{c}=\frac{a}{b c}+\frac{b}{a c}$
$\Rightarrow 2\left(\frac{b^{2}+c^{2}-a^{2}}{2 a b c}\right)+\frac{c^{2}+a^{2}-b^{2}}{2 a b c}$

$$
+2\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b c}\right)=\frac{a^{2}+b^{2}}{a b c}
$$

$\Rightarrow b^{2}+c^{2}=a^{2} \Rightarrow A=\frac{\pi}{2}$
727 (d)

$$
\begin{aligned}
& 2^{n-1} \tan \left(2^{n-1} \alpha\right)+2^{n} \cot \left(2^{n} \alpha\right) \\
& =2^{n-1}\left[\frac{\sin 2^{n-1} \alpha}{\cos 2^{n-1} \alpha}+2 \frac{\cos 2^{n} \alpha}{\sin 2^{n} \alpha}\right] \\
& =2^{n-1}\left[\frac{\operatorname{sos} 2^{n} \alpha \cos 2^{n-1} \alpha+\sin 2^{n} \alpha}{\sin 2^{n-1} \alpha \cos 2^{n} \alpha \cos 2^{n-1} \alpha}\right. \\
& =2^{n-1}\left[\frac{\cos 2^{n-1} \alpha\left(1+\cos 2^{n} \alpha\right)}{\sin 2^{n} \alpha \cos 2^{n-1} \alpha}\right] \\
& =2^{n-1} \cot 2^{n-1} \alpha
\end{aligned}
$$

Proceeding in similar way in last, we get
$\tan \alpha+2 \cot 2 \alpha$
$=\frac{\sin \alpha}{\cos \alpha}+2 \frac{\cos 2 \alpha}{\sin 2 \alpha}$
$=\frac{\cos 2 \alpha \cos \alpha+\sin 2 \alpha \sin \alpha+\cos 2 \alpha \cos \alpha}{\sin 2 \alpha \cos \alpha}$
$=\frac{\cos \alpha(1+\cos 2 \alpha)}{2 \sin \alpha \cos ^{2} \alpha}$
$=\frac{2 \cos ^{2} \alpha}{2 \sin \alpha}$
$=\frac{\cos \alpha}{\sin \alpha}=\cot \alpha$
728 (c)

$$
\begin{aligned}
& \cos ^{2}\left(\frac{\pi}{3}-x\right)-\cos ^{2}\left(\frac{\pi}{3}+x\right) \\
& =\left[\cos \left(\frac{\pi}{3}-x\right)+\cos \left(\frac{\pi}{3}+x\right)\right]\left[\cos \left(\frac{\pi}{3}-x\right)\right. \\
& \left.-\cos \left(\frac{\pi}{3}+x\right)\right] \\
& =\left(2 \cos \frac{\pi}{3} \cos x\right)\left(2 \sin \frac{\pi}{3} \sin x\right) \\
& =\sin \frac{2 \pi}{3} \sin 2 x=\frac{\sqrt{3}}{2} \sin 2 x
\end{aligned}
$$

Hence, maximum value of given expression is $\frac{\sqrt{3}}{2}$

We have,
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \Rightarrow \cos C=-1 \Rightarrow C=\pi$
Which is impossible in a triangle
730 (c)
We have,
$\frac{a}{\cos A}=\frac{b}{\cos B}$
$\Rightarrow 2 R \sin A \cos B=2 R \sin B \cos A$
$\Rightarrow \sin (A-B)=0 \Rightarrow A=B$
$\therefore 2 \sin A \cos B=\sin 2 A=\sin \left(180^{\circ}-C\right)[$

$$
\left.\because 2 A+C=180^{\circ}\right]
$$

$\Rightarrow 2 \sin A \cos B=\sin C$
731 (d)
Given, $1+\sin \theta+\sin ^{2} \theta+\cdots \infty=4+2 \sqrt{3}$
$\Rightarrow \frac{1}{1-\sin \theta}=4+2 \sqrt{3} \quad[\because 0<\sin \theta<1]$
$\Rightarrow 1-\sin \theta=\frac{4-2 \sqrt{3}}{16-12}=1-\frac{\sqrt{3}}{2}$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
732 (c)
We have,
$a\left(b^{2}+c^{2}\right) \cos A$

$$
\begin{aligned}
& +b\left(c^{2}+a^{2}\right) \cos B+c\left(a^{2}\right. \\
& \left.+b^{2}\right) \cos C
\end{aligned}
$$

$=\left(a b^{2} \cos A+b a^{2} \cos B\right)$
$+\left(a c^{2} \cos A+c a^{2} \cos C\right)$
$+\left(b c^{2} \cos B+c b^{2} \cos C\right)$
$=a b(b \cos A+a \cos B)+c a(c \cos A+a \cos C)$
$+b c(c \cos B+b \cos C)$
$=a b c+a b c+a b c=3 a b c$
733 (a)
We have, $\tan (\pi \cos \theta)=\tan \left(\frac{\pi}{2}-\pi \sin \theta\right)$
$\therefore \sin \theta+\cos \theta=\frac{1}{2}$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2 \sqrt{2}}$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}$
734 (a)
We have,
$y=5 x^{2}+2 x+3$
(b)

We have, $2 b=a+c$
And,
$\Delta=\frac{3}{5} \times \frac{\sqrt{3}}{4}\left(\frac{a+b+c}{3}\right)^{2}$
Clearly, it represents an upward opening parabola having its vertex at $(-1 / 5,14 / 5)$
$\therefore y \geq \frac{14}{5}>2$
Now, $y=2 \sin x \leq 2$
Thus, the two curves do not intersect. Hence,
there is no common point in the two curves
735 (d)
We have,
$(a+b+c)(b+c-a)=\lambda b c$
$\Rightarrow 2 s(2 s-a)=\lambda b c$
$\Rightarrow \frac{s(s-a)}{b c}=\frac{\lambda}{4}$
$\Rightarrow \cos ^{2} \frac{A}{2}=\frac{\lambda}{4}$
$\Rightarrow 0<\frac{\lambda}{4}<1 \Rightarrow 0<\lambda<4 \quad\left[\because \cos ^{2} \frac{A}{2} \leq 1\right]$
736 (c)
The given expression can be written as

$$
\begin{aligned}
& \begin{aligned}
&\left(1+\cot ^{2} A\right) \cot ^{2} A-\left(1+\tan ^{2} A\right) \tan ^{2} A \\
&-\left(\cot ^{2} A\right. \\
&\left.-\tan ^{2} A\right)\left\{\left(1+\tan ^{2} A\right)\left(1+\cot ^{2} A\right)\right. \\
&-1\}
\end{aligned} \\
& \begin{array}{c}
=\cot ^{2} A+\cot ^{4} A-\tan ^{2} A-\tan ^{4} A \\
-\left(\cot ^{2} A-\tan ^{2} A\right)\left(\cot ^{2} A+\tan ^{2} A+1\right) \\
=\cot ^{2} A+\cot ^{4} A-\tan ^{2} A-\tan ^{4} A
\end{array} \\
& \quad-\left(\cot ^{2} A-\tan ^{2} A\right) \\
& \quad-\left(\cot ^{4} A-\tan ^{4} A\right)
\end{aligned} \begin{aligned}
=0
\end{aligned}
$$

$\Rightarrow \Delta=\frac{3 \sqrt{3}}{20} b^{2}$
$\Rightarrow s(s-a)(s-b)(s-c)=\frac{27}{400} b^{4}$
$\Rightarrow\left(\frac{a+b+c}{2}\right)\left(\frac{b+c-a}{2}\right)\left(\frac{c+a-b}{2}\right)\left(\frac{a+b-c}{2}\right)=\frac{27}{400} b^{4}$
$\Rightarrow\left(\frac{3 b}{2}\right) \times\left(\frac{b+c-2 b+c}{2}\right)\left(\frac{b}{2}\right)\left(\frac{2 b-c+b-c}{2}\right)=\frac{27}{400} b^{4}$
$[\because 2 b=a+c]$
$\Rightarrow \frac{3 b}{2} \times\left(\frac{2 c-b}{2}\right) \times \frac{b}{2} \times\left(\frac{3 b-2 c}{2}\right)=\frac{27}{400} b^{4}$
$\Rightarrow(2 c-b)(3 b-2 c)=\frac{9 b^{2}}{25}$
$\Rightarrow\left(6 b c-4 c^{2}-3 b^{2}+2 b c\right)=\frac{9 b^{2}}{25}$
$\Rightarrow 8 b c-4 c^{2}-3 b^{2}=\frac{9 b^{2}}{25}$
$\Rightarrow \frac{84}{25} b^{2}-8 b c+4 c^{2}=0$
$\Rightarrow 21 b^{2}-50 b c+25 c^{2}=0$
$\Rightarrow(7 b-5 c)(3 b-5 c)=0$
$\Rightarrow 7 b=5 c$ or, $3 b=5 c \Rightarrow \frac{b}{c}=\frac{5}{7}, \frac{5}{3}$
Now,
$2 b=a+c \Rightarrow \frac{2 b}{c}=\frac{a}{c}+1 \Rightarrow \frac{a}{c}=\frac{3}{7}, \frac{7}{3}$
Hence, $a: b: c=3: 5: 7$

738 (a)
$\sqrt{\frac{a+b}{a-b}}-\sqrt{\frac{a-b}{a+b}}$
$=\sqrt{\frac{1+\frac{b}{a}}{1-\frac{b}{a}}}-\sqrt{\frac{1-\frac{b}{a}}{1+\frac{b}{a}}}$
$=\sqrt{\frac{1+\tan \alpha}{1-\tan \alpha}}-\sqrt{\frac{1-\tan \alpha}{1+\tan \alpha}}$
$=\frac{(1+\tan \alpha)-(1-\tan \alpha)}{\sqrt{1-\tan ^{2} \alpha}}$
$=\frac{2 \tan \alpha}{\sqrt{1-\tan ^{2} \alpha}}=\frac{2 \sin \alpha}{\sqrt{\cos 2 \alpha}}$
739
(b)

Since, $\sin \theta+\cos \theta=x$
and $\sin ^{6} \theta+\cos ^{6} \theta=\frac{1}{4}\left[4-3\left(x^{2}-1\right)^{2}\right]$
On equation Eq (i), we get
$\sin 2 \theta=x^{2}-1 \leq 1 \quad(\because \sin 2 \theta \leq 1)$
$\Rightarrow x^{2} \leq 2 \Rightarrow-\sqrt{2} \leq x \leq \sqrt{2}$
Now, $\sin ^{6} \theta+\cos ^{6} \theta=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}-$
$3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=1-3 \sin ^{2} \theta \cos ^{2} \theta=1-\frac{3}{4} \sin ^{2} 2 \theta$
$=1-\frac{3}{4}\left(x^{2}-\right)^{2}=\frac{1}{4}\left[4-3\left(x^{2}-1\right)^{2}\right]$
Thus, the given result will hold true only when $x^{2} \leq 2$ and not for all real values of x

740 (b)
We have,
$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \sin (B+C) \sin (B-C)=\sin (A+B) \sin (A-B)$
$\Rightarrow \sin ^{2} B-\sin ^{2} C=\sin ^{2} A-\sin ^{2} B$
$\Rightarrow b^{2}-c^{2}=a^{2}-b^{2} \Rightarrow a^{2}, b^{2}, c^{2}$ are in A.P.
741 (a)
It is given that A, B, C are in A.P.
$\therefore 2 B=A+C \Rightarrow 3 B=A+B+C \Rightarrow 3 B=180^{\circ}$

$$
\Rightarrow B=60^{\circ}
$$

$\Rightarrow \cos B=\frac{1}{2}$
$\Rightarrow \frac{c^{2}+a^{2}-b^{2}}{2 a c}=\frac{1}{2}$
$\Rightarrow c^{2}+a^{2}-b^{2}=a c$
$\Rightarrow(a-c)^{2}=b^{2}-a c$
$\Rightarrow|a-c|=\sqrt{b^{2}-a c}$
$\Rightarrow|\sin A-\sin C|=\sqrt{\sin ^{2} B-\sin A \sin C}$
$\Rightarrow 2\left|\sin \frac{A-C}{2}\right| \cos \frac{A+C}{2}=\sqrt{\frac{3}{4}-\sin A \sin C}$
$\Rightarrow 2\left|\sin \frac{A-C}{2}\right|=\sqrt{3-4 \sin A \sin C}$
$\Rightarrow \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}=\frac{2\left|\sin \frac{A-C}{2}\right|}{|A-C|}$
$\Rightarrow \lim _{A \rightarrow C} \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}=\lim _{A \rightarrow C}\left|\frac{\frac{\sin \left(\frac{A-C}{2}\right)}{A-C}}{2}\right|=1$
742 (c)
$3-\cos \theta+\cos \left(\theta+\frac{\pi}{3}\right)$
$=3-\cos \theta+\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta$
$=3-\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta=3-\sin \left(\theta+\frac{\pi}{6}\right)$
Since, $-1 \leq \sin \theta \leq 1$
Hence, the value of expression lies in [2, 4]
743 (c)
We have, $\cos A=m \cos B$
$\Rightarrow \frac{\cos A}{\cos B}=\frac{m}{1}$
$\Rightarrow \frac{\cos A+\cos B}{\cos A-\cos B}=\frac{m+1}{m-1}$
$\Rightarrow \frac{2 \cos \frac{A+B}{2} \cos \frac{B-A}{2}}{2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}}=\frac{m+1}{m-1}$
$\Rightarrow \cot \frac{A+B}{2}=\left(\frac{m+1}{m-1}\right) \tan \frac{B-A}{2}$
But $\cot \frac{A+B}{2}=\lambda \tan \frac{B-A}{2}$
$\therefore \lambda=\frac{m+1}{m-1}$

744 (c)

