

3.TRIGONOMETRIC FUNCTIONS

Single Correct Answer Type

1.	If $\tan \theta \cos \theta$, $\frac{1}{2} \sin \theta$ are i	n G.P., then general value o	f A is	
	0			π
	5	b) $2 n \pi \pm \frac{\pi}{6}, n \in \mathbb{Z}$	c) $n \pi + (-1)^n \frac{\pi}{3}, n \in \mathbb{Z}$	d) $n \pi + \frac{1}{3}, n \in \mathbb{Z}$
2.	$\sin 47^\circ + \sin 61^\circ - \sin 11^\circ$ a) $\sin 7^\circ$	b) cos 7°	c) sin 36°	d) cos 36°
3.	2	x in the interval $[0, 3\pi]$ sati	2	-
	a) 6	b) 1	c) 2	d) 4
4.	If $\sec\theta$ $\tan\theta = \sqrt{2}$, then θ		_	
	a) $n \pi + (-1)^n \frac{\pi}{4}$, $n \in Z$	b) $2 n \pi \pm \frac{\pi}{3}, n \in Z$	c) $n \pi \pm \frac{2 \pi}{3}, n \in Z$	d) $n\pi - \frac{\pi}{4}, n \in Z$
5.		$(-\phi)$, then tan θ is equal to	1	1 .
	a) $\frac{1+m}{1-m}$ tan ϕ	b) $\frac{1-m}{1+m} \tan \phi$	c) $\frac{1-m}{1+m} \cot \phi$	d) $\frac{1+m}{1-m} \sec \phi$
6.		n θ), then which of the follo	=	1 111
	a) $\cos \theta = \frac{3}{2\sqrt{2}}$	b) $\cos\left(\theta - \frac{\pi}{2}\right) = \frac{1}{2\sqrt{2}}$	c) $\cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$	d) $\cos\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$
7.	$\sec \theta = \frac{a^2 + b^2}{a^2 + b^2}$, where <i>a</i> , <i>b</i>	$r \in R$ gives real values of θ i	f and only if	
		b) $ a \neq b \neq 0$		d) None of these
8.	If sin $A = \frac{1}{\sqrt{10}}$ and sin $B =$	$=\frac{1}{\sqrt{5}}$, where A and B are pos	sitive acute angles, then (A	+ B) is equal to
	a) π	b) $\frac{\pi}{2}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$
9.	2	Z	5	ch satisfy the equation
	$8^{(1+ \cos x +\cos^2 x+ \cos^3 x +)}$			у I
	0	1,15		
	a) 3	b) 4	c) 5	d) 6
10.		b) 4	c) 5	
10.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$	b) 4 $\sin \frac{3\pi}{8}$ is		d) 6 d) None of these
	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos\left(\frac{15\pi}{32}\right)}$	b) 4 $5\sin\frac{3\pi}{8}$ is b) $\frac{1}{8\sin\left(\frac{\pi}{32}\right)}$	c) 5 c) $\frac{1}{4\sqrt{2}}$ cosec $\left(\frac{\pi}{16}\right)$	
	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$	b) 4 $5\sin\frac{3\pi}{8}$ is b) $\frac{1}{8\sin\left(\frac{\pi}{32}\right)}$		
11.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1	b) 4 $f \sin \frac{3\pi}{8}$ is b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1	c) $\frac{1}{4\sqrt{2}}$ cosec $\left(\frac{\pi}{16}\right)$ c) < 0	
11.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1	b) 4 $f \sin \frac{3\pi}{8}$ is b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is	c) $\frac{1}{4\sqrt{2}}$ cosec $\left(\frac{\pi}{16}\right)$ c) < 0	d) None of these d) None of these
11. 12.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1	b) 4 $\frac{1}{5 \sin \frac{3\pi}{8} \text{ is}}$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0	c) $\frac{1}{4\sqrt{2}}$ cosec $\left(\frac{\pi}{16}\right)$ c) < 0	d) None of these
11. 12.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 $\sin 120^{\circ} \cos 150^{\circ} - \cos 2$	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1	d) None of thesed) None of thesed) None of these
11. 12.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1	b) 4 $\frac{1}{5 \sin \frac{3\pi}{8} \text{ is}}$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0	c) $\frac{1}{4\sqrt{2}}$ cosec $\left(\frac{\pi}{16}\right)$ c) < 0 equal to	d) None of these d) None of these
11. 12. 13.	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 $\sin 120^{\circ} \cos 150^{\circ} - \cos 2$	b) 4 $\frac{1}{5 \sin \frac{3\pi}{8} \text{ is}}$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1	d) None of thesed) None of thesed) None of these
 11. 12. 13. 14. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 $\sin 120^{\circ} \cos 150^{\circ} - \cos 2a$ a) 1 If $A = 30^{\circ}, a = 7, b = 8$ in a) One solution	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then <i>B</i> has b) Two solutions	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution	d) None of thesed) None of thesed) None of these
 11. 12. 13. 14. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 $\sin 120^{\circ} \cos 150^{\circ} - \cos 2a$ a) 1 If $A = 30^{\circ}, a = 7, b = 8$ in a) One solution	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then B has	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution	d) None of these d) None of these d) None of these d) $-\left(\frac{\sqrt{3}+1}{4}\right)$ d) None of these
 11. 12. 13. 14. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 $\sin 120^{\circ} \cos 150^{\circ} - \cos 2a$ a) 1 If $A = 30^{\circ}, a = 7, b = 8$ in a) One solution	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) = -1 $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then <i>B</i> has b) Two solutions	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution	d) None of these d) None of these d) None of these d) $-\left(\frac{\sqrt{3}+1}{4}\right)$
 11. 12. 13. 14. 15. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + \alpha$ a) -1 sin 120° cos 150° - cos 2 a) 1 If $A = 30^{\circ}, \alpha = 7, b = 8$ in a) One solution If $\cos(\theta - \alpha)$, $\cos \theta$ and cos a) $\pm \sqrt{2}$ The number of values of	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) $= -1$ $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then <i>B</i> has b) Two solutions $\cos(\theta + \alpha)$ are in HP, then co b) $\pm \sqrt{3}$ <i>x</i> for which sin 2 <i>x</i> + cos 4 <i>x</i>	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution os $\theta \sec \frac{\alpha}{2}$ is equal to c) $\pm \frac{1}{\sqrt{2}}$ = 2, is	d) None of these d) None of these d) None of these d) $-\left(\frac{\sqrt{3}+1}{4}\right)$ d) None of these d) None of these
 11. 12. 13. 14. 15. 16. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + a$ a) -1 sin 120° cos 150° - cos 2 a) 1 If $A = 30^\circ, a = 7, b = 8$ in a) One solution If $\cos(\theta - \alpha), \cos \theta$ and cos a) $\pm \sqrt{2}$ The number of values of a) 0	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) $= -1$ $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then <i>B</i> has b) Two solutions $\cos(\theta + \alpha)$ are in HP, then co b) $\pm \sqrt{3}$ <i>x</i> for which sin 2 <i>x</i> + cos 4 <i>x</i> b) 1	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution os $\theta \sec \frac{\alpha}{2}$ is equal to c) $\pm \frac{1}{\sqrt{2}}$	d) None of these d) None of these d) None of these d) $-\left(\frac{\sqrt{3}+1}{4}\right)$ d) None of these
 11. 12. 13. 14. 15. 16. 	a) 3 The value of $\sin \frac{15\pi}{32} \sin \frac{7\pi}{16}$ a) $\frac{1}{8\sqrt{2}\cos(\frac{15\pi}{32})}$ If $\alpha, \beta, \gamma \in [0, \frac{\pi}{2}]$, then the a) < 1 The expression $\cos \frac{10\pi}{13} + \alpha$ a) -1 sin 120° cos 150° - cos 2 a) 1 If $A = 30^{\circ}, \alpha = 7, b = 8$ in a) One solution If $\cos(\theta - \alpha)$, $\cos \theta$ and cos a) $\pm \sqrt{2}$ The number of values of	b) 4 $f \sin \frac{3\pi}{8} is$ b) $\frac{1}{8 \sin \left(\frac{\pi}{32}\right)}$ e value of $\frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma}$ is b) $= -1$ $\cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$ is e b) 0 40° sin 330° is equal to b) -1 in ΔABC , then <i>B</i> has b) Two solutions $\cos(\theta + \alpha)$ are in HP, then co b) $\pm \sqrt{3}$ <i>x</i> for which sin 2 <i>x</i> + cos 4 <i>x</i> b) 1	c) $\frac{1}{4\sqrt{2}} \operatorname{cosec} \left(\frac{\pi}{16}\right)$ c) < 0 equal to c) 1 c) $\frac{2}{3}$ c) No solution os $\theta \sec \frac{\alpha}{2}$ is equal to c) $\pm \frac{1}{\sqrt{2}}$ = 2, is	d) None of these d) None of these d) None of these d) $-\left(\frac{\sqrt{3}+1}{4}\right)$ d) None of these d) None of these

18.	The maximum value of 4	$\sin^2 x + 3\cos^2 x$ is		
	a) 4	b) 3	c) 7	d) 5
19.	Γ	, 		-
	If $0^\circ < \theta < 180^\circ$, then $\sqrt{2}$	$2 + \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2(1 + \gamma)^2}}}$	$\frac{1}{1}$ cos θ), then being <i>n</i> numbe	r of 2's, is equal to
	a) $2\cos\left(\frac{\theta}{2^n}\right)$	b) $2\cos\left(\frac{\theta}{2^{n-1}}\right)$	c) $2\cos\left(\frac{\theta}{2^{n+1}}\right)$	d) None of these
20.	If $S_n = \cos^n \theta + \sin^n \theta$, t a) 4	hen the value of $3S_4 - 2S_6$ b) 0	is given by c) 1	d) 7
21.	If $\tan 2x = \tan \frac{2}{x}$, then the	e value of <i>x</i> is		
	a) $\frac{n\pi \pm \sqrt{n^2 \pi^2 + 16}}{4}$		c) $\frac{n\pi \pm \sqrt{n^2\pi^2 - 16}}{4}$	d) None of these
22.	The set of values of x for	which $\frac{\tan 3 x - \tan 2 x}{1 + \tan 3 x \tan 2 x} = 1$ is	т	
	а) Ф			
	b) $\left\{\frac{n}{4}\right\}$			
	c) $\left\{ n \pi + \frac{\pi}{4}, n = 1, 2, 3, \dots \right\}$	}		
	d) $\left\{2 n \pi + \frac{\pi}{4}, n = 1, 2, 3, \right\}$	}		
23	× 4	$\cos \alpha_1$ ($\cos \alpha_2$) ($\cos \alpha_n$)	under the restriction	
23.		$(\cos \alpha_1) (\cos \alpha_2) \dots (\cos \alpha_n)$ $(\cos \alpha_1) (\cos \alpha_2) \dots (\cos \alpha_n)$		
	1 -	1	1	d) 1
	a) $\frac{1}{2^{n/2}}$	b) $\frac{1}{2^n}$	c) $\frac{1}{2n}$	d) 1
24.	If A, B, C are angles of a tr	riangle, then the minimum	value of $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{B}{2}$	$an^2 \frac{C}{r}$, is
	e e e	0	2 2	2
	a) 0	b) 1	c) 1/2	d) None of these
25.	a) 0 If the interior angles of a	b) 1 polygon are in A.P. with con	c) 1/2 mmon difference 5° and the	d) None of these e smallest angle 120°, then
25.	-	polygon are in A.P. with co	, ,	
	If the interior angles of a the number of sides of th a) 9 or 16	polygon are in A.P. with con e polygon is b) 9	mmon difference 5° and the	e smallest angle 120°, then d) 16
	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a	polygon are in A.P. with con e polygon is b) 9	mmon difference 5° and the c) 13 sfying the equation 3 sin ² x	be smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is
26.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0	polygon are in A.P. with con e polygon is b) 9 x in the interval [0, 5π] sati b) 5	mmon difference 5° and the c) 13 sfying the equation 3 sin ² <i>x</i> c) 6	e smallest angle 120°, then d) 16
26.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $tan(A + B) = p$ and tar	polygon are in A.P. with cone polygon is b) 9 x in the interval $[0, 5\pi]$ satible 5 n $(A - B) = q$, then the value	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10
26.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $tan(A + B) = p$ and tar	polygon are in A.P. with con e polygon is b) 9 x in the interval [0, 5π] sati b) 5	mmon difference 5° and the c) 13 sfying the equation 3 sin ² <i>x</i> c) 6	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10
26. 27.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $tan(A + B) = p$ and tar a) $\frac{p+q}{p-q}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ satis b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is	be smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is
26. 27.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $tan(A + B) = p$ and tar a) $\frac{p+q}{p-q}$ If $sin \theta = \sqrt{3} cos \theta, \pi < \theta$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is c) $\frac{1 + pq}{1 - p}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$
26. 27. 28.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta, \pi < \theta$ a) $-\frac{5\pi}{6}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10
26. 27. 28.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta, \pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$
26. 27. 28.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta, \pi < \theta$ a) $-\frac{5\pi}{6}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$
26. 27. 28. 29.	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta, \pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ satis b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is b) $2n\pi + \frac{\pi}{4}$	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of tan 2 <i>A</i> is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$
 26. 27. 28. 29. 30. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ satis b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is b) $2n\pi + \frac{\pi}{4}$	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$
 26. 27. 28. 29. 30. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying $\sin^2 \theta + \sin \theta = 2$ is b) $2n\pi + \frac{\pi}{4}$ of the equation $\tan x + \sec^2 \theta$	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the interval	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval $[0, 2\pi]$ is
 26. 27. 28. 29. 30. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of f a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is b) $2n\pi + \frac{\pi}{4}$ of the equation tan x + sec b) 1	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the interval	e smallest angle 120°, then d) 16 $(x - 7 \sin x + 2) = 0$ is d) 10 d) $\frac{p + q}{1 - pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval [0, 2π] is d) 3
 26. 27. 28. 29. 30. 31. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of a a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$ a) 0	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying sin ² θ + sin θ = 2 is b) $2n\pi + \frac{\pi}{4}$ of the equation tan x + sec b) 1	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the inte c) 2 c) 2	e smallest angle 120°, then d) 16 $x - 7 \sin x + 2 = 0$ is d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval $[0, 2\pi]$ is
 26. 27. 28. 29. 30. 31. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan x$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$ a) 0 If $2\cos^2 x + 3\sin x - 3 =$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ satis b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying $\sin^2 \theta + \sin \theta = 2$ is b) $2n\pi + \frac{\pi}{4}$ of the equation $\tan x + \sec$ b) 1 b) 1 = 0, 0 $\leq x \leq 180^\circ$, then the	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the interval c) 2 value of x is	e smallest angle 120°, then d) 16 $(-7 \sin x + 2 = 0 \text{ is})$ d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval [0, 2π] is d) 3 d) 3
 26. 27. 28. 29. 30. 31. 32. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan a$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$ a) 0 If $2 \cos^2 x + 3 \sin x - 3 =$ a) 30° , 90° , 150°	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying $\sin^2 \theta + \sin \theta = 2$ is b) $2n\pi + \frac{\pi}{4}$ of the equation $\tan x + \sec$ b) 1 b) 1 = 0, $0 \le x \le 180^\circ$, then the b) 60°, 120°, 180°	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the inte c) 2 c) 2	e smallest angle 120°, then d) 16 $(x - 7 \sin x + 2) = 0$ is d) 10 d) $\frac{p + q}{1 - pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval [0, 2π] is d) 3
 26. 27. 28. 29. 30. 31. 32. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan x$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$ a) 0 If $2\cos^2 x + 3\sin x - 3 =$ a) 30° , 90° , 150° If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{x}{\cos(\theta - \theta)}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n(A - B) = q, then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying $\sin^2 \theta + \sin \theta = 2$ is b) $2n\pi + \frac{\pi}{4}$ of the equation $\tan x + \sec$ b) 1 b) 1 = 0, $0 \le x \le 180^\circ$, then the b) 60°, 120°, 180°	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the interval c) 2 value of x is	e smallest angle 120°, then d) 16 $(-7 \sin x + 2 = 0 \text{ is})$ d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval [0, 2π] is d) 3 d) 45°, 90°, 135°
 26. 27. 28. 29. 30. 31. 32. 33. 	If the interior angles of a the number of sides of th a) 9 or 16 The number of values of x a) 0 If $\tan(A + B) = p$ and $\tan x$ a) $\frac{p+q}{p-q}$ If $\sin \theta = \sqrt{3} \cos \theta$, $\pi < \theta$ a) $-\frac{5\pi}{6}$ The general value of θ sat a) $n\pi + (-1)^n \frac{\pi}{6}$ The number of solutions a) 0 $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ} =$ a) 0 If $2\cos^2 x + 3\sin x - 3 =$ a) 30° , 90° , 150° If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{2}{\cos(\theta - \theta)}$	polygon are in A.P. with con- e polygon is b) 9 x in the interval $[0, 5\pi]$ sati b) 5 n($A - B$) = q , then the value b) $\frac{p - q}{1 + pq}$ < 0, then θ is equal to b) $-\frac{4\pi}{6}$ tisfying $\sin^2 \theta + \sin \theta = 2$ is b) $2n\pi + \frac{\pi}{4}$ of the equation $\tan x + \sec$ b) 1 b) 1 = 0, 0 $\le x \le 180^\circ$, then the b) 60° , 120° , 180°	mmon difference 5° and the c) 13 sfying the equation $3 \sin^2 x$ c) 6 e of $\tan 2A$ is c) $\frac{1 + pq}{1 - p}$ c) $\frac{4\pi}{6}$ s c) $n\pi + (-1)^n \frac{\pi}{2}$ $x = 2 \cos x$ lying in the intervelocity of x is c) 2 value of x is c) 0°, 30°, 150° c) -1	e smallest angle 120°, then d) 16 $(-7 \sin x + 2 = 0 \text{ is})$ d) 10 d) $\frac{p+q}{1-pq}$ d) $\frac{5\pi}{6}$ d) $n\pi + (-1)^n \frac{\pi}{3}$ erval [0, 2π] is d) 3 d) 3

35.	a) $a^{2} + c^{2} = b^{2} + d^{2}$ The value of $\cos \frac{\pi}{65} \cos \frac{2\pi}{65}$		c) $a^2 + b^2 = c^2 + d^2$	d) $ab = cd$
001		00 00	1	1
	a) $\frac{1}{32}$	b) $\frac{1}{64}$	c) $-\frac{1}{32}$	d) $-\frac{1}{64}$
36.	The number of solutions	of $2\cos^2\left(\frac{x}{2}\right)\sin^2 x = x^2 +$	$\frac{1}{x^2}$, $0 \le x \le \frac{\pi}{2}$ is	
	a) 0	b) 1	c) Infinite	d) None of these
37.		os <i>B</i> , then the value of <i>A</i> in		
20	a) $n\pi + B$	b) $n \pi + (-1)^n B$	c) $2 n \pi + B$	d) 2 <i>n</i> π − <i>B</i>
50.	The value of $\frac{(3+\cot 76^\circ \cot 1)}{\cot 76^\circ + \cot 16}$			
39	a) cot 44° The largest positive solut	b) $\tan 44^{\circ}$ tion of $1 + \sin^4 x = \cos^2 3x$	c) $\tan 2^{\circ}$ $\sin \left[-5\pi/2, 5\pi/2\right]$ is	d) cot 46°
57.		b) 2π	c) $\frac{5\pi}{2}$	d) None of these
	a) π	,	Z	-
40.	It in a $\triangle ABC$, $\cos A + 2\cos a$) A.P.	$B + \cos C = 2$, then a, b, c b) H.P.	c) G.P	d) None of these
41.	If $\cos \theta - 4 \sin \theta = 1$, the	,	c) d.f	uj none or these
	a) ±1	b) 0	c) ±2	d) ±4
42.	Given tan A and tan B are	the roots of $x^2 - ax + b =$	= 0. The value of $\sin^2(A + B)$?) is
	a) $\frac{a^2}{a^2(1-b)^2}$	b) $\frac{a^2}{a^2 + b^2}$	c) $\frac{a^2}{(a+b)^2}$	d) $\frac{b^2}{a^2(a-b)^2}$
43.			$(a + b)^2$ - $b \tan \frac{\Phi}{2} = c$, then the val	u (u D)
	a) $\frac{2ab}{a^2 - b^2 - c^2}$	b) $\frac{250}{a^2 - b^2 - c^2}$	c) $\frac{2bc}{a^2 - b^2 + c^2}$	d) $\frac{2ab}{a^2 - b^2 + c^2}$
44.	The number of solutions	of the equation sin <i>x cos</i> 3 <i>x</i>	$x = \sin 3x \cos 5x \ln \left[0, \frac{\pi}{2}\right]$ is	
	a) 3	b) 4	c) 5	d) 6
45.		$\cos^2 B + \cos^2 C - 2\cos A\cos^2 \theta$		5 1
		b) 2	c) 0	d) 3
46	a) 1 If $0 < \alpha < \pi$ and $\cos \alpha < \alpha$		ton w ia	
46.	If $0 < x < \pi$ and $\cos x + \sin x$	$\sin x = \frac{1}{2}$, then the value of		$2 + \sqrt{7}$
46.	If $0 < x < \pi$ and $\cos x + \sin x$	$\sin x = \frac{1}{2}$, then the value of		d) $-\frac{2+\sqrt{7}}{3}$
	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$	c) $-\frac{1+\sqrt{7}}{3}$	3
	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$		3
47.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x$	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so is	sin 2α is equal to d) 16/15
47.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) 64/65 The solution of the equat	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x$	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so	$\sin 2\alpha$ is equal to
47. 48.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat a) $x = (2n + 1)\frac{\pi}{2}$	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x$ b) $x = n\pi$	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$	sin 2 <i>α</i> is equal to d) 16/15 d) None of these
47. 48.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tank	sin $x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x$ b) $x = n\pi$	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ if the equation $ax^2 + bx + c$	sin 2 <i>α</i> is equal to d) 16/15 d) None of these
47. 48. 49.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tank a) $a + b = c$ The equation $\sqrt{3} \sin x + c$	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ $\frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$	sin 2 α is equal to d) 16/15 d) None of these $f = 0(a \neq 0)$, then
47. 48. 49.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $\frac{64}{65}$ The solution of the equation a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tanks a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ $\frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution	sin 2 α is equal to d) 16/15 d) None of these $f = 0(a \neq 0)$, then
47. 48. 49. 50.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equation a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tank a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{12}$ b) $x = n\pi$ b) $x = n\pi$ $\frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$	sin 2 α is equal to d) 16/15 d) None of these $f = 0(a \neq 0)$, then
47. 48. 49. 50.	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equation a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tanks a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions c) Two solutions If $\frac{\cos \theta}{a} = \frac{\sin \theta}{b}$, then $\frac{a}{\sec 2\theta}$	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ c) $x = n\pi$ c) $x = 4$ has s $+\frac{b}{\csc 2\theta}$ is equal to	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution d) Only one solution	sin 2 α is equal to d) 16/15 d) None of these $a = 0 (a \neq 0)$, then d) $b = c$
 47. 48. 49. 50. 51. 	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equation a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tank a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions If $\frac{\cos \theta}{a} = \frac{\sin \theta}{b}$, then $\frac{a}{\sec 2\theta}$ a) a	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ $\frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has s $+\frac{b}{\csc 2\theta}$ is equal to b) b	c) $-\frac{1+\sqrt{7}}{3}$ $\frac{2}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution d) Only one solution c) $\frac{a}{b}$	sin 2 α is equal to d) 16/15 d) None of these $a = 0 (a \neq 0)$, then d) $b = c$ d) $a + b$
 47. 48. 49. 50. 51. 	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equation a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tank a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions If $\frac{\cos \theta}{a} = \frac{\sin \theta}{b}$, then $\frac{a}{\sec 2\theta} = \frac{\pi}{2}$ a) a The maximum value of (x	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{12}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x$ b) $x = n\pi$ b) $x = n\pi$ P and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has s $+\frac{b}{\csc 2\theta}$ is equal to b) b $x + \pi/6) + \cos(x + \pi/6)$ in	c) $-\frac{1+\sqrt{7}}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution d) Only one solution c) $\frac{a}{b}$ the interval $(0, \pi/2)$ is attach	sin 2 α is equal to d) 16/15 d) None of these $a = 0(a \neq 0)$, then d) $b = c$ d) $a + b$ ained at
 47. 48. 49. 50. 51. 52. 	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tan- a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions If $\frac{\cos \theta}{a} = \frac{\sin \theta}{b}$, then $\frac{a}{\sec 2\theta}$ a) a The maximum value of (x a) $\pi/12$	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ c) $x = n\pi$ c) $x = n\pi$ c) $b + c = a$ c) $b + c = a$ c) $b + c = a$ c) $x = 4$ has c) $b + c = a$ c) $b + c = $	c) $-\frac{1+\sqrt{7}}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution d) Only one solution c) $\frac{a}{b}$ the interval $(0, \pi/2)$ is attached by the solution	sin 2 α is equal to d) 16/15 d) None of these $a = 0 (a \neq 0)$, then d) $b = c$ d) $a + b$
 47. 48. 49. 50. 51. 52. 	If $0 < x < \pi$ and $\cos x + s$ a) $\frac{2 - \sqrt{7}}{3}$ If α and β be between 0 a a) $64/65$ The solution of the equat a) $x = (2n + 1)\frac{\pi}{2}$ In a ΔPQR , $\angle R = \frac{\pi}{2}$. If tan- a) $a + b = c$ The equation $\sqrt{3} \sin x + c$ a) Infinity many solutions If $\frac{\cos \theta}{a} = \frac{\sin \theta}{b}$, then $\frac{a}{\sec 2\theta}$ a) a The maximum value of (x a) $\pi/12$	$\sin x = \frac{1}{2}$, then the value of b) $-\frac{4 + \sqrt{7}}{3}$ and $\frac{\pi}{2}$ and if $\cos(\alpha + \beta) = \frac{12}{15}$ b) 56/65 ion $\sin^{10} 2x = 1 + \cos^{10} x = \frac{12}{15}$ b) $x = n\pi$ b) $x = n\pi$ $\frac{P}{2}$ and $\tan \frac{Q}{2}$ are the roots of b) $b + c = a$ $\cos x = 4$ has s $+\frac{b}{\csc 2\theta}$ is equal to b) b $x + \pi/6) + \cos(x + \pi/6)$ in b) $\pi/6$ $y = a \cos^2 x + 2b \sin x \cos^2 \theta$	c) $-\frac{1+\sqrt{7}}{3}$ and $\sin(\alpha - \beta) = \frac{3}{5}$, then so c) 0 is c) $x = (2n+1)\frac{\pi}{4}$ The equation $ax^2 + bx + c$ c) $c + a = b$ b) No solution d) Only one solution c) $\frac{a}{b}$ the interval $(0, \pi/2)$ is attached by the solution	sin 2 α is equal to d) 16/15 d) None of these $a = 0(a \neq 0)$, then d) $b = c$ d) $a + b$ ained at

	a) $y = z$			
	b) $y + z = a - c$			
	c) $y - z = a - c$	• 2		
F 4	d) $(y - z) = (a - c)^2 + 4$			
54.	If $\frac{1}{6}$ sin x, cos x, tan x are ir	_	_	
	a) $n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$	5	c) $n \pi + (-1)^n \frac{\pi}{3}, n \in \mathbb{Z}$	d) None of these
55.	In a $\triangle ABC$, $a^2 \sin 2C + c^2$			
E6	a) Δ	b) 2 Δ	c) 3 Δ	d) 4 Δ
50.	$e^{\log (\cosh^{-1} 2)}$ is equal to	h h h h h h h h h h	r	d $(2 + \sqrt{r})$
57.	a) $\log(2 - \sqrt{3})$ If $x + \frac{1}{x} = 2\cos\theta$, then x^3	-, ,	c) $\log(2 + \sqrt{3})$	d) $\log(2 + \sqrt{5})$
	a) sin 3θ	b) $2 \sin 3\theta$	c) cos 3 <i>θ</i>	d) 2cos 3 <i>θ</i>
58.	If $A + B = \frac{\pi}{4}$, then $(\tan A - \frac{\pi}{4})$		-)	.,
	4′ ````````````````````````````````````		c) 2	1
	~) <u>-</u>	b) √3	·) _	d) $\frac{1}{\sqrt{3}}$
59.	The maximum value of co	s $x \left\{ \frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} \right\}$, is		
	a) 1	b) 3	c) 2	d) 4
60.	The value of $\cos \frac{\pi}{15} \cos \frac{2\pi}{15}$	$\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{6\pi}{15}\cos\frac{\pi}$	$s\frac{7\pi}{15}$, is	
	a) 1/128	b) 1/64	c) 1/16	d) None of these
61.	The side of a triangle are	$a, b, \sqrt{a^2 + b^2 + ab}$, then th	e greatest angle is	
	a) 60°	b) 90°	c) 120°	d) 135°
62.	If α , β , γ , δ are four solution	ons of the equation $tan(\theta +$	$\left(-\frac{\pi}{4}\right) = 3 \tan 3\theta$, then	
	$tan \alpha tan \beta tan \gamma tan \delta equ$	•	.,	
	a) 3	b) 1/3	c) $-\frac{1}{2}$	d) None of these
62		$C \sqrt{7}$	3	
63.	In a $\triangle ABC$ if $a = 5, b = 4$	and $\tan \frac{c}{2} = \frac{\sqrt{2}}{3}$, then $c =$		
	a) √6	b) √5	c) 6	d) 5
64.	$\tan \alpha + 2 \tan 2\alpha + 4 \tan 4$	-		
	a) $\tan 16\alpha$	b) 0	c) $\cot \alpha$	d) None of these
65.	The most general value of $\sin \theta = \cos \theta = \min_{x \in [x]} - \frac{1}{2}$	$x^2 - 4x + 6$ are given by		
	a) $\theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$			
	b) $\theta = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{4}$	$n \in Z$		
	c) $\theta = 2 n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$			
	d) None of these	- X		
66.	If $\tan\frac{x}{2} = \operatorname{cosec} x - \sin x$,	then the value of $\tan^2 \frac{x}{2}$, is		
	, , , , , , , , , , , , , , , , , , ,	b) $2 + \sqrt{5}$	c) $-2 - \sqrt{5}$	d) $-2 + \sqrt{5}$
67.	In a $\triangle ABC$, $\frac{\cos C + \cos A}{c+a} + \frac{\cos A}{b}$		1	
	a) $\frac{1}{2}$	b) $\frac{1}{b}$	c) $\frac{1}{c}$	d) $\frac{c+a}{b}$
68	a sin 12° sin 48° sin 54° is e	D	С	D
001	a) 1/16	b) 1/32	c) 1/8	d) 1/4
69.	If $\sin \alpha = \sin \beta$ and $\cos \alpha$	$= \cos \beta$, then		

	$\alpha + \beta$	$\alpha + \beta$	$\alpha - \beta$	$(\alpha - \beta)$
	2	b) $\cos \frac{\alpha + \beta}{2} = 0$	2	d) $\cos\left(\frac{\alpha-\beta}{2}\right) = 0$
70.	In triangle <i>ABC</i> , $A = 30^{\circ}$, a) $1/2$	$b = 8, a = 6$, then $B = \sin^{-1}$ b) 1/3	^{-1}x , where $x =$ c) 2/3	d) 1
71.	Consider the following st	, ,	CJ 2/3	u) I
	1. If $\operatorname{cosec} x = 1 + \cot x$,			
		sfying $\tan^2 \theta + \sec 2\theta = 1$ i	$s n\pi + \frac{\pi}{2}$	
		given above is/are correct?	2	
	a) Only (1)	b) Only (2)	c) Both (1) and (2)	d) Neither (1) nor (2)
72.	If $\cos A = \frac{3}{4}$, then $32 \sin \left(\frac{1}{4} + \frac$	$\left(\frac{A}{2}\right)\sin\left(\frac{5A}{2}\right) =$		
	a) 7	b) 8	c) 11	d) None of these
73.	-		he vertices A, B, C are in the	
74	-	b) $\cos A : \cos B : \cos C$	c) $\tan A : \tan B : \tan C$	d) None of these
74.		$n \beta = (1 + 2^{x+1})^{-1}$, then a		π
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$
75.	If $\cos \theta = \cos \alpha \cos \beta$, the	$ en \tan\left(\frac{\theta+\alpha}{2}\right) \tan\left(\frac{\theta-\alpha}{2}\right) $ is eq	ual to	
	a) $\tan^2 \frac{\alpha}{2}$	b) $\tan^2 \frac{\beta}{2}$	c) $\tan^2 \frac{\theta}{2}$	d) $\cot^2 \frac{\beta}{2}$
76.	Consider the following st	Z	2	2
	1. $\cot \theta - \tan \theta$, then $\theta =$	_		
		$+\cos x + 1 = 0$ has no sol	ution in the Ist quadrant.	
	Which of these is/are cor	rrect?		
	a) Only (1)	b) Only (2)	c) Both of these 7π	d) None of these
//.	The value of $\left(1 + \cos\frac{\pi}{8}\right)$	$\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)$	$1 + \cos \frac{\pi}{8}$ is equal to	
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{8}$	d) $\frac{1}{16}$
78.	$\frac{1-\tan^2(45^\circ - A)}{1+\tan^2(45^\circ - A)}$ is equal to	4	0	10
	$1 + \tan^2(45^\circ - A)$ is equal to a) sin 2A	b) cos 2 <i>A</i>	c) tan 2 <i>A</i>	d) cot 2 <i>A</i>
79.		$=\frac{1}{2m+1}$, then $\alpha + \beta$ is equal		uj tot ZA
		π		d) None of these
	3	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	a) None of these
80.	If $\sin\left(\frac{\pi}{4}\cot\theta\right) = \cos\left(\frac{\pi}{4}\tan\theta\right)$	$(\operatorname{an} \theta)$, then θ is equal to		
	a) $2n\pi + \frac{\pi}{4}$	b) $2n\pi \pm \frac{\pi}{4}$	c) $2n\pi - \frac{\pi}{4}$	d) $n\pi + \frac{\pi}{4}$
81.	If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, then $\frac{\tan x}{\tan x}$	Ŧ	4	4
	a) $\frac{a^2}{b^2}$	b) $\frac{a}{b}$	c) $\frac{b}{a}$	d) $\frac{a^2 + b^2}{a^2 - b^2}$
82	D	b n sin θ + 4 cos θ is equal to	u	$a^{2}-b^{2}$
02.	a) ± 1	b) 0	c) ±2	d) ±4
83.	2	= 0, then $\tan \theta_1 \tan \theta_2 \tan \theta_3$	-	
	a) 1	b) 2	c) -1	d) None of these
84.	General solution of the equation π	quation $\cot \theta - \tan \theta = 2$ is $n\pi \pi$		
	a) $n\pi + \frac{\pi}{4}$	b) $\frac{n\pi}{2} + \frac{\pi}{8}$	c) $\frac{n\pi}{2} \pm \frac{\pi}{8}$	d) None of these
85.	The value of sin36° sin 72	2° sin 108° sin 144° is equal		_
	a) $\frac{1}{4}$	b) $\frac{1}{16}$	c) $\frac{3}{4}$	d) $\frac{5}{16}$
	4	10	4	10

86.	The equation $\sin \theta = x + $	$\frac{p}{r}$ for real values of x is positive.	sible when	
	a) $p \ge 0$	b) $p \le 0$	c) $p \leq \frac{1}{4}$	d) $p \ge \frac{1}{2}$
87.	The number of values of <i>x</i>	: in [0,5 π] satisfying the eq	uation $3\cos 2x - 10\cos x$	2
	a) 5	b) 6	c) 8	d) 10
88.	$\sum_{r=1}^{n-1} \cos^2 \frac{r \pi}{n}$ is equal to			
	a) $\frac{n}{2}$	b) $\frac{n-1}{2}$	c) $\frac{n}{2} - 1$	d) None of these
00	Z	2	2	
89.	The solution of the equati	on $1 - \cos \theta = \sin \theta \sin \frac{\theta}{2}$ is		d) Novo of the sec
	a) $n\pi$, $n \in Z$	b) $2n\pi$, $n \in Z$	c) $\frac{n\pi}{2}$, $n \in Z$	d) None of these
90.	The greatest value of cos	θ for which $\cos 5\theta = 0$, is		
	a) 0	$1 + \sqrt{5}$	c) $\frac{5+\sqrt{5}}{8}$	$\sqrt{5+1}$
		b) $\frac{1+\sqrt{5}}{4}$	$\int \frac{1}{8}$	d) $\sqrt{\frac{\sqrt{5}+1}{4}}$
91.	The solution of equation of	$\cos^2\theta + \sin\theta + 1 = 0$ lies i	n the interval	,
	a) $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$	b) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$	c) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$	d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
0.0	× + +	(4 4)	(++)	(4 4)
92.		eter 10 cm is cut and placed ne wire at the center of the	d along the circumference of circle is equal to	of a circle of diameter 1 m.
			=	π
	a) $\frac{\pi}{4}$ rad	b) $\frac{\pi}{3}$ rad	c) $\frac{\pi}{5}$ rad	d) $\frac{\pi}{10}$ rad
93.	If $\cos A = \tan B$, $\cos B = t$			
04	a) $\sin 18^{\circ}$	b) $2 \sin 18^{\circ}$	c) 2 cos 18°	d) 2 cos 36°
74.	$\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} +$ a) 1	b) 0	c) 2	d) —1
95.	The equation $e^{\sin x} - e^{-\sin x}$	-	0) =	
	a) no solution	b) two solution	c) three solution	d) None of these
96.	In a triangle ABC, $\cos A +$			
	a) $1 + \frac{r}{R}$	b) $1 - \frac{r}{r}$	c) $1 - \frac{R}{r}$	d) $1 + \frac{R}{r}$
97.		K	r	r
	$\frac{1}{\cos 80^\circ} - \frac{\sqrt{3}}{\sin 80^\circ}$ is equal to			
00	a) $\sqrt{2}$	b) $\sqrt{3}$	c) 2	d) 4
98.	If $\sin A + \cos B = a$ and s $a^2 + b^2$			d) None of these
	a) $\frac{u+v}{2}$	b) $\frac{a^2 - b^2 + 2}{2}$	c) $\frac{a + b - 2}{2}$	uj None of these
99.	If in a $\triangle ABC$, $3a = b + c$,	then the value of $\cot \frac{B}{2} \cot \frac{C}{2}$	is	
	a) 1	b) √3	c) 2	d) None of these
100	. If p_1, p_2, p_3 are respective	y the perpendiculars from	the vertices of a triangle to	the opposite sides, then
	$\frac{\cos A}{p_1} + \frac{\cos B}{p_2} + \frac{\cos C}{p_3}$ is equa	l to		
	a) $\frac{1}{r}$		c) $\frac{1}{4}$	d) None of these
101	1	n a	Δ	
101	• In a triangle <i>ABC</i> , $\cos A +$	<i>L</i>		
100	a) Isosceles	b) Right angled	c) Equilateral	d) None of these
102	$\cdot \text{ If } \sin A = \frac{336}{625} \text{ where } 450^{\circ}$	$< A < 540^\circ$, then $\sin\frac{\pi}{4} =$		
	a) $\frac{3}{5}$	b) $-\frac{3}{5}$	c) $\frac{4}{r}$	d) $-\frac{4}{5}$
103	$\int 5 \sin(\pi\cos\theta) = \cot(\pi\sin\theta)$	5	5	Э
	$\frac{1}{2} \cos(n - \cos(n - \sin n)) = \cos(n - \sin n)$	4, then sim (t	4) cquais	

a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{1}{2\sqrt{2}}$	d) √2
104. The number of ordered	pairs (α, β) , where $\alpha, \beta \in (-1)$	$-\pi,\pi$) satisfying $\cos(\alpha - \beta)$) = 1 and $\cos(\alpha + \beta) = \frac{1}{2}$, is
a) 0	b) 1	c) 2	d) 4
105. If $x + \frac{1}{x} = 2 \cos \theta$, then x	$t^n + \frac{1}{r^n}$ is equal to		
a) 2 sin <i>nθ</i>	b) $2 \cos n\theta$	c) $\sin(2n\theta)$	d) $\cos(2n\theta)$
106. In a $\triangle ABC$, $\cos^2 \frac{A}{2} + \cos^2$	$\frac{B}{2} + \cos^2 \frac{C}{2} =$		
a) $2 - \frac{r}{p}$	b) $2 - \frac{r}{2P}$	c) $2 + \frac{r}{2R}$	d) None of these
107. The value of $\cos \frac{\pi}{15} \cos \frac{2\pi}{15}$	21	211	
a) $\frac{1}{26}$	b) $\frac{1}{2^{7}}$	c) $\frac{1}{2^8}$	d) None of these
108. If tan <i>A</i> and tan <i>B</i> are the	e roots of $abx^2 - c^2x + ab$	= 0 where <i>a</i> , <i>b</i> , <i>c</i> are the side	des of the triangles ABC,
then the value of $\sin^2 A$	$+\sin^2 B + \sin^2 C$ is		
a) 1	b) 3	c) 4	d) 2
109. If $x = \tan 15^\circ$, $y = \csc x$ a) $x < y < z$	$z 75^{\circ}, z = 4 \sin 18^{\circ}$ b) $y < z < x$	c) $z < x < y$	d) $x < z < y$
110. If $P = \frac{1}{2}\sin^2\theta + \frac{1}{3}\cos^2\theta$		$c_j z < x < y$	$u_{j}x < z < y$
2 5			$\sqrt{12}$ $\sqrt{12}$
a) $\frac{1}{3} \le P \le \frac{1}{2}$	b) $P \geq \frac{1}{2}$	c) $2 \le P \le 3$	d) $-\frac{\sqrt{13}}{6} \le P \le \frac{\sqrt{13}}{6}$
111. If $ k = 5$ and $0^{\circ} \le \theta \le$	360°, then the number of di	fferent solutions of 3 $\cos \theta$	$+4\sin\theta = k$ is
a) Zero	b) Two	c) One	d) Infinite
112. If $p = \cos 55^\circ$, $q = \cos 6$	5° and $r = \cos 175^{\circ}$, then t	he value of $\frac{1}{p} + \frac{1}{q} + \frac{r}{pq}$ is	
a) 0	b) -1	c) 1	d) None of these
113. If $\sin x + \csc x = 2$, th			$n n^{-2}$
a) 2 114. In a right-angled triangl	b) 2^n	c) 2^{n-1}	d) 2^{n-2}
a) 3 : 4 : 5	b) 4 : 5 : 6	c) 3 : 4 : 6	d) None of these
115. If α , $\beta(\alpha \neq \beta)$ satisfies t			
a) b/a	b) <i>c/a</i>	c) <i>a/b</i>	d) <i>c/b</i>
116. In a $\triangle ABC$, if $\frac{a}{b^2 - c^2} + \frac{c}{b^2 - c^2}$		5 1	
π	b) $\frac{\pi}{4}$	c) $\frac{2\pi}{3}$	d) $\frac{\pi}{3}$
a) $\frac{1}{2}$	4	5	$\frac{u}{3}$
117. $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 10^\circ$	$(15^{\circ} + + \sin^2 90^{\circ})$ is equal b) 9	1	1
a) $8\frac{1}{2}$	0) 9	c) $9\frac{1}{2}$	d) $4\frac{1}{2}$
118. In a $\triangle ABC$, if $C = 60^\circ$, the	$an \frac{a}{b+c} + \frac{b}{c+a} =$		
a) 2	b) 1	c) 4	d) None of these
119. The value of $\sin \frac{\pi}{14} \sin \frac{3\pi}{14}$	$\sin\frac{5\pi}{14}$ is		
a) 1/16	b) 1/8	c) 1/2	d) 1/4
120. The area of a $\triangle ABC$ is b^2	$a^2 - (c - a)^2$. Then, $\tan B =$		
a) $\frac{4}{3}$	b) $\frac{3}{4}$	c) $\frac{8}{15}$	d) None of these
121. The value of $\cos^2 76^\circ$ +	4	15	
a) 1/2	b) 0	c) -1/4	d) 3/4
122. If $\sec \theta + \tan \theta = k$, $\cos \theta$			
a) $\frac{k^2 + 1}{2k}$	b) $\frac{2k}{k^2 + 1}$	c) $\frac{k}{k^2 + 1}$	d) $\frac{k}{k^2 - 1}$
2k	K ² + 1	K ² + 1	κ 1

123. Let <i>n</i> be an odd integer.	If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ fo	r all real θ , then	
a) $b_0 = 1, b_1 = 3$		b) $b_{0=}0, b_1 = n$	
c) $b_0 = -1, b_1 = n$		d) $b_0 = 0, b_1 = n^2 - 3n - 3$	- 3
124. { $x \in R : \cos 2x + 2\cos^2 (\pi - x)$		(π)	(π)
τ J γ	b) $\left\{ n\pi \pm \frac{\pi}{6} : n \in Z \right\}$	c) $\left\{n\pi + \frac{\pi}{3} : n \in Z\right\}$	d) $\left\{2n\pi - \frac{\pi}{3} : n \in Z\right\}$
125. $1 + \sin x + \sin^2 x + \cdots = \cos^2 x + \frac{1}{2} +$	_		_
a) $x = \frac{2\pi}{3}$ or, $\frac{\pi}{3}$	0	c) $x = \frac{\pi}{6}$	d) $x = \frac{\pi}{4}$
126. The number of solutions	s of sin $x = \sin 2x$ between	$\frac{-\pi}{2}$ and $\frac{\pi}{2}$ is	
a) 3	b) 2	c) 1	d) 0
127. If $\sin(\pi \cot \theta) = \cos(\pi \tan \theta)$		0 1	
a) $\cot 2\theta = \pm \frac{1}{4}, -\frac{3}{4}$	b) $\cot 2\theta = 4, \frac{4}{3}$	c) $\cot 2\theta = -\frac{3}{4}, -\frac{1}{4}$	d) None of these
128. The value of $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15}$		1	1
a) $\frac{1}{16}$	b) $\frac{1}{8}$	c) $\frac{1}{12}$	d) $\frac{1}{4}$
129. The equation $3 \sin^2 x +$	$10\cos x - 6 = 0$ is satisfied	12	4
a) $x = n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$	b) $x = 2n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$	c) $x = n\pi \pm \cos^{-1}\left(\frac{1}{6}\right)$	d) $x = 2n\pi \pm \cos^{-1}\left(\frac{1}{6}\right)$
130. Let α , β be any two positions of β be any two	tive values of <i>x</i> for which 2 of	$\cos x$, $ \cos x $ and $1 - 3\cos x$	2 x are in GP. The minimum
value of $ \alpha - \beta $ is	π	π	
a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) None of these
131. If $\cos \theta = -\frac{1}{\sqrt{2}}$ and $\tan \theta$	$\theta = 1$, then the general value	e of θ is	
Т	b) $2(n+1)\pi + \frac{\pi}{4}$	Т	d) $n\pi \pm \frac{\pi}{4}$
^{132.} In any triangle <i>ABC</i> , $\sum \frac{si}{2}$	$\frac{n^2 A + \sin A + 1}{\sin A}$ is always greated	r than	
a) 9	b) 3	c) 27	d) None of these
133. If $\alpha + \beta + \gamma = 2\theta$, then	-	-	
a) $4\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}$	b) $4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$	c) $4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}$	d) $4 \sin \alpha \sin \beta \sin \gamma$
134. If the data given to cons	truct a triangle <i>ABC</i> are <i>a</i> =	$5, b = 7, \sin A = 3/4$, then	it is possible to construct
a) Only one triangle			
b) Two triangles			
c) Infinitely many triangd) No triangles	gies		
135. If in a $\triangle ABC$, $\angle A = \pi/3$ a	and AD is a median, then		
a) $2AD^2 = b^2 + c^2 + bc$			
b) $4AD^2 = b^2 + c^2 + bc$			
c) $6AD^2 = b^2 + c^2 + bc$	2		
d) None of these	1.1		
136. If $\tan \theta = \frac{1}{2}$ and $\tan \phi =$	5		N ()
a) $\pi/6$	b) π	c) Zero	d) π/4
137. If $a = \tan 27\theta - \tan \theta$ as			N 1 2
,	b) $a = 2b$,	d) $a + b = 2$
138. If in a triangle <i>ABC</i> , righ a) 2, 3		c = 2, then the values of $ac) 4, 3$	and <i>c</i> are respectively d) 6, 8
139. If $\frac{\pi}{2} < \alpha < \pi, \pi < \beta < \frac{3\pi}{2}$		<i>,</i>	2
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{17}{17}$ and $\tan p = \frac{1}{5}$, then the value of $\sin(p - p)$	u j 13

a) $-\frac{171}{221}$ b) $-\frac{21}{221}$ c) $\frac{21}{221}$ d) $\frac{171}{221}$ 140. If $\tan 2\theta \tan \theta = 1$, then $\theta =$ a) $n\pi + \frac{\pi}{6}, n \in Z$ b) $n\pi \pm \frac{\pi}{6}, n \in Z$ c) $2n\pi \pm \frac{\pi}{6}, n \in Z$ d) None of these 141. The value of $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$, is c) $\sqrt{7}/2$ d) $-\sqrt{7}/2$ a) √7/8 142. The perimeter of a triangle is 16 cm. One of the sides is of length 6 cm. If the area of the triangle is 12 cm², then the triangle is d) Scalene a) Right angled b) Isosceles c) Equilateral 143. If $\sin \alpha + \cos \alpha = m$, then $\sin^6 \alpha + \cos^6 \alpha$ is equal to a) $\frac{4-3(m^2-1)^2}{4}$ b) $\frac{4+3(m^2-1)^2}{4}$ c) $\frac{3+4(m^2-1)^2}{4}$ d) None of these 144. For $x \in R$ $\tan x + \frac{1}{2}\tan \frac{x}{2} + \frac{1}{2^2}\tan \frac{x}{2^2} + \dots + \frac{1}{2^{n-1}}\tan \left(\frac{x}{2^{n-1}}\right)$ is equal to a) $2 \cot 2x - \frac{1}{2^{n-1}} \cot \left(\frac{x}{2^{n-1}} \right)$ b) $\frac{1}{2^{n-1}} \cot\left(\frac{x}{2^{n-1}}\right) - 2 \cot 2x$ c) $\cot\left(\frac{x}{2n-1}\right) - \cot 2x$ d) None of these 145. The value of expression $\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ}$ is equal to c) $\frac{2}{\sqrt{3}}$ d) $\frac{\sqrt{3}}{2}$ b) $\frac{4}{\sqrt{3}}$ a) $\frac{\sqrt{3}}{4}$ 146. If $A = \sin^2 \theta + \cos^4 \theta$, then for all real values of θ b) $\frac{3}{4} \le A \le 1$ c) $\frac{13}{16} \le A \le 1$ d) $\frac{3}{4} \le A \le \frac{13}{16}$ a) $1 \le A \le 2$ 147. If $12 \cot^2 \theta - 31 \csc \theta + 32 = 0$, then the value of $\sin \theta$ is d) $\pm \frac{1}{2}$ b) $\frac{2}{2}$ or $-\frac{2}{2}$ c) $\frac{4}{5}$ or $\frac{3}{4}$ a) $\frac{3}{2}$ or 1 148. The value of $\sin 20^\circ (4 + \sec 20^\circ)$ is d) $\sqrt{3}$ b) 1 c) $\sqrt{2}$ a) 0 149. The angle θ whose cosine equals to its tangent is given by c) $\sin\theta = 2\sin 18^{\circ}$ d) $\sin\theta = 2\cos 18^{\circ}$ a) $\cos \theta = 2 \cos 18^{\circ}$ b) $\cos \theta = 2 \sin 18^{\circ}$ 150. The value of $3\left[\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi+\alpha)\right]-2\left[\sin^6\left(\frac{\pi}{2}+\alpha\right)+\sin^6(5\pi-\alpha)\right]$ is equal to d) $\sin 4\alpha + \sin 6\alpha$ a) 0 151. The most general value of θ satisfying $\tan\theta + \tan\left(\frac{3\pi}{4} + \theta\right) = 2 are$ a) $n\pi \pm \frac{\pi}{3}, n \in Z$ b) $2n\pi + \frac{\pi}{3}, n \in Z$ c) $2n\pi \pm \frac{\pi}{3}, n \in Z$ d) $n\pi + (-1)^n \frac{\pi}{3}, n \in Z$ 152. If angle θ be divided into two parts such that the tangent of one part is k times the tangent of the other and ϕ is their difference, then sin θ is equal to a) $\frac{k+1}{k-1}\sin\phi$ c) $\frac{2k-1}{2k+1}\sin\phi$ d) None of these b) $\frac{k-1}{k+1}\sin\phi$ 153. If A,B,C,D are the angles of a cyclic quadrilateral, then $\cos A + \cos B + \cos D$ is equal to a) $2(\cos A + \cos C)$ b) $2(\cos A + \cos B)$ c) $2(\cos A + \cos D)$ d) 0 154. If $\cos(\theta - \alpha) = a$, $\cos(\theta - \beta) = b$, then $\sin^2(\alpha - \beta) + 2ab\cos(\alpha - \beta) = a$ a) $a^2 + b^2$ b) $a^2 - b^2$ c) $b^2 - a^2$ d) $-a^2 - b^2$

155. If $0 < x < \pi$ and $\cos x +$	$\sin x = \frac{1}{2}$, then $\tan x$ is		
a) $\frac{(4-\sqrt{7})}{3}$	b) $-\frac{(4+\sqrt{7})}{3}$	c) $\frac{(1+\sqrt{7})}{4}$	d) $\frac{(1-\sqrt{7})}{4}$
156. If the equation $\sec\theta + \cos\theta$	osec $\theta = c$ has real roots be	tween 0 and 2 π , then	1
a) $c^2 < 8$	b) $c^2 > 8$	c) $c^2 = 8$	d) None of these
157. The set of values of θ sat	_	•	
	b) $\left[0,\frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6},2\pi\right]$	5 J L J J	d) None of these
158. In a $\triangle ABC$, $B = \frac{\pi}{8}$ and $C = \frac{\pi}{8}$	$=\frac{3\pi}{8}$. The altitude from A to	o the side <i>BC</i> , is	
a) $\frac{a}{2}$	b) 2 <i>a</i>	c) $\frac{1}{2}(b+c)$	d) <i>b</i> + <i>c</i>
159. The solution set of $(5 + 4)$	$4\cos\theta$ ($2\cos\theta + 1$) = 0 in	the interval $[0, 2\pi]$ is	
a) $\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$	b) $\left\{\frac{\pi}{3},\pi\right\}$	c) $\left\{\frac{2\pi}{3}, \frac{4\pi}{3}\right\}$	d) $\left\{\frac{2\pi}{3}, \frac{5\pi}{3}\right\}$
160. If $\cos 3x + \sin \left(2c - \frac{7\pi}{6}\right)$) = -2, then $x =$		
a) $\frac{\pi}{3}(6k+1), k \in \mathbb{Z}$	b) $\frac{\pi}{3}(6k-1), k \in \mathbb{Z}$	c) $\frac{\pi}{3}(2k+1), k \in \mathbb{Z}$	d) None of these
161. The maximum value of c	$\cos^2\left(\frac{\pi}{3}-x\right)-\cos^2\left(\frac{\pi}{3}+x\right)$	is	
a) $-\frac{\sqrt{3}}{2}$	b) $\frac{1}{2}$	c) $\frac{\sqrt{3}}{2}$	d) $\frac{3}{2}$
162. If $\alpha, \beta, \gamma \in (0, \pi/2)$, then	the value of $\frac{\sin(\alpha+\beta+\gamma)}{2}$. is	-
a) < 1	$\sin \alpha + \sin \beta + \sin \gamma'$ b) > 1	c) = 1	d) = -1
163. If $\tan \theta \tan \left(\frac{\pi}{3} + \theta\right) \tan \left(\frac{\pi}{3} + \theta\right)$,	2	u) – 1
a) 1	$_{3}^{3} + 0 = k \tan 30, \tan 4$ b) 1/3	c) 3	d) None of these
164. If $4n \alpha = \pi$, then the value	<i>)</i> 1	,	
a) 0	b) 1	c) -1	d) None of these
165. If $\alpha, \beta, \gamma \in (0, \frac{\pi}{2})$, then t			,
a) < 1	$\sin \alpha + \sin \beta + \sin \gamma$ b) > 1	c) 1	d) None of these
166. Total number of solution)		
a) 1	b) 2	c) 3	d) 4
167. If $A + B + C = 180^\circ$, the		6) 5	uji
a) 0	b) 1	c) 2	d) 3
168. If $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta$,	•	uj 5
		c) 0	π
a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) 0	d) $\frac{1}{2}$
169. If $\tan A = 2 \tan B + \cot B$			
a) $\tan B$	b) $2 \tan B$	c) $\cot B$	d) 2 cot <i>B</i>
170. If $\sin \theta + \csc \theta = 2$, th a) 2	b) 2^{10} b) 2^{10}	c) 2 ⁹	d) 10
171. If $\cos x \neq -\frac{1}{2}$, then the set	,	,	u) 10
=			π
1	b) $2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$	c) $2n\pi \pm \frac{1}{6}, n \in \mathbb{Z}$	d) $2n\pi \pm \frac{1}{2}, n \in Z$
172. If $\cosh^{-1} x = \log(2 + \sqrt{3})^2$		c) 3	d) 5
a) 2 173. The number of distinct r	b) 1 oots of the equation <i>A</i> sin ³	,	d) 5 to of which differ by 2 π is
a) 3	b) 4	c) Infinite	d) 6
174. The value of	-		-

 $\cos(270^\circ + \theta)\cos(90^\circ - \theta) - \sin(270^\circ - \theta)\cos\theta$ is a) 0 b) -1 c) 1/2175. If $2\cos\frac{A}{2} = \sqrt{1 + \sin A} + \sqrt{1 - \sin A}$, then $\frac{A}{2}$ lies between, $(n \in Z)$ d) 1 a) $2n \pi + \frac{\pi}{4}$ and $2n \pi + \frac{3\pi}{4}$ b) $2n \pi - \frac{\pi}{4}$ and $2n \pi + \frac{\pi}{4}$ c) $2n \pi - \frac{3\pi}{4}$ and $2n \pi - \frac{\pi}{4}$ d) $-\infty$ and $+\infty$ 176. If $\tan x = \frac{b}{a}$, then the value of $a \cos 2x + b \sin 2x$ is a) 1 b) *ab* c) *b* d) a 177. The maximum value of $1 + 8 \sin^2 x^2 \cos^2 x^2$, is a) 3 b) -1 c) -8 d) 9 178. If in a $\triangle ABC$, $\sin^3 A + \sin^3 B + \sin^3 C = 3 \sin A \sin B \sin C$, then $\begin{vmatrix} b & c & a \\ c & a & b \end{vmatrix} =$ a) () b) $(a + b + c)^3$ c) (a + b + c)(ab + bc + ca)d) None of these 179. The minimum value of $9 \tan^2 \theta + 4 \cot^2 \theta$ is a) 13 b) 9 c) 6 d) 12 180. The maximum value of $4 \sin^2 x - 12 \sin x + 7$ is a) 25 b) 4 c) Does not exist d) None of these 181. If $f: R \to S$ defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$, is onto, then the interval of S is b) [-1,1] a) [0, 3] c) [0, 1] d) [-1,3] 182. If $y = \frac{\sec^2 \theta - \tan \theta}{\sec^2 \theta + \tan \theta}$, then d) None of these c) $-3 < y < -\frac{1}{3}$ a) $\frac{1}{3} < y < 3$ b) *y* ∉ [1/3,3] 183. If $\sin \theta$, $\cos \theta$ are the roots of $ax^2 - bx + c = 0$ then c) $a^2 + b^2 = c^2$ d) $b^2 + a^2 = 2ac$ a) $a^2 + b^2 = 2ac$ b) $a^2 - b^2 = 2ac$ 184. If $\sqrt{2} \sec \theta + \tan \theta = 1$, then the general value of θ is c) $2n\pi - \frac{\pi}{4}$ d) $2n\pi \pm \frac{\pi}{4}$ a) $n\pi + \frac{3\pi}{4}$ b) $2n\pi + \frac{\pi}{4}$ The number of ordered pairs (x, y) where $x, y \in [0, 10]$ satisfying $\left(\sqrt{\sin^2 - \sin x + \frac{1}{2}}\right) \cdot 2^{\sec^2 y} \le 1$ is 185. b) 16 a) 0 c) Infinite d) 12 186. The value of the series $\cos 12^{\circ} + \cos 84^{\circ} + \cos 132^{\circ} + \cos 156^{\circ}$ is d) $-\frac{1}{2}$ b) $\frac{1}{4}$ c) $-\frac{1}{4}$ a) $\frac{1}{2}$ 187. The equation $\cos^4 x - (\lambda + 2) \cos^2 x - (\lambda + 3) = 0$ possesses a solution, if a) $\lambda > -3$ b) $\lambda < -2$ c) $-3 \le \lambda \le -2$ d) λ is any positive integer 188. If sin 5 x + sin 3 x + sin x = 0, then the value of x other than zero, lying between $0 \le x \le \frac{\pi}{2}$ is c) $\frac{\pi}{3}$ b) $\frac{\pi}{12}$ a) $\frac{\pi}{6}$ d) $\frac{\pi}{4}$ 189. If $0 \le x \le \pi/2$ and $81^{\sin^2 x} + 81^{\cos^2 x} = 30$, then *x* is equal to

a) $\frac{\pi}{6}, \frac{\pi}{3}$ b) $\frac{\pi}{3}, \frac{5\pi}{2}$ c) $\frac{5\pi}{6}, \frac{\pi}{6}$ d) $\frac{2\pi}{3}, \frac{\pi}{3}$ 190. In a $\triangle ABC$, if $c = 2, A = 120^{\circ}, a = \sqrt{6}$, then C =a) 30° b) 60° c) 45° d) None of these 191. If $\sin 6\theta = 32 \cos^5 \theta \sin \theta - 32 \cos^3 \theta \sin \theta + 3x$, then x is equal to b) $\cos 2\theta$ a) $\cos \theta$ c) $\sin\theta$ d) sin 2θ 192. If $x \cos \theta = y \cos \left(\theta + \frac{2\pi}{3}\right) = z \cos \left(\theta + \frac{4\pi}{3}\right)$, then the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal to d) $3\cos\theta$ a) 1 c) 0 193. Let *A* and *B* denote the statements A: $\cos \alpha + \cos \beta + \cos \gamma = 0$ $B:\sin\alpha + \sin\beta + \sin\gamma = 0$ If $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}$, then a) *A* is true and *B* is false b) *A* is false and *B* is true d) Both A and B are false c) Both A and B are true 194. If sin *x* cos *x* cos $2x = \lambda$ has a solution, then λ lies in the interval a) [-1/4, 1/4]b) [-1/2, 1/2] c) $(-\infty, -1/4] \cup [1/4, \infty)$ d) $(-\infty, -1/2] \cup [1/2, \infty)$ 195. The value of $1 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ$ is equal to a) 2 cos 28° cos 29° cos 33° b) 4 cos 28° cos 29° sin 33° c) 4 cos 28° cos 29° cos 33° d) 2 cos 28° cos 29° sin 33° 196. Consider the following statements: 1. If $\sin A = \sin B$, then we have $\sin 2A = \sin 2B$ always 2. The value of $\cos \frac{\pi}{7} \cos \frac{4\pi}{7} \cos \frac{5\pi}{7}$ is $\frac{1}{4}$ Which of the statements given above is/are correct? a) Only(1) b) Only (2) c) Both (1)and (2) d) Neither (1)nor(2) 197. $\cos 2x + k \sin x = 2k - 7$ has a solution for c) 4 < *k* < 7 a) $2 \le k \le 6$ b) 1 < *k* < 7 d) None of these 198. If $A + B + C = \frac{3\pi}{2}$, then $\cos 2A + \cos 2B + \cos 2C =$ a) $1 - 4 \cos A \cos B \cos C$ b) $4 \sin A \sin B \sin C$ c) $1 + 2 \cos A \cos B \cos C$ d) $1 - 4 \sin A \sin B \sin C$ 199. The sides of a triangle are 13, 14, 15 then the radius of its in-circle is d) 24 a) 67/8 b) 65/4 c) 4 200. For $x \in IR$, $3\cos(4x - 5) + 4$ lies in the interval a) [1, 7] b) [4, 7] c) [0, 7] d) [2, 7] 201. If $\cos x - \sin \alpha \cot \beta \sin x = \cos \alpha$, then $\tan \frac{x}{2}$ is equal to a) $\cot \frac{\alpha}{2} \tan \frac{\beta}{2}$ b) $-\tan \frac{\alpha}{2} \cot \frac{\beta}{2}$ c) $-\tan\frac{\alpha}{2}\tan\frac{\beta}{2}$ d) $\cot \frac{\alpha}{2} \cot \frac{\beta}{2}$ 202. The value of $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ$ is equal to b) $\frac{5}{16}$ a) $-\frac{3}{16}$ c) $\frac{3}{16}$ d) $-\frac{5}{16}$ 203. The value of $\sin(\pi + \theta) \sin(\pi - \theta) \csc^2 \theta$ is equal to a) -1 b) 0 c) $\sin \theta$ d) None of these 204. If the equation $\sin \theta (\sin \theta + 2 \cos \theta) = a$ has a real solution, then the shortest interval containing 'a' is

a)
$$\left[\frac{1-\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}\right]$$
 b) $\left(\frac{\sqrt{5}-1}{2},\frac{\sqrt{5}+1}{2}\right)$ c) $(-1/2,1/2)$ d) None of these
205. If tan 0, 2 tan 0 + 2, 3 tan 0 + 3 are in GP, then the value of $\frac{-7-3\cos(0)}{0-4\sqrt{50}(6-1)}$ is
a) $\frac{12}{5}$ b) $-\frac{33}{28}$ c) $\frac{33}{100}$ d) $\frac{12}{13}$
206. If $\cos A = \frac{3}{4}$, then the value of $\sin \frac{4}{2}\sin \frac{54}{2}$ is
a) $\frac{1}{32}$ b) $\frac{11}{8}$ c) $\frac{1}{12}$ d) $\frac{11}{16}$
207. If $\cos A + \cos B + \cos C = 0$, then $\cos 3A + \cos 3B + \cos 3C$ is equal to
a) $\cos A \cos B \cos C$ b) 12 $\cos A \cos B \cos C$ c) 0 d) 8 $\cos^3 A \cos^3 B \cos^3 C$
208. The value of $\tan 92\frac{1}{2}$ is
a) $\sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$ b) $(\sqrt{3} + \sqrt{2})(\sqrt{2} - 1)$ c) $-(\sqrt{3} + \sqrt{2})(\sqrt{2} + 1)$ d) None of these
209. If $x = r\sin 0 \cos \phi, y = r\sin 0 \sin \phi$ and $z = r\cos 0$, then the value of $x^2 + y^2 + z^2$ is independent of
a) θ, ϕ b) r, θ c) r, ϕ alue of $2x^2 + y^2 + z^2$ is independent of
a) θ, ϕ b) $120 + \sqrt{3} + \sqrt{4} + \sqrt{5}$ b) $(\sqrt{3} + \sqrt{2})(\sqrt{2} - 1)$ c) $-(\sqrt{3} + \sqrt{2})(\sqrt{2} + 1)$ d) None of these
209. If $x = r\sin 0 \cos \phi, y = r\sin 0 \sin \phi$ and $z = r\cos 0$, then the value of $x^2 + y^2 + z^2$ is independent of
a) θ, ϕ b) r, θ c) r, ϕ alue of z in $y^2 - z^2 + z$

a) $0 \le x \le \frac{\pi}{2}$	b) $0 \le x \le \pi$	c) For all $x \in R$	d) $x \ge 0$
^{224.} The value of the series	$x \log_e a + \frac{x^3}{2!} (\log_e a)^3 + \frac{x^5}{5!}$	$(\log_e a)^5 +$ is	
a) $\cosh(x \log_e a)$	b) $\operatorname{coth}(x \log_e a)$	c) $\sinh(x \log_e a)$	d) $tanh(x \log_e a)$
225. If $3\tan(\theta - 15^\circ) = \tan(\theta - 15^\circ)$			π
a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	c) $\frac{3\pi}{4}$	d) $\frac{\pi}{6}$
226. If <i>ABCD</i> is a convex qua	adrilateral such that 4 sec A	+5 = 0 then the quadratic	equation whose roots are
$\tan A$ and $\operatorname{cosec} A$ is	0		
a) $12x^2 - 29x + 15 =$ b) $12x^2 - 11x - 15 =$			
c) $12x^2 + 11x - 15 =$			
d) None of these			
227. The smallest value of 5			1) 17
a) 5 228. The values of <i>x</i> satisfyi	b) 12 ng the system of equations	c) 7	d) 17
-	$\cos^2 y = 4$ are given by		
	and $y = 2n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$		
0	and $y = 2n \pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}$		
(, , , , , , , , , , , , , , , , , , , ,		
0	nd $y = 2n \pi \pm \frac{2\pi}{3}, n \in Z$		
d) $x = n \pi + (-1)^{n+1} \frac{\pi}{6}$	$\frac{1}{2}$ and $y = 2n \pi \pm \frac{2\pi}{3}$, $n \in \mathbb{Z}$		
^{229.} If $\cos \theta = -\frac{\sqrt{3}}{2}$ and $\sin \theta$	$\alpha = -\frac{3}{5}$, where θ does not li	e in the third quadrant, ther	
a) $\frac{7}{22}$	b) $\frac{5}{22}$	c) $\frac{9}{22}$	d) $\frac{22}{5}$
230. The expression $2 \cos \frac{\pi}{13}$	$\cos \frac{9\pi}{12} + \cos \frac{3\pi}{12} + \cos \frac{5\pi}{12}$ is e	qual to	5
a) -1	b) 0	c) 1	d) None of these
231. In a $\triangle ABC$, if $b = 20, c$	= 21 and $\sin A = \frac{3}{5}$, then <i>a</i> =	=	
a) 12	b) 13	c) 14	d) 15
232. The value of $\cos^2 \frac{\pi}{16} + c$	$\cos^2\frac{3\pi}{16} + \cos^2\frac{5\pi}{16} + \cos^2\frac{7\pi}{16}$		
a) 2	b) 1	c) 0	d) None of these
233. If $\cos(\alpha + \beta) = \frac{4}{5}$, $\sin(\alpha + \beta) = \frac{4}{5}$			
a) $\frac{16}{63}$	b) $\frac{56}{33}$	c) $\frac{28}{33}$	d) None of these
$234. \cos 2\theta + 2 \cos \theta$ is alwa	33	55	
a) Greater than $-\frac{3}{2}$			
b) Less than or equal to	$\frac{3}{2}$		
c) Greater than or equa	al to $-\frac{3}{2}$ and less than or equ	ial to 3	
d) None of the above			
235. If $A = 130^{\circ}$ and $x = sir$		a) $\alpha = 0$	d $x > 0$
a) $x > 0$ 236. The set of values of x ir	b) $x < 0$ ($-\pi, \pi$) satisfying the ineq	c) $x = 0$ wation $ 4 \sin x - 1 < \sqrt{5}$ is	d) $x \ge 0$
a) $(-\pi/10, 3\pi/10)$		c) $(-\pi,\pi)$	d) $(-\pi, 3\pi/10)$
237. If $\sin A = n \sin B$, then		·	

1 _ P	$\Lambda = R$	1 _ P	
a) $\sin \frac{A-B}{2}$	b) $\tan \frac{A-B}{2}$	c) $\cot \frac{A-B}{2}$	d) None of these
238. In a $\triangle ABC$, $\frac{s}{R} =$			
a) $\sin A + \sin B + \sin C$	b) $\cos A + \cos B + \cos C$	c) $\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}$	d) None of these
239. Which of the following	relations is possible?		
a) $\sin\theta = \frac{5}{3}$			
b) $\tan \theta = 100^2$			
c) $\cos \theta = \frac{1+p^2}{1-p^2}, (p \neq 1)$	±1)		
d) $\sec \theta = \frac{1}{2}$			
240. The value of $\cos \frac{\pi}{7} \cos \frac{2\pi}{7}$	$\cos \frac{3\pi}{7}$, is		
a) $\frac{1}{8}$	b) $-\frac{1}{8}$	c) 1	d) 0
241. The number of solution			
a) 0 242. The value of sin 12° sin	b) 1 48° sin 54° is equal to	c) 2	d) 3
a) $\frac{1}{16}$	b) $\frac{1}{22}$	c) $\frac{1}{9}$	d) $\frac{1}{4}$
16 243. If p is the product of the	32	0	4
the angles are roots of t		, and q the product of them	cosines, then tangents of
a) $qx^3 - px^3 + (1+q)$			
b) $px^3 - qx^2 + (1+p)$ c) $(1+q)x^3 - px^2 + q$	•		
d) None of these	v p o		
244. The value of cos 480°. s		' is equal to	
a) 0	b) 1	c) $\frac{1}{2}$	d) —1
245. If $\cos p \theta = \cos q \theta$, $p \neq$		2 7	
	b) $\theta = \frac{2 n \pi}{p \pm q}, n \in Z$	1 1	d) None of these
246. The most general soluti π		$1 = (\sqrt{2} - 1) \tan x$ are give	
a) $n\pi + \frac{\pi}{8}$	b) $2n\pi$, $2n\pi + \frac{\pi}{4}$	c) 2 <i>n</i> π	d) None of these
247. If $x = \tan 15^\circ$, $y = \cos \theta$			
a) <i>x</i> < <i>y</i> < <i>z</i> 248. The number of points o		c) $z < x < y$ $y = \sin x$, in $-2\pi < x < 2\pi$	
a) 1	b) 2	c) 3	d) 4
249. If $A + B = C$, then $\cos^2 A$			2
a) 1 250. The number of solution	b) 2 s of the equation $ \cos x = 2$	c) 0 2[x]. where [·] is the greate	d) 3 st integer. is
a) One	b) Two	c) Infinite	d) nil
^{251.} The number of values o	f θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ s	atisfying the equation $(\sqrt{3})$	$\int_{0}^{\sec^2\theta} = \tan^4\theta + 2\tan^2\theta$ is
a) 1	b) 2	c) 3	d) None of these
$^{252.}$ Let <i>n</i> be a positive integration of the second	ger such that $\sin \frac{\pi}{2n} + \cos \frac{\pi}{2n}$	$=\frac{\sqrt{n}}{2}$. Then	
a) $n = 6$	b) $n = 1, 2, 3, \dots, 8$		d) None of these
253. If $\cos 2x = (\sqrt{2} + 1) \left(\cos 2x - \frac{1}{2} \right) \left($	$\left(\cos x - \frac{1}{\sqrt{2}} \right), \cos x \neq \frac{1}{2}, \text{ then } x$	$\in I$	

a) $\{2n\pi \pm \frac{\pi}{2} : n \in Z\}$	b) $\left\{2n\pi \pm \frac{\pi}{6} : n \in Z\right\}$	c) $\{2n\pi \pm \frac{\pi}{2} : n \in Z\}$	d) $\left\{2n\pi \pm \frac{\pi}{2} : n \in Z\right\}$
254. $\tan \alpha + 2 \tan 2\alpha + 4 \tan \alpha$	ξ 0 γ	y (2)	y (4)
a) $\tan 16\alpha$	b) 0	c) $\cot \alpha$	d) None of these
255. In a triangle <i>ABC</i> , if $a =$	2, $B - 60^{\circ}$ and $C = 75^{\circ}$, the	n b =	
a) √3	b) √6	c) √9	d) $1 + \sqrt{2}$
256. The smallest positive va	lues of <i>x</i> and <i>y</i> which satisfy	$y \tan(x-y) = 1, \sec(x+y)$	$=\frac{2}{\sqrt{3}}$ are
a) $x = \frac{25 \pi}{24}, y = \frac{7 \pi}{24}$	b) $x = \frac{37 \pi}{24}$, $y = \frac{19 \pi}{24}$	c) $x = \frac{\pi}{4}, y = \frac{\pi}{2}$	d) $x = \frac{\pi}{3}, y = \frac{7\pi}{12}$
257. If $\sqrt{3}\sin\theta + \cos\theta > 0$, t	hen $ heta$ lies in the interval		
	b) $(-\pi/6, 5\pi/6)$		d) None of these
258. If $\frac{\cos A}{3} = \frac{\cos B}{4} = \frac{1}{5}, -\frac{\pi}{2} < $	$A < 0, -\frac{\pi}{2} < B < 0$ then the	the value of $2 \sin A + 4 \sin B$	is
a) 4	b) —2	c) -4	d) 0
259. The smallest positive ro	•	_	/2 ~
a) $\left(0,\frac{\pi}{2}\right)$	b) $(\pi, \frac{3\pi}{2})$	c) $\left(\frac{\pi}{2},\pi\right)$	d) $\left(\frac{3\pi}{2}, 2\pi\right)$
260. The expression $\tan^2 \alpha$ +	$\cot^2 \alpha$, is		
a) ≥ 2	b) ≤ 2	c) ≥ −2	d) None of these
261. The most general solution π π			ππ
1 0	b) $\theta = n\pi \pm \frac{\pi}{4} - \frac{\pi}{6}$	c) $\theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{6}$	d) $\theta = 2n\pi \pm \frac{\pi}{4} - \frac{\pi}{6}$
262. The value of $\sin 50^\circ$ – si		4	1
a) 0	b) 1	c) $\frac{1}{2}$	d) $\frac{1}{\sqrt{2}}$
263. In a triangle ABC, sin A -	$-\cos B = \cos C$, then angle.	2	VZ
π	b) $\frac{\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{6}$
a) $\frac{1}{2}$	5	1	^u) ₆
264. The solution of the equa a) $x = 2n\pi$			d) None of the above
$265. \text{ In a } \Delta ABC,$	b j x = nn + 1	C = (n + 2)n	uj none of the above
$\sin A + \sin B + \sin C = 1$	$1 + \sqrt{2}$		
and, $\cos A + \cos B + \cos$	$C = \sqrt{2}$		
if, the triangle is			
a) Equilateral	b) Isosceles	c) Right angled	d) Right angled isosceles
266. $\tan \frac{2\pi}{5} - \tan \frac{\pi}{15} - \sqrt{3} \tan \frac{\pi}{5}$	$\frac{2\pi}{5}$ tan $\frac{\pi}{15}$ is equal to		
a) $-\sqrt{3}$	b) $\frac{1}{\sqrt{3}}$	c) 1	d) √3
267. The general solution of t	the equation $\tan 3x = \tan 5x$	x is	
a) $x = \frac{n\pi}{2}$, $n \in Z$	b) $x = n \pi, n \in Z$	c) $x = (2n + 1)\pi, n \in Z$	d) None of these
268. If $\tan \theta + \tan 4 \theta + \tan 7$	$\theta = \tan \theta \tan 4 \theta \tan 7 \theta$, th	then $\theta =$	
a) $\frac{n\pi}{4}$, $n \in Z$	b) $\frac{n\pi}{7}$, $n \in Z$	c) $\frac{n\pi}{12}$, $n \in \mathbb{Z}$	d) $n \pi, n \in Z$
1	/	12	
$\frac{269.\sin^2 3A}{\sin^2 A} - \frac{\cos^2 3A}{\cos^2 A} =$			
a) cos 2 <i>A</i>	b) 8 cos 2 <i>A</i>	c) 1/8 cos 2 <i>A</i>	d) None of these
270. If in a $\triangle ABC$, $3 \sin A = 6$			
a) 0°	b) 30°	c) 60°	d) 90°
271. If $x = y \cos \frac{2\pi}{3} = z \cos \frac{4\pi}{3}$, then $xy + yz + zx =$		
a) —1	b) 0	c) 1	d) 2

272. If $\alpha + \beta - \gamma = \pi$, then sin			
a) $2 \sin \alpha \sin \beta \cos \gamma$ 273. If $0 < A < \frac{\pi}{6}$ and $\sin A +$		c) $2 \sin \alpha \sin \beta \sin \gamma$	d) None of these
0			d) None of these
a) $\frac{\sqrt{7}-2}{3}$	b) $\frac{\sqrt{7}+2}{3}$	c) $\frac{\sqrt{7}}{3}$	d) None of these
274. If $A + B + C = 0$, then the	0	$\cot(C + A - B)$ is equal to	
a) 0	b) 1	c) -1	d) 2
275. If $A + B = \frac{\pi}{4}$, then $(\tan A)$		_	
a) 1	b) 2	c) $\sqrt{3}$	d) -1
276. If $\cos x + \cos y + \cos \alpha =$	$= 0 \text{ and } \sin x + \sin y + \sin \alpha$	= 0, then $\cot\left(\frac{x+y}{2}\right)$ is equ	
a) sin α	b) $\cos \alpha$	c) $\cot \alpha$	d) $\sin\left(\frac{x+y}{2}\right)$
277. In a $\triangle ABC$, if $a = 8, b = 2$	10 and $c = 12$, then C is equ	ial to	
a) $\frac{A}{2}$	b) 2 <i>A</i>	c) 3 <i>A</i>	d) None of these
278. If $-\frac{\pi}{2} < x < \frac{\pi}{2}$, then the v	value of log sec <i>x</i> is		
a) $2 \operatorname{coth}^{-1} \left(\operatorname{cosec}^2 \frac{x}{2} - 1 \right)$	l)	b) $2 \operatorname{coth}^{-1} \left(\operatorname{cosec}^2 \frac{x}{2} + 1 \right)$)
c) 2 cosech ⁻¹ $\left(\cot^2 \frac{x}{2} - 1 \right)$	1)	d) 2 cosech ⁻¹ $\left(\cot^2 \frac{x}{2} + 1 \right)$)
279. The most general value of	of $ heta$ satisfying the equations	$\sin \theta = \sin \alpha$ and $\cos \theta = \frac{1}{2}$	$\cos \alpha$ is
a) $2n\pi + \alpha$	b) $2n\pi - \alpha$	c) $n\pi + \alpha$	d) $n\pi - \alpha$
280. If in a \triangle ABC, sides a, b, c	are in A.P., then $\tan\frac{A}{2}\tan\frac{C}{2}$		
a) 1/4	b) 1/3	c) 3	d) 4
281. The number of solutions interval $[0, 2\pi]$ is	of the pair of equations 2 s	$\ln^2 \theta - \cos 2\theta = 0$ and 2 co	$S^2 \theta - 3 \sin \theta = 0$ in the
a) Zero	b) One	c) Two	d) Four
282. If $A = \tan 6^{\circ} \tan 42^{\circ}$ and			
a) $A = 2B$	b) $A = \frac{1}{3}$	c) $A = B$	d) $3A = 2B$
283. If in a $\triangle ABC$, $\triangle = a^2 - (b^2)$	$(-c)^2$, then $\tan A =$		
a) 15/16	b) 8/15	c) 8/17	d) 1/2
284. sin 47° – sin 25° + sin 62 a) cos 7°	$1^{\circ} - \sin 11^{\circ} =$ b) sin 7°	c) 2 cos 7°	d) 2 sin 7°
285. If $\sin^3 x \sin 3x = \sum_{m=0}^n C_n$	-		•
value of <i>n</i> equals		0 I	
a) 2	b) 4	c) 6	d) 8
286. If $\cos x = \tan y$, $\cos y = 1$			d) $2 \sin 10^{\circ}$
a) 2 cos 18° 287. The value of $\frac{\cot 54^\circ}{\tan 36^\circ} + \frac{\tan 2}{\cot 7}$	b) $\cos 18^{\circ}$	c) sin 18°	d) 2 sin 18°
a) 0 $\tan \theta \cos \theta \tan 36^\circ$ cot 2	^{70°} ¹³ b) 2	c) 3	d) 1
288. The value of $\frac{\cot x - \tan x}{\cot 2x}$ is	0)2		u) I
a) 1	b) 2	c) —1	d) 4
289. If $3 \cos x \neq 2 \sin x$, then	the general solution of sin ²		
a) $n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z}$		b) $\frac{n\pi}{2}$, $n \in Z$	
c) $(4n \pm 1)\frac{\pi}{2}, n \in \mathbb{Z}$		d) $(2n-1)\pi$, $n \in Z$	
290. $\frac{1+\tanh\frac{x}{2}}{1-\tanh\frac{x}{2}}$ is equal to			

. − <i>″</i>			$12 \circ 12^{1/2}$
a) e^{-x}	b) <i>e^x</i>	c) $2e^{x/2}$	d) $2e^{-x/2}$
291. 2 tanh ⁻¹ $\frac{1}{2}$ is equal to			
a) 0	b) $\log 2$	c) $\log 3$	d) log 4
292. If $cos(\alpha + \beta) sin(\gamma + \delta)$ a) $cot \alpha$	$= \cos(\alpha - \beta) \sin(\gamma - \delta), \text{ th}$ b) $\cot \beta$	c) $\cot \delta$	d) $\cot(\alpha + \beta + \gamma + \delta)$
293. If $a \cos^3 \alpha + 3a \cos \alpha \sin \alpha$		•	
to			
a) 2 <i>a</i> ²	b) 2 <i>a</i> ^{1/3}	c) 2a ^{2/3}	d) 2 <i>a</i> ³
294. If $x \sin \theta = y \cos \theta = \frac{2z t}{1-t}$	$\frac{\tan\theta}{\tan^2\theta}$, then $4z^2(x^2+y^2)$ is e	equal to	
a) $(x^2 + y^2)^3$		c) $(x^2 - y^2)^2$	d) $(x^2 + y^2)^2$
295. The solution of $\tan 2\theta$ ta	$n \theta = 1 is 22$		
a) $\frac{\pi}{2}$	b) $(6n \pm 1)\frac{\pi}{6}$	c) $(4n \pm 1)\frac{\pi}{6}$	d) $(2n + \pi)\frac{\pi}{6}$
296. Set of values of <i>x</i> lying in	0	0	tains
a) $\left(0,\frac{\pi}{6}\right) \cup \left(\pi,\frac{7\pi}{6}\right)$		c) $\frac{\pi}{6}$	d) None of these
297. If $\tan\left(\frac{x}{2}\right) = \operatorname{cosec} x - \sin x$	x , then the value of tan ² $\left(\frac{x}{2}\right)$	$\left(\frac{x}{2}\right)$ is	
(2)	b) $2 + \sqrt{5}$		d) $-2 + \sqrt{5}$
298. If $5\cos 2\theta + 2\cos^2\frac{\theta}{2} + 1$			
	8	0	π (3)
5	b) $\frac{\pi}{3}$, cos ⁻¹ $\left(\frac{3}{5}\right)$	(3)	3 (3)
299. If $\tan \alpha$, $\tan \beta$, $\tan \gamma$ are the second	ne roots of the equation x^3	$-px^2 - r = 0$, then the val	ue of $(1 + \tan^2 \alpha)(1 +$
$\tan 2\beta 1 + \tan 2\gamma$ is equal t			
a) $(p-r)^2$ 300. $\cos^4 \theta - \sin^4 \theta$ is equal t		c) $1 - (p - r)^2$	d) None of these
		θ	
a) $1 + 2\sin^2\frac{\theta}{2}$	b) $2\cos^2\theta - 1$	c) $1 - 2\sin^2\frac{\theta}{2}$	d) $1 + 2\cos^2\theta$
301. The value of $\sqrt{3}$ cosec 20	$^{\circ}$ – sec 20 $^{\circ}$ is equal to		
a) 2	~) =	c) 4	d) -4
302. If θ lies in the first quadr			ρ ρ
a) $\frac{b}{2} < \tan\left(\frac{b}{2}\right)$	b) $\frac{\theta}{2} < \sin\frac{\theta}{2}$	c) $\theta \cos^2\left(\frac{\theta}{2}\right) < \sin\theta$	d) $\theta \sin \frac{\theta}{2} < 2 \sin \frac{\theta}{2}$
303. Number of solutions of	$ x-1 = \cos x$ is		
a) 2	b) 3	c) 4	d) None of these
304. If $5\cos x + 12\cos y = 13$			J) 12
a) 12	b) $\sqrt{120}$	c) $\sqrt{20}$	d) 13
305. If $\cos \theta = \frac{8}{17}$ and θ lies in	the I st quadrant, then the	value of $\cos(30^\circ + \theta) + \cos(30^\circ + \theta)$	$s(45^\circ - \theta) + \cos(120^\circ - \theta)$
is $22 \left(\sqrt{2} - 4 \right)$			
a) $\frac{23}{17} \left(\frac{\sqrt{3}-1}{2} + \frac{1}{\sqrt{2}} \right)$	b) $\frac{23}{17} \left(\frac{\sqrt{3}+1}{2} + \frac{1}{\sqrt{2}} \right)$	c) $\frac{23}{17} \left(\frac{\sqrt{3}-1}{2} - \frac{1}{\sqrt{2}} \right)$	d) $\frac{23}{17} \left(\frac{\sqrt{3}+1}{2} - \frac{1}{\sqrt{2}} \right)$
$306. \cos 1^\circ + \cos 2^\circ + \cos 3^\circ +$			
a) 1	b) 0 $B = C$	c) 2	d) -1
307. In any $\triangle ABC$, if $\cot \frac{A}{2}$, con			
a) A. P. 200 The supression (1 + tan	b) G. P. $(1 + \tan^2 u)(1 + \cot u) + \cot u$	c) H.P. 2 where the presitive values	d) None of these
308. The expression $(1 + \tan \pi)$			
a) $0 \le x \le \frac{\pi}{2}$	b) $0 \le x \le \pi$	c) For all $x \in R$	d) $x \ge 0$
309. The value of $\cos^4\frac{\pi}{8} + \cos^4\frac{\pi}{8}$	$4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}$, is		

a) 0	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) 1
310. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$	2	2	
a) $\cos\frac{\pi}{4}$	4	c) $\cos\frac{\pi}{8}$	d) None of these
311. If the angles <i>A</i> , <i>B</i> , <i>C</i> of a			
a) A.P.	b) H.P. $\sin x + i \cos 2x$ and $\cos x$	c) G.P. $i \sin 2 x$ are conjugate to a	d) None of these
312. If the complex numbers a) $n \pi$	b) $\left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$	c) 0	d) None of these
313. The most general solution	ons of the equation $\sec x - $	$1 = (\sqrt{2} - 1) \tan x$ are give	n by
a) $n\pi + \frac{\pi}{8}$	b) $2n\pi$, $2n\pi + \frac{\pi}{4}$	c) 2 <i>n</i> π	d) None of these
314. If $\tan A = 2 \tan B + \cot B$	· · ·		
a) $\tan B$	b) $2 \tan B$	c) $\cot B$	d) 2 cot <i>B</i>
315. If $n = 1, 2, 3,,$ then cos			$\sin 2^n \alpha$
a) $\frac{\sin 2n\alpha}{2n\sin \alpha}$	b) $\frac{\sin 2^n \alpha}{2^n \sin 2^{n-1} \alpha}$	c) $\frac{\sin 4}{4^{n-1}\sin \alpha}$	d) $\frac{\sin 2^n \alpha}{2^n \sin \alpha}$
316. If $x \sin^3 \theta + y \cos^3 \theta = s$			
a) 2	b) 0	c) 3	d) 1
317. If $\tan \alpha/2$ and $\tan \beta/2$ a	re the roots of the equation	$8x^2 - 26x + 15 = 0$ then	
$\cos(\alpha + \beta)$ is equal to			
a) $-\frac{627}{725}$	b) $\frac{627}{725}$	c) -1	d) None of these
318. If $0 \le x \le \pi$ and $81^{\sin^2 x}$	$x^{2} + 81^{\cos^2 x} = 30$, then x is e	equal to	
a) $\frac{\pi}{6}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{4}$	d) $\frac{3\pi}{4}$
0	2	4	u) <u>4</u>
319. If 32 $\tan^8 \theta = 2\cos^2 \alpha$ –			π
a) $2 n \pi, n \in Z$	b) $2 n \pi \pm \frac{2 \pi}{3}, n \in Z$	c) $2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$	d) $n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$
$320. \frac{\cos x}{\cos(x-2y)} = \lambda \Rightarrow \tan(x - x)$	(y) tan y is equal to	_	_
a) $\frac{1+\lambda}{1-\lambda}$	b) $\frac{1-\lambda}{1+\lambda}$	c) $\frac{\lambda}{1+\lambda}$	d) $\frac{\lambda}{1-\lambda}$
$\frac{1-\lambda}{321}$. If $\sin 3\theta = 4\sin \theta$ (\sin^2	1 1	1 1 1	1 - n
		c) $\left\{ n \pi \pm \frac{\pi}{2} : n \in Z \right\}$	
			y (4)
322. If in a triangle <i>ABC</i> , $b +$			
a) 1 323 If sin 0 + and 0 = $\sqrt{2}$ and	b) -1	c) 2	d) None of these
323. If $\sin \theta + \cos \theta = \sqrt{2} \cos \theta$ a) $\sqrt{2} \cos \theta$		c) $\sqrt{2}(\cos\theta + \sin\theta)$	d) None of these
324. The equation $\sin x + \sin x$	-	,	-
a) One solution		c) Four sets of solution	d) No solution
325. The value of $\sin \frac{\pi}{16} \sin \frac{3\pi}{16}$,	,
a) $\frac{\sqrt{2}}{16}$, 1	$\sqrt{2}$
a) <u>—</u> 16	b) -	c) $\frac{1}{16}$	d) $\frac{\sqrt{2}}{32}$
326. The equation $(\cos p - 1)$		where <i>x</i> is a variable, has read	eal roots. Then, the interval
of p may be any one of t	-	c) $(-\pi/2, \pi/2)$	d) $(0,\pi)$
a) $(0, 2\pi)$ 327. If $\tan\left(\frac{\theta}{2}\right) = \frac{5}{2}$ and $\tan\left(\frac{\Phi}{2}\right)$			d) (0, π)
$\frac{1}{2} = \frac{1}{2} \operatorname{and} \operatorname{tan} \left(\frac{1}{2}\right)$	$f = \frac{1}{4}$, the value of $\cos(\theta + \theta)$	ψ) 15	

a)
$$-\frac{364}{725}$$
 b) $-\frac{627}{725}$ c) $-\frac{240}{339}$ d) $-\frac{339}{725}$
328. If in a triangle *ABC*, sin *A* = sin² *B* and 2 cos² *A* = cos² *B*, then the ΔABC is
a) Right angled b) Obuse angled c) Isosceles d) Equilateral
329. If *a* and *B* are acute angles cos $2a = \frac{3260}{3260}$, the that can cot $\beta =$
a) $\sqrt{3}$ b) $\sqrt{2}$ c) 1 d) None of these
330. If sin 2x, $\frac{1}{2}$ and cos 2*x* are in *AP*, then the general values of *x* are given by
a) *n*, *n*, *n* + $\frac{\pi}{2}$, *n* \in *Z* b) *n*, *n*, *n* + $\frac{\pi}{4}$, *n* $\in Z$ c) *n* + $\frac{\pi}{4}$, *n* $\in Z$ d) *n*, *n*, *n* $\in Z$
331. The area of a regular polygon of *n* sides is
a) $\frac{m^2}{2} \sin\left(\frac{2\pi}{n}\right)$ b) *n*² cin $\left(\frac{2\pi}{2\pi}\right)$ c) $\frac{n^2}{2} \sin\left(\frac{2\pi}{n}\right)$ d) *n* $R^2 tan \left(\frac{\pi}{n}\right)$
332. The base of a triangle is 80 cm and one of the base angles is 60°. If the sum of the lengths of the other two
sides is 90 cm, then the length of the shortest side is
a) 15 cm b) 19 cm (b) 19 cm (c) $2 \cdot 1 cm$ d) 17 cm
333. Total number of solutions of sin³ x + cos³ x = sin x + cos x in [0,2\pi] is equal to
a) 2 b) 4 c) 6 (18)
334. If *a*, *β*, *γ*, *δ* are the smallest positive angles in ascending order of magnitude which have their sines equal to
the positive quantity *k*, then the value of
4 sin $\frac{\pi}{2} + 3 \sin \frac{\pi}{2} + 2 \sin \frac{\pi}{2} + \sin \frac{\pi}{2}$ is equal to
a) $2\sqrt{1-k}$ b) $2\sqrt{1+k}$ c) $\sqrt{\frac{1+k}{2}}$ d) $\sqrt{1+k}$
335. Maximum value of sin θ + cos θ in $[0, \frac{\pi}{2}]$ is
a) $\sqrt{2}$ b) 2 c) 0 d) $-\sqrt{2}$
336. [$x \in R \cdot \cos 2x + 2 \cos^3 x = 2$] is equal to
a) $\left[2\pi n + \frac{\pi}{3} : n \in Z\right]$ b) $\left[1\pi \pm \frac{\pi}{6} : n \in Z\right]$ c) $\left[\pi n \pm \frac{\pi}{6} : n \in Z\right]$ d) $\left[2\pi n - \frac{\pi}{3} : n \in Z\right]$
337. The most general value of θ satisfying the equation (1 + 2 sin $\theta)^2 + (\sqrt{3} tan \theta - 1)^2 = 0$ are given by
a) $n\pi \pm \frac{\pi}{6}$ b) $n\pi + (-1)^n \frac{\pi}{6}$ c) $2n\pi \pm \frac{\pi}{6}$ d) $2n\pi + \frac{11\pi}{6}$
338. The solution set of (2 cos x - 1)(3 + 2 cos x) = 0 in the interval $0 \le x \le 2\pi$, is
a) $\left(\frac{\pi}{3}\right)$ b) $\left\{\frac{\pi}{3} \cdot \frac{\pi}{3}\right\}$ c) $\left(\frac{\pi}{3} \cdot \frac{\pi}{3} \cdot \frac{\pi}{3} - \frac{\pi$

a) 1 c) 4 d) $\sqrt{5}$ b) 3 345. If $x = \log \left[\cot \left(\frac{\pi}{4} + \theta \right) \right]$, then the value of sinh *x* is b) $-\tan 2\theta$ a) tan 2θ c) $\cot 2\theta$ d) $-\cot 2\theta$ 346. The angle of a right angled triangle are in A.P. The ratio of the in-radius and the perimeter is a) $(2 - \sqrt{3}) : 2\sqrt{3}$ b) $1: 8\sqrt{3}(2+\sqrt{3})$ c) $(2 + \sqrt{3}) : 4\sqrt{3}$ d) None of these 347. The minimum value of $\cos 2\theta + \cos \theta$ for real values of θ , is a) -9/8 b) 0 c) -2 d) None of these 348. 3 $(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x)$ is equal to b) 13 a) 12 c) 14 d) 11 349. The sides of a triangle are 3x + 4y, 4x + 3y and 5x + 5y, where, x, y > 0 then the triangle is c) Equilateral b) Obtuse angled a) Right angled d) None of these 350. If $\sin \beta$ is the GM between $\sin \alpha$ and $\cos \alpha$, then $\cos 2\beta =$ a) $2\sin^2\left(\frac{3\pi}{4}-\alpha\right)$ b) $2\cos^2\left(\frac{\pi}{4}-\alpha\right)$ c) $\cos^2\left(\frac{\pi}{4}+\alpha\right)$ d) $2\sin^2\left(\frac{\pi}{4}+\alpha\right)$ 351. If in a triangle *ABC*, $\cos A \cos B + \sin A \sin B \sin C = 1$, then the triangle is a) Isosceles b) Right angled c) Isosceles right angled d) Equilateral 352. The solution of the equation $\cos^2 x - 2\cos x = 4\sin x - \sin 2x (0 \le x \le \pi)$ is d) None of these b) $\pi - \tan^{-1} 2$ c) $\pi + \tan^{-1}\left(-\frac{1}{2}\right)$ a) $\pi - \cot^{-1} \frac{1}{2}$ 353. The area of the triangle *ABC*, in which $a = 1, b = 2, \angle C = 60^\circ$, is a) 4 sq. units c) $\frac{\sqrt{3}}{2}$ sq. unit b) $\frac{1}{2}$ sq. unit d) $\sqrt{3}$ sq. units 354. If cos(A - B) = 3/5 and tan A tan B = 2, then which one of the following is true? a) $\sin(A+B) = \frac{1}{5}$ b) $\sin(A+B) = -\frac{1}{5}$ c) $\cos(A-B) = \frac{1}{5}$ d) $\cos(A+B) = -\frac{1}{5}$ 355. The value of $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{3\pi}{9} \cos \frac{4\pi}{9}$ is a) $\frac{1}{2}$ d) $\frac{1}{4}$ b) $\frac{1}{16}$ c) $\frac{1}{64}$ 356. If the equation $\sec \theta + \csc \theta = c$ has four real roots between 0 and 2 π , then b) $c^2 > 8$ c) $c^2 = 8$ a) $c^2 < 8$ d) None of these 357. If $\frac{\tan 3A}{\tan A} = k$, then $\frac{\sin 3A}{\sin A}$ is equal to b) $\frac{2k}{k-1}$, $k \in [1/3, 3]$ c) $\frac{2k}{k-1}$, $k \notin [1/3, 3]$ d) $\frac{k-1}{2k}$, $k \notin [1/3, 3]$ a) $\frac{2k}{k}$, $k \in \mathbb{R}$ 358. If $\sin \theta - \cos \theta < 0$, then θ lies between a) $n \pi - \frac{3\pi}{4}$ and $n \pi + \frac{\pi}{4}$, $n \in \mathbb{Z}$ b) $n \pi - \frac{\pi}{4}$ and $n \pi + \frac{3\pi}{4}$, $n \in \mathbb{Z}$ c) $2n \pi - \frac{3\pi}{4}$ and $2n \pi - \frac{\pi}{4}$, $n \in Z$ d) $2n \pi - \frac{3\pi}{4}$ and $2n \pi + \frac{\pi}{4}$, $n \in \mathbb{Z}$ 359. If $y \tan(A + B + C) = x \tan(A + B - C) = \lambda$, then the 2C =c) $\frac{\lambda(x-y)}{xy-\lambda^2}$ a) $\frac{\lambda(x+y)}{\lambda^2 - xy}$ b) $\frac{\lambda(x+y)}{\lambda^2 + xy}$ d) $\frac{\lambda(x-y)}{xy+\lambda^2}$ 360. If $\alpha + \beta = \frac{\pi}{2}$, $\beta + \gamma = \alpha$, then the value of tan α equals c) $\tan\beta + 2\tan\gamma$ b) 2(tan β + tan γ) a) $\tan \beta + \tan \gamma$ d) $2 \tan \beta + \tan \gamma$ 361. $\tan \frac{2\pi}{5} - \tan \frac{\pi}{15} - \sqrt{3} \tan \frac{2\pi}{5} \tan \frac{\pi}{15}$ is equal to

a)
$$-\sqrt{3}$$
 b) $1/\sqrt{3}$ c) 1 d) $\sqrt{3}$
362. If $\frac{1}{\cos a} = n$ and $\frac{\sin a}{\sin a} = m$, then $(n^2 - n^2) \sin^2 B = a$
a) $1 - n^2$ b) $1 + n^2$ c) $1 - n$ d) $1 + n$
363. If $A = 130^\circ$ and $x = \sin A + \cos A$, then
a) $x > 0$ b) $X < 0$ c) $x = 0$ d) $x \ge 0$
364. The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$ is
a) 2 d) 3π c) 4 d) 1
365. If $\pi < \alpha < \frac{5\pi}{2}$, then the expression $\sqrt{4} \sin^4 \alpha + \sin^2 2\alpha} + 4 \cos^2 \left(\frac{\pi}{4} - \frac{6}{2}\right)$ is equal to
a) $2 + 4 \sin \alpha$ b) $2 - 4 \sin \alpha$ c) 2 d) None of these
366. If $5 \cos 2\theta + 2 \cos^2 \frac{\theta}{2} + 1 = 0, -\pi < \theta < \pi$, then θ is equal to
a) $\frac{\pi}{3}$ b) $\frac{\pi}{3}, \cos^{-1} \left(\frac{3}{5}\right)$ c) $\cos^{-1} \left(\frac{3}{5}\right)$ d) $\frac{\pi}{3}, \pi - \cos^{-1} \left(\frac{3}{5}\right)$
367. The equation $\sin^4 x + \cos^4 x = a$ has a real solution, if
a) $0 < \alpha \le 1$ b) $\frac{1}{2} \le \alpha \le 1$ c) $\frac{1}{4} \le \alpha \le \frac{1}{2}$ d) $-1 \le \alpha \le 1$
368. If $x \sin a + y \sin 2a + z \sin 3a = \sin 4a$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin 3b = \sin 4b$
 $x \sin b + y \sin 2b + z \sin^2 = 0, a, b, c \neq n\pi, are$
a) $\sin a, \sin b, \sin c$ b) $(\alpha - b)$ c) $\frac{b}{a}$ d) $\frac{\alpha}{b}$
370. Let AB and C be the angles of a plain triangle and $\tan \frac{4}{2} = \frac{1}{3}, \tan \frac{\pi}{2} = \frac{2}{3}$. Then, $\tan \frac{6}{2}$ is equal to
a) $\frac{1}{2}$ b) $\frac{3}{4}$ c) $\frac{5}{4}$ d) 2
372. The general solution of $\tan 3x = 1$. is
a) $n \pi + \frac{\pi}{4}$ b) $\frac{n \pi}{3} + \frac{\pi}{12}$ c) $n \pi$ d) $n \pi \pm \frac{\pi}{4}$
373. If A lies in the third quadrant and $3 \tan A - 4 = 0$, then $5 \sin 2A + 3 \sin A + 4\cos A = a$
a) 0 b) $\frac{-24}{5}$ c) $\frac{24}{5}$ d) $\frac{48}{5}$
374. The number of solutions for $\cos 2\theta = \sin \theta$ in $(0, 2\pi)$ is
a) 1 b) 2 c) $x^2 < x \le \sqrt{2}$ c) $-1 \le \alpha \le 1$ d) None of these
376. Let A, B and C are the angles of a taingle andtan $\left(\frac{\alpha}{2}\right) = \frac{1}{3}, \tan(\frac{\alpha}{2}) = \frac{2}{5}$. Then, $\tan \left(\frac{c}{2}\right)$ is equal to
a) 1/3 b) 2/3 c) 2/9 d) 7/9
377. If $x + \frac{1}{2} 2 \cos \alpha$, then $x^2 + \frac{1}{\pi}$ is equal to
a) 1/3 b) 2/3 c)