$\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{7 \pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}$
$=\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{\pi}{8}+\cos ^{4}\left(\frac{\pi}{2}-\frac{\pi}{8}\right)+\cos ^{4}\left(\frac{\pi}{2}+\frac{\pi}{8}\right)$
$=2\left[\cos ^{4} \frac{\pi}{8}+\sin ^{4} \frac{\pi}{8}\right]$
$=2\left[\left(\cos ^{2} \frac{\pi}{8}+\sin ^{2} \frac{\pi}{8}\right)^{2}-2 \sin ^{2} \frac{\pi}{8} \cos ^{2} \frac{\pi}{8}\right]$
$=2\left[1-\frac{1}{2}\left(\sin \frac{\pi}{4}\right)^{2}\right]$
$=2\left[1-\frac{1}{4}\right]=\frac{3}{2}$
745 (b)
Given, $\sin \theta=\frac{12}{13}$ and $\cos \phi=-\frac{3}{5}$
$\therefore \cos \theta=\frac{5}{13}$ and $\sin \phi=-\frac{4}{5}$
$\therefore \sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$
$=\frac{12}{13} \times\left(-\frac{3}{5}\right)+\frac{5}{13} \times\left(-\frac{4}{5}\right)$
$=\frac{-36}{65}+\frac{(-20)}{65}=-\frac{56}{65}$
746 (c)
We have,
$\sec ^{2} \theta \operatorname{cosec}^{2} \theta=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}-\frac{4}{\sin ^{2} 2 \theta} \geq 4$
and, $\sec ^{2} \theta \operatorname{cosec}^{2} \theta=\frac{4}{\sin ^{2} 2 \theta} \geq 4$
Thus, the required equation is
$x^{2}-\lambda x+\lambda=0$, where $\lambda \geq 4$
747 (a)
$\frac{1}{m}\left[(m+n)+\frac{1}{(m+n)}\right]$
$=\frac{1}{\sec \theta}\left[\sec \theta+\tan \theta+\frac{1}{\sec \theta+\tan \theta}\right]$
$=\frac{\left[\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta+1\right]}{\sec \theta(\sec \theta+\tan \theta)}$
$=\frac{2 \sec ^{2} \theta+2 \sec \theta \tan \theta}{\sec \theta(\sec \theta+\tan \theta)}$
$=2$
748 (a)
$\because \sin A \sin B=\frac{1}{2} \times 2 \sin A \sin B$
$=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$=\frac{1}{2}\left[\cos (A-B)-\cos 90^{\circ}\right](\because A+B+C=$
180° and $\angle C=90^{\circ}$, given)
$=\frac{1}{2} \cos (A-B) \leq \frac{1}{2}$
\therefore Maximum value of $\sin A \sin B=\frac{1}{2}$
749 (b)
In cyclic quadrilateral $A B C D$, we have
$A+C=\pi$ and $B+D=\pi$
$\therefore \cos A=-\cos C$ and $\cos B=-\cos D$
$\Rightarrow \cos A+\cos B+\cos C+\cos D=0$
750 (d)
Let $A=\theta, B=2 \theta$ and $C=3 \theta$. Then,
$A+B+C=180^{\circ} \Rightarrow 6 \theta=180^{\circ} \Rightarrow \theta=30^{\circ}$
$\therefore A=30^{\circ}, B=60^{\circ}$ and $C=90^{\circ}$

Now,
$a: b: c=\sin A: \sin B: \sin C$,
$\Rightarrow a: b: c=\frac{1}{2}: \frac{\sqrt{3}}{2}: 1 \Rightarrow a: b: c=1: \sqrt{3}: 2$
751 (b)
We have,
$\sin (\pi \cos \theta)=\cos (\pi \sin \theta)$
$\Rightarrow \sin (\pi \cos \theta)=\sin \left(\frac{\pi}{2}+\pi \sin \theta\right)$
$\Rightarrow \pi \cos \theta=\frac{\pi}{2}+\pi \sin \theta$
$\Rightarrow \pi \cos \theta-\pi \sin \theta=\frac{\pi}{2}$
$\Rightarrow \cos \theta-\sin \theta=\frac{1}{2}$
$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2 \sqrt{2}} \Rightarrow \cos \left(\theta+\frac{\pi}{4}\right)$

$$
=\frac{1}{2 \sqrt{2}}
$$

752 (a)
The given equation is not meaningful for
$|\cos x|=1$
So, let $|\cos x| \neq 1$
Now,
$2^{1+|\cos x|+\cos ^{2} x+|\cos x|^{3}+\cdots+\text { to } \infty}=4$
$\Rightarrow \frac{1}{2^{1-|\cos x|}}=2^{2}$
$\Rightarrow \frac{1}{1-|\cos x|}=2$
$\Rightarrow 2-2|\cos x|=1$
$\Rightarrow|\cos x|=\frac{1}{2}$
$\Rightarrow \cos x= \pm \frac{1}{2}$
$\Rightarrow \cos x=\cos \frac{\pi}{3}, \cos x=\cos \frac{2 \pi}{3}$
$\Rightarrow x=2 n \pi \pm \frac{\pi}{3}, x=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$
$\Rightarrow x=2 n \pi \pm \frac{\pi}{3}, x=(2 n \pm 1) \pi \pm \frac{\pi}{3}$
$\Rightarrow x=n \pi \pm \frac{\pi}{3}, n \in Z$
753 (b)
We have,
$(\cos \alpha+\cos \beta)^{2}-(\sin \alpha+\sin \beta)^{2}=0$
$\Rightarrow\left(\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta\right)$

$$
-\left(\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \sin \beta\right)
$$

$$
=0
$$

$\Rightarrow \cos 2 \alpha+\cos 2 \beta=-2(\cos \alpha \cos \beta-\sin \alpha \sin \beta)$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta=-2 \cos (\alpha+\beta)$
754
(d)

The given expression can be written as
$\frac{1+\cos y-\sin ^{2} y}{1+\cos y}+\frac{\left(1-\cos ^{2} y\right)-\sin ^{2} y}{\sin y(1-\cos y)}$
$=\frac{\cos y(1+\cos y)}{1+\cos y}+0=\cos y$
755 (a)
We have,
$a=2 b$
$\Rightarrow 2 R \sin A=4 R \sin B$
$\Rightarrow \sin A=2 \sin B$
$\Rightarrow \sin 3 B=2 \sin B \quad[\because A=3 B]$
$\Rightarrow 3 \sin B-4 \sin ^{3} B=2 \sin B$
$\Rightarrow \sin B-4 \sin ^{3} B=0$
$\Rightarrow 1-4 \sin ^{2} B=0 \Rightarrow \sin B=\frac{1}{2} \Rightarrow B=\frac{\pi}{6}$
$\therefore A=3 B=\frac{\pi}{2}$
756 (b)
We know that
$A D^{2}=\frac{1}{4}\left(b^{2}+c^{2}+2 b c \cos A\right)$
$\therefore 4 A D^{2}=b^{2}+c^{2}+2 b c \cos \frac{\pi}{3} \Rightarrow 4 A D^{2}$

$$
=b^{2}+c^{2}+b c
$$

757 (a)
We know that,
$\alpha-\beta=(\theta-\beta)-(\theta-\alpha)$
$\therefore \cos (\alpha-\beta)=\cos (\theta-\beta) \cos (\theta-\alpha)$
$+\sin (\theta-\beta) \sin (\theta-\alpha)$
$=a b+\sqrt{1-a^{2}} \sqrt{1-b^{2}}$
and $\sin (\alpha-\beta)= \pm\left(a \sqrt{1-b^{2}}-b \sqrt{1-a^{2}}\right)$
$\Rightarrow \sin ^{2}(\alpha-\beta)=a^{2}+b^{2}-2 a^{2} b^{2}$
$-2 a b \sqrt{1-a^{2}} \sqrt{1-b^{2}}$
$\Rightarrow \sin ^{2}(\alpha-\beta)=a^{2}+b^{2}-2 a^{2} b^{2}$
$-2 a b[\cos (\alpha-\beta)-a b]$
$\therefore \sin ^{2}(\alpha-\beta)-a^{2}+b^{2}-2 a b \cos (\alpha-\beta)$
$\Rightarrow \sin ^{2}(\alpha-\beta)+2 a b \cos (\alpha-\beta)=a^{2}+b^{2}$
758 (b)
$\frac{1}{2} \tan \frac{x}{2}=\frac{1}{2} \cot \frac{x}{2}-\cot x \quad\left[\because \cot x=\frac{1-\tan ^{2} \frac{x}{2}}{2 \tan \frac{x}{2}}\right]$
And $\frac{1}{2^{2}} \tan \frac{x}{2^{2}}=\frac{1}{2^{2}} \cot \left(\frac{x}{2^{2}}\right)-\frac{1}{2} \cot \left(\frac{x}{2}\right)$
Similarly, $\frac{1}{2^{3}} \tan \left(\frac{x}{2^{3}}\right)=\frac{1}{2^{3}} \cot \left(\frac{x}{2^{3}}\right)-\frac{1}{2^{2}} \cot \ldots\left(\frac{x}{2^{2}}\right)$
$\frac{1}{2^{n}} \tan \left(\frac{x}{2^{n}}\right)=\frac{1}{2^{n}} \cot \left(\frac{x}{2^{n}}\right)-\frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}}\right)$
Om adding all the above results, we get
$\frac{1}{2} \tan \frac{x}{2}+\frac{1}{2^{2}} \tan \left(\frac{x}{2^{2}}\right)+\ldots+\frac{1}{2^{n}} \tan \left(\frac{x}{2^{n}}\right)$

$$
=\frac{1}{2^{n}} \cot \left(\frac{x}{2^{n}}\right)-\cot x
$$

759 (c)
It is given that
Area of $\triangle A B C=$ Area of $\triangle D E F$
$\Rightarrow \frac{1}{2} A B \cdot A C \sin A=\frac{1}{2} C E \cdot E F \sin E$
$\Rightarrow \sin A=\sin E$
$\Rightarrow \sin 2 E=\sin E$
$\Rightarrow 2 E=\pi-E \Rightarrow E=\frac{\pi}{3} \Rightarrow A=2 E=\frac{2 \pi}{3}$
760 (c)
We have,
$\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}$
$=\cos \left(\frac{\pi}{2}-\frac{\pi}{18}\right) \cos \left(\frac{\pi}{2}-\frac{5 \pi}{18}\right) \cos \left(\frac{\pi}{2}-\frac{7 \pi}{18}\right)$
$=\cos \frac{8 \pi}{18} \cos \frac{4 \pi}{18} \cos \frac{2 \pi}{8}$
$=\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}=\frac{\sin \left(2^{3} \cdot \pi / 9\right)}{2^{3} \sin \pi / 9}=\frac{1}{2^{3}}=\frac{1}{8}$
761 (c)
We have,
$a=\sin ^{4} \theta+\cos ^{4} \theta \leq \sin ^{2} \theta+\cos ^{2} \theta \leq 1$
Also,
$a=\sin ^{4} \theta+\cos ^{4} \theta$

$$
\begin{aligned}
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \\
& +\cos ^{2} \theta
\end{aligned}
$$

$\Rightarrow a=\sin ^{4} \theta+\cos ^{4} \theta=1-\frac{1}{2} \sin ^{2} 2 \theta$
$\Rightarrow \sin ^{2} 2 \theta=2(1-a) \Rightarrow 2(1-a) \leq 1 \Rightarrow a \geq \frac{1}{2}$
Hence, $\frac{1}{2} \leq a \leq 1$
762 (a)
Let $\sqrt{3}+1=r \cos \alpha$ and $\sqrt{3}-1=r \sin \alpha$, then
$r=\sqrt{(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2}}$
$=\sqrt{3+1+2 \sqrt{3}+3+1-2 \sqrt{3}}=2 \sqrt{2}$
and $\tan \alpha=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{1-\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)}=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$
$\Rightarrow \alpha=\frac{\pi}{12}$
The given equation reduces to
$2 \sqrt{2} \cos (\theta-\alpha)=2$
$\Rightarrow \cos \left(\theta-\frac{\pi}{12}\right)=\cos \frac{\pi}{4}$
$\Rightarrow \theta-\frac{\pi}{12}=2 n \pi \pm \frac{\pi}{4}$
$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
763 (d)
$\sin (A+B)=\sin A \cos B+\sin B \cos A$
$=\frac{1}{\sqrt{10}} \cdot \sqrt{1-\frac{1}{5}}+\frac{1}{\sqrt{5}} \sqrt{1-\frac{1}{10}}$
$\left[\because \sin A=\frac{1}{\sqrt{10}}, \sin B=\frac{1}{\sqrt{5}}\right]$
$=\frac{1}{\sqrt{10}} \sqrt{\frac{4}{5}}+\frac{1}{\sqrt{5}} \sqrt{\frac{9}{10}}=\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4}$
$\Rightarrow A+B=\frac{\pi}{4}$
764 (b)
The given equation can be rewritten as
$\tan \theta(\sin \theta+\sqrt{3})=0$
$\Rightarrow \tan \theta=0$, but $\sin \theta+\sqrt{3} \neq 0$
$\Rightarrow \tan \theta=0 \Rightarrow \theta=n \pi, n \in I$
765 (a)
We have, $y=\sin \theta-\cos \theta$ and $\sin \theta-\cos \theta$ lies
between $-\sqrt{2}$ and $+\sqrt{2}$
$\therefore-\sqrt{2} \leq y \leq \sqrt{2}$
766 (c)
Now, $\sin (\alpha-\beta)=\sin (\theta-\beta-(\theta-\alpha))$
$=\sin (\theta-\beta)=\cos (\theta-\alpha)$

$$
-\cos (\theta-\beta) \sin (\theta-\alpha)
$$

$=b a-\sqrt{1-b^{2}} \sqrt{1-a^{2}}$
and $\cos (\alpha-\beta)=\cos (\theta-\beta-(\theta-\alpha))$
$=\cos (\theta-\beta) \cos (\theta-\alpha)+\sin (\theta-\beta) \sin (\theta-\alpha)$
$=a \sqrt{1-b^{2}}+b \sqrt{1-a^{2}}$
$\therefore \cos ^{2}(\alpha-\beta)+2 a b \sin (\alpha-\beta)$
 $-\sqrt{1-a^{2}} \sqrt{\left.1-b^{2}\right)}$
$=a^{2}+b^{2}$

767 (d)
We have,
$8 \sec ^{2} \theta-6 \sec \theta+1=0$
$\Rightarrow(4 \sec \theta-1)(2 \sec \theta-1)=0$
$\Rightarrow \sec \theta=\frac{1}{4}, \sec \theta=\frac{1}{2}$
But, this is not possible as $|\sec \theta| \geq 1$
768 (c)

We have,
$x^{3}-13 x^{2}+54 x-72=0$
$\Rightarrow(x-3)\left(x^{2}-10 x+24\right)=0$
$\Rightarrow(x-3)(x-4)(x-6)=0 \Rightarrow x=3,4,6$
Let $a=3, b=4$ and $c=6$
$\therefore \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}=\frac{61}{144}$
769 (b)
$\cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta\right.$

$$
\left.+\sin ^{2} \theta\right)
$$

$=\cos 2 \theta=2 \cos ^{2} \theta-1$
770 (b)
$\cos 15^{\circ} \cos 7 \frac{1}{2}^{\circ} \sin 7 \frac{1}{2}^{\circ}$
$=\frac{1}{2} \cos 15^{\circ} \sin 15^{\circ}=\frac{1}{4} \sin 30^{\circ}$
$=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$
771 (b)

$$
\begin{aligned}
& \sqrt{\frac{1-\sin \theta}{1+\sin \theta}}+\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\frac{1-\sin \theta+1+\sin \theta}{\sqrt{1-\sin ^{2} \theta}} \\
= & \frac{2}{\sqrt{\cos ^{2} \theta}}=\frac{2}{|\cos \theta|} \\
= & -\frac{2}{\cos \theta}=-2 \sec \theta\left(\because \frac{\pi}{2}<\theta<\pi\right)
\end{aligned}
$$