379. In a right angled triangle opposite vertex. One of		nes as long as the perpendic	cular drawn to it from the
a) 15° 380. If $\cot \theta \cot 7\theta + \cot \theta \cot \theta$	b) 30°	c) 45°	d) None of these
a) $n \pi, n \in Z$		c) $n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z}$	d) $\frac{n\pi}{12}$, $n \in \mathbb{Z}$
381. If r, r_1, r_2, r_3 have their u	<i>L</i>	<u>L</u>	12
a) 1	b) 0	c) 1/r	d) None of these
382. If $A = 35^{\circ}$, $B = 15^{\circ}$ and			
a) 0 383. The value of cos 10° – s	b) 1	c) 2	d) 3
a) Positive	b) Negative	c) 0	d) 1
384. The number of all possi	, ,	,	,
a) 0	b) 1	c) 3	d) None of these
385. The value of $\tan 40^\circ + \tan 40^\circ$	$an 20^\circ + \sqrt{3} \tan 20^\circ \tan 40^\circ$	is equal to	
a) √ <u>12</u>	b) $\frac{1}{\sqrt{3}}$	c) 1	d) $\sqrt{3}$
	V O		
(0, 315) is equal to	the roots of the equation		$15\pi + x$) = 1 in the interval
a) 50 π	b) 51 π	c) 100 π	d) 315 π
387. The value of $\sum_{k=1}^{3} \cos^2(x)$			
a) 0	b) 1/2	c) -1/2	d) 3/2
388. Total number of solution			
a) 2	b) 3	c) 5	d) None of these
389. If $\sin 2x \cos 2x \cos 4x =$			d) None of these
	b) $[-1/4, 1/4]$		d) None of these
$390. \text{ If } \sin x + \sin y = 3(\cos y)$		-	
a) 1	b) -1	c) 0	d) ±1
391. If $\tan \alpha = k \cot \beta$, then $\frac{\alpha}{\alpha}$	$\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)}$ is equal to		
a) $\frac{1+k}{k}$	b) $\frac{1-k}{1+k}$	c) $\frac{k+1}{k-1}$	d) $\frac{k-1}{k+1}$
1 1	1 1	k - 1	k + 1
392. If $\theta = \frac{2 \sin x}{1 + \sin x + \cos x}$, then	$\frac{1+\sin x}{1+\sin x}$ equals		
a) 0	b) <i>-θ</i>	c) θ	d) $-\theta/2$
393. In $\triangle ABC$, if $\frac{s-a}{\Delta} = \frac{1}{8}, \frac{s-b}{\Delta}$	$=\frac{1}{12}$ and $\frac{s-c}{\Delta}=\frac{1}{24}$, then $b=$		
a) 16	b) 20	c) 24	d) 28
^{394.} Solution of the equation	$\cos^2\left(\frac{1}{2}px\right) + \cos^2\left(\frac{1}{2}qx\right) =$	= 1 form an arithmetic prog	ression with common
difference 2	2	π	d) None of these
a) $\frac{2}{p+q}$	b) $\frac{z}{n-a}$	c) $\frac{\pi}{p+q}$	d) None of these
395. If $\sec^2 \theta = \sqrt{2} (1 - \tan^2 \theta)$		P ' 4	
	b) $n \pi \pm \frac{\pi}{4}, n \in \mathbb{Z}$	c) $n \pi \pm \frac{\pi}{8}, n \in \mathbb{Z}$	d) None of these
396. If $\tanh^{-1}(x+iy) = \frac{1}{2}\tan^{-1}(x+iy)$	$hh^{-1}\left(\frac{2x}{1+x^2+x^2}\right) + \frac{i}{2} \tan^{-1}\left(\frac{1}{1+x^2+x^2}\right)$	$\left(\frac{2y}{x^2-x^2}\right), x, y \in R$, then tanh	$-^1(iy)$ is
a) <i>i</i> tanh ⁻¹ (y)	b) $-i \tanh^{-1}(y)$		d) $-i \tan^{-1}(y)$
397. If $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, then the			., ()
a) $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{\pi}{8}, \cos \frac{\pi}{3}\right)$	$\left(\frac{\pi}{8}\right)$		

b)
$$\left(-\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$$
 and $\left(-\frac{\pi}{8}, \cos \frac{\pi}{8}\right)$
c) $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{\pi}{8}, -\cos \frac{\pi}{8}\right)$
d) $\left(-\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$
398. If $A = \cos^2 \theta + \sin^4 \theta$, then for all values of θ ,
a) $1 \le A \le 2$ b) $\frac{13}{16} \le A \le 1$ c) $\frac{3}{4} \le A \le \frac{13}{16}$ d) $\frac{3}{4} \le A \le 1$
399. The value of sin 10² + sin 20² + sin 30⁶ + ... + sin 360⁶ is
a) 1 b) 0 c) -1 d) 1/2
400. The maximum value of $5 \cos \theta + 3 \cos \left(\theta + \frac{\pi}{3}\right) + 3 is$
a) 5 b) 11 c) - (3 - 1 d) 1/2
401. If $A = \left\{x; \frac{\pi}{6} \le x \le \frac{\pi}{3}\right\}$ and $f(x) = \cos x - x(1 + x)$, then $f(A)$ is equal to
a) $\left[-\frac{\pi}{3}, -\frac{\pi}{6}\right]$ b) $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
c) $\left[\frac{1}{2}, -\frac{\pi}{3}\left(1, \frac{\pi}{3}\right), \frac{\sqrt{3}}{2}, -\frac{\pi}{6}\left(1, \frac{\pi}{6}\right)\right]$ d) $\left[\frac{1}{2} + \frac{\pi}{3}\left(1, -\frac{\pi}{3}\right), \frac{\sqrt{3}}{2} + \frac{\pi}{6}\left(1, -\frac{\pi}{6}\right)\right]$
402. If $\frac{\pi}{3} \cos a + \frac{\pi}{5} \sin a = 1, \frac{\pi}{3} \cos \beta + \frac{\pi}{5} \sin \beta = 1$ and $\frac{\cos a \cos \beta}{a^2} + \frac{\sin a \sin \beta}{b^2} = 0$, then
a) $\tan a \tan \beta = \frac{a^2}{a^2}(x^2 - a^2)$ and $x^2 + y^2 = a^2 - b^2$
b) $\tan a \tan \beta = \frac{a^2}{b^2}$
c) $x^2 + y^2 = a^2 - b^2$
d) None of these
403. The value of $\left(1 + \cos \frac{\pi}{9}\right)\left(1 + \cos \frac{\pi}{3}\right)\left(1 + \cos \frac{\pi}{3}\right)\left(1 + \cos \frac{\pi}{5}\right)$ is
a) $\frac{3}{16}$ b) $\frac{3}{8}$ c) $\frac{3}{4}$ d) $\frac{1}{2}$
404. If the solutions for θ , $\cos \beta \theta + \cos \theta = 0$ as a real solution if
a) $a \in [1/2, 1]$ b) $a \in [1/4, 1/2]$ c) $a \in [1/3, 1]$ d) None of these
405. The equation $\sin^4 \theta + \cos^4 \theta = a$ has a roal solution?
a) $\cos e \theta - \sin \theta - \cos \theta = \cos c \theta = \cos \theta$
b) $\cos e \theta + \sin \theta = 2$
407. For $-\frac{\pi}{2} < \theta < \frac{\pi}{2}, \frac{\sin a \sin 2\pi}{2}$ lies in the interval
a) $(-\infty, \infty)$ b) $(-2, 2)$ c) $(0, \infty)$ d) $(-1, 1)$
408. The number of integravalues of k for which the equation 7 \cos \theta + 5 \sin \theta = 2k + 1 has a solution is
a) $4 + b 18$ c) 10 d) 12
409. The solution set of the inequality log_{1/2} \sin x > log_{1/2} \cos x in $(0, 2\pi)$ is
a) $x \in \left(\frac{5\pi}{4}, 2\pi\right)$ d) $x \in x > \log_{1/2}, 2\cos x$ in $(0, 2\pi)$ is
a) $x \in \left(\frac{5\pi}{4}, 2\pi\right)$ d) $(-\pi/4, \pi/4)$ c) $(0, \pi/4)$ d) None of these
410. The solution set of the inequality log_{1/2} \sin x > \log_{1/2} \cos x in $(0$

411. The value of $\cos^2\left(\frac{\pi}{4} + \theta\right)$	$\left(-\sin^2\left(\frac{\pi}{2}-\theta\right)\right)$ is				
a) 0	b) $\cos 2\theta$	c) sin 2 <i>0</i>	d) $\cos \theta$		
412. The solution set of the in	nequality $\cos^2 \theta < \frac{1}{2}$, is				
a) $\left\{ \theta : (8n+1)\frac{\pi}{4} < \theta < \theta \right\}$	1 -				
b) $\left\{ \theta : (8n-3) \frac{\pi}{4} < \theta < \theta \right\}$	1 -				
c) $\left\{ \theta : (4n+1)\frac{\pi}{4} < \theta < \theta \right\}$	$\left\{ (4n+3)\frac{n}{4}, n \in Z \right\}$				
d) None of these					
413. $\alpha, \beta (\alpha \neq \beta)$ satisfy the equation $a \cos \theta + b \sin \theta = c$, then the value of $\tan \left(\frac{\alpha + \beta}{2}\right)$, is					
a) <i>b/a</i>	b) <i>c/a</i>	c) <i>a/b</i>	d) <i>c/b</i>		
414. If the equation $\cos 3x +$	$\cos 2x = \sin \frac{3x}{2} + \sin \frac{x}{2}, 0 \le$	$x \leq 2\pi$, then the number o	f values of <i>x</i> is		
a) 6	b) 7	c) 4	d) 5		
415. If the sides of a triangle	are the roots of the equation	$1 x^3 - 2x^2 - x - 16 = 0$, th	en the product of the in-		
radius and circum-radiu	-				
a) 3	b) 6	c) 4	d) 2		
416. The values of θ lying be	tween $\theta = 0$ and $\theta = \frac{1}{2}$ and	satisfying the equation			
$\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta \\ \cos^2 \theta & 1 + \sin^2 \theta \\ \cos^2 \theta & \sin^2 \theta \\ a) \frac{11 \pi}{24}, \frac{7 \pi}{24} \end{vmatrix}$	$4\sin 4\theta$ $4\sin 4\theta$ = 0 is				
$\begin{bmatrix} \cos^2 \theta & 1 + \sin^2 \theta \\ \cos^2 \theta & \sin^2 \theta \end{bmatrix}$	$1 + 4\sin 4\theta$				
a) $\frac{11 \pi}{11 \pi} \frac{7 \pi}{11 \pi}$	b) $\frac{7 \pi}{2} \frac{5 \pi}{2}$	c) $\frac{5\pi}{24}$, $\frac{\pi}{24}$	d) $\frac{\pi}{24}$, $\frac{11 \pi}{24}$		
		24'24	24'24		
417. The value of $\sqrt{3}$ cot 20° ·		a) ()	d) None of these		
a) 1 418. The general solution of t	b) -1	c) 0 -1 is	d) None of these		
	b) $x = 2n \pi, n \in Z$		d) None of these		
419. The smallest angle of the			, ,		
a) π/3	b) $\pi/4$	c) π/6	d) None of these		
420. The general solution of	the equation $\tan 2\theta$. $\tan \theta =$	1 for $n \in Z$ is			
4	b) $(2n+1)\frac{\pi}{6}$	c) $(2n+1)\frac{\pi}{2}$	d) $\frac{1}{1}(2n+1)\frac{\pi}{3}$		
421. If $\cot(\alpha + \beta) = 0$, then s					
a) $\sin \alpha$	b) $\cos \alpha$	c) $\sin\beta$	d) cos 2β		
422. The value of $6(\sin^6 \theta + \theta)$			d) 2		
a) -3 423. If $y = \cos^2 x + \sec^2 x$, th	b) 0	c) 1	d) 3		
a) $y \le 2$	b) $y \le 1$	c) $y \ge 2$	d) 1 < y < 2		
424. If $0 < x < \frac{\pi}{2}$, then the lar	,,,		, ,		
a) $\frac{\pi}{2}$	_		d) $\frac{\pi}{2} - x$		
5	L	c) <i>x</i>	$a_{1}\frac{1}{2} - x$		
425. In a $\triangle ABC$, $\cos\left(\frac{B+2C+3A}{2}\right)$	$+\cos\left(\frac{A-B}{2}\right)$ is equal to				
a) -1	b) 0	c) 1	d) 2		
426. If $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$, the	en tan α is equal to				
a) $\sqrt{2} \tan \beta$	b) tan β	c) sin 2 <i>β</i>	d) $\sqrt{2} \cot \beta$		
427. The value of the express	$\sin \sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta$	$\theta \cos^2 \theta$ equals			
a) 0 π	b) 2 π	c) 3	d) 1		
428. $\tan^6 \frac{\pi}{9} - 33 \tan^4 \frac{\pi}{9} + 27$	$\tan^2\frac{\pi}{9} =$				
· · ·	2				

a) 0	b) √3	c) 3	d) 9
429. General solution of sin a	3 ·	a+6 is	-
a) $\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$	$a \in R^{\times 2}$	b) $2n\pi + (-1)^n \frac{\pi}{4}$	
c) $n\pi + (-1)^{n+1} \frac{\pi}{4}$		d) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$	
430. The value of $\cos \frac{\pi}{15} \cos \frac{2\pi}{15}$	$\frac{2\pi}{5}\cos\frac{2\pi}{15}\cos\frac{8\pi}{15}$ is	тт	
4	b) $-\frac{1}{16}$	c) 1	d) 0
10	10		
431. If $A + C = 2B$, then $\frac{\cos \theta}{\sin \theta}$			
a) $\cot B$	b) $\cot 2B$	c) $\tan 2B$	d) tan <i>B</i>
432. If sec α and cosec α are a) $a^2 = b(b-2)$	b) $a^2 = b(b+2)$		d) None of these
433. The number of solution			aj none el enece
a) zero	b) one	c) two	d) three
434. The solution of sin $x + x$.,	
		π π	, π π
a) $\frac{\pi}{4}, \frac{\pi}{10}$	b) $\frac{\pi}{6}, \frac{\pi}{3}$	c) $\frac{\pi}{4}, \frac{\pi}{2}$	d) $\frac{\pi}{8}$, $\frac{\pi}{16}$
435. In a $\triangle ABC$, the HM of the			
a) $3r$	b) $2R$	c) $R + r$	d) None of these
436. The value of the expres a) 10	b) 12 $(\sin x - \cos x)^2 + 4(\sin x)^2$	c) 13 $(\sin^2 x + \cos^2 x) + 6(\sin x + \cos^2 x)$	d) None of these
$437. \text{ If } 4\cos\theta - 3\sec\theta = 21$,	6) 10	uj none or these
_	b) $n\pi + (-1)^n \frac{\pi}{6}$	c) $m\pi + (-1)^n 3\pi$	d) <i>nπ</i>
10	0	10	2
438. In a $\triangle ABC$, AD is the alt	itude from <i>A</i> . Given $b > c$, 2		ten $\angle B$ is equal to
a) 53°	b) 113°	c) 87°	d) None of these
439. If $\cos(x - y)$, $\cos x$ and	$\cos(x + y)$ are in H.P., then	$\left \cos x \sec \frac{y}{2}\right $ equals	
a) 1	b) 2	c) $\sqrt{2}$	d) None of these
440. The maximum value of	$\frac{1}{3\sin\theta - 4\cos\theta + 7}$, is		
a) $\frac{1}{12}$	b) $\frac{5}{12}$	c) $\frac{7}{12}$	d) $\frac{1}{6}$
12	12	12	6
441. If $\frac{a^2+1}{2a} = \cos\theta$, then $\frac{a^6+1}{2a}$	$\frac{-1}{3} =$		
a) $\cos^2 \theta$	b) $\cos^3 \theta$	c) cos 2 <i>θ</i>	d) cos 3 <i>θ</i>
442. The value of $2 \cos x - c$	-		
	,	c) $4\cos^3 x \sin^2 x$	d) $4\sin^3 x \cos^2 x$
443. If $\tan\left(\frac{\alpha\pi}{4}\right) = \cot\left(\frac{\beta\pi}{4}\right)$, t	hen		
a) $\alpha + \beta = 0$			
b) $\alpha + \beta = 2n$ c) $\alpha + \beta = 2n + 1$			
d) $\alpha + \beta = 2(2n + 1), r$	$n \in Z$		
444. The value of x in $\left(0, \frac{\pi}{2}\right)$		$x\cos x = \frac{1}{4}$ is	
/			π
a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{8}$	d) $\frac{\pi}{12}$
445. If $\sin \theta + \csc \theta = 2$, the			d) Norra - film
a) 1 446 If $A + C = 2R$ then \cos^{10}	b) 4 $C - \cos A$ is equal to	c) 2	d) None of these
446. If $A + C = 2B$, then $\frac{\cos \theta}{\sin x}$	$\frac{1}{1-\sin c}$ is equal to		

a) cot B b) cot 2*B* c) tan 2*B* d) tan B 447. If the median of $\triangle ABC$ through *A* is perpendicular to *AB*, then b) $2 \tan A + \tan B = 0$ a) $\tan A + \tan B = 0$ c) $\tan A + 2 \tan B = 0$ d) None of these 448. In a $\triangle ABC$, if $a = (b - c) \sec \theta$, then $\frac{2\sqrt{bc}}{b-c} \sin \frac{A}{2} =$ d) $\sin\theta$ a) $\cos\theta$ b) $\cot \theta$ c) $\tan \theta$ 449. The value of cot 36° cot 72° is c) 1 d) $\frac{1}{3}$ a) $\frac{1}{5}$ b) $\frac{1}{\sqrt{5}}$ 450. If θ lies in the first quadrant and $5 \tan \theta = 4$, then $\frac{5 \sin \theta - 3 \cos \theta}{\sin \theta + 2 \cos \theta}$ is equal to b) 3/1 a) $\frac{5}{14}$ d) 0 c) $\frac{1}{14}$ 451. Consider the following statements : 1. If $\tan \alpha = \frac{m}{m+1}$, $\tan \beta = \frac{1}{2m+1}$, then $\alpha + \beta = \frac{\pi}{4}$ 2. If $3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ), 0 < \theta < \pi$, then $\theta = \frac{\pi}{4}$ 3. If $\sin^2 ax - \sin^2(a-1)x = \sin^2 x$, then x is equal to $\frac{n\pi}{a-1}$ Which of the statements given above are correct? a) (1) and (2) c) (3) and (1) b) (2) and (3) d) All (1), (2) and (3) 452. If $cos(A - B) = \frac{3}{5}$ and tan A tan B = 2, then a) $\cos A \cos B = \frac{1}{5}$ b) $\sin A \sin B = -\frac{2}{5}$ c) $\cos(A + B) = -\frac{1}{5}$ d) None of these 453. If $\sin \theta = -\frac{4}{5}$ and θ lies in the third quadrant, then $\cos \frac{\theta}{2}$ is equal to c) $\left|\frac{2}{5}\right|$ d) $- \left| \frac{2}{5} \right|$ b) $-\frac{1}{\sqrt{5}}$ a) $\frac{1}{\sqrt{5}}$ 454. Let α, β be such that $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the value of $\cos\frac{(\alpha-\beta)}{2}$ is b) $\frac{3}{\sqrt{130}}$ c) $\frac{6}{65}$ d) $-\frac{6}{65}$ 455. If $\sin x + \sin^2 x = 1$, then $\cos^8 x + 2\cos^6 x + \cos^4 x =$ b) -1 a) 0 c) 2 d) 1 456. If $\cos(\alpha + \beta) \sin(\gamma + \delta) = \cos(\alpha - \beta) \sin(\gamma - \delta)$, then $\cot \alpha \cot \beta \cot \gamma$ is equal to c) $tan \delta$ b) $-\cot\delta$ d) – tan δ a) $\cot \delta$ 457. If AD, BE and CF are the medians of a $\triangle ABC$, then $(AD^2 + BE^2 + CF^2) : (BC^2 + CA^2 + AB^2)$ is equal to b) 3 : 2 c) 3:4 a) 4 : 3 d) 2:3458. The equation $a \cos \theta + b \sin \theta = c$ has a solution, when *a*, *b* and *c* are real numbers such that a) a < b < cb) a = b = cc) $c^2 \le a^2 + b^2$ d) $a^2 < a^2 - b^2$ 459. If $\tan\left(\frac{\alpha\pi}{4}\right) = \cot\left(\frac{\beta\pi}{4}\right)$, then a) $\alpha + \beta = 0$ b) $\alpha + \beta = 2n$ c) $\alpha + \beta = 2n + 1$ 460. If $\frac{2 \sin \alpha}{1 + \cos \alpha + \sin \alpha} = x$, then $\frac{1 - \cos \alpha - \sin \alpha}{\cos \alpha}$ is equal to d) $\alpha + \beta = 2(2n + 1)$, $\forall n$ is an integer d) None of these b) xc) 1 - x461. The area of the circle and the area of a regular polygon of *n* sides and of perimeter equal to that of the circle are in the ratio of

a)
$$\tan\left(\frac{\pi}{n}\right):\frac{\pi}{n}$$
 b) $\cos\left(\frac{\pi}{n}\right):\frac{\pi}{n}$ c) $\sin\frac{\pi}{n}:\frac{\pi}{n}$ d) $\cot\left(\frac{\pi}{n}\right):\frac{\pi}{n}$

462. In a triangle <i>ABC</i> , $\frac{a\cos A}{2}$	$\frac{b\cos B+c\cos C}{a+b+c}$ is equal to		
a) $\frac{r}{R}$	b) $\frac{R}{r}$	c) $\frac{2r}{R}$	d) $\frac{R}{2r}$
463. From the identity $\sin 3x$	$= 3 \sin x - 4 \sin^3 x$ it follow	ws that if x is real and $ x <$	21
		c) $(3x - 4x^3) < 1$	d) None of these
464. If $\tan(\cot x) = \cot(\tan x)$	· -	2	Д
a) $\frac{2}{(2n+1)\pi}$		c) $\frac{2}{n(n+1)\pi}$	d) $\frac{4}{n(n+1)\pi}$
465. If $\frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2}$ and $\frac{\cos A}{\cos B} = \frac{\sqrt{3}}{2}$			
a) $\tan A = \frac{\sqrt{3}}{\sqrt{5}}$	b) $\tan A = \frac{\sqrt{5}}{\sqrt{3}}$	c) $\tan A = 2$	d) $\tan B = 2$
466. The expression $\cos^2(A -$	$-B) + \cos^2 B - 2\cos(A - B)$	B) cos A cos B is	
a) dependent on <i>B</i>		b) dependent on A and B	
c) dependent on A		d) Independent of A and	В
467. In a $\triangle ABC$, $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab}$ is	s equal to		
a) $\frac{1}{2R} - \frac{1}{r}$	b) 2 <i>R</i> – <i>r</i>	c) <i>r</i> − 2 <i>R</i>	d) $\frac{1}{r} - \frac{1}{2R}$
$\frac{2R}{468}$. If $\sin A + \sin B = a$ and	$\cos A + \cos B = b$, then $\cos b = b$	(A+B)	r ZR
a) $\frac{a^2 + b^2}{b^2 - a^2}$			d) $\frac{a^2 - b^2}{a^2 + b^2}$
a) $\frac{1}{b^2 - a^2}$	b) $\frac{2ab}{a^2 + b^2}$	c) $\frac{1}{a^2+b^2}$	a) $\frac{1}{a^2 + b^2}$
469. The number of solutions	of the equation $\tan x + \sec x$		erval [0, 2 π] is
a) 0	b) 1	c) 2	d) 3
470. If $A + B + C = \pi, n \in Z$,			
a) 0 471. If <i>I</i> is the incentre of a Δ <i>I</i>	b) 1 ABC_then IA:IB:IC is equ	c) $\tan nA \tan nB \tan nC$	d) None of these
a) $\csc \frac{A}{2} : \csc \frac{B}{2} : \cos \frac{B}{2}$	$\sec \frac{1}{2}$		
b) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$			
c) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$			
d) None of these			
472. The value of $\sin \frac{\pi}{14} \sin \frac{3\pi}{14}$	$\sin\frac{5\pi}{14}\sin\frac{7\pi}{14}\sin\frac{9\pi}{14}\sin\frac{11\pi}{14}\sin\frac{11\pi}{14}\sin\frac{11\pi}{14}$	$1\frac{13\pi}{14}$ is	
a) 1/16	b) 1/64	c) 1/128	d) 1/32
473. The general solution of : $-\pi$		is	
a) $\theta = n \pi + (-1)^{n+1} \frac{\pi}{3}$,	$\theta = n \pi, n \in Z$		
b) $\theta = n \pi, n \in Z$			
c) $\theta = n \pi + (-1)^{n+1} \frac{\pi}{3}$,	$n \in Z$		
d) $\theta = \frac{n \pi}{2}$, $n \in Z$			
474. If in a $\triangle ABC$, $2a = \sqrt{3}b + \frac{1}{2}b$			
a) $c^2 = a^2 + b^2 - ab$)	c) $b^2 = a^2 + c^2 - \sqrt{3} ac$	d) None of these
475. The value of tan 1° tan 2°		`	
a) 1 $\frac{a}{1}$	b) 0	c) ∞	d) 1/2
476. If $\tan \theta = \frac{a}{b}$, then $b \cos 2\theta$			
a) a	b) b	c) b/a	d) <i>a/b</i>
477. The general solution of π	_ `	π	π
a) $n\pi + \frac{n}{4}$	b) $2n\pi \pm \frac{\pi}{4}$	c) $n\pi \pm \frac{\pi}{4}$	d) $n\pi - \frac{\pi}{4}$

C C	$\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi-\alpha)\right\}-$	$2\left(\sin\left(\frac{\pi}{2}+u\right)+\sin\left(5u\right)\right)$	$-\alpha$ (is equal to	
a) 0	b) 1	c) 3	d) $\sin 4\alpha + \cos 6\alpha$	
479. The solution set of the	-			
$4\sin\theta\cos\theta - 2\cos\theta - 2\sqrt{3}\sin\theta + \sqrt{3} = 0$ in the interval (0,2 π) is				
a) $\left\{\frac{3\pi}{4}, \frac{7\pi}{4}\right\}$	b) $\{\frac{\pi}{2}, \frac{5\pi}{2}\}$	c) $\left\{\frac{3\pi}{4}, \frac{7\pi}{4}, \frac{\pi}{3}, \frac{5\pi}{3}\right\}$	d) $\{\frac{\pi}{2}, \frac{5\pi}{2}, \frac{11\pi}{2}\}$	
	(3, 3)	(4 4 3 3)	(6, 6, 6)	
$480.\sum a^3\cos(B-C) =$				
a) 3 <i>abc</i>	b) $3(a + b + c)$	c) $abc(a+b+c)$	d) 0	
481. If $\sin 6\theta + \sin 4\theta + \sin \pi$		ηπ π		
a) $\frac{n\pi}{4}$ or $n\pi \pm \frac{\pi}{3}$	b) $\frac{n\pi}{4}$ or $n\pi \pm \frac{\pi}{6}$	c) $\frac{n\pi}{4}$ or $2n\pi \pm \frac{\pi}{6}$	d) None of these	
482. Which of the following	number is rational?	1 0		
a) sin15°	b) cos15°	c) sin15° cos15°	d) sin15° cos75°	
483. The value of $\cos \frac{2\pi}{15} \cos \frac{2\pi}{15$	$\frac{4\pi}{15}\cos\frac{8}{15}\cos\frac{14\pi}{15}$ is			
a) 1	b) 1/2	c) 1/4	d) 1/16	
484. If $\tan \theta \tan(120^\circ - \theta)$ t	$an(120^\circ + \theta) = \frac{1}{\sqrt{3}}$, then $\theta =$			
	b) $\frac{n\pi}{3} - \frac{\pi}{18}, n \in \mathbb{Z}$		$n\pi\pi\pi$	
5 2	5 10	5 10	5 12	
485. The maximum value of	$F\sin\left(x+\frac{\pi}{6}\right)+\cos\left(x+\frac{\pi}{6}\right)$ in	the interval $\left(0, \frac{\pi}{2}\right)$ is attain	ed at	
a) $x = \frac{\pi}{12}$	b) $x = \frac{\pi}{6}$	c) $x = \frac{\pi}{2}$	d) $x = \frac{\pi}{2}$	
14	0	5	Z	
100. If $\tan \alpha = \frac{1}{\sqrt{x(x^2 + x + 1)}}$, t	an $\beta = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}$ and $\tan \gamma = \sqrt{x^2 + x + 1}$	$(x^{-3} + x^{-2} + x^{-1})$, then $\alpha + \alpha$	$-\beta$ is	
a) γ	b) 2γ	c) -γ	d) None of these	
	sosceles triangle with $\angle B = 9$	90°. If <i>D</i> is a point on <i>AB</i> so	that $\angle CDB = 15^{\circ}$ and, if	
AD = 35 cm, then CD e	_	25./2	_	
a) 35√2 cm	b) $70\sqrt{2}$ cm	c) $\frac{35\sqrt{3}}{2}$ cm	d) $35\sqrt{6}$ cm	
488. If $4n\alpha = \pi$, then the value of π				
	$\tan 4\alpha \dots \tan(2n-2)\alpha \tan(2n-2)\alpha$			
a) 0	b) 1			
AOO In a $AADC$ if $m + m + m$	-2, 4 , 6 , then a , b , a $-$	c) -1	d) None of these	
	= 2:4:6, then $a:b:c =b) 1:2:3$,	-	
a) 3 : 5 : 7	b) 1 : 2 : 3	c) =1 c) 5 : 8 : 9	d) None of these	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$	b) $1:2:3$ $\frac{\ln B}{\sin C}$, then the ΔABC is	c) 5 : 8 : 9	d) None of these	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral	b) $1 : 2 : 3$ $\frac{\ln B}{\sin c}$, then the ΔABC is b) Isosceles	,	-	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (2)	b) $1 : 2 : 3$ $\frac{\ln B}{\sin C}$, then the ΔABC is b) Isosceles x, y) satisfying the equations	c) 5 : 8 : 9	d) None of these	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (2)	b) $1 : 2 : 3$ $\frac{\ln B}{\sin c}$, then the ΔABC is b) Isosceles	c) 5 : 8 : 9	d) None of these d) None of these	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a)$ a) 2	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the ΔABC is b) Isosceles x, y) satisfying the equations y) and $ x + y = 1$ is	 c) 5 : 8 : 9 c) Right angled c) 6 	d) None of these d) None of these d) Infinite	
a) $3:5:7$ $490.$ If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs ($x\sin x + \sin y = \sin(x + a)a) 2492.$ The number of all poss	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations (y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$	 c) 5 : 8 : 9 c) Right angled c) 6 	d) None of these d) None of these d) Infinite	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a)$ a) 2	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations (y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$	 c) 5 : 8 : 9 c) Right angled c) 6 	d) None of these d) None of these d) Infinite	
a) $3:5:7$ $490.$ If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a) 2$ 492. The number of all poss $x + y = \frac{2\pi}{3}, \cos x + \cos x$ a) 0 $493.$ If $p = \sin^2 x + \cos^4 x$, the second sec	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles x, y) satisfying the equations y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ $\cos y = \frac{3}{2}$, is b) 1 then	 c) 5 : 8 : 9 c) Right angled c) 6 <i>r</i> ∈ <i>R</i> satisfying the system 	 d) None of these d) None of these d) Infinite of equations 	
a) $3:5:7$ $490.$ If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a) 2$ 492. The number of all poss $x + y = \frac{2\pi}{3}, \cos x + \cos x$ a) 0 $493.$ If $p = \sin^2 x + \cos^4 x$, the second sec	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles x, y) satisfying the equations y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ $\cos y = \frac{3}{2}$, is b) 1 then	 c) 5 : 8 : 9 c) Right angled c) 6 <i>c</i> ∈ <i>R</i> satisfying the system c) Infinite 	 d) None of these d) None of these d) Infinite of equations 	
a) $3:5:7$ $490.$ If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs ($x\sin x + \sin y = \sin(x + x)a) 2492.$ The number of all poss $x + y = \frac{2\pi}{3}, \cos x + \cos x$ a) 0 $493.$ If $p = \sin^2 x + \cos^4 x$, the formula $\frac{3}{4} \le p \le 1$	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations (y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ (x, y), x, y $(x, y) = \frac{3}{2}$, is b) 1 then b) $\frac{3}{16} \le p \le \frac{1}{4}$	 c) 5 : 8 : 9 c) Right angled c) 6 <i>r</i> ∈ <i>R</i> satisfying the system 	 d) None of these d) None of these d) Infinite of equations d) None of these 	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{3}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + x)$ a) 2 492. The number of all poss $x + y = \frac{2\pi}{3}$, $\cos x + \cos^{2} x$, $\cos x + \cos^{2} x$ a) 0 493. If $p = \sin^{2} x + \cos^{4} x$, $\sin^{2} x + \cos^{4} x + \cos^{4} x$, $\sin^{2} x + \cos^{4} x + \cos^{4} x$, $\sin^{2} x + \cos^{4} x + $	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ $\cos y = \frac{3}{2}$, is b) 1 then b) $\frac{3}{16} \le p \le \frac{1}{4}$ an 78° is equal to	c) $5:8:9$ c) Right angled c) 6 $r \in R$ satisfying the system c) Infinite c) $\frac{1}{4} \le p \le 1$	 d) None of these d) None of these d) Infinite of equations d) None of these d) None of these 	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a)$ 492. The number of all poss $x + y = \frac{2\pi}{3}$, $\cos x + \cos^{4} x$, $(x + a)$ a) 0 493. If $p = \sin^{2} x + \cos^{4} x$, $(x + a)$ a) $\frac{3}{4} \le p \le 1$ 494. $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 42^{\circ}$	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations (y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ ible ordered pairs $(x, y), x, y$ (x) $y = \frac{3}{2}$, is b) 1 then b) $\frac{3}{16} \le p \le \frac{1}{4}$ an 78° is equal to b) $\frac{1}{2}$	c) $5:8:9$ c) Right angled c) 6 c R satisfying the system c) Infinite c) $\frac{1}{4} \le p \le 1$ c) $\frac{1}{4}$	 d) None of these d) None of these d) Infinite of equations d) None of these d) None of these d) None of these 	
a) $3:5:7$ 490. If in a $\triangle ABC$, $\cos A = \frac{s}{2}$ a) Equilateral 491. The number of pairs (x $\sin x + \sin y = \sin(x + a)$ 492. The number of all poss $x + y = \frac{2\pi}{3}$, $\cos x + \cos^{4} x$, $(x + a)$ a) 0 493. If $p = \sin^{2} x + \cos^{4} x$, $(x + a)$ a) $\frac{3}{4} \le p \le 1$ 494. $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 42^{\circ}$	b) $1:2:3$ $\frac{\ln B}{\sin c}$, then the $\triangle ABC$ is b) Isosceles (x, y) satisfying the equations y) and $ x + y = 1$ is b) 4 ible ordered pairs $(x, y), x, y$ $\cos y = \frac{3}{2}$, is b) 1 then b) $\frac{3}{16} \le p \le \frac{1}{4}$ an 78° is equal to	c) $5:8:9$ c) Right angled c) 6 c R satisfying the system c) Infinite c) $\frac{1}{4} \le p \le 1$ c) $\frac{1}{4}$	 d) None of these d) None of these d) Infinite of equations d) None of these d) None of these d) None of these 	

496. The value of $\tan 20^\circ + 2$	tan 50° — tan 70°, is		
a) 1	b) 0	c) tan 50°	d) None of these
497. The value of $\tan \alpha + 2 \tan \alpha$	-		
a) $\tan \alpha$	b) $\tan 2\alpha$	c) $\cot \alpha$	d) $\cot 2\alpha$
498. If $\tan^2 \alpha + \tan^2 \beta + \tan^2 \beta$		+ 2 tan ² α tan ² β tan ² γ = 1	, then the value of
$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ i		.) 1	$\mathbf{D} + 1$
a) 0	b) -1	c) 1	d) ±1
499. If $\sqrt{\frac{1+\cos A}{1-\cos A}} = \frac{x}{y}$, then the	value of tan A is equal to		
		2xy	2xy
a) $\frac{x^2 + y^2}{x^2 - y^2}$	b) $\frac{y}{x^2 + y^2}$	c) $\frac{2xy}{x^2 - y^2}$	d) $\frac{2xy}{y^2 - x^2}$
500. Let <i>ABC</i> be a triangle su	ch that $\angle A = 45^\circ, \angle B = 75^\circ$, then $a + c\sqrt{2}$ is equal to	-
a) 0	b) <i>b</i>	c) 2 <i>b</i>	d) -b
501. The minimum value of f	$f(x) = \sin^4 x + \cos^4 x$, $0 \le 1$	$x \leq \frac{\pi}{2}$ is	
4	1	-	1
a) $\frac{1}{2\sqrt{2}}$	b) $\frac{1}{4}$	c) $\frac{-1}{2}$	d) $\frac{1}{2}$
502 . If θ is an acute angle and	$\tan \theta = \frac{1}{-1}$ then the value of	of $\frac{\csc^2\theta - \sec^2\theta}{\cos^2\theta}$ is	
a) 3 /4	b) $1/2$	c) 2	d) 5 /4
, , , , , , , , , , , , , , , , , , ,	, ,	() 2	u) 5 / 4
503. The value of $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15}$. 10 10		
a) 0	b) 1	c) -1	d) 1/8
504. If $y = \sec^2 \theta + \cos^2 \theta$, θ a) $y = 0$	\neq 0, then b) $y \leq 2$	c) $y \ge -2$	d $u \neq 2$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>y v</i>	$c_{j} y \geq -2$	d) $y \neq 2$
505. If $\sec \theta = x + \frac{1}{4x}$, then se		1	1
a) x, $\frac{1}{x}$	b) $2x, \frac{1}{2x}$	c) $-2x, \frac{1}{2x}$	d) $-\frac{1}{x}$, x
<i>A</i>	$\Delta \lambda$	$\Delta \lambda$	X
506. If $\frac{\sin \theta}{6}$, $\cos \theta$ and $\tan \theta$ ar	e in GP, then the general va	-	
a) $2n\pi \pm \frac{\pi}{3}$, $n \in I$		b) $2n\pi \pm \frac{\pi}{6}$, $n \in I$	
c) $2n\pi + (-1)^n \frac{\pi}{3}, n \in I$		d) $n\pi + \frac{\pi}{3}, n \in I$	
5		0	
507. The number of roots of t	the equation $3\sin^2 x = 8\cos^2 x$	$sx in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ is	
a) 1	b) 2	c) 3	d) 4
508. The solution of the equa			
$\log_{\cos x} \sin x + \log_{\sin x} \cos x$		π	π
a) $x = 2n \pi + \frac{\pi}{4}, n \in \mathbb{Z}$	b) $x = n \pi + \frac{\pi}{2}, n \in \mathbb{Z}$	c) $x = n \pi + \frac{\pi}{8}, n \in \mathbb{Z}$	d) $x = 2n \pi + \frac{\pi}{6}, n \in \mathbb{Z}$
509. The value of 16 sin 144°	sin 108° sin 72° sin 36° is eo	qual to	0
a) 5	b) 4	c) 3	d) 1
510. In $(0, \pi/2)$, $\tan^m x + \cot^m x$	^m x attains		
Which one of the above s			
a) A minimum value whi	-		
b) A minimum value whi			
c) The minimum value o		ont of m	
-	t the some point independence $(x + \alpha) = 0$ and $(x + \alpha) = 0$.		
511. If $7 \cos x - 24 \sin x = \lambda$	24	$x \in K$, then	17
a) $\lambda = 25$	b) $\alpha = \sin^{-1} \frac{21}{25}$	c) $\lambda = -25$	d) $\alpha = \cos^{-1} \frac{17}{25}$
512. Which one of the followi	ng is possible?		

512. Which one of the following is possible?

a) $\sin \theta = \frac{a^2 + b^2}{a^2 - b^2}, (a \neq b)$ b) $\sec \theta = \frac{4}{5}$ d) $\cos \theta = \frac{7}{3}$ c) $\tan \theta = 45$ 513. If $y = (1 + \tan A)(1 - \tan B)$, where $A - B = \frac{\pi}{4}$, then $(y + 1)^{y+1}$ is equal to b) 4 c) 27 d) 81 514. If $a \cos A = b \cos B$, then the triangle is a) Equilateral b) Right angled c) Isosceles d) Isosceles or right angled 515. If $-\pi \le x \le \pi$, $-\pi \le y \le \pi$ and $\cos x + \cos y = 2$, then the value of $\cos (x - y)$ is a) –1 b) 0 c) 1 d) None of these 516. If $A + B + C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$ b) $4 \cos A \cos B \cos C$ a) 4 sin A sin B sin C c) $4\cos A\cos B\cos C$ d) $2 \sin A \sin B \sin C$ 517. The maximum value of $4\sin^2 x + 3\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$ is c) 9 a) $4 + \sqrt{2}$ b) $3 + \sqrt{2}$ d) 4 518. If $\sin 3\theta = \sin \theta$, how many solutions exist such that $0 < \theta < 2\pi$? d) 7 b) 9 c) 5 a) 8 519. The value of $\frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16}$, is d) $\frac{\sqrt{2}}{32}$ c) $\frac{1}{16}$ a) $\frac{\sqrt{2}}{16}$ b) $\frac{1}{0}$ 520. tan 25° + tan 20° + tan 25° tan 20° is equal to b) 2 c) 3 d) 4 a) 1 521. If $\sin^4 x + \cos^4 y + 2 = 4 \sin x \cos y$ and $0 \le x, y \le \frac{\pi}{2}$, then $\sin x + \cos y$ is equal to b) 0 c) 2 d) $\frac{3}{2}$ a) -2 522. In a right angled $\triangle ABC \sin^2 A + \sin^2 B + \sin^2 C =$ d) None of these c) -1 523. If $x \cos \theta = y \cos \left(\theta + \frac{2\pi}{3}\right) = z \cos \left(\theta + \frac{4\pi}{3}\right)$, then the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal to d) $3\cos\theta$ 524. If $A + B + C = \frac{3\pi}{2}$, then $\cos 2A + \cos 2B + \cos 2C$ is equal to a) $1 - 4 \cos A \cos B \cos C$ b) $4 \sin A \sin B \sin C$ c) $1 + 2 \cos A \cos B \cos C$ d) $1 - 4 \sin A \sin B \sin C$ 525. If $A + B + C = \pi(A, B, C > 0)$ and the angle *C* is obtuse, then a) $\tan A \tan B > 1$ b) $\tan A \tan B < 1$ c) $\tan A \tan B = 1$ d) None of these 526. If $\sec \theta + \tan \theta = 1$, then root of the equation $(a - 2b + c)x^2 + (b - 2c + a)x + (c - 2a + b) = 0$ is a) sec θ b) tan θ c) $\sin\theta$ d) $\cos \theta$ 527. The area of the regular polygon of n sides is (where R is the radius of the circumpolygon), a) $\frac{1}{2}R^2 \sin\left(\frac{2\pi}{n}\right)$ b) $\frac{n}{2}R^2 \sin\left(\frac{\pi}{n}\right)$ c) $\frac{n}{2}R \sin\left(\frac{2\pi}{n}\right)$ d) $\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$ 528. The number of all possible 5-tuples $(a_1, a_2, a_3, a_4, a_5)$ such that $a_1 + a_2 \sin x + a_3 \cos x + a_4 \sin 2x + a_5 \sin x + a_5 \cos x + a_4 \sin 2x + a_5 \sin x + a_5 \cos x + a_5 \sin x$ $a5\cos 2x=0$ holds for all x is a) Zero c) 2 d) Infinite 529. The value of $\frac{\tan 70^\circ - \tan 20^\circ}{\tan 50^\circ}$ is equal to a) 2 c) 0 b) 1 d) 3 530. If $\cos 20^\circ = k$ and $\cos x = 2k^2 - 1$, then the possible values of x between 0° and 360° are a) 140° and 270° b) 40° and 140° c) 40° and 320° d) 50° and 130°

531. The expression tan 9° –	tan 27° — tan 63° + tan 81°	is equal to			
a) 4	b) 3	c) 2	d) 1		
532. If $\tan(\pi \cos \theta) = \cot(\pi \sin \theta)$	532. If $tan(\pi \cos \theta) = cot(\pi \sin \theta)$, then the value(s) of $cos\left(\theta - \frac{\pi}{4}\right)$ is,(are)				
a) $\frac{1}{2}$	b) $\frac{1}{\sqrt{2}}$	c) $\pm \frac{1}{2\sqrt{2}}$	d) None of these		
533. If $b = 3, c = 4$ and $B = \pi$					
a) Infinite	b) Two	c) One	d) Nil		
534. In a $\triangle ABC$, $\sum (b + c) \tan \frac{1}{2}$	$\left(\frac{B-C}{2}\right) =$				
a) <i>a</i>	b) <i>b</i>	c) <i>c</i>	d) 0		
535. If the sides of a triangle a	are 7 cm, $4\sqrt{3}$ cm and $\sqrt{13}$ cm	m, then the smallest angle o	of the triangle is		
a) 15°	b) 45°	c) 30°	d) None of these		
536. Set $a, b \in [-\pi, \pi]$ be such	that $\cos(a - b) = 1$ and $\cos(a - b) = 1$	$bs(a+b) = \frac{1}{a}$. The number	of pairs of <i>a</i> , <i>b</i> satisfying the		
above system of equatio		C			
a) 0	b) 1	c) 2	d) 4		
537. If $\tan(k+1)\theta = \tan\theta$, the function of the f	hen $ heta$ belongs to the set				
	b) $\{n\pi / 2: n \in I\}$				
538. Let $\theta \in (0, \pi/4)$ and $t_1 =$	$(\tan\theta)^{\tan\theta}, t_2 = (\tan\theta)^{\cos\theta}$	t^{θ} , $t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 =$	$= (\cot \theta)^{\cot \theta}$. Then,		
a) $t_1 > t_2 > t_3 > t_4$	b) $t_4 > t_3 > t_1 > t_2$	c) $t_3 > t_1 > t_2 > t_4$	d) $t_2 > t_3 > t_1 > t_4$		
539. The value of cos 12° cos 2	24° cos 36° cos 48° cos 72° c	os 84°, is			
a) 1/64	b) 1/32	c) 1/16	d) 1/128		
540. If $\tan A + \sin A = m$ and	$\tan A - \sin A = n, \text{ then } \frac{(m^2 - m)}{m}$	$\frac{-n^2}{2}$ is equal to			
a) 4	b) 3	c) 16	d) 9		
541. If $A + B + C = 270^{\circ}$, the	,				
$\cos 2A + \cos 2B + \cos 2C$					
a) $4 \sin A \sin B \sin C$		b) 4 cos A cos B cos C			
c) $1 - 4 \sin A \sin B \sin C$		d) $1 - 4 \cos A \cos B \cos C$			
542. If $\frac{\sin A - \sin C}{\cos C - \cos A} = \cot B$, then	A.B.C are in	-			
$\cos c - \cos A$ a) AP	b) GP	c) HP	d) None of these		
543. If $\alpha + \beta + \gamma = 2\pi$, then	bjul	cj m	uj None of these		
a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2}$	$= \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$				
b) $\tan \frac{\overline{\alpha}}{2} + \tan \frac{\overline{\beta}}{2} + \tan \frac{\overline{\beta}}{2}$	$\tan\frac{\gamma}{2} + \tan\frac{\gamma}{2}\tan\frac{\alpha}{2} = 1$				
c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2}$					
d) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\beta}{2}$					
544. In a $\triangle ABC$, if the diameter		_			
a) $\frac{\pi}{4}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) None of these		
545. If $\sin^2 \theta = \frac{x^2 + y^2 + 1}{2x}$, then	<i>x</i> must be	2			
a) —3	b) -2	c) 1	d) None o f these		
546. If $1 + \sin \theta + \sin^2 \theta + \cdots$	to $\infty = 4 + 2\sqrt{3}, 0 < \theta < \pi$	$\theta \neq \frac{\pi}{2}$, then $\theta =$			
a) $\frac{\pi}{6}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$ or, $\frac{\pi}{6}$	d) $\frac{\pi}{3}$ or, $\frac{2\pi}{3}$		
0	3	- 3 6	3 3		
547. If $\cos 20^\circ - \sin 20^\circ = p$,		$\left(\frac{1}{2}\right)$	d $\sqrt{2}$		
	- 1 V 1	c) $p + \sqrt{2 - p^2}$	d) $p - \sqrt{2 - p^2}$		
548. If $c^2 = a^2 + b^2$, $2s = a - b^2$	+ v + c, then $4s(s - a)(s - a)$	b(s-c) =			

a) <i>s</i> ⁴	b) $b^2 c^2$	c) $c^2 a^2$	d) a^2b^2
549. The value of $\tan 20^\circ + 2$,		
a) 1	b) 0	c) tan 50°	d) None of these
550. The solutions of the equ π			2π
a) $x = n\pi \pm \frac{1}{4}$	b) $x = n\pi \pm \frac{\pi}{3}$	c) $x = n\pi \pm \frac{1}{2}$	d) $x = n\pi \pm \frac{2\pi}{3}$
551. $\frac{\tan A}{1 + \sec A} + \frac{1 + \sec A}{\tan A}$ is equal	to		
a) 2 sin <i>A</i>	b) 2 cos <i>A</i>	c) 2 cosec A	d) 2 sec <i>A</i>
552. In $\triangle ABC$, if $\sin^2 A + \sin^2 A$			
a) Right angled, but nee		b) Right angled and isoso	celes
c) Isosceles, but need no 553. If $\cos \theta + \cos 2\theta + \cos 3$	0 0	d) Equilateral	
	-		2π
1	b) $\theta = n\pi + (-1)^n \frac{2\pi}{3}$	c) $\theta = n\pi + (-1)^n \frac{1}{3}$	d) $\theta = 2n\pi \pm \frac{1}{3}$
554. If for real values of <i>x</i> , cost	$s \theta = x + \frac{1}{x}$, then		
a) θ is an acute angle		b) θ is a right angle	
c) θ is an obtuse angle		d) No value of θ is possib	ble
555. If $\sin x + \cos x = \frac{1}{5}$, then	$\tan 2x$ is		
a) $\frac{25}{17}$	b) $\frac{24}{7}$	c) $\frac{7}{25}$	d) $\frac{25}{7}$
556. If θ is an acute angle and	1	10	/
a) $x^2 - 1$	b) $\sqrt{x^2 - 1}$	c) $\sqrt{x^2 + 1}$	d) $x^2 + 1$
$\Delta J x = 1$ 557. In a ΔABC , <i>a</i> , <i>b</i> , <i>A</i> are giv	- • •	• • • •	,
triangles with sides <i>a</i> , <i>b</i> ,		of the third side c. The su	
a) $(1/2)b^2 \sin 2A$		c) $b^2 \sin 2 A$	d) None of these
558. The value of cos 1° cos 2	° cos 3° cos 179° is	-	-
a) $\frac{1}{\sqrt{2}}$	b) 0	c) 1	d) None of these
559. In a right angled triangle	the hypotenuse is $2\sqrt{2}$ tim	es the length of perpendicu	ılar drawn from the
opposite vertex on the h	ypotenuse, then the other t	wo angles are	
a) $\frac{\pi}{3}, \frac{\pi}{6}$	b) $\frac{\pi}{4}$, $\frac{\pi}{4}$	c) $\frac{\pi}{8}, \frac{3\pi}{8}$	d) $\frac{\pi}{12}$, $\frac{5\pi}{12}$
560. If $12 \cot^2 \theta - 31 \csc \theta$	тт	0 0	12,12
			. 1
5	b) $\frac{2}{3}$ or $-\frac{2}{3}$	c) $\frac{-}{5}$ or $\frac{-}{4}$	d) $\pm \frac{1}{2}$
561. If $T_n = \cos^n \theta + \sin^n \theta$, t			
a) 2 $\Gamma(2)$ The sum and such as $f(0, z)$	b) 3	c) 0	d) 1
562. The general value of θ s		-	7π
a) $n\pi + (-1)^{n+1} \frac{1}{6}$	b) $n\pi + (-1)^n \frac{\pi}{2}$	c) $n\pi + (-1)^n \frac{5\pi}{6}$	d) $n\pi + (-1)^n \frac{7\pi}{6}$
563. Which of the following s			
a) $\sin \theta = -1/5$		c) $\sec \theta = 1/2$	d) $\tan \theta = 20$
564. The expression $3\left\{\sin^4\left(\right.\right.\right\}$	$\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi-\alpha)\right\}-$	$2\left\{\sin^6\left(\frac{\pi}{2}+\alpha\right)+\sin^6(5\pi-1)\right\}$	$-\alpha$) is equal to
a) 0	b) 1	c) 3	d) $\sin 4\alpha + \cos 6\alpha$
565. If $\cot x + \csc x = \sqrt{3}$,	then the principle value of ($\left(x-\frac{\pi}{6}\right)$ is	
a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{6}$
566. If the equation $\cos 3x \cos 3x$	1	L	6

a) $(2n+1)\frac{\pi}{4}$	b) $(2n-1)\frac{\pi}{4}$	c) $\frac{n\pi}{4}$	d) None of these
567. In the ambiguous case, if $c_1^2 - 2c_1c_2\cos 2A + c_2^2 =$, c_2 are two values of the th	ird side <i>c</i> , then
	b) $4a^2 \cos A$	c) $4a\cos^2 A$	d) None of these
568. If $A > 0, B > 0$ and $A + B$,	,
a) $\frac{1}{3}$	b) 1	c) ∞	d) $\frac{1}{\sqrt{3}}$
569. The number of points of	intersection of the curves 2	$y = 1$ and $y = \sin x$, $-2\pi \le 1$	$\leq x \leq 2\pi$, is
a) 2	b) 3	c) 4	d) 1
570. The number of roots of the	he equation $x + 2 \tan x = \frac{\pi}{2}$	in the interval $[0,2 \pi]$, is	
a) 1	b) 2	c) 3	d) Infinite
571. In a $\triangle ABC$ id $a = 2, b = \sqrt{2}$			
a) 30°	b) 45°	c) 60°	d) None of these
572. The value of $\frac{\cot^2 \theta + 1}{\cot^2 \theta - 1}$ is equivalent to the value of $\frac{\cot^2 \theta + 1}{\cot^2 \theta - 1}$	qual to		
a) sin 20	b) cos 2θ	c) cosec 2θ	d) sec 2θ
573. The least value of cosec ² .			
a) 0	b) 26	c) 28	d) 36
574. If $\cos(\theta - \alpha)$, $\cos \theta$, $\cos(\theta - \alpha)$	$\theta + \alpha$) are in H.P., then cos	$\theta \sec\left(\frac{a}{2}\right)$ is equal to	
a) —1	b) $\pm \sqrt{2}$	c) ±2	d) ±3
575. $\tan 5x \tan 3x \tan 2x =$			
$\tan 5x - \tan 3x$	$2x^{b}\frac{\sin 5x - \sin 3x - \sin 2}{\cos 5x - \cos 3x - \cos 3x}$	2xc) 0	d) None of these
		2 <i>x</i>	
576. If $\sin x + \sin^2 x = 1$, then a) 1	b) 2	c) 1.5	d) None of these
577. The value of the expressi	,	cj 1.5	uj None or these
$\sin^6\theta + \cos^6\theta + 3\sin^2\theta$			
a) 0	b) 2	c) 3	d) 1
578. If $\cos \theta = \frac{8}{17}$ and θ lies in	the first quadrant, then the	e value of $\cos(30^\circ + \theta) + \cos(30^\circ)$	$\cos(45^\circ - \theta) + \cos(120^\circ - \theta)$
<i>θ</i> , is			
a) $\frac{23}{17} \left(\frac{\sqrt{3}-1}{2} + \frac{1}{\sqrt{2}} \right)$	b) $\frac{23}{17} \left(\frac{\sqrt{3}+1}{2} + \frac{1}{\sqrt{2}} \right)$	c) $\frac{23}{17} \left(\frac{\sqrt{3}-1}{2} - \frac{1}{\sqrt{2}} \right)$	d) $\frac{23}{17} \left(\frac{\sqrt{3}+1}{2} - \frac{1}{\sqrt{2}} \right)$
579. The number of real solut	ions of $2\sin(e^x) = 5^x + 5^-$	^x in [0, 1] is /are	
a) 0	b) 1	c) 2	d) 4
580. If the angles of a right and $\sqrt{2}$			
	b) $(2 + \sqrt{3}) : \sqrt{3}$	c) $(2 - \sqrt{3}) : 2\sqrt{3}$	d) $(2 - \sqrt{3}) : 4\sqrt{3}$
581. If $2\sin^2\theta + \sqrt{3}\cos\theta + 1$	-	-	
a) $\frac{\pi}{6}$	b) $\frac{2\pi}{3}$	c) $\frac{5\pi}{c}$	d) π
582. The general solution of e	3	0	
			d) None of these
a) $x = m\pi$	b) $x = \frac{(4m+1)\pi}{4}$	c) $x = \frac{(110 + 2)x}{2}$	uj None of these
583. The most general value of	of $ heta$ which satisfy both the e	quations $\cos \theta = -\frac{1}{\sqrt{2}}$ and t	$\tan \theta = 1$, is
_			d) None of these
1	b) $2n\pi + \frac{\pi}{4}, n \in I$	1	
584. If $\alpha + \beta + \gamma = 2\theta$, then c			
a) $4\sin\frac{\alpha}{2}.\cos\frac{\beta}{2}.\sin\frac{\gamma}{2}$	b) $4\cos\frac{\alpha}{2}\cdot\cos\frac{\beta}{2}\cdot\cos\frac{\gamma}{2}$	c) $4\sin\frac{\alpha}{2}.\sin\frac{\beta}{2}.\sin\frac{\gamma}{2}$	d) $4\sin\alpha . \sin\beta . \sin\gamma$

585. The number of solutions of the equation $x^3 + x^2 + 4x + 2 \sin x = 0$ in $0 \le x \le 2\pi$ is b) One a) Zero c) Two d) Four 586. The value of $\frac{\tan 70^\circ - \tan 20^\circ}{\tan 50^\circ}$ c) 0 d) 3 a) 2 b) 1 587. The equation $\sin x + \sin y + \sin z = -3$ for $0 \le x \le 2\pi$, $0 \le y \le 2\pi$, $0 \le z \le 2\pi$ has a) One solution b) Two sets of solutions c) Four sets of solutions d) No solution 588. If $\tan A = \frac{1 - \cos B}{\sin B}$, then b) $\tan 2A = \tan^2 B$ a) $\tan 2A = \tan B$ c) $\tan 2A = \tan^2 B + 2 \tan B$ d) None of the above 589. If α is an acute angle and $\sin \frac{\alpha}{2} = \sqrt{\frac{x-1}{2x}}$, then $\tan \alpha$ is a) $\left| \frac{x-1}{x+1} \right|$ b) $\frac{\sqrt{x-1}}{x+1}$ c) $\sqrt{x^2 - 1}$ d) $\sqrt{x^2 + 1}$ 590. If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, then $\sin(\alpha + \beta) = b$ c) $\frac{2ab}{a^2 - b^2}$ d) $\frac{2ab}{a^2 + b^2}$ a) ab b) *a* + *b* 591. In $\tan \theta + \sec \theta = \sqrt{3}$, $0 < \theta < \pi$, then θ is equal to a) $5\pi/6$ b) 2π/3 c) $\pi/6$ d) $\pi/3$ 592. If $\pi < \theta < 2\pi$, then $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$ is equal to a) $\csc \theta + \cot \theta$ b) $\csc \theta - \cot \theta$ c) $-\csc \theta + \cot \theta$ d) $-\operatorname{cosec} \theta - \cot \theta$ 593. If $a \sin^2 x + b \cos^2 x = c$, $b \sin^2 y + a \cos^2 y = d$ and $a \tan x = b \tan y$, then $\frac{a^2}{b^2}$ is equal to a) $\frac{(b-c)(d-b)}{(a-d)(c-a)}$ b) $\frac{(a-d)(c-a)}{(b-c)(d-b)}$ c) $\frac{(d-a)(c-a)}{(b-c)(d-b)}$ d) $\frac{(b-c)(b-d)}{(a-c)(a-d)}$ 594. The value of $\frac{\cos 12^\circ - \sin 12^\circ}{\cos 12^\circ + \sin 12^\circ} + \frac{\sin 147^\circ}{\cos 147^\circ}$ is equal to b) –1 c) 0 a) 1 d) None of these 595. In a Δ*ABC*, if $A = 30^{\circ}$, b = 2, $c = \sqrt{3} + 1$, then $\frac{C-B}{2} =$ a) 15° c) 45° d) None of these 596. If the expression $\frac{\sin \frac{x}{2} + \cos \frac{x}{2} - i \tan x}{1 + 2i \sin \frac{x}{2}}$ is real, then x is equal to a) $2n \pi + 2 \tan^{-1} k, k \in R, n \in Z$ b) $2n \pi + 2 \tan^{-1} k$, where $k \in (0,1), n \in Z$ c) $2n \pi + 2 \tan^{-1} k$, where $k \in (1,2), n \in \mathbb{Z}$ d) $2n \pi + 2 \tan^{-1} k, k \in (2,3), n \in \mathbb{Z}$ 597. In a $\triangle ABC$, a = 5, b = 4 and $\cos(A - B) = \frac{31}{32}$, then side *c* is c) 9 d) None of these a) 6 598. The value of $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ$ is equal to a) 1 b) 2 c) 3 d) $\frac{3}{2}$ 599. If $5 \cos x + 12 \cos y = 13$, then the maximum value of $5 \sin x + 12 \sin y$ is a) 12 d) 13 b) $\sqrt{120}$ c) $\sqrt{20}$ 600. The minimum value of $f(x) = \sin^4 x + \cos^4 x$, $0 \le x \le \frac{\pi}{2}$ is b) $\frac{1}{4}$ d) $\frac{1}{2}$ a) $\frac{1}{2\sqrt{2}}$ c) $-\frac{1}{2}$ 601. $\cot \theta = \sin 2 \theta, \theta \neq n\pi, n \in \mathbb{Z}$, if θ equals

	h) 450 m (00	a) 000 amba	
-	•	c) 90° only	d) 45° only
602. If $\cos \theta = \cos \alpha \cos \beta$, then $\tan \left(\frac{\theta + \alpha}{2}\right) \tan \left(\frac{\theta - \alpha}{2}\right)$ is equal to			
2	b) $\tan^2 \frac{\beta}{2}$	L	d) $\cot^2 \frac{\beta}{2}$
603. In $\triangle ABC$, $\angle A = \frac{\pi}{3}$ and $b: c = 2:3$, $\tan \theta = \frac{\sqrt{3}}{5}$, $0 < \theta < \frac{\pi}{2}$, then			
a) $B = 60^\circ + \theta$	b) $C = 60^\circ + \theta$	c) $B = 60^{\circ} - \theta$	d) $C = 60^\circ - \theta$
604. The value of $\cot 70^{\circ} + 4 \cos 70^{\circ}$ is			
a) $\frac{1}{\sqrt{3}}$	b) √3	c) 2 √3	d) 1/2
605. The general solution of sin $x - \cos x = \sqrt{2}$, for any integer <i>n</i> is			
	b) $2n\pi + \frac{3\pi}{4}$		(2m + 1) =
a) <i>nπ</i>	b) $2n\pi + \frac{1}{4}$	c) 2 <i>n</i> π	d) $(2n+1)\pi$
606.		_	
If $0 < \theta < \pi$, then $\sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + 2\cos\theta}}}$ there being <i>n</i> number of 2's is equal to			
			d) None of these
a) $2\cos\frac{1}{2^n}$	b) $2\cos\frac{\theta}{2^{n-1}}$	c) $2\cos\frac{1}{2^{n+1}}$	a) None of these
607. If $(\sec A - \tan A)(\sec B - \tan B)(\sec C - \tan C) = (\sec A + \tan A)(\sec B + \tan B)(\sec C + \tan C)$ then each			
side is equal to			
a) 0	b) 1	c) -1	d) ±1
608. The value of $\frac{\sin 55^\circ - \cos 55^\circ}{\sin 10^\circ}$ is			
a) $\frac{1}{\sqrt{2}}$	b) 2	c) 1	d) /2
a) $\frac{1}{\sqrt{2}}$			d) √2
609. If $\frac{\tan 3A}{\tan A} = a$, then $\frac{\sin 3A}{\sin A}$ is equal to			
		a	a
a) $\frac{2a}{a+1}$	$b) \frac{1}{a-1}$	c) $\frac{a}{a+1}$	d) $\frac{a}{a-1}$
610. The value of $1 + \cos 56^{\circ} + \cos 58^{\circ} - \cos 66^{\circ}$ is			
a) 4 cos 28° cos 29° sin 33° b) cos 28° cos 29° sin 33° c) 4 cos 28° sin 29° cos 33° d) 4 cos 28° sin 29° sin 33°			
611. If $x \cos \alpha + y \sin \alpha = 2a$, $x \cos \alpha + y \sin \beta = 2a$ and $2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} = 1$, then			
a) $\cos \alpha + \cos \beta = \frac{2ax}{x^2 + y^2}$			
b) $\cos \alpha \cos \beta = \frac{2a^2 - y}{x^2 + y^2}$	2		
•			
c) $y^2 = 4a(\alpha - x)$			
d) $\cos \alpha + \cos \beta = 2 \cos \alpha \cos \beta$ 612. The value of log $\tan 1^\circ + \log \tan 2^\circ + \dots + \log \tan 89^\circ$, is			
a) 0	b) -1	. .	d) ∞
-	,	c) 1	u) w
613. The general value of θ in the equation $\cos \theta = \frac{1}{\sqrt{2}}$, $\tan \theta = -1$ is			
0	b) $2n\pi \pm \frac{7\pi}{4}, n \in I$	5	d) $n\pi + (-1)^n \frac{\pi}{4}, n \in I$
614. The number of solutions	-		N 4
a) 1	b) 2	c) 3	d) 4
615. If $\frac{\pi}{2} < \theta < \pi$, then $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$	•		
a) 2 sec θ	b) $-2 \sec \theta$	c) $\sec\theta$	d) $- \sec \theta$
616. If $\sin \theta = \sin 15^\circ + \sin 45^\circ$, where $0^\circ < \theta < 90^\circ$, then θ is equal to 0			
a) 45°	b) 54°	c) 60°	d) 75°
617. $\sinh^{-1} 2 + \sinh^{-1} 3 = x \Rightarrow \cosh x$ is equal to			

		_	
a) $\frac{1}{2}(3\sqrt{5}+2\sqrt{10})$	b) $\frac{1}{2}(3\sqrt{5}-2\sqrt{10})$	c) $\frac{1}{2}(12 + 2\sqrt{50})$	d) $\frac{1}{2}(12 - 2\sqrt{50})$
618. The values of θ satisfying	$\operatorname{ng}\sin 7\theta = \sin 4\theta - \sin \theta\mathrm{a}$	nd $0 < \theta < \frac{\pi}{2}$ are	
a) $\frac{\pi}{9}, \frac{\pi}{4}$	b) $\frac{\pi}{3}, \frac{\pi}{9}$	c) $\frac{\pi}{6}, \frac{\pi}{9}$	d) $\frac{\pi}{3}$, $\frac{\pi}{4}$
<i>J</i> 1	5 5	0 9	5 т
619. In a triangle <i>ABC</i> , the li a) 3/2	b) 1	c) 3/4	d) $1/2$
620. If $2\sin^2\theta = 3\cos\theta$, $0 \le 1$,	0) 0/ 1	uj 1/2
a) $\frac{\pi}{6}, \frac{5\pi}{6}$	b) $\frac{\pi}{3}, \frac{2\pi}{3}$	c) $\frac{\pi}{2}, \frac{5\pi}{2}$	d) $\frac{\pi}{2}$, π
0 0	5 5	5 5	$\frac{1}{2}, \pi$
621. Solution of the equation π			π
a) $\theta = n\pi - \frac{\pi}{3}$	b) $\theta = n\pi + \frac{\pi}{3}$	c) $\theta = n\pi - \frac{\pi}{4}$	d) $\theta = n\pi + \frac{\pi}{4}$
622. Number of solutions of	$y = e^x$ and $y = \sin x$ is	-	
a) 0	b) 1	c) 2	d) Infinite
623. The value of $\sin 10^\circ$ + s	$in 20^\circ + \sin 30^\circ + \ldots + \sin 36$	-	
a) 0	b) 1	c) √3	d) 2
624. For any angle θ , the exp	pression $\frac{2\cos 8\theta + 1}{2\cos \theta + 1}$ is equal to		
a) $(2\cos\theta + 1)(2\cos 2)$	$(\theta + 1)(2\cos 4\theta + 1)$	b) $(\cos \theta - 1)(\cos 2\theta - 2)$	$1)(\cos 4\theta - 1)$
c) $(2\cos\theta - 1)(2\cos2)$		d) $(2\cos\theta + 1)(2\cos 2\theta)$	$(2\cos 4\theta + 1)$
625. If sec α and cosec α are			
		c) $p^2 + q^2 = 2q$	d) None of these
626. The value of $\sin \frac{\pi}{7} \sin \frac{2\pi}{7}$	$\sin\frac{3\pi}{7}$, is		
a) 1/8	b) √7/8	c) √7/2	d) √7/16
627. If $\sin x + \sin^2 x = 1$, the			
a) 1	b) 2	c) 3	d) 0
628. If $A + C = B$, then $\tan A$	$\tan B \tan C =$		
a) tan A tan B tan C b) tan B — tan C — tan A	l		
c) $\tan A + \tan C - \tan B$			
d) $-(\tan A \tan B + \tan C)$			
629. If $\cos A + \cos B = m$ and	$d \sin A + \sin B = n$ where m	$a, n \neq 0$, then $\sin(A + B)$ is	equal to
a) $\frac{mn}{m^2 + n^2}$	b) $\frac{2mn}{m^2 + n^2}$	c) $\frac{m^2 + n^2}{2mm}$	d) $\frac{mn}{m+n}$
		Zmn	m + n
630. The solution set of $(5 + (\pi - 2\pi))$			(27) 571)
a) $\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$	b) $\left\{\frac{\pi}{3}, \pi\right\}$	c) $\left\{\frac{2\pi}{3}, \frac{4\pi}{3}\right\}$	d) $\left\{\frac{2\pi}{3}, \frac{5\pi}{3}\right\}$
631. The equation $\sin^6 x + c$	$\cos^6 x = \lambda$, has a solution if		
		c) $\lambda \in [-1, 1]$	d) $\lambda \in [0, 1/2]$
632. If $y = \frac{\sin 3\theta}{\sin \theta}$, $\theta \neq n \pi$, th	en		
31110		c) $y \in (3, \infty)$	d) $y \in [-1, 3)$
633. If $\sin^2 \theta = \frac{1}{4}$, then the n	nost general value of θ is		
1	b) $\frac{n\pi}{2} \pm (-1)^n \frac{\pi}{6}$	c) $n\pi \pm \frac{\pi}{6}$	d) $2n\pi \pm \frac{\pi}{6}$
C	- / 6		0
		Ũ	0
a) $b_0 = 1, b_1 = 3$	$\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta \text{ for e}$	Ũ	Ŭ
a) $b_0 = 1, b_1 = 3$ c) $b_0 = -1, b_1 = n$		very value of θ , then	+ 3
c) $b_0 = -1, b_1 = n$ 635. If $k = \sin^6 x + \cos^6 x$, the	$\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ for even	very value of θ , then b) $b_0 = 0, b_1 = n$ d) $b_0 = 0, b_1 = n^2 - 3n - 3n$	
c) $b_0 = -1, b_1 = n$	$\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta \text{ for e}$	very value of θ , then b) $b_0 = 0, b_1 = n$ d) $b_0 = 0, b_1 = n^2 - 3n - 3n$	+ 3 d) None of these

636. The value of $\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3}}$	$\frac{1}{3 \sin 250^\circ}$ is equal to		
a) $\sqrt{3}/4$	b) 4/3	c) 3/4	d) 4/ √3
637. If $0 \le x \le \pi$ and $81^{\sin^2 x}$	$x^{x} + 81^{\cos^{2} x} = 30$, then x is e	equal to	
a) $\frac{\pi}{6}, \frac{\pi}{3}$	b) $\frac{\pi}{3}, \frac{\pi}{2}$	c) $\frac{5\pi}{6}, \frac{\pi}{3}$	d) $\frac{2\pi}{3}$, $\frac{\pi}{3}$
6 3 638. The value of cos 9° – sin	0 2	6 3	3 3
	·	$\sqrt{5-\sqrt{5}}$	d) None of these
a) $\frac{5 + \sqrt{5}}{4}$	b) $\frac{\sqrt{5-\sqrt{5}}}{2}$	c) $-\frac{\sqrt{5-\sqrt{5}}}{2}$	-
639. sech ⁻¹ $\left(\frac{1}{2}\right)$ is	-	-	
(2)	b) $\log(\sqrt{3} + 1)$	c) $\log(2 + \sqrt{3})$	d) None of above
640. If a triangle is right ang	led at <i>B</i> , then the diameter of	of the incircle of the triangle	e is
a) <i>c</i> + <i>a</i> − <i>b</i>		c) <i>c</i> + <i>a</i> − 2 <i>b</i>	· , · · · · ·
641. Let $\theta \in \left(0, \frac{\pi}{4}\right)$ and $t_1 =$	$(\tan\theta)^{\tan\theta}, t_2 = (\tan\theta)^{\cot\theta}$, $t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 =$	$(\cot \theta)^{\tan \theta}$, then
	b) $t_4 > t_3 > t_1 > t_2$		
642. If $\frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} + {\cos(\alpha - \alpha)}$	β) sec($\alpha + \beta$) + 1} ⁻¹ = 1, t	hen tan α tan β is equal to	
a) 1	b) —1	c) 2	d) —2
643. The value of the expres	sion $3(\sin\theta - \cos\theta)^4 + 6(\sin\theta)^4$	$(\sin\theta + \cos\theta)^2 + 4(\sin^6\theta + \theta)^2$	$\cos^6 \theta$) is
a) 1	b) -1	c) 13	d) 0
644. One root of the equation	$1\cos\theta - \theta + \frac{1}{2} = 0$ lies in th	e interval	
a) $(0, \pi/2)$	b) $(-\pi/2, 0)$) ())	d) (π, 3π/2)
645. If $\alpha - 22^{\circ}30'$, then (1 +	$\cos \alpha$)(1 + $\cos 3\alpha$) × (1 + c	~ —	—
a) $\frac{1}{8}$	b) $\frac{1}{4}$	c) $\frac{1+\sqrt{2}}{2\sqrt{2}}$	d) $\frac{\sqrt{2}-1}{\sqrt{2}+1}$
8 646. The value of sin A sin(6	4	ZVZ	$\sqrt{2} + 1$
		c) $\frac{\sin 3A}{4}$	d) None of these
a) sin 3 <i>A</i>	b) $\frac{\sin 3A}{2}$	4	, ,
647. If $A + B + C = \pi$, then s			
	b) $4 \cos A \cos B \cos C$	c) $2\cos A\cos B\cos C$	d) 2 sin A sin B sin C
648. If $x = h + a \sec \theta$ and y $a^2 \qquad b^2$		a^2 b^2	
a) $\frac{a^2}{(x+h)^2} - \frac{b^2}{(y+k)^2}$	= 1	b) $\frac{a^2}{(x-h)^2} + \frac{b^2}{(y-k)^2} =$	= 1
c) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}$	_ 1	d) $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =$	- 1
u D		$a^2 = b^2 = b^2$	- 1
649. The maximum of the fu		a) 4	d) E
a) 2 650. The equation $3 \sin^2 x +$	b) 3 10 cos x - 6 = 0 is satisfied	c) 4 Lif	d) 5
			(1)
(0)	b) $x = 2n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$	(0)	a) $x = 2n\pi \pm \cos^{-1}\left(\frac{-}{6}\right)$
651. The number of solution	s of the equation $1 + \sin x \sin x$	$\ln^2 \frac{x}{2} = 0$, in $[-\pi, \pi]$ is	
a) Zero	b) One	c) Two	d) Three
652. The root of the equation	$1 - \cos \theta = \sin \theta \cdot \sin \frac{\theta}{2}$ is		
a) $k\pi, k \in I$	b) $2k \pi, k \in I$	c) $k\frac{\pi}{2}, k \in I$	d) None of these
653. The maximum value of	$\sin\left(x+\frac{\pi}{\epsilon}\right)+\cos\left(x+\frac{\pi}{\epsilon}\right)$ in	the interval $\left(0,\frac{\pi}{2}\right)$ is attain	ied at
a) $x = \frac{\pi}{12}$		_ , _,	d) $x = \frac{\pi}{2}$
12	0	5	Z
654. The values of α for which	$x + \cos^2 x$	$x + \sin 2x + \alpha = 0$ may b	e valla, are

a) $-\frac{3}{2} \le \alpha \le 1$	b) $0 \le \alpha \le \frac{1}{2}$	c) $-\frac{3}{2} \le \alpha \le \frac{1}{2}$	d) None of these
L	$\sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 15^\circ$		
_	b) $8\frac{1}{2}$	c) $9\frac{1}{2}$	d) None of these
656. If $1 + \cos x = k$, wher	e x is acute, then $\sin \frac{x}{2}$ is		
a) $\sqrt{\frac{1-k}{2}}$	b) $\sqrt{2-k}$	c) $\sqrt{\frac{2+k}{2}}$	d) $\sqrt{\frac{2-k}{2}}$
657. If in a triangle ABC, $\frac{\cos \theta}{2}$	$\frac{sA}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$, then the tr	iangle is	
a) Right angled	b) Obtuse angled	c) Equilateral	d) Isosceles
658. In a $\triangle ABC$ if $c = (a + a)$	b) sin θ and cos $\theta = \frac{k\sqrt{ab}}{a+b}$, the	en k =	
L	b) $2\cos\frac{B}{2}$	Z	d) $\cos\frac{C}{2}$
659. The value of $\cos \frac{\pi}{7} + \cos \frac{\pi}{7}$	$\cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{4\pi}{7} + \cos4$	$\frac{5\pi}{7} + \cos\frac{6\pi}{7} + \cos\frac{7\pi}{7}$, is	
a) 1	b) -1	c) 0	d) -2
	ed pairs (x, y) satisfying $y =$		
a) 0 661. If the angle of a triang	b) 1 le are in A.P. with common d	c) 2 lifterance equal $\frac{1}{2}$ of the less	d) ∞
the ratio		$\frac{1}{3}$ of the leas	t angle, then the sides are m
a) $\sqrt{2}$: $2\sqrt{3}$: $\sqrt{6} + \sqrt{2}$	-		
b) $2\sqrt{2} : \sqrt{3} : \sqrt{6} - \sqrt{2}$			
c) $2\sqrt{2}: 2\sqrt{3}: \sqrt{6} - \sqrt{6}$	2		
d) $2\sqrt{2}: 2\sqrt{3}: \sqrt{6} + \sqrt{6}$	2		
662. If $Max_{x \in R} \{5 \sin x + 3$	$3\sin(x-\theta)$ = 7, then θ =		
662. If $Max_{x \in R}$ {5 sin $x + 3$ a) 2 $n \pi \pm \frac{\pi}{3}$, $n \in Z$	$3\sin(x-\theta)$ = 7, then θ = b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$	c) $\frac{\pi}{3}, \frac{2\pi}{3}$	d) None of these
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$	$3 \sin(x - \theta) = 7$, then $\theta =$ b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ and sec θ + cosec $\theta = n$, then π	0 0	-
a) $2 n \pi \pm \frac{\pi}{3}$, $n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m	b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ and sec θ + cosec θ = n , then n b) n	n(m + 1)(m - 1) is equal to c) $2m$	-
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta	b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ ad sec θ + cosec θ = n , then π b) n an $\theta + \sqrt{3} = 0$, then the generation	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is	d) 2 <i>n</i>
a) $2 n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$	b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ and sec θ + cosec θ = n, then n b) n an $\theta + \sqrt{3} = 0$, then the gener b) $n\pi - \frac{\pi}{4}$, $n\pi + \frac{\pi}{3}$	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$	d) 2 <i>n</i>
a) $2 n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$	b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ ad sec θ + cosec θ = n , then π b) n an $\theta + \sqrt{3} = 0$, then the generation	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$	d) 2 <i>n</i>
a) $2 n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$	b) $2 n\pi \pm \frac{2\pi}{3}$, $n \in Z$ and sec θ + cosec θ = n, then n b) n an $\theta + \sqrt{3} = 0$, then the gener b) $n\pi - \frac{\pi}{4}$, $n\pi + \frac{\pi}{3}$	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$	d) 2 <i>n</i>
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equivalent to the second	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \frac{\pi}{3}}$ a) 0	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generic b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equal to θ b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal to θ .	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$	d) $2n$ d) $n\pi - \frac{\pi}{4}$, $n\pi - \frac{\pi}{3}$ d) None of these d) 1
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ tar a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \pi}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n} \frac{\pi}{3}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generic b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equal b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 .	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$,, c_n are constants and c_n	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 \neq 0, then the value of <i>n</i> is
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \pi}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n} \frac{1}{2}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equal by 0 b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 b) 0	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ tar a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \pi}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n} \frac{\pi}{3}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equal by 0 b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal by 0 b) 0	n(m + 1)(m - 1) is equal to c) $2m$ ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$,, c_n are constants and c_n	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 \neq 0, then the value of <i>n</i> is
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ tar a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \frac{\pi}{3}}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n}$ a) 15 668. The value of $\tan 67 \frac{1^\circ}{2}$ a) $\sqrt{2}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each $\frac{2\pi}{3\sqrt{2}}$.	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) 1/e ,, c_n are constants and c_n c) 1 c) $2\sqrt{2}$	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 \neq 0, then the value of <i>n</i> is
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ tar a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \frac{\pi}{3}}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n}$ a) 15 668. The value of $\tan 67 \frac{1^\circ}{2}$ a) $\sqrt{2}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each $\frac{2\pi}{3\sqrt{2}}$.	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) 1/e ,, c_n are constants and c_n c) 1 c) $2\sqrt{2}$	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 \neq 0, then the value of <i>n</i> is d) 0
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ tar a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \frac{\pi}{3}}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n}$ a) 15 668. The value of $\tan 67 \frac{1^\circ}{2}$ a) $\sqrt{2}$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is equal b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is equal b) 0 $\cos(\pi \cos mx)$, where c_0, c_1, c_2 . b) 6 $+ \cot 67 \frac{1^{\circ}}{2}$ is	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) 1/e ,, c_n are constants and c_n c) 1 c) $2\sqrt{2}$	d) $2n$ d) $n\pi - \frac{\pi}{4}$, $n\pi - \frac{\pi}{3}$ d) None of these d) 1 \neq 0, then the value of <i>n</i> is d) 0
a) $2 n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 663. If $\sin \theta + \cos \theta = m$ are a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ takes a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{6}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \frac{\pi}{3}}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=1}^{n} \frac{1}{2}$ a) 15 668. The value of $\tan 67 \frac{1^\circ}{2}$ a) $\sqrt{2}$ 669. In any ΔABC , II $\left(\frac{\sin^2 A}{\sin^2 4}\right)$ a) 9 670. The number of solution	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generation b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is expressed b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is expressed b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is expressed b) 0 $\cos mx$, where c_0, c_1, c_2 . b) 6 $+ \cot 67 \frac{1^{\circ}}{2}$ is b) $\frac{2}{3\sqrt{2}}$ $\frac{+\sin A + 1}{\ln A}$ is always greater the	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$,, c_n are constants and c_n c) 1 c) $2\sqrt{2}$ an c) $2\sqrt{2}$ an c) 27 = $5^x + 5^{-x}$ are	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 $\neq 0$, then the value of <i>n</i> is d) 0 d) $2 - \sqrt{2}$
a) $2 n \pi \pm \frac{\pi}{3}, n \in Z$ 663. If $\sin \theta + \cos \theta = m$ ar a) m 664. If $\tan^2 \theta - (1 + \sqrt{3})$ ta a) $n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ 665. If $\frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{1}{2}$ a) 1 666. The value of $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \pi}$ a) 0 667. If $\sin^3 x \sin 3x = \sum_{m=a}^{n}$ a) 15 668. The value of $\tan 67 \frac{1^\circ}{2}$ a) $\sqrt{2}$ 669. In any ΔABC , II $\left(\frac{\sin^2 A}{3}\right)$	b) $2 n\pi \pm \frac{2\pi}{3}, n \in Z$ and $\sec \theta + \csc \theta = n$, then π b) n an $\theta + \sqrt{3} = 0$, then the generic b) $n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{3}$ $\frac{z}{\cos(\theta + \frac{2\pi}{3})}$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\cos(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\sin(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each b) 0 $\sin(\theta + \frac{2\pi}{3})$, then $x + y + z$ is each $\frac{2\pi}{3}$.	n(m + 1)(m - 1) is equal to c) 2m ral value of θ is c) $n\pi + \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ qual to c) -1 c) $1/e$,, c_n are constants and c_n c) 1 c) $2\sqrt{2}$ an c) 27	d) $2n$ d) $n\pi - \frac{\pi}{4}, n\pi - \frac{\pi}{3}$ d) None of these d) 1 $\neq 0$, then the value of <i>n</i> is d) 0 d) $2 - \sqrt{2}$ d) None of these

	pectively the areas of an insorption of n sides, then A_2, A_1, A_2		inscribed polygon of n sides
a) A.P.	b) G.P.	c) H.P.	d) None of these
	es of θ satisfying tan θ + tan		-
5	b) $2n\pi + \frac{\pi}{3}, n \in I$	c) $2n\pi \pm \frac{\pi}{3}, n \in I$	d) $2n\pi + (-1)^n \frac{\pi}{3}, n \in I$
673. The value of $\frac{\sin(B+A)+\alpha}{\sin(B-A)+\alpha}$	$\frac{\cos(B-A)}{\cos(B+A)}$ is equal to		
a) $\frac{\cos B + \sin B}{\cos B - \sin B}$		c) $\frac{\cos A - \sin A}{\cos A + \sin A}$	d) None of these
674. The maximum value of a) 5	b) 6	c) 7	d) None of these
-	$(B, B) \Rightarrow \sin 3A + \sin 3$,	uj None of these
a) 0	b) 2	c) 1	d) —1
<u>,</u>	$\sin x + \cos x)^2 + 4 (\sin^6 x + 1)^2$)	uj I
a) 11	b) 12	c) 13	d) 14
	$\tan(\theta + 120^\circ)$, then $\cos 2\theta$ e	,	
			m + n
a) $\frac{m+n}{m-n}$	b) $\frac{1}{m+n}$	c) $\frac{m-n}{2(m+n)}$	d) $\frac{m+n}{2(m-n)}$
678. $\sqrt{3}cosec \ 20^{\circ} - \sec 20^{\circ}$	is equal to		_(
a) 2	b) 2 sin 20°. cosec 40°	c) 4	d) 4 sin 20°. cosec 40°
	$\frac{ \theta ^2}{ \theta ^2 + \sin^2 \alpha} \le k, then the value of the second se$	•	uj 1 311 20 . cosec 10
	b) $\sqrt{1 + \sin^2 \alpha}$		d) $\sqrt{2 + \cos^2 \alpha}$
•	sfying the equation $\tan^2 \theta$ +	•	·
a) $m\pi$, $n\pi + \frac{\pi}{3}$	b) $m\pi$, $n\pi \pm \frac{\pi}{3}$	c) $m\pi$, $n\pi \pm \frac{\pi}{6}$	d) None of these
5	ot β , then one of the values o	0	
a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) π	d) $n\pi - \frac{\pi}{4}$, $n \in I$
т	2		4
ic	ns of the equation $\tan x + \sec x$	$x = 2 \cos x$ and $\cos x \neq 0$	Typing in the interval $(0, 2\pi)$
a) 2	b) 1	c) 0	d) 3
•	2° tan 3° tan 89° is equal to	•	u) 5
	b) 2		d) 1
a) —1	0)2	c) $\frac{\pi}{2}$	u) I
684. The value of sin 12° sir	1 24° sin 48° sin 84°, is		
a) cos 20° cos 40° cos 6	0° cos 80°		
b) sin 20° sin 40° sin 60	0° sin 80°		
c) 3/15			
d) None of these			
685. The most general solut	tion of the equation		
$8\tan^2\frac{\theta}{2} = 1 + \sec\theta$, is	5		
a) $\theta = 2n \pi \pm \cos^{-1} \left(\frac{1}{2}\right)$	$\left(\frac{1}{3}\right)$		
b) $\theta = 2 n \pi \pm \frac{\pi}{6}$			
c) $\theta = 2 n \pi \pm \cos^{-1} \left(\frac{1}{2} \right)$	$\left(\frac{-1}{3}\right)$		
d) None of these			
686. If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, then $\frac{b}{b}$	$\frac{\tan x}{\tan y}$ is equal to		

a) $\frac{b}{a}$	b) $\frac{a}{b}$	c) ab	d) None of these
687. If $\alpha + \beta + \gamma = 2\pi$, the	n		
a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\beta}{2}$		b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \beta} \tan \frac{\beta}{2} \tan \beta} \tan \beta} \tan \beta}$	$n\frac{\gamma}{2} + tan\frac{\gamma}{2}tan\frac{\alpha}{2} = 1$
c) $\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan$	$\frac{\gamma}{2} = -\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}$	d) None of the above	
688. The most general solu	ition of tan $\theta = -1$, $\cos \theta = \frac{1}{\sqrt{2}}$	$\frac{1}{2}$ is	
a) $n \pi + \frac{7 \pi}{4}, n \in Z$		-	
b) $n \pi + (-1)^n \frac{7 \pi}{4}$, n	$\in Z$		
c) $2n \pi + \frac{7 \pi}{4}, n \in Z$			
d) None of these	- a h		
689. In a $\triangle ABC$ if $C = 60^\circ$,	then $\frac{a}{b+c} + \frac{b}{c+a} =$		
a) 2	b) 4	c) 3	d) 1
690. If x lies in IInd quadra	ant, then $\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$ is eq	jual to	
a) $\sin \frac{x}{2}$	b) $\tan \frac{x}{2}$	c) $\sec \frac{x}{2}$	d) cosec $\frac{x}{2}$
691. If $\cos(\alpha + \beta) = \frac{4}{5}$, sin	$(\alpha - \beta) = \frac{5}{13}$ and α, β lie betw	veen 0 and $\frac{\pi}{4}$, then tan $2\alpha =$	
a) $\frac{56}{22}$	b) $\frac{33}{56}$	c) $\frac{16}{65}$	d) $\frac{60}{61}$
55	50	05	61
a) 1	then $\sin^2 \theta + \csc^2 \theta$ is equ b) 4	c) 2	d) None of these
	$\sin 2\theta = 0$, then the general value of θ	,	
	b) $\frac{n\pi}{4}$, $n\pi \pm \frac{\pi}{6}$		d) $\frac{n\pi}{4}$, $2n\pi \pm \frac{\pi}{6}$
	of $\sin x - 3\sin 2x + \sin 3x =$		0
Ū		c) $(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$	d) $2n\pi + \cos^{-1}\frac{3}{2}$
695. The equation $2\cos^2\frac{x}{2}$	$\sin^2 x = x^2 + \frac{-2}{9}, x < \frac{\pi}{9}$ has		
a) No real solution		b) One real solution	
c) More than one real		d) None of the above	
triangle is	gle are 30° and 45° and the ir	4	
a) $\frac{1}{\sqrt{3}-1}$	b) $\sqrt{3} + 1$	c) $\frac{1}{\sqrt{3}+1}$	d) None of these
697. If <i>n</i> is any integer, the	n the general solution of the e	equation $\cos \theta - \sin \theta = \frac{1}{\sqrt{2}}$	is
a) $\theta = 2n\pi - \frac{\pi}{12}$ or θ	_	b) $\theta = n\pi + \frac{\pi}{12}$	
c) $\theta = 2n\pi + \frac{\pi}{12}$ or θ	$=2n\pi-\frac{7\pi}{12}$	d) $\theta = 2n\pi + \frac{\pi}{12}$ or $\theta =$	$2n\pi + \frac{7\pi}{12}$
698. We are given <i>b</i> , <i>c</i> and	sin B such that B is acute and	$b < c \sin B$. Then,	12
a) No triangle is possi	ble		
b) One triangle is pos			
c) Two triangles are p			
d) A right-angled trian 699 The value of $ast^{2\pi}$			
699. The value of $\cot^2 \frac{\pi}{9}$ +			1) 4 / 2
a) 0 700 If $\tan x + \cot x = 2$ th	b) 3 ten $\sin^{2n} x + \cos^{2n} x$ is equal	c) 9	d) 1/3
$700.11 \tan x + 001 x = 2, 11$	z + cos + x + s = qual	10	

a) 2 ⁿ	b) $-\frac{1}{2}$	c) $\frac{1}{2}$	d) None of these
701. The most general valu	2 ue of θ which satisfies both th	2	$d\cos\theta = 1/\sqrt{2}$ will be
	b) $n \pi + (-1)^n \frac{7 \pi}{4}$		d) None of these
4	hen the value of $\cos^{12} x + 3 \cos^{12} x$	4	1 is equal to
a) 2	b) 1	c) 0	d) –1
-	are $3x + 4y$, $4x + 3y$ and 5	,	5
a) Right angled	b) Equilateral	c) Obtuse angled	d) None of these
704. If the sides of a triang	le are $x^2 + x + 1$, $x^2 - 1$, $2x + 1$	- 1, where $x > 1$, then the la	argest angle is
a) 120°	b) 60°	c) 40°	d) 30°
$p_1^{-1} + p_2^{-1} - p_3^{-1}$ is eq	es of a triangle <i>ABC</i> from the ual to	vertices A, B, C and Δ , the a	rea of the triangle, then
a) $\frac{s-a}{\Lambda}$	b) $\frac{s-b}{\Lambda}$	c) $\frac{s-c}{\Lambda}$	d) $\frac{s}{\Lambda}$
Δ	Δ	Δ	Δ
	$p = 30 \text{ and } \cos C = \frac{63}{65}, \text{ then } r_2$		
a) 84	b) 45	c) 48	d) 24
a) 1	s 2° cos 3° cos 100° is equal b) −1	c) 0	d) None of these
708. The value of $\sin \frac{\pi}{2}$ + si		0	uj None of these
-	, ,	π	1 π
a) $\cot \frac{\pi}{14}$	b) $\frac{1}{2} \cot \frac{\pi}{14}$	c) $\tan \frac{\pi}{14}$	d) $\frac{1}{2} \tan \frac{\pi}{14}$
709. The value of <i>x</i> for the	maximum value of $\sqrt{3} \cos x$ +	- sin <i>x,</i> is	
a) 30°	b) 45°	c) 60°	d) 90°
710. $\sin^2 17.5^\circ + \sin^2 72.5^\circ$	-		
a) cos ² 90°	b) tan ² 45°	c) cos ² 30°	d) sin ² 45°
711. If in $\triangle ABC$, $a \sin A =$		a) Emilatorial	d) News of these
a) Isosceles 712 $ain^2 a = \frac{4xy}{x^2}$ is true	b) Right angled	c) Equilateral	d) None of these
712. $\sin^2 \theta = \frac{4xy}{(x+y)^2}$ is true			
, ,	5 6	c) $x = y$	d) $x \neq 0, y \neq 0$
713. If $\cos \theta = \frac{1}{2} \left(x + \frac{1}{x} \right)$, the	hen $\frac{1}{2}\left(x^2 + \frac{1}{x^2}\right)$ is equal to		
a) sin 20	b) cos 2θ	c) tan 2θ	d) None of these
714. sech ⁻¹ (sin θ) is equal		0	0
a) log tan $\frac{\theta}{2}$	b) $\log \sin \frac{\theta}{2}$	c) $\log \cos \frac{\theta}{2}$	d) log cot $\frac{\theta}{2}$
715. The number of solution	ons of the equation $2^{\cos x} = s $	sin x in $[-2\pi, 2\pi]$, is	-
a) 1	b) 2	c) 3	d) 4
_	$\sin \theta$) = $\sin(\lambda \cos \theta)$ has a sol		
a) $\frac{\pi}{\sqrt{2}}$	b) $\sqrt{2} \pi$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{2\sqrt{2}}$
V Z	e, given <i>a, b</i> and <i>A</i> . The differe	ence between the two value	
a) $2\sqrt{a^2 - b^2}$	b) $\sqrt{a^2 - b^2 \sin^2 A}$		d) $\sqrt{a^2 - b^2}$
	¹ , $\tan \beta = (1 + 2^{x+1})^{-1}$, then	•	
a) π/6	b) $\pi/4$	c) π/3	d) π/2
719. The maximum value of	of $f(x) = \sin x(1 + \cos x)$ is		
a) $\frac{3\sqrt{3}}{4}$	b) $\frac{3\sqrt{3}}{2}$	c) 3√3	d) √3
720. The value of $\cos \frac{\pi}{11} + 6$	$\cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11} + \cos$	9π/11, is	

a) 0 b)
$$\frac{-1}{2}$$
 c) $\frac{1}{2}$ d) 1
721. $(1 + \cos \frac{\pi}{a})(1 + \cos \frac{\pi}{a})(1 + \cos \frac{\pi}{a})$ is equal to
a) $\frac{1}{2}$ b) $\cos \frac{\pi}{8}$ c) $\frac{1}{8}$ d) $\frac{1 + \sqrt{2}}{2\sqrt{2}}$
722. If $2\sin \frac{1}{2} = \sqrt{1 + \sin A} + \sqrt{1 - \sin A}$, then $\frac{4}{2}$ lies between
a) $2\pi \pi + \frac{\pi}{4}$ and $2\pi \pi + \frac{\pi}{4}$, $\pi \in Z$
b) $2\pi \pi - \frac{\pi}{4}$ and $2\pi \pi + \frac{\pi}{4}$, $\pi \in Z$
c) $2\pi\pi - \frac{\pi}{4}$ and $2\pi \pi - \frac{\pi}{4}$, $\pi \in Z$
d) $-\infty$ and $+\infty$
723. In a ΔABC , if $a \cos^2 \frac{c}{2} + c \cos^2 \frac{4}{2} = \frac{3b}{2}$, then a, b, c are in
a) ΔP . b) ΩP . c) $H P$. d) None of these
724. The value of $\tan 5\theta$ is
 $3 + \frac{5\tan \theta - 10\tan^3 \theta + \tan^5 \theta}{1 - 10\tan^3 \theta + 5\tan^5 \theta}$
b) $\frac{5\tan \theta - 10\tan^3 \theta + 5\tan^5 \theta}{1 - 10\tan^2 \theta + 5\tan^5 \theta}$
d) None of these
725. If the sides a, b and c of $a \Delta BC$ are in AP , then
 $(\tan \frac{\pi}{2} + \tan \frac{\pi}{2}) : \cot \frac{\pi}{4}$ is
a) $3 : 2$ b) $1 : 2$ c) $3 : 4$ d) None of these
726. If in a triangle ABC
727. The value of the angle A is
a) $\frac{\pi}{3}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{6}$
727. The value of the angle A is
a) $\frac{\pi}{3}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{6}$
727. The value of the angle A is
a) $\frac{-\sqrt{3}}{2}$ b) $\frac{1}{2}^2$ c) $\sqrt{\frac{\pi}{2}}$ d) $\frac{\pi}{3}^2$
727. The value of the $2\tan (42\pi + 4\tan (4\pi) + \dots + 2^{n-1}\tan(2^{n-1}\pi) + 2^n \cot(2^n \pi)$ is
a) $\cot(2^n \pi)$ b) $\frac{\pi}{2}$ c) $\frac{\pi}{3}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{6}$
727. The value of the π is $\frac{\pi}{3}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{3}^2$
728. The maximum value $\cos^2(\frac{\pi}{4} - \pi) - \cos^2(\frac{\pi}{4} + \pi)$ is
a) $-\sqrt{\frac{3}{2}}$ b) $\frac{1}{2}$ c) $\sqrt{\frac{\sqrt{3}}{2}}$ d) $\frac{3}{2}^3$
729. If $a = 2, b = 3, c = 5 in \Delta ABC$, then $C = 3\frac{\pi}{6}$ c) $\frac{\pi}{2}$ c) $\frac{\pi}{2}$ d) None of these
730. If in $a \Delta ABC$, $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\theta = \frac{\pi}{3}$ or $\frac{\pi}{6}$ d) $\theta = \frac{\pi}{3}$ or $\theta = \frac{2\pi}{3}$
732. In $a \Delta ABC$, $\frac{\pi}{3}$ b) $\theta = \frac{\pi}{6}$ c) $\theta = \frac{\pi}{3}$ or $\frac{\pi}{6}$ d) $\theta = \frac{\pi}{3}$ or $\theta = \frac{2\pi}{3}$
732. In $a \Delta ABC$, $a(b^2 + c^2) \cos B + c(a^2 + b^2) \cos C$ is equal to
a) abc b) $2abc$ c) $2abc$ d) 4abc

733. If $tan(\pi \cos \theta) = cot(\pi \sin \theta)$	n θ), then the value of $\cos\left(\right.$	$\theta - \frac{\pi}{4}$ is equal to	
a) $\frac{1}{2\sqrt{2}}$	b) $\frac{1}{\sqrt{2}}$	c) $\frac{1}{3\sqrt{2}}$	d) $\frac{1}{4\sqrt{2}}$
734. The number of points of	intersection of the two curv	ves $y = 2 \sin x$ and $y = 5x^2$	+2x + 3, is
a) 0	b) 1	c) 2	d) ∞
735. If, in a $\triangle ABC$, $(a + b + c)$			
a) $\lambda < 0$	b) $\lambda > 4$		d) $0 < \lambda < 4$
736. The expression $\csc^2 A$			
a) 1 727 The sides of a triangle or	b) -1	c) 0	d) 2
737. The sides of a triangle ar perimeter. Then, the rati		times the area of an equilat	teral triangle of the same
a) $1:2:3$		c) 1 : 3 : 5	d) None of these
•	,	·	a) none of these
If $\tan \alpha = \frac{b}{a}$, $a > b > 0$ as	nd if $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}}$	$-\sqrt{\frac{a-b}{a+b}}$ is equal to	
$2 \sin \alpha$	b) $\frac{2\cos\alpha}{\sqrt{\cos 2\alpha}}$	$2\sin\alpha$	d) $\frac{2\cos\alpha}{\sqrt{\sin 2\alpha}}$
			$\sqrt{\sin 2\alpha}$
739. If $\sin \theta + \cos \theta = x$, then	$\sin^6\theta + \cos^6\theta = \frac{1}{4}[4 - 3(x)]$	$(x^2 - 1)^2$ for	
a) all real <i>x</i>	b) $x^2 \le 2$	c) $x^2 > 2$	d) None of these
740. If in a triangle <i>ABC</i> , $\frac{\sin A}{\sin c}$	5111(2 0)		
		c) <i>a</i> , <i>b</i> , <i>c</i> are in H.P.	d) a^2 , b^2 , c^2 are in H.P
741. In a $\triangle ABC$, angles A, B, C			
$\lim_{A \to C} \frac{\sqrt{3-4\sin A \sin C}}{ A-C }$ is ec			
a) 1	b) 2	c) 3	d) 4
742. For all values of θ , the va	lues of $3 - \cos \theta + \cos (\theta + \theta)$	$\left(\frac{n}{3}\right)$ lie in the interval	
a) [-2,3]	b) [-2,1]	c) [2, 4]	d) [1, 5]
743. If $\cos A = m \cos B$ and $\cos B$	$t\frac{A+B}{2} = \lambda \tan \frac{B-A}{2}$, then λ is		
a) $\frac{m}{m-1}$			d) None of these
			-
744. The value of $\cos^4\left(\frac{\pi}{8}\right) + c$	$\cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right)$	$4\left(\frac{7\pi}{8}\right)$ is	
a) 0	b) $\frac{1}{2}$	$\frac{3}{2}$	d) 1
	Z	Z	
745. If $\sin \theta = \frac{12}{13}$, $\left(0 < \theta < \frac{\pi}{2} \right)$	ϕ) and $\cos \phi = -\frac{3}{5} (\pi < \phi < \phi)$	$\left(\frac{3\pi}{2}\right)$, then $\sin(\theta + \phi)$ will	be
a) -56/61	b) -56/65	c) 1/65	d) -56
746. The quadratic equation v			
-	b) $x^2 + 5x + 5 = 0$		d) None of these
747. If $\sec \theta = m$ and $\tan \theta =$	<i>n</i> , then $\frac{1}{m} \left[(m+n) + \frac{1}{(m+n)} \right]$	is	
a) 2	b) 2 <i>m</i>	c) 2n	d) <i>mn</i>
748. If in a $\triangle ABC$, $\angle C = 90^{\circ}$,	then the maximum value of	f sin A sin B is	-
a) $\frac{1}{2}$	b) 1	c) 2	d) None of these
Z	-	-	a) None of these
749. In a cyclic quadrilateral			d) None of these
a) 1 750 If the angles of a triangle	b) 0 are in the ratio $1 \cdot 2 \cdot 3$ th	c) -1	d) None of these
750. If the angles of a triangle a) 2 : 3 : 1	b) $\sqrt{3}$: 2 : 1	c) $2:\sqrt{3}:1$	d) $1:\sqrt{3}:2$
-	y , -		uj I • V 3 • Z
751. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$	n e), then the value of cos ($(\sigma + \frac{1}{4})$ equals	

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\frac{1}{\sqrt{2}}$ c) $-\frac{1}{2\sqrt{2}}$ d) $-\frac{1}{\sqrt{2}}$
752. The most general solution of
 $2^{1+\log x+\log x+\log x+\log x}$ ($\log x+\log x$) = 4 is given by
a) $x = n\pi \pm \frac{\pi}{3}$, $n \in Z$
b) $x = 2n\pi \pm \frac{\pi}{3}$, $n \in Z$
c) $x = 2n\pi \pm \frac{\pi}{3}$, $n \in Z$
d) None of these
753. If $\cos x + \cos \beta = 0 = \sin \alpha + \sin \beta$, then $\cos 2\alpha + \cos 2\beta =$
a) $-2\sin(\alpha + \beta)$ b) $-2\cos(\alpha + \beta)$ c) $2\sin(\alpha + \beta)$ d) $2\cos(\alpha + \beta)$
754. The value of the expression $1 - \frac{\sin^2 y}{\sin y} + \frac{\sin y}{\sin y} - \frac{\sin y}{1-\cos y}$ is equal to
a) 0 b) 1
755. In ΔABC , $a = 2b$ and $A = 3B$, the $A =$
a) 90° b) 60° c) 30° d) 45°
755. In ΔABC , $a = \frac{\pi}{3}$ and AD is the median, then
a) $2AD^2 = b^2 + c^2 + bc$
b) $4AD^2 = b^2 + c^2 + bc$
c) $6AD^2 = b^2 + c^2 + bc$
d) $None of these
757. If $\cos(\theta - \alpha) = a, \cos(\theta - \beta) = b$, then $\sin^2(\alpha - \beta) + 2ab\cos(\alpha - \beta)$ is equal to
a) $a^2 + b^2$ b) $a^2 - b^2$ c) $b^2 - a^2$ d) $-a^2 - b^2$
758. If $\cos\frac{\pi}{2}, \cos\frac{\pi}{2}, \ldots, \cos\frac{\pi}{2\pi} = \frac{\sin x}{2^{\pi}\sin \frac{\pi}{2}}$, then
 $\frac{1}{2}\tan\frac{\pi}{2} + \frac{1}{2^2}\tan\frac{\pi}{2} + \ldots, \pm \frac{\pi}{2\pi}\tan\frac{\pi}{2\pi}$ is
a) $\cot x - \cot\frac{\pi}{2\pi}$ b) $\frac{1}{2\pi}\cot(\frac{\pi}{2\pi}) - \cot x$
c) $\frac{1}{2\pi}\tan(\frac{1}{2\pi}) - \tan x$ d) $\frac{1}{2}\cot x - \frac{1}{2\pi}\cot(\frac{\pi}{2\pi})$
759. In triangles *ABC* and *DEF*, *AB* = *DE*, *AC* = *EF* and $\angle A = 2\angle E$. Two triangles will have the same area if
angle *A* is cqual to
a) $\pi/3$ b) $\pi/2$ c) $2\pi/3$ d) $5\pi/6$
760. The value of $\sin(\frac{\pi}{2\pi})\sin(\frac{\pi}$$

764. The general solution of s	$\sin^2 \theta \sec \theta + \sqrt{3} \tan \theta = 0$ is	5	
a) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}$,	$\theta = n\pi, n \in I$	b) $\theta = n\pi$, $n \in I$	
c) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}$,	$n \in I$	d) $\theta = \frac{n\pi}{2}, n \in I$	
765. If $y + \cos \theta = \sin \theta$ has a		_	
a) $-\sqrt{2} \le y \le \sqrt{2}$		c) $y \le -\sqrt{2}$	d) None of these
766. If $\cos(\theta - \alpha) = a, \sin(\theta - \alpha) = a + a^2 b^2$	$(\alpha - \beta) = b$, then $\cos^2(\alpha - \beta)$ b) $a^2 - b^2$	+ $2ab\sin(\alpha - \beta)$ is equal c) $a^2 + b^2$	to $d) - a^2 b^2$
767. The equation 8 sec ² θ –)	$c) a^{2} + b^{2}$	$a_{J} - a^{-}b^{-}$
a) Exactly two roots		c) Infinitely many roots	d) No roots
768. If the sides a, b, c of a tria			
of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ is e	qual to		
u b l	b) $\frac{61}{72}$	c) $\frac{61}{144}$	d) $\frac{169}{72}$
111	12	$\frac{144}{144}$	u) <u>72</u>
769. $\cos^4 \theta - \sin^4 \theta$ is equal t			
a) $1 + 2\sin^2\left(\frac{\theta}{2}\right)$	b) $2\cos^2\theta - 1$	c) $1 - 2\sin^2\left(\frac{\theta}{2}\right)$	d) $1 + 2\cos^2\theta$
770. The value of cos 15° cos	$7\frac{1}{2}^{\circ}\sin 7\frac{1}{2}^{\circ}$ is		
a) $\frac{1}{2}$	b) $\frac{1}{8}$	c) $\frac{1}{4}$	d) $\frac{1}{16}$
2	0		u) 16
	adrant, then the value of $\sqrt{\frac{1}{1}}$	•	
a) $2 \sec \theta$	b) $-2 \sec \theta$	c) $2 \csc \theta$	d) None of these
772. The value of $\cos^2 A (3 - 1)$			d) Nama af the same
a) cos 4 <i>A</i> 773. Let the angles <i>A</i> , <i>B</i> , <i>C</i> of <i>I</i>	b) sin 4A	c) 1	d) None of these
a) 75°	b) 45°	c) 60°	d) 15°
774. If $\tan x = \frac{b}{a}$, then $\sqrt{\frac{a+b}{a-b}}$ +	$\boxed{a-b}$		2
•	•	0	
a) $\frac{2 \sin x}{\sqrt{\sin 2x}}$	b) $\frac{2\cos x}{\sqrt{\cos 2x}}$	c) $\frac{2\cos x}{\sqrt{\sin 2x}}$	d) $\frac{2 \sin x}{\sqrt{\cos 2x}}$
$\sqrt{\sin 2x}$ 775. If $\sin A + \cos A = m$ and		$\sqrt{\sin 2x}$	$\sqrt{\cos 2x}$
	b) $n^3 - 3n + 2m = 0$	c) $m^3 - 3m + 2n = 0$	d) $m^3 + 3m + 2n = 0$
776. The most general solution			
a) $n\pi + \frac{\pi}{8}$			d) None of these
0	1	c) $2n\pi$	-
777. If $\cos(\theta - \alpha) = a$, $\cos(\theta - \alpha) = a^2 + b^2$		+ 2ab $\cos(\alpha - \beta)$ is equal c) $b^2 - a^2$	
778. The sum $S = \sin\theta + \sin \theta$)	$c_{J} b - a$	u j - u - b
		b) $\cos \frac{1}{2}(n+1)\theta \sin \frac{n\theta}{2}/2$. θ
a) $\sin \frac{1}{2}(n+1)\theta \sin \frac{n\theta}{2}/2$		Δ Δ	<u>L</u>
c) $\sin \frac{1}{2}(n+1)\theta \cos \frac{n\theta}{2}/2$	$\sin\frac{\theta}{2}$	d) $\cos \frac{1}{2}(n+1)\theta \cos \frac{n\theta}{2}/3$	$\sin\frac{\theta}{2}$
779. The sides of an equilater	al triangle, a square and a r	egular hexagon circumscril	bed in a circle are in
a) A.P.	b) G.P.	c) H.P.	d) None of these
780. If $\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}$, then the	e general value of θ is		
	b) $n\pi + \frac{7\pi}{12}$	c) $\frac{n\pi}{n} + \frac{7\pi}{n}$	d) $n\pi + \frac{\pi}{12}$
• I	14	5 50	12
781. If $\theta \in [0, 5\pi]$ and $r \in R$ s	uch that $2\sin\theta = r^2 - 2r^2$	+ 3, then the maximum nu	mper of values of the pair
(r, θ) is			

a) 6	b) 8	c) 10	d) None of these
782. In a triangle $ABC, r = B$	В	С	С
<u>L</u>	b) $(s-b)\tan\frac{B}{2}$	<u>L</u>	<u>L</u>
783. If p_1, p_2, p_3 are altitude of $1 + 1 + 1$	of a triangle <i>ABC</i> from the v	ertices A, B, C and Δ , the ar	ea of the triangle, then
$\frac{1}{p_1^2} + \frac{1}{p_2^2} + \frac{1}{p_3^2} =$			
a) $\frac{\cot A + \cos B + \cot C}{\Delta}$			
a) $\frac{\cot A + \cos B + \cot C}{\Delta}$ b) $\frac{\Delta}{\cot A + \cot B + \cot C}$			
$\cot A + \cot B + \cot C$ c) $\Delta(\cot A + \cot B + \cot C)$			
d) None of these			
784. Number of solutions of t a) 0	the equation $\sin 2\theta + 2 = 4$ b) 2	$\sin \theta + \cos \theta$ lying in the in c) 4	iterval $[\pi, 5\pi]$, is d) 5
785. If twice the square of th	,	,	,
triangle <i>ABC</i> , then sin ² .	-		
a) 1 786. tan 9° – tan 27° – tan 6	b) 2 3° + tan 81° is equal to	c) 4	d) 8
a) 0	b) 1	c) -1	d) 4
787. If $\sin 4A - \cos 2A = \cos 2A$	$4A - \sin 2A, \left(0 < A < \frac{\pi}{4}\right), t$	hen the value of tan 4A is	
a) 1	b) $\frac{1}{\sqrt{3}}$	c) $\sqrt{3}$	d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
788. In a $\triangle ABC$, sin A and sin	٧J	-	$\sqrt{3+1}$
a) $1/\sqrt{2}$	b) 1/2	c) 1	d) 0
789. If $\sin(\alpha + \beta) = 1$, $\sin(\alpha$], then $tan(\alpha + 2\beta) tan(2\alpha)$	$+\beta$) is equal to
a) 1 790.	b) -1	c) 0	d) 1/2
790. If $a_{n+1} = \sqrt{\frac{1}{2}(1+a_n)}$, the second	$\operatorname{hen} \cos\left(\frac{\sqrt{1-a_0^2}}{a_1 a_2 a_3 \dots \operatorname{to} \infty}\right) =$		
a) 1	b) —1	c) a ₀	d) 1/a ₀
791. If the angles of a triangle	e are in the ratio $1:2:7$, th b) $(\sqrt{5}+1):(\sqrt{5}-1)$		
³ ($\sqrt{5} - 1$): ($\sqrt{5} + 1$) ^{792.} In a $\triangle ABC, A = \frac{2\pi}{3}, b - c$. , . ,	. , . ,	$(\sqrt{5} - 2) \cdot (\sqrt{5} + 2)$
a) $6\sqrt{3}$ cm	b) 9 cm	c) 18 cm	d) 12 cm
793. If the radius of the incire	,	-	d) 12 cm c is equal to
a) 3	b) 4	c) 5	d) 6
794. The minimum value of 2 a) 1	$2^{\sin x} + 2^{\cos x}$, is b) 2	. 1	
-	,	c) $2^{-\frac{1}{\sqrt{2}}}$	d) $2^{1-\frac{1}{\sqrt{2}}}$
795. Minimum value of $\frac{1}{3\sin\theta}$ a) $\frac{1}{12}$	$\frac{1}{-4\cos\theta+7}$ IS	7	1
		c) $\frac{7}{12}$	d) $\frac{1}{6}$
796. If $\csc \theta = \frac{p+q}{p-q}$, then $\cot \theta$	$\operatorname{tt}(\pi/4 + \theta/2) =$		
a) $\sqrt{\frac{p}{q}}$	$\frac{q}{q}$	c) \sqrt{nq}	d) na
\sqrt{q}	\sqrt{p}	c) \sqrt{pq}	d) <i>pq</i>
797. Suppose $0 < t < \pi$ and	$\sin t + \cos t = \frac{1}{5}.$ Then, $\tan \frac{t}{2}$	is equal to	
a) 2	b) 3	c) $\frac{1}{3}$	d) 5
		5	

798. For what and only what valid?	values of α lying between () and π is the inequality sin	$\alpha\cos^3\alpha>\sin^3\alpha\cos\alpha$
a) $\alpha \in (0, \pi/4)$ 799. If $\alpha + \beta - \gamma = \pi$, then s	b) $\alpha \in (0, \pi/2)$ $n^2 \alpha + \sin^2 \beta - \sin^2 x$ is equi		d) None of these
		c) $2 \sin \alpha \sin \beta \sin \gamma$	d) None of these
800. If $\sec x \cos 5x + 1 = 0$, y	, , ,	· · ·	uj None of these
a) $\frac{\pi}{5}, \frac{\pi}{4}$	b) $\frac{\pi}{5}$	c) $\frac{\pi}{4}$	d) None of these
5 1	5	т	
801. If $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, sin $\alpha =$	$\frac{4}{5}$ and $\cos(\alpha + \beta) = -\frac{12}{13}$, the	en sin β is equal to	
a) $\frac{63}{65}$	b) $\frac{61}{-}$	c) $\frac{3}{5}$	d) $\frac{5}{13}$
05	05	5 5	13
802. The value of $\sin \frac{\pi}{14} \sin \frac{3\pi}{14}$			
a) 1	b) 1/4	c) 1/8	d) √2/7
803. If $\theta_1, \theta_2, \theta_3, \theta_4$ are roots then $\theta_1 + \theta_2 + \theta_3 + \theta_4$	s equal to		differ by a multiple of 2 π ,
	b) $(2n + 1)\pi, n \in Z$	0	d) None of these
804. The radius of the circle	whose arc of length 15 π cm	makes an angle of $\frac{3\pi}{4}$ radia	n at the centre is
a) 10 cm	b) 20 cm	c) $11\frac{1}{4}$ cm	
805. The value of $\cot \theta$ – tan	$\theta - 2 \tan 2\theta - 4 \tan 4\theta - 8$	$\cot 8\theta$, is	
a) 0	b) 1	c) -1	d) None of these
806. In a triangle $ABC, b = \sqrt{a}$	(a), <i>c</i> = 1 and ∠ <i>A</i> = 30°, ther b) 135°	the measure of the largest c) 90°	angle of the triangle is d) 120°
807. The maximum value of	$3\cos\theta + 4\sin\theta$ is		
a) 3	b) 4	c) 5	d) None of these
808. If the sides of a triangle triangle are	are proportional to 2, $\sqrt{6}$ ar	nd $\sqrt{3} - 1$, the greatest and	the least angles of the
a) 120°, 15°	b) 90°, 15°	c) 75°,45°	d) 150°, 15°
809. In a $\triangle ABC$ if $r_1 = 16, r_2$			
a) 7	b) 8	c) 6	d) None of these
810. The number of values o			
a) 0 011 If $a = a^2 0$ and 20 then	b) 5	c) 6	d) 10
811. If $\cos^2 \theta = \cos 2\theta$, then	the general value of 0 is	ηπ	π
a) <i>n</i> π	b) 2 <i>n</i> π	c) $\frac{n\pi}{3}$	d) $\frac{n\pi}{2}$
812. The equation $3^{\sin 2x+2c}$	$\cos^2 x + 3^{1 - \sin 2x + 2\sin^2 x} = 2$	8 is satisfied for the values	of <i>x</i> given by
a) $\cos x = 0$, $\tan x = -1$	b) $\tan x = -1$, $\cos x = 1$	c) $\tan x = 1, \cos x = 0$	d) None of these
813. The minimum value of 2	27 ^{cos 2x} 81 ^{sin 2x} is		
a) —5	b) $\frac{1}{5}$	c) $\frac{1}{243}$	d) $\frac{1}{27}$
-	5	243	27
814. Let $0 < x \le \pi/4$, then (a) $\tan^2(x + \pi/4)$	b) $\tan(x + \pi/4)$	c) $\tan(\pi/4 - x)$	
815. The number of solution	s of the equation $\sin^5 x - \cos^5 x$	$\cos^5 x = \frac{1}{\cos x} - \frac{1}{\sin x} (\sin x \neq 1)$	$\cos x$) is
a) 0	b) 1	c) Infinite	d) None of these
816. Let $\cos(\alpha + \beta) = \frac{4}{5}$ and	let $\sin(\alpha - \beta) = \frac{5}{12}$, where ($0 \le \alpha, \beta \le \frac{\pi}{4}$. Then $\tan 2\alpha$ is	equal to
0.5	=		•
a) $\frac{25}{16}$	b) $\frac{56}{33}$	c) $\frac{19}{12}$	d) $\frac{20}{7}$
817. The value of $\cos \frac{2\pi}{7} + \cos \frac{2\pi}{7}$	$s\frac{4\pi}{7} + cos\frac{6\pi}{7}$, is		
a) 1	b) -1	c) 1/2	d) -1/2

5	$\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then	the sides of the triangle are	in
a) AP	b) GP	c) HP	d) None of these
819. If $\frac{1-\cos 2\theta}{1+\cos 2\theta} = 3$, then the	ne general value of θ is		.,
0	b) $n\pi \pm \frac{\pi}{6}$	5	d) $n\pi \pm \frac{\pi}{3}$
820. In a $\triangle ABC$, if $a = 5$ cm	n, $b = 4 \text{ cm and } \cos(A - B)$	$=\frac{31}{32}$, then cos <i>C</i> =	
a) 1/4	b) 1/8	c) 1/6	d) 1/2
821. The number of solution	ons for the equation $\sin 2x$	$+\cos 4x = 2$ is	
a) 0	b) 1	c) 2	d) ∞
822. If $\sin \theta_1 + \sin \theta_2 + \sin \theta_2$	$\theta_3 = 3$, then $\cos \theta_1 + \cos \theta_2$	$\theta_2 + \cos \theta_3 =$	
a) 3	b) 2	c) 1	d) 0
823. The equation $k \sin x$ -	$+\cos 2x = 2k - 7$ possess	es solution, if	
a) <i>k</i> > 6	b) $2 \le k \le 6$	c) $k > 2$	d) None of these
824. If $\cos 2B = \frac{\cos(A+C)}{\cos(A-C)}$, the	hen $\tan A$, $\tan B$, $\tan C$ are i	n	
a) AP	b) GP	c) HP	d) None of these
825. If <i>n</i> is an odd positive	integer, then $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n$	$+\left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n =$	
a) —1	b) 1	c) 0	d) None of these
826. If α , β are the solution	$\operatorname{ns} \operatorname{of} a \tan \theta + b \sec \theta = c, t$	then $\tan(\alpha + \beta) =$	
a) $\frac{2 ac}{a^2 - c^2}$	b) $\frac{2 ac}{c^2 - a^2}$	c) $\frac{2 ac}{a^2 + c^2}$	d) $\frac{ac}{a^2 + c^2}$
827. If $\tan \theta + \tan \left(\theta + \frac{\pi}{3} \right)$	$+\tan\left(\theta+\frac{2\pi}{3}\right)=3$, then w	hich of the following is equal	l to 1?
a) tan 2θ	b) tan 3θ	c) $\tan^2 \theta$	d) $\tan^3 \theta$
828. If $y = 1 + 4 \sin^2 x \cos^2 x$	$s^2 x$, then	-	-
a) $1 \le y \le 2$	b) $-1 \le y \le 1$	c) $-3 \le y \le 3$	d) None of these
829. If $\alpha + \beta - \gamma = \pi$, then	$\sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma$ is	equal to	
			d) None of the above
a) $2 \sin \alpha \sin \beta \cos \gamma$	b) $2 \cos \alpha \cos \beta \cos \gamma$	$c_j \ z \sin \alpha \sin \beta \sin \gamma$	d) None of the above
· · ·		$c_J \ z \sin \alpha \sin \beta \sin \gamma$	u) None of the above
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + U + U + U + U + U + U + U + U + U +$	$\frac{\cot \frac{C}{2}}{\cot C} =$		
· · ·	$\frac{\cot \frac{C}{2}}{\cot C} =$	c) <i>z</i> sin <i>α</i> sin <i>β</i> sin <i>γ</i>	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot A + \cot B + \cot A}$ a) $\frac{(a+b+c)^2}{a^2+b^2+c^2}$	$\frac{\cot \frac{c}{2}}{\cot c} = b) \frac{a^2 + b^2 + c^2}{(a+b+c)^2}$		
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + U + U + U + U + U + U + U + U + U +$	$\frac{\cot \frac{c}{2}}{\cot c} = b) \frac{a^2 + b^2 + c^2}{(a+b+c)^2}$		
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot A + \cot B + \cot A + - \cot A + - \cot A + \cot A + - \cot A + \cot A + - \cot A + \cot A + - \cot A +$	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a+b+c)^2}$ $\alpha + \cot^2 \alpha \text{ is}$	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot A + \cot B + \cot A + - \cot A + - \cot A + \cot A + - \cot A + \cot A + - \cot A + \cot A + - \cot A +$	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha \text{ is}$ b) ≤ 2	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot A + \cot B + \cot A}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \neq n$, if $\tan m \theta$	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha \text{ is}$ b) ≤ 2	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot\frac{B}{2} + \frac{1}{2}}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P.	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha \text{ is}$ b) ≤ 2	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \frac{1}{2}}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 a$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P.	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha$ is b) ≤ 2 $= \tan n \ \theta$, the different value	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2}}{\cot A + \cot B + \cot\frac{B}{2}}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \neq n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P.	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha$ is b) ≤ 2 $= \tan n \ \theta$, the different value	 c) s c) ≥ -2 	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + }{\cot A + \cot B + }$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular seque 833. If in a triangle ABC,	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha$ is b) ≤ 2 $= \tan n \ \theta$, the different value	c) s c) ≥ -2 ues of θ are in	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + }{\cot A + \cot B + }$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular seque 833. If in a triangle ABC,	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ $\alpha + \cot^2 \alpha$ is b) ≤ 2 $= \tan n \theta$, the different value	c) s c) ≥ -2 ues of θ are in	d) Δ
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + }{\cot A + \cot B + }$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular seque 833. If in a triangle <i>ABC</i> , sin <i>A</i> : sin <i>C</i> = sin(<i>A</i> - a) A.P.	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 = $\tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P.	c) s c) ≥ -2 ues of θ are in $b^2 : c^2$ are in	d) Δ d) None of these
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \frac{1}{\cot A + \cot B + \frac{1}{2}}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 a$ a) ≥ 2 832. For $m \neq n$, if $\tan m \theta$ a) $\triangle P$. b) H.P. c) G.P. d) No particular sequession of ABC , sin A : sin C = sin($A - \frac{1}{4x}$, then 834. If $\tan \theta = x - \frac{1}{4x}$, then	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 = $\tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P. in $\sec \theta - \tan \theta$ is equal to	c) s c) ≥ -2 ues of θ are in $b^2 : c^2 \text{ are in}$ c) H.P.	 d) Δ d) None of these d) None of these
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \frac{1}{\cot A + \cot B + \frac{1}{2}}$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 a$ a) ≥ 2 832. For $m \neq n$, if $\tan m \theta$ a) $\triangle P$. b) H.P. c) G.P. d) No particular sequession of ABC , sin A : sin C = sin($A - \frac{1}{4x}$, then 834. If $\tan \theta = x - \frac{1}{4x}$, then	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 = $\tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P.	c) s c) ≥ -2 ues of θ are in $b^2 : c^2$ are in	d) Δ d) None of these
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{A}{2} + \cot\frac{B}{2} + \frac{1}{2}}{\cot A + \cot B + \frac{1}{2}}$ 831. The expression $\tan^{2} c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular seque 833. If in a triangle <i>ABC</i> , sin <i>A</i> : sin <i>C</i> = sin(<i>A</i> - \frac{1}{4x}), ther a) A.P. 834. If $\tan \theta = x - \frac{1}{4x}$, ther a) $-2x, \frac{1}{2x}$	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 = $\tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P. in $\sec \theta - \tan \theta$ is equal to	c) s c) ≥ -2 ues of θ are in $b^2 : c^2 \text{ are in}$ c) H.P. c) $2x$	 d) Δ d) None of these d) None of these
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{B}{2} + \cot\frac{A}{2} + \cot\frac{B}{2} + \frac{1}{2}}{\cot A + \cot B + \frac{1}{2}}$ 831. The expression $\tan^{2} c$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular seque 833. If in a triangle <i>ABC</i> , sin <i>A</i> : sin <i>C</i> = sin(<i>A</i> - \frac{1}{4x}), ther a) A.P. 834. If $\tan \theta = x - \frac{1}{4x}$, ther a) $-2x, \frac{1}{2x}$	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 = $\tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P. in $\sec \theta - \tan \theta$ is equal to b) $-\frac{1}{2x}, 2x$	c) s c) ≥ -2 ues of θ are in $b^2 : c^2 \text{ are in}$ c) H.P. c) $2x$	 d) Δ d) None of these d) None of these
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + }{\cot A + \cot B + }$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 a$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular sequesities a sequence of the sequence	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 $= \tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P. $\sin \sec \theta - \tan \theta$ is equal to b) $-\frac{1}{2x}, 2x$ s of $x \in [0, 2\pi]$ that satisfy α b) 2	c) s c) ≥ -2 ues of θ are in $b^2 : c^2 \text{ are in}$ c) H.P. c) $2x$ tot $x - \operatorname{cosec} x = 2 \sin x$, is	d) Δ d) None of these d) None of these d) $2x, \frac{1}{2x}$ d) 0
830. In a $\triangle ABC$, $\frac{\cot\frac{A}{2} + \cot\frac{B}{2} + }{\cot A + \cot B + }$ a) $\frac{(a + b + c)^2}{a^2 + b^2 + c^2}$ 831. The expression $\tan^2 a$ a) ≥ 2 832. For $m \ne n$, if $\tan m \theta$ a) A.P. b) H.P. c) G.P. d) No particular sequesities a sequence of the sequence	$\frac{\cot\frac{c}{2}}{\cot c} =$ b) $\frac{a^2 + b^2 + c^2}{(a + b + c)^2}$ a + $\cot^2 \alpha$ is b) ≤ 2 $= \tan n \theta$, the different value ence $-B) : \sin(B - C) then, a^2 :$ b) G.P. $\sin \sec \theta - \tan \theta$ is equal to b) $-\frac{1}{2x}, 2x$ s of $x \in [0, 2\pi]$ that satisfy α b) 2	c) s c) ≥ -2 ues of θ are in $b^2 : c^2 \text{ are in}$ c) H.P. c) $2x$ cot $x - \operatorname{cosec} x = 2 \sin x$, is c) 1	d) Δ d) None of these d) None of these d) $2x, \frac{1}{2x}$ d) 0

837. If $\frac{\sin x}{\sin y} = \frac{1}{2}, \frac{\cos x}{\cos y} = \frac{3}{2}$, where	ere $x, y \in \left(0, \frac{\pi}{2}\right)$, then the va	alue of tan $(x + y)$ is equal t	0
a) $\sqrt{13}$	b) $\sqrt{14}$	c) √ <u>17</u>	d) $\sqrt{15}$
838. If $\sin A + \sin B = \sqrt{3}(\cos \theta)$			() V 10
a) 0	b) 2	c) 1	d) —1
^{839.} If $\tan \beta = \cot \theta \tan \alpha$, the		0) 1	
	(2)	$aaa(\alpha + \beta)$	aaa(n, 0)
a) $\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}$	b) $\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}$	c) $\frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)}$	d) $\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}$
	$\sin(a + p)$	$\cos(\alpha - p)$	$\cos(a + p)$
840. $\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ}$ is equals to			
a) tan 26°	b) tan 81°	c) tan 51°	d) tan 54°
841. In a $\triangle ABC$, if $A = 45^{\circ}$, $b =$			
a) 30° or 150°	-	c) 45° or 135°	.,
842. Two sides of a triangle a	re $2\sqrt{2}$ cm and $2\sqrt{3}$ cm and	the angle opposite to the sl	horter side of the two is $\frac{\pi}{4}$.
The largest possible leng			
a) $\left(\sqrt{6} + \sqrt{2}\right)$ cm	b) $(6 + \sqrt{2})$ cm	c) $(\sqrt{6} - \sqrt{2})$ cm	d) None of these
843. The total number of orde	ered pairs (r, θ) satisfying r	$r\sin\theta = 3, r = 4(1 + \sin\theta)$, where $r > 0$ and
$\theta \in [-\pi, \pi]$ is			
a) 0	b) 2	c) 4	d) None of these
844. $\sin 65^\circ + \sin 43^\circ - \sin 29^\circ$			
a) cos 36°	b) cos 18°	c) cos 9°	d) None of these
845. If $\sin B = \frac{1}{5}\sin(2A + B)$,	then $\frac{\tan(A+B)}{\tan A}$ is equal to		
a) 5/3	b) 2/3	c) 3/2	d) 3/5
846. If $A + B + C = \pi$ and cos	$A = \cos B \cos C$, then $\tan B$	tan C is equal to	
a) $\frac{1}{2}$	b) 2	c) 1	d) $-\frac{1}{2}$
L	. n . n .	1.	2
847. If $\sin x + \csc x = 2$ the			1) 27-2
a) 2 $a^2 - b^2$	b) 2^n	c) 2^{n-1}	d) 2^{n-2}
848. If in a triangle <i>ABC</i> , $\frac{a^2-b}{a^2+b}$	$\frac{1}{2} = \frac{\sin(A-B)}{\sin(A+B)}$, then the triang	le is	
a) Right angled or isosce			
b) Right angled and isos	celes		
c) Equilateral			
d) None of these			
849. In a $\triangle ABC$, $\cos A = \cos B$			
a) 2	b) 3	c) 1/2	d) 5
850. In a $\triangle ABC$ if $a = 13, b =$			
a) $6:7:8$ or $1 \sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12$	b) $6:8:7$	c) 8 : 7 : 6	d) None of these
851. $\frac{\sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12}{\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta}$	is equal to		
a) $2\cos\theta$	b) cos θ	c) $2\sin\theta$	d) sin θ
852. In a triangle the angles a		f the two larger sides are 10) and 9 respectively, then
the length of the third sid	de can be	_	
a) 5 ± √6			d) None of these
	b) 0.7	c) $\sqrt{5} + 6$	a) none of these
853. The general value of x fo	-	, , , , , , , , , , , , , , , , , , , ,	a) None of these
	or which $\cos 2x$, $\frac{1}{2}$ and $\sin 2x$	are in AP, are given by	d) None of these
a) $n\pi, n\pi + \frac{\pi}{2}$	by $n\pi$, $n\pi + \frac{\pi}{4}$ and $\sin 2x$	c) $n\pi + \frac{\pi}{4}, \frac{3n\pi}{4}$	
a) $n\pi$, $n\pi + \frac{\pi}{2}$ 854. If $a = \frac{\pi}{18}$ rad, then $\cos a + \frac{\pi}{18}$	b) $n\pi$, $n\pi + \frac{\pi}{4}$ + $\cos 2a + \dots + \cos 18a$ is equation	c) $n\pi + \frac{\pi}{4}, \frac{3n\pi}{4}$ qual to	d) None of these
a) $n\pi, n\pi + \frac{\pi}{2}$	b) $n\pi$, $n\pi + \frac{\pi}{4}$ b) $n\pi$, $n\pi + \frac{\pi}{4}$ + $\cos 2a + \dots + \cos 18a$ is eq b) -1	c) $n\pi + \frac{\pi}{4}, \frac{3n\pi}{4}$	

a) 2 <i>nπ</i>	b) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$	c) $2n\pi + \frac{\pi}{2}$	d) None of these
856. If $1 + \sin x + \sin^2 x + \sin^2 x$	тт	2	=
a) $\frac{\pi}{6}$	π	c) $\frac{\pi}{3}$ or $\frac{\pi}{6}$	d) $\frac{\pi}{2}$ or $\frac{2\pi}{2}$
0	1	5 0	a) ₃ a 3
857. If $\sin x + \sin y = a$ and a	$\cos x + \cos y = b$, then $\tan ($,	
a) $\frac{ab}{a+b}$	b) $\frac{a}{b}$	c) $\frac{b}{a}$	d) None of these
858. If $\sin(\pi \cot \theta) = \cos(\pi \tan \theta)$	an θ), then cot 2 θ is equal t	o where $n \in Z$	
a) $n - \frac{1}{4}$	b) $n + \frac{1}{4}$	c) 4 <i>n</i> + 1	d) 4 <i>n</i> − 1
4 859. If the altitudes of a trian	4		,
a) A.P.	b) G.P.	c) H.P.	d) None of these
860. The value of $\cos \frac{\pi}{5} \cos \frac{2\pi}{5}$	$\cos \frac{4\pi}{5} \cos \frac{8\pi}{5}$ is equal to	-	
1	b) 0	c) $-\frac{1}{8}$	d) $-\frac{1}{16}$
a) $\frac{1}{16}$		$C_{J} = \frac{1}{8}$	$dJ = \frac{16}{16}$
861. cosec 15° + sec 15° is eq		c) 2√6	d) $\sqrt{6} + \sqrt{2}$
a) $2\sqrt{2}$	b) $\sqrt{6}$, , , ,
862. If $\sin A = \frac{4}{5}$ and $\cos B =$	$-\frac{1}{13}$, where A and B lie in f	irst and third quadrant res	pectively, then $\cos(A + B)$
is equal to 56	56	16	16
a) $\frac{56}{65}$	b) $-\frac{56}{65}$	c) $\frac{16}{65}$	d) $-\frac{16}{65}$
863. If $\cot \theta + \tan \theta = m$ and			
a) $m(mn^2)^{1/3} - n(nm^2)^{1/3}$		b) $m(m^2n)^{1/3} - n(mn^2)$	
c) $n(mn^2)^{1/3} - m(nm^2)^{1/3}$	$1^{1/3} = 1$	d) $n(m^2n)^{1/3} - m(mn^2)$	$1^{1/3} = 1$
864. If in a $\triangle ABC$, (sin $A + \sin B + \sin C$)(s	$in A + \sin B - \sin C) = 3 si$	n A sin B then	
($31177 + 5117D + 5117C$)($31170 + 5117C$))($31170 + 5117C$	b) $B = 60^{\circ}$	c) $C = 60^{\circ}$	d) None of these
865. Equation $\cos 2x + 7 = a$,	,	,
_	b) <i>a</i> ∈ [2, 6]	c) $a \in (-\infty, 2)$	d) $a \in (0, \infty)$
866. In a $\triangle ABC$, $\angle A = \frac{\pi}{2}$, the	$1 \cos^2 B + \cos^2 C$ equals		
a) -2	b) -1	c) 1	d) 0
867. In any $\triangle ABC$, $b^2 \sin 2C$		a) 2 A	d) 4 4
a) Δ 868. In a triangle the length o	b) 2 Δ of the two larger sides are 2	c) 3Δ 4 and 22, respectively. If th	d) 4 Δ
third side is			
a) $12 + 2\sqrt{13}$	b) 12 − 2√13	c) $2\sqrt{13} + 2$	d) 2√ <u>13</u> − 2
869. If in a $\triangle ABC, AD, BE$ and	l CF are the altitudes and R	is the circum-radius, then	radius of the circumcircle
DEF is			2
a) $\frac{R}{2}$	b) 2 <i>R</i>	c) <i>R</i>	d) $\frac{3}{2}R$
870. If <i>a</i> , <i>b</i> , <i>c</i> denote the sides	s of a $\triangle ABC$ and the equatio	$ax^2 + bx + c = 0$ and x	$x^{2} + \sqrt{2}x + 1 = 0$ have a
common root, then $\angle C$ =	=		
a) 30°	b) 45°	c) 90°	d) 60°
871. If a circle is inscribed in a^2			
a) $\frac{a^2}{6}$	b) $\frac{a^2}{3}$	c) $\frac{2a^2}{5}$	d) $\frac{2a^2}{3}$
872. The value of the express	5	5	5
a) 0	b) 1	c) $1/\sqrt{2}$	d) -1
873. The general solution of	the equation $2^{\cos 2x} + 1 = 3$	$3.2^{-\sin x}$ is	

a) $n\pi$	b) $n\pi - \pi$	c) $n\pi + \pi$	d) None of these									
874. If $\sin A - \sqrt{6} \cos A = \sqrt{7}$ a) $\sqrt{6} \sin A$			d) $\sqrt{7}$ and 4									
875. If $y = \frac{\tan x}{\tan^3 x}$, then	b) $-\sqrt{7} \sin A$	c) $\sqrt{6}\cos A$	d) $\sqrt{7} \cos A$									
tan 5x	b) <i>y</i> ∉ [1/3,3]	c) $y \in [-3, -1/3]$	d) $v \notin [-3, -1/3]$									
876. If $\frac{3\pi}{4} < \alpha < \pi$, then \sqrt{co}	$\frac{1}{2} \int y \notin [1/3, 3]$	CJ Y E [-3, -1/3]	u) y ∉ [−3, −1/3]									
a) $1 + \cot \alpha$	b) $1 - \cot \alpha$	d) $-1 + \cot \alpha$										
	he equation $a \sin x + b \cos x = c$, where $ c > \sqrt{a^2 + b^2}$ has											
a) A unique solution												
b) Infinite no. of solution	ons											
c) No solution												
d) None of these 878. The number of solutior	is of the equation $\tan \theta$ + se	$c\theta = 2\cos\theta$ lying in the in	terval [0, 2 π], is									
878. The number of solutions of the equation $\tan \theta + \sec \theta = 2 \cos \theta$ lying in the interval $[0, 2\pi]$, is a) 0 b) 1 c) 2 d) 3												
879. The least positive non-	integral solution of $\sin \pi (x^2)$	$(x+x) - \sin \pi x^2 = 0$, is										
a) Rational	- []											
b) Irrational of the form	·											
	$\frac{\sqrt{p}-1}{4}$, when p is an odd inter-											
d) Irrational of the form	$n \frac{\sqrt{p+1}}{4}$, where p is an even in	iteger										
880. If A and B are acute pos		quations $3 \sin^2 A + 2 \sin^2 B$	$B = 1$ and $3 \sin 2A - 1$									
$2\sin 2B = 0$, then $A + 2B$	_	π	d) $\frac{\pi}{3}$									
aju	a) 0 b) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$											
881. The greatest and least value of sin <i>x</i> cos <i>x</i> are respectively												
a) 1, –1	b) $\frac{1}{2}$, $-\frac{1}{2}$	тт	d) 2, -2									
882. If $x = X \cos \theta - Y \sin \theta$												
0	b) $\theta = \frac{\pi}{2}, A = 3, B = 1$		-									
883. The number of values												
a) 1 884. $\cos \alpha \sin(\beta - \gamma) + \cos \beta$	b) 2 $3\sin(\nu - \alpha) + \cos\nu\sin(\alpha - \alpha)$	c) 3 (β) is equal to	d) 4									
a) 0	b) $\frac{1}{2}$	c) 1	d) 4 cos α cos β cos γ									
$QQE If A \perp B = AE^{\circ} then (a)$	Z	to	uj 1003 u 003 p 003 y									
885. If $A + B = 45^{\circ}$, then (co a) 1	-											
	b) $\frac{1}{2}$	c) -1	d) 2									
886. The solution of the equ	ation $[\sin x + \cos x]^{1+\sin 2x}$	-	2-									
a) $\frac{\pi}{2}$	b) <i>π</i>	c) $\frac{\pi}{4}$	d) $\frac{3\pi}{4}$									
887. If $\sin x + \sin^2 x = 1$, the	en the value of $\cos^{12} x + 3 \cos^{12} x$	$\cos^{10}x + 3\cos^8x + \cos^6x + $	$-2\cos^4 x + \cos^2 x - 2$, is									
equal to												
a) 0 $888 \cdot 4\pi \cdot 4^{3\pi} \cdot 4^{5\pi}$	b) 1 $\pi + 4^{7\pi} + 4^{7\pi}$	c) 2	d) $\sin^2 x$									
$888.\sin^4\frac{\pi}{8} + \sin^4\frac{3\pi}{8} + \sin^4\frac{5\pi}{8}$			1) 1 /4									
a) 1 889. If $sin(x + 3\alpha) = 3 sin(\alpha)$	b) $3/2 - x$), then	c) 2	d) 1 /4									
	b) $\tan x = \tan^2 \alpha$	c) $\tan x = \tan^3 \alpha$	d) $\tan x = 3 \tan \alpha$									
890. $\cos \alpha \sin(\beta - \gamma) + \cos \beta$			-									
a) 0	b) 1/2	c) 1	d) $4\cos\alpha\cos\beta\cos\gamma$									

891. If $\sin A + \cos A = m$ and $\sin^3 A + \cos^3 A = n$, then a) $m^3 - 3m + n = 0$ b) $n^3 - 3n + 2m = 0$ c) $m^3 - 3m + 2n = 0$ d) $m^3 + 3m + 2n = 0$ 892. If $(\sec \theta - 1) = (\sqrt{2} - 1) \tan \theta$, then $\theta =$ a) $n\pi + \frac{\pi}{8}, n \in \mathbb{Z}$ b) $2 n \pi$, $2 n \pi + \frac{\pi}{4}$, $n \in Z$ c) $2 n \pi, n \in \mathbb{Z}$ d) None of these 893. The number of values of θ in the interval $[-\pi, \pi]$ satisfying the equation $\cos \theta + \sin 2\theta = 0$ is a) 1 c) 3 d) 4 ^{894.} The general solution of $\tan\left(\frac{\pi}{2}\sin\theta\right) = \cot\left(\frac{\pi}{2}\cos\theta\right)$ is a) $\theta = 2r \pi + \frac{\pi}{2}, r \in \mathbb{Z}$ b) $\theta = 2r \pi, r \in Z$ c) $\theta = 2r \pi + \frac{\pi}{2}$ and $\theta = 2r \pi, r \in \mathbb{Z}$ d) None of these 895. The most general values of θ satisfying $\tan \theta + \tan \left(\frac{3\pi}{4} + \theta\right) = 2$ are given by a) $2n\pi \pm \frac{\pi}{3}, n \in Z$ b) $n\pi + \frac{\pi}{3}, n \in Z$ c) $2n\pi \pm \frac{\pi}{6}, n \in Z$ d) $n\pi \pm \frac{\pi}{6}, n \in Z$ 896. If $(1 + \tan \theta)(1 + \tan \phi) = 2$, then $\theta + \phi =$ a) 30° b) 45° c) 60° d) 75° 897. If α and β satisfying $2 \sec 2\alpha = \tan \beta + \cot \beta$, then $\alpha + \beta$ is equal to a) $\frac{\pi}{2}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) π 898. If $0 < \theta < 2\pi$, then the intervals of values of θ for which $2\sin^2 \theta - 5\sin \theta + 2 > 0$, is c) $\left(0,\frac{\pi}{8}\right) \cup \left(\frac{\pi}{6},\frac{5\pi}{6}\right)$ d) $\left(\frac{41\pi}{48},\pi\right)$ a) $\left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right)$ b) $\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$ 899. If $\tan A - \tan B = x$ and $\cot B - \cot A = y$, then $\cot(A - B)$ is equal to c) $\frac{1}{x} - \frac{1}{v}$ b) $\frac{1}{rv}$ d) $\frac{1}{r} + \frac{1}{v}$ a) $\frac{1}{y} + y$ 900. In a $\triangle ABC$, if *a*, *c*, *b* are in A.P., then the value of $\frac{a \cos B - b \cos A}{a - b}$, is b) 2 d) None of these 901. $\tan 10^\circ + \tan 35^\circ + \tan 10^\circ \tan 35^\circ$ is equal to a) 0 c) -1 d) 1 902. The value of $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n$ (where *n* is an even) is a) $2 \tan^n \left(\frac{A-B}{2}\right)$ b) $2 \cot^n \left(\frac{A-B}{2}\right)$ c) 0 d) None of these 903. If $sin(x - y) = cos(x + y) = \frac{1}{2}$, the values of x and y lying between 0° and 90° are given by a) $x = 15^{\circ}$, $y = 25^{\circ}$ b) $x = 65^{\circ}$, $y = 15^{\circ}$ c) $x = 45^{\circ}$, $y = 45^{\circ}$ d) $x = 45^{\circ}$, $y = 15^{\circ}$ 904. If $5\cos 2\theta + 2\cos^2\frac{\theta}{2} + 1 = 0, -\pi < \theta < \pi$, then $\theta =$ b) $\frac{\pi}{3}$, cos⁻¹(3/5) c) cos⁻¹(3/5) a) $\frac{\pi}{3}$ d) $\frac{\pi}{3}$, $\pi - \cos^{-1}(3/5)$ 905. The value of $\cos x \cos y \sin(x - y) + \cos y \cos z \sin(y - z)$ $+\cos z \cos x \sin(z-x) + \sin(x-y) \sin(y-z) \sin(z-x)$, is a) 0 c) 2 d) −1 b) 1 906. In any $\triangle ABC$ if $2 \cos B = \frac{a}{c}$, then the triangle is a) Right angled b) Equilateral c) Isosceles d) None of these

907. The equation sin <i>x</i> cos <i>x</i>	r = 2 has		
a) One solution	b) Two solutions	c) Infinite solutions	d) No solution
908. If the equation $\sin^2 \theta$ –	$\cos \theta = \frac{1}{4}$, then the value of θ	θ lying in the interval $0 \le \theta$	$1 \le 2\pi$ is
5 5	5 5	c) $\frac{4\pi}{3}, \frac{5\pi}{3}$	d) $\frac{3\pi}{5}, \frac{\pi}{5}$
909. If in a triangle ABC, $\frac{b+c}{11}$	$=\frac{c+a}{12}=\frac{a+b}{13}$ then $\cos A$ is equivalent	jual to	
a) 1/5	b) 5/7	c) 19/35	d) None of these
910. If $f(x) = \cos^2 x + \sec^2 x$			
)) <)	,,	, ,	d) $f(x) \ge 2$
911. The values of x between difference of the AD is	$10 \text{ and } 2\pi$ which satisfy the	equation $\sin x\sqrt{8}\cos^2 x =$	1 are in AP. The common
difference of the AP is π	π	3π	5π
a) $\frac{\pi}{8}$	b) $\frac{\pi}{4}$	c) $\frac{3\pi}{8}$	d) $\frac{5\pi}{8}$
912. The maximum value of	$12\sin\theta - 9\sin^2\theta$ is		-
a) 3	b) 4	c) 5	d) None of these
913. $\tan x = \tan x $, if	τ.		
a) $x \in \left(-k \pi, (2k-1)\right)^{\frac{1}{2}}$			
b) $x \in \left((2k-1)\frac{\pi}{2}, k\pi\right)$	$), k \in Z$		
χ 2	$k\pi$) $\cup \left(k\pi, (2k+1)\frac{\pi}{2}\right), k\in$	$\equiv Z$	
d) None of these	_		
914. If $\tan \theta + \tan 2\theta + \sqrt{3} \tan \theta$			
a) $\theta = \frac{(6n+1)\pi}{18}, \forall n \in$	I	b) $\theta = \frac{(6n+1)\pi}{9}, \forall n \in$	Ι
c) $\theta = \frac{(3n+1)\pi}{9}, \forall n \in$	Ι	d) None of these	
915. If in a $\triangle ABC$, we define :	$x = \tan \frac{B-C}{2} \tan \frac{A}{2}, y = \tan \frac{C-C}{2}$	$\frac{A}{2}$ tan $\frac{B}{2}$ and $z = \tan \frac{A-B}{2}$ tan	$\frac{c}{2}$, then $x + y + z =$
a) <i>xyz</i>	b) $x^2 yz$	c) $x^2 y^2 z^2$	d) None of these
916. If $\cos x = 3 \cos y$, then 2	$2 \tan \frac{y-x}{2}$ is equal to		
a) $\cot\left(\frac{y-x}{2}\right)$	b) $\cot\left(\frac{x+y}{4}\right)$	c) $\cot\left(\frac{y-x}{4}\right)$	d) $\cot\left(\frac{x+y}{2}\right)$
917. The value of $\frac{\sin 85^\circ - \sin 35^\circ}{\cos 65^\circ}$	5° is		
a) 2	b) —1	c) 1	d) 0
918. $\frac{\tan 80^\circ - \tan 10^\circ}{\tan 70^\circ}$ is equal to			
a) 0	b) 1	c) 2	d) 3
919. If $\tan^2 \theta = 2 \tan^2 \phi + 1$,	then $\cos 2\theta + \sin^2 \phi$ equals	5	
a) -1	b) 0	c) 1	d) None of these
920. Simplest form of $\sqrt{2+\sqrt{2+2}}$	$\frac{2}{-\sqrt{2+2\cos 4x}}$ is		
a) sec $\frac{x}{2}$	b) sec <i>x</i>	c) cosec <i>x</i>	d) 1

3.TRIGONOMETRIC FUNCTIONS

: ANSWER KEY :														
1)	а	2)	b	3)	d	4)	a		а	190)	С	191)	d	192)
-) 5)	c c	<u>-</u>) 6)	c	3) 7)	b	8)	d	-	c c	190) 194)	a	195)	b	196)
)))	b	10)	a	11)	a	12)	b	197)	a	198)	d	199)	c	200)
-) 13)	b	10) 14)	b	15)	a	16)	a	201)	b	202)	c	203)	a	200)
17)	d	18)	a	19)	a	20)	c c	205)	c	202)	c c	203)	b	201)
21)	a	22)	a	23)	a	20) 24)	b	209)	a	200) 210)	a	207)	b	200)
25)	b	22) 26)	c c	23) 27)	d	28)	b	213)	c c	210) 214)	a	211)	c	212)
29)	c	20) 30)	c	31)	c c	20) 32)	a	<u> </u>	b	211) 218)	a	219) 219)	a	220)
33)	b	34)	c	35)	b	36)	a	221)	b	210)	d	223)	c c	224)
37)	c	34) 38)	a	39)	b	40)	a	225)	b	222)	b	223)	c c	224)
41)	d	42)	a	43)	b	40) 44)	a C		b	230)	b	231)	b	232)
45)	a	46)	a b	43) 47)	b	48)	d	-	b	230) 234)	c	231)	a	232)
19)	a	1 0) 50)	b	51)	a	40) 52)	u a	235)	b	234) 238)		233)	a b	230) 240)
53)	a C	50) 54)	b	55)	a d	56)	a C	237J 241)	C	230) 242)	a c	239) 243)	a	240) 244)
57)	d	54) 58)	C	59)		60)	с а	241) 245)	с b	242) 246)	b	243) 247)		244) 248)
57) 51)		58) 62)		63)	C C	64)		243) 249)		240) 250)	d	247) 251)	a h	240) 252)
-	с b	-	c d	-	с b	68)	C C	249) 253)	a d	250) 254)		251) 255)	b h	252) 256)
65) (0)		66) 70)		67) 71)		-	C	-		254) 258)	a	255) 259)	b h	230J 260)
59) 72)	с b	70) 74)	с b	71) 75)	d b	72) 76)	C C	257) 261)	b d	258) 262)	C	239) 263)	b	260) 264)
73) 77)		-		75) 70)		76) 80)	C d	-	d d	-	a d	203) 267)	a h	-
77) 21)	C h	78) 82)	a d	79) 92)	b	80) 84)	d h	265) 260)	d h	266) 270)	d d	-	b h	268) 272)
31)))	b d	82) 86)	d	83) 87)	c	84) 89)	b	269) 272)	b	270) 274)	d h	271) 275)	b հ	272) 276)
35) 20)	d h	86) 00)	c	87) 01)	C d	88) 02)	c	273) 277)	a h	274) 279)	b	275) 270)	b	276) 280)
39) 22	b b	90) 94)	C d	91) 05)	d	92) 06)	c	277) 201)	b	278) 292)	a	279) 282)	C h	280) 284)
93) 27)	b d	94) 09)	d	95) 00)	a	96) 100)	a h	281) 205)	C	282) 286)	C d	283) 287)	b հ	284) 289)
97)	d	98) 102)	C	99) 102)	C	100)	b d	285) 280)	C	286) 200)	d h	287) 201)	b	288) 202)
101)	C h	102)	C	103)	C L	104)	d	,	C	290) 204)	b	291) 205)	C L	292)
L05)	b	106)	С	107)	b Ի	108)	d	-	C J	294) 200)	C J	295) 200)	b h	296)
109)	а	110)	а	111)	b	112)		297)	d	298)	d	299)	b	300)
113)	а	114)	a	115)	a	116)		301) 205)	С	302)	b	303)	а	304)
17)	C	118)	b	119)	b	120)		305)	а	306)	d	307)	а	308)
121)	d	122)	b	123)	b	124)		309)	C	310)	b	311)	a	312)
L25)	a L	126)	a	127)	a L	128)		313)	b	314)	С	315)	d L	316)
1 29)	b	130)	d	131)	b	132)		317)	а	318)	a	319)	b	320)
.33)	b	134)	d	135)	b	136)		321)	а	322)	d	323)	b	324)
37)	b	138)	C	139)	d	140)		325)	a	326)	d	327)	С	328)
41)	C	142)	b	143)	а	144)		329)	b	330)	b	331)	а	332)
L 45)	b	146)	b	147)	С	148)		333)	а	334)	b	335)	a	336)
49)	C	150)	b	151)	a	152)		337)	С	338)	b	339)	b	340)
.53)	d	154)	а	155)	b	156)		341)	a	342)	а	343)	С	344)
57)	а	158)	а	159)	C	160)		345)	b	346)	а	347)	а	348)
l 61)	С	162)	а	163)	d	164)		349)	b	350)	C	351)	C	352)
L65)	а	166)	С	167)	b	168)		353)	С	354)	d	355)	b	356)
169)	C	170)	a	171)	a	172)		357)	С	358)	d	359)	d	360)
173)	d	174)	d	175)	b	176)		361)	d	362)	a	363)	a	364)
177)	a	178)	а	179)	d	180)		365)	С	366)	d	367)	b	368)
181)	d	182)	a	183)	d	184)		369)	С	370)	а	371)	b	372)
l 85)	b	186)	d	187)	С	188)	С	373)	а	374)	С	375)	b	376)

377)	d	378)	b	379)	а	380)	d	581)	С	582)	b	583)	а	584)	b
381)	С	382)	b	383)	а	384)	d	585)	b	586)	а	587)	а	588)	а
385)	d	386)	b	387)	d	388)	а	589)	С	590)	d	591)	С	592)	d
389)	b	390)	b	391)	а	392)	С	593)	b	594)	С	595)	b	596)	С
393)	а	394)	d	395)	С	396)	С	597)	а	598)	С	599)	b	600)	d
397)	а	398)	d	399)	b	400)	С	601)	а	602)	b	603)	b	604)	b
401)	С	402)	а	403)	а	404)	b	605)	b	606)	а	607)	d	608)	d
405)	а	406)	b	407)	а	408)	b	609)	b	610)	а	611)	С	612)	а
409)	b	410)	С	411)	а	412)	С	613)	b	614)	С	615)	b	616)	d
413)	a	414)	d	415)	С	416)	а	617)	С	618)	а	619)	b	620)	С
417)	а	418)	а	419)	С	420)	b	621)	d	622)	d	623)	а	624)	С
421)	а	422)	С	423)	С	424)	b	625)	b	626)	b	627)	а	628)	b
425)	b	426)	а	427)	d	428)	С	629)	b	630)	С	631)	b	632)	d
429)	d	430)	b	431)	d	432)	b	633)	С	634)	b	635)	С	636)	d
433)	a	434)	b	435)	а	436)	С	637)	а	638)	b	639)	С	640)	а
437)	a	438)	b	439)	С	440)	b	641)	b	642)	а	643)	С	644)	а
441)	d	442)	а	443)	d	444)	d	645)	а	646)	С	647)	а	648)	b
445)	С	446)	d	447)	С	448)	С	649)	d	650)	b	651)	а	652)	b
449)	b	450)	а	451)	а	452)	а	653)	а	654)	а	655)	С	656)	d
453)	b	454)	а	455)	d	456)	а	657)	С	658)	а	659)	b	660)	а
457)	С	458)	С	459)	d	460)	d	661)	d	662)	а	663)	С	664)	а
461)	а	462)	а	463)	d	464)	b	665)	b	666)	d	667)	b	668)	С
465)	а	466)	С	467)	d	468)	а	669)	С	670)	а	671)	b	672)	а
469)	С	470)	С	471)	а	472)	b	673)	b	674)	d	675)	а	676)	С
473)	b	474)	b	475)	а	476)	b	677)	d	678)	С	679)	b	680)	b
477)	b	478)	b	479)	d	480)	а	681)	а	682)	а	683)	d	684)	а
481)	а	482)	С	483)	d	484)	С	685)	а	686)	b	687)	а	688)	С
485)	а	486)	а	487)	а	488)	b	689)	d	690)	b	691)	а	692)	С
489)	С	490)	b	491)	С	492)	а	693)	а	694)	b	695)	а	696)	а
493)	а	494)	а	495)	d	496)	b	697)	С	698)	а	699)	b	700)	d
497)	С	498)	С	499)	С	500)	С	701)	С	702)	С	703)	С	704)	a
501)	d	502)	а	503)	d	504)	d	705)	С	706)	С	707)	С	708)	b
505)	b	506)	а	507)	а	508)	а	709)	а	710)	b	711)	a	712)	b
509)	а	510)	b	511)	а	512)	С	713)	b	714)	d	715)	d	716)	d
513)	С	514)	d	515)	С	516)	а	717)	С	718)	b	719)	a	720)	С
517)	а	518)	С	519)	а	520)	а	721)	С	722)	а	723)	а	724)	а
521)	С	522)	d	523)	С	524)	d	725)	d	726)	С	727)	d	728)	С
525)	b	526)	а	527)	а	528)	b	729)	d	730)	С	731)	d	732)	С
529)	а	530)	С	531)	а	532)	С	733)	а	734)	а	735)	d	736)	С
533)	d	534)	d	535)	С	536)	d	737)	b	738)	а	739)	b	740)	b
537)	С	538)	b	539)	а	540)	С	741)	а	742)	С	743)	С	744)	С
541)	С	542)	а	543)	а	544)	С	745)	b	746)	С	747)	а	748)	а
545)	d	546)	d	547)	b	548)	d	749)	b	750)	d	751)	b	752)	a
549)	b	550)	а	551)	С	552)	а	753)	b	754)	d	755)	а	756)	b
553)	d	554)	d	555)	b	556)	b	757)	а	758)	b	759)	С	760)	С
557)	а	558)	b	559)	С	560)	С	761)	С	762)	а	763)	d	764)	b
561)	С	562)	а	563)	С	564)	b	765)	а	766)	С	767)	d	768)	С
565)	d	566)	а	567)	а	568)	a	769)	b	770)	b	771)	b	772)	С
569)	с	570)	С	571)	b	572)	d	773)	а	774)	b	775)	С	776)	b
573)	d	574)	b	575)	а	576)	a	777)	а	778)	а	779)	С	780)	С
577)	d	578)	а	579)	а	580)	С	781)	а	782)	b	783)	а	784)	С
							'							Dago	F.C

785)	С	786)	d	787)	С	788) c	857)	b	858)	b	859)	С	860)	d
789)	а	790)	С	791)	b	792) b	861)	С	862)	d	863)	а	864)	С
793)	b	794)	d	795)	а	796) b	865)	b	866)	С	867)	d	868)	а
797)	а	798)	а	799)	а	800) c	869)	а	870)	b	871)	а	872)	а
801)	а	802)	С	803)	b	804) b	873)	а	874)	b	875)	b	876)	С
805)	а	806)	d	807)	С	808) a	877)	С	878)	С	879)	С	880)	b
809)	b	810)	С	811)	а	812) a	881)	b	882)	b	883)	d	884)	а
813)	С	814)	С	815)	а	816) b	885)	d	886)	С	887)	d	888)	b
817)	d	818)	а	819)	d	820) b	889)	С	890)	а	891)	С	892)	b
821)	а	822)	d	823)	b	824) b	893)	d	894)	b	895)	b	896)	b
825)	С	826)	а	827)	b	828) a	897)	С	898)	а	899)	d	900)	b
829)	а	830)	а	831)	а	832) a	901)	d	902)	b	903)	d	904)	d
833)	а	834)	а	835)	d	836) c	905)	а	906)	С	907)	d	908)	а
837)	d	838)	а	839)	а	840) d	909)	а	910)	d	911)	b	912)	b
841)	b	842)	а	843)	b	844) d	913)	С	914)	С	915)	d	916)	d
845)	С	846)	b	847)	а	848) a	917)	С	918)	С	919)	С	920)	а
849)	С	850)	С	851)	а	852) a								
853)	b	854)	b	855)	b	856) d								
							1							

: HINTS AND SOLUTIONS :

6

7

8

1 (a)

It is given that $\tan \theta$, $\cos \theta$, $\frac{1}{6}\sin \theta$ are in G.P. $\therefore \cos^2 \theta = \tan \theta \times \frac{1}{6} \sin \theta$ $\Rightarrow 6\cos^3\theta = \sin^2\theta$ $\Rightarrow 6\cos^3\theta + \cos^2\theta - 1 = 0$ $\Rightarrow (2\cos\theta - 1)(3\cos^2\theta + 2\cos\theta + 1) = 0$ $\Rightarrow \cos \theta = \frac{1}{2} \qquad [\because 3\cos^2 \theta]$ $+ 2\cos\theta + 1 \neq 0$ for real θ] $\Rightarrow \theta = 2 n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$

2 **(b)**

3

=

$$\sin 47^{\circ} - \sin 25^{\circ} + \sin 61^{\circ} - \sin 11^{\circ}$$

= 2 cos 36° sin 11° + 2 cos 36° sin 25°
= 2 cos 36° [sin 11° + sin 25°]
= 2 cos 36° [2 sin $\left(\frac{25^{\circ} + 11^{\circ}}{2}\right) cos \left(\frac{25^{\circ} - 11^{\circ}}{2}\right)$]
= 4 cos 36° sin 18° cos 7°
= 4 $\left(\frac{\sqrt{5} + 1}{4}\right) \left(\frac{\sqrt{5} - 1}{4}\right) cos 7^{\circ} = \frac{5 - 1}{4} cos 7^{\circ}$
= cos 7°
(d)
Given, 2 sin² x + 5 sin x - 3 = 0

It is clear from figure that the curve intersect the line at four points in the given interval Hence, number of solutions are 4

4 (a)

5

We have,
sec
$$\theta \tan \theta = \sqrt{2}$$

 $\Rightarrow \sin \theta = \sqrt{2} \cos^2 \theta$
 $\Rightarrow \sin \theta = \sqrt{2} - \sqrt{2} \sin^2 \theta$
 $\Rightarrow \sqrt{2} \sin^2 \theta + \sin \theta - \sqrt{2} = 0$
 $\Rightarrow (\sqrt{2} \sin \theta - 1)(\sin \theta + \sqrt{2}) = 0$
 $\Rightarrow \sqrt{2} \sin \theta - 1 = 0$
 $\Rightarrow \sin \theta = \frac{1}{\sqrt{2}} = \sin \frac{\pi}{4} \Rightarrow \theta = n \pi + (-1)^n \frac{\pi}{4}, n \in \mathbb{Z}$
(c)

We have, $\cos(\theta + \phi) = m\cos(\theta - \phi)$ $\Rightarrow \frac{1}{m} = \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)}$ $\Rightarrow \frac{1+m}{1-m} = \frac{2\cos\theta\cos\phi}{2\sin\theta\sin\phi}$ $\Rightarrow \tan \theta \tan \phi = \frac{1-m}{1+m} \Rightarrow \tan \theta = \frac{1-m}{1+m} \cot \phi$ (c) We have, $\sin(\pi\cos\theta) = \cos(\pi\sin\theta)$ $\Rightarrow \sin(\pi\cos\theta) = \sin\left(\frac{\pi}{2} - \pi\sin\theta\right)$ $\Rightarrow \pi \cos \theta = \frac{\pi}{2} - \pi \sin \theta$ $\Rightarrow \cos \theta + \sin \theta = \frac{1}{2}$ $\Rightarrow \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2\sqrt{2}}$ $\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$ (b) Clearly. $a^{2} + b^{2} \ge a^{2} - b^{2}$ for all $|a| \ne |b| \ne 0$ $\Rightarrow \frac{a^2 + b^2}{a^2 - b^2} \ge 1 \text{ or}, \frac{a^2 + b^2}{a^2 - b^2} \le -1$ $\therefore \sec \theta = \frac{a^2 + b^2}{a^2 - b^2}$ is meaningful Thus, $\sec \theta = \frac{a^2 + b^2}{a^2 - b^2}$ gives real values of θ if and only if $|a| \neq |b| \neq 0$ (d) Given that, $\sin A = \frac{1}{\sqrt{10}}$ and $\sin B = \frac{1}{\sqrt{5}}$ We know that, $\sin(A+B) = \sin A \cos B + \sin B \cos A$ $=\frac{1}{\sqrt{10}}\left|1-\frac{1}{5}+\frac{1}{\sqrt{5}}\right|1-\frac{1}{10}$ $=\frac{1}{\sqrt{10}}\left|\frac{4}{5}+\frac{1}{\sqrt{5}}\right|\frac{9}{10}$ $=\frac{1}{\sqrt{50}}(2+3) = \sqrt{\frac{5}{\sqrt{50}}} = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin(A+B) = \sin\frac{\pi}{4}$ $\Rightarrow A+B = \frac{\pi}{4}$

9 (b) Now, $1 + |\cos x| + \cos^2 x + |\cos^3 x| + ... \infty =$ $11 - \cos x/$ $\therefore \quad \frac{1}{8^{1-|\cos x|}} = 4^3$ $\Rightarrow \frac{3}{2^{1-|\cos x|}} = 2^6 \Rightarrow 1 = 2 - 2|\cos x|$ $\Rightarrow |\cos x| = \frac{1}{2}$ $\Rightarrow \cos x = \pm \frac{1}{2}$ $\Rightarrow x = \frac{\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3}$ \therefore Number of solutions = 4 10 (a) We have, $\sin\frac{15\pi}{32}\sin\frac{7\pi}{16}\sin\frac{3\pi}{8}$ $=\sin\frac{15\pi}{32}\sin\frac{14\pi}{32}\sin\frac{12\pi}{32}$ $=\cos\frac{\pi}{32}\cos\frac{2\pi}{32}\cos\frac{4\pi}{32}$ $=\frac{\sin\left(2^3\times\frac{\pi}{32}\right)}{2^3\sin\frac{\pi}{32}}=\frac{1}{8\sqrt{2}\cos\left(\frac{15\pi}{32}\right)}$ 11 (a) $\sin \alpha + \sin \beta + \sin \gamma - \sin(\alpha + \beta + \gamma)$ $= \sin \alpha + \sin \beta + \sin \gamma$ $-\sin\alpha\cos\beta\cos\gamma$ $-\cos\alpha\sin\beta\cos\gamma$ $-\cos\alpha\cos\beta\sin\gamma$ $+\sin\alpha\sin\beta\sin\gamma$ $= \sin \alpha (1 - \cos \beta \cos \gamma) + \sin \beta (1 - \cos \alpha \cos \gamma)$ $+\sin\gamma(1-\cos\alpha\cos\beta)$ $+\sin\alpha\sin\beta\sin\gamma$ $\therefore \sin \alpha + \sin \beta + \sin \gamma > \sin(\alpha + \beta + \gamma)$ $\Rightarrow \frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma} < 1$ 12 **(b)** $\left(\cos\frac{10\pi}{13} + \cos\frac{3\pi}{13}\right) + \left(\cos\frac{8\pi}{13} + \cos\frac{5\pi}{13}\right)$ $= 2\cos\left(\frac{13\pi}{2\times13}\right).\cos\left(\frac{7\pi}{2\times13}\right)$ $+2\cos\left(\frac{13\pi}{2\times13}\right).\cos\left(\frac{3\pi}{2\times12}\right)$ $= 2\cos\frac{\pi}{2}\left(\cos\frac{7\pi}{26} + \cos\frac{3\pi}{26}\right) = 0$ 13 **(b)** sin 120° cos 150° - cos 240° sin 330° $= -\cos 30^{\circ} \sin 60^{\circ} - \cos 60^{\circ} \sin 30^{\circ}$ $= -\sin(60^{\circ} + 30^{\circ}) = -1$

14 **(b)** We have, b $\frac{1}{\sin A} = \frac{1}{\sin B}$ $\Rightarrow \sin B = \frac{b \sin A}{a} = \frac{8 \sin 30^{\circ}}{7} = \frac{4}{7}$ Thus, we have, $b > a > b \sin A$ Hence, angle B has two values given by $\sin B = 4/7$ 15 (a) Given, $\cos(\theta - \alpha)$, $\cos \theta$ and $\cos(\theta + \alpha)$ are in HP $\Rightarrow \frac{1}{\cos(\theta-\alpha)}, \frac{1}{\cos\theta}, \frac{1}{\cos(\theta+\alpha)}$ will be in AP $\Rightarrow \frac{2}{\cos \theta} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)}$ $=\frac{\cos(\alpha+\theta)+\cos(\theta-\alpha)}{\cos^2\theta-\sin^2\alpha}$ $\Rightarrow \frac{2}{\cos \theta} = \frac{2 \cos \theta \cos \alpha}{\cos^2 \theta - \sin^2 \alpha}$ $\Rightarrow \cos^2 \theta - \sin^2 \alpha = \cos^2 \theta \cos \alpha$ $\Rightarrow \cos^2 \theta (1 - \cos \alpha) = \sin^2 \alpha$ $\Rightarrow \cos^2 \theta \left(2\sin^2 \frac{\alpha}{2} \right) = 4\sin^2 \frac{\alpha}{2}\cos^2 \frac{\alpha}{2}$ $\Rightarrow \cos^2 \theta \sec^2 \frac{\alpha}{2} = 2 \Rightarrow \cos \theta \sec \frac{\alpha}{2} = \pm \sqrt{2}$ 16 (a) $\therefore \sin 2x + \cos 4x = 2$ It is possible only when $\sin 2x = 1$ and $\cos 4x = 1$ $\Rightarrow 2x = 2n\pi + \frac{\pi}{2}$ and $2x = 2m\pi$ $\therefore x = n\pi + \frac{\pi}{4}$ and $x = m\pi, n \in I$ Then, solution = $\left(n\pi + \frac{\pi}{4}, n \in I\right) \cap (m\pi, m \in I) =$ φ 17 (d) We have, $\csc^2 \theta = \frac{2}{1 - \cos 2\theta}$ $\therefore \operatorname{cosec}^2 \frac{\pi}{7} + \operatorname{cosec}^2 \frac{2\pi}{7} + \operatorname{cosec}^2 \frac{3\pi}{7}$ $=\frac{2}{1-\cos\frac{2\pi}{2}}+\frac{2}{1-\cos\frac{4\pi}{2}}+\frac{2}{1-\cos\frac{6\pi}{2}}$ $=\frac{2}{1-a}+\frac{2}{1-b}+\frac{2}{1-c}$, where $a = \cos \frac{2\pi}{7}, b = \cos \frac{4\pi}{7}, c = \cos \frac{6\pi}{7}$

21 (a)
Since,
$$\tan 2x = \tan \frac{2}{x}$$

 $\Rightarrow 2x = n\pi + \frac{2}{x} \Rightarrow 2x^2 - n\pi x - 2 = 0$
 $\Rightarrow x = \frac{n\pi \pm \sqrt{n^2\pi^2 + 16}}{4}$
22 (a)
We have,
 $\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x} = 1$
 $\Rightarrow \tan(3x - 2x) = 1 \Rightarrow \tan x = 1 \Rightarrow x = n\pi + \frac{\pi}{4}$
But, for this value of x, we have
 $\tan 2x = \tan(2n\pi + \pi/2) = \infty$
Which does not satisfy the given equation as it
reduces to an indeterminate form
23 (a)
Since, $(\cot \alpha_1)(\cot \alpha_2) ... (\cot \alpha_n) = 1$
 $\Rightarrow (\cos \alpha_1)(\cos \alpha_1) ... (\cos \alpha_n)$
 $= (\sin \alpha_1)(\sin \alpha_2) ... (\sin \alpha_n)$
 $\Rightarrow \cos^2 \alpha_1 \cos^2 \alpha_2 ... \cos^2 \alpha_n$
 $= \frac{\sin 2\alpha_1 \sin 2\alpha_2 ... \sin 2\alpha_n}{2^n}$
 $\Rightarrow \cos \alpha_1 \cos \alpha_2 ... \cos \alpha_n$
 $= (\frac{\sin 2\alpha_1 \sin 2\alpha_2 ... \sin 2\alpha_n}{2^n})^{1/2}$
Since, maximum value of $\sin \alpha = 1$
 \therefore Maximum value of $\cos \alpha_1 ... \cos \alpha_n = \frac{1}{2^{n/2}}$
24 (b)
We have, $A + B + C = \pi$
 $\therefore \tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} + \tan \frac{A}{2} = 1$
 $\Rightarrow xy + yz + zx = 1$
Where $x = \tan \frac{A}{2}$, $y = \tan \frac{B}{2}$, $z = \tan \frac{C}{2}$
Now, $(x - y)^2 + (y - z)^2 + (z - x)^2 \ge 0$
 $\Rightarrow 2 \sum x^2 \ge 2 \sum xy$
 $\Rightarrow \sum x^2 \ge 1$ [$\because \sum xy = 1$ (From (i))]
 $\Rightarrow \tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 1$
Thus, the minimum value of $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 1$
Thus, the minimum value of $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 1$

Let a be the first term and d be the common difference of the A.P. Then, $d = 5^{\circ}$, $a = 120^{\circ}$. Since the sum of all interior angles of a polygon of n sides is $(2n-4) \times 90^{\circ} = (180n - 360^{\circ})$ $\therefore \frac{n}{2} \{ 240 + (n-1)5 \} = 180n - 360$ $\Rightarrow \frac{n}{2}[48 + n - 1] = 36n - 72$ $\Rightarrow n^2 + 47n = 72n - 144$ $\Rightarrow n^2 - 25n + 144 = 0 \Rightarrow n = 16,9$ For n = 16, the last term of the A.P. is more than 180°. Therefore, $n \neq 16$. Hence, n = 926 (c) $3\sin^2 x - 7\sin x + 2 = 0$ $\Rightarrow 3\sin^2 x - 6\sin x - \sin x + 2 = 0$ $\Rightarrow 3 \sin x (\sin x - 2) - 1 (\sin x - 2) = 0$ $\Rightarrow (3\sin x - 1)(\sin x - 2) = 0$ $\Rightarrow \sin x = \frac{1}{2} \text{ or } 2$ $\Rightarrow \sin x = \frac{1}{3} \quad (\because \sin x \neq 2)$ Let $\sin^{-1}\frac{1}{2} = \alpha, 0 < \alpha < \frac{\pi}{2}$ Then, α , $\pi - \alpha$, $2\pi + \alpha$, $3\pi - \alpha$, $4\pi + \alpha$, $5\pi - \alpha$ are the solutions in $[0, 5\pi]$ \therefore Required number of solutions = 6 27 (d) We have, tan(A + B) = p and tan(A - B) = q $\therefore \tan 2A = \tan\{(A+B) + (A-B)\}$ $\Rightarrow \tan 2A = \frac{\tan(A+B) + \tan(A-B)}{1 - \tan(A+B)\tan(A-B)} = \frac{p+q}{1 - pq}$ 28 **(b)** Given that, $\tan \theta = \sqrt{3} = \tan \frac{\pi}{3} \Rightarrow \theta = n\pi + \frac{\pi}{3}$ For $-\pi < \theta < 0$ put n = -1, we get $\theta = -\pi + \frac{\pi}{2} = \frac{-2\pi}{2}$ or $\frac{-4\pi}{2}$ 29 (c) We have, $\sin^2 \theta + \sin \theta - 2 = 0$ $\Rightarrow (\sin \theta - 1)(\sin \theta + 2) = 0$ \Rightarrow sin $\theta = 1$, sin $\theta = -2$ But $\sin \theta \neq -2$ $\therefore \sin \theta = 1 = \sin \frac{\pi}{2}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{2}$ 30 (c) Given, $\tan x + \sec x = 2\cos x$ On multiplying by $\cos x \neq 0$, we get $\sin x + 1 = 2\cos^2 x$ $\Rightarrow \sin x + 1 = 2(1 - \sin x)(1 + \sin x)$ $\Rightarrow (\sin x + 1)(2\sin x - 1) = 0$

 $\Rightarrow \sin x = -1 \text{ and } \sin x = \frac{1}{2}$ $\because \sin x \neq -1 \quad (\because \cos x \neq 0)$ $\therefore \sin x = \frac{1}{2}$ $\Rightarrow x = \frac{\pi}{c}, \frac{5\pi}{c}$ 32 (a) We have, $2\cos^2 x + 3\sin x - 3 = 0$ $\Rightarrow 2 - 2\sin^2 x + 3\sin x - 3 = 0$ $\Rightarrow (2\sin x - 1)(\sin x - 1) = 0$ $\Rightarrow \sin x = \frac{1}{2}$ or $\sin x = 1$ $\Rightarrow x = 30^{\circ}, 150^{\circ}, 90^{\circ}$ 33 (b) We have, $\frac{x}{\cos\theta} = \frac{y}{\cos\left(\theta - \frac{2\pi}{2}\right)} = \frac{z}{\cos\left(\theta + \frac{2\pi}{2}\right)}$ Therefore, each ratio is equal to $\frac{x+y+z}{\cos\theta + \cos\left(\theta - \frac{2\pi}{2}\right) + \cos\left(\theta + \frac{2\pi}{2}\right)} = \frac{x+y+z}{0}$ $\Rightarrow x + y + z = 0$ 34 (c) Given, $a \sec \alpha = d + c \tan \alpha$...(i) and $b \sec \alpha = c - d \tan \alpha$... (ii) On squaring and adding Eqs. (i) and (ii), we get $(a^2 + b^2) \sec^2 \alpha$ $= d^{2}$ $+ c^2 \tan^2 \alpha$ $+ 2dc \tan \alpha + c^2$ $+ d^2 \tan^2 \alpha - 2dc \tan \alpha$ $\Rightarrow (a^2 + b^2) \sec^2 \alpha$ $= c^{2}(\tan^{2}\alpha + 1) + d^{2}(1 + \tan^{2}\alpha)$ $= (c^2 + d^2) \sec^2 \alpha$ $a^{2} + b^{2} = c^{2} + d^{2}$

(b)

$$\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \dots \cos \frac{32\pi}{65} = \cos \frac{\pi}{65} \dots \cos \frac{2\pi}{65} \dots \cos \frac{2^5\pi}{65} = \frac{\sin \frac{2^6\pi}{65}}{2^6 \sin \frac{\pi}{65}} = \frac{\sin \frac{65\pi}{65}}{64 \sin \frac{\pi}{65}}$$

35

$$=\frac{\sin\left(\pi-\frac{\pi}{65}\right)}{64\sin\frac{\pi}{65}}=\frac{1}{64}$$

36 **(a)**

The LHS of the given equation is less than 2 and RHS is greater than or equal to 2. Therefore, the equation has no solution

37 (c)

We have,

 $\sin A = \sin B$, $\cos A = \cos B \Rightarrow A = 2 n \pi + B$ Clearly, this satisfies both the relations for all $n \in Z$

38 (a)

(a) We have, $\frac{3 + \cot 76^{\circ} \cot 16^{\circ}}{\cot 76^{\circ} + \cot 16^{\circ}}$ $= \frac{3 \sin 76^{\circ} \sin 16^{\circ} + \cos 76^{\circ} \cos 16^{\circ}}{\cos 76^{\circ} \sin 16^{\circ} + \sin 76^{\circ} \cos 16^{\circ}}$ $= \frac{2 \sin 76^{\circ} \sin 16^{\circ} + (\cos 76^{\circ} \cos 16^{\circ} + \sin 76^{\circ} \sin 16^{\circ})}{\sin 76^{\circ} \cos 16^{\circ} + \cos 76^{\circ} \sin 16^{\circ}}$ $= \frac{\cos 60^{\circ} - \cos 92^{\circ} + \cos 60^{\circ}}{\sin 92^{\circ}}$ $= \frac{1 - \cos 92^{\circ}}{\sin 92^{\circ}} = \frac{2 \sin^2 46^{\circ}}{2 \sin 46^{\circ} \cos 46^{\circ}} = \tan 46^{\circ}$ $= \cot 44^{\circ}$

We have, $1 + \sin^4 x = \cos^2 3x$ $\Rightarrow \sin^2 3x + \sin^4 x = 0$ $\Rightarrow \sin 3x = 0$ and $\sin 4x = 0$ $\Rightarrow 3x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \pm 4\pi, \pm 5\pi, \pm 6\pi, \pm 7\pi$ and, $4x = \pm n\pi, n = 0, 1, 2, ..., 10 \Rightarrow x = 0, \pm \pi, \pm 2\pi$ The largest positive value of x is 2π

40 **(a)**

We have, $\cos A + 2\cos B + \cos C = 2$ $\Rightarrow \cos A + \cos C = 2(1 - \cos B)$ $\Rightarrow 2\cos \frac{A+C}{2}\cos \frac{A-C}{2} = 4\sin^{2}\frac{B}{2}$ $\Rightarrow 2\cos \left(\frac{A-C}{2}\right) = 4\sin \frac{B}{2}$ $\Rightarrow 2\cos \frac{B}{2}\cos \left(\frac{A-C}{2}\right) = 2\left(2\sin \frac{B}{2}\cos \frac{B}{2}\right)$ $\Rightarrow 2\sin \left(\frac{A+C}{2}\right)\cos \left(\frac{A-C}{2}\right) = 2\left(2\sin \frac{B}{2}\cos \frac{B}{2}\right)$ $\Rightarrow \sin A + \sin C = 2\sin B$ $\Rightarrow a + c = 2b \Rightarrow a, b, c \text{ are in A.P.}$ 42 (a) $\tan A + \tan B = a \operatorname{andtan} A \tan B = b$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{a}{1-b}$

Now,
$$\sin^2(A + B) = \frac{1}{2}[1 - \cos 2(A + B)]$$

$$= \frac{1}{2}\left[1 - \frac{1 - \tan^2(A + B)}{1 + \tan^2(A + B)}\right]$$

$$= \left[\frac{\tan^2(A + B)}{1 + \tan^2(A + B)}\right]$$

$$= \frac{a^2/(1 - b)^2}{\frac{a^2 + (1 - b)^2}{(1 - b)^2}}$$

$$= \frac{a^2}{a^2 + (1 - b)^2}$$
(b)
Since, $(a - b) \sin(\theta + \phi) = (a + b) \sin(\theta - \phi)$

$$\Rightarrow a\{\sin(\theta + \phi) - \sin(\theta - \phi)\}$$

$$= b\{\sin(\theta - \phi) + \sin(\theta + \phi)\}$$

$$\Rightarrow 2a \sin \phi \cos \theta = 2b \sin \theta \cos \phi$$

$$\Rightarrow a \tan \phi = b \tan \theta$$

$$\Rightarrow \frac{2a \tan \frac{\phi}{2}}{1 - \tan^2 \frac{\phi}{2}} = \frac{2b \tan \frac{\phi}{2}}{1 - \tan^2 \frac{\phi}{2}} \dots (i)$$
Since, $a \tan \frac{\theta}{2} - b \tan \frac{\phi}{2} = c$ (given)

$$\Rightarrow \tan \frac{\theta}{2} = \frac{b \tan \frac{\phi}{2} + c}{a} \dots (i)$$
From Eqs. (i) and (ii), we get

$$\frac{a \tan \frac{\phi}{2}}{1 - \tan^2 \frac{\phi}{2}} = \frac{b \left(\frac{b \tan \frac{\phi}{2} + c}{a^2}\right)}{1 - \left(\frac{b \tan \frac{\phi}{2} + c}{a^2}\right)}$$

$$\Rightarrow \tan \frac{\phi}{2} (a^2 - b^2 - c^2) = bc \left(1 + \tan^2 \frac{\phi}{2}\right)$$

Now,
$$\sin \phi = \frac{2 \tan \frac{\phi}{2}}{1 + \tan^2 \frac{\phi}{2}} = \frac{2bc}{a^2 - b^2 - c^2}$$

44 **(c)**

43

Given equation is $\sin x \cos 3x = \sin 3x \cos 5x$ $\Rightarrow 2 \sin x \cos 3x - 2 \sin 3x \cos 5x = 0$ $\Rightarrow \sin(3x + x) - \sin(3x - x) - \sin(3x + 5x) + \sin(5x - 3x) = 0$ $\Rightarrow \sin 4x - \sin 2x - \sin 8x + \sin 2x = 0$ $\sin 4x - \sin 8x = 0$ $\Rightarrow 2 \cos\left(\frac{4x + 8x}{2}\right) \sin\left(\frac{8x - 4x}{2}\right) = 0$ $\Rightarrow 2 \cos 6x \sin 2x = 0$ $\Rightarrow \cos 6x = 0 \text{ or } \sin 2x = 0$

$$\Rightarrow 6x = (2n + 1)\frac{\pi}{2} \text{ or } x = \frac{n\pi}{2}$$

$$\Rightarrow x = (2n + 1)\frac{\pi}{12} \text{ or } x = \frac{n\pi}{2}$$

$$\Rightarrow x = 0, \frac{\pi}{2}, \frac{\pi}{12}, \frac{3\pi}{12}, \frac{5\pi}{12} \in [0, \frac{\pi}{2}]$$

$$\therefore \text{ Number of solutions is 5}$$

45 (a)

$$\cos^{2} A + \cos^{2} B + \cos^{2} C$$

$$= \frac{1 + \cos 2A}{2} + \frac{1 + \cos 2B}{2} + \cos^{2} C$$

$$= 1 + \frac{1}{2}(\cos 2A + \cos 2B) + \cos^{2} C$$

$$= 1 + \frac{2}{2}[\cos(A + B)\cos(A - B)] + \cos^{2} C$$

$$= 1 + \cos C \cos(A - B) + \cos C \cos(A + B)$$

$$= 1 + \cos C [\cos(A - B) + \cos(A + B)]$$

$$= 1 + 2 \cos C \cos B \cos A$$

$$\Rightarrow \cos^{2} A + \cos^{2} B$$

$$+ \cos^{2} C - 2 \cos A \cos B \cos C = 1$$

46 (b)
Given, $\cos x + \sin x = \frac{1}{2}$

$$\Rightarrow 1 + \sin 2x = \frac{1}{4}$$

$$2 \tan x = -3$$

$$\Rightarrow \frac{2 \tan x}{1 + \tan x} = \frac{-3}{4}$$

$$\Rightarrow 8 \tan x = -3 - 3 \tan^2 x$$

$$\Rightarrow 3 \tan^2 x + 8 \tan x + 3 = 0$$

$$\Rightarrow \tan x = \frac{-8 \pm \sqrt{64 - 36}}{6} = \frac{-8 \pm 2\sqrt{7}}{6}$$

$$\Rightarrow = -\left(\frac{4 \pm \sqrt{7}}{3}\right)$$

47 **(b)**

We have, $\cos(\alpha + \beta) = \frac{12}{13} \text{ and } \sin(\alpha - \beta) = \frac{3}{5}$ $\Rightarrow \sin(\alpha + \beta) = \frac{5}{13} \text{ and } \cos(\alpha - \beta) = \frac{4}{5}$ Now, $\sin 2\alpha = \sin\{(\alpha + \beta) + (\alpha - \beta)\}$ $\Rightarrow \sin 2\alpha = \sin(\alpha + \beta) \cos(\alpha - \beta)$ $+ \cos(\alpha + \beta) \sin(\alpha - \beta)$ $\Rightarrow \sin 2\alpha = \frac{5}{13} \times \frac{4}{5} + \frac{12}{13} \times \frac{3}{5} = \frac{56}{65}$ (d)

48 **(d)**

We have, $\sin^{10} 2x = 1 + \cos^{10} x$ Minimum value of RHS = 1 and maximum values of LHS = 1. Therefore, solution is possible only when $\sin^{10} 2x = 1$ and $\cos^{10} x = 0$. But this is not possible. Therefore, it has no solution.

49 **(a)**

We have, $P + Q + R = \pi$ and $R = \frac{\pi}{2}$

$$\therefore P + Q = \frac{\pi}{2}$$

$$\Rightarrow \frac{P}{2} + \frac{Q}{2} = \frac{\pi}{4}$$

$$\Rightarrow \tan\left(\frac{P}{2} + \frac{Q}{2}\right) = 1$$

$$\Rightarrow \tan\frac{P}{2} + \tan\frac{Q}{2} = 1 - \tan\frac{P}{2}\tan\frac{Q}{2} \quad ...(i)$$
It is given that $\tan\frac{P}{2}$ and $\tan\frac{Q}{2}$ are the roots of the equation $ax^2 + bx + c = 0$

$$\therefore \tan\frac{P}{2} + \tan\frac{Q}{2} = -\frac{b}{a} \text{ and } \tan\frac{P}{2}\tan\frac{Q}{2} = \frac{c}{a}$$
Substituting these values in (i), we get
$$-\frac{b}{a} = 1 - \frac{c}{a} \Rightarrow -b = a - c \Rightarrow a + b = c$$
50 (b)
We know that,
$$-\sqrt{a^2 + b^2} \le a \cos\theta + b \sin\theta \le \sqrt{a^2 + b^2}$$

$$\therefore -\sqrt{3} + 1 \le \sqrt{3} \sin x + \cos x \le \sqrt{3} + 1$$

$$\Rightarrow -2 \le \sqrt{3} \sin x + \cos x \le 2$$
But, $\sqrt{3} \sin x + \cos x = 4$
Hence, given equation has no solution
51 (a)
We have,
$$\frac{\cos\theta}{a} = \frac{\sin\theta}{b} = \sqrt{\frac{\cos^2\theta + \sin^2\theta}{a^2 + b^2}}$$

$$\Rightarrow \cos\theta = \frac{a}{\sqrt{a^2 + b^2}} \text{ and } \sin\theta = \frac{b}{\sqrt{a^2 + b^2}}$$

$$\therefore \frac{a}{\sec 2\theta} + \frac{b}{\csc 2\theta} = a\cos 2\theta + b \sin 2\theta$$

$$\Rightarrow \frac{a}{\sec 2\theta} + \frac{b}{\csc 2\theta} = a(\cos^2\theta - \sin^2\theta) + 2b\sin\theta\cos\theta$$

$$\Rightarrow \frac{a}{\sec 2\theta} + \frac{b}{\csc 2\theta} = a(\frac{a^2 - b^2}{a^2 + b^2}) + \frac{2ab^2}{a^2 + b^2} = a$$
52 (a)
We have,
$$y = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$$

$$= \sqrt{2}\cos\left(x - \frac{\pi}{12}\right)$$

$$\Rightarrow y = \sqrt{2}\cos\left(x - \frac{\pi}{12}\right)$$

$$\Rightarrow y - z = a(\cos^2 x - \sin^2 x) + 2b\sin 2x + c\cos 2x$$

$$\Rightarrow y - z = (a - c) \cos 2x + 2b \sin 2x$$

Now,

$$\cos 2x + \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{(a - c)^2 - 4b^2}{(a - c)^2 + 4b^2}$$

And,

$$\sin 2x = \frac{2 \tan x}{1 + \tan^2 x} = \frac{4b(a - c)}{(a - c)^2 + 4b^2}$$

$$\therefore y - z = \frac{(a - c)[(a - c)^2 - 4b^2] + 8b^2(a - c)}{(a - c)^2 + 4b^2}$$

$$= a - c$$

(b)
It is given that $\frac{1}{6} \sin x$, $\cos x$, $\tan x$ are in GP

$$\therefore \cos^{2} x = \frac{1}{6} \sin x \tan x$$

$$\Rightarrow 6 \cos^{2} x = \sin x \tan x$$

$$\Rightarrow 6 \cos^{3} x + \cos^{2} x - 1 = 0$$

$$\Rightarrow \left(\cos x - \frac{1}{2}\right) (6 \cos^{2} x + 4 \cos x + 2) = 0$$

$$\Rightarrow \cos x = \frac{1}{2} [\because \cos^{2} x + 4 \cos x + 2] = 0$$

$$\Rightarrow \cos x = \cos^{2} x + 4 \cos x + 2$$

$$= 0 \text{ has imaginary roots}$$

$$\Rightarrow \cos x = \cos \frac{\pi}{3}$$

$$\Rightarrow x = 2n \pi \pm \frac{\pi}{3}, n \in Z$$

54

We have, $a^2 \sin 2C + c^2 \sin 2A$ $= 2a^2 \sin C \cos C + 2c^2 \sin A \cos A$ $= 2(2R\sin A)^2\sin C\cos C$ $+ 2(2R \sin C)^2 \sin A \cos A$ $= 8R^2 \sin^2 A \sin C \cos C + 8R^2 \sin^2 C \sin A \cos A$ $= 8R^2 \sin A \sin C \sin(A + C)$ $= 8R^2 \sin A \sin B \sin C$ $[\because A + C = \pi - B]$ $= 8R^2 \times \frac{a}{2R} \times \frac{b}{2R}$ $\times \frac{c}{2R} \left[\because \sin A = \frac{a}{2R}, \sin B = \frac{b}{2R}, \\ \operatorname{and} \sin C = \frac{c}{2R} \right]$ $=\frac{abc}{R}=4\Delta$ 56 (c) $e^{\log (\cosh^{-1} 2)} = \cosh^{-1}(2) = \log(2 + \sqrt{2^2} - 1)$ $= \log(2 + \sqrt{3})$ 57 (d) We have, $x + \frac{1}{x} = 2\cos\theta$ $\Rightarrow \left(x+\frac{1}{x}\right)^3 = (2\cos\theta)^3$ $\Rightarrow x^3 + \frac{1}{x^3} + 3x \cdot \frac{1}{x} \left(x + \frac{1}{x} \right) = 8 \cos^3 \theta$

$$\Rightarrow x^{3} + \frac{1}{x^{3}} + 3.2 \cos \theta = 8 \cos^{3} \theta$$

$$\Rightarrow x^{3} + \frac{1}{x^{3}} = 2(4 \cos^{3} \theta - 3 \cos \theta)$$

$$= 2 \cos 3\theta$$
58 (c)

$$A + B = \frac{\pi}{4} \Rightarrow \tan(A + B) = 1$$

$$\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$$

$$\Rightarrow \tan A + \tan B + \tan A \tan B = 1$$

$$\Rightarrow (1 + \tan A)(1 + \tan B) = 1 + 1 = 2$$
59 (c)
We have,

$$\cos x \left\{ \frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} \right\}$$

$$= \cos x \left\{ \frac{\cos^{2} x + (1 - \sin x)^{2}}{(1 - \sin x) \cos x} \right\} = \frac{2 - 2 \sin x}{1 - \sin x}$$

$$= 2 \text{ for all } x \in R$$
Hence, required value = 2
60 (a)
We have,

$$\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{5\pi}{15} \cot \frac{5$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C = 25 + 16 - 40 \times \frac{1}{8}$$

= 36
 $\Rightarrow c = 6$

 $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + \frac{8}{\tan 8\alpha}$ $= \tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + \frac{4(1 - \tan^2 4\alpha)}{\tan 4\alpha}$ $\left[\because \tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}\right]$ $= \tan \alpha + 2 \tan 2\alpha + \frac{4 \tan^2 4\alpha + 4 - 4 \tan^2 4\alpha}{\tan 4\alpha}$ $\tan 4\alpha$ $= \tan \alpha + 2\tan 2\alpha + \frac{4(1 - \tan^2 2\alpha)}{2\tan 2\alpha}$ $= \tan \alpha + \frac{2\tan^2 2\alpha + 2 - 2\tan^2 2\alpha}{\tan 2\alpha}$ $= \tan \alpha + \frac{2(1 - \tan^2 \alpha)}{2\tan \alpha}$ $= \frac{\tan^2 \alpha + 1 - \tan^2 \alpha}{\tan \alpha} = \frac{1}{\tan \alpha} = \cot \alpha$ (b) 65 **(b)** We have, $\sin\theta - \cos\theta = \min_{x \in R} \{1, x^2 - 4x + 6\}$ $\Rightarrow \sin \theta - \cos \theta$ = 1 $\begin{bmatrix} \because x^2 - 4x + 6 \\ = (x - 2)^2 + 2 \ge 2 \text{ for all } x \end{bmatrix}$ $\Rightarrow \sin\left(\theta - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin\left(\theta - \frac{\pi}{4}\right) = \sin\frac{\pi}{4}$ $\Rightarrow \theta - \frac{\pi}{4} = n \pi + (-1)^n \frac{\pi}{4}, n \in \mathbb{Z}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{4}, n \in \mathbb{Z}$ 66 (d) We have, $\tan \frac{x}{x} = \csc x - \sin x$

$$\tan \frac{x}{2} = \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2}} - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$

$$\Rightarrow 2t(1+t) = (1-t)^2, \text{ where } t = \tan^2 \frac{x}{2}$$

$$\Rightarrow t^2 + 4t - 1 = 0 \Rightarrow t$$

$$= -2 + \sqrt{5} \quad \left[\because t = \tan^2 \frac{x}{2} > 0 \right]$$

67 **(b)**

We have, $\frac{\cos C + \cos A}{c + a} + \frac{\cos B}{b}$ $= \frac{b \cos C + b \cos A + c \cos B + a \cos B}{(c + a)b}$

$$= \frac{(b \cos C + c \cos B) + (a \cos B + b \cos A)}{(c + a)b}$$

$$= \frac{a + c}{(c + a)b} = \frac{1}{b}$$
68 (c)
sin 12° sin 48° sin 54°

$$= \frac{1}{2} [\cos 36° - \cos 60°] \cos 36°$$

$$= \frac{1}{2} \left[\frac{\sqrt{5} + 1}{4} - \frac{1}{2} \right] \left[\frac{\sqrt{5} + 1}{4} \right] = \frac{1}{8}$$
69 (c)
We have,
sin $\alpha = \sin \beta$, cos $\alpha = \cos \beta$
 $\Rightarrow \sin \alpha - \sin \beta = \cos \alpha - \cos \beta = 0$
 $\Rightarrow 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$
 $= 0$
 $\Rightarrow \sin \frac{\alpha - \beta}{2} = 0$
70 (c)
We have,
 $\frac{\sin B}{b} = \frac{\sin A}{a} \Rightarrow \sin B = \frac{b \sin A}{a} = \frac{8 \sin 30°}{6} = \frac{2}{3}$
72 (c)
We have,
 $32 \sin \frac{A}{2} \sin \frac{5A}{2}$
 $= 16(\cos 2A - \cos 3A)$
 $= 16(2 \cos^{2} A - 1 - 4 \cos^{3} A + 3 \cos A)$
 $= 16(2 \times \frac{9}{16} - 1 - 4 - \frac{27}{64} + 3 \times \frac{3}{4}) = 11$
73 (b)
We know that the distance of the orthocentre 0 of

 ΔABC from the vertices are given by $OA = 2R \cos A, OB = 2R \cos B$ and $OC = 2R \cos C$ $\Rightarrow OA : OB : OC = \cos A : \cos B : \cos C$ 74 **(b)**

We have, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

$$\therefore \tan \alpha = \frac{1}{1+2^{-x}} \text{ and } \tan \beta = \frac{1}{1+2^{x+1}}$$
$$\therefore \tan(\alpha + \beta) = \frac{\frac{1}{1+\frac{1}{2^x}} + \frac{1}{1+2^{x+1}}}{1-\frac{1}{1+\frac{1}{2^x}} \cdot \frac{1}{1+2^{x+1}}}$$
$$\Rightarrow \tan(\alpha + \beta) = \frac{2^x + 2 \cdot 2^{2x} + 2^x + 1}{1+2^x + 2 \cdot 2^x + 2 \cdot 2^{2x} - 2^x}$$
$$\Rightarrow \tan(\alpha + \beta) = 1$$
$$\Rightarrow \alpha + \beta = \frac{\pi}{4}$$

75 **(b)**

We have,

$$\tan\left(\frac{\theta+\alpha}{2}\right)\tan\left(\frac{\theta-\alpha}{2}\right)$$

$$=\frac{2\sin\left(\frac{\theta+\alpha}{2}\right)\sin\left(\frac{\theta-\alpha}{2}\right)}{2\cos\left(\frac{\theta+\alpha}{2}\right)\cos\left(\frac{\theta-\alpha}{2}\right)}$$

$$=-\frac{(\cos\theta-\cos\alpha)}{\cos\theta+\cos\alpha}$$

$$=-\frac{(\cos\alpha\cos\beta-\cos\alpha)}{\cos\alpha\cos\beta+\cos\alpha} = -\frac{\cos\alpha(\cos\beta-1)}{\cos\alpha(\cos\beta+1)}$$

$$=\frac{1-\cos\beta}{1+\cos\beta} = \tan^{2}\frac{\beta}{2}$$

76 **(c)**

(1)
$$\cot \theta - \tan \theta = 2$$

 $\Rightarrow 2 \cot 2\theta + 2 \Rightarrow \tan 2\theta = 1$
 $\Rightarrow 2\theta = n\pi + \frac{\pi}{4} \Rightarrow \theta = (4n + 1)\frac{\pi}{8}$
(2) The given equation can be written as

$$2 \sin x \cos x + 2 \cos^2 x - 1 + \sin x + \cos x + 1 = 0$$

$$\Rightarrow (2 \cos x + 1) (\sin x + \cos x) = 0$$

$$\Rightarrow \cos x = -\frac{1}{2} \text{ or } \sin x + \cos x = 0$$

$$\Rightarrow \cos x = -\frac{1}{2} \text{ or } \tan x = -1$$

But $\cos x$ and $\tan x$ are positive in Ist quadrant. Therefore, the equation has no solution in the Ist quadrant. Hence, both of statements are correct.