772 (c)
$\cos ^{2} A\left(3-4 \cos ^{2} A\right)^{2}+\sin ^{2} A\left(3-4 \sin ^{2} A\right)^{2}$
$=\left(3 \cos A-4 \cos ^{3} A\right)^{2}+\left(3 \sin A-4 \sin ^{3} A\right)^{2}$
$=(-\cos 3 A)^{2}+(\sin 3 A)^{2}=1$
773 (a)
It is given that A, B, C are in A.P.
$\therefore 2 B=A+C$
$\Rightarrow 3 B=A+B+C \Rightarrow 3 B=180^{\circ} \Rightarrow B=60^{\circ}$
Also,
$b: c=\sqrt{3}: \sqrt{2}$
$\Rightarrow \frac{\sin B}{\sin C}=\frac{\sqrt{3}}{\sqrt{2}}$
$\Rightarrow \frac{\sqrt{3}}{2 \sin C}=\frac{\sqrt{3}}{\sqrt{2}} \Rightarrow \sin C=\frac{1}{\sqrt{2}} \Rightarrow C=45^{\circ}$
$\therefore A=180^{\circ}-\left(60^{\circ}+45^{\circ}\right)=75^{\circ}$
774 (b)
We have, $\tan x=\frac{b}{a}$
$\therefore \sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}$
$=\sqrt{\frac{1+\frac{b}{a}}{1-\frac{b}{a}}}+\sqrt{\frac{1-\frac{b}{a}}{1+\frac{b}{a}}}$
$=\sqrt{\frac{1+\tan x}{1-\tan x}}+\sqrt{\frac{1-\tan x}{1+\tan x}}$
$=\sqrt{\frac{\cos x+\sin x}{\cos x-\sin x}}+\sqrt{\frac{\cos x-\sin x}{\cos x+\sin x}}$
$=\frac{\cos x+\sin x+\cos x-\sin x}{\sqrt{\cos ^{2} x-\sin ^{2} x}}=\frac{2 \cos x}{\sqrt{\cos 2 x}}$
775 (c)
We have,
$\sin A+\cos A=m$ and $\sin ^{3} A+\cos ^{3} A=n$
Now, $\sin A+\cos A=m$
$\Rightarrow(\sin A+\cos A)^{3}=m^{3}$
$\Rightarrow \sin ^{3} A+\cos ^{3} A+3 \sin A \cos A(\sin A+\cos A)$

$$
\begin{equation*}
=m^{3} \tag{i}
\end{equation*}
$$

$\Rightarrow n+3 \sin A \cos A m=m^{3}$
Again,
$\sin A+\cos A=m$
$\Rightarrow \sin ^{2} A+\cos ^{2} A+2 \sin A \cos A=m^{2}$
$\Rightarrow \sin A \cos A=\frac{m^{2}-1}{2}$
From (i) and (ii), we have
$n+3 m \frac{\left(m^{2}-1\right)}{2}=m^{3}$
$\Rightarrow 2 n+3 m^{3}-3 m=2 m^{3} \Rightarrow m^{3}-3 m+2 n=0$
776 (b)
$\because \sec x-1=(\sqrt{2}-1) \tan x$
$\Rightarrow 1-\cos x=(\sqrt{2}-1) \sin x$
$\Rightarrow \sin \frac{x}{2}\left\{\sin \frac{x}{2}-(\sqrt{2}-1) \cos \frac{x}{2}\right\}=0$
$\Rightarrow \sin \frac{x}{2}=0$ or $\tan \frac{x}{2}=\sqrt{2}-1=\tan \frac{\pi}{8}$
$\Rightarrow \frac{x}{2}=n \pi$ or $\frac{x}{2}=n \pi+\frac{\pi}{8}$
$\therefore x=2 n \pi, 2 n \pi+\frac{\pi}{4}$
777 (a)
$\alpha-\beta=(\theta-\beta)-(\theta-\alpha)$
$\therefore \cos (\alpha-\beta)=\cos (\theta-\beta) \cos (\theta-\alpha)$

$$
+\sin (\theta-\beta) \sin (\theta-\alpha)
$$

And $\sin (\alpha-\beta)=\sin (\theta-\beta) \cos (\theta-\alpha)-$
$\sin (\theta-\alpha) \cos (\theta-\beta)$
$\Rightarrow \cos (\alpha-\beta)=b . a+\sqrt{1-a^{2}} \sqrt{1-b^{2}}$
And $\sin (\alpha-\beta)=\left(a \sqrt{1-b^{2}}\right)-\left(b \sqrt{1-b^{2}}\right)$
Now,
$\sin ^{2}(\alpha-\beta)=\left(a \sqrt{1-b^{2}}\right)^{2}+\left(b \sqrt{1-b^{2}}\right)^{2}-$
$2 a b 1-a 21-b 2$

$$
\begin{aligned}
\Rightarrow \sin ^{2}(\alpha-\beta) & =a^{2}\left(1-b^{2}\right)+b^{2}\left(1-a^{2}\right) \\
& -2 a b\{\cos (\alpha-\beta)-a b\} \\
\Rightarrow \sin ^{2}(\alpha-\beta) & +2 a b \cos (\alpha-\beta) \\
& =a^{2}-a^{2} b^{2}+b^{2}-b^{2} a^{2}+2 a^{2} b^{2} \\
\Rightarrow \sin ^{2}(\alpha-\beta) & +2 a b \cos (\alpha-\beta)=a^{2}+b^{2}
\end{aligned}
$$

778 (a)
We have, $S=\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta$
We know that,
$\sin \theta+\sin (\theta+\beta)+\sin (\theta+2 \beta)+\ldots n$ terms
$=\frac{\sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}} \sin \left[\frac{\theta+\theta+(n-1) \beta}{2}\right]$
Put, $\beta=\theta$
$\therefore S=\frac{\sin \frac{n \theta}{2} \cdot \sin \frac{(n+1) \theta}{2}}{\sin \frac{\theta}{2}}$
780 (c)
Given, $\frac{\tan 3 \theta-1}{\tan 3 \theta+1}=\sqrt{3}$
$\Rightarrow \tan 3 \theta-1-\sqrt{3} \tan 3 \theta-\sqrt{3}=0$
$\Rightarrow \tan 3 \theta=\frac{1+\sqrt{3}}{1-\sqrt{3}}=\tan \left(45^{\circ}+60^{\circ}\right)$
$\Rightarrow \tan 3 \theta=\tan \frac{7 \pi}{12}$
$\Rightarrow 3 \theta=n \pi+\frac{7 \pi}{12}$
$\Rightarrow \quad \theta=\frac{n \pi}{3}+\frac{7 \pi}{12}$
781 (a)
We have,
$2 \sin \theta=r^{4}-2 r^{2}+3$
$\Rightarrow 2 \sin \theta=\left(r^{2}-1\right)^{2}+2$
Clearly, LHS ≤ 2 and RHS ≥ 2
So, the equation is meaningful if each side is equal to 2
Clearly, RHS $=2$ for $r^{2}=1$
For $r^{2}=1$, we have
$2 \sin \theta=2$
$\Rightarrow \sin \theta=1 \Rightarrow \theta=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2} \quad[\because 0 \leq \theta \leq 5 \pi]$
Also, $r^{2}=1 \Rightarrow r= \pm 1$
Hence, the total number of pairs of the form (r, θ) is $2 \times 3=6$
783 (a)
We have,
$\frac{1}{p_{1}^{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta^{2}}$
Also,
$\cot A+\cos B+\cot C=\frac{2 R}{a b c}\left(b^{2}+c^{2}-a^{2}+c^{2}\right.$

$$
\left.+a^{2}-b^{2}+a^{2}+b^{2}-c^{2}\right)
$$

$\Rightarrow \cot A+\cos B+\cot C=\frac{R\left(a^{2}+b^{2}+c^{2}\right)}{a b c}$

$$
=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta}
$$

Hence, $\frac{1}{p_{1}^{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{3}^{2}}=\frac{\cot A+\cot B+\cot C}{\Delta}$
784 (c)
We have,
$\sin 2 \theta+2=4 \sin \theta+\cos \theta$
$\Rightarrow 2 \sin \theta \cos \theta-\cos \theta+2-4 \sin \theta=0$
$\Rightarrow \cos \theta(2 \sin \theta-1)-2(2 \sin \theta-1)=0$
$\Rightarrow(2 \sin \theta-1)(\cos \theta-2)=0$
$\Rightarrow 2 \sin \theta-1=0 \quad[\because \cos \theta-2 \neq 0]$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \theta=2 \pi+\frac{\pi}{6}, 2 \pi+\frac{5 \pi}{6}, 4 \pi+\frac{\pi}{6}, 4 \pi+\frac{5 \pi}{6}$
Hence, the equation has 4 solutions
ALITER The curves $y=\sin x$ and $y=\frac{1}{2}$ intersect at 4 points in $[\pi, 5 \pi]$. So, the equation has 4
solutions
785 (c)
For a triangle inscribed in a circle, we have
$\frac{a}{2 \sin A}=\frac{b}{2 \sin B}=\frac{c}{2 \sin C}=R$
$\therefore \sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
$=\frac{a^{2}}{4 R^{2}}+\frac{b^{2}}{4 R^{2}}+\frac{c^{2}}{4 R^{2}}\left(a^{2}+b^{2}+c^{2}\right)$
It is given that
$\frac{a^{2}+b^{2}+c^{2}}{2}=2(2 R)^{2} \Rightarrow a^{2}+b^{2}+c^{2}=16 R^{2}$
$\therefore \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=\frac{1}{4 R^{2}}\left(16 R^{2}\right)=4$
786 (d)
We have,
$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$
$=\left(\tan 9^{\circ}+\tan 81^{\circ}\right)-\left(\tan 27^{\circ}+\tan 63^{\circ}\right)$
$=\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$=\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$
$=2 \frac{\sin 54^{\circ}-\sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}}=2 \frac{\cos 36^{\circ}-\sin 18^{\circ}}{\sin 18^{\circ} \cos 36^{\circ}}=4$
787 (c)
Given, $\sin 4 A+\sin 2 A=\cos 4 A+\cos 2 A$
$\Rightarrow 2 \sin 3 A \cos A=2 \cos 3 A \cos A$
$\therefore \quad \tan 3 A=1$ and $\cos A=0$
$\Rightarrow \quad A=\frac{\pi}{12} \quad$ and $A=\frac{\pi}{2} \notin\left(0, \frac{\pi}{4}\right)$
$\therefore \quad \tan 4 A=\tan \frac{\pi}{3}=\sqrt{3}$
788 (c)
We have,
$\sin A+\sin B=\frac{a+b}{c}$
$\Rightarrow \sin A+\sin B=\frac{\sin A+\sin B}{\sin C} \Rightarrow \sin C=1$
789 (a)
We have,
$\sin (\alpha+\beta)=1, \sin (\alpha-\beta)=\frac{1}{2}$
$\Rightarrow \alpha+\beta=\frac{\pi}{2}$ and, $\alpha-\beta=\frac{\pi}{6}$
$\Rightarrow \alpha=\frac{\pi}{3}, \beta=\frac{\pi}{6}$
$\therefore \tan (\alpha+2 \beta) \tan (2 \alpha+\beta)$
$=\tan \left(\frac{2 \pi}{3}\right) \tan \frac{5 \pi}{6}=\left(-\cot \frac{\pi}{6}\right)\left(-\cot \frac{\pi}{3}\right)=1$
790 (c)
Let $a_{0}=\cos \theta$. Then,
$a_{1}=\sqrt{\frac{1}{2}\left(1+a_{0}\right)}=\sqrt{\frac{1}{2}(1+\cos \theta)}=\cos \frac{\theta}{2}$
$a_{2}=\sqrt{\frac{1}{2}\left(1+a_{1}\right)}=\sqrt{\frac{1}{2}\left(1+\cos \frac{\theta}{2}\right)}=\cos \left(\frac{\theta}{2^{2}}\right)$
and so on
Now, $\frac{1-a_{0}^{2}}{a_{1} a_{2} a_{3} \ldots \text { to } \infty}$

$$
\begin{aligned}
& =\frac{\sin \theta}{\cos \frac{\theta}{2} \cos \frac{\theta}{2^{2}} \cos \frac{\theta}{2^{3}} \ldots \text { to } \infty} \\
& =\lim _{n \rightarrow \infty} \frac{\sin \theta}{\cos \frac{\theta}{2} \cos \frac{\theta}{2^{2}} \cos \frac{\theta}{2^{3}} \ldots \text { to } \infty} \\
& =\lim _{n \rightarrow \infty} \frac{\left\{2^{n} \sin \left(\theta / 2^{n}\right)\right\} \sin \theta}{\sin \left(2^{n} \times \theta / 2^{n}\right)}=\lim _{n \rightarrow \infty} \frac{\sin \left(\theta / 2^{n}\right) \cdot \theta}{\left(\theta / 2^{n}\right)} \\
& \quad=\theta=a_{0}
\end{aligned}
$$

791 (b)
Le the angles of triangle $A B C$ be $A=\theta, B=2 \theta$
and $C=7 \theta$. Then,
$A+B+C=180^{\circ} \Rightarrow 10 \theta=180^{\circ} \Rightarrow \theta=18^{\circ}$
$\therefore A=18^{\circ}, B=36^{\circ}$ and $C=126^{\circ}$
Clearly, c is the greatest side and a is the smallest side.
Now,
$\frac{a}{\sin A}=\frac{c}{\sin C}$
$\Rightarrow \frac{c}{a}=\frac{\sin C}{\sin A}=\frac{\sin 126^{\circ}}{\sin 18^{\circ}}=\frac{\cos 36^{\circ}}{\sin 18^{\circ}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}$
792 (b)
We have,
$A=\frac{2 \pi}{3}$ and $\Delta=\frac{9 \sqrt{3}}{2} \mathrm{~cm}^{2}$
$\therefore \Delta=\frac{1}{2} b c \sin A \Rightarrow \frac{9 \sqrt{3}}{2}=\frac{1}{2} b c \sin \frac{2 \pi}{3} \Rightarrow b c=18$
Also,
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \cos \frac{2 \pi}{3}=\frac{(b-c)^{2}+2 b c-a^{2}}{2 b c}$
$\Rightarrow-\frac{1}{2}=\frac{27+36-a^{2}}{36} \Rightarrow a^{2}=81 \Rightarrow a=9 \mathrm{~cm}$
793 (b)
We have,
$s=8 k$ and, $\Delta=\sqrt{8 k \times 3 k \times 2 k \times 3 k}=12 k^{2}$
$\therefore r=\frac{\Delta}{s} \Rightarrow \frac{12 k^{2}}{8 k}=6 \Rightarrow k=4$
794 (d)
We have,
$\frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x} 2^{\cos x}} \quad[\because A M \geq G M]$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq \sqrt{2^{\sin x+\cos x}}$
$\Rightarrow 2^{\sin x}+2^{\cos x}$

$$
\begin{aligned}
& \geq 2 \sqrt{2^{-\sqrt{2}}} \quad[\because-\sqrt{2} \\
& \leq \sin x+\cos x \leq \sqrt{2}]
\end{aligned}
$$

$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{1}{\sqrt{2}}}$
795 (a)
Let $A=\frac{1}{3 \sin \theta-4 \cos \theta+7}$
Now, A will be minimum when $3 \sin \theta-$
$4 \cos \theta+7$ is maximum
\therefore Maximum value of
$3 \sin \theta-4 \cos \theta+7=\sqrt{3^{2}+4^{2}}+7=12$
\therefore Minimum value of $\frac{1}{3 \sin \theta-4 \cos \theta+7}$ is $\frac{1}{12}$
796 (b)
We have,
$\operatorname{cosec} \theta=\frac{p+q}{p-q}$
Now,
$\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}=\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}$
$\Rightarrow \cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\sqrt{\left(\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}\right)^{2}}=\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$\Rightarrow \cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\sqrt{\frac{\operatorname{cosec} \theta-1}{\operatorname{cosec} \theta+1}}=\sqrt{\frac{\frac{p+q}{p-q}-1}{\frac{p+q}{p-q}+1}}=\sqrt{\frac{q}{p}}$
797 (a)
$\sin t+\cos t=\frac{1}{5}$
$\Rightarrow \frac{2 \tan \frac{t}{2}}{1+\tan ^{2} \frac{t}{2}}+\frac{1-\tan ^{2} \frac{t}{2}}{1+\tan ^{2} \frac{t}{2}}=\frac{1}{5}$
$\Rightarrow 10 \tan \frac{t}{2}+5-5 \tan ^{2} \frac{t}{2}=1+\tan ^{2} \frac{t}{2}$
$\Rightarrow 6 \tan ^{2} \frac{t}{2}-10 \tan \frac{t}{2}-4=0$
$\Rightarrow\left(6 \tan \frac{t}{2}+2\right)\left(\tan \frac{t}{2}-2\right)=0$
$\Rightarrow \tan \frac{t}{2}=\frac{-1}{3}, 2$ for, $0<t<\pi$
$\tan \frac{t}{2}=2$
798 (a)
We have,
$\sin \alpha \cos ^{3} \alpha>\sin ^{3} \alpha \cos \alpha$
$\Rightarrow \sin \alpha \cos \alpha\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)>0$
$\Rightarrow \cos \alpha\left(1-\tan ^{2} \alpha\right)$

$$
>0[\because \sin \alpha>0 \text { for } 0<\alpha<\pi]
$$

$\Rightarrow \cos \alpha>0$ and $1-\tan ^{2} \alpha>0$
$\Rightarrow \cos \alpha<0$ and $1-\tan ^{2} \alpha<0$
$\Rightarrow \alpha \in(0, \pi / 4)$ or, $\alpha \in(3 \pi / 4, \pi)$
799 (a)
We have, $\alpha+\beta+\gamma=\pi$
Now, $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
$=\sin ^{2} \alpha+\sin ^{2}(\beta-\gamma) \sin (\beta+\gamma)$
$=\sin ^{2} \alpha+\sin (\pi-\alpha) \sin (\beta+\gamma)(\because \alpha+\beta-\gamma$

$$
=\pi)
$$

$=\sin ^{2} \alpha+\sin \alpha \sin (\beta+\gamma)$
$=\sin \alpha[\sin \alpha+\sin (\beta+\gamma)]$
$=\sin \alpha[\sin (\pi-(\beta-\gamma))+\sin (\beta+\gamma)]$
$=\sin \alpha[\sin (\beta-\gamma)+\sin (\beta+\gamma)]$
$=\sin \alpha[2 \sin \beta \cos \gamma]$
$=2 \sin \alpha \sin \beta \cos \gamma$
800 (c)
$\sec x \cos 5 x=-1$
$\Rightarrow \cos 5 x=-\cos x$
$\Rightarrow 5 x=2 n \pi \pm(\pi-x)$
$\Rightarrow x=\frac{(2 n+1) \pi}{6}$ or $\frac{(2 n-1) \pi}{6}$
The possible values of x which lies in the interval $(0,2 \pi)$ are $\frac{\pi}{4}, \frac{\pi}{6}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{6}, \frac{5 \pi}{4}, \frac{7 \pi}{6}, \frac{7 \pi}{4}, \frac{9 \pi}{6}$ and $\frac{11 \pi}{6}$
801 (a)
$\cos (\alpha+\beta)=-\frac{12}{13}$

Here, $0<(\alpha+\beta)<\pi$
$\therefore \sin (\alpha+\beta)=\sqrt{1-\cos ^{2}(\alpha+\beta)}$
$=\sqrt{1-\frac{144}{169}}$
$=\frac{5}{13}$
Now, $\sin \beta=\sin [(\alpha+\beta)-\alpha]$
$=\sin (\alpha+\beta) \cos \alpha-\cos (\alpha+\beta) \sin \alpha$
$=\frac{5}{13} \cdot \frac{3}{5}-\left(-\frac{12}{13}\right) \cdot \frac{4}{5}$
$=\frac{15}{65}+\frac{48}{65}$
$=\frac{63}{65}$
802 (c)
We have,
$\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14}$
$=\sin \left(\frac{\pi}{2}-\frac{3 \pi}{7}\right) \sin \left(\frac{\pi}{2}-\frac{2 \pi}{7}\right) \sin \left(\frac{\pi}{2}-\frac{\pi}{7}\right) \sin \frac{\pi}{2}$
$=\cos \frac{3 \pi}{7} \cos \frac{2 \pi}{7} \cos \frac{\pi}{7}$
$=-\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}$
$=-\frac{\sin \left(2^{3} \pi / 7\right)}{2^{3} \sin \pi / 7}=-\frac{\sin (8 \pi / 7)}{8 \sin \pi / 7}=\frac{1}{8}$
803 (b)
We have,
$\sin \theta \cos \alpha+\cos \theta \sin \alpha=2 k \sin \theta \cos \theta$
$\Rightarrow \cos \alpha \frac{2 t}{1+t^{2}}+\sin \alpha \frac{1-t^{2}}{1+t^{2}}=2 k \frac{2 t}{1+t^{2}} \times \frac{1-t^{2}}{1+t^{2}}$
where $t=\tan \frac{\theta}{2}$
$\Rightarrow \sin \alpha t^{4}-(2 \cos \alpha+4 k) t^{3}+t(4 k-2 \cos \alpha)$

$$
-\sin \alpha=0
$$

$\Rightarrow S_{1}=2 \cos \alpha+4 k, S_{2}=0$
$S_{3}=2 \cos \alpha-4 k, S_{4}=-1$
where S_{r} denotes the sum of the product of roots taken r at a time
Now,
$\tan \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}+\frac{\theta_{3}}{2}+\frac{\theta_{4}}{2}\right)=\frac{S_{1}-S_{3}}{1-S_{2}+S_{4}}=\infty$

$$
=\tan \left(\frac{\pi}{2}\right)
$$

$\Rightarrow \frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}+\frac{\theta_{3}}{2}+\frac{\theta_{4}}{2}=n \pi+\frac{\pi}{2}, n \in Z$
$\Rightarrow \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=(2 n+1) \pi, n \in Z$
804 (b)
Let r be the radius of the circle. Then,
$\frac{3 \pi}{4}=\frac{15 \pi}{r} \Rightarrow r=20 \mathrm{~cm}$
805 (a)

We know that
$\cot \alpha-\tan \alpha=2 \cot 2 \alpha$
$\therefore \cot \theta-\tan \theta-2 \tan 2 \theta-4 \tan 4 \theta-8 \cot 8 \theta$
$=2 \cot 2 \theta-2 \tan 2 \theta-4 \tan 4 \theta-8 \cot 8 \theta$
$=2(2 \cot 4 \theta)-4 \tan 4 \theta-8 \cot 8 \theta$
$=4 \cot 4 \theta-4 \tan 4 \theta-8 \cot 8 \theta$
$=4(\cot 4 \theta-\tan 4 \theta)-8 \cot 8 \theta$
$=4 \times 2 \cot 8 \theta-8 \cot 8 \theta=0$
806 (d)
We have,
$b=\sqrt{3}, c=1$ and $A=30^{\circ}$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \Rightarrow \frac{\sqrt{3}}{2}=\frac{4-a^{2}}{2 \sqrt{3}} \Rightarrow a=1$
$\therefore \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow 2=\frac{\sqrt{3}}{\sin B}=\frac{1}{\sin C}$
$\Rightarrow \sin B=\frac{\sqrt{3}}{2}$ and $\sin C=\frac{1}{2}$
$\Rightarrow B=120^{\circ}$ and $C=30^{\circ} \quad[\because b>c \therefore B>C]$
807 (c)
Here, $a=3, b=4$
\therefore maximum value $=\sqrt{3^{2}+4^{2}}=5$
808 (a)
Let $A B C$ be the triangle such that $a=2, b=\sqrt{6}$ and $c=\sqrt{3}-1$
Clearly, $b>a>c$
So, B is the greatest angle and C is the smallest angle
Now,
$\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$\Rightarrow \cos B=\frac{(\sqrt{3}-1)^{2}+4-6}{4(\sqrt{3}-1)^{2}}=-\frac{1}{2} \Rightarrow B=120^{\circ}$
And,
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos C=\frac{4+6-(\sqrt{3}-1)^{2}}{4 \sqrt{6}}=\frac{\sqrt{3}+1}{2 \sqrt{2}} \Rightarrow C$
(b)

We have,
$\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$
$\Rightarrow \frac{1}{r}=\frac{1}{16}+\frac{1}{48}+\frac{1}{24} \Rightarrow r=8$
810 (c)
Given, $3 \sin ^{2} x-7 \sin x+2=0$
$(3 \sin x-1)(\sin x-2)=0$
$\Rightarrow \sin x=\frac{1}{3}$ or 2
$\Rightarrow \sin x=\frac{1}{3} \quad[\because \sin x \neq 2]$
Let $\sin ^{-1} \frac{1}{3}=\alpha, 0<\alpha<\frac{\pi}{2}$, then $\alpha, \pi-\alpha, 2 \pi+$
$\alpha, 3 \pi-\alpha, 4 \pi+\alpha, 5 \pi-\alpha$ are the solution in [$0,5 \pi$]
Hence, required number of solutions are 6
811 (a)
We have, $\cos ^{2} \theta=\cos 2 \theta$
$\Rightarrow \cos ^{2} \theta=2 \cos ^{2} \theta-1$
$\Rightarrow \cos ^{2} \theta=1 \Rightarrow \theta=n \pi$
812 (a)
The given equation is
$3^{\sin 2 x+2 \cos ^{2} x}+3^{1-\sin 2 x+2 \sin ^{2} x}=28$
$\Rightarrow 3^{\sin 2 x+2 \cos ^{2} x}+3^{3-\left(\sin 2 x+2 \cos ^{2} x\right)}=28$
$\Rightarrow y+\frac{27}{y}=28$, where $y=3^{\sin 2 x+2 \cos ^{2} x}$
$\Rightarrow y^{2}-28 y+27=0 \Rightarrow y=27$ or, $y=1$
If $y=27$, then
$3^{\sin 2 x+2 \cos ^{2} x}=3^{3}$
$\Rightarrow \sin 2 x+2 \cos ^{2} x=3$
$\Rightarrow \sin 2 x+2 \cos 2 x=2$
$\Rightarrow \sin 2 x=2 \cos 2 x=1$
$\Rightarrow \sin x=0$ or, $\tan x=\frac{1}{2}$
If $y=1$
$\Rightarrow 3^{\sin 2 x+2 \cos ^{2} x}=1$
$\Rightarrow \sin 2 x+2 \cos ^{2} x=0$
$\Rightarrow 2 \cos x(\sin x+\cos x)=0$
$\Rightarrow \cos x=0$ or, $\tan x=-1$
813 (c)
Let $f(x)=27^{\cos 2 x} 81^{\sin 2 x}=3^{3 \cos 2 x+4 \sin 2 x}$
$=3^{5\left(\frac{3}{5} \cos 2 x+\frac{4}{5} \sin 2 x\right)}$
Let $\frac{3}{5}=\sin \phi$
$\Rightarrow \frac{4}{5}=\cos \phi$
Then, $f(x)=3^{5(\sin \phi \cos 2 x+\cos \phi \sin 2 x)}$
$=3^{5(\sin (\phi+2 x))}$
For minimum value of given function,
$\sin (\phi+2 x)$ will be minimum
ie, $\quad \sin (\phi+2 x)=-1$
$\therefore f(x)=3^{5(-1)}=\frac{1}{243}$
814 (c)
We have,
$\sec 2 x-\tan 2 x=\frac{1-\sin 2 x}{\cos 2 x}$
$\Rightarrow \sec 2 x-\tan 2 x=\frac{1-\cos \left(\frac{\pi}{2}-2 x\right)}{\sin \left(\frac{\pi}{2}-2 x\right)}$
$\Rightarrow \sec 2 x-\tan 2 x=\frac{2 \sin ^{2}(\pi / 4-x)}{2 \sin (\pi / 4-x) \cos (\pi / 4-x)}$

$$
=\tan \left(\frac{\pi}{4}-x\right)
$$

815 (a)
$\because \sin ^{5} x-\cos ^{5} x=\frac{\sin x-\cos x}{\sin x \cos x}$
$\Rightarrow \sin x \cos x\left[\frac{\sin ^{5} x-\cos ^{5} x}{\sin x-\cos x}\right]=1$
$\Rightarrow \frac{1}{2} \sin 2 x\left[\sin ^{4} x\right.$
$+\sin ^{3} x \cos x$
$+\sin ^{2} x \cos ^{2} x$
$\left.+\sin x \cos ^{2} x+\cos ^{4} x\right]=1$
$\Rightarrow \sin 2 x\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x\right.$
$\left.+\sin x \cos x\left(\sin ^{2} x+\cos ^{2} x\right)+\sin ^{2} x+\cos ^{2} x\right]$

$$
=2
$$

$\Rightarrow \sin 2 x\left[1-\sin ^{2} x \cos ^{2} x+\sin x \cos x\right]=2$
$\Rightarrow \sin ^{3} 2 x-2 \sin ^{2} 2 x-4 \sin 2 x+8=0$
$\Rightarrow(\sin 2 x-2)^{2}(\sin 2 x+2)=0$
$\Rightarrow \sin 2 x= \pm 2$, which is not possible for any x
816
(b)
$\cos (\alpha+\beta)=\frac{4}{5} \Rightarrow \alpha+\beta \in 1$ st quadrant and
$\sin (\alpha-\beta)=\frac{5}{13}$
$\Rightarrow \alpha-\beta \in 1$ st quadrant
$\Rightarrow 2 \alpha=(\alpha+\beta)+(\alpha-\beta)$
$\therefore \tan 2 \alpha=\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \tan (\alpha-\beta)}$
$=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}}=\frac{56}{33}$
817 (d)
We have,
$\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}$
$=\frac{1}{2 \sin \frac{\pi}{7}}\left\{2 \sin \frac{\pi}{7} \cos \frac{2 \pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{4 \pi}{7}\right.$

$$
\left.+2 \sin \frac{\pi}{7} \cos \frac{6 \pi}{7}\right\}
$$

$=\frac{1}{2 \sin \frac{\pi}{7}}\left\{\sin \frac{3 \pi}{7}-\sin \frac{\pi}{7}+\sin \frac{5 \pi}{7}-\sin \frac{3 \pi}{7}+\sin \pi\right.$

$$
\left.-\sin \frac{5 \pi}{7}\right\}
$$

$=-\frac{1}{2}$
818 (a)
We have,
$2 a \cos ^{2}\left(\frac{C}{2}\right)+2 c \cos ^{2}\left(\frac{A}{2}\right)=3 b$
$\Rightarrow a(1+\cos C)+c(1+\cos A)=3 b$
$\Rightarrow a+c+(a \cos C+c \cos A)=3 b$
$\Rightarrow a+c+b=3 b \Rightarrow a+c=2 b \Rightarrow a, b, c$ are in
A.P.