77 **(c)**

Given equation can be written as

$$\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right)$$

$$= \left(1 + \cos\frac{\pi}{8} + \cos\frac{7\pi}{8} + \cos\frac{\pi}{8}\cos\frac{7\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8} + \cos\frac{3\pi}{8}\cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{\pi}{8} + \cos\frac{\pi}{8}\cos\frac{5\pi}{8}\cos\frac{5\pi}{8}\right)$$

$$= \left(1 + \cos\frac{\pi}{8} - \cos\frac{\pi}{8} + \cos\frac{\pi}{8}\cos\frac{7\pi}{8}\right) \left(1 - \cos\frac{5\pi}{8} + \cos\frac{5\pi}{8} + \cos\frac{3\pi}{8}\cos\frac{5\pi}{8}\right)$$

$$= \left(1 + \cos\frac{\pi}{8}\cos\frac{7\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\cos\frac{5\pi}{8}\right)$$

$$= \frac{1}{4} \left(2 + 2\cos\frac{\pi}{8}\cos\frac{7\pi}{8}\right) \left(2 + 2\cos\frac{3\pi}{8}\cos\frac{5\pi}{8}\right)$$

$$= \frac{1}{4} \left(2 + \cos\frac{\pi}{4} + \cos\pi\right) \left(2 + \cos\frac{\pi}{4}\cos\pi\right)$$

$$= \frac{1}{4} \left(1 + \cos\frac{3\pi}{4}\right) \left(1 + \cos\frac{\pi}{4}\right)$$

$$= \frac{1}{4} \left(1 - \cos\frac{\pi}{4}\right) \left(1 + \cos\frac{\pi}{4}\right)$$

$$= \frac{1}{4} \left(1 - \cos^{2}\frac{\pi}{4}\right) = \frac{1}{4} \left(1 - \frac{1}{2}\right) = \frac{1}{8}$$
78 (a)

(a)

$$\frac{1 - \tan^2(45^\circ - A)}{1 + \tan^2(45^\circ - A)}$$

$$= \frac{\cos^2(45^\circ - A) - \sin^2(45^\circ - A)}{\cos^2(45^\circ - A) + \sin^2(45^\circ - A)}$$

$$= \frac{\cos 2(45^\circ - A)}{1}$$

$$= \sin 2A$$

79 **(b)** We have, $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m+1}$ We know that, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $= \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \frac{m}{(m+1)} \cdot \frac{1}{(2m+1)}}$ $= \frac{2m^2 + m + m + 1}{2m^2 + m + 2m + 1 - m}$ $= \frac{2m^2 + 2m + 1}{2m^2 + 2m + 1} = 1$

$$\Rightarrow \tan(\alpha + \beta) = \tan\frac{\pi}{4}$$
$$\Rightarrow \alpha + \beta = \frac{\pi}{4}$$

80 (d)

Given,
$$\sin\left(\frac{\pi}{4}\cot\theta\right) = \cos\left(\frac{\pi}{4}\tan\theta\right)$$

 $\Rightarrow \sin\left(\frac{\pi}{4}\cot\theta\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{4}\tan\theta\right)$
 $\Rightarrow \frac{\pi}{4}(\tan\theta + \cot\theta) = \frac{\pi}{2}$
 $\Rightarrow (\tan\theta - 1)^2 = 0 \Rightarrow \tan\theta = 1 = \tan\frac{\pi}{4}$
 $\therefore \quad \theta = n\pi + \frac{\pi}{4}$

81 **(b)**

$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$$

$$\Rightarrow \frac{\sin(x+y) + \sin(x-y)}{\sin(x+y) - \sin(x-y)} = \frac{(a+b) + (a-b)}{(a+b) - (a-b)}$$

$$\Rightarrow \frac{2\sin x \cos y}{2\cos x \sin y} = \frac{2a}{2b}$$

$$\Rightarrow \frac{\tan x}{\tan y} = \frac{a}{b}$$

82 (d)

Given, $\cos \theta - 4 \sin \theta = 1$...(i) $\cos^2 \theta + 16 \sin^2 \theta - 8 \sin \theta \cos \theta = 1$ [on squaring] $\Rightarrow 15 \sin^2 \theta - 8 \sin \theta \cos \theta = 0$ $\Rightarrow \sin \theta (15 \sin \theta - 8 \cos \theta) = 0$ $\Rightarrow \sin \theta = 0$ or $\tan \theta = \frac{8}{15}$ But $\tan \theta$ is not satisfy the Eq. (i), $\therefore \sin \theta = 0 \Rightarrow \theta = 0, \pi$ At $\theta = 0, \sin \theta + 4 \cos \theta = 0 - 4 = -4$ 83 (c) We have,

$$\frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} + \frac{\cos(\theta_3 + \theta_4)}{\cos(\theta_3 - \theta_4)} = 0$$

$$\Rightarrow \frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} = \frac{\cos(\theta_3 + \theta_4)}{-\cos(\theta_3 - \theta_4)}$$

$$\Rightarrow \frac{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}$$

$$= \frac{\cos(\theta_3 + \theta_4) + \cos(\theta_3 - \theta_4)}{\cos(\theta_3 - \theta_4)}$$

$$\Rightarrow \frac{2 \sin \theta_1 \sin \theta_2}{2 \cos \theta_1 \cos \theta_2} = \frac{2 \cos \theta_3 \cos \theta_4}{-2 \sin \theta_3 \sin \theta_4}$$

$$\Rightarrow \tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 = -1$$
84 (b)
We have, $\cot \theta - \tan \theta = 2$

$$\Rightarrow \cos^2 \theta - \sin^2 \theta = 2 \sin \theta \cos \theta$$

$$\Rightarrow \cos 2\theta = \sin 2\theta$$

$$\Rightarrow \tan 2\theta = \tan \frac{\pi}{4} \Rightarrow 2\theta = n\pi + \frac{\pi}{4}$$

$$\Rightarrow \theta = \frac{n\pi}{2} + \frac{\pi}{8}$$
85 (d)
sin 36° sin 72° sin 108° sin 144°

$$= \sin^2 36° \sin^2 72°$$

$$= \frac{1}{4} [(2 \sin^2 36°)(2 \sin^2 72°)]$$

$$= \frac{1}{4} [(1 - \sin 18°)(1 + \cos 36°)]$$

$$= \frac{1}{4} [(1 - \frac{\sqrt{5} - 1}{4}) - (\frac{\sqrt{5} - 1}{4}) - (\frac{4}{16})]$$

$$= \frac{1}{4} [1 + \frac{\sqrt{5} + 1}{4}] = \frac{5}{16}$$
86 (c)
We have,
sin $\theta = x + \frac{p}{x}$

$$\Rightarrow x^2 - x \sin \theta + p = 0$$

$$\Rightarrow \sin^2 \theta - 4p \ge 0 \quad [\because x \text{ is real}]$$

$$\Rightarrow 4p \le 1 \Rightarrow p \le \frac{1}{4} \quad [\because \sin^2 \theta \le 1]$$
87 (c)
We have,
Sin 2(2 sin^2 - 1) - 10 \cos x + 7 = 0

-(0

0)

aaa(0 + 0)

$$\Rightarrow 6 \cos^{2} x - 10 \cos x + 1 = 0$$

$$\Rightarrow (3 \cos x - 2)(\cos x - 1) = 0$$

$$\Rightarrow \cos x = \frac{2}{3}$$

Now, $\cos x = 1 \Rightarrow x = 0,2 \pi, 4 \pi$
and, $\cos x = \frac{2}{3} \Rightarrow x$

$$= \cos^{-1}\frac{2}{3}, 2 \pi$$

$$\pm \cos^{-1}\frac{2}{3}, 4 \pi \pm \cos^{-1}\frac{2}{3}$$

Thus, there are 8 solutions of the given equation

88

88 **(c)**
We have,

$$\sum_{r=1}^{n-1} \cos^2 \frac{r \pi}{n}$$

$$= \frac{1}{2} \sum_{r=1}^{n-1} \left\{ 1 + \cos \frac{2r \pi}{n} \right\}$$

$$= \frac{1}{2} \left(\sum_{r=1}^{n-1} 1 \right) + \frac{1}{2} \left(\sum_{r=1}^{n-1} \cos \frac{2r \pi}{n} \right)$$

$$= \frac{(n-1)}{2} + \frac{1}{2} \left\{ \cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \dots + \cos \frac{2(n-1)\pi}{n} \right\}$$

$$= \frac{(n-1)}{2} + \frac{1}{2} \times \frac{\cos \left\{ \frac{2\pi}{n} + (n-2) \frac{\pi}{n} \right\} \sin(n-1) \frac{\pi}{n}}{\sin \frac{\pi}{n}}$$

$$= \frac{(n-1)}{2} + \frac{1}{2} \cos \pi = \left(\frac{n-1}{2} \right) - \frac{1}{2} = \frac{n}{2} - 1$$
89 **(b)**
We have,

$$1 - \cos \theta = \sin \theta \sin \frac{\theta}{2}$$

$$\Rightarrow 2 \sin^2 \frac{\theta}{2} = 2 \sin^2 \frac{\theta}{2} \cos \frac{\theta}{2}$$

$$\Rightarrow 2 \sin^2 \frac{\theta}{2} (1 - \cos \frac{\theta}{2}) = 0$$

$$\Rightarrow \sin \frac{\theta}{2} = 0, \cos \frac{\theta}{2} = 1$$

$$\Rightarrow \frac{\theta}{2} = n\pi, \text{ or, } \frac{\theta}{2} = 2n\pi, n \in \mathbb{Z}$$
90 **(c)**
Given, \cos 5\theta = 0

$$\Rightarrow 5\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{10}$$

$$\therefore \cos \theta = \cos \left(\frac{\pi}{10}\right) = \sqrt{\frac{10 + 2\sqrt{5}}{16}}$$

$$=\sqrt{\frac{5+\sqrt{5}}{8}}$$

91 (d)
Given,
$$\cos^2 \theta + \sin^2 \theta + 1 = 0$$

 $\Rightarrow \sin^2 \theta - \sin \theta - 2 = 0$
 $\Rightarrow (\sin \theta + 1)(\sin \theta - 2) = 0$
 $\Rightarrow \sin \theta = -1 = \sin \frac{3\pi}{2} \quad [\because \sin \theta \ge 1]$
 $\therefore \theta = \frac{3\pi}{2} \in (\frac{5\pi}{4}, \frac{7\pi}{4})$
92 (c)
Given that, diameter of circular wire=10 cm
 \therefore Length of wire = 10π
Hence, required angle = $\frac{\text{length of arc}}{\text{radius of big circle}}$
 $= \frac{10\pi}{50} = \frac{\pi}{5} \text{rad}$
93 (b)
Let $\sin A = x$...(i)
Then, $\cos A = \tan B$
 $\Rightarrow \sqrt{1 - \sin^2 A} = \tan B$
 $\Rightarrow \sqrt{1 - x^2} = \tan B$
 $and,$
 $\cos B = \tan C$
 $\Rightarrow \frac{1}{\sqrt{1 + \tan^2 B}} = \tan C$
 $\Rightarrow \cos C = \frac{1}{\sqrt{1 + \tan^2 C}} = \sqrt{\frac{2 - x^2}{3 - x^2}}$...(ii)
Now,
 $\cos C = \tan A$
 $\Rightarrow \sqrt{\frac{2 - x^2}{4}} = \frac{x}{\sqrt{1 - x^2}}$ [From (i) and (ii)]
 $\Rightarrow x^2 = \frac{(1 \pm \sqrt{5})^2}{4} \Rightarrow x = \frac{\sqrt{5} - 1}{2} = 2 \sin 18^{\circ}$
94 (d)
We have,
 $\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + \cdots + \cos 180^\circ$
 $= \sum_{\theta=1}^{90^\circ} (\cos \theta - \cos \theta) - 1 = -1$
95 (a)
Given, $e^{\sin x} - e^{-\sin x} - 4 = 0$
 $\Rightarrow e^{2\sin x} - 4e^{\sin x} - 1 = 0$

$$\Rightarrow e^{\sin x} = \frac{4 \pm \sqrt{16 + 4}}{2} = 2 + \sqrt{5}$$

$$\Rightarrow \sin x = \log(2 + \sqrt{5}) [$$

$$\therefore \log(2 - \sqrt{5}) \text{ is not defined}]$$
Since, $2 + \sqrt{5} > e \Rightarrow (2 + \sqrt{5}) > 1$

$$\Rightarrow \sin x > 1$$
, which is not possible
Hence, no solution exist
96 (a)
We have,

$$\cos A + \cos B + \cos C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} + 1$$

$$\Rightarrow \cos A + \cos B + \cos C$$

$$= \frac{r}{R}$$

$$+ 1 \left[\because r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right]$$
97 (d)

$$\frac{2\left[\frac{1}{2}\sin 80^{\circ} - \frac{\sqrt{3}}{2}\cos 80^{\circ}\right]}{\sin 80^{\circ} \cos 80^{\circ}} = \frac{4[\sin(80^{\circ} - 60^{\circ})]}{2\sin 80^{\circ} \cos 80^{\circ}}$$

$$= \frac{4\sin 20^{\circ}}{\sin(160^{\circ} - 20^{\circ})} = 4$$
98 (c)
On squaring and adding the given equations, we get

$$\sin^{2} A + \cos^{2} B + 2\sin A\cos B$$

$$+ \sin^{2} B$$

$$+ \cos^{2} A + 2\sin B \cos A = a^{2} + b^{2}$$

$$\Rightarrow \sin(A + B) = \frac{a^{2} + b^{2} - 2}{2}$$
99 (c)
We have,

$$\cot \frac{B}{2} \cot \frac{C}{2}$$

$$= \sqrt{\frac{s(s - b)}{(s - a)(s - c)}} \times \sqrt{\frac{s(s - c)}{(s - b)(s - a)}}$$

$$= \frac{s}{s - a} = \frac{2s}{2s - 2a} = \frac{a + b + c}{b + c - a} = \frac{4a}{2a} = 2 [$$

$$\therefore b + c = 3a]$$
100 (b)
We have,

$$\frac{\cos A}{p_{1}} + \frac{\cos B}{p_{2}} + \frac{\cos C}{p_{3}}$$

$$= \frac{1}{2\Delta}(a \cos A + b \cos B + c \cos C)$$

$$= \frac{R}{\Delta}(\sin A \cos A + \sin B \cos B + \sin C \cos C)$$

$$= \frac{R}{2\Delta}(\sin 2A + \sin 2B + \sin 2C)$$

$$= R \frac{4 \sin A \sin B \sin C}{2 \Delta} = \frac{2 R \sin A \sin B \sin C}{\Delta}$$

$$= \frac{2R}{\Delta} \times \frac{2\Delta}{bc} \times \frac{2\Delta}{ca} \times \frac{2\Delta}{ab} = \frac{16R \Delta^2}{a^2 b^2 c^2} = \frac{16R \Delta^2}{(4R\Delta)^2} = \frac{1}{R}$$
101 (c)
We have,
 $\cos A + \cos B + \cos C = \frac{3}{2}$
 $\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 + a^2 - b^2}{2ac} + \frac{a^2 + b^2 - c^2}{2ab}$
 $-\frac{3}{2} = 0$
 $\Rightarrow a(b^2 + c^2) + b(c^2 + a^2) + c(a^2 + b^2)$
 $= a^3 + b^3 + c^3 + 3abc$
 $\Rightarrow a(b - c)^2 + b(c - a)^2 + c(a - b)^2$
 $= a^3 + b^3 + c^3 - 3abc$
 $\Rightarrow a(b - c)^2 + b(c - a)^2 + c(a - b)^2$
 $= (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$
 $\Rightarrow 2a(b - c)^2 + 2b(c - a)^2 + 2c(a - b)^2$
 $= (a + b + c)\{(b - c)^2 + (c - a)^2 + (a - b)^2\}$
 $\Rightarrow (b - c)^2(b + c - a) + (c - a)^2(a + c - b)$
 $+ (a - b)^2(a + b - c) = 0$
 $\Rightarrow a = b = c$
Hence, the triangle is an equilateral triangle
102 (c)
We have,
 $\sin A = \frac{336}{625}$
 $\Rightarrow \cos A = -\sqrt{1 - \sin^2 A}$
 $= -\sqrt{1 - (\frac{336}{625})^2}$ [:: A is in II quad.]
Now,
 $\cos \frac{A}{2} = -\sqrt{\frac{1 + \cos A}{2}}$
 $= -\frac{7}{25}$ [:: $\frac{A}{2}$ is in II quad.]
 $\therefore \sin \frac{A}{4} = +\sqrt{\frac{1 - \cos \frac{A}{2}}{2}}$ [:: $\frac{A}{4}$ is in II, quad.]
 $\Rightarrow \sin \frac{A}{4} = \sqrt{\frac{1 + \frac{2}{25}}{2}} = \frac{4}{5}$
103 (c)
We have,
 $\tan(\pi \cos \theta) = \cot(\pi \sin \theta)$
 $\Rightarrow \pi \cos \theta = \frac{\pi}{2} - \pi \sin \theta$

$$\Rightarrow \sin \theta + \cos \theta = \frac{1}{2}$$
$$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta = \frac{1}{2\sqrt{2}} \Rightarrow \sin \left(\theta + \frac{\pi}{4}\right)$$
$$= \frac{1}{2\sqrt{2}}$$

104 **(d)**

We have, $\cos(\alpha - \beta) = 1$ $\Rightarrow \alpha - \beta = 0 \quad [\because \alpha, \beta \in (-\pi, \pi) \Rightarrow -2\pi < \alpha - \beta$ $< 2\pi$] $\Rightarrow \alpha = \beta$ Now, $\cos(\alpha + \beta) = \frac{1}{e} \Rightarrow \cos 2\alpha = \frac{1}{e}$ Clearly, there are 4 values of $\alpha \in (-2\pi, 2\pi)$ satisfying $\cos 2\alpha = \frac{1}{e}$ Hence, there are four ordered pairs (α, β) satisfying the given conditions

105 **(b)**

$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 = 4\cos^{2}\theta - 2$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = 2\cos 2\theta$$

Again $x^{3} + \frac{1}{x^{3}} + 3\left(x + \frac{1}{x}\right) = 8\cos^{3}\theta$

$$x^{2} + \frac{1}{x^{3}} = 8\cos^{3}\theta - 6\cos\theta = \cos 3\theta$$

Similarly, $x^{n} + \frac{1}{x^{n}} = 2\cos n\theta$

106 **(c)**

We have,

$$\cos^{2} \frac{A}{2} \cos^{2} \frac{B}{2} + \cos^{2} \frac{C}{2}$$

$$= \frac{1}{2} \{ (1 + \cos A) + (1 + \cos B) + (1 + \cos C) \}$$

$$= \frac{1}{2} \{ 3 + \cos A + \cos B + \cos C \}$$

$$= \frac{1}{2} \{ 3 + 1 + \frac{r}{R} \} \quad [\because \cos A + \cos B + \cos C = 1 + \frac{r}{R}]$$

$$r$$

2R

107 **(b)**

We have,

$$\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15}$$

$$= \left(\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{7\pi}{15}\right) \times \left(\cos \frac{3\pi}{15} \cos \frac{6\pi}{15}\right)$$

$$\times \cos \frac{5\pi}{15}$$

$$= \left\{\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{7\pi}{15} \left(\pi - \frac{8\pi}{15}\right)\right\} \left(\cos \frac{3\pi}{15} \cos \frac{6\pi}{15}\right) \times \cos \frac{\pi}{3}$$

$$= \left(-\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\right) \\ \times \left(\cos\frac{3\pi}{15}\cos\frac{6\pi}{15}\right) \times \frac{1}{2}$$
$$= -\frac{\sin\left(2^4 \times \frac{\pi}{15}\right)}{2^4\sin\frac{\pi}{15}} \times \frac{\sin\left(2^2 \times \frac{3\pi}{15}\right)}{2^2\sin\frac{3\pi}{15}} \times \frac{1}{2}$$
$$= -\frac{\sin\frac{16\pi}{15}}{16\sin\frac{\pi}{15}} \times \frac{\sin\left(\frac{12\pi}{15}\right)}{4\sin\frac{3\pi}{15}} \times \frac{1}{2} = \frac{1}{16} \times \frac{1}{4} \times \frac{1}{2} = \frac{1}{27}$$

108 **(d)**

Given, tan A and tan B are the roots of the
equation
$$abx^2 - c^2x + ab = 0$$

 \therefore tan A + tan B $= \frac{c^2}{ab}$, tan A tan B = 1
Now, tan(A + B) $= \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{c^2}{1 - 1} = \infty$
 $\Rightarrow A + B = \frac{\pi}{2} \Rightarrow C = \frac{\pi}{2}$
 $\therefore \sin^2 A + \sin^2 B + \sin^2 C$
 $= \sin^2(\frac{\pi}{2} - B) + \sin^2 B + \sin^2 \frac{\pi}{2}$
 $= \cos^2 B + \sin^2 B + 1 = 2$
110 (a)
Given, $P = \frac{1}{2}\sin^2 \theta + \frac{1}{3}\cos^2 \theta$
 $= \frac{1}{2} - \frac{1}{6}\cos^2 \theta \le 1$
 $\Rightarrow -\frac{1}{6} \le -\frac{1}{6}\cos^2 \theta \le 0$
 $\Rightarrow \frac{1}{3} \le \frac{1}{2} - \frac{1}{6}\cos^2 \theta \le \frac{1}{2}$
 $\Rightarrow \frac{1}{3} \le P \le \frac{1}{2}$
111 (b)
We have,
 $3\cos\theta + 4\sin\theta$
 $= 5\left\{\frac{3}{5}\cos\theta + \frac{4}{5}\sin\theta\right\}$
 $= 5\cos(\theta - \alpha)$, where $\cos\alpha = \frac{3}{5}$, $\sin\alpha = \frac{4}{5}$
 $\therefore 3\cos\theta + 4\sin\theta = k$
 $\Rightarrow 5\cos(\theta - \alpha) = k$
 $\Rightarrow \cos(\theta - \alpha) = \frac{1}{2} [\because k = 5]$
 $\Rightarrow \theta - \alpha = 0^\circ, 180^\circ \Rightarrow \theta = \alpha, 180^\circ + \alpha$
112 (a)
 $\frac{1}{p} + \frac{1}{q} + \frac{r}{pq} = \frac{p + q + r}{pq}$
 $= \frac{\cos 55^\circ + \cos 65^\circ + \cos 175^\circ}{\cos 55^\circ \cos 65^\circ}$

$$= \frac{\cos 55^{\circ} + 2\cos \frac{175^{\circ} + 65^{\circ}}{2}\cos \frac{175^{\circ} - 65^{\circ}}{2}}{\cos 55^{\circ} \cos 65^{\circ}} = \frac{1 - 2 \times \frac{1}{2}}{\cos 65^{\circ}} = 0$$

= $\frac{\cos 55^{\circ} + 2\cos 120^{\circ}\cos 55^{\circ}}{\cos 55^{\circ}\cos 65^{\circ}} = \frac{1 - 2 \times \frac{1}{2}}{\cos 65^{\circ}} = 0$
113 (a)
Since, $\sin x + \csc x = 2$
 $\Rightarrow \sin x + \frac{1}{\sin x} = 2$
 $\Rightarrow \sin x + \frac{1}{\sin x} = 2$
 $\Rightarrow \sin^{2} x - 2\sin x + 1 = 0$
 $\Rightarrow (\sin x - 1)^{2} = 0 \Rightarrow \sin x = 1$
Now, $\sin^{n} x + \csc^{n} x = \sin^{n} x + \frac{1}{\sin^{n} x}$
 $= 1 + 1 = 2$

114 (a)

Let *ABC* be a right angled triangle such that the sides *a*, *b*, *c* are in A.P. Then, 2b = a + c...(i) Let *c* be the largest side. Then, $c^2 = a^2 + b^2$...(ii) From (i) and (ii), we have $(2b-a)^2 = a^2 + b^2$ $\Rightarrow 3b^2 - 4ab = 0 \Rightarrow 3b = 4a \Rightarrow \frac{a}{3} = \frac{b}{4} \dots \text{(iii)}$ From (i) and (iii), we get $5b = 4c \ i.e.\frac{b}{4} = \frac{c}{5}$ $\therefore \frac{a}{3} = \frac{b}{4} = \frac{c}{5} \Rightarrow a:b:c = 3:4:5$ 115 (a) $a\cos\theta + b\sin\theta = c$...(i) $\therefore \alpha$ and β ($\alpha \neq \beta$) satisfy the Eq. (i) $\Rightarrow a \cos \alpha + b \sin \alpha = c$...(ii) And $a \cos \beta + b \sin \beta = c$...(iii) On, subtracting Eq. (iii) from Eq.; (ii), we get $a\cos\alpha + b\sin\alpha - a\cos\beta - b\sin\beta = 0$ $\Rightarrow a(\cos\alpha - \cos\beta) = -b(\sin\alpha - \sin\beta)$ $\Rightarrow a \sin \frac{\alpha + \beta}{2} = -b \left[-\cos \left(\frac{\alpha + \beta}{2} \right) \right]$ $\Rightarrow \tan\left(\frac{\alpha+\beta}{2}\right) = \frac{b}{\alpha}$ 116 (d) We have, $\frac{a}{b^2 - c^2} + \frac{c}{b^2 - a^2} = 0$ $\Rightarrow ab^2 - a^3 + b^2c - c^3 = 0 \quad [\because a \neq b \neq c]$ $\Rightarrow (a+c)b^2 - (a^3 + c^3) = 0$ $\Rightarrow (a+c)(b^2 - a^2 - c^2 + ac) = 0$ $\Rightarrow b^2 - a^2 - c^2 + ac = 0 \qquad [\because a + c \neq 0]$

$$\begin{aligned} \Rightarrow a^{2} + c^{2} - ac = b^{2} \\ \Rightarrow a^{2} + c^{2} - ac = c^{2} + a^{2} - 2ac \cos B \\ \Rightarrow \cos B = \frac{1}{2} \Rightarrow B = \frac{\pi}{3} \\ 117 \text{ (c)} \\ & \sin^{2} 5^{\circ} + \sin^{2} 10^{\circ} + \sin^{2} 15^{\circ} + ... + \sin^{2} 90^{\circ} \\ &= \sin^{2} 5^{\circ} + \sin^{2} 10^{\circ} + ... + \frac{1}{2} \\ & + ... + \sin^{2} 45^{\circ} + ... + \sin^{2} 80^{\circ} \\ &+ \sin^{2} 85^{\circ} + \sin^{2} 90^{\circ} \\ &= (\sin^{2} 5^{\circ} + \sin^{2} 10^{\circ} + ... + \frac{1}{2} \\ & + ... + \cos^{2} 10^{\circ} + \cos^{2} 20^{\circ} + \sin^{2} 90^{\circ} \\ &= (\sin^{2} 5^{\circ} + \cos^{2} 5^{\circ}) + (\sin^{2} 10^{\circ} + \cos^{2} 10^{\circ}) + ... \\ &+ (\sin^{2} 40^{\circ} + \cos^{2} 40^{\circ}) + \sin^{2} 45^{\circ} + \sin^{2} 90^{\circ} \\ &= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \frac{1}{2} + 1 = 9\frac{1}{2} \\ 118 \text{ (b)} \\ \text{We have,} \\ C &= 60^{\circ} \\ &\Rightarrow \cos C &= \frac{1}{2} \Rightarrow \frac{a^{2} + b^{2} - c^{2}}{2ab} = \frac{1}{2} \Rightarrow a^{2} + b^{2} - c^{2} \\ &= ab \dots (i) \\ \text{Now,} \\ &\frac{a}{b+c} + \frac{b}{c+a} \\ &= \frac{ac + a^{2} + b^{2} + bc}{bc} = \frac{c^{2} + ac + bc + ab}{c^{2} + ac + bc + ab} \\ &= 1 [\text{Using : (i)]} \\ 120 \text{ (c)} \\ \text{We have,} \\ &\Delta &= b^{2} - (c - a)^{2} \\ &\Rightarrow &\Delta &= (b - c + a)(b + c - a) \\ &\Rightarrow &\sqrt{s(s-a)(s-b)(s-c)} = (2s - 2c)(2s - 2a) \\ &\Rightarrow &\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} = \frac{1}{4} \Rightarrow \tan \frac{B}{2} = \frac{1}{4} \\ &\therefore \tan B = \frac{2 \tan \frac{B}{2}}{1 - \tan^{2} \frac{B}{2}} = \frac{2/4}{1 - \frac{1}{16}} = \frac{8}{15} \\ 121 \text{ (d)} \\ \text{We have,} \\ &\cos^{2} 76^{\circ} + \cos^{2} 16^{\circ} - \cos 76^{\circ} \cos 16^{\circ} \\ &= \frac{1}{2} |(1 + \cos 152^{\circ}) + (1 + \cos 32^{\circ}) \\ &- (\cos 92^{\circ} + \cos 60^{\circ})| \\ &= \frac{1}{2} (\frac{3}{2} + 2\cos 92^{\circ} \cos 60^{\circ} - \cos 92^{\circ}) \\ &= \frac{1}{2} (\frac{3}{2} + 2\cos 92^{\circ} \cos 60^{\circ} - \cos 92^{\circ}) \\ &= \frac{3}{4} \\ 122 \text{ (b)} \end{aligned}$$

$$\sec \theta + \tan \theta = k \quad \dots(i)$$

$$\Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta - \tan \theta} = k$$

$$\Rightarrow \sec \theta - \tan \theta = \frac{1}{k} \quad \dots(ii)$$
On adding Eqs. (i) and (ii), we get
$$2 \sec \theta = k + \frac{1}{k} = \frac{k^2 + 1}{k}$$

$$\Rightarrow \cos \theta = \frac{2k}{k^2 + 1}$$

123 **(b)**

Given, $\sin n \theta = \sum_{r=0}^{n} b_r \sin^r \theta = b_0 + b_1 \sin \theta + b_2 \sin 2\theta + \dots + bn \sin n\theta \dots (i)$

Putting $\theta = 0$ in Eq.(i), we get $0 = b_0$

Again, Eq. (i)can be written as $\sin n \theta = \sum_{r=0}^{n} b_r \sin^r \theta$

$$\frac{\sin n\theta}{\sin \theta} = \sum_{r=1}^{n} b_r \sin^{r-1} \theta$$

Taking limit as $\theta \to 0$, we get $\lim_{\theta \to 0} \frac{\sin n\theta}{\sin \theta} = b_1$

$$\Rightarrow \lim_{\theta \to 0} n \left(\frac{\sin n\theta}{n\theta} \right) \left(\frac{\theta}{\sin \theta} \right) = b_1$$
$$\Rightarrow n = b_1 \text{ Hence, } b_0 = 0; \ b_1 = n$$

124 (b)

We have, $\cos 2x + 2\cos^2 x = 2$ $\Rightarrow 4\cos^2 x = 3 \Rightarrow \cos^2 x = \cos^2 \frac{\pi}{6} \Rightarrow x$ $= n\pi \pm \frac{\pi}{6}, n \in Z$

125 **(a)**

We have,

$$1 + \sin x + \sin^2 x + \dots + \cos x = (\sqrt{3} + 1)^2$$

$$\Rightarrow \frac{1}{1 - \sin x} = (\sqrt{3} + 1)^2$$

$$\Rightarrow 1 - \sin x = \frac{1}{(\sqrt{3} - 1)^2}$$

$$\Rightarrow 1 - \sin x = \frac{(\sqrt{3} - 1)^2}{4}$$

$$\Rightarrow \sin x = 1 - (\frac{4 - 2\sqrt{3}}{4})$$

$$\Rightarrow \sin x = \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{3} \text{ or, } \frac{2\pi}{3}$$

126 (a)
Given, $\sin x = 2 \sin x \cos x$

$$\Rightarrow \sin x(1 - 2 \cos x) = 0$$

 $\Rightarrow \sin x = 0 \text{ or } \cos x = \frac{1}{2}$ $\Rightarrow x = 0^{\circ} \text{ or } x = 60^{\circ}, -60^{\circ}$ Hence, number of solution is 3 127 (a) We have, $\sin(\pi\cot\theta) = \cos(\pi\tan\theta)$ $\Rightarrow \sin(\pi \cot \theta) = \sin\left(\frac{\pi}{2}\pi \tan \theta\right)$ or, $\cos(\pi \tan \theta) = \cos\left(\frac{3\pi}{2} + \pi \cot \theta\right)$ $\Rightarrow \pi \cot \theta = \frac{\pi}{2} + \pi \tan \theta$ or, $\pi \tan \theta = \frac{3\pi}{2} + \pi \cot \theta$ $\Rightarrow \cot \theta - \tan \theta = \frac{1}{2} \text{ or, } \cot \theta - \tan \theta = -\frac{3}{2}$ $\Rightarrow \frac{1 - \tan^2 \theta}{2 \tan \theta} = \frac{1}{4} \text{ or, } \frac{1 - \tan^2 \theta}{2 \tan \theta} = -\frac{3}{4}$ $\Rightarrow \cot 2\theta = \frac{1}{4} \text{ or, } \cot 2\theta = -\frac{3}{4}$ 128 (a) Given, cos 24° cos 48° cos 96° cos 168° $= -\cos 12^{\circ}\cos 24^{\circ}\cos 48^{\circ}\cos 96^{\circ}$ $\frac{16\sin 12^{\circ}}{16\sin 12^{\circ}}\cos 12^{\circ}\cos 24^{\circ}\cos 48^{\circ}\cos 96^{\circ}$ $=\frac{-8\sin 24^\circ\cos 24^\circ\cos 48^\circ\cos 96^\circ}{-8\cos 24^\circ\cos 48^\circ\cos 96^\circ}$ $= \frac{\frac{16 \sin 12^{\circ}}{16 \sin 2^{\circ} \cos 96^{\circ}}}{\frac{-4 \sin 48^{\circ} \cos 48^{\circ} \cos 96^{\circ}}{16 \sin 12^{\circ}}} = -\frac{\sin 192^{\circ}}{16 \sin 12^{\circ}}$ sin 12° $=\frac{16 \sin 12^{\circ}}{16} = \frac{16}{16}$ 129 (b) We have, $3\sin^2 x + 10\cos x - 6 = 0$ $\Rightarrow (\cos x - 3)(3\cos x - 1) = 0$ $\Rightarrow \cos x \neq 3 \text{ or } \cos x = \frac{1}{3}$ $\Rightarrow x = 2n\pi \pm \cos^{-1}\left(\frac{1}{2}\right)$ 130 (d) $\therefore 2 \cos x$, $|\cos x|$, $1 - 3 \cos^2 x$ are in GP $\therefore \cos^2 x = 2\cos x \cdot (1 - 3\cos^2 x)$ $\Rightarrow 6\cos^3 x + \cos^2 x - 2\cos x = 0$ $\therefore \cos x = 0, \frac{1}{2}, -\frac{2}{2}$ $\therefore x = \frac{\pi}{2}, \frac{\pi}{3}, \cos^{-1}\left(-\frac{2}{3}\right) (\because \alpha, \beta \text{ are positive})$ If $\alpha = \frac{\pi}{2}$, $\beta = \frac{\pi}{3}$ Then, $|\alpha - \beta| = \frac{\pi}{6}$ 131 (b) $\therefore \cos \theta = -\frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4}, \frac{5\pi}{4}$ and $\tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4}, \frac{5\pi}{4}$ \therefore The general value is $2n\pi + \frac{5\pi}{4}$ or $(2n+1)\pi + \frac{\pi}{4}$ 132 (a)

We have,

$$\frac{\sin^{2} A + \sin A + 1}{\sin A}$$

$$= \sin A + 1 + \frac{1}{\sin A}$$

$$= \left(\sin A + \frac{1}{\sin A}\right) + 1 \ge 2 + 1 = 3 \left[\because x + \frac{1}{x} \ge 2\right]$$

$$\therefore \sum \frac{\sin^{2} A + \sin A + 1}{\sin A} \ge 3 + 3 + 3 = 9$$
134 (d)
We have,

$$\frac{\sin A}{a} = \frac{\sin B}{b} \Rightarrow \frac{3/4}{5} = \frac{\sin B}{7} \Rightarrow \sin B = 21/20 > 1$$
Which is impossible. Hence, no triangle is possible
135 (b)
We have,

$$AD^{2} = \frac{1}{4}(b^{2} + c^{2} + 2bc \cos A)$$

$$\Rightarrow 4 AD^{2} = b^{2} + c^{2} + 2bc \cos \pi/3$$

$$\Rightarrow 4 AD^{2} = b^{2} + c^{2} + bc$$
136 (d)
We have,

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = \frac{1/2 + 1/3}{1 - 1/2 \times 1/3}$$

$$= 1$$

$$\Rightarrow \theta + \phi = \frac{\pi}{4}$$
137 (b)
We have,

$$a = \tan 27\theta - \tan \theta$$

$$\Rightarrow a = \tan 27\theta - \tan \theta$$

$$\Rightarrow a = \tan 27\theta - \tan \theta$$

$$\Rightarrow a = \frac{\sin 18\theta}{\cos 27\theta} + \frac{\sin 2\theta}{\cos 3\theta} + \frac{\sin 2\theta}{\cos 3\theta}$$

$$+ \frac{\sin 2\theta}{\cos 32\theta} + \frac{\sin 2\theta}{\cos 3\theta} + \frac{\sin \theta}{\cos 3\theta} \right) \Rightarrow a = 2b$$
138 (c)
We have,

$$s - a = 3 \Rightarrow b + c - a = 6 \dots(i)$$
and, $s - c = 2 \Rightarrow a + b - c = 4 \dots(ii)$
Adding these two equations, we get $b = 5$
Since B is a right angle

$$\therefore b^{2} = a^{2} + c^{2} \Rightarrow a^{2} + c^{2} = 25 \dots(iii)$$
Multiplying (i) and (ii), we get

$$[(b - c) + a][(b + c) - a] = 24$$

$$\Rightarrow b^{2} - c^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow a^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow a^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow a^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow b^{2} - c^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow b^{2} - c^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow a^{2} + 2ac - a^{2} = 24$$

$$\Rightarrow b^{2} - c^{2} + 2ac - a^{2} = 24$$

139 (d)
Given, sin
$$\alpha = \frac{15}{17}$$
, tan $\beta = \frac{12}{5}$
Since, $\frac{\pi}{2} < \alpha < \pi, \pi < \beta < \frac{3\pi}{2}$
 $\therefore \cos \alpha = -\frac{8}{17}$, sin $\beta = -\frac{12}{13}$
and $\cos \beta = -\frac{5}{13}$
Now, sin($\beta - \alpha$) = sin $\beta \cos \alpha - \cos \beta \sin \alpha$
 $= -\frac{12}{13} \left(\frac{-8}{17}\right) - \left(\frac{-5}{13}\right) \left(\frac{15}{17}\right)$
 $= \frac{96}{221} + \frac{75}{221} = \frac{171}{221}$
140 (b)
We have,
tan $2\theta \tan \theta = 1$
 $\Rightarrow \frac{2 \tan^2 \theta}{1 - \tan^2 \theta} 1$
 $\Rightarrow \tan^2 \theta = \frac{1}{3} \Rightarrow \tan^2 \theta = \tan^2 \frac{\pi}{6} \Rightarrow \theta = n \pi \pm \frac{\pi}{6}, n$
 $\in \mathbb{Z}$
142 (b)
Let a, b, c be the lengths of the sides of ΔABC such that $a = 6$ cm
We have,
 $2s = 16 \Rightarrow a + b + c = 16 \Rightarrow 6 + b + c = 16$
 $\Rightarrow b + c = 10$
Also,
 $\Delta = 12 \text{ cm}^2$
 $\Rightarrow s(s - a)(s - b)(s - c) = 12^2$
 $\Rightarrow 8(8 - 6)(8 - b)(8 - c) = 144$
 $\Rightarrow 64 - 8(b + c) + bc = 9$
 $\Rightarrow bc = 25$
 $\therefore (b - c)^2 = (b + c)^2 - 4bc = 100 - 100 = 0$
 $\Rightarrow b = c$
Hence, ΔABC is isosceles
143 (a)
We have,
 $\sin^2 \alpha + \cos^2 \alpha$
 $= (\sin^2 \alpha + \cos^2 \alpha)^3$
 $-3 \sin^2 \alpha \cos^2 \alpha (\sin^2 \alpha + \cos^2 \alpha)$
 $= 1 - 3 \frac{(-1 + m^2)^2}{4} = \frac{4 - 3(m^2 - 1)^2}{4}$

Page | 74

146 **(b)** We have, $A = \sin^2 \theta + \cos^4 \theta$ $=\sin^2\theta + \cos^2\theta\cos^2\theta$ $\leq \sin^2 \theta$ $+\cos^2\theta$ (since, $\cos^2\theta \le 1$) $\Rightarrow \sin^2 \theta + \cos^4 \theta \le 1 \Rightarrow A \le 1$ Again, $\sin^2 \theta + \cos^4 \theta = 1 - \cos^2 \theta +$ $\cos 2\theta + \cos 4\theta$ $=\cos^4\theta - \cos^2\theta + \cos^4\theta$ $=\cos^4\theta - \cos^2\theta + 1$ $= \left(\cos^2 \theta - \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$ Hence, $\frac{3}{4} \le A \le 1$ 147 (c) $12\cot^2\theta - 31\csc\theta + 32 = 0$ $\Rightarrow 12\cos^2\theta - 31\sin\theta + 32\sin^2\theta = 0$ $\Rightarrow 20 \sin^2 \theta - 31 \sin \theta + 12$ $= 0 \quad [\because \cos^2 \vartheta = 1 - \sin^2 \theta]$ $\therefore \sin 3\theta = \frac{31 \pm \sqrt{31^2 - 4.20.12}}{2.20}$ $=\frac{31\pm\sqrt{961-960}}{40}=\frac{31\pm1}{40}$ $\Rightarrow \sin \theta = \frac{4}{5}, \frac{3}{4}$ 148 (d) $\sin 20^{\circ} \left(4 + \frac{1}{\cos 20^{\circ}}\right) = \frac{4\sin 20^{\circ} \cos 20^{\circ} + \sin 20^{\circ}}{\cos 20^{\circ}}$ $=\frac{\sin 40^{\circ} + \sin 40^{\circ} + \sin 20^{\circ}}{-10^{\circ}}$ cos 20° $\sin 40^\circ + 2\sin 30^\circ \cos 10^\circ$ =----cos 20° $=\frac{\cos 50^\circ + \cos 10^\circ}{\cos 20^\circ}$ cos 20° $[\because \sin 40^\circ = \cos(90^\circ - 40^\circ)]$ $=\frac{2\cos 30^{\circ}\cos 20^{\circ}}{\cos 20^{\circ}}=2\times\frac{\sqrt{3}}{2}=\sqrt{3}$ 149 (c) Let θ be the required angle. Then, $\cos \theta = \tan \theta$ $\Rightarrow \cos^2 \theta = \sin \theta$ $\Rightarrow \sin^2 \theta + \sin \theta - 1 = 0 \Rightarrow \sin \theta = \frac{\sqrt{5} - 1}{2}$ $= 2 \sin 18^{\circ}$ 150 (b) We have, $3\left[\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi+\alpha)\right]$ –

$$2\left[\sin^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin^{6}(5\pi-\alpha)\right]$$

= $3\left[(-\cos \alpha)^{4}+(-\sin \alpha)^{4}\right]-2\left[\cos^{6}\alpha+\sin^{6}\alpha\right]$
= $3\left[(\cos^{2}\alpha+\sin^{2}\alpha)^{2}-2\sin^{2}\alpha\cos^{2}\alpha\right]$
 $-2\left[(\cos^{2}\alpha+\sin^{2}\alpha)^{3}-3\cos^{2}\alpha\sin^{2}\alpha(\cos^{2}\alpha+\sin^{2}\alpha)\right]$
= $3-6\sin^{2}\alpha\cos^{2}\alpha-2+6\sin^{2}\alpha\cos^{2}\alpha$
= $3-2=1$
151 (a)
We have,
 $\tan \theta + \tan\left(\theta + \frac{3\pi}{4}\right) = 2$
 $\Rightarrow \tan \theta + \frac{\tan \theta - 1}{1+\tan \theta} = 2$
 $\Rightarrow \tan^{2}\theta + 2\tan \theta - 1 = 2 + 2\tan \theta$
 $\Rightarrow \tan^{2}\theta = 3$
 $\Rightarrow \tan^{2}\theta = \tan^{2}\frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$
152 (a)
Let $A + B = \theta$ and $A - B = \phi$
Then, $\tan A = k \tan B \Rightarrow \frac{\tan A}{\tan B} = \frac{k}{1}$
 $\Rightarrow \frac{k}{1} = \frac{\sin A \cos B}{\cos A \sin B}$
Applying componendo and dividend rule, we get
 $\Rightarrow \frac{k+1}{k-1} = \frac{\sin A \cos B + \cos A \sin B}{\sin A \cos B - \cos A \sin B}$
 $= \frac{\sin(A+B)}{\sin(A-B)} = \frac{\sin \theta}{\sin \phi}$
 $\Rightarrow \sin \theta = \frac{k+1}{k-1}\sin \phi$

153 **(d)**

Given that, ABCD is a cyclic quadrilateral

So,
$$A + C = 180^{\circ} \Rightarrow A = 180^{\circ} - C$$

 $\Rightarrow \cos A = \cos(180^{\circ} - C) = -\cos C$
 $\Rightarrow \cos A + \cos C = 0$...(i)
Similarly, $\cos B + \cos D = 0$...(ii)
On adding Eqs. (i) and (ii), we get
 $\cos A + \cos B + \cos C + \cos D = 0$
154 (a)

We have,

$$a - \beta = (\theta - \beta) - (\theta - a)$$

$$\therefore \cos(\alpha - \beta) = \cos(\theta - \beta)\cos(\theta - a)$$

$$+ \sin(\theta - \beta)\sin(\theta - a)$$

$$\Rightarrow \cos(\alpha - \beta) = ab + \sqrt{1 - a^2}\sqrt{1 - b^2}$$

$$\Rightarrow \sin^2(\alpha - \beta) = a^2 + b^2 - 2a^2b^2$$

$$- 2ab\sqrt{1 - a^2}\sqrt{1 - b^2}$$

$$\Rightarrow \sin^2(\alpha - \beta) = a^2 + b^2 - 2a^2b^2$$

$$- 2ab\{\cos(\alpha - \beta) - ab\}$$

$$\Rightarrow \sin^2(\alpha - \beta) + 2ab\cos(\alpha - \beta) = a^2 + b^2$$
155 (b)
Given, $\cos x + \sin x = \frac{1}{2}$

$$\Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{2\tan^2 x}{1 + \tan^2 \frac{x}{2}} = \frac{1}{2}$$
Let $\tan \frac{x}{2} = t$, then

$$\frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2} = \frac{1}{2}$$

$$\Rightarrow t = \tan \frac{x}{2} = \frac{2 + \sqrt{7}}{3} \quad [\because 0 < \frac{x}{2} \\ < \frac{\pi}{2}, \tan \frac{x}{2} \text{ is positive}]$$
Now, $\tan x = \frac{2\tan^2 x}{1 - \tan^2 \frac{x}{2}}$

$$= \frac{2\left(\frac{2+\sqrt{7}}{3}\right)^2}{1 - \left(\frac{2+\sqrt{7}}{3}\right)^2} = -\frac{3(2 + \sqrt{7})}{1 + 2\sqrt{7}} \times \frac{1 - 2\sqrt{7}}{1 - 2\sqrt{7}}$$

$$\Rightarrow \tan x = -\left(\frac{4 + \sqrt{7}}{3}\right)$$
156 (a)
We have,
sec $\theta + \csc \theta = c$

$$\Rightarrow \sqrt{1 + t^2} + \sqrt{1 + \frac{1}{t^2}} = c$$
, where $\tan \theta = t$

$$\Rightarrow \sqrt{1 + t^2} + \sqrt{1 + \frac{1}{t^2}} = c$$
, where $\tan \theta = t$

$$\Rightarrow \sqrt{1 + t^2} + \sqrt{1 + \frac{1}{t^2}} = c$$
, where $\tan \theta = t$

$$\Rightarrow \sqrt{1 + t^2} + (1 + \frac{1}{t^2} = c, \text{ there } \tan \theta = t$$

$$\Rightarrow t^2 + t + 1 \mp t\sqrt{(c^2 + 1)} = 0$$

$$\Rightarrow t^2 + t + 1 \mp t\sqrt{(c^2 + 1)} = 0$$

$$\Rightarrow t^2 + t + 1 \mp t\sqrt{(c^2 + 1)} = 0$$

Now, discriminant of

 $t^{2} + t(1 - \sqrt{c^{2} + 1}) + 1 = 0$ is D_{1} $=\left\{1-\sqrt{c^2+1}\right\}^2-4$ and, discriminant of $t^{2} + t(1 + \sqrt{c^{2} + 1}) + 1 = 0$ is D_{2} $=\left\{1+\sqrt{c^2+1}\right\}^2-4$ Now, $D_1 > 0$ $\Rightarrow \left(1 - \sqrt{c^2 + 1}\right)^2 > 4 \Rightarrow 1 + c^2 + 1 - 2\sqrt{c^2 + 1}$ $\Rightarrow c^{2} - 2 > 2\sqrt{c^{2} + 1} \Rightarrow c^{4} - 4c^{2} + 4 > 4c^{2} + 4$ $\Rightarrow c^4 - 8c^2 > 0 \Rightarrow c^2 > 8$ Similarly, we have $D_2 > 0$ $\therefore c^2 > 8$ Thus, the equation has two real roots, if $c^2 > 8$ 157 (a) Given, $2\sin^2\theta - 5\sin\theta + 2 > 0$ $\Rightarrow (2\sin\theta - 1)(\sin\theta - 2) > 0$ [where, $(\sin \theta - 2) < 0$ for all $\theta \in R$] $O = \frac{\pi}{6} \frac{5\pi}{6} \frac{\pi}{6} 2\pi^{-1} x$ $(2\sin\theta - 1) < 0 \Rightarrow \sin\theta < \frac{1}{2}$ It is clear from the figure $\theta \in \left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right)$ 158 (a) We have, $B = \frac{\pi}{2}, c = \frac{5\pi}{2} \Rightarrow A = \pi - \left(\frac{\pi}{2} + \frac{5\pi}{2}\right) = \frac{\pi}{4}$ Now $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow \frac{a}{\sin\frac{\pi}{4}} = \frac{b}{\sin\frac{\pi}{8}} = \frac{c}{\sin\frac{5\pi}{8}}$ $\Rightarrow b = \sqrt{2}a \sin{\frac{\pi}{8}}$ and $c = \sqrt{2}a \sin{\frac{5\pi}{8}}$ $\therefore \Delta = \frac{1}{2}bc\sin A$ $\Rightarrow \Delta = \frac{1}{2} \left(\sqrt{2}a \sin \frac{\pi}{\alpha} \right) \left(\sqrt{2}a \sin \frac{5\pi}{\alpha} \right) \sin \frac{\pi}{\alpha}$ $\Rightarrow \Delta = \frac{a^2}{\sqrt{2}} \sin \frac{\pi}{8} \sin \frac{5\pi}{8}$ $\Rightarrow \Delta = \frac{a^2}{2\sqrt{2}} \left(\cos \frac{\pi}{2} - \cos \frac{6\pi}{8} \right)$

 $\Rightarrow \Delta = -\frac{a^2}{2\sqrt{2}}\cos\frac{3\pi}{4} = \frac{a^2}{4}$ Also. $\Delta = \frac{1}{2}a \times (\text{Altitude from } A \text{ to } BC)$ $\Rightarrow \frac{a^2}{A} = \frac{a}{2} \times (\text{Altitude from } A \text{ to } BC)$ \Rightarrow Altitude from A to $Bc = \frac{a}{2}$ 159 (c) We have, $(5 + 4\cos\theta)(2\cos\theta + 1) = 0$ $\Rightarrow \cos \theta = -\frac{5}{4}$ which is not possible $\therefore 2\cos\theta + 1 = 0 \Rightarrow \cos\theta = -\frac{1}{2}$ $\Rightarrow \theta = \frac{2\pi}{3}, \frac{4\pi}{3}$ \therefore Solution set is $\left\{\frac{2\pi}{3}, \frac{4\pi}{3}\right\} \in [0, 2\pi]$ 160 (a) We have, $\cos 3x + \sin \left(2x - \frac{7\pi}{6}\right) = -2$ $\Rightarrow 1 + \cos 3x + 1 + \sin \left(2x - \frac{7\pi}{6}\right) = 0$ $\Rightarrow (1 + \cos 3x) + 1 - \cos \left(2x - \frac{2\pi}{3}\right) = 0$ $\Rightarrow 2\cos^2\frac{3x}{2} + 2\sin^2\left(x - \frac{\pi}{2}\right) = 0$ $\Rightarrow \cos \frac{3x}{2} = 0$ and $\sin \left(x - \frac{\pi}{3} \right) = 0$ $\Rightarrow \frac{3x}{2} = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ and $x - \frac{\pi}{3} = 0, \pi, 2\pi$... $\Rightarrow x = \frac{\pi}{2}$ Therefore, the general solution is given by $x = 2k \pi + \frac{\pi}{3} = \frac{\pi}{3}(6k + 1)$, where $k \in \mathbb{Z}$ 161 (c) $\cos^2\left(\frac{\pi}{2}-x\right)-\cos^2\left(\frac{\pi}{2}+x\right)$ $=\sin\left(\frac{\pi}{2} - x + \frac{\pi}{2} + x\right)\left(\frac{\pi}{2} + x - \frac{\pi}{2} + x\right)$ $=\sin\frac{2\pi}{2}\sin 2x = \frac{\sqrt{3}}{2}\sin 2x$ [since, maximum value of $\sin 2x$ is 1] Its maximum value is $\frac{\sqrt{3}}{2}$ 162 (a) We have. $\sin \alpha + \sin \beta + \sin \gamma - \sin(\alpha + \beta + \gamma)$ $= \sin \alpha + \sin \beta + \sin \gamma - \sin \alpha \cos \beta \cos \gamma$ $-\cos\alpha\sin\beta\cos\gamma-\cos\alpha\cos\beta\sin\gamma$ $+\sin\alpha\sin\beta\sin\gamma$ $= \sin \alpha \left(1 - \cos \beta \cos \gamma \right) + \sin \beta \left(1 - \cos \alpha \cos \gamma \right)$ $+\sin\gamma(1-\cos\alpha\cos\beta)+\sin\alpha\sin\beta\sin\gamma$

$$: \sin \alpha + \sin \beta + \sin \gamma > \sin(\alpha + \beta + \gamma)$$

$$:= \frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma} < 1$$
163 (d)
We have,
 $\tan \theta \tan\left(\frac{\pi}{3} + \theta\right) \tan\left(-\frac{\pi}{3} + \theta\right) = k \tan 3\theta$

$$:= \tan \theta \left(\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta}\right) \left(\frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}\right) = k \tan 3\theta$$

$$:= \tan \theta \left(\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta}\right) \left(\frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}\right) = k \tan 3\theta$$

$$:= \tan 3\theta = k \tan 3\theta \Rightarrow k = -1$$
164 (b)
We have,
 $\tan \alpha \tan 2\alpha \tan 4\alpha \dots \tan(2n - 2)\alpha \tan(2n - 1)\alpha$

$$:= \left\{\tan \alpha \tan(2n - 1)\alpha\right\} \left\{\tan 2\alpha \tan(2n - 2)\alpha\right\} \dots$$

$$\dots \left\{\tan(n - 1)\alpha \tan(n + 1)\alpha\right\} \tan 2\alpha \tan\left(\frac{\pi}{2} - 2\alpha\right)\right\} \dots \tan \frac{\pi}{4} = 1$$
165 (a)
 $\sin(\alpha + \beta + \gamma) = \sin \alpha \cos \beta \cos \gamma$

$$+ \cos \alpha \sin \beta \cos \gamma$$

$$+ \cos \alpha \cos \beta \sin \gamma$$

$$:= \sin \alpha (\cos \beta \cos \gamma - 1) + \sin \beta (\cos \alpha \cos \gamma - 1)$$

$$+ \sin \gamma (\cos \alpha \cos \beta - 1) \sin \alpha \sin \beta \sin \gamma$$

$$:= \sin \alpha (\cos \beta \cos \gamma - 1) + \sin \beta (\cos \alpha \cos \gamma - 1)$$

$$+ \sin \gamma (\cos \alpha \cos \beta - 1) \sin \alpha \sin \beta \sin \gamma$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \gamma) - \sin \alpha - \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta - \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta + \sin \gamma < 0$$

$$:= \sin (\alpha + \beta + \beta) - \sin \alpha + \sin \beta + \sin \beta$$

168 (b)

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$= \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \frac{m}{m+1} \cdot \frac{1}{2m+1}}$$

$$= \frac{2m^2 + m + m + 1}{2m^2 + 3m + 1 - m} = 1 = \tan \frac{\pi}{4}$$

$$\therefore \alpha + \beta = \frac{\pi}{4}$$
169 (c)
Given that,

$$\tan A = 2 \tan B + \cot B \dots (i)$$
Now, $2 \tan(A - B) = 2\left(\frac{\tan A - \tan B}{1 + \tan A \tan B}\right)$

$$= 2\frac{(2\tan B + \cot B - \tan B)}{1 + (2\tan B + \cot B)} \text{ [from Eq.(i)]}$$

$$= 2\frac{\tan B + \cot B}{1 + (2\tan B + \cot B)} = \frac{\cot B(\tan^2 B + 1)}{(1 + \tan^2 B)} = \cot B$$
170 (a)
Given, $\sin \theta + \csc \theta = 2 \dots (i)$
 $\sin^2 \theta + \csc^2 \theta + 2 = 4$
 $\Rightarrow \sin^2 \theta + \csc^2 \theta + 2 = 4$
 $\Rightarrow \sin^2 \theta + \csc^2 \theta = 2 \dots (ii)$
 $\therefore \sin^4 \theta + \csc^2 \theta = 2 \dots (ii)$
And $(\sin^2 \theta + \csc^2 \theta)^3 = 2^3$
 $\Rightarrow \sin^6 \theta + \csc^6 \theta + 3.2 = 8$
 $\Rightarrow \sin^6 \theta + \csc^6 \theta + 3.2 = 8$
 $\Rightarrow \sin^6 \theta + \csc^6 \theta + 3.2 = 8$
 $\Rightarrow \sin^6 \theta + \csc^6 \theta + 3.2 = 8$
 $\Rightarrow \sin^6 \theta + \csc^6 \theta + 3.2 = 8$
 $\Rightarrow \sin^1 \theta \theta + \csc^4 \theta (\sin^2 \theta + \csc^2 \theta) = 4$
 $\Rightarrow \sin^{10} \theta + \sin^4 \theta \csc^4 \theta (\sin^2 \theta + \csc^2 \theta) + \cos^2 \theta$
 $+ \csc^{10} \theta = 4 - 2 = 2$
171 (a)
Given, $\cos x + \cos 3x + \cos 2x = 0$
 $\Rightarrow \cos 2x (2\cos x + 1) = 0$
 $\Rightarrow \cos 2x (2\cos x + 1) = 0$
 $\Rightarrow \cos 2x (2\cos x + 1) = 0$
 $\Rightarrow \cos 2x (2\cos x + 1) = 0$
 $\Rightarrow \cos 2x (2\cos x + 1) = 0$
 $\Rightarrow \cos 2x = 0 \quad [\because \cos x \neq -\frac{1}{2}]$
 $\Rightarrow x = \frac{\pi}{4}$
 $\therefore \text{ General value is } 2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}$
172 (a)
 $\cosh^{-1} x = \log(x + \sqrt{x^2 - 1}) = \log(2 + \sqrt{3})$
 $\therefore x = 2$
173 (d)

If $\tan \frac{x}{2} = t$, the given equation becomes $A\left(\frac{2t}{1+t^{2}}\right)^{2} + B\left(\frac{1-t^{2}}{1+t^{2}}\right)^{3} + C = 0$ $\Rightarrow t^{6}(C-B) + 3t^{4}(B+C) + 8A t^{3} + 3t^{2}(C-B)$ +(C+B)=0This is an equation with six different roots 174 (d) $\cos(270^\circ + \theta)(\cos 90^\circ - \theta) - \sin(270^\circ - \theta)\cos\theta$ $= \sin \theta . \sin \theta + \cos \theta . \cos \theta$ $=\sin^2\theta + \cos^2\theta = 1$ 175 (b) We have, $2\sin\frac{A}{2} = \sqrt{1+\sin A} + \sqrt{1-\sin A}$ $\Rightarrow 2\cos{\frac{A}{2}} = \left(\cos{\frac{A}{2}} + \sin{\frac{A}{2}}\right)^2$ $+ \left| \left(\cos \frac{A}{2} - \sin \frac{A}{2} \right)^2 \right|$ $\Rightarrow 2\cos\frac{A}{2} = \left|\cos\frac{A}{2} + \sin\frac{A}{2}\right| + \left|\cos\frac{A}{2} - \sin\frac{A}{2}\right|$ $\Rightarrow \cos{\frac{A}{2}} + \sin{\frac{A}{2}} \ge 0$ and $\cos{\frac{A}{2}} - \sin{\frac{A}{2}} \ge 0$ $\Rightarrow -\frac{3\pi}{4} \le \frac{A}{2} \le \frac{3\pi}{4}$ and $-\frac{\pi}{4} \le \frac{A}{2} \le \frac{\pi}{4}$ $\Rightarrow -\frac{\pi}{4} \le \frac{A}{2} \le \frac{\pi}{4}$ $\Rightarrow 2n\pi - \frac{\pi}{4} \le \frac{A}{2} \le 2n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$ 176 **(d)** Given, $\tan x = \frac{b}{a}$ \therefore acos 2 $x = b \sin 2x$ $= a \times \frac{1 - \tan^2 x}{1 + \tan^2 x} + b \times \frac{2 \tan x}{1 + \tan^2 x}$ $= a \times \frac{1 - \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} + b \times \frac{2\frac{b}{a}}{1 + \frac{b^2}{a^2}}$ $=\frac{a(a^2-b^2)}{a^2+b^2}+\frac{2ab^2}{a^2+b^2}$ $=\frac{a(a^2+b^2)}{a^2+b^2}=a$ 177 (a) We have, $1 + 8\sin^2 x^2 \cos^2 x^2$ $= 1 + 2(2 + \sin x^2 \cos x^2)^2$ $= 1 + 2(\sin 2x^2)^2$ $= 1 + 2\sin^2 2x^2 = 1 + (1 - \cos 4x^2)$ $= 2 - \cos 4x^2$ Now. $-1 \le \cos 4x^2 \le 1$

 $\Rightarrow 1 \le 2 - \cos 4x^2 \le 3$ $\Rightarrow 1 \le 1 + 8\sin^2 x^2 \cos x^2 \le 3$ Hence, the required maximum value is 3 178 (a) We have, a b c b c a c a b = (a + b)(+c) $\begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$ Applying $R_1 \rightarrow R_1 + R_2 + R_3$ and the taking (a + b + c) common from A $= (a + b + c)(ab + bc + ca - a^{2} - b^{2} - c^{2})$ $= -(a^3 + b^3 + c^3 - 3abc)$ $= -8R^3(\sin^3 A + \sin^3 B)$ $+\sin^3 C - 3\sin A\sin B\sin C$ $= -8R^3 \times 0 = 0$ 179 (d) We have, AM > GM $\Rightarrow \frac{9\tan^2\theta + 4\cot^2\theta}{2} \ge \sqrt{4\cot^2\theta \cdot 9\tan^2\theta}$ \Rightarrow 9 tan² θ + 4 cot² θ > 12 Hence, the minimum value is 12 180 (d) Given, $4(\sin^2 x - 3\sin x) + 7$ $=4\left[\left(\sin x - \frac{3}{2}\right)^2 - \frac{9}{4}\right] + 7$ $=4\left(\sin x-\frac{3}{2}\right)^{2}-2$ Now. $-1 < \sin x < 1$ $\Rightarrow -\frac{5}{2} \le \sin x - \frac{3}{2} \le -\frac{1}{2}$ $\Rightarrow \frac{1}{4} \le \left(\sin x - \frac{3}{2}\right)^2 \le \frac{25}{4}$ $\Rightarrow 1 \le 4\left(\sin x - \frac{3}{2}\right)^2 \le 25$ $\Rightarrow -1 \le 4 \left(\sin x - \frac{3}{2}\right)^2 - 2 \le 23$ 181 (d) Since, $-2 \le \sin x - \sqrt{3} \cos x \le 2$ $\Rightarrow -1 \leq \sin x - \sqrt{3} \cos x + 1 \leq 3$ \therefore Range of f(x) = [-1, 3]182 (a) We have, $\frac{\sec^2\theta - \tan\theta}{\sec^2\theta + \tan\theta} = y$ $\Rightarrow \frac{1 + x^2 - x}{1 + x^2 + x} = y$, where $\tan \theta = x$ $\Rightarrow x^{2}(y-1) + x(y+1) + y - 1 = 0$

$$\Rightarrow (y+1)^{2} - 4(y-1)^{2}$$

$$\ge 0 \quad \begin{bmatrix} \because x = \tan \theta \text{ is real} \\ \therefore \text{ Disc} \ge 0 \end{bmatrix}$$

$$\Rightarrow -3y^{2} + 10y - 3 \ge 0$$

$$\Rightarrow 3y^{2} - 10y + 3 \le 0 \Rightarrow y \in (1/3, 3)$$
183 (d)
Since $\sin \theta$, $\cos \theta$ are the roots of $ax^{2} - bx + c = 0$

$$\therefore \sin \theta + \cos \theta = \frac{b}{a}$$
and $\sin \theta \cos \theta = \frac{c}{a}$

$$\Rightarrow \sin^{2} \theta + \cos^{2} \theta + 2 \sin \theta \cos \theta = \frac{b^{2}}{a^{2}}$$
and $\sin \theta \cos \theta = \frac{c}{a}$

$$\Rightarrow 1 + 2\left(\frac{c}{a}\right) = \frac{b^{2}}{a^{2}}$$

$$\Rightarrow b^{2} - a^{2} = 2ac$$
184 (c)

We have,
$$\sqrt{2} \sec \theta + \tan \theta = 1$$

$$\Rightarrow \frac{\sqrt{2}}{\cos \theta} + \frac{\sin \theta}{\cos \theta} = 1$$

$$\Rightarrow \sin \theta - \cos \theta = -\sqrt{2}$$

$$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta - \frac{1}{\sqrt{2}} \cos \theta = -1$$

$$\Rightarrow \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta = 1$$

$$\Rightarrow \cos \frac{\pi}{4} \cos \theta - \sin \frac{\pi}{4} \sin \theta = 1$$

$$\Rightarrow \cos \left(\theta + \frac{\pi}{4}\right) = \cos \theta$$

$$\Rightarrow \theta + \frac{\pi}{4} = 2n\pi \pm 0$$

$$\Rightarrow \theta = 2n\pi - \frac{\pi}{4}$$
(b)

$$\sqrt{\sin^2 x - \sin x + \frac{1}{2}} = \sqrt{\left(\sin x - \frac{1}{2}\right)^2 + \frac{1}{4}} \ge \frac{1}{2}, \forall x$$

and $\sec^2 y \ge 1$, $\forall y$, so $2^{\sec^2 y} \ge 2$. Hence, the above inequality holds only for those values of xand *y* for which $\sin x = \frac{1}{2}$ and $\sec^2 y = 1$. Hence, $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}$ and $y = 0, \pi, 2\pi, 3\pi$. Hence, required number of ordered pairs are 16 186 (d) $\cos 132^\circ + \cos 12^\circ + \cos 156^\circ + \cos 84^\circ$

 $= 2 \cos 72^{\circ} \cos 60^{\circ} + 2 \cos 120^{\circ} \cos 36^{\circ}$

$$= 2\left(\frac{\sqrt{5}-1}{4}\right)\frac{1}{2} + 2\left(\frac{-1}{2}\right)\left(\frac{\sqrt{5}+1}{4}\right) = \frac{-1}{2}$$
187 (c)

$$\cos^{4}x - (\lambda + 2)\cos^{2}x - (\lambda + 3) = 0$$

$$\Rightarrow (\cos^{2}x)^{2} - (\lambda + 2)\cos^{2}x - (\lambda + 3) = 0$$

$$\therefore \cos^{2}x = \frac{(\lambda + 2) \pm \sqrt{(\lambda + 2)^{2} + 4(\lambda + 3)}}{2}$$

$$= \frac{(\lambda + 2) \pm (\lambda + 4)}{2}$$

$$= \lambda + 3, -1$$

$$\Rightarrow \cos^{2}x = \lambda + 3 \quad (\because \cos^{2}x \neq -1)$$
But $0 \le \cos^{2}x \le 1$

$$\Rightarrow 0 \le \lambda + 3 \le 1$$

$$\Rightarrow -3 \le \lambda \le -2$$
188 (c)
We have,

$$\sin 5 x + \sin 3 x + \sin x = 0$$

$$\Rightarrow (\sin 5 x + \sin 3 x + \sin 3 x = 0)$$

$$\Rightarrow 2 \sin 3 x \cos x + \sin 3 x = 0$$

$$\Rightarrow \sin 3 x(2 \cos 2 x + 1) = 0$$

$$\Rightarrow \sin 3 x(2 \cos 2 x + 1) = 0$$

$$\Rightarrow \sin 3 x = 0, \cos 2 x = -\frac{1}{2}$$

$$\Rightarrow 3x = n \pi, 2x = 2n \pi \pm \frac{2\pi}{3}$$
The value of x given by the above expressions and lying between 0 and $\frac{\pi}{2}$ is $\frac{\pi}{3}$
189 (a)
Let $81^{\sin^{2}x} = y$. Then,

Let
$$81^{\sin^2 x} = y$$
. Then,
 $81^{\cos^2 x} - 81^{1-\sin^2 x} = 81y^{-1}$
 $\Rightarrow y^2 - 30y + 81 = 0$
 $\Rightarrow y = 3 \text{ or, } y = 27$
 $\Rightarrow 81^{\sin^2 x} = 3 \text{ or, } 27$
 $\Rightarrow 3^{4\sin^2 x} = 3^1 \text{ or, } 3^3$
 $\Rightarrow 4\sin^2 x = 1 \text{ or, } 3$
 $\Rightarrow \sin^2 x = \frac{1}{4} \text{ or, } \frac{3}{4}$
 $\Rightarrow \sin x = \pm \frac{1}{2} \text{ or, } \pm \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{6} \text{ or, } \frac{\pi}{3}$

190 (c)
We have,

$$\frac{c}{\sin C} = \frac{a}{\sin A}$$

$$\Rightarrow \sin C = \frac{c \sin A}{a} = \frac{2 \sin 120^{\circ}}{\sqrt{6}} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow C = 45^{\circ} \text{ or } 135^{\circ}$$
But, in a triangle there cannot be two obtuse angle

$$\therefore C = 45^{\circ}$$
191 (d)

$$\sin 6\theta = 3 \sin 2\theta - 4 \sin^{3} 2\theta$$

 $= 3 \sin 2\theta - 4.8 \cos^3 \theta \sin^3 \theta$ $= 3\sin 2\theta - 32\cos^3\theta\sin\theta(1-\cos^2\theta)$ $\Rightarrow \sin 6\theta = 32 \cos^5 \theta \cdot \sin \theta - 32 \cos^3 \theta \sin \theta +$ *3*sin*2θ* ...(i) But $\sin 6\theta = 32 \cos^5 \theta \sin \theta - 32 \cos^3 \theta \sin \theta + 3x$ [given] On comparing Eqs. (i) and (ii), we get $3x = 3\sin 2\theta \implies x = \sin 2\theta$ 192 (c) $x\cos\theta = y\cos\left(\theta + \frac{2\pi}{2}\right)$ $= z \cos\left(\theta + \frac{4\pi}{3}\right) = k$ (say) $\Rightarrow \cos \theta = \frac{k}{r}, \cos \left(\theta + \frac{2\pi}{3}\right) = \frac{k}{v}$ And $\cos\left(\theta + \frac{4\pi}{3}\right) = \frac{k}{z}$ $\frac{k}{x} + \frac{k}{v} + \frac{k}{z} = \cos\theta + \cos\left(\theta + \frac{2\pi}{3}\right) + \frac{k}{v} +$ Hence, $\cos\theta + 4\pi 3$ $=\cos\theta-\cos\left(\frac{\pi}{3}-\theta\right)-\cos\left(\frac{\pi}{3}+\theta\right)$ $=\cos\theta - 2\cos\frac{\pi}{3}\cos\theta = 0$ 193 (c) $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}$ $\Rightarrow 2[\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta)] + 3$ = 0 $\Rightarrow 2[\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta)]$ $+\sin^2\alpha + \cos^2\alpha + \sin^2\beta + \cos^2\beta +$ $\sin 2\gamma + \cos 2\gamma = 0$ $\Rightarrow (\sin \alpha + \sin \beta + \sin \gamma)^2$ $+(\cos\alpha+\cos\beta+\cos\gamma)^2=0$ 194 (a) We have, $\sin x \cos x \cos 2x = \lambda \Rightarrow \sin 4x = 4 \lambda$ Clearly, this equation will have a solution if $|4 \lambda| \leq 1 \Rightarrow \lambda \in [-1/4, 1/4]$ 195 (b) $1 + \cos 56^{\circ} + \cos 58^{\circ} - \cos 66^{\circ}$ $= 2\cos^2 28^\circ + 2\sin 62^\circ \sin 4^\circ$ $= 2\cos^2 28^\circ + 2\cos 28^\circ \cos 86^\circ$ $= 2 \cos 28^{\circ} (\cos 28^{\circ} + \cos 86^{\circ})$ $= 2 \cos 28^{\circ} (2 \cos 57^{\circ} \cos 29^{\circ})$ $= 4 \cos 28^\circ \cos 29^\circ \sin 33^\circ$ 196 (d) (1)We have, $\sin A = \sin B$

 $\Rightarrow A = B \text{ or } A = \pi - B$

Now, $\sin 2A = \sin 2B$ is satisfied by A = B but it is not satisfied by $A = \pi - B$

$$(2)\cos\frac{\pi}{7}\cos\frac{4\pi}{7}\cos\frac{5\pi}{7} = \cos\frac{\pi}{7}\cos\frac{4\pi}{7}\cos\left(\pi - \frac{2\pi}{7}\right) \\ = -\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7} \\ = -\frac{\sin\left(2^3\frac{\pi}{7}\right)}{2^3\sin\frac{\pi}{7}} = -\frac{\sin\frac{8\pi}{7}}{8\sin\frac{\pi}{7}} = \frac{1}{8} \\ 197 (a) \\ \text{Given, } \cos 2x + k \sin x = 2k - 7 \\ \Rightarrow 1 - 2\sin^2 x + k \sin x = 2k - 7 \\ \Rightarrow 2\sin^2 x - k \sin x + 2k - 8 = 0 \\ \Rightarrow \sin x = \frac{k \pm (k - 8)}{4} \\ \Rightarrow \sin x = \frac{k \pm (k - 8)}{4} \\ \Rightarrow \sin x = \frac{k \pm (k - 8)}{4} \\ \Rightarrow \sin x = \frac{k \pm (k - 8)}{4} \\ \Rightarrow \sin x = \frac{k - 4}{2} \\ (\because \text{ for } '-' \text{ sign sin } x = 2, \text{ which is not possible}) \\ \because -1 \le \sin x \le 1 \Rightarrow -1 \le \frac{k - 4}{2} \le 1 \\ \Rightarrow -2 \le k - 4 \le 2 \Rightarrow 2 \le k \le 6 \\ 198 (d) \\ \text{We have,} \\ \cos 2A + \cos 2B + \cos 2C \\ = 2\cos((A + B)\cos(A - B) + \cos 2C \\ = 2\cos((A + B)\cos(A - B) + \cos 2C \\ = 1 - 2\sin C \left\{\cos(A - B) + \sin 1 - 2\sin^2 C \\ = 1 - 2\sin C \left\{\cos(A - B) + \sin 1 - 2\sin^2 C \\ = 1 - 2\sin C \left(\cos(A - B) + \sin 1 - 2\sin^2 C \\ = 1 - 2\sin C \left(\cos(A - B) + \sin 1 - 2\sin^2 C \\ = 1 - 2\sin C \left(\cos(A - B) + \sin 1 - 3\sin^2 - (A + B)\right)\right) \\ = 1 - 4\sin A \sin B \sin C \\ 200 (a) \\ \text{Since, } -1 \le \cos \theta \le 1 \\ \therefore -1 \le \cos(4x - 5) \le 1 \\ \Rightarrow -3 \le 3\cos(4x - 5) \le 4 \\ \Rightarrow 1 \le 3\cos(4x - 5) + 4 \le 7 \\ 201 (b) \\ \text{We have,} \\ \cos x = \sin \alpha \cot \beta \sin x = \cos \alpha \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} - \sin \alpha \cot \beta \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \cos \alpha \\ \Rightarrow \tan^2 \frac{x}{2} + \frac{2\sin \alpha \cot \beta}{1 + \cos \alpha} \tan \frac{x}{2} - \frac{1 - \cos \alpha}{1 + \cos \alpha} = 0 \\ \end{cases}$$

$$\Rightarrow \tan^{2} \frac{x}{2} + 2 \tan \frac{\alpha}{2} \cot \beta \tan \frac{x}{2} - \tan^{2} \frac{\alpha}{2} = 0$$

$$\Rightarrow \tan^{2} \frac{x}{2} + \left\{ \cot \frac{\beta}{2} - \tan \frac{\beta}{2} \right\} \tan \frac{\alpha}{2} \tan \frac{x}{2} - \tan^{2} \frac{\alpha}{2} \\ = 0$$

$$\Rightarrow \left(\tan \frac{x}{2} + \cot \frac{\beta}{2} \tan \frac{\alpha}{2} \right) \left(\tan \frac{x}{2} - \tan \frac{\beta}{2} \tan \frac{\alpha}{2} \right) = 0$$

$$\Rightarrow \tan \frac{x}{2} = -\cot \frac{\beta}{2} \tan \frac{\alpha}{2}, \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$$
202 (c)
$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} (2 \sin 40^{\circ} \sin 80^{\circ})$$

$$= \frac{1}{2} \sin 20^{\circ} \sin 60^{\circ} (2 \sin 40^{\circ} \sin 80^{\circ})$$

$$= \frac{1}{2} \sin 20^{\circ} \sin 60^{\circ} (\cos 40^{\circ} - \cos 120^{\circ})$$

$$= \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \sin 20^{\circ} \left(1 - 2 \sin^{2} 20^{\circ} + \frac{1}{2} \right)$$

$$= \frac{\sqrt{3}}{4} \sin 20^{\circ} \left(\frac{3}{2} - 2 \sin^{2} 20^{\circ} \right)$$

$$= \frac{\sqrt{3}}{8} (3 \sin 20^{\circ} - 4 \sin^{3} 20^{\circ})$$

$$= \frac{\sqrt{3}}{8} \sin 60^{\circ} = \frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2} = \frac{3}{16}$$
203 (a)
We have,
$$\sin(\pi + \theta) \sin(\pi - \theta) \csc^{2}\theta$$

$$= -\sin \theta \sin \theta \csc^{2}\theta = -1$$
204 (a)
We have,
$$\sin \theta (\sin \theta + 2 \cos \theta) = a$$

$$\Rightarrow 1 - \cos 2\theta + 2 \sin 2\theta = 2a$$

$$\Rightarrow 2 \sin 2\theta - \cos 2\theta = 2a - 1$$
This equation will have a solution if
$$|2a - 1| \le \sqrt{2^{2} + (-1)^{2}}$$

$$\Rightarrow 1 - \sqrt{5} \le 2a \le 1 + \sqrt{5} \Rightarrow a \in \left[\frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2}\right]$$
205 (c)
Since, $(2 \tan \theta + 2)^{2} = \tan \theta (3 \tan \theta + 3)$

$$\Rightarrow 4 \tan^{2} \theta + 8 \tan \theta + 4 = 3 \tan^{2} \theta + 3 \tan \theta$$

$$\Rightarrow \tan^{2} \theta + 5 \tan \theta + 4 = 0$$

$$\Rightarrow (\tan \theta + 4)(\tan \theta + 1) = 0$$

$$\Rightarrow \tan \theta = -4 (\because \tan \theta \neq -1)$$

$$\therefore \frac{7-5\cot\theta}{9-4\sqrt{\tan^2\theta}} = \frac{7+\frac{5}{4}}{9-4(-4)} = \frac{33}{100}$$
206 (c)
We have,
 $\sin\frac{A}{2}\sin\frac{5A}{2}$
 $=\frac{1}{2}\left(2\sin\frac{A}{2}\sin\frac{5A}{2}\right)$
 $=\frac{1}{2}(\cos 2A - \cos 3A)$
 $=\frac{1}{2}\left\{2\cos^2 A - 1 - 4\cos^3 A + 3\cos A\right\}$
 $=\frac{1}{2}\left\{2\cos^2 A - 1 - 4x\cos^3 A + 3\cos A\right\}$
 $=\frac{1}{2}\left\{2x\frac{9}{16} - 1 - 4 \times \frac{27}{64} + 3 \times \frac{3}{4}\right\} = \frac{11}{32}$
207 (b)
We have,
 $\cos A + \cos B + \cos C = 0$
 $\Rightarrow \cos^3 A + \cos^3 B + \cos^3 C = 3\cos A\cos B\cos C$
 $\Rightarrow \frac{\cos^3 A + \cos^3 B + \cos^3 C}{4} + \frac{\cos^3 B + 3\cos B}{4}$
 $+ \frac{\cos^3 C + 3\cos C}{4}$
 $= 3\cos A\cos B\cos C$
 $\Rightarrow \cos^3 A + \cos^3 B + \cos^3 C = 12\cos A\cos B\cos C$
 $\Rightarrow \cos^3 A + \cos^3 B + \cos^3 C = 12\cos A\cos B\cos C$
 208 (a)
We have,
 $\tan 82\frac{1^{\circ}}{2} = \cot 7\frac{1}{2^{\circ}} = \frac{\cos 7\frac{1^{\circ}}{2}}{\sin 7\frac{1^{\circ}}{2}}$
 $= \frac{2\cos^2 7\frac{1^{\circ}}{2}}{2\sin 7\frac{1}{2}\cos 7\frac{1}{2}} = \frac{1 + \cos 15^{\circ}}{\sin 15^{\circ}}$
 $= \frac{1 + \frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}$
 $= \frac{2\sqrt{2} + \sqrt{3} + 1}{(\sqrt{3} + 1)(\sqrt{3} + 1)}$
 $= \frac{2\sqrt{6} + 2\sqrt{2} + \sqrt{3} + \sqrt{3} + \sqrt{3} + 1}{2}$
 $= \sqrt{6} + \sqrt{2} + \sqrt{4} + \sqrt{3} = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$

209 (a)

$$x^{2} + y^{2} + z^{2} = r^{2} \sin^{2} \theta \cos^{2} \phi$$

$$+ r^{2} \sin^{2} \theta \sin^{2} \phi + r^{2} \cos^{2} \theta$$

$$= r^{2} \sin^{2} \theta (\cos^{2} \phi + \sin^{2} \phi) + r^{2} \cos^{2} \theta$$

$$= r^{2} \sin^{2} \theta + r^{2} \cos^{2} \theta$$

$$= r^{2}$$

210 (a)

Since *ABCD* is a cyclic quadrilateral. Therefore, $A + C = \pi$ and $B + D = \pi$ Now. $12 \tan A - 5 = 0$ and $5 \cos B + 3 = 0$ $\Rightarrow \tan A = \frac{5}{12} \text{ and } \cos B = -\frac{3}{5}$ $\Rightarrow \tan C = -\frac{5}{12} \text{ and } \cos D = \frac{3}{5} [\because A = \pi - 1]$ C and $B = \pi - A$ $\Rightarrow \cos C = -\frac{12}{13}$ and $\tan D = \frac{4}{3}$ $\left[\tan A > 0 \quad \therefore \ 0 < A < \frac{\pi}{2} \Rightarrow \frac{\pi}{2} < C < \pi \right]$ $\cos B < 0 \quad \therefore \frac{\pi}{2} < B < \pi \Rightarrow 0 < D < \frac{\pi}{2}$ The equation having $\cos C$ and $\tan D$ as its roots is 215 (c) $x^2 - x(\cos C + \tan D) + \cos C \tan D = 0$ or, $x^2 - x\left(-\frac{12}{13} + \frac{4}{3}\right) + \left(-\frac{12}{13} \times \frac{4}{3}\right) = 0$ or, $39x^2 - 16x - 48 = 0$ 211 (b) It is given that r_1, r_2, r_3 are in H.P. $\Rightarrow \frac{2}{r_2} = \frac{1}{r_1} + \frac{1}{r_2}$ $\Rightarrow \frac{2(s-b)}{\Lambda} = \frac{s-a}{\Lambda} + \frac{s-c}{\Lambda}$

 $\Rightarrow \frac{\Delta}{\Delta} = \frac{\Delta}{\Delta} + \frac{\Delta}{\Delta}$ $\Rightarrow 2 s - 2 b = 2 s - a - c \Rightarrow 2 b = a + c \Rightarrow a, b, c$ are in A.P.

212 **(b)**

As
$$\sin \theta = \frac{1}{2}$$
 and $\cos \phi = \frac{1}{3}$
 $\Rightarrow \theta = \frac{\pi}{6}$ and $0 < (\cos \phi = \frac{1}{3}) < \frac{1}{2}$
 $\left[as, 0 < \frac{1}{3} < \frac{1}{2} \right]$
 $\Rightarrow \theta = \frac{\pi}{6}$ and $\cos^{-1}(0) > \phi > \cos^{-1}\left(\frac{1}{2}\right)$

the sign changed as $\cos x$ is decreasing between (

$$\Rightarrow \theta = \frac{\pi}{6} \text{ and } \frac{\pi}{3} < \phi < \frac{\pi}{2}$$
$$\Rightarrow \frac{\pi}{2} < \theta + \phi < \frac{2\pi}{3}$$
$$\therefore \quad \phi + \theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$$
213 (c)

 $\sin 4A - \cos 4A = \cos 2A - \sin 2A$ On squaring, we get $1 - 2\sin 4 A \cos 4 A = 1 - 2\sin 2A \cos 2A$ $\Rightarrow \cos 4A = \frac{1}{2}$ $\Rightarrow \tan 4A = \sqrt{3}$ Alternate Let $\tan 4A = \sqrt{3} = \tan \frac{\pi}{3}$ $\Rightarrow A = \frac{\pi}{12}$ $\therefore \sin 4A - \cos 2A = \sin \frac{\pi}{3} - \cos \frac{\pi}{6} = 0$ And $\cos 4A - \sin 2A = \cos \frac{\pi}{2} - \sin \frac{\pi}{6} = 0$ $\therefore \sin 4A - \cos 2A = \cos 4A - \sin 2A$ Hence, our assumption is true. 214 (a) It is given that r_1, r_2, r_3 are in H.P. $\therefore \frac{\Delta}{s-a}, \frac{\Delta}{s-b}, \frac{\Delta}{s-c} \text{ are in H. P.}$ $\Rightarrow \frac{s-a}{\Delta}, \frac{s-b}{\Delta}, \frac{s-c}{\Delta}$ are in A. P. \Rightarrow *s* - *a*, *s* - *b*, *s* - *c* are in A.P. \Rightarrow *a*, *b*, *c* are in A.P. We have, $1 + \cos 56^{\circ} + \cos 58^{\circ} - \cos 66^{\circ}$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow (1 - \cos 66^\circ) + (\cos 56^\circ + \cos 58^\circ)$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow 2 \sin^2 33^\circ + 2 \cos 57^\circ \cos 1^\circ$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow 2 \sin 33^\circ (\sin 33^\circ + \sin 89^\circ)$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow 2 \sin 33^\circ \times 2 \sin 61^\circ \cos 28^\circ$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow 4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $= \lambda \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$ $\Rightarrow \lambda = 4$ 216 (d) $\tan A = \frac{a}{b}, \tan B = \frac{b}{a}$ С b $\therefore \tan A + \tan B = \frac{a^2 + b^2}{ab}$

 $\therefore \tan A + \tan B = \frac{c^2}{ab}$ 218 (a) $\sinh^{-1}(2)^{3/2} = \log(2^{3/2} + \sqrt{(2^{3/2})^2 + 1})$ $= \log(\sqrt{8} + \sqrt{8+1})$ $= \log(3 + \sqrt{8})$ 219 (a) We have, $\tan 2\theta \tan \theta = 1 \Rightarrow \tan 2\theta = \cot \theta$ $= \tan\left(\frac{\pi}{2} - \theta\right)$ $\Rightarrow 2\theta = n\pi + \frac{\pi}{2} - \theta$ $\Rightarrow \theta = \frac{n\pi}{3} + \frac{\pi}{6}$ 220 (d) For varying values of *A*, *B* and *C* the expression will attain the maximum value when $\cos^2 A$, $\cos^2 B$ attain their maximum values each equal to 1 and $\cos^2 C$ is least i.e. 0 Hence, required maximum value = 1 + 1 - 0 = 2221 (b) $\cos^2(A-B) + \cos^2 B - 2\cos(A-B)\cos A\cos B$ $=\cos^2(A-B)+\cos^2 B$ $-\cos(A-B)[\cos(A-B)]$ $+\cos(A+B)$] $= \cos^2 B - \cos(A - B)\cos(A + B)$ $= \cos^2 B - (\cos^2 A)$ $-\sin^2 B$ = 1 - cos² A = sin² A 222 (d) sin 36° sin 72° sin 108° sin 144° = sin² 36° sin² 72° $= \frac{1}{4} [(2\sin^2 36^\circ)(2\sin^2 72^\circ)]$ $=\frac{1}{4}[(1-\cos 72^\circ)(1-\cos 144^\circ)]$ $=\frac{1}{4}[(1-\sin 18^\circ)(1+\cos 36^\circ)]$ $=\frac{1}{4}\left[\left(1-\frac{\sqrt{5}-1}{4}\right)\left(1+\frac{\sqrt{5}+1}{4}\right)\right]=\frac{5}{16}$ 223 (c) $\frac{1 + \tan x + \tan^2 x)(1 + \tan^2 x - \tan x)}{\tan^2 x} = \frac{(1 + \tan^2 x)^2 - \tan^2 x}{\tan^2 x}$ Since, $1 + \tan^2 x \ge \tan^2 x$, $\forall x$. Hence, it is positive for all values of x 224 (c) $x \log_e a + \frac{x^3}{3!} (\log_e a)^3 + \frac{x^5}{5!} (\log_e a)^5 + \dots$

$$= \frac{e^{x} \log_{e} a - e^{-x} \log_{e} a}{2} \qquad \left[\because \frac{e^{x} - e^{-x}}{2} \\ = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots \right]$$

$$= \sinh(x \log_{e} a)$$
225 (b)
We have,

$$\frac{\tan(\theta + 15^{\circ})}{\tan(\theta - 15^{\circ})} = \frac{1}{3}$$

$$\Rightarrow \frac{\tan(\theta + 15^{\circ}) + \tan(\theta - 15^{\circ})}{\tan(\theta + 15^{\circ}) - \tan(\theta - 15^{\circ})} = \frac{3 + 1}{3 - 1}$$

$$\Rightarrow \frac{\sin\{(\theta + 15^{\circ}) + (\theta - 15^{\circ})\}}{\sin\{(\theta + 15^{\circ}) - (\theta - 15^{\circ})\}} = 2$$

$$\Rightarrow \sin 2\theta = 2 \sin 30^{\circ} = 1 \Rightarrow 2\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{4}$$
226 (b)
In a convex quadrilateral each angle is less than
180^{\circ}
We have,

$$4 \sec A + 5 = 0 \Rightarrow \sec A = -\frac{5}{4} \Rightarrow \frac{\pi}{2} < A < \pi$$

$$\therefore \tan A = -\frac{3}{4} \text{ and cosec } A = \frac{5}{3}$$
The quadratic equation having $\tan A$ and $\operatorname{cosec} A$
as its roots is

$$x^{2} - x\left(-\frac{3}{4} + \frac{5}{3}\right) + \left(-\frac{3}{4} \times \frac{5}{3}\right) = 0$$

$$\Rightarrow 12x^{2} - 11x - 15 = 0$$
227 (c)
Since, $-1 \le \cos \theta \le 1$

$$\Rightarrow -5 \le 5 \cos \theta \le 5$$

$$\Rightarrow -5 + 12 \le 5 \cos \theta + 12 < 5 + 12$$

$$\Rightarrow 7 \le 5 \cos \theta + 12 < 17$$
Hence, minimum value of given expression, we take

For minimum value of given expression, we take $\cos \theta = -1$

228 (c) We have, $2^{\sin x + \cos y} = 1 = 2^0 \Rightarrow \sin x + \cos y = 0 \dots (i)$ It is given that $16^{\sin^2 x + \cos^2 y} = 4 = 16^{1/2}$ $\Rightarrow \sin^2 x + \cos^2 y = \frac{1}{2} \dots (ii)$ Eliminating cos *y* from (i) and (ii), we get $2\sin^2 x = \frac{1}{2} \Rightarrow \sin x = \pm \frac{1}{2}$ Now, $\sin x = \frac{1}{2}$ $\Rightarrow \cos y = -\frac{1}{2}$ $\Rightarrow x = n \pi + (-1)^n \frac{\pi}{6} \text{ and } y = 2n \pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}$ and, $\sin x = -\frac{1}{2}$ $\Rightarrow \cos y = \frac{1}{2}$ $\Rightarrow x = n \pi + (-1)^{n+1} \frac{\pi}{6} \text{ and } y = 2n \pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$ 229 (b) Given, $\cos \theta = -\frac{\sqrt{3}}{2} < 0$ and θ does not lie in third quadrant. $\therefore \theta$ must be lying in 2nd quadrant $\Rightarrow \tan \theta = -\frac{1}{\sqrt{3}} \operatorname{and} \cot \theta = -\sqrt{3} ...(i)$ Also, α lies in 3rd quadrant and sin $\alpha = -\frac{3}{5}$ $\therefore \tan \alpha = \frac{3}{4} \text{ and } \cos \alpha = -\frac{4}{5} \qquad \dots \text{(ii)}$ $\therefore \frac{2 \tan \alpha + \sqrt{3} \tan \theta}{\cot^2 \theta + \cos \alpha} = \frac{2 \cdot \frac{3}{4} - \sqrt{3} - \frac{1}{\sqrt{3}}}{3 - \frac{4}{5}} = \frac{5}{22}$ 230 (b) $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$ $= 2\cos\frac{\pi}{12}\cos\frac{9\pi}{12} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$ $= 2\cos\frac{\pi}{13}\left[\cos\frac{9\pi}{13} + \cos\frac{4\pi}{13}\right]$ $= 2\cos\frac{\pi}{12} \left[2\cos\frac{\pi}{2} \cdot \cos\frac{5\pi}{26} \right]$ = 0231 (b) We have, $\sin A = \frac{3}{5}$ $\therefore \cos A = \frac{4}{5}$ $\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{4}{c}$ $\Rightarrow \frac{400 + 441 - a^2}{2 \times 20 \times 21} = \frac{4}{5}$

 $\Rightarrow 841 - a^2 = 32 \times 21 \Rightarrow a^2 = 841 - 672 = 169$ $\Rightarrow a = 13$ 232 (a) $\cos^2 \frac{\pi}{16} + \cos^2 \frac{3\pi}{16} + \cos^2 \frac{5\pi}{16} + \cos^2 \frac{7\pi}{16}$ $=\cos^2\frac{\pi}{16}+\cos^2\frac{3\pi}{16}$ $+\cos^{2}\left(\frac{\pi}{2}-\frac{3\pi}{16}\right)+\cos^{2}\left(\frac{\pi}{2}-\frac{\pi}{16}\right)$ $=\cos^2\frac{\pi}{16}+\cos^2\frac{3\pi}{16}$ $+\sin^2\frac{3\pi}{16} + \sin^2\frac{\pi}{16} = 1 + 1 = 2$ 233 (b) We have, $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha - \beta) = \frac{5}{13}$ $\Rightarrow \sin(\alpha + \beta) = \frac{3}{5} \text{ and } \cos(\alpha - \beta) = \frac{12}{13}$ $\Rightarrow (\alpha + \beta) = \sin^{-1}\frac{3}{5}$ and $(\alpha - \beta) = \sin^{-1}\frac{5}{13}$ $\therefore 2\alpha = \sin^{-1}\frac{3}{5} + \sin^{-1}\frac{5}{13}$ $=\sin^{-1}\left[\frac{3}{5}\sqrt{1-\frac{25}{169}+\frac{5}{13}}\sqrt{1-\frac{9}{25}}\right]$ $=\sin^{-1}\left(\frac{3}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{4}{5}\right)=\sin^{-1}\left(\frac{36}{65}+\frac{20}{65}\right)$ $\Rightarrow \sin 2\alpha = \frac{56}{65}$ $\therefore \tan 2\alpha = \frac{56}{22}$ 234 (c) $\cos 2\theta + 2\cos \theta = 2\cos^2 \theta - 1 + 2\cos \theta$ $=2\left(\cos\theta+\frac{1}{2}\right)^2-\frac{3}{2}$ $\geq -\frac{3}{2} \quad \left| \because 2\left(\cos\theta + \frac{1}{2}\right)^2 \geq 0, \forall\theta \right|$ Then maximum value of $\cos 2\theta + 2\cos \theta$ is 3 235 (a) We have, $x = \sin 130^\circ + \cos 130^\circ$ $= \sin(180^{\circ} - 50^{\circ})$ $+\cos(90^{\circ}+40^{\circ})$ $\Rightarrow x = \sin 50^\circ - \sin 40^\circ > 0 \quad [$ $\therefore \sin 50^\circ > \sin 40^\circ$ 236 (a)

36 (a) We have, $|4 \sin x - 1| < \sqrt{5}$ $\Rightarrow 1 - \sqrt{5} < 4 \sin x < 1 + \sqrt{5}$ $\Rightarrow -\frac{\sqrt{5} - 1}{4} < \sin x < \frac{\sqrt{5} + 1}{4}$

$$\Rightarrow -\sin\frac{\pi}{10} < \sin x < \cos\frac{\pi}{10}$$
$$\Rightarrow \sin\left(-\frac{\pi}{10}\right) < \sin x < \sin\left(\frac{\pi}{2} - \frac{\pi}{10}\right)$$
$$\Rightarrow \sin\left(-\frac{\pi}{10}\right) < \sin x < \sin\frac{3\pi}{10}$$
$$\Rightarrow -\frac{\pi}{10} < x < \frac{3\pi}{10} \qquad \begin{bmatrix} \because \sin x \text{ is increasing on} \\ (-\pi/2, \pi/2) \end{bmatrix}$$
$$\Rightarrow x \in (-\pi/10, 3\pi/10)$$

Given, $\sin A = n \sin B \implies \frac{n}{1} = \frac{\sin A}{\sin B}$ Applying componendo and dividend, we get $n-1 \qquad \sin A - \sin B$

$$\frac{n-1}{n+1} = \frac{\sin n}{\sin A} + \sin B$$

$$= \frac{2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)}{2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)}$$

$$\Rightarrow \frac{n-1}{n+1} = \tan\left(\frac{A-B}{2}\right)\cot\left(\frac{A+B}{2}\right)$$

$$\Rightarrow \frac{n-1}{n+1}\tan\left(\frac{A+B}{2}\right) = \tan\left(\frac{A-B}{2}\right)$$
(2)

238 **(a)**

We have,

$$\frac{s}{R} = \frac{a+b+c}{2R} = \frac{a}{2R} + \frac{b}{2R} + \frac{c}{2R}$$

$$= \sin A + \sin B + \sin C$$

239 **(b)**

(a)sin $\theta = \frac{5}{3}$ is not possible, because the value of sin θ lies in [-1,1]

(b)tan $\theta = 100^2$. This is possible

(c)cos = $\frac{1+p^2}{1-p^2}$, $[p \neq \pm 1]$ this is not possible, because here, cos θ is greater than one

(d)sec $\theta = \frac{1}{2}$, this is not possible because sec θ is not less than one

: Option (b) is true

240 (a)

We have,

$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7}$$

$$= \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \left(\pi - \frac{4\pi}{7}\right)$$

$$= -\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$$

$$= -\left\{\frac{\sin\left(2^3 \times \frac{\pi}{7}\right)}{2^3 \sin \frac{\pi}{7}}\right\} = -\frac{\sin \frac{8\pi}{7}}{8 \sin \frac{\pi}{7}} = \frac{1}{8}$$
241 (c)

$$\therefore \sec \theta + \tan \theta = \sqrt{3} \dots (i)$$

Also, we have $\sec^{2} \theta - \tan^{2} \theta = 1 \quad ...(ii)$ $\Rightarrow (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1$ $\Rightarrow \sec \theta - \tan \theta = \frac{1}{\sqrt{3}} \quad ...(iii)$ From Eqs. (i) and (iii), we get $\tan \theta = \frac{1}{2} \left(\sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} = \tan \frac{\pi}{6}$ $\Rightarrow \theta = n\pi + \frac{\pi}{6}$ $\therefore \text{ Solutions for } 0 < \theta < 2\pi \text{ are } \frac{\pi}{6} \text{ and } \frac{7\pi}{6}$ Hence, there are two solutions 242 (c) Now, sin 12° sin 48° sin 54° $= \frac{1}{2} (\cos 36^{\circ} - \cos 60^{\circ}) \cos 36^{\circ}$ $= \frac{1}{2} \left[\frac{\sqrt{5} + 1}{4} - \frac{1}{2} \right] \left[\frac{\sqrt{5} + 1}{4} \right]$ $= \frac{1}{2} \left[\frac{\sqrt{5} - 1}{4} \right] \left[\frac{\sqrt{5} + 1}{4} \right]$

243 **(a)**

We have, $\sin A \sin B \sin C = p$ and, $\cos A \cos B \cos C = q$ $\Rightarrow \tan A \tan B \tan C = \frac{p}{a} \Rightarrow S_3 = \frac{p}{a}$ In a triangle ABC, we have $\tan A + \tan B + \tan C = \tan A \tan B \tan C$ $\therefore \tan A + \tan B + \tan C = \frac{p}{a} \Rightarrow S_1 = \frac{p}{a}$ Now, $S_{2} = \tan A \tan B + \tan B \tan C + \tan C \tan A$ $\Rightarrow S_{2} = \frac{-\cos(A + B + C) + \cos A \cos B \cos C}{\cos A \cos B \cos C}$ $= \frac{1 + q}{q}$ Hence, tan A, tan B, tan C are roots of $x^3 - S_1 x^2 + S_2 x - S_3 = 0$ or, $x^3 - \frac{p}{q}x^2 + \frac{1+q}{q}x - \frac{p}{q} = 0$ 244 (d) $\cos 480^{\circ}$. $\sin 150^{\circ} + \sin 600^{\circ}$. $\cos 390^{\circ}$ $= [\cos(3\pi - 60^\circ)\sin(\pi - 30^\circ)]$ $+\sin(3\pi + 60^{\circ}) \times \cos(2\pi + 30^{\circ})$] $= -\cos 60^{\circ} \sin 30^{\circ} + (-\sin 60^{\circ}) \cos 30^{\circ}$

 $= -\frac{1}{2} \cdot \frac{1}{2} + \left(-\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right)$

$$= -\frac{1}{4} - \frac{3}{4} = -1$$
245 (b)
We have,
 $\cos p \theta = \cos q \theta$
 $\Rightarrow P \theta = 2 n \pi \pm q \theta$, where $n \in Z$
 $\Rightarrow \theta = \frac{2 n \pi}{p \pm q}$, $n \in Z$
246 (b)
Given, $\sec x - 1 = (\sqrt{2} - 1) \tan x$
 $\Rightarrow \frac{1 - \cos x}{\cos x} = (\sqrt{2} - 1) 2 \sin \frac{x}{2} \cos \frac{x}{2} = 0$
 $\Rightarrow \sin \frac{x}{2} [\sin \frac{x}{2} - (\sqrt{2} - 1) 2 \sin \frac{x}{2} \cos \frac{x}{2} = 0$
 $\Rightarrow \sin \frac{x}{2} = 0 \text{ or } \sin \frac{x}{2} - (\sqrt{2} - 1) \cos \frac{x}{2} = 0$
 $\Rightarrow \sin \frac{x}{2} = 0 \text{ or } \sin \frac{x}{2} - (\sqrt{2} - 1) \cos \frac{x}{2} = 0$
 $\Rightarrow \frac{x}{2} = n\pi \text{ or } \tan \frac{x}{2} = (\sqrt{2} - 1) = \tan \frac{45^{\circ}}{2}$
 $\Rightarrow x = 2n\pi \text{ or } 2n\pi + \frac{\pi}{4}$
247 (a)
 $x = \tan 15^{\circ}$
 $= \frac{\tan 45^{\circ} - \tan 30^{\circ}}{\tan 45^{\circ} \tan 30^{\circ}}$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} - 1)^{2}}{3 - 1} = 2 - \sqrt{3}$
And $y = \csc 75^{\circ} = \frac{1}{\sin (45^{\circ} + 30^{\circ})}$
 $= \frac{1}{\frac{\sqrt{3}}{2\sqrt{2}} \pm \frac{1}{2\sqrt{2}}} = \frac{2\sqrt{2}}{\sqrt{3} \pm 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \sqrt{6} - \sqrt{2}$
And $z = 4 \sin 18^{\circ} = 4(\frac{\sqrt{5} - 1}{4}) = \sqrt{5} - 1$
It is clear from above that
 $(2 - \sqrt{3}) < (\sqrt{6} - \sqrt{2}) < (\sqrt{5} - 1)$
 $\Rightarrow x < y < z$
248 (d)
 $\sin x = \frac{1}{2}$
 $\Rightarrow \sin x = \sin \frac{\pi}{6}$
 $\Rightarrow x = n\pi + (-1)^{n} \frac{\pi}{6}$
For $-2\pi \le x \le 2\pi$
 $x = \frac{\pi}{6}, \frac{5\pi}{6}, -\frac{7\pi}{6}, -\frac{11\pi}{6}$
 \therefore Number of points of intersection of two given curves = 4
Alternate

The number of points of intersection are 4 252 **(a)**

$$: \sin\left(\frac{\pi}{2n}\right) + \cos\left(\frac{\pi}{2n}\right) = \frac{\sqrt{n}}{2}$$
On squaring both sides, we get
$$\sin^{2}\left(\frac{\pi}{2n}\right) + \cos^{2}\left(\frac{\pi}{2n}\right) + \sin\left(\frac{\pi}{n}\right) = \frac{n}{4}$$

$$\Rightarrow \sin\left(\frac{\pi}{n}\right) = \frac{n}{4} - 1$$

$$\Rightarrow \sin\left(\frac{\pi}{n}\right) = \frac{n-4}{4}$$

$$\Rightarrow n = 6 \text{ only}$$
253 (d)
$$\text{Given, } \cos 2x = \sqrt{2}\cos x - 1 + \cos x - \frac{1}{\sqrt{2}}$$

$$\Rightarrow 1 + \cos 2x = \cos x(\sqrt{2} + 1) - \frac{1}{\sqrt{2}}$$

$$\Rightarrow 2\cos^{2} x - \cos x(\sqrt{2} + 1) + \frac{1}{\sqrt{2}} = 0$$

$$\Rightarrow \cos x = \frac{(\sqrt{2} + 1) \pm \sqrt{(\sqrt{2} + 1)^{2} - \frac{8}{\sqrt{2}}}{2(2)}$$

$$= \frac{(\sqrt{2} + 1) \pm \sqrt{3 + 2\sqrt{2} - 4\sqrt{2}}}{4}$$

$$= \frac{\sqrt{2} + 1 \pm (\sqrt{2} - 1)}{4}$$

$$\Rightarrow \cos x = \frac{\sqrt{2} + 1 + \sqrt{2} - 1}{4} = \frac{1}{\sqrt{2}} \left[\because \cos x \neq \frac{1}{2} \right]$$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{4}, \forall n \in \mathbb{Z}$$
254 (a)
$$\text{We have,}$$

$$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot 8\alpha$$

$$= \cot \alpha - \{\cot \alpha - \tan \alpha - 2\tan 2\alpha - 4\tan 4\alpha - 8\cot 8\alpha\}$$

$$= \cot \alpha - \{2\cot 2\alpha - 2\tan 2\alpha - 4\tan 4\alpha - 8\cot 8\alpha\}$$

$$= \cot \alpha - \{4\cot 4\alpha - 4\tan 4\alpha - 8\cot 8\alpha\}$$

$$= \cot \alpha - \{8\cot 8\alpha - 8\cot 8\alpha\} = \cot \alpha$$
255 (b)
$$\text{We have,}$$

$$B = 60^{\circ}, C = 75^{\circ} \Rightarrow A = 180 - 60^{\circ} - 75^{\circ} = 45^{\circ}$$

$$\text{Now,}, \frac{b}{\sin B} = \frac{a}{\sin A} \Rightarrow \frac{b}{\sin 60^{\circ}} = \frac{2}{\sin 45^{\circ}} \Rightarrow b = \sqrt{6}$$

We have,

 $\tan(x-y) = 1 \Rightarrow x - y = \frac{\pi}{4}, \frac{5\pi}{4}$ $\sec(x+y) = \frac{2}{\sqrt{3}} \Rightarrow \cos(x+y) = \frac{\sqrt{3}}{2}$ $\Rightarrow x + y = \frac{\pi}{6}, \frac{11\pi}{6}$ Since *x*, *y* are positive. Therefore, x + y > x - yThus, we have $x + y = \frac{11 \pi}{6}$ and $x - y = \frac{\pi}{4}$ $x + y = \frac{11 \pi}{6}$ and $x - y = \frac{5 \pi}{4}$ Solving these two systems of equations, we get $x = \frac{25 \pi}{4}$ and $y = \frac{19 \pi}{24}$ or, $x = \frac{37 \pi}{24}$ and $y = \frac{7 \pi}{24}$ 257 (b) We have, $\sqrt{3}\sin\theta + \cos\theta > 0$ $\Rightarrow \frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta > 0$ $\Rightarrow \sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6} > 0$ $\Rightarrow \sin\left(\theta + \frac{\pi}{6}\right) > 0 \Rightarrow 0 < \theta + \pi/6 < \pi \Rightarrow -\frac{\pi}{6} < \theta$ $<\frac{5\pi}{2}$ 258 (c) $\cos A = \frac{3}{5}, \cos B = \frac{4}{5}$ $\therefore \ \angle A$ and $\angle B$ lie on 4th quadrant $\therefore \sin A = -1 \left| 1 - \frac{9}{25} \right|, \sin B = -1 \left| 1 - \frac{16}{25} \right|$ $\Rightarrow \sin A = -\frac{4}{5}$, $\sin B = -\frac{3}{5}$ $\therefore 2 \sin A + 4 \sin B$ $= 2\left(-\frac{4}{5}\right) + 4\left(-\frac{3}{5}\right)$ $=-\frac{8}{5}-\frac{12}{5}$ $=-\frac{20}{5}=-4$ 260 (a) We have, $\tan^2 \alpha + \cot^2 \alpha = (\tan \alpha - \cot \alpha)^2 + 2 \ge 2$

261 (d)

Given equation can be rewritten as

$$\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta = \frac{\sqrt{2}}{2}$$
$$\Rightarrow \cos\left(\theta + \frac{\pi}{6}\right) = \frac{1}{\sqrt{2}} = \cos\frac{\pi}{4}$$

 $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} - \frac{\pi}{6}$ 262 (a) $\sin 50^\circ + \sin 10^\circ - \sin 70^\circ$ $= 2 \sin 30^{\circ} \cos 20^{\circ} - \cos 20^{\circ}$ $= \cos 20^{\circ} \left(2 \times \frac{1}{2} - 1\right) = 0$ 263 (a) Given, $\sin A - \cos B = \cos C$ $\Rightarrow \sin A = \cos B + \cos C$ $\Rightarrow 2\sin\frac{A}{2}\cos\frac{A}{2} = 2\cos\left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right)$ $\Rightarrow 2 \sin{\frac{A}{2}}\cos{\frac{A}{2}} = 2 \sin{\frac{A}{2}}\cos{\left(\frac{B-C}{2}\right)}$ $\Rightarrow \cos{\frac{A}{2}} = \cos{\left(\frac{B-C}{2}\right)} \quad \left[\because \sin{\left(\frac{A}{2}\right)} \neq 0\right]$ $\Rightarrow \frac{A}{2} = \frac{B-C}{2} \Rightarrow A = B-C$ But $A + B + C = \pi$, therefore $2B = \pi$ $\Rightarrow B = \frac{\pi}{2}$ 264 (d) Given, $4\sin^4 x + \cos^4 x - 1 = 0$ $\Rightarrow 4\sin^4 x + (\cos^2 x - 1)(\cos^2 x + 1) = 0$ $\Rightarrow 4\sin^4 x - \sin^2 x(1 - \sin^2 + 1) = 0$ $\Rightarrow \sin^2 x (5 \sin^2 x - 2) = 0$ $\Rightarrow \sin x = 0 \text{ or } \pm \sqrt{\frac{2}{5}}$ Hence, $x = n\pi$ is the required solution 265 (d) If the triangle is equilateral $\sin A + \sin B + \sin C = \frac{3\sqrt{3}}{2}$ If the triangle is isosceles, let $A = 30^{\circ}, B = 30^{\circ}, C = 120^{\circ}$ Then, $\sin A + \sin B + \sin C = 1 + \frac{\sqrt{3}}{2}$ If the triangle is right angled, let $A = 90^{\circ}, B =$ $30^{\circ}, C = 60^{\circ}$ Then, $\sin A + \sin B + \sin C = \frac{3 + \sqrt{3}}{2}$ If the triangle is right angled isosceles, then one of the angles is 90° and the remaining two are 45° each, so that $\sin A + \sin B + \sin C = 1 + \sqrt{2}$ and, $\cos A + \cos B + \cos C = \sqrt{2}$ 266 (d) Now, $\tan \frac{\pi}{3} = \tan \left(\frac{6\pi}{15} - \frac{\pi}{15}\right) = \frac{\tan \frac{6\pi}{15} - \tan \frac{\pi}{15}}{1 + \tan \frac{6\pi}{15} \tan \frac{\pi}{15}}$

$$\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} = \sqrt{3} + \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15}$$
$$\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15} = \sqrt{3}$$
$$= \tan\frac{2\pi}{5} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{2\pi}{5}\tan\frac{\pi}{15} = \sqrt{3}$$

We have, $\tan 3 x = \tan 5 x$ $\Rightarrow 5x = n \pi + 3x, n \in Z$ $\Rightarrow x = \frac{n \pi}{2}, n \in Z$ If *n* is odd, then $x = \frac{n \pi}{2}$ gives extraneous solutions Thus, the solution of the given equation will be given by $x = \frac{n \pi}{2}$, where *n* is even, say

 $n = 2m, m \in Z$ Hence, the required solution is $x = m \pi, m \in Z$

268 **(c)**

We have, $\tan \theta + \tan 4 \theta + \tan 7 \theta = \tan \theta \tan 4 \theta \tan 7 \theta$ $\Rightarrow \tan \theta + \tan 4 \theta = -\tan 7 \theta (1 - \tan \theta \tan 4 \theta)$ $\Rightarrow \frac{\tan \theta + \tan 4 \theta}{1 - \tan \theta \tan 4 \theta} = \tan(-7 \theta)$ $\Rightarrow \tan 5 \theta = \tan(-7 \theta)$ $\Rightarrow 5 \theta = n \pi + (-7 \theta), n \in Z \Rightarrow \theta = \frac{n \pi}{12}, n \in Z$

269 **(b)**

We have,

$$\frac{\sin^{2} 3A}{\sin^{2} A} - \frac{\cos^{2} 3A}{\cos^{2} A}$$

$$= \frac{\sin^{2} 3A \cos^{2} A - \cos^{2} 3A \sin^{2} A}{\sin^{2} A \cos^{2} A}$$

$$= \frac{\sin^{2} 3A (1 - \sin^{2} A) - \cos^{2} 3A \sin^{2} A}{\sin^{2} A \cos^{2} A}$$

$$= \frac{\sin^{2} 3A - \sin^{2} A (\cos^{2} 3A \sin^{2} 3A)}{\sin^{2} A \cos^{2} A}$$

$$= \frac{\sin(3A + A) \sin(3A - A)}{\sin^{2} A \cos^{2} A}$$

$$= \frac{(4 \sin A \cos A \cos 2A)(2 \sin A \cos A)}{\sin^{2} A \cos^{2} A} = 8 \cos 2A$$
270 (d)
We have,

$$3 \sin A = 6 \sin B = 2\sqrt{3} \sin C$$

$$\Rightarrow \frac{\sin A}{2} = \frac{\sin B}{1} = \frac{\sin C}{\sqrt{3}}$$

$$\Rightarrow \frac{\sin A}{1} = \frac{\sin B}{\frac{1}{2}} = \frac{\sin C}{\frac{\sqrt{3}}{2}} \Rightarrow A = \frac{\pi}{2}, B = \frac{\pi}{6} \text{ and } C$$

$$= \frac{\pi}{3}$$
271 **(b)**

We have, $x = y \cos \frac{2\pi}{3} = z \cos \frac{4\pi}{3}$ $\Rightarrow x = -\frac{y}{2} = -\frac{z}{2}$ $\Rightarrow \frac{x}{1} = \frac{y}{-2} = \frac{z}{-2} = \lambda$ (say) $\Rightarrow x = \lambda, y = -2\lambda, z = -2\lambda$ $\Rightarrow xy + yz + zx = -2\lambda^2 + 4\lambda^2 - 2\lambda^2 = 0$ 272 (a) $\sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma$ $=\sin^2 \alpha + \sin(\beta - \gamma)\sin(\beta + \gamma)$ $= \sin^2 \alpha + \sin(\pi - \alpha) \sin(\beta + \gamma)$ [: $\alpha + \beta + \gamma$ $=\pi$ $= \sin^2 \alpha \{\sin \alpha + \sin(\beta + \gamma)\}$ $= \sin \alpha \left\{ \sin(\beta - \gamma) + \sin(\beta + \gamma) \right\} \quad [\because \alpha]$ $=\pi - (\beta - \gamma)$ $= 2 \sin \alpha \sin \beta \cos \gamma$ 273 (a) We have, $\sin A + \cos A = \frac{\sqrt{7}}{2}$ $\Rightarrow \frac{2\tan\frac{A}{2}}{1+\tan^{2}\frac{A}{2}} + \frac{1-\tan^{2}\frac{A}{2}}{1+\tan^{2}\frac{A}{2}} = \frac{\sqrt{7}}{2}$ $\Rightarrow 4 \tan{\frac{A}{2}} + 2 - 2 \tan^2{\frac{A}{2}} = \sqrt{7} + \sqrt{7} \tan^2{\frac{A}{2}}$ $\Rightarrow (\sqrt{7} + 2) \tan^2 \frac{A}{2} - 4 \tan \frac{A}{2} + (\sqrt{7} - 2) = 0$ $\Rightarrow \tan \frac{A}{2} = \frac{4 \pm \sqrt{16 - 4(\sqrt{7} + 2)(\sqrt{7} - 2)}}{2(\sqrt{7} + 2)}$ $\Rightarrow \tan \frac{A}{2} = \frac{4 \pm 2}{2(\sqrt{7} + 2)}$ $\Rightarrow \tan \frac{A}{2} = \frac{3}{\sqrt{7}+2}, \frac{1}{\sqrt{7}+2}$ $\Rightarrow \tan \frac{A}{2} = \sqrt{7} - 2, \frac{\sqrt{7} - 2}{3}$ $\Rightarrow \tan \frac{A}{2} = \frac{\sqrt{7} - 2}{3} \quad \left[\because 0 < A < \pi/6 \quad \because \tan \frac{A}{2} < 1 \right]$ 274 (b) We have, $\sum \cot(B+C-A)\cot(C+A-B)$ $= \sum \cot 2A \cot 2B \quad [\because A + B + C = 0]$ $= \cot 2A \cot 2B + \cot 2B \cot 2C + \cot 2C \cot 2A$ Now, A + B + C = 0 $\Rightarrow 2A + 2B + 2C = 0$ $\Rightarrow \tan(2A + 2B + 2C) = 0$ $\Rightarrow \tan 2A + \tan 2B + \tan 2C$ $= \tan 2A \tan 2B \tan 2C$ $\Rightarrow \cot 2A \cot 2B + \cot 2B \cot 2C + \cot 2C \cot 2A$ = 1 $\Rightarrow \sum \cot(B + C - A) \cot(C + A - B) = 1$ 275 (b) We have, $A + B = \frac{\pi}{4}$ $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$ $\Rightarrow \tan A + \tan B + \tan A \tan B = 1$ $\Rightarrow (1 + \tan A)(1 + \tan B) = 1 + 1 = 2$ 276 (c) Given equations may be written as $\cos x + \cos y = -\cos \alpha$ and $\sin x + \sin y = -\sin \alpha$ $\Rightarrow 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = -\cos\alpha$...(i) and $2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = -\sin\alpha$...(ii) From Eqs.(i)and (ii),we get $\frac{2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)}{2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)} = \frac{\cos\alpha}{\sin\alpha}$ $\Rightarrow \cot\left(\frac{x+y}{2}\right) = \cot\alpha$ 277 **(b)** We have, $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{8^2 + 10^2 - 12^2}{2 \times 8 \times 10} = \frac{1}{8}$ And. $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{10^2 + 12^2 - 8^2}{2 \times 10 \times 12} = \frac{3}{4}$ $\therefore \cos 2A = 2\cos^2 A - 1 = 2 \times \frac{9}{16} - 1 = \frac{1}{8}$

Thus, we have $\cos 2A = \cos C \Rightarrow 2A = C$ 278 (a) Let $\log \sec x = y$ $\Rightarrow \frac{1}{\cos x} = e^y = e^{y/2 + y/2} = e^{y/2 \cdot e^y/2}$ $\therefore \ \frac{1}{\cos x} = \frac{e^{y/2}}{e^{-y/2}}$ By componendo and Dividendo rule $\frac{1+\cos x}{1-\cos x} = \frac{e^{y/2} + e^{-y/2}}{e^{y/2} - e^{-y/2}}$ $\Rightarrow \cot^2\left(\frac{x}{2}\right) = \coth\left(\frac{y}{2}\right)$ $\Rightarrow y = 2 \operatorname{coth}^{-1} \left(\operatorname{cosec}^2 \frac{x}{2} - 1 \right)$ 279 (c) Since, $\sin \theta = \sin \alpha$...(i) And $\cos \theta = \cos \alpha$...(ii) [divided Eq. (i) by Eq. (ii)] $\therefore \tan \theta = \tan \alpha$ $\Rightarrow \theta = n\pi + \alpha$ 280 **(b)** We have, $2b = a + c \Rightarrow a + b + c = 3b \Rightarrow 2s = 3b$ Now. $\tan\frac{A}{2}\tan\frac{C}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \times \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\Rightarrow \tan\frac{A}{2}\tan\frac{C}{2} = \frac{s-b}{s} = \frac{2s-2b}{2s} = \frac{3b-2b}{3b} = \frac{1}{3}$ 281 (c) $2\sin^2\theta - \cos 2\theta = 0 \Rightarrow \sin^2\theta = \frac{1}{4} \Rightarrow$ $\sin\theta = \pm 12$...(i) Also, $2\cos^2\theta = 3\sin\theta \Rightarrow 2\sin^2\theta +$ $3\sin\theta - 2 = 0$ $\Rightarrow \sin \theta = \frac{1}{2}$...(ii) From Eqs. (i) and (ii), $\sin \theta = \frac{1}{2}$ Two solutions exist in $[0, 2\pi]$ 282 (c) We have, $\frac{A}{B} = \frac{\tan 6^\circ \tan 42^\circ}{\cot 66^\circ \cot 78^\circ}$ $\Rightarrow \frac{A}{R} = \tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$ $\Rightarrow \frac{\tilde{A}}{B} = \frac{\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ}}{\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ}} = 1 \Rightarrow A = B$ 283 **(b)** We have, $\Delta = a^2 - (b - c)^2$ $\Rightarrow \Delta = (a + b - c)(a - b + c)$ $\Rightarrow \Delta = (2 s - 2 c)(2 s - 2 b)$

$$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = 4(s-b)(s-c)$$

$$\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{1}{4} \Rightarrow \tan \frac{A}{2} = \frac{1}{4}$$
Now,

$$\tan A = \frac{2 \tan A/2}{1 - \tan^2 A/2} \Rightarrow \tan A = \frac{1/2}{1 - 1/16} = \frac{8}{15}$$
284 (a)
We have,

$$\sin 47^\circ - \sin 25^\circ + \sin 61^\circ - \sin 11^\circ$$

$$= 2 \sin 11^\circ \cos 36^\circ + 2 \sin 25^\circ \cos 36^\circ$$

$$= 2 \cos 36^\circ (\sin 25^\circ + \sin 11^\circ)$$

$$= 2 \cos 36^\circ \times 2 \sin 18^\circ \cos 7^\circ$$

$$= 4\left(\frac{\sqrt{5} + 1}{4}\right)\left(\frac{\sqrt{5} - 1}{4}\right)\cos 7^\circ = \cos 7^\circ$$
285 (c)
Given, $\sin^3 x \sin 3x = \sum_{m=0}^n C_m \cos mx$

$$\Rightarrow \left(\frac{3 \sin x - \sin 3x}{4}\right)\sin 3x = \sum_{m=0}^n C_m \cos mx$$

$$\Rightarrow \frac{3}{8} (2 \sin 3x \sin x) - \frac{1}{8} (2 \sin^2 3x)$$

$$= \sum_{m=0}^n C_m \cos mx$$

$$\Rightarrow \frac{3}{8} (\cos 2x - \cos 4x) - \frac{1}{8} (1 - \cos 6x)$$

$$= \sum_{m=0}^n C_m \cos mx$$

$$\Rightarrow \frac{1}{8} \cos 6x + \frac{3}{8} (\cos 2x - \cos 4x) - \frac{1}{8}$$

$$= C_0 \cos 0 + C_1 \cos x + C_2 \cos 2x + \dots + C_n \cos nx$$

$$\therefore n = 6$$
286 (d)
We have,

$$\cos x = \tan y$$

$$\Rightarrow \cos^2 x = \tan^2 y$$

$$\Rightarrow \cos^2 x = \cot^2 z$$

$$-1 [\because \cos y = \tan z \therefore \sec y]$$

$$= \cot z$$

$$\Rightarrow 1 + \cos^2 x = \frac{\tan^2 x}{\cos^2 x - \sin^2 x}$$

$$\Rightarrow 2 \sin^4 x - 6 \sin^2 x + 2 = 0$$

$$\Rightarrow \sin^2 x = \frac{3 - \sqrt{5}}{2}$$

$$\Rightarrow \sin^2 x = \left(\frac{\sqrt{5}-1}{2}\right)^2 \Rightarrow \sin x = \frac{\sqrt{5}-1}{2}$$

$$= 2 \sin 18^\circ$$
287 (b)

$$\frac{\cot 54^\circ}{\tan 36^\circ} + \frac{\tan 20^\circ}{\tan 20^\circ}$$

$$= \frac{\tan 36^\circ}{\tan 36^\circ} + \frac{\tan 20^\circ}{\tan 20^\circ}$$

$$= 1 + 1 = 2$$
288 (b)

$$\frac{\cot x - \tan x}{\cot 2x}$$

$$= \tan 2x \left(\cot x - \frac{1}{\cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{\cot^2 x - 1}{2 \cot x}\right)$$

$$= \tan 2x \left(\frac{1}{2} + 2x\right)$$

$$\Rightarrow 1 - \cos^2 x - (2 \cos^2 x - 1) = 2 - 2 \sin x \cos x$$

$$\Rightarrow -3 \cos^2 x + 2 \sin x \cos x = 0$$

$$\Rightarrow \cos x (2 \sin x - 3 \cos x) = 0$$

$$\Rightarrow \cos x (2 \sin x - 3 \cos x) = 0$$

$$\Rightarrow \cos x = 0, \quad (\because 2 \sin 9x - 3 \cos x \neq 0)$$

$$\Rightarrow x = 2n\pi \pm \frac{\pi}{2}$$

$$\Rightarrow x = (4n \pm 1)\frac{\pi}{2}$$
290 (b)

$$\frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}}} = \frac{\cosh \frac{x}{2} + \sinh \frac{x}{2}}{2} = \frac{e^{x/2}}{e^{-x/2}} = e^x$$
291 (c)

$$2 \tanh^{-1} \left(\frac{1}{2}\right) = \tanh^{-1} \frac{2\left(\frac{1}{2}\right)}{1 + \left(\frac{1}{2}\right)^2} = \tanh^{-1} \frac{4}{5}$$

$$\left[\because 2 \tanh^{-1} x = \tanh^{-1} \frac{2x}{1 + x^2} \right]$$

$$= \frac{1}{2} \log \left(\frac{1 + \frac{4}{5}}{1 - \frac{4}{5}}\right) = \frac{1}{2} \log 3^2$$

$$= \log 3$$
292 (c)
We have,

$$\cos(\alpha + \beta) \sin(\gamma + \delta) = \cos(\alpha - \beta) \sin(\gamma - \delta)$$

$$\Rightarrow \frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)} = \frac{\sin(\gamma - \delta)}{\sin(\gamma + \delta)}$$

$$\Rightarrow \frac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{\cos(\alpha + \beta) + \cos(\alpha - \beta)}$$

$$= \frac{\sin(\gamma - \delta) - \sin(\gamma + \delta)}{\sin(\gamma - \delta) + \sin(\gamma + \delta)}$$

$$\Rightarrow \frac{-2\sin\alpha\sin\beta}{2\cos\alpha\cos\beta} = \frac{-2\cos\gamma\sin\delta}{2\sin\gamma\cos\delta}$$

$$\Rightarrow -\tan\alpha\tan\beta = -\cot\gamma\tan\delta \Rightarrow \cot\alpha\cot\beta\cot\gamma$$

$$= \cot\delta$$
293 (c)
Given, $a\cos^3\alpha + 3a\cos^2\alpha\sin^2\alpha = m$
and $a\sin^3\alpha + 3a\cos^2\alpha\sin^2\alpha = n$
 $\therefore (m + n) = a\cos^3\alpha$
 $+ 3a\cos\alpha\sin^2 + 3a\cos^2\alpha\sin\alpha$
 $+ a\sin^3\alpha$
 $= a(\cos\alpha + \sin\alpha)^3$
and similarly, $(m - n) = a(\cos\alpha - \sin\alpha)^3$
 $\therefore (m + n)^{2/3} + (m - n)^{2/3}$
 $= a^{2/3} \{(\cos\alpha + \sin\alpha)^2 + (\cos\alpha - \sin\alpha)^2\}$
 $= a^{2/3} \{(\cos\alpha + \sin\alpha)^2 + (\cos\alpha - \sin\alpha)^2\}$
 $= a^{2/3} \{(\cos\alpha + \sin\alpha)^2 + (\cos\alpha - \sin\alpha)^2\}$
 $= a^{2/3} \{2(\cos^2\alpha + \sin^2\alpha)\} = 2a^{2/3}$
294 (c)
Given, $\frac{x}{\csc\theta} = \frac{y}{\sec\theta} = \frac{z}{\cot2\theta} = k$ [say]
 $\therefore 4z^2(x^2 + y^2)$
 $= 4k^2\cot^22\theta(k^2\csc^2\theta)$
 $= 4k^4\cot^22\theta (\frac{1}{\sin^2\theta\cos^2\theta})$ [: $\sin^2\theta + \cos^2\theta = 1/\beta$
 $= (k^2\csc^2\theta - k^2\sec^2\theta)^2$
 $= (k^2\csc^2\theta - k^2\sec^2\theta)^2$
 $= (k^2 - y^2)^2$
295 (b)
Given, $\tan 2\theta \tan \theta = 1$
 $\therefore \frac{2\tan^2\theta}{1 - \tan^2\theta} = 1 \Rightarrow \tan^2\theta = \frac{1}{3}$
 $\Rightarrow \tan^2\theta = \tan^2\frac{\pi}{6} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$
296 (a)
 $|\sin x| > 2\sin^2 x$
 $\Rightarrow |\sin x|(2|\sin x| - 1) < 0$
 $\Rightarrow 0 < |\sin x| < \frac{1}{2}$
 $\Rightarrow x \in (0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, \pi) \cup (\pi, \frac{7\pi}{6}) \cup (\frac{11\pi}{6}, 2x)$
297 (d)

Given,
$$\tan\left(\frac{x}{2}\right) = \csc x - \sin x$$

$$= \frac{1 + \tan^{2} \frac{x}{2}}{2 \tan \frac{x}{2}} - \frac{2 \tan \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}$$

$$= \frac{\left(1 + \tan^{2} \frac{x}{2}\right) - 4 \tan^{2} \frac{x}{2}}{2 \tan \frac{x}{2} \left(1 + \tan^{2} \frac{x}{2}\right)} = \left(1 - \tan^{2} \frac{x}{2}\right)^{2}$$

$$\Rightarrow 2 \tan^{2} \left(\frac{x}{2}\right) \left(1 + \tan^{2} \frac{x}{2}\right) = \left(1 - \tan^{2} \frac{x}{2}\right)^{2}$$

$$\Rightarrow \tan^{4} \frac{x}{2} + 4 \tan^{2} \frac{x}{2} - 1 = 0$$

$$\Rightarrow \tan^{2} \frac{x}{2} = \frac{-4 \pm \sqrt{16 + 4}}{2 \times 1} = -2 \pm \sqrt{5}$$

$$\Rightarrow \tan^{2} \frac{x}{2} = -2 + \sqrt{5}$$
($\because \tan^{2} \frac{x}{2} \neq -2 - \sqrt{5}$)
298 (d)
Given equation is
 $5 \cos 2\theta + 2 \cos^{2} \frac{\theta}{2} + 1 = 0$
 $\Rightarrow 5(2 \cos^{2} \theta - 1) + 1 + \cos \theta + 1 = 0$
 $\Rightarrow 10 \cos^{2} \theta + \cos \theta - 3 = 0$
 $\Rightarrow (2 \cos \theta - 1)(5 \cos \theta + 3) = 0$
 $\Rightarrow \cos \theta = \frac{1}{2} \operatorname{or} \cos \theta = -\frac{3}{5}$
 $\Rightarrow \theta = \frac{\pi}{3} \operatorname{or} \theta = \pi - \cos^{-1} \left(\frac{3}{5}\right)$
299 (b)
From the given equations we have $\sum \tan \alpha = p$
 $\sum \tan \alpha \tan \beta = 0$ and $\tan \alpha \tan \beta \tan \gamma = r$
 $\therefore (1 + \tan^{2} \alpha)(1 + \tan^{2} \beta)(1 + \tan^{2} \gamma)$
 $= 1 + \sum \tan^{2} \alpha + \sum \tan^{2} \alpha \tan^{2} \beta$
 $+ \tan^{2} \alpha \tan^{2} \beta \tan^{2} \gamma$
 $= 1 + (\sum \tan \alpha)^{2}$
 $-2\sum \tan \alpha \tan \beta + (\sum \tan \alpha \tan \beta)^{2}$
 $-2\tan \alpha \tan^{2} \beta \tan^{2} \gamma$
 $= 1 + p^{2} - 2pr + r^{2} = 1 + (p - r)^{2}$
300 (b)
We have,
 $\cos^{4} \theta - \sin^{4} \theta = (\cos^{2} \theta - \sin^{2} \theta)(\cos^{2} \theta + \sin^{2} \theta)$
 $= \cos 2\theta = 2 \cos^{2} \theta - 1$
301 (c)
We have,
 $\sqrt{3} \operatorname{cosec} 20^{\circ} - \sec 20^{\circ}$

$$= \frac{\sin 60^{\circ} \cos 20^{\circ} - \cos 60^{\circ} \sin 20^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}}$$
$$= \frac{\sin 40^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}} = \frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\frac{1}{2} \sin 20^{\circ} \cos 20^{\circ}} = 4$$

Consider the function $f(\theta)$ given by $f(\theta) = \frac{\theta}{2} - \sin\frac{\theta}{2}$, where $0 \le \theta \le \frac{\pi}{2}$ We have, $f'(\theta) = \frac{1}{2} \left(1 - \cos\frac{\theta}{2} \right) > 0 \quad \left[\because \ 0 \le \theta \le \frac{\pi}{2} \right]$ $\Rightarrow f(\theta)$ is increasing on $[0, \pi/2]$ $\Rightarrow f(\theta) > f(0)$ for $0 \le \theta \le \frac{\pi}{2}$ $\Rightarrow \frac{\theta}{2} - \sin\frac{\theta}{2} > 0$ for $0 \le \theta \le \frac{\pi}{2}$ $\Rightarrow \frac{\theta}{2} > \sin\frac{\theta}{2}$ for $0 \le \theta \le \frac{\pi}{2}$

On the same lines it can be seen that all other conditions are true except condition given in option (b)

303 **(a)**

Let $y = |x - 1| = \cos x$

It is clear from the graph that two curves intersect at two points.

Hence, number of solutions are 2.

304 **(b)**

Since, $5 \cos x + 12 \cos y = 13$ $\Rightarrow (5 \cos x + 12 \cos y)^2 + (5 \sin x + 12 \sin y)^2$ $= (13)^2 + (5 \sin x + 12 \sin y)^2$ $\Rightarrow 25 + 144 + 120(\sin x \sin y + \cos x \cos y)$ $= 169 + (5 \sin x + 12 \sin y)^2$ $\Rightarrow (5 \sin x + 12 \sin y)^2 = 120 \cos(x - y)$ $\because -1 \le \cos(x - y) \le 1$ $\Rightarrow -120 \le 120 \cos(x - y) \le 120$ \therefore Maximum value of $5 \sin x + 12 \sin y = \sqrt{120}$ 305 (a) Since, $\cos \theta = \frac{8}{17}$ and $0 < \theta < \frac{\pi}{2}$ $\Rightarrow \sin \theta = \sqrt{1 - \frac{8^2}{17^2}} = \frac{15}{17}$ Now, $\cos(30^\circ + \theta) + \cos(45^\circ - \theta) + \cos(120^\circ - \theta)$

 $= \cos 30^{\circ} \cos \theta - \sin 30^{\circ} \sin \theta$ $+\cos 45^{\circ}\cos \theta$ $+\sin 45^{\circ}\sin \theta$ $+\cos 120^{\circ}\cos\theta + \sin 120^{\circ}\sin\theta$ $=\cos\theta\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)-\sin\theta\left(\frac{1}{2}-\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2}\right)$ $=\frac{8}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)+\frac{15}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)$ $=\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$ 306 (d) $\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + \ldots + \cos 89^\circ$ $+\cos 90^{\circ}$ $+\cos 91^{\circ}$ $+\cos 92^{\circ} + \cos 93^{\circ} + \ldots + \cos 179^{\circ}$ $+ \cos 180^{\circ}$ $= \cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 89^{\circ} + 0$ $+\cos(180^{\circ}-89^{\circ})$ $+\cos(180^{\circ}-88^{\circ})+\ldots+\cos(180^{\circ}-1^{\circ})-1$ $= \cos 1^\circ + \cos 2^\circ$ $+\cos 3^{\circ}+...\cos 89^{\circ}$ - cos 89° $-\cos 88^{\circ} - \ldots - \cos 1^{\circ} - 1$ = -1307 (a) We have, $\cot\frac{A}{2}$, $\cot\frac{B}{2}$, $\cot\frac{C}{2}$ are in *A*. *P*. $\Rightarrow 2 \cot \frac{B}{2} = \cot \frac{A}{2} + \cot \frac{C}{2}$ $\Rightarrow 2 \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}$ $=\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$ $+ \int \frac{s(s-c)}{(s-a)(s-b)}$ $\Rightarrow 2(s-b) = s-a+s-c \Rightarrow 2b = a+c \Rightarrow$ *a*, *b*, *c* are in *A*. *P*. 308 (c) $(1 + \tan x + \tan^2 x)(1 - \cot x + \cot^2 x)$ $= \frac{(1 + \tan x + \tan^2 x)(1 + \tan^2 x - \tan x)}{\tan^2 x}$ $= \frac{(1 + \tan^2 x)^2 - \tan^2 x}{\tan^2 x}$ Obviously, $1 + \tan^2 x \ge \tan^2 x$, $\forall x \in R$ 309 (c) We have.

$$\cos^{4}\frac{\pi}{8} + \cos^{4}\frac{3\pi}{8} + \cos^{4}\frac{5\pi}{8} + \cos^{4}\frac{7\pi}{8}$$

$$= 2\cos^{4}\frac{\pi}{8} + 2\cos^{4}\frac{3\pi}{8} \left[\because \cos\frac{5\pi}{8}\right]$$

$$= -\cos\frac{3\pi}{8}, \cos\frac{7\pi}{8} = -\cos\frac{\pi}{8}$$

$$= \frac{1}{2}\left\{\left(2\cos^{2}\frac{\pi}{8}\right)^{2}\left(2\cos^{2}\frac{3\pi}{8}\right)^{2}\right\}$$

$$= \frac{1}{2}\left\{\left(1 + \cos\frac{\pi}{4}\right)^{2} + \left(1 + \cos\frac{3\pi}{8}\right)^{2}\right\}$$

$$= \frac{1}{2}\left\{\left(1 + \frac{1}{\sqrt{2}}\right)^{2} + \left(1 - \frac{1}{\sqrt{2}}\right)^{2}\right\} = \frac{3}{2}$$

We have, $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$ $\Rightarrow \sin(\pi \cos \theta) = \sin\left(\frac{\pi}{2} \pm \pi \sin \theta\right)$ $\Rightarrow \pi \cos \theta = \frac{\pi}{2} \pm \pi \sin \theta$ $\Rightarrow \cos \theta \mp \sin \theta = \frac{1}{2}$ $\Rightarrow \frac{1}{\sqrt{2}}\cos \theta \mp \frac{1}{\sqrt{2}}\sin \theta = \frac{1}{2\sqrt{2}}$ $\Rightarrow \cos\left(\theta \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}} \Rightarrow \cos\left(\theta \pm \frac{\pi}{4}\right) = \frac{1}{2}\cos\frac{\pi}{4}$

311 (a)

Since the angle of $\triangle ABC$ are in A.P. 2B = A + C $\Rightarrow 3B = A + B + C$ $\Rightarrow 3B = 180^{\circ}$ $\Rightarrow B = 60^{\circ}$ $\Rightarrow \cos B = \frac{1}{2}$ $\Rightarrow \frac{c^2 + a^2 - b^2}{2 ac} = \frac{1}{2}$ $\Rightarrow c^2 + a^2 - b^2 = ac$ $\Rightarrow c^2 + a^2 - b^2 = b^2$ [: *a, b, c* are in G. P. $\therefore b^2$ = ac] $\Rightarrow c^2 + a^2 = 2b^2$ $\Rightarrow a^2, b^2, c^2$ are in A.P. 312 (d)

Since $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other $\therefore \sin x + i \cos 2x = \cos x + i \sin 2x$ $\Rightarrow \sin x = \cos x$ and $\cos 2x = \sin 2x$ $\Rightarrow \sin x = \cos x$ and $2 \cos^2 x - 1 = 2 \sin x \cos x$ $\Rightarrow 2 \cos^2 x - 1 = 2 \cos^2 x$ [$\because \sin x = \cos x$] This is an absurd result. Therefore, no value of x satisfy these two equations

313 **(b)**

Given, $1 - \cos x = (\sqrt{2} - 1) \sin x$

$$\Rightarrow 2 \sin \frac{x}{2} \left(\sin \frac{x}{2} - (\sqrt{2} - 1) \cos \frac{x}{2} \right) = 0$$

$$\Rightarrow \sin \frac{x}{2} = 0 \text{ or } \tan \frac{x}{2} = \sqrt{2} - 1 = \tan \frac{45^{\circ}}{2}$$

$$\Rightarrow \frac{x}{2} = n\pi, \qquad \frac{x}{2} = n\pi + \frac{\pi}{8}$$

$$\Rightarrow x = 2n\pi, \qquad 2n\pi + \frac{\pi}{4}$$
314 (c)
$$2 \tan(A - B) = 2 \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right)$$

$$= 2 \left(\frac{2 \tan B + \cot B}{1 + (2 \tan B + \cot B) \tan B} \right)$$
[$\because \tan A = 2 \tan B + \cot B$]
$$= \frac{2(\tan B + \cot B)}{2(1 + \tan^2 B)} = \cot B$$
315 (d)
$$\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{n-1}\alpha$$

$$= \frac{1}{2 \sin \alpha} [2 \sin \alpha \cos \alpha + \cos 2\alpha \cos 4\alpha \dots \cos 2^{n-1}\alpha]$$

$$= \frac{1}{2^2 \sin \alpha} [2 \sin 2\alpha \cos 2\alpha \cos 4\alpha \dots \cos 2^{n-1}\alpha]$$

$$= \frac{1}{2^2 \sin \alpha} [\sin \alpha \cos 8\alpha \dots \cos 2^{n-1}\alpha]$$
Similarly, we can write
$$= \frac{\sin 2^n \alpha}{2^n \sin \alpha}$$
316 (d)
$$\operatorname{Given}_{,x} \sin^3 \theta + y\cos^3 \theta = \sin \theta \cos \theta$$

$$\Rightarrow y \cos \theta \sin^2 \theta + y \cos^3 \theta = \sin \theta \cos \theta$$

$$\Rightarrow y \cos \theta \sin^2 \theta + y \cos^3 \theta = \sin \theta \cos \theta$$

$$\Rightarrow y \cos \theta \sin^2 \theta + y \cos^2 \theta = 1$$
317 (a)
$$\therefore \tan \alpha/2 + \tan \beta/2 = \frac{26}{8} = \frac{13}{4}$$
and $\tan \alpha/2 \tan \beta/2 = \frac{15}{8}$

$$\therefore \tan \left(\frac{\alpha + \beta}{2}\right) = \frac{\tan \alpha/2 + \tan \beta/2}{1 - \tan \alpha/2 \tan \beta/2}$$

$$=\frac{1-\left(-\frac{26}{7}\right)^2}{1+\left(-\frac{26}{7}\right)^2}=\frac{49-676}{49+676}$$
$$=-\frac{627}{725}$$

318 (a)

Given, $81^{\sin^2 x} + 81^{\cos^2 x} = 30$ $\Rightarrow 81^{\sin^2 x} + 81^{1-\sin^2 x} = 30$ $\Rightarrow 81^{\sin^2 x} + \frac{81}{81^{\sin^2 x}} = 30$ $\Rightarrow y + \frac{81}{y} = 30 \quad [put \ 81^{\sin^2 x} = y]$ $\Rightarrow y^2 - 30y + 81 = 0$ $\Rightarrow (y - 27)(y - 3) = 0$ $\Rightarrow 81^{\sin^2 x} = 27 \text{ or } 81^{\sin^2 x} = 3$ $\Rightarrow 3^4 \sin^2 x = 3^3 \text{ or } 3^4 \sin^2 x = 3$ $\Rightarrow \sin^2 x = \frac{3}{4} \text{ or } \sin^2 x = \frac{1}{4}$ $\Rightarrow \sin x = \frac{\sqrt{3}}{2} \text{ or } \sin x = \frac{1}{2}$ $\Rightarrow x = \frac{\pi}{3}, \frac{2\pi}{3} \text{ or } x = \frac{\pi}{6}, \frac{5\pi}{6}$

319 **(b)**

We have,

32 $\tan^8 \theta = 2 \cos^2 \alpha - 3 \cos \alpha$ and $\cos 2\theta = \frac{1}{3}$ Now, $\cos 2\theta = \frac{1}{3} \Rightarrow \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1}{3} \Rightarrow \tan^2 \theta = \frac{1}{2}$ $\therefore 32 \tan^8 \theta = 2 \cos^2 \alpha - 3 \cos \alpha$ $\Rightarrow 32 \times \frac{1}{16} = 2 \cos^2 \alpha - 3 \cos \alpha$ $\Rightarrow 2 = 2 \cos^2 \alpha - 3 \cos \alpha$ $\Rightarrow 2 \cos^2 \alpha - 3 \cos \alpha - 2 = 0$ $\Rightarrow (2 \cos \alpha + 1)(\cos \alpha - 2)$ $= 0 \quad [\because \cos \alpha - 2 \neq 0]$ $\Rightarrow 2 \cos \alpha + 1 = 0$ $\Rightarrow \cos \alpha = -\frac{1}{2} \Rightarrow \cos \alpha = \cos \frac{2\pi}{3} \Rightarrow \alpha$ $= 2n\pi \pm \frac{2\pi}{3}, n \in Z$

320 **(b)** Now, $\tan(x - y) \tan y = \frac{\sin(x - y) \sin y}{\cos(x - y) \cos y} \times \frac{2}{2}$ $= \frac{\cos(x - 2y) - \cos(x)}{\cos(x - 2y) + \cos(x)} = \frac{1 - \frac{\cos x}{\cos(x - 2y)}}{1 + \frac{\cos(x)}{\cos(x - 2y)}}$ $= \frac{1 - \lambda}{1 + \lambda} \left[\text{Given}, \lambda = \frac{\cos x}{\cos(x - 2y)} \right]$ 321 **(a)**

We have, $\sin 3 \theta = 4 \sin \theta \sin^2 x - 4 \sin^3 \theta$

 $\Rightarrow 3\sin\theta - 4\sin^3\theta = 4\sin\theta\sin^2 x - 4\sin^3\theta$ $\Rightarrow 3\sin\theta = 4\sin\theta\sin^2 x$ $\Rightarrow \sin^2 x = \frac{3}{4} \qquad [\because \theta \neq n \pi \ \because \sin \theta \neq 0]$ $\Rightarrow \sin^2 x = \sin^2 \frac{\pi}{2} \Rightarrow x = n \pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$ 322 (d) We have, b + c = 3a $\Rightarrow \sin B + \sin C = 3 \sin A$ $\Rightarrow 2\sin\left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right) = 6\sin\frac{A}{2}\cos\frac{A}{2}$ $\Rightarrow \cos\left(\frac{B-C}{2}\right) = 3\cos\left(\frac{B+C}{2}\right)$ $\Rightarrow \cos\frac{B}{2}\cos\frac{C}{2} = 2\sin\frac{B}{2}\sin\frac{C}{2}$ $\Rightarrow \cot \frac{B}{2} \cot \frac{C}{2} = 2 \Rightarrow \tan \frac{B}{2} \tan \frac{C}{2} = \frac{1}{2}$ 323 (b) We have, $\sin\theta + \cos\theta = \sqrt{2}\cos\theta$ $\Rightarrow 1 + \sin 2\theta = 2\cos^2 \theta$ $\Rightarrow 1 - \sin 2\theta = 2 - 2\cos^2 \theta$ $\Rightarrow (\cos \theta - \sin \theta)^2 = 2 \sin^2 \theta$ $\Rightarrow \cos \theta - \sin \theta = \sqrt{2} \sin \theta$ 324 (a) Given, $\sin x + \sin y + \sin z = -3$ and $x, y, z \in [0, 2\pi]$ \therefore The minimum value of sin is -1 \therefore In between 0 to 2π , the given equation is satisfied at $x = \frac{3\pi}{2}$ $y = \frac{3\pi}{2}$, $z = \frac{3\pi}{2}$ and having only one solution 325 (a) $\sin\frac{\pi}{16}$. $\sin\frac{3\pi}{16}$. $\sin\frac{5\pi}{16}$. $\sin\frac{7\pi}{16}$ $=\frac{1}{2}\left[2\sin\frac{5\pi}{16}\sin\frac{3\pi}{16}\right]\times\frac{1}{2}\left[2\sin\frac{7\pi}{16}\sin\frac{\pi}{16}\right]$ $=\frac{1}{4}\left[\left(\cos\frac{\pi}{8}-\cos\frac{\pi}{2}\right)\left(\cos\frac{3\pi}{8}-\cos\frac{\pi}{2}\right)\right]$ $=\frac{1}{4\times 2}\left(\cos\frac{\pi}{2}+\cos\frac{\pi}{4}\right)$ $=\frac{1}{8\sqrt{2}}=\frac{\sqrt{2}}{16}$ [:: $\cos\frac{\pi}{2}=0$] 326 (d) For the quadratic equation to have real roots, we must have $\cos^2 p - 4\sin p(\cos p - 1) \ge 0$ $\Rightarrow (\cos p - 2\sin p)^2 - 4\sin^2 p + 4\sin p \ge 0$ $\Rightarrow (\cos p - 2\sin p)^2 + 4\sin p(1 - \sin p) \ge 0$ Now, 0 $\Rightarrow 4 \sin p (1 - \sin p) > 0$ and, $(\cos p - 2 \sin p)^2 \ge 1$

Thus, $(\cos p - 2\sin p)^2 + 4\sin p(1 - \sin p) \ge 0$ for 0

Hence, the equation has real roots for 0327 (c)

We have,

$$\cos(\theta + \phi) = \frac{1 - \tan^2\left(\frac{\theta + \phi}{2}\right)}{1 + \tan^2\left(\frac{\theta + \phi}{2}\right)}$$

Also,

$$\tan\left(\frac{\theta+\phi}{2}\right) = \frac{\tan\frac{\theta}{2} + \tan\frac{\phi}{2}}{1 - \tan\frac{\theta}{2}\tan\frac{\phi}{2}} = \frac{\frac{5}{2} + \frac{3}{4}}{1 - \frac{15}{8}} = -\frac{26}{7}$$
$$\therefore \cos(\theta+\phi) = \frac{1 - \frac{676}{49}}{1 + \frac{676}{49}} = -\frac{627}{425}$$

328 (b)

We have,

$$2\cos^2 A = 3\cos^2 B$$

 $\Rightarrow 2(1 - \sin^2 A) = 3(1 - \sin^2 B)$
 $\Rightarrow 2 - 2\sin^2 A = 3(1 - \sin A) \quad [\because \sin^2 B = \sin A]$
 $\Rightarrow 2\sin^2 A - 3\sin A + 1 = 0 \Rightarrow \sin A = \frac{1}{2}, 1$
Now,
 $\sin A = 1 \Rightarrow \sin B = 1$, which is not possible
 $\therefore \sin A = \frac{1}{2}$ and $\sin B = \pm \frac{1}{\sqrt{2}}$
 $\Rightarrow A = 30^\circ, B = 135^\circ, C = 15^\circ$
or, $A = 30^\circ, B = 45^\circ, C = 105^\circ$
In each case the triangle *ABC* is an obtuse angled
triangle

329 **(b)**

We have,

$$\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$$

$$\Rightarrow \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha} = \frac{3 - \cos 2\beta - 3\cos 2\beta + 1}{3 - \cos 2\beta + 3\cos 2\beta - 1}$$
[Applying componendo and dividendo]

$$\Rightarrow \frac{2\sin^2 \alpha}{2\cos^2 \alpha} = \frac{4(1 - \cos 2\beta)}{2(1 + \cos 2\beta)}$$

$$\Rightarrow \tan^2 \alpha = \frac{2 \times 2\sin^2 \beta}{2\cos^2 \beta}$$

$$\Rightarrow \tan^2 \alpha = 2\tan^2 \beta \Rightarrow \tan \alpha \cot \beta = \sqrt{2}$$
330 **(b)**
It is given that

$$\sin 2x, \frac{1}{2} \text{ and } \cos 2x \text{ are in A. P.}$$

$$\therefore 1 = \sin 2x + \cos 2x$$

$$\Rightarrow \cos \left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow 2x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow 2 x = 2 n \pi, 2 n \pi + \frac{\pi}{2}$$
$$\Rightarrow x = n \pi, n \pi + \frac{\pi}{4}, n \in Z$$

332 (d)

Let *ABC* be a triangle such that BC = 80 cm, $\angle B =$ 60° and b + c = 90 cm Now. $b^2 = c^2 + a^2 = 2ac\cos B$ $\Rightarrow (90 - c)^2 = c^2 + 80^2 - 2 \times 80$ $\times (90 - c) \cos 60^{\circ}$ $\Rightarrow 8100 - 180c + c^2 = c^2 + 6400 - 7200 + 80c$ $\Rightarrow c = 17$ $\therefore b + c = 90 \Rightarrow b = 73$ Hence, the length of the shortest side is 17 cm 333 (a) Given, $\sin^4 x + \cos^4 x = \sin x \cdot \cos x$ $\Rightarrow (\sin^2 x + \cos^2 x)^2$ $-2\sin^2 x \cdot \cos^2 x = \sin x \cdot \cos x$ $\Rightarrow 1 - \frac{\sin^2 2x}{2} = \frac{\sin 2x}{2}$ $\Rightarrow \sin^2 2x + \sin 2x - 2 = 0$ $\Rightarrow (\sin 2x + 2)(\sin 2x - 1) = 0$ $\Rightarrow \sin 2x = 1 \quad (\because \sin 2x \ge -1)$ $\therefore 2x = (4n+1)\frac{\pi}{2}$ $\Rightarrow x = (4n+1)\frac{\pi}{4}$ $\Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$ Hence, two solutions exist 334 (b) Given, $\alpha < \beta < \gamma < \delta$ Also, $\sin \alpha = \sin \beta = \sin \gamma = \sin \delta = k$ $\therefore \quad \beta = \pi - \alpha, \qquad \gamma = 2\pi + \alpha, \quad \delta = 3\pi - \alpha$ Now, $4\sin\frac{\alpha}{2} + 3\sin\frac{\beta}{2} + 2\sin\frac{\gamma}{2} + \sin\frac{\delta}{2}$ $4\sin\frac{\alpha}{2} + 3\sin\left(\frac{\pi-\alpha}{2}\right) + 2\sin\left(\frac{-2\pi+\alpha}{2}\right) +$ $\sin(3\pi - \alpha)2$ $= 4\sin\frac{\alpha}{2} + 3\cos\frac{\alpha}{2} - 2\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}$ $= 2\sin\frac{\overline{\alpha}}{2} + 2\cos\frac{\overline{\alpha}}{2}$ $= 2 \left| \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2} \right)^2 \right|$ $= 2\sqrt{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2} + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}$ $= 2\sqrt{1 + \sin \alpha} = 2\sqrt{1 + k}$ 335 (a) Maximum value of $\sin \theta + \cos \theta = \sqrt{1+1} = \sqrt{2}$ 336 **(b)**

Given, $2\cos^2 x - 1 + 2\cos^2 x = 2$ $\Rightarrow \cos x = \pm \frac{\sqrt{3}}{2} \quad \therefore x = n\pi \pm \frac{\pi}{6} : n \in \mathbb{Z}$ 337 (c) $(1 + 2\sin\theta)^2 + (\sqrt{3}\tan\theta - 1)^2 = 0$ \Rightarrow 1 + 2 sin θ = 0 and $\sqrt{3}$ tan θ - 1 = 0 $\therefore \sin \theta = -\frac{1}{2} \Rightarrow \theta = m\pi + (-1)^m \left(-\frac{\pi}{6}\right)$ and $\tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = m\pi + \frac{\pi}{6}$ For common values, *m* must be odd ie, m = 2n + 1 $\Rightarrow \theta = 2n\pi + \frac{7\pi}{\epsilon}$ 338 (b) We have, $(2\cos x - 1)(3 + 2\cos x) = 0$ $\Rightarrow 2 \cos x - 1 = 0$ [: $\cos x \neq -3/2$] $\Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3} \in [0, 2\pi]$ 339 (b) We have, $B = 90^{\circ}$ $\therefore A + B + C = 180^{\circ}$ $\Rightarrow A + C = 90^{\circ} \Rightarrow B = A + C \Rightarrow B - C = A$ Now $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ $\Rightarrow \tan \frac{A}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \sqrt{\frac{b-c}{b+c}}$ 340 (c) $\cos(\theta + \phi) = m\cos(\theta - \phi)$ $\Rightarrow \cos\theta\cos\phi - \sin\theta\sin\phi$ $= m \cos \theta \cos \phi + m \sin \theta \sin \phi$ $\Rightarrow \cos\theta\cos\phi(1-m) = \sin\theta\sin\phi(1+m)$ $\Rightarrow \tan \theta = \left[\frac{1-m}{1+m}\right] \cot \phi$ 341 (a) In triangles ABD and ACD, we have $\frac{A B}{\sin B} = \frac{B D}{\sin \angle BAD} \text{ and } \frac{A D}{\sin C} = \frac{C D}{\sin \angle CAD}$ $\Rightarrow \frac{\sin C}{\sin B} = \frac{\sin \angle CAD}{\sin \angle BAD} \times \frac{BD}{CD}$ $\Rightarrow \frac{\sin \pi/4}{\sin \pi/3} = \frac{\sin \angle CAD}{\sin \angle BAD} \times \frac{1}{3} \Rightarrow \frac{\sin \angle BAD}{\sin \angle CAD}$ $=\frac{1}{3} \times \frac{\sqrt{3}/2}{1/\sqrt{2}} = \frac{1}{\sqrt{6}}$

 $\frac{\pi}{3}$ $\frac{\pi}{4}$ 1 D 3 342 (a) $a\cos 2x + b\sin 2x$ $=a.\frac{1-\tan^2 x}{1+\tan^2 x}+b.\frac{2\tan x}{1+\tan^2 x}$ $= a \cdot \frac{1 - \frac{b^2}{a^2}}{1 + \frac{b^2}{a}} + b \cdot \frac{2 \cdot \frac{b}{a}}{1 + \frac{b^2}{a}} \quad \left[\because \tan x = \frac{b}{a} \right]$ $=\frac{a(a^2-b^2)}{(a^2+b^2)}+\frac{2b^2a}{a^2+b^2}$ $=\frac{a^3-ab^2+2ab^2}{a^2+b^2}=\frac{a^3+ab^2}{a^2+b^2}=a$ 343 (c) We have, $\frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow \sin B = \frac{b \sin C}{C}$ $\Rightarrow \sin B = \frac{2\sin 60^{\circ}}{\sqrt{6}} = \frac{2}{\sqrt{6}} \cdot \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}}$ $\Rightarrow B = 45^{\circ} \qquad [\because B \neq 135^{\circ}]$ $\therefore A = 180^{\circ} - (B + C) = 75^{\circ}$ Now, $\frac{\sin A}{a} = \frac{\sin B}{h}$ $\Rightarrow a = \frac{b \sin A}{\sin B} = \frac{2 \sin 75^{\circ}}{\sin 45^{\circ}} = \sqrt{3} + 1$ 344 (d) Let *O* be the centre of the pentagon. Then, $\angle A_1 0 A_2 = \angle A_2 0 A_3 = \cdots \angle A_5 0 A_1 = \frac{360^{\circ}}{5} = 72^{\circ}$ In $\Delta A_1 O A_2$, we have, $A_1 A_2^2 = 1^2 + 1^2 - 2 \times 1 \times 1 \times \cos 72^\circ$ In $\Delta A_1 O A_3$, we have $A_1 A_3^2 = 1^2 + 1^2 - 2 \times 1 \times 1 \times \cos 144^{\circ}$ $\therefore (A_1A_2)(A_1A_3)$ $=\sqrt{2-2\cos 72^{\circ}} \times \sqrt{2-2\cos 144^{\circ}}$ $= 2\sqrt{1-\sin 18^\circ} \times \sqrt{1-\cos 36^\circ}$ $= 2\sqrt{1 - \frac{\sqrt{5} - 1}{4}} \times \sqrt{1 - \frac{\sqrt{5} + 1}{4}} = 5$ 345 (b) Given, $x = \log \left| \cot \left(\frac{\pi}{4} + \theta \right) \right|$ $\Rightarrow e^{x} = \left[\cot\left(\frac{\pi}{4} + \theta\right) \right] \dots(i)$ And $e^{-x} = \frac{1}{\cot(\frac{\pi}{2} + \theta)} = \tan(\frac{\pi}{4} + \theta)$...(ii)

Now,
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

= $\frac{\cot\left(\frac{\pi}{4} + \theta\right) - \tan\left(\frac{\pi}{4} + \theta\right)}{2}$
= $\frac{1 - \tan^2\left(\frac{\pi}{4} + \theta\right)}{2\tan\left(\frac{\pi}{4} + \theta\right)} = \frac{1}{\tan 2\left(\frac{\pi}{4} + \theta\right)}$
= $-\frac{1}{\cot 2\theta} = -\tan 2\theta$

346 (a)

Let *ABC* be the right angled triangle whose angles are in A.P. Then, 2B = A + CNow, $A + B + C = 180^{\circ} \Rightarrow 3B = 180^{\circ} \Rightarrow B = 60^{\circ}$ So, let the angles be $A = 30^{\circ}$, $B = 60^{\circ}$ and $C = 90^{\circ}$ $\therefore \frac{a}{\sin 30^\circ} = \frac{b}{\sin 60^\circ} = \frac{c}{\sin 90^\circ} = 2R$ $\Rightarrow a = R, b = \sqrt{3}R$ and c = 2RAlso. $\Delta = \frac{1}{2}ab\sin 90^{\circ} = \frac{1}{2}ab = \frac{\sqrt{3}}{2}R^{2}$ $\therefore \frac{r}{s} = \frac{\Delta}{s^2}$ $\Rightarrow \frac{r}{s} = \frac{\frac{\sqrt{3}}{2}R^2}{\left(\frac{R+\sqrt{3}R+2R}{2}\right)^2} = \frac{\sqrt{3}}{2} \times \frac{4}{\left(\sqrt{3}+3\right)^2}$ $=\frac{2\sqrt{3}}{\left(\sqrt{3}+3\right)^2}$ $\Rightarrow \frac{r}{s} = \frac{2\sqrt{3}(\sqrt{3}-3)^2}{(9-3)^2} = \frac{6\sqrt{3}(\sqrt{3}-1)^2}{36}$ $\Rightarrow \frac{r}{s} = \frac{\sqrt{3}(4 - 2\sqrt{3})}{6} = \frac{2 - \sqrt{3}}{\sqrt{3}} \Rightarrow \frac{r}{2s} = \frac{2 - \sqrt{3}}{2\sqrt{3}}$ 347 (a) Let $x = \cos 2\theta + \cos \theta$. Then, $x = 2\cos^2\theta + \cos\theta - 1$ $\Rightarrow x = -1 + 2\left(\cos^2\theta + \frac{1}{2}\cos\theta\right)$ $\Rightarrow x = -1 + 2\left\{\left(\cos\theta + \frac{1}{4}\right)^2 - \frac{1}{16}\right\}$ $\Rightarrow x = -\frac{9}{8} + 2\left(\cos\theta + \frac{1}{4}\right)^2$

 $\Rightarrow x \ge -\frac{9}{8} \quad \left[\because 2\left(\cos\theta + \frac{1}{4}\right)^2 \ge 0 \right]$ Hence, the minimum value of x is $-\frac{9}{8}$ 348 **(b)**

$$3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) = 3(1 - 2\sin x \cos x)^2 + 6(1 + 2\sin x \cos x)$$

 $+4(\sin^2 x + \cos^2 x)(\sin^4 x + \cos^4 x)$ $-\sin^2 x \cos^2 x$ $= 3[1 + 4\sin^2 x\cos^2 x - 4\sin x\cos x]$ $+6 + 12 \sin x \cos x + 4[(\sin^2 x + \cos^2 x)^2]$ $-2\sin^2 x \cos^2 x - \sin^2 x \cos^2 x$ $= 3 + 12 \sin^2 x \cos^2 x + 6 + 4 - 12 \sin^2 x \cos^2 x$ = 13349 (b) Let a = 3x + 4y, b = 4x + 3y and c = 5x + 5y. Then. c - a = 2x + y > 0, c - b = x + 2y > 0 $\Rightarrow c > a \text{ and } c > b$ \Rightarrow Side *c* is the largest side Now. $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\Rightarrow \cos C = \frac{(3x+4y)^2(4x+3y)^2 - (5x+5y)^2}{2(3x+4y)(4x+3y)}$ $\Rightarrow \cos C = -\frac{xy}{(3x+4y)(4x+3y)} < 0$ \Rightarrow *C* is an obtuse angle Hence, the triangle is obtuse angled triangle 350 (c) We have, $\sin\beta = \sqrt{\sin\alpha\cos\alpha} \Rightarrow \sin^2\beta = (1/2)\sin 2\alpha$ Now, $\Rightarrow \cos 2\beta = 1 - 2 \sin^2 \beta$ $\Rightarrow \cos 2\beta = 1 - \sin 2\alpha$ $\Rightarrow \cos 2\beta = 1 + \cos\left(\frac{\pi}{2} + 2\alpha\right) = 2\cos^2\left(\frac{\pi}{4} + \alpha\right)$ Again, $\Rightarrow \cos 2\beta = 1 - \sin 2\alpha$ $\Rightarrow \cos 2\beta = 1 - \cos\left(\frac{\pi}{2} - 2\alpha\right) = 2\sin^2\left(\frac{\pi}{4} - \alpha\right)$ 351 (c) We have, $\cos A \cos B + \sin A \sin B \sin C = 1$ $\Rightarrow 2 \cos A \cos B + 2 \sin A \sin B \sin C = 2$ $\Rightarrow 2 \cos A \cos B + 2 \sin A \sin B \sin C$ $= \cos^2 A$ $+\sin^2 A + \cos^2 B + \sin^2 B$ $\Rightarrow (\cos A - \cos B)^2 + (\sin A - \sin B)^2$ $+ 2\sin A \sin B(1 - \sin C) = 0$ $\Rightarrow \cos A - \cos B = 0$, $\sin A - \sin B = 0$ and $1 - \sin C = 0$ $\Rightarrow A = B$ and $C = 90^{\circ} a = b$ and $C = 90^{\circ}$ Hence, the triangle is an isosceles right angled triangle 352 (c) We have, $\cos^2 x - 2\cos x = 4\sin x - \sin 2x$

$$\Rightarrow \cos x(\cos x - 2) = -2 \sin x(\cos x - 2)$$

$$\Rightarrow \cos x = -2 \sin x \qquad [\because \cos x - 2 \neq 0]$$

$$\Rightarrow \tan x = -\frac{1}{2} \Rightarrow x = \pi + \tan^{-1}\left(-\frac{1}{2}\right)$$
353 (c)
Area of

$$\Delta ABC = \frac{1}{2}ab \sin C = \frac{1}{2} \times 1 \times 2 \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$
354 (d)
tan A tan B = 2

$$\Rightarrow \frac{\sin A \sin B}{\cos A \cos B} = 2$$
Using componendo and dividendo, we get

$$\frac{\sin A \sin B - \cos A \cos B}{\sin A \sin B - \cos A \cos B} = \frac{2 + 1}{2 - 1}$$

$$\Rightarrow \frac{\cos(A - B)}{-\cos(A + B)} = \frac{3}{1}$$

$$\Rightarrow \frac{3/5}{-\cos(A + B)} = -\frac{1}{5}$$
355 (b)
We have,

$$\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{3\pi}{9}$$

$$= \frac{1}{\cos(2^{3}\pi/9)} \times \cos \pi/3 = \frac{\sin 8\pi/9}{8 \sin \pi/9} \times \frac{1}{2} = \frac{1}{8} \times \frac{1}{2}$$

$$= \frac{1}{16}$$
357 (c)
We have,

$$\frac{\tan 3A}{\tan A} = k \Rightarrow \frac{3 - 1 \tan^{2} A}{1 - 3 \tan^{2} A} = k \Rightarrow \tan^{2} A$$

$$= \frac{k - 3}{3k - 1}$$
Now,

$$\frac{\sin 3A}{\sin A} = 3 - 4 \sin^{2} A = 3 - \frac{4}{1 + \cot^{2} A}$$

$$= 3 - \frac{4}{1 + \frac{3k - 1}{k - 3}} = \frac{2k}{k - 1}$$
Again, $\frac{\sin A}{\sin A} = 3 - 4 \sin^{2} A$

$$\Rightarrow 4 \sin^{2} A = 3 - \frac{2k}{k - 1}$$

 $\Rightarrow 0 \le \frac{k-3}{4(k-1)} \le 1 \quad [\because 0 \le \sin^2 A \le 1]$ $\Rightarrow k < \frac{1}{3} \text{ or, } k > 3$ Hence, $\frac{\sin 3A}{\sin A} = \frac{2k}{k-1}$, where $k < \frac{1}{3} \text{ or, } k > 3$ 358 (d) We have, $\sin\theta - \cos\theta = \sqrt{2}\sin\left(\theta - \frac{\pi}{4}\right)$ $\therefore \sin \theta - \cos \theta < 0$ $\Rightarrow \sin\left(\theta - \frac{\pi}{4}\right) < 0$ $\Rightarrow 2n \ \pi - \pi < \theta - \frac{\pi}{4} < 2n \ \pi, n \in Z$ $\Rightarrow 2n\pi - \frac{3\pi}{4} < \theta < 2n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$ 359 (d) We have, $\tan 2C = \tan\{(A + B + C) - (A + B - C)\}$ $\Rightarrow \tan 2C = \frac{\tan(A+B+C) - \tan(A+B-C)}{1 + \tan(A+B+C)\tan(A+B-C)}$ $\Rightarrow \tan 2C = \frac{\frac{\lambda}{y} - \frac{\lambda}{x}}{1 + \frac{\lambda}{y} \times \frac{\lambda}{x}} = \frac{\lambda(x-y)}{\lambda^2 + xy}$ 360 (c) Given, $\alpha + \beta = \frac{\pi}{2}$, $\beta + \gamma = \alpha$ $\Rightarrow \beta = \frac{\pi}{2} - \alpha, \qquad \beta + \gamma = \alpha$ $\frac{1}{8} \times \frac{1}{2}$ $\Rightarrow \tan \beta = \tan \left(\frac{\pi}{2} - \alpha\right) \text{ and } \tan(\beta + \gamma) = \tan \alpha$ $\Rightarrow \tan \beta = \cot \alpha \quad \dots(i)$ And $\frac{\tan \beta + \tan \gamma}{1 - \tan \beta \tan \gamma} = \tan \alpha$ $\Rightarrow \frac{\tan \beta + \tan \gamma}{1 - \cot \alpha \tan \gamma} = \frac{\tan \alpha}{1} \quad [\text{from Eq. (i)}]$ $\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \gamma$ $\Rightarrow \tan \alpha = \tan \beta + 2 \tan \gamma$ 361 (d) We have, $\frac{\tan\frac{6\pi}{15} - \tan\frac{\pi}{15}}{1 + \tan\frac{6\pi}{15}\tan\frac{\pi}{15}} = \tan\frac{\pi}{3}$ $\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} = \sqrt{3} + \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15}$ $\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15} = \sqrt{3}$ 362 (a) 52 (a) $\frac{\cos A}{\cos B} = n \text{ and } \frac{\sin A}{\sin B} = m$ $\therefore m^2 - n^2 = (m+n)(m-n)$ $= \frac{\sin(A+B)\sin(A-B)}{\cos^2 B \sin^2 B}$ $\Rightarrow m^2 - n^2 = \frac{\sin^2 A - \sin^2 B}{\cos^2 B \sin^2 B}$

$$\Rightarrow (m^2 - n^2) \sin^2 B = \frac{\sin^2 A - \sin^2 B}{\cos^2 B}$$

$$= \frac{\cos^2 B - \cos^2 A}{\cos^2 B}$$

$$\Rightarrow (m^2 - n^2) \sin^2 B = 1 - \frac{\cos^2 A}{\cos^2 B} = 1 - n^2$$
363 (a)
$$x = \sin 130^\circ + \cos 130^\circ$$

$$= \sin 50^\circ - \sin 40^\circ > 0$$

$$[\because \sin x \text{ is increasing for } 0 < x < \frac{\pi}{2}]$$
364 (c)
We have,
$$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$$

$$= (\tan 9^\circ + \tan 81^\circ) - (\tan 27^\circ + \tan 63^\circ)$$

$$= \frac{1}{\cos 9^\circ \cos 81^\circ} - \frac{1}{\sin 27^\circ \cos 27^\circ}$$

$$= \frac{2}{\sin 18^\circ} - \frac{2}{\sin 54^\circ}$$

$$= 2\{\frac{\sin 54 - \sin 18^\circ}{\sin 54^\circ \sin 18^\circ}\} = 2\{\frac{2\cos 36^\circ \sin 18^\circ}{\sin 18^\circ \cos 36^\circ}\} = 4$$
365 (c)
We have,
$$\sqrt{4\sin^4 \alpha + \sin^2 2\alpha} + 4\cos^2 (\frac{\pi}{4} - \frac{\alpha}{2})$$

$$= \sqrt{4\sin^2 \alpha (\sin^2 \alpha + \cos^2 \alpha)}$$

$$+ 4\left\{\frac{1 + \cos(\frac{\pi}{2} - \alpha)}{2}\right\}$$

$$= 2|\sin \alpha| + 2(1 + \sin \alpha)$$

$$= -2\sin \alpha + 2(1 + \sin \alpha) = 2 \quad [\because \sin \alpha < 0 \\ \text{for } \alpha \in 3\pi/2]$$
366 (d)
$$5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0$$

$$\Rightarrow 5(2\cos^2 \theta - 1) + (1 + \cos \theta) + 1 = 0$$

$$\Rightarrow 10\cos^2 \theta + \cos \theta - 3 = 0$$

$$\Rightarrow (5\cos \theta + 3)(2\cos \theta - 1) = 0$$

$$\Rightarrow \cos \theta = \frac{1}{2}, \cos \theta = -\frac{3}{5} \Rightarrow \theta$$

$$= \frac{\pi}{3}, \pi - \cos^{-1}(\frac{3}{5})$$
367 (b)
Given, $\sin^4 x + \cos^4 x = a$

$$\Rightarrow \sin^4 x + (1 - \sin^2 x)^4 = a$$

$$2\sin^4 x - 2\sin^2 x + (1 - a) = 0$$
For real solution, $D \ge 0$

 $\Rightarrow 1 - 2 + 2a \ge 0$ $\Rightarrow a \ge \frac{1}{2}$ Hence, option (b) is true

368 **(b)**

Equation first can be written as

$$x \sin a + y \times 2 \sin a \cos a + z$$

$$\times \sin a (3 - 4 \sin^2 a)$$

$$= 2 \times 2 \sin a \cos a \cos 2a$$

$$\Rightarrow x + 2y \cos a + z(3 + 4 \cos^2 a - 4)$$

$$= 4 \cos a (2 \cos^2 a - 1) \operatorname{as} \sin a$$

$$\neq 0$$

$$\Rightarrow 8 \cos^3 a - 4z \cos^2 a$$

$$- (2y + 4) \cos a + (z - x) = 0$$

$$\Rightarrow \cos^3 a - \left(\frac{z}{2}\right) \cos^2 a \\ - \left(\frac{y+2}{4}\right) \cos a + \left(\frac{z-x}{8}\right) = 0$$

Which shows that $\cos a$ is a root of the equation

$$t^{3} - \left(\frac{z}{2}\right)t^{2} - \left(\frac{y+2}{4}\right)t + \left(\frac{z-x}{8}\right) = 0$$

Similarly, from second and third equation we can verify that cos *b* and cos *c* are the roots of the given equation

369 **(c)**

Since,
$$a \cos x + b \sin x = c$$

$$\therefore a \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + b \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = c$$

$$\Rightarrow a - a \tan^2 \frac{x}{2} + 2b \tan \frac{x}{2} = c \left(1 + \tan^2 \frac{x}{2}\right)$$

$$\Rightarrow (c + a) \tan^2 \frac{x}{2} - 2b \tan \frac{x}{2} + c - a = 0$$
Since, α, β are both roots of the given equation

$$\therefore \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{2b}{c + a}$$
and $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{c - a}{c + a}$
Now, $\tan \left(\frac{\alpha + \beta}{2}\right) = \frac{\tan \frac{\alpha}{2} + \tan \frac{\beta}{2}}{1 - \tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2}}$

$$\Rightarrow \tan \left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{2b}{c + a}}{1 - \frac{c - a}{c + a}}$$

$$\Rightarrow \tan \left(\frac{\alpha + \beta}{2}\right) = \frac{b}{a}$$
370 (a)

In a
$$\triangle ABC$$
, we have
 $\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$
 $\Rightarrow \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \tan \frac{C}{2} + \frac{1}{3} \tan \frac{C}{2} = 1 \Rightarrow \tan \frac{C}{2} = \frac{7}{9}$
371 (b)
Given, $\tan \theta = \frac{1}{\sqrt{7}} \Rightarrow \cot \theta = \sqrt{7}$
Now, $\frac{(\cos e^2 \theta - \sec^2 \theta)}{(\csc^2 \theta - \sec^2 \theta)} = \frac{(1 + \cot^2 \theta - 1 - \tan^2 \theta)}{1 + \cot^2 \theta + 1 + \tan^2 \theta}$
 $= \frac{\cot^2 \theta - \tan^2 \theta}{2 + \cot^2 \theta + \tan^2 \theta}$
 $= \frac{(\sqrt{7})^2 - (\frac{1}{\sqrt{7}})^2}{2 + (\sqrt{7})^2 + (\frac{1}{\sqrt{7}})^2}$
 $= \frac{49 - 1}{7} \times \frac{7}{63 + 1} = \frac{48}{64} = \frac{3}{4}$
372 (b)
We have,
 $\tan 3 x = 1$
 $\Rightarrow \tan 3 x = \tan \frac{\pi}{4}$
 $\Rightarrow 3 x = n \pi + \frac{\pi}{4} \Rightarrow x = \frac{n \pi}{3} + \frac{\pi}{12}, n \in \mathbb{Z}$
373 (a)
We have,
 $3 \tan A - 4 = 0$
 $\Rightarrow \tan A = \frac{4}{3}$
 $\Rightarrow \sin A = -\frac{4}{5}, \cos A = -\frac{3}{5} \left[\because \pi < A < \frac{3\pi}{2} \right]$
 $\therefore 5 \sin 2A + 3 \sin A + 4 \cos A$
 $= 10 \sin A \cos A + 3 \sin A + 4 \cos A$
 $= 10 \left(\frac{12}{25}\right) - \frac{12}{5} - \frac{12}{5} = 0$
374 (c)
 $\cos 2\theta = \sin \theta$
 $\Rightarrow 1 - 2 \sin^2 \theta = \sin \theta$
 $\Rightarrow 2 \sin^2 \theta + \sin \theta - 1 = 0$
 $\Rightarrow 2 \sin^2 \theta + \sin \theta - 1 = 0$
 $\Rightarrow 2 \sin^2 \theta + \sin \theta - 1 = 0$
 $\Rightarrow 2 \sin^2 \theta + \sin \theta - 1 = 0$
 $\Rightarrow 2 \sin \theta (\sin \theta + 1) - (\sin \theta + 1) = 0$
 $\Rightarrow \sin \theta = -1, \quad \sin \theta = \frac{1}{2}$
 $\Rightarrow \sin \theta = \sin \frac{3\pi}{2}, \sin \theta = \sin \frac{\pi}{6}$
 $\Rightarrow \theta = n\pi + (-1)^n \frac{3\pi}{2},$
 $\Rightarrow \theta = m\pi + (-1)^m \frac{\pi}{6}$
For $\theta \in (0, 2\pi)$
 $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$
Hence number of solutions= 3

375 (b) We have, $\sin^4 x - 2\cos^2 x + a^2 = 0$ \Rightarrow $y^2 - 2(1 - y) + a^2 = 0$, where $\sin^2 x = y$ $\Rightarrow y^2 + 2y + a^2 - 2 = 0$ $\Rightarrow y = -1 \pm \sqrt{3 - a^2}$ For y to be real, we must have Disc. $\geq 0 \Rightarrow 4 - 4(a^2 - 2) \geq 0 \Rightarrow a^2 \leq 3 \dots (i)$ But, $\sin^2 x = y$. Therefore, $0 \le y \le 1$ $\Rightarrow 0 \le -1 + \sqrt{3 - a^2} \le 1$ $\Rightarrow 1 \le \sqrt{3 - a^2} \le 2$ $\Rightarrow 1 \leq 3 - a^2 \leq 4$ $\Rightarrow 2 - a^2 \ge 0 \Rightarrow a^2 \le 2$...(ii) From (i) and (ii), we have $a^2 \leq 2 \Rightarrow -\sqrt{2} \leq a \leq \sqrt{2}$ 376 (d) Given, $A + B + C = \pi$ $\Rightarrow \frac{A+B}{2} = \frac{\pi}{2} - \frac{C}{2}$ $\Rightarrow \tan\left(\frac{A+B}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{C}{2}\right) = \cot\frac{C}{2}$ $\Rightarrow \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \cot\frac{C}{2}$ $\Rightarrow \frac{\frac{1}{3} + \frac{2}{3}}{1 - \frac{1}{2} \times \frac{2}{2}} = \cot \frac{C}{2}$ $\left[\because \tan \frac{\breve{A}}{2} = \frac{\breve{1}}{3}, \tan \frac{B}{2} = \frac{2}{3} \text{ (given)}\right]$ $\Rightarrow \cot \frac{C}{2} = \frac{9}{7}$ $\Rightarrow \tan \frac{C}{2} = \frac{7}{2}$ 377 (d) Given, $x + \frac{1}{x} = 2\cos\alpha$ $\Rightarrow x^2 - 2x \cos \alpha + 1 = 0$ $\Rightarrow x = \frac{2 \cos \alpha \pm \sqrt{4 \cos^2 \alpha - 4}}{2}$ $\Rightarrow x = \cos \alpha + i \sin \alpha$ Now, $x^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha$ And $\frac{1}{x^n} = (\cos \alpha - i \sin \alpha)^n = \cos n\alpha - i \sin n\alpha$ $\therefore \quad x^n + \frac{1}{x^n} = \cos n\alpha$ $+i\sin n\alpha + \cos n\alpha - i\sin n\alpha$ $= 2 \cos n\alpha$ 378 **(b)** We have, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \frac{m}{m+1} \times \frac{1}{2m+1}}$

 $\Rightarrow \tan(\alpha + \beta) = \frac{2m^2 + 2m + 1}{2m^2 + 2m + 1} = 1 \Rightarrow \alpha + \beta = \frac{\pi}{4}$ 379 (a) Let AM be perpendicular from A on BC such that AM = p. Then, BC = 4p. Let AB = x and AC = yThen, $\Rightarrow x^2 + y^2 = (4p)^2$ In $\triangle ABM$, we have $p^2 + BM^2 = x^2$ $\Rightarrow p^{2} + (49 - k)^{2} = x^{2}$, where k = CM ...(i) М x In $\triangle ACM$, we have $p^2 = CM^2 = y^2 \Rightarrow p^2 + k^2 = y^2$...(ii) Adding (i) and (ii), we get $2p^2 + (4p - k)^2 = x^2 + y^2$ $\Rightarrow 2p^{2} + (4p - k)^{2} = (4p)^{2} \quad [\because x^{2} + y^{2} = (4p)^{2}]$ $\Rightarrow k = 2p - \sqrt{3}p$ $\Rightarrow BM = BC - CM \Rightarrow BM = 4p - (2p - \sqrt{3}p)$ $= 2p + \sqrt{3}p$ $\therefore \tan B = \frac{AM}{BM} \Rightarrow \tan B = \frac{p}{(2+\sqrt{3})p} = 2-\sqrt{3}$ $\Rightarrow B = 15^{\circ}$ 380 (d) We have, $\cot\theta \cot 7\theta + \cot\theta \cot 4\theta + \cot 4\theta \cot 7\theta = 1$ $\Rightarrow \cos\theta\cos4\theta\sin7\theta + \cos4\theta\cos7\theta\sin\theta$ $+\cos 7\theta \cos \theta \sin 4\theta - \sin \theta \sin 4\theta \sin 7\theta = 0$ $\Rightarrow \sin(\theta + 4\theta + 7\theta) = 0$ $\Rightarrow \sin 12 \ \theta = 0 \Rightarrow 12 \ \theta = n \ \pi, n \in Z \Rightarrow \theta = \frac{n \ \pi}{12}, n$ $\in Z$ 381 (c) We have $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{s-a}{\Delta} + \frac{s-b}{\Delta} + \frac{s-c}{\Delta} = \frac{s}{\Delta} = \frac{1}{r}$ 382 (b) $\tan(A + B + C)$ $=\frac{[\tan A + \tan B + \tan C - \tan A \tan B \tan C]}{[1 - \tan A \tan B - \tan B \tan C - \tan C \tan A]}$ \Rightarrow tan(90°) $\tan A + \tan B + \tan C - \tan A \tan B \tan C$ $1 - \tan A \tan B - \tan B \tan C - \tan C \tan A$ $\Rightarrow \tan A \tan B + \tan B \tan C + \tan C \tan A = 1$

383 (a) We have, $\cos x > \sin x$ for $0 < x < \pi/4$ $\Rightarrow \cos 10^{\circ} > \sin 10^{\circ} \Rightarrow \cos 10^{\circ} - \sin 10^{\circ} > 0$ 384 (d) We have, $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$, for all *x* $\Rightarrow a_1 + a_2 \cos 2x + a_3 \left(\frac{1 - \cos 2x}{2}\right) = 0, \text{ for all } x$ $\Rightarrow \left(a_1 + \frac{a_3}{2}\right) + \left(a_2 - \frac{a_3}{2}\right)\cos 2x = 0, \forall x$ $\Rightarrow a_1 + \frac{a_3}{2} = 0$ and $a_2 - \frac{a_3}{2} = 0$ $\Rightarrow a_1 = -\frac{k}{2}, a_2 = \frac{k}{2}, a_3 = k$, where, $k \in \mathbb{R}$ Hence, the solutions are $\left(-\frac{k}{2}, \frac{k}{2}, k\right)$, where k is any real number Thus, the number of triplets is infinite 385 (d) $\tan 60^\circ = \tan(40^\circ + 20^\circ)$ $\Rightarrow \sqrt{3} = \frac{\tan 40^\circ + \tan 20^\circ}{1 - \tan 40^\circ \cdot \tan 20^\circ}$ $\Rightarrow \sqrt{3} - \sqrt{3} \tan 40^\circ \tan 20^\circ = \tan 40^\circ + \tan 20^\circ$ \Rightarrow tan 40° + tan 20° + $\sqrt{3}$ tan 40° tan 20° = $\sqrt{3}$ 386 (b) $\therefore \cos(315 \pi + x) = (-1)^{315} \cos x = -\cos x$ $\therefore 4\cos^3 x - 4\cos^2 x - \cos(315 \pi + x) = 1$ $\Rightarrow 4\cos^3 x - 4\cos^2 x + \cos x - 1 = 0$ $\Rightarrow (4\cos^2 x + 1)(\cos x - 1) = 0$ $\Rightarrow \cos x = 1, 4 \cos^2 x + 1 \neq 0$ $\Rightarrow \cos x = \cos 0$ $\Rightarrow x = 2n\pi, n \in I$ $\therefore x = 2\pi, 4\pi, 6\pi, 8\pi, \dots, 100\pi$ (:: 0 < x < 315) $(ie, 100\pi < 315 < 101\pi)$ Required arithmetic mean $\frac{2\pi + 4\pi + 6\pi + 8\pi + \dots + 100\pi}{50}$ $=\frac{2\pi(1+2+3+4+\ldots+50)}{50}$ $=\frac{2\pi \cdot \frac{30}{2} \cdot 51}{50} = 51\pi$ 387 (d) We have, $\sum_{k=1}^{\infty}\cos^2(2k-1)\frac{\pi}{12}$ $=\cos^2\frac{\pi}{12}+\cos^2\frac{3\pi}{12}+\cos^2\frac{5\pi}{12}$ $=\sin^2\left(\frac{\pi}{2}-\frac{\pi}{12}\right)+\cos^2\frac{5\pi}{12}+\cos^2\frac{\pi}{4}$ $=\sin^2\frac{5\pi}{12} + \cos^2\frac{5\pi}{12} + \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2}$ 388 (a) $\therefore \cos x = \sqrt{1 - \sin 2x}$

 $\Rightarrow \cos x = |\sin x - \cos x|$ There are two cases arise. **Case I** $\sin x \le \cos x$ $\Rightarrow \cos x = \cos x - \sin x$ $\Rightarrow \sin x = 0$ where, $x \in \left[0, \frac{\pi}{4}\right] \cup \left(\frac{5\pi}{4}, 2\pi\right]$ $\Rightarrow x = 2\pi$, neglecting $x = \pi$ **Case II** $\sin x > \cos x$ $\Rightarrow \tan x = 2$ where, $x \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ $\therefore \tan x = 2$ $\Rightarrow x = \tan^{-1}(2)$ Thus, the given equation has two solutions 389 (b) We have, $\sin 2x \cos 2x \cos 4x = \lambda \Rightarrow \sin 8x = 4\lambda$ This equation will have a solution if $|4 \lambda| \leq 1 \Rightarrow \lambda \in [-1/4, 1/4]$ 390 **(b)** We have, $\sin x + \sin y = 3(\cos y - \cos x)$ $\Rightarrow \sin x + 3\cos x = 3\cos y - \sin y \quad \dots(i)$ $\Rightarrow r \cos(x - \alpha) = r \cos(y + \alpha)$, where $r = \sqrt{10}$, $\tan \alpha = \frac{1}{2}$ $\Rightarrow x - \alpha = \pm (y + \alpha)$ $\Rightarrow x = -y \text{ or } x - y = 2\alpha$ Clearly, x = -y satisfies equation (i). $\therefore \frac{\sin 3x}{\sin 3y} = -\frac{\sin 3y}{\sin 3y} = -1$ 391 (a) Since, $\tan \alpha = k \cot \beta$ or $\tan \alpha \tan \beta = k$ Now, $\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)} = \frac{\cos\alpha\cos\beta + \sin\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta}$ $=\frac{1+\tan\alpha\tan\beta}{1-\tan\alpha\tan\beta}=\frac{1+k}{1-k}$ 392 (c) Given, $\theta = \frac{2 \sin \theta}{1 + \sin x}$ $\Rightarrow \theta = \frac{4\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}$ $\Rightarrow \theta = \frac{2\sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}} \times \frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)}{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)}$ $\Rightarrow \theta = \frac{1 - \cos x + \sin x}{1 + \sin x}$ 393 (a) We have, $\frac{s-a}{\Lambda} = \frac{1}{8}, \frac{s-b}{\Delta} = \frac{1}{12} \text{ and } \frac{s-c}{\Delta} = \frac{1}{24}$ \Rightarrow $r_1 = 8, r_2 = 12$ and $r_3 = 24$

 $\therefore r = \frac{\sum r_1 r_2}{r_1 r_2 r_2} \Rightarrow r = \frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2} \Rightarrow r = 4$ Now, $b = \sqrt{(r_2 - r)(r_1 + r_3)} \Rightarrow b$ $=\sqrt{(12-8)\times(8\times24)} = 16$ 394 (d) We have, $\cos^2\left(\frac{1}{2}p\,x\right) + \cos^2\left(\frac{1}{2}q\,x\right) = 1$ $\Rightarrow 1 + \cos px + 1 + \cos qx = 2$ $\Rightarrow \cos px + \cos qx = 0$ $\Rightarrow \cos px = \cos(\pi - qx)$ $\Rightarrow p x = 2 n \pi \pm \pi - qx, n \in Z$ $\Rightarrow x = \frac{(2n+1)\pi}{n+a}, \frac{(2n-1)\pi}{n-a}, n \in \mathbb{Z}$ Clearly, the values given by $x = \frac{(2n+1)\pi}{p+q}$, $n \in Z$ form an A.P. with common difference $\frac{2\pi}{p+q}$ and the values given by $x = \frac{(2n-1)\pi}{p-q}$, $n \in Z$ form an A.P. with common difference $\frac{2\pi}{n-a}$ 395 (c) We have, $\sec^2 \theta = \sqrt{2}(1 - \tan^2 \theta)$ $\Rightarrow (1 + \tan^2 \theta) = \sqrt{2}(1 - \tan^2 \theta)$ $\Rightarrow \cos 2\theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \cos 2\theta = \cos \frac{\pi}{4}$ $\Rightarrow 2\theta = 2 n \pi \pm \frac{\pi}{4}, n \in Z \Rightarrow \theta = n \pi \pm \frac{\pi}{9}, n \in Z$ 396 (c) Given, $\tanh^{-1}(x + iy) = \frac{1}{2} \tanh^{-1}\left(\frac{2x}{1 + x^2 + y^2}\right) + \frac{1}{2} \tanh^{-1}\left(\frac{2x}{1 + x^2 + y^2}\right)$ $\frac{i}{2}$ tan⁻¹ $\left(\frac{2y}{1-x^2-y^2}\right)$; $x, y \in R$ Put x = 0. $\tanh^{-1}(iy) = \frac{1}{2} \tanh^{-1}(0) + \frac{i}{2} \tan^{-1}\left(\frac{2y}{1-y^2}\right)$ $= 0 + \frac{i}{2} \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) \quad (\text{put } y = \tan \theta)$ $=\frac{l}{2}\tan^{-1}(\tan 2\theta)$ $=\frac{l}{2}2\theta$ $= i \tan^{-1} y$ 397 (a) At the intersection point of $y = \cos x$ and $y = \sin 3x$, we have $\cos x = \sin 3x$ $\Rightarrow \cos x = \cos\left(\frac{\pi}{2} - 3x\right)$ $\Rightarrow x = 2n \pi \pm \left(\frac{\pi}{2} - 3x\right)$

$$\Rightarrow x = \frac{\pi}{4}, \frac{\pi}{8} \qquad [\because -\pi/2 \le x \le \pi/2]$$

So, $y = \cos \frac{\pi}{4}$ at $x = \frac{\pi}{4}$ and $y = \cos \frac{\pi}{8}$, at $x = \frac{\pi}{8}$
Thus, the points are $(\pi/4, 1/\sqrt{2})$ and $(\pi/8, \cos \pi/8)$
398 **(d)**
We have,

$$A = \cos^{2} \theta + \sin^{4} \theta$$

$$\Rightarrow A = \cos^{2} \theta + \sin^{2} \theta . \sin^{2} \theta$$

$$\Rightarrow A \le \cos^{2} \theta + \sin^{2} \theta \Rightarrow A \le 1 \quad [\because \sin^{2} \theta \le 1]$$

Again,

$$A = \cos^{2} \theta + \sin^{4} \theta = (1 - \sin^{2} \theta) + \sin^{4} \theta$$

$$\Rightarrow A = \left(\sin^{2} \theta - \frac{1}{2}\right)^{2} + \frac{3}{4}$$

$$\ge \frac{3}{4} \quad [\because (\sin^{2} \theta - 1/2)^{2} \ge 0]$$

Hence, $\frac{3}{4} \le A \le 1$

We have, $\sin(\pi + \theta) = -\sin \theta$ $\therefore \sin 190^\circ = -\sin 10^\circ$, $\sin 200^\circ = -\sin 20^\circ$, $\sin 210^\circ = -\sin 30^\circ$, $\sin 360^\circ = \sin 180^\circ = 0$ Thus, all the terms in the given series cancel with each other. Consequently, the sum is zero

400 **(c)**

$$5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3$$

= $5\cos\theta + 3\left(\cos\theta\cos\frac{\pi}{3} - \sin\theta\sin\frac{\pi}{3}\right) + 3$
= $5\cos\theta + \frac{3}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta + 3$
= $\frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta + 3$
 \therefore maximum value= $3 + \sqrt{\left(\frac{13}{2}\right)^2 + \left(-\frac{3\sqrt{3}}{2}\right)^2}$
= $3 + \sqrt{\frac{196}{4}} = 3 + 7 = 10$

401 (c)

Since, f(x) is a continuous decreasing function on $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

 \therefore f(x) attains every value between $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

Its minimum value

 $f\left(\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right)$ And maximum value $f\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right)$

402 (a)
We have,

$$\frac{x}{a}\cos \alpha + \frac{y}{b}\sin \alpha = 1$$

 $\frac{x}{a}\cos \beta + \frac{y}{b}\sin \beta = 1$
By cross-multiplication, we have
 $\frac{\frac{x}{a}}{\sin \beta - \sin \alpha} = \frac{\frac{y}{b}}{\cos \alpha - \cos \beta} = \frac{1}{\sin(\beta - \alpha)}$
 $= \frac{x}{a} = \frac{\sin \beta - \sin \alpha}{\sin(\beta - \alpha)} \text{ and } \frac{y}{b} = \frac{\cos \alpha - \cos \beta}{\sin(\beta - \alpha)}$
 $\Rightarrow \frac{x}{a} = \frac{\left(\frac{\alpha + \beta}{2}\right)}{\cos\left(\frac{\beta - \alpha}{2}\right)} \text{ and } \frac{y}{b} = \frac{\sin\left(\frac{\alpha + \beta}{2}\right)}{\cos\left(\frac{\beta - \alpha}{2}\right)}$
 $\Rightarrow \frac{x^2}{a^2} - 1 = \frac{\cos^2\left(\frac{\alpha + \beta}{2}\right) - \cos^2\left(\frac{\beta - \alpha}{2}\right)}{\cos^2\left(\frac{\beta - \alpha}{2}\right)}$
And,
 $\frac{y^2}{b^2} - 1 = \frac{\sin^2\left(\frac{\alpha - \beta}{2}\right) - \sin^2\left(\frac{\alpha + \beta}{2}\right)}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$
 $\Rightarrow \frac{x^2}{a^2} - 1 = \frac{\sin^2\left(\frac{\alpha - \beta}{2}\right) - \sin^2\left(\frac{\alpha + \beta}{2}\right)}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$
And,
 $\frac{y^2}{b^2} - 1 = \frac{\cos^2\left(\frac{\alpha - \beta}{2}\right) - \sin^2\left(\frac{\alpha + \beta}{2}\right)}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$
 $\Rightarrow \frac{x^2}{a^2} - 1 = \frac{-\sin \alpha \sin \beta}{\cos^2\left(\frac{\alpha - \beta}{2}\right)} \text{ and } \frac{y^2}{b^2} - 1$
 $= -\frac{\cos \alpha \cos \beta}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$
 $\Rightarrow \frac{b^2(x^2 - a^2)}{a^2(y^2 - b^2)} = \frac{\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{a^2}{a^2}}$
 $\Rightarrow \frac{b^2(x^2 - a^2)}{y^2 - b^2} = -1 \quad \left[\because \frac{\cos \alpha \cos \beta}{a^2} + \frac{\sin \alpha \sin \beta}{b^2}\right]$
 $= 0$
 $\Rightarrow x^2 + y^2 = a^2 + b^2$
Hence, option (a) is correct
403 (a)
 $\left(1 + \cos \frac{\pi}{6}\right)\left(1 + \cos \frac{\pi}{3}\right)\left(1 + \cos \frac{2\pi}{3}\right)\left(1 + \cos \frac{7\pi}{6}\right)$
 $= \left(1 - \frac{3}{4}\right)\left(1 - \frac{1}{4}\right) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$

404 **(b)** Given, $\cos p\theta = -\cos q\theta = \cos(\pi + q\theta)$ $\Rightarrow p\theta = 2n\pi \pm (\pi + q\theta), n \in I$ $\Rightarrow \theta = \frac{(2n+1)\pi}{p-q} \text{ or } \frac{(2n-1)\pi}{p+q}, n \in I$ Angle $\theta = \frac{(2n+1)\pi}{p-q}$ gives an AP with common difference $\frac{2\pi}{p-q}$ and $\theta = \frac{(2n-1)\pi}{p-q}$ gives also an AP with common difference $\frac{2\pi}{p+q}$ Certainly, $\frac{2\pi}{p+q} < \left|\frac{2\pi}{p-q}\right|$ \therefore The smallest common difference is $\frac{2\pi}{p+q}$ 405 **(a)** We have, $\sin^4 \theta + \cos^4 \theta = a$ $\Rightarrow (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = a$ $\Rightarrow 1 - \frac{1}{2}\sin^2 2\theta = a$ $\Rightarrow 1 - \frac{1}{2}\left(\frac{1 - \cos 4\theta}{2}\right) = a$

$$\Rightarrow \frac{3}{4} + \frac{1}{4}\cos 4 \theta = a$$

$$\Rightarrow \cos 4 \theta = 4a - 3$$

Now,

$$-1 \le \cos 4 \theta \le 1 \Rightarrow -1 \le 4a - 3 \le 1 \Rightarrow 2 \le 4a$$

$$\le 4 \Rightarrow \frac{1}{2} \le a \le 1$$

406 **(b)**

1. Given,
$$\csc \theta - \sec \theta = \csc \theta$$
. $\sec \theta$

$$\Rightarrow \frac{\cos \theta - \sin \theta}{\cos \theta \sin \theta} = \frac{1}{\cos \theta \sin \theta}$$

$$\Rightarrow \cos \theta - \sin \theta = 1 \Rightarrow \cos \left(\frac{\pi}{4} + \theta\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{\pi}{4} + \theta = 2n\pi \pm \frac{\pi}{4} \Rightarrow \text{ Solution exist}$$
2. $\csc \theta \cdot \sec \theta = 1$

$$\Rightarrow \sin \theta \cos \theta = 1$$

$$\Rightarrow 2\sin \theta \cos \theta = 2$$

$$\Rightarrow \sin 2\theta = 2$$
As we know $\sin \theta$ is not greater than 1

 \therefore The above equation has no solution exist

407 (a)