819 (d)
Given that, $\frac{1-\cos 2 \theta}{1+\cos 2 \theta}=3$
$\Rightarrow \frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}=3$
$\Rightarrow \tan ^{2} \theta=(\sqrt{3})^{2}$
$\Rightarrow \tan ^{2} \theta=\tan ^{2} \frac{\pi}{3}$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{3}$
820 (b)
We have,
$a=5 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $\cos (A-B)=\frac{31}{32}$
$\therefore \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$
$\Rightarrow \sqrt{\frac{1-\cos (A-B)}{1+\cos (A-B)}}=\frac{a-b}{a+b} \sqrt{\frac{1+\cos C}{1-\cos C}}$
$\Rightarrow \frac{1-\frac{31}{32}}{1+\frac{31}{32}}=\left(\frac{5-4}{5+4}\right)^{2}\left(\frac{1+\cos C}{1-\cos C}\right)$
$\Rightarrow \frac{81}{63}=\frac{1+\cos C}{1-\cos C} \Rightarrow \cos C=\frac{1}{8}$
821 (a)
Given, $\sin 2 x+\cos 4 x=2$
$\Rightarrow \sin 2 x+1-2 \sin ^{2} 2 x=2$
$\Rightarrow 2 \sin ^{2} 2 x-\sin 2 x+1=0$
Now, Discriminant, $D=(-1)^{2}-4.2 .1=-7<0$
Hence, it is an imaginary equation, so the real root does not exist.
822 (d)
We have,
$\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$
$\Rightarrow \sin \theta_{1}=\sin \theta_{2}=\sin \theta_{3}$
$=1 \quad[\because-1 \leq \sin x \leq 1]$
$\Rightarrow \theta_{1}=\theta_{2}=\theta_{3}=\frac{\pi}{2} \Rightarrow \cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}$

$$
=0
$$

823 (b)
We have,
$k \sin x+\left(1-2 \sin ^{2} x\right)=2 k-7$
$\Rightarrow 2 \sin ^{2} x-k \sin x+2(k-4)=0$
$\Rightarrow \sin x=\frac{k \pm \sqrt{k^{2}-16 k+64}}{4}=\frac{k \pm(k-8)}{4}$

$$
=\frac{1}{2}(k-4), 2
$$

$\Rightarrow \sin x=\frac{1}{2}(k-4) \quad[\because \sin x \neq 2]$
Now, $-1 \leq \sin x \leq 1 \Rightarrow-1 \leq \frac{k-4}{2} \leq 1 \Rightarrow 2 \leq k \leq$ 6

824 (b)
Given that, $\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}$
$=\frac{\cos A \cos C-\sin A \sin C}{\cos A \cos C+\sin A \sin C}$
$\Rightarrow \frac{1-\tan ^{2} B}{1+\tan ^{2} B}=\frac{1-\tan A \tan C}{1+\tan A \tan C}$
$\Rightarrow 1+\tan ^{2} B-\tan A \tan C-\tan A \tan C \tan ^{2} B$
$=1-\tan ^{2} B+\tan A \tan C-\tan A \tan C \tan ^{2} B$
$\Rightarrow 2 \tan ^{2} B=2 \tan A \tan C$
$\Rightarrow \tan ^{2} B=\tan A \tan C$

Hence, $\tan A, \tan B$ and $\tan C$ will be in GP

825 (c)

We have,
$\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}$
$=\left(\cot \frac{A-B}{2}\right)^{n}+\left(-\cot \frac{A-B}{2}\right)^{n}$
$=\left\{1+(-1)^{n}\right\} \cot ^{n}\left(\frac{A-B}{2}\right)$
$=0 \times \cot ^{n}\left(\frac{A-B}{2}\right)=0 \quad[\because n$ is odd $]$
826 (a)
We have,
$a \tan \theta+b \sec \theta=c$
$\Rightarrow b \sec \theta=c-a \tan \theta$
$\Rightarrow b^{2} \sec ^{2} \theta=c^{2}+a^{2} \tan ^{2} \theta-2 a c \tan \theta$
$\Rightarrow b^{2}\left(1+\tan ^{2} \theta\right)=c^{2}+a^{2} \tan ^{2} \theta-2 a c \tan \theta$
$\Rightarrow \tan ^{2} \theta\left(b^{2}-a^{2}\right)+2 a c \tan \theta+b^{2}-c^{2}=0$
Since $\tan \alpha$ and $\tan \beta$ are roots of this equation
$\therefore \tan \alpha+\tan \beta=\frac{-2 a c}{b^{2}-a^{2}}$ and $\tan \alpha \tan \beta$

$$
=\frac{b^{2}-c^{2}}{a^{2}-c^{2}}
$$

Now,

$$
\begin{gathered}
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{-\frac{2 a c}{b^{2}-a^{2}}}{1-\frac{b^{2}-c^{2}}{b^{2}-a^{2}}} \\
=\frac{2 a c}{a^{2}-c^{2}}
\end{gathered}
$$

827 (b)
$\tan \theta+\frac{\tan \theta+\sqrt{3}}{1-\sqrt{3} \tan \theta}+\frac{\tan \theta-\sqrt{3}}{1+\sqrt{3} \tan \theta}=3$
$\Rightarrow \tan \theta+\frac{8 \tan \theta}{1-3 \tan ^{2} \theta}=3$
$\Rightarrow \frac{9 \tan \theta-3 \tan ^{3} \theta}{1-3 \tan ^{2} \theta}=3$
$\Rightarrow \quad 3 \tan 3 \theta=3 \Rightarrow \tan 3 \theta=1$
828 (a)
Since, $y=1+4 \sin ^{2} x \cos ^{2} x$
$\Rightarrow y=1+\sin ^{2} 2 x$
We know that, $0 \leq \sin ^{2} 2 x \leq 1$

$$
\begin{aligned}
& \Rightarrow 1 \leq 1+\sin ^{2} 2 x \leq 2 \\
& \Rightarrow 1 \leq y \leq 2
\end{aligned}
$$

829 (a)

$\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma$
$=\sin ^{2} \alpha+\sin (\beta-\gamma) \sin (\beta+\gamma)$
$=\sin ^{2} \alpha \sin (\pi-\alpha) \sin (\beta+\gamma) \quad[\because \alpha+\beta-\gamma$

$$
=\pi]
$$

$=\sin \alpha[\sin \alpha+\sin (\beta+\gamma)]$
$=\sin \alpha[\sin \{\pi-(\beta-\gamma)\}+\sin (\beta+\gamma)]$
$=\sin \alpha[\sin (\beta-\gamma)+\sin (\beta+\gamma)]$
$=\sin \alpha[2 \sin \beta \cos \gamma]$
$=2 \sin \alpha \sin \beta \cos \gamma$
830 (a)
We have,

$$
\begin{aligned}
& \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2} \\
& =\frac{s(s-a)}{\Delta}+\frac{s(s-b)}{\Delta}+\frac{s(s-c)}{\Delta}=\frac{s}{\Delta}(3 s-2 s) \\
& =\frac{s^{2}}{\Delta}
\end{aligned}
$$

And,
$\cot A+\cot B+\cot C$
$=\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}$
$=\frac{b^{2}+c^{2}-a^{2}}{2 b c \sin A}+\frac{c^{2}+a^{2}-b^{2}}{2 a c \sin B}+\frac{a^{2}+b^{2}-c^{2}}{2 a b \sin C}$
$=\frac{b^{2}+c^{2}-a^{2}}{4 \Delta}+\frac{c^{2}+a^{2}-b^{2}}{4 \Delta}+\frac{a^{2}+b^{2}-c^{2}}{4 \Delta}$
$=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta}$
$\therefore \frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}=\frac{\frac{s^{2}}{\Delta}}{\frac{a^{2}+b^{2}+c^{2}}{4 \Delta}}$
$=\frac{(2 s)^{2}}{a^{2}+b^{2}+c^{2}}=\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$
831 (a)
$\because \quad(\tan \alpha-\cot \alpha)^{2} \geq 0$
$\Rightarrow \tan ^{2} \alpha+\cot ^{2} \alpha-2 \geq 0$
$\Rightarrow \tan ^{2} \alpha+\cot ^{2} \alpha \geq 2$
832 (a)
We have,
$\tan m \theta=\tan n \theta$
$\Rightarrow m \theta=t \pi+n \theta$, where $r \in Z$
$\Rightarrow \theta=\frac{r \pi}{m-n}, r \in Z$
Clearly, these values of θ from an A.P. with
common difference $\frac{\pi}{m-n}$
833 (a)
We have,
$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \frac{\sin (B+C)}{\sin (a+B)}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \sin ^{2} B-\sin ^{2} C=\sin ^{2} A-\sin ^{2} B$
$\Rightarrow b^{2}-c^{2}=a^{2}-b^{2}$
$\Rightarrow a^{2}, b^{2}, c^{2}$ are in A.P.
834 (a)
Let $\sec \theta-\tan \theta=\lambda$
Then,
$(\sec \theta+\tan \theta)=\frac{1}{\sec \theta-\tan \theta}$
$\Rightarrow \sec \theta+\tan \theta=\frac{1}{\lambda}$
$\therefore 2 \tan \theta=\frac{1}{\lambda}+\lambda \quad$ [On subtracting (i) from (ii)]
$\Rightarrow 2 x-\frac{1}{2 x}=\frac{1}{\lambda}-\lambda$
$\Rightarrow \lambda=\frac{1}{2 x},-2 x \Rightarrow \sec \theta-\tan \theta=\frac{1}{2 x},-2 x$
835
(d)

We observe that the LHS of the given equation is not defined for $x=n \pi, n \in Z$
Now,
$\cot x-\operatorname{cosec} x=2 \sin x$
$\Rightarrow \cot x-1=2 \sin ^{2} x$
$\Rightarrow 2 \cos ^{2} x+\cos x-3=0$
$\Rightarrow(2 \cos x+3)(\cos x-1)=0$
$\Rightarrow \cos x=1 \quad[\because 2 \cos x+3 \neq 0]$
$\Rightarrow x=0,2 \pi$
But, $x \neq n \pi, n \in Z$
Hence, the given equation has no solution

837 (d)
Given, $\frac{\sin x}{\sin y}=\frac{1}{2}, \frac{\cos x}{\cos y}=\frac{3}{2}$
$\Rightarrow \frac{\tan x}{\tan y}=\frac{1}{3}$
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{4 \tan x}{1-3 \tan ^{2} x}$
Also, $\sin y=2 \sin x, \cos y=\frac{2}{3} \cos x$
$\Rightarrow \sin ^{2} y+\cos ^{2} y=4 \sin ^{2} x+\frac{4 \cos ^{2} x}{9}=1$
$\Rightarrow 36 \tan ^{2} x+4=9 \sec ^{2} x=9\left(1+\tan ^{2} x\right)$
$\Rightarrow 27 \tan ^{2} x=5$
$\Rightarrow \tan x=\frac{\sqrt{5}}{3 \sqrt{3}}$
$\Rightarrow \tan (x+y)=\frac{\frac{4 \sqrt{5}}{3 \sqrt{3}}}{1-\frac{15}{27}}=\sqrt{15}$
840 (d)
$\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}=\frac{1+\tan 9^{\circ}}{1-\tan 9^{\circ}}$
$=\tan \left(45^{\circ}+9^{\circ}\right)$
$=\tan 54^{\circ}$
842 (a)
Let $A B C$ be the triangle such that $a=2 \sqrt{2} \mathrm{~cm}$,
$b=2 \sqrt{3} \mathrm{~cm}$ and $\angle A=\frac{\pi}{4}$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{12+c^{2}-8}{4 \sqrt{3} c}$
$\Rightarrow 4+c^{2}=2 \sqrt{6} c$
$\Rightarrow c^{2}-2 \sqrt{6} c+4=0$
$\Rightarrow c=\frac{2 \sqrt{6} \pm \sqrt{24-16}}{2}$
$\Rightarrow c=\sqrt{6} \pm \sqrt{2} \Rightarrow c=\sqrt{6}+\sqrt{2} \quad[\because c$ is the largest side]
843 (b)
We have,
$r \sin \theta=3$ and $r=4(1+\sin \theta)$
$\Rightarrow r=4+\frac{12}{r}$
$\Rightarrow r^{2}-4 r-12=0$
$\Rightarrow(r-6)(r+2)=0$
$\Rightarrow r=6 \quad[\because r>0]$
$\therefore r \sin \theta=3 \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
Hence, the total number of ordered pairs of the form (r, θ) is $1 \times 2=2$
844 (d)
We have,
$\sin 65^{\circ}+\sin 43^{\circ}-\sin 29^{\circ}-\sin 7^{\circ}$
$=\left(\sin 65^{\circ}+\sin 43^{\circ}\right)-\left(\sin 29^{\circ}+\sin 7^{\circ}\right)$
$=2 \sin 54^{\circ} \cos 11^{\circ}-2 \sin 18^{\circ} \cos 11^{\circ}$
$=2 \cos 11^{\circ}\left(\cos 36^{\circ}-\sin 18^{\circ}\right)$
$=2 \cos 11^{\circ}\left(\frac{\sqrt{5}+1}{4}-\frac{\sqrt{5}-1}{4}\right)=\cos 11^{\circ}$
845 (c)
We have,
$\sin B=\frac{1}{5} \sin (2 A+B)$
$\Rightarrow \frac{\sin (2 A+B)}{\sin B}=\frac{5}{1}$
$\Rightarrow \frac{\sin (2 A+B)+\sin B}{\sin (2 A+B)-\sin B}=\frac{5+1}{5-1}$
$\Rightarrow \frac{2 \sin (A+B) \cos A}{2 \sin A \cos (A+B)}=\frac{3}{2}$
$\Rightarrow \frac{\tan (A+B)}{\tan A}=\frac{3}{2}$
846 (b)
Since, $A+B+C=\pi$
$\Rightarrow a=\pi-(B+C)$
We have, $\cos A=\cos B \cos C$
$\Rightarrow \cos [\pi-(B+C)]=\cos B \cos C$
$\Rightarrow-\cos (B+C)=\cos B \cos C$
$\Rightarrow-[\cos B \cos C-\sin B \sin C]=\cos B \cos C$
$\Rightarrow \sin B \sin C=2 \cos B \cos C$
$\Rightarrow \tan B \tan C=2$
847 (a)
We have,
$\sin x+\operatorname{cosec} x=2 \Rightarrow(\sin x-1)^{2}=0 \Rightarrow \sin x$

$$
=1
$$

$\therefore \sin ^{n} x+\operatorname{cosec}^{n} x=1+1=2$
848 (a)
851 (a)
We have,
$\sin 7 \theta+6 \sin 5 \theta+17 \sin 3 \theta+12 \sin \theta$
$\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta$
$=\frac{(\sin 7 \theta+\sin 5 \theta)+5(\sin 5 \theta+\sin 3 \theta)+12(\sin 3 \theta+\sin \theta)}{\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta}$
$=\frac{2 \sin 6 \theta \cos \theta+10 \sin 4 \theta \cos \theta+24 \sin 2 \theta \cos \theta}{\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta}$
$=\frac{2 \cos \theta(\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta)}{\sin 6 \theta+5 \sin 4 \theta+12 \sin 2 \theta}$
$=2 \cos \theta$
852 (a)
Let the angles be $A=x-d, B=x, C=x+d$.
Then,
$x-d+x+x+d=180^{\circ} \Rightarrow x=60^{\circ}$
Therefore, two larger angles are $B=60^{\circ}$ and C
Hence, $b=9$ and $c=10$
Now,
$\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$\Rightarrow \frac{1}{2}=\frac{100+a^{2}-81}{20 a} \Rightarrow a^{2}-10 a+19=0 \Rightarrow a$

$$
=5 \pm \sqrt{6}
$$

853 (b)
Since, $\cos 2 x, \frac{1}{2}, \sin 2 x$ are in AP
$\Rightarrow \cos 2 x+\sin 2 x=1$
$\Rightarrow \sin 2 x=1-\cos 2 x=2 \sin ^{2} x$
$\Rightarrow 2 \sin x(\cos x-\sin x)=0$
$\Rightarrow \sin x=0$ or $\cos x-\sin x=0$
$\Rightarrow x=n \pi$ or $\tan x=1$
$\Rightarrow x=n \pi$ or $x=n \pi+\frac{\pi}{4}$
Thus, required values of x are $n \pi$ and $n \pi+\frac{\pi}{4}$
854 (b)
$\cos \frac{\pi}{18}+\cos \frac{2 \pi}{18}+\ldots+\cos \frac{16 \pi}{18}+\cos \frac{17 \pi}{18}+\cos \pi$ $=\cos \frac{\pi}{18}+\cos \frac{2 \pi}{18}+\ldots-\cos \frac{2 \pi}{18}-\cos \frac{\pi}{18}+\cos \pi$ $=\cos \pi=-1$
855
(b)