We have,

 $y = \frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \frac{\sin \theta (1 + 2\cos \theta)}{\cos \theta (1 + 2\cos \theta)}$ $= \tan \theta$ $\therefore y \in (-\infty, \infty)$ 408 (b) The equation $7\cos\theta + 5\sin\theta = 2k + 1$ possesses a solution, if $-\sqrt{7^2+5^2} \le 2k+1 \le \sqrt{7^2+5^2}$ $\Rightarrow -\sqrt{74} \le 2k + 1 \le \sqrt{74}$ $\Rightarrow -8 \le 2k + 1 \le 8$ [For integral values of k] $\Rightarrow -4 \le k \le 3 \Rightarrow k = -4, \pm 3, \pm 2, \pm 1, 0$ 409 (b) $\sin x > 0 \Rightarrow x \in (0, \pi)$...(i) $\cos x > 0 \Rightarrow x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$...(ii) From relations (i) and (ii), we get $x \in \left(0, \frac{\pi}{2} \right)$...(iii) Now, $\log_{1/2} \sin x > \log_{1/2} \cos x$ $\Rightarrow \sin x < \cos x \text{ in } x \in (0, \frac{\pi}{4}) \dots (\text{iv})$ From relations Eqs. (iii) and (iv), we get $x \in \left(0, \frac{\pi}{4}\right)$ 410 (c) We have, $\log_{1/2} \sin x > \log_{1/2} \cos x$ $\Rightarrow \sin x < \cos x$ $\Rightarrow x$ $\in (0, \pi 4)$ $\cup (3\pi 2, 2\pi) \begin{bmatrix} \text{Draw graphs of } y = \sin x \\ \text{and } y = \cos x \text{ and compare} \end{bmatrix}$ 411 (a) $\cos^2\left(\frac{\pi}{4}+\theta\right)-\sin^2\left(\frac{\pi}{4}-\theta\right)$ $= \cos\left(\frac{\pi}{4} + \theta + \frac{\pi}{4} - \theta\right)\cos\left(\frac{\pi}{4} + \theta - \frac{\pi}{4} + \theta\right)$ $=\cos\left(\frac{\pi}{2}\right)\cos(2\theta)=0$ 413 (a) It is given that α and β are the roots of the equation $a \cos \theta + b \sin \theta = c$ or, $a\left(\frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}\right) + \frac{2b\tan^2\theta}{1+\tan^2\theta} = c$ or, $\tan^2 \frac{\theta}{2}(a+c) - 2b \tan \frac{\theta}{2} + (c-a) = 0$ This equation has $\tan\frac{\alpha}{2}$ and $\tan\frac{\beta}{2}$ as its roots $\therefore \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{2b}{a+c} \text{ and, } \tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{c-a}{c+a}$ $\Rightarrow \tan\left(\frac{\alpha+\beta}{2}\right) = \frac{2b}{(c+\alpha)-(c-\alpha)} = \frac{b}{\alpha}$ 414 (d)

We have, $\cos 3x + \cos 2x = \sin \frac{3x}{2} + \sin \frac{x}{2}$ $\Rightarrow 2\cos\frac{5x}{2}\cos\frac{x}{2} = 2\sin x\cos\frac{x}{2}$ Either $\cos \frac{x}{2} = 0$ $\Rightarrow \frac{x}{2} = (2n+1)\frac{\pi}{2}$ $\Rightarrow x = (2n+1)\pi$ or $\cos \frac{5x}{2} = \sin x$ $\Rightarrow \cos\frac{5x}{2} = \cos\left(\frac{\pi}{2} - x\right)$ $\Rightarrow \frac{5x}{2} = 2n\pi \pm \left(\frac{\pi}{2} - x\right)$ Taking the +ve sign $\frac{7x}{2} = 2n\pi + \frac{\pi}{2}$ $\Rightarrow x = \frac{4n\pi}{7} + \frac{\pi}{7}$ Taking -ve sign $\frac{3x}{2} = 2n\pi - \frac{\pi}{2} \Rightarrow x = \frac{4n\pi}{3} - \frac{\pi}{3}$ $x = \frac{\pi}{7}, \frac{5\pi}{7}, \frac{9\pi}{7}, \frac{13\pi}{7}, \pi$ Thus, number of solutions = 5415 (c) Let *a*, *b*, *c* be the lengths of the sides of \triangle *ABC*. It is given that *a*, *b*, *c* are the roots of the equation $x^3 - 2x^2 - x - 16 = 0$ $\therefore a + b + c = 2$ and abc = 16Now. $Rr = \frac{abc}{4\Delta} \times \frac{\Delta}{s} = \frac{abc}{4s} = \frac{abc}{2(a+b+c)} = \frac{16}{2\times 2} = 4$ 416 (a) Applying $R_3 \rightarrow R_3 - R_2$ and $R_2 \rightarrow R_2 - R_1$, we get $\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 2 & \sin^2 \theta & 4 \sin 4 \theta \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{vmatrix} = 0,$ [Applying $C_1 \rightarrow C_1 + C_2$] \Rightarrow 2 + 4 sin 4 θ = 0 $\Rightarrow \sin 4 \theta = -\frac{1}{2}$ $\Rightarrow 4 \theta = n \pi + (-1)^n \left(-\frac{\pi}{6}\right), n \in \mathbb{Z}$ $\Rightarrow \theta = \frac{n \pi}{4} + (-1)^{n+1} \frac{\pi}{24}, n \in \mathbb{Z}$ Clearly, $\theta = \frac{7\pi}{24}, \frac{11\pi}{24}$ are two values of θ lying between 0 and $\frac{\pi}{2}$ given by the above relation 417 (a) We have, $\sqrt{3} \cot 20^\circ - 4 \cos 20^\circ$

 $=\frac{\sqrt{3}\cot 20^\circ}{\sin 20^\circ}-4\cos 20^\circ$ $=\frac{\sqrt{3}\cot 20^{\circ} - 4\sin 20^{\circ}\cos 20^{\circ}}{\sin 20^{\circ}}{2\sin 60^{\circ}\cos 20^{\circ} - 2\sin 40^{\circ}}$ sin 20° $\frac{\sin 20^{\circ}}{\sin 20^{\circ}} = \frac{\sin 80^{\circ} - \sin 40^{\circ}}{\sin 20^{\circ}} = \frac{\sin 80^{\circ} - \sin 40^{\circ}}{\sin 20^{\circ}}$ $=\frac{2\cos 60^\circ \sin 20^\circ}{\sin 20^\circ}=1$ 418 (a) We have, $\cos x \cos 6x = -1$ $\Rightarrow 2 \cos x \cos 6x = -2$ $\Rightarrow \cos 7x + \cos 5x = -2 \Rightarrow \cos 7x = -1$ and $\cos 5 x = -1$ The value of x satisfying these two equations simultaneously and lying between 0 and 2 π is π . Therefore, the general solution is given by $x = 2n \pi + \pi, n \in Z \Rightarrow x = (2n + 1)\pi, n \in Z$ 419 (c) Let $a = 6 + \sqrt{12}$, $b = \sqrt{48}$, $c = \sqrt{24}$ Clearly, *c* is the smallest side. Therefore, the smallest angle *C* is given by $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\sqrt{3}}{2} \Rightarrow C = \frac{\pi}{c}$ 420 (b) Given, $\tan 2\theta = \frac{1}{\tan \theta}$ $\Rightarrow \tan 2\theta = \tan\left(\frac{\pi}{2} - \theta\right)$ $\Rightarrow 2\theta = n\pi + \frac{\pi}{2} - \theta$ $\Rightarrow \theta = \frac{\pi}{6}(2n+1)$ 421 (a) Given, $\cot(\alpha + \beta) = 0 \Rightarrow \cos(\alpha + \beta) = 0$ $\Rightarrow \alpha + \beta = (2n+1)\frac{\pi}{2}, n \in I$ $\therefore \sin(\alpha + 2\beta) = \sin(2\alpha + 2\beta - \alpha)$ $= \sin[(2n+1)\pi - \alpha]$ $= \sin(2n\pi + \pi - \alpha)$ $= \sin(\pi - \alpha) = \sin \alpha$ 422 (c) $6(\sin^6\theta + \cos^6\theta) - 9(\sin^4\theta + \cos^4\theta) + 4$ $= 6[(\sin^2\theta + \cos^2\theta)^3$ $-3\sin^2\theta\cos^2\theta(\sin^2\theta+\cos^2\theta)$ $-9[(\sin^2\theta + \cos^2\theta)^2]$ $-2\sin^2\theta\cos^2\theta$] + 4 $= -6[1 - 3 \sin^2 \theta \cos^2 \theta] - 9(1 - 2 \sin^2 \theta \cos^2 \theta)$ +4

$$= 6 - 9 + 4 = 1$$

423 (c) We have, $y = \cos^2 x + \sec^2 x$ $\Rightarrow y = (\cos x - \sec x)^2 + 2 \ge 2$ $\Rightarrow y \ge 2$

424 **(b)**

Since $0 < \sin x < 1$ and $0 < \cos x < 1$ for all $x \in (0, \pi/2)$. Therefore, angle opposite to the side of one unit length is the largest angle and is given by

$$\cos\theta = \frac{\sin^2 x + \cos^2 x - 1}{2\sin x \cos x} = 0 \Rightarrow \theta = \frac{\pi}{2}$$

425 **(b)**

In a
$$\triangle ABC$$

$$A + B + C = \pi$$

$$\therefore \cos\left(\frac{B + 2C + 3A}{2}\right) + \cos\left(\frac{A - B}{2}\right)$$

$$= 2\cos\left(\frac{2C + 4A}{4}\right)\cos\left(\frac{2A + 2B + 2C}{4}\right)$$

$$= 2\cos\left(\frac{C + 2A}{2}\right)\cos\left(\frac{\pi}{2}\right) = 0$$
(c)

426

426 (a)
Given,
$$\cos 2\alpha = \frac{2\cos 2\beta - 1}{3 - \cos 2\beta}$$

 $\Rightarrow \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{3\left(\frac{1 - \tan^2 \beta}{1 + \tan^2 \beta}\right) - 1}{3 - \left(\frac{1 - \tan^2 \beta}{1 + \tan^2 \beta}\right)}$
 $\Rightarrow \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{2 - 4\tan^2 \beta}{2 + 4\tan^2 \beta} = \frac{1 - 2\tan^2 \beta}{1 + 2\tan^2 \beta}$
Applying componendo and dividendo, we get
 $\frac{1}{\tan^2 \alpha} = \frac{1}{2\tan^2 \beta}$
 $\Rightarrow \tan \alpha = \sqrt{2} \tan \beta$
427 (d)
We have,
 $\sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cos^2 \theta$
 $= (\sin^2 \theta)^3 + (\cos^2 \theta)^3$
 $+ 3\sin^2 \theta \cos^2 \theta (\sin^2 \theta + \cos^2 \theta)$

 $= (\sin^2 \theta + \cos^2 \theta)^3 = 1$ 428 (c)

Putting
$$\theta = \frac{\pi}{9}$$
, in $\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$
We get
 $\tan \frac{\pi}{3} = \frac{3\tan\frac{\pi}{9} - \tan^3\frac{\pi}{9}}{1 - 3\tan^2\frac{\pi}{9}}$
 $\Rightarrow 3\left(1 - 3\tan^2\frac{\pi}{9}\right)^2 = \left(3\tan\frac{\pi}{9} - \tan^3\frac{\pi}{9}\right)^2$
 $\Rightarrow \tan^6\frac{\pi}{9} - 33\tan^4\frac{\pi}{9} + 27\tan^2\frac{\pi}{9} = 3$
429 (d)
Given that,

$$\sin x + \cos x = \min_{a \in R} \{1, a^2 - 4a + 6\}$$
Now, $a^2 - 4a + 6 = (a - 2)^2 + 2$

$$\therefore \min_{a \in R} \{1, a^2 - 4a + 6\} = \min\{1, 2\} = 1$$

$$\Rightarrow \sin (x + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow x + \frac{\pi}{4} = n\pi + (-1)^n \cdot \frac{\pi}{4}$$

$$\Rightarrow x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$$
430 (b)
$$\cos \frac{\pi}{15} \cdot \cos \frac{2\pi}{15} \cdot \cos \frac{4\pi}{15} \cdot \cos \frac{8\pi}{15}$$

$$= \frac{1}{4} (2 \cos \frac{4\pi}{15} \cos \frac{\pi}{15}) (2 \cos \frac{8\pi}{15} \cos \frac{2\pi}{15})$$

$$= \frac{1}{4} (\cos 60^\circ + \cos 36^\circ) (\cos 120^\circ + \cos 72^\circ)$$

$$= \frac{1}{4} (\frac{1}{2} + \frac{\sqrt{5} + 1}{4}) (-\frac{1}{2} + \frac{\sqrt{5} - 1}{4})$$

$$= \frac{1}{4} [-\frac{1}{4} + \frac{1}{2} (\frac{\sqrt{5} - 1}{4} - \frac{\sqrt{5} + 1}{4}) + \frac{5 - 1}{16}] = -\frac{1}{16}$$
432 (b)
Since sec *a* and cosec *a* are the roots of the equation
$$x^2 - ax + b = 0$$

$$\therefore sec a + cosec a = a and sec a cosec a = b$$

$$\Rightarrow sin a + \cos a = a sin a \cos a and sin a \cos a = \frac{1}{b}$$
Now,
(sin a + cos a)^2 = 1 + 2 sin a cos a
$$\Rightarrow \frac{a^2}{b^2} = 1 + \frac{2}{3} \Rightarrow a^2 = b(b + 2)$$
433 (a)
Since, 1 + sin x sin^2 \frac{x}{2} = 0
$$\therefore 1 + sin x (\frac{1 - \cos x}{2}) = 0$$

$$\Rightarrow 2 + sin x - sin x cos x = 0$$

$$\Rightarrow sin 3x (2 \cos 2x - 1) = 0$$

$$\Rightarrow sin 3x (2 \cos 2x - 1) = 0$$

$$\Rightarrow sin 3x = 0$$
Or 2 cos 2x - 1 = 0

$$\Rightarrow 3x = 0, x = \frac{\pi}{3} \text{ or } x = \frac{\pi}{6}$$

$$\therefore Solutions in (0, \frac{\pi}{2}) are \frac{\pi}{3}, \frac{\pi}{6}$$

435 (a) We have, H.M. of ex-radii $=\frac{3}{\frac{1}{r}+\frac{1}{r}+\frac{1}{r}}=\frac{3\Delta}{s-a+s-b+s-c}=\frac{3\Delta}{s}=3r$ 436 (c) We have, $3(\sin x - \cos x)^4 + 4(\sin^6 x + \cos^6 x)$ $+ 6(\sin x + \cos x)^2$ $= 3\{(\sin x - \cos x)^2\}^2 + 4\{(\sin^2 x)^3 + (\cos^2 x)^3\}$ $+ 6(1 + \sin 2x)$ $= 3(1 - \sin 2x)^2$ $+ 4(\sin^4 x + \cos^4 x)$ $-\sin^2 x \cos^2 x + 6(1 + \sin 2x)$ $= 3(1 - 2\sin 2x + \sin^2 2x) + 4\left(1 - \frac{3}{4}\sin^2 2x\right)$ $+ 6(1 + \sin 2x)$ 437 (a) Since, $4\cos\theta - 3\sec\theta = 2\tan\theta$ $\Rightarrow 4\cos\theta - \frac{3}{\cos\theta} = 2\frac{\sin\theta}{\cos\theta}$ $\Rightarrow 4\cos^2\theta - 3 = 2\sin\theta$ $\Rightarrow 4 - 4\sin^2\theta - 3 = 2\sin\theta$ $\Rightarrow 4 \sin^2 \theta + 2 \sin \theta - 1 = 0$ $\Rightarrow \sin \theta = \frac{-1 \pm \sqrt{5}}{4}$ Either $\sin \theta = \frac{-1+\sqrt{5}}{4}$ or $\sin \theta = \frac{-1-\sqrt{5}}{4}$ $\Rightarrow \sin \theta = \sin \frac{\pi}{10} \text{ or } \sin \theta = \sin \left(-\frac{3\pi}{10} \right)$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{10} \text{ or } \theta = n\pi + (-1)^n \left(-\frac{3\pi}{10}\right)$ 438 (b) In $\triangle ADC$, we have $\sin C = \frac{AD}{h} \Rightarrow AD = b \sin C$ Also, $AD = \frac{abc}{b^2 - c^2}$ [Given] $\therefore \frac{abc}{b^2 - c^2} = b \sin C$ $\Rightarrow \frac{ac}{b^2 - c^2} = \sin C$ $\Rightarrow \frac{\sin A \sin C}{\sin^2 B - \sin^2 C} = \sin C \quad [Usi]$ $\Rightarrow \frac{\sin A \sin C}{\sin(B+C)\sin(B-C)} = \sin C$ [Using Sine rule] $\Rightarrow \sin(B - C) = 1 \Rightarrow B - C = 90^{\circ}$

 $\Rightarrow B = 90^{\circ} + C \Rightarrow B = 113^{\circ}$ 439 (c) It is given that $\cos(x - y)$, $\cos x$ and $\cos(x + y)$ are in H.P. $\therefore \frac{2}{\cos x} = \frac{1}{\cos(x-y)} + \frac{1}{\cos(x+y)}$ $\Rightarrow \frac{2}{\cos x} = \frac{2\cos x \cos y}{\cos^2 x - \sin^2 y}$ $\Rightarrow \cos^2 x \cos y = \cos^2 x - \sin^2 y$ $\Rightarrow \cos^2 x (1 - \cos y) = \sin^2 y$ $\Rightarrow 2\cos^2 x \sin^2 \frac{y}{2} = 4\sin^2 \frac{y}{2}\cos^2 \frac{y}{2}$ $\Rightarrow \cos^2 x \sec^2 \frac{y}{2} = 2$ $\Rightarrow \left|\cos x \sec \frac{y}{2}\right| = \sqrt{2}$ 440 (b) We have. $-5 \le 3\sin\theta - 4\cos\theta \le 5$ for all θ $\Rightarrow 2 \le 3 \sin \theta - 4 \cos \theta + 7 \le 12$ for all θ $\Rightarrow \frac{1}{12} \le \frac{1}{3\sin\theta - 4\cos\theta + 7} \le \frac{1}{2}$ for all θ 441 (d) We have, $\frac{a^2+1}{2a} = \cos\theta$ $\Rightarrow a + \frac{1}{a} = 2\cos\theta$ $\Rightarrow \left(a + \frac{1}{a}\right)^3 = 8\cos^3\theta$ $\Rightarrow a^3 + \frac{1}{a^3} + 3\left(a + \frac{1}{a}\right) = 8\cos^3\theta$ $\Rightarrow a^3 + \frac{1}{a^3} + 6\cos\theta = 8\cos^3\theta$ $\Rightarrow \frac{a^{\circ} + 1}{2a^3} = 4\cos^3\theta - 3\cos\theta \Rightarrow \frac{a^6 + 1}{2a^3} = \cos 3\theta$ 442 (a) $2\cos x - \cos 3x$ $-\cos 5x = 2\cos x - 2\cos x\cos 4x$ $= 2 \cos x (1 - \cos 4x)$ $= 2 \cos x 2 \sin^2 2x$ $= 4 \cos x (2 \sin x \cos x)^2$ $= 16 \sin^2 x \cos^3 x$ 443 (d) We have, $\tan\left(\frac{\alpha\pi}{4}\right) = \cot\left(\frac{\beta\pi}{4}\right)$ $\Rightarrow \tan\left(\frac{\alpha\pi}{4}\right) = \tan\left(\frac{\pi}{2} - \frac{\beta\pi}{4}\right)$

$$\Rightarrow \alpha \frac{\pi}{4} = n \pi + \left(\frac{\pi}{2} - \beta \frac{\pi}{4}\right)$$

$$\Rightarrow \alpha = 2(2n+1) - \beta \Rightarrow \alpha + \beta = 2(2n+1)$$

444 (d)

$$2 \sin x \cos x = \frac{1}{2}$$

$$\Rightarrow \sin 2x = \frac{1}{2} = \sin \frac{\pi}{6}$$

$$\Rightarrow 2x = n\pi + (-1)^n \frac{\pi}{6}$$

$$\Rightarrow x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$

For $x \in \left(0, \frac{\pi}{2}\right)$
 $x = \frac{\pi}{12}$ (n = 0)
445 (c)

Given that, $\sin \theta + \csc \theta = 2$

On squaring both sides, we get

 $\sin^2\theta + \csc^2\theta + 2 = 4$

 $\Rightarrow \sin^2 \theta + \csc^2 \theta = 2$

446 (d)

$$\frac{\cos C - \cos A}{\sin A - \sin C} = \frac{2\sin\left(\frac{A+C}{2}\right)\sin\left(\frac{A-C}{2}\right)}{2\cos\left(\frac{A+C}{2}\right)\sin\left(\frac{A-C}{2}\right)}$$
$$= \frac{2\sin B}{2\cos B} = \tan B \quad [\because A+C = 2B, \text{given}]$$
447 (c)

We have, BD = DC and $\angle DAB = 90^{\circ}$ Draw $CN \perp$ to BA produced. Then, in $\triangle BCN$, we have

$$DA = \frac{1}{2}CN \text{ and } AB = AN$$

Let $\angle CAN = \alpha$
 $\therefore \tan A = \tan(\pi - \alpha)$
 $\Rightarrow \tan A = -\tan \alpha$

$$\int_{A}^{B} \int_{B}^{B} \int_{B}^$$

 $a = (b - c) \sec \theta$

 $\Rightarrow a^2 = (b - c)^2 \sec^2 \theta$ $\Rightarrow b^{2} + c^{2} - 2bc \cos A = (b^{2} + c^{2} - 2bc) (1 + \tan^{2} \theta)$ $\Rightarrow 2bc(1 - \cos A) = (b^{2} + c^{2} - 2bc) \tan^{2} \theta$ $\Rightarrow 4bc\sin^2\frac{A}{2} = (b^2 + c^2 - 2bc)\tan^2\theta$ $\Rightarrow \frac{4bc\sin^2\frac{A}{2}}{(b-c)^2} = \tan^2\theta \Rightarrow \frac{2\sqrt{bc}}{b-c}\sin\frac{A}{2} = \tan\theta$ 449 (b) We have, $\cot^2 36^\circ \cot^2 72^\circ$ $=\frac{\cos^2 36^\circ \cos^2 72^\circ}{\cos^2 72^\circ}$ $= \frac{\cos 36^{\circ} \cos 72^{\circ}}{\sin^{2} 36^{\circ} \sin^{2} 72^{\circ}}$ $= \frac{(1 + \cos 72^{\circ})(1 + \cos 144^{\circ})}{(1 - \cos 72^{\circ})(1 - \cos 144^{\circ})}$ $= \frac{(1 - \cos 72^\circ)(1 - \cos 144^\circ)}{(1 - \cos 72^\circ)(1 - \cos 36^\circ)}$ = $\frac{(1 + \cos 72^\circ)(1 - \cos 36^\circ)}{(1 - \cos 72^\circ)(1 + \cos 36^\circ)}$ = $\frac{1 + \cos 72^\circ - \cos 36^\circ - \cos 72^\circ \cos 36^\circ}{1 - \cos 72^\circ + \cos 36^\circ - \cos 72^\circ) - \cos 72^\circ \cos 36^\circ}$ = $\frac{1 - (\cos 36^\circ - \cos 72^\circ) - \cos 72^\circ \cos 36^\circ}{1 + \cos 36^\circ - \cos 72^\circ - \cos 72^\circ \cos 36^\circ}$ $= \frac{1 - \frac{1}{2} - \frac{1}{4}}{1 + \frac{1}{2} - \frac{1}{4}} = \frac{1}{5} \quad \begin{bmatrix} \because \cos 36^\circ - \cos 72^\circ = \frac{1}{2} \\ \text{and, } \cos 36^\circ \cos 72^\circ = \frac{1}{4} \end{bmatrix}$ $\Rightarrow \cot^2 36^\circ \cot^2 72^\circ = \frac{1}{5} \Rightarrow \cot 36^\circ \cot 72^\circ = \frac{1}{\sqrt{5}}$ 450 (a) $\tan \theta = \frac{4}{5}$ $\therefore \sin \theta = \frac{4}{\sqrt{41}}, \cos \theta = \frac{5}{\sqrt{41}}$ Now, $\frac{5\sin\theta - 3\cos\theta}{\sin\theta + 2\cos\theta} = \frac{5 \times \frac{4}{\sqrt{41}} - \frac{3 \times 5}{\sqrt{41}}}{\frac{4}{\sqrt{41}} + 2 \times \frac{5}{\sqrt{41}}} = \frac{5}{14}$ 451 (a) (1) $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $=\frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-\frac{m}{m+1}\cdot\frac{1}{2m+1}}$ $=\frac{2m^2+2m+1}{2m^2+2m+1}=1$ $\Rightarrow \alpha + \beta = \frac{1}{2}$ (2) At $\theta = \frac{\pi}{4}$ LHS = $3 \tan(45^\circ - 15^\circ) = 3 \tan 30^\circ = \sqrt{3}$ RHS = $\tan(45^{\circ} + 15^{\circ}) = \tan 60^{\circ} = \sqrt{3}$ \therefore LHS = RHS (3) Given $\sin^2 ax - \sin^2(a-1)x = \sin^2 x$ $\Rightarrow \sin(2a-1)x\sin(x) = \sin^2 x$

 $\Rightarrow \sin x = 0$ and $\sin (2a - 1)x = \sin x$

 $\Rightarrow x = n\pi$ and $(2a - 1)x = n\pi + (-1)^n x$

Hence, option (a) is correct 452 (a) We have, $\tan A \tan B = 2 \quad \dots (i)$ and, $\cos(A - B) = \frac{3}{5}$...(ii) From (ii), we have $\Rightarrow \tan(A - B) = \frac{4}{3}$ $\Rightarrow \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{4}{3}$ $\Rightarrow \frac{\tan A - \tan B}{1 + 2} = \frac{4}{3} \quad \text{[Using (i)]}$ $\Rightarrow \tan A - \tan B = 4$...(iii) $\Rightarrow (\tan A + \tan B)^2 = 16 + 8$ $\Rightarrow \tan A + \tan B = 2\sqrt{6}$...(iv) From (iii) and (iv), we get $\tan A = 2 + \sqrt{6}, \tan B = \sqrt{6} - 2$ $\Rightarrow \cos A = \frac{1}{\sqrt{1+4\sqrt{6}}}$ and, $\sin A = \frac{\sqrt{6}-2}{\sqrt{1+4\sqrt{6}}}$ $\cos B = \frac{1}{\sqrt{11 - 4\sqrt{6}}}$ and, $\sin B = \frac{\sqrt{6} - 2}{\sqrt{11 - 4\sqrt{6}}}$ $\Rightarrow \cos A \cos B = \frac{1}{5}$ and, $\sin A \sin B = \frac{2}{5}$ $\Rightarrow \cos(A+B) = -\frac{1}{5}$

453 **(b)**

Given that, $\sin \theta = -\frac{4}{5}$ and θ lies in the IIIrd quadrant

 $\Rightarrow \cos \theta - \sqrt{1 - \frac{16}{25}} = -\frac{3}{5}$ Now, $\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} = \pm \sqrt{\frac{1 - \frac{3}{5}}{2}} = \pm \sqrt{\frac{1}{5}}$ But we take $\cos \frac{\theta}{2} =$

-15.Since, if θ lies in IIIrd quadrant, then θ 2 will be in IInd quadrant

Hence, $\cos\frac{\theta}{2} = -\frac{1}{\sqrt{5}}$

454 **(a)**

On squaring an adding given equations, we get $(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2$

$$= \left(-\frac{21}{65}\right)^2 + \left(-\frac{27}{65}\right)^2$$

$$\Rightarrow \sin^2 \alpha + \sin^2 \beta$$

$$+ 2 \sin \alpha \sin \beta$$

$$+ \cos^2 \alpha$$

$$+ \cos^2 \beta + 2 \cos \alpha \cos \beta = \frac{1170}{4225}$$

$$\Rightarrow 2 + 2 \cos(\alpha - \beta) = \frac{1170}{4225}$$

$$\Rightarrow 2\left[2\cos^{2}\left(\frac{\alpha-\mu}{2}\right)\right] = \frac{1170}{4\times 4225} = \frac{9}{130}$$

$$\Rightarrow \cos^{2}\left(\frac{\alpha-\beta}{2}\right) = -\frac{3}{\sqrt{130}} \quad [\because \ \pi < \alpha - \beta < 3\pi]$$
455 (d)
We have,
 $\sin x + \sin^{2} x = 1 \Rightarrow \sin x = 1 - \sin^{2} x \Rightarrow \sin x$
 $= \cos^{2} x$
 $\therefore \cos^{8} x + 2\cos^{5} x + \cos^{4} x$
 $= \sin^{4} x + 2\sin^{3} x + \sin^{2} x = (\sin x + \sin^{2} x)^{2}$
 $= 1$
456 (a)
We have,
 $\cos(\alpha + \beta) \sin(\gamma + \delta) = \cos(\alpha - \beta)\sin(\gamma - \delta)$
 $\Rightarrow \frac{\cos(\alpha + \beta)}{\sin(\alpha - \beta)} = \frac{\sin(\gamma - \delta)}{\sin(\gamma + \delta)}$
 $\Rightarrow \frac{\cos(\alpha + \beta)}{\cos(\alpha + \beta) - \cos(\alpha - \beta)}$
 $\Rightarrow \frac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{\cos(\alpha + \beta) - \cos(\alpha - \beta)}$
 $\Rightarrow \frac{2\cos \alpha \cos \beta}{-2\sin \alpha \sin \beta} = \frac{2\sin \gamma \cos \delta}{-2\sin \delta \cos \gamma}$
 $\Rightarrow \cot \alpha \cot \beta = \tan \gamma \cot \delta$
 $\Rightarrow \cot \alpha \cot \beta = \tan \gamma \cot \delta$
 $\Rightarrow \cot \alpha \cot \beta \cot \gamma = \cot \delta$
457 (c)
We have,
 $AD^{2} + BE^{2} + CF^{2}$
 $= \frac{1}{4}(2b^{2} + 2c^{2} - a^{2} + 2c^{2} + 2a^{2} - b^{2} + 2a^{2} + 2b^{2} - c^{2})$
 $= \frac{3}{4}(a^{2} + b^{2} + c^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = (BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = (BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = \frac{3}{4}(BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = (BC^{2} + CA^{2} + AB^{2}) = 3$
 $\therefore (AD^{2} + BE^{2} + CF^{2}) = (A^{2} + A^{2} + AB^{2}) = 3$
 $\Rightarrow \alpha + \beta = 2(2n + 1), \forall n \in I$
460 (d)
Given, $\frac{2\sin \alpha}{1 + \cos \alpha + \sin \alpha} = x$

1170

 ρ_{λ}

$$\Rightarrow \frac{2\sin\alpha(1-\cos\alpha-\sin\alpha)}{(1+\cos\alpha+\sin\alpha)(1-\cos\alpha-\sin\alpha)} = x$$
$$\Rightarrow \frac{2\sin\alpha(1-\cos\alpha-\sin\alpha)}{1-\sin^2\alpha-\cos^2\alpha-2\sin\alpha\cos\alpha} = x$$
$$\Rightarrow \frac{1-\cos\alpha-\sin\alpha}{\cos\alpha} = -x$$

461 (a)

Let *r* be the radius of the circle and A_1 be its area. Then, $A_1 = \pi r^2$ Since the perimeter of the circle is same as the perimeter of a regular polygon of *n* sides $\therefore 2 \pi r = n a$, when 'a' is the length of one side of the regular polygon $\Rightarrow a = \frac{2 \pi r}{n}$ Let A_2 be the area of the polygon. Then, $A_2 = \frac{1}{4} \pi a^2 \cot\left(\frac{\pi}{n}\right) = \frac{\pi^2 r^2}{n} \cot\left(\frac{\pi}{n}\right)$ $\therefore A_1 : A_2 = \pi r^2 : \frac{\pi^2 r^2}{n} \cot\left(\frac{\pi}{n}\right) = \tan\left(\frac{\pi}{n}\right) : \frac{\pi}{n}$ 462 (a) We have $a\cos A + b\cos B + c\cos C$ $=\frac{a+b+c}{2R(\sin 2A+\sin 2B+\sin 2C)}$ $\frac{4\sin A \sin B \sin C}{A - B - C} = 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = \frac{r}{R}$ 464

$$2\left(4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}\right) \qquad 1 \text{ for } Z$$

We have,
$$\tan(\cot x) = \cot(\tan x)$$
$$\Rightarrow \tan(\cot x) = \tan\left(\frac{\pi}{2} - \tan x\right)$$
$$\Rightarrow \cot x = n\pi + \frac{\pi}{2} - \tan x, n \in Z$$
$$\Rightarrow \cot x + \tan x = n\pi + \frac{\pi}{2}$$
$$\Rightarrow \frac{1}{\sin x \cos x} = (2n+1)\frac{\pi}{2}$$
$$\Rightarrow \sin 2x = \frac{4}{(2n+1)\pi}, n \in Z$$

465 (a)

Given that, $2 \sin A = \sqrt{3} \sin B$

$$\Rightarrow 2\sqrt{5}\sin A = \sqrt{15}\sin B \qquad \dots(i)$$

and
$$2\cos A = \sqrt{5}\cos B$$

$$\Rightarrow 2\sqrt{3}\cos A = \sqrt{15}\cos B \quad \dots(ii)$$

On squaring and adding Eqs. (i) and (ii), we get

$$20 \sin^2 A + 12 \cos^2 A = 15$$

$$\Rightarrow 8 \sin^2 A = 3 \Rightarrow \sin^2 A = \frac{3}{8}$$

$$\Rightarrow \cos^2 A = \frac{5}{8}$$

$$\therefore \frac{\sin^2 A}{\cos^2 A} = \frac{3}{5} \Rightarrow \tan A = \sqrt{\frac{3}{5}}$$

466 (c)

We have,

$$\cos^{2}(A - B) + \cos^{2} B - 2\cos(A - B)\cos A\cos B$$

$$= \cos^{2}(A - B) + \cos^{2} B$$

$$-\cos(A - B)$$

$$\times [\cos(A - B) + \cos(A + B)]$$

$$= \cos^{2} B - \cos(A - B)\cos(A + B)$$

$$= \cos^{2} B - (\cos^{2} A - \sin^{2} B)$$

$$= 1 - \cos^{2} A = \sin^{2} A$$
Hence, it depends on A

467 (d) We have, $r_1 = 4R \sin{\frac{A}{2}}\cos{\frac{B}{2}}\cos{\frac{C}{2}}, b = 2R \sin{B}$ and c $\therefore \frac{r_1}{hc} = \frac{4R\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}}{AR^2\sin R\sin C}$ $\Rightarrow \frac{r_1}{bc} = \frac{\sin\frac{A}{2}}{4R\sin\frac{B}{2}\sin\frac{C}{2}} \Rightarrow \frac{r_1}{bc} = \frac{\sin^2\frac{A}{2}}{4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}$ $\Rightarrow \frac{r_1}{hc} = \frac{\sin^2 \frac{A}{2}}{r}$ Similarly, $\frac{r_2}{r_3} = \frac{\sin^2 \frac{B}{2}}{r_3}$ and $\frac{r_3}{r_4} = \frac{\sin^2 \frac{C}{2}}{r_4}$ $\therefore \frac{r_1}{hc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} \left\{ \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \right\}$ $\Rightarrow \frac{r_1}{hc} + \frac{r_2}{ca} + \frac{r_3}{ah}$ $=\frac{1}{2r}\{1$ $\cos A + 1 - \cos B + 1 - \cos C$ $\Rightarrow \frac{r_1}{hc} + \frac{r_2}{ca} + \frac{r_3}{ah}$ $= \frac{1}{2r} \{3 - (\cos A + \cos B + \cos C)\}\$ $\Rightarrow \frac{r_1}{hc} + \frac{r_2}{ca} + \frac{r_3}{ab}$ $=\frac{1}{2r}\left\{3-\left(1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)\right\}$ $\Rightarrow \frac{r_1}{hc} + \frac{r_2}{ca} + \frac{r_3}{ah} = \frac{1}{2r} \left(2 - \frac{r}{R} \right) = \frac{1}{r} - \frac{1}{2R}$ 468 (a) We have, $a = \sin A + \sin B$, $b = \cos A + \cos B$ $\Rightarrow a^{2} + b^{2} = 2 + 2\cos(A - B)$...(i) and. $b^2 - a^2 = \cos 2A + \cos 2B + 2\cos(A + B)$ $\Rightarrow b^{2} - a^{2} = 2\cos(A + B) \{\cos(A - B) + 1\}$ $\Rightarrow b^2 - a^2 = 2\cos(A + B)\left(\frac{a^2 + b^2}{2}\right)$ [Using (i)] $\Rightarrow \cos(A+B) = \frac{b^2 - a^2}{a^2 + b^2}$ 469 (c) Clearly, the given equation is not meaningful at odd multiples of $\frac{\pi}{2}$ We have, $\tan x + \sec x = 2\cos x$ $\Rightarrow 1 + \sin x = 2(1 - \sin^2 x)$ $\Rightarrow 2\sin^2 x + \sin x - 1 = 0$ $\Rightarrow \sin x = \frac{1}{2}, -1 \Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}$ 470 (c) We have,

 $A + B + C = \pi \Rightarrow nA + nB + nC = n \pi$ $\therefore \tan(nA + nB + nC) = \tan n \pi \Rightarrow \frac{S_1 - S_3}{1 - S_2} = 0$ $\Rightarrow S_1 = S_3$ $\Rightarrow \tan nA + \tan nB$ $+ \tan nC = \tan nA \tan nB \tan nC$ 471 (a) We know that $IA = \frac{r}{\sin A/2}$, $IB = \frac{r}{\sin B/2}$ and $IC = \frac{r}{\sin C/2}$ $\therefore IA : IB : IC = \csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$ 472 (b) We have $\sin\frac{13\pi}{14} = \sin\left(\pi - \frac{\pi}{14}\right) = \sin\frac{\pi}{14}$ $\sin\frac{11\pi}{14} = \sin\left(\pi - \frac{3\pi}{14}\right) = \sin\frac{3\pi}{14}$ $\sin\frac{9\pi}{14} = \sin\left(\pi - \frac{5\pi}{14}\right) = \sin\frac{5\pi}{14}\sin\frac{7\pi}{14} = \sin\frac{\pi}{2} = 1$ $\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}\sin\frac{7\pi}{14}\sin\frac{9\pi}{14}\sin\frac{11\pi}{14}\sin\frac{13\pi}{14}$ $=\left\{\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}\right\}$ $= \left\{ \cos\left(\frac{\pi}{2} - \frac{\pi}{14}\right) \cos\left(\frac{\pi}{2} - \frac{3\pi}{2}\right) \cos\left(\frac{\pi}{2} - \frac{5\pi}{14}\right) \right\}^{2}$ $=\left\{\cos\frac{6\pi}{14}\cos\frac{4\pi}{14}\cos\frac{2\pi}{14}\right\}^{2}$ $=\left\{\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{3\pi}{7}\right\}$ $=\left\{-\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\right\}^2$ $= \left\{ \frac{-\sin(2^3 \pi/7)}{2^3 \sin \pi/7} \right\}^2 = \left\{ \frac{-\sin 8\pi/7}{8 \sin \pi/7} \right\}^2 = \left(\frac{1}{8} \right)^2 = \frac{1}{64}$ 473 (b) The given equation can be written as $(\sin\theta + \sqrt{3})\tan\theta = 0$ $\Rightarrow \tan \theta = 0 \Rightarrow \theta = n \pi$, $n \in Z$ 474 (b) We have, $2a = \sqrt{3}b + c$ $\Rightarrow 2\sin A = \sqrt{3}\sin B + \sin C \quad \left[\because \frac{a}{\sin A} = \frac{b}{\sin B} \right]$ $=\frac{c}{\sin c}$ $\Rightarrow 2\sin(B+C) = \sqrt{3}\sin B + \sin C$ $\Rightarrow \sin B \cos C + \cos B \sin C = \frac{\sqrt{3}}{2} \sin B + \frac{1}{2} \sin C$ $\Rightarrow \cos C = \frac{\sqrt{3}}{2}$ and $\cos B$ $=\frac{1}{2}$ [By comparing two sides]

$$\Rightarrow C = \frac{\pi}{6} \text{ and } B = \frac{\pi}{3} \Rightarrow A = \frac{\pi}{2} \Rightarrow a^2 = b^2 + c^2$$
475 (a)
We have,

$$\tan 89^\circ = \tan(90^\circ - 1^\circ) = \cot 1^\circ$$

$$\tan 88^\circ = \tan(90^\circ - 2^\circ) = \cot 2^\circ \text{ etc}$$

$$\tan 1^\circ \tan 2^\circ \tan 3^\circ \dots \tan 88^\circ \tan 89^\circ$$

$$= \tan 1^\circ \tan 2^\circ \tan 3^\circ \dots \tan 45^\circ \cot 44^\circ \cot 43^\circ \dots \cot 43^\circ$$

476 (b)

We have,

$$b \cos 2\theta + a \sin 2\theta$$

= $b \left(\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) + \frac{2a \tan \theta}{1 + \tan^2 \theta}$
= $b \frac{(1 - a^2/b^2)}{(1 + a^2/b^2)} + \frac{2a(a/b)}{1 + (a^2/b^2)}$
= $\frac{b(b^2 - a^2) + 2a^2b}{a^2 + b^2} = b$

4

4

4

477 (b)

Given, $|\sin x| = \cos x$ $\therefore \sin^2 x = \cos^2 x$ $\Rightarrow 2\cos^2 x = 1$ $\Rightarrow \cos x = +\frac{1}{\sqrt{2}}$ [: $\cos x$ cannot be negative] $\Rightarrow \quad x = 2n\pi \pm \frac{\pi}{4}$

478 (b)

We have, $3\left\{\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4(3\pi-\alpha)\right\}$ $-2\left\{\sin^6\left(\frac{\pi}{2}+\alpha\right)+\sin^6(5\pi-\alpha)\right\}$ $= 3[\cos^4 \alpha + \sin^4 \alpha] - 2[\cos^6 \alpha + \sin^6 \alpha]$ $= 3[1 - 2\sin^2 \alpha \cos^2 \alpha] - 2[1 - 3\sin^2 \alpha \cos^2 \alpha]$ $= 3 - 6\sin^2\alpha\cos^2\alpha - 2 + 6\sin^2\alpha\cos^2\alpha = 1$ 479 (d) We have, $4\sin\theta\cos\theta - 2\cos\theta - 2\sqrt{3}\sin\theta + \sqrt{3} = 0$ $\Rightarrow 2\sin\theta(2\cos\theta - \sqrt{3}) - 1(2\cos\theta - \sqrt{3}) = 0$ $\Rightarrow (2\cos\theta - \sqrt{3})(2\sin\theta - 1) = 0$ $\Rightarrow \cos \theta = \frac{\sqrt{3}}{2} \text{ or, } \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$ 480 (a) We have, $\sum a^3 \cos(B-C)$ $= \sum k^3 \sin^3 A \cos(B - C)$ $=k^3\sum\sin^2 A\sin(B+C)\cos(B-C)$ $=\frac{k^3}{2}\sum\sin^2 A(\sin 2B + \sin 2C)$

$$= \frac{k^{3}}{2} \sum_{i=1}^{2} [\sin^{2} A(\sin 2B + \sin 2C) + \sin^{2} B(\sin 2C + \sin 2A) + \sin^{2} C(\sin 2A + \sin 2B)]$$

$$= k^{3} \sum_{i=1}^{2} [\sin^{2} A \sin B \cos B + \sin^{2} B \sin A \cos A] = k^{3} \sum_{i=1}^{2} \sin A \sin B \sin (A + B)$$

$$= k^{3} [\sin A \sin B \sin C + \sin B \sin C \sin A + \sin C \sin A + \sin C \sin A \sin B]$$

$$= 3(k \sin A)(k \sin B)(k \sin C) = 3 abc$$
481 (a)
sin 60 + sin 40 + sin 20 = 0
 $\Rightarrow \sin 60 + \sin 20 + \sin 40 = 0$
 $\Rightarrow 2 \sin 40 \cos 20 + \sin 40 = 0$
 $\Rightarrow 2 \sin 40 \cos 20 + \sin 40 = 0$
 $\Rightarrow 2 \cos 20 = -1 \Rightarrow \cos 20 = -\frac{1}{2}$
 $\Rightarrow \cos 20 = \cos \frac{2\pi}{3}$
 $\Rightarrow 20 = 2n\pi \pm \frac{2\pi}{3} \Rightarrow 0 = n\pi \pm \frac{\pi}{3}$
and sin 40 = 0 $\Rightarrow 40 = n\pi \Rightarrow 0 = \frac{n\pi}{4}$
 $\Rightarrow 0 = \frac{n\pi}{4} \text{ or } n\pi \pm \frac{\pi}{3}$
482 (c)
Now, on taking option one by one, we get
(a) sin 15° = sin(45° - 30°) = $\frac{\sqrt{3}-1}{2\sqrt{2}}$ = irrational
(b) cos 15° = cos(45° - 30°) = $\frac{\sqrt{3}+1}{2\sqrt{2}}$ = irrational
(c) sin 15° cos 75° = sin 15° sin 15° = sin² 15°
 $= \left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^{2} = \frac{4-2\sqrt{3}}{8} = irrational$
(d) sin 15° cos $\frac{1}{15} \cos \frac{14\pi}{15} \cos \frac{8\pi}{15}$
 $= -\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{8\pi}{15} \cos \frac{8\pi}{15} = -\frac{\sin \frac{16\pi}{15}}{16 \sin \frac{\pi}{15}} = -\frac{\sin \frac{16\pi}{15}}{16 \sin \frac{\pi}{15}} = \frac{1}{16}$
484 (c)
We have,
We have,

 $\tan\theta\tan(120^\circ-\theta)\tan(120^\circ+\theta) = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan \theta \tan(60^\circ + \theta) \tan(60^\circ - \theta) = \frac{1}{\sqrt{3}}$ $[\because \tan\theta \tan(60^\circ - \theta) \tan(60^\circ + \theta) = \tan 3\theta]$ $\Rightarrow \tan 3 \theta = \frac{1}{\sqrt{3}}$ $\Rightarrow \tan 3 \theta = \tan \frac{\pi}{6}$ $\Rightarrow 3 \theta = n \pi + \frac{\pi}{6}, n \in Z \Rightarrow \theta = \frac{n \pi}{3} + \frac{\pi}{18}, n \in Z$ 485 (a) $\cos\left(x+\frac{\pi}{6}\right)+\sin\left(x+\frac{\pi}{6}\right)$ $=\sqrt{2}\left[\frac{1}{\sqrt{2}}\cos\left(x+\frac{\pi}{6}\right)+\frac{1}{\sqrt{2}}\sin\left(x+\frac{\pi}{6}\right)\right]$ $=\sqrt{2}\cos\left(x+\frac{\pi}{6}-\frac{\pi}{4}\right)=\sqrt{2}\cos\left(x-\frac{\pi}{12}\right)$ \therefore For maximum value $x = \frac{\pi}{12}$ 486 (a) We have, $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $=\frac{\frac{1}{\sqrt{x(x^2+x+1)}}+\frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1-\frac{1}{\sqrt{x(x^2+x+1)}}\cdot\frac{\sqrt{x}}{\sqrt{x^2+x+1}}}$ $=\frac{(1+x)\sqrt{x^2+x+1}}{\sqrt{x}x(x+1)}$ $=\sqrt{x^{-3}+x^{-2}+x^{-1}}=\tan\gamma$ (given) $\therefore \alpha + \beta = \gamma$ 487 (a) In $\triangle BCD$, tan $15^\circ = \frac{BC}{BD}$ $\Rightarrow \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{x}{x + 35}$ $\Rightarrow \frac{\sqrt{3-1}}{\sqrt{2}+1} = \frac{x}{x+35}$ $\Rightarrow \sqrt{3}x + 35\sqrt{3} - x - 35 = \sqrt{3}x + x$ $\Rightarrow x = \frac{35(\sqrt{3} - 1)}{2}$ $\therefore CD = \sqrt{\left(\frac{35}{2}\right)^2 \left\{ \left(\sqrt{3} + 1\right)^2 + \left(\sqrt{3} - 1\right)^2 \right\}}$ $=\frac{35}{2} \times 2\sqrt{2} = 35\sqrt{2}$ cm

488 **(b)**

$$\tan \alpha \tan 2\alpha \dots \tan(2n-1)\alpha \tan(2n-1)\alpha$$

$$= \{\tan \alpha \tan(2n-1)\alpha\} \{\tan 2\alpha \tan(2n-1)\alpha + 1)\alpha\} (\tan (n-1)\alpha \tan(n+1)\alpha) \tan n\alpha$$

$$= \{\tan \alpha \tan\left(\frac{\pi}{2} - \alpha\right)\} \{\tan 2\alpha \tan\left(\frac{\pi}{2} - 2\alpha\right)\} \dots \tan\frac{\pi}{4} \quad (\because n\alpha = \frac{\pi}{4})$$

48

49

9 (c)
We have,

$$r_1: r_2: r_3 = 2: 4: 6$$

 $\Rightarrow \frac{\Delta}{s-a}: \frac{\Delta}{s-b}: \frac{\Delta}{s-c} = 2: 4: 6$
 $\Rightarrow s - a: s - b: s - c = \frac{1}{2}: \frac{1}{4}: \frac{1}{6}$
 $\Rightarrow s - a = \frac{\lambda}{2}, s - b = \frac{\lambda}{4} \text{ and } s - c = \frac{\lambda}{6}$
Now,
 $a = (s-b) + (s-c) = \frac{\lambda}{4} + \frac{\lambda}{6} = \frac{5\lambda}{12}$
 $b = (s-c) + (s-a) = \frac{\lambda}{6} + \frac{\lambda}{2} = \frac{8\lambda}{12}$
 $c = (s-a) + (s-b) = \frac{\lambda}{2} + \frac{\lambda}{4} = \frac{9\lambda}{12}$
 $\therefore a: b: c = 5: 8: 9$
We have,

We have,

$$\cos A = \frac{\sin B}{2 \sin C}$$

$$\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{b}{2c} \Rightarrow c^2 = a^2 \Rightarrow c = c$$
So, the triangle is an isosceles triangle
491 (c)

We have,

$$\sin x + \sin y = \sin(x + y)$$

$$\Rightarrow 2 \sin\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)$$

$$- 2 \sin\left(\frac{x + y}{2}\right) \cos\left(\frac{x + y}{2}\right) = 0$$

$$\Rightarrow 2 \sin\left(\frac{x + y}{2}\right) \left\{\cos\left(\frac{x - y}{2}\right) - \cos\left(\frac{x + y}{2}\right)\right\} = 0$$

$$\Rightarrow 4 \sin\left(\frac{x + y}{2}\right) \sin\frac{x}{2} \sin\frac{y}{2} = 0$$

 $\Rightarrow \sin\left(\frac{x+y}{2}\right) = 0 \text{ or, } \sin\frac{x}{2} = 0, \sin\frac{y}{2} = 0 \dots (i)$ Now, $|x| + |y| = 1 \Rightarrow |x| \le 1$ and $|y| \le 1$ Hence, the only solution of equations in (i), can be taken as x + y = 0, x = 0, y = 0Putting x = 0 in |x| + |y| = 1, we get $y = \pm 1$ Putting y = 0 in |x| + |y| = 1, we obtain $x = \pm 1$ Finally, putting x + y = 0 i.e. y = -x in |x| + |y| = 1, we obtain $2|x| = 1 \Rightarrow |x| = \frac{1}{2} \Rightarrow c = \pm \frac{1}{2}$ Hence, we obtain the following six pairs of (x, y)i.e. $(0, \pm 1), (\pm 1, 0), (1/2, -1/2), (-1/2, 1/2)$ 492 (a) We have. $\cos x + \cos y = \frac{3}{2}$ $\Rightarrow 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = \frac{3}{2}$ $\Rightarrow 2\cos\frac{\pi}{3}\cos\left(\frac{x-y}{2}\right) = \frac{3}{2} \quad \left[\text{Using}: x+y=\frac{2\pi}{3}\right]$ $\Rightarrow \cos\left(\frac{x-y}{2}\right) = \frac{3}{2}$, which is not possible Hence, the system of equations has no solution 493 (a) $p = \sin^2 x + \cos^2 x (1 - \sin^2 x)$ $\Rightarrow p = (\sin^2 x + \cos^2 x) - \sin^2 x \cos^2 x$ $= 1 - \sin^2 x \cos^2 x$...(i) Which shows $p \leq 1$ Again, $p = 1 - \cos^2 x + \cos^4 x$ $p = \left(\cos^2 x - \frac{1}{2}\right)^2 + \frac{3}{4}$ Which shows $p \ge \frac{3}{4}$...(ii) From Eqs. (i) and (ii), we get $\frac{3}{4} \le p \le 1$ 494 (a) tan 6° tan 42° tan 66° tan 78° $= \tan 6^{\circ} \tan(60^{\circ})$ – 18°) tan(60° $+ 6^{\circ}$) tan(60° + 18°) $\tan 6^{\circ} \tan(60^{\circ} + 6^{\circ}) \tan 18^{\circ}$ $=\frac{\tan(60^{\circ}-18^{\circ})\tan(60^{\circ}+18^{\circ})}{100^{\circ}}$ tan 18° $\tan 6^{\circ} \tan(60^{\circ} + 6^{\circ}) \tan(3 \times 18^{\circ})$ tan 18° $=\frac{\tan 6^{\circ} \tan (60^{\circ} - 6^{\circ}) \tan (60^{\circ} + 6^{\circ})}{\tan 18^{\circ}}$ $=\frac{\tan 18^{\circ}}{\tan 18^{\circ}}=1$

495 (d) $\cos x + \cos^2 x = 1 \implies \cos x = \sin^2 x$ Now, $\sin^{12} x + 3 \sin^{10} x + 3 \sin^8 x + \sin^6 x - 1$ $=\cos^{6} x + 3\cos^{5} x + 3\cos^{4} x + \cos^{3} x - 1$ $= (\cos^2 x + \cos x)^3 - 1 = 1 - 1 = 0$ 496 (b) We have, $\tan 20^\circ + 2 \tan 50^\circ - \tan 70^\circ$ $= 2 \tan 50^{\circ} - (\tan 70^{\circ} - \tan 20^{\circ})$ $= 2 \tan 50^\circ - \frac{\sin 50^\circ}{\cos 70^\circ \cos 20^\circ}$ $2 \tan 50^\circ - \frac{\sin 50^\circ}{2 \sin 50^\circ}$ $= 2 \tan 50^{\circ} - \frac{2 \sin 20^{\circ}}{2 \sin 20^{\circ} \cos 20^{\circ}}$ $= 2\tan 50^\circ - \frac{2\sin 50^\circ}{\sin 40^\circ}$ $= 2 \tan 50^{\circ} - \frac{2 \sin 50^{\circ}}{\cos 50^{\circ}} = 2 \tan 50^{\circ} - 2 \tan 50^{\circ}$ 497 (c) $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha$ $= \tan \alpha + 2 \tan 2\alpha + 4 \left[\frac{\sin 4\alpha}{\cos 4\alpha} + 2 \frac{\cos 8\alpha}{\sin 8\alpha} \right]$ $= \tan \alpha$ $+ 2 \tan 2\alpha$ $+4\left[\frac{\cos 4\alpha \cos 8\alpha + \sin 4\alpha \sin 8\alpha + \cos 4\alpha \cos 8\alpha}{\sin 8\alpha \cos 4\alpha}\right]$ $= \tan \alpha + 2 \tan 2\alpha + 4 \left[\frac{\cos 4\alpha + \cos 4\alpha \cos 8\alpha}{\sin 8\alpha \cos 4\alpha} \right]$ $= \tan \alpha + 2 \tan 2\alpha + 4 \left[\frac{\cos 4\alpha (1 + \cos 8\alpha)}{\cos 4\alpha \sin 8\alpha} \right]$ $= \tan \alpha + 2 \tan 2\alpha + 4 \left[\frac{2 \cos^2 4\alpha}{2 \sin 4\alpha \cos 4\alpha} \right]$ $= \tan \alpha + 2(\tan 2\alpha + 2 \cot 4\alpha)$ $= \tan \alpha + 2 \left[\frac{\sin 2\alpha}{\cos 2\alpha} + 2 \frac{\cos 4\alpha}{\sin 4\alpha} \right]$ $= \tan \alpha$ $+ 2 \left[\frac{\sin 2\alpha \sin 4\alpha + \cos 4\alpha \cos 2\alpha + \cos 4\alpha \cos 2\alpha}{\sin 4\alpha \cos 2\alpha} \right]$ $= \tan \alpha + 2 \left[\frac{\cos 2\alpha + \cos 2\alpha \cos 4\alpha}{\sin 4\alpha \cos 2\alpha} \right]$ $= \tan \alpha + 2 \left[\frac{\cos 2\alpha (1 + \cos 4\alpha)}{\sin 4\alpha \cos 2\alpha} \right]$ $=\frac{\sin \alpha}{\cos \alpha}+\frac{2\cos 2\alpha}{\sin 2\alpha}$

$$= \frac{\cos \alpha + \cos \alpha \cos 2\alpha}{\sin 2\alpha \cos \alpha}$$
$$= \frac{1 + \cos 2\alpha}{\sin 2\alpha}$$
$$= \frac{2 \cos^2 \alpha}{2 \sin \alpha \cos \alpha} = \cot \alpha$$

498 (c)

We have,

$$\sin^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma$$

 $= \frac{\tan^{2} \alpha}{1 + \tan^{2} \alpha} + \frac{\tan^{2} \beta}{1 + \tan^{2} \beta} + \frac{\tan^{2} \gamma}{1 + \tan^{2} \gamma}$
 $= \frac{x}{1 + x} + \frac{y}{1 + y} + \frac{z}{1 + z},$
 $\begin{bmatrix} \text{where } x = \tan^{2} \alpha, \\ y = \tan^{2} \beta, z = \tan^{2} \gamma \end{bmatrix}$
 $= \frac{(x + y + z)(xy + yz + zx + 2xyz) + xy + yz + z}{(1 + x)(1 + y)(1 + z)}$
 $= \frac{1 + x + y + z + xy + yz + zx}{(1 + x)(1 + y)(1 + z)}$
 $= 1 \quad [\because xy + yz + zx + 2xyz = 1]$

499 **(c)**

$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \sqrt{\frac{2\cos^2\frac{A}{2}}{2\sin^2\frac{A}{2}}} = \frac{x}{y}$$
$$\Rightarrow \tan\frac{A}{2} = \frac{y}{x}$$
Now, $\tan A = \frac{2\tan\frac{A}{2}}{1-\tan^2\frac{A}{2}}$
$$= \frac{2xy}{x^2 - y^2}$$

500 (c)

We have, $\angle A = 45^\circ$, $\angle B = 75^\circ$ $\therefore \angle C = 180^\circ - (45^\circ + 75^\circ) = 60^\circ$ Now, $a + c\sqrt{2} = k (\sin A + \sqrt{2} \sin C)$ $\Rightarrow a + c\sqrt{2} = k (\sin 45^\circ + \sqrt{2} \sin 60^\circ)$ $= k \left(\frac{\sqrt{3} + 1}{\sqrt{2}}\right) \dots (i)$

And, $b = k \sin B$ $\Rightarrow b = k \sin 75^\circ = k \frac{(\sqrt{3} + 1)}{2\sqrt{2}}$ $\Rightarrow 2 b = k \frac{(\sqrt{3} + 1)}{\sqrt{2}} \dots (ii)$ From (i) and (ii), we get $a + c\sqrt{2} = 2b$

501 **(d)**

Given, $f(x) = \sin^4 x + \cos^4 x$

$$= (\sin^{n} x + \cos^{2} x)^{2} - 2 \sin^{2} x \cos^{2} x$$

$$\Rightarrow f(x) = 1 - \frac{1}{2} \sin^{2} 2x$$
Also, $0 \le \sin^{2} 2x \le 1$

$$\therefore$$
 Minimum value of $f(x)$ is $1 - \frac{1}{2} = \frac{1}{2}$
502 (a)
Given, $\tan \theta = \frac{1}{\sqrt{7}}$

$$\therefore \frac{\csc^{2} - \sec^{2} \theta}{\csc^{2} \theta + \sec^{2} \theta} = \frac{(1 + \cot^{2} \theta) - (1 + \tan^{2} \theta)}{(1 + \cot^{2} \theta) + (1 + \tan^{2} \theta)}$$

$$= \frac{(\cot^{2} \theta - \tan^{2} \theta)}{2 + \tan^{2} \theta + \cot^{2} \theta}$$

$$= \frac{7 - \frac{1}{7}}{2 + \frac{1}{7} + 7} = \frac{48}{64} = \frac{3}{4}$$
504 (d)
Since the sum of a positive number and its reciprocal is always greater than or equal to 2. Therefore, $y \ge 2$. But, $y = 2$ only when $\theta = 0$. Hence, $y > 2$
505 (b)
We have, $\sec \theta = x + \frac{1}{4x}$
Let $\sec \theta + \tan \theta = \lambda$...(i)
Then, $\sec^{2} \theta - \tan^{2} \theta = 1$

$$\Rightarrow (\sec \theta - \tan \theta)(\sec \theta + \tan \theta) = 1$$

$$\Rightarrow \sec \theta - \tan \theta = \frac{1}{x}$$
 ...(ii)
Adding (i) and (ii), we get
 $2 \sec \theta \Rightarrow \lambda + \frac{1}{\lambda} \Rightarrow 2x + \frac{1}{2x} = \lambda + \frac{1}{\lambda} \Rightarrow \lambda = 2x, \frac{1}{2x}$
506 (a)
Since, $\cos^{2} \theta = \frac{1}{6} \sin \theta \cdot \tan \theta$

$$\Rightarrow 6 \cos^{3} \theta + \cos^{2} \theta - 1 = 0$$
As $\cos \theta = \frac{1}{2}$ satisfied the equation.
$$\therefore (2 \cos \theta - 1)(3 \cos^{2} \theta + 2 \cos \theta + 1) = 0$$

$$\Rightarrow \cos \theta = \frac{1}{2} (\text{other values of cos } \theta = \pi \sin \theta \sin \theta$$

$$\Rightarrow 3(1 - \cos^{2} x) = 8 \cos x$$

$$\Rightarrow 3(1 - \cos^{2} x) = 8 \cos x$$

$$\Rightarrow 3(1 - \cos^{2} x) = 8 \cos x$$

$$\Rightarrow 3(1 - \cos^{2} x) = 8 \cos x$$

$$\Rightarrow 3 \cos^{2} x - 8 \cos x - 3 = 0$$

$$\Rightarrow \cos x = -\frac{1}{3}$$
 ($\because \cos x \ge 1$)
In the given interval only one value of x is exist
508 (a)

We have, $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2$ $\Rightarrow \log_{\cos x} \sin x + \frac{1}{\log_{\cos x} \sin x} = 2$ Clearly, this equation is meaningful for $0 < \sin x < 1$ and $0 < \cos x < 1$ i.e. for $0 < x < \pi/2$ Now, $\log_{\cos x} \sin x + \frac{1}{\log_{\cos x} \sin x} = 2$ $\Rightarrow \log_{\cos x} \sin x = 1$ $\Rightarrow \sin x = \cos x$ $\Rightarrow \tan x = 1$ $\Rightarrow \tan x = \tan \frac{\pi}{4}$ $\Rightarrow x \ge 2n \pi + \frac{\pi}{4}, n$ $\in Z$ [\because sin x > 0 and cos x > 0] 509 (a) We have, 16 sin 144° sin 108° sin 72° sin 36° $= 16 \sin 36^{\circ} \cos 18^{\circ} \cos 18^{\circ} \sin 36^{\circ}$ $= 16 \cos^2 18^\circ \sin^2 36^\circ = 16(\sin 36^\circ \cos 18^\circ)^2$ $= 16 \left\{ \frac{\sqrt{10 - 2\sqrt{5}}}{4} \times \frac{\sqrt{10 + 2\sqrt{5}}}{4} \right\}^2 = 5$ We have,

510 (b) $f(x) = \tan^m x + \cot^m x$ $= (\tan^{m/2} x - \cot^{m/2} x)^2 + 2 \ge 2$ Thus, f(x) attains the minimum value of 2 at points given by $\tan^{m/2} x = \cot^{m/2} x$ *i.e.* at $x = \frac{\pi}{4}$ <u>ALITER</u> Using A.M. \geq G.M., we have $\frac{\tan^m x + \cot^m x}{2} \ge \sqrt{\tan^m x \times \cot^m x}$ $\Rightarrow \tan^m x + \cot^m x > 2$ 511 (a) Given, $7 \cos x - 24 \sin x = \lambda \cos(x + \alpha)$ $\Rightarrow 25\left(\frac{7}{25}\cos x - \frac{24}{25}\sin x\right) = \lambda\cos(x+\alpha)$ $\Rightarrow 25[\cos(\beta + x) = \lambda \cos(x + \alpha)]$ Where $\cos \beta = \frac{7}{25}$ $\Rightarrow \lambda = 25$ 512 (c) 3. Suppose a = 2, b = 1 $\sin\theta = \frac{2^2+1^2}{2^2-1} = \frac{5}{3} > 1$, which is not possible $\sec \theta = \frac{4}{5} < 1$, which is not possible 4.

5. $\tan \theta = 45$, which is possible

6.
$$\cos \theta = \frac{7}{3} > 1$$
, which is not possible

513 (c) $\tan(A-B) = \tan\frac{\pi}{4} = 1$ $\Rightarrow \frac{\tan A - \tan B}{1 + \tan A \tan B} = 1$ $\Rightarrow \tan A - \tan B - \tan A \tan B = 1$...(i) Now, $y = (1 + \tan A)(1 - \tan B)$ $= (1 - \tan B + \tan A - \tan A \tan B)$ = (1 + 1) = 2 [from Eq. (i)] $\therefore \quad (y+1)^{y+1} = (2+1)^{2+1} = 3^3 = 27$ 514 (d) We have, $a\cos A = b\cos B$ $\Rightarrow a\left(\frac{b^2 + c^2 - a^2}{2 b c}\right) = b\left(\frac{c^2 + a^2 - b^2}{2 a c}\right)$ $\Rightarrow a^{2}b^{2} + a^{2}c^{2} - a^{4} = b^{2}c^{2} + b^{2}a^{2} - b^{4}$ $\Rightarrow c^2(a^2 - b^2) - (a^4 - b^4) = 0$ $\Rightarrow a = b \text{ or, } c^2 = a^2 + b^2$ $\Rightarrow \Delta ABC$ is isosceles or right angled 515 (c) Maximum value of $\cos \theta = 1$ So, the equation can have solution only when $\cos x = 1$, $\cos y = 1$ $\Rightarrow x = 0, y = 0$ $\Rightarrow \cos(x - y) = \cos 0 = 1$ 516 (a) $\sin 2A + \sin 2B + \sin 2C$ $= 2\sin(A+B)\cos(A-B) + 2\sin C\cos C$ $= 2\sin(\pi - C)\cos(A - B)$ $+ 2 \sin C \cos\{\pi - (A + B)\}\$ $= 2 \sin C \left\{ \cos(A - B) - \cos(A + B) \right\}$ $= 4 \sin A \sin B \sin C$

517 (a)

Maximum value of $4 \sin^2 x + 3 \cos^2 x ie$, $\sin^2 x +$ *3* is 4 and that of $\sin x^2 + \cos x^2$ is $1^2 + 1^2 = 2$, both attained at $x = \frac{\pi}{2}$. Hence, the given function has maximum value $4 + \sqrt{2}$

518 (c)

Given,
$$\sin 3\theta - \sin \theta = 0$$

 $\Rightarrow 2 \cos \left(\frac{3\theta + \theta}{2}\right) \sin \left(\frac{3\theta - \theta}{2}\right) = 0$
 $\Rightarrow \cos 2\theta \cdot \sin \theta = 0$
 $\Rightarrow \cos 2\theta = 0 \text{ or } \sin \theta = 0, \pi, 2\pi$
 $\Rightarrow 2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2} \text{ or } \theta = \pi \quad (\because \theta \in (0, 2\pi))$
 $\Rightarrow \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \text{ or } \theta = \pi$

Hence, total number of solutions are 5 519 **(a)**

We have, $\sin\frac{\pi}{16}\sin\frac{3\pi}{16}\sin\frac{5\pi}{16}\sin\frac{7\pi}{16}$ $=\frac{1}{4}\left\{\left(2\sin\frac{7\pi}{16}\sin\frac{\pi}{16}\right)\left(2\sin\frac{5\pi}{16}\sin\frac{3\pi}{16}\right)\right\}$ $=\frac{1}{4}\left\{\left(\cos\frac{3\pi}{8}-\cos\frac{\pi}{2}\right)\left(\cos\frac{\pi}{8}-\cos\frac{\pi}{2}\right)\right\}$ $=\frac{1}{8}\left(2\cos\frac{3\pi}{8}\cos\frac{\pi}{8}\right)=\frac{1}{8}\left(\cos\frac{\pi}{2}+\cos\frac{\pi}{4}\right)=\frac{1}{8\sqrt{2}}$ $=\frac{\sqrt{2}}{16}$

520 (a)

 $\tan 45^\circ = \tan(25^\circ + 20^\circ)$ $\Rightarrow 1 = \frac{\tan 25^\circ + \tan 20^\circ}{1 - \tan 25^\circ \tan 20^\circ}$ \Rightarrow tan 25° + tan 20° + tan 25° tan 20° = 1 521 (c) The given equation is $\sin^4 x + \cos^4 y + 2 = 4\sin x \cos y$ $\Rightarrow (\sin^2 x - 1)^2 + (\cos^2 y - 1)^2$ $+ 2 \sin^2 x$ $+ 2\cos^2 y - 4\sin x \cos y = 0$ $\Rightarrow (\sin^2 x - 1)^2 + (\cos^2 y - 1)^2$ $+2(\sin x - \cos y)^2 = 0$ Which is possible only when $\sin^2 x - 1 = 0, \cos^2 y - 1 = 0, \sin x - \cos y = 0$ $\Rightarrow \sin^2 x = 1, \cos^2 y = 1, \sin x = \cos y$ As $0 \le x, y \le \frac{\pi}{2}$ We get $\sin x = \cos y = 1$ $\therefore \sin x + \cos y = 1 + 1 = 2$ 522 (d) Let $C = 90^{\circ}$. Then, $\sin^2 A + \sin^2 B + \sin^2 C$ $= \sin^2 A + \sin^2 B + 1$ $=\sin^2 A + \sin^2 \left(\frac{\pi}{2} - A\right) + 1$ $= \sin^2 A + \cos^2 A + 1 = 2$ 523 (c) We have, $x \cos \theta = y \cos \left(\theta + \frac{2\pi}{3}\right)$ $= z \cos\left(\theta + \frac{4\pi}{3}\right) = k$ (say)

$$\Rightarrow \cos \theta = \frac{k}{x}, \cos \left(\theta + \frac{2\pi}{3}\right) = \frac{k}{y}$$

and $\cos \left(\theta + \frac{4\pi}{3}\right) = \frac{k}{z}$

$$\therefore \frac{k}{x} + \frac{k}{y} + \frac{k}{z} = \cos \theta$$

$$+ \cos \left(\theta + \frac{2\pi}{3}\right) + \cos \left(\theta + \frac{4\pi}{3}\right)$$

$$= \cos \theta - \cos \left(\frac{\pi}{3} - \theta\right) - \cos \left(\frac{\pi}{3} + \theta\right)$$

$$= \cos \theta - 2 \cos \frac{\pi}{3} \cos \theta = 0$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$
524 (d)
Since, $A + B + C = \frac{3\pi}{2}$

$$\therefore \cos 2A + \cos 2B + \cos 2C$$

$$= 2 \cos \left(A + B\right) \cos \left(A - B\right) + \cos 2C$$

$$= 2 \cos \left(\frac{3\pi}{2} - C\right) \cos \left(A - B\right) + 1 - 2 \sin^{2} C$$

$$= 1 - 2 \sin C \left[\cos(A - B) + \sin\left(\frac{3\pi}{2} - (A + B)\right)\right]$$

$$= 1 - 2 \sin C \left[\cos(A - B) - \cos(A + B)\right]$$

$$= 1 - 4 \sin A \sin B \sin C$$
525 (b)
We have,
$$A + B + C = \pi$$

$$\Rightarrow A + B = \pi - C$$

$$\Rightarrow \tan(A + B) = \tan(\pi - C)$$

$$\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan(\pi - C) \Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$= - \tan C$$
Now,
$$C \text{ is an obtuse angle}$$

$$\Rightarrow \tan C < 0$$

$$\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} > 0$$

$$\Rightarrow \tan A \tan B > 0$$

$$\begin{bmatrix} \because A, B \text{ are acute angles} \\ \therefore \tan A > 0, \tan B > 0 \end{bmatrix}$$

$$\Rightarrow \tan A \tan B < 1$$
526 (a)
The given equation is
$$(a - 2b + c)x^{2} + (b - 2c + a)x + (c - 2a + b)$$

$$= 0$$

 $\because \sum (a - 2b + c) = 0$

∴ One root of this equation is 1 Now, $\sec \theta + \tan \theta = 1$... (i) We know that, $\sec^2 \theta - \tan^2 \theta = 1$ $\Rightarrow \sec \theta - \tan \theta = 1$ (ii)

On solving Eqs.(i) and (ii), we get

 $\sec \theta = 1$

 \div One root of given equation is $\sec\theta$

528 **(b)**

The equation $a_1 + a_2 \sin x + a_3 \cos x + a_4 \sin 2x +$ $a5\cos 2x = 0$ holds for all values of x. Therefore, [On putting x = 0] $a_1 + a_3 + a_5 = 0$ $a_1 - a_3 + a_5 = 0$ [On putting $x = \pi$] $\Rightarrow a_3 = 0 \text{ and } a_1 + a_5 = 0 \dots (i)$ Putting $x = \frac{\pi}{2}$ and $\frac{3\pi}{2}$, we get $a_1 + a_2 - a_5 = 0$ and $a_1 - a_2 - a_5 = 0$ $\Rightarrow a_2 = 0 \text{ and } a_1 - a_5 = 0$(ii) Equations (i) and (ii) give $a_1 = a_2 = a_3 = a_5 = 0$ The given equation reduces to $a_4 \sin 2x = 0$. This is true for all values of *x*. Therefore, $a_4 = 0$ Hence, $a_1 = a_2 = a_3 = a_4 = a_5 = 0$ Thus, the number of 5-tuples is one 529 (a) $\tan(70^\circ) = \tan(50^\circ + 20^\circ) = \frac{\tan 50^\circ + \tan 20^\circ}{1 - \tan 50^\circ \tan 20^\circ}$ \Rightarrow tan 70° - (tan 50° tan 20°) tan 70° $= \tan 50^\circ + \tan 20^\circ$ $\Rightarrow \tan 70^\circ - \cot 20^\circ \tan 20^\circ \tan 50^\circ$ $= \tan 50^\circ + \tan 20^\circ$ [using, $\tan(90^\circ - \theta = \cot \theta)$] $\Rightarrow \tan 70^\circ - \tan 50^\circ = \tan 50^\circ + \tan 20^\circ$ $\Rightarrow \tan 70^\circ - \tan 20^\circ = 2 \tan 50^\circ$ $\tan 70^\circ - \tan 20^\circ$ tan 50° 530 (c) Given, $k = \cos 20^{\circ}$ And $2k^2 - 1 = \cos x$ $\therefore 2\cos^2 20^\circ - 1 = \cos x$ $\Rightarrow \cos x = \cos 40^{\circ}$ $\Rightarrow x = 40^{\circ}$ or $x = 360^{\circ} - 40^{\circ} = 320^{\circ}$ 531 (a) $\tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ$

$$= \left(\frac{\sin^2 9^\circ + \cos^2 9^\circ}{\cos 9^\circ \sin 9^\circ}\right) - \left(\frac{\sin^2 27^\circ + \cos^2 27^\circ}{\cos 27^\circ \sin 27^\circ}\right)$$

$$= \frac{2}{\sin 18^\circ} - \frac{2}{\sin 54^\circ}$$

$$= \frac{2}{\frac{\sqrt{5}-1}} - \frac{2}{\sqrt{5+1}}$$

$$= \frac{16}{5-1} = 4$$
532 (c)
We have,
 $\tan(\pi \cos \theta) = \cot(\pi \sin \theta)$
 $\Rightarrow \tan(\pi \cos \theta) = \tan\left(\frac{\pi}{2} - \pi \sin \theta\right)$
 $\Rightarrow \tan(\pi \cos \theta) = \tan\left(\frac{\pi}{2} - \pi \sin \theta\right)$
 $\Rightarrow \pi \cos \theta = \left(\frac{\pi}{2} - \pi \sin \theta\right) + n \pi, n \in \mathbb{Z}$
 $\Rightarrow \cos \theta + \sin \theta = \frac{1}{2} + n, n \in \mathbb{Z}$
 $\Rightarrow \cos \theta + \sin \theta = \frac{1}{2} + n, n \in \mathbb{Z}$
 $\Rightarrow \cos \left(\theta - \frac{\pi}{4}\right) = \frac{2n+1}{2\sqrt{2}}, n \in \mathbb{Z}$
 $\Rightarrow \cos \left(\theta - \frac{\pi}{4}\right) = \pm \frac{1}{2\sqrt{2}}$ [For $n = 0$ and n
 $= -1$]
533 (d)
We have,
 $\frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow \frac{\sin \pi/3}{3} = \frac{\sin C}{4}$
 $\Rightarrow \sin c = \frac{2}{\sqrt{3}} > 1$, which is impossible
Hence, no triangle is possible
535 (c)
Let $a = 7 \operatorname{cm}, b = 4\sqrt{3} \operatorname{cm}$ and $c = \sqrt{13} \operatorname{cm}$. Since c is the smallest side. Therefore, the smallest
angle is C and is given by
 $\cos C = \frac{a^2 + b^2 - c^2}{2 ab} = \frac{\sqrt{3}}{2} \Rightarrow C = 30^\circ$
537 (c)
Given, $\tan(k + 1)\theta = \tan \theta$
 $\Rightarrow (k + 1)\theta = n\pi + \theta \Rightarrow k\theta = n\pi$
 $\Rightarrow \theta = \frac{n\pi}{k} \qquad \therefore \theta \in \left\{\frac{n\pi}{k} : n \in I\right\}$
538 (b)
It is given that $\theta \in (0, \pi/4)$. Therefore,
 $0 < \tan \theta < 1$ and $\cot \theta > 1$. Let $\tan \theta = 1 - a$ and $\cot \theta = 1 + b$ where $0 < a < 1$ and $b > 1$
 $\therefore t_1 = (1 - a)^{1-a}, t_2 = (1 - a)^{1+b}, t_3 = (1 + b)^{1+b}$

Now,

 $(1+b)^{1-a}$

1 - a < 1 + b and 0 < 1 - a < 1

 $\therefore (1-a)^{1-a} > (1-a)^{1+b}$ and $(1+b)^{1+b} > (1-a)^{1+b} > (1-a)^{1+b}$

 \Rightarrow $t_1 > t_2$ and $t_4 > t_3$...(i) Also, $(1 + b)^{1-a} > (1 - a)^{1-a}$ $\Rightarrow t_3 > t_1$...(ii) From (i) and (ii), we get $t_4 > t_3 > t_1 > t_2$ 539 (a) We have, cos 12° cos 24° cos 36° cos 48° cos 72° cos 84° $= \{-\cos 12^\circ \cos 24^\circ \cos 48^\circ \cos 96^\circ\} \{\cos 36^\circ \cos 72^\circ \cos 72^\circ \cos 12^\circ \cos$ $= -\frac{\sin 2^4 \times 12^\circ}{2^4 \sin 12^\circ} \times (\cos 36^\circ \sin 18^\circ)$ $= -\frac{\sin 192^{\circ}}{16\sin 12^{\circ}} \times \left(\frac{\sqrt{5}+1}{4} \times \frac{\sqrt{5}-1}{4}\right) = \frac{1}{16} \times \frac{1}{4}$ $=\frac{1}{64}$ 540 (c) Since, $\tan A + \sin A = m$ and $\tan A - \sin A = n$ $\therefore m + n = 2 \tan A$ and $m - n = 2 \sin A$ Also, $mn = (\tan A + \sin A) (\tan A - \sin A) =$ tan2A-sin2A Now, $\frac{(m^2 - n^2)^2}{m} = \frac{(m+n)^2(m-n)^2}{m}$ $=\frac{(2\tan A)^2(2\sin A)^2}{\tan^2 A - \sin^2 A}$ $=\frac{16\tan^2 A \sin^2 A}{\sin^2 4 \tan^2 4} = 16$ 541 (c) $\cos 2A + \cos 2B + \cos 2C$ $= 2\cos(A + B)\cos(A - B) + 1 - 2\sin^2 C$ $= 2\cos\left(\frac{3\pi}{2} - C\right)\cos(A - B) + 1 - 2\sin^2 C$ $\left[\because A + B + C = 270^{\circ} \Rightarrow B + A = \frac{3\pi}{2} - C \right]$ $= 1 - 2\sin C [\cos(A - B) + \sin C]$ $= 1 - 2\sin C \left[\cos(A - B) - \cos(A + B)\right]$ $= 1 - 4 \sin A \sin B \sin C$ 542 (a) Given, $\frac{\sin A - \sin c}{\cos c - \cos A} = \cot B$ $\Rightarrow \frac{2\cos\left(\frac{A+C}{2}\right)\sin\left(\frac{A-C}{2}\right)}{2\sin\left(\frac{A+C}{2}\right)\sin\left(\frac{A-C}{2}\right)} = \cot B$ $\Rightarrow \cot\left(\frac{A+C}{2}\right)\cot B$

$$\Rightarrow B = \frac{A+C}{2}$$

Hence, A, B and C will be in AP

543 (a) We have, $\alpha + \beta + \gamma = 2\pi$ $\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} = \pi$ $\Rightarrow \tan\left(\frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2}\right) = \tan \pi = 0$ $\Rightarrow \frac{\tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}}{1 - \tan\frac{\alpha}{2}\tan\frac{\beta}{2} - \tan\frac{\beta}{2}\tan\frac{\gamma}{2} - \tan\frac{\gamma}{2}\tan\frac{\alpha}{2}}$ $\Rightarrow \tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}$ 544 (c) We have, 2r = a + c - b $\Rightarrow 2r = 2s - 2b$ $\Rightarrow r = s - b$ $\Rightarrow \frac{\Delta}{a} = s - b$ $\Rightarrow \Delta = s(s-b)$ $\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = s(s-b)$ $\Rightarrow \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} = 1 \Rightarrow \tan\frac{B}{2} = \tan\frac{\pi}{4} \Rightarrow B = \frac{\pi}{2}$ 545 (d) Since, $\sin^2 \theta \le 1$ $\Rightarrow \frac{x^2 + y^2 + 1}{2x} \le 0$ $\Rightarrow (x-1)^2 + y^2 \leq 0$ Which is possible only when x = 1, y = 0Hence, it also depends on value of *y*. 546 (d) We have. $1 + \sin\theta + \sin^2\theta + \dots \infty = 4 + 2\sqrt{3}$ $\Rightarrow \frac{1}{1 - \sin \theta} = 4 + 2\sqrt{3}$ $\Rightarrow 1 - \sin \theta = \frac{1}{2(2 + \sqrt{3})}$ $\Rightarrow 1 - \sin \theta = \frac{1}{2} (2 - \sqrt{3})$ $\Rightarrow \sin \theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{2}, \frac{2\pi}{2}$ 547 (b) Given, $\cos 20^\circ - \sin 20^\circ = p$ $\Rightarrow \cos^2 20^\circ + \sin^2 20^\circ - 2\sin 20^\circ \cos 20^\circ = p^2$ $\Rightarrow 1 - p^2 = \sin 40^\circ$ $\Rightarrow 1 - p^2 = \sqrt{1 - \cos^2 40^\circ}$

$$\Rightarrow (1 - p^2)^2 = 1 - \cos^2 40^\circ$$

$$\Rightarrow \cos^2 40^\circ = 1 - (1 + p^4 - 2p^2)$$

$$\Rightarrow \cos 40^\circ = \sqrt{2p^2 - p^4}$$

$$\Rightarrow \cos 40^\circ = p\sqrt{2 - p^2}$$
548 (d)
We have,

$$c^2 = a^2 + b^2 \Rightarrow \angle C = \frac{\pi}{2}$$

$$\therefore \Delta = \frac{1}{2} ab \sin C = \frac{1}{2} ab$$

$$\Rightarrow \sqrt{s(s - a)(s - b)(s - c)} = \frac{1}{2} ab$$

$$\Rightarrow 4 s(s - a)(s - b)(s - c) = a^2b^2$$
549 (b)

$$\tan(70^\circ - 20^\circ) = \frac{\tan 70^\circ - \tan 20^\circ}{1 + \tan 70^\circ \tan 20^\circ}$$

$$\Rightarrow \tan 50^\circ(1 + \tan 70^\circ \tan 20^\circ) = \tan 70^\circ - \tan 20^\circ$$

$$\Rightarrow \tan 20^\circ \tan 70^\circ = 1 \quad [\because \tan 90^\circ = \infty]$$
On putting in Eq. (i), we get

$$\tan 50^\circ(1 + 1) = \tan 70^\circ - \tan 20^\circ$$

$$\Rightarrow \tan 20^\circ + 2 \tan 50^\circ - \tan 70^\circ = 0$$
550 (a)
Given, $4 \cos^2 x + 6 \sin^2 x = 5$

$$\Rightarrow 4(\cos^2 x + \sin^2 x) + 2 \sin^2 x = 5$$

$$\Rightarrow 2 \sin^2 x = 5 - 4$$

$$\Rightarrow \sin x = \pm \frac{1}{\sqrt{2}}$$

$$\therefore x = n\pi \pm \frac{\pi}{4}$$
551 (c)

$$\frac{\tan A}{1 + \sec A} + \frac{1 + \sec A}{\tan A}$$

$$= \frac{2 \sec^2 A + 2 \sec A}{\tan A(1 + \sec A)}$$

$$= \frac{2 \sec^2 A + 2 \sec A}{\cos A \sin A} = 2 \csc A$$
552 (a)
Given, $\sin^2 A + \sin^2 B + \sin^2 C = 2$

$$\Rightarrow 1 - \cos^2 A + 1 - \cos^2 B + 1 - \cos^2 C = 2$$

$$\Rightarrow 1 = 1 - 2 \cos A \cos B \cos C$$

$$\Rightarrow \cos A \cos B \cos C = 0$$
At least one should be 90° and sum of two angles should be 90°
553 (d)
Given, (\cos \theta + \cos 3\theta) + \cos 2\theta = 0

 $\Rightarrow 2\cos 2\theta\cos\theta + \cos 2\theta = 0$

 $\Rightarrow \cos 2\theta = 0 \text{ or } 2\cos \theta + 1 = 0$ $\Rightarrow 2\theta = (2n+1)\frac{\pi}{2} \text{ or } \theta = 2n\pi \pm \frac{2\pi}{3}$ $\Rightarrow \theta = (2n+1)\frac{\pi}{4} \text{ or } \theta = 2n\pi \pm \frac{2\pi}{3}$ 554 (d) The quadratic equation is $x^2 - x \cos \theta + 1 = 0$ Since, *x* is real, therefore discriminant ≥ 0 $\Rightarrow B^2 4 AC \ge 0 \Rightarrow \cos^2 \theta \ge 4(1)(1) \Rightarrow \cos^2 \theta \ge 4$ Which is impossible because $\cos^2 \theta$ is not greater than 1 555 (b) $(\sin x + \cos x)^2 = \frac{1}{25}$ $\Rightarrow \sin^2 x + \cos^2 x + 2\sin x \cos x = \frac{1}{25}$ $\Rightarrow \sin 2x = \frac{1}{25} - 1 = -\frac{24}{25}$...(i) $\Rightarrow \cos 2x = \sqrt{1 - \sin^2 2x} = -\frac{\sqrt{49}}{25}$...(ii) Now, $\tan 2x = \frac{\sin 2x}{\cos 2x} = -\frac{24}{25} \times \left(-\frac{25}{\sqrt{49}}\right) = \frac{24}{7}$ 556 (b) Given, $\sin\frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$ $\therefore \tan \frac{\theta}{2} = \sqrt{\frac{x-1}{x+1}}$ $\therefore \ \tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$ $\frac{2\sqrt{\frac{x-1}{x+1}}}{1-\frac{x-1}{x+1}} = \frac{2\sqrt{\frac{x-1}{x+1}}}{\frac{2}{x+1}} = \sqrt{x^2-1}$ $\sqrt{x-1}$ 558 (b) We have, cos 1° cos 2° cos 3° ... cos 179° $= \cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 90^{\circ} \dots \cos 179^{\circ}$ $= 0 \quad [:: \cos 90^{\circ} = 0]$ 559 (c) Given, AD = p and $BC = 2\sqrt{2}p$ Clearly, $p = a \sin \theta = b \cos \theta$

 $\Rightarrow \cos 2\theta (2\cos \theta + 1) = 0$

$$\int_{A}^{C} \frac{1}{a} \frac{1}{a} \frac{1}{cos^{2}\theta} \frac{1}{cos$$

$$\Rightarrow \theta = n\pi + (-1)^n \left(-\frac{\pi}{6}\right)$$

$$\Rightarrow \theta = n\pi + (-1)^{n+1} \frac{\pi}{6}$$
563 (c)
We have,
 $\alpha + \beta + \gamma = \pi$
 $\therefore \sin \alpha + \sin \beta + \sin \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
Clearly, $\cos \frac{\alpha}{2} > 0, \cos \frac{\beta}{2} > 0, \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} > 0$
 $\Rightarrow 4 \cos^2 \alpha + \sin^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \sin^2 \alpha + \sin^2 \alpha + \sin^2 \alpha + \cos^2 \alpha + \sin^2 \alpha + \sin^2 \alpha + \sin^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \sin^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha + \sin^2 \alpha + \sin^2 \alpha + \cos^2 \alpha + \cos^$

$$\Rightarrow x = (2n+1)\frac{\pi}{4}$$

567 (a)
We have,
 $c_1 + c_2 = 2b \cos A \text{ and } c_1c_2 = b^2 - a^2$
 $\therefore c_1^2 - 2c_1c_2 \cos 2A + c_2^2$
 $= (c_1 + c_2)^2 - 2c_1c_2(1 + \cos 2A)$
 $= 4b^2 \cos^2 A - 4(b^2 - a^2)\cos^2 A = 4a\cos^2 A$
568 (a)
Let $y = \tan A \tan B$. Then,
 $A + B = \frac{\pi}{3}$
 $\Rightarrow y = \tan A \tan \left(\frac{\pi}{3} - A\right)$
 $\Rightarrow y = \frac{\tan A(\sqrt{3} - \tan A)}{1 + \sqrt{3} \tan A} = \frac{\sqrt{3}x - x^2}{1 + \sqrt{3}x}$, where x
 $= \tan A$
For maximum or minimum values of y , we must have
 $\frac{dy}{dx} = 0 \Rightarrow x = \frac{1}{\sqrt{3}}$ or, $x = -\sqrt{3}$
But, $x = \tan A > 0$. Therefore, $x = \frac{1}{\sqrt{3}}$
For this value of x , we have $y = \frac{1}{3}$
569 (c)
We have,
 $2y = 1$ and $y = \sin x$
 $\Rightarrow y = \frac{1}{2}$ and $y = \sin x$

$$P \qquad Q \qquad R \qquad S \qquad y = \frac{1}{2}$$

$$X' \qquad -2\pi \qquad -\pi \qquad O \qquad \pi \qquad 2\pi \qquad y = \sin x$$

Clearly, these two curves intersect at 4 points in $[-2\,\pi,2\,\pi]$

570 **(c)**

We have,

$$x + 2 \tan x = \frac{\pi}{2} \Rightarrow \tan x = \frac{\pi}{4} - \frac{x}{2}$$

It can be easily seen from the graphs of the curves $y = \tan x$ and $y = \frac{\pi}{4} - \frac{x}{2}$, in the interval $[0, 2\pi]$, that they intersect at three points. The abscissa of these three points are roots of the equation

572 (d)

$$\frac{\cot^{2} \theta + 1}{\cot^{2} \theta - 1} = \frac{1 + \tan^{2} \theta}{1 - \tan^{2} \theta} = \frac{1}{\cos^{2} \theta - \sin^{2} \theta}$$

$$= \frac{1}{\cos 2\theta} = \sec 2\theta$$
573 (d)

$$\cos e^{2} x + 25 \sec^{2} x = 26 + \cot^{2} x + 25 \tan^{2} x$$

$$= 26 + 10 + (\cot x - 5 \tan x)^{2} \ge 36$$
574 (b)
We are given that

$$\cos \theta = \frac{2 \cos(\theta - \alpha) \cos(\theta + \alpha)}{\cos(\theta - \alpha) + \cos(\theta + \alpha)}$$

$$\Rightarrow \cos \theta = \frac{2(\cos^{2} \theta - \sin^{2} \alpha)}{2 \cos \theta \cos \alpha}$$

$$\Rightarrow \cos^{2} \theta \cos \alpha = \cos^{2} \theta - \sin^{2} \alpha$$

$$\Rightarrow \cos^{2} \theta \cos \alpha = \cos^{2} \theta - \sin^{2} \alpha$$

$$\Rightarrow \cos^{2} \theta \sec^{2} \frac{\alpha}{2} = 2 \Rightarrow \cos \theta \sec^{2} \frac{\alpha}{2} = \pm \sqrt{2}$$
575 (a)
We have,

$$5x = 3x + 2x$$

$$\Rightarrow \tan 5x = \tan(3x + 2x)$$

$$\Rightarrow \tan 5x = \tan(3x + \tan 2x)$$

$$\Rightarrow \tan 5x - \tan 5x \tan 3x \tan 2x = \tan 3x + \tan 2x$$

$$\Rightarrow \tan 5x \tan 3x \tan 2x = \tan 3x - \tan 2x$$
576 (a)
We have,

$$\sin x + \sin^{2} x = 1$$

$$\Rightarrow \sin x = 1 - \sin^{2} x \Rightarrow \sin x = \cos^{2} x$$

$$\therefore \cos^{2} x + \cos^{4} x = \sin x + \sin^{2} x = 1$$

$$577 (d)$$
(sin² θ)³ + (\cos^{2} θ)³ + 3 sin² $\theta \cos^{2} \theta$

$$= (\sin^{2} \theta + \cos^{2} \theta)(\sin^{4} \theta + \cos^{4} \theta)$$

$$- \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 1 - 3 \sin^{2} \theta \cos^{2} \theta + 3 \sin^{2} \theta \cos^{2} \theta = 1$$

$$= 578 (a)$$
We have,

$$\cos \theta = \frac{8}{17} \Rightarrow \sin \theta = \frac{15}{17} [\because \theta < \frac{\pi}{2} < \theta]$$

$$\therefore \cos(30^{\circ} + \theta) + \cos(45^{\circ} - \theta) + \cos(120^{\circ} - \theta)$$

$$= (\cos 30^{\circ} + \cos 45^{\circ} + \cos 120^{\circ}) \cos \theta + (-\sin 30^{\circ} + \sin 45^{\circ} + \sin 120^{\circ}) \sin \theta$$

$$= \frac{8}{17} \left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) + \left(-\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \right) \frac{15}{17}$$

$$= \frac{23}{17} \left(\frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)$$
579 (a)
Since, $\frac{5^{x} + 5^{-x}}{2} \ge \sqrt{5^{x} \cdot 5^{-x}}$
 $\Rightarrow 5^{x} + 5^{-x} \ge 2$
But $\sin(e^{x}) \le 1 \Rightarrow 2 \sin(e^{x}) \le 2$
At $x = 0$, $5^{x} + 5^{-x} = 2$
Bit $2 \sin(e^{0}) \ne 2$
Hence, no solution exist
580 (c)
Let *ABC* be a right angled triangle right angled at *B*.
Let the other angles be $A = 90^{\circ} - d$ and $C = 90^{\circ} - 2d$. Then,
 $A + B + C = 180^{\circ} \Rightarrow 270^{\circ} - 3d = 180^{\circ} \Rightarrow d$
 $= 30^{\circ}$
 $\therefore A = 60^{\circ} \text{ and } C = 30^{\circ}$
Let *AC* = *b*. Then,
 $c = AB = AC \cos 60^{\circ} = \frac{b}{2} \text{ and } a = BC$
 $= b \cos 30^{\circ} = \frac{\sqrt{3}b}{2}$
 $\therefore 2s = a + b + c = \frac{\sqrt{3}b}{2} + b + \frac{b}{2} = \frac{(3 + \sqrt{3})b}{2}$
Also,
 $\Delta = \frac{1}{2}(BC \times AB) = \frac{1}{2}(\frac{\sqrt{3}b}{2} \times \frac{b}{2}) = \frac{\sqrt{3}b^{2}}{8}$
 \therefore Required ratio $= \frac{r}{2s} = \frac{\Delta}{2s^{2}}$
 $= \frac{\frac{\sqrt{3}b^{2}}{8}}{2\left\{\frac{(3+\sqrt{3})^{2}}{4} + b^{2}\right\}} = \frac{\sqrt{3}}{(3\sqrt{3} + 1)^{2}}$
 $= \frac{(\sqrt{3} - 1)^{2}}{4\sqrt{3}} = \frac{4 - 2\sqrt{3}}{4\sqrt{3}} = \frac{2 - \sqrt{3}}{2\sqrt{3}}$
581 (c)
Given, $2 \sin^{2} \theta + \sqrt{3} \cos \theta - 1 = 0$
 $\Rightarrow 2 \cos^{2} \theta - \sqrt{3} \cos \theta - 3 = 0$
 $\therefore \cos \theta = -\frac{\sqrt{3}}{2}$ [$\because \cos \theta \neq \sqrt{3}$]

$$\Rightarrow \theta = \frac{5\pi}{6}$$
582 (b)
 $e^{\sin x} + e^{\cos x} = 2e^{1/2} \dots(i)$
 $\Rightarrow e^{\sin x} + e^{\cos x} \ge 2\sqrt{e^{\sin x + \cos x}} \quad (\because AM \ge GM)$
 $\Rightarrow e^{\sin x} + e^{\cos x} \ge 2e^{1/\sqrt{2}} \dots(i)$
Since, equality holds
 $\Rightarrow e^{\sin x} = e^{\cos x}$
 $\Rightarrow \sin x = \cos x$
 $\Rightarrow \tan x = 1 \Rightarrow x = m\pi + \frac{\pi}{4}$
 $\Rightarrow x = (4m + 1) \frac{\pi}{4}$
583 (a)
Since, $\cos \theta$ is negative and $\tan \theta$ is positive which
lies in IIIrd quadrant
 $\therefore \theta = \frac{5\pi}{4}$ satisfies
Hence, general value of θ is $2n\pi + \frac{5\pi}{4}$
584 (b)
 $\cos(\theta - \alpha) + \cos(\theta - \beta) + \cos\theta + \cos(\theta - \gamma)$
 $= 2\cos\left(\theta - \left(\frac{\alpha + \beta}{2}\right)\right)\cos\left(\frac{\beta - \alpha}{2}\right)$
 $+ 2\cos\left(\frac{\gamma}{2}\right)\cos\left(\theta - \frac{\gamma}{2}\right)$
 $= 2\cos\left(\frac{\gamma}{2}\right)\cos\left(\frac{\beta - \alpha}{2}\right) + 2\cos\left(\frac{\gamma}{2}\right)\cos\left(\frac{\alpha + \beta}{2}\right)$
 $= [\because 2\theta = \alpha + \beta + \gamma]$
 $= 2\cos\left(\frac{\gamma}{2}\right)\left[2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\right]$
 $= 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$
585 (b)
 $\therefore x^3 + x^2 + 4x + 2\sin x = 0$
 $\Rightarrow x^3 + (x + 2)^2 + 2\sin x = 4$
 $x = 0$, satisfies this equation.
Now, in $0 < x \le \pi, x^3 + (x + 2)^2 + 2\sin x > 4$
and in $\pi < x \le 2\pi, x^3 + (x + 2)^2 + 2\sin x > 4$
and in $\pi < x \le 2\pi, x^3 + (x + 2)^2 + 2\sin x > 27 + 25-2=50$
Hence, $x = 0$ is the only solution
586 (a)
We have,
 $\frac{\tan 70^\circ - \tan 20^\circ}{\tan 50^\circ} = \frac{2\cos 50^\circ}{\cos 90^\circ + \cos 50^\circ} = 2$

587 **(a)**

Given equation, $\sin x + \sin y + \sin z = -3$ is satisfied only when $x = y = z = \frac{3\pi}{2}$ for

$$x, y, z \in [0, 2\pi]$$
588 (a)

$$\tan A = \frac{1 - \cos B}{\sin B}$$

$$= \frac{2 \sin^2(B/2)}{2 \sin \left(\frac{B}{2}\right) \cos(B/2)}$$

$$\Rightarrow \tan A = \tan \frac{B}{2}$$
Now,
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} = \frac{2 \tan(B/2)}{1 - \tan^2(B/2)}$$

$$= \frac{2 \sin(B/2) \cos(B/2)}{\cos^2(B/2) - \sin^2(B/2)}$$

$$= \frac{\sin B}{\cos B}$$

$$\Rightarrow \tan 2A = \tan B$$

We have,

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{1 - 2 \sin^2 \frac{\alpha}{2}}$$
$$= \frac{2 \sqrt{\frac{x-1}{2x}} \sqrt{1 - \left(\frac{x-1}{2x}\right)^2}}{1 - 2 \left(\frac{x-1}{2x}\right)} = \sqrt{x^2 - 1}$$

590 (d)

We have, $\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b$ $\Rightarrow 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) = a$ and, $2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) = b$ $\Rightarrow \tan \left(\frac{\alpha + \beta}{2}\right) = \frac{a}{b}$ $\therefore \sin(\alpha + \beta) = \frac{2 \tan \left(\frac{\alpha + \beta}{2}\right)}{1 + \tan^2 \left(\frac{\alpha + \beta}{2}\right)}$ $\Rightarrow \sin(\alpha + \beta) = \frac{\frac{2a}{b}}{1 + \frac{a^2}{b^2}} = \frac{2ab}{a^2 + b^2}$