Given that, $\sin \theta+\cos \theta=1$
$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \sin \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4}$
$\Rightarrow \theta+\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{4}$
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}$
856 (d)
We have,
$0<x<\pi \Rightarrow \sin x>0$
Now,
$1+\sin x+\sin ^{2} x+\cdots \infty=4+2 \sqrt{3}$
$\Rightarrow \frac{1}{1-\sin x}=4+2 \sqrt{3}$
$\Rightarrow \sin x=1-\frac{1}{4+2 \sqrt{3}}$
$\Rightarrow \sin x=\frac{3+2 \sqrt{3}}{4+2 \sqrt{3}}=\frac{\sqrt{3}}{2} \Rightarrow x=\frac{\pi}{3}$ or, $\frac{2 \pi}{3}$
857 (b)
$\frac{\sin x+\sin y}{\cos x+\cos y}=\frac{a}{b}$
$\Rightarrow \frac{2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}{2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}=\frac{a}{b}$
$\Rightarrow \tan \left(\frac{x+y}{2}\right)=\frac{a}{b}$
858 (b)
The given equation can be written as
$\cos (\pi \tan \theta)=\cos \left(\frac{\pi}{2}-\pi \cot \theta\right)$
$\Rightarrow \pi \tan \theta=2 n \pi \pm\left(\frac{\pi}{2}-\pi \cot \theta\right), n \in Z$
$\Rightarrow \tan \theta=2 n \pm\left(\frac{1}{2}-\cot \theta\right), n \in Z$
$\Rightarrow \tan \theta-\cot \theta=2 n-\frac{1}{2}, n$
$\in Z$ [Taking negative sign]
$\Rightarrow \frac{\tan ^{2} \theta-1}{\tan \theta}=2 n-\frac{1}{2}$
$\Rightarrow \frac{\tan ^{2} \theta-1}{2 \tan \theta}=n-\frac{1}{4}$
$\Rightarrow \frac{1-\tan ^{2} \theta}{2 \tan \theta}=-n+\frac{1}{4}$
$\Rightarrow \cot 2 \theta=m+\frac{1}{4}$, where $m=-n \in Z$

859 (c)

From Questions 47, we have
$\Delta=\frac{1}{2} a p_{1}, \Delta=\frac{1}{2} b p_{2}, \Delta=\frac{1}{2} c p_{3}$
Now,
p_{1}, p_{2}, p_{3} are in A.P.
$\Rightarrow \frac{2 \Delta}{a}, \frac{2 \Delta}{b}, \frac{2 \Delta}{c}$ are in A. P.
$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A. P. $\Rightarrow a, b, c$ are in H. P.
860 (d)
$\cos \frac{\pi}{5} \cos \frac{2 \pi}{5} \cos \frac{4 \pi}{5} \cos \frac{8 \pi}{5}$
$=\frac{\sin 2^{4} \frac{\pi}{5}}{2^{4} \sin \frac{\pi}{5}}(\because \cos x \cos 2 x \cos 4 x \ldots \cos 2 n x$
$\left.=\frac{\sin 2^{n} x}{2^{n} \sin x}\right)$
$=\frac{\sin \frac{16 \pi}{5}}{16 \sin \frac{\pi}{5}}=\frac{\sin \left(3 \pi+\frac{\pi}{5}\right)}{16 \sin \frac{\pi}{5}}$
$=\frac{-\sin \frac{\pi}{5}}{16 \sin \frac{\pi}{5}}=-\frac{1}{16}$
861 (c)
$\operatorname{cosec} 15^{\circ}+\sec 15^{\circ}=\frac{2\left(\sin 15^{\circ}+\cos 15^{\circ}\right)}{2 \sin 15^{\circ} \cos 15^{\circ}}$
$=2\left[\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}\right] / \sin 30^{\circ}$
$=\frac{4 \sqrt{3}}{\sqrt{2}}=2 \sqrt{6}$
862 (d)
We have, $\sin A=\frac{4}{5}$ and $\cos B=-\frac{12}{13}$
Now, $\cos (A+B)=\cos A \cos B-\sin A \sin B$
$=\sqrt{1-\frac{16}{25}}\left(-\frac{12}{13}\right)-\frac{4}{5} \sqrt{1-\frac{144}{169}}$
$=-\frac{3}{5} \times \frac{12}{13}-\frac{4}{5}\left(-\frac{5}{13}\right)$
$=-\frac{36}{65}+\frac{20}{65}=-\frac{16}{65}$
863 (a)
Given that, $\frac{1}{\tan \theta}+\tan \theta=m$
$\Rightarrow 1+\tan ^{2} \theta=m \tan \theta$
$\Rightarrow \sec ^{2} \theta=m \tan \theta$
and $\sec \theta-\cos \theta=n$
$\Rightarrow \sec ^{2} \theta-1=n \sec \theta$
$\Rightarrow \tan ^{2} \theta=n \sec \theta$
$\Rightarrow \tan ^{4} \theta=n^{2} \sec ^{2} \theta=n^{2} \cdot m \tan \theta$ [from Eq.(i)]
$\Rightarrow \tan ^{3} \theta=n^{2} m \quad(\because \tan \theta \neq 0)$
$\Rightarrow \tan \theta=\left(n^{2} m\right)^{1 / 3}$
From Eq. (i), we get
$\sec ^{2} \theta=m\left(n^{2} m\right)^{1 / 3}$
As we know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow m\left(m n^{2}\right)^{1 / 3}-\left(n^{2} m\right)^{2 / 3}=1$
$\Rightarrow m\left(m n^{2}\right)^{1 / 3}-n\left(n m^{2}\right)^{1 / 3}=1$

864 (c)

We have,
$(\sin A+\sin B+\sin C)(\sin A+\sin B-\sin C)$

$$
=3 \sin A \sin B
$$

$\Rightarrow(\sin A+\sin B)^{2}-\sin ^{2} C=3 \sin A \sin B$
$\Rightarrow \sin ^{2} A+\sin ^{2} B-\sin ^{2} C=\sin A \sin B$
$\Rightarrow \sin ^{2} A+\sin (B+C) \sin (B-C)=\sin A \sin B$
$\Rightarrow \sin ^{2} A+\sin A \sin (B-C)=\sin A \sin B$
$\Rightarrow \sin A[\sin (B+C)+\sin (B-C)]=\sin A \sin B$
$\Rightarrow 2 \sin A \sin B \cos C=\sin A \sin B$
$\Rightarrow \cos C=1 / 2 \quad[\because \sin A \sin B \neq 0]$
$\Rightarrow C=60^{\circ}$
865 (b)
Given, $\cos 2 x+7=a(2-\sin x)$
$\Rightarrow 1-2 \sin ^{2} x+7=2 a-a \sin x$
$\Rightarrow 2 \sin ^{2} x-a \sin x+(2 a-8)=0$
$\therefore \sin x=\frac{a \pm \sqrt{(-a)^{2}-8(2 a-8)}}{2 \times 2}$
$=\frac{a \pm(a-8)}{4}$
For (+) sign,
$\sin x=\frac{a-4}{2}$
For (-) sign,
$\sin x=2$ which is not possible
We know $-1 \leq \sin x \leq 1$
$\therefore \quad-1 \leq \frac{a-4}{2} \leq 1 \Rightarrow 2 \leq a \leq 6$
866 (c)
$\cos ^{2} B+\cos ^{2} C=\cos ^{2} B+\cos ^{2}\left(\frac{\pi}{2}-B\right)$
$=\cos ^{2} B+\sin ^{2} B=1$
867 (d)
We have,
$b^{2} \sin 2 C+c^{2} \sin 2 B$
$=b^{2} \cdot(2 \sin C \cos C)+c^{2} \cdot(2 \sin B \cos B)$
$=2(b \sin C)(b \cos C)+2(c \sin B)(c \cos B)$
$=2(c \sin B)(b \cos c)+2(c \sin B)(c \cos B)$
$\left[\because \frac{b}{\sin B}=\frac{c}{\sin C}\right]$
$=2 c \sin B(b \cos C+c \cos B)=2 a c \sin B=4 \Delta$

868 (a)

Since the angles of $\triangle A B C$ are in A.P.
$\therefore 2 B=A+C \Rightarrow 3 B=A+B+C \Rightarrow 3 B=180^{\circ}$

$$
\Rightarrow B=60^{\circ}
$$

Now, $\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \sin A=\frac{a}{b} \sin B=\frac{24}{22} \sin 60^{\circ}=\frac{6 \sqrt{3}}{11}$
$\Rightarrow \cos A=\frac{\sqrt{13}}{11}$
We have,
$\sin C=\sin \left\{180^{\circ}-(A+B)\right\}$
$\Rightarrow \sin C=\sin (A+B)$
$\Rightarrow \sin C=\sin A \cos B+\cos A \sin B$
$\Rightarrow \sin C=\left(\frac{6 \sqrt{3}}{11}\right)\left(\frac{1}{2}\right)+\frac{\sqrt{13}}{11}\left(\frac{\sqrt{3}}{2}\right)=\frac{6 \sqrt{3}+\sqrt{39}}{22}$
$\therefore c=\frac{b \sin C}{\sin B} \Rightarrow c=12+2 \sqrt{13}$
869 (a)
We have, $\angle B F C=\frac{\pi}{2}=\angle B E C$
So, the circle with $B C$ as diameter will pass
through E and F. Clearly, the circle with $B C$ as
diameter is the circumcircle of $\triangle B E F$ such that
$\angle F B E=90^{\circ}-A$
$\therefore F E=2\left(\frac{a}{2}\right) \sin \angle F B E \quad[$ Using : $a=2 R \sin A]$
$\Rightarrow F E=a \cos A$
Let R_{1} be the radius of the circumcircle of $\triangle D E F$. Then,
$R_{1}=\frac{F E}{2 \sin \angle F D E}=\frac{a \cos A}{2 \sin \left(180^{\circ}-2 A\right)}$
$\Rightarrow R_{1}=\frac{a \cos A}{4 \sin A \cos A}=\frac{a}{4 \sin A}=\frac{R}{2}$

870
(b)

Clearly, the equation $x^{2}+\sqrt{2} x+1=0$ has imaginary roots. So, the two equations have both common roots
$\therefore \frac{a}{1}=\frac{b}{\sqrt{2}}=\frac{c}{1}$
$\Rightarrow \frac{\sin A}{1}=\frac{\sin B}{\sqrt{2}}=\frac{\sin C}{1}$
$\Rightarrow \frac{\sin A}{1 / \sqrt{2}}=\frac{\sin B}{1}=\frac{\sin C}{1 / \sqrt{2}}$
$\Rightarrow A=\frac{\pi}{4}, B=\frac{\pi}{2}, C=\frac{\pi}{4}$
871 (a)
We have,
$s=\frac{3 a}{2}$ and $\Delta=\frac{\sqrt{3}}{4} a^{2} \quad \therefore r=\frac{\Delta}{s}=\frac{a}{2 \sqrt{3}}$
Let the length of each side of the square inscribed in the incircle be x. Then,
$x^{2}+x^{2}=(\text { Diameter })^{2}$
$\Rightarrow 2 x^{2}=\frac{a^{2}}{3} \Rightarrow x^{2}=\frac{a^{2}}{6} \Rightarrow$ Area of the square $=\frac{a^{2}}{6}$
872 (a)
$\cos 1^{\circ} \cdot \cos 2^{\circ} \ldots . . \cos 179^{\circ}$
$=\cos 1^{\circ} \cdot \cos 2^{\circ} \ldots \cdot \cos 90^{\circ} \cdot \cos 179^{\circ}$
$=0 \quad\left[\because \cos 90^{\circ}=0\right]$
873 (a)
Given equation is
$2^{\cos 2 x}+1=3.2^{-\sin x}$
By taking option (a)
Let $x=n \pi$
When, $n=1, x=\pi$
$\therefore \quad 2^{\cos 2 \pi}+1=3.2^{-\sin \pi}$
$\Rightarrow 2+1=3.2^{\circ} \Rightarrow 3=3$
When $n=2, x=2 \pi$
$\therefore 2^{\cos 4 \pi}+1=3.2^{-\sin 2 \pi}$
$\Rightarrow 2^{1}+1=3.2^{\circ}$
$\Rightarrow 3=3$
874 (b)
On squaring given equation, we get

$$
\begin{gathered}
\sin ^{2} A+6 \cos ^{2} A-2 \sqrt{6} \sin A \cos A=7 \cos ^{2} A \\
\Rightarrow \sin ^{2} A+6\left(1-\sin ^{2} A\right) \\
=\cos ^{2} A \\
\quad+6 \cos ^{2} A+2 \sqrt{6} \sin A \cos A \\
\Rightarrow \sin ^{2} A-6 \cos ^{2} A+6 \\
\quad=\cos ^{2} A \\
\quad+6 \sin ^{2} A+2 \sqrt{6} \sin A \cos A \\
\Rightarrow 7 \sin ^{2} A=(\cos A+\sqrt{6} \sin A)^{2} \\
\Rightarrow \quad \pm \sqrt{7} \sin A= \\
\cos A+\sqrt{6} \sin A
\end{gathered}
$$

Alternate

Given, $\sin A-\sqrt{6} \cos A=\sqrt{7} \cos A$
Replacing A by $90^{\circ}+A$, we get
$\sin \left(90^{\circ}+A\right)-\sqrt{6} \cos \left(90^{\circ}+A\right)$
$=\sqrt{7} \cos \left(90^{\circ}+A\right)$
$\Rightarrow \cos A+\sqrt{6} \sin A=-\sqrt{7} \sin A$
875 (b)
We have,
$y=\frac{\tan x}{\tan 3 x}$
$\Rightarrow y=\frac{1-3 \tan ^{2} x}{3-\tan ^{2} x}$
$\Rightarrow 3 y-y \tan ^{2} x=1-3 \tan ^{2} x$
$\Rightarrow \tan ^{2} x(y-3)=1-3 y$
$\Rightarrow \tan ^{2} x=\frac{y-3}{1-3 y}$
$\Rightarrow-\frac{y-3}{3 y-1} \geq 0 \quad\left[\because \tan ^{2} x \geq 0\right]$
$\Rightarrow \frac{y-3}{3 y-1} \leq 0 \Rightarrow \frac{1}{3} \leq y<3 \Rightarrow y \in[1 / 3,3]$
876 (c)
We have, $\sqrt{\operatorname{cosec}^{2} \alpha+2 \cot \alpha}$
$=\sqrt{1+\cot ^{2} \alpha+2 \cot \alpha}=|1+\cot \alpha|$