591 **(c)**

We have, $\tan \theta + \sec \theta = \sqrt{3}$, where $0 < \theta < \pi$ $\Rightarrow \sec \theta - \tan \theta$ $= \frac{1}{\sqrt{3}} \left[\because \sec \theta - \tan \theta \right]$ $= \frac{1}{\sec \theta + \tan \theta}$ $\therefore 2 \tan \theta = \sqrt{3} - \frac{1}{\sqrt{3}}$ $\Rightarrow 2 \tan \theta = \frac{2}{\sqrt{3}} \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = \pi/6$ 592 (d) We have,

$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \sqrt{\frac{(1+\cos\theta)^2}{1-\cos^2\theta}}$$

$$\Rightarrow \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \frac{1+\cos\theta}{|\sin\theta|}$$

$$\Rightarrow \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \frac{1+\cos\theta}{-\sin\theta} [:: \pi < \theta < 2\pi \Rightarrow \sin\theta$$

$$< 0]$$

$$\Rightarrow \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = -\csc \theta - \cot \theta$$
593 (b)
We have,
 $a \sin^2 x + b \cos^2 x = c$
 $\Rightarrow (b-a) \cos^2 x = c - a$
 $\Rightarrow (b-a) = (c-a)(1 + \tan^2 x)$
Now,
 $b \sin^2 y + a \cos^2 y = d$
 $\Rightarrow (a-b) \cos^2 y = d - b$
 $\Rightarrow (a-b) = (d-b)(1 + \tan^2 y)$
 $\Rightarrow \tan^2 y = \frac{a-d}{d-b}$
 $\therefore \tan^2 x = \frac{b-c}{c-a} \text{ and } \tan^2 y = \frac{a-d}{d-b}$
 $\Rightarrow \frac{\tan^2 x}{\tan^2 y} = \frac{(b-c)(d-b)}{(c-a)(a-d)} ...(i)$
But, $a \tan x = b \tan y \Rightarrow \frac{\tan x}{\tan y} = \frac{b}{a} ...(ii)$
From (i) and (ii), we get
 $\frac{b^2}{a^2} = \frac{(b-c)(d-b)}{(c-a)(a-d)} \Rightarrow \frac{a^2}{b^2} = \frac{(c-a)(a-d)}{(b-c)(d-b)}$
594 (c)
 $\frac{\cos 12^\circ - \sin 12^\circ}{1 + \tan 12^\circ} + \frac{\sin 147^\circ}{\cos 147^\circ}$
 $= \frac{1-\tan 12^\circ}{1+\tan 12^\circ} + \tan 147^\circ$
 $= \tan(45^\circ - 12^\circ) + \tan(180^\circ - 33^\circ)$
 $= \tan 33^\circ - \tan 33^\circ = 0$
595 (b)
We have,
 $\tan \left(\frac{C-B}{2}\right) = \frac{\sqrt{3} + 1 - 2}{\sqrt{3} + 1 + 2} \cot 15^\circ$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \frac{1}{\tan(45^\circ - 30^\circ)}$

 $\Rightarrow \tan\left(\frac{C-B}{2}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+3} \cdot \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{1}{\sqrt{3}} = \tan 30^{\circ}$ $\Rightarrow \frac{C-B}{2} = 30^{\circ}$ 596 (c) We have, $\frac{\sin\frac{x}{2} + \cos\frac{x}{2} - i\tan x}{1 + 2i\sin\frac{x}{2}}$ $=\frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2} - i\tan x\right)\left(1 - 2i\sin\frac{x}{2}\right)}{1 + 4\sin^2\frac{x}{2}}$ $\left(\sin\frac{x}{2} + \cos\frac{x}{2} - 2\sin\frac{x}{2}\tan x\right)$ $=\frac{+i\left(-\tan x - 2\sin^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}\right)}{1 + 4\sin^2\frac{x}{2}}$ This will be real iff $\frac{-\tan x - 2\sin^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}{1 + 4\sin^2 \frac{x}{2}} = 0$ $\Rightarrow -\tan x - 2\sin\frac{2x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} = 0$ $\Rightarrow \sin x + 2\cos x \sin \frac{x}{2} \left(\sin \frac{x}{2} + \cos \frac{x}{2} \right) = 0$ $\Rightarrow 2\sin\frac{x}{2}\left\{\cos\frac{x}{2} + \cos x\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)\right\} = 0$ $\Rightarrow 2\sin\frac{x}{2}\left\{\cos\frac{x}{2}\left(\cos^2\frac{x}{2}+\sin^2\frac{x}{2}\right)\right\}$ $+\left(\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}\right)\left(\cos\frac{x}{2}+\sin\frac{x}{2}\right)=0$ $\Rightarrow \sin \frac{x}{2} = 0$ or, $\cos \frac{x}{2} \left(\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \right)$ $+\left(\cos^2\frac{x}{2}-\sin^2\frac{x}{2}\right)\left(\cos\frac{x}{2}+\sin\frac{x}{2}\right)$ Now, $\sin \frac{x}{2} = 0 \Rightarrow \frac{x}{2} = n \pi \Rightarrow x = 2 n \pi, n \in \mathbb{Z}$ and $\cos\frac{x}{2}\left(\cos^2\frac{x}{2}+\sin^2\frac{x}{2}\right)$ $+\left(\cos^2\frac{x}{2}-\sin^2\frac{x}{2}\right)\left(\cos\frac{x}{2}+\sin\frac{x}{2}\right)$ $\Rightarrow \left(1 + \tan^2 \frac{x}{2}\right) + \left(1 - \tan^2 \frac{x}{2}\right) \left(1 + \tan \frac{x}{2}\right) = 0$ [On dividing by $\cos^3 x/2$] $\Rightarrow \tan^3 \frac{x}{2} - \tan^2 \frac{x}{2} - 2 = 0$ $\Rightarrow t^3 - t^2 - 2 = 0$, where $t = \tan x/2$ Let $f(t) = t^3 - t^2 - 2$. Then, f(1) < 0 and f(2) > 0Therefore, a root of f(t) = 0 lies between 1 and 2 Let the root be *k*. Then,

$$1 < k < 2 \text{ and } \tan \frac{x}{2} = k$$

$$\Rightarrow \frac{x}{2} = n \pi + \tan^{-1} k, n \in \mathbb{Z}$$

$$\Rightarrow x = 2n \pi + 2 \tan^{-1} k, n \in \mathbb{Z} \text{ and } 1 < k < 2$$

597 (a)
We have,

$$= (A - B) \qquad \boxed{1 - \cos(A - B)} \qquad \boxed{1 - 31/32}$$

$$\tan\left(\frac{1}{2}\right) = \sqrt{\frac{1+\cos(A-B)}{1+\cos(A-B)}} = \sqrt{\frac{1+31/32}{1+31/32}}$$
$$= \frac{1}{\sqrt{63}}$$
$$\Rightarrow \frac{a-b}{a+b}\cot\frac{C}{2} = \frac{1}{\sqrt{63}} \qquad \left[\because \tan\frac{A-B}{2}\right]$$
$$= \frac{a-b}{a+b}\cot\frac{C}{2}$$
$$= \frac{1}{\sqrt{63}} \Rightarrow \tan\frac{C}{2} = \frac{\sqrt{7}}{3}$$
Now,
$$\cos C = \frac{1-\tan^2 C/2}{1+\tan^2 C/2} \Rightarrow \cos C = \frac{1-7/9}{1+7/9} = \frac{1}{8}$$
$$\therefore c^2 = a^2 + b^2 - 2 \ ab \cos C$$
$$\Rightarrow c^2 = 25 + 16 - 40 \times 1/8 = 36 \Rightarrow c = 6$$

598 (c) We have, $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ =$ $\sin 20^\circ \sin 40^\circ \sin 80^\circ \cos 20^\circ \cos 40^\circ \cos 80^\circ \tan 60^\circ$

Here, numerator = $(\sin 20^\circ \sin 40^\circ \sin 80^\circ)$

$$= \frac{\sin 20^{\circ}}{2} (2 \sin 40^{\circ} \sin 80^{\circ})$$
$$= \frac{\sin 20^{\circ}}{2} (\cos 40^{\circ} - \cos 120^{\circ})$$
$$= \frac{1}{2} \sin 20^{\circ} \left(1 - 2 \sin^{2} 20^{\circ} + \frac{1}{2}\right)$$
$$= \frac{1}{2} \sin 20^{\circ} \left(\frac{3}{2} - 2 \sin^{2} 20^{\circ}\right)$$
$$= \frac{1}{4} [3 \sin 20^{\circ} - 4 \sin^{3} 20^{\circ}]$$
$$= \frac{\sin 60^{\circ}}{4} = \frac{\sqrt{3}}{8}$$

Now, denominator = $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$

$$= \frac{\sin 2^{3} 20^{\circ}}{2^{3} \sin 20^{\circ}} = \frac{\sin 160^{\circ}}{8 \sin 20^{\circ}}$$
$$= \frac{\sin 20^{\circ}}{8 \sin 20^{\circ}} = \frac{1}{8}$$

Hence,
$$\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ} = \frac{\sqrt{3}}{\frac{1}{6}} = \sqrt{3}$$

 $\Rightarrow \tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ} = \sqrt{3} \cdot \sqrt{3} = 3$
600 (d)
We have,
 $f(x) = \sin^4 x + \cos^4 x, 0 \le x \le \frac{\pi}{2}$
 $\Rightarrow f(x) = (\sin^2 x + \cos^2 x)^2 - \frac{1}{2}\sin^2 2x$
 $\Rightarrow f(x) = 1 - \frac{1}{4}(1 - \cos 4x)$
 $\Rightarrow f(x) = \frac{3}{4} + \frac{1}{4}\cos 4x$
 $\therefore -1 \le \cos 4x \le 1$ for $x \in [0, \pi/2]$
 $\therefore -\frac{1}{4} \le \frac{1}{4}\cos 4x \le \frac{1}{4}$ for all $x \in [0, \pi/2]$
 $\Rightarrow \frac{1}{2} \le \frac{3}{4} + \frac{1}{4}\cos 4x \le 1$ for all $x \in [0, \pi/2]$
 $\Rightarrow \frac{1}{2} \le f(x) \le 1$ for all $x \in [0, \pi/2]$
 $\Rightarrow \cos \theta = 2\sin^2 \theta \cos \theta$
 $\Rightarrow \cos \theta = 10 \text{ or, } 1 - 2\sin^2 \theta = 0$
 $\Rightarrow \cos \theta = 0 \text{ or, } \sin^2 \theta = (\frac{1}{\sqrt{2}})^2$
 $\Rightarrow \theta = 90^{\circ} \text{ or } \theta = 45^{\circ}$
602 (b)
 $\tan (\frac{\theta + \alpha}{2}) \cdot \tan (\frac{\theta - \alpha}{2})$
 $= \frac{\tan^2 \frac{\theta}{2} - \tan^2 \frac{\alpha}{2}}{1 - \tan^2 \frac{\theta}{2} \tan^2 \frac{\alpha}{2}}$
 $= \frac{\cos^2 \frac{\alpha}{2} - \cos^2 \frac{\theta}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \frac{\theta}{2}}{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \frac{\theta}{2}}$
 $= \frac{\cos^2 \frac{\alpha}{2} - \cos^2 \frac{\theta}{2} \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\alpha}{2} \cos^2 \frac{\theta}{2} - \sin^2 \frac{\alpha}{2} \cos^2 \frac{\theta}{2}}$
 $= \frac{\cos^2 \frac{\alpha}{2} - \cos^2 \frac{\theta}{2} \cos^2 \frac{\theta}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \frac{\theta}{2}}{(\cos \alpha + \cos \theta)}$
 $= \frac{\cos \alpha(1 - \cos \beta)}{\cos \alpha(1 + \cos \beta)} = \tan^2 \frac{\beta}{2}$
603 (b)
We have,
 $\angle A = \frac{\pi}{3}, b : c = 2 : 3$ and $\tan \theta = \frac{\sqrt{3}}{5}$

Using Napier's analogy, we have

$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c} = \cot\frac{A}{2}$$

$$\Rightarrow \tan\left(\frac{B-C}{2}\right) = -\frac{1}{5}\cot\frac{\pi}{6} = -\frac{\sqrt{3}}{5}$$

$$\Rightarrow \tan\left(\frac{B-C}{2}\right) = -\tan\theta$$

$$\Rightarrow \frac{B-C}{2} = -\theta$$

$$\Rightarrow C-B = 2\theta$$
But, $C+B = 120^{\circ} \quad [\because A = 60^{\circ} \text{ (given)}]$

$$\therefore 2C = 120^{\circ} + 2\theta \Rightarrow C = 60^{\circ} + \theta$$
604 (b)
$$\frac{\cos 70^{\circ}}{\sin 70^{\circ}} + 4\cos 70^{\circ} = \frac{\cos 70^{\circ} + 4\sin 70^{\circ} \cos 70^{\circ}}{\sin 70^{\circ}}$$

$$= \frac{\cos 70^{\circ} + 2\sin 440^{\circ}}{\sin 70^{\circ}}$$

$$= \frac{2\sin 30^{\circ} \cos 10^{\circ} + \sin 40^{\circ}}{\sin 70^{\circ}}$$

$$= \frac{2\sin 60^{\circ} \cos 20^{\circ}}{\sin 70^{\circ}} = \sqrt{3}$$
605 (b)
Given, $\frac{1}{\sqrt{2}}\sin x - \frac{1}{\sqrt{2}}\cos x = 1$

$$\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = -1$$

$$\Rightarrow x + \frac{\pi}{4} = 2n\pi + \pi \Rightarrow x = 2n\pi + \frac{3\pi}{4}$$
606 (a)
Applying $1 + \cos\theta = 2\cos^{2}\frac{\theta}{2}n$ times, we get
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2 + 2\cos\theta}}} = 2\cos\frac{\theta}{2^{n}}$$
607 (d)
We have,
(sec $A - \tan A$)(sec $B - \tan B$)(sec $C - \tan C$)
$$= (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$\Rightarrow (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$\Rightarrow (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$= (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$\Rightarrow (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$\Rightarrow (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$= 1 = \{(sec A + \tan A)(sec B + \tan B)(sec C + \tan C)\}^{2}$$

$$\Rightarrow 1 = \{(sec A + \tan A)(sec B + \tan B)(sec C + \tan C)\}^{2}$$

$$\Rightarrow (sec A + \tan A)(sec B + \tan B)(sec C + \tan C)$$

$$= \pm 1$$
Hence, LHS = RHS = ± 1

$$\begin{cases} \mathbf{d} \\ \frac{\sin 55^{\circ} - \cos 55^{\circ}}{\sin 10^{\circ}} = \frac{\sin 55^{\circ} - \sin 35^{\circ}}{\sin 10^{\circ}} \\ = \frac{2 \cos 45^{\circ} \sin 10^{\circ}}{\sin 10^{\circ}} \\ = \sqrt{2} \\ 609 \ \mathbf{(b)} \\ \text{Given, } \frac{\tan 3A}{\tan A} = a \\ \Rightarrow \frac{3 \tan A - \tan^{3} A}{\tan A(1 - 3 \tan^{2} A)} = a \\ \Rightarrow 3 - \tan^{2} A = a - 3a \tan^{2} A \\ \Rightarrow \tan A = \pm \sqrt{\frac{a - 3}{3a - 1}} \\ \text{Now, } \frac{\sin 3A}{\sin A} = \frac{3 \sin A - 4 \sin^{3} A}{\sin A} \\ \frac{1}{\sqrt{\sqrt{2}}} \\ \sqrt{3a - 1} \\ = 3 - 4 \sin^{2} A = 3 - 4 \left(\frac{a - 3}{4(a - 1)}\right) \\ = \frac{3a - 3 - a + 3}{(a - 1)} = \frac{2a}{(a - 1)} \\ 610 \ \mathbf{(a)} \\ \text{Using the relation} \\ \cos A + \cos B - \cos C = -1 + 4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} \\ \text{Put } A = 56^{\circ}, B = 58^{\circ}, C = 66^{\circ} \\ \therefore \cos 56^{\circ} + \cos 58^{\circ} - \cos 66^{\circ} \\ = -1 + 4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ} \\ \Rightarrow 1 + \cos 56^{\circ} + \cos 58^{\circ} - \cos 66^{\circ} \\ = 4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ} \end{cases}$$

11 (c) From the given relations, we can say that α and β are roots of the equation $x\cos\theta + y\sin\theta = 2a$ $\Rightarrow 2a - x \cos \theta = y \sin \theta$ $\Rightarrow (2a - x\cos\theta)^2 = y^2\sin^2\theta$ $\Rightarrow (x^2 + y^2)\cos^2\theta - 4ax\cos\theta + 4a^2 - y^2 = 0$ $\therefore \cos \alpha + \cos \beta = \frac{4ax}{x^2 + y^2}, \text{ and } \cos \alpha \cos \beta$ $=\frac{4a^2-y^2}{x^2+y^2}$ Now, $2\sin\frac{\alpha}{2}\sin\frac{\beta}{2} = 1$ $\Rightarrow 4\sin^2\frac{\alpha}{2}\sin^2\frac{\beta}{2} = 1$ $\Rightarrow (1 - \cos \alpha)(1 - \cos \beta) = 1$ $\Rightarrow \cos \alpha + \cos \beta = \cos \alpha \cos \beta$ $\Rightarrow \frac{4ax}{x^2 + y^2} = \frac{4a^2 - y^2}{x^2 + y^2}$ $\Rightarrow y^2 = 4a(a - x)$ 13 (b) Since, $\cos \theta$ is positive and $\tan \theta$ is negative, which lies in IVth quadrant. $\therefore \quad \theta = 315^\circ = \frac{7\pi}{4}$ ∴ The general value of θ is $2n\pi + \frac{7\pi}{4}$, $n \in I$ 14 (c) We have, $\sin x = \cos 3x$ $\Rightarrow \sin x = 4\cos^3 x - 3\cos x$ $\Rightarrow \tan x \sec^2 x = 4 - 3 \sec^2 x$ $\Rightarrow \tan x(1 + \tan^2 x) = 4 - 3(1 + \tan^2 x)$ $\Rightarrow \tan^3 x + 3 \tan^2 x + \tan x - 1 = 0$ $\Rightarrow (\tan x + 1)(\tan^2 x + 2\tan x - 1) = 0$ $\Rightarrow \tan x + 1 = 0$ or, $1 - \tan^2 x = 2 \tan x$ $\Rightarrow \tan x = -1$ or, $\tan 2x = 1$ $\Rightarrow x = \frac{3\pi}{4}, \frac{\pi}{8}, \frac{5\pi}{8}$ <u>ALITER</u> Graphs of $y = \sin x$ and $y = \cos 3x$ intersect at three points between 0 and π 515 (b) We have, $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}}$ $= \frac{1 - \sin \theta + 1 + \sin \theta}{\sqrt{1 - \sin^2 \theta}}$ $= \frac{2}{|\cos \theta|} = \frac{2}{-\cos \theta} = -2 \sec \theta \quad \begin{bmatrix} \because \pi/2 < \theta < \pi \\ \therefore \cos \theta < 0 \end{bmatrix}$ 616 (d)

 $\sin\theta = \sin 15^\circ + \sin 45^\circ$ $= 2\sin 30^{\circ}\cos 15^{\circ} = 2 \times \frac{1}{2} \times \cos(90^{\circ} - 75^{\circ})$ $\Rightarrow \sin \theta = \sin 75^{\circ} \Rightarrow \theta = 75^{\circ}$ 617 (c) Given, $\sinh^{-1} 2 + \sinh^{-1} 3 = x$ $\Rightarrow \cosh(\sinh^{-1}2 + \sinh^{-1}3) = \cosh x$ $\Rightarrow \cosh(\sinh^{-1} 2) \cosh(\sinh^{-1} 3)$ $+ \sinh(\sinh^{-1} 2) \sinh(\sinh^{-1} 3)$ $= \cosh x$ $\Rightarrow \cosh x = \cosh(\cosh^{-1}\sqrt{1+2^2})$ $\times \cosh\left(\cosh^{-1}\sqrt{1+3^2}\right) + 2 \times 3$ $\Rightarrow \cosh x = (\sqrt{5}\sqrt{10} + 6) \times \frac{2}{2}$ $=\frac{1}{2}(12+2\sqrt{50})$ 618 (a) We have, $\sin 7\,\theta + \sin \theta - \sin 4\,\theta = 0$ $\Rightarrow 2 \sin 4 \theta \cos 3 \theta - \sin 4 \theta = 0$ $\Rightarrow \sin 4 \theta (2 \cos 3 \theta - 1) = 0$ $\Rightarrow \sin 4 \theta = 0, \cos 3 \theta = \frac{1}{2}$ Now, $\sin 4 \theta = 0 \Rightarrow 4 \theta = \pi \Rightarrow \theta = \frac{\pi}{4}$ and, $\cos 3\theta = \frac{1}{2} \Rightarrow 3\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{0}$ 619 **(b)** We have, $OI \mid\mid BC \Rightarrow OL = ID \Rightarrow OL = r \quad [::ID = r]$ In ΔBLO , we have $\cos A = \frac{OL}{OR} \Rightarrow \cos A = \frac{r}{R}$ We know that $\cos A + \cos B + \cos C = 1 + \frac{r}{p}$ Ε $\Rightarrow \frac{r}{R} + \cos B + \cos C = 1 + \frac{r}{R}$ $\Rightarrow \cos B + \cos C = 1 \qquad \left[\because \cos A = \frac{r}{p} \right]$

620 (c) Since, $2\sin^2\theta = 3\cos\theta$ $\Rightarrow 2 - 2\cos^2\theta = 3\cos\theta$ $\Rightarrow 2\cos^2\theta + 3\cos\theta - 2 = 0$ $\Rightarrow (2\cos\theta - 1)(\cos\theta + 2) = 0$ $\Rightarrow \cos \theta = \frac{1}{2} \quad (\because \cos \theta \neq -2)$ $\therefore \quad \theta = \frac{\pi}{2}, \frac{5\pi}{2} \quad (\because 0 \le \theta \le 2\pi)$ 621 (d) Given, $3\tan(\theta - 15) = \tan(\theta + 15)$ $\frac{\tan A}{\tan B} = \frac{3}{1}$, where $A = \theta + 15^\circ$, $B = \theta - 15^\circ$ $\Rightarrow \frac{\tan A + \tan B}{\tan A - \tan B} = \frac{3+1}{3-1}$ (Applying componendo and dividendo) $\Rightarrow \frac{\sin(A+B)}{\sin(A-B)} = 2$ $\Rightarrow \sin 2\theta = 2 \sin 30^{\circ}$ $\Rightarrow \sin 2\theta = \frac{2.1}{2} = 1 = \sin \frac{\pi}{2}$ $\Rightarrow 2\theta = 2n\pi + \frac{\pi}{2}$ $\Rightarrow \theta = n\pi + \frac{\pi}{4}$

622 (d)

Given equation of curves are $y = e^x$ and $y = \sin x$

It is clear from the figure that two curves intersect at infinite number of points.

623 (a)

Let $S = \sin 10^{\circ} + \sin 20^{\circ} + \sin 30^{\circ} + ... + \sin 360^{\circ}$ Here, the angles $10^{\circ}, 20^{\circ}, 30^{\circ}, ..., 360^{\circ}$ are in AP. Where first term $(\alpha) = 10^{\circ}$, Common difference $(\beta) = 10^{\circ}$ Let number of terms be n $\therefore 360^{\circ} = 10^{\circ} + (n - 1)10^{\circ}$ $\Rightarrow n - 1 = 35 \Rightarrow n = 36$ $\therefore S = \frac{\sin \frac{360^{\circ}}{2}}{\sin 5^{\circ}} \sin[10^{\circ} + (36 - 1)5^{\circ}]$ $= \frac{\sin 180^{\circ}}{\sin 5^{\circ}} \times \sin(180^{\circ} + 5^{\circ}) = -\sin 180^{\circ} = 0$ 624 (c) $\frac{2\cos 8\theta + 1}{2\cos \theta + 1} = \frac{2(2\cos^2 4\theta - 1) + 1}{(2\cos \theta + 1)}$ $= \frac{(2\cos 4\theta - 1)(2\cos 4\theta + 1)}{(2\cos \theta + 1)}$

 $\frac{(2\cos 4\theta - 1)(2\cos 2\theta - 1)(2\cos 2\theta + 1)}{(2\cos \theta + 1)}$ $=\frac{[(2\cos 4\theta - 1)(2\cos 2\theta - 1)(2\cos \theta - 1)(2\cos \theta)]}{(2\cos \theta + 1)}$ $= (2\cos 4\theta - 1)(2\cos 2\theta - 1)(2\cos \theta - 1)$ 625 (b) Since, sec α , cosec α are the roots of the equation $x^2 - px + q = 0$ $\therefore \sec \alpha + \csc \alpha = p, \sec \alpha \cdot \csc \alpha = q$ $\Rightarrow \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = p, \sin \alpha \cos \alpha = \frac{1}{\alpha}$ $\Rightarrow \sin \alpha + \cos \alpha = \frac{p}{q}$ $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{p^2}{a^2}$ $\Rightarrow 1 + \frac{2}{a} = \frac{p^2}{a^2} \Rightarrow q(q+2) = p^2$ 626 (b) Let $S = \sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{3\pi}{7}$. Then, $S^2 = \sin \frac{2\pi}{7} \sin^2 \frac{2\pi}{7} \sin^2 \frac{3\pi}{7}$ $\Rightarrow S^2 = \frac{1}{8} \left(1 - \cos \frac{2\pi}{7} \right) \left(1 - \cos \frac{4\pi}{7} \right) \left(1 - \cos \frac{6\pi}{7} \right)$ $\Rightarrow S^2 = \left\{ \left(1 - \cos\frac{2\pi}{7}\right) \left(1 + \cos\frac{3\pi}{7}\right) \left(1 + \cos\frac{\pi}{7}\right) \right\}$ $\Rightarrow S^2 = \frac{1}{8} \left\{ 1 + \left(\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} - \cos \frac{2\pi}{7} \right) \right\}$ $-\cos\frac{\pi}{7}\cos\frac{3\pi}{7}-\cos\frac{\pi}{7}\cos\frac{2\pi}{7}$ $-\cos\frac{\pi}{7}\cos\frac{2\pi}{7}$ $-\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{3\pi}{7}$ $\Rightarrow S^{2} = \frac{1}{8} \Big\{ 1 + \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} - \cos\frac{2\pi}{7} - \cos\frac{\pi}{7} \Big\}$ $-\cos\frac{3\pi}{7}+\cos\frac{2\pi}{7}-\frac{1}{8}$ $\Rightarrow S^2 = \frac{7}{64}$ Hence, $S = \frac{\sqrt{7}}{8}$ 627 (a) $\therefore \sin x + \sin^2 x = 1 \implies \sin x = \cos^2 x$ Now, $\cos^{12} x + 3\cos^{10} x + 3\cos^{8} x + \cos^{6} x$ $= \sin^6 x + 3 \sin^5 x + 3 \sin^4 x + \sin^3 x$ $= (\sin^2 x + \sin x)^3 = 1$ 628 (b) We have,

B = A + C $\Rightarrow \tan B = \tan(A + C)$ $\Rightarrow \tan B = \frac{\tan A + \tan C}{1 - \tan A \tan C}$ $\Rightarrow \tan A \tan B \tan C = \tan B - \tan A - \tan C$ 629 (b) We have, $mn = (\cos A + \cos B)(\sin A + \sin B)$ $\Rightarrow mn = \cos A \sin A + \sin(A + B) + \sin B \cos B$ $\Rightarrow 2mn = \sin 2A + \sin 2B + \sin(A + B)$ $\Rightarrow 2mn = 2\sin(A+B)\cos(A-B) + \sin(A+B)$...(i) Also, we have, $m^2 + n^2 = 2 + 2\cos(A - B)$...(ii) From (i) and (ii), we have, $\sin(A+B) = \frac{2mn}{m^2 + n^2}$ 630 (c) Given, $(5 + 4\cos\theta)(2\cos\theta + 1) = 0$...(i) Since, $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{1 - t^2}{1 + t^2}$ [put $\tan \frac{\theta}{2} = t$] ∴ From Eq. (i), $\left[5+4\left(\frac{1-t^2}{1-t^2}\right)\right]\left[2\left(\frac{1-t^2}{1+t^2}\right)+1\right] = 0$ $\Rightarrow [5 + 5t^{2} + 4 - 4t^{2}][2 - 2t^{2} + 1 + t^{2}] = 0$ $\Rightarrow (t^2 + 9)(3 - t^2) = 0 \Rightarrow t = \pm \sqrt{3}$ $\therefore \tan \frac{\theta}{2} = \sqrt{3} \text{ or } \tan \frac{\theta}{2} = -\sqrt{3}$ $\Rightarrow \frac{\theta}{2} = \frac{\pi}{3} \text{ or } \frac{\theta}{2} = \frac{2\pi}{3}$ $\therefore \quad \theta = \frac{2\pi}{2} \text{ or } \frac{4\pi}{2}$ 631 (b) We have, $\sin^6 x + \cos^6 x = \lambda$ $\Rightarrow (\sin^2 x + \cos^2 x)(\sin^4 x)$ $+\cos^4 x - \sin^2 x \cos^2 x) = \lambda$ $\Rightarrow [(\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x] = \lambda$ $\Rightarrow 1 - \frac{3}{4}\sin^2 2x = \lambda$ $\Rightarrow \sin 2x = \pm 2 \int \frac{1-\lambda}{3}$ This equation has a solution if $1 - \lambda \ge 0$ and $-1 \le 2 \left| \frac{1 - \lambda}{3} \le 1 \right|$ $\Rightarrow \lambda \le 1 \text{ and } \frac{4}{3}(1-\lambda) \le 1$ $\Rightarrow \lambda \leq 1 \text{ and } \lambda \geq \frac{1}{4} \Rightarrow \lambda \in [1/4, 1]$ 632 (d) We have,

 $y = \frac{\sin 3\theta}{\sin \theta} \Rightarrow y = 3 - 4\sin^2 \theta \Rightarrow \sin^2 \theta = \frac{3 - y}{4}$ Now. $0 < \sin^2 \theta \le 1 \quad [\because \theta \neq n\pi]$ $\Rightarrow 0 < \frac{3-y}{4} \le 1$ $\Rightarrow 0 < 3 - \gamma \leq 4$ $\Rightarrow -3 < -y \le 1 \Rightarrow -1 \le y < 3 \Rightarrow y \in [-1, 3)$ 633 (c) Since, $\sin^2 \frac{1}{4} \Rightarrow \sin^2 \theta = \sin^2 \frac{\pi}{6}$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{6}$ 634 (b) Given, $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ $\Rightarrow \sin n\theta = b_0 \cdot \sin^0 \theta + b_1 \sin^1 \theta + b_2$ $\sin^2 \theta + \ldots + b_n \sin^n \theta$ $\Rightarrow \sin n\theta = b_0 + b_1 \sin \theta + \dots b_n \sin^n \theta$ $:: \sin n\theta =^n C_1 \sin \theta \cos^{n-1} \theta - {}^n C_3$ $\sin^3\theta\cos^{n-3}\theta+\ldots$ $=^{n} C_{1} \sin \theta (1 - \sin^{2} \theta)^{\frac{n-1}{2}} - n C_{3}$ $\sin^3\theta(1-\sin^2\theta)^{(n-3)/2}+\ldots$ $\therefore b_0 = 0$ $b_1 = \text{Coefficient of } \sin \theta =^n C_1 = n$ [:: n - 1, n - 3 are all even integer] Alternate $\sin n\theta = b_0 + b_1 \sin \theta + b_2 \sin^2 \theta + \ldots + b_n \sin^n \theta$ Put $\theta = 0$, we get $b_0 = 1$ $\frac{\sin n\theta}{\sin \theta} = \sum_{r=1}^n b_r \sin^{r-1} \theta$ Again, Taking limit as $\theta \to 0$, we get $\lim_{\theta \to 0} \frac{\sin n\theta}{\sin \theta} = b_1 + 0$ $n = b_1$ ⇒ 635 (c) We have, $k = \sin^6 x + \cos^6 x$ $\Rightarrow k = (\sin^2 x + \cos^2 x)(\sin^4 x + \cos^4 x)$ $-\sin^2 x \cos^2 x$ $\Rightarrow k = (1 - 3\sin^2 x \cos^2 x)$ $\Rightarrow k = \left(1 - \frac{3}{4}\sin^2 2x\right)$ Now, $0 \le \frac{3}{4}\sin^2 2x \le \frac{3}{4}$, for all x $\Rightarrow -\frac{3}{4} \le -\frac{3}{4} \sin^2 2x \le 0, \text{ for all } x$ $\Rightarrow 1 - \frac{3}{4} \le 1 - \frac{3}{4} \sin^2 2x \le 1$, for all x $\Rightarrow \frac{1}{4} \le 1 - \frac{3}{4} \sin^2 2x \le 1$, for all x $\Rightarrow \frac{1}{4} \le k \le 1$

636 (d) We have, $\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3}\sin 250^\circ}$ $=\frac{\sqrt{3}\sin 250^{\circ} + \cos 290^{\circ}}{\sqrt{3}\sin 250^{\circ}\cos 290^{\circ}}$ $=\frac{-\sqrt{3}\cos 20^\circ + \sin 20^\circ}{-1}$ $-\sqrt{3}\cos 20^\circ \sin 20^\circ$ $=\frac{2(\sin 20^{\circ} - \tan 60^{\circ} \cos 20^{\circ})}{-\sqrt{3}(2\sin 20^{\circ} \cos 20^{\circ})}$ $=\frac{2(\sin 20^{\circ} \cos 60^{\circ} - \cos 20^{\circ} \sin 60^{\circ})}{-\sqrt{3} \sin 40^{\circ} \cos 60^{\circ}}$ $=\frac{2\sin(-40^\circ)}{-\sqrt{3}/2\sin 40^\circ}=\frac{4}{\sqrt{3}}$ 637 (a) Let $81^{\sin^2 x} = y$. Then, $81^{\cos^2 x} = 81^{1-\sin^2 x} = 81 v^{-1}$ Now, $81^{\sin^2 x} + 81^{\cos^2 x} = 30$ $\Rightarrow y + \frac{81}{y} = 30$ $\Rightarrow v^2 - 30v + 81 = 0$ $\Rightarrow y = 3 \text{ or, } y = 27$ $\Rightarrow 81^{\sin^2 x} = 3 \text{ or, } 81^{\sin^2 x} = 27$ $\Rightarrow 3^{4 \sin^2 x} = 3^1$ or $3^{4 \sin^2 x} = 3^3$ $\Rightarrow 4 \sin^2 x = 1.4 \sin^2 x = 3$ $\Rightarrow \sin x = \pm \frac{1}{\sqrt{2}}$ or, $\sin x = \pm \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{6}$ or $\frac{\pi}{3}$ 638 (b) We have, $\cos 9^\circ - \sin 9^\circ$ $=\sqrt{(\cos 9^\circ - \sin 9^\circ)^2} \quad [\because \cos 9^\circ > \sin 9^\circ]$ $=\sqrt{1-\sin 18^\circ} = \sqrt{1-\left(\frac{\sqrt{5}-1}{4}\right)} = \sqrt{\frac{5-\sqrt{5}}{2}}$ 639 (c) $\operatorname{sech}^{-1}\left(\frac{1}{2}\right) = \cosh^{-1}(2)$ $= \log \left(2 + \sqrt{2^2 - 1}\right) = \log(2 + \sqrt{3})$ 640 (a) Since the triangle *ABC* is right angled at *B* $\therefore \tan \frac{B}{2} = 1$ $\Rightarrow \sqrt{\frac{(s-c)(s-c)}{s(s-b)}} = 1 \Rightarrow (s-c)(s-a)$ $= s(s - b) \dots (i)$ Now, $r = \frac{\Delta}{-}$

$$\Rightarrow r = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}$$

$$\Rightarrow r = \frac{s(s-b)}{s} \quad [Using:(i)]$$

$$\Rightarrow 2r = 2s - 2b \Rightarrow 2r = a + c - b$$
641 (b)
When, $\theta \in (0, \frac{\pi}{4})$
 $\tan \theta < \cot \theta$
Since, $\tan \theta < 1$ and $\cot \theta > 1$
 \therefore ($\tan \theta$) ^{$\cot \theta$} < 1 and ($\cot \theta$) ^{$\tan \theta$} > 1
 \therefore ($\tan \theta$) ^{$\cot \theta$} < 1 and ($\cot \theta$) ^{$\tan \theta$} > 1
 \therefore ($\tan \theta$) ^{$\cot \theta$} < 1 and ($\cot \theta$) ^{$\tan \theta$} > 1
 \therefore ($\tan \theta$) ^{$\cot \theta$} < 1 and ($\cot \theta$) ^{$\tan \theta$} > 1
 \therefore ($\tan \theta$) ^{$\cot \theta$} < 1 and ($\cot \theta$) ^{$\tan \theta$} > 1
 \therefore ($\tan \theta + \tan \beta$
 $t_4 > t_1$, which only holds in (b)
642 (a)
We have,
 $\frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} + {\cos(\alpha - \beta) \sec(\alpha + \beta) + 1}^{-1}$
 $= 1$
 $\Rightarrow \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta} \times \frac{\sin \alpha \sin \beta}{\sin(\alpha + \beta)} = 1$
 $\Rightarrow \tan \alpha \tan \beta + \frac{\cos s \cos \beta - \sin \alpha \sin \beta}{2 \cos \alpha \cos \beta} = 1$
 $= \frac{1}{2} \tan \alpha \tan \beta + \frac{1}{2} = 1 \Rightarrow \tan \alpha \tan \beta = 1$
643 (c)
We have,
 $3(\sin \theta - \cos \theta)^4 + 6(\sin \theta + \cos \theta)^2$
 $+ 4(\sin^6 \theta + \cos^6 \theta)$
 $= 3\{\sin^4 \theta + \cos^4 \theta - 4 \sin^3 \theta \cos \theta$
 $+ 6 \sin^2 \theta \cos^2 \theta - 4 \sin \theta \cos^3 \theta\}$
 $+ 6[1 + 2 \sin \theta \cos \theta]$
 $+ 4[\sin^4 \theta + \cos^4 \theta$
 $- \sin^2 \theta \cos^2 \theta]$
 $= 7[\sin^4 \theta + \cos^4 \theta] + 14 \sin^2 \theta \cos^2 \theta$
 $- 12 \sin \theta \cos \theta + 6$
 $+ 12 \sin \theta \cos \theta$
 $= 7(\sin^2 \theta + \cos^2 \theta)^2 + 6 = 13$
644 (a)
Let $f(\theta) = \cos \theta - \theta + \frac{1}{2}$. Then,
 $f(0) = 1 + \frac{1}{2} > 0$ and $f(\frac{\pi}{2}) = \frac{1 - \pi}{2} < 0$
Clearly, $f(\theta)$ is a continuous function on $(0, \pi/2)$
Hence, a root of $f(\theta) = 0$ lies in the interval
 $(0, \pi/2)$
645 (a)
We know that, $\sin 22\frac{1^6}{2} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$
and $\cos 22\frac{1^5}{2} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$

Since,
$$\alpha = 22^{\circ}30' = 22\frac{1^{\circ}}{2}$$

$$\therefore \left(1 + \cos 22\frac{1^{\circ}}{2}\right) \left(1 + \cos 67\frac{1^{\circ}}{2}\right) \times \left(1 + \cos 112\frac{1^{\circ}}{2}\right) \left(1 + \cos 157\frac{1^{\circ}}{2}\right) = \left(1 + \frac{1}{2}\sqrt{2 + \sqrt{2}}\right) \left(1 + \frac{1}{2}\sqrt{2 - \sqrt{2}}\right) \left(1 - \frac{1}{2}\sqrt{2 - \sqrt{2}}\right) \left(1 - \frac{1}{2}\sqrt{2 + \sqrt{2}}\right) = \left[1 - \frac{1}{4}(2 + \sqrt{2})\right] \left[1 - \frac{1}{4}(2 - \sqrt{2})\right] = \frac{(2 - \sqrt{2})(2 + \sqrt{2})}{16} = \frac{4 - 2}{16} = \frac{1}{8}$$

646 (c)
sin A sin(60° - A) sin(60° + A)
 $= \sin A(\sin^2 60^{\circ} - \sin^2 A)$
 $= \sin A(\frac{3}{4} - \sin^2 A)$
 $= \frac{3 \sin A - 4 \sin^3 A}{4} = \frac{\sin 3A}{4}$

647 (a)
 $B + C = \pi - A$
 $\Rightarrow \sin(B + C) = \sin(\pi - A) = \sin A$
 $\therefore \sin 2A + \sin 2B + \sin 2C$
 $= 2 \sin A \cos A + 2\sin (B + C) \cos(B - C)$
 $= 2 \sin A [\cos (B - C) - \cos(B + C)]$
 $= 2 \sin A [\cos (B - C) - \cos(B + C)]$
 $= 2 \sin A [\cos (B - C) - \cos(B + C)]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B + \cos B + \cos B - C]$
 $= 2 \sin A [\cos B + \cos B$

 \therefore Maximum value= $\sqrt{3^2 + 4^2} = 5$

650 (b)
Given,
$$3\sin^2 x + 10\cos x - 6 = 0$$

 $\Rightarrow 3(1 - \cos^2 x) + 10\cos x - 6 = 0$
 $\Rightarrow -3\cos^2 x + 10\cos x - 3 = 0$
 $\Rightarrow (\cos x - 3)(1 - 3\cos x) = 0$
 $\Rightarrow \cos x \neq 3 \text{ or } \cos x = \frac{1}{3}$
 $\Rightarrow x = 2n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$
651 (a)
Given, $1 + \sin x \left(\frac{1 - \cos x}{2}\right) = 0$
 $\Rightarrow \sin 2x - 2\sin x = 4$
Since, the maximum values of $\sin x$ and $\sin 2x \text{ are } 1$, which is not possible for any x in $[-\pi, \pi]$
652 (b)
Given, $2\sin^2\frac{\theta}{2} = 2\sin\frac{\theta}{2} \cdot \cos\frac{\theta}{2} \cdot \sin\frac{\theta}{2}$
 $\Rightarrow 2\sin^2\frac{\theta}{2} [1 - \cos\frac{\theta}{2}] = 0$
 $\Rightarrow \sin\frac{\theta}{2} = 0 \text{ or } 2\sin^2\frac{\theta}{4} = 0$
 $\Rightarrow \frac{\theta}{2} = k\pi \text{ or } \frac{\theta}{4} = k\pi$
Hence, $\theta = 2k\pi \text{ or } \theta = 4k\pi$, $k \in I$
653 (a)
We have, $\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$
 $= \sqrt{2} \left[\frac{1}{\sqrt{2}}\sin\left(x + \frac{\pi}{6}\right) + \frac{1}{\sqrt{2}}\cos\left(x + \frac{\pi}{6}\right)\right]$
 $= \sqrt{2}\cos\left[x + \frac{\pi}{6} - \frac{\pi}{4}\right]$
 $= \sqrt{2}\cos\left(x - \frac{\pi}{12}\right)$
Hence, maximum value will be at $x = \frac{\pi}{12}$
654 (a)
We have,
 $\sin^4 x + \cos^4 x + \sin 2x + \alpha = 0$
 $\Rightarrow (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x + \sin 2x = 0$
 $\Rightarrow 1 - \frac{1}{2}\sin^2 2x + \sin 2x + \alpha = 0$

 $\Rightarrow \sin^2 2x - 2\sin 2x - 2 - 2\alpha = 0$

 $\Rightarrow 0 \le 3 + 2 \alpha \le 4$ and $3 + 2 \alpha \ge 0$

 $\Rightarrow (\sin 2x - 1)^2 = 3 + 2\alpha$

 $\Rightarrow \sin 2x = 1 \pm \sqrt{3 + 2 \alpha}$ This equation is meaningful if

 $-1 \le 1 \pm \sqrt{3 + 2\alpha} \le 1$ $\Rightarrow -2 \le \pm \sqrt{3 + 2\alpha} \le 0$

 $\Rightarrow -3 \le 2 \alpha \le 1 \text{ and } \alpha \ge -\frac{3}{2} \Rightarrow -\frac{3}{2} \le \alpha \le \frac{1}{2}$ 655 (c) We have, $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 85^\circ$ $+\sin^2 90^\circ$ $= (\sin^2 5^\circ + \sin^2 85^\circ) + (\sin^2 10^\circ + \sin^2 80^\circ)$ $+(\sin^2 15^\circ + \sin^2 75^\circ) + \cdots +$ $(\sin^2 40^\circ + \sin^2 50^\circ) + (\sin^2 45^\circ + \sin^2 90^\circ)$ $= 8 + \frac{1}{2} + 1 = 9\frac{1}{2}$ 656 (d) $1 + \cos x = k$ $\Rightarrow 1+1-2\sin^2\frac{x}{2}=k$ $\Rightarrow 1 - \sin^2 \frac{x}{2} = \frac{k}{2}$ $\Rightarrow \sin^2 \frac{x}{2} = 1 - \frac{k}{2}$ $\Rightarrow \sin \frac{x}{2} = \sqrt{\frac{2-k}{2}}$ 657 (c) We have, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ $\Rightarrow \frac{\cos A}{R \sin A} = \frac{\cos B}{R \sin B} = \frac{\cos C}{R \sin C} \quad [\text{Using : Sine rule}]$ $\Rightarrow \cot A = \cot B = \cot C$ $\Rightarrow A = B = C \Rightarrow \Delta ABC$ is equilateral 658 (a) We have, $c = (a+b)\sin\theta$ $\Rightarrow \sin \theta = \frac{c}{a+b}$ $\Rightarrow \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{c^2}{(a+b)^2}}$ $\Rightarrow \cos \theta = \sqrt{\frac{(a+b)^2 - c^2}{(a+b)^2}}$ $\Rightarrow \cos \theta = \frac{\sqrt{(a+b+c)(a+b-c)}}{a+b}$ $\Rightarrow \cos \theta = \sqrt{\frac{2s(2s-2c)}{(a+b)^2}}$ $\Rightarrow \cos \theta = 2 \sqrt{\frac{s(s-c)}{ab}} \times \frac{\sqrt{ab}}{a+b}$ $\Rightarrow \frac{k\sqrt{ab}}{a+b} = 2\cos\frac{C}{2} \times \frac{\sqrt{ab}}{a+b} \Rightarrow k = 2\cos\frac{C}{2}$ 659 (b) We have,

 $+\alpha$

$$\cos\frac{\pi}{7} + \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{5\pi}{7} + \frac{6\pi}{7}$$
$$+ \cos\frac{7\pi}{7}$$
$$= \left(\cos\frac{\pi}{7} + \cos\frac{6\pi}{7}\right) + \left(\cos\frac{2\pi}{7} + \cos\frac{5\pi}{7}\right)$$
$$+ \left(\cos\frac{3\pi}{7} + \cos\frac{4\pi}{7}\right) + \cos\pi$$
$$= \left(\cos\frac{\pi}{7} - \cos\frac{\pi}{7}\right) + \left(\cos\frac{2\pi}{7} - \cos\frac{2\pi}{7}\right)$$
$$+ \left(\cos\frac{3\pi}{7} - \cos\frac{3\pi}{7}\right) + \cos\pi$$
$$= \cos\pi = -1$$

ALITER This can be done by using the fact that the sum of the roots of $x^7 - 1 = 0$ is zero

660 (a)

 $2 \sin x = 5x^{2} + 2x + 3$ $\Rightarrow 2 \sin x = 4x^{2} + (x + 1)^{2} + 2$ But $2 \sin x \le 2$ and $4x^{2} + (x + 1)^{2} + 2 > 2$, so it has no solution

661 (d)

Let *ABC* be the triangle with *A* as the least angle. Then, the other angles are

$$B = A + \frac{A}{3} \text{ and } c = A + \frac{2A}{3}$$

Now,

$$A + B + C = 180^{\circ}$$

$$\Rightarrow A + \left(A + \frac{A}{3}\right) + \left(A + \frac{2A}{3}\right) = 180^{\circ} \Rightarrow A = 45^{\circ}$$

Thus, we have

$$A = 45^{\circ}, B = 60^{\circ} \text{ and } C = 75^{\circ}$$

Now,

$$a : b : c = \sin A : \sin B : \sin C$$

$$\Rightarrow a : b : c = \frac{1}{\sqrt{2}} : \frac{\sqrt{3}}{2} : \frac{\sqrt{3} + 1}{2\sqrt{2}} = 2\sqrt{2} : 2\sqrt{3}$$

We have,

$$5 \sin x + 3 \sin(x - \theta)$$

$$= (5 + 3 \cos \theta) \sin x - 3 \sin \theta \cos x$$

$$\leq \sqrt{(5 + 3 \cos \theta)^2 + 9 \sin^2 \theta}$$

$$\therefore \operatorname{Max}\{5 \sin x + 3 \sin(x - \theta)\}$$

$$= \sqrt{(5 + 3 \cos \theta)^2 + 9 \sin^2 \theta}$$

$$\Rightarrow 7 = \sqrt{34 + 30 \cos \theta}$$

$$\Rightarrow 34 + 30 \cos \theta = 49 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta$$

$$= 2n \pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$$
663 (c)

 $:\sqrt{2}+\sqrt{6}$

Given that, $\sin \theta + \cos \theta = m$... (i)

and $\sec \theta + \csc \theta = n$... (ii) Now, $n(m + 1)(m - 1) = n(m^2 - 1)$ = $(\sec \theta + \csc \theta) 2 \sin \theta \cos \theta$ (:: $m^2 = 1 +$ $2\sin\theta\cos\theta$) $=\frac{\sin\theta+\cos\theta}{\sin\theta\cos\theta}2\sin\theta\cos\theta$ = 2m[from Eq.(i)] 664 (a) Given that, $\tan^2 \theta - \tan \theta - \sqrt{3} \tan \theta + \sqrt{3} = 0$ $\Rightarrow \tan \theta (\tan \theta - 1) - \sqrt{3} (\tan \theta - 1) = 0$ \Rightarrow (tan $\theta - \sqrt{3}$) (tan $\theta - 1$) = 0 $\Rightarrow \theta = n\pi + \frac{\pi}{3}, n\pi + \frac{\pi}{4}$ 665 (b) We have, $\frac{x}{\cos\theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{z}{\cos(\theta + \frac{2\pi}{3})}$ Therefore, each ratio is equal to $\frac{x+y+z}{\cos\theta+\cos(\theta-\frac{2\pi}{3})+\cos(\theta+\frac{2\pi}{3})}$

$$=\frac{x+y+z}{\cos\theta+2\cos\theta\cos\frac{2\pi}{3}}$$

$$=\frac{x+y+z}{0}$$

$$\Rightarrow x + y + z = 0$$

666 **(d)**

We have, $e^{\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \log_{10} 3^\circ + \dots + \log_{10} \tan 89^\circ}$ $= e^{\log_{10} (\tan 1^\circ \tan 2^\circ \tan 3^\circ \dots \tan 89^\circ)} = e^{\log_{10} 1} = e^0$ = 1

667 **(b)**
We have,
$$\sin^3 x \sin 3x = \sum_{m=0}^n c_m \cos mx$$

Now, $\sin^3 x \sin 3x = \frac{1}{4} (3 \sin x - \sin 3x) \sin 3x$
 $= \frac{3}{8} \cdot 2 \sin x \sin 3x - \frac{1}{8} \cdot 2 \sin^2 3x$
 $= \frac{3}{8} (\cos 2x - \cos 4x) - \frac{1}{8} (1 - \cos 6x)$
 $= -\frac{1}{8} + \frac{3}{8} \cos 2x - \frac{3}{8} \cos 4x + \frac{1}{8} \cos 6x \dots (i)$
RHS $= \sum_{m=0}^n c_m \cos mx$

$$= \frac{c_{0} + c_{1} \cos x + c_{2} \cos 2x + c_{3} \cos 3x + ... + c_{n} \cos nx \dots (ii)}{(ii)}$$
On comparing Eqs.(i) and (ii), we get $n = 6$
668 (c)
Given, $\tan \left(90^{\circ} - 22\frac{1}{2}^{\circ}\right) + \cot \left(90^{\circ} - 22\frac{1}{2}^{\circ}\right)$
 $= \tan 22\frac{1}{2}^{\circ} + \cot 22\frac{1}{2}^{\circ} = \sqrt{2} - 1 + \sqrt{2} + 1 = 2\sqrt{2}$
669 (c)
We have
 $\frac{\sin^{2} A + \sin A + 1}{\sin A}$
 $= \left(\sin A + \frac{1}{\sin A}\right) + 1 \ge 2 + 1 = 3 \left[\because x + \frac{1}{x} \ge 2\right]$
 $\frac{\sin^{2} A + \sin A + 1}{\sin A} \ge 3$
 $\therefore \prod \frac{\sin^{2} A + \sin A + 1}{\sin A} \ge 3 \times 3 \times 3 = 27$
670 (a)
Given, $2\cos(e^{x}) = 5^{x} + 5^{-x}$
Since, $\cos e^{x} \le 1 \Rightarrow 2\cos e^{x} \le 2$...(i)
And $\frac{5^{x} + 5^{-x}}{2} \ge \sqrt{5^{x} \cdot 5^{-x}}$
 $\Rightarrow 5^{x} + 5^{-x} \ge 2$
 $\therefore LHS \le 2$, RHS ≥ 2
Now, $5^{x} + \frac{1}{5^{x}} = 2$ at $x = 0$
But, at $x = 0$
 $2\cos e^{x} \ne 2$
Hence, no solution will exist
671 (b)
Let r be the radius of the circle. Then,
 $A_{1} = nr^{2} \sin \frac{\pi}{n}, A_{2} = \frac{n}{2}r^{2} \sin^{2} \frac{\pi}{n}$ and A_{3}
 $= nr^{2} \tan \frac{\pi}{n}$
Now, $A_{2}A_{3} = \frac{n^{2}}{2}r^{4} \sin \frac{2\pi}{n} \frac{\sin \pi}{\cos \frac{\pi}{n}}$
 $\Rightarrow A_{2}A_{3} = \frac{n^{2}}{2}r^{4} (2\sin^{2}\frac{\pi}{n}) = (nr^{2}\sin\frac{\pi}{n})^{2} = A_{1}^{2}$
 $\Rightarrow A_{2}, A_{2}, A_{3}$ are in G. P.
672 (a)
Since, $\tan \theta + \tan(\frac{3\pi}{4} + \theta) = 2$
 $\therefore \tan \theta + \frac{-1 + \tan \theta}{1 + \tan \theta} = 2$
 $\Rightarrow \tan \theta + \tan^{2}\theta = 3$

 $\Rightarrow \tan^2 \theta = \left(\sqrt{3}\right)^2 = \tan^2 \frac{\pi}{3}$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{3}, n \in I$ 673 **(b)** $\frac{\sin(B+A) + \cos(B-A)}{\sin(B-A) + \cos(B+A)}$ $= \frac{\sin(B+A) + \sin(90^{\circ} - \overline{B-A})}{\sin(B-A) + \sin(90^{\circ} - \overline{A+B})}$ $= \frac{2\sin(A+45^{\circ})\cos(45^{\circ} - B)}{2\sin(45^{\circ} - A)\cos(45^{\circ} - B)}$ $=\frac{\sin (A+45^{\circ})}{\sin (45^{\circ}-A)}=\frac{\frac{1}{\sqrt{2}}\sin A+\frac{1}{\sqrt{2}}\cos A}{\frac{1}{\sqrt{2}}\cos A-\frac{1}{\sqrt{2}}\sin A}$ $=\frac{\cos A + \sin A}{\cos A - \sin A}$ 674 (d) $\operatorname{Let} f(x) = 3\cos x + 4\sin x + 5$ Since, $-\sqrt{3^2 + 4^2} \le 3\cos x + 4\sin x \le \sqrt{3^2 + 4^2}$ $\Rightarrow -5 \le 3\cos x + 4\sin x \le 5$ $\Rightarrow -5 + 5 \le 3 \cos x + 4 \sin x + 5 \le 5 + 5$ $\Rightarrow 0 \le f(x) \le 10$ Hence, maximum value of f(x) is 10 675 (a) $\sin A + \sqrt{3}\cos A = \sqrt{3}\cos B - \sin B$ $\Rightarrow \frac{1}{2}\sin A + \frac{\sqrt{3}}{2}\cos A = \frac{\sqrt{3}}{2}\cos B - \frac{1}{2}\sin B$ $\Rightarrow \cos{\frac{\pi}{3}}\sin A + \sin{\frac{\pi}{3}}\cos A$ $=\sin\frac{\pi}{3}\cos B - \cos\frac{\pi}{3}\sin B$ $\Rightarrow \sin\left(A + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3} - B\right)$ $\Rightarrow A + \frac{\pi}{3} = \frac{\pi}{3} - B$ $\Rightarrow A = -B$ Now, $\sin 3(A) + \sin 3B = \sin(-3B) + \sin 3B$ $= -\sin 3B + \sin 3B = 0$ 676 (c) $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2$ $+4(\sin^{6}x + \cos^{6}x)$ $= 3(1 - \sin 2x)^2 + 6(1 + \sin 2x)$ $+ 4 {(\sin^2 x + \cos^2 x)^3}$ $-3\sin^2 x \cos^2 x$ $\cdot (\sin^2 x + \cos^2 x)$ $= 3(1 - 2\sin 2x + \sin^2 2x) + 6$ $+ 6 \sin 2x + 4\{1 - 3 \sin^2 x \cos^2 x\}$ $= 3\{1 - 2\sin 2x + \sin^2 2x + 2 + 2\sin 2x\}$ $+4\left\{1-\frac{3}{4}\sin^2 2x\right\}$

$$= 13 + 3\sin^2 2x - 3\sin^2 2x = 13$$

677 (d)

$$m \tan(\theta - 30^{\circ}) = n \tan(\theta + 120^{\circ})$$

$$\Rightarrow m\left(\frac{\tan \theta - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}} \tan \theta}\right) = -n\left(\frac{-\tan \theta + \sqrt{3}}{1 + \sqrt{3} \tan \theta}\right)$$

$$\Rightarrow m\left[(\sqrt{3} \tan \theta)^{2} - 1\right] = -n(-\tan^{2} \theta + 3)$$

$$\Rightarrow 3m \tan^{2} \theta - m = n \tan^{2} \theta - 3n$$

$$\Rightarrow \tan^{2} \theta = \frac{m - 3n}{3m - n}$$
Now, $\cos 2\theta = \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta}$

$$= \frac{1 - \frac{m - 3n}{3m - n}}{1 + \frac{m - 3n}{3m - n}} = \frac{3m - n - m + 3n}{3m - n + m - 3n}$$

$$= \frac{2(m + n)}{4(m - n)} = \frac{m + n}{2(m - n)}$$
678 (c)

$$\sqrt{3} \csc 20^{\circ} - \sec 20^{\circ}$$

$$= \frac{\sin 60^{\circ} \cos 20^{\circ} - \sin 20^{\circ} \cos 60^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}}$$

$$= \frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}} = 4$$
679 (b)
Let $u = \cos \theta \left\{ \sin \theta + \sqrt{\sin^{2} \theta + \sin^{2} a} \right\}$

$$\Rightarrow (u - \sin \theta \cos \theta)^{2} = \cos^{2} \theta \left(\sin^{2} \theta + \sin^{2} a \right)$$

$$\Rightarrow u^{2} \tan^{2} \theta - 2u \tan \theta + u^{2} - \sin^{2} \alpha = 0$$

$$\Rightarrow 4u^{2} - 4u^{2}(u^{2} - \sin^{2} \alpha)$$

$$\geq 0 [\because \tan \theta \text{ is real } \therefore \text{ Disc } \ge 0]$$

$$\Rightarrow u^{2} - (1 + \sin^{2} \alpha) \ge 0 \Rightarrow |u| \le \sqrt{1 + \sin^{2} \alpha}$$
680 (b)

$$\because \tan^{2} \theta + \sec 2\theta = 1 \text{ (given)}$$

$$\Rightarrow \tan^{2} \theta + \sec 2\theta = 1 \text{ (given)}$$

$$\Rightarrow \tan^{2} \theta + \frac{1 + \tan^{2} \theta}{1 - \tan^{2} \theta} = 1$$

$$\Rightarrow \tan^{2} \theta(1 - \tan^{2} \theta) + 1 + \tan^{2} \theta = 1 - \tan^{2} \theta$$

$$\Rightarrow 3 \tan^{3} \theta - \tan^{4} \theta = 0$$

$$\Rightarrow \tan^{2} \theta(3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 0$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2} \theta) = 1$$

$$\Rightarrow \tan^{2} \theta (3 - \tan^{2}$$

681 (a) Given, $2 \sec 2\alpha = \tan \beta + \cot \beta$ $\Rightarrow 2 \sec 2\alpha = \frac{1 + \tan^2 \beta}{\tan \beta} = \frac{\sec^2 \beta}{\tan \beta}$ $=\frac{2}{2\cos\beta.\sin\beta}=2\csc 2\beta$ $\therefore \sec 2\alpha = \sec\left(\frac{\pi}{2} - 2\beta\right)$ $\Rightarrow 2\alpha = 2n\pi \pm \left(\frac{\pi}{2} - 2\beta\right)$ Taking +ve sing, we have $2(\alpha + \beta) = 2n\pi + \frac{\pi}{2}$ $\Rightarrow \alpha + \beta = n\pi + \frac{\pi}{4}, \qquad n \in I$ For, $n = 0, \alpha + \beta = \frac{\pi}{4}$ 682 (a) Given, $\tan x + \sec x = 2\cos x$ $\Rightarrow 1 + \sin x = 2 - 2 \sin^2 x$ $\Rightarrow (2\sin x - 1)(\sin x + 1) = 0$ $\Rightarrow \sin x = -1, \frac{1}{2}$ $\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ But at $x = \frac{3\pi}{2}$ given equation does not exist 683 (d) tan 1° tan 2° tan 3° ... tan 89° = tan 1° tan 2° tan 3° ... tan 45° cot 44° ... cot 2° cot $= (\tan 1^\circ \cot 1^\circ)(\tan 2^\circ \cot 2^\circ) \dots \tan 45^\circ$ = 1.11 = 1 684 (a) We have, sin 12° sin 24° sin 48° sin 84° $=\frac{1}{4}(2\sin 12^{\circ}\sin 48^{\circ})(2\sin 24^{\circ}\sin 48^{\circ})$ $=\frac{1}{2}(\cos 36^{\circ} - \cos 60^{\circ})(\cos 60^{\circ} - \cos 108^{\circ})$ $=\frac{1}{4}\left(\cos 36^{\circ}-\frac{1}{2}\right)\left(\frac{1}{2}+\sin 18^{\circ}\right)$ $=\frac{1}{4}\left\{\frac{1}{4}\left(\sqrt{5}+1\right)-\frac{1}{2}\right\}\left\{\frac{1}{2}+\frac{1}{4}\left(\sqrt{5}-1\right)\right\}=\frac{1}{16}$ and, $\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ$ $=\frac{1}{2}[\cos(60^{\circ}-20^{\circ})\cos 20^{\circ}\cos(60^{\circ}+20^{\circ})]$ $= \frac{1}{2} \left\{ \frac{1}{4} \cos 3(20^{\circ}) \right\} = \frac{1}{8} \cos 60^{\circ} = \frac{1}{2} \times \frac{1}{8} = \frac{1}{16}$ 685 (a) We have, $8\tan^2\frac{\theta}{2} = 1 + \sec\theta$ $\Rightarrow 8\left(\frac{1-\cos\theta}{1+\cos\theta}\right) = \frac{1+\cos\theta}{\cos\theta}$ $\Rightarrow 8\cos\theta(1-\cos\theta) = (1+\cos\theta)^2$

$$\Rightarrow 9 \cos^{2} \theta - 6 \cos \theta + 1 = 0$$

$$\Rightarrow \cos \theta = \frac{1}{3} \Rightarrow \theta = 2n \pi \pm \cos^{-1} \left(\frac{1}{3}\right), n \in \mathbb{Z}$$
686 (b)
We have,

$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$$

$$\Rightarrow \frac{\sin(x+y) + \sin(x-y)}{\sin(x-y) - \sin(x-y)} = \frac{(a+b) + (a-b)}{(a+b) - (a-b)}$$

$$\Rightarrow \frac{2 \sin x \cos y}{2 \cos x \sin y} = \frac{2a}{2b}$$

$$\Rightarrow \frac{\tan x}{\tan y} = \frac{a}{b}$$
687 (a)
We have, $\alpha + \beta + \gamma = 2\pi$

$$\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} = \pi - \frac{\gamma}{2}$$

$$\Rightarrow \tan \left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = \tan \left(\pi - \frac{\gamma}{2}\right)$$

$$\Rightarrow \frac{\tan \frac{\alpha}{2} + \tan \frac{\beta}{2}}{1 - \tan \frac{\alpha}{2} \tan \frac{\beta}{2}} = -\tan \frac{\gamma}{2}$$

$$\Rightarrow \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$$
688 (c)
We have,

$$\tan \theta = -1 \text{ and } \cos \theta = \frac{1}{\sqrt{2}}$$
The value of θ lying between 0 and 2π and
satisfying these two is $\frac{7\pi}{4}$. Therefore, the most
general solution is
 $\theta - 2n \pi + \frac{7\pi}{4}$, where $n \in \mathbb{Z}$
689 (d)
We have,

$$\frac{a}{b+c} + \frac{b}{c+a} = \frac{ac + a^{2} + b^{2} + bc}{bc + ba + ca + c^{2}}$$

$$\Rightarrow \frac{a}{b+c} + \frac{b}{c+a} = \frac{ac + bc^{2} + b^{2} + bc}{bc + ba + ca + c^{2}} = 1 [$$

$$\therefore a^{2} + b^{2} = c^{2} + ab]$$
690 (b)

We have, $\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$ $=\frac{\sqrt{\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)^{2}}+\sqrt{\left(\sin\frac{x}{2}-\cos\frac{x}{2}\right)^{2}}}{\sqrt{\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)^{2}}-\sqrt{\left(\sin\frac{x}{2}-\cos\frac{x}{2}\right)^{2}}}$ $=\frac{\cos\frac{x}{2}+\sin\frac{x}{2}+\sin\frac{x}{2}-\cos\frac{x}{2}}{\cos\frac{x}{2}+\sin\frac{x}{2}-\sin\frac{x}{2}+\cos\frac{x}{2}}=\tan\frac{x}{2}$ 691 (a) We have, $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha - \beta) = \frac{5}{13}$ $\Rightarrow \sin(\alpha + \beta) = \frac{3}{5} \text{ and } \cos(\alpha - \beta) = \frac{12}{13}$ $\Rightarrow \tan(\alpha + \beta) = \frac{3}{4} \arctan(\alpha - \beta) = \frac{5}{12}$ Now, $\tan 2\alpha = \tan\{(\alpha + \beta) + (\alpha - \beta)\}$ $\Rightarrow \tan 2\alpha = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta)\tan(\alpha - \beta)}$ $=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\times\frac{5}{12}}=\frac{56}{33}$ 692 (c) We have, $\sin\theta + \csc\theta = 2$ $\Rightarrow (\sin\theta + \csc\theta)^2 = 4$ $\Rightarrow \sin^2 \theta + \csc^2 \theta + 2 = 4 \Rightarrow \sin^2 \theta + \csc^2 \theta$ = 2693 (a) $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$ $\Rightarrow (\sin 6\theta + \sin 2\theta) + \sin 4\theta = 0$ $\Rightarrow 2\sin 4\theta \cos 2\theta + \sin 4\theta = 0$ $\Rightarrow \sin 4\theta (2\cos 2\theta + 1) = 0$ \therefore Either sin $4\theta = 0$ or cos $2\theta = -\frac{1}{2}$ When $\sin 4\theta = 0$ $\Rightarrow 4\theta = n\pi$ $\Rightarrow \theta = \frac{n\pi}{4}$ And when $\cos 2\theta = -\frac{1}{2} = \cos \frac{2\pi}{3}$ $\Rightarrow 2\theta = 2n\pi \pm \frac{2\pi}{3}$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{2}$

694 **(b)**

We have, $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$

 $\Rightarrow \sin x + \sin 3x$ $-3\sin 2x$ $= \cos x + \cos 3x - 3\cos 2x$ $\Rightarrow 2 \sin 2x \cos x$ $-3\sin 2x$ $-2\cos 2x\cos x + 3\cos 2x = 0$ $\Rightarrow \sin 2x(2\cos x - 3) - \cos 2x(2\cos x - 3) = 0$ $\Rightarrow (\sin 2x - \cos 2x)(2\cos x - 3) = 0$ $\Rightarrow \sin 2x = \cos 2x \quad \left(\because \cos x \neq \frac{3}{2}\right)$ $\Rightarrow 2x = 2n\pi \pm \left(\frac{\pi}{2} - 2x\right)$ Taking +ve sign $x = \frac{n\pi}{2} + \frac{\pi}{2}$ 695 (a) Since, $2\cos^2\frac{x}{2}\sin^2 x < 2$ But $x^2 + \frac{1}{x^2} \ge 2$ Thus, the equation has no solution 696 (a) Using sine formula, we have $\frac{\sqrt{3}+1}{\sin 105^{\circ}} = \frac{b}{\sin 30^{\circ}} = \frac{c}{\sin 45^{\circ}}$ $\Rightarrow 2\sqrt{2} = 2 \ b = \sqrt{2} \ c \Rightarrow b = \sqrt{2} \ c = 2$ \therefore Area of $\triangle ABC = \frac{1}{2}bc \sin A$ $\Rightarrow \text{Area of } \Delta ABC = \frac{1}{2} \times \left(2\sqrt{2}\sin 105^\circ\right) = \frac{\sqrt{3}+1}{2}$ $=\frac{1}{\sqrt{2}-1}$ 697 (c) Given, $\cos \theta - \sin \theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2}$ $\Rightarrow \cos\left(\theta + \frac{\pi}{4}\right) = \cos\frac{\pi}{3}$ $\Rightarrow \theta + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$ $\Rightarrow \theta = 2n\pi - \frac{7\pi}{12}$ or $2n\pi + \frac{\pi}{12}$ 698 (a) We have, $\frac{\sin B}{h} = \frac{\sin C}{c} \Rightarrow \sin C$ $=\frac{c}{b}\sin B > 1$ [: b $< \sin B$ (Given)], Which is impossible Hence, no triangle is possible

699 (b) We have, $\cot^2 \frac{\pi}{\alpha} + \cot^2 \frac{2\pi}{\alpha} + \cot^2 \frac{4\pi}{\alpha}$ $= \operatorname{cosec}^2 \frac{\pi}{9} + \operatorname{cosec}^2 \frac{2\pi}{9} + \operatorname{cosec}^2 \frac{4\pi}{9} - 3$ $=\frac{1}{1-\cos^{\frac{2\pi}{2}}}+\frac{1}{1-\cos^{\frac{4\pi}{2}}}+\frac{1}{1-\cos^{\frac{8\pi}{2}}}-3\quad ...(i)$ Let $a = \cos \frac{2\pi}{9}$, $b = \cos \frac{4\pi}{9}$, $c = \cos \frac{8\pi}{9}$. Then, $\frac{1}{1 - \cos\frac{2\pi}{2}} + \frac{1}{1 - \cos\frac{4\pi}{2}} + \frac{1}{1 - \cos\frac{8\pi}{2}}$ $=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ $=\frac{3+(ab+bc+ca)-2(a+b+c)}{1-(a+b+c)+(ab+bc+ca)-abc}$...(ii) Now. $a+b+c=\cos\frac{2\pi}{\alpha}+\cos\frac{4\pi}{\alpha}+\cos\frac{8\pi}{\alpha}$ $\Rightarrow a + b + c = 2\cos\frac{\pi}{3}\cos\frac{\pi}{9} + \cos\frac{8\pi}{9}$ $\Rightarrow a + b + c = \cos \frac{\pi}{\alpha} + \cos \left(\pi - \frac{\pi}{\alpha}\right)$ $\Rightarrow a + b + c = \cos\frac{\pi}{2} - \cos\frac{\pi}{2} = 0,$ $abc = \cos\frac{2\pi}{9}\cos\frac{4\pi}{9}\cos\frac{8\pi}{9}$ $\Rightarrow abc = \frac{1}{2} \left\{ \cos \frac{2\pi}{3} + \cos \frac{2\pi}{9} \right\} \cos \frac{8\pi}{9}$ $\Rightarrow abc = \frac{1}{2} \left\{ -\frac{1}{2} \cos \frac{8\pi}{9} + \cos \frac{8\pi}{9} \cos \frac{2\pi}{9} \right\}$ $\Rightarrow abc = \frac{1}{4} \left\{ -\cos\frac{8\pi}{9} + \cos\frac{10\pi}{9} + \cos\frac{2\pi}{3} \right\} = -\frac{1}{8},$ and, ab + bc + ca $=\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}+\cos\frac{4\pi}{9}\cos\frac{8\pi}{9}+\cos\frac{8\pi}{9}\cos\frac{2\pi}{9}$ $=\frac{1}{2}\left\{\cos\frac{2\pi}{3} + \cos\frac{2\pi}{9} + \cos\frac{4\pi}{3} + \cos\frac{4\pi}{9} + \cos\frac{2\pi}{3}\right\}$ $+\cos\frac{10\pi}{9}$ $=\frac{1}{2}\left\{-\frac{3}{2}+\cos\frac{2\pi}{9}+\cos\frac{4\pi}{9}+\cos\frac{10\pi}{9}\right\}$ $=\frac{1}{2}\left\{-\frac{3}{2}+2\cos\frac{\pi}{2}\cos\frac{\pi}{9}-\cos\frac{\pi}{9}\right\}=-\frac{3}{4}$ $\therefore \frac{1}{1 - \cos\frac{2\pi}{2}} + \frac{1}{1 - \cos\frac{4\pi}{2}} + \frac{1}{1 - \cos\frac{8\pi}{2}} = \frac{7 - \frac{1}{4}}{1 - \frac{3}{4} + \frac{1}{2}}$ $=\frac{\frac{1}{4}}{\frac{3}{2}}=6$ $\Rightarrow \cot^2 \frac{\pi}{9} + \cot^2 \frac{2\pi}{9} + \cot^2 \frac{4\pi}{9} = 6 - 3 = 3$ 700 (d) Since, $\tan x + \frac{1}{\tan x} = 2$

⇒
$$\tan x = 1 \Rightarrow x = \frac{\pi}{4}$$

∴ $\sin x = \frac{1}{\sqrt{2}}$ and $\cos x = \frac{1}{\sqrt{2}}$
Hence, $\sin^{2n} x + \cos^{2n} x = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^{n-1}}$
702 (c)
We have,
 $\sin x + \sin^2 x = 1 \Rightarrow \sin x = \cos^2 x$
Now,
 $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 1$
 $= \cos^6 x (\cos^6 x + 3\cos^4 x + 3\cos^2 x + 1) - 1$
 $= \cos^6 x (\cos^2 x + 1)^3 - 1$
 $= (\sin^2 x + \cos^2 x)^3 - 1$ [: $\sin x = \cos^2 x$]
 $= 1 - 1 = 0$
703 (c)
Let $a = 3x + 4y$, $b = 4x + 3y$ and $c = 5x + 5y$.
Clearly, c is the largest side and thus the largest
angle C is given by
 $\cos C \frac{a^2 + b^2 - c^2}{2 ab} = \frac{-2 xy}{2(12 x^2 + 25 xy + 12 y^2)} < 0$
 $\Rightarrow C$ is an obtuse angle
704 (a)
Let $a = x^2 + x + 1$, $b = x^2 - 1$ and $c = 2x + 1$.
Then,
 $a - b = x + 2 > 0$ [: $x > 1$]
 $a - c = x^2 - x > 0$ [: $x > 1$]
 $a - c = x^2 - x > 0$ [: $x > 1$]
 $a - c = \frac{b^2 + c^2 - a^2}{2bc}$
 $\Rightarrow \cos \theta = \frac{b^2 + c^2 - a^2}{2bc}$
 $\Rightarrow \cos \theta = \frac{(x^2 - 1)^2 + (2x + 1)^2 - (x^2 + x + 1)^2}{2(x^2 - 1)(2x + 1)}$
 $= -\frac{1}{2}$
 $\Rightarrow \theta = 2 \pi/3 = 120^\circ$
705 (c)
We have,
 $\frac{1}{2} a p_1 = \Delta, \frac{1}{2} b p_2 = \Delta, \frac{1}{2} c p_3 = \Delta$
 $\Rightarrow p_1 = \frac{2\Delta}{a}, p_2 = \frac{2\Delta}{b}, p_3 = \frac{2\Delta}{c}$
 $\therefore \frac{1}{p_1^2} + \frac{1}{p_2^2} + \frac{1}{p_3^2} = \frac{a^2 + b^2 + c^2}{4\Delta^2}$

$$\frac{1}{p_{1}} + \frac{1}{p_{2}} - \frac{1}{p_{3}} = \frac{a}{2\Delta} + \frac{b}{2\Delta} - \frac{c}{2\Delta} = \frac{a+b-c}{2\Delta}$$

$$= \frac{2(s-c)}{2\Delta} = \frac{s-c}{\Delta}$$
706 (c)
We have,
 $\cos C = \frac{63}{65} \Rightarrow \frac{a^{2} + b^{2} - c^{2}}{2ab} = \frac{63}{65}$
 $\Rightarrow \frac{26^{2} + 30^{2} - c^{2}}{2 \times 26 \times 30} = \frac{63}{65}$
 $\Rightarrow 676 + 900 - c^{2} = 1260 \Rightarrow c^{2} = 64 \Rightarrow c = 8$
Thus, we have
 $a = 26, b = 30$ and $c = 8$
 $\therefore 2s = a + b + c \Rightarrow 2s = 26 + 30 + 8 = 64 \Rightarrow s$
 $= 32$
Also,
 $\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{32 \times 6 \times 2 \times 24} = 96$
Hence, $r_{2} = \frac{\Delta}{s-b} = \frac{96}{32-30} = 48$
707 (c)
 $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 90^{\circ} \dots \cos 100^{\circ} = 0$
708 (b)
We have,
 $\sin \frac{\pi}{2} + \sin \frac{2\pi}{7} + \sin \frac{3\pi}{7}$
 $= \frac{1}{2\sin(\frac{\pi}{7})} \left\{ 1 - \cos \frac{2\pi}{7} + \cos \frac{\pi}{7} - \cos \frac{3\pi}{7} + \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} \right\}$
 $= \frac{1}{2\sin(\frac{\pi}{7})} \left\{ 1 + \cos \frac{\pi}{7} \right\} = \frac{2\cos^{2}\frac{\pi}{14}}{4\sin\frac{\pi}{14}\cos\frac{\pi}{14}} = \frac{1}{2}\cot\frac{\pi}{14}$
709 (a)
Let $f(x) = \sqrt{3}\cos x + \sin x$
 $\Rightarrow f(x) = 2\left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right) = 2\sin\left(x + \frac{\pi}{3}\right)$
Since, $-1 \le \sin\left(x + \frac{\pi}{3}\right) \le 1$
Hence, $f(x)$ is maximum, if $x + \frac{\pi}{3} = \frac{\pi}{2}$
 $\Rightarrow x = \frac{\pi}{6} = 30^{\circ}$

 $\sin^2 17.5^\circ + \sin^2 72.5^\circ$ $= \sin^2 17.5^\circ + \cos^2 17.5^\circ$ $\therefore \sin(9\theta - \theta) = \cos\theta$ $= 1 = \tan^2 45^\circ$ 711 (a) We have, $a \sin A = b \sin B$ $\Rightarrow a \cdot ak = b \cdot bk \Rightarrow a = b \Rightarrow \Delta ABC$ is isosceles 712 **(b)** We know that $\sin^2 \theta \ge 1$ $\Rightarrow \frac{4xy}{(x+v)^2} \ge 1$ $\Rightarrow 4xy \ge (x+y)^2$ $\Rightarrow (x-y)^2 < 0$ $\Rightarrow x - y = 0 \Rightarrow y = x$ And $x \neq 0$, $y \neq 0$ 713 (b) Given that, $\cos \theta = \frac{1}{2} \left(x + \frac{1}{x} \right)$ $\Rightarrow x + \frac{1}{x} = 2\cos\theta$ (i) We know that, $x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$ $= (2\cos\theta)^2 - 2 = 4\cos^2\theta - 2$ $= 2 \cos 2\theta$ [from Eq.(i)] $\therefore \frac{1}{2}\left(x^2 + \frac{1}{x^2}\right) = \frac{1}{2} \times 2\cos 2\theta = \cos 2\theta$ 714 (d) $\operatorname{sech}^{-1}(\sin\theta)$ $= \cosh^{-1}(\operatorname{cosec} \theta)$ $= \log \left[\operatorname{cosec} \theta + \sqrt{(\operatorname{cosec}^2 \theta - 1)} \right]$ $= \log \left[\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} \right] = \log \cot \frac{\theta}{2}$ 715 (d) Consider the curves $y = 2^{\cos x}$ and $y = |\sin x|$. Clearly, both the curves are symmetrical about *y*axis as cos x and | sin x | are even functions Also, $y = 2^{\cos x}$ and $y = |\sin x|$ intersect at two points in $[0, 2\pi]$ Hence, there are four solutions of the given equation 716 (d) We have, $\cos(\lambda \sin \theta) = \sin(\lambda \cos \theta)$ $\Rightarrow \cos(\lambda \sin \theta) = \cos\left(\frac{\pi}{2} - \lambda \cos \theta\right)$ $\Rightarrow \lambda \sin \theta = \frac{\pi}{2} - \lambda \cos \theta \Rightarrow \cos \theta + \sin \theta = \frac{\pi}{2\lambda}$

This equation will have a solution if $\left|\frac{\pi}{2\lambda} \le \sqrt{2}\right|$ $| \because | a \cos \theta + b \sin \theta |$ $<\sqrt{a^2+b^2}$ $\Rightarrow \frac{\pi}{2\lambda} \le \sqrt{2} \Rightarrow \lambda \ge \frac{\pi}{2\sqrt{2}} \quad [\because \lambda > 0]$ 717 (c) We have, $c_1 + c_2 = 2b \cos A$ and $c_1 c_2 = b^2 - a^2$ $\therefore c_1 - c_2 = \sqrt{(c_1 + c_2)^2 - 4c_1c_2}$ $\Rightarrow c_1 - c_2 = \sqrt{4b^2 \cos^2 A - 4(b^2 - a^2)}$ $= 2\sqrt{a^2 - b^2 \sin^2 A}$ 718 **(b)** We have, $\tan \alpha = (1 + 2^{-x})^{-1} = \frac{2^x}{2^x + 1}$ and $\tan \beta$ $=\frac{1}{2^{x+1}+1}$ $\therefore \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $\Rightarrow \tan(\alpha + \beta) = \frac{2^{x}(2^{x+1} + 1) + (2^{x} + 1)}{(2^{x} + 1)(2^{x+1} + 1) - 2^{x}}$ $\Rightarrow \tan(\alpha + \beta) = \frac{2(2^{x})^{2} + 2 \cdot 2^{x} + 1}{2(2^{x})^{2} + 2 \cdot 2^{x} + 1} = 1 \Rightarrow \alpha + \beta$ 719 (a) Given, $f(x) = \sin x (1 + \cos x)$ It is minimum at $x = \frac{\pi}{3}$ $\therefore f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) \left(1 + \cos\frac{\pi}{2}\right)$ $=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)=\frac{3\sqrt{3}}{4}$ 720 (c) We have. $\cos\frac{\pi}{11} + \cos\frac{3\pi}{11} + \cos\frac{5\pi}{11} + \cos\frac{7\pi}{11}\cos\frac{9\pi}{11}$ $=\frac{\cos\left\{\frac{\pi}{11} + \left(\frac{5-1}{2}\right)\frac{2\pi}{11}\right\}\sin\left(\frac{5\pi}{11}\right)}{\sin\left(\frac{\pi}{11}\right)}$ $=\frac{\cos\frac{5\pi}{11}\sin\frac{5\pi}{11}}{\sin\frac{\pi}{11}}=\frac{1}{2}\frac{\sin\left(\frac{10\pi}{11}\right)}{\sin\frac{\pi}{11}}=\frac{1}{2}$ 721 (c) $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos$ $+\cos\frac{7\pi}{2}$ $=\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1-\cos\frac{3\pi}{8}\right)$ $\times \left(1 - \cos \frac{\pi}{o}\right)$

$$= \left(1 - \cos^{2}\frac{\pi}{8}\right) \left(1 - \cos^{2}\frac{3\pi}{8}\right)$$

$$= \sin^{2}\frac{\pi}{8} \cdot \sin^{2}\frac{3\pi}{8} = \frac{1}{4} \left[2\sin\frac{\pi}{8}\sin\frac{3\pi}{8}\right]^{2}$$

$$= \frac{1}{4} \left[\cos\frac{\pi}{4} - \cos\frac{\pi}{2}\right]^{2} = \frac{1}{4} \left[\frac{1}{\sqrt{2}} - 0\right]^{2} = \frac{1}{8}$$
7722 (a)
We have,
 $2\sin\frac{A}{2} = \sqrt{1 + \sin A} + \sqrt{1 - \sin A}$
 $\Rightarrow 2\sin\frac{A}{2} = \sqrt{(\cos A/2 + \sin A/2)^{2}}$
 $+ \sqrt{(\cos A/2 - \sin A/2)^{2}}$
 $\Rightarrow 2\sin A/2 = |\cos A/2 + \sin A/2|$
 $+ |\sin A2/ - \sin A/2|$
 $\Rightarrow \cos A/2 + \sin A/2 \ge 0 \text{ and } \cos A/2 - \sin A/2 \le 0$
 $\Rightarrow \pi/4 \le A/2 \le 3\pi/4 \text{ and } \pi/4 \le A \le 5\pi/4$
 $\Rightarrow \pi/4 \le A/2 \le 3\pi/4 \text{ and } \pi/4 \le A \le 5\pi/4$
 $\Rightarrow \pi/4 \le A/2 \le 3\pi/4 \text{ and } \pi/4 \le A \le 5\pi/4$
 $\Rightarrow \pi/4 \le A/2 \le 3\pi/4 \text{ and } \pi/4 \le A \le 5\pi/4$
 $\Rightarrow \pi/4 \le A/2 \le 3\pi/4 \text{ and } \pi/4 \le A \le 5\pi/4$
 $\Rightarrow 2n\pi + \pi/4 \le A/2 \le 2n\pi + 3\pi/4, n \in \mathbb{Z}$
723 (a)
We have,
 $a\cos^{2}\frac{C}{2} + c\cos^{2}\frac{A}{2} = \frac{3b}{2}$
 $\Rightarrow \frac{1}{8}(2s - a - c) = \frac{3b}{2}$
 $\Rightarrow 2s = 3b \Rightarrow a + c = 2b \Rightarrow a, b, c \text{ are in A.P.}$
724 (a)
We have,
 $\tan(\theta_{1} + \theta_{2} + \dots + \theta_{n}) = \frac{S_{1} - S_{3} + S_{5} - S_{7} + \dots}{1 - S_{2} + S_{4} - S_{6} + \dots}$
 $\therefore \tan 5\theta = \frac{5C_{1} \tan \theta - 5C_{3} \tan^{3} \theta + 5C_{5} \tan^{5} \theta}{1 - 5C_{2} \tan^{2} \theta + 5C_{4} \tan^{4} \theta}$
725 (d)
It is given that a, b, c are in A.P.
 $\therefore 2b = a + c$
Now,
 $\frac{\tan\frac{A}{2} + \tan\frac{C}{2}}{\cot\frac{B}{2}} = \left(\tan\frac{A}{2} + \tan\frac{C}{2}\right)\tan\frac{B}{2}$
 $\Rightarrow \frac{\tan\frac{A}{2} + \tan\frac{C}{2}}{\cot\frac{B}{2}} = \left\{\frac{\Delta^{2}}{s(s-a)} + \frac{A}{s(s-c)}\right\}\frac{\Delta}{s(s-b)}$
 $\Rightarrow \frac{\tan\frac{A}{2} + \tan\frac{C}{2}}{\cot\frac{B}{2}} = \frac{\Delta^{2}}{s^{2}(s-b)}\left\{\frac{1}{s-a} + \frac{1}{s-c}\right\}$

$$\Rightarrow \frac{\tan\frac{A}{2} + \tan\frac{C}{2}}{\cot\frac{B}{2}} = \frac{2b}{2s} = \frac{2b}{a+b+c} = \frac{2b}{3b} = \frac{2}{3} [$$

$$\Rightarrow a + c = 2b]$$
726 (c)
We have,

$$2\frac{\cos A}{a} + \frac{\cos B}{b} + 2\frac{\cos C}{c} = \frac{a}{bc} + \frac{b}{ac}$$

$$\Rightarrow 2\left(\frac{b^2 + c^2 - a^2}{2abc}\right) + \frac{c^2 + a^2 - b^2}{2abc}$$

$$+ 2\left(\frac{a^2 + b^2 - c^2}{2abc}\right) = \frac{a^2 + b^2}{abc}$$

$$\Rightarrow b^2 + c^2 = a^2 \Rightarrow A = \frac{\pi}{2}$$
727 (d)

$$2^{n-1}\tan(2^{n-1}a) + 2^n\cot(2^na)$$

$$= 2^{n-1}\left[\frac{\sin 2^{n-1}a}{\cos 2^{n-1}a} + 2\frac{\cos 2^n a}{\sin 2^n a}\right]$$

$$= 2^{n-1}\left[\frac{\cos 2^{n-1}\alpha(1 + \cos 2^n a)}{\sin 2^n \alpha \cos 2^{n-1}a}\right]$$

$$= 2^{n-1}\left[\frac{\cos 2^{n-1}\alpha(1 + \cos 2^n a)}{\sin 2^n \alpha \cos 2^{n-1}a}\right]$$

$$= 2^{n-1}\left[\frac{\cos 2^{n-1}\alpha(1 + \cos 2^n a)}{\sin 2^n \alpha \cos 2^{n-1}a}\right]$$

$$= 2^{n-1}\cos 2^{n-1}\alpha$$
Proceeding in similar way in last, we get

$$\tan a + 2\cot 2a$$

$$= \frac{\sin a}{\cos a} + 2\frac{\cos 2a}{\sin 2a}$$

$$= \frac{\cos 2a \cos a + \sin 2a \sin a + \cos 2a \cos a}{\sin 2a \cos a}$$

$$= \frac{\cos a(1 + \cos 2a)}{2\sin \alpha \cos^2 a}$$

$$= \frac{2\cos^2 a}{2\sin a}$$

$$= \frac{\cos (1 + \cos 2a)}{2\sin \alpha \cos^2 a}$$

$$= \frac{\cos (\frac{\pi}{3} - x) - \cos^2(\frac{\pi}{3} + x)}{\cos^2(\frac{\pi}{3} - x) - \cos(\frac{\pi}{3} + x)}$$

$$= \left[\cos(\frac{\pi}{3} - x) + \cos(\frac{\pi}{3} + x)\right]\left[\cos(\frac{\pi}{3} - x) - \cos(\frac{\pi}{3} + x)\right]$$

$$= \sin\frac{2\pi}{3}\sin 2x = \frac{\sqrt{3}}{2}\sin 2x$$
Hence, maximum value of given expression is $\frac{\sqrt{3}}{2}$

729 **(d)**

We have, $\cos C = \frac{a^2 + b^2 - c^2}{2 a b} \Rightarrow \cos C = -1 \Rightarrow C = \pi$ Which is impossible in a triangle 730 (c) We have, а b cos A cos B $\Rightarrow 2R \sin A \cos B = 2R \sin B \cos A$ $\Rightarrow \sin(A - B) = 0 \Rightarrow A = B$ $\therefore 2 \sin A \cos B = \sin 2 A = \sin(180^\circ - C) [$ $:: 2A + C = 180^{\circ}$ $\Rightarrow 2 \sin A \cos B = \sin C$ 731 (d) Given, $1 + \sin \theta + \sin^2 \theta + \dots \infty = 4 + 2\sqrt{3}$ $\Rightarrow \frac{1}{1-\sin\theta} = 4 + 2\sqrt{3} \quad [\because 0 < \sin\theta < 1]$ $\Rightarrow 1 - \sin \theta = \frac{4 - 2\sqrt{3}}{16 - 12} = 1 - \frac{\sqrt{3}}{2}$ $\Rightarrow \sin \theta = \frac{\sqrt{3}}{2}$ $\Rightarrow \theta = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$ 732 (c) We have, $a(b^2 + c^2)\cos A$ $+ b(c^2 + a^2) \cos B + c(a^2)$ $(+ b^2) \cos C$ $= (ab^2 \cos A + ba^2 \cos B)$ $+(ac^2\cos A+ca^2\cos C)$ $+ (bc^2 \cos B + cb^2 \cos C)$ $= ab(b\cos A + a\cos B) + ca(c\cos A + a\cos C)$ $+ bc(c \cos B + b \cos C)$ = abc + abc + abc = 3abc733 (a) We have, $\tan(\pi \cos \theta) = \tan\left(\frac{\pi}{2} - \pi \sin \theta\right)$ $\therefore \sin \theta + \cos \theta = \frac{1}{2}$ $\Rightarrow \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2\sqrt{2}}$ $\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$ 734 (a) We have, $y = 5x^2 + 2x + 3$ 737 (b) We have, 2b = a + cAnd. $\Delta = \frac{3}{5} \times \frac{\sqrt{3}}{4} \left(\frac{a+b+c}{3}\right)^2$

Clearly, it represents an upward opening parabola having its vertex at (-1/5, 14/5)

$$\therefore y \ge \frac{14}{5} > 2$$

Now, $y = 2 \sin x \le 2$

Thus, the two curves do not intersect. Hence, there is no common point in the two curves

735 **(d)**

We have,

$$(a + b + c)(b + c - a) = \lambda bc$$

$$\Rightarrow 2 s(2s - a) = \lambda bc$$

$$\Rightarrow \frac{s(s - a)}{bc} = \frac{\lambda}{4}$$

$$\Rightarrow \cos^{2}\frac{A}{2} = \frac{\lambda}{4}$$

$$\Rightarrow 0 < \frac{\lambda}{4} < 1 \Rightarrow 0 < \lambda < 4 \quad \left[\because \cos^{2}\frac{A}{2} \le 1\right]$$
736 (c)
The given expression can be written as

$$(1 + \cot^{2} A) \cot^{2} A - (1 + \tan^{2} A) \tan^{2} A - (\cot^{2} A) - (1 + \tan^{2} A)(1 + \cot^{2} A)) - 1$$

$$= \cot^{2} A + \cot^{4} A - \tan^{2} A - \tan^{4} A - (\cot^{2} A - \tan^{2} A)(\cot^{2} A + \tan^{2} A + 1)$$

$$= \cot^{2} A + \cot^{4} A - \tan^{2} A - \tan^{4} A - (\cot^{2} A - \tan^{2} A) + (\cot^{2} A - \tan^{2} A)$$

 $-(\cot^4 A - \tan^4 A)$

$$\Rightarrow \Delta = \frac{3\sqrt{3}}{20}b^{2}$$

$$\Rightarrow s(s-a)(s-b)(s-c) = \frac{27}{400}b^{4}$$

$$\Rightarrow \left(\frac{a+b+c}{2}\right)\left(\frac{b+c-a}{2}\right)\left(\frac{c+a-b}{2}\right)\left(\frac{a+b-c}{2}\right) = \frac{27}{400}b^{4}$$

$$\Rightarrow \left(\frac{3b}{2}\right) \times \left(\frac{b+c-2b+c}{2}\right)\left(\frac{b}{2}\right)\left(\frac{2b-c+b-c}{2}\right) = \frac{27}{400}b^{4}$$

$$[: 2b = a+c]$$

$$\Rightarrow \frac{3b}{2} \times \left(\frac{2c-b}{2}\right) \times \frac{b}{2} \times \left(\frac{3b-2c}{2}\right) = \frac{27}{400}b^{4}$$

$$\Rightarrow (2c-b)(3b-2c) = \frac{9b^{2}}{25}$$

$$\Rightarrow (6bc - 4c^{2} - 3b^{2} + 2bc) = \frac{9b^{2}}{25}$$

$$\Rightarrow 8bc - 4c^{2} - 3b^{2} + 2bc) = \frac{9b^{2}}{25}$$

$$\Rightarrow 8bc - 4c^{2} - 3b^{2} + 2bc) = \frac{9b^{2}}{25}$$

$$\Rightarrow 8bc - 4c^{2} - 3b^{2} + 2bc) = 0$$

$$\Rightarrow 21b^{2} - 50bc + 25c^{2} = 0$$

$$\Rightarrow (7b - 5c)(3b - 5c) = 0$$

$$\Rightarrow 7b = 5c \text{ or, } 3b = 5c \Rightarrow \frac{b}{c} = \frac{5}{7}, \frac{5}{3}$$
Now,

$$2b = a + c \Rightarrow \frac{2b}{c} = \frac{a}{c} + 1 \Rightarrow \frac{a}{c} = \frac{3}{7}, \frac{7}{3}$$
Hence, $a: b: c = 3:5:7$
738 (a)

$$= \sqrt{\frac{1+\frac{a}{a}}{1-\frac{b}{a}} - \sqrt{\frac{1-\frac{a}{a}}{1+\frac{b}{a}}}$$

$$= \sqrt{\frac{1+\frac{a}{a}}{\sqrt{1-\tan^{2}a}} = \frac{2\sin a}{\sqrt{\cos 2a}}$$
739 (b)
Since, $\sin \theta + \cos \theta = x \dots(i)$
and $\sin^{6} \theta + \cos^{6} \theta = \frac{1}{4}[4 - 3(x^{2} - 1)^{2}]$
On equation Eq (i), we get
 $\sin 2\theta = x^{2} - 1 \le 1 \quad (: \sin 2\theta \le 1)$

$$\Rightarrow x^{2} \le 2 \Rightarrow -\sqrt{2} \le x \le \sqrt{2}$$
Now, $\sin^{6} \theta + \cos^{6} \theta = (\sin^{2} \theta + \cos^{2} \theta)^{3} - \frac{1}{2}$

 $3 \sin^{2} \theta \cos^{2} \theta (\sin^{2} \theta + \cos^{2} \theta)$ = 1 - 3 \sin^{2} \theta \cos^{2} \theta = 1 - \frac{3}{4} \sin^{2} 2\theta = 1 - \frac{3}{4} (x^{2} -)^{2} = \frac{1}{4} [4 - 3(x^{2} - 1)^{2}] Thus, the given result will hold true only when

Thus, the given result will hold true only when $x^2 \leq 2$ and not for all real values of x

40 (b) We have, $\frac{\sin A}{\sin C} = \frac{\sin(A - B)}{\sin(B - C)}$ $\Rightarrow \sin(B + C) \sin(B - C) = \sin(A + B) \sin(A - B)$ $\Rightarrow \sin^2 B - \sin^2 C = \sin^2 A - \sin^2 B$ $\Rightarrow b^2 - c^2 = a^2 - b^2 \Rightarrow a^2, b^2, c^2 \text{ are in A.P.}$ 41 (a) It is given that A, B, C are in A.P. $\therefore 2B = A + C \Rightarrow 3B = A + B + C \Rightarrow 3B = 180^{\circ}$ $\Rightarrow B = 60^{\circ}$ $\Rightarrow \cos B = \frac{1}{2}$ $\Rightarrow \frac{c^2 + a^2 - b^2}{2ac} = \frac{1}{2}$

$$\Rightarrow (a-c)^{2} = b^{2} - ac$$

$$\Rightarrow |a-c| = \sqrt{b^{2} - ac}$$

$$\Rightarrow |\sin A - \sin C| = \sqrt{\sin^{2} B - \sin A \sin C}$$

$$\Rightarrow 2 \left| \sin \frac{A-C}{2} \right| \cos \frac{A+C}{2} = \sqrt{\frac{3}{4} - \sin A \sin C}$$

$$\Rightarrow 2 \left| \sin \frac{A-C}{2} \right| = \sqrt{3 - 4 \sin A \sin C}$$

$$\Rightarrow \frac{\sqrt{3 - 4 \sin A \sin C}}{|A-C|} = \frac{2 \left| \sin \frac{A-C}{2} \right|}{|A-C|}$$

$$\Rightarrow \lim_{A \to C} \frac{\sqrt{3 - 4 \sin A \sin C}}{|A-C|} = \lim_{A \to C} \left| \frac{\frac{\sin(\frac{A-C}{2})}{A-C}}{2} \right| = 1$$

742 (c)

$$3 - \cos \theta + \cos \left(\theta + \frac{\pi}{3}\right)$$

= $3 - \cos \theta + \frac{1}{2}\cos \theta - \frac{\sqrt{3}}{2}\sin \theta$
= $3 - \frac{1}{2}\cos \theta - \frac{\sqrt{3}}{2}\sin \theta = 3 - \sin \left(\theta + \frac{\pi}{6}\right)$
Since, $-1 \le \sin \theta \le 1$

Hence, the value of expression lies in [2, 4]

743 (c)

We have, $\cos A = m \cos B$

$$\Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}$$

$$\Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m+1}{m-1}$$

$$\Rightarrow \frac{2\cos\frac{A+B}{2}\cos\frac{B-A}{2}}{2\sin\frac{A+B}{2}\sin\frac{B-A}{2}} = \frac{m+1}{m-1}$$

$$\Rightarrow \cot\frac{A+B}{2} = \left(\frac{m+1}{m-1}\right)\tan\frac{B-A}{2}$$
But $\cot\frac{A+B}{2} = \lambda \tan\frac{B-A}{2}$

$$\therefore \lambda = \frac{m+1}{m-1}$$

744 (c)

$$\cos^{4}\frac{\pi}{8} + \cos^{4}\frac{7\pi}{8} + \cos^{4}\frac{3\pi}{8} + \cos^{4}\frac{5\pi}{8}$$
$$= \cos^{4}\frac{\pi}{8} + \cos^{4}\frac{\pi}{8} + \cos^{4}\left(\frac{\pi}{2} - \frac{\pi}{8}\right) + \cos^{4}\left(\frac{\pi}{2} + \frac{\pi}{8}\right)$$
$$= 2\left[\cos^{4}\frac{\pi}{8} + \sin^{4}\frac{\pi}{8}\right]$$
$$= 2\left[\left(\cos^{2}\frac{\pi}{8} + \sin^{2}\frac{\pi}{8}\right)^{2} - 2\sin^{2}\frac{\pi}{8}\cos^{2}\frac{\pi}{8}\right]$$
$$= 2\left[1 - \frac{1}{2}\left(\sin\frac{\pi}{4}\right)^{2}\right]$$

 $= 2\left[1 - \frac{1}{4}\right] = \frac{3}{2}$ 745 **(b)** Given, $\sin \theta = \frac{12}{13}$ and $\cos \phi = -\frac{3}{5}$ $\therefore \cos \theta = \frac{5}{13} \text{ and } \sin \phi = -\frac{4}{5}$ $\therefore \sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$ $=\frac{12}{13} \times \left(-\frac{3}{5}\right) + \frac{5}{13} \times \left(-\frac{4}{5}\right)$ $=\frac{-36}{65}+\frac{(-20)}{65}=-\frac{56}{65}$ 746 (c) We have, $\sec^{2}\theta\csc^{2}\theta = \frac{\sin^{2}\theta + \cos^{2}\theta}{\sin^{2}\theta\cos^{2}\theta} - \frac{4}{\sin^{2}2\theta} \ge 4$ and, $\sec^{2}\theta\csc^{2}\theta = \frac{4}{\sin^{2}2\theta} \ge 4$ Thus, the required equation is $x^2 - \lambda x + \lambda = 0$, where $\lambda \ge 4$ 747 (a) $\frac{1}{m}\left[(m+n)+\frac{1}{(m+n)}\right]$ $= \frac{1}{\sec \theta} \left[\sec \theta + \tan \theta + \frac{1}{\sec \theta + \tan \theta} \right]$ $= \frac{\left[\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta + 1 \right]}{\sec \theta (\sec \theta + \tan \theta)}$ $=\frac{2\sec^2\theta+2\sec\theta\tan\theta}{\sec\theta(\sec\theta+\tan\theta)}$ = 2748 (a) $\therefore \sin A \sin B = \frac{1}{2} \times 2 \sin A \sin B$ $=\frac{1}{2}[\cos(A-B)-\cos(A+B)]$ $= \frac{1}{2} [\cos(A - B) - \cos 90^{\circ}] (:: A + B + C) =$ 180° and $\angle C = 90^\circ$, given) $=\frac{1}{2}\cos(A-B) \le \frac{1}{2}$: Maximum value of sin A sin $B = \frac{1}{2}$ 749 **(b)** In cyclic quadrilateral ABCD, we have $A + C = \pi$ and $B + D = \pi$ $\therefore \cos A = -\cos C$ and $\cos B = -\cos D$ $\Rightarrow \cos A + \cos B + \cos C + \cos D = 0$ 750 (d) Let $A = \theta$, $B = 2 \theta$ and $C = 3 \theta$. Then, $A + B + C = 180^{\circ} \Rightarrow 6 \theta = 180^{\circ} \Rightarrow \theta = 30^{\circ}$ $\therefore A = 30^{\circ}, B = 60^{\circ} \text{ and } C = 90^{\circ}$

Now,

$$a:b:c = \sin A: \sin B: \sin C$$
,
 $\Rightarrow a:b:c = \frac{1}{2}: \frac{\sqrt{3}}{2}: 1 \Rightarrow a:b:c = 1: \sqrt{3}: 2$
1 **(b)**
We have,
 $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$
 $\Rightarrow \sin(\pi \cos \theta) = \sin(\frac{\pi}{2} + \pi \sin \theta)$
 $\Rightarrow \pi \cos \theta = \frac{\pi}{2} + \pi \sin \theta$
 $\Rightarrow \pi \cos \theta - \pi \sin \theta = \frac{\pi}{2}$
 $\Rightarrow \cos \theta - \sin \theta = \frac{1}{2}$
 $\Rightarrow \frac{1}{\sqrt{2}}\cos \theta - \frac{1}{\sqrt{2}}\sin \theta = \frac{1}{2\sqrt{2}} \Rightarrow \cos(\theta + \frac{\pi}{4})$
 $= \frac{1}{2\sqrt{2}}$

752 (a)

75

The given equation is not meaningful for $|\cos x| = 1$ So, let $|\cos x| \neq 1$ Now, $2^{1+|\cos x|+\cos^2 x+|\cos x|^3+\dots+\cos \infty} = 4$ $\Rightarrow \frac{1}{2^{1-|\cos x|}} = 2^2$ $\Rightarrow \frac{1}{1 - |\cos x|} = 2$ $\Rightarrow 2 - 2|\cos x| = 1$ $\Rightarrow |\cos x| = \frac{1}{2}$ $\Rightarrow \cos x = \pm \frac{1}{2}$ $\Rightarrow \cos x = \cos \frac{\pi}{3}, \cos x = \cos \frac{2\pi}{3}$ $\Rightarrow x = 2n \pi \pm \frac{\pi}{3}, x = 2n \pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}$ $\Rightarrow x = 2n \pi \pm \frac{\pi}{3}, x = (2n \pm 1) \pi \pm \frac{\pi}{3}$ $\Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$ 753 (b) We have, $(\cos \alpha + \cos \beta)^2 - (\sin \alpha + \sin \beta)^2 = 0$ $\Rightarrow (\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta)$

 $-(\sin^{2} \alpha + \sin^{2} \beta + 2 \sin \alpha \sin \beta)$ = 0 $\Rightarrow \cos 2\alpha + \cos 2\beta = -2(\cos \alpha \cos \beta - \sin \alpha \sin \beta)$ $\Rightarrow \cos 2\alpha + \cos 2\beta = -2\cos(\alpha + \beta)$ 754 (d)

The given expression can be written as

 $\frac{1 + \cos y - \sin^2 y}{1 + \cos y} + \frac{(1 - \cos^2 y) - \sin^2 y}{\sin y (1 - \cos y)}$ $=\frac{\cos y (1+\cos y)}{1+\cos y}+0=\cos y$ 755 (a) We have, a = 2b $\Rightarrow 2R \sin A = 4R \sin B$ $\Rightarrow \sin A = 2 \sin B$ $\Rightarrow \sin 3B = 2 \sin B$ $[\because A = 3B]$ $\Rightarrow 3 \sin B - 4 \sin^3 B = 2 \sin B$ $\Rightarrow \sin B - 4 \sin^3 B = 0$ $\Rightarrow 1 - 4\sin^2 B = 0 \Rightarrow \sin B = \frac{1}{2} \Rightarrow B = \frac{\pi}{6}$ $\therefore A = 3B = \frac{\pi}{2}$ 756 (b) We know that $AD^{2} = \frac{1}{4}(b^{2} + c^{2} + 2bc\cos A)$ $\therefore 4AD^2 = b^2 + c^2 + 2bc\cos\frac{\pi}{3} \Rightarrow 4AD^2$ $= b^2 + c^2 + bc$ 757 (a) We know that, $\alpha - \beta = (\theta - \beta) - (\theta - \alpha)$ $\therefore \cos(\alpha - \beta) = \cos(\theta - \beta)\cos(\theta - \alpha)$ $+\sin(\theta - \beta)\sin(\theta - \alpha)$ $=ah + \sqrt{1-a^2}\sqrt{1-h^2}$ and $sin(\alpha - \beta) = \pm (a\sqrt{1 - b^2} - b\sqrt{1 - a^2})$ $\Rightarrow \sin^2(\alpha - \beta) = a^2 + b^2 - 2a^2b^2$ $-2ab\sqrt{1-a^2}\sqrt{1-b^2}$ $\Rightarrow \sin^2(\alpha - \beta) = a^2 + b^2 - 2a^2b^2$ $-2ab[\cos(\alpha-\beta)-ab]$ $\therefore \sin^2(\alpha - \beta) - a^2 + b^2 - 2ab\cos(\alpha - \beta)$ $\Rightarrow \sin^2(\alpha - \beta) + 2ab\cos(\alpha - \beta) = a^2 + b^2$ 758 (b) $\frac{1}{2}\tan\frac{x}{2} = \frac{1}{2}\cot\frac{x}{2} - \cot x \qquad \because \cot x = \frac{1 - \tan^2\frac{x}{2}}{2\tan\frac{x}{2}}$ And $\frac{1}{2^2} \tan \frac{x}{2^2} = \frac{1}{2^2} \cot \left(\frac{x}{2^2} \right) - \frac{1}{2} \cot \left(\frac{x}{2} \right)$

Similarly, $\frac{1}{2^3} \tan\left(\frac{x}{2^3}\right) = \frac{1}{2^3} \cot\left(\frac{x}{2^3}\right) - \frac{1}{2^2} \cot ... \left(\frac{x}{2^2}\right)$

: : :

$$\frac{1}{2^{n}} \tan\left(\frac{x}{2^{n}}\right) = \frac{1}{2^{n}} \cot\left(\frac{x}{2^{n}}\right) - \frac{1}{2^{n-1}} \cot\left(\frac{x}{2^{n-1}}\right)$$
Om adding all the above results, we get
$$\frac{1}{2} \tan\frac{x}{2} + \frac{1}{2^{2}} \tan\left(\frac{x}{2^{2}}\right) + \ldots + \frac{1}{2^{n}} \tan\left(\frac{x}{2^{n}}\right)$$

$$= \frac{1}{2^{n}} \cot\left(\frac{x}{2^{n}}\right) - \cot x$$
759 (c)
It is given that
Area of $\triangle ABC$ = Area of $\triangle DEF$

$$\Rightarrow \frac{1}{2}AB \cdot AC \sin A = \frac{1}{2}CE \cdot EF \sin E$$

$$\Rightarrow \sin A = \sin E$$

$$\Rightarrow \sin 2E = \sin E$$

$$\Rightarrow 2E = \pi - E \Rightarrow E = \frac{\pi}{3} \Rightarrow A = 2E = \frac{2\pi}{3}$$
760 (c)
We have,
 $\sin\frac{\pi}{18} \sin\frac{5\pi}{18} \sin\frac{7\pi}{18}$

$$= \cos\left(\frac{\pi}{2} - \frac{\pi}{18}\right) \cos\left(\frac{\pi}{2} - \frac{5\pi}{18}\right) \cos\left(\frac{\pi}{2} - \frac{7\pi}{18}\right)$$
$$= \cos\frac{8\pi}{18} \cos\frac{4\pi}{18} \cos\frac{2\pi}{8}$$
$$= \cos\frac{\pi}{9} \cos\frac{2\pi}{9} \cos\frac{4\pi}{9} = \frac{\sin(2^3 \cdot \pi/9)}{2^3 \sin \pi/9} = \frac{1}{2^3} = \frac{1}{8}$$

(c)

We have,

$$a = \sin^{4} \theta + \cos^{4} \theta \le \sin^{2} \theta + \cos^{2} \theta \le 1$$
Also,

$$a = \sin^{4} \theta + \cos^{4} \theta$$

$$= (\sin^{2} \theta + \cos^{2} \theta)^{2} - 2 \sin^{2} \theta$$

$$+ \cos^{2} \theta$$

$$\Rightarrow a = \sin^{4} \theta + \cos^{4} \theta = 1 - \frac{1}{2} \sin^{2} 2\theta$$

$$\Rightarrow \sin^{2} 2\theta = 2(1 - a) \Rightarrow 2(1 - a) \le 1 \Rightarrow a \ge \frac{1}{2}$$
Hence, $\frac{1}{2} \le a \le 1$

(a)

Let
$$\sqrt{3} + 1 = r \cos \alpha$$
 and $\sqrt{3} - 1 = r \sin \alpha$, then
 $r = \sqrt{\left(\sqrt{3} + 1\right)^2 + \left(\sqrt{3} - 1\right)^2}$
 $= \sqrt{3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3}} = 2\sqrt{2}$
and $\tan \alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{1 - \left(\frac{1}{\sqrt{3}}\right)}{1 + \left(\frac{1}{\sqrt{3}}\right)} = \tan \left(\frac{\pi}{4} - \frac{\pi}{6}\right)$
 $\Rightarrow \alpha = \frac{\pi}{12}$
The given equation reduces to
 $2\sqrt{2}\cos(\theta - \alpha) = 2$
 $\Rightarrow \cos \left(\theta - \frac{\pi}{12}\right) = \cos \frac{\pi}{4}$

(c)

$$\Rightarrow \theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4}$$

$$\Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12}$$
763 (d)
sin(A + B) = sin A cos B + sin B cos A

$$= \frac{1}{\sqrt{10}} \cdot \sqrt{1 - \frac{1}{5}} + \frac{1}{\sqrt{5}} \sqrt{1 - \frac{1}{10}}$$
[$\because sin A = \frac{1}{\sqrt{10}}, sin B = \frac{1}{\sqrt{5}}$]

$$= \frac{1}{\sqrt{10}} \sqrt{\frac{4}{5}} + \frac{1}{\sqrt{5}} \sqrt{\frac{9}{10}} = \frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}} = sin \frac{\pi}{4}$$

$$\Rightarrow A + B = \frac{\pi}{4}$$
764 (b)
The given equation can be rewritten as
tan $\theta(sin \theta + \sqrt{3}) = 0$
 $\Rightarrow tan \theta = 0, but sin \theta + \sqrt{3} \neq 0$
 $\Rightarrow tan \theta = 0, but sin \theta + \sqrt{3} \neq 0$
 $\Rightarrow tan \theta = 0 \Rightarrow \theta = n\pi, n \in I$
765 (a)
We have, $y = sin \theta - cos \theta$ and $sin \theta - cos \theta$ lies
between $-\sqrt{2}$ and $+\sqrt{2}$
 $\therefore -\sqrt{2} \le y \le \sqrt{2}$
766 (c)
Now, $sin(\alpha - \beta) = sin(\theta - \beta - (\theta - \alpha))$
 $= sin(\theta - \beta) = cos(\theta - \alpha)$
 $- cos(\theta - \beta) sin(\theta - \alpha)$
 $= ba - \sqrt{1 - b^2}\sqrt{1 - a^2}$
and $cos(\alpha - \beta) = cos(\theta - \beta - (\theta - \alpha))$
 $= cos(\theta - \beta) cos(\theta - \alpha) + sin(\theta - \beta) sin(\theta - \alpha)$
 $= a\sqrt{1 - b^2} + b\sqrt{1 - a^2}$
 $\therefore cos^2(\alpha - \beta) + 2ab sin(\alpha - \beta)$
 $= (a\sqrt{1 - b^2} + b\sqrt{1 - a^2})^2 + 2ab(ab)$
 $-\sqrt{1 - a^2}\sqrt{1 - b^2})^2$
 $= a^2 + b^2$
767 (d)
We have,
 $8 \sec^2 \theta - 6 \sec \theta + 1 = 0$
 $\Rightarrow (4 \sec \theta - 1)(2 \sec \theta - 1) = 0$
 $\Rightarrow \sec \theta = \frac{1}{4}, \sec \theta = \frac{1}{2}$
But, this is not possible as | \sec \theta | \ge 1

Page | 145

We have,

$$x^{3} - 13x^{2} + 54x - 72 = 0$$

 $\Rightarrow (x - 3)(x^{2} - 10x + 24) = 0$
 $\Rightarrow (x - 3)(x - 4)(x - 6) = 0 \Rightarrow x = 3,4,6$
Let $a = 3, b = 4$ and $c = 6$
 $\therefore \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^{2} + b^{2} + c^{2}}{2abc} = \frac{61}{144}$
769 (b)
 $\cos^{4}\theta - \sin^{4}\theta = (\cos^{2}\theta - \sin^{2}\theta)(\cos^{2}\theta + \sin^{2}\theta)$
 $= \cos 2\theta = 2\cos^{2}\theta - 1$
770 (b)
 $\cos 15^{\circ}\cos 7\frac{1}{2}^{\circ}\sin 7\frac{1}{2}^{\circ}$
 $= \frac{1}{2}\cos 15^{\circ}\sin 15^{\circ} = \frac{1}{4}\sin 30^{\circ}$
 $= \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$
771 (b)
 $\sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} + \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} = \frac{1 - \sin \theta + 1 + \sin \theta}{\sqrt{1 - \sin^{2}\theta}}$
 $= \frac{2}{\sqrt{\cos^{2}\theta}} = \frac{2}{|\cos \theta|}$
 $= -\frac{2}{\cos \theta} = -2\sec \theta (\because \frac{\pi}{2} < \theta < \pi)$
772 (c)
 $\cos^{2}A(3 - 4\cos^{2}A)^{2} + \sin^{2}A(3 - 4\sin^{2}A)^{2}$
 $= (3\cos A - 4\cos^{3}A)^{2} + (3\sin A - 4\sin^{3}A)^{2}$
 $= (-\cos 3A)^{2} + (\sin 3A)^{2} = 1$
773 (a)
It is given that A, B, C are in A.P.
 $\therefore 2B = A + C$
 $\Rightarrow 3B = A + B + C \Rightarrow 3B = 180^{\circ} \Rightarrow B = 60^{\circ}$
Also,
 $b : c = \sqrt{3} : \sqrt{2}$
 $\Rightarrow \frac{\sin B}{\sin c} = \frac{\sqrt{3}}{\sqrt{2}} \Rightarrow \sin C = \frac{1}{\sqrt{2}} \Rightarrow C = 45^{\circ}$
 $\therefore A = 180^{\circ} - (60^{\circ} + 45^{\circ}) = 75^{\circ}$
774 (b)
We have, $\tan x = \frac{b}{a}$
 $\therefore \sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}$

θ

 $\frac{1 + \tan x}{1 - \tan x}$ $|1 - \tan x|$ $\frac{\cos x + \sin x}{\cos x - \sin x}$ $\frac{\cos x - \sin x}{\cos x + \sin x}$ = $\cos x + \sin x + \cos x - \sin x$ $\sqrt{\cos^2 r - \sin^2 r}$ 775 (c) We have, $\sin A + \cos A = m$ and $\sin^3 A + \cos^3 A = n$ Now, $\sin A + \cos A = m$ $\Rightarrow (\sin A + \cos A)^3 = m^3$ $\Rightarrow \sin^3 A + \cos^3 A + 3\sin A \cos A (\sin A + \cos A)$ $= m^{3}$ \Rightarrow n + 3 sin A cos A m = m³ ...(i) Again, $\sin A + \cos A = m$ $\Rightarrow \sin^2 A + \cos^2 A + 2\sin A \cos A = m^2$ $\Rightarrow \sin A \cos A = \frac{m^2 - 1}{2}$...(ii) From (i) and (ii), we have $n + 3m \frac{(m^2 - 1)}{2} = m^3$ $\Rightarrow 2n + 3m^3 - 3m = 2m^3 \Rightarrow m^3 - 3m + 2n = 0$ 776 **(b)** \therefore sec $x - 1 = (\sqrt{2} - 1) \tan x$ $\Rightarrow 1 - \cos x = (\sqrt{2} - 1) \sin x$ $\Rightarrow \sin\frac{x}{2}\left\{\sin\frac{x}{2} - \left(\sqrt{2} - 1\right)\cos\frac{x}{2}\right\} = 0$ $\Rightarrow \sin\frac{x}{2} = 0 \text{ or } \tan\frac{x}{2} = \sqrt{2} - 1 = \tan\frac{\pi}{8}$ $\Rightarrow \frac{x}{2} = n\pi \text{ or } \frac{x}{2} = n\pi + \frac{\pi}{8}$ $\therefore x = 2n\pi, 2n\pi + \frac{\pi}{4}$ 777 (a) $\alpha - \beta = (\theta - \beta) - (\theta - \alpha)$ $\therefore \cos(\alpha - \beta) = \cos(\theta - \beta)\cos(\theta - \alpha)$ $+\sin(\theta - \beta)\sin(\theta - \alpha)$ And $sin(\alpha - \beta) = sin(\theta - \beta)cos(\theta - \alpha) - \beta$ $\sin(\theta - \alpha)\cos(\theta - \beta)$ $\Rightarrow \cos \left(\alpha - \beta \right) = b. a + \sqrt{1 - a^2} \sqrt{1 - b^2}$ And $\sin(\alpha - \beta) = (a\sqrt{1-b^2}) - (b\sqrt{1-b^2})$ Now, $\sin^{2}(\alpha - \beta) = (a\sqrt{1-b^{2}})^{2} + (b\sqrt{1-b^{2}})^{2} - b^{2}(a\sqrt{1-b^{2}})^{2}$ 2ab1-a21-b2

$$\Rightarrow \sin^{2}(\alpha - \beta) = a^{2}(1 - b^{2}) + b^{2}(1 - a^{2})$$
$$- 2ab\{\cos(\alpha - \beta) - ab\}$$
$$\Rightarrow \sin^{2}(\alpha - \beta) + 2ab\cos(\alpha - \beta)$$
$$= a^{2} - a^{2}b^{2} + b^{2} - b^{2}a^{2} + 2a^{2}b^{2}$$
$$\Rightarrow \sin^{2}(\alpha - \beta) + 2ab\cos(\alpha - \beta) = a^{2} + b^{2}$$
778 (a)

We have, $S = \sin \theta + \sin 2\theta + \sin 3\theta + \ldots + \sin n\theta$

We know that,

 $\sin \theta + \sin(\theta + \beta) + \sin(\theta + 2\beta) + \dots n$ terms

$$=\frac{\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}\sin\left[\frac{\theta+\theta+(n-1)\beta}{2}\right]$$

Put, $\beta = \theta$

$$\therefore S = \frac{\sin\frac{n\theta}{2} \cdot \sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}$$

780 (c)

Given,
$$\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}$$

 $\Rightarrow \tan 3\theta - 1 - \sqrt{3} \tan 3\theta - \sqrt{3} = 0$
 $\Rightarrow \tan 3\theta = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} = \tan(45^\circ + 60^\circ)$
 $\Rightarrow \tan 3\theta = \tan \frac{7\pi}{12}$
 $\Rightarrow 3\theta = n\pi + \frac{7\pi}{12}$
 $\Rightarrow \theta = \frac{n\pi}{3} + \frac{7\pi}{12}$

781 **(a)**

Also,

We have, $2\sin\theta = r^4 - 2r^2 + 3$ $\Rightarrow 2\sin\theta = (r^2 - 1)^2 + 2$ Clearly, LHS ≤ 2 and RHS ≥ 2 So, the equation is meaningful if each side is equal to 2 Clearly, RHS = 2 for $r^2 = 1$ For $r^2 = 1$, we have $2\sin\theta = 2$ $\Rightarrow \sin \theta = 1 \Rightarrow \theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2} \quad [\because 0 \le \theta \le 5\pi]$ Also, $r^2 = 1 \Rightarrow r = \pm 1$ Hence, the total number of pairs of the form (r, θ) is $2 \times 3 = 6$ 783 (a) We have, $\frac{1}{p_1^2} + \frac{1}{p_2^2} + \frac{1}{p_3^2} = \frac{a^2 + b^2 + c^2}{4\Delta^2}$

 $\cot A + \cos B + \cot C = \frac{2R}{abc} (b^2 + c^2 - a^2 + c^2)$ $+a^{2}-b^{2}+a^{2}+b^{2}-c^{2}$) $\Rightarrow \cot A + \cos B + \cot C = \frac{R(a^2 + b^2 + c^2)}{abc}$ $=\frac{a^2+b^2+c^2}{4\Lambda}$ Hence, $\frac{1}{p_1^2} + \frac{1}{p_2^2} + \frac{1}{p_2^2} = \frac{\cot A + \cot B + \cot C}{\Lambda}$ 784 (c) We have, $\sin 2\theta + 2 = 4\sin\theta + \cos\theta$ $\Rightarrow 2 \sin \theta \cos \theta - \cos \theta + 2 - 4 \sin \theta = 0$ $\Rightarrow \cos\theta(2\sin\theta - 1) - 2(2\sin\theta - 1) = 0$ $\Rightarrow (2\sin\theta - 1)(\cos\theta - 2) = 0$ $\Rightarrow 2\sin\theta - 1 = 0$ $[:: \cos \theta - 2 \neq 0]$ $\Rightarrow \sin \theta = \frac{1}{2}$ $\Rightarrow \theta = 2\pi + \frac{\pi}{6}, 2\pi + \frac{5\pi}{6}, 4\pi + \frac{\pi}{6}, 4\pi + \frac{5\pi}{6}$ Hence, the equation has 4 solutions ALITER The curves $y = \sin x$ and $y = \frac{1}{2}$ intersect at 4 points in $[\pi, 5\pi]$. So, the equation has 4 solutions 785 (c) For a triangle inscribed in a circle, we have $\frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = R$ $\therefore \sin^2 A + \sin^2 B + \sin^2 \theta$ $=\frac{a^2}{4R^2} + \frac{b^2}{4R^2} + \frac{c^2}{4R^2}(a^2 + b^2 + c^2)$ It is given that $\frac{a^2 + b^2 + c^2}{2} = 2(2R)^2 \Rightarrow a^2 + b^2 + c^2 = 16R^2$ $\therefore \sin^2 A + \sin^2 B + \sin^2 C = \frac{1}{4R^2} (16R^2) = 4$ 786 (d) We have, $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$ $= (\tan 9^\circ + \tan 81^\circ) - (\tan 27^\circ + \tan 63^\circ)$ $= (\tan 9^\circ + \cot 9^\circ) - (\tan 27^\circ + \cot 27^\circ)$ $=\frac{1}{\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}} - \frac{1}{\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}}$ $= \frac{2}{\sin 18^{\circ}} - \frac{1}{\sin 54^{\circ}}$ $= 2\frac{\sin 54^{\circ} - \sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}} = 2\frac{\cos 36^{\circ} - \sin 18^{\circ}}{\sin 18^{\circ} \cos 36^{\circ}} = 4$ 787 (c) Given, $\sin 4A + \sin 2A = \cos 4A + \cos 2A$ \Rightarrow 2 sin 3A cos A = 2 cos 3A cos A \therefore tan 3*A* = 1 and cos *A* = 0 $\Rightarrow A = \frac{\pi}{12}$ and $A = \frac{\pi}{2} \notin \left(0, \frac{\pi}{4}\right)$

$$\therefore \tan 4A = \tan \frac{\pi}{3} = \sqrt{3}$$
788 (c)
We have,
 $\sin A + \sin B = \frac{a+b}{c}$
 $\Rightarrow \sin A + \sin B = \frac{\sin A + \sin B}{\sin C} \Rightarrow \sin C = 1$
789 (a)
We have,
 $\sin(\alpha + \beta) = 1, \sin(\alpha - \beta) = \frac{1}{2}$
 $\Rightarrow \alpha + \beta = \frac{\pi}{2} \text{ and, } \alpha - \beta = \frac{\pi}{6}$
 $\Rightarrow \alpha = \frac{\pi}{3}, \beta = \frac{\pi}{6}$
 $\therefore \tan(\alpha + 2\beta) \tan(2\alpha + \beta)$
 $= \tan(\frac{2\pi}{3}) \tan \frac{5\pi}{6} = (-\cot \frac{\pi}{6})(-\cot \frac{\pi}{3}) = 1$
790 (c)
Let $a_0 = \cos \theta$. Then,
 $a_1 = \sqrt{\frac{1}{2}(1 + a_0)} = \sqrt{\frac{1}{2}(1 + \cos \theta)} = \cos \frac{\theta}{2}$
 $a_2 = \sqrt{\frac{1}{2}(1 + a_1)} = \sqrt{\frac{1}{2}(1 + \cos \frac{\theta}{2})} = \cos(\frac{\theta}{2^2})$
and so on
Now, $\frac{1-a_0^2}{\alpha_1 a_2 a_3 \dots \cos \alpha}$
 $= \frac{\sin \theta}{\cos \frac{\theta}{2} \cos \frac{\theta}{2^2} \cos \frac{\theta}{2^3} \dots \cos \alpha}$
 $= \lim_{n \to \infty} \frac{\sin \theta}{\sin(2^n \times \theta/2^n)} = \lim_{n \to \infty} \frac{\sin(\theta/2^n).\theta}{(\theta/2^n)}$
 $= \theta = a_0$
791 (b)
Let he angles of triangle ABC be $A = \theta, B = 2\theta$
and $C = 7\theta$. Then,
 $A + B + C = 180^\circ \Rightarrow 10\theta = 180^\circ \Rightarrow \theta = 18^\circ$
 $\therefore A = 18^\circ, B = 36^\circ$ and $C = 126^\circ$
Clearly, *c* is the greatest side and *a* is the smallest side.
Now,
 $a = C$

 $\frac{u}{\sin A} = \frac{c}{\sin C}$ $\Rightarrow \frac{c}{a} = \frac{\sin C}{\sin A} = \frac{\sin 126^{\circ}}{\sin 18^{\circ}} = \frac{\cos 36^{\circ}}{\sin 18^{\circ}} = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}$ 792 **(b)**

We have,

$$A = \frac{2 \pi}{3}$$
 and $\Delta = \frac{9\sqrt{3}}{2}$ cm²

$$\therefore \Delta = \frac{1}{2} bc \sin A \Rightarrow \frac{9\sqrt{3}}{2} = \frac{1}{2} bc \sin \frac{2\pi}{3} \Rightarrow bc = 18$$
Also,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\Rightarrow \cos \frac{2\pi}{3} = \frac{(b - c)^2 + 2bc - a^2}{2bc}$$

$$\Rightarrow -\frac{1}{2} = \frac{27 + 36 - a^2}{36} \Rightarrow a^2 = 81 \Rightarrow a = 9 \text{ cm}$$
793 (b)
We have,

$$s = 8k \text{ and, } \Delta = \sqrt{8k \times 3k \times 2k \times 3k} = 12 k^2$$

$$\therefore r = \frac{\Delta}{3} \Rightarrow \frac{12 k^2}{8k} = 6 \Rightarrow k = 4$$
794 (d)
We have,

$$\frac{2^{\sin x} + 2^{\cos x}}{2} \ge \sqrt{2^{\sin x} 2 \cos x} \quad [\because AM \ge GM]$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge \sqrt{2^{\sin x} + \cos x}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge \sqrt{2^{\sin x} + \cos x}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge \sqrt{2^{\sin x} + \cos x}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge \sqrt{2^{\sin x} + \cos x}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge \sqrt{2^{\sin x} + \cos x}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge 2^{1 - \sqrt{2}}$$

$$\leq \sin x + \cos x \le \sqrt{2}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge 2^{1 - \sqrt{2}}$$
(a)
Let $A = \frac{1}{3 \sin \theta - 4 \cos \theta + 7}$
Now, A will be minimum when $3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Minimum value of}$$

$$3 \sin \theta - 4 \cos \theta + 7 = \sqrt{3^2 + 4^2} + 7 = 12$$

$$\therefore \text{ Mow,}$$

$$\cos \left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 - \tan \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}$$

$$\Rightarrow \cos \left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\left(\frac{\cos \theta}{2} - \sin \frac{\theta}{2}}\right)^2} = \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}}$$

$$\Rightarrow \cot \left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{\cos \theta}{2} + \sin \frac{\theta}{2}}}$$

$$\Rightarrow \cot \left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{\cos \theta}{2} + \sin \frac{\theta}{2}}}$$

$$= \sqrt{\frac{1 - \sin \theta}{p - q}} + 1 = \sqrt{\frac{p + q}{p - q}} + 1 = \sqrt{\frac{p + q}{$$

$$\Rightarrow \frac{2 \tan \frac{t}{2}}{1 + \tan^{2} \frac{t}{2}} + \frac{1 - \tan^{2} \frac{t}{2}}{1 + \tan^{2} \frac{t}{2}} = \frac{1}{5}$$

$$\Rightarrow 10 \tan \frac{t}{2} + 5 - 5 \tan^{2} \frac{t}{2} = 1 + \tan^{2} \frac{t}{2}$$

$$\Rightarrow 6 \tan^{2} \frac{t}{2} - 10 \tan \frac{t}{2} - 4 = 0$$

$$\Rightarrow \left(6 \tan \frac{t}{2} + 2 \right) \left(\tan \frac{t}{2} - 2 \right) = 0$$

$$\Rightarrow \tan \frac{t}{2} = -\frac{1}{3}, 2 \text{ for }, 0 < t < \pi$$

$$\tan \frac{t}{2} = 2$$
798 (a)
We have,
$$\sin \alpha \cos^{3} \alpha > \sin^{3} \alpha \cos \alpha$$

$$\Rightarrow \sin \alpha \cos \alpha (\cos^{2} \alpha - \sin^{2} \alpha) > 0$$

$$\Rightarrow \cos \alpha (1 - \tan^{2} \alpha)$$

$$> 0 [\because \sin \alpha > 0 \text{ for } 0 < \alpha < \pi]$$

$$\Rightarrow \cos \alpha < 0 \text{ and } 1 - \tan^{2} \alpha < 0$$

$$\Rightarrow \alpha \in (0, \pi/4) \text{ or, } \alpha \in (3\pi/4, \pi)$$
799 (a)
We have, $\alpha + \beta + \gamma = \pi$
Now, $\sin^{2} \alpha + \sin^{2} (\beta - \gamma) \sin(\beta + \gamma)$

$$= \sin^{2} \alpha + \sin(\alpha - \alpha) \sin(\beta + \gamma) (\because \alpha + \beta - \gamma)$$

$$= \sin^{2} \alpha + \sin(\alpha - \alpha) \sin(\beta + \gamma)$$

$$= \sin \alpha [\sin(\alpha - (\beta - \gamma)) + \sin(\beta + \gamma)]$$

$$= \sin \alpha [\sin(\alpha - (\beta - \gamma)) + \sin(\beta + \gamma)]$$

$$= \sin \alpha [\sin(\beta - \gamma) + \sin(\beta + \gamma)]$$

$$= \sin \alpha [2 \sin \beta \cos \gamma]$$
800 (c)
$$\sec x \cos 5x = -1$$

$$\Rightarrow \cos 5x = -\cos x$$

$$\Rightarrow 5x = 2n\pi \pm (\pi - x)$$

$$\Rightarrow x = \frac{(2n + 1)\pi}{6} \text{ or } \frac{(2n - 1)\pi}{6}$$
The possible values of x which lies in the interval $(0, 2\pi) \arg (\alpha + \beta) = -\frac{12}{13}$

Here, $0 < (\alpha + \beta) < \pi$ $\therefore \sin(\alpha + \beta) = \sqrt{1 - \cos^2(\alpha + \beta)}$ $=\sqrt{1-\frac{144}{169}}$ $=\frac{1}{13}$ Now, $\sin \beta = \sin[(\alpha + \beta) - \alpha]$ $= \sin(\alpha + \beta) \cos \alpha - \cos(\alpha + \beta) \sin \alpha$ $=\frac{5}{13}\cdot\frac{3}{5}-\left(-\frac{12}{13}\right)\cdot\frac{4}{5}$ $=\frac{15}{65}+\frac{48}{65}$ $=\frac{63}{63}$ 802 (c) We have, $\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}\sin\frac{7\pi}{14}$ $=\sin\left(\frac{\pi}{2}-\frac{3\pi}{7}\right)\sin\left(\frac{\pi}{2}-\frac{2\pi}{7}\right)\sin\left(\frac{\pi}{2}-\frac{\pi}{7}\right)\sin\frac{\pi}{2}$ $=\cos\frac{3\pi}{7}\cos\frac{2\pi}{7}\cos\frac{\pi}{7}$ $= -\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}$ $= -\frac{\sin(2^3\pi/7)}{2^3\sin\pi/7} = -\frac{\sin(8\pi/7)}{8\sin\pi/7} = \frac{1}{8}$ 803 (b) We have, $\sin\theta\cos\alpha + \cos\theta\sin\alpha = 2\,k\sin\theta\cos\theta$ $\Rightarrow \cos \alpha \, \frac{2 \, t}{1 + t^2} + \sin \alpha \, \frac{1 - t^2}{1 + t^2} = 2k \, \frac{2t}{1 + t^2} \times \frac{1 - t^2}{1 + t^2}$ where $t = \tan \frac{\theta}{2}$ $\Rightarrow \sin \alpha t^4 - (2\cos \alpha + 4k)t^3 + t(4k - 2\cos \alpha)$ $-\sin\alpha = 0$ $\Rightarrow S_1 = 2\cos\alpha + 4k, S_2 = 0$ $S_3 = 2\cos\alpha - 4k, S_4 = -1$ where S_r denotes the sum of the product of roots taken r at a time Now. $\tan\left(\frac{\theta_{1}}{2} + \frac{\theta_{2}}{2} + \frac{\theta_{3}}{2} + \frac{\theta_{4}}{2}\right) = \frac{S_{1} - S_{3}}{1 - S_{2} + S_{4}} = \infty$ $= \tan\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{\theta_1}{2} + \frac{\theta_2}{2} + \frac{\theta_3}{2} + \frac{\theta_4}{2} = n \pi + \frac{\pi}{2}, n \in \mathbb{Z}$ $\Rightarrow \theta_1 + \theta_2 + \theta_3 + \theta_4 = (2n+1) \pi, n \in \mathbb{Z}$ 804 (b) Let *r* be the radius of the circle. Then, $\frac{3\pi}{4} = \frac{15\pi}{r} \Rightarrow r = 20 \text{ cm}$ 805 (a)

We know that $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$ $\therefore \cot \theta - \tan \theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2 \cot 2\theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2(2 \cot 4\theta) - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$ $\therefore \text{ maximum value} = \sqrt{3^2 + 4^2} = 5$	
$\therefore \cot \theta - \tan \theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2 \cot 2\theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2(2 \cot 4\theta) - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 (\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\therefore \cot \theta - \tan \theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2 \cot 2\theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2(2 \cot 4\theta) - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 (\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$= 2 \cot 2\theta - 2 \tan 2\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 2(2 \cot 4\theta) - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 (\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^{2}}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\Rightarrow \cos A = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$= 2(2 \cot 4\theta) - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4(\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^{2}}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\Rightarrow \cos A = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	- 1
$= 4 \cot 4\theta - 4 \tan 4\theta - 8 \cot 8\theta$ $= 4(\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$= 4(\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^{2}}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$= 4(\cot 4\theta - \tan 4\theta) - 8 \cot 8\theta$ $= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^{2}}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$= 4 \times 2 \cot 8\theta - 8 \cot 8\theta = 0$ 806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
806 (d) We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
We have, $b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a =$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$b = \sqrt{3}, c = 1 \text{ and } A = 30^{\circ}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a = \frac{1}{2\sqrt{3}}$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a =$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^\circ \text{ and } C = 30^\circ [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \frac{\sqrt{3}}{2} = \frac{4 - a^2}{2\sqrt{3}} \Rightarrow a =$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^\circ \text{ and } C = 30^\circ [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	= 1
$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	-
$\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow 2 = \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin C}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow \sin B = \frac{\sqrt{3}}{2} \text{ and } \sin C = \frac{1}{2}$ $\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
$\Rightarrow B = 120^{\circ} \text{ and } C = 30^{\circ} [\because b > c \therefore B > C]$ 807 (c) Here, $a = 3, b = 4$	
807 (c) Here, <i>a</i> = 3, <i>b</i> = 4	
807 (c) Here, <i>a</i> = 3, <i>b</i> = 4	
Here, $a = 3, b = 4$	
\therefore maximum value= $\sqrt{3^2 + 4^2} = 5$	
808 (a)	
	1
Let <i>ABC</i> be the triangle such that $a = 2, b = \sqrt{2}$	0
and $c = \sqrt{3} - 1$	
Clearly, $b > a > c$	
So, <i>B</i> is the greatest angle and <i>C</i> is the smalles	st
angle	
_	
Now,	
$\cos B = \frac{c^2 + a^2 - b^2}{2ac}$	
$\cos b = \frac{2ac}{2ac}$	
$\Rightarrow \cos B = \frac{(\sqrt{3} - 1)^2 + 4 - 6}{4(\sqrt{3} - 1)^2} = -\frac{1}{2} \Rightarrow B = 1$	
$\Rightarrow \cos B = \frac{(\sqrt{3} - 1)^2 + 4 - 6}{2} = -\frac{1}{2} \Rightarrow B = 1$	20°
$4(\sqrt{3}-1)^2$ 2	
And,	
$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$	
2ab	
$4 + 6 - (\sqrt{3} - 1)^2 = \sqrt{3} + 1$	
$\Rightarrow \cos C = \frac{4 + 6 - (\sqrt{3} - 1)^2}{4\sqrt{6}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \Rightarrow C$	
= 15°	
809 (b)	
We have,	
$1 \ 1 \ 1 \ 1$	
$\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$	
$\Rightarrow \frac{1}{r} = \frac{1}{16} + \frac{1}{48} + \frac{1}{24} \Rightarrow r = 8$	
1 10 10 21	
810 (c)	
2	
Given, $3\sin^2 x - 7\sin x + 2 = 0$	
Given, $3\sin^2 x - 7\sin x + 2 = 0$ $(3\sin x - 1)(\sin x - 2) = 0$	

 $\Rightarrow \sin x = \frac{1}{3} \text{ or } 2$ $\Rightarrow \sin x = \frac{1}{3} \quad [\because \sin x \neq 2]$ Let $\sin^{-1}\frac{1}{3} = \alpha$, $0 < \alpha < \frac{\pi}{2}$, then α , $\pi - \alpha$, $2\pi + \alpha$ α , $3\pi - \alpha$, $4\pi + \alpha$, $5\pi - \alpha$ are the solution in $[0, 5\pi]$ Hence, required number of solutions are 6 811 (a) We have, $\cos^2 \theta = \cos 2\theta$ $\Rightarrow \cos^2 \theta = 2\cos^2 \theta - 1$ $\Rightarrow \cos^2 \theta = 1 \Rightarrow \theta = n\pi$ 812 (a) The given equation is $3^{\sin 2x + 2\cos^2 x} + 3^{1 - \sin 2x + 2\sin^2 x} = 28$ $\Rightarrow 3^{\sin 2x + 2\cos^2 x} + 3^{3 - (\sin 2x + 2\cos^2 x)} = 28$ $\Rightarrow y + \frac{27}{y} = 28$, where $y = 3^{\sin 2x + 2\cos^2 x}$ $\Rightarrow y^2 - 28y + 27 = 0 \Rightarrow y = 27 \text{ or, } y = 1$ If y = 27, then $3^{\sin 2x + 2\cos^2 x} = 3^3$ $\Rightarrow \sin 2x + 2\cos^2 x = 3$ $\Rightarrow \sin 2x + 2\cos 2x = 2$ $\Rightarrow \sin 2x = 2 \cos 2x = 1$ $\Rightarrow \sin x = 0 \text{ or, } \tan x = \frac{1}{2}$ If y = 1 $\Rightarrow 3^{\sin 2x + 2\cos^2 x} = 1$ $\Rightarrow \sin 2x + 2\cos^2 x = 0$ $\Rightarrow 2 \cos x (\sin x + \cos x) = 0$ $\Rightarrow \cos x = 0 \text{ or, } \tan x = -1$ 813 (c) Let $f(x) = 27^{\cos 2x} 81^{\sin 2x} = 3^{3\cos 2x + 4\sin 2x}$ $= 3^{5\left(\frac{3}{5}\cos 2x + \frac{4}{5}\sin 2x\right)}$ Let $\frac{3}{5} = \sin \phi$ $\Rightarrow \frac{4}{5} = \cos \phi$ Then, $f(x) = 3^{5(\sin \phi \cos 2x + \cos \phi \sin 2x)}$ $= 3^{5(\sin(\phi+2x))}$ For minimum value of given function, $sin(\phi + 2x)$ will be minimum *ie*, $\sin(\phi + 2x) = -1$ $\therefore f(x) = 3^{5(-1)} = \frac{1}{243}$ 814 (c) We have, $\sec 2x - \tan 2x = \frac{1 - \sin 2x}{\cos 2x}$

$$\Rightarrow \sec 2x - \tan 2x = \frac{1 - \cos\left(\frac{\pi}{2} - 2x\right)}{\sin\left(\frac{\pi}{2} - 2x\right)}$$

$$\Rightarrow \sec 2x - \tan 2x = \frac{2\sin^2(\pi/4 - x)}{2\sin(\pi/4 - x)\cos(\pi/4 - x)}$$

$$= \tan\left(\frac{\pi}{4} - x\right)$$
815 (a)
$$\therefore \sin^5 x - \cos^5 x = \frac{\sin x - \cos x}{\sin x \cos x}$$

$$\Rightarrow \sin x \cos x \left[\frac{\sin^5 x - \cos^5 x}{\sin x - \cos x}\right] = 1$$

$$\Rightarrow \frac{1}{2}\sin 2x [\sin^4 x + \sin^3 x \cos x + \sin^2 x \cos^2 x + \sin x \cos^2 x + \cos^4 x] = 1$$

$$\Rightarrow \sin 2x [(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x + \sin x \cos x] = 2$$

$$\Rightarrow \sin 2x [1 - \sin^2 x \cos^2 x + \sin x \cos x] = 2$$

$$\Rightarrow \sin^3 2x - 2\sin^2 2x - 4\sin 2x + 8 = 0$$

$$\Rightarrow (\sin 2x - 2)^2 (\sin 2x + 2) = 0$$

$$\Rightarrow \sin 2x = \pm 2, \text{ which is not possible for any x}$$
816 (b)
$$\cos(\alpha + \beta) = \frac{4}{5} \Rightarrow \alpha + \beta \in 1 \text{ st quadrant and}$$

$$\sin(\alpha - \beta) = \frac{5}{13}$$

$$\Rightarrow \alpha - \beta \in 1 \text{ st quadrant}$$

$$\Rightarrow 2\alpha = (\alpha + \beta) + (\alpha - \beta)$$

$$\therefore \tan 2\alpha = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)}$$

$$= \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}} = \frac{56}{33}$$
817 (d)
We have,
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$$

$$= \frac{1}{2}\sin \frac{\pi}{7} \left\{ 2\sin \frac{\pi}{7} \cos \frac{2\pi}{7} + 2\sin \frac{\pi}{7} - \sin \frac{3\pi}{7} + \sin \pi - \sin \frac{\pi}{7} \right\}$$

$$= -\frac{1}{2}$$
818 (a)
We have,

$$2a \cos^{2}\left(\frac{C}{2}\right) + 2c \cos^{2}\left(\frac{A}{2}\right) = 3b$$

$$\Rightarrow a(1 + \cos C) + c(1 + \cos A) = 3b$$

$$\Rightarrow a + c + (a \cos C + c \cos A) = 3b$$

$$\Rightarrow a + c + b = 3 b \Rightarrow a + c = 2b \Rightarrow a, b, c \text{ are in}$$

A.P.
819 (d)
Given that, $\frac{1-\cos 2\theta}{1+\cos 2\theta} = 3$

$$\Rightarrow \frac{2 \sin^{2} \theta}{2 \cos^{2} \theta} = 3$$

$$\Rightarrow \tan^{2} \theta = (\sqrt{3})^{2}$$

$$\Rightarrow \tan^{2} \theta = \tan^{2} \frac{\pi}{3}$$

$$\Rightarrow \theta = n\pi \pm \frac{\pi}{3}$$

820 (b)
We have,
 $a = 5 \text{ cm}, b = 4 \text{ cm} \text{ and } \cos(A - B) = \frac{31}{32}$

$$\therefore \tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2}$$

$$\Rightarrow \sqrt{\frac{1 - \cos(A - B)}{1 + \cos(A - B)}} = \frac{a - b}{a + b} \sqrt{\frac{1 + \cos C}{1 - \cos C}}$$

$$\Rightarrow \frac{1 - \frac{31}{32}}{1 + \frac{31}{32}} = \left(\frac{5 - 4}{5 + 4}\right)^{2} \left(\frac{1 + \cos C}{1 - \cos C}\right)$$

$$\Rightarrow \frac{81}{63} = \frac{1 + \cos C}{1 - \cos C} \Rightarrow \cos C = \frac{1}{8}$$

821 (a)
Given, $\sin 2x + \cos 4x = 2$

$$\Rightarrow \sin 2x + 1 - 2\sin^{2} 2x = 2$$

$$\Rightarrow 2\sin^{2} 2x - \sin 2x + 1 = 0$$

Now, Discriminant, $D = (-1)^{2} - 4.2.1 = -7 < 0$
Hence, it is an imaginary equation, so the real ro
does not exist.
822 (d)
We have,
 $\sin \theta_{1} + \sin \theta_{2} + \sin \theta_{3} = 3$

Given,
$$\sin 2x + \cos 4x = 2$$

 $\Rightarrow \sin 2x + 1 - 2\sin^2 2x = 2$
 $\Rightarrow 2\sin^2 2x - \sin 2x + 1 = 0$
Now, Discriminant, $D = (-1)^2 - 4.2.1 = -7 < 0$
Hence, it is an imaginary equation, so the real root
does not exist.

We have,

$$\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$$

 $\Rightarrow \sin \theta_1 = \sin \theta_2 = \sin \theta_3$
 $= 1 \quad [\because -1 \le \sin x \le 1]$
 $\Rightarrow \theta_1 = \theta_2 = \theta_3 = \frac{\pi}{2} \Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3$
 $= 0$

(b)

We have,

$$k \sin x + (1 - 2\sin^2 x) = 2k - 7$$

 $\Rightarrow 2\sin^2 x - k\sin x + 2(k - 4) = 0$
 $\Rightarrow \sin x = \frac{k \pm \sqrt{k^2 - 16k + 64}}{4} = \frac{k \pm (k - 8)}{4}$
 $= \frac{1}{2}(k - 4), 2$

$$\Rightarrow \sin x = \frac{1}{2}(k-4) \qquad [\because \sin x \neq 2]$$
Now, $-1 \leq \sin x \leq 1 \Rightarrow -1 \leq \frac{k-4}{2} \leq 1 \Rightarrow 2 \leq k \leq$
6
824 (b)
Given that, $\cos 2B = \frac{\cos(A+C)}{\cos(A-C)}$

$$= \frac{\cos A \cos C - \sin A \sin C}{\cos A \cos C + \sin A \sin C}$$

$$\Rightarrow \frac{1-\tan^2 B}{1+\tan^2 B} = \frac{1-\tan A \tan C}{1+\tan A \tan C}$$

$$\Rightarrow 1 + \tan^2 B - \tan A \tan C - \tan A \tan C \tan^2 B$$

$$= 1 - \tan^2 B + \tan A \tan C - \tan A \tan C \tan^2 B$$

$$\Rightarrow 2 \tan^2 B = 2 \tan A \tan C$$
Hence, $\tan A$, $\tan B$ and $\tan C$ will be in GP

1

825 (c)

We have,

$$\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^{n} + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^{n}$$

$$= \left(\cot \frac{A - B}{2}\right)^{n} + \left(-\cot \frac{A - B}{2}\right)^{n}$$

$$= \left\{1 + (-1)^{n}\right\} \cot^{n}\left(\frac{A - B}{2}\right)$$

$$= 0 \times \cot^{n}\left(\frac{A - B}{2}\right) = 0 \quad [\because n \text{ is odd}]$$
(a)

826 **(a)**

We have, $a \tan \theta + b \sec \theta = c$ $\Rightarrow b \sec \theta = c - a \tan \theta$ $\Rightarrow b^2 \sec^2 \theta = c^2 + a^2 \tan^2 \theta - 2 ac \tan \theta$ $\Rightarrow b^2(1 + \tan^2 \theta) = c^2 + a^2 \tan^2 \theta - 2 ac \tan \theta$ $\Rightarrow \tan^2 \theta (b^2 - a^2) + 2 ac \tan \theta + b^2 - c^2 = 0$ Since $\tan \alpha$ and $\tan \beta$ are roots of this equation $\therefore \tan \alpha + \tan \beta = \frac{-2 ac}{b^2 - a^2}$ and $\tan \alpha \tan \beta$ $= \frac{b^2 - c^2}{a^2 - c^2}$

Now,

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{-\frac{2 ac}{b^2 - a^2}}{1 - \frac{b^2 - c^2}{b^2 - a^2}}$$
$$= \frac{2 ac}{a^2 - c^2}$$

827 (b) $\tan\theta + \frac{\tan\theta + \sqrt{3}}{1 - \sqrt{3}\tan\theta} + \frac{\tan\theta - \sqrt{3}}{1 + \sqrt{3}\tan\theta} = 3$ $\Rightarrow \tan \theta + \frac{8 \tan \theta}{1 - 3 \tan^2 \theta} = 3$ $\Rightarrow \frac{9 \tan \theta - 3 \tan^2 \theta}{1 - 3 \tan^2 \theta} = 3$ $3 \tan 3\theta = 3 \Rightarrow \tan 3\theta = 1$ 828 (a) Since, $y = 1 + 4 \sin^2 x \cos^2 x$ $\Rightarrow y = 1 + \sin^2 2x$ We know that, $0 \le \sin^2 2x \le 1$ $\Rightarrow 1 \le 1 + \sin^2 2x \le 2$ $\Rightarrow 1 \le y \le 2$ 829 (a) $\sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma$ $= \sin^2 \alpha + \sin(\beta - \gamma) \sin(\beta + \gamma)$ $= \sin^2 \alpha \sin(\pi - \alpha) \sin(\beta + \gamma) \quad [\because \alpha + \beta - \gamma]$ $=\pi$ $= \sin \alpha [\sin \alpha + \sin(\beta + \gamma)]$ $= \sin \alpha [\sin\{\pi - (\beta - \gamma)\} + \sin(\beta + \gamma)]$ $= \sin \alpha [\sin(\beta - \gamma) + \sin(\beta + \gamma)]$ $= \sin \alpha [2 \sin \beta \cos \gamma]$ $= 2 \sin \alpha \sin \beta \cos \gamma$ 830 (a) We have, $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ $=\frac{s(s-a)}{\Delta}+\frac{s(s-b)}{\Delta}+\frac{s(s-c)}{\Delta}=\frac{s}{\Delta}(3s-2s)$ $=\frac{S^{2}}{\Lambda}$ And, $\cot A + \cot B + \cot C$ $= \frac{\cos A}{\sin A} + \frac{\cos B}{\sin B} + \frac{\cos C}{\sin C}$ $= \frac{b^2 + c^2 - a^2}{2 b c \sin A} + \frac{c^2 + a^2 - b^2}{2 a c \sin B} + \frac{a^2 + b^2 - c^2}{2 a b \sin C}$ $= \frac{b^2 + c^2 - a^2}{4 \Delta} + \frac{c^2 + a^2 - b^2}{4 \Delta} + \frac{a^2 + b^2 - c^2}{4 \Delta}$ $=\frac{a^2+b^2+c^2}{4\Lambda}$ $\therefore \frac{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}}{\cot A + \cot B + \cot C} = \frac{\frac{s^2}{\Delta}}{\frac{a^2 + b^2 + c^2}{\Delta}}$ $=\frac{(2s)^2}{a^2+b^2+c^2}=\frac{(a+b+c)^2}{a^2+b^2+c^2}$ 831 (a)

 $\therefore \quad (\tan \alpha - \cot \alpha)^2 \ge 0$ $\Rightarrow \tan^2 \alpha + \cot^2 \alpha - 2 \ge 0$ $\Rightarrow \tan^2 \alpha + \cot^2 \alpha \ge 2$ 832 (a) We have, $\tan m \theta = \tan n \theta$ \Rightarrow *m* θ = *t* π + *n* θ , where *r* \in *Z* $\Rightarrow \theta = \frac{r \pi}{m-n}, r \in \mathbb{Z}$ Clearly, these values of θ from an A.P. with common difference $\frac{\pi}{m-n}$ 833 (a) We have, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$ $\Rightarrow \frac{\sin(B+C)}{\sin(a+B)} = \frac{\sin(A-B)}{\sin(B-C)}$ $\Rightarrow \sin^2 B - \sin^2 C = \sin^2 A - \sin^2 B$ $\Rightarrow b^2 - c^2 = a^2 - b^2$ $\Rightarrow a^2, b^2, c^2$ are in A.P. 834 (a) Let $\sec \theta - \tan \theta = \lambda$...(i) Then, $(\sec\theta + \tan\theta) = \frac{1}{\sec\theta - \tan\theta}$ $\Rightarrow \sec \theta + \tan \theta = \frac{1}{4}$...(ii) $\therefore 2 \tan \theta = \frac{1}{\lambda} + \lambda$ [On subtracting (i) from (ii)] $\Rightarrow 2x - \frac{1}{2x} = \frac{1}{\lambda} - \lambda$ $\Rightarrow \lambda = \frac{1}{2x}, -2x \Rightarrow \sec \theta - \tan \theta = \frac{1}{2x}, -2x$ 835 (d) We observe that the LHS of the given equation is not defined for $x = n \pi, n \in Z$ Now, $\cot x - \csc x = 2 \sin x$ $\Rightarrow \cot x - 1 = 2 \sin^2 x$ $\Rightarrow 2\cos^2 x + \cos x - 3 = 0$ $\Rightarrow (2\cos x + 3)(\cos x - 1) = 0$ $\Rightarrow \cos x = 1$ $[\because 2\cos x + 3 \neq 0]$ $\Rightarrow x = 0, 2 \pi$ But, $x \neq n \pi, n \in Z$ Hence, the given equation has no solution

837 (d) Given, $\frac{\sin x}{\sin y} = \frac{1}{2}$, $\frac{\cos x}{\cos y} = \frac{3}{2}$ $\Rightarrow \frac{\tan x}{\tan y} = \frac{1}{3}$ $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{4 \tan x}{1 - 3 \tan^2 x}$ Also, $\sin y = 2 \sin x$, $\cos y = \frac{2}{3} \cos x$ $\Rightarrow \sin^2 y + \cos^2 y = 4\sin^2 x + \frac{4\cos^2 x}{\alpha} = 1$ $\Rightarrow 36 \tan^2 x + 4 = 9 \sec^2 x = 9(1 + \tan^2 x)$ $\Rightarrow 27 \tan^2 x = 5$ $\Rightarrow \tan x = \frac{\sqrt{5}}{2\sqrt{2}}$ $\Rightarrow \tan(x+y) = \frac{\frac{4\sqrt{5}}{3\sqrt{3}}}{1-\frac{15}{2}} = \sqrt{15}$ 840 (d) $\frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} - \sin 9^{\circ}} = \frac{1 + \tan 9^{\circ}}{1 - \tan 9^{\circ}}$ $= \tan(45^{\circ} + 9^{\circ})$ $= \tan 54^{\circ}$ 842 (a) Let *ABC* be the triangle such that $a = 2\sqrt{2}$ cm, $b = 2\sqrt{3}$ cm and $\angle A = \frac{\pi}{4}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{12 + c^2 - 8}{4\sqrt{3}c}$ $\Rightarrow 4 + c^2 = 2\sqrt{6}c$ $\Rightarrow c^2 - 2\sqrt{6} c + 4 = 0$ $\Rightarrow c = \frac{2\sqrt{6} \pm \sqrt{24 - 16}}{2}$ $\Rightarrow c = \sqrt{6} \pm \sqrt{2} \Rightarrow c = \sqrt{6} + \sqrt{2}$ [: *c* is the largest side] 843 (b) We have, $r \sin \theta = 3$ and $r = 4(1 + \sin \theta)$ $\Rightarrow r = 4 + \frac{12}{r}$ r $\Rightarrow r^{2} - 4r - 12 = 0$ $\Rightarrow (r - 6)(r + 2) = 0$ $\Rightarrow r = 6 \quad [\because r > 0]$

 $\therefore r \sin \theta = 3 \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}$ Hence, the total number of ordered pairs of the form (r, θ) is $1 \times 2 = 2$ 844 (d) We have, $\sin 65^{\circ} + \sin 43^{\circ} - \sin 29^{\circ} - \sin 7^{\circ}$ $= (\sin 65^{\circ} + \sin 43^{\circ}) - (\sin 29^{\circ} + \sin 7^{\circ})$ $= 2 \sin 54^{\circ} \cos 11^{\circ} - 2 \sin 18^{\circ} \cos 11^{\circ}$ $= 2 \cos 11^{\circ} (\cos 36^{\circ} - \sin 18^{\circ})$ $= 2\cos 11^{\circ} \left(\frac{\sqrt{5}+1}{4} - \frac{\sqrt{5}-1}{4}\right) = \cos 11^{\circ}$ 845 (c) We have, $\sin B = \frac{1}{5}\sin(2A + B)$ $\Rightarrow \frac{\sin(2A+B)}{\sin B} = \frac{5}{1}$ $\Rightarrow \frac{\sin(2A+B) + \sin B}{\sin(2A+B) - \sin B} = \frac{5+1}{5-1}$ $\Rightarrow \frac{2\sin(A+B)\cos A}{2\sin A\cos(A+B)} = \frac{3}{2}$ $\Rightarrow \frac{\tan(A+B)}{\tan A} = \frac{3}{2}$ 846 (b) Since, $A + B + C = \pi$ $\Rightarrow a = \pi - (B + C)$ We have, $\cos A = \cos B \cos C$ $\Rightarrow \cos[\pi - (B + C)] = \cos B \cos C$ $\Rightarrow -\cos(B+C) = \cos B \cos C$ $\Rightarrow -[\cos B \cos C - \sin B \sin C] = \cos B \cos C$ $\Rightarrow \sin B \sin C = 2 \cos B \cos C$ $\Rightarrow \tan B \tan C = 2$ 847 (a) We have, $\sin x + \csc x = 2 \Rightarrow (\sin x - 1)^2 = 0 \Rightarrow \sin x$ = 1 $\therefore \sin^n x + \csc^n x = 1 + 1 = 2$ 848 (a) 851 (a) We have, $\sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12\sin \theta$ $\sin 6\theta + 5 \sin 4\theta + 12 \sin 2\theta$ $\frac{(\sin 7\theta + \sin 5\theta) + 5(\sin 5\theta + \sin 3\theta) + 12(\sin 3\theta + \sin \theta)}{\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta}$

We have, $\frac{a^2 - b^2}{a^2 + b^2} = \frac{\sin(A - B)}{\sin(A + B)}$ $\Rightarrow \frac{\sin^2 A - \sin^2 B}{\sin^2 A + \sin^2 B} = \frac{\sin^2 A - \sin^2 B}{\sin^2 (A + B)}$ $\Rightarrow (\sin^2 A - \sin^2 B)(\sin^2 A + \sin^2 B - \sin^2 C) = 0$ $\Rightarrow \sin(A+B)\sin(A-B)(\sin^2 A + \sin^2 B - \sin^2 C)$ = 0 $\Rightarrow \sin(A - B) = 0$ or, $\sin^2 A + \sin^2 B = \sin^2 C$ $\Rightarrow A = B \text{ or, } a^2 + b^2 = c^2$ $\Rightarrow \Delta ABC$ is either right angled or isosceles 849 (c) We have, $\cos A = \cos B \cos C$ $\Rightarrow \cos\{\pi - (B + C)\} = \cos B \cos C$ $\Rightarrow -\cos(B+C) = \cos B \cos C$ $\Rightarrow 2 \cos B \cos C = \sin B \sin C$ $\Rightarrow \cot B \cot C = \frac{1}{2}$ 850 (c) We have, 2s = a + b + c = 13 + 14 + 15 $\Rightarrow s = 21$ \Rightarrow *s* - *a* = 8, *s* - *b* = 7 and *s* - *c* = 6 Now. $\frac{1}{r_1}:\frac{1}{r_2}:\frac{1}{r_3}=\frac{s-a}{\Delta}:\frac{s-b}{\Delta}:\frac{s-c}{\Delta}$ $\Rightarrow \frac{1}{r_1} : \frac{1}{r_2} : \frac{1}{r_2} = s - a : s - b : s - c = 8 : 7 : 6$

 $2\sin 6\theta \cos \theta + 10\sin 4\theta \cos \theta + 24\sin 2\theta \cos \theta$ $\sin 6\theta + 5 \sin 4\theta + 12 \sin 2\theta$ $2\cos\theta(\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta)$ $\sin 6\theta + 5 \sin 4\theta + 12 \sin 2\theta$ $= 2 \cos \theta$ 852 (a) Let the angles be A = x - d, B = x, C = x + d. Then, $x - d + x + x + d = 180^{\circ} \Rightarrow x = 60^{\circ}$ Therefore, two larger angles are $B = 60^{\circ}$ and CHence, b = 9 and c = 10Now, $\cos B = \frac{c^2 + a^2 - b^2}{2 ac}$ $\Rightarrow \frac{1}{2} = \frac{100 + a^2 - 81}{20 a} \Rightarrow a^2 - 10 a + 19 = 0 \Rightarrow a$ $=5\pm\sqrt{6}$ 853 (b) Since, $\cos 2x$, $\frac{1}{2}$, $\sin 2x$ are in AP $\Rightarrow \cos 2x + \sin 2x = 1$ $\Rightarrow \sin 2x = 1 - \cos 2x = 2 \sin^2 x$ $\Rightarrow 2 \sin x (\cos x - \sin x) = 0$ $\Rightarrow \sin x = 0 \text{ or } \cos x - \sin x = 0$ $\Rightarrow x = n\pi$ or $\tan x = 1$ $\Rightarrow x = n\pi \text{ or } x = n\pi + \frac{\pi}{4}$ Thus, required values of *x* are $n\pi$ and $n\pi + \frac{\pi}{4}$ 854 (b) $\cos\frac{\pi}{18} + \cos\frac{2\pi}{18} + \dots + \cos\frac{16\pi}{18} + \cos\frac{17\pi}{18} + \cos\pi$ $= \cos\frac{\pi}{18} + \cos\frac{2\pi}{18} + \dots - \cos\frac{2\pi}{18} - \cos\frac{\pi}{18} + \cos\pi$ $=\cos\pi=-1$ 855 **(b)** Given that, $\sin \theta + \cos \theta = 1$ $\Rightarrow \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \sin\frac{\pi}{4}$ $\Rightarrow \theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{\Delta} - \frac{\pi}{\Delta}$ 856 (d) We have, $0 < x < \pi \Rightarrow \sin x > 0$ Now. $1 + \sin x + \sin^2 x + \dots \infty = 4 + 2\sqrt{3}$ $\Rightarrow \frac{1}{1 - \sin x} = 4 + 2\sqrt{3}$ $\Rightarrow \sin x = 1 - \frac{1}{4 + 2\sqrt{3}}$

$$\Rightarrow \sin x = \frac{3 + 2\sqrt{3}}{4 + 2\sqrt{3}} = \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{3} \text{ or, } \frac{2\pi}{3}$$
857 (b)

$$\frac{\sin x + \sin y}{\cos x + \cos y} = \frac{a}{b}$$

$$\Rightarrow \frac{2 \sin(\frac{x+y}{2}) \cos(\frac{x-y}{2})}{2 \cos(\frac{x+y}{2}) \cos(\frac{x-y}{2})} = \frac{a}{b}$$

$$\Rightarrow \tan(\frac{x+y}{2}) = \frac{a}{b}$$
858 (b)
The given equation can be written as

$$\cos(\pi \tan \theta) = \cos(\frac{\pi}{2} - \pi \cot \theta)$$

$$\Rightarrow \pi \tan \theta = 2n \pi \pm (\frac{\pi}{2} - \pi \cot \theta), n \in Z$$

$$\Rightarrow \tan \theta = 2n \pm (\frac{1}{2} - \cot \theta), n \in Z$$

$$\Rightarrow \tan \theta - \cot \theta = 2n - \frac{1}{2}, n$$

$$\in Z \text{ [Taking negative sign]}$$

$$\Rightarrow \frac{\tan^2 \theta - 1}{2 \tan \theta} = n - \frac{1}{4}$$

$$\Rightarrow \cot 2\theta = m + \frac{1}{4}, \text{ where } m = -n \in Z$$
859 (c)
From Questions 47, we have

$$\Delta = \frac{1}{2}ap_1, \Delta = \frac{1}{2}bp_2, \Delta = \frac{1}{2}cp_3$$
Now,

$$p_1, p_2, p_3 \text{ are in A.P.}$$

$$\Rightarrow \frac{2A}{a}, \frac{2A}{b}, \frac{2A}{c} \text{ are in A.P.}$$

$$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in A.P.} \Rightarrow a, b, c \text{ are in H.P.}$$
860 (d)

$$\cos \frac{\pi}{5} \cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}$$

$$= \frac{\sin 2^n \pi}{2^n \sin x}$$

$$= \frac{\sin\frac{16\pi}{5}}{16\sin\frac{\pi}{5}} = \frac{\sin\left(3\pi + \frac{\pi}{5}\right)}{16\sin\frac{\pi}{5}}$$
$$= \frac{-\sin\frac{\pi}{5}}{16\sin\frac{\pi}{5}} = -\frac{1}{16}$$

861 (c)

cosec 15° + sec 15° =
$$\frac{2(\sin 15^\circ + \cos 15^\circ)}{2\sin 15^\circ \cos 15^\circ}$$

= $2\left[\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}\right] / \sin 30^\circ$
= $\frac{4\sqrt{3}}{\sqrt{2}} = 2\sqrt{6}$
862 (d)

We have, $\sin A = \frac{4}{5}$ and $\cos B = -\frac{12}{13}$ Now, $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $= \sqrt{1 - \frac{16}{25}} \left(-\frac{12}{13}\right) - \frac{4}{5} \sqrt{1 - \frac{144}{169}}$ $= -\frac{3}{5} \times \frac{12}{13} - \frac{4}{5} \left(-\frac{5}{13}\right)$ $= -\frac{36}{65} + \frac{20}{65} = -\frac{16}{65}$ 863 (a) Given that, $\frac{1}{\tan \theta} + \tan \theta = m$

$$\Rightarrow 1 + \tan^2 \theta = m \tan \theta$$

$$\Rightarrow \sec^2 \theta = m \tan \theta \quad ...(i)$$

and $\sec \theta - \cos \theta = n$

$$\Rightarrow \sec^2 \theta - 1 = n \sec \theta$$

$$\Rightarrow \tan^2 \theta = n \sec \theta$$

$$\Rightarrow \tan^4 \theta = n^2 \sec^2 \theta = n^2 \cdot m \tan \theta \text{ [from Eq.(i)]}$$

 $\Rightarrow \tan^3 \theta = n^2 m \quad (\because \tan \theta \neq 0)$

$$\Rightarrow \tan \theta = (n^2 m)^{1/3}$$
 ...(ii)

From Eq. (i), we get

$$\sec^2 \theta = m \ (n^2 m)^{1/3}$$

As we know that, $\sec^2 \theta - \tan^2 \theta = 1$

$$\Rightarrow m(mn^2)^{1/3} - (n^2m)^{2/3} = 1$$

$$\Rightarrow m(mn^2)^{1/3} - n(nm^2)^{1/3} = 1$$

864 **(c)**

We have,

 $(\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C)$ $= 3 \sin A \sin B$ $\Rightarrow (\sin A + \sin B)^2 - \sin^2 C = 3 \sin A \sin B$ $\Rightarrow \sin^2 A + \sin^2 B - \sin^2 C = \sin A \sin B$ $\Rightarrow \sin^2 A + \sin(B + C) \sin(B - C) = \sin A \sin B$ $\Rightarrow \sin^2 A + \sin A \sin(B - C) = \sin A \sin B$ $\Rightarrow \sin A[\sin(B+C) + \sin(B-C)] = \sin A \sin B$ $\Rightarrow 2 \sin A \sin B \cos C = \sin A \sin B$ $\Rightarrow \cos C = 1/2$ $[:: \sin A \sin B \neq 0]$ $\Rightarrow C = 60^{\circ}$ 865 (b) Given, $\cos 2x + 7 = a (2 - \sin x)$ $\Rightarrow 1-2\sin^2 x+7=2a-a\sin x$ $\Rightarrow 2\sin^2 x - a\sin x + (2a - 8) = 0$: $\sin x = \frac{a \pm \sqrt{(-a)^2 - 8(2a - 8)}}{2 \times 2}$ $=\frac{a\pm(a-8)}{4}$ For (+) sign, $\sin x = \frac{a-4}{2}$ For (-) sign, $\sin x = 2$ which is not possible We know $-1 \le \sin x \le 1$ $\therefore -1 \le \frac{a-4}{2} \le 1 \quad \Rightarrow \quad 2 \le a \le 6$ 866 (c) $\cos^2 B + \cos^2 C = \cos^2 B + \cos^2 \left(\frac{\pi}{2} - B\right)$ $=\cos^{2}B + \sin^{2}B = 1$ 867 (d) We have, $b^{2} \sin 2 C + c^{2} \sin 2 B$ $= b^2 \cdot (2\sin C \cos C) + c^2 \cdot (2\sin B \cos B)$ $= 2(b \sin C)(b \cos C) + 2(c \sin B)(c \cos B)$ $= 2(c \sin B)(b \cos c) + 2(c \sin B)(c \cos B)$ $\left[\because \frac{b}{\sin B} = \frac{c}{\sin C}\right]$ $= 2 c \sin B (b \cos C + c \cos B) = 2 a c \sin B = 4 \Delta$ 868 (a) Since the angles of $\triangle ABC$ are in A.P. $\therefore 2B = A + C \Rightarrow 3B = A + B + C \Rightarrow 3B = 180^{\circ}$ $\Rightarrow B = 60^{\circ}$ Now, $\frac{\sin A}{a} = \frac{\sin B}{b}$ $\Rightarrow \sin A = \frac{a}{h} \sin B = \frac{24}{22} \sin 60^\circ = \frac{6\sqrt{3}}{11}$ $\Rightarrow \cos A = \frac{\sqrt{13}}{11}$ We have, $\sin C = \sin\{180^\circ - (A + B)\}\$ $\Rightarrow \sin C = \sin(A + B)$

872 **(a)**

 $\cos 1^\circ$. $\cos 2^\circ$ $\cos 179^\circ$

 $= \cos 1^\circ \cdot \cos 2^\circ \dots \cdot \cos 90^\circ \cdot \cos 179^\circ$ $= 0 \quad [:: \cos 90^{\circ} = 0]$ 873 (a) Given equation is $2^{\cos 2x} + 1 = 3.2^{-\sin x}$ By taking option (a) Let $x = n\pi$ When, n = 1, $x = \pi$ $\therefore 2^{\cos 2\pi} + 1 = 3.2^{-\sin \pi}$ \Rightarrow 2 + 1 = 3.2° \Rightarrow 3 = 3 When $n = 2, x = 2\pi$ $\therefore 2^{\cos 4\pi} + 1 = 3.2^{-\sin 2\pi}$ $\Rightarrow 2^1 + 1 = 3.2^\circ$ \Rightarrow 3 = 3 874 (b) On squaring given equation, we get $\sin^2 A + 6\cos^2 A - 2\sqrt{6}\sin A\cos A = 7\cos^2 A$ $\Rightarrow \sin^2 A + 6(1 - \sin^2 A)$ $= \cos^2 A$ $+ 6\cos^2 A + 2\sqrt{6}\sin A\cos A$ $\Rightarrow \sin^2 A - 6\cos^2 A + 6$ $= \cos^2 A$ $+ 6 \sin^2 A + 2\sqrt{6} \sin A \cos A$ $\Rightarrow 7 \sin^2 A = (\cos A + \sqrt{6} \sin A)^2$ $\Rightarrow \pm \sqrt{7} \sin A = \cos A + \sqrt{6} \sin A$ Alternate Given, $\sin A - \sqrt{6} \cos A = \sqrt{7} \cos A$ Replacing *A* by $90^{\circ} + A$, we get $\sin(90^{\circ} + A) - \sqrt{6}\cos(90^{\circ} + A)$ $=\sqrt{7}\cos(90^\circ + A)$ $\Rightarrow \cos A + \sqrt{6} \sin A = -\sqrt{7} \sin A$ 875 (b) We have, $y = \frac{\tan x}{\tan 3x}$ $\Rightarrow y = \frac{1 - 3\tan^2 x}{3 - \tan^2 x}$ $\Rightarrow 3y - y \tan^2 x = 1 - 3 \tan^2 x$ $\Rightarrow \tan^2 x (y-3) = 1 - 3y$ $\Rightarrow \tan^2 x = \frac{y-3}{1-3y}$ $\Rightarrow -\frac{y-3}{3y-1} \ge 0 \ [\because \tan^2 x \ge 0]$ $\Rightarrow \frac{y-3}{3y-1} \le 0 \Rightarrow \frac{1}{3} \le y < 3 \Rightarrow y \in [1/3,3]$ 876 (c) We have, $\sqrt{\operatorname{cosec}^2 \alpha + 2 \cot \alpha}$ $=\sqrt{1+\cot^2\alpha+2\cot\alpha}=|1+\cot\alpha|$

But
$$\frac{3\pi}{4} < \alpha < \pi$$

 $\Rightarrow \cot \alpha < -1 \Rightarrow 1 + \cot \alpha < 0$
Hence, $|1 + \cot \alpha| = -(1 + \cot \alpha)$

877 (c)

Since $-\sqrt{a^2 + b^2} \le a \sin x + b \cos x \le \sqrt{a^2 + b^2}$. Therefore, $a \sin x + b \cos x = c$ has no solution for $|c| > \sqrt{a^2 + b^2}$ 878 (c) We have, $\tan\theta + \sec\theta = 2\cos\theta$ $\Rightarrow 1 + \sin \theta = 2\cos^2 \theta$ $\Rightarrow 1 + \sin \theta = 2 - 2 \sin^2 \theta$ $\Rightarrow 2\sin^2\theta + \sin\theta - 1 = 0$ $\Rightarrow (2\sin\theta - 1)(\sin\theta + 1) = 0$ $\Rightarrow \sin \theta = \frac{1}{2}, \sin \theta = -1$ $\Rightarrow \sin \theta$ $=\frac{1}{2} \quad \left[\begin{array}{c} \because \sin \theta = -1 \Rightarrow \theta = \frac{3 \pi}{2} \\ \text{for which the equation is not defined} \end{array} \right]$ $\Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6} \qquad \left[:: \theta \in [0, 2\pi]\right]$ Hence, the given equation has two solutions in $[0, 2 \pi]$ 879 (c) Given, $\sin \pi (x^2 + x) - \sin \pi x^2 = 0$ $\Rightarrow 2\cos\pi\left(\frac{2x^2+x}{2}\right)\sin\frac{\pi x}{2} = 0$ $\Rightarrow \pi\left(\frac{2x^2+x}{2}\right) = n\pi + \frac{\pi}{2}$ $\Rightarrow 2x^2 + x = 2n + 1$ $\Rightarrow 2x^2 + x - p' = 0$, where p' = 2n + 1, is an odd integer $\therefore x = \frac{-1 \pm \sqrt{1+8p'}}{4} [put \ 1 + 8p' = p]$ $\therefore x = \frac{-1 \pm \sqrt{p}}{4} \Rightarrow x$ $=\frac{\sqrt{p}-1}{4}$ [neglect x] $=\frac{-1-\sqrt{p}}{4}$ 880 (b)

Given that, $3 \sin^2 A + 2 \sin^2 B = 1$...(i) and $3 \sin 2A - 2 \sin 2B = 0$...(ii) From Eq. (i) $3\left(\frac{1 - \cos 2A}{2}\right) + 2\left(\frac{1 - \cos 2B}{2}\right) = 1$ $\Rightarrow 3 \cos 2A + 2 \cos 2B = 3$...(iii)

⇒
$$3\cos 2A = 3 - 2\cos 2B$$

⇒ $9\cos^2 2A = 9 + 4\cos^2 2B - 12\cos 2B$
⇒ $9(1 - \sin^2 2A) = 9 + 4\cos^2 2B - 12\cos 2B$
⇒ $9 - 4\sin^2 2B = 9 + 4\cos^2 2B - 12\cos 2B$
[from Eq. (ii)]
⇒ $-4(1 - \cos^2 2B) = 4\cos^2 2B - 12\cos 2B$
⇒ $-4 = -12\cos 2B$
⇒ $-4 = -12\cos 2B$
⇒ $\cos 2B = \frac{1}{3}$
Now, from Eq. (iii)
 $\cos 2A = \frac{7}{9} \Rightarrow 2\cos^2 A - 1 = \frac{7}{9}$
⇒ $\cos A = \frac{2\sqrt{2}}{3}$
∴ $A + 2B = \cos^{-1}\frac{2\sqrt{2}}{3} + \cos^{-1}\frac{1}{3}$
 $= \cos^{-1}\left(\frac{2\sqrt{2}}{3} \cdot \frac{1}{3} - \sqrt{1 - \frac{8}{9}}\sqrt{1 - \frac{1}{9}}\right)$
 $= \cos^{-1}\left(\frac{2\sqrt{2}}{9} - \frac{2\sqrt{2}}{9}\right)$
 $= \cos^{-1}(0) = \frac{\pi}{2}$
881 (b)

Let $f(x) = \sin x \cos x = \frac{1}{2} \sin 2x$

We know that, $-1 \le \sin 2x \le 1$

$$\Rightarrow -\frac{1}{2} \le \frac{1}{2}\sin 2x \le \frac{1}{2}$$

Thus, the greatest and least value of f(x) are $\frac{1}{2}$ and $\frac{1}{2}$ respectively

882 **(b)**

We have,

$$x^{2} + 4xy + y^{2}$$

$$= (X \cos \theta - Y \sin \theta)^{2}$$

$$+ 4(X \cos \theta - Y \sin \theta)(X \sin \theta)^{2}$$

$$+ (X \sin \theta + Y \cos \theta)^{2}$$

$$= (1 + 4 \sin \theta \cos \theta)X^{2} + 4(\cos^{2} \theta - \sin^{2} \theta)XY$$

$$+ (1 - 4 \sin \theta \cos \theta)Y^{2}$$

$$\therefore x^{2} + 4xy + y^{2} = AX^{2} + BY^{2}$$

$$\Rightarrow (1 + 2 \sin 2 \theta)X^{2} + 4 \cos 2 \theta XY$$

$$+ (1 - 2 \sin 2 \theta)Y^{2}$$

$$= AX^{2} + BY^{2}$$

$$\Rightarrow \cos 2 \theta = 0, A = 1 + 2 \sin 2 \theta, B = 1 - 2 \sin 2 \theta$$

$$\Rightarrow \theta = \frac{\pi}{4} \text{ and } A = 1 + 2 = 3, B = 1 - 2 = -1$$

883 (d) Given, $3\cos 2x - 10\cos x + 7 = 0$ $\Rightarrow 6\cos^2 x - 10\cos x + 4 = 0$ $[\because \cos 2x = 2\cos^2 x - 1]$ $\Rightarrow 2(3\cos x - 2)(\cos x - 1) = 0$ $\Rightarrow \cos x = 1$ or $\cos x = \frac{2}{3}$ Since, cos *x* is positive in Ist and IIIrd quadrant. Hence, total number of solutions are 4 884 (a) $\cos \alpha \sin(\beta - \gamma) + \cos \beta \sin(\gamma - \alpha)$ $+\cos\gamma\sin(\alpha-\beta)$ $=\cos \alpha [\sin \beta \cos \gamma - \cos \beta \sin \gamma] +$ $\cos\beta/\sin\gamma\cos\alpha - \cos\gamma\sin\alpha/+\cos\gamma/\sin\alpha\cos\beta - \cos\alpha\sin\alpha$ n*β*] = 0885 (d) Given, $A + B = 45^{\circ}$ $\Rightarrow \cot(A+B) = 1$ $\frac{\cot A \cot B - 1}{\cot A + \cot B} = 1$ ⇒ $\Rightarrow \cot A \cot B - (\cot A + \cot B) = 1$...(i) Now, $(\cot A - 1)(\cot B - 1) = \cot A \cot B$ cotA+cotB+1 = 1 + 1 = 2 [from Eq. (i)] 886 (c) $\operatorname{Let} I = [\sin x + \cos x]^{1 + \sin 2x}$ $= \left[\sqrt{2}\sin\left(\frac{\pi}{4} + x\right)\right]^{1+\sin 2x}$ At $x = \frac{\pi}{4}$, $I = \left[\sqrt{2}\sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\right]^{1 + \sin\frac{2\pi}{4}}$ $=\left(\sqrt{2}\right)^2=2$ 887 (d) The given expression can be written as $\cos^{6} x (\cos^{6} x + 3\cos^{4} x + 3\cos^{2} x + 1)$ $+2\cos^{4}x + \cos^{2}x - 2$ $= \sin^3 x (\cos^2 x + 1)^3 + 2\cos^4 x + \cos^2 x - 2$ $= \sin^3 x (\sin x + 1)^3 + 2 \sin^2 x + \cos^2 x - 2$ $[: \sin x + \sin^2 x = 1 \Rightarrow \sin x = \cos^2 x]$ $= (\sin x + \sin^2 x)^3 + \sin^2 x + (\sin^2 x + \cos^2 x)$ -2 $= 1^{3} + \sin^{2} x + 1 - 2 = \sin^{2} x$

888 **(b)**

$$\sin^{4} \frac{\pi}{8} + \sin^{4} \frac{3\pi}{8} + \sin^{4} \frac{5\pi}{8} + \sin^{4} \frac{7\pi}{8}$$

$$= \frac{1}{4} \left[\left(2 \sin^{2} \frac{\pi}{8} \right)^{2} + \left(2 \sin^{2} \frac{3\pi}{8} \right)^{2} \right]$$

$$+ \frac{1}{4} \left[\left(2 \sin^{2} \frac{\pi}{8} \right)^{2} + \left(2 \sin^{2} \frac{3\pi}{8} \right)^{2} \right]$$

$$= \frac{1}{4} \left[\left(1 - \cos \frac{\pi}{4} \right)^{2} + \left(1 - \cos \frac{3\pi}{4} \right)^{2} \right]$$

$$+ \frac{1}{4} \left[\left(1 - \cos \frac{\pi}{4} \right)^{2} + \left(1 - \cos \frac{\pi}{4} \right)^{2} \right]$$

$$+ \left(1 - \cos \frac{3\pi}{4} \right)^{2} \right]$$

$$= \frac{1}{4} \left[\left(1 - \frac{1}{\sqrt{2}} \right)^{2} + \left(1 + \frac{1}{\sqrt{2}} \right)^{2} \right]$$

$$+ \frac{1}{4} \left[\left(1 - \frac{1}{\sqrt{2}} \right)^{2} + \left(1 + \frac{1}{\sqrt{2}} \right)^{2} \right]$$

$$= \frac{1}{4} (3) + \frac{1}{4} (3) = \frac{3}{2}$$
889 **(c)**
Given, $\frac{\sin(x + 3\alpha)}{\sin(\alpha - x)} = 3$
Applying componendo and dividendo, we get $\frac{\sin(x + 3\alpha) + \sin(\alpha - x)}{\sin(x + 3\alpha) - \sin(\alpha - x)} = \frac{3 + 1}{3 - 1}$

$$\Rightarrow \frac{2 \sin 2\alpha \cos(\alpha + x)}{2 \cos 2\alpha \sin(\alpha + x)} = 2$$

 $\Rightarrow \frac{\tan 2\alpha}{\tan(\alpha + x)} = 2$

 $\Rightarrow \tan \alpha - \tan^2 \alpha \tan x$

 $\Rightarrow \tan x = \tan^3 \alpha$

We have,

890 (a)

 $\Rightarrow \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \times \frac{(1 - \tan \alpha \tan x)}{(\tan \alpha + \tan x)} = 2$

 $= \tan \alpha$

 $\cos \alpha \sin(\beta - \gamma) + \cos \beta \sin(\gamma - \beta)$

 $=\frac{1}{2}\{\sin(\alpha+\beta-\gamma)+\sin(\beta-\gamma-\alpha)\}$

 $+\cos\gamma\sin(\alpha-\beta)$

+ $sin(\alpha - \beta + \gamma)$ + $sin(\alpha - \beta - \gamma)$ }

 $+\tan x - \tan^3 \alpha - \tan^2 \alpha \tan x$

 $+\sin(\gamma - \alpha + \beta) + \sin(\gamma - \alpha - \beta)$

$$= \frac{1}{2} \{ \sin(\alpha + \beta - \gamma) - \sin(\alpha - \beta + \gamma) \\ -\sin(\alpha - \beta - \gamma) - \sin(\alpha + \beta) \\ +\sin(\alpha - \beta + \gamma) \\ +\sin(\alpha - \beta - \gamma) \}$$

$$= \frac{1}{2} \times 0 = 0$$
891 (c)
$$\sin A + \cos A = m \quad [given]$$

$$\Rightarrow \sin^3 A + \cos^3 A + 3 \cos A \sin A \\ (\sin A + \cos A) = m^3$$

$$\Rightarrow n + 3m \sin A \cos A = m^3 \quad ...(i)$$

$$[: \sin^3 A + \cos^3 A = n]$$
Again, sin $A + \cos^3 A = n$

$$\Rightarrow \sin^2 A + \cos^2 A + 2\sin A \cos A = m^2$$

$$\Rightarrow \sin A \cos A = \frac{m^2 - 1}{2} \quad ...(ii)$$
From Eqs. (i) and (ii), we get
$$n + 3m \frac{(m^2 - 1)}{2} = m^3$$

$$\Rightarrow 2n + 3m^3 - 3m = 2m^3$$

$$\Rightarrow m^3 - 3m + 2n = 0$$
892 (b)
We have,
$$(\sec \theta - 1) = (\sqrt{2} - 1) \tan \theta$$

$$\Rightarrow 1 - \cos \theta = (\sqrt{2} - 1) \sin \theta$$

$$\Rightarrow 2 \sin^2 \frac{\theta}{2} = 2(\sqrt{2} - 1) \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

$$\Rightarrow \sin \frac{\theta}{2} = 0 \text{ or, } \tan \frac{\theta}{2} = \sqrt{2} - 1 = \tan \frac{\pi}{8}$$

$$\Rightarrow \frac{\theta}{2} = n \pi \text{ or, } \frac{\theta}{2} = n \pi + \frac{\pi}{8}, n \in Z$$

$$\Rightarrow \theta = 2 n \pi, \theta = 2 n \pi + \frac{\pi}{4}, n \in Z$$
893 (d)
Given, $\cos \theta + \sin 2\theta = 0$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \cos \theta (1 + 2 \sin \theta) = 0$$

$$\Rightarrow \sin \theta = -\pi + \frac{\pi}{2} - \frac{\pi}{2} \cos \theta$$

$$\Rightarrow \sin \theta = -\pi + \frac{\pi}{2} - \frac{\pi}{2} \cos \theta$$

$$\Rightarrow \sin \theta + \cos \theta = (2r + 1), r \in Z$$

 $-\gamma)$

$$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta = \frac{2r+1}{\sqrt{2}}, r \in Z$$

$$\Rightarrow \cos \left(\theta - \frac{\pi}{4}\right) = \frac{2r+1}{\sqrt{2}}, r \in Z$$

$$\Rightarrow \cos \left(\theta - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \text{ or } -\frac{1}{\sqrt{2}} \quad [\text{For } r = 0, -1]$$

$$\Rightarrow \theta - \frac{\pi}{4} = 2r \pi \pm \frac{\pi}{4}, r \in Z$$

$$\Rightarrow \theta = 2r \pi, 2r \pi \pm \frac{\pi}{4}, r \in Z$$

$$\Rightarrow \theta = 2r \pi, 2r \pi + \frac{\pi}{2}, r \in Z$$
 gives extraneous roots as
it does not satisfy the given equation. Therefore,

$$\theta = 2r \pi, r \in Z$$

895 (b)

$$\tan \theta + \tan \left(\frac{3\pi}{4} + \theta\right) = 2$$

$$\Rightarrow \tan \theta - \cot \left(\frac{\pi}{4} + \theta\right) = 2$$

$$\Rightarrow \tan \theta - \cot \left(\frac{\pi}{4} + \theta\right) = 2$$

$$\Rightarrow \tan \theta - \cot \left(\frac{\pi}{4} + c\theta\right) = 2$$

$$\Rightarrow \tan \theta - \cot \left(\frac{\pi}{4} + c\theta\right) = 2$$

$$\Rightarrow \tan \theta - \frac{\cot \frac{\pi}{4} \cot \theta - 1}{\cot \frac{\pi}{4} + \cot \theta} = 2$$

$$\Rightarrow \tan \theta - \frac{1 - \tan \theta}{1 + \tan \theta} = 2$$

$$\Rightarrow \tan \theta - \frac{1 - \tan \theta}{1 + \tan \theta} = 2$$

$$\Rightarrow \tan \theta + \tan^{2} \theta - 1 + \tan \theta = 2 + 2 \tan \theta$$

$$\Rightarrow \tan^{2} \theta = 3$$

$$\Rightarrow \tan \theta = \pm \sqrt{3} = \pm \tan \frac{\pi}{3}$$

$$\Rightarrow \theta = n\pi \pm \frac{\pi}{3}, n \in Z$$

896 (b)
We have,

$$(1 + \tan \theta)(1 + \tan \phi) = 2$$

$$\Rightarrow \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi = 2$$

$$\Rightarrow \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi$$

$$\Rightarrow \frac{\tan \theta + \tan \phi}{1 - \tan \theta} = 1$$

$$\Rightarrow \tan(\theta + \phi) = 1 \Rightarrow \theta + \phi = \frac{\pi}{4}, n \in Z$$

897 (c)
Given, $2 \sec 2\alpha = \frac{\sin^{2} \beta + \cos^{2} \beta}{\sin \beta \cos \beta}$

$$\Rightarrow \sin 2\beta = \cos 2\alpha$$

$$\Rightarrow \alpha + \beta = \frac{\pi}{4}$$
898 (a)
We have,
 $2\sin^2 \theta - 5\sin \theta + 2 > 0$
 $\Rightarrow (\sin \theta - 2)(2\sin \theta - 1) > 0$
 $\Rightarrow 2\sin \theta - 1 < 0 \quad [\because -1 \le \sin \theta \le 1 :: \sin \theta - 2 < 0]$
 $\Rightarrow \sin \theta < \frac{1}{2}$
 $\Rightarrow \theta \in (0, \pi/6) \cup (5\pi/6, \pi)$
(0, 1)
(0, 1)
(1, 1)
(2, 1)
(1, 1)
(2, 1)
(3, 1)
(4, 1)
(5, 1)
(5, 1)
(5, 1)
(6, 1)
(7, 1)
(7, 1)
(7, 1)
(9, 1)
(9, 1)
(9, 1)
(1, 1)
(9, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(2, 1)
(1, 1)
(2, 1)
(1, 1)
(1, 1)
(1, 1)
(1, 1)
(2, 1)
(1, 1)
(2, 1)
(3, 1)
(4)
tan 45° = $\frac{\tan 10°}{\tan 40°} \tan 35°$
 $\Rightarrow 1 - \tan 10° \tan 35°$
 $\Rightarrow \tan 10° + \tan 35° + \tan 10° \tan 35° = 1$

902 (b)

$$\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^{n} + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^{n}$$

$$\left[\frac{2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)}{2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)}\right]^{n}$$

$$+ \left[\frac{2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)}{2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{B-A}{2}\right)}\right]^{n}$$

$$= \cot^{n}\left(\frac{A-B}{2}\right) + \cot^{n}\left(\frac{B-A}{2}\right)$$

$$= \cot^{n}\left(\frac{A-B}{2}\right) + (-1)^{n}\cot\left(\frac{A-B}{2}\right)$$

$$= 2\cot^{n}\left(\frac{A-B}{2}\right) + (-1)^{n}\cot\left(\frac{A-B}{2}\right)$$

$$= 2\cot^{n}\left(\frac{A-B}{2}\right) \quad (\because n \text{ is even})$$
903 (d)
We have,

$$\sin(x-y) = \frac{1}{2} \text{ and } \cos(x+y) = \frac{1}{2}$$

$$\Rightarrow (x-y=30^{\circ}) \text{ and } (x+y=60^{\circ}) \quad [\because 0 < x, y < 90^{\circ}$$

$$\Rightarrow x = 45^{\circ}, y = 15^{\circ}$$
904 (d)
We have,

$$5\cos 2\theta + 2\cos^{2}\frac{\theta}{2} + 1 = 0$$

$$\Rightarrow 5(2\cos^{2}\theta - 1) + (1 + \cos\theta) + 1 = 0$$

$$\Rightarrow 10\cos^{2}\theta + \cos\theta - 3 = 0$$

$$\Rightarrow (5\cos\theta + 3)(2\cos\theta - 1) = 0$$

$$\Rightarrow \cos\theta = \frac{1}{2}, \cos\theta = -\frac{3}{5} \Rightarrow \theta = \frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right)$$
905 (a)
We have,

$$\cos x \cos y \sin(x-y)$$

$$= \frac{1}{4}[2\sin(2x - y)\cos(x+y)$$

$$+ 2\sin(x-y)\cos(x-y)]$$

$$= \frac{1}{4}[\sin 2x - \sin 2y + \sin(2x - 2y)]$$
Similarly, we have

$$\cos y \cos z \sin(y - z)$$

$$= \frac{1}{4}[\sin 2y - \sin 2z + \sin(2y - 2z)]$$
and,

 $\cos z \cos x \sin(z-x)$ $=\frac{1}{4}[\sin 2z - \sin 2x]$ $+\sin(2z-2x)$] Also, $\sin(x-y)\sin(y-z)\sin(z-x)$ $=-\frac{1}{4}\{\sin(2x-2y)+\sin(2y-2z)\}$ $+\sin(2z-2x)$ On adding the above results, we find that the value of the given expression is zero 906 (c) We have, $2\cos B = \frac{a}{c}$ $\Rightarrow 2\left(\frac{c^2 + a^2 - b^2}{2ac}\right) = ac$ $\Rightarrow c^2 = b^2 \Rightarrow c = b \Rightarrow \Delta ABC$ is isosceles 907 (d) We have, $\sin x \cos x = 2$ $\Rightarrow \sin 2x = 4$ Which is impossible because the value of $\sin x$ is not greater than one Thus, given equation has no solution 908 (a) The given equation can be rewritten as $1 - \cos^2 \theta - \cos \theta = \frac{1}{4}$ $\Rightarrow \cos^2 \theta + \cos \theta - \frac{3}{4} = 0$ $\Rightarrow 4\cos^2\theta + 4\cos\theta - 3 = 0$ $\Rightarrow \cos \theta = \frac{-4 \pm \sqrt{16 + 48}}{9} = \frac{1}{2}, -\frac{3}{2}$ Since, $\cos \theta = -\frac{3}{2}$ is not possible, so we take $\cos\theta = \frac{1}{2} = \cos\frac{\pi}{2}$ $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}$...(i) For the given interval, put n = 0 and n = 1 in Eq. (i) we get $\theta = \frac{\pi}{3}, \frac{5\pi}{3}$ 909 (a) We have, $\frac{b+c}{11} = \frac{a+c}{12} = \frac{a+b}{13} = K \text{ (say)}$ $\Rightarrow b + c = 11 K, c + a = 12 K, a + b = 13 K$ $\Rightarrow 2(a+b+c) = 36 K \Rightarrow a+b+c = 18 K$ $\Rightarrow a = 7K, b = 6K, c = 5K$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{36 + 25 - 49}{2 \times 6 \times 5} = \frac{1}{5}$ 910 (d)

We have, $f(x) = (\sec x - \cos x)^2 + 2 \Rightarrow f(x) \ge 2$ for all x 911 **(b)** Given that, $\sin x \sqrt{8 \cos^2 x} = 1$ $\Rightarrow 2 \sin x |\cos x| = \frac{1}{\sqrt{2}}$ If $\cos x > 0$, then $\sin 2x = \frac{1}{\sqrt{2}}$ $\Rightarrow x = \frac{\pi}{8}, \frac{3\pi}{8}$ And if $\cos x < 0$, then $\sin 2x = -\frac{1}{\sqrt{2}} \Rightarrow x = \frac{5\pi}{8}, \frac{7\pi}{8}$ So, the required values of x are $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$, which form an AP with common difference $\frac{\pi}{4}$ 912 (b) Given, $z = 12 \sin \theta - 9 \sin^2 \theta + 4 - 4$ $\Rightarrow z = -4 - (2 - 3\sin\theta)^2 \le 4$ \therefore maximum value of $12 \sin \theta - 9 \sin^2 \theta$ is 4 913 (c) We have, $\tan|x| = |\tan x|$ $\Rightarrow \tan |x| \ge 0 \text{ and } x \ne (2n+1)\frac{n}{2}, n$ $\in Z [:: |\tan x| \ge 0]$ \Rightarrow x lies in the third quadrant $\Rightarrow x \in \left(-(2k+1)\frac{\pi}{2}, k \, \pi\right) \cup \left(k \, \pi, (2k+1)\frac{\pi}{2}\right)$ 914 (c) \therefore tan θ + tan 2 θ + $\sqrt{3}$ tan θ tan 2 θ = $\sqrt{3}$ $\Rightarrow \tan \theta + \tan 2\theta = \sqrt{3}(1 - \tan \theta \tan 2\theta)$ $\Rightarrow \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta} = \sqrt{3} \Rightarrow \tan 3\theta = \tan \frac{\pi}{3}$ $\Rightarrow 3\theta = n\pi + \frac{\pi}{3} \Rightarrow \theta = \frac{(3n+1)\pi}{\alpha}, n \in I$ 915 (d) We have. $x = \tan \frac{B-C}{2} \tan \frac{A}{2}$ $\Rightarrow x = \frac{b-c}{c+a} \qquad \left[\because \tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} \right]$ Similarly, we have $y = \frac{c-a}{c+a}$ and $x = \frac{a-b}{a+b}$ $x = \frac{b-c}{b+c} \Rightarrow \frac{x+1}{r-1} = \frac{b}{-c} \Rightarrow \frac{b}{c} = \frac{1+x}{1-x}$ $\frac{c}{a} = \frac{1+y}{1-y}$ and $\frac{a}{b} = \frac{1+z}{1-z}$ Now.

$$\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a} = 1$$

$$\Rightarrow \frac{1+z}{1-z} \times \frac{1+x}{1-x} \times \frac{1+y}{1-y} = 1$$

$$\Rightarrow (1+x)(1+y)(1+z) = (1-x)(1-y)(1-z)$$

$$\Rightarrow 2(x+y+z) = -2xyz$$

$$\Rightarrow x+y+z = -xyz$$
916 (d)
Given, $\cos x = 3 \cos y$

$$\Rightarrow \frac{3}{1} = \frac{\cos x}{\cos y}$$
Applying componendo and dividend, we get
$$\frac{3+1}{3-1} = \frac{\cos x + \cos y}{\cos x - \cos y}$$

$$\Rightarrow 2 = \frac{2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)}{2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{y-x}{2}\right)}$$

$$\Rightarrow 2 = \cot \left(\frac{x+y}{2}\right) \cot \left(\frac{y-x}{2}\right)$$

$$\Rightarrow 2 \tan \left(\frac{y-x}{2}\right) = \cot \left(\frac{x+y}{2}\right)$$
917 (c)
$$\frac{\sin 85^{\circ} - \sin 35^{\circ}}{\cos 65^{\circ}} = \frac{2 \cos \frac{85^{\circ} + 35^{\circ}}{5} \sin \frac{85^{\circ} - 35^{\circ}}{2}}{\cos (90^{\circ} - 25^{\circ})}$$

$$\frac{2 \cos 60^{\circ} \sin 25^{\circ}}{\tan 80^{\circ} - \tan 10^{\circ}} \times (1 + \tan 80^{\circ} \tan 10^{\circ})$$

$$= \frac{\tan 80^{\circ} - \tan 10^{\circ}}{\tan 80^{\circ} - \tan 10^{\circ}} \times (1 + \tan 80^{\circ} \tan 10^{\circ})$$

$$= 1 + \tan 80^{\circ} \tan 10^{\circ} = 2$$
919 (c)
We have,

$$\left(1 + \cos \frac{\pi}{8}\right) \left(1 + \cos \frac{3\pi}{8}\right) \left(1 + \cos \frac{5\pi}{8}\right) \left(1 + \cos \frac{\pi}{8}\right)$$

$$= \left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 - \cos\frac{3\pi}{8}\right) \left(1 - \cos\frac{\pi}{8}\right)$$
$$= \left(1 - \cos^2\frac{\pi}{8}\right) \left(1 - \cos^2\frac{3\pi}{8}\right)$$
$$= \frac{1}{4} \left(2 - 1 - \cos\frac{\pi}{4}\right) \left(2 - 1 - \cos\frac{3\pi}{4}\right)$$
$$= \frac{1}{4} \left(1 - \cos\frac{\pi}{4}\right) \left(1 - \cos\frac{3\pi}{4}\right)$$
$$= \frac{1}{4} \left(1 - \frac{1}{\sqrt{2}}\right) \left(1 + \frac{1}{\sqrt{2}}\right) = \frac{1}{4} \left(1 - \frac{1}{2}\right) = \frac{1}{8}$$
920 (a)

$$\frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 4x}}}}$$

= $\frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2.2\cos^2 2x}}}}$
= $\frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 2x}}}$
= $\frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 2x}}}$
= $\frac{2}{\sqrt{2 + 2\cos x}} = \frac{2}{2\cos \frac{x}{2}} = \sec \frac{x}{2}$

P a g e **| 163**