But $\frac{3 \pi}{4}<\alpha<\pi$
$\Rightarrow \cot \alpha<-1 \Rightarrow 1+\cot \alpha<0$

Hence, $|1+\cot \alpha|=-(1+\cot \alpha)$

877 (c)

Since $-\sqrt{a^{2}+b^{2}} \leq a \sin x+b \cos x \leq \sqrt{a^{2}+b^{2}}$.
Therefore, $a \sin x+b \cos x=c$ has no solution for
$|c|>\sqrt{a^{2}+b^{2}}$
878 (c)
We have,
$\tan \theta+\sec \theta=2 \cos \theta$
$\Rightarrow 1+\sin \theta=2 \cos ^{2} \theta$
$\Rightarrow 1+\sin \theta=2-2 \sin ^{2} \theta$
$\Rightarrow 2 \sin ^{2} \theta+\sin \theta-1=0$
$\Rightarrow(2 \sin \theta-1)(\sin \theta+1)=0$
$\Rightarrow \sin \theta=\frac{1}{2}, \sin \theta=-1$
$\Rightarrow \sin \theta$
$=\frac{1}{2}\left[\begin{array}{c}\because \sin \theta=-1 \Rightarrow \theta=\frac{3 \pi}{2} \\ \text { for which the equation is not defined }\end{array}\right]$
$\Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \quad[\because \theta \in[0,2 \pi]]$
Hence, the given equation has two solutions in [0, 2π]
879 (c)
Given, $\sin \pi\left(x^{2}+x\right)-\sin \pi x^{2}=0$
$\Rightarrow 2 \cos \pi\left(\frac{2 x^{2}+x}{2}\right) \sin \frac{\pi x}{2}=0$
$\Rightarrow \pi\left(\frac{2 x^{2}+x}{2}\right)=n \pi+\frac{\pi}{2}$
$\Rightarrow 2 x^{2}+x=2 n+1$
$\Rightarrow 2 x^{2}+x-p^{\prime}=0$, where $p^{\prime}=2 n+1$, is an
odd integer
$\therefore \quad x=\frac{-1 \pm \sqrt{1+8 p^{\prime}}}{4}\left[\right.$ put $\left.1+8 p^{\prime}=p\right]$
$\therefore x=\frac{-1 \pm \sqrt{p}}{4} \Rightarrow x$

$$
\begin{aligned}
& =\frac{\sqrt{p}-1}{4}[\text { neglect } x \\
& \left.=\frac{-1-\sqrt{p}}{4}\right]
\end{aligned}
$$

880 (b)
Given that, $3 \sin ^{2} A+2 \sin ^{2} B=1$...(i)
and $3 \sin 2 A-2 \sin 2 B=0$
From Eq. (i)
$3\left(\frac{1-\cos 2 A}{2}\right)+2\left(\frac{1-\cos 2 B}{2}\right)=1$
$\Rightarrow 3 \cos 2 A+2 \cos 2 B=3$
$\Rightarrow 3 \cos 2 A=3-2 \cos 2 B$
$\Rightarrow 9 \cos ^{2} 2 A=9+4 \cos ^{2} 2 B-12 \cos 2 B$
$\Rightarrow 9\left(1-\sin ^{2} 2 A\right)=9+4 \cos ^{2} 2 B-12 \cos 2 B$
$\Rightarrow 9-4 \sin ^{2} 2 B=9+4 \cos ^{2} 2 B-12 \cos 2 B$
[from Eq. (ii)]
$\Rightarrow-4\left(1-\cos ^{2} 2 B\right)=4 \cos ^{2} 2 B-12 \cos 2 B$
$\Rightarrow-4=-12 \cos 2 B$
$\Rightarrow \cos 2 B=\frac{1}{3}$
Now, from Eq. (iii)
$\cos 2 A=\frac{7}{9} \Rightarrow 2 \cos ^{2} A-1=\frac{7}{9}$
$\Rightarrow \cos A=\frac{2 \sqrt{2}}{3}$
$\therefore A+2 B=\cos ^{-1} \frac{2 \sqrt{2}}{3}+\cos ^{-1} \frac{1}{3}$
$=\cos ^{-1}\left(\frac{2 \sqrt{2}}{3} \cdot \frac{1}{3}-\sqrt{1-\frac{8}{9}} \sqrt{1-\frac{1}{9}}\right)$
$=\cos ^{-1}\left(\frac{2 \sqrt{2}}{9}-\frac{2 \sqrt{2}}{9}\right)$
$=\cos ^{-1}(0)=\frac{\pi}{2}$

881 (b)

Let $f(x)=\sin x \cos x=\frac{1}{2} \sin 2 x$
We know that, $-1 \leq \sin 2 x \leq 1$
$\Rightarrow-\frac{1}{2} \leq \frac{1}{2} \sin 2 x \leq \frac{1}{2}$
Thus, the greatest and least value of $f(x)$ are $\frac{1}{2}$ and $\frac{1}{2}$ respectively

882 (b)

We have,
$x^{2}+4 x y+y^{2}$
$=(X \cos \theta-Y \sin \theta)^{2}$
$+4(X \cos \theta-Y \sin \theta)(X \sin \theta$
$+Y \cos \theta)+(X \sin \theta+Y \cos \theta)^{2}$
$=(1+4 \sin \theta \cos \theta) X^{2}+4\left(\cos ^{2} \theta-\sin ^{2} \theta\right) X Y$
$+(1-4 \sin \theta \cos \theta) Y^{2}$
$\therefore x^{2}+4 x y+y^{2}=A X^{2}+B Y^{2}$
$\Rightarrow(1+2 \sin 2 \theta) X^{2}+4 \cos 2 \theta X Y$
$+(1-2 \sin 2 \theta) Y^{2}$
$=A X^{2}+B Y^{2}$
$\Rightarrow \cos 2 \theta=0, A=1+2 \sin 2 \theta, B=1-2 \sin 2 \theta$
$\Rightarrow \theta=\frac{\pi}{4}$ and $A=1+2=3, B=1-2=-1$

883 (d)
Given, $3 \cos 2 x-10 \cos x+7=0$
$\Rightarrow 6 \cos ^{2} x-10 \cos x+4=0$
$\left[\because \cos 2 x=2 \cos ^{2} x-1\right]$
$\Rightarrow 2(3 \cos x-2)(\cos x-1)=0$
$\Rightarrow \cos x=1$ or $\cos x=\frac{2}{3}$
Since, $\cos x$ is positive in Ist and IIIrd quadrant.
Hence, total number of solutions are 4
884 (a)
$\cos \alpha \sin (\beta-\gamma)+\cos \beta \sin (\gamma-\alpha)$

$$
+\cos \gamma \sin (\alpha-\beta)
$$

$=\cos \alpha[\sin \beta \cos \gamma-\cos \beta \sin \gamma]+$
$\cos \beta[\sin \gamma \cos \alpha-\cos \gamma \sin \alpha]+\cos \gamma[\sin \alpha \cos \beta-\cos \alpha \mathrm{si}$
$\mathrm{n} \beta$]
$=0$
885 (d)
Given, $A+B=45^{\circ}$
$\Rightarrow \cot (A+B)=1$
$\Rightarrow \frac{\cot A \cot B-1}{\cot A+\cot B}=1$
$\Rightarrow \cot A \cot B-(\cot A+\cot B)=1$
Now, $(\cot A-1)(\cot B-1)=\cot A \cot B-$ $\cot A+\cot B+1$
$=1+1=2$ [from Eq.(i)]
886 (c)
Let $I=[\sin x+\cos x]^{1+\sin 2 x}$
$=\left[\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)\right]^{1+\sin 2 x}$
At $x=\frac{\pi}{4}$,
$I=\left[\sqrt{2} \sin \left(\frac{\pi}{4}+\frac{\pi}{4}\right)\right]^{1+\sin \frac{2 \pi}{4}}$
$=(\sqrt{2})^{2}=2$
887 (d)
The given expression can be written as
$\cos ^{6} x\left(\cos ^{6} x+3 \cos ^{4} x+3 \cos ^{2} x+1\right)$

$$
+2 \cos ^{4} x+\cos ^{2} x-2
$$

$=\sin ^{3} x\left(\cos ^{2} x+1\right)^{3}+2 \cos ^{4} x+\cos ^{2} x-2$
$=\sin ^{3} x(\sin x+1)^{3}+2 \sin ^{2} x+\cos ^{2} x-2$
$\left[\because \sin x+\sin ^{2} x=1 \Rightarrow \sin x=\cos ^{2} x\right]$
$=\left(\sin x+\sin ^{2} x\right)^{3}+\sin ^{2} x+\left(\sin ^{2} x+\cos ^{2} x\right)$

$$
-2
$$

$=1^{3}+\sin ^{2} x+1-2=\sin ^{2} x$

888 (b)
$\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}$
$=\frac{1}{4}\left[\left(2 \sin ^{2} \frac{\pi}{8}\right)^{2}+\left(2 \sin ^{2} \frac{3 \pi}{8}\right)^{2}\right]$
$+\frac{1}{4}\left[\left(2 \sin ^{2} \frac{\pi}{8}\right)^{2}+\left(2 \sin ^{2} \frac{3 \pi}{8}\right)^{2}\right]$
$=\frac{1}{4}\left[\left(1-\cos \frac{\pi}{4}\right)^{2}+\left(1-\cos \frac{3 \pi}{4}\right)^{2}\right]$
$+\frac{1}{4}\left[\left(1-\cos \frac{\pi}{4}\right)^{2}\right.$
$\left.+\left(1-\cos \frac{3 \pi}{4}\right)^{2}\right]$
$=\frac{1}{4}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right]$
$+\frac{1}{4}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right]$
$=\frac{1}{4}(3)+\frac{1}{4}(3)=\frac{3}{2}$
889 (c)
Given, $\frac{\sin (x+3 \alpha)}{\sin (\alpha-x)}=3$
Applying componendo and dividendo, we get

$$
\begin{aligned}
& \frac{\sin (x+3 \alpha)+\sin (\alpha-x)}{\sin (x+3 \alpha)-\sin (\alpha-x)}=\frac{3+1}{3-1} \\
& \Rightarrow \frac{2 \sin 2 \alpha \cos (\alpha+x)}{2 \cos 2 \alpha \sin (\alpha+x)}=2 \\
& \Rightarrow \frac{\tan 2 \alpha}{\tan (\alpha+x)}=2 \\
& \Rightarrow \frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \times \frac{(1-\tan \alpha \tan x)}{(\tan \alpha+\tan x)}=2 \\
& \Rightarrow \tan \alpha-\tan ^{2} \alpha \tan x \\
& \quad=\tan \alpha \\
& \quad+\tan x-\tan ^{3} \alpha-\tan ^{2} \alpha \tan x \\
& \Rightarrow \tan x=\tan ^{3} \alpha
\end{aligned}
$$

890 (a)
We have,

$$
\begin{aligned}
& \cos \alpha \sin (\beta-\gamma)+\cos \beta \sin (\gamma-\beta) \\
& \quad+\cos \gamma \sin (\alpha-\beta) \\
& =\frac{1}{2}\{\sin (\alpha+\beta-\gamma)+\sin (\beta-\gamma-\alpha) \\
& \\
& +\sin (\gamma-\alpha+\beta)+\sin (\gamma-\alpha-\beta) \\
& \\
& +\sin (\alpha-\beta+\gamma) \\
& \\
& +\sin (\alpha-\beta-\gamma)\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\{\sin (\alpha+\beta-\gamma)-\sin (\alpha-\beta+\gamma) \\
& \\
& \quad \begin{aligned}
&-\sin (\alpha-\beta-\gamma)-\sin (\alpha+\beta-\gamma) \\
&+\sin (\alpha-\beta+\gamma) \\
&+\sin (\alpha-\beta-\gamma)\} \\
&= \\
& \frac{1}{2} \times 0=0
\end{aligned}
\end{aligned}
$$

891 (c)
$\sin A+\cos A=m \quad[$ given $]$
$\Rightarrow \sin ^{3} A+\cos ^{3} A+3 \cos A \sin A$
$(\sin A+\cos A)=m^{3}$
$\Rightarrow n+3 m \sin A \cos A=m^{3}$
$\left[\because \sin ^{3} A+\cos ^{3} A=n\right]$
Again, $\sin A+\cos A=m$
$\Rightarrow \sin ^{2} A+\cos ^{2} A+2 \sin A \cos A=m^{2}$
$\Rightarrow \sin A \cos A=\frac{m^{2}-1}{2}$
From Eqs. (i) and (ii), we get
$n+3 m \frac{\left(m^{2}-1\right)}{2}=m^{3}$
$\Rightarrow 2 n+3 m^{3}-3 m=2 m^{3}$
$\Rightarrow m^{3}-3 m+2 n=0$
892 (b)
We have,
$(\sec \theta-1)=(\sqrt{2}-1) \tan \theta$
$\Rightarrow 1-\cos \theta=(\sqrt{2}-1) \sin \theta$
$\Rightarrow 2 \sin ^{2} \frac{\theta}{2}=2(\sqrt{2}-1) \sin \frac{\theta}{2} \cos \frac{\theta}{2}$
$\Rightarrow \sin \frac{\theta}{2}=0$ or, $\tan \frac{\theta}{2}=\sqrt{2}-1=\tan \frac{\pi}{8}$
$\Rightarrow \frac{\theta}{2}=n \pi$ or, $\frac{\theta}{2}=n \pi+\frac{\pi}{8}, n \in Z$
$\Rightarrow \theta=2 n \pi, \theta=2 n \pi+\frac{\pi}{4}, n \in Z$
893 (d)
Given, $\cos \theta+\sin 2 \theta=0$
$\Rightarrow \cos \theta+2 \sin \theta \cos \theta=0$
$\Rightarrow \cos \theta(1+2 \sin \theta)=0$
$\Rightarrow \cos \theta=0$ or $\sin \theta=-\frac{1}{2}$
For $\theta \in[-\pi, \pi]$
$\theta=\frac{\pi}{2},-\frac{\pi}{2}$
Or $\theta=-\frac{\pi}{6},-\frac{5 \pi}{6}$
894 (b)
We have,
$\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right)$
$\Rightarrow \tan \left(\frac{\pi}{2} \sin \theta\right)=\tan \left(\frac{\pi}{2}-\frac{\pi}{2} \cos \theta\right)$
$\Rightarrow \frac{\pi}{2} \sin \theta=r \pi+\frac{\pi}{2}-\frac{\pi}{2} \cos \theta, r \in Z$
$\Rightarrow \sin \theta+\cos \theta=(2 r+1), r \in Z$
$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta=\frac{2 r+1}{\sqrt{2}}, r \in Z$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{2 r+1}{\sqrt{2}}, r \in Z$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ or

$$
-\frac{1}{\sqrt{2}} \quad[\text { For } r=0,-1]
$$

$\Rightarrow \theta-\frac{\pi}{4}=2 r \pi \pm \frac{\pi}{4}, r \in Z$
$\Rightarrow \theta=2 r \pi \pm \frac{\pi}{4}+\frac{\pi}{4}, r \in Z$
$\Rightarrow \theta=2 r \pi, 2 r \pi+\frac{\pi}{2}, r \in Z$
But, $\theta=2 r \pi+\frac{\pi}{2}, r \in Z$ gives extraneous roots as it does not satisfy the given equation. Therefore, $\theta=2 r \pi, r \in Z$
895 (b)
$\tan \theta+\tan \left(\frac{3 \pi}{4}+\theta\right)=2$
$\Rightarrow \tan \theta+\tan \left(\frac{\pi}{2}+\left(\frac{\pi}{4}+\theta\right)\right)=2$
$\Rightarrow \tan \theta-\cot \left(\frac{\pi}{4}+\theta\right)=2$
$\Rightarrow \tan \theta-\frac{\cot \frac{\pi}{4} \cot \theta-1}{\cot \frac{\pi}{4}+\cot \theta}=2$
$\Rightarrow \tan \theta-\frac{\cot \theta-1}{1+\cot \theta}=2$
$\Rightarrow \tan \theta-\frac{1-\tan \theta}{1+\tan \theta}=2$
$\Rightarrow \tan \theta+\tan ^{2} \theta-1+\tan \theta=2+2 \tan \theta$
$\Rightarrow \tan ^{2} \theta=3$
$\Rightarrow \tan \theta= \pm \sqrt{3}= \pm \tan \frac{\pi}{3}$
$\Rightarrow \theta=n \pi \pm \frac{\pi}{3}, n \in Z$
896 (b)
We have,
$(1+\tan \theta)(1+\tan \phi)=2$
$\Rightarrow 1+\tan \theta+\tan \phi+\tan \theta \tan \phi=2$
$\Rightarrow \tan \theta+\tan \phi=1-\tan \theta \tan \phi$
$\Rightarrow \frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=1$
$\Rightarrow \tan (\theta+\phi)=1 \Rightarrow \theta+\phi=\frac{\pi}{4}, n \in Z$
897 (c)
Given, $2 \sec 2 \alpha=\tan \beta+\cot \beta$
$\Rightarrow 2 \sec 2 \alpha=\frac{\sin ^{2} \beta+\cos ^{2} \beta}{\sin \beta \cos \beta}$
$\Rightarrow \frac{2}{\cos 2 \alpha}=\frac{1}{\sin \beta \cos \beta}$
$\Rightarrow \sin 2 \beta=\cos 2 \alpha$
$\Rightarrow \alpha+\beta=\frac{\pi}{4}$
898 (a)
We have,
$2 \sin ^{2} \theta-5 \sin \theta+2>0$
$\Rightarrow(\sin \theta-2)(2 \sin \theta-1)>0$
$\Rightarrow 2 \sin \theta-1<0 \quad[\because-1 \leq \sin \theta \leq 1 \quad \therefore \sin \theta-2$ $<0]$
$\Rightarrow \sin \theta<\frac{1}{2}$
$\Rightarrow \theta \in(0, \pi / 6) \cup(5 \pi / 6, \pi)$

899 (d)
Given that,
$\tan A-\tan B=x$
and $\cot B-\cot A=y$

Now, $\cot (A-B)=\frac{1}{\tan (A-B)}$
$=\frac{1+\tan A \tan B}{\tan A-\tan B}$
$=\frac{1}{\tan A-\tan B}+\frac{\tan A \tan B}{\tan A-\tan B}$
$=\frac{1}{x}+\frac{1}{y}$ [from Eqs.(i)and(ii)]

900 (b)

We have,
$\frac{a \cos B-b \cos A}{a-b}$
$=\frac{a\left(\frac{c^{2}+a^{2}-b^{2}}{2 a c}\right)-b\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)}{a-b}$
$=\frac{2\left(a^{2}-b^{2}\right)}{2 c(a-b)}=\frac{a+b}{c}=\frac{2 c}{c}$ $=2\left[\begin{array}{c}\because a, c, b \text { are in A. P. } \\ \therefore a+b=2 c\end{array}\right]$
901 (d)
$\tan 45^{\circ}=\frac{\tan 10^{\circ}+\tan 35^{\circ}}{1-\tan 10^{\circ} \tan 35^{\circ}}$
$\Rightarrow 1-\tan 10^{\circ} \tan 35^{\circ}=\tan 10^{\circ}+\tan 35^{\circ}$
$\Rightarrow \tan 10^{\circ}+\tan 35^{\circ}+\tan 10^{\circ} \tan 35^{\circ}=1$

902 (b)
$\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}$
$\left[\frac{2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)}\right]^{n}$

$$
+\left[\frac{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)}\right]^{n}
$$

$=\cot ^{n}\left(\frac{A-B}{2}\right)+\cot ^{n}\left(\frac{B-A}{2}\right)$
$=\cot ^{n}\left(\frac{A-B}{2}\right)+(-1)^{n} \cot \left(\frac{A-B}{2}\right)$
$=2 \cot ^{n}\left(\frac{A-B}{2}\right) \quad(\because n$ is even $)$
903 (d)
We have,
$\sin (x-y)=\frac{1}{2}$ and $\cos (x+y)=\frac{1}{2}$
$\Rightarrow\left(x-y=30^{\circ}\right)$ and $\left(x+y=60^{\circ}\right) \quad[\because 0<x, y<$
90°
$\Rightarrow x=45^{\circ}, y=15^{\circ}$
904 (d)
We have,
$5 \cos 2 \theta+2 \cos ^{2} \frac{\theta}{2}+1=0$
$\Rightarrow 5\left(2 \cos ^{2} \theta-1\right)+(1+\cos \theta)+1=0$
$\Rightarrow 10 \cos ^{2} \theta+\cos \theta-3=0$
$\Rightarrow(5 \cos \theta+3)(2 \cos \theta-1)=0$
$\Rightarrow \cos \theta=\frac{1}{2}, \cos \theta=-\frac{3}{5} \Rightarrow \theta=\frac{\pi}{3}, \pi-\cos ^{-1}\left(\frac{3}{5}\right)$
905 (a)
We have,
$\cos x \cos y \sin (x-y)$
$=\frac{1}{2}[2 \cos x \cos y \sin (x-y)]$
$=\frac{1}{2}[\cos (x+y)+\cos (x-y)] \sin (x-y)$
$=\frac{1}{4}[2 \sin (x-y) \cos (x+y)$
$+2 \sin (x-y) \cos (x-y)]$
$=\frac{1}{4}[\sin 2 x-\sin 2 y+\sin (2 x-2 y)]$
Similarly, we have
$\cos y \cos z \sin (y-z)$

$$
\begin{aligned}
& =\frac{1}{4}[\sin 2 y-\sin 2 z \\
& +\sin (2 y-2 z)]
\end{aligned}
$$

and,
$\cos z \cos x \sin (z-x)$

$$
\begin{aligned}
& =\frac{1}{4}[\sin 2 z-\sin 2 x \\
& +\sin (2 z-2 x)]
\end{aligned}
$$

Also,
$\sin (x-y) \sin (y-z) \sin (z-x)$
$=-\frac{1}{4}\{\sin (2 x-2 y)+\sin (2 y-2 z)$

$$
+\sin (2 z-2 x)\}
$$

On adding the above results, we find that the value of the given expression is zero
906 (c)
We have,
$2 \cos B=\frac{a}{c}$
$\Rightarrow 2\left(\frac{c^{2}+a^{2}-b^{2}}{2 a c}\right)=a c$
$\Rightarrow c^{2}=b^{2} \Rightarrow c=b \Rightarrow \triangle A B C$ is isosceles
907 (d)
We have, $\sin x \cos x=2$
$\Rightarrow \sin 2 x=4$
Which is impossible because the value of $\sin x$ is not greater than one
Thus, given equation has no solution
908 (a)
The given equation can be rewritten as
$1-\cos ^{2} \theta-\cos \theta=\frac{1}{4}$
$\Rightarrow \cos ^{2} \theta+\cos \theta-\frac{3}{4}=0$
$\Rightarrow 4 \cos ^{2} \theta+4 \cos \theta-3=0$
$\Rightarrow \cos \theta=\frac{-4 \pm \sqrt{16+48}}{8}=\frac{1}{2},-\frac{3}{2}$
Since, $\cos \theta=-\frac{3}{2}$ is not possible, so we take
$\cos \theta=\frac{1}{2}=\cos \frac{\pi}{3}$
$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{3}$
For the given interval, put $n=0$ and $n=1$ in Eq.
(i) we get
$\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$
909 (a)
We have,
$\frac{b+c}{11}=\frac{a+c}{12}=\frac{a+b}{13}=K$ (say)
$\Rightarrow b+c=11 K, c+a=12 K, a+b=13 K$
$\Rightarrow 2(a+b+c)=36 K \Rightarrow a+b+c=18 K$
$\Rightarrow a=7 K, b=6 K, c=5 K$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{36+25-49}{2 \times 6 \times 5}=\frac{1}{5}$
910 (d)

We have,
$f(x)=(\sec x-\cos x)^{2}+2 \Rightarrow f(x) \geq 2$ for all x
911 (b)
Given that, $\sin x \sqrt{8 \cos ^{2} x}=1$
$\Rightarrow 2 \sin x|\cos x|=\frac{1}{\sqrt{2}}$
If $\cos x>0$, then $\sin 2 x=\frac{1}{\sqrt{2}}$
$\Rightarrow x=\frac{\pi}{8}, \frac{3 \pi}{8}$
And if $\cos x<0$, then
$\sin 2 x=-\frac{1}{\sqrt{2}} \Rightarrow x=\frac{5 \pi}{8}, \frac{7 \pi}{8}$
So, the required values of x are $\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}$, which form an AP with common difference $\frac{\pi}{4}$
912 (b)
Given, $z=12 \sin \theta-9 \sin ^{2} \theta+4-4$
$\Rightarrow \quad z=-4-(2-3 \sin \theta)^{2} \leq 4$
\therefore maximum value of $12 \sin \theta-9 \sin ^{2} \theta$ is 4
913 (c)
We have,
$\tan |x|=|\tan x|$
$\Rightarrow \tan |x| \geq 0$ and $x \neq(2 n+1) \frac{\pi}{2}, n$

$$
\in Z[\because|\tan x| \geq 0]
$$

$\Rightarrow x$ lies in the third quadrant
$\Rightarrow x \in\left(-(2 k+1) \frac{\pi}{2}, k \pi\right) \cup\left(k \pi,(2 k+1) \frac{\pi}{2}\right)$
914 (c)
$\because \tan \theta+\tan 2 \theta+\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3}$
$\Rightarrow \tan \theta+\tan 2 \theta=\sqrt{3}(1-\tan \theta \tan 2 \theta)$
$\Rightarrow \frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta}=\sqrt{3} \Rightarrow \tan 3 \theta=\tan \frac{\pi}{3}$
$\Rightarrow 3 \theta=n \pi+\frac{\pi}{3} \Rightarrow \theta=\frac{(3 n+1) \pi}{9}, n \in I$
915 (d)
We have,
$x=\tan \frac{B-C}{2} \tan \frac{A}{2}$
$\Rightarrow x=\frac{b-c}{c+a} \quad\left[\because \tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}\right]$
Similarly, we have
$y=\frac{c-a}{c+a}$ and $x=\frac{a-b}{a+b}$
Now,
$x=\frac{b-c}{b+c} \Rightarrow \frac{x+1}{x-1}=\frac{b}{-c} \Rightarrow \frac{b}{c}=\frac{1+x}{1-x}$
Similarly, we have
$\frac{c}{a}=\frac{1+y}{1-y}$ and $\frac{a}{b}=\frac{1+z}{1-z}$
Now,
$\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}=1$
$\Rightarrow \frac{1+z}{1-z} \times \frac{1+x}{1-x} \times \frac{1+y}{1-y}=1$
$\Rightarrow(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)$
$\Rightarrow 2(x+y+z)=-2 x y z$
$\Rightarrow x+y+z=-x y z$
916 (d)
Given, $\cos x=3 \cos y$
$\Rightarrow \frac{3}{1}=\frac{\cos x}{\cos y}$
Applying componendo and dividend, we get
$\frac{3+1}{3-1}=\frac{\cos x+\cos y}{\cos x-\cos y}$
$\Rightarrow 2=\frac{2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}{2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{y-x}{2}\right)}$
$\Rightarrow 2=\cot \left(\frac{x+y}{2}\right) \cot \left(\frac{y-x}{2}\right)$
$\Rightarrow 2 \tan \left(\frac{y-x}{2}\right)=\cot \left(\frac{x+y}{2}\right)$
917 (c)
$\frac{\sin 85^{\circ}-\sin 35^{\circ}}{\cos 65^{\circ}}=\frac{2 \cos \frac{85^{\circ}+35^{\circ}}{5} \sin \frac{85^{\circ}-35^{\circ}}{2}}{\cos \left(90^{\circ}-25^{\circ}\right)}$
$\frac{2 \cos 60^{\circ} \sin 25^{\circ}}{\cos \left(90^{\circ}-25^{\circ}\right)}=\frac{2 \cdot \frac{1}{2} \cdot \sin 25^{\circ}}{\sin 25^{\circ}}=1$
918 (c)
$\frac{\tan 80^{\circ}-\tan 10^{\circ}}{\tan \left(80^{\circ}-10^{\circ}\right)}$
$=\frac{\tan 80^{\circ}-\tan 10^{\circ}}{\tan 80^{\circ}-\tan 10^{\circ}} \times\left(1+\tan 80^{\circ} \tan 10^{\circ}\right)$
$=1+\tan 80^{\circ} \tan 10^{\circ}=2$
919 (c)
We have,
$\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)(1$

$$
\left.+\cos \frac{7 \pi}{8}\right)
$$

$$
\begin{aligned}
& =\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1-\cos \frac{3 \pi}{8}\right)(1 \\
& \left.\quad-\cos \frac{\pi}{8}\right) \\
& =\left(1-\cos ^{2} \frac{\pi}{8}\right)\left(1-\cos ^{2} \frac{3 \pi}{8}\right) \\
& =\frac{1}{4}\left(2-1-\cos \frac{\pi}{4}\right)\left(2-1-\cos \frac{3 \pi}{4}\right) \\
& =\frac{1}{4}\left(1-\cos \frac{\pi}{4}\right)\left(1-\cos \frac{3 \pi}{4}\right) \\
& =\frac{1}{4}\left(1-\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{2}}\right)=\frac{1}{4}\left(1-\frac{1}{2}\right)=\frac{1}{8}
\end{aligned}
$$

920 (a)

$$
\begin{aligned}
& =\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 4 x}}} \\
& =\frac{2}{\sqrt{2+\sqrt{2+\sqrt{2.2 \cos ^{2} 2 x}}}} \\
& =\frac{2}{\sqrt{2+\sqrt{2+2 \cos 2 x}}} \\
& =\frac{2}{\sqrt{2+2 \cos x}}=\frac{2}{2 \cos \frac{x}{2}}=\sec \frac{x}{2}
\end{aligned}
$$